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Abstract 

PATTERN CLASSIFICATION 

USING 

ENHANCED MACHINE LEARNING 

by 

Li MENG 

According to the learning approach involved in the problem solving, pattern 

classification problems can be divided into categories: supervised and unsuper­

vised. Unsupervised pattern classification is also referred to as clustering. 

In the first part of the thesis, support vector machines (SVMs) are investi­

gated for supervised pattern classification problems. Based on recent advances 

in statistical learning theory, SVMs comprise a new class of generation learning 

systems and have become one of the standard techniques for pattern classifi­

cation. 

To ease the separation of classes in a training set, SVMs map training 

examples from the input space to the feature space defined by a kernel function. 

Moreover, to overcome the problem of noise and non-separability, a parameter 

C has been introduced to allow training errors. The effects of different kernel 

functions and parameter C have been investigated in this thesis. 

A major concern in the SVM is the issue of training, which amounts to 

solving a quadratic programming (QP) problem with a dense matrix. The 

present SVM training algorithms have been studied here. In addition, two 

new algorithms have been proposed for fast training of SVMs. Both of them 

train a SVM based on the cluster centres. In our first attempt, the set of 

cluster centres corresponds to partition of the full training set. The method 

used for clustering the training set is c-means. Despite its wide application, 
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it is well known that the c-means algorithm for clustering problems is fairly 

sensitive to initial conditions and can be easily trapped into different local 

extrema. As a result, different trained machines are obtained after different 

runs. In spite of this, the largely reduced training time encouraged the usage of 

a centre-based training method for the support vector machines. In our second 

attempt, the set of cluster centres corresponds to partition of the errors caused 

by the current machine. Results of the error-cent re-based algorithm show that 

its computation time scales almost linear in the training set size and thus may 

be applied to much larger training sets, in comparison with the standard QP 

techniques. 

The second part of the thesis is devoted to a discussion on the problem 

of clustering. Clustering is concerned with the discovery of natural groups in 

a population of data. It is useful for data exploration, versions of which are 

likely to be met, either explicitly or implicitly, in many real-world problems. 

Clustering problems are NP complete, whose solution space is huge. It is there­

fore not surprising that nearly all major "modern" techniques have been tried 

for solving it: artificial neural networks, fuzzy sets, evolutionary algorithms, 

simulated annealing, etc. Of course, more "classical" analytical and statistical 

approaches are also being used. 

This thesis presents a new method for clustering, which combines the con­

ventional hard c-means with the advanced genetic algorithm (GA) and is thus 

called genetic hard c-means clustering algorithm (GHCMCA). Experiments on 

GHCMCA show that a genetic approach is able to overcome the inevitable 

drawbacks of a hill-climbing technique such as c-means. Vector quantisation 

is an important application of c-means clustering and images are real-world 

domains of significant complexity. Inspired by this, the new GHCMCA has 

been tested on different image data sets, in comparison with the conventional 

c-means as well as a previous genetic clustering algorithm. 

The application of GA to NP-hard problems has been extended to job-shop 
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problems (JSPs), where a new genetic scheduling algorithm GSA has been 

developed. A new GA crossover has been designed specially for JSPs to avoid 

infeasible solutions. Experimental results demonstrate that GSA is simple yet 

effective. 

In this thesis, description of experiments and analysis of simulation results 

have been included to support the conclusions drawn in each work. 

III 
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Chapter 1 

INTRODUCTION 

1.1 Pattern Recognition 

The ease with which we recognise a face, understand spoken words, read 

handwritten characters, identify our car keys in our pocket by feel, and decide 

whether an apple is ripe by its smell, belies the astoundingly complex processes 

that underlie these acts of pattern recognition. Pattern recognition - the act of 

taking in raw data and taking an action based on the category of the pattern -

has been crucial for our survival, and over the past tens of millions of years we 

have evolved highly sophisticated neural and cognitive systems for such tasks. 

It is natural that we should seek to design and build intelligent machines 

that can recognise patterns. From automated speech recognition, fingerprint 

identification, optical character recognition, DNA sequenc~ identification, and 

much more, it is clear that reliable, accurate pattern recognition by machine 

would be immensely useful. There are a very large number of reviews and 

books that are devoted to pattern recognition by intelligent machines [1, 2]. 

The utility of classes and categories is obvious: any object that has been 

recognised as a member of a certain category inherits the general properties 

of that category. For example, being told that a horse is a mammal, we im-
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1.1 Pattern Recognition 2 

mediately know whether the animal lays eggs, whether it can fly, or whether 

its skin is covered with fur or feathers. On the other hand, categories in the 

data of a particular area contain knowledge about that area and recognition of 

them will thus lead to discoveries of associations and cause-effect relationships. 

The associations between different categories and their causes are in turn the 

bricks from which the wall of scientific knowledge is built. 

Typical pattern recognition system by an example 

To illustrate the types of problems involved in pattern recognition, let us 

consider the following imaginary example. Suppose that a fruit packing plant 

wants to automate the process of sorting incoming fruit on a conveyor belt 

according to types. As a pilot project it is decided to try to separate oranges 

from apples using optical sensing. We set up a camera, take some sample 

images, and begin to note some physical differences between the two types of 

fruit - peel colour, peel texture, shape, lightness, and so on - and these suggest 

features to explore for use in our classifier. We also notice noise or variations in 

the images - variations in lighting, positi~n of the fruit oJ? the conveyor, even 

the static noise due to the electronics of the camera itself. Given that there 

truly are differences between the population of oranges and that of apples, we 

view them as having different models - different descriptions. Usually, we would 

like to represent these models in a mathematical form. The goal and approach 

in pattern regression is to hypothesise the class of these models, process the 

sensed data to eliminate noise (not due to the models), and for any sensed 

pattern choose the model that corresponds best. 

A typical pattern recognition system for performing this specific task might 

have the form shown in Figure 1.1. First, the camera (sensor) captures an image 

of the fruit. Next, the camera's signals are preprocessed to simplify subsequent 

operations without losing relevant information. In particular, we might use a 

PATTERN CLASSIFICATION BY MACHINE LEARNING L. Meng 



1.1 Pattern Recognition 

decision on actions 

input 

adjustments for 
missing features 

3 

Figure 1.1: Components of a typical pattern recognition system (cited from 
[3], p. 10). Although this description stresses a one-way or "bottom-up" flow 
of data, some systems employ feedback from higher levels back down to lower 
levels (downward arrows). 

segmentation operation in which the images of different fruit are somehow 

isolated from one another and from the background. The information from 

a single fruit is then sent to a feature extractor, whose purpose is to reduce 

the data by measuring certain features. These features (or, more precisely, 

the values of these features) are then passed to a classifier that evaluates the 

evidence presented and makes a final judgement as to the types. A classifier 

rarely exists on its own. Instead, it is generally to be used to recommend 

actions (e.g. put this fruit in this bucket, put that fruit in that bucket), each 

action having an associated cost. The post-processor uses the output of the 

classifier to decide on the recommended action. 

The performance of a classifier is heavily dependent on the choice of the 

features that are used for describing the objects. Considering this, the next 

subsection briefly addresses how the feature extractor should be designed. After 

that, the main concern of this thesis - the design of the classifier component -

PATTERN CLASSIFICATION BY MACHINE LEARNING L. Meng 



1.1 Pattern Recognition 4 

is discussed. 

Feature extraction 

In pattern recognition, objects are characterised by values of some predefined 

set of attributes, such as shape and colour. Boolean, numeric, symbolic, or 

mixed-valued attributes can be considered, and the scope of their values is 

often constrained by background knowledge. A feature is either an attribute 

or a function of one or more attributes .. Ideally, the set of features used in a 

classification decision should be statistically independent, Le. none of the fea­

tures can be determined by a function of other features in the set, or estimated 

from them because of correlations. For instance, if the peel texture of all fruit 

correlated perfectly with peel colour, then even when we include peel texture 

as a feature in addition to peel colour classification performance need not be 

improved. Besides, an ideal feature extractor should yield a representation in 

which the true (but unknown) model of the patterns can be expressed. Meth­

ods generally used for feature extraction are Principal Component Analysis 

(PCA) [4, 5] and Independent Component Analysis [6]. 

Classification 

The task of the classifier component proper of a full system is to use the 

data provided by the feature extractor to assign the object to a category. The 

degree of difficulty of the classification problem depends on the variability in the 

feature values for objects in the same category relative to the difference between 

the feature values for objects in different categories. The variability of feature 

values for objects in the same category may be due to the variation within that 

category, and may be due to noise. We define noise in very general terms: any 

property of the sensed pattern which is not due to the true underlying model 

but instead to randomness in the world or the sensors. All nontrivial decision 

and pattern recognition problems involve noise in some form. 

There are two modes that a classifier executes on the feature vector of an 

PATTERN CLASSIFICATION BY MACHINE LEARNING L. Meng 



1.2 Problems and Learning Approaches 5 

object, corresponding to the two processes - learning and reasoning - of an 

intelligent system. One is the operational mode where the classifier maps each 

input feature vector onto an output vector that represents the class decision. 

This decisionmaking is often referred to as recognition. Before a system can 

do this, however, it must have first learned the categories of feature vectors 

through a process that partitions the set of feature vectors. This is the process 

of classification, which involves training or machine learning. Most of this 

thesis is concerned with the training of a classifier. 

1.2 Problems and Learning Approaches 

According to the learning approach involved in the problem solving, pat­

tern classification problems can be divided into two categories: supervised and 

unsupervised. Unsupervised pattern classification is also referred to as clus­

tering. The rest of this section addresses the problems of supervised pattern 

classification and clustering, respectively. 

1.2.1 Supervised pattern classification 

Learning becomes supervised when a pre-partitioned training set is avail­

able. For supervised pattern classification, a teacher provides a category label 

or cost for each pattern in a training set, and seeks to reduce the sum of the 

costs for these patterns. The category label can be either nominal- or numeric­

valued . 

. A major concern in supervised learning is the issue of generalisation. If 

the model proposed is too simple, the resulting classifier may perform badly 

even on the training patterns. If our model is extremely complicated, the 

classifier may have a decision boundary more complex than the one obtained 

using a simple model and all the training patterns will be separated perfectly. 

PATTERN CLASSIFICATION BY MACHINE LEARNING L. Meng 



1.2 Problems and Learning Approaches 6 

With such a solution, though, our satisfaction would be premature because 

the central aim of designing a classifier is to suggest actions when presented 

with novel patterns (that is, examples not yet seen). This is the need for "good 

generalisation. It is unlikely that a extremely complex decision boundary would 

provide good generalisation - it seems to be tuned to the particular training 

examples, rather than some underlying characteristics or true model of all the 

individuals in each class that will have to be separated. But if designing a 

very complex classifier is unlikely to give a good generalisation, precisely how 

should we quantify and favour simpler classifiers and how our system would 

automatically detect noisy examples and determine that a decision boundary 

can generalise better than the simpler and more complicated ones? Assuming 

that we somehow manage to optimise this tradeoff, can we then predict how 

well our system will generalise to new patterns? 

The above discussion outlines some of the key problems encountered in sta­

tistical pattern classification. In the book on statistical learning theory [7], a 

upper bound on the error in generalisation is presented. And based on it, the 

principle of structure risk minimisation (SRM) is established. Implementing 

this principle, support vector machines (SVMs) have become one of the stan­

dard techniques for pattern classification [8] - [14] and nonlinear regression [15] 

- [17]. The use of SVMs in pattern classification has been investigated in this 

thesis. 

1.2.2 Clustering 

The aim of clustering is to group individuals in a population such that, in 

some sense, the individuals within a group are close or similar to one another, 

but dissimilar from the individuals in other groups. Clustering is a form of 

unsupervised learning, where no explicit teacher is available and the system 

forms clusters or natural groupings of the input examples. "Natural" is always 
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defined explicitly or implicitly in the clustering system itself. Given a particular 

set of examples and objective function, different clustering algorithms lead to 

different partitions. 

Clustering problem has been proven to be NP-complete and thus hard to 

be solved by general techniques as the number of input examples is increased. 

The space of all possible partitions of n examples, which is the search space 

to be scanned by the learning methods, is huge. For example, for a set of 50 

examples, the order of magnitude is 1047
; and 100 examples can be partitioned 

into 5 classes in approximately 1068 different ways. In addition, most of the 

objective function involved in clustering problems are highly nonlinear and 

possess a number of local extrema. When the natural clusters are not "obvious" 

among the input examples, the problem becomes more difficult as both the 

nonlinearity of the objective function and the number of local extrema would 

increase dramatically. 

When the clusters to be formed are required not to overlap with each 

other, the problem becomes a hard clustering problem. Hard c-means clus­

tering algorithm (HCMCA) is a popular method for such problems. It is a 

sum-of-squares method, which partitions the examples into c clusters so that 

a defined within-group sum-of-squares is minimised. Starting from c initial 

cluster centres, HCMCA alternatively assigns each example in the training set 

to its closest centre and then updates the c centres according to the current 

partition. HCMCA is efficient since it is essentially a hill-climbing approach, 

guiding the search in the direction that the value of the cost function decreases 

most rapidly. However, it does have weaknesses: 

• The way to initialise the searching is not specified by the algorithm. One 

popular way to start is to randomly choose c of the examples . 

• The results produced depend on the initial values of the centres, and it 

frequently happens that suboptimal partitions are found. The standard 
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solution is to try a number of different starting points. However, it is 

obvious that the optimal partition can not be guaranteed no matter how 

many starting points would be tried. 

• It can happen that the set of examples closest to a cluster centre is 

empty and consequently that the centre cannot be updated [18]. This is 

an annoyance that must be handled in an implementation. 

The problem of how to conquer these weaknesses has become another main 

focuses of this thesis, besides the use of SVMs for supervised pattern classifi­

cation. 

1.3 Main Results/Algorithms 

1.3.1 Statistical pattern classification using support vec­

tor machines 

To ease the separation of the classes in a training set, SVMs map the train­

ing set from the input space to the feature space defined by a kernel function. 

Different kernel functions implement different mappings, which will in turn 

determine the separability of the mapped classes in the feature space. For 

different data sets, the highest separability in the feature space is achieved by 

different kernel functions. How to choose the best kernel function for a partic­

ular data set still remains an open question. In this thesis, the commonly used 

kernel functions are introduced and their effects are investigated empirically by 

comparing the decision boundaries that are obtained when applying different 

kernels to a same benchmark data set. 

To solve the problem of noise and the non-separability caused by noisy ex­

amples, a parameter C has been introduced in SVMs to allow training errors. 

The effects of different values of parameter C have been investigated, again em-
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pirically, by comparing the resulting decision boundaries on a same benchmark 

problem. 

Training a SVM amounts to solving a quadratic programming (QP) prob­

lem. The standard QP techniques require a memory space growing quadrati­

cally with the problem size and take a training time that grows exponentially 

with the problem size. To tackle this problem, two centre-based algorithms 

have been proposed for a fast training of SVMs. Under these new algorithms, 

examples in a given training set are partitioned into clusters and the SVM is 

trained on the centres of these clusters. The partition of training examples 

is updated repeatedly for producing a better decision boundary. Under our 

first attempted algorithm - Centre-based optimisation (CO) [19], the partition 

is updated by splitting each current cluster into two new clusters. This is 

achieved by the classic HCMCA. And as a result, for a same training set differ­

ent partitions and hence different decision boundaries might be obtained after 

independent runs of the algorithm. Despite this, the largely reduced training 

time encouraged the usage of a centre-based training method for the SVMs. To 

avoid the uncertainty of the results, a method rather than HCMCA is required 

for the construction of new clusters. In the training of a classifier, errors are 

those examples that are classified, according to the current decision boundary, 

to a class rather than the taught one. In our second attempt, errors in each 

of the current clusters compose a new cluster. By such means, the consistency 

of the obtained results is achieved. The procedure of updating the partition of 

the training examples, training the SVM on the set of cluster centres, and iden­

tifying errors caused by the current decision boundary iterates until no error 

example is found. Since only are the centres of error clusters involved in the 

training, this new algorithm is called error-centre-based optimisation (ECO) 

[20] - [22]. Under ECO, error examples are identified using the Karush-Kuhn­

Tucker (KKT) conditions. The KKT conditions are the necessary and sufficient 

conditions for the optimal solution of a QP problem. Therefore, the optimality 
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. of solutions produced by ECO is guaranteed. The great potential of ECO for 

large training sets has been demonstrated by the experimental results. While 

the optimal solution is guaranteed by ECO, the size of QP problems involved 

in the training is largely reduced and the training time grows almost linearly 

with the size of the training set. The experiment results obtained using ECO 

are presented and analysed in this thesis. So are the results obtained using 

CO. 

1.3.2 c-Means clustering using a genetically guided learn-· 

ing approach 

As already mentioned in section 1.2.2, by hill-climbing, HCMCA is found 

to be easily trapped into different local minima and fairly sensitive to the 

initial conditions. When the models are fairly simple and of low dimension, 

the standard c-means approach can still perform well. However, it becomes 

increasingly unsatisfactory as the models become more complicated. The more 

complicated the model, the less the prior knowledge, and the less the training 

data, the more we must rely on sophisticated search methods for constructing 

an acceptable model. 

Genetic algorithms (GAs) comprise a general class of such methods. The 

class of GAs is based on the concepts stemming from biology, specially the prin­

ciples of natural evolution. A primary advantage of GAs is that they conduct 

a global search and thus can effectively overcome the inevitable drawbacks of a 

local search algorithm, such as HCMCA. Inspired by this, a genetically guided 

approach - genetic hard c-means clustering algorithm (GHCMCA) - has been 

proposed specially for hard clustering problems [23] - [25]. GHCMCA adopts 

the basic scheme of a genetic algorithm (GA) and performs a genetically guided 

search in order to optimise the objective function of a hard clustering problem. 

Unlike previous clustering algorithms with GAs, population members under 
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GHCMCA represent partition matrices instead of sets of cluster centres. A new 

genetic crossover operator has been introduced which effectively recombines im­

portant partition similarities between pairs of parents creating new solutions. 

GHCMCA has been evaluated and compared against the traditional clustering 

algorithm HCMCA and a previous genetic clustering algorithm which adopts 

the standard two-point crossover. Results from the comparative study show 

that a genetic approach is able to overcome the inevitable drawbacks of a 

hill-climbing technique. In experiments with image data sets, the proposed 

algorithm is superior to the previous genetic clustering algorithm in the sense 

that it converges much more quickly to the desired region in which the global 

optimum resides. Therefore in the cases where speed as well as performance 

is required, GHCMCA provides a solution to the dilemma where the classical 

HCMCA can be easily trapped in different local extrema and the conventional 

genetic approach is time consuming. 

In this thesis, the application of GAs has been extended to another NP-
, 

complete problem - the jolrshop problem. A new genetic scheduling algorithm 

GSA has been proposed. GSA employs a new solution representation scheme 

and a new crossover operator, both have been devised specially for the jolrshop 

problems to avoid infeasible solutions. The power of GSA has been demon­

strated by the experimental results. For each testing problem, GSA has found 

the optimal solution. 

1.4 Outline of Thesis 

This thesis is organised as follows. 

We begin in Chapter 2 (Statistical Learning and Support Vector Machines) 

with an introduction to the structure risk minimisation principle in statistical 

learning theory. Then the statistical learning method - support vector ma­

chines (SVMs) is introduced. Both maximal-margin and soft-margin SVMs 
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are addressed. The effect of parameter C in a soft-margin SVM has been in­

vestigated. When the classes of points cannot be separated by a hyperplane, 

SVMs first map the points into a high-dimensional feature space defined by a 

kernel function. In Chapter 3 (Kernel-Induced Feature Space) the theorem for 

testing the validity of a kernel function and different types of kernel-induced 

feature spaces are discussed. Chapter 4 (Support Vector Machine Training and 

Its Implementation Algorithms) considers the issue of SVM training. Different 

training algorithms are presented, including the two new centre-based methods 

proposed by the author. 

Then from Chapter 5 (Unsupervised Learning and Clustering) we move to 

the investigation of unsupervised pattern classification. We begin the chapter 

by formulating the problem of clustering and the unsupervised learning method 

HCMCA for solving it. Chapter 5 also demonstrates the inevitable drawbacks 

of c-means due to its hill-climbing nature and brings up the idea of using a 

genetic approach to overcomes these drawbacks. In Chapter 6 (Fundamentals 

of Genetic Algorithms) the genetic algorithms (GAs) as well as the relevant 

algorithms in the area of evolutionary computation are addressed. Alternative 

schemes of the G A operators are discussed and the basic theorems in the G A 

literature are described. In Chapter 7 (A Genetic Hard c-Means Clustering 

Algorithm) the new algorithm combining the traditional c-means and the ad­

vanced GA is presented. Comparative experiments are included to show the 

robustness of this hybrid algorithm. Chapter 8 (Application of GA to Job-Shop 

Problems) presents the new genetic scheduling algorithm GSA. Its power has 

been demonstrated by the experimental results. 

This thesis is concluded in Chapter 9 (Conclusion) by giving a summary of 

the results obtained and also several suggestions for future work. 
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Chapter 2 

STATISTICAL LEARNING 

AND SUPPORT VECTOR 

MACHINES 

2 .1 Introduction 

Support vector machines (SVMs) based on recent advances in statistical 

learning theory [7, 26], compose a specific class of learning systems. SVMs 

were invented by Boser, Guyon and Vapnik. It were first introduced at the 

conference of Computational Learning Theory (COLT) 1992 with the paper 

[27]. To overcome the problem of noise and non-separability, the soft-margin 

version [8] was later introduced. SVMs were developed originally for solving 

the classification problems. While in 1997 the algorithm was extended for 

solving regression problems [28]. SVMs have now become one of the standard 

techniques for pattern classification and nonlinear regression. This chapter in­

troduces SVMs in the setting of pattern classification. Many of the ideas may 

carry directly over to the case of regression estimation. Successful applica­

tions of SVM classifiers have been reported for various fields including isolated 
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handwritten digit recognition [8] - [11], text categorisation [12] - [14], speaker 

identification [29], gene expression profile analysis [30, 31]' DNA and protein 

analysis [32] - [33], and many more. Many of these recent advances are reported 

in the collection [34]. Most of the new contributions are only available online 

and can be recently accessed via the website [35]. 

Each SVM can be used to solve a particular two-class classification problem. 

While the classification problem can be restricted to consideration of two-class 

problems without loss of generality. To get a k-class classifier (k > 2), we can 

just construct k two-class classifiers, each separating a certain class from the 

others, and combine them by doing the k-class classification according to the 

maximal output among the two-class classifiers. In a two-class classification 

problem, one possible formulation of the task is to separate the two classes 

by a function which is induced from some available examples. The goal is to 

produce a classifier that will work well on unseen examples, i.e. it generalises 

well. To achieve this, a SVM provides a decision boundary that separates a 

set of positive examples from a set of negative examples with the maximum 

margin. Although intuitively simple, this idea of maximum margin actually 

exploits the structural risk minimisation (SRM) principle in statistical learning 

theory. Thus the learned machine will not only have a minimal empirical risk 

but also good generalisation performance. 

Before describing different types of SVMs, the next section is devoted to a 

brief introduction to some basic concepts in the theory of statistical learning. 

2.2 Fundamentals of Statistical Learning The-

ory 

Figure 2.1 shows a model of supervised learning process. The model consists 

of three interrelated components: 
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Environment: 
probability x ..... Supervisor ..... 

..... 1 1 , 
distribution 

y 

Pj(x) 

Learning ./ 
"-..... Machine: ..... ..- ..-

aen 

Figure 2.1: Model of the supervised learning process. 

1. Environment. In our work, it is assumed that the environment is station­

ary, supplying the vectors (x EX, yE Y) independently and identically 

distributed (LLd.) according to a fixed but unknown probability distri­

bution Pg y{x, y) . 
• 

2. Supervisor. The supervisor or teacher provides a target response y for 

every input vector x received from the environment. The target function 

which transforms the vectors x into values y, is unknown, but exists and 

does not change. 

3. Learning machine. The learning machine (e.g. a classifier) is capable of 

implementing a class of input-output mapping functions described by 

y=J(x,5) 

where y is the actual response produced by' the learning machine in re­

sponse to an input x, and a. is a set of free parameters. A particular 

choice of a. generates a "trained machine" . 

During the learning process, the learning machine observes a set of 1 pairs 

- the training set 
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Each pair contains an input vector x and the target response y. After train­

ing, the machine must give, on any x generated by the environment according 

to the same probability distribution, a value fJ. The best function f of a learn­

ing machine that one can obtain is the one minimising the expected error (or 

risk) 

R (J(a)) - f_ ~IY - fJl dPg,y(x, y) 
Jx,y 

- 1- ~IY - I(x, a)1 dPg,y(x, y) 
X,y 

(2.2.1) 

R (J(a)) defines the frequency of errors made by a trained machine when it 

is tested with examples not seen before. R (J(a)) is also called the actual 

risk to emphasise that it is the quantity that we are ultimately interested 

in. Unfortunately, the risk cannot be minimised directly since the underlying 

probability distribution Pg y(x, y) is unknown. An approximation is therefore , 

required. 

According to the statistical learning theory [7, 26, 36], the following bound 

holds with probability 1 - e (0 < e < 1) 

R (J(a)) < Remp (J(a)) + h(log(2l/h) + 1) -log(e/4) 
I 

(2.2.2) 

where h is a non-negative integer called the Vapnik Chervonenkis (VC) dimen­

sion, and Remp (f (a)) is the empirical risk defined as 

I 

Remp (J(a)) = ;l L IYi - f(xi,a)l, 
i=l 

(2.2.3) 

Le. the measured mean error rate made by the learning machine on the training 

set. 

The difference between the expected risk and the empirical risk is bounded 

by the second term on the right hand side of inequality (2.2.2) which is called 

confidence interval. As the training set size I -+ 00, the empirical risk will 

converge toward the expected risk. The quantity ~IYi- I(Xi' a)1 in the definition 

PATTERN CLASSIFICATION BY MACHINE LEARNING L. Meng 



2.2 Fundamentals of Statistical Learning Theory 17 

• 

• 

Figure 2.2: Illustration of VC dimension of the function class of lines. 

of empirical risk is called the loss. To have equation (2.2.2) tenable, the loss 

at each example must be either 0 or 1, such as in the problem of two-class 

classification where Yi E { -1, 1}. 

2.2.1 VC dimension 

VC dimension is a scalar value that measures the capacity/complexity of a 

function class F. 

If a given set of 1 points can be labelled in all 2' ways, and for each labelling, 

a function f in class F can be found which correctly assigns those labels, then 

that set of points is said to be shattered by function class F. The VC dimension 

for a function class F is defined as the maximum number of points that can be 

shattered by it. The VC dimension of the class of oriented hyperplanes in Rn 

is n + 1. Figure 2.2 illustrates how three points on a plane can be shattered by 

the class of straight lines whereas four points cannot. 

2.2.2 Structure risk minimisation (SRM) 

As revealed by equation (2.2.2), for a given learning task, with a given finite 

amount of training data, the best generalisation performance will be achieved 

if right balance is reached between the empirical risk (Le. accuracy attained 
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Figure 2.3: Illustration of the relationships among empirical risk, confidence 
interval and expected risk. 

on that particular training set) and the capacity of machine (Le. the ability of 

machine to learn any training set without error). A machine with too much 

capacity is like a botanist with a photographic memory who, when presented 

with a new tree, concludes that it is not a tree because it has a different 

number' of leaves from any tree he has seen before; a machine with too little 

capacity is like the botanist's lazy brother, who declares that if it is green, it is 

a tree. Neither can generalise well. The exploration and formalisation of these 

concepts has resulted the structural risk minimisation (SRM) principle in the 

theory of statistical learning [36]. 

Constructing a nested family of function classes 

Pl C ... C Ph C ... C Pk C . .. (1 < h < k) 

with nondecreasing VC dimensions, the SRM principle then consists of solving 

the following problem 

min {~mp (f(a)) + 
F,. 

h(log(21/h) + 1) -IOg(TJ/4)} 
l ' 

(2.2.4) 

i.e. finding the class of functions that minimises the bound on the expected 
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risk. Two extremes arise for equation (2.2.4): 1). a very small function class 

(like F1) yields a vanishing square root term, but a large empirical error might 

remain; while 2). a huge function class (like Fk ) may give a vanishing empirical 

error but a large square root term. The best class is usually in between (see 

Figure 2.3), as one would like to obtain a function that explains the data quite 

well (Le. with a small empirical risk) and to have a small risk in obtaining that 

function (Le. with small capacity in terms of VC dimension). This is much 

in analogy to the bias-variance dilemma scenario reported for neural networks 

[37]. 

In a later section, we will see how SRM principle has been successfully 

implemented by SVMs. 

2.3 Maximal-Margin Optimisation: the Sepa­

rable Case 

2.3.1 SVMs with a maximal margin 

Consider a training set or sample {(Xi! Yi)}!=l' where target response Yi is 

the label indicating which class the input example Xi belongs to. Xi E nd and 

for tw<rclass classification, Yi E {-1, 1}. This section starts from the simplest 

case of pattern classification: a set of linearly separable data, i.e. there is a 

hyperplane which separates the positive examples from the negative. Points 

on the separating hyperplane satisfy 

lex) = ill· X + b = 0, (2.3.1) 

where ill is the normal to the separating hyperplane, and Ibl/llw!l the perpen­

dicular distance from the hyperplane to the origin. ill and b are the parameters 

to be optimised for a maximum margin. Let d+ (d-) be the distance from the 

separating hyperplane to the closest positive (negative) examples. See Figure 
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+ 

Figure 2.4: Illustration of a linear SVM with the maximal margin. Points 
closest to the separating hyperplane are marked with circles. 

2.4 for an illustration. Define the geometric margin or simply the margin of 

a separating hyperplane to be the area that is bounded by the set of closest 

examples. It is possible to make all the closest positive and negative points sat­

isfy yd(Xi) = 1, Le. the closest examples that lie on one of the two hyperplanes 

parallel to but apart from the separating hyperplane by 1. 

In such a case, the following constraints hold 

(2.3.2) 

Consider the positive points for which the equality of equation (2.3.2) holds. 

These points lie on the hyperplane HI: W' Xi + b = 1 with normal ill and 

perpendicular distance from the origin 11 - bl/llUiIl. Similarly, the negative 

points for which the equality of equation (2.3.2) holds lie on .the hyperplane 

H2 : W' Xi + b = -1 with normal Ui and perpendicular distance from the origin 

1- 1 - bl/llillll· Note that HI and H2 are parallel and that no training examples 

may fall between them. Hence, under constraints (2.3.2), d+ = d- = 1/11Uill 
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and the width of the margin is simply 2/lIwll. We can therefore find the 

separating hyperplane with the maximum margin by minimising IIwll 2 subject 

to constraints (2.3.2). 

The optimal separating hyperplane is independent of b because that pro­

vided constraints (2.3.2) are satisfied (Le. it is a separating hyperplane) chang­

ing b will move the hyperplane in the direction of its normal. Accordingly the 

margin remains unchanged but the constraints (2.3.2) is no longer satisfied in 

that the separating hyperplane will be nearer to one class than the other. 

As observed in many practical cases, the decision boundary between two 

classes can not be defined by a linear function. Then how can the above 

method be generalised to the nonlinear cases. This has been accomplished 

by Boser, Guyon and Vapnik [27] in an astonishingly straightforward way. 

For nonlinearly separable problems, a nonlinear mapping is introduced before 

the construction of the separating hyperplane, which transforms the training 

examples from the input space to a higher-dimensional feature space. Let <I> 

denote this nonlinear mapping 

(2.3.3) 

The separating hyperplane is then constructed in the feature space F. This 

yields a nonlinear decision boundary in the input space 'R,d, which is composed 

of the points whose mapped points in the feature space are on the separating 

hyperplane there. The nonlinear mapping is performed in accordance with 

Cover's theorem on the separability of patterns. 

Cover's theorem [38]: A complex pattern classification problem cast in a high­

dimensional space nonlinearly is more likely to be linearly separable than in 

a low-dimensional space. 

The idea of mapping from the input space to a feature space has also been 

adopted in the theory of neural networks, where the mapping is implemented 

by the hidden layer(s) between the input and output layers. 
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The optimisation problem associated with the SVM training, for both linear 

and nonlinear cases, is summarised as follows 

OP1 . 211Iw""'112, : mmwb , 

subject to Yi(W' <P(Xi) + b) > 1, i = 1, ... , l. 

(2.3.4) 

(2.3.5) 

The constraints enforce that no training examples may fall inside the margin. 

The training of SVM on a linearly separable data set is a special case of OPl, 

in which <p(x) = x. For other data sets, we are still doing a linear separation, 

but in a different space - the high-dimensional feature space. 

2.3.2 Solving the SVM optimisation problem 

The constrained optimisation problem OPl is solved by introducing La­

grange multipliers a = {ai, a2, ... , a,} and a Lagrangian 

I 

L(w,b,a) = ~lIwll2 - Lai[Yi(W. <P(Xi) +b) -1], 
i=1 

(2.3.6) 

where the Lagrangian L( W, b, a) must be minimised with respect to the primal 

variables W = {Wl, W2, ••• , Wd} and b and maximised with respect to the dual 

variables a = {ai, a2, ... , a,}. That is to say, a saddle point must be found. 

The minimisation of L( W, b, a) with respect to the primal variables requires 

that at the saddle point 

These lead to 

and 

:wL(W,b,a) = 0 and :bL(W,b,a) = o. 

I 

W = LYiai<P(Xi) 
i=1 

I 

LYiai = 0 
i=1 
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Substituting these equations back into the primal problem OP1, we have the 

dual problem. 

OP2 : mina 

II 

subject to LYiQi = 0, 
i=l 

Qi > 0, i = 1, ... , l. 

(2.3.10) 

(2.3.11) 

With the optimal values of a; the decision boundary in the input space is 

given by 
I 

f(x) = I: Q/yi<I> (Xi) • <I>(x) + b* = 0, (2.3.12) 
i=l 

where b* is found by employing the primal constraints (2.3.2) 

b
* . _ maxyi=-l(W* . <I>(Xi)) + minYi=l(w* . <I>(Xi)) 

2 . (2.3.13) 

The decision function for classifying new examples is defined as 

sgn(J(X)) . (2.3.14) 

Notice that the only way in which the data appears in problem OP2 (equa­

tions (2.3.9) - (2.3.11)) is in the form of inner products - (<I>(Xi) • <I>(Xj)). So 

does in equations (2.3.12) and (2.3.13) for the resulting decision boundary. 

This allows a SVM, without ever representing the feature space explicitly, to 

locate a separating hyperplane in the feature space and classify vectors in that 

space by simply specifying a kernel function, K(Xi, Xj) = <I>(Xi) • <I>(Xj). One 

example of kernel function is 

In this particular example, :F is infinite dimensional, so it would not be very 

easy to work with <I>(x) explicitly. However, if one replaces (<I>(Xi) • <J>(x)) by 

K(Xi,Xj) everywhere in the training, an algorithm would easily produce a 
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SVM which lives in an infinite dimensional space, while using roughly the 

same amount of time that it would take to train on the un-mapped examples. 

Rewriting OP2 in terms of K(Xi,Xj), we have 

OP3 : mina 
I I I . 

- L Qi + ~ L LYiYjQiQjK(Xi, Xj), (2.3.15) 
i=1 i=1 j=1 

I 

subject to I: YiQi = 0, 
i=l 
Qi > 0, i = 1, ... , l. 

And the decision boundary becomes 

I 

f(x) = L ai*YiK(Xi, x) + b* = 0 (2.3.16) 
i=l 

2.3.3 Karush-Kuhn-'I'ucker (KKT) conditions 

The Karush-Kuhn-'Thcker (KKT) conditions [39, 40] play a central role in 

both the theory and practice of constrained optimisation, which define the 

necessary and sufficient conditions for a set of variables to be optimal for an 

optimisation problem and thus provide a mathematical characterisation of the 

solutions. 

Applying the KKT conditions to problem OP1, we know that the optimal 

solution (i*, (w*, b*) must satisfy [41] 

This implies that 

a/ = 0 {:} yd(Xi) > 1; 

a/ > 0 {:} yd(Xi) = 1, 

(2.3.17) 

(2.3.18) 

(2.3.19) 

Le. only for the examples for which Yd(x) = 1 and that hence lie on the margin 

boundaries are the corresponding Qi* non-zero. These examples are termed 
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support vectors. Equations (2.3.18) and (2.3.19) indicate that on~y part of 

examples are involved in the expression for the separating hyperplane (2.3.12). 

Even if the other examples are removed from the training set, recalculating 

the hyperplane would produce the same answer. This can also be seen from 

the dual problem, since removing the items containing non-support vectors 

leaves the same optimisation problem. This implies that SVMs can be used to 

summarise the information contained in a data set by the set of support vectors 

produced. Moreover, in many practical applications, only a small percentage 

of the training examples are support vectors. This feature is referred to as 

the sparseness of the solution to SVM optimisation. It is this feature that 

makes applying a SVM obtained with large training sets to new testing data 

computationally tractable. And it also is this feature that has inspired a series 

of fast training algorithms for SVMs. 

2.4 Soft-Margin Optimisation: the Nonsepa­

rable Case 

Of course, not all data sets are separable even in the high-dimensional 

feature space, e.g. when a high level of noise causes a large overlap of the 

classes of patterns. In the problem formulation above, the non-separable case 

would result in an infinite solution caused by overfitting, where Qi (i = 1, ... ,1) 

are infinitely large and margin is consequently infinitely small. In 1995, Cortes 

and Vapnik [8] introduced soft-margin SVMs which allow, but penalise, the 

failure of examples to keep the margin constraints (2.3.5). The primal problem 

in the soft-margin version of SVM optimisation is a modification of OP1 and 

is defined as follows 
I 

OP4: minw,b,( ~lIwll2 +C2:c;i' 
i=l 

subject to Yi(iii. <I>(Xi) + b) ~ 1 - c;i; i = 1, ... , I, 
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where ~i > 0 (i = 1, ... , l) are the slack variables that allow margin failures and 

C is a parameter that trades off wide margin with a small number of margin 

failures. Corresponding to soft-margin SVMs, SVMs with a maximal margin 

are also called hard-margin SVMs since they allow no margin errors. 

Introducing Lagrange multipliers a = {Q:1I Q:2,·· • , Q:I} and iJ = {,B1I ,B2, ... J 

PI} J and a Lagrangian 

I I I 

L(w,b,[,a,fj) = ~lIwI12+CL~i- LQ:i[Yi(w.<I>(xi)+b)-l+~i]- L,Bi~i' 
i=l i=l i=l 

and then minimising the Lagrangian with respect to w, b, ( and maximising it 

with respect to a, fj, where Q:i, f3i > 0, Vi, we have the dual form of OP4 as 

follows 

OP5 : mina 

I 

subject to L:: YiQ:i = 0, 
i=l 

o < Q:i < C, i = 1, ... , l. 

(2.4.4) 

(2.4.5) 

Note that the slack variables ~i do not appear in the objective function (2.4.3) 

at all and that problem OP5 simply changes the constraint (2.3.11) of separable 

case into a box constraint. 

The KKT conditions of OP5 are 

and 

implying that 

i = 1, ... , l, 

i = 1, ... ,l, 

Q:i = 0 {:} yd{Xi) ~ 1; 

o < Q:i < C {:} yd(Xi) = 1; 

Q:i = C {:} yd(Xi)::::; 1. 
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Le: only for the examples that lie on the margin boundaries are the correspond­

ing a: not at the bounds; all examples for which the corresponding a; equal 

to zero must be correctly classified and lie outside the margin. Furthermore, 

equation (2.4.7) indicates that non-zero slack variables can only occur when 

ai = C and all margin error~ are therefore penalised. 

2.5 Effect of Trade-off Parameter C 

2.5.1 An artificial data set with linear Kernel 

Figures 2.5 - 2.7 show the decision boundaries obtained for a linearly'non­

separable training set when trained with different values of the trade-off pa­

rameter C. This data set is artificial and contains a noisy example. The two 

classes are respectively denoted by red '.'s and blue '+'s while the noisy ex­

ample is pointed out with an arrow. Each support vector is identified with an 

extra circle. The margin errors that violate constraints (2.3.5) are identified 

with a cross. The corresponding numerical results are listed in Table 2.1, along 

with the results for C = 00. 

As shown in Figures 2.5 - 2.7, examples are not longer forbidden to lie 

inside the margin and may even be classification errors (Le. may be classified 

to the class rather than the taught one). For different values of C, the width of 

the margin are different. As the value of C increases, the width of the margin 

decreases. This is apparent since: 

1). Equation (2.4.10) indicates that all margin errors have the corresponding 

ai reach the upper bound, C; 

2). From equation (2.3.7), IIwll2 increases with Q; while 

3). Margin = 2/lIwIl 2
• 

Figures 2.5 and 2.6 show the resulting decision boundaries for C = 0.5 and 

1.0, respectively. In each case, C is small and the margin errors are not heavily 
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• 

• ;1- ........ . 
• (5) 

Figure 2.5: Example of a linearly non-separable training set (C = 0.5) . 

penalised. For both cases, two margin errors are generated during the training. 

As C increases the result converges towards the one shown in Figure 2.7, where 

all the t raining examples satisfy the constraints on margin (2.3.5) except the 

noisy example. Although wider margins can be obtained with smaller C, some 

points containing important classification information can be lost, as in the 

cases of C = 0.5 and C = 1.0 (refer to Figures 2.5 and 2.6), and consequent ly 

poorer generalisation performance would be expected. 

In the limit as C ~ 00, no example is allowed to violate the constraints on 

margin. However , the training set is not linearly separable. When the solution 

tries to meet the constraints , the noisy example brings the corresponding Qi 

to the upper bound 00, and some other Qi nearly to 00 as well. This in turn 

leads to an infinit solution, as shown on the last row of Table 2.1. 
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Figure 2.6: Example of a linearly non-separable training set (C = 1.0) . 

• 

•• /' 

• 

Figure 2.7: Example of a linearly non-separable training set (C = 2.0). 
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Table 2.1: Example of a linearly non-separable training set. Results are ob­
tained with different values of trade-off parameter C. 

C O!noise IIwll2 margin no. of margin errors 

0.5 0.5 0.32 3.54 2 

1.0 1.0 0.41 3.12 2 

2.0 2.0 0.52 2.77 1 

00 00 3.73EIO 1.03E-5 8 

2.5.2 The image segmentation data set with nonlinear 

Kernels 

The effect of trade-off parameter C has also been investigated for a non­

linear Kernel. The image segmentation data set [42] has been used for this 

investigation. The data set contains 7 classes of examples of 19 attributes. To 

allow the results to be visualised, two attributes have been used to classify a 

pair of two non-overlapped classes of 891 examples. Figures 2.8 - 2.12 show 

the decision boundaries obtained for different values of the trade-off parameter 

C. The two classes are respectively denoted by red '.'s and blue '+'s. Each 

support vector is identified with an extra circle. The margin errors are iden­

tified with a magenta square. The corresponding numerical results are listed 

in Table 2.2. The same conclusions may be drawn from these results, as after 

the experiments with the artificial data set. As the value of C increases, the 

width of margin gets smaller and more complex decision boundary is required 

for separating the classes. 
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Figure 2.8: Example of image segmentation data set (C = 1). 
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F igure 2.9: Example of image segmentation data set (C = 10). 

P ATTERN CLASSIFICATION BY MACHINE LEARNING L. Meng 



2. 5 Effect of Trade-off Param eter C 32 

I 0 C=100 I 

Figure 2.10: Example of image segmentation data set (C = 100). 

I 0 C=1000 I 

Figure 2.11 : Example of image segmentation data set (C = 1000). 
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Figure 2.1 2: Example of image egmentation data set (C = 00) . 

Table 2.2: Example of image segmentation data set. Results are obtained with 
different values of trade-off parameter C . SVs stands for support vectors. 

c 00 1000 100 10 1 

margin O.Oll 0.062 0.122 0.327 1.296 

no. of SVs 6 8 11 26 80 

no. of unbounded SVs 6 6 6 6 6 

no. of errors on training set 0 2 2 3 3 
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M =3/2 

Figure 2.13: Illustration of a gap tolerant classifier on data in 1?}. 

2.6 Implementation of SRM Principle 

Consider a family of classifiers that has been termed gap tolerant classifiers. 

Let :F denote the family of gap tolerant classifiers on nd. Then a particular 

gap tolerant classifier f E :F is specified by the location and diameter of a ball 

in nd, and by two hyperplanes, with parallel normals, also in nd. Call the set 

of points lying between, but not on, the hyperplanes the "margin set". The 

decision function f is defined as follows: points that lie inside the ball, but 

not in the margin set, are assigned class ±1, depending on which side of the 

margin set they fall; all other points are simply defined to be "correct", that 

is, they are not assigned a class by the classifier, and do not contribute any 

risk. The situation is summarised, in Figure 2.13, for d = 2. 

According to [36], the following Theorem holds for gap tolerant classifiers. 

Theorem 2.1. For data in nd , the VC dimension h of the set of gap tolerant 

classifiers of minimum margin Mmin is 

h < min{D2/M;in, d} + 1, (2.6.1) 

where D is the diameter of a hypersphere enclosing all the data points. 

For example, for the gap tolerant classifier in Figure 2.13, D = 2, d = 2 
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and hence VC dimension is h = 3 when M < J2 (Mmin = 0), h = 2 when 

J2 < M ~ 2 (Mmin > J2), and h = 1 when M > 2 (Mmin > 2). 

The gap tolerant classifier is in fact a special kind of SVM which simply 

does not count data falling outside the sphere containing all the training data, 

or inside the separating margin, as an error. Thus, equation (2.6.1) may also 

be applied to SVMs. 

1 ~ Recall that margin = ~ . Hence from equation (2.6.1), maximising margin 

or minimising equation (2.3.4) is equivalent to minimising an upper bound on 

the VC dimension of a SVM and hence equivalent to implementing the SRM 

principle. The optimisation problem OP4 is posed so as to minimise the margin 

errors (Le. the second term of equation (2.4.1)) as well as an upper bound on 

the VC dimension of the classifier (Le. the first term of equation (2.4.1)). 

2.7 A Mechanical Analogy 

Suppose that the ith support vector exerts a force Forcesi = aiY(WO on the 

stiff sheet along the surface of the decision boundary (or decision sheet) in 

the feature space. Here Wo denotes the unit vector in the direction W. Then 

according to equations (2.3.8) and (2.3.7) respectively, a resulting SVM satisfies 

the following conditions of mechanical equilibrium [43] 

L Forces, - ~ ",y,wo = (~",y,) Wo = 0, 

2::::: Torquesi - 2::::: Si· (aiY(WO) = w, Wo = o. 

(2.7.1) 

(2.7.2) 

In equation (2.7.2), Si denotes the ith support vector and '.' the inner product 

of two vectors. 

This mechanical analogy depends only on equations (2.3.7) and (2.3.8) and 

therefore holds for both hard- and soft-margin SVMs. This analogy emphasises 
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the interesting point that the most important data points are the support 

vectors with highest values of Qi, since they exert the highest forces onto the 

decision sheet. For non-separable case, the upper bound G of Qi corresponds 

to an upper bound on the force any given point is allowed to exert onto the 

sheet. This analogy also provides a reason, as good as any other, to call these 

particular vectors the support vectors. 

Recall the linearly nonseparable example in subsection 2.5. For different 

values of C, the orient at ions of the separating hyperplane are different. Figure 

2.14 compares the decision boundaries obtained for G = 0.5, G = 1.0 and 

C = 2.0. And Table 2.3 gives, for each case of C, the amount of forces exerted 

by the four common support vectors (for G = 0.5, there is one more support 

vector). For all the cases, the force exerted by the noisy point (P4 ) onto the 

decision sheet is bounded by -Gwo. The last four rows of Table 2.3 are the 

forces exerted by each support vector divided by the force exerted by P4 along 

the y-axis. As G increases, more and more amounts of force are exerted onto the 

decision sheet by P2 while P3 exerts less and less. The amount of force exerted 

by either PI or P4 remains almost the same. As a result, the orientation of the 

decision boundary changes in the way as shown in Figure 2.14. And when G 

reaches 2.0, Q2 becomes smaller than G; the amount of force need to be exerted 

by P2 for the equilibrium is no longer limited by the upper bound. P2 is no 

longer a margin error. Yet it still lies on the margin boundary as a support 

vector. For higher G's, the same decision boundary is obtained as that for 

C=2.0. 
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Figure 2.14: Comparison of decision boundaries obtained on a linearly nonsep­
arable training set for different values of C. 

Table 2.3: Comparison of SVM results obtained on a linearly nonseparable set 
for different values of C. 

C 0.5 1.0 2.0 10 100 

PI 0.2725 0.4800 0.9600 4.9600 49.9600 

°i P2 0.5000 1.0000 1.8000 7.8000 75.3000 

P3 0.3100 0.4800 0.7600 2.7600 25.2600 

P4 0.5000 1.0000 2.0000 10.000 100.000 

Vi -0.4, -0.4 -0.5, -0.4 -0.6, -0.4 -0.6, -0.4 -0.6, -0.4 

Pl -0.19, -0.19 -0.37, -0.30 -0.80, -0.53 -4.13, -2.75 -41.57, -27.71 

Forcei P2 -0.35, -0.35 -0.78, -0.62 -1.50, -1.00 -6.49, -4.33 -62.65, -41.77 

P3 0.22,0.22 0.37,0.30 0.63,0.42 2.30,1.53 21.02, 14.01 

P4 0.35,0.35 0.78,0.62 1.66, 1.11 8.32,5.55 83.21, 55.47 

PI -0.55, -0.55 -0.60, -0.48 -0.72, -0.48 -0.74, -0.50 -0.75, -0.50 

Force/ P2 -1.00, -1.00 -1.25, -1.00 -1.35, -0.90 -1.17, -0.78 -1.13, -0.75 

P3 0.62,0.62 0.60,0.48 0.57,0.38 0.41,0.28 0.38,0.25 

P4 1.00, 1.00 1.25, 1.00 1.50, 1.00 1.50, 1.00 1.50, 1.00 
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2.8 Conclusions 

The family of support vector machines has been introduced in this chapter. 

It is characterised by the use of kernel functions, the sparseness of solutions and 

the capacity control obtained by acting on the margin. These facts of SVMs 

mark a clear distinction between these systems and other pattern recogni­

tion algorithms. And more importantly, the implementation of SRM principle 

makes SVMs superior to the others that employ Empirical Risk Minimisation 

(ERM) principle during the training, such as neural networks. 
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Chapter 3 

KERNEL-INDUCED 

FEATURE SPACE 

As stated, the mapping <I> : nd 
1-+ F of nonlinear SVMs maps data from the 

input space nd into a potentially high-dimensional feature space F. And the 

training and using of a SVM only depends on the data through dot products 

in F. This chapter discusses the method that can be used to construct the 

mapping by the use of reproducing kernels. The idea of using kernel functions 

is to enable operations to be performed in the input space rather than the 

high-dimensional feature space. Hence the inner product does not need to be 

evaluated in the feature space. This provides a way of addressing the curse of 

dimensionality. 

3.1 Mercer's Theorem 

For which kernels does there exist a pair {F, <I>}, with the properties de­

scribed above, and for which does there not? The answer is given by Mer­

cer's condition [7,44], based upon Reproducing Kernel Hilbert Spaces (RKHS) 

[45, 46, 47]. 
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Mercer's condition: If the K is a symmetric and positive definite function, 

wh ich satisfies 
00 

K(x,Y) = Lai<!>i(X) <!>i (Y) , where ai ~ 0 (3.1.1) 
i=l 

and jjK(X,Y)9(x) g(Y) dxdy> 0, where jl(x)dX< 00, (3.1.2) 

then the kernel function K represents a legitimate inner product in the 

feature space defined by <1>(i) = {<PI (i), . .. ,<Pi (i), .. . }. 

3.2 Kernel Functions for Support Vector Ma-

chines 

This section gives some examples of Kernel functions for SVMs, which 

unless stated are valid for all real i and y. 

Polynomial 

Polynomial mapping is a popular method for non-linear modelling. A polyno­

mial kernel of degree p is defined as 

K (x, Y> = ((x. y> + I)P • (3.2.1) 

The corresponding feature space F is a Euclidean space of dimension (d+rl), 

where d is the dimension of the input space. 

Gaussian radial basis function 

Radial basis functions have received significant attention, most commonly with 

a Gaussian of the form, 

K(x,yj = exp ( - (i 2~f2), 

Exponential radial basis function 

A radial basis function of the form, 

K(i, yj = exp ( _lIx2~2Y11) , 
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produces a piecewise linear solution which can be attractive when discontinu­

ities are acceptable. 

The radial basis function kernels are translation invariant. Moreover, as 

each of them satisfies K(x, x) = 1 for all x E n,d, each mapped example has 

unit length, 1IcI>(x)1I = 1. In addition, for radial basis function SVMs, the 

number of centres (the number of support vectors), the centres themselves 

(the support vectors), the weights (ai) and the threshold (b) are all produced 

automatically by the SVM training and give excellent results compared to 

classical radial basis functions, for the case of Gaussian radial basis functions 

[48]. 

Multi-layer perceptron 

The long-established multi-layer perceptron, with a single hidden layer, also 

has a valid kernel representation, 

K{x, Y) = tanh(scale· (x· Y) - offset) (3.2.4) 

for certain values of the scale and offset parameters (first noticed experimen­

tally [7]). Here the support vectors correspond to the nodes on the first layer 

and the Lagrange multipliers to the weights. Thus, the architecture (number 

of weights) is determined automatically by SVM training. 

Fourier series 

A Fourier series can be considered an expansion in the following 2N + 1 di­

mensional feature space. The kernel is defined on the interval [-~,~], 

K(04 V) = sin(N + 1/2)(x - y> 
x, y 2 sin((x - Y)/2) . (3.2.5) 

Linear spline 

Splines are a popular choice for modelling due to their flexibility. Linear spline 
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is defined as 

K(Xi, Yj) = 1 + XiYj + XiYj min(xi, Yj) - (Xi~Yj) (min(xi, Yj))2 

+! (min(xi, Yj))3 , 'Vi = 1, ... , d. (3.2.6) 

Additive kernels 

More complicated kernels can be obtained by forming summing kernels, since 

the sum of two positive definite functions is still positive definite. 

(3.2.7) 

Tensor product kernels 

Multidimensional kernels can be obtained by forming tensor products of kernels 

[45], where 

(3.2.8) 

3.3 Some Notes on <P and :F 

Polynomial kernel of degree p constructs a feature space of dimension 

(d+r1). While the feature space defined by a radial basis function kernel 

has an infinite dimension. Usually, mapping the data to a "feature space" with 

an enormous number of dimensions would bode ill for the generalisation per­

formance of the resulting machine. After all, the set of all hyperplanes {w, b} 

in a feature space Fare parameterised by dim(F) + 1 numbers. Most pattern 

recognition systems with billions, or even an infinite, number of parameters 

would not make it past the start gate due to the curse of dimensionality. How 

come SVMs do so well? One might argue that, given the form of solution and 

the size of training set l, there are at most 1 + 1 adjustable parameters in a 

SVM. However, the real reason lies in the use of maximum margin as described 

in section 2.6. 
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As for the enormous calculational load of an infinite-dimensional space, it 

has been avoided by the use of kernels. The following uses the example of a 

Fourier kernel to show that the inner product of two vectors in an infinite­

dimensional space can be calculated in closed form. Suppose x E R}. Then a 

Fourier expansion in the data x, cut off after N terms, has the form 

N 

f(x) = a; + I:(alr cos(rx) + a2r sin(rx)). 
r=l 

(3.3.1) 

This can be viewed as a dot product of two vectors in R 2N+1: 

a = {ao/v'2, an, ... , a21,."} 

and the mapped <p(x) = {1/v'2, cos(x), cos(2x), ... , sin(x), sin(2x), ... }. 

Then letting 8 = Xi - Xj, 

1 N 
2 + L COS(rxi) cos(rxj) + sin(rxi) sin(rxj) 

r=l 
1 N 1 N 

- -2 + L cos(r8) = -2 + Re{L e(irc5)} 

r=O r=O 

_ -~ + Re{(1 - ei(N+l)O)/(1 _ eiO )} 
2 

sin((N + 1/2)8) 
2 sin(8/2) 

(3.3.2) 

Hence, the kernel can be computed in closed form by equation (3.3.2) in terms 

of Xi and Xj. 

3.4 Kernel Selection 

The obvious question that arises is that with so many different mappings 

to choose from, which is the best for a particular problem? This is not a new 

question, but with the inclusion of many mappings within one framework it 

is easier to make a comparison. The rest of this section illustrates the effect 
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Table 3.1: Summary of statistics of iris data set 

Min Max Mean Standard Class 

Deviation Correlation 

sepal length: 4.3 7.9 5.84 0.83 0.7826 

sepal width: 2.0 4.4 3.05 0.43 -0.4194 

petal length: 1.0 6.9 3.76 1.76 0.9490 

petal width: 0.1 2.5 1.20 0.76 0.9565 

of different kernels by comparing the experimental results on a benchmark 

problem - the classification of iris data. 

The iris data set is a benchmark data set used for demonstrating the per­

formance of classification algorithms. The data set contains three classes of iris 

examples. Each example is defined by four attributes. The goal is to classify 

the class of iris based on these four attributes. The summary statistics of iris 

data set is listed in Table 3.1. The last column shows the correlation coefficient 

between each attribute and the class label. The higher the correlation coeffi­

cient is the more classification information an attribute contains. To visualise 

the problem we restrict ourselves to the two attributes that contain the most 

information about the classes, namely the petal length and the petal width. 

According to these two attributes, the distribution of iris data set is illustrated 

in Figure 3.1. The Versilcolor example that overlaps with a Virginica example 

(according to petal length and petal width) has been removed. 

The Setosa and Versilcolor classes are easily separated with a linear bound­

ary and the resulting decision boundary using a linear kernel is illustrated in 

Figure 3.2, with the two support vectors circled. Figure 3.3 shows the results 

for the same pattern recognition problem, but where the kernel was chosen to 

be a polynomial of degree 2. Notice that, even though the number of degrees 

of freedom is higher, for the linearly separable case, the solution given by the 
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Figure 3.1: Iris data set with two attributes. 
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polynomial SVM is roughly linear, indicating that the capacity is being well 

controlled. 

It is obvious that Virginica is not linearly separable. A nonlinear decision 

boundary is expected and thus a nonlinear kernel is needed to separate the 

classes completely. Different kernels have been tried for separating Virginica 

from Versilcolor plus Setosa. Figures 3.4 - 3.10 show the results, accordingly. 

And table 3.2 gives the width of the margin and the number of support vectors. 

The results given by the 2nd-degree polynomial SVM is not satisfying. The 

margin is too small. As higher degree polynomials are used, the result becomes 

worse. Figure 3.5 shows the result of 5th-degree polynomial. As we can see, 

the margin becomes extremely small. And there is evidence of overfitting 

due to the high dimensional nature of the kernel, which is emphasised by the 

unnecessarily large number of support vectors. Furthermore, note that the 

decision boundaries given by both polynomial SVMs contain a disjoint region 
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Figures 3.6 - 3.9 show the results given by the radial basis function SVMs 

with different pre-specified variances. As we can see, more complicated bound­

aries have been provided by radial basis function kernels. And roughly same set 

of support vectors has been found with different variances. However, smaller 

the variance allows more shape bending. Amazingly, when variance is set to 

0.6 , the resulting decision boundary separates the class of Setosa from Versil­

color and identifies Setosa as a separate class . 

Finally, a linear spline SVM has been used. The resulting decision boundary 

is similar to that with a high variance radial basis function. However, a disjoint 

region is observed. 
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Figure 3.3: Separating Setosa with a polynomial SVM (degree 2, C = (0). 

Figure 3.4: Separating Virginica with a polynomial SVM (degree 2, C = 00). 
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Figure 3.5: Separating Virginica with a polynomial SVM (degree 5, C = 00). 

Figure 3.6: Separating Virginica with a Gaussian radial basis function SVM 
(a = 2.0, C = 00) . 
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Figure 3.7: Separating Virginica with a Gaussian radial basis function SYM 
(a = 1.5, C = 00). 

• 
• • • • 

• 

Figure 3.8: Separating Virginica with a Gaussian radial basis function SYM 
(a = 1.0, C = 00). 
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Figure 3.9: Separating Virginica with a Gaussian radial basis function SVM 
(a = 0.6, C = 00) . 

Figure 3.10: Separating Virginica with a linear pline SVM (C = 00) . 
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Table 3.2: Results when separating Virginica with different kernels. SVs stands 
for support vectors. 

kernel function margin no. of SVs 

polynomial (degree=2) 1.200e-5 7 

polynomial (degree=5) 1.0085e-35 17 

Gaussian RBF (a = 2.0) 0.001085 7 

Gaussian RBF (a = 1.5) 0.002345 9 

Gaussian RBF (a = 1.0) 0.006462 11 

Gaussian RBF (a = 0.6) 0.021119 11 

linear spline 0.038355 10 

3.5 Conclusions 

Mercer's condition tells us whether or not a prospective kernel is actually a 

dot product in some space. Examples of kernels that satisfy Mercer's condition 

have been given. The issue of how to choose an appropriate kernel for a partic­

ular classification problem is difficult. The upper bound on the VC dimension, 

equation (2.6.1), is a potential way to provide a means of comparing the kernels. 

However, it requires the estimation of the radius of the hypersphere enclosing 

the data in the non-linear feature space. Before a strong theoretical method for 

selecting a kernel is developed and validated using independent test sets on a 

large number of problems, methods such as bootstrapping and cross-validation 

will remain the preferred method for kernel selection. 
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Chapter 4 

SUPPORT VECTOR 

MACHINE TRAINING AND 

ITS IMPLEMENTATION 

ALGORITHMS 

4.1 Introduction 

Problem OP5 in Chapter 2 (equations (2.4.3) - (2.4.5)) defines the optimi­

sation problem associated with the training of a SVM. This problem is actually 

a quadratic programming (QP) problem since it has the form 

mina .... Tl ... + 1 .... TQ ... -a -a a 
2 ' 

subject to a.T fj = 0, 

o <a.< ci, 

(4.1.1) 

(4.1.2) 

(4.1.3) 

where the quadratic term Q in SVM training is a positive semidefinite matrix 

and 

(4.1.4) 
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As the objective function (4.1.1) is convex every (local) maximum is al­

ready a global maximum. However, there can be several optimal solutions (in 

terms of the variables ai) when matrix Q is not positive definite, Le. when 

objective function is not strictly convex. For example, consider the problem 

of four separable points on a square in R}: Xl = [1,1]' X2 = [-1,1]' X3 = 

[-1, -1], and X4 = [1, -1], with polarities [+, -, -, +] respectively. One so­

lution is ill = [1,0]' b = 0, a = [0.25,0.25,0.25,0.25]; another has the same 

ill and b, but a = [0.5,0.5,0,0]. Note that both solutions satisfy the con­

straints ai ~ 0 and Li aiYi = O. 

The problem of optimising a quadratic function of many variables has been 

widely studied. The book [49] discusses general algorithms and, techniques 

for convex optimisation. Early implementations of SVMs have been based on 

optimisation packages such as MINO [50], LOQO [51], MATLAB optimisation 

package [52], etc. Chapter 1 of the book [34] contains a useful survey of different 

implementations. However most of the standard QP techniques require full 

storage of the quadratic term in the objective function. They are either suitable 

only for small problems or assume that the quadratic term is very sparse, Le. 

most elements of this matrix are zero. Unfortunately this is not true for the 

SVM optimisation problem, where quadratic term Q is not only dense but 

also has a size of l2, Le. a size growing quadratically with the number of data 

points in the training set. For training tasks with 10,000 examples and more, 

the memory requirement will exceed hundreds of Megabytes and the training 

time will be enormous. These facts prohibit the application of standard QP 

techniques to the problems with large training sets and, on the other hand, 

have urged the design of a number of algorithms for fast SVM training. 
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4.2 General Considerations 

The size of matrix Q, the structure of it, the nature of the solution, and 

the structure of the constraints all should be considered when choosing or 

developing a QP programming package to solve equations (4.1.1) - (4.1.3). 

Underneath lists a few properties of some of the problems we have seen which 

have influenced our thinking. 

1. For postprocessing it is important to determine which elements of the 

solution are 0 or at the upper bound C and which are not. Some QP 

packages, particularly interior point implementations, may return values 

close to the machine precision rather th~n exact zero. This may lead to 

a higher detected number of support vectors because "small" values were 

misinterpreted. 

2. The constraints are upper and lower bound constraints plus one general 

equality constraint. Codes that do not make a special provision for bound 

constraints are probably not useful. 

3. For most problems most elements of the solution a are O. There will be 

fewer changes in the solution if one begins with a "zero" solution. And 

in the next section, we will see this sparseness feature of the solution 

of SVM optimisation has inspired a series of fast algorithms for SVM 

training. 

4. When the upper bound C in equation (4.1.3) is small, the number of 

nonzero elements in a increases, but many of them, will be at C. Then 

when doing vector-matrix multiplication aQ one needs only the sum of 

the columns of the Q matrix corresponding to the elements of a that 

equal C, not the elements themselves. For example, 

if a = (0, C, C, 0'4, C, 0, ... ,0) 

then a.Q = 0'4ih + C(ih + Ch + lj5). 
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It will not be unusual if on subsequent iterations, the 2nd, 3rd and 5th 

elements of a. will still be at C. Thus if one keep a running total of 

the sum of the columns of Q at bound, then one will save work on the 

vector-matrix multiplication and also require less space. 

4.3 Present Fast Algorithms for SVM Training 

This section introduces briefly three different algorithms for fast SVM train­

ing, including Chunking, Decomposition and Sequential Minimal Optimisation 

(SMO). They are in turn derived from the former algorithm. 

4.3.1 Chunking 

As discussed in last section, a key observation in solving large-scale SVM 

problems is the sparseness of the solution a.. Depending on the problem, many 

of the optimal Lagrange multipliers at will either be zero or on the upper bound 

C. If one knew beforehand which at were zero, the corresponding rows and 

columns could be removed from the matrix Q without changing the value of the 

objective function. Furthermore, a particular a. can only be optimal for OP5 if 

and only if it satisfies the KKT conditions (equations (2.4.8) - (2.4.10)). In [36], 

a method called chunking is described, making use of the solution sparseness 

and the KKT conditions. It starts with an arbitrary subset or 'chunk' of the 

data, and trains an SVM using a generic optimiser on that portion of the data. 

The algorithm then retains the support vectors from the chunk while discarding 

the other points and then it uses a particular hypothesis to test and choose the 

points in remaining part of the data. In the original work reported in [36] the 

M points that most violate the KKT conditions (where M is a parameter of 

the system) are chosen to add to the support vectors of the previous training, 

to form a new chunk for next iteration. The chunk of data being optimised 
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at each stage varies but is finally equal to the number of nonzero Lagrange 

multipliers {Le. the number of support vectors}. A free implementation can be 

found, e.g. in [53]. 

4.3.2 Decomposition methods 

Decomposition methods are similar in spirit to chunking as they solve a se­

quence of small QPs as well. But here the size of the subproblems is fixed. They 

are based on the observations that a sequence of QPs which at least always 

contains one example violating the KKT conditions will eventually converge 

to the optimal solution [54, 55]. Osuna [55] suggested keeping a constant-size 

matrix for every QP sub-problem, which implies adding and deleting the same 

number of examples in each iteration. Using a constant-size matrix allows the 

training of arbitrary large data sets. The algorithm given in [55] added and 

deleted one example in each iteration. In practice, however, the convergence 

of such an approach is very slow. Practical implementations use sophisticated 

heuristics to select several patterns to add and remove from the subproblem 

plus efficient caching methods. They usually achieve fast convergence even on 

large data sets with up to several thousands of support vectors. A good qual­

ity implementation is SVMlight [56]. Alternatively, a decomposition variant is 

contained in the package [53]. 

4.3.3 Sequential minimal optimisation (SMO) 

Sequential Minimal Optimisation (SMO) algorithm is derived by taking the 

idea of the decomposition methods to its extreme and optimising a minimal 

subset of just two points at each iteration (to keep constraint (4.1.2) satisfied 

at least two elements of ii need to change simultaneously). The power of SMO 

resides in the fact that the optimisation problem for two data points admits an 

analytical solution, eliminating the need to use an iterative QP solver as part 
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Chunking 

• 
• • 

Osuna's Decomposition 

• • 
• • 
• • 

SMO 

Figure 4.1: Three alternative algorithms for training SVMs: Chunking, Os­
una's Decomposition and SMO. For each algorithm, three iterations are illus­
trated. (Cited from paper [58].) 

of the algorithm. In each iteration SMO chooses two elements ai and O'j to 

jointly optimise, finds the optimal values for those two parameters given that 

all the others are fixed, and updates the a accordingly. Here the main problem 

remains to choose a good pair of parameters to optimise in each iteration. 

The heuristics presented in the original papers [57, 58] are based on the KKT 

conditions and there has been some work (e.g. [59]) to improve them. The 

implementation of the SMO approach is straightforward. The pseudocode of 

it may be found in [57, 58]. 

Figure 4.1 illustrates the difference between the three alternative algorithms 

for training SVMs: Chunking, Osuna's Decomposition and SMO. For Chunk­

ing, a fixed number of examples are added every iteration, while the zero 

Lagrange multipliers are discarded in every iteration. Thus, the number of 

examples trained per iteration tends to grow. For Osuna's Decomposition, a 

fixed number of examples are optimised every iteration. For SMO, only two 

examples are analytically optimised every iteration. 

Chunking techniques in SVMs were already used by Vapnik and Chervo-
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nenkis, and were improved, generalised and discussed in a number of papers 

among others, e.g. [55, 60, 61] by Osuna and Girosi, [56] by Joachims, [57,58] 

by Platt and [62] by Kaufmann. The work of Osuna and Girosi inspired the 

subsequent work on data selection, which ultimately led to systems like SMO. 

The SMO algorithm was devised by Platt [57, 58] and applied to text cat­

egorisation problems. An extension of SMO, differing in the way it calculates 

the bias, has been proposed in [63] and shown to be faster. Alex Smola has 

generalised SMO for the case of regression [64] and the code can be found at 

the website [65]. 

4.3.4 Other algorithms 

Further algorithms have been proposed to solve the SVM problem or a 

close approximation. For instance, the Kernel-Adatron [66] is derived from the 

Adatron algorithm [67] which was proposed originally in a statistical mechanics 

setting. It constructs a large margin hyperplane using online learning. Its 

implementation is very simple. However, its drawback is that it does not allow 

for training errors, i.e. it is only valid for separable data sets, to hard-margin 

SVMs. 

Keerthy et al. proposed a very elegant algorithm for SVMs [68] that does 

not maximise the margin by minimising the norm of the weight vector. Rather, 

they note that the distance between the nearest points of the convex hulls of 

the positive and negative data uniquely determines the maximal margin hyper­

plane. Based on the same approach, Kowalczyk [69] has proved a convergence 

rate for a new iterative algorithm that can be applied to problems with hard 

or soft margins, as well as experimental comparison with other iterative algo­

rithms. 

PATTERN CLASSIFICATION BY MACHINE LEARNING L. Meng 



4.4 Centre-Based Optimisation 59 

4.4 Centre-Based Optimisation 

In this section, a series of centre-based algorithms that have been proposed 

by us are presented. Like most existing algorithms for fast training of SVMs, 

these algorithms are iterative and train a sequence of small QP problems. 

While unlike the others, these centre-based algorithms fasten the training of 

SVMs via a different way rather than selecting a particular subset of examples 

and then restricting the training to that subset. These new algorithms extract 

classification information contained in the full training data set and perform 

training on the compressed version of the full training set. The basic imple­

mentation scheme is to compress the original training set and then train the 

machine on the compressed training set. As stated in previous chapter, the 

typical way to compress a data set takes two steps: 1) divide the original data 

set into clusters; 2) represent object points in each of these clusters with the 

centre of that cluster. Our new methods follow this procedure and also use the 

set of cluster centres to represent the original data set, where the centre of the 

rth cluster er is defined as follows 

( 4.4.1) 

But what is the desired clustering that would bring us the optimal decision 

boundary? Recall that the set of support vectors is all we need to construct a 

correct decision boundary. This implies that, in order to make use of all the 

classification information contained in the original training set, each support 

vector must appear in the compressed training set and thus must become a 

cluster centre. Therefore, the desired compression should assign each support 

vector to a cluster and the remaining examples to another cluster so as to reduce 

redundance. However it is impossible to achieve this in a straightforward way 

since we do not know beforehand which training examples would turn out to 

be support vectors. What we have tried is firstly including some redundance 
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in the clustering (Le., more clusters than that in the ideal clustering) and 

then discarding this redundance from training, Le. reducing the size of the QP 

problem at each training step. Attempts have been made to develop a heuristic 

approach for this. 

4.4.1 Centre-based optimisation (CO) 

The algorithm 

Table 4.1: Implementation steps of the centre-based optimisation (CO) 
algorithm. 

Given a training set S, split each class of S into two subclusters. 

Initialise the working set S to the centres of these four subclusters. 

REPEAT 

Train SVM on S. 
FOR each support vector (Vc)i in S 

find the cluster C r that has the current support vector (Vc)i 

as its centre. 

split cluster Cr into two subclusters. 

add the centres of these two sub clusters into S and delete 

(Vc)i from S. 
UNTIL no further splitting is possible. 

The implementation steps of our first attempt is given in Table 4.1. The 

set of the cluster centres being optimised in a particular iteration is referred 

to as the working set. Let {Vi} denote the set of support vectors found us­

ing full training set and {(VC)i} the set found using a set of cluster centres. 

Examples in a cluster whose centre is in {( VC)i} are more likely to contain 

important classification information than other examples. In other words, ex­

amples in a cluster whose centre is in {(Vc)i} are more likely to be in {Vi}' 

And recall that to have the optimal decision boundary each member of {Vi} 
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should occupy a cluster while to achieve the minimum redundance all the other 

examples should take as few clusters as possible. Considering these, in each 

iteration, each of the clusters whose centres are in {(Vc)i} is split further into 

two new subclusters and then the working set is updated to include the centres 

of these new clusters. This procedure is iterated, splitting each support-vector 

clusters into two subclusters, restricting the training to the current set of clus­

ter centres, and finally halting when no further splitting is possible (Le. when 

each support-vector cluster contains only that support vector itself). Since this 

new algorithm extracts classification information from the compressed data set 

that is composed of cluster centres, it is called centre-based optimisation (CO) 

algorithm [19]. The CO algorithm has been implemented in MATLAB. The 

quadratic programming subroutine provided in MATLAB optimisation toolbox 

has been used as the standard technique to compare with. The QP problem 

in each iteration of the CO is also solved using this subroutine. 

Experiment and results 

The CO has been tested on the Iris data set described in section 3.4. Again 

to visualise the problem, experiments were conducted to separate the classes 

of Iris Versicolour and Iris Virginica according to the two attributes - petal 

length and petal width. Figures 4.2(a) and 4.2(b) show the decision boundaries 

obtained for these data sets using the standard QP technique and our CO algo­

rithm, respectively. Comparing to the optimal decision boundary found by the 

standard QP technique, the decision boundary has been well approximated by 

the CO algorithm in terms of most support vectors have been identified. How­

ever, differences do exist. In Figure 4.2(b), one support vector has been lost. 

Moreover, different runs of the CO may result in different decision boundaries 

(see Figure 4.3 for another decision boundary that may possibly be generated 

by the CO algorithm). The reason for multiple solutions is that the c-means 
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Figure 4.3: A possible decision boundary found with a Gaussian SVM for two­
feature Iris data set using t he CO algorithm. Same markers as in Figure 4.2(b) 
are used. Moreover, examples in the cluster containing t he lost support vector 
are indicated with an extra square . . 
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Table 4.2: Comparison of the standard QP technique and the CO algorithm 
for a Gaussian SVM on image segmentation subsets. 

problem size 891 800 400 200 100 

CPU time of standard algorithm 3920.5 2264.4 180.3 15.7 2.5 

CPU time of CO 3.8567 3.3275 2.0084 1.2917 0.9882 

size of Q involved in standard 

training 793881 640000 160000 40000 10000 

total size of all the 

Q matrices involved in CO 14238 12928 8908.7 6835.1 5119.8 

total CPU time only solving all the 

QP subproblems involved in CO 2.1043 1.9185 1.3666 1.0166 0.8201 

no. of CO iterations 31.2 29.4 25.8 22.8 21 

algorithm has been used as the method for cluster splitting in each CO itera­

tion. The hill-climbing nature of this algorithm makes it to be easily trapped 

into different local extrema (refer to Chapter 5 for a detailed discussion on c­

means). When a support vector in {Vi} becomes a member of a cluster whose 

centre is not in {(VC)i} (such as indicated in Figure 4.3), it would never have 

the chance to be separated from that cluster and become a cluster centre in the 

. working set. Thus, the classification information contained in such a support 

vector would be lost in such case. 

Despite the inaccuracy and mUltiplicity of the resulting decision boundaries, 

the CO is very fast. To investigate the increase of training time with the size 

of the full training set, the image segmentation data set described in section 

2.5 has been used in the experiment and the size of the data set was varied by 

randomly taking subsets of the complete training set. Table 4.2 compares the 

performance of the CO algorithm with the standard QP technique. Due to the 

uncertainty caused by the c-means algorithm in a CO run, the results of the 

CO algorithm are averaged over 100 independent runs. So is the CPU time of a 
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Figure 4.4: The log-log plot of solving time versus the size of a QP problem. 

Figure 4.5: The log-log plot of training time versus the size of full training set 
for the CO algorithm and the standard technique on image segmentation data 
set. 
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standard run. By the CO, the training time is reduced dramatically, especially 

for large training sets. And for the largest (complete) training set, the training 

time has been reduced to the (l/103),th of that cost by the standard technique. 

This significant improvement is due to the following facts: 

1) as indicated in Table 4.2, the full QP problem has been converted to a 

sequence of small QP problems and the total size of these small QP problems 

is much smaller than the size of the corresponding full QP problem; 

2) as shown in Figure 4.4, the CPU time for solving a QP problem grows 

exponentially with the size of the matrix Qj 

3) as indicated in Table 4.2, the CPU time of a CO run is dominated by the 

solving time for the sequence of small QP problems. 

Figure 4.5 shows the log-log plot of training time in seconds versus the size 

of the full training set for the CO and the standard technique on the image 

segmentation data set. By fitting a line to the plot and then working out 

the gradient of the line, an empirical scaling for the algorithm can be derived. 

The training time of the standard technique scales Z3.27, where 1 denotes the 

size of the full training set, while the CO time scales [0.68. This indicates the 

great potential of centre-based algorithms for fast solving of SVM optimisation 

problems with large training sets. 

4.4.2 Error-centre-based optimisation (ECO) 

The algorithm 

As stated, the optimality of the resulting decision boundary can not be 

guaranteed by the CO. Some support vectors may be missed. Observing Fig­

ures 4.2(b) and 4.3, we can see that these missed support vectors lie either 

inside or on the wrong side of the margin. And since they were not involved in 

last training their corresponding Qi are zero. Remind that the KKT conditions 

are the necessary and sufficient conditions for the optimal solution. Equation 
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(2.3.18) for hard-margin SVMs and equation (2.4.8) for soft-margin SVMs in­

dicate that examples with zero ai must be correctly classified and lie outside 

the margin. Inspired by this, modification has been made to the CO. In our 

second attempt, each cluster is split into two sub-clusters by separating those 

examples that satisfy the KKT conditions and thus lie outside or on the current 

margin from those that violate the KKT conditions and thus lie inside or on 

the wrong side of the current margin. On the one hand, as long as there are 

examples in the original training set violate KKT condition at least one cluster 

would be split. On the other hand, the procedure iterates until no example in 

the original training set violates the KKT conditions. Hence, the optimality of 

the solution found by this technique is guaranteed. Again, this new algorithm 

builds SVMs using a set of cluster centres. Here, we refer examples that violate 

the KKT conditions as margin errors. To further reduce the size of the QP 

problem in each iteration, only are the clusters of the margin errors involved 

in the SVM training. The rest clusters are represented by the support vectors 

found in the previous iteration. Moreover, it has been proved by Osuna [55] 

that the large QP problem can be broken down into a series of smaller QP sub­

problems. As long as at least one example that violates the KKT conditions 

is added to the examples for the previous sub-problem, each step will reduce 

the overall objective function and maintain a feasible solution that obeys all of 

the constraints. Therefore, a sequence of QP sub-problems that always add at 

least one violator will be guaranteed to converge. Considering this, in order to 

ensure a strict improvement in the objective function and hence convergence, 

the new algorithm inserts an error centre into the working set only if it violates 

the KKT conditions. Otherwise, the example in that cluster that most violates 

the KKT conditions will be inserted into the working set as the representative 

of its cluster. Since most examples of the working set are the centres of error 

clusters (support vectors of previous iteration must have been centres of error 

clusters), this new algorithm is called error-cent re-based optimisation (ECO). 
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Table 4.3: Implementation steps of the error-center-based optimization (ECO) 
algorithm. 

Given a training set S, treat each class of S as a cluster. 

Initialize the working set S to the centers of these two clusters. 

REPEAT 

'frain SVM on S. 
Set S to the support vectors. 

FOR each cluster er of S 

split the current cluster Cr into two sub clusters by identifying 

the margin errors, i.e. those that violate the KKT conditions. 

IF cent er of the error cluster violates the KKT conditions 

ELSE 

add the center into S. 

add the example, the worst point violating the KKT 

conditions in Cr , into S. 

UNTIL no new margin error is found. 

The implementation steps of ECO are listed in Table 4.3. When examples are 

tested against the KKT conditions, function f(x) is calculated (see equations 

(2.3.18) and (2.4.8)). To reduce the computational time, only support vectors 

are involved in the calculation of f(x) (equation (2.3.16)). 

Experiments and results 

The ECO algorithm has been implemented in MATLAB. And again, the 

quadratic programming subroutine provided in MATLAB optimisation toolbox 

have been used as the standard technique to compare with. The QP problem 

in each iteration of the ECO is also solved by this subroutine. 

Like CO, the ECO has been tested on Iris and image segmentation data sets. 

Figures 4.6 and 4.7 show the decision boundaries obtained using the EGO for 
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Figure 4.6: The decision boundaries found with a Gaussian SYM using the 
ECO algorithm for two-feature Iris data set. Same markers as in Figure 4.2(b) 
are used. 

o 6SVs 
o 1S'th iteration 

Figure 4.7: The decision boundaries found with a Gaussian SYM using the 
ECO algorithm for two-feature image s gmentation data set. Same markers as 
in Figure 4.2(b) are used. 
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........ ,. ..... 
-\ .. 

(a) subset of 800 examples (b) subset of 400 examples 

o 6SVs 
o 13'th iteration 

(c) subset of 200 examples (d) ubset of 100 examples 

Figure 4.8: The decision boundaries found with a Gaussian SYM using the 
ECO algorithm for different subsets of two-feature image segmentation data 
set. Same markers as in Figure 4.2(b) are used. 

Table 4.4: Performance of the ECO algorithm with a Gaussian SYM on image 
segmentation data set. 

problem size 891 800 400 200 100 

CPU time of ECO 9.1603 8.8201 3.2659 1.9307 0.9404 

total size of all the 

Q matrices involved in ECO 1242 1280 742 934 610 

total CPU time only solving all the 

QP subproblems involved in ECO 0.2137 0.1834 0.1133 0.1274 0.0863 

no. of ECO iterations 15 16 12 13 12 
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Figure 4.9: The log-log plot of training time versus the size of full training set 
for the ECO algorithm on image segmentation data set. 

these two data set, respectively. Comparing to the decision boundaries found 

using the standard technique (as shown in Figure 4.2(a) for the Iris data set 

. and Figure 2.12 for the image segmentation data set), we can see that the 

results are exactly the same. Therefore, the optimal SVM has been found by 

the ECO. Moreover, since no randomness resides in the ECO procedure the 

decision boundary generated by the ECO for a particular training set is certain 

and unique. 

The increase of training time with the growth of the size of training set 

has been investigated for the ECO algorithm. Figures 4.8(a) • (d) show the 

decision boundaries found with a Gaussian SVM using the ECO for training 

subsets of 800, 400, 200 and 100 examples, respectively. Since the whole set 

of support vectors has been included in each of these subsets deliberately, the 

optimal decision boundary for each of these training subsets is expected to the 

same as that of the complete training set. As shown in Figures 4.8(a). (d), the 

optimal decision boundary has been found by the ECO for each training subset. 

Table 4.4 summarises the performance of the ECO algorithm for a Gaussian 

SVM on the image segmentation data set. Considering that the conditions of a 
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CPU varies, we averaged the CPU times over 100 independent runs. The ECO 

converges faster than the CO in terms of the number of iterations. The total 

amount of CPU time spent in solving QP problems is less since the total size 

of matrix Q's in a ECO run is less than in a CO run. Howeyer this is achieved 

at the cost of error checking. The running time of ECO is dominated by error 

checking. Figure 4.9 shows the log-log plot of training time in seconds versus 

the size of the full training set for the ECO, the CO and standard technique on 

the image segmentation data set, respectively. The ECO is much faster than 

the standard technique. While due to the extra time spent in error checking, 

the ECO algorithm requires longer training time than the CO. However, the 

ECO can guarantee an optimal solution while the CO cannot. The training 

time of ECO scales l1.04, i.e. grows almost linearly with the size of the full 

training set. 

4.4.3 ECO for soft-margin SVMs 

The algorithm 

Last subsection demonstrated the success of the ECO algorithm for hard­

margin SVMs. However, when the ECO is applied to a SVM with soft margin 

problem arises. 

For a SVM with soft margin, noisy examples are allowed to remain inside or 

even on the wrong side of the optimal margin. On the contrary, by applying the 

KKT conditions in error checking and then involve error centers into training, 

the ECO actually tries to push all the training examples outside the final 

margin. It may happens that even though all the examples lie inside or on 

the wrong side of the margin are identified by the KKT conditions in the error 

checking step, the QP solving step will allow their cluster centers to remain 

inside or on the wrong side of the margin. Consequently, the decision boundary 

does not move. The same group of error points are detected. Further iterations 
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will bring no improvement. The problem is that the training procedure of ECO 

will not stop until all the training examples are outside the margin. To solve 

this problem, the soft version of the ECO stops when no new error cluster is 

formed, i.e. when no new error center is added to the working set. 

Experiments and results 

The ECO has been tested on the image segmentation data set for C = 1000, 

C = 100, C = 10 and C = 1. The resulting decision boundaries are shown in 

Figures 4.10 - 4.13, respectively. And the numbers of support vectors are given 

in Table 4.5. These decision boundaries have been tested on the training set. 

The number of errors on the training set is also given in Table 4.5. Comparing 

with those obtained using the standard technique for the same values of C 

(see Table 2.2 and Figures 2.8 - 2.11), the decision boundaries obtained using 

different algorithms are almost the same for large values of C. However, as the 

value of C decreases, difference appears between the results obtained by the 

ECO and the standard QP technique. As shown in Figure 4.12 for C = 10, 

the ECO allows more margin errors than the standard technique. And as C 

decreases to 1, significant difference are observed. The reason for this is that, in 

the training procedure of ECO, the SVM is trained on and thus penalises cluster 

centres rather than individual examples. If the clusters of errors are small and 

each contains just a few points, then the number of error cluster centres and the 

number of error examples should be similar. The decision boundary obtained 

using the ECO should be similar to that obtained using standard technique. 

This is exactly the case when C is large, such as observed in Figures 4.10 

and 4.11 where error points scatter alone the margin boundaries and each 

error cluster contains very few error points. When C is small, the number 

of margin errors is expected to be large and error clusters each containing a 

few of example points may form. As a result, the number of error cluster 
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centres should be much less than the number of error examples; the second 

term of objective function (2.4.1) becomes smaller under ECO as if a smaller 

C had been used, such as the case shown in Figure 4.13. The motivation of 

introducing C into SVM is to discard noisy examples automatically. If a small 

C is used, examples containing classification information may be lost and the 

number of support vectors will be much higher while most of them are at the 

upper bound. Considering this, the use of a small C is not recommended in 

practice. While if a large C is used, the result given by the ECO is expected 

to be the same or at lest very similar to that by the standard technique. 

The increase of training time with the growth of the size of the training set 

has been investigated for soft-margin SVMs using the ECO. Like in experiments 

with hard-margin SVMs, subsets of image segmentation data set have been 

used. Figures 4.14(a) - (d) show the corresponding decision boundaries found 

with a Gaussian SVM for C = 100. Comparing with that shown in Figures 

4.15(a) - (d) for the standard technique, similar decision boundaries have been 

found by the different algorithms. Table 4.6 summarises performance of the 

ECO on these subsets. Comparing with that listed in Table 4.7 for the standard 

technique, the group of noisy examples identified by the different algorithms 

are almost the same for each value of C. Figure 4.16 shows the log-log plot 

of training time in seconds versus the size of the full training set for the ECO 

and the standard technique on image segmentation data set when C = 100. 

Similar scaling of increment in training time has been observed for the ECO 

with different values of C. Again, the great potential of ECO for fast training 

of SVMs with large training set is demonstrated. 

4.5 Conclusion 

The standard QP technique is not suitable for the case of SVM training. 

Considering this, new centre-based algorithms, the CO algorithm and the ECO 
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Figure 4.10: The decision boundary found with a Gaussian SYM using the 
ECO algorithm for C = 1000. Same markers as in Figure 4.2(b) are used. And 
the training error points are marked with an extra magenta square. 

,......... . 
~J:I' .... .F:"' ... . . '" . I,. 

Figure 4.11: The decision boundary found with a Gaussian SYM using the 
ECO algorithm for C = 100. Same markers as in Figure 4.10 are used. 
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Figure 4.12: The decision boundary found with a Gaussian SVM using the 
ECO algorithm for C = 10. Same markers as in Figure 4.10 are used . 

.......... ........ .... ... .... . 
" . 

Figure 4.13: The decision boundary found with a Gaussian SVM using the 
ECO algorithm for C = 1. Same markers as in Figure 4.10 are used. 
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Figure 4.14: The decision boundaries found with a Gaussian SVM using the 
EGO algorithm for different subsets of two-feature image segmentation data 
set when C = 100. Same markers as in Figure 4. 10 are used. 
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(a) subset of 800 examples (b) subset of 400 examples 

,. .. , . 
~ .. '\-: ~ .. ,. 
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(c) subset of 200 examples (d) subset of 100 examples 

Figure 4.15: The decision boundaries found with a Gaussian SVM using stan­
dard technique for different subsets of two-feature image segmentation data 
set when C = 100. The posit ive and negative examples are marked with 'x's 
and '+ 's, respectively. And t he t raining error points are marked wit h an extra 
magenta square. 
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Table 4.5: Performance of the ECO algorithm with a Gaussian SVM on image 
segmentation data set for different values of C. SVs stands for support vectors. 

C 1000 100 10 1 

no. of support vectors 7 9 8 10 

no. of unbounded SV s 6 5 5 7 

no. of errors on training set 1 3 6 224 
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Figure 4.16: The log-log plot of training time versus the size of full training 
set for the ECO algorithm on image segmentation data set. 

algorithm, have been introduced for speeding up the training of a SVM. Under 

them, the full training set is compressed and represented by the set of cluster 

centres. In the training process, more and more error centres are added into the 

current working set until the optimal solution is obtained. The optimality of 

the solution obtained by the ECO is guaranteed since the KKT conditions have 

been used as its stop criterion. Moreover, its great potential for large training 

sets has been demonstrated by the experimental results as the training time 

scales almost linearly in the training set size. 
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Table 4.6: Performance of the ECO algorithm with a Gaussian SVM on dif­
ferent image segmentation subsets when C = 100. SVs stands for support 
vectors. 

problem size 891 800 400 200 100 

CPU time of ECO 8.9181 9.2428 5.1553 1.7952 1.1951 

total size of all the 

Q matrices involved in ECO 1141 1236 1267 688 875 

total CPU time only solving all the 

QP subproblems involved in ECO 0.2907 0.2861 0.3494 0.1521 0.2035 

no. of ECO iterations 12 15 14 11 11 

no. of SVs 9 7 9 6 9 

no. of unbounded SV s 5 5 5 4 7 

no. of errors on training set 3 2 3 2 2 

index of 376 796 13 196 96 

error points 553 797 396 197 97 

589 397 . 

Table 4.7: Performance of the standard QP technique with a Gaussian SVM on 
different image segmentation subsets when C = 100. SVs stands for support 
vectors. 

problem size 891 800 400 200 100 

CPU time of standard algorithm 4138.6 2543.8 241.86 23.752 3.6493 

size of Q involved in standard 

training 793881 640000 160000 40000 10000 

no. of SVs 11 10 12 10 9 

no. of unbounded SV s 6 5 6 5 5 

no. of errors on training set 2 2 2 2 2 

index of 376 796 396 196 96 

error points 553 797 397 197 97 
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Chapter 5 

UNSUPERVISED LEARNING 

AND CLUSTERING 

So far, our interest has focused on supervised learning, whose task is to 

learn the decision boundary between the classes given by the teacher. From this 

chapter, we depart from this path and concentrate on unsupervised learning, 

where the learner seeks to develop a concept description from examples that 

have not been pre-classified by the teacher. 

5.1 Introd uction 

In unsupervised learning all one has is a collection of unlabelled samples. 

One might wonder why anyone is interested in such an unpromising problem, 

and whether or not it is possible even in principle to learn anything of value 

from unlabelled samples. There are at least five basic reasons for interest in 

unsupervised procedures. 

First, collecting and labelling a large set of sample patterns can be sur­

prisingly costly. For instance, recorded speech is virtually free, but accurately 

labelling the speech - marking what word or phoneme is being uttered at each 

81 



5.1 Introduction 82 

instant - can be very expensive and time consuming. If a classifier can be 

crudely designed on a small set of labelled samples, and then "tuned up" by 

allowing it to run without supervision on a large, unlabelled set, much time 

and trouble can be saved. 

Second, one might wish to proceed in the reverse direction: train with large 

amounts of (less expensive) unlabelled data and only then use supervision to 

label the groupings found. This may be appropriate for large data mining 

applications, where the contents of a large database are not known beforehand. 

Actually, this is what scientists (say, biologists) have been doing for centuries, 

developing such categories as vertebrates, sub categories as mammals or birds, 

and the like. 

Third, in many applications the characteristics of the patterns can change 

slowly with time. For example, in automated food classification as the sea­

sons change. If these changes can be tracked by a classifier running in an 

unsupervised mode, improved performance can be achieved. 

Fourth, as already mentioned, we can use unsupervised methods to find fea­

tures that will then be useful for categorisation. There are unsupervised meth­

ods that provide a form of data-dependent "smart preprocessing" or "smart 

feature extraction" , e.g. the Principle Component Analysis and Independent 

Component Analysis methods. 

Lastly, in the early stages of an investigation it may be valuable to perform 

exploratory data analysis and thereby gain some insight into the nature or 

structure of the data. The discovery of distinct subclasses - clusters or groups. 

of patterns whose members are more similar to each other than they are to other 

patterns - or of major departures from expected characteristics may suggest 

that we should significantly alter our approach to designing the classifier. 

The answer to the question of whether or not it is possible in principle 

to learn anything from unlabelled data depends upon the assumptions one is 

willing to accept. Assuming that we know the complete probability structure 
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for the problem except the values of some parameters, we can use maximum­

likelihood methods to estimate these unknown parameters. Or if we are also 

provided with a known prior distribution of the unknown parameters, we can 

take a Bayesian approach to unsupervised learning. Such methodology is clas­

sified as parametric pattern classification. If the goal is to find subclasses 

(as addressed in the last reason above), then a more direct alternative is to 

use clustering procedures. Pattern classification using clustering procedures 

is nonparametric where the goal is to optimise an objective function rather 

than estimate some unknown parameters. The rest of this chapter is devoted 

a discussion on clustering. 

5.2 Hard Clustering 

A clustering problem concerns a set of n objects to be clustered into c 

clusters. If no overlap between clusters is allowed, then the problem becomes 

a hard clustering problem. Typically, the membership of the n objects to each 

of the c clusters is described by a c x n matrix, called partition matrix. For 

a degenerate partition, its partition matrix contains one or more empty rows, 

meaning that fewer than c clusters are obtained by this partition. For an n­

object c-cluster clustering problem, the set of all c x n nondegenerate partition 

matrices is denoted by M and defined as follows 

c n 

M - {U E R cxn I L Uik = 1, D < L Uik < n, 
i=l k=l 

D ::; Uik ::; 1; i = 1, ... ,c, k = 1, ... ,n} (5.2.1) 

where U denotes a partition matrix. 

For hard partitions, Uik E {D, I}. Given an object Xk, for all k = 1, ... , n, 
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each element of the kth column of U is defined by 

{

I, if Xk belongs to the ith cluster;. 
Uik = 

0, otherwise. 
(5.2.2) 

The size of M, Le. the number of ways to cluster n objects into c nonempty 

groups, is a Stirling number of the second kind [70], given by 

(5.2.3) 

where, as in the formulae above, n is the number of objects and c is the desired 

number of clusters. 

In clustering, there are various objective functions. The following is one of 

the typical objective functions used in clustering 

c n 

J1(U,V) = 2:2: Uik .D~k(Vi,Xk) (5.2.4) 
i=l k=l 

where Xk E R 8 is the feature vector describing the kth object, Vi E R S is the 

feature vector describing the representative of the ith cluster, and D;k(Vi, Xk) 

is the squared Euclidean distance between vectors Vi and Xk. The set of c 

representatives, one for each cluster, composes a matrix V = (VI, V2, ... ,vcF. 
The objective function defined by equation (5.2.4) describes the accumu­

lated error when replacing each object by the representative of the cluster it 

belongs to. Therefore, it is actually a measure of. distortion. The objective of 

the problem is to minimise this distortion and consequently find the optimal 

partition. This clustering criterion is termed sum-of-squared-error criterion 

[3]. 
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5.3 Hard c-Means Clustering Algorithm 

(HCMCA) 

Of the various techniques that can be used to simplify the computation and 

accelerate convergence, c-means (also known as k-means) is an elementary but 

very popular clustering algorithm. 

It has been shown that minimising distortion J1 (D, V) with respect to a 

hard partition matrix leads to the following two conditions [71]: for all i = 
1, ... ,c and k =1, ... , n, firstly 

.... E~-l UikXk 
Vi = ~n , 

L.,;k=l Uik 
(5.3.1) 

Le. the representative of a cluster should be the centroid of the objects in that 

cluster (for this reason, representatives of the clusters are also referred to as 

cluster centres); and secondly, 

(5.3.2) 

Le. an object should be assigned to the cluster with the closest centre. 

Hard c-means clustering algorithm (HCMCA) adopts these two conditions 

and minimises the objective function J1{U, V) by alternatively updating ma­

trices V and U using equations (5.3.1) and (5.3.2). In this sense, HCMCA 

can be generalised as an iterative procedure of alternate minimisation which 

is widely adopted in machine learning. At the first step of each iteration, 

such a procedure fixes parametric model Ml = Mllold and gets parametric 

model M21new = arg minMl F{ M}, )\,12), where function F( Ml , )\,12) is the ob­

jective function of both Ml and M2 . And then at the second step of each 

iteration, alternately, the procedure fixes A12 = A1210ld and gets Mllnew = 
arg minMl F(M1, A12)' The alternate minimisation procedure guarantees to re­

duce the objective function F(M}, A12) until it converges to a local minimum. 
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For procedures implementing HCMCA, model Ml = V, model M2 = U and 

the objective function F(MI, M 2 ) = J1 (U, V). And it is traditional to let c 

examples randomly chosen from the data set serve as the initial set of cluster 

centres. 

HCMCA was introduced by Lloyd [71], which inspired many variations, 

such as the use of the Mahalanobis distance [72] instead of the Euclidean 

distance for equations (5.2.4) and (5.3.2), or the use of fuzzy measures [73, 74] 

to allow overlapped clusters. HCMCA and its variations are generally called 

the c-means methods since they all use the centre to represent a cluster. The 

c-means methods are essentially calculus-based, where cluster centres tend to 

move in the directions that the gradient of the objective function descends 

most. As hill-climbing techniques, the c-means methods display high efficiency 

and have been effectively applied in different areas. They may be used to 

generate a representative set of prototypes for a data set, often in conjunction 

with other pattern recognition schemes. For example, c-means may be used 

to generate a set of vectors to be used as centres in a radial basis function 

(RBF) classifier [75]. Vector quantisation [76] is an application of the c-means 

procedures. In a texture classification problem, a c-means method has been 

used to obtain a reduced set of samples characterising each class of texture 

[77]. c-means for speech coding has been discussed in [78]. 

Although the c-means methods are efficient, they have a common inevitable 

drawback. The next section discusses this drawback in the context of HCMCA. 

5.4 Local Search - The Crucial Problem of c-

Means Clustering 

As already mentioned, HCMCA is a calculus-based method. Therefore, 

it is efficient and powerful in local optimisation. However, as stated in [71], 
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Figure 5.1: Distribution of the J1 values associated with the partitions found 
when classifying Chernoff faces using HCMCA (see section 7.3 for a description 
of the experiment). 

the two conditions defined by equations (5.3.1) and (5.3.2) are necessary but 

not sufficient conditions for the existence of the optimal partition. In other 

words, more than one partition (local extremum) may satisfy equations (5.3.1) 

and (5.3.2). Moreover, the objective function HCMCA tries to optimise is 

typically a highly non-linear function. As often reported in the literature, the 

hill-climbing HCMCA is fairly sensitive to initial conditions and can be easily 

trapped in a local optimum that is far away from the global one. Figure 5.1 

plots the distribution of the J1 values associated with the partitions found 

when applying HCMCA to a real-world clustering problem - the Chernoff faces 

data set [79]. As we can see, the distribution is broad and thus indicates the 

local optimality of these solutions and reveals the sensitivity of HCMCA to 

the initial conditions. Moreover, the majority of the partitions found for this 

application problem using HCMCA causes a J1 value (Le. distortion) much 

higher than the optimal one. To tackle these problems, a novel algorithm 

has been proposed, which adopts the stochastic nature of genetic algorithms 

and thus performs a global optimisation of the clustering objective function 

J1(U, V). 
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5.5 Conel usions 

This chapter has been devoted to an introduction to the problem of hard 

clustering and the common used clustering algorithm - HCMCA. The formula­

tion of the problem and the method has been presented. The inevitable draw­

backs of c-means have been discussed in the context of HCMCA, which urges 

the employment of a more advanced searching method, such as the genetic 

algorithms. Before presenting the new genetically guided clustering algorithm, 

we devote the next chapter to an introduction to the genetic algorithms. 
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Chapter 6 

FUNDAMENTALS OF 

GENETIC ALGORITHMS 

6.1 Introduction to Evol':ltionary Algorithms 

The family of evolutionary algorithms (EAs) is a collection of optimisation 

algorithms that are inspired by natural evolutionary phenomena and derived 

from simulating Darwinian evolutionary theory. 

Darwinian evolution is essentially a robust search and optimisation mecha­

nism. Evolved biota demonstrate optimised complex behaviour at every level: 

the cell, the organ, the individual and the population. The problems that 

biological species have solved are typified by chaos, chance, temporality, and 

nonlinear interactivities. These are also characteristics of problems that have 

proved to be intractable to classic methods of optimisation. The evolutionary 

process can be applied to problems where heuristic solutions are not available 

or generally lead to unsatisfactory results. As a result, EAs have recently re­

ceived increased interests, particularly with regard to the manner in which they 

may be applied for practical problem solving. EAs are classified as stochastic1 

IThe searching procedure by a genetic algorithm can be formulated as a finite-dimension 
Markov chain. 

89 



6.2 Types of Evolutionary Algorithms 90 

search algorithms for global2 optimisation problems and have found many en­

gineering and industrial applications (see, for example, [23] - [25], [80] - [84]). 

The massive scale of research activities concerning EAs undertaken world-wide 

in recent years symbolises a systematic knowledge transition from life science 

and human science through mathematics and computer science to engineering 

technology. 

6.2 Types of Evolutionary Algorithms 

In the area of evolutionary computation, there are three broadly similar 

branches: Genetic Algorithm (GA), Evolution Strategy (ES), and Evolution­

ary· Programming (EP). All of these three optimisation techniques maintains 

a population of trial solutions, imposes random changes to them, and incor­

porates selection. But they also have important differences. These differences 

are philosophical and due to their different beliefs in biology. 

In the field of biology, there are diametrically opposed opinions as to what 

exactly is being evolved. Davis [85] (p. 2) suggests that "evolution is a process 

that operates on chromosomes rather than on the living beings they encode." 

In sharp contrast, Mayr [86] (p. 162-163) defined that "evolution is change 

in the adaptation and in the diversity of populations of organisms." In brief, 

Davis advocates evolution on genotype while Mayr advocates evolution on 

phenotype. 

Following the philosophy of Davis, GAs represent each trial solution as 

genes along a chromosome and impose genetic operators on these genes. GAs 

emphasise the reductionist, bottom-up assembly of building blocks - gene se­

quences with high-performance. New generations of gene strings are primarily 

created via combined process of selection and recombination. Whereas, in ES 

2Unlike the traditional optimisation methods, evolutionary algorithms are less likely to 
be trapped on the local optima. 
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and EP, the components of a trial solution are viewed as behavioural traits of 

an individual. Each new generation of these phenotypic traits is created by 

adding a Gaussian random variable. ES and EP emphasise this mutational 

transformation which maintain behavioural linkage between each parent and 

its offspring, respectively at the level of the individuals or the species - sub­

populations of individuals. 

GAs emphasise the overt genetic attributes of gene recombination (more 

widely known as crossover) and have defined it as the most distinguishing 

feature. The application of recombination operations to purely genetic infor­

mation in ES is logically sound because this process operates on simulated 

individuals. Whereas, the application of recombination in EP is not applicable 

because each solution is typically viewed as the analog of a species, and there 

is no sexual communication between species. 

6.3 Advantages of Evolutionary Computation 

Evolutionary computation - the term now used to describe the field of inves­

tigation that concerns all evolutionary algorithms - offers practical advantages 

to the researchers facing difficult optimisation problems. These advantages are 

multifold, including the simplicity of the approach, its flexibility, its superiority 

to classic techniques, its parallelism and many other aspects. 

Conceptual simplicity 

A primary advantage of evolutionary computation is that it is conceptu­

ally simple. The main flow chart that describes every EA applied for function 

optimisation is shown in Figure 6.1. The algorithm consists of initialisation, 

where a population of candidate solutions to the problem at hand is initialised, 

followed by iterative fitness-based selection and variation. Competing solutions 
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Initialise a population 
of trail solutions. 

Select fitter individuals as parents. 

Generate new individuals via applying 
mutation and/or crossover to the selected arents. 

Update the population. 

no 

Output the fittest individual as the solution 
to the roblern described b the fitness function. 
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Figure 6.1: The main flow chart of the vast majority of evolutionary algorithms. 
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are evaluated according t'o a fitness (or performance index) such that two com­

peting solutions can be rank-ordered. Finer granularity is not required. Thus 

the criterion need not be specified with the precision that is required of some 

other methods. In particular, no gradient information needs to be presented to 

the algorithm. Fitness-based selection is applied to determine which solutions 

will be maintained into the next generation, and with what frequency. These 

selected parents are then subjected to random variation, including mutation 

and/or recombination, and the process iterates. Over iterations of selection and 

random variation, the population is expec~ed to converge to optimal solutions 

[87, 88]. 

Broad applicability 

EAs can be applied to actually any problem that can be formulate~ as a func­

tion optimisation task. It requires a data structure to represent solutions, 

a performance index to evaluate solutions, and variation operators to gener­

ate new solutions from old solutions. The state space of possible solutions 

can be disjoint and can encompass infeasible regions, and the performance in­

dex can be time varying, or even a function of competing solutions extant in 

the population. The human designer can choose a representation that follows 

their intuition. In this sense, the procedure is representation-independent, in 

contrast with other numerical techniques which might be applicable for only 

continuous values or other constrained sets. This flexibility allows for applying 

essentially the same procedure to discrete combinatorial problems, continuous­

valued parameter optimisation problems, mixed-integer problems, etc. 

Superiority over classical methods on real problems 

For simple problems, where the response surface is, say, strongly convex, EAs 

do not perform as well as traditional optimisation methods [89). nut this is to 

be expected as these techniques were designed to take advantage of the convex 

property of such surfaces. However real-world function optimisation problems 
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often (1) impose nonlinear constraints, (2) require payoff functions that are not 

concerned with least square error, (3) involve nonstationary conditions, (4) in­

corporate noisy observations or random processing, or include other vagaries 

that do not conform well to the prerequisites of classical optimisation tech­

niques. Further, the response surface posed in real-world problems are often 

multi-modal, and gradient-based methods rapidly converge to local optima (or 

perhaps saddle points) which may yield insufficient performance. Schwefel [90] 

has shown in a series of empirical comparisons that in the alternate condition 

of applying classical methods to multi-modal functions, EAs offer a significant 

advantage. 

Moreover, the problem of defining the payoff function for optimisation lies 

at the heart of success or failure: inappropriate descriptions of the performance 

index lead to generating the right answer for the wrong problem. Within clas­

sical statistical methods, concern is often devoted to minimising the squared 

error between forecast and actual data. But in practice, equally correct predic­

tions are not of equal worth, and errors of identical magnitude are not equally 

costly. Consider the case of correctly predicting that a particular customer 

will purchase 10 units of a product. This is typically worth less than correctly 

predicting that the customer will purchase 100 units of that product, yet both 

predictions cause zero error and weighted equally in classical statistics. Fur­

thermore, the error of predicting the customer will demand 10 units and having 

him actually demand 100 units is not of equal cost to the manufacture as pre­

dicting the customer will demand 100 units and having him demand 10. Yet 

again, under a squared error criterion, these two situations are treated iden­

tically. In contrast, within EAs, any definable payoff function can be used to 

compare alternative behaviours. There is no restriction that the criteria should 

be differentiable, smooth, or continuous. 
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Potential to use knowledge and hybridise with other methods 

It is always reasonable to incorporate domain-specific knowledge into an algo­

rithm when addressing particular real-world problems. Specialised algorithms 

can outperform unspecialised algorithms on a restricted domain of interest [91]. 

EAs offer a framework where it is comparably easy to incorporate such knowl­

edge. For example, specific variation operators may be known to be useful 

when applied to particular representations (e.g. partially matched crossover 

for travelling salesman problem [92]). 

EAs can also be combined with more traditional optimisation techniques. 

This may be as simple as the use of a conjugate-gradient minimisation applied 

after the primary search with an EA (e.g. [93]), or it may involve simulta­

neous applications of algorithms (e.g. the use of evolutionary search for the 

structure of a model coupled with gradient search for parameter values [94]). 

Further, evolutionary computation can be used to optimise the performance 

of neural networks [95], fuzzy systems [96], production systems [97], and other 

program structures [98, 99]. In many cases, the limitations of conventional 

approaches (e.g. the requirement for differentiable hidden nodes when using 

back propagation to train a neural network) can be avoided. 

Parallelism 

Evolution is a highly parallel process. It is often the case that individual 

solutions can be evaluated independently of the evaluations assigned to com­

peting solutions. The evaluation of each solution can be handled in parallel 

and only selection (which requires at least pairwise competition) requires some 

serial processing. As distributed processing computers become more readily 

available, there will be a corresponding increased potential for applying evolu­

tionary algorithms to more complex problems. 

Ability to solve problems that have no known solutions 

Perhaps the greatest advantage of EAs cames from the ability to deal-with 
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Table 6.1: Implementation steps of simple genetic algorithms. 

Initialise a population of gene strings. 

REPEAT 

Evaluate each string in the population. 

Based on fitness, select pairs of parents from the current population. 

Generate offspring of the selected parents via crossover and muta­

tion . 

. Replace the parents with their offspring. 

UNTIL the specified number of generation is reached. 
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problems for which there are no human experts. Although human expertise 

should be used when it is available, it often proves less than adequate for 

automatic problem-solving. Troubles with such expert systems are well known: 

the experts may not agree, may not be self-consistent, may not be qualified, 

or may simply be in error. Research in artificial intelligence has broken into 

a collection of methods and tricks for solving particular problems in restricted 

domains of interest. Certainly, thes~ methods have been successfully applied 

to specific problems (e.g. the chess program Deep Blue). But most of these 

applications require human expertise. They may be impressively applied to 

difficult problems requiring great computational speed, but they generally do 

not advance our understanding of intelligence. "They solve problems, but they 

do not solve the problem of how to solve problems," ([100], p. 259). In contrast, 

evolution provides a method for solving the problem of how to solve problems. 

It is a recapitulation of the scientific method [101] that can be used to learn 

fundamental aspects of any measurable environment. 
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6.4 Genetic Algorithms (GAs) 

Since the work reported in this thesis has related mainly to genetic algo­

rithms (GAs), the rest of this chapter will focuses on a systematic discussion 

of GAs. Table 6.1 shows the implementation steps of the canonical or simple 

genetic algorithm (SGA), which illustrates the central ideas in the operation 

of GAs. 

6.4.1 Types of GAs 

Besides the SGA described in Table 6.1, there are a number of significant 

variations. There are the elitist, steady-state, and deme GAs, they all differ 

from the simple GA in the way that they treat the population of individuals 

from generation to generation. 

Elitism is a simple extension to SGA that ensures that the best individ­

ual persists from generation to generation. The steady-state GA also allows 

individuals to persist from one generation to the next, usually by keeping 

the best individuals and replacing the worst. It was originally developed by 

Whitley [102]. The algorithm generates a single individual at each generatio,!1, 

which then replaces a selected member of the population (usually the worst). 

Syswerda [103] describes a similar algorithm that is the same except that in­

stead of a single individual multiple new genomes (the number of newborns is 

set via a parameter called generation gap) are created each generation. The ad­

vantage of these approaches is that the population always contains of the best 

solutions discovered by the algorithm so far. Whereas, under SGA it is possible 

that the algorithm "loses" important genetic material due to a good individual 

not being selected or because of the subsequent crossover and mutation. 

The deme GA is significantly different. Instead of a single population of 

individuals, a number of sub-populations are evolved independently. Occasion­

ally, the better individuals from a sub-population are selected for migration, 
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which involves transferring them to another sub-population. The advantage of 

this technique is that it allows for the easy paraIlelization of the GA through 

cluster computing techniques. Sub-populations can be evolved on separate 

machines and communicate the migrating individuals by a network. 

6.4.2 Fitness scaling 

Before individuals are selected from the population to generate offspring, 

the raw score obtained from calling the objective function is converted into 

a fitness score. There are many approaches to doing this. The simplest is 

no scaling where the objective score is used directly as the fitness value. This 

has the disadvantage that a few good individuals may dominate the population 

within a few generations (Le. too much selection pressure); or there is too little 

difference between individuals and so they all have an equal chance of being 

selected (Le. too little selection pressure). If the later problem exists then a 

good alternative is linear scaling where better individuals get a proportionally 

higher fitness. A good general-purpose scheme is rank-based scaling [102], 

where fitness is assigned based on the rank of an individual within a population 

that is ordered in light of objective score. 

6.4.3 Selection schemes 

After the fitness evaluation, an expected value of offspring is assigned to 

each individual extant in the population based on its fitness relative to the 

others. This can be expressed mathematically as 

fit(x) I I ev% = x pop 
LXEPOP fit(x) 

(6.4.1) 

where evx denotes the expected value of individual x, fit(x) evaluates the fit· 

ne ss value of individual x and pop is the set composed of individuals in current 

population. Then the phase of selection determines the actual number of off· 
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spring each individual will receive. Baker [104] stated that "the algorithm 

used to convert the real expected values to integer numbers of offspring is 

called the sampling algorithm." There have been various sampling algorithms 

reported. The well-known schemes are stochastic sampling with replacement, 

stochastic sampling with partial replacement, remainder stochastic sampling 

with replacement, remainder stochastic sampling without replacerrient, deter­

ministic sampling, remainder stochastic independent sampling, and stochastic 

universal sampling. 

Stochastic sampling with replacement is actually a fancy name of the first 

widely-used selection scheme, the roulette wheel selection. It is named so be­

cause it is analogous to a gambler's roulette wheel with each wheel slice pro­

portional in size to the expected offspring value of an individual. 

Stochastic sampling with partial replacement is another name for De Jong's 

expected-value model [105]. In this algorithm, an individual's expected value 

is decreased by 1.0 each time it is chosen by the roulette wheel selection. 

A remainder sampling method involves two distinct phases. In the integral 

phase, samples are awarded deterministically based on the integer portions 

of the expected values. The fractional phase then samples according to the 

expected values' fractional portion. In remainder stochastic sampling with re­

placement, the fractional portions are sampled by the roulette wheel method. 

The individual's fractions remain unaltered between spins, and hence continue 

to compete for selection. While in remainder stochastic sampling without re­

placement, after each spin, the selected individual's expected value is set to 

zero. 

A deterministic sampling algorithm is suggested and used by Brindle [106]. 

In this remainder algorithm's fractional phase, the individuals with the largest 

fractions are selected. 

Remainder stochastic independent sampling and stochastic universal sam­

pling were proposed by Baker (1987) [104]. 
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In remainder stochastic independent sampling, the fractional portions are 

treated as the probabilities of successive Bernoulli trials without replacement 

(since once an individual is selected, its expected value is set to zero). Baker 

suggested to perform the fractional phase of this algorithm in full parallel, 

precede the O(N) sequential integral phase. 

Baker [104] described stochastic universal sampling as being analogous to 

a roulette wheel with N equally spaced pointers and gave a C code Fragment 

for it as follows (cited from [104]): 

ptr = RandO; 
for (sum=i=O; i<N; i++) 

for (sum += ExpVal[i]; sum > ptr; ptr++) 
SelectInd(i); 

Stochastic universal sampling is a simple, single phase, O(N) sampling algo­

rithm. However it is strictly sequential. 

An individual's expected offspring value is not always equal to its actual 

sampling probability. To evaluate various sampling algorithms, Baker [104] 

introduced three measures: bias, spread and efficiency. The bias indicates 

the algorithm's accuracy; while the spread indicates the precision. Hence the 

spread reveals the sampling algorithm's consistency. Table 6.2 summarises the 

basic characteristics of the various sampling algorithms, where N denotes the 

population size, ev is the expected value of an given individual, l x J and r x 1 
rounds a floating point value x to the nearest integer towards minus and plus 

infinity respectively, and integer R satisfies L ev J + R ::5 N . 

Based on the theoretical analysis summarised in Table 6.2 and the empirical 

analysis of the conducted bias, Baker [104] concluded that the stochastic uni­

versal sampling algorithm is an optimal sequential sampling algorithm, which 

for the first time, assigns offspring according to the theoretical specifications 

(equation (6.4.1)) and hence recommended that in sequential environments 

GAs should employ this algorithm; while if a parallel environment is available, 

remainder stochastic independent sampling may prove valuable. 
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Sampling Method Bias Spread Compu tational Parallela-

Load bility 

Stochastic Sampling zero unlimited O(N log N) None 

with Replacement O-N 

Stochastic Sampling medium upper bounded O(NlogN) None 

with Partial Replace- 0- revl 
ment 

Remainder zero lower bounded O(NlogN) None 

Stochastic Sampling levJ - levJ + R 

with Replacement 

Remainder medium minimum O(NlogN) None 

Stochastic Sampling levJ, rev 1 
without Replacement 

Deterministic high minimum O(NlogN) None 

Sampling levJ, rev 1 
Remainder Stochastic low minimum O(N) Fractional 

Independent Sampling levJ, rev 1 Phase 

Stochastic zero minimum O(N) None 

Universal Sampling levJ, rev 1 

Table 6.2: Comparison of Sampling Methods (cited from [104]). 
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6.4.4 Crossover operators 

For optimisation of a function with real valued parameters, there have been 

three well-defined crossover operators: one-point crossover, twcrpoint crossover 

and uniform crossover. 

Under one-point crossover, a crossing site is selected at random and then 

the sub-strings that follow the site are exchanged. As indicated by its name, 

two-point crossover selects two crossing sites, again at random. Then the 

alleles in the segments delimited by the sites are exchanged, considering the 

chromosomes circular. For example, two possible parents could be 

Parent1: A BeD E 

Parent2: a bed e 

One-point crossover could possibly yield the following offspring for the parents 

above (with the bar indicating the crossing site): 

Child!: A bed e 

Child2: a BeD E 

and 2P could yield offspring as follows: 

Child!: A beD E 

Child2: a Bed e 

Since one-point crossover introduces an undesirable bias with respect to the 

extremities of the chromosome, widely used is the next lowest-disruption choice 

- the twcrpoint crossover. However twcrpoint crossover is a low-disruption 

crossover. Further, it introduces an extra bias: short schemata are disrupted 

less often than long ones. A schema is a similarity template describing a subset 

of strings with similarities at certain string positions. The trouble is that we 

usually do not know a priori which schemata should be the least disrupted 

[107]. 

Very different from one-point and twcrpoint crossover operators, uniform 

crossover constructs a new string by randomly copying, for each locus, the 
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allele randomly from a parent. This is achieved by constructing a binary mask, 

one bit per locus, typically with equal probability for the alternative values, as 

in the following example: 

Parent!: A B C D E 

Parent2: a b c d e 

Mask: 0 1 0 0 1 

Child!: a B c d E 

Child2: A b C D e 

The first child inherit the allele from the first parent where there is a 1 in the 

mask, and from the second parent where there is a O. The second child is 

constructed according to the opposite rule. Since the mask's values at different 

loca are set independently, uniform crossover disregards any linkage there might 

be among genes on a string~ 

Syswerda examined the utility of various crossover operators, concentrat­

ing on one-point, two-point, and uniform crossover. Syswerda [103] emphasised 

that the overt purpose of crossover is to combine good schemata together into 

one genome and studied several binary function optimisation problems. The 

empirical results did show that generally uniform crossover yielded better per­

formance than two-point crossover, which in turn yielded better performance 

than one-point crossover. 

Since its popularisation by Syswerda in 1989, uniform crossover has be­

come perhaps the most widely used crossover operator. However, the worth of 

uniform crossover was questioned by Falkenauer in 1999 [107]. In his paper, 

Falkenauer discussed the two popular arguments backing uniform crossover, 

and gave corresponding counter arguments. 

The arguments in favour of uniform crossover and the corresponding coun­

terarguments by Falkenauer are summarised as follows: 

1. Uniform crossover is capable to reach in a single step any point in the 

search space, provided that each bit of the corresponding gene string is 
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present in at least one of the parents. 

Falkenauer: Random search is equally capable to reach in a single step 

any point in the search space (regardless of the parents). However, few 

researchers would hail random search as an efficient search method. 

2. Uniform crossover has a better recombining power than one-point and 

two-point crossovers. 

Falkenauer: The disregard of gene linkage by uniform crossover and its 

out performance than low-disruption operators indicates that genes must 

be largely independent from each other. However, such a situation also 

implies that the alleles of those genes can be set separately (Le. the 

problem is separable), suggesting a hill-climber as a better search device 

for the problem. Conversely, when a problem is difficult for a simple 

hill-climber (Le. the problem is non-separable), and where GA becomes 

a device of interest, uniform crossover should be outperformed by a low­

disruption crossover. 

Based on his arguments, Falkenauer concluded that "uniform crossover's 

high rate of disruption is harmful" and baked his conclusion with experimen­

tal results on a simple function that is "mildly non-separable (there is linkage 

between genes on the chromosome)". Nevertheless, Spears and De Jong [108] 

indicated that disruptiveness need not always be viewed negatively. In the sit­

uation of premature convergence, it may be the only mechanism for advancing 

the search. While the experiments of Syswerda [103] and others did indicate 

the potential for taking a positive view of disrupting schemata when imple­

menting a genetic algorithm although the usefulness of such disruption will be 

highly problem-dependent. 
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6.5 Basic Theorems of GAs 

To understand how a GA acts, it seems that we need to look at the raw 

data available for any search procedure. While it turns out that we can search 

more effectively by exploiting similarities in the encoded strings. This is the 

concept of similarity template or schema, which leads to a keystone in GA 

theory - the building block hypothesis. 

GAs inherently process a large quantity of schemata while processing a 

relatively small quantity of gene strings. It turns out that the number of 

schemata processed usefully in each generation is something like N 3 , where N 

is the population size. This important processing leverage is apparently unique 

to GAs, and is called the implicit parallelism. 

The effects of the three fundamental GA operators have been analysed 

separately regarding how schemata are processed. 

Comprehensively, after the execution of the three basic GA operators, the 

number of a particular schema H, m(H), remains in the next generation can 

be given by the following equation [81] 

m(H, t + 1} > m(H, t} . f(IJl [1 - Pc ~(H~ - O(Il}pm] (6.5.1) 

where Pc and Pm are the probabilities of operations crossover and mutation, 

o( H), 8 (H) and f (H) are respectively the order, the defining length and the 

(average) fitness of a schema H. 

In equation (6.5.1), the former variation factor is due to the effect of fitness­

based selection; and the later factor indicates that short, low-order schemata 

have more chances to survive under crossover and mutation. The introduction 

of a lower bound is because the theoretical derivation contains no source terms 

and it has been assumed that we lose the schema whenever a crossover occurs 

between the schema's outermost defining bits, while in practice sometimes one 

schema's loss is another's gain. 
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Assume that the particular schema H remains above average an amount 

cl with a constant c. Under this assumption, rewrite the differential equation 

(6.5.1) as 

m{H, t + 1) > m{H, t) (f ~ ef) [1- p, f{H~ - O{H)pm] 

> (I + c)· m{H, t) . [1- p, :{Hl- O{H)pm] (6.5.2) 

Starting at t = 0 and assuming a stationary value of c, we have 

(6.5.3) 

According to this calculated result, an important conclusion can be drawn [109] 

(pp. 102-103): "Short, low-order, above-average schemata (Le. building blocks) 

receive exponentially increasing trials in subsequent generations." This is the 

well-known schema theorem. This allocation strategy is implemented mainly 

by the selection operation in GAs and has been justified by a two-armed bandit 

problem [81]. 

In the light of the schema theorem, the building block hypothesis explains 

the power of the GA: "Instead of building high-performance strings by trying 

every conceivable combinations, GAs work robustly by identifying good build­

ing blocks and by eventually combining these to get larger building blocks." 

[81] 

6.6 Premature Convergence in the GA Search 

Premature convergence is an important concern in GAs. This occurs when 

the population reaches a configuration such that crossover no longer produces 

offspring that can outperform their parents, as must be the case in a homoge­

neous popUlation where population diversity equals zero. Under such circum­

stance, all standard forms of crossover simply regenerate the current parents. 
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Any further optimisation relies solely on bit mutation and can be quite slow. 

Suppose the population prematurely converges at a local extremum b bits away 

from the global optimum. The probability of flipping these b specific bits in a 

single binary chromosome and not flipping any others is p~(l- Pm)k-b, where 

Pm is the probability of flipping a single bit and k is the bit length of the 

genome. Premature convergence is often observed in GA research ([85], [105J, 

and others) because of the exponential reproduction of the best-observed solu­

tion coupled with the strong emphasis on crossover. 

Therefore, for real-world optimisation problems requiring great precision 

and a long binary coding, it may be expected (although there will be coun­

terexamples) that a GA that does not employ a heuristic method for prevent­

ing or postponing premature convergence will not tend to discover even nearly 

globally optimal solutions in a reasonable number of generations. Instead, the 

population will settle at a point (or points) on the response surface, after which 

further optimisation will result only if there is an unlikely flipping of the correct 

bits. 

Davis [85] recommends that when the population converges on a chromo-

some that would require the simultaneous mutation of many bits to improve 

it, the run is practically completed and either it should be restarted using a 

different random seed (e.g. dynamic parameter encoding [110]) or hill-climbing 

heuristics should be employed to search for improvements. 

6.7 Conclusions 

This chapter has been devoted to an introduction to evolutionary algo­

rithms, especially to genetic algorithms. The advantages shared by all the 

evolutionary algorithms are presented. Types of GAs and GA operators are 

compared with each other. The theorems revealing the reasons of GA's success 

and the premature convergence problem of GA are addressed. The robustness 
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of GAs is demonstrated in the next two chapters through the application study 

in clustering and job-shop scheduling, respectively. 
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Chapter 7 

A GENETIC HARD C-MEANS 

CLUSTERING ALGORITHM 

7.1 Introduction 

As already pointed out, by hill climbing, the traditional HCMCA is found 

to be easily trapped in local optima and very sensitive to initial conditions. A 

way to avoid local extrema and also reduce the sensitivity to initialisation is to 

use a stochastic optimisation approach, such as GAs. The advantages of apply­

ing GAs to clustering problems has been investigated [111] - [114]. However, as 

stated in [112], a GA clustering approach takes up to two orders of magnitude 

more time than HCMCA. Considering this, a new hybrid algorithm is devel­

oped which exploits both the efficiency of HCMCA as a hill-climbing technique 

and the stochastic nature of a GA. This hybrid algorithm introduces a one-step 

local search using HCMCA into each GA generation. Thus the new algorithm is 

called genetic hard c-means clustering algorit~m (GHCMCA). Unlike previous 

genetic clustering algorithms, the population members of GHCMCA represents 

partition matrices instead of sets of cluster centres. A new genetic crossover has 

been adopted. It effectively exchanges important partition similarities between 
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a pair of partitions, creating new solutions. GHCMCA has been evaluated in 

comparison with the traditional HCMCA as well as a previous genetic clus­

tering approach - genetically guided clustering algorithm (GGA - abbreviation 

used in the original paper [112]). Four data sets were used as a benchmark 

in the experiments. Results show that the genetic approaches may provide a 

viable way to avoid the local extrema and reduce the influence of initialisation. 

Compared to GGA, GHCMCA converges to the global optimum more quickly 

and with greater probability and thus shows its superiority. 

7.2 The Algorithm 

To overcome the inevitable drawbacks of a hill-climbing technique such as 

HCMCA, the genetic algorithm (GA) may be adopted. Starting with an ini­

tial condition, a GA evolves a population towards successively better regions 

in the search space by means of genetic processes of selection, crossover and 

mutation. The given optimisation problem defines an environment that deliv­

ers quality information (fitness values) for new search points, and the selection 

process favours those population members with higher quality to reproduce 

more often than the worse members. The crossover mechanism allows for the 

mixing of parental information while passing it to the offspring, and muta­

tionintroduces innovation into the population and prevent premature loss of 

important information. 

In order to apply a genetic approach to a given problem, a number of 

fundamental issues must be addressed in advance. The rest of this section de­

scribes, in detail, each of these issues with respect to the new genetic clustering 

algorithm - GHCMCA. 
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7.2.1 Solution representation and initialisation 

Unlike previous genetic clustering algorithms [111] - [114], the population 

members under GHCMCA represent partition matrices instead of sets of cluster 

centres. In hard clustering, any object point belongs to the closest cluster 

exclusively. There is only a 1 down any column of a hard partition matrix. It 

is possible to simplify a e x n hard partition matrix U into an n-dimensional 

vector it where the ith element describes which row the 1 lies down the ith 

column of the original U. The possible values of the elements of it range from 

1 to c. GHCMCA has adopted this simplification. 

Consider that good choice for starting configurations should be free of overt 

biases. For the hard partition vectors in the initial population, each element 

is set to a randomly generated number in the range of [1, e]. By doing so, we 

actually partition the object points to c initial clusters uniformly at random. 

7.2.2 Fitness evaluation 

The goal of a clustering approach is to minimise the cost function J1 (U, V). 

While a GA is inspired by natural evolution and favours fitter population 

members. To compromise, we use the inverse of J1(U, V) function as the 

fitness function of GHCMCA. And in order to reduce the chance of GHCMCA 

becoming stuck at a degenerate partition, we have also taken the number of 

empty clusters into consideration. The final fitness function is defined as follows 

1 
fitness(U) = J1(U, V) x (1 + eje) (7.2.1) 

where c is the total number of clusters and 0 < e < c denotes the number 

of empty clusters and may be evaluated via counting the all-O rows in U. 

Cluster centres V are located using equation (5.3.1). To prevent premature 

convergence and maintain reasonable selection pressure, a typical linear fitness 

scaling mechanism [81] has been adopted such that the fitness and the con-
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sequent surviving probability of the best population member is Cmult times 

as much as those of the average population member. As suggested in [81], a 

Cmult = 1.5 is used in GHCMCA. 

7.2.3 Genetic operators 

In every generation, a GA selects parents from the current population to 

form a mating pool. Theoretically, the probability of a member being selected 

is proportional to its fitness value relative to the others' fitness values. After 

being selected, parents are mated at random to give birth to their offspring. 

For each pair of parents, offspring are generated via the operations of crossover 

and mutation. 

a. Selection. As to the selection operator, the stochastic universal sam­

pling (SUS) scheme [104] is adopted. It is a sequential sampling scheme. In 

[104], based on the theoretical and empirical analysis, Baker concluded that 

this scheme selects parents at rates with zero bias to the expected values and 

the minimal spread. 

h. Crossover. GAs emphasis the overt genetic attributes of crossover. 

Following the crossing-over during cell meiosis in the natural system, the 

crossover operator in a GA is responsible for genetic recombination. Here, 

a new crossover operator has been devised. It reassigns the worst members 

of each cluster in a parent's partition according to its mating partner's parti­

tion. The worst member of a certain cluster is the object point (among those 

belonging to t~e same cluster) that is farthest from to the centre of that cluster. 

For the ith cluster in parent I 's partition UI, the new crossover is carried 

out as follows: 

1. Identify the worst 1J% members of the ith cluster of UI; 

2. FOR each of the worst 1J% members - Xk, 
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(a) according to the mating partner's partition vector U2, find out to 

which cluster Xk belongs (suppose it belongs to the jth cluster of 

U2)j 

(b) still according to U2, randomly choose another object point from the 

jth cluster of U2 (suppose it happens to be Xl); 

(c) back to Ub check out to which cluster of UI the chosen object point 

X, belongs and then simply reassign Xk to that cluster; 

where fj% denotes the percentage of object points to be reassigned in each 

cluster. It controls how significantly the offspring will be different from their 

parents. In all our experiments with GHCMCA, fj% is fixed at 20%. While 

still holding the randomness property, this crossover operator is well guided. At 

step 2(a), the mating partner's partition U2 is referred to answer the following 

question: which object points should share the same cluster with the current 

worst member? Since there is at least one (itself) while may be more than one 

object points available, step 2(b) randomly choose one of them. Finally, at step 

2(c), the current worst member of the ith cluster of partition UI is reassigned to 

a new cluster such that it belongs to the same cluster as the randomly chosen 

object point does. For better understanding, implementation of steps 2(a) to 

2(c) are described graphically in Figure 7.1, where a certain worst member of 

cluster i is reassigned to cluster i'. The whole procedure is applied to each 

parent independently. Each implementation generates an offspring. We have 

named this new operator partial crossover (PX), since the fact that under it 

important partition information missed in a parent may be regained from its 

partner and consequently the resulting offspring contains partition information 

partially inherited from both parents. 

To see this, consider the following two partitions 
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Figure 7.1: Graphical description of the new crossover operator when it is 
applied to a certain worst member of the ith cluster of parentl' 
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where integers above the partition vectors index the object points. Both Ul 

and U2 define a viable way to partition a set of objects into two clusters, as 

shown in Figure 7.2(a), respectively. A possible pair of offspring obtained using 

PX is as follows 

1 2 k k' 

ill = [0 0 ... 0 0 0 

~= [0 0 0 0 

., 
J 

1 1 1 

0 0 1 

.. j 

1 

1 1 

n 

1] , 

1 ]. 

The corresponding partitions are depicted in Figure 7.2(b). Obviously, by 

exchanging good partition information both of these two new offspring cause 

less distortion than their parents. 

According to the example above, it seems that when reassigning an object 

Xk in partition Ul according to its mating partner U2, instead of applying steps 

PATTERN CLASSIFICATION BY MACHINE LEARNING L. Meng 



7.2 The Algorithm 115 

parent 

(a) before partial crossover 

~ -1 

~ -1 

(b) after partial crossover 

Figure 7.2: An example for demonstrating the new partial crossover. 

2(a) to 2(c), we can simply set ul(k) to the value of u2(k). However, this is 

not feasible in general. Consider the situation where UI and U2 define the same 

partitions but with different labelling of clusters. For example, suppose 

1 2 k k' ., 
J j n 

ih = [0 0 0 1 1 1 1 1 ], 

U2 = [ 1 1 1 0 0 0 0 0]. 

For a well-defined crossover operator, the common gene segments of the mating 

parents (or the identical partition of object points in the case of clustering) 
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should remain unchanged after the implementation of crossover. However, it 

is obvious that this will be violated when we simply set ul(k) to the value of 

U2 ( k) or vice versa. 

Actually, this is the problem that exists in previous genetic clustering algo­

rithms. In most previous genetic clustering algorithms, e.g. [111] - [114], each 

member in the population represents the set of cluster centres. After selection, 

the standard one-point crossover (as in [113, 114]) or two-point crossover (as in 

[112]) is applied. The building block hypothesis in the GA theory assumes that 

through the implementation of crossover, while other genes are recombined ran­

domly gene segments associated with high fitness (building blocks) are passed 

down in the population such that longer building blocks may be formed and 

finally the optimal solution may be found. In conventional GA approaches, 

the standard one-point or two-point crossover is adopted to achieve this, which 

simulates the natural crossing-over. In a nature system, a gene occupying a 

given locus on a chromosome represents a particular physical characteristic, 

so as in most practical problems for GAs to solve. However, as stated above, 

the labelling of clusters is arbitrary in clustering problems; two different gene 

strings may represent a same partition. Obviously, the standard one-point or 

two-point crossover won't be able to discover this implicit similarity between 

gene strings, neither does it satisfy the building block hypothesis in the case 

of clustering problems. To solve this problem, steps 2(b) and 2(c) in PX are 

necessary, through which the index value of a certain cluster used in a parent 

is converted into that used in another parent. 

c. Mutation. After every crossover, mutation is imposed on the newly 

constructed partition with a mutation probability Pm' Mutation sets a chosen 

element of the partition vector to a randomly generated integer ranging from 

1 to c. 
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7.2.4 Creation of a new generation 

Our genetic clustering algorithm is a steady-state GA, which replaces only 

a fraction of the population at each generation. The size of the fraction is 

controlled by a GA parameter - generation gap. The motivation of introducing 

a steady-state GA is to keep a good balance between exploitation of the best 

regions found so far and continued exploration for potentially better payoff 

area. 

However, as stated in [115], a steady-state GA will increase the variance 

along the growth curves of the population members. To reduce this variance, 

a First-In-First-Out (FIFO) deletion has been suggested in [U5]. With FIFO 

deletion, the population is simply a first-in-first-out queue with new members 

added to one end and deleted members removed from the other end. To per­

mit the use of the steady-state GA with smaller populations, FIFO has been 

employed in our GHCMCA~ 

7.2.5 One-step local search with HCMCA 

As mentioned above, the new genetic clustering algorithm combines a ge­

netic approach with the traditional HCMCA. At each GA generation, when 

the fitness evaluation takes place, a single HCMCA updating procedure is ap­

plied to each member in the population to complete a one-step local search. 

Firstly, according to the partition matrix represented by a population member 

the corresponding cluster centres are evaluated using equation (5.3.1). Then 

based on equation (5.3.2) each object is reassigned to the closest cluster centre 

and the partition represented by the given population member is updated. By 

adopting HCMCA, we have reduced the searching space of a genetic clustering 

approach significantly. 

It is well known that under HCMCA high computational complexity is 

involved in determining the closest cluster centre for each object. When the 
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objects to be clustered are defined by a large number of features then this 

becomes a serious problem. Under GHCMCA, local search by HCMCA is 

applied to each population member at each generation. This problem becomes 

more critical. In order to speed up the local search by HCMCA, the method 

presented in [116] is adopted. Instead of explicitly calculating the distance 

between an object and each candidate cluster centre and then picking the 

centre with the largest distance, this method eliminates some candidate centres 

without calculating the Euclidean distance, based on the fact that 

(7.2.2) 

where x and y are k-dimensional vectors which can be decomposed into n n­

dimensional subvectors, D2(X, iJ) is the squared Euclidean distance between 

vectors x and y, mx and my are the mean value of x and y (mx = f E;=l Xj), 

and D22(X, iJ) is the squared Euclidean distance between the :vectors consisting 

of the mean values of the subvectors of x and y. 

For a statistical analysis of the amount of mathematical operations that 

may be saved using this method, see [116]. 

7.2.6 Other components 

The parameter settings of the new algorithm GHCMCA is summarised in 

Table 7.1. The genetic approach stops after a certain number of generations. 

Table 7.2 outlines the GHCMCA. 

7.3 Experiments 

Experiments have been undertaken using four data sets: single feature data, 

Iris data, Chernoff faces data and Lenna image. The aim is to evaluate the 

performance of GHCMCA, especially the ability of the new crossover PX to 

create good solutions. 
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Table 7.1: The parameter settings of GHCMCA. 

parameter I setting I 
population size 30 

crossover rate 0.80 

mutation rate 0.001 . 

generation gap 0.6 

7]% in PX 20% 

119 

The single feature data is an artificial data set [117], in which each object 

is defined by a single feature. The second data set is the Iris data set. It 

consists of observations of four features for 150 samples from three species of 

Iris. These two data sets are useful in this study because they were also used in 

the original work of GGA [112]. Using them allow the comparison of our results 

with those reported in [112]. Chernoff faces data set [79] is another real-world 

situation in which clustering techniques have proven valuable. Chernoff faces 

are two-dimensional faces whose characteristics are geographically determined 

by eight feature variables. There are seven clusters composed by altogether 22 

faces. 

The complexity of a clustering problem increases as the number of objects 

or the number of object features grows, or conversely, as the number of the 

groups decreases. As clustering is often applied to vector quantisation and 

images are real-world domains of significant complexity, the problem of image 

quantisation is considered. In this application case, a 256 x 256 black-and-white 

image is firstly divided evenly into small blocks of 4 x 4 pixels. Then the gray 

levels of the pixels in each of these blocks compose a vector such that there are 

4096 image vectors of 16 features. The goal of this image quantisation problem 

is to cluster these 4096 image vectors into 256 classes such that the image 

may be stored using only 1/8 of the original size without much distortion. 
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Table 7.2: Program outline of GHCMCA. 

Symbols: 

p: population size; n: number of objects; c: number of clusters. 

Algorithm: 

1. Randomly initialise p n-dimensional partition vectors. Constrain the initial 

values of elements in these vectors to be within the range of [1, cl. 

2. Apply local search to each population member using equations (5.3.1) and 

(5.3.2). 

3. For each population member, calculate distortion and fitness by equations 

(5.2.4) and (7.2.1), respectively. 

4. REPEAT 

(a) Select (p, x generation gap)/2 pairs of parents using stochastic universal 

sampling scheme; 

(b) Apply PX and random mutation to each parent to generate offspring. 

(c) Use FIFO· deletion to create a new generation, replacing the 

(1£ x generation gap) oldest members with the offspring generated in step 

(b). 

(d) Apply local search to each population member using equations (5.3.1) 

and (5.3.2). 

(e) For each population member, calculate distortion and fitness by equation 

(5.2.4) and (7.2.1), respectively. 

UNTIL maximal generation number. 
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Table 7.3: Brief summary of the experimental data sets. 

data number of number of number of 

set objects clusters object features 

single feature 50 6 1 

Iris data 150 3 4 

Chernoff faces 22 7 8 

Baboon image 4096 256 16 

Lenna image 4096 256 16 

Two standard black and white images -Baboon and Lenna - are used in the 

experiments. 

Table 7.3 gives a brief summary of the five experimental data sets with 

respect to number of objects, number of clusters and number of object features. 

The proposed GHCMCA as well as the traditional HCMCA and GGA have 

been applied to each of the experimental data sets, respectively. The purpose 

of comparing with the traditional HCMCA is to show that while HCMCA 

may be easily trapped into different local optima, a genetic approach is able 

to avoid these local optima. And the purpose of comparing with GGA is to 

show that when applied to clustering problems the proposed PX is superior to 

standard one-point and two-point crossover in the sense that better solutions 

can be found more efficiently by GHCMCA. To concentrate on comparison of 

the effectiveness of different crossover operators, the GGA has been recreated 

with some differences between ours and the original one. These differences are 

highlighted as follows: 

1. While the original implementation used k-fold tournament selection with 

k = 2, this implementation used a stochastic universal sampling scheme, 

as used in the GHCMCA. 

2. While the original implementation used a conventional GA with an elitist 
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strategy of passing the two fittest population members to the next gener­

ation, this implementation used a steady-state GA with generation gap 

of 0.6 throughout. Elitism is implemented to keep the fittest member. 

3. While the original implementation used a binary gray code representa­

tion for the population members, this implementation used real value 

representation. 

Like those used throughout the experiments with the GHCMCA, the same 

parameter settings have been chosen in all the repeated GGA approaches. 

Except when better solutions can be obtained with a larger population size, 

these values offer GGA the best performance [112]. And to speed up the 

convergence, the one-step local search is also introduced into GGA. 

As for the speed-up method mentioned in section 7.2.5, it has been applied 

in the image quantisation experiments. And in the genetic approaches (includ­

ing both GGA and GHCMCA) for image quantisation, the population size was 

increased to 50. 

7.4 Results 

The mean squared error (MSE) rather than the raw value from the clus­

tering objective function J1(U, V) has been used as the performance measure 

for the image quantisation problem since it was also used in [112] for image 

quantisation. MSE is the value of the J1 averaged by the number of image 

pixels. For each data set except the images Daboon and Lenna, we report 

the raw values of J1 and the results were obtained over 500 independent trials 

using the traditional HCMCA and 100 independent trials using each genetic 

approach, respectively. For images Baboon and Lenna, results were obtained 

over 100 HCMCA trials, 40 GGA trials and 40 GHCMCA trials, respectively. 

In each independent trial with each clustering algorithm, the partition matrix 
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with the lowest cost value (J1 or MSE) was traced and the cost values of these 

partition matrices were recorded. 

The recorded J1 values for the single feature and Iris data sets are listed in 

Table 7.4, along with the times they were found by each algorithm. Same J1 

values were reported in [112] and thus confirm the validity of our simulation 

programs. According to the times that an algorithm finds the optimal solution, 

we can estimate the probability for that algorithm to find the optimal solution 

with a certain confidence level. Table 7.5 gives the confidence interval for this 

probability for each testing algorithm, respectively, with a confidence level of 

0.95. As shown in Table 7.4, most trials of HCMCA ended up with a J1 value 

higher than the optimal values (0.9348 for single feature data set and 78.941 

for Iris data set). And as shown in Table 7.5, the probability for HCMCA to 

find the optimal solution is slight while GGA and especially GHCMCA can 

find the optimal solution with a higher probability. These indicate that the 

traditional HCMCA did stop at different local extrema, while, on the other 

hand, illustrate the ability of a genetic approach to avoid them. 

From the recorded cost values, the average cost, the standard deviation 

and the lowest cost have been evaluated for each experimental data set and are 

listed in Table 7.6. 

For clustering problems with high-dimensional data space, the distribution 

of local optima is expected to be broad. Figures 7.3(1), 7.3(II) and 7.3(111) show 

the distribution of the cost values obtained by each algorithm when applied to 

Chernoff faces, image Baboon and image Lenna, respectively. 

Figures 7.4(1) and 7.4(II) show the best compressed images obtained using 

each algorithm for the images Baboon and Lenna, respectively. 

From Table 7.6 and Figures 7.3 and 7.4, the following observations are 

drawn: 

1. As indicated by the low standard deviation values in Table 7.6 and as 

PATTERN CLASSIFICATION BY MACHINE LEARNING L. Meng 



7.4 Results 124 

Table 7.4: Frequency of different partitions found by HCMCA, GGA and 
GHCMCA when applying to single feature and Iris data, respectively. 

Single Feature Iris Data 

J1 times J1 times 

HCMCA GGA GHCMCA HCMCA GGA GHCMCA 

(500 runs) (100 runs) (100 runs) (500 runs) (100 runs) (100 runs) 

0.9348 8 72 90 78.941 18 40 100 

0.9469 9 2 78.944 1 

0.9554 4 2 78.945 360 59 

1.1890 238 15 6 142.852 2 

1.3016 72 142.859 8 

1.3297 170 142.879 3 

1.3473 9 143.454 9 

1.6118 3 

Table 7.5: Probability for finding the optimal partition when applying 
HCMCA, GGA and GHCMCA to single feature and Iris data, respectively. 
The confidence intervals (lower and upper bounds) for these probabilities are 
calculated with a confidence level of 0.95 here. 

Single Feature Iris Data 

confidence interval confidence interval 

algorithm lower bound upper bound algorithm lower bound upper bound 

HCMCA 0.838 0.938 HCMCA 0.971 1.000 

GGA 0.640 0.786 GGA 0.324 0.483 

GHCMCA 3.52e-3 0.046 GHCMCA 0.014 0.075 
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Table 7.6: Comparison of results obtained by different algorithms. 

data set algorithm average standard lowest 

J1 deviation J1 found 

HCMCA 1.2554 0.0828 0.9348 

single GGA 0.9748 0.0906 0.9348 

feature GHCMCA 0.9507 0.0606 0.9348 

HCMCA 81.7680 13.1721 78.9408 

Iris GGA 78.9434 0.0021 78.9408 

data GHCMCA 78.9408 0 78.9408 

Chernoff HCMCA 15.6130 3.3369 4.6331 

faces GGA 6.2923 1.9313 4.6262 

(x106
) GHCMCA 4.7290 1.4906 4.6262 

data set algorithm average standard lowest 

MSE deviation MSE found 

HCMCA 105.9800 1.9582 101.7270 

Lenna GGA 74.6203 0.9591 72.1945 

GHCMCA 73.2502 0.7916 71.7535 

HCMCA 152.4841 1.1871 150.1970 

Baboon GGA 138.1310 0.6502 136.8030 

GHCMCA 137.4604 0.4625 136.3390 
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Figure 7.3: Distribution of the J1 values associated with the partitions found 
when applying HCMCA, GGA and GHCMCA to the Chernoff faces, Lenna 
image and Baboon image, respectively. 
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(a) original 

(b) HCMCA 

(c) GGA 

(d) GHCMCA 

Figure 7.4: Comparison of the visual quality of Baboon and Lenna images after 
quantisation: (a) original image, (b) using HCMCA, (c) using GGA, (cl) using 
GHCMCA. 
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shown in Figures 7.3(b) and 7.3(c), partitions with similar low cost values 

were repeatedly found by GGA and GHCMCA. This indicates that these 

results are indeed nearly optimal and not simply locally optimal. 

2. In Table 7.6, the standard deviations obtained by HCMCA are always 

higher than those by the genetic approaches. In Figure 7.3(a), broad dis­

tribution of results is observed with the traditional HCMCA. All of these 

expose the dependence of HCMCA on the initial conditions and mean­

while shows the viability of a genetic approach to alleviate the difficulty 

of choosing an initialisation for an HCMCA. 

3. As shown in Table 7.6, for the two image quantisation problems, the 

lowest MSE values obtained by HCMCA are much higher than the corre­

sponding value obtained by GGA or GHCMCA. Furthermore, as shown 

in Figure 7.4, the visual quality of the compressed images obtained by 

HCMCA is much worse than that by GGA or GHCMCA. This indicates 

that the results obtained by HCMCA in these two application cases are 

far from the global optimal point. 

4. On average, the final cost values obtained by GHCMCA are slightly lower 

than that obtained by GGA. In no case did GGA result in a cost value 

lower than the lowest value found by GHCMCA. Moreover, the smaller 

standard deviation of GHCMCA indicates that it may find the global 

optimal or near-optimal solutions with a higher probability. 

For stochastic approaches like the GA approaches, another important per­

formance measure is the convergence rate. This becomes more important for 

the new algorithm due to the heavy computation load brought by the clus­

tering problem. From the results obtained with each experimental data set, 

the convergence properties of GGA and GHCMCA in terms of the generation 

number are shown in Figures 7.5(a)-(e). For the first three data sets, the J1 

PATTERN CLASSIFICATION BY MACHINE LEARNING L. Meng 



7.5 Conclusions 129 

values are averaged over 100 independent trials, respectively. And for the two 

images, the MSE values are averaged over 40 independent trials, respectively. 

From Figure 7.5(a)-(e), we observe that the initial convergence rate is very 

high and as the generation progresses the convergence rate decreases rapidly. 

After a few generations, the genetic clustering approaches can find a cost value 

lower than the corresponding average value obtained by HCMCA. As the com­

plexity of the clustering problem increases, such as illustrated in Figures 7.5(d) 

and 7.5(e) for the image quantisation problems, GHCMCA shows its superi­

ority over the GGA in the sense that during the early generations GHCMCA 

converges much faster than GGA and quickly reaches the desired region where 

the global optimal partition resides. This suggests to us that in special cases 

where speed as well as performance is required, GHCMCA may provide a much 

faster way to find a convincing solution. Furthermore, as HCMCA assures lo­

cal optimality and, due to its hill-climbing nature, converges much faster than 

any genetic approach, instead of waiting for the genetic approaches to reach 

an exact optimal solution, we may stop the genetic search after a necessary 

number of generations and then use HCMCA to find a local optimum nearby. 

7.5 Conclusions 

This chapter presents a novel genetic clustering algorithm - GHCMCA. 

GHCMCA exploits both the efficiency of the calculus-based HCMCA and the 

stochastic nature of a GA. A new crossover operator has been adopted in 

GHCMCA, which was specially designed for clustering problems. The abil­

ity of a genetic approach to avoid local optima and reduce the sensitivity of 

initialisation are demonstrated in the comparative experiments. Compared to 

the previous GGA, GHCMCA may achieve better ultimate convergence with 

a higher probability. Moreover, for complex clustering problems (such as im­

age quantisation), it converges much more quickly to the global optimum and 
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Figure 7.5: Comparison of convergence properties of genetic approaches - GGA 
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therefore provides a viable way out of the dilemma where the classical HCMCA 

may be easily trapped by local extrema and a conventional genetic approach 

is time consuming. 

The next chapter presents another successful application of GAs, where 

job-shop problems is the problems to be solved. 
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Chapter 8 

APPLICATION OF GENETIC 

ALGORITHMS TO JOB-SHOP 

PROBLEMS 

8.1 Introduction 

The class of job-shop problems is the main area of machine scheduling. 

The objective of a job-shop scheduling problem (JSP) is to find a sequence 

called schedule, in which the jobs pass between the machines such that a given 

performance measure is optimized. The class of JSPs arises because of its 

strong basis in reality. A diversity of optimization problems in fields such 

as production operations in manufacturing industry, parallel and distributed 

systems, logistics and traffic controls can be summarized within the general 

class of JSPs. It is well-known that the class of JSPs is among the hardest 

combinatorial optimization problems. They are N P-complete [119] and each 

job in a given JSP demands a specific machine order. 

Apart from heuristic methods, branch-and-bound [120, 121] is probably the 

solution technique most widely used in job-shop scheduling. It is an implicit 

132 
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enumeration method, which checks every possible schedule but does not con­

sider every possibility explicitly. It eliminates many possible paths on route. 

However, the number of operations required, and hence the time required, to 

solve a JSP by branch-and-bound is unpredictable and may be too great for 

such an exhaustive search to be humanly possible. 

As the searching technique of genetic algorithms (GAs) became popular 

in the mid 1980s, many researchers started to apply this heuristic searching 

scheme to machine scheduling problems [122, 123, 124]. In the application of a 

GA, only is the fitness value of each chromosome/individual in the population 

required. Therefore, GAs are suitable for such optimization problems as JSP, 

where there is no derivative information available. However, due to the ineffec­

tive schemes used for the solution encoding and GA operations, most of them 

converge slowly and their implementations are fairly complicated. The best 

convergence results of the existing genetic scheduling algorithms [122, 123] are 

far from satisfactory while the algorithm in [124] requires a large number of 

generations (more than 5000 generations) to reach a high quality solution. The 

essential difficulty of the application of GA to JSP is due to the fact that the 

classic implementation schemes of the genetic operators - recombination and 

mutation - are not suitable for ordering problems like JSP. They may nearly 

always result in an infeasible schedule with some operations missing while oth­

ers represented twice, and the specified machine orders on the jobs violated. 

Intuitively (also as in many present genetic scheduling algorithms), extra ad­

justments - such as the Giffler and Thompson's method [125] (p. 158) used in 

[122, 124] - may be applied immediately after each recombination and mutation 

phases to ensure the feasibility of the schedules in the current GA population. 

However, the feasibility checking over all schedules at each GA generation will 

definitely cost a lot of computation time. And it should be expected that some 

good gene permutations (Le. the building blocks) will be disrupted by this 

artificial interference. 
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To tackle these problems, a new genetic scheduling algorithm (GSA) has 

been proposed. Our aim is threefold: simplicity of structure, ease of imple­

mentation and high quality of ultimate convergence. 

8.2 Problem Formulation 

An n x m JSP involves a set of n jobs .:J = {Jll J2, ... , I n } waiting to be 

processed through a set of m machines M = {M1 , M2"'" Mm}. Each job 

must pass through each machine exactly once. The processing of a job on a 

machine is called an operation. The operation of the ith job by the jth machine 

is denoted by 0ij' There are n . m operations need to complete, which compose 

the set of operations O. Each operation, 0ij EO, takes a certain length of 

time, the processing time tij , to perform. The added constraint demands that 

each job must pass through the set of machines in a particular order - the 

specified machine order. For simplicity, in our study of JSP, the demanded 

machine orders of an n x m problem are represented by an n x m matrix M, 

where the ith row specifies the machine order of job Ji ; the processing times of 

the n . m operations are represented by an m x n matrix T, where T(j, i) = tij 

for any pair of j = 1,2, ... , m and i = 1,2, ... , n. 

The general objective of a JSP is to find a sequence called schedule that is 

(a). compatible with the given machine orders, Le. a feasible schedule, and 

(b). optimal with respect to some criterion of scheduling performance. 

Makespan is the primary criterion of performance in the literature of JSP. 

M akespan, CmaJCI is the total elapsed time of a schedule. In our work on JSP, 

different schedules are evaluated by their makespans. More formally, the ob­

jective of the problem is to find a start time Sij for each Oij E 0 such that: 

(8.2.1) 
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is minimized subject to 

2. Si,mj+1 - Si,mj > ti,mj' if mj = M(i, j) and mj+1 = M(i, j + 1), 

i = 1, ... , n, j = 1, ... , m-I; 

8.3 The New Genetic Scheduling Algorithm 
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Under GA, each solution to the given problem is encoded and represented 

by a chromosome. Very often the key of GA success with practical problems 

lies in the development of a suitable combination of solution encoding and 

genetic operators. Unfortunately, the classic GA crossover and mutation can 

easily destroy the feasibility of the solutions of a constrained ordering problem 

like JSP. There are two ways to solve this problem: 

• by modifying the GA operators such that they always produce chromo­

somes to which feasible solutions correspond; or 

• by defining a new encoding/decoding scheme for solution representation 

such that all possible chromosomes are decoded to feasible solutions. 

We have chosen the first alternative and developed a new genetic scheduling 

algorithm - GSA. 

8.3.1 Solution encoding 

In machine scheduling, the process of deriving a schedule from an operation 

sequence is called timetabling. A complete schedule involves not only the 

. sequencing/ordering information but also the timetabling results, i.e. the start 
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Table 8.1: The numbers of feasible operation sequences for three JSPs 

problem size number of feasible operation sequences 

6x6 

10 x 10 

20 x 5 

2.6702 X 1024 

2.3571 X 1092 

2.4343 X 10116 

and finish times of each operation. However, considering the complexity of the 

description of a schedule, we prefer a simpler chromosome form in our GSA 

and thus encode only the sequencing information into a chromosome. The 

sequencing information of a schedule is visualized by its operation sequence. 

Clearly, an operation sequence is simply a permutation of all the operations 

involved. Thereby it is natural to encode the problem in the permutation form. 

In JSP, operations are identified by two factors: to which job it belongs and 

on which machine it should be processed. Considering this, under GSA, each 

operation Oij (i = 1, ... , n, j = 1, ... , m) of an n x m JSP is assigned with 

a distinct index number equal to (i - l)m + j. Consequently, a chromosome 

becomes a permutation of these index numbers, i.e. a permutation of the set of 

integers ranging from 1 to m· n. There are (m. n)! such permutations. Notice 

that, for an n x m JSP, there are (m!)n possible sets of machine orders; while 

once a specific JSP is defined the problem demands a particular set of machine 

orders and all feasible solutions to the problem must be compatible with it. 

Thus the total number of feasible operation sequences for an n x m JSP is 

(m ·n)! 
(m!)n . (8.3.1) 

Based on equation (8.3.1), the total numbers of feasible operation sequences 

of three JSPs are listed in Table 8.1. 

On one hand, the astronomically large numbers in Table 8.1 show the dif­

ficulty for any algorithm to locate the optimal solution. On the other hand, 

although the numbers In Table 8.1 are astronomically large, they are finite. 
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In other words, we are minimizing a function over a finite set and thus the 

existence of an optimal solution under GSA is ensured. 

8.3.2 Initialization 

In the construction of operation sequences, two things need to be taken 

in consideration: the avoidance of deadlock and the compliance with the de­

manded machine orders. In order to meet them, a procedure, which is a vari­

ation of the decoding scheme proposed in [126], has been used to construct 

chromosomes in the initial population. This procedure is carried out as fol­

lows. Firstly, compose a ready list with only those operations that do not have 

any predecessors. Then, randomly pick up an operation from the ready list 

and update the ready list. Repeat the picking and updating until no operation 

remains in the ready list. Notice that only operations having no predecessors 

would appear in the ready list and random picking is always from the ready 

list. Consequently, deadlocks are avoided and the machine order for each job 

is naturally kept. In other words, all operation sequences constructed by this 

procedure are feasible. 

8.3.3 Cost and fitness evaluation 

As stated, makespan is the cost measure in our study. We can work out the 

makespan of a feasible operation sequence by plotting a simple diagram called 

Gantt chart, such as the one in Figure 8.1. Table 8.2 lists the pseudo code for 

generating a Gantt chart. 

By examining the pseudo code in Table 8.2, it can be seen that the ear­

liest starting time of an operation on a schedule can be delayed only by the 

operations on the same machine and the preceding operations belonging to the 

same job. Hence, different operation sequences may deduce a same schedule. 

To reduce the searching space of GSA, after each makespan evaluation, an 
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Table 8.2: Algorithm of drawing Gantt chart of a given operation sequence 

Symbols: 

S(l): the lth operation of the given operation sequence S, 

Altime(j): the ready time of the jth machine, 

Jtime( i): the ready time of the ith job. 

Algorithm: 

set Mtime(j) to 0, j = 1, ... , m; 

set Jtime(i) to the release time of job Ji , i = 1, ... , n; 

set l to 1; 

REPEAT 

get the job index j and the machine index i of operation S(l) 

using equation (8.3.1); 

compute the earliest start time: start = max(Jtime(i), 

Mtime(j)) and finish time: finish = start + ti,j; 
set Jtime(i) and Mtime(j) to the earliest finish time finish; 

draw job Ji on the Gantt char following machine Mj with a 

block from time instant start to finish; 

increment l; 

UNTIL (l > m' n). 
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operation sequence will be replaced by the one corresponding to the derived 

schedule, omitting the timetabling information. The operation sequence of a 

schedule is obtained by sorting the start times of all the operations in ascending 

order. 

It has been proved that an optimal schedule providing minimal makespan 

must be active and at least semi-active [125]. A semi-active schedule ensures 

the processing of each operation starts as soon as it can be, while obeying the 

demanded machine orders. In an active schedule, the operation sequence is 

such that no operation can be started any earlier without either delaying some 

other operation or violating the machine orders. Obviously, schedules deduced 

by the algorithm in Table 8.2 will be semi-active however not necessarily ac­

tive. The reason is that by that algorithm, all operations are scheduled in the 

fixed order determined by the gradually extended operation sequence such that 

blank interval with long length may be left in the schedule. When the length 

of any blank interval becomes longer than the processing time of an operation 

processed later on the same machine, the schedule becomes only semi-active 

and therefore may have a shorter makespan. Considering the optimal schedule 

is in the set of active schedules, we would like the operation sequence repre­

sented by each chromosome to be active. This can be achieved if we check the 

blank intervals long enough to complete the next operation within it before 

appending that operation at the end of the schedule and simply fill the first 

possible blank interval, if there is any. 

Since the objective of JSP is to minimize the makespan while the GA favors 

fitter individuals, the fitness of the ith individual in the population is defined 

as 

(8.3.2) 

where Cmax(Si) is the makespan of the operation sequence represented by the 

ith chromosome in the GA population. 
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To prevent premature convergence and maintain reasonable selection pres­

sure, a typical linear fitness scaling mechanism [81] has been adopted. 

8.3.4 Genetic operations 

Selection . 

In GSA, the stochastic universal sampling scheme [104] has been used for 

proportional selection. 

Crossover 

As mentioned, for an ordering problem like JSP, crossover is the most dif­

ficult GA operator to design. Recall that, with the encoding scheme of GSA, 

each operation has a unique index number. For a complete operation sequence, 

each of these index numbers should present once only. This may lead to the 

problem that any segment of a chromosome cannot be directly replaced by 

any segment from another chromosome. Otherwise, according to the resulting 

sequence, some operations may be processed more than once while some others 

may be missing, let alone the compliance of the demanded machine orders. In 

general, this problem is the primary argument against permitting simple crosses 

of traditional GA between ordered strings. To solve this problem, three sim­

ilar crossover operators - partially matched crossover (PMX), order crossover 

(OX), and cycle crossover (eX) - have been developed independently (see [81] 

for a brief introduction of these crossover schemes). All arose in considering 

ways to tackle a blind travelling salesman problem (TSP) and succeeded in 

maintaining the completeness of solutions in a GA search for TSPs. However, 

in a TSP, only one machine (the salesman) is concerned and thereby, unlike 

in JSP, no so-called machine order is imposed. This suggests that we must 

modify these crossover operators before being able to adopt them in a G A for 

JSP. In a JSP, the order of the operations of a same job is constrained while 
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the operations of different jobs can be arranged freely. In this light, a new 

crossover operator has been devised in our previous work [127], which adopts 

the basic mechanism behind OX but works on the job basis rather than the 

gene (operation) basis as the past crossover operators do. We named the new 

crossover operator job-based order crossover (JOX). 

Instead of choosing splitting site(s) along a chromosome, JOX divides the 

n job index numbers, {I, 2, ... , n}, into two exclusive sets, the desired set S 

and the undesired set S, with each set containing at least two elements. Then 

in a manner similar to OX, JOX removes, from a parent's operation sequence, 

the operations belonging to the jobs in S and refill these vacant position with 

the same operations in the exact order they appear along the other parent's 

operation sequence. For example, we have the following machine order matrix: 

1 234 

3 1 4 2 

1 324 

324 1 

and the following pair of chromosomes have been chosen to crossover (for con­

venience, we represent an operation in the form of (job inedx)(machine index)): 

Suppose S = {JlI J3} and S = {J2, J4}. When parent1 maps to parent2, 

the operations belonging to J2 and J4 will be removed and leave holes (marked 

by an H) in the sequence: 

These holes are then filled with the same operations taken from the parent2, 

keeping the appearing order unchanged. Performing this step and completing . 
the complementary cross we obtain the offspring as follows: 
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Syswerda [128] conjectures that the order as well as the position of genes 

in the permutation of a JSP are meaningful. To be more precisely, we expect 

the absolute position to be of particular interest because it directly express 

precedence relations among operations in a schedule. Under JOX, the absolute 

positions of the operations of the desired jobs are inherited invariantly from a 

parent while the relative positions of the operations of the undesired jobs are 

inherited invariantly from the other. Moreover, as a consequence, no machine 

order will be violated by JOX and thus there is no need for time consuming 

feasibility checking and correction afterwards. 

Mutation 

In GSA, a new mutation operator has been devised specially for JSP. The 

new mutation operator randomly extracts an operation from the given opera­

tion sequence and then re-insert it to a randomly selected position between its 

preceding and following operations of the same job. 

8.3.5 Creation of a new generation 

Our genetic clustering algorithm is a steady-state CA. Like in GIICMCA, 

the First-In-First-Out (FIFa) deletion has been adopted here. 

Moreover, a newly generated sequence is inserted into the population only 

if its makespan is better than that of the one it is generated from. 

8.3.6 Hybrid with a local search 

Local search has been known as a useful tool for solving combinatorial 

problems. The basic strategy in a local search is simple and straightforward: 
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Table 8.3: The Parameter Settings of GSA 

parameter I settings I 
population size 200 

crossover rate 0.80 

mutation rate 0.001 

generation gap 0.5 
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replace a solution with the best solution in its neighborhood. It has been 

observed that local optima of JSP tend to be relatively close to each other 

and the known global optimum. This fact suggests that local search should be 

effective in finding near-optimal solutions for JSP. In this light, local search 

has been inserted in GSA. To perform a local search, the neighborhood of a 

solution needs to be defined beforehand. We inherit the definition used in the 

simulated annealing algorithm [129] and tabu search [130] for JSP and define 

the neighborhood of a solution to JSP (a schedule) as the set of solutions which 

can be obtained hy reversing a pair of adjacent operations on its critical path. 

In JSP, the critical path of a schedule is composed of the operations processed 

on the same machine as the last finished operation on that schedule. For an 

n x m JSP, there are n - 1 pairs of adjacent operations on the critical path 

of a schedule. Due to the imposition of the required machine orders, dead 

lock and thus an infeasible schedule may be caused by simply reversing a pair. 

Therefore, the size of the neighborhood of a schedule may be less than n - 1. 

8.3.7 Other components 

The parameter settings of our new algorithm GSA is summarized in Ta­

ble 8.3. The genetic approach stops after a certain number of generations. 
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8.4 Experiments and Results 

The proposed genetic schedule algorithm (GSA) has been implemented in 

C++. Experiments have been conducted on three well-known job-shop bench­

mark problems [131]: 

• MT6x6 (6 jobs, 6 machines) 

• MTlOxlO (10 jobs, 10 machines) 

• MT20x5 (20 jobs, 5 machines) 

These three problems have been used as benchmarks to test many other exist­

ing algorithms for JSP. The last two problems have been found difficult. Dy 

GSA, the optimal schedules for all these three problems have been obtained. 

The minimal makespan values are the 55, 930 and 1165, respectively. The 

optimal schedules are shown in Figures 8.1, 8.2 and 8.3, respectively. For each 

problem, more than one optimal schedule with the same minimum makespan 

have been found. Table 8.4 compares the minimum makespan of these three 

benchmark problems found by the GSA with that by some other existing algo­

rithms for JSP. The results of GSA are the same as earlier's branch-and-bound 

and better than other algorithms. Dut it is well known that the large amount 

of computation required by branch-and-bound for JSP is a notorious problem. 
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Table 8.4: Comparison of the minimum makespans of the three benchmark 
problems found by different algorithms 

Algorithm ! MT6 X6! MT10 x 10 ! MT20 X5! 

Barker 1985 [120] 55 960 1303 

(branch-and-bound) 

earlier 1989 [121] 55 930 1165 

(branch-and-bound) 

Nakano 1991 [122] 55 965 1215 

(CA) 

Croce 1995 [123] 55 946 117 

(CA) 

This paper 55 930 1165 

(GSA) 

makespan = 55 

10 20 30 
time 

40 50 

_ Jl 
_ J2 

- J3 
- J<I 
- J5 

JO 

Figure 8.1 : Cantt diagram for an optimal schedul of the b nchmark pr bl m 
MT6x6 
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F igure 8.3: Gantt diagram for an optimal schedule of the b n hmark pr bl m 

MT20x5 

8.5 Conel usion 

In this paper, a new algorithm - GSA has been pr 

specially for job-shop scheduling problems. A new coding s hin i ad pt d in 

the GSA, by which the solution space of a general job- hop pr bl m i ' trallS­

formed into a domain suitable for GA search . A imple y t highly cff tiv A 

crossover operator has been devised. It has successfully accomplished th \ rol 

of a CA crossover of combining good gene segment . Howev r, th mo t ignif­

icant achievement of the new crossover operator is that no inf asibl s h dules 

will be generated by it. Therefore, no complicat d and omputa tionalIy x­

pensive treatment is required . The activeness of the sch duI r pr nt d b 

the chromosomes in the population is ensured by the coding s h · m and the 

replacement facility introduced in fitness evaluation. Th optimal sch duI 

for all t he test problems have been found by the propos d GSA. 

Moreover, the techniques developed in GSA for JSP an be adapt d to 
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other closely related problems, such as bin packing, TSP, the scheduling of 

communication networks or project planning, in a straightforward way. 
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Chapter 9 

CONCLUSION 

The summary of the results obtained in this thesis is given below, and by 

this means its contributions are highlighted. Suggestions for future research 

are listed at the end. 

9.1 Summary of Results 

This thesis has been devoted to a discussion on supervised pattern classifi­

cation using SVMs and unsupervised pattern classification using a GA guided 

approach, respectively. 

In the first part of the thesis, the effect of parameter C on a soft-margin 

SVM has been investigated and the following conclusions have been drawn: 

• For nonseparable data sets, an infinite C would lead to an infinite solution 

where the margin is infinite small (Le. margin -+ 0). Otherwise, as the 

value of C increases, the width of the margin decrease. 

• As the value of C increase, more complex decision boundary is required 

for separating the patterns. 

• Small and large values of C may both lead to bad generalisation perfor-

mance. 
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For fast training of SVMs, two centre-based algorithms - CO and ECO 

- have been proposed and the following results have been obtained from the 

experiments: 

• A centre-based algorithm may largely reduce the training time of a SVM . 

• Besides the optimality guaranteed by the ECO, its training time scales 

almost linearly in the training set size. Therefore, ECO may be applied 

to much larger training sets, in comparison with the standard QP tech­

niques. 

In the second part of the thesis, a hybrid algorithm - GHCMCA- has been 

proposed for clustering, which combines the efficiency of the hill-climbing c­

means and the global search of genetic algorithms. Experimental results have 

shown that: 

• A genetic approach is able to overcome the inevitable drawbacks of a 

hill-climbing technique . 

• For complex clustering problems such as image quantisation problems, 

GHCMCA is superior to the previous genetic clustering algorithm GGA 

in the sense that it converges much more quickly to the desired region in 

which the global optimum resides. 

Therefore, in the cases where speed as well as performance is required, GnCMCA 

may provide a solution to the dilemma where the classical clustering algorithm 

can be easily trapped in different local extrema and the conventional genetic 

approach is time consuming. 

Finally, the application of GAs to NP-complete problems has been extended 

to JSPs, where a simple yet effective GA crossover operator has been devised. 
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9.2 Suggestions for Future Work 

Here, we address several related points that deserve further investigation. 

• Best choice of the kernel function and optimisation of trade-off parameter 

C 

A significant challenge in SVM application lies in the best choice of the 

kernel function. If an inappropriate kernel has been used, the gener­

alisation performance will suffer from overfitting (e.g. Figures 3.3 and 

3.9). Although some work has been done on limiting kernels using prior 

knowledge [132, 133], the best choice of the kernel function for a given 

problem still remains as a research issue. Once the kernel is fixed I SVM 

classifiers have only one user-chosen parameter - the trade-off parameter 

C. The effect of C on a soft-margin SVM has been investigated in this 

thesis, but a general way for determining the optimal value of C for a 

given problem is still an unsolved problem . 

• Multi-class SVM classification 

SVMs were originally studied for two-class classification. However, the 

real-world problems usually involve more than two classes. Currently, 

multi-class classification is typically solved by combining several two-class 

SVM classifiers. Some work has also been done on training a multi-class 

SVM in one step [134, 135]. As it is computationally more expensive 

to solve multi-class problems, comparisons of these methods using large­

scale problems have not been conducted, especially for methods training 

a multi-class SVM in one step where a much larger QP problem is in­

volved. Although fast training algorithms can be used to solve this com­

putational problem, the optimal design for multi-class SVM classifiers is 

still a further area for research, where the competition and interaction 

between classes should be considered. 
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• Fuzzy classification using SYMs 

SYMs were originally studied for binary classification. Each example in 

the training set is associated with a binary value indicating which one 

of the two classes that example belongs to. Also, the trained SYM will 

provide a binary value for each testing example. In other words, it is 

assumed that there is no overlap between classes. However, this is not 

true for some real-world situations. When overlap exits between classes, 

the fuzzy relationship of an example to a class is typically represented by 

a floating point value ranging from 0 to 1. The use of SYMs for fuzzy 

classification will be of great meaning. 

• A genetic approach for fuzzy clustering 

Like in hard clustering, the objective function for fuzzy clustering prob­

lems is highly nonlinear and the solution space to be searched is vnst. 

Moreover, there is no deterministic algorithm which can find the optimal 

partition for all instances of the problem. Under such circumstance, a 

genetic guided approach should be helpful. 

• Automatic detection of cluster number 

A well-known problem in the application of clustering algorithms is the 

estimation of the number of clusters in the input data set, i.e. the so­

called cluster validity problem. Most clustering algorithms require the 

number of clusters to be preselected. And the objective function opti­

mised by the classic clustering algorithms do not involve the number of 

clusters in their formulas. Whereas the search by a classic clustering 

algorithm is typically directed according to the gradient of the objec­

tive function to be optimised. Shortly, the classical clustering algorithms 

do not consider the problem of cluster validity. A genetic algorithm re­

quire no gradient information about the objective function but only a 

way to evaluate the fitness of all valid solutions. Therefore, it is possible 
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to include the number of clusters into the fitness function and thus al­

low the number of clusters to be determined automatically during a GA 

search. Hereby, the problem becomes the defining of an appropriate fit­

ness function. It is difficult since the amount of distortion (Le. the value 

of the general clustering objective function) decreases monotonically as 

the cluster number increases. Moreover, an inappropriate cluster number 

can heavily deteriorate the performance of a clustering approach and lead 

to serious clustering errors (e.g. when a cluster number larger than the 

desired one is used, a false cluster may appear in between two clusters 

causing a mixture of patterns from those two clusters and consequently 

cause false classification decisions). 

As a final conclusion, this thesis has undertaken the investigation of super­

vised pattern classification using SVMs and unsupervised pattern c1a..'isification 

using GA guided clustering. It would be helpful for the further investigation 

on pattern classification and the future development of methodologies for it. 
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Appendix A 

Notation 

Symbols and Operations 

E 

nd 

limx-+a f (x) 

arg maxx{f(x)} 

arg minx {f (x)} 

ISI 

is equivalent to 

approaches to 

for all 

belongs to 

the d-dimensional real space 

the value of f(x) in the limit as x approaches a 

the value of x that leads to the maximum value of f(x) 

the value of x that leads to the minimum value of f(x) 

number of elements in set S 
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Notation 

Vectors and Matrices 

(x· Y> inner (scalar) product of x and y, 

Le. (i· fJ) = Ei XiYi 

lal absolute value of scalar a 
IIxllp induced p-norm of vector X, 

i.e. lIillp = (IXIIP + ... + IxnIP)l/p, 1 <p < 00; 

11£'1100 = m~ Ixd· 

11 xII Euclidean norm of vector X, 

i.e. IIxll = (x· X)1/2. 

IIAllp induced p-norm of matrix A, 

IIAllp = sUPx#o",~i,~' 1 <p < 00 

D2(i, y> Euclidean distance between vectors x and fj 

k(x, Y> a kernel function defining the inner product of vectors i 

and y 
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