
UNIVERSITY of LIVERPOOL

PATTERN CLASSIFICATION
USING

ENHANCED MACHINE LEARNING

Thesis submitted in accordance with the
requirements of the University of Liverpool

for the degree of Doctor of Philosophy

in

Electrical Engineering and Electronics

by

Li MENG , B.Sc.(Eng.), M.Sc.(Eng.)

May 2002

PATTERN CLASSIFICATION

USING

ENHANCED MACHINE LEARNING

by

Li MENG

Copyright 2002

Dedicated to:

Li Fengmei, my mother

Meng Qingru, my father

Acknowledgements

I would like to thank, first of all, my supervisor Professor Q. H. Wu for his

invaluable support and intellectual guidance, both academically and personally,

during my Ph.l? research. He has made a great contribution to this thesis.

Thanks also is owed to Prof. Z. Z. Yong for many helpful discussions and

much valuable advice in the investigation of genetic guided clustering; also to

the members of the Intelligence Engineering and Automation group, especially

Mr. K. W. Lau for our valuable discussion in the investigation of fast training

for support vector machines.

I am grateful to the Department of Electrical Engineering and Electronics, the

University of Liverpool, for providing the research facilities, making it possible

for me to conduct this research. I am indebted to both the University of Liv­

erpool for the studentship (1998-2001) and the Committee of Vice-Chancellors

and Principals for the 'Overseas Research Students Awards Scheme' (1998-

2001). Thanks is also extended to British Federation of Women Graduates for

funding my third year research.

Finally, I am greatly indebted to my parents, for their patience, understanding,

encouragement, and love through the whole period of my postgraduate life.

Abstract

PATTERN CLASSIFICATION

USING

ENHANCED MACHINE LEARNING

by

Li MENG

According to the learning approach involved in the problem solving, pattern

classification problems can be divided into categories: supervised and unsuper­

vised. Unsupervised pattern classification is also referred to as clustering.

In the first part of the thesis, support vector machines (SVMs) are investi­

gated for supervised pattern classification problems. Based on recent advances

in statistical learning theory, SVMs comprise a new class of generation learning

systems and have become one of the standard techniques for pattern classifi­

cation.

To ease the separation of classes in a training set, SVMs map training

examples from the input space to the feature space defined by a kernel function.

Moreover, to overcome the problem of noise and non-separability, a parameter

C has been introduced to allow training errors. The effects of different kernel

functions and parameter C have been investigated in this thesis.

A major concern in the SVM is the issue of training, which amounts to

solving a quadratic programming (QP) problem with a dense matrix. The

present SVM training algorithms have been studied here. In addition, two

new algorithms have been proposed for fast training of SVMs. Both of them

train a SVM based on the cluster centres. In our first attempt, the set of

cluster centres corresponds to partition of the full training set. The method

used for clustering the training set is c-means. Despite its wide application,

1

it is well known that the c-means algorithm for clustering problems is fairly

sensitive to initial conditions and can be easily trapped into different local

extrema. As a result, different trained machines are obtained after different

runs. In spite of this, the largely reduced training time encouraged the usage of

a centre-based training method for the support vector machines. In our second

attempt, the set of cluster centres corresponds to partition of the errors caused

by the current machine. Results of the error-cent re-based algorithm show that

its computation time scales almost linear in the training set size and thus may

be applied to much larger training sets, in comparison with the standard QP

techniques.

The second part of the thesis is devoted to a discussion on the problem

of clustering. Clustering is concerned with the discovery of natural groups in

a population of data. It is useful for data exploration, versions of which are

likely to be met, either explicitly or implicitly, in many real-world problems.

Clustering problems are NP complete, whose solution space is huge. It is there­

fore not surprising that nearly all major "modern" techniques have been tried

for solving it: artificial neural networks, fuzzy sets, evolutionary algorithms,

simulated annealing, etc. Of course, more "classical" analytical and statistical

approaches are also being used.

This thesis presents a new method for clustering, which combines the con­

ventional hard c-means with the advanced genetic algorithm (GA) and is thus

called genetic hard c-means clustering algorithm (GHCMCA). Experiments on

GHCMCA show that a genetic approach is able to overcome the inevitable

drawbacks of a hill-climbing technique such as c-means. Vector quantisation

is an important application of c-means clustering and images are real-world

domains of significant complexity. Inspired by this, the new GHCMCA has

been tested on different image data sets, in comparison with the conventional

c-means as well as a previous genetic clustering algorithm.

The application of GA to NP-hard problems has been extended to job-shop

11

problems (JSPs), where a new genetic scheduling algorithm GSA has been

developed. A new GA crossover has been designed specially for JSPs to avoid

infeasible solutions. Experimental results demonstrate that GSA is simple yet

effective.

In this thesis, description of experiments and analysis of simulation results

have been included to support the conclusions drawn in each work.

III

Contents

List of Figures

List of Tables

1 Introduction
1.1 Pattern Recognition
1.2 Problems and Learning Approaches .. .

1.2.1 Supervised pattern classification .
1.2.2 Clustering.............

1.3 Main Results/Algorithms
1.3.1 Statistical pattern classification using support vector ma-

chines
1.3.2 c-Means clustering using a genetically guided learning

vii

xi

1
1
5
5
6
8

8

approach. 10
1.4 Outline of Thesis .. 11

2 Statistical Learning and Support Vector Machines 13
2.1 Introduction................... 13
2.2 Fundamentals of Statistical Learning Theory. . . . 14

2.2.1 VC dimension 17
2.2.2 Structure risk minimisation (SRM) 17

2.3 Maximal-Margin Optimisation: the Separable Case 19
2.3.1 SVMs with a maximal margin. 19
2.3.2 Solving the SVM optimisation problem. . . 22
2.3.3 Karush-Kuhn-Tucker (KKT) conditions. . . . 24

2.4 Soft-Margin Optimisation: the Nonseparable Case. 25
2.5 Effect of Trade-off Parameter C 27

2.5.1 An artificial data set with linear Kernel. . . 27
2.5.2 The image segmentation data set with nonlinear Kernels 30

2.6 Implementation of SRM Principle 34
2.7 A Mechanical Analogy 35
2.8 Conclusions 38

iv

3 Kernel-Induced Feature Space 39
39
40
42
43
51

3.1 Mercer's Theorem
3.2 Kernel Functions for Support Vector Machines.
3.3 Some Notes on <I> and F .
3.4 Kernel Selection .
3.5 Conclusions

4 Support Vector Machine Training and Its Implementation Al-
gorithms 52
4.1 Introduction................. 52
4.2 General Considerations 54
4.3 Present Fast Algorithms for SVM Training 55

4.3.1 Chunking 55
4.3.2 Decomposition methods 56
4.3.3 Sequential minimal optimisation (SMO) 56
4.3.4 Other algorithms 58

4.4 Centre-Based Optimisation. 59
4.4.1 Centre-based optimisation (CO) 60
4.4.2 Error-centre-based optimisation (ECO) 66
4.4.3 ECO for soft-margin SVMs 72

4.5 Conclusion................ 74

5 Unsupervised Learning and Clustering 81
5.1 Introduction 81
5.2 Hard Clustering 83
5.3 Hard c-Means Clustering Algorithm

(HCMCA) 85
5.4 Local Search - The Crucial Problem of c-Means Clustering 86
5.5 Conclusions 88

6 Fundamentals of Genetic Algorithms 89
6.1 Introduction to Evolutionary Algorithms 89
6.2 Types of Evolutionary Algorithms 90
6.3 Advantages of Evolutionary Computation. 91
6.4 Genetic Algorithms (GAs) 97

6.4.1 Types of GAs 97
6.4.2 Fitness scaling. . . 98
6.4.3 Selection schemes . 98
6.4.4 Crossover operators . · 102

6.5 Basic Theorems of GAs. . . 105
6.6 Premature Convergence fn the GA Search · 106
6.7 Conclusions · 107

v

7 A Genetic Hard c-Means Clustering Algorithm
7.1 Introduction
7.2 The Algorithm

7.2.1 Solution representation and initialisation .
7.2.2 Fitness evaluation.
7.2.3 Genetic operators
7.2.4 Creation of a new generation
7.2.5 One-step local search with HCMCA .
7.2.6 Other components

7.3 Experiments.
7.4 Results ...
7.5 Conclusions

8 Application of GAs to Job-Shop Problems
8.1 Introduction................
8.2 Problem Formulation
8.3 The New Genetic Scheduling Algorithm.

8.3.1 Solution encoding
8.3.2 Initialization
8.3.3 Cost and fitness evaluation .
8.3.4 Genetic operations
8.3.5 Creation of a new generation.
8.3.6 Hybrid with a local search
8.3.7 Other components

8.4 Experiments and Results .
8.5 Conclusion.

9 Conclusion
9.1 Summary of Results
9.2 Suggestions for Future Work .

A Notation

Bibliography

vi

109
109

· 110
· 111

111
112

. . 117

· 117
118
118
122
129

132
· 132

134
135
135
137

· 137
· 140

142
142
143
144
147

149
. . 149

· 151

154

156

List of Figures

1.1 Components of a typical pattern recognition system (cited from
[3], p. 10). Although this description stresses a one-way or
"bottom-up" flow of data, some systems employ feedback from
higher levels back down to lower levels (downward arrows). . 3

2.1 Model of the supervised learning process. 15
2.2 Illustration of VC dimension of the function class of lines. 17
2.3 Illustration of the relationships among empirical risk, confidence

interval and expected risk. .. 18
2.4 Illustration of a linear SVM with the maximal margin. Points

closest to the separating hyperplane are marked with circles. 20
2.5 Example of a linearly non-separable training set (C = 0.5). 28
2.6 Example of a linearly non-separable training set (C = 1.0). 29
2.7 Example of a linearly non-separable training set (C = 2.0). 29
2.8 Example of image segmentation data set (C = 1). . . . 31
2.9 Example of image segmentation data set (C = 10). .. 31
2.10 Example of image segmentation data set (C = 100). . . 32
2.11 Example of image segmentation data set (C = 1000). . 32
2.12 Example of image segmentation data set (C = 00). .. 33
2.13 Illustration of a gap tolerant classifier on data in 1?..2. • 34
2.14 Comparison of decision boundaries obtained on a linearly non-

separable training set for different values of C. . . 37

3.1 Iris data set with two attributes.. 45
3.2 Separating Setosa with a linear SVM (C = 00). 46
3.3 Separating Setosa with a polynomial SVM (degree 2, C = 00). 47
3.4 Separating Virginica with a polynomial SVM (degree 2, C = 00). 47
3.5 Separating Virginica with a polynomial SVM (degree 5, C = 00). 48
3.6 Separating Virginica with a Gaussian radial basis function SVM

(0' = 2.0, C = 00). 48
3.7 Separating Virginica with a Gaussian radial basis function SVM

(0' = 1.5, C = 00). 49

Vll

3.8 Separating Virginica with a Gaussian radial basis function SVM
(0" = 1.0, C = 00). 49

3.9 Separating Virginica with a Gaussian radial basis function SVM
(0" = 0.6, C = 00). 50

3.10 Separating Virginica with a linear spline SVM (C = 00). 50

4.1 Three alternative algorithms for training SVMs: Chunking, Os-
una's Decomposition and SMO. For each algorithm, three iter­
ations are illustrated. (Cited from paper [58].) 57

4.2 The decision boundaries found with a Gaussian SVM for two­
feature Iris data set using (a) the standard technique and (b) the
CO algorithm, respectively. Positive examples and negative ex­
amples are marked with 'x's and '+'s, respectively. Support
vectors are marked with dark circles. The solid line denotes the
decision boundary. The area between the dotted lines shows the
margin. In Figure (b), different clusters are indicated by differ­
ent colours. Each cluster center in the working set is marked
with a dot with the same colour used for the members of that
cluster. .. 62

4.3 A possible decision boundary found with a Gaussian SVM for
two-feature Iris data set using the CO algorithm. Same markers
as in Figure 4.2(b) are used. Moreover, examples in the cluster
containing the lost support vector are indicated with an extra
square. .. 63

4.4 The log-log plot of solving time versus the size of a QP problem. 65
4.5 The log-log plot of training time versus the size of full training

set for the CO algorithm and the standard technique on image
segmentation data set. .. 65

4.6 The decision boundaries found with a Gaussian SVM using the
ECO algorithm for two-feature Iris data set. Same markers as
in Figure 4.2(b) are used.. .. 69

4.7 The decision boundaries found with a Gaussian SVM using the
ECO algorithm for two-feature image segmentation data set.
Same markers as in Figure 4.2{b) are used. 69

4.8 The decision boundaries found with a Gaussian SVM using the
ECD algorithm for different subsets of two-feature image seg­
mentation data set. Same markers as in Figure 4.2{b) are used. 70

4.9 The log-log plot of training time versus the size of full training
set for the ECD algorithm on image segmentation data set. . .. 71

4.10 The decision boundary found with a Gaussian SVM using the
ECD algorithm for C = 1000. Same markers as in Figure 4.2(b)
are used. And the training error points are marked with an extra
magenta square. .. 75

viii

4.11 The decision boundary found with a Gaussian SVM using the
ECO algorithm for C = 100. Same markers as in Figure 4.10·
are used , 75

4.12 The decision boundary found with a Gaussian SVM using the
ECO algorithm for C = 10. Same markers as in Figure 4.10 are
used. .. 76

4.13 The decision boundary found with a Gaussian SVM using the
ECO algorithm for C = 1. Same markers as in Figure 4.10 are
used. .. 76

4.14 The decision boundaries found with a Gaussian SVM using the
ECO algorithm for different subsets of two-feature image seg­
mentation data set when C = 100. Same markers as in Figure
4.10 are used. .. 77

4.15 The decision boundaries found with a Gaussian SVM using stan-
dard technique for different subsets of two-feature image seg­
mentation data set when C = 100. The positive and negative
examples are marked with 'x's and '+'s, respectively. And the
training error points are marked with an extra magenta square. 78

4.16 The log-log plot of training time versus the size of full training
set for the ECO algorithm on image segmentation data set. . .. 79

5.1 Distribution of the J1 values associated with the partitions found
when classifying Chernoff faces using HCMCA (see section 7.3
for a description of the experiment) , 87

6.1 The main flow chart of the vast majority of evolutionary algo-
rithms. .. 92

7.1 Graphical description of the new crossover operator when it is
applied to a certain worst member of the ith cluster of parentl' 114

7.2 An example for demonstrating the new partial crossover. 115
7.3 Distribution of the J1 values associated with the partitions found

when applying HCMCA, GGA and GHCMCA to the Chernoff
faces, Lenna image and Baboon image, respectively 126

7.4 Comparison of the visual quality of Baboon and Lenna images
after quantisation: (a) original image, (b) using HCMCA, (c)
using GGA, (d) using GHCMCA 127

7.5 Comparison of convergence properties of genetic approaches -
GGA and GHCMCA 130

8.1 Gantt diagram for an optimal schedule of the benchmark prob-
lem MT6x6 145

8.2 Gantt diagram for an optimal schedule of the benchmark prob-
lem MTlOxlO 146

ix

8.3 Gantt diagram for an optimal schedule of the benchmark prob-
lem MT20x5 147

x

List of Tables

2.1 Example of a linearly non-separable training set. Results are
obtained with different values of trade-off parameter C. 30

2.2 Example of image segmentation data set. Results are obtained
with different values of trade-off parameter C. SVs stands for
support vectors. .. 33

2.3 Comparison of SVM results obtained on a linearly nonseparable
set for different values of C. 37

3.1 Summary of statistics of iris data set 44
3.2 Results when separating Virginica with different kernels. SVs

stands for support vectors. .. 51

4.1 Implementation steps of the centre-based optimisation (CO) al-
gorithm. .. 60

4.2 Comparison of the standard QP technique and the CO algorithm
for a Gaussian SVM on image segmentation subsets.. 64

4.3 Implementation steps of the error-center-based optimization (ECO)
algorithm. .. 68

4.4 Performance of the ECO algorithm with a Gaussian SVM on
image segmentation data set. 70

4.5 Performance of the ECO algorithm with a Gaussian SVM on im-
age segmentation data set for different values of C. SVs stands
for support vectors. .. 79

4.6 Performance of the ECO algorithm 'with a Gaussian SVM on
different image segmentation subsets when C = 100. SVs stands
for support vectors. .. 80

4.7 Performance of the standard QP technique with a Gaussian
SVM on different image segmentation subsets when C = 100.
SV s stands for support vectors. 80

6.1 Implementation steps of simple genetic algorithms. .. 96
6.2 Comparison of Sampling Methods (cited from [104]). 101

Xl

7.1 The parameter settings of GHCMCA. 119 '
7.2 Program outline of GHCMCA.. 120
7.3 Brief summary of the experimental data sets. . 121
7.4 Frequency of different partitions found by HCMCA, GGA and

GHCMCA when applying to single feature and Iris data, respec-
tively. 124

7.5 Probability for finding the optimal partition when applying HCMCA,
GGA and GHCMCA to single feature and Iris data, respec­
tively. The confidence intervals (lower and upper bounds) for
these probabilities are calculated with a confidence level of 0.95
here. 124

7.6 Comparison of results obtained by different algorithms 125

8.1 The numbers of feasible operation sequences for three JSPs ... 136
8.2 Algorithm of drawing Gantt chart of a given operation sequence 138
8.3 The Parameter Settings of GSA 143
8.4 Comparison of the minimum makespans of the three benchmark

problems found by different algorithms 145

xii

Chapter 1

INTRODUCTION

1.1 Pattern Recognition

The ease with which we recognise a face, understand spoken words, read

handwritten characters, identify our car keys in our pocket by feel, and decide

whether an apple is ripe by its smell, belies the astoundingly complex processes

that underlie these acts of pattern recognition. Pattern recognition - the act of

taking in raw data and taking an action based on the category of the pattern -

has been crucial for our survival, and over the past tens of millions of years we

have evolved highly sophisticated neural and cognitive systems for such tasks.

It is natural that we should seek to design and build intelligent machines

that can recognise patterns. From automated speech recognition, fingerprint

identification, optical character recognition, DNA sequenc~ identification, and

much more, it is clear that reliable, accurate pattern recognition by machine

would be immensely useful. There are a very large number of reviews and

books that are devoted to pattern recognition by intelligent machines [1, 2].

The utility of classes and categories is obvious: any object that has been

recognised as a member of a certain category inherits the general properties

of that category. For example, being told that a horse is a mammal, we im-

1

1.1 Pattern Recognition 2

mediately know whether the animal lays eggs, whether it can fly, or whether

its skin is covered with fur or feathers. On the other hand, categories in the

data of a particular area contain knowledge about that area and recognition of

them will thus lead to discoveries of associations and cause-effect relationships.

The associations between different categories and their causes are in turn the

bricks from which the wall of scientific knowledge is built.

Typical pattern recognition system by an example

To illustrate the types of problems involved in pattern recognition, let us

consider the following imaginary example. Suppose that a fruit packing plant

wants to automate the process of sorting incoming fruit on a conveyor belt

according to types. As a pilot project it is decided to try to separate oranges

from apples using optical sensing. We set up a camera, take some sample

images, and begin to note some physical differences between the two types of

fruit - peel colour, peel texture, shape, lightness, and so on - and these suggest

features to explore for use in our classifier. We also notice noise or variations in

the images - variations in lighting, positi~n of the fruit oJ? the conveyor, even

the static noise due to the electronics of the camera itself. Given that there

truly are differences between the population of oranges and that of apples, we

view them as having different models - different descriptions. Usually, we would

like to represent these models in a mathematical form. The goal and approach

in pattern regression is to hypothesise the class of these models, process the

sensed data to eliminate noise (not due to the models), and for any sensed

pattern choose the model that corresponds best.

A typical pattern recognition system for performing this specific task might

have the form shown in Figure 1.1. First, the camera (sensor) captures an image

of the fruit. Next, the camera's signals are preprocessed to simplify subsequent

operations without losing relevant information. In particular, we might use a

PATTERN CLASSIFICATION BY MACHINE LEARNING L. Meng

1.1 Pattern Recognition

decision on actions

input

adjustments for
missing features

3

Figure 1.1: Components of a typical pattern recognition system (cited from
[3], p. 10). Although this description stresses a one-way or "bottom-up" flow
of data, some systems employ feedback from higher levels back down to lower
levels (downward arrows).

segmentation operation in which the images of different fruit are somehow

isolated from one another and from the background. The information from

a single fruit is then sent to a feature extractor, whose purpose is to reduce

the data by measuring certain features. These features (or, more precisely,

the values of these features) are then passed to a classifier that evaluates the

evidence presented and makes a final judgement as to the types. A classifier

rarely exists on its own. Instead, it is generally to be used to recommend

actions (e.g. put this fruit in this bucket, put that fruit in that bucket), each

action having an associated cost. The post-processor uses the output of the

classifier to decide on the recommended action.

The performance of a classifier is heavily dependent on the choice of the

features that are used for describing the objects. Considering this, the next

subsection briefly addresses how the feature extractor should be designed. After

that, the main concern of this thesis - the design of the classifier component -

PATTERN CLASSIFICATION BY MACHINE LEARNING L. Meng

1.1 Pattern Recognition 4

is discussed.

Feature extraction

In pattern recognition, objects are characterised by values of some predefined

set of attributes, such as shape and colour. Boolean, numeric, symbolic, or

mixed-valued attributes can be considered, and the scope of their values is

often constrained by background knowledge. A feature is either an attribute

or a function of one or more attributes .. Ideally, the set of features used in a

classification decision should be statistically independent, Le. none of the fea­

tures can be determined by a function of other features in the set, or estimated

from them because of correlations. For instance, if the peel texture of all fruit

correlated perfectly with peel colour, then even when we include peel texture

as a feature in addition to peel colour classification performance need not be

improved. Besides, an ideal feature extractor should yield a representation in

which the true (but unknown) model of the patterns can be expressed. Meth­

ods generally used for feature extraction are Principal Component Analysis

(PCA) [4, 5] and Independent Component Analysis [6].

Classification

The task of the classifier component proper of a full system is to use the

data provided by the feature extractor to assign the object to a category. The

degree of difficulty of the classification problem depends on the variability in the

feature values for objects in the same category relative to the difference between

the feature values for objects in different categories. The variability of feature

values for objects in the same category may be due to the variation within that

category, and may be due to noise. We define noise in very general terms: any

property of the sensed pattern which is not due to the true underlying model

but instead to randomness in the world or the sensors. All nontrivial decision

and pattern recognition problems involve noise in some form.

There are two modes that a classifier executes on the feature vector of an

PATTERN CLASSIFICATION BY MACHINE LEARNING L. Meng

1.2 Problems and Learning Approaches 5

object, corresponding to the two processes - learning and reasoning - of an

intelligent system. One is the operational mode where the classifier maps each

input feature vector onto an output vector that represents the class decision.

This decisionmaking is often referred to as recognition. Before a system can

do this, however, it must have first learned the categories of feature vectors

through a process that partitions the set of feature vectors. This is the process

of classification, which involves training or machine learning. Most of this

thesis is concerned with the training of a classifier.

1.2 Problems and Learning Approaches

According to the learning approach involved in the problem solving, pat­

tern classification problems can be divided into two categories: supervised and

unsupervised. Unsupervised pattern classification is also referred to as clus­

tering. The rest of this section addresses the problems of supervised pattern

classification and clustering, respectively.

1.2.1 Supervised pattern classification

Learning becomes supervised when a pre-partitioned training set is avail­

able. For supervised pattern classification, a teacher provides a category label

or cost for each pattern in a training set, and seeks to reduce the sum of the

costs for these patterns. The category label can be either nominal- or numeric­

valued .

. A major concern in supervised learning is the issue of generalisation. If

the model proposed is too simple, the resulting classifier may perform badly

even on the training patterns. If our model is extremely complicated, the

classifier may have a decision boundary more complex than the one obtained

using a simple model and all the training patterns will be separated perfectly.

PATTERN CLASSIFICATION BY MACHINE LEARNING L. Meng

1.2 Problems and Learning Approaches 6

With such a solution, though, our satisfaction would be premature because

the central aim of designing a classifier is to suggest actions when presented

with novel patterns (that is, examples not yet seen). This is the need for "good

generalisation. It is unlikely that a extremely complex decision boundary would

provide good generalisation - it seems to be tuned to the particular training

examples, rather than some underlying characteristics or true model of all the

individuals in each class that will have to be separated. But if designing a

very complex classifier is unlikely to give a good generalisation, precisely how

should we quantify and favour simpler classifiers and how our system would

automatically detect noisy examples and determine that a decision boundary

can generalise better than the simpler and more complicated ones? Assuming

that we somehow manage to optimise this tradeoff, can we then predict how

well our system will generalise to new patterns?

The above discussion outlines some of the key problems encountered in sta­

tistical pattern classification. In the book on statistical learning theory [7], a

upper bound on the error in generalisation is presented. And based on it, the

principle of structure risk minimisation (SRM) is established. Implementing

this principle, support vector machines (SVMs) have become one of the stan­

dard techniques for pattern classification [8] - [14] and nonlinear regression [15]

- [17]. The use of SVMs in pattern classification has been investigated in this

thesis.

1.2.2 Clustering

The aim of clustering is to group individuals in a population such that, in

some sense, the individuals within a group are close or similar to one another,

but dissimilar from the individuals in other groups. Clustering is a form of

unsupervised learning, where no explicit teacher is available and the system

forms clusters or natural groupings of the input examples. "Natural" is always

PATTERN CLASSIFICATION BY MACHINE LEARNING L. Meng

1.2 Problems and Learning Approaches 7

defined explicitly or implicitly in the clustering system itself. Given a particular

set of examples and objective function, different clustering algorithms lead to

different partitions.

Clustering problem has been proven to be NP-complete and thus hard to

be solved by general techniques as the number of input examples is increased.

The space of all possible partitions of n examples, which is the search space

to be scanned by the learning methods, is huge. For example, for a set of 50

examples, the order of magnitude is 1047
; and 100 examples can be partitioned

into 5 classes in approximately 1068 different ways. In addition, most of the

objective function involved in clustering problems are highly nonlinear and

possess a number of local extrema. When the natural clusters are not "obvious"

among the input examples, the problem becomes more difficult as both the

nonlinearity of the objective function and the number of local extrema would

increase dramatically.

When the clusters to be formed are required not to overlap with each

other, the problem becomes a hard clustering problem. Hard c-means clus­

tering algorithm (HCMCA) is a popular method for such problems. It is a

sum-of-squares method, which partitions the examples into c clusters so that

a defined within-group sum-of-squares is minimised. Starting from c initial

cluster centres, HCMCA alternatively assigns each example in the training set

to its closest centre and then updates the c centres according to the current

partition. HCMCA is efficient since it is essentially a hill-climbing approach,

guiding the search in the direction that the value of the cost function decreases

most rapidly. However, it does have weaknesses:

• The way to initialise the searching is not specified by the algorithm. One

popular way to start is to randomly choose c of the examples .

• The results produced depend on the initial values of the centres, and it

frequently happens that suboptimal partitions are found. The standard

PATTERN CLASSIFICATION BY MACHINE LEARNING L. Meng

1.3 Main Results/Algorithms 8

solution is to try a number of different starting points. However, it is

obvious that the optimal partition can not be guaranteed no matter how

many starting points would be tried.

• It can happen that the set of examples closest to a cluster centre is

empty and consequently that the centre cannot be updated [18]. This is

an annoyance that must be handled in an implementation.

The problem of how to conquer these weaknesses has become another main

focuses of this thesis, besides the use of SVMs for supervised pattern classifi­

cation.

1.3 Main Results/Algorithms

1.3.1 Statistical pattern classification using support vec­

tor machines

To ease the separation of the classes in a training set, SVMs map the train­

ing set from the input space to the feature space defined by a kernel function.

Different kernel functions implement different mappings, which will in turn

determine the separability of the mapped classes in the feature space. For

different data sets, the highest separability in the feature space is achieved by

different kernel functions. How to choose the best kernel function for a partic­

ular data set still remains an open question. In this thesis, the commonly used

kernel functions are introduced and their effects are investigated empirically by

comparing the decision boundaries that are obtained when applying different

kernels to a same benchmark data set.

To solve the problem of noise and the non-separability caused by noisy ex­

amples, a parameter C has been introduced in SVMs to allow training errors.

The effects of different values of parameter C have been investigated, again em-

PATTERN CLASSIFICATION BY MACHINE LEARNING L. Meng

1.3 Main Results/Algorithms 9

pirically, by comparing the resulting decision boundaries on a same benchmark

problem.

Training a SVM amounts to solving a quadratic programming (QP) prob­

lem. The standard QP techniques require a memory space growing quadrati­

cally with the problem size and take a training time that grows exponentially

with the problem size. To tackle this problem, two centre-based algorithms

have been proposed for a fast training of SVMs. Under these new algorithms,

examples in a given training set are partitioned into clusters and the SVM is

trained on the centres of these clusters. The partition of training examples

is updated repeatedly for producing a better decision boundary. Under our

first attempted algorithm - Centre-based optimisation (CO) [19], the partition

is updated by splitting each current cluster into two new clusters. This is

achieved by the classic HCMCA. And as a result, for a same training set differ­

ent partitions and hence different decision boundaries might be obtained after

independent runs of the algorithm. Despite this, the largely reduced training

time encouraged the usage of a centre-based training method for the SVMs. To

avoid the uncertainty of the results, a method rather than HCMCA is required

for the construction of new clusters. In the training of a classifier, errors are

those examples that are classified, according to the current decision boundary,

to a class rather than the taught one. In our second attempt, errors in each

of the current clusters compose a new cluster. By such means, the consistency

of the obtained results is achieved. The procedure of updating the partition of

the training examples, training the SVM on the set of cluster centres, and iden­

tifying errors caused by the current decision boundary iterates until no error

example is found. Since only are the centres of error clusters involved in the

training, this new algorithm is called error-centre-based optimisation (ECO)

[20] - [22]. Under ECO, error examples are identified using the Karush-Kuhn­

Tucker (KKT) conditions. The KKT conditions are the necessary and sufficient

conditions for the optimal solution of a QP problem. Therefore, the optimality

PATTERN CLASSIFICATION BY MACHINE LEARNING L. Meng

1.3 Main Results/Algorithms 10

. of solutions produced by ECO is guaranteed. The great potential of ECO for

large training sets has been demonstrated by the experimental results. While

the optimal solution is guaranteed by ECO, the size of QP problems involved

in the training is largely reduced and the training time grows almost linearly

with the size of the training set. The experiment results obtained using ECO

are presented and analysed in this thesis. So are the results obtained using

CO.

1.3.2 c-Means clustering using a genetically guided learn-·

ing approach

As already mentioned in section 1.2.2, by hill-climbing, HCMCA is found

to be easily trapped into different local minima and fairly sensitive to the

initial conditions. When the models are fairly simple and of low dimension,

the standard c-means approach can still perform well. However, it becomes

increasingly unsatisfactory as the models become more complicated. The more

complicated the model, the less the prior knowledge, and the less the training

data, the more we must rely on sophisticated search methods for constructing

an acceptable model.

Genetic algorithms (GAs) comprise a general class of such methods. The

class of GAs is based on the concepts stemming from biology, specially the prin­

ciples of natural evolution. A primary advantage of GAs is that they conduct

a global search and thus can effectively overcome the inevitable drawbacks of a

local search algorithm, such as HCMCA. Inspired by this, a genetically guided

approach - genetic hard c-means clustering algorithm (GHCMCA) - has been

proposed specially for hard clustering problems [23] - [25]. GHCMCA adopts

the basic scheme of a genetic algorithm (GA) and performs a genetically guided

search in order to optimise the objective function of a hard clustering problem.

Unlike previous clustering algorithms with GAs, population members under

PATTERN CLASSIFICATION BY MACHINE LEARNING L. Meng

1.4 Outline of Thesis 11

GHCMCA represent partition matrices instead of sets of cluster centres. A new

genetic crossover operator has been introduced which effectively recombines im­

portant partition similarities between pairs of parents creating new solutions.

GHCMCA has been evaluated and compared against the traditional clustering

algorithm HCMCA and a previous genetic clustering algorithm which adopts

the standard two-point crossover. Results from the comparative study show

that a genetic approach is able to overcome the inevitable drawbacks of a

hill-climbing technique. In experiments with image data sets, the proposed

algorithm is superior to the previous genetic clustering algorithm in the sense

that it converges much more quickly to the desired region in which the global

optimum resides. Therefore in the cases where speed as well as performance

is required, GHCMCA provides a solution to the dilemma where the classical

HCMCA can be easily trapped in different local extrema and the conventional

genetic approach is time consuming.

In this thesis, the application of GAs has been extended to another NP-
,

complete problem - the jolrshop problem. A new genetic scheduling algorithm

GSA has been proposed. GSA employs a new solution representation scheme

and a new crossover operator, both have been devised specially for the jolrshop

problems to avoid infeasible solutions. The power of GSA has been demon­

strated by the experimental results. For each testing problem, GSA has found

the optimal solution.

1.4 Outline of Thesis

This thesis is organised as follows.

We begin in Chapter 2 (Statistical Learning and Support Vector Machines)

with an introduction to the structure risk minimisation principle in statistical

learning theory. Then the statistical learning method - support vector ma­

chines (SVMs) is introduced. Both maximal-margin and soft-margin SVMs

PATTERN CLASSIFICATION BY MACHINE LEARNING L. Meng

1.4 Outline of Thesis 12

are addressed. The effect of parameter C in a soft-margin SVM has been in­

vestigated. When the classes of points cannot be separated by a hyperplane,

SVMs first map the points into a high-dimensional feature space defined by a

kernel function. In Chapter 3 (Kernel-Induced Feature Space) the theorem for

testing the validity of a kernel function and different types of kernel-induced

feature spaces are discussed. Chapter 4 (Support Vector Machine Training and

Its Implementation Algorithms) considers the issue of SVM training. Different

training algorithms are presented, including the two new centre-based methods

proposed by the author.

Then from Chapter 5 (Unsupervised Learning and Clustering) we move to

the investigation of unsupervised pattern classification. We begin the chapter

by formulating the problem of clustering and the unsupervised learning method

HCMCA for solving it. Chapter 5 also demonstrates the inevitable drawbacks

of c-means due to its hill-climbing nature and brings up the idea of using a

genetic approach to overcomes these drawbacks. In Chapter 6 (Fundamentals

of Genetic Algorithms) the genetic algorithms (GAs) as well as the relevant

algorithms in the area of evolutionary computation are addressed. Alternative

schemes of the G A operators are discussed and the basic theorems in the G A

literature are described. In Chapter 7 (A Genetic Hard c-Means Clustering

Algorithm) the new algorithm combining the traditional c-means and the ad­

vanced GA is presented. Comparative experiments are included to show the

robustness of this hybrid algorithm. Chapter 8 (Application of GA to Job-Shop

Problems) presents the new genetic scheduling algorithm GSA. Its power has

been demonstrated by the experimental results.

This thesis is concluded in Chapter 9 (Conclusion) by giving a summary of

the results obtained and also several suggestions for future work.

PATTERN CLASSIFICATION BY MACHINE LEARNING L. Meng

Chapter 2

STATISTICAL LEARNING

AND SUPPORT VECTOR

MACHINES

2 .1 Introduction

Support vector machines (SVMs) based on recent advances in statistical

learning theory [7, 26], compose a specific class of learning systems. SVMs

were invented by Boser, Guyon and Vapnik. It were first introduced at the

conference of Computational Learning Theory (COLT) 1992 with the paper

[27]. To overcome the problem of noise and non-separability, the soft-margin

version [8] was later introduced. SVMs were developed originally for solving

the classification problems. While in 1997 the algorithm was extended for

solving regression problems [28]. SVMs have now become one of the standard

techniques for pattern classification and nonlinear regression. This chapter in­

troduces SVMs in the setting of pattern classification. Many of the ideas may

carry directly over to the case of regression estimation. Successful applica­

tions of SVM classifiers have been reported for various fields including isolated

13

2.2 Fundamentals of Statistical Learning Theory 14

handwritten digit recognition [8] - [11], text categorisation [12] - [14], speaker

identification [29], gene expression profile analysis [30, 31]' DNA and protein

analysis [32] - [33], and many more. Many of these recent advances are reported

in the collection [34]. Most of the new contributions are only available online

and can be recently accessed via the website [35].

Each SVM can be used to solve a particular two-class classification problem.

While the classification problem can be restricted to consideration of two-class

problems without loss of generality. To get a k-class classifier (k > 2), we can

just construct k two-class classifiers, each separating a certain class from the

others, and combine them by doing the k-class classification according to the

maximal output among the two-class classifiers. In a two-class classification

problem, one possible formulation of the task is to separate the two classes

by a function which is induced from some available examples. The goal is to

produce a classifier that will work well on unseen examples, i.e. it generalises

well. To achieve this, a SVM provides a decision boundary that separates a

set of positive examples from a set of negative examples with the maximum

margin. Although intuitively simple, this idea of maximum margin actually

exploits the structural risk minimisation (SRM) principle in statistical learning

theory. Thus the learned machine will not only have a minimal empirical risk

but also good generalisation performance.

Before describing different types of SVMs, the next section is devoted to a

brief introduction to some basic concepts in the theory of statistical learning.

2.2 Fundamentals of Statistical Learning The-

ory

Figure 2.1 shows a model of supervised learning process. The model consists

of three interrelated components:

PATTERN CLASSIFICATION BY MACHINE LEARNING L. Meng

2.2 Fundamentals of Statistical Learning Theory 15

Environment:
probability x Supervisor

..... 1 1 ,
distribution

y

Pj(x)

Learning ./
"-..... Machine:- ..-

aen

Figure 2.1: Model of the supervised learning process.

1. Environment. In our work, it is assumed that the environment is station­

ary, supplying the vectors (x EX, yE Y) independently and identically

distributed (LLd.) according to a fixed but unknown probability distri­

bution Pg y{x, y) .
•

2. Supervisor. The supervisor or teacher provides a target response y for

every input vector x received from the environment. The target function

which transforms the vectors x into values y, is unknown, but exists and

does not change.

3. Learning machine. The learning machine (e.g. a classifier) is capable of

implementing a class of input-output mapping functions described by

y=J(x,5)

where y is the actual response produced by' the learning machine in re­

sponse to an input x, and a. is a set of free parameters. A particular

choice of a. generates a "trained machine" .

During the learning process, the learning machine observes a set of 1 pairs

- the training set

PATTERN CLASSIFICATION BY MACHINE LEARNING L. Meng

2.2 Fundamentals of Statistical Learning Theory 16

Each pair contains an input vector x and the target response y. After train­

ing, the machine must give, on any x generated by the environment according

to the same probability distribution, a value fJ. The best function f of a learn­

ing machine that one can obtain is the one minimising the expected error (or

risk)

R (J(a)) - f_ ~IY - fJl dPg,y(x, y)
Jx,y

- 1- ~IY - I(x, a)1 dPg,y(x, y)
X,y

(2.2.1)

R (J(a)) defines the frequency of errors made by a trained machine when it

is tested with examples not seen before. R (J(a)) is also called the actual

risk to emphasise that it is the quantity that we are ultimately interested

in. Unfortunately, the risk cannot be minimised directly since the underlying

probability distribution Pg y(x, y) is unknown. An approximation is therefore ,

required.

According to the statistical learning theory [7, 26, 36], the following bound

holds with probability 1 - e (0 < e < 1)

R (J(a)) < Remp (J(a)) + h(log(2l/h) + 1) -log(e/4)
I

(2.2.2)

where h is a non-negative integer called the Vapnik Chervonenkis (VC) dimen­

sion, and Remp (f (a)) is the empirical risk defined as

I

Remp (J(a)) = ;l L IYi - f(xi,a)l,
i=l

(2.2.3)

Le. the measured mean error rate made by the learning machine on the training

set.

The difference between the expected risk and the empirical risk is bounded

by the second term on the right hand side of inequality (2.2.2) which is called

confidence interval. As the training set size I -+ 00, the empirical risk will

converge toward the expected risk. The quantity ~IYi- I(Xi' a)1 in the definition

PATTERN CLASSIFICATION BY MACHINE LEARNING L. Meng

2.2 Fundamentals of Statistical Learning Theory 17

•

•

Figure 2.2: Illustration of VC dimension of the function class of lines.

of empirical risk is called the loss. To have equation (2.2.2) tenable, the loss

at each example must be either 0 or 1, such as in the problem of two-class

classification where Yi E { -1, 1}.

2.2.1 VC dimension

VC dimension is a scalar value that measures the capacity/complexity of a

function class F.

If a given set of 1 points can be labelled in all 2' ways, and for each labelling,

a function f in class F can be found which correctly assigns those labels, then

that set of points is said to be shattered by function class F. The VC dimension

for a function class F is defined as the maximum number of points that can be

shattered by it. The VC dimension of the class of oriented hyperplanes in Rn

is n + 1. Figure 2.2 illustrates how three points on a plane can be shattered by

the class of straight lines whereas four points cannot.

2.2.2 Structure risk minimisation (SRM)

As revealed by equation (2.2.2), for a given learning task, with a given finite

amount of training data, the best generalisation performance will be achieved

if right balance is reached between the empirical risk (Le. accuracy attained

PATTERN CLASSIFICATION BY MACHINE LEARNING L. Meng

2.2 Fundamentals of Statistical Learning Theory 18

\ .,/
'\ , .f

\ !
\ f
\\, ,f

, I
, I
\, '

\ .•.•. //
""'" ' , ,

........ .".""

Confidence Interval _._~::><:::~____ Empirical Risk
._._._._.-._.-.-.-- -.............. _-------

small Complexity of Function Class large

Figure 2.3: Illustration of the relationships among empirical risk, confidence
interval and expected risk.

on that particular training set) and the capacity of machine (Le. the ability of

machine to learn any training set without error). A machine with too much

capacity is like a botanist with a photographic memory who, when presented

with a new tree, concludes that it is not a tree because it has a different

number' of leaves from any tree he has seen before; a machine with too little

capacity is like the botanist's lazy brother, who declares that if it is green, it is

a tree. Neither can generalise well. The exploration and formalisation of these

concepts has resulted the structural risk minimisation (SRM) principle in the

theory of statistical learning [36].

Constructing a nested family of function classes

Pl C ... C Ph C ... C Pk C . .. (1 < h < k)

with nondecreasing VC dimensions, the SRM principle then consists of solving

the following problem

min {~mp (f(a)) +
F,.

h(log(21/h) + 1) -IOg(TJ/4)}
l '

(2.2.4)

i.e. finding the class of functions that minimises the bound on the expected

PATTERN CLASSIFICATION BY MACHINE LEARNING L. Meng

2.3 Maximal-Margin Optimisation: the Separable Case 19

risk. Two extremes arise for equation (2.2.4): 1). a very small function class

(like F1) yields a vanishing square root term, but a large empirical error might

remain; while 2). a huge function class (like Fk) may give a vanishing empirical

error but a large square root term. The best class is usually in between (see

Figure 2.3), as one would like to obtain a function that explains the data quite

well (Le. with a small empirical risk) and to have a small risk in obtaining that

function (Le. with small capacity in terms of VC dimension). This is much

in analogy to the bias-variance dilemma scenario reported for neural networks

[37].

In a later section, we will see how SRM principle has been successfully

implemented by SVMs.

2.3 Maximal-Margin Optimisation: the Sepa­

rable Case

2.3.1 SVMs with a maximal margin

Consider a training set or sample {(Xi! Yi)}!=l' where target response Yi is

the label indicating which class the input example Xi belongs to. Xi E nd and

for tw<rclass classification, Yi E {-1, 1}. This section starts from the simplest

case of pattern classification: a set of linearly separable data, i.e. there is a

hyperplane which separates the positive examples from the negative. Points

on the separating hyperplane satisfy

lex) = ill· X + b = 0, (2.3.1)

where ill is the normal to the separating hyperplane, and Ibl/llw!l the perpen­

dicular distance from the hyperplane to the origin. ill and b are the parameters

to be optimised for a maximum margin. Let d+ (d-) be the distance from the

separating hyperplane to the closest positive (negative) examples. See Figure

PATTERN CLASSIFICATION BY MACHINE LEARNING L. Meng

2.3 Maximal-Margin Optimisation: the Separable Case 20

+

Figure 2.4: Illustration of a linear SVM with the maximal margin. Points
closest to the separating hyperplane are marked with circles.

2.4 for an illustration. Define the geometric margin or simply the margin of

a separating hyperplane to be the area that is bounded by the set of closest

examples. It is possible to make all the closest positive and negative points sat­

isfy yd(Xi) = 1, Le. the closest examples that lie on one of the two hyperplanes

parallel to but apart from the separating hyperplane by 1.

In such a case, the following constraints hold

(2.3.2)

Consider the positive points for which the equality of equation (2.3.2) holds.

These points lie on the hyperplane HI: W' Xi + b = 1 with normal ill and

perpendicular distance from the origin 11 - bl/llUiIl. Similarly, the negative

points for which the equality of equation (2.3.2) holds lie on .the hyperplane

H2 : W' Xi + b = -1 with normal Ui and perpendicular distance from the origin

1- 1 - bl/llillll· Note that HI and H2 are parallel and that no training examples

may fall between them. Hence, under constraints (2.3.2), d+ = d- = 1/11Uill

PATTERN CLASSIFICATION BY MACHINE LEARNING L. Meng

2.3 Maximal-Margin Optimisation: the Separable Case 21

and the width of the margin is simply 2/lIwll. We can therefore find the

separating hyperplane with the maximum margin by minimising IIwll 2 subject

to constraints (2.3.2).

The optimal separating hyperplane is independent of b because that pro­

vided constraints (2.3.2) are satisfied (Le. it is a separating hyperplane) chang­

ing b will move the hyperplane in the direction of its normal. Accordingly the

margin remains unchanged but the constraints (2.3.2) is no longer satisfied in

that the separating hyperplane will be nearer to one class than the other.

As observed in many practical cases, the decision boundary between two

classes can not be defined by a linear function. Then how can the above

method be generalised to the nonlinear cases. This has been accomplished

by Boser, Guyon and Vapnik [27] in an astonishingly straightforward way.

For nonlinearly separable problems, a nonlinear mapping is introduced before

the construction of the separating hyperplane, which transforms the training

examples from the input space to a higher-dimensional feature space. Let <I>

denote this nonlinear mapping

(2.3.3)

The separating hyperplane is then constructed in the feature space F. This

yields a nonlinear decision boundary in the input space 'R,d, which is composed

of the points whose mapped points in the feature space are on the separating

hyperplane there. The nonlinear mapping is performed in accordance with

Cover's theorem on the separability of patterns.

Cover's theorem [38]: A complex pattern classification problem cast in a high­

dimensional space nonlinearly is more likely to be linearly separable than in

a low-dimensional space.

The idea of mapping from the input space to a feature space has also been

adopted in the theory of neural networks, where the mapping is implemented

by the hidden layer(s) between the input and output layers.

PATTERN CLASSIFICATION BY MACHINE LEARNING L. Meng

2.3 Maximal-Margin Optimisation: the Separable Case 22

The optimisation problem associated with the SVM training, for both linear

and nonlinear cases, is summarised as follows

OP1 . 211Iw""'112, : mmwb ,

subject to Yi(W' <P(Xi) + b) > 1, i = 1, ... , l.

(2.3.4)

(2.3.5)

The constraints enforce that no training examples may fall inside the margin.

The training of SVM on a linearly separable data set is a special case of OPl,

in which <p(x) = x. For other data sets, we are still doing a linear separation,

but in a different space - the high-dimensional feature space.

2.3.2 Solving the SVM optimisation problem

The constrained optimisation problem OPl is solved by introducing La­

grange multipliers a = {ai, a2, ... , a,} and a Lagrangian

I

L(w,b,a) = ~lIwll2 - Lai[Yi(W. <P(Xi) +b) -1],
i=1

(2.3.6)

where the Lagrangian L(W, b, a) must be minimised with respect to the primal

variables W = {Wl, W2, ••• , Wd} and b and maximised with respect to the dual

variables a = {ai, a2, ... , a,}. That is to say, a saddle point must be found.

The minimisation of L(W, b, a) with respect to the primal variables requires

that at the saddle point

These lead to

and

:wL(W,b,a) = 0 and :bL(W,b,a) = o.

I

W = LYiai<P(Xi)
i=1

I

LYiai = 0
i=1

PATTERN CLASSIFICATION BY MACHINE LEARNING

(2.3.7)

(2.3.8)

L. Meng

2.3 Maximal-Margin Optimisation: the Separable Case 23

Substituting these equations back into the primal problem OP1, we have the

dual problem.

OP2 : mina

II

subject to LYiQi = 0,
i=l

Qi > 0, i = 1, ... , l.

(2.3.10)

(2.3.11)

With the optimal values of a; the decision boundary in the input space is

given by
I

f(x) = I: Q/yi<I> (Xi) • <I>(x) + b* = 0, (2.3.12)
i=l

where b* is found by employing the primal constraints (2.3.2)

b
* . _ maxyi=-l(W* . <I>(Xi)) + minYi=l(w* . <I>(Xi))

2 . (2.3.13)

The decision function for classifying new examples is defined as

sgn(J(X)) . (2.3.14)

Notice that the only way in which the data appears in problem OP2 (equa­

tions (2.3.9) - (2.3.11)) is in the form of inner products - (<I>(Xi) • <I>(Xj)). So

does in equations (2.3.12) and (2.3.13) for the resulting decision boundary.

This allows a SVM, without ever representing the feature space explicitly, to

locate a separating hyperplane in the feature space and classify vectors in that

space by simply specifying a kernel function, K(Xi, Xj) = <I>(Xi) • <I>(Xj). One

example of kernel function is

In this particular example, :F is infinite dimensional, so it would not be very

easy to work with <I>(x) explicitly. However, if one replaces (<I>(Xi) • <J>(x)) by

K(Xi,Xj) everywhere in the training, an algorithm would easily produce a

PATTERN CLASSIFICATION BY MACHINE LEARNING L. Meng

•

2.3 Maximal-Margin Optimisation: the Separable Case 24

SVM which lives in an infinite dimensional space, while using roughly the

same amount of time that it would take to train on the un-mapped examples.

Rewriting OP2 in terms of K(Xi,Xj), we have

OP3 : mina
I I I .

- L Qi + ~ L LYiYjQiQjK(Xi, Xj), (2.3.15)
i=1 i=1 j=1

I

subject to I: YiQi = 0,
i=l
Qi > 0, i = 1, ... , l.

And the decision boundary becomes

I

f(x) = L ai*YiK(Xi, x) + b* = 0 (2.3.16)
i=l

2.3.3 Karush-Kuhn-'I'ucker (KKT) conditions

The Karush-Kuhn-'Thcker (KKT) conditions [39, 40] play a central role in

both the theory and practice of constrained optimisation, which define the

necessary and sufficient conditions for a set of variables to be optimal for an

optimisation problem and thus provide a mathematical characterisation of the

solutions.

Applying the KKT conditions to problem OP1, we know that the optimal

solution (i*, (w*, b*) must satisfy [41]

This implies that

a/ = 0 {:} yd(Xi) > 1;

a/ > 0 {:} yd(Xi) = 1,

(2.3.17)

(2.3.18)

(2.3.19)

Le. only for the examples for which Yd(x) = 1 and that hence lie on the margin

boundaries are the corresponding Qi* non-zero. These examples are termed

PATTERN CLASSIFICATION BY MACHINE LEARNING L. Meng

2.4 Soft-Margin Optimisation: the Non-Separable Case 25

support vectors. Equations (2.3.18) and (2.3.19) indicate that on~y part of

examples are involved in the expression for the separating hyperplane (2.3.12).

Even if the other examples are removed from the training set, recalculating

the hyperplane would produce the same answer. This can also be seen from

the dual problem, since removing the items containing non-support vectors

leaves the same optimisation problem. This implies that SVMs can be used to

summarise the information contained in a data set by the set of support vectors

produced. Moreover, in many practical applications, only a small percentage

of the training examples are support vectors. This feature is referred to as

the sparseness of the solution to SVM optimisation. It is this feature that

makes applying a SVM obtained with large training sets to new testing data

computationally tractable. And it also is this feature that has inspired a series

of fast training algorithms for SVMs.

2.4 Soft-Margin Optimisation: the Nonsepa­

rable Case

Of course, not all data sets are separable even in the high-dimensional

feature space, e.g. when a high level of noise causes a large overlap of the

classes of patterns. In the problem formulation above, the non-separable case

would result in an infinite solution caused by overfitting, where Qi (i = 1, ... ,1)

are infinitely large and margin is consequently infinitely small. In 1995, Cortes

and Vapnik [8] introduced soft-margin SVMs which allow, but penalise, the

failure of examples to keep the margin constraints (2.3.5). The primal problem

in the soft-margin version of SVM optimisation is a modification of OP1 and

is defined as follows
I

OP4: minw,b,(~lIwll2 +C2:c;i'
i=l

subject to Yi(iii. <I>(Xi) + b) ~ 1 - c;i; i = 1, ... , I,

PATTERN CLASSIFICATION BY MACHINE LEARNING

(2.4.1)

(2.4.2)

L. Meng

2.4 Soft-Margin Optimisation: the Non-Separable Case 26

where ~i > 0 (i = 1, ... , l) are the slack variables that allow margin failures and

C is a parameter that trades off wide margin with a small number of margin

failures. Corresponding to soft-margin SVMs, SVMs with a maximal margin

are also called hard-margin SVMs since they allow no margin errors.

Introducing Lagrange multipliers a = {Q:1I Q:2,·· • , Q:I} and iJ = {,B1I ,B2, ... J

PI} J and a Lagrangian

I I I

L(w,b,[,a,fj) = ~lIwI12+CL~i- LQ:i[Yi(w.<I>(xi)+b)-l+~i]- L,Bi~i'
i=l i=l i=l

and then minimising the Lagrangian with respect to w, b, (and maximising it

with respect to a, fj, where Q:i, f3i > 0, Vi, we have the dual form of OP4 as

follows

OP5 : mina

I

subject to L:: YiQ:i = 0,
i=l

o < Q:i < C, i = 1, ... , l.

(2.4.4)

(2.4.5)

Note that the slack variables ~i do not appear in the objective function (2.4.3)

at all and that problem OP5 simply changes the constraint (2.3.11) of separable

case into a box constraint.

The KKT conditions of OP5 are

and

implying that

i = 1, ... , l,

i = 1, ... ,l,

Q:i = 0 {:} yd{Xi) ~ 1;

o < Q:i < C {:} yd(Xi) = 1;

Q:i = C {:} yd(Xi)::::; 1.

PATTERN CLASSIFICATION BY MACHINE LEARNING

(2.4.6)

(2.4.7)

(2.4.8)

(2.4.9)

(2.4.10) .

L. Meng

2.5 Effect of Trade-off Parameter C 27

Le: only for the examples that lie on the margin boundaries are the correspond­

ing a: not at the bounds; all examples for which the corresponding a; equal

to zero must be correctly classified and lie outside the margin. Furthermore,

equation (2.4.7) indicates that non-zero slack variables can only occur when

ai = C and all margin error~ are therefore penalised.

2.5 Effect of Trade-off Parameter C

2.5.1 An artificial data set with linear Kernel

Figures 2.5 - 2.7 show the decision boundaries obtained for a linearly'non­

separable training set when trained with different values of the trade-off pa­

rameter C. This data set is artificial and contains a noisy example. The two

classes are respectively denoted by red '.'s and blue '+'s while the noisy ex­

ample is pointed out with an arrow. Each support vector is identified with an

extra circle. The margin errors that violate constraints (2.3.5) are identified

with a cross. The corresponding numerical results are listed in Table 2.1, along

with the results for C = 00.

As shown in Figures 2.5 - 2.7, examples are not longer forbidden to lie

inside the margin and may even be classification errors (Le. may be classified

to the class rather than the taught one). For different values of C, the width of

the margin are different. As the value of C increases, the width of the margin

decreases. This is apparent since:

1). Equation (2.4.10) indicates that all margin errors have the corresponding

ai reach the upper bound, C;

2). From equation (2.3.7), IIwll2 increases with Q; while

3). Margin = 2/lIwIl 2
•

Figures 2.5 and 2.6 show the resulting decision boundaries for C = 0.5 and

1.0, respectively. In each case, C is small and the margin errors are not heavily

PATTERN CLASSIFICATION BY MACHINE LEARNING L. Meng

2.5 E ffect of Trade-off Parameter C 28

•

• ;1-
• (5)

Figure 2.5: Example of a linearly non-separable training set (C = 0.5) .

penalised. For both cases, two margin errors are generated during the training.

As C increases the result converges towards the one shown in Figure 2.7, where

all the t raining examples satisfy the constraints on margin (2.3.5) except the

noisy example. Although wider margins can be obtained with smaller C, some

points containing important classification information can be lost, as in the

cases of C = 0.5 and C = 1.0 (refer to Figures 2.5 and 2.6), and consequent ly

poorer generalisation performance would be expected.

In the limit as C ~ 00, no example is allowed to violate the constraints on

margin. However , the training set is not linearly separable. When the solution

tries to meet the constraints , the noisy example brings the corresponding Qi

to the upper bound 00, and some other Qi nearly to 00 as well. This in turn

leads to an infinit solution, as shown on the last row of Table 2.1.

PATTERN CLASSIFI CATION BY MA CHINE LEARNING L. Meng

2.5 Effect of Trade-off Param eter C

' .

' .
•

.•
"

• • /'
'.

'.

Figure 2.6: Example of a linearly non-separable training set (C = 1.0) .

•

•• /'

•

Figure 2.7: Example of a linearly non-separable training set (C = 2.0).

29

PATTERN CLASSIFICATION BY MACH INE LEARNING L, Meng

2.5 Effect of Trade-off Parameter C 30

Table 2.1: Example of a linearly non-separable training set. Results are ob­
tained with different values of trade-off parameter C.

C O!noise IIwll2 margin no. of margin errors

0.5 0.5 0.32 3.54 2

1.0 1.0 0.41 3.12 2

2.0 2.0 0.52 2.77 1

00 00 3.73EIO 1.03E-5 8

2.5.2 The image segmentation data set with nonlinear

Kernels

The effect of trade-off parameter C has also been investigated for a non­

linear Kernel. The image segmentation data set [42] has been used for this

investigation. The data set contains 7 classes of examples of 19 attributes. To

allow the results to be visualised, two attributes have been used to classify a

pair of two non-overlapped classes of 891 examples. Figures 2.8 - 2.12 show

the decision boundaries obtained for different values of the trade-off parameter

C. The two classes are respectively denoted by red '.'s and blue '+'s. Each

support vector is identified with an extra circle. The margin errors are iden­

tified with a magenta square. The corresponding numerical results are listed

in Table 2.2. The same conclusions may be drawn from these results, as after

the experiments with the artificial data set. As the value of C increases, the

width of margin gets smaller and more complex decision boundary is required

for separating the classes.

PATTERN CLASSIFICATION BY MACHINE LEARNING L. Meng

2.5 EHect of Trade-oH Param eter C

.......... I •• ••

I 0 C=1

".

Figure 2.8: Example of image segmentation data set (C = 1).

'
'.

............

o C=10

.

31

F igure 2.9: Example of image segmentation data set (C = 10).

P ATTERN CLASSIFICATION BY MACHINE LEARNING L. Meng

2. 5 Effect of Trade-off Param eter C 32

I 0 C=100 I

Figure 2.10: Example of image segmentation data set (C = 100).

I 0 C=1000 I

Figure 2.11 : Example of image segmentation data set (C = 1000).

PATTERN CLASSIFICATION BY MACHI NE LEARNING L. Meng

2.5 Effect of TJ:ade-off PaJ:ameter C 33

Figure 2.1 2: Example of image egmentation data set (C = 00) .

Table 2.2: Example of image segmentation data set. Results are obtained with
different values of trade-off parameter C . SVs stands for support vectors.

c 00 1000 100 10 1

margin O.Oll 0.062 0.122 0.327 1.296

no. of SVs 6 8 11 26 80

no. of unbounded SVs 6 6 6 6 6

no. of errors on training set 0 2 2 3 3

PAT TERN CLASSIFI CATION BY MACHIN E LEARNING L. Meng

2.6 Implementation of SRM Principle 34

M =3/2

Figure 2.13: Illustration of a gap tolerant classifier on data in 1?}.

2.6 Implementation of SRM Principle

Consider a family of classifiers that has been termed gap tolerant classifiers.

Let :F denote the family of gap tolerant classifiers on nd. Then a particular

gap tolerant classifier f E :F is specified by the location and diameter of a ball

in nd, and by two hyperplanes, with parallel normals, also in nd. Call the set

of points lying between, but not on, the hyperplanes the "margin set". The

decision function f is defined as follows: points that lie inside the ball, but

not in the margin set, are assigned class ±1, depending on which side of the

margin set they fall; all other points are simply defined to be "correct", that

is, they are not assigned a class by the classifier, and do not contribute any

risk. The situation is summarised, in Figure 2.13, for d = 2.

According to [36], the following Theorem holds for gap tolerant classifiers.

Theorem 2.1. For data in nd , the VC dimension h of the set of gap tolerant

classifiers of minimum margin Mmin is

h < min{D2/M;in, d} + 1, (2.6.1)

where D is the diameter of a hypersphere enclosing all the data points.

For example, for the gap tolerant classifier in Figure 2.13, D = 2, d = 2

PATTERN CLASSIFICATION BY MACHINE LEARNING L. Meng

2.7 A Mechanical Analogy 35

and hence VC dimension is h = 3 when M < J2 (Mmin = 0), h = 2 when

J2 < M ~ 2 (Mmin > J2), and h = 1 when M > 2 (Mmin > 2).

The gap tolerant classifier is in fact a special kind of SVM which simply

does not count data falling outside the sphere containing all the training data,

or inside the separating margin, as an error. Thus, equation (2.6.1) may also

be applied to SVMs.

1 ~ Recall that margin = ~ . Hence from equation (2.6.1), maximising margin

or minimising equation (2.3.4) is equivalent to minimising an upper bound on

the VC dimension of a SVM and hence equivalent to implementing the SRM

principle. The optimisation problem OP4 is posed so as to minimise the margin

errors (Le. the second term of equation (2.4.1)) as well as an upper bound on

the VC dimension of the classifier (Le. the first term of equation (2.4.1)).

2.7 A Mechanical Analogy

Suppose that the ith support vector exerts a force Forcesi = aiY(WO on the

stiff sheet along the surface of the decision boundary (or decision sheet) in

the feature space. Here Wo denotes the unit vector in the direction W. Then

according to equations (2.3.8) and (2.3.7) respectively, a resulting SVM satisfies

the following conditions of mechanical equilibrium [43]

L Forces, - ~ ",y,wo = (~",y,) Wo = 0,

2::::: Torquesi - 2::::: Si· (aiY(WO) = w, Wo = o.

(2.7.1)

(2.7.2)

In equation (2.7.2), Si denotes the ith support vector and '.' the inner product

of two vectors.

This mechanical analogy depends only on equations (2.3.7) and (2.3.8) and

therefore holds for both hard- and soft-margin SVMs. This analogy emphasises

PATTERN CLASSIFICATION BY MACHINE LEARNING L. Meng

2.7 A Mechanical Analogy 36

the interesting point that the most important data points are the support

vectors with highest values of Qi, since they exert the highest forces onto the

decision sheet. For non-separable case, the upper bound G of Qi corresponds

to an upper bound on the force any given point is allowed to exert onto the

sheet. This analogy also provides a reason, as good as any other, to call these

particular vectors the support vectors.

Recall the linearly nonseparable example in subsection 2.5. For different

values of C, the orient at ions of the separating hyperplane are different. Figure

2.14 compares the decision boundaries obtained for G = 0.5, G = 1.0 and

C = 2.0. And Table 2.3 gives, for each case of C, the amount of forces exerted

by the four common support vectors (for G = 0.5, there is one more support

vector). For all the cases, the force exerted by the noisy point (P4) onto the

decision sheet is bounded by -Gwo. The last four rows of Table 2.3 are the

forces exerted by each support vector divided by the force exerted by P4 along

the y-axis. As G increases, more and more amounts of force are exerted onto the

decision sheet by P2 while P3 exerts less and less. The amount of force exerted

by either PI or P4 remains almost the same. As a result, the orientation of the

decision boundary changes in the way as shown in Figure 2.14. And when G

reaches 2.0, Q2 becomes smaller than G; the amount of force need to be exerted

by P2 for the equilibrium is no longer limited by the upper bound. P2 is no

longer a margin error. Yet it still lies on the margin boundary as a support

vector. For higher G's, the same decision boundary is obtained as that for

C=2.0.

PATTERN CLASSIFICATION BY MACHINE LEARNING L. Meng

2.7 A Mechanical Analogy

•

+

• +p
4

37

+

+

+

Figure 2.14: Comparison of decision boundaries obtained on a linearly nonsep­
arable training set for different values of C.

Table 2.3: Comparison of SVM results obtained on a linearly nonseparable set
for different values of C.

C 0.5 1.0 2.0 10 100

PI 0.2725 0.4800 0.9600 4.9600 49.9600

°i P2 0.5000 1.0000 1.8000 7.8000 75.3000

P3 0.3100 0.4800 0.7600 2.7600 25.2600

P4 0.5000 1.0000 2.0000 10.000 100.000

Vi -0.4, -0.4 -0.5, -0.4 -0.6, -0.4 -0.6, -0.4 -0.6, -0.4

Pl -0.19, -0.19 -0.37, -0.30 -0.80, -0.53 -4.13, -2.75 -41.57, -27.71

Forcei P2 -0.35, -0.35 -0.78, -0.62 -1.50, -1.00 -6.49, -4.33 -62.65, -41.77

P3 0.22,0.22 0.37,0.30 0.63,0.42 2.30,1.53 21.02, 14.01

P4 0.35,0.35 0.78,0.62 1.66, 1.11 8.32,5.55 83.21, 55.47

PI -0.55, -0.55 -0.60, -0.48 -0.72, -0.48 -0.74, -0.50 -0.75, -0.50

Force/ P2 -1.00, -1.00 -1.25, -1.00 -1.35, -0.90 -1.17, -0.78 -1.13, -0.75

P3 0.62,0.62 0.60,0.48 0.57,0.38 0.41,0.28 0.38,0.25

P4 1.00, 1.00 1.25, 1.00 1.50, 1.00 1.50, 1.00 1.50, 1.00

PATTERN CLASSIFICATION BY MACHINE LEARNING L. Meng

2.8 Conclusions 38

2.8 Conclusions

The family of support vector machines has been introduced in this chapter.

It is characterised by the use of kernel functions, the sparseness of solutions and

the capacity control obtained by acting on the margin. These facts of SVMs

mark a clear distinction between these systems and other pattern recogni­

tion algorithms. And more importantly, the implementation of SRM principle

makes SVMs superior to the others that employ Empirical Risk Minimisation

(ERM) principle during the training, such as neural networks.

PATTERN CLASSIFICATION BY MACHINE LEARNING L. Meng

Chapter 3

KERNEL-INDUCED

FEATURE SPACE

As stated, the mapping <I> : nd
1-+ F of nonlinear SVMs maps data from the

input space nd into a potentially high-dimensional feature space F. And the

training and using of a SVM only depends on the data through dot products

in F. This chapter discusses the method that can be used to construct the

mapping by the use of reproducing kernels. The idea of using kernel functions

is to enable operations to be performed in the input space rather than the

high-dimensional feature space. Hence the inner product does not need to be

evaluated in the feature space. This provides a way of addressing the curse of

dimensionality.

3.1 Mercer's Theorem

For which kernels does there exist a pair {F, <I>}, with the properties de­

scribed above, and for which does there not? The answer is given by Mer­

cer's condition [7,44], based upon Reproducing Kernel Hilbert Spaces (RKHS)

[45, 46, 47].

39

3.2 Kernel Functions for Support Vector Machines 40

Mercer's condition: If the K is a symmetric and positive definite function,

wh ich satisfies
00

K(x,Y) = Lai<!>i(X) <!>i (Y) , where ai ~ 0 (3.1.1)
i=l

and jjK(X,Y)9(x) g(Y) dxdy> 0, where jl(x)dX< 00, (3.1.2)

then the kernel function K represents a legitimate inner product in the

feature space defined by <1>(i) = {<PI (i), . .. ,<Pi (i), .. . }.

3.2 Kernel Functions for Support Vector Ma-

chines

This section gives some examples of Kernel functions for SVMs, which

unless stated are valid for all real i and y.

Polynomial

Polynomial mapping is a popular method for non-linear modelling. A polyno­

mial kernel of degree p is defined as

K (x, Y> = ((x. y> + I)P • (3.2.1)

The corresponding feature space F is a Euclidean space of dimension (d+rl),

where d is the dimension of the input space.

Gaussian radial basis function

Radial basis functions have received significant attention, most commonly with

a Gaussian of the form,

K(x,yj = exp (- (i 2~f2),

Exponential radial basis function

A radial basis function of the form,

K(i, yj = exp (_lIx2~2Y11) ,

PATTERN CLASSIFICATION BY MACHINE LEARNING

(3.2.2)

L. Meng

3.2 Kernel Functions for Support Vector Machines 41

produces a piecewise linear solution which can be attractive when discontinu­

ities are acceptable.

The radial basis function kernels are translation invariant. Moreover, as

each of them satisfies K(x, x) = 1 for all x E n,d, each mapped example has

unit length, 1IcI>(x)1I = 1. In addition, for radial basis function SVMs, the

number of centres (the number of support vectors), the centres themselves

(the support vectors), the weights (ai) and the threshold (b) are all produced

automatically by the SVM training and give excellent results compared to

classical radial basis functions, for the case of Gaussian radial basis functions

[48].

Multi-layer perceptron

The long-established multi-layer perceptron, with a single hidden layer, also

has a valid kernel representation,

K{x, Y) = tanh(scale· (x· Y) - offset) (3.2.4)

for certain values of the scale and offset parameters (first noticed experimen­

tally [7]). Here the support vectors correspond to the nodes on the first layer

and the Lagrange multipliers to the weights. Thus, the architecture (number

of weights) is determined automatically by SVM training.

Fourier series

A Fourier series can be considered an expansion in the following 2N + 1 di­

mensional feature space. The kernel is defined on the interval [-~,~],

K(04 V) = sin(N + 1/2)(x - y>
x, y 2 sin((x - Y)/2) . (3.2.5)

Linear spline

Splines are a popular choice for modelling due to their flexibility. Linear spline

PATTERN CLASSIFICATION BY MACHINE LEARNING L. Meng

3.3 Some Notes on cl> and F 42

is defined as

K(Xi, Yj) = 1 + XiYj + XiYj min(xi, Yj) - (Xi~Yj) (min(xi, Yj))2

+! (min(xi, Yj))3 , 'Vi = 1, ... , d. (3.2.6)

Additive kernels

More complicated kernels can be obtained by forming summing kernels, since

the sum of two positive definite functions is still positive definite.

(3.2.7)

Tensor product kernels

Multidimensional kernels can be obtained by forming tensor products of kernels

[45], where

(3.2.8)

3.3 Some Notes on <P and :F

Polynomial kernel of degree p constructs a feature space of dimension

(d+r1). While the feature space defined by a radial basis function kernel

has an infinite dimension. Usually, mapping the data to a "feature space" with

an enormous number of dimensions would bode ill for the generalisation per­

formance of the resulting machine. After all, the set of all hyperplanes {w, b}

in a feature space Fare parameterised by dim(F) + 1 numbers. Most pattern

recognition systems with billions, or even an infinite, number of parameters

would not make it past the start gate due to the curse of dimensionality. How

come SVMs do so well? One might argue that, given the form of solution and

the size of training set l, there are at most 1 + 1 adjustable parameters in a

SVM. However, the real reason lies in the use of maximum margin as described

in section 2.6.

PATTERN CLASSIFICATION BY MACHINE LEARNING L. Meng

3.4 Kernel Selection 43

As for the enormous calculational load of an infinite-dimensional space, it

has been avoided by the use of kernels. The following uses the example of a

Fourier kernel to show that the inner product of two vectors in an infinite­

dimensional space can be calculated in closed form. Suppose x E R}. Then a

Fourier expansion in the data x, cut off after N terms, has the form

N

f(x) = a; + I:(alr cos(rx) + a2r sin(rx)).
r=l

(3.3.1)

This can be viewed as a dot product of two vectors in R 2N+1:

a = {ao/v'2, an, ... , a21,."}

and the mapped <p(x) = {1/v'2, cos(x), cos(2x), ... , sin(x), sin(2x), ... }.

Then letting 8 = Xi - Xj,

1 N
2 + L COS(rxi) cos(rxj) + sin(rxi) sin(rxj)

r=l
1 N 1 N

- -2 + L cos(r8) = -2 + Re{L e(irc5)}

r=O r=O

_ -~ + Re{(1 - ei(N+l)O)/(1 _ eiO)}
2

sin((N + 1/2)8)
2 sin(8/2)

(3.3.2)

Hence, the kernel can be computed in closed form by equation (3.3.2) in terms

of Xi and Xj.

3.4 Kernel Selection

The obvious question that arises is that with so many different mappings

to choose from, which is the best for a particular problem? This is not a new

question, but with the inclusion of many mappings within one framework it

is easier to make a comparison. The rest of this section illustrates the effect

PATTERN CLASSIFICATION BY MACHINE LEARNING L. Meng

3.4 Kernel Selection 44

Table 3.1: Summary of statistics of iris data set

Min Max Mean Standard Class

Deviation Correlation

sepal length: 4.3 7.9 5.84 0.83 0.7826

sepal width: 2.0 4.4 3.05 0.43 -0.4194

petal length: 1.0 6.9 3.76 1.76 0.9490

petal width: 0.1 2.5 1.20 0.76 0.9565

of different kernels by comparing the experimental results on a benchmark

problem - the classification of iris data.

The iris data set is a benchmark data set used for demonstrating the per­

formance of classification algorithms. The data set contains three classes of iris

examples. Each example is defined by four attributes. The goal is to classify

the class of iris based on these four attributes. The summary statistics of iris

data set is listed in Table 3.1. The last column shows the correlation coefficient

between each attribute and the class label. The higher the correlation coeffi­

cient is the more classification information an attribute contains. To visualise

the problem we restrict ourselves to the two attributes that contain the most

information about the classes, namely the petal length and the petal width.

According to these two attributes, the distribution of iris data set is illustrated

in Figure 3.1. The Versilcolor example that overlaps with a Virginica example

(according to petal length and petal width) has been removed.

The Setosa and Versilcolor classes are easily separated with a linear bound­

ary and the resulting decision boundary using a linear kernel is illustrated in

Figure 3.2, with the two support vectors circled. Figure 3.3 shows the results

for the same pattern recognition problem, but where the kernel was chosen to

be a polynomial of degree 2. Notice that, even though the number of degrees

of freedom is higher, for the linearly separable case, the solution given by the

PATTERN CLASSIFICATION BY MACHINE LEARNING L. Meng

3.4 Kernel Selection

2.5 ")(I(
)()(

)(l()OC)()()()(

xx)(

2
xx x x

!IX X XX"" x

.c

~ 1.5

" . •• •
• ... eX)(

• • •••

x Viginica

co -Q)

a..

+
0.5 +

+ +++ + Setosa
+++ +

+ ++++++ +
+++

. . .. -
•• •• •

• Versilcolor

o~~------~----~----~------~----~------~
23456 7

Petal Length

Figure 3.1: Iris data set with two attributes.

45

polynomial SVM is roughly linear, indicating that the capacity is being well

controlled.

It is obvious that Virginica is not linearly separable. A nonlinear decision

boundary is expected and thus a nonlinear kernel is needed to separate the

classes completely. Different kernels have been tried for separating Virginica

from Versilcolor plus Setosa. Figures 3.4 - 3.10 show the results, accordingly.

And table 3.2 gives the width of the margin and the number of support vectors.

The results given by the 2nd-degree polynomial SVM is not satisfying. The

margin is too small. As higher degree polynomials are used, the result becomes

worse. Figure 3.5 shows the result of 5th-degree polynomial. As we can see,

the margin becomes extremely small. And there is evidence of overfitting

due to the high dimensional nature of the kernel, which is emphasised by the

unnecessarily large number of support vectors. Furthermore, note that the

decision boundaries given by both polynomial SVMs contain a disjoint region

PATTERN CLASSIFICATION BY MACHINE LEARNING L. Meng

3.4 Kernel Selection

. ' . . .
:.:e: ~ '.

• ••

Figure 3.2: Separating Setosa with a linear SVM (C = (0).

in the top of the illustration , which is another evidence of overfi tt ing.

46

Figures 3.6 - 3.9 show the results given by the radial basis function SVMs

with different pre-specified variances. As we can see, more complicated bound­

aries have been provided by radial basis function kernels. And roughly same set

of support vectors has been found with different variances. However, smaller

the variance allows more shape bending. Amazingly, when variance is set to

0.6 , the resulting decision boundary separates the class of Setosa from Versil­

color and identifies Setosa as a separate class .

Finally, a linear spline SVM has been used. The resulting decision boundary

is similar to that with a high variance radial basis function. However, a disjoint

region is observed.

PATTERN CLASSIFICATION BY MACHINE LEARNING L. Meng

3 . ..J Kem ei Selection

......

• ••• ' .
• •••••• • • ••

47

. .
..

Figure 3.3: Separating Setosa with a polynomial SVM (degree 2, C = (0).

Figure 3.4: Separating Virginica with a polynomial SVM (degree 2, C = 00).

PATTERN CLASSIFICATION BY MA 'HINE LEARN ING L. Meng

3.4 Kernel Selection 48

Figure 3.5: Separating Virginica with a polynomial SVM (degree 5, C = 00).

Figure 3.6: Separating Virginica with a Gaussian radial basis function SVM
(a = 2.0, C = 00) .

PATTERN CLASSIFICATION BY MACHINE LEARNING L. Meng

3.4 Kernel Selection

• •• • • •••• ••• • • • • •
•

49

Figure 3.7: Separating Virginica with a Gaussian radial basis function SYM
(a = 1.5, C = 00).

•
• • • •

•

Figure 3.8: Separating Virginica with a Gaussian radial basis function SYM
(a = 1.0, C = 00).

PATTERN CLASSIFICATION BY MACHINE LEARNING L. Meng

3.4 Kernel Selection

• •• • • •••• ••• • • • • •••• • •
• • •

• •

50

Figure 3.9: Separating Virginica with a Gaussian radial basis function SVM
(a = 0.6, C = 00) .

Figure 3.10: Separating Virginica with a linear pline SVM (C = 00) .

PATTERN CLASSIFICATION BY MACHINE LEARNING L. Meng

3.5 Conclusions 51

Table 3.2: Results when separating Virginica with different kernels. SVs stands
for support vectors.

kernel function margin no. of SVs

polynomial (degree=2) 1.200e-5 7

polynomial (degree=5) 1.0085e-35 17

Gaussian RBF (a = 2.0) 0.001085 7

Gaussian RBF (a = 1.5) 0.002345 9

Gaussian RBF (a = 1.0) 0.006462 11

Gaussian RBF (a = 0.6) 0.021119 11

linear spline 0.038355 10

3.5 Conclusions

Mercer's condition tells us whether or not a prospective kernel is actually a

dot product in some space. Examples of kernels that satisfy Mercer's condition

have been given. The issue of how to choose an appropriate kernel for a partic­

ular classification problem is difficult. The upper bound on the VC dimension,

equation (2.6.1), is a potential way to provide a means of comparing the kernels.

However, it requires the estimation of the radius of the hypersphere enclosing

the data in the non-linear feature space. Before a strong theoretical method for

selecting a kernel is developed and validated using independent test sets on a

large number of problems, methods such as bootstrapping and cross-validation

will remain the preferred method for kernel selection.

PATTERN CLASSIFICATION BY MACHINE LEARNING L. Meng

Chapter 4

SUPPORT VECTOR

MACHINE TRAINING AND

ITS IMPLEMENTATION

ALGORITHMS

4.1 Introduction

Problem OP5 in Chapter 2 (equations (2.4.3) - (2.4.5)) defines the optimi­

sation problem associated with the training of a SVM. This problem is actually

a quadratic programming (QP) problem since it has the form

mina Tl ... + 1 TQ ... -a -a a
2 '

subject to a.T fj = 0,

o <a.< ci,

(4.1.1)

(4.1.2)

(4.1.3)

where the quadratic term Q in SVM training is a positive semidefinite matrix

and

(4.1.4)

52

4.1 Introduction 53

As the objective function (4.1.1) is convex every (local) maximum is al­

ready a global maximum. However, there can be several optimal solutions (in

terms of the variables ai) when matrix Q is not positive definite, Le. when

objective function is not strictly convex. For example, consider the problem

of four separable points on a square in R}: Xl = [1,1]' X2 = [-1,1]' X3 =

[-1, -1], and X4 = [1, -1], with polarities [+, -, -, +] respectively. One so­

lution is ill = [1,0]' b = 0, a = [0.25,0.25,0.25,0.25]; another has the same

ill and b, but a = [0.5,0.5,0,0]. Note that both solutions satisfy the con­

straints ai ~ 0 and Li aiYi = O.

The problem of optimising a quadratic function of many variables has been

widely studied. The book [49] discusses general algorithms and, techniques

for convex optimisation. Early implementations of SVMs have been based on

optimisation packages such as MINO [50], LOQO [51], MATLAB optimisation

package [52], etc. Chapter 1 of the book [34] contains a useful survey of different

implementations. However most of the standard QP techniques require full

storage of the quadratic term in the objective function. They are either suitable

only for small problems or assume that the quadratic term is very sparse, Le.

most elements of this matrix are zero. Unfortunately this is not true for the

SVM optimisation problem, where quadratic term Q is not only dense but

also has a size of l2, Le. a size growing quadratically with the number of data

points in the training set. For training tasks with 10,000 examples and more,

the memory requirement will exceed hundreds of Megabytes and the training

time will be enormous. These facts prohibit the application of standard QP

techniques to the problems with large training sets and, on the other hand,

have urged the design of a number of algorithms for fast SVM training.

PATTERN CLASSIFICATION BY MACHINE LEARNING L. Meng

4.2 General Considerations 54

4.2 General Considerations

The size of matrix Q, the structure of it, the nature of the solution, and

the structure of the constraints all should be considered when choosing or

developing a QP programming package to solve equations (4.1.1) - (4.1.3).

Underneath lists a few properties of some of the problems we have seen which

have influenced our thinking.

1. For postprocessing it is important to determine which elements of the

solution are 0 or at the upper bound C and which are not. Some QP

packages, particularly interior point implementations, may return values

close to the machine precision rather th~n exact zero. This may lead to

a higher detected number of support vectors because "small" values were

misinterpreted.

2. The constraints are upper and lower bound constraints plus one general

equality constraint. Codes that do not make a special provision for bound

constraints are probably not useful.

3. For most problems most elements of the solution a are O. There will be

fewer changes in the solution if one begins with a "zero" solution. And

in the next section, we will see this sparseness feature of the solution

of SVM optimisation has inspired a series of fast algorithms for SVM

training.

4. When the upper bound C in equation (4.1.3) is small, the number of

nonzero elements in a increases, but many of them, will be at C. Then

when doing vector-matrix multiplication aQ one needs only the sum of

the columns of the Q matrix corresponding to the elements of a that

equal C, not the elements themselves. For example,

if a = (0, C, C, 0'4, C, 0, ... ,0)

then a.Q = 0'4ih + C(ih + Ch + lj5).

PATTERN CLASSIFICATION BY MACHINE LEARNING L. Meng

4.3 Present Fast Algorithms for SVM 'I}aining 55

It will not be unusual if on subsequent iterations, the 2nd, 3rd and 5th

elements of a. will still be at C. Thus if one keep a running total of

the sum of the columns of Q at bound, then one will save work on the

vector-matrix multiplication and also require less space.

4.3 Present Fast Algorithms for SVM Training

This section introduces briefly three different algorithms for fast SVM train­

ing, including Chunking, Decomposition and Sequential Minimal Optimisation

(SMO). They are in turn derived from the former algorithm.

4.3.1 Chunking

As discussed in last section, a key observation in solving large-scale SVM

problems is the sparseness of the solution a.. Depending on the problem, many

of the optimal Lagrange multipliers at will either be zero or on the upper bound

C. If one knew beforehand which at were zero, the corresponding rows and

columns could be removed from the matrix Q without changing the value of the

objective function. Furthermore, a particular a. can only be optimal for OP5 if

and only if it satisfies the KKT conditions (equations (2.4.8) - (2.4.10)). In [36],

a method called chunking is described, making use of the solution sparseness

and the KKT conditions. It starts with an arbitrary subset or 'chunk' of the

data, and trains an SVM using a generic optimiser on that portion of the data.

The algorithm then retains the support vectors from the chunk while discarding

the other points and then it uses a particular hypothesis to test and choose the

points in remaining part of the data. In the original work reported in [36] the

M points that most violate the KKT conditions (where M is a parameter of

the system) are chosen to add to the support vectors of the previous training,

to form a new chunk for next iteration. The chunk of data being optimised

PATTERN CLASSIFICATION BY MACHINE LEARNING L. Meng

4.3 Present Fast Algorithms for SVM Training 56

at each stage varies but is finally equal to the number of nonzero Lagrange

multipliers {Le. the number of support vectors}. A free implementation can be

found, e.g. in [53].

4.3.2 Decomposition methods

Decomposition methods are similar in spirit to chunking as they solve a se­

quence of small QPs as well. But here the size of the subproblems is fixed. They

are based on the observations that a sequence of QPs which at least always

contains one example violating the KKT conditions will eventually converge

to the optimal solution [54, 55]. Osuna [55] suggested keeping a constant-size

matrix for every QP sub-problem, which implies adding and deleting the same

number of examples in each iteration. Using a constant-size matrix allows the

training of arbitrary large data sets. The algorithm given in [55] added and

deleted one example in each iteration. In practice, however, the convergence

of such an approach is very slow. Practical implementations use sophisticated

heuristics to select several patterns to add and remove from the subproblem

plus efficient caching methods. They usually achieve fast convergence even on

large data sets with up to several thousands of support vectors. A good qual­

ity implementation is SVMlight [56]. Alternatively, a decomposition variant is

contained in the package [53].

4.3.3 Sequential minimal optimisation (SMO)

Sequential Minimal Optimisation (SMO) algorithm is derived by taking the

idea of the decomposition methods to its extreme and optimising a minimal

subset of just two points at each iteration (to keep constraint (4.1.2) satisfied

at least two elements of ii need to change simultaneously). The power of SMO

resides in the fact that the optimisation problem for two data points admits an

analytical solution, eliminating the need to use an iterative QP solver as part

PATTERN CLASSIFICATION BY MACHINE LEARNING L. Meng

4.3 Present Fast Algorithms for SVM Training 57

Chunking

•
• •

Osuna's Decomposition

• •
• •
• •

SMO

Figure 4.1: Three alternative algorithms for training SVMs: Chunking, Os­
una's Decomposition and SMO. For each algorithm, three iterations are illus­
trated. (Cited from paper [58].)

of the algorithm. In each iteration SMO chooses two elements ai and O'j to

jointly optimise, finds the optimal values for those two parameters given that

all the others are fixed, and updates the a accordingly. Here the main problem

remains to choose a good pair of parameters to optimise in each iteration.

The heuristics presented in the original papers [57, 58] are based on the KKT

conditions and there has been some work (e.g. [59]) to improve them. The

implementation of the SMO approach is straightforward. The pseudocode of

it may be found in [57, 58].

Figure 4.1 illustrates the difference between the three alternative algorithms

for training SVMs: Chunking, Osuna's Decomposition and SMO. For Chunk­

ing, a fixed number of examples are added every iteration, while the zero

Lagrange multipliers are discarded in every iteration. Thus, the number of

examples trained per iteration tends to grow. For Osuna's Decomposition, a

fixed number of examples are optimised every iteration. For SMO, only two

examples are analytically optimised every iteration.

Chunking techniques in SVMs were already used by Vapnik and Chervo-

PATTERN CLASSIFICATION BY MACHINE LEARNING L. Meng

4.3 Present Fast Algorithms for SVM Training 58

nenkis, and were improved, generalised and discussed in a number of papers

among others, e.g. [55, 60, 61] by Osuna and Girosi, [56] by Joachims, [57,58]

by Platt and [62] by Kaufmann. The work of Osuna and Girosi inspired the

subsequent work on data selection, which ultimately led to systems like SMO.

The SMO algorithm was devised by Platt [57, 58] and applied to text cat­

egorisation problems. An extension of SMO, differing in the way it calculates

the bias, has been proposed in [63] and shown to be faster. Alex Smola has

generalised SMO for the case of regression [64] and the code can be found at

the website [65].

4.3.4 Other algorithms

Further algorithms have been proposed to solve the SVM problem or a

close approximation. For instance, the Kernel-Adatron [66] is derived from the

Adatron algorithm [67] which was proposed originally in a statistical mechanics

setting. It constructs a large margin hyperplane using online learning. Its

implementation is very simple. However, its drawback is that it does not allow

for training errors, i.e. it is only valid for separable data sets, to hard-margin

SVMs.

Keerthy et al. proposed a very elegant algorithm for SVMs [68] that does

not maximise the margin by minimising the norm of the weight vector. Rather,

they note that the distance between the nearest points of the convex hulls of

the positive and negative data uniquely determines the maximal margin hyper­

plane. Based on the same approach, Kowalczyk [69] has proved a convergence

rate for a new iterative algorithm that can be applied to problems with hard

or soft margins, as well as experimental comparison with other iterative algo­

rithms.

PATTERN CLASSIFICATION BY MACHINE LEARNING L. Meng

4.4 Centre-Based Optimisation 59

4.4 Centre-Based Optimisation

In this section, a series of centre-based algorithms that have been proposed

by us are presented. Like most existing algorithms for fast training of SVMs,

these algorithms are iterative and train a sequence of small QP problems.

While unlike the others, these centre-based algorithms fasten the training of

SVMs via a different way rather than selecting a particular subset of examples

and then restricting the training to that subset. These new algorithms extract

classification information contained in the full training data set and perform

training on the compressed version of the full training set. The basic imple­

mentation scheme is to compress the original training set and then train the

machine on the compressed training set. As stated in previous chapter, the

typical way to compress a data set takes two steps: 1) divide the original data

set into clusters; 2) represent object points in each of these clusters with the

centre of that cluster. Our new methods follow this procedure and also use the

set of cluster centres to represent the original data set, where the centre of the

rth cluster er is defined as follows

(4.4.1)

But what is the desired clustering that would bring us the optimal decision

boundary? Recall that the set of support vectors is all we need to construct a

correct decision boundary. This implies that, in order to make use of all the

classification information contained in the original training set, each support

vector must appear in the compressed training set and thus must become a

cluster centre. Therefore, the desired compression should assign each support

vector to a cluster and the remaining examples to another cluster so as to reduce

redundance. However it is impossible to achieve this in a straightforward way

since we do not know beforehand which training examples would turn out to

be support vectors. What we have tried is firstly including some redundance

PATTERN CLASSIFICATION BY MACHINE LEARNING L. Meng

4.4 Centre-Based Optimisation 60

in the clustering (Le., more clusters than that in the ideal clustering) and

then discarding this redundance from training, Le. reducing the size of the QP

problem at each training step. Attempts have been made to develop a heuristic

approach for this.

4.4.1 Centre-based optimisation (CO)

The algorithm

Table 4.1: Implementation steps of the centre-based optimisation (CO)
algorithm.

Given a training set S, split each class of S into two subclusters.

Initialise the working set S to the centres of these four subclusters.

REPEAT

Train SVM on S.
FOR each support vector (Vc)i in S

find the cluster C r that has the current support vector (Vc)i

as its centre.

split cluster Cr into two subclusters.

add the centres of these two sub clusters into S and delete

(Vc)i from S.
UNTIL no further splitting is possible.

The implementation steps of our first attempt is given in Table 4.1. The

set of the cluster centres being optimised in a particular iteration is referred

to as the working set. Let {Vi} denote the set of support vectors found us­

ing full training set and {(VC)i} the set found using a set of cluster centres.

Examples in a cluster whose centre is in {(VC)i} are more likely to contain

important classification information than other examples. In other words, ex­

amples in a cluster whose centre is in {(Vc)i} are more likely to be in {Vi}'

And recall that to have the optimal decision boundary each member of {Vi}

PATTERN CLASSIFICATION BY MACHINE LEARNING L. Meng

4.4 Centre-Based Optimisation 61

should occupy a cluster while to achieve the minimum redundance all the other

examples should take as few clusters as possible. Considering these, in each

iteration, each of the clusters whose centres are in {(Vc)i} is split further into

two new subclusters and then the working set is updated to include the centres

of these new clusters. This procedure is iterated, splitting each support-vector

clusters into two subclusters, restricting the training to the current set of clus­

ter centres, and finally halting when no further splitting is possible (Le. when

each support-vector cluster contains only that support vector itself). Since this

new algorithm extracts classification information from the compressed data set

that is composed of cluster centres, it is called centre-based optimisation (CO)

algorithm [19]. The CO algorithm has been implemented in MATLAB. The

quadratic programming subroutine provided in MATLAB optimisation toolbox

has been used as the standard technique to compare with. The QP problem

in each iteration of the CO is also solved using this subroutine.

Experiment and results

The CO has been tested on the Iris data set described in section 3.4. Again

to visualise the problem, experiments were conducted to separate the classes

of Iris Versicolour and Iris Virginica according to the two attributes - petal

length and petal width. Figures 4.2(a) and 4.2(b) show the decision boundaries

obtained for these data sets using the standard QP technique and our CO algo­

rithm, respectively. Comparing to the optimal decision boundary found by the

standard QP technique, the decision boundary has been well approximated by

the CO algorithm in terms of most support vectors have been identified. How­

ever, differences do exist. In Figure 4.2(b), one support vector has been lost.

Moreover, different runs of the CO may result in different decision boundaries

(see Figure 4.3 for another decision boundary that may possibly be generated

by the CO algorithm). The reason for multiple solutions is that the c-means

PATTERN CLASSIFICATION BY MACHINE LEARNING L. Meng

, , (. ' 1/ (t HI" ,·d ('I' 11tH , ,,"

f "lie III • • I.

. -

4.4 Centre-Based Optimisation 63

Figure 4.3: A possible decision boundary found with a Gaussian SVM for two­
feature Iris data set using t he CO algorithm. Same markers as in Figure 4.2(b)
are used. Moreover, examples in the cluster containing t he lost support vector
are indicated with an extra square . .

PATT ERN CLASSIFICAT ION BY MACHINE LEARNING L. Meng

4.4 Centre-Based Optimisation 64

Table 4.2: Comparison of the standard QP technique and the CO algorithm
for a Gaussian SVM on image segmentation subsets.

problem size 891 800 400 200 100

CPU time of standard algorithm 3920.5 2264.4 180.3 15.7 2.5

CPU time of CO 3.8567 3.3275 2.0084 1.2917 0.9882

size of Q involved in standard

training 793881 640000 160000 40000 10000

total size of all the

Q matrices involved in CO 14238 12928 8908.7 6835.1 5119.8

total CPU time only solving all the

QP subproblems involved in CO 2.1043 1.9185 1.3666 1.0166 0.8201

no. of CO iterations 31.2 29.4 25.8 22.8 21

algorithm has been used as the method for cluster splitting in each CO itera­

tion. The hill-climbing nature of this algorithm makes it to be easily trapped

into different local extrema (refer to Chapter 5 for a detailed discussion on c­

means). When a support vector in {Vi} becomes a member of a cluster whose

centre is not in {(VC)i} (such as indicated in Figure 4.3), it would never have

the chance to be separated from that cluster and become a cluster centre in the

. working set. Thus, the classification information contained in such a support

vector would be lost in such case.

Despite the inaccuracy and mUltiplicity of the resulting decision boundaries,

the CO is very fast. To investigate the increase of training time with the size

of the full training set, the image segmentation data set described in section

2.5 has been used in the experiment and the size of the data set was varied by

randomly taking subsets of the complete training set. Table 4.2 compares the

performance of the CO algorithm with the standard QP technique. Due to the

uncertainty caused by the c-means algorithm in a CO run, the results of the

CO algorithm are averaged over 100 independent runs. So is the CPU time of a

PATTERN CLASSIFICATION BY MACHINE LEARNING L. Meng

4.4 Centre-Based Optimisation

4r-----.-----~----~r_----~----~

3.5 -:

~ 3 ,
"0 c: : o .
~ 2.5 ·················r················
c: : 'm 2 :
E . .
~ 1.5 , ~
a..
u
~o 1
rii
o
- 0.5

.......... , ; , : " ,' ..

...... ,. ; , ~ , . .
. .. o , : :-

-O·~.'-5------'-4---4.L...5----~5,.-----5~.5-----..J6
109

10
(size of matrix Q)

65

Figure 4.4: The log-log plot of solving time versus the size of a QP problem.

Figure 4.5: The log-log plot of training time versus the size of full training set
for the CO algorithm and the standard technique on image segmentation data
set.

PATTERN CLASSIFICATION BY MACHINE LEARNING L. Meng

4.4 Centre-Based Optimisation 66

standard run. By the CO, the training time is reduced dramatically, especially

for large training sets. And for the largest (complete) training set, the training

time has been reduced to the (l/103),th of that cost by the standard technique.

This significant improvement is due to the following facts:

1) as indicated in Table 4.2, the full QP problem has been converted to a

sequence of small QP problems and the total size of these small QP problems

is much smaller than the size of the corresponding full QP problem;

2) as shown in Figure 4.4, the CPU time for solving a QP problem grows

exponentially with the size of the matrix Qj

3) as indicated in Table 4.2, the CPU time of a CO run is dominated by the

solving time for the sequence of small QP problems.

Figure 4.5 shows the log-log plot of training time in seconds versus the size

of the full training set for the CO and the standard technique on the image

segmentation data set. By fitting a line to the plot and then working out

the gradient of the line, an empirical scaling for the algorithm can be derived.

The training time of the standard technique scales Z3.27, where 1 denotes the

size of the full training set, while the CO time scales [0.68. This indicates the

great potential of centre-based algorithms for fast solving of SVM optimisation

problems with large training sets.

4.4.2 Error-centre-based optimisation (ECO)

The algorithm

As stated, the optimality of the resulting decision boundary can not be

guaranteed by the CO. Some support vectors may be missed. Observing Fig­

ures 4.2(b) and 4.3, we can see that these missed support vectors lie either

inside or on the wrong side of the margin. And since they were not involved in

last training their corresponding Qi are zero. Remind that the KKT conditions

are the necessary and sufficient conditions for the optimal solution. Equation

PATTERN CLASSIFICATION BY MACHINE LEARNING L. Meng

4.4 Centre-Based Optimisation 67

(2.3.18) for hard-margin SVMs and equation (2.4.8) for soft-margin SVMs in­

dicate that examples with zero ai must be correctly classified and lie outside

the margin. Inspired by this, modification has been made to the CO. In our

second attempt, each cluster is split into two sub-clusters by separating those

examples that satisfy the KKT conditions and thus lie outside or on the current

margin from those that violate the KKT conditions and thus lie inside or on

the wrong side of the current margin. On the one hand, as long as there are

examples in the original training set violate KKT condition at least one cluster

would be split. On the other hand, the procedure iterates until no example in

the original training set violates the KKT conditions. Hence, the optimality of

the solution found by this technique is guaranteed. Again, this new algorithm

builds SVMs using a set of cluster centres. Here, we refer examples that violate

the KKT conditions as margin errors. To further reduce the size of the QP

problem in each iteration, only are the clusters of the margin errors involved

in the SVM training. The rest clusters are represented by the support vectors

found in the previous iteration. Moreover, it has been proved by Osuna [55]

that the large QP problem can be broken down into a series of smaller QP sub­

problems. As long as at least one example that violates the KKT conditions

is added to the examples for the previous sub-problem, each step will reduce

the overall objective function and maintain a feasible solution that obeys all of

the constraints. Therefore, a sequence of QP sub-problems that always add at

least one violator will be guaranteed to converge. Considering this, in order to

ensure a strict improvement in the objective function and hence convergence,

the new algorithm inserts an error centre into the working set only if it violates

the KKT conditions. Otherwise, the example in that cluster that most violates

the KKT conditions will be inserted into the working set as the representative

of its cluster. Since most examples of the working set are the centres of error

clusters (support vectors of previous iteration must have been centres of error

clusters), this new algorithm is called error-cent re-based optimisation (ECO).

PATTERN CLASSIFICATION BY MACHINE LEARNING L. Meng

4.4 Centre-Based Optimisation 68

Table 4.3: Implementation steps of the error-center-based optimization (ECO)
algorithm.

Given a training set S, treat each class of S as a cluster.

Initialize the working set S to the centers of these two clusters.

REPEAT

'frain SVM on S.
Set S to the support vectors.

FOR each cluster er of S

split the current cluster Cr into two sub clusters by identifying

the margin errors, i.e. those that violate the KKT conditions.

IF cent er of the error cluster violates the KKT conditions

ELSE

add the center into S.

add the example, the worst point violating the KKT

conditions in Cr , into S.

UNTIL no new margin error is found.

The implementation steps of ECO are listed in Table 4.3. When examples are

tested against the KKT conditions, function f(x) is calculated (see equations

(2.3.18) and (2.4.8)). To reduce the computational time, only support vectors

are involved in the calculation of f(x) (equation (2.3.16)).

Experiments and results

The ECO algorithm has been implemented in MATLAB. And again, the

quadratic programming subroutine provided in MATLAB optimisation toolbox

have been used as the standard technique to compare with. The QP problem

in each iteration of the ECO is also solved by this subroutine.

Like CO, the ECO has been tested on Iris and image segmentation data sets.

Figures 4.6 and 4.7 show the decision boundaries obtained using the EGO for

PATTERN CLASSIFICATION BY MACHINE LEARNING L. Meng

4.4 Centre-Based Optimisation 69

Figure 4.6: The decision boundaries found with a Gaussian SYM using the
ECO algorithm for two-feature Iris data set. Same markers as in Figure 4.2(b)
are used.

o 6SVs
o 1S'th iteration

Figure 4.7: The decision boundaries found with a Gaussian SYM using the
ECO algorithm for two-feature image s gmentation data set. Same markers as
in Figure 4.2(b) are used.

PATTERN CLASSIFICATION BY MACHINE LEARNING L. Meng

4.4 Centre-Based Optimisation 70

........ ,.
-\ ..

(a) subset of 800 examples (b) subset of 400 examples

o 6SVs
o 13'th iteration

(c) subset of 200 examples (d) ubset of 100 examples

Figure 4.8: The decision boundaries found with a Gaussian SYM using the
ECO algorithm for different subsets of two-feature image segmentation data
set. Same markers as in Figure 4.2(b) are used.

Table 4.4: Performance of the ECO algorithm with a Gaussian SYM on image
segmentation data set.

problem size 891 800 400 200 100

CPU time of ECO 9.1603 8.8201 3.2659 1.9307 0.9404

total size of all the

Q matrices involved in ECO 1242 1280 742 934 610

total CPU time only solving all the

QP subproblems involved in ECO 0.2137 0.1834 0.1133 0.1274 0.0863

no. of ECO iterations 15 16 12 13 12

PATTERN CLASSIFICATION BY MACHINE LEARNING L. Meng

4.4 Centre-Based Optimisation

4rr=====~----'-----~----~----,
-+- standard

-- CO 3.5 __ ECO

'g 3 ~

o : o . 5l 2.5 (.................................... .

. 5 : ;. ,
: :

Q) 2 ,

~
g> 1.5 :
'c
'n;
t 1

o
ol

" ;, ~
: : . .
: :

~O.'!5==~~~~==~=r=
2.4 2.6

109
10

(size of full training set)
3

71

Figure 4.9: The log-log plot of training time versus the size of full training set
for the ECO algorithm on image segmentation data set.

these two data set, respectively. Comparing to the decision boundaries found

using the standard technique (as shown in Figure 4.2(a) for the Iris data set

. and Figure 2.12 for the image segmentation data set), we can see that the

results are exactly the same. Therefore, the optimal SVM has been found by

the ECO. Moreover, since no randomness resides in the ECO procedure the

decision boundary generated by the ECO for a particular training set is certain

and unique.

The increase of training time with the growth of the size of training set

has been investigated for the ECO algorithm. Figures 4.8(a) • (d) show the

decision boundaries found with a Gaussian SVM using the ECO for training

subsets of 800, 400, 200 and 100 examples, respectively. Since the whole set

of support vectors has been included in each of these subsets deliberately, the

optimal decision boundary for each of these training subsets is expected to the

same as that of the complete training set. As shown in Figures 4.8(a). (d), the

optimal decision boundary has been found by the ECO for each training subset.

Table 4.4 summarises the performance of the ECO algorithm for a Gaussian

SVM on the image segmentation data set. Considering that the conditions of a

PATTERN CLASSIFICATION BY MACHINE LEARNING L. Meng

4.4 Centre-Based Optimisation 72

CPU varies, we averaged the CPU times over 100 independent runs. The ECO

converges faster than the CO in terms of the number of iterations. The total

amount of CPU time spent in solving QP problems is less since the total size

of matrix Q's in a ECO run is less than in a CO run. Howeyer this is achieved

at the cost of error checking. The running time of ECO is dominated by error

checking. Figure 4.9 shows the log-log plot of training time in seconds versus

the size of the full training set for the ECO, the CO and standard technique on

the image segmentation data set, respectively. The ECO is much faster than

the standard technique. While due to the extra time spent in error checking,

the ECO algorithm requires longer training time than the CO. However, the

ECO can guarantee an optimal solution while the CO cannot. The training

time of ECO scales l1.04, i.e. grows almost linearly with the size of the full

training set.

4.4.3 ECO for soft-margin SVMs

The algorithm

Last subsection demonstrated the success of the ECO algorithm for hard­

margin SVMs. However, when the ECO is applied to a SVM with soft margin

problem arises.

For a SVM with soft margin, noisy examples are allowed to remain inside or

even on the wrong side of the optimal margin. On the contrary, by applying the

KKT conditions in error checking and then involve error centers into training,

the ECO actually tries to push all the training examples outside the final

margin. It may happens that even though all the examples lie inside or on

the wrong side of the margin are identified by the KKT conditions in the error

checking step, the QP solving step will allow their cluster centers to remain

inside or on the wrong side of the margin. Consequently, the decision boundary

does not move. The same group of error points are detected. Further iterations

PATTERN CLASSIFICATION BY MACHINE LEARNING L. Meng

4.4 Centre-Based Optimisation 73

will bring no improvement. The problem is that the training procedure of ECO

will not stop until all the training examples are outside the margin. To solve

this problem, the soft version of the ECO stops when no new error cluster is

formed, i.e. when no new error center is added to the working set.

Experiments and results

The ECO has been tested on the image segmentation data set for C = 1000,

C = 100, C = 10 and C = 1. The resulting decision boundaries are shown in

Figures 4.10 - 4.13, respectively. And the numbers of support vectors are given

in Table 4.5. These decision boundaries have been tested on the training set.

The number of errors on the training set is also given in Table 4.5. Comparing

with those obtained using the standard technique for the same values of C

(see Table 2.2 and Figures 2.8 - 2.11), the decision boundaries obtained using

different algorithms are almost the same for large values of C. However, as the

value of C decreases, difference appears between the results obtained by the

ECO and the standard QP technique. As shown in Figure 4.12 for C = 10,

the ECO allows more margin errors than the standard technique. And as C

decreases to 1, significant difference are observed. The reason for this is that, in

the training procedure of ECO, the SVM is trained on and thus penalises cluster

centres rather than individual examples. If the clusters of errors are small and

each contains just a few points, then the number of error cluster centres and the

number of error examples should be similar. The decision boundary obtained

using the ECO should be similar to that obtained using standard technique.

This is exactly the case when C is large, such as observed in Figures 4.10

and 4.11 where error points scatter alone the margin boundaries and each

error cluster contains very few error points. When C is small, the number

of margin errors is expected to be large and error clusters each containing a

few of example points may form. As a result, the number of error cluster

PATTERN CLASSIFICATION BY MACHINE LEARNING L. Meng

4.5 Conclusion 74

centres should be much less than the number of error examples; the second

term of objective function (2.4.1) becomes smaller under ECO as if a smaller

C had been used, such as the case shown in Figure 4.13. The motivation of

introducing C into SVM is to discard noisy examples automatically. If a small

C is used, examples containing classification information may be lost and the

number of support vectors will be much higher while most of them are at the

upper bound. Considering this, the use of a small C is not recommended in

practice. While if a large C is used, the result given by the ECO is expected

to be the same or at lest very similar to that by the standard technique.

The increase of training time with the growth of the size of the training set

has been investigated for soft-margin SVMs using the ECO. Like in experiments

with hard-margin SVMs, subsets of image segmentation data set have been

used. Figures 4.14(a) - (d) show the corresponding decision boundaries found

with a Gaussian SVM for C = 100. Comparing with that shown in Figures

4.15(a) - (d) for the standard technique, similar decision boundaries have been

found by the different algorithms. Table 4.6 summarises performance of the

ECO on these subsets. Comparing with that listed in Table 4.7 for the standard

technique, the group of noisy examples identified by the different algorithms

are almost the same for each value of C. Figure 4.16 shows the log-log plot

of training time in seconds versus the size of the full training set for the ECO

and the standard technique on image segmentation data set when C = 100.

Similar scaling of increment in training time has been observed for the ECO

with different values of C. Again, the great potential of ECO for fast training

of SVMs with large training set is demonstrated.

4.5 Conclusion

The standard QP technique is not suitable for the case of SVM training.

Considering this, new centre-based algorithms, the CO algorithm and the ECO

PATTERN CLASSIFICATION BY MACHINE LEARNING L. Meng

4.5 Conclusion 75

o 7 SVs
o 13'th iteration

.......... I....
~J:I' ;::"
'\ ~j l •
'" -.-, .. ~ ~_.. 1.1"
.l':. .. ~..,.,... .1. -- ~ ,".,_ ... ,,,, ·

.. • • l •

Figure 4.10: The decision boundary found with a Gaussian SYM using the
ECO algorithm for C = 1000. Same markers as in Figure 4.2(b) are used. And
the training error points are marked with an extra magenta square.

,......... .
~J:I'F:"' '" . I,.

Figure 4.11: The decision boundary found with a Gaussian SYM using the
ECO algorithm for C = 100. Same markers as in Figure 4.10 are used.

PATTERN CLASSIFICATION BY MACHINE LEARNING L. Meng

4.5 Conclusion 76

o 8SVs
......... . 0 17'th iteration

.. ' .. '
x'

.,.-Jt..
~:"w •.• .

•)(jII .. ,"

'bl> :.?

Figure 4.12: The decision boundary found with a Gaussian SVM using the
ECO algorithm for C = 10. Same markers as in Figure 4.10 are used .

..........
" .

Figure 4.13: The decision boundary found with a Gaussian SVM using the
ECO algorithm for C = 1. Same markers as in Figure 4.10 are used.

PATTERN CLASSIFICATION BY MACHINE LEARNING L. Meng

4.5 Conclusion

(a) subset of 800 examples

(c) subset of 200 examples

..... '.. ,: ... """,,, :
:..a .. ~ .,.,: ••

(b) subset of 400 examples

(d) subset of 100 examples

77

Figure 4.14: The decision boundaries found with a Gaussian SVM using the
EGO algorithm for different subsets of two-feature image segmentation data
set when C = 100. Same markers as in Figure 4. 10 are used.

PATTERN CLASSIFICATION BY MACHINE LEARNING L. Meng

4.5 Conclusion 78

(a) subset of 800 examples (b) subset of 400 examples

,. .. , .
~ .. '\-: ~ .. ,.

_ •• ' •• 0

'.

(c) subset of 200 examples (d) subset of 100 examples

Figure 4.15: The decision boundaries found with a Gaussian SVM using stan­
dard technique for different subsets of two-feature image segmentation data
set when C = 100. The posit ive and negative examples are marked with 'x's
and '+ 's, respectively. And t he t raining error points are marked wit h an extra
magenta square.

PATTERN CLASSIFICATION BY MACHINE LEARNING L. Meng

4.5 Conclusion 79

Table 4.5: Performance of the ECO algorithm with a Gaussian SVM on image
segmentation data set for different values of C. SVs stands for support vectors.

C 1000 100 10 1

no. of support vectors 7 9 8 10

no. of unbounded SV s 6 5 5 7

no. of errors on training set 1 3 6 224

4rr=======~--'------r----~-----.

3.5

'6' 3 , : , : ,
c :
o . : .
~ 2.5 \ , .. ,.+ : .
. 5

. "1' 1' ~ 2 ~ ' :

"" . .
. ~ ", .. ~ 1.5 ;

'2
~ 1 ,. ..: ... " ".~ , ,.+ .. , .. , ,",,_: .. ,_ . ..-_
~o

ol
.2 0.5

o,.,::.:-: '1" , .. ,.: ,,:, ... , , ,
. .

2.2 2.4 2.6 2.8 3
f0910(size of full training set)

Figure 4.16: The log-log plot of training time versus the size of full training
set for the ECO algorithm on image segmentation data set.

algorithm, have been introduced for speeding up the training of a SVM. Under

them, the full training set is compressed and represented by the set of cluster

centres. In the training process, more and more error centres are added into the

current working set until the optimal solution is obtained. The optimality of

the solution obtained by the ECO is guaranteed since the KKT conditions have

been used as its stop criterion. Moreover, its great potential for large training

sets has been demonstrated by the experimental results as the training time

scales almost linearly in the training set size.

PATTERN CLASSIFICATION BY MACHINE LEARNING L. Meng

4.5 Conclusion 80

Table 4.6: Performance of the ECO algorithm with a Gaussian SVM on dif­
ferent image segmentation subsets when C = 100. SVs stands for support
vectors.

problem size 891 800 400 200 100

CPU time of ECO 8.9181 9.2428 5.1553 1.7952 1.1951

total size of all the

Q matrices involved in ECO 1141 1236 1267 688 875

total CPU time only solving all the

QP subproblems involved in ECO 0.2907 0.2861 0.3494 0.1521 0.2035

no. of ECO iterations 12 15 14 11 11

no. of SVs 9 7 9 6 9

no. of unbounded SV s 5 5 5 4 7

no. of errors on training set 3 2 3 2 2

index of 376 796 13 196 96

error points 553 797 396 197 97

589 397 .

Table 4.7: Performance of the standard QP technique with a Gaussian SVM on
different image segmentation subsets when C = 100. SVs stands for support
vectors.

problem size 891 800 400 200 100

CPU time of standard algorithm 4138.6 2543.8 241.86 23.752 3.6493

size of Q involved in standard

training 793881 640000 160000 40000 10000

no. of SVs 11 10 12 10 9

no. of unbounded SV s 6 5 6 5 5

no. of errors on training set 2 2 2 2 2

index of 376 796 396 196 96

error points 553 797 397 197 97

PATTERN CLASSIFICATION BY MACHINE LEARNING L. Meng

Chapter 5

UNSUPERVISED LEARNING

AND CLUSTERING

So far, our interest has focused on supervised learning, whose task is to

learn the decision boundary between the classes given by the teacher. From this

chapter, we depart from this path and concentrate on unsupervised learning,

where the learner seeks to develop a concept description from examples that

have not been pre-classified by the teacher.

5.1 Introd uction

In unsupervised learning all one has is a collection of unlabelled samples.

One might wonder why anyone is interested in such an unpromising problem,

and whether or not it is possible even in principle to learn anything of value

from unlabelled samples. There are at least five basic reasons for interest in

unsupervised procedures.

First, collecting and labelling a large set of sample patterns can be sur­

prisingly costly. For instance, recorded speech is virtually free, but accurately

labelling the speech - marking what word or phoneme is being uttered at each

81

5.1 Introduction 82

instant - can be very expensive and time consuming. If a classifier can be

crudely designed on a small set of labelled samples, and then "tuned up" by

allowing it to run without supervision on a large, unlabelled set, much time

and trouble can be saved.

Second, one might wish to proceed in the reverse direction: train with large

amounts of (less expensive) unlabelled data and only then use supervision to

label the groupings found. This may be appropriate for large data mining

applications, where the contents of a large database are not known beforehand.

Actually, this is what scientists (say, biologists) have been doing for centuries,

developing such categories as vertebrates, sub categories as mammals or birds,

and the like.

Third, in many applications the characteristics of the patterns can change

slowly with time. For example, in automated food classification as the sea­

sons change. If these changes can be tracked by a classifier running in an

unsupervised mode, improved performance can be achieved.

Fourth, as already mentioned, we can use unsupervised methods to find fea­

tures that will then be useful for categorisation. There are unsupervised meth­

ods that provide a form of data-dependent "smart preprocessing" or "smart

feature extraction" , e.g. the Principle Component Analysis and Independent

Component Analysis methods.

Lastly, in the early stages of an investigation it may be valuable to perform

exploratory data analysis and thereby gain some insight into the nature or

structure of the data. The discovery of distinct subclasses - clusters or groups.

of patterns whose members are more similar to each other than they are to other

patterns - or of major departures from expected characteristics may suggest

that we should significantly alter our approach to designing the classifier.

The answer to the question of whether or not it is possible in principle

to learn anything from unlabelled data depends upon the assumptions one is

willing to accept. Assuming that we know the complete probability structure

PATTERN CLASSIFICATION BY MACHINE LEARNING L. Meng

5.2 Hard Clustering 83

for the problem except the values of some parameters, we can use maximum­

likelihood methods to estimate these unknown parameters. Or if we are also

provided with a known prior distribution of the unknown parameters, we can

take a Bayesian approach to unsupervised learning. Such methodology is clas­

sified as parametric pattern classification. If the goal is to find subclasses

(as addressed in the last reason above), then a more direct alternative is to

use clustering procedures. Pattern classification using clustering procedures

is nonparametric where the goal is to optimise an objective function rather

than estimate some unknown parameters. The rest of this chapter is devoted

a discussion on clustering.

5.2 Hard Clustering

A clustering problem concerns a set of n objects to be clustered into c

clusters. If no overlap between clusters is allowed, then the problem becomes

a hard clustering problem. Typically, the membership of the n objects to each

of the c clusters is described by a c x n matrix, called partition matrix. For

a degenerate partition, its partition matrix contains one or more empty rows,

meaning that fewer than c clusters are obtained by this partition. For an n­

object c-cluster clustering problem, the set of all c x n nondegenerate partition

matrices is denoted by M and defined as follows

c n

M - {U E R cxn I L Uik = 1, D < L Uik < n,
i=l k=l

D ::; Uik ::; 1; i = 1, ... ,c, k = 1, ... ,n} (5.2.1)

where U denotes a partition matrix.

For hard partitions, Uik E {D, I}. Given an object Xk, for all k = 1, ... , n,

PATTERN CLASSIFICATION BY MACHINE LEARNING L. Meng

5.2 Hard Clustering 84

each element of the kth column of U is defined by

{

I, if Xk belongs to the ith cluster;.
Uik =

0, otherwise.
(5.2.2)

The size of M, Le. the number of ways to cluster n objects into c nonempty

groups, is a Stirling number of the second kind [70], given by

(5.2.3)

where, as in the formulae above, n is the number of objects and c is the desired

number of clusters.

In clustering, there are various objective functions. The following is one of

the typical objective functions used in clustering

c n

J1(U,V) = 2:2: Uik .D~k(Vi,Xk) (5.2.4)
i=l k=l

where Xk E R 8 is the feature vector describing the kth object, Vi E R S is the

feature vector describing the representative of the ith cluster, and D;k(Vi, Xk)

is the squared Euclidean distance between vectors Vi and Xk. The set of c

representatives, one for each cluster, composes a matrix V = (VI, V2, ... ,vcF.
The objective function defined by equation (5.2.4) describes the accumu­

lated error when replacing each object by the representative of the cluster it

belongs to. Therefore, it is actually a measure of. distortion. The objective of

the problem is to minimise this distortion and consequently find the optimal

partition. This clustering criterion is termed sum-of-squared-error criterion

[3].

PATTERN CLASSIFICATION BY MACHINE LEARNING L. Meng

5.3 Hard c-Means Clustering Algorithm 85

5.3 Hard c-Means Clustering Algorithm

(HCMCA)

Of the various techniques that can be used to simplify the computation and

accelerate convergence, c-means (also known as k-means) is an elementary but

very popular clustering algorithm.

It has been shown that minimising distortion J1 (D, V) with respect to a

hard partition matrix leads to the following two conditions [71]: for all i =
1, ... ,c and k =1, ... , n, firstly

.... E~-l UikXk
Vi = ~n ,

L.,;k=l Uik
(5.3.1)

Le. the representative of a cluster should be the centroid of the objects in that

cluster (for this reason, representatives of the clusters are also referred to as

cluster centres); and secondly,

(5.3.2)

Le. an object should be assigned to the cluster with the closest centre.

Hard c-means clustering algorithm (HCMCA) adopts these two conditions

and minimises the objective function J1{U, V) by alternatively updating ma­

trices V and U using equations (5.3.1) and (5.3.2). In this sense, HCMCA

can be generalised as an iterative procedure of alternate minimisation which

is widely adopted in machine learning. At the first step of each iteration,

such a procedure fixes parametric model Ml = Mllold and gets parametric

model M21new = arg minMl F{ M},)\,12), where function F(Ml ,)\,12) is the ob­

jective function of both Ml and M2 . And then at the second step of each

iteration, alternately, the procedure fixes A12 = A1210ld and gets Mllnew =
arg minMl F(M1, A12)' The alternate minimisation procedure guarantees to re­

duce the objective function F(M}, A12) until it converges to a local minimum.

PATTERN CLASSIFICATION BY MACHINE LEARNING L. Meng

5.4 Local Search - The Crucial Problem of c-Means Clustering 86

For procedures implementing HCMCA, model Ml = V, model M2 = U and

the objective function F(MI, M 2) = J1 (U, V). And it is traditional to let c

examples randomly chosen from the data set serve as the initial set of cluster

centres.

HCMCA was introduced by Lloyd [71], which inspired many variations,

such as the use of the Mahalanobis distance [72] instead of the Euclidean

distance for equations (5.2.4) and (5.3.2), or the use of fuzzy measures [73, 74]

to allow overlapped clusters. HCMCA and its variations are generally called

the c-means methods since they all use the centre to represent a cluster. The

c-means methods are essentially calculus-based, where cluster centres tend to

move in the directions that the gradient of the objective function descends

most. As hill-climbing techniques, the c-means methods display high efficiency

and have been effectively applied in different areas. They may be used to

generate a representative set of prototypes for a data set, often in conjunction

with other pattern recognition schemes. For example, c-means may be used

to generate a set of vectors to be used as centres in a radial basis function

(RBF) classifier [75]. Vector quantisation [76] is an application of the c-means

procedures. In a texture classification problem, a c-means method has been

used to obtain a reduced set of samples characterising each class of texture

[77]. c-means for speech coding has been discussed in [78].

Although the c-means methods are efficient, they have a common inevitable

drawback. The next section discusses this drawback in the context of HCMCA.

5.4 Local Search - The Crucial Problem of c-

Means Clustering

As already mentioned, HCMCA is a calculus-based method. Therefore,

it is efficient and powerful in local optimisation. However, as stated in [71],

PATTERN CLASSIFICATION BY MACHINE LEARNING L. Meng

5.4 Local Search - The Crucial Problem of c-Means Clustering

100,..------.---"T------r-----,

i:j 80
J:

~
Cl 60
c

~
~ 40
c
!!:!
::l

§ 20
'0

g LIl-
o 0.5

87

Figure 5.1: Distribution of the J1 values associated with the partitions found
when classifying Chernoff faces using HCMCA (see section 7.3 for a description
of the experiment).

the two conditions defined by equations (5.3.1) and (5.3.2) are necessary but

not sufficient conditions for the existence of the optimal partition. In other

words, more than one partition (local extremum) may satisfy equations (5.3.1)

and (5.3.2). Moreover, the objective function HCMCA tries to optimise is

typically a highly non-linear function. As often reported in the literature, the

hill-climbing HCMCA is fairly sensitive to initial conditions and can be easily

trapped in a local optimum that is far away from the global one. Figure 5.1

plots the distribution of the J1 values associated with the partitions found

when applying HCMCA to a real-world clustering problem - the Chernoff faces

data set [79]. As we can see, the distribution is broad and thus indicates the

local optimality of these solutions and reveals the sensitivity of HCMCA to

the initial conditions. Moreover, the majority of the partitions found for this

application problem using HCMCA causes a J1 value (Le. distortion) much

higher than the optimal one. To tackle these problems, a novel algorithm

has been proposed, which adopts the stochastic nature of genetic algorithms

and thus performs a global optimisation of the clustering objective function

J1(U, V).

PATTERN CLASSIFICATION BY MACHINE LEARNING L. Meng

)

5.5 Conclusions 88

5.5 Conel usions

This chapter has been devoted to an introduction to the problem of hard

clustering and the common used clustering algorithm - HCMCA. The formula­

tion of the problem and the method has been presented. The inevitable draw­

backs of c-means have been discussed in the context of HCMCA, which urges

the employment of a more advanced searching method, such as the genetic

algorithms. Before presenting the new genetically guided clustering algorithm,

we devote the next chapter to an introduction to the genetic algorithms.

PATTERN CLASSIFICATION BY MACHINE LEARNING L. Meng

Chapter 6

FUNDAMENTALS OF

GENETIC ALGORITHMS

6.1 Introduction to Evol':ltionary Algorithms

The family of evolutionary algorithms (EAs) is a collection of optimisation

algorithms that are inspired by natural evolutionary phenomena and derived

from simulating Darwinian evolutionary theory.

Darwinian evolution is essentially a robust search and optimisation mecha­

nism. Evolved biota demonstrate optimised complex behaviour at every level:

the cell, the organ, the individual and the population. The problems that

biological species have solved are typified by chaos, chance, temporality, and

nonlinear interactivities. These are also characteristics of problems that have

proved to be intractable to classic methods of optimisation. The evolutionary

process can be applied to problems where heuristic solutions are not available

or generally lead to unsatisfactory results. As a result, EAs have recently re­

ceived increased interests, particularly with regard to the manner in which they

may be applied for practical problem solving. EAs are classified as stochastic1

IThe searching procedure by a genetic algorithm can be formulated as a finite-dimension
Markov chain.

89

6.2 Types of Evolutionary Algorithms 90

search algorithms for global2 optimisation problems and have found many en­

gineering and industrial applications (see, for example, [23] - [25], [80] - [84]).

The massive scale of research activities concerning EAs undertaken world-wide

in recent years symbolises a systematic knowledge transition from life science

and human science through mathematics and computer science to engineering

technology.

6.2 Types of Evolutionary Algorithms

In the area of evolutionary computation, there are three broadly similar

branches: Genetic Algorithm (GA), Evolution Strategy (ES), and Evolution­

ary· Programming (EP). All of these three optimisation techniques maintains

a population of trial solutions, imposes random changes to them, and incor­

porates selection. But they also have important differences. These differences

are philosophical and due to their different beliefs in biology.

In the field of biology, there are diametrically opposed opinions as to what

exactly is being evolved. Davis [85] (p. 2) suggests that "evolution is a process

that operates on chromosomes rather than on the living beings they encode."

In sharp contrast, Mayr [86] (p. 162-163) defined that "evolution is change

in the adaptation and in the diversity of populations of organisms." In brief,

Davis advocates evolution on genotype while Mayr advocates evolution on

phenotype.

Following the philosophy of Davis, GAs represent each trial solution as

genes along a chromosome and impose genetic operators on these genes. GAs

emphasise the reductionist, bottom-up assembly of building blocks - gene se­

quences with high-performance. New generations of gene strings are primarily

created via combined process of selection and recombination. Whereas, in ES

2Unlike the traditional optimisation methods, evolutionary algorithms are less likely to
be trapped on the local optima.

PATTERN CLASSIFICATION BY MACHINE LEARNING L. Meng

6.3 Advantages of Evolutionary Computation 91

and EP, the components of a trial solution are viewed as behavioural traits of

an individual. Each new generation of these phenotypic traits is created by

adding a Gaussian random variable. ES and EP emphasise this mutational

transformation which maintain behavioural linkage between each parent and

its offspring, respectively at the level of the individuals or the species - sub­

populations of individuals.

GAs emphasise the overt genetic attributes of gene recombination (more

widely known as crossover) and have defined it as the most distinguishing

feature. The application of recombination operations to purely genetic infor­

mation in ES is logically sound because this process operates on simulated

individuals. Whereas, the application of recombination in EP is not applicable

because each solution is typically viewed as the analog of a species, and there

is no sexual communication between species.

6.3 Advantages of Evolutionary Computation

Evolutionary computation - the term now used to describe the field of inves­

tigation that concerns all evolutionary algorithms - offers practical advantages

to the researchers facing difficult optimisation problems. These advantages are

multifold, including the simplicity of the approach, its flexibility, its superiority

to classic techniques, its parallelism and many other aspects.

Conceptual simplicity

A primary advantage of evolutionary computation is that it is conceptu­

ally simple. The main flow chart that describes every EA applied for function

optimisation is shown in Figure 6.1. The algorithm consists of initialisation,

where a population of candidate solutions to the problem at hand is initialised,

followed by iterative fitness-based selection and variation. Competing solutions

PATTERN CLASSIFICATION BY MACHINE LEARNING L. Meng

6.3 Advantages of Evolutionary Computation

Initialise a population
of trail solutions.

Select fitter individuals as parents.

Generate new individuals via applying
mutation and/or crossover to the selected arents.

Update the population.

no

Output the fittest individual as the solution
to the roblern described b the fitness function.

92

Figure 6.1: The main flow chart of the vast majority of evolutionary algorithms.

PATTERN CLASSIFICATION BY MACHINE LEARNING L. Meng

6.3 Advantages of Evolutionary Computation 93

are evaluated according t'o a fitness (or performance index) such that two com­

peting solutions can be rank-ordered. Finer granularity is not required. Thus

the criterion need not be specified with the precision that is required of some

other methods. In particular, no gradient information needs to be presented to

the algorithm. Fitness-based selection is applied to determine which solutions

will be maintained into the next generation, and with what frequency. These

selected parents are then subjected to random variation, including mutation

and/or recombination, and the process iterates. Over iterations of selection and

random variation, the population is expec~ed to converge to optimal solutions

[87, 88].

Broad applicability

EAs can be applied to actually any problem that can be formulate~ as a func­

tion optimisation task. It requires a data structure to represent solutions,

a performance index to evaluate solutions, and variation operators to gener­

ate new solutions from old solutions. The state space of possible solutions

can be disjoint and can encompass infeasible regions, and the performance in­

dex can be time varying, or even a function of competing solutions extant in

the population. The human designer can choose a representation that follows

their intuition. In this sense, the procedure is representation-independent, in

contrast with other numerical techniques which might be applicable for only

continuous values or other constrained sets. This flexibility allows for applying

essentially the same procedure to discrete combinatorial problems, continuous­

valued parameter optimisation problems, mixed-integer problems, etc.

Superiority over classical methods on real problems

For simple problems, where the response surface is, say, strongly convex, EAs

do not perform as well as traditional optimisation methods [89). nut this is to

be expected as these techniques were designed to take advantage of the convex

property of such surfaces. However real-world function optimisation problems

PATTERN CLASSIFICATION BY MACHINE LEARNING L. Meng

6.3 Advantages of Evolutionary Computation 94

often (1) impose nonlinear constraints, (2) require payoff functions that are not

concerned with least square error, (3) involve nonstationary conditions, (4) in­

corporate noisy observations or random processing, or include other vagaries

that do not conform well to the prerequisites of classical optimisation tech­

niques. Further, the response surface posed in real-world problems are often

multi-modal, and gradient-based methods rapidly converge to local optima (or

perhaps saddle points) which may yield insufficient performance. Schwefel [90]

has shown in a series of empirical comparisons that in the alternate condition

of applying classical methods to multi-modal functions, EAs offer a significant

advantage.

Moreover, the problem of defining the payoff function for optimisation lies

at the heart of success or failure: inappropriate descriptions of the performance

index lead to generating the right answer for the wrong problem. Within clas­

sical statistical methods, concern is often devoted to minimising the squared

error between forecast and actual data. But in practice, equally correct predic­

tions are not of equal worth, and errors of identical magnitude are not equally

costly. Consider the case of correctly predicting that a particular customer

will purchase 10 units of a product. This is typically worth less than correctly

predicting that the customer will purchase 100 units of that product, yet both

predictions cause zero error and weighted equally in classical statistics. Fur­

thermore, the error of predicting the customer will demand 10 units and having

him actually demand 100 units is not of equal cost to the manufacture as pre­

dicting the customer will demand 100 units and having him demand 10. Yet

again, under a squared error criterion, these two situations are treated iden­

tically. In contrast, within EAs, any definable payoff function can be used to

compare alternative behaviours. There is no restriction that the criteria should

be differentiable, smooth, or continuous.

PATTERN CLASSIFICATION BY MACHINE LEARNING L. Meng

6.3 Advantages of Evolutionary Computation 95

Potential to use knowledge and hybridise with other methods

It is always reasonable to incorporate domain-specific knowledge into an algo­

rithm when addressing particular real-world problems. Specialised algorithms

can outperform unspecialised algorithms on a restricted domain of interest [91].

EAs offer a framework where it is comparably easy to incorporate such knowl­

edge. For example, specific variation operators may be known to be useful

when applied to particular representations (e.g. partially matched crossover

for travelling salesman problem [92]).

EAs can also be combined with more traditional optimisation techniques.

This may be as simple as the use of a conjugate-gradient minimisation applied

after the primary search with an EA (e.g. [93]), or it may involve simulta­

neous applications of algorithms (e.g. the use of evolutionary search for the

structure of a model coupled with gradient search for parameter values [94]).

Further, evolutionary computation can be used to optimise the performance

of neural networks [95], fuzzy systems [96], production systems [97], and other

program structures [98, 99]. In many cases, the limitations of conventional

approaches (e.g. the requirement for differentiable hidden nodes when using

back propagation to train a neural network) can be avoided.

Parallelism

Evolution is a highly parallel process. It is often the case that individual

solutions can be evaluated independently of the evaluations assigned to com­

peting solutions. The evaluation of each solution can be handled in parallel

and only selection (which requires at least pairwise competition) requires some

serial processing. As distributed processing computers become more readily

available, there will be a corresponding increased potential for applying evolu­

tionary algorithms to more complex problems.

Ability to solve problems that have no known solutions

Perhaps the greatest advantage of EAs cames from the ability to deal-with

PATTERN CLASSIFICATION BY MAClIINE LEARNING L. Aleng

6.4 Genetic Algorithms (GAs)

Table 6.1: Implementation steps of simple genetic algorithms.

Initialise a population of gene strings.

REPEAT

Evaluate each string in the population.

Based on fitness, select pairs of parents from the current population.

Generate offspring of the selected parents via crossover and muta­

tion .

. Replace the parents with their offspring.

UNTIL the specified number of generation is reached.

96

problems for which there are no human experts. Although human expertise

should be used when it is available, it often proves less than adequate for

automatic problem-solving. Troubles with such expert systems are well known:

the experts may not agree, may not be self-consistent, may not be qualified,

or may simply be in error. Research in artificial intelligence has broken into

a collection of methods and tricks for solving particular problems in restricted

domains of interest. Certainly, thes~ methods have been successfully applied

to specific problems (e.g. the chess program Deep Blue). But most of these

applications require human expertise. They may be impressively applied to

difficult problems requiring great computational speed, but they generally do

not advance our understanding of intelligence. "They solve problems, but they

do not solve the problem of how to solve problems," ([100], p. 259). In contrast,

evolution provides a method for solving the problem of how to solve problems.

It is a recapitulation of the scientific method [101] that can be used to learn

fundamental aspects of any measurable environment.

PATTERN CLASSIFICATION BY MACHINE LEARNING L. Jrfeng

6.4 Genetic Algorithms (GAs) 97

6.4 Genetic Algorithms (GAs)

Since the work reported in this thesis has related mainly to genetic algo­

rithms (GAs), the rest of this chapter will focuses on a systematic discussion

of GAs. Table 6.1 shows the implementation steps of the canonical or simple

genetic algorithm (SGA), which illustrates the central ideas in the operation

of GAs.

6.4.1 Types of GAs

Besides the SGA described in Table 6.1, there are a number of significant

variations. There are the elitist, steady-state, and deme GAs, they all differ

from the simple GA in the way that they treat the population of individuals

from generation to generation.

Elitism is a simple extension to SGA that ensures that the best individ­

ual persists from generation to generation. The steady-state GA also allows

individuals to persist from one generation to the next, usually by keeping

the best individuals and replacing the worst. It was originally developed by

Whitley [102]. The algorithm generates a single individual at each generatio,!1,

which then replaces a selected member of the population (usually the worst).

Syswerda [103] describes a similar algorithm that is the same except that in­

stead of a single individual multiple new genomes (the number of newborns is

set via a parameter called generation gap) are created each generation. The ad­

vantage of these approaches is that the population always contains of the best

solutions discovered by the algorithm so far. Whereas, under SGA it is possible

that the algorithm "loses" important genetic material due to a good individual

not being selected or because of the subsequent crossover and mutation.

The deme GA is significantly different. Instead of a single population of

individuals, a number of sub-populations are evolved independently. Occasion­

ally, the better individuals from a sub-population are selected for migration,

PATTERN CLASSIFICATION BY MACHINE LEARNING L. Meng

6.4 Genetic Algorithms (GAs) 98

which involves transferring them to another sub-population. The advantage of

this technique is that it allows for the easy paraIlelization of the GA through

cluster computing techniques. Sub-populations can be evolved on separate

machines and communicate the migrating individuals by a network.

6.4.2 Fitness scaling

Before individuals are selected from the population to generate offspring,

the raw score obtained from calling the objective function is converted into

a fitness score. There are many approaches to doing this. The simplest is

no scaling where the objective score is used directly as the fitness value. This

has the disadvantage that a few good individuals may dominate the population

within a few generations (Le. too much selection pressure); or there is too little

difference between individuals and so they all have an equal chance of being

selected (Le. too little selection pressure). If the later problem exists then a

good alternative is linear scaling where better individuals get a proportionally

higher fitness. A good general-purpose scheme is rank-based scaling [102],

where fitness is assigned based on the rank of an individual within a population

that is ordered in light of objective score.

6.4.3 Selection schemes

After the fitness evaluation, an expected value of offspring is assigned to

each individual extant in the population based on its fitness relative to the

others. This can be expressed mathematically as

fit(x) I I ev% = x pop
LXEPOP fit(x)

(6.4.1)

where evx denotes the expected value of individual x, fit(x) evaluates the fit·

ne ss value of individual x and pop is the set composed of individuals in current

population. Then the phase of selection determines the actual number of off·

PATTERN CLASSIFICATION DY MACHINE LEARNING L. Meng

6.4 Genetic Algorithms (GAs) 99

spring each individual will receive. Baker [104] stated that "the algorithm

used to convert the real expected values to integer numbers of offspring is

called the sampling algorithm." There have been various sampling algorithms

reported. The well-known schemes are stochastic sampling with replacement,

stochastic sampling with partial replacement, remainder stochastic sampling

with replacement, remainder stochastic sampling without replacerrient, deter­

ministic sampling, remainder stochastic independent sampling, and stochastic

universal sampling.

Stochastic sampling with replacement is actually a fancy name of the first

widely-used selection scheme, the roulette wheel selection. It is named so be­

cause it is analogous to a gambler's roulette wheel with each wheel slice pro­

portional in size to the expected offspring value of an individual.

Stochastic sampling with partial replacement is another name for De Jong's

expected-value model [105]. In this algorithm, an individual's expected value

is decreased by 1.0 each time it is chosen by the roulette wheel selection.

A remainder sampling method involves two distinct phases. In the integral

phase, samples are awarded deterministically based on the integer portions

of the expected values. The fractional phase then samples according to the

expected values' fractional portion. In remainder stochastic sampling with re­

placement, the fractional portions are sampled by the roulette wheel method.

The individual's fractions remain unaltered between spins, and hence continue

to compete for selection. While in remainder stochastic sampling without re­

placement, after each spin, the selected individual's expected value is set to

zero.

A deterministic sampling algorithm is suggested and used by Brindle [106].

In this remainder algorithm's fractional phase, the individuals with the largest

fractions are selected.

Remainder stochastic independent sampling and stochastic universal sam­

pling were proposed by Baker (1987) [104].

PATTERN CLASSIFICATION BY MACHINE LEARNING L. Meng

6.4 Genetic Algorithms (GAs) 100

In remainder stochastic independent sampling, the fractional portions are

treated as the probabilities of successive Bernoulli trials without replacement

(since once an individual is selected, its expected value is set to zero). Baker

suggested to perform the fractional phase of this algorithm in full parallel,

precede the O(N) sequential integral phase.

Baker [104] described stochastic universal sampling as being analogous to

a roulette wheel with N equally spaced pointers and gave a C code Fragment

for it as follows (cited from [104]):

ptr = RandO;
for (sum=i=O; i<N; i++)

for (sum += ExpVal[i]; sum > ptr; ptr++)
SelectInd(i);

Stochastic universal sampling is a simple, single phase, O(N) sampling algo­

rithm. However it is strictly sequential.

An individual's expected offspring value is not always equal to its actual

sampling probability. To evaluate various sampling algorithms, Baker [104]

introduced three measures: bias, spread and efficiency. The bias indicates

the algorithm's accuracy; while the spread indicates the precision. Hence the

spread reveals the sampling algorithm's consistency. Table 6.2 summarises the

basic characteristics of the various sampling algorithms, where N denotes the

population size, ev is the expected value of an given individual, l x J and r x 1
rounds a floating point value x to the nearest integer towards minus and plus

infinity respectively, and integer R satisfies L ev J + R ::5 N .

Based on the theoretical analysis summarised in Table 6.2 and the empirical

analysis of the conducted bias, Baker [104] concluded that the stochastic uni­

versal sampling algorithm is an optimal sequential sampling algorithm, which

for the first time, assigns offspring according to the theoretical specifications

(equation (6.4.1)) and hence recommended that in sequential environments

GAs should employ this algorithm; while if a parallel environment is available,

remainder stochastic independent sampling may prove valuable.

PATTERN CLASSIFICATION BY MACHINE LEARNING L. Meng

6.4 Genetic Algorithms (GAs) 101

Sampling Method Bias Spread Compu tational Parallela-

Load bility

Stochastic Sampling zero unlimited O(N log N) None

with Replacement O-N

Stochastic Sampling medium upper bounded O(NlogN) None

with Partial Replace- 0- revl
ment

Remainder zero lower bounded O(NlogN) None

Stochastic Sampling levJ - levJ + R

with Replacement

Remainder medium minimum O(NlogN) None

Stochastic Sampling levJ, rev 1
without Replacement

Deterministic high minimum O(NlogN) None

Sampling levJ, rev 1
Remainder Stochastic low minimum O(N) Fractional

Independent Sampling levJ, rev 1 Phase

Stochastic zero minimum O(N) None

Universal Sampling levJ, rev 1

Table 6.2: Comparison of Sampling Methods (cited from [104]).

PATTERN CLASSIFICATION BY MACHINE LEARNING L. Meng

6.4 Genetic Algorithms (GAs) 102

6.4.4 Crossover operators

For optimisation of a function with real valued parameters, there have been

three well-defined crossover operators: one-point crossover, twcrpoint crossover

and uniform crossover.

Under one-point crossover, a crossing site is selected at random and then

the sub-strings that follow the site are exchanged. As indicated by its name,

two-point crossover selects two crossing sites, again at random. Then the

alleles in the segments delimited by the sites are exchanged, considering the

chromosomes circular. For example, two possible parents could be

Parent1: A BeD E

Parent2: a bed e

One-point crossover could possibly yield the following offspring for the parents

above (with the bar indicating the crossing site):

Child!: A bed e

Child2: a BeD E

and 2P could yield offspring as follows:

Child!: A beD E

Child2: a Bed e

Since one-point crossover introduces an undesirable bias with respect to the

extremities of the chromosome, widely used is the next lowest-disruption choice

- the twcrpoint crossover. However twcrpoint crossover is a low-disruption

crossover. Further, it introduces an extra bias: short schemata are disrupted

less often than long ones. A schema is a similarity template describing a subset

of strings with similarities at certain string positions. The trouble is that we

usually do not know a priori which schemata should be the least disrupted

[107].

Very different from one-point and twcrpoint crossover operators, uniform

crossover constructs a new string by randomly copying, for each locus, the

PATTERN CLASSIFICATION BY MACHINE LEARNING L. Meng

6.4 Genetic Algorithms (GAs) 103

allele randomly from a parent. This is achieved by constructing a binary mask,

one bit per locus, typically with equal probability for the alternative values, as

in the following example:

Parent!: A B C D E

Parent2: a b c d e

Mask: 0 1 0 0 1

Child!: a B c d E

Child2: A b C D e

The first child inherit the allele from the first parent where there is a 1 in the

mask, and from the second parent where there is a O. The second child is

constructed according to the opposite rule. Since the mask's values at different

loca are set independently, uniform crossover disregards any linkage there might

be among genes on a string~

Syswerda examined the utility of various crossover operators, concentrat­

ing on one-point, two-point, and uniform crossover. Syswerda [103] emphasised

that the overt purpose of crossover is to combine good schemata together into

one genome and studied several binary function optimisation problems. The

empirical results did show that generally uniform crossover yielded better per­

formance than two-point crossover, which in turn yielded better performance

than one-point crossover.

Since its popularisation by Syswerda in 1989, uniform crossover has be­

come perhaps the most widely used crossover operator. However, the worth of

uniform crossover was questioned by Falkenauer in 1999 [107]. In his paper,

Falkenauer discussed the two popular arguments backing uniform crossover,

and gave corresponding counter arguments.

The arguments in favour of uniform crossover and the corresponding coun­

terarguments by Falkenauer are summarised as follows:

1. Uniform crossover is capable to reach in a single step any point in the

search space, provided that each bit of the corresponding gene string is

PATTERN CLASSIFICATION BY MACHiNE LEARNING L. Meng

6.4 Genetic Algorithms (GAs) 104

present in at least one of the parents.

Falkenauer: Random search is equally capable to reach in a single step

any point in the search space (regardless of the parents). However, few

researchers would hail random search as an efficient search method.

2. Uniform crossover has a better recombining power than one-point and

two-point crossovers.

Falkenauer: The disregard of gene linkage by uniform crossover and its

out performance than low-disruption operators indicates that genes must

be largely independent from each other. However, such a situation also

implies that the alleles of those genes can be set separately (Le. the

problem is separable), suggesting a hill-climber as a better search device

for the problem. Conversely, when a problem is difficult for a simple

hill-climber (Le. the problem is non-separable), and where GA becomes

a device of interest, uniform crossover should be outperformed by a low­

disruption crossover.

Based on his arguments, Falkenauer concluded that "uniform crossover's

high rate of disruption is harmful" and baked his conclusion with experimen­

tal results on a simple function that is "mildly non-separable (there is linkage

between genes on the chromosome)". Nevertheless, Spears and De Jong [108]

indicated that disruptiveness need not always be viewed negatively. In the sit­

uation of premature convergence, it may be the only mechanism for advancing

the search. While the experiments of Syswerda [103] and others did indicate

the potential for taking a positive view of disrupting schemata when imple­

menting a genetic algorithm although the usefulness of such disruption will be

highly problem-dependent.

PATTERN CLASSIFICATION BY MACHINE LEARNING L. Meng

6.5 Basic Theorems of GAs 105

6.5 Basic Theorems of GAs

To understand how a GA acts, it seems that we need to look at the raw

data available for any search procedure. While it turns out that we can search

more effectively by exploiting similarities in the encoded strings. This is the

concept of similarity template or schema, which leads to a keystone in GA

theory - the building block hypothesis.

GAs inherently process a large quantity of schemata while processing a

relatively small quantity of gene strings. It turns out that the number of

schemata processed usefully in each generation is something like N 3 , where N

is the population size. This important processing leverage is apparently unique

to GAs, and is called the implicit parallelism.

The effects of the three fundamental GA operators have been analysed

separately regarding how schemata are processed.

Comprehensively, after the execution of the three basic GA operators, the

number of a particular schema H, m(H), remains in the next generation can

be given by the following equation [81]

m(H, t + 1} > m(H, t} . f(IJl [1 - Pc ~(H~ - O(Il}pm] (6.5.1)

where Pc and Pm are the probabilities of operations crossover and mutation,

o(H), 8 (H) and f (H) are respectively the order, the defining length and the

(average) fitness of a schema H.

In equation (6.5.1), the former variation factor is due to the effect of fitness­

based selection; and the later factor indicates that short, low-order schemata

have more chances to survive under crossover and mutation. The introduction

of a lower bound is because the theoretical derivation contains no source terms

and it has been assumed that we lose the schema whenever a crossover occurs

between the schema's outermost defining bits, while in practice sometimes one

schema's loss is another's gain.

PATTERN CLASSIFICATION BY MACHINE LEARNING L. Meng

6.6 Premature Convergence in the CA Search 106

Assume that the particular schema H remains above average an amount

cl with a constant c. Under this assumption, rewrite the differential equation

(6.5.1) as

m{H, t + 1) > m{H, t) (f ~ ef) [1- p, f{H~ - O{H)pm]

> (I + c)· m{H, t) . [1- p, :{Hl- O{H)pm] (6.5.2)

Starting at t = 0 and assuming a stationary value of c, we have

(6.5.3)

According to this calculated result, an important conclusion can be drawn [109]

(pp. 102-103): "Short, low-order, above-average schemata (Le. building blocks)

receive exponentially increasing trials in subsequent generations." This is the

well-known schema theorem. This allocation strategy is implemented mainly

by the selection operation in GAs and has been justified by a two-armed bandit

problem [81].

In the light of the schema theorem, the building block hypothesis explains

the power of the GA: "Instead of building high-performance strings by trying

every conceivable combinations, GAs work robustly by identifying good build­

ing blocks and by eventually combining these to get larger building blocks."

[81]

6.6 Premature Convergence in the GA Search

Premature convergence is an important concern in GAs. This occurs when

the population reaches a configuration such that crossover no longer produces

offspring that can outperform their parents, as must be the case in a homoge­

neous popUlation where population diversity equals zero. Under such circum­

stance, all standard forms of crossover simply regenerate the current parents.

PATTERN CLASSIFICATION BY MACHINE LEARNING L. Meng

6.7 Conclusions 107

Any further optimisation relies solely on bit mutation and can be quite slow.

Suppose the population prematurely converges at a local extremum b bits away

from the global optimum. The probability of flipping these b specific bits in a

single binary chromosome and not flipping any others is p~(l- Pm)k-b, where

Pm is the probability of flipping a single bit and k is the bit length of the

genome. Premature convergence is often observed in GA research ([85], [105J,

and others) because of the exponential reproduction of the best-observed solu­

tion coupled with the strong emphasis on crossover.

Therefore, for real-world optimisation problems requiring great precision

and a long binary coding, it may be expected (although there will be coun­

terexamples) that a GA that does not employ a heuristic method for prevent­

ing or postponing premature convergence will not tend to discover even nearly

globally optimal solutions in a reasonable number of generations. Instead, the

population will settle at a point (or points) on the response surface, after which

further optimisation will result only if there is an unlikely flipping of the correct

bits.

Davis [85] recommends that when the population converges on a chromo-

some that would require the simultaneous mutation of many bits to improve

it, the run is practically completed and either it should be restarted using a

different random seed (e.g. dynamic parameter encoding [110]) or hill-climbing

heuristics should be employed to search for improvements.

6.7 Conclusions

This chapter has been devoted to an introduction to evolutionary algo­

rithms, especially to genetic algorithms. The advantages shared by all the

evolutionary algorithms are presented. Types of GAs and GA operators are

compared with each other. The theorems revealing the reasons of GA's success

and the premature convergence problem of GA are addressed. The robustness

PATTERN CLASSIFICATION BY MACHINE LEARNING L. Meng

6.7 Conclusions 108

of GAs is demonstrated in the next two chapters through the application study

in clustering and job-shop scheduling, respectively.

PATTERN CLASSIFICATION BY MACHINE LEARNING L. Meng

Chapter 7

A GENETIC HARD C-MEANS

CLUSTERING ALGORITHM

7.1 Introduction

As already pointed out, by hill climbing, the traditional HCMCA is found

to be easily trapped in local optima and very sensitive to initial conditions. A

way to avoid local extrema and also reduce the sensitivity to initialisation is to

use a stochastic optimisation approach, such as GAs. The advantages of apply­

ing GAs to clustering problems has been investigated [111] - [114]. However, as

stated in [112], a GA clustering approach takes up to two orders of magnitude

more time than HCMCA. Considering this, a new hybrid algorithm is devel­

oped which exploits both the efficiency of HCMCA as a hill-climbing technique

and the stochastic nature of a GA. This hybrid algorithm introduces a one-step

local search using HCMCA into each GA generation. Thus the new algorithm is

called genetic hard c-means clustering algorit~m (GHCMCA). Unlike previous

genetic clustering algorithms, the population members of GHCMCA represents

partition matrices instead of sets of cluster centres. A new genetic crossover has

been adopted. It effectively exchanges important partition similarities between

109

7.2 The Algorithm 110

a pair of partitions, creating new solutions. GHCMCA has been evaluated in

comparison with the traditional HCMCA as well as a previous genetic clus­

tering approach - genetically guided clustering algorithm (GGA - abbreviation

used in the original paper [112]). Four data sets were used as a benchmark

in the experiments. Results show that the genetic approaches may provide a

viable way to avoid the local extrema and reduce the influence of initialisation.

Compared to GGA, GHCMCA converges to the global optimum more quickly

and with greater probability and thus shows its superiority.

7.2 The Algorithm

To overcome the inevitable drawbacks of a hill-climbing technique such as

HCMCA, the genetic algorithm (GA) may be adopted. Starting with an ini­

tial condition, a GA evolves a population towards successively better regions

in the search space by means of genetic processes of selection, crossover and

mutation. The given optimisation problem defines an environment that deliv­

ers quality information (fitness values) for new search points, and the selection

process favours those population members with higher quality to reproduce

more often than the worse members. The crossover mechanism allows for the

mixing of parental information while passing it to the offspring, and muta­

tionintroduces innovation into the population and prevent premature loss of

important information.

In order to apply a genetic approach to a given problem, a number of

fundamental issues must be addressed in advance. The rest of this section de­

scribes, in detail, each of these issues with respect to the new genetic clustering

algorithm - GHCMCA.

PATTERN CLASSIFICATION BY MACHINE LEARNING L. Meng

7.2 The Algorithm 111

7.2.1 Solution representation and initialisation

Unlike previous genetic clustering algorithms [111] - [114], the population

members under GHCMCA represent partition matrices instead of sets of cluster

centres. In hard clustering, any object point belongs to the closest cluster

exclusively. There is only a 1 down any column of a hard partition matrix. It

is possible to simplify a e x n hard partition matrix U into an n-dimensional

vector it where the ith element describes which row the 1 lies down the ith

column of the original U. The possible values of the elements of it range from

1 to c. GHCMCA has adopted this simplification.

Consider that good choice for starting configurations should be free of overt

biases. For the hard partition vectors in the initial population, each element

is set to a randomly generated number in the range of [1, e]. By doing so, we

actually partition the object points to c initial clusters uniformly at random.

7.2.2 Fitness evaluation

The goal of a clustering approach is to minimise the cost function J1 (U, V).

While a GA is inspired by natural evolution and favours fitter population

members. To compromise, we use the inverse of J1(U, V) function as the

fitness function of GHCMCA. And in order to reduce the chance of GHCMCA

becoming stuck at a degenerate partition, we have also taken the number of

empty clusters into consideration. The final fitness function is defined as follows

1
fitness(U) = J1(U, V) x (1 + eje) (7.2.1)

where c is the total number of clusters and 0 < e < c denotes the number

of empty clusters and may be evaluated via counting the all-O rows in U.

Cluster centres V are located using equation (5.3.1). To prevent premature

convergence and maintain reasonable selection pressure, a typical linear fitness

scaling mechanism [81] has been adopted such that the fitness and the con-

PATTERN CLASSIFICATION BY MACHINE LEARNING L. Meng

7.2 The Algorithm 112

sequent surviving probability of the best population member is Cmult times

as much as those of the average population member. As suggested in [81], a

Cmult = 1.5 is used in GHCMCA.

7.2.3 Genetic operators

In every generation, a GA selects parents from the current population to

form a mating pool. Theoretically, the probability of a member being selected

is proportional to its fitness value relative to the others' fitness values. After

being selected, parents are mated at random to give birth to their offspring.

For each pair of parents, offspring are generated via the operations of crossover

and mutation.

a. Selection. As to the selection operator, the stochastic universal sam­

pling (SUS) scheme [104] is adopted. It is a sequential sampling scheme. In

[104], based on the theoretical and empirical analysis, Baker concluded that

this scheme selects parents at rates with zero bias to the expected values and

the minimal spread.

h. Crossover. GAs emphasis the overt genetic attributes of crossover.

Following the crossing-over during cell meiosis in the natural system, the

crossover operator in a GA is responsible for genetic recombination. Here,

a new crossover operator has been devised. It reassigns the worst members

of each cluster in a parent's partition according to its mating partner's parti­

tion. The worst member of a certain cluster is the object point (among those

belonging to t~e same cluster) that is farthest from to the centre of that cluster.

For the ith cluster in parent I 's partition UI, the new crossover is carried

out as follows:

1. Identify the worst 1J% members of the ith cluster of UI;

2. FOR each of the worst 1J% members - Xk,

PATTERN CLASSIFICATION BY MACHINE LEARNING L. Meng

7.2 The Algorithm 113

(a) according to the mating partner's partition vector U2, find out to

which cluster Xk belongs (suppose it belongs to the jth cluster of

U2)j

(b) still according to U2, randomly choose another object point from the

jth cluster of U2 (suppose it happens to be Xl);

(c) back to Ub check out to which cluster of UI the chosen object point

X, belongs and then simply reassign Xk to that cluster;

where fj% denotes the percentage of object points to be reassigned in each

cluster. It controls how significantly the offspring will be different from their

parents. In all our experiments with GHCMCA, fj% is fixed at 20%. While

still holding the randomness property, this crossover operator is well guided. At

step 2(a), the mating partner's partition U2 is referred to answer the following

question: which object points should share the same cluster with the current

worst member? Since there is at least one (itself) while may be more than one

object points available, step 2(b) randomly choose one of them. Finally, at step

2(c), the current worst member of the ith cluster of partition UI is reassigned to

a new cluster such that it belongs to the same cluster as the randomly chosen

object point does. For better understanding, implementation of steps 2(a) to

2(c) are described graphically in Figure 7.1, where a certain worst member of

cluster i is reassigned to cluster i'. The whole procedure is applied to each

parent independently. Each implementation generates an offspring. We have

named this new operator partial crossover (PX), since the fact that under it

important partition information missed in a parent may be regained from its

partner and consequently the resulting offspring contains partition information

partially inherited from both parents.

To see this, consider the following two partitions

PATTERN CLASSIFICATION BY MACHINE LEARNING L. Meng

7.2 The Algorithm

0
1
:

tbe turrent worst k
member of cluster / :

parent!

234
8

j' (2<

offspring!

o 234
1 8

0
1

k

(2b)1

parentz

46
78

j(lo)

125

J the randomly <h08ell
member (rom cluster J

k i:. moved to clUlter /'

j'

114

Figure 7.1: Graphical description of the new crossover operator when it is
applied to a certain worst member of the ith cluster of parentl'

1 2

Ul = [0 0

U2 = [0 0

k

o 1

o

k'

1

o

., .
J .. J

1

o
1

o 1

n

1],

1],

where integers above the partition vectors index the object points. Both Ul

and U2 define a viable way to partition a set of objects into two clusters, as

shown in Figure 7.2(a), respectively. A possible pair of offspring obtained using

PX is as follows

1 2 k k'

ill = [0 0 ... 0 0 0

~= [0 0 0 0

.,
J

1 1 1

0 0 1

.. j

1

1 1

n

1] ,

1].

The corresponding partitions are depicted in Figure 7.2(b). Obviously, by

exchanging good partition information both of these two new offspring cause

less distortion than their parents.

According to the example above, it seems that when reassigning an object

Xk in partition Ul according to its mating partner U2, instead of applying steps

PATTERN CLASSIFICATION BY MACHINE LEARNING L. Meng

7.2 The Algorithm 115

parent

(a) before partial crossover

~ -1

~ -1

(b) after partial crossover

Figure 7.2: An example for demonstrating the new partial crossover.

2(a) to 2(c), we can simply set ul(k) to the value of u2(k). However, this is

not feasible in general. Consider the situation where UI and U2 define the same

partitions but with different labelling of clusters. For example, suppose

1 2 k k' .,
J j n

ih = [0 0 0 1 1 1 1 1],

U2 = [1 1 1 0 0 0 0 0].

For a well-defined crossover operator, the common gene segments of the mating

parents (or the identical partition of object points in the case of clustering)

PATTERN CLASSIFICATION BY MACHINE LEARNING L. Meng

7.2 The Algorithm 116

should remain unchanged after the implementation of crossover. However, it

is obvious that this will be violated when we simply set ul(k) to the value of

U2 (k) or vice versa.

Actually, this is the problem that exists in previous genetic clustering algo­

rithms. In most previous genetic clustering algorithms, e.g. [111] - [114], each

member in the population represents the set of cluster centres. After selection,

the standard one-point crossover (as in [113, 114]) or two-point crossover (as in

[112]) is applied. The building block hypothesis in the GA theory assumes that

through the implementation of crossover, while other genes are recombined ran­

domly gene segments associated with high fitness (building blocks) are passed

down in the population such that longer building blocks may be formed and

finally the optimal solution may be found. In conventional GA approaches,

the standard one-point or two-point crossover is adopted to achieve this, which

simulates the natural crossing-over. In a nature system, a gene occupying a

given locus on a chromosome represents a particular physical characteristic,

so as in most practical problems for GAs to solve. However, as stated above,

the labelling of clusters is arbitrary in clustering problems; two different gene

strings may represent a same partition. Obviously, the standard one-point or

two-point crossover won't be able to discover this implicit similarity between

gene strings, neither does it satisfy the building block hypothesis in the case

of clustering problems. To solve this problem, steps 2(b) and 2(c) in PX are

necessary, through which the index value of a certain cluster used in a parent

is converted into that used in another parent.

c. Mutation. After every crossover, mutation is imposed on the newly

constructed partition with a mutation probability Pm' Mutation sets a chosen

element of the partition vector to a randomly generated integer ranging from

1 to c.

PATTERN CLASSIFICATION BY MACHINE LEARNING L. Meng

7.2 The Algorithm 117

7.2.4 Creation of a new generation

Our genetic clustering algorithm is a steady-state GA, which replaces only

a fraction of the population at each generation. The size of the fraction is

controlled by a GA parameter - generation gap. The motivation of introducing

a steady-state GA is to keep a good balance between exploitation of the best

regions found so far and continued exploration for potentially better payoff

area.

However, as stated in [115], a steady-state GA will increase the variance

along the growth curves of the population members. To reduce this variance,

a First-In-First-Out (FIFO) deletion has been suggested in [U5]. With FIFO

deletion, the population is simply a first-in-first-out queue with new members

added to one end and deleted members removed from the other end. To per­

mit the use of the steady-state GA with smaller populations, FIFO has been

employed in our GHCMCA~

7.2.5 One-step local search with HCMCA

As mentioned above, the new genetic clustering algorithm combines a ge­

netic approach with the traditional HCMCA. At each GA generation, when

the fitness evaluation takes place, a single HCMCA updating procedure is ap­

plied to each member in the population to complete a one-step local search.

Firstly, according to the partition matrix represented by a population member

the corresponding cluster centres are evaluated using equation (5.3.1). Then

based on equation (5.3.2) each object is reassigned to the closest cluster centre

and the partition represented by the given population member is updated. By

adopting HCMCA, we have reduced the searching space of a genetic clustering

approach significantly.

It is well known that under HCMCA high computational complexity is

involved in determining the closest cluster centre for each object. When the

PATTERN CLASSIFICATION BY MACHINE LEARNING L. Meng

7.3 Experiments 118

objects to be clustered are defined by a large number of features then this

becomes a serious problem. Under GHCMCA, local search by HCMCA is

applied to each population member at each generation. This problem becomes

more critical. In order to speed up the local search by HCMCA, the method

presented in [116] is adopted. Instead of explicitly calculating the distance

between an object and each candidate cluster centre and then picking the

centre with the largest distance, this method eliminates some candidate centres

without calculating the Euclidean distance, based on the fact that

(7.2.2)

where x and y are k-dimensional vectors which can be decomposed into n n­

dimensional subvectors, D2(X, iJ) is the squared Euclidean distance between

vectors x and y, mx and my are the mean value of x and y (mx = f E;=l Xj),

and D22(X, iJ) is the squared Euclidean distance between the :vectors consisting

of the mean values of the subvectors of x and y.

For a statistical analysis of the amount of mathematical operations that

may be saved using this method, see [116].

7.2.6 Other components

The parameter settings of the new algorithm GHCMCA is summarised in

Table 7.1. The genetic approach stops after a certain number of generations.

Table 7.2 outlines the GHCMCA.

7.3 Experiments

Experiments have been undertaken using four data sets: single feature data,

Iris data, Chernoff faces data and Lenna image. The aim is to evaluate the

performance of GHCMCA, especially the ability of the new crossover PX to

create good solutions.

PATTERN CLASSIFICATION BY MACHINE LEARNING L. Meng

7.3 Experiments

Table 7.1: The parameter settings of GHCMCA.

parameter I setting I
population size 30

crossover rate 0.80

mutation rate 0.001 .

generation gap 0.6

7]% in PX 20%

119

The single feature data is an artificial data set [117], in which each object

is defined by a single feature. The second data set is the Iris data set. It

consists of observations of four features for 150 samples from three species of

Iris. These two data sets are useful in this study because they were also used in

the original work of GGA [112]. Using them allow the comparison of our results

with those reported in [112]. Chernoff faces data set [79] is another real-world

situation in which clustering techniques have proven valuable. Chernoff faces

are two-dimensional faces whose characteristics are geographically determined

by eight feature variables. There are seven clusters composed by altogether 22

faces.

The complexity of a clustering problem increases as the number of objects

or the number of object features grows, or conversely, as the number of the

groups decreases. As clustering is often applied to vector quantisation and

images are real-world domains of significant complexity, the problem of image

quantisation is considered. In this application case, a 256 x 256 black-and-white

image is firstly divided evenly into small blocks of 4 x 4 pixels. Then the gray

levels of the pixels in each of these blocks compose a vector such that there are

4096 image vectors of 16 features. The goal of this image quantisation problem

is to cluster these 4096 image vectors into 256 classes such that the image

may be stored using only 1/8 of the original size without much distortion.

PATTERN CLASSIFICATION BY MACHINE LEARNING L. Meng

7.3 Experiments 120

Table 7.2: Program outline of GHCMCA.

Symbols:

p: population size; n: number of objects; c: number of clusters.

Algorithm:

1. Randomly initialise p n-dimensional partition vectors. Constrain the initial

values of elements in these vectors to be within the range of [1, cl.

2. Apply local search to each population member using equations (5.3.1) and

(5.3.2).

3. For each population member, calculate distortion and fitness by equations

(5.2.4) and (7.2.1), respectively.

4. REPEAT

(a) Select (p, x generation gap)/2 pairs of parents using stochastic universal

sampling scheme;

(b) Apply PX and random mutation to each parent to generate offspring.

(c) Use FIFO· deletion to create a new generation, replacing the

(1£ x generation gap) oldest members with the offspring generated in step

(b).

(d) Apply local search to each population member using equations (5.3.1)

and (5.3.2).

(e) For each population member, calculate distortion and fitness by equation

(5.2.4) and (7.2.1), respectively.

UNTIL maximal generation number.

PATTERN CLASSIFICATION BY MACHINE LEARNING L. Meng

7.3 Experiments 121

Table 7.3: Brief summary of the experimental data sets.

data number of number of number of

set objects clusters object features

single feature 50 6 1

Iris data 150 3 4

Chernoff faces 22 7 8

Baboon image 4096 256 16

Lenna image 4096 256 16

Two standard black and white images -Baboon and Lenna - are used in the

experiments.

Table 7.3 gives a brief summary of the five experimental data sets with

respect to number of objects, number of clusters and number of object features.

The proposed GHCMCA as well as the traditional HCMCA and GGA have

been applied to each of the experimental data sets, respectively. The purpose

of comparing with the traditional HCMCA is to show that while HCMCA

may be easily trapped into different local optima, a genetic approach is able

to avoid these local optima. And the purpose of comparing with GGA is to

show that when applied to clustering problems the proposed PX is superior to

standard one-point and two-point crossover in the sense that better solutions

can be found more efficiently by GHCMCA. To concentrate on comparison of

the effectiveness of different crossover operators, the GGA has been recreated

with some differences between ours and the original one. These differences are

highlighted as follows:

1. While the original implementation used k-fold tournament selection with

k = 2, this implementation used a stochastic universal sampling scheme,

as used in the GHCMCA.

2. While the original implementation used a conventional GA with an elitist

PATTERN CLASSIFICATION BY MACHINE LEARNING L. Meng

7.4 Results 122

strategy of passing the two fittest population members to the next gener­

ation, this implementation used a steady-state GA with generation gap

of 0.6 throughout. Elitism is implemented to keep the fittest member.

3. While the original implementation used a binary gray code representa­

tion for the population members, this implementation used real value

representation.

Like those used throughout the experiments with the GHCMCA, the same

parameter settings have been chosen in all the repeated GGA approaches.

Except when better solutions can be obtained with a larger population size,

these values offer GGA the best performance [112]. And to speed up the

convergence, the one-step local search is also introduced into GGA.

As for the speed-up method mentioned in section 7.2.5, it has been applied

in the image quantisation experiments. And in the genetic approaches (includ­

ing both GGA and GHCMCA) for image quantisation, the population size was

increased to 50.

7.4 Results

The mean squared error (MSE) rather than the raw value from the clus­

tering objective function J1(U, V) has been used as the performance measure

for the image quantisation problem since it was also used in [112] for image

quantisation. MSE is the value of the J1 averaged by the number of image

pixels. For each data set except the images Daboon and Lenna, we report

the raw values of J1 and the results were obtained over 500 independent trials

using the traditional HCMCA and 100 independent trials using each genetic

approach, respectively. For images Baboon and Lenna, results were obtained

over 100 HCMCA trials, 40 GGA trials and 40 GHCMCA trials, respectively.

In each independent trial with each clustering algorithm, the partition matrix

PATTERN CLASSIFICATION BY MACHINE LEARNING L. Meng

7.4 Results 123

with the lowest cost value (J1 or MSE) was traced and the cost values of these

partition matrices were recorded.

The recorded J1 values for the single feature and Iris data sets are listed in

Table 7.4, along with the times they were found by each algorithm. Same J1

values were reported in [112] and thus confirm the validity of our simulation

programs. According to the times that an algorithm finds the optimal solution,

we can estimate the probability for that algorithm to find the optimal solution

with a certain confidence level. Table 7.5 gives the confidence interval for this

probability for each testing algorithm, respectively, with a confidence level of

0.95. As shown in Table 7.4, most trials of HCMCA ended up with a J1 value

higher than the optimal values (0.9348 for single feature data set and 78.941

for Iris data set). And as shown in Table 7.5, the probability for HCMCA to

find the optimal solution is slight while GGA and especially GHCMCA can

find the optimal solution with a higher probability. These indicate that the

traditional HCMCA did stop at different local extrema, while, on the other

hand, illustrate the ability of a genetic approach to avoid them.

From the recorded cost values, the average cost, the standard deviation

and the lowest cost have been evaluated for each experimental data set and are

listed in Table 7.6.

For clustering problems with high-dimensional data space, the distribution

of local optima is expected to be broad. Figures 7.3(1), 7.3(II) and 7.3(111) show

the distribution of the cost values obtained by each algorithm when applied to

Chernoff faces, image Baboon and image Lenna, respectively.

Figures 7.4(1) and 7.4(II) show the best compressed images obtained using

each algorithm for the images Baboon and Lenna, respectively.

From Table 7.6 and Figures 7.3 and 7.4, the following observations are

drawn:

1. As indicated by the low standard deviation values in Table 7.6 and as

PATTERN CLASSIFICATION BY MACHINE LEARNING L. Meng

7.4 Results 124

Table 7.4: Frequency of different partitions found by HCMCA, GGA and
GHCMCA when applying to single feature and Iris data, respectively.

Single Feature Iris Data

J1 times J1 times

HCMCA GGA GHCMCA HCMCA GGA GHCMCA

(500 runs) (100 runs) (100 runs) (500 runs) (100 runs) (100 runs)

0.9348 8 72 90 78.941 18 40 100

0.9469 9 2 78.944 1

0.9554 4 2 78.945 360 59

1.1890 238 15 6 142.852 2

1.3016 72 142.859 8

1.3297 170 142.879 3

1.3473 9 143.454 9

1.6118 3

Table 7.5: Probability for finding the optimal partition when applying
HCMCA, GGA and GHCMCA to single feature and Iris data, respectively.
The confidence intervals (lower and upper bounds) for these probabilities are
calculated with a confidence level of 0.95 here.

Single Feature Iris Data

confidence interval confidence interval

algorithm lower bound upper bound algorithm lower bound upper bound

HCMCA 0.838 0.938 HCMCA 0.971 1.000

GGA 0.640 0.786 GGA 0.324 0.483

GHCMCA 3.52e-3 0.046 GHCMCA 0.014 0.075

PATTERN CLASSIFICATION BY MACHINE LEARNING L. Meng

7.4 Results 125

Table 7.6: Comparison of results obtained by different algorithms.

data set algorithm average standard lowest

J1 deviation J1 found

HCMCA 1.2554 0.0828 0.9348

single GGA 0.9748 0.0906 0.9348

feature GHCMCA 0.9507 0.0606 0.9348

HCMCA 81.7680 13.1721 78.9408

Iris GGA 78.9434 0.0021 78.9408

data GHCMCA 78.9408 0 78.9408

Chernoff HCMCA 15.6130 3.3369 4.6331

faces GGA 6.2923 1.9313 4.6262

(x106
) GHCMCA 4.7290 1.4906 4.6262

data set algorithm average standard lowest

MSE deviation MSE found

HCMCA 105.9800 1.9582 101.7270

Lenna GGA 74.6203 0.9591 72.1945

GHCMCA 73.2502 0.7916 71.7535

HCMCA 152.4841 1.1871 150.1970

Baboon GGA 138.1310 0.6502 136.8030

GHCMCA 137.4604 0.4625 136.3390

PATTERN CLASSIFICATION BY MACHINE LEARNING L. Meng

7.4 Results

5
~ ..
I ..

I~
," .
i l_1L ...

" x 10'

(1) Chernoff faces

I
a
§

r
I
" i

&a ,. '40

5,

I
'41 110 UO , •

"

l ~
f)o 1. 140 145 1110 151 110

"

(II) Baboon

126

S

i~-;-;:11
.. "" ,OO '10 ,oo (a) HCMCA

I

1: ~ __________ --l
.. ".,'" It. ,.. (b) GGA

I

-I

H -, .. :;----; .. ---; ... =-=".--,!, ..
" (c) GHCMCA

(Ill) Lenna

Figure 7.3: Distribution of the J1 values associated with the partitions found
when applying HCMCA, GGA and GHCMCA to the Chernoff faces, Lenna
image and Baboon image, respectively.

PATTERN CLASSIFICATION BY MACHINE LEARNING- L. Meng

7.4 R esults 127

(a) original

(b) HCMCA

(c) GGA

(d) GHCMCA

Figure 7.4: Comparison of the visual quality of Baboon and Lenna images after
quantisation: (a) original image, (b) using HCMCA, (c) using GGA, (cl) using
GHCMCA.

PATTERN CLASSIFICATION BY MACHINE LEARNING L. Meng

7.4 Results 128

shown in Figures 7.3(b) and 7.3(c), partitions with similar low cost values

were repeatedly found by GGA and GHCMCA. This indicates that these

results are indeed nearly optimal and not simply locally optimal.

2. In Table 7.6, the standard deviations obtained by HCMCA are always

higher than those by the genetic approaches. In Figure 7.3(a), broad dis­

tribution of results is observed with the traditional HCMCA. All of these

expose the dependence of HCMCA on the initial conditions and mean­

while shows the viability of a genetic approach to alleviate the difficulty

of choosing an initialisation for an HCMCA.

3. As shown in Table 7.6, for the two image quantisation problems, the

lowest MSE values obtained by HCMCA are much higher than the corre­

sponding value obtained by GGA or GHCMCA. Furthermore, as shown

in Figure 7.4, the visual quality of the compressed images obtained by

HCMCA is much worse than that by GGA or GHCMCA. This indicates

that the results obtained by HCMCA in these two application cases are

far from the global optimal point.

4. On average, the final cost values obtained by GHCMCA are slightly lower

than that obtained by GGA. In no case did GGA result in a cost value

lower than the lowest value found by GHCMCA. Moreover, the smaller

standard deviation of GHCMCA indicates that it may find the global

optimal or near-optimal solutions with a higher probability.

For stochastic approaches like the GA approaches, another important per­

formance measure is the convergence rate. This becomes more important for

the new algorithm due to the heavy computation load brought by the clus­

tering problem. From the results obtained with each experimental data set,

the convergence properties of GGA and GHCMCA in terms of the generation

number are shown in Figures 7.5(a)-(e). For the first three data sets, the J1

PATTERN CLASSIFICATION BY MACHINE LEARNING L. Meng

7.5 Conclusions 129

values are averaged over 100 independent trials, respectively. And for the two

images, the MSE values are averaged over 40 independent trials, respectively.

From Figure 7.5(a)-(e), we observe that the initial convergence rate is very

high and as the generation progresses the convergence rate decreases rapidly.

After a few generations, the genetic clustering approaches can find a cost value

lower than the corresponding average value obtained by HCMCA. As the com­

plexity of the clustering problem increases, such as illustrated in Figures 7.5(d)

and 7.5(e) for the image quantisation problems, GHCMCA shows its superi­

ority over the GGA in the sense that during the early generations GHCMCA

converges much faster than GGA and quickly reaches the desired region where

the global optimal partition resides. This suggests to us that in special cases

where speed as well as performance is required, GHCMCA may provide a much

faster way to find a convincing solution. Furthermore, as HCMCA assures lo­

cal optimality and, due to its hill-climbing nature, converges much faster than

any genetic approach, instead of waiting for the genetic approaches to reach

an exact optimal solution, we may stop the genetic search after a necessary

number of generations and then use HCMCA to find a local optimum nearby.

7.5 Conclusions

This chapter presents a novel genetic clustering algorithm - GHCMCA.

GHCMCA exploits both the efficiency of the calculus-based HCMCA and the

stochastic nature of a GA. A new crossover operator has been adopted in

GHCMCA, which was specially designed for clustering problems. The abil­

ity of a genetic approach to avoid local optima and reduce the sensitivity of

initialisation are demonstrated in the comparative experiments. Compared to

the previous GGA, GHCMCA may achieve better ultimate convergence with

a higher probability. Moreover, for complex clustering problems (such as im­

age quantisation), it converges much more quickly to the global optimum and

PATTERN CLASSIFICATION BY MACHINE LEARNING L. Meng

7.5 Conclusions 130

12 450
- GHCMCA

10 400 -.-. GGA

.: .:350
0 .2
"" 8 t: \300 os
Q.

1ii i
~250 .! 6 f·····

i

~ \ CD
\ =200

't5 4 ', .. 't5 ...,- \

""150 i
'.

2
,

100 ,

00 50
0 5 10 15 20 25 30

GA generation
5 10 15 20

GA generation
25 30

(a) Single feature data set (b) Iris data set

7
2.5X 10

2 '.

. ~
' .

~ I
~1.5 .~ ...
1ii
.2l
: 1
't5 ...,-

0.5

, ... _ _ _, _._ . ..;..- _._ . ..;, _ -.-~ _._._ -

5 10 15 20 25 30
GA generation

400r---~----~----~r=====~
- GHCMCA

350

". ...

--. GGA

....

1000~--~10~---2~0----~30-----4~0----~5O
GA generation

(c) Chernoff faces data set (d) Baboon image

600r---~-----r----~r===~~~
- GHCMCA
.. GGA

500

... -
%~--~10~.--~2~0----~30~--~4~0--~5O

GA generation

(e) Lenna image

Figure 7.5: Comparison of convergence properties of genetic approaches - GGA
and GHCMCA.

PATTERN CLASSIFICATION BY MACHINE LEARNING L. Meng

7.5 Conclusions 131

therefore provides a viable way out of the dilemma where the classical HCMCA

may be easily trapped by local extrema and a conventional genetic approach

is time consuming.

The next chapter presents another successful application of GAs, where

job-shop problems is the problems to be solved.

PATTERN CLASSIFICATION BY MACHINE LEARNING L. Meng

Chapter 8

APPLICATION OF GENETIC

ALGORITHMS TO JOB-SHOP

PROBLEMS

8.1 Introduction

The class of job-shop problems is the main area of machine scheduling.

The objective of a job-shop scheduling problem (JSP) is to find a sequence

called schedule, in which the jobs pass between the machines such that a given

performance measure is optimized. The class of JSPs arises because of its

strong basis in reality. A diversity of optimization problems in fields such

as production operations in manufacturing industry, parallel and distributed

systems, logistics and traffic controls can be summarized within the general

class of JSPs. It is well-known that the class of JSPs is among the hardest

combinatorial optimization problems. They are N P-complete [119] and each

job in a given JSP demands a specific machine order.

Apart from heuristic methods, branch-and-bound [120, 121] is probably the

solution technique most widely used in job-shop scheduling. It is an implicit

132

8.1 Introduction 133

enumeration method, which checks every possible schedule but does not con­

sider every possibility explicitly. It eliminates many possible paths on route.

However, the number of operations required, and hence the time required, to

solve a JSP by branch-and-bound is unpredictable and may be too great for

such an exhaustive search to be humanly possible.

As the searching technique of genetic algorithms (GAs) became popular

in the mid 1980s, many researchers started to apply this heuristic searching

scheme to machine scheduling problems [122, 123, 124]. In the application of a

GA, only is the fitness value of each chromosome/individual in the population

required. Therefore, GAs are suitable for such optimization problems as JSP,

where there is no derivative information available. However, due to the ineffec­

tive schemes used for the solution encoding and GA operations, most of them

converge slowly and their implementations are fairly complicated. The best

convergence results of the existing genetic scheduling algorithms [122, 123] are

far from satisfactory while the algorithm in [124] requires a large number of

generations (more than 5000 generations) to reach a high quality solution. The

essential difficulty of the application of GA to JSP is due to the fact that the

classic implementation schemes of the genetic operators - recombination and

mutation - are not suitable for ordering problems like JSP. They may nearly

always result in an infeasible schedule with some operations missing while oth­

ers represented twice, and the specified machine orders on the jobs violated.

Intuitively (also as in many present genetic scheduling algorithms), extra ad­

justments - such as the Giffler and Thompson's method [125] (p. 158) used in

[122, 124] - may be applied immediately after each recombination and mutation

phases to ensure the feasibility of the schedules in the current GA population.

However, the feasibility checking over all schedules at each GA generation will

definitely cost a lot of computation time. And it should be expected that some

good gene permutations (Le. the building blocks) will be disrupted by this

artificial interference.

PATTERN CLA~SIFICATION BY MACHINE LEARNING L. Meng

8.2 Problem Formulation 134

To tackle these problems, a new genetic scheduling algorithm (GSA) has

been proposed. Our aim is threefold: simplicity of structure, ease of imple­

mentation and high quality of ultimate convergence.

8.2 Problem Formulation

An n x m JSP involves a set of n jobs .:J = {Jll J2, ... , I n } waiting to be

processed through a set of m machines M = {M1 , M2"'" Mm}. Each job

must pass through each machine exactly once. The processing of a job on a

machine is called an operation. The operation of the ith job by the jth machine

is denoted by 0ij' There are n . m operations need to complete, which compose

the set of operations O. Each operation, 0ij EO, takes a certain length of

time, the processing time tij , to perform. The added constraint demands that

each job must pass through the set of machines in a particular order - the

specified machine order. For simplicity, in our study of JSP, the demanded

machine orders of an n x m problem are represented by an n x m matrix M,

where the ith row specifies the machine order of job Ji ; the processing times of

the n . m operations are represented by an m x n matrix T, where T(j, i) = tij

for any pair of j = 1,2, ... , m and i = 1,2, ... , n.

The general objective of a JSP is to find a sequence called schedule that is

(a). compatible with the given machine orders, Le. a feasible schedule, and

(b). optimal with respect to some criterion of scheduling performance.

Makespan is the primary criterion of performance in the literature of JSP.

M akespan, CmaJCI is the total elapsed time of a schedule. In our work on JSP,

different schedules are evaluated by their makespans. More formally, the ob­

jective of the problem is to find a start time Sij for each Oij E 0 such that:

(8.2.1)

PATTERN CLASSIFICATION BY MACHINE LEARNING L. Meng

8.3 The New Genetic Scheduling Algorithm

is minimized subject to

2. Si,mj+1 - Si,mj > ti,mj' if mj = M(i, j) and mj+1 = M(i, j + 1),

i = 1, ... , n, j = 1, ... , m-I;

8.3 The New Genetic Scheduling Algorithm

135

Under GA, each solution to the given problem is encoded and represented

by a chromosome. Very often the key of GA success with practical problems

lies in the development of a suitable combination of solution encoding and

genetic operators. Unfortunately, the classic GA crossover and mutation can

easily destroy the feasibility of the solutions of a constrained ordering problem

like JSP. There are two ways to solve this problem:

• by modifying the GA operators such that they always produce chromo­

somes to which feasible solutions correspond; or

• by defining a new encoding/decoding scheme for solution representation

such that all possible chromosomes are decoded to feasible solutions.

We have chosen the first alternative and developed a new genetic scheduling

algorithm - GSA.

8.3.1 Solution encoding

In machine scheduling, the process of deriving a schedule from an operation

sequence is called timetabling. A complete schedule involves not only the

. sequencing/ordering information but also the timetabling results, i.e. the start

PATTERN CLASSIFICATION BY MACHINE LEARNING L. Meng

8.3 The New Genetic Scheduling Algorithm 136

Table 8.1: The numbers of feasible operation sequences for three JSPs

problem size number of feasible operation sequences

6x6

10 x 10

20 x 5

2.6702 X 1024

2.3571 X 1092

2.4343 X 10116

and finish times of each operation. However, considering the complexity of the

description of a schedule, we prefer a simpler chromosome form in our GSA

and thus encode only the sequencing information into a chromosome. The

sequencing information of a schedule is visualized by its operation sequence.

Clearly, an operation sequence is simply a permutation of all the operations

involved. Thereby it is natural to encode the problem in the permutation form.

In JSP, operations are identified by two factors: to which job it belongs and

on which machine it should be processed. Considering this, under GSA, each

operation Oij (i = 1, ... , n, j = 1, ... , m) of an n x m JSP is assigned with

a distinct index number equal to (i - l)m + j. Consequently, a chromosome

becomes a permutation of these index numbers, i.e. a permutation of the set of

integers ranging from 1 to m· n. There are (m. n)! such permutations. Notice

that, for an n x m JSP, there are (m!)n possible sets of machine orders; while

once a specific JSP is defined the problem demands a particular set of machine

orders and all feasible solutions to the problem must be compatible with it.

Thus the total number of feasible operation sequences for an n x m JSP is

(m ·n)!
(m!)n . (8.3.1)

Based on equation (8.3.1), the total numbers of feasible operation sequences

of three JSPs are listed in Table 8.1.

On one hand, the astronomically large numbers in Table 8.1 show the dif­

ficulty for any algorithm to locate the optimal solution. On the other hand,

although the numbers In Table 8.1 are astronomically large, they are finite.

PATTERN CLASSIFICATION BY MACHINE LEARNING L. Meng

8.3 The New Genetic Scheduling Algorithm 137

In other words, we are minimizing a function over a finite set and thus the

existence of an optimal solution under GSA is ensured.

8.3.2 Initialization

In the construction of operation sequences, two things need to be taken

in consideration: the avoidance of deadlock and the compliance with the de­

manded machine orders. In order to meet them, a procedure, which is a vari­

ation of the decoding scheme proposed in [126], has been used to construct

chromosomes in the initial population. This procedure is carried out as fol­

lows. Firstly, compose a ready list with only those operations that do not have

any predecessors. Then, randomly pick up an operation from the ready list

and update the ready list. Repeat the picking and updating until no operation

remains in the ready list. Notice that only operations having no predecessors

would appear in the ready list and random picking is always from the ready

list. Consequently, deadlocks are avoided and the machine order for each job

is naturally kept. In other words, all operation sequences constructed by this

procedure are feasible.

8.3.3 Cost and fitness evaluation

As stated, makespan is the cost measure in our study. We can work out the

makespan of a feasible operation sequence by plotting a simple diagram called

Gantt chart, such as the one in Figure 8.1. Table 8.2 lists the pseudo code for

generating a Gantt chart.

By examining the pseudo code in Table 8.2, it can be seen that the ear­

liest starting time of an operation on a schedule can be delayed only by the

operations on the same machine and the preceding operations belonging to the

same job. Hence, different operation sequences may deduce a same schedule.

To reduce the searching space of GSA, after each makespan evaluation, an

PATTERN CLASSIFICATION BY MACHINE LEARNING L. Meng

8.3 The New Genetic Scheduling Algorithm 138

Table 8.2: Algorithm of drawing Gantt chart of a given operation sequence

Symbols:

S(l): the lth operation of the given operation sequence S,

Altime(j): the ready time of the jth machine,

Jtime(i): the ready time of the ith job.

Algorithm:

set Mtime(j) to 0, j = 1, ... , m;

set Jtime(i) to the release time of job Ji , i = 1, ... , n;

set l to 1;

REPEAT

get the job index j and the machine index i of operation S(l)

using equation (8.3.1);

compute the earliest start time: start = max(Jtime(i),

Mtime(j)) and finish time: finish = start + ti,j;
set Jtime(i) and Mtime(j) to the earliest finish time finish;

draw job Ji on the Gantt char following machine Mj with a

block from time instant start to finish;

increment l;

UNTIL (l > m' n).

PATTERN CLASSIFICATION BY MACHINE LEARNING L. Meng

8.3 The New Genetic Scheduling Algorithm 139

operation sequence will be replaced by the one corresponding to the derived

schedule, omitting the timetabling information. The operation sequence of a

schedule is obtained by sorting the start times of all the operations in ascending

order.

It has been proved that an optimal schedule providing minimal makespan

must be active and at least semi-active [125]. A semi-active schedule ensures

the processing of each operation starts as soon as it can be, while obeying the

demanded machine orders. In an active schedule, the operation sequence is

such that no operation can be started any earlier without either delaying some

other operation or violating the machine orders. Obviously, schedules deduced

by the algorithm in Table 8.2 will be semi-active however not necessarily ac­

tive. The reason is that by that algorithm, all operations are scheduled in the

fixed order determined by the gradually extended operation sequence such that

blank interval with long length may be left in the schedule. When the length

of any blank interval becomes longer than the processing time of an operation

processed later on the same machine, the schedule becomes only semi-active

and therefore may have a shorter makespan. Considering the optimal schedule

is in the set of active schedules, we would like the operation sequence repre­

sented by each chromosome to be active. This can be achieved if we check the

blank intervals long enough to complete the next operation within it before

appending that operation at the end of the schedule and simply fill the first

possible blank interval, if there is any.

Since the objective of JSP is to minimize the makespan while the GA favors

fitter individuals, the fitness of the ith individual in the population is defined

as

(8.3.2)

where Cmax(Si) is the makespan of the operation sequence represented by the

ith chromosome in the GA population.

PATTERN CLASSIFICATION BY MACHINE LEARNING L. Meng

B.3 The New Genetic Scheduling Algorithm 140

To prevent premature convergence and maintain reasonable selection pres­

sure, a typical linear fitness scaling mechanism [81] has been adopted.

8.3.4 Genetic operations

Selection .

In GSA, the stochastic universal sampling scheme [104] has been used for

proportional selection.

Crossover

As mentioned, for an ordering problem like JSP, crossover is the most dif­

ficult GA operator to design. Recall that, with the encoding scheme of GSA,

each operation has a unique index number. For a complete operation sequence,

each of these index numbers should present once only. This may lead to the

problem that any segment of a chromosome cannot be directly replaced by

any segment from another chromosome. Otherwise, according to the resulting

sequence, some operations may be processed more than once while some others

may be missing, let alone the compliance of the demanded machine orders. In

general, this problem is the primary argument against permitting simple crosses

of traditional GA between ordered strings. To solve this problem, three sim­

ilar crossover operators - partially matched crossover (PMX), order crossover

(OX), and cycle crossover (eX) - have been developed independently (see [81]

for a brief introduction of these crossover schemes). All arose in considering

ways to tackle a blind travelling salesman problem (TSP) and succeeded in

maintaining the completeness of solutions in a GA search for TSPs. However,

in a TSP, only one machine (the salesman) is concerned and thereby, unlike

in JSP, no so-called machine order is imposed. This suggests that we must

modify these crossover operators before being able to adopt them in a G A for

JSP. In a JSP, the order of the operations of a same job is constrained while

PATTERN CLASSIFICATION BY MACHINE LEARNING L. Meng

I
!

8.3 The New Genetic Scheduling Algorithm 141

the operations of different jobs can be arranged freely. In this light, a new

crossover operator has been devised in our previous work [127], which adopts

the basic mechanism behind OX but works on the job basis rather than the

gene (operation) basis as the past crossover operators do. We named the new

crossover operator job-based order crossover (JOX).

Instead of choosing splitting site(s) along a chromosome, JOX divides the

n job index numbers, {I, 2, ... , n}, into two exclusive sets, the desired set S

and the undesired set S, with each set containing at least two elements. Then

in a manner similar to OX, JOX removes, from a parent's operation sequence,

the operations belonging to the jobs in S and refill these vacant position with

the same operations in the exact order they appear along the other parent's

operation sequence. For example, we have the following machine order matrix:

1 234

3 1 4 2

1 324

324 1

and the following pair of chromosomes have been chosen to crossover (for con­

venience, we represent an operation in the form of (job inedx)(machine index)):

Suppose S = {JlI J3} and S = {J2, J4}. When parent1 maps to parent2,

the operations belonging to J2 and J4 will be removed and leave holes (marked

by an H) in the sequence:

These holes are then filled with the same operations taken from the parent2,

keeping the appearing order unchanged. Performing this step and completing .
the complementary cross we obtain the offspring as follows:

PATTERN CLASSIFICATION BY MACHINE LEARNING L. Meng

8.3 The New Genetic Scheduling Algorithm 142

Syswerda [128] conjectures that the order as well as the position of genes

in the permutation of a JSP are meaningful. To be more precisely, we expect

the absolute position to be of particular interest because it directly express

precedence relations among operations in a schedule. Under JOX, the absolute

positions of the operations of the desired jobs are inherited invariantly from a

parent while the relative positions of the operations of the undesired jobs are

inherited invariantly from the other. Moreover, as a consequence, no machine

order will be violated by JOX and thus there is no need for time consuming

feasibility checking and correction afterwards.

Mutation

In GSA, a new mutation operator has been devised specially for JSP. The

new mutation operator randomly extracts an operation from the given opera­

tion sequence and then re-insert it to a randomly selected position between its

preceding and following operations of the same job.

8.3.5 Creation of a new generation

Our genetic clustering algorithm is a steady-state CA. Like in GIICMCA,

the First-In-First-Out (FIFa) deletion has been adopted here.

Moreover, a newly generated sequence is inserted into the population only

if its makespan is better than that of the one it is generated from.

8.3.6 Hybrid with a local search

Local search has been known as a useful tool for solving combinatorial

problems. The basic strategy in a local search is simple and straightforward:

PATTERN CLASSIFICATION BY MACHINE LEARNING L. Afeng

8.3 The New Genetic Scheduling Algorithm

Table 8.3: The Parameter Settings of GSA

parameter I settings I
population size 200

crossover rate 0.80

mutation rate 0.001

generation gap 0.5

143

replace a solution with the best solution in its neighborhood. It has been

observed that local optima of JSP tend to be relatively close to each other

and the known global optimum. This fact suggests that local search should be

effective in finding near-optimal solutions for JSP. In this light, local search

has been inserted in GSA. To perform a local search, the neighborhood of a

solution needs to be defined beforehand. We inherit the definition used in the

simulated annealing algorithm [129] and tabu search [130] for JSP and define

the neighborhood of a solution to JSP (a schedule) as the set of solutions which

can be obtained hy reversing a pair of adjacent operations on its critical path.

In JSP, the critical path of a schedule is composed of the operations processed

on the same machine as the last finished operation on that schedule. For an

n x m JSP, there are n - 1 pairs of adjacent operations on the critical path

of a schedule. Due to the imposition of the required machine orders, dead

lock and thus an infeasible schedule may be caused by simply reversing a pair.

Therefore, the size of the neighborhood of a schedule may be less than n - 1.

8.3.7 Other components

The parameter settings of our new algorithm GSA is summarized in Ta­

ble 8.3. The genetic approach stops after a certain number of generations.

PATTERN CLASSIFICATION BY MACHINE LEARNING L. Meng

8.4 Experiments and Results 144

8.4 Experiments and Results

The proposed genetic schedule algorithm (GSA) has been implemented in

C++. Experiments have been conducted on three well-known job-shop bench­

mark problems [131]:

• MT6x6 (6 jobs, 6 machines)

• MTlOxlO (10 jobs, 10 machines)

• MT20x5 (20 jobs, 5 machines)

These three problems have been used as benchmarks to test many other exist­

ing algorithms for JSP. The last two problems have been found difficult. Dy

GSA, the optimal schedules for all these three problems have been obtained.

The minimal makespan values are the 55, 930 and 1165, respectively. The

optimal schedules are shown in Figures 8.1, 8.2 and 8.3, respectively. For each

problem, more than one optimal schedule with the same minimum makespan

have been found. Table 8.4 compares the minimum makespan of these three

benchmark problems found by the GSA with that by some other existing algo­

rithms for JSP. The results of GSA are the same as earlier's branch-and-bound

and better than other algorithms. Dut it is well known that the large amount

of computation required by branch-and-bound for JSP is a notorious problem.

PATTERN CLASSIFICATION BY MACHINE LEARNING L. Meng

8.4 Experiments and Results 145

Table 8.4: Comparison of the minimum makespans of the three benchmark
problems found by different algorithms

Algorithm ! MT6 X6! MT10 x 10 ! MT20 X5!

Barker 1985 [120] 55 960 1303

(branch-and-bound)

earlier 1989 [121] 55 930 1165

(branch-and-bound)

Nakano 1991 [122] 55 965 1215

(CA)

Croce 1995 [123] 55 946 117

(CA)

This paper 55 930 1165

(GSA)

makespan = 55

10 20 30
time

40 50

_ Jl
_ J2

- J3
- J<I
- J5

JO

Figure 8.1 : Cantt diagram for an optimal schedul of the b nchmark pr bl m
MT6x6

PATTERN CLASSIFICATION BY MACHINE LEARNING L. M ng

8.4 Experiments and Results 146

makespan = 930
11 ~------~--------r-------~--------~--~~ __ ~~~t

x
Q)
"0
c
Q)
c
:E
u ro
E

10 · ···· ······ ····· . ····· • •• •
9

8

7 ...

6

5

4

3

2

.. ..•.. • ~ I/) ,l,: 1 M

.

• •
.

200

....
I

•,.": ~ ··· 1 ~ I
V N in ·

400
time

10 • • ..

$! . _ ,

······: ·1 ····

600 800

__ ~2
__ ~3

-- JO.4 - ~,
- ~6
_~7

-- J08
- ~8

J t O

F igure 8.2: Gantt diagram for an optimal ch dule of the ben hmark probl m
MTIOxlO

PATTERN CLASSIFICATION BY MACHINE LEARNING L. M ng

8.5 Conclusion

makespan = 1165
6 ,------.-------.------~------~------~----~ ~ __ ~~~-,

__ ~2

5

200 400 600
time

800

~ 11 ··1 · ...• ~
1000

__ J03
__ J()4

__ J05
__ J06

__ J07
__ JOB
__ J09
__ J l0

_Jl1 __ J 12
_ J1 3
__ J14
__ J1 5
_ J1 6

J 17
JIB
J1 9
J20

147

F igure 8.3: Gantt diagram for an optimal schedule of the b n hmark pr bl m

MT20x5

8.5 Conel usion

In this paper, a new algorithm - GSA has been pr

specially for job-shop scheduling problems. A new coding s hin i ad pt d in

the GSA, by which the solution space of a general job- hop pr bl m i ' trallS­

formed into a domain suitable for GA search . A imple y t highly cff tiv A

crossover operator has been devised. It has successfully accomplished th \ rol

of a CA crossover of combining good gene segment . Howev r, th mo t ignif­

icant achievement of the new crossover operator is that no inf asibl s h dules

will be generated by it. Therefore, no complicat d and omputa tionalIy x­

pensive treatment is required . The activeness of the sch duI r pr nt d b

the chromosomes in the population is ensured by the coding s h · m and the

replacement facility introduced in fitness evaluation. Th optimal sch duI

for all t he test problems have been found by the propos d GSA.

Moreover, the techniques developed in GSA for JSP an be adapt d to

PATTERN CLASSIFICATION BY MACHINE LEARN ING L. M ng

8.5 Conclusion 148

other closely related problems, such as bin packing, TSP, the scheduling of

communication networks or project planning, in a straightforward way.

PATTERN CLASSIFICATION BY MACHINE LEARNING L. Afeng

Chapter 9

CONCLUSION

The summary of the results obtained in this thesis is given below, and by

this means its contributions are highlighted. Suggestions for future research

are listed at the end.

9.1 Summary of Results

This thesis has been devoted to a discussion on supervised pattern classifi­

cation using SVMs and unsupervised pattern classification using a GA guided

approach, respectively.

In the first part of the thesis, the effect of parameter C on a soft-margin

SVM has been investigated and the following conclusions have been drawn:

• For nonseparable data sets, an infinite C would lead to an infinite solution

where the margin is infinite small (Le. margin -+ 0). Otherwise, as the

value of C increases, the width of the margin decrease.

• As the value of C increase, more complex decision boundary is required

for separating the patterns.

• Small and large values of C may both lead to bad generalisation perfor-

mance.

149

9.1 Summary of Results 150

For fast training of SVMs, two centre-based algorithms - CO and ECO

- have been proposed and the following results have been obtained from the

experiments:

• A centre-based algorithm may largely reduce the training time of a SVM .

• Besides the optimality guaranteed by the ECO, its training time scales

almost linearly in the training set size. Therefore, ECO may be applied

to much larger training sets, in comparison with the standard QP tech­

niques.

In the second part of the thesis, a hybrid algorithm - GHCMCA- has been

proposed for clustering, which combines the efficiency of the hill-climbing c­

means and the global search of genetic algorithms. Experimental results have

shown that:

• A genetic approach is able to overcome the inevitable drawbacks of a

hill-climbing technique .

• For complex clustering problems such as image quantisation problems,

GHCMCA is superior to the previous genetic clustering algorithm GGA

in the sense that it converges much more quickly to the desired region in

which the global optimum resides.

Therefore, in the cases where speed as well as performance is required, GnCMCA

may provide a solution to the dilemma where the classical clustering algorithm

can be easily trapped in different local extrema and the conventional genetic

approach is time consuming.

Finally, the application of GAs to NP-complete problems has been extended

to JSPs, where a simple yet effective GA crossover operator has been devised.

PATTERN CLASSIFICATION BY MACHINE LEARNING L. Afeng

9.2 Suggestions for Future Work 151

9.2 Suggestions for Future Work

Here, we address several related points that deserve further investigation.

• Best choice of the kernel function and optimisation of trade-off parameter

C

A significant challenge in SVM application lies in the best choice of the

kernel function. If an inappropriate kernel has been used, the gener­

alisation performance will suffer from overfitting (e.g. Figures 3.3 and

3.9). Although some work has been done on limiting kernels using prior

knowledge [132, 133], the best choice of the kernel function for a given

problem still remains as a research issue. Once the kernel is fixed I SVM

classifiers have only one user-chosen parameter - the trade-off parameter

C. The effect of C on a soft-margin SVM has been investigated in this

thesis, but a general way for determining the optimal value of C for a

given problem is still an unsolved problem .

• Multi-class SVM classification

SVMs were originally studied for two-class classification. However, the

real-world problems usually involve more than two classes. Currently,

multi-class classification is typically solved by combining several two-class

SVM classifiers. Some work has also been done on training a multi-class

SVM in one step [134, 135]. As it is computationally more expensive

to solve multi-class problems, comparisons of these methods using large­

scale problems have not been conducted, especially for methods training

a multi-class SVM in one step where a much larger QP problem is in­

volved. Although fast training algorithms can be used to solve this com­

putational problem, the optimal design for multi-class SVM classifiers is

still a further area for research, where the competition and interaction

between classes should be considered.

PATTERN CLASSIFICATION BY MACHINE LEARNING L. Meng

9.2 Suggestions for Future Work 152

• Fuzzy classification using SYMs

SYMs were originally studied for binary classification. Each example in

the training set is associated with a binary value indicating which one

of the two classes that example belongs to. Also, the trained SYM will

provide a binary value for each testing example. In other words, it is

assumed that there is no overlap between classes. However, this is not

true for some real-world situations. When overlap exits between classes,

the fuzzy relationship of an example to a class is typically represented by

a floating point value ranging from 0 to 1. The use of SYMs for fuzzy

classification will be of great meaning.

• A genetic approach for fuzzy clustering

Like in hard clustering, the objective function for fuzzy clustering prob­

lems is highly nonlinear and the solution space to be searched is vnst.

Moreover, there is no deterministic algorithm which can find the optimal

partition for all instances of the problem. Under such circumstance, a

genetic guided approach should be helpful.

• Automatic detection of cluster number

A well-known problem in the application of clustering algorithms is the

estimation of the number of clusters in the input data set, i.e. the so­

called cluster validity problem. Most clustering algorithms require the

number of clusters to be preselected. And the objective function opti­

mised by the classic clustering algorithms do not involve the number of

clusters in their formulas. Whereas the search by a classic clustering

algorithm is typically directed according to the gradient of the objec­

tive function to be optimised. Shortly, the classical clustering algorithms

do not consider the problem of cluster validity. A genetic algorithm re­

quire no gradient information about the objective function but only a

way to evaluate the fitness of all valid solutions. Therefore, it is possible

PATTERN CLASSIFICATION BY MACHINE LEARNING L. Afeng

9.2 Suggestions for Future Work 153

to include the number of clusters into the fitness function and thus al­

low the number of clusters to be determined automatically during a GA

search. Hereby, the problem becomes the defining of an appropriate fit­

ness function. It is difficult since the amount of distortion (Le. the value

of the general clustering objective function) decreases monotonically as

the cluster number increases. Moreover, an inappropriate cluster number

can heavily deteriorate the performance of a clustering approach and lead

to serious clustering errors (e.g. when a cluster number larger than the

desired one is used, a false cluster may appear in between two clusters

causing a mixture of patterns from those two clusters and consequently

cause false classification decisions).

As a final conclusion, this thesis has undertaken the investigation of super­

vised pattern classification using SVMs and unsupervised pattern c1a..'isification

using GA guided clustering. It would be helpful for the further investigation

on pattern classification and the future development of methodologies for it.

PATTERN CLASSIFICATION BY MACHINE LEARNING L. Afeng

Appendix A

Notation

Symbols and Operations

E

nd

limx-+a f (x)

arg maxx{f(x)}

arg minx {f (x)}

ISI

is equivalent to

approaches to

for all

belongs to

the d-dimensional real space

the value of f(x) in the limit as x approaches a

the value of x that leads to the maximum value of f(x)

the value of x that leads to the minimum value of f(x)

number of elements in set S

154

Notation

Vectors and Matrices

(x· Y> inner (scalar) product of x and y,

Le. (i· fJ) = Ei XiYi

lal absolute value of scalar a
IIxllp induced p-norm of vector X,

i.e. lIillp = (IXIIP + ... + IxnIP)l/p, 1 <p < 00;

11£'1100 = m~ Ixd·

11 xII Euclidean norm of vector X,

i.e. IIxll = (x· X)1/2.

IIAllp induced p-norm of matrix A,

IIAllp = sUPx#o",~i,~' 1 <p < 00

D2(i, y> Euclidean distance between vectors x and fj

k(x, Y> a kernel function defining the inner product of vectors i

and y

155

PATTERN CLASSIFICATION BY MACHINE LEARNING L. Afeng

Bibliography

[1] Chi-hau Chen, Louis Francois Pau, and Pat rick S. P. Wang (ed.s), Hand­

book of Pattern Recognition fj Computer Vision. World Scientific, Singa­

pore, 2nd edition, 1993.

[2] Luc Devroye, Lasz16 Gyorfi, and Gabor Lugosi, A Probabilistic Theory of

Pattern Recognition. New York: Springer, 1906.

[3] Richard O. Duda, Peter E. Hart and David G. Stork, Pattern classifica­

tion, New York: WHey, 2001.

[4] Ian T. Jollifi'e, Principal Component Analysis. New York: Springcr-Vcrlag,

1986.

[5] Konstantinos I. Diamantaras and Sun-Yuang Kung, Principal Component

Neural Networks: Theory and Applications. Wilcy-Interscience, New York,

1996.

[6] Te Won Lee, Independent Component Analysis: Theory and Applications.

Kluwer Academic Publishers, Dordrecht, 1908.

[7] V. Vapnik, The Nature of Statistical Learning Theory. New York: Springer

Verlag, 1995.

[8] C. Cortes and V. Vapnik, "Support vector networks," Machine Learning,

vo1.20, pp.273-297, 1995.

[9] B. Scholkopf, C. Burges and V. Vapnik, "Extracting support data for a

given task,' in U. M. Fayyad and R. Uthurusamy, editors, Proc. 1st Int.

ConJ. Knowledge Discovery and Data Mining. Menlo Park, Canada, AAAI

Press, 1995.

156

BIBLIOGRAPHY 157

[10] . B. Scholkopf, C. Burges and V. Vapnik, "Incorporating invariances in

support vector learning machines," in C. von der Malsburg, W. von Seclen,

J. C. Vorbruggen, and B. Sendhoff, editors, Artificial Neural Networks -

ICANN'96, pp. 47-52, Berlin, 1996. Springer Lecture Notes in Computer

Science, Vol. 1112.

[111 C. Burges and B. Scholkopf, "Improving the accuracy and speed of support

vector learning machines," in M. Mozer, M. Jordan and T. Petsche, edi­

tors, Advances in Neural Information Processing Systems 9, pp. 375-381,

Cambridge, MIT Press, 1997.

[12] T. Joachims, "Text categorization with support vector machines: Learning
with many relevant features," in Proc. Eroup. Conf. Machine Learning,

pp.137-142. Berlin, Germany, Springer-Verlag Press, 1998.

[13] S. Dumais, J. Platt, D. Heckerman, and M. Sahami, "Inductive learning

algorithms and representations for text categorization," in Proc. 7th Int.

Conf. Inform. Knowledge Management 1998, 1998.

[14] H. Durcker, D. Wu and V. Vapnik, "Support vector machines for span

categorization," IEEE Trans. Neural Networks, vo!. 10, pp. 1048-1054,

1999.

[15] S. Mukherjee, E. Osuna and F. Girosi, "Nonlinear prediction of chaotic

time series using a support vector machine," in J. Principe, L. Gile, N.

Morgan, and E. Wilson (ed.s), Proc. of 1997 IEEE Workshop on Neural

Networks for Signal Processing VII, pp. 511-520. New York: IEEE, 1997.

[16] K. R. Muller, A. J. Smola, G. lliitsch, n. SchoIkopf, J. Kohlmorgen and

V. N. Vapnik, "Predicting time series with support vector machines," in

W. Gerstner, A. Germond, M. HasIer and J. D. Nicoud (ed.s), Lecture

Notes in Computer Science 1327: Artificial Neural Networks, pp. 9!J!J-

1004. Germany: Springer-Verlag, 1997.

[17] D. Mattera and S. Haykin, "Support vecotr machines for dynamic recon­

struction of a chaotic system," in n. SchOlkopf, C. J. C. nurges and A. J.
Smola (ed.s), Advances in Kernel Methods - Support Vector Learning, pp.

211-242. Cambridge, MA: MIT Press, 19!J9.

PATTERN CLASSIFICATION BY MACHINE LEARNING L. Meng

BIBLIOGRAPHY 158

[18] L. Xu, A. Krzyzak and E.Oja, "Rival Penalized Competitive Learning

for Clustering Analysis, RBF net and Curve Detection," IEEE Trans. on

Neural Networks, volA, NoA, pp. 636-649, 1993.

[19] L. Meng, K. W. Lau and Q. H. Wu, "Pattern Classification using a support

vector machine based on subclass centers," in Proc. of the Srd Int. Con!

on Control Theory and Applications, pp. 355-359. Pretoria, South Africa,

2001.

[20] L. Meng and Q. H. Wu, "Error-center-based optimization C a new algo­

rithm for support vector machine training," in D. Li (ed.), Proc. of the

5th Int. Conf. on Optimisation: Techniques and Applications, vol. 1, pp.

462-477. Hong Kong, 2001.

[21] L. Meng and Q. H. Wu, "An error-cent re-based algorithm for support

vector machine training," submitted to Electronics Letters.

[22] L. Meng and Q. H. Wu, "Fast Training of Support Vector Machines Using

Err~r-Center-Based Optimization," submitted to Journal of Global Opti­

mization.

[23] L. Meng, Q. H. Wu and Z. Z. Yong, "A faster genetic clustering algo­

rithm," in S. Cagnoni et aI. (ed.s), Lecture Notes in Computer Science

1803: Real World Applications of Evolutionary Computation, pp. 22-33.

Springer-Verlag, 2000.

[24] L. Meng, Q. H. Wu and Z. Z. Yong, "A comparison of genetic clustering

algorithms," in Proc. of the 2nd Int. ICSC Symposium on Engineering of

Intelligent Systems, UK, 2000.

[25] L. Meng, Q. H. Wu and Z. Z. Yong, "A genetic hard c-means clustering

algorithm," to appear in Dynamics of Continuousl Discrete and Impulsive

Systems, Series B: Applications and Algorithms.

[26] V. Vapnik, Statistical Learning Theory. WHey Interscicnce, 1998.

[27] B. E. Boser, 1. M. Guyon, and V. N. Vapnik, "A training algorithm for

optimal margin classifiers," in D. Haussler, editor, 5th Annual AC}.,! Work­

shop on COLT, pp. 144-152, Pittsburgh, ACM Press, 1992.

PATTERN CLASSIFICATION BY MACHINE LEARNING L. Meng

BIBLIOGRAPHY 159

[28] V. Vapnik, S. Golowich, and A. Smola, "Support vector method for func­
tion approximation, regression estimation, and signal processing," in M.
Mozer, M. Jordan, and T. Petsche, editors, Advances in Neural Informa­

tion Processing Systems 9, pp. 281-287, Cambridge, MIT Press, 1997.

[29] M. Schmidt, "Identifying speaker with support vector networks," in in­
terface '96 Proceedings, Sydney, 1996.

[30] M. P. S. Brown, W. N. Grundy, D. Lin, N. Christianini, C. Sugnet, T. S.
Furey, M. Ares and D. Haussler, "Knowledge-based analysis of microar­
ray gene expression data using support vector machines," in Proc. N at.

Academy Sci., vol. 97, no. 1, pp. 262-267, 2000.

[31] T. Furey, N. Christianini, N. Duffy, D. Bednarski, M. Schummer and D.
Haussler, "Support vector machine classification and validation 0 fcancer
tissue samples using microarray expression data," Bioinformatics, vol. 16,

pp. 905-914, 2000.

[32] A. Zien, G. Ratsch, S. Mika, B. Sch6lkopf, T. Lengauer and K. R. Miiller,

"Engineering support vector machine kernels that recognize translation

initiation sites in DNA," Bioinformatics, vol. 16, pp. 799-807, 2000.

[33] D. Haussler, "Convolution kernels on discrete structures," Univ. of Cali­

fornia Santa Cruz, Tech. Rep. UCSC-CRL-99-10, July 1999.

[34] A. J. Smola, P. Bartlett, B. Sch6lkopf and C. Schuurmans, Advances in

Large Margin Classifiers. MIT Press, 1999.

[35] Guyon's web page on applications of support vector machines.

http://www.clopinet.com/isabelle/Projects/SVM/applist.html.

[36] V. Vapnik, Estimation of Dependences Based on Empirical Data (in Rus­

sian). Nauka, Moscow, 1979. (English translation: Springer Verlag Press,

1982.)

[37] S. Geman, E. Bienenstock and R. Doursat, "Neural networks and the

bias/variance dilemma," Neural Computation, vol. 4, no. 1, pp. 1-58, 1992.

[38] T. M. Cover, "Geometrical and statistical properties of systems of lin­
ear inequalities with applications in pattern recogrJtion," IEEE Trans.

Electronic Computers, vol. EC-14, pp.326-334, 1965.

PATTERN CLASSIFICATION BY MACHINE LEARNING L. Afeng

BIBLIOGRAPHY 160

[39] W. Karush, Minima of Funcitons of Several Variables with Inequalities

as Side Constraints. Department of Mathematics, University of Chicago,

1939. MSc Thesis.

[40] H. Kuhn and A. Tucker, "Nonlinear programming," in Proc. 2nd Berke­

ley Symposium on Mathematical Statistics and Probabilistics, pp. 481-492,

University of California Press, 1951.

[41] R. Fletcher, Practical Methods of Optimization. John Wiley and Sons,

Inc., 2nd edition, 1987.

[42] Information systems laboratory at the University of Massachusetts, USA.

http://www.ecs. umass.edu/ ece/labs/isl/

[43] C. J. C. Burges, "A tutorial on support vector machines for pattern recog­

nition," Knowledge Discovery and Data Mining, 2(2), 1998.

[44] R. Courant and D. Hilbert, Methods of Mathematical Physics, Interscience,

1953.

[45] N. Aronszajn, "Theory of reproducing Kernels," Trans. Amer. Math. Soc.,

vol. 68, pp. 337-404, 1950.

[46] F. Girosi, "Equivalence between sparse approximation and support vec­

tor machines," Tech. Rep. AIM-1606, Artificial Intelligence Laboratory,

Massachusetts Institute of Technology (MIT), Cabridge, Massachusetts,

1997.

[47] N. E. Heckman, "The theory and application of penalized least squares

methods or reproducing Kernel Hilbert spaces made easy," 1907.
ftp://newton.stat.ubc.ca/pub/mamcy/PLS.ps.

[48] B. Scholkopf, K. Sung, C. Burges, F. Girosi, P. Niyogi, T. Poggio, and

V. Vapnik, "Comparing support vector machines with gaussian kernels to

radial basis function classifiers," IEEE Trans. Signal Processing, vol. 45,

pp. 2758-2765, 1997.

[49] J. J. More and S. J. Wright, Optimization Software Guide. Frontiers in

Applied Mathematics, vo!. 14. Society for Industrical and Applied Math­

ematics (SIAM), 1993.

PATTERN CLASSIFICATION BY MACHINE LEARNING L. Afeng

BIBLIOGRAPHY 161

[50] B. A. Murtagh amd M. A. Saunders, "MINOS 5.4 user's guide," Technical
Report SOL 83.20, Stanford University, 1993.

[51] R. J. Vanderbei, "LOQO user's manual -version 3.10," Technical Re­

port SOR-97-08, Princeton University, Statistics and Operations Reser­

ach, 1997. Code available at http://www.princeton.edu/rvdb/.

[52] MATLAB. User's Guide. The Math Works, Inc., 1992.

[53] C. Saunders, M. O. Stitson, J. Weston, L. Bottou, B. SchOlkopf, and A. J.
Smola, "Support vector machines - reference manual," Technical Report

CSC-TR-98-03, Royal Holloway, University of London, 1998.

[54] E. Osuna, R. Freund and F. Girosi, "Support vector machines: Training
and applications," MIT A. I. Lab., A. I. Memo AIM-1602, 1996.

[55] E. Osuna, R. Freund and F. Girosi, "An improved training algorithm

for support vector machines," in J. Principe, L. Gile, N. Morgan, and
E. Wilson (ed.s), Proc. of 1997 IEEE Workshop on Neural Networks for

Signal Processing VII, pp. 276-285. IEEE, 1997.

[56] T. Joachims, "Making large-scale SVM learning practical," in D.
Scholkopf, C. J. C. Burges, and A. J. Smola, editors, Advances in Kernel

Methods-Support Vector Learning, pp. 169-184. Cambridge, MIT Press,

1999.

[57] J. Platt, "Sequential minimal optimization: A fast algorithm for training

support vector machines," Technical Report MSR-TR-98-14, Microsoft

Research, 1998.

[58] J. Platt, "Fast training of support vector machines using sequential min­
imal optimization," in B. Scholkopf, C. J. C. Burges, and A. J. Smola,
editors, Advances in Kernel Methods-Support Vector Learning, pp. 185-
208. Cambridge, MIT Press, 1999.

[59] S. S. Keerthi, S. K. Shevade, C. Bhattacharyya and K. R. K.

Murthy, "Improvements to Platt's SMO algorithm for SVM classifier

design," Technical Report CD-99-14, National University of Singapore,

http://guppy.mpe.nus.edu.sg/ mpessk.

PATTERN CLASSIFICATION BY MACHINE LEARNING L. Meng

BIBLIOGRAPHY 162

[60] E. Osuna, R. Freund and F. Girosi, "Training support vetor machines:

An application to face detection," in Proc. Computer Vision and Pattern

Recognition, pp. 130-136, 1997.

[61] E. Osuna and F. Girosi, "Reducing run-time complexity in SVMs," in

Proc. 14th Int. Conf. Pattern Recognition, Brisbane, Australia, 1998.

[62] L. Kaufmann, "Solving hte quadratic programming problem arising i sup­

port vector classification," in B. Scholkopf, C. J. C. Burges and A. J.
Smola, editors, Advances in Kernel Methods - Support Vector Learning,

pp. 147-168. MIT Press, 1999.

[63] S. S. Keerthi, S. K. Sheade, C. Bhattacharyya and K. R. K. Murthy, "Im­
provements to Platt's SMO algorithm for SVM classifier design," Technical
Report CD-99-14, Control Division, Dept. of Mechanical and Production
Engineering, National University of Singapore, 1999.

[64] A. J. Smola, Learning with Kernels, PhD thesis, Technische Universitiit

Berlin, 1998.

[65] GMD-FIRST. GMD-FIRST web site on Support Vector Machines.

http://svm.first.gmd.de.

[66] T. T. Frieb, N. Cristianini and C. Campbell, "The kernel Adatrom algo­

rithm: A fast and simple learning procedure for support vector machines,"

in J. Shavlik, editor, Proc. Int. Conf. Machine Learning ICML'98, pp.

188-196. San Mateo, Canada, 1998.

[67] J. K. Anlauf and M. Biehl, "The Adatron: An adaptive perceptron algo­

rithm," Europhys. Letters, vol. 10, pp. 687-692, 1989.

[68] S. S. Keerthi, S. K. Sheade, C. Bhattacharyya and K. R. K. Murthy, "A

fast iterative nearest point algorithm for support vector machine classifier

design," Technical Report TR-ISL-99-03, Dept. of CSA, IISc, Dangalore,

India, 1999.

[69] A. Kowalczyk, "Maximal margin perceptron," in A. J. Smola, P. Dartlett,

B. Sch6lkopf and C. Schuurmans, editors, Advances in Large Margin Clas­

sifiers. MIT Press, 1999.

PATTERN CLASSIFICATION BY MACIIINE LEARNING L. Afeng

BIBLIOGRAPHY 163

[70] M. Abramowitz and 1. A. Stegun, eds., Handbook of Mathemeitcal Func­

tions, U. S. Department of Commerce, National Bureau of Standards Ap­

plied Mathematical Series. 55, 1964.

[71] S. P. Lloyd, "Least square quantization in PCM", IEEE Trans. Inform.

Theory, vol. 28, pp. 127-135, 1982.

[72] Jianchang Mao and Anil K. Jain, "A self-organizing network for hyperel­

lipsoidal clustering (HEC)," IEEE Trans. on Neural Networks, TNN-7(l),
pp. 16-29, 1996.

[73] James C. Bezdek, Fuzzy Mathematics in Pattern Classification. Ph.D. the­
sis, Cornell University, Applied Mathematics Center, Ithaca, NY, 1973.

[74] James C. Bezdek, Pattern Recognition with Fuzzy Objective Function Al­

gorithms. Plenum Press, New York, 1981.

[75] S. Chen, "N onlinear time series modelling and prediction using Gaussian

RBF networks with enhanced clustering and RLS learning," Electronics

Letters, vol. 31, no. 2, pp. 117-118, 1995.

[76] Allen Gersho and Robert M. Gray. Vector Quantization and Signal Pro­

cessing. Kluwer Academic Publishers, Boston, MA, 1992.

[77] G. F. Mclean, "Vector quantization for texture classification," IEEE

Trans. System, Man and Cybernetics, vol. 23, no. 3, pp. 637-649, 1993.

[78] J. Makhoul, S. Roucos and H. Gish, "Vector quantization in speech cod­

ing," Pore. of the IEEE, vol. 73, no. 11, pp. 1511-1588, 1985.

[79] R. A. Johnson and D. W. Wichern, Applied Multivariate Statistical Anal­

ysis. Englewood Cliffs, NJ:Prentice-Hall, 1982.

[80] L. Meng, Q. H. Wu and Z. Z. Yong, "A new genetic scheduling algorithm,"

in Proc. 5th Int. Conf. Optimisation: Techniques and Applications, vol. 1,

pp. 128-144. Hong Kong, 2001.

[81] D. E. Goldberg, Genetic Algorithms in Search, Optimization, and lvfachine

Learning. Addison-Wesley Publishing Company, Inc., 1989.

PATTERN CLASSIFICATION BY MACHINE LEARNING L. lvfeng

BIBLIOGRAPHY 164

[82] D. Powell and M. M. Skolnick, "Using genetic algorithms in engineering

de'sign optimization with non-linear constraints," in S. Forrest (ed.), Proc.

5th Int. Con! Genetic Algorithms, pp. 424-430. Morgam Kaufmann, 1993.

[83] P. Surry, N. Radcliffe and I. Boyd, "A multi-objective aproach to con­

strained optimization of gas supply networks," in T. Fogarty (ed.), Proc.

AISB-95 Workshop on Evolutionary Computing, vol. 993, pp. 166-180.

Springer Verlag, 1995.

[84] D. Dasgupta and Z. Michalewicz, (ed.s), Evolutionary Algorithms in En­

gineering Applications, Springer Verlag, New York, 1997.

[85] L. Davis, Handbook of Genetic Algorithms. New York: Van Nostrand Rein­
hold, 1991.

[86] E. Mayr, Toward a new philosophy of biology: observations of an evolu­

tionist. Cambridge, MA: Belknap Press, 1988.

[87] D. B. Fogel, "Asymptotic convergence properties of genetic algorithms and

evolutionary programming: analysis and experiments," Cybern. & Syst.,
vol. 25, pp. 389-407, 1994.

[88] G. Rudolph, "Convergence analysis of canonical genetic algorithms,"

IEEE Trans. Neural Networks, vol. 5, pp. 96-101, 1994.

[89] T. Back, Evolutionary Algorithms in Theory and Practice, Oxford, NY,

1996.

[90] H. P. Schwefel, Evolution and Optimum Seeking, John Wiley, NY, 1995.

[91] D. H. Wolpert and W. G. Macready, "No free lunch theorems for opti­

mization," in IEEE Trans. Evolutionary Computation, vol. 1, pp. 67-82,

1997.

[92] D. E. Goldberg and R. Lingle, "Alleles, loci, and the travelling salesman

problem," in Pore. an Int. Con! Genetic Algorithms and Their Applica­

tions, pp. 154-159, 1985.

[93] D. K. Gehlhaar, G. M. Verkhivker, P. A. Rejto, C. J. Sherman, D. n.
Fogel, L. J. Fogel, S. T. Freer, "Molecular recognition of the inhibitor AG-

1343 by HIV-1 protease: conformationally flexible docking by evolutionary

programming," in Chem. & Bioi., vol. 2, pp. 317-324, 1995.

PATTERN CLASSIFICATION BY MACHINE LEARNING L. Jt.feng

BIBLIOGRAPHY 165

[94] S. A. Harp, T. Samad and A. Guha, "Towards the genetic synthesis of

neural networks," in J. D. Schaffer (ed.), Proc. Srd. Int. Conf. Genetic

Algorithms, pp. 360-369. Morgan Kaufmann, San Mateo, CA, 1989.

[95] P. J. Angeline, G. M. Saunders and J. B. Pollack, "An evolutionary algo­

rithm that constructs recurrent neural networks," in IEEE Trans. Neural

Networks, vo!. 5, pp: 54-65, 1994.

[96] S. B. Haffner and A. V. Sebald, "Computer-aided design of fuzzy HVAV

controllers using evolutionary programming," in D. B. Fogel and W. At­

mar (ed.s), Proc. 2nd Ann. Conf. Evolutionary Programming, pp. 98-107,

Evolutionary Programming Society, La Jolla, CA, 1993.

[97] S. W. Wilson, "Classifier fitness based on accuracy," in Evol. Comp., vol.
1, pp. 67-82, 1997.

[98] J. R. Koze, Genetic Programming, MIT Press, Cambridge, MA, 1992.

[99J P. J. Angeline, D. B. Fogel, "An evolutionary program for the identifi­

cation of dynamical systems," in S. K. Roger and D. Ruck (ed.s), SPIE

Aerosence 97, Symp. on Neural Networks, vo!. 3077, pp. 409-417, 1997.

[100] D. B. Fogel, Evolutionary Computation: Toward a New Philosophy of

Machine Intelligence. IEEE Order No. PC3871, IEEE Press, 1995.

[101] L. J. Fogel, A. J. Owens and M. J. Walsh, Artificial Intelligence through

Simulated Evolution, John WHey, NY, 1996.

[102] D. Whitley, "The GENITOR algorithm and selection pressure," in J.
D. Sehaffer (ed.), Proc. 3rd Int. Conf. Genetic Algorithms, pp. 116-121.

Morgan Kaufmann, 1989.

[103] G. Syswerda, "Uniform crossover in genetic algorithms," in D. J. Schaffer

(ed.), Proe. 3rd Int. Conf. Genetic Algorithms, pp. 2-9. Morgan Kaufmann,

1989.

[104] J. E. Baker, "Reducing bias and inefficiency in the selection algorithm,"

in Proc. Int. Conf. Genetic Algorithms, pp. 14-21, 1987.

PATTERN CLASSIFICATION BY MACHINE LEARNING L. Afeng

BIBLIOGRAPHY 166

[105] K. A. De Jong, An Analysis of the Behavior of a Class of Genetic Adap­

tive Systems (Doctoral dissertation, University of Michigan), 1975. Disser­

tation Abstracts International, 36(10), 5140B (University Microfilms No.

76-9381).

[106] A. Brindle, Genetic Algorithms for Function Optimization, Ph.D. disser­

tation, University of Alberta, Alberta, 1981.

[1071 Emanuel Falkenauer, "The worth of the uniform," in Proc. of the 1999

Congress on Evolutionary Computation (CEC99), vol. 1, pp. 776-782,
Washington, D.C., USA, July 1999. IEEE Press.

[108] W. M. Spear and K. A. De Jong, "An analysis of multi-point crossover,"
in G. J. E. Rawlins (ed.), Foundations of Genetic Algorithms, pp. 301-315.
San Mateo, CA: Morgan Kaufmann.

[109] J. H. Holland, Adaptation in Natural and Artificial Systems. Ann Arbor,

University of Michigan Press, 1975.

[110] N. N. Schraudolph and R. K. Belew, "Dynamic parameter encoding for

genetic algorithms,". Machine Learning, vol. 9(1), pp. 9-21, 1992.

[111] G. P. Babu and M. N. Murty, "Clustering with evolutionary strategies,"

Pattern Recognit., vol. 27, no. 2, pp. 321-329, 1994.

[112] L. O. Hall, I. B. Ozyurt and J. C. Bezdek, "Clustering with a genetically

guided optimized approach," IEEE Trans. Evolutionary Computation, vol.

3, no. 2, pp. 103-112, 1999.

[113] F. Klawonn, "Fuzzy clustering with evolutionary algorithms," in Proc.

Seventh IFSA World Congress, vol. 2, pp. 312-323, 1997.

[114] P. Scheunders, "A genetic c-means clustering algorithm applied to color

image quantization," Pattern Recognit., vol. 30, no. 6, pp. 859-866, 1997.

[115] K. A. De Jong and J. Sarma, "Generation gaps revisited," Foundations

of Genetic Algorithms 2, D. Whitley (ed.), pp. 19-28. Vail, CO:Morgan
Kaufmann,1993.

PATTERN CLASSIFICATION BY MACHINE LEARNING L. Afeng

BIBLIOGRAPHY 167

[116] C. H. Lee and L. H. Chen, "Hign-speed closest codeword search algo­

rithms for vector quantization". Signal Processing, vol. 43, pp. 323-331,

1995.

[117] J. C. Bezdek, "Cluster validity with fuzzy sets," J. Cybernetics, vol. 3,

no. 3, pp. 58-73, 1974.

[118] T. Jones and S. Forrest, "Fitness distance correlation as a measure of

problem difficulty· for genetic algorithms," in L. Eshelman, editor, Proc.

Sixth Int. Conf Genetic Algorithms, pp. 184-192, 1995.

[119] M. R. Garey, D. S. johnson and Ravi Sethi, "The complexity of flowshop

and jobshop scheduling", Mathematics of Operation Research, vol. 1, no.
2, pp. 117-129, May 1976.

[120] J. R. Barker and G. B. McMahon, ":Scheduling the general job shop",

Manaagement Science, vol. 31, no. 5, pp. 594-598, 1985.

[121] J. Carlier and E. Pinson, "An algorithm for solving the job-shop prob­

lem", Management Science, vol. 35, no. 2, pp. 164-176, 1989.

[122] R. Nakano and T. Yamada, "Conventional genetic algorithm for job shop

problems" , in Proceedings of the 4th International Conference on Genetic

Algorithms, pp. 474-479, 1991.

[123] F. D. Croce, R. Tadei and G. Volta, "A genetic algorithm for the job

shop problem", Computers and Operations Research, vol. 22, no. 1, pp.

15-24, 1995.

[124] S. Kobayashi, I. Ono. M. Yamamura, "An efficient genetic algorithm for

job shop scheduling problems", in Proceedings of the 6th International

Conference on Genetic Algorithms, pp. 506-511, 1995.

[125] S. French, Sequencing and Scheduling, Ellis Horwood, Chichester, 1982.

[126] E. Falkenauer and S. Bouffoix, "A genetic algorithm for job shop", Pro­

ceedings of the 1991 IEEE international Conference on robotics and Au­

tomation, 1991.

PATTERN CLASSIFICATION BY MACHINE LEARNING L. Meng

BIBLIOGRAPHY 168

[127] L. W. Cai, Q. H. Wu and Z. Z. Yong, "A genetic algorithm with local

search for solving job shop problmes", Lecture Notes in Computer Science

1803: Real World Applications of Evolutionary Computation, S. Cagnoni

et al. (ed.s), pp. 107-116. Springer, 2000.

[128] G. Syswerda, "Schdule Optimization Using Genetic Algorithms", Hand­

book of Genetic Algorithms, L. Davis (ed.), pp. 332-349, Van Nostrand

Reinhold, NY, 1991.

[129] P. J. M. Van Laarhoven, E. H. L. Aarts and J. K. Lenstra, "Job shop

scheduling by simulated annealing", Operations Research, vo!. 40, pp. 113-

125, 1992.

[130] M. Dell' Amico and M. Trubian, "Applying tabu search to the job shop

scheduling problem", Operations Research, vol. 41, pp. 231-252, 1993.

[131] J. F. Muth and G. L. Thomoposon, Industrial Scheduling, Prentice Hall,

Englewood Cliffs, New Jersey, 1963.

[132] B. Sch6lkopf, P. Y. Simard, A. J. Smola, and V. N. Vapnik, "Prior knowl­

edge in support vector kernels," Advances in Neural information process­

ings systems, M. I. Jordan, M. J. Kearns, and S. A. Solla (ed.s), vol. 10,

pp. 640-646, Cambridge, MA, 1998. MIT Press.

[133] C. J. C. Burges, "Geometry and invariance in kernel based methods,"

Advances in Kernel Methods - Support Vector Learning, D. Scholkopf, C.

J. C. Burges, and A. J. Smola (ed.s), pp. 89-116, Cambridge, MA, 1999.

MIT Press.

[134] J. Weston and C. Watkins, "Multi-class support vector machines," in M.

Verleysen (ed.) Proceedings of ESANN99, Brussels, 1999. D. Facto Press.

[135] K. Crammer and Y. Singer, "On the learnability and design of output

codes for multiclass problems," in Computational Learning Theory, pp.

35-46, 2000.

PATTERN CLASSIFICATION BY MACHINE LEARNING L. Meng

