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Abstract

MACHINE LEARNING FOR PARAMETER IDENTIFICATION OF

ELECTRIC INDUCTION MACHINES

by

W. F. Kent

This thesis is concerned with the application of simulated evolution (SE) to the

steady-state parameter identification problem of a simulated and real 3-phase

induction machine, over the no-load direct-on-line start period.

In the case of the simulated 3-phase induction machine, the Kron's two-axis

dynamic mathematical model was used to generate the real and simulated sys-

tem responses where the induction machine parameters remain constant over

the entire range of slip. The model was used in the actual value as well as

the per-unit system, and the parameters were estimated using both the genetic

algorithm (GA) and the evolutionary programming (EP) from the machine's

dynamic response to a direct-on-line start. Two measurement vectors repre-

sented the dynamic responses and all the parameter identification processes

were subject to five different levels of measurement noise.

For the case of the real 3-phase induction machine, the real system re-

sponses were generated by the real 3-phase induction machine whilst the sim-

ulated system responses were generated by the Kron's model. However, the

real induction machine's parameters are not constant over the range of slip,

because of the nonlinearities caused by the skin effect and saturation. There-

fore, the parameter identification of a real3-phase induction machine, using EP

from the machine's dynamic response to a direct-on-line start, was not possible

by applying the same methodology used for estimating the parameters of the

simulated, constant parameters, 3-phase induction machine.
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Chapter 1

Introduction

1.1 History of the Problem

Induction machines have many advantages and applications. Their ad-

vantages are due to their size, weight, cost, reliability and efficiency [1]. Their

applications have been used in fixed speed and variable-speed servo and drivers.

The method of vector control allows high-performance control of torque, speed,

or position to be achieved from an induction machine [2, 3]. It is important

to know the machine parameters for both evaluation and application of these

machines.

The performance estimation of a fixed speed 3-phase induction machine can

be calculated from its equivalent circuit and its resulting equivalent circuit's

mathematical equations [4]. The resistances and reactances of the equivalent

circuit are recognised as the parameters of the induction machine. The induc-

tion machine parameters are normally obtained from the manufacturer who

determines them from the standard locked rotor and no-load tests [1]. These

parameter values are only valid for the steady-state operation of the 3-phase

induction machine and under conditions governed by the machine's specifica-

tions. Therefore, at different machine operating points, the parameter values

1



1.1 History of the Problem 2

vary because of temperature changes and the nonlinearities caused by the skin

effect and saturation. This will effect the performance of vector control, which

will be discussed in more detail in the next section, as the controller parame-

ters will not match the real induction machine's parameters. Hence, parameter

identification for the induction machine's dynamic model is necessary for high

performance vector control.

Parameter or/and states identification algorithms have been used with great

success for modelling and control of a.c. machines. The oberved stimulus-

response data is often used to identify the parameters and a criterion of the

response data is used as an objective function to be minimized, which is typi-

cally a function of the squared predictive errors. The Recursive Least-Square

Method (RLS) has been used for this purpose [4, 5, 6, 7]. Among them, Lima et

al, [4], estimated the nonlinear parameters of a steady-state induction machine.

The Maximum Likelihood Parameter Estimation (ML), [8, 9], and Extended

Kalman Filter (EKF), [10, 11, 13], are also techniques applied for parameter

or / and states identification for a.c. machines. Among them, Tsai et al, [8],

have applied ML for the estimation of synchronous machine parameters for

small disturbance operating data and Atkinson et al, [10], have defined the

rotor resistance as a state variable in EKF. Ma and Wu, [14], have applied

Evolutionary Programming (EP) to identify the parameters of a synchronous

generator connected in a two-machine system. Genetic Algorithms (GA) is a

method used most recently [15, 16, 17, 18]. For example, Nangsue et al, [15],

have determined the parameters of an induction machine using both GA and

Genetic Programming (GP); Dong-Hyeok et al, [16], have applied niching CA

for the design of an induction machine for use in an electric vehicle; Charette

et al, [17], have used GA for in-situ efficiency measurements of an induction

machine; Alonge et at, [18], have estimated the electrical and mechanical pa-

rameters of the induction machine's model.

MACHINE LEARNING FOR SYSTEM IDENTIFICATION W. F. Kent



1.2 The 3-Phase Induction Machine, Vector Control and Parameter

Identification 3

1.2 The 3-Phase Induction Machine, Vector

Control and Parameter Identification

As mentioned in the previous section, vector control allows high-performance

control of torque, speed or position. Vector control provides decoupled con-

trol of the rotor flux magnitude and the torque producing rotor current, with

a fast, near-step response change in torque achievable. The fast torque re-

sponse obtained using vector control is achieved by measuring or estimating

the magnitude and position of the rotor flux, then the control sequence alters

the magnitude, frequency and phase of the three stator currents (almost) in-

stantaneously in such a way that the frequency, magnitude and phase of the

rotor current wave jumps suddenly from one steady-state to another. This is

achieved by providing each phase with a fast-acting closed-loop current con-

troller and without altering the amplitude or position of the resultant flux

linkage relative to the rotor, i.e. without altering the stored energy signifi-

cantly. Thus, the flux density wave remains the same while the rotor current

and space-lag angle between the peak radial flux density and peak rotor cur-

rents change instantaneously to their new steady-state values, corresponding

to the new steady-state slip and torque.

There are two methods of vector control, direct and indirect. The direct

method measures the flux by search coils or Hall effect devices that are inserted

into the air gap of the induction machine. The indirect method relies entirely

on the mathematical model of the induction machine. This method uses a slip

speed calculation to estimate the speed of rotation of the flux relative to the

rotor and integrates this to find the slip position. Adding this to the rotor

position measurement gives the rotor position.

Vector control is thus a control process. Both the direct and indirect meth-

ods use the multi-variable, non-linear, mathematical model of the induction

MACHINE LEARNING FOR SYSTEM IDENTIFICATION W.F.Kent



1.3 The Mathematical Model of a 3-Phase Induction Machine 4

machine, and implementation of complex control algorithms requiring a large

number of fast computations to be continually carried out so that the correct

instantaneous voltages are applied to each stator winding. Thus, both methods

use current feedback as an integral part of each stator current controller and,

hence, digital signal processor (DSP) circuitry is used in the drive circuit.

Since the vector control indirect method uses only the induction machine's

mathematical model in slip speed calculations for estimating the magnitude

and position of the rotor flux in its complex control algorithms, it is important

to know the induction machine's parameters, particularly the rotor resistance,

at the required torque and speed instances. It is not possible to obtain directly

on-line the induction machine's parameters for use in the indirect method's

control algorithm. The identification of the 3-phase induction machine's pa-

rameters by Simulated Evolution (SE), which is the essence of the research

work contained in this Thesis, is a computational method for identifying the

parameters. SE can be used to identify the machine's parameters at particular

torque and speed instances, but the computational time in so doing is much

greater than the instantaneous computations required by the vector control

indirect method. However, it is possible for SE to identify a range of induc-

tion machine parameters off-line,over the required torque and speed instances,

and store these parameters on a data base for use with the indirect method's

control algorithm on-line.

1.3 The Mathematical Model of a 3-Phase In-

duction Machine

For the simulation of the 3-phase inducion machine we shall use the Kron's

two-axis dq dynamic mathematical model. This model will generate the state

variables, namely the 3-phase stator currents and the rotor speed calculations,

MACHINE LEARNING FOR SYSTEM IDENTIFICATION w.F.Kent



1.4 The Optimization Problems for Parameter Identification of a 3-Phase

Induction Machine 5

during the simulation runs required by the objective function. The model is

based on a 3-phase wye-connected symmetrical induction machine. It has iden-

tical stator windings with equivalent turns and resistances and also has rotor

windings with equivalent turns and resistances. The air gap is uniform. The

model transforms the 3-phase induction machine's axes into two perpendicu-

lar axes, the dq axes, thus eliminating the time-varying mutual inductances

between the stator and rotor circuits from the induction machine's voltage

equations [21, 23]. Furthermore, the model operates under the assumptions

that the 3-phase induction machine has linear magnetic circuits and its resis-

tances do not change due to temperature and frequency changes.

1.4 The Optimization Problems for Parame-

ter Identification of a 3-Phase Induction

Machine

The process of optimization is to improve performance towards some op-

timal point or points. The observed stimulus-response data, obtained from a

simulated and a real 3-phase induction machine, shall be used to identify the

machine's parameters and a criterion of the response data will be used as an

objective function to be minimized. This will be a function of the squared

predictive errors between the real system and simulated system response data.

Traditional optimization techniques have been used extensively for parameter

identification problems, but each of these methods has been hindered by its

own peculiar set of drawbacks. Calculus-based methods are local in scope and,

because of their dependence on functional derivatives, cannot deal with noisy

data pollution. Enumerative schemes rely on search spaces that maybe so vast,

that a slow rate of convergence results, or a search space too large to search.

Random search algorithms lack efficiency due to their stochastic and random

MACHINE LEARNING FOR SYSTEM IDENTIFICATION w.F.Kent



1.5 Simulated Evolution 6

approach to orientation within the search space for the optimal point or points.

The following section will discuss why Simulated Evolution is applied in this

research in order to by-pass the problems incurred in traditional optimization

methods.

1.5 Simulated Evolution

Simulated Evolution (SE) is a stochastic search optimization technique. It

differs from conventional optimization techniques in that it involves direct ma-

nipulation of a coding, it is a population-wide search rather than a point search,

and the search is through sampling and using stochastic operators as opposed to

deterministic rules. The evolutionary technique is based upon generating suc-

cessive populations of feasible solutions based on the Darwinian evolutionary

theory. SE generally takes the following form: a population of trial solutions to

a particular problem is generated. Each of the initial solutions is scored with

respect to a particular objective function. Through a variety of possible code

operations, parents generate offspring which are scored in a similar fashion,

the best subset of the solution are retained to serve as parents for successive

generations. The population iteratively adapts its behaviour in view of the

present objective. Two paradigms of SE are applied in this research: Genetic

Algorithms and Evolutionary Programming.

1.6 Applying Simulated Evolution to the Pa-

rameter Identification Problem in a Simu-

lated 3-Phase Induction Machine

Software has been developed, incorporating the Kron's two-axis dynamic

mathematical model, which will generate the state variables for the simulated

MACHINE LEARNING FOR SYSTEM IDENTIFICATION W.F.Kent



1.7 Applying Simulated Evolution to the Parameter Identification Problem of

a Real 3-Phase Induction Machine 7

3-phase induction machine. The 'plant' responses are generated by the Kron's

two-axis dynamic mathematical model, without measurement noise, and us-

ing the machine's known parameters, and are termed the simulated system

responses. The electrical parameters and mechanical coefficients, used in the

mathematical model, were taken from the specifications of a real 3-phase in-

duction machine [12]. The 'real' system responses are formed by the Kron's

two-axis dynamic mathematical model simulation, using the same 3-phase in-

duction machine specifications as previously mentioned, but with the addition

of measurement noise added in varying levels to different simulation runs.

The 'real' and simulated system responses shall form part of the objective

function in the optimization process. The optimization process will be used

by the SE for the electrical parameter identification of a 3-phase induction

machine. Moreover, the electrical parameters identified by the SE will be used

in the Kron's two-axis dynamic mathematical model, using the same 3-phase

induction machine specifications which will form the responses generated by the

identified parameters. These responses shall be called 'EP' (if the parameters

were identified by evolutionary programming) or 'GA' (if the parameters were

identified by genetic algorithms). This will enable the research to compare

the responses generated by the 'plant' with those responses generated by the

identified parameters, either EP or GA, for different levels of measurement

noise.

1.7 Applying Simulated Evolution to the Pa-

rameter Identification Problem of a Real

3-Phase Induction Machine

The state variables for the real 3-phase induction machine shall be generated

by the machine from a direct-an-line start and collected by the data acquisition

MACHINE LEARNING FOR SYSTEM IDENTIFICATION w.F.Kent



1.7 Applying Simulated Evolution to the Parameter Identification Problem of

a Real 3-Phase Induction Machine 8

system, over the data acquisition period, and stored on a data file. These

responses shall be called the 'plant' and will form the real system responses for

use in the objective function used in the optimization process.

The simulated system responses are formed by the Kron's two-axis dynamic

mathematical model simulation. The electrical and mechanical specifications

needed by the model were taken from the real 3-phase induction machine's

nameplate. Neither the electrical parameters nor the mechanical coefficients

were known. Therefore, various ranges of electrical parameters and mechanical

coefficients shall be investigated to allow the EP to have ample scope for the

parameter identification process. However, the electrical parameters of a 3-

phase induction machine can be determined via the locked rotor and no-load

tests. The reasons why this latter option was not followed and the parameter

identification process was chosen shall now be explained.

The responses generated by both the real and simulated 3-phase induction

machines will be over the transient start-up period. The real 3-phase induction

machine's electrical parameters are normally determined via the locked rotor

and no-load tests. In Chapter 6, Section 8, we will discuss why these parameters

are no longer valid during transient periods of the machine's operations in

the Kron's two-axis dynamic mathematical model. Therefore, the parameter

identification of the real 3-phase induction machine shall be considered a black

box problem. Moreover, the choices of the electrical parameters and mechanical

coefficient ranges for use in the EP for the parameter identification process were

chosen by logical deductions under the available criteria.

Once again, the real and simulated system responses shall form part of

the objective function in the optimization process. The optimization process

shall be used by the EP for the parameter identification of the real 3-phase

induction machine. The parameters identified by the EP shall be used in

the Kron's two-axis dynamic mathematical model to produce the responses

generated by the identified parameters. These responses shall be called 'EP'.

MACHINE LEARNING FOR SYSTEM IDENTIFICATION W.F.Kent



1.8 Scope and Purpose of this Research 9

This will again enable us to compare the responses generated by the 'plant'

with those generated by the identified parameters 'EP'.

1.8 Scope and Purpose of this Research

This work focuses on the parameter identification of a 3-phase induction

machine by the application of SE in the optimization process. The following

objectives have been set for this work.

1. To identify the parameters of a simulated 3-phase induction machine

where both the 'real' and simulated system responses are generated by the

Kron's two-axis dynamic mathematical model over the transient start-up

period, and where the 'real' system responses contain measurement noise

added in varying levels to different simulation runs.

2. To identify the parameters of a simulated 3-phase induction machine,

identical to the previous objective, but in this case using the induction

machine mathematical model in the per-unit system.

3. To identify the parameters of a real 3-phase induction machine, where

the real system responses are generated by the real 3-phase induction

machine and the simulated system responses by the Kron's two-axis dy-

namic mathematical model over the transient start-up period.

1.9 Overview of Thesis

In Chapter 2 the dynamic model of a balanced, symmetrical 3-phase in-

duction machine is developed and presented. How this model shall be used

for simulation and analysis is presented in Chapter 3. Chapter 4 describes the

limitations of traditional optimization methods and further describes how the

processes involved in natural evolution has led to the development of simulated

MACHINE LEARNING FOR SYSTEM IDENTIFICATION W.F.Kent



1.9 Overview of Thesis 10

evolution that bypasses the problems incurred with traditional optimization

methods in search, optimization and machine learning. Chapter 5 presents

the EP parameter identification process for the induction machine simulations,

whilst Chapter 6 describes the attempts and processes involved in the EP pa-

rameter identification of a real induction machine. Chapter 7 presents the

conclusions from this research and discusses suggestions for further work in

this area.

MACHINE LEARNING FOR SYSTEM IDENTIFICATION w.P.Kent



Chapter 2

The Dynamic Model of a

Balanced, Symmetrical 3-Phase

Induction Machine

2.1 Introduction

In this chapter we will discuss the formulation of the voltage equations

of a balanced, symmetrical 3-phase induction machine. We will look at how

these voltage equations can be made tractable and solvable by applying the

reference-frame transformations to them.

2.2 The 3-Phase Induction Machine

The winding arrangement of a 2-pole, 3-phase, wye-connected symmetrical

induction machine is shown in Figure 2.1. The stator windings are identical

with equivalent turns N, and resistance Rs. The machine has a squirrel cage

rotor but can be approximated by assuming it has 3 identical windings with

equivalent turns N; and resistance Rr. The air gap of the induction machine is

11



2.2 The 3-Phase Induction Machine 12

uniform and it is assumed that the stator and rotor windings may be approxi-

mated as sinusoidally distributed windings. The factors neglected by the model

are the nonlinear magnetic circuit, changes in resistances due to temperature

and frequency changes and harmonic content of the M.M.F. wave.

Rs

'"'"_\--------__ ----------e
--------------------------------------t----·

~t /Ns

STATOR ROTOR

Figure 2.1: Winding Arrangement of a Two-Pole, 3-Phase, Wye-Connected
Symmetrical Induction Machine

The induction machine under investigation is operated as a motor with the

stator windings connected to a balanced 3-phase source and the rotor windings

short-circuited. The principle of operation in this mode is as follows. With

balanced 3-phase current flowing in the stator windings, a rotating air-gap

Magnetomotive Force, MMF, is established which rotates about the air-gap at

a speed determined by the frequency of the stator currents and the number of

poles. If the rotor speed is different from the speed of this rotating M.M.F.,

balanced 3-phase currents will be induced in the short-circuited rotor windings.

The frequency of the rotor currents corresponds to the difference in the speed of

the rotating M.M.F. due to the stator currents and the speed of the rotor. The

induced rotor currents will in turn produce an air-gap M.M.F. which rotates

relative to the rotor at a speed corresponding to the frequency of the rotor

currents. The speed of the rotor air-gap M.M.F. superimposed upon the rotor

speed is the same speed as that of the air-gap M.M.F. established by the
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2.3 The 3-Phase Induction Machine Voltage Equations 13

currents flowingin the stator windings. These two air-gap M.M.F.s rotating in

unison may be thought of as two synchronously rotating sets of magnetic poles.

Torque is produced due to an interaction of these magnetic poles. It is clear,

however, that torque is not produced when the rotor is running in synchronism

with the air-gap M.M.F. due to the stator currents since in this case currents

are not induced into the short-circuited rotor windings.

2.3 The 3-Phase Induction Machine Voltage

Equations

The induction machine's winding inductances are as follows. All stator

self-inductances are equal, that is Lrsrs = Lysys = Lbsbs with

Lrsrs - Lis + i.; (2.3.1)
Lysys - Lis + i.; (2.3.2)
Lbsbs - Lis + i.; (2.3.3)

where Lms is the stator magnetizing inductance and Lis is the stator leakage

inductance.

All stator-to-stator mutual inductances are the same

1 (2.3.4)Lrsys - --L2 rns

Lrsbs
1 (2.3.5)- --L2 rns

1 (2.3.6)Lysbs - -'2Lrns
1 (2.3.7)Lysrs - --L2 rns

1 (2.3.8)Lbsrs -2Lrns

1 (2.3.9)Lbsys --L2 rns
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2.3 The 3-Phase Induction Machine Voltage Equations 14

It follows that the rotor self-inductances are equal with

Lrrrr - t;+u; (2.3.10)

Lyryr - u; + i.; (2.3.11)

Lbrbr - Li; + Lmr (2.3.12)

where Lmr is the rotor magnetizing inductance and Li; is the rotor leakage

inductance.

Likewise, all the rotor-to-rotor mutual inductances are the same

i..; 1
(2.3.13)--L2 mr

Lrrbr
1

(2.3.14)- -2Lmr

1
(2.3.15)Lyrbr - -2Lmr

1
(2.3.16)Lyrrr --L2 mr

1
(2.3.17)Lbrrr -2Lmr

Lbryr
1

(2.3.18)--L2 mr

Expressions for mutual inductances between stator and rotor windings are

as follows

Lrsrr - Lsr cos Or (2.3.19)
211"

(2.3.20)Lrsyr - i.; cos(Or + 3")
211"

(2.3.21)Lrsbr Lsr cos(Or - 3")

Lysyr - Lsr COS Or (2.3.22)
211"

(2.3.23)Lysbr - t.; cos(()r + '3)
211"

(2.3.24)Lysrr - Lsr cos(()r - '3)
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2.3 The 3-Phase Induction Machine Voltage Equations 15

Lbsbr - Lsr cos er

Lbsrr
27r

- t.; cos(er + 3")
27r

Lbsyr - Lsr cos(Br - 3")

(2.3.25)

(2.3.26)

(2.3.27)

The voltage equations for the induction machine are as follows

· dArs (2.3.28)Vrs - Rs'trs +Tt
· dAys (2.3.29)Vys - Rs'tys +Tt
· dAbs (2.3.30)Vbs - Rs'tbs +Tt

Rr' dArr (2.3.31)Vrr - 'trr+Tt
· dAyr

(2.3.32)Vyr - Rr1,yr +Tt
· dAbr

(2.3.33)Vbr - Rr1,br +Tt

where R, is the resistance of each stator phase winding and R; the resistance

of each rotor phase winding. The flux linkages may be written as follows

x; Lrsrsirs + Lrsysiys + lSrsbsibs+ Lrsrrirr + Lrsyriyr + Lrsbribr (2.3.34)

-; - Lysrsirs + Lysysiys + Lysbsibs + Lysrrirr + Lysyriyr + Lysbribr (2.3.35)

Abs - lSbsrsirs+ lSbsysiys+ lSbsbsibs+ lSbsrrirr+ Lbsyriyr + lSbsbribr (2.3.36)

x; - Lrrrsirs + Lrrysiys + Lrrbsibs + lSrrrrirr + Lrryriyr + Lrrbribr (2.3.37)

Ayr - Lyrrsirs + Lyrysiys + Lyrbsibs + Lyrrrirr + Lyryriyr + Lyrbribr (2.3.38)

Abr Lbrrsirs + Lbrysiys + Lbrbsibs + Lbrrrirr + Lbsyriyr + Lbrbribr (2.3.39)

MACHINE LEARNING FOR SYSTEM IDENTIFICATION W.F.Kent



2.4 Voltage Equations of Macbine Variables 16

These equations are solved as matrices and as such may be expressed as follows

Ars Lrsrs Lrsys Lrsbs Lrsrr Lrsyr Lrsbr irs

Ays Lysrs Lysys Lysbs Lysrr Lysyr Lysbr Zys

»: Lbsrs Lbsys Lbsbs Lbsrr Lbsyr Lbsbr Zbs
(2.3.40)-x., i.; Lrrys i..; Lrrrr Lrryr i..; irr

Ayr Lyrrs Lyrys Lyrbs Lyrrr Lyryr Lyrbr iyr

Abr Lbrrs Lbrys Lbrbs Lbrrr Lbryr Lbrbr ibr

which may be expressed in matrix shorthand notation as

A = Li (2.3.41)

2.4 Voltage Equations of Machine Variables

The winding arrangement for a 2-pole, 3-phase, wye-connected, symmetri-

cal induction machine is shown in Figure 2.1. The stator windings are identical,

sinusoidally distributed windings, displaced 120 degrees, with Ns equivalent

turns and resistance Rs. For the purposes at hand, the squirrel-cage rotor

will be considered to consist of three identical sinusoidally distributed wind-

ings, displaced 120 degrees, with N; equivalent turns and resistance Hr. The

positive direction of the magnetic axis of each winding is anti-clockwise. The

positive direction of the magnetic axes of the stator windings coincides with

the direction of frs, fys and fbs as specified by the equations of transformation

and shown in Figure 2.2. The voltage equations of machine variables may be

expressed

V rybs - R, irybs +DArybs

vrybr - Rrirybr + D Arybr

(2.4.1)

(2.4.2)

where

(2.4.3)
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2.4 Voltage Equations of Machine Variables 17

co

Figure 2.2: Transformation for Stator Circuits Portrayed by Trigonometric
Relationships

(2.4.4)

In the above equations the ryb subscripts denote the 3-phases, the latter s

subscript denotes variables and parameters associated with the stator circuits,

and the latter r subscript denotes variables and parameters associated with

the rotor circuits. D is the differential operator d/ dt. Both R, and R, are

diagonal matrices each with equal nonzero elements. For a magnetically linear

system, the flux linkages may be expressed

(2.4.5)
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2.4 Voltage Equations of Machine Variables 18

The winding inductances in matrix format may be expressed

Lis + i.; -~Lms -~Lms

Ls = -~Lms Lis + Lms -~Lms

-~Lms -~Lms Lis + i.;

i; + Lmr -~Lmr -~Lmr

L, = -~Lmr Lis +u; -~Lmr

-~Lmr -~Lmr Lis + Lmr

cos Br cos(Br+ 2;) cos(Br - 2;)

Lsr = Lsr cos(Br - 2;) cos Br cos(Br+ 2;)

cos(Br+ 2;) cos(Br _ 2;) cos Br

(2.4.6)

(2.4.7)

(2.4.8)

In the above inductance equations, Lis and Lms are, respectively, the leakage

and magnetizing inductances of the stator windings; Llr and Lmr are for the

rotor windings. The inductance Lsr is the amplitude of the mutual inductances

between stator and rotor windings.

We shall refer all the rotor variables to the stator windings by appropriate

turns ratios as follows.

.' N; .
(2.4.9)lrybr Ns lrybr

, Ns (2.4.10)vrybr N
r
Vrybr

A~Ybr
Ns (2.4.11)- N Arybr
r

The magnetizing, Lms and Lmr, and mutual inductances, Lsr, are associated

with the same magnetic flux path. In particular

Ns
Lms = N

r
r.; (2.4.12)

We will define

(2.4.13)
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2.4 Voltage Equations of Machine Variables 19

cos Or COS(Or+ 2;) COS(Or _ 2;)

- Lms COS(Or _ 2;) COSOr COS(Or + 2;)

COS(Or+ 2;) COS(Or - 2;) COSOr

(2.4.14)

Lms may be expressed as

(2.4.15)

and also

L' = (Ns)2 L
r N. r

r
(2.4.16)

and equation 2.4.7 can now be expressed as

L;r + Lms -~Lms -~Lms
L' = -!Lms i; + i.; -!Lmsr

-!Lms -!Lms L;r + Lms

(2.4.17)

where
, (Ns)2L1r = N

r
u;

The flux linkages may now be expressed

(2.4.18)

(2.4.19)

The voltage equations expressed in terms of machine variables referred to the

stator windings may now be written

[
V~YbS 1 = [ r, + ~Ls
vrybr DLsr

DL~r 1 [ i
rybs 1

r~+ DL~ i~ybr
(2.4.20)

where

(2.4.21)

The voltage equations are only approximate in that they do not take account of

the power losses that inevitably accrue. These electric power losses are a result

of the following. The input power to an induction machine is in the form
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2.5 The Background to Reference-Frame Transformation Analysis 20

of three-phase electric voltage and currents. The first electric power losses

encountered in the machine are stator copper losses in the stator windings.

Then some amount of power is lost in the stator core as hysteresis, saturation

and eddy currents. The power remaining at this point is transferred to the

rotor of the machine across the air gap between the stator and rotor. This

power is called air-gap power of the machine. After the power is transferred to

the rotor, some of it is lost as rotor copper and core losses. However, we see the

complexity of the voltage equations due to the time-varying mutual inductances

between stator and rotor circuits since the circuits are in relative motion. The

following sections will explain how a change of variables eliminates the time-

varying inductances resulting in voltage equations which are still nonlinear but

much more manageable.

2.5 The Background to Reference-Frame Trans-

formation Analysis

The voltage equations which describe the performance of an induction ma-

chine was established in Section 2.3. It was found that some of the machine

inductances are functions of the rotor speed, whereupon the coefficients of the

differential equations (voltage equations) which describe the behaviour of the

machines are time-varying except when the rotor is stalled. A change of vari-

ables shall be used to reduce the complexity of these differential equations.

There are several changes of variables which are used and it was originally

thought that each change of variable was different and therefore they were

treated separately [19, 20, 21, 22]. It was later learned that all changes of

variables used to transform real variables are contained in one [23, 24]. This

general transformation refers machine variables to a frame of reference which

rotates at an arbitrary angular velocity. All known real transformations are
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2.5 The Background to Reference-Frame Trensiormetion Analysis 21

obtained from this general transformation by assigning the speed of rotation

of the reference frame.

In the late 1920s, R. H. Park [19] introduced a new approach to electric

machine analysis. He formulated a change of variables which, in effect, re-

placed the variables (voltages, currents and flux linkages) associated with the

stator windings of a synchronous machine with variables associated with fic-

titious windings rotating with the rotor. In other words, he transformed, or

referred, the stator variables to a frame of reference fixed in the rotor. Park's

transformation has the unique property of eliminating all time-varying induc-

tances from the voltage equations of the synchronous machine which occur due

to (1) electric circuits in relative motion and (2) electric circuits with varying

magnetic reluctance.

In the late 1930s, H. C. Stanley [20] employed a change of variables in the

analysis of induction machines. He showed that the time-varying inductances

in the voltage equations of an induction machine due to electric circuits in

relative motion could be eliminated by transforming the variables associated

with the rotor windings (rotor variables) to variables associated with fictitious

stationary windings. In this case the rotor variables are transformed to a frame

of reference fixed in the stator.

G. Kron [21] introduced a change of variables which eliminated the time-

varying inductances of a symmetrical induction machine by transforming both

the stator variables and the rotor variables to a reference frame rotating in

synchronism with the rotating magnetic field. The reference frame is commonly

referred to as the synchronously rotating reference frame.

D. S. Brereton et al. [22] employed a change of variables which also elim-

inated the time-varying inductances of a symmetrical induction machine by

transforming the stator variables to a reference frame fixed in the rotor. This

is essentially Park's transformation applied to induction machines.

Park, Stanley, Kron and Brereton et al. developed changes of variables each
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of which appeared to be uniquely suited for a particular application. Conse-

quently, each transformation was derived and treated separately in literature

until it was noted by P. C. Krause [23] that all known real transformations

used in induction machine analysis are contained in one general transforma-

tion which eliminates all time-varying inductances by referring the stator and

rotor variables to a frame of reference which may rotate at any angular velocity

or remain stationary. All known real transformations may then be obtained by

simply assigning the appropriate speed of rotation to this arbitrary reference

frame.

2.6 Equations of Transformation for Stator Cir-

cuits

A change of variables which formulates a transformation of the 3-phase

variables of stator circuit elements to the arbitrary reference frame may be

expressed

(2.6.1)

where

fLos - [Ids Iqs lOs]

f~bs - [Irs Iys Ibs]

cosO COS(O _ 2;) COS(O + 2;)
2

sin(O_ 2;) sin(O+ 2;)K, =- sinO3
1 1 1
"2 "2 "2

o = lot w(~)d~ + 0(0)

(2.6.2)

(2.6.3)

(2.6.4)

(2.6.5)
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where ~ is a dummy variable of integration. The inverse transformation of K,

is

K;l = cos(O _ 2;) sin(O _ 2;) 1

cos(O+ 2;) sin(O + 2;) 1

In the above equations, f can represent either voltage, current or flux linkage.

cos 0 sin 0 1

(2.6.6)

The superscript T denotes the transpose of a matrix. The subscript s indi-

cates the variables, parameters and transformation associated with the stator

circuits. The frame of reference may rotate at any constant or varying angular

velocity or it may remain stationary. The connotation of arbitrary stems from

the fact that the angular velocity of the transformation is unspecified and can

be selected arbitrarily to expedite the solution of the system equations or to

satisfy the system constraints.

The transformation to the arbitrary reference frame is a change of variables

and needs no physical connotation, it is convenient to visualize the transfor-

mation equations as trigonometric relationships between variables as shown in

Figure 2.2. In particular, the equations of transformation may be thought of as

if the fds and Iqs variables are 'directed' along paths orthogonal to each other

and rotating at an angular velocity of w, whereupon Irs, fys and fbs may be

considered as variables directed along stationary paths each displaced by 120

degrees. It is important to note that the Osvariables are not associated with the

arbitrary reference frame. Instead, the zero variables are related arithmetically

to the ryb variables, independent of 0. Portraying the transformation as shown

in Figure 2.2 is particularly convenient when applying it to induction machines

where the direction of i-; fys and fbs may be thought of as the direction of

the magnetic axes of the stator windings. It is found that the direction of Ids

and jqs can be considered as the direction of the magnetic axes of the 'new'

windings created by the change of variables.
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The total instantaneous power may be expressed in the ryb variables as

(2.6.7)

The total power expressed in the dqO variables must equal the total power

expressed in the ryb variables, hence substituting (2.6.1) into (2.6.7) yields

PdqOs Pryb

3 (. . 2 .)- "2 VdsZds + VqsZqs + VOsZOs (2.6.8)

The 3/2 factor comes about due to the choise of the constant used in the trans-

formation. Although the waveforms of the ds and qs voltages, currents and flux

linkages are dependent upon the angular velocity of the frame of reference, the

waveform of the total power is independent of the frame of reference. In other

words, the waveform of the total power is the same regardless of the reference

frame in which it is evaluated.

2.7 Stator Circuit Variables Transformed to

the Arbitrary Reference Frame

Let us treat resistive and inductive circuit elements separately.

2.7.1 Stator Resistive Elements

For a 3-phase resistive circuit

(2.7.1)

From Section 2.6

(2.7.2)

Since we are analysing a symmetrical induction machine, all the resistances are

the same.

(2.7.3)
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2.7.2 Stator Inductive Elements

For a 3-phase inductive circuit

Vrybs = D .Arybs (2.7.4)

where D is the operator d/dt. Thus, in terms of the substitute variables, (2.7.4)

becomes

(2.7.5)

which can be written

(2.7.6)

Since
cos 0 cos(O _ 2;) cos( 0 + 2371")

2K, =- sinO sin(O _ 2;) sin(O + 2;)3
1 1 1
2 "2 2

(2.7.7)

and
cosO sin 0 1

K-1 = cos(O _ 2;) sin(O _ 2;) 1s

cos(O + 2;) sin(O + 2;) 1

It can be shown that

(2.7.8)

- sin 0 cosO 0

D[Ks-1] =W _ sin(O _ 2;) cos(O _ 2;) 0

_ sin(O + 2;) cos(O + 2;) 0

(2.7.9)

Therefore,

010
KsD[Ks -1] = W -1 0 0

o 0 0

(2.7.10)

Equation (2.7.6) may now be expressed

V dqOs = W.Aqds + DAdqOs (2.7.11)
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where

(2.7.12)

Equation (2.7.11) written in the expanded form becomes

Vds - WAqs+ DAds (2.7.13)

Vqs - -w Ads+DAqs (2.7.14)

Vos - ox; (2.7.15)

It should be noted that the first term on the right side of (2.7.13) or (2.7.14)

is referred to as a 'speed voltage' with the speed being the angular velocity of

the arbitrary reference frame.

For a magnetically linear system, the flux linkages may be expressed

(2.7.16)

Whereupon, the flux linkages in the arbitrary reference frame may be written

(2.7.17)

The stator inductance matrix for the symmetrical induction machine is of

the form
Lis + i.; -~Lms -~Lms

L, = -!Lms Lis + Lms -!Lms (2.7.18)

-~Lms -~Lms Lis + i.;
where Lis is a stator leakage inductance and Lms is a stator magnetizing in-

ductance. In the arbitrary reference frame it may be written as

o o
(2.7.19)o

o o Lis
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2.8 Equations of Transformation for Rotor Cir-

cuits

In the analysis of induction machines it is desirable to transform the vari-

ables associated with the symmetrical rotor windings to the arbitrary reference

frame. A change of variables which formulates a transformation of the 3-phase

variables of the rotor circuits to the arbitrary reference frame is

(2.8.1 )

where

'T
U~r f~r f~rlfdqOr -

'T
U:r f~r f~lfrybr -

COS{J COS({J _ 2;) COS({J+ 2;)

Kr
2

sin({J_ 2;) sin({J+ 2;)- - sin{J3
1 1 1
2 2 "2

(2.8.2)

(2.8.3)

(2.8.4)

where (J = 0 - Or. The angular displacement 0 and Or are defined as follows

e - lot w(~)d~ + 0(0)

Or lot wr(~)~ + Or(O)

(2.8.5)

(2.8.6)

where ~ is a dummy variable of integration. The inverse is

cos{J sin{J 1

K-1= cos({J - 2;) sin({J_ 2;) 1 (2.8.7)r

cos({J + 2;) sin({J+ 2311")1

The r subscript indicates the variables, parameters and transformations asso-

ciated with the rotor circuit. Once again, one can visualize the transformation

equations as trigonometric relationships between vector quantities as shown in

Figure 2.3.
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Figure 2.3: Transformation for Rotor Circuits Portrayed by Trigonometric
Relationships

2.9 Rotor Circuit Variables Transformed to the

Arbitrary Reference Frame

As before, we will treat resistive and inductive elements separately.

2.9.1 Rotor Resistive Elements

For a 3-phase resistive circuit

, R'·'vrybr = rlrybr (2.9.1)

and by transforming the parameters and variables we have

(2.9.2)
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Since we are analysing a symmetrical induction machine, all the resistances are

the same.

(2.9.3)

2.9.2 Rotor Inductive Elements

For a 3-phase circuit
I I

V rybr = D Arybr (2.9.4)

Thus, in terms of the substitute variables, equation (2.9.4) becomes

(2.9.5)

which can be written

(2.9.6)

Since

cosf3 cos(f3 - 2;) cos(f3 + 2;)
2

Kr - sinf3 sin(,6 - 2;) sin(f3+ 2;)3
1. 1. 1.
2 2 2

(2.9.7)

where f3 = ()- Or and

cosf3 sinf3 1
K-1 = cos(f3- 237r

) sin(f3_ 2;) 1r

cos(f3+ 2;) sin(f3+ 2;) 1

it can be shown that

- sin,6 cos,6 0

D[Kr -1] = (W - Wr) - sin(,6 _ 2;) cos(f3 - 2;) 0

- sin(,6+ 2;) cos(,6+ 2;) 0

(2.9.8)

(2.9.9)
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Therefore,
o 1 0

KrD[Kr-l] = (w-wr) -1 0 0

o 0 0

(2.9.10)

Equation (2.9.6) may now be expressed

(2.9.11)

where

(2.9.12)

Equation (2.9.11) written in the expanded form becomes
,

(w - wr)\r + ox; (2.9.13)vdr -
,

-(w - Wr)A~r + DA~r (2.9.14)Vqr -
,

DA~s (2.9.15)vOs -

For a magnetically linear system, the rotor flux linkages may be expressed

" L'"Arybr = r lrybr (2.9.16)

so that the flux linkages in the arbitrary reference frame is written as

(2.9.17)

The rotor inductance matrix for the symmetrical induction machine is of the

form
L;r + i.; -~Lms -~Lms

L' = -~Lms L;r + Lms -~Lms (2.9.18)r

-~Lms -~Lms i;+ Lms

where L;r is a rotor leakage inductance and Lms is a rotor magnetizing induc-

tance. In the arbitrary reference frame it may be written as
, 3 0 0L1r + 'iLms

, -1 ' 3 0 (2.9.19)KrLrKr = 0 t.; + 'iLms

0 0 L;r

MACHINE LEARNING FOR SYSTEM IDENTIFICATION W.F.Kent



2.10 Voltage Equations in Arbitrary Reference-Frame Variables 31

Voltage Equations in Arbitrary Reference-

Frame Variables

2.10

The voltage equations in the arbitrary reference frame may be expressed as

VdqOs RsidqOs + WAqds + DAdqos (2.10.1)
I

R~i~qor + (w - wr) A~dr + D A~qOr (2.10.2)VdqOr

where

A~d8 - [Aqs - Ads 0] (2.10.3)
'T [A~r

I

0] (2.10.4)Aqdr - Adr

The flux linkage equations for a magnetically linear system can be expressed

as

From Section (2.7) we can express L, as follows

LIs + t.; 0 0

KsLsK;1 = 0 LIs + t.; 0

0 0 LIs

where
3

t.; = "2Lms

Likewise, for L~, we have from Section (2.9)

i; + l-« 0 0
I -1 i; + Lm 0KrLrKr = 0

0 0 L;r

It can be shown that

o 0 0

W.F.Kent

Lm 0 0
o t.; 0
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The voltage equations are often written in expanded form as follows

Vds - Rsids +WAqs + DAds (2.10.10)

Vqs - R,iqs - WAds + D Aqs (2.10.11)

Vos - Rsios +ox; (2.10.12)
I

R~i~r + (w - Wr)A~r + DA~r (2.10.13)vdr -
I

R~i~r - (w - Wr)A~r + DA~r (2.10.14)Vqr -
I

R~i~r + DA~r (2.10.15)VOr -

Substituting equations (2.10.6), (2.10.8) and (2.10.9) into equations (2.10.5)

yields the expressions for the flux linkages which in expanded form are

Ads - Llsids + Lm(ids + i~r) (2.10.16)

Aqs - Llsiqs + Lm(iqs + i~r) (2.10.17)

Aos - Llsios (2.10.18)

Adr - Llridr + Lm(ids + i~r) (2.1O.19)

x; Llriqr + Lm{iqs + i~r) (2.10.20)

Aor - LlriOr (2.10.21)

We shall select the currents as the independent variables whereby the voltage

equations become

V= Zi (2.10.22)

where

(2.10.23)
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n, +LsD -c.i, 0 LmD -wLm 0

»t., Ra +LsD 0 wLm LmD 0

Z= 0 0 n,+LlsD 0 0 0

LmD -(w - wr)Lm 0 R~ + L~D -(w - wr)L~ 0

(w - wr)Lm LmD 0 (w-wr)L~ R~ + L~D 0

0 0 0 0 0 R~ + L;rD
(2.10.24)

where

L' ,
r - L1r + Lms

(2.10.25)

(2.10.26)

and

(2.10.27)

The above voltage equation contains the zero-sequence quantities. We will

assume that the rotor does not have an external (slip-ring) connection to the

star-point. We also assume that zero-sequence currents cannot flow in the

stator. The above voltage equations therefore reduce to

Vds n, + LsD -oi; LmD -wLm Zds

Vqs »t; n,+ LsD wLm LmD 'tqs
,

LmD -(w - wr)Lm R~+ L~D -(w - wr)L~ ,I

Vdr '/,dr
,

(w - wr)Lm LmD (w-wr)L~ R~+ L~D
,I

Vqr '/,qr
(2.10.28)

2.11 Conclusion

The limitations of the differential equations (voltage equations) due to some

of the machine inductances being functions of rotor speed, thus causing time-

varying coefficients, has been abated by the application of the reference-frame
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transformations. The following chapter will further develop these voltage equa-

tions in order to make them more amenable to simulation and analysis for this

research.
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Chapter 3

The Dynamic Mathematical

Model of a Symmetrical

Induction Machine for

Simulation and Analysis

3.1 Formation of Currents as State Variables

Has mentioned in Chapter 2, the derivation of the voltage equations of an

induction machine in the arbitrary frame of reference are of the form

Vds Rs + LsD -c.t; LmD -wLm ids

Vqs wLs s,+ LsD wLm LmD Zqs
-

I

LmD -(w - wr)Lm R~+ L~D -(w - wr)L~ J

Vdr Zdr
I (W - wr)Lm LmD (W - wr)L~ R~ + L~D

J
Vqr Zqr

(3.1.1)

We shall use the stationary reference frame first employed by H. C. Stanley [20].

This is achieved by placing the arbitrary electrical angular speed, w, to zero in

equation (3.1.1). Since the stator and rotor variables have been transformed

35



3.1 Formation of Currents as State Variables 36

to an arbitrary frame of reference, we will place the angular velocity of the

arbitrary reference frame to zero, so that the d-axis coincides with the stator

phase axis as, hence, the matrix equation (3.1.1) becomes

Vds n, +LsD 0 LmD 0 ids

Vqs 0 n, +LsD 0 LmD iqs
- (3.1.2),

R~ + L~D L~wr .'vdr LmD Lmwr zdr
,

-Lmwr LmD
,

R~ + L~D
.t

Vqr -Lrwr Zqr

Thus, equation (3.1.2) can now be manipulated so that the currents become

the state variables for the numerical computation and analysis. Also, the rotor

voltages are zero which leads to the following

X - [idS iqs i~r i~r]T

V _ [Vds vqs] T

(3.1.3)

(3.1.4)

-RsL~ L~wr LmR~ LmL~Wr

A= 1 -L~wr -RsL~ -LmL~wr LmR~
aLsL~ LmRs -LmLswr -LsR~ -t..tl»;

LmLswr LmRs LsL~wr -LsR~

(3.1.5)

L' 0r

1 0 L'
B= r

aLsL~ -t.; 0

0 -Lm

(3.1.6)

Therefore

X=AX+BV (3.1. 7)

and

(3.1.8)
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3.2 The Voltage Transformations

Remembering that the reference frame is attached to the stator with the

direct axis, d, chosen to coincide with the stator as axis so that the arbitrary

angle, (), now becomes zero leading to the following

Vds cos (D) cos( _2;) cos( _ 4;) vrs
2

Vqs - - sin(O) sine _ 2;) sine -~) Vys (3.2.1)
3

vOs
I I I

Vbs2 2 2

and
Vrs cos(O) sin(O) 1 Vds

Vys - cos( _2;) sine_2;) 1 Vqs (3.2.2)

Vbs cos(-~) sine - ~) 1 VOs

Now, let us suppose that the 3-phase peak voltages are symmetric and described

as follows

Vrs - V2VI COS(Wlt) (3.2.3)

Vys
V2 27r (3.2.4)- 2Vi COS(WIt - 3")

Vbs
V2 47r (3.2.5)- 2Vi COS(WIt - 3")

This leads to the following reference frame voltages

Vds cos(O) cos( _ 2;) cos( -~) Vrs
2

sine _ 2;) sine - ~)Vqs - - sin(O) Vys3
VOs 1 I 1 vbs2 2 2

2
~ COS(WIt)

- 3V2Vi ~ sin(-wIt)

0

(3.2.6)

(3.2.7)

When written in the expanded form this becomes

(3.2.8)

(3.2.9)
(3.2.10)

Vqs - V2VI COS(WIt + ~) = -V2Vi sin(Wlt)

vOs = 0
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3.3 The Current Transformations

The reference frame transformations, and vice versa for the stator and rotor

currents are as follows

'lds cos(O) cos( _ 2;) cose;) 'trs
2

iqs - - sin(O) sin( _ 2;) sine;) 'tys3
ios

1 1 1
zbs2 2 2

'trs cos(O) sin(O) 1 ids

iys - cos( _2;) sin(-2;) 1 iqs

'tbs COS(2;) sine 2;) 1 'lOs

.I cos{3 cos({3 _ 2;) cos({3+ 2;) .I

'ldr 'lrr
.1 2

sin({3 _ 2;) sin(J1 + 2;) .1

'lqr - - sinJ1 'lyr3
.1 1 1 1 .1

'lOr 2 2 2 'lbr

.I cos{3 sin{3 1 .I

'lrr 'ldr
.1 cos(f3 _ 2;) sin(f3 _ 2;) 1

.I

'lyr - 'lqr
.I

cos({3+ 2;) sin(f3 + 2;) 1 .1

'lbr 'lOr

where

(3.3.1)

(3.3.2)

(3.3.3)

(3.3.4)

(3.3.5)

and, as mentioned previously, Or is the rotor angular displacement, Or = wrt.

3.4 The Instantaneous Electrical TorqueEqua-

tion

The instantaneous electrical torque generated by the stator and rotor MMFs

may be expressed as follows:

(3.4.1)
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where T; is the instantaneous electrical torque (Nm) and Q is the number of

pole pairs.

3.5 The Equation of Motion

Application of Newton's second law yields the following equation of motion

for the 3-phase induction machine under investigation:

J dwr __ T. T. _ BWr
Q dt - e + r Q (3.5.1)

where T; is the load torque (Nm), B denotes the damping coefficient and J

represents the inertia moment.

The speed of the rotor, Wr, is negative for induction machines operating in

the motoring mode.

3.6 The Induction Machine's Differential Equa-

tions Suitable for Simulation

By meticulous rearrangement of equations (3.1.2), (3.4.1) and (3.5.1), the

induction machine's state equations are as follows

I I I I

cr(RsLmids - LsLmiqswr - LsRridr + LsLriqrwr) - crLmvds (3.6.3)

= cr(LsLmidsWr + RsLmiqs + LsL~i~rwr - LsR~i~r) - aLmvqs (3.6.4)
Q .. '. J BWr
J [QLm( -tdstqr + tqstdr) + Tr - Q1 (3.6.5)

where

(3.6.6)

MACHINE LEARNING FOR SYSTEM IDENTIFICATION w.F. Kent



3.6 The Induction Machine's Differential Equations Suitable for Simulation40

The state equations shown above are of the nonlinear differential equation form

for which we shall use the Runge-Kutta method to solve them for the induction

machine's currents and rotor speed in time steps of 1 millisecond.

MACHINE LEARNING FOR SYSTEM IDENTIFICATION W.F.Kent



Chapter 4

The Simulated Evolution

Techniques Applied to the

Optimization Problem of

Parameters Identification

4.1 Introduction

In this chapter the fundamental mechanisms of optimization are discussed.

The limitations of traditional optimization methods are described as well as

how these limitations do not apply to Simulated Evolution (SE). Two paradigms

of SE are applied in this research, Genetic Algorithms (GAs) and Evolutionary

Programming (EP), and are described in terms of how they differ from tra-

ditional optimization techniques, their historical development, an algorithms

description, their respective convergence properties and also their methodoli-

gies.
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4.2 The Processes Involved in Optimization

Let us establish what we mean when we say we want to optimize a function

or a process. The conventional view is presented in [62] as follows:

Man's longing for perfection finds expression in the theory of opt-
mization. It studies how to describe and attain what is Best,
once one knows how to measure and alter what is Good or Bad
... Optimization theory encompasses the quantitative study of op-
tima and methods for finding them.

Thus optimization seeks to improve performance towards some optimal

point or points. Or a more mathematically description is to refer optimization

to function minimization and the equivalent process of function maximization.

The optimization strategy is discussed in [64, 65] and may be summarized as

follows:

1. guess a solution;

2. analyse the guess solution;

3. a performance comparison is made between the guess solution and the

actual requirements:

• if satisfactory stop;

• if not satisfactory, change the values of one or more system param-

eters;

4. repeat 2 or 3 until results are adequate.

The 'performance comparison' phase of the process may be thought of as

the evaluation of a discrepancy or error measure, and the task is to reduce this

error to its lowest possible value. The lowest value is zero which corresponds

to zero error but many problems do not have an exact solution, and such cases
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will have a nonzero final error. The problem can be formulated in essence as a

function minimization problem.

For example, suppose a particular system response is specified as AstA: over

a simulation period of TN, and likewise, the actual or real system as a response

AtA: over the same period. An overall error may then be assembled as follows.

For example, suppose we have identified TN time instances of interest, then

an error measure namely an objective function ~ which may be given by the

sum-of-squares function

TN
~ = L (AstA: - AtA:)2

t",=o
(4.2.1)

which has the required property (~ = 0 if and only if AstA: = AtA: for all tk).

The optimization problem may be summarized as follows. Given a suit-

able objective function, ~, of n system parameters, Xl, X2, ... , xn, of the real

system response, At"" locate the set of parameter values, xi, x~, ... , x~, of the

simulated mathematical model system response, AStA:' over the same time in-

stances, which minimizes the objective function, ~(XI' X2, .•. , xn). Therefore,

xi, x;, ... , x~ are the identified parameters, since the objective function, ~, has

located its optimum value. Hence, the most important goal of optimization is

improvement, and to achieve a good level of performance quickly [63].

4.2.1 The Global Optimization Problem

The global opimization problem can be defined as follows:

maxxf(x), xES (4.2.2)

where S is a bounded set on R" and f S ---t R is an n-dimensional real-

valued function. The problem is to find a point Xmax E S such that f(xmax) is

globally maximal on S. Here f does not need to be continuous but it must be

bounded and have a finite number of maximum points over S.
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4.3 Traditional Optimization Methods and their

Limitations

Optimization problems may firstly be classified as either constrained or

unconstrained. A constraint may be applied to the range of values within which

the system parameters may fall within or to some function of the parameters

, a full description of these methods may be found in [66, 67, 68, 69, 70, 71].

Unconstrained optimization places no restriction on the parameter range [76,

77].

Traditional optimization and search methods are divided into calculus-

based, enumerative and random. Calculus-based methods are further sub-

divided into two main classes: indirect and direct. Indirect methods seek local

extrema by solving the usually nonlinear set of differential equations resulting

from setting the gradient of the objective function equal to zero [72, 73, 74, 75].

By contrast, direct methods seek local optima by moving in a direction related

to a local gradient [78, 79, 80, 81, 82, 83]. For example, the notation of hill-

climbing to find the local maximum is, in each step, climbing the function in

the 'steepest gradient'. Both of these calculus-based methods, however, have

certain limitations.

First, both indirect and direct methods are local in scope; the optima they

seek are the best in a neighbourhood of the current point. Thus, if a low peak

is found, further improvement must be sought through a random restart or

other means in order to find the global higher peak. Second, calculus-based

methods depend upon the existance of derivatives. However, many practical

search spaces of parameters have little respect for the notion of a derivative

and the smoothness this implies. The real world of search is fraught with

discontinuities, vast multimodal and noisy search space. None of them satisfy

the requirements of calculus-based methods. Therefore, methods depending
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upon the restrictive requirements of continuity and derivative existence are

unsuitable for practical requirements. For these reasons and because of their

inherently local scope of search, they are insufficiently robust.

Enumerative schemes have been considered in many shapes and size [84].

The idea is fairly straightforward; within a finite search space, or a discretized

infinite search space, the search algorithm starts looking at objective function

values at every point in the space, one at a time. Although the simplicity of this

type of algorithm is attractive, it lacks efficiencybecause many practical spaces

are too large to search. Random search algorithms have achieved increasing

popularity as researchers have recognized the shortcomings of calculus-based

and enumerative schemes. Yet, the evidence suggests that random walks and

random schemes, in the long run, can be expected to do no better than enu-

merative schemes. Huang and Wu et al compared the performance of a simple

random search (SRS) with genetic algorithms (GAs), to be discussed shortly,

and found that the GA performed with better accuracies and fitnesses in the

parameter identification problem of an induction motor [85].

4.4 Natural Evolution

Because of the afore mentioned difficulties encountered by traditional opti-

mization methods, a new approach was introduced some two to three decades

ago, namely Simulated Evolution (SE), and has been researched and devel-

oped from thereon. Before discussing SE in greater detail, it will be found

quite enlightening to firstly discuss the fundamental principles upon which SE

algorithms rest upon, namely the process of natural evolution based on the

collective arguments known as the neo-Darwinian paradigm.

MACHINE LEARNING FOR SYSTEM IDENTIFICATION W.F.Kent



4.4 Natural Evolution 46

4.4.1 The Neo-Darwinian Paradigm

A revolution in biological thought, and indeed philosophy, was begun when

Charles Darwin and Alfred Russel Wallace each presented their evidence for

the theory of evolution before the Linnean Society of London on July 1, 1858.

Classic Darwinian evolutionary theory, combined with the selectionism of Weis-

mann and the genetics of Mendel, has now become a rather universally accepted

set of arguments known as the nee-Darwinian paradigm [25, 26, 27, 28, 29, 30,

31, 32, 33].

Neo-Darwinism asserts that the history of the vast majority of life is fully

accounted for by only a very few statistical processes acting on and within pop-

ulations and species [34]. These processes are reproduction, mutation, com-

petition and selection. Reproduction is an obvious property of all life. But

similarly as obvious, mutation is guaranteed in any system that continuously

reproduces itself in a positively entropic universe. Competition and selection

become the inescapable consequences of any expanding population constrained

to a finite arena. Evolution is then the result of these fundamental interacting

stochastic processes as they act on populations, generation after generation

[35,36].

4.4.2 The Genotype and the Phenotype: The Optimiza-

tion of Behaviour

Living organisms can be viewed as a duality of their genotype (the under-

lying genetic code) and their phenotype (the manner of response contained

in the behaviour, physiology and morphology of the organism). This may be

thought of in the manner put forward by [37] by specifying two state spaces: a

populational genotypic (informational) space G and a populational phenotypic

(behavioural) space P. The function mappings were stated in [38] as follows:
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IxG-P

p_p

The function 11, epigenesis, maps the element 91 E G into the phenotypic

space P as a particular collection of phenotypes Pl whose development is mod-

ified by its environment, an indexed set of symbols (iI, ... ,ik) E I, where I is

the set of all such environmental sequences. The function 12, selection, maps

phenotypes PI into P2' As natural selection only operates on the phenotypic

expressions of the genotype [39, 40, 41], the underlying coding 91 is not in-

volved in function h. The function h, genotypic survival, describes the effects

of selection and migration processes on G. Function /4, mutation, maps the

representative codings 92 E G to a point 9~ E G. This function represents

the 'rules' of mutation and recombination, encompasses all genetic changes.

With the creation of the new population of genetypes g~, one generation is

complete. Evolutionary adaptation occurs over successive iterations of these

mapping functions.

The nee-Darwinian argument asserts that natural selection is the predom-

inant mediating evolutionary force that prevails in shaping the phenotypic

characters in the vast majority of situations encountered in nature [42, 34, 43].

It is strictly an a posteriori process that rewards current success [42]primarily

through the statistical cullingof inappropriate individuals. Selection acts in the

face of phenotypic variation. Parents and their offspringtypically demonstrate

at least a general resemblance in their phenotypic traits [41]. Their behaviours
may in fact be virtually identical, that is, reproduction may be very nearly

replication [34] But phenotypic variation is always observed within popula-

tions and species and is largely the result of mutation and recombination (if
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applicable), environmental constraints placed on an individual's development,

and replicative errors of the genome. The interaction between the species and

its environment (which includes other organisms) determines the relative suc-

cess (differential reproduction) or failure (genetic death) of the species.

Selection is often viewed as leading to the maintenance or increase of pop-

ulations' 'fitness', where fitness is defined as the ability to survive and re-

produce in a specific environment [41]. It has been asserted that although

fitness cannot be directly measured, 'its distribution in a population can be

roughly estimated in any given environmental context on the basis of ecology

and functional morphologyof the organisms. Hence it is an empirically testable

biological proposition' [34].W. Atmar in [44]indicated that a singular measure

of evolutionary fitness is the appropriateness of a species' behaviour in terms

of its ability to anticipate its environment. The quantitative ability to perform

suitable prediction and elicit appropriate response yields a measure of fitness.

Pleiotropy is the effect that a single gene may simultaneously affect sev-

eral phenotypic traits. Polygeny is the effect that a single phenotypic char-

acteristic of an individual may be determined by the simultaneous interaction

of many genes. Assigning fitness to individual genes implicitly ignores these

interactions, or describes them only on the average, and often assumes a one-

gene/one-trait model of the relationship between the genotype and the pheno-

type. [45]suggested 'evolution can no longer be looked at solely as changes in

gene frequencies within populations'.

The one-gene/one-trait model of evolutionary genetics is an over simplifi-

cation. Naturally evolved systems are extensively pleiotropic and highly poly-

genic. Selection acts on collections of interactive phenotypic traits, not on

singular traits in isolation. The appropriateness of an organism's holistic func-

tional behaviour in light of the physics of its environment is the sole quality

that is optimized through selection.

The fundamental characteristics of diverse environments are often pro-
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foundly similar, and convergent evolution is the general outcome. The com-

pound image-forming eye has been invented at least three times during the

course of evolution: in mollusk, arthropods, and vertebrates. The most com-

mon ancestor of these three taxa could have occurred no later than 450 million

years ago and more probably 550 to 600 million years ago. But in all three

cases, a profoundly similar informational neurophysiology has been invented,

although slightly differently realized. In vertebrates, the neural connections

lay on top of the retinal surface. In mollusks, they occur behind the eye as

they do in arthropods. But in all three, a network of collateralized synaptic

connections occur in a series of amacrine, horizontal, and bipolar cells that

generate edge enhancement, motion detection, and modulatable light sensitiv-

ities in strikingly similar manners [46]. The convergent functional behaviour of

these independently evolved constructions leads to the conclusion that the in-

vention of such a functional structure is exceedingly probable. Although there

are obvious differences in the implementation of the eye arrangements, their

functional behaviour is profoundly similar. The physical and historical con-

straints woven into the mechanisms and process of the construction of a cell

appear to predestine the evolution of a particular image-forming eye [46].

Similarly, the invention of flight has occurred repeatedly. Gliding has

been invented independently in fish, amphibians, reptiles and mammals. Self-

sustained flight has evolved independently in pterosaurs, birds, mammals and

insects [45]. Other forms of flight have been invented in insects, arachnids and

plants. Young spiders, in which the young are transported over great distances

by means of a parachute produced from silken thread, have been documented

to drift over 400 miles [47]. The underlying genetic structures for these inde-

pendently evolved phenotypic characteristics are diverse, yet the functionalities

are notably similar.

Even ethologies are often profoundly convergent. During displays of aggres-

sion, animals as varied as Australian crayfish, baboon spiders, toads, wolves
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and black-headed gulls all assume postures that make them appear larger to

their adversaries. These behaviours include the raising of body hair, standing

on hind legs in an upright manner, and spreading of the forelegs or claws [48].

Therefore, pleiotropy and polygeny preclude the possibility of singular genes

for these complex effects. While it is possible to alter specific traits through

single gene mutations, this does not indicate a gene 'for' that particular trait.

There are no individual genes for specific behaviours, such as 'making oneself

appear big', in natural evolved systems.

4.4.3 Sexual Reproduction

The term sex derives from the Latin secare, to cut or divide something that

was originally whole. The exchange of genetic information is fundamental to

the cutting and dividing of DNA that takes place during sexual reproduction.

This exchange takes many forms: bacterial conjugation, transduction via viral

transport, and the more familiar recombination that occurs in plants and ani-

mals. But sex requires finding a mate, either by happenstance, active search or

attraction. Further, the behaviours that are associated with attracting mates

often make individuals more vulnerable to predators. Yet the benefits of sexu-

ality must outweigh these costs, for the great majority of known species have

a sexual phase in their life cycle.

Diploid organisms have two copies of each chromosome in every somatic

cell, with one copy being contributed from each parent. The total number of

chromosomes in the cells of most eukaryotes (organisms with fully nucleated

cells) varies between 10 and 50 but can exceed 1000 in some polyploid plants.

During recombination, haploid (nonredundant) gametes are fused to form new

diploid cells.

A reduction division is then required for this infusion to generate a stable

number of chromosomes in the sexually reproducing lineage. This division is
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termed meiosis. In this process, each chromosome from both parents is dupli-

cated. A crossing-over between homologous chromosomes may occur in which

segments of the chromosome are exchanged. The rate of crossing-over varies

widely from species to species and between sexes. Male fruit flies exhibit no

crossing-over at all, while in mammals the rate of crossing-over is about 30

percent higher in females [49]. During meiosis, a reduction division occurs

in which one of the two homologous chromosomes is sorted into each cell. If

crossing-over does take place, it occurs predominantly during this first meiotic

division. The chromatids then undergo a second reduction division such that

each gamete receives a potentially hybrid combination of each pair of homolo-

gous chromosomes from each parent.

In contrast, sexual reproduction operates in a different manner. Sexual re-

production offers a significant ability for a species to generate genetic diversity

and, as a consequence, phenotypic diversity. The overt functional advantage

of sexual recombination to an evolving species is the significantly increased

rate of exploration of the genotypic/phenotypic state space, as compared with

clonal parthenogenesis, especially in changing environments. Recombination

will ultimately tend to expose a wide variety of individual genotypes to various

environmental conditions. The number of such genetic combinations is, for

all practical purposes, unlimited. It is presumed that each offspring receives

each chromosome from each parent in a random manner. In humans, 223 dis-

tinct zygotes can be produced from only two parents by simply considering the

possible combinations.

Three potential advantages of recombination have been identified [50J: (1)

greater efficiency for adjusting to a changing environment, (2) bringing together

independently created beneficial mutations, and (3) removing deleterious mu-

tations.
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4.4.4 Sexual Selection

Sexual reproduction allows for sexual selection. This term refers to the

process by which males and females of a species determine or 'select' their

mates. These processes often involve prolonged demonstrations of vigour be-

tween members of the species, typically the males. Male-male competition has

been viewed as an important source of sexual selection since Darwin (1859).

He concluded that the result of these encounters was not generally death to

the vanquished, but 'few or no offspring' [49]. A genetic death is equally as

real as a physiological death in purging a defect from the germline.

Males in many species have evolved specific attributes that appear designed

solely for male-male competition. Antlers, for example, are used primarily in

intraspecies competition but otherwise appear poorly constructed for predator

defense. The enlarged claw of male crabs (especially fiddler crabs, in which the

pincer may constitute one-third of the crab's total body weight) is similarly

observed only in mature males and it is not required for survival. Rather, the

claw is used in wrestling matches between males and for attracting females.

Aggressive behaviour is typical of virtually all males and can be triggered

by specific stimuli. In experiments with stickleback fish, Tinbergen [51] indi-

cated that males are more aggressive toward decoys with a red colouration but

no visual resemblance to a fish than towards anatomically correct, colourless

decoys. Similar results have been descibed by Lack [52] in which male robins

threatened a pile of red feathers more readily than a stuffed young male that

lacked a red breast. Male sexual maturation is often accompanied by these

sex-specific characters that incite aggressive behaviour in other males.

There are numerous examples of male-male competition in a great variety

of diverse species [49]. A male stag beetle has overdeveloped horns and an

enlarged mandible that appear specialized for intraspecies fighting. Combat

between male stalk-eyed flies in Australia includes a ritual in which the males
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line up eye-to-eye and apparently determine which individual has a wider-set

pair of eyes. Male salmon returning from the sea to spawn develop a hooked jaw

that aids in fights with other males. As the males die shortly after spawning,

the problems in feeding caused by the hooked jaw are of no consequence. Male

elephant seals, due to the very limited breeding ground, are under intense

sexual selection, and high mortality rates are not uncommon.

Demonstrations of male vigour appear to be a principal component of the

evolutionary process that exposes and expurgates significant genetic errors from

germline DNA. Those males that prove themselves 'fragile' through prolonged

competition do not mate. Males have often become a sacrificial component of a

reproductive subpopulation. Sexual selection may be viewed as operating as a

gene defect filter by continually testing the male germline for vigour [53], and

such male-male competition serves to cull genetic defects from the breeding

deme prior to reproduction.

4.5 Simulated Evolution

Let us now discuss how the principles invoked in the neo-Darwinian paradigm

are deployed in Simulated Evolution. The SE provides a stochastic search op-

timization technique and has been applied to difficult combinatorial problems

such as the travelling salesman problem, training and designing neural net-

works and system identification. There are three widely researched paradigms

in SE: Genetic Algorithms (GAs), Evolution Strategies (ES) and Evolutionary

Programming (EP).

These evolutionary techniques are population based: Successive popula-

tions of the feasible solutions are generated in a stochastic manner following

laws similar to that of natural selection. This is based on the Darwinian evo-

lutionary theory which describes a point of view of 'survival of the fittest' in

the history of life [86]. This is in contrast to standard programming techniques
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that normally follow just one trajectory (deterministic or stochastic), perhaps

repeated many times until a satisfactory solution is reached. In the evolution-

ary approach, multiple stochastic solution trajectories proceed simultaneously,

allowing various interactions among them towards one or more regions of the

search space. These approaches can be justified by the fact that a population-

based algorithm automatically stores in time a sampled replica of the profile of

the function being optimized, providing important clues for the global structure

of the function.

SE generally takes the following form: a population trial of solutions to a

particular problem is generated. Each of the initial solutions is scored with

respect to some objective function. Through a variety of possible code opera-

tions (crossover, mutation, etc.), parents generate offsprings which are scored

in a similar manner, the best subset of the solutions are retained to serve as

parents for successive generations. The population iteratively adapts its be-

haviour in light of the given goal. The criteria for halting the simulation are

typically based on the adequacy of the generated solution or a limit on the

available execution time.

GA and EP have some obvious similarities. Both the algorithms operate

on a population of candidate solutions, subject these solutions to alterations,

and employ a selection criterion to determine which solutions to maintain for

future generations. As described in [87,88], GA differs from EP in the following

aspects:

1. GAs use the binary coding (ie. bit string) of the parameters to be evolved,

not the parameters themselves; whilst EP uses float point representations.

2. In GAs, the number of offspring to be created from each parent is propor-

tional to the parent's fitness relative to all other members of the current

population; in EP, successful simulations need not create more than a

single offspring of each parent.
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3. In GAs, parents create offspring through the use of specified genetic op-

erators, such as crossover and mutation; in EP, the offsprings are cre-

ated through various mutation operations that follow naturally from the

chosen problem representation. Selection is often made a probabilistic

function of fitness.

SE has developed extremely quick over the past two decades. Most of the

early research concerned the numerical experiments and applications in various

system engineering areas and both the results show the effective power of the

SE. We will focus on two of the paradigms in the following two sections, namely

the EP and the GA.

4.6 Genetic Algorithms

4.6.1 A Brief Historical Development

GAs have been developed by John Holland, his colleagues, and his students

at the University of Michigan. The goals of their research have been twofold:

1. to abstract and rigorously explain the adaptive processes of natural sys-

tems;

2. to design artificial system software that retains the important mecha-

nisms of natural systems.

This approach has led to important discoveries in both natural and artificial

systems. Early work on GAs was carried out by Holland [89, 90]. In these two

papers two fundamental concepts which are of chief importance for GAs are

focused: the ability of simple representations to encode complex structures

and the power of simple operations to improve them. In 1975 Holland set the

frame work for the approach in searching and adaptation. This work can be
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considered the birth of GAs. In this volume Holland established the theoretical

results that, if certain conditions in the problem domain are assumed, GAs tend

to converge toward the global optimal solution. Until the early 1980s a lot of

theoretical studies on GAs was performed: some relevant results were produced

by Hollstein [91], who made an analysis on the effects that different selection

and mating strategies have on the performance of GAs, and by De Jong who

tried to grasp the features of the adaptive mechanism in GAs [92]. Starting

from the early 1980s, many system areas have been covered by GAs: Goldberg,

for example, studied steady-state and transient operation of a gas pipeline [93]

while Englander and Grefenstette and Fitzpatrick introduced GAs in pattern

recognition problems [95, 96], Ackley and Cohoon et al applied GAs to neural

networks [97, 98].

4.7 Algorithms Description

A GA consists of an n-tuple of binary strings bi of length l, where the

bits of each string are considered to be the genes of an individual chromosome

and where the n-tuple of individual chromosomes is said to be a population.

Following the terminology of organic evolution, the operations performed on

the population are called mutation, crossover and selection. Each individual,

b, represents a feasible solution of the problem and its objective function value

f(bi) is said to be its fitness, which is said to be maximised.

Davis describes the standard GA [99]. The standard procedure is sketched

as follows:

Choose an initial population

determine the fitness of each individual

perform the selection

repeat
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perform crossover

perform mutation

determine the fitness of each individual

perform selection

until some stopping criterion applies.

As suggested by Holland, the coding for a solution, termed a chromosome

in GA literature, is described as a string of symbols from {O,I}. These com-

ponents of the chromosome are then labeled as genes. The number of bits

that must be used to describe the parameters is problem dependent. Let each

solution in the population of m such solutions, b., i = 1,2, ... ,m, be a string

of symbols {O,I} of length l. Typically, the initial population of m solutions

is selected completely at random, with each bit of each solution having a 50

percent chance of taking the value O.

The GA parameter identification algorithm applied in this research for the

parameter identification of an induction machine is desribed in detail in chapter

5. We will now discuss in more detail the three operators which will be used

in simple GA.

4.7.1 Selection

The selection operator applied in the simple GA used in this research is

named the proportional selection. This is because the population of the next

generation is determined by n independent random experiments, the probabil-

ity that individual b, is selected from the tuple (bI, b2, ••• ,b,J to be a member

of the next generation at each experiment is given by

(4.7.1)

This simple selection operator may be described as follows. Proportional

selection may be thought of as placing the string probabilities on a weighted
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roulette wheel and spinning the wheel to select a string. The probabilities on

the roulette wheel are determined by the string's fitness as a percentage of the

total population fitness. The roulette wheel selection utilizes random numbers

to simulate a spin of the wheel. Once a string is selected by the reproduction

operator, the string is copied into a mating pool and waits to be selected for

further genetic operator action. The roulette wheel schemedoes not guarantee

that the fittest strings will be selected, although their probability for selection

is high.

4.7.2 Crossover

Crossover is an important random operator in GAs and the one used in this

work is the one point crossover. Typically, the probability for crossover ranges

from 0.6 to 0.95 [92, 110]. From the biological point of view, the fundamental

consequence of crossover is that the population entropy always increases. This

means crossover wants to catch the population with the highest amount of

energy.

Crossover may best be viewed by taking crossover as a two-step process

that involves mating and swapping of partial strings. Each time the crossover

operator takes action, two randomly selected strings from the mating pool are

mated. Then, for one point crossover, a position along one string is selected

at random, and all binary digits followingthe position are swapped with the

second string. The result is two entirely new strings that move on to the next

generation.

4.7.3 Mutation

Mutation operates independently on each individual by probabilistically

perturbing each bit string. The event that the jth bit of the ith individual is

flipped is stochastically independent and occurs with probability Pm E (0,1).
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Typically, the probability for bit mutation ranges from 0.001 to 0.01 [92, 110].

The probability that string b, resembles string b~ after mutation can be de-

scribed as:

(4.7.2)

where Hib., bD denotes the Hamming distance between the strings b, and b~.

The mutation operation is a secondary genetic algorithm. It is used to maintain

diversity in the population-that is, to keep the population from prematurely

converging on one solution-and to create genetic material that may not be

present in the current population. An example of simple GA is shown in

Appendix A.

4.8 Convergence Properties of Genetic Algo-

rithms

Markov chains and stochastic Theorems offer an appropriate model to anal-

yse GAs. They have been used to study and prove the probabilistic conver-

gence of the SE algorithms [100, 101, 102, 103, 104, 105, 106, 107, 108, 109].

The Markov process is a sequence of possibly dependent random variables

(XI, X2, X3," .)-identified by increasing values of a parameter, which for pa-

rameter identification of an induction machine is time, and has the property

that any prediction of the value of Xn may be based on Xn-! alone. That is, the

future value of the variable depends only upon the present value and not on the

sequence of past values. Since the research work is built around the Simulated

Evolution, these essentially discrete-valued variables are called Markov chains.

We will firstly apply this method to the GA, and then later apply it to EP.
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4.8.1 Genetic Algorithms without Bit Mutation

To provide an initial examination of the convergence properties of a GA,

consider a state space of possible solutions to be coded as strings of n bits

{O,I}. Let there be a population of m such bit strings, and let each possible

configuration have a fitness ii, i = 1, ... ,2n. Let r be the globally optimum

value. Let a GA with only crossover and selection (differential reproduction)

operate on the bit strings.

The search can be formulated as a finite-dimension Markov chain [54]char-

acterised by a state vector 7r and a transition Matrix P. Given 7r, a row vector

describing the probability of being in each state, 7rP yields the probability of

being in each state after one transition. Thus the probability of being in each

state after k transitions is 7rpk.

For GA, the states of the chain can be defined by every possible configu-

ration of an entire population of bit strings. There are 2mn such states. For

example, if n = 2 and m = 2, then the following possibilities exist:

(00,00), (00,01), (00, 10), (00, 11),

(01,00), (01,01), (01,10), (01, 11),

(10,00),(10,01),(10,10),(10,11),

(11,00),(11,01),(11,10),(11,11),

Each of these 16 collections of pairs of bit strings represents a possible state

in the chain. For practical problems, often m = 100 and n > 50; thus there

may be more than 25000 possible states in the chain. Yet the chain is of finite

dimension and possesses the time homogeneous and no memory properties

required [55].

A Markov chain is said to be irreducible if every state communicates with

every other state. Two states, i and j, are said to communicate if there is at

least one path from i to j and vice versa. Such a path may require multiple

steps (i.e., there exists Pij > 0, P~ > 0, for some 0 :::;x < M, ° :::;y < M,
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where there are M states and where ~j is the probability of transitioning from

state i to state j in one step).

The chain defined by the CA with only crossover and selection is not irre-

ducible because there are absorbing states (Le., states that do not communicate

with any other state). Let the only ergodic classes (i.e., sets of states from which

every path leads to a state in the set) be single absorbing states; no oscillations

between states will be considered.

A state in this chain will be absorbing if all the members of the population

are identical. Under such conditions, crossing over bit strings in the population

simply yields the original population. Otherwise, a state is transient. As

time progresses, the behaviour of the chain will be described by either (1) a

transition to an absorbing state, (2) a transition to a state from which there

may be a transition to an absorbing state with some nonzero probability, or

(3) a transition to a state from which there is no probability of transitioning

to an absorbing state in a single step. Thus the state can be indexed such that

the state transition matrix, P, for the chain satisfies

p= [~ ~l (4.8.1 )

where P is the transition matrix, la is an a x a identity matrix describing its

absorbing states, R is a t x a transition submatrix describing transitions to

an absorbing state, Q is a txt transition submatrix describing transitions to

transient states and not to an absorbing state, and a and t are positive integers.

The behaviour of such a chain satisfies

(4.8.2)

where pk is the k-step transition matrix, N k = It +Q +Q2 +Q3 + ... +Qk-l ,
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and It is the txt identity matrix. As k tends to infinity,

[
I 0 11. pk a1m -

k-+oo (It - Q)-l R 0
(4.8.3)

[55]. The matrix (It _Q)-l is guaranteed to exist [55]. Therefore, given infinite

time, the chain will transition with probability one to an absorbing state. Note

that there is a nonzero probability that the absorbing state may not be the

global best state unless all the absorbing states are globally optimal.

The results may be summarized by the following theorem.

Theorem. Let r = {O,I}, m be the number of solutions in T" main-

tained at each iteration, the loss function L : (I'")?' --+ Rd, where Rd describes

the set of real numbers representable in a given digital machine, and let L("(),

"( E (T'")?', be single valued. After k iterations, the GA without bit mutation

arrives at a state "(:

a
"( E (I'")?' 3 Pr(,,( E A) - :~:~:XlroOpk)i (4.8.4)

i=l

(4.8.5)

where (?roOpk)i denotes the ith element of the row vector (?r"'pk), A is the set

of all absorbing states, x" is the row vector describing the initial probability

of being in each state, P is the transition matrix defining the Markov chain of

the form

p~ [~ ~l
N, = It + Q + Q2 + Q3 + ... + Qk-l, and I, is an a x a identity matrix. The

(4.8.6)

limit of the probability of absorption is

MACHINE LEARNING FOR SYSTEM IDENTIFICATION W.P.Kent



4.8 Convergence Properties of Genetic Algorithms 63

It is natural to examine the number of absorbing states in such a chain.

Absorbing states are those in which each bit string in the population is iden-

tical. There are 2n such absorbing states. The total number of states is 2mn,

and this leads to two observations: The density of absorbing states decreases

exponentially with the length of the bit string (i.e., 2n(1-m)), but the actual

number of absorbing states increases exponentially with the length of the bit

strings (i.e., 2n). For coding other than bit strings, the base of 2 will change

but the relationships will not.

Because the chain must eventually transition to an absorbing state under

the rules of the transition matrix described above in (4.8.3), if the transitions

between states are of equal probability, the time required to find an absorbing

state may increase exponentially with n. When such a state is found, the

likelihood of it being a globally optimum state may decrease exponentially

with n. Of course, for matrices in which the transition probabilities are not

equal, as would be the case in practice, the specific entries in each matrix

will determine the mean waiting time before absorption and the likelihood

of discovering a global optimum. FUrther, should any particular bit be fixed

across the population to a value that is not associated with a global optimum

solution, a global optimum will never be discovered.

4.8.2 Genetic Algorithms with Bit Mutation

A bit mutation operation is incorporated in GA to avoid the problems of

premature convergence associated with the repeated use of crossover. 'Mu-

tation is a background operator, assuring that the crossover operator has a

full range of alleles (i.e., bits) so that the adaptive plan is not trapped on lo-

cal optima' [88]. The term local optima may be somewhat misleading in this

context, however. Typically, a point is locally optimal if no improvement can

be made by searching in a nonempty neighbourhood around that point. This
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may not be the case for CA relying solely on crossover. The sequence of trials

may stagnate anywhere, at any homogenous collection of points (all identical).

Under such conditions, the point is locally optimal only because the search

algorithm is incapable of proceeding further. Many researchers [57, 58J have

recognized this problem and some have proposed that to fine tune the search,

hill-climbing and other heuristic procedures be employed after execution of a

GA.

If each bit is given a probability of mutation (i.e., flipping), Pm E (0,1), then

the absorbing states of the transition matrix defined by the CA operating only

with crossover that are not globally optimal will become transient. All globally

optimal states can be collected and described as a single state. The mean time

before entering this state if the chain starts in state i can be calculated by

(4.8.8)

where N = (I - Q)-l = [kijJ, and T is the set of all transient states [55J. Thus

the specific number of steps taken until reaching a globally optimal state is

highly dependent on the characteristics of P.

Because the probability for bit mutation is generally very low ([59J, p. 15

suggests a 0.008 probability per bit), this operation may indeed be viewed as

a background operator, following [88]. It will be likely that the chain of states

generated by crossover and bit mutation will generally follow the state gener-

ated by crossover alone, with mutation serving to prevent complete stagnation

[88]. Thus the path is likely to transition to a metastable state (an absorbing

state of the chain defined by the CA relying on only crossover), whereupon it

will wait for mutation to affect the appropriate changes of bits of chromosomes

in the population and then proceed to another such metastable state, and so

forth.

Such transitions may require a very long waiting time, depending on the

number of bits that must be flipped simultaneously. The probability of flipping

MACHINE LEARNING FOR SYSTEM IDENTIFICATION W.F.Kent



4.8 Convergence Properties of Genetic Algorithms 65

b specific bits in a single chromosome (i.e., a bit string) and not flipping any

others is P~ (1 - Pm)n-b, where Pm is the probability of flipping a single bit.

As the length of the codings, n, grows longer, the number of metastable states

increases exponentially and very long waiting times become virtually certain.

Davis [59]commented that 'when the population has converged on a chro-

mosome that would require mutation of a good many bits to cause any improve-

ment, the run of the GA is for all intents and purposes completed. Rather than

continuing to run it to no avail, a better usage of computer cycles might be

to run the algorithm again using a different random number seed and take

the best results, or to use a hill-climbing heuristic to search methodically for

improvements.

Premature convergence may also be a somewhat misleading term in this

context. Rudolph [60],using Markov chain analysis, showed that the canonical

GA [88]is not convergent at all, regardless of the initialization, crossover oper-

ator, and objective function: It does not generate a sequence of solutions that

converges to any point in the sample space, including any global optima. But

the search can easily be made to globally converge by elitist selection, that is,

by incorporating a heuristic to always maintain the best solution in the popu-

lation into successive generations. That is to say, the elitist selection ensures

that the best individual (with highest fitness) survives with probability one.

Premature convergence merely indicates that the search becomes stagnant for

a long and random amount of time.

The specific waiting times in the metastable states are problem-dependent.

There may well be problems for which such waiting times are relatively short or

for which the paths to metastable states are unlikely. Because it is infeasible to

analyze the behaviour of individual components in transition matrices that may

be larger than 25000 x 25000, the degree to which immensely long waiting times

is endemic to GA can only be reasonably assessed through experimentation.
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4.9 Evolutionary Programming

4.9.1 A Brief Historical Development

Fogel L. conceived of using SE on a population of contending algorithms

to develop artificial intelligence and explored this possibility of EP in a series

study [111, 112, 113, 114, 115]. Intelligence behaviour was viewed as requiring

the composite ability to:

1. predict one's environment, coupled with

2. a transition of the predictions into a suitable response in light of the given

goal.

For the sake of generality, the environment was described as a sequence of

symbols taken from a finite alphabet. The evolutionary problem was defined

as evolving an algorithm that would operate on the sequence of symbols thus

far observed in such a manner so as to produce an output symbol that is likely

to maximise the algorithm's performance in light of both the next symbol to

appear in the environment and a well-defined payoff function.

Since 1985 research into EP has dramatically increased. More recently, the

technique has been applied to diverse combinatorial optimization problems.

Representations have been chosen based on the problem at hand and mutation

operations are constructed that maintain a strong behavioural linkage between

each parent and progeny. The procedure has been applied, for example, to the

path planning problem, training and designing of neural networks, automatic

control, gaming, and general function optimization.

4.10 Evolutionary Programming

There are three main operations in EP : mutation, competition and repro-

duction. The numerical process is as follows.
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The initial population is determined by selecting individuals, Pi, i = 1,2, ... ,m,

from the set of U(a,b)n, where m is the population size and U(a,b)n de-

notes a uniform distribution ranging over [a, b] in n dimensions. Each Pi,

i = 1,2, ... ,m, is assigned a fitness score hi, hi = H(Pi), H : Pi ~ R. H

can be as complex as required and is usually used as an objective function.

Statistics is then used to get the maximum fitness, minimum fitness, average

fitness and sum of fitnesses of the population. The mutation operation is car-

ried out based on the statistics to double the population size from m to 2m.

Each Pi, i = 1,2, ... ,m, is mutated and assigned to PHm in the following way:

(hi)PHm,; := Pi,j + N 0, {3jhE ' 'Vjjj=I, ... ,n (4.10.1)
where Pi,; denotes the jth element of the ith individual; Ni u; a2) represents

a Gaussian random variable with mean J-L and variance a2; hs: is the sum of

fitnesses; {3j is a constant of proportionality to scale lu] li» and ° < {3j ::; 1.

Each PHm, i = 1,2, ... ,m, is again assigned a fitness score hHm. Based on

the mutated population with the size of 2m, a competition is conducted to

reproduce offsprings. For each Pi, i = 1,2, ... ,2m, a value Wi is assigned to

weight the individual according to the following equation:
s

ui; = 2:= ui,
t=l

(4.10.2)

and
Wt = { 1, if Ul < hr/(hr + hi),

0, otherwise

where s is the number of competitors, r =int(2mu2 + 1), int(x) denotes the

(4.10.3)

greatest integer less than x, and Ul, U2 r'V U(O, I). The individuals Pi, i =

1,2, ., . ,2m, are ranked in descending order of their corresponding value Wi.

The first m individuals are transcribed along with their corresponding fitnesses

hi to be the basis of the next generation. The process will be carried out

repeatedly until the given conditions are satisfied.

MACHINE LEARNING FOR SYSTEM IDENTIFICATION W.F.Kent



4.11 Algorithms Description 68

4.11 Algorithms Description

Fogel D. outlined the standard EP procedure for real-valued optimization

problems [87]. This is described here with only a minor alteration in the com-

petition rules. Assume the problem is function minimization. EP is conducted

as follows:

1. Select an initial population of m trial solutions, Pi, i = 1, ... ,m, by

sampling from a uniform distribution across the preselected range of each

parameter.

2. Score all parent solutions Pi, i = 1, ... ,m, with respect to the chosen

function H (p).

3. From each parent Pi, i = 1, ... ,m, create an offspring, denoted as PHm,

by adding a Gaussian random variable with zero mean and positive vari-

ance set proportional to H(Pi) to each component of the parent, where

H(Pi) is the parent's error score.

4. Score all offspring Pi, i = m + 1, ... ,2m, with respect to the chosen

function H (p).

5. For each Pi, i= 1, ... ,2m, select c competitors at random from a popula-

tion. Conduct pairwise comparisons between Pi and each of the competi-

tors. If the error score of Pi is less than or equal to that of its opponents,

assign it a win.

6. Select the m solutions that have the greatest number of wins to be parents

for the next generation.

7. If the available computing time has expired then halt, else proceed to

step 3.
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Various modifications of this procedure are described in [116]. The EP

parameter identification algorithm applied in this research for the parameter

identification of an induction machine is desribed in detail in chapter 5.

4.12 Convergence Properties of Evolutionary

Programming

As with GA, the EP can be viewed as a finite-dimensional Markov chain.

The states of the Markov chain again comprise the entire collection of vectors

in the population. The components of the vectors are no longer bits {O,I} but

rather discretized real numbers. For instance, for the following distribution

ranges, if al = 0, a2 = 0, b1 = 1, b2 = 1, and the number of parameters n = 2,

and the number in the population m = 2, then two possible instances of states

in the chain are

(0,0; 1, 1), (0.1,0.523; 0.7, 0.003)

By the competition and selection rules in steps 5 and 6 of the EP algorithm,

the best vector in the population will always be retained during selection. This

results in the formation of an equivalence class of all states that contain a global

best vector. This class may be described as one containing a single state. For

example, if the global optimum is uniquely (0,0), then all collections of vectors

containing (0,0) are characterized as the same state. The Markov chain may

then be written in the form

(4.12.1)

where PEA is the transition matrix, 1 is a 1 x 1 identity matrix decribing the

absorbing state, R is a strictly positive (all entries are greater than zero) t x 1

transition submatrix, Q is a txt transition submatrix, and t is a positive
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integer. The state containing global optima is the only absorbing state, and

all other states are transient.

Asymptotic global convergence of the evolutionary algorithm is then trans-

parent because every absorbing chain will reach an absorbing state, and in this

case there is just one such state. Further, the matrix PEA is a special case of

the matrix in (4.8.1):

p= [~ ~l
It has already been shown (4.8.2) that a Markov chain described by P will

(4.12.2)

proceed as

(4.12.3)

Thus as in (4.8.3)

• k [ 1 0]lim PEA =
k-+oo (It - Q)-lR 0

(4.12.4)

Therefore, the probability of absorption (that is, the probability of discovering

a global optimum solution) for the chain with transition matrix PEA increases

over k steps as a geometric series (NkR) converging to 1.0. This result can be

summarized in the following theorem.

Theorem. Let r = Rtt the set of elements of R representable in a given

digital machine, m be the number of maintained solutions, L : (I'")?' __ I'

be the loss function, and Lb)' / E (rn)m, be single valued. Then, after k

iterations, the evolutionary algorithm arrives at a state:

(4.12.5)

where the subscript 1 denotes the first entry in the row vector (7T·P~A)' A is

the singleton set containing the absorbing state, 7T0< is the 1 x (t + 1) row vector

describing the initial probability of being in each state, PEA is the transition
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matrix defining the Markov chain, of the form

(4.12.6)

and N k = It +Q + Q2 + Q3 + ... +Qk-l.

Furthermore, the limit of the probability of absorption is:

1

1
t+1

=L:11'; = 1
i=l

(4.12.7)

This theorem directly indicates a convergence in probability, but can be

extended to imply convergence with probability one. Convergence in prob-

ability sufficiently fast implies convergence with probability one [61]. More

specifically, given a sequence Xk, if
00

L:Pr(1 Xk - X I> c) < 00 for every e > 0
k=l

(4.12.8)

then Xk converges with probability one to X(Xk W~l x).

This result can be applied to obtain the following theorem.

Theorem. Given a (t + 1) x (t + 1) state transition matrix of the form

PEA (4.12.1), where there is a single absorbing state and t transient states,

and an initial 1 x (t + 1) state probability row vector 11'* describing a Markov

chain, let 11'; be the 1 x t row vector describing the probability of starting in

each of the transient states. Form the sequence

1, if the chain has reached the absorbing

Xk(W) = state by the kth iteration;

0, otherwise

The sequence Xk(W)w!:ll.

Proof

Consider the two cases (1) k = 0 or k = 1 and (2) k ~ 2.
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1. The probability of arriving at the absorbing state by the zeroth or first

iteration is simply 7J"' [ ~ ] = Pa.

2. To analyze the sequence for k 2:: 2, it is useful to note the following. For

vQm =I 0, where Q is a txt substochastic matrix (4.12.1), v is a 1 x t

row vector, v =I 0, Vi > ° V i = 1, ... , t, V m = 0,1,2, ... (vQm = °
indicates Xk (w) w~11, trivially), since qij < 1,

1111 :1I1·QII, <
1111 :II,·QII,
111I"Q IiI, v

- 11"=--II V III
t t

- L 1I"iL qij
i=l j=l
t max t

< L 1I"i . L qij
i=l Z j=l

max t

- . Lqij
Z j=l

- 'Y

< 1 (4.12.9)

Hence, V k 2:: 2, 11"; =I 0, 1I";,i > °V i = 1, ... ,t, and e > 0,

P(I Xk(W) - 1 I> c) = P(Xk(W) =f. 1)

1

(4.12.10)

1

Therefore,

00

L P(Xk(W) =11)
k=2

1

1
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1

00

< L 117r;Qk 112Vi (Cauchy-Schwarz)
k=2
00

- L II7r;Qk-IQ 112Vi
k=2

- f: II7r;Qk-l 111II 1f:~k_-ll ·QII 0
k=2 111ftQ IiI 2
00

< L II 7r;Qk-l IiI ."(.Vi, 0::; "(< 1
k=2

- ~ I!,,;Q'-'Ih IIII:::~'~" ·QtyVt
00

< L 117r;Qk-2 IiI ."(2.0
k=2
00

< L 117r; 111."(k.Jt
k=2
00

< LK"(k
k=2

< 00. (4.12.11)

4.13 Conclusion

The limitations of traditional optimization techniques, namely the calculus-

based methods, numerative schemes and random search algorithms, have been

discussed which has justified the reasons for using SE. The following chapter

will apply SE for the parameter identification problem of an induction machine

simulation with differing variances of measurement noise.

MACHINE LEARNING FOR SYSTEM IDENTIFICATION W.F.Kent



Chapter 5

The Induction Machine

Simulations

5.1 Introduction

In this chapter we will look at the induction machine's dynamic differential

equations which are suitable for simulation and therefore provide an analytical

tool of an actual induction machine. The dynamic model notation is discussed

which is used to mathematically describe the simulated evolution processes

that deploy the induction machine model during the parameter identification

process. The different strategies deployed by the two chosen processes of simu-

lated evolution used in the parameter identification process are explained and

listed, namely the genetic algorithm (GA) and the evolutionary programming

(EP). The induction machine's model in the per-unit system is described, which

allows the simulated evolution to be more effective in the optimal parameter

search by keeping the initial parameter ranges within a reasonable range in the

search space. This is concluded by the simulation process, tabulated results

and responses which are fully illustrated and discussed.
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5.2 The Induction Machine's Differential Equa-

tions Used for Simulation

By meticulous rearrangement of equations (3.1.2), (3.4.1) and (3.5.1), the

induction machine's state equations are as follows

Dids =
Diqs -

,I

D~dr =
,I

D~qr =
DWr =

where

( R L' . L2 . L R'·I I ") ,a - s r~ds+ m~qsWr+ m r'tdr + LmLr'tqrwr + aLrvds (5.2.1)
2 . ' . ' .1 I .' I

a( -Lm'tdsWr - RsLr'tqs - LmLr'tdrWr + LmRr'tqr) + aLrvqs (5.2.2)

a(RsLmids - LsLmiqswr - LsR~i~r + LsL~i~rwr) - aLmVds (5.2.3)

(5.2.6)

The state equations shown above are of the nonlinear differential equation

form for which we shall use the Runge-Kutta method.

5.3 Simulation of a 3-Phase Induction Machine

A 3-phase induction machine with the specifications given in Table 1 shall

be simulated applying the Kron's two-axis dq dynamic mathematical model.
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Table 1 Specifications of the 3-Phase Induction Machine

Induction Machine type TYPZK 90L-6/IEC 34-1

Output power Pout

Voltage

Current

Frequency

Speed

Stator resistance Rs
Rotor resistance R,.

Stator inductance L,

Rotor inductance L;

Magnetizing inductance Lm
Moment of inertia J

Damping coefficient B

Rated torque TT

1100W

220/380V

5.7/3.3 A

50 Hz

910 rpm

5.85 n
5.87 n
0.252 H

0.252 H

0.2346 H

0.005

0.0008

11.45 Nm

5.4 The Dynamic Model Notation Used for

the Induction Machine

Let the parameter identification problem be described as follows:

DX = f((), X, V)

where

(5.4.1)

X = the state variable vector

V = the stimulus, i.e., the input vector from the supply

()= the parameter variable vector to be identified

D = the differential operator ~
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Let

(5.4.2)

be the parameter variable matrix, and

Pi = [Pil Pi2 ... Pim] (i=1,2,···,l) (5.4.3)

the parameter vector, where l is the number of the individuals in a generation,

and m is the number of parameters to be identified.

(5.4.4)

is the measured performance vector which is contaminated by the measurement

noise, W(tk), and k is the sequence number of the series measurement sample,

tk is the measuring time instant corresponding to the kth measurement. The

whole measurement is suppose to start at tk = 0 and end at tk = TN; TN

is the time span of the series measurement sample. w is the measurement

noise vector, and C is a coefficient matrix depending on which measurements

of performance are used.

The measurement vector, Y(tk), can be alternatively expressed as:

(5.4.5)

where the measurement Yi(tk) (i = 1,2, ... ,M) can be either a state variable or

a non-state variable which includes the measurement noise. M is the number of

variables to be measured. Let 9 stand for the sequence number of generations.

The following two sections describe the processes involved in parameter iden-

tification of an induction machine, firstly applying genetic algorithms which is

followed by a section on applying evolutionary programming. The similarities

between the two processes are repeated for greater clarity as well as to show

the different strategies of the two simulated evolution methods.
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5.5 Identification of an Induction Machine's

Dynamic Model Parameters applying Ge-

netic Algorithms

1. An initial population of parameters, f/O) = {p~O) I i = 1,2, ... , l }, is

formed with randomly selected individuals. Each individual parameter

vector is constrained with the following conditions:

.. < A(g) < .
Pmm,J - Pit3 - Pmaxt3 j = 1,2, ... ,m (5.5.1)

where Pmin,j and Pmax,j are the limits of the jth element of the parameter

vector, P~g), given with a prior knowledge. p~~denotes the estimation

of the jth element of the ith individual in the gth generation of the

parameter. The process starts at 9 := O.

2. Each individual, P~g), is used to calculate the state variable X(tk) and

the general performance Y(tk) as follows:

DX(tk) - f(p~g), X(tk)' V(tk))

Y(tk) (7X(tk)

(5.5.2)
(5.5.3)

and the error vector

(5.5.4)

where Y(tk) stands for the measured performance vector, Y(tk) the simu-

lated one and E the expectation operator. We thus get an error function

of P~g) :
TN

h(p~g») = 2: E(p~g), tkf AE(p~g), tk) (5.5.5)
tk=O

where A is a unit matrix, tk is the discrete computing time which is the

same as the measuring time instant. This leads to the fitness of P~g):

. 1
Fitness = ( )

1+ h(p/ )
(5.5.6)
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The aim of the genetic algorithm is to minimize the error function or to

maximize the fitness.

3. A new generation, [>(g+l), with the same individual number of p(g), is

formed by means of reproduction, crossover, and mutation based on the

previous p(g).

4. The range of the fitnesses of the individuals in a generation is calculated

as follows:

maxfitness - minfitness < e (5.5.7)

where

c = 0.001 * minfitness (5.5.8)

During the simulation, each time the statement above is true, the follow-

ing integer variable, convergence, is incremented as follows:

convergence := convergence + 1 (5.5.9)

Should the integer variable convergence become equal to an integer con-

stant, maxconvergence, which has been initially set at a particular cho-

sen integer value, then the simulation will stop as it has been judged

that the simulation has converged sufficiently, thus identifying the re-

quired parameters B = P~g) corresponding to a minimum error function,

or alternately, a maximum Fitness. c is a very small real. The pro-

cess will also stop if g = M G, where M G is a big integer representing

the maximum generation number, which has also been initially set. If

the convergence criterion is not satisfied, g := g + 1, and the process is

repeated from step 2.
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5.6 A Multiparameter, Mapped, Fixed-Point

Coding

As mentioned in Chapter 4, the population in simple GA consists of indi-

viduals, each representing a chromosome. Each individual, however, comprises

of parameters representing the problem to be solved. How these parameters

map onto a chromosome shall now be discussed. The parameters to be iden-

tified with respect to the induction machine are the stator resistance, Rs, the

rotor resistance, Rr, the mutual inductance, Lm, the stator inductance Ls, and

the rotor inductance, Li: These parameters, for the purpose of this parame-

ter identification research, are all assumed to lie betweem a range of ±50% of

their real values. The R, range is 2.9250 to 8.7750, the R; range is 2.9350 to

8.8050, the Lm range is 0.1l73H to 0.3519H, and both Ls and L; ranges are

0.126H to 0.378H. Since the population's individuals in simple GA comprise of

chromosomes, which are binary bit strings, we shall map the decoded unsigned

integer linearly from [0,2'] to the specified parameter range [Umin,Umax]. This

procedure is done for a multiparameter problem by concatenating each param-

eter as a binary substring so that the chromosome binary string comprises of

the required number of binary substrings, each one representing a particular

coded parameter. The mechanism for multiparameter, mapped, fixed-point

coding is as follows:
ti . + (Umax - Umin)
mm 2'-1 X

where

• Umin-minimum real parameter value,

• Umax-maximum real parameter value,

• i-particular binary substring bit length,

• x-real integer value between 0 and 21 - 1.

MACHINE LEARNING FOR SYSTEM IDENTIFICATION W.F.Kent



5.7 Identification of an Induction Machine's Dynamic Model Parameters

Applying Evolutionary Programming 81

The step or precision of the binary substring is described by the following

portion of the coding:

(
Umax - Umin)

2'-1
For the purposes of this research a chromosome of binary string length

of 70 bits was chosen for the precision in the search space this would offer.

Both R, and R; have binary substring lengths of 14 bits and precisions of

approximately 0.0003. Lm has a binary substring length of 16 bits and a

precision of approximately 0.000003. And both L, and L; have binary substring

lengths of 13 bits and precisions of approximately 0.00003. In view of the

induction machine's parameter decimal fraction sizes, the numerical precision

for the parameter identification process is certainly more than adequate.

5.7 Identification of an Induction Machine's

Dynamic Model Parameters Applying Evo-

lutionary Programming

1. An initial population of parameters, i/O) = {p~O) I i = 1,2, ... , l }, is

formed with randomly selected individuals. Each individual parameter

vector is constrained with the following conditions:

< ~(g) <
Pmin,j _ Pi,j _ Pmax,j j = 1,2,... ,m (5.7.1)

where Pmin,j and Pmax,j are the limits of the jth element of the parameter

vector, P~g), given with a prior knowledge. p~~denotes the estimation

of the jth element of the ith individual in the gth generation of the

parameter. The process starts at 9 := O.

2. Each individual, P~g), is used to calculate the state variable X (tk) and
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the general performance Y(tk) as follows:

DX(tk) - f(p~g),X(tk)' V(tk))

Y(tk) - CX(tk)

(5.7.2)

(5.7.3)

and the error vector

(5.7.4)

where Y(tk) stands for the measured performance vector, Y(tk) the simu-

lated one and E the expectation operator. Then we get the error function

of P~g) :
TN

h(p~g)) = L E(p~g), tkf AE(p~g), tk)
tk=O

(5.7.5)

where A is a unit matrix, tk is the discrete computing time which is the

same as the measurement sampling time. This leads to the fitness of P~g):

(5.7.6)

The aim of the evolutionary programming, therefore, is to minimize the

error function or to minimize the fitness.

3. A Gaussian random variable, with zero mean and its variance propor-

tional to the fitness of p~m) scaled by (3j, is added to each element of P~g),

i = 1,2, ... ,l, to produce new individuals PWI. (3 is a factor in association

with the jth identified parameter in the parameter vector. PWI has to

satisfy the conditions laid down by expression (5.7.1).

4. The new individuals, PWI' where i+l = l+ 1, ... ,2l, are used to calculate

the general performance index as their predecessors to get their fitness,

h(P~~I)·

5. Each individual, P~g), where i E {I, ... , 21}, competes with some others

according to the competition rule. A rank of competition is set up.
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6. A new generation, p(g+l), with the same individual number of p(g), is

formed based on the first l ranked P~g), i E {I, 2, ... ,2l}.

7. The range of the fitnesses of the individuals in a generation is calculated

as follows:

max fitness - minfitness < e (5.7.7)

where

e = 0.001 * minfitness (5.7.8)

During the simulation, each time the statement above is true, the follow-

ing integer variable, convergence, is incremented as follows:

convergence := convergence + 1 (5.7.9)

Should the integer variable convergence become equal to an integer con-

stant, maxconvergence, which has been initially set at a particular cho-

sen integer value, then the simulation will stop as it has been judged

that the simulation has converged sufficiently, thus identifying the re-

quired parameters ()= P~g) corresponding to a minimum error function,

or alternately, a minimum Fitness. e is a very small real. The pro-

cess will also stop if g = MG, where MC is a big integer representing

the maximum generation number, which has also been initially set. If

the convergence criterion is not satisfied, g := g + 1, and the process is

repeated from step 2.

5.8 The Induction MachineModel in the Per-

Unit System

Chapter 3 described the dynamic mathematical model of a symmetrical

induction machine requiring actual parameter values. The mathematical model
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using the per-unit system, as well as the reasons for using such a system, will

now be discussed.

The per-unit system has many advantages over the actual value notation.

In the per-unit system, the values of the machines parameters fall into well

defined ranges so that the initial ranges of the parameters required by (6.5.2)

can be easily defined and limited. All responses of the machine model in the

per-unit system are of the same order of magnitude. This will contribute to

the accuracy of the parameter estimate.

Let Vn be the rated voltage applied to a stator phase winding of the induc-

tion machine, In the rated current, 11 stands for the supply frequency, Vb, h,
Wb, ~, Ls, Pb and n stand for the base values of the voltage, current, electrical

angular speed, resistance, inductance, power and torque respectively.

Vb = Vn h= In Wb = WI = 27riI (5.8.1)

n,= Vb i, = Vb Pb = mphVbh Tb = QPb (5.8.2)h ~h %
where WI is the synchronous angular speed, Q denotes the number of pole pairs;

mph denotes the number of stator winding phases. Hence, the symmetrical

induction machine dynamic mathematical model, as utilized in the previous

section, may be expressed in per-unit values as follows [119]:

Vds R + L,D 0 LmD 0 idsS WI WI

Vqs 0 R + L,D 0 LmD
ZqsS WI WI- I

I LmD Lmwr R' + LrD L~Wr
.1

Vdr WI r WI Zdr

-L~wr
I

I

-Lmwr LmD R' + LrD .1

Vqr WI r WI Zqr

T; = ~LmQ(idSiqr - iqsidr)

( WI ) 2 ( !_) ~, = _T. +T. _ (WI) ( B) W
Q Pb dt e r Q Tb r

(5.8.3)

(5.8.4)

(5.8.5)

As was the case of the actual valued model, the rotor speed, Wr, is negative for

an induction motor. The damping coefficient, B, and the moment of inertia,

J, are actual values, all the others are per-unit values.
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5.9 The Induction Machine's Equations in the

Per-Unit System

Meticulous rearrangement of equations (5.8.3), (5.8.4) and (5.8.5), yields

the induction machine's state equations as :

Diqs ( L2. R L' . L L'.' '.' ) ,- a - mtdsWr - s rtqs - m rtdrwr + LmRrtqr + uLrvqs (5.9.2)

- u(RsLmids - LsLmiqswr - LsR,i~r + LsL~i~wr) - ULmVds (5.9.3)

u(LsLmidsWr + RsLmiqs + LsL~i~rwr - LsR~i~r) - uLmvqs (5.9.4)- (~)(~r[~Lm(-idsiqr + iqsidr) + Tr] - ~wr (5.9.5)

where
WI

a = £ £ £2 (5.9.6)
s r - m

As with the actual valued state equations of the previous section, these are also

nonlinear differential equations for which the forth-order Runge-Kutta method

shall be deployed for thier approximate solutions.

5.10 Implementation of the Simulated Evolu-

tion and its Simulation Results

Both EP and GA have been employed to identify the parameters of the

induction machine's dynamic mathematical model in the optimization process

both in actual values and in the per-unit system, being based on a no-load,

direct on-line start. Chapter 4, Section 7, describes the algorithmic process and

the terminology of organic evolution for GA. In the case of GA, the probability

of crossover, p.; was chosen to be 0.9 in order to allow a greater probability of

crossover in the chromosome population whilst still retaining a probable few

MACHINE LEARNING FOR SYSTEM IDENTIFICATION W.F.Kent



5.10 Implementation oftbe Simulated Evolution and its Simulation ResulttB6

unchanged chromosomes. In simple GA, reproduction and crossover are the

dominant search operators but may lose some useful genetic material (1's and

O's at particular chromosome positions) [94]. The mutation operator protects

against such irrecoverable losses. Empirical GA studies on mutation yields

good results on the order of about one mutation per thousand bit transfers

[94]. Therefore, the probability of mutation, Pm, was chosen to be 0.005. [57]

has reported that increasing Pm by more than a factor of 10 of this probability,

has mentioned in Section 4.7.3., degrades the performance of GA.

The 3-phase induction machine parameter identification optimization pro-

cess was done over the transient, no-load, direct on-line start. The phase angle

between the machine's 3-phase currents is only established when steady state

conditions have been achieved. To investigate the effects on the optimization

process of the number of state variables used, four and two state variables,

for the actual Kron's two-axis dq dynamic mathematical model simulations,

have been chosen. The two measurement vectors which have achieved the afore

mentioned objectives are respectively defined as:

(5.10.1)

and

(5.10.2)

the corresponding coefficient matrices Cl and C2 for equations (5.5.3) and

(6.5.6) are respectively:

1 0 0 0 0
1 _.Y1 0 0 0

C1= -"2 2 (5.10.3)
1 fl 0 0 0-"2 2

0 0 0 0 1
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and

c,= [~ ~ ~ ~ ~1
so that the calculated performance corresponding to the measurement Y1(tk)

(5.10.4)

(5.10.5)

and

(5.10.6)

where

irs = the current in stator winding Red

iys = the current in stator winding Yellow

ibs = the current in stator winding Blue

The parameter identification was undertaken for five cases of different lev-

els of measurement noise w(t). The measurement noise was chosen to be a

Gaussian random variable, N(J-t, (72), where J-t is the mean (set to zero) and (72

is the variance of the noise. The noise variances for the five cases are listed

in Table 2. The ranges of the identified parameters are assumed to be ±50%

per cent of the real values that are determined from the traditional tests. For

both the EP and GA, the maximum generation number is MC = 2000 for the

model in actual values and MG = 1000 for the model in the per-unit system.

The number of individuals in a generation, 1, is set to 50 for both GA and EP.

Table 2 Measurement Noise Variances (72

irs iys ibs Wr

case 1 0.0005 0.0005 0.0005 0.0005

case2 0.005 0.005 0.005 0.005

case3 0.01 0.01 0.01 0.01

case 4 0.05 0.05 0.05 0.05

case 5 0.10 0.10 0.10 0.10
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The period for the simulation and the test is set at is set to 0.3 seconds, that is,

TN = 0.3 seconds. The error, E and the maximum error, ME are respectively

defined as:

(i = 1,2, ... ,5) (5.10.7)

M E(%) = Maximum{ Errore, Error-; ... , Error5} (5.10.8)

where Oi stands for the identified parameters, and ()i its real value. Yj(tk) stands

for the performance measured, '!iJ(tk) the corresponding performance simulated

by the parameter iJ.

5.10.1 Tabulation of Simulated Evolution Simulation Re-

sults

Tables 3 to 8 give the results of the parameter identification of the induction

machine's mathematical model both in actual values and in the per-unit sys-

tem, using the EP and the GA, based on the measurement vectors Yl and Y2.

The maximum generation (MC) used for the actual value parameter search is

2000 whilst 1000 for the per-unit system parameter search. The results include

the identified parameters, their fitness (F), their maximum error (M E) and

the number of generations that have occured in which EP or GA have found

the identified parameters (FC). The convergence number used for this process

in both EP and GA was 50. RV stands for the real values of the parame-

ters. Figure 5.1 shows the start-up performance of stator current irs, electrical

torque T; and rotor speed Wr which are contaminated with noise.
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5.10 Implementation of the Simulated Evolution and its Simulation ResulttB9

Table 3

The Identified Parameters Applying EP to the Model in Actual Values

(Using l = 50, MG = 2000 and Y1)

Rs(n) Rr(n) Lm(H) Ls(H) Lr(H) ME(%) FG F

RV 5.85 5.87 0.2346 0.252 0.252

Case 1 5.8874 5.9369 0.2438 0.2485 0.2508 7.61 109 0.2483

Case2 6.0359 5.9425 0.2409 0.2463 0.2494 10.37 118 0.2491

Case3 6.0621 5.6062 0.2389 0.2420 0.2517 14.04 193 0.4887

Caes 4 6.1425 5.9999 0.2393 0.2433 0.2549 13.85 144 0.4957

Case5 6.0382 5.5767 0.2375 0.2405 0.2552 15.27 163 0.4924

Table 4

The Identified Parameters applying GA to the Model in Actual Values

(Using l = 50, MG = 2000 and Y1)

Rs(n) Rr(n) Lm(H) Ls(H) Lr(H) ME(%) FG F

RV 5.85 5.87 0.2346 0.252 0.252

Case 1 6.1052 5.7959 0.2326 0.2405 0.2533 11.56 MG 0.2530

Case 2 6.0591 5.8090 0.2274 0.2479 0.2444 12.33 MG 0.0813

Case3 5.9272 5.7597 0.2369 0.2395 0.2611 12.75 MG 0.0100

Caes 4 6.0355 6.1070 0.2378 0.2411 0.2582 15.36 MG 0.0025

Case 5 6.1188 6.0933 0.2434 0.2489 0.2438 16.63 MG 0.0012
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Table 5

The Identified Parameters applying EP to the Model in Actual Values

(Using l = 50, MG = 2000 and Y2)

Rs(O) R,.(O) Lm(H) Ls(H) Lr(H) ME(%) FC F

RV 5.85 5.87 0.2346 0.252 0.252

CaseI 5.7509 5.8198 0.2454 0.2483 0.2499 9.46 176 0.3334

Case2 5.6342 5.7729 0.2450 0.2476 0.2589 14.99 195 0.3424

Case3 6.0836 5.6871 0.2431 0.2471 0.2582 15.12 353 0.3528

Caes 4 6.1424 5.6056 0.2363 0.2416 0.2463 16.61 280 0.4753

Case5 6.1425 5.5765 0.2340 0.2415 0.2606 17.84 321 0.4870

Table 6

The Identified Parameters applying GA to the Model in Actual Values

(Using l = 50, MG = 2000 and Y2)
Rs(O) R,.(O) Lm(H) Ls(H) Lr(H) ME(%) FG F

RV 5.85 5.87 0.2346 0.252 0.252

Case1 5.7918 5.8061 0.2450 0.2495 0.2574 9.65 MC 0.6969

Case2 5.6645 5.9886 0.2449 0.2477 0.1535 11.88 MC 0.5655

Case3 6.1327 5.8267 0.2394 0.2458 0.2457 12.58 MG 0.5182

Caes 4 5.6840 5.7259 0.2367 0.2411 0.2645 15.47 MC 0.0568

Case5 6.0355 6.1070 0.2378 0.2412 0.2457 15.36 MC 0.0003
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Table 7

The Identified Parameters applying EP to the Model in the Per-Unit System

(Using l = 50, MG = 1000 and Y1)

Rs R,. Lm Ls Lr ME(%) FC F

RV 0.08775 0.08805 1.10553 1.18522 1.18522

CaseI 0.08838 0.08740 1.07715 1.17810 1.12818 9.44 143 0.0152

Case 2 0.08586 0.08446 1.09301 1.17900 1.16927 9.23 158 0.0153

Case 3 0.08789 0.08450 1.16083 1.15789 1.18430 11.58 229 0.0595

Caes 4 0.08335 0.09245 1.11907 1.19046 1.12818 16.48 145 0.1161

Case5 0.08631 0.09244 1.07034 1.12811 1.12738 18.79 106 0.1566

Table 8

The Identified Parameters applying GA to the Model in the Per-Unit System

(Using l = 50, MG = 1000 and Y1)

Rs R,. Lm Ls Lr ME(%) FG F

RV 0.08775 0.08805 1.10553 1.18522 1.18522

Case 1 0.08752 0.08843 1.14278 1.16525 1.17131 6.92 855 0.8745

Case2 0.08864 0.08957 1.15838 1.21749 1.18023 10.67 738 0.8277

Case 3 0.08964 0.08672 1.05218 1.17783 1.16519 10.79 MG 0.7908

Caes 4 0.08701 0.09138 1.14430 1.18804 1.14320 11.92 MC 0.6173

Case5 0.09142 0.08582 1.13087 1.17882 1.23181 13.473 MC 0.6177
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Figure 5.1: Induction machine output with noise (]"2 = 0.2
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5.11 The Induction Machine Actual Value Model

Responses applying the Measurement Vec-

tor Yl
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Figure 5.2: Stator current start-up response with noise of case 1

5.11.1 Simulation and Response Results

The start-up performance responses compare the plant with a simulation

of an induction machine using parameters identified with either EP or GA

under different variances of measurement noise in the Kron's two-axis dynamic

mathematical model. The plant responses are generated by the Kron's two-

axis dynamic mathematical model, without measurement noise, and using the

machine's known parameters. It should be noted that the fitness, F, for EP

is better the lower it is whilst for GA its fitness is better the larger it is.
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Figure 5.3: Electric torque start-up response with noise of case 1

Tables 3 and 4 show the actual values of the identified parameters applying

the measurement vector Yi(tk) = [irs(tk) iys(tk) ibs(tk) Wr(tk)]T. As will be

noticed from the Tables, both EP and GA follow similar numerical trends with

respect to their maximum errors and fitnesses, although the convergence speed

for EP is much quicker. The reponses produced for the actual valued case with

the real parameters and the identified parameters obtained for case 1 and case

3 with the measurement vector Y1(tk) are shown in Figures 5.2-5.7 for EP and

Figures 5.8 - 5.13 for GA. What is made clear from these is that the responses

produced by the induction machine with real parameters and the GA identified

parameters show far fewer errors than those by the real parameters and the

EP identified parameters.
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Figure 5.4: Rotor speed start-up response with noise of case 1
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Figure 5.5: Stator current start-up response with noise of case 3
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Figure 5.6: Electric torque start-up response with noise of case 3
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Figure 5.7: Rotor speed start-up response with noise of case 3
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Figure 5.8: Stator current start-up response with noise of case 1
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Figure 5.9: Electric torque start-up response with noise of case 1
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Figure 5.10: Rotor speed start-up response with noise of case 1
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Figure 5.11: Stator current start-up response with noise of case 3
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Figure 5.12: Electric torque start-up response with noise of case 3
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Figure 5.13: Rotor speed start-up response with noise of case 3
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Figure 5.14: Stator current start-up response with measurement noise of case
1

5.12.1 Simulation and Response Results

Tables 5 and 6 show the actual values of the real and identified parameters

but this time applying the measurement vector Y2(tk) = [irs(tk) Wr(tk)]T. Once

again, both EP and GA show similar numerical trends with respect to their

maximum errors and fitnesses, but EP displays a quicker convergence speed.

The responses for the actual valued case with the real parameters and the

identified parameters obtained for case 1 and case 3 with the measurement

vector Y2(tk) are shown in Figures 5.14 - 5.19 for EP and Figures 5.20 - 5.25

for GA. In this comparison, the responses between the induction machine with

the real parameters and the errors produced by the identified parameters of
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Figure 5.15: Electric torque start-up response with measurement noise of case
1

both EP and GA are of a similar order of magnitude.
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Figure 5.16: Rotor speed start-up response with measurement noise of case 1
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Figure 5.17: Stator current start-up response with measurement noise of case
3
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Figure 5.19: Rotor speed start-up response with measurement noise of case 3
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Figure 5.20: Stator current start-up response with measurement noise of case
1
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Figure 5.21: Electric torque start-up response with measurement noise of case
1
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Figure 5.22: Rotor speed start-up response with Measurement noise of case 1
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Figure 5.23: Stator current start-up response with measurement noise of case
3
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Figure 5.24: Electric torque start-up response with measurement noise of case
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Figure 5.25: Rotor speed start-up response with measurement noise of case 3
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Figure 5.26: Stator current start-up response with measurement noise of case
1

5.13.1 Simulation and Response Results

Tables 7 and 8 show the values of the real and identified parameters in

the per-unit system applying the measurement vector Y1(tk) = [irs(tk) iys(tk)

ibs(tk) Wr(tk)]T. Both EP and GA show similar trends in their fitnesses for case

1 to case 5 but the maximum errors are lower for GA compared with thos s

of EP. However, the convergence speed is much quicker for EP. The responses

for the per-unit system with the real parameters and the identified parameters

obtained for case 1 and case 3 with the measurement vector Y1(tk) are shown

in Figures 5.26 - 5.31 for EP and Figures 5.32 - 5.37 for GA exclusively. The

responses produced by the induction machine with real parameters and the EP
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Figure 5.27: Electric torque start-up response with measurement noise of case
1

identified parameters show fewer errors compared with the responses produced

with the GA identified parameters.
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Figure 5.28: Rotor speed start-up response with measurement noise of case 1
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Figure 5.29: Stator current start-up response with measurement noise of cas
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Figure 5.32: Stator current start-up response with measurement noise of case
1
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Figure 5.33: Electric torque start-up response with measurement noise of case
1
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Figure 5.35: Stator current start-up response with measurement noise of case
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Figure 5.36: Electric torque start-up response with measurement noise of cas-
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Figure 5.37: Rotor speed start-up response with measurement noise of case 3
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5.14 Conclusion

In this chapter, we have applied the EP and GA to the parameter identifi-

cation problem of the induction machine's dynamic mathematical model. The

models of the actual valued and the per-unit system have both been presented,

and each models parameters have been identified with five different variances of

measurement noise level. The parameter identification process has compared

the two different measurements against the four different measurements as well

as the EP against the GA.

This research has not been an analytical and critical comparative study

between the performance of the EP and GA, rather, a practical application of

these SE stochastic processes so that their results can be judged with regard

to the parameter identification process of a simulated 3-phase induction ma-

chine. Let us look at the results obtained over the different measurement noise

variances. Clearly tabulated, both the EP and GA fitnesses follow numeri-

cal trends as expected, resulting from their individual searches in the s arch

space, and their error measures regarding the optimum identified paramet rs

are similar for actual valued parameters but are slightly better for the CA in

the per-unit system. However, the rate of convergence is far quick r for the EP

compared to the GA, and since a number of the CA responses are much mar

closer the real valued responses, one can ascertain that, for these cases, th EP

has converged not at the global optimum, but rather at a local optimum.

The measurement vector Y2 was applied and the EP and CA provided

good responses in the actual valued parameter identification process. When

the measurement vector Yl was applied, both of the SE processes resulted

in optimum identified parameters providing good general responses. What

is clearly visible from the simulation tabulated results is that increasing the

level of measurement noise variance makes the location of optimum parameter

values more difficult, a point that can be seen in the responses for the noisier
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search spaces. This clearly implies that the more noisier the data used in the

parameter identification process by the SE, a greater number of generations is

needed for the optimum parameters to be located.

None of the SE methods presented has proved totally victorious over the

other. Therefore, one is able to say that simulated evolution has provided

good results in general, resulting in high efficiency and good practicality. The

parameter identification of the induction machine's model in the actual valued

or per-unit system using either the GA or EP is a powerful and robust technique

which can be used in a real environment where there exists measurement noise

and the number of measurements is limited. The following chapter will apply

some of these principles to the parameter identification of a real induction

machine where there will exist real measurement noise, and the number of

measurements is limited, and, furthermore, the parameters of the real 3-phase

induction machine are, unlike the simulation results just presented, unknown.
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Chapter 6

Parameter Identification of a

Real Induction Machine

6.1 Introduction

In this chapter we shall attempt to find the parameters of a real 3-phas

induction machine. These parameters are the stator and rotor r sistances, th

stator and rotor inductances, the magnetising inductance, the viscous damping

coefficient and the inertia moment. These parameters are unknown. Th

technical equipment used to measure the machine variables, nam ly th 3-

phase stator currents, one stator phase voltage and the rotor shaft sp dare

described. The software used in the data acquisition is discussed as to ar th

results of the data acquisition and EP parameter identification process.
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N R Y B E
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Interface

Computer

Optical Encoder

Figure 6.1: Data Acquisition fron a 3-Phase Induction Machine in the
Laboratory
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6.2 The Transient Start-Up Data Acquisition

Method for a Balanced 3-Phase Symme-

trial Induction Machine

Figure 6.1 shows the diagram of the equipment used for the data acquisition

from the balanced 3-phase symmetrical induction machine. The machine is

started directly from the 3-phase 415 V r.m.s. mains supply, by the contact

switch, S. The machine is started by switching the contactor, S, manually for

a direct-an-line start.

The mains supply is driving a balanced 3-phase symmetrical induction ma-

chine, therefore, the neutral connection, N, is dispensed with from the contacts.

However, the neutral and red phase, R, connections are used to measure the

phase voltage from the mains, as shown in Figure 6.1, over the data acquisition

period of 4.5 seconds. The phase voltage is measured using a voltage trans-

ducer which also acts as a signal conditioner, producing peak-to-peak output

voltages of ±5.65 V to represent the real, measured peak-to-peak voltages of

±339 V.

The 3-phase currents, RYB (red, yellow, blue), are also measured over the

data acquisition period by 3 solid core Hall effect current transducers. These

also act as signal conditioners producing peak-to-peak output voltages of ±10

V to represent the real, measured peak-to-peak currents of ±40 A. The signal

conditioning effects of the transducers allows the signals to be suitable for the

analogue-to-digital converters (ADCs). These have input ranges of ±10 V and

are contained in the DSPACE data acquisition board. The sampling rate for

these transducers' output signals is 1 kHz. The ADCs have a 16-bit resolution.

The induction machine was ran under no-load conditions. Its rotor shaft

speed was measured using an optical encoder, which generated 360 pulses per

revolution. Figure 6.1 shows the leads from the current and voltage transducers
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joined to the adapter interface, from which their corresponding leads feed into

the input ports of the data acquisition card. The optical incremental encoder

provides a digital signal for the data acquisition board and, therefore, uses a

seperate channel for this purpose.

The software used with the data acquisition system was MATLAB. The

software contained a voltage data coefficient of 60 and a current data coeffi-

cient of 4 which multiplied their respective conditioned signals back to their

true values for the output data file. The resulting data file from the PC con-

tained the required measurement vector, having the two induction machine

state variables, as discussed in Chapter 5, Section 9:

{6.2.1}

where tk is the measuring time instant (1 ms), corresponding to the kth

measurement of irs, the red-phase stator current and Wr, the rotor shaft speed.

This output data file, the measurement vector, was used together with the

output data file of the two same state variables generated by the Kron's two-

axis dynamic mathematical model, over the same time instances, to form the

error function for the EP. This is part of the parameter identification process

which will be discussed in greater detail later in this Chapter.

6.3 The Rotor Shaft Speed Calculations

The rotor shaft speed is measured and calculated by use of an optical in-

cremental shaft encoder. The optical incremental shaft encoder produces 360

serial voltage pulses per shaft revolution. The serial pulse chain edge triggers

an asynchronous counter in the data acquisition card. The count value is sam-

pled from the asynchronous counter every millisecond and stored in successive

memory locations. Because the asynchronous counter count value samples,

stored in successive data memory locations, are count value summations, one
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Figure 6.2: Flowchart for the Rotor Shaft Speed Algorithm
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must subtract the previous count value, countn_l, from the current count value ,
count-; so that one is able to calculate the rotor shaft speed (Tad/sec) over this

1 millisecond time interval. This process is repeated over the data acquisition

period. The process used to achieve this is has follows. The initial rotor shaft

speed, speedi, at the first millisecond time interval is:

speed} = 27l'(countd/360 (6.3.1)

The speed, speed-, at the second millisecond interval is:

(6.3.2)

And the speed, speedn, at the nth millisecond interval is:

speed., = 27l'(countn - countn_l)/360 (6.3.3)

This process is contained in the software to produce a data file which cal-

culates the rotor shaft speed over the data acquisition period in steps of 1 ms.

The flowchart for the rotor shaft speed algorithm is shown in Figure 6.2.

6.4 The Real Induction Machine's Specifica-

tions

The real3-phase induction machine that was used in the data acquisition in-

vestigation to identify its parameters has the following specifications presented

in Table 9.
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Table 9

Specifications of the Induction Machine

Manufacturer MarelliMotori spa

Induction Machine Type MA 100 LA 4

Rated Output Power 2200W

Voltage 240/415 V

Current 8.8/5.1 A

Frequency 50 Hz

Rotor Shaft Speed 1420 rpm

Number of Poles 4

Power Factor cos <p 0.8

Rated Torque 14.8 Nm

6.5 Identification of a Real 3-Phase Induction

Machine's Parameters Applying Evolution-

ary Programming

The parameter identification process applying EP is repeated here, albeit

somewhat abridged from Chapter 5, in order to clarify the main principles in-

volved in the parameter identification during the simulation cases apply equally

well to the parameter identification processes for the real induction machine.

The induction machine parameter identification may be written as follows:

DX = f(O, X, V) (6.5.1)

where

X = the state variable vector

V = the stimulus, i.e., the input vector from the supply
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()= the parameter variable vector to be identified

D = the differential operator tt
The EP algorithm follows the same route as such:

1. An initial population of parameters, p(O) = {p~O) I i = 1,2, ... ,1}, is

formed with randomly selected individuals. Each individual parameter

vector is constrained with the followingconditions:

. .< ~(g) < .
Pmm,J - Pi,j - Pmax,J j = 1,2, ... ,m (6.5.2)

where Pmin,j and Pmax,j are the limits of the jth element of the param-

eter vector, P~g), estimated without a prior knowledge. p~~denotes the

estimation of the jth element of the ith individual in the gth generation

of the parameter. The process starts at g := O.

2. Each individual, P~g), is used to calculate the state variable X(tk) and

the general performance Y2(tk) as follows:

DX(tk) - f(p~g),X(tk)' V(tk))

Y2(tk) [irs(tk) Wr(tk)]T

[10000]C2 - o 0 0 0 1

Y2(tk) - C2X(tk)

and the error vector

(6.5.3)

(6.5.4)

(6.5.5)

(6.5.6)

(6.5.7)

where Y2(tk) stands for the measured performance vector taken from the

real induction machine, Y2(tk) the simulated vector generated by the

Kron's two-axis dynamic mathematical model and E the expectation

operator. Then we get the error function of P~g) :

TN
h(p~g)) = L E(p~g), tkf AE(p~g) I tk)

tk=O

(6.5.8)
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where A is a unit matrix, tk is the discrete computing time which is the

same as the measurement sampling time. This leads to the fitness of P~g),

where the Fitness is a function of h(p~g)). The aim of the evolutionary

programming, therefore, is to minimize the error function or to minimize

the fitness.

3. A Gaussian random variable, with zero mean and its variance propor-

tional to the fitness of p~m) scaled by {3j, is added to each element of P~g) ,

i = 1,2, ... ,l, to produce new individuals P~~l.{3 is a factor in association

with the jth identified parameter in the parameter vector. PWI has to

satisfy the conditions laid down by expression (6.5.2).

4. The new individuals, PWI' where i+l = l+ 1, ... ,2l, are used to calculate

the general performance index as their predecessors to get their fitness,

h(P~~I).

5. Each individual, P~g), where i E {1, ... , 2l}, competes with some others

according to the competition rule. A rank of competition is set up.

6. A new generation, p(g+1), with the same individual number of p(g), is

formed based on the first I ranked P~g), i E {1, 2, ... , 2l}.

7. The process will stop if 9 = MG, where MG is a big integer representing

the maximum generation number, which has been initially set. If this

criterion is not satisfied, 9 := g+ 1, and the process is repeated from step

2.

MACHINE LEARNING FOR SYSTEM IDENTIFICATION w.P. Kent



6.6 Implementation of EP for the Parameter Identification of a Real

Induction Machine 125

6.6 Implementation of EP for the Parameter

Identification of a Real Induction Machine

6.6.1 The Initial Stator Current and Voltage Phase An-

gle Determination

As described in the previous Section, the EP is used for the parameter

identification of a real induction machine, and we described the error vector as

(6.6.1)

and, has stated, Y2(tk) is the measured performance vector taken from the real

induction machine, and Y2(tk) is the simulated vector generated by the Kron's

two-axis dynamic mathematical model. The Kron's two-axis dynamic mathe-

matical model, used in this research, operates on the assumption that on the

instance the machine is switched on, tk = 0, the red-phase stator voltage, a

cosine function used in this research, is at its maximum value and the corre-

sponding initial red-phase current will be zero. However,due to the direct-on-

line start to the main's supply by the induction machine, the red-phase stator

voltage was not at its maximum cosine value when the machine was switched

on and the red-phase stator current was zero. The angle between the point

where the machine was switched on, at tk = 0, when the red-phase stator cur-

rent was zero, to the point where the corresponding red-phase stator voltage,

Vrs = V2V1 cos(w1t), was at its cosine maximum value, Vrs = V2V1, is defined
as the point on wave switching angle. This angle was determined so that it

could be accounted for in the induction machine's state equations of the Kron

two-axis dynamic mathematical model has described in Chapter 5, Section 2

and are as follows
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Dids -

Diqs =
,

Didr =
,

Diqr =
DWr =

where

~(-RsL~ids + L;iqswr + LmR~i~r + LmL~i~rwr) + ~L~VdB (6.6.2)

( £2 . R £' . t. £',1 L R',I ) , (~ - m~dsWr - s r~qs - m r~drWr+ m r~qr + ~Lrvqs 6.6.3)

CT(RsLmids - LsLmiqswr - LsR~i~r + LsL~i~rwr) - CTLmVds(6.6.4)

CT(LsLmidsWr + RsLmiqs + LsL~i~rwr - LsR~i~r) - ~Lmvqs (6.6.5)
Q .. '. ,I BWrjJ [QLm( -~ds~qr + tqs'/,dr)+ T; - Q (6.6.6)

1
~ - ----:0-

- LsLr - L~
(6.6.7)

The point on wave switching angle was calculated from the data collected

from the data acquisition system used with the induction machine, by direct-

on-line starting the machine over the data acquisition period of 4.5 seconds.

400

~ 300 --- -/ <,
CD 200Cl / -, I-Voltagel.s
(5 100 / -. />
CD 0 -, /II)

Jg -100
a.. -, /5 -200 <; /-ttlen -300

-400
0.670 0.673 0.676 0.679 0.682 0.685 0.688

Time (sees)

Figure 6.3: Stator phase voltage response from the real induction machine

The transient portions of the data for the red-phase stator voltage and

current responses are shown in Figure 6.3 and Figure 6.4 respectively. These

responses show the point on wave switching angle as 1.88496 radians. When

the point on wave switching angle is zero, the 3-phase voltage equations for
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Figure 6.4: Stator current response from the real induction machine

use in the Kron's two-axis dynamic mathematical model are described as

Vrs - V2Vi COS(WIt) (6.6.8)

Vys
V2 27l' (6.6.9)2ViCOS(Wlt - 3)

Vbs
V2 47l' (6.6.10)- 2ViCOS(Wlt - 3)

where Vi is the r.m.s. stator supply voltage and WI is the angular frequency of

the supply. Hence, taking the point on wave switching angle into account, the

3-phase voltage equations become

u-, - V2Vi COS(Wlt + 1.88496)

Vys - V2VICOS(Wlt - 0.20944)

Vbs - V2V1 cos(w1t - 2.30383)

(6.6.11)

(6.6.12)

(6.6.13)

By applying the reference frame voltage transformation, as used in Chapter

3, Section 2, we transform the voltage equations into the dq model required by
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the Kron's two-axis dynamic mathematical model leading to the following

Vds cos(O) cos(_~7r) cos(_ 4;)
2

Vqs - - sin(O) sin( _ 2;) sin(-~)3
vOs

1 1 12 2 2

2
~ sin(wlt + 0.3142)

- 3V2Vi ~ sin(wlt - 1.2566)

0

Vys (6.6.14)

(6.6.15)

6.6.2 Simulation Results

Has described in Section 6.5, the focus of the identification of a real 3-

phase induction machine's parameters applying EP is achieved by minimizing

the error vector

(6.6.16)

where Y2(tk) stands for the measured performance vector taken from the real

induction machine, 'Y2(tk) the simulated vector generated by the Kron's two-

axis dynamic mathematical model and E the expectation operator. Tables 10,

11 and 12 show three of the many different parameter ranges researched for the

induction machine parameter identification process, applying the EP over 1000

generations. The parameters to be identified are unknown but, as described in

Chapters 2 and 3 are RB, the stator resistance, Hr, the rotor resistance, Ls, the

stator inductance, Lr, the rotor inductance, Lm, the magnetizing inductance,

J, the moment of inertia and B, the damping coefficient.

Table 10 shows the parameter ranges coupled with their associated 'identi-

fied' parameters located from the EP after 1000generations. The stator current

response and rotor speed response compare the plant, namely the responses

generated by the real induction machine, with the EP 'identified' parameter

responses. These latter responses result from the 'identified' parameters, shown

in Table 10, being substituted into the Kron's two-axis dynamic mathematical
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model. The comparison of these responses are shown in Figure 6.5 and Fig-

ure 6.6. Clearly, the 'identified' parameters' responses are far from the true

responses of the real induction machine.

Table 11 shows a different parameter range coupled with their associated

corresponding 'identified' parameters. In particular, the 'identified' induc-

tances, moment of inertia and damping coefficient differ from those shown

'identified' in Table 10. Figure 6.7 and Figure 6.8, once again compare the

real stator current and rotor speed responses with those produced by the EP

'identified' parameters, shown in Table 11. Comparison of the true and 'iden-

tified' parameter responses clearly indicates that parameter identification has

not occurred.

Table 12 shows a much wider ranges of parameters compared with thoses

shown in the previous two tables. However, in this case, no parameters were

'identified' by the EP over the 1000generations.

Tables 10 and 11 show the 'identified' parameters identified by the EP.

However, their corresponding responses clearly show that these are not the

truly identified parameters. The optimization tool, deployed by the EP, has

located these parameters by way of it converging to a local optimal plateau.

The major contributing factor explaining why the EP was not able to iden-

tify the real induction machine parameters is coupled to the optimization of

the test results, from the real induction machine, with the data generated from

Kron's two-axis dynamic mathematical model. This will be discussed in greater

depth in the followingsection.
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Figure 6.5: Stator current start-up response
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Figure 6.6: Rotor speed start-up response
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Figure 6.7: Stator current start-up response
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Figure 6.8: Rotor speed start-up response
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Table 10

The Parameter Ranges for the EP Search Process showing the 'Identified' Parameters

after 1000 Generations

Parameter Lowest value Highest value 'Identified' parameter

Rs{D) 1.655 4.965 4.648

Rr{D) 1.655 4.965 1.655

Lm{H) 0.001 1.000 0.001

Ls{H) 0.0001 1.000 0.9798

Lr{H) 0.0001 1.000 0.9342

J 0.0146 0.0438 0.0408

B 0.0004 0.0012 0.00064

Table 11

The Parameter Ranges for the EP Search Process showing the 'Identified' Parameters

after 1000 Generations

Parameter Lowest value Highest value 'Identified' parameter

Rs(D) 1.655 4.965 4.879

Rr{O) 1.655 4.965 1.655

Lm{H) 0.001 0.900 0.900

Ls(H) 0.0001 0.090 0.009

Lr{H) 0.0001 0.090 0.007

J 0.0146 0.0438 0.0438

B 0.0004 0.0012 0.0012
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Table 12

The Parameter Ranges for the EP Search Process

showing no 'Identified' Parameters after 1000 Generations

Parameter Lowest value Highest value

Rs(n) 0.010 5.000

Rr(n) 0.010 5.000

Lm{H) 0.001 10.000

Ls(H) 0.001 10.000

Lr(H) 0.001 10.000

J 0.0146 0.0438

B 0.00001 0.01000

6.7 Limitations of the Balanced, Symmetrical

3-Phase Induction Machine Mathematical

Model

6.7.1 The Kron's Two-Axis Dynamic Mathematical Model

The Kron's two-axis dynamic mathematical model, used throughout this

research, models a balanced symmetrical 3-phase induction machine, as dis-

cussed in Chapter 2, with the following assumptions:
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1. Uniform air gap,

2. linear magnetic circuit,

3. identical stator windings, distributed so as to produce a sinusoidal M M F

wave in space with the phases and arranged so that only one rotating

M M F wave is established by balanced stator currents,

4. rotor bars are arranged so that, for any fixed time, the rotor M M F wave

can be considered to be a space sinusoidal wave having the same number

of poles as the stator M M F wave.

The symmetrical machine is an idealised machine and some important fac-

tors which effect the performance, and therefore the generated responses, of

the actual real induction machine but have been neglected in the symmetrical

machine. These are:

1. Nonlinear magnetic circuit,

2. changes in resistance and inductance due to temperature and frequency

changes,

3. harmonic content of the M M F wave.

These latter three neglected factors have consequential affects on the re-

sponses produced by the symmetrical induction machine, and since this re-

sponse data together with the response data generated by the real induction

machine, are used in the objective function, which we have defined as the er-

ror vector in Section 6.6, for the parameter identification problem of the real

induction machine. These factors will now be discussed in more detail.
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6.7.2 The Nonlinear Magnetic Circuit

Saturable Inductances

In the Kron's two-axis dynamic mathematical model, deploying the dq ref-

erence frame, Ls, L~and Lm are assumed to be constant. This can be assumed

during the steady-state operating conditions of the machine. However, during

transient operations in the induction machine, the large reactive currents in

the stator windings produce high leakage fluxes and, hence, local saturation

of the teeth in the magnetic circuit. This, in turn, leads to the saturation

of the leakage and magnetizing inductances. During transient operation, the

saturation levels within the induction machine are also changing with time.

Saturation of the induction machine's magnetic circuit influences:

1. The magnetic permiability of the iron parts ( reduction),

2. the magnitude of the starting currents,

3. the duration of the starting period,

4. the thermal capacity of the machine,

5. the winding insulation,

6. the pulsating torque,

7. the starting current on the power system.

Since the error vector, which is an intricate component of the error function,

used by the EP for the parameter identification of a real induction machine,

as described in Section 6.6, is

(6.7.1)

where Y2(tk) is the measured performance vector taken from the real induction

machine during the machine start transient period where the real magnetic
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circuit saturates, and Y2(tk) is the simulated vector generated by the Kron's

two-axis dynamic mathematical model, which assumes the induction machine

operates using a linear magnetic circuit, even during transient operating con-

ditions. As a result, the responses generated by Y2(tk) and Y2(tk) will not be

the same.

The induction machine's inductances, L, and L~, as descibed in Chapter 2,

Section 10, are the sum of the leakage and magnetizing inductances:

Ls - Lis +Lm

L~ - L~ + Lm

(6.7.2)

(6.7.3)

However, to take into account the inductance saturation effects, L, and L~

can be described as [12]:

L, - (Lisa + LIsi) + Lm

L~ - (L;ra + L;ri) + Lm

(6.7.4)

(6.7.5)

where Lisa and L;ra are the air-dependent end-winding leakage inductances, and

the terms Lisi and L~ri correspond to the sum of the iron-dependent saturated

leakage inductances [117]. For the saturated magnetic circuit case, inductances

Lm, LIsa and L;ra are nonlinear and vary with excitation current.

Hysteresis and Eddy Current Effects

Further nonlinear magnetic circuit effects which are neglected in the Kron's

two-axis dynamic mathematical model, although of relatively small effects, are

hysteresis and eddy current effects. Hysteresis loss is due to the heating of the

core as a result of the internal molecular structure reversals which occur 8..'1

the magnetic flux alternates. Eddy current loss is heating of the core due to
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the e.m.f. 's being induced in the core that generate circulating currents. We

shall now discuss other effects not incorporated in the Kron's two-axis dynamic

mathematical model.

6.7.3 Skin Effect

The current density induced in the rotor bars changes with rotor current

frequency. Consequently, rotor bar resistance and reactance can change by as

much as a factor of 4 or more with rotor speed [118].

6.7.4 Temperature Effect

The resistances of the current carrying conductors of the stator and rotor

of the induction machine change with temperature [118].

6.7.5 Harmonic Content of the M.M.F. Wave

The complex form of the magnetomotive force (M.M.F.) wave is caused

by the harmonic effects due to 'tooth ripple', which results from the effects of

the slots in the stator which accommodate the windings, and the non-linearity

of the hysteresis loop, namely the relationship between the flux density and

magnetic field strength.

6.7.6 Friction and Windage Power Losses

In Chapter 2, Section 5, we stated how Newton's second law yields the

equation of motion for the 3-phase induction machine as:

J dJ..vr _ -T. T. _ BWr
Q dt - e + r Q (6.7.6)

However, this equation does not take into account the friction and windage

losses which are the mechanical and aerodynamic losses associated with the

rotation of the rotor.
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6.8 Discussion

In Chapter 4, Section 2, we discussed the processes involved in optimization.

Optimization has been applied to the parameter identification of a 3-phase

induction machine throughout this research. The principle function used in the

optimization process is the objective function. In Chapter 5, Section 3, Table

1 stated the induction machine's parameters that were used in the simulation

over the transient start-up period. These parameters remain constant in the

Kron's two-axis dynamic mathematical model throughout each time instance

of the simulation run. Also, in Chapter 5, Sections 4 and 6, we defined the

objective function as an error function which is itself a function of the following

error vector:

(6.8.1)

The state variables used for the parameter identification of a real induc-

tion machine are the direct axis stator current, ids (which coincides with the

red-phase current, irs, as described in Chapter 3, Section 2), and the rotor

speed, Wr. The parameters of the real induction machine are not constant over

the transient start-up period and are unknown. Chapter 5, Section 9, states

that the measurement performance vector, using data from the real 3-phase

induction machine is:

(6.8.2)

and the calculated performance vector, using simulated data generated by the

Kron's two-axis dynamic mathematical model is:

(6.8.3)

However, we have observed in this Chapter, Section 8.1, that the Kron's

two-axis dq dynamic mathematical model does not include the following fac-

tors:
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1. Nonlinear magnetic circuit,

2. changes in resistance due to temperature and frequency changes,

3. harmonic content of the M M F wave.

Therefore, the data and responses generated by the state variables of the

Kron's two-axis dynamic mathematical model, Y2(tk), reflect the omission of

these factors. However, the data and responses generated by the state variables

of the real 3-phase induction machine, Y2(tk), include these factors. As a net

result, the start-up transient responses, Y2(tk) and Y2(tk), although appear

visually similar, do in fact differ.

The parameter identification problem undertaken by the EP evolves as it

searches for the electrical parameters and mechanical coefficients so that the

state variables of Y2(tk) tend towards the numerical values of Y2(tk). Hence,

the error vector should get numerically smaller as the search progresses from

generation to generation. This driving objective can be visualised in the error

vector:

(6.8.4)

However, the calculated performance vector, Y2(tk), generated by the Kron's

two-axis dq dynamic mathematical model contains electrical parameters which

remain constant over the 3-phase induction machine's transient start-up pe-

riod, whereas the measurement performance vector, Y2(tk), generated by the

real 3-phase induction machine results from varying electrical parameters and,

in particular, saturated inductances which are nonlinear, and vary with ex-

citation current and time during the induction machine's transient start-up

period.

Therefore, since the parameter identification process in this research takes

place over the transient start-up period, the error vector, E(p~g), tk), is not
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a true or valid representation of the optimization process in this case. This

is because the Kron's two-axis dq dynamic mathematical model is not a true

numerical representation of the real 3-phase induction machine over the tran-

sient start-up period which is due to the mathematical model not including the

factors mentioned above.

As a consequence of the absense of the afore mentioned factors from the

Kron's two-axis dq dynamic mathematical model, identification of the 3-phase

induction machine's parameters by the EP was not possible over the induction

machine's transient start-up period. This, therefore, vindicates the results

obtained in this research and presented in Section 7.2 of this Chapter.
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Chapter 7

Discussion and Conclusions

7.1 Introduction

This thesis has detailed the development, implementation and testing of the

application of SE to the parameter identification process of a 3-phase induction

machine. This chapter presents the conclusions drawn from the research work

and results.

7.2 Research Synopsis

In this present work, the voltage equations of a balanced, symmetrical 3-

phase induction machine have been used to provide the essential mathematical

model for this research. Account was taken of the induction machine's induc-

tances and resistances. This brought to light the complexity of the voltage

equations due to the time-varying mutual inductances between the stator and

rotor circuits, since the circuits are in relative motion. A transformation of

machine variables (voltage, current and flux linkages) was applied to the volt-

age equations to eliminate the time-varying inductances. This transformation

has transformed the mathematical model to a two-axis model, the dq axes. To
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use the transformed voltage equations for the simulation and analysis required

by this work, the arbitrary electrical angular speed was equated to zero in the

transformed voltage equations. The direct axis, d, is chosen to coincide with

the stator red phase axis, TS. The transformed voltage equations were ma-

nipulated so the the dq currents became the state variables. The transformed

current equations, together with the induction machine's equation of motion,

formed the induction machine's differential equations that were the bedrock

throughout this research work.

The principle of optimization is for it to improve performance towards some

optimal point or points. The optimization problem may be formulated from

an objective function, ~, of n system parameters, Xl, X2, ••. , Xn, of the real

system response, Atk, locate the set of parameter values, xi, x;, ... ,x~, of the
simulated mathematical model system response, Astk, over the same time in-

stances, which minimizes the objective function, ~(XI. X2, ... ,xn). Therefore,

xi, x2, ... ,x~ are the identified parameters, since the objective function, ~, has

located its optimum value. The traditional optimization methods are calculus-

based, enumerative and random searches. Calculus-based methods are local

in scope and naturally rely on function derivatives. Calculus-based methods

have restrictions placed on them when the data may cover a large search space

and may also be fraught with a multitude of noises. Enumerative schemes

lack efficiency since real search spaces are generally very large and require

a correspondingly large amount of time to search and cover in order to find

the optimum solution. Random search algorithms lack efficiency due to their

stochastic random approach to orientation in the search space during the pa-

rameter identification problem.

SE provides an approach to optimization methods that avoid the afore men-

tioned difficulties, and is based upon the process of natural evolution that is

derived from the collective arguments known as the neo-Darwinian paradigm.

It differs from conventional optimization techniques in that it involves direct
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manipulation of a coding, it is a population-wide search rather than a point

search, and the search is through sampling and using stochastic operators as

opposed to deterministic rules. SE is based upon generating successive popu-

lations of the feasible solutions in a stochastic manner following laws similar to

those of natural selection. Each of the initial solutions is scored with respect

to an objective function. Parents generate offsprings whereby the best subset

of the solutions are retained to serve as parents for successive generations. The

population iteratively adapts its behaviour in light of the given goal. Two

paradigms of SE have been applied in this research: GA and EP.

7.3 Effectiveness of Simulated Evolution

7.3.1 Parameter Identification of a Simulated 3-Phase

Induction Machine

The electrical parameters of a simulated 3-phase induction machine have

been identified by the SE for 5 different cases of measurement noise. The

electrical parameters were identified over the series sampling measurements,

namely the no-load transient start-up period by a direct-an-line start. Two

paradigms of SE were used in the research work, namely EP and CA and

both were subject to simulations with two different measurement vectors. The

parameter identification process was repeated for simulations on the actual

variable values and the per-unit system variable values. Both the 'real' system

responses and the simulated system responses, both utilized in the objective

function of the optimization process, were generated by the Kron's two-axis

dynamic mathematical model. Therefore, both the 'real' and simulated system

responses were produced under the assumptions that the symmetrical 3-phase

induction machine had linear magnetic circuits, its resistances did not change

due to temperature and frequency changes, and there were no harmonic content
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in the M.M.F. wave. Indeed, the induction machine parameters were constant

over all ranges of slip.

7.3.2 Parameter Identification of a Real 3-Phase Induc-

tion Machine

The electrical parameters and mechanical coefficients of a real induction

machine have not been identified. The state variables were measured from the

real 3-phase induction machine over the series sample measurements, namely

the no-load transient start-up period by a direct-on-line start. These state

variables formed the real system responses in the objective function of the

optimization process. Furthermore, the real system responses, generated by

the real 3-phase induction machine, were generated over the transient start-

up period, resulting in a wide spread of slip and, hence, when the machine

has a nonlinear magnetic circuit, and changes in resistance values due to tem-

perature and frequency changes, as well as harmonic content in the M.M.F.

wave. Thus, the electrical parameters' values, of the real 3-phase induction

machine, change over the transient start-up period, where the range of slip

is at its widest, and they will only settle into constant values during steady-

state machine operation. The simulated system responses were formed by the

Kron's two-axis dynamic mathematical model. The factors neglected by the

Kron's model are the nonlinear magnetic circuit, changes in resistances due

to temperature and frequency changes and harmonic content of the M.M.F.

wave. Therefore, the electrical parameters of the simulated 3-phase induction

machine remained constant over the transient start-up period.

The parameter identification of a real 3-phase induction machine utilized

the objective function which was the squared difference between the real and

simulated system responses. Because of the resulting differences between the

real and simulated system responses, due to variable induction machine param-
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eters from the real system responses and constant induction machine param-

eters from the simulated system responses, over such a range of slip, the EP

was unable to identify the real 3-phase induction machine's parameters over

the transient start-up period.

7.4 Conclusions

The steady-state electrical parameters of a symmetrical 3-phase induction

machine have been identified by the SE over the no-load transient start-up pe-

riod by a direct-an-line start. This was achieved by virtue of both the real and

simulated system responses being generated by the Kron's two-axis dynamic

mathematical model, where the nonlinear magnetic circuit, changes in resis-

tances due to temperature and frequency changes, and harmonic content in

the M.M.F. wave are neglected. Therefore, the induction machine parameters

are constant over the entire range of slip.

The induction machine parameters and mechanical coefficients of a real

3-phase induction machine have not been identified by the EP over the no-

load transient start-up period by a direct-an-line start. This was because the

real system responses were generated by the real 3-phase induction machine

where the electrical parameters vary over the entire range of slip. However,

the simulated system responses were generated by the Kron's model, where the

induction machine's parameters are constant over the whole range of slip. The

process of the EP selecting constant induction machine parameter values, for

the entire start-up period simulation, for the criterion of reducing the objective

function to its lowest numerical value, when the electrical parameters for the

real 3-phase induction machine change for different slip values, provided the

optimization process with an insurmountable obstacle.
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Appendix A

The Fundamental Processes of

Simple GA

This Appendix shows the mechanisms involved in simple GA via a simu-

lation by hand. Let us consider maximizing the function f (x) = x2, where x

varies from 0 to 31. We will firstly code the variable x as a binary unsigned in-

teger of string length 5. This binary digit coding yields integer values between

00000(0) and 11111(31).

Selection of a population is obtained by tossing a fair coin 20 times. Where

a Head represents a 1 and a tail a O. Looking at this population, shown on the

left-hand side of Table AI, we see that the decoded values of x are presented

along with the fitness or objective function f(x).

A generation of the simple GA begins with selection. We select the mating

pool of the next generation by spinning the weighted roulette wheel four times.

The number of slots in the circumference of the roulette wheel are allocated

to each string as a proportion of their fitnesses. This has resulted in string 1

and string 4 receiving one copy in the mating pool, string 2 receiving 2 copies,

and string 3 receiving none, as shown on the far right of Table AI. This has

resulted in the best getting more copies, the average staying even and the worst
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dying off.

Simple crossover proceeds in two steps: (1) strings are mated randomly,

using coin tosses to pair off the strings, and (2) mated string couples cross

over, using coin tosses to select the crossing sites. Referring to Table A2, one

can see the second string has been selected to be mated with the first. With

a crossing site of 4, the two strings 01101 and 11000 cross and yield two new

strings 01100 and 11001. The same procedure also happens to string 3 and 4

as shown in Table A2.

The last operator, mutation, is performed on a bit-by-bit basis. We assume

that the probability of mutation in this test is 0.001. With 20 transferred bit

positions we should expect 20 x 0.001 = 0.02 bits to undergo mutation during

a given generation. Simulation of this process indicates that no bits undergo

mutation for this probability value. As a result, no bit positions are changed

from 0 to 1 or vice versa during this generation.

Following selection, crossover and mutation, the new population is ready

to be tested. The new strings created by the simple GA are decoded and the

fitness values are calculated. The results of a single generation of the simulation

are shown at the right of Table A2. We can see how the stochastic process of

simple GA combine high performance notions to achieve better performance. In

the table, note how both the maximal and average performance have improved

in the new population. The population average fitness has improved from 293

to 439 in one generation. The maximum fitness has increased from 576 to

729 during that same period. The best string of the first generation (11000)

receives two copies because of its high, above-average performance. When this

combines at random with the next highest string (10011) and is crossed at

location 2 (again at random), one of the resulting strings (11011) proves to be

a very good string.
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Table Al A Simple CA by Hand

Actual

Initial Expected Count

Population x Value pselect, count (from

String (randomly (unsigned f(x) fJ iJ. roulettef

No generated) integer) x2 wheel)

1 o 1 101 13 169 0.14 0.58 1

2 11000 24 576 0.49 1.97 2

3 01000 8 64 0.06 0.22 0

4 100 11 19 361 0.31 1.23 1

Sum 1170 1.00 4.00 4.0

Average 293 0.25 1.00 1.0

Max 576 0.49 1.97 2.0

Table A2 A Simple CA by Hand

Mating Pool after Mate Crossover Site

Reproduction (randomly (randomly New x f(x)
(cross site shown) selected) selected) Population Value x2

011011 2 4 o 1 100 12 144

110010 1 4 1 100 1 25 625

111000 4 2 1 101 1 27 729

101011 3 2 10000 16 256

Sum 1754

Average 439

Max 729
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Appendix B

Glossary

Behaviour: The response of an organism to the present stimulus and its

present state. It is the total sum of behaviours of an organism that

define the fitness of the organism to its present environment; thus it is

the operative function against which selection operates.

Chromatids: The two identical parts of a duplicated chromosome.

Chromosome: Rod-shaped bodies in the nucleus of eukaryotic cells, most

visible particularly during cell division, which contains the hereditary

units or genes.

Competition: To strive against others in order to win and survive.

Crossing-over: The exchange of corresponding segments of genetic material

between chromatids of homologues found in gametes.

Diploid: Twice the number of chromosomes found in gametes.

DNA: Deoxyribonucleic acid.

Ethology: The study of pattern of animal behaviour.
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Eukaryotic Cell: Cell with a membrane-enclosed nucleus and organelles found

in animals, fungi, plants and protists.

Fitness: A summation of the quality of environmental prediction by an or-

ganism throughout its range of regimes. The probability of or propensity

for survival of an individual of population.

Gamete: A reproductive cell that joins with another in fertilization to form

a zygote, most often an egg or sperm.

Genome: The total genetic constitution of an organism.

Genotype: The sum of inherited characters maintained within the entire re-

producing population. Often also used to refer to the genetic constitution

underlying a single trait or set of traits.

Haploid: The number of chromosomes.

Homologues: Duplicated chromosomes that look alike and have genes affect-

ing the same traits.

Meiosis: Type of cell division that occurs during the population of gametes,

by means of which the daughter cells receive the haploid number of chro-

mosomes.

Morphology: Form and its development.

Mutation: Change of an existing gene to a new gene by altered DNA coding.

Nucleus: A large organelle containing the chromosomes and acting as a con-

trol centre for the cell.

Phenotype: The behavioural expression of the genotype in a specific envi-

ronment. The functional expression of a trait.
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Physiology: Science which deals with functions and life processes of plants,

animals and human beings.

Pleiotropy: The capacity of a gene to affect a number of different phenotypic

characteristics.

Polygeny: The circumstance where a single phenotypic trait is affected by

multiple genes.

Polyploidy: Multiple sets of the number of chromosomes in germ cells (23)

beyond the normal (46) for tissues other than germ cells, e.g., triploid

= 69.

Reproduction: Process of multiplication of living individuals or units whereby

the species is perpetuated, either sexual or asexual.

Somatic: Cells of the body other than germ cells.

Zygote: Fertilized egg that is always diploid.
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Lists of Symbolic Notation

C.l The 3-Phase Induction Machine and Math-

ematical Model Symbols

B damping coefficient

D the differential operator :t
f supply frequency (Hz)

~rr peak red-phase rotor current (A)

~yr peak yellow-phase rotor current (A)

ilrr peak blue-phase rotor current (A)

Zrs peak red-phase stator current (A)

'lys peak yellow-phase stator current (A)

Zbs peak blue-phase stator current (A)

i~r peak d-axis rotor current referred to the stator (A)

i~r peak q-axis rotor current referred to the stator (A)

l ds peak d-axis stator current (A)

Zqs peak q-axis stator current (A)

Ib per-unit current base value
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J moment of inertia

K, stator transformation matrix to the arbitrary reference frame

K;l inverse stator transformation matrix to the 3-phase variables

K, rotor transformation matrix to the arbitrary reference frame

K;:-l inverse rotor transformation matrix to the 3-phase variables

Lrsrs red-phase stator self inductance (H)

Lysys yellow-phase stator self inductance (H)

Lbsbs blue-phase stator self inductance (H)

Lms stator magnetizing inductance (H)

Lis stator leakage inductance (H)

Lrsys stator-to-stator mutual inductance (H)

Lrsbs stator-to-stator mutual inductance (H)

Lysrs stator-to-stator mutual inductance (H)

Lysbs stator-to-stator mutual inductance (H)

Lbsrs stator-to-stator mutual inductance (H)

Lbsys stator-to-stator mutual inductance (H)

Lrrrr red-phase rotor self inductance (H)

Lyryr yellow-phase rotor self inductance (H)

Lbrbr blue-phase rotor self inductance (H)

Lmr rotor magnetizing inductance (H)

Li; rotor leakage inductance (H)

L;r rotor leakage inductance referred to the stator (H)

Lrryr rotor-to-rotor self inductance (H)

Lrrbr rotor-to-rotor self inductance (H)

Lyrbr rotor-to-rotor self inductance (H)

Lyrrr rotor-to-rotor self inductance (H)

LbrTT rotor-to-rotor self inductance (H)

LbrYT rotor-to-rotor self inductance (H)
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Lsr amplitude of the mutual inductances between the stator and rotor windings (H)

L, stator inductance (H)

L~ rotor inductance referred to the stator (H)

t.; magnetising inductance (H)

Lb per-unit base inductance

N; rotor windings

N; stator windings

Pout output power (W)

Pb per-unit base power

Q number of pole pairs

R; rotor resistance per phase (n)

R~ rotor resistance per phase referred to the stator (n)

R, stator resistance per phase (n)

Rb per-unit base resistance

s fractional slip

T; instantaneous electrical torque (Nm)

t: rated torque (Nm)

n per-unit base torque

Vrs peak red-phase stator voltage (V)

Vys peak yellow-phase stator voltage (V)

Vbs peak blue-phase stator voltage (V)

v-, peak red-phase rotor voltage (V)

Vyr peak yellow-phase rotor voltage (V)

Vbr peak blue-phase rotor voltage (V)

Vds peak d-axis stator voltage (V)

Vqs peak q-axis stator voltage (V)

v~r peak d-axis rotor voltage referred to the stator (V)

v~r peak q-axis rotor voltage referred to the stator (V)

Vb per-unit base voltage
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C.l.I Greek Letters

Wb per-unit base angular velocity

W angular velocity of the arbitrary reference frame (rad/sec)

WI supply voltage angular velocity (rad/sec)

Wr rotor angular velocity (rad/sec)

Ws stator angular velocity (rad/sec)

Br angular phase displacement between the stator and rotor red phase (rad)

() angular displacement between the stator d-axis and red phase

Ars peak red-phase stator flux linkage

Ays peak yellow-phase stator flux linkage

Abs peak blue-phase stator flux linkage

Arr peak red-phase rotor flux linkage

Ayr peak yellow-phase rotor flux linkage

Abr peak blue-phase rotor flux linkage

A~r peak d-axis rotor flux linkages referred to the stator

A~r peak q-axis rotor flux linkages referred to the stator

Ads peak d-axis stator flux linkages

Aqs peak q-axis stator flux linkages
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C.2 Optimization, Simulated Evolution and Stochas-

tic Operator Symbols

A a set of all absorbing states

C coefficientmatrix

E expectation operator

f fitness of a string

1* globally optimum value

h error function

la a x a identity matrix describing its absorbing state

It txt identity matrix

k number of transitions

m population of bits

n number of bits in a string

P transition matrix

P;.j probability of transitioning from state i to state j in one step

p parameter variable matrix

Q txt transition submatrix describing transitions to transient states

and not absorbing states

R t x a transition submatrix describing transitions to an absorbing state

T set of all transient states

V input vector from the supply

X state variable vector

Y measured performance vector

Y simulated performance vector

C.2.1 Greek Letters

<P objective function

~ state vector
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