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Abstract

This thesis examines the use of an infinite series of 

orthogonal polynomials to represent the concentration field of a 

finite quantity of material dispersing in a turbulent flow. The 

polynomials concerned are generalised, three dimensional Hermite 

polynomials. The series is used to represent the instantaneous 

distribution of concentration of material and several of its ensemble 

mean properties.

Chapter 1 reviews the complete probabilistic description of 

the distribution,of a finite quantity of material dispersing in a 

turbulent flow. The complexity of the description and the resulting 

problems associated with investigating the development of the 

distribution in space and time are highlighted. The chapter 

concludes with an explanation of the purpose and aims of the thesis.

Chapter 2 outlines some of the previous uses of Hermite series 

representations. Using a framework of relative diffusion, the 

generalised Hermite series to be investigated is introduced. An 

explanation is given of how the series can be used to represent the 

distribution of concentration and several of its ensemble mean 

properties for an arbitrary flow field and initial distribution of 

material.

Chapters 3 and 4 develop the use of Hermite series 

representations in frameworks of relative and absolute diffusion, 

respectively, for particular models of dispersion. Chapter 3 

applies a three dimensional series to dispersion in a uniform strain 

velocity field. All possible orientations of the principal strain 

axes are assumed equiprobable so that the flow is isotropic. A 

Hermite series is used to represent (a) the instantaneous



(ii)

concentration field, and (b) the ensemble mean concentration. The 

effect on the coefficients of the series of the molecular 

diffusivity, the initial distribution of material and the rate of 

strain tensor is examined. The effect of particular choices for the 

arbitrary tensor of each series is also investigated.

Chapter 4 is concerned with a particular model of dispersion 

in the atmospheric surface layer. Working in a framework of 

absolute diffusion, a one dimensional Hermite series - analogous to 

that investigated in chapters 2 and 3 - is used to represent the 

crosswind integrated mean concentration of material released from an 

instantaneous point source. The analysis focusses on the use of the 

first few terms of the series to approximate the expected deviations 

from the Gaussian of the horizontal downwind distribution of mean 

concentration. Various choices for the arbitrary functions of the 

series are investigated. A numerical scheme is applied to calculate 

higher order coefficients, and hence terms, of the series. The 

results of the scheme are validated by comparing (a) various 

numerically calculated measures of quantity, location and spread of 

material, and (b) the numerically calculated lower order 

approximations to the horizontal distribution of material, with the 

corresponding exact results. The numerical results are used to 

establish the development with height and time of the skewness and 

kurtosis of the horizontal downwind distribution of material.
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CHAPTER ONE

The Mathematical Description of Turbulent Diffusion

1.1 Introduction

Most flows are turbulent, the flow of the oceans, of blood In

the human body and of the atmosphere are all turbulent. Therefore

the study of turbulent diffusion is vital to many important practical 

problems. For example, when a cloud of toxic contaminant is 

released into the atmosphere, depending on the nature of the 

contaminant and of its effects, interest may lie in

(a) the likelihood of a known lethal concentration or dosage

being exceeded

(b) the concentration of contaminant at any location (usually 

ground level) averaged over a given period of time

(c) the rate at which the contaminant is removed from the 

atmosphere by, for example, chemical conversion or 

deposition.

Consider the following, a situation fundamental to many of 

these problems. A finite quantity, Q, of material is released 

from a known initial distribution into an incompressible turbulent 

velocity field. Assume that the material is passive, so that the 

material does not influence the behaviour of the velocity field, and 

that Q is conserved throughout the realisation of the dispersion, 

so that, for example, no material is absorbed by or deposited on the 

boundaries of the flow field. Let r(X,t) and T(X,t) denote the
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distribution of concentration of material and of velocity, 

respectively, a time t after release. Since Q is conserved

f T(X,t) dV(X) - Q (1.1)

and because the flow is incompressible

V.T - 0. (1.2)

Now consider the execution of any number of similar 

realisations, in each one of which the quantity Q, the initial 

distributions T(X,0) and T(X,0), and the origin relative to which 

X is measured are identical. Since the flow is turbulent, the 

value of . T(X,t) for each fixed X and t will vary from 

realisation to realisation. In other words, there is an infinite 

ensemble (i.e. set) of possible realisations of the dispersion,

A description of the variation of T(X,t) with X and t in 

any one realisation is not only theoretically impossible - since that 

of T(X,t) is not known - it is also useless from a practical point 

of view. The only practically useful description is the 

probabilistic or statistical description of the infinite ensemble of 

realisations:

<r( n ) (X , t )  ; n-1,2,3,...} (1.3)

where H n^(X,t) denotes the distribution of concentration in the 

nth realisation. The problem then is to determine the behaviour of 

the statistical properties of f(X,t) in terms of those of T(X,t).
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It is worth pointing out that in most problems, because of 

practical considerations, the ensemble of realisations is defined 

somewhat differently to that above and, typically, includes all 

realisations in which the statistical properties of the velocity 

field T(X,t), rather than the initial velocity field T(X,0), 

satisfy certain conditions. For example, when material is to be 

released into the atmosphere from an industrial plant, the detailed 

meteorology cannot be predetermined and interest lies in the 

behaviour of the concentration field in all possible meteorological 

conditions. In this case the meteorological conditions may be 

divided into various subsets, for example Pasquill stability class 

(Pasquill and Smith 1983), and the behaviour of the concentration 

field in each subset determined. The main point is that the 

ensemble of realisations must constitute a statistical ensemble 

(Monin and Yaglom 1971, p.210).

As is illustrated in the next section, the full statistical 

description of any statistical ensemble, such as (1.3), is extremely 

complex. In this thesis, attention is focussed on the use of a 

Hermite series representation for some of the simpler components of 

the description, viz. the ensemble mean properties of T(X,t).

Before introducing the Hermite series in Chapter 2, in order to 

explain the motivation behind and aims of the thesis, it is important 

in this chapter to review briefly the principles involved in 

investigating the ensemble mean properties of T(X,t) and to outline 

the information about the concentration field afforded by particular 

ensemble mean properties. The chapter is not intended to be an 

exhaustive account, rather use is made of references where

appropriate.
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Section 1.2 begins with an introduction to probability density 

functions (p.d.fs) and an explanation of the relationships between 

the p.d.fs and the ensemble mean properties of r ( X , t ) .  The 

concepts of relative and absolute diffusion are also outlined.

Section 1.3 introduces both the governing equations for the ensemble 

mean properties and some definitions of relevance to Chapters 2 and 

3. The chapter concludes in Section 1.4 with an outline of the 

purpose of the thesis.

1.2 The Statistical Description of the Ensemble

1.2.1. Probability Density Functions vs. Ensemble Mean Properties

The statistical description of the infinite ensemble of 

possible realisations, (1.3), is completely defined in terms of an 

infinite set of multi-point p.d.fs. Knowing these p.d.fs it is 

possible to obtain all the information required about the dispersion 

(Lumley 1970; Monin and Yaglom 1971). For example, in most 

practical problems interest lies in the probability - or likelihood - 

of the occurrence of a particular event in any one realisation. In 

particular, if the contaminant is toxic, interest may lie in the 

probability of a known toxic level of concentration, 0T say, being 

exceeded at (X,t). Denoting this probability by p(Q^;X,t)

00

(1.4)

where p(0;X,t) is the one-point p.d.f. defined such that
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p(0;X,t)60 (50 small and positive) represents the probability

that r(X,t)  lies between 0 and (0+50) i.e.

p(0;X,t)S8 * lim -[̂  (no. of measurements where 0<r(X,t)*0+50)j-. 
M’*w

Since f(X,t) must lie between zero and infinity

M
J p(8;X,t) d0 = 1. (1,5)
0

From (1.4) we see that knowing p(0;X,t), p(0T ;X,t) can be 

determined. Note that for generality, the upper limits of the 

integrals in (1.4) and (1.5) have been set to infinity and the lower 

limits to 0^ and zero respectively. However, in practice, for 

each (X,t) there will be maximum and minimum attainable 

concentrations, 0max and 8min say, such that for 0>9max or 

0<smin’ P(0;X,t)~O. Therefore (1.4) and(1.5) may be written

emax
p(0T ;X,t) - J p(0;X,t) d0

0max
J p(0;X,t) d8 * 1
0 -m m

and
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respectively.

Generalising (1.4) somewhat and by way of another example, 

consider a flammable gas which will only combust within a limited 

range of concentration in air, 0j<r(X,t)<02 say. Then the 

probability that ignitable conditions exist at (X,t) is given by

B 2

probability that (e^riX.tH©^ - piOj.O^.X.t) - J p(0;X,t) d0.

91

As an example of a higher order p.d.f. consider the two-point Pid.f. 

p(0,»;X,Y,t) defined such that p(0,*;X,Y,t)606^ represents the 

probability that T(X,t) lies between 0 and (0+fi0) if r(Y,t) 

lies between ♦ and (♦+&♦). Knowing p(0,t;X,Y,t), we can find 

the probability, p(8y,+g;X,Y,t), that T(X,t) will exceed 0T if 

f(Y,t) exceeds *s since

Unfortunately the investigation of the p.d.fs is a complex 

problem both theoretically and practically (Lumley 1970; Monin and 

Yaglom 1971) and, as discussed below, although it is receiving 

increased attention, in the past - following the seminal work of 

people such as Reynolds (1894) and Taylor (1921) - most workers have 

focussed on a simpler set of parameters associated with the 

statistical description of the ensemble, viz. the ensemble mean 

properties of T(X,t) (see Monin and Yaglom 1971, 1975 and Pasquill

00 M
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and Smith 1983 for reviews of the literature).

There are an infinite number of ensemble mean properties of 

r(X,t), each is a mean of a function of HX.t). In order to 

illustrate how each is defined, consider a subset of the infinite 

ensemble of realisations (1.3)

Since (1.3) is a statistical ensemble, for large enough M and for 

each fixed X and t, the mean value of T(X,t) derived from the 

subset (1.6) varies little as M is increased. That is, letting

where an overbar has been used to denote the taking of the mean of an 

infinite ensemble of values and E represents the expected (or mean) 

value. Equation (1.7) defines C(X,t), the ensemble mean 

concentration and the simplest ensemble mean property of T(X,t).

{f(n)(X,t) ; n*l,2,3,...M> ( 1 .6 )

M

r*l

and

(1.7)

then

E {(r - C)2}(X,t) -»0 as M -» «
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Similarly, for any function of T(X,t), f(D say, it is possible to 

define an ensemble mean fTrT(X,t) by

N
fTr7(x,t) - lim I  f(r(r))(x,t)}. (1 .8)

N"*w r-1

Expressing T(X,t) as the sum of its mean and deviation from the 

mean, c(X,t) say, we have

T(X,t) - C(X,t) + c(X,t) 

f(X,t) - C(X,t) ; c(X,t) - 0.

(1.9).

Some elementary properties of C(X,t) and c(X,t) now follow. 

Taking the ensemble mean of (1.1) and using (1,9b and c)

f C(X,t) dV(X) - Q ; I c(X,t) dV(X) » 0. (1.10)

In other words, for any fixed t, the total amount of "C-stuff" is 

conserved and is equal to Q whilst the sum of the fluctuations from 

the mean is identically zero so that c(X,t) must take on both 

positive and negative values. Since T(X,0) is fixed from 

realisation to realisation, using (1.9)

HX,0) - C(X,0) ; c(X,0) * 0. (1.11)

It is important to emphasise that, in general, without making 

simplifying assumptions (Birch, Brown, Dodson and Thomas 1978; Hanna
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1984a; Lockwood and Naguib 1975; Sawford and Stapountzis 1986), the 

ensemble mean properties cannot be used to calculate the probability 

of the occurrence of a particular event in any one realisation, such 

as p(0T;X,t) defined by (1.4). However each ensemble mean 

property can be expressed in terms of the moments of p(0;X,t) and 

therefore gives information about the distribution of p(0;X,t) with 

0 (Lumley 1970; Monin and ïaglom 1971). For example, C(X,t) is 

the first moment of p(0;X,t) i.e.

00
C(X,t) - T(X,t) | 0 p(B;X,t) d0. (1.12)

0

Therefore for each fixed X and t, C(X,t) locates the position of

the centroid of the distribution of p(B;X,t). The shape of the

distribution of p(0;X,t) is given by its higher order moments about
1C(X,t). For example, the mean square fluctuation, c (X,t), is the 

variance of p(B;X,t) and gives information on the spread of 

p(0;X,t) about C(X,t) i.e.

?(X,t) - (r - C)2(X,t) - ( P  - C2)(X,t) * | (0 - C)2 p(0;X,t) d0.
0

(1.13)

C(X,t) and c (X,t), especially C(X,t), are the most

studied of the ensemble mean properties of T(X,t). However 
~2c (X,t) is of fundamental importance to most problems, for example 

assessing the effect of the release of a toxic material, since it 

gives information on the spread of concentration levels about the

mean. The ratio



10

yc2(x , t )

C(X,t) (1.14)

is connnonly used as a measure of the variability between realisations

(Csanady 1973; Hanna 1984a; Wilson, Robins and Fackrell 1985). If I

is much less than one, the fluctuations can be considered negligible

and knowledge of C(X,t) alone is adequate. However, as discussed

by Chatwin (1982) and C a m  and Chatwin (1985), there is plenty of

experimental evidence of values of I of the order of 1-10, so

knowledge of C(X,t) alone is often inadequate. Recently, in
“7recognition of the significance of c (X,t), more work has been 

devoted to developing and assessing appropriate models, in particular 

in the context of modelling plume dispersal in the atmospheric 

boundary layer (see Hanna 1984b for a review also C a m  and Chatwin 

1985; Sawford and Hunt 1986). Such work has also been prompted by 

the developments of better theoretical and practical techniques for 

studying p.d.fs, in particular p(8;X,t). It is not the purpose of 

this work to detail these developments, rather just to indicate that 

the study of p.d.fs is accelerating and is likely, eventually, to 

receive as much attention as has the study of C(X,t) in the past. 

Detailed references to the pioneering papers in the study of p.d.fs 

and to subsequent developments are given by Birch, Brown, Dodson and 

Thomas (1978), Fackrell and Robins (1982) and Kowe and Chatwin 

(1985).

1.2.2 The Choice of Coordinate Framework

Finally in this section, it is important to describe briefly 

one aspect of the ensemble of realisations (1.3) which has profound
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implications, in particular for the value of the ensemble mean 

properties.

So far the only restriction that has been placed on the choice 

of coordinate framework is that it is well defined and does not vary 

from realisation to realisation. For a long time it has been 

recognised that there are at least two distinct types of framework 

which can be used profitably to study turbulent diffusion

(a) absolute diffusion 

and (b) relative diffusion.

These are also known as Eulerian and Lagrangian frameworks 

respectively. In a framework of absolute diffusion, the identifying 

property of the material - such as its temperature or concentration - 

is measured relative to a point either fixed in space or moving with 

a uniform velocity. For example, the concentration of the cloud 

considered above could be measured relative to the initial position 

(t-0) of the centre of mass of the cloud. In a framework of 

relative diffusion, the identifying property is measured relative to 

a point which moves with the material, for example the instantaneous 

position of the centre of mass of the cloud.

The implications of, and advantages associated with evaluating 

the ensemble mean properties in this latter framework have been 

discussed in detail by several authors (Batchelor 1952; Chatwin 1982; 

Chatwin and Sullivan 1979a; Csanady 1973; Monin and Yaglom 1975).

The essential point to recognise is that with X measured relative 

to the centre of mass of the cloud, as is evident from (1,7) and 

(1.8), at any time t after release, the distribution of C(X,t) or 

any ensemble mean property is only evaluated once the centres of mass
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of each instantaneous distribution r^(X,t), n*l,2,..., have been 

made coincident. Now in many practical problems, at least in the 

early stages of dispersion, the displacement of the centre of mass of 

the cloud in a given time, predominates the distortion of the 

material about its centre of mass in the same time. That is, 

because the linear dimensions of the cloud are much smaller than 

those of the energy containing eddies of the flow, the cloud of 

material meanders through the flow with the shape of its distribution 

changing relatively slowly. Ensemble mean properties evaluated 

within a framework of relative diffusion are not subject to the 

smearing effects of this meandering which are inherent in, and often 

dominate, the distributions of those evaluated in any framework of 

absolute diffusion. In particular, the magnitude of the ensemble 

mean concentration in relative diffusion is often much closer to the 

actual concentration than that evaluated in a framework of absolute 

diffusion (Chatwin 1982; Csanady 1973, p.82). In spite of this 

advantage of relative diffusion, it must be acknowledged that in many 

problems the distribution of concentration relative to a fixed 

structure, such as a gas storage container, or a particular 

topographical feature, is the main concern. In these cases a 

framework of absolute diffusion is obviously appropriate.

In this thesis, and for the reasons explained later in the 

text, both types of framework are considered. The analyses of 

Chapters 2 and 3 are performed in a framework of relative diffusion 

whilst the problem considered in Chapter 4 uses a framework of 

absolute diffusion. For clarity, in the remainder of this Chapter 

and in Chapters 2 and 3, lower case characters, such as x and 

will be used to denote vectors measured in a framework of relative 

diffusion and upper case characters, such as X and Y, will be
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reserved for denoting an arbitrary framework.

1.3 Equations and Definitions

1.3.1 The Governing Equations of the Ensemble Mean Properties

The problems involved in the theoretical investigation of each 

of the ensemble mean properties of T(X,t) are typified by those of 

C(X.t).

Using the summation convention over repeated subscripts, the 

governing equation for T(X,t) may be written (Monin and Yaglom 

1971, p.581)

ML+ r k - 2 ^ -8t 1 Q%i aXjSXj (1.15)

where K is the molecular diffusivity. Let T(X,t) be expressed 

as the sinn of its ensemble mean, U(X,t), and its deviation from 

this mean, u(X,t), so that (compare (1.9))

ui + ui

Ti Ui ; Uj_ ■ 0

(1.16)

Then, substituting (1.16a) and (1.9a) into (1.15), taking the 

ensemble mean and using (1.2), (1.16b and c) and (1.9b and c) leads 

to

ac
at + a

aXi
(U;.C + u;.c) K a2c

aXjaXj (1.17)
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This is the governing equation for C(X,t). Since it involves 

c(X,t) it is not closed, nor is any finite subset of the infinite 

set of equations which govern the ensemble mean properties of 

r (X.t ) .  For example, subtracting (1.17) from (1.15), multiplying by 

(2c) and taking the ensemble mean leads to the governing equation for 

c2(X,t)

It " + ui H "  + if" ( +  2uic fx” ' K ax' ax " 2Kdt X 0X^ aXj, X X oXĵ  oXjoXj 3̂XjJ (1.18)

which includes (uc) and (7c). This fundamental problem has led 

to a substantial amount of literature devoted to the analyses of 

closure hypotheses (Monin and Yaglom 1971, 1975). The majority of 

this work has been devoted to investigating closure hypotheses for 

the equation for C(X,t), (1.17), although recently more attention

has been paid to closure hypotheses for (1.18) (see discussions by 

Hanna 1984b and Sykes, Lewellen and Parker 1984). The application 

of many of these hypotheses can only be. justified for simplified 

flows, in particular homogeneous or stationary flows. One major 

advantage of the Hermite series representation to be examined in this 

thesis is that its applicability is not restricted to simplified 

flows. This point is discussed further in Section 1.4.

1.3.2 Properties and Definitions of Ensemble Mean Properties in 

Relative Diffusion

By definition, the concentration field of a cloud of 

contaminant measured relative to the centre of mass of the cloud.
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r (x , t ) ,  satisfies

J xi T(x,t) dV(x) - 0. (1.19)

Therefore, using (1.9) and (1.19)

I xi C(x,t) dV(x) - 0; / xA c(x,t) dV(x) - 0. (1.20)

“ 2
As well as C(x,t) and c (x,t), two other ensemble mean 

properties of Hx.t) will also be discussed in Chapter 2, namely 

the distance-neighbour function p(£,t) (Batchelor 1952; Chatwin 

and Sullivan 1979a, 1980a; Richardson 1926; Sullivan 1971, 1975,

1976) and the correlation function r(£,t) (Chatwin and Sullivan 

1978, 1979b, 1980a) defined by

P<Y,t) - Q“2 / r(x,t) r(x+E,t) dV(x)

■ Q“2 f {C(x,t) C(x+£,t) + c(x,t) c(x+^,t)> dV(x) (1.21)

r(y,t) - p(y,t) - Q"2 f C(x,t) C(x+Y,t) dV(x)

- Q“2 f c(x,t) c(x+2 ,t) dV(x). (1.22)

In order to interpret p(j>,t) and r(y,t) consider Q”* r(x,t)dV(x) 

and Cf1 r(x+^,t)dV(^). These represent the proportions of 

contaminant in volume elements of size dV(x) and dV(}0 

surrounding x and (x+jO respectively. Thus when molecular 

diffusion, K, is negligible pii'.tldViy;) is the average of the 

proportion of the volume of contaminant within which the origin of
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the vector £ must lie so that a volume dV(y) surrounding the 

other end of £ will also contain contaminant. r(y,t) is the

contribution to p(y,t) from the fluctuations in concentration.
~2Its Fourier transform is the energy spectrum of [ c (x,t) dV(x),

1.4 Purpose of the Thesis

The purpose of this thesis is to show how a series of 

generalised Hermite polynomials can be used to represent HX.t) and 

several of its ensemble mean properties, and investigate the use of 

the representations.

The previous sections have given an overview of the complete 

mathematical description of a cloud of material dispersing in 

turbulent flow. Some of the problems associated with examining the 

development of the distribution of the material in space and time 

have been highlighted. The aim of doing this was to identify 

several points which emphasise the advantages of the Hermite series 

representations to be investigated here. Before introducing the 

representations in Chapter 2, it is useful to summarise these 

advantages.

First, the representations can be applied in frameworks of 

absolute or relative diffusion (Section 1.2.2). Second, the 

applicability of the representations is not restricted to simplified 

flows. Rather, in theory the representations can be applied to any 

flow although, in practice, their use may be more suited to 

particular types of flow (Section 1.3.1). Finally, the use of the 

general representation is not restricted to C(X,t), rather it can 

be applied to T(X,t) or any one of its ensemble mean properties
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which satisfies some fairly simple rules. Many of the ensemble mean
—j

properties satisfy these rules, including c£(X,t).

It is not worth elaborating further on these points at this 

stage since they will be justified in subsequent chapters. As will 

become clear in Chapter 2, a comprehensive investigation of the use 

of the representations is beyond the scope of this work. However, 

the work does attempt to develop various, selected strands of the 

investigation in a way that accentuates the advantages of the

representations.
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CHAPTER TWO

A Three Dimensional Hermite Series Representation for f(x,t)

and its Ensemble Mean Properties

2.1 Introduction

The aim of this chapter is threefold. First, to show how

Tix.t) and a number of its ensemble mean properties, for example 
—5

C(x,t), c (x,t) and p(y,t), can be represented by a generalised 

three dimensional Hermite series. Secondly, to explain why it 

appears worthwhile to investigate the use of these representations. 

Thirdly, to explain the rationale behind the approach adopted in the 

rest of the thesis to beginning this investigation.

A Hermite series representation, in the form of a 

Gram-Charlier series or Edgeworth series, is conventionally used in 

turbulence to analyse deviations from the Gaussian of a non-random 

function. However, Chatwin and Sullivan (1980a) have shown how a 

generalised three dimensional Hermite series can be used to represent 

a correlation function of the cloud (r(^,t)), which by virtue of 

its invariant properties can never be Gaussian, not even approximate

ly so. Their results suggest the representation should be of 

practical value. In Sections 2.3-2.5, the use of this representa

tion is extended to T(x,t) and several of its other ensemble mean 

properties.

Initially, in Section 2.2, in order to emphasise both the 

naturalness of the representations and the ease with which they can 

be handled, brief descriptions are given of the one dimensional 

Gram-Charlier and Edgeworth series. Some simple examples are used



19

to illustrate their conventional use and the analogous three 

dimensional series are defined.

2,2 The Gram-Charlier and Edgeworth Series Representations

2.2.1 The One Dimensional Series

The Gaussian distribution is the solution to many simplified 

models of problems in turbulence (Batchelor 1952; Pasquill and Smith 

1983; Taylor 1953, 1954a). For example, in one of the simplest 

models of dispersion in the atmospheric surface layer, the ensemble 

mean concentration, X(x,y,z,t), of a quantity, Q, of passive, 

conserved material released from a ground-level point source is given 

by the three dimensional Gaussian distribution (Csanady 1973)

X(x,y,z,t)
(2,)3/2 ** oy

( 2 . 1 )

where the x,y,z axes are taken in the horizontal downwind, 

horizontal crosswind and vertical directions, respectively, with the 

origin fixed at the centre of mass of the cloud. <?x , and o2 

represent the root mean square deviations of the distributions in the 

appropriate directions. For example

J x2 X dxdydz 2
o * ------------—  « Q~ J x X dxdydz,
x I X dxdydz

Integrating (2.1) over y and t, the corresponding one dimensional 

Gaussian model of diffusion from an infinite, continuous, crosswind
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line source is obtained i.e.

where the axes are now taken fixed at the source, the mean velocity, 

U, is assumed constant and parallel to the x axis and represents

the quantity of material released per unit length per unit time.

In many of these problems (Chatwin 1970, 1980; Chatwin and 

Sullivan 1981; Lupini and Tirabassi 1983; Smith 1978, 1982a, 1982b, 

1982c, 1985) the deviations from the Gaussian have been investigated 

by representing the actual property by the first few terms of its 

Gram-Charlier series (type A) - hereafter referred to simply as the 

Gram-Charlier series - or Edgeworth series (Cramer 1946; Kendall and 

Stuart 1969; Mihaila 1968).

In order to illustrate the main features of each series it is 

sufficient to consider their one dimensional forms. Higher 

dimensional Gram-Charlier series and Edgeworth series are considered 

in depth elsewhere (Chambers 1967; Kampe de Feriet 1966; Kendall and 

Stuart 1969; Mihaila 1968) and are therefore defined in Section 2,2.2 

without detailed consideration.

First, consider an arbitrary well-defined function f(z) (the 

conditions f(z) must satisfy to be represented by a Gram-Charlier 

series or Edgeworth series are discussed by Kendall and Stuart 1969). 

For simplicity, let f(z) be expressed in standard measure i.e.

00

f(z) dz = 1 ; ( 2 . 2 )
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The Gram-Charlier series of f(z) may be written

00

f (Z) ’ AÏ \  W Z> e!!p[* 2 z2]n=0

where the one dimensional Hermite polynomials Hn(z), n*l,2, 

defined by (Kendall and Stuart 1969)

(2.3)

are

H# (l>  exP ( -  2 z2] ‘  ( ' U "  f ï  J

For example,

H0(z) - 1; Hj(z) - z; H2(z ) - z2 - 1 

Using the orthogonality property of the polynomials

00

-k \ V z) Hn(z) exï(- 2 z2]dz ” 8™
—00

the following expression for the coefficients of the series is 

obtained

00
F - ~  [ H (z) f(z) dz n n! J n

n * 1,2,... . (2.4)

In other words, if n is odd, Fn is dependent on all the odd 

moments of f(z) of order <n and, if n is even, Fn is 

dependent on all the even moments of f(z) of order <n. For
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example, using (2.2) and (2.4)

F0 -  1

F1 - F2 - 0

00 00

F » i -  r3 3! J
H3(z ) f(z) dz * ■jy J z3 f(z)dz

-00 -00

00 00

p - i - r*4 4! J
H4(z ) f( z) dz -  -£7 {  }  z4 f(z) dz

-00 -oo

Thus the first few terms of (2.3) may be written

f (2) “ 337
{l + F3H3(z) ♦ F4H4(z ) + . . . }  exp

so that the first term of the Gram-Charlier series of f(z) is the 

Gaussian distribution with the same mean and variance as f(z), 

subsequent terms represent the deviation of f(z) from the Gaussian 

In many practical and theoretical problems it is not possible 

to determine completely the behaviour of the function f(z) but the 

behaviour of the lower order moments of f(z) can be determined, 

hence so can the approximation to f(z) afforded by the correspond

ing initial terms of (2.3). In these problems therefore, interest 

lies in whether the initial terms of (2.3) give a better approxima

tion to f(z) than the Gaussian, in particular whether (2.3) is an 

asymptotic representation for f(z). In most practical problems 

interest lies in the approximation to f(z) afforded by the first

five terms of (2.3) viz.
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since moments of order higher than four calculated from measurements 

are usually subject to large errors (Kendall and Stuart 1969), In 

(2.5) the dimensionless parameters P3 and (34 represent the 

skewness and kurtosis of f(z) respectively (Kendall and Stuart 

1969; Lumley 1970) i.e.

If f(z) is Gaussian, P3 and P4 are identically zero.

An example application of (2.5) is shown in Fig. 2.1 where 

f(z) has been taken equal to the normalised gamma function expressed 

in standard measure

It is seen that for p*16 (Fig. 2.1a), P3 and P4 are both fairly 

close to zero (0.5 and 0.375 respectively) and (2.5) appears to give 

a satisfactory approximation to f(z). However, for p=2 (Fig,

2.1b), P3(*y2) and P4(-3) are further from the Gaussian values and 

the approximation is unsatisfactory.

For a class of frequency functions often encountered in 

statistical theory, the Gram-Charlier series (2.3) is not an 

asymptotic representation. Edgeworth has proposed an alternative

f(z) - , exp(-s) s ^ ”15, z - ' S”E ,̂ s >0, p a  constant >0 (p-l)j P

( 2 . 6 )
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series which is an asymptotic representation for this class (Cramer 

1946; Kendall and Stuart 1969). The important point to make here is 

that the Edgeworth series is in fact a rearrangement of the terms of 

the Gram-Charlier series (2.3). The first few terms of the 

Edgeworth series are

fE(z)
1
/2f

r ^3 
l1 + 3! H2(z) + 4! H, (Z) 4 £  <’ 3>: h6(z )} e x p ( - ¿ z 2].

(2.7)

For the same reasons as for the Gram-Charlier series, only these 

terms are considered in most practical problems.

In Figs. 2.1c and 2.Id, the approximation given by (2.7) to 

the previous example function, (2.6), is compared with the 

corresponding Gram-Charlier series approximation and with the exact 

function. For both p=16 and p«2, the Edgeworth series 

approximation is more satisfactory than the Gram-Charlier series 

approximation.

2.2.2 Higher Dimensional Series

Higher dimensional Gram-Charlier and Edgeworth series may also 

be defined (Chambers 1967; Kampe de Feriet 1966; Kendall and Stuart 

1969; Lumley 1970; Mihaila 1968). In particular, the three 

dimensional Gram-Charlier series of a function F(z) where

/ F(z) dV(z) - 1; l z± F(z) dV(z) - 0; 

/ ziZj F(z) dV(z) - Sjj

( 2 .8 )
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may be written

F(z) * n(o) 5
m=0

„(m) „(m)
Fij...kHij., .k(̂ o) exp [ - 12 pq ‘p q]• (2.9)

In (2.9) the summation convention over repeated subscripts has 

been used, n(a) is given by equation (A5) of Appendix A, m 

represents the number of subscripts ij...k and the 

positive-definite, symmetric tensor is such that

sij ajk * sik

where s.jj is given by (2.8c).
( n )The Hermite polynomials of three variables IT (z, a),1J * ♦ « K *

n*l,2,..,, are defined by

,(n)
ij 2> eXI>(- 2 W q ]  ■ (-U " az^azj...azk expf- o z z  1. 1 2 pq p qJ

Some properties of the polynomials are given in Appendix A along 

with further references. Using equations (A10)-(A12), (2.8) and 

(2.9)

F ( 0 ) l; F ( 1 )
i 0.

Thus (2.9) may be written
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oo
F(z) = n

m=3
(in)

k ij...k }

( 2 . 1 0 )

2.3 The Hermite Series Representations

In Section 2.2 evidence was given of the practical and

theoretical value of two particular Hermite series representations,

the Gram-Charlier series and Edgeworth series. It is now possible

to appeal to this evidence and other results to suggest general

representations for T(x,t) and several of its ensemble mean
-Jproperties, in particular C(x,t), c (x,t), p(y,t) and r(^.t). 

Here, the word 'general' is used to signify a representation which 

requires no assumptions to be made about the turbulent nature of the 

flow or the initial distribution of material.

Before introducing the representations, it is important to 

emphasise the point made in Section 1.4, namely that the arguments 

below can be extended to derive analogous Hermite series representa

tions for a concentration field measured in an arbitrary framework, 

r (X ,t ) ,  and its ensemble mean properties. This extension is 

discussed in Chapter 4. However, because of the importance of 

relative diffusion and in order, in the first instance, to justify 

the representations as clearly as possible, it is sensible initially 

to focus on relative diffusion.

First, consider the conditions which must or should preferably 

be satisfied by a general representation for C(x,t). Any 

representation must decay to zero as |x| -♦ oo, Observations suggest 

that in some flows C(x,t) decays to zero like exp(-A |x|2) for
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some constant A. In addition, there is evidence that under certain 

conditions C(x,t) is Gaussian (Batchelor 1952; Csanady 1973; Monin 

and Yaglom 1975, p.577; Sullivan 1971).

As a second condition, it is at the least preferable that any 

representation is mathemtically easy to handle and has interpretable 

coefficients. Whilst a representation in wave-number (or frequency) 

space using Fourier integrals would be possible, such a representa

tion is of most value in the special case of homogeneous (or 

stationary) turbulence (Frost and Moulden 1977; Monin and Yaglom 

1975) and, furthermore, would not explicitly reflect the observed 

exponential decay of C(x,t). On the other hand, the Gram-Charlier 

series of C(x,t) (see (2.9)) viz.

C(x,t)
«0

(2 .1 1 )

where

**ij Njk * 6ik

and

NiJ(t) - Q"1 f XjXj C(x,t) dV(x)

satisfies both conditions and reflects this exponential decay but 

evidence suggests its practical value is restricted to near Gaussian 

C(x,t) (Chatwin 1980; Kendall and Stuart 1969). Theoretical 

evidence of a Gaussian or near Gaussian C(x,t) depends on certain 

simplifying assumptions, in particular that the flow is homogeneous
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and that molecular diffusion may be ignored (Batchelor 1952; Monin 

and Yaglom 1971, p.540 and 1975, p,567-578). These assumptions are 

sufficient for many problems for several reasons. For example, the 

eddies responsible for relative diffusion often lie within the 

equilibrium range - or even in the inertial subrange - so that local 

isotropy and therefore homogeneity can be assumed (Monin and Yaglom 

1975, p.337). If the same eddies lie within the inertial-convective 

subrange (Monin and Yaglom 1975, p.383) or if only the large scale 

statistical structure of T(x,t) is of interest (Chatwin and 

Sullivan 1979a; Monin and Yaglom 1971, p.591) there is evidence to 

show that molecular diffusion may be neglected. However, most 

naturally occurring flows are inhomogeneous and evidence of 

non-Gaussian C(x,t) is available (Chatwin and Sullivan 1979b; Monin 

and Yaglom 1975, p.578; Pasquill and Smith 1983). For these reasons, 

and since we are seeking a general representation for C(x,t), (2,11)

must be regarded as unsuitable.

However, it is possible to generalise (2.11) and represent 

C(x,t) by the series

C O c . t )  -  Q n(g> e> « p ( -  2 Bpq( t V q ]
ra=0

( 2 . 12 )

where P-yit) is now an arbitrary, positive-definite, symmetric, 

non-random tensor and Q has been taken out of the summation for 

later convenience. The choice of 0^j(t) is discussed in Section 

2.5. For now it is important to stress that, given the evidence 

outlined above and in Section 2.2, for any well-behaved Pjj(t),
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(2.12) appears to be a natural representation for C(x,t).

Granted this naturalness and granted that the conditions

specified above for C(x,t) typify those which must be satisfied by

a general representation for many ensemble mean properties of T(x,t)

it is now natural to propose that each of these ensemble mean

properties be represented by series like (2.12). In particular,

using p.jj(t), t^jit) and Xjj(t) to denote arbitrary, non-random,
~2

positive-definite, symmetric tensors c (x,t), p(^»t) and r(y,t) 

may be represented by the series

c (x,t) Q n(£) 2
m=0

exp ( - 1 P ( t ) x x  pq p qJ

(2.13)

p(X,t) - n(3 > 1 Eiji<<k( t ) H ^ <fk(X
m*0

,3) exp[- y  t, (t)ypy ]

(2.14)

r(*.t) - n(*> 2 L ^ ##k( t ) H ^ #tk(X. i )  « p ( -  2 W t)yPyq ] '
m-0

pq 'p'qj

(2.15)

Similar representations for other ensemble mean properties of 

r (x , t )  could be defined. Attention will be focussed on
~2

(2.12)—(2.15) because evidence of the behaviour of C(x,t) c (x,t), 

p(^,t) and r(y;,t) is available.

The evidence for C(x,t) has already been discussed. As 

might be expected, there is less evidence for the other ensemble mean
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properties. First, for c (x,t), whilst there are no known 

measurements from clouds, measurements of the appropriate analogue of 

c (x,t) in a steady plume have shown an approximately Gaussian 

distribution, except near the centre of the plume (Chatwin and 

Sullivan 1979b). Assuming these results generalise to clouds, they 

support the use of the general representation (2.13). Further 

support can be drawn from the theoretical investigation of the 

particular velocity field

2

Tj ’ Tijxi

where by (1.2)

(2.16)

i.e. 1(5*0 a pure straining motion. The sole random feature of 

this T(x,t) is that the direction of the principal strain axes vary 

from realisation to realisation. This velocity field is considered 

in detail in Chapter 3, all that will be noted here is that the 

results suggest that in some flows c (x,t) decays like exp(-B |x|•*) 

for some constant B.
— T

As for c (x,t), there are no known measurements of p(^,t) 

in clouds. However (2.14) is consistent with measurements of the

analogue of p(y,t) in steady plumes which show a Gaussian 

distribution in the bulk of the plume (Sullivan 1971). A Gaussian 

distribution for p(y,t) in homogeneous turbulence is also proposed 

by Batchelor (1952).

Evidence from the measurements of plumes is also available for 

the representation for r(y,t), (2.15). Indeed, the representation 

has already been suggested by Chatwin and Sullivan (1980a) following
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an examination of such measurements and the use of the analogue of

(2.15) to represent the one dimensional analogue of r(y,t) in a 

plume. Their results suggest (2.15) will be of practical use and 

are discussed in more detail in Section 2.4.5.

Finally, to complete the mathematical representations to be 

investigated in this thesis, it remains to introduce one further 

extension of the generalised Hermite series, namely that the random 

concentration field, f(x,t), be represented by the series

where *ij(t) is an arbitrary, positive-definite, symmetric tensor 

which may now be chosen random. The reasons for introducing (2.17) 

are obvious. The conditions specified earlier for C(x,t), 

c (x,t), p(y,t) and ri^.t) typify those which should be satisfied 

by any representation for T(x,t). The series (2.17) is therefore a 

natural representation to investigate. It provides, in conjunction 

with (2.12)—(2.15), a more complete mathematical representation for 

the concentration field and its ensemble mean properties and is 

therefore of inherent interest.

The aim of this thesis is:

(a) to investigate the use of the representations (2.12)-

1rr M 2 pq

(2.17)

(2.15) and (2.17),
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and (b) to generalise the investigation to frameworks other than 

frameworks of relative diffusion.

For the reasons given at the beginning of this section, (b) is 

considered in Chapter 4. To achieve (a), it is essential in the 

first instance to outline the basic properties of (2*12)—(2.15) and

(2.17). This is done in the next section, Section 2.4, In Section 

2.5, by way of discussing the practical and theoretical value of

(2.12)—(2.15) and (2.17), the important questions to be addressed in 

this thesis are raised.

T
2.4 Properties of the Representations for r(x,t), C(x,t), c (x.t), 
p(y,t) and r(y,t).

Continuing to make no artificial or restrictive assumptions 

about the nature of the turbulent flow or the initial distribution of 

material, in this section

(a) the expressions for the first few coefficients of each of 

the representations (2.17), (2.12)~(2.15) are derived in 

terms of the moments of T(x,t), C(x,t), c (x,t), p(y,t) 

and r(y,t),

(b) the relationships between the coefficients of each 

representation are illustrated.

The results of Appendix A are used throughout the section.
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2.4.1 The Representation for T(x,t)

Let a^it) denote the inverse of the symmetric tensor «¿jit) 

in (2.17), i.e.

ai j  “ jk  *  6ik

(n)(so that a^j(t) is also symmetric) and let denote the

nth order moment of T(x,t)

-l
V j >Xk r ( x , t )  d v ( x ) . (2.18)

Hence, using (1.1) and (1.13)

M(0)(t) - u  Mj1)(t) - 0. (2.19)

Using (A10MA13) (with cjjj #<k. s[]] ^  and ^  replaced by 

.(t), m J?* „(t) and a. .(t) respectively)

A(0)(t) - 1 

A^l)(t) - 0

(t) ( 2 )
ij aij)

(t) 1_
3! M (3)ijk

( 2 . 2 0 )
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(4)
jk-t

.(2)
- ‘V i T  + * a< * a - M

* V « ’ * ak«Mii)) * <au aM  * aikaj<

(2)
'itjk

(2 ) 
jk“i<t

* aU ajk>}- (2.20)(contd.)

Thus A (°)(t) and Ap*(t) are invariant. The first few terms of

(2.17) may now be written

r t x . u  -  q „ (« >  { i  *  i  < « < ] > -  . j j ) " ^ ’ (5. - )  ♦ j r  " $ < * . « >

*  • • < }  «*!>(-2 “ p q V q ] -  (2 > 2 1 )

In (2.20) and (2.21), the dependency of k(t), “ijit) and

aij(t) on t has been omitted for simplicity. The same will be 

done in subsequent equations wherever practicable.

2.4.2 The Representation for C(x,t)

Following the same procedure as in Section 2.4.1 for the 

representation for C(x,t), (2.12), let bjj(t) denote the inverse

of 0ij(t), i.e.

bij0jk " aik (2.22)

and let (t) denote the nth order moment of C(x,t), i.e.

NiJ.\.k(t) " Mij!..k(°  Q*1 i xixj***xk C(^ at) dv{*> (2.23)
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where (t) is given by (2.18). Thus, using (2.19)
X J • « • K

N(0)(t) - 1; Nj1}(t) - 0. (2.24)

From (A10)-(A13) (with C*"* k * S * " ^ #k and T.j replaced by

b !"* .(t), N*"* .(t) and b. .(t) respectively)
X j • . * K 1J •« tK XJ

B(0) (t) - A(0)(t) - A(0)(t) - 1

B^1} (t) - A^1 ).(t) - A^1 } (t) =■ 0

B ^ \ t ) 1 f„(2)
2 (Nij V

(2.25)

i _ NU)
3! ljk

RU) i_ rM(4) .. „(2) . „(2) b „(2) + b „(2)
Bi j W (t) " 4 7 \ Nijk* “ (bijNk* + bikNj* bi * V  V «

* b..N<.2) ♦ b n ‘2)> + (b bM  * blkb * bM b )}j* ik k* ij

so that B(0)(t) and B ^ U )  are invariant. The first few terms 

of (2.12) may now be written

C (x , t )  -  Q n ig )  { l  • i  <N<21 -  b j j )  H ' j ' f x . g )  ♦  ^  « ‘ ^ ( x . g )

t ...} exp[- i B x x ]. (2.26)
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Note that since the initial distribution of material is the same in 

each realisation, using (2,23)

for all n»0 (2.27)

Therefore for each n>0, . (0) can be expressed in terms of1J . • * K
( Y* )the M. .(0), r<n, and b. .(0) and therefore in terms of thelj•••K 1J

Aij} k(0)’ r<n’ bij(0) and aij(0). (aij(0) must be chosen 
non-random). For example

~ j  ( M ^ }(0) -  b± j (0 ))  -  A ^ i O )  + j  (a i j (0) -  b± (0 ) ) .

For general t, each b !"* . (t) can be expressed in terms of the1J «• • K
(jr )M<( .(t), r<n, and b..(t) and therefore in terms of the1J « • • K 1J
(r \

Aij k(t)’ r<n’ bij(t) and ai j ^ *  For exainple

Bij>(t) " 2 (Mij)(t) “ bij(t))

bij(t))

(2.28)

1 r- M ̂  ̂ ( t )
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2.4.3 The Representation for c (x,t)

Let dij(t) denote the inverse of Pjj(t) in (2.13), i.e.

dij pjk “ 6ik

and let Q.” (t) denote the nth order moment of c (x,t), i.e,
X J • • • K

k(t) - Q-2 J c2(x,t) dV(x). (2.29)

Using (A10)-(A13) (with cf"* k, S*"|^k and replaced by

Dij!. .k(t) ’ k(t) and dij(t) resPectively)

D(0) (t) , ( 0 )

D<U (t) ,(1)

D'fct) A  ,n(2) H ,2 <QiJ ‘ di])

k  till-«»'?' '***?'**»<">}

(2.30)

• I ,  K i ,  -  « r f  * di X ! ) *
( 2 ) . ( 2 ) 1(2)

* V *  * dk*Qli1 > * <di A *  * dikdj * ♦ di*dJk>}-
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Unlike A(0)(t), A ^ U ) ,  B(0)(t) and B ^ U ) ,  D(0)(t) and 

D^1J(t) are not invariant. The first few terms of (2.13) may be 

written

c2(x,t) Q2 n<e> { q(0) * q‘ U  nil ) (£,e) ♦ 2 <Qi j > -  '* i j )

♦ f r  i < ] l  -  (di X n  + * V i U ) ]

.  . . . }  e x p ( - ± < .  x x ] . (2.31)

Using (1.11b)

so that

I^ix.O) 0

<;:..k<°> lj.. .k
for all n>0.

In addition, since (Chatwin and Sullivan 1979a)

J 7(x,t) dV(x) -»0 as t -* «

it follows that

D(0)(t) -♦ o as t -* ».
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2.4.4. The Representation for p(£,t)

The first few terms of the representation for p(y,t), (2.14), 

like that for C(x,t), can be simplified somewhat. Let eij(t) 

denote the inverse of i]jj(t) so that

eij 11 jk * &ik‘

(n)Denote the nth order moment of p(£,t) by P . . . (t), i.e.

C ...k (t) - I  V i - ' k  p(ï'u dV<!;>

- <T2 U yiyj...Vk r(x.t) rix+z, u <*v(x) dvijo.
(2.32)

Clearly, from (1.21), p(^.t) is even in y so that

P(ï.t) - p(-£, t).

It follows that (Chatwin and Sullivan 1980a)

Pijn+1k(t) “ 0 f0r a11 n>0* (2.33)

In addition (Batchelor 1952)

P(0)(t) - J p(ï.t) dV(£) * 1. (2.34)
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Using (A10MA13) (with and f.j replaced by

Eij) k(t)’ k (t) and eij(t) respectively), (2.33) and (2.34)

E(0)(t) - 1

Eij0+^k(t) “ 0 for aH  n*0

p<2), . . I  /p(2) o .
Eij (t) 2 (Pij “ eij)

(2.35)

<*> (t) „ J - J p<4> ,e pt2) p<2> + e p(2) + e p<2) 
ijkt(t) 4! lPijkt eijPk* ikPj* ivjk Jk i*

* eJ*Pi k ) *  * (e i J ek* *  ei k ' j *  * ei * ej k )}

so that E ^ ( t )  and E ^ n+^(t) are invariant. Equation (2.14)
X J ♦ • t K

may now be written

w

P l i . t )  ■  n (3 ) { l  * 5 E ^ ; >k( t )  h £ |  . * ( * ! > }  e * p ( - | - l w yp»q]
m=l

*“ > - (P(2)eijk4 vrij ektP(Y.t) » n(g) {l + |  (pjj* - e.j) h {2)(x .3) + J7 (Pi

1 (4 )
+ 5 similar terms) + ( e ^ e ^  + 2 simllar terms)J »-¡^(2 .3 )

•••} exp[- J V V , ] ' (2.36)

(2n)Looking at the relationships between the E ^  (t) n»l and the 

coefficients of the representations for T(x,t) and C(x,t),
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A*®* . (t) and B ^  .(t) respectively, since (Batchelor 1952)1J •«  «K X J • • • K

P*2)(t) - 2N*2)(t) (2.37)

where N*2)(t) is defined by (2.23), then using (2.35c), (2.37), 

(2.25c) and (2.28a)

E<f(t) - a ^ )

2Bij> + 2 (2bij 6ij)

,7^7 ♦ 1  (2—  -2Aij 2 (2 ij eij} * (2.38)

More generally, letting the nth moment of r(£,t) be denoted by 
D(n)
Rij.,.k(t)’ 1,e*

(n 
ij... .(t) ; r(^ ’°  dV(x) (2.39)

for each n*2

(2n)
ij... (t) - R(2n)Kij...k

is a function of the nÎ“ J ,(t), m<2n (Chatwin and Sullivan 1980a).ij...k
( 2n )Hence for general t, relationships between the ^(t), n*2,

and the coefficients of the representations for C(x,t) and r(^.t) 

(and therefore T(x,t) and r(y,t)) can be derived. This is done 

in Section 2.4.5, after developing the representation for r(^,t).
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However using (1.22) and (1.11b), for t=0 we have

r(y,0) * 0

so that

Rij.)..k(0) = 0 for all n*0 (2.40)

Hence, for each n*l, P ^ n) (0) is a function only of the1J ♦ • • K
, (2m) (2m)
Nij m<^n’ and therefore, using (2.26), of the

m<2n. It follows that for each n>l, (0) can be expressed

in terms of the A*®* .(0), m<2n, a. .(0) and e..(0). As a simple1J t • »K * J
example, from (2.38) it follows that

Rij}(0) * SA^^O) + |  (2aij(0) - eAj(0))

2.4.5 The Representation for r(^,t)

Finally, consider the representation for r(y,t), (2,15).

Let lij(t) denote the inverse of 7^j(t) so that

*ij *jk * &ik*

As demonstrated by Chatwin and Sullivan (1980a) there are several 

invariants of r(y,t). First, from (1.10), (1.22) and (2.39) it

follows that
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r(y,t) = r(-£, t) 

R(0)(t) - 0.

(2.41)

From (1.10), (1.20), (1.22) and (2.39)

j}(t) - 0. (2.42)

Finally, from (2.41a) and (2.39)

R.(^n+1?(t) - 0 for all n>0 (2.43)lj « « *K

Note that (2.41) and (2.43) are true for relative and absolute 

diffusion whilst (2.42) only holds for relative diffusion. Using 

(2.41)—(2.43) the representation for r(^,t) can be simplified to

r(^,t) - n(A)
m-2

.(2m) . .„(2m) ,
Lij...k(t)Hij...k(X’*) • * » [ -  2 W q ] -

(2.44)

As explained in Section 2.4.4., for general t, relationships between 

the coefficients of the representations for r(y,t), p(y,t) and 

C(x,t) (i.e. , and respectively) can be

derived. As an example consider

(4) m  - R(4) 
i jk-t 1 RijW (t)}

where P*”* (t)1J • • • K ani Ri " ! . . k ( t ) are given by (2.32) and (2.39)
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respectively. Now (Chatwin and Sullivan 1980a)

( t )  -i j f c r1' R(4) ft)Rijk-t(t ) = 2 (N(4)i j ia N( f cl  j k*
N(2) (2)
ik " j  t

H<2)„(2).
NU  Njk }

(2.45)

From (2.35d) and (2.37)

pÎÎÎ.U) » 4JEÎ1L + 2(e.JN,i?) + e.ji?' + e,,N(2) + e,.Nf2) + e..N(2)ijk* i j i a  i j  k4

, ( 2 ) ,
* * k * " i l  > -  (e i j eM  * eik ej< * • ie , j k )

ikl j-t ct r j k  jk" i t  cj-t"ik

(2.46)

Using the equation for l !4^ analogous to (2.35d), and (2.42) gives1JW

R ^ . i t )  - 4! Li4> - ( l ^ L .  + + 1,,141r)i j ia i j ia  v i j  kt ik j*  U  jk (2,47)

Substituting (2.46) and (2.47) into (2.45), using (2.25c and e) 

to express and N ^ ( t )  in terms of the m<4, and

rearranging leads to the following relationship between the fourth 

order coefficients of the series for r(£,t), p(£,t) and C(x,t)

4!(Eijiu '  Li j te ) '  { <ei j eM "  ' i j W  * (elkeJi " ' i k ' j*1 

* <ei«*jk -  ‘ u ' j k » }

2.4! B ^  * 8(B<j>b” > * B<fB]f ♦ b'J'b^ ,

(contd,)
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. ors n(2) A . _(2) A . „(2) . . n(2) . n(2) __ . 0(2h+ 8(b..B,. + b..B.. + b..B.. + b..B., + b..B.. + b, .B./) îj k-C îk j-t il jk jk 1* jl ik k* îj

-  2{eij(2B^) + b,_. ) + eJ1.(2BÎ?) + b4.) + e,.(2B(4Î ) + b,,.)k*‘ ik j* j t' i*v jk jk

* cJk(2B«  * bit> * eJ«<2Bilt * V  * eki(2Bij> * V }

* 4<bijbk* * bikbj* * bi i V '

(* see footnote on page 4 8 )

(2.48)

The series (2.44) was first suggested by Chatwin and Sullivan 

(1980a), They applied the corresponding one dimensional series to 

the analogue of r(y,t) in a plume dispersing on the surface of a 

lake, r(y,x). Here, x denotes the distance from the source along 

the instantaneous centre line of the plume and y denotes the 

perpendicular distance in the surface of the lake from the centre of 

the plume. Figure 1 of their paper is reproduced in Fig. 2.2. It 

compares the approximation obtained from the first term of the one 

dimensional series, after suitably choosing the analogue of l^j(t), 

with the corresponding curve for r(y,x) derived from the plume 

measurements. As discussed by Chatwin and Sullivan, the level of 

agreement between the curves is very good considering the experimen

tal errors involved and certainly appears to suggest that the three 

dimensional series (2.44) will be of practical value.

2.5 The Way Forward

Sections 2.2-2.4 have shown how a series of generalised three 

dimensional Hermite polynomials can be used to represent T(x,t) 

and many of its ensemble mean properties. An investigation of the
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use of these representations needs to address a number of important 

questions. These questions divide naturally into those relating, on 

the one hand, to the potential practical uses of the representations, 

and, on the other, to their potential theoretical uses. Initially, 

the former will be identified by considering the representation for 

C(x,t), (2.12).

Consider a problem in which the behaviour of several of the 

lower order moments of C(x,t) is known but that of C(x,t) itself 

is not. Without loss of generality we may assume that the behaviour 

of the moments of order <4 is known, a reasonable assumption given 

the errors typically associated with moments of order >4 calculated 

from measurements (Kendall and Stuart 1969). Then (2.12) will be of 

practical value if there exists a choice for j(t), and thereby a 

choice for b^j(t), which

(1) ensures that a satisfactory approximation to C(x,t) is 

obtained from, at most, the first five terms of (2.12)

(the option of approximating C(x,t) by a rearrangement 

of the terms of the representation is discussed below)

(2) can be determined from measurement and/or theory

and (3) is such that the accuracy of the approximation can be

quantified in terms of the parameters of the flow and/or 

the variables x and t.

Any bij(t) satisfying (l)-(3) will be called 'suitable1.
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Experience of the use of a Hermite series representation, or 

more precisely of the one dimensional analogue of (2,12), suggests we 

should not expect to find a suitable choice for bjj(t) for each 

flow, rather that there may exist choices for b^j(t) which are 

suitable for certain classes of flow. For example, given the 

observed Gaussianity of the one dimensional analogue of C(x,t) in 

a plume (Csanady 1973; Sullivan 1971) one choice for b.y(t) of 

particular interest is

bij(t) " Nij (t) (2.49)

(7)where (t) is given by (2.23). As discussed in Section 2.3,

with this choice for b ^ U ) ,  (2.12) is the Gram-Charlier series for

C(x,t) (see (2.11)). Then, one needs to ask

(1) for which flows is (2.49) of practical use?

(2) Given the previous uses of the Edgeworth series (Chatwin 

1970, 1980; Kendall and Stuart 1969; Smith 1978, 1982b) 

are there flows which require the rearrangement of (2.12) 

for it to be of optimum practical use?

(3) Are there flows for which a choice other than (2.49) is 

suitable?

These questions typify those that could be asked of the 

Hermite series representations for c (x,t), p(^,t) and r(y,t).
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(2.13)—(2.15). Consequently, it is important to examine if 

governing equations like (1.17) and (1.18) can be used to express the 

coefficients of (2.12)—(2.15) in terms of the statistical properties 

of the velocity field T(x,t). If this is possible, the existence 

of any practically useful criteria for choosing the arbitrary tensors 

of the representations, b^j(t), d^j(t), e^j(t) and ljj(t), can be 

investigated. Unfortunately, since the hierachy of governing 

equations for the ensemble mean properties is not closed (Section 

1.3.1), substitution of, for example, (2.12) and (2.13) into (1,17) 

and (1.18) obviously leads to a complex system of non-clo.sed 

governing equations for the coefficients.

There appear to be two particularly interesting ways of making 

progress. The first is to choose a particular T(x,t) random in 

some specified way and thereby investigate the use of the representa

tions (2.12)—{2.15) and (2.17), especially the choices of the 

arbitrary tensors of the representations. In this way the analysis 

can be kept exact and the practically important questions simplified 

somewhat. The second is to use a particular closed model equation 

for one (or more) of the ensemble mean properties of T(x,t) and 

investigate the resulting form of the coefficients of the representa- 

tion(s). In this case the analysis cannot be exact. The former 

option is tackled in the next chapter, Chapter 3. The latter is 

addressed in Chapter 4.

If we assume that C(x,t) and piy^t) are Gaussian (Sullivan 1975), 
and choose bjj (t) and e^ ■ (t) such that each is represented by the 
first term of their respective Gram-Charlier series, using (2.37), 
(2.48) may be simplified to give

<4) (t)
"l jkt 41<*ij'tkZ + *ik*j.t+ *itjk*

Hence, from (2.47), the fourth order moment of r(y_,t), R. (t), is. 13 K *v
identically zero. This result follows directly from equation (3.21) 
of Chatwin and Sullivan (1980a).
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Key: ------------  derived from measurements

------------ Hermite series approximation

L(x) is a measured mean plume width

Fig.2.2 Hermite Series Approximation to the Analogue of r(y,t) in a 
Two Dimensional Plume, r(y,x). Reproduced from Chatwin and 
Sullivan (1980a)
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CHAPTER THREE

Dispersion in a Linear Strain Velocity Field

3.1 Introduction

In this chapter the use of a Hermite series representation for 

Hx,t) and C(x,t) is investigated for a particular choice of 

velocity field, T(x,t), The aim is to explore the nature of the 

influence on the first few terms of each representation of:

(1) the velocity field

(2) the molecular diffusivity, K

(3) the initial distribution, T(x,0)

and (4) particular choices for the arbitrary tensor in the 

exponential of each representation.

Sections 3.2 and 3.3 introduce the chosen velocity field and

develop and solve the governing equations for the coefficients,
/ n\

A. . . (t), of the Hermite series for T(x,t), (2.17), with respect1J • • • K
to arbitrary and particular axes, respectively. Section 3.4 

illustrates the way in which equations for the small or large time 

behaviour of the coefficients can be derived for arbitrary «¿jU) 

of (2.17). The small and large time behaviour of the coefficients 

of the Gram-Charlier series for T(x,t), that is for a particular 

choice of o«ij(t), is examined in Section 3.5. The influence of 

the initial distribution, Hx.O), is addressed in Section 3.6.

Sections 3.7 and 3.8 discuss and show how the Hermite series 

for T(x,t) can be used to derive a Hermite series for C(x,t).
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The series for C(x,t) is developed for an arbitrary initial 

distribution (Section 3.7) and for a spherically symmetric initial 

distribution (Section 3.8). The summary of and conclusions from the 

chapter are given in Section 3.9.

3.2 The Velocity Field and Hermite Series Representation for T(x,t) 

With Respect to Arbitrary Axes

This section introduces the chosen velocity field and derives 

the resulting general governing equations for the coefficients,

. .(t), of the Hermite series for T(x,t).

3.2.1 The Velocity Field

The velocity field chosen is the pure straining motion 

(Batchelor 1970, p.79; Monin and Yaglom 1975, p.421)

Ti " Tijxj

where (3.1)

3T. ar.
...  * — J- m T. , •axj ax± ij

Tjj is the rate of strain tensor and is assumed symmetrical. The 

axes with respect to which is diagonal are the principal strain

axes. By incompressibility, (1.2),

Tii 0. (3.2)
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We will assume t ^j is constant in time and does not vary from 

realisation to realisation. In addition, the orientation of the 

principal strain axes will be fixed throughout each realisation.

Then r ( x , t )  is a random function of x and t solely because the 

orientation of these axes varies from realisation to realisation.

The ensemble mean properties of T(x,t) then follow from averaging 

T(x,t) over all possible orientations of the axes.

The velocity field (3.1) is an idealised flow which has been 

applied widely in the literature (Batchelor 1959; Chatwin and 

Sullivan 1979a, 1979c, 1980b; Kowe 1982; Kowe and Chatwin 1983, 1985; 

Saffman 1963; Townsend 1951). A summary of how it is conventionally 

justified as a suitable, though idealised, flow will illustrate why 

it has been so widely used.

On release into a turbulent flow, a small, finite quantity of 

material is spread by both turbulent and molecular diffusion.

Because of incompressibility, (1,2), the material is stretched in at 

least one direction and compressed in another (Chatwin and Sullivan 

1980b; Corrsin 1959; Kowe 1982; Monin and Yaglom 1971, p.592).

Schematic of the effect of turbulent diffusion on a finite quantity of material

f = 0 t »  1
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Eventually, the large scale eddies of the flow cause the material to 

form distended threads or filaments. These filaments, in turn, are 

spread out by molecular diffusion which smoothes out the large 

gradients in concentration caused by the filaments and increases the 

volume occupied by the material. In most flows the turbulent 

diffusivity is many orders of magnitude greater than the molecular 

diffusivity. For example, in the atmospheric surface layer, the 

turbulent diffusivity, which ranges from -l-lO^ m^s"*, is 

approximately 10^-10^ times greater than the molecular diffusivity 

(Monin and Yaglom 1971).

Let the velocity at a point x+r in the vicinity of a point 

x be denoted by T+&T. Then

3T
v 0(|£|2) •

Now 3Ti/3Xj may be written as the sum of symmetrical and 

anti-symmetrical tensors t^j and T^j respectively, i.e.

!L
3x j Tu  * Tu

where

Tij
1
2

9X
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so that

61*1 - Tijrj + Tijrj*

The two contributions to 6T^, Tijrj and Tijrj’ are distinct in 

character (for a detailed discussion see Batchelor 1970). First, we 

may write

Tijrj

where is the local vorticity of the fluid. The contribution

Tijrj therefore represents a rigid body rotation about x with 

angular velocity w.

The other contribution to &Tif T^rj, represents a pure 

straining motion. In reality, the principal axes of strain - with 

respect to which is diagonal and which may always be chosen

since Tjj is symmetrical - will rotate (as a consequence of w) 

and the components of will change with time (Batchelor 1959).

However, we may use the two parameters which characterise the 

small-scale structure of the flow, namely the kinematic viscosity, 

v, and the mean energy dissipation rate, £, to construct time and 

length scales over which the velocity field (3.1) is valid. Then we 

find that the orientation of the principal strain axes and the 

constancy of t ^j persist for times of the order of xt*(v/£)^^. 

Similarly, because of the assumed linearity in r, (3.1) is only 

valid over distances of the order of the viscous cut-off length, or 

Kolmogorov microscale, ^ » ( v 3^ ) 1^. In the planetary boundary 

layer, ^  is of the order of 10“3m (Pasquill and Smith 1983, p.61). 

Using a value for v of 0.14*10“  ̂m2s'“1 (Batchelor 1970) for air at
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10°C leads to an estimate of 'O.ls for In contrast, Kowe

(1982) found values of 0.5><10"^m and 3s, respectively, for 7  ̂ and 

7̂  in a freon jet, and refers to similar values found by other 

authors. The validity of 7̂  and as measures of the

applicability of (3.1) has been confirmed by work of several authors. 

Fuller references to and discussion of the relevant results are given 

in the works already referenced. Suffice it to say here that the 

velocity field (3.1) has proved to be a useful, simple field with 

which to examine several aspects of the small-scale structure of the 

statistical properties of turbulent motion.

In the remainder of this section and Sections 3.3-3.6 , with 

the velocity field given by (3.1), the Hermite series for T(x,t) is 

developed. Sections 3.2.2 and 3.3-3.5 illustrate how the governing 

equations for the coefficients, j c ^ ’ can derived for

general t, and develop the expressions for small and large times. 

Ultimately (Section 3.6), it will be shown that for the most natural 

choice for «¿jit) of the Hermite series, (2.17), namely «.^(t) 

such that (2.17) is the Gram-Charlier series for T(x,t), and with 

respect to the principal strain axes, for any initial distribution 

and large enough times the series reduces to its simplest form in 

which only the first term is non-zero.

3.2.2 The General Governing Equations for the Coefficients 

A*”  ̂ . (t), of the Hermite Series for T(x,t) 1
1 ] » ♦ «K

With T(x,t) given by (3.1), the governing equation for

r(x,t) is
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ar ar+ T X -- Kat pq q axp axpaxp r  . (3.3)

Substitution of the Hermite series for r ( x , t ) ,  (2.17), gives

in(«) 2 A(?° H("l> exp[- ^  « .x x ] 1at l » m=Q st...v st.,.v L 2 ab a bJj

+ n(oc) t x 2 A(m)
Pq q m*0 "st‘*‘v 8XP

expf- t  « . x x 1 st...v I 2 ab a bJ

Kn(-) 2 A(” > -2;A st...v ax axm*0 p p
„(m) f 1 IH „ exp - —  “ .x x. st..,v r L 2 ab a bJ

(3.4)

/ m \
In (3.4), the dependency of IT (x,«) on 5 and * and °*S v * • • V *
/ m \

Av™ (t) and <*..(t) on t has been omitted for simplicity, st..,v lj
(n)Multiplying by . (x,«) and integrating over x leads (after

(n)some algebra) to the governing equation for A.. (t)
1 J • •

n(n-l) -  [ t . a '"’ , . . . . .  -  T ,  A(n> J  at L iq qj...1 tq qi...kj

da
at

ij- a. t . -a. t .
iq jq Jq iq

♦ -8ak-t
3t “ akqT-eq”a*qTkq A (n-2i1... j

(3.5)

where there are n terms in the first set of square brackets, (...], 

on the left side of this equation and l/2n(n-l) terms inside each of
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the remaining square brackets. In (3.5), aij(t) is given 

as in Section 2.4.1 and A ^ ( t )  and A^^(t) are given by 

(2 .20a) and (2 .20b) viz.

ai j^jk
A<°>(t)

Aj^it)

6ik
1

0 .

Whilst for n*2, 3 and 4, (3.5) gives

3A
at

( 2 )
i J  -  f T A ( 2 )  ♦ t  A ( 2 ) l  ♦ 1>■ iqAqj Jq qi J 2

3aij—  - a. t . - a, t .at aq jq jq iq K6 . . (.3.6)

3A
i t

(3)
[T . .<3> . - .(3) * - .<3)1A'"' + t . A'T,' + t . A'T'I * 0 iq qjk jq qik kq qijJ (3.7)

(4)3Avh;

- [t . a3t l IQ I
(4) . _ .(4) (4) (4) 1

... . . .  + T .  A . . .  + T, A . . .  + T- A . 1lq qjki jq qiki kq qiji iq qijkJ

12
f3ai j  1 .(2 ) * *—  - a. t , - a , r . at iq jq jq lqi « + 3t " aiqTkq akqTiq L(2)J*

3a
i t

ii - a. t . - a. t .lq iq iq iq A ( 2 )  *  Ajk
‘f l j k  _ 
at a, t . - a, t . jq kq kq jq ,<2 >ii

3aji . (2) x ■ffu .(2 )~ ~  -  a. t . - a. t ,at jq iq iq jq A.. + ik at akqTiq ” aiqTkq Au
.

K f .(2 ) . .(2) . . .(2 ) . . .(2 ) + .(2 ) . .(2)1
6 L ijAki ikAji iiAjk jk ii ji ik \ i Aij J

(3.8)
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(2n^1 )In general, the odd order coefficents, A.. /(t), n=0,llj.. .k do

not depend on K.

3.3 The Velocity Field and Hermite Series Representation for T(x,t) 

With Respect to the Principal Strain Axes

To simplify the algebra, the behaviour of the coefficients 

with respect to the principal axes of rate of strain will be 

examined. As will be seen, these axes represent the most convenient 

to use for discussion of the choice of the arbitrary tensor 

and hence a^j(t), of the series for T(x,t), (2.17). Choosing

axes such that has components

T i 0 0
0 T2 0
.0 0 r3. (3.9)

(3.5) may now be written

(n-2 ) 
k.. .4 *

(3.10)

where now there is no summation over repeated subscripts. Using the 

same notation, (3.6)—(3.8) simplify to give
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3A(2)_ i j  , . v, (2 )  ̂ 1—  - (T^Tj)*^ * ?
3a. .
TT1J - a. . ( t . + t  ) L3t ij i j “ u (3.11)

3A(3)ljk / * x \. (3) n
a£ ~ (V Tj+Tk)Aijk " 0 (3.12)

3A(4)Ilijia / , , , . A (4)
SF ■ (Ti Tj k Tt)AijW

12
aaii-  - a . j i x . ^ ) ( 2 ) + 5 similar terms

k r. .(2)
z  L8uV + 5 similar terms ] • (3.13)

For example, for i*j*l, (3.11) gives

& - * , ]  M r

so that

All)(t) ’ [Aiî  + 2 all] (0)exp(2T1t) + [exp(2Tjt) - l] - ~ an »

(3.14a)

(2 ) (2 )Similar equations for A22 (t) and A33 (t) can obviously be 

derived. For i-1, J*2, (3.11) gives

A12)(t) * [Ai2  ̂ + "2 an] (0 )exP(iTi+T2 ^t) ~ *2 a12 (3.14b)

(2 ) (2 )and similarly for AJ3 (t) and A23 (t). Following a similar
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procedure for the third and fourth order coefficients, using (3 .1 2 ) 

and (3.13) we obtain

A lll(t) “ AjJ}(0)exp(3Tjt) (3.15a)

(similarly for A ^ i t )  and A ^ U ) )

A 1 1 2 (t) " A 1 1 2 <0 )exp(£2Tl+T2 lt:) (3.15b)

(similarly for A ^ i t ) ,  Ajjj.it)» A2 2 3 ^ ’ A331^^ and A3 3 2 ^ ^

An 3 (t> ■ A123<0’ex*>̂ ^t 1+t 2+t3 11  ̂

a J ^ O )  (using (3.2)) (3.15c)

and

a (4) (t) M i l l 1*' A|4 |l(0)exp(4Tit) + fjjjj(0)exp(4Tlt) (t)M i l l 11' (3.16a)

where

f(4) (t) M i l l 11' —  f2t , l
. (2) 1 A,, + ~  a,, +2tj H i  2 11 4t̂  * K . I <  ♦ a , J

A2222(t) and A3333*t))(similarly for
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A1112(t) = Alll2(°)exp(̂ 3T1+T2lt) + fni2(0 )eXp(i3Tl+T2lt) ■ f1112(t)
(3.16b)

where

f<*> (t) - -S- f
1 1 1 2 't/ 4tj l

(2) + 1 I + i  fa a<2> + a a(2) + 1  ]
4t , r i 2 2 1 2J 4 t 1 1A 12 12A11 2 1 1 1 2J

(4) (4) (4) (4) (4)
(similarly for Aj j j jU), A2 2 2 1(t), A2223(t)’ A3331(t) and A3332(t))

A 1 1 2 2 (t) " AJj2 2(0 )exp(2 tTl+T2 lt) + f1 1 2 2 (0 )eXpi2lTl+T2 lt) “ f1 1 2 2 (t)

(3.16c)

where

f-' m  , J L _  fA(2) I  + JL 1  + __ f.(2) I  . JL.1f,,„„(t) 12t  ̂ [a 22 2 a22 4 J 12 [An  2 an  4tjJr ( 4 ) 
1 1 2 2 '

24 2 [al1A22 + a 22Au ’] * **12*12 * [a” a~- * 2a!1 1 2 2  — 121

(4) (4)(similarly for Ajj'^t) and A ^ ^ U ) )

A1123^t  ̂ " Aij23(0)exp(Tjt) + fj j 23(OlexpiTjt) f1123(t) (3.16d)

where

f<*> (t) . _k_  rA(J) , i  a l . i
1123 12t , l 23 2 23J 12 a,.4r * a23A n  ̂
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+ 2 [ * n ‘
(2 )
13 a A(2) al3A12 ] * I  k 23 2a12a13j

(4) (4)
(similarly for A2213^^^ and A3312^^

/ \
Since each A.. . (t) is a sum of functions of the moments ofX J • • ♦ K

r(x,t), . (t), m<n, (Section 2.4.1), the right hand side oflj • • • K
each of (3.14)—(3.16) can be expressed in the form of a sum of one or 

more of the following:

and

(1 ) terms depending on Tj, t 2, t3, t and, through

the initial distribution, f(x,0 ), only

(2 ) terms depending on T|, T2, Tj , t, r(x,Q) and

(3) terms depending on Tl’ t2’ t 3’ * and K

(4) other terms.

ij. . «lc( 0 ) ,

K

For example, from (3.14) and (2.20c)

All>(t) " 2 {M{J)(0)exp(2T1t) + ^  [exp(2Tjt) - 1] - an }

A 1 2 )(t) - |  {Mi2 >(0 )exp(tTl+T2 lt) " an }  *

(3.17)

Following the same procedure for the third and fourth order 

coefficients, from (3.15) and (3.16) we obtain

A lll(t) “ 6 M lll(0)exp(3Tlt) (3.18a)
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+ ----  (1 - exp(2t ,t)][1 - exp(2T0t)]
t 1 t 2 1 2

- K [ ~  a2 2[exp(2r 1t) - 1 ] + “r  au [exp(2T2t) - 1 ]]

+ <ajja 22 + ^a12^} * (3.19c)(contd.)

A 1123(t) “ 24 {M n 2 3 (0)exp(Tit) “ [M23 (0)an exp([T2+T3]t)

+ m | ^ ( 0)a2^exp(2Tjt)

+ 2M{2)(0)an exp([T1+T2]t) + 2Mj3)(0)a12exp([-r1+T3)t)]

K (7)+ —  M23 (0)exp([T2+T3]t)[exp(2T1t) - 1]

" a23Iexp(2Tlt) ' 11 * <alla23 *'2a12a13>} •
(3,19d)

( 2 )From (3.17) and (3.18) (or (3.11) and (3.12) we see that (t),

(3)i^j, does not depend on K; A...(t) does not depend on K or
1 jK

a^j(t) and, in particular, A^'it) is independent of K, a^(t) 

and T, and so is constant for all t. On expressing the left side 

of each of (3.17)—(3.19) in terms of the moments of r(x,t),

. (t) we obtain the governing equations for . (t), n<4,

with respect to the principal axes of strain. For example, from (3.19a 

and c)

Mllll(t) * ^1111(0)exp(4t jt) + 6 ~  (0)exp(2T1 t)[exp(2Tjt) - 1]

2
♦ 3 [exp(2Tjt) - l] 2 

T 1

(contd.)
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M1122^ * Mi i 2 2 ^ exp^ Tl +T2 ^  + M11 ^ ° ^ exP(2T1t Hexp(2T2t) -  1]

+ M^2 >exP(2T2t )texP(2t it;) - 1 ]

v2
+ ---- [exp(2T-t)-l][exp(2r0t) - 1] . (3.20)(contd.)

t 1 t 2 1 2

These expressions, and the corresponding expressions which can be 

derived from (3,17), (3,18) and (3,19b and d) for other .(t),

n<4, could obviously be derived more directly by multiplying (3.3) 

by x^x!^ for appropriate integers a,b and c and integrating 

over x.
( n )Having developed the general equations for A. . - (t), n<4,X J ♦ • • K

with respect to the principal axes of strain, it is of interest to 

examine the behaviour of these coefficients for both small and large 

t:

(a) for arbitrary «^(t)

(b) for particular choices of «^(t).

Initially, no assumptions about the initial distribution of material,

r (x ,0 ) ,  and therefore about (0 ), will be made.* X J • • • K

\
3.4 Behaviour of the Coefficients, A. . .(t), for Arbitrary « (t)11 « « X J
and Small Times With Respect to the Principal Strain Axes

For arbitrary “¿jit) - and hence a^j(t) - and initial 

distribution, T(x,0 ), using the governing equations derived in 

Section 3.3, it is obviously possible to examine the behaviour of the 

coefficients of the Hermite series, A ^  . (t), for both small and 

large times (that is with respect to the principal strain axes).
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For example, from (3.17a), (3.18a) and (3.19a), for small t

A ^ U )

(3.21)

(t)Allim
2 . 9 3.3 .
" 2 Tll * ...] (3.22)

.(4) m i_
Allll(t) 24 [Mn i i (0 )"6Mn ><0)* n * 2 3*n]

Mi n i (0 )-3Mn )(0 ,» n * 3 ^  ' au] 4Tjt

JMn n (0 )-3Mn >(0 )* u + 3 fr u, ■3«5i,<°> - •„]
, 2 . 2  4Tjt

4Milll(0 )“3Mil)(0 )all+3
K . [ 3K. 
T 1 L t 1 * 7MS?>(0) - an]

8 3 3
3 Tlt

+ . . (3.23)

(n)The corresponding equations for other \\. . (t) can be readilyX J • ♦ • K
derived. In general they show that, as expected, to 0(1), the

coefficients depend on the initial distribution, r(x,0), only. To

0 (t) they depend on T(x,0 ) and advection (via the t ,̂ i=*l(l)3)

and diffusion separately. Interaction between adveetion and
2

diffusion only becomes evident to 0(t*). The results for the
(2 )second order coefficients (A^ (t)) can be shown to be consistent 

with the analysis by Saffman (1960) of the effect of the interaction 

between molecular diffusion and turbulent* advection on the small
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time dispersion. With the summation convention, using

L2 (t) - f x ^ H x . t M V U )

as a measure of the spread of the instantaneous cloud about its 

centre of mass, from (2.18) and (2 .20c) we have

2Lit) 2[a <?> ♦!«.•]I li 2 liJ (t)

( 2 )Using (3,21), the corresponding equations for & 2 2  ^  

and (3.2), for small t

and 4 2 > ( t ) '

L2(t) - [Mn )+M22)+M33>](0) + 2[TlMll)(0)+T2M22)(0)+T3M33>(0)]t + 6Kt 

+ 2 [r2Mj2 )(0 )+T2M2 2)(0 )+T2M ^ )(0 )]t2

* 3 K Mn )(0 )tT2M22>(0 )*T33M332 ) ( 0 , ] t 3

So that the accelerating effect (Saffman 1960) on L2 (t) of the 

interaction between molecular diffusion and advection becomes 

evident at O(t^).

The above equations have simply served to illustrate the way 

in which the small, and by analogy the large, time behaviour of the 

coefficients for an arbitrary initial distribution, T(x,0 ), and 

*j_j(t) can be investigated. However, it is more illuminating to 

examine this behaviour for particular initial distributions and
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choices of the arbitrary tensor «^(t). This is done in Sections

3.5 and 3.6.

3.5 Behaviour of the Coefficients, A* .(t), of the Gram-Charliera j ♦ • • K
Series for f(x,t) With Respect to the Principal Strain Axes * 2

As discussed in chapter two, there is one choice for a^j(t),

and therefore <*.jj(t), of obvious interest, namely a^j(t) such
( 2 )that A^j (t)~0. With this choice for a^(t), (2.17) corresponds

to the Gram-Charlier series for T(x,t) (Section 2.2.2). Initially, 

the general equation for A ^  k(t) for this choice of a^it) will 

be developed.

3,5,1 General Equation for the Coefficents

Choosing

<fl / x^XjHx.tJdVix) (3.24)

Then

A(2)
ij (t) - 0 (3.25)

From (3.5) and (3.6) the general equation for A^. (t) forA J • • » K
arbitrary t^j simplifies to

3A
it

(n)
ij . . . i  _ J (n)

Tiq qj .. .-t T ,  4 <n)
*q qi

> 1. . . j J
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where the summation convention has been used. Hence we see that 

with respect to arbitrary axes, and unlike the case for arbitrary 

a^jit) (Section 3.2.2), for this particular choice of a^jit) each 

. (t) is independent of a..(t) and molecular diffusion, and 

depends only on the advection, via t ^j , and the initial 

distribution, r (x ,0 ) ,  via . CO). With respect to the
1 j  ♦ ♦ ♦ K

( n )principal strain axes, using (3.9), the equation for a )" . (t)

simplifies to

(n
ij.. .4

at (Ti + Tj + + t  )A(n) V Aij...4 0

where there is no summation over repeated subscripts. Hence

4 5 ! . . * « » exp([ri+Tj+ +TJt). (3.26)

Thus with a^j(t) given by (3.24) and using the summation 

convention, the series for f(x,t) becomes

T(x,t) - QniçHl +
I ' m*3

A(m) A. . .k(t)H:
(m)
i j... k(X,£> exp[- J  rpqxpxj

(3.27a)

where a !1!̂  . (t) is given by (3.26) andlj « * *K

r i l ( t ) M « ) ( t )  .  s . k . ( 3 . 2 7 b )
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Using (3.11) and (2.20c)

Mi j >(t> ‘  M ' j ) (0)exp(tT1.TJl t )  * (T^ Tj) [ e x p d T ^ l t )  -  l ] » 4J.

(3.28)

Equation (3.27) is the Gram-Charlier series for T(x,t). On the 

right of (3.27a), the dependence of T(x,t) on molecular diffusion 

is now reflected in the exponential exp[- jr xpx j  - via the 

(2 )dependence of (t) and hence y^(t) on K.

3.5.2 Small Time Behaviour of the Coefficients

With a^jit) given by (3.24) and (3.28), the small time 

behaviour of the coefficients follows directly from (3.26). For 

small t and general Tj_, i-l(l)3, we have

{ 1 + (w 2(W
I» « * I «

(3.29)

Hence to 0(1), as expected the coefficients only depend on the 

initial distribution, T(x,0 ), whilst to higher order in t, they 

depend on both T(x,0) and advection. In particular, using 

(2.20c), (2.20d) and (3.24)

( 0 ) 1 m (3) 
6 Mijk (0 )

and
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*iî>> 24
jM <
iMi

(4)
ijkt(0) - K X 2> ik j* Mi* Mjk ] « ) }

So that, substituting into (3.29), letting S3 = Tj+Tj+Tfe and 

s4 " s 3+t*

k i ] l M  * V  * 2 S3‘ J + - ]

and

A (4) (t) 24 M^4^(0)-[m ^j )M ^ )+2 similar terms] (0) [l+S^t+ j  S2t2+..

The difference between these equations and the corresponding 

equations for general a^jU) (Section 3.4) is their lack of 

dependence on a^jit) and K. Obviously this is a direct 

consequence of the independence of the coefficients for all times from 

a^jit) and K, (3.26),

3.5.3 Large Time Behaviour of the Coefficients

To examine the large time behaviour of the coefficients (i.e. 

as t -♦ oo), consider two particular choices for t :̂

(a) Tj < 0 , T2 » t 3 > 0 (i.e. Tj « -2t 3 < 0 )

(3,30)

(b) Ti * t 2 < °» t 3 > 0 (i.e. Tj ’ “ |  T 3 < °) ♦



71

These two cases provide simple illustrative examples with which to 

examine the time development of the coefficients of the Hermite 

series for T(x,t). They have been used by other authors to discuss 

various aspects of dispersion in a linear strain velocity field 

(Chatwin and Sullivan 1979a, 1980b; Kowe 1982; Kowe and Chatwin 1983, 

1985). In order to compare the two cases, consider what happens in 

each case, and in the absence of molecular diffusion, to a blob of 

contaminant on release into the flow. In the first case, the blob 

is compressed in the direction of one of the principal strain axes 

and stretched in the directions of the other two axes. Hence, 

adopting the terminology of Chatwin and Sullivan (1980b), the blob is 

transformed into a 'discus'. In the other case, (b) above, the blob 

is compressed in the directions of two of the principal strain axes 

and stretched in the direction of the other, and so is transformed 

into a 'cigar' shape.

cigar

discus
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(a) T| < 0 , T2 * T3 > 0

( n\The behaviour of A. . .(t), n*3,4 as t -* «• follows from (
1 j • ♦ • K

and (3.30a):

(t)An r '

A 1 1 2 U;

A^^ (t)Ain UJ

k  exp(-6r^t)

k  exp(-3T.jt)

• -♦ 0 as t 00

A 1 2 2lt'

A ^  (t) A123U;

are constant for all t

A^) (t) 
A222l t '

A^^(t)A233m

A(3 )(t)322U '

' increase like expOr^t) as t -* M

.26)

(3.31a)

(3.31b)

(3.31c)
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A(4) (t)

A (4) (t) A1112U '

Ai4) (t) A1113U;

A (4) (t) A1122m

A(4) (t)A1133U '

A(4) (t)A1123U)

A2 2 2 2^*

A^4  ̂ (t)A3333U '

A(4) (t) A2233UJ

A(4) (t)A3332* }

a(4) (t)a 2223^ j

•e exp(-8r3t)

•c exp(-5T3t)

J >■ 0 as t ■* oo

•c exp(-2r;jt)

increase like expiAr^t) as t -♦ «•

(3.32a)

(3.32b)
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a (4) (t)A1333m

A (4) (t) A1222U ;

A(4) (t) A1233UJ

a (4) (t) A1322UJ

- increase like exp(r3t) as t *♦ o*

(b )  T ]| -  T o < 0 , T j  > 0

A 1 1 1 U)

A ^ \ t )A 1 1 2 m

A^^ (t) A122U '

A^^ (t) A2 2 2 m

- « exp[- j  T - t J  -* 0 as t  -» »

A^^ (t) A123lt'

A^^ (t) a223^;

A ^ \ t )A113U>

are constant for all t

(3.32c)

(3.33a)

(3.33b)
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43 M (t) increases like expOT^t) as t -♦ »

A133(t)

A233(t)

increase like exp[|- T^tJ as t

A(4) (t)Ai m m

a (4) (t) A1113U;

A2223(t*

A(4) (t)A1223lU

A (4) (t)1123U '

« exp(-2T3t)

■ 0 as t -♦ o»

K exp ( -  2 V )

AU) (t) 3333U ' increases like exp(4T3t) as t -* »

a(4) (t) 1333tU

A2333(t)

* increase like exp [y x^tj as t -* 00

(3.33c)

(3.33d)

(3.34a)

(3.34b)

(3.34c)
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a (4) (t) 11331 ;

a (4) (t) 2233^ ' increase like expir^t) as t -* » (3.34d)

A(4) (t) 12331 '

Although it is possible to use these results to examine the behaviour 

of the first few (three say) terms of (3.27) for large times, the 

resulting expressions are rather complex; As will be shown in the 

next section (Section 3.6), because of the nature of the chosen 

velocity field, for large enough times, any initial distribution, and 

ajj(t) given by (3.24), the Hermite series for T(x,t) can be 

simplified.

/-.X
3.6 Behaviour of the Coefficients, A.. . (t), for a Spherically

1 I. , .K
Symmetric Initial Distribution

By choosing a particular velocity field, the previous sections 

have illustrated how the governing equations and properties of the 

coefficients of the series for T(x,t) can be developed. So far 

the analysis has been in terms of an arbitrary initial distribution, 

T(x,0 ), and both arbitrary and particular choices for the tensor 

«^(t) of the series for T(x,t). This section demonstrates how, 

when referred to the principal strain axes, the Hermite series for 

r(x.t) simplifies for:
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(a) any spherically symmetric initial distribution 

and (b) a particular spherically symmetric initial distribution.

3.6.1 A General Spherically Symmetric Initial Distribution

The general solution of (3.3) with given by (3.9) is

(Saffman 1963)

T(x,t)
C ^ (Xj - y, exptT.it])2’f exp[t .t]) 1

3 j - r  - — 1---- \ rtx.
A2xV -t1*2't 3 i-1 2*i J

J exp - 2 0) dV(X ) 

(3.35a)

where

*2 » —  (exp(2T.t) - 1) (3.35b)
1  Ti 1

Particular solutions of (3.35), corresponding to particular choices 

for n^.O), have been used by other authors (Batchelor 1959;

Chatwin and Sullivan 1979a, 1979c, 1980b; Kowe 1982; Kowe and Chatwin 

1983, 1985; Saffman 1963). For example

T(x,0) - Aj exp(-A2r2) r - |yj (3,36a)

and

Bj for |*| < B2

r(x,o)
to otherwise

(3.36b)
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where Aj, A2, Bj and B2 are constants satisfying (1 .1 ).

Initially, a more general choice for r(%,0) will be of value for

this work. We shall assume that T(^,0) is spherically symmetric.

With this choice it is obvious that, with respect to the principal
2 2strain axes, T(x,t) is a function of x^, ri i*l(l)3, K and t.
(n)Thus, for any integer n, the moments, M .. .(t), of r(x,t),1 J • • ♦ K

given by (2.18), satisfy

M ^ n+1 !(t)
1 J « • t * 0

(3.37)

■ M' 2n)(i ->.......* si k - - v  *•••♦

where the number of terms on the right of (3.37b) is equal to the 

number of unique combinations of pairs of subscripts i,j,...,<t, i.e.

(2n!) 
2n(n!)

(3.38)

For example

M ^ ( t >  - M(4,(i,J,k.«.tH5.j5M ♦

so that

M(4)(l,l,l,l,t) * j Jj(t).

/ A \
Since M. . (t) is symmetric in its subscripts then

1 J * »
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M v ’ (i, j,... is symmetric in i,j,...,*.

With T(x,0) spherically symmetric, for consistency °*-jj(t), 

and hence a^j(t), of (2,17), when referred to the principal 

strain axes, must be chosen diagonal i.e.

Ot
ij (t)

« n <t) 0 0

0 **2 2^  °

0 0 *33(t)

(3.39)

It then follows that the coefficients of the Hermite series 

representation for T(x,t), (2.17), are of the form

(3.40)

*,t)(ôij.*.6ia + &ik*’,6j* +*,,+ 6i*,,,ûjk)

for any integer n. Similarly to (3.37), the number of terms on the 

right of (3.40b) is given by (3.38), For example

so that

*(4)>- , . , . X  *(^)
A  ̂ J]|  ̂ *

Since . (t) is symmetric in its subscripts, like
X J • • • Xr

A(2n+1 ), . .
■  0

.(2n) _ A(2n),. .
Aij...*( t ) - A  (1>J-
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M ^ n\i, j,...,*,t), A ^ n\i, j,...,*,t) is symmetric in i,j,...,*. 

Substitution of (3.39) and (3.40) into the Hermite series for 

r ( x . t ) ,  (2.17), leads to

Since the Hermite polynomials are symmetric in their subscripts, 

using (3.38), this equation may be written

f(x,t) - Qn(*) 1 + (2m)!
m»l 2m(m!)

.(2m),. . . . u(2m) . ,
A ( l J .... ’U i r “  k* Hij...-t(5 ’2 )

exp i r 2
* 2 r n xi

2 , 21 
°*22X2 + “33x3

(3.41)

Hence for any spherically symmetric initial distribution, when 

referred to the principal strain axes, the Hermite series for T(x,t) 

can be simplified considerably.

3,6.2 A Particular Spherically Symmetric Initial Distribution

Writing the particular initial distribution (3.3_6a) in the

form



81

r(x,o) 3,3 exp
/(2t ) Lq

1  I_
2 L2J L0

(3.42)

the solution to the governing equation for F(x,t), (3.3), referred

to the principal strain axes is (Saffman 1963)

r (x . t ) Q
✓(2»)3LjL2L3

(3.43)

where

L2 (t) = (f1 J x2 T(x,t) dV(x) (3.44)

and is given by

L?(t) - [l 2 + — 1 exp(2r.t) - —  . (3,45)
1 v U Tĵ J 1

Indeed, for any initial distribution and large enough times (i.e. 

after the effect of the initial distribution has become negligible), 

(3.43) is the solution for T(x,t) (Saffman 1963). Equation (3,43) 

represents a family of ellipsoids centred on the centre of mass of 

the cloud, with principal axes aligned along the principal strain 

axes. At any fixed t, the instantaneous concentration is constant 

on each ellipsoid and the maximum concentration is located at the 

centre of mass of the cloud, which represents the smallest ellipsoid 

of the family. l^it), (3.44), is a measure of the spread of the 

cloud along the ith principal strain axis. It is readily seen from
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(3.43) and (3.44) that the general solution for T(x,t) is in fact 

the first and therefore, in this particular case, the only non-zero 

term of the Gram-Charlier series for T(x,t). So that, when 

referred to the principal strain axes, and choosing °<ij(t) such 

that the Hermite series, (2.17), represents the Gram-Charlier series 

for r(x,t), the only non-zero term of the series is the first term.

Having examined and developed various aspects of the Hermite 

series representation for T(x,t) for the particular velocity field 

(3.1), the remainder of this chapter focusses on the Hermite series 

representation for the ensemble mean concentration C(x,t), (2.12),

for the same velocity field.

3.7 A Representation for C(x,t)

The next two sections of this chapter examine methods of 

deriving a representation for C(x,t) when the velocity field is 

given by (3.1). For the reasons explained below, the fqcus 

throughout is on a representation for C(x,t) for an isotropic flow.

Section 3.7.1 looks at some of the methods of using the 

results for T(x,t) (Sections 3.2-3.6 ), to derive a representation 

for C(x,t). Section 3.7.2 applies one of these methods to derive a 

Hermite series representation for C(x,t) for an arbitrary initial 

distribution, Hx.O). In Section 3.8 the representation for 

C(x,t) for both a general and particular spherically symmetric 

initial distribution is investigated.
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3.7,1 Deriving a Hermite Series Representation for C(x,t) for an 

Isotropic Flow

Clearly, to develop a representation for C(x,t), we need to 

specify the nature of the variable orientation of the principal 

strain axes. Given that most turbulent flows possess local isotropy 

(Monin and Yaglom 1975, p.337), in this initial exploration of the 

representation for C(x,t), it is sensible to consider the relatively 

simple case when all directions of the axes are equiprobable.

Other authors have investigated the behaviour of C(x,t) for 

T given by (3.1) and for particular initial distributions, Hx.O). 

The case of isotropic flow was considered by, for example, Batchelor 

(1959), Chatwin and Sullivan (1979a, 1979c), Saffman (1963) and 

Townsend (1951), while Kowe (1982), has considered cases of 

non-isotropic flow. As was found in the case of the series for 

r(x,t) (Sections 3.2-3.6 ), one advantage of using the Hermite series 

representation for C(x,t), (2.12), is that, in order to derive the

series, no assumptions need be made about the initial distribution of 

material. The task then is to examine the behaviour of the series, 

in particular the first few terms of the series, for particular 

initial distributions and for particular choices of the arbitrary 

tensor, 0ij(t), of (2 .1 2 ).

The method adopted to derive a series for C(x,t) makes use 

of some of the results of Section 3.3. Before describing the method 

in detail, it is worth looking at some other ways in which the 

Hermite series for T(x,t) can be used to derive an expression for 

C(x,t), in particular at the links between these ways and the one

adopted
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If our aim was to derive an expression for C(x,t), not 

necessarily a Hermite series like (2.12), we could attempt to derive 

one directly, as follows, from the Hermite series for T(x,t),

(2.17), referred to axes whose orientation is fixed in space and does 

not vary from realisation to realisation. For convenience, from now 

on we shall call any such set of axes a 'fixed' set of axes and use 

unprimed vectors, tensors and components thereof, such as x^ and

to denote quantities referred to such axes. Conversely primes, 

as in xj and “jj. will be used to denote quantities referred 

to any set of axes whose orientation does vary from realisation to 

realisation, such as the principal strain axes. Then, in general 

o^j(t) of (2.17) may be chosen random so that we may write

w
C(x,t) * rTxTtl - Qn(«) 2 a .(“ } .(t) .(x,«)exp(- |  « x x )* m_Q 1 J...K 1 J...K - * i pq p q

(3.46)

(Note that in (3.46) n(o<), being dependent on the determinant of

oijj (see Appendix A, Equation (A5)), has been taken outside the 

averaging procedure since any determinant is invariant under any 

orthogonal transformation.) The problem is now to average

(m)
ij...k (t) H

(m)
ij...k(x,«)exp(-

1— « X X
2 pq p q)

for each m over all possible directions of the principal axes of
/ m \

strain, with A.. . (t) in general given by (3.5), Assuming we
X j  • • # K

could solve (3.5), unless we specified the precise functional form of 

o*̂ j(t) no further progress could be made. However, assuming that
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the functional form of <x.y(t) was specified, we could then use 

Euler angles (8 ,#,y) to define the orientation of the principal 

strain axes with respect to any fixed set of axes, and integrate over 

8 , ♦ and y. Indeed, with the additional assumption that all 

possible directions of the principal strain axes are equiprobable, we 

could even choose to use spherical polars, r, 0r, and *r say, to 

define the orientation of the axes. Depending on the form chosen 

for o<jj(t), we may or may not be able to derive analytic 

expressions for the integrals involved and, in general, the resulting 

expression for C(x,t) will not be an infinite Hermite series. 

Obviously this method is equivalent to deriving an expression for 

C(x,t) from a Hermite series for T(x,t) for a particular choice of 

random o*^j(t).

We could simplify things and choose «^(t) non-random.

Then since (- —  o ^ x ^ )  is non-random (3.46) may be written

C(x,t) * r (x , t )  * Qn(«) I . ( t )  (x,o«)exp(- \ “ x * ) •“ m=Q XJ...K 1 J...K ~ -  2 pq p q

(3.47)

Indeed this equation may be simplified further because, having 

assumed that *.jj(t) is non-random, the Hermite polynomials are also 

non-random. In other words

C(x,t) * T(x,t) - Qn(*) 2
m=0

,. (m ) . , . 1 .Hi i .(x,«)exp(- -  « x x ) . 1 J • • .K » 2 pq p (|

( 3 . 4 8 )
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Using the orthogonality property of the polynomials (A4)

(t) Q'1 f ci"* .(x ,«) r(x,t) dV(x)
J 1 J • • *K —

Q-1 f .(x ,«> C(x,t) dV(x).
J 1J * • * K a

(3.49)

Without loss of generality we may let

o.i:j(t) - Pij(t) of (2 .1 2 )

so that

*(t) * g(t)

Hence from (3.49) and Section 2.4.2

» ( ( t  \ m R^^ ( t  1
Aij...k(t> BiJ...k(t)

and (3.48) may be written

C(:s-t) - «"<g> k^a’“ »'-1 V pVm*0

(3.50)

which is exactly the same as (2.12). In other words, using the 

Herraite series for T(x,t), (2.17), to derive C(x,t) assuming

that “¿jit) is chosen non-random is equivalent to using a Hermite 

series representation for C(x,t) directly.
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In this work, the possibility of deriving an expression for

C(x,t) from (3.46) for particular choices of random «^(t) is not

pursued. Rather, attention is focussed on the use of (2.12) for

particular choices of Pjj(t). It will be show that the expressions
(n)'derived for the coefficients of the series for Hx'.t), A. . (t).
4. J • • » K

(n)in Section 3.3 can be used to simplify the derivation of B̂  . . (t).
1 J • • ♦ K

3.7.2 Behaviour of the Coefficients, B. . .(t), for an Arbitrary
1 j ♦ > ♦ K

Initial Distribution, T(x,0)

In this section, the expressions for the coefficients of the 

Hermite series for Hx'.t) referred to the principal strain axes, 

and derived in Section 3.3, are used to derive the first few terms of 

the Hermite series for C(x,t).

The method as described below is, in theory, identical to that 

outlined in Section 3.7.1 and expressed by equations (3.48)-(3.50). 

The differences in practice arise because the starting point of the 

discussion of Section 3.7.1 was a series for T(x,t) referred to a 

fixed set of axes. To be able to apply the method of Section 3.7.1,

initially we need to generate a series for T(x,t) in terms of 

tensor components referred to a fixed set of axes. This can be done 

by using the expressions for the coefficients of the series for 

r(x',t) referred to the principal strain axes derived in Section 

3.3.

In order to describe the procedure, consider the second order 

term of the series for r(x',t) referred to the principal strain

axes, i.e.
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(2 V  (2 ) '
Aij (t)Hij exp(- (3.51)

where, as explained in Section 3.7.1, a prime is now being used to 

denote tensors (etc.) referred to the principal strain axes. From 

(3.14a and b) we see that (3.51) includes terms like

The primed quantities, when expressed in terms of components referred 

to a fixed set of axes, vary from realisation to realisation 

depending on the orientation of the principal strain axes. Let 

denote the direction cosine of the ith principal strain axis to the 

jth axis of the fixed set so that, using the summation convention.

An >'<t,Hn >'(£,’ï'> exp(" 2 “m ’W

(3.52)

♦ i a ; 2H0>Mp<lT,~r21t> - £ a j 2( t ) }

(3.53)

Then, for example, x^ and transform like

( 3 . 5 4 a )

and



are referred to a fixed set ofrespectively, where xp and 

axes, and, as explained in Section 3.7.1, we will assume that «pq
is chosen non-random. Applying (3.53), (3.54), and similar

transformations to, for example, (3.52b) we obtain

(t)}

(3.55)

By similarly treating the other terms of the series for T(x',t) 

derived in Section 3,3, we obtain the first few terms of the 

generalised Hermite series for T(x,t) referred to the fixed set of 

axes. We are now at the starting point of the discussion leading to 

equation (3.48). Following that method, without loss of generality 

for the series for C(x,t), let

where 0jj(t) is given by (2.22). Then the first few terms of the 

general Hermite series for C(x,t) are obtained by averaging the 

corresponding terms of the series for T(x,t) over all possible 

orientations of the principal strain axes.

We may define the direction cosines in terms of the Euler

“ijU) * Pjj(t) (3.56)

angles, (0 ,0 ,v), as follows
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costcost - cosSsin^sinv -costsiny - cos8sintcosy sinOsin^'

■sin8sinv sinBcosv COS0

(3.57)

where 0<8<v, 0<t,v*2v. Continuing with the example of (3.55) 

above, using (3.56), the contribution to C(x,t) from averaging

The work required to calculate the integrals in (3.58) and those 

associated with the other contributions to C(x,t) can be minimised 

by making use of equalities like

2t 2* *
[ f f (sinS) 0 .9 t6 ,0 , d8d<*dv J J J pi qj rk s*

0 0 0

( 9 \ * ( 2 ) •
Aj2 (t)Hj2 (x'.«') over a 1 1 possible directions of the principal 

strain axes is

{(Aij> + 2 ^ij> (0 )exp([Tj+Tj ]t - y  bi:j(t)} 
8v

2t 2t t

0 0 0

(3.58)

ps qr ij M  ik j*

(3.59)

where Ij and I2 are constants For example, letting p*q*l,
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r=s=i=k=2 and j=*=3 in (3.59), and using (3.57) gives

2t 2-f ir 2

Ij - } J } (sine) e12ei3e22023 d0d*d* m f" • (3.60)
0 0 0

Similarly, letting p=q*l, r=s=i=j=2 and k=*=3 in (3.59), we 

obtain

2v 2* t 2

i2 - J | | (sine) q12012023023 d0d*d* " • (3t61)
0 0 0

Letting p*r*l and q=s*2 in (3.59) gives

2t 2t t

I | } (sane) ded.d, -
0 0 0

6 1» V  ♦ :2sl k v

(3.62)

Substituting (3.62) into (3.58), using (2.20c), (2.25c), (2.27), 

(3.60), (3.61) and the fact that the polynomials are symmetric in 

their subscripts (Appendix A), gives the following contribution to 

C(x,t) from averaging A ^  ( O H ^  (*'.*') over all possible 

directions of the principal strain axes

- k { (BU * 2 biiH01 '!“'(lVT2lt)
' ï ô K f  *T bii)<0) «PCl-r,-.-r2)k)

î bü ( t ) }  Hl j ) ( ï-s>

2 bi j ( t ) }  Hi j >(ï-S>

(3.63)
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where (t) is given by (2.25c). Following a similar procedure

for the contributions from the other terms of second order or less in 

the series for r(x,t), we obtain the following expression for the 

first three terms of the series for C(x,t) (i.e. up to and 

including ( t ) H ^  (x,(3))

(2)

C(x,t) = Qn((3){l + -jy (b !j } + y  b.j)(0)(2E1 + 3E2> H ^ }(x,(3)

* i l  « I V  4 bü ) (0 ) (E i - e2>

♦ i  K B3Hjj><ï'2) - 2 bil(t) Hij><S’g)} eXP<_ 1 VpV
(3.64)

where

Ej(t) = exp(2Tjt) + exp(2r2t) + exp(2T^t)

Ejit) - exp(-Tjt) + exp(— r2t) + expi-iyt) (3.65)

E,(t) - [exp(2*r t) - 1] + —  [exp(2-r,,t) - 1] + ~  [exp(2r-t) - 1]J Tj 1 T2 1 Tj J

and from (2.25c), (2.27) and (2.18)

(Bij} + 2 bij)(0) = 2 Nlj)(0) “ 2 i V j  r(*’0) dV(x). (3.66)

( n )3.8 Behaviour of the Coefficients, B . . . (t), for a Spherically______ 1 ]♦ t «K ___________
Symmetric Initial Distribution

In this section the expressions for the coefficients,
( n )B. . .(t), of the series for C(x,t) are derived with the
1 J i « «K
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assumption that the initial distribution of material is spherically 

symmetric (Section 3.8.1). The case of a particular spherically 

symmetric distribution is considered in Section 3.8.2. Under these 

conditions, and continuing to assume that the flow is isotropic, the 

rotation of the principal strain axes which has been neglected in 

this work (Section 3.2.1) has no effect on the ensemble mean 

properties of T(x,t). Therefore, in considering the ensemble mean 

properties of T(x,t) for T a pure straining motion, it is 

sensible initially to consider the case of a spherically symmetric 

initial distribution.

3.8.1 A General Spherically Symmetric Initial Distribution

With the assumptions given above, C(x,t) is a function of 

r*|x|, t, K and functions like and TijTji» that is scalar

functions of t ^j . Therefore, for consistency the arbitrary tensor, 

|3jj(t), of the series for C(x,t), (2.12), must be proportional to

£»jj, that is, using 0 (t) to denote a scalar function to t,

0 ^ ( 0  - 0 (t) j (3.67)

so that (2 .1 2 ) may be written

C(r,t) - Qn(g) 2 bJ"0 „(OH*1"* .(x .@) exp(- £  0r2) (3.68)
m=0 - *

where
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x i x i *

/ m \
As described in Section 2.4.2, B.. .(t) is a sum of functions of

X J • • • K
the moments of C(r,t), (t), n<m where . (t) is given

by (2.23). Since C(r,t) is spherically symmetric, for any integer 

n, we may write N.. . (t), in the form (compare (3.37))

(2n+l) 
ij... (t) 0

(3.69)

N ^ n) ,(t)X J • • • ̂ + A A A A ftik j* 6U * ,,6jk)

where the number of terms on the right of (3.69b) equals the number of 

unique combinations of pairs of subscripts i.j,...*, i.e.

(2n!) 
2n(n!)

(3.70)

For example, letting n=0,l and 2 respectively in (3.69b) 

N(0 )(t) - 1 (as in (2.24a))

N*2 )(t) - N(2 )(t)ai:1

n (4) mNi j W (t) N<4) ( t , (&i A « + a., a..ik j* w - (3.71)

Letting i*j, k=* and using (2.23)
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Ni i } ( t ) = 3N(2 ) ( t )  = Q-1 j  r2 c (r , t )  dV(x) 

Ni i j j (t )  = 15Ni4)(t) = Q'1 J r4 c (r ,t )  dV(x)

( 3 . 7 2 )

Since satisfies (3.67), in a way similar to that used for

v(t) above, for any integer n we may write . (t) in

the form

Bi in+1i(t) " 0lj • • • *

(3.73)

Bi?n) #(t )  * B(2n)( t ) (6  .1 J • • • 1 J ,6k* + 6ik*“ SJ* + ••• + au * “ ajk)*

Substituting (3.73) into the series (3.68), using (3.70) and the fact 

that the polynomials are symmetric in their subscripts, leads to

C(r,t> - Qn<|> 2_ B( 2 a ) _ ..kk<S.2> e x p ( - i 0r2).
m=0 2m(m!)

(3.74)

,(n)Looking at the first few B . . .(t), from (2.25) and (3.71) we get
1 J • » »K

B(0) (t) (as in 2.25a)

B*2 )(t) - B(2 )(t)&ij * | (N(2) - b)5ij

(contd.)
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Rv ; (t) = B (t) ( 6  8 + 8 6  + 6 8 )ijkrt; ° ik j-t U  jk;
(¿>) (4)

- 7  (N(4) - 2bN(2) + b2 )(6^ 81.. + + 6 4,6 ., )4! ij k* ik j* i-t jk

(3.75)(contd.)

where

b(t) - (3_1 (t) (3.76)

and the dependency of N ^ n^(t) and b(t) on t has been omitted 

for simplicity. From (3.75)

b[2 )U) - 3B(2)(t) - |  (N(2) - b)

B?4) (t) « 15B(4)(t) - (N(4) - 2bN(2) + b2).lijj 4!

(3.77)

Thus in order to obtain B ^ n^(t), n*l,2,..., we need to calculate

Niijj kk(t) * Q_1 i r2m c(r«t) dV(x). m*l,2,...n. (3.78)

Since the flow is isotropic and the initial distribution is symmetric

J r2n C(r,t) dV(x) - J r2n r(x,t) dV(x), n-1 , 2 .....  (3.79)

Therefore
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♦ • ♦ • (3.80)

( rt\
where M. . (t) is the nth order moment of f(x,t), (2.18)lj.. .k
Hence, the results for the moments of Hx'.t) (Section 3.3) which 

followed from the derivation of the coefficients of the series for

this, it is important to point out that the consequences for C(x,t) 

and its Hermite series of choosing an isotropic flow and/or a 

symmetric initial distribution, as given by (3.68)-(3.80), are 

applicable to an^ isotropic flow and not just the particular flow 

(3.1).

Using (3.77a), (3.72a), (3.80), (3.28) and the fact that the 

initial distribution of material is symmetric

f(x',t), can be used to derive B ^ n^(t). Before proceeding to do

(2 ) 1 (2 )Bu ; (t) - j- (m ::'u ) - 3b(t))O 1 1

*  I t  (̂0 ) (exp (2t i t.) + exp(2T2t) + exp(2T3t))

+ (exp(2r,t) - 1 ) 
t3 3

(3.81)

Following a similar procedure for B ^ ( t )  we obtain

B(A)(t) * TTTZT (Miijj(t) " + 15b2(t)) (3,82)

where
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M^jj(t) - —jr M^tjjíO) {3 (exp(4T^t) + exp(4T2t) + exp(4r3t))15 "iijj

+ 2 (exp(2[r1+T2)t) + exp(2[T1+T;J]t) + exp(2[t 2+t 3 ]t))}

+ —■ Km !?} (0 ) exp(2t , t) (exp(2t . t) - 1 ) + f-exp(2-r-t) (exp(2-r_t) - 1 )J xi utj I 1 * 2 * *

+ —  exp(2T,t)(exp(2r,t) - 1) T3 J J

+ exp(2T.t)p—  (exp(2*r0t) - 1) + (exp(2-r,t) - 1)11 LT2 ¿ J J

+ exp(2T2t)j^- (exp(2Tjt) - 1) + ~~ (exp(2r3t) - 1)|
1 3

+ exp(2T3t) |— - (exp(2Tjt) - 1) + ~  (exp(2T2t) - l)j|

+ K2 (exp(2xjt) - l) 2 + ^  (exp(2T2t) - l) 2 + •—  (exp(2T3t) - 1)‘ 
*-'rl t 2 t3

---- (exp(2T.t) - l)(exp(2r.t) - 1)
T 1 T 2 1 2

——  (exp(2T . t )  -  l ) ( e x p ( 2 T , t )  -  1) 
t 1t3 1 3

— —  (exp(2r.t) - l)(exp(2*r,t)
T2T3 2 3

(3 .83)

and

M*2 )(t) * —  m !2 )(0) (exp(2T.t) + exp(2T t) + exp(2T-t))XX J XX 1 • J

+ K {—  (exp(2T.t) - 1) + “ ” (exp(2T.t) - 1 ) + ~  (exp(2-r,t) - 1)1. »■Tj 1 t2 ¿ t3 j J

(3 .84)
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3.8.2 A Particular Spherically Symmetric Initial Distribution

For the particular spherically symmetric initial distribution 

(3.42), the first few coefficients of the series for C(r,t) may be 

derived as follows. Substituting for m Î^(O) and in

(3.81), (3.83), (3.84), and hence (3.82), using (3.42), leads to

„(2), . 1 ,r2 , » 2 , .2 vB (t) » £  (Lj + + Lj - 3b)

(3.85)

■ TsT4T (3(L1 * L2 * L3> *
2 2 2 2 2 2 

2(LiL 2 ♦ ♦ l\l\)

2 2 2 2 - 10b(Lj + + L3 ) + 15b ;

where L^(t), i=l(l)3 is given by (3.45). Hence the series for 

C(r,t), (3.74), may be written

C(r,t) - Qn(g) {l + ^(l J + l22 + L3 - 3b)H^)(x,@) + “ y(3(Lj + L* + lj) 

2 2 2 2 2 2  2 2 2  2 f M♦ 2(LjL2 + LJL3 + L^Lj) - 10b(Lj + L" + L*) + 15b^)H^'J(x,g) + ... 

} exp(- j  (3r2). (3.86)

Choosing b(t), and therefore 0(t), such that B^(t)*0 leads 

to the Gram-Charlier series for C(r,t)
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C( r , t )  "  J 2 » j3 /2 L3 i1 * 10 L l(Ll *  L2 * L3> -  (L?L2 * L?L3 * L2L?>>

« [ f ] 4 -  10[ r ] 2 *

+ 1 xl
2 L2

(3.87)

where

b(t) - (3_ 1 (t) j  | r2 f(x,t) dV(x)

1 2  2 2 
3 (L1 * 2 » 1.3 )

(3.88)

Equation (3.87) gives us an expression for the first few terms of 

C(r,t) in terms of the three measures of spread of the cloud L^(t), 

i*l(l)3. Exact solutions for C(r,t) are available for T(x,0) 

given by (3.42) and for particular representative choices for t ,̂ 

i«l(l)3, such as those considered in Section 3.5.3. For example 

t 2s*t 3>0 , t j*-2t 3<0 (Chatwin and Sullivan 1979a). Having developed 

the series for C(r,t) for general ta, i-1(1)3, it would be of 

interest to extend the work to an examination of the practical use of 

the Gram-Charlier series for C(r,t) for such representative choices 

for i»l(l)3. This could be done by analysing the accuracy of

the approximation given by, for example, (3.87) for various choices 

of the ratio Lj/L. Other choices for b(t) and the effect of the 

inclusion of additional terms in the series should also be examined.
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3.9 Summary and Conclusions

This chapter has developed the Hermite series representations 

for r(x,t) and C(x,t) for a linear strain velocity field. The 

nature and quantity of theoretical results presented has been 

selected to illustrate, for a given velocity field, various ways of 

investigating the Hermite series representation for T(x,t) or one 

of its ensemble mean properties. For each representation, the 

governing equations of the coefficients and the form of the first few 

terms have been established. The effect of the molecular 

diffusivity, and of particular choices for the initial distribution, 

r(x,0 ), and the arbitrary tensor of each representation has been 

examined. The analysis presented for C(x,t) has been based on the 

assumption that the flow is isotropic which, given the nature of the 

chosen velocity field, is a reasonable initial assumption (Section

3.8.1) . However, the work could be extended to anisotropic flows.

Although no practical applications have been presented, the 

work has provided guidance on how, for the chosen velocity field, the 

series can be simplified for particular choices of axes, initial 

distribution of material or arbitrary tensor of the representations. 

Indeed, some of the simplifications pertain to general flows (Section

3.8.1) . The next obvious step is to develop the practical 

application of the series, in particular for C(r,t) (Section

3.8.2) . For the same velocity field, it would also be of interest 

to extend this work to an examination of the use of Hermite series 

representations for other ensemble mean properties, such as c^(x,t), 

for which exact solutions are also available (Chatwin and Sullivan

1979a)



1 0 2

CHAPTER FOUR

Dispersion in the Atmospheric Surface Layer

4.1 Introduction

In Chapters 2 and 3 attention was focussed on the use of a 

Hermite series representation for the concentration distribution of a 

cloud of contaminant and its associated ensemble mean properties 

evaluated in a framework of relative diffusion. Only brief 

references were made (Chapter 1, Section 1.4 and Chapter 2, Section 

2.3) to the possibility of using a Hermite series representation for 

a concentration field evaluated in frameworks of absolute diffusion. 

However, for the reasons discussed in Chapter 1 (Section 1.2.2) many 

problems of turbulent dispersion are conventionally analysed in a 

framework of absolute diffusion, a case in point being dispersion in 

the atmospheric surface layer. Because of the practical importance 

of this particular problem, and because of the wealth of relevant 

qualitative and quantitative results, it was of interest to examine 

the application of a Hermite series representation to this problem.

The application involves the use of a one dimensional Hermite 

series to represent the longitudinal distribution of the ensemble 

mean concentration of a cloud released in the atmospheric surface 

layer. In Section 4.2 the dispersion model and Hermite series 

representation for the mean concentration are introduced. The 

detailed aims of the application are also discussed. In Section 4.3 

the lower order coefficients of the representation are calculated and 

an explanation is given of the numerical scheme used to calculate
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higher order coefficients. Section 4.4 presents and discusses the 

results of the application. Section 4.5 summarises the main results 

of the chapter and suggests some areas for future work.

4.2 The Model

4,2.1 The Surface Layer Dispersion Model

The model to be used concerns the release and subsequent 

dispersion of contaminant in the so-called constant stress region of 

the atmospheric surface layer (Panofsky and Dutton 1984; Pasquill and 

Smith 1983). Broadly speaking, the concept of a constant stress 

region is valid for the lowest 10% of the mixing depth, its height 

depends on atmospheric conditions and typically varies from '10m on 

a clear night, to ‘'■100m during the day time with strong winds 

(Panofsky and Dutton 1984, p.113; Pasquill and Smith 1983, p.40). 

Under the assumption of neutral stability, the mean wind, U(z), is 

given by the logarithmic profile

U(z) (4.1)

where z denotes the height above the ground, u* is the friction 

velocity (assumed constant), Zq is the roughness length and k is 

von Karman's constant. u* represents the magnitude of the velocity 

fluctuations and typically ranges from 0 .1-1 .0m s“*. Zq formally 

denotes the height at which U(z)-*0 although, as indicated in (4.1), 

the logarithmic profile is only applicable for heights much greater 

than Zq . Typical values for Zq range from '0.01m for cut grass,
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to *wlm for towns and forests (Panofsky and Dutton 1984, p.123; 

Pasquill and Smith 1983, p.317). The value of k is assumed to be 

0.4, a discussion of the uncertainty in its value is given by, for 

example, Pasquill and Smith 1983 (p.42).

Taking coordinate axes, x,y,z fixed relative to the earth 

with origin at the earth's surface, the surface is assumed infinite 

in extent in the x-y plane with the mean wind, U(z), parallel to 

the x axis. A finite quantity of passive contaminant is released 

instantaneously at time t=0 from a point source located at 

(0,0,h). Let C(x,y,z,t) denote the normalised ensemble mean 

concentration of the cloud. Then, assuming the quantity of material 

is conserved throughout the dispersion

Hi C(x,y,z,t) dx dy dz = 1. (4.2)
all space

If the effects of molecular diffusion are neglected, the governing 

equation for C(x,y,z,t) is

ac
at

ac
ax (4.3)

where u,v,w and c denote the fluctuations of the x,y,z 

components of the velocity and of the concentration about their 

respective means. It will be assumed that the longitudinal 

turbulent flux of material is negligible compared to longitudinal 

advection so that

a
ax (uc) << loge f c ]

ac
ax (4.4)
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and that the vertical turbulent flux, wc, can be represented by an 

eddy diffusivity, K(z), such that

wc -K(z) 8C
dz (4.5)

where

K(z) * bu*z, b a constant >0 .

Gradient-transfer theory (Panofsky and Dutton 1984, p.120, Pasquill 

and Smith 1983) then leads to

b - k

so that

K(z) - kuAz. (4,6)

The assumptions on which (4.4), (4.5) and (4.6) are based have been 

discussed in detail elsewhere (Monin and Yaglom 1971, section 10.5; 

Pasquill and Smith 1983; Yaglom 1976).

Integrating (4.3) over y, using (4.4), (4.5) and (4.6), 

leads to

where
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X(x,Z,t) | C(x,y,z,t) dy.
00

(4.8)

In other words, X(x,z,t) represents the crosswind integrated mean 

concentration from a point source or the mean concentration due to an 

infinite crosswind line source along the y axis. The initial and 

boundary conditions on X(x,z,t) are

X(x,z,0) = 6 (x) 6 (z-h) (4.9)

kuAz -» 0 as z -* 0 (4 .1 0 )

X -♦ 0 as z oo (4,11)

X -♦ 0 as |x| “♦ «#. (4.12)

Equation (4.10) corresponds to no loss of material to the ground, 

whilst (4.11) and (4.12), respectively, follow from the assumption 

that there is no limit to the height to which material may disperse 

or to dispersion in the alongwind direction.

The model defined by Equations (4.7)—(4.12) has been analysed 

widely in the literature. Reviews of and references to these 

analyses are given by Monin and Yaglom (1971), Pasquill and Smith 

(1983) and Panofsky and Dutton (1984), for example. Certain results 

of these analyses will be referred to and discussed throughout the 

remainder of this chapter, as appropriate, in order to put the 

present analysis into context. In particular, in the next 

sub-section, and as part of the description of the aims of and
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motivation for this analysis, the limitations on the range of 

applicability of the model are summarised,

4,2,2 The Hermite Series Representation for X(x,z,t)

The main aim of the chapter is to examine the use of the 

following Hermite series representation for X(x,z,t)

90

X(x,z,t) - ^ A (Z,T)H (X)expf- ~r X2] (4.13)
n=0 n n L 2 J

where (4.7) is the governing equation for X(x,z,t) and the 

dimensionless variables X,Z and T are given by

X z (4.14)

and, in general, the arbitrary functions m(z,t) and o(z,t) may 

each be chosen functions of z and t. The one dimensional Hermite 

polynomials Hn(X) are defined by (Kendall and Stuart 1969; also 

discussed in Section 2.2.1)

H„(X)exp[- ±  X2] - (-1)" ^  exp[- |  X2] . (4.15)

Attention is focussed on the practical value of (4.13), in particular 

on the effect of different choices for m and a on the 

approximation to X obtained from the first few terms of (4.13).

The choice of the dispersion model outlined in the previous
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section and of the Hermite series (4.13) was prompted by the work of 

several authors. The main criteria were to identify a practical

problem which was suitable for applying a Hermite series and which 

offered the opportunity to perform calculations and, in some way, 

verify the validity of the results.

The use of a three dimensional Gaussian distribution to 

represent the distribution of the mean concentration of a cloud 

dispersing in the atmospheric surface layer is well documented (Monin 

and Yaglom 1971, pp.579-693; Pasquill and Smith 1983). However, 

starting from Equation (4.3) for C(x,y,z,t) and for medium-range 

dispersion - that is after the effects of the initial distribution of 

the cloud have become negligible but before the existance of any lid 

on the atmosphere affect the distribution - the Gaussian model can 

only be proved rigorously by assuming a constant mean wind, and by 

adopting an eddy diffusivity tensor to represent the RHS of (4.3), 

with principal axes parallel to the x,y and z axes, and with constant 

components. There are several other methods of deriving a Gaussian 

distribution for C(x,y,z,t), for example by using a Lagrangian 

description of particle dispersion (Monin and Yaglom 1971, 

pp.540-579). However, all of these methods are based on certain 

simplifying assumptions, in particular they do not account for the 

effects of the increase of wind speed with height.

The dispersion model, (4.7), is often used as the starting 

point for a more precise analysis of the effects of the increase of 

mean wind speed with height. There are three main factors which 

limit its range of applicability. First, the use of an eddy 

diffusivity to represent vertical transfer, (4.5), is recognised as 

being most appropriate for dispersion close to the ground, that is 

when the scale of the eddies acting on the cloud are much smaller
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than the vertical scale of the cloud itself. Second, because of the 

assumed boundary condition, (4.11), in practice the model will only 

be valid while the vertical spread of the cloud is much less than the 

height of any inversion layer, Hj say. Since the vertical spread 

of the cloud in neutral conditions is typically “x/lO and 

|U(z) I'lOu*, this implies that u*t«Hj. Third, since the model 

equation, (4.7), is parabolic, the assumed rate of vertical spread is 

infinitely fast, that is the cloud immediately fills the whole height 

of the boundary layer (Monin and Yaglom 1971, Sections 10.3 and 

10.6). Thus the model will not give an accurate picture of the 

distribution for X(x,z,t) in the upper edges of the cloud or where 

the concentration is relatively small.

Saffman (1962), using a simplified form of the model used 

here, has examined the effect on the longitudinal spread of a cloud 

dispersing in the atmosphere of the interaction between wind shear 

and vertical diffusion. His analysis highlights the difference 

between the nature of the spread (a) when there is a limit on the 

height to which material may disperse, for example when an inversion 

exists, and (b) when vertical dispersion is unbounded. In order to 

achieve analytic results without losing the main features of 

dispersion in the surface layer, Saffman considered a model in which 

the coordinate axes x,y,z coincided with the principal axes of the 

eddy diffusivity tensor K^iz), and in which the mean wind was 

directed along the x-axis and was proportional to a power of z. One 

of the conclusions of Saffman’s work is that when there is a lid on 

the atmosphere, the longitudinal distribution of material at any 

fixed height approaches the Gaussian as t -* oo. This was a natural 

conclusion of applying the results of earlier work by Taylor (1953, 

1954b) and Aris (1956) on dispersion in pipes and channels, to
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dispersion in the atmospheric surface layer. On the other hand, 

when there is no lid on the atmosphere, Saffman shows that the 

horizontal distribution at any fixed height is not asymptotically 

Gaussian. For the particular case of a wind profile linear in z 

and a constant vertical eddy diffusivity, Saffman shows that for 

dispersion unbounded above, the skewness of the distribution of 

material at ground-level released from a ground-level source 

approaches '1.3 as t -> oo, i.e. is significantly different from the 

Gaussian value of zero (Kendall and Stuart 1969; also discussed in 

Section 2.2.1). Saffman concludes that these results will also 

apply, for sufficiently large times (i.e. t*0 (l)), to the situation

where the mean wind, vertical and horizontal eddy diffusivities are 

represented by more general, but realistic, power law profiles.

From these results, the model (4.7) obviously represented an 

interesting and important practical problem which appeared to be 

suitable for applying a Hermite series and for which, as mentioned in 

Section 4.1, there was an abundance of relevant qualitative and 

quantitive data. It was of interest to examine the practical value 

of a Hermite series representation for X(x,z,t), in particular the 

ability of a Hermite series to reflect the expected deviation of the 

horizontal distribution from the Gaussian. Whilst it might have 

been simpler to assume a velocity profile proportional to a power of 

z, the logarithmic profile was retained precisely because most other 

analyses abandon it in favour of a simpler profile. In addition, 

some exact results for various relevant measures of quantity, 

location and spread of the cloud as represented by the adopted model, 

(4.7)—(4.12), were available (Smith 1957; Chatwin 1968), and provided 

the opportunity to compare the results of any numerical scheme which



Ill

might be developed here, with the 'exact' model. These exact 

results are introduced in Section 4.3.1.

Turning to the particular form of the chosen Hermite series,

(4.13) involves the one dimensional Hermite polynomials Hn(X).

Clearly it satisfies the boundary condition, (4.12), The governing 

equation for X(x,z,t), (4.7), and the other boundary/initial condi

tions, (4.9)—(4*11), will determine the behaviour of the coefficients, 

An(Z,T). There are two other natural choices for the polynomial 

dependency of any series for X, (a) a series involving one 

dimensional polynomials Hn(ZQ), Zg*(z-m0 (x,t))/og(x,t) -defined 

analogously to Hn(X) in (4.15) above, and (b) a series involving the 

two dimensional polynomials, Hnm(Xj,Zj), which may be defined by

Hnm(Xl - Zl )exp{ -  2 [X1 * 2X1Z1 *

'  { -  7  [x i * 2xi z i * z5 ] }qX j aZ|

(4.16)

x-m^t)
kl cx(t) •

z-m7 (t)
:i

where mx(t), mz(t), ox(t) and oz(t) are arbitrary functions of 

time. However, since the domain of X is restricted to the 

half-space z>0, if we were to adopt a Hermite series involving 

polynomials dependant on an exponential function of z, such as 

Hjj(Zq ) or Hnn)(Xj,Zj), complex expressions for the coefficients of 

the series would be obtained. For example, let X be represented

by the series
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oo

(4.17)

Z0 = o0 (x,t) ’
z-niQ(x,t)

With (4.17) we would like to be able to derive expressions for the 

coefficients, Bn(X0 ,T), in terms of the vertical moments of X, 

that is in terms of

However, the orthogonality property of the polynomials involves the 

domain -oo<z<o* (Kendall and Stuart 1969; also discussed in Section 

2.2.1). Thus, for example, multiplying (4.17) by H j(Zq ) and 

integrating between z*0 and z=oo leads to the following complex 

integral on the RHS of the equation

Hence a simple expression for B ^ X q .T), or for any other Bn(XQ ,T), 

in terms of the vertical moments is not necessarily obtainable. The 

same problem arises if X is represented by a series involving the 

two dimensional polynomials defined in (4.16).

Having explained the reasons for choosing the particular 

Hermite series, (4.13), the remainder of this section looks in

00

n=0 ,1 , 2 , . . . (4.18)
0
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general at (a) the main aims in examining the series and (b) the 

natural choices for the arbitrary functions of the series, m(z,t) 

and o(z,t).

4,2,3 Some Natural Choices for m(z,t) and o(z.t)

Clearly, in examining the practical value of (4.13), the main 

aim is to examine the value of the approximation to X obtained from 

a finite number of terms of the series. Let Xp denote the sum of 

the first (p+1 ) terms, so that

P
Xpix.z.t)--—  2 An(Z,T)Hn(X) exp[- \ X2] . (4.19)

Then, interest lies in the effect of different choices for m and a 
on Xp. For any chosen m and o, having identified criteria to 

define "acceptable", we would like to ascertain if there exists a p 

such that Xp provides an acceptable approximation to X. in the 

discussion below, the following measures of location and spread of 

the cloud will be useful. Let Z(t), X(t) and X2 (z,t) denote 

the z and x coordinates of the centre of mass of the cloud and 

the x coordinate of the centre of mass of material at a height z, 

respectively, so that

f f z X dx dz
n 4 «o m

Z(t) - — -----------  ” f I z X dx dz
00 00 o -«»1 l X dx dz 
0 —«» (4.20)
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X(t)

90 00

| f x X dx dz 
0 -oo 
00 oo

/ J X dx dz 
0 —oo

oo oo
m J J x X dx dz

0 -oo

J x X dx
X(z,t) » — ------- . (4.20)(contd.)Z 00

J X dx
-oo

Let 2x(t), ox(z,t) and sx(z,t) denote the standard deviation 

(s.d.) in the alongwind direction (a) of the cloud about its centre 

of mass (b) of material at height z about the centre of mass of 

material at the same height and (c) of material at height z about 

the centre of mass of the cloud, respectively, so that

l f (x - X ) 2 X dx dz 
0 -00 

00 00
; f x dx dz
0 -oo

00 00
I f (x - X ) 2 X dx dz 
0 -oo

V z>t)

J (x - X >2 X dx

00
J X dx

sx(z,t)
J (x - X)2 x dx

oo
J X dX

(4.21)
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From (4.20 b,c) and (4.21 b,c) it follows that

s2 (z,t) - o2 + (X - X )2.
A A Z (4.22)

Analytic expressions for some of these measures of location and 

spread are available or can be derived and are detailed in Appendix 

B.

Using (4.20a and b), and from the Lagrangian similarity 

hypothesis (Batchelor 1964), X(x,z,t) is of the form

and m(z,t) and o(z,t) must be proportional to u*t. The choices 

for m(z,t) and o(z,t) will strongly influence the shape and 

spread, respectively, of any approximation to X, X in the 

alongwind direction, but not of course of the cloud itself. Two 

natural choices for m are X(t) and Xz(z,t) defined by (4.20b 

and c), whilst for o(z,t), the three measures of spread of the 

cloud 2x(t), <?x(z,t) and sx(z,t) defined by (4.21) are the 

obvious natural choices. Specific examples of X for m*X or X_r Z
and o=2x , ox or sx are presented in Section 4.3.2, after the 

equations for the horizontal moments of X(x,z,t) have been 

developed. However, at this stage it is interesting to make some 

general observations on the effects of these choices for m and o 

on Xp, in particular to indicate the way in which the choices

simplify the first few terms of Xp.
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For arbitrary m, a and fixed (Z,T), Xq - regarded as a 

function of X - is the Gaussian distribution with zero mean and unit 

variance defined by

J X X 0 dX 
—00 

00

J X dX
and

f X XQ dX 
-00 

00

J X dX
(4.24)

Multiplying (4.13) by Hj(X) and H2 (X), respectively, integrating 

over X and using (2.4) and (4.20c) gives

00

Aj(Z,T) -  ̂(Xz - m) J X dX

(4.25)

00

A_(Z,T) - -*r J [(x - m ) 2 - o2] X dX. 
1 2a

From (4.25b) and (4.21c) it follows that choosing m*X(t) and 

o*sx(z,t) ensures A2 is identically zero for all (Z,T) i.e.

P
Xpix.z.t) - {a0 ♦ AjH,(X) ♦ ^  A„Hn(X)} exp[- ±  X2

where

X x - X
s

X
(4.26)
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From (4.25a), choosing m=Xz(z,t) ensures Aj(Z,T) is identically 

zero for all (Z,T). Therefore, from (4.24a), Xq has the same

mean as X i.e.

M 00

J X X dX = J X XQ dX - 0

and

X^x.z.t) - XQ(x,z,t) - k  Ao exp [- 2 x2]

where

X ---- . (4.27)

For the same choice of m, X2 is also symmetric about X=0 and 

attains its maximum there. Its variance is ox^/o^, where o^ is 

given by (4.21b). From (4.25b) and (4.21b), choosing o*ov(z,t) 

ensures that A2 (Z,T) is zero for all (Z,T), Then

X2 (x,z,t) » Xjjix.z.t) (4.28)

the Gaussian distribution in X defined by (4.24). In addition,

(4.13) reduces to the Gram-Charlier distribution of X (Section 2,2) 

i.e.

k { ‘

P

n=3 w x)} exp[- i * 2]Xp(x,z, t)
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where

X ----— ^ . (4.29)
wx

Obviously these choices for m and o which simplify the leading 

terms of the representation for X are of particular interest from 

the point of view of analysing Xp.

In order to examine specific examples of Xp, it is necessary 

to attempt to derive exact expressions for the coefficients,

An(Z,T). The next section (Section 4.3) introduces the exact 

expressions for the An(Z,T) that are available from work by other 

authors or that can be derived. These expressions are then used to 

illustrate some approximations to X, X and to explain the 

rationale behind the rest of the chapter.

4.3 Calculation of the Coefficients of the Hermite Series, Afl(Z,T)

In this section, the exact expressions for the coefficients, 

An(Z,T), n<2, of the Hermite series for X, (4.13), are outlined 

(Section 4.3.1). In Section 4.3.2, these expressions are used to 

illustrate approximations to X(x,z,t), Xp, for p<2, and thereby 

explain why a numerical scheme has been applied to calculate higher 

order coefficients and hence higher order approximations to X. 

Section 4.3.3 explains the numerical scheme.
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4,3.1 The Governing Equations for the Horizontal Moments of 

X(x,z,t) and Some Exact Expressions for An(Z,T)

Let Nn(z,t) denote the nth order horizontal moment of 

X(x,z,t) i.e.

00

Nn(z,t) - | xn X(x,z,t) dx. (4.30)
-0 0

Multiplying (4.13) by Hm (X), integrating over X and using (2.4) 

leads to

00

V Z,T) “ nT I Hn(X) X(x’z’t) dx (4.31)

so that An depends on Nffl, m<n. For convenience later, 

expressions for AjjiZ.T) will be derived by developing the governing 

equations of Nn(z,t).

Multiplying (4.7) by xn, integrating over x, using the 

boundary condition (4.12) and transforming to the dimensionless 

variables X,Z,T defined in (4.14) leads to

aNo a [zaNol
8T az az 0

(4.32)

3N __n
3T

a
az

zaN
az

nz,
N . log Z n-1 e n=»l, 2,... .
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Using (4.9)—(4.11), the initial and boundary conditions on Nn may 

be written

Nft ( z, 0 ) » 5(Z-H), H » ~  0 Z q

3N
Z -r~- ° as Z -♦ 0 for all n (A.33)

Nn -* 0 as Z -» •# for all n.

From (4.30), NQ represents the proportion of material at height z 

and is given by (Smith 1957; Chatwin 1968)

NQ(z,t)
_]__
ku*t

(Z+H)
T •} «

(4.34)

where Ig is the modified Bessel function of order zero (Abramowitz 

and Stegun 1965, p.374).

From (4.32b), for n>l, Nn depends on Nm , m<n. The 

following exact solutions for l<n<2 can be derived from the known 

expressions, given in Appendix B, for the measures of location and 

spread of the cloud Z(t), X(t), Xz(z,t), 2x(t), <?x(z,t) and sx(z,t) 

defined by (4.20)-(4.21). For n=l, from (4.20c) and (4.30)

Nj(z,t) - Xz(z,t) N0(z,t). (4.35)

Hence from (4.34), (B7) and (B8)
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¿2 W f ]  * UoseZ *  2)exp [ - ? ] }

(4.36)

where Ej(x) is the exponential integral function (Appendix B, 

Equation B3).

In (4.36) the superscripts (G) and (E) have been used, as they 

will throughout the chapter, to denote ground-level and elevated 

sources respectively. Note that (4.36b) follows directly from 

(4.36a) and the reciprocal theorem (Smith 1957) which shows that the 

distribution of concentration at ground-level from an elevated 

source, height Hj say, is the same as the distribution at Hj from 

a ground-level source. From (4.21b), (4.30) and (4.35)

N2(z,t) « [o£ + X^Hz.t) N0(z,t)

(4.37)

Hence using (B9b), (4.36a) and (4.34)

[2  -  l o g j l . - ' - ] ] 2 } (4.38)

where y is Euler's constant and is given by (B4)

We can use (4.34), (4.36) and (4.38) to derive exact 

expressions for the coefficients Aq (Z,T), A jG*(Z,T), a |E\ o ,T) and 

A2G)(0,T) of (4.13). From (4.30) and (4.31)
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V z -T) = 7  No

AjiZ.T) mN, )

A2(Z,T) h  K  -  2mNi * ["2

Therefore using (4.34), (4.36) and (4.38)

1 f (Z+H)T , r2^HZT
V z -T) ■  7 t ^ 7  cxpl -  t ~ f ro l ~ ;

4jG>(Z.T) - 4 -2  {E1 [f] * lltV  -  2 -  j£F> eXf[- ?]}  
a k

Ai E )(0 ' T> '  2 , - 1. : t 2 { E1 ®  * < l 08eH '  2 -  exp[ -  ? ]}<3 10, t) 1C

A^iO.T) 1---2 K ‘ <2 - 6 * [2 - l°Se(Te-»')] )
o3(0,t)k2

+ 2m(0,t) (2 - loge (Te"r ))

+ —  (m2 - <y2)(0,t)} .u*t

However, from these expressions, for ground-level and elevated 

sources respectively, and for arbitrary m(z,t) and o(z,t), 

only obtain at best, that is to the highest order in the Hn(X) 

approximations X^ vx,0,t) and Xj (x,0,t), where, from (4.

(4.39)

(4.40)

we can 

, the 

13)
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x*G)(X,o,t)  = 757 {a Ĝ)(0,T) + a[G)(0,T)H1(X)

+ A^G)(0,T)H2(X)}exp[- X2] (4.41)

x|E)(x,0,t) “ 7^7 {a^E)(0»T) + A|E)(0,T)H1(X)}exp[- |  X2] . (4.42)

For the distribution of concentration at elevated Z, and from the

reciprocal theorem (Smith 1957) it follows from (4.42) that the
(G)highest order approximation achievable is for X^ (x,z,t) given by 

x|G)(x,z,t) * 727 {a qG>(Z,T) + A|G)(Z.T)H1(X)}exp[- X2] .

(4.43)

The limitations on the potential practical usefulness of the 

approximations (4.41)-(4.43) are obvious. First, Xj '(x,0,t), 

(4.41), only includes moments up to order 2 so that, for example, the 

effects of skewness in the distribution of material at any fixed 

height, discussed in Section 4.2.2, are excluded. More critically, 

xjE)(x,0,t) and XjG\x,z,t), (4.42) and (4.43), only include 

moments up to order 1 so that even the effects of the spread of the 

distribution of material at any fixed height are excluded. It is 

also important to note that all of these approximations are based on 

arbitrary m(z,t) and o(z,t). Normally, we would want to use one 

or more of the natural choices discussed earlier (Section 4.2,3) for

each of these functions. that is X(t) or X2(z,t) for m(z,t),

and 2x(t), ox(z,t) or sx(z,t) for o(z,t). As shown in Appendix

B, expressions for all of these natural choices are only available
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for X ^ U . O . t )  since, in the case of XjE*(x,0,t), o£E)(0,t), for

example, is not known and, in the case of XjG ^(x ,z,t), o^G\z, t) 

is not known, - Hence only for (4,41) would we be able to investigate 

fully the effects of using each of the various natural choices for 

m(z,t) and o(z,t). It is obvious, therefore, that in order to 

perform a worthwhile investigation of the practical value of the 

Hermite series, (4.13), it will be necessary to derive numerical 

solutions for higher order moments of X (i.e, Nn(z,t), n*3) and 

for the, as yet, unknown natural choices for m(z,t) and o(z,t)

(i.e. Nn(z,t), n=l,2, for all z,t and for both ground-level and 

elevated sources). Then it will be possible to carry out a fuller 

investigation, in particular to examine if the expected asymmetry in 

the horizontal distribution for X(x,z,t) can be adequately 

replicated by using the first few terms of the series. Section

4.3.3 describes the numerical scheme that has been adopted.

However, before proceeding to explain and apply the scheme, it is 

interesting to illustrate the types of approximations to X that can 

be obtained from (4.41)-(4.43). This is done in Section 4.3.2.

4.3,2 Approximations to X(x,z,t) Derived from the Exact 

Expressions for An(Z.T), n<2

The previous sub-section (Section 4.3.1) introduced the exact 

expressions that are available for the coefficients of the Hermite 

series, i.e. for An(Z,T), n<2. This section uses these expressions 

to illustrate and discuss approximations to X, Xp(x,z,t), for p<2.

The main focus will be on the concentration distribution at the
(G)ground from a ground-level source, Xp (x,0,t), since it is for this
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distribution that the highest order approximation is available, 

(4.41). The abscissa of each graph is fixed as x/ku*t, whilst the 

ordinate is some suitably chosen multiple of (ku*t)2Xp. Throughout 

the section, the choice m=Xz(0,t), cr=<7x(0,t), is used as the main 

tool for comparision with, and analysing, other choices for m and 

a. The reason for this is that m~Xz, o«ox appears to be the most 

natural of all the so-called "natural" choices discussed in Section 

4.2.3. As discussed there, with this choice, the horizontal 

distribution at any fixed z, ZQ say, is then represented by a 

Hermite series whose first term is the Gaussian distribution with 

mean Xz(ZQ ,t) and variance o~(Z0 ,t). Consequently A2~Aj=0, 

so that x 2!=x i*><0 * the Gaussian ŝee Equation 4.29). Xj for 

m*x , o~ov therefore provides a simple and natural approximation 

against which to analyse second and lower order approximations to X 

based on other choices for m and a,
(G)Most of the graphs presented are for Xp (x.O.t) at T*250.

The reasons for choosing this particular T are twofold. First,

the same T is used predominantly in Section 4.4 when examining

higher order approximations to X. Second, as a consequence of the

Lagrangian similarity hypothesis (Batchelor 1964 and Section 4.2.3),
(G)the results presented for Xp (x,z,t) at any fixed T are 

important to the understanding of the variation with v(z,t) of 

certain other horizontal distributions. Using the hypothesis, from 

(4.23), for fixed z/ku*t (=Z/T), a and m, X ^  and therefore 

X<G > as a function of (x-X(t))/ku*t (*'(x-X(t))/TzQ) is 

self-similar (the same shape) for all T. Thus, for any fixed T, 

Tj=ku*tj/z0 say, the changes effected in Xp (x.O.tj) - regarded as

a function of X - by altering o. completely determine the
(G)corresponding changes effected in Xp (x,0,t) at any other
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(non-zero) T. In addition, if

fo
h »  1 (4,44)

X^G^(x,0,tj) represents the similarity form attained by the 

distribution of concentration at the ground from an elevated source, 

X^(x , 0 , t 2), where

kUj;t2 . x _ H_
Z / \ 1 Za (4.45)

and, if

Z1
Z1

ku*tj «  1 (4.46)

X^G^(x,0,tj) also represents the similarity form attained by the 

distribution at Zj from the ground-level source, X ^  (x,Z| ,t j), 

Therefore, subject to the conditions (4.44) and (4.46), the variation
fn\

in X^'U.O.tj) with o, approximately determines the variation in

XpE*(x,0,t2) and XpG^(x,Zj,tj) with the same o respectively.
(G) —Figures (4.1a-c) compare Xp (x,0,t) p<2, for m=*X(t), 

o=2x(t) (Fig. 4.1a); m=X(t), o=sx(0,t) (Fig. 4.1b); m-X(t),
(G) / g \

o=ox(0,t) (Fig. 4.1c), with X2 (x,0,t) (*Xq ) for m*X2(0,t), 

o=ax(0,t). For m~X(t) and o=sx(0,t) (Fig. 4.1b), A2®0, (4.26),

so that only two distributions, Xj and the Gaussian Xq are shown 

for this m and o. Figure 4.Id repeats the highest order 

approximation to X ^  for m*X(t) shown in each of Figs, (4.1a-c) 

and compares them with the Gaussian curve for m*X_, o*ov. FromZ A
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(B6), (B7) and (B9), the corresponding values for X(t), Xz(0,t), 

2x(t), sx(0,t) and ox(0,t) for Figs. (4.1a-d), that is for X ^  

at Z=0, T=250, expressed as multiples of ku*t, are

X(t) ■ 24.65ku*t

xz(0,t) * 18.40ku*t

2x(t) ■ 5.02ku*t

sx(0,t) * 7.28ku*t

ox(0,t) ■ 3.72ku*t,

From the orthogonality property of the Hermite polynomials it follows 

that the mean of each curve in Figs. (4.1a-d) is at Xz(0,t)/ku*t.

As expected, the curves illustrate the general behaviour that 

for o=«u*t, « positive, and Z,T fixed, the spread of Xp

increases with <*, Likewise as * and hence the spread increases,

the maximum of Xp decreases. The peak value for the chosen

multiple of Xp ranges from '2.2 for Xq , m*X(t), o®sx(0,t)

(Fig. 4.1b), to '7.6 for Xj, m=X(t), o*ox (0,t) (Fig. 4.1c).

Compared to the Gaussian curve for X2 (®Xq ), m~Xz(0,t), o*ox (0,t), 

for which the maximum is at Xz(0,t)/ku*t, the location of the 

maxima of Xx and X2 for m=X(t), o*2x(t), sx(0,t) or ox(0,t) 

are greater and lie towards X(t)/ku*t. From the Hermite series for

X(G), for m®X(t) and for fixed o and T, it can be shown that
(G)the location of the maximum of Xj (x,z,t), Xmax say, increases 

from its ground-level position with 2 - as does Xz(z,t) though at a 

faster rate - so that initially

V * . t )  < Xrnax < X(t)



128

until

z
ku*t 0.74

when

Xz(z,t) - X(t) - Aj(Z,T) - 0

(G)so that ><2 is symmetric and

Xz(z,t) =*X(t) ■ ^max*

For larger Z

X(t) < ^ a x  < Xz(z,t).

The same should also be true of xjE^(x,z,t2) subject to

kuAt2

An encouraging feature of the curve for Xj for o*sx(0,t), 

(Fig. 4.1b), is the non-zero (though small) positive value at the 

source (x»0). Although not illustrated, at earlier times the 

analogous curve displays relatively larger positive values at the 

source. In other words the curve is reflecting the region of 

negative mean velocity below z/Zq=1.

A major feature of the curves for Xj and X2 for m*X(t), 

o*2x(t), sx(0,t) or ox(0,t), (Figs. 4.1a-d), are the negative 

values. The occurrence of negative values in Hermite series
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approximations is a familiar one (Barton and Dennis 1952; Chatwin 

1970, 1980; Kendall and Stuart 1969). It is often suggested that, 

providing the negative values are relatively insignificant, they can

be ignored. From (4.41), for fixed Z and T, and therefore fixed

m and a, it is easy to show that x2 and *1 have three and two

critical points, respectively (i.e. points at which dX/dX-0). The 

precise nature of the critical points for any Xp, and therefore the 

relative magnitudes of any negative values attained, can obviously be 

calculated. Given that our main interest lies in higher order 

approximations to X, this line of analysis is not pursued, rather 

it is sufficient to make some general observations about the negative 

values.

In general, for any fixed T, the dependency of Aj(Z,T) on

X (z, t) - X(t) z____________

ensures that as the magnitude of this decreases, with * fixed, the

negative values of Xj become more negligible, that is towards the

'centre' layers of the cloud. This is a reflection of the approach
(G)of the approximation towards the Gaussian, Xq (x,z,t) at such z.

(G )This is illustrated in Fig. 4.2 by the plots of X1 (x,z,t) and 

X^G)(x,z,t) at Z=375 and T-250, for m=X(t), o=2x (t). At Z-375

and T-250, Xz(z,t)“27.35ku*t. The negative values of the Xj

curve are much more negligible than the negative values of the 

corresponding curve for Xj (x.O.t) in Fig, 4.1a. However, this

does not imply that the approximation will be "acceptable" for any
i G)choice of « at such z. For example, Fig. 4.3 illustrates Xj

(f \ _
and Xq at Z=375, T*250 for m*X(t) and o*ku*t (i.e, «*1
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compared to «*5.02 for Fig. 4.2, see Equation 4.47c). Figure 4,4a

illustrates X^ix.O.t), xjG\x,0,t) and >^G^(x,0,t) for the same 

choice of «. The behaviour of the second and third terms in the
/p\

series for X^ (x,0,t) (i.e. the Aj(0,T)Hj(X) and A2(0,T)H2(X)

terms, respectively) are also illustrated seperately in Fig. 4.4a. 

Figure 4.4b illustrates the same Xp and contributions to Xp for 

the same « but for m * X2(0,t) (for this m, Aj*0, see Equation 

4.27). Clearly the third term is dominating the behaviour of 

Xj (x,0,t) in Figs. 4.4a and b. Figure 4.5 illustrates the 

behaviour of the same terms for m*X(t), o*2x(t) previously considered

in Fig. 4.1a.

Without trying at this stage to quantify what constitutes 

"acceptable" values for Xp or which m and a lead to acceptable 

values for Xp, p<2, it is possible to make the following general 

observation from Figs. 4.1, 4.3 and 4.4. In the Eulerian framework, 

for fixed z, each successive term of the series for X represents 

a deviation of the horizontal distribution from the Gaussian with 

mean m(z,t) and variance o*(z,t). Therefore, although X(x,z,t) 

can be represented by (4.13) for arbitrary m and o, it is not 

surprising that unacceptable negative values can be obtained when 

trying to approximate X by an m and a significantly different 

from the corresponding measured characteristics of the horizontal 

distribution being considered. For example, Figs. (4.4a,b) 

illustrate, what subjectively appear to be, the unacceptable negative 

values that are obtained when trying to approximate X by a Xp 

with cKz.t) much smaller than a length characteristic of the spread 

of the distribution in the alongwind direction, In Figs, (4,4a,b) 

o*ku*t whereas, from (4.47), the actual spread of the distribution 

is '5ku*t.
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Figures 4.6 and 4.7 illustrate the point made in (4,44) and 

(4.45) concerning the approach of the distribution from an elevated 

source, X*E\  to the distribution from a ground-level source,

X<G). For simplicity, attention is focussed on two combinations for 

m and a, namely m-X(t), o*2x(t) and m-X(t), o=sx(0,t).

Analogous observations will apply to other combinations for m and 

o. First, Fig. 4.6 compares

xJE)(x,0,t2); m - X(G)(tj), o - s£G)(tj)

and xjE)(x,0,t2); n - XiG)(tj), o - s^G)(0,tj)

(4.49)
z0where * 250 (i.e, » 250)

H . L. , joo 
z0

* j - i50§ :  '*•«• t 2 - 150>

with

x|G^(x,0,t j ) ;  m -  X(C ) ( t j ) ,  o -  2^G)( t j )

and xjG)(x,0,t1); m - X(C)(t1), o - s^iO.tj) (4.50)

respectively. (The latter two Xp have already been considered in 

Figs. 4.1a and b). Substituting the chosen t2 * tj and H into 

(4,44), we have



1.5 . (4.51)fo = rku*ti 
h * i z "] H

150
100

As expected, the distributions for the elevated source are not close 

to the corresponding distributions for the ground-level source. 

Figure 4,7 compares the approximations for an elevated source 

analogous to those in Fig. 4.6 except that now H-10 and 

t2*240z0/ku*. For Fig. 4.7 therefore

[ h I z0 (250-10)
z0 J h 10 24 »  1 (4.52)

and, as expected, the distributions for the elevated source are 

virtually identical to the corresponding distributions for the 

ground-level source.

The examples presented above of the types of approximations to 

the horizontal distribution of X that are available from the known 

exact expressions for the horizontal moments of X, and based on 

natural choices for m and o, have served to illustrate several 

points:

(1) the choice of m and o, respectively, has a 

significant effect on the location of the maximum and on 

the spread of Xp, p<2

(2) choosing m and o significantly different from lengths 

characteristic of the corresponding measures for the 

cloud, can result in significant negative values for X , 

P<2
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(3) in order to reflect the expected asymmetry of the 

horizontal distribution (Section 4.2.2), it will be 

necessary to include higher order terms (i.e. AnHn, n*3) 

in the approximation to X.

Points (1) and (3) were obvious from the structure of the series,

(4.13), and have been discussed in earlier sections. Because our 

interest lies in higher order approximations to X, no attempt has 

yet been made to quantify:

(a) what represents an acceptable approximation to X, for 

example what constitutes 'significant' negative values in 

the distribution for Xp

(b) for what choices of m and cr will an acceptable 

approximation be obtained.

Clearly it will be important to attempt to quantify these problems.

4.3.3 The Numerical Scheme

Sections 4.2.2, 4.3.1 and 4,3.2 have discussed and illustrated 

the need to calculate higher order horizontal moments of X, (4.30) 

(i.e. Nn for n>3), and to calculate values for all the natural 

choices for the arbitrary functions m(z,t) and o(z,t) of interest 

(i.e. Nn for n*l,2, for all z,t and for ground-level and 

elevated sources). This sub-section describes the numerical scheme 

adopted to achieve these needs.
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The governing equations for Nn, n<4 (4.32), have been solved

using the implicit, central difference, Crank-Nicholson scheme 

described by Richtmyer and Morton (1967), ppl98-201. The scheme is 

unconditionally stable.

For any n, (4.32) may be written in the form

where 0(Z,T) represents any one of the Nn , n*0, non-dimensionalised 

by multiplying by an appropriate power of z0 , and g(Z,T) is a 

function of Nn_j. For each n, g(Z,T) is known since (4.53) can 

be used to solve (4.32) sequentially in the n from n=0 and, from

difference scheme is developed for (4.53) and applied in the whole of 

the space domain Z>0, problems occur because of the behaviour of 

logeZ as Z-*0. To avoid these problems, a scheme is developed and 

applied in the domain Z»l. The lower boundary condition (4.33a) is 

changed to

(4.53)

(4.32a), for 0*Nq , g(Z,T) is identically zero. If the finite

3N
Z n -» 0 as Z -♦ 1 for all n3Z

so that

az -» 0 as Z -* 1 for all n (4.54)

The influence on the numerical results of this adjustment to the 

boundary condition is discussed in Section 4.4 where appropriate.
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At (Z,T)“(1 + JAZ, (n + -j) AT) where AZ and AT are 

positive increments in Z and T, respectively, j,n*0, (4.53) may 

be represented by the finite difference equation

_n+l  ̂. _n+l
■a j  V i  *  V j - vï* - (v 2S * vS-!

+ AT gj loggZj (4.55)

where

e" - 0(1 + JAZ, nAT)

a * *  Z .
j J J+j

b * 1 + « . + *
j J-J

c
j

M
j 1

2

« 1  at

2 (AZ)2 J
i_AT_^ (1 + jûz) 
1 (Azr

(4,56)

n+JL
gj 2 - g(l + JAZ, (n+-j)AT) - |(g"+1 + g").

With the aim of deriving an efficient method for solving (4,55)* and 

through adaptation of the Gauss elimination procedure, we seek a

solution of the form
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®j " 6jBj + l + fj f°r a U  J M (4.57)

where ej and fj are known, and which may be solved sequentially 

in decreasing j for each n. To this end, denote the RHS of 

(4.55) by dj so that

_n
aj j + 1 -  <b -1> aj + c 8

J J - l
AT
2 [g”*' * *"] lose V

(4.58)

Using (4.57) to replace by [ e ^ a ”*1 + in (4.55) and

rearranging leads to

Cbj - CjBj.,) ■]*1
. ] £

(b< - c ie 4_1) (4.59)

Comparison with (4.57) gives

(bJ " CJej-l

, .n-1 x
f« . ( j C 1f1~l)
j (bj - Cjej.j) for all j>i

(4.60)

eQ and fj| may be calculated, as follows, by applying the lower 

boundary condition (4.54). Then, for each n, (4,60) may be solved 

sequentially in the j from j=0 (i.e. eQ and fQ give ej and 

f1 5 ej and fj give e2 and f2, etc). in terms of 0^,

(4.54) may be approximated by
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1
2AZ K = o

so that

an - an B1 0-l *

Setting j=0 in (4.55) and using (4.61) gives

„ „
0 " bQ 91 bQ *

Comparing this with (4.57) gives

(a0 * c0) fn d0 
bQ 5 fo " bQ *

(4.61)

(4.62)

Finally, having calculated ej and f^, J*0, (4.57) may be solved

sequentially in decreasing j for 0j by applying the upper 

boundary condition (4.33c) as follows. In terms of 9j, (4,33c)

may be written

e (4.63)

where J is an integer suitably chosen so that JAZ is the height 

of the upper boundary. For the results presented in Section 4.4, 

JAZ was set equal to •'■8000-9000m, Obviously this is much larger 

than necessary and could have been reduced appropriately (i.e, 

according to the size and number of time steps being considered) by 

estimating the height required and testing the estimates on the 

computer. However, it proved simpler to set a very large JAZ and
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so be certain that, no matter what (realistic) dispersion time was 

considered, the upper boundary would not be reached. Hence from 

(4.57)

0nJ-l 'J-l
,n + fnJ

which may be solved for 0j_j, then reapplied to calculate aj_2<

0n . en . etc. To summarise the method:J-3 J-4

(1) equation (4.57) is solved for 0=Ng(z,t), for all Z>1, 

by

(a) calculating eQ and fg from (4.62) by using 

the initial condition (4.33a) and thus, from (4.60), 

calculating ej, fj, j*l.

(b) Using (4.63) and sequentially applying (4.57) for

J-J-l, J-2, J-3..... 0.

(2) Having calculated Ng(z,t) for Z>1 and T»AT, Ng(z,t) 

for Z>1 and T=mAT, m>l can be calculated by following 

a similar method to (1) above except that the use of the 

initial condition in (a) is replaced by use of the 

results for Ng at the preceding time step to calculate 

d]}"1 of (4.62).
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(3) Having calculated NQ(z,t) for Z*l, 0<T<T' say,

Nj(z,t) can be calculated for the same range of times by 

using a method similar to (2) above and the results for 

Nq (z,t).

4.4 Results and Discussion

4.4.1 Introduction

This section presents and discusses the results from the 

numerical scheme described in Section 4.3.3. It is divided into 

three sub-sections. The first (Section 4.4.2) presents comparisons 

between the known 'exact' expressions for various measures of 

quantity, location and spread of the cloud and the corresponding 

numerical results. Section 4.4.3 applies these numerical results to 

compare approximations to the concentration distribution, X, from 

the first three terms of the Hermite series (i.e. Xp, 0<p<2), with 

coefficients, An, derived from the exact and numerical results. 

Finally, in Section 4.4.4, the numerical results are used to derive 

higher order approximations to X (Xp for 2<p<4), and thus 

examines the effects of including higher order terms in the Hermite 

series for X on the approximation from the first few terms of the 

series.

In examining the numerical results, attention is focussed on 

the distribution of material released from a ground-level source 

(in the numerical model this implies a release height of H*h/ZQ-1, 

see Equation 4.54). The reason for this is twofold. First, as 

discussed in Section 4.2.2, the assumed dispersion model is thought 

to be most suitable for examining dispersion when the scale of the
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eddies acting on the cloud are much smaller than the vertical scale 

of the cloud itself, and therefore in particular for examining 

medium-range dispersion from a ground-level source. Second, from 

the reciprocal theorem (Smith 1957), the distribution of material at 

an elevated height, Zj say (Zj>0), and released from a 

ground-level source, is the same as the distribution at ground-level 

of material released from a source at height Zj. Thus the results 

presented in this section for the distributions at various elevated 

Z of material released from a ground-level source, may be used to 

examine the behaviour of the distribution of material at ground-level 

released from an elevated source. Although it is not demonstrated 

here, the numerical results do conform to the reciprocal theorem.

In other words, the moments calculated for the distribution of 

material, Nj,(z,t), (4.30), at an elevated level, Zj>l, released

from a source at Z*l, are equal to the moments calculated for the 

distribution of material at Z-l released from a source at height

zl*
In the initial stages of verifying and applying the numerical 

scheme, the calculations were carried out using relatively small 

space and time mesh steps. Typically, steps of bZ - A(z/z0)*0.2 

and AT*A(ku*t/z0)=0.02, or smaller, were used. However, it soon 

became apparent that in order to carry out calculations to larger T 

without consuming large amounts of computer time and memory, it would 

be necessary to increase bZ and AT somewhat. Eventually values 

of 0.5 and 0.125 were used for bZ and AT respectively. The use 

of these larger mesh steps did not have any significant effect on the 

calculated magnitude or shape of the resulting distributions for the 

moments of the cloud, Ni(z,t). With these mesh sizes, calculations

for the distributions with Z of , i*l,2,3,4, for 0*T<250 have
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been performed. Using the analytic expression for the vertical 

coordinate of the centre of mass of the cloud, Z(t), as given by 

the exact model (Equation B1 with H=0), and using typical values for 

zQ of -0.01-0.lm, an upper limit on T of 250 implies that Z(t) 

reaches a maximum of -2,5-25m. At this stage the calculations have 

not been extended to larger T, though this might have been thought 

desirable. However, as will be demonstrated in Section 4.4.4, as 

far as the present application is concerned, limiting the analysis to 

T<250 does not severely restrict the main aim of the chapter, viz. 

to examine the value of using the first few terms of the Hermite 

series to approximate X.

There is one final point regarding the numerical calculations 

that should be made before presenting the results. The calculations 

were performed using double precision arithmetic with the mesh sizes 

given above. Integrals of the (non-dimensionalised) over Z

were calculated by applying Simpson’s rule and stored for subsequent 

manipulation for values of T ranging from T*! to T»250 in steps 

of 1. The calculated values for the non-dimensionalised were 

stored for subsequent manipulation for values of T ranging from 

T*5 to T*250 in steps of 5, to an accuracy of 7 or 8 decimal 

places (dp) and at each fixed T for values of Z*l,3,5,.., etc.

In particular, the value of

which represents the proportion of material at (Z,T), (4,30), was

stored to 8 dp. Since the quantity of material released was

00

(4.64)
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normalised to 1, (4.2), »iq(Z,T)<1 for all (Z,T). Consequently,

if j»0(Z,T)~10”5-10“6, it was only known relatively inaccurately as 

far as subsequent calculations were concerned. This has limited the 

range for which sensible curves can be plotted in the graphs 

presented below and is noted where appropriate.

4,4.2. Comparison of Analytic and Numerical Results for Some 

Measures of Quantity. Location and Spread of the Cloud

The comparisons discussed in this section are between various 

measures of quantity, location and spread for the 'exact' model of 

dispersion from a point source at ground-level, as represented by 

(4.7)—(4.12) with h=0, and the nearest comparable model considered 

with the numerical scheme, namely dispersion from a point source at 

h-z0 . The measures considered are X(t), X2(z,t), 2x(t), ax(z,t) 

and N0(z,t) defined in (4.20), (4.21) and (4.34) and discussed in 

Appendix B. The corresponding numerically derived values for X(t), 

Xz(z,t), 2x(t) and ox(z,t) follow directly from the numerical 

results by expressing each in terms of the calculated or

integrals thereof, as appropriate. For example (4.35) and (4.37) 

can be rearranged to give X2 and ax in terms of the Nit

The main difference between the exact and numerical models is 

the absence of a region of negative mean velocity in the numerical 

model, sinte it is applied in the region Z*l. Hence when judging 

the comparisons it is important to bear in mind that certain 

differences between the numerical and exact models can be expected. 

For example, in the numerical model, the downwind coordinate of the 

centre of mass of material at any fixed height, X_(z,t), (4,20c),

should never be less than zero. This is unlike the exact model
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which at lower z and for early enough times will display X_<0.£
This and other differences are discussed below where appropriate.

Figure 4.8 compares the proportion of material, NQ(z,t), 

(4.30), non-dimensionalised by multiplying by ku*t, at various 

fixed heights above the ground (i.e. fixed Z) as a function of T 

as determined from the exact expression, (4.34) with H«0, and from 

the numerical scheme. Given the differences between the physical 

models represented by the exact and numerical results, the general 

behaviour of the numerical results compares favourably with the exact 

results. At ’ground’ level (Z*l) there is less material in the 

numerical model than the exact at all times. At elevated Z, the 

numerical and exact results show more similarity. At these Z, and 

in the early stages following release, the numerical model has more 

material than the exact model but, at each Z, there is a time 

beyond which the numerical model has less material than the exact. 

This behaviour is illustrated in another way in the series of Figures 

(4.9a-g) showing the distribution with Z of ku*tNQ at various 

times, as calculated by the numerical and exact models. It is not 

immediately obvious why the numerical ku*tNQ , for fixed Z, should 

approach its asymptotic value more slowly than in the exact model, 

but it cannot be due to the different velocity regimes experienced by 

the two models since the governing equation for NQ , (4.32a), is 

independent of U(z).

Figure 4.10 compares the exact expression (B7) and the 

numerically calculated values for the downwind coordinate of the 

centre of mass of material, Xz(z,t), non-dimensionalised by 

dividing by ku*t, at various fixed Z as a function of T. For 

the reasons discussed at the end of Section 4.4.1, the range of T 

for which each numerically derived curve is plotted varies, depending
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on the amount of material at the corresponding Z and T. Broadly 

speaking, each curve is only plotted when n0>10“4 and T*5, where 

HQ is given by (4.64). The general behaviour of the numerical Xz

curves is consistent with that of the exact model. However, as 

expected, for any particular Z, the numerical Xz is greater than 

the corresponding exact Xz. This is because there is no region of 

negative mean velocity in the numerical model so that material at any 

Z can only have been transported from the region x>0. This is 

unlike the situation in the exact model where material may have been 

transported from the region x<0. For example, from Fig. 4.10 we 

see that in the exact model, for Z*1 and T<10, Xz is negative 

whereas in the numerical model Xz is always positive. At T*250, 

the magnitude of the difference between the numerical and exact 

results, expressed as a percentage of the exact value, ranges from 

'2.5% at Z*301 to 7% at Z-l.

As discussed by Chatwin (1968), the centre of mass of material 

at any fixed Z eventually lags behind the centre of mass of the 

whole cloud, X(t). Figure 4.11 illustrates this by comparing the 

development with T of the numerically derived values for Xz(z,t) 

at various fixed Z and X(t), both non-dimensionalised by dividing 

by ku*t. Of the Xz(z,t) shown, and within the range of T 

considered, those for Z*l, 41 and 101 do lag behind X(t) for all 

or part of the time whilst those for Z*201 and 301 always remain 

ahead of X(t).

Figure 4.12 compares the exact expression (B6) and the 

numerically calculated downwind coordinate of the centre of mass of 

the cloud, x(t), non-dimensionalised as for the previous figure.

The comparison is good. The fact that X(t) as calculated by the 

numerical model is always positive and greater than the exact X(t)
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is a reflection of the results discussed for X2(z,t), (Fig. 4.10).

Turning to the measures of spread of the cloud for which 

analytic expressions are available, the only known exact expression 

for ox(z,t), given by (4.21b), is for the spread of material at 

ground-level (Z=0) from a ground-level source (H=0), (B9b).

Figure 4.13 compares the numerically calculated downwind spread of 

the cloud, ox(z,t), non-diraensionalised as for the other figures, 

at various fixed Z>1 and the exact expression (B9b). As expected, 

at each Z, the numerically derived spread is less than the constant 

exact value for all T. This is not surprising since, compared to 

the numerical model, the exact value will be augmented by the region 

of negative mean velocity below Z*1 and, for elevated Z, the 

exact value is only valid as T -* «• (Chatwin 1968), Hence we might 

expect the numerical model to have an asymptotic value for ox (z,t) 

smaller than the exact <?x(0,t). Within the range of times 

considered here, from the numerically derived curves in Fig, 4.13, it 

is interesting to note that for each fixed z>zQ (i.e, Z>1), ẑ  

say, there exists a time, tp say, such that for t greater than 

t_, o^izi.t) is greater than the spread at ground-level (i.e. 

<7x(z0 ,t)). This is presumably due to the effect of the positive 

gradient in the mean velocity, which eventually results in a greater 

stretching of the material at elevated Z in the downwind direction 

compared to that of the material at ground-level. However, the 

analogy, for the numerical model, of the approach of the exact 

ox(z,t) to ax(0,t) as t -* », is that we would expect all the 

numerical curves for Z>1 in Fig. 4,13 to converge to that for Z»1 

as T -» oo.

Figure 4.14 compares the numerically calculated values and 

exact expression, (B9a), for the downwind spread of the whole cloud.
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2x(t), non-dimensionalised as for the other figures. The diagram 

is consistent with the results discussed for <7x(z,t), (Fig. 4.13).

As emphasised at the beginning of the section, equality 

between the numerical and exact models considered above was not 

expected. However, the above comparisons do show that the numerical 

results are reasonable and, given the differences between the two 

models, are consistent with the known analytic expressions.

4.4.3 Comparison of Second and Lower Order Approximations to 

X(x.z.t) Derived from the Analytic and Numerical Results

This subsection compares approximations to the ground-level 

distribution of X, Xp for p<2, (4.19), (a) where the coefficients

of the series,. An(Z,T), and the arbitrary functions m(z,t) and 

o(z,t), once chosen suitably, have been calculated from the known 

analytic expressions for the 'exact' model (as represented by 

Equations 4.7-4.12), with (b) the analogous Xp for the numerical 

model, that is where the coefficients and arbitrary functions have 

been calculated from the numerical results. The comparisons need 

only be considered briefly since, as will be shown below, they merely 

reflect the comparisons discussed in the previous subsection (Section 

4.4,2) for the various measures of quantity, location and spread of 

the cloud. For the same reason, the comparisons are for the 

ground-level distribution from a ground-level source (so that- 

distributions above ground-level are not considered), and the 

comparisons are made at a single fixed time, T“250, that is the 

latest time for which numerical calculations are available (Section

4.4.1).
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The comparisons are illustrated in Figs. (4.15a-e). As in 

Section 4.3.2, the abscissa of each figure is x/ku*t and the 

ordinate is some suitably chosen multiple of (ku*t)2 Xp. Each 

figure compares an analytically derived approximation with the 

analogous numerically derived approximation as follows. First, 

each figure is for a particular choice of m and a, viz.

(a) m=X(t) ; o=2x (t)

(b) m=X(t) ; o*<7x(ZG,t)

(c) m=X(t) ; o=sx(zG,t)

(d) m”Xz(zG,t) ; o=*2x(t)

(e) m=X2(Zq ,t) ; o-ox(ZG,t)

where t«250z0/ku* (i.e. T=250) and zG denotes the ground-level

value of z. For the approximations based on the exact model, zQ*0 

(i.e. Z=0), whereas for those based on the numerical results,

Zq -Zq (i.e. Z*1), since the numerical scheme has been applied in 

the region z*zQ (i.e. Z»l, see Section 4.3.3, Equation 4.54).

All of the combinations for m and a in (4.65) have been 

considered in varying degrees of detail in earlier sections, and 

represent the main natural choices for m and o (Sections 4.2.3 

and 4.3.2). The ’exact' curve in each figure (indicated by a solid

line, '---'), that is the curve based on An , m and o derived from

the analytic expressions, is the highest order approximation known for 

the given m and o, namely ><2 . Each of these approximations has 

already been considered in detail (Section 4.3.2). The numerically 

derived curve in each figure (indicated by a dashed line '— -') is the 

corresponding approximation based on An , and the same m and o 
calculated from the numerical results. As described in Section 4,2.3,
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some of the choices in (4.65) cause one or more of the coefficients, 

Aj and A2, to be identically zero for all Z and T, so that, in 

effect, the approximations shown in Figs. (4.15a-e) are as follows:

(a) X to
(b) X2

(c) X1 (since A2=0, Equation 4.26)

(d) X2 (where Aj=0, Equation 4,27)

(e) *0 (since A2=Aj=0, Equation 4.

From Fig. 4.15 it is readily seen that the numerically based 

approximations are similar to the curves based on the exact 

expressions. This is not surprising given the comparisons discussed 

in Section 4.4.2. The main point to make is that the numerically 

based approximations reflect the larger X(t) and X2(z,t), and 

smaller 2x(t) and ox(z,t), of the numerical model compared to the 

exact model (Section 4.4.2). Thus the location of the peak of each 

numerically based approximation is further downwind than that of the 

analytically based approximation. The spread and peak of the 

numerically based approximations are also smaller than those of the 

corresponding analytically based approximation. However, since these 

differences are relatively small, we can be confident that any higher 

order, numerically based approximation (i.e. Xp, p>2) will reflect 

the correct behaviour in the sense that it will behave similarly to 

the corresponding analytically based approximation. We can 

therefore use such numerically based higher order approximations to 

examine the use of the Hermite series, (4,13), to approximate X.

This is done in the next subsection.
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A,4.4 Third and Fourth Order Approximations to X(x,z.t) Derived 

From the Numerical Results

Section 4.3.2 illustrated approximations to the horizontal 

distribution of X, Xp for p*2, where the coefficients, An(Z,T) 

and the arbitrary functions m(z,t) and cr(z,t) of the Hermite 

series, once suitably chosen, were derived from the known analytic 

expressions. Section 4.4.3 compared these analytically derived 

approximations with the analogous approximations derived from the 

numerical results. Because of the limited exact results available, 

these earlier sections have focussed on the distribution at 

ground-level from a ground-level source. Using the numerical 

results, this section examines approximations, X for the 

concentration distribution at ground-level and at elevated z, and 

for p>2. For the reasons given in Section 4.4.1, all of the 

results presented are for release from a ground-level source.

As discussed in Sections 4.3.1 and 4.3.2, we would expect X 

p>2, to provide a better approximation to X than Xp , p<2, if X 

is significantly different from the Gaussian. From the numerical 

results, values for the moments of the cloud Nj^z.t), i<4, are 

available (Section 4.4.1). Since the coefficient, An(Z,T), of the 

Hermite series for X depends on the Ni(z,t), i<n (Section 4.3.1, 

Equation 4.31), the available numerical results enable Ap(Z,T), p<4, 

and therefore approximations to X, Xp, p<4, to be determined. If 

the horizontal distribution of X displays significant skewness or 

kurtosis, we would then expect application of the complete set of 

numerical results to provide a better approximation to X than Xp, 

P<2. Initially in this section, the numerically calculated skewness 

and kurtosis of the cloud are examined (Section 4,4,4,1), Then the



150

numerical results are used to examine approximations Xp for p>2 

(Section 4.4.4.2).

4.4.4.1 The Skewness and Kurtosis of the Horizontal Distribution for 

X(x,z,t)

Figure 4.16 shows the calculated skewness of the cloud in the 

downwind direction at various fixed Z, 03 (z,t), and of the cloud as 

a whole, B3 (t), as functions of T, where 03 and B3 are given 

by (Kendall and Stuart 1969)

P3 (z,t) 1
3ax

00

| (X - X )3X dx

00

J X dx

(N0)”3(N3(N0)2 " 3N2N1N0 + 2 (N1 )3)

00 00

B3(t) * I J <x - x)3x dxdz
2x 0 -»•

(4.67)

(4.68)

and X2 (z,t), X(t), ox(z,t), 2x(t) and Ni(z,t), are given by (4.20c, 

b), (4.21b, a) and (4.30), respectively. It should be noted that of 

the curves for 0 3(z,t), those for Z*21 have not been extended back 

to T-5 (the smallest T for which results were available - see 

Section 4.4.1) since in the early stages of their development with T 

they exhibit erratic behaviour. This is due to the relative 

inaccuracy to which (given by 4.64) was available for use in
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subsequent calculations (Section 4.4.1), and to the dependence of 03 

on (Nq ) ” 3 and hence on (jiq)-3. Indeed, 03 (z,t) for Z=501 and 601 

is somewhat erratic for all or the majority of the time range in Fig. 4.16.

Looking in more detail at the curves in the figure, as 

expected, (a) at Z=l, 03 is always positive, in other words, the 

distribution at ground-level has a long "tail" in the downwind 

direction, and (b) at elevated Z, 03 is initially negative (with an 

initial magnitude that decreases with increasing Z). At all Z, 0 3 

appears to be approaching a small positive value ('0.18-0.2) as 

T -♦ ». This behaviour is not inconsistent with Saffman's analysis 

(1962), discussed in Sections 4.2.2 and 4.4.3. However, the 

asymptotic value for 0 3 obtained here is somewhat smaller than 

Saffman's value of '1. This is presumably a reflection of the fact 

that Saffman used a wind profile linear in z, so that the effect of 

wind shear in his model will be greater than that for the logarithmic 

wind profile used here. It is also clear from Fig. 4.16 that at 

elevated Z, and - using the reciprocal theorem - at ground-level 

for an elevated source, the distribution of material has a negative 

skewness for some or all of the range of dispersion time shown.

Indeed, extrapolating the results to later times, it would seem that 

for the more elevated Z, the distribution will be negatively skewed 

for a significant proportion of the dispersion time.

Turning to the curve for the skewness of the cloud as a whole 

about X(t), B3 (t), shown in Fig. 4.16, it would seem that it is 

dominated by the material at elevated Z, The approach to a small 

negative value (approximately -0.1 to -0.15), at least within the range 

of T considered, is due to the interaction of two main conflicting 

factors. First, as noted above, the skewness of the material at the 

more elevated Z is negative, and X2(z,t) is greater than X(t)
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(Section 4.4.2). Hence the skewness of material at such Z, when 

measured about X(t) will be even more negative. Conversely, in 

the lower layers of the cloud, the skewness of the distribution at 

fixed Z is positive and Xz(z,t) eventually lags behind X(t). 

Hence, at these Z, the skewness measured about X(t) will be even 

more positive. The resulting curve for B3(t) is consistent with 

the numerical calculations of Atesmen (1972). He used a model 

slightly different to the one considered here in that longitudinal 

diffusion was included and diffusion was limited in the vertical by 

an inversion height. Because of these differences, and because 

Atesmen non-dimensionalised his results differently to the approach 

used here, a direct comparison with his results is not possible. 

Nonetheless the behaviour of Atesmen's B3 (Tn), where Tn*ku*t/zn 

and zn is the height of the inversion layer, before the effects of 

the inversion layer are felt, is consistent with Fig. 4.16 in that 

B3 (Tn) decreases from -0.5 to zero in the range of times shown 

(0<Tn<0.1) and appears to be continuing to decrease.

Figures (4.17a,b) show the calculated kurtosis of the cloud 

in the downwind direction at various fixed Z, 04 (z,t), and of the 

cloud as a whole, B4 (t), where 04 (z,t) and B4 (t) are given by

00

0 4 (z,t) -
a

3

- -T (V ‘4( W 3 - 4W V 2 * (,n 2(n i)Jno - 3(n i )4)o

-3 (4.69)
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«0 00

B4 (t) - | | (x - X)S< dxdz - 3 (4.70)

and Xz(z,t), X(t), ox(z,t), 2x(t) and NA(z,t) are given by 

(4.20c,b), (4.21b,a) and (4.30), respectively. For the corresponding 

Gaussian distribution, 0^(z,t) or B^(t) is equal to zero (Kendall 

and Stuart 1969). Similarly to 03 (z,t) and B3 (t), we would 

expect @^(z,t) at fixed Z and B^(t) to approach constant values 

as T -» oo. Two separate figures are shown in Fig. 4.17 simply 

because a single diagram including all the curves is too cluttered for 

easy interpretation. As for Fig. 4.16, the curves for larger Z are

not extended back to T*5 because of their erratic behaviour. Note

from (4.69) that 04 depends on (Nq )~* and therefore on (ng)""̂ , 

(4.64). As a result, the curves are relatively more erratic than 

the corresponding curves for the skewness in Fig. 4.16, Although 

the erratic nature of the curves for (3^(z,t) for larger Z (Z*401) 

makes them unsuitable for determining reliable values for (3^(z,t) 

for these Z, it is clear that at all Z, as T increases,

P4 (z,t) approaches a small negative value in the range -0.3 to 

-0.4. In other words, the distribution at any fixed Z is 

eventually flatter than the Gaussian, i.e. is platykurtic. Turning 

to the curve for the kurtosis of the cloud about X(t), B4 (t), it is 

not clear that it is approaching a particular value. This is 

interesting since comparison with Atesmen’s (1972) calculations for 

the cloud kurtosis and the comparison made above with his result for 

the cloud skewness, B3 (t) (Fig. 4.16), would suggest that the 

approach of B4(t) to its asymptotic value should be observed in 

Atesmen's results show B4 (Tn), Tp as given above.Fig. 4.17.
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approaching a value of '0.4 at Tn '0.1. There appears to be no 

obvious explanation for this discrepancy.

4.4.4.2 Third and Fourth Order Approximations to X(x.z.t)

From the previous subsection (Section 4.4.4.1) it is clear 

that whilst deviations from the Gaussian are evident in the 

horizontal distribution of X(x,z,t) as t *♦ «©, these deviations 

are rather smaller than might have been expected from Saffman's 

analysis (1962) of the simpler dispersion model with a power-law wind 

profile. The table below summarises the numerically derived values 

of various measures of location, spread and shape of the distribution 

for X^G^(x,z,t) at T*250, the latest time for which results are 

available (Section 4.4.1):

Z=1 Z*41 Z-101 Z-201 Z-301

(ku*t)“* Xz(z,t) 19.85 21.81 23.64 25.67 27.13
(ku*t)"* cx(z,t) 3.37 3.59 3.65 3.58 3.47
(33 (z,t) 0 . 2 2 0.14 0 -0.14 -0 . 2 2

3 4 (2 ,t) -0.31 -0.40 -0.44 -0.36 -0.31

(4.71a)

(ku*t) _1 X(t) 25.48
(ku*t) - 1 2x(t) 4.79
B3 (t) -0.07 (4.
B4 U) -0.25

All of these values are drawn from results presented in Sections

4.4.2 and 4.4.4.1, and have been selected to illustrate the range of 

values at T=250 for skewness, 0 3 (2 ,t), and kurtosis, 0^(z,t), of 

the distribution at any fixed height that can be determined reliably
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from the numerical results (i.e. are not unduly influenced by 

inaccurately known h q, Section 4.4.1). Given these ranges, in 

turning to third and fourth order approximations to X, it is 

reasonable to focus on the distribution of material at Z=l, 101 and

301. The values of skewness and kurtosis at these Z provide sets

of values representative of the different types of deviations from 

Gaussianity displayed by X at fixed Z. For the reasons given 

earlier, the focus will also be on approximations to X for the five 

pairs of choices for m and o given in (4.65).

Figures (4.18a-e) illustrate fourth and lower order 

approximations to X (G)(x,z,t) at Z*l. Each figure is for a fixed 

choice of m and o. Figure 4.18a corresponds to the choice given 

in Equation (4.65a) (i.e. m~X(t), o=2x(t)), Fig. 4.18b corresponds

to the choice (4.65b), and so on. One of the main conclusions that

can be drawn from the figures is that, for the horizontal

distribution at (Z,T)-(1,250), and for fixed m and o, the effect 

on the approximation of the inclusion of the third and fourth order 

terms of the Hermite series, varies in significance depending on the 

choice for m and o. In particular, for the most natural of all

the choices for m and a, that is m*Xz(z,t), a=ax(z,t), the 

effects are the least significant (Fig. 4.18e). This is clearly a 

reflection of the relatively small deviation of the actual 

distribution from the Gaussian, which has a skewness and kurtosis of 

0.22 and -0.31, respectively, (4.71a). Note that for this choice 

of m and o, as expected, the fourth order approximation, X^, 

compared to the second order approximation, Xj, is both positively 

skewed and flatter. On the other hand, for other choices of m 

and/or o (Figs. 4.18a, c and d), X^ is peakier than the 

corresponding X^ and X^,
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Apart from Fig. 4.18b, all of the approximations are of 

reasonable general shape, although, subjectively speaking, the 

negative values in the case of m=X(t), o=2x(t) (Fig. 4.18a) and 

m=X(t), <7=sx(z,t) (Fig. 4.18c) are unsatisfactory. As has already 

been noted (Section 4.3.2), choosing m=X(t), o=ox(z,t) (Fig. 4.18b) 

also results in significant negative values for Xj. Including the 

third and fourth order terms in the approximation for any of these 

three choices for m and o, whilst reducing the significance of 

the negative values, does not seem to result in an acceptable 

approximation for X. This confirms the observation made in Section

4.3.2 that choosing m and/or o significantly different from the 

actual mean or spread of the material, respectively, at the chosen 

Z, can result in an approximation with unacceptable negative values. 

In particular, the negative values in Figs. (4.18a-c) appear to be a 

result of attempting to approximate X by a series with m*X(t), 

rather than the more natural m=Xz(z,t) when the difference between 

X(t) and Xz(z,t), at “28% (expressed as a percentage of .Xz(z,t), 

see 4.71), is relatively large.

From Fig. 4,18d, it might at first seem surprising that 

approximating X by a series with m=Xz(z,t) but with a o “42% 

greater than the actual spread of material at Z*1 (i.e. 

o*2x(t)=4.79ku*t compared with ox(z,t)-3.37ku*t, see (4.71)) only 

results in negligible negative values for X, 2<p*4. However, it 

will be recalled from Section 4.3.2 (Fig. 4.4b) that ^  for 

m*Xz(z,t) but for a o much smaller than the actual spread of the 

material does contain unacceptable negative values for Xj. 

Considering the main role of a in the series (i.e, as the spread of 

the Gaussian first term) it seems reasonable that choosing m=X_ but 

o much larger than the actual a does not result in significant
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negative values for Xp (but clearly will result in an 

unrealistically large spread for Xp), whereas, for the same choice 

of m, choosing a much smaller than the actual spread does result 

in unacceptable negative values for Xp,

To enable a different comparision, Figs. (4.19a-c) regroup the 

curves of Figs. (4.18a-e) to compare approximations of the same order 

for the different choices of m and o. Figure 4.19a compares X2 

for the choices (4.65a-e), Figs. (4.19b,c) compare X3 and 

respectively, for the same choices. Not surprisingly, it is clear 

from Figs. (4.19a-c) that the differences in the shape, spread and 

location of the second order approximations for different m and a 
(Fig. 4.19a), which were observed in the corresponding exact curves 

(Section 4.3.2), are also a feature of the third and fourth order 

approximations (Figs. 4.19b and c, respectively). For example, in 

Fig. 4.19c, there is a '30% difference between the peak value of X4 

for m“X(t), a~2x(t) and that for m=X(t), o*sx(z,t) (expressed as 

a percentage of the latter).

Figures (4.20a-e) and (4.21a-e) show X , 2<p<4, for Z*101 

and Z®301, respectively, analogous to those already considered for 

Z=1 (Figs. 4.18a-e), i.e. for the same choices of m and a. For 

Z-101 (Figs. 4.20a-e), 0 3(z,t)*O and 04 (z,t)— 0.44 whilst for

Z-301 (Figs. 4.21a-e), (33 (z,t)=-0.22 and 04(z,t)*-O.31, (see

Equation 4.71a). For both sets of figures, and unlike the case for 

Z*1 (Figs. 4.18a-e), for each of the chosen m and a, the negative 

values for any Xp, 2<p*4, if they exist at all, are negligible.

In the cases of m*X(t), o=2x(t), ox(z,t) or sx(z,t) (Figs.

4.20a-c and 4.21a-c), this is probably a result of the fact that the 

differences between X(t) and X2 (z,t) at Z*101 and Z*301 (7% and 

6%, respectively, when expressed as a percentage of X2(z,t), see
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4.71), are relatively small compared to the 28% difference at Z=l.

In the case of m=Xz(z,t), o=2x(t) (Figs. 4.20d and 4.21d), the same 

negligible negative values were found for Z=1 (Fig. 4.18d). Given 

that the difference between 2x(t) and ox(z,t) at Z=101 or 301 is 

positive and, in both percentage and absolute terms, of the same 

order as that at Z=1 (31% and 37%, respectively, when expressed as a 

percentage of ox(z,t), compared to 42% at Z=l), it is not 

surprising that Xp for 2<p<4, like those at Z*1 do not possess 

significant negative values.

Although there are no significant negative values in Figs. 

(4.20a-e and 4.21a-e), as was the case for Z=l, some of the X^, 

namely those for m=X(t), o=2x(t) or sx(z,t) and m»Xz(z,t), 

o=2 (t) (Figs. 4.19 and 4.20, a, c and d, respectively) are peakier 

rather than flatter than the corresponding X2. However, for 

m=Xz(z,t) and o=ox(z,t), X3 and \  possess all the expected 

properties. At Z-101 (Fig. 4.20e), X3 is identical to X2, 

reflecting the zero skewness at this Z, whilst at Z-301 (Fig.

4 .2 1e), X3 is slightly negatively skewed compared to X2, in both 

cases, X4 is flatter than X2 and X3,

4.5 Summary and Conclusions

As explained at the beginning of this chapter (Sections 4.2.2 

and 4 .2 .3), the main aim of this investigation has been to examine 

the use of the first few terms of the Hermite series (4.13) to 

approximate X, and in particular to approximate the expected 

deviations from the Gaussian of the horizontal distribution of X as 

t oo. For several reasons (Section 4.4.1), this has been achieved 

by focussing on the behaviour of the horizontal distribution of
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material released from a ground-level source, X^G^(x,z,t), for 

various natural choices for the arbitrary functions of the series 

m(z,t) and o(z,t), and at T=ku*t/z0=250 (i.e. the latest time

for which calculations were available), for various fixed Z(*z/z q ). 

There are several main conclusions that can be drawn.

First, as t increases, the skewness and kurtosis of the 

horizontal distribution of X at any fixed Z appear to be 

approaching values in the range '0.18 to 0.2 and -0.3 to -0.4, 

respectively (Section 4.4.4.1). In other words, the distribution at 

any fixed Z eventually is more positively skewed (i.e. has a longer 

tail in the downwind direction) and flatter than the Gaussian. The 

result for the skewness is consistent with Saffman's analysis (1962) 

of dispersion in a velocity field linear in z. The numerically 

calculated skewness and kurtosis at T*250 and at various fixed Z, 

provided values ranging from approximately -0.22 to 0.22 and -0.3 to 

-0.45 respectively, (4.71a), and so were suitable for examining the 

use of the series to approximate the horizontal distribution of X 

as t -+ oo.

Whilst no attempt has been made to quantify what constitutes 

an acceptable approximation to X, examination of the use of the 

first five terms, or less, of the Hermite series for a ground-level 

source (i.e. Xp '(x,z,t) for p<4), for various choices of m and 

o, has shown that (Section 4.4.4.2):

(a) choosing m and a equal to the mean, X2 (z,t), and spread, 

ox(z,t), of the material at the corresponding Z, 

respectively, consistently (i.e. at various Z and therefore 

for various values of skewness and kurtosis) gives the best 

approximation for X in the sense that, compared to other
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choices for m and o, Xp for 2<p<4 (i) had only

negligible negative values, and (ii) correctly reflected the 

actual skewness and kurtosis at the chosen Z.

(b) For the same m and o, given the magnitude of the 

deviations of the horizontal distribution of X from the 

Gaussian as t -♦ «*, evidence from other applications of a 

Hermite series approximation (Barton and Dennis 1952; Kendall 

and Stuart 1969) would suggest that, for the chosen model 

(4 .7 )—(4.12), the series (4.13) will be of practical use.

(c) Other choices for m and o can result (i) in - what 

subjectively appear to be - unacceptable negative values for 

X , 2<p<4, and (ii). in X̂, which are peakier rather than 

flatter than the corresponding X2 and which therefore do not 

reflect either the negative kurtosis at the particular Z, 

0 4 (z,t), or of the cloud as a whole, B^(t).

(d) In addition to the effects outlined in (c) above, compared to 

the choice m*X2 (z,t), o~ox(z,t), other choices for m and 

o can result in significantly different locations for the 

maximum and spread of the horizontal distribution of X ■ p<4 .

There appear to be two main ways of continuing to develop the 

application of a Hermite series to dispersion in the atmosphere.

The first is to continue with the adopted simplified model of 

dispersion, (4.7)—(4.12), and quantify (i) what is meant by 

"unacceptable" and "significant" (as used in (c) and (d) above), and 

(ii) when choices for m and a other than X2 and c»x ,
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respectively, result in unacceptable approximations for X. This 

could be done by applying the series (4.13) for various choices of m 

and o but for a wider range of values for the measures of location, 

spread and shape of the distribution for X than used here. It 

should then be possible to derive rules governing when choices other 

than m=Xz and o=ox are adequate. Ideally, these rules should be 

in terms of parameters appropriate to dispersion in the atmosphere 

(for example, time since and height of release). As far as the use 

of the series with m=*Xz and o=ox is concerned, a limited amount 

of qualitative and quantitative guidance on when X can be 

approximated by X^ is available from studies of the application of 

Hermite series to other problems (Barton and Dennis 1952; Kendall and 

Stuart 1969). However, this evidence is in terms of the skewness 

and kurtosis of the distribution under consideration. For our 

problem, it would valuable to quantify when, for example, X^ is of 

use in terms of parameters appropriate to dispersion in the 

atmosphere. Again this should be possible by applying the series to 

a wide range of values for the measures of location, spread and shape 

of the distribution for X. One final point concerning the 

application of the Hermite series (4.13) to the model (4,7)-(4.12), 

it would be of interest to compare the use of the Edgeworth series 

with that of the Gram-Charlier series (Section 2.2.1) to approximate X, 

This chapter has shown that a Hermite series can be used to 

represent the distribution of mean concentration based on a 

particular simplified model of dispersion in the atmosphere,

(4.7)—(4.12). As discussed earlier (Section 4.2.2), the model is

somewhat restricted in its range of application. The second way of 

proceeding to develop the application of a Hermite series to 

dispersion in the atmosphere, is to investigate the application to
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less simplified models. For example, since completing this work the 

author has been made aware of a series of papers (Sullivan 1983a and 

b; Sullivan and Yip 1985, 1987) describing work, begun independently, 

which applies a three dimensional Hermite series to a model 

applicable, inter alia, to dispersion in the atmosphere. In the 

model, in particular, the principal axes of the eddy diffusivity 

tensor do not coincide with the coordinate axes (x,y,z of

Section 4.2), the significance of which is discussed by Monin and 

Yaglom 1971, p.666-669 and Sullivan and Yip 1985. The results of 

this chapter clearly indicate that such work should prove to be of 

practical use.
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APPENDIX A

A Generalised Three Dimensional Hermite Series Representation

This appendix summarises some relevant properties of three 

dimensional Hermite polynomials and derives expressions for the 

coefficients of a generalised three dimensional Hermite series 

representation. Many of the equations are applicable to 

n-dimensional Hermite polynomials, further details are given by 

Erdélyi (1953).

Define positive-definite, symmetric, quadratic forms ♦(w,|) 

and *(W,T)

♦ <«,*) - yijWiWj ; tij - fji 5 ? ü  > 0

such that

1  9*_ „ „
2 aw* fiJ j

► *ij*jk " 6ik

so that

♦(w, j) » ♦(W,|)

The complete biorthogonal set of Hermite polynomials

defined by
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(Al)

(n) (w,|) = (-l)nexp{+ {- i  *(W,V)} 

(A2)

awiaWj...awk exp

where n represents the number of subscripts i,j,...,k. Although 

not conventional, on the left hand side of (Al) and (A2) it is 

important for this work to denote the functional dependency of the 

polynomials on the tensor f.

The expressions for the first few polynomials are

H<°> - G(0) - 1

(A3)
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„(4)
Hijkl W.W.W.W, - (y W. W, + t.-W.W, + t.-W.W, + tj.W.W, + y.-W.W. i j k 1 lj k 1 lk j 1 Til j k jk l 1 jl l k

* V ' i V  * + ♦ik’n  * » u V

(A3)(contd.)

g <4)ijkl V j V i  - (ti j V i  * ,fik”)ui * * V A  * ’’j i V k

* ,'kiW * ‘V u  * V j !  * W  •

The polynomials are symmetric in their subscripts and

Gii!..k(S-*> - Hi?!..k(H'P •

The biorthogonal property of the polynomials may be written

n(j) l H*”* k(w.f) Gp®|^r(w,|) exp{- ~  ♦ (w. r̂)} dV(w)

= <

n! if n=m and ij...k is a permutation of pq...r

(A4)

0 otherwise

where

n(|) - (2t )”3/2 [A(^)]1/2 (A5)

and A(|) is the determinant of i.e,

a ( *>  ‘  6 £i j k £p q r  ’ i p t Jq',’k r (A6)
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where £ijk is the Levi-Civita density or permutation symbol.

Consider any well behaved function A(w) with moments of all 

orders defined by

si"* k - f wiwj***wk A*-* • (A7)

Represent A(w) by the following generalised three dimensional 

Hermite series

«0

A(a)■ *”(*> \  2 ♦<h.*)} • (as)111*0

/ n)
Multiplying both sides of (A8) by Gv (w,y), integrating over wPH *••r
and using (A4), the following expression for the coefficients 

ci"* , , n*l,2,.,., of the series is obtained

cii!..k-*i Gi!i!..k<s-*)A(s> dv(s> • (A9)

For example, using (A3) and (A7)

c (0) .  s (0) (A10)

C<!) .(1) (All)

H ' i V - ' » G<0)} (A12)

ci]k * si - (fij 4” * »ik 4° * v  4n>} (A13)
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APPENDIX B

Analytic Expressions for Some Measures of Location and 

Spread of the Cloud

Using the model for dispersion in the atmospheric surface 

layer detailed in Chapter 4, this appendix summarises the expressions 

available for the measures of location and spread of a cloud of 

material.

Chatwin (1968) has shown that Z(t) defined by (4.71a) is 

given by

Z(t) - kuAt [l + (Bl)

and that X(t) defined by (4.71b) satisfies

dX
dt H + E e (B2)

where Ej(x) is the exponential integral function defined for all 

positive x by (Abramowitz and Stegun 1965, p228)

OP
Ej (x) exp(zO  d „ _ j + ]> l l-U 'y

t e n-1 n.n! (B3)

and y is Euler's constant given by

Y “ lim (1 + -r + T + ••• ♦ ~_. 2 J mrrr-N»
log m) - 0.5772. e (B4)
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Equation (B2) may be integrated by parts to give

[‘ ♦ g * * " . ® - « ’ !-?)} <*5>

which for a ground-level source simplifies to

X(G)(t) * {loggT - (r + 1)} (B6)

consistent with Chatwin (1968), For a ground-level source X2(z,t) 

defined by (4,71c) is given by (Chatwin 1968, Equations (23), (29), 

(30) and (37))

*zG)(z’U  " T "  { E1 t f ]  exp[f]  * l0SeZ " 21 * (B7)

Thus using the reciprocal theorem (Smith 1957) which shows that the 

horizontal distribution of material at the ground from an elevated 

source, height h, is the same as the horizontal distribution of 

material at height h from a ground-level source

X^E)(°,t) expff] + logeH - 2} . (B8)

In (B7) and (B8) the superscripts (G) and (E) have been used, as they 

are in Chapter 4, to denote ground-level and elevated sources

respectively.
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Lastly, for 2X, <?x and sx defined by (4.72), the following 

results for a ground-level source are available (Chatwin 1968)

2 <G)
x (t)

c<G>
X

(0,t)

sxG)(0,t)
u*t
k ✓(3 - 7 )

(B9)


