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SUMMARY

This thesis presents a study of laterally loaded pile design and
theory oy centrifugal modelling, existing theoretical approaches and
the finite element method.

Centrif~~rmodelling has been used to determine some of the factors
which influence pile behaviour and by back-analysis of the experimental
results to assess various theoretical solutions and a finite element method.

Chapter One contains an introduction to the work.
The finite element approach is outlined in Chapter Two and includes

the background, theory and computer program formulation to the approach,
together with an assessment of its accuracy and limitations, and a
comparison with the experimental results.

The experimental procedure and model to prototype parameters are out-
lined in Chapter Three, together with the historical background and theory
~f centrifugal modelling.

Chapter Four contains an assessment of the least-squares polynomial
and cubic spline methods of analysing the experimental results.

The experimental results have been used in Chapter Five, to determine
the factors influencing pile behaviour, in particular the pile deflection
at the soil surface and the position and magnitude of the maximum bending
moment.

Chapter Six contains the background to, and the theory of, the theo-
retical approaches used and an assessment of their various merits by back-
analysis of the experimental results, and including some finite element
results.

'Conclusions and suggestions for further work are presented in Chapter
Seven.

Appendix A contains a summary of the centrifugal modelling scaling
factors for model/prototype conversion. A centrifugal modelling error and
its effect in the Liverpool University centrifuge is discussed in Appendix
B. Appendix C contains some sample back-analysis calculations of the
experimental data to theoretical solutions.

Together with this thesis is a separate document containing listings,
data preparation and sample data for the FORTRAN computer program MPAPOLY,
Model Pile Analysis by the Polynomial Method and FSP, Fourier Series Pile
Finite Element Analysis.
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CHAPTER ONE
INTRODUCTION

Initially piles were used for overcoming the difficulties
of supporting structures in soft soils. However more frequently they
have been expected to resist lateral loads and moments for example
in harbour and offshore structures, pile supported earth-retaining
structures, transmission-towers and structures built in earthquake
areas.

In the past design for lateral loading has been based upon
empirical information from full-scale lateral load tests. In recent
years techniques have been developed to predict pile deformation which
include centrifugal modelling, theoretical methods and, most recently,
finite element analysis.

The full-scale testing of laterally loaded piles would
provide some of the most useful information relating to pile-soil
behaviour. However, the cost of such tests is so high as to prevent
such testing in sufficient numbers. It is not easy to apply information
obtained from one such test to other sites with different loading and
soil conditions. It is preferable to carry out a series of model
experiments in a centrifuge to determine which parameters affect the
pile behaviour.

Centrifugal modelling is not only a low cost technique, but
also provides the required amount of control over the soil condition,
pile types, sides and loading conditions. The technique allows small
scale modelling of a geotechnical structure simulating the same
stresses which would occur in the full-scale prototype.

In the theoretical methods of predicting pile deformations
which have been developed, two approaches have generally been employed,

the subgrade-reaction and the elastic continuum methods.
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The subgrade-reaction approach assumes that the pile is
supported upon a series of springs, known as the Winkler spring
medium. This method ignores the continuum nature of the soil and is
simply a relationship between pile reaction and displacement at a
point.

The elastic continuum approach relies on separate numerical
methods for analysing the pile and the continuum and requires matching
of deflection and pressure along the pile/continuum interface using
an iterative process. High accuracy is therefore difficult to achieve.

The most recent method for analyses of pile-soil behaviour
is the finite element method. This technique is only possible because
of the availability of large computers. The method as applied in this
thesis considers axisymmetric geometry and material properties subjected
to non-axisymmetric loading. Displacement and applied loads are
represented by Fourier series.

The main objectives of the research programme described
in this thesis were:-

to model vertical piles in the centrifuge with various
length, diameter, flexural rigidities and load
combinations;
to determine which of these factors influence the
pile displacements and maximum bending moment; and
to assess the relative merits of some existing
theoretical approaches, and of a finite element approach,
by back analysis of the experimental results.
The experimental work was performed using the Liverpool

University Geotechnical Centrifuge and the analysis of the experi-

1)

2)

3)

mental data and the finite element modelling were also carried out at
Liverpool University using the computer facilities available.
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CHAPTER TWO

ANALYSIS BY THE FINITE ELEMENTS METHOD

2. 1 ,," INTRODUCTION

The finite element method began as a numerical method of stress
analysis. It is the most powerful numerical technique available at
present and has been well documented by Zienkiewicz(36), Cook(7),
D . d Ab 1(12) d h Z· k· . (36) d f· .esal an e an many ot ers. len leWlcz e lnes it as a
general discretization procedure of continuum problems posed by mathe-
matically defined statements. However, a two-dimensional analysis is
limited to plane strain and axisymmetric problems and a full three-
dimensional analysis is costly and time consuming even with today's
most powerful computers.

The problem presented here is of a vertical pile with axi-
symmetric geometry and material properties but which is subjected to
non-axisymmetric loading. This problem can be analysed by a technique
which reduces the three-dimensional problem into two-dimensional analysis
by expressing the loads and displacements as Fourier series.

This semi-analytical finite element method was first developed
by Wilson(34) for linear elastic analysis and also mentioned by
Zienkiewicz and Too(37), Belytschko(4) and furthered by cheung(6) under

the name of the finite strip method. Text book accounts can be found in
Zienkiewicz(36) and Cook(7). It has been further developed by Grose(l5)
for thermal loading, by Stricklin et a1(32) to include circumferentially

• • • . • k d Z· k· • (35) f •varying material properties and by WlnnlC an len lewlcz or V1SCO-
plastic behaviour.

This approach, described in this thesis, concentrates on linear
elastic analysis in which properties can vary in the radial and
vertical directions but are kept constant in the circumferential direction,

for reasons which are discussed later, Section 2.4.
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Tne axisymmetric geometry of tne continuous problem is
replaced by a system of axisymmetric elements connected in nodal
circles and requiring analysis only in the plane (r,z) at S ~ O.

2.2.1 Harmonic Representation
Let us first validate the use of Fourier series. Assume that

the displacements of an arbitrary point in a body are,
u - u cosnS

v - v cosnS
w ~ w s inne

(2.1)

where u, v and ware functions of rand z only and n is an integer
representing the number of harmonics.

The strain-displacement relationships in polar co-ordinates
)are represented as

Er au.
01;'

E ov
Z oz

1 .aw+~ES - (2.2) .r as r--
3u3vYrz -- +_az 3r

1 -au 'Ow wYrS as + _-r 3r r

1 3v+ '3wYze r ae az

The stress-strain relationship is

where
a • D.E (2.3)
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a Er r
a e;" .z zJ
ae Ee

a - e: ..

r Yrzrz
tr6 Yre
Tze Yze

and

E(l - v)
D -(1+\1) (1-2v)

1 - 2v
2 (1-v)

1 o o

1 o o

1 o o
1 - 2v
2 (1-v) o

1 - 2v
2 (1-v)

o

(2.3a)

o

o

o

o

Substituting the displacements of Eq. (2.1) into the strain-
displacement relationship of Eq. (2.2) and combining with Eq. (2.3)

\glves
a • a cosne rrz • trz cosner r -_.

a ..a cosne tre • Tre cosne (2.4)z z

aa - aa sinne Tza • t sinneza

In which the barred quantities are functions of E,v,r,z and n
but not a, for example



- 6 -

o -r
EO -v)

(2.4a)(1 + v) (1

The equations of equilibrium in polar co-ordinates are

00 1 atre at o - °er + rz r ..0or + oer az r

00 aT
+1

dtze Tz + rz + re
0: 0 (2.5)dZ ar r ae r

1 aOe atre dtze 2tre ..0- + -- + +r ae ar az r

as in this problem there are no body forces.
Substituting Eq. (2.4) into Eq. (2.5) yields

(- - -) cosn9 0: 0, (- - -) cosne ..0, (- - -) sinn8 0: ° (2.6)

where (- - -) contain r, z and n but not e •
These equations must be satisfied for all values of e and hence the
expressions (- - -) must vanish producing three partial differential
equations with rand z independent and u, v and w dependent variables,
therefore reducing the problem to two dimensions.

For the problem considered here the loads and displacements
may be expressed as Fourier series.

co
U - 1:1u cosnen-

co _

v • n~l v cosne co -P 0: r P cosnS
Z nISI z (2.7)

w" 'f1w sinnSn-

For most practical problems only the first 4 or 5 terms in



- 7 -

the series need De considered. For the problem presented here, as
will De discussed in Section 2.4, only the first harmonic n - 1
need De considered for an elastic analysis of a laterally loaded pile.

2.2.2 Finite Element Formulation
Consider the mesh shown in Fig. 2.1. The pile and soil media

are represented DY 8-node rectangular isoparametric elements, see
Fig. 2.2a. The friction elements are represented by a 6-node rect-
angular isoparametric element, see Fig. 2.2b, similar to that developed
by Goodman et al(14) and Desai and Chandrasekaran(12) of which a

complete description can be found in Section 2.2.2.3.

2.2.2.1 General Case
Assume the variation of displacement to be represented by

u -

j co

1: 1:
i-I n...l

N. u. cosne
1 1

j co

V - 1: 1: N. v. cosne (2.8)
i-I n-l 1 1

j co

w- t t N. w. sinne
i=l n=l 1 1

where j is the number of nodes in each element and Ni is the shape
function for the ith node in the element and are functions of ~ and n
only.

The strain matrix is obtained by substituting Eq. (2.8) into
Eq. (2.2) yielding

£ • B 6 (2.9)

in which
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1

ell-s
E
IIJ
iii
e
.2-.~...u,

cw
V)
::::>

:I:
V)
w
:E

~....
u,
o
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u.
J

(2.10)

v.
J

w.
J

and B, the strain shape function, for the ith node is

procedure, Zienkiewicz(36)
211'fK = BT D B dv

V

211'

- f dS
o

B=

aN.
1or cosnS o o

oN.
1Tz cosns oo

o
nN.__ 1 cosne
r

oN.
1r cosne

(2.11)

'I N., o~ ccsns
oN.
1--at: cosns o

-nN.
1 •- S1nnSr o

oN. N.
(2 - 2.) sinnSar r

oN.
1

Tz
-nN.

1 • S-- s1nnr
o sinne

The stiffness matrix is obtained using the standard

(2.12)

f BT D B f(r) dr:dz
A

(2.13)

where fer) is a function of r only and comes from the conversion from
Cartesian to -polar co-ordinates within the integral.
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4 7-

2b 8

1-~I.----2Q__'''''5----~·12
rc

3

6

2c

~ ~ ~ _ _.r

a) Eight Node Isoparametric Element

z 3,_ __,r2,

5
2b

6 4 ,
2c4 3 J.!l= o~

,[
20 ~

1,=0
I. ~rc

r

b) Six Node Isoparametric Elements

6

FIG.2.2. PilE, SOIL AND FRICTION ELEMENTS
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Integrals which appear in Eq. (2.13) include

211'
fSinme sinne de =
o for m ; n and for m = n = 0

for m ..n ; 0

211'f cosme cosne de ..
o

for m ..n ; 0 (2.14)
for m ..n ..0

for m ..n

2Wf sinme cosne de = 0 for all m and n
o

For the problem presented here m ..n - 1 hence Eq. (2.13)
becomes

K = 11'f BT D B f(r) dr dz
A

(2.15)

The above expression is integrated numerically by Gaussian
quadrature, see Cook(7,(pp.103-105) ).

The nodal displacements are calculated by solving the system
of simultaneous equations

(2.16)

where f is the nodal force vector.
Finally, the stresses are calculated from

Since e: - B t5

(2.17)
(2.18)

C1 .. D e:

a .. DB t5

2.2.2.2 Pile and Soil Media Elements

With reference to Fig. 2.2(a), the shape functions Ni(;,n)
for nodes i - 1,8 are
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N. 1 + ~~.}(1 + nn.}(~~. + nn. - 1} for.. 7;(1 i ..1,2,3,41 1 1 1 1

N. 1 2 (2.20)..-(1 ~ )(1 + nn.) for i ..5,7
1 2 1

N. 1 2..'2(1 + ~~.)(l - n } for i ..6,81 1

where
r - r z - z

~ .. c c (2.2l)a n .. b

By following the method outlined in Section 2.2.2.1, it can
be shown that the expression for the stiffness matrix becomes

+1 +1
k = n ab f f

-1 -1

BT D B (~a + r ) d~c dn (2.22)

2.2.2.3 Friction Elements
These are similar to those developed by Goodman et al(14) but

instead of 4-nodes they have 6-nodes and are either horizontal or
vertical.

Their shape functions and stiffness matrices are developed
below.

2.2.2.3.1 Vertical Elements

Referring to Fig. 2.2(b), assume the displacement variation

(2.23)

Then the displacement functions for each node are

(2.24)

Solving Eqs. (2.24) yields
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a1 0 0 2b2 cSl
1 -b b 0 cS2a2 =- X'2b2

a3 1 1 -2 cSs

and, therefore, cS the displacement of any point is

s 1 [1 z2] 0 0 2b2l

16

1

1
o:~ z

-b b 0

1
62

1 1 -2 _<551

(2.26)

1 L- ( ) (b) ~ 2(b2 z2)~
0: -2 <51z Z - b + <52z z + + 1.15 - ~

2b
(2.27)

(2.28)

where N. for i • 1,2,5 are the shape functions for the element, i.e.
1

N1 •
z(z - b) N2 - z(z + b) N .. (b2 _ z2) (2.29)

2b2
,

2b2
t 5 b2

z - z
Let c then N. becomesn • b J.

1 1 2 (2.30)N1 • '2 n(n - 1), N2 ..'2 n(n + 1), N ..(1 - n )5

Noting that

u.
1

O. - V.
J. 1

W.
1

u N1 0 0 N2 0 0 N5 0 0

v - 0 N1 0 0 N2 0 0 Ns 0 (2.31)
w 0 0 N1 0 0 N2 0 Ns w.

1
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for i - 1,2,S

The relative displacements (right-left) are

r1 u - ur g,

r. v - v ..N.ISr = 'Z - r g,

re w - wr g,

with

(2.32)

IS ..
w.
1

for i ..1 to 6 and

N1 0 0 N2 0 0 -N 0 0 -N 0 0 NS 0 0 -N 0 02 1 S
N .. 0 N1 0 0 N2 0 0 -N 0 0 -N 0 0 NS 0 0 -N 02 1 S

0 0 Nl 0 0 N2 0 o -N 0 o -N 0 0 NS 0 o -N2 1 S

Defining the interface stiffness coefficients

K - o ks
o

itn o o
(2.33)

o o ks

we have
(2.34)

in which
a .. [- ar'

(2.3S)

Expressing the displacements as Fourier series
GO

r - I: rr cosner i-O
CD

r .. I: r cosnez i-O z
GO re sinner .. te i-O

(2.36)
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and
00 -u. II: L u. cosne

1 i=l 1

00 -v. .. L v. cosne (2.37)
1 i-O 1

00 -w. - 1: w. sinne
1 i-O 1

Following the usual procedure the element stiffness matrix
can be expressed in the two-dimensional r z plane as

1 2-1T ,
K ...b f f -T K.N de dnN • rr

-1 0

where

N lC 0 0 N2C 0 o -N c 0 o -N c 0 o NSc 02 1
N = 0 Nl!c0 0 N2c 0 0 -N c 0 0 -N c 0 0 NSc2 1

0 0 Nls 0 0 N2s 0 0 -N s 0 0 -N sO 0
2 1

(2.38)

o -NSc 0 0

o 0 -NSc 0

-N5S 0 0 -N5s

with
c ..cosne , s ..sinne

By Eq. (2.14), Eq. (2.38) becomes
1

K" nrcb f NT.K.N dn
-1

(2.39)

2.2.2.3.2 Horizontal Elements
The same procedure is followed replacing z,b and n with

r, a and ~ yielding shape functions
1Nl - 2~(~- 1), 1 2N2 ..2~(~+ 1), N3 ..(1 - ~ ) (2.40)

Referring to Fig. 2.2(b), the relative displacements
(top-bottom)
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Ut - ~
r - .. "e - vb .. N 15 (2.41)

wt - wb

with
u.
1

15 - V.
1

W.
1

for i - 1 to 6, and

-N 0 o -N 0 0 N2 .0 0 NI 0 0 NS 0 0 -N 0 01 2 S
N - 0 -N 0 0 -N 0 0 N2 0 0 N1 0 0 NS 0 0 -N 01 2 5

0 0 -N 0 0 -N 0 0 N2 0 0 N1 0 0 NS 0 0 -N1 2 5

The interface stiffness coefficients are now

ks o o
(2.42)K • o k 0n

o o ks

Expressing the displacements as Fourier series and following the usual
procedure the element stiffness matrix can be expressed in the two-
dimensional r z plane as

1 2n
K - a f f

-1 0
N T~K.N{~ + r ) de d~a c (2.43)

where
-N c 0 0 -N c 0 0 N{ 0 0 NC 0 0 -N c 0 0 N c 0 01 2 1 S S

N - 0 -N co 0 -N c 0 0 N2C 0 0 N c 0 0 -N co 0 NSc 01- 2 1 5
0 o -N s 0 0 -N s 0 0 N2s 0 o Nis 0 o -NSs 0 o -N s1 2 5

with
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c co cosne s • sinne

By Eq. (2.14), Eq. (2.43) becomes
1

a f
-1

K- 1TZ
C

TN .K.N( ~ + r ) d~a c (2.44)

2.2.3 Load Vector
As previously mentioned in Eq. (2.7) the loads are expressed

as Fourier series
00p • 1: P cosner i=l r
00 p. (2.45)p - 1: cosnez i-I z
00 Pep - 1: sinnee i-I

2.2.3.1 Horizontal Loading
Consider a uniform load of intensity 'p' applied on the

circumference of a pile of radius 'R', as shown in Fig. 2.3(a).
The load acting on the arc de at an angle e from the centre

of the pile is pRde. Resolving in the radial and circumferential
directions the load components are

Pr - pr cose de
and (2.46)

Pe - -pr sine de

respectively.
The equivalent nodal force may now be calculated by equating

the work done by the nodal force to the work done by the distributed
force moving througb a distance u •o
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a) Horizontal Loading

b) Moment Loading

FIG. 2.3. LOADING ARRANGEMENT
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1-Pu2 r 0

2'1r
= ~ J pR cose de tiocose

o
1 J2'1r 2- 2 uoPR cos e de
o

(2.42)

Substituting for the uniform load intensity p p-_2'1rR
1 1

(2'1r.
P 2- P u - 2" J 2'1rRR u cos e de2 r 0 0

_) <>
0

P
• .• Pr - "2 (2.48)

Similarly, the load component in the circumferential direction can be
proved to be

P -e (2.49)

These loads are applied on the circumference of the pile at e • o.
2.2.3.2 Moment Load

The moment load is simulated by applying two equal and
opposite vertical loads on the circumference of the pile at e • 0 and

e - 'Ir.

Consider the pile as shown in Fig. 2.3(b) being acted upon
by a vertical load pRcose on the circumference.

The vertical force acting on an arc length Rde is

Pz - pR cose de
The moment at the centre of the pile is

(2.50)

M - pR cose de R cose
2 2- pR cos e (2.51)

Therefore the total moment acting over the circumference is
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21T
M= J pR2 2cos ede

0

M = 2pR 1T
• •

(2.52)

By equating the work done by the nodal force to the work done
by the distributed force moving.through a distance w the equivalent

o

nodal force is obtained.

.!. p w
2 Z 0

I- -2 21T
J p Wo
o
for p gives
21T

J M w R cos2e de
R2 001T

2R cos e de (2.53)

Substituting

.!.p w.l
2 Z 0 2"

p =
Z

M
R (2.54)

This load is also applied on the circumference of the pile
at e ..o.

2.3 COMPUTER PROGRAM
A computer program was developed to analyse vertical piles

subjected to lateral load and moment, using the finite element theory
described above. Other features of the program are as follows.
2.3.1 Soil Model

The soil medium was modelled using the power law proposed by
Janbu(17) ,

E. - K P1. a (2.55)

By determining K and n experimentally for any particular soil
the initial modulus is thus related to the stress level. For elastic
analysis this modulus is used to represent the soil for all subsequent

loading increments; reasons for this are discussed in Section 2.4.
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As stated in Section 2.2.2, the stiffness matrix is
calculated by Gaussian quadrature and, therefore, the moduli at the
Gauss points have to be assigned. A parabolic variation of the modulus
is assumed across the element and from this the moduli at the Gauss
points is calculated.

An advantage in using'the power law is that it embraces
simpler modulus variations with depth which are commonly assumed, i.e.
with n - 0 Eq. (2.55) becomes

E. = K P
1 a (2.56)

and E. is then constant with depth, and with n - 1, Eq. (2.55) becomes
1

(2.57)

and Ei then varies linearly with depth.

2.3.2 Pile-Soil Interface
This is modelled by using the friction elements developed in

Section 2.2.2.3 and is achieved by varying k and k , the normal andn s

shear stiffness coefficients.

2.3.3 Pile Model
Although hollow tubes are used in the centrifugal modelling

of piles to scale both size and rigidity correctly, the computer
program uses a single element across the radius to model a pile. When
analysing a prototype corresponding to an arbitrary model pile this
element has the prototype radius but has adjusted modulus to give the
correct prototype flexural rigidity.
2.3.4 Computer Output

The displacements of the pile are calculated by solving Eq.
(2.16) and the stresses in the pile and soil are then calculated from

Eq. (2.19). From the pile displacements the slope at points down the
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pile are calculated using finite difference approximations.
The stresses in the pile are used to calculate the bending

moments and then the shear forces in the pile are evaluated by finite
difference approximations.

2.4 ACCURACY AND LIMITATIONS OF THE METHOD
2.4.1 Accuracy

The accuracy of the Fourier series technique was tested by
applying separate horizontal and moment loads at the top of a model
cantilever and comparing the results with conventional bending theory.

The cantilever was modelled by fixing the pile at'its base,
setting Poisson's ratio to a value slightly less than 1.0 and setting
the soil modulus very small by letting the power exponent n = 0 and
assigning a very small value to the coefficient K.

For horizontal loading only the deflection was found to be
0.23% less than expected and for moment loading only 0.1% greater than
expected. These results are well within the accuracy of any results

expected from experimental data.
Although testing the accuracy by this method is not partic-

ularly rigorous, comparison with pile design theories, experimental
model tests, or field data cannot be relied upon as their accuracy is
undetermined.

Limitations
Linear Elastic Analysis
As already mentioned in Section 2.1, the use of Fourier series

to express the displacements necessitates the additional conditions of
axisymmetric material properties and geometry.

The condition of axisymmetric geometry is acceptable but the

2.4.2
2.4.2.1
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condition of axisymmetric material properties limits the analysis to
a linear elastic one with material properties varying in the radial
and vertical directions only.

As the pile is loaded the stress levels in the soil change
accordingly, i.e. with maximum increase at e • 0 and maximum decrease
at e - n. The modulus of the soil, being dependent upon the stress
levels is thus effected by differing amounts around the pile. In a
more conventional two- or three-dimensional analysis, soil properties
could be allowed to change using non-linear-elastic or plastic models.
The condition of constant axisymmetric properties does not allow the
use of such models.

• •• d' ki . (35) dWork has been carr1ed out by W1nn1ck an Z1en 1eW1CZ an
also Barton(3) into visco-plastic behaviour of soils using Fourier
series analysis. However, in both studies the elastic modulus was kept
constant around the pile and used to calculate plastic strains.

Stricklin et a1(32) furthered the method to non-linear elastic
analysis. They expressed the modulus and Poisson's ratio for the soil
as functions of e, using another Fourier series. The expression for
the stiffness matrix then became a third order triganometric function,
involving a combination of sine and cosine terms.

This numerical solution is most complicated and time
consuming and, therefore, leads away from the benefit of the simplification
provided by the two-dimensional approach.
2.4.2.2 Tension Release

The problem being modelled here is that of piles in sand and
it is well known that sands are not capable of holding tensile stresses.

In a conventional finite element analysis, the tension behind
the pile could be released by setting the normal stiffness of the
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friction element to zero. However, the axisymmetric material prop-
erties associated witn Fourier series cannot model this type of
behaviour.

A possible method of releasing the unrealistic tension is
to calculate the tension distribution around the back of the pile and
then apply additional load to give the same deflection had there been
no tension.

Due to the complexity of the problem and the time involved,
this has not been attempted here. This would involve higher order
harmonics in the Fourier series and only the first harmonic has been
considered.

2.5 APPLICATION OF THE FINITE ELEMENT METHOD
2.5.1 Analysis

The dimensions and properties of the experimental piles are
known and, therefore, input directly into the finite element model
(Sections 2.3.3 and 2.3.2) assuming a stainless steel pile to be smooth.

The only unknown variables are the subgrade coefficients K and
n in Eq. -(2.55). The theories of Matlock and Reese(20), Poulos(23) and
Randolph(24) assume a linear variation of modulus with depth, i.e.
n = 1 and, therefore, Eq. (2.57) has been used in this analysis. As the
coefficient, K, is unknown, experimental pile displacements were
compared with displacements from the finite element model using a range
of values of K. The initial stress at any Gauss point at depth z was
evaluated as °3 - K Yz, with the coefficient of earth pres~ure at rest

0

K - 0.24 and specific weight of the soil Y - -3
0

16.62 KNm •
The experimental displacements were taken from a typical

test on pile No.1.
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2.5.2 -Discussion

Figure ~.~ shows displacement against load for the
experimental and finite element results for pile No. 1 with embedded
length/diameter, Y1",n.andload eccentricity, c:-=d.

The curve represents the experimental data and the straight
lines computed with K a 2900, 3500, 3600 and 4000. The corresponding
values of parameter N so that E = Nz are N = K(K y) = 4 K.s 0

It is obviously difficult to obtain a good fit between the
linear finite element results and the non-linear experimental results.
However, the values of N which yield the experimental displacements at
various points are plotted for comparison with Poulos' parameter Nh in
Fig. 6.9, (Chapter 6). Figures 2.5 to 2.7 show the results from the
finite element analysis. with K • 2900 and with an applied horizontal
load and moment of 469 KN and 357 KNm respectively, plotted with the
experimental results, with the same applied loads, calculated using a
polynomial (Section 4.2) in Figs. 2.5 and 2.7, and in Fig. 2.6 the
measured bending moments.

The distributions produced from the finite element analysis
are of the expected shape. However, the bending moment distribution,
Fig. 2.6, was the only one measured directly from the experiments and
these values are higher than that from the finite element analysis.
Therefore, from Section 2.3.4 the finite element shear force distribution
is doubtful even though it is close to the experimental distribution.

The finite element displacement distribution shows the
expected shape but its magnitude cannot be verified because there was
no measured displacement down the pile for comparison.

2.5.3 Conclusions

It is possible to select a value of K for a given deflection
which represents a rate of increase of soil modulus with depth.
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However, from Fig~ 2.4 it is not possible to model the load-deflection
relationship from the experiments with a single value of K.

This shows that a non-homogeneous medium, such as a soil,
cannot be modelled satisfactorily by the simple elastic method used.

The finite element method presented in this thesis is a valid
and well proven method for elastic stress analysis, but is of limited
use once observed behaviours become non-linear.

A non-linear stress-strain relationship could be included but
this would increase the storage and time required by the program as
discussed in Section 2.4.2.

For the above reason the finite element model presented here
cannot be expected to give close agreement with the centrifuge results.
However its merits can be compared with other elastic analyses such as
Matlock and Reese, Poulos and Randolph (Chapter 6). In particular back-
analysis yields values of N which are appreciably higher than Poulos'
parameterNh at the same pile head displacement.
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C~P~RTH~E

EXPERIMENTAL METHOD

3.1 CENTRIFUGAL MODELLING
3.1.1 Introduction

Centrifuge tests were first performed in the 1930's independ-
ent1y in America and Russia and thus the principles of similarity
between model and prototype have been recognised for over 50 years.

In the United Kingdom this modelling technique was first
pioneered by Avgheri~cs and Schofield(l) on a hired aerospace centri-
fuge. This work le~d to the building of a geotechnical centrifuge at
the University of Manchester, Institute of Science and Technology (UMIST)
in 1969, of which a short description is given by Schofie1d(3l) •

In 1971, centrifuges were constructed at the University of
Manchester, Simon Engineering Laboratories, detailed by Rowe(29) and
Craig and Rowe (9), and at Cambridge University, described by Schofield (30)•

The Liverpool University geotechnical centrifuge, shown in
Plate 3.1 and Fig. 3.1, was completed in 1973, a full description of
which can be found in King et a1(18).

Although centrifugal modelling will never replace full scale
field tests, it does provide a unique method of studying the behaviour
of geotechnical structures. It is possible, under these controlled
conditions, to study modes of failure that previously were unrecognised
and hence formulate new methods of analysis and design.

Basic Principles and Scaling Laws
Centrifugal modelling differs from conventional modelling only

by the forced gravitational field induced into the model by the centri-

3.1.2

fuge.

Provided model and prototype are made of the same materials,

a model N times smaller than the prototype but in a gravitational field
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N times greater the model will experience the same unit stress as the
prototype at corresponding points and, because consolidation rates
depend on length squared, consolidation in the model will be N2 times
faster than in the prototype.

The remaining scaling laws, listed in Appendix A, follow
automatically.

However, the gravitational field created by the centrifuge
varies radiqL(J~ and hence over the depth of a model, stresses in model
and prototype cannot be matched at all points.

The linear variation of acceleration with depth through the
model causes a non-linear variation of stress and it can be shown,
Appendix B, that the operating speed can be chosen so that the maximum
percentage error in stresses between model and prototype for the
maximum depth of model in the Liverpool centrifuge, is less than 3.5%.
As this error is small no corrections have been made to experimental
or theoretical calculations. All models were run at 176.4 rpm to give

an average scaling factor, N • 40.

3.2 TESTING
3.2.1 Model Arrangement

The main features of the Liverpool University centrifuge and
a review of previous research topics and test methods have been out-
lined by King et ale (18)

The test arrangement, used for the experiments described here,
is shown in Plates 3.2 and 3.3 and Fig. 3.2.

Load is applied to the model pile by a high torque low-speed
AC motor and through a gear system to give a horizontal pull.

The soil used in the experiment was dry Erith sand having an

effective size, DlO' of 0.16 mm and a uniformity coefficient, Cu' of
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PLA TE 3. 2. MODEL ARRANGEMENT
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of 1.25. The sand was compacted in several layers using a hand
vibrator with the model pile held firmly in position. This produced,
as determined by taking measurements at random throughout the series

3of tests, an average bulk density of 16.616 KN/m •
3.2.2 The Model Piles

Three model piles were" tested. They were made of stainless
steel tubing and designed so that there were two with approximately the
same diameter and two with approximately the same flexural rigidity.
The dimensions and properties of each pile are listed in Table 3.1.

To measure the bending moment in the piles during the tests
14 pairs of strain gauges with a gauge length of 3 mm and a resistance
of 120 ohms were fixed to the inner surface of each pile at 15 mm
centres and starting 15 mm from the bottom of the pile. Calibration
of each pile was by cantilever theory, each pile being supported at the
top and loaded at the tip.

The measured strains are shown in Tables 3.2, 3.3 and 3.4,
together with average values for flexural rigidity calculated over each
strain gauge length.

The average flexural rigidity determined for each pile is
included in Table 3.1, together with corresponding values of Young's
modulus derived using the measured diameters.

This apparent variation in Young's modulus reflects inaccur-
acies in the positioning and response of the strain gauges and
variations in material properties.

At the tip of the pile a metal insert was made to prevent
sand from entering the pile while setting up and running the experiment.
It was made to be a loose fit and glued into position with a rubber
solution glue so that it would not affect the flexural rigidity of the
pile at the tip.
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Table 3.2
Calibration of Model Pile No. 1

Gauge Dist. from Strain Flexural
No. load x 10-6 Rigidity

m l<;.Nm2

1 0.210 311 0.300
2 0.195 289 0.300
3 0.180 262 0.305
4 0.165 240 0.306
5 0.150 222 0.300
6 0.135 200 0.300
7 0.120 177 0.301
8 0.105 155 0.299
9 0.090 135 0.296

10 0.075 193 0.295
11 0.060 89 0.300
12 0.045 68 0.294
13 0.030 45 0.302
14 0.015 20 0.333

Note Load = 49.6 x 10-3 KN

Average Flexural Rigidity • 0.302 KNm2
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Table 3.3
Calibration of Model Pile No.2

Gauge Dist. from Strain Flexural
No. load x 10-6 Rigidity

m 2\~Nm

1 0.210 250 0.302
2 0.195 236 0.297
3 0.180 223 0.290
4 0.165 199 0.298
5 0.150 185 0.292
6 0.135 168 0.289
7 0.120 144 0.300
8 0.105 129 0.293
9 0.090 109 0.297

10 0.075 94 0.287
11 0.060 75 0.287
12 0.045 60 0.270
13 0.030 40 0.270
14 0.015 22 0.245

Note Load - 30.0 x 10-3 KN
Average Flexural Rigidity - 0.287 KNm2
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Table 3.4
Calibration of Model Pile No.3

Gauge Dist. from Strain Flexural
No. load x 10-6 Rigidity

m k'Nm2

1 0.209 230 0.164
2 0.194 213 0.165
3 0.179 195 0.166
4 0.164 177 0.168
5 0.149 162 0.166
6 0.134 146 0.166
7 0.119 131 0.164
8 0.104 115 0.163
9 0.089 100 0.161

10 0.074 85 0.157
11 0.059 69 0.155
12 0.044 55 0.145
13 0.029 38 0.138
14 0.014 20 0.127

-3Note Load • 20.2 x 10 KN
Average Flexural Rigidity - 0.157 KNm2
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3.2.3 Data Collection

Readings taken during each test were :-
(a) Lateral load, measured by a load cell placed between

the gear box assembly and the pile cap.
(b) Horizontal deflection at two points above the loading

point.
(c) Strain readings at 14 points down the pile.
The readings were fed through a Vishay-El1is 229 recording

system, see Plate 3.1, which is interfaced to a PET computer for
immediate processing of results, King et a1(18).

3.2.4 Test Procedure
Once the model had been set up and the rotating arm of the

centrifuge statically balanced the machine was spun up to a test speed
of 176.4 rpm (equivalent to a 40 g acceleration), for about 2-3 minutes.
This was done to make sure that the machine was running smoothly and
to allow any initial settlement of the pile and sand to take place.

When the centrifuge stopped the strain gauges, load cell and
displacement transducers were set to zero and a scan of the output
channels taken. This is known as the static zero datum.

The machine was then spun up to speed and another scan of
the output channels taken. This is known as the dynamic zero datum.

Load was then applied to the pile by the motor and at any
required load, the motor was stopped and a scan of the output channels
taken.

The data was recorded in approximately equal increments of
load until one of the following limits was reached; (i) maximum
allowable load cell reading of 360 N, to guarantee a linear calibration
of the load cell, (ii) maximum strain reading of 550 microstrains, to
prevent the pile from becoming plastically strained and (iii) maximum
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allowable deflection of 6 mm from the upper displacement transducer
as it reached the limit of its travel.

When one of the above limits was reached the load was
reduced and scans taken at 5 or 6 intervals until the load was
removed completely.

Testing Sequence and Objectives
As mentioned in Section 3.2.2, three model piles, two of the

same diameter and two of the same flexural rigidity were tested.

3.2.5

In the first series of tests the loading eccentricity was
kept constant and the length to diameter ratio varied for each pile.

In the second series of tests two length to diameter ratios
from the first series were used with a different loading eccentricity.

The sequence of tests performed is summarised in Tables 3.5,
3.6 and 3.7.

The objectives of the tes~was to study the effect on the
deflection of the piles at the soil surface, and the value and position
of the maximum bending moment in the piles, of independent variations
in the length diameter and the flexural rigidity of the piles and of
the eccentricity of loading.
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Table 3.5
.Test sequence for model pile No.1.

Test No. Length to Length of Pile Load
diameter embedded in eccentricity

ratio sand mm
mm

1 11 210 19
2 10 190 19
3 9 171 19

4 8 152 19

5 7 133 19
6 6 114 19
7 5 95 19

8 10 190 29

9 8 152 29
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Table 3.6

Testing sequence for model pile No. 2

Test No. Length to Length of Pile Load
diameter embedded in eccentricity

ratio sand mm
mm

1 8 203 19

2 7 178 19

3 6 152 19
4 5 127 19
5 4 102 19

6 8 203 29

7 6 152 29
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Table 3.7
Testing sequence for model pile No. 3

Test No. Length to Length of Pile Load
diameter embedded in eccentricity

ratio sand mm
mm

1 11 204 19
2 10 186 19
3 9 167 19
4 8 159 19
5 7 130 19
6 6 111 19
7 5 93 19

8 10 186 29
9 8 159 29



- 48 -

3.3 METHODS FOR INTERPRETATION OF MEASURED DATA
3.3.1 Introduction

The results were interpreted by two methods of numerical
curve fitting through the bending moment, calculated from the strain
readings down the pile.

The first method was based on the least-square error
procedure, see Cope et al(8), in which a polynomial any order up to
mrl is fitted through the data.

The second method used standard subroutines supplied by the
Numerical Algorithms Group (NAG) to fit a cubic spline through the data.

3.3.2 Polynomial Analysis
The method of curve fitting by the least-square error

procedure used here is shown in Section 4.2.1.
The known bending moment and shear and the additional assumption

of zero soil pressure at the soil surface provide the first three
coefficients of the polynomial and successive differentiations of the
polynomial yields the shear and soil resistance respectively, at points
down the pile.

When successively integrating the polynomial to obtain the
slope and deflection respectively at points down the pile, the slope
and deflection at the soil surface provide the constants of integration.

The effect of varying the number of known and unknown
coefficients in the pOlynomial will be discussed in Chapter 4.

Spline Analysis
The use of the NAG subroutines is restricted in that it is

not possible to include external boundary conditions, as in Section

3.3.3

3.3.2.

The subroutines fit a cubic spline through the bending moments
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and differentiate to give shear and soil resistance distribution.
Integration to find deflection and slope is not possible.

For a detailed explanation of cubic splines see Cope et al. (8)
and for fundamental or B-splines see De Boor(ll) •

The accuracy of the method can be increased by adding extra
known bending moments in the pile above the sand surface and below

the loading point.
A cubic spline is comprised of a set of cubic polynomials

which meet at predefined points called knots. The number and position
of the knots determines the shape and accuracy of the spline. This
will be discussed in Chapter 4.
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CHAPTER FOUR

.INTERPRETATION OF EXPERIMENTAL RESULTS

4.1 INTRODUCTION
In this chapter the optimisation of the polynomial and spline

numerical methods, described in Chapter 3, are discussed.
Polynomial optimisatio~ is achieved by varying the number of

known and unknown coefficients (Section 3.2.2) in order to obtain the
best fit to the experimental observations whereas spline optimisation
is achieved by varying the number and position of 'knots' (Section 3.3.3).

4.2 POLYNOMIAL OPTIMISATION
By studying the effect of varying the number of unknown

coefficients in the polynomial on the sum of the least squares, the
difference in the standard deviation and the mean between the measured
bending moments and those calculated from the polynomial, the 'best fit'
is obtained.
4.2.1. .. Analysis

The sum of the least squares is the sum of the square of the
difference between the measured and calculated data points defined as

n
1: (y. - p (x,»2i-I 1. 1.

(4.1)

where n is the number of points, Yi is the input data and p(xi) is the
calculated values from the polynomial p(x).

The mean of a sample of data is defined as

(4.2)

and the difference in the means between the measured and calculated
values is
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1 n
r

i=l
y.
1

1
n

n
L p(x.)
. 1 11C

(4.3)n

The standard deviation of a sample of data is defined as

n1 ~ -2S - n - 1 ~ (Yi - Y)i-I
(4.4)

therefore the difference in the standard deviations between the
measured and calculated values is

n - 2r (Yi - y )
i-I

n _ 2
r (p(x.) - p(x»
. 1 11-

(4.5)

where p(x) is the mean of the calculated data.
Tables 4.1 to 4.4 illustrate the variations of the above

mentioned values for one model pile at one applied load. The maximum
recorded bending moment was 1298.55 KNm. The position of the maximum
calculated bending moment was between 2.4 m and~3.0 m below the soil
surface.

By considering consecutive polynomial orders and noting when
the magnitude and position of the maximum bending moment varies
relatively little, Tables 4.1 to 4.2, then the best approximation to
these quantities is reached. This value coincides with a low value
for the sum of the least squares. However, as shown in Fig. 4.2, the
order of the polynomial makes very little visible difference and
generally low order polynomials give the best overall fit.

Figures 4.1 to 4.8 illustrate typical displacement moment,
shear and soil resistance distributions generated by the polynomials.

The displacement distributions in Fig. 4.1 are almost
identical for all variations of known and unknown coefficients. It

is, however, impossible to know how realistic this distribution is
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Table 4.1

No. of Sum of Difference Difference Max. Bending Position of
Coeff- the Least in Standard in Means Moment Max. Bending
icients Squares Deviations. KNm Moment

x 103 m

4 4288.44 15.31 -21. 79 1295.49 2.642
5 1889.69 13.86 -20.79 1295.36 2.719
6 1802.65 13.93 -20.79 1298.13 2.724
7 851.38 14.67 -21.47 1292.42 2.787
8 476.40 14.44 -21.47 1296.34 2.829
9 200.85 14.97 -21.97 1301.55 2.811

10 87.71 14.72 -21.96 1301.98 2.793
11 75.96 14.97 -22.21 1300.96 2.766
12 17.31 15.48 -22.24 1303.13 2.750
13 13.66 15.83 -22.48 1303.73 2.752
14 382.45 8.59 -16.45 1308.43 2.664

....

Summary of optimisation values for polynomial
analysis

No. of known coefficients • 0
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Table 4.2
..

No. of Sum of Difference Difference Max. Bending position of
Coeff- the in Standard in Means Moment Max. Bending
icients Least Deviations· KNm Moment

Squares x 103 m

4 4456.57 16.07 -22.72 1294.09 2.627
5 1980.80 13.48 -20.26 1296.30 2.716
6 1947.71 13.44 -20.16 1298.09 2.718
7 874.31 14.51 -21.25 1292.18 2.786
8 480.09 14.37 -21.38 1296.30 2.830
9 201.09 14.96 -21.95 1301.55 2.811

10 87.71 14.72 -21.96 1301.98 2.773
11 75.96 14.97 -22.21 1300.97 2.766
12 20.41 15.43 -22.25 1302.81 2.752
13 13.56 15.84 -22.50 1303.69 2.752
14 13.35 15.95 -22.60 1303.65 2.754

Summary of optimisation ya1ues for
polynomial analysis

No. of known coefficients - 1.
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Table 4.3

No. of Sum of Difference Difference :Hax.Bending Position of
Coeffic- the in Standard in Means Moment Max. Bending
ients Least Deviations KNm Moment

Squares x 103 m

4 37136.4 74.09 41.88 1081.38 3.258
5 68446.4 13.86 4.43 1278.98 3.123
6 21846.7 12.64 -10.45 1325.84 2.855
7 13485.2 11.21 -13.57 1321.30 2.700
8 8055.24 13.15 -17.14 1299.57 2.623
9 4922.63 12.45 -17.99 1284.97 2.754

10 2675.22 14.39 -20.11 1294.14 2.910
11 1076.92 12.86 -19.66 1306.20 2.852
12 92.36 15.86 -21.94 1306.96 2.744
13 37.44 14.58 -21.12 1304.57 2.727
14 56.35 13.71 -20.57 1304.08 2.717

Summary of optimisation values for
polynomial analysis

No. of known coefficients - 2
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Table 4.4

No. of Sum of· Difference Difference Max. Bending position of
Coeffic- the in:Standard in Means Moment Max. Bending
ients Least Deviations KNm Moment

Squares x 103 m

4 353748.0 -274.13 -234.71 1672.59 4.199
5 69027.3 17.91 7.07 1268.82 3.123
6 65703.7 26.80 11.44 1250.05 3.089
7 43761.6 18.73 -0.27 1305.71 3.031
8 30496.3 12.89 -5.18 1329.61 2.858
9 21214.8 13.64 -10.88 1324.44 2.671

10 15269.9 11.22 -12.42 1302.51 2.556
11 11093.7 14.11 -16.37 1282.24 2.715
12 7754.53 9.94 -15.22 1295.25 2.976
13 3709.07 19.68 -23.87 1316.47 2.858
14 3752.31 19.31 -23.99 1316.61 2.859

Summary of optimisation values for
polynomial analysis

No. of known coefficients • 3
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FIG. 4.1. DISPLACEMENT VS. DEPTH FOR VARIOUS
COEFFICIENT COMBINATIONS. PILE No.1

Experiment No. 1 Load = 1.69kN (e = O·76m)
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FIG. 4. 2. BENDING MOMENT VS. DEPTH FOR VARIOUS

COEFFICIENT COMBINATIONS, PILE No.1

Experiment No. 1 Load;: 469kN
(. = O'76m)
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FIG. 4.4. SHEAR vs. DEPTH FOR 2 FIXED AND
VARlOUS UNKNOWN COEFFICIENTS. PILE No.1

Experiment No. 1 Load = 1.69kN (e = O·76m)
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FIG.4.5. SHEAR VS. OEPTH FOR 3 FIXED AND

VARIOUS UNKNOWN COEFFICIENTS. PILE No.1
Experiment No.1 Load = 469kN 'e = O·76m)
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as no displacement could be measured below the soil surface. Also
under the increased gravitational field the operation of the dis-
placement transducers became suspect in that they would stick and
bend under their own increased weight.

Figure 4.2 shows the bending moment distributions for various
coefficient combinations which all produce reasonable distributions.
Comparing Fig. 4.2 with the experimental results. and considering
Tables 4.1 to 4.4. that the best overall fit coincides with relatively
low order polynomials, i.e. approximately or less than half the number
of coefficients as there are data points. This generally corresponds
to a low difference of standard deviations.

The shear distributions. shown in Figs. 4.3 to 4.5.
illustrate their variations with the number of coefficients. They
show that it is not possible to model the complete shear distribution
accurately with one polynomial. However, most of the curves give
similar distributions over the lower three quarters of the pile. The
best looking distributions are given by polynomials with zero or one
known coefficient. Although the surface shear is highly over estimated,
it is possible, using the known applied horizontal load. to adjust
these distributions manually towards the top of the pile •

. . The soil resistance distributions (Figs. 4.6 to 4.8) show
considerable and erratic variation for the higher order polynomials,
although the lower order with three fixed coefficients give reasonable
distribution in the upper three quarters of the pile.

4.2.2 Discussion

It can be shown that the above behaviour is typical of
all the tests performed. It suggests that the best overall fit
corresponds with low values for the difference in standard deviation.
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However, to determine the position and magnitude of the maximum
oending moment high order polynomials, corresponding to the lowest
values for the sum of the least squares, appear preferable.

~ The higher order polynomials behave erratically between
data points and when differentg.c]"yield meaningless distributions.
Although the lower order polynomials with two or three fixed coefficients
produce smooth curves, they may not yield the correct magnitudes of
shear and soil resistance when differentiated.

Although the calculated distributions of displacements
are smooth and consistent, their magnitudes may be unreliable due to
the sensitivity of the displacement transducers measuring displacement
and slope at the top of the pile.

Only the polynomials with a small number of coefficients,
including three fixed ones, give reasonably smooth soil resistance
distribution, but their magnitudes may not be reliable.

This makes both displacement and pressure distribution
doubtful and, therefore, it is not possible to evaluate effective
moduli of subgrade reaction with any confidence. Therefore the merits
of the p - y method of analysis (Section 6.1) cannot be evaluated from
the experimental results.

Values of displacements. and pressure calculated from the
polynomials will not be discussed further for the above reasons.

4.2.3 Conclusions
The best overall fit is obtained from low order polynomials

and is indicated numerically by a low value for the difference in
standard deviations.

Using zero or one fixed coefficient yields the best
bending moment distributions, using two yields the best shear
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distributions and using three yields the best soil resistance
distributions.

To determine the magnitude and position of the maximum
bending moment it is best to use a high order polynomial and this is
indicated numerically by a low value for the sum of the least squares.

The polynomial method.is a useful technique for interpreting
the results of the test on the model piles. It is limited by the
accuracy of the measured data, particularly the pile head displacements.

4.3 SPLINE ANALYSIS

The choice number and position of the knots so as to give the
'best fit' is largely a matter of trial and error, therefore, each stage
must be examined graphically. However, in regions where the data is
changing rapidly, a concentration of knots is advised. Generally,
positioning is not usually critical and equally-spaced knots are often
satisfactory.
4.3.1 Analysis

Table 4.5 illustrates the effect of variation in the number
of the knots for the pile test considered in Section 4.2.1.

Using the NAG subroutines it is not possible to calculate the
exact depth and value of the maximum bending moment. However, Table 4.5
shows that its value varies only slightly with the variation of the
number of knots and that it stays within the same depth range ,

Figures 4.9 to 4.11 illustrate moment, shear and soil
resistance distributions generated by the splines using from 8 to 15
knots.

The bending moment distribution, Fig. 4.9, was not influenced
by the number of the knots and is a very close fit to the experimental
data.
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Table 4.5

Pos.hort of
No. of Sum of the Max. Bending Value of Max.
iI)terior Least Squares Moment between Bending Moment
knots (m) not less than

(k rv'.",)

15 120.43 2.4 - 3.0 1298.5
14 159.78 2.4 - 3.0 1298.5
13 162.57 2.4 - 3.0 1298.5
12 162.58 2.4 - 3.0 1298.5
11 174.83 2.4 - 3.0 1297.7
10 180.75 2.4 - 3.0 1296.1
9 193.22 2.4 - 3.0 1297.2
8 3369.06 2.4 - 3.0 1289.0

Summary of optimisation values for
spline analysis
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FIG.1..9. BENDING MOMENT VS. DEPTH. FOR All NUMBERS
OF KNOTS FROM 8 TO 15 PilE No. 1
Experiment No. 1 load = 1.69kN (. = 0·76 m )
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Figure 4.10 illustrates the shear distributions for the
different numbers of knots. In common with the polynomial method, they
show that it is not possible to model the complete shear distribution
accurately. All the curves over-estimate the applied surface shear and
the shear distribution towards the top of the pile is variable.
However, all give similar distributions in the lower three quarters ·of
the pile and knowing the applied horizontal load it is possible to
adjust the distribution at the top of the pile manually.

Differentiating the cubic spline twice yields the series of
straight lines shown in Fig. 4.11 to represent the soil resistance
distribution. Although the lines tend towards a realistic distribution
as the number of knots reduces, this is not necessarily a reliable
indication of the true pressure distribution.

4.3.2 Discussion

It·can be shown that the above trends are typical of every test
performed and for more variations in the number and position of the
knots than illustrated here.

Theoretically the best results should be produced by mini-
mising the sum of the least squares. However, as shown in Figs. 4.9 to
4.11, this is not obvious and for this reason only a few examples of
knot variations have been illustrated.

4.3.3 Conclusions

Comparing Figs. 4.1 to 4.8 with Figs. 4.9 to 4.11 the spline
method of analysis produces bending moment and shear force distributions
as good as, but not better than, the polynomial method, while the soil
resistance distributions are inferior. The use of NAG subroutines limits
the calculated distributions to bending moment, shear and soil resistance
as displacements could not be calculated by the splines generated with
these subroutines.
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CHAPTER FIVE
THE RESULTS AND IMPLICATIONS OF THE CENTRIFUGE MODEL TESTS

5.1 INTRODUCTION
In this chapter the experimental results obtained from the

tests described in Chapter 3 will be presented and discussed.
The series of centrifuge tests produced results which will

be used to study the effect on the behaviour of the piles of
variations in their length, diameter, flexural rigidity and the load
eccentricity.

The particular results used to define the behaviour of the
piles are the deflection at the soil surface and the magnitude and
position of the maximum bending moment, calculated using the polynomial

method described in Section 4.2.

5.2 RESULTS
5.2.1 Applied Horizontal Load and Pile Deflection at the Soil

Surface
The relationship between applied horizontal load and pile

deflection at the soil surface is illustrated in Figs. 5.1 to 5.9
for length, diameter, flexural rigidity and the load eccentricity
variations. Figures 5.1 to 5.3 show the variations for each pile
for various lengths and load eccentricities.

Figs. 5.4 to 5.6 illustrate the effect'of load eccentricity
by selecting two lengths and two eccentricities for each pile.

Figure 5.7 illustrates the effect of the diameter by
considering pairs of piles of the same length and flexural rigidity.

Figures 5.8 and 5.9 illustrate the effect of flexural
rigidity by considering pairs of piles of the same length and diameter.
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e = load level above
soil surface

I = pile length
d = pile diameter
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FIG.5. 1 APPLIED LOAD VS. PILE DISPLACEMENT AT SOIL SURFACE

PILE No.1 (d = O·15m. EI= 1·73 105kNm2)

Pile displacement at soil surface, m
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e = load level above
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FIG.5. 3. APPLIED LOAD VS. PILE DISPLACEMENT AT SOIL SURFACE
PILE No.3 (d = 0'76m E1 = '·02 105kNm2)
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e = load leve I above
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5.2.2 Applied Horizontal Load and Maximum Bending Moment
The relationship between applied horizontal load and the

maximum bending moment is illustrated in Figs. 5.10 to 5.18 for length,
diameter, flexural rigidity and load eccentricity variations.

Figures 5.10 to 5.12 show the variations for each pile for
various lengths and load eccentricities.

Figures 5.13 to 5.15 illustrate the effect of load eccentricity
by selecting two lengths and two eccentricities for each pile.

Figure 5.16 illustrates the effect of the diameter by
considering pairs of piles of the same length and flexural rigidity.

Figures 5.17 and 5.18 illustrate the effect of flexural
rigidity by considering pairs of piles of the same length and diameter.

5.2.3 Position of the Maximum Bending Moment
The position of the maximum bending moment varies with

increasing applied horizontal load. This is illustrated for pile
No.1 in Fig. 5.19 which shows the depth of the maximum bending moment
plotted against the maximum bending moment for increasing load and in
Table 5.1 which shows the average value of the ratio of depth of
maximum bending moment to pile length for each pile at various length
to diameter ratios.

5.2.4 Influence of File Length on File Deflection at the Soil
Surface
Fig. 5.20 shows the pile deflection plotted against the pile

length at a constant applied horizontal load of 250 KN.

5.3 DISCUSSION

The purpose of the experimental work described in this
chapter was to determine the principal factors governing the behaviour
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Pile No.1 Pile No.2 Pile No.3
9../d z z zmax max max

Lmax lmax lmax

11 0.31 - 0.30
10 0.32 - 0.33
9 0.34 - 0.34.
8 0.36 0.24 0.37
7 0.39 0.31 0.39
6 0.38 0.33 0.41
5 0.39 0.39 0.42
4 - 0.27 -

- - - - I- - - - - - - - - - - - - - - ~ - - - - - -
10 0.33 - 0.26
8 0.34 0.25 0.33
6 - 0.32 -

~

Ei

'".-4.
.-4

D

<IJ

Table 5.1 Average ratio of (depth of Max BM/pile
length) for each pile and various lid
ratios.

Pile No. 1 d = 0.76 m, El • 5 KNm27.73 x 10
Pile No. 2 d z: 0.98 m, El • 5 KNm27.35 x 10
Pile No. 3 d z: 0.76 m, El • 4.02 x 105 KNm2
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0·12

FIG. 5. 20. PILE LENGTH vs. PILE DISPLACEMENT AT
SOIL SURFACE AT AN APPLIED HORIZONTAL

LOAD. OF 250kN

o 0'02 0'04 0'06 0'08 0'10
Pile deflection at surface for 250kN load. m•.
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of a laterally loaded pile in sand and will be discussed in this

light.

5.3.1 Applied Horizontal Load and Pile Deflection at the Soil
Surface
The effect of varying the length of pile is illustrated in

Figs. 5.1 to 5.3. As expected a reduction in pile length results in
an increase in deflection ,at any given load. The relationship is not
linear, as the load increases, the displacement for any given load
difference increases. This indicates the non-linearity of the soil
behaviour, since the pile was never strained beyond its elastic limit.

Figures 5.4 to 5.6 illustrate that an increase in applied
bending moment, due to an increase in the applied load eccentricity,
produces an increase in pile deflection. However, this increase is
small and the deflection is mostly due to the applied horizontal load.

Figure 5.7 shows that a reduction in pile diameter causes an
increase in pile deflection at any 'given load. This is significant
in that it is not accounted for in any of the theoretical approaches
presented in Chapter 6.

Figures 5.8 and 5.9 show that reducing the flexural rigidity
of the pile yields an increase in the pile deflection at any given
load.
5.3.2 Applied Horizontal Load and Maximum Bending Moment

The effect of varying the pile length is illustrated in
Figs. 5.10 to 5.12. They show that a reduction in pile length results
in a reduction of the maximum bending moment. They also indicate a
linear relationship between the applied horizontal load and the
maximum bending moment.

Figures 5.13 to 5.15 show that increasing the load eccentricity
and hence, the applied bending moment, increases the maximum bending
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moment by the same amount.
Figure 5.16 shows that a reduction in pile diameter results

in an increase in the maximum bending moment. Again, none of the
theoretical approaches allow for this effect.

Figures 5.17 and 5.18 show that for the longer piles,
reducing the flexural rigidity of the pile yields a reduction in the
maximum bending moment.

position of the Maximum Bending Moment
Figure 5.19 shows that as the applied horizontal load

increases the depth of the maximum bending moment increases indicating
a local plastic failure of the soil at ground level. In a purely

5.3.3

elastic medium the depth of the maximum bending moment would remain
constant. The same is true for all the piles tested.

Table 5.1, together with Fig. 5.19 shows that as the length
of the pile increases, the depth of the maximum bending moment
increases. Also, an increase in load eccentricity has little effect
upon the depth of the maximum bending moment verifying that pile-soil
interaction depends more upon the applied horizontal load.

A reduction in pile diameter causes an increase in the depth
of the maximum bending moment. This is consistent with the observed
increase in deflection since this would cause an increase in the depth
to which the soil would fail plastically at the top of the pile, hence
causing an increase in the depth of the maximum bending moment.

Also, from Table 5.1, reducing the flexural rigidity indicates
a slight trend towards increasing the depth of the maximum bending
moment.
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5.3.4 Influence of Pile Length on Pile Deflection at the Soil
Surface
This is shown in Fig. 5.20 which indicates that there is a

length of pile over which any increase in length does not affect the'
. pile displacement. This critical length is of the order of 9 to 10 m
for the piles tested in this sand. This length is not significantly
affected by diameter and flexural rigidity and does not conflict with
theoretical predictions (Section 6.4).

However, more experiments are necessary with piles of
smaller diameter and flexural rigidity to verify this observation.

5.4 CONCLUSIONS
The behaviour of laterally loaded piles in sand, as observed

in centrifuge model tests, have been presented and discussed.
It has been shown that an increase in pile length, flexural

rigidity and diameter reduce the deflections and the depth of the
maximum bending moment. Also, the applied horizontal load has a
greater relative effect upon the deflection than the applied bending
moment.

The maximum bending moment has been found to increase with
increase in pile length and flexural rigidity and reductions in pile
diameter.

The difference between the maximum bending moment and the
applied moment at the soil surface is mainly due to the applied
horizontal load and for the longer piles the maximum bending moments
can be expressed as Mmax • (e + a)H. For the pile tested, approximate
values of a deduced from Figs. 5.10 to 5.12 are

Pile No. 1 2 3
a 2.0 1.8 1.6
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There appears to be a critical length of pile above which
the displacement is not effected, which is not significantly depend-
ent on pile diameter and flexural rigidity.

r
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CHAPTER SIX

AN ASSESSMENT OF THE MERITS OF SOME THEORETICAL
APPROACHES

,

6.1 INTRODUCTION
There are two commonly adopted methods of calculating the

deformations of a laterally loaded pile, based on either the assumption
that the soil may be replaced by a Winkler spring medium, or by an
elastic continuum.

In the Winkler spring method the laterally loaded pile is
replaced by an elastic beam supported by a series of discrete springs
acting along the length of the beam. The spring stiffness represents
the stiffness of the soil and is generally referred to as the coefficient
of subgrade reaction, Terzaghi(33).

Hetenyi(16) produced a series of closed form solutions for
this method for a variety of loading conditions and end restraints on
the pile.

This simple approach has been improved by allowing the coeff-
icient of subgrade reaction to vary along the length of the pile.

(28) (20) .Reese and Matlock and Matlock and Reese carrled out
a dimensional analysis of the problem and developed a series of
equations, see Section 6.2.1, containing similar groups of parameters
when the coefficient of subgrade reaction was either constant
(bomogeneous soil), or varied linearly with depth (non-homogeneous
soil). These equations contain a set of coefficients, related to the
lateral and moment loading, which can be obtained using the character-
istic length defined in Eq. (6.2) from a series of graphs produced by
Matlock and Reese (20)•

The method has been furthered by Broms{S) for long flexible
and short rigid piles and Davison and Gill (10) for a two-layer soil
system.
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A limitation of the Winkler model is that it does not
represent a continuum and, therefore, does not permit transference
of shear stress. This may lead to an over estimation of displacements.

A further development in the method was to replace the line~r
springs with non-linear p-y (soi1-resistance-displacement) curves,
Matlock(19), Reese, Co~ and Koop(27), and Reese and Cox(26). However

using this method it is difficult to choose appropriate p-y curves for
a given pile size and soil-type. Therefore, pile tests-are recommended
to confirm pile behaviour.

The second method of analysis, for an elastic pile embedded
in an elastic continuum, is based on the integration of Mindlin's
solutions of the stresses caused by a point load acting within an
isotropic elastic continuum.

This analysis is known as the elastic continuum or integral
equation method.

1 (21,22), l' d h '1 ' f' , 1 h' .Pou os - Ldea ase t e p1 e as an m Lmte y t m strtp
with the same width and bending rigidity as the prototype pile and
used finite differences to solve the differential equations. He
produced equations expressing surface deflection and rotation in terms
of dimensionless influence factors which can be determined graphically
using a dimensionless flexibility factor and the length to depth ratio
of the pile, see Section 6.2.2.

The method was extended by Poulos(23) to allow for soil
yielding and by Banerjee and Davies(2) to include a non-homogeneity
index, namely the ratio of Young's modulus at the surface to that at
the pile base.

Evangelista and Viggani(13) improved the accuracy of solutions
given by Poulos' method by varying the size of the elements down the
pile.
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Randolph(24) carried out a series of finite element analyses,

using the same method as that described in Chapter 2 but with triangular
rather than rectangular elements, for homogeneous and non-homogeneous
soils, and fitted empirical power low expressions to the lateral
deflections and rotations at the ground line. He characterised the
soil stiffness by the shear modulus rather than Young's modulus and
only presents solutions for flexible piles which are longer than their
critical length, and, therefore, independent of the embedded length.
The critical length of a pile is the length beyond which any further
increase has no effect upon the pile displacement or bending moments.

6.2 THEORETICALSOLUTIONS
It is generally accepted that sand can best be modelled as

a non-homogeneous soil. Therefore, only the theoretical solutions for
soil modulus increasing linearly with depth are presented here.

6.2.1 The Solution of Matlock and Reese(20)

This solution is based on the Winkler spring model. The
equations for the non-homogeneous soil are:-

H T3
o

y = -::--:::---AE I YP P

M T2
+ 0E IP P

B
Y

MTorr Bs
p p

M • H T A + MB (6.1)0 m o m
M

V • H A + ~B
0 v T v

H M
P .. -2. A 0+

~
BT r r

where y, e, M, V and p are the displacement, slope, bending moments
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shear force and pressure respectively, E is the Young's Modulusp

and 1 is the second moment of area of the pile.
p

The A and B coefficients relate to lateral and moment loading
respectively and T is the characteristic length of the pile defined by:-

(6.2)

where ~ is the rate of increase of the coefficient of horizontal sub-
grade reaction with depth.

The charts for determining the coefficients A and Bare
reproduced in Fig. 6.1, they can be used to calculate the distributions
of displacement down a pile. Similar charts are available for the
calculation of slope, bending moment, shear force and pressure
distributions, Figs. 6.2 and 6.3.

6.2.2 The Solution of Poulos(23)

This solution is based on the elastic continuum approach.
The expressions for displacement and slope for the non-homogeneous soil
are respectively

H
• 0 ( I' + =- I' ) I F' (6.3)Yo NhL2 pH L pm p

H
e - 0 ( IeR + =- I' ) I F'
0 N L3 L em e

h

where Yo and eo are the deflection and slope at the ground line and
e is the eccentricity of the load, L is the length of the pile and
Nh is the rate of increase of the Young's modulus with depth.

I;H and l~m are dimensionless elastic-influence factors for
displacement caused by horizontal load and moment respectively.
Similarly leH and 18m are influence factors for slope.
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F~ and Fe are yield-displacement and slope-displacement
factors, respectively, defined as the ratio of pile displacement or
slope in elastic soil to pile displacement or slope in yielding soil.

The influence and yield factors can be determined graphically
• from Figs. 6.4 and 6.S using the pile flexibility factor KN, where

E I
K_· P p (6.4)
-N N L5

h

the length to diameter ratio (Lid), eccentricity of load to length
ration (elL) and the ratio of applied horizontal load to the ultimate
lateral resistance of the pile (H IH ) whereo u

H =
u

30.5 y d L l\p
e + L (6.5)

in which y is the bulk density of the soil, d is the diameter of the
pile and ~ is the coefficient of passive earth pressure,
(1 + sin ;")/(1 - sin ;,'), and ;,'is the angle of internal friction
(effective stress). This solution is limited in that only displace-
ments and slopes at the soil surface can be evaluated.

6.2.3 The Solution of Randolph(24)

The following expressions for deflection y and slope e at
the ground surface are based on the results of finite element studies
of a laterally loaded cylindrical pile embedded in elastic soil with
stiffness varying linearly with depth

y. 0.54
Ho

.... 2m"ro
E -3/9

( -E. )
"*rm 0

M E -5/9
+ 0.60 ~ (-L)

m*r m*ro 0
(6.6)

e -
H E -5/9

0.60 ~ (J_)
m*r ni*ro 0

M E -7/9
+ 1.13 --!7; (-L )

m*r m*ro 0
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where r is the radius of the pile, E is the effective Young'so p

modulus of the pile defined as

E = (EI) /(~r4 /4)
p p 0

(6.7)

• in which (EI) is the flexural rigidity of the pile and
p

m* = mel + 3v/4) (6.8)

where m is the rate of increase of soil shear modulus 'with depth
and v is Poisson's ratio. This solution is also limited to
evaluation of the deflection and slope at the soil surface.

6.2.4 Relationships Between the 'Soil' Moduli used in the Theories
In Randolph's solution the shear modulus

G .. m'Z •
m*

(1 + 3v/4) • 2

and in Poulos' solution Young's modulus

Since G - E /2(1 + v)s

(1 + 3v/4)
2(1 + v) (6.9)

The parameter ~ in Matlock and Reese's solution represents
a variation of modulus of subgrade reaction with depth and cannot be
related implicitly to Nh (or m*). Moreover the modulus of subgrade
reaction

~ - n..z

is a function of pile diameter d,.and spring characteristic K,

whereas the soil elastic moduli are independent of pile width. Since

Ib - kd and p ..ky, ~ has the same units as Es (or G) and, possibly
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for no other reason, ~ and Nh have sometimes been considered
equivalent. Some empirical justification can be found by considering
the settlement of a rectangular footing on the surface of an elastic
homogeneous medium

(6.10)

where y is the settlement, p is the average contact pressure, d is
the breadth, I is an influence factor which depends upon the length/
breadth ratio and flexibility of the footing, v is Poisson's ratio
and Es is the Young's modulus of the soil.

For a long rigid strip footing I - 1.26 and Eq. (6.10) becomes

pd -
Es

( ) y - ~ Y(1 - v2)1.26 -0
(6.11)

now for v = 0 ~ = 0.85 E, -b s and for v • 0.5 ~ = 1.06 Es
and therefore for this example ~ and Es are roughly comparable.

The CIRrA report 103(38) also suggests that for single piles
in homogeneous soil, Young's modulus E and the subgrade reactions

modulus ~ are roughly equal and that for single piles in non-
homogeneous soil Nh and ~ are roughly equal.

6.3 APPLICATION OF THE THEORIES
The results from the centrifuge model tests, reported in

Chapter 5, were used to consider the relative merits of the three
theoretical solutions summarised above. The p-y curve method of
analysis, mentioned in Section 6.1, was not taken further for the
following reasons.

The derivation of p-y curves is an empirical technique
which requires a large number of measured, calculated and graphically
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estimated values. It is recommended that pile tests are carried out in
which bending moments are measured down the pile. The p-y curves are
then constructed by integrating and differentiating the bending moment
distribution. Integration and differentiation of bending moment distr~b-
utions has been discussed in Chapter 4. The resulting displacements and
soil resistance distributions were found to be unrealistic and incon-
sistent because of inaccuracies·in measuring the experimental data.
Therefore, p-y curves obtained in this way could not be relied on.

The solutions given in Section 6.2 can be used to calculate the
deflection at the ground surface for any applied horizontal load and
bending moment for known properties of pile and soil. While the
properties of the mode 1 pile are known quite r.e..liably, those of the
soil are not.

If the soil is assumed to have moduli increasing linearly from
zero at the top of the pile, substitution of the known values of
displacement from the centrifuge tests, into the theoretical expressions
enables ~, Nh and m* to be evaluated.

(The expressions for the rotation have not been used because
values recorded from the centrifuge test were not considered
sufficiently accurate.)

6.3.1 Variation of Parameter ~ (Matlock and Reese)

Values of ~ obtained by back-analysis, see Appendix (C),
have been plotted against the displacement at the soil surface in
Fig. 6.6 for pile No. l.~he variations of ~ with displacement at the
soil surface and with the ratio of this displacement to pile diameter
for all the piles are shown in Figs. 6.7 and 6.S.

Polynomial curves were fitted to the data, in Fig. 6.8, by
the method of least squares in an attempt to produce a relationship
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between ~ and the deflection/diameter ratio.
The fourth order polynomial is the best fit mathematically.

The others behave erratically for high values of Y/d. The equation for
the fourth order polynomial is

~ • 2.274 x 104 - 1.046 x 106(Y/d) + 2.938 x 107 (Y/d)2
- 3.763 x 10S(Y/d)3 + 1.699 x 109(Y/d)4

(6.12)

6.3.2 Variation of Parameter Nh (Poulos)
The variation of parameter Nh with the displacement at the

soil surface, obtained by back-analysis, see Appendix (C), is shown
for pile No. 1 in Fig. 6.9 and for all the piles with ltd > 7 in

Fig. 6.10.

6.3.3 Variation of Parameter m* (Randolph)
The variation of parameter m* with the displacement at the soil

surface, obtained by back-analysis, see Appendix (C), is shown for

pile No. 1 in Fig. 6.11.

6.3.4 Variation of Parameter N (F.E. Method)
In the elastic finite element analysis used in Chapter 2,

Young's modulus was allowed to vary with depth so that E • Nz and thes

best fit to the experimental results obtained by comparing the linear
load-displacement relationship from the finite element method with the
non-linear load-displacement relationship from the experimental results
and hence obtaining the best fit by eye.

The vertical lines in Fig. 6.10 compare values of N with Nh
and those in Fig. 6.11 compare m* • (1 + 3v/4)N/2(1 + v) (see Eq. (6.9»
with m*, with v • 0.3.
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6.4 DISCUSSION
The three solutions for predicting pile displacements have

been shown in Figs. 6.6 to 6.11 to be inadequate for predicting real
behaviour because the various soil parameters employed are by no means
constant.

These elastic solutions are not able to account for variations
in soil stiffness as pile displacement and soil yielding take place.

Concentrating on the practical aspects of pile design, where
the deflection at the ground surface may be limited to 0.05 times the
pile diameter, small changes in this deflection produce the largest
variations in the parameters.

In Fig. 6.8 a fourth order polynomial has been fitted to the
variation of parameter ~ obtained using the Matlock and Reese method.
This indicates that it is possible to generate a relationship between
~ and Yld for increasing displacement. The relationship would have
to be obtained experimentally from centrifugal models or full-scale
tests for any soil type. However, the value of ~ obtained may not be
representative of the soil properties at various depths, being merely
a parameter which gives the correct deflections at the soil surface.

The theories of Matlock and Reese and Poulos produce values
of ~ and Nh of similar magnitude, for piles with tId ~ 7, suggesting
that coefficients of horizontal subgrade reaction are of the same order
as values of Young's modulus.

Randolph's method yields values of ,m*of the same order os vo..h,~~

of m* computed from Nh using Eq. (6.9) for the longer piles (e.g. with
Nh ,-"k0,lnd 'V - 0.3, niX -'6hNl,_;~. It is only strictly valid for piles
longer than their critical length.

Matlock and Reese's solutions show that piles behave as long
piles when t > 4T.
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If parameter ~ and Nh are considered equivalent, then for
long piles Poulos' parameter ~ < (1/4)5 = 10-3• This is not in
conflict with the behaviour shown in Fig. 6.4.

The elastic parameters ~ and Nh determined by back-analysis
• lie in the range 5 to 20 MNm-3• Thus piles 1 and 2 with EI ~ 750 MNm-2

could be considered long when t > 10.90 m or t > 8.26 m at the ends
of the range. The corresponding lengths for pile 3 with EI - 400 MNm-3

are 9.60 m and 7.62 m respectively.
These values do not conflict with the experimental observations

reported in Chapter 5.
In Fig. 6.9, using the Poulos solution, curves where tId ~ 6

were included. Curves for similar values of tId could not be produced
in Figs. 6.6 to 6.8 using the Matlock and Reese solution, because the
value of z (= LIT) was less than 2.max

6.5 CONCLUSIONS
The experimental results, produced in Chapter 5, have been

used to evaluate the parameters required in three existing theoretical
solutions for predicting pile displacements.

It has been shown that these parameters are not constant but
vary appreciably with pile displacement.

Relationships between the parameters evaluated by back-
analysis and displacements at the soil surface can be obtained experi-
mentally, but these may not really represent soil properties at depth.

It has also been shown that the rate of increase of Young's
modulus, Nh, and the rate of increase of horizontal subgrade reaction,
~, with depth are similar for a single pile in dry sand even though
they are not constant.
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CHAPTER SEVEN
CONCLUSIONS AND FURTHER WORK

7.1 CONCLUSIONS
The problem of a laterally loaded pile in sand has been

approached in three different ways, centrifugal modelling, finite
• element analysis and existing theories.

centrlvJial modelling is a well established and documented
technique and therefore in the absence of scale field tests, the
results produced from experiments can be considered as an accurate
and realistic measurement of pile - soil interaction.

The measured bending moment distributions were interpreted
using either polynomials or cubic splines. The polynomial method was
shown to be superior and a fourth order polynomial generally found to
give the best results.

Increases in pile length, flexural rigidity and diameter
reduced the pile displacement at the soil surface and the depth of
the.maximum bending moment. The applied load had a greater effect upon

the displacement at the soil surface than the applied bending moment.
The maximum bending moment was increased by increases in pile

length and flexural rigidity and reductions in pile diameter.
The difference between the maximum bending moment and the

applied bending moment at the soil surface is mainly due to the applied
horizontal load and for the longer piles, with tId ~ 7, it can be
expressed as M - (e + a)H (Section 5.4).max

There appears to be a critical length of pile (of the order
of 9 m for piles close to 1 m in diameter) above which the displacement
is not effected, which is not significantly dependent on the pile
diameter and flexural rigidity.

The evaluation of the parameter used in three existing theories,
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by back-analysis of the experimental results, showed that the para-

meters ~, Nh and m* are not constant but vary appreciably with pile
displacement.

The two parameters ~ and Nh, the rates of increase of
horizontal subgrade reaction modulus and Young's modulus with depth,
are of similar magnitude for a single pile in dry sand even though
they are not constant.

An attempt has been made to apply a finite element method
using Fourier series to represent the non-axisymmetric loads and dis-
placements. The technique utilises the axysmmetric geometry and material
properties of the problem. By comparing the experimental observations
with the results produced using this finite element method, the technique
has been shown to have the same limitations as other elastic solutions.
For a purely elastic problem in which the material properties vary only
radially and vertically, and not circumferentially, the technique is,
without douet, a very useful method of numerical analysis, saving cost,
time and storage on the computer. However, for a soil behaving plastic-
ally, the method is of limited use in its form presented in this thesis.

7.2 FURTHER WORK
Although a limited parameter study of a laterally loaded pile

in dry sand has been attempted in this work, there is still considerable
scope for further testing in a centrifuge. Studies are required using:
(i) more flexible piles;
(ii) smaller diameter piles hence higher tid values and with (i)

to attempt to obtain a relationship between the parameter a
and the pile diameter and flexural rigidity for long piles;

(iii)

(tv)

piles of different cross-sections;
a variety of soil densities and grain sizes to include the
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effects of pore pressures in clays;
(v) more loading conditions:- vertical load, compressive

and tensile, zero applied bending moment and pile head
and/or pile toe restraints;
cyclic loading to model wave action on an offshore structure
and the dynamic effects of earthquakes:
pile groups with all the above experimental conditions;
a method of driving the pile whilst the centrifuge is running
model the effect of pile driving.

As for the finite element analysis, the Fourier series technique cannot
be taken any further for this problem without access to cheaper, more

(vi)

(vii)
(viii)

powerful computing facilities. However, further research can be done
using two and three dimensional models into the effects of

and

(i)

(ii)

(iii)

stress - strain relationships for soil,
cyclic and dynamic loading,
pile groups.

With the obvious limitation of plane strain when using two-dimensional
models and size and cost when using three-dimensional models.

By using the results from the series of tests described in this
thesis and extending them, as indicated above, it should be possible to
establish definitions for rigid and flexible piles and criticaf length
in various soil types and hence to formulate useful empirical solutions.
Since an engineer is interested in the displacement and rotation at
soil surface and the position and magnitude of the maximum bending
moments, these solutions need only be for these values.
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APPENDIX (A)

Centrifugal modelling scaling laws
Quantity Model Prototype
Linear dimension I N
Acceleration N I

Area 1 N2

Volume 1 N3

Second moment of area 1 N4

Velocity 1 1

Mass 1 N3

Force 1 N2

Bending moment 1 N3

Stress 1 1

Density 1 1
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APPENDIX (B)

Stress Distribution between Model and Prototype
This following analysis is similar to that given by Schofield(30).

centre of rotation_----- ----

h

hr r,

a) Centrifuge model
distributions

Fig. B.I

model

, , prototype
,/ distribution,,

I.. pgH= Npg\i ·1
b) Stress distributions

Consider a model constructed of height h to represent a
homogeneous stratum of depth H in the field, the scaling factor is
N= H/b.

When the model is spun with angular velocity 00, the vertical
stress at radius r, see Fig. B.l(a), is

a .,,2 Jr w2 2 2• P \AI r dr • p "2 (r - rl )
rl

(B.I)

and thus the model and prototype stresses distributions, see Fig. B.I{b).
match at the top where r • rl and at one other position r • ro

For equal stresses at ro
2

00 ( 2 _ r~ ) (p ~ ro l· p g N ro - rl)
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Therefore
(B.2)

The error at other positions is given by
w2 2 2£ ..Npg(r - rl) - p z- (r - r1 )

(B.3)

For a mathematical maximum d£/dr = 0 and therefore
r = (ro + rl)/2. For another practical maximum r = r2 the best
approximation is obtained when the maximum percentage errors are
equal, therefore,

- (r - r ) Npg2 1

Npg (B.4)

therefore

1 -
(ro + r1)/2 + r1

(ro + r1)
.. - 1 (B.5)

therefore
(B.6)

i.e. at a 1/3 rd of the depth up from the base.
From Eq. (B.2)

~

r + r1 hr = - 0 - r +32 1w
(B.7)

i.e. the optimum scaling radius is at h/3 from the top. The maximum
errors are, from Eq. (B.5)

h/3.. -- h
(B.8)
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For example, in the Liverpool University centrifuge rl K 1.07 m,
r2 = 1.31 m, h • 0.24 m and r = 1.15 m, therefore € - 3.48 %.

Note, the optimum speed is calculated as

II.) - -r (B.9)
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APPENDIX C

Cl Sample back-analysis calculations
Sample back-analysis calculations for each of the three

theoretical solutions, presented in Chapter 5, are given below.using .
. the following data:-

3 2Flexural rigidity, El, = 7.7312 x 10 KNm
Diameter, d = 0.76 m
Eccentricity, e , = 0.76 m
Applied Horizontal Load, H, - 469.92 KN
Measured displacements, y, - 0.03077 m
Length, L, = 8.39 m
Angle of internal function ~' - 49.50

Bulk density, y, = 16.616 KN/m3

C2 Matlock and Reese
From Equations (6.1)

M T2
o+ -- ByE IP P

substituting the above values and re-arranging
4 2y • 6.078 x 10 T (T A~ + 0.76 By ) (c .1)

Now

therefore by guessing a value of ~, and calculating values for T
and zmax = L/T the coefficients Ay and BI can be determined from
Figs. 6.1 and 6.2 respectively. The required displacement is found

by trial and error. With ~ - 7600, T • 2.52 and zmax • 3.33.
Therefore ~ = 2.65 and By c 1.7. Substituting into Eq. (C.I) gives
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y = 6.078 x 104 (2.52)2(2.52 • 2.65 + 0.76.1.7) ""'0.03076 m

which is close enough for these purposes.

C3 Poulos
From equations (6.3)

y ""'
H
o (I' + ~ I' )/F~

N L 2 pH L pm
h

(C.2)

Using
and H ""'

u

30.5 y dL Kp
e + L

Coefficients I'PH' I'pm and F ' can be found from Figs. 6.3 and 6.4p

after guessing a value of Nh• The values of Nh which yield the
required displacement is found by trial and error.

The ultimate lateral resistance of the pile, H , is 3000 KN
u

-3hence H/Hu - 0.157 and e/~ ""'0.09 with Nh D 7250, ~ ""'2.564 x 10 •
Therefore from Fig. 6.4, F '- 1.0 and Eq. (6.2) becomesp

y ...
H
o (I' + ~ I' )-N-L"";;2- pH L pm

h
(C.3)

with ~Jd = 11, from Fig. 6.3 I' - 28 and I' .. 60. SubstitutingpH pm

into Eq. (C.3) gives

y - 469.92 ( 28 + 0.76 60) _ 0.03078 m
7250.(8.39)2 8.39

which is close enough for this purpose.
C4 Randolph

From equations (6.6)
Hoy ""0.54
m*r 2

o

E M E
( __.p..__ ) -3/9 + 0.60 _0_

3
(_L )-5/9

m* r m*r m*ro 0 0

(C.4)
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Now
E = (EI) / (TTr4 /4)p p 0

with r = d/2 = 0.38, E • 4.652 x 107 KN/m2 •o p

Using guessed values for m~ the required displacement is
found by trial and error.

With m* = 1600, substituting into Eq. (C.4) yields

0.54.469.92Y = 1600(0.38)2
( 4.652 x 107 )-3/9 + 0.60.357.14 ( 4.652 x 107 )-5/9

1600.0.38 1600(0.38)3 1600.0.38

= 0.0306 m

which again is close enough.

From Figs. 6.6 to 6.11 it is possible to see how variations
in the various moduli affect the y /d ratio.
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