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SUMMARY

This thesis presents a study of laterally loaded pile design and
theory by centrifugal modelling, existing theoretical approaches and

the finite element method.

Centriﬁ%ftnwdelling has been used to determine some of the factors
which influence pile behaviour and by back-analysis of the experimental

results to assess various theoretical solutions and a finite element method.
Chapter One contains an introduction to the work.

The finite element approach is outlined in Chapter Two and includes

the background, theory and computer program formulation to the approach,
together with an assessment of its accuracy and limitations, and a

comparison with the experimental results.

The experimental procedure and model to prototype parameters are out-
lined in Chapter Three, together with the historical background and theory

o[ centrifugal modelling.

Chapter Four contains an assessment of the least-squares polynomial

and cubic spline methods of analysing the experimental results.

The experimental results have been used in Chapter Five, to determine
the factors influencing pile behaviour, in particular the pile deflection
at the soil surface and the position and magnitude of the maximum bending

moment.

Chapter Six contains the background to, and the theory of, the theo-
retical approaches used and an assessment of their various merits by back-
analysis of the experimental results, and including some finite element

results.

‘Conclusions and suggestions for further work are presented in Chapter

Seven,

Appendix A contains a summary of the centrifugal modelling scaling
factors for model/prototype conversion. A centrifugal modelling error and
its effect in the Liverpool University centrifuge is discussed in Appendix
B. Appendix C contains some sample back-analysis calculations of the

experimental data to theoretical solutionms.

Together with this thesis is a separate document containing listings,
data preparation and sample data for the FORTRAN computer program MPAPOLY,
Model Pile Analysis by the Polynomial Method and FSP, Fourier Series Pile

Finite Element Analysis.



- ii -

ACKNOWLEDGEMENTS

I would like to thank Dr. G.J.W. King, Senior Lecturer in
Civil Engineering, for his supervision and guidance throughout the
course of the research.

For his help in preparing and testing on the centrifuge I
would also like to thank Mr. A. Mooé\kouse, Soils Laboratory
Technician and other members of the Department of Civil Engineering.

Finally, many thanks to Mrs. B. Lussey for her efficient
typing and to Mrs. Barbara Cotgreave for her help in tracing the

diagrams.



CONTENTS

INTRODUCTION

ANALYSIS BY THE FINITE ELEMENT METHOD

SUMMARY
ACKNOWLEDGEMENTS
CONTENTS
NOTATION
CHAPTER 1:
CHAPTER 2:
2.1
2.2
2.3
2.4
2.5
CHAPTER 3:

Introduction
Method of Analysis

2.2.1 Harmonic Representation
2.2.2 TFinite Element Formulation
2.2.3 Load Vector

Computer Program

3.1 Soil Model

3.2 Pile-Soil Interface
3.3 Pile Model

3.4 Computer Output

Accuracy and Limitations of the Method

2.4.1 Accuracy
2.4.2 Limitations

Applications of the Finite Element Method

2.5.1 Analysis
2.5.2 Discussion
2.5.3 Conclusions

EXPERIMENTAL METHOD

3.1

3.2

3.3

Centrifugal Modelling

3.1.1 Introduction
3.1.2 Basic Principals and Scaling Laws

Testing
3.2.1. Model Arrangement

3.2.2 The Model Piles
3.2.3 Data Collection
3.2.4 Test Procedure -
3.2.5 Testing Sequence and Objectives

Methods for Interpretation of Measured Data

3.3.1 Introduction
3.3.2 Polynomial Analysis
3.3.3 Spline Analysis

Page No.

31
31

31
31

34

34
38
43
43
44

48

48
48
48



CHAPTER 4:

CHAPTER 5:

CHAPTER 6:

INTERPRETATION OF EXPERIMENTAL RESULTS

4,1 Introduction
4,2 Polynomial Optimisation

4.,2.1 Analysis
4,2,2 Discussion
4,2.3 Conclusions

4,3 Spline Analysis

4,3.1 AnalySis
4.3.2 Discussion
4,3,3 Conclusions

THE RESULTS AND IMPLICATIONS OF THE CENTRIFUGE
MODEL TESTS

5.1 Introduction
5.2 Results

5.2.1 Applied Horizontal Load and Pile
Deflection at the Soil Surface

5.2.2 Applied Horizontal Load and
Maximum Bending Moment

5.2.3 Position of the Maximum Bending
Moment

5.2.4 Influence of Pile Length on Pile
Deflection at the Soil Surface

5.3 Discussion

5.3.1 Applied Horizontal Load and Pile
Deflection at the Soil Surface

5.3.2 Applied Horizontal Load and
Maximm Bending Moment

5.3.3 Position of the Maximum Bending
Moment

5.3.4 Influence of Pile Length on Pile
Deflection at the Soil Surface

5.4 Conclusions

AN ASSESSMENT OF THE MERITS OF SOME THEORETICAL
APPROACHES

6.1 Introduction
6.2 Theoretical Solutions

.2.1 The Solution of Matlock and Reese

.2.2 The Solution of Poulos

.2.3 The Solution of Randolph

.2.4 Relationships between the Soil
Moduli used in the Theories.

AN

Page No.

50

50
50

50
64
65

66

66
71
71

72

72
72
72

82
82
82
82
95
95
96

97

97

99

99
101

101
102
106
109



-y -

Page No.
6.3 Application of the Theories 110
6.3.1 Variation of Parameter n 111
(Matlock and Reese)
6.3.2 Variation of Parameter N 115
h
(Poulos)
6.3.3 Variation of Parameter m* 115
(Randolph)
6.3.4 Variation of Parameter N 115
(F.E. Method)
6.4 Discussion 119
6.5 Conclusions , 120
CHAPTER 7: CONCLUSIONS AND FURTHER WORK 121
7.1  Conclusions 121
7.2  Further Work 122
APPENDIX A: CENTRIFUGAL MODELLING SCALING LAWS 124
APPENDIX B: STRESS DISTRIBUTION BETWEEN MODEL AND PROTOTYPE 125
APPENDIX C: Cl - SAMPLE BACK-ANALYSIS CALCULATIONS 128
C2 - MATLOCK AND REESE ‘ 128
C3 - POULOS 129
C4 - RANDOLPH 129
REFERENCES 131

BIBLIOGRAPHY 136



NOTATION

A,B

a,b

B

-vi -

coefficients relating to lateral and moment loading
respectively

dimensions of element with respect to r and z
strain shape function

elasticity matrix

diameter of pile and breadth of footing
Young's modulus

Initial tangent modulus for soil

Young's modulus for pile

Young's modulus for soil

eccentricity of load

yield-displacement and yield-slopé factor‘
nodal element force vector

shear modulus

G(1 + 3v/4)

shear force at soil surface

ultimate lateral resistance of pile
Influence factor

elastic influence factors for displacement related to
horizontal load and moment

elastic influence factors for slope related to horizontal
load and moment

second moment of area

stiffness matrices, matrix of stiffness coefficients and
hyperbolic coefficient

modulus of horizontal subgrade reaction
flexibility factor

coefficient of passive earth pressure
modulus of subgrade reaction

shear and normal stiffness coefficients
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length of pile

bending moment

bending moment at soil surface

rate of increase of shear modulus with depth

m*(1 + 3v/4)

friction element equivalent to strain shape function
rate of increase of Young's modulus of soil with depth
shape function

number of harmonics and hyperbolic exponent

rate of increase of Kh with depth

loads

pressure, soil resistance and load intensity

atmospheric pressure

radius

relative displacement

radial direction

radius of pile

co-ordinates of the centre of an element
non-dimensional local co-ordinates
characteristic length

radial displacement

shear force

vertical displacement
circumferential displacement
displacement

deflection at soil surface

depth coefficient = z/T

vertical direction and depth

bulk density



er,re,za

shear strain in relevant direction
nodal displacement

strain vector

direct strain in relevant direction
Poisson's ratio

circumferential direction and slope
slope at soil surface

angle of internal friction (effective stress)
stress vector

direct stress in relevant direction
minor principal stress |

shear stress in relevant direction



" CHAPTER ONE
INTRODUCTION

Initially piles were used for overcoming the difficulties
of supporting structures in soft soils. However more frequently they
have been expecte& to resist 1atéral loads and moments for example
in harbour and offshore structures, pile supported earth-retaining
structures, transmission-towers and structures built in earthquake
areas., |

In the past design for lateral loading has been based upon
empirical information from full-scale lateral load tests. In recent
years techniques have been developed to predict pile deformation which
include centrifugal modelling, theoretical methods and, most recently,
finite element analysis.

The full-scale testing of laterally loaded piles would
providé some of the most useful information relating to pile-soil
behaviour. However, the cost of such tests is so high as to prevent
such testing in sufficient numbers. It is not easy to apply information
obtained from one such test to other sites with different loading and
soil conditions. It is preferable to carry out a series of model
experiments in a centrifuge to determine which parameters affect the
pile behaviour.

Centrifugal modelling is not only a low cost technique, but
also provides the required amount of control over the soil condition,
pile types, sides and loading conditioms. The technique allows small
scale modelling of a geotechnical structure simulating the same
stresses which would occur in the full-scale prototype.

In the theoretical methods of predicting pile deformatioms
which have been developed, two approaches have generally been employed,

the subgrade-reaction and the elastic continuum methods.



The subgrade-reaction apéroach assumes that the pile is
supported upon a series of springs, known as the Winkler spring
medium. This method ignores the continuum nature of the soil and is
simply a relationship between pile reaction and displacement at a
point.

The elastic continuum approach relies on separate numerical
methods for anaiysing the pile and thé continuum and requires matching
of deflection and pressure along the pile/continuum interface using
an iterative process. High accuracy is therefore difficult to achieve.

The most recent method for analyses of pile-soil behaviour
is the finite element method. This technique is only possible because
of the availability of large compﬁters. The method as applied in this
thesis considers axisymmetric geometry and material properties Subjected
to non-axisymmetric loading. Displacement and applied loads are
represented by Fourier series.

The main objectives of the research programme described
in this thesis were:-

1) to model vertical piles in the centrifuge with various
lengfh, diameter, flexural rigidities and load
combinations; .

2) to determine which of these factors influence the
pile displacements and maximum bending moment; and

3) to assess the relative merits of some existing
theoretical approaches, and of a finite element approach,
by back analysis of the experimentél results,

The experimental work was performed using the Liverpool
University Geotechnical Centrifuge and the analysis of the experi-
mental data and the finite element modelling were also carried out at

Liverpool University using the computer facilities available.
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CHAPTER TWO
'ANALYSIS BY THE FINITE ELEMENTS METHOD

2,1 INTRODUCTION

The finite element method began as a numerical method of stress
analysis. It is the most powerful numerical technique available at

¢))

present and has been well documented by Zienkiewicz(36), Cook*" 7,

Desai and Abel(lz)

and many others. Zienkiewicz(36) defines it as a
general discretization procedure of continuum problems posed by mathe-
matically defihed statements., However, a two—dimensional analysis is
limited to plane strain and axisymmetric problems and a full three-
dimensional analysis is costly and time consuming even with today's
most powerful computers.

The problem presented here is of a vertical pile with axi-
symmetric geometry and material properties but which is subjected to
non-axisymmetric loading. This problem can be analysed by a technique
wvhich reduces the three-dimensional problem into two-dimensional analysis
by expressing the loads and displacements as Fourier series.

This semi-analytical finite element method was first developed

(34) for linear elastic analysis and also mentioned by

37) 4) (6)

Zienkiewicz and Too » Belytschko

by Wilson

and furthered by Cheung under

the name of the finite strip method. Text book accounts can be found in

(36) and Cook(7). It has been further developed by Grose(ls)

(32)

Zienkilewicz

to include circumferentially
(35)

for thermal léading, by Stricklin et al
varying material properties and by Winnick and Zienkiewicz for visco-
plastic behaviéur.

This approach, described in this thesis, concentrates on linear
_elastic analysis in which properties can vary in the radial and

vertical directions but are kept constant in the circumferential direction,

for reasons which are discussed later, Section 2.4.



2.2  'METHOD OF ANALYSIS

The axisymmetric geometry of the continuous problem is
replaced by a system of axisymmetric elements connected in nodal

circles and requiring analysis only in the plane (r,z) at 6 = O.

2.2.1 :Harﬁonic Representation

Let us first validate the use of Fourier series. Assume that
the displacements of an arbitrary point in‘a body are,

u = u cosné

Vv = v cosn® (2.1)

v = v sinn®
where u, V and w are functions of r and z only and n is an integer
representing the number of harmonics.

The strain-displacement relationships in polar co-ordinates

4
are represented as
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The stress-strain relationship is
[+) = D.E (203)
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Substituting the displacements of Eq. (2.1) into the strain-

displacement relationship oquq. (2.2) and combining with Eq. (2.3)

gives
=g cosnd ' T T =T _ cosnb
O r rz . rz
=0 T . cosn®
oz ozﬁcosne Tre - tre
o, = 0, si T ,.=71, sinn®
o 2] 1nné z0 20 1

(2.4)

In which the barred quantities are functions of E,v,r,z and n

but not 6, for example



E(1 -v) du

- \
T TENA-W wx TTw  wTTYT) (2.4a)
The equations of equilibrium in polar co-ordinates are
ESE + 1 aTre + aTrz O~ °e =0
or r 00 9z, r
90 9T . at T
F4 ’ rz 1 b4:) 4:) :
%z ' v 't e t: 0 (2.5)
1 Bce . 3’:9 ) 81’26 . ZTre o
r 08 or 0z T
as in this problem there are no body forces.
Substituting Eq. (2.4) into Eq. (2.5) yields
(---)cosn8 =0, (-~--) cosn®@ =0, (- - =) sinn@ = 0 (2.6)

where (-~ - -) contain r, z and n but not 6 .

These equations must be satisfied for all values of © and hence the
expressions (- - -) must vanish producing three partial differential
equations with r and z independent and u, v and w dependent variables,
therefore reducing the problem to two dimensions.

For the problem considered here the loads and displacements

may be expressed as Fourier series.

u = ngl u cosnd Pr = a1 Pr cosn®

® - 0 e—
v = LV cosnd P, = ,L; P, cosn® (2.7)
w o= nzl W sinn Pw = nél’Pe sinn®

For most practical problems only the first 4 or 5 terms in



the series need be considered. For the problem presented here, as
will be discussed in Section 2.4, only the first harmonic n =1

need be considered for an elastic analysis of a laterally loaded pile.

2.2.2 'Finite Element Formulation

Consider the ﬁesh shown in Fig. 2.1. The pile and soil media
are represented by 8-node rectangular isoparametric elements, see
Fig.‘2.2a. The friction elements are represented by a 6-node rect-
angular isoparametric element, see Fig. 2.2b, similar to that developed

(12)

by Goodman et al(la) and Desai and Chandrasekaran of which a

complete description can be found in Sectiom 2.2.2.3.

2.2.2.1 General Case

Assume the variation of displacement to be represented by

J [--]
u= I I N. u., cosn®
i=1 n=1 .
j ©
v= L I N, YV, cosné (2.8)
i=1 n=1 t
j e _
w= I I N, w sinn®
i=1 n=1

where j is the number of nodes in each element and Ni is the shape
function for the ith node in the element and are functions of § and n
only.

The strain matrix is obtained by substituting Eq. (2.8) into
Eq. (2.2) yielding

e =B § (2.9)

in which
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and B, the strain shape function, for the ith node is

oN.
—— cosn®
or
aN.
0 -t cosn®
9z
3Ni
< cosnd
B= —Ei cosnd EEi osné
9z or ¢
-nN,
l *
~—— s1lnné
b o
-nN,
0 —* sinné
Tr.

1 cosnd
r

The stiffness matrix is obtained using the standard

procedure, Zienkiewicz(36)

2m
K=J BTDde
v

27

-

0 A

e I B D B £(r) dr:dz

(2.10)

(2.11)

(2.12)

(2.13)

where f(r) is a function of r only and comes from the conversion from

Cartesian to polar co-ordinates within the integral.
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FIG.2.2. PILE, SOIL AND FRICTION ELEMENTS
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Integrals which appear in Eq. (2.13) include

27 (v form=n #0
jsinmﬁ sinn® d6 = <
0 (0 for m #nand form=n=0
2m f2ﬂ form=n=0
Icosmﬁ cosn® d® = 4 o .o 40 (2.14)
° L0 form=n

2w
j sinmé cosn® d6 = O for all m and n
0

For the problem presented here m = n = 1 hence Eq. (2.13)

becomes
K=n j 8Y p B f(r) dr dz (2.15)
A
The above expression is integrated numerically by Gaussian
quadrature, see Cook(7’(pp'103-105) ).
The nodal displacements are calculated by solving the system

of simultaneous equations

K.&é6=f¢ (2.16)

where f is the nodal force vector.

Finally, the stresses are calculated from

g =De¢g (2.17)
Since € =B § (2.18)
¢ =DB §

2.2,2.2 Pile and Soil Media Elements

With reference to Fig. 2.2(a), the shape functioms Ni(E,n)

for nodes i = 1,8 are
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Np = Z(L + €6 (L + ) (8, + nn = 1) for i = 1,2,3,4

N, = (1= €501 + ) for i =57  (2.20)
N, = 2(1 + EE) (L - n°) for i = 6,8
i 2 i
where
r - rc . z - Zc
g€ = P ’ n= Y (2.21)

By following the method outlined in Section 2.2.2.1, it can

be shown that the expression for the stiffness matrix becomes
+1 +1
k =17 ab j J 3l p B (Ea + rc) d¢ dn (2,22)
-1 -1

2,2,2.3 Friction Elements

These are similér to those developed by Goodman et a1(14) but
instead of 4-nodes they have 6-nodes and are either horizontal or
vertical.

Their shape functions and stiffness matrices are developed

below.

2,2,2,.3.1 Vertical Elements

Referring to Fig. 2.2(b), assume the displacement variation
§. = a, +a,z+a,z | (2.23)
‘ 1 2 3

Then the diéplacement functions for each node are

§, = a, - a.b +q b2

1 1 2 3

2
62 = a; + azb + a3b (2.24)
65 = al

Solving Eqs. (2.24) yields
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- 2] [
oy 0 0 2b &
1
a =— |-b b o]l x | 6
2 202 2
|23 1 1 -2 | — 65J

and, therefore, & the displacement of any point is

(2.26)

=25 [6,2G - b) + 8, 2(z + B) + 55207 - 22)] (2.27)
2b

= LNI N, N_,J x | 8, -
)

S

(2.28)

5

where Ni for i = 1,2,5 are the shape functions for the element, i.e.

2 2
z(z - b) _ a(z +b) . " =27)
Mt Mt T Nt T )
2 - 2
Let n = T then Ni becomes
N,= Lom-1, No=lnm+D), No=@Q-0nd)  (2.30
1 -z » N2 %3 » Vs
Noting that
u.
1
S, = v
i i
w'
1
y S [
[u v, o o ¥ o o ¥ o o] fu)
v-ouloonzoousohi,
| W _0 0 Nl 0 0 N2 0 NS Lw1
4 J

(2.31)
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for i = 1,2,5

The relative displacements (right-left) are

r w
r1 Yr Y
re Ye T wl
» K <
with
ru‘
i
§ = v,
1
W,
i
for i =1 to 6 and
'N100N20 O-NZOO--NIOON5
N = 0 N o o0 N2 0O O -N2 o O -N1 0O 0 N
(0] 0 Nl 0 0 N2 0] O-N2 0 O-N1 0 0

Kn 0 0
K= 0 k . 0
]
0 0 k
s
we have
o=k.r
in which

o=TJo T T o]
L r’ ‘r2’ re‘

Expressing the displacements as Fourier series

rr = z rr cosne
1=0

rz = ) _r cosné
i=0 2

sinn®

(2.32)

(2.33)

(2.34)

(2.35)

(2.36)




and
[+ ] -—
u, = L u, cosn®
i . i
i=1
® -
v, = L v, cosn® (2.37)
i . i
1=0
(-] - .
w, = I w. sinné
i . 1
1=0

Following the usual procedure the element stiffness matrix

can be expressed in the two-dimensional r z plane as

2= .
K=b I f WL, RN r_ de dn (2.38)
-1 0
where
Nlc 0 0 NZC 0 0 -Nzc 0 0 -Nlc 0 0 N5C 0 0 -NSC 0 0
N = 0 NLQ 0 0 N2c 0 0 —Nzc 0 0 -Nlc 0 0 Nsc 0 0 -Nsc 0
0 0 le 0 0] st (0] 0 -st 0 0 -NISO 0 -NSS 0 0 -NSS_
with
¢ = cosn® , S = sinn®

By Eq. (2.14), Eq. (2.38) becomes
. 1
R= mrb I NT.K.N dn (2.39)
‘ -1

2.2.2.3.2 Horizontal Elements

The same procedure is followed replacing z,b and n with

r, a and £ yielding shape functions

- 1 - =1 = (1 - £

Referring to Fig. 2.2(b), the relative displacements

(top-bottom)
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2l Y T Y
r = z, = Ve T Yy = N§ (2.41)
Zg Ve T 9
with
u,
i
6 = v,
i
w

-N1 O o -NZ 0o o N2 0O o N1 (o I ¢) N5 0 o0 —N5 0 o
N=] 0 -N1 0O o -N2 0 o N2 o o N1 0 o0 N5 o o0 -NS 0
- - N -N

i o 0 N1 0O o N2 0o 0 NZ o ©° Nl 0 O 5 0 o %

— . -
k o] 0
S .
K= 0] k 0 (2.42)
n
0 0 k
5 ]

Expressing the displacements as Fourier series and following the usual
procedure the element stiffness matrix can be expressed in the two-

dimensional r z plane as

1 2n
K= a I J ﬁ'T;K;ﬁ( £, * rc) de dg (2.43)
-1 0
where
- - c =N C (4
N 0 0 -Ne 0 0 NS O O NF 0 0 -N€ 0 0 N& 0 0
N = - - c - c
O -Njg0 0 -N2O 0 NS 00 NCO 0 -NCO O N<CoO
- - - -N_8
| 0 O-NsO O -NjsO O NsO ONs O O-NSO 0-Ng

with
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c = cosné », S = sinnd

By Eq. (2.14), Eq. (2.43) becomes
1
K= nz_ a J NT.K.N( g, + 1) dt (2.44)
-1

2,2.3 Load Vector
As previously mentioned in Eq. (2.7) the loads are expressed

as Fourier series

i=1
P = T T’-z' cosné ' (2.45)
z i=1 -
= I P sinnd
Pe . (7]
i=]1

2.2.3.1 Horizontal Loading

Consider a uniform load of intensity 'P' applied on the
circumference of a pile of radius 'R', as shown in Fig. 2.3(a).

The load acting on the arc d6 at an angle'e from the centre
of the pile is pRd®. Resolving in the radial and circumferential
directions the load components are

Pr = pr cos® do
and (2.46)
Py = -pr sin® dé
respectively.
The equivalent nodal force may now be calculated by equating
the work done by thé nodal force to the work done by the distributed

force moving through a distance u,
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-pRsin8d®

"PRcosB8do

pRd®

a) Horizontal Loading

Y pRcos Qde

b} Moment Loading

FIG.2.3. LOADING ARRANGEMENT
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2%
%-Pruo =3 J PR cos® dé ﬁ cosé
0
1 2n
- 3 j u PR cos %0 de : (2.42)

Substituting for the uniform load intensity p = §§§-

(Zn_
1 1 P 2
i'P % 3 J TR R u° cos © d8
‘Ja o
' P
ce Pmo3 (2.48)

Similarly, the load component in the circumferential direction can be

proved to be

P
B e 2,49
Pe 7] ( )

These loads are applied on the circumference of the pile at 6 = 0.

2.2.3.2 Moment Load

The moment load is simulated by applying two equal and
opposite vertical loads on the circumference of the pile at 6 = 0 and
e =nm,

Consider the pile as shown in Fig. 2,3(b) being acted upon
by a vertical load pRcos® on the circumference.

The vertical force acting on an arc length Rd6 is

P, = pR cos® de (2.50)

The moment at the centre of the pile is

M = pR cos® dO@ R cos®

- pR2 cosze (2.51)

Therefore the total moment acting over the circumference is
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27
M= J pR2 coszede
o
* M= pRp (2.52)

By equating the work done by the nodal force to the work done
by the distributed force moving through a distance w, the equivalent

nodal force is obtained.

2n
1 1 2
=P = = 2.53)
5 P, 0, =3 I P w, R cos"® de (
0
Substituting for p gives
21
lP w -1 M w Rcoszede
2z o 2 2 o
mR
0
M
P,* X (2.54)

This load is also applied on the circumference of the pile

at 8 = 0.

2.3 COMPUTER PROGRAM

A computer program was developed to analyse vertical piles
subjected to lateral load and moment, using the finite element theory
described above. Other features of the program are as follows.

2.3.1 Soil Model
The soil medium was modelled using the power law proposed by

Janbu(17),

(o]
E; =Kp, (=2)" . (2.55)
pa

By determining K and n experimentally for any particular soil
the initial modulus is thus related to the stress level. For elastic
analysis this modulus is used to represent the soil for all subsequent

loading increments; reasons for this are discussed in Section 2.4,



- 21 -

As stated in Section 2.2.2, the stiffness matrix is
calculated by Gaussian quadrature and, therefore, the moduli at the
Gauss points have to be assigned. A parabolic variation of the modulus
is assumed across the element and from this the moduli at the Gauss
points is calculated.

An advantage in using the power law is that it embraces
simpler modulus variations with depth which are commonly assumed, i.e.
with n = 0 Eq. (2.55) becomes

Ei = K P, | | ; | (2.56)
and Ei is then constant with depth, and with n = 1, Eq. (2.55) becomes

. = 2.57
E; =Ko, | ( )
and Ei then varies linearly with depth.

2.3.2  Pile-Soil Interface

This is modelled by using the friction elements developed in
Section 2.2.2.3 and is achieved by varying k and k_, the normal and

shear stiffness coefficients.

2.3.3 Pile Model

Although hollow tubes are used in the centrifﬁgal modelling
of piles to scale both size and rigidity correctly, the computer
program uses a siﬁgle element across the radius to model a pile. When
analysing a prototype corresponding to an arbitrary model pile this
element has the prétotype radius but has adjusted modulus to give the
correct prototype flexural rigidity.

2.3.4 Computer OQutput

The displacements of the pile are calculated by solving Eq.
(2.16) and the stresses in the pile and soil are then calculated from

Eq. (2.19). From the pile displacements the slope at points down the
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pile are calculated using finite difference approximations.
The stresses in the pile are used to calculate the bending
moments and then the shear forces in the pile are evaluated by finite

difference approximations.

2.4 | ACCURACY AND LIMITATIONS OF THE METHOD

2.4,1 Accuracy

The accuracy of the Fourier series technique was tested by
applying separate horizontal and moment loads at the top of a model
cantilever and comparing the results with conventional bending theory.

The cantilever was modelled by fixing the pile at’'its base,
setting Poisson's ratio to a value slightly less than 1.0 and setting
the soil modﬁlus very.small by letting the power exponent n = O and
assigning a very small value to the coefficient K.

For horizontal loading only the deflection was found to be
0.23% less than expected and for moment loading only 0.1% greater than
expected. These results are well within the accuracy of any results
expected from experimental data.

Although testing the accuracy by this method is not partic-
ularly rigorous, comparison with pile design theories, experimental

model tests, or field data cannot be relied upon as their accuracy is

undetermined.,
2.4,2 Limitations

2.4,2,1 Linear Elastic Analysis

As already mentioned in Section 2.1, the use of Fourier series
to express the displacements necessitates the additional conditions of
axisymmetric material properties and geometry.

The condition of axisymmetric geometry is acceptable but the
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condition of axisymmetric material properties limits the analysis to
a linear elastic one with materialvproperties varying in the radial
and vertical directions only,

As the pile is loaded the stress levels in the soil change
accordingly, i.e. with maximum increase at 8 = 0 and maximum decrease
at ® = 7. The modulus of the soil, being dependent upon the stress
levels is thus effected by differing amounts around the pile. In a
more conventional two- or three-dimensional analysis, soil properties
could be allowed to change using non-linear-elastic or plastic models.
The condition of constant axisymmetric properties does not allow the

use of such models.

(35)

Work has been carried out by Winnick and Zienkiewicz and

&)

also Barton into visco-plastic behaviour of soils using Fourier
series analysis, However, in both studies the elastic modulus was kept
constant around the pile and used to calculate plastic'strains.'

Stricklin et a1(32) furthered the method to non-linear elastic
analysis. They expressed the modulus and Poisson's ratio for the soil
as functions of @, using another Fourier series. The expression for
the stiffness matrix then became a third order triganometric function,
involving a combination of sine and cosine terms.

This numerical solution is most complicated and time
consuming and, therefore, leads away from the benefit of the simplification

provided by the two-dimensional approach.

2,4.2,2 Tension Release

The problem being modelled here is that of piles in sand and
it is well known that sands are not capable of holding tensile stresses.
In a conventional finite element analysis, the tension behind

the pile could be released by setting the normal stiffness of the
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friction element to zero. However, the axisymmetric material prop-
erties associated with Fourier series cannot model this type of
behaviour.,

A possible method of releasing the unrealistic tension is
to calculate the tension distribution around the back of the pile and
then apply additional load to give the same deflection had there been
no tension.

Due to the complexity of the problem and the time involved,
this has not been attempted here. This would involve higher order
harmonics in the Fourier series and only the first harmonic has been

considered.

2.5 APPLICATION OF THE FINITE ELEMENT METHOD .

2.5.1 Analysis

The dimensions and properties of the experimental piles are
known and, therefore, input directly into the finite element model
(Sections 2.3.3 and 2.3.2) assuming a stainless steel pile to be smooth.

The only unknown variables are the subgrade coefficients K and
n in Eq. (2.55). The theories of Matlock and Reese(zo), Poulos(23) and
Randolph(24) assume a linear variation of modulus with depth, i.e.

n = 1 and, therefore, Eq. (2.57) has been used in this analysis. As the
coefficient, K, is unknown, experimental pile displacements were
compared with displacements from the finite element model using a range
of values of K., The initial stress at any Gauss point at depth z was
evaluated as 93 = K vz, with the coefficient of earth pressure at rest
K = 0.24 and specific weight of the soil y = 16.62 KNm-3.

The experimental displacements were taken from a typical

test on pile No. 1.
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2,5.2 'Discussion

Figure 7.4 shows displacement against load for the
experimental and finite element results for pile No. 1 with embedded
1ength/diameter,%ﬁ!Land load eccentricity,@;clc |

The curve represents the experimental data and the straight
lines computed with K = 2900, 3500, 3600 and 4000. The corresponding
values of parameter N so that Es = Nz are N = K(Koy) = 4 K.

It is obviously difficult to obtain a good fit between the
linear finite element results and the non-linear experimental results.
However, the values of N which yield the experimental displacements at
various points are plotted for comparison with Poulos' parameter N, in
Fig. G-q. (Chapter 6). Figures 2.5 to 2.7 show the results from the
finite element analysis, with K = 2900 and with an applied horizontal
load and moment of 469 KN and 357 KNm respectively, plotted with the
experimental results, with the same applied loads, calculated using a
polynomial (Section 4.2) in Figs. 2.5 and 2.7, and in Fig. 2.6 the
measured bending moments.

The distributions produced from the finite element analysis
are of the expected shape. However, the bending moment distribution,
Fig. 2.6, was the only one measured directly from the experiments and
these values are higher than that from the finite element analysis.
Therefore, from Section 2.3.4 the finite element shear force distribution
is doubtful even though it is close to the experimental distribution.

The finite element displacement distribution shows the
expected shape but its magnitude cannot be verified because there was

no measured displacement down the pile for comparison.

2.5.3 Conclusions
It is possible to select a value of K for a given deflection

which represents a rate of increase of soil modulus with depth.
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However, from Fig: 2.4 it is not possible to model the load-deflection
relationship from the experiments with a single value of K.

This shows that a non-homogeneous medium, such as a soil,
cannot be modelled satisfactorily by the simple elastic‘method used.

The finite element method presented in this thesis is a valid
and well proven method for elastic stress analysis, but is of limited
use once observed behaviours become non-linear.

A non-linear str;ss-strain relationship could be included but
this would increase the storage and time required by the program as
discussed in Section 2.4.2.

For the above reason the finite element model presented here
cannot be expected to give close agreement with the centrifuge results.
However its merits can be compared with other elastic analyses such as
Matlock and Reese, Poulos and Randolph (Chapter 6). In particular back-
analysis yields values of N which are appreciably higher than Poulos'

parameter N at the same pile head displacement.
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CHAPTER THREE

EXPERIMENTAL METHOD

3.1 CENTRIFUGAL MODELLING

3.1.1 Introducfion

Centrifuge tests were first performed in the 1930's independ-
ently in America and Russia and thus the principles of similarity
between model and prototype have been recognised for over 50 yearé.

In the United Kingdom this modelling technique was first

(1)

pioneered by Avgherincs and Séhofield on a hired aerospace centri-
fuge. This work lé\@ to the building of a geotechnical centrifuge at
the University of Manchester, Institute of Science and Technology (UMIST)
in 1969, of which a short description is given by Schofield(31).
In 1971, centrifuges were constructed at the University of
Manchester, Simon Engineering Laboratories, detailed by Rowe(zg) and
Craig and Rowe(g), and at Cambridge University, described by Schofield(3o).
The Liverpool University geotgchnical centrifuge, shown in
Plate 3.1 and Fig. 3.1, was completed in 1973, a full description of
which can be found in King et al(ls).
‘Although centrifugal modelling will never replace full scale
field tests, it does provide a unique method of studying the behaviour
of geotechnical structures. It is possible, under these controlled

conditions, to study modes of failure that previously were unrecognised

and hence formulate new methods of analysis and design.

3.1.2 Basic Principles and Scaling Laws

Centrifugal modelling differs from conventional modelling only
by the forced gravitational field induced into the model by the centri-
fuge.

Provided model and prototype are made of the same materials,

a model N times smaller than the prototype but in a gravitational field
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N times greater the model will experience the same unit stress as the
prototype at corresponding points and, because consolidation rates
depend on length squared, consolidation in the model will be N2 times
faster than in the prototype.

The remaining scaling laws, listed in Appendix A, follow
automatically.

However, the gravitational field created by the centrifuge
varies radia((s; and hence over the depth of a model, stresses in model
and prototype cannot be matched at all points.

The linear variation of acceleration with depth through the
model causes a non-linear variation of stress and it can be shown,
Appendix B, that the operating speed can be chosen so that the maximum
percentage error in stresses between model and prototype for the
maximum depth of model in the Liverpool centrifuge, is less than 3.57.
As this error is small no corréctions have been made to experimental
or theoretical calculations. All models were run at 176.4 rpm to give

an average scaling factor, N = 40,

3.2 TESTING

3.2.1 Model Arrangement

The main features of the Liverpool University centrifuge and
a review of previous research topics and test methods have been out-
lined by King et al.(ls)

The test arrangement, used for the experiments described here,
is shown in Plates 3.2 and 3.3 and Fig. 3.2.

Load is applied to the model pile by a high torque low-speed
AC motor and through a gear system to give a horizontal pull.

The soil used in the experiment was dry Erith sand having an

effective size, Dyg» of 0.16 mm and a uniformity coefficient, C,» of



PLATE 3.2. MODEL ARRANGEMENT




36

WSINVHI3W ONIOVOT

‘€°€ 31vd




- 37 -

410 L. 133
| I DISPLACEMENT
TRANSDUCER
/ \ MOUNTING
— _ OMITTED
L saND I FOR CLARITY
T (¥ 2GRN
) PILE - X
O J
460 —
TIE LOAD ggs&*
CABLE  CELL
MOTOR
. s o
L
N\ /
PLAN
SUPPORTING DISPLACEMENT
BEAM TRANSDUCERS
] BUSHING
— r |/ ASSEMBLY
|
LAY T : . ". ‘., i
| VARIABLE | | . SAND
230 I ,
SECTION X-X
FIG.3.2. MODEL ARRANGEMENT FOR TESTING

SINGLE. PILES




- 138 -

of 1.25. The sand was compacted in several layers using a hand
vibrator with the model pile held firmly in position. This produced,
as determined by taking measurements at random throughout the series
of tests, an average bulk density of 16.616 KN/ms.

3.2.2 The Model Piles

Three model piles were tested. They were made of stainless
steel tubing and designed so that there(were two with approximately the
same diameter and two with approxiﬁately the same flexural rigidity.
The dimensions and properties of each pile are listed in Table 3.1.

To measure the bending moment in the piles during the tests
14 pairs of strain gauges with a gauge length of 3 mm and a resistance
of 120 ohms were fixed to the inner surface of each pile at 15 mm
centres and starting 15 mm from the bottom of the pile. Calibration
of each pile was by cantilever theory, each pile being supported at the
top and loaded at the tip.

The meésured sfrains are shown in Tables 3.2, 3.3 and 3.4,
together with average values for flexural rigidity calculated over each
strain gauge length.

The average flexural riéidity determined for each pile is
included in Table 3.1, together with corresponding values of Young's
modulus derivéd ﬁsing the measured diameters.

This apparent variation in Young's modulus reflects inaccur-
acies in the positioning and response of the strain gauges and
variations in material properties..

At the tip of the pile a metal insert was made to prevent
sand from entering the pile while setting up and running the experiment.
It was made to be a loose fit and glued into position with a rubber
solution glue so that it would not affect the flexural rigidity of the

pile at the tip.
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Table 3.2

Calibration of Model Pile No. 1

Gauge Dist. from Strain Flexural
No. I;ad x 10-6 Rl&;iity
1 0.210 311 0.300
2 0.195 289 0.300
3 0.180 262 0.305
4 0.165 240 ‘ 0.306
5 0.150 222 0.300
6 0.135 1 200 0.300
7 10,120 177 0.301
8 0.105 155 0.299
9 0.090 135 0.296

10 0.075 193 0.295
11 0.060 89 0.300
12 0.045 68 0.294
13 0.030 45 0.302
14 0.015 20 0.333

Note Load = 49.6 x 10-3 KN

Average Flexural Rigidity = 0.302 KNm2
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Table 3.3

Calibration of Model Pile No, 2

Gauge Dist. from Strain Flexural
No. lo;d x 10-6 ﬁiiigity
1 0.210 250 0.302
2 0.195 236 0.297
3 0.180 223 0.290
4 0.165 199 0.298
5 0.150 185 0.292
6 0.135 ‘ 168 0.289
7 0.120 144 0.300
8 0.105 129 0.293
9 0.090 109 0.297
10 0.075 94 0.287
11 0.060 75 0.287
12 0.045 60 0.270
13 0.030 40 0.270
14 0.015 22 0.245

Note Load = 30.0 x 10—3 KN

Average Flexural Rigidity = 0.287 KNm2
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Table 3.4
Calibration of Model Pile No. 3
Gauge Dist. from Strain F}e¥ufal
No. lgad x 10—6 nglglty
‘ «Nm
1 0.209 230 0.164
2 0.194 213 0.165
3 0.179 195 0.166
4 0.164 177 0.168
5 0.149 162 0.166
6 0.134 146 0.166
7 0.119 131 0.164
8 0.104 115 0.163
9 0.089 100 0.161
10 0.074 85 0.157
11 0.059 69 0.155
12 0.044 55 0.145
13 0.029 38 0.138
14 0.014 20 0.127
Note Load = 20.2 x 10-3KN
2

Average Flexural Rigidity = 0.157 KNm
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3.2.3 Data Collection

Readings taken during each test were :-

(a) Lateral load, measured by a load cell placed between
the gear box assembly and the pile cap.

(b) Horizontal deflecfion at two points above the loading
point.,

(c) Strain readings at 14 points down the pile.

The readings were fed through a Vishay-Ellis 220 recording

system, see Plate 3.1, which is interfaced to a PET computer for

immediate processing of results, King et 31(18)‘

3.2.4 Test Procedure

Once the model had been set up and the rotating arm of the
centrifuge statically balanced the machine was spun up to a test speed
of 176.4 rpm (equivalent to a 40 g acceleration), for about 2-3 minutes.
This was done to make sure that the machine was running smoothly and
to allow any initial settlement of the pile and sand to take place.

When the centrifuge stopped the strain gauges, load cell and
displacement transducers were set to zero and a scan of the output
channels taken. This is known as the static zero datum.

The machine was then spun up to speed and another scan of
the output channels taken. This is known as the dynamic zero datum.

Load was then applied to the pile by the motor and at any
required load, the motor was stopped and a scan of the output channels
taken.

The data was recorded in approximately equal increments of
load until one of the following limits was reached; (i) maximum
allowable load cell reading of 360 N, to guarantee a linear calibration
of the load cell, (ii) maximum strain reading of 550 microstrains, to

prevent the pile from becoming plastically strained and (iii) maximum
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allowable deflection of 6 mm from the upper displacement transducer
as it reached the limit of its travel.

When one of the above limits was reached the load was
reduced and scans taken at 5 or 6 intervals until the load was

removed completely.

3.2.5 Testing Sequence and Objectives

As mentioned in Section 3.2.2, three model ﬁiles, two of the
same diameter and two of the same flexural rigidity were tested.

In the first series of tests the loading eccentricity was
kept constant and the length to diameter fatio varied for each pile.

In the second series of tests two length to diameter raéios
from the first series were used with a different loading eccentricity.

The sequence of tests performed is summarised in Tables 3.5,
3.6 and 3.7.

The objectives of the tests was to study the effect on the
deflection of the piles at the soil surface, and the value and position
of the maximum bending moment in the piles, of independent variations
in the length diameter and the flexural rigidity of the piles and of

the eccentricity of loading.
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Table 3.

5

" Test sequence for model pile No. 1.

Test No. Length to Length of Pile Load
diameter embedded in eccentricity
ratio ' sand mm
mm

1 11 210 19
2 10 190 19
3 9 171 19
4 8 152 19
5 7 133 19
6 6 114 19
7 5 95 19
8 10 190 29
9 8 152 29
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Table 3.6

Testing sequence for model pile No. 2

~ Test No. Length to Length of Pile Load
diameter embedded in eccentricity
ratio sand mm
mm

1 8 203 19
2 7 178 19
3 6 152 19
4 5 127 19
5 4 102 19
6 8 203 29
7 6 152 29
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Table 3.7

Testing sequence for model pile No. 3

Test No. Length to Length of Pile Load
diameter embedded in eccentricity

ratio sand mm

mm

1 11 204 19

2 10 186 19

3 9 167 19

4 8 159 19

5 7 130 19

6 6 111 19

7 5 93 19

8 10 186 29

9 8 159 29
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3.3 METHODS FOR INTERPRETATION OF MEASURED DATA

3.3.1 Introduction

The results were interpreted by two methods of numerical
curve fitting through the bending moment, calculated from the strain
readings down the pile.

The first method was based on the least-square error

(8)

procedure, see Cope et al' ‘, in which a polynomial any order up to
m1 is fitted through the data.
The second method used standard subroutines supplied by the

Numerical Algorithms Group (NAG) to fit a cubic spline through the data.

3.3.2 Polynomial Analysis

The method of curve fitting by the least-square error
procedure used here is shown in Section 4.2.1.

The known bending moment and shear and the additional assumption
of zero soil pressure at the soil surface provide the first three
coefficients of the poiynomial and successive differentiations of the
polynomial yields the shear and soil resistance respectively, at points
down the pile.

When successively integrating the polynomial to obtain the
slope and deflection respectively at points down the pile, the slope
and deflection at the soil surface provide the constants of integration.

The effect of varying the number of known and unknown

coefficients in the polynomial will be discussed in Chapter 4.

3.3.3 Spline Analysis

The use of the NAG subroutines is restricted in that it is
not possible to include external boundary conditions, as in Section
3.3.2.

The subroutines fit a cubic spline through the bending moments
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and differentiate to give shear and soil resistance distribution.
Integration to find deflection and slope is not possible.

(8)

For a detailed explanation of cubic splines see Cope et al.
and for fundamental or B-splines see De Boor(ll).
The accuracy of the method can be increased by adding extra

known bending moments in the pile above the sand surface and below
the loading point.

A cubic spline is comprised of a set of cubic polynomials
which meet at predefined points called knots., The number and position

of the knots determines the shape and accuracy of the spline. This

will be discussed in Chapter 4.
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CHAPTER FOUR

"INTERPRETATION OF EXPERIMENTAL RESULTS

4.1 INTRODUCTION

In this chaptef the optimisation of the polynomial and spline
numerical methods, described in Chapter 3, are discussed.

Polynomial optimisation is achieved by varying the number of
knowﬁ and unknown coefficiengs (Section 3.2.2) in order to obtain the
best fit to the experimental observations whereas spline optimisation

is achieved by varying the number and position of 'knots' (Section 3.3.3).

4.2 POLYNOMIAL OPTIMISATION

By studying the effect of varying the number of unknown
coefficients in the polynomial on the sum of the least squares, the
difference in the standard deviation and the mean between the measured
bending moments and those calculated from the polynomial, the 'best fit'
is obtained.

4.,2.1. "Analysis

The sum of the least squares is the sum of the square of the
difference between the measured and calculated data points defined as

- 2
iil(yi - p(x;)) (4.1)
where n is the number of points, y, is the input data and p(x;) is the
calculated values from the polynomial p(x).‘

The mean of a sample of data is defined as

y =

oS-

and the difference in the means between the measured and calculated

values is
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n 1 n
I y,=-= I p(x.) (4.3)
j=1 't " o4 1

Bl

The standard deviation of a sample of data is defined as

y . -2
S = s (y. = y) (4.4)
jn—liﬂ 1

therefore the difference in the standard deviations between the

measured and calculated values is

neloya nologa

jl Doy -700 -l I ee) - @ )
where p(x) is the mean of the calculated data.

Tables 4.1 to 4.4 illustrate the variations of the above
mentioned values for one model pile'at one applied load. The maximum
recorded bending moment was 1298.55 KNm., The position of the maximum
calculated bending moment was between 2.4 m and' 3.0 m below the soil
surface. |

By considering consecutive polynomial orders and noting when
the magnitude and position of the maximum bending moment varies
relatively little, Tables 4.1 to 4.2, then the best approximation to
these quantities is reached. This value coincides with a low value
for the sum of the least squares. However, as shown in Fig. 4.2, the
order of the polynomial makes very little visible difference and
generally low order polynomials give the best overall fit.

Figures 4.1 to 4.8 illustrate typical displacement.moment,
shear and soil resistance distributions generated by the polynomials.

The displacement distributions in Fig. 4.1 are almost

identical for all variations of known and unknown coefficients. It

is, however, impossible to know how realistic this distribution is
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Table 4.1
No. of |Sum of Difference |Difference | Max.Bending | Position of
Coeff- |the Least| in Standard| in Means | Moment Max.Bending
icients | Squares | Deviations. KNm Moment
X 103 n
4 4288.44 15.31 -21.79 1295.49 2.642
5 1889.69 13.86 -20.79 1295.36 2,719
6 1802.65 13.93 -20.79 1298.13 2.724
7 851.38 14.67 -21.47 1292,42 2,787
8 476.40 14.44 -21.47 1296.34 2.829
9 200.85 14.97 -21.97 1301.55 2.811
10 87.71 14.72 ~21.96 1301.98 2.793
11 75.96 14.97 -22,21 1300.96 2.766
12 17.31 15,48 -22,24 1303.13 2,750
13 13.66 15.83 -22,48 1303.73 2,752
14 382,45 8.59 -16.45 1308.43 2.664

Summary of optimisation values for polynomial

analysis

No. of known coefficients = O
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Table 4.2
No. of Sum of | Difference {Difference{Max.Bending | Position of
?o?ff- the in ?ta?dard in Means Moment Max.Bending
icients Least Deviations KNm Moment
Squares . 103 m
4 4456 ,57 16.07 -22,72 1294.09 2.627
5 1980.80 13.48 -20.26 1296.30 2,716
6 1947.71 13.44 -20.16 1298.09 2.718
7 874,31 14,51 -21.25 1292.18 2.786
8 480.09 14,37 -21.38 1296.30 2,830
9 201.09 14.96 -21.95 1301.55 2.811
10 87.71 14,72 -21.96 1301.98 2.773
11 75.96 14,97 -22,21 1300.97 2.766
12 20.41 15.43 -22,25 1302.81 2,752
13 13.56 15.84 -22,50 1303.69 2,752
14 13.35 15.95 -22.60 1303.65 2,754

Summary of optimisation values for

polynomial analysis

No. of known coefficients = 1,
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Table 4.3
No. of Sum of Difference Difference| Max.Bending| Position of
Coeffic- the in Standard in Means Moment Max.Bending
ients Least Deviations KNm Moment
' Squares x 103 m
4 37136.4 74,09 41,88 1081.38 3.258
5 68446.4 13.86 4,43 1278.98 3.123
6 21846.7 12.64 -10.45 1325.84 2.855
7 13485.2 11.21 -13.57 1321.30 2.700
8 8055.24 13.15 -17.14 1299,57 2,623
9 4922,63 12,45 -17.99 1284,97 2.754
10 2675.22 14,39 -20.11 1294.14 2.910
11 1076.92 12.86 -19.66 1306.20 2.852
12 92.36 15.86 -21.94 1306.96 2.744
13 37.44 14.58 -21.12 1304.57 2,727
14 56.35 13.71 -20.57 1304.08 2.717

Summary of optimisation values for

polynomial analysis

No. of known coefficients = 2
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Table 4.4
No. of Sum of | Difference Difference| Max.Bending | Position of
Coeffic- the in:Standard in Means Moment Max.Bending
ients Least Deviations KNm Moment
Squares < 103 m
4 353748.0] -274.13 -234,71 1672.59 4,199
5 69027.3 17.91 7.07 1268.82 3.123
6 65703.7 26.80 11.44 1250.05 3.089
7 43761.6 18,73 -0.27 1305.71 3.031
8 30496.3 12.89 -5.18 1329.61 2.858
9 21214.8 13.64 -10.88 1324 .44 2.671
10 15269.9 11.22 -12,42 1302,51 2.556
11 11093.7 14,11 -16,37 1282.24 2.715
12 7754.53 9.94 -15.22 1295.25 2.976
13 3709.07]  19.68 -23.87 | 1316.47 2.858
14 3752.31 19.31 -23.99 1316.61 2.859

Summary of optimisation values for

No. of known coefficients = 3

polynomial analysis
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as no displacement could be measured below the soil surface. Also
under the increased gravitational field the operation of the dis-
placement transducers became suspect in that they would stick and
bend under their own increased weight.,

Figure 4.2 shows the bending moment distributions for various
icoefficient combinations which all produce reasonable distributions.
Comparing Fig. 4.2 with the experimental results, and considering
Tables 4.1 to 4.4, that the best overall fit coincides with relatively
low order polynomials, i.e. approximately or less than half the number
of coefficients as there are data points. This generally corresponds
to a low difference of standard deviationms.

The shear distributions, shown in Figs. 4.3 to 4.5,
illustrate their variations with the number of coefficients. They
show that it is not possible té model the complete shear distribution
accurately with one polynomial. However, most of the curves give
similar distributions over the lower three quarters of the pile. The
best looking di;tributiqns are given by polynomials with zero or one
known coefficient. Although the surface shear is highly over estimated,
it is possible, using the known applied horizontal load, to adjust
these distributions manually towards the top of the pile.

The soil resistance distributions (Figs. 4.6 to 4.8) show
considerable and erratic variation for the higher order polynomials,
although the lower order with three fixed coefficients give reasonable

distribution in the upper three quarters of the pile.

4,2,2 " Discussion
It can be shown that the above behaviour is typical of
all the tests performed. It suggests that the best overall fit

corresponds with low values for the difference in standard deviation.
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However, to determine the position and magnitude of the maximum
Bendingbmomeﬁt high order polynomials, corresponding to the lowest
values for the sum of the least squares, appear preferable,

The higher order polynomials behave‘erratically between
data points and when differented yield meaningless distributions.
Although the lower order polynomials with two or three fixed coefficients
produce smooth curves, they may not yield tﬁe correct magnitudes of
shear and soil resistance when differentiated.

Although the calculated distributions of displacements
are smooth and consistent, their magnitudes may be unreliable due to
the sensitivity of the displacement transducers measuring displacement
and slope at the top of the pile.

Only the polynomials with a small number of coefficients,
including three fixed ones, give reasonably smooth soil resistance
distribution, but their magnitudes may not be reliable.

This makes both displacement and pressure distribution
doubtful and, therefore, it is not possible to evaluate effective
moduli of subgrade reaction with any confidence. Therefore the merits
of the p = y method of analysis (Section 6.1) cannot be evaluated from
the experimental results.

Values of diéplacements'and pressure calculated from the

polynomials will not be discussed further for the above reasons.

4.2;3 - Conclusions

The best overall fit is obtained from low orde} polynomials
and is indicated numerically by a low value for the difference in
standard deviations.

Using zero or one fixed coefficient yields the best

bending moment distributions, using two yields the best shear
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distributions and using three yields the best soil resistance
distributions.

To determine the magnitude and position of the maximum
bending moment it is best to use a high order polynomial and this is
indicated numerically by a low value for the sum of the least squares.

The polynomial method is a useful technique for interpreting
the results of the test on the model piles. It is limited by the

accuracy of the measured data, particularly the pile head displacements.

4.3 SPLINE ANALYSIS

The choice nﬁmber and posifion»of the knots so as to give the
'best fit' is largely a matter of trial and error, therefore, each stage
must be examined graphically. However, in regions where the data is
changing rapidly, a éoncentration of knots is advised. Generally,
positioning is not usually critical and equally-spaced knots are often
satisfactory.

4.3.1 Analysis

Table 4.5 illustrates the effect of variation in the number
of the knots for the pile test considered in Section 4.2.1.

Using the NAG subroutines it is not possible to calculate the
exact depth and value of the maximum bending moment. However, Table 4.5
shows that its value varies only slightly with the variation of the
number of knots and that it stays within the same depth range.

Figures 4.9 to 4.11 illustrate moment, shear and soil
resistance distributions generated by the splines using from 8 to 15
knots.

The bending moment distribution, Fig. 4.§, was not influenced
by the number of the knots and is a very close fit to the éxperimental

data.
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Table 4.5
Posibon of
No. of Sum of the Max. Bending Value of Max.
interior Least Squares Moment between Bending Moment
knots (m) not less than
(k’\j.’v\)
15 120.43 2.4 - 3.0 1298.5
14 159,78 2.4 - 3.0 1298.5
13 162,57 2.4 - 3.0 1298.5
12 162,58 2.4 - 3.0 1298.5
11 174.83 2.4 - 3.0 1297.7
193.22 2.4 - 3.0 1297.2
3369.06 2.4 - 3.0 1289.0

Summary of optimisation values for

spline analysis
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Figure 4.10 illustrates the shear distributions for the
different numbers of knots. In common with the polynomial method, they
show that it is not possible to model the complete shear distribution
accurately. All the curves over-estimate the applied surface shear and
the shear distribution towards the top of the pile is variable.
However, all give similar distributions in the lower three quarters of
the pile and knowing the applied horizontal load it is possible to
adjust the distribution at the top of the pile manually.

Differentiating the cubic spline twice yields the series of
straight lines shown in Fig. 4.11 to represent the soil resistance
distribution. Although the lines tend towards a realistic distribution
as the number of knots reduces, this is not necessarily a reliable

indication of the true pressure distribution.

4,3.2 'Discussion

It can be shown that the above trends are typical of every test
performed and for more variations in the number and position of the
knots than illustrated here.

Theoréticélly the best results should be produced by mini-
m%sing the sum of the léast squares. However, as shown in Figs. 4.9 to
4,11, this is not obvious and for this reason only a few examples of

knot variations have been illustrated.

4.3.3 Conclusions

Comparing Figs. 4.1 to 4.8 with Figs. 4.9 to 4.11 the spline
method of analysis produces bending moment and shear force distributions
as good as, but not better than; the polynomial method, while the soil
resistance distributions are inferior. The use of NAG subroutines limits
the calculated distributions to bending moment, shear and soil resistance

- as displacements could not be calculated by the splines generated with

these subroutines.
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CHAPTER FIVE
THE RESULTS AND IMPLICATIONS OF THE CENTRIFUGE MODEL TESTS

5.1 INTRODUCTION

In this chapter the experimental results obtained from the
tests described in Chapter 3 will be presented and discussed.

The series of centrifuge tests produced results which will
be used to study the effect on the behaviour of the piles of
variations in their length, diameter, flexural rigidity and the load
eccentricity.

The particular results used to define the behaviour of the
piles are the deflection at the soil surface and the magnitude and
position of the maximum bending moment, calculated using the polynomial

method described in Section 4.2.

‘5.2 RESULTS

5.2.1 Applied Horizontal Load and Pile Deflection at the Soil
Surface

The relationship between applied horizontal load and pile
deflection at the soil surface is illustrated in Figs. 5.1 to 5.9
for length, diameter, flexural rigidity and the load eccentricity
variations. Figures 5.1 to 5.3 show the variations for each pile
for various lengths and load eccentricities.

Figs. 5.4 to 5.6 illustrate the effect of load eccentricity
by selecting two lengths and two eccentricities for each pile.

Figure 5.7 illustrates the effect of the diameter by
considering pairs of piles of the same length and flexural rigidity.

Figures 5.8 and 5.9 illustrate the effect of flexural

rigidity by considering pairs of piles of the same length and diameter.
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5.2.2 Applied Horizontal Load and Maximum Bending Moment

The relationship between applied horizontal load and the
maximum bending moment is illustrated in Figs. 5.10 to 5.18 for length,
diameter, flexural rigidity and load eccentricity variations.

Figures 5.10 to 5.12 show the variations for each pile for
various lengths and load eccentricities.

Figures 5.13 to 5.15 illustrate the effect of load eccentricity
by selecting two lengths and two eccentricities for each pile.

Figure 5.16 illustrates the effect of the diameter by
considering pairs of piles of the same length and flexural rigidity.

Figures 5.17vand 5.18 illustrate the effect of flexural

rigidity by considering pairs of piles of the same length and diameter.

5.2.3 Position of the Maximum Bending Moment

The position of the maximum bending moment varies with
increasing applied horizontal load. This is illustrated for pile
No. 1 in Fig. 5.19 which shows the depth of the maximum bending moment
plotted against the maximum bending moment for increasing load and in
Table 5.1 which shows the average value of the ratio of depth of
maximum bending moment to pile length for each pile at various length

to diameter ratios.

5.2.4 Influence of Pile Length on Pile Deflection at the Soil
Surface

Fig. 5.20 shows the pile deflection plotted against the pile

length at a constant applied horizontal load of 250 KN.

5.3 DISCUSSION

The purpose of the experimental work described in this

chapter was to determine the principal factors governing the behaviour
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Pile No.l Pile No.2 Pile No.3

£/d %max % max % nax
Lnax Lnax : max
11 0.31 - 0.30
10 0.32 : - 0.33
9 0.34 .- 0.34
8 0.36 ) 0.24 0.37
7 0.39 0.31 0.39
6 0.38 0.33 0.41
5 0.39 0.39 0.42

4 - 0.27 -
10 0.33 - 0.26
0.34 0.25 0.33

- 0.32 -

aitd

Table 5.1 : Average ratio of (depth of Max BM/pile
length) for each pile and various \/d
ratios.

Pile No. 1 d =0.76 m, EI = 7.73 x 105 KNm2

Pile No. 2 d = 0.98 m, EI = 7.35 x 10° KNm

Pile No. 3 d = 0.76 m, EI = 4.02 x 10° Kim>
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of a laterally loaded pile in sand and will be discussed in this

light.

5.3.1 Applied Horizontal Load and Pile Deflection at the Soil
Surface -

The effect of varying the length of pile is illustrated in
Figs. 5.1 to 5.3. As expected a reduction in pile length results in
an increase in deflection.at any given load. The relationship is not
linear, as the load iﬁcreases, the displacement for any given load
difference increases. This indicates the non-linearity of the soil
behaviour, since the pile was never strained beyond its elastic limit.

Figures 5.4 to 5.6 illustrate that an increase in applied
bending moment, due to an increase in the applied load eccentricity,
produces an increase in pile deflection. However, this increase is
small and the deflection is mostly due to the appliéd horizontal load.

Figure 5.7 shows that a reduction in pile diameter causes an
increase in pile deflection at any given load. This is significant
in that it is not accounted for in any of thevtheoretical‘approaches
presented in Chaptér 6.

Figures 5.8 and 5.9 show that reducing.the flexural rigidity
of the pile yields an increase in the pile deflection at any given
load.

5.3.2 Applied Horizontal Load and Maximum Bending Moment

The effect of varying the pile length is illustfated in
Figs. 5.10 to 5.12, They show that a reduction in pile length results
in a reduction of the maximum bending moment. Theyvalso indicate a
linear relationship between thé applied horizontal load and the

maximum bending moment.

Figures 5.13 to 5.15 show that increasing the load eccentricity

and hence, the applied bending moment, increases the maximum bending
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moment by the same amount.

Figure 5.16 shows that a reduction in pile diameter results
in an increase in the maximum bending momenf. Again, none of the
theoretical approaches allow for this effeét.

Figures 5.17 and 5.18 show that for the longer piles,
reducing the flexural rigidity of the pile yields a reduction in the

maximum bending moment.

5.3.3 Position of the Maximum BendiEgAMoment

Figure 5.19 shows that as the applied horizontal load
increases the depth of the maximum bending moment increases indicating
a local plastic failure of the soil at ground level. In a purely
elastic medium the depth of the maximum bending moment would remain
constant. The same is true for all the piles tested. |

Table 5.1, together with Fig. 5.19 shows that as the length
of the pile increases, the depth of the maximum bending moment
increases. Also, an increase ih load eccentricity has little effect
upon the depth of the maximum bending moment verifying that pile-soil
interaction depends more upon the applied horizontal load.

A reduction in pile diameter causes an increase in the depth
of the ma#imum bending moment. This is consistent with the observed
increase in deflection since this would cause an increase in the depth
to which the soil would fail plastically at the top of the pile, hence
causing an increase in the depth of the maximum bending moment.

Also, from Table 5.1, reducing the flexural rigidity indicates
a slight trend towards increasing the depth of the maximum bending

moment.
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5.3.4 Influence of Pile Length on Pile Deflection at the Soil
Surface

This is shown in Fig. 5.20 which indicates that there is a
length of pile over which any increase in length does not affect the '
pile displacement. This critical length is of the order of 9 to 10 m
for the piles tested in this sand. This length is not significantly
affected by diameter and flexurél rigidity and does not conflict with
theoretical predictions (Section 6.4).

However, more experiments are necessary with piles of

smaller diameter and flexural rigidity to verify this observation.

5.4 CONCLUSIONS

The behaviour of laterally loaded piles in sand, as observed
in centrifuge model tests, have been pfesented and discussed.

It has been shown that an increase in pile length, flexural
rigidity and diamete; reduce the deflections and the depth of the
maximum bending moment. Also, the applied horizontal load has a
greater relative effect upon the deflection than the applied bending
moment.

The maximum bending moment has been found to increase with
increase in pile length and flexural rigidity and reductions in pile
diameter.

The difference between the maximum bending moment and the
applied moment at the soil surface is mainly due to the applied
horizontal load and for the longer piles the maximum bending moments
can be expressed as Moax = (e + a)H., For the pile tested, approximate

values of a deduced from Figs, 5.10 to 5.12 are

Pile No. ! 1

o I 2.0 1.8 | 1.6
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There appears to be a critical length of pile above which
the displacement is not effected, which is not significantly depend-

ent on pile diameter and flexural rigidity,
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CHAPTER SIX

AN ASSESSMENT OF THE MERITS OF SOME THEORETICAL
APPROACHES

’

6.1 INTRODUCTION

There are two commonly adopted methods of calculating the
deformations of a laterally loaded pile, based on either the assumption
that the soil may be replaced by a Winkler spring medium, or by an
elastic continuum.

In the Winkler spring method the laterally loaded pile is
replaced by an elastic beam supported by a series of discrete springs
acfing along the length of the beam. The spring stiffness represents
the stiffness of the soil and is generally referred to as the coefficient

of subgrade reaction, Terzaghi(33).

Hetenyi(16) produced a series of closed form solutions for
this method for a variety of loading conditions and end restraints on
the pile.

This simple approach has been improved by allowing the coeff-
icient of subgrade reaction to vary along the length of the pile.

(20)

Reese and Matlock(za) and Matlock and Reese carried out

a dimensional analysis of the problem and developed a series of
equations, see Section 6.2.1, containing similar groups of parameters
when the coefficient of subgrade reaction was either constant
(homogeneous soil), or varied linearly with depth (non-homogeneous
soil). These equations contain a set of coefficients, related to the
lateral and moment loading, which can be obtained using the character-
istic length defined in Eq. (6.2) from a series of graphs produced by

Matlock and Reese(zo).

The method has been furthered by Broms(s) for long flexible
and short rigid piles and Davison and Gill(lo) for a two-layer soil

system.
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A limitation of the Winkler model is that it does not
represent a continuum and, therefore, does not permit transference
of shear stress. This may lead to an over estimation of displacements.

A further development in the method was to replace the linear

springs with non-linear p-y (soil-resistance-displacement) curves,

(19) (27) (26)

» Reese, Cox and Koop . However

Matlock s and Reese and Cox
using this method it is difficult to choose appropriate p-y curves for
a given pile size and soil type. Therefore, pile tests are recommended
to confirm pile behaviour.

The second method of analysis, for an elastic pile embedded
in an elastic continuum, is based on the integration of Mindlin's
solutions of the stresses caused by a point load acting within an
isotropic elastic continuum.

This analysis is known as the elastic continuum or integral

equation method.
(21,22)

Y

Poulos idealised the pile as an infinitely thin strip
with the same width and bending rigidity as the prototype pile and
"used finite differences to solve the differential equations. He
produced equations expressing surface deflection and rotation in terms
of dimensionless influence factors which can be determined graphically
using a dimenéionless flexibility factor and the length to depth ratio
of the pile, see Section 6.2.2.

(23)

The method was extended by Poulos to allow for soil
yielding and by Banerjee and Davies(z) to include a non-homogeneity
index, namely the ratio of Young's modulus at the surface to that at
the pile base,

Evangelista and Viggani(13) improved the accuracy of solutions

given by Poulos' method by varying the size of the elements down the

pile.
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h(24) carried out a series of finite element analyses,

Randolp
using the same method as that described in Chapter 2 but with triangular
rather than rectangular elements, for homogeneous and non~homogeneous
soils, and fitted empirical power law expressions to the lateral
deflections and rotations at the ground line. He characterised the
soil stiffness by the shear modulus rather than Young's modulus and
only presents solutions for flexible piles which are longer than their
critical length, and, therefore, independent ofrthe embedded length,

The critical length of a pile is the length beyond which any further

increase has no effect upon the pile displacement or bending moments.

6.2 THEORETICAL SOLUTIONS

It is generally accepted that sand can best be modelled as
a non-homogeneous soil. Therefore, only the theoretical solutions for

soil modulus increasing linearly with depth are presented here.

6.2.1 The Solution of Matlock and Reese(zo)

This solution is based on the Winkler spring model. The

equations for the non-homogeneous soil are:-

H T u 12
y = A + B
EI EI
pp 7 Cpp 7
H T2 MOT
6= — A + — B
s E
PP PIP s
M=
HoT Am + MoBm : (6.1)
Mo
V=H Av + T Bv

e =]

M
p=_0 )
T A * 7B

where y, €, M, V and p are the displacement, slope, bending moments
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shear force and pressure respectively, Ep is the Young's Modulus
and Ip is the second moment of area of the pile,
The A and B coefficients relate to lateral and moment loading

respectively and T is the characteristic length of the pile defined by:-

EI
T =552 ‘ (6.2)
™
where n, is the rate of increase of the coefficient of horizontal sub-
grade reaction with depth.

The charts for determining the coefficients A.and B are
reproduced in Fig. 6.1, they can be used to calculate the distributions
of displacement down a pile. Similar charts‘are available for the
calculation of slope, bending moment, shear force and pressure

distributions, Figs. 6.2 and 6.3.

6.2.2 The Solution of Poulos(23)

This solution is based on the elastic continuum approach.
The expressions for displacement and slope for the non-homogeneous soil

are respectively

H
= 2 1 e v '
yo ﬁ;tz ( IOH + I Ipm )/ FO (6.3)
HO e
= ) - T ]
O = = T eing) /T
h

where y_ and 60 are the deflection and slope at the ground line and
e is the eccentricity of the load, L is the length of the pile and
Ny is the rate of increase of the Young's modulus with depth.

I;H and I;m are dimensionless elastic-influence factors for
displacement caused by horizontal load and moment respectively.

Similarly IéH and Iém are influence factors for slope.
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F' and Fy are yield-displacement and slope-displacement
factors, respectively, defined as the ratio of pile displacement or
slope in elastic soil to pile displacement or slope in yielding soil.

The influence and yield factors can be determined graphically

from Figs. 6.4 and 6.5 using the pile flexibility factor KN, where
E I
Ky = _2_32 _ (6.4)
NhL

the length to diameter ratio (L/d), eccentricity of load to length
ration (e/L) and the ratio of applied horizontal load to the ultimate

lateral resistance of the pile (Ho/Hu) wvhere

u - e +L

H (6.5)

in which y is the bulk density of the soil, d is the diameter of the
pile and KP is the coefficient of passive earth pressure,

(1 + sin ¢')/(1 - sin ¢'), and 4' is the angle of internal friction
(effective stress)., This solution is limited in that only displace-

ments and slopes at the soil surface can be evaluated.

6.2.3 The Solution of Randolph(za)

The following expressions for deflection y and slope 6 at
‘the ground surface are based on the results of finite element studies
of a laterally loaded cylindrical pile embedded in elastic soil with

stiffness varying linearly with depth

H E =3/9 M E -5/9

y=0.54—°2—(_2) +o.60_.23. 2 )
o*r_ n*r m*r mr
o] [+] (o] o]
(6.6)
H E -5/9 M E -7/9
6= 0.60 — (—P) + 1,13 =2 (—P_)
* 3
m*r m*r m¥r  m*r
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where r, is the radius of the pile, Ep is the effective Young's

modulus of the pile defined as

_ 4
Ep = (EI)P/(Trro /4) (6.7)

in which (EI)p is the flexural rigidity of the pile and
m* = m(1 + 3v/4) . (6.8)

where m is the rate of increase of soil shear modulus with depth
and v is Poisson's ratio. This solution is also limited to

evaluation of the deflection and slope at the soil surface.

6.2.4 Relationships Between the 'Soil' Moduli used in the Theories

In Randolph's solution the shear modulus

*

¢ =mz = l—ry - 2

and in Poulos' solution Young's modulus

Es = Nh z

Since G = Es/2(1 + V)

m* . (1 + 3v/4)
N 201+ V) (6.9)

The parameter o in Matlock and Reese's solution represents
a variation of modulus of subgrade reaction with depth and cannot be

related implicitly to N, (or m*). Moreover the modulus of subgrade

reaction

Kh = n.z

is a function of pile diameter d, and spring characteristic K,
whereas the soil elastic moduli are independent of pile width. Since

Kh = kd and p = ky, Kh has the same units as Es (or G) and, possibly
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for no other reason, n and Nh have sometimes been considered
equivalent. Some empirical justification can be found by considering
the settlement of a rectangular footing on the surface of an elastic

homogeneous medium

2
pd (1 -v)1I

E
s

(6.10)

where y is the settlement, p is'the average contact pressure, d is
the breadth, I is an influence factor which depends upon the length/
breadth ratio and flexibility of the footing, v is Poisson's ratio
and E_ is the Young's modulus of the soil.
For a long rigid strip footing I = 1,26 and Eq. (6.10) becomes
E

pd= (——— )y=K y (6.11)
(1 - v9)1.26 “b

now for v = 0, Kh = 0,85 Es and for v = 0.5 Kh = 1.06 Es
and therefore for this example Kh and ES are roughly comparable.

The CIRIA report 103(38)

also suggests that for single piles
in homogeneous soil, Young's modulus ES and the subgrade reaction
modulus K, are roughly equal and that for single piles in non-

homogeneous soil Nh and n, are roughly equal,

6.3 APPLICATION OF THE THEORIES

The results from the centrifuge model tests, reported in
Chapter 5, were used to consider the relative merits of the three
theoretical solutions summarised above. The p-y curve method of
analysis, mentioned in Section 6.1, was not taken further for the
following reasons.

The derivation of p-y curves is an empirical technique

which requires a large number of measured, calculated and graphically
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estimated values. It is recommended that pile tests are carried out in
which bending moments are measured down the pile. The p-y curves are
then constructed by integrating and differentiating the bending moment
distribution. Integration and differentiation of bending moment distrib-
utions has been discussed in Chapter 4. The resulting displacements and
soil resistance distributions were found to be unrealistic and incon-
sistent because of inaccuracies in measuring the experimental data.
Therefore, p~y curves obtained in this way could not be relied on.

The solutions given in Section 6.2 can be used to calculate the
deflection at the ground surface for any applied horizontal load and
bending moment for known properties of pile and soil., While the
properties of the model pile are known quite reliably, those of the
soil are hot.

If the soil is assumed‘to have moduli increasing linearly from
zero at the top of the pile, sﬁb;titution of the known values of
displacemenf from the centrifuge tests, into the theoretical expressions
enables o, Nh and m* to be evaluated.

(The expressions for the rotation have not been used because
values recorded from the centrifuge test were not considered

sufficiently accurate.)

6.3.1 Variation of Parameter n (Matlock and Reese)

Values of n, obtained by back-analysis, see Appendix (C),
have been plotted against the displacement at the soil surface in
Fig. 6.6 for pile No. 1.The variations of n with displacement at the
soil surface and with the ratio of this displacement to pile diameter
for all the piles are shown in Figs. 6.7 and 6.8.

Polynomial curves were fitted to the data, in Fig. 6.8, by

the method of least squares in an attempt to produce a relationship



112 -

(Z<Psd) |+ ON 3Id '9°9'9i4
(01 X) ((W/NY) Yu 'sajawping
0Z 8l 18 71 Zi ot 9
| | | | | | \
v

‘9J044NS |I0S
3A0QD |3A3| pPDO| =9
Jajawolp 8)Id =p
yjbua) apid = ¢

I ‘ ]

Z0-0

70-0

90-0

800

W '#I044NS |10S }D juawad0D|dsIp 3)id



- 113 -

(LZ2Ps1) €GNV Z'LON 37Ud ‘1°9 914
(0L X) (cw/NA) Yu ‘Js2)3wpliod
0Z 81 9 7L 41 0l 9
| i
* -

€ ON @ld X
Z ON 3lld -+
| ON ®lid

20-0

70-0

90-0

800

W ‘'220J.nS |10S }0 JUdWAID|ASIP 3lid



- 114 -

(L 2p/1)

€EANV Z 1 ON 3JUd

89914

(0L X)  (gW/NA) Yu ‘sajawoing
oz 8l 9l

I T |

b — =

joiwoufjod JapJo ypno4
jorwoukjod Japiso  pJiyj -
Joiwoukjod JapJo puodas

€ ON °jid

Z ON 3ld +

I ON 9)ld

SZ0-0

0S0-0

S40-0

00i-0

SZL-0

P/
J3j3wWDIp 0} 3dD4ns [0S ;6awa:>o|dsgp 3)id jo ooy



- 115 -~

between n, and the deflection/diameter ratio.
The fourth order polynomial is the best fit mathematically.
The others behave erratically for high values of Y/d. The equation for

the fourth order polynomial is

= 2.274 % 10% - 1.046 x 10°(¥/d) + 2.938 x 107 (¥/d)?
"

- 3,763 x 108(¥/)3 + 1.699 x 10° (v/a)®

(6.12)

6.3.2 Variation of Parameter N11 (Poulos)

The variation of parameter N with the displacement at the
soil surface, obtained by back-analysis, see Appendix (C), is shown
for pile No. 1 in Fig. 6.9 and for all the piles with (/d > 7 in

Fig. 6.10.

6.3.3 Variation of Parameter m* (Randolph)

The variation of parameter m* with the displacement at the soil
surface, obtained by back-analysis, see Appendix (C), is shown for

pile No. 1 in Fig. 6.11,

6.3.4 Variation of Parameter N (F.E. Method)

In the elastic finite element analysis used in Chapter 2,
Young's modulus was allowed to vary with depth so that E, = Nz and the
best fit to the experimental results obtained by comparing the linear
load-displacement relationship from the finite element method with the
non-linear load-displacement relationship from the experimental results
and hence obtaining the best fit by eye.

The vertical lines in Fig. 6.10 compare values of N with N
and those in Fig. 6.11 compare m* = (1 + 3v/4)N/2(1 + v) (see Eq. (6.9))

with m*, with v = 0.3,
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6.4 DISCUSSION

The three solutions for predicting pile displacements have
been shown in Figs. 6.6 to 6.11 to be inadequate for predicting real
behaviour because the various soil parameters employed are by no means
constant.

These elastic solutiong are not able to account for variations
in soil stiffness as pile displacement and soil yielding take place.

Concentrating on the practical aspects of pile design, where
the deflection at the ground surface may be limited to 0.05 times the
pile diameter, small changes in this deflection produce the largest
variations in the parameters.

In Fig. 6.8 a fourth order polynomial has been fitted to the
variation of parameter n, obtained using the Matlock and Reese method.
This indicates that it is possible to generate a relationship between
n, and Y/d for increasing displacement. The relationship would have
to be obtained experimentally from centrifugal models or full-scale
tests for any soil type. However, the value of n, obtained may not be
representative of the soil properties at various depths, being merely
a parameter which gives the correct deflections at the soil surface,

The theories of Matlock and Reese and Poulos produce values
of n, and N of similar magnitude, for piles with L/d $ 7, suggesting
that coefficients of horizontal subgrade reaction are of the same order
as values of Young's modulus.

Randolph's method yields values of mk of the same order os valies
of m* computed from N, using Eq. (6.9) for the longer piles (e.g. with
Nhlswkﬂiand v = 0.3, m* =6¢hN~Y). It is only strictly valid for piles
longer than their critical length.

Matlock and Reese's solutions show that piles behave as long

piles when 2 > 4T.



- 120 -

1f parameter n and Nh are considered equivalent, then for
long piles Poulos' parameter Ky < (1/4)5 = 10-3. This is not in
conflict with the behaviour shown in Fig. 6.4,

The elastic parameters n, and Nh determined by back-analysis
lie in the range 5 to 20 MNme. Thus piles 1 and 2 with EI % 750 MNm"2
could be considered long when £ > 10,90 m or ¢ > 8.26 m at the ends
of the range. The corresponding lengths for pile 3 with EI = 400 MNm-3
are 9.60 m and 7.62 m respectively.

These values do not conflict with the experimental observations
reported in Chapter 5.

In Fig. 6.9, using the Poulos solution, curves where 2/d < 6
were included. Curves for similar values of 2/d could not be produced

in Figs. 6.6 to 6.8 using the Matlock and Reese solution, because the

value of 2z ( = L/T) was less than 2.
max

6.5 CONCLUSIONS

The experimental results, produced in Chapter 5, have been
ﬁsed to evaluate the parameters required in three existing theoretical
solutions for predicting pile displacements.

It has been shown that these parameters are not constant but
vary appreciably with pile displacement.

Relationships between the parameters evaluated by back-
analysis and displacements at the soil surface can be obtained experi-
mentally, but these may not really represent soil properties at depth.

It has also been shown that the rate of increase of Young's
modulus, Nh, and the rate of increase of horizontal subgrade reaction,
hh’ with depth>are similar for a single pile in dry sand even though

they are not constant.
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CHAPTER SEVEN

CONCLUSIONS AND FURTHER WORK

7.1 CONCLUSIONS

fhe problem of a laterally loaded pile in sand has been
approached in three different ways, centrifugal modelling, finite
element analysis and existing theories.

Cent;ihyal modelling i§ a well established and documented
technique and therefore in the absence of scale field tests, the
results produced from experiments can be considered as an accurate
and realistic measurement of pile - soil interaction.

The measured bending moment distributions were interpreted
using either polynomials or cubic splines. The polynomial method was
shown to be superior and a fourth order polynomial generally found to
give the best results,

Increases in pile length, flexural rigidity and diameter
reduced the pile displacement at the soil surface and the depth of
the maximum bending moment. The applied load had a greater effect upon
the displacement at the soil surface than the applied bending moment.

The maximum bending moment was increased by increases in pile
length and flexural rigidity and reductions in pile diameter.

The difference between the maximum bending moment and the
applied bending moment at the soil surface is mainly due to the applied
horizontal load and for the longer piles, with 2/d » 7, it can be
gxpressed as Mm;x = (e + a)H (Section 5.4).

There éppears to be a critical length of pile (of the order
of 9 m for piles close to 1 m in diameter) above which the displacement
is not effected, which is not significantly dependent on the pile
diameter and flexural rigidity.

The evaluation of the parameter used in three existing theories,
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by back-analysis of the experimental results, showed that the para-
meters n,, N and‘m* are not constant but vary appreciably with pile
diéplacement. |

The two parémeters 0 and Nh, the rates of increase of
horizontal subgrade reaction modulus and Young's modulus with depth,
are of similar magnitude for a single pile in dry sand even ﬁhough‘
they are not constant. |

An attémpt has been made to apply a finite element method
using Foufier series to represent the non-axisymmetric loads and dis-
placements. The‘technique utilises the axysmmetric geometry and material
properties of the problem. By comparing the experimental observations
with the resultélproducéd‘ﬁsing this finite element method, the‘technique
has seen shown éo have tﬁe same limitations as other elastic solutiéns.
For a purely elastic problem in which the material properties vary only
radially and vertically, and not cifcumferentially, the technique is,
without doubt, a very useful method of numerical analysis, saving cost,
time and storage on thé computer. However, for a soil behaving plastic-

ally, the method is of limited use in its form presented in this thesis.

7.2 ~ FURTHER WORK

Although a limited parameter study of a laterally loaded pile
in dry sand has been attempted in this work, there is still considerable
scope for further testing in a centrifuge. Studies are required using:
(1) more flexible piles;

(ii) ~ smaller diameter piles hence higher %/d values and with (i)

to attempt to obtain a relationship between the parameter a

and the pile diameter and flexural rigidity for long piles;
(iii) piles of different cross-sections;

(iv a variety of soil densities and grain sizes to include the
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effects of pore pressures in clays;
) more loading conditions:- vertical load, compressive
and tensile, zero applied bending moment and pile head
and/or pile toe restraints;
(vi) cyclic loading to model wave action on an offshore structure
and the dynamic effecté of earthquakes;
(vii) pile groups with all the above experimental conditions;
(viii) a method of driving the pile whilst the centrifuge is running
model the effect of pile driving.
As for thé finite element analysis, the Fourier series technique cannot
be taken any further for this problem without access to cheaper, more
powerful computing facilities. However, further research can be done

using two and three dimensional models into the effects of

(i) stress - strain relationships for soil,
(ii) cyclic and dynamic loading,
and (iii) pile groups.

With the obvious limitation of plane strain when using two-dimensional
models and size and cost when using three-dimensional models.

By using the results from the series of tests described in this
thesis and extending them, as indicated above, it should be possible to
establish definitions for rigid and flexible piles and critical length
in various soil types and hence to formulate useful empirical solutions.
Since an engineer is interested in the displacement and rotation at
soil surface and the position and magnitude of the maximum bending

moments, these solutions need only be for these values,
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APPENDIX (A)

Centrifugal modelling scaling laws

Quantity Model Prototype
Linear dimension 1 N
Acceleration N 1
Area ‘ 1 Nz
Volume 1 N3
Second moment of area 1 N4
Velocity 1 ~1
Mass 1 N3
Force 1 N2
Bending moment 1 N3

Stress 1 1

Density 1 1
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APPENDIX (B)

Stress Distribution between Model and Prototype

This following analysis is similar to that given by Schofield(?’o).

centre of rotation

. - — . T
modetl
distribution
r ry h prototype
\/distribution
M2
[
i
l d, pgH=Npgh _l
|

a) Centrifuge model

b] Stress distributions
distributions

Fig. B.1

Consider a model constructed of height h to represent a

homogeneous stratum of depth H in the field, the scaling factor is

N= H/h.

When the model is spun with angular velocity w, the vertical

stress at radius r, see Fig. B.1(a), is

r 2

UBpwzjrdrsp%—(rz-ri) (8.1)
n1
and thus the model and prototype stresses distributions, see Fig. B.1(b),
match at the top where r = r, and at one other position r = r, .
For equal stresses at T,
wz 2 2.
0 > (r, - ry) =pgN(r -

rl) .
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Therefore

W’ =2 Ng/(x_ + 1) , (8.2)
The error at other positions is given by

e = Npg(r = r,) - wz (r2 - r2 )

= Nog(r - 1) - Neg(r’ - £} )/(r, + 1)) (8.3)

For a mathematical maximum de/dr = O and therefore
r=(r, + rl)/2. For another practical maximum r = r, the best
approximation is obtained when the maximum percentage errors are

equal, therefore,

r +r r +r Np
o 1., _ Npg - o 1.2 _ 2
(( 'T'— ) 1) (( 2 ) tl) (rO + rl)
ro * r1
(( 5 ) rl) Npg
(rt," - r 2) Np (r r.) Np
2 1/ Pe 2 ~ Ty’ YPe
(r_+71)
- o 1
(r, - rl) Npg (B.4)
therefore
(ro + rl)/Z + r, r, +r
1 -— (r T T ) = -I-‘-—+;-— - 1 (BcS)
o 1 o 1
therefore
2 .
ro=r o+ 3-(r2 - rl) (B.6)
i.e. at a 1/3 rd of the depth up from the base.
From Eq. (B.2)
—_ N ro + rl h
1‘ = - = —
;% 5 T, *3 (B.7)

i.e. the optimum scaling radius is at h/3 from the top. The maximum

errors are, from Eq. (B.5)

27 % h/3

€ = = =

ot 2r

(B.8)

"l
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For example, in the Liverpool University centrifuge r, = 1.07 m,

r, = 1.31 m, h = 0.24 m and T = 1.15 m, therefore ¢ = 3,48 Z.

Note, the optimum speed is calculated as

r

o= = (8.9)
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APPENDIX C

Cl Sample back-analysis calculations

Sample back-analysis calculations for each of the three
theoretical solutions, presented in Chapter 5, are given below.using .

- the following data:-

Flexural rigidity, EI, = 7.7312 x 103 KNm2

Diameter, d = 0.76 m .

Eccentricity, e , = 0.76 m

Applied Horizontal Load, H, = 469,92 KN

Measured displacements, y, = 0.03077 m

Length, L, = 8.39 m

Angle of internal function ¢' = 49,5°

Bulk density, y, = 16.616 KN/m3

Cc2 Matlock and Reese

From Equations (6,1)

HOT3 M0T2
Y=gl *t T B
PP P

substituting the above values and re-arranging
4 2

y=6,018x10 T (T Ay + 0.76 By ) (c.1)
Now
T = 5 .E...I-
)

therefore by guessing a value of L and calculating values for T
and zmax’=L/T the coefficients Ay and By can be determined from
Figs. 6.1 and 6.2 respectively. The required displacement is found
by trial K i = = -

y and error. With n, 7600, T = 2,52 and Z ax 3.33.

Therefore Ay = 2,65 and By = 1,7. Substituting into Eq. (C.1) gives
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y = 6.078 x 104 (2.52)2(2.52 . 2.65 + 0,76,1.7) = 0.03076 m
which is close enough for these purposes.

C3 Poulos

From equations (6.3)

H
= o ' ._e_ -’ /Fo
y 7 (T g+ L/Fe (€.2)
NhL
Using .
EI 3
N. L u e+ L
h

Coefficients I' I'pm and Fp' can be found from Figs. 6.3 and 6.4

pH’
after guessing a value of N . The values of Ny which yield the

required displacement is found by trial and error.

The ultimate lateral resistance of the pile, Hu’ is 3000 KN

3

hence H/H_= 0.157 and e/f = 0.09 with N = 7250, K. = 2.564 x 10°.

Therefore from Fig. 6.4, Fp'= 1.0 and Eq. (6.2) becomes
B, e
= ' L 1
y N Li (IpH 1 I pm) (C.3)
h

with U/d = 11, from Fig. 6.3 15 = 28 and 1'pm = 60. Substituting

H
into Eq. (C.3) gives

469.92
7250.(8.39)

60) = 0.03078 m

2 ( 28 +

which is close enough for this purpose.

C4 Randolph
From equations (6.6)
H E M E
y = 0.54 -2 (__P___)"3/9 + 0.60 —>. (—E- )'5/9
2 3
m*r m* r mtr m*r
) ) o o
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Now

4
E = (EI 4

> ( )p/(ﬂr0 /4)

L ’ 7 2
with r_ = d/2 = 0.38, Ep = 4,652 x 10" KN/m" .

Using guessed values for m* the required displacement is
found by trial and error.
With m* = 1600, substituting into Eq. (C.4) yields

7 7

g = 0:54.469.92  4.652 x 107 |-3/9 | 0.60.357.14 ( 4.652 x 10” -5/9
1600(0. 38) 2 1600.0.38 1600(0.38)°  1600.0.38
= 0.0306 m

which again is close enough.

From Figs. 6.6 to 6.11 it is possible to see how variations

in the various moduli affect the ¥ /d ratio.
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