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ABSTRACT 

Numerical calculations of local heat transfer coefficients 

are presented for steady laminar and turbulent convection flow 

over a vertical plate fin (or the vertical circular pin). The 

local heat transfer coefficient'is solved simultaneously with 

the convective boundary layer equations of fluid and heat con- 

duction equation of fin (or pin). In the laminar convection 

flow case, the radiative effect on the vertical plate fin (or 

pin) is considered and the optically thick limit approximation 

for the radiative heat flux is assumed. In the turbulent forced 

convection, flow case, the eddy-diffusivity formulas used by 

Cebeci and Smith are utilized to model the Reynolds stresses. 

An implicit finite difference method is employed. The 

results of local heat transfer coefficient and local heat flux 

were found to be irregular near the transition region from the 

laminar to turbulent flow. The overall heat transfer rate, the 

local heat transfer coefficient, the local heat flux and the 

fin temperature distribution are expressed for Pr=0.7 and various 

values of Nc (conjugated convection-conduction parameter). It 

is also found that the heat fluxes with radiative effect are 

higher than those without radiative effect. 
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NOMENCLATURE 

al, a2 viscosity variation parameters 

Cp specific heat at constant pressure 

CT temperature difference parameter, TOO/(To-T») 

f reduced stream function 

g gravitational acceleration 

GrL Grashof number, gß(T0-T(, D)L3/v2 
h local heat transfer coefficient 
A h* dimensionless modified heat transfer coefficient 

k fluid thermal conductivity 

kf fin thermal conductivity 

L fin length or pin length 

N convection-conduction parameter for Forced kä Re ( 
C L k f 

Convection Plate Fin 

Nc convection-conduction parameter (kkä GrL4) for Natural 
f 

Convection Plate Fin 

Nc convection-conduction parameter, 2kLGrL/ /(kfro) for 

Natural Convection Pin 

Nc convection-conduction parameter, 2kLReL //(kfro) for 
CO 

Forced convection Plate Fin 

N conduction-radiation parameter, kß */(4a(TO-T00 )3 ) 

Pr Prandtl number, v/a 

Prt Turbulent Prandtl number 

qr radiative heat flux 

q local heat flux 
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Q overall heat transfer rate 

r radial coordinate 

ro radius of the circular pin 

ReL Reynolds number, u,, L/V 

Retr Reynolds number at transition point 

Ret Reynolds number of turbulent region. 

T fluid temperature 

T0 root temperature 

Tf fin surface temperature 

Too ambient temperature 

TW surface temperature 

u, v "velocity component in x- and y- direction respectively 

uCO free stream velocity 

x, y coordinates parallel and perpendicular to the fin 

respectively 

a thermal diffusivity 

S half thickness of the fin 

extinction coefficient 

thermal expansion coefficient 

p density of fluid 

a Stefan-Boltzmann constant 

stream function 

SZ buoyancy force parameter 

em eddy kinematic viscosity 

emi inner eddy viscosity 

Emo outer eddy viscosity 
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eh eddy diffusivity 

Eni inner eddy diffusivity 

eno outer eddy diffusivity 

em ratio of eddy viscosity to kinematic viscosity (em/v) 

Eh ratio of eddy diffusivity to kinematic viscosity (eh/v) 

TI pseudo-similarity variable 
T -T 

6 dimensionless temperature (T 
-TC o coT f-Too 6f dimensionless fin temperature (T 

-T 
) 

o°T --T 
dimensionless dimensionless surface temperature ( 

.W-) To-Tý 
V kinematic viscosity 

dimensionless streamwise coordinate (x/L) 

Etr dimensionless stream 

A transverse curvature 

convection case 

A transverse curvature 

convection case 

wise coordinate at the transition point 

parameter (2V2 L/roGrL3° ) for Natural 
00 

parameter (2L/r0ReL-'2-) for Forced 
00 
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I. INTRODUCTION 

I-1 Practical Relevance 

Heat-transfer generally depends on three main factors. 

They are heat-transfer coefficient, the area of heat-transfer 

and the effective temperature difference between the body and 

its surrounding medium. In order to improve the heat-transfer 

effect, detailed studies of the above three main heat-transfer 

factors play an important role. Experience has shown that the 

simplest and most effective way for increasing the heat- 

transfer rate is to increase the heat-transfer area. 

A growing number of engineering disciplines are concerned 

with energy transitions requiring the rapid movement of heat. 

They produce an expanding demand for high-performance heat- 

transfer components with progressively smaller weights, volumes, 

costs, or accommodating shapes. Extended surface heat transfer 

is the study of high-performance heat-transfer components with 

respect to these parameters and of their behavior in a variety 

of thermal environments. Typical components are found in air- 

land-space vehicles and their power sources; chemical, refri- 

geration, and cryogenic processes; electric and electronic 

circuitry; conventional furnaces and gas turbines; process 

heat dissipators and waste-heat boilers; nuclear-fuel modules, 

direct energy conversion, and many more. Some typical examples 

of the equipment with extended surfaces are given in Fig. I-1. 
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c -. 
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Fig. 1-1 Some typical examples of the equipment 

with extended surfaces 
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I-2 The Heat-Transfer of Extended Surfaces 

In the design and construction of various types of heat- 

transfer equipment, simple shapes such as cylinders, bars, and 

plates are used to implement the flow of heat between a source 

and a sink. They provide heat-absorbing or heat-rejecting 

surfaces, and each is known as a prime surface. When a prime 

surface is extended by appendages intimately connected with it, 

such as the metal tapes and spines on the tubes in Fig. l-2. EL] 

the additional surface is known as an extended surface. In 

some disciplines, prime surfaces and their extended surfaces 

are known collectively as extended surfaces to distinguish them 

from the use of prime surfaces alone. The elements used to 

extend prime surfaces are referred to as fins (or pins when 

cylindrical in shape). 

I-3 Objective of Present Work: 

Studies of heat transfer in fins (or pins) can be divided 

into three broad areas depending on whether the heat transfer 

is steady, transient or periodic. Generally, the research of 

transient-state heat transfer analysis concentrates on the 

transient response of a fin to a step change in base temperature 

or to a step change in base heat flux. The phenomenon of the 

transient heat transfer of fin only exists for a very short 

period of time, for example, the warm-up of an internal-com- 

bustion engine or the start-up of the process heat exchanger. 

Periodic heat transfer analysis studies the heat transfer 

-3- 



(a) ib) (c) 
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(O) te) fr) 

(9) (b) (i) 

Fig. 1-2 Some typical examples of extended surface. 
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response of fin to a periodic function in base temperature or 

base heat flux. If the heat transfer coefficient of the fin 

is given, analytical or numerical results may easily be obtained. 

Thus, traditionally the text books [11 [2] 131 [41 [5] or the 

reference papers [6] [7] [8] [9'] [10'] [11] [12.1 [13] [141 solve 

the steady, transient and periodic cases by assuming given 

values of the heat transfer coefficient of the fin. Practically, 

the real heat transfer coefficient of the fin is determined 

by the flow velocity and temperature of the ambient fluid about 

the fin [15] [16] [17'1 [181. In order to obtain the local heat 

transfer coefficient, the heat conduction equation of the fin 

itself has to be simultaneously coupled with the thermal bound- 

ary layer equation of the ambient fluid. This involves quite 

complicated iteration procedures. 

The present work is concerned with the analysis of con- 

jugated convection-conduction heat transfer problems of a 

vertical flat plate fin or a vertical circular pin. And the 

following two conditions are considered: 

1) Steady conjugated laminar flow convective-conduction heat 

transfer in a vertical flat plate fin and a vertical circular 

pin. 

2) Steady conjugated turbulent flow convection-conduction heat 

transfer in a vertical flat plate fin and a vertical circular 

pin. 

The physical systems considered in the present work are 

shown in Figl-3. The temperature outside the thermal boundary 
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layer is To. , the thickness of the fin is 26 (the radius of 

the circular pin is ro. ), the length of the fin (or pin) is 

L, and the base temperature of the fin (or pin) is To. The 

end of the fin (or pin) is insulated. It is generally assumed 

that the temperature of the fin (or pin) is higher than that 

of the ambient fluid. 

The implicit finite difference method for non-similar 

boundary layer equations, introduced by Cebeci and Bradshaw 

[19], is applied in the present study. The simple inverse 

matrix method is used to solve the heat conduction equation of 

the fin. Extremely good convergence can be obtained with only 

2 to 3 iterations. The method is applied to a special case 

dealt with by Sparrow et. al. [15] [16], (laminar flow with 

constant viscosity and no radiation) and good agreement is 

obtained with considerable savings in C. P. U. time. This 

arises because the present implicit finite defference method 

only has to use 45 mesh points to solve the problem in con- 

trast to 1600 points used is the analysis of Sparrow [15]. 

I-4 Scope of Present Work 

The structure of the present study is briefly shown in 

Fig. 1-4. 
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Fin Steady state 
Vertical Plate Fin 

Vertical Circular Pin 

Forced Convection Laminar Flow Natural Convection Turbulent Flow Mixed Convection 

With Heat Radiation J Constant Kinematic Viscosity 
Without Heat Radiation Non-constant Kinematic Viscosity 

Special case in the illustrated example. 

Force Convection 
Steady Statýe--ý Vertical Plate Fin Natural Convection 

Mixed Convection 

Laminar Flow}ýj Without Heat Radiation 

Constant Kinematic Viscosity 

Fig-1-4 The structure of the present work. 
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II. REVIEW OF PREVIOUS WORKS 

The fin has been applied to industrial heat transfer 

systems for increasing the rate of heat transfer for many years. 

Many scholars have theoretically studied the phenomenon of 

heat transfer of the fin under various boundary conditions. 

One of the earliest studies of steady state heat transfer 

rates in straight and tapered fins was made by Harper and 

Brown 16,1 in 1922. They assumed the end of the fin to be 

insulated and obtained theoretical results. They had to use a 

corrected fin length in order to obtain agreement with the 

practical heat transfer phenomenon of the fin. Since then 

Jacob [51, Gardner [7], Gates [8], Kern & Kraus E'1'1, and 

Carier & Anderson [20] have presented studies of steady state 

heat transfer characteristics for fins with various geometrical 

shapes. 

Gardner C7] extended the heat transfer analysis of fins 

to extended surfaces with cross-sectional area of arbitrary 

shapes. He also analyzed the phenomenon of heat transfer of 

a cone-pin which required the solution of the generalized 

Bessel equation to derive the temperature distribution of the 

cone-pin. The effective curves for the fins with various 

shapes of cross-sectional area obtained by Gardner are still 

applied to the practical designs extensively. 

With respect to the heat transfer analysis of the fin, 
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it has traditionally been assumed that the heat transfer coef- 

ficient along whole length of the fin is constant. Practically, 

the real (local) heat transfer coefficient of the fin [21] [22] 

[23] depends on the flow velocity and temperature of the fluid 

about the fin surface. In order to obtain the practical local 

heat transfer coefficient of the fin, the heat conduction 

equation of fin itself has to be simultaneously coupled with 

the thermal boundary-layer equation of the ambient fluid. 

For steady state conditions Sparrow et. al. [15], Karvinen 

[17] [18] and Huang and Chen [24] applied the above concept of 

coupling the heat conduction equation and thermal boundary 

layer equation to fins under the situation of natural convec- 

tion. They found that the heat transfer coefficient differed 

from the traditional predictions which indicated that the heat 

transfer coefficient decreased gradually and monotonically. 

They found that the heat transfer coefficient reaches minimum 

value first and then increases again. The reasons for the' 

above phenomenon are due to the non-uniform temperature distri- 

bution, the enriched buoyancy effect by the increasing flow 

velocity of the ambient fluid induced by the higher temperature 

difference between the fin base and its ambient fluid. This 

does not exist for the forced convection situation. 

While there is a significant difference between the 

practical and traditional theoretical predictions of the local 

heat transfer rates, the toýa1 heat transfer rates are in 

reasonable agreement. 

-10- 



With respect to transient conditions, Chapman [91 first 

analyzed the transient heat transfer response to a step change 

in base temperature for the equal-thickness, one-dimensional 

circular pin in 1959. In 1972, Yang [11] obtained an analytical 

solution of the temperature distribution for analysing the 

longer-time heat transfer response to a periodic base temper- 

ature variation of a flat plate fin. 

In 1975, Suryanarayana [12J presented a paper for discus- 

sing the transient heat transfer response to a one-dimensional 

flat plate fin. He divided the boundary conditions into four 

types. They are: 1) a step function in base temperature, 

2) a cosine function in base temperature, 3) a step function 

in base heat flux and 4) a cosine function in base heat flux. 

In 1976, Chu [25] presented the transient heat transfer res- 

ponse to the boundary conditions of a step function in base 

temperature and a step change in base heat flux for two- 

dimensional flat plate fin. In 1975, Aziz [26] used the ana- 

lytical method introduced by Yang [11] to analyse the periodic 

heat transfer phenomenon of annular fins. Eslinger and Chung 

[27] applied a finite element method and assumed the heat 

transfer coefficient as a constant to analyse the periodic 

heat transfer characteristics of the fins. In 1981, Aziz and 

Na[13] considered the relationship between the heat transfer 

coefficient and temperature to be linear and assumed the change 

of heat transfer coefficient to be dependent on the coordinates 

but independent of time for analysing the periodic heat transfer 
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characteristics. 

During the analysis of heat transfer for a fin, the effect 

of heat radiation can often be an important factor. It has 

been found that the heat radiative flux can be approximated by 

using the optically limit. This also proves to be convenient 

for handling the subsequent-numerical analysis. Sparrow 

et. al. [16] [15] restricted the heat transfer analysis of the 

conjugated fin to laminar flow, but the effect of turbulent 

flow is also very important for the heat transfer analysis of 

the fin at high velocities. In the present study, the eddy 

viscosity model developed by Cebeci and Smith [19] [28] [29] 

is applied to simulate the Reynold stress produced by the tur- 

bulent flow, where as the kinematic viscosity is assumed to be 

a constant in previous investigations of the fin. The kine- 

matic viscosity of the fluid is dependent on temperature when 

the temperature difference between the fin (or pin) and its 

ambient fluid is great enough. Thus, the effect of kinematic 

viscosity relative to the variation of temperature on heat 

transfer is considered in the present work. 

The heat transfer analysis of a fin (or pin) for handling 

the heat convective problem of the vertical flat plate fin (or 

pin) in the present study is differs from previous studies in 

that temperature and heat flux may vary along the vertical 

flat plate fin (or pin). The temperature of the flat plate 

fin (or pin) will depend on the velocity and temperature of 

the ambient fluid. In order to obtain the temperature distri- 

-12- 



bution of whole the fin (or pin), we have to solve the conju- 

gated heat conduction equation and thermal boundary layer equa- 

tion simultaneously. A certain temperature distribution along 

the wall of the fin (or pin) is assumed as the boundary con- 

cition for the thermal boundary layer first. Then a numerical 

method is applied to solve the thermal boundary layer equation 

for obtaining the local modified heat transfer coefficient. 

Taking the local modified heat transfer coefficient as a given 

value and substituting it into the heat conduction equation, 

a new temperature distribution of the fin is obtained. Iter- 

ating the above calculation procedure, until the tolerance 

between the values of two neighboring temperature distribution 

is less than 10-3 then a convergent result is sought. 

The implicit finite difference method is applied to solve 

the non-similar thermal boundary layer equation and the inverse 

matrix method is used to solve the heat conduction equation in 

the present study. The very good convergent results can be 

obtained after 2 to 3 iterations. The results of special case 

in the illustrated example (steady state, a flat plate fin, 

laminar flow, without heat radiative effect and constant kine- 

matic viscosity) are compared with those obtained by Sparrow 

et. al. [15] [161. The agreements are satisfactory. Besides, 

the fin is only divided into 45 points for the implicit finite 

different method used in the present work. Obviously, it is 

much simplified than the method used by Sparrow et. al. which 

used 1600 division points. And the C. P. U. time can be also saved. 
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III. TURBULENT MODEL 

In 1974, Cebeci and Smith reported an algebraic viscosity 

formulation for use with external wall boundary layers. This 

has been used extensively and developed for bodies of revolution, 

internal flows, three-dimensional turbulent flows etc. by Cebeci 

and co-workers. This turbulent eddy viscosity model divides the 

boundary layer into inner and outer regions. The inner region 

is based on a Van Driest (30) approach and modified in accordance 

with a damped law of the wall. The outer region (31) (32) (33) 

is based on a velocity defect Law. The expressions are given 

as follows: 

emi ={{0.4y [1- exp (-Y/Ä) ]J2 Iay=IY 
tr, 

when 

em= emi <smo (3-1) 
lemo 

= 0.0168 (f0 (u. -u) dy lYtr, 00 when emi > emo 

where the damping constant A may be expressed. as 

26 N* (3-2) 

For flow with no mass transfer and no pressure gradient, N*=1. 

[19 ]. The transition region intermittency factor for two- 

dimensional flow is defined as follows: 

1tr =1- exp [ -Gxtr (x-xtr) (! 
X 

ü äx) ] (3-3) 
tr m 

Where xtr is the location of the onset of transition and 

the empirical. factor G is given by 

-14- 



u3 00 -1.34 
1200 v2 

Rx tr 
(3-4) 

with Rxtr = u00 xtr/v 

The empirical, but well-tested, nature of this formulation 

should be noted. Modified versions exist for particular flows 

and, in all cases, the empiricism implies that the expressions 

should not be used for configurations far from those upon which 

the constants are based. 

The turbulent prandtl number suggested b9 Jischa and 

Rieke (34) is used in present study. It is expressed as 

Prt = Eh =a+b (Pr + 1)/ Pr (3-5) 

where Pr = 0.7 when the fluid is air and from experiment, 

a=0.825, b=0.0309. 

The eddy algebraic equation (3-1) can be transformed by 

the following transformation formula, 

x yReL 

Lg 

T (x, y) - Tco 
0 

To - Tco , 

º1) =i 
(x, y) 

U 

Tf(x) - Tco 
6f = To _ Too 

(3-6) 

uC L 
where ReL =-, and V is a constant kinematic viscosity. 

The following results are obtained 

em+i = 0.16 [ 1-exp (-R26ý f"w/ n) ]2n2f"Rex/y 
tr 

+ 
__ 

em _ Em v- when emi < emö (3-7) 

Lcmt = 0.016 8Rex /[ fl -f ( nco) l Ytr' when em 
+i> em ö 
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The eddy agebraic equation (3-1) can also be transformed by 

the transformation formula 

Re 
--Loo f Vý (x, y) =Lr Ti (ýrn) = 

Lg �ucovcoL 
(3-8) 

T (x, y) - co 
TT f (x) - co 

Te 

To - Tco of To - Tco 

uýL 
where ReLCO =v, vOD is the kinematic viscosity of the fluid 

OD 
outside the boundary layer. 

Equation (3-1) can then be written as 

Rexo, Ch ý, 
em+i = 0.16 1-exp(- 26 f"wen) 2fl2f"Rex/ Ytr' 

when em+i < em ö 

em+ = 
Em (3-9) 

00 vCO 
Emö = 0.0168 Rexo, r1W -f (nom) Y tr' 

when em+i > em 0 

u00 x uco x 
where Rex =-, Rex. = 

00 

1+ a16w(ý) + a262w( )/ 
Ch = 

1+ a16 + a202 
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IV. Steady Laminar Flow Convection-Conduction Cases in 

a Vertical Plate Fin 

In the conventional heat transfer analysis of fins, it is 

standard practice to assume that the heat transfer coefficient 

for convection at the fin surfaces is uniform all along the 

fin. There is, however, evidence in the literature [21] , 
[22] demonstrating that the heat transfer coefficient can 

experience substantial variations along the fin surfaces. 

These variations may be caused by nonuniformities in the tem- 

perature fields in the fluid adjacent to the fin. 

For a thin fin, the temperatures changes in the longi- 

tudinal direction can be considered to be much larger than 

those in the transverse direction. Hence, it may be assumed 

that the heat conduction equation along the fin is essentially 

one dimensional in nature. Consider steady state conditions 

and assume that the thermal conductivity is constant, and that 

the local heat transfer coefficient is nonuniform over the 

surface. Sparrow et al [15], [16] have looked at this conjugated 

problem for vertical plate fin. and conclude that the conven- 

tional fin model based on a uniform input value of the heat 

transfer coefficient yields very good predictions for the over- 

all heat transfer rate of the fin, but the local heat predic- 

tions can be substantially in error for forced convection flow. 

Even for natural convection flow, the local heat transfer 

coefficients were found not to decrease monotonically in the 

flow direction, as is useal. Rather, the coefficient decreased 
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at first, attained a minimum, and then increased with increasing 

downstream distance. This behavior was attributed to an en- 

hanced buoyancy resulting from an increase in the wall-to-fluid 

temperature difference along the streamwise direction. Recently, 

T. S. Chen et al have studied the problem of natural convection- 

radiation interaction in boundary layer flow over horizontal 

surfaces by utilizing the Rosseland approximation [35] 
. 

The analysis of the present paper is for a vertical fin 

with a nonuniform temperature distribution which is strongly 

affected by the modified heat transfer coefficient. The radi- 

ative effect on the thermal boundary layer equation is consider- 

ed, and the Rosseland approximation for the radiative heat flux 

is assumed. This approximation is valid at points optically 

far from the boundary surface, and is good only for intensive 

absorption, that is, for an optically thick boundary layer. In 

spite of these shortcomings, the Rosseland approximation has 

been used with success in a variety of problems ranging from 

transport of radiation through gases at low density to the 

study of the effects of radiation on blast waves by nuclear ex- 

plosion. Hence, in order to determine the. temperature of the 

fin, it must be coupled with the thermal boundary layer flow. 

The fin temperature distribution, which is not known a 

priori, serves as a boundary condition for the boundary layer 

equation. The solutions of the modified local heat transfer 

coefficient along the fin surface from the boundary layer 

equations is substituted into the fin energy equation as known, 

in order to calculate the new temperature of fin surface. 
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This new temperature distribution is then imposed as the 

surface boundary condition for the boundary layer equation, 

the solution of which is used to evaluate an updated h* and so 

on until the maximum difference of temperature between the suc- 

cessive cycles is less than some given small value. 

IV-1 Radiative Effect on the Vertical Plate Fin in Conjugated 

Natural Convection-Conduction Flow 

A conjugated conduction-radiation-convection analysis has 

been made for a vertical heated plate fin which exchange heat 

with its fluid environment by natural convection and radiation. 

The conservation equations of the laminar boundary layer 

with radiative effect and the fin energy equation are first 

transformed into a nondimensional form and their solutions are 

then simultaneously solved by an implicit finite difference 

method. Numerical results are presented for Pr=0.7 (for carbon 

dioxide in the temperature range 1000-650°F with corresponding 

Prandtl number range 0.76-0.6 , CT=0.5 over a conjugated con- 

vection-conduction parameter of Nc=0.5,1, and 3 and a conduction 

to radiation parameter of N=0.1,1,5 and -. It is found that 

the heat flux of the fin with radiative effect is higher than 

of the fin without radiative effect. 

Analysis 

Consider a vertical plate fin which is extended from a wall 

at temperature T0 and situated in an otherwise quiescent envi- 
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ronment having temperature T 
c*. 

The coordinates parallel and 

normal to the fin surface are taken to be x and y respectively. 

The coordinate system is in Fig. (4-1-1). 

By employing the Boussinesq approximation for the fluid 

properities, the equations expressing conservation of mass, 

momentum and energy are, respectively, as follows: 

äu 
+ äy 

=0 (4-1-1) 

uäu + väy = gß (T - Tom + vaa2y (4-1-2) 

2 
y-- 

(4-1-3) uax + vay =away - pc 
an r 

P 

where the standard symbols are defined in the nomenclature. 

In the past, several investigators [36-37] used the optica- 

lly thick limit approximation to study the interaction of rad- 

iation with boundary layer heat transfer. Under the assumption 

of optically thick limit approximation for the radiative part, 

qr may be expressed as 

r_ -4cr aT4 
q- 3ß* ay 

where a is the Stafan-Boltzmann constant and ß* is extinction 

coefficient. 

The system of equations (4-1-1)-(4-1-3) is subject to the 

(4-1-4) 

following boundary conditions 

u=v=0, T=Tw(x) at y=0 

as y}00 
(4-1-5) 

u; 0, T; Ta 
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Equations (4-1-1)-(4-1-4) and boundary conditions (4-1-5) do 

not admit a similarity solution. The nonsimilarity arises from 

the surface temperature, Tw(x), which is undetermined. The 

pseudo-similarity variable rn and the dimensionless streamwise 

coordinate E are introduced as follows 

rt 
=L n1 = 

Yp, (GrL/4)/ 
ý4 

(4-1-6) 

where L is the length of the plate fin and GrL is the Grashof 

number, GrL=g ß (To-T )L3/v2. 

The'dimensionless stream function f(E, n) and the dimension- 

less temperature 6(E, n) are defined, respectively, by 

y) / (4v (GrL/4)4ý °) (4-1-7) 

0 (E, n) = (T - Tom) / (To - Tw) (4-1-8) 

where. the stream function Y(x, y) satisfies the continuity 

equation (4-1-1) with 

aT aJ = ay v= ax 
(4-1-9) 

Introducing equations (4-1-4) and (4-1-6)-(4-1-9) into 

equations (4-1-2), (4-1-3) and (4-1-5) gives 

f"' + 3ff" -2 (f') 2+6=4E (f' äf '- f" äff) 

Pr 16" + 3fe' + 
4((8+ cT)3 ei) 

-4 ýf' ae - e, af) 
3Pr Naa 

f=V=0, 

f'= 0=0 

e =)O (ý), 

I 

at n = 0 

as n -4 00 

(4-1-10) 

(4-1-11) 

(4-1-12) 

In the foregoing equations, the primes stand for partial deriva- 
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tives with respect to r1, Pr is the Prandtl number, N= K 
46 (To-Tco) 

and cT=To0TH' Assuming a one-dimensional model, the thin fin 

energy equation allows the temperature distribution along the 

longitudinal direction to be written as 

d Tom- 
= 

h* (x) iTf 
dx2 kf 6 -Tom) (4-1-13) 

where kf is the fin thermal conductivity, Tf is the fin tem- 

perature, and h*(x) is the modified local heat transfer coef- 

ficient which can be regarded as known from the current boundary 

layer solutions. The associated boundary conditions are: 

Tf = To at x=L 

dTf (4-1-14) 

dx =0 at x=0 

Of particular interest is the thermal coupling between the fin 

and the thermal boundary layer. The basic coupling is expressed 

by the requirement that the fin and fluid temperatures and local 

heat fluxes be continuous at the fin-fluid interface, at all x. 

Tf(x) = TW(x) 

h* (T f -T) _ -k 
3T 

Co 
+ qr 

at y=0, O<x<L 

(4-1-15) 

Equation (4-1-13) was recast in dimensionless form by the 

substitutions 

_x_ 
Tf Tco 

L' of 
T-T 

o 00 
(4-1-16) 

and combined with equations (4-1-14) and (4-1-15), so that 

0 
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^ da 2d= 
Nc ii* 8f 

Of =1, at =1 

d6 f 
d=0 at =0 

and 8w = Of, h* =k GrL44 h*/L, at 71 =0 

(4-1-17) 

(4-1-18) 

(4-1-19) 

where Nc is the conjugated convection-conduction parameter. 

kL GrL1 
Nc = Kf 6 (4-1-20) 

The quantity h* is a dimensionless form of the modified local 

heat transfer coefficient. The value of h* is obtained by 

substituting equations (4-1-4), (4-1-6) and (4-1-16) into 

equation (4-1-15). 

.. 4(8+c )3 
h* _- () (1+ 3N 

T) 6' /8 f at rý =0 (4-1-21) 

Numerical Solution 

The solution begins by solving the natural thermal boundary 

layer problem for a vertical plate fin with guessed temperature 

for all . The dimensionless modified heat transfer coeffic- 
A ients h* determined from this solution in accordance with 

equation (4-1-21) are then used as input to the fin heat con- 

duction equation (4-1-17). With Nc prescribed, the differential 

equation (4-1-17) is then solved to yield 8f. To begin the 

next cycle of the iterative procedure, the just-determined 0f 
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is imposed as the thermal boundary condition for the boundary 

layer problem; the solution to which yields a new h* distri- 

bution which is used as input to the fin heat conduction equa- 

tion. This procedure of alternately solving the boundary 

problem and fin conduction problem was continued until conver- 

gence was attained. The two systems of partial differential 

equations (4-1-10) and (4-1-11) are coupled. In the present 

analysis, these equations were solved by an accurated implicit 

finite fifference technique [19] 
. To begin with, the partial 

differential equations (4-1-10), (4-1-11) are first converted 

into a system of first order equations which are then expressed 

in finite difference form by approximating the functions and 

their first derivatives in terms of centered difference and 

averaged at midpoints of the net segments in the (ý, n) coordi- 

nates. The resulting non-linear finite-difference equations 

are then solved by Newton's iterative method. The accuracy of 

the order of the numerical scheme is (E )2 and (fin )2. 

The boundary layer solutions were obtained by a marching 

procedure starting at the leading edge (E=O), and the grids 

were divided into 45 points in the streamwise direction. There 

was a denser concentration of points near the leading edge to 

accommodate the initial rapid growth of the boundary layer. 

We use 61 grid points in the cross-stream direction. 

In order to write the system in terms of a first-order 

system of partial differential equations, new dependent variable 

and w (E , ri) are introduced, so that equation 
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(4-1-10) and (4-1-11) can be written as 

f' = ti (4-1-22) 

ü' =v (4-1-23) 

0' =w (4-1-24) 

V' + 3fv - 2i1 +0 = 4(- üä -vä 
ff) (4-1-25) 

4( (9+cT) 3w) I= 4ý (U -- 
af) 

Pr w'+3fw+ 3PrN aý c (4-1-26) 

Consider the net rectangle shown in figure (4-1-2) and 

denote the net points by 

go = 0, gn =Zn-1 + kn, n=1,2,... N 

no = 0, ni =nj-1 + hi j=1,2,... J (4-1-27) 

nj = ilOD 

Approximate the quantities (f, ü, v, 6, w ) at points (En, nj) of 

the net by net functions denoted by (fj, ü., vj, O., wi ) and employ 

the following notation for points and quantities midway between 

net points and for net function mn i 

9n_/ =2 (9n +Zn_1) , mý -h =2 (mý + ml-1) 
(4-1-28) 

nj_ý 
2 (nj +nß_1) , mý -2 (mý + mý-1) 

The difference equations that are to approximate (4-1-22)- 

(4-1-26) are now easily formulated by considering' one mesh 

rectangle as in figure (4-1-2). Equations (4-1-22)-(4-1-24) 

are approximated by using centered difference quotients and 

averages about the midpoint (En, nj_ý) of the segment p2p4, 
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with the following results: 

(fn _ fn_ hý -1 üý (4-1-29) 

(t: ý uý_ 1)hý-1= Vý(4-1-30) 

(6n 
7 - 6n 

- 7 
)h 7 

71= 
1 Wn (4-1-31) 

J-ý 

Similarly, equations (4-1-25) and (4-1-26) are approximated by 

a centering on the midpoint (En_ý, nj_, ) of the 

rectangle PiP2P3P4, which gives 

vn - vn 

-j + (3 + an) UV) ý_ý 
- (2+an) (ü2) ý_ + 8ý_ 

Z 

- an (; ýnfn-1) 
7- 

+ an (vn-1fn) (4-1-32) 

n_n 
Pr-1 

(w3 wý-1) 
+ (3 + an) (fw )n +4 C3 (8n +c )2 (w2)n 

h. J- 3 Pr NT 
J 

nn 
+ 

wj j-1) (6n_/+cT) 3] + an[- (ü6) n : an-1 6n + llngn-1 
J 

+ wn-lfn _ wnfn-1 n-1 
J-h 

where an = 
4E n-;, - 

n (4-1-34) 
k 

Rn_, y 
= an C (fv) n1) 

- (U2) n_1 ]_[ (° 
°j-1) n-1 +3 v) n-1 

7z j_ý 323 

- 2(U20-1 + 6ý_ (4-1-35) 
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Yn_ z= an[(wf) 
n_1 

- (ü8) ,_ 
2) {Pr-l( 

w3 w3-1)n-1 
+3 (fw) ý_1 

h. 
3 

+3 Pr N[3 
(, n-12+ cT)2(w2)n-1 

_h 
+ 

W. 3n-]. (8j_ 2+cT) 
31 

3 

(4-1-36) 

Equations (4-1-29)-(4-1-33) are imposed for j=1,2,... J. The 

boundary conditions (4-1-12) can be written as 

fn 
o=0, eö = ew A, üo = 0, üJ = 0, eJ =0 (4-1-37) 

If we assume (fn-1, ýn-1 n-1 n-1, wn-1 6j ) are assumed to be 

known for 0<j<J, then (4-1-29)-(4-1-33) and the boundary con- 

ditions (4-1-37) yield an implicit non-linear algebraic system 

of 5J+5 equations in as many unknowns (fn, ün, vn, eng ten). 7J77 
The system can be solved very effectively by using newton's 

method. 

The fin conduction equation was solved by using the direct 

inverse matrix method. The fin equation was'also divided into 

45 grid points and expressed in finite difference form. To 

ensure high accuracy, a nonuniform grid points were employed. 

For small C, a finer C subdivision was also needed for the 

heat conduction equation. 

Results and Discussion 

Numerical calculations of the overall rate of heat transfer 

Q were obtained from the wall into the fin base at E=1 or, from 

the integrating heat transfer over the fin surface. The cor- 
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responding, Q values of these two method are found to be in 

agreement. They may be expressed in dimensionless from as 

1 4(0+c )3 Q= 2I - (1 +T )01/(4E) °dý, 
at 71=0 

k (To-T. 
0) 

GrL 40 3N 

(4-1-38) 
or 

Q2 def 

k (To-T.. ) GrL 
° Nc d_1 (4-1-39) 

The results of the overall heat transfer rate Q from the fin 

are presented as ä function of the conjugated convection-con- 

duction parameter, Nc. The decrease of Nc indicates short fin 

length, L, great fin conductances, kf S, and low convective 

coefficients (low k and GrL). In Fig (4-1-3) it is found that 

the overall heat transfer rate of the fin with radiative effect 

is higher than that of the fin without radiative effect. Fig. 

(4-1-3) also shows that an increasing N yields a decreasing 

total heat transfer rate of fin for fixed Nc. - The case with 

N; oo corresponds-to nonradiating flow, and N=l to reasonably 

strong radiation effects. 

Fig. (4-1-4) Fig. (4-1-5) illustrate the distributions of the 

modified local heat transfer coefficient for natural thermal 

boundary layer along the fin surface as a function of Nc and N. 

The modified local heat transfer coefficient can be written, in 

dimensionless form, as follows: 

4(e+c 3 
h= h*L/kGrLý` _ -ý (1+ 3NT 

an /6 f at rl =0 (4-1-40) 
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It is shown from these two figures that the larger variations 

of the response of the modified local heat transfer coeffici- 

ent h* increase the streamwise variations of the fin temperat- 

ure. As seen from the figures, it may be seen that h* decrea- 

ses to some minimum, and then increases steadily with E; the 

minimum approaches the tip as Nc becomes larger. 

The phenomenon of this behavior is the same as the natural 

convective flow over a vertical plate without radiative effect 

[15], and is attributed to both enhanced buoyancy and radiative 

heat flux associated with an increase in the wall-to-fluid 

temperature difference along the streamwise direction for a 

heated fin. 

Distributions of the dimensionless local heat flux at the 

fin surface are shown in Fig. (4-1-6)-(4-1-7), for various 

values of Nc and N. The local heat flux can be taken as 

4(8+c )3 
qL 

_ 
-1 (1+=) 

ae 
at n =0(4-1-44) 

k (TO-T 
ý) 

GrL VIE 4 3N a fl 

which composed of the conductive heat flux and the radiative 

heat flux. From the two figures, if is found that most of the 

heat fluxes transfer to the ambient fluid by natural convection 

and radiation near the base for higher values of Nc. Fig. (4- 

1-6)-(4-1-7) also show that the total heat transfer rate from 

the fin surface is increased as Nc decreased, which agrees with 

the prediction in Fig. (4-1-3) 

It is observed from Fig. (4-1-4)-Fig. (4-1-7) that both of 

the local heat flux and modified heat transfer coefficient with 
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radiative effect. (N> 0) are higher than those without radiative 

effect (N 110). Fig. (4-1-7) also show that a decrease in the values 

of N gives rise to a larger values of modified heat transfer 

coefficient and local heat flux. The smaller values of N 

corresponds to stronger radiation effect which is due to an 

increase in the wall-to-fluid temperature difference. 

Representative results for the fin temperature distributions 

are presented in Fig. (4-1-8) - (4-1-9) over a wide range of Nc 

and N. Fig. (4-1-8)-(4-1-9) show the expected trend whereby 

the fin temperature decreases monotonically from the root to 

the tip. The figures also confirm the assertions that larger 

values of Nc give rise to larger fin temperature variations. 

From these figures, it may be noted that the fin temperature 

distributions have a larger variations in the streamwise direc- 

tion for smaller values of N. 

Remark 

The analysis of this section has yielded the results of 

heated vertical plate fin for natural thermal boundary layer 

flow with radiative effect. The optically thick limit approxi- 

mation for the radiative heat flux is assumed. Although the 

range of the validity of the optically thick limit approximation 

is small in the boundary layer flow, it possesses the advantage 

of simplicity in the analysis because the governing energy 

equation can be transformed into an ordinary differential 

equation by the conventional similarity transformation. The 
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exact solutions of the fin surface temperature should lie 

between those for the nonradiating case and the optically thick 

limit approximation. The agreement of the results for special 

case (i. e. fin without radiation) with [15] is truely remark- 

able. In order to solve simultaneously the coupled fin con- 

duction equation and the thermal boundary layer equations of 

fluid, a very simple and efficient "Box" scheme due to Cebeci 

and Bradshaw is empolyed here. 
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Fig. 4-1-4 The modified heat transfer coefficients 
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Pr=0.7 and various values of Nc. 
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IV-2 Radiative Effect on the Conjugated Forced Convection- 

Conduction Analysis of Heat Transfer in a Plate Fin 

The present section is concerned with fins which transfer 

heat to a surrounding fluid by forced convection and radiation- 

The heat transfer coefficient along the fin is not prescribed 

but solved in advance from the boundary layer convection flow. 

Therefore, the modified local heat transfer coefficient is 

determined by a highly coupled interaction among the fin con- 

duction, radiation and the fluid convection flow. The fin 

temperature distribution has been strongly effected by the 

ambient fluid flow. As fin temperature distribution has been 

given, then the heat transfer coefficient in advance may be 

decided by boundary layer flow with varying temperature distri- 

bution along the fin. An implicit finite difference method is 

employed. The results of the overall heat transfer rate, 

modified local heat transfer coefficient, local heat flux and 

temperature distribution of the fin are given for Pr=0.7 

(Prandtl number), cT=0.5'(Temperature difference parameter), N=1 

(Conduction to radiation parameter) and various value of Nc 

(Convection-conduction parameter). 

The problem to be analyzed in this section is illustrated 

in Fig. (4-2-1), A vertical fin is of length L and thickness 26 

which is extended from a wall at temperature To and situated in 

a uniform free stream having temperature T., and velocity u. 0 . 
The optically thick limit approximation of radiation is assumed 

and the tip of the fin is insulated. 
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Analysis 

The present study is concerned with the effects of radiation 

on convection along the fin surface. Consider now a vertical fin 

which is parallel to a uniform free stream. Let x and y denote, 

respectively, the streamwise and normal coordinates. The 

starting point of'the analysis is the conservation equations 

for a laminar boundary layer over a vertical fin 

Du + äy =o 

2 
u äX +v 

ay 
=ya (4-2-2) y 2, 

u 
aT 

+v aT 
=aa2T-1 

aqr (4-2-3) 
ax ay ayL pCp ay 

where all the quantities are defined in the nomenclature. 

Equations (4-2-1)-(4-2-3) are subject to the following boundary 

conditions: 

u= 0, v= 0, T=T (x) aty= 0 
W} (4-2-4) 

u->. u', ,T -+TCO asy -ºw 

This problem will admit similarity solutions for momentum 

equations. It is advantageous to introduce. a pseudosimilarity 

variable n, a dimensionless variable F, with a reduced stream 

function f(E, n) and a dimensionless temperature e(E, n) as 

follows: 
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=L rl =(L) ReL/ / 
(4-2-5) 

(x, y) / (uCovL9) /r6=,, T 
- T°° 

0 00 

where the stream function P satisfies the continuity equation 

with u= aý/ay and v= -aý/ax. The motivation for employing 

the transformation variables (4-2-5) is that the transformed 

conservation equations are much less dependent on the axial 

coordinate than are the original conservation equations. 

When the transformation is applied to equations (4-2-2) 

and (4-2-3), and the optically thick limit approximation for 

qr is assumed, the govering system becomes 

,"2 f 

4[ (6+C 
T) 

36'] ' 
pr 0+ 

2e +3 PN =Ef, 
ä1 (4-2-7) 

subject to boundary conditions 

T (x) -T wf= f' = 0.0 =T 
-T 

at fl =0- w (4-2-8) 

as 71 -> cx) 

where CT, N, Pr are defined in the nomenclature and the primes 

denote partial differentiation with respect to n. 

Considering a very thin fin, it is reasonable to assume a 

one-dimensional model for the fin temperature along x coordinate. 
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The fin conservation energy equation is 

2 dX 
= 

h* 
k 

(S) (T f- Tom) (4-2-9) 
f 

where Tf is the fin temperature at any position x, kf is the fin 

thermal conductivity and 6 is the half thickness of the fin. 

In this equation h*(x) can be regarded as known from a previous 

iteration cycle. Employing dimensionless variables for fin 

- f 00 =Xe_TT fT-T (4-2-10) 
o co 

then equation (4-2-9) becomes 

a2 e 
h* (X) 

f (4-2-11) d92 =kfd0 

with boundary conditions of the base root temperature T0 (at 

ý=1) and adiabatic tip (at E=0). Coupling the fin energy and 

the fluid boundary layer equations, requires matching the 

boundary conditions that the fin and the fluid temperature are 

the same and the heat flux is continuous at the plate-fluid 

interface for all stations. 

i. e. Tw =Tf and -k 
äy + qr = h* (T f- Tom) at y=0 (4-2-12) 

Substituting dimensionless variables into equation (4-2-12), 

then we get 
11 ow = 8f, h* =k ReL/ h* /L at ri =0 (4-2-13) 
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Thereby, equation (4-2-11) becomes 

d20 

dý-- = Nc h* ef (4-2w-14) 

where Nc is the convection-conduction parameter (Nc=k 
fä 

ReL/ ). 

The quantity h* is a dimensionless form of the forced convection 

heat transfer coefficient including radiation effects that for 

the current cycle of the iteration 

.. 4(0+ C )3 
n* _- (1 + 3N 

T än/ (8 f 
/) 

at tý =0 (4-2-15) 

The method to be used here involves a succession of consecutive 

solutions for the fin and the boundary layer. Initially, the 

boundary layer equations are solved subject to an assumed fin 

temperature distribution which satisfies the thermal' boundary 

conditions, and from this solution h* is evaluated. Substituting 

h* into the fin energy equation, which is solved to give new 6f. 

Then this new 0f is imposed as the fin surface boundary condition 

for the governing equations. This procedure of alternately 

solving the boundary layer problem and fin conduction problem 

was continued until convergence was attained. 

Numerical Procedure 

The solutions of the boundary layer equation were obtained 

by an implicit finite difference method devised by cebeci and 
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Bradshaw 119] . Starting from the fin tip (ý = 0), step by 

step, to the base root (ý = 1). According to this method, 

equations (4-2-6), (4-2-7) are first written in the first order 

equation by introducing new known functions. The functions and 

their derivatives in the first-order equations are then aproxi- 

mated by centered difference quotients and averages at the mid- 

points of net rectangles to yield finite-difference equations. 

The resulting nonlinear difference equations are finally solved 

by using Newton's method. This gives very stable and highly 

accurate results. The fin conduction equation is also written 

in the finite difference form. For small E, a finner subdivi- 

sion was need for, the boundary layer solution. The-results of 

the finite difference equations represent the discretized con- 

duction equation at all fin grid points except 0 and = 1. 

At the root, the fin temperature is equal to To. At the tip, 

the adiabatic boundary condition is applied. 

The results of the special case (fin without radiation) 

agree with Sparrow and Chyu [16 ]for the forced convection fin. 

The present method uses 45 points in the streamise direction and 

161)grid points in the cross-stream direction. 

Results and Discussion 

Numerical results of the overall rate of heat transfer Q 
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from the fin can be obtained from the heat conducted from the 

wall into the fin base at E=l or by integrating the local heat 

flux at the fin surface. The corresponding heat flux values of 

these two method are found to be in agreement. They may be 

expressed in dimensionless form as follows: 
3 

Q 
ý, = 2f (- ae) [ 1+ 

4 (3NCT) 
J/ dE, at Ti =0 

k (To-To. ) ReL X2- 0n 
(4-2-16) 

or Q2 d6 f 
k (To-Tý)Re L No d6_1 (4-2-17) 

The results of the overall rate of heat transfer Q from the fin 

are shown in Fig. 4-2-2 for various values of Nc. The decrease 

of Nc indicates short fin length, L, great fin conductances, 

kf6, and low convective coefficients (low k and ReL). Fig. 

(4-2-2) also indicates that the overall heat transfer rate of 

the fin with radiation effect is higher than that of the fin 

without radiation effects. The agreement of the results from 

the simple model with those of [161 and the special case (qr=0) 

in this paper is truely remarkable. This near-perfect agreement 

should not regarded as a validation of the simple model but 

only as an indication of its ability to predict overall results 

accurately. 

The distributions of the modified local heat transfer 

coefficient h* for forced convection and radiation along the fin 

with various values of Nc are shown in Fig. (4-2-3). The modified 

heat transfer coefficient can be expressed as 
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h*L 4 (e+c )3 ae 
k-- 

_ -[1+ 
3N 

T) 
j/ 

(8 fý ) at n=0 (4-2-18) 

L 

For higher values of Nc, the fin is more nonisothermal. Thus, 

the more nonisothermal the fin, the greater the modified local 

heat transfer coefficients-increase near the base root. Although 

the local heat transfer coefficient without radiation effects 

[16] monotonically decreases in the fluid flow direction, the 

modified local heat transfer coefficients computed in this paper 

with fixed radiative effect do not vary monotonically. In the 

direction from tip to base, those coefficients decrease at first, 

attain a minimum, and then increase. 

The variations of the dimensionless local heat flux at the 

fin surface are presented in Fig. (4-2-4) for different Nc. The 

local heat flux can be taken as 

qL4 (e+CT) 3ae 
*ý =- (1 + 3N 

) 
an/ý , at n=0 (4-2-19) 

k (To-T. 
0) 

ReL 

For smaller Nc, the heat flux is larger near the tip, but 

smaller at the near base. For higher Nc, most of the heat fluxes 

transfer-to the ambient fluid by forced convection and radiation 

near the base. Fig. (4-2-3)-(4-2-4) show that the local heat 

transfer coefficient and local heat flux of the fin with radiation 

effect are always higher than those of the fin without radiation 

effect. The local heat transfer coefficient and local heat-flux 

variations presented in Fig. (4-2-3)-(4-2-4) also show a distinct 

difference between the results of the simple model (h* is constant 
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and qr=0) and the special case in this paper (qr=0). 

Fig. (4-2-5) presents fin temperature distributions for 

forced convection flow with radiation effect. In the figure. 

It is shown that the fin temperature decreases monotonically 

from the root to tip. The figure also shows that the larger 

values of Nc give rise to larger-fin temperature variations 

and the fin temperature without radiation effect is always 

higher than that of the fin with radiation. It is clear from 

the figure that the results of_simple model predicts a smaller: 

base-to-tip temperature variation than actually prevails. 

Remark 

The analysis of present paper has yielded the results of 

physical fin for forced convection flow with radiation effect 

under the optically thick limit approximation. The agreement 

of the results for special case (i. e. fin without radiation 

effect) with [16] is truly remarkable. In order to solve 

simultaneously the coupled fin conduction equation and the fluid 

convection flow with radiation effect, a very simple and 

efficient implicit finite difference method is employed here. 
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IV-3 Radiative Effect on The Vertical Plate Fin in Conjugated 

Mixed Convection-Conduction Flow with Temperature 

Dependent Viscosity 

In the conventional heat transfer analysis of'fins, it is 

standard practice to assume that the heat transfer coefficient 

for convection at the fin surfaces is uniform all along the fin. 

There is, however, evidence in the literature demostrating that 

the heat transfer coefficient can experience substantial vari- 

ations along the fin surfaces [21][22]. These variations may 

be caused by nonuniformities in the temperature fields in the 

fluid adjacent to the fin. Sparrow et al [15] [16] have studied 

this problem for vertical plate fin, and conclude that the con- 

ventional fin model based on a uniform input value of the heat 

transfer coefficient yields very good predictions for the over- 

all heat transfer rate of the fin, but the local predictions 

can be substantially in error for forced convection flow. 

Section 4-2 has looked at the problem of radiative effect on 

the conjugated forced convection-conduction analysis of heat 

transfer in a plate fin by using an implicit finite method due 

to Cebeci and Bradshaw, and indicates that the agreement of the 

special case (fin without radiation) with [161 is very remark- 

able. The stability problem for the natural convective boundary 

layer flow with temperature dependent viscosity over a vertical 

flat plate has been investigated by J. Y. Jang [38] 
. 

The object of this section is concerned with a plate fin 

with transfer heat to a surrounding fluid by mixed convection 
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and radiation. The present section extends the work done in 

section IV-2, by allowing for variations of the viscosity with 

temperature. The modified local heat transfer coefficient 

along the fin is not prescribed but is solved in advance from 

the boundary layer flow. Therefore, the modified local heat 

transfer coefficient is. determined by a highly coupled inter- 

action between the fin conduction and the fluid thermal boundary 

layer flow. 

The fin temperature distribution, which is not known a 

priori, serves as a thermal boundary condition for the boundary 

equations. The solutions of the modified local heat transfer 

coefficient along the fin surface from the boundary layer 

equations are substituting into the fin energy equation as known, 

then repeatly search for the new fin surface temperature. This 

new temperature distribution is then imposed as the surface 

boundary condition for the boundary layer equations, the solution 

of which is used to evaluate an updated h* and so on until the 

maximum difference of temperature between the successive cycles 

is less than 10-. 3 

The physical model and coordinates system to be analyzed 

here are illustrated in Fig. (4-3-1). A vertical plate fin is 

of length L and thickness 26 which is extended from a wall at 

temperature To and situated in a uniform free stream having 

temperature Tco and velocity u. . As radiative effect is con- 

sidered, the optically thick limit approximation for the radi- 

ative heat flux is assumed and the tip of the fin is insulated. 
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Analysis 

. Consider now a vertical heated fin which is alighed parallel 

to a uniform free stream u. Let x and y denote, respectively, 

the streamwise and normal coordinates. Under the assumption 

of Boussinesq's approximation for mixed forced and free con- 

vective flow, constant fluid properities and negligible viscous 

dissipation, the equations expressing conservation of mass, 

momentum and energy are shown as follows. 

ax + ay 
0 (4-3-1) 

UU+ väy = ay 
(väy) + gß (T-T00 (4-3-2) 

u- + v- = ýä 
pC ag ry 

(4-3-3) 
ax Dy 

P 

subjected to the following boundary conditions: 

u=v=o, T= TW (x) , at y=0 

u=uco , T=T(» 0 as y ->w 

where qr is the net radiative heat flux and the other standard 

symbols are defined in the nomenclature. 

The problem does not admit similarity solutions. The 

nonsimilarity arises from the variations of the surface temp- 

erature, Tw(x), which is undetermined. It is advantageous to 

introduce pseudo-similarity variables (E, n) with a reduced 

stream function f(ý, n) and a dimensionless temperature 6(&, n) 

as follows: 
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0 

E= x/L 

f( Ti) =V (X, Y)/(uCo LZv00 ) 125 
, 

rt = (L) ReLý/ 
ý 

} 
8= (T-Tco) / (To-Too) 

(4-3-5) 

where the stream function satisfies the contiunity equation 

(4-3-1) with u=aip/ay and v=-aip/aX. The motivation for employ- 

ing the transformation variables is that the transformed con- 

servation equations are much less dependent on the coordinate 

systems than are the original conservation equations. 

The kinematic viscosity, v , is assumed to vary with 

temperature according to a general form v=v w(6), where v is 

the absolute viscosity evaluated at the temperature of surround- 

ing, and therefore W(0)=1. We can take the first two terms in 

a Taylor series expansion of W(6) about 0=0 as 

w(e)= 1+( äe ) 
e=o 

ce-o) + c2, ae 
s=o 

(4-3-6) 

When the transformation (4-3-5) is applied to equations (4-3-2)- 

(4-3-4) and (4-3-6), and the optically thick limit approximation 

for qr is assumed, 

i. e. r 46 aT 
q 3ß* Y 

the governing system becomes: 

(1+al. A+a2 A 2) flv I+Zf ftI + cQe= E (f' o f' 
- f" f) (4-3-7) 

-1 �]T Pr. 
O 

A+ 2fA + 3Pr N -& (f äc 
- A' 5) (4-3-8) 

f=f'=O, 6= (TW (x) -Tco) / (To-T(») , at n= 0 

f' =1,8=0 
} (4-3-9) 

as n-* co 

(6-0)2=1+a, 8 +a262 
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where 

CT = Tom/ (To-T00) ,N 
kß * 

- 4cs (To-Too) 3 

Pr is the Prandtl number evaluated at the temperature of sur- 

rounding, a is the Stefan-Boltzmann constant, ß* is the extinction 

coefficient, the primes denote partial differentiation with 

respect to n and 0 is the buoyancy force parameter defined as 

SZ = GrLý/ReLco (4-3-10) 

in which -ý 

GrLoo= gß (To-TOD )L3/v200 

and Re Loo= ucL/vom 

The formulation of the present analysis for the vertical 

fin in conjugated mixed convection-conduction flow involves 

the energy conservation equation for the fin and the boundary 

layer equations for the fluid. Considering the very thin. fin, 

it is reasonable to assumed a one-dimensional model for the 

fin temperature distributions along the x-direction. The fin 

conservation energy equation can be written as 

d2T 

dx' -k6 
ff 

where Tf is the fin temperature, kf is the fin thermal con- 

ductivity and 6 is the half thickness of the. fin. In this 

equation h*(x) can be regarded as known for previous iteration 

cycle. Employing dimensionless variables for the fin 

E =x/L, 6f= (T f-Tco) / (To-Too) (4-3-12) 
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with boundary conditions of the base root temperature To (at 

E =1) and adiabatic tip (at E=O). Of particular interest is 

the thermal coupling between the fin and the thermal boundary 

layer of fluid. The basic coupling is expressed by the requi- 

rement that the fin and fluid temperatures and local heat fluxes 

be continuous at the plate-fluid interface at all x-positions. 

i. e. TW = Tf, -käy + qr = h*(Tf-T»), at y=0 (4-3-13) 

Substituting dimensionless variables into equation (4-3-13), we 

get 

11 8W = 6f, h* = kReL/ h*/L , at n=0 (4-3-14) 

The dimensionless heat conduction equation can be obtained by 

substituting equation'(4-3-12) into equation (4-3-11) 

d26f 
d2= Nch*6 f 

(4-3-15) 

where Nc is the conjugated convection-conduction parameter 

Nc=kLReL- /kf6 i. The quantity h* is a dimensionless form of 

the mixed convective heat transfer coefficient with radiative 

effect that is current at a given cycle of the iteration. 

4(e+c )3 

h* _- (1+ 
3N 

T) än / (e f 
/) 

, at n=0 (4-3-16) 

Numerical Procedure 

The solution begins by solving the mixed convective bound- 

ary layer problem for a vertical plate fin with guessed tempe- 
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rature along the fin surface. The dimensionless heat transfer 

coefficient h* determined from equation (4-3-16) are then used 

as input to the fin heat conduction equation (4-3-15). With Nc 

prescribed, the differential equation (4-3-15) is then solved 

to yield 8f. To begin the next cycle of the iterative proced- 

ure, the just-determined 6f is imposed as'the thermal boundary 

condition for the mixed convective boundary layer equations 

of Newtonian fluid; the solution to which is used as input to 

the fin heat conduction equation. This procedure of altern- 

atively solving the boundary layer problem and the fin conduc- 

tion problem was continued until convergence was attained. 

The two systems of partial differential equations (4-3-7) 

-(4-3-8) are coupled. In the present study, these equations 

were solved by an accurate implicit finite-difference technique 

due to Cebeci and Bradshaw [19] 
. To begin with, the partial 

differential equations (4-3-7)-(4-3-8) are first converted into 

a system of first order equations which are then expressed in 

finite-difference form by approximating the functions and 

their first derivatives in terms of centered difference and 

averaged at midpoints of the net segment in the (E, n) coordin- 

ates. The resulting nonlinear finite-difference equations are 

then solved by Newton's iterative method. 

The boundary layer solutions were obtained by a marching 

procedure, starting at the leading edge and the grids were 

divided into 45 points in the streamwise direction. There 

was a denser concentration of points near the leading edge to 
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accommodate the initial rapid growth of the boundary layer. 

We use 61 grid points in the cross-stream direction. 

The conduction equation was solved by using the direct 

inverse matrix method. The Fin equation was also divided into 

45 grid points and expressed in finite-difference form. To 

ensure high accuracy, a nonuniform grid points were employed. 

For small E, a finer C subdivision was needed for the bounda- 

ry layer solution. 

Results and Discussion 

Numerical calculations for a vertical plate fin in the 

fluid having Pry 0.7 are performed for the following case: 

heated plate fin with T =900°K and T =300°K. By curve-fitting 0" Co 
procedure, we can obtain ai=3, a2=2 (viscosity variation para- 

methers) from experimental data. 

The overall rate of heat transfer from the fin can be 

obtained from the wall into the fin base or from the integr- 

ating heat transfer over the fin surface. The corresponding 

overall heat transfer rate of these two methods are found to 

be in agreement. They can be expressed in dimensionless form 

as follows. 

2fß (-jr-) e[ 4 (e+CT) 3] 

/Z dg 
k (To-T-) ReL 3N 

or Q 2dOf 

k (To-T00) ReL NcdE 

, at n=0 

(4-3-17) 

(4-3-18) 
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The results of the overall rate of heat transfer from the finl 

are shown in Fig. (4-3-2) over the values of buoyancy force para- 

meters 1 =0,1,3 and conjugated convection-conduction parameters 

Nc=0.25,0.75,2 and 3. The decrease of Nc indicates short fin 

length, L, great fin conductance, kfS, and low convctive coef- 

ficients (low k and ReL ). In Fig. (4-3-2) shows that the over- 

all heat transfer rate of the heated fin in a Newtonian fluid 

with temperature dependent viscosity is lower than that with 

constant viscosity (v, ). Fig. (4-3-2) also shows that an in- 

crease in the values of Nc yields a decrease in the values of 

the overall heat transfer rate of the fin, and an increasing 2 

give rise to an increasing overall heat transfer rate of fin. 

The distributions of the modified local heat transfer 

coefficient h* for mixed convection and radiation along the 

fin with different No and fixed Q are shown in Fig. (4-3-3)- 

(4-3-4). The modified heat transfer coefficient can be express- 

ed as follow: 

4 (e+c )3 
h* C1+ 

3N 
TJ än/ (e f) at n= 0 (4-3-19) 

Although the h* without radiative effect [16] decreased mono- 
A tonically in the streamwise direction, but the h* computed in 

this paper did not always decrease monotonically in the stream- 

wise direction when the radiative parameters are fixed. The 

coefficient decreased at first, attained a minimum, and then 

increased with increasing downstream distance. The phenomenon 

of this behavior is attributed to an enhanced radiative heat 

flux and buoyancy force associated with an increase in the 
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wall-to-fluid temperature difference along the streamwise 

direction. 

The distributions of the dimensionless local heat flux 

at the fin surface are presented in Fig. (4-3-5)-(4-B-6) for 

different Nc and fixed buoyancy force parameter. The locale 

heat flux can be taken as 

qL 4 (e+cT)-3 ae / 
k (T -T ) Re 

/ -[J+. 
3N 

1 
ný ' at r1 =0 (4-3-20) 

o Lco 

In those figures, we find that for fixed buoyancy force para- 

meter the total heat transfer rate from the fin surface is 

increased as Nc decreased, which agrees with the prediction 

in Fig. (4-3-2) 

Fig. (4-3-3)-(4-3-6) show the values of the local flux and 

modified heat transfer coefficient increased with increasing 

0. It is observed from Fig. (4-3-3)-(4-3-6) that the local 

heat transfer coefficient and the local heat flux of the heated 

fin in the fluid with temperature dependent viscosity are lower 

than those in the fluid with constant viscosity (vom). 

Fig. (4-3-7)-(4-3-8) present the temperature distributions 

along the fin surface. In these figures, we find that the 

larger values of Ne and 2 give rise to greater fin temperature 

variations. The two figures also show that the temperature 

distributions of the heated fin in the fluid with temperature 

dependent viscosity has a smaller variations along the stream- 

wise direction than that in the fluid with constant viscosity 

(v 
CO 

) 
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Remark 

The analysis of this paper has yielded the results of 

physical fin for mixed convection flow with temperature depen- 

dent viscosity. The radiative effect on the fin is considered 

and the optically thick limit approximation for the radiative 

heat flux qr is assumed. In order to solve the conjugated mixed 

convection-conduction`problem, a very simple and efficient 

"Box" scheme is employed here. 

I 
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V. STEADY LAMINAR FLOW CONVECTION-CONDUCTION CASES IN A 

VERTICAL CIRCULAR PIN 

Extension of the surface in the form of a pin is commonly 

used to enhance the heat transfer rate between a solid surface 

and an adjoining fluid. The temperature gradients within the 

pin sustains heat transfer not only by internal heat conduction 

but also through energy transfer by convection from the surface. 

For a thin pin, the temperature changing in the longitudinal 

direction can be considered to be much larger than those in the 

transverse direction. Hence, it is reasonable to assume a one- I 

dimensional model for the heat conduction equation. 

In the conventional heat transfer analysis of fins, it 

is standard practice to assume that the heat transfer coef- 

ficient for convection at the fin surfaces is uniform all along 

the fin. However, the heat transfer coefficient can experience 

substantial variations along the fin surfaces. These variations 

may be caused by nonuniformities in the temperature field in the 

fluid adjacent to the fin. Sparrow et al [. 15][16] have looked 

at this problem for vertical plate fin, and conclude that the 

conventional fin model based on a uniform input value of the 

heat transfer coefficient yields very good predictions for the 

overall heat transfer, rate of the fin, but the local prediction: 

can be substantially in error for forced convection flow. 

Recently, M. J. Huang and C. K. Chen [39,42] have studied 

the problem of vertical circular pin with conjugated forced and 

mixed convection-conduction flow and concluded, based on their 
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numerical analysis, that the overall heat transfer rate. increas- 

ed with decreasing radius of the cylinder pin. 

The analysis of this chapter is for a vertical cylinder 

pin with a nonuniform temperature distribution which is strongly 

affected by the heat transfer coefficient, the heat transfer 

coefficient is decided to the ambient fluid flow. The radiative 

effect on the cylinder pin is considered and the optically thick 

limit approximation for the radiative heat flux is assumed. 

Besides, the Newtonian fluid adjacent to the cylinder pin is 

extended to include the variation of viscosity with temperature. 

Hence, in order to determine the temperature distributions of 

the pin, it must be coupled with the thermal boundary layer 

flow. 

The pin temperature distribution, which is not known a 

priori, serves as a thermal boundary condition for the bound- 

ary layer equations. The solutions of the modified local heat 

transfer coefficient along the pin surface from the boundary 

layer equations are resubstituting into the pin energy equation 

as known, then repeatly search for the new pin surface temper- 

ature. This new temperature distribution is then imposed as 

the surface boundary condition for the boundary layer equations, 

the solution of which is used to evaluate an updated h* 
and so 

on until the maximum difference of temperature between the 

successive cycles is less than 10-3. 
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V-1 Radiative Effect on The Vertical Circular Pin in Conjugated 

Natural Convection-Conduction Flow With Temperature 

Dependent Viscosity 

The analysis of this section is for a vertical cylinder pin 

with a nonuniform temperature distribution which is strongly 

affected by the heat transfer coefficient, the heat transfer 

coefficient is decided to the ambient fluid flow. 

The radiative effect on the conjugated natural convection- 

conduction flow is considered and the kinematic viscosity of the 

fluid is temperature dependent. The conservation equation of 

the laminar boundary layer and the energy equation of the pin 

are first transformed into a nondimensional form and their 

solutions are then simultaneously solved by an efficient implicit 

finite difference method. To get a physical insight of the 

problem, the results are computed for Pr, =0.7 (air), a1=3, a2=2 

(viscosity variation parameters), N=1 (conduction to radiation 

parameter), CT=0.5 (temperature difference parameter) over a 

conjugated convection-conduction parameter of Nc=0.5,1,2 and 

3 and a transverse curvature parameter of A=1 and 2. 

Analysis 

Consider a vertical cylinder pin of radius r0 which is 

extended from a wall at temperature T0 and situated in an other- 

wise quiescent environment having temperature T0. The axial and 

radial coordinates are taken to be x and r, with x measuring the 
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distance along the centerline of the cylinder from its tip end 

and r measuring normal to the cylinder. The coordinate system 

is in Fig. (5-1-1) . 

By employing the boussinesq approximation for the fluid 

property, the natural convective boundary layer equations with 

radiative effect are 

c5-1-1) (äx) 
+a 

(ar) 
=0 

uäX + vär = gß (T-T00 +r är (rvär) (5-1-2) 

uaT +V T= aa (raT) _1a (rqr) (5-1-3) 
ax Dr r ar Dr PCpr Dr 

where u, v are streamwise and radial velocity components, re- 

spectively, T is the temperature of the fluid, a is the thermal 

diffusivity ,g is the gravitational acceleration, v is the 

kinematic viscosity, ß is the thermal expansion coefficient, 

p is the density, Cp is the fluid specific heat and qr is the 

radiative heat flux. The system of equations (5-1-1)-(5-1-3) 

is subject to the following boundary conditions 

u=v=0, T= TW(x), at r= r0 

u -ý 0T -ý T00 , at r -º (5-1-4 ) 

u=0 TT , at x=0, r> r0 

Equations (5-1-1)-(5-1-3) and boundary condition do not admit a 

similarity solution. The nonsimilarity arises from the surface 

curvature of the cylinder and the surface temperature, Tw(x), 

which is undetermined. The pseudo-similarity variable n and 

the dimensionless axial coordinate E are introduced as follows 
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r2-r2 
0 

L 2Lr t GrLco/ (4 E) ] 

0 
(5-1-5) 

where L is the length of the circular cylinder and GrL. 
0 

is the 

Grashof number evaluated at the temperature of surrounding, 

GrL00=gß(To-T00)L3/v2 . The dimensionless stream function f(E, n) 00 

and the dimensionless temperature 6(E, n) are defined, respectively, 

by 

f(x, 
o 

GrLCO 
°g3/ý) (5-1-6) 

0 (9, n) = (T - Too) / (Tn - Tco) (5-1-7) 

where the stream function f(x, r) satisfies the continuity 

equation (5-1-1) with 

ru= 
är 

1 rv=-aX (5-1-8) 

Under the assumption of the optically thick limit' approximation, 

the radiative heat flux qr can be expressed as follows 

4a 3T 
q- 3ß* Dr (5-1-9) 

where a is the Stefan-Boltzmann constant and ß* is the extinction 

coefficient. 

The kinematic viscosity, v, is assumed to vary with tem- 

perature according to a general functional form v=vom w(6), 

where v, is the absolute viscosity at the temperature of surround- 

ing, T., and therefore w(0)=1. We can take the first two terms 

in a Taylor series expansion of w about 8=0 as follows: 
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w(e) =1+ ae 
le=o (e - o) + 2L 

de (e- 0) 
e=o 

=1+ a16 + a20 (5-1-10) 

By introducting equations (5-1-5)-(5-1-10) into equations 

(5-1-2)-(5-1-4) the momentum and energy equations become: 

(1+X ){ (1+a18+a262) f"11-2 (f') 2+ e 

+{X (1+ale+a2e2) + 3f}f" = 4E (f' af' 
-f"af) (5-1-11) 

DE Dý 

Prco (1+xTiE ) e" +[ Pry + 3f) e'] + 3NPrco" 

"{ (1+XEl4fn) [e'(e+CT) 3] ' +a&; °e' (e+cT) 3 }= 4& (f' -e' 

f) 

DE 

(5-1-12) 

The boundary condition (5-1-4) are transformed to 

"f= f' = 0, A= 6W at rl =0 
} 

(5-1-13) 
f' =8=0 as n -ý co 

In the foregoing equations, the primes stand for partial 

derivatives with respect to n, Pry is the Prandtl number 

evaluated at the temperature of surrpunding N=kß*/4a(To-Tc, )3, 

CT=T(, /To-T,, 
o and A is the transverse curvature parameter, defined 

as 

A= 2/ L/r0 GrL00 
344 

(5-1-14) 

Assuming a one-dimensional model the thin pin energy equation 

allows the temperature distribution along the longitudinal 

direction to be written as 
2 a 

"2 
2h* (x) (T -T ) dx kfro f 00 (5-1-15) 

where kf is the pin thermal conductivity, Tf is the pin temper- 
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ature, and h*(x) is the local heat transfer coefficient with 

radiative effect which can be regarded as known from the current 

boundary layer-solution. The associated boundaryconditions 

. are 

Tf = To at x=L 

dTf } (5-1-16) 

dx at x=0 

Of particular interest is the thermal coupling between the pin 

and the boundary layer equations. The basic coupling is 

expressed by the requirement that the pin and fluid temperatures 

and heat fluxes be continuous at the pin-fluid interface, at 

all x. 

Tf = Tw 

at r=r, O<x<L (5-1-17) 
1= am h*(Tf - T) = -kär + qr o 

co 

Equation (5-1-15) was recast in dimensionless form by the 

substitutions. 

x 00 
Tf T 

L' ofT-T 
o 00 

and combined with (5-1-16) and (5-1-17), so that 

d2 ef 
a= Nc h* 6f 

Of = 1, at =1 

def 
-= at =0 

and 6W =6 f, and h* = h* .k GrLc 
4/L 

at n= 0 

(5-1-18) 

(5-1-19) 

(5-1-20) 

(5-1-21) 

where Nc is the conjugated convection-conduction paramenter, 
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2 kL GrLc, 
` 

Nc = kf ro 
(5-1-22) 

The quantity h* is a dimensionless form of the local heat 

transfer coefficient with radiative effect. The value of h* 

is obtained by substituting equations (5-1-5), (5-1-9) and 

(5-1-18) into equation (5-1-17). 

4(0+C )3 
h* _ -l4 ( 1+ 3N 

T än/6f 
, at n =. O (5-1-23) 

Numerical Procedure 

The solution begins by solving the natural convective 

boundary layer problem for a vertical circular pin with guessed 

temperature for all E. The dimensionless heat transfer coef- 

ficients h* determined from this solution in accordance with 

equation (5-1-23) are then used as input to the pin heat con- 

duction equation (5-1-19). With Nc prescribed, the differential 

equation (5-1-19) is then solved to yield 0f. To begin the next 

cycle of the iterative procedure, the just-determined 0f is 

imposed as the thermal boundary condition for the natural con- 

vective boundary layer problem; the solution to which yields a 

new h* distribution which is used as input to the pin heat con- 

duction equation. This procedure of alternately solving the 

boundary layer problem and pin heat conduction problem was 

continued until convergence was attained. 

The two systems of partial differential equations (5-1-11), 

(5-1-12) are coupled. In the present study, these equations 
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were solved by an accurate implicit finite-difference technique 

[19] . To begin with, the partial differential equations (5- 

1-11), (5-1-12) are first converted into system of first order 

equations which are then expressed in finite-difference form by 

approximating the functions and their first derivatives in terms 

of centered difference and averaged at midpoints of the net 

segments in the (&, ri) coordinates. The resulting nonlinear 

finite difference equations are then solved by Newton's iter- 

ative method. 

The boundary layer solutions were obtained by a marching 

procedure, starting at the leading edge (E=O) and the grids 

were divided into 45 points in the streamwise direction. There 

was a denser concentration of points near the leading edge to 

accommodate the initial rapid growth of the boundary layer. In 

order to write the system in terms of a first order system of 

partial differential equations, new dependent variables U 

VV (E, n) andw (E, rj) , are introduced so that Equations (5-1-11) , 

(5-1-12) can be written as 

f' =ü 

U, =v 

6' =w 

(1#T, 9p4) ((1+a16+a262)v)'-2 (ü) 2+ 6 

+ (aý"` (1+a16+a202)+3f)V=4ý (UL-Val) 

Pr-l (l+arjýk) w' + (Pr: l XE 
`+3f) 

w +3NPr 

(5-1-24) 

(5-1-25) 

(5-1-26) 

(5-1-27) 

{ U+an 4) (w (e+cT) 3)t+A °w (e+cT) 3 )=4C (de -J ) (5-1-28) aE ac 
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Consider next the net rectangle shown in figure (5-1-2). and 

denote the net points by 

g0=0, ýn=ýn-+kn, n=1,2,3,... N 

no=0, nj=nj-l+hj, j=1,2,3,... J (5-1-29) 

nJ_nC 

Approximate the quanities (f, ü, v, g, W) at points (En, r ) of the 

net by net functions denoted by 
J 

(fn, uJn, vJn, ] on, i ten) employ the 

notation, for points and quantities midway between net points 

and for any net function mý; 

ýn-/-2 (En+ýn-1)' nj-ý-2 ýnj+nj-1) 

m]- _ý (m]+m7-1) , m]-/_2 (m? +mý-1} 

(5-1-30) 

The difference equations that are to approximate (5-1-24)- 

(5-1-28) are now easily formulated by considering one mesh 

rectangles as in figure (5-1-2). Equations (5-1-24)-(5-1-28) 

are approximated by centered difference quotients and average 

about the midpoint (ýn, nj_/) of the segment P2P4, with the 

following results: 

(fý - fý_1)hýl = Ui (5-1-31) 

1)hý1 = jn (5-1-32) 

(e - Aý_1)h-1 = w7_ (5-1-33) Jh 

Similarly (5-1-27) and (5-1-28) are approximated by contering 

on the midpoint (En_ý, pj _2) 
of the rectangle P1P2P3P4, which 

gives 
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n 
(1+ar1ý_ n)4 M 

-j 
> >-1) (1+a18n+a2 (82) n 

h. 
J 

+ (alwn_/+2a2en_/wn_/)vý_ }+ a(hn)` (1+a16ý_/+a2(e2)ý_/)vý_/ 

+ (3+an) (fv) ý_ 
- (2+an) (. 2)n_ 2-+6ý_/ + an (vný-/ fý_/ 

fý_/ vý_/i = Rý_/ (5-1-34) 

nn 
l, _1 

w. -w. 3- 
(l+ar1ý_ (fin) `)Pry ( -1)+PrýA (6 n) °wý_/+(3+an) (f w) 

h. 
7 

w. -w 
3P. r N (1+1ýnj_ ( n) °) ((6ý_ +CT) 3( ---J-1)n h. 

J 

+3(6 n +C )2 (w2)n_ )+x (gn)3° (6n_ +C )3 +a (- (ü6)n-un-ln 
3-h T3k 3/ Tn 

+, nen-l+wn-1 fn_wnfn-1), _ Yn-1 (5-1-35) 

where 

an=4 n-h / kn (5-1-36) 

Rn-1 =a ((fv)n-1 (U2)n-1)-{ ((1+Xii )(fin-lik) 

((IV-_-i-1) n-1(1+a 6n-1+a (e 2) n-1+ (a wn-1+2a gn-lwn-1) hi 1 j-ý 2 ]-ý 1 7-ý 2 ]-ý j-' 

vý 
1 

-2 (ßi2 ý_ +B+3 (fv) ý_ +a (fin-1) (1+ 
_2 

al 
]_L+a2 (82)ý_L)} (5-1-37) 

Yß_1 = an((wf)ý_/-(Li6)ý_1)- Pr-l (1+X 
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W_ ̀j-1)n-1+Pr°-i 
X (, n-1) 4 

W]_1+3 (fw) 
h. ° 

3 

w. -W. 
+3 

4--- { (1+ý ( n-1} ä) ((6n-1+C )3(7 J-1) n-1 
Pr N nj- 'Th. 

3 

+3 (6n 
_ 

1+C )2 (W2)n-1)+ý (fin-1)ý` (6n1+C )3} (5-1-38) 
T 3-h T 

Equations (5-1-31)-(5-1-35) are imposed for j=1,2,3... J. The 

boundary conditions (5-1-13) can be written as 

fö=o, eö=eW, . =o 

üJ = 0,6 J=0 
(5-1-39) 

If it. is assumed that (fn-1, U n-1, n-1, en-1P wn-1) are kncwn 
7J77J 

for O<j<J, then (5-1-31)-(5-1-. 35) and boundary conditions 

(5-1-39) yield an implicit nonlinear algebraic system of 5J+5 

equations in as many unknown (fn, GJn, vJn, e7 ng 
wj). The system 

can be solved very efficiently by using Newton's method. The 

important observations are that the linearized equations, 

obtained by applying Newton's method to (5-1-3l)-(. 5-1-35) and 

(5-1-39) form a block tridiagonal system (with 5x5 blocks) 

and that system can be solved very efficiently by the procedure 

discussed in refs. [19 1. 

For most laminar flows the transformed boundary layer 

thickness is essentially constant. However, in flows in which 

the transverse-curvature effect is important, the transformed 

boundary layer thickness (n. 
0) varies with increasing &. To 
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maintain the computation accuracy, it is necessary to use a 

variable grid, rather than a uniform grid, normal to the flow. 

The net in the n-direction reported here is a geometric 

progression having the properity that the ratio of lengths of any 

two adjacent itervals is a constant; that is hj=M hj_1. The 

distance to the j-th line is given by the following formula: 

Mi-1 
nj = hl 

M -1 , j=1,2 ,3,... J, M>1 (5-1-40) 

There are two parameters: h, , the length of the first £n-step, 

and M, the ratio of two successive steps. The total number of 

points J can calculated by the following formula: 

J= 
In(1+(M-1)rj 

00/hl) (5-1-41) 
In M 

In the calculations we select the parameters hi and M and 

calculate the no. Here they were taken as 0.01 and 1.1, res- 

pectively. 

The pin conduction equation was solved by using the direct 

inverse matrix method. The pin conduction equation was also 

divided into 45 grid points and expressed in finite defference 

form. To ensure high accuracy, a nonuniform grid points were 

employed. For small ý, a finer ý subdivision was also needed 

for the heat conduction equation. 

Results and Discussion 

Numerical results of the overall rate of heat transfer Q 

from the pin can be obtained from the heat conducted from the 
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wall into the pin base at ý =1 or from the integrating heat 

convection over the pin surface. The corresponding Q values 

of these two methods are found to be in agreement. They may 

be expressed as 

or 

Q= kfirro2 
dT 

dxf x=L 
(5-1-42) 

Q= 2rrofL q dx (5-1-43) 
0 

in dimensionless form 

or 

Q 
734 

27r def (5-1-44) 
= rö (To-Tco) GrL/ Ncd1 

Q 
,= 

27r! 
1 -1 

(1 +4 
(3NGTý) än dZ 

K (T -T T 
Co 

) GrL00 

at n=0 (5-1-45) 

The results of the overall rate of heat transfer Q from the pin 

are presented as a function of the conjugated convection-conduction 

parameter Nc for two values of the transverse curvature parameter 

X in Fig. (5-1-3). Because ro and GrL. appear in the ordinate, 

obscissa and transverse curvature parameter groups, the down- 

sloping trend of the curve indicates that, as expected, the pin 

heat transfer increases as the pin conductance kf increases. 

The ordinate and obscissa coordinates are replaced by the 

group 
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and 

Q /a =Q (5-1-46) 
rö (To-Tco) GrLc4 2r2-L k (To-Too) 

2k L GrL k GrL 

kfr0 /a = 
, 77 k f 

Since both groups are independent of r0, it follows that the 

actual total heat transfer is a function of the transverse 

curvature. It is observed from Fig. (5-1-3) that the smaller 

transverse curvature of the pin has the smaller total heat 

transfer rate. The viscosity variation parameters al, a2 are 

calculated by the procedure of curve fitting which gives a1=3, 

a2=2 for the case T°=900°K, Tco=300°k and Pry 0.7. For a heated 

vertical pin, the viscosity of fluid near the pin surface is 

higher than the viscosity of surrounding. In consequance it is 

found that the overall heat transfer rate of the pin in the 

fluid with temperature dependent viscosity is lower than that 

of the pin in the fluid with constant viscosity V. Fig. (5-1-3) 

also shows that the overall heat transfer rate of the pin with 

radiative effect is higher than that of the pin without radiative 

effect. 

Fig. (5-1-4)-(5-1-5) illustrate, respectively, the distri- 

bution of the modified local heat transfer coefficient along the 

pin surface as a function of Nc for fixed X=l and 2. The modifi- 

ed local heat transfer coefficient can be written as in dimen- 

sionless form 
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h* _1+4 
(6+CT) 3ý Do /8 at r)= 0 (5-1-48) 

ý4 3N an f 

The increasing values of Nc are indicative of smaller pin con- 

ductance. It is shown from Fig. (5-l--4)-(5--l-5) that the larger 

variations of the response of the modified local heat transfer 

coefficient increase streamwise variations of the pin temperature 

for a given transverse curvature of cylinder. The distribution 

of the modified local heat transfer coefficient first decreases 

to some minimum; and then increases steadily with C for larger 

value of Nc. The phenomenon of this behavior is attributed to 

enhanced buoyancy and radiative heat flux associated with an 

increase in the wall-to--fluid temperature difference along the 

streamise direction. Similarly, as the transverse curvature 

of the pin increase, the local heat transfer coefficient also 

increases. 

Distributions of the dimensionless local heat flux at the 

pin surface are shown in Fig. (5-1-6) - (5-1-7) as a function of 

Nc for fixed transverse parameters. The local heat flux can be 

taken as 

qL 
_ 

--14 (1 + 6+CT 3) ae 
at n= 0 (5-1-49) 

k (To-Too) GrLOD `rC4 3N 3n 

Fig. (5-1-6)-(5-1-7) show that most of the local heat fluxes at 

the pin surface increase as Nc decreases for a given transverse 

curvature. 

From Fig. (5-1-3)-(5-1-7), it is found that the local heat 

transfer coefficient and local heat flux of the pin with radi- 
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ative effect are higher than those of the pin without radiative 

effect. Fig. (5-1-3)-(5-1-7) also show that the local heat 

transfer coefficient and local heat flux of the pin in the fluid 

with temperature dependent viscosity are lower than those of 

the pin in the fluid with constant viscosity v. 0. 
Representative results for the pin temperature distribution 

are presented in Fig. (5-1-8)-(5-1-9) for two different transverse 

curvature case. Fig. (5-1-8)-(5-1-9) confirm the assertions 

that larger values fo Nc give rise to larger pin temperature 

variations. From the figures it can be seen that the tempera- 

ture distribution of the pin with radiative effect is lower than 

that of the pin without radiative effect. The figures also show 

that the temperature distribution of the pin in the fluid with 

temperature dependent viscosity is higher than that of the pin 

in the fluid with constant viscosity v0. 

Remark 

The present analysis of the laminar free convective flow 

with radiative effect over a vertical cylinder pin has been 

studied. The modified local heat transfer coefficient along 

the pin is simultaneously solved for the laminar free convective 

boundary layer equations of the fluid and the heat conduction 

equation of the pin. 

An efficient implicit finite difference technique is employ- 

ed. The results showed that the modified local heat transfer 

coefficient along the streamwise direction does not monotonically 
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decrease but decreases at first to a minimum and then increases. 

This phenomenon is more obvious when the variations of the pin 

temperature are more nonuniform. 
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V-2 Radiative Effect on The Vertical Circular Pin In Conjugated 

Forced Convection-Conduction Flow With Temperature Dependent 

Viscosity 

In this section, a conjugated convection-radiation-conduc- 

tion analysis has been made for a vertical circular pin which 

exchanges heat with its fluid environment by forced convection 

and radiation. The fluid with temperature dependent viscosity 

is considered. 

Numerical results for a vertical circular pin in the gas 

having Pry 0.7 with temperature dependent viscosity are per- 

formed for the following case: heated wall with T°=900°K and 

T =300°K for Nc=0.25,0.75,2 and 3. 

Analysis 

Consider a vertical circular pin which is extended from 

a wall at temperature T0 and situated in a Newtonian flow field 

with undisturbed oncoming free stream velocity uOO and temper- 

ature To,. The coordinates parallel and normal to the pin 

surface are taken to be x and r, respectively. The coordinates 

system is in Fig. (5-2-1). 

Under the assumption of constant Cp, k, p along with the 

application of the boundary layer approximations and negligible 

viscous dissipation, motion pressure, and volumetric energy 

generation, the equations expressing conservation of mass, 

momentum and energy for the physical model are, respectively, 
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as follows: 

(ru) +a (rv) = o (5-2-1) ax ar 

u äX + °är =r r cri är) (5-2-2) a 

u äX + "är = r a( r (5-2-3) (r är) - 
l 

r a pc r P ar 

where qr is the net radiative heat flux and the other standard 

symbols are defined in the nomenclature. The system of equations 

(5-2-1)-(5-2-3) is subject to the following conditions: 

u=v=0, T=TW(x), at r=r 

u=uco , T=Tco , as r; co (5-2-4) 

u=ums , T=T00 Op at x=0, r>r 

Equations (5-2-1)-(5-2-3) and boundary conditions (5-2-4) do 

not admit a similarity solution. The nonsimilarity arises from 

the surface curvature of the cylinder pin and the surface tem- 

perature, Tw(x), which is undetermined. The pseudo-similarity 

variable n and the dimensionless streamwise coordinate ý are 

introduced as follows: 

r2 - ro 2 
2r L (ReLýý (5-2-5) 

0 

where L is the length of the cylinder pin and ReLco is the Rey- 

nolds number evaluated at the temperature of surrounding, ReLoo 

= uCo L/v... 

The dimensionless stream function f(&, n) and the dimen- 

sionless temperature o(ý, r) are defined, respectively, by 
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f(. n) _ ý(x. r) /[ r0 (uCO L vCo )/1 (5-2-6) 

e (ý, n) = (T-TOO) / (T - Tco) (5-2-7) 

where the stream function ý(x, r) satisfies the continuity 

equation (5-2-1) with 

ru = aip/ar, rv = -ag/ax (5-2-8) 

The kinematic viscosity, v, is assumed to very with 

temperature according to a general functional form v=vom (8), 

where v(, o 
is the absolute viscosity at the temperature of surr- 

ounding, T« , and therefore w(O)=l. The first two terms in a 

Taylor series expansion of W(8) about 6=0 are taken as 

w(e) =1+ (a )6+ (2, d-- )e2 
vJao 

10=o 

=1+ al. 9 + a202 (5-2-9) 

where. ai, a2 are the viscosity variation parameters. 

By introducing equations (5-2-5)-(5-2-9) into equations (5-2-2) 

-(5-2-4) and invoking the optically thick limit approximation 

for the net radiative heat flus qr, 

i. e. 4a aT 
q- 3ß* ar (5-2-10) 

the momentum and energy equations becomes: 

[ (1+aie +a2e2) (1+XrIC ý)f+ 
2ff" _ (f' "2- f ) (5-2--11) 

Pr 
1 (l+arý )e, f+ lfe I +[ 

4 (e+CT) 3e' (l+xT, I" 
co 

[]2 3Pr j 

= (f' äae-eý 
af} 

ý äý (5-2-12) 
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6= 6 
W, at n=0 

0, as r1 -ý (5-2-13) 

In the foregoing equations, the primes stand for partial deri- 

vations with respect to Ti , Pry is the Prandtl number evaluated 

at the temperature of surrounding, 

46 (T*-T )3 CT = Tom/ (T 
0 -Tý) 

o 

a is the Stefan-Boltzmann constant, ß*' is the extiction coef- 

ficient and A is the transverse curvature parameter defined as 

2L 

r0ReL 
(5-2-14) 

Assuming a one-dimensional model, the thin pin energy 

equation allows the temperature distribution along the longi- 

tudinal direction to be written as 

i dTf kfr x) iT f-Tý) 
fo 

(5-2-15) 

where kf is the pin thermal conductivity, Tf is the pin temp- 

erature, and h*(x) is the modified local heat transfer coeffi- 

cient with radiative effect which can be regarded as known from 

the current boundary layer solution. The associated boundary 

conditions are: 

Tf=To , at x=L 
(5-2-16) 

dxf =0 at x=0 

Of particular interest is the thermal coupling between the 
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pin and the thermal boundary layer. The basic coupling is 

expressed by the requirement that the pin and fluid temperat-. 

ures and local heat flux be continuous at the pin-fluid inter- 

face, at all x-positions. 

Tf (X)=T 
w 

(x) 

aT at r=r , O< x. <L (5-2-17) 
h* (Tf-Tco) =-k- + qr o 

Equation (5-2-15) was recast in dimensionless form by the substit- 

utions 

E= X/L ,6f= (T f-Too) / (To-Tc) (5-2-18) 

and combined with equations (5-2-16)-(5-2-17), so that 

d26 f 
dý2 Nch*O f 

(5-2-19) 

" def = 0, at Z=0 (5-2-20) 8f = 1, at 9=1 

and 6w = Of , h* = kReL- h*/L , at rr= 0 (5-2-21) 

where Nc is the conjugated convection-conduction parameter 

Nc k2rL ReLý (5-2-22) 
fo 

A The quantity h* is a dimensionless form of the local forced 

convective heat transfer coefficient with radiative effect. 

The value of h* can be obtained by substituting equations (5-2 

-5), (5-2-10) and (5-2-18) into equation (5-2-17) 

4(6+C )3 
h* -(1+ 3N 

T ). -/(6f 
/), 

at tý =0 (5-2-23) 

-101- 



Numerical Procedure 

The solution begins by solving the forced convective boun- 

dary layer problem for a vertical cylinder pin with guessed 

temperature along the pin surface. The dimensionless heat 

transfer coefficient h* determined from equation (5-2-23) are 

then used as input to the pin heat conduction equation (5-2-19). 

With Nc prescribed, the differential equation (5-2-19) is then 

solved to yield 8f. To begin the next cycle of the iterative 

procedure, the just-determined of is imposed as the thermal 

boundary condition for the forced convective boundary layer 

equations of Newtonian fluid the solution to which is used as 

input to the pin heat conduction equation. This procedure of 

alternatively solving the boundary layer problem and the pin 

conduction problem was continued until convergence was attained. 

The two systems of partial differential equations (5-2-11) 

-(5-2-12) are coupled. In the present study, these equations 

were solved by an accurate implicit finite-difference technique 

due to Cebeci and Bradshaw [19 ]. To begin with, the partial 

differential equations (5-2-11)-(5-2-12) are first converted 

into a system of first order equations which are then expressed 

in finite-difference form by approximating the functions and 

their first derivatives in terms of centered difference and 

averaged at midpoints of the net segment in the (ý, n) coordi- 

nates. The resulting nonlinear finite-difference equations are 

then solved by Newton's iterative method. 
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The boundary layer solutions were obtained by a marching 

procedure, starting at the leading edge and the grids were 

divided into 45 points in the streamwise direction. There was 

a denser concentration of points near the leading edge to 

accommodate the initial rapid growth of the boundary layer. 

Owing to the transverse curvature effect, the transformed 

boundary layer thickness (nw) varies with A. It is therefore 

necessary to use a variable grid, rather a uniform grid, normal 

to the flow. 

The conduction equation was solved by using the direct 

inverse matrix method. The pin equation was also divided into 

45 grid points and expressed in finite-difference form. To 

ensure high accuracy, a nonuniform grid points were employed. 

For small ý, a finer ý subdivision was needed for the boundary 

layer solution. 

Results and Discussion 

Numerical results of the overall rate of heat transfer 

were obtained from the wall into the pin base at ý =1 or from 

the integrating heat transfer over the pin surface. The corr- 

esponding overall heat transfer rate of these two methods are 

found to be in agreement. They may be expressed in dimensionless 

form as: 

Q_1 ae 4(e+CT)3 
- 27rt (-) (1+ )/9 dz (5-2-24) 

rok (To-Tý) ReLý ° ark 3N 

Q 2ir d6f 
(5-2-25) 

r0k (To-Tco) Re Ne z=1 
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The results of the overall rate of heat transfer from the pin 

are presented as a function of the conjugated convection- 

conduction parameter Nc. The decrease of Nc indicates short 

pin length, L, great pin conductances, kfr0 and lower conve- 

ctive coefficient (low k and ReLO3). 

The ordinate and abscissa coordinates are replaced by 

the groups 

Q /A =Q (5-2-26) 
r0k (To-T. ) ReLco 2Lk (To-Tco) 

and 

2kLReLý 

kr/A= kReLý /kf 
f0 

(5-2-27) 

Since both groups are independent of r0, it follows that the 

actual heat transfer is a function of the transverse curvature. 

In this figure, we may find that the smaller radius of the pin 

has the greater total heat transfer rate. Fig. (5-2-2) illustrates 

that the overall heat transfer rate of the pin with radiative 

effect is always higher than that without radiative effect. 

Fig. (5-2-2) also shows that the overall heat transfer rate of 

the heated pin in the fluid (Pro, =O. 7) with constant viscosity 

(v, 
O) 

is higher than that in the fluid with temperature dependent 

viscosity when the other parameters are fixed. 

Fig. (5-2-3)-(5-2-4) illustrate the distributions of the 

local forced convective heat transfer coefficient with radiative 

effect along the pin surface as a function of Nc for two values 
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of the transverse curvature parameter A. The modified local 

heat transfer coefficient can be written in dimensionless form, 

as follows 

h*L 4 (8 +CT) 3 
a8i 

kRe 
-[1 + 

3N 
] 

n/(8 f), at q=0 (5-2-28) 

Leo 

It is found that the larger variations of the response of the 

modified local heat transfer coefficient h* give rise to larger 

streamwise variations of the pin temperature. In this figure, it 

is 'found that the h* decreases to some minimum, and then increases 

steadily with ý; the phenomenon of this behavior is attributed 

to an enhanced radiative heat flux associated with an increase 

in the wall-to-fluid temperature difference along the streamwise 

direction. 

The variations of the dimensionless local heat flux at the 

pin surface are presented in Fig. (5-2-5)-(5-2-6) for different 

Nc and fixed transverse curvature parameter. The local heat 

flux ca be taken as 

qL 
4(6+C 

T)3 a8 
=-C i+ 3N 

1 Win/ , atn =0 (5-2-29) 
k (To-T. ) ReLco 

The heat fluxes for lower Nc are higher near the tip, but 

smaller near the base than those for higher Nc. Those figures 

also show that the total heat transfer rate from the pin surface 

is increased as Nc decreased, which agrees with the predictions 

in Fig. (5-2-2) 
. 

It is observed from Fig. (5-2-3)-(5-2-6) that the local heat 
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transfer coefficient and local heat flux with radiative effect 

are always higher than those without radiative effect. Fig. 

(5-2-3)-(5-2-6) illustrate that the modified local heat transfer 

coefficient and local heat flux of the heated pin in the fluid 

with constant viscosity (vom) are higher than those in the fluid 

with temperature dependent viscosity. Fig. (5-2-"3) - (5-2-6) also 

show that the local heat transfer coefficient and local heat 

flux from the pin are increased as A increased. 

Representative results for the pin temperature distribu- 

tions are presented in Fig. (5-2-7)-(5-2-8). In these figures, 

it is shown that the larger values of P1o and a\give rise to 

larger pin temperature variations, and the pin temperature 

without radiative effect is higher than that with radiative 

effect. These figures also show that the temperature distribution 

of the heated pin in the fluid with constant viscosity (vc) give 

a larger variation in the streamwise direction than that of 

the same pin in the fluid with temperature dependent viscosity 

when the other parameters are fixed. 
4 

Remark 

The analysis of present paper has yielded the results of 

the heated vertical circular pin in forced thermal boundary 

layer flow with temperature dependent viscosity. The viscosity 

varistion parameters ail a2 are determined by the procedure of 

curve-fitting technique for the case of heates wall with To= 

900°K and TOO=300°K. The radiative effect on the boundary layer 
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problem is also considered and the optically thick limit approxi- 

mation for the radiative part is assumed. In order to solve 

the simultaneously the coupled pin conduction equation and the 

fluid thermal boundary layer equation, a very simple and efficient 

"Box" scheme is employed here. The results show that the local 

heat transfer coefficient along the streamwise direction do not 

monotonically decrease but decreases at first to a minimum and 

then increases. 
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V-3 Radiative Effect on The Vertical Circular Pin in Conjugated 

Mixed Convection-Conduction Flow With Temperature Dependent 

Viscosity 

The object of this section is concerned with the vertical 

circular pin which transfer heat to a surrounding fluid by mixed 

convection and radiation. The present paper is an extension to 

the work done in [ 38] and [ 43 ]. Besides, the Newtonian fluid 

adjacent to the pin is extended to include the variation of the 

viscosity with temperature. 

The conservation equation of the laminar boundary layer 

and the energy equation of the pin are first transformed into 

a nondimensional form and their solutions are then simultane- 

ously solved by an efficient finite difference scheme. Numeri- 

cal results for a vertical pin in the gas having Pry 0.7 with 

temperature dependent viscosity are performed for the following 

case: heated wall with To=9000K and TOO=3000K over a wide range 

of conjugated convection-conduction parameter Nc=0.25,0.75,2 

and 3, transverse curvature. parameter A =1 and 2 and buoyancy 

force parameter S =0,1 and 3. 

Analysis 

Conside a vertical circular pin which is extended from a 

wall at temperature T0 and situated in a Newtonian flow field 

with undisturbed oncoming free stream velocity uQO and temper- 

ature Tc* . The coordinates parallel and normal to the pin surface 

are taken to be x and r, respectively. The coordinates system 

-115- 



is in Fig. (5-3-1) 

Under the assumption of constant Cp, a, p and negligible 

viscous dissipation, motion pressure and volumetric energy 

generation along with the application of the boundary layer 

approximation and Boussinesq approximation, the equations 

expressing conservation of mass, momentum and energy for the 

physical model are, respectively, as follows: 

a (ru) 
+a 

(rv) 
ax ar 

(5-3-1) 

ux+ Dr rr (rv är) + gß (T-T00 (5-3-2) 

aT 
+ 

aT aa 8T 
-18 

(r qr) 
u ax vrr ýr(r fir) pCpr ar 

C5-3-3) 

where qr is the net radiative heat flux and the other standard 

symbols are defined in the nomenclature. The system of equations 

(5-3-1)-(5-3-3) is subject to the following conditions: 

u=v=0, T= Tw(x), at r= ro 

"U, T= To as r -º CO (5-3-4) 

U= uc T= Tý at x=0, r> ro 

Equations (5-3-1)-(5-3-3) and boundary conditions (5-3-4) do not 

admit a similarity solution. The nonsimilarity arises from the 

surface curvature of the cylinder pin and the surface temperature 

TW(x), which is undetermined. The pseudo-similarity variable 

n and the dimensionless streamwise coordinate E are introduc- 

ed as follows: 

-116- 



r2 " r2 

= x/L ,n- 2r L0 
(ReL- 

0 

where L is the length of the cylinder pin and ReL- is the Rey- 

nolds number evaluated at the temperature of surrounding, ReLc 

= uCo L/vco . 

The dimensionless stream function f(ý, n) and the dimen- 

sionless temperature 6(E, n) are defined, respectively, by 

f TO = ýy (x, r)/ C ro (uooLývo, )2] (5-3-6) 

8 n) = (T-Too) / (To-TOD ) (5-3-7) 

where the stream function (x, r) satisfies the continuity 

(5-3-5) 

equation (5-3-1) with 

ru = a)/a1 , rv = -aý/ax (5-3-8) 

The kinematic viscosity, v , is assumed to vary with temper- 

ature according to a general functional form v= vcOW (6), where 

vco is the absolute viscosity at the temperature of surrcanding, 

Tco , and therefore W(O)=l. The first two terms in a Taylor 

series expansion of W(A) about 6=0 are taken as 
2 

w(e) =1+ äeI e+ 21 
äe2 2 

e=oa=o 

= 1+a 10 + a262 (5-3-9) 

where al, a2 are the viscosity variation parameters. 

By introducing equations (5-3-5)-(5-3-9) into equations (5-3-2) 

-(5-3-4) and invoking the optically thick limit approximation 

for the net radiative heat flux qr, 

4Q aT4 
q 3ß* ar 
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the momentum and energy equations become: 

[ (1+a16+a202) (1+XnEll )f")' +2 ff" + ESZO 

(f' äf 
- f"äff) (5-3-11) 

T Pry 1[ (l+an 
Z) 

+ 
2f6' 

+ 3Pr N 
00 

_ý (f, a6 
-eý 

of ) (5-3-12) 

f= f' = Of 0= 0W at. Ti =0 
(5-3-13) 

f'=1,0 =0 as n -ý 

In the foregoing equations, the primes stand for partial deri 

vatives with respect to n, Pry is the Prandtl number evaluated 

at the temperature of surrounding, 

N=4 
c7 

ß-T 
)3'C= T/: (T-T iT 

), 
o 00 

T co 0 co 

a is the Stefan-Boltzmann constant, $* is the extinction coef- 

]) ficient, A is the transverse curvature parameter (A =2L/[r0ReLoo 

and 0 is the buoyancy force parameter defined as 

(5-3-14) = GrL- /Re 2 
Lco 

in which GrLco is the Grashof number evaluated at the tempera- 

2. ture of surrounding, GrLoci = gß(To-Tco )L3 /v00 

Assuming a one-diensional model, the thin pin energy 

equation allows the temperature distribution along the longi- 

tudinal direction to be written as 

d2T 2h* (x) 

dX2 kr (Tf-T. ) (5-3-15) 
f0 
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where kf is the pin thermal conductivity, Tf is the pin temper- 

ature, and h*(x) is the modified local heat transfer coefficient 

with radiative effect which can be regarded as known from the 

current boundary layer solution. The associated boundary con- 

ditions are: 

Tf = To , at x=L (5-3-16) 

dTf 

dx 0 at x=0 

Of particular interest is the thermal coupling between the 

pin and the thermal boundary layer. The basic coupling is 

expressed by the requirement that the pin and fluid temperatures 

and local heat flux be continuous at the pin-fluid interface, 

at all x-positions. 

tf(x) = T(x) 

aT t at r=r , O<x<L 
h* (T f-Tco) -k Drw + qr 1°. 

(5-3-17) 

Equation (5-3-15) was recast in dimensionless form by the 

substitutions 

ý= X/L ,8f= (T f-"T() 
/ (TO-Too) (5-3-18) 

and combined with equations (5-3-16)-(5-3-17), so that 

d28f .. 
ä= Nch*ef (5-3-19) 

f=1, at =1, df= Of at =0 (5-3-20) 

and 6w = of , h* = kReL- h*/L, at rý =0 (5-3-21) 

where Nc is the conjugated convection-conduction parameter 
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2kL 
ReL Ne kfro 

co 
(5-3-22) 

The quantity h* is a dimensionless form of the local mixed con- 

vective heat transfer coefficient with radiative effect. The 

value of h* can be obtained by substituting equations (5-3-5) 

(5-3-10) and (5-3-18) into equation (5-3-17). 

A 4(0+C )3 
h* _- (1+ 3N 

T) In /(Of 2) 
, at n= 0 (5-3-23) 

Numerical Procedure 

The solution begins by solving the mixed convective boundary 

layer problem for a vertical cylinder pin with guessed temper- 

ature along the pin surface. The dimensionless heat transfer 
A 

coefficient h* determined from equation (5-3-23) are than used 

as input to the pin heat conduction equation (5-3-19). With 

Nc prescribed, the differential equation (5-3-19) is then solved 

to yield 6f. To. begin the next cycle of the iterative procedure, 

the just--determined 6f is imposed as the thermal boundary con- 

dition for the mixed convective boundary layer equations of 

Newtonian fluid; the solution to which is used as input to the 

pin heat conduction equation. This procedure of alternatively 

solving the boundary layer problem and the pin conduction problem 

was continued until convergence was attained. 

The two systems of partial differential equations (5-3-11) 

-(5-3-12) are coupled. In the present study, these equations 

were solved by an accurate implicit finite-difference technique 

0- 
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due to Cebeci and Bradshaw [19 1. To begin with, the partial 

differential equations (5-3-1l)-(5-3-12) are first converted 

into a system of first order equations which are then expressed 

in finite-difference form with the order of (AC) 2 and (Ark) 2 by 

approximating the functions and their first derivatives in 

terms of centered difference and averaged at midpoints of the 

net segment in the (E, n) coordinates. The resulting nonlinear 

finite-difference equations are then solved by Newton's iterative 

method. 

The boundary layer solutions were obtained by a marching 

procedure, starting at the leading edge and the grids were 

divided into 45 points in the streamwise direction and 61 grid 

points in the cross-stream direction. There was a denser con- 

centration of points near the leading edge to accommodate the 

initial rapid growth of the boundary layer. Owing to the tran- 

sverse curvature effect, the transformed boundary layer thickness 

(nm) varies with A. It is therefore necessary to use a vari- 

able grid, rather a uniform grid, normal to the flow. 

The conduction equation was solved by using the direct 

inverse matrix method. The pin equation was also divided into 

45 grid points and expressed in finite-difference form. To 

ensure high accuracy, a nonuniform grid points were employed. 

For small E, a finer & subdivision was needed for the boundary 

layer solution. 

-121- 



Results and Discussion 

Numerical results of the overall rate of heat transfer 

were obtained from the wall into the pin base at C =1 or from 

the integrating heat transfer over the pin surface. The cor- 

responding overall heat transfer rate of these two methods are 

found to be in agreement. They may be expressed in dimension- 

less form as: 

Q1 ae 
4 (e+CT) 3 

= 27T f0 (-an) C 1+ 
3N 

]/C. dC (5-3-24) 
rö k (To-Tý) ReLoo 

Q 27T d Of 
(5-3-25) 

r0k (To-T. 
0) 

ReL- Ne dE 

ý=1 

The results of the overall rate of heat transfer from the pin 

are presented as a function of the conjugated convection- 

conduation parameter Nc. The decrease of Nc indicates short 

pin length, L. great pin conductances, kfr0 and lower convec- 

tive coefficient (low k and ReLoo ). 

The ordinate and abscissa coordinates are replaced by 

the groups. 

Q/ a= Q (5-3-26) 
r0k (To-Tco) ReLc 2 2Lk (To-Tco) 

and 

2kLReL-/ 
/A = kReLoo /kf 

"k fro 
(5-3-27) 
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Since both groups are independent of r0, it follows that the 

actual total heat transfer is a function of the transverse 

curvature. It is observed from Fig. (5-3-3) that an increasing 

. gives rise to a larger value of overall heat transfer rate. 

As the viscosity of fluid is temperature dependent, the vi- 

scosity variation parameters al, a2 can be calculated by the 

procedure of curve fitting and obtain the results that ai=3, 

a2=2 for the case of T°=900°K, T =300°K and Pry 0.7. For a 

heated pin, the viscosity of fluid near the pin surface is 

higher than that of surrounding. So we may find that the total 

heat transfer rate of the pin in the fluid with temperature 

dependent viscosity is lower than that in the fluid with constant 

viscosity (vc). Fig. (5-3-2)-(5-3-3) also show that an increase 

in 0 or a decrease in N yields an increasing total heat transfer 

rate Q when the other parameters are fixed. The case with N 

corresponds to nonradiating flow, and N=l to reasonably strong 

radiation effects. 

Fig. (5-3-2)-(5-3-5) illustrate, respectively, the distri- 

bution of the modified local heat transfer coefficient along the 

pin surface as a function of Nc, al, a2 and 0 for fixed tran- 

sverse curvature parameters of A =1 and 2. The modified local 

heat transfer coefficient can be written, in dimensionless form 

as 

h*L 4(6+C 
T 

)3 ae 
kRe =- 1+C 3N an (e f 

2) at rj =0 (5-3-28) 
Lý 

It is found that the larger variations of the response of the 
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A 
modified local heat transfer coefficient h* give rise to larger 

streamwise variations of the pin surface temperature. In these 

two figures, it is found that the local heat transfer coef- 

ficient do not decrease monotonically in the flow direction, as 

is usual. Rather, the coefficient decreases at first, attains 

a minimum, and then increases with increasing downstream distance 

This behavior is attributed to an enhanced buoyancy and radi- 

ative heat flux resulting from an increase in the wall-to-fluid 

temperature difference along the stream direction. 

The variations of the dimensionless local heat flux at the 

pin surface are presented in Fig. (5-3-6) - (5-3-7) for different 

Nc, al., a2 , and fixed transverse curvature parameter X. The 

local heat flux can be expressed, in dimensionless form, as 

qL 4 (e+CT) 3 
ae / 

(TO-Too) ReLý/ 
=-C i+ 3N ] Wi/ , at n=0 (5-3-29) 

k (TO-Too) 

Fig. (5-3-6)-(5-3-7) show that for a given transverse curvature 

the total heat transfer rate from the pin surface is increased as 

Nc decreased, which agrees with the prediction in Fig. (5-3-2)-(5-3-3) 

It is shown in Fig. (5-3-4)-(5-3-7) that the modified local 

heat transfer coefficient and local heat flux increase with 

increasing buoyancy force parameter 1 or transverse curvature 

parameter A when the other parameters are fixed. Fig. (5-3-4)-. 

(5-3-7) also illustrate that the modified local heat transfer 

coefficient and local heat flux of the heated pin in the fluid 

with temperature dependent viscosity are lower than those in 

the fluid with constant fluid viscosity of surrounding. ` 
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Representative results for the pin temperature distribu- 

tion are presented in Fig. (5-3-8)-(5-3-9) for two different 

transverse curvature cases. Each case contains the pin temper- 

ature distribution as a function of Nc, al, a2 and c. Fig. 

(5-3-8)-(5-3-9) shown the expected trend whereby the pin tem- 

perature decreases monotonically from the root to the tip. 

The two figures also confirms the assertions that larger values 

of Nc, X and Q give rise to larger pin timperature varitations. 

It is observed from Fig. (5-3-8) - (5-3-9) that the surface tem- 

perature of heated pin in the fluid with constant viscosity 

(vc, ) give a larger variation in the streamwise direction than 

that of the same pin in the fluid with temperature dependent 

viscosity when the other parameters are fixed. 

Remark 

The analysis of present paper has yielded the results 

of heated vertical circular pin for mixed forced and free convec- 

tive boundary layer flow with radiative effect. The optically 

thick limit approximation for the radiative heat flux is assumed. 

Although the range of the validity of the optically thick limit 

approximation is small in the boundary layer flow, it possesses 

the advantage of simiplicity in the analysis because the govern- 

ing energy equation can be transformed into an ordinary differen- 

tial equation by the conventional similarity transformation. 

The exact solutions of the pin surface temperature should lie 

between those for the nonradiating case and the optically thick 

limit approximation. In order to solve simultaneously the coupled 
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pin conduction equation and the thermal boundary layer equations 

of fluid, a very efficient "Box" scheme is employed here. From 

the numerical results we may find that the overall heat transfer 

rate increasing with decreasing radius of the cylinder pin, 

which agrees with behavior in [ 391 and[ 43 ]. 

-126- 



0 

10 

4 

. -ie 88 

N6 

Of 

ý' '4 

2 

0 

N-x 
40b 

10 
V 

E1X 

v'i7 

a) y 
I 
C " 

E 
VO N 
ý4 Li 
0 to 

O ?. 
U to 

p 

M 
I 

1 

.' 

" ""--.. -. 

(*) 

---- (** ) 

0 0.5 1 1.5 2 2.5 3 

Nc 

Fig. 5-3-2' The total heat transfer rate öf 
the circular cylinder for p , =0.7 and x =1. rco 
* : a1=3, a2=2, N=1, CT=0.5 
** : a1=O, a2=0, N=1, CT=0.5 

*** : a1=0, a2=0, N -+ co 

-127- 



12 

10 

aar g 

8 
,b 0 

H6 

O 
ý-1 

4 

2 

"3 

1 

% 
NIP % 

on 

#Alb 

AAý 

0 0.5 1 1.5 2 2.5 

Nc 

Fig. 5-3-3 The total'heat transfer rate of 
the circular cylinder for Pr= 0.7, CT=0.5 
and N=1. 

* : a1=3, a2=2, X=2 

** : ä1=0, a2=0, X=2 

*** : al=3, a2=2, A=1 

3 

-128- 



2.5 
N 
-c 

2.0 

1.5 
h*L 

kRe Lco 
1.0 

0.5 

\ Zý 0.75 

0.25 

(*) 
---- (**) 

0 0.2 0.4 0.6 0.8 1 
ý} 

Fig. 5-3-4 The modified local heat transfer 
coefficients of the circular cylinder 
for Pý0.7, X=1 , N=1 and 'CT=0.5. 

* : al=3, a2=2, Q=1. ' 
** : a1=3, a2=2,: 52=3, 

*** : a1=0, a2=0, SI=1. 

-129- 



4 

3 
N 

C 

2 --. 
0.75 

2 

hL 

kReLco 

ý\` 0.25 

"1 (*) 

___(***) 

0 0.2 0.4 0.6 0.8 1 

Fig. 5-3-5 The modified local heat transfer 

coefficients of the circular cylinder 
for PX0.7, X =2, N=1 and CT=0.5. 

* : a1=3, a2=2, S2=1. 

** : a1=3, a2=2, n=3. 
*** : a1=0, a2=0, SZ=1. 

-130- 



2.5 

NC 

^mä1.5 
a) 

8 
H 

Öl 0 1.0 

ae 

2.0 

0.5 

2 

0.75 

0.25 

ý. 
-i 

(*) 
--_(***) 

of 

0 0.2 0.4 0.6 0.8 1 

00 

C} 

Fig. 5-3-6 The local heat flux of the circular 
cylinder for Pr=0.7, A =1 , N=1 and CT=0.5. 

* : a1=3, a2=2, c2=1. 
** : a1 =3, a2=2, SZ=3. 

*** : a1=0, a2=0, St=1. 

-131- 



3 

2 

ýýv 8 

a) 

8 

0 H 
X1 

N 
c 

2 

0.75 

0. -25 

(*) 

----(** ) 
__. (***) 

0 0.2 0.4 0.6 0.8 1 

Fig. 5-3-7 The local heat flux of the circular 
cylinder for P X0.7, A=2, N=1 and CT=0.5. 

* : a1=3, a2=2, n=1. 
** : a1=3, a2=2, cZ=3. 

*** : a1=0, a2=0, c2=1. 

0 

-132- 



1.0 

0.8 

0.6 

Of 

0.4 

0.2 

Nc 

0.2' 

O 

. 75 

2 

--(***y 

0 0.2 0.4 0.6 0.8 

Pig-5-3-8 The temperature distributions of 
the circular cylinder for Pr= 0.7, X=1, 
N=1 and CT=0.5. 

* : a1=3, a2=2, Q=1. 

** : a1=3, a2=2, f2=3. 

*. ** : a1=0, a2=0, n=1. 

-133- 



1.0 

Ö. 8 

0.6 

of 
0.4 

0.2 

Nc 

0.25 

rr 
rr 

0.75 

2 

(*) 

__ _(**) 
_. _(*** )' 

0 0.2 0.4 0.6 0.8 

Fig. 5-3-9 The temperature distributions of 
the circular cylinder for Pr=0.7, A=2, 

N=1 and CT=0.5. 

* : a1=3, a2=2, Q=1. 
** : a1=3, a2=2,2=3. 
*** : a1=0, a2=0,? =1. 

1 

-134- 



VI. STEADY TURBULENT FLOW CONVECTION-CONDUCTION CASES IN A 

VERTICAL EXTENDED SURFACE 

In the conventional method to deal with the characteristics 

of vertical plate fin, the constant convective heat transfer 

coefficient is assumed along the fin surface. However, there 

is substantial variations along the fin which has been proved 

by Sparrow and Acharya [15 3for laminar natural convection and 

Sparrow and Chyu [163 for laminar forced convection. 

The analysis of present chapter is for a vertical plate 

fin (or, vertical circular pin) with a nonuniform temperature 

distribution which is strongly affected by the heat transfer 

coefficient, the heat transfer coefficient is decided by the 

ambient turbulent flow. The transition point was assumed at 

Rxtr=5x105. Hence, in order to determine the temperature 

distribution of the plate fin (or pin) it must be coupled 

with the convective boundary layer flow. It, becomes more 

complicated. 

The conservation equation of the turbulent boundary 

layer and the energy equation of the fin are first transformed 

into a nondimensional form and their solutions are then simul- 

taneously solved by an efficient implicit finite difference 

method. In this study we use the eddy viscosity formulation 

for forced convection flow developed by Cebeci and Smith, [29 ]. 

The fin temperature distribution, which is not known a 

priori, serves as a boundary condition for the boundary layer 
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equation. The solutions of the local heat transfer coefficient 

along the fin surface from the boundary layer equation is re- 

substituting into the fin energy equation as known, then 

repeatly searched for the new temperature distribution of the 

fin surface. This new temperature distribution is then imposed 

as the surface boundary condition for the boundary layer equation, 

the solution of which is used to evaluate an updated h and so 

on until the maximum difference of temperature between the 

successive cycles is less than some given small value. 
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VI-1 Vertical Plate Fin with Conjugated Forced Convection- 

Conduction Turbulent Flow 

Numerical calculations of local heat transfer coefficients 

are presented in this section for steady turbulent forced 

convection flow over a vertical plate fin. The local heat 

transfer coefficient is solved simultaneously with the convective 

boundary layer equations of fluid and the heat conduction 

equation of fin. The eddy-diffusivity formulas used by Cebeci 

and Smith are utilized to model the Reynolds stresses. An 

implicit finite difference method is employed. The physical 

model of this problem is illustrated in Fig. (6-1-1). A vertical 

fin is of length L and thickness 26 which is extended from a 

wall at temperature To and situated in a uniform free stream 

having temperature T,,, and velocity uc . Numerical results 

are presented for Pr=0.7, Prt=0.9, U= 150m/s, v=9.5 10-6m2/s, 

L=0.05m and RXtr 5X105 over a conjugated convection-conduction 

parameters of Nc=0.75,2,8 and 20. 

Analysis 

The present study is concerned with the turbulent eddy 

effect on convection along the fin surface. Consider now a 

vertical fin which is alighed parallel to a uniform free stream. 

Let x and y denote, respectively, the streamwise and normal 

coordinates. The conservation equations for turbulent boundary 

layer over a vertical fin are given as follows 
N 
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äx + äy =0 (6-1-1) 

uax + Vay -y ((v+em) y) (6-1-2) 

uax + vay = 
y(( 

a+ h) 
äy) (6-1-3) 

where u and v are the streamwise and normal velocity components, 

respectively, T is the temperature of the fluid, a is the 

thermal diffusivity, v is the kinematic viscosity, sm is the 

eddy viscosity and ch is the eddy diffusivity.. 

The system of equations (6-1-1)-(6-1-3) is subject to the 

following boundary conditions 

u=v=0, T=T(x) at y= 0 

u=uc ,T =Tco as y -ý co 
} (6-1-4) 

Equations (6-1-1)-(6-1-3) and boundary conditions (6-1-4) do 

not admit a simiarity solution. The nonsimilarity arises from 

the eddy viscosity, eddy' diffusivity and the surface temper- 

ature, Tw(x), which is undetermined. The pseudo-similarity 

variable n and the dimensionless streamwise coordinate are 

introduced as follows: 

9=L, n= (L) ReL//Z 

uL 
where L is the fin length and ReL is the Reynold number, -ý . 

The dimensionless stream function f(E, r) and the dimension- 

less temperature 6(E, n) are defined, respectively, by 
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f( , n) = (x, Y)/(uwL9)/ (6-1-6) 

6 (9, n) = (T - Tom) / (To - T00) (6-1-7) 

where the stream function f(x, y) satisfies the continuity equa- 

tion (6-1-1) with 

) 
u= 

äy 
and v=- ax (6-1-8) 

Introducing equations (6-1-5)-(6-1-8) into equations (6-1-2)- 

(6-1-4) gives 

(f11 (1+e+)) '+ lff" 
_ (f' of ý- f" of ) (6-1-9) 

m2 Dý a 

8, af) (6-1-10) ' (0' (Pr-1 + e+) )' + 
if 

0' =C (f' ae 
- h 2_ aý äý 

f= f' = 0,0 = 0W(ß) at p=0 
} (6-1-11) f' =16=0 as n -ý 

In the foregoing equations, the primes stand for partial deriva- 

tives with respect to n, Pr is the prandtl number, Em is the 

ratio of eddy viscosity to kinematic viscosity and eh is the 

ratio of eddy conductivity to kinematic viscosity. 

Assuming a one-dimensional model, the thin fin energy eq- 

uation allows the temperature distribution along the longitudinal 

-direction to be written as 

d2Tf 
=k 

h(x) (T f- Too) (6-1-12) 
dx f 

where kf is the fin thermal conductivity,, - Tf-is the fin temper- 

ature, and h(x) is the local heat transfer coefficient which 
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can be regarded as known frort the current boundary layer solu- 

tion. The associated boundary conditions are 

Tf = To at x=L 

dTf (6-1-13) 

dx 0 at x=0 

of particular interest is the thermal coupling between the fin 

and the convective boundary layer. The basic coupling is 

expressed by the requirement that the fin and fluid temperatures 

and heat fluxes be continuous at the fin-fluid interface at all 

ý. 

Tf= TW and -käy =h (T f- T)) , at y=0 (6-1-14) 

Equation (6-1-12) was recast in dimensionless form by the 

substitutions. 

ý_X, 
Tf -T 

LeTý- Tý (6-1-15) 

and combined with equations (6-1-13) and (6-1-14) so that 

2^ 
aof 

dE2 ='Nc h 6f 

0 f=1 at E=1 

ddf 
=0 at =0 

and 0W= 6f, h=k ReL2 h/L 

(6-1-16) 

(6-1-17) 

(6-1-18) 

where Nc is the conjugated convection-conduction parameter 

Nc = kkLS ReL/ (6-1-19) 
f 

0 
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The quantity h is a dimensionless form of the local forced 

convective heat transfer coefficient. The value of h is ob- 

tained by substituting equation (6-1-5) and (6-1-15) into 

equation (6-1-14). 

h= -än/ (6 fý 
2) 

, at n=0 (6-1-20) 

Eddy Diffusivity Formulas 

Cebeci and Smith (1974) [29 ]reported an algebraic visco- 

sity formulation for use with external wall boundary layers. 

It is based on a Van Driest approach to the inner region, with 

a damped law of the wall, and on a velocity defect approach to 

the outer region. 

Emi ={ 0.4y(1-exP(-y/Ä))12 IäyIYtr Emi< Emo (6-1-21) 

M Emo = 0.01681f (u. -u) dy, YE>e 0 tr mi- mo 

where 26v (Tw/p) -, Ytr 1-exp (-G (x-Xtr) fX üx 
tr co 

and G_1 uc3 -1.34 
- 1200 -Rxtr 

we choose the turbulent Prandtl expression of Jischa and Rieke 

[34 1, which is 

prt = cm = c. +b (Pr + 1) / Pr 
h 

(6-1-22) 

with experiment giving a=0.825 and b=0.0309, a result fitting 

data for air (Pr=0.7) quite well. 
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Numerical Solution 

The solution begins by solving the forced convective bo-- 

undary layer problem for a vertical plate with guessed temper- 

ature for all The dimensionless heat transfer coefficients 

h determined from this solution in accordance with equation 

(6-1-20) are then used as input to the fin heat conduction 

equation (6-1-16). With Nc prescribed, the differential eq- 

uation (6-1-16) is then solved to yield 0f. To begin the next 

cycle of the iterative procedure, the just determined 6f is 

imposed as the thermal boundary condition for the forced con- 

vective boundary layer problem. The solutions of the boundary 

layer problem yield a new h distribution which is used as input 

to the fin heat conduction equation. This procedure of alter- 

nately solving the boundary layer problem and the fin conduction 

problem was continued until convergence was attained. 

The two systems of partial differential equations (6-1-9), 

(6-1-10) are solved by an accurate implicit finite difference 

technique [19 ]. To begin with, the partial differential 

equations (6-1-9), (6-1-10j are first converted into a system 

of first order equations which are then expressed in finite 

difference form by approximating the functions and their first 

derivatives in terms of centred difference and averaged at 

midpoint of the net segments in the (ý, n) coordinates. The 

resulting nonlinear finite difference equations are then 

solved by Newton's iterative method. The boundary layer so- 
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lutions were obtained by a marching procedure, starting at 

the leading edge ( E=O) and the grids were divided into 45 

points in the streamwise direction. There was a denser concen- 

tration of-points near the leading edge to accommodate the 

initial rapid growth of the boundary layer. 

In order to write the system in terms of a first order 

system of partial differential equations, we introduce new 

dependent variables ü(ý, n), 7 (ý, p) and w(ý, n) are introduced, 

so that equation (6-1-9) and (6-1-10) can be written 

f' =ü (6-1-23) 

u' =v (6-1-24) 

6' =w (6-1-25) 

(bv) + 
2fv 

= (u ä-v ä) (6-1-26) 

(Pr -1 Prt 
1) 

w' + Prt-1 (bw) '+ 21 fw =F (tiä -w 
4) (6-1-27) 

where b= (1 +c+) m 

Next consider the net rectangle shown in Fig. (6-1-2) and denote 

the net points by 

9o =0, gn = gn_1 + kn, n=1,2,3,... N 
(6-1-28) 

no = 0, ni = nß_1 + hj, j=1,2,3,... J 

T) J nOD 

Approximate the Quantities (f, ü, v, 6, w) at points n, nj) 

of the net by net functions denoted by (fn, ün, vn, 6n, wn) (D7 
777 

and employ the following notation, for points and quantities 

midway between net points and for net function mý; 
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n_ý 
1 (fin +ßn_1) 01 

mý -k =1 (mý + mý -1) 

nj_/ =2 (T1 +nß_1) 

1 (6-1-29) 
j-k 

2 (mj + mj-1) 

The difference equations that are to approximate (6-1-23)-(6-1- 

27) are now easily formulated by considering one mesh rectangle 

as in figure (6-1-2). We approximate (6-1-23) to (6-1-25) using 

centered difference quotients and average about the midpoint 

(En, nj_, ) of the segment P2P4i with the following results: 

(fý f) ß_1 hfl = uý_ (6-1-30) 

(i - 7 u 7'1 h-1 = 7 
n vJ (6-1-31) 

'ý 

(6j 8ý_1) hfl - Wj (6-1-32) 

Similarly (6-1-26) and (6-1-27) are approximated by centering 

on the midpoint (ýn_/' nj_ý) of the rectangle P1P2P3P4r which 

gives 

bn-n-bn v 
iJ 

h-1 
J-1+ 

2 (fv) 
ýn + an (vnfn-vnfn-l+vn-1 fn- (-2)n 

, -h J 

= Rn (6-1-33) 

(Pr-1-Prt-J-1 +P -1 (b3_Jý-bn-1 J-1) + (1 +a) 
rt 2n 

fýý'_ + an ý_ ýueý n_ lln-10n + ýnen-1 + wn-1 fn _ Wn fn-1) ]- 

= Yný (6-1-34) 
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where 

an _ 
kn 

Rn-1 =a tfv) n-1 (býZ7+1 ýfv) ) n-1 

)( )+ Yn =a ((wf)n_ - (GO)ný )- ((Pr-1-P -1-----Z-1 
j- njj rt i 

b. cý. -b 
rt-1 

ý 
h3-1w] 

-1) +21 (f W) j-, )n-1 (6-1-35) 
7 

Equations (6-1-30)-(6-1-34) are imposed for j=1,2,3... J. The 

boundary conditions (6-1-11) can be written as 

fn = 0, n=n an = 0, an = 1, gn =0 (6-1-36) 
00w011 

If it is assumed that 
J 

(fn-1ý ýJ n-1I vJ 
J 

n-1, en-1,, wj ) are known 

for O<j<J, then . 
(6-1-30) - (6-1-34) and boundary conditions (6-1- 

36) yield an implicit nonlinear algebraic system of 5J+5 eq- 

uations in as many unknown (f7 n, ün, v7n, 87n, w7n). The system 

can be solved very efficiently by using Newton's method. The 

important observations are that the linearized equations obtained 

by applying Newton's method to (6-l-30)-(6-1-34) and (6-1-36) 

form a block tridiagonal system (with 5x5 blocks) and that 

system can be solved very efficiently by the procedure discussed 

in refs. [19 ] 

For most laminar flows the transformed boundary layer thick- 
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ness is essentially constant. However, in turbulent flow in 

which the eddy effect is important, the transformed boundary- 

layer thickness (nom) varies with increasing E. To maintain 

the computation accukacy, it is necessary to use a variable 

grid, rather than a uniform grid, normal to the flow. 

The net in the n-direction reported here is a geometric 

progression having the properity that the ratio of lengths of 

any two adjacent intervals is a constant; that is hj=Mhj_l. 

The distance to the j-th line is given by the following 

formula: 

Mi-1 
raj = hl 

_1, 
j+1,2, ... J, m>1 (6-1-36) 

There are two parameters: hl, the length of the first An-step, 

and M, the ratio of two successive steps. The total number of 

points J can be calculated by the following formula: 

In [1+ (M-1)(rloo/hl) ] 

In M (6-1-37) 

In the calculations we select the parameters hl and M and calcu- 

late the p. O.. 
Here they were takne as 0.01 and 1.1, respective- 

ly. 

The fin conduction equation was solved by using the direct 

inverse matrix method. The fin conduction equation was also 

divided into 45 grid points and expressed in finite difference 

form. To ensure high accuracy, a nonuniform grid points were 

employed. For small ý, a finer ý subdivision was also needed 

for the heat conduction equation. 
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r: 

Results and Discussion 

Numerical results of the overall rate of heat transfer Q 

from the fin can be obtained from the wall into the fin base 

at E=l or from the integrating heat convection over the fin 

surface. The corresponding Q values of these two methods are 

found to be in agreement. They may be expressed in dimension- 

less form as 

or 

Q= 
2f (-än)/EýdE , at rý =0 (6-1-38) 

k (To-Tco) ReL zo 

Q2 def 

Nc d 
(6-1-39) 

k (To-Tco) ReL h=1 

The results of the overall rate of heat transfer Q from the 

fin are presented as a function of the conjugated convection- 

conduction parameter Nc in Fig. (6-1-3). The decrease of Nc 

indicates short fin length, L, great fin conductances, kf, and 

low convective coefficints (low k and ReL). It is observed 

from Fig. (6-1-3) that an increase in Nc yields a decrease in 

the corresponding Q. Fig. (6-1-3) also show that the overall 

heat transfer rate of the fin in the turbulent flow is higher 

than that of the fin in the laminar flow when the parameters 

Nc and Pr are fixed. 

Fig. (6-1-4) illustrates the distribution of the local heat 

transfer coefficient along the fin surface for various values 

of Nc. The local heat transfer coefficient can be written as, 
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in dimensionless form 

---ham = 
Do 

at rý =0 (6-1-40) 
kReL 

As seen from the figure, the distribution of local heat transfer 

coefficient decreases monotonically before the transition zone 

along the streamwise direction, but the local heat transfer 

coefficient h in the transition zone becomes irregular. This 

figure also shows that the larger values of Nc give rise to 

larger values of h. 

The distributions of the dimensionless local heat flux 

along the fin surface are presented in Fig. (6-1-4) for different 

Nc. The local heat flux can be taken as 

qL 
ae/ ýh at n=0 (6-1-41) 

k (To 
co) 

ReL2 

For smaller Nc, the local heat flux of the fin is larger near 

the tip but smaller near the base root than that of the fin 

for larger Nc. Most of the heat fluxes transfer to the 

ambient fluid by forced convection near the base for, higher 

Nc. The local heat flux becomes irregular near the transition 

point Ctr. Fig. (6-1-4)-(6-1-5) also show that the local heat 

transfer coefficient and local heat flux of the fin in the 

turbulent flow are always higher. than those of the fin in the 

laminar flow when the parameters Nc and Pr are fixed. 

Fig. (6-1-6) presents fin temperature distributions for 

turbulent forced convective flow. In this figure, it is shown 
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that the fin temperature decreases monotonically in the direc- 

tion from the root to tip. The figure also shows that the 

lower values of Nc give rise to higher values of fin temperature 

distributions and the temperature distributions of the fin in 

the turbulent flow are always lower that of the fin in the 

laminar flow when the parameters Nc and Pr are fixed. 

Remark 

The present analysis of the turbulent forced convective 

flow over a vertical plate fin has been studied. The local 

heat transfer coefficient along the fin is similtaneously 

solved for the turbulent forced convective boundary layer 

equations of the fluid and the conduction equation of the fin. 

An efficient implicit finite difference technique is 

employed. The agreement of the results for special case (i. e. 

fin in the laminar flow) with [16 ]is truly remarkable. 
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Fig. 6-1-3 Total heat transfer rate for Pr=0.7, 

Prt=0.9 and Etr=0.6'33. 
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Fig. 6-1-4 The local heat transfer"coefficients 

along the plate fin for Pr=0.7, Prt=0.9, 
qtr=0.633 and various values of Nc. 
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various values of Nc. 
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Fig. 6-1-6 The temperature distributions along the 

plate fin for Pr=0.7, Prt=0.9, qtr=0.633 

and various values of Nc. 
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VI-2 Vertical Circular Pin with Cinjugated Forced Convection- 

Conduction Turbulent flow 

In the conventional heat transfer analysis of a fin, it 

is standard practice to assume that the heat transfer coeffi- 

cient for convection at the fin surface is uniform all over. 

the fin. This approach is generally inadeguate, since the heat 

transfer coefficient varies along the fin surface. Recently, 

Huang and Chen [39] , [42 ] have studied the problem of a ver- 

tical circular pin with conjugated forced and mixed convection- 

conduction flow and concluded, based on their numerical analysis, 

that the overall heat transfer rate increase with decreasing 

radius of the cylindrical pin. 

Although the above investigations have been extensively 

carried out for the case of laminar Newtonian fluid, there 

exist relatively fewer works concerning turbulent fluid. To 

the best knowledge of the author, the only such studies for 

the problem of vertical plate fin with conjugated forced con- 

vection-conduction turbulent flow which have been reported 

are the numerical work of Lien, Chen and Cleaver [43 I. 

The present analysis is a numerical study of heat trans- 

fer due to turbulent flow along a vertical circular pin. The 

transition position was assumed to occur at Retr=5x105. In 

this study the eddy viscosity formulation is used for forced 

convection flow developed by Cebeci and Smith [29 1. Numerical 

results are presented for Pr=0.7, Prt=0.9, u,, =100 m/s, V=1-5x 
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10-5 m2/s, L=O. lm and ro=0.5 cm over a conjugated convection- 

conduction parameter of Nc=0.25,0.75,2 and 3. 

Analysis 

Consider a vertical circular pin which is extended from 

a wall at temperature T0 and situated in a turbulent flow field 

with undisturbed oncoming free stream velocity u. 0 and temper- 

ature-T. 
0 . The coordinate system is given in Fig. (6-2-1). The 

boundary layer equations and their boundary conditions are ex- 

pressed, respectively, as follows: 

(ru) 
+ 

(rv) 
_ ar (6-2-1) a x' 

Du 
uax + var r Dr 

[r 
ar 

(£m+v) (6-2-2) 

uax + var =r ar r 
är (eh+a)) (6-2-3) 

u=v=0, T=T"(x), at r=r0 

u=uco , T=Tc as r -* - (6-2-4) 

u=uoo , T=Tc at x=0, r >ro 

where em and Eh are the eddy viscosity and the eddy conduction y 

The pseudo-similarity variables (ý, n), dimensionless stream 

function f(ý, n) and dimensionless temperature 8(ß, p) are intro- 

duced as follows: 

r2 - r2 

X/L ,n Zr L (ReL/)/ 
0 

(6-2-5) 
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f (ýºn) = (x, r)/ C r0(umLgv)/ j 

6 (Z º rl) = (T-Tco) / (T0-T 
,) 

(6-2-6) 

(6-2-7) 

where L is the length of the cylinder pin and ReL is the 

Reynolds number, ReL=u,. L/v and the stream function i(x, r) 

satisfies the continuity equation (6-2-1) with 

ru=aý/ar, rv= -aý/ax (6-2-8) 

Substituting equations (6-2-5)-(6-2-7) into (6-2-2)-(6-2-4), 

gives momentum equation 

(l+an 2) { (1+Em+) fit }, + {X ; 2- (1+em +)+f} fit 

f" af) (6-2-9) aý äý 

energy equation 

(l+X Ti ){ (Pr-1+eh+) 6' }' +{X gh (Pr-1+Eh+) + 2}e , 

(6-2-10) 

f= f' = 0,8 = 8W () at n=0 
} (6ý2-11) 

0 as rj -* 

In the foregoing equations, the primes stand for partial 

derivatives with respect to n, Pr is the Prandtl number and 

X is the transverse curvature parameter defined as: 

X= 2L/(ReL/ r0). 

The thin pin energy equation, associated boundary condi= 

rý 
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tions and basic thermal coupling conditions are the same as 

those in Ref. [39 ]. Then the the dimensionless heat-conduction 

equation and its boundary conditions are: 

äf= Nan of (6-2-12) 

and 8f=1, at E=1, def/dý =0, ate =0 (6-2-13) 

where Nc is the conjugated convection-conduction parameter 

Ne = 2kLReL//kfro (6-2-14) 

The quantity h is a dimensionless form of the local heat trans- 

fer coefficient which can be obtained by equation (6-2-5) and 

the thermal coupling condition in Ref-[39 ] 

h= 
-(ae/an)/(ef ), at n=o (6-2-15) 

Eddy Diffusivity Formulas 

Cebeci and Smith 129 ]reported an algebraic eddy viscosity 

formulation which is simple and effective for external wall 

boundary layer. According to this formulation, em is defined 

by two separate formulas given by 

2 au 

Ami _-L (r/ro) Iarlytr 
Emi = emo 

(6-2"-16) cm 
emo = 0.01681 r (u. -u)drl Ytr' emi > Emo 

0 

r 
where L=0.4 r0 In (r/r0) { 1-exp [- T In (r/r0) } (6-2-17) 
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and A= 26v (T 
W/ p) ' (6-2-18) 

In equation (6-2-16), Y tr 
is an intermittency factor that 

accounts for the transitional region that exists between a 

laminar and turbulent flow. 

Ytr = 1- exp [-G ro(xtr) (IX x rX ) fx dx (6-2-19) 
tr 0 tr co 

where xtr is the location of the start of the transition and 

the empirical factor, G is given by 

G= u3 Rxtr-1.34/(1200 v2) (6-2-20) 

In terms of transformed variables, em can be written as 

1n (1+Afý 
2 

v 
}2 emi=vCmi 0.16[ r01n(1+An )] {1-exp(- 

u Re 
x 

°f 

26 
r0 

o. s u2f"Rex-hy tr cm= (1+Yn )v (6-2-21) 

o0 
2r0L 

Emo=VC + 
mo =0.0168 Rex/ vr0 [ to (1-f')/ ro 

(Re e L/) 
h dn]Ytr 

(6-2-22) 

We choose the turbulent Prandtl expression of Jischa and Rieke 

1341 
, which is 

Prt + em/eh =a+b (Pr + 1) /Pr (6-2-23) 

is used with experiment giveng a=0.825 and b=0.0309, a result 

fitting data for air (Pr=0.7) quite well. 
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Results and Discussion 

The numerical procedure of solving the boundary layer equa- 

tions and the-heat conduction equation are identical to that in 

Ref. [39 ]. The dimensionless overall rate of heat transfer 

Q from the pin can be expressed as 

Q=2 Tr 
d of 

(6-2-24) 
r0 (To-T. 

0) 
ReL Nc d 

ý=1 

or 
Q= 27rt 

o 
at81/ 

r1=0 
dE (6-2-25) 

rö (To-T. 
0) 

ReL 

The overall heat transfer rate of the pin in the pure laminar flow 

and the mixed laminar and turbulent flow are show in, Fig. (6-2-1) 

It is observed from Fig. (6-2-1) that an increase in Nc yields 

a decrease in the corresponding overall heat transfer rate. 

Fig. (6-2-1) also shows that the overall heat transfer rate of 

the pin in the turbulent flow is higher than that of the pin in 

the laminar flow. This behavior is due to the action of turbulent 

eddies which increase the lodal heat transfer rate at the wall. 

Fig. (6-2-2) illustrate the local heat transfer coefficient 

along the pin surface for various values of Nc. The local heat 

transfer coefficients can be written as, in dimensionless form 

hL 
-e , (, 

kRe L 
(6-2-26) 

As seen from the figure, the distribution of the local heat 

transfer coefficient h decreases monotonically before the 
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transition zone along the streamwise direction, but the h 

becomes irregular in the transition zone due to the occurance 

of the random spots of turbulence. This figure also shows 

that the large values of NC give rise to larger value of h. 

It is observed from Fig. (6-2-2) that the turbulent-affected 
A 

local heat transfer coefficient is higher than h of the pin 

surface in pure laminar flow. 

Fig., (6-2-3) presents pin temperature distributions in 

turbulent forced convective flow. The figure illustrates that 

the larger values of Nc give rise to larger variations of pin 

temperature distributions. The phenomenon of this behavior 

is the same as the forced convective laminar flow over a 

circular pin [39 ]. Fig. (6-2-3) also shows the temperature 

distributions of the pin in the turbulent flow give a larger 

variation than those of the pin in the laminar flow (EmlCh=0). 

This behavior is attributed to enhanced surface heat transfer 

rate associated with an increase in the random spots of tur- 

bulence along the streamwise direction. 
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Fig. 6-2-1 Total heat transfer rate for Pr=0.7 
, Prt=0.9, Ctr=0.75 and A=0.049. 
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VII. CONCLUSIONS 

The efficient implicit finite difference method proposed 

in this dissertation is demonstrated to be a very useful method 

for wide class of conjugated convection-conduction heat transfer 

problems of boundary layer type. The following problems are 

studied in detail with a view to illustrating this method. 

(1) Radiative Effect on the Vertical Plate Fin in Conjugated 

Natural Convection-Conduction Flow. 

(2) Radiative Effect of the Vertical Plate Fin in Conjugated 

Forced Convection-Conduction Flow. 

(3) Radiative Effect on the Vertical Plate Fin in Conjugated 

Mixed Convection-Conduction Flow with Temperature Dependent 

Viscosity. 

(4) Radiative Effect and Viscosity Variations on Conjugated 

Natural Convection-Conduction Analysis of Heat Transfer in 

a Vertical Circular Pin. 

(5) Radiative Effect on the Vertical Circular Pin in Conjugated 

Forced Convection-Conduction Flow with Temperature Dependent 

Viscosity. 

(6) Radiative Effect and the Viscosity Variation on the Conjugat- 

ed Mixed Convection-Conduction Analysis of Heat Transfer 

in a Vertical Circular Pin. 

(7) Vertical Plate Fin with Conjugated Forced Convection-- 

Conduction Turbulent Flow. 

(8) Vertical Circular Pin with Conjugated Forced Convection- 

Conduction Turbulent Flow. 
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The above problems can be classified into two groups: 

(i) the first six cases are steady laminar flow with convection- 

conduction heat transfer problems and (ii) the others are 

steady turbulent flow with convection-conduction heat transfer 

problems. 

The analysis of the steady laminar flow convection-conduc- 

tion cases have yielded the results of heated vertical fin (or 

pin) for convective thermal boundary laver flow with radiative 

effect. The optically thick limit approximation for the radi- 

ative heat flux is assumed. Although the range of the validity 

of the optically thick limit approximation is small in the 

boundary layer flow, it possesses the advantage of simplicity 

in the analysis because the governing energy equation can be 

transformed into an ordinary differential equation by the con- 

ventional similarity transformation. The exact solutions of 

the fin surface temperature should lie between those for the 

nonradiating gas case and the optically thick limit approxima- 

tion. 

The agreement of the results for the special case (i. e. 

fin or pin without radiation and viscosity variation) with the 

previous works are very satisfactory. 

The analysis of the steady turbulent flow convection- 

conduction cases over a vertical plate fin (or pin) has been 

studied. The local heat transfer coefficient along the fin 

(or pin) is simultaneously solved for the turbulent forced 

convective boundary layer equations of the fluid and the con- 
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duction equation of the fin. The results for the special case 

(i. e. fin or pin in the laminar flow) are also in good agreement 

with previous works. 
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VIII. SUGGESTIONS 

The successful applications of the efficient implicit 

finite difference method on the steady conjugated laminar con- 

vection-conduction analysis of heat transfer in a vertical fin 

(or pin) and the steady conjugated turbulent forced convection- 

conduction analysis of heat transfer in a vertical fin (or pin) 

in this dissertation suggest that the extension of this method 

should be available to the following problems: 

1) unsteady conjugated laminar convection--conduction analysis 

of heat transfer in a vertical fin (or pin) 

2) steady conjugated turbulent natural convection-conduction 

analysis of heat transfer in a vertical fin (or pin) 

3) unsteady conjugated turbulent convection--conduction analysis 

of heat transfer in a vertical fin (or pin) 

4) steady conjugated laminar convection-conduction non-Newtonian 

power law fluids of heat transfer in a vertical fin (or pin) 

5) unsteady non-Darcian effects on convective heat transfer in 

porous midium. 

6) extension to other steady and unsteady turbulent heat and 

mass transfer problems of boundary layer type. 
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X. APPENDIX 

APPENDIX A THE TRANSFORMED GOVERNING EQUATION 

(i) Combined convection and forced convection in a vertical 

plate fin. 

Under the boundary layer theorey and Boussinesq assumption, 

the governing equation can be written as follows: 

Continuity equation: 
Tx 

+=0 

Momentum equation: 
au+w=a [(V +Em) 

a]+ 
ay aY aY 

gß (T-To) 

Energy equation: 
aT 

+i [(a +ch) 
8T 

uý'dx ay ay 9Y 

1- W 
PCp ay 

where cm = eddy viscosity 

Ch = eddy diffusion coefficient 

Cp = constant pressure heat capacity 

qr = heat radiation flux 

The boundary conditions are 

aty=0, u=v=0, T=T (x) 
w 

at y -} co, u -a u,,, T. -l- Tc 

(a) With a constant kinematic viscosity 

(A-1) 

(A-2) 

(A-3) 

(A-4) 

The dimensionless transformation formula are defined as 

follows: 

g YReL2 

8= T(x, Y) - Too 
To -Tc 

where ReL =L 
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T f(x) -T 6f 
- To - TCo 

and v=_ llý 
@y ýx 

(A-5) 



After substituting equation (A-4) into equations (A-2) and (A-3), 

the transformed momentum and energy equations are 

Ef"(l+E: m+)] + 2ff" + 528 -c [f' 
of - f" ] (A-6) 

E (Pr-1+ch+)8I] I+ 2f 61 +4 
[(B+CT)36]' 

_ -ý f1 
6e' of 

] (A-7) 
3NPr aý 

where 

c m± =C m/v ,c h+ = eh/v, N= 4Q T o- T3' 
ýT To -T 

s Pr = v/a SZ =L 
ýß(TO-T~, L3 / tuvL}2 

Re L2v2 

*'ý'ý denotes the partial differential of 

The transformed boundary condition are 

at n=0, f= f' = 0,0 = 8w(c) 
(A-8) 

at n; co 9 f'} 10 0+0 

(b) With a temperature-dependent kinematic viscosity 

The temperature-dependent viscosity can be expressed as 

V =uwCl+a1e+a2e2] 
(A-9) 

where a""i and a2 are determined by the curve fitting of experimen- 

tal data. 

The demensionless transformation formula are redefined as 

follows: 

g yReLý (x, y) =L n= 
2s 

f( s TI) _ /u) CO CO (A-10) 

8= T(x, y) - T,, 
'e= 

Tf(x)-T 
,. 

To-To f To-T00 

where ReL00 ", vCO is the kinematic viscosity of the fluid 
00 

outside the boundary layer. 

After substituting equation (A-10) into equations (A-2) and 
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(A-3), the transformed momentum and energy equations become 

[: r " (1 + cm + a. 18 +a2 .e+äff 
91 + Lowe =[ 

00 
f'f - f" (A-11) 

,3tt 4[( ) 
[(Pry-'+ Eh )8']' + Zfe' + 

e+c 8] 

_ [f' - B' ] (A-12) 

where c m+ = CM/V , 
Gr 

ch+. = ch/va,, Pry, =výaý ReL = 
L'D 

ß To -T L3 l (utL) 2 
VD, co V(ii) 

Natural Convection 

Under the boundary layer theorey and Boussinesq assumption, 

the governing equations can be written as follows: 

+y=o (A-13) 

u+. _ 
y) 

+g (T - Tom) - (A-114 

2 1ä (A-15) uäg += 1157 -pP 

The boundary conditions are 

aty=0 ,u=v=0, T =Tw(x) 
(A-16) 

at yu4,0, T=Teo 

(a) With a constant kinematic viscosity 

The dimensionless transformation formula can be defined 

as follows: 

xý =x' n= L- 
(GrL/4) 

(XPY) = f(ý, n)[4v(GrL/4)4J 3/4 
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(x) 
-Tý 

_Tx, v) -T 
Tf 

(A-17) To-T ý' 
of 

=- To -Tco 
J 

After substituting equation (A-17) into equations (A-14) and 

(A-15), the-transformed momentum and energy equations become 

f ., ' *+ 3ff'' - 2(f' )2 +8= 4E Lf- f"ä 77 ff (A-18) 

3 
Pr-16" + 3f 8'+& r(B+CT) 8' ý' 

=4 If' 
Do ea fj (A-19) 3PrN - i; 

(b) With a temperature-dependent kinematic viscosity 

The-dimensionless transformation formula can be redefined 

as follows: 

=L Ti = (GrL /4) 4 

4 

(x, Y) = f(ýpn)[4V��(GrL /4)4]g3I4 (A-20) 

0= 
T(x, y) -Te= 

Tf (x) T. 

To-T-c6 -- 9f To -To 

After substituting equation (A-20) into equations (A-14) and 

(A-19), the transformed momentum and energy equations become 

[f�(1+a18+a2e20]' + 3ff" - 2(f1)2 +8= 4&[f' - 

?f (A-21. ) 

PrIe" + 3f e' + 
4f (e+CT) 3 e'1' 

= 4ý [f' ae 
- e, a 

3Pr J az 73 (A-22) 

where Gr gß(To-2. )L3 
Gr = gß (To-Teo)L3 

LVG. 0 - vCO 2 

The transformed boundary conditions can be obtained by 

substituting the transformation formula (A-17) or (A-20) into 

equation (A-16). 

at 11= 0, f= f' = 0,0 = 6(ß) 
(A-23) 

at V =0,0 J 
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(iii) The transformed heat conduction equation of the fin 

The heat conduction equation of the fin is 

d2Tf(x) 
h* x 

dx -=Z LT 
f(x) - T. ] (A-24) 

Where Tf is the temperature distribution, Kf is the heat 

conductivity of the fin, h* is the modified heat transfer 

coefficient. The boundary conditions are 
dTf 

a=0 , dg =0 
(A-25) 

x=L, Tf=To 

The constraint conditions are 

Tf(x) = TW(x) 

when y=0, and OSx<_L (A-26) 
h* (T 

f-T c) 
J+ 

qr 

Where qr is the heat radiation flux under the assumption of 

"Optically Thick Limit Approximation". It can be expressed as 

r -4Q aT 
q= (A-27) 

3F 5y 

where 6 is Stefan-Boltzmann constant, and ß* is extinction 

coefficient. 

After substituting equation (A-5) (transformation formula) 

into-equation (A-24), we obtained the transformed heat conduction 

equation with a constant kinematic viscosity as follows: 

d20f 

d. 2= Nch* e f( 
J (A-28) 

And after substituting equation (A-10) into equation (A-24) 

we also obtained the transformed heat conduction equation with a 

non-constant kinematic viscosity as follows: 
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d20 

dý2 = NcCfioef(C) (A-29) 

where h* and 
h* are dimensionless modified heat-'transfer 

coefficient, Nc and Nc. are heat-conduction-convection parameters. 

The definition are 

^ h*L h*L 
h* hm =L 

kRe L, 2 kReL co 

.: 1 .I 
(A-30) 

kLRe 2 kLRe, 2 
Nc = -- , NC =kä 

where k and kf and the heat conductivities of the fluid and 

the fin respectively. 

The transformed boundary conditions transformed by equation 

(A-5) or (A-10) become 

d=0 
at 

(A-31) 
G=1 at=1 

0 

I 
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APPENDIX B NUMERICAL METHOD 

(I) The use of Box method to solve the problem of boundary 

layer: 

(iý The equation for calculating h* under combined, or forced 

or natural convection: 

In order to reduce the number of iteration, the temperature 

distribution of the entire fin may be assumed to be a boundary 

condition of the thermal boundary layer as follow: 

6f(&) = cosh ()/cosh(1.0) 

Then we can get the temperature gradient of the boundary 

layer on the surface of the fin by solving the (thermal) boundary 

layer equation. Moreover, we can use the following equations 

(B-1) and (B-2) to obtain the h*. 

(a) Under the situation of combined or forced convection: 

3 

-. [1 4(e3N ý ä/ [efý2j ,n=0 

h* _ (with heat radiation) (B-i) 

- Tý/ 
[8fý2 ], n=0 (with heat radiation) 

(b) Under the situation of natural convection: 
3 

- [1 +4 
83NI [ef(4)4 Js 

t* =T l= 0 (with heat radiation) (B-2) 

O4 - 7aW Ce 
f(4ý 

3 t1 =0 (with no heat radiation) 

We can obtain the new temperature distributions by substi- 

tuting the values of h* into the heat conduction equation of the 
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fin. Besides, the equations (A-6), (A-7), (A-11), (A-12), (A-18), 

(A-19), (A-21) and (A-22) themselves are the non-similar equations. 

In order to solve these problems, the implicit finite difference 

method introduced by Cebeci and Bradshaw (V) in the present study. 

According to the above method, the unknown function of the 

derivative of rl has to be introduced first. Then the governing 

equations of boundary layer can be written as five first order 

conjugated equations. The centered finite difference approximation 

is applied to get the average value at the middle of the grid point 

to approach the derivative and function of the first order equa- 

tions. The tolerance (accuracy) can be achieved as (Aý)2and ((n)2. 

And the Newton's method are used to solve these non-linear differ- 

ence equations and their coorespondent values of boundary condi- 

tion. This method is more simpler, effective and with higher 

accuracy than the other numerical method such as local nonsimilar 

method for solving this problem. Significantly, the numerical 

solutions are very stable and it is permitted to calculate the 

very close value approaching the location of flow separation. 

The detailed procedure will be described in the next section. 

(ii) The difference equation of combined convection 

Under the situation of combined convection and with non- 

constant kinematic viscosity, the new functions 

U-( , n), v( , n), w(E, Tl) are introduced as 

öf - an - ýn =U' ýn =v' 
an 

=w (B-3) 

then equations (A-11) and (A-12) can be written as 
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[v(b+aiO+a282)]' + 2v +X528 = ý[ näh -väß ] (B-4) 

(Pr-1- Prt-1 )w' + Prt 1 [bw]' + 2fw + 
4[(e+CT)3 w]' 

3Pro N 

lrjý - V, 
ýJ (B-5) _C 

where b= (1+£m+) 

The grid is now considered as Fig. B-1. The grid points can be 

expressed as: 

E0= 0' En =ý n-1+kn 'P n= 19293..... N 

no =0 nj-l+hj 9j= 19293..... ) (B-6) 

nJ = nGo 

The values of (f, u, e, v) at point '(fin, IL) can be expressed 

by the grid point functions (fn, un, vn, 6n, wn1 JJJJJ 

72 

'2 i 

i1-t 

c 

Y's P+ 

t 

-- -- h --6 -- -- --- 

P 1 P2 
'. 
rin _ 

býn-1ý 
n-1/2 n 

Fig. B-1 The grid point of boundary layer 
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The functions at the middle of arbitrary grid point with the 

function m are J 
2( +)n 

+T n-2 n n-ls TI 
j2 j J-l) (B-7) 

m-2 = z(mn+mnmit 
j= 2(mn+mn ) 

JJJ J-s J J-1 

The centered difference method is applied at (' r1j-) and the j 

average value is gotten. Then equation (B-3) can be written as: 

(fj 1. )hf-l 
- uj- 

-2 

(fin _ ýn )h-1 _ vn ' (B-8) 
J J-1 JJ 

(8 - 6n )h. _ wn 1 J J-1 J J-2 

Similarly, the centered different method is applied to equations 

(B-4), (B-5). with respect to (fin-2, 
J-2ý, TI. 

(bivý 
bi-lvý-1)n 

+ (Z +a )(i )n -a 
2)n 

hý ni2nj 

+ S26 J-_, + ctn(vni--l-2'-fn i2-f 
j-2 vj-J) + (a16ý_+ 

-n -n v. -v. 1 
a2(82)n 

-L]( 
'h 1-2)+[a wn j+2a26n -Iwn .Lv. 

n 
j2 i1 J-2 J-s J-2 J-1 

Rn-1 J-2 (B-9) 

(Pr. 
01-Prt-1)(' 

W1-l)n 
+ Prt-11b1wI -1Wi-1 ]n 

i 
h+ 

ý 

1nn -n-1 n -n n-1 n-1 n (2+aný(fwýi-2 + an(-(; e -u 8+ u8 +w f 

n_ n 
n n-1 ' 

-wf 
-2 

+ 3PrccNýýO 
j2+CTý3ý ýh . 1-1ý + 

J 
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3(eß + CT)2(w2ýJ 2ý= Yß2 (B-10) 

where n- 
2/kn (B-11) n 

n-1 _a E(fV)n-1 -ý i2}n-1 - {(bývý-bj iv 
R 

J-1 n-1 
J2 n J-2 Jz 

]h 

+ Eai6n + a2(82)n-1J( 
v1-VJ-1)n-1 

+ ýalwn-1 + J-z J-2 hý 
ýJ-z 

2a26n1 wn-1 vn-i + 
1(fv)n-1 

+ n-]Q8n } (B-12) 
j- 2 J-2 J-2 2 J-2 J-2 

Yn 1=a [(wf)n- 
- (ü8)n-1] - -1 

J- J -J 
{(Pr -Prt 2n2) 

ý J-1n1 1( ýn-11 (wj 
wl-lýn-1 

-1(bW. 1 + Prt , 
hj 

, 
hj +2 fw j-2 + 3PrWN 

_ 
W. -W J-1 

en j+CT)3(-. 1 )n-1 + 3(en-J. +CT)2(w2)ý_2]} (B-13) 
-2 hJ S-2 

The transformed boundary conditions (equation (A-8) become 

fö=0 , 
üö=0 

, nJ=i , 
`eö=6w, 6J=0 (B-14) 

(iii) The difference equation of natural convection 

Under the situation of natural convection with a non- 

constant kinematic viscosity, the new functions 

w(' n) with the same definition as equation (B-3) are introduced. 

Thus, equations (A-21) and (A-2 ) can be written as 

[v(1 -ý a10 + a282) ]' + 3fv - 2(i )2+ 6= 4ý[na - ý^ 3 (B-15) 

1r 
Pr ýw + 3fw + jPrJE(e+CT)'ýw]' k-aZ] (B-16 

The same difference rule used in the above combined convection 
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is applied. Then equations (B-3), (B-15) and (B-16) can be 

written as follows: 

(f1 - f_1) = uj-2 

(uff u-1)hýl = vý 2 (B-17) 

(8J n 0J-1)h. 1 
wn 

-"n -n -n 
_-n v v -v 

ý+ 
[a, e Z+a2 2) 

ýna h 
J3 

alwýn2 + 2a28. 
_2w 

n_2 výn2 + ýý+ ný(fv)n_2 - 

(2+a ) (ü 2)n 
i +8 n+a (vn-i fn - fn-lv nj) 

n J-2 J2n J-2 J-s J -iJ -s 

= Rn j (B-18) 

Pr-1(w. 1hW 

J 

1-l)n 
+ (3+c )(fv) 

2 
n+ 

aný-ýu8)n 

-n-1 nn -1 n-1 nn n-1 4n3 u8 +u +w f -w f 
-2 3 

(6 

V. -W 
(h 

J1) 
+ 3(e 2+CT)2 (w2)-2 J= Yj2 (B-19) 

where an = 4ýn 
22/ 

kh (B-20) 

n-1 
_a(, -)n-i - ýý 2)n-1 J-{ Cvj-vj-1)n-1 + 

J2nj2J2h. 1 

aalen-1 +a 2(e 
2)n 1 

j--1 
J(v1 

VJ-ln-1 
+[a wn_1 + 

J-2 2 hý 1J 

2a6n-iwn-I vn-i + ý(fv)n-j - 2(ü2)n +en- (B-21) 2 J-2 J-2 J-2 J-2 J-2 J-2 
} 
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Yn =a E(wf)n- 
- (n6)n_1] - {Pr )n-1 

J_2n J-a 2 hJ 

+ 3(fw)n- + 3Pr N[ 
(e 

j-2+ýT)3(wýhwJ-1)n-1 + 
to J 

3(6 n- C )2 (w 2)n j ]} (B-22) 
JT3 2 

The transformed bou 

üö = 0, ný = 0,6 ö 

If we assume (fý-1, 

ndary conditions equation (A-23) become fö = 01 

= 6n and 6=0 (B-23) 

ýn-1, vn-1, en-1, wn-1) to be known for 
JJJJ 

0 ý. j :. J, then equations (B-8) - (B-10) and boundary condition 

(B-14) or equations (B-17) - (B-19) and boundary condition (B-23) 

are a system of 5J+5 non-linear algebraic equations for the 

solution of 5J+5 unknows (fn, nn, vn, 6 n, wn), j=0,1, ... t J. 
JJJjit 

To solve this nonlinear system, we use the Newton's method. 

(iv) Newton's Method 

Let f(ý+1) = f(ýý+Sf(ý ý(i+iý = ü(jý+öü(, 
ý 

-(i+l) _ -(i)+6-(i) ' 0(i+i) = eM+(B-24) ýýiýj 

W(1+1) W(1) 
333 

where i denotes the numbers of iteration. 

When i=0 the initial'guess value), we may use the previous 

station value as the initial guess value. 

(aý Under the situation of combined or forced convection: 

0 
o)=Ds 

U-(0 
) 
=09 vöo =v 09e (0)=ew(ýn) 

r Wb 
oý=w ö1 f 

f( o)=fn-1 -(o)=-n-1 -(o)_-n-1 e(o)=en-1 
J J' ii '' JJ'iJ 
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V. =Vn-1 1< 
JJj" 

<J-1 

fJo)_fJ-1 ý(o)_1 
'v 

(o)-1 
'e 

o)_o 
' W(o) n-1 

(b) Under the situation of natural convection: 

fo=0 ý0 oý_0 v0oý_v 01,8( o)=8w(ýn) 
I w(ö =wö-1 

o)n-1 ü( o)=-n-1 -(o)--n-1 8 
(o)=6n-1 

u V. 
JJJJj jJj 

Wjo)=WJ-1 1<j <J-1 

(o) n-1 -( o) -(o) -n-1 () (o) n-1 f =f su =0 ,vJ -vi ,8J =0 9 wJ =wj 

The process with respect to the non-linear terms is: 

J + afýl) 
J 

fýl) + afý1) J J 

uni) + auýi) uýi) + aüýi) 
j j 

V. J + avýi) 
J x v1 

i0 
+ av 

J J 

ejl) + aejl) eji) + de `i) 

Wý1), + &W(i) wýi) + awýi) 
J J J J 

knows unknowns knows unknowns 

We may neglect the product of any two terms of (Sf(i), Se(i), 

6w(')), then equations (B-8)-(B-10) or (B-17)- 

(B-19) can be linearized. The "block elimination method" 

can be applied to solve the unknowns (6f(1), 
iJJJ 

Sw i 
ý 

). Then using equation (B-24) to solve the knowns of next* 

iteration. Keeping on the iteration untilýövoýý 10-5 (when flow 

is laminar) or Svo/(fw"+0.7Svo)I<0.02 (when flow is turbulent). 
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The above process can be shown in Fig. B-2. 

boundary condition 

using Newton's method to linearize the non- linear equations then 
solve them 

initial 
condition L--- 

knoaºrts 

p n-j n 

boundary condition 

Fig. B-2 

With regards to most laminar flow, the transformed thickness n. 

of the boundary layer is about 4-8. After the flow leaves from 

the transition zone to the turbulent zone, the value of TI. in- 

creases as E increases owing to the eddy viscosity (see Fig. B-3). 

turbulent 
flow zone 

transition 
flow zone 

u 
laminar 

00 flow zone( 

t_ I 

Rextr Rext 

Turbulence core 
Buffer zone 

. =3 
Sublayer 

Fig. B-3 Laminar and turbulent boundary layer on flate plate 
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In order to sustain the accuracy of calculation, we may 

take the irregular grid points at the direction of n. The way to 

get the grid points can be calculated by the following formula: 

h. = Rhj-1 

ýj hi R_1' 'j=1,2,3.... 9 J, R2: 1 (B-25) 

where R is a constant ratio of two continuous intervals. It 

has to be assumed first. And the number of grid point at 1 1- 

direction, J, can be obtained by the following formula 

J_ ln[1 + (R-1)71-/hi] (B-26) 
1nR 

where hi is the interval of the first fin. 

In the present study, h1=0.1 and R=1 are taken for the 

laminar flow and hl=0.01 and R=1.1 are taken for the turbulent 

flow. Besides, when the pre-assumed value of n is, not great 

enough, the computer program applied in the present study can 

increase the number of grid point automatically. 

(II) The use of inverse matrix to solve the heat conduction 

equation: 

To consider the heat conduction equation of the fin, the 

entire length of the fin is dirived into 44. control volumes. 

Each control volume i is with a axial length Dpi and the thick- 

ness of fin. The surface of control volume just locate at the 

middle of two neighboring grid points. Thus, if the coordinates 

of three neighboring grid point are ýi_i, ýi and ý 
i+1 respec- 

tively, then the coordinates of the two surfaces for control. 
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volume are (i-1 +)/2 and (i + Ei+1)/2, the axial length is 

Abi (C 
i+1 i-1)/2' 

The relation is shown as Fig. B-4. 
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Fig. B-4 (a) The difference grid points of the fin 
(b) The energy balance of the control volume in the fin 

Using the middle difference for equation (A-28) or (A-29)t 

we can get: 

Aiei = B. O. +Cie i-1 '2<i <44 (B-27) 

1 
where, Ai ++ hi*Nc 

( 
i+l 

ýi)/2 

(B-28) or, A. -( 
)-1 + (Ei-Ei-1) + hioNc 

00 

(Ei+i ýi)/2 

B. - i+1 
Ci 

equations (B-27) and (B-28) can be expressed as the form of 

matrix as follows, 
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-Al Bi 
el ° 

o C2 -A 2B20f2 

C3 -A 3 B3 3= (B-29) 

C4 5 -A4 5) 11. 
e45 1 

From boundary condition (A-31), we can get Al=B1=1, C45=09 

A45=-1. Because ý =0 is a singular point, let the temperature of 

this point equal to the temperature of the neighbor ý =10-10. 

In order to correspond to the solution of the thermal boundary 

layer, we take a dense division of control volume near the end of 

fin. To solve this algebraic system, we assume h* to be the last 

previous result of the iteration for the boundary layer. The 

temperature distribution of entire the fin can be directly 

obtained from the inverse of the matrix. The result of tempera- 

ture distribution is taken as the boundary condition of thermal 

boundary layer for the next iteration. 
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