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Abstract 

We consider numerical methods applied to equations of the general form 

yIlt) = G (t, y(t), ['00 K(t, s, Y(S))dS) . 

The case where K(t,s,y(s)) = 0 for s < 0 is considered first and in greatest 
detail. 

We 

• give a numerical analysis of a linear integro-differential equation that 
is directly relevant to the nonlinear work contained herein. 

• give general results which guarantee that asymptotic stability of the 
zero solution to equations of the form y'(t) = - J; k(t - s)f(y(s))ds is 
preserved (under conditions) in the numerical approximation. We de­
velop further these results so that they are applicable to a more general 
class of numerical scheme, O-methods. 

• consider a special case for further analysis; we give necessary and suf­
ficient conditions for the presence of asymptotic stability in numerical 
approximations to the zero solution. This approach involves imposing 
a condition on the parameter values. We show that such parameter 
values exist and that our earlier theory applies to a non-empty set of 
equations. 

• examine the case K(t, s, y(s)) =1= 0 for s < O. We show that our result, 
which guarantees that asymptotic stability of the zero solution is pre­
served in the numerical approximation, is sufficient but not necessary. 



Chapter 1 

Volterra integral and functional 
equations 

We present in this chapter a brief description of some of the Volterra equa­
tions which have been analysed by previous authors (Brunner & Van der 
Houwen [13], Linz [53], for example). We use some of these results later to 
investigate related equations. Although we discuss integral equations and 
functional equations separately, integral equations can be thought of as a 
special case of functional equations. The material found in this chapter may 
be found in more abstract form in [30], or in [13], [15] and [53]. We collect 
these results together for convenience. We discuss linear equations first be­
cause, in general, results for nonlinear problems are related to and weaker 
than results for the linear problem. There is also a strong link between our 
choice of nonlinear problems and linear equations in that the linear part of 
our problems is the dominant part. 

1.1 Volterra integral equations 

An integral equation is one in which the unknown quantity occurs under an 
integral sign. We are concerned, for the moment, with the special case where 
the unknown is a function of one real variable. Volterra integral equations 
have variable regions of integration (dependent on the independent variable). 
Equations where the region of integration is fixed are called Fredholm equa­
tions and are not under discussion here. We can categorise Volterra integral 
equations as follows: Volterra integral equations of the first kind and Volterra 
integral equations of the second kind. We concern ourselves only with sec­
ond kind equations and note that first kind equations may be considered 
as a special case of second kind equations. These categories can be further 
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subdivided into two sub classes - linear and nonlinear equations. 

1.1.1 Linear Volterra integral equations of the second 
kind 

The general form of a linear Volterra Integral Equations (VIE) of the second 
kind is 

y(t) = itt) + f.' k(t,s)y(s)ds (1.1.1) 

We now present some results regarding the existence and uniqueness of 
solutions to (1.1.1) and the qualitative properties of such solutions. 

These results can be found in many standard integral equation texts. 

Theorem 1.1.1 ([53], page 30) If k(t, s) is continuous in 0 ~ s ~ t < T 
and f(t) is continuous in 0 < t ~ T, then the integral equation {l.1.1} possess 
a unique continuous solution for 0 < t ~ T. 

Theorem 1.1.1 can be proved using Picard iterationsT A series solution 
to equation (1.1.1) may also sometimes be obtained using such a technique 
but in many practical situations this is not possible due to the nature of the 
integrals. Theorem 1.1.1 is based upon a contraction mapping argument. 
An alternative existence-uniqueness theorem, derived using the method of 
continuation, is given below. 

Theorem 1.1.2 ([53], page 32) Assume that in (1.1.1) 

(i) f(t) is continuous in 0 < t ~ T, 

(ii) for every continuous function h and all 0 < Tl < T2 < t the integrals 

17"2 k(t, s)h(s)ds 
7"1 

and f.' k(t, s)h(s)ds 

are continuous functions of t, 

(iii) k (t, s) is absolutely integrable with respect to s for all 0 < t ~ T, 
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(iv) there exist points 0 = To < Tl < T2 < ... < TN = T such that, for all i 
and allT; < t ~ T;+1, 

rmin(t,TH1) 

JTi I k(t, s) I ds ~ O! < 1, 

where O! is independent of t and i, 

(v) for every t in [0, T] 

l
(tH) 

lim I k (t + 8, s) Ids = 0 
0-+0+ t 

then (1.1.1) has a unique continuous solution for 0 < t ~ T. 

The benefit of having these results available is that it is a standard proce­
dure to adapt results for nonlinear problems from the linear results. One can 
use Picard iterates (known as the method of successive approximations or 
the Picard method) to derive other theorems, in the following way. Consider 
equation (1.1.1). The Picard method consists of the simple iteration 

Yn(t) = I(t) + J.' k(t, s)Yn_l(s)ds, n = 1,2, ... (1.1.2) 

with 

Yo(t) = f(t). (1.1.3) 

For convenience, we introduce 

<Pn(t) = Yn(t) - Yn-l(t), n = 1,2, ... (1.1.4) 

<Po(t) = f(t). (1.1.5) 

Subtracting the same equation with n replaced by n-1 from (1.1.2) yields 

q,n(t) = J.' k(t, s)q,n-l(s)ds, n = 1,2, .... (1.1.6) 

From (1.1.3) we have 

n 

Yn(t) = L <Pi(t) (1.1.7) 
i=O 
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Examining the computation of the <Pn's, we see that 

'Mt) = l' k(t,B)J(B)dB (1.1.8) 

",,(t) - l' k(t,B)",,(B)dB (1.1.10) 

- l' k(t,s) [ k (B,T)! (T) dTds. (1.1.11) 

If k(t, s) and j(t) are continuous then we have 

",,(t) = 1'1' k(t,B)k(s,T)dBJ(T)dT= J.\,(t,T)J(T)dT (1.1.12) 

where 

k, (t, T) = l' k(t, s)k (s, T) dB. 

A similar result holds for the other ¢n(t) and it follows by induction that 

",.(t) = l' k.(t,s)J(s)dB (1.1.13) 

where kn(t,s) = f:k(t,r)kn_t{r,s)dr, with k1(t,s) = k(t,s). The kn are 
called the iterated kernels. From (1.1.7) we have 

y. = J(t) + J.' r(t, B)J(s)dB, 

where 

n 

r n(t, s) = L ki(t, S), 
i=l 

If k(t, s) is continuous and 

then 

I k(t, s) I~ k, 0 < s ~ t < T, 

kn(t _ s)n-l 
I kn(t, s) I~ (n -1)! . 
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Therefore 
00 

r(t, s) = L: ki(t, s) 
i=l 

is uniformly convergent for 0 ~ s ~ t < T. The function r(t, s) is the 
resolvent kernel for k(t, s). The resolvent kernel allows us to write down the 
form of the unique solution to (1.1.1) under certain conditions. 

Theorem 1.1.3 ([53], page 36) If k(t, s) and f(t) are continuous, then 
the unique continuous solution of (1.1.1) is given by 

y(t) = f(t) + l' r(t, s)f(s)ds. (1.1.16) 

The following theorem gives an alternative way of deriving the resolvent 
kernel. 

Theorem 1.1.4 ([53], 37) Under the assumption of theorem 1.1.3 the re­
solvent 
kernel r(t, s) satisfies the equation 

r (t, s) = k (t, s) + J.' k (t, T) r (T, s) dT, 0 $ s < t $ T. (1.1.17) 

Equation (1.1.17) involves an unknown function of two variables and is 
not generally useful for computing the resolvent kernel. There is a special 
case, however, where a simplification applies. 

Definition 1.1.5 (Convolution kernels) If the kernel of (1.1.1) is a func­
tion of (t - s) only, that is, k( t, s) = k( t - s), then k is said to be a difference 
(or convolution) kernel. 

Theorem 1.1.6 ([53], page 38) If k is a difference kernel, and k(t) and 
g(t) are continuous, then the unique continuous solution of (1.1.1) is given 
by 

y(t) = f(t) + 1.' R(t - s)f(s)ds, (1.1.18) 

where the resolvent kernel R(t) is the solution of 

R(t) = k(t) + 1.' k(t - s)R(s)ds. (1.1.19) 

5 



Note that when k is a convolution, the solution is a convolution of Rand 
f. When an explicit solution to an equation cannot be found, it is sometimes 
possible to obtain information on qualitative behaviour of such a solution. 
For example, one can seek results on smoothness of the solution, bounds and 
asymptotic behaviour. Below are some established results. 

Theorem 1.1.7 ([53], page 39) If 

(i) f(t) is p times continuously differentiable in [0, T], 

(ii) (~) k(t, s) is continuous in 0 ~ s < t ~ T for all j = 0,1, ... ,p, 

(iii) (;t:) kr(t) is continuous in [0, TJ for all q > 0 and r 2:: 0 such that 
r+q<p-l, 

then the solution of (1.1.1) is p times continuously differentiable in [0, T]. 

Theorem 1.1.8 ([53], page 40) Assume that the kernel k(t, s) in (1.1.1) 
is absolutely integrable with respect to s for all 0 < t < T and that the 
equation has a continuous solution. Assume also that there exist functions 
F(t) and K(t, s) satisfying 

1 f(t) 1< F(t), 0 < t ~ T, 
1 k(t, s) 1< K(t, s), 0 < s < t < T, 

and such that the integral equation 

Y(t) = F(t) + l K(t, s)Y(s)ds 

has a continuous solution Y(t) for 0 < t ~ T. Then 

1 y (t) 1 < Y (t), 0 < t < T. 

(1.1.20) 

The next two theorems regarding qualitative behaviour require constraints 
on the kernel k(t, s). 

Theorem 1.1.9 ([53], page 43) If in 

y(t) = 1 + J.' k(t,s)y(s)ds, (1.1.21) 

we have 
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(i) k(t,s) ~ 0, 

(ii) gtk(t, s) > 0, 

for all 0 < s < t < T, then the solution of (1.1.21) satisfies 0 ~ y(t) ::; l. 

Theorem 1.1.10 ([53], page 43) If the conditions of Theorem (1.1.9) hold, 
and if, in addition 

(i) limt-+oo J; k(t, s)ds = -00, 

(ii) limt-+oo y( t) exists, 

then 
lim y(t) = o. 
t-+oo 

.AS'e. po-Yt:c~ P(ora-rtuso ~ 
Theorems which the Kernel are quite common. In 

Chapter 4, the results of Levin a~ Nohel for nonlinear equations also require 
a number of constraints. 

Theorem 1.1.11 ([53], page 45) Let f(t), k(t, s), D..f(t), D..k(t, s) be con­
tinuous and bounded by 1 k(t, s) 1< K, 1 D..k(t, s) I~ D..K, 1 f(t) I~ f I 

1 D..f(t) I~ AF. 
Let 5\.1:) be the solution of 

li( t) = I (t) + ill (t) + l' {k( t, 8) + ilk( t, s )}li( s )ds. (1.1.22) 

Then y(t) satisfies 

1 y(t) - y(t) 1 < {D..F + D..Kt (F + D..F) e(K+~K)t}eKt (l. l. a..~ 
- 0 (D..F) + 0 (D..K), 

where y(t) is the solution of (1.1.1). 
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Theorem 1.1.11 is known as a Gronwall-type theorem. 
When the kernel of (1.1.1) is unbounded, it is often convenient to rewrite 

this equation as 

yet) = f(t) + J.' pet, s)k(t, s)y( B )dB, (1.1.24) 

where p(t, s) represents the part with the non-smooth behaviour. We now 
have the following theorem. 

Theorem 1.1.12 ([53], page 48) Assume that in (1.1.1) 

(i) f(t) is continuous in 0 < t ~ T, 

(ii) k(t, s) is continuous in 0 ~ s < t < T, 

(iii) for each continuous function h and all 0 < 71 < 72 < t the integrals 

1'1"2 p(t, s)k(t, s)h(s)ds 
'1"1 

and 

J.' pet, s)k(t, s)h(s)ds 

are continuous functions of t, 

(iv) p( t, s) is absolutely integrable with respect to s for all 0 < t < T, 

(v) there exist points 0 = To < Tl < T2 < ... < TN = T such that with 
t>T - , 

where 

(vi) for every t > 0 

l
min(t.TH1) 

Ti I p(t, s) Ids < 0:' < 1, 

K = max I k (t, s) I, 
O~B:9~T 

!.
t+O 

lim I p (t + 8, s) Ids = 0 
0-+0+ t 
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Then (1.1.24) has a unique continuous solution in 0 < t < T. 

Many results of the kind presented here can be generalised to systems of 
second kind VIE's. The system 

y,(t) - j,(t) + l' t ku(t, s)y,(s)ds 
o i=l 

y,(t) - h(t) + l' t, k2i(t,S)y,(s)ds 

can be rewritten as 

y(t) = f(t) + /.' k(t, s)y(s)ds 

U sing the vector norm 

II y(t) 11= m!lx I Yi(t) I, 
19~n 

the induced matrix norm is 

n 

II k(t, s) 11= m~x " I kij(t, s) I . 
1<t<n L..J - - ;=1 

(1.1.27) 

(1.1.28) 

(1.1.29) 

The following theorems for system (1.1.27) are generalisations of theorems 
for a single equation. The norms defined above make the proofs formally 
the same. 

Theorem 1.1.13 ([53], page 46) IJf(t) andk(t,s) are continuous inO < 
s ::; t < T (meaning that all components are continuous), then the system 
(1.1.27) has a unique continuous solution Jor 0 < t ::; T. 

Theorem 1.1.14 ([53], page 47) IJthe system (1.1.27) possesses a unique 
continuous solution y(t) in 0 < t < T, such that k(t, s)y(s) is absolutely 
integrable and iJ 

II f(t) 11< F(t), 

II k(t, s) 11< K(t, s) 
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with continuous K and F, then 

II y(t) 11< Y(t), 

where yet) is the continuous solution of 

Y(t) = F(t) + I,' K(t, s)Y(s)ds. (1.1.30) 

1.1.2 Nonlinear Volterra integral equations of the sec­
ond kind 

We consider the nonlinear VIE 

y(t) = f(t) + lot k(t, s, y(s»)ds, 0 < t ::; T (1.1.31) 

Many of the results for linear equations are extended by putting condi­
tions on the kernel k of (1.1.31). The method of successive approximations 
can be generalised for nonlinear equations by ensuring that k is Lipschitz 
continuous in its third argument; i.e. 

1 k(t, s, w) - k(t, s, z) 1< L 1 w - z 1 (1.1.32) 

where L is independent of t, s, wand z. The successive iterates are defined 
by 

Yn(t) = l(t) + I,'k (t, S, Yn-I(S)) ds (1.1.33) 

with yo(t) = J(t). 
The method can be used to prove the following theorem. 

Theorem 1.1.15 ([53], page 52) Assume that in (1.1.31) the functions 
J(t) and k (t, s, u) are continuous in 0 < s < t < T and -00 < u < 00, 

and that furthermore the kernel satisfies a Lipschitz condition of the form 
(1.1.32). Then (1.1.31) has a unique continuous solution for all finite T. 

Theorems have been developed for equations with more general kernels, as 
below. We can use a number of these results to show that, for the equations 
we consider in Chapters 4, 5 and 6, unique solutions exist under particular 
conditions. 

Theorem 1.1.16 ([53], page 55) Consider (1.1.31) with f(t) continuous 
in 0 < t < T. Assume that there exist constants Ct., /3, L such that 
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(i) 0: < f(t) < /3, 0 S: t S: T, 

(ii) for all 0 S: s S: t < T and 0: < u < /3, the kernel K(t, s, u) is continu­
ous in all variables, 

(iii) for all 0 < s S: t < T and 0: < w < /3, 0: < z < /3 the kernel satisfies 
the Lipschitz condition 

I K(t,s,w) - K(t,s,z) 1< L I w - z I· 

Then there exists a 15 > 0 such that (1.1.31) has a unique continuous solution 
in 0 S: t S: o. 

Some qualitative results for linear equations have been extended, for the 
nonlinear case, as follows: 

Theorem 1.1.17 ([53], page 58) If f(t) is p times continuously differen­
tiable in [0, T] and 
K(t, s, u) is p times continuously differentiable with respect to all three argu­
ments in 0 < s S: t < T, -00 < u < 00, 

then the solution of (1.1.31) is p times continuously differentiable. 

Theorem 1.1.18 ([53], page 58) Assume that the conditions of Theorem 
(1.1.15) hold. Let y(t) be the continuous solution of {1.1.31} and let Y(t) 
be another continuous function satisfying Y(t) = F(t) + t H (t, s, Y(s)) ds, 
where F(t) and H(t, s, u) are continuous in all arguments,Oand the following 
conditions hold: 

(i) I f(t) 1< F(t), 0 S: t < T, 

(ii) for all functions Zl(t), Z2(t) such that I Zl(t) 1< Z2(t), the inequality 

I K (t, s, Zl(t)) Is: H (t, s, Z2(t)) 

holds for all 0 < s ::; t < T. 

I y(t) \< Y(t), 0::; t < T. 
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Theorem 1.1.19 ([53], page 60) Assume that the conditions of Theorem 
(1.1.15) are satisfied. Let y (t) be an approximate solution to equation (1.1.31) 
such that 

r(t) = f(t) + J.' K (t, s, y(s)) ds - y(t). (1.1.34) 

Then 
, y(t) - y{t) ,~ ReLt , 

where y(t) is the solution of (1.1.31) and R = max , r(t) ,. 

Theorem 1.1.20 ([53], page 60) Let the conditions of Theorem (1.1.15) 
hold, and let y(t) be the continuous solution of the equation 

y(t) = 1+ 1.' K(t, s, y(s))ds. 

Assume that the kernel satisfies the following conditions: 

(i) for all u and 0 S sst < T, 

K(t, s, u) ~ 0 if u ~ 0, 

K(t, s, u) < 0 if u ~ 0; 

(1.1.35) 

(ii) for all u ~ 0 and 0 S s < t S T, the function K(t, s, u) is a nonde­
creasing function of t. 

Then 0 S y(t) < 1. 

Theorem 1.1.21 ([53], page 61) Assume that the conditions of Theorem 
(1.1.20) are satisfied. Furthermore, assume that for every a > 0 we have 

lim /.t K (t, s, Y(s)) ds = -00 
t-too 0 

for every Y(t) satisfying a < Y(t) < 1. 
Then 

lim y(t) = 0, 
t-+oo 

if the limit exists. 

The following theorem is a result for equations with unbounded kernels. 
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Theorem 1.1.22 ([53], page 62) Consider the equation 

y(t) = itt) + J.' K (t, B, y(s)) ds (1.1.36) 

where 

(i) J(t) is continuous in 0 < t ::; T, 

(ii) K(t, s, u) is a continuous Junction in 0 < s ::; t ::; T, -00 < U < 00, 

(iii) the Lipschitz condition 

I K(t,s,w) - K(t,s,z) 1< L I w - z I 

is satisfied Jor 0 ::; s ::; t ::; T and all wand z, 

(iv) pet, s) satisfies conditions (iii}-(vi) of Theorem (1.1.12) with K replaced 
by Land K(t, s, h(s)) instead of k(t, s)h(s). 

Then (1.1.36) has a unique continuous solution in 0 ::; t < T. 

As with linear equations, many results for a single nonlinear equation can 
be extended to apply to a system of nonlinear equations. 

Theorem 1.1.23 ([53], page 62) Consider the system of equations 

y(t) = f(t) + J.' K (t, B, y(s)) dB. (1.1.37) 

Assume that 

(i) f(t) is continuous (i.e. every component is continuous), 

(ii) K(t, s, u) is a continuous function for 0 < s ::; t < T, -00 < II u II < 00, 
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(iii) the kernel satisfies the Lipschitz condition 

II K(t, s, w) - K (t, s, z) II:::; L II w - z II 

where the norm is as defined in (1.1.6). 

Then (1.1.37) has a unique continuous solution in 0 :::; t < T. 

For Theorem (1.1.3) there is no analogous result for nonlinear equations. 
However, a result has been established which establishes a relationship be­
tween certain nonlinear equations and related linear forms. 

Theorem 1.1.24 ([53], page 64) Consider the nonlinear equation 

y(t) = f(t) + [k(t, s){y (s) + H (s, y(s))}ds. (1.1.38) 

Let r(t, s) be the resolvent kernel for k(t, s) as given in (1.1.15). Let Y(t) be 
defined by 

Y(t) = f(t) + J.' f(t, s)f(s)ds. (1.1.39) 

Assume that all functions involved are continuous and such that (1.1.38) has 
a unique continuous solution on [0, T] and r(t, s) is a continuous function. 
Then y(t) satisfies 

y(t) = Y(t) + J.' f(t, s)H(s, y(s))ds. (1.1.40) 

1.1.3 Convolution equations 

The convolution equations discussed here are a special case of linear VIEs of 
the second kind. They are studied in great depth due to their practical use 
in mathematical modelling. The results presented in this section are directly 
relevant to Chapter 3, in which our linear test equation is a convolution 
equation. 

Definition 1.1.25 The linear convolution equation of the second kind is de­
fined as 

y(t) = f(t) + f.' k(t - s)y(s)ds (1.1.41) 
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Hence a convolution equation is one with a convolution kernel. Consider 
first, a kernel of the form 

n 

k(t - s) = Lai(t - s)i (1.1.42) 
i=O 

so that the equation (1.1.41) reduces to 

(1.1.43) 

Theorem 1.1.26 ([53], page 79) If f(t) is continuous on [0, T), then the 
solution to {1.1.43} is given by 

n 

y(t) = f(t) + L aiwi(t), 
i=O 

where the Wi are the solution of the system 

n 

w~(t) = f(t) + L aiwi(t), 
i=O 

w~(t) = iWi-l (t), i = 1,2, ... ,n, 

wo(O) = Wl(O) = ... = wn(O) = O. 

Theorem 1.1.27 ([53], page 83) If k(t) is of polynomial form (1.1.42), 
then its resolvent kernel R(t) is the solution of the homogeneous linear dif­
ferential equation with constant coefficients 

with initial conditions 

R(O) 
R'(O) 
RI/(O) 

aO, 
2 al + ao, 

2a2 + ao (al + a~) + alaO, 
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Laplace transforms playa large part in studying linear convolution equa­
tions of the second kind. First, we define a shorthand notation for writing 
down the convolution of two functions, Y1 and Y2: 

(Yl * y,) (I) = l' YI(1 - s)y,(s)ds (1.1.44) 

The Laplace transform of a function y(t) is denoted here by y* or £(y). 
It is defined as 

y*(w) = £(y)(w) = 1.00 

e-wty(t)dt (1.1.45) 

The Laplace transform operator £ has an inverse £-1 given by 

1 l a
+

ioo 

£-l(U)(t) = -2 . ewtu(w)dw 
7r1. a-ioo 

(1.1.46) 

such that 

£-l(y*)(t) = y(t) (1.1.47) 

The useful application of Laplace transforms arises primarily from the 
following theorem. 

Theorem 1.1.28 ([53], page 84) Let Y1 and Y2 be two functions which are 
absolutely integrable over some interval [0, T] and which are bounded in every 
finite subinterval not including the origin. If, furthermore £, (Yl) and £, (Y2) 
are absolutely convergent for w > wo, then £ (Y1 * Y2) = r. (yd' r. (Y2), ~w > 
woo In other words, the Laplace transform of a convolution is the product of 
the individual transforms. 

Consider equation (1.1.41). This can be rewritten in the following form 

(1.1.48) 

Applying the Laplace transform to this, noting that r. is a linear operator, 
gives 

y* = f* + k*y*. (1.1.49) 

Solving this for y*, 

* f* 
y = 1- k*' (1.1.50) 
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and applying the inverse Laplace transform, gives the solution 

1'-1 ( 1* ) y = J-, 1 - k* . (1.1.51) 

In practice, it is difficult to solve equations analytically using the Laplace 
transform method because the inverse Laplace transform is only known for 
a relatively small number of functions. The main advantage of the Laplace 
transform method is that it allows us to obtain some qualitative information 
regarding the behaviour of the solution in a simple way. 

Results obtained for linear VIEs of the second kind can be applied im­
mediately to linear second kind convolution equations. Since the latter are 
a special case of the former, the results sometimes simplify. For example, 
theorem 1.1.9 becomes 

Theorem 1.1.29 If the kernel k(t) in the equation 

y(t) = 1+ 1.' k(t - s)y(s)ds (1.1.52) 

satisfies k(t) < 0 and k'(t) > 0 then the solution of (1.1.52) satisfies 0 ~ 
y(t) S 1. 

Important results regarding the asymptotic behaviour of solutions to 
(1.1.41) have been developed by Paley and Wiener (see [62]). 

If we know something about the asymptotic behaviour of the f, what 
restrictions must we put on the kernel k so that the solution y displays the 
same asymptotic behaviour? According to [30]tif f E L1 (JR+j en), or f E 
Loo (JR+ j en), then a necessary and sufficient condition exists for y to display 
the same asymptotic behaviour as f. This condition is r E L1 (JR+ j enxn ), 

where r is the resolvent of the kernel k. A proof of this is given in [30]. For 
the condition itself to hold, other conditions must be satisfied and these are 
presented in the Paley- \,.Ji,,(\ol!r theorems. We present the theorems without 
proof. Their results are discussed in more detail and proofs are presented in 
[30]. 

Theorem 1.1.30 ([30], page 45) Let k E L1 (JR+jenxn ). Then the resol­
vent r of k satisfies 

if and only if 
det[I + k(z)] =f 0, ~z > 0.* 
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Theorem 1.1.31 ([30], page 46) Let k E L1 (lR; cnxn ). Then there is a 
function 

r E L1 (lR; cnxn ) 

satisfying the two equations r + k * r = r + r * k = k, if and only if 

det[I + k(z)] =I- 0, ~z = o. 

This function r, known here as the whole line resolvent of k, is unique. 

Theorem 1.1.30 is known as the half-line Paley-Wiener theorem, and The­
orem 1.1.31 is known as the whole-line Paley-Wiener theorem. These theo­
rems are stated for systems of equations. They can be simplified to special 
cases for scalar equations. The discrete versions of Paley & Wiener play an 
important role in numerical methods. 

1.2 Volterra integro-differential equations 

Volterra integro-differential equations (VIDEs) involve derivatives of the un­
known function as well as integral terms. The presence of both derivatives 
and integrals allows for many different forms of the equation; each form hav­
ing its own advantages and disadvantages when deciding on a method of 
(approximate) solution. This variety makes classification of VIDEs rather 
difficult. A few examples of VIDEs are given below. 
Examples 

y'(t) - f.' k(t,s)y(s)ds = 1(t) (1.2.1) 

y"(t) + a(t)y'(t) + b(t)y(t) + f.' k(t, s)y(s)ds = 1(t). (1.2.2) 

It is sometimes convenient to reduce VIDEs to a single second kind VIE 
or a system of VIEs of the second kind, and apply the generalised forms of 
results obtained for single VIEs to the system when considering solutions 
and qualitative behaviour. For example, equation (1.2.1) can be reduced to 
a system of two VIEs by direct integration. Results on the properties of 
VIDEs are usually derived from results for VIEs and ODEs. 
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1.2.1 Linear Volterra integro-differential equations of 
convolution type 

In this section (which is directly relevant to our test equation in Chapter 3), 
we consider the integro-differential equation 

y' + (p, * y) = j, y(O) = Yo, (1.2.3) 

where y is the unknown function andjis the forcing term. This equation is 
discussed in some detail in [30] and this text is the source for much of the 
material here. We begin first, by differentiating the convolution equation of 
the second kind 

y(t) + lot k(t - s)y(s)ds =f(t), t E R+ (1.2.4) 

to give 

y'(t) + k(O)y(t) + l k'(t - s)y(s)ds = f'(t), t E JR+; y(O) = j(O). (1.2.5) 

This is an example of the more general equation 

y'(t) + ll-'y(t - s )ds = j(t), t E JR+; y(O) = ylJr (1.2.6) 
~~4l 1J<S) ~ S 0- rY\ecJt.ifC2.. 

Grippenberg et al [30] shows that the solution of equation (1.2.6) can 
be given by a variation of constants formula, similar to the corresponding 
formula for ordinary differential equations (ODEs) (see [37], for example). 
Laplace Transforms can be used to obtain the formula. Taking transforms 
of both sides of (1.2.6): 

wy*(w) - Yo + p,*(w)y*(w) = f*(w), (1.2.7) 

and hence 

y*(w) = [wI + p,*(W)tl (Yo + f*(w)). (1.2.8) 
jJ 

Note that the Laplace transform of the Borel measure"is defined as 

I-"(w) = ll'~) e-WSJ.s, (1.2.9) 

and the convolution of a measure p, and a function a (both defined on R+ is 
defined as the function 

(I-" a)(t) = l p~o...(t-s)ds. (1.2.10) 
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Suppose that there exists a locally integrable function r whose Laplace 
transform is given by 

r*(w) = [wI + Jl*(W)tl. (1.2.11) 

Then y is given by the variation of constants formula 

y(t) = r(t)yo + (r * f)(t), t E R+. (1.2.12) 

Equation (1.2.6) can be written as 

y' ( t) + (Jl * y)( t) = f ( t), t E R+; Y (0) = Yo· (1.2.13) 

1.2.2 Nonlinear Volterra integro-differential equations 
of convolution type 

Nonlinear convolution VIDEs are the main type equation we study in chap­
ters 4, 5 and 6. An example of a nonlinear VIDE with a convolution kernel 
is 

y'(t) + J.' k(t - s)g(y(s))ds = itt), t E IR+. (1.2.14) 

Special cases of this equation have been studied (for example, see [50], [51], 
[13]). 

We consider the homogeneous equation 

y'(t) = - J.' k(t - s)g(y(s))ds, t E IR+, (1.2.15) 

under the following conditions: (1) k(t) is completely monotonj (2) g(y) E 
C( -00,00), yg(y) > O(y i- 0) (and hence g(y) and y always have the same 
sign, g(O) = 0). (3) G(y) := J~ g(~)d~ -+ 00 as Iyl -+ 00. Levin and Nohel 
in [50] give the following theorem for equation (1.2.15) subject to the above 
conditions. 

Theorem 1.2.1 (Levin and Nohel) ~ny solution y(t) of (1.2.15) subject 
to (1), (2), (3) is asymptotically stable providing k(t) is not the constant 
function k(O). 



1.3 Delay Volterra integro-differential equa­
tions 

A Delay Volterra integro-differential equation (DVIDE) is an equation involv­
ing the derivative of the unknown function, an integral operator of Volterra 
type, and a dependency on a previous state of the system. An example of a 
DVIDE is the equation 

y'(t) = (y(t) + V tT k(t - s)y(s)ds + g(t), t> 0, (1.3.1 ) 

where ~, 1/ are constant. This is a linear DVIDE with a convolution and a 
fixed finite delay 7. This is an example of the far more general kernel, 

y'(t) = G (t, y(t), tT K(t, s, Y(S))dS) , t > 0. (1.3.2) 

We consider a specific delay equation in Chapter 7. 

1.4 An informal definition of stability 

Different texts have different definitions of stability. It is important/to. avoid 
ambiguity, that we give a clear definition of what we mean by stability. Saaty 
and Bram [69] give a good informal account of stability in relation to ODEs 
(which is relevant, since VIDEs and IEs can be expressed as ODEs). The 
informal definition follows: 

"One is usually interested in the solution of a differential equation if the 
initial conditions or the right side of the equation is changed. This change 
corresponds to a real-life situation in which, for example, the differential 
equation maybe an idealisation which assumes a calm atmosphere, whereas 
the true state is described by a turbulent atmosphere which buffets a missile 
and hence comprises a disturbance of its trajectory. The simplest case is 
that in which the initial conditions are changed (disturbed). The existence 
theorem guarantees a unique solution of the differential equation for each 
choice of initial conditions. Thus for two initial conditions, i.e. the original 
and the disturbed, we obtain two solution, and the following question arises: 
Will the difference between the trajectories remain bounded, tend to zero, 
oscillate, or grow without bound as time goes on? If the trajectories remain 
bounded or oscillate (without any growth or decay) then the system is stable. 
If the trajectories tend to zero then the system is asymptotically stable. 
Otherwise the system is unstable." 
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There exist a variety of methods for investigating the stability of a sys­
tem. For example: linearisation (see [54] for example), Lyapunov's Direct 
Method (see [57] for example), frequency domain methods(see [61] for exam­
ple). This list is not exhaustive. We are interested in the method attributed 
to Lyapunov because it is widely used in the stability of analysis of nonlinear 
Volterra equations (see [16], [51], [50], for example). 

1.5 Stability of Volterra integral and func­
tional equations: Lyapunov approach 

Lyapunov's method is described in [57]. However, here we choose Saaty 
and Bram's description of the method (see [69]) because of its clarity. They 
describe the method informally as it is applied to ODEs: 

"Lyapunov's second method examines the stability of a differential equa­
tion without the use of explicit functions. It generally applies to a free system, 
i.e. an unforced system having the origin as a point of equilibrium. Stability 
itself is concerned with deviations about an equilibrium point. Thus stability 
means that if the initial conditions of the trajectory of an undisturbed mo­
tion are disturbed slightly from equilibrium at the origin, then subsequent 
motions remain in a small neighbourhood of the origin." 

1.5.1 Stability of solutions to ordinary differential equa­
tions 

Here we re-present precise definitions of stability, instability and asymptotic 
stability of equilibrium points of planar autonomous systems, i.e. systems of 
the form 

y'(t) = f(y). (1.5.1) 

These definitions can be found in [35]. 

Definit,ion 1.5.1 An equilibrium point y of GIl autonomous system:-j.. 
y' = ,". Y') is said to be stable if, for any given € > 0, there is a 0 > 0 
(depenamg only on €) such that, for every Yo for which Ilyo - yll < 0, the 
solution ¢> (t, Yo) of y' = f(y) through Yo at t = 0 satisfies the inequality 
II¢> (t, Yo) - yll < € for all t > o. The equilibrium y is said to be unstable if 
it is not stable, that is, there is an v > 0 such that, for any 0 > 0, there is 
an Yo with Ilyo - yll < 0 and tyO > 0 such that 114> (tyO' Yo) - yll = v. 
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Definition 1.5.2 An equilibrium point y is said to be asymptotically stable 
if it is stable and, in addition, there is an r > 0 such that II¢> (t, Yo) - yll ~ 0 
as t ~ +00 Vyo satisfying Ilyo - yll < r. 

In [35] the following theorem is presented. 
Ent"" 

Theorem 1.5.3 If all the eigenvalues of the coefficient matrix A~n the linear 
system y' = Ay have negative real paris, then its equilibrium point y = 0 is 
asymptotically stable. Moreover, there are positive constants K and a such 
that 

IleAtYoll :::; K e-at IIYol1 Vt ~ 0, Yo E lR ~ 
If one of the eigenvalues of the coefficient matrix A has positive real part, 
then the equilibrium point y = 0 is unstable. 

We now introduce Lyapunov functions and briefly state some results of 
Lyapunov [57]. 

Theorem 1.5.4 (Lyapunov) Let y = 0 be an equilibrium point of y' = 
f(y) and V be a positive definite differentiable function with continuous first 
derivatives, on a neighbourhood U of O! 

(i) If V'(y) < 0 for y E ~{O}, then 0 is stable. 

(ii) If V' (y) < 0 for y E ~ {O}, then 0 is asymptotically stable. 

(iii) If V' (y) > 0 for y E ~ {O}, then 0 is unstable. 

Definition 1.5.5 A positive definite function V on an open neighbourhood 
U of the origin is said to be a Lyapunov function for y' = f(y) if V'(y) < 0 
for all y E ~{O}. When V'(y) < 0 for all y E ~{O}, the function V is 
called a strict Lyapunov function. 

Using a Lyapunov function in this way to determine the stability of an equi­
librium point is known as Lyapunov's direct method. A recognised difficulty 
in applying this method is that, for some systems, it may not be easy to find ) 
an appropriate positive definite function. L~.eQ.., for~~(J.fY'f\lt/[Lrt;] I p. \0'1~ tO~ • 

1.5.2 Direct method of Lyapunov for difference equa­
tions 

For the analysis of discrete equations we use discrete Lyapunov functions. 
The conventional discrete Lyapunov theory is for difference equations of fixed 
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finite order. We present this first, followed by a variation which applies to dif­
ference equations of unbounded order. The latter method is directly relevant 
to our discretisations in later chapters. This is because the integral term in 
the integro-differential equations leads to difference equations of unbounded 
order when discretised. 

Direct method of Lyapunov for difference equations of bounded 
order 

This material is a re-presentation from [22] of an adapt ion of Lyapunov's 
method for difference equations of bounded order. 

Consider the difference equation 

y(n + 1) = f(y(n)) (1.5.2) 

where f : G --t R~ G C Rk, is continuous. We assume that y* is an equilib­
rium point of (1.5.2), that is f(y*) = y*. 

Let V : Rk --t R be defined as a real valued function. The variation of V 
relative to (1.5.2) would then be defined as 

~V(y) = V(J(y» - V(y) (1.5.3) 

and 

~ V{y(n» = V(J(y{n») - V(y(n» = V(y(n + 1» - V(y(n». (1.5.4) 

Notice that if ~V(y) ::; 0, then V is nonincreasing along solutions of 
(1.5.2). The function V is said to be a Lyapunov function on a subset H of 
Rk if 

(i) V is continuous on Hand 

(ii) ~V(y) < 0 whenever y and f(y) E H. 

Let B{y,,) denote the open ball in IRk of radius, and centre y defined 
by B(y,,) = {z E IRk :11 z - y 11< ,}. For the sake of brevity, B(O,,) will 
henceforth be denoted by B(f). We say that the real-valued function V is 
positive definite at y. if 

(i) V(y*) = 0 and 

(ii) ~V(y) > 0 for all jE B(~*,,), for some, > O. 
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We now present Lyapunov's first Stability Theorem for difference equa­
tions of bounded order. 

Theorem 1.5.6 (Elaydi [22]) If V is a Lyapunov function for equation 
{1.5.2} on a neighbourhood H of the equilibrium point y*, and V is positive 
definite with respect to y*, then y* is stable. If, in addition, ~ V (y) < 0, 
whenever y, f(y) E Hand y =I y*, then y* is asymptotically stable. More­
over, if G = H = jRk and V(y) -+ 00 as II y 1\-+ 00 then y* is globally 
asymptotically stable. 

Direct method of Lyapunov for difference equations of unbounded 
order 

This method is presented in [16] in some detail. Earlier references to dis­
crete Lyapunov functions are contained in [48], for example. We present the 
required results below. 

Definition 1.5.7 (Crisci et al [16]) For the difference equation 

Yn+l = f(n, Yn, ... ,Yo) (1.5.5) 

a discrete Lyapunov function V(n, Yn' ... ,Yo) is a function that satisfies the 
hypotheses of Theorem 1.5.8. 

Theorem 1.5.8 (Crisci et al [16]) Let Vi (Yo, Yl,' .. ,Yi) be, for each natu­
ral number i, a scalar function continuous with respect to all its arguments, 
which satisfies: 

1. Vo(O) = 0 

3. ~ Vi = Vi+1 (Yo, Yt, ... ,Yi, Yi+l) - Vi (Yo, Yl, ... ,Yi) < 0 ~ ~~ ~j;~ 
t.11\~O of (1·5. 5) ~s-~"tA.bla. . 

4· If, in addition, ~Vi < -w2(\IYiID then the solution of (1.5.5) is asymp­
totically stable. 

Here, the functions Wi are assumed to be scalar increasing functions that 
satisfy Wi(O) = o. 
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1.5.3 Direct method of Lyapunov for Volterra integro-
differential equations 

This section describes a generalisation of Lyapunov's direct method. This 
generalisation is described in more detail by Crisci et al [16]. Consider the 
nonlinear system of VIDE's 

y(t) = G(t, y(t)) + 1,'. k(t, s, y(s))ds, t > 0, (1.5.6) 

subject to the initial conditions 

y(O) = Yo, (1.5.7) 

where y, G and k are real continuous functions satisfying local Lipschitz 
conditions with respect to y, and G(t,O) = OJ k(t, s, 0) = 0 for all t, s > O. 

Definition 1.5.9 (Crisci et al [16]) The trivial solution of equation (1.5.6) 
defined by the zero initial condition y(O) = 0 will be called 

(i) stable if for any f > 0 there exists 6€ such that lIy(t) II < f, t > 0, for 
any initial vector Yo with IIYoli ~ 6; 

(ii) asymptotically stable if it is stable and limt-+oo y(t) = 0, for all vectors 
Yo E D where D is some neighbourhood of the origin. Sometimes D is 
called the domain of attraction of the trivial solution. 

Definition 1.5.10 (Crisci et al [16]) A functional V(t, Yt) is called posi­
tive definite (decrescent) if there exists a function Wl (r) (function W2 (r)) such 
thatV(t,Yt) > wl(lIy(t)11) (such thatV(t,Yt) ~ W2{S'vp H':ltt+e")\l). 

-\:: i-ei:o-

Lemma 1.5.11 (Crisci et al [16]) The trivial solution of (1.5.6) is asymp­
totically stable if there exists a scalar continuous functional V(t, Yt) which, 
for any solution y(t) of the problem (1.5.6), (1.5.7), belonging to D for all 
t, is positive definite, decrescent and its right upper total derivative denoted 
as d+Vd~'Yt) is negative definite. 

Theorem 1.5.12 (Crisci et al [16]) Assume that 

a > sup 100 

K(t + s, t)ds 
t>o 0 
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where 

and k lsot tk~m 

a = - sup ')'(g(t, y)) 
t~O,YED 

IIk(t, s, y)1I < x:(t, s)IIYII· 

Then the trivial solution of (1.5.6) is asymptotically stable. 

(1.5.9) 

(1.5.10) 

1.6 Some applications giving rise to Volterra 
integral and functional equations 

In this section we discuss the application of Volterra equations to the mod­
elling of real-life situations. We present some example models which have 
been studied previously and are indicative of the sort of situations where 
Volterra equations occur. 

"Volterra equations arise most naturally in certain types of time-dependent 
problems whose behaviour at time t depends not only on the state at that 
time, but also on the states at previous times." (Linz [53], page 13). Mod­
els of such problems are called systems with memory. The integral term in 
the model (and, in delay equations, terms involving a time lag) provide a 
natural way for modelling memory in a system. A clear example of where 
Volterra equations are naturally suited is population dynamics. The birth 
rate of a population is, to a large extent, dependent on a previous state of the 
population; the gestation period of the species, for example, must be taken 
into account. Similarly, a large natural disaster in a population's past which 
greatly reduces its size is also going to a have a bearing on the population's 
current state. Equations which model population dynamics are often termed 
evolutionary equations. Such areas of study can be grouped under the more 
general heading of mathematical biology. 

Biology and ecology are not the only fields to benefit from Volterra equa­
tions. They also occur in mechanical systems and renewal theory. Integral 
equations are also useful in models where differential equations may first 
seem to be the more natural choice. This is because differential equations 
may be represented by integral equations. Conversely, differential equations 
may the preferred choice for some models when integral equations seem more 
appropriate. 
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1.6.1 An application to population dynamics 

The study of Volterra equations began with research, by Volterra, into pop­
ulation dynamics (see [72]). Consider the Malthus model for population 
growth 

dN(t) 
dt = CiN(t), t > 0, (1.6.1) 

with initial condition 

N(O) = No, (1.6.2) 

where N(t) is the number of individuals alive in the population at time t and 
a is a constant representing the difference between the birth and death rates. 
The Malthus model is very sim8iistic and, as a result, flawed in that the rate 
of change of the population d~/ depends only on the number of individuals 
alive at time t. The population will either grow exponentially (a > 0), decay 
exponentially (a < 0) or remain constant (a = 0). 

The assumptions made by the Malthus model are rarely realistic and 
models which are to be of any use must be far more complicated. For ex­
ample, suppose that the environment in which the population lives changes 
over time, possibly due to a reduction in the food supply or pollution. Now, 
instead of a being a constant, it will change with time t. However, not only 
will it be determined by the current state of the population but also the past 
states of the population will have some effect (since they have had an effect 
on the current state of the environment). Thus a now becomes a function of 
t incorporating a history-dependent (or memory) term. For example, 

a{t) = ao -I,' k{t - s)N{s)ds. (1.6.3) 

Equation (1.6.1) now becomes the Volterra integro-differential equation' 

dN(t) (t ) dt = N(t) ao - 10 k(t - s)N(s)ds , (1.6.4) 

with a convolution kernel. The equation used by Volterra in his research was 
actually 

dN(t) ( t ) dt = N(t) CiO - a 1N2(t) - 10 k(t - s)N(s)ds , (1.6.5) 

with the -a1N2(t) term introduced to account for competition for resources 
between members of the population. This term tends to inhibit the growth 
of the population. 
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1.6.2 An application to renewal problems in industry 

Applying Volterra equations to renewal problems was first discussed by Feller 
(see [24]). Suppose a machine in a factory requires a particular component 
which is subject to failure over time. In general, the failure time is a random 
variable with a propability density function p(t) such that the probability of 
failure in a small interval (t, t + b.t), of a component which was new at time 
t', is p( t - t') b.t. If every component eventually fails then 

('JO p(t _ t')dt = 1, 
it' 

for every t', so that p(t) must satisfy 

10
00 

p(t)dt = 1. 

(1.6.6) 

(1.6.7) 

If the component is replaced when it fails (and the next component is 
replaced on failure, and so on) then of practical interest to the maintainers 
of the machine is the renewal density, h(t) say, which measures the probability 
for the need of a replacement. We define h(t) so that the probability that a 
replacement must be made in the interval (t, t + b.t) is given by h(t)b.t. The 
probability that a replacement is needed is the sum of the probability that 
the first failure occurs in (t, t + b.t), and the probability that a renewal was 
made at time t', followed by another failure after t - t' units of time. Adding 
all contributions together and taking the limit as b.t ~ 0 yields the renewal 
equation 

h(t) = p(t) + J.' h(t')p(t - t')dt'. (1.6.8) 

1.6.3 An application to nuclear reactor dynamics 

Functional differ .ential equations (FDEs) are often used to model the dy­
namics and stability of nuclear reactors. We briefly state three models which 
are discussed in [44] (page 16). The model involves delays which actually 
occur in the reactor for a number of reasons; i.e. the time it takes heat to 
diffuse to another part of the reactor, the snapping time of the control sys­
tem, etc. The first two models are each a pair of coupled delay differential 
equations and the third model is a system of four such equations. 

x(t) = (ax(t) + by(t - h))(l + x(t)), } 
y(t) = x(t) - y(t)j . (1.6.9) 
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x(t) = (¢(x(t - h1)) + 'Ij;(y(t - h2)))(1 + x(t)), } 
y(t) = x(t) - y(t); 

(1.6.10) 

These first two models above do not take into account the delayed neu­
trons. The third model below does. 

x(t) = (a1{h(t) + a2B2(t))(1 + x(t)) - a3(X(t) - y(t)), ) 
y( t) = a4 (X(t) - y( t)), 
'Y01 (t) = (1 - a)x(t) - b(B1 (t) - B2(t)) , 
02(t) = aB2(t - h) - B2(t) + ax(t) + b(B1(t) - B2(t)). 

(1.6.11) 

In each model, x(t) is the relative change of neutron density, y(t), B1(t), B2(t) 
are proportional to the relative change in temperature of the reactor, fuel and 
de-acceleration device, respectively. In the third model (1.6.11), the delay h 
is the time of liquid fuel transportation along a circular contour. 

These models may be studied in their current form or integrated first to 
produce systems of VDIEs. 

1.6.4 Another application to population dynamics 

This model discussed here appears in [30] (page 5). Consider a population 
x which has an age distribution x(t, a), t > 0, a > O. Therefore fAx(t, a)da 
is the number of individuals with age in the set A at time t. It is assumed 
that the process of aging and dying is modelled by the balance law 

ay(t, a) 8y(t, a) _ () ( ) 
at + 8a - -m a y t, a , (1.6.12) 

where the non-negative function m denotes the age-dependent death rate. 
Suppose now that the birth process satisfies the integral equation 

y(t, 0) =!. y(t, a)b(a)da, 
1R+ 

(1.6.13) 

where b is the age-dependent fertility. The initial age distribution y(O, a) = 
¢(a) is known. Equation (1.6.12) can be solved using the method of charac­
teristics (a known analytical method for certain types of partial differential 
equations (PDEs)). Using the initial condition, the following may be ob­
tained 

y(t, a) = 4' { 
¢( a - t)e( - f~ m(s+a-t)ds) 0 ~ t < a, 
y(t - a, O)e( - fo m(s)ds) , t ?:. a. 

(1.6.14) 
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Substituting (1.6.14) into (1.6.13) yields the linear Volterra equation 

y(t,O) + l' k(t - s)y(s,O)ds = f(t), t > 0, (1.6.15) 

where 

k(t) = -b(t)e( - I~ m(s)ds) , (1.6.16) 

and 

f(t) = r ¢(s)e(-I~m(s+(T)dl1)b(t + s)ds. 
JJR+ 

(1.6.17) 

Equation (1.6.15) is the classical renewal equation again. 
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Chapter 2 

Numerical methods 

The purpose of this chapter is to introduce the numerical methods that we use 
in later chapters for solving integro-differential equations. We introduce the 
idea of combining a numerical method for solving ODEs (a simple Euler rule) 
with a quadrature rule (a () method) to produce a hybrid numerical method 
for solving VIDEs. This is the technique we use in later chapters. The rea- . 
son we need numerical methods is that relatively few equations encountered 
in practice can be solved analytically. Techniques for finding approximate 
solutions must be used. One such technique is to use numerical methods. 

Numerical methods are used to provide a discrete equation which then has 
to be solved. Therefore, to approximate a Volterra equation we must discre­
tise the problem and solve this new problem. This is a complicated process. 
Even for simple numerical schemes, the analysis is not straightforward. In 
[39], Iserles quotes Nick Trefethen, saying that t any mathematical problem, 
upon discretisation, becomes a more challenging mathematical problem·~ As 
well as discussing the methods we use, we also give references to alternative 
numerical methods. 

We concentrate on discussing linear multi-step methods and Runge-Kutta 
methods because our choice of numerical scheme for solving equations in 
later chapters falls into both categories. Although the method is simple it is 
important in that results derived for this method provide a basis from which 
results can be developed for complicated methods (either linear multistep or 
Runge-Kutta). This approach has proved useful in the fields of both ODEs 
(see [38]) and Volterra integral equations (see [26]). As such, we expect it to 
be equally useful in the field of Volterra integro-differential equations. The 
problems we are concerned with can be thought of as initial value problems of 
differential systems. It is therefore appropriate to discuss numerical methods 
from this standpoint. 
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2.1 Convergence and consistency of numeri­
cal methods 

When discussing numerical methods, we need to consider convergence, con­
sistency and stability. We use [49] as a source of reference for this section. 
Consider the initial value problem 

Y' = f(t, y), y(a) = v, f: lR x lRm ~ Rm , v = [Vb V2,'" ,vm]T . (2.1.1) 

Suppose that this problem satisfies theyfollowing existence-uniqueness theo-
rem: conolitlalS"fO·t\u. 

Theorem 2.1.1 ([49], page 5) Let f(t, Y), where f : R x Rm ~ Rm, be 
defined and continuous for all (t, y) in the region D defined by a < t < b, 
-00 < Y(i) < 00 (where Y(i) is the ith component of y), i = 1,2, ... ,m, where 
a and b are finite, and let there exist a constant L such that 

" f(t, y) - f(t, y*) 11< L II y - y* II (2.1.2) 

holds for every (t, y), (t, y*) ED. Then for any V E lRm , there exists a 
unique solution y(t) of the problem (2.1.1), where y(t) is continuous and 
differentiable for all (t, y) E D. 

NB The above theorem is equivalent to Theorem 1.1.23 for systems of integral 
equations. 

Consider the general numerical method 

k 

2:: ajYn+j = heP, (Yn+k' Yn+k-l,· .. ,Yn, tn; h) , 
j=O 

with appropriate starting values 

Yl-' = vl-'(h) , J.L = 0,1, ... ,k - 1, 

(2.1.3) 

(2.1.4) 

where the subscript f on the right-hand side indicates that the dependence 
.of eP on Y[l;tk' Yn+k:-l' . . . ,Yn, tn i!, through the function f (t, y). lDinbu \:. ~ ~ I f' a tt­
I mf,~S' tN-~lIoW~ ~o concliTlo~S o~ Co:). .1. '3}: 

1. eP,=o (Yn+k, Yn+k-b' .. ,Yn, tn, h) = 0, 

2. 

II eP,(Yn+k,Yn+k-b'" ,Yn,tn;h) - ¢>, (Y~+k'Y~+k-l'''' ,y~,t~;h) " 
k 

~ ML II Yn+i - Y~+i 1\, 
j=O 

where M is a constant. 
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A formal definition of convergence of the method follows: 

Definition 2.1.2 ([49], page 27) The method defined by {2.1.3} and {2.1..4-} 
is said to be convergent if, for all initial value problems satisfying the hypothe­
ses of Theorem 2.1.1, we have that 

lim Yn = y(t) 
h-+O 

holds for all t E [a, b] and for all solutions {Yn} of the difference equation 
in {2.1.3} satisfying the method's starting conditions. A method which is not 
convergent is said to be divergent. 

Note that if convergence is to be a property of a method, then convergence 
must take place for all initial value problems. 

We now consider what is meant by consistency. The numerical method 
would be an infinitely accurate representation of the differential system if the 
difference equation (2.1.3) were satisfied exactly when we replaced the numer­
ical solution Yn+i at tn+i' by the exact solutions Y (tn+i ), for j = 0, 1,2, ... ,k. 
We therefore take as a measure of accuracy the value of the residual Rn+k 
which results on making the substitution. We thus define Rn+k by 

k 

Rn+k = 2: QjY (tn+j) - h¢, (y (tn+k) , Y (tn+k-l) , ... ,Y (tn), tn; h). (2.1.5) 
j=O 

Rn+k is essentially the local truncation error (the error that is introduced at 
each step). As the stepsize of the numerical method gets smaller, we would 
hope that the residual would get smaller, so that for h infinitely close to zero, 
the residual is negligible. We define consistency as follows: 

Definition 2.1.3 ([49], page 28) The method defined by (2.1.3) and (2.1.4) 
is said to be consistent if, for all initial value problems satisfying the hypothe­
ses of Theorem 2.1.1, the residual Rn+k defined by (2.1.5) satisfies 

lim -hI Rn+k = O. 
h-+O 

NB The word 'consistent' is shorthand for the phrase 'consistent with the 
differential system'. 

It is documented in [49] that convergence implies consistency but the 
converse is not true. It can happen that the difference system produced 
by applying a numerical method to a given initial value problem suffers an 
in-built instability which persists even in the limit as h -t 0 and prevents 
convergence. The form of stability wEf\considering here is called zero-stability 

~ 
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Linear 
multistep 
methods 

e Methods 

Runge-Kutta 
Methods 

Figure 2.2.1: Two principal types of numerical methods 

because it is concerned with stability of the difference system in the limit as h 
tends to zero. Any numerical method applied to (2.1.1) will introduce errors 
due to discretisation and round-off, and these could be interpreted as being 
equivalent to perturbing the problem; if the original continuous problem is 
not stable then no numerical method has any hope of producing an acceptable 
solution. The same will be true if the difference equation produced by the 
method is itself over-sensitive to perturbations. 

2.2 Two principal methods 

We will spend most time considering the linear () methodst This choice 
of numerical method falls into two categories of methods simultaneously -
linear multistep methods and Runge-Kutta methods. It is therefore appro­
priate that we should briefly discuss the characteristics of both these types of 
methods. We discuss these methods with respect to the classical ODE initial 
value problem (because this is what they were originally designed for). We 
note that the Volterra equations under investigation in this thesis may be 
rewritten as initial value problems. Later, we discuss how the methods are 
applied to Volterra integral and integro-differential equations without hav­
ing to rewrite them as a system of 0 D E~ A 4rte~r in Yn and J n and is 
a one-step method. It is a simple method but has very low accuracy. Lin­
ear multistep methods achieve higher accuracy by retaining linearity with 
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Consider the integral f:f(x)dx approximated by the quadrature rule 

n b-a 
h L w;n) f{a + jh) , where h = --. A a-method is a quadrature method where the 

j=O n 

weights w;n) are of the form {w~n),w~n), ... ,w~~Lw~n)}= {a,l, ... ,l,l-a}. NB The 

explicit Euler rules corresponds to a = 1, the implicit Euler rule corresponds to a = 0 
and the Trapezium rule corresponds to a = t . 
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respect to Yn+j and fn+j, j = 0,1, ... ,k, but sacrificing the one-step for­
mat. Runge-Kutta methods develop differently from Euler's method; higher 
order is achieved by retaining the one-step form but sacrificing the linearity. 

U With linear multistep methods it is easy to tell when we ought to change the 
steplength but hard to change it, while with Runge-Kutta methods it is hard 
to tell when to change the steplength but easy to change it~" C """,1, ~ l4-

q 
. 

2.2.1 Linear multistep methods 

Linear multistep methods are a subclass of the general method described 
by (2.1.3) and (2.1.4) in which the function rpf (Yn+k, Yn+k-b' .. ,Yn, tn; h) 
defined by (2.1.3) takes the form of a linear combination of the values of the 
function f evaluated at (tn+j , Yn+j) , j = 0,1, ... ,k. Using the notation 

fn+j = f (tn+j, Yn+j) , j = 0,1, ... ,k 

we define a linear multistep method in standard form by 
k k 

LOiYn+i = h L{3ifn+i, 
i=O j=O 

where OJ and {3j are constants subject to the conditions 

Ok = 1, 10 01 + 1,801 "# 0. 

(2.2.1) 

The first of these conditions removes the arbitrariness that arises from the 
fact that we could multiply both sides of (2.2.1) without altering the method. 
The method (2.2.1) is clearly explicit if ,8k = 0 and implicit if 13k "# O. 
Previously in this chapter, we introduced the residual of a numerical method 
as a measure of the method's accuracy. By forming a Taylor expansion about 
some suitable value of t, we could express the residual as a power series in 
h. The power of h in the first non-vanishing term is then an indication of 
accuracy. We do this for Euler's method and the trapezoidal method as 
examples (taking tn as the origin of the expansions). Using the fact that 
y' = f(t, y), we obtain 

h2 

Rn+1 = y (tn+1) - Y (tn) - hy' (tn) = "2 y(2) (tn) + 0 (h3) , (2.2.2) 

and 

Rn+1 = Y (tn+l) - Y (tn) - ~ (Y' (tn+1) + Y' (tn)) = - ~;y(3) (tn) + 0 (h4) , 
(2.2.3) 

respectively, from which we conclude that the trapezoidal method is the more 
accurate by one power of h. 
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2.2.2 Runge-Kutta methods 

The general s-stage Runge-Kutta method for the initial value problem (2.1.1) 
is defined by 

8 

Un+! = Un + h Lbiki 

i=l 

where 

It is assumed that the following condition holds: 

8 

Ci = L aij, i = 1, 2, ... ,s. 
j=l 

(2.2.4) 

(2.2.5) 

(2.2.6) 

It is convenient to display the coefficients occuring in (2.2.4), (2.2.5) in the 
CI an al2 al8 

C2 a21 a22 a28 
following form, known as a Butcher array: . 

bl b2 bs 
We define the s-dimensional vectors C and b and the s x s matrix A by 

(2.2.7) 

If in (2.2.4) and (2.2.5) we have that aij = 0 for j > i, i = 1,2, ... ,s, then 
the method is an explicit (sometimes called 'classic') Runge-Kutta method 
(NB this corresponds to A being strictly lower triangular). Otherwise the 
method is implicit. Note that implicit Runge-Kutta methods pose an even 
more daunting computational problem than implicit linear multistep meth­
ods. 

2.3 Application to Volterra integral equations 

Consider the Volterra integral equation of the second kind 

y(t) = g(t) + f.' k (t, B, Y(B)) dB, y(O) = Yo, tEl = [0, T]. (2.3.1) 

Numerical methods for solving the (2.3.1) are reviewed in great detail in 
[13]. The methods covered include adaptions of linear multistep methods and 
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Runge-Kutta methods to cover this type of equation. The simplest technique 
(which is common to both subclasses) is the method of using a quadrature 
rule to approximate the integral on a finite uniform mesh. Assume that 
the given interval I is replaced by the mesh points tn, n = 0, ... ,N (with 
tN = T), and let Yn denote a numerical approximation to the exact solution 
Y (tn) at tn. Consider the quadrature formula 

n+1 
Yn+1 = 9 (tn+1) + h L W)n+1) k ((n + l)h,jh, Yj), y(O) = Yo, (2.3.2) 

j=O 

where wJn
) are the quadrature weights. The use of a quadrature rule with 

a uniform mesh is aptly suited to convolution equations (which is our main 
topic in this thesis); convolution integral equations have a number of fea­
tures that can be preserved if a uniform mesh is used (see [2]). Our previous 
discussion of convergence, consistency and numerical stability is equally ap­
plicable here (according to Baker [1], "it is not surprising to find that there 
is a close connection between methods for ODEs and for classical Volterra 
integral equations of the second kind."). The numerical solution of Volterra 
integral equations by this method has been studied extensively during the 
1990's and earlier. See, for example, [28], [26], [27]. 

2.4 Application to Volterra integro-differential 
equations 

Consider the Volterra integro-differential equation 

y'(t) = 9(t) + 1.' k (t, s, y(s)) ds, y(O) = Yo· (2.4.1) 

A logical approach to solving this problem numerically would be to use an 
ODE method to approximate the derivative on the left and a quadrature 
rule to approximate the integral on the right hand side of the equation. 
Since we are choosing methods which are common to both of the subclasses 
of methods (linear multistep and Runge-Kutta) we choose to approximate 
the derivative on the right hand side with the simple Euler rule so that our 
numerical method looks like: 

n+l 
Yn+l - Yn ( ) h" (nH). ) h = 9 tn+1 + L....i Wj k ((n + l)h, Jh, Yj), y(O) = Yo. (2.4.2 

j=O 
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The work which follows in later chapters uses the above approach and builds 
on work previously done. See, for example, [12], [8], [9], [16], [21], [13]. More 
complicated (but less general) methods have been studied. See, for example, 
[41], [56], [4], [75]. 

We are specifically interested in using O-methods to approximate the inte­
gral. This is a simple form of quadrature rule where the weights are defined 
as follows: 

{ 
(n+1) (n+l) (n+1) (n+1)} {il 1 1 1 il} Wo 'Wl , ••• ,Wn ,Wn+1 = u, , ... , , -u (2.4.3) 

where 0 ~ 0 ~ 1. This class of methods includes (amongst others) the 
forward Euler rule, the backward Euler rule and the trapezoidal rule. 

2.5 Other numerical methods 

Here we briefly mention other numerical methods which may be employed for 
solving Volterra integro-differential equations. These other methods are not 
the focus of this thesis. Nevertheless, they are important, well-established 
methods which are widely used. We give a list of references for further reading 
in these areas. 

For more detail on linear multistep methods see [13], [49], [41], [70], [58] 
and [56]. Similarly, there are a multitude of Runge-Kutta methods which are 
not discussed here. See, for example [13], [49], [5], [10] and [55]. 

We have not discussed here quadrature methods based on, say Newton­
Cotes formulas, Gauss-Legendre formulas, Radau formulas or Lobatto for­
mulas, to name but a few. See [13] for a discussion of these methods. 

Collocation methods (some of which resemble Runge-Kutta-Nystrom meth­
ods - see [13]) are based on the principle of approximating the exact solution 
to the integro-differential equation in a suitably chosen finite-dimensional 
function space, which is usually a subspace of the space containing the solu­
tion. This approximation will not, in general, satisfy the equation at a point 
not belonging to this finite subset. Collocation methods are studied in depth 
in [13], [6] and [11]. 

Predictor-Corrector methods employ two different numerical methods to 
approximate an equation at a particular point. An explicit method (known 
as the predictor) is first used to give an 'initial guess' at the exact solution. 
This 'guess' is then passed as a starting value to a second method (of a higher 
order than the first and usually implicit), known as the 'corrector' which 
provides a better approximation to the value. Subsequent approximations 
are continuously passed to the second method providing a succession of better 
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approximations of the solution at that point until a desired level of accuracy 
is reached. Once this has been reached the predictor-corrector method moves 
onto the next discrete point on the mesh and the process is repeated. For a 
detailed analysis of this approach see [49]. 
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Chapter 3 

A linear integro-differential 
equation close to bifurcation 
points 

In this chapter we investigate the qualitative behaviour of numerical approx­
imations to a Volterra integra-differential equation, with a view to highlight­
ing the problems introduced by adopting numerical approaches. We choose 
a linear, well-understood problem of the form 

yI(t} = - 1,' e->('-')y(s }ds, y(O) = 1 

and write down a general numerical scheme which is often employed for such 
equations. We aim to show that although the stability theory for the contin­
uous problem is straightforward, this is not necessarily the case for an analo­
gous discrete problem, and that care needs to be taken in such an approach. 
We briefly re-present (for convenience) the details of the bifurcation points 
for the continous problem and then we derive the bifurcation points for the 
discrete problem. We show that as the stepsize of the numerical scheme de­
creases, the bifurcation points tend towards those of the continuous scheme. 
We illustrate our results with some numerical experiments. 

3.1 Introduction 

The qualitative behaviour of numerical approximations of solutions of func­
tional differential equations is an important area for analysis. The aim is to 
ensure that, even over long time intervals, the behaviour of the numerical 
solution reflects accurately that of the true solution. 
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There is a well-established stability theory for equations of the form 

y'(t) = get) + ey(t) + v J,' y(s)ds, vol 0 (3.1.1) 

and the performance of numerical methods applied to (3.1.1) has been inves­
tigated. (See for example [4], [12], [13]). This is a natural starting point for 
the analysis of nonlinear problems that can be linearised in the form (3.1.1) 
but this analysis does not extend to all classes of problem. Many real-world 
model equations have convolution kernels with fading memory, and it is our 
concern in this chapter to consider the qualitative behaviour of numerical 
solutions to this class of problem. The previous analysis does not apply in 
this case. 

In this chapter, we consider in detail the solution by numerical techniques 
of the integro-differential equation 

y'(t) = -J,' e-,(t-')y(s)ds, yeO) = 1 (3.1.2) 

The equation depends on the value of the single parameter ,\ and ~s chosen 
for ease of analysis. For,\ real and negative, the kernel)s of~ro.v~ mem­
ory type. For,\ real and positive, the kernel has a f~~ memory effect. 
This is a linear equation whose analytical solution displays surprisingly rich 
dynamical behaviour even for real values of the parameter ,\ and it is this 
behaviour that we want to consider for the numerical scheme. We view this 
as a prototype problem that will provide insight into the behaviour of more 
complicated equations. In fact there are four real intervals of ,\ values in each 
of which the solutions of equation (3.1.2) behave qualitatively differently. It 
turns out that the numerical approximation of this behaviour of the original 
system is not altogether straightforward. 

We consider the following questions: 

1. does the numerical scheme display the same four qualitatively different 
types of long term behaviour as are found in the true solution 

2. are the interval ranges for the parameter giving rise to the changes in 
behaviour of the solution ,\ the same as in the original problem? 

Our discussion is informed by existing results on stability ranges for the 
parameter values of the integro-differential equation. We will also compare 
our results with those from some similar investigations (of Hopf bifurcation 
points) relating to delay differential equations that give us additional insight 
into the behaviour of the solution close to bifurcation points under discreti­
sation. 
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3.2 Analytical background 

We consider the equation (3.1.2). One can easily establish (by considering 
for example an equivalent ordinary differential equation) that for real values 
of A the solution to (3.1.2) bifurcates at A = 0, ±2. We have the following 
qualitative behaviour: 

AI. When A 2: 2, Y -+ 0 as t -+ 00, with no oscillations 

A2. When 0 < A < 2, y -+ 0 as t -+ 00, with infinitely many oscillations 

A3. When A = 0, y(t) = cos (t); (persistent oscillations) 

A4. When -2 < A < 0, the solutions contains infinitely many oscillations 
of increasing magnitude 

A5. When A < -2, the solution grows without any oscillations. 

While the continous theory for (3.1.2) is well established, the analysis 
of numerical techniques is not so straightforward. To illustrate this, figure 
3.2.1 shows a numerical solution to (3.1.2) with A = 0 and a = 1. In other 
words, figure 3.2.1 is an approximation to the cosine function; the numerical 
solution is a decaying oscillation which does not represent the true qualitative 
behaviour. 

3.3 Numerical analysis 

We solve (3.1.2) numerically using a low-order scheme based on combining a 
linear multistep method for solving ODE's with a 8-method quadrature rule 
for performing the integration. A stability analysis of this and other low­
order methods (such as those based on a forward Euler rule, and a trapezio­
dal rule) has been performed for other examples of linear integro-differential 
equations and a wide range of integral equations, see [8], [12], [13], [9] and 
[58] for example. In particular, [8] illustrates clearly that, although a sta­
bility analysis of the continuous problem may be straightforward, this is 
not necessarily the case with the discrete form. We would anticipate that 
our numerical method will give us four intervals of A where the solutions 
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Figure 3.2.1: Solving (3.1.2), >. = 0, using a backward Euler scheme with 
stepsize 0.05. 

to the discrete scheme behave qualitatively differently (as with the continu­
ous problem), however we know from investigation of bifurcation points for 
numerical solution of delay differential equations (see [76]) and indeed from 
stability analysis of integro-differential equations that the bifurcation points 
may arise at the wrong values of the parameter. Based on previous expe­
rience we would expect this difference to be dependent upon the stepsize h 
of the numerical method and on the choice of method itself. Furthermore, 
based on previous work ([76], [29]), one might expect the bifurcation points 
of the discrete scheme to approach the bifurcation points of the continuous 
problem as h -t O. We will show that the approximation of the bifurcation 
points is to the order of the method. 
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The numerical method is of the form 

Yn+i - Yn = _h2 ((}e->.(n+1)h yO + t e->.h(n+1-i)Yj + (1 - (})Yn+1) , Yo = 1 
3=1 

(3.3.1) 

with 0 < () < 1 and we set 0 < h < 1. We know from [1] that when a () 
method is applied to the test equation 

y(t) - >. t y(s)ds = g(t), y(to) = Yo (3.3.2) ito 
it is convergent and consistent. We also know from [1] that every ODE 
method generates a corresponding integral equation method. In fact ODE 
methods provide approximations to indefinite integrals. 

The equation (3.3.1) is equivalent to 

(1 + h2(1 - (})) Yn+2 + (h2(}e->..h - 1 - e->'h) Yn+1 + e->"hYn = 0 (3.3.3) 

For the corresponding characteristic equation 

(1 + h2(1 - ())) k2 + (h2(}e->'h - 1 - e->'h) k + e->'h = 0 

we can derive conditions on the nature of its roots: 

Bl. We have real and distinct roots when 

1 (1 + 2h2 - h2
() - 2v'-h2 (h2() -1- h2)) A> --In 

h h4(}2 - 2h2(} + 1 

B2. We have real and equal roots when 

1 (1 + 2h2 - h2
() - 2v'-h2 (h2() -1- h2)) A = --In 

h h4(}2 - 2h20 + 1 

B3. We have complex roots when 

--In > A 1 (1 + 2h2 - h2() - 2v'-h2 (h2() -1- h2)) 
h h4(}2 - 2h2() + 1 

1 (1 + 2h2 - h2
(} + 2v'-h2 (h2() -1- h2)) > --In 

h h4(}2 - 2h2(} + 1 
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B4. We have real and equal roots when 

_ 1 (1 + 2h2 - h2() + 2J-h2 (h2() -1 - h2)) 
A - -h In h4()2 _ 2h2() + 1 

B5. We have real and distinct roots when 

1 (1 + 2h2 - h2() + 2J-h2 (h2() - 1 -h2)) 
A < - Ii In h4()2 _ 2h2(} + 1 . 

Consider C~~ Bl. The dominant root of the characteristic equation 
is 

1 + e->'h - h2(}e->'h - V(h2(}e->'h - 1 - e->'h)2 - 4e->.h (1 + h2 (1 - ())) 

kl = 2 (1 + h2 (1 - ())) . 
(3.3.5) 

Since kl E lR, it is easy to see that kl is monotone, increasing as (as a 
. ) 1 (1+2h

2
-h

2
9-2y -h2 (h 29-1-h2») A \ k functIOn of A for A > -it In h49L 2h29+l • s 1\ -+ 00, 1-+ 

l+h2~1-(J)' Therefore Ikll < 1 and under condition B1, all solutions to (3.3.1) 
are asymptotically stable. 

Now consider CO-.S-e.. B2. The single root of the characteristic equation 
becomes 

(3.3.6) 

It can be seen that 

(3.3.7) 

It is clear that 

1 1 
~~-:-:--~ < -
2 (1 + h2 - h2(}) - 2 

(3.3.8) 

Since A, h are positive, we know that 

(1 - h2(}) 1 
2e>.h (1 + h2 - h2(}) < 2' (3.3.9) 
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NB We know this is a strict inequality because). =J. 0 and h =J. o. Therefore 
Ikll < 1 and it follows that (3.3.1) has asymptotically stable solutions which 
do not oscillate. 

For c..o...s~ B3, we can write the roots of the characteristic equation as 

1 + e-)"h - h2Be-)"h ± iJ 4e-)"h (1 + h2 (1 - 0)) - (h20e->"h - 1 - e->"h)2 
kl=------------~--2~(I-+-h-2-(-1-~0)~)---------------

(3.3.10) 

Firstly, we note that since the roots have a non-zero imaginary part, arg k =1= a 
and so we have solutions which oscillate. Both roots have modulus: 

Ikl- 1 
- e)..2

h VI + h2 (1 - 0) 
(3.3.11) 

dependent on ).. If Ik I < 1 then the solution is asymptotically stable, with 
infinitely many oscillations of decreasing magnitude. If Ikl = 1 then the 
solution is stable but not asymptotically stable and the solution exhibits 
persistent oscillations. Finally, if Ikl > 1 then the solution is unstable (Le. the 
solution diverges) with infinitely many oscillations of increasing magnitude. 
By setting Ikl = 1 and solving for)' we find that 

Thus, when 

we have asymptotically stable solutions which oscillate, when 

). = -In 1 ( 1 ) 
h 1+h2 (1-B) 

we have a solution which exhibits persistent oscillations, and when 

we have an oscillating solution which diverges. 
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The analysis for C"'-~~ B4 is identical to that for B2 with the exception 
that). is negative.The modulus of the root of the characteristic equation is 
still given by 

1 (1 - h2()) 

\k1
\ = 2 (1 + h2 - h2()) + 2eAh (1 + h2 - h2()) 

(3.3.12) 

but now we are dealing with a negative ).. Therefore we have the two in­
equalities 

(3.3.13) 

and 

(1 _h2()) 1 

2eAh (1 + h2 - h2()) > "2 (3.3.14) 

It can be seen that when (3.3.13) becomes an equality, (3.3.14) is large enough 
to make the sum of the two greater than 1. And as the left hand side 
of (3.3.13) decays, the left hand side of (3.3.14) grows at a greater rate 
(exponential growth). Therefore \kl\ > 1 and we have asymptotically stable 
solutions (remembering that arg k = 0 and there are therefore no oscillations 
in the solution. 

Finally we consider ~ B5. The dominant root of the characteristic 
equation is 

1 + e-Ah 
- h2()e- Ah - V(h2()e- Ah - 1 - e-Ah )2 - 4e-Ah (1 + h2 (1 - 0)) 

kl = 2 (1 + h2 (1 _ 0)) . 
(3.3.15) 

as it was under CQ..S<2.. Bl. Since kl E JR., it is easy to see that kl is 
monotone, increasing in magnitude as ). decreases beyond 

1 (1 + 2h2 - h2() + 2J-h2 (h2() - 1 -h2)) --In 
h h4()2 - 2h2() + 1 • 

Therefore \kl\ > 1 and we can say that, under condition B2, we have a 
divergent solution. Also, since arg k = 0, the solution does not oscillate. 

We summarise our results in the following theorem. 

Theorem 3.3.1 Consider solving the Volterra integra-differential equation 
(3.1.2) subject to the initial condition y(O) = 1, with the numerical scheme 
(3.3.1) (0 < 0 < 1, 0 < h < 1), under the equivalent discrete initial condi­
tions Yo = 1. Then: 
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C1. 1 (1+2h2_h29-2V-h2(h29-1-h2») 
When -Ii In h49L 2h29+1 :::; A, the solution to (3.3.1) 

is asymptotically stable with no oscillations 

1 ( 1) 1 (1+2h2_h2(}-2V-h2(h2(}-1-h2») 
C2. When Ii In l+h2(1-9) < A < -Ii In h4(}L2h29+1 the 

solution to (3.3.1) is asymptotically stable with infinitely many oscilla­
tions of decreasing magnitude 

C3. When..\ = ~ In (1+h2(1-9»)' the solution to (3.3.1) exhibits persistent 

oscillation about 0 with equal magnitude 

1 (1+2h2-h2(}+2Y-h2(h29-1-h2») 1 ( 1 ) h C4· When -Ii In h4(}2_2h2(}+1 < A < Ii In l+h2(1-(}) , t e 

solution to (3.3.1) diverges to 00 with infinitely many oscillations of 
increasing magnitude 

1 (1+2h2_h2(}+2Y-h2(h2(}-1-h2») ., 
C5. When A < - Ii In h49L 2h29+1 ' the solutwn dzverges to 

00 without any oscillations. 

The limits of the bifurcation points in theorem 3.3.1 as h tends to zero 
correspond to the bifurcation points of the original continuous problem. It 
is easy to show this, using L'Hospital's rule. 

We can also l?rove that, for -2 < ..\ < 2, the numerical scheme is of order 
h t -tNL SlU'f\.f...crcler ~ tk $ m~): 

Consider the bifurcation point 

f( h (}) = --In 1 (1 + 2h - h2() - 2.j-h2 (h2() - 1 - h2)) 
, h h4(}2 - 2h2(} + 1 . 

This may be rewritten as 

f(h, (}) = -~ In (1 + (2h2 - h2() - 2h.j1 + (h2 - h2(})) ) 

+~ In (1 - 2 (h2() - h4(P)) . 

We factorise the first term and expand the square root term using the 
binomial expansion as follows: 
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f(h, (}) -2:.ln(l - 2h(1 + (h2 - h2(}))! + 2h2 - h2(}) 
h 

+~ In(l - 2(h2(} _ h4(}2)) 

-lln(l _ 2h(1 + ~(h2 _ h2(}) 
h 2 

~(h2 _ h2(})2 + ... ) + 2h2 _ h2(}) 
8 

+~ In(l - 2(h2(} _ h4(}2)) 

-2:.(( -2h(1 + ~(h2 _ h2(}) 
h 2 

_!(h2 _ h2(}? + ... _ 2h2 + h2(})) + ... ) 
8 

_2:.( -(2h2(} _ h4(}2) _ (2h2(} - h4(}2)2 _ ... ) 
h 2 

2 O(h2) 
+ h 

- 2+0(h) 

The same analysis can be applied to the bifurcation point 

_2:. (1 + 2h - h2(} + 2..} -h2 (h2(} - 1- h2)) 
h In h4(}2 _ 2h2(} + 1 . 

3.4 Numerical experiments 

To corroborate our analytical work, we illustrate our results graphically. The 
numerical scheme reduces to three well-known methods for (} = 1 (the forward 
Euler rule), (} = 0 (the backward Euler rule) and (} = ~ (the trapezium rule) 
being used for the integration. Figures 3.4.1, 3.4.2 and 3.4.3 illustrate the 
variation in the magnitudes and arguments of the characteristic roots of the 
equation (3.3.4) as .\ varies, for the different methods. The dominant root is 
clearly visible. Figures 3.4.4, 3.4.5 and 3.4.6 show how the bifurcation points 
change as h varies. ' 

The results presented in this chapter show that the well-established stabil­
ity theory based on the analysis of equation (3.1.1) gives only a very limited 
insight into the qualitative behaviour of solutions of the class of convolution 
equations with fading memory kernel that we have considered here. In later 
chapters we observe that the qualitative behaviour of numerical solutiosns 
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Figure 3.4.1: Plotting). versus \k\ and arg k for h = 0.05, () = 1 

to equations of this type may have surprising features and our consideration 
here of the prototype problem (3.1.2) illustrates how this unexpected be­
haviour may arise. The results we have presented here show that, for these 
simple methods at least, the bifurcation parameters are approximated in the 
numerical scheme to the order 'of the method. 
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Figure 3.4.5: Bifurcation points for trapezium rule scheme 

54 



0.9 

0.8 

0.7 

0.6 

.s::. 0.5 

0.1 

-2 

Backward Euler Scheme 

-1 o 
lambda 

2 3 

Figure 3.4_6: Bifurcation points for backward Euler scheme 

55 



Chapter 4 

A homogeneous nonlinear 
Volterra integro-differential 
equation 

We develop results for the discrete form, based on a B-rule quadrature method, 
of a general equation. We consider the VIDE 

y'(t) = - f.' k(t - s)g(y(s))ds, t E IR+ (4.0.1) 

subject to y(O) = Yo, and its discrete analogue 

n+l 
_ h2,"" (n+l)A () ~T 

Yn+! - Yn - - L.-J Wj n+l-jg Yj , n E l~. (4.0.2) 
j=O 

Levin and Nohel [50] give an analysis of the qualitative behaviour of solu­
tions to (4.0.1) by means of methods based on deriving a Lyapunov function 
for the solution. In this chapter we restate Levin and Nohels' results for 
convenience and rework some of their analysis to aid us later. We analyse 
the qualitative behaviour of solutions to (4.0.2) basing our analysis on the 
material given by Levin and Nohel in their discussion of (4.0.1), thereby de­
veloping an analysis for the discrete case which is analogous to the continuous 
case. We give a theorem on the qualitative behaviour of solutions to (4.0.2) 
and we extend the analysis of both the continuous and discrete equations 
to wider classes of equations. We consider what conditions it would be nat­
ural to impose on the numerical method to guarantee that the qualitative 
behaviour of solutions to (4.0.1) will be preserved in the solutions of the 
discrete scheme and illustrate our results with some numerical examples. 
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4.1 The continuous case 

Equation (4.0.1) has been analysed by Levin and Nohel [50]. They investigate 
the solutions of (4.0.1)as t -t 00, where k(t) is completely monotonic on 
o ::; t ~ 00 and where g(y) is a (nonlinear) spring. Under this hypothesis, 
Levin and Nohel show (4.0.1) to be relevant to certain physical applications, 
such as nuclear reactor dynamics. Note that when g(y) = y, (4.0.1) becomes 
linear. The linear case is well documented (see [13], for example). Also note 
that if k(t) = k(O) then (4.0.1) reduces to the nonlinear oscillator equation 

y"(t) = -k(O)JL~(t)) (4.1.1) 

Consider (4.0.1) subject to the following conditions: 

HI k E e[O, 00) is completely monotone, 

H2 g(x) E C(oo, 00), xg(x) > O(x i- 0) (and hence x and g(x) always have 
the same sign and g(O) = 0), 

H3 G(x) := .fox g(e)de -t 00 as Ixl -t 00. 

Levin and Nohel [50] give the following theorem: 

Theorem 4.1.1 (Levin and Nohel) Any solution u(t) of (4.0.1) subject 
to H1, H2, H3 satisfies u(t) -t 0 as t -t 00 providing the Ll function k(t) is 
non null. 

Theorem 4.1.1 applies only when k is not constant. If k(t) = 0 then 
y(t) is constant and therefore stable. If k(t) = k(O) i- 0 then the solution 
u(t) may be stable but not asymptotically stable. For example, the equation 
y'(t) = - J~ y(s)ds is equivalent to the equation of simple harmonic motion 
y"(t) = -y(t), whose solution is stable but not asymptotically stable. Since 
the L1 kernel k has fading memory (because it is completely monotone), 
,Y'(t) = 0 can only be satisfied as t -t 00 if lims-+oo g(~(s)) = O. This is 
only possible if y(s) -t 0 as s -t 00. Thus it is clear, without sophisticated 
analysis, that 0 is the only possible finite limit for the solution u(t). We may 
weaken HI without compromising our result as follows: we need only assume 
that (-I)i k(j) (t) > 0 for j = 0,1,2 and k is not constant. 

The full proof of Theorem 4.1.1 requires analysis beyond the use of a 
Lyapunov function. However, [50] also contains the following result which 
forms the basis for a discrete Lyapunov investigation. 
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Theorem 4.1.2 (Levin & Nohel) The zero solution of (4.0.1) subject to 
H1, H2, H3 is asymptotically stable providing that k(t) E £1 is non null. 

Proof: We reproduce the main stages of the proof, given by [50], for a 
comparison with the discrete case. The proof is based on the construction of 
a Lyapunov function of the form 

I1tlt V(t) = G(u(t)) + - k(r + s)g(u(t - r))g(u(t - s))drds. 
2 0 0 

(4.1.2) 

We may show that the function V(t) defined here is positive as follows: 
G( u(t)) is positive because 0 is the only possible limit for the solution function 
u(t). Also K(r, s) = k(r+s) is a kernel of positive type since k is completely 
monotone and completely monotone kernels are of positive type. The second 
term in the the expression for V is therefore non-negative. We may express 
V' (t) as follows: 

1 r r V(t) - G(u(t)) +"2 Jo Jo k(r + s)g(u(t - r))g(u(t - s))drds 

I1tlt G(u(t)) +"2 0 0 k(2t - r - s)g(u(r))g(u(s))drds 

Therefore, 

V'(t) - G'(u(t))u'(t) + l' l' k'(2t - r - s)g(u(r))g(u(s))drds 

+ l' k(t - s)g(u(t))g(u(s))ds. 

Now 

G'(u(t))u'(t) = -g(u(t)) l' k(t - s)g(u(s))ds 

by (4.0.1). Hence by substituting, 

V'(t) = l' l' k'(r + s)g(u(t - r))g(u(t - s))drds. 

(4.1.3) 

(4.1.4) 

Since k(t) is completely monotone, -k'(r + s) is a kernel of positive typet 
Hence V'(t) < 0 with equality only for t = o. 

We note that inhomogeneous equations of the form 

y'(t) + l' k(t - s)g(y(s))ds = I(t, y(t)) , t E IR (4.1.5) 



can also be analysed. Levin and Nohel give an analysis of equations of this 
form in [51] but this analysis does not appear to be amenable to discrete ana­
logues. We note however that the analysis of Theorem 4.1.2 can be extended 
simply to give a corresponding result for (4.1.5). 

Corollary 4.1.3 (Ford) The conclusions of Theorem 4.1.1 are also valid 
for the equation (4.1.5) subject to the additional condition that f(t,O) = 0 
and ~f(t,~) ~ 0 whenever e =I- O. 

Proof: We adapt the expression in (4.1.3): 

G' (u( tllu' (t) = g( u( tll! (t, u( t)) -1,' k( t - s )g( u( s llds. (4.1.6) 

It follows that the expression for V'(t) includes the additional term 

g(u(t»f(t, u(t», 

Since ~f(t,~) < 0 and x and g(x) always have the same sign with g(O) = 0, 
we can conclude that g(u(t))f(t, u(t» < O. The final conclusion then follows 
as before. 

4.2 The discrete case 

A natural approach to the numerical solution of equations of the form (4.0.1) 
would be the combination of a differential equation method with a quadrature 
rule for the integral. We consider a simple approach of this type. 

With a O-rule as a quadrature method, we analyze 

n+l 

h2 ~ (n+l)k () (n+l) 0 
Yn+l - Yn = - L...J Wj n+l-jg Yj , Wj >, (4.2.1) 

j:::O 

h { (n+l) (n+l) (n+l) (n+l)} { } ( ) were Wo ,WI'''' ,Wn ,Wn+l = e,l, ... ,l,l-e ,YO=y O. 
Following on from Corollary 4.1.3, we remark here that our analysis can 

also be applied to equations of the form 

n+l 

Yn+l - Yn = _h2 L W)n+l) kn+l-jg(Yj) + f(n, Yn). (4.2.2) 
;:::0 

The construction of a Lyapunov function for the discrete equation is less 
straightforward than one might hope. In particular, we need to be very 
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careful that the function V(n, Yj) that we define does not depend on future 
values of the solution sequence Yj. In other words, we require that V(n, Yj) 
does not depend on any Yi with i > n. As we shall see, it proves to be 
impossible to give a complete discrete analogue of the continuous theory. 

To begin with, we give a proof of asymptotic stability of the zero solution 
of equation (4.2.1) when only positive perturbations are permitted. This may 
seem rather restrictive, but nevertheless can be a useful result when the func­
tion Y has a particular physical or biological meaning which implies that only 
nonnegative values of Yn are possible. (This situation covers, for example, 
models of population size or of concentration of a drug in the bloodstream.) 
Furthermore, it is our conjecture (supported by experimental evidence) that, 
for a wide class of kernels k and for suitable choice of initial value Yo and 
h> 0, Yn > 0 for every n. 

We now give our first theorem on qualitative behaviour of solutions to 
(4.2.1). The proof of the theorem is based on Lyapunov's method applied to 
difference equations. 

Theorem 4.2.1 For the equation (4.2.1), we make the following assump­
tions; 

H4. For each natural number n, the matrix A(n) :=(Aij)~k2n-i-j) is a pos­
itive definite matrix and that the matrix At(n) :=(Aij)=(k2n+2-i-j -
k2n- i - j)is a negative semi-definite matrix, 

H 5. The function g( u) satisfies conditions H2 and H3 of Theorem 4.1.1 and 
is also nondecreasing. 

H6. The solution values satisfy Yj > 0 for each j > O. 

H7. The weights W)n) are given by a (}-method with 0 ~ () < !. Thus we 
insist that the (}-method is A-stable:1" 

Then, for every € > 0 there is a corresponding 8f > 0 and a natural 
number Nf for which IYol < 8f implies IYnl < € for each n > N€. If, in 
addition to H4-H7 above, At(n) is, for each n, a negative definite matrix, 
then Yn -t 0 as n -t 00. 

In other words, the stability, respectively asymptotic stability, of the zero 
solution (subject to H6) is preserved under discretisation by a (}-method with 
o < () ~ ~ provided the admissable perturbations produce a solution satisfying 
H6. 
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Proof: Following a similar approach to the one used in the proof of 
Theorem 4.1.2, we shall exhibit a Lyapunov function, this time for the se­
quence {Yn} which satisfies the equation (4.2.1). The conclusions given in 
the statement of Theorem 4.2.1 then follow by Theorem 1.5.8. 

Define 

h2 n n 

V{n, {Yj}~) := 2" 2: 2: w~n)wJn) k2n- i-;g(Yi)g(y;) + G(n, {Yj}) (4.2.3) 
j=O i=O 

where G(n, {Yj}~)(> 0), G(n, 0) = 0 will be defined later. As in the previous 
proof, we shall show that V (n, {y;}) defined in this way has the properties 
required of a Lyapunov function for {Yj}. 

Clearly, V(n, 0) = 0 and V(n, {Yj}) > 0 because, by hypothesis, A(n) is 
a positive definite matrix for each nand G(n, {yj}) > 0, G(n,O) = O. 

Next we demonstrate that V{n + 1, {Yj}) - V(n, {Yj}) ~ O. 

n 

+h2(1 - B)g(Yn+1) L wJn+1) kn+1-jg(Yj) 
;=0 

h
2 
(2 2 +"2 1 - B) kog(Yn+1) 

+G(n + 1, {Yj}) - G(n, {Yj})· 

Now define 

n 

G(n, {Yj}) := L wJn) g(Yj)(Yj - Yj-l) + YoM, (4.2.4) 
j=1 

G(O, {Yj}) = YoM (4.2.5) 

where M is some positive constant chosen to make G(n, {Yj}) ~ O. For 
example, with our hypotheses, we can choose M = maxtE[O,yo] g(t) = g(yo). 
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Now 

(1 - O)g(Yn+l)(Yn+1 - Yn) + Og(Yn)(Yn - Yn-d 
n+l 

-h2(1 - O)g(Yn+1) L w;n+l) kn+1-jg(Yj) 
j=O 

n 

-h2(}g(Yn) L w;n) kn-jg(Yj)· 
j=O 

It follows, taking into account the change in the weight index from w;n+1) to 
w;n), that 

V(n + 1, {yj}) - V(n, {Yj}) 

= ~2 (t. t.wln)wjn)(k2n+2~'-; - k2n-,-;)9(Y,)9(Y;)) 

n 

+h20g(Yn) Lw;:>owjn)(kn+2_j - kn-j)g(Yj) 
j=O ' 

+ ~202k2g(Yn)2 _ ~2 (1- O)2kog(Yn+1)2. 

By hypothesis, the matrix of order n + 1 with (i, j) entry (k2n+2-i-j - k2n-i-j) 
is negative semi-definite, and so the first two terms in the righthand side of 
this expression are less than or equal to O. The condition 0 ~ () < ~ combines 
with the observation that k2 - ko < 0 and the fact that 9 is nondecreasing to 
yield the result that V(n+ 1,{Yj}) - V(n,{Yj}) < 0, as required. Moreover, 
if (k2n+2-i-j - k2n- i- j) is negative definite, then it follows that 

V(n + 1, {Yj}) - V(n, {Yj}) < ~ (k2(}2g(Yn)2 - ko(l- O?g(Yn+1)2) < 0 

. The conclusions of the theorem follow from Theorem 1.5.8 by choosing 
the function w(s) to be an increasing function on the interval [0, Yo] bounded 
above by h22 (ko - k2)02g(s)2. 

It is worth making a number of remarks about our analysis of the discrete 
case. 

1. It is possible to undertake a similar analysis and to reach a similar con­
clusion to that given in Theorem 4.2.1 by a direct argument and without 
recourse to a discrete Lyapunov function. The direct argument is based 
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on showing that the sequence {Yn} is a decreasing sequence of nonneg­
ative values. We proceed in this chapter with the Lyapunov approach, 
however the following chapter discusses the alternative approach. 

2. The analysis also applies to perturbations of the zero solution that are 
restricted to taking negative values. This follows since xg(x) > 0 for 
all nonzero x. 

3. The sequence {kj } we have considered has fading memory, since it is 
in II and is completely monotone. It follows from (4.2.1) that 

(a) the only possible limit,,x, of the sequence {Yj} must satisfy g(,x) = 
o (and so ,x = 0), 

(b) ifYn > 0 for n ~ N, then there is a J ~ N for which Yj+1-Yj < 0 
for every j > J, 

(c) if Yn < 0 for n < N, then there is a J ~ N for which Yj+l - Yj > 0 
for every j > J. . 

4. In either of the last two cases, we can easily construct a Lyapunov 
function for {Yn} as we did in our proof of Theorem 4.2.1. The only 
addition to the analysis we gave is that the constant M must be changed 
to ensure that G > 0 is sufficient (but not necessary) for the conclusions 
of Theorem 4.2.1. 

We summarise these remarks in the following theorem, whose proof is 
identical to the proof of Theorem 4.2.1 apart from the choice of constant M. 

Theorem 4.2.2 For the equation (4.2.1), assume H4, H5, H7 are satisfied 
as in Theorem 4.2.1. Let Yo be given. Then either 

(i) the sequence Yn exhibits infinitely many changes of sign, or 

(ii) for every f > 0 there is a corresponding OE > 0 and a natural number 
NE for which IYol < OE implies IYnl < f for each n > N f • 

If, in addition to H4, H5 and H7 above, At(n) is a negative definite matrix, 
then either Yn changes sign infinitely often or Yn -+ 0 as n -+ 00. 
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Note. All of the above analysis can be repeated with hardly any additional 
work for equations of the form (4.2.2), under the conditions f(t,O) = 0, 
(f(t, () < O. We obtain the following corollary. 

Corollary 4.2.3 Under the additional hypothesis that the function f(t, () 
satisfies f(t, 0) = 0 and (f{t, () < 0 for ( f. 0, the conclusions of Theorem 
4.2.2 also apply to the equation (4.2.2). 

4.3 An example equation 

In this section we consider the particular integro-differential equation 

y' (t) = - J.' e->(t-'>y'( s )ds. (4.3.1) 

NB We return to this equation in chapter 5 to illustrate the complexity 
of the problem of choosing a suitable discrete analogue. 

For'x real and positive, this equation satisfies the conditions of Theorem 
4.1.1 and Theorem 4.1.2. We can therefore conclude that the zero solution of 
(4.3.1) is asymptotically stable and that every solution satisfies y{ t) -t 0 as 
t -t 00 whatever initial value y(O) we choose. Further, from our analysis, we 
can predict that the numerical solution will either oscillate infinitely many 
times or will satisfy Yn -t O. Our conjecture in the previous section suggests 
that, for sufficiently small starting value Yo, the solution will satisfy Yn > O. 

However, before we proceed with our numerical experiments, we present 
an alternative analysis of (4.3.1) by converting it to a second order ordi­
nary differential equation, in order to give us some further insights into the 
problem. 

Various attempts at finding an analytical solution have been unsuccessful; 
including applying Laplace transforms to (4-.3.1) and also by first converting 
the equation to an ODE and attempting to use elementary ODE techniques. 
However, it is useful to note that if we consider the particular case where 
,X = 0 and we are given the initial conditions y(O) = 1, y'(O) = 0 then the 
equation can be solved as follows: Differentiating both sides of (4.3.1) with 
respect to t yields 

y"(t) = -,Xy'(t) - y3(t). (4.3.2) 

Setting ,X = 0, we have 

y"{t) = _y3(t). (4.3.3) 
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Multiplying both sides by y'(t) => 

y'(t)y"(t) = _y3(t)y'(t). ( 4.3.4) 

Integrating both sides with respect to t => 

(Y'(t))2 y4(t) 
~....:...:...-=---+C. 

2 4 
(4.3.5) 

The initial conditions can be used to show that C = ~. Therefore, 

V2Y'(t) = )1 - y4(t) (4.3.6) 

i.e. 

Jy 1 it V2 -I d'I/J = dt. 
1 1 - 'lj;4 0 

(4.3.7) 

Therefore, 

J2 f" J 1 d,p = t. 11 1 - 'lj;4 
(4.3.8) 

Although the integral on the left hand side cannot be evaluated explicitly 
using elenfntary techniques, we can use the original differential equation to 
obtain a geometric proof that the solution is periodic (see Figure 4.3.1) and 
we can use results from the study of elliptic integrals to obtain the period 
of oscillation. The equation (4.3.5) represents an ovoid closed curve in the 
(~, y) plane (see figure 4.3.1). , 

We can proceed further with equation (4.3.8) by using a suitable change 
of variable to obtain an elliptic integral. We give two suitable substitutions 
here and show that both lead to the same elliptic integral. We know, from the 
original second order equation, that dy = pdt, where p = ~ and dp = -y3dt. 
Therefore, t = f ~ = - f fj. 
Method 1: Taking the positive square root for equation (4.3.8), let y = 
+-Icos (¢). Therefore y2 = cos (¢) and 2ydy = - sin (¢)d¢. 

1 f 1 t= -- d¢ v'2 -Icos (¢) . 
(4.3.9) 

Method 2: From letting p = ~ we know that 

l
p dp 

t = - 0 (1 _ 2p2)i 
(4.3.10) 
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Figure 4.3.1: Geometric proof of periodicity 

66 



Let .j2p = sin (0) so that .j2 ~ = cos (0). Therefore, 

t = _~! cos (O)d0
3 

= _1! 1 dO 
.j2 (cos2 (0)) 4 ..j2 vi cos (0) 

(4.3.11) 

which is identical to equation (4.3.9). Because of periodicity, 

which is correct to 4 decimal places. So the solution to the original problem is 
periodic with a period of approximately 7.4. Although we know that (4.3.1) 
satisfies Nohel and Levins' conditions for asymptotic stability (for positive ..\), 
it is interesting to note that when we write the problem as a pair of coupled 
first order ODE's we can find a different Lyapunov function to show that 
the system possesses an asymptotically stable solution as expected. Writing 
(4.3.1) as two coupled equations: 

Let 

Therefore 

i.e. 

dy 
p=­

dt 

dp 3 - = -..\Y2 - Yl dt 

v = 2y~ + ytc~ 0) 

V' = _4..\p2 < 0 
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( 4.3.13) 

(4.3.14) 

( 4.3.15) 



Thus, V(y,p) is a Lyapunov function for the system (4.3.12), (4.3.13) and 
the zero solution is asymptotically stable. 

We now conduct some numerical experiments. The VIDE (4.3.1) satisfies 
conditions HI, H2 and H3, using O-methods with () = O,~, 1. For () = 0, ~ 
the discrete equation satisfies H4, H5 and H7, and we will see that, for small 
enough Yo > 0, H6 is also satisfied. For 0 = 1, the hypothesis H7 is violated 
and we are able to make some interesting observations about the numerical 
solution in this case. 

We consider three discrete equations (0 = O,~, 1) and compare the long 
term solutions obtained for different initial values Yo. 

First we consider the implicit Euler rule (0 = 0) which provides an implicit 
scheme: 

n+l 
Yn+1 - Yn = _h2 L e->.(n+1-i)hy1 , n > 1. 

j=O 

(4.3.16) 

Previous experience with other types of problem (Le. integral equations, see 
[28] for example) indicates that we could expect a highly stable scheme to 
result. Indeed, one can derive a definite result on qualitative behaviour of 
the solution in this case by the method of stability by first approximation, 
see, for example, [48]. Figures 4.3.2 and 4.3.3 show values of the solution 
Yn of (4.3.16) for fixed h = 0.1 when the initial value of Yo takes different 
values. After some oscillations (according to the initial value Yo) Yn -+ 0 
as n -+ 00. The diagrams indicate that the zero solution is asymptotically 
stable for h = 0.1. In practice, when one has a priori knowledge that y(t) > 0, 
one would discard oscillatory solutions {Yn} as unrealistic. 

Second, we consider the use of the trapezium rule (() = 0.5) to provide an 
alternative implicit scheme: 

Yn+1 - Yn = _h2 (t e->.(n+l-i )hyJ + Y~+1 + yg) , n > 1. 
j=1 2 

(4.3.17) 

Again, we have reason to expect good stability behaviour. Figures 4.3.4 
and 4.3.5 exhibit similar results to (4.3.16). 

For our third scheme we have used the explicit Euler rule (() = 1) for 
comparison: 

n 

Yn+! - Yn = _h2 L e->.(n-i )hy1 , n > 1. 
j=O 

( 4.3.18) 

Here we are using an explicit scheme for evaluating the sequence {Yn}. Previ­
ous experience leads us to suspect that the scheme may exhibit poor stability 
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Figure 4.3.2: () = o. With small initial value, the solution tends slowly to O. 
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Figure 4.3.3: () = o. With larger initial value, the solution tends to 0 after 
several oscillations. 
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Figure 4.3.4: () = 0.5. With small initial value, the solution tends slowly to 
O. 
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Figure 4.3.5: () = 0.5. With larger initial value, the solution tends to 0 after 
several oscillations. 
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Figure 4.3.6: () = 1. A particular choice of Yo yields persistent oscillations. 

73 



h=0.1 

0.9 

0.8 

0.7 

0.6 

c: 
~0.5[\ 

0.4 

0.3 

0.2 

0.1 

0 
0 50 100 150 200 250 300 350 400 450 500 

n 

Figure 4.3.7: () = 1. Smaller choices of Yo lead to solutions that tend to O. 
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properties. Indeed, this scheme does not satisfy H7. Figures 4.3.6 and 4.3.7 
give examples demonstrating where the use of an explicit rule leads to prob­
lems. For sufficiently small values of Yo, the solution of (4.3.18) satisfies 
Yn --t 0 as n --t 00. However, we can observe that, for a particular choice of 
Yo, the numerical solution exhibits (spurious or unrealistic) persistent oscil­
lations. 

In our example, for each of the discrete schemes we have considered, 
when we choose our step length h sufficiently small, it appears from our 
calculations that, for sufficiently small perturbations of the initial value from 
zero, the solution tends to zero. For the two implicit schemes, we have seen 
no evidence that persistent oscillations do, in fact, arise. For the explicit 
scheme we considered, there is likely to be a relationship between the choice 
of h and the size of perturbation of the initial value from zero if persistent 
oscillations are to be avoided. However, more analysis is needed to predict a 
precise relationship between the numerical method, the step length and the 
stability of the zero solution for different choices of perturbation Yo. 

We give this insight. We can seek (directly) solutions of equations (4.3.16), 
(4.3.17) and (4.3.18) that exhibit stable oscillations of period two. It is 
easy to show that no solutions of this type arise for equations (4.3.16) and 
(4.3.17) whatever choice of initial value Yo we make. However, for equation 
(4.3.18), solutions of this type do exist and the amplitude of the oscillations 

1 

is * (2 + 2e->'hp. 
For fixed h, A, there is one possible amplitude of oscillatory solution 

of period 2. Persistent oscillations of period 2 can arise when the initial 
1 

perturbation of the zero solution is precisely * (2 + 2e->'h) '2. Further, as 
h --t 0, the size of the necessary perturbation approaches 00. One can adopt 
a similar approach to calculate the amplitude of persistent oscillations of 
period greater than 2. The behaviour we have observed is consistent with our 
expectation that, for suffciently small perturbations of the zero solution (the 
size of perturbation depending on h) the solution will not exhibit persistent 
oscillations of this type even for the explicit scheme (4.3.18). 
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Chapter 5 

Stability of a difference 
analogue for a nonlinear 
integro-differential equation of 
convolution type 

In this chapter we focus more on our example equation in the previous chap­
ter, in order to give us greater insight into the problem of choosing a suitable 
discrete analogue. Although our results are dependent on some strict con­
ditions we show, in chapter 6, that they are not too restrictive and so the 
results are useful. Consider the nonlinear integro-differential equation 

y'lt) = -k f.' e->('-'ly"(s)ds, k, >. > 0. (5.0.1) 

It is easy to prove that the zero solution of this equation is stable. For 
example, put Yl(t) = y(t), Y2(t) = yI(t). Differentiating the equation (5.0.1), 
we obtain 

y~ (t) = Y2(t), 

y~(t) = -ky~(t) - AY (t). 
z. 

The function V = kyt(t)+2y~(t) is a Lyapunov function for this system since 
V' = -4Ay~(t) < O. We note also hat V' < 0 unless Y2 = O. 

It is obvious that one continuous system can have several discrete ana­
logues according to the choice of numerical scheme, however not all of these 
analogues need be (asymptotically) stable. The problem we are interested in 
is to determine how one may construct a difference analogue of continuous 
asymptotically stable systems which will be asymptotically stable. 
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In the next section, we propose one possible difference analogue of the 
equation (5.0.1) and asymptotic stability of the zero solution of this discrete 
scheme will be proved. The proof we give is based on the general method of 
Lyapunov functional construction (developed for systems with aftereffect). 

5.1 Construction of difference analogues 

We consider here two possible choices of difference analogue: 
For the first, we shall divide the interval [0, t] into n+ 1 intervals of length 

h > O. In this way t = (n + Ph, s = jh, j = 0,1, ... , n, Yj = y(jh), and the 
right-hand side of equation (5.0.1) takes the form 

n 

-kh L e-h>.(n+l-j)y;. 

j=O 

Using Yn±~-Yn -b,Q,.(~~~ y'(t) in 
the point t = (n + l)h as a result we obtain the explicit difference scheme: 

n 

- - kh2 ""' -h>.(n+l-j) 3 - 0 1 Yn+ 1 - Yn L...J e Y j' n - , , .... (5.1.1) 
j=o 

Denoting a = e-h
\ we transform the right-hand side of the equation 

(5.1.1) in the following way 

Yn+l = Yn - akh2y! + a (-kh2 }-; e-hA(n-i)y]) . 
)=0 

(5.1.2) 

j)i-r~~ successive expressions of the form (5.1.1) leads to 

Yi = Yo - akh2yJ, (5.1.3) 

Yn+l = Yn - akh2 y! + a (Yn - Yn-i), n = 1,2, .... (5.1.4) 

The equation (5.1.4 has four parameters: k, A, h, Yo. We denote 

Y y2 
Xn = ~, T = hA, a = e-T 'Y = k~ 

Yo ' A2 ' 
(5.1.5) 

and finally obtain the equation 
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(5.1.6) 

which has only two parameters: 'Y and 7. 

We can follow a simliar approach, based on the use of analternative ap­
proximation for the integral term. We divide the interval [0, t] into n intervals 
of fixed length h > O. We put t = nh, s = jh, j = 0,1,2, ... ,nj Yj = y(jh) 
and we use the approximation 

n 

-kh L e-h>.(n-;)yJ 

;=1 

for the right hand side of equation (5.0.1). Using 
Yn±~-Yn for ~(O~ of the derivative y'(tn ) we obtain: 

n 
-' kh2 '"""' -h>.(n-;) 3 1 2 3 Yl - Yo, Yn+! = Yn - L-J e Y;, n = , , , .... (5.1.7) 

;=1 

Following the same approach as above, this difference scheme may be ex­
pressed in the two-paramter form 

x + 1 = Xo = 1, Xn+! = Xn - 'YT2x~ + a(xn - Xn-l), n = 1,2,3, .... 
(5.1.8) 

5.2 Lyapunov functional construction 

The general method of Lyapunov functional construction for difference equa­
tions [46] consists of four steps. We describe the approach in detail here as 
it applies to (5.1.6) and then we state the corresponding results for equation 
(5.1.8). 

Step 1. Represent the equation (5.1.6) in the form 

Xn+l = F(xn) + AGn(Xn-l), 

where 

Step 2. Consider the auxiliary difference equation without delay 

(5.2.1) 
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The function v(z) = z2 is a Lyapunov function for this equation. In fact, 
using (5.2.1) we get 

It is obvious that, if we impose the condition 

we have AVn < 0 for all n = 0,1, ... providing Zn i- O. 
Step 3. We will construct the Lyapunov functional Vn for the system 

(5.1.6) in the form Vn = V1n + Y2n, where 

VlO = v(xo) = x~, 

V1n - v(xn - G(Xn-I)) 

(Xn - aXn-l?, n = 1,2, .... 

Calculating AV1n , n = 1,2, ... , we obtain 

Since 

then 

AVin - (xn+1 - aXn)2 - (xn - aXn_l)2 
- (xn - 'Yar2x! - aXn_l)2 - (xn - aXn_I)2 

bar2)2x~ - 2'Yar2x! + 21(ar?x~Xn-l. 

Ll lit. < ('Yar2)2x~ - 'Y(ar)' (~ - D x! + ~'Y(ar)2x!_1' 
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Analogously for n = 0: 

jj. VIO - Vu - VIO 
- (Xl - axo)2 - x~ 
_ (1 -{aT2 - a)2 - 1 

2 2)2 ( 2) a (1 + {T 1 - a( 1 + {T2) . 

It is easy to see that, for small enough 7 (and, indeed, for large enough 
7) jj. Vio < O. 

Step 4. Choosing the functional V2n in the form V20 = 0, V2n = ~{( a7)2 X~_l' 
n = 1,2, ... , for the functional Vn = Vln + V2n we get 

(5.2.2) 

where 
/(7) = 2(e

T 

~ 1). 
{7 

It is obvious that 
lim 1(7) = 00, lim 1(7) = 00. 
T-tO T-tOO 

Simple investigations of /(7) show that /(7) has a minimum value of 
approximately 3.088 for 7 close to 1.6. 

'Y 
Let us suppose that the sequence {xn} is bounded and that there exists 

a 7 for which 

X~ < k < f(7), n= 1,2, ... , - (5.2.3) 

In this way, jj. Vn < 0 for all n = 0, 1, . .. as long as Xn =J. O. We note, for 
example, that if each x~ is bounded by ~ then (5.2.3) will be satisfied for all 

7 > O. On the other hand, for larger bounds on x~, (5.2.3) will be satisfied 
for a restricted range of 7. It can be shown that, under suitable additional 
conditions, all solutions {Xn} are bounded and therefore this assumption 
may be justified. Further investigation of this feature of solutions will be the 
subject of the next chapter. 
Remark The corresponding analysis for the alternative discrete form (5.1.8) 
proceeds as follows: 

1. We choose F(x) = X - a'Y72x3 and G(x) = ax. 

2. We proceed as above and show that, whenever {72 < 2, jj.vn < 0 for 
n = 1,2, ... so long as Zn =J. O. 
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3. We can show that 

AV, 2 4 6 2 2 4 2 2 3 - 1 2 
L..l. In = "I T xn - "IT Xn + "IT aXnXn-ll n - , , ... 

so 

and 
~VlO = (Xl - aXO)2 - X~ = a2 - 2a = a(a - 2) < O. 

4. We put 
1 2 4 'V:20 = 0, 'V2n = 2"1aT Xn- l , n = 1,2,3, ... 

and we can then show that 

where 
/(T) = 2(1- :-r). 

"IT 

It is easy to show that 1 is a strictly decreasing function for positive T 

with 1(0) = 00 and /(00) = O. Thus, for any constant M > 0 there exists 
TO > 0 such that I(T) > M for every positive T < TO. We conclude that, 
if {x~} is assumed bounded, then for sufficiently small T > 0, /(T) > x~, 
n = 0,1,2, .... 

5.3 Proof of asymptotic stability 

From (5.2.2), (5.2.3) it follows 

n n 

LLlV; = Vn+l- Vo ~ -("taT2)2 LxJ(f(T) - x;) < O. 
j=O j=O 

Since 

and 

Vn+l ::; Vi> = x~ = 1, 
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from here it follows that 

Using (5.1.5) we obtain 

4 2 
xn ~ ( )2' 'Y aT 

2 = (~)~ ~ Yn k ah . 

1 

Therefore for any f > 0 there exists 0 = (~)2 ahf.2 such that IYnl < f, n > 0, 
if IYol < o. In other words, we have shown that the zero solution of the 
equation (5.1.1) is stable. 

We can show further that the zero solution is asymptotically stable. From 
(5.3.1) and the fact that Vn +1 ;::: 0 it follows that 

txl(f(T) - xll < ( ~2)2' 
j=1 'Y 

(5.3.2) 

The convergence of the series in the left-hand part of (5.3.2) implies that 

lim X!(f(T) - x~) = 0 
n-HX) 

Now the function 
X4 (f (1') - x2

) 

has zeros at x = 0, ± V f (T) so for large n the values of Xn must lie in 
arbitrary small neighbourhoods of these three points. But by hypothesis, 

x~ < k <if (7) 

so the two outer points are excluded. Hence 

lim Xn = O. 
n-+oo 

lim Yn = O. 
n-+oo 

Remark A similar argument applies to solutions of the equation (5.1.8). 
We summarise our conclusions in the following: 

Theorem 5.3.1 We assume that k, A, Yo are given and we solve equations 
(5.1.6) and (5.1.8) for solutions {Yn} for a fixed value of h > o. 

1. For equation (5.1.6) there is a constant M > 0 for which all bounded 
solutions with y~ < M satisfy Yn ~ 0 regardless of the step size h > O. 
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2. For equation (5.1.6), we consider bounded solutions with Y~ < N with 
N > M. There exist constants TN!, TN2 > 0 such that, if h is chosen 
so that 0 < h>' < TN! or h>' > TN2 then Yn -t O. 

3. For equation (5.1.8), consider bounded solutions with Y~ ~ Q. There 
exists a constant TQ > 0 such that, if h is chosen so that 0 < h>' < TQ 

then Yn -t O. 

Remark 
In our statement of this Theorem, we have considered the behaviour of 

bounded solutions of the discrete equations. We can observe from our 
work in the previous chapter that unbounded solutions may arise with par­
ticular combinations of Yo, h>'. We can further take note that we proved 
in the previous chapter that, for a different discretisation of (5.0.1) and for 
sufficiently small h > 0 all solutions of the discrete equation are bounded 
by IYol. For our explicit methods, we have conducted numerical experiments 
which indicate a similar result. Our calculations indicate that, if f(T) > 1, 
then the solution of the equation (5.1.6) satisfies the condition Ixnl < 1, 
n = 1,2, .... (Correspondingly, IYnl < IYol.) Figures 5.3.1, 5.3.2 and 5.3.3 
show the behaviour of the solution of the equation (5.1.6) corresponding to 
different values of the parameters T, 'Y and function f(T}. 

5.4 One generalisation 

In this section we generalise our results of the previous section for a wider 
class of equations. Consider the nonlinear integro-differential equation 

y'(t) = -k l' e-·(t-.)ym(s)ds. k. >'. m > O. (5.4.1) 

The analogues of the equations (5.1.4) and (5.1.6) for the equation (5.4.1) 
are 

Yn+l = Yn - akh2y'; + a(Yn - Yn-l), n = 1,2, .... (5.4.2) 

and 

Xo = 1, Xl = 1 - 'YaT2, 

(5.4.3) 
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Figure 5.3.1: Numerical scheme (5.1.6) with T = 0.1, 'Y = 6 
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Figure 5.3.2: Numerical scheme (5.1.6) with T = 0.01, 'Y = 15 
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Figure 5.3.3: Numerical scheme (5.1.6) with T = 0.1, 'Y = 20 
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where 
m-l 

Yn h' -T kYo Xn = Yo' T = A, a = e ,'Y = ~. 
Let us assume that parameter m has the form 

m = 2l+1 - 1, l = 0,1,2, .... 

In this case the permitted values of mare: 1,3,7,15,31, .... In particular, if 
l = 0 (or m = 1) the equation (5.4.1) is the equation (5.0.1) which we have 
already analysed. 

We construct a Lyapunov functional Vn for the equation (5.4.3) in the 
form Vn = V1n + V2n , where as before 

V1n = (xn - aXn_d2, n = 1,2, .... 

Calculating 6. V1n , n = 1,2, ... , we obtain 

6. V1n = (xn+1 - aXn? - (xn - aXn_d2 

= (-yaT2)2x~m - 2'YaT2x~+1 + 2'Y(aT)2X~Xn_l' 
It is easy to see that 

In this way 

Do Vi. < (-yaT2)2x!m - ')'( aT J2 G -2 + ~,) x::'+! + ~,')'( aT )2x::'.:"l-
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Choosing the functional 't'2n in the form V2n = ~'Y(aT)2x~!l, n = 1,2, ... , 
for the functional Vn = V1n + 't'2n we get 

where 
f(T) = 2(e

T 

- 1). 
"(T2 

We suppose that there exists a T for which 

x~-t < f(T), n = 0,1, .... 

In this way, ~ Vn < 0 for all n = 0,1, ... whenever Xn =I O. 
By analogy with Theorem 5.3.1 we get 

(5.4.4) 

Theorem 5.4.1 We assume that k, A, Yo are given and we solve equations 
(5.4.9) for solutions {Yn} for a fixed value of h > O. 

1. There is a constant M > 0 for which all bounded solutions with y~ < M 
satisfy Yn -t 0 regardless of the step size h > o. 

2. Consider bounded solutions with Y~ < N. There exist constants TNt, TN2 > 
o such that, if h is chosen so that 0 < hA < TNt or hA > TN2 then 
Yn -t O. 

Remark 
In the linear case (m = 1) the condition (5.4.4) has the trivial form 

f (T) > 1. From here we get the following statement. Let h > 0 such that 

2(eAh 
- 1) 

kh2 > 1. 

Then the zero solution of the equation (5.4.2) with m = 1 is asymptotically 
stable. NB Leonid Shaikhet of Donetsk can now extend the results to any 
odd power; i.e. m = 1,3,5,7,9, .... 
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Chapter 6 

The existence of bounded 
solutions of discrete analogues 
for a nonlinear 
integro-differential equation 

Here we prove that for a certain choice of discretisation of 

(6.0.1) 

1'1" A, m > 0, t E lR.+, m = 21+1 - 1, l = 0,1,2, ... , 

all solutions are bounded provided the parameters 1'1" A fall within certain 
ranges. This allows us to apply the principal theorem from the previous 
chapter to prove that for these parameter values all solutions are asymptoti­
cally stable. Preliminary numerical calculations lead us to believe that there 
also exist ranges of parameter values for which no asymptotically stable solu­
tions occur. In addition, our numerical experiments provide strong evidence 
for the existence of ranges of parameter values within which a wealth of dif­
ferent solution behaviour occurs, providing strong evidence for the onset of 
chaotic behaviour. 
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6.1 Existence of bounded solutions to two par­
ticular discrete analogues 

In this section we prove that for certain pairs of values of 'Y and r, with 
definitions given in (5.1.5) the equation 

(6.1.1) 

has a bounded solution. 

Theorem 6.1.1 Consider the discretisation (6.1.1) of the Volterra integro­
differential equation (6.0.1). Then IXnl < 1 for all n = 1,2, ... provided 
that 

and 

2 < 1 
~ 

m-l < 1- 2a 
m(m-yar2)k 

1 < 2(1-~) 
-raT 

1 
a<-2' 

when 1 < ( 1 ) m~l 
- m-yar2 

when ( 1 ) m:l 1 < -
m-yar2 < _ x 

when ( 1 ) m:l - 1 
m-rar2 < X < 

(6.1.2) 

(6.1.3) 

(i) 

(ii) (6.1.4) 

(iii) 

where x is the unique nonzero real solution to the nonlinear equation 

(6.1.5) 

Proof: Assume IXk I < 1 for k = 1,2, ... , n. Then either Xn = 0 or 
Xn =I O. If Xn = 0 then 

(6.1.6) 
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Figure 6.1.1: Graph of y = g(x) for m = 3 with domain extended to (0, (0) 

because a = e-T < 1 and IXn-ll < 1 by hypothesis. If Xn # 0 then 

IXn+11 IXn - 'YaT2x~ + a(Xn - xn-l)1 

< \xn \\l- 'YaT2x~-11 + 2a 

(6.1.7) 
(6.1.8) 

The right hand side of the inequality (6.1.8) is strictly bounded above by 
unity provided 

IXn111- 'YaT2x~-11 < 1- 2a. (6.1.9) 

Consider the function 9 : (0,1) -+ jR+ 

g(x) = xiI - 'YaT2xm-l\, 0 < x < 1. (6.1.10) 

We show that, under the hypotheses of the theorem, g(x) < 1- 2a for every 
x E (0,1). We consider separately three intervals along the x-axis where 
x = 1 could lie (see figure 6.1.1). 
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1 1 

11: 0 < X < 1 ~ (m-y~r2) m=r. Note that x = (m-y~r2) m=r is the point at 

which 9 assumes its maximum value m-l ~. Clearly 
m( m-YQr2) m-

max g(x) < sup g(x) = 1 - raT2 
xE(O,I) xE(O,l) 

since 9 is an increasing function over this region. Therefore we can 
guarantee 

max 9 (x) < 1 - 2a 
xe(O,I) 

by requiring that 1 -raT2 < 1 - 2a, or, equivalently, by ensuring that 
? < 1 in condition (6.1.4(i)). 

12: 0 < x < 1 < x. The horizontal tangent through the local maximum 

possessed by g(x) at ((m ~r2) m~l , m-l £) intersects the curve 
-y m(m-YQr2)m-

y = g(x) again at x = x where x is the positive real solution to the 
nonlinear equation 

2 m-1 
x (-raT xm

-
l 

- 1) = 1 

m (m"YaT2) m-l 

(6.1.11) 

1 

such that x > (-ya\2) m-l since 9 (x) is monotonically increasing in this 

region. Clearly 

1 m=r m-l 
max g(x) ~ max g(x) = 9 = g(x) = 1 • ( 1) 

"E(O,l) "E(O,i) ( m-yaT' ) m (m-yaT') = 
And so again we can see that 

max g(x) < 1 - 2a 
xE(O,I) 

by imposing condition (6.1.4(ii)). 

13: 0 < x < 1 such that x < 1 < x· < Xl where x*, Xl are defined by the 
relations g(x*) = 1 - 2a, g(xd = 1. Clearly, in this case, 

max g(x} < sup g(x) = "YaT2 - 1 
xe(O,l) XE(O,l) 
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0.) 

and 
max g(x) < 1 - 2a 

xE(O,I) 

is guaranteed by ensuring that ,ar2 -1 < 1-2a which it is by condition 
(6.1.4{iii) ). 

(N.B. A completely analogous argument applies for the region -1 < x < 

To complete the induction argument for Xn =j:. 0 we show that IXII < 1, 
or in other words, 

-1 < 1 - ,ar2 < 1. (6.1.12) 

This follows since ,ar2 > 0 b, a, r > 0), and by (6.1.2). 
The following is the corresponding theorem for the discrete analogue to 

(6.0.1) 
Xo = Xl = 1, 

Xn+l = Xn - ,r2x~ + a(xn - xn-d, n = 1,2, ... , (6.1.13) 

The proof is similar. 

Theorem 6.1.2 Consider the discretisation (6.1.13) of the Volterra integro­
differential equation (6.0.1). Then IXnl < 1 for all n = 1,2, ... providing that 

and 

2a < 1 ::y:T2 

m-1 < 1- 2a 
m(m'Y'T2)k 
1 < 2(1-

2
a) 

'Y'T 

1 
a < 2' 

when 1 < (_1 )m~l 
- m1''T2 

when (_1 ) m~l 1 < X 
m'Y'T2 <-

when ( 1 ) m~l - 1 m'Y'T2 < X < 

(6.1.14) 

(6.1.15) 

(i) 

(ii) (6.1.16) 

(iii) 

where x is the unique nonzero real solution to the nonlinear equation 

x br2 xm - l _ 1) = m - 1 1 

m(m')'r2)m=T 
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Remarks: Theorems 6.1.1 and 6.1.2 give sufficient conditions on , and 
T for the existence of bounded solutions to the discrete schemes (6.1.1) and 
(6.1.13) respectively. The use of the rather coarse triangle inequality bounds 
leads us to speculate that the conditions are not also necessary. We explore 
this further in the next section. 

6.2 Some numerical experiments 

With m = 3, scheme (6.1.1) becomes 

Similarly, scheme (6.1.13) becomes 

Xn+l = Xn -,T2X~ + a{Xn - Xn-l), n = 1,2, ... ,Xo = 1, Xl = 1. (6.2.2) 

First we consider the scheme (6.2.1). Figure 6.2.1 shows the values of" T 

such that the conditions 6.1.4 (i), (ii), (iii) respectively are satisfied. The dark 
region indicated in figure 6.2.2 represents a numerically generated plot of, 
and T values for which the inequality Ig(x)1 < 1 - 2a is satisfied, where X 

was allowed to vary from -1 to 1 in steps of 0.001. This gives the entire 
range of admissible pairings under the restriction of the triangle inequality 
in (6.1.8). The union of the three sets shaded in figure 6.2.1 can be seen to 
be identical to the set of pairings shaded in figure 6.2.2. Next we show that 
the region in figure 6.2.2 is a proper subset of the class of ('Y, T) pairings for 
the scheme (6.2.1) for which all solutions satisfy IXnl < 1. By iterating the 
scheme (6.1.7) we obtained figure 6.2.3 which gives the complete region for 
which IXnl < 1. 

By way of illustration of the poorer behaviour of the scheme (6.2.2) we 
present figures 6.2.4 and 6.2.5. 
Remarks For both iterative schemes (6.2.1) and (6.2.2) we observe from the 

graphs that the way we conduct our analysis in section 2 restricts our choice 
of parameters (,,(, T) compared with our numerical experiments. It can also 
be observed that, although analytically we have the desired results (Le. that 
the iterative schemes do indeed possess only bounded solutions under certain 
choices of parameters), from a numerical analysis standpoint the admissible 
('Y, T) pairings found by the analysis do not admit small values of h since the 
values of T are bounded below away from zero. Figure 6.2.3 suggests that in 
practice there is no such restriction. 
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6.1.4 (i) satisfied • 

6.1.4 (ii) satisfied • 

6.1.4 (iii) satisfied • 

o~--~--~----~--~--~----~--~--~----~~ 
o 2 4 8 8 10 12 14 18 18 20 

gamma 

Figure 6.2.1: Regions 1,2 and 3 for (6.2.1) for which (6.1.4) is satisfied 
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2 4 8 8 10 
gamma 

12 14 18 18 20 

Figure 6.2.2: Region of (1',r) pairings for scheme (6.2.1) for which Ig(x)1 < 
1 - 2a is satisfied 

6.3 Some interesting observations 

We have proved that a set of parameter values for (1', r) does exist which 
guarantees bounded solutions. We have indicated, by direct calculation, that 
in practice this is only a subset of a much bigger set of parameter values which 
gives bounded solutions. By choosing values of'Y and r to satisfy conditions 
(6.1.2), (6.1.3) and (6.1.4(iii)) or (6.1.14), (6.1.15) and (6.1.16(iii)) we can 
show that the assumptions of Chapter 4 (section 2) are satisfied. In the 
former case we have the following theorem. 

Theorem 6.3.1 For the equation 

n 

Yn+1 - Yn = -Kh2 L e-h),(n+1-i)yJ, Yo given, 
j=O 
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Figure 6.2.3: Region of admissible h, r) pairings obtained by iterating 
(6.2.1). 

assume K" A, h, Yo satisfy 

and 

_ 1 
e )"h <_ 

2' 

(6.3.2) 

(6.3.3) 

2 (e)"h -1) 1 
1 < h2 2 when 3 h2 )"h < rl < y~, (6.3.4) 

K, Yo K, e-

where fj is the unique nonzem real solution to the nonlinear equation 

K,h2e-)"hy3 _ y = 2yo (6.3.5) 
3V3Kh2Y5e-)"h 

for y > v'3Ith;e )"h; then every solution to the equation (6.3.1) satisfies Yn -+ 0 
as n -+ 00; hence they are all asymptotically stable. 
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5 

2 

2 4 II 8 10 
gamma 

12 14 18 18 20 

Figure 6.2.4: Region of h, r) pairings for scheme (6.2.2) for which (6.1.16) 
is satisfied 

In conducting our numerical experiments, we discovered a region in the 
h, r) plane (see figure 6.2.3) where there is a finger-shaped region of non­
convergence. We can zoom in on this region to see that it actually contains 
further regions of convergence and non-convergence. This is illustrated in 
figures 6.3.1, 6.3.2 and 6.3.3 where the images appear to be indicative of 
chaotic behaviour. We have established analytically, for certain parameter 
values, the existence of periodic solutions. Furthermore we have found nu­
merically solutions that undergo many oscillations and then either diverge or 
converge to zero. Solutions decreasing monotonically to zero have also been 
found. 
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5 

3 

Figure 6.2.5: Region of admissible ('1, r) pairings obtained by iterating 
(6.2.2). 
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(0, 6) (20, 6) 

tau 

(0,0) {20,0) 

(6.95,0.81) (9.1, 0.81) 

tau 

(6.95, O. 16~) gntl1Tll (9.1 , 0.165) 

Figure 6,3.1: Successive close-ups of a region in the h, T) plane. Darker 
region represents (-y, T) pairings which lead to convergent solutions. 
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(7.686.0.613) (7.939, 0.613) 

tau 

(7.686. 0.537) grullm (7.939,0.537) 

(7.795.0.58 1) (7.837. 0.581 ) 

tau 

(7.795, 0.568) (7.837, 0.581) 

Figure 6.3.2: Successive close-ups of a region in the (,,/, T) plane. Darker 
region represents (,,/, T) pairings which lead to convergent solutions. 
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(7.802, 0.576) (7.806, 0.577) 

tau 

(7.802.0.516) gannn (7.806, 0.576) 

Figure 6.3.3: Successive close-ups of a region in the (,' T) plane. Darker 
region represents (r, T) pairings which lead to convergent solutions. 
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Chapter 7 

A nonlinear Volterra 
integro-differential equation 
with infinite delay 

The purpose of this chapter is to discretise a nonlinear Volterra integro­
differential equation with infinite delay and to derive a stability result for 
the discrete case. The continuous case was studied by Elaydi & Cushman 
[20]. For convenience, we summarise their results which are relevant to our 
work. Our aim is to derive a result for the discrete case using a method 
analogous to that used for deriving the result for the continuous case, name 
Lyapunovs' Direct Method. Finally, we illustrate our results with some nu­
merical experiments. 

The problem considered here is a slight generalisation of what has gone 
before. We are now dealing with a continuous problem which is representing 
a system with inifinite memory as opposed to a system with finite memory. 
Such systems do play an important role in modelling real-life situations (see 
[44] for a wealth of examples). 

7.1 Previous work 

Consider the scalar problem: 

y'(t) = I (t, yet)) + itoo K (t, s, yes)) ds (7.1.1) 

where I(t, 0) = K(t, s, 0) = 0, I E e[lR x lR, lR], K E e(lR x lR x lR, lR1, ly, Ky 
are continuous. We say that yet, </» is a solution of (7.1.1) if it is continuous 

103 



t 

and satisfies (7.1.1) for t ~ 0 and it coincides with the initial function 4> on 
(-00,0]. 

In [20], Elaydi & Cushman consider a generalisation of the above prob­
lem (Le. a system of integro-differential equations with infinite delay). For 
convenience, we present here the scalar version of their result. 

L~ 7.1.1 (Elaydi & Cushman) Let the function g : (-00,0] -+ 
[1,00) be continuous with g(O) = 1, 9(T) -+ 00 as T -+ 00. 9 is decreasing 
such that if 4> E'/, 14>(s) I < ')'9(S) for some,), > 0 and -00 < s < 0, then 
I~oo K (t, s, 4>(s)) ds is continuous for t ~ O. 

For this 9, denote by (Y, I . Ig) the Banach space of continuous functions 

4> : (-00,0] -+ lR s~h that 14>lg = sUP-oo<t::;o I ~ I exists. All initial functions 
belong to (Y,I·lg).r 
Definition 7.1.2 (Elaydi & Cushman) The zero solution of {7.1.1} is ex­
ponentially stable with positive constants L and a if, for t 2:: 0, 

ly(t)1 ~ Le-ot l4>lg· 

Let 

j(t, y) = jy(t, O)y + F(t, y) (7.1.2) 

and 

K(t, s, y(s)) = Ky(t, s, O)y + Q(t, s, y(s)). (7.1.3) 

Consider the linearised system 

z' (t) = f. (t, O)z( t) + f.' K. (t, s, O)z( s )ds. (7.1.4) 

Associated with (7.1.4) is the resolvent kernel R(t, s) which is the unique 
solution of the equation 

a it as R(t, s) = -R(t, s)fy(s, 0) - 8 R(t, a)Ky(a, s, O)da, (7.1.5) 

where R(t, t) = I for 0 < s ~ t. It has been shown in [31] that R(t, s) exists 
for (7.1.5) and is continuous for 0 < s ~ t. Let 

H(t) = l~ K(t, s, q,(s))ds (7.1.6) 

and 

G(t) = /.00 R2 (s, t)ds. (7.1.7) 
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Theorem 7.1.3 (Elaydi & Cushman) Assume that for (7.1.1) the fol­
lowing conditions hold: 

(i) N ~ GCt) ~ L, 

. ':"to 

(ii) 2G(t) (F(tt~(tl)+ H(t) + J; K(t,s,y(s))ds~~l~~ where M > 1, 

Ui i) (- J.oo J.s Ky(a, t, O)R(s, a)da x R(s, t)ds 

- J.oo R(s, t) J.s R(s, O)Ky(a, t, O)dads)y2 < O. 

Then the zero solution of (7.1.1) is exponentially stable. 

7.2 The discrete case 

Consider the discrete system 

n 

Yn+! - Yn = hf(n,Yn) + h2 I:: K(n,j,Yj), h> O. (7.2.1) 
j=-oo 

We now linearise this system in a similar way to linearising (7.1.1). This 
gives: 

Yn+! - Yn hfy(n, O)Yn + hF(n, Yn) + hHn 
n 

+h2 I: (Ky(n, j, O)Yj + Q(n, j, Yj)) , 
j=O 

where Hn = 'EJ=-oo (Ky(n, j, O)Yj + Q(n, j, Yj)). 

Definition 7.2.1 Let 

00 

Gn = h I:R2 (j,n), 
j=n 
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and 

R(j, n +1) - R(j, n) = h ( -R(j, n)fv(n, 0) - h t. R(j, i)K,(i, n, 0») , 
(7.2.4) 

where R{n, n) = I. 

Lemma 7.2.2 
00 

Gn+1 - Gn = _h2 L: R2(j, n)Jy{n, 0) 
j=n+l 
00 

- h2 L: R(j, n + l)R(j, n)Jy(n, 0) 
j=n+l 

00 j 

- h3 L L R(j, i)Ky(i, n, 0) (R(j, n + 1) + R(j, n)) - h. 
j=n+l i=n 

(7.2.5) 

Proof: 
00 00 

Gn+! - Gn - h L: R2 (j, n + 1) - h L R2 (j, n) 
j=n+l j=n 

00 

- h 2: (R2(j, n + 1) - R2(j, n)) - hR(n, n) 
j=n+1 

00 

- h L: (R(j, n + 1) + R(j, n)) 
j=n+l 

·h ( -R(j, n)f,(n, 0) - h t. R(j, i)K,(i, n, 0») - hI 

00 

- -h2 L: R2 (j, n)Jy(n, 0) 
j=n+l 

00 

-h2 L R(j, n + l)R(j, n)Jy(n, 0) 
j=n+l 

00 j 

_h3 2: 2: R(j, i)Ky(i, n, O)(R(j, n + 1) + R(j, n)) - h. 
j=n+1 i=n 
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Theorem 7.2.3 Assume that for the discrete problem (7.2.1), the following 
conditions hold: 

(H1) 

2 
< Yn+l 
- M' 

(7.2.6) 

for some M > 1. 

(H2) 

00 j 

L L R(j, i)Ky(i, n, 0) (R(j, n + 1) + R(j, n)) > 0, (7.2.7) 
j=n+l i=n 

{H3} IYnl, fy(n, 0), Lf=n+1 R2(j, n), L:~n+l R(j, n+l)R(j, n) are all hounded. 

Then the zero solution of {7.2.1} is asymptotically stable. 

Proof: We prove our result by means of Lyapunov's Direct Method. We 
define a Lyapunov function for our problem as follows. Let 

.6. Vn Vn+1 - Vn 

Y~+1Gn+1 - y~Gn 
Y~+1Gn+1 - Y~+lGn + Y~+1Gn - y~Gn 

- Y~+1 (Gn+! - Gn) + Gn (Y~+1 - Y~) 
- Y~+1 (Gn+1 - Gn) + Gn (Yn+1 + Yn) (Yn+1 - Yn) 
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Using Lemma 7.2.2, 
00 

D. Vn = -hY~+1 - h2 L R2(j, n)fy(n, O)Y~+1 
;=n+l 

00 

_h2 L R(j, n + l)R(j, n)fy(n, O)Y~+1 
;=n+l 

00 j 

_h3 L L R(j, i)Ky(i, n, O)(R(j, n + 1) + R(j, n)) Y;+1 
;=n+li=n 

+Gn (Yn+1 + Yn)(Yn+1 - Yn) 

(7.2.9) 

i.e. 
00 

D.Vn -hY~+l - h2fy(n,0)Y~+1 L R2(j,n) 
;=n+l 

00 

_h2 fy(n, O)Y~+1 L R(j, n + l)r(j, n) 
;=n+l 

00 ; 

_h3Y~+1 L L R(j, i)Ky(i, n, 0) (R(j, n + 1) + R(j, n)) 
;=n+l i=n 

n 

+h2 L (Ky(n, j, O)Yj + Q(n, j, Yj)))' 
j=O 

Under conditions (HI) and (H2), 
00 

D.Vn < -hY~+l - h2 fy(n, O)Y~+1 L R2(j, n) 
j=n+l 

00 2 

_h2 fy(n, O)Y;+1 L R(j, n + l)R(j, n) + h Y;l . 
j=n+l 

Therefore, 

D.Vn < 0 

for small enough A (under condition (H3)). 
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7.3 Numerical experiments 

Consider the Volterra integro-differential equation 

y'(t) = ay(t) + 1~ e-(t-')y'(s)ds, t > 0 (7.3.1) 

subject to the initial function ¢(t) = et for t < 0, with a < 0 being constant. 
Comparing this to our definition of the general equation, we note that: 

fy{t,O) = a, 

F(t, y) = 0, 

Ky(t, s, 0) = 0, 

We show that equation (7.3.1) satisfies the conditions of Theorem 7.1.3, as 
follows. 

First, note that the resolvent kernel R(t, s) of (7.3.1) is given by 

Thus, 

Therefore, 

8R 
as = -aR(t, s). 

:. R(t, s) = c(t)e-OS 

R(t, t) = 1 =} c(t) = eot 

R(t, s) = eo(t-s). 

G(t) = rX) (eO (t-S»)2 ds = ~. 
it 2a 

(7.3.2) 

(7.3.3) 

So dearly G(t) is bounded and condition (i) of Theorem 7.1.3 is satisfied. 
For our example equation, the left hand side of condition (ii) in Theorem 

7.1.3 becomes 

~ (4~t + J.' e-(t-')y'(S)dS) y(t). 

From our work in Chapter 3, and with the condition that a is negative, this 
expression is also negative and, as such, condition (ii) of Theorem 7.1.3 is 
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2 3 

Numerical Solution 

4 5 
t 

6 7 8 9 

Figure 7.3.1: Numerical scheme (7.3.4) with h = 0.01, Q = -1 

10 

satisfied. With Ky(t, s, 0) = 0, condition (iii) is also clearly satisfied and 
therefore all of the conditions of Theorem 7.1.3 are satisfied. 

Our discretisation of (7.3.1) is 

(7.3.4) 

with Yo = 1. Figure 7.3.1 demonstrates the good behaviour of the numerical 
solution. However, numerical experiments indicate that the discrete method 
actually fails for Q:> -0.68 (approximately). 
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Chapter 8 

Concluding Remarks 

It is clear from the extensive references included herein that much work has 
been done in the past with regard to the analysis of the Volterra integro­
differential equations. Similarly, much is known about the discretisation of 
such problems. However, it is accepted that gaps in the theory do exist. 
These gaps are hard to fill and are never filled completely. In a recent paper 
[1] Baker states that "the stability theory for numerical methods for Volterra 
equations is still incomplete though considerable advances have been made". 

Baker [1] goes on to say that "with favourable assumptions (though not 
invariably), investigation of stability of a solution of a non-linear equation can 
be reduced to that of the solutions of a corresponding linear equation (sta­
bility in the first approximation). Alternative approaches invoke Lyapunov 
theory or ad hoc qualitative arguments." . 

Chapter 3 illustrates that the approach of simplistic linearisation is not 
good enough for our chosen problems; our assumptions are not 'favourable 
enough' for such an approach to be productive. 

In chapter 4, we see how hard it is to develop results for some of the 
simplest methods. 

We have used Lyapunov theory to develop our results. It is generally 
considered to be a hard tool to use but extremely powerful (shown by the 
work in Chapter 5). Constructing suitable Lyapunov functionals for discrete 
systems is not a simple task and the use of discrete functionals that replicate 
continuous behaviour and a general construction method are both shown 
to be effective approaches. Many unsuitable functionals may be considered 
before a suitable one is found. 

Chapter 6 confirms the applicability of our work in chapter 5. Some very 
strict conditions had to be imposed in chapter 5 in order to produce some 
results. This leads to the question: Are our restrictions so tight that we are 
developing results for a near-empty set of equations? Chapter 6 demonstrates 
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that this is not the case. 
Chapter 7 introduces work on systems with delay. A lot of work has been 

done on the continous theory (see [44]). However there are still gaps in theory 
for suitable numerical methods and these types of equations are becoming 
more frequent in attempts to model hereditary systems. Kolmanovskii and 
Myshkis [44] state that "numerous investigations have shown that temporal 
delays in an actual system have a considerable influence on the qualitative 
behaviour of the system." 

To summarise, we have developed significant new results for some selected 
Volterra equations and we have highlighted an important tool (Lyapunov's 
direct method) for analysing the stability of discrete systems. The process of 
developing results for even the simplest numerical methods has been shown 
to be a difficult and long process, with much mathematical anaylsis being 
required. However, we have also demonstrated that it is an essential task 
because numerical methods do not always behave as they might first be 
expected to. 
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