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ABSTRACT 

Jaynes' maximum entropy formalism, based on Shannon's informational measure of 

uncertainty, is used in this thesis to infer solutions to two different civil engineering 

system models under uncertainty; those being water distribution networks and 

structural trusses. In this regard, the following problems, formalised as questions, are 
investigated. 

1. By appreciating the applicability of the entropy of network flows as a 

surrogate measure of reliability in water distribution networks, how can 

maximum entropy flows be calculated in a looped network when only the 

external inflows and outflows and the direction of pipe flows are available, 

without requiring mathematical programming techniques or iterative processes, 

so that they can be incorporated in one of the linearized least-cost optimum 
design methods without inducing any extra complexity into the formulation? 

2. How can various types of information which might be available in real water 

distribution networks be used to infer most-likely pipe flows and their 

corresponding pipe characteristics in a looped network, thus opening up the 

possibility of calibrating computer models of existing water networks without 

requiring a physical measurement of the network pipe flows which might be 

expensive and time consuming? 
3. Is it possible to extend the entropy-based method of designing reliable water 

networks to structural trusses bearing in mind the striking similarities between 

the two systems? 

In an attempt to answer the above questions, the following aspects of the present 
research are established. 

1. Visualising network pipe flows as path flows supplying demand nodes from 

the network sources, and appreciating that the demand of any node served by 

more than one path from any source should be distributed equally amongst all 
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the paths supplying that node from that source, the maximum entropy flows 

in 4 looped network are such that the ratio of the probabilities of path flows 

from each pair of sources to a demand node reachable from the corresponding 

pair of sources is the same for every demand node supplied by this pair of 

sources in the network. Accordingly, a very simple algorithm for calculating 

maximum entropy flows in general looped networks is developed. Its 

simplicity and efficiency is noted. An algorithm using a path-based entropy 

function, capable of calculating directly the maximum entropy value of 

network flows, is derived. 

2. A compound entropy formula representing pipe characteristics and pipe flows 

in water distribution networks is derived. A calibration model is then 

developed by maximizing the compound network entropy formula subject to 

available information such as external flows for multiple load cases, pipe 
diameters and lengths, nodal pressure heads and nodal equilibrium equations 

along with conservation laws of energy for all load cases considered around 

network loops. It is shown that the calibration method is very accurate for 

networks designed to carry maximum entropy flows and less accurate for other 

conventionally designed networks. 

3. An attempt is made to design reliable structural trusses to carry maximum 

entropy bar axial forces calculated by visualising bar axial forces as force 

flows. This attempt shows that flow entropy concept seems to have little 

significance in respect of structural reliability. However, unsuspected 
difficulties regarding extending the scalar methodologies developed in water 
distribution networks to the vectorial domain of structural trusses are 
highlighted. Also, the difference between reliability concepts in the two 

systems is observed. 
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NOTATION 

superscript denoting the optimum value of a variable. 

superscript of a random variable to indicate its mean value. 

+ve positive value. 

-ve negative value. 

E belong to. 

I SUM. 

00 infinity. 
f integral. 

11 product. 

V for all. 

n intersection. 

U union. 

C: subset. 

a dimensionless conversion factor for units. 

(XI alfa value corresponding to source node i in a network. 

(Xýj characteristic value of pipe ij in a network. 

safety index. 

safety index of component ij. 

constant cost coefficient for pipes in a network. 

column vector of nodal displacement components in a truss. 
8jh horizontal component of the nodal displacement of node j in a truss. 

5j" vertical component of the nodal displacement of node j in a truss. 

Ai discrepancy between actual and estimated characteristic value of 

pipe in a network. 
AIj deformation of bar ij in a truss. 

Aq, equal change in the flows in loop I in a network. 
11b axial force in bar b of the determinate sub-truss caused by the 

external applied loads only. 
Oij the angle that bar ij makes with the horizontal in a truss. 
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V Lagrange multiplier. 
4br 

axial force in bar b of the determinate sub-truss due to unit load 

applied at the nodes at the ends of redundant bar r. 

Pij material density of bar ij in a truss. 

GCOM maximum permissible compressive stress in a truss. 

(Iii axial stress in bar ij in a truss. 

(YLjj standard deviation of the external-load applied to bar ij in a truss. 

sample standard deviation. 

GR, ij standard deviation of the resistive strength of bar ij in a truss. 

(Yten maximum permissible tensile stress in a truss. 

CF(X) standard deviation of a random variable x. 

0 cumulative normal distribution function. 

ajn effective number of independent paths to node n through link jn in 

a network. 
AD set of commercially available discrete bar sizes of a truss. 

Aij cross-sectional area of bar ij in a truss. 
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F(x) cumulative probability distribution function. 
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Faxii axial force in bar ij in a truss. 
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k in a truss. 
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CHAPTER1 

INTRODUCTION 

1.1 INTRODUCTION 

In civil engineering projects, it is very common for engineers to deal with situations 

where some of the data needed in the analysis and design procedure is unavailable or 

uncertain. Load and strength data in structural reliability analysis, for example, have 

to be fitted by some available analytical probability distributions which are needed for 

estimating failure probability from their respective overlapping tail regions. Also, there 

is uncertainty associated with future orders in every productive industry such as the 

ready-mixed concrete industry, where prior probabilities for such orders need to be 

estimated for each mix. For such cases and many more, involving data uncertainty, an 

engineering judgement or a so-called "educated guess" is usually used to estimate the 

missing information so that progress on the analysis or design procedure can be made. 
However, such judgement or guess may sometimes introduce significant errors into 

subsequent calculations. For example, choosing different probability distributions to 

represent load and strength data in structural reliability analysis produces errors in 

reliability estimates measured in orders of magnitude (Basu and Templeman, 1985). 

Also, the evaluation of prior probabilities for future orders in the ready-mixed concrete 
industry, for example, should be done objectively, not arbitrarily, and should not be 

affected by any personal bias. Consequently, a rigorous inference method for 

estimating most-likely, or least-biased, performance estimates from partial information 

has to be adopted for such cases of uncertainty so that no arbitrary guesses have to 

be made to fill in the missing information if sensible data estimates are to be sought. 

Recently, Jaynes' maximum entropy formalism (Jaynes, 1957) based on Shannon's 

informational entropy measure of uncertainty (Shannon, 1949) has been used in such 

cases as those outlined above to infer most-likely values for unknown probabilities 
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subject to available and incomplete information. The applicability of the maximum 

entropy formalism, however, has not been limited only to the obvious cases of 
inferring least-biased probability values. It has been used to generate solutions to a 

wide range of civil engineering problems where the available information is 

incomplete or uncertain, provided that the sought missing information can be somehow 

cast in a probabilistic fashion as required by Shannon's informational entropy. The 

present research is concerned with developing methods of logical inference based on 

the maximum entropy formalism for two different civil engineering system models 

under uncertainty; those being water supply networks and structural trusses. 

1.2 MOTIVATIONS AND OBJECTIVES OF THE PRESENT RESEARCH 

In recent years, water supply networks have been the subject of much research 

concerning least-cost optimum design and reliability. Entropy-based applications in 

water supply networks have also been studied. Tanyirnboh and Templeman (1993a) 

used the maximum entropy formalism to calculate most-likely flows in water 
distribution networks for which only supply and demand flows and the topology of 
the networks, along with pipe flow directions, are assumed be available. Other data 

such as lengths, diameters and roughness coefficients of the network pipes which may 
have been lost or may have changed over time as in the case of old water distribution 

networks are assumed not be available. In this case, the available information is 

insufficient to uniquely determine the flows in the network pipes. Physical 

measurements of pipe flows for such networks may be expensive and time consuming. 
By modelling network pipe flows probabilistically using the relative frequency 

interpretation of probability, Tanyimboh and Templeman (1993a) were able to develop 

a nodal flow entropy function of network pipes, and by maximizing it subject to 

equilibrium equations only they obtained a nonlinear programming model for 

calculating most-likely flows in water distribution networks with incomplete 

information. In another paper, Tanyirnboh and Templeman (1993c) showed that 

entropy of pipe flows in water distribution networks can be used as a surrogate 

measure of reliability. By adding an entropy constraint to the least-cost optimum 
design formulation of water networks, they obtained a good compromise between cost 
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and reliability which is desirable in urban water distribution networks. However, the 

least-cost optimum design formulation for water supply networks is one of non-linear 

programming, and adding an entropy constraint, which is also non-linear, to the 

formulation makes the problem more difficult to solve and computer time consuming. 

Many attempts have been made in the literature to linearize the least-cost design 

formulation of water supply networks. The method of Alperovits and Shamir (1977) 

is one of them. Therefore, simplifying the problem of calculating maximum entropy 

flows in water networks so that it can be incorporated into such a linearized least-cost 

design method without inducing any extra complexity would be most beneficial. Part 

of the present research aims to develop a path-based method capable of estimating 

most-likely flows in multi-source, multi-demand general networks without requiring 

any mathematical programming techniques or iterative processes. 

The entropy-based methods of calculating maximum entropy flows in water 
distribution networks mentioned so far have assumed that only supply and demand 

flows and the topology of the networks, along with pipe flow directions, are assumed 

to be available. In practical situations, however, other data such as pipe lengths and 

pipe diameters may also be available. Also, pressure heads at some network nodes can 
be measured quite cheaply and easily. Additionally, the estimated pipe flows must 

satisfy the conservation laws of energy around the network loops. All the above 
information may be available in old and inaccessible water supply networks in which 

only pipe characteristics and hence pipe flows are not known. The main objective of 

the present research is to show how such normally available information can be 

incorporated into one single model capable of estimating most-likely pipe flows and 

corresponding pipe characteristics in old water distribution networks, and to 

demonstrate that such a model can be used as a calibration method for calculating pipe 
flows and pipe characteristics for inaccessible water networks which are as close as 

possible to the actual values. 

The second area covered in the present research is the optimum design of 
indeterminate structural trusses. It is well appreciated that structural trusses and water 
supply networks share similar characteristics in terms of pictorial representations. 
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Templeman (1992b) showed that such aspects of similarity can be extended almost 
fully to include terms such as physical quantities, constitutive equations, methods of 

analysis and design and even some reliability approaches. He concluded that such very 

close similarity between the two systems enables methods of analysis and design of 

structural trusses to be used in water supply networks and vice versa. An attempt is 

made in this thesis to design a reliable structural truss to carry maximum entropy bar 

axial forces calculated in a similar way to that of calculating maximum entropy flows 

in water networks. The resulting truss design is tested against reliability and damage 

tolerance approaches. 

To sum up, the objectives of the research presented in this thesis are: 

1. To develop a simple quick method of calculating maximum entropy flows in 

multi-source, multi-demand general networks without requiring mathematical 

programming techniques or iterative processes. 
2. To produce an entropy-based inference model capable of calibrating 

inaccessible water supply networks in which only pipe characteristics, and 
hence pipe flows, are not available. 

3. To apply the concept of network pipe flow entropy to structural trusses by 

calculating maximum entropy axial forces in truss bars, and then to obtain 

reliable structural trusses by designing them to carry those calculated 

maximum entropy bar axial forces. 

1.3 LAYOUT OF THESIS 

Including this introductory chapter, the thesis is divided into nine chapters. The 

background materials needed to understand the contents of this thesis are given in 

Chapters 2 and 3. In Chapter 2, Shannon's informational entropy and the maximum 

entropy formalism are introduced along with a review of water distribution networks 

concerning analysis, optimum design and reliability approaches. Applications of the 

maximum entropy formalism in civil engineering in general and in water distribution 

networks in particular are also reviewed in that chapter. In Chapter 3, analysis, 
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optimum design and reliability methods for structural trusses are reviewed. Also, 

Chapter 3 examines aspects of similarity between structural trusses and water 
distribution networks. 

The new material presented in this thesis is distributed throughout Chapters 4 to 8. 

Chapter 4 introduces a path-based method of calculating maximum entropy flows in 

water distribution networks with incomplete information. Neither mathematical 

programming techniques nor iterative processes are required in the method which is 

illustrated in Chapter 5 by means of three sample network examples exhibiting 

different aspects which might be encountered in real water distribution networks. 

Chapters 6 and 7 are devoted to the mathematical model of calibrating inaccessible 

water distribution networks for which only pipe characteristics and corresponding pipe 

flows are not available. The theory behind the development of the calibration model 

is presented in Chapter 6, while applications of the model on two network examples 

are left to Chapter 7. Moving away from water distribution networks, Chapter 8 is an 

attempt to obtain a reliable structural truss by designing it to carry maximum entropy 

bar axial forces calculated in a similar way to that of calculating maximum entropy 

flows in water distribution networks. The resulting design is compared with a 

conventional design of the same truss by testing both designs against reliability and 

damage tolerance approaches. 

Finally, the main conclusions of Chapters 4 to 8 and some recommendations for future 

work are summarized and discussed in Chapter 9. All computer programmes written 

to solve the new methods developed in the present research along with some sample 

input and output files of some illustrative examples solved by those programmes are 

given in the end of this thesis as appendices. 
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CHAPTER 2 

THE MAXIMUM ENTROPY FORMALISM 

AND ITS APPLICATIONS 

IN WATER DISTRIBUTION NETWORKS 

2.1 INTRODUCTION 

Entropy is a known concept for scientists in the context of classical thermodynamics 

in which the entropy concept was first originated and defined as a function of some 

macroscopic properties which are experimentally observable such as temperature, 

pressure and volume. This entropy is non-probabilistic in nature and known as 

classical entropy. 

In statistical mechanics which is concerned with the microscopic states of matter, 

entropy evolved further and was used in a probabilistic sense to measure the 

uncertainty associated with a particular micro-state. This entropy has no explicit 

reference to information and is known as statistical entropy. 

It was Shannon (1948) who first used entropy in new contexts which are unrelated to 

thermodynamics. He related entropy to information by introducing entropy as a 

measure of the amount of information or uncertainty about the possible outcomes of 

a probabilistic experiment, enabling the information content of different probability 

distributions to be compared quantitatively. This kind of entropy is referred to as 

infonnational entropy and is described in detail shortly due to its direct relevance to 

the present research. 

Shannon's measure of uncertainty was the inspiration which led Jaynes (1957) to his 

revolutionary formalism in the history of science. Before Jaynes' (1957) astonishing 
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paper, Shannon's entropy was merely a measure of uncertainty in a probability 
distribution, provided that all probabilities are known. In the case of unknown prior 

probabilities which in practice is often the case, Jaynes (1957) suggested using the 

Shannon's entropy measure in a reverse sense to infer a probability distribution which 

would have the maximum entropy, that is a distribution which would have the 

maximum information available without introducing any unconscious arbitrary 

assumptions about choosing some probability distribution which appears to fit the 

available data. This criterion is known as the maximum entropy formalism which is 

the core of the present work and is described fully in this chapter. 

The maximum entropy formalism of Jaynes has opened up a wide range of 

applications for the Shannon entropy in all areas of civil engineering. Special attention 

will be given in this chapter to water distribution network applications which have 

recently attracted attention in tackling the difficulties associated with including 

reliability in water distribution designs. 

In this chapter, Shannon's informational entropy is first presented along with some of 

its important properties. Then, the maximum entropy formalism is introduced, with a 

survey of its applications in civil engineering. Finally, literature on water distribution 

network analysis and design is reviewed, and the water distribution network entropy 

major applications are described. 

2.2 SHANNON'S INFORMATIONAL ENTROPY 

Shannon (1948) was interested in information theory and in particular in the ways in 

which information can be conveyed via a message. In his work, he needed to develop 

a way of measuring the levels of information or uncertainty in different probability 
distributions. For example, consider the probabilistic experiment of tossing a coin. If 

the coin is perfectly fair, the probability of obtaining a head (H) is obviously equal 
to the probability of obtaining a tail (T) and is equal to 0.5. Suppose now the coin is 

loaded such that the probability of tossing a head is 0.95, and the probability of 
tossing a tail is 0.05. Clearly, the first probability distribution represents more 
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uncertainty than the second distribution in which the result of the experiment is almost 

surely the head. In the first case, any prediction is very uncertain. 

Furthermore, imagine a fair three-faced coin. For such a coin, it is clear that the 

probability of obtaining any face of its three faces in the next toss is 1/3. Comparing 

this experiment with that of the fair two-faced coin, the amount of uncertainty 

associated with the former experiment is greater than that associated with the latter 

one, since the chance of having the right prediction of the next toss is one-in-two for 

the fair two-faced coin, while the chance is one-in-three for the fair three-faced coin. 

Analysing such types of experiments, Shannon (1948) raised the following question; 

how can the degree of uncertainty in any finite probability scheme be measured 

quantitatively? In this section, Shannon's entropy measure of uncertainty is presented. 

Some of its properties along with the well-established Uniqueness Theorem of the 

measure are given. 

2.2.1 ENTROPY OF FINITE PROBABILITY SCHEMES 

Before Shannon's entropy measure of uncertainty is presented, a finite probability 

scheme has to be defined first. 

In probability theory, a set of events or outcomes is said to be mutually exclusive if 

one, and only one, of them can occur at each trial. Also, if it happens that one of 

these events must occur at each trial, then the set is exhaustive and it represents a 

complete system. The events of such a complete system together with their 

corresponding probabilities form afinite scheme. Let us denote the events or outcomes 

of a finite scheme by oi, and the corresponding probabilities by pi, i=l,..., N, where N 

is the number of events or outcomes. Thus the finite scheme 0 is given by: 

(0j, pi) i =1,..., N (2.1) 

The probabilities of such a scheme are non-negative and satisfy the normality 
condition since they form a complete system. That means: 
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Pi 2: 0 Vi (2.2) 

and, 

N 
(2.3) 

Every probabilistic scheme has some degree of uncertainty associated with it. A 

scheme with probabilities (0.5,0.5), for example, has more uncertainty than a scheme 

with probabilities (0.95,0.05). Moreover, there is more uncertainty about a scheme 

with probabilities (1/3,1/3,1/3) than a scheme with probabilities (0.5,0.5) although 
both of them are uniform distributions. From these types of examples Shannon (1948) 

extrapolated a set of desiderata which a sought measure of uncertainty must satisfy. 
He found that the only form which would satisfy his desiderata and therefore can be 

used as a general measure of uncertainty is the following function represented by a 
finite probability scheme: 

N 

-K p, log p, (2.4) 

where S is the entropy or amount of uncertainty; K is an arbitrary positive constant 

which depends on a suitable choice for the units of measure; and the logarithms can 

take any arbitrary but fixed base. However, natural logarithms are used throughout this 

thesis. Also, it is defined that 0 log 0=0. See Jones (1979) and Khinchin (1953) for 

example. Finally, the probabilities pi which represent a finite scheme are non-negative, 

exhaustive, mutually exclusive and satisfy the normality condition of Eq. (2.3). 

Shannon's measure of uncertainty, Eq. (2.4) , can also be regarded as a measure of 
information depending on the measurement being taken before or after the experiment. 

When an experiment is performed, the actual outcomes are known and the uncertainty 

concerning the results of the experiment is removed. Therefore, the information gained 
by the experiment is equal to the amount of uncertainty removed by performing it. 

Consequently, Shannon's entropy is rigorously considered as a measure of uncertainty 

or amount of information. See Guiasu (1977) and Kapur (1989). 
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2.2.2 PROPERTIES OF SHANNON'S ENTROPY 

Next are presented the properties of Shannon's entropy, some of which are simply 

expected of a reasonable measure of uncertainty. For more details and other properties, 
Khinchin (1953), Guiasu (1977), Kapur and Kesavan (1987) and Kapur (1989) are the 

recommended references that the interested reader may consult. 
1. Shannon's function SN(P19-'9PN) is a continuous and symmetric function provided 

that 0 In 0 is always replaced by 0. Thus S is invariant when the outcomes are 

rearranged among themselves. 
2. SN(P11-9PN) ý: 0 

The function takes its minimum value (0) only if one of the properties is unity 

and the rest of them are zero. Such a scheme obviously contains no uncertainty. 

3. SN(Pls**, 
9PN) = SN+1(P19*-PN50) 

This is expected as an impossible outcome does not affect the amount of 

uncertainty about any scheme. 
4. SN(P19*-PN) :5 SN(IIN,..., IIN) 

The function takes its maximum value when all the events are equally likely, i. e. 
in a scheme with uniform distribution, which agrees with one's expectation. 

5. S is a monotonically increasing function of the number of outcomes N, since its 

maximum value is: SN(IIN,..., IIN) =K In N. 

6. The entropy function S is a concave function. Since x In x is a well-known 

convex function, E pi In pi is a convex function and S=- E pi In pi is a concave 

one. Therefore, its local maximum value of K In N is a global maximum. 
7. The joint entropy of two mutually dependent schemes is the entropy of one 

scheme plus the conditional entropy of the other. i. e. 

S(0102) = S(01) * S(02ý\Od = S(02) 
'I' 

S(01\02) (2.5) 

whereS(0102) is the joint entropy of two mutually dependent schemes 01 and02 

whose entropies are S(01) andS(02) respectively; S(02\01) is the conditional 

entropy of scheme 02 provided that 01 first occurs, and S(W02) is the 

conditional entropy of 0, given that02 has occurred. Defining the two finite 

schemes 01 and02 as: 0, = (oil pi) Vi, and 02 = (oil P) Vj, the conditional 
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entropy S(02\0, ) is given by: 

S(02\01) = -K p(o) p(oj\oi) in p(oj\o, ) (2.6) 

in which p(o) is the probability of event oi in the scheme 01 and p(oj\oj) is the 

conditional probability of event oj in the scheme 02 given that event o, in the 

scheme 0, has occurred. 

Eq. (2.5) shows that the interchange of the positions of two schemes has no effect 

on the joint entropy of these two schemes. In the case of two mutually 
independent schemes, it is obvious that: 

S(02\01) = S(02) (2.7a) 

and, 

S(01\02) ý S(01) (2.7b) 

I 
since each scheme has no effect on the occurrence of the other. Therefore: 

S(0102) ý S(01) '1* S(02) (2.8) 

This means that the joint entropy of two mutually independent schemes is the 

sum of their separate entropies. 

The above properties of Shannon's entropy are actually the requirements which any 

reasonable measure of uncertainty has to satisfy. They stem from the actual meaning 

of the concept of uncertainty. However, Shannon's entropy is the only possible 
function to satisfy these properties. (See Khinchin (1953) for example). Its uniqueness 
is stated next as a theorem. 

2.2.2.1 THE UNIQUENESS THEOREM 

Let SN(PI9***, PN) be a function defined for any integer N and all values of pi , i=l,..., N, 

are non-negative and satisfy the normality condition of Eq. (2.3). Suppose this 
function has the following properties: 
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1* SN(PI9--PN)9 VN, is a continuous function with respect to all its arguments. 
2. For a given N and for E pi = 1, i=l,..., N, SN takes its largest value for pi=I/N, 

i=l,..., N. 

3. S(0102) ý-- S(01) + S(02\01)' 

4. SN(Pll**, 
9PN) -ý SN+I(PI--PNA- 

The only possible function to satisfy the above requirements is the entropy function 

of Shannon which has the form: 

N 

-KE pi inp, 
i-I 

where K is an arbitrary positive constant. 
-z 

(2.4) 

The proof of the above theorem is in no way necessary for the present research. 
However, details can be found elsewhere. See Khinchin (1953) for example. 

2.3 THE MAXIMUM ENTROPY FORMALISM 

Consider a random variable x which may take several discrete values xi, i=1,..., N, in 

a random process. Suppose the probability that x has the value xi, i=l,..., N, i. e. 

pi=p(x=xi) cannot be determined by the available information about the process under 

examination. What is the best estimate of such probabilities and how can they be 

found? 

An early attempt to solve this problem was Laplace's Principle of insufficient reason 
in which two events are to be considered equally likely if there is no reason to think 
otherwise. Therefore, the uniform probability distribution should be adopted if there 

is no other distribution which can be justified. 

Unfortunately, Laplace's Principle does not help a situation in which there are reasons 
for thinking otherwise, i. e. in a situation where the uniform distribution does not fit 
because of the presence of some information which might be available about the 

process being considered. Such information may be things like the mean and standard 
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deviation of the xi, Vi, and may take the form: 

N 

pi Fnji(x) = <Fn, > j=l,..., NEC (2.9) 

where <Fnj>, Vj, is the expected value of the function Fnji(x), Vi, and NEC is the 

number of the expectation constraint functions. These NEC constraints together with 

the axiomatic normality condition constraint of Eq. (2.3) are assumed to be less than 

the number of pi, i=l,..., N, i. e. NEC+1<N so that there are many distributions which 

will fit the available information (Eqs. (2.3) and (2.9)). Which of these distributions 

should be selected and why? 

Jaynes (1957) recognized that every probability distribution which fits the available 

information has a different value of Shannon's entropy. Since entropy is a measure of 

uncertainty, a distribution which has the maximum value of entropy within the 

limitation of the available information must have maximum uncertainty, must be 

maximally noncommittal to missing information and must contain minimum bias. 

Jaynes stated: 

"In making inference on the basis of partial information we must use that 
probability distribution which has maximum entropy subject to whatever is 
known. This is the only unbiased assignment we can make; to use any other 
would amount to arbitrary assumption of information which by hypothesis we do 
not have. " 

Mathematically, the above selection criterion, which is known as the maximum 

entropy formalism, is equivalent to maximizing Shannon's entropy function of Eq. 

(2.4) subject to the given information of Eqs. (2.3) and (2.9). i. e. 

Problem I 

N 
Maximize SIK p, in p, vpi (2.4) 

Subject to: 
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N 

i1 

(2.3) 

N 

p, Fnj, (x) = <Fn, > j=l,..., NEC (2.9) 

pi ;, - 0 i=-l,... N (2.2) 

Problem I is the classical maximum entropy problem. Its analytical solution can be 

found by examining the stationarity of its Lagrangean and is: 

, 
NEC 

exp lij Fn 
N NEC 

eXP [EI. Lj Fn,, ] 

(2.10) 

in which R., j=l,... NEC, are the Lagrange multipliers associated with the expectation 

constraints, Eq. (2.9) in Problem 1. However, the Lagrange multipliers R., j= I,.. -, NEC, 

in Eq. (2.10) are unknown and have to be calculated first if the maximum entropy 

probabilities of Eq. (2.10) are to be determined. This can be done by substituting Eqs. 

(2.10) back into the expectation constraints of Eqs. (2.9) in Problem 1, and solving the 

NEC non-linear equations for the NEC Lagrange multipliers. Then, the maximum 

entropy probabilities of Eqs. (2.10) can be calculated. This is rather awkward and 

tedious. However, Templeman and Li (1985) showed how the Lagrange multipliers 
in Eqs. (2.10) may be determined more easily by realizing that Problem I is a convex 

programming problem and it should have a dual form of an unconstrained 

minimization problem which may be easier to solve directly than Problem 1. 

Consequently, they were able to calculate the Lagrange multipliers by solving the dual 

unconstrained minimization problem very easily using a standard library subroutine 
for unconstrained nonlinear programming. It should be noted that the resulting 

maximum entropy distribution of Eq. (2.10) is a unique global maximum point for 

Problem I due to the convexity of the problem. 
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2.3.1 INTERPRETATIONS BEHIND THE MAXIMUM ENTROPY 

FORMALISM 

The maximum entropy formalism may be regarded as an extension of Laplace's 

principle of insufficient reason in which there is no information given about a 

probability scheme except that all the probabilities sum to unity. In such a case, 

maximizing the entropy subject to the normality condition only results in a uniform 

probability distribution which concurs with the principle of insufficient reason. 

However, the maximum entropy distribution is uniquely determined by virtue of the 

positive reason of being maximally noncommittal to missing information, instead of 

the negative one that there was no reason to think otherwise. 

Moreover, any gain in information leads to an extra constraint in the maximum 

entropy formalism and consequently reduces the entropy value of the system. 
Conversely, any gain in entropy means loss of information. 

Finally, the maximum entropy formalism has the potential power of discovering some 

physical laws that are yet undiscovered. Jaynes (1979) argued that if the actual 

probability distribution of a probabilistic experiment departs from the maximum 

entropy prediction, then there must exist another new constraint beyond that used in 

the calculation. Thus the maximum entropy formalism brings out the physics by 

showing that some constraints have been ignored, and if such constraints are unknown 

the maximum entropy formalism has the property of discovering them. 

2.4 THE CONTINUOUS CASE OF THE MAXIMUM ENTROPY FORMALISM 

In a situation of a continuous random process, the maximum entropy formalism is still 

applicable. However, an integral over the continuous domain should, replace the 

summations and probability density functions must be used instead of the discrete 

probabilities. Therefore, the continuous case of the maximum entropy formalism has 

the following form: 
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b 

Maximize SIK -f f(x) in (f(x)) dx vf(x) 
a 

Subject to: 

b 
f f(x) dx 
a 

(2.12) 

b 
f Fnjýx) f(x) dx = <Fn, > j=l,..., NEC (2.13) 
a 

in which x is a continuous random variable; <Fnj>, Vj, is the expected value of the 

function Fnj(x); and f(x) is a probability density function. 

The continuous entropy formula of Eq. (2.11) is defined in terms of a probability 
density function, so it may not be invariant under variable transformation. Moreover, 

the continuous entropy, when N-., -, is strictly not the limit of the discrete entropy 

whose properties therefore can not be extended to the continuous case. However, the 

solution of the continuous maximum entropy formalism can be obtained following the 

same process as for the discrete case, but this is not considered here since this 

research is concerned with discrete probabilities only. 

2.5 APPLICATIONS OF THE MAXIMUM ENTROPY FORMALISM IN CIVIL 

ENGINEERING 

The maximum entropy formalism has been used in applications of many areas of 

science and engineering due to its simplicity and efficiency of generating solutions to 

a wide range of problems where the available information is not complete. Only 

applications in civil engineering areas, some of which were surveyed by Templeman 

(1992a, 1993), are presented here, while other applications from widely different fields 

can be found in a reference such as Levine and Tribus (1979) for example. However, 

the use of entropy in optimization processes is mentioned here due to its general 

significance, while water supply network applications are left to the next section 
because of their close relevance to the present research. 
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Li (1987) and Templeman and Li (1987,1989) have used the maximum entropy 
formalism in optimization processes in an attempt to develop a radically different 

method of solving constrained nonlinear programming problems in order to match the 

sophistication of nonlinear engineering design applications. They looked at the 

problem in a probabilistic context and incorporated the principle of the maximum 

entropy into the process to improve convergence towards the optimum solution. Such 

an entropy-based approach was used by Li and Templeman (1988) in optimum truss 

sizing problems and was found to be very effective and encouraging to use in more 
difficult structural optimization problems. 

In a more obvious application of the maximum entropy formalism, Basu (1981) and 
Basu and Templeman (1984,1985) used the formalism to fit available probabilistic 
data. They argued that fitting different probability distributions to probabilistic data 

in most engineering problems is based on an ad hoc selection criteria which introduce 

bias into the calculations. In the 1984 paper, they showed that over a wide range of 
different distributions the maximum entropy distribution was the nearest to the actual 
distribution being examined. In the second paper, they estimated the failure probability 

of a structure by using the maximum entropy probability distribution to represent 

random loads and strengths in structural reliability analysis. They demonstrated that 

such an entropy-based approach produced a more logical and rigorous method to 

generate accurate failure probabilities, casting doubt upon the conventional treatment 

of structural reliability. 

In another application, decision-making analysis is the key process in any productive 
industry regarding the uncertainty associated with future orders. Thus, the evaluation 

of prior probabilities for such orders should be made objectively and should not be 

affected by any personal bias. Munro and Jowitt (1978) realized this fact and used 

therefore the maximum entropy formalism in the ready-mixed concrete industry to 

estimate the least biased probability distribution associated with the orders for each 

mix. They showed the ability of the entropy-based method to reproduce the common 

sense decisions associated with simple examples and continue to make consistent 
judgements when common sense decision-making becomes more difficult. 
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Traffic engineering has attracted many entropy-based applications concerning the 

estimation of the origin-destination matrix or the so-called trip matrix from limited 

data. A typical transportation problem is to minimize the total travelling cost between 

origins and destinations subject to available information about the total flows leaving 

and entering each origin and destination respectively. Erlander (1977) added an 

entropy constraint to the problem in order to preserve a desired level of accessibility 

between all origins and destinations. He stated that a network with a low value of 

entropy has a low level of accessibility, and vice versa. Also, Van Zuylen and 

Willumsen (1980) and Bell (1983) used entropy to estimate the most probable set of 

origin-destination movements that are consistent with available information. Van 

Zuylen and Willumsen (1980), however, developed two models, the first of which was 

to realize the trip matrix in the most number of ways by maximizing the entropy of 

the trip movements, and the second was to minimize the information content of a 

limited number of observations on the road network. A similar approach has been used 

to estimate turning flows at road junctions. Mountain et al. (1983a, 1983b, 1986a, 

1986b) showed that the entropy-based approach leads directly to the gravity model 

which is well known in roundabout turning flow problems. 

Finally, entropy applications have reached open channel flow studies. In a sequence 

of papers, Chiu (1987,1988,1989,1991) has used the maximum entropy formalism 

in modelling the distributions of the velocity, shear stress and suspended sediment 

concentration in open channel flows. He argued that the uncertainties surrounding 

these distributions which are due to the inherent randomness and man's ignorance can 

be overcome by maximizing their individual probability density function entropies 

subject to some conservation laws and others which govern fluid motion in open 

channels. 

Clearly, the above applications and others show that the maximum entropy formalism 

can be used to generate solutions to wide problems where the available information 

is not complete and is not directly concerned with probability distributions either. 
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2.6 ENTROPY APPLICATIONS IN WATER DISTRIBUTION NETWORKS 

In recent years the role of entropy in the analysis and design of water distribution 

networks has been the subject of much research. Its participation may be classified 

into two main areas, first as a method of estimating the most likely pipe flow rates in 

looped water networks, where the available data is insufficient to uniquely determine 

the pipe flows, and second as a surrogate measure of reliability. 

The problem of not having enough information to determine the unique pipe flow 

rates may occur in buried old networks where much of the information may be lost 

or may have changed over time. Also, a physical measurement of the pipe flow rates 

of such networks may be expensive and time consuming. Therefore, the behaviour of 
the system in buried networks contains uncertainty which is not in the physical system 
itself but in the inability of the engineer to determine uniquely that behaviour due to 

the lack of some needed information. The presence of such uncertainty makes a 

possible role for the maximum entropy formalism to play. This role is described fully 

in this section due to its relevance to the present work. 

The second area, the issue of reliability, is very important in urban water distribution 

networks. However, there is no comprehensive definition of this reliability in the 

literature because of its complexity and because of some uncertainty surrounding it. 

This uncertainty comes from the fact that reliability in water distribution networks is 

connected with issues naturally centring around uncertainty. Such issues are 

component failures, durations of their repairs or replacements, sufficiency of pressure, 

variations in demands and supplies, etc. Again, this uncertainty invokes an opportunity 
for entropy to play a part in the reliability of water networks. In this section, a review 

of entropy applicability as a surrogate measure of reliability in water networks is 

presented, and how such a measure could be incorporated in the optimum design of 

water networks is described. Before that, are briefly reviewed, some conventional 

methods of analysis and design of optimum water distribution networks along with the 

constitutive equations which govern the motion of water in networks. 
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2.6.1 OPTIMUM DESIGN OF WATER DISTRIBUTION NETWORKS 

The optimum design of water networks presented here is for general networks in 

which the layout and external flows, including the direction of flow in each link, are 

specified and the length and the roughness coefficient of each pipe are known. The 

objective function of the problem is the least capital cost of a pipe network, and the 

constraints are the constitutive equations and some other constraints arising from 

practical considerations. Before the least capital cost design problem is stated, the 

constitutive equations are presented and the most common method of analysis is 

described. 

2.6.1.1 CONSTITUTIVE EQUATIONS 

These include the head loss equations for each pipe, the flow equilibrium equations 
at each node and the loop and path equations for the conservation of energy. However, 

the effects of pumps and valves on those equations are not considered here. 

2.6.1.1.1 HEAD LOSS EQUATIONS 

The head loss in pipes is defined as the energy loss per unit weight. This is caused by 

frictional resistance of pipe walls to the fluid motion and due to the viscosity of the 

fluid. It also occurs due to bending or changing of the cross-section of the pipes. Only 

frictional head losses are considered here. The most practical approximation of friction 

head loss is the Hazen-Williams equation which is used throughout this thesis and is 

given by: 

a Le ij 
(qij)1.952 

hij CY 
- vijeii D Y4.97 

in which hij and qjj are, respectively, the head loss and the flow rate in pipe ij which 
both are positive in the direction of flow; a is a dimensionless conversion factor for 

units ((x=10.67 in S. I. units); Lej, Dj and Cij are the length, the internal diameter and 
the Hazen-Williams coefficient of pipe ij respectively; and U is the the set of all the 
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links in the network. 

Other equations may be used for head losses such as the Darcy-Weisbach equation 

which needs some iterative scheme in its calculations. See Jeppson (1976) for more 
details. 

2.6.1.1.2 CONTINUITY EQUATIONS 

All the inflows and outflows at each node must be in an equilibrium state. i. e. 

Eq--Eq,, k = qn jeNU. keND,, 
(2.15) 

where NN is the total number of nodes, NUn is the set of the upstream nodes of all 
internal inflows at node n, and ND. is the set of the downstream nodes of all internal 

outflows at node n. In the above equations, % is the external flow at node n, Vn, 

which is a supply for a positive value and a demand for a negative value. 

It should be noted that only the first (NN-1) continuity equations of Eqs. (2.15) are 

required for analysis since the continuity at the last node will automatically be 

satisfied if all external inflows and outflows are known and are in balance. 

2.6.1.1.3 ENERGY CONSERVATION EQUATIONS 

2.6.1.1.3.1 LOOP EQUATIONS 

The net head loss around each loop in a pipe network should be equal to zero. 
Therefore: 

E htj 0 1=1,..., NLP 
ije1j, 

(2.16) 

in which IJ, is the set of all links in loop I and NLP is the number of loops which 

must satisfy the following equation: 
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NLK = NN + NLP -i 

where NLK is the number of links in the network. 

2.6.1.1.3.2 PATH EQUATIONS 

If the heads at any two nodes in a network are known, then the total head loss along 

any path between these two nodes must equal the difference between their heads, 

which is usually known as path head loss. Thus: 

E hv = hp p=1,..., NP 
ijalp 

(2.18) 

in which UP is the set of all links in path p, Vp; hP is the known path head loss; and 

NP is the number of paths whose head losses are known and must satisfy the 

following equation: 

NP: ý NN -1 
(2.19) 

It must be noted that a path may contain one link only. Also, the NP paths must be 

chosen so that equations (2.18) are linearly independent, i. e. each path must have 

some information which is not already contained in any other path. 

2.6.1.2 WATER NETWORK FLOW ANALYSIS 

The analysis problem is to estimate the pipe flow rates in a network whose pipe 
lengths, diameters and roughness characteristics are known and the external flows are 

specified. However, there are many methods to solve this problem, and the most 

commonly-used one is the Hardy-Cross method which is described next. 

2.6.1.2.1 HARDY-CROSS METHOD 

In this method initial flow rates must be chosen first for all the pipes in the network 

and they must satisfy the continuity equations (2.15). Then the current flow rates are 
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corrected in each loop sequentially so that: 

q, j(n) =qQ (n-1) + Aqjn) VI, Vijejjl (2.20) 

(n) in which qij('-') is an estimated flow rate; &q, is a correction to be applied to all link 

flows in loop 1; qij(') is the corrected flow rate; and n is an iteration number. 

To calculate &q, (n) which is needed for corrections, the head loss equations (2.14) are 

reconstructed as: 

a Lej V-1) + Aq, (n)]1.852 

. VI, viie1j, (2.21) 
1.852 W-87 CY 

v 

and the loop equations (2.16) as: 

E hu(n) =o VI (2.22) 
Yclul 

which can be reconstructed as: 

-E 
Un-1) 

UIj I vi (2.23) 

1.852 

yaj, qv (n-, ) 

in which: 

a Le,, (q,, (n-1))1.852 
(2.24) 

CIV 1.852 DU 4.97 

(n) The resulting value of &q, of Eq. (2.23) can then be used in Eq. (2.20) to estimate 

new flow rates. Correcting all flow rates in all loops completes one iterative cycle. 
The above process is repeated again by correcting each loop in turn until the 

magnitudes of all loop corrections become very small. 

Although the method is very time consuming especially for a network with many 

loops since it corrects the flow rates in the loops sequentially rather than 

simultaneously, it is very simple and is used in this thesis. Other methods exist but are 

not presented here, such as the Linear Theory method which was developed by Wood 
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and Charles (1972) and the Newton-Raphson method (Martin and Peters, 1963). See 

Shamir and Howard (1968) for examples. 

2.6.1.3 WATER NETWORK LEAST COST DESIGN FORMULATION 

The least capital cost design of a pipe network described here is for general networks 
having the layout and external flows including flow directions in the links prespecified 

and the lengths and roughness coefficients of the pipes known. The formulation 

consists of minimizing the capital cost of the pipes subject to the constitutive 

equations presented earlier and to other practical constraints which are presented later. 

The variables in this formulation are the diameters of the pipes, the flow rates and 
hence the corresponding head losses in the links. 

2.6.1.3.1 COST OBJECTIVE FUNCTION 

The objective function considered here is the capital cost of the pipes only and may 
be expressed in several forms including: 

E Lej D. " 
YCIJ 

(2.25) 

in which C is the total cost of pipes; y is a coefficient which depends on the units of 
D, j; and e, is an empirical coefficient. 

2.6.1.3.2 PRACTICAL CONSTRAINTS 

These include flow velocity constraints, nodal pressure constraints, pipe diameter 

constraints and non-negativity of flow constraints. 

1. Flow velocity constraints: 

4qij 
, vy 

DU2 -. 
V. vijelj (2.26) 

where vij is the flow velocity in pipe ij; and v,..., and v. in are respectively the 
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maximum and minimum velocities allowed in the links. 

2. Nodal pressure constraints: 

H. in, n -: ý H,. = Hs -E hy :ýH..,,, n Vn (2.27) 
UCIJ, 

in which H. is the head pressure at source s; IJ,, is the set of all links along a selected 

path from source s to node n; and H. ax, n and H.,,,,,, are respectively the maximum and 

minimum heads allowed at node n. 

3. Pipe diameter constraints: 

D. 
in g. DU c DD -: g D. VijeIJ (2.28) 

in which DD is the set of commercially available discr6te pipe diameters; and Dmax and 
Dmi,, are respectively the maximum and minimum diameters allowed in the network. 

4. Non-negativity of flows: 

qV >- 0 VijeIJ (2.29) 

Having defined the objective function and the constraints which are to be satisfied in 

the design, the following formulation of the least capital cost of a pipe network can 

now be constructed as Problem 2 with some of the constraints rearranged. 

Problem 2; 

Minimize C=yE Lev Dii" vDu (2.25) 
oe, u 

Subject to: 
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1.952 

a ey (q, ) (2.14) 
hij 

CY 
- vij Gii 

D, ý* 87 
v 

E qj,, -Eq, & = q. n=l .... NN- 1 
JeNU,, keND. 

hy 0 1=1,..., NLP (2.16) 
ije1j, 

E hu = hp P=i,..., Np 
ijal, 

ir vj. qij -n V. 
4D24 

vijelj (2.30) 

H,, -Hn hy :5 Hs - Hminx Vn (2.31) 
#EIJI 

D. in -< 
DU EF DD 

-< 
D. VijcIJ (2.28) 

q, V k0 VijEIJ (2.29) 

Problem 2 is formulated as one of non-linear constrained optimization and can be 

solved by any standard constrained non-linear programming algorithm assuming that 

the pipe diameters are continuous-valued, i. e. relaxing the, discreteness constraint of 
Eq. (2.28). However, from a practical point of view, the diameter variables should be 

obtained as discrete values and must be chosen from a set of discrete sizes 

representing commercially available pipes. Yates, Templeman and Boffey (1984) 

showed that this requirement makes Prob lern 2 extremely difficult to solve. 
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Consequently, they suggested that good approximate solution methods should be 

sought rather than attempting to solve Problem 2 directly. Many attempts have been 

made to simplify Problem 2, and the Linear Programming Gradient method 

(Alperovits and Shamir, 1977) and the method of Quindry, Brill and Liebman (1981) 

are considered the main two approaches used in the literature for solving Problem 2. 

However, these methods and others have no relevance to the present work, and 

therefore they are not described here. The interested reader may consult the two papers 

mentioned above for details. 

Finally, it should be noted that'Problern 2 is formulated for one demand pattern. 

However, it can be easily formulated for multiple demand patterns by including a set 

of constraints for each demand pattern in turn. Obviously, the multiplicity of demand 

patterns makes Problem 2 more difficult to solve. 

Having presented some methods of analysis and design of optimum water distribution 

networks, the maximum entropy flows in water networks are described next, followed 

by reviewing entropy as a surrogate measure of reliability. 

2.6.2 NIAXIMUM ENTROPY FLOWS IN WATER DISTRIBUTION 

NETWORKS 

Consider the case of a buried water network in which much of the information needed 

to uniquely determine the pipe flow rates is missing. Such information are lengths, 

diameters of pipes and roughness properties which are assumed not to be available. 
However, source flow rates, demand flow rates and the topology of the network with 

arc flow directions are assumed to be known. Under these circumstances, how can the 

most likely pipe flow rates in the network be estimated? 

Suppose this network has NLK links connecting NN nodes. Therefore, there are NLK 

unknowns, those being the flow rates in all NLK links. Also, it can be recalled from 

the previous subsection that there are NN-1 independent continuity equations which 

relate those NLK unknowns together. If the network has no loops, i. e. is a branched 
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network, then Eq. (2.17) shows that the number of unknowns equals NN-1 with NLP, 

the number of loops, equal to zero. Therefore, in such a case, the available NN-1 

continuity equations are sufficient to determine uniquely the NN-1 pipe flow rates in 

the system. In general, water distribution networks are looped, in which case there are 

NN- 1 equations with NN+NLP- I unknowns [Eq. (2.17)], i. e. there are more unknowns 

than continuity equations available and, consequently, there are many possible flow 

rate distributions which satisfy those available equations. The maximum entropy 

formalism of Jaynes (1957), described earlier in this chapter, suggests choosing the 

distribution which has the maximum entropy value and satisfies the available 

information. The hurdle arising here is how pipe flow rates in a network can be 

expressed in a probabilistic way as required by Shannon's entropy and hence by the 

maximum entropy formalism. In this subsection, entropy functions for a flow network 

suggested by Awumah et al. (1990,1991) are presented first, followed by those 

developed by Tanyimboh and Templeman (1993a) which are found to be rigorous and 

therefore are chosen to be the basis from which the entropy formulations of a network 

developed in this thesis are derived. Then, the maximum entropy flows in a network 

calculated by Tanyirnboh and Templeman (1993a) are described and their relevance 

to the present work is highlighted. Finally, a path-based approach for calculating 

maximum entropy flows in single-source networks is presented. 

2.6.2.1 FLOW ENTROPY FUNCTIONS OF AWUMAH, GOULTER AND 

BHATT 

In an attempt to cast pipe flow rates in a water distribution network in a probabilistic 
form as required by Shannon's entropy, Awumah, Goulter and Bhatt (1990,1991) 

started investigating the flows in links incident on a node n. They argued that the 

probability quantities in Shannon's entropy function of Eq. (2.4) may be regarded as 

the fractions of total flows into node n carried by each link incident on that node. 

Therefore, the following function could be used as an entropy measure of node n in 

a network after setting K in Eq. (2.4) to unity: 
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sn EL ýj qj. Vn (2.32) 
JcNU. Qn Q. 

in which Sn is the entropy of node n, Vn; NU, Vn, represents the upstream nodes of 
link inflows at node n; qj,, is the flow in link j n, Vj E=- NU.; and Q. is the sum of the 

link flows entering node n and is given by: 

vn 
JeNU, 

(2.33) 

Awumah et al. (1990,1991) then expanded Eq. (2.32) to the whole network. They 

argued that, in order to derive an entropy function for the whole network, it is 

important, regarding the overall network performance, to replace Qn by Q0, which is 

the sum of the flows in all the links in the network, before summing up the entropies 

of all the nodes in the network together. Therefore, the entropy of the network may 

be given by the following formula: 

NN q In q., 
_L Vn nm (2.34) 

n-I JeNU. Qo QO 

in which S is the entropy of the network; NN is the number of nodes in the network; 

and Qo is given by: 

Qo =E qV (2.35) 
QcLI 

in which IJ is the set of all the links in the network. 

Eq. (2.34) is the basic entropy formula from which all the modified entropy functions 

used by Awumah et al. (1990,1991,1992) have been derived. 

It should be noted that the probability-like quantities, (qJQO), VjE NU,,, Vn, used in Eq. 

(2.34) are not mutually exclusive as the flow in a link exiting node n is dependent on 

the flow in a link incident on that node. This violates the basic requirement of 

Shannon's entropy and, therefore, Eq. (2.34) is not rigorously formulated. 
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However, Awumah et al. (1990,1991) transformed Eq. (2.34) into another function 

by substituting (qjn/Qo) by (qjnQn)/(QnQo) without changing it. The transformed 

equation is therefore (see Awumah et. al (1990) for the derivation): 

NN Qn NN Qn 
(2.36) S. In Q" 

n-1 0 n-1 
Qo QO 

in which Sn is the entropy of node n and is given by Eq. (2.32). 

Some attempts have been made by Awumah et al. (1990,1991) to modify Eq. (2.32). 

In the first paper, Awumah et al. (1990) realized that the entropy of a node n given 

by Eq. (2.32) treats the node n in isolation without considering the connectivity of that 

node to the rest of the network. They argued that the number of alternate paths from 

a source to a demand node passing through each link incident on that demand node 

should be accounted for. Therefore, they introduced the following function: 

11 q 
Sn jjn . jn Vn (2.37) 

JeNUn Qn aj, Qn 

in which aj,,, VjE NU,,, Vn, is the effective number of independent paths to node n 

through link jn, and is given by: 

n 1j. 

E (dk-1) 

np 
k-i Vn, VjENU,, (2.38) 

n1j. 

,r 
dk 

k-i 

in which nptj,,, Vn, Vj E NU, is the number of dependent or independent paths to node 

n through the link jn; nl,,,, Vn, Vjr= NU, is the number of links in the nptjnpaths; dk 

is the number of paths in which link k is a member. 

In the second paper, Awumah et al. (1991) presented another approach to modify Eq. 

(2.32) by considering the transmissivity of entropy from one node to another which 

is immediately downstream to it. They approximated this transmissivity by the ratio 

of the flow entering the downstream node from its immediate upstream node to the 

total flow entering that upstream node. i. e. 
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q Vn, VjeNU,, (2.39) 
Qj 

in which tnjv Vn, Vj(=- NU, is the transmissivity from node j to node n. Therefore, Eq. 

(2.32) can be extended to include this transmissivity parameter as follows: 

S, ' = S,, + F, t,, j Sj' vn (2.40) 
JeNU,, 

in whichSnI is the modified entropy of node n; Sj' is the modified entropy of node j, 

VjE NUn. Therefore, to calculate the modified entropy of any node, the modified 

entropy of its all upstream nodes must be calculated first. 

Finally, it may be noted that all nodal entropy functions presented so far have been 

defined in terms of link inflows only. No consideration was given to the outflow links 

which may become inflow links to the node being considered in the event of a link 

failure. Obviously, this may only happen to outflow links which are part of a loop 

since flow reversal cannot occur in a link which does not belong to a loop. To allow 
for such a situation, Awumah et al. (1990) expanded Eq. (2.37) to the following 

equation: 

jn In 
qjn Ek In qnk Sn =-E «L 

gn 
Vn (2.41) 

JcNU. Q, - aj, Q, - kENDL. Qn- ak Q. 

in which Sn is the new entropy of node n, Vn; NDL. is the set of all nodes 
immediately downstream of the node n, Vn, which belong to a loop containing node 

n; Q- is the total of all flow leaving and entering node n from the set of nodes NUn 

and to the set of nodes NDLn respectively. i. e. 

E qj,, +E qk Vn (2.42) 
JeNU, kcNDL, 

The above Eqs. (2.37), (2.40) and (2.41) can then be substituted for S,, in the basic 

function of Eq. (2.36) to obtain the entropy of the network. It will be recalled here 

that Eq. (2.34) is questionable as it is based on probability-like quantities which are 

not mutually exclusive. Since Eq. (2.36) is equivalent to Eq. (2.34), therefore, all the 
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entropy functions presented earlier are not rigorously founded. Also, the quantities 
(Q,, /Qo) used in Eq. (2.36) are not probabilities as there is double counting in Q0. This 

makes Eq. (2.36) incorrect theoretically from an entropy viewpoint. Moreover, the 

entropy functions of Awumah, Goulter and Bhatt do not directly account for the 

external inflows and outflows in the network. Although the external inflows and 

outflows may be known, they have to be considered in entropy functions because of 

the uncertainty surrounding the contributions of the source supply at each node to the 

total flow reaching that node, and also surrounding the contributions of the total 

inflow to satisfy abstraction at a demand node. Tanyimboh and Templeman (1993a) 

realized the above weaknesses and proposed alternate and more rigorous flow entropy 
functions which are presented next. 

2.6.2.2 FLOW ENTROPY FUNCTIONS OF TANYIMBOH AND TEMPLEMAN 

In general looped water networks, the flow entering or leaving node n, Vn, by link jn, 
VjEENU,, or link nk, Vkc-NDnj respectively, depends on whether or not flow has 

reached the node n. In other words, the probability of the flow entering node n, Vn, 

by link jn, VjE NU, and the probability of the flow leaving node n, Vn, by link nk, 
VkEiND, are both conditional upon the probability that flow has reached that node 
n. Therefore, the conditional entropy formula of Khinchin (1953), which was presented 
earlier in this chapter as Eq. (2.6), has to be used if the entropy of node n in a 

network is to be defined. Tanyimboh (1993) and Tanyimboh and Templeman (1993a) 

realized the above fact and used a multiple probability space to formulate a rigorous 

entropy function for general water distribution networks in which each node must have 

either an external inflow or outflow. They introduced two conditional finite probability 
schemes for each node representing respectively the flow entering and leaving node 

n, Vn, as follows: 

Pj- ý 
k- Vn, VjcNU, (2.43) Tn 

q,, k Pnk -T Vn, VkEND. (2.44) 
n 

32 



where p,,, is the conditional probability that flow, which is destined to reach node n, 
Vn, uses link jn, VjENU,,; Pnk is the conditional probability that flow, which is 

destined to pass through node n, Vn, is included in q,, k, VkE ND,,; T,, represents the 

total flow reaching or leaving node n, Vn, i. e. 

n T=E qj,, qnk n 1,..., NN 
JeNU. keND. 

(2.45) 

It should be noted that NU. and NDn used in Eqs. (2.43), (2.44) and (2.45) include 

respectively any external inflow and outflow. Defining qOn and q,, O being respectively 

the external inflow and outflow at node n, Vn, then Eqs. (2.43) and (2.44) respectively 
include the following probabilities: 

q on pon =- Vn cI, (2.46) 
Tn 

q,, o (2.47) PnO ý -T Vn6ID 

in which I. and'Drespectively are the sets of source nodes and demand nodes in the 

network; po, VnE I, is the probability that a source node receives its total inflow T,, 

from its external inflow qOn; p. 0, Vnr=IDI is the probability that a demand node uses its 

total inflow Tn to satisfy its demand q,, O. 

Tanyimboh (1993) and Tanyimboh and Templeman (1993a) stated that the two finite 

probability schemes represented by Eqs. (2.43) and (2.44) are conditional upon the 

probability that flow reaches node n, Vn, by all possible paths. Considering the 

conditional probability scheme of Eq. (2.44) which is associated with flow splitting 

processes, and applying the conditional entropy function of Eq. (2.6), Tanyimboh and 

Templeman (1993a) were able to define the entropy of a node n in a general network 

as follows: 
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ný -pn E Pnk ln Pnk n=l,..., NN (2.48) 
keND. 

in which S,, ' is the entropy of node n associated with the outflows from that node n, 
Vn; ND,, is the set of all downstream nodes of link outflows from node n, Vn, 

including any demand; P,, is the total probability of flow arriving at node n, Vn, by 

all possible paths. Tanyimboh and Templeman (1993a) showed how P, Vn, can be 

calculated in a rather laborious way. However, algebraic manipulation of P, Vn, gives 

the following convenient equation (see Tanyimboh and Templeman, 1993b, for its 

proof): 

Pn ý 
Tn 

Vn (2.49) 
TO 

in which To is the total supply or demand, i. e. 

0r qo,, q. 0 T= (2.50) 
nel, nEID 

Having defined the conditional entropy of node n, Vn, the conditional entropy of the 

entire network can then be defined using the general form of Eq. (2.5), which has the 
form: 

S(0102***OM) ý S(01) + S(02\01) +"' + S(om\olo2***om-l) 

S(OM\0102 
... 

OM-1) M=2,3,... ; 2<MeZ*<M (2.51) 

in which S(0,0, 
... 

Om- 1) is the joint entropy of M number of schemes; Vrepresents the 

set [0,1,2,3 1. 

The first term of Eq. (2.5 1) represents the entropy of an absolute rather than a 

conditional finite scheme. Such an absolute scheme in a water network is a scheme 

representing the fraction of the total supply provided by source node n, Vn(=- I, i. e. 
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Po,, = 
l-' VnEl, (2.52) 
TO 

Therefore, in accordance with Eq. (2.5 1), Tanyimboh and Templeman (1 993b, 1993c) 

introduced the following function which defines the entropy of a general water 

network as follows: 

NN 
s0= so, -ES. 0 

n-I 

(2.53) 

in which S' is the network entropy based on the outflows; S,, ' is the conditional 

entropy of outflows, including any demand, at node n, Vn, as given by Eq. (2.48); So' 

is the entropy of the distribution of To amongst the sources and is given by: 

So' =-EP.. In P,,. 
nel, 

where Po,, is given by Eq. (2.52). 

(2.54) 

The sample water supply network used by Tanyirnboh and Templeman (1993a) and 

shown here as Figure 2.1 is used next to demonstrate the above equations. 

If the supply, demand and link flows are specified in Figure 2.1 a, and the associated 

probabilities are shown in Figure 2.1 b, then the following equations can be obtained: 

To = qoj + q02 [Eq. (2.50)] 

T, = ql3+ ql4= qoj 
T2 

= q23 + q24 = q02 

T3 
= q34 + q35 +q30 

T4 
= q46 + q4o 

T5 = q56 + q50 

T6= q6o [Eq. (2.45)] 

Pol = qoj To ; P02= q02 'TO [Eq. (2.52)] 

P13 = q13 T, ; P14= q14 / T, 
P23= q23 T2 ; P24= q23 /T2 
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P34 = q34 / T3 ; P35 = q35 / T3 ; P30 = q30 / T3 

P46 .= q46 'fr4 ; p4o .= q4o /T4 

P56 = q56 /T5 ; p5o = q50 /T5 

p6o = q6O / T6 =1 [Eq. (2.44)] 

Also, P, Vn, can be calculated as the probability of flow arriving at node n, Vn, by 

all possible paths. P3, for example, can be calculated as follows. Flow can arrive at 

node 3 by two routes; those being 1-3 and 2-3. The probability of flow arriving at 

node 3 by route 1-3 is POIP13, and by route 2-3 is P02P23. Thus, P3 is the sum of those 

two probabilities, i. e. POIP13 + P02P23* Using the above approach, Pn, Vn, are: 

P, = POI 
P2 = P02 

P3 = P13PI + P23P2 

P4 = P14PI + P24P2 + P34P3 

P5 "ý P35P3 

P6 = P46P4 + P56P5 

It should be noted that the above probabilities may be obtained by applying Eq. (2.49) 

which is very easy to use. At this stage, Eqs. (2.54) and (2.48) can be used to produce 

the following entropy functions: 

So' =- PlnPI - 
P21nP2 

SIO =- PI IP13lnpI3 + P141npI4] 

S20=- P2 IP23lnP23 + P24lnP241 

S30 =- P3 IP34lnP34 + P35lnP35 + P30lnP301 

S40=- P4 IP46lnP46 + P40lnP401 

S5. =- P5 IP56lnP56 + P501np5ol 

S60 =- P6 IP60lnP601 =0 

S60 being zero can be justified by the fact that there is no uncertainty about splitting 

the flow leaving node 6 as there is only one outflow at node 6, this being q6O. Finally, 
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the total outflow entropy of the network can be calculated using Eq. (2.53): 

S0= SOS + Slo + S20 + S30 + S40 + S50 + S60' 

It should be noted that the network entropy given by Eq. (2.53) is based on the 

conditional finite probability scheme of Eq. (2.44) which represents the outflows from 

node n, Vn. Tanyimboh (1993) produced a similar network entropy function based on 

the inflows at node n, Vn, which are represented by Eq. (2.43) as follows: 

Si qd 
NN 

i 
0+E 

s", 

n-1 

(2.55) 

in which S' is the network entropy based on the inflows; S. ' is the conditional entropy 

of inflows, including any source supply, at node n, Vn, and is given by: 

in 
JeNU. 

(2.56) 

where P. is given by Eq. (2.49) and pj,, is given by Eq. (2-43). Also, in Eq. (2.55), So 

is the entropy of the distribution of To amongst the demand nodes, i. e. 

Sd 0' P,, o In P., o neII) 
(2.57) 

where P,, O is the fraction of the total demand consumed at node n, Vnr= 1D, and is given 

by: 

'0 (2.58) pe = 
17 

VneD 
TO 

It should be noted that the entropy of the outflows, S', which is given by Eq. (2.53) 

must equal the entropy of the inflows, S', which is given by Eq. (2.55). This can be 

seen by contemplating Eq. (2.5). However, the network entropy of the outflows, S', 

is used in this thesis, and the superscript o is therefore dropped hereafter. 
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2.6.2.3 CALCULATING MAXIMUM ENTROPY FLOWS IN NETWORKS 

Returning to the problem of determining the most likely flows in a buried network in 

which only the supplies and demands, and the flow directions in the links are assumed 

to be available, it has been suggested, according to Jaynes' maximum entropy 
formalism, that the flow distribution which has the maximum entropy and satisfies the 

available information must be used. Having defined the appropriate entropy function 

for network flows, Tanyimboh and Templeman (1993a) calculated the maximum 

entropy flows in a looped network by maximizing the network entropy of Eq. (2.53) 

subject to the nodal flow equilibrium equations, Eqs. (2.15). However, the network 

entropy of Eq. (2.53) is defined in terms of probabilities, while the variables in the 

nodal equilibrium equations are the link flows. To simplify the optimization process, 
Tanyimboh and Templeman (1993a) reformulated the network entropy in terms of 
flows. This can easily be done by substituting Eqs. (2.44), (2.45), (2.47), (2.49) and 
(2.50) in Eq. (2.48), and substituting Eqs. (2.50) and (2.52) in Eq. (2.54), then Eqs. 

(2.48) and (2.54) can be substituted in Eq. (2.53) to obtain the new network entropy 
in terms of link flows, which may have the form: 

(2.59) 

in which F,, (q,, ) is the network entropy defined in terms of all link flows. 

Maximizing the -network entropy of Eq. (2.59), therefore, subject to the nodal 

equilibrium equations, Eqs. (2.15), contains NLK variables, this number being the 

number of links in the network. However, if the first (NN-1) independent equilibrium 

equations, Eqs. (2.15), are substituted in the network entropy of Eq. (2.59), the size 

of the optimization process can be reduced from NLK number of variables to NLK- 

(NN-1) variables, those being the independent flows whose number is NLP, the 

number of loops, as shown in Eq. (2.17). Under these transformations, the nodal 

equilibrium equations are no longer needed in the optimization process as they are 

satisfied implicitly in the network entropy which may now have the form: 
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S= Fý (2.60) 

in which q, 
i"d is the vector of all independent flows in the network-, F. ( q Si"d 

) is the 
ind 

network entropy defined in terms of qj , i=l,..., NLP. 

Tanyirnboh and Templeman (1993a) exploited the above simplifications to calculate 

the maximum entropy flows in a general looped network. They maximized Eq. (2.60) 

subject to non-negativity of all link flows to enforce the flow directions specified in 

the links. The optimization problem which they proposed is presented next as 

Problem 3. 

Problem 3 

Maximize S=F, (qs'ý'd) (2.60) 

subject to: 

( qind qj = Fni 

in which qj is the flow in link i, i=1,..., NLK, derived from the equilibrium equations, 

Eqs. (2.15), and defined in terms of the independent flows ( qý ind ). 

Problem 3 is a convex programming problem because the objective function of Eq. 

(2.60) is concave as it is the sum of a set of concave functions of the form -Y-pilnpi, 
and also the constraints in Problem 3, which are linear, represent a convex set. 
Therefore, Problem 3 has a unique global maximum point which can be obtained 

using any standard constrained non-linear programming algorithm. However, 

Tanyimboh and TempleMan (1993a) solved Problem 3 as an unconstrained 

optimization problem after eliminating the non-negativity constraints of Eq. (2.61) by 

arguing that the maximum entropy solution will be expected to have flows which are 

as uniform as possible without any being equal to zero. Moreover, the network entropy 

of Eq. (2.60) will be undefined in the infeasible region, thus satisfying the non- 

negativity constraints implicitly in the objective function. 
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It should be noted that the multiple probability space models produced by Tanyimboh 

and Templeman (1993a) for general networks are capable of solving parallel networks. 
A water network is said to be parallel if it has no links connected in series, i. e. each 

link in a parallel network operates independently of the rest. This implies that each 

link connects a source node to a demand node. Tanyimboh and Templeman (1993a) 

applied the multiple probability space model to a parallel network and maximized the 

network entropy function of Eq. (2.53) subject to its nodal equilibrium equations. The 

resulting maximum entropy flows were shown to be as follows: 

qO, qO (2.62) qnk = TO 
vnkeIi 

in which qnk* is the maximum entropy flow in link nk, Vnkc- U; the * is used herein 

to denote the optimal value. The result of Eq. (2.62) corresponds to the well-known 

gravity model of transportation engineering, see Erlander (1977) for example. This 

may give further emphasis on the general correctness of the approach. 

Finally, it may be noted that the above approach of determining the least biased flows 

proposed by Tanyimboh and Templeman (1993a) is for general water networks in 

which only the supply and demand, and the flow directions in the links are assumed 

to be available. However, other information may be available such as lengths and 

diameters of the pipes and the pressure head of any node in the network. Also, the 

conservation of energy around each loop must be satisfied. Unfortunately, the 

maximum entropy flows problem proposed by Tanyimboh and Templeman (1993a) 

and presented here as Problem 3 is not able to cover the new information which may 

be available in general networks. The above issues are investigated in Chapter 6, and 

a new optimization problem is proposed to incorporate the new available information 

in one general model. 
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2.6.2.4 PATH-BASED ALGORITHM FOR CALCULATING MAXIMUM 
ENTROPY FLOWS IN SINGLE-SOURCE NETWORKS 

The problem of calculating maximum entropy flows in networks proposed by 

Tanyimboh and Templeman (1993a) and presented earlier as Problem 3 involves non- 
linear programming. A different and simpler path-based approach was described by 

Tanyimboh and Templeman (1993b) to calculate maximum entropy flows in single- 

source networks. 

Considering any demand node served by more than one path from the source, 
Tanyimboh and Templeman (19931; ) argued that, according to the maximum entropy 
formalism, the demand of that node should be divided equally amongst all paths 

supplying it if there is no further information about those paths. Therefore, each 
demand node should be treated in turn, and the final maximum entropy flow in each 
link is then obtained by summing the flows in all paths passing that link. To 

demonstrate the above approach, the single-source network example used by 

Tanyimboh and Templeman (1993b) is considered here and is shown as Figure 2.2. 

The equal path flows from the source to each demand node are shown in Figure 2.3. 

For example, node 5 is served by three paths 1-2-5,1-2-3-5 and 1-3-5, each of which 

must carry 8 units of flows; that is one-third of the demand of node 5. Finally, for 

each link, the flow for all paths through that link are summed to obtain the maximum 

entropy flow for that link. The resulting maximum entropy link flows are shown in 

Figure 2.4. They are identical to those obtained by solving Problem 3 computationally 
for the network of Figure 2.2. Tanyimboh and Templeman (1993b) presented 

algorithms for the proposed method. They are a node numbering algorithm, a node 

weighting algorithm and a flow distribution algorithm. 

The same single-source network of Figure 2.2, which is shown now in Figure 2.5, is 

used next to demonstrate the above algorithms. First, all nodes in the network are 

numbered according to the node numbering algorithm. The source node is given the 

number 1, then the rest of the nodes are numbered in an ascending sequence starting 
with any node for which all upstream nodes have already been numbered. The 
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numbering of nodes 4 and 5 is arbitrary and may be interchanged. 

The next step is to calculate the number of paths from the source to each node using 

the node weighting algorithm, and then to enclose that number, as a weight of the 

node, in a box next to it. This can be done by assigning a weight of I to the source 

node, then, in ascending node numbering sequence, the weight of each node is equal 

to the sum of the weights assigned to all nodes immediately upstream of it. 

Consequently, the weight of node 2 is equal to the weight of node 1, and the weight 

of node 3 is the sum of the weights of nodes I and 2, that is 1+1=2. Similarly, the 

weight of node 4 equals the weight of node I plus the weight of node 3, and the 

weight of node 5 is the sum of the weights of nodes 2 and 3, which, in both cases, 

equals 3. It may be noted that the node numbering algorithm ensures that all nodes 

immediately upstream of the node being considered have been weighted. 

Finally, the flow distribution algorithm is used to determine maximum entropy link 

flows. The total outflow at a node is shared among the inflowing links at that node 
in proportion to the upstream nodal weights. The flow distribution algorithm operates 
in descending node number order. Therefore, starting with node 5, the flow in link 2-5 

is obtained by multiplying 24, this being the total outflow at node 5, by the ratio 1/3 

which is the ratio between the weights of nodes 2 and 5. The flow in link 3-5 equals 
24 multiplied this time by the ratio 2/3, this being the ratio between the weights of 

nodes 3 and 5. Similarly, considering node 4, the flow in links 1-4 and 3-4 can be 

obtained by multiplying 15 by the ratios 1/3 and 2/3 respectively. At this stage, the 

flow in the links ending at node 3 can be calculated. The total outflows at that node 

equal its demand plus the flows in links 3-4 and 3-5, resulting in 36 units. 
Consequently, the flow in links 1-3 and 2-3 will share the total outflows at node 3 

equally due to the equality of the weights of the immediate upstream nodes of these 

two links. The only link left is link 1-2 whose flow is equal to 36, this being the total 

outflows at node 2, multiplied by the ratio 1/1. 

The above algorithms are rigorous for single-source networks. They produce identical 

results to those given by solving Problem 3 in a much simpler and quicker method as 

42 



it is not iterative and does not involve linear or non-linear programming. 
Unfortunately, the above simple method is not capable of handling general multi- 

source networks. Walters (1995) has pointed out that the attempt of Tanyimboh and 
Templeman (1993b) to extend the simple single-source algorithm to multiple sources 
by means of a super-source concept is actually incorrect. He showed how it should 

correctly be used in a rather unwieldy method. In Chapter 4, a relatively simple 

algorithm based on the path concept is proposed for calculating maximum entropy 

flows for general multi-source networks without involving linear or non-linear 

programnung. 

Having reviewed the use of entropy in estimating the most likely flows in water 

networks, the second application of entropy in water distribution networks as a 

surrogate measure of reliability is presented next. 

2.6.3 ENTROPY AND RELIABILITY IN WATER NETWORKS 

The efficiency of the design of water distribution networks in urban areas depends on 
both the cost optimization and reliability of the system. The cost aspects of water 

supply systems have been discussed earlier in this chapter and incorporated in the 

least-cost optimum design of water distribution networks which is presented herein as 

Problem 2. Templeman (1982) argued that if this cost optimization design problem is 

formulated for a network with a prespecified looped layout it leads inevitably towards 

an implicit tree-type branched network where a few minimum diameter loop- 

completing pipes, whose existence is ensured by the minimum diameter constraints, 

do not provide spare capacities which are not immediately required by the design 

demand pattern. In contrast, the basic requirement of reliability in water supply 

networks is to provide alternate flow paths to each demand node by means of loops 

in order to prevent or at least reduce the possibility of isolating some demand points 
from the rest of the network in the event of random components failures. These 

alternate paths must have adequate capacities to be usable under various adverse 

conditions for which the network was not specifically designed. Therefore, it is 

essential to incorporate some measures of reliability in the optimum design problem 
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of water supply networks. 

However, there is no comprehensive definition of the reliability of water distribution 

networks in the literature. Although some reliability definitions have been established, 

their practical applications for general networks are extremely complicated (see 

Valliant, 1979 and Provan and Ball, 1983). Consequently, including such complex 

reliability analysis in the optimum design problem, which is itself very difficult to 

solve (Yates, Templeman and Boffey, 1984), makes it even worse. It can then be 

concluded that a surrogate and simple measure of reliability has to be sought and 
included in the optimum design of water networks in such a way that optimizing this 

surrogate measure optimizes to some acceptable extent the overall reliability of the 

network. Awumah et al. (1990,1991,1992) and Tanyimboh and Templeman (I 993c) 

used entropy as a surrogate measure of reliability in water distribution networks. 

Before reviewing entropy as a surrogate measure of reliability, some definitions and 

measures of actual reliability in water supply networks are presented next. 

2.6.3.1 SOME DEFINITIONS AND MEASURES OF RELIABILITY 

Two types of reliability may be recognized within a water distribution network. These 

are mechanical reliability and hydraulic reliability. Mechanical reliability reflects the 

need for any component in the network to be operational at any time, and it is affected 
by the layout of all components and their individual mechanical reliability. On the 

other hand, hydraulic reliability is concerned with the ability of the system to satisfy 

all required nodal demands under severe conditions, and it depends on mechanical 

reliability and the hydraulic performance of the network. 

Tung (1985) defined the mechanical reliability of a network as the probability that all 
demand nodes are reachable from a source. Therefore, the unreliability can be 

identified as the probability that at least one demand node is isolated. Also, Wagner, 

Shamir and Marks (1988a) used two definitions for mechanical reliability, first as the 

probability that a given demand node in a system is reachable from at least one 
source, and second as the probability that all demand nodes in a system are connected 
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to a source. 

The problem of testing the reachability and connectivity in water supply networks has 

been found to be extremely difficult to solve (Provan and Ball, 1983). However, some 

methods for solving this problem exist. Tung (1985) showed that the minimum cut set 

approach is the most efficient method for calculating the mechanical reliability of 

water networks. A minimum cut set is a minimum set of system components whose 

simultaneous failure will cause the failure of the system. The complement of the sum 

of failure probabilities of all minimum cut sets will give a lower bound for system 

reliability. 

Wagner, Shamir and Marks (1988a) showed that reachability and connectivity 

measures can be used to identify unreliability in a system due to lack of network 
interconnections or unreliable components. Connection to a source, however, is only 

a necessary but not a sufficient condition to insure that a given node is functional. A 

sufficient supply for a reachable and fully connected node may not be satisfied at 

adequate pressure. Therefore, measures of hydraulic reliability should be defined and 

calculated to estimate the overall reliability of a network. Wagner, Shamir and Marks 

(1988a) defined the hydraulic reliability of a water network as the probability that a 

system can meet a specified level of flow at each demand node. They showed that 

calculating this measure should be made for a simplified representation of the network 
in question. In another paper, Wagner, Shamir and Marks (1988b) showed that 

simulation-based analysis of water networks under random component failures enables 

other reliability measures to be identified such as the duration of the longest period 

of failure at any node, the duration of the longest period of reduced service at any 

node and the failure event in which the greatest total shortfall occurred. 

Also, Bao and Mays (1990) defined the hydraulic reliability of a system as the 

probability that the system can provide the demanded flow rates at the required 

pressure head. Based on this definition, they introduced nodal reliability as the 

probability that the actual pressure head at a given demand node is greater than or 

equal to the required n-dnimurn pressure head at that node. They concluded that overall 
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system reliability can be identified as one of the following three measures, first as the 

minimum nodal reliability in the system, that is the reliability of the most unreliable 

node, second as the mean of all nodal reliabilities, and third as the weighted average 

of the nodal reliabilities, that is the weighted mean of all nodal reliabilities weighted 
by the corresponding nodal demands. 

Finally, Fujiwara and De Silva (1990) defined reliability in terms of the expected 

minimum flow delivered as the complement of the ratio of the expected minimum 

total shortfall in flow to the total demand. For calculating the expected minimum total 

shortfall, they calculated the minimum shortfall for each state of the network which 

has only one failed link. The expected minimum total shortfall can then be calculated 

as the sum of the minimum shortfall for each state weighted by the corresponding 

state probability. 

The problem of calculating hydraulic reliability defined in terms of the probability of 

sufficient supply is extremely difficult to solve (Valliant, 1979). Its exact calculation 

requires the analysis of all reduced network configurations due to random component 
failures, which is time consuming. Many approximations, therefore, have been made 
in this regard. The interested reader may consult the papers from which the above 

measures of reliability were taken. 

It can therefore be concluded that concatenating the optimum design problem of water 

networks with reliability is extremely complicated. Su, Mays, Duan and Lansey 

(1987), Fujiwara and De Silva (1990) and Cullinane, Lansey and Mays (1992) are 

some of many models in the literature which optimize network reliability explicitly 

within the framework of the optimum design problem of water distribution networks. 

The details of those models have no relevance to the present work and are left to the 

interested reader who may consult the papers from which those models were taken. 

However, reliability can implicitly be optimized within the framework of the least cost 

optimum design of water networks which is formulated earlier in this chapter as 
Problem 2. This can be done by considering multiple demand patterns in the problem 
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including very adverse cases. In this case, a set of constraints for each demand pattern 
has to be added to the problem. It has been seen that Problem 2 is extremely difficult 

to solve. Thus this difficulty will increase with each additional load case. 

Armed with the above arguments, the need for simple and easy-to-calculate surrogate 

measures of reliability is vital. It has been discussed earlier in this section that the 

uncertainty surrounding reliability invokes an opportunity for entropy to play a role 
in the issue of reliability in water distribution networks. In the following subsections, 

the correlation between entropy and reliability is discussed, followed by some models 
incorporating entropy as a surrogate measure of reliability in the optimum design 

problem of water supply networks. 

2.6.3.2'CORRELATION BETWEEN ENTROPY AND RELIABILITY 

Apart from uncertainty which correlates entropy to reliability of water distribution 

networks as discussed earlier in this section, other factors which strengthen this 

correlation are presented next. 

It has been shown earlier in this chapter that the maximum entropy formalism selects 
the most uniform distribution among all the probability distributions which satisfy the 

available information. It is therefore logical to predict that applying the maximum 

entropy formalism in water distribution networks results in flows and diameters of all 
links to be as uniform as possible. Much research has demonstrated that uniformity 
in pipe diameters and flows increases the reliability of the network. Rowell and Barnes 

(1982) argued that a pipe with an extremely high hydraulic gradient is dissipating 

energy at an excessive rate and should be replaced by a larger, more efficient pipe, 

while a pipe with an extremely low hydraulic gradient should be replaced by a smaller 

pipe. This is consistent with the common design restriction on flow velocity within the 

network pipes, which forces large pipes with small flows to be replaced by smaller 

pipes, and small pipes with large flows to be replaced by larger pipes. The above 

rearrangement of pipe diameters suggested by Rowell andBames (1982) leads to a 

network in which all pipes are fairly similar in diameter. Also, Goulter and Coals 
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(1986) recommended minimizing the differences in the reliabilities of all pipes 

connected to each node in order to improve network reliability. Tanyimboh and 
Templeman (1993c) showed how such a recommendation leads inevitably to 

uniformity of all diameters in the network. 

Turning to flow uniformity, Walters (1988) showed that splitting the flow equally 
between the pipes converging at each node could improve the reliability of the 

network. Also, Awumah, Goulter and Bhatt (199 1) demonstrated that maximizing the 

level of uniformity in capacities of the links incident upon the demand nodes tends to 

improve network reliability. 

The above arguments show that the desirability of uniformity for pipe diameters and 

flows in water supply networks puts entropy and reliability on the same track. 

Awumah, Goulter and Bhatt (1990) used the entropy-based function of Eq. (2.41) as 

a measure of redundancy at node n, Vn, in water supply networks. As shown earlier 

in this chapter, this measure of redundancy has accounted for redundancy being 

transmitted from upstream, and allowed for flow reversal in case of pipe failures. The 

overall redundancy of the network can then be calculated using Eq. (2.36). Awumah 

et al. (1990) assessed the above entropy-based redundancy measure by comparing it 

to two well-known parameters; the Nodal Pair Reliability parameter and Percentage 

of Demand Supplied at Adequate Pressure parameter. The first parameter measures the 

probability that a pair of nodes are successfully connected, and the second parameter 

assesses the hydraulic performance of the network under failure of a link in the 

network. The above comparison showed that the entropy measure of Eq. (2.36) is very 

sensitive to changes in the network reliability as measured by the above two 

comparative parameters. 

Another entropy-based measure presented earlier in this section as Eq. (2.40) has been 

used by Awumah et al. (1991) as a measure of global redundancy at node n, Vn, in a 

water network. They demonstrated that the above measure reflects the network 

performance indicated by the percentage of flow supplied under a range of link 

failures, and can be used to produce reliable designs without the need for large 
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numbers of load patterns or intensive iterative approaches which are normally 

required. 

Also, Tanyimboh and Templeman (1993a) calculated the maximum entropy flows, 

presented earlier as Problem 3, for the network shown in Figure 2.1. They observed 

that the link flows in the lower half of the network are the same for any combination 

of source flows at nodes I and 2 totalling the same amount of units. From a reliability 

viewpoint, this would result in a considerable degree of invulnerability to possible 

variations in the source flows. 

Finally, the above relationship between entropy and reliability has been demonstrated 

graphically by Awumah and Goulter (1992) who obtained two trade off curves for 

different designs based on, a range of layouts. The first trade off curve is cost vs 

entropy which is defined by Eqs. (2.36) and (2.37). The second trade off curve is cost 

vs reliability which is defined by the average node pair reliability of the network. 
Awumah and Goulter (1992) showed that the above two trade off curves are very 

similar. They concluded that this similarity makes entropy a good surrogate measure 
for network reliability. 

Having established the strong relationship between entropy and reliability in water 
distribution networks, some models for incorporating entropy into the optimum design 

of water supply networks are presented next. 

2.6.3.3 ENTROPY-BASED OPTIMUM DESIGN OF RELIABLE WATER 

NETWORKS 

Two approaches have been used in the literature to incorporate entropy as a measure 

of reliability in the optimum design of water distribution networks. The first approach 
is to maximize the network entropy subject, in addition to the usual hydraulic 

constraints, to a constraint on the total capital cost of the network. The second 

approach is to minimize the total cost of the network subject, in addition to the 

necessary hydraulic constraints, to an entropy constraint which either restricts the 
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minimum permissible level of entropy of the network as a whole, or at each node 
individually. 

Awumah and Goulter (1992) used the first approach to produce a non-linear cost- 

constrained entropy maximizing model which was able to design both the layout and 

pipe diameters for a network. The objective function was the overall entropy function 

of Eq. (2.36) using the nodal entropy function of Eq. (2.41). The model was first run 

without the budget constraint on a sample looped network to determine the maximum 

entropic reliability of the network with maximum network cost. The model was then 

rerun for successively lower cost limits until no further cost reductions were possible, 
in which case the network has collapsed into a branched tree network without loops. 

In each run, the reliability of each resulting network has been calculated using the 

well-known Nodal Pair Reliability parameter. It has been shown that the model 

produced, at each lower budget limit, a network with a lower overall network entropic 

redundancy which reflected the changes in the nodal pair reliability of the network. 

Turning to the second approach of incorporating entropy in the optimum design of 

water networks, Awumah, Goulter and Bhatt (199 1) used this approach in their design 

model by imposing minimum permissible levels of value of the entropy function of 
Eq. (2.40) at each demand node in the cost-optimization formulation. They showed 
that imposing such constraints together with simultaneous inclusion of only five load 

cases produced solutions for a particular problem that were very close to those 

obtained by a well accepted design approach which used an intensive iterative 

approach involving 37 different load patterns. 

Also, instead of restricting entropy at each demand node, Tanyimboh and Templeman 

(1993c) proposed a model in which the network entropy of Eq. (2.53) has been 

restricted for the network as a whole in the least cost optimum design problem 

presented earlier in this chapter as Problem 2. The model was run on a sample single- 

source network for five different levels of entropy. Under two kinds of emergency 

which were single link failures and fire fighting loads, the flexibility of the resulting 
five designs has been tested using two indices. The first index was the notional head 
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required at the source to satisfy all demands. This can be determined by finding the 

maximum value of the head loss in any path from the source to any terminal node 

added to the minimum desirable head at that node. The second index was the total 

amount of energy that the network dissipates per unit time. This can be calculated by 

summing the products of all flows and head losses in the links, multiplied by the 

density of water and acceleration due to gravity. Tanyimboh and Templeman (1993c) 

showed that the model was able to produce a design which can cope with eventualities 

for which the network was not specifically designed. They added that such resilient 

designs can be obtained without a substantial increase in cost. 

To end this chapter, it may be concluded that entropy has a very important role to 

play in water distribution networks. However, other kinds of network exist such as 

structural trusses which are mathematically similar to water supply networks in terms 

of model formulations and methods of analysis and design. This similarity invokes 

entropy to play a part in the optimum design of structural trusses. In the next chapter, 

literature on analysis and design methods for structural trusses along with structural 

reliability and damage tolerance approaches is reviewed, followed by a full description 

of the mathematical similarities in engineering network models. The use of entropy 

in the optimum design of structural trusses is investigated in Chapter 8. 
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CHAPTER 3 

MATHEMATICAL SIMILARITIES IN THE 

SYSTEM MODELS 

OF ENGINEERING NETWORKS 

3.1 INTRODUCTION 

This chapter explores in detail aspects of similarity between structural trusses and 

water supply networks. A review of both systems is needed to illustrate these 

similarities comprehensively. In the previous chapter, water supply networks were 

fully reviewed in terms of analysis, optimum design and reliability approaches. A 

similar study for structural truss models is therefore presented in this chapter before 

their similarities to water supply networks are investigated. These similarities enable 

both structural trusses and water supply networks to be included in the same general 

class of potentiated networks. 

. 
In graph and network theory, a graph is defined as a set of nodes connected together 

by a set of arcs, and a network is a graph whose arcs carry directed or undirected 
flows. A potentiated network is defined as a network whose nodes have some 

potentials which functionally depend upon the arc flows of the network. Whether this 

functional dependence of nodal potentials upon the arc flows is linear or nonlinear, the 

corresponding networks are respectively classified as linear or nonlinear potentiated 

networks which both together form a small sub-set of general graphs and networks. 

Many engineering networks such as water supply networks, gas transmission networks 

and electrical power distribution networks belong to the same general class of 

nonlinear potentiated networks. It is well appreciated that they all share similar 

characteristics in terms of network representation, physical quantities, constitutive 
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equations and methods of analysis and design. 

Structural trusses are an important class of engineering structures with their familiar 

pictorial representation of node-arc graphs. Engineers can easily recognize the 

similarity between structural trusses and the other engineering networks, such as water 

supply systems, in terms of pictorial representations. Spillers (1972) showed that this 

kind of similarity between structural trusses and water supply networks, which share 

in the commonality with other potentiated networks, can be extended to the sets of 

constitutive equations only. However, by a close contemplation of the system 

mathematical models of engineering networks, Templeman and Yates (1984) and 

Templeman (1992b) were able to demonstrate that this obvious network 

representational similarity between structural trusses and the general class of 

potentiated networks, of which the water supply system is an example, can be 

extended almost fully to include terms such as physical quantities, constitutive 

equations, methods of analysis and design and even reliability approaches. This is very 

interesting and instructive as these mathematical similarities enable structural trusses 

/'- to be expressible as linear potentiated networks which form a special case of the more 

general class of nonlinear potentiated networks such as water supply networks. 

Consequently, the existing methods of analysis and optimum and even reliable design 

of structural trusses could be used for water supply networks and vice versa. In the 

present work, the concept of network entropy presented in this thesis is applied to 

indeterminate structural truss design methods, and the resulting designs are tested 

against reliability and damage tolerance approaches. 

In this chapter, the constitutive equations of structural trusses along with the existing 

methods of analysis and optimum design are introduced, then a review of structural 

reliability analysis is investigated followed by the probabilistic approach to design and 

the concept of damage tolerant design. Finally, a full description of the mathematical 

similarities between structural trusses and water supply networks is presented in terms 

of analysis, optimum design and reliability approaches. 
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3.2 OPTIMUM DESIGN OF STRUCTURAL TRUSSES 

The optimum design of structural trusses presented here is for general pin-jointed 

plane trusses in which the layout and external applied loads are prespecified and the 

length and the elastic modulus of the material of each bar are known. The objective 

function of the problem is the weight function of the truss, and the design variables 

are the cross-sectional areas of the truss bars. The constraints are the constitutive 

equations and some other constraints which limit nodal displacements, bar stresses and 

bar sizes. Before the optimum design problem is stated, the constitutive equations are 

presented and the most common methods of analysis are described. 

3.2.1 CONSTITUTIVE EQUATIONS 

Figure 3.1 shows a typical structural truss with its physical quantities conventionally 

defined. The constitutive equations include the bar force equilibrium equations at each 

node, the compatibility equations and the characteristic force-strain relationship 

equations for each bar of the truss. 

3.2.1.1 BAR FORCE EQUILIBRIUM EQUATIONS 

At each node, all the horizontal components of the external applied loads acting at that 

node and the axial forces carried by the bars connected to that same node must be in 

an equilibrium state. The same applies for the vertical components as the truss 

equilibrium is vectorial and hence there are two equilibrium equations per node, i. e. 

NN 
(3.1a) FaxV sin + Fexj, =0 j=l,..., NN 

NIV 
Faxj cos Oj + Fexjh =0 j=l,..., NN (3.1b) 

where Faxij is the axial force in bar ij, Vij; Oij is the angle that bar ij makes with the 

horizontal; NN is the total number of nodes; Fex,, and FeXjh are respectively the 

vertical and horizontal components of the external applied loads acting at node j, 
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j=1,..., NN. 

It should be noted that only (2NN-3) equilibrium equations of Eqs. (3.1 a, b) are usable 

since the external load vectors must be in equilibrium and three of the equilibrium 

equations become linear combinations of the (2NN-3) equations mentioned above. 

However, the three displacement vector components available at the points of truss 

supports will balance out the loss of these three equilibrium equations. 

3.2.1.2 COMPATIBILITY EQUATIONS 

The axial deformation of each bar must be compatible with the nodal displacement 

components at the bar ends. i. e. 

COS OV (ajh-8ih) + S'tl ou Oj-, -ad = IV vy Eii (3.2) 

in which 8, h and Sj,, are respectively the horizontal and vertical nodal displacement 

components of node j; Aij is the deformation of bar ij; and IJ is the set of all the bars 

in the truss. 

3.2.1.3 CHARACTERISTIC FORCE-STRAIN RELATIONSHIP EQUATIONS 

For the most usual case of a linear elastic bar material, the deformation of each bar 

can be written in terms of the axial bar forces as follows: 

A= 
Lej Fax, 

vij eii (3.3) V Aij EV 

where Leij, Aij and Eij are respectively the length, the cross-sectional area and the 

elastic modulus of bar ij, Vij. 

3.2.2 METHODS OF ANALYSIS 

The analysis problem is to estimate the axial bar forces and the nodal displacement 

components in a truss whose bar lengths, cross-sectional areas and the elastic modulus 
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of bar materials are known and the external applied loads are specified. As discussed 

earlier, there are (2NN-3) usable equilibrium equations of Eqs. (3.1a, b) with NB axial 
bar forces as unknowns, where NB is the number of bars in the truss. If NB=2NN-3 

there will be 2NN-3 linear equations in (2NN-3) unknown bar forces which can be 

determined uniquely by solving these equations by Gaussian elimination. Substituting 

the resulting bar forces into Eqs. (3.3) gives bar deformations which can then be used 

to determine uniquely the nodal displacement components directly from Eqs. (3.2). 

Note that the case where NB=2NN-3 corresponds to a statically determinate truss. In 

the case of an indeterminate truss where NB>2NN-3, the available (2NN-3) nodal 

equilibrium equations will be insufficient to obtain unique values for bar forces, and 

thus the analysis problem becomes more complex. Many methods exist to solve this 

problem (see Coates, Coutie and Kong, 1994). Next are presented the main two 

methods used in the literature. They are the force or flexibility method and the 

displacement or stiffness method. 

3.2.2.1 FLEXIBILITY METHOD 

In this method, the redundant [NR=NB-(2NN-3)] bars, where NR is the number of 

redundant bars, are removed and replaced by external loads equal to the unknown 

axial forces in the removed bars Fax, r=l,..., NR, as shown in Figure 3.2. The axial 
bar forces can then be calculated in terms of the unknown forces in the removed bars 

as follows: 

NR 
Fax, = -nj, +E Ebr FaxNB-NR+r b=l,..., iVB-NR (3.4a) 

r-1 

Faxb = FaxNO-NR-r b=NB-NP,..., NB; r=l,..., NR (3.4b) 

where TIb, b=l,..., NB-NR, are bar forces in the determinate sub-truss caused by the 

external applied loads only; and the terms (F4byaXNB-NR,,, b=l,..., NB-NR; r--I,..., NR) 

are the extra forces in these bars caused by the unknown forces (FaXNB-NR+rl r=1,..., NR) 
in the redundant bars. 
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At this stage, the nodal displacement components at the end nodes of the redundant 
bars can be calculated for the determinate sub-truss. They must be compatible with the 

axial deformations in the redundant bars. Therefore, there is a compatibility 

requirement for each redundant bar. These can be set up directly by means of virtual 

work as follows: 

NB-NR Faxb ý& Leb 
+ (Far Le E=0 r=l,..., NR (3.5) 

b=l Ab Eb AE NB-NR-r 

in which FaXb is the axial force in bar b, b=l,..., NB-NR, of the determinate sub-truss 

as given by Eqs. (3.4a); 4br is the axial force in bar b of the determinate sub-truss due 

to unit load applied at the nodes at the ends of redundant bar r, r--I,..., NR; and the 

term (Fax Le/A E)NB-NR+r is the axial deformation in redundant bar r. 

Eqs. (3.5) are NR equations with NR unknown axial forces of NR redundant bars 

existing in the truss. Solving these equations gives the redundant bar forces FaXNB-NR+rg 

r=l,..., NR, which can then be substituted into Eqs. (3.4) to give the axial bar forces 

FaXb, b=l,..., NB, for the whole indeterminate truss. Eqs. (3.3) and (3.2) can now be 

used to determine the axial bar deformations and nodal displacement components for 

each node in the truss. 

Although the method described above is widely used in the literature, it is difficult to 

programme for general use. However, other methods exist such as the stiffness method 
for which a general-purpose program is easy to write. Its use requires no 

understanding of structural mechanics, and it is described next. 

3.2.2.2 STIFFNESS METHOD 

In this method which is also called the displacement method, bar forces Faxij, VijE IJ, 

are expressed in terms of nodal displacement components by simply substituting Eqs. 

(3.3) into Eqs. (3.2) and rearranging the resulting equations to yield the following 

equations: 
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Fax; V = -A-J--E-L [cos 0 (8jh-8ih)+sin 0 (3.6) 
Le. v0 Vijelj 

which are then substituted into Eqs. (3.1) to give the following equations with the 

well-known matrix form: 

[Fex] (3.7) 

in which [8] is a column vector of (2NN-3) unknown nodal displacement components; 

[Fex] is a column vector of (2NN-3) nodal externally applied force components; and 

[K] is the stiffness matrix with (2NN-3)x(2NN-2) known constants. 

Eqs. (3.7) are a system of (2NN-3) linear equations in (2NN-3) unknown nodal 

displacement components 8,, and 8, h, '=11 .... NN, with three of these components 

already known at the points of supports. Solving these linear equations yields all the 

nodal displacement components which can then be substituted into Eqs. (3.6) to give 

the axial bar forces in the truss. 

It must be noted that the above methods of truss analysis are for linear trusses. Other 

methods exist for general nonlinear trusses in which Eqs. (3.3) are nonlinear. This is 

the case of trusses with nonlinear materials or with large displacements. The minimum 

energy method is the most appropriate method for such structures, but it is rarely used 
for the usual linear structures for which the above described methods are simpler and 

more efficient. 

3.2.3 DISCRETE OPTIMUM DESIGN FORMULATION 

The minimum weight design of structural trusses described here is for general 
indeterminate pin-jointed plane trusses having the layout and external applied loads 

prespecified and the lengths and the material characteristics for the bars known. The 

formulation consists of minimizing the weight of the bars subject to the constitutive 

equations presented earlier and to other constraints which are presented later. The 

variables in this formulation are the cross-sectional areas of the bars, the axial bar 
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forces and the nodal displacement components at the joints of the truss. 

3.2.3.1 WEIGHT OBJECTIVE FUNCTION 

The objective function considered here is the weight of the bars of the truss and is 

given by: I 

W=E pij Leij Aij 
veli 

(3.8) 

in which W is the total weight of bars; and pij is the material density of bar ij, VijE U. 

3.2.3.2 OTHER CONSTRAINTS 

These are the constraints which limit nodal displacements, bar stresses and bar sizes. 

1. Nodal displacement constraints: 

E ýýij FaXjVk Leij (3.9) 
ijeli A# EV 

in which Faxij, k is the virtual force in bar ij associated with virtual unit force at joint 

k whose displacement must be limited to 8k, k=l,..., NK; NK is the number of joints 

whose displacements are to be restricted. 

2. Bar stress constraints: 

F Xi ýuý 
:5 acom vijeii Aij 

where c7ij is the axial stress in bar ij, VijE U, assuming positive for compression and 

negative for tension; and q,.. are respectively the maximum permissible tensile 

and compressive stresses in the truss bars. Note that may be assumed lower than 

the absolute value Of Uten to allow the buckling effects to be taken implicitly into 

account. 
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3. Bar size constraints: 

Aye-AD ý: A., 
j. VijEIJ (3.11) 

in which AD is the set of commercially available discrete bar sizes; and A. i,, is the 

smallest bar size allowed in the truss. 

Having defined the objective function and the constraints which are to be satisfied in 

the design, the following formulation of the minimum weight of a structural truss can 

now be constructed as Problem 4 which is formulated for one load case, but it can 

easily be formulated for multiple load cases by including a set of constraints for each 
load case in turn. 

Problem 4: 

Minimize WEp; v Leij Aij (3.8) 

subject to: 

NN 
Fax, sin o,, + Fexj, =0 j=i,..., NN (3.1a) 

NN 

FaxU cos 0. + Fexjh =0 j=l,..., NN (3.1b) 

Cos eii Ojh-80 + sin OIV (8j, -8d= AU VijeIJ (3.2) 

Le, V FaxV 
Vij EIJ (3.3) 

y Aij Eij 

E Farij Faxijk L£u 
-ý ök k=1,..., NK (3.9) 

y Eij AU EU 
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Fi ri 
aten -ý 

ýgil 
:5 (TCOM vijcii (3.10) "V AU 

AjjEAD - Ai. VijEIJ 

3.2.4 SOLUTION METHODS 

(3.11) 

Although Problem 4 has been formulated for indeterminate trusses, it can also be used 
for determinate trusses for which Eqs. (3.2) and (3.3) may be ornitted from the 

formulation as they are no longer necessary for calculating Faxij and Faxij, k, For 

indeterminate trusses, however, modem structural optimization practice uses iterative 

processes for solving Problem 4. The bar forces Faxij and Faxij, k for each member of 

the truss are first calculated for an initial design and are held constant during the 

optimization which gives new bar sizes. For each iteration, the bar forces are 

calculated using the updated bar sizes. The process continues until a converged 

optimum design is reached. It is therefore assumed that numerical values for all bar 

forces Faxij and Faxij, kwill always be available when needed. 

The optimization phase of Problem 4 is a nonlinear constrained optimization which 

can be solved by any standard constrained nonlinear programming algorithm assuming 

that the bar sizes are continuous-valued, i. e. relaxing the discreteness constraint of Eq. 

(3.11). However, from a practical point of view, the cross-sectional areas variables 

should be obtained as discrete values and must be chosen from a set of discrete sizes 

representing commercially available bars. Yates, Templernan and Boffey (1982) 

showed that this requirement makes Problem 4 extremely difficult to solve even for 

the simplest possible case of a statically determinate truss with a single displacement 

constraint. 

Indeed, the combinatorial nature of the discrete optimum design requires enumerating 
designs containing all possible combinations of discrete member sizes and selecting 
the best combination of them. If NDB is the number of commercially available 
discrete bars in the set ADfrom which the NB bars of the truss have to be chosen, 
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then there are (NDB)N' designs to be examined in order to a globally optimum 
discrete design can be guaranteed. This is enormously expensive in computer time. 

Although many methods have been developed to prune down the number of designs 

to be examined such as the Branch and Bound method (see Garfinkel and Nernhauser, 

1972), the run time needed for the enumeration explodes exponentially as the number 

of the truss bars increases. Yates, Templeman and Boffey (1982) concluded that 

completely rigorous discrete optimum design methods cannot exist and research effort 

should be directed towards developing heuristic methods which have the goal of 

obtaining non-rigorous but very close discrete optimum designs. Templeman (1988a) 

reviewed some of those methods and discussed their practical capabilities for real 

structural trusses needs. Most of the methods apply some approximate rounding 

processes on the continuous optimum design to convert it to a discrete one. These 

methods are based on the idea that the continuous optimum design forms a close 

lower bound to the discrete optimum. This is fairly true for cases in which the discrete 

set of sizes to choose from is large and the sizes cover the size range fairly evenly. 

Practical design considerations however require a small set of discrete sizes to be 

used in the design for which the continuous optimum design does not form a very 

useful lower bound. The segmental optimum design method proposed by Templeman 

and Yates (1983) appreciates these practical considerations and does not use the 

continuous optimum design in any way. It is not enumerative and it turns out to be 

one of the most effective methods available for discrete optimum design. Therefore, 

it has been chosen to be used in this thesis, and it is described next. 

3.2.4.1 SEGMENTAL OPTIMUM DESIGN METHOD 

This method transforms ingeniously Problem 4 from a nonlinear programming 

problem to linear optimization by introducing artificial bars made up of several 

segments, each of known discrete size but unknown segment length, to replace the 

conventional bars with known lengths but unknown cross-sectional areas. This is due 

to the fact that the optimization phase of Problem 4 is nonlinear in respect to the 

cross-sectional areas of the bars but linear in terms of bar lengths. Figure 3.3 

illustrates the assumed transformations for a single bar. The number of segments in 
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each bar should equal the number of discrete sizes in the set AD, so all sizes are 

represented among the segments. Obviously, the total lengths of the segments in each 
bar must be equal to the known length of the conventional bar. Thus for each bar b, 

b=l,..., NB, in the truss, the following relationship must hold: 

NDB 

E lbd ý 
Leb b=l,..., NB (3.12) 

d=l 

in which lbd is the unknown length of segment d, d=l,..., NDB, in bar b, b=l,..., NB. 

Assuming that axial bar forces in Problem 4 are available when needed, Eqs. (3.1), 

(3.2) and (3.3) may be ornitted from the segmental optimum design formulation. Also, 

Eqs. (3.10) and (3.11) can be removed from the formulation provided that the set of 

discrete sizes AD is chosen so that no segment will violate stress limits or minimum 

size limits. Therefore, the segmental optimum design can be formulated as follows: 

Problem 5 

Minimize W= 
NB NDB 

(3.13) Pb Ad 'hd 

.1 d=i 

subject to: 

NB NDB Faxb Faxbk lbd 
k=l,..., NK (3.14) 8k 1 

I d-i Ad Eb 

NDB 
E lbd = Le. b=i,..., iVB (3.12) 
d=l 

lbd ý: o b=l,... jvB; d=l,..., NDB (3.15) 

Problem 5 is a linear programming problem with NBxNDB non-negative variables and 
NB+NK constraints. It can be solved easily by any standard linear programming 

algorithm to yield a segmental optimum design which has some members composed 
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of several segments and the rest having a single discrete segment. The sought discrete 

design can then be found by rounding up the multi-segment members by replacing the 

smaller sized segments by the same size as the largest segment. Templeman and Yates 

(1983) showed that the number of multi-segment members involved in the rounding 
is very small and equal to the number of active displacement constraints at the 

optimum. They concluded that the resulting rounded up segmental optimum design 

forms a very close upper bound to the discrete optimum design. 

The above method can be used for determinate and indeterminate general structural 

trusses. However, the three phases of the method, i. e. the analysis, optimization and 

rounding process, should be made iteratively for indeterminate trusses. The only 

disadvantage of the method is the enormous increase of the number of variables. This 

is somewhat compensated by the fact that the problem is linear. However, the 

increased number of variables can be reduced quite effectively by grouping the 

members of the truss into several groups, each containing several members which are 

required to have the same bar size due to symmetrical needs or due to some 

similarities in structural purposes of the members. 

Finally, it should be noted that Problem 5 is formulated for one load case. It can 

easily be formulated for multiple load cases by including a set of constraints for each 

load case in turn. Also, discrete material properties can be included in the method by 

assuming that the material of each bar of the truss is not known and must be selected 

from a set of available discrete materials, thus introducing member segments, each 

has a known discrete cross-sectional area and known discrete material properties but 

has an unknown length. This assumption, however, does not affect the nature of the 

method but does increase the size of the segmental linear programming problem 

enormously. 
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3.3 STRUCTURAL RELIABILITY 

Optimum structural design problems, of which Problem (4 or 5) is an example, are 

constructed in a way that the objective functions and constraint functions are assumed 

to be deterministic, and the design parameters, namely the load and the strength, are 

considered as deterministic variables, i. e. they are assigned constant values. In reality, 

however, they are random -variables. It is not possible for example to predict a unique 

value for a wave load acting on offshore platforms. Also, the strength of concrete used 

in structures may take several values depending on many factors which are out of the 

designer's control. The worst combination approach based on maximum value of load 

and minimum value of strength has been used in the conventional deterministic design 

approach to compensate for the uncertainty associated with the design parameters. 

Obviously, the worst combination approach becomes economically unreasonable for 

structures subjected to loading with a broad spectrum such as nuclear reactors, 

offshore platforms, etc. Also, safety factors are used in the design process to account 

for the randomness of the design parameters and to compensate for the designer's 

ignorance of the exact behaviour of the structure under loading in its lifetime and for 

the effect of fabrication and construction. Such safety factors are assigned 

deterministic values based on experience and can be found in all standard codes of 

practice. Again, these safety factors are random as they are related to the design 

random variables (Freudenthal, 1956). 

It may be concluded from the above discussion that the conventional deterministic 

approach to design does not produce a structure with a required level of safety. To 

guarantee such a safety, however, a probabilistic approach incorporating the 

uncertainty associated with the randomness of the design parameters has to be 

adopted. In the next section, probabilistic analysis methods, which are known as 

reliability analysis methods, for a single structural component and then for the entire 

structure are presented, followed by the probabilistic approach to design with review 

of its applications over the last three decades. Then, the concept of damage tolerant 
design used frequently in structural design is introduced. 
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3.3.1 PROBABILISTIC RELIABILITY ANALYSIS 

The analysis of a structure in a probabilistic sense to determine its level of safety is 

known as reliability analysis. The reliability of a structure may be described as the 

probability that the structure will survive under the expected external loads applied to 

it in its lifetime. This probability of survival p, is the complement of the probability 

of failure pf of the corresponding structure, i. e. 

P., =1- Pf (3.16) 

To calculate the probability of failure of a structure, the failure modes have to be 

selected first in order to identify the limit state function which separates the safe state 

from the failure state. The failure modes may be the axial mode as in the case of 

trusses, or axial, bending and shear modes as in the case of rigid frame structures, etc. 

After the failure modes have been selected, the analysis of the structure is carried out 

on the basis of the mean values of the load and strength in order to estimate the effect 

of external load on the structure. Then, the reliability analysis may take place to 

measure the level of safety of the structure by means of calculating the probability of 

its failure. Many reliability techniques to estimate the probability of structural failure 

exist. Some of them are discussed next over the basic problem in the field of structural 

reliability which is called the fundamental case. 

3.3.1.1 THE FUNDAMENTAL CASE 

This is the situation of a single structural component with resistive strength R carrying 

an external load L as shown in Figure 3.4. Both strength R and load L are assumed 

to have predefined statistical distribution functions, and must be presented on the same 

scale; they are both axial forces in the fundamental case. The failure mode of this very 

basic case is the axial mode. Two ranges of strength may be identified in the axial 

mode, the compression and the tension range which are denoted as positive and 

negative strength respectively. Obviously, positive strength will resist positive load and 

negative strength will resist negative load. The two ranges of strength may have a 

single or different distribution functions. Freudenthal et al. (1966) assumed a single 
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distribution of the strength R for a given load L. This case is illustrated in Figure 3.5. 

Assuming that the distributions of R and L are independent and stating that the failure 

occurs whenever the magnitude of load is greater than strength, Freudenthal et al. 

(1966) derived the following equation for calculating the probability of failure: 

pf = p(R. <L) =ý FR(b fL(b dl 
0 

or equivalently: 

pf =ý [I - FL (r) I AR(r) dr (3.18) 

0 

in which fL(l) and fR(r) are the probability density functions of load and strength 

respectively; FRand FL are the cumulative probability distribution functions of strength 

and load respectively. 

Ang and Amin (1968) developed other equations for calculating pf assuming that the 

strength has two different distribution functions over the two random variables RP and 

Rn representing the positive and negative strength respectively. This is illustrated in 

Figure 3.6. They stated that the failure occurs whenever positive strength is less than 

positive load or negative strength is greater than negative load. pf is expressed as: 

pf = p[(RP<L, L>O) U (R,, >L, L: 50)] 

,R 
(r (r. ) dr,, (3.19) [I -FL(rp)l fj ., P) 

drp +f FL(r. ) f4 
0 

0 

or equivalently: 

0 
Pf f FR (b fL(b dl +f [I -F4(b] fL(b dl 

0 
(3.20) 

in which fRP and fR,, are the probability density functions of positive and negative 

strength respectively; FRP and FR,, are the cumulative probability distribution functions 

of positive and negative strength respectively. 
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Eqs. (3.17) through (3.20) have been derived directly from the distributions of load 

and strength. However, other equations may be derived using the residual strength 
RS=R-L (see Figure 3.7) or the factor of safety SF=R/L (see Figure 3.8). The 

probability of failure for such models may be estimated as (see Ang and Tang, 1984): 

0 
pf = p(RS=R-L<O) f fRs(rs) drs = FRs(o) (3.21) 

for the residual strength model, and: 

I 
pf = p(SF=RIL<l) f fsAsf) dsf = FSF(i. 0) (3.22) 

0 

for the factor of safety model. In Eq. (3-21), RS is the random variable of residual 

strength; fRs and FRs are respectively the probability density function and the 

cumulative probability distribution function of residual strength. In Eq. (3.22), SF is 

the random variable of factor of safety SF; fSF and FSF are the probability density 

function and the cumulative probability distribution function of factor of safety 

respectively. 

3.3.1.2 APPROXIMATE STRUCTURAL RELIABILITY METHODS 

The integral equation technique just presented, Eqs. (3.17-3.22), is based on the 

integration of the joint probability density function of the random variables over the 

failure domain. This can generally be expressed as: 

pf = p[g(X)-<Ol =f fx(x) dx 
g(x)-ýo 

(3.23) 

where fx(x) is the joint probability density function of a vector ýC of N random 

variables xi, i=l,..., N; g(X) is the performance state function which, when equal to 

zero, produces a limit state function which separates the failure domain from the safe 
domain. 

The probability of failure calculated by using numerical integration of Eq. (3-23) can 

alternatively be calculated by a Monte Carlo simulation technique (see Robinstein, 
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1981). In this technique, NT sets of sample values of xi, i=l,..., N, are randomly 

generated and the performance state function g(xi) is evaluated for each set xi. The 

probability of failure is then estimated as the ratio of the number of events that yield 

g(xi)<O to the total number of trials NT. Melchers (1987) demonstrated that the 

number of trials NT is required to be much larger than llpf (for example, NTý100/pf 

as suggested by Bjerager, 1990) in order to achieve a good estimate of pf. 

Both the integration technique and the Monte Carlo simulation technique require the 

joint probability density function fx(x) or each of the individual probability density 

functions of each random variable to be constructed which is practically impossible 

due to scarcity of statistical data. However, it is quite common to use some analytical 

distributions to fit the available data. It is recalled here, from Chapter 2 that Basu and 

Templeman (1984,1985) showed that such selection of available analytical 

distributions to fit the available statistical data is a source of systematic error which 

affects to a large extent the estimation of probability of failure. They used the 

maximum entropy formalism presented in Chapter 2 as Problem 1 to generate the least 

biased distribution functions using the first four central moments of the residual 

strength random variable. Then, they performed the numerical integration of Eq. (3.23) 

to estimate the probability of failure. 

However, it is impractical to calculate pf from Eq. (3.23) by using numerical 
integration or Monte Carlo simulation due to computational inefficiency. 

Consequently, many approximate reliability methods have been developed, and Monte 

Carlo solutions have been practically restricted to verify or validate these approximate 

methods. Most of the approximate reliability methods use only the first two moments 

of the statistical data, i. e. the mean value and standard deviation. Cornell (1969) 

produced a very simple equation to measure the reliability by means of an index 

called the safety index and denoted as P: 

9(X) 
O(g) 

(3.24) 

where g(X) is the mean value of g (X); and cr(g) is the standard deviation of g(X). 
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Assuming the random variable g(X) is normally distributed, the first order 

approximation of pf may be written as: 

Pf = -D (- P) =1- (D (P) (3.25) 

where 0(. ) is the cumulative normal distribution function. 

For the fundamental case where g(X)=R-L, Eq. (3.24) becomes: 

RZ: (3.26) ýCyR2 
+ (F L2 

in which and -E are the mean values of strength and load respectively; (TR and a, are 

respectively the standard deviations of strength and load. If R and L are assumed to 

be normally distributed, then g(X) may be considered as normally distributed and 
hence pf can be calculated from Eq. (3.25). 

Eq. (3.24) is a very simple technique of reliability analysis. It produces an exact result 
for linear performance functions, e. g. Eq. (3.26) for the fundamental case. In the case 

of nonlinear performance functions where only two moments are available, a 
linearization procedure by means of the first-order expansion of the Taylor series is 

carried out at the mean value of g(X). The mean value first-order second-moment 

technique, however, leads to erroneous estimates for highly nonlinear performance 
functions or for large coefficients of variation. A more rigorous and accurate method 
but computationally more intensive has been proposed by Hasofer and Lind (1974) 

who recommended that the first-order linearization of the performance function be 

done at the most probable failure point which should lie on the failure surface and 

which corresponds to the maximum likelihood of failure occurrence. Assuming that 

the random variables are continuous, uncorrelated and normally distributed, and 
introducing the reduced variables as yj = (xj-xj)/(T(xj) Vi, where yi, i=l,..., N, are the 

reduced variables, Hasofer and Lind (1974) defined the safety index P as the minimum 
distance from the origin to the failure surface in the reduced space (see Figure 3.9 for 

the case of two variables; load and strength). They demonstrated that, for the 
fundamental case, the distance from the origin to the failure boundary (R-L=O) in the 
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reduced space is found to be equal to P calculated by Eq. (3.26). 

The Hasofer-Lind method, which is called the advanced first-order second-moment 

method and which is later extended by Rackwitz and Fiessler (1978) to include 

random variable distribution information, approximates the general hypersurface g(X) 
by its tangent plane at the most probable failure point. The method works well as long 

as the limit state surface is nearly flat in the neighbourhood of the most probable 
failure point. However, when the performance function is highly nonlinear and hence 

the limit state surface is non-flat, the limit state surface is approximated by a 

paraboloid or a sphere at the most probable failure point using a second-order 

approximation techniques. Several second-order approximations of pf have been 

derived such as Tvedt's three-term formulas (Tvedt, 1983) and Breitung's asymptotic 

(Breitung, 1984). The simplest second-order approximation of pf is the one derived by 

Breitung (1984) which is based on a paraboloid fitting and it may be written as: 

N-I 

pf kj) (3.27) 

in which Iq Vi, denote the main curvatures of the limit state surface at the most 

probable failure point, taken positive for a surface curved towards the origin. 

Eq. (3.27) is a simple second-order approximation of pf and it yields good results for 

rather large values of P, but it is of limited use only for Pki<l. Recently, a second- 

order reliability method based on new approximations has been derived by Koyluoglu 

and Nielsen (1994). The new approximations are more complicated than Eq. (3.27) but 

they give better results and can be used for all values of 0 and all curvatures. 

Higher-order approximation methods of reliability analysis are also available, e. g. 
Hong and Lind (1996), Grandhi and Wang (1997), etc. However, the higher-order 

approaches are very complicated and computationally expensive with a large number 

of variables. Therefore, different approaches have been developed to improve the 

approximation accuracy without using second or higher-order approximations. Based 

on the first-order reliability methods of Hasofer and Lind (1974) and Rackwitz and 
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Fiessler (1978), Wang and Grandhi (1994,1996) produced an efficient safety index 

calculation algorithm for structural reliability analysis. They used adaptive nonlinear 

approximation models of the performance function in the original space (1994) and 
later in the standard normal space (1996) by selecting some appropriate intervening 

variables. The algorithm was found to be efficient and robust for several cases 
involving large coefficients of variation, non-normal distribution of random variables 

and highly nonlinear and complex performance functions. 

Finally, the hypercone method presented by Mebarki, Lorrain and Bertin (1990,199 1) 

is worth mentioning here. The method considered the whole geometry of the failure 

domain however irregular and distorted it is without applying any approximations. 
However, only lower and upper bounds of pf, instead of a unique value of pf, could 
be found by respectively inscribing and circumscribing the failure domain by two 

idealized domains constituted by a set of hypercone sections. The method showed that 

the values of pf deduced from the Hasofer-Lind index and those obtained by Monte 

Carlo simulations are within the lower and upper bounds found by the hypercone 

method, while the values of pf calculated under the assumption that the state random 

variable g(X) might follow a normal distribution, Eq. (3.24), were found to be slightly 
inaccurate. 

3.3.1.3 RELIABILITY ANALYSIS OF STRUCTURAL SYSTEMS 

The structural analysis methods presented in the last two sections may be applied to 

the fundamental case in order to estimate the probability of its failure. Any structure, 
however, can be idealized by a set of fundamental cases. Once the pf's for those 

fundamental cases are determined, pf of the entire structure can then be found by a 

suitable combination of the fundamental cases found in the structure. The weakest-link 

model and the fail-safe model are the two most widely-used combination models 

available, and they are presented next. 
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1. Weakest-link model: 

This model is illustrated in Figure 3.10. In this model which is also called the chain- 

type series model, system failure occurs if any element fails. The strength of the 

system would therefore be equal to the strength of its weakest element. Obviously, all 

statically determinate structures fall into this category. Freudenthal et al. (1966) were 

the first to introduce this model by stating that the probability of system failure equals 

the probability of the occurrence of at least one member failing, that is: 

pýsystem) = p(FMI U FM2U... U FMNm) (3.28) 

in which pXsystem) is the probability of system failure; NM is the number of members 

in the structure; FMj, i=l,..., NM, denotes the event of member i failing; p(FM, U FM2 

U ... U FMNm) denotes the probability of the occurrence of at least one of the events 

FMj, i=l,..., NM. 

2. Fail-safe model: 

This model is illustrated in Figure 3.11. In this model which is also called the parallel 

model, system failure occurs only when several elements exceed their strength 

capacity. Generally, all statically indeterminate structures may be modelled as fail-safe 

structures. However, some structures which are often mdelled as fail-safe structures 

may actually follow the weakest-link model. Moses and Stevenson (1970) argued that 

indeterminate elastic trusses with brittle members, i. e. they carry zero load after 
failing, with relatively small numbers of redundant members can be analyzed by the 

weakest-link model. This is due to the fact that the redistribution of loads following 

the failure of any member will trigger the failure of other members. Also, Moses and 
Stevenson (1970) and Moses (1974) demonstrated that in indeterminate trusses with 

small strength variability compared with the variability of the applied loads, like the 

case of dynamic loadings, system failure will be considered when any member fails. 

Moses and Stevenson (1970) concluded that the reliability of most indeterminate 

elastic trusses can be analyzed by finding the probability that any member fails under 

any load condition. This rather simplifies the problem, but surely determines a 
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conservative estimation of pf of the entire structure. 

In general, most indeterminate structures must be modeled by the fail-safe model. In 

this model, the failure of several members which constitutes system failure forms a 

single failure mode. There are usually many failure modes in fail-safe structures. The 

probability of system failure is therefore equal to the probability of the occurrence of 

at least one failure mode being reached. This is similar to the weakest-link model. 

Zimmerman et al. (1993), for example, illustrated that a rigid-plastic structure can be 

modelled as a series system with each element of the series being a failure 

mechanism. Therefore, Eq. (3.28) can be applied for fail-safe structures by replacing 

the probability of union of all NM members failing by the probability of union of all 

failure modes. Consequently, failure modes and their probabilities have to be identified 

first before the weakest-link model can be applied. This is a complicated task 

especially for large structures where a large number of potential failure modes exists. 

In such cases, therefore, numerous alternate paths have to be generated, yielding a 

large number of combinations of members which produce failure. 

Many methods for identifying failure modes are available. Recent methods, however, 

simplify the problem by searching for the most dominant and significant failure modes 

based on their contributions to the estimate of the system probability of failure. 

Zimmerman et al. (1993) and Xiao and Mahadevan (1994) introduced such methods. 

These methods and others are not presented here since the interest of the present study 

concentrates on general linear trusses which as shown earlier can be analyzed by 

assuming system failure occurs when any member fails. However, a comprehensive 

review of available failure mode identification methods can be found in the two papers 

mentioned above. 

It should be recalled at this point that once the failure modes have been identified and 

their probabilities of occurrence have been calculated (Tang and Melchers, 1988), the 

probability of system failure can then be calculated using Eq. (3.28) with failure mode 

replacing member failure. Therefore, the term "failure mode" will replace the term 
"member failure" hereafter in this thesis even for the weakest-link model since the 

77 



failure of a member may be considered as a failure mode having one member failing. 

The calculation of the probability of system failure as the union of all possible failure 

modes, Eq. (3.28), requires the knowledge of the degree of dependence between all 

failure modes. Usually, the conservative assumption of independent failure modes is 

used. Therefore, from basic probability considerations (see Ang and Tang, 1975, for 

example) Eq. (3.28) becomes: 

NM 

p, (Vstem) =1 [1 -p(FMi)] 
(3.29) 

in which p(FMj) is the probability of failure mode i, i=1,..., NM; where NM being the 

number of failure modes. 

However, the events of failure modes are not independent. For series systems, for 

example, the same random variable of applied load appears in each component failure 

event. Kjerengtroen and Wirsching (1984) demonstrated that the conservative 

assumption of Eq. (3.29) may produce weight penalties of more than 10% for chain- 

like series structures. Also, failure modes identified in parallel structural systems are 

not independent as they share some elements and resist the same loadings (Stevenson 

and Moses, 1970). 

However, the degree of dependence between different failure modes is not clear due 

to the involvement of random quantities. Therefore, system reliability analysis is 

simplified by the use of upper and lower bounds on the exact value of failure 

probability. The efficiency of the bounds is dependent on how close the bounds are 

to each other. Cornell (1967) produced upper and lower bounds on system probability 

of failure by assuming independent and perfectly correlated (i. e. maximally dependent) 

failure modes respectively. Assuming independent modes, Cornell's upper bound may 
be obtained as Eq. (3.29). While assuming failure modes are maximally dependent, 

Cornell's lower bound would be equal to the maximum value of all mode failure 

probabilities. Thus, Cornell's upper and lower bound formula has the form: 
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Max p(FM, ) &pýsystem) & 1-fj[l-p(FMi)] i=l,..., NM (3.30) 

Cui and Blockley (1991) argued that Cornell's bounds, Eq. (3.30), seems to exclude 

possible values varying between minimum dependence and independence. They 

showed that upper and lower bounds should be evaluated by the assumption of 

minimum and maximum dependence models respectively, and the independence model 
is a special case of dependence which lies between the above extreme models. The 

resulting upper and lower bound formula which is known as the unknown dependence 

model was shown to have the form (Cui and Blockley, 1991): 

Max p(FM, ): ý plsystem): s E p(FM, ) i=l,..., NM (3.31) 

for values of p(FMi)<<I, i=l,..., NM. It should be noted here that Cornell's upper 

bound in Eq. (3.30) may be approximated by the upper bound of Eq. (3.3 1) for very 

small failure probabilities as recommended by Cornell (1967). 

More accurate but more complicated bounds of system probability of failure are those 

due to Ditlevsen (1979). Unlike Cornell's bounds, they are based on all the pairwise 

mode intersection failure probabilities in addition to all single mode failure 

probabilities. The lower bound has the form: 

NM VI 

p, (Vstem) k: p(FM, ) ,E= rp(Fm, ) -E p(Fm, nFm, ) , oi (3.32) 
i=2 Pl 

in which p(FMinFMj) is the failure probability of the intersection of failure mode i 

and j, while the upper bound has the form: 

NM NM 
(3-33) p, (system) p(FMj) maxfj., j p(FMj nFM, ) 

i=2 

It should be noted that Ditlevsen's bounds calculated by Eqs. (3.32) and (3.33) may 

be influenced by the ordering chosen for failure modes, and the closest bounds need 

not correspond to the same ordering used for the lower and upper bounds. 

Finally, a completely different approach to measuring structural reliability has been 

proposed by Wu, Blockley and Woodman (1993a, 1993b) by means of vulnerability 
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analysis. A structural system was represented hierarchically in terms of clusters of 

structural rings which contain a sequence of members connected by a set of joints. A 

failure scenario which transforms each structural ring into a mechanism has been 

identified. Then, the effort required to transform a ring into a mechanism for each 

failure scenario has been calculated under the name "damage demand". The most 

robust ring will be the one with maximal damage demand, while the ring with 

minimal damage demand will be the most vulnerable one which will be used as a 

measure of the relative robustness of the whole structure. Such vulnerable rings will 

enable the identification of the most vulnerable parts of a, structure so that they may 

be suitably protected and monitored. 

Having presented the most widely used methods of structural reliability analysis, their 

practical applications in structural design are reviewed next. 

3.3.2 PROBABILITY-BASED DESIGN 

The structural reliability analysis methods presented in the previous sections have been 

used frequently in the literature to assess the reliability of existing structures (Trautner 

and Frangopol, 1990) and to examine the reliability of analysis and design methods 

used in different codes of practice, for example the analysis of holonomic elastoplastic 

trusses (Katsuki, Frangopol and Ishikawa, 1993a, 1993b), cable-stayed bridge design 

(Bruneau, 1992), prestressed concrete beams (Al-Harthy and Frangopol, 1994) and 

nonlinear analysis of reinforced concrete structures (Val, BIjuger and Yankelevsky, 

1997). Although structural reliability analysis methods can be criticised at 

philosophical, theoretical and practical levels (Templeman, 1988b) and they lead 

sometimes to inaccurate results due to the approximate models and simplified analysis 

procedures adopted (Karamchandani, 1990), they are widely used in the practical 

design of offshore and nuclear structures and are approaching code of practice status 

for general structures. 

Much research has been carried out in the last two or three decades in an attempt to 

formalize probability-based design methods in a code format starting from 
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(Cornell, 1969), (Ang and Cornell, 1974), (Ravindra, Lind and Siu, 1974) and 
(Ellingwood and Ang, 1974) through (Ditlevsen and Madsen, 1989) and (Galarnbos, 

1990) and finishing with (Ellingwood, 1994) and (Mrazik and Krizma, 1997). 

Although the final format of probability-based design has not yet been reached, the 

probability-based optimum structural design approach is well established and its 

applications are intensively published in the literature. 

In the probability-based optimum approach, the weight or cost of a structure is 

minimized subject to constraints on the structural probability of failure. Alternatively, 

the probability of failure of the entire structure is minimized subject to an allowable 

structural weight or cost. Another approach is to minin-dze the total cost of the 

structure which includes the initial cost and cost of failure. In this approach, 

minimizing the cost of failure will automatically minimize the probability of failure 

of the entire structure, hence enhancing structural reliability. The first approach, 
however, is the most used approach in the literature. Hilton and Feigen (1960) used 
this approach to minimize the weight of a structure for a given reliability assuming 
that failures of individual components of the structure are statistically independent. 

Kalaba (1961) extended Hilton and Feigen's (1960) formulation to include the cost of 

materials. Also, Switsky (1964) used Hilton and Feigen's (1960) approach to conclude 
that in order to achieve minimum weight, member sizes have to be selected so that 

the probability of failure of each member is proportioned with its weight. 

Unlike the above works, Moses and Kinser (1967) considered the correlation between 

failure mode events. They showed that significant weight savings could be obtained 

assuming that failure modes are dependent. Also, Moses and Stevenson (1970) used 
the dependence model in the collapse mechanism approach and the fail-safe criterion 
for optimizing a framed structure. Based on failure mode events, Takada, Kohama and 
Miyamura (1994) presented an efficient search technique to pursue predominant 

combinations of failure modes which were used in Ditlevsen's upper bound of system 

probability of failure. The resulting failure probability was constrained in the 

optimization process to minimize the weight of a space truss. Alternatively, the 

selected dominant failure modes have been added step by step by Murotsu, Shao and 
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Watanabe (1994) to the set of constraints to facilitate the optimization of redundant 

structures. 

Kwak and Lee (1987) developed a sensitivity analysis formulation for reliability-based 

optimization using the advanced first-order second-moment approach of Hasofer and 

Lind (1973). For one-bay, two storey frame design, they used the upper bound of 

system failure probability of Eq. (3.3 1) in their formulation. Moreover, Liu and Moses 

(1992) presented an optimization model for truss structures with system reliability 

constraints. In searching for an appropriate system reliability measure, they showed 

that the average of upper and lower bounds of reliability corresponding to Ditlevsen's 

bounds of probability of failure was the most efficient measure of system reliability. 

They demonstrated that optimizing a truss with constraints on this average reliability 

measure would decrease the weight of the original truss and also would improve its 

reliability, while deterministic optimization would decrease the weight and the 

reliability simultaneously. 

Chang, Ger and Cheng (1994) used two objective functions, weight and cost, to 

optimize steel structures subjected to seismic loadings. They showed that the optimum 

weight increased rapidly with the increase of coefficient of variation of the earthquake 
load especially at high reliability levels. They also demonstrated that the optimum 

weight was sensitive to the type of load distribution used. In the cost objective 
function approach, the cost of failure was included with the initial cost in the total cost 
function. The reliability of the structure increased when this total cost function was 

minimized as this will minimize the cost of failure and hence failure probability. 

Recently, Borri and Speranzini (1997) proposed an algorithm for optimum structures 

with prefixed reliability requirements. They showed that the proposed algorithm can 
be implemented within any Finite Element code provided that this code contains an 
internal minimization routine. At each iteration of the objective function minimization 

process, structural analysis was performed to define the limit state condition and the 

reliability index was calculated in an internal loop by minimizing the distance between 

the origin of the space of the standardized independent normally distributed variables 
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and a point that respects the limit condition. The algorithm was applied on a three- 

dimensional truss structure with a large number of random variables and demonstrated 

that the algorithm is unaffected by problem size. 

Finally, it should be noted that all the above applications are based on handling 

uncertainties associated with random variables, namely load and strength, which can 

be represented statistically by probability distributions. However, other uncertainties 

such as quality of construction, importance of the structure, skill of engineers, 

accuracy of analysis methods, etc. cannot be statistically modelled. Templeman (1987) 

showed how such fuzzy uncertainties can be incorporated into reliability-based 

optimum structural design formulation along with statistical uncertainties. 

3.3.3 DAMAGE TOLERANT DESIGN 

The conventional structural design methods aim to satisfy serviceability limit state 

requirements such as excessive deformation or crack formation, and ultimate limit 

state requirements such as plastic collapse or instability occurrences. The minimum 

strength required for the structure to fulfil these requirements is called the intact 

strength. For safety considerations, the concept oý safety factor has been introduced 

into design methods to achieve a structure having strength beyond its intact strength 

by a margin called reserve strength which is determined by the amount of load beyond 

the working load the structure can carry before it collapses. 

The above conventional methods, however, do not consider the behaviour of structures 

under some damage conditions which lie intermediate between the start of the 

unserviceability state and the final collapse state. Such damage conditions may play 

a significant role in the design methods if a structure has to be designed to sustain 

some damage without leading to a complete failure, as is the requirement for many 

structures. The damage conditions may be considered as complete damage of one 

member or more depending on the type of the structure and its importance. 

Consequently, structures must be designed to have some extra strength so a structure 

can exhibit damage tolerance once a member has failed. The minimum strength of the 
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structure among all expected damage conditions is called the residual strength. 

Arora et al. (1980) defined a damage tolerant structure as a structure capable of 

performing its basic function even after it sustains a specified level of damage. Mistree 

(1983) and Shupe and Mistree(1987) suggested that a damage tolerant structure must 
have intact strength, reserve strength and residual strength in order to resist 

respectively initial failure, failure due to service loads exceeding design loads and 

further failure after the initial failure. Obviously, statically determinate structures 

cannot be designed to have residual strengths as the presence of all members is 

necessary for the structure not to collapse. For statically indeterminate structures, the 

failure of one member will not necessarily lead to complete failure. However, unless 

these structures have been very carefully designed and their configurations have been 

carefully chosen, failure of the most critical member may cause overloading for other 

members and possibly failure of more members leading to progressive collapse of the 

structure. 

Designing a structure to be damage tolerant will inevitably lead to increase of its 

weight and hence its cost. A compromise between reserve strength, residual strength 

and cost, therefore, has to be adopted. Mistree (1983) presented a formulation of such 

a compromise criterion for damage tolerant design problems based on goal 

programming techniques (Ignizio, 1982). In his formulation, two types of constraints 

were included, system constraints and goal constraints. System constraints were 

defined to specify that the system capability to demand ratio for each failure mode 

should be greater or equal to factor of safety. Capability of a system may be defined 

as its strength, and the load or stress applied on the system may be considered as its 

demand. Two types of system constraints were included, catastrophic failure 

constraints, which may be due to buckling, for example, and non-catastrophic failure 

constraints, which may be due to tension, for example. Catastrophic failure constraints 
included those for the intact structure where factor of safety represents the reserve 

strength for a specific failure mode, and those for the damaged structure where the 

factor of safety for each failure mode represents the residual strength. The damaged 

structure was considered as the structure with one member failed. The non-catastrophic 
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constraints, on the other hand, were considered only for the intact structure. Bounds 

on the design variables and proportionality constraints to ensure that system 

components can be fabricated were also included in the system constraints. 

The system constraints, however, will ensure the feasibility of the design but will not 

prevent the capability to demand ratios from being very large. The aim of the goal 

constraints was to prevent such large ratios and hence to produce a good feasible 

design. This was done by targeting the average capability to demand ratio among all 

failure modes to be equal to the target factor of safety for catastrophic and non- 

catastrophic constraints. Also, the cost of the structure should not exceed a specific 

cost. To achieve the above requirements as closely as possible, Mistree (1983) relaxed 

those requirements by introducing some deviation variables which were added to the 

above goals to produce goal constraints. The damage tolerant design problem became 

as follows. Given input data, find the design deviation variables to satisfy system and 

goal constraints by minimizing the set of deviation variables. Shupe and Mistree 

(1987) added some preference indices to the deviation variables in the objective 

function to be minimized. These ensure that some goal constraints are preferred to 

others. They applied the formulation on a thirteen-bar truss regarding the compromise 

between cost and reserve strength only. This application demonstrated the applicability 

and the accuracy of the formulation. 

Frangopol et al. (1991) used optimum design formulation techniques to optimize 
damage tolerant structures. They minimized weight subject to constraints regarding the 

serviceability, ultimate load-carrying capacity and residual capacity requirements. 
Serviceability requirements demanded that elastic displacement at any section should 

not exceed an allowable value. Ultimate load-carrying capacity, on the other hand, 

should not be below a required capacity of the system. Finally, the minimum capacity 

of the damaged structure among all possible damage conditions (each member has 

been removed in turn) should be greater or equal to a required residual capacity of the 

system. The above formulation was applied to a five-bar truss for brittle and ductile 

materials showing that the rate of increase in reliability is much greater than the rate 

of increase of volume. 
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Finally, the concept of residual strength for damage tolerance has been used in 

reliability-based design methods. In their work which is presented in the previous 

section, Liu and Moses (1992) designed a sample truss by optimizing its weight 

subject to a prespecified system reliability constraint for the intact structure. The 

optimal design exhibited a decrease in weight and increase in reliability. However, 

examining this design further showed that such design was not safe during its 

expected damaged lifetime. Removing one of its members will decrease its reliability 

dramatically. Applying extra constraints regarding the residual reliability for each 

possible damage condition (each member has been removed in turn), Liu and Moses 

(1992) were able to obtain a damage tolerant structure with only a slight increase in 

weight. 

Having presented the concept of structural damage tolerance and its applications, the 

review of structural truss models is now completed. It is recalled here that the aim of 

this chapter is to demonstrate the similarities between structural trusses and water 

supply networks in terms of analysis, optimum design and reliability approaches. This 

is described next. 

3.4 SIMILARITIES IN THE ENGINEERING NETWORK SYSTEM MODELS 

Figures 3.1 and 3.12 show respectively the familiar pictorial presentation of a typical 

structural truss and a water supply network. Both are illustrated by means of a set of 

IJ arcs connected by a set of NN nodes. The arcs represent bars or members for the 

truss and pipes or links for the water network. The nodes are truss joints or pipe 

junctions. For both cases, the external actions are applied at the nodes only. For the 

water network, these external actions are supply and demand flows q, which can be 

defined to be positive for demands and negative for supplies. On the other hand, the 

external actions applied on the truss are the external applied loads Fexj including 

support reactions. In the truss case, each external load has a vertical and a horizontal 

component with positive directions chosen as shown in Figure 3.1. Each component 

for each external load can be considered to be equivalent to a demand flow if it is 

positive or a supply flow if it is negative, according to the directions defined in Figure 
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3.1. 

Moreover, each node is associated with a nodal potential quantity which for the water 

network is the water pressure head Hi, and for the truss is the nodal displacement 5i 

which again has two components, vertical and horizontal. Also, each arc has several 

quantities associated with it. For the water network, these quantities are the internal 

flow qjj which is positive for the direction of the flow, the head loss quantity hij which 
is defined as the difference between pressure heads of the pipe ends and is positive 

for the direction of the flow, the pipe effective length Leij, the internal diameter of the 

pipe Dij and a physical constant Cj associated with pipe characteristic of roughness 

coefficient. On the other hand, each bar of the truss has similar quantities 

corresponding to those mentioned above. The axial force for each bar Faxii can be 

expressed as a force flow corresponding to the pipe flow qjj of the water network. The 

axial force flow is defined to be positive for a compressive force and negative for a 

tensile force. However, bar forces are vectorial quantities and each has two 

components which can be calculated for a known layout and geometry of the truss. 

Also, each bar has an axial deformation quantity Aij corresponding to the head loss hIj 

of each pipe of the water network. This deformation is positive for compressive force 

and negative for tensile force. The remaining quantities associated with each bar of 

the truss are bar length Leij, cross-sectional area Aj and the elastic modulus of the bar 

material E,,. Those correspond respectively to the pipe length Leij, internal diameter 

of the pipe Dj and the physical constant Cij for the water network. 

The above physical quantities for the truss and water network shown in Figure 3.1 and 
3.12 respectively are evidently closely similar. The only difference is the vectorial 

nature of some of the truss quantities. Other striking similarities are discussed in the 

remainder of this chapter. 
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3.4.1 ANALYSIS PROBLEM 

This includes constitutive equations, analysis problem formulation and solution 

methods. 

3.4.1.1 CONSTITUTIVE EQUATIONS 

The constitutive equations for the truss shown in Figure 3.1, namely bar force 

equilibrium equations, compatibility equations and characteristic force-strain 

relationship equations, were presented in section (3.2.1) of this, chapter and for 

convenience are'rewritten here as follows: 

NIV 
FaxV sin Oij + Fexj, =0 j=1,..., NN (3.1a) 

NN 

Faxij cos 0. + Fexjh =0 j=l,..., NN (3.1b) 

cos Oij (8jh-8ih) + sin OV = Aq vijcii (3.2) 

= 
Le. Faxy 

Vj,, j (3.3) 
v AU EV 

For the water network problem shown in Figure 3.12, it is recalled from section 

(2.6.1.1) in Chapter 2 that the corresponding constitutive equations can be written as: 

E qj,, -E qk = q,, (3.34) 
JcNU. kcND. 

Hi - Hj = hu VijcIJ (3.35) 

a Le qjj ) 
1.952 

cij 
- Veii 

(3.36) 
YD4,87 
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where Eq. (3.35) is a special case of Eq. (2.18) considering paths which contain one 
link only. 

The above two sets of constitutive equations hold a great deal of similarity. Eqs. 

(3.1a, b) and (3.34) are nodal flow continuity equations which connect the arc flows 

(force flows or water pipe flows) in a linear fashion. Also, Eqs. (3.2) and (3.35) are 
linear functions representing loss of nodal potentials on an arc (bar deformations or 
head losses). Finally, the arc flows and arc losses of nodal potentials are linked by 

Eqs. (3.3) and (3.36) which contain equivalent quantities. The difference between the 

two sets of the constitutive equations is related to these two relationship equations 

[Eqs. (3.3) and (3.36)]. They are linear for structural trusses, and highly nonlinear for 

water supply networks. However, for nonlinear trusses (nonlinear materials, large 

displacements, etc. ) Eqs. (3.3) become nonlinear making them more closely similar 

to Eqs. (3.36). 

3.4.1.2 ANALYSIS PROBLEM FORMULATION AND SOLUTION METHODS 

Templeman and Yates (1984) described the similarities in analysis problem 
formulation and solution methods for trusses and water networks. For both cases, the 

analysis problem is to find the unknown arc flows (force flows or water pipe flows) 

and the unknown nodal potentials (nodal displacements or nodal pressure heads) which 

satisfy the set of constitutive equations [ Eqs. (3.1 a, b) to (3.3) or Eqs. (3.34) to (3.36)] 

provided that all other physical quantities are known. The only difference between the 

two formulations is that the problem is linear for linear trusses while it is nonlinear 
for water networks due to the nonlinearity of Eqs. (3.36). However, the nonlinearity 

of water network analysis formulation makes the problem more complicated but does 

not affect the similarity in concept and methods as will be seen later. 

Two cases of analysis problem can be identified for each of the truss and water 

networks, the determinate case and the indeterminate case. In the determinate case, the 

number of unknown arc flows (force flows or water pipe flows) equals the number of 

usable continuity equations [Eqs. (3.1a, b) or Eqs. (3.34)]. It is recalled here that the 
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number of usable continuity equations for a structural truss is 2NN-3 (see section 
3.2.2), and for a wdter network is NN-1 (see section 2.6.1.1.2 in Chapter 2). This 

corresponds to a statically determinate truss and a branched water network 

respectively. For this determinate case, continuity equations [Eqs. (3.1a, b) or Eqs. 

(3.34)] can easily be solved to give unique values for all arc flows (force flows or 

water pipe flows). Substituting these arc flows into arc flows-arc potential losses 

relationship equations [Eqs. (3.3) or Eqs. (3.36)] gives arc potential losses (bar 

deformations or head losses) which in turn are substituted into arc potential loss 

equations [Eqs. (3.2) or Eqs. (3.35)] to yield unique values for nodal potentials (nodal 

displacement components or nodal pressure heads) and thus the analysis problem is 

solved. Note that the nonlinearity of the water network analysis problem for the 

determinate case does not introduce any difficulties since the nonlinear equations [Eqs. 

(3.36)] are solved only after all water link flows have already been calculated from 

Eqs. (3.34). 

The indeterminate case, however, is more complicated as the number of unknown arc 

flows (force flows or water pipe flows) is greater than the number of usable continuity 

equations. This corresponds to a statically indeterminate truss and a looped water 

network. For this indeterminate case, the continuity equations are not sufficient to 

determine unique values of the arc flows (force flows or water pipe flows), and a 

simultaneous solution of all the constitutive equations is therefore necessary to solve 

the problem. The presence of nonlinear Eqs. (3.36) in water network problems 

introduces further difficulties since these nonlinear equations are involved in the 

required simultaneous solution of the corresponding constitutive equations. Analytical 

solution methods for indeterminate water networks aim to linearize Eqs. (3.36) first 

and then to solve the resulting set of linear equations in ways which turn out to be 

similar to those used for the indeterminate truss analysis problem. 

The flexibility method and the stiffness method presented earlier in this chapter are 

the most widely used methods for the indeterminate structural truss analysis problem. 
The parallel methods for the looped water network analysis problem are respectively 

the Newton-Raphson method of Martin and Peters (1963) and the linear theory method 
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of Wood and Charles (1972). 

In the Newton-Raphson method, the redundant pipes (one pipe for each loop) are 

removed and replaced by external flows equal to the unknown internal water flows in 

the removed pipes. Then the internal link flows for all the pipes in the resulting 
branched network can be calculated in terms of the unknown redundant flows. The 

resulting flows are substituted into nonlinear Eqs. (3.36) which are then linearized by 

a Taylor series expansion to yield linear head loss equations for all pipes in terms of 
initial link flows for the redundant pipes and flow rate increments (see Martin and 
Peters, 1963). At this stage the compatibility equations, which require the sum of head 

losses around each loop to be zero, can be set up to yield a number of equations equal 

to the number of loops with the same number of unknown flow rate increments. 

Solving these linear equations iteratively gives the required flow rate increments 

necessary to correct all the pipe flow rates so that the sum of head losses around each 

loop is restored to zero. Hence, all pipe flows are calculated and the analysis problem 
is solved. 

The above method is constructed in a way very similar to the flexibility method for 

truss analysis presented earlier in this chapter. However, the Hardy-Cross method (see 

section 2.6.1.2.1 in Chapter 2) which uses a one-at-a-time approach to solve the 

nonlinear equations of the water network analysis problem has no counterpart for truss 

analysis problem as this problem is linear. 

In the linear theory method (Wood and Charles, 1972), the pipe flows are expressed 
in terms of unknown pressure heads by eliminating pipe head loss terms from Eqs. 

(3.35) and (3.36). The resulting nonlinear pipe flow equations are linearized by a 
Taylor series expansion using initial pressure head values and unknown nodal pressure 
head increments (see Wood and Charles, 1972). The resulting linear pipe flow 

equations are solved iteratively to give the required pressure head increments which 
then are used to give the pressure heads and hence the pipe flows. Apart from the 

necessary iterative procedure, the linear method is similar to the stiffness method used 
for truss analysis problem. 
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Finally, it is worth mentioning here that the energy index method of Kaya and Simon 

(1974) for water network analysis is closely similar to minimum energy analysis of 

trusses which is usually used for nonlinear cases such as trusses with nonlinear 

materials or with large displacements. This method was not presented when structural 

trusses were reviewed earlier in this chapter as the present work is concerned with 
linear trusses only. Therefore, the corresponding parallel method for water network 

(Kaya and Simon, 1974) is not presented here. 

3.4.2 OPTIMUM DESIGN PROBLEM 

Cheng and Ma (1989) and Templeman (1992b) pointed out the similarity between 

optimum design problem formulations for water networks and structural trusses. Both 

formulations were presented earlier as Problem 2 and Problem 4 respectively. For both 

problems, the arc size quantities (pipe diameters or bar cross-sectional areas), the arc 

flows (water pipe flows or force flows) and the nodal potentials ( nodal pressure heads 

or nodal displacements) are the unknowns in the optimum design problem 
formulations. The objective function is cost which has to be minimized subject to the 

constitutive equations [Eqs. (3.34) to (3.36) or Eqs. (3.1a, b) to (3.3)] and to other 

constraints (see Problem 2 presented in Chapter 2 and Problem 4 presented earlier in 

this chapter). Note that the objective function used for trusses in Problem 4 is the 

weight function whose minimization leads directly to cost minimization. The other 

constraints used for optimum water network design formulation (Problem 2) are flow 

velocity constraints, nodal pressure constraints and pipe diameter constraints. The 

parallel constraints for optimum structural truss design formulation (Problem 4) are 

respectively bar stress constraints, nodal displacement constraints and bar size 

constraints. 

The similarity between the two optimum design formulations is obvious. Both 

formulations are nonlinear programming problems having similar objective functions 

and parallel constraints with similar variables. Also, they both produce implicit 

determinate systems (branched water network or determinate truss) if one pattern of 

external applied actions (supplies and demands or external applied loads) are used in 
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the formulations. For reliability considerations, many patterns of external actions have 

to be used for both formulations making the problem extremely expensive in computer 

time. Moreover, the requirements that arc sizes (pipe diameters or bar cross-sectional 

areas) have to be chosen from a commercially available set of discrete sizes make 

both problems extremely difficult to solve ( Yates, Templeman and Boffey, 1984, 

1982). For these reasons and others, simplified methods have been developed to solve 

both problems. They turn out to be closely similar as has been demonstrated by 

Templeman (1992b). 

The segmental truss optimum design method developed by Templeman and Yates 

(1983) and presented earlier in this chapter as Problem 5 is actually inspired by the 

optimum water network design method of Alperovits and Shamir (1977) who similarly 

transformed the problem, after specifying initial values for pipe flows, into a linear 

programming problem by replacing each pipe by several segments each of known 

diameter, chosen from discrete available sizes, but of unknown length. The resulting 

linear programming problem can then be easily solved to produce optimum design for 

the specified flows with few pipes having more than one segment. Quindry, Brill and 

Liebman (1981) showed how the initial pipe flows may be changed to further reduce 

the cost. The multi-segment pipes may later be rounded up in a similar way to that 

used for the segmental truss optimum design method. 

Other methods which show some aspects of similarity can be found in the literature. 

The most obvious parallels may be those of Lai and Schaake (1969) and McKeown 

(1977) for water networks and structural trusses respectively. Both methods linearize 

the optimum problem by specifying a set of nodal potentials (nodal pressure heads or 

nodal displacements) and finding the optimum design for the specified nodal 

potentials. Quindry et al. (1981) and McKeown (1989) described how those nodal 

potentials may be changed to further reduce the cost of water networks and structural 

trusses respectively. 

The above examples are not exclusive but surely demonstrate the similarity in the 

optimum design problem. Consequently, it can be concluded that structural trusses and 
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water supply systems are similar in many aspects. However, one aspect is still to be 

discussed which is reliability, and it is presented next. 

3.4.3 RELIABILITY PROBLEM 

It has been shown in the previous chapter and earlier in this chapter that designing 

optimum systems for both water supply networks and structural trusses should be 

based on a compromise between cost and reliability. A reliable system ( water system 

or truss system) must meet some basic requirements under complete performance 

system conditions to satisfy specified applied actions (supply and demand flows or 

external applied loads). Also, such systems should be flexible and damage tolerant. 
Flexibility is defined as the ability of the system to carry applied actions other than 

those designed for, and damage tolerability is concerned with the behaviour of the 

system under some damage conditions. 

The basic requirements of the reliability of water supply networks have been identified 

in Chapter 2 as mechanical reliability and hydraulic reliability. The mechanical 

reliability of a water network is defined as the probability that all demand nodes are 

connected and reachable from a source, while the hydraulic reliability is defined as the 

probability that a system can meet a specified level of flow at each demand node. 
Only hydraulic requirements have to be examined further for expected different 

supply/demand patterns (e. g. fire fighting requirements) to achieve a flexible network 

since the network is still undamaged and its mechanical reliability has already been 

tested, while both mechanical and hydraulic requirements have to be considered for 

each damage condition (usually each link in turn is assumed to be failed) to obtain a 
damage tolerant network. 

On the other hand, structural reliability, as shown earlier in this chapter, is defined as 

the probability that load does not exceed strength. Both load and strength are treated 

as random variables fitted by some known probability distributions. Flexibility analysis 
for structural trusses is rarely done explicitly by considering different load cases since 

the variation of loads is accounted for by using probability distributions. However, 
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damage tolerant design is widely used in structures. A structure must be designed to 

have residual strength for some damage conditions in order to exhibit damage 

tolerance once any member of the structure has failed. 

Comparing the reliability approaches for both water networks and structural trusses 

shows that basic reliability requirements for both systems are completely different. 

Water supply system design approaches do not use supply and demand flows and pipe 

carrying capacities as random variables as structural design methods do. Also, these 

latter methods have nothing to do with connectivity and reachability requirements 

considered by the former methods. 

However, looking at damage tolerance approaches for both systems shows some 

aspects of similarity. Templeman (1992b) described some of these aspects. He argued 

that redundancy for both systems is necessary but not sufficient to produce reliable 

systems. The alternative paths (alternative supply paths or alternative load paths) 

provided by redundant systems (looped networks or indeterminate trusses) may be not 

usable in the event of some failure unless they have been designed to do so. The 

alternative path approach is well recognized in water network design methods and is 

widely used in structures in terms of damage tolerant design methods as shown earlier 
in this chapter. 

However, designing a structure to be capable of fulfilling its full'performance capacity 

with any one member failed is quite expensive. Therefore, a reduced performance is 

acceptable for a system to exhibit in its damaged state. Liu and Moses (1992) used 

this reduced performance approach to design a reliable and damage tolerant truss. 

Templeman (1992b) showed how such as approach can be applied on a simple 

network example. 

Regarding reliability of water supply systems, it is recalled here from Chapter 2 that 

Tanyimboh and Templeman (1993c) used entropy as a surrogate measure of water 

network reliability, and by incorporating this measure into the optimum design 

formulation they produced a reliable, flexible and damage tolerant network. The 
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entropy-based method has been found to be very simple and very efficient for water 

supply systems. The simplicity and the efficiency of the entropy water network 

method and the huge similarities between water supply and truss systems demonstrated 

earlier in every aspect, even in some reliability approaches, suggests possible structural 

applications. The entropy-based method for calculating maximum entropy flows in 

water distribution networks presented in Chapter 4 is applied to structural truss design 

methods in Chapter 8 where the resulting truss designs are tested against reliability 

and damage tolerance approaches, and compared to conventional designs. 
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CHAPTER 4 

CALCULATING MAXIMUM ENTROPY FLOWS 

IN MULTI-SOURCE, MULTI-DEMAND 

GENERAL NETWORKS 

4.1 INTRODUCTION 

It has been shown in Chapter 2 how most-likely, or least-biased, flows in water 

distribution networks can be calculated using the maximum entropy formalism. The 

key feature of the problem which was presented in Chapter 2 as Problem 3 was that 

very limited data was assumed to be available: only source flow rates, demand flow 

rates and the topology of the network with arc flow directions were assumed to be 

known. Data on arc properties such as lengths, diameters of pipes and roughness 

properties were assumed not to be available. Because of this very limited data, there 

was insufficient information to permit an accurate physical analysis of the pipe 

network to be performed which would generate accurate pipe flow rates and a 

corresponding pressure regime. Under these circumstances, Shannon's entropy function 

(Shannon, 1948) and the maximum entropy formalism (Jaynes, 1957) were used to 

estimate the most-likely, or least-biased, flows in water distribution networks by 

maximizing the network nodal entropy function presented by Tanyimboh and 

Templeman (1993a) subject to the available information. ( See Problem 3 presented 

in Chapter 2). 

The problem of calculating maximum entropy flows in water supply networks is 

nonlinear and hence requires nonlinear programming. In an attempt to simplify the 

problem, Tanyimboh and Templeman (1993b) proposed a different and simpler path- 
based approach to calculate maximum entropy flows in single-source networks. Their 

method is not iterative and does not involve linear or nonlinear programming. The 
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method was described in Chapter 2 by means of three algorithms, a node numbering 

algorithm, a node weighting algorithm and a flow distribution algorithm. The main 
idea behind the method is that according to the maximum entropy formalism the 

demand of any node in the network served by more than one path from the source 

should be divided equally amongst all paths supplying it if there is no further 

information about these paths. 

The above simple method, however, is not capable of handling general multi-source 

networks. The super-source approach proposed by Tanyimboh and Templeman 

(1993b) as an extension of the simple single-source algorithm to multiple sources has 

been shown to be invalid. Walters (1995) showed how it should correctly be used in 

a rather unwieldy method. (See Appendix A for more details on his proposed method). 
A rigorous general method and relatively simple and quick algorithm based on the 

path approach are proposed in this chapter for calculating maximum entropy flows for 

multi-source general networks without involving linear or nonlinear programming. 
Also, the proposed method is not iterative and does not use the super-source idea in 

any way. Because the method is based on path flows, a path-based network entropy 
function is developed to facilitate the proposed method. In this chapter, the theory 

behind the method is introduced along with the network path entropy function. This 

is followed by a full description of the proposed method and the accompanying 

algorithms. Illustrative examples and general discussions on the proposed method are 
left to the next chapter. 

4.2 MULTI-PATH FLOWS AND THEIR EQUILIBRIUM EQUATIONS FOR 

MULTI-SOURCE NETWORKS 

Consider the water network shown in Figure 4.1. The network has two sources and 

three demand nodes. The external inflows and outflows at those source and demand 

nodes respectively are known. Also, the layout of the network and the flow directions 

in all the pipes are given but no further information about the network is available. 

Under these circumstances, the most-likely pipe flows corresponding to the maximum 

entropy value of the network have to be sought. Instead of maximizing the nodal 
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entropy function of the network subject to available information (see Problem 3 

presented in Chapter 2), the maximum entropy flows are sought in this chapter using 
the idea of path flows from each source to each demand node. 

Considering any demand node in the network of Figure 4.1 served by more than one 

path from a source, all the paths from that source supplying that demand node should 

have the same probability of doing so if there is no further information about those 

paths. This accords with the maximum entropy formalism presented in Chapter 2 as 

Problem 1. Therefore, flow to a demand node supplied by a source should be 

distributed equally amongst all the paths supplying that node from that source. 

However, the proportion of flow for a demand node supplied by each source is 

unknown, and the relationship between path flows for each demand node supplied by 

different sources is consequently unknown. Defining qp, ij to be the path flow from 

source i to demand node j, Figure 4.2 shows the unknown and equal path flows from 

each source to each demand node reachable from that source. For demand node 5, 

there are three paths from each source in the network, these being 1-3-5,1-3-4-5 and 

1-4-5 from source node I (Figure 4.2a), each carrying one path flow qp,,,, and 2-5,2- 

3-5 and 2-3-4-5 from source node 2 (Figure 4.2b), each carrying one path flow qp, 25 * 
Demand node 4 receives two paths from source node I (Figure 4.2c), each having 

flow equal to qp, 14, and one path from source node 2 (Figure 4.2 d) carrying a flow 

equal to qp, 24. Finally, only two paths are supplying node 3, one path from each source 

(Figures 4.2e and 4.2f respectively), where the path from source node 1 carries a flow 

equal to qp, 13 and the path from source node 2 carries qp, 23. 

Consequently, there are six unknown path flows for the network of Figure 4.1, two 

for each demand node. However, three demand equilibrium equations can be 

constructed, one for each demand node, by equating all the path flows supplying each 
demand node to the demand of that node. These equations can generally be written 

as: 
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E NPU qp. ji = qjo VWD 
kl, j 

(4.1) 

in which NPjj is the number of paths from source i, ViE Isj, to demand node j, VjE2 ID; 

Isj and ID being respectively the set of all source nodes supplying node j and the set 

of all demand nodes in the network; and qjO is the demand at node 

Also, referring again to Figure 4.1, two source equilibrium equations can be set up, 

one for each source node, by equating all the path flows for all demand nodes 

supplied by each source node to the supply of that node. These equations can 

generally be expressed as: 

E NPV qp. V = qoi Vids 
MW 

(4.2) 

where ID, j is the set of all demand nodes reachable from source node i; q0i is the 

supply of source node i. 

It should be noted that one of the equations in Eqs. (4.1) and (4.2), that is one out of 
five equations for the network of Figure 4.1, is not usable since it will automatically 
be satisfied provided that all the source supplies balance the demands in the network. 
Therefore, for the network of Figure 4.1 there are six unknown path flows and four 

usable equilibrium equations. Note that this difficulty is not encountered in single- 

source networks since the number of unknown path flows is equal to the number of 
demand nodes. (See Tanyimboh and Templeman, 1993b). How can maximum entropy 

pipe flows be calculated for multi-source general networks using the path-based 

approach? I 

This chapter investigates closely the multiple path flows for the two-source network 

of Figure 4.1. The probabilities of these path flows are needed in this investigation. 

Therefore, path flow probabilities are defined next accompanied by presentation of a 

new form of network entropy function based on those probabilities of path flows. 
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4.3 PATH FLOW PROBABILITIES AND PATH ENTROPY FUNCTION OF 
WATER NETWORKS 

The probability of an event in a repeated experiment can be interpreted in terms of the 

relative frequency as the frequency or number of occurrences of that event divided 

by the sum of the frequencies of all the events in the experiment. Following that 

relative frequency interpretation, the probabilities of path flows in water distribution 

networks can be obtained by normalising each path flow by its individual source flow 

as follows: 

PA Uý 
lp-'ij 

V' 6 'S 
* Vi G ID, 1 

(4.3) 
qoj 

in which pp, ij is the probability that path flow qP, jj supplied by source node i reaches 
demand node j. Substituting Eqs. (4.3) into Eqs. (4.2) gives the following normality 

condition equations at the source nodes: 

E NPV pp. y =I Vi EIS 
JE'DJ 

(4.4) 

Note that Eqs. (4.4) are equivalent to Eqs. (4.2) since Eqs. (4.4) can be obtained by 

dividing Eqs. (4.2) by the corresponding source flow. However, Eqs. (4.4) are used 
in the present work instead of Eqs. (4.2) as will be seen later. 

Eqs. (4.3) represent NS sets of path probabilities, where NS is the number of sources 
in the network, each set corresponding to a source. For each set, the path probabilities 

are mutually exclusive and they sum to unity [Eqs. (4.4)]. Therefore, each set of path 

probabilities represents a finite scheme. However, these finite schemes are not 
independent. Each scheme is dependent upon the conditions at the corresponding 

source. There is no path flow from source node i to demand node j if there is no 

supply at that source. This can be interpreted as follows: each set of path probabilities 

corresponding to a source is dependent upon the probability representing the fraction 

of the total supply in the network provided by the corresponding source node. There 

are NS number of such probabilities in the network, each corresponds to a source 
node, and. they are: 
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ýýO-i ViEl, (4.5) 
TO 

in which To is the total supply or demand in the network, and is given by: 

T=E%, =E qjo 0 i Els jelp 
(4.6) 

Clearly, the set of probabilities given by Eqs. (4.5) represents a finite scheme since 

these probabilities are mutually exclusive and they sum to unity. 

To sum up, there are (NS+l) finite schemes which can be identified in a water 

distribution network. One of these schemes is the set of all source flow probabilities 

given by Eqs. (4.5), and each of the remaining NS finite schemes of path probabilities 

corresponds to a flow from a source and depends upon the flow probability of that 

source. 

Having defined general water supply networks in terms of finite schemes, some of 

which are dependent upon others, the network entropy in the context of path flows can 

now be introduced using the concept of entropy of a compound scheme presented in 

Chapter 2 and defined by the notion of conditional entropy. This can be done by 

summing the entropy of the set of source flow probabilities to the conditional entropy 

of each set of path flow probabilities. First, the entropy of the set of source flow 

probabilities, setting the constant K to unity, can be written as (see Shannon, 1948): 

-E Poi In P., (4.7) 
tels 

in which So' represents the entropy of the distribution of total supply To amongst the 

sources; and Poi is given by Eq. (4.5). Second, the conditional entropy of each set of 

path flow probabilities can be written as (see Khinchin, 1953): 

Sip Poi E NPV pp, U 
In Ppy WEIS 

JGIDý 
(4.8) 

where SiP is the conditional entropy of path flow corresponding to source node i. 
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Consequently, the path entropy function of the network will have the form: 

sp=so$+ E sip 
iel, 

(4.9) 

in which SP is the network entropy based on path flows; So' is the entropy of the 

distribution of the total supply amongst all sources and is given by Eq. (4.7); and S, P 

is the conditional entropy of path flows supplied by source node i and is given by Eq. 

(4.8). 

To demonstrate the above path entropy function, Eq. (4.9) is now applied to the two- 

source network of Figure 4.1. To do so, the probabilities of all the path flows shown 

in Figure 4.2 are needed. Assume that the maximum entropy link flows in the network 

are available. These can be obtained by maximizing the nodal entropy function of the 

network subject to available information (see Problem 3 presented in Chapter 2). The 

resulting maximum entropy flows are shown in Figure 4.3 and have a maximum 

entropy value of 2.3.885315. At this stage, the sum of all path flows passing through 

a link can be equated to the maximum entropy flow of that link. Therefore, the 

following equations can be obtained: 

2 qp, 15 + qp, 14 + qp, 13 = 20.061912 

qp, 15 + qp, 14 = 9.938088 

2 qp, 25 + qp, 24 + qp, 23 = 16.268405 

qp, 25 = 3.731595 

qp, 25 + qp, 15 + qp, 24 + qp, 14 = 17.996982 

qp, 25 + qp, 15 = 8.333335 

qp, 25 +2 qp, 15 = 12.935070 

(for link 1-3) 

(for link 1-4) 

(for link 2-3) 

(for link 2-5) 

(for link 3-4) 

(for link 3-5) 

(for link 4-5) 

Solving six of these equations with six unknown path flows gives: (qP, 13, qP, 14, qp, 159 

qp, 239 qp, 24, qP, 25) = (5.522086,5.336350,4.601738,4.477916,4.327299,3.731595). The 

unused equation provides a numerical check for the above path flows which were 
found to be correct. Using Eqs. (4.3), the path flow probabilities are: (Pp, 

13t Pp, 149 Pp, 159 

Pp, 231 Pp, 249 Pp, 25) = (0.1840695,0.1778783,0.1533913,0.2238958,0.2163650, 
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0.1865798). These path probabilities form two finite schemes, each corresponding to 

a source. Also, the probabilities of source flows can be obtained using Eqs. (4.5) as: 

(POI, P02) = (0.6,0.4), which also form a finite scheme. Having defined the (NS+1=3) 

finite schemes in the network, the network path entropy value can now be evaluated 

using Eq. (4.9) as: 

2 

SP=SOS +E sip 
i-1 

=-P., In Pol - 
P, 

2 In P, 
2 

- PO1 lPp, 13 In Pp, 13 +2 Pp, 14 
In Pp, 14 +3 pp, 15 

In pp, 151 

- P02 lPp, 23 In Pp, 23 + Pp, 24 In PP, 24 +3 pp�, In Pp, 251 

= 2.3885317 

which compares exactly with the nodal entropy value calculated earlier by maximizing 

the nodal entropy function of the network. This confirms the general correctness of 

the path-based approach which assumes equal path flows from each source to each 

demand node reachable to that source leading to the maximum entropy flows in the 

network. 

It should be noted that the path flow probabilities of the network of Figure 4.1 have 

been calculated using the maximum entropy flows obtained by maximizing the nodal 

entropy function of the network. In the next section, these path probabilities are 

studied so they can be calculated in a relatively simple method which will be called 

the alfa method. The method does not involve linear, nonlinear programming or 

iterative processes. 

4.4 ALFA METHOD 

Consider the two-source network of Figure 4.1. The path flows and their probabilities 

corresponding to the maximum entropy value of the network (S*=2.3885315) are 

shown in Table 4.1 for further study. Several features can be observed when 

examining Table 4.1. First, the path flows values from each source contributing to a 
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demand node have different values; qp,, 3#qp, 23, qp,, 4;, -qp, 24 and qp,,, #qp, 25. Also, the 

corresponding probabilities are not equal; pp, 13#Pp, 239 Pp, 14#Pp, 24 and Pp, 15#Pp, 25, nor does 

the ratioing of these probabilities according to source flow proportions lead to equality 

either, (pp, 
13/qol): ýý-(Pp, 2342)0 

(Pp, 
1440ý0-ý(Pp, 2442) and (Pp, 

15/qOl)*(Pp, 25/qo2). 

Table 4.1 The maximum entropy path flows and their probabilities for the two-source network 
of Figure 4.1 with S*=2.3885315. 

Demand 
node j 

1 1 
qp, u p 

lu 

3 10 1-3 1 5.522086 0.1840695 
1 30 

4 15 1-4 2 5.336350 0.1778783 

5 25 1-5 3 4.601738 0.1533913 

31 10 2-3 1 4.477916 0.2238958 
2 20 

4 15 2-4 1 4.327299 0.2163650 

5 25 2-5 3 3.731595 0.1865798 

Examining the proportions of demand at a node from each source leads to the 

following: node 3 receives qp,, 3=5.522086 units of flow from source 1 and 

qp, 23=4.477916 units of flow from source 2. This means that node 3 gets 

(qP, 13/q3O)=55.22% of its demand from source I and (qp, 23/q3O)=44.78% from source 2. 

The same proportions of demand from each source is found at node 5 which receives 
(3qP, j5/q5O)=55.22% of its demand from source 1 and (3qp, 25/q5O)=44.78% from source 

2. However, node 4 receives different proportions of demand from each source. It gets 

(2qP, 14/q4O)=7l. l5% of its demand from source I and (qp, 24/q4O)=28.85% from source 

2. It should be noted that node 4 differs from nodes 3 and 5 in that node 4 receives 
different numbers of paths from the two sources compared with nodes 3 and 5, each 

of which receives equal number of paths from the sources. 

Finally, the path probabilities from each source at a demand node are examined next 

regardless of the number of paths from each source to that demand node. The 

following ratios are obtained: 
(Pp, 

13/Pp, 23) = 0.822121 
(Pp, 

14/Pp, 24) = 0.822121 
(Pp, 

15/Pp, 25) = 0.822121 
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It can obviously be noted that the ratio of the probabilities of path flows from each 

source to a demand node corresponding to the maximum entropy flows is the same 
for every demand node. 

The above interesting result is now examined for the three-source network shown in 

Figure 4.4. The maximum entropy flows obtained by solving Problem 3 presented in 

Chapter 2 are also shown in the figure and have S*=2.594634. The corresponding path 
flows and their probabilities can respectively be obtained by equating all the path 
flows passing through a link to the maximum entropy flow of that link and then 

normalising the resulting path flow by its individual source flow. The resulting path 

flows and their probabilities are shown in Table 4.2. 

Table 4.2 The maximum entropy path flows and their probabilities for the three-source network 
of Fiaure 4.4 with S*=2.594634. 

- 
Demand 

ý -] F 
qji, 

Fath 
iý 

E I E node j 

2 4 15 1-4 3 2.372647 0.1186324 

5 30 1-5 5 2.576412 0.1288206 

15 4 15 2-4 1 4.729236 0.3152823 

5 30 2-5 2 5.135382 0.3423588 

I 4 15 3-4 1 3.152822 0.3152823 E1 
151 

30 3-5 2 3.423588 0.3423588 

Examining the ratios of the path probabilities from each pair of sources at a demand 

node shows that: 

(Pp, 
14/Pp, 24) 

(Pp, 
15/Pp, 25) = 0.376274 

(Pp, 
24/Pp, 34) 

(Pp, 
25/Pp, 35) =1 

which obviously lead to the equality: (Pp, 
14/Pp, 34) = (PP, 

15'Pp, 35)* 

The above two examples and others examined in the same manner show that the equal 

path probabilities hold for any pair of sources and all demand nodes reachable from 

the corresponding pair of sources. This leads to the following important conjecture: 
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Conjecture A 

"The maximum entropy flows in multi-source, multi-demand general networks are 

such that the ratio of the probabilities of path flows from each pair of sources to a 

demand node reachable from the corresponding pair of sources is the same for every 

demand node supplied by this pair of sources in the network". 

The above conjecture is the basis of the proposed path-based method for calculating 

maximum entropy flows in general networks. If the ratios mentioned in Conjecture A 

can be found, they would provide a very simple means of calculating maximum 

entropy path flows for multi-source networks. The proposed method therefore aims to 

determine these ratios which enable maximum entropy path flow probabilities and 

hence the corresponding path flows to be directly calculated as will be seen very 

shortly. 

The two-source network of Figure 4.1 is now used to demonstrate the proposed 

method which will be called the alfa method. First, the equilibrium equations at the 

demand nodes can be written using Eqs. (4.1) as: 

qp, 13 + qp, 23 «2 
10 

2qP, 14 + qp, 24 ý-- 15 

3qp, 15+ 
3qp, 

25= 25 

Note that constructing these equations requires the number of paths from each source 

to each demand node to be determined. Next, the above equations are expressed in 

terms of probabilities using Eqs. (4.3) as follows: 

30pp, 
13+2oPp, 23 

10 

60pp, 
14+2oPp, 24 

15 

90pp, 15+6oPp, 25= 25 
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According to Conjecture A, the following' ratios can be identified: (Pp, 13/Pp, 23) 
(PP, 

14/Pp. 24) : -- (Pp, 
15/Pp, 25) = ot, which are substituted into the above probability 

equilibrium equations to yield the following equations: 

30(XPp, 
23 + 2oPp, 

23 2-- 10 

60(XPp, 
24 + 2oPp, 

24 = 15 

90(Xpp, 25 + 60pp, 25 = 25 

These equations can be solved to give: 
t 

Pp, 23 = 10/(20+30cc) 
, and hence, Pp, 13 = (XPp, 23 = 10(x/(20+30oc) 

Pp, 24 = 15/(20+60(x) 
, and hence, Pp, 14 = aPp, 24 = 15(x/(20+600c) 

Pp, 25 = 25/(60+90a) 
, and hence, pp,,, = (XPp, 25 = 25(x/(60+90(x) 

At this stage, the normality condition equations at the source nodes can be set up 

using Eqs. (4.4) as: 

Pp. 13 + 2pp, 14+ 3pp, 15 
Pp, 23 + Pp, 24 +3Pp, 25 = 

Substituting the path probabilities expressed in terms of (x into the second of the above 

normality condition equations gives: [10/(20+30oc)] + [15/(20+60a)] + 3[25/(60+90(x)] 

= 1, which is solved to yield: (x=0.822121. Back-substituting a into path flow 

probability expressions gives: (Pp, 13, Pp, 10 Pp, 159 Pp, 239 Pp, 249 Pp, 25) = (0.1840695, 

0.1778783,0.1533913,0.2238958,0.2163650,0.1865798). Note that the unused 

normality condition equation at source node I can then be used for checking purposes. 

Having calculated all the path flow probabilities in the network, the path network 

entropy value can now be determined using Eq. (4.9) to give SP=2.3885315. Also, the 

path flows corresponding to the above probabilities can be calculated by substituting 
these probabilities into Eqs. (4.3) to give: (qp, 

13, qP, 14, qp, 15, qP. 239 qP, 24, qp, 25)= (5,522086, 
5.336350,4.601738,4.477916,4.327299,3.731595). These path flows are now used 
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to calculate the final link flows in the network by summing all the path flows passing 

each link in turn. For example, link 3-4 carries four path flows (see Figure 4.2), two 

path flows serving demand node 4, each path from a source, and the other two path 

flows serving demand node 5, each path from a source. i. e. q34 :- qP'14 + qp, 24 + qP, 15 
+ qp, 25 = 17.996982. Treating all the links in the network similarly gives the following 

link flows: (q, 3, q149 q23, q25, q34, q35, q45) = (20.061912,9.938088,16.268405, 

3.731595,17.996982,8.333335,12.935070). 

It can be noted that the above results including (x value, path flow probabilities, 

network entropy value, path flows and final link flows are found to match all the 

respective results calculated earlier by maximizing the nodal entropy function of the 

network. (See Figure 4.3 and Table 4.1). 

4.5 PATH-BASED ALGORITHMS FOR CALCULATING MAXIMUM 

ENTROPY FLOWS IN GENERAL WATER NETWORKS 

The alfa method presented in the previous section for calculating maximum entropy 
flows for general multi-source networks requires the set of demand nodes reachable 
from each source to be identified and the number of paths from each source to each 

node reachable from that source to be determined. The alfa method has been 

formalised and cast into algorithms reflecting these requirements. An overview of the 

algorithms describing the procedures by means of an example is presented next 
followed by a full list of the proposed algorithms. 

The two-source network of Figure 4.5 is now used to describe the algorithms. All the 

nodes in the networks are numbered by ascending consecutive positive numbers 

starting by number 1 for any source in the network, then the rest of the source nodes 
followed by the rest of the nodes chosen in a random order as shown in Figure 4.5a. 

Therefore, numbering the two sources is arbitrary and may be interchanged. Also, 

numbering of nodes 3,4 and 5 may be interchanged. 
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The next step is to identify the set of nodes reachable from each source in the 

network. Considering source i, all the links immediately downstream of that source 

are considered and the immediate downstream nodes of those links are stored in a set 

IDJ. The nodes in the set ID, j are now considered and all their immediate downstream 

links are obtained. The immediate downstream nodes of those links are checked to 

determine if they already exist in the set before they are added to that set to avoid 

double counting of the nodes. The process continues until all the new batch of nodes 

added to the set are terminal nodes which do not have any link outflows. The set ID, j 

now contains all the nodes reachable from source node i. The same procedure is 

repeated for every source in the network until all the sources have been processed and 

the set of nodes reachable from each source has been obtained. The nodes 3,4 and 

5 in Figure 4.5a are all reachable from both sources. Neither source is reachable from 

the other. The process of identifying the reachable nodes from each source is 

terminated when reaching node 5 which is a terminal node. Note that the sets 'Djs 

Vi(=- Is$ which are used in Eqs. (4.2) or Eqs. (4.4) can lead to the sets Isj, VjE ID, which 

are used in Eqs. (4.1). This can be explained as follows. For every demand node j in 

the network, VjE Ir, if node j belongs to 1DJ9 Vic= Is, therefore$ the source i belongs to 

the set of sources Isj supplying node j. 

Having identified the set of nodes reachable from each source in the network, the 

number of paths from each source to each node reachable from it can now be 

determined by constructing sub-networks, each corresponding to a source and its 

reachable nodes, and then using the node numbering and node weighting algorithms 

proposed by Tanyimboh and Templeman (1993b) for single-source networks. Figures 

4.5b and 4.5c show the two sub-networks of the network of Figure 4.5a, each 

corresponding to a source and its reachable nodes. For each sub-network, the nodes 

are renumbered locally starting with the source which is given the number 1, then the 

rest of the nodes are numbered in a way that each node is numbered after all nodes 
immediately upstream of it have been numbered. The resulting local node numbers for 

each sub-network are enclosed in circles next to the nodes, while the global node 

numbers matching the original numbers in Figure 4.5a are maintained for convenience. 
At this stage, the number of paths from the source of each sub-network to each node 
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in the corresponding sub-network can now be determined. Figures 4.5b and 4.5c show 
the number of paths from each source to each reachable node as a weight enclosed in 

a box next to the corresponding node. This is done by assigning the source of each 

sub-network a weight 1. Then, in ascending local node numbering sequence, the 

weight of each reachable node is calculated as the sum of the weights assigned to all 

nodes immediately upstream of it. For example, consider Figure 4.5b. Source node I 

is assigned a weight 1. Then, the ascending local numbering sequence (numbers 

enclosed in circles) requires nodes 3,4 and 5 to be weighted consecutively. The 

weight of node 3 is equal to the weight of node 1, and the weight of node 4 is the 

sum of the weights of nodes I and 3, these being the immediate upstream nodes of 

node 4. The resulting weight of node 4 is 2. Finally, the weight of node 5 equals the 

weight of node 3 plus the weight of node 4, that is 3. Similarly, the number of paths 

from source node 2 to each reachable node can be determined. The resulting number 

of paths are shown in Figure 4.5c. Note that the local node numbering scheme is used 

to determine the sequence of nodes to be weighted ensuring that the nodes 

immediately upstream of the node being weighted have all been weighted. 

At this stage, the alfa method presented in the previous section can now be used to 

determine the path flow probabilities and hence the corresponding path flows from 

each source to each reachable demand node. Path flow equilibrium equations at the 

demand nodes are constructed using Eqs. (4.1), and are then expressed in terms of 

path flow probabilities by means of Eqs. (4.3) as follows: 

,r 
NPV qOj ppU = qjO VjCID (4.10) 

WSJ 

which will be called the probability equilibrium equations at the demand nodes. 
Identifying the ratios of the path flow probabilities from each pair of sources to a 
demand node supplied by both sources, and substituting these ratios into the 

probability equilibrium equations enable path flow probabilities to be expressed as 
functions of (NS-1) unknown ots. Constructing the normality conditions of Eqs. (4.4) 

at (NS-1) source nodes and substituting the path flow probabilities expressed in terms 

of the (NS-1) unknown (xs yield (NS-1) equations with (NS-1) unknowns. These 
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equations can easily be solved to give values of the (xs which can then be back- 

substituted into the path probabilities expressions to give values of path flow 

probabilities and hence the corresponding path flows which correspond to the 

maximum entropy flows in the network. 

The example solved in the previous section by the alfa method has all the demand 

nodes reachable from all the sources in the network. Generally, some demand nodes 

may not be reachable from some sources. Conjecture A implies that equal ratios of (xs 
hold for any set of demand nodes reachable from any pair of sources in the network. 
This can be formalised by the following general equation: 

EP-, 'L = -! - Vi, kEIsj ; VjEID (4.11) 
Pp, kj ak 

in which i and k are any pair of sources supplying demand node j, Vj G1D. Eqs. (4.11) 

have NS unknown ots, where NS is the number of sources in the network. However, 

there should be only (NS-1) unknown (xs relating path flow probabilities in a network. 
For the two-source network of Figure 4.1 solved by the alfa method in the previous 

section, there was one unknown (x in the network. Therefore, one unknown cc in Eqs. 

(4.11) has to be set to unity. The unknown corresponding to source node I is set to 

unity throughout this thesis, i. e. (xl=l. 

It should be noted that not all of the ratios of Eqs. (4-11) are usable in solving the 

probability equilibrium equations formalised as Eqs. (4.10). For the probability 

equilibrium equation at a demand node j, Vj(: 6 the proposed method chooses any 

source i from the set Isj and expresses all the path flow probabilities existing in this 

equation in terms of the path flow probability corresponding to source i using the 

respective ratios from Eqs. (4.11). For example, consider the three-source network of 
Figure 4.4. The probability equilibrium equation at demand node 5 can be written by 

means of Eqs. (4.10) as follows: 

100 Pp, 15 + 30 Pp, 25 + 20 Pp, 35 = 30 

Choosing, for example, pp, 25 as the reference of all other probabilities in the equation, 
the following ratios can be used: 
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(PP. 
15/Pp, 25) '= 

((X, /OC2) and (Pp, 
35/Pp, 25) = ((X3/a2)9 

which by setting (x, to unity give: 
PP, 15 = ("(X2) Pp, 25 and Pp, 35 = ((X3'(X2) Pp, 25* 

Substituting these ratios into the probability equilibrium equation yields: 
(100100 Pp, 25 + 30 Pp, 25 + (20oc3/oc) pp,, 5 = 30, 

which gives: Pp, 25 = (30(x2)/(100+3Ou2+20oc3), 

and hence: Pp, 15 = 30/(100+3Oa2+20OC3) and Pp, 35 = (30CC3)/(100+30(x2+20(x3). 

The above path flow probability expressions can therefore be formalised by the 

following general equation: 

qjo aj vieIsj ; VjGID ppjj 
NPO qoj ai 

WSJ 

in which ocj=1 for M. If all the path flow probabilities in a network are expressed in 

terms of (xs using Eqs. (4.12) and then substituted in (NS-1) normality conditions of 
Eqs. (4.4), the resulting (NS-1) equations with (NS-1) unknown (Xs can be solved to 

yield the values of ecs and hence the path flow probabilities of Eqs. (4.12). 

The final stage of the proposed method is to calculate the final link flows which 

correspond to the maximum entropy value of the network. This is done by handling 

each sub-network containing a source and its reachable nodes in turn and calculating 

the flows in the links of the sub-network supplied by the corresponding source. This 

is described very shortly. The final maximum entropy flow in a link can then be 

obtained by superposition of all the flows carried by that link in all the sub-networks. 

The link flows for a sub-network are calculated as follows. Consider Figures 4.5b and 
4.5c which show the two sub-networks corresponding to source 1 and 2 respectively. 

The demands at the nodes are the flows supplied by the corresponding source, Le. 

qjo. j = NPU qp. U 
ViElS ; Vj6ID, i 

(4.13) 

in which qO, j is the demand at node j supplied by source i. The total outflows at a 

node in any sub-network is distributed amongst all the immediate upstream links to 
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that node in proportion with the weight of the upstream node to the corresponding 
link. The procedure operates from any terminal node in the sub-network in a 
descending local numbering order to insure that the link outflows at the node being 

considered have all been calculated. Starting at the terminal node 5 in the sub-network 

of Figure 4.5b, the total outflow at node 5 equalling 13.805214 units is divided by 3, 

this being the number of paths from the source to that node. The quotient is then 

multiplied by I and 2 respectively, these being the respective number of paths to 

nodes 3 and 4 which are the immediate upstream nodes to node 5. The products, 

respectively, are the flows in links 3-5 and 4-5 supplied by source 1. At this stage, the 

total outflow at node 4 is known and is equal to 9.203476+10.6727=19.876176 units 

is shared equally between links 1-4 and 3-4 due to the equality of the weights of the 

immediate upstream nodes to these two links. Finally, all the outflows at node 3 are 

carried by link 1-3 since there is only one link upstream to node I 

The same procedures are applied for the sub-network of Figure 4.5c. The resulting link 

flows supplied by source 2 are shown in the figure. The final link flows can finally 

be obtained by summing the flows in Figures 4.5b and 4.5c for each link in turn. The 

resulting link flows have been shown to match the maximum entropy flows shown in 

Figure 4.3. 

An alternative way of calculating the final link flows in a network knowing all the 

path flows is by means of a simple equation. If the number of paths from each node 

in the network to each node reachable from it is available, the following equation can 
be used to calculate the final maximum entropy link flows in general networks: 

qkl =E[ NPik E NPj qp, ij 1 VklEIJ 
jEls JEID 

(4.14) 

in which qkI is the final flow in link kl, Vklr= U, where IJ is the set of all links in the 

network. Eqs. (4.14) assumes that the number of paths from a node to the same node 
is 1, and the number of paths from a node to any other node not reachable from it is 

zero. 
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The following is a list of simple algorithms proposed to tackle the path-based problem 

of calculating maximum entropy flows in multi-source, multi-demand general 

networks. The global node numbering scheme is used throughout the algorithms unless 
it is stated otherwise. 

Global node numbering algorithm 
1. Select any source in the network and number it with 1. Set n to 1. 

2. Increase n by 1. Select any other source which has not been numbered and number 
it with n. 
3. If n=NS, go to step 4. Otherwise, go to step 2. 

4. Increase n by 1. Select any node which has not been numbered and number it with 

n. - 
5. If n=NN, exit. Otherwise, go to to step 4. 

Source reachability algorithm 
1. Set n to 0. 

2. Increase n by 1. Select source node n. 
3. Select all the nodes immediately downstream of node n and include their node 

numbers in an empty set 'D,,,. 

4. Select all the nodes immediately downstream of the nodes contained in the set 

The node number of each node selected, if any, is added to the set I, ), if it does not 

already exist in the set. 
5. If the number of nodes added to the set ID, n 

in step 4 equals zero, go to step 6. 

Otherwise, go to step 4. 

6. The set 'Dj, contains all the nodes reachable from source node n. If n=NS, exit. 

Otherwise, go to step 2. 

Demand node reachability alljorithm 
1. Set n to NS. 

2. Increase n by 1. Select demand node n. 
3. Set m to 1. 

4. If the set ID,,, which is identified by the source reachability algorithm contains node 
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number n, include m in set Is,, 

5. Increase m by 1. If m=NS, go to step 6. Otherwise, go to step 4. 

6. The set Is,,, contains all the source nodes supplying demand node n. If n=NN, exit. 
Otherwise, go to step 2. 

Local node numbering algorithm 
1. Set n to 0. 

2. Increase n by 1. Select source node n. 
3. Construct a sub-network SNK. containing source node n and all nodes contained 

in the set ID, 
n' 

4. Number the source node n locally with 1. Set rn. to 1. 

5. Increase m by 1. Select any node in the sub-network SNIý, whose immediate 

upstream nodes have all been locally numbered and number it with m. 
6. If m equals *the number of nodes contained in the sub-network SNK, go to step 7. 

Otherwise, go to step 5. 

7. If n=NS, exit. Otherwise, go to step 2. 

Node weighting algorithm 
1. Set n to 0. 

2. Increase n by 1. Select the sub-network SNIý, corresponding to source node n. 

3. Set m to the source local number, 1. Set NP,,. to 1. 

4. Increase rn. by I and select the node whose local number in the sub-network SNK,, 

is m. Calculate NP,,,,,: 

NP. ýF NP,, j 
JeNU. cSNK,, 

in which NU r-SNK,, represents the set of upstream nodes of inflow links at a node 

whose local number in the sub-network SNIý, is m, provided that these upstream 

nodes are in the sub-network SNK, 

5. If rn equals the number of nodes contained in the sub-network SNK,, go to step 6. 

Otherwise, go to step 4. 

6. If n=NS, exit. Otherwise, go to step 2. 
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Alfa algorithm 
1. Set n to NS. 

2. Increase n by 1. Select demand node n. 
3. Define the probabilities of path flows supplying demand node n from each source 

reachable to it as follows: 

ppin 
q,, o aj Vids", 
Npin qoi Cgi 

4. If n=NN, go to step 5. Otherwise, go to step 2. 

5. Set n to 0. 

6. Increase n by 1. Select source node n. 
7. Construct the normality condition equation at source node n as follows: 

E NP4 ppj J6ID. 
n 

8. If n=NS-1, go to step 9. Otherwise, go to step 6. 

9. Set (x, =I. 
10. Solve the equations constructed in steps 3,7 and 9 to obtain all the unknown 

values of (xs and all the path flow probabilities. Calculate SP, if necessary. 

11. Calculate the path flows as follows: 

qp, ij = qoi pp, V 
V'GIS ; V"DJ 

12. Exit. 

Flow distribution algorithm 
1. Set n to 0. 

2. Increase n by 1. Select source node n. 
3. Set rn to the number of nodes in the sub-network SNK,, including the source node 

n. 
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4. Calculate T: 

NP. pp,,,. +Eq. ot keND. cSNK, 

in which m indicates the node whose local number in the sub-network SNK,, is m; Tm,, 
ý 

is the total outflows at node m; (NP,,. * pp, nm) 
is the local demand at node m supplied 

by source n; NDmcSNK. represents the set of immediate downstream nodes of inflow 

links at node m, provided that these downstream nodes are in the sub-network SNKn. 

Note that the total demand at the node whose local number in the sub-network SNK.,, 

is m is not included in Tm, 
n' 

5. Calculate qjm, n, 
Vjm(: -NU. r-SNK,,: 

qj. ýTA 
ýpj 

,n mn NPm 

in which qj.,,, is the flow in link jm in the sub-network SNK, Vjmc=NUmcSNK, 

supplied by source node n. 
6. Reduce m by 1. If m-- I, go to step 7. Otherwise, go to step 4. 

7. If n=NS, go to step 8. Otherwise, go to step 2. 

8. Calculate qij, Vije Ii: 

NS 
qjj qu'n 

in which qjj is the final maximum entropy flow in link ij; qj,,, is the flow in the 

corresponding link calculated in the sub-network SNK,, in which the link ij is a 

member. 
9. Exit. 
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4.6 SUMMARY AND CONCLUSION 

It has been shown in this chapter how maximum entropy flows for multi-source, 

multi-demand general networks may be calculated using a relatively simple path-based 

method. The proposed method is based on two principles. First, the demand of any 

node in the network served by more than one path from any source should be divided 

equally amongst all paths supplying it from that source if there is no further 

information about those paths. This accords with the maximum entropy formalism. 

Second, the ratio of the probabilities of path flows from any pair of sources to a 
demand node reachable from this pair of sources is the same for every demand node 

supplied by the pair of sources mentioned above. This has been established by the 

research presented in this chapter. 

The proposed method does not involve any linear or nonlinear programming. Also, it 

is not iterative and does not use the super-source approach in any way. It only requires 

solving (NS-1) normality condition equations with (NS-1) unknown Ocs after 

expressing all the path flow probabilities in terms of as using the path equilibrium 

equations at demand nodes and the equal ratios of the probabilities of path flows from 

any pair of sources to every demand node supplied by this pair of sources. 

Also, the method has been formalised and cast into simple algorithms tackling all the 

aspects encountered in the method such as identifying the reachable nodes to each 

source in the network and determining the number of paths from each source to each 

node reachable from that source. Furthermore, a network path entropy function has 

been developed to facilitate the proposed method, where (NS+l) finite probability 

schemes can be identified in a network. The first scheme is the source flow 

probabilities, and the remaining NS finite schemes represent the sets of path flow 

probabilities, each corresponds to a source and is conditional upon the flow probability 

of the corresponding source. The network path entropy function can then be derived 

by means of the conditional entropy formula for compound probability schemes. The 

resulting new entropy function enables the maximum value of network entropy to be 

directly calculated using the path flow probabilities obtained by the proposed method. 
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In the next chapter, illustrative numerical examples of the present path-based method 
for calculating maximum entropy flows for different networks chosen carefully to 

cover all aspects of general real networks are presented to demonstrate the general 

applicability of the proposed method. Also, a computer programme representing the 

present method is written in FORTRAN 90 and is checked on the solved examples. 

Finally, discussions are presented and further conclusions are drawn. 
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CHAPTER 5 

NUMERICAL APPLICATIONS 

OF THE ALFA METHOD ALGORITHMS 

5.1 INTRODUCTION 

This chapter is devoted to demonstrating the path-based method and its algorithms, 

presented in the previous chapter, for calculating maximum entropy flows in multi- 

source, multi-demand general water distribution networks. Three major numerical 

examples were chosen carefully to illustrate the general applicability of the method 

and to enable several points to be observed and discussed and conclusions to be 

drawn. 

The first major example shown in Figure 5.1 is a two-source network having some 
demand nodes unreachable from one of the sources. In the second major example 

which is shown in Figure 5.2, a three-source network has only one source reachable 

to all demand nodes and the remaining two sources have different sets of demand 

nodes reachable to each of the sources. The final major example shown in Figure 5.3 

is also a three-source network but has no source reachable to all demand nodes. The 

three different examples exhibit different characteristics when their maximum entropy 
flows are calculated by the path-based method. The results are discussed and several 

remarks are observed. A computer programme written in FORTRAN 90 to solve the 

path-based method, and named the alfa method programme which is given in 

Appendix B is also run on the three major examples mentioned above. 

Also, in this chapter, the super-source approach proposed by Tanyimboh and 

Templeman (1993b) as an extension of the simple single-source method to multiple 

sources for calculating maximum entropy flows is studied by means of two simple 
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examples taken from the above paper. The two examples are resolved by the present 
path-based alfa method, and the results are discussed and compared with the results 

quoted in the paper. Several points are observed and conclusions are drawn. 

5.2 EXAMPLE 1 

A sample two-source network in which some demand nodes are unreachable from one 

of the sources is shown in Figure 5. Ia. The network has 9 nodes 16 links. The supply 

and demand at the nodes are shown in the figure, and the directions of the link flows 

are also shown. The path-based algorithms presented in the previous chapter for 

calculating maximum entropy flows in water supply networks are applied to this 

example. According to the global node numbering algorithm, the two-sources are 

numbered first by I and 2, then the rest of the nodes are given the numbers 3 to 9 

randomly as shown in Figure 5.1a. 

The source reachability algorithm is now used to identify the nodes reachable from 

each source. Consider source node 1. The immediate downstream nodes of node 1 are 

nodes 3 and 4 which are included in a set 1D, 10 i. e. 1DX': j3,4,... ). The immediate 

downstream nodes of nodes 3 and 4 are now found. They are respectively nodes 2 and 
5 and nodes 5 and 6. The obtained nodes are included in the set ID. 1 which now 
becomes: 'D, I": [ 3,4,2,5,6 .... 1. Note that node 5 is included only once although it is an 
immediate downstream node of both nodes 3 and 4. Now, the new immediate 

downstream nodes which can be added to the set'D, l and which are not already in the 

set are nodes 7 and 8. Therefore, the set ID, j becomes: 1DX": j3,4,2,5,6,7,8,... I., The 

immediate downstream node of nodes 7 and 8 is node 9 which is the only node which 

can now be added to the set IDJ to become as follows: 1D, I=(3,4,2,5,6,7,8,9j. At this 

point , all the nodes immediately downstream to the nodes contained in the set, D, l are 

already in the set. Therefore, no node can now be added to the set and the process is 

completed for source node I for which all reachable nodes are now included in the 

set IDJ. The same procedure can be applied to source node 2 to give the set: 
1D, 2=(5,7,6,8,9), which contains all the nodes reachable from source node 2. 
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Having defined the sets of nodes reachable from each source, the set of source nodes 

supplying each demand node can now be obtained using the demand node reachability 

algorithm. Only the set 1,,,, contains demand nodes 3 and 4. Therefore, the demand 

nodes 3 and 4 are supplied by source node I only, i. e. IS, 3=, S, 4= 111 
. while nodes 5 to 

9 are contained in the two sets, ID3 and ID, 2, simultaneously. Therefore, the demand 

nodes 5 to 9 are supplied by both sources and consequently: Is, j, i=5,..., 9, =( 1,2). 

At this stage, two sub-networks, each containing a source and its reachable nodes, are 

constructed as shown in Figures 5.1b and 5.1c. For each sub-network, the nodes are 

renumbered locally using the local node numbering algorithm, and the number of 

paths from the source to each node in the sub-network is detern-dned using the node 

weighting algorithm. This was demonstrated step by step in Chapter 2. For each node 
in each sub-network of Figures 5.1b and 5.1c, its local number and the number of 

paths from the source in the corresponding sub-network to the node being considered 

are respectively enclosed in a circle and a box next to that node. For example, the 

local numbers of node 9 in the sub-networks corresponding to source node I (Figure 

5.1 b) and source node 2 (Figure 5.1 c) are respectively 9 and 6 shown in circles next 

to it in the two figures. Also, the numbers of paths from source node I and source 

node 2 to demand node 9 are respectively 20 and 6 shown in boxes next to node 9 in 

Figures 5.1 a and 5.1 c respectively. 

The next step is to calculate the path flow probabilities and the corresponding path 

flows from each source to each demand node reachable from that source. This is done 

next using the alfa algorithm. The path flow probabilities are expressed in terms of 

ots as follows: 

Pp, 13 = (10(xl/60(x, ) = 10/60 = 0.1666667 

Pp, 14 = (10a, /120(x, ) = 101120 = 0.0833333 

Pp, 15 = 15(xl/(240(xl+4Oa2), Pp, 25 = l5cc2/(240oc, +4Oa2) 

Pp, 16 = l5ocj/(360a, +40%), Pp, 26 = 15%/(360(xl+4Oa2) 

Pp, 17 = l5(xj/(300(Xj+8Oct2), Pp, 27 : -- l5(x2/(300aj+8Ooc2) 

Pp, 18 = l5(xj/(900aj+l60(x2), Pp, 28 = 15%/(900a1+160%) 

pp, 19 = 20(xj/(l200ccj+240oc2), Pp, 29 = 20or, 2/(1200a, +240%). 
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At this stage, the normality condition equation at source node I is constructed as: 

Pp, 13+2pp, 14+4Pp, 15+6pp, 16+5pp, 17+15pp, 18+20pp, lg =I 
Substituting the path flow probabilities into the above equation yields: 
0.1666667 + 2*0.0833333 + 60a, /(240oc, +40cý) + 90a, /(360a, +40cý) + 

75ccl/(300a, +80a2) + 225(x, /(900a, +160oý) + 400oc, /(1200a, +240OC2) =1 

which can be solved by setting al to unity to give: oý=5.5919906. Note that the 

normality condition equation at source node 2 can be used to check the value of 0ý 

which was found to be coffect. 

Having defined the unknown (xs, the path flow probabilities calculated earlier in terms 

of as can be determined. The resulting values of path flow probabilities are given in 

Table 5.1. The path entropy value of the network corresponding to those path flow 

probabilities can be calculated as: SP=3.748957 which, according to the alfa method, 

corresponds to the maximum entropy value of the network flows. 

Table 5.1 The path flow probabilities and the corresponding path flows for the two-source 
network of Figure 5.1 calculated by the alfa method with SP=3.748957. 

Demand 
node j qjo 

] FN Pu E1 
3 10 1-3 1 0.1666667 10.000000 

4 10 1-4 2 0.0833333 5.000000 

5 is 1-5 4 0.0323499 1.940995 

1 60 6 15 1-6 6 0.0256990 1.541942 

7 15 1-7 5 0.0200707 1.204240 

8 15 1-8 15 0.0083579 0.501471 

9 20 1-9 20 0.0078676 0.472055 

5 15 2-5 1 0.1809005 7.236019 

6 15 2-6 1 0.1437087 5.748349 

2 40 7 15 2-7 1 2 0.1122350 4.489400 

8 15 2-8 4 0.0467371 1.869 12 1 82 L-I L-1 
19 

20 2-9 6 0.0439954 17 1.7598 
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Also, the path flows corresponding to the above probabilities can be calculated by 

multiplying each path flow probability by its individual source flow. The resulting 
path flows are also given in Table 5.1. 

The final stage of the proposed path-based method is to calculate the final link flows 

in the network. This can be done by using the flow distribution algorithm which 

calculates the link flows supplied by each source considering each sub-network 

corresponding to a source in turn. The demands at the nodes used in each sub-network 

are those supplied by the corresponding source only as shown in Figures 5.1b and 
5.1c. For each sub-network, the procedure is carried out in a reverse order starting 
from the last node considering the local node numbering scheme (numbers in circles 

next to the nodes). Consider Figure 5.1b. Starting at node 9, the total outflow at that 

node, 20qp,, g, is distributed between the two links 7-9 and 8-9 proportional to the 

weights of nodes 7 and 8 respectively. The resulting two link flows are shown in the 

figure. At node 8, the total outflow is the demand at node 8 supplied by source node 
1 added to the flow at link 8-9. The resulting total outflow, (l5qP,,, +7.080825), is 

divided by 15, this being the weight of node 8. The quotient is then multiplied by 6, 

4 and 5 respectively, these being the respective weight of nodes 6,5 and 7. The 

products, respectively, are the flows in links 6-8,5-8 and 7-8. The process continues 

until source node 1 is reached. Note that in this sub-network, the supply at node 2 is 

not considered since this sub-network is concerned with the distribution of the now 

supplied by source node 1. Also, note that the demand of node 2 has been set to zero. 
Therefore, node 2 in the sub-network of Figure 5.1 b is used to provide extra paths of 
flows to all nodes downstream to it. The sub-network corresponding to source node 
2 shown in Figure 5.1c is handled in the same way as that of Figure 5.1b. The 

resulting link flows supplied by source node 2 are shown in Figure 5.1c. Note that 

calculating the link flows corresponding to source node 1 is independent from 

calculating the link flows corresponding to source node 2. The sub-network of Figure 

5.1 c can be solved before the sub-network of Figure 5.1b is solved, and vice versa. 
This justifies the global node numbering algorithm which enables the source node 

numbers of Figure 5.1 a to be interchanged. Finally, the final link flows in the network 

can be determined by superposing the link flows of the two sub-networks of Figures 
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5.1 b and 5.1 c. The resulting final link flows are shown in Figure 5.1 d. 

The above example has also been solved by maximizing the nodal entropy function 

of the network. (See Problem 3 presented in Chapter 2). The resulting maximum 

entropy flows have been found to match those obtained earlier by hand calculations 

using the alfa method. Also, the alfa method programme given in Appendix B has 

been used to solve this example. The input and output files are given in Appendix C. 

Commenting on the results of this example, it can be seen that demand nodes 5,6,7, 

8 and 9 which are reachable from both sources have much larger numbers of paths 

from source node I than from source node 2. This is compensated by having the path 

flow probabilities corresponding to source node 2 more than five and a half times 

greater than those corresponding to source node 1. Therefore, the value of cý is a way 

of making the flows supplied by each source to a demand node as uniform as possible 

subject to the path flow equilibrium equations at the nodes of the network. 

Also, the value of cý being the same for every demand node reachable from both 

sources is a bias treatment of these nodes. There is no reason to do otherwise. This 

is a direct result of the maximum entropy formalism. However, the value of a2 being 

other than unity can be justified by the general characteristics of the network being 

considered. The source flows are not equal. Also, the demand. is not the same for 

every demand node, nor the number of paths from each source to every demand node. 

The value of cý takes into account all the above factors and has the effect of making 

the path flows in the network more uniform subject to the available information. 

It is evident from the above example that the alfa method of calculating maximum 

entropy flows is computationally very efficient. This is demonstrated by the fact that 
it is possible to solve the above example by simple hand calculations. Also, the 

existence of some demand nodes unreachable from source 2 in the example 
demonstrates the applicability of the method for such a general case. The next two 

examples, however, examine even more general cases. 
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5.3 EXAMPLE 2 

The three-source network of Figure 5.2a in which source node 2 is the only source in 

the network reachable to all demand nodes has 9 nodes and 13 links. The network is 

globally numbered as shown in the figure. The supply and demand at the nodes are 

also shown along with flow directions in the links. The source reachability algorithm 

may be applied to give the following sets of nodes: 'D, I"'ý14,5,6,8), 1D, 2"": j7,9,5,8,4,6j 

and ID, 3=19,8,61 which represent the nodes reachable from each source in the network. 

Also, the sets of sources supplying each demand node can be obtained as: 

1SA'=IS. 5ý_-11,21, ISA"ýIS, 8: =11,2,31, IS, 7=f2l and Is, q=[2,3). At this stage, three sub- 

networks, each corresponding to a source and its reachable nodes, can now be 

constructed as shown in Figures 5.2b, 5.2c and 5.2d. For each sub-network, the local 

node numbers and the number of paths from the source to each node are shown in the 

figures where the numbers in circles denote the local node numbers and the numbers 

in boxes represent the number of paths from the corresponding source to each node 

in the corresponding sub-network. 

The next step is to apply the alfa algorithm. Accordingly, the path flow probabilities 

can be expressed in terms of (xs as follows: 
Pp, 14 l0ocj/(40(xj+35oc2), Pp, 24 10%/(40a1+35%) 

pp, 15 l0ocj/(20aj+35(Y2), Pp, 25 l0(x2/(20cc, +35oý) 
Pp, 16 l5(xj/(60(xj+l40(x2+30(x3), Pp, 26 = l5%/(6Occj+l4Oa2+3Oa3), 
Pp, 36 15a3/(60a, + 140cc2+30oc3) 
Pp, 27 lOa2/35a2 = 10/35 = 0.2857143 
Pp, 18 l5ccj/(20(xj+l05a2+3Oa3), Pp, 28 ý-- l5%/(20(xj+l05%+3Oa3), 
Pp, 38 15(X3/(20(xl+ 105%+30a3) 
Pp, 29 

lOa2/(7Ooc2+l5(X3). Pp, 39 = l0oý/(70%+15a3). 

The normality condition equations at source nodes I and 2 are constructed as: 
2pp, 14 + Pp, 15 + 3Pp, 

16 + Pp, 18 = 1, 

Pp, 24 + Pp, 25 + 4Pp, 
26 + Pp, 27 + 3Pp, 

28 + 2Pp, 
29 
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Substituting the path flow probabilities into the above two equations and solving the 

resulting two equations by setting cc, to unity give: u2--0.4786637 and u3=1,7134213. 

These values of (xs have been checked using the normality condition equation at 

source node 3, and they were found to be correct. At this point, the path flow 

probabilities can be determined by substituting the values of as into the probability 

expressions. The resulting path flow probabilities are given in Table 5.2, and the 

corresponding path entropy value of the network is SP=3.028466. Also, the 

corresponding path flows can be calculated by multiplying each path flow probability 

by its individual source flow. The resulting path flows are also given in Table 5.2. 

Table 5.2 The path flow probabilities and the corresponding path flows for the three-source 

network of Fi2ure 5.2 calculated bv the alfa method with SP=3.028466. 

Demand EI NPU 1 pp, u 1 qp, u 
node j 

4 10 1-4 2 0.1762014 

1 20 5 10 1-5 1 0.2720849 5.441699 

0 

6 15 1-6 3 0.0840734 1.681468 

1 81 15 1-8 1 0.1232921 2.465841 

4 10 2-4 1 0.0843412 2.951943 

5 10 2-5 1 0.1302372 4.558301 

6 15 2-6 4 0.0402429 1.408501 
2 35 

71 10 2-7 1 0.2857143 10.000000 

8 15 2-8 3 0.0590154 2.065540 

1 1 9 10 2-9 2 0.0808447 2.829566 

6 15 3-6 2 0.1440531 2.160797 
3 15 81 15 3-8 2 0.2112513 3.168769 

9 10 3-9 1 0.2893912 4.340869 

Finally, the flow distribution algorithm can now be used to calculate the final link 

flows in the network. The link flows for each sub-network corresponding to a source 

are first calculated as shown in Figures 5.2b, 5.2c and 5.2d in which the procedure 

starts, for each sub-network, at terminal node 6 whose local numbers in SNKI, SNK2 

and SNK3 are 5,7 and 4 respectively. The final link flows can then be obtained by 

superposition of the three sub-network flow results. The resulting final link flows are 

shown in Figure 5.2e. They have been found to be corresponding to maximum entropy 
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flows of the network. Also, the above example has been solved by the alfa method 
computer programme, and the results are given in Appendix C. 

Several remarks can be observed when examining the results of this example. 
Although demand node 6 has different numbers of paths from each source, its total 

demand is reasonably distributed amongst the three sources, these being 5.044,5.634 

and 4.322 units of flows from source nodes 1,2 and 3 respectively. Examining 

demand node 8 shows that the flow supplied by source node I to that demand node 
is less than half of the flow supplied by each of the remaining sources to that same 
demand node. However, the values of the as responsible for the flow distributions can 
be seen to be justified by considering the group of nodes reachable from each source 

rather than considering individual nodes. It can be seen that the lowest value of cc 

corresponds to source node 2. This can be appreciated by realizing that source node 
2 is forced to supply demand node 7 with the whole 10 units of its demand flow 

leaving only 25 units of the source flow to supply the five remaining demand nodes. 
Also, although source node 3 has only 15 units of flows to contribute to the network, 
its high value of cc comes from the fact that source node 3 supplies only three demand 

nodes in the network. 

It should be noted that all the networks solved so far by the alfa method have at least 

one source supplying all demand nodes in the network. The next example, however, 

is different in having no source reachable to all demand nodes. 

5.4 EXAMPLE 3 

Figure 5.3a shows a sample three-source network having 9 nodes and 13 links with 

no source reachable to all demand nodes. The supply and demand at the nodes and the 
flow directions in the links are shown in the figure. The nodes are globally numbered 

and the three sub-networks, each corresponding to a source and its reachable nodes 

obtained by the source reachability algorithm, are shown in Figures 5.3b, 5.3c and 
5.3d respectively. Also, the local node numbers and the number of paths from the 

source to each node in each sub-network are, respectively, shown in circles and boxes 

139 



next to the nodes. 

According to the alfa algorithm, the path flow probabilities can be written in terms of 

(xs as follows: 

Pp, 14'= 10ocl/60oc, = 10/60 = 0.1666667 

pp, 15 = 10(x, /30(x, = 10/30 = 0.3333333 

Pp, 16 = 20ccj/(9Occj+lO5(x2+30(x3), Pp, 26 = 20oý/(90(x, +105cý+3Oa3), 

Pp, 36 = 20cý/(90(x, +1050ý+30cý) 

Pp, 27 10a2/35% = 10/35 = 0.2857143 

Pp, 18 20ocj/(30(xj+l05oc2+30(x3), Pp, 28 = 20%/(30aj+l05%+30%), 

Pp, 38 20%/(30oc, +l05%+30oC3) 

Pp, 29 lOa2/(7Oa2+l5oc3), Pp, 39 = lOa3/(70oc2+l5a3)- 

Substituting the above path flow probabilities into the following two normality 

condition equations constructed at source nodes 1 and 2 respectively: 
2pp, 14 + Pp, 15 + 3pp, 16 + Pp, 18 ý-- 1 

3Pp, 
26 + Pp, 27 + 3Pp, 

28 + 2Pp, 
29 ": 

1 

and solving the resulting equations by setting cc, to unity gives the following values 

of ots: oý=0.9745576 and oý=2.1945998, which have been checked by the normality 

condition equation at source node 3 and found to be correct. These values of as can 

then be used to determine all the path flow probabilities and hence the corresponding 

path flows in the network. The results are given in Table 5.3. 

Having defined all the path flows in the network, the flow distribution algorithm can 

now be used to calculate first the link flows for each sub-network supplied by the 

corresponding source as shown in Figures 5.3b, 5.3c and 5.3d respectively, and then 

to superpose the resulting sub-network link flows to determine the final link flows in 

the network as shown in Figure 5.3e. As for the previous examples, the resulting link 

flows have been found to correspond to maximum entropy flows of the network. Also, 

the alfa method computer programme has been used to solve this example, and the 

results are given in Appendix C. 
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Table 5.3 The path flow probabilities and the corresponding path flows for the three-source 
network of Figure 5.3 calculated by the alfa method with SP=2.923974. 

Demand NPU ] FppU] F q,, u node j 

4 10 1-4 1 0.1666667 5.000000 

1 30 5 10 1-5 1 0.3333333 10.000000 

6 20 1-6 3 0.0774694 2.324081 

8 20 1-8 1 0.1009252 3.027756 

6 20 2-6 3 0.0754984 2.642443 

2 35 7 10 2-7 1 1 0.2857143 10.000000 

8 20 2-8 3 0.0983574 3.442510 

9 10 2-9 2 0.0963592 3.372571 

6 20 3-6 2 0.1700143 2.550214 
3 15 

8 20 3-8 2 0.2214904 3.322357 

9 10 3-9 1 0.2169906 3.254858 

Comparing the results of this example with the results of the previous one shows that 

source node 3 has again the highest value of (x. However, the values of path flow 

probabilities corresponding to source nodes I and 2 are almost equal considering 

demand nodes 6 and 8 which are the only nodes reachable from both sources 

simultaneously. This can be seen by means of the value of oý being equal to 0.975 

which is almost twice the corresponding value in the previous example. This can be 

justified by realizing that source node 2 in this example has fewer nodes reachable 

from it with higher demands compared with the previous example. The increase of the 

supply at source node 1, however, has been balanced by the increase of the demands 

of the two nodes reachable from it, that is nodes 6 and 8. 

It is evident from the above three examples used to demonstrate the alfa method that 

the proposed method and its algorithms presented in the previous chapter are 

computationally very efficient and applicable for any general network having the 

supply and demand at the nodes known along with the flow directions in the links. 

Because the proposed method is based upon the path flows from each source to each 

reachable demand node in the network, it can be argued that applying the method to 

a general network would give the same results if the flow directions in the links are 

all reversed and the supplies become demands and vice versa. The two-source network 
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of Example 1 has been reversed as shown in Figure 5.4 and solved by the alfa method 

programme, and the results which are given in Appendix C match the results obtained 
for Example 1 regarding path flows, the final link flows and the path entropy value 

of the network. 

Also, maximizing the path entropy function of the network presented in the previous 

chapter subject to the path equilibrium equations at the nodes but excluding the path 
flow probability ratios in the problem constraints would give exactly the same results 

as those obtained by the alfa method with path flow probabilities having the expected 

equal ratios. This can be argued by realizing that the alfa method results always 

correspond to the maximum entropy flows in the network. 

5.5 COMMENTS ON THE SUPER-SOURCE APPROACH 

The simple method proposed by Tanyimboh and Templeman (1993b) and described 

in Chapter 2 for calculating maximum entropy flows in single-source networks may 

be considered as a special case of the alfa method presented in the previous chapter 

and demonstrated earlier in this chapter by means of three major examples. This 

special case of single-source networks has only one (X equalling unity and 

corresponding to the only source in the network. 

In their paper, Tanyimboh and Templeman (1993b) extended their single-source 

method to multiple sources by means of a super-source replacing all the sources in the 

network. The two-source network used in the paper to demonstrate the super-source 

approach is shown in Figure 5.5a. The link flows shown in the figure are obtained by 

the super-source approach as demonstrated in Figure 5.5b. Tanyimboh and Templeman 

(1993b) suggested replacing the two sources by a super source numbered 0 with 55 

units of flows, this being the total supply in the network. Also, the link between 

sources 1 and 2 has been removed and replaced by a direct link from the super source 

to each source as shown in Figure 5.5b. The single-source method described in 

Chapter 2 can then be used to calculate the maximum entropy flows in the network. 
The resulting link flows are shown in Figure 5.5a with an entropy value of 2.367. 
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The above example has been resolved by the alfa method, and the resulting link flows 

are shown in Figure 5.5c with an entropy value of 2.45 which is higher than the 

corresponding value obtained by the super-source approach, suggesting that the results 

of Figure 5.5a are not optimal. The results obtained by the alfa method and shown in 

Figure 5.5c have been found to correspond to the maximum entropy flows in the 

network, and the network entropy value of 2.45 has been found to be the maximum 

value the flow entropy can have for the network of Figure 5.5 subject to the available 

information. 

Commenting on the results of Figure 5.5a, the equal flows in links 1-3 and 2-3 is 

questionable. Link 1-3 carries three path flows from source node 1, one for each 
demand node in the network. On the other hand, link 2-3 carries six path flows, three 

of them are the same path flows carried by link 1-3 and the other three path flows are 

those corresponding to source node 2. Consequently, link 2-3 should carry more flow 

than link 1-3. The super-source approach seems to disregard some path flows supplied 
by source node I through source node 2. 

Finally, Figure 5.6 show the maximum entropy flows for the network of Figure 5.5 

having the flow direction in link 1-2 reversed. The results quoted in the paper are 

shown in Figure 5.6a with an entropy value of 1.947, while the results obtained by the 

alfa method are shown in Figure 5.6b with a higher entropy value of 2.154. It can be 

seen from the results of Figure 5.6a that the path flows supplied by source node 2 

through source node I have all been ignored in the super-source approach by assigning 

a zero flow for the link 2-1. 

It is evident from the above investigation that the super-source approach proposed by 

Tanyimboh and Templeman (1993b) to extend the single-source method to multiple 

sources for calculating maximum entropy flows does not produce optimal results, and 
is therefore invalid. The simple alfa method and its algorithms presented in the 

previous chapter and illustrated in this chapter by means of three general examples has 

to be used instead. 
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5.6 SUMNIARY AND CONCLUSION 

The alfa method algorithms presented in the previous chapter for calculating maximum 

entropy flows in multi-source, multi-demand general networks have been illustrated 

in this chapter by means of three major examples exhibiting different aspects of 

characteristics which can be expected in general real networks. These general 

examples demonstrated the general applicability of the algorithms, and showed that 

the proposed algorithms are very efficient and easy to operate by hand calculations 

especially for small networks such as those used in the examples. Also, computer 
implementation of the proposed algorithms has been found to be a straightforward 

task. This was demonstrated by formalising the algorithms into a computer code 

written in FORTRAN 90 and solving the illustrative examples of this chapter. The 

running time of this computer code for solving each of the three example problems 

was negligible. 

Several remarks have been made in this chapter when discussing the results of the 

illustrative examples solved by the proposed method. First, the (x values defined by 

the method have the effect of making the flows supplied by each source to a demand 

node as uniform as possible subject to the available information. Also, the requirement 

of equal ratios of (xs amongst all demand nodes reachable from any pair of sources 

can be interpreted as a direct consequence of the maximum entropy formalism since 

these equal ratios treat all the corresponding demand nodes equally on a bias scale. 

The values of as, however, depend on the supply and demand of the network nodes 

and are influenced by the layout of the network in terms of the number of paths from 

each source to each reachable demand node and how many nodes are reachable from 

each source. 

Reversing all directions in a water network should not and does not affect the results 

obtained by the alfa method as long as the total supply balances the demands in the 

network. Also, maximizing the path entropy function presented in the previous chapter 
for a water supply network subject to path equilibrium equations at the network nodes 

gives the same results obtained by the alfa method with path flow probabilities having 
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the expected equal ratios. This can simply be deduced from the fact that the alfa 

method results always correspond to the maximum entropy flows in the network. 

It has been shown in this chapter that the super-source approach proposed by 

Tanyimboh and Templeman (1993b) as an extension of the single-source method to 

multiple sources for calculating maximum entropy flows is invalid and actually does 

not lead to optimal results. This was demonstrated by the two simple examples used 

in the above paper. These examples have been resolved in this chapter by the alfa 

method, and the results have been found to be optimal. This suggests that using the 

alfa method instead of the super-source approach is essential for such problems. 

Finally, the efficiency and simplicity of the alfa method and its algorithms, taking into 

consideration the applicability of entropy as a surrogate measure of reliability as 

concluded in Chapter 2 open up the possibility of developing a simple and quick 

method for designing reliable general water distribution networks. This can be done 

by using the flows obtained by the alfa method in one of the simplified optimum 

design methods presented in Chapters 2 and 3 for water distribution networks such as 

the linearized method proposed by Alperovits and Shamir (1977). 
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Figure 5.2 Maximum entropy flows for the network of Example 2 
(a): Global node numbering, (b): Sub-network SNK I 
(c): Sub-network SNK 2, (d): Sub-network SNK 3 
(e): Final link flows. 
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CHAPTER 6 

CALIBRATION METHOD FOR GENERAL 
WATER DISTRIBUTION NETWORKS 

6.1 INTRODUMON 

The problem of estimating most-likely, or least-biased, flows in water distribution 

networks in the presence of incomplete data has fully been investigated in Chapter 2 
by means of maximizing the nodal entropy function of the network (see Problem 3), 

and alternatively and more simply has been solved using the path-based alfa method 

as shown in Chapter 4 and illustrated in Chapter 5. 

In this problem, it has been assumed so far that only source flow rates, demand flow 

rates and the topology of the network with arc flow directions are known. Other data 

such as lengths, diameters of pipes and roughness properties were assumed not to be 

available. Also, some of the physical laws governing water flow in pipe networks have 

not been considered such as the energy conservation laws presented in Chapter 2. If 

such extra information can be added to the problem, more accurate flows can be 

obtained and a more clear understanding of the system behaviour can be visualized. 

In practical situations such as old water networks, lengths and diameters of the pipes 
may be available along with the external flows and the layout of the network. Also, 

Pressure heads at the network nodes can be measured quite easily without any 
considerable cost or time. Only friction coefficients of the pipes may be missing or 
may have changed over time. For such cases, an accurate physical analysis of the pipe 
network cannot be performed to generate accurate pipe flow rates. Also, a physical 
measurement of these pipe flow rates can be expensive and time consuming. 
Consequently, a quick method of estimating the pipe flow rates of existing old water 
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networks and the corresponding unknown pipe characteristics would be most 
beneficial. 

Unfortunately, Problem 3 presented in Chapter 2 and the alfa method presented in 

Chapter 4 for calculating maximum entropy flows in water distribution networks are 

not capable of handling such general problems where more information has to be 

incorporated and added to the formulation. How can such extra information be 
incorporated in one model capable of estimating pipe flow rates and corresponding 

pipe characteristics for old water distribution networks? 

This chapter addresses the above issues in detail using the maximum entropy 
formalism. The problem tackled herein is as follows. A water distribution network is 

given having all the external flows at the sources and demand nodes known. The 

lengths and diameters of the pipes are also known. Also, the pressure heads at the 

network nodes may be available. The target is to estimate the most likely pipe flows 

in the network and the corresponding roughness properties of the pipes. This leads to 

the possibility of calibrating the already-existing water distribution networks having 

friction coefficients of the pipes missing or changed with time. Such networks have 

to be looped, otherwise the pipe flows can be calculated directly from the available 
flow equilibrium equations, and the pipe-roughness properties can then be obtained 

using the pipe flows and the available pressure heads at the nodes of the network. 

There are two sets of variables in the above stated problem, pipe flow variables and 

pipe roughness characteristic variables. In the pipe flow set of variables, there are NLP 

number of independent variables in a looped water distribution network as described 

in Chapter 2, one variable for each loop, where NLP is the number of loops in the 

network. The number of variables in the pipe roughness characteristic set is equal to 

the number of links (NLK) in the network, and they are independent. If an entropy 
function representing the above two sets of variables can be written for general water 
distribution networks, the problem of inferring the most-likely flows and the 

corresponding pipe roughness characteristics can be cast as an entropy maximization 
problem subject to all available information. 
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To develop such an entropy function for general water distribution networks, pipe flow 

and pipe characteristic variables have to be cast in a probabilistic way as required by 

Shannon's informational entropy (Shannon, 1948). It has been shown in Chapter 2 

how pipe flows can probabilistically be described at a node (Tanyimboh and 

Templeman, 1993a) leading to the nodal entropy function of the network. In parallel, 

an entropy function representing pipe characteristic variables in water distribution 

networks is introduced in this chapter and is then compounded with the nodal entropy 

function of the network. The resulting compound entropy function is then maximized 

subject to all information which can be available in a water distribution network. If 

such a water distribution network has different patterns of supply and demand flows 

for different desirable load cases, the above compound problem can then be modified 

to include all load cases which might be desirable in water distribution networks. 

In this chapter, the problem of inferring the least-biased flows and the most-likely pipe 

characteristics in water distribution networks are individually presented, followed by 

the compound problem which is then modified to include all desirable load cases 

which might be available in water distribution networks. The resulting modified 

general problem, as will be seen later, leads naturally to a model capable of calibrating 

old general water distribution networks. Illustrative examples of such calibration and 

others demonstrating the model procedures are left to the next chapter along with 

general discussions and conclusions. 

6.2 PIPE FLOW PROBLEM 

The problem of estimating most-likely flows in water distribution networks having 

source flow rates, demand flow rates and the topology of the network along with pipe 

flow directions known has been described in Chapter 2 in detail and is briefly restated 
in this section due to its relevance to the work of this chapter. Before that, the entropy 
function of network flows developed by Tanyimboh and Templeman (1993a, 1993b, 

1993c) and used in the most-likely flow estimation problem is presented. 
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6.2.1 ENTROPY OF NETWORK FLOWS 

It has been shown in Chapter 2 how a flow leaving node n, Vn, in water distribution 

networks can be cast in a probabilistic way, as required by Shannon's informational 

entropy function, by normalising it by the total flow reaching or leaving that node, i. e. 

q. k P, k Vn, VkEND, (6.1) 

in which Pnk is the probability that flow, which is destined to pass through node n, Vn, 

is included in q, k, Vkr= ND.; qnk is the flow leaving node n, Vn, through link nk, 

VkE ND.; ND. is the set of all downstream nodes of link outflows from node n, Vn, 

including any demand; and T. represents the total flow reaching or leaving node n, 

Vn, including any external flow, i. e. 

qj,, q,, k n=l,... NN (6.2) 
JENU, kEND. 

where NU, is the set of all upstream nodes of link inflows to node n, Vn, including 

any supply. 

Because the probability PAO Vn, VkE ND., given by Eqs. (6.1) is conditional upon the 

probability that flow has reached node n, Vn, the conditional entropy formula of 
Khinchin (1953) can be used to obtain the entropy of node n, Vn, as follows: 

Sn= -pn E Pk ln Pk n, 1-.., NN (6.3) 
kEND. 

in which S,, is the entropy of node n, Vn, associated with the outflows from that node 

n, by setting entropy constant K to unity; P. is the probability of flow arriving at node 

n, Vn, which is given by: 

(6.4) Vn 

where To is the total supply or demand, i. e. 
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T=E qü. =E qo 0 
', Eis »EIp 

(6.5) 

in which Is and ID respectively are the sets of source nodes and demand nodes in the 

network; qO. and q,, o respectively are the supply and demand of node n, Vn. 

Finally, to obtain the total network flow entropy based on the node outflows, the 

entropy of the distribution of To amongst the sources has to be added to the entropy 

of all nodes in the network as follows: 

NN 
Sf = so" +E 

R-1 
(6.6) 

where S, is the network flow entropy based on the outflows; S. is the conditional 

entropy of outflows, including any demand, at node n, Vn, as given by Eq. (6.3); So" 

is the entropy of the distribution of To amongst the sources and is given by: 

S6' = -F, Pc)n In P,,,, 
nds 

(6.7) 

in which P0. is the fraction of the total supply provided by source node n, VnE Is, and 
is given by: 

Pc,, = 
101 

Vnels (6.8) 
TO 

It should be noted that a similar nodal entropy function to that of Eq. (6.6) can be 

obtained based on the inflows to the network nodes rather than the outflows. In this 

case, the entropy of the distribution of To amongst the sources has to be replaced by 

an entropy of the distribution of To amongst all the demand nodes in the network. 
However, the nodal flow entropy function based on the outflows is used throughout 

this chapter. 

Having described the entropy function of network flows, the problem of estimating 

most-likely flows in water distribution networks excluding any information which 

might be available about pipe characteristics is presented next. 
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6.2.2 I%IAXBIUI%l ENTROPY FLOWS 

To determine most-likely flows in water distribution networks in which only the 

supplies and demands, and the flow directions in the links are assumed to be available, 
the network flow entropy given by Eq. (6-6) has to be maximized, according to the 

maximum entropy formalism, subject to available information which, for this case, are 
the nodal flow equilibrium equations. If the NLK link flows used in Eq. (6.6), where 
NLK is the number of links in the network, are substituted in terms of NLP 

independent link flows, where NLP is the number of loops in the network, to give the 
following function: 

Sf m F, (qiný (6.9) 

in which %'"d is the vector of all independent flows in the network; one independent 

flow for each loop; F, (q., ind) is the network entropy of Eq. (6.6) defined in terms of 

q, ind , i=l,..., NLP, the nodal flow equilibrium equations can be omitted from the 

problem as they will be satisfied implicitly in the network entropy objective function. 

The problem is therefore reduced to maximizing the network flow entropy function 

of Eq. (6.9) subject to non-negativity of all link flows in the network. The above 

problem has been introduced in Chapter 2 as Problem 3 and is restated next. 

Problem 3 

Maximize Sf - F, %illd) (6.9) 

Subject to: 

q, j = Fn, (qbld) 2t o Vijelj (6.10) 

in which U is the set of all the links in the network. Note that Problem 3 can be 

solved without including the constraints of Eqs. (6.10) since the non-negativity of link 

flows is implicitly satisfied in the objective function as the logarithmic function is 

undefined for negative values. 
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6.3 PIPE CHARACTERISTIC PROBLEM 

Having defined the pipe flow problem, the problem of estimating most-likely pipe 

characteristics in water distribution networks, in which pipe roughness characteristics 

are assumed not available, can be determined similarly using the maximum entropy 

formalism. Accordingly, a network entropy formula representing pipe roughness 

characteristics has to be developed first and is introduced next. 

6.3.1 ENTROPY OF NETWORK PIPE CHARACTERISTICS 

According to Shannon's informational entropy function, network pipe characteristics 

have to be described probabilistically if a network pipe characteristic entropy formula 

is to be defined. Based on the relative frequency interpretation of probability, pipe 

characteristics can be described in a probabilistic way by normalising each pipe 

characteristic by the sum of all pipe characteristics in the network as follows: 

PC'.. =a ii (6.11) 
E ajj 

in which p,,,, ij is a probability-like quantity representing the contribution of 

characteristic value (xij of link ij, VijE=- IJ, to the total; IJ being the set of all links in the 

network. 

Obviously, the set of pipe characteristic probabilities given by Eqs. (6.11) are mutually 

exclusive and they sum to unity, i. e. 

E pa, ij 
YELI 

(6.12) 

Therefore, they represent a finite scheme. Consequently, Shannon's informational 

entropy can directly be applied to give the following entropy function: 

sa ý-EP,, y Irl P,,, ij VEIJ 
(6.13) 

where S. is the network pipe characteristic entropy for which the constant K of 
Shannon's informational entropy function is set to unity. 
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6.3.2 MAXIMUM ENTROPY PIPE CHARACTERISTICS 

According to the maximum entropy formalism, the most-likely pipe characteristics in 

water distribution networks, in which pipe characteristics are assumed not be available, 

can be estimated by maximizing the network pipe characteristic entropy function given 
by Eq.. (6.13) subject to available information which, for this case, is the normality 

condition of Eq. (6.12) and non-negativity of all pipe characteristics in the network. 

Therefore, the above problem can be written as follows: 

Problem 6 

Maximize S. =-Ep., ij in p,,, jj vem 

Subject to: 

E pa, ij (6.12) 
ijul 

P., ij >- 0 vijelj (6.14) 

Clearly, solving Problem 6 will produce equal pipe characteristic probabilities in the 

network since there is no reason, or extra information available in this problem, to 

think otherwise. Therefore, all pipe characteristics in the network would have the same 

value. 

It can be noted that Problems 3 and 6 do not contain information other than external 
flows and the topology of the network with flow directions in the pipes, which might 
be available in old water distribution networks. Information such as lengths and 
diameters of network pipes, energy conservation around each loop and head pressures 

at the nodes of the network may be available, however. How can such available 
information be considered and taken into account so that the most-likely flows and the 

corresponding pipe characteristics in water distribution networks can be estimated 

more accurately and closer to the actual values which are unique but unknown for the 
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designer? The answers to this question and others are addressed in the next section. 

6.4 COMPOUND PROBLEM 

The problem considered in this section is as follows. Find most-likely pipe flows and 

corresponding pipe characteristics in water distribution networks in which source flow 

rates, demand flow rates and the topology of the network with pipe flow directions 

and lengths and diameters of the pipes are known. The pipe flows and pipe 

characteristics sought in this problem should satisfy the conservation laws of energy 

around the loops and should match head pressures which might be available at the 

nodes of the network. 

It is recalled from Chapter 2 that conservation laws of energy around the loops in 

water distribution networks state that the net head loss around each loop should be 

equal to zero, i. e. 

E hy 0 1=1,..., NLP 
OeLf, 

(6.15) 

in which hij is the head loss in link ij, Vij c: IJI, 1= 1,..., NLP; where IJI being the set of 

all links in loop I and NLP is the number of loops in the network. 

Also, the total head loss along any path between two nodes whose head pressures are 
known must equal the head loss of that path which is the difference between the heads 

of the first and the last node of that path. Therefore: 

E hv = hp 
ij C, up 

(6.16) 

in which UP is the set of all links in path p, Vp; hP is the known path head loss; and 
NP is the number of independent paths in the network, each of which contains some 
information which is not already contained in any other path. 

In Eqs. (6.15) and (6.16), the head loss hij may be given by the following Hazen- 

Williams equation: 
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a Le,, ( qjj )1.952 
Cii 

vijeii 4.97 

in which qj is the flow rate in pipe ij, Vijc= U, which is positive in the direction of 
flow; (x is a dimensionless conversion factor for units and is equal to 10.67 in S. I. 

units; Leij, Dj and Cij are respectively the length, the internal diameter and the Hazen- 

Williams coefficient of pipe ij, Vijc= IJ; and IJ is the set of all the links in the network. 

Considering Eq. (6.17), the pipe characteristics sought in this chapter may take 

different values for different cases as follows: 

1. Lengths and diameters of the pipes are not available: 

a Le,, 
_ VjEj (6.18) 

852 D ý. 87 Cii, - 
li 

2. Pipe lengths are available: 

a vijEij 
852 D ý. 87 cul - 

li 

I Lengths and diameters are available: 

ajj a 
852 

vijcjj (6.20) 
Cii, - 

Consequently, Eq. (6.17) can be simplified as follows: 

1852 (6.21) hij = ixo qij* vij EIJ 

in which (xij is the characteristic value of pipe ij, Vijc= U, and is given by Eqs. (6.18), 

(6-19) or (6.20) depending whether the length and the diameter of pipe ij are available 

or not available as shown earlier. Finally, substituting Eq. (6.21) into energy 

conservation equations [Eqs. (6.15) and (6.16)] gives the following equations: 

E ij q ij' 
. 852 

=o I=i,..., NLP (6.22) 
ileljl, 
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ao 
1.852 

=h qij p (6.23) 

Eqs. (6.22) and (6.23) can contain all the information which might be available in old 

water distribution networks. Apart from the equilibrium equations which are implicitly 

satisfied in the objective function of Problem 3, the conservation of energy around the 

loops is contained in Eqs. (6.22) and the head pressures at the network nodes may be 

included by means of Eqs. (6.23). Also, the lengths and the diameters of the pipes can 
be included in (xij values as required. 

Clearly, neither equation Eq. (6.22) and (6.23) can be added as a constraint to Problem 

3 or Problem 6 since these equations contain more variables than those contained in 

either problem individually. The question which needs to be answered here becomes 

as follows: how can Eqs. (6.22) and (6.23) be incorporated in one single model in 

conjunction with Problems 3 and 6? 

A compound entropy function for water distribution networks is presented next, 
followed by the problem of estimating maximum entropy flows and corresponding 

maximum entropy pipe characteristics in water distribution networks. 

6.4.1 COMPOUND NETWORK ENTROPY 

It is recalled here that the nodal entropy function used in Problem 3 is the entropy of 

a finite probability scheme representing the distribution of the total supply in the 

network amongst the sources, plus the sum of the entropies of NN conditional finite 

probability schemes, each representing the outflows from a node in the network and 
depending upon the probability of flow arriving at that node. On the other hand, the 

pipe characteristic entropy function used in Problem 6 is the entropy of one single 
finite probability scheme representing the probabilities of the network pipes having 

some characteristic values. Assuming the pipe characteristic finite probability scheme 
is independent from all the finite probability schemes used in the nodal flow entropy 
function, the joint entropy of a compound scheme presented in Chapter 2 can be 

162 



applied by summing the nodal entropy and the pipe characteristic entropy functions 
to give the following compound function: 

S= Sf + S. = F, %"ý -Ep,,, j In p.,, j y Eli 
(6.24) 

W in which S is the compound entropy function of the network; q, is the set of NLP 
independent flows; and p,,,,,, is characteristic value for pipe ij, Vije IJ, where there are 
NLK such characteristic values in the network. 

6.4.2 MAXIMUM ENTROPY FLOWS AND CORRESPONDING MAXIMUM 

ENTROPY PIPE CHARACTERISTICS 

Having defined the compound network entropy function in water distribution networks 
in terms of independent flows and pipe characteristics, the problem of estimating 

most-likely pipe flows and corresponding least-biased pipe characteristics can be 

formulated according to the maximum entropy formalism as an entropy maximization 

problem subject to all available information which is the constraints of Problems 3 and 
6 and the extra information given by Eqs. (6.22) and (6.23). 

However, the compound network entropy function of Eq. (6.24) has the pipe flows 

defined in terms of independent flows (q 'ind) . 
Therefore, Eqs. (6.22) and (6.23) defined 

in terms of pipe flows have to be rewritten in terms of independent pipe flows if they 

are to be included in the constraint set of the compound problem. Consequently, Eqs. 
(6.22) and (6.23) can be written as follows: 

EaVF IV 
fný, 1.952 

.0 [n (q. NLP (6.25) 
YCLIJ 

E aIV [FnU (qjný31.852 = hp p=l,..., NP (6.26) 
Udl, 

in which Fnij (q,, ind ) is the flow in pipe ij, Vijc- U, defined in terms of the unknown 
independent pipe flows in the network. 
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Also, because Eqs. (6.25) and (6.26) contain pipe characteristic values (xi,, Vij, rather 
than pipe characteristic probabilities, the compound network entropy function of Eq. 

(6.24) is rewritten in terms of (xij, Vij, by substituting Eq. (6.11) into Eq. (6.24) to give 

the following function: 

S=F, (qnd) ln 
ag/ 

(6.27) 
üE:, u E a# E aij 

VEIJ #EIJ 

At this stage, Eqs. (6.25) and (6.26) are now compatible with Eq. (6.27) and they are 

fit to be included in the constraint set of the compound problem. Looking to the other 

possible constraints which are the constraints of Problems 3 and 6, it can be argued 

that non-negativity constraints of pipe flows and pipe characteristics can be excluded 

as they are implicitly satisfied in the objective function of Eq. (6.27) since the 

logarithmic function is undefined for negative values. Also, the normality condition 

constraint of Eq. (6.12) in Problem 6 can be omitted from the constraint set of the 

compound problem as it is implied in the second term of the objective function of Eq. 

(6.27). Consequently, the problem of estimating maximum entropy flows and 

corresponding maximum entropy pipe characteristics in water distribution networks 

can be formulated as follows: 

Problem 7 

Maximize S=F, E aV In aV (6.27) 
ocu Ea. E ajj 

U61i IVEIJ 

Subject to: 

au [Fnv 
1.852 

_ o 1=1,..., jVLP (6.25) 
#ELI, 

ind)]1.852 aV [FnU (q; hp p=l,..., NP (6.26) 
oul, 
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in which aij, ViJ, is given by Eqs. (6.18), (6.19) or (6.20) depending whether the 
length and the diameter of pipe ij are available or not available. 

Problem 7 has been formalized as one of non-linear constrained optimization, and it 

can be solved by any suitable non-linear constrained programming algorithm. Because 

the problem is non-linear in both the objective and constraint functions, it may be non- 

convex and it may have several local maxima. Therefore, it is suggested that solving 

Problem 7 with several different starting points should ensure that the obtained 

solution is a global rather than a local one. 

It should be noted that the equilibrium equations of flow at the network nodes have 

not been included in the constraint set of Problem 7 as they are implicitly satisfied in 

the first term of the objective function of Eq. (6.27). The number of variables in 

Problem 7 is (NLP+NLK) in which the unknown NLP independent flows should be 

selected so that there is one variable for each loop, while the unknown NLK pipe 

characteristics represent all the pipes in the network. On the other hand, the number 

of constraints is (NLP+NP), where NP is the number of chosen independent paths 

between any two nodes in the network, usually a source and a terminal node, whose 

head pressures are available, and is generally much lower than the number of links in 

the network. 

Because the term Eaij, VijEIJ, used in the objective function of Problem 7 is 

unknown, the resulting maximum entropy pipe characteristics may have unbounded 

and non-unique solutions but always with unique optimal probability values. However, 

including enough head loss path constraints of Eqs. (6.26) will bound the pipe 

characteristic values into a unique and meaningful solution. 

Finally, Problem 7 has been formulated for one single load case only. However, it is 

desired to consider multiple load cases in water distribution networks to take into 

account some emergency demands such as fire fighting demands, or because of 

changes in demand distribution amongst the demand nodes in the network due to other 
different reasons. Therefore, Problem 7 is modified so that it can include extra 
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information which might be available from different desirable load cases which might 
help identifying more accurate pipe characteristic values in the network. The modified 

I problem is presented next. 

6.4.3 MULTIPLE-LOAD CASE 

In water distribution networks with multiple-load cases, there should be NLC sets of 

most-likely flows in the network pipes, where NLC is the number of load cases in the 

network, each set corresponds to a load case and depends upon the external flows and 

the flow directions in the pipes for that load case. However, only one set of most- 

likely pipe characteristics is sought since there is only one set of pipes in the network 

carrying different flows for different load cases. Consequently, the objective function 

of Problem 7 has to be modified so that it contains the flow entropy functions of all 

load cases considered in the network, i. e. 

NLC 

EE 'Y h, aU 

r-1 ijeli Z au E au #CM #EIJ 

(6.28) 

in which the equilibrium equations for load case r, r--1,..., NLC, are implicitly satisfied 

in the corresponding flow entropy function F,,,, ft, ind). 

Also, for each load case a set of constraints similar to Eqs. (6.25) and (6-26) has to 

be added to the problem. This can be done by generalizing Eqs. (6.25) and (6.26) to 

include NLC load cases as follows: 

Fý]1.852 
in 

a. [Fnu.,, (qsr 0 1=1,..., NLP; r=l,..., NLC (6.29) 
YEL11'. 

in 
rý ccif [Fnvr (qsr 11.852 =hpr P=1,..., NPr; r=l,..., NLC (6.30) 

YCLI", 

in which IJ,,, is the set of the links in loop I for load case r; UP, is the set of the links 

in path p, Vp, for load case r; hP, is the known head loss of path p for load case r; and 
NPr is the number of independent paths whose head losses are known for load case 
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r. The problem becomes as follows: maximize Eq. (6.28) subject to the constraints of 
Eqs. (6.29) and (6.30). It can be seen that in this problem there is one set of pipe 

characteristics but NLC sets of flows; consequently objective function (6.28) is biased 

towards flow entropy. Therefore, the objective function Eq. (6.28) has to be modified 

so that there will be some balance between the single pipe characteristic entropy and 
the NLC flow entropies contained in the equation. This can be done either by 

weighting the pipe characteristic entropy by NLC, or by averaging the NLC flow 

entropies amongst all the load cases in the network. The second option is used in this 

thesis to give the following modified objective function: 

1 NLC aa E F�, (q,; ý -E 'J in U (6.31) Lc r-1 ij6IJ E au E au 
ve, u #EIJ 

Consequently, the final modified general problem can be written as follows: 

Problem 8, 

NLC a Maximize S- VLC in (631) 
r-I Veli E ay E au 

yCli YeLl 

Subject to: 

(qsi, n 
ay [Fnv., rý11.852 =0 1=1,..., NLP; r=l,..., NLC (6.29) 

OcLI1, 

(qSbd)11.852 
=hpr .r 

ay [Fnifr P=1,..., NPr; r=l,..., NLC (6.30) 

Problem 8, as Problem 7, is a non-linear and non-convex constrained optimization 

problem. The number of variables, however, has increased from (NLP+NLK) to 

(NLC*NLP+NLK), and the number of constraints has increased from (NLP+NP) to 

(NLC*NLP+E NP). Any suitable non-linear constrained programming algorithm can 
be used to solve this problem. A computer programme has been written in FORTRAN 
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77 to solve the above problem for general water distribution networks in conjunction 

with the NAG library routine E04UCF which uses a sequential quadratic programming 

method for non-linear constrained optimization. This computer programme is given 
in Appendix D and is used in the next chapter to solve some numerical examples. The 

results are discussed and conclusions are drawn. 

The real potential benefit of Problem 8 is the possibility of calibrating old water 
distribution networks in which roughness coefficients of the network pipes have been 

lost or changed over time. If Problem 8 is applied to such networks, the missing pipe 

characteristics can be estimated and the corresponding pipe flows, which are unknown 

due to the loss of those pipe characteristics, can be calculated quite easily and directly 

without the need for physical measurement of the pipe flows, which might be 

expensive and time consuming. A simulated water distribution network whose pipe 

flows and pipe characteristics are known is calibrated in the next chapter by applying 

Problem 8. The results are compared to the actual values and discussed, and 

conclusions are drawn. 

6.5 SUMNURY 

The problem of estimating most-likely flows and corresponding most-likely pipe 

characteristics in water distribution networks, in which roughness coefficients of the 

network pipes have been lost or changed with time, has been developed in this chapter 

using the maximum entropy formalism. Two problems have been introduced in this 

chapter and then compounded to produce the above problem. The first problem is the 

pipe flow problem in which the nodal entropy function of the network flows 

developed by Tanyirnboh and Templeman (1993a, 1993b, 1993c) has been maximized 

subject to equilibrium equations. The second problem is concerned with pipe 

characteristics, for which entropy of the network pipe characteristics has been defined 

after normalising each pipe characteristic by the sum of all pipe characteristics in the 

network, and which is then maximized subject to the normality condition of the pipe 

characteristic probability scheme in the network. 
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It has been shown in this chapter that neither of the above two problems is capable 

of incorporating some basic information which is often available in real water 
distribution networks, such as the lengths and diameters of the network pipes, and 

some basic requirements of energy conservation in the network. The compound 

problem, however, is capable of handling such information, and is applicable to real 

general water distribution networks in the sense that it is capable of considering all 

general data which might be available in already-existing water distribution networks 

in which only pipe characteristics and pipe flows are not available, leading to the 

possibility of calibrating such networks quite easily and directly without the need for 

any expensive equipment for measuring the flows in the network pipes, which can also 

be time consuming. 

Moreover, the above developed calibration model for water distribution networks has 

been modified to include several load cases which might be desirable in water 

distribution networks due to some emergency requirements or due to some other 

reasons.. The modified model, which has been cast as non-linear constrained 

optimization, can be applied to general water distribution networks having several 
desirable load cases, and can be solved by any suitable constrained non-linear 

programming algorithm. Illustrative examples for this general model are solved in the 

next chapter demonstrating the calibration procedure on a simulated real water 
distribution network. The results are discussed and general conclusions are drawn. 
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CHAPTER 7 

NUMERICAL APPLICATIONS OF 

THE WATER DISTRIBUTION NETWORK 

CALIBRATION METHOD 

7.1 INTRODUCTION 

The aim of this chapter is to demonstrate the calibration method presented in the 

previous chapter as Problem 8 for calculating maximum entropy flows and 

corresponding maximum entropy pipe characteristics in water distribution networks 
in which only pipe roughness coefficients and hence the pipe flows are assumed not 

available. 

Two network examples are used in this regard. The first example is a one-source 

network of Figure 7.1 adapted from Tanyimboh and Templeman (1993c) and designed 

to carry maximum entropy flows. The second example is a simulated one-source 

network of Figure 7.2 having multiple load cases and known pipe characteristics and 

pipe flows for all different load cases. 

The computer programme written in FORTRAN 77 for solving Problem 8 in 

conjunction with the NAG library routine E04UCF for non-linear constrained 

optimization, and given in Appendix D is referred to in this chapter as CAMONET 

(CAlibration MOdel for water NETworks) and is used to solve the above two 

examples for which the available information is added step by step to each problem, 

so that the effect of each piece of information on the results can be investigated and 

compared with the actual values. The CAMONET computer programme has been 

designed to allow for this step-by-step adding of information and is used in this 

chapter to solve the calibration problem with different piece of information available 
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as follows: 

1. In addition to external flows and the topology of the network with flow directions 

in the pipes, head losses around the loops are considered but lengths and diameters of 
the pipes are assumed not available . 
2. Head losses around the loops and head losses along some paths are considered but 

lengths and diameters of the pipe are still not available . 
3. Head losses around the loops and head losses along some paths are considered and 

pipe lengths are known. 

4. Head losses around the loops and head losses along some paths are considered, with 
both pipe lengths and diameters also known. 

5. All the above cases can be considered for different load cases which might be 

desirable in a water distribution network. 

In this chapter, the two examples of Figures 7.1 and 7.2 are solved using the 

CAMONET computer programme for the above different cases. The results are 
discussed and compared with the actual values, and conclusions are drawn. 

7.2 EXAMPLE 1 

The one-source network of this example adapted from Tanyirnboh and Templeman. 

(1993c) and shown here in Figure 7.1 has six nodes and seven links with two loops. 

The external inflows and outflows and the flow directions in the pipe are shown in the 

figure, with units of m%ec. 

In their paper, Tanyimboh and Templeman (1993c) assumed that each link in the 

network is 1000m long and has a Hazen-Williams coefficient of 130, and the total 

head loss along any path between nodes 1 and 6 is 20m. They designed this network 

to carry maximum entropy flows calculated by solving Problem 3 presented in the 

previous chapter. The calculated maximum nodal entropy pipe flows and the 

corresponding designed pipe diameters are given in Table 7.1. 
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Table 7.1 Pipe data for the one-source network of Figure 7.1 and pipe diameters designed by 
Tanyimboh and Templeman (1993c) to carry maximum nodal entropy pipe flows with S, = 1.915. 

Lin F-247-] [77ý3ý ----] 4-6 
--] r 

5-6 
F 

1.3 
] 

3-5 
r 

Leo (m) 1000 1000 1000 1000 1000 1000 1000 
C, 130 130 130 130 130 130 130 

aQ=10.67/Cu'-m2-l 0.0013 0.0013 0.0013 0.0013 0.0013 0.0013 0.0013 

*q, (m3/sec) 0.084 0.056 0.057 0.038 0.018 0.200 0.110 

Du(m) 0.261 0.235 0.234 0.234 0.185 0.367 0.294 

* Design maximum nodal entropy pipe flows obtained by solving Problem 3. 

The above network is now solved by the CAMONET computer programme assuming 

that pipe characteristics (xij, Vij(=- IJ, and corresponding design pipe flows qj, Vijc= IJ, 

are not available. The number of variables in this problem is nine, two independent 

flows in the links 1-3 and 3-5 and seven pipe characteristics. The CAMONET 

computer programme is run on this example for four different cases, each with an 

extra piece of information added to the problem. In the first run, only loop head losses 

are considered assuming that all pipes lengths and diameters are not available. This 

is done by setting all the lengths and diameters of the pipes to unity in the input file 

of the CAMONET programme. (see Eqs- (6-18), (6.19) and (6.20) presented in the 

previous chapter). 

The path head loss of 20m between source node I and terminal node 6 is added to the 

problem in the second run with pipe lengths and diameters still assumed not available. 
The pipe lengths are added in the third run , while the designed pipe diameters shown 
in Table 7.1 are considered in the fourth and final run. 

The input and output files of the CAMONET computer programme for the four runs 

are given in Appendix E, from which maximum entropy pipe flows and corresponding 

maximum entropy pipe characteristics and their probabilities along with pipe head 

losses for the four runs are tabulated in Table 7.2 for convenience. 
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Table 7.2 Maximum entropy pipe flows and corresponding maximum entropy pipe characteristics 
and their probabilities along with pipe head losses for the network of Example 1 obtained by the 
CAMONET computer programme for four different runs. 

I 
Link I-j 

- -] F-T-2 F-24 -7 
24 

F- -347 F- 
3-5 

0.100 0.072 0.050 0.047 0.009 0.184 0.101 

run 1 S=3.793 1.3035 1.1770 1.1456 1.1968 1.0356 0.5190 0.5865 

PmU 0.1872 0.1690 0.1645 0.1719 0.1487 0.0745 0.0842 

h, (m) 0.0182 0.0089 0.0045 0.0041 0.0002 0.0227 0.0084 

0.100 0.072 0.050 0.047 0.009 0.184 0.101 

run 2 S=3.793 CCU 834.02 753.08 732.93 765.71 662.59 332.04 375.25 

P. Ji 
0.1872 0.1690 0.1645 0.1719 0.1487 0.0745 1 0.0842 

11.651 5.711 2.870 2.638 0.112 14.493 5.395 

0.100 0.072 0.050 0.047 0.009 0.184 0.101 

run 3 S--3.793 au 0.8340 0.7531 0.7329 0.7657 0.6626 0.3320 0.3753 

PU4 0.1872 0.1690 0.1645 0.1719 0.1487 0.0745 0.0842 

11.651 5.711 2.870 2.638 0.112 14.493 5.395 

0.084 0.056 0.057 0.038 0.018 0.200 0.110 

run 4 S=3.861 CCU 0.0013 0.0013 0.0013 0.0013 0.0013 0.0013 0.0013 

0.1428 0.1428 0.14, " 0.1436 0.1423 0.1429 0.1412 

9.184 7.22 7.684 3.592 
1 

2.869 
1 

8.725 
1 

8.4 

7.2.1 DISCUSSION 

Several interesting points can be observed from the results of Table 7.2. In the first 

run where the loop head losses are included in the constraint set of the problem 

without considering the lengths and diameters of the network pipes, the pipe flows are, 

as expected, different from the maximum entropy flows shown in Table 7.1 as there 

is more information considered in this run than in the data used to obtain the pipe 

flows of Table 7.1. Also, the pipe characteristics obtained from this run are far from 

the actual values since there is much information not yet included in the problem. 
However, adding the head loss of 20m along the path 1-6 to the constraint set of run 

2 followed by adding the pipe lengths to the constraint set of run 3 does not change 

the resulting pipe flows and the corresponding pipe characteristic probabilities, 

although different pipe characteristic values are obtained in each run of the three 
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above runs. This can be justified by arguing that the head loss of path 1-6 added in 

run 2 does not favour any pipe above the others in assigning different pipe 
characteristic values. It only adjusts the unbounded pipe characteristic values to 

meaningful values matching the head loss of 20m assigned to path 1-6. This can be 

seen by checking the pipe head losses shown in Table 7.2 along all possible paths 
between nodes 1 and 6. 

The same can be said about run 3 where the equal pipe lengths of 1000m added in 

this run provide no reason to treat the pipes unequally, leaving the pipe flows and pipe 

characteristic probabilities unchanged but readjusting the pipe characteristic values to 

match the pipe lengths and, at the same time, the head loss of 20m for each path 
between nodes I and 6. As expected, the new pipe characteristic values are 1000 times 

less than the previous values as shown in Table 7.2. This ensures producing the same 

head loss in the pipes to match the unchanged head loss of 20m along path 1-6. 

It should be noted that assigning unequal pipe lengths would change all the pipe flows 

and corresponding pipe characteristic probabilities since there would be a reason to 

treat the pipes differently. A similar argument can be applied to pipe diameters where 

equal diameters will not affect the results but will adjust pipe characteristic values to 

match the new equal diameters, while unequal diameters will influence the whole 

results of the problem. This can be seen in run 4 where the unequal pipe diameters 

shown in Table 7.1 and added in this run result in a new set of pipe flows and pipe 

characteristic values and probabilities as shown in Table 7.2. The interesting thing 

about this new set of results is that it matches exactly the actual values shown in 

Table 7.1 and used by Tanyimboh and Templeman (1993c) to design the network of 

this example (Figure 7.1). This should have been anticipated since maximum entropy 
flows have been used to design the network to give the pipe diameters which are used 
in the current calibration model example. 

The above demonstration shows how well the calibration model performs for networks 
designed to carry maximum entropy flows. In the next example, a more realistic and 

simulated water distribution network having all pipe characteristic values and 
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corresponding unique pipe flows known is solved by the calibration method using the 
CAMONET computer programme. Five different load cases are considered in 

calibrating the network. The results are discussed and compared with the actual values. 

7.3 EXAMPLE 2 

Most of conclusions drawn in this chapter are based on this example in which the 

simulated one-source network of Figure 7.2 is analyzed by the Hardy-Cross method, 

which was presented in Chapter 2, to calculate the real and unique pipe flows and 

corresponding pipe head losses. The network is then solved by the calibration method 

using the CAMONET computer programme and assuming that all pipe characteristics 

and corresponding pipe flows which were calculated by the Hardy-Cross method are 

not available. The network has one source and four demand nodes connected by seven 

links which form three loops as shown in the figure. The external flows and the flow 

directions in the pipes are also shown in the figure, while all the pipe data and pipe 
flows and head losses calculated by the Hardy-Cross method are given in Table 7.3. 

Table 7.3 Pipe data for the network of Figure 7.2 and pipe flows and head losses calculated by 
the Hardy-Cross method. 

Pipe num 
r7_17 r7 r- 

47 
[- 

5 

Flow di 1-2 2-3 34 4-5 1-3 2-4 3-5 

Le, (m) 800 450 500 600 700 600 500 

Di (m) 0.5 0.25 0.25 0.25 0.5 0.4 0.4 

cc Le/C, '452 7.5* 104 8.0*10-4 8.0*10-4 7.5*10' 7.0*10' 7.5 *I G-4 7.0*10-' 
I 

aj=ujC, Im2 
-1 

3.21 * 10-' 0.21 *I Or' 0.19*10-1 0.15*10-8 3.42*10-' 1.44* 10-4 1.61*10-' 

qj (Itr/sec) 
1 

120.843 24.546 36.036 32.333 129.157 46.297 52.667 

h, (-) 
7 5E] 

0.300 0.611 0.469 5.687 0.911 1.080 

Five different patterns of demand outflows are considered in this example. Labelling 

the above original load case by case 1, cases 2 and 3 shown in Figure 7.3 have the 

same flow directions in the pipes as those for load case 1, while some of the pipe 
flows in cases 4 and 5 have different directions as shown in Figure 7.4. All pipe flows 

and corresponding pipe head losses calculated by the Hardy-Cross method for load 
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cases 2,3,4 and 5 are given in Table 7.4. 

Table 7.4 Actual pipe flows and corresponding pipe head losses calculated by the Hardy-Cross 
method for load cases 2,3,4 and 5 shown in Figures 7.3 and 7.4. 

Pipe numb JF-2-ý F 37 F-4--ý F5 -ý F-67 

1-2 2-3 3-4 4-5 1-3 2-4 3-5 

case 2 
120.351 27.965 40.621 33.007 129.649 52.386 56.993 

5.346 0.382 0.763 0.487 5.728 1.146 1.250 

1-2 2-3 3-4 4-5 1-3 2-4 3-5 
case 3 

119.913 30.664 46.642 35.891 130.087 59,249 64.109 

5.310 0.453 0.986 0.569 5.764 1.439 1.554 

1-2 3-2 3-4 5-4 1-3 2-4 3-5 
case 4 

122.693 2.205 48.277 1.825 127.307 49.898 51.825 

5.541 0.003 1.050 0.002 5.537 1.047 1.048 

1-2 2-3 3-4 5-4 1-3 2-4 3-5 
case 5 

119.583 32.466 42.858 20.025 130.417 57.117 40.025 

5.283 0.504 0.843 0.193 5.790 1.345 0.650 

It is assumed in this example that all the actual pipe flows for all five load cases and 

the actual pipe characteristics, which are the same for all load cases, are not available. 
All the remaining data given in Tables 7.3 and 7.4 are assumed available and are used 
in the calibration model to estimate the most-likely pipe characteristics and 

corresponding pipe flows in the network. 

The purpose of this example is to investigate how much information is needed to be 

included in the calibration model in order to obtain pipe characteristics and 

corresponding pipe flows in the network as close as possible to the actual values. In 

this example, the CAMONET computer programme is used to solve first the original 
load case 1. Then, cases 2 and 3 which have the same pipe flow directions as those 
in load case 1 are added step by step to the original load case 1. Finally, the effect of 

changing some of the pipe flow directions on the obtained results is studied by 

considering cases 4 and 5 in the model. The results are discussed and compared to the 

actual values, and conclusions are drawn. 
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7.3.1 ORIGINAL LOAD CASE I 

Before the CAMONET computer programme is used to solve this original load case 

shown in Figure 7.2, the maximum nodal entropy pipe flows have been calculated, for 

comparison purposes only, using Problem 3 presented in the previous chapter, in 

which pipe characteristics are not considered in the formulation. The resulting 

maximum entropy flows are given in Table 7.5. 

The CAMONET computer programme is now used to solve the above load case for 

which seven runs are carried out. In the first run, the loop head loss constraints are 

considered, followed by adding pipe lengths and pipe diameters in runs 2 and 3 

respectively. The head loss along path 1-5 is then included in run 4 followed by 

adding the head losses along paths 1-4,1-3 and 1-2 into runs 5,6 and 7 respectively. 

The resulting maximum entropy flows and corresponding maximum entropy pipe 

characteristics along with pipe head losses for the seven runs are given in Tables 7.5, 

7.6 and 7.7 respectively. Also, the actual values are included in the respective table 

for convenience. 

Table 7.5 Maximum entropy pipe flows for load case 1 of Example 2, obtained by the CAMONET 
computer programme for seven different runs. 

Pipe number 1 1 -2---] F [- 7 
3 

F-T-ý 

- 
F5 7j 

--- 
-6 

---] Actual q, values 120.843 24.546 36.036 32.333 129.157 46.297 52.667 

Pipe flows (Pr 166.833 83.167 67.333 51.000 83.167 33.666 34.000 

146.803 49.406 41.298 38.695 103.197 47.397 46.305 

146.621 51.804 42.325 37.142 103.379 44.817 47.858 

147.935 50.786 19.962 17.111 102.065 47.149 67.889 

qj 
148.024 50.924 19.998 17.098 101.976 47.100 67.902 

131.725 22.522 20,267 29.471 118.275 59.203 55.529 

124.972 23.034 43.836 45.774 125.028 51.938 39.226 

136.854 
1 

56.837 
1 

67.119 47.137 113.146 30.017 37.863 
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Table 7.6 Maximum entropy pipe characteristics for load case 1 of Example 2, obtained by the 
CAMONET computer programme for seven different runs. 

Pipe number I 
F--2 6 -] F77ý7 

Actual (xi value 3.21*1(Y8 0.21 * 10*' 0.19*198 0.15*10 3.42*10 1.44*10 1.61*10 

5.87*10-' 6.96* 1e 6.98*196 8.7 1* 196 13.1*196 12.9*19' 11.9*10r" 

S=4 130 5.36" 1 (y6 7.40*1(Y' 7.04* 1 (Y' 8.5 1* 196 13.0* 1 (y6 12.5*10r" 12.0* 1 (Ya 
. 

6.87*lOr6 0.50* 1076 7.39*1076 10.7*1(Y6 18.2*10-6 16.6*lCr' 17.4*1076 

(y, S=3.833 1.22*10 0.09*10 1.31*10 1.90*10 3.23 * 10' 2.94* 1 Ora 3.09*10 

1.60* 19' 1.28*10" 1.40* 10-8 0.17*194 3.35*10 3.16*10'8 2.76*10 
1 

S=3.747 
I 

2.07*10r' 1.54*10r' 0.13*10-8 0.08*19" 3.63*10-8 3.31*10 2.79*10 

2.55*10 0.04* 1 (To 0.06*10'8 0.07*las 4.37*10 3.22*19' 2.98*1 Ora L Eý [ýý] 
1 1 

Table 7.7 Maximum entropy pipe head losses for load case 1 of Example 2, obtained by the 
CAMONET computer programme for seven different runs. 

Pipe number 1 3 -7 [- 
4 5 ýý F-; F-767 F7 

Actual h, values 5.387 0.300 0.611 0.469 5.687 0.911 1.080 

0.0604 0.0095 0.0069 0.0076 0.0700 0.0164 0.0145 

44.069 4.986 3.622 1 
4.124 49.055 8.608 7.746 

run 3 1679.5 279.0 807.9 1056.3 1958.6 1086.9 1864.2 

h, 
2.976 0.487 1,434 1.870 3.463 1.921 3.304 

152 3 1 577 1 570 0.469 4.728 3.147 2.039 S=3.773 . . . 

1.980 0.611 0.469 5.687 2,592 1.080 
Ll lýýi liýýil 

0.300 0.611 0.469 5.687 0.911 
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7.3.2 MULTIPLE LOAD CASE WITH UNCHANGED PIPE FLOW 

DIRECTIONS 

In this multiple load case, cases 1,2 and 3 which all have the same flow directions 

in the pipes are considered by including first cases 1 and 2 in the model followed by 

the three load case compound problem. 

7.3.2.1 MULTIPLE LOAD CASE (1+2) 

In this section, the external flows of load case 2 and its pipe flow directions along 

with the loop head loss constraints are added to runs 4,5,6 and 7 to produce runs 8, 

9,10 and II respectively whose results are tabulated in Tables 7.8,7.9 and 7.10. No 

path head losses related to case 2 are considered in these runs. However, the head loss 

of path 1-5 for load case 2 is used in run 12 which is obtained by adding this head 

loss to run 8. The results of run 12 are also included in the above three tables. 

Table 7.8 Maximum entropy pipe flows for multiple load case (1+2) of Example 2, obtained by 
the CAMONET computer programme for runs 8-12. 

Pipe number I F-1-1 12 
ý3 F-3 [ý F- 

5 
7 [77ýý 

--7 
[7 

Actual qj, j values 120.843 24.546 36.036 
1 

32.333 129.157 46.297 52.667 

Actual qj, 2 values 120.351 27.965 40.621 33.007 129.649 52.386 56.993 

run 8 qi, l 
146.335 49.650 20.884 17.569 103.665 46.686 67.431 

145.747 52.569 24.422 17.600 104.253 53.178 72.400 

131.487 22.469 21.476 30.494 118.513 59.018 54.506 

qj. 2 
129.570 24.185 24.463 29.848 120.430 65.386 60.152 

124.793 23.255 44.636 46.174 125.207 51.538 38.826 

122.284 25.415 50.737 47.606 127.716 56.868 42.394 

ru 
FS=-3.72-8 ] I 

qi, l 
136.018 55.897 67.134 47.255 113.982 30.121 37.745 

F-q, - 

. 27 
135.637 61.968 75.341 49.010 114.363 33.669 40.990 

133.566 66.236 51.960 19.291 116.434 17.330 65.709 

133.550 73.518 60.179 20.212 116.450 20.032 69.788 
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Table 7.9 Maximum entropy pipe characteristics for multiple load case (1+2) of Example 2, 
obtained by the CAMONET computer programme for runs 8-12. 

Pipe number I F2] F3J ýý F57 [7 67] 
Actual c4 values(* 3.21 0.21 0.19 0.15 3.42 1.44 1.61 

1.25 0.10 1.13 1.84 3.17 2.92 3.08 

1.62 1.28 1.23 0.16 3.35 3.14 2.83 

2.09 1.50 0.13 0.08 3.62 3.34 2.84 

2.58 0.05 0.06 0.07 4.31 3.20 2.99 

2.46 0.001 0.03 1.26 3.64 2.28 1.76 

Table 7.10 Maximum entropy pipe head losses for multiple load case (1+2) of Example 2, obtained 
by the CAMONET computer programme for runs 8-12. 

Pipe number II 
F 

1--ý 3 
-4 -] F5J - 

67 
[7 

Actual h,,, values 5.387 0.300 0.611 0.469 5.687 0.911 1.080 

Actual h,. 2 values 5.346 0.382 0.763 0.487 5.728 1.146 1.250 

2.983 0.530 1.344 1.911 3.512 1.874 3.255 

2.960 0.589 1.796 1.917 3.549 2.385 3.713 

3.185 1.567 1.546 0.469 4.752 3.113 2.015 

3.100 1.796 1.968 0.451 4.895 3.763 2.418 

3 727 1.960 0.611 0.469 5.687 2.571 1.080 
. 

hi, 2 
3.590 2.310 0.775 0.496 5.900 3.085 1.271 

5.387 0.300 0.611 0.469 5.687 0.911 1.080 

5.359 0.363 0.757 0.501 5.722 1.120 1.258 

4 978 0.011 0.222 1.556 4.989 0.233 1.778 
. 

- 
4 97 7 0.014 0.292 1.696 4.990 0.305 1.988 
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7.3.2.2 MULTIPLE LOAD CASE (1+2+3) 

Five runs are performed on the CAMONET computer programme for this multiple 
load case. Runs 13-16 are formulated by adding the external flows of load case 3 and 
its pipe flow directions along with the loop head loss requirements to runs 8-11 

resPectively. The last run, which is run 17, is obtained by adding the head losses of 

path 1-5 corresponding to cases 2 and 3 to run 13. The results of the five runs are 

given in Tables 7.11,7.12 and 7.13. 

Table 7.11 Maximum entropy pipe flows for multiple load case (1+2+3) of Example 2, obtained 
by the CAMONET computer programme for runs 13-17. 

Pipe number 1 3 6--] 

Actual qi, l values 120.843 24.546 36.036 32.333 129.157 46.297 52.667 
LActual 

qj, 2 values 120.351 27.965 40.621 33.007 129.649 52.386 56.993 

Actual qj, values 119.913 30.664 46.642 35.891 130.087 59.249 64.109 

145.129 49.940 22.949 18.138 104.871 45.189 66.862 
run 13 S=3.856 

144.535 53.070 26.815 18.281 105.465 51.465 71.719 

qi, 3 144.042 55.559 31.249 19.732 105.958 58.483 80.268 
Fqj 

j 130.932 22.447 23.640 32.125 119.068 58.485 52.875 
run 14 S=3.797 , 

128.979 24.204 26.899 31.674 121.021 64.775 58.326 

q,, 3 127.474 25.491 31.327 33.310 122.526 71.983 66.690 
[;::: ] 

124.689 23.460 45.329 46.558 125.311 51.229 38.442 
run 15 S=3.792 

122.191 25.651 51.491 48.032 127.809 56.540 41.968 

119.802 27.612 60.094 52.285 130.198 62.190 1 47.715 

135.258 55.026 67.111 47.343 114.742 30.232 37.657 
run 16 S=3.750 

134.873 61.071 75.304 49.106 115.127 33.802 40.894 

qo 134.498 66.482 85.976 53.993 115.502 38.017 46.007 

130.251 49.044 66.505 47.712 119.749 31.207 37.288 
run 17 S=3.766 

129.100 54.439 75.820 50.481 120.900 34.661 39.519 

127.866 
1 

59.764 87.961 56.063 122.134 38.102 43.937 
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Table 7.12 Maximum entropy pipe characteristics for multiple load case (1+2+3) of Example 2, 
obtained by the CAMONET computer programme for runs 13-17. 

I Pipe number i F-2--] F-3-ý [7 4--] [75 7 F-6--] F-7 

Actual cý values (*10') 3.21 0.21 0.19 0.15 3.42 1.44 1.61 
1.29 0.09 0.88 1.79 3.13 2.91 3.10 

run 14 1.66 1.29 0.99 0.15 3.36 3.14 2.90 

cq 010-ý 2.10 1.46 0.12 0.07 3.62 3.35 2.89 

2.60 0.05 0.06 0.07 4.26 3.17 3.01 
Lrun 

17] 
[ý 

. 
2.57 0.17 0.002 0.14 4.03 2.92 2.67 

-11 

Table 7.13 Maximum entropy pipe head losses for multiple load case (1+2+3) of Example 2, 
obtained by the CAMONET computer programme for runs 13-17. 

Pipe number I r-27 F3 7] F7; 7 
Actual h,,, values 5.387 0.300 0.611 0.469 5.687 0.911 1.080 

Actual hu va]Z; 
-ý 

5.346 0.382 0.763 0.487 5.728 1.146 1.250 

Actual hi, 3 values 5.310 0.453 0.986 0.569 5.764 1.439 1.554 

3.038 0.505 1.252 1.972 3.543 1.757 3.224 

run 13 S=3.856 
3.015 0.566 1.670 2.001 3.581 2.236 3.671 

h, 2.996 0.616 2.217 2.305 3.612 2.833 4.522 

3.234 1.576 1.488 0.469 4.810 3.064 1.957 

run 14 S=3.797 
3.146 1.812 1.890 0.457 4.957 3.702 2.347 

3.078 1.994 2.507 0.501 5.072 4.501 3.008 

hu 3.743 1.944 0.611 0.469 5.687 2.556 1.080 

run 15 S=i. -/Vz 
3.605 2.293 0.774 0.497 5.899 3.067 1.271 

hi, 3 
3.476 2.629 1.030 0.581 6.105 3.659 1.611 

5.387 0.300 0.611 0.469 5.687 0.911 1.080 

run 16 S=3.750 
5.358 0.364 0.757 0.502 5.722 1.121 1.258 

ho 5.331 0.426 0.967 0.598 5.757 1.393 1.565 

4.958 0.868 0.020 0.921 5.826 0.888 0.941 

run 17 S=3.766 
4.878 1.053 0.025 1.022 5.930 1.078 1.048 

4.792 1.251 0.033 1.242 6.043 1- 285 1.275 
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7.3.3 MULTIPLE LOAD CASE WITH CHANGING PIPE FLOW DIRECTIONS 

The case of changing some pipe flow directions between the load cases included in 

the calibration model is now considered by including cases I and 4 first in the model 

followed by three load cases incorporating load cases 1,4 and 5. 

7.3.3.1 MULTIPLE LOAD CASE (1+4) 

For this multiple load case, the CAMONET computer programme is used five times 

by adding the external flows of load case 4 and its pipe flow directions along with the 

loop head loss constraints to runs 4-7 to produce runs 18-21 respectively, and then by 

adding the head loss of path 1-4 related to load case 4, where node 4 is a terminal 

node for that load case, to run 18 giving the final run for this multiple load case, 

which is run 22. The results of the five runs are given in Tables 7.14,7.15 and 7.16. 

Table 7.14 Maximum entropy pipe flows for multiple load case (1+4) of Example 2, obtained by 
the CAMONET COMDuter nro2ramme for runs 18-22. 

::::: 3 [- 
1--I 

r-2 -ý F3 -] F4] r 
67 6 

Actual q,,, values 120.843 24.546 36.036 32.333 129.157 46.297 
1 

52.667 

Actual qi, 4 values 122.693 2.205 48.277 1.825 127.307 49.898 51.825 

111.483 11.612 15.303 15.174 138.517 49.871 69.826 

122.693 13.281 26.139 12.887 127.307 60.973 62.887 

105.790 11.389 13.949 8.350 144.210 44.401 76.650 

116.359 14.441 24.281 19.920 133.641 55.799 69.920 

112.451 14.649 9.923 7.725 137.549 47.802 77.275 

qi, 4 122.950 11.001 23.432 17.617 127.050 58.951 67.617 

Fqj, 
j 

106.144 8.350 10.134 7.928 143.856 47.794 77.072 

116.069 18.993 22.902 17.035 133.931 60.063 67.035 

112.425 11.808 15.371 15.988 137.575 50.618 69.012 

5; D 
123.630 

1 
13.081 26.486 00 11.8 126.370 

1 
61.714 

1 
61.800 
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Table 7.15 Maximum entropy pipe characteristics for multiple load case (1+4) of Example 2, 
obtained by the CAMONET computer programme for runs 18-22. 

Pipe number I F-I--ý F2 -] F-37 F4 -] F 
57 

F7; --] l 
7_ 

Actual (xi values (*10') 3.21 0.21 0.19 0.15 3.42 1.44 1.61 

2.43 1.54 1.83 1.86 2.15 2.46 2.39 

3.28 1.66 2.50 1.79 2.40 3.39 1.40 

04 3.17 1.83 2.04 2.07 3.04 2.43 0.79 

4.08 1.53 1.96 1.97 2.80 1.36 0.80 
L 

' 
2.34 1.51 1.71 1.84 2.14 2.31 2.50 

Table 7.16 Maximum entropy pipe head losses for multiple load case (1+4) of Example 2, obtained 
by the CAMONET computer programme for runs 18-22. 
F-Pipe -number 

I 
[77T-ý F2 

3 4I 
F--5] [7 

6 7 

Actual hj, j values 5.387 0.300 0.611 0.469 5.687 0.911 1.080 

Actual hi, 4 value: s:: 
ý 

5.541 0.003 1.050 0.002 5.537 1.047 1.048 

3.518 0.558 1.225 1.467 4.075 1.782 2.692 

4.201 0.715 3.301 1.084 3.486 2.586 2.217 

4.313 0.578 1.407 0.469 4.891 1.985 1.876 

hj,, 5.145 0.897 3.928 2.346 4,248 3.031 1.582 

4.669 1.018 0.611 0.469 5.687 1.629 1.080 

5.508 0.599 3,001 2.158 4.909 2.402 0.843 

5.387 0.300 0.611 0.469 5.687 0.911 1.080 

6.357 1.375 2.766 1.932 4.982 1.391 0.834 

3.444 0.564 1.155 1.604 4.008 1.719 2.759 

4.107 0.682 3.163 0.914 3.425 2.491 2.249: 
j 
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7.3.3.2 MULTIPLE LOAD CASE (1+4+5) 

The external flows for load case 5 and its pipe flow directions along with the loop 

head loss constraints are added to runs 18-21 in order to solve this multiple load case 

by the CAMONET computer programme, giving runs 23-26 respectively whose results 

are given in Tables 7.17,7.18 and 7.19. The final run performed on this multiple load 

case is run 27 which is obtained by adding the head losses of path 1-4 corresponding 

to cases 4 and 5 to run 23. The results of this final run are also given in the above 

tables. 

Table 7.17 Maximum entropy pipe flows for multiple load case (1+4+5) of Example 2, obtained 
b-v the CAMONET comDuter vroaramme for runs 23-27. 

Pipe number 1 3 6 

Actual q4I values 120.843 24.546 36.036 32.333 129.157 46.297 52.667 

LActual 
qi, 4 values 122.693 2.205 48.277 1.825 127.307 49.898 51.825 

Actual qis valu 119.583 32.466 42.858 20.025 130.417 57.117 40.025 

114.654 14.935 15.641 15.361 135.346 49.719 69.639 

run 23 S=3.743 
125.365 9.439 26.781 13.415 124.635 59.804 63.415 

115 770 693 13 27.244 20.678 134.230 72.077 40.678 
qu . . 

F q. 
-1 

109.822 14.676 14.344 9.490 140.178 45.146 75.510 

run 24 S=3.703 
qjA 119.451 10.430 24.355 20.764 130.549 54.881 70.764 

110 898 13.268 25.569 26.800 139.102 67.631 46.800 
. 

114.750 17.022 10.386 8.114 135.250 47.728 76.886 

run 25 S=3.672 
125.274 7.168 24.345 18.212 124.726 57.442 68.212 

qis 117.137 14.338 25.542 21.659 132.863 72.799 41.659 

107.653 9.710 12.438 10.381 142.347 47.943 74.619 

run 26 S=3.567 
114.841 17.625 24.714 17.820 135.159 57.466 67.820 

131 109 3 827 23.905 20.791 140.869 75.304 40.791 
. . 

114.392 7.667 18.270 24.995 135.608 56.725 60.005 

run 27 S=3.678 
qi, 4 

124.178 13.317 26.421 11.084 125.822 62.496 61.0 4 

L 
930 9.754 23.632 23.192 137.070 73.176 43.192 f. 
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Table 7.18 Maximum entropy pipe characteristics for multiple load case (1+4+5) of Example 2, 
obtained by the CAMONET computer programme for runs 23-27. 

Pipe number i F-Tý F5 -] F6 -ý E7 
Actual cq values (*10') 3.21 0.21 0.19 0.15 3.42 1.44 1.61 

2.21 1.46 1.71 1.70 2.32 2.81 2.28 

2.91 1.52 2.29 1.42 2.55 3.66 1.40 

(Xi 2.87 1.78 1.87 1.89 3.14 2.86 0.80 

3.97 1.16 1.34 1.20 2.86 1.35 0.85 

2.48 1.81 1.66 0.58 2.24 2.00 3.17 

Table 7.19 Maximum entropy pipe head losses for multiple load case (1+4+5) of Example 2, 

obtained by the CAMONET computer programme for runs 23-27. 

Pipe number i 
F-2 -] 13 

4 
F-5 -] [- 6-] 

Actual h,,, valu 5.387 0.300 0.611 0.469 5.687 0.911 1.080 

Actual ho valu 5.541 0.003 1.050 0.002 5.537 1.047 1.048 

Actual his valu 5.283 0.504 0.843 0.193 5.790 1.345 0.650 

3.366 0.842 1.189 1.370 4.208 2.030 2.559 

run 23 S=3.743 
3.972 0,360 3.218 1.066 3.612 2.858 2.152 

ho 3.427 0.717 3.322 2.376 4.144 4.039 0.945 

4.093 0.849 1.357 0.469 4.941 2.206 1.826 

run 24 S=3.703 
4.782 0.451 3.618 1.998 4.331 3.167 1.619 

ho 4.167 0.704 3.959 3.206 4.871 4.663 0.753 

4.384 1,303 0.611 0.469 5.687 1.914 1.080 

run 25 S=3.672 
5.157 0.263 2.961 2.095 4.895 2.698 - 0.865 

hi4 4.554 0.948 3.236 2.889 5.503 4.184 0.347 

5.387 0.300 0.611 0.469 5.687 0.911 1.080 

run 26 S=3.567 
6.072 0.905 2.180 1.275 5.167 1.275 0.905 

5.525 0.054 2.049 1.697 5.578 2.103 0.353 

3.767 0.303 1.538 1.160 4.070 1.841 2.697 

run 27 S=3.678 
4.385 0.843 3.045 0.257 3.542 

- -- 
2.202 2.788 

ED 
3.678 0.473 2.477 1.009 

l 
4. 151 2.950 1.467 
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7.3.4 DISCUSSION 

The results of the 27 runs performed on Example 2 are now investigated and 

compared with the actual values in order to study the influence of information added 
in each run on the calibration model solution. The main concern for the calibration 

model is to see how close are the pipe characteristics values of the network being 

considered to the actual values. Obviously, the closer the estimate of the pipe 

characteristic values are to the real values, the more realistic pipe flows for all load 

cases can be generated. Consequently, the discussion will be concentrated on the 

sensitivity of the resulting pipe characteristic values to the information included in 

each run. However, pipe head losses and pipe flow results are also discussed but 

briefly and under various headings. 

7.3.4.1 ORIGINAL LOAD CASE 1 

The results of the seven runs performed on this load case and given in Table 7.5,7.6 

and 7.7 are discussed in this section. First, it can be seen from Table 7.5 that the 

maximum nodal entropy pipe flows obtained by solving Problem 3 are far away from 

the actual flows. This is due to the fact that only the external flows and the topology 

of the network along with pipe flow directions have been considered. Neither pipe 
data nor loop head loss requirements have been accounted for. 

Adding the loop head loss constraints to the problem in run 1, however, leads to a 

radical change in the pipe flows towards the actual values although neither pipe length 

nor pipe diameters have been included in those loop constraints. In runs 2 and 3 where 

respectively the pipe lengths and pipe diameters were considered in the loop equations, 
it is evident that pipe flows are more sensitive to information about pipe diameters 

than to the lengths. Only a very little change in the pipe flows can be seen in run 2, 

while the flows corresponding to run 3 in links 3,4 and 7 (all belonging to one loop) 

have changed quite remarkably although no improvement on their values toward the 

actual values has been achieved. This different influence of pipe lengths and pipe 
diameters on pipe flows can be justified by the different exponential powers of pipe 

187 



lengths and pipe diameters in the loop equations. The effect of considering nodal 
heads on the pipe flows can be studied by investigating runs 4-7 in which the head 

losses along paths 1-5,1-4,1-3 and 1-2 have been included respectively. Hardly any 

change can be seen in the pipe flows of run 4 since the head loss along path 1-5 

added in this run is only a way of bounding pipe characteristics and hence pipe head 

losses to meaningful values as will be seen later. However, an interesting improvement 

in the pipe flows can be seen in runs 5,6, and 7 where a new path head loss has been 

included in each run. Special attention should be made to run 6 where the best 

estimation of pipe flows for the seven runs has been obtained. Although all pipe head 

losses in run 7 are restricted to their actual values, the pipe flows have been 

unexpectedly diverted away from their real values. This may suggest that the head loss 

along path 1-2 added in run 7 is extra information which is not necessary and gives 

the problem a small range of freedom for choosing the pipe flows and pipe 

characteristic values to fit the restricted head losses in all the pipes, taking into 

account that those values are the most-likely values rather than the actual values. 

Referring to Table 7.6, the pipe characteristic values for the first three runs are 

unbounded and have meaningless values since there are infinite numbers of values 

which fit the resulting maximum entropy pipe characteristic probabilities for each run. 

However, the head loss of path 1-5 added in run 4 directs the unbounded pipe 

characteristic values to a unique solution which is a much more realistic one than the 

previous solutions. Adding extra information about path head losses in runs 5,6 and 

7 has remarkably improved the estimation of characteristic values of the network 

pipes. In these last three runs, the characteristic values of some pipes have been 

improved on the expense of the other pipes. The best estimated values, however, are 

shared between runs 6 and 7 with a little favour towards run 7 in which the restricted 

head losses in all pipes force pipe flows to accommodate inaccurate characteristic 

values of some pipes as mentioned earlier. 

Finally, some remarks have to be stated about the pipe head losses which are given 

in Table 7.7. Following pipe characteristic values, the pipe head losses in the first 

three runs represent unbounded values which are then restricted in run 4 by adding the 
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head loss of path 1-5. As expected, these pipe head losses are driven towards their 

actual values by adding extra information about different path head losses until all the 

pipe head losses reach the actual values in run 7. The path head losses included in this 

run are sufficient to determine the head losses in all pipes in the network. 

7.3.4.2 MULTIPLE LOAD CASE WITH UNCHANGED PIPE FLOW 

DIRECTIONS 

It can be seen from Tables 7.8 and 7.9 that adding information about load case 2 to 

original load case I without considering any path head loss related to case 2 gives 

only a slight, improvement on the pipe flows concerning load case I and pipe 

characteristics for runs 8-11 compared with the results of runs 4-7 respectively. This 

may be due to the fact that the information about load case 2 added to the formulation 

is balanced by increasing the number of variables in the problem by the extra pipe 

flow variables which are related to that extra load case. Similar to the original load 

case, pipe flows related to case I divert away from the actual values in run 11 by 

adding the head loss of path 1-2 for case 1 to the formulation, while, as expected, pipe 

characteristics get closer to the actual values in this run. Sin-dlar improvement to pipe 

flows for load case 1 can be noticed in the pipe flows for load case 2 in runs 8-11 

although no path head losses related to load case 2 have been considered in these runs. 

In run 12, however, where the head loss of path 1-5 related to load case 2 has been 

included, all the results have improved quite remarkably, especially pipe characteristic 

values which have the best estimated values so far in the 12 runs. 

Referring to Table 7.10, pipe head losses for load case 1 have also improved slightly 
by adding load case 2 to the formulation until convergence to the actual values has 

been completed as expected in run 11. The interesting thing about the results of Table 

7.10 is that although no path head losses related to load case 2 have been included in 

runs 8-11, the pipe head losses for load case 2 have improved quite remarkably until 

a very good estimation was obtained in run 11 which is even better than the 

estimation of run 12 where the head loss along path 1-5 for load case 2 has been 

considered but only with its counterpart in load case 1. 
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Exactly the same thing can be said about the compound problem of cases 1,2 and 3 

whose results are shown in Tables 7.11,7.12 and 7.13. There is a slight improvement 

on pipe flows and pipe characteristics when load case 3 has been added to the 

compound problem of cases 1 and 2. Also, the pipe characteristics improve by 

restricting all the pipe head losses for load case I to the actual values as shown in run 

16, while the pipe flows, as previously, are slightly worse in this case. In run 17 

where the head losses of path 1-5 for the three load cases have been only considered, 

a slight improvement in all pipe flows and pipe characteristics can be observed. 

Moreover, the pipe head losses for load cases 2 and 3 improve quite remarkably up 

to run 16 although no path head losses related to these two load cases have been 

considered. They are even better than the respective results of run 17 where the head 

losses of path 1-5 related to the two cases along with the respective head loss in case 

I have been considered in the formulation. 

To sum up, including information up to loop head loss requirements in the calibration 

model for extra load cases having the same pipe flow directions as those for the 

original load case leads only to a slight improvement in the pipe flows and pipe 

characteristics, and is a much smaller improvement than that which can be obtained 
by adding extra path head losses related to the original load case. 

7.3.4.3 MULTIPLE LOAD CASE WITH CHANGING PIPE FLOW 

DIRECTIONS 

The results of multiple load case (1+4) shown in Tables 7.14,7.15 and 7.16 are 
investigated in this section to determine the effect of changing some pipe flow 

directions between the load cases being considered on the calibration model results. 
No regular changes in the pipe flows related to case I can be observed when the 

results of runs 18-21 are compared to the respective results of runs 4-7 for the original 
load case although some pipe flow results such as the results of runs 18 and 21 are 
better than the respective results of runs 8 and 11 related to the multiple load case 
(1+2). Even in the runs 18-22 themselves, the pipe flows do not improve regularly as 

a new path head loss related to case I has been included through the above mentioned 
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runs. 

However, all pipe characteristic results in runs 18-22 are worse than the results of 

respective runs related to the original load case or the multiple load case (1+2) as will 
be seen later. On the other hand, pipe head losses related to case I are remarkably 
improved in runs 18-21 compared with the respective results of the runs related to the 

original load case and the multiple load case (1+2). Only in run 22 where a path head 

loss related to case 4 has been included, pipe head losses concerning case I are 

worsened comparing to the results of the respective run 12 of the multiple load case 
(1+2). This suggests that information about extra load cases having different pipe flow 

directions may sometimes divert the results of the original load case away from the 

actual values. 

The irregularity in pipe flow changes observed in the above multiple load case can 

also be noticed in the multiple load case (1+4+5) whose results are shown in Tables 

7.17,7.18 and 7.19. Although the pipe flow results are slightly improved in this 

multiple load case. Compared with the respective results of the multiple load case 
(1+4), they are still less accurate than the results of the two previous sections. Also, 

a slight improvement in the pipe characteristics can be seen in Table 7.18 compared 

with the results of the multiple load case (1+4). However, they are not as good as the 

results of the original load case or the multiple load case with unchanged pipe flow 

directions. Considering the pipe head losses shown in Table 7.19, they are noticeably 
improved towards run 26 although no regular improvement can be observed when the 

results of Table 7.19 are compared with the respective results of Table 7.16 which are 

related to the multiple load case (1+4). 

To sum up, no improvement on the results of the calibration model can be achieved 

when extra information about extra load cases having different flow directions in some 

pipes are included in the model. Moreover, the results sometimes worsen by adding 

such load cases into the calibration model. 
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Finally, to conclude the discussion of Example 2, a confirmation of the above results 

can be seen clearly in Table 7.20 where the deviations of pipe characteristic results 

of runs 4-27 from the actual values are tabulated and the sums of the square errors of 

all runs are determined. The results of runs 1-3, however, are not included in the table 

since they are unbounded and have no meaningful values. 

Table 7.20 Deviations of pipe characteristic results from the actual values for the network of 
Example 2 along with the sums of the square errors for runs 4-27. 

Pipe number i 

Actual cý 
FO. 

21 - To-lq-] F---] 0.15 3.42 F--ý 
Fl-. 

6-1 

-1.99 -0.12 +1.12 +1.75 -0.19 +1.50 +1.48 12.8 

-1.61 +1.07 +1.21 +0.02 -0.07 +1.72 +1.15 9.5 

-1.14 +1.33 -0.06 -0.07 +0.21 +1.87 +1.18 8.0 

-0.66 1 -0.17 -0.13 -0.08 +0.95 1 +1.78 1 +1.37 6A 

-1.96 -0.11 +0.94 +1.69 -0.25 +1.48 +1.47 12.0 

-1.59 +1.07 +1.04 +0.01 -0.07 +1.70 +1.22 9.1 

run 10 -1.12 +1.29 -0.06 -0.07 +0.20 +1.90 +1.23 8.1 

-0.16 
1 

-0.13 -0 - 08 
1 

+0.89 
1 

+1.76 
1 

6.2 

-0.16 +1.11 +0.22 +0.84 +0.15 2.6 

run 13 -1.92 -0.12 +0.69 +1.64 -0.29 +1.47 +1.49 11.3 

-1.55 +1.08 +0.80 0.00 -O. G6 +1.70 +1.29 8.8 

Aj run 15 - 1.11 +1.25 -0.07 -0.08 +0.20 +0.91 +1.28 5.3 

-0.16 -0.13 -0.08 +0.84 +1.73 +1.40 6.1 

-O. G4 -0.19 -0.01 +0.61 +1.48 +1.06 4.1 

-0.78 +1.33 +1.64 +1.71 -1.27 +1.02 +0.78 11.3 

+0.07 +1.45 +2.31 +1.64 -1.02 +1.95 -0.21 15.0 

run 20 -0.04 +1.62 +1.85 +1.92 -0.38 +0.99 -0.82 10.9 

+0.87 +1.32 +1.77 +1.82 -0.62 -0.08 -0.81 10.0 

-0.87 +1.30 +1.52 +1.69 1.28 +0.87 +0.89 10.8 

run 23 -1.00 +1.25 +1.52 +1.55 -1.10 +1.37 +0.67 10.8 

-0.30 +1.31 +2.10 +1.27 -0.87 +2.22 -0.21 13.6 

run 25 -0.34 +1.57 +1.68 +1.74 -0.28 +1.42 -0.81 11.2 

+0.76 +0.95 +1.15 +1.05 -0.56 -O. G9 -0.76 4.8 

-0.73 +1.60 +1.47 +0.43 -1.18 +0.56 +1.56 9.6 
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It is evident from the results of the last column in Table 7.20 that pipe characteristics 
improved smoothly and as expected in load case 1, multiple load case (1+2) and 

multiple load case (1+2+3) through runs 4-7,8-12 and 13-17 respectively. Also, the 

results of runs 13-17 corresponding to load case (1+2+3) are better than the respective 

results of runs 8-12 corresponding to load case (1+2) which in turn are better than the 

respective results of runs 4-7 which are related to load case 1. However, although the 

results are generally improved in runs 23-27 of load case (1+4+5) compared to runs 

18-22 of load case (1+4), there is some irregularity in pipe characteristic changes in 

these two sets of runs, and their results are generally less accurate than the results of 

runs 4-7,8-12 and 13-17 which correspond to case 1, (1+2), and (1+2+3) respectively. 

In conclusions, a radical improvement towards the actual values can be achieved in 

the results of the calibration model when the loop head requirements for the original 

load case are included in the model. The results are remarkably improved when extra 

path head losses are constrained and added to the formulation. However, only a slight 

improvement on the results can be obtained by adding extra load cases having the 

same pipe flow directions as those for the original load case. Any information about 

other load cases which have different flow directions in some pipes may divert the 

results away from the actual values. 

7.4 SUMMARY AND CONCLUSION 

The calibration method presented in the previous chapter as Problem 8 for calculating 

most-likely pipe flows and corresponding pipe characteristics in water distribution 

networks has been demonstrated in this chapter by calibrating two network examples 

for which pipe characteristics and hence pipe flows are assumed not available. The 

first example is a one-source network with one load case. The network has seven links 

designed by Tanyimboh and Templeman (1993c) to carry maximum entropy flows. 

The second example is a simulated one-source network with three loops and seven 

links analyzed by the Hardy-Cross 
. 
method to calculate the unique flows in the 

network pipes for five different load cases with all information needed for the analysis 
known. The computer programme CAMONET which is written in FORTRAN 77 in 
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conjunction with the NAG library routine E04UCF for non-linear constrained 

optimization has been used in this chapter to calibrate the two examples assuming that 

pipe characteristics and corresponding pipe flows are not available. This computer 

programme CAMONET has been designed in a way that it can incorporate any piece 

of information which might individually be available in the network being considered. 

Consequently, 4 runs and 27 runs respectively have been performed on the above two 

examples with extra information added in each run in order to investigate the 

influence of that information on the model results. 

It has been shown from Example 1 how well and accurately the calibration model 

performs for water distribution networks designed to carry maximum entropy flows. 

It has been conjectured (Tanyimboh and Templeman, 1993c) that designing water 

networks to carry maximum entropy flows would give a good compromise between 

cost and reliability in water distribution networks. If the calibration model is used for 

such reliable networks, it will generate exactly the same actual pipe characteristics and 

corresponding design pipe flows in the network for the case where roughness 

coefficients of some or all pipes have been lost. 

In Example 2, however, from which the main conclusions have been drawn, it is 

evident that the results of the calibration model improve radically towards the actual 

values by adding the loop head loss requirements into the formulation. The results are 

more sensitive to pipe diameters than to pipe lengths due to the higher power of the 

pipe diameters in the head loss equations. Also, a significant improvement on the 

results can be achieved by adding extra path head losses to the formulation. However, 

the results can be slightly improved further by considering extra load cases which 

have the same pipe flow directions as those for the original load case. Any extra 

information concerning other load cases which may have different flow directions in 

some pipes may divert the results away from the actual values. Consequently, in real 

water distribution networks in which pipe flow directions for different load cases are 

not guaranteed to be the same, the information about one load case is enough to 

calibrate the missing pipe characteristics and hence the cor . Any 

other load cases which might be available for such networks appear to add little extra 
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useful information. 

It should be noted that although the results of Example 2 are much better than those 

obtained by the maximum entropy flow model, they are less satisfactory and less 

accurate than had been hoped for. Discrepancies between actual and estimated network 

values are still relatively too large to be practically useful. The assumption of 
independence used in the calibration model between the pipe characteristic finite 

probability scheme and the finite probability schemes used in the nodal flow entropy 

function may be the main reason behind these unsatisfactory discrepancies. Further 

work in this regard based on the present calibration model is necessary to determine 

in what form extra information must be added to get better accuracy. 
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Figure 7.1 The one-source network of Example 1 adapted from 

Tanyimboh and Templeman (1993c) 
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Figure 7.2 The one-source network of the original load case of Example I 
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Figure 7.3 Two load cases of Example 2 with unchanged pipe flow directions 

comparing with the original load case of Figure 7.2 

(a): Load case 2 

(b): Load case 3 
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Figure 7.4 Two load cases of Example 2 with changing flow directions in some pipes 

comparing with the original load case of Figure 7.2 

(a): Load case 4 

(b): Load case 5 
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CHAPTER 8 

ENTROPY-BASED STRUCTURAL 

APPLICATIONS 

8.1 INTRODUCTION 

It has been demonstrated in Chapter 3 that structural trusses and water supply 

networks share many aspects of similarity which can be extended almost fully to 
include terms such as physical quantities, constitutive equations, methods of analysis 

and design and even some reliability approaches, enabling both structural trusses and 

water supply networks to be included in the same general class of potentiated 

networks. 

Most of the analysis and design methods used in water distribution networks have 

been shown to have counterparts in structural trusses and vice versa. Consequently, 

any approach or method used in either system and not explored in the other has the 

potential to be used in this other system. It has been shown in Chapter 4 how 

maximum entropy flows can be calculated in water distribution networks. Tanyimboh 

and Templeman (1993c) showed that designing water networks to carry those 

maximum entropy flows leads to a very good compromise between cost and reliability 

which is desired in urban water distribution networks. If bar axial forces in structural 
trusses can be considered as bar axial force flows and external loads as demands or 

supplies in a similar way to pipe water network flows, as described in Chapter 3, 

maximum entropy bar axial forces can be determined using the alfa method presented 
in Chapter 4, and structural trusses can consequently be designed to carry those 

calculated axial forces. 
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Force flows, however, differ from water flows in their vectorial nature. Each force in 

two dimensional structural trusses has two components, vertical and horizontal, as 

mentioned in Chapter 3. This difference can be overcome by treating each component 

at a time as will be seen later. Moreover, structural trusses have to be also treated as 

three dimensional rather than two, increasing the number of force flow components 

to three. However, this three dimensional truss case is beyond the scope of this thesis, 

and is left to future work. 
r 

It should be noted that structural trusses have to be indeterminate if maximum entropy 

force flows are to be determined since, similarly to branched water networks, the 

equilibrium equations are sufficient to calculate unique bar axial forces in the case of 

determinate structural trusses. 

In this chapter, the force flow diagram for two dimensional structural trusses is 

developed in a similar fashion to water supply networks, followed by a method for 

calculating maximum entropy bar axial forces corresponding to those for water 

networks. A sample two dimensional indeterminate structural truss is presented and 

solved to demonstrate the above procedure, and then designed to carry the resulting 

maximum entropy bar axial forces. Finally, the maximum entropy truss design is 

tested and compared to a conventional design of the same truss by considering the 

removal of each bar in turn, and then by increasing the external load at each joint in 

the truss at a time. The results are discussed and conclusions are drawn. 

8.2 STRUCTURAL FORCE FLOW DIAGRAM 

To calculate maximum entropy bar axial force flows for indeterminate structural 

trusses, force flow diagrams for such trusses have to be developed first. External loads 

and the topology of the truss, along with bar force flow directions are assumed to be 

available, thus paralleling water distribution networks. This is described next by means 

of an example. 
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Consider the two dimensional truss of Figure 8.1. The external loads including support 

reactions are shown in the figure, while bar lengths needed to calculate these support 

reactions are given in Table 8.1. Because the truss has five joints and nine members, 
it is therefore indeterminate with two redundant bars. Bars 1-4 and 2-3 are arbitrarily 

chosen as the two redundant bars. Consequently, all axial forces in the truss bars can 

be calculated in terms of these two redundant bar axial forces, Fax, 4and 
FaX23, using 

bar force equilibrium equations only and assuming compressive forces are positive and 
tensile forces are negative as shown in Figure 8.2 and Table 8.1. 

Table 8.1 Bar axial forces of the truss of Figure 8.1, calculated by bar force equilibrium equations 
in terms of redundant axial bar forces Fax,, and Fax,,. 

Member i 
-J-1 

th Le. (-m) IF- *Bar axial force Fax, (KN) 

1 1-3 2000 126.037 - 0.577 Fax, 4 

2 24 2000 76.036 - 0.577 FaX23 

3 14 3464 Fax, 4 

4 2-3 3464 Fax23 

5 3-5 2000 - 68.301 + 0.577 Fax, - 0.577 Fax2., 

6 4-5 2000 - 18.301 - 0.577 FaX, 4 + 0.577 FaX2, 

7 34 2000 97.169 - 0.577 Fax, 4 - 0.577 Fax2.1 

8 1-5 2000 - 13.018 - 0.577 Fax,, 

9 2-5 2000 - 38.018 - 0.577 Fax23 

*compressive force +ve, tensile force -ve. 

Looking at the layout of the truss and the directions of external loads applied to it 

(Figure 8.1), it can be expected that both redundant bars are in compression, i. e. Fax, 4 
and FaX23are positive. Consequently, it can be deduced from Table 8.1 that members 
1-5,2-5,3-5 and 4-5 are in tension and members 1-3,1-4,2-3 and 2-4 are in 

compression, while member 3-4 could be either in tension or compression depending 

on the values of Fax, 4 and FaX23. These states of the truss members are needed in 

developing a force flow diagram for the truss being considered, as will be seen later. 

It can be seen from Table 8.1 that bar force equilibrium equations are not sufficient 

to determine uniquely the bar axial forces of the indeterminate truss of Figure 8.1. It 

is recalled here from Chapter 3 that bar cross-sectional areas are required to calculate 
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these forces for such indeterminate cases. In the maximum entropy approach, however, 

these areas are not required for calculating the most likely axial forces in the truss 

bars, making the design procedure non-iterative and quicker than the conventional 

routine, as will be seen later. 

In developing a force flow diagram for the truss of Figure 8.1, it is obvious that the 

vectorial nature of the problem makes it more complicated than that corresponding to 

water supply networks. However, this can be overcome by investigating only one 

component of force flows which, when determined, leads to the other component and 

hence to the final bar axial forces in the truss, as will be described later. 

8.2.1 VERTICAL COMPONENT OF FORCE FLOW DIAGRAM 

Figure 8.3 shows the vertical component of force flow diagram for the truss of Figure 

8.1 assuming that bar axial compressive forces and external inflows are upwards and 

bar axial tensile forces and external outflows are downwards as shown in the figure. 

At joints I and 2, the upwards vertical support reactions of 109.151 and 65.849 

respectively are considered as external inflows and all upwards compressive forces in 

the bars connected to these two joints are considered as force flows leaving joints 1 

and 2 as shown in the figure. On the other hand, the downwards vertical external loads 

at joints 3,4 and 5 are treated as external outflows and the downwards tensile force 

in bars 3-5 and 4-5 are treated as force flows leaving joints 3 and 4 respectively and 

both reaching joint 5 as shown in Figure 8.3. 

8.2.2 HORIZONTAL COMPONENT OF FORCE FLOW DIAGRAM 

Figure 8.4 shows the horizontal components of both bar axial forces and the external 

loads including support reactions, assuming that bar axial compressive forces and 

external inflows are rightwards and bar axial tensile forces and external outflows are 

leftwards. In this diagram, there is only one source Ooint 1) and one demand Ooint 4), 

and the force flow directions comply with the convention defined. Note that member 
3-4 has been assumed to be in compression although it may be in tension as 
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mentioned earlier. 

Having defined the two components of force flow diagrams, maximum entropy bar 

axial forces are calculated next using the alfa method programme described in Chapter 
4 and 5 and given in Appendix B. 

8.3 MAXIMUM ENTROPY BAR AXIAL FORCES 

The alfa method programme is used in this section to calculate maximum entropy bar 

axial forces for the truss of Figure 8.1 with the external flows and the topology of the 

truss along with force flow directions in the bars for the two components of force flow 

diagram as shown in Figures 8.3 and 8.4. Obviously, solving one component diagram 

by the alfa method programme is sufficient to determine the axial forces in all bars 

since any force component which does not exist in the solved component diagram can 

be determined by bar equilibrium equations at the joints related to that force 

component. 

Consider the vertical component of force flow diagram shown in Figure 8.3. All the 

requirements of the alfa method programme are satisfied in this diagram which can 

therefore be solved by that computer programme to yield all vertical components of 

the bar axial forces shown in figure 8.3, which can easily be used to give the axial 
forces in the corresponding bars. Three axial forces in bars 1-5,2-5 and 3-4 have not 
been determined since they are horizontal and therefore have no vertical components 

to be included in the vertical component diagram of Figure 8.3. However, they can be 

calculated by bar force equilibrium equations at joints 1,2 and 3 respectively. The 

results of maximum entropy axial forces in all bars are given in Table 8.2. Note that 

members in tension are assigned negative values while positive values are given to 

members in compression. 
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Table 8.2 Maximum entropy bar axial forces of the truss of Figure 8.1, calculated by solving the 
vertical component of force flow diagram (Figure 8.3) using the alfa method Droi! ramme. 

Member i-j Faxu, (KN) I F *Final maximum entropy Faxu (KN) 

1 1-3 54.5755 +63.018 

2 24 32.9245 +38.018 

3 1-4 54.5755 + 109.151 

4 2-3 32.9245 +65.849 

5 3-5 37.5000 -43.301 

6 4-5 37.5000 -43.301 

7 34 0.0000 -3.867 

8 1-5 0.0000 -76.036 

9 2-5 0.0000 -76.036 

*compressive force +ve, tensile force -ve. 

Alternatively, the axial forces in the truss bars can theoretically be calculated by 

solving the horizontal component of force flow diagram shown in Figure 8.4. 

However, a close examination of the diagram shows that there is no terminal node in 

this force flow component diagram. Also, the flows in loops 3-4-5 and 3-2-5 circulate 

the loops infinitely so no conservation of energy around these two loops can be 

satisfied. Even reversing the flow in member 3-4, i. e. considering tensile force rather 
than compressive force in that member does not solve the problem. Consequently, the 

horizontal component of force flow diagram shown in figure 8.4 is unsolvable by the 

alfa method programme and its maximum entropy force flow component cannot be 

determined. It can then be concluded that maximum entropy bar axial forces for 

indeterminate structural trusses cannot be guaranteed to be calculatable for all types 
of trusses. Certain logical requirements for force flow diagrams are required to match 

those corresponding to water supply networks. 

Considering the truss of Figure 8.1, solving its horizontal component of force flow 

diagram shown in Figure 8.4 is, however, not needed, at least for this particular truss 

example, since maximum entropy axial forces in the truss bars have been calculated 
by solving the vertical force flow component as shown earlier. In the remainder of this 

chapter, the truss of Figure 8.1 is designed to carry those maximum entropy bar axial 
forces. The resulting design is tesied and compared to a conventional design of the 
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same truss. 

8.4 MAXIMUM ENTROPY OPTIMUM STRUCTURAL DESIGN 

Having calculated maximum entropy bar axial forces for the truss of Figure 8.1 as 

shown in Table 8.2, the segmental optimum design method presented in Chapter 3 as 
Problem 5 is used in this section to design the truss to carry those maximum entropy 
bar axial forces. It is recalled from Chapter 3 that the segmental optimum design 

formulation is one of linear programming and produces optimum bar sizes for 

structural trusses with some members composed of several segments which need to 

be rounded up to the size of the largest segment in each multi-segment member. For 

indeterminate trusses, the analysis, optimization and rounding up phases of the method 

should be made iteratively until the convergence of bar sizes between iterations is 

achieved. 

In this section, however, only one iteration of the segmental optimum design is 

performed since the axial forces designed in the bars are the maximum entropy forces 

which are fixed and need not to be altered. Therefore, special arrangements are 

required to ensure that axial forces induced in the resulting optimum design bars are 

equal to the desirable maximum entropy forces, as will be seen later. 

Assuming the set AD of bar sizes available is 500,1100,1400,1900,2400,3200 and 

3500 mm' with round cross-sectional areas of steel grade 43 with elastic modulus 

equal to 210 KN/nuný and density equal to 7850K g/M3, Problem 5 can then be applied 

to design the truss of Figure 8.1 by assigning different sets of sizes to each member 

without violating stress limits and minimum gauge desired which is 500 MM2 for this 

example as shown in Table 8.3. Maximum entropy bar axial virtual forces in the truss 

associated with virtual unit downwards load at node 5 needed in Problem 5 

formulation to constrain the vertical deflection at that node to 2 mrn and calculated 
by solving the vertical component of the respective force flow diagram using the alfa 

method programme are also shown in Table 8.3. 
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Table 8.3 Input data of Problem 5 for maximum entropy optimum design of the truss of Figure 
8.1. 

Member i 
[-. -Vir-t. -., 

maximum entropy Fax, Discrete bar sizes A, (mm2) 

1 1-3 +0.289 14M, 1900,2400.3200,3500 

2 24 +0.289 1100,14W. 1900,2400,3200,3500 

3 14 +0.500 3200,3500 

4 2-3 +0.500 2400,3200,3500 

5 3-5 -0.577 500,1100,1400,1900,2400,3200,3500 

6 4-5 -0.577 500,1100,1400.1900,2400,3200.3500 

7 34 -5* 19" 500,1100.1400,1900,2400,3200,3500 

8 1-5 -0.577 500,1100,1400,1900,2400,3200,3500 

9 2-5 -0.577 500.1100,1400,1900,2400,3200,3500 

*compressive force +ve, tensile force -ve. 

A linear programming algorithm called EZLP and designed by Professor A. B. 

Templeman. in the Department of Civil Engineering of Liverpool University has been 

used to solve Problem 5 for which data are shown in Table 8.3. The input and output 
files of this EZLP run are given in Appendix F from which the resulting segmental 

optimum design is summarized in Table 8.4. 

The maximum entropy segmental optimum design shown in Table 8.4 has one multi- 

segment member (member 4-5) which can be rounded up to give the maximum 

entropy discrete optimum design without significant increase in the truss weight as 

shown in the table. 
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Table 8.4 Maximum entropy optimum design of the truss of Figure 8.1, obtained by solving 
Problem 5 using the EZLP linear programming algorithm. 

Maximum entropy member area (mm) 
Member I-j 

Segmental optimum design Discrete optimum design 

1 1-3 1400 1400 

2 24 1100 1100 

3 14 3200 3200 

4 2-3 2400 2400 

5 3-5 1100 1100 

6 4-5 624.127mm @ 500mm'; 1375.873mm @ 11OOmO 1100 

7 34 500 500 

8 1-5 1100 1100 

9 2-5 1100 1100 

. 

LWeight 
W (Kg) I F- 265.518 268.457 

Because the truss being considered is redundant, the resulting initial axial forces in the 

maximum entropy discrete optimum design bars would differ from the, desirable 

maximum entropy bar axial forces shown in Table 8.2. A computer programme called 
TRUSS2D and given in Appendix G is used to calculate these initial bar axial forces 

and corresponding horizontal and vertical deflections at the truss joints. The results 

are summarized in Table 8.5. 

Table 8.5 Initial bar axial forces and joint deflection components for the maximum entropy 
discrete optimum design of the truss of Figure 8.1, calculated by the TRUSS21) programme. 

Mem *Fax, (KN) 
7 

**80, (MM) (MM) 

1 1-3 +81.610 1 0 0 

2 24 +53.559 2 +1.021 0 

3 1-4 +76.951 3 +0.720 - 1.057 

4 2-3 +38.935 +0.144 1.042 

5 3-5 -46.353 5 + 0.497 1.649 

6 4-5 -40.250 

7 34 +30.264 

8 1-5 -57.448 

9 2-5 -60.499 

*compressive force +ve, tensile force -ve. 
"upwards and rightwards deflection +ve, downwards and leftwards deflection -ve. 
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As expected, it can be seen from Table 8.5 that the initial axial forces in the truss bars 

are not the desirable maximum entropy bar axial forces shown in Table 8.2. To 

achieve that, the two redundant bars 1-4 and 2-3 have to be precompressed by the 
differences between the maximum entropy bar axial forces in these two bars and their 

initial force values respectively, i. e. 32.200 and 26.914 KN respectively as shown in 

Figure 8.5. This can practically be done by enlarging these two bars by two extra 
lengths which can be calculated by the characteristic force-strain relationship equations 

presented in Chapter 3 as follows: 

AM = 32.200 * (3464.076 + A14) / (3200 * 210) = 0.166 mm. 
A23 = 26.914 * (3464.076 + A23) / (2400 * 210) = 0.185 mm. 

These two extra lengths ensure inducing extra axial forces of 32.200 and 26-914 KN 

in bars 1-4 and 2-3 respectively when these two bars are precompressed to fit their 

original places in the truss. The extra axial forces induced in bars 1-4 and 2-3 

obviously generate extra axial forces in the remaining bars in the truss, which can be 

determined by analysing the truss of Figure 8.6 and then can be added to the initial 

bar axial forces induced by the external applied loads to generate the desirable 

maximum entropy bar axial forces as demonstrated in Table 8.6. The final joint 

deflections in the maximum entropy design can be obtained by adding the extra 
deflections induced by enlarging bars 1-4 and 2-3 to the initial deflections shown in 

Table 8.5. The results are given in Table 8-7. 

209 



Table 8.6 Maximum entropy bar axial forces in the truss of Figure 8.1, generated by adding the 
extra bar axial forces induced by precompressing of bars 1-4 and 2-3 by forces 32.200 and 26.914 
KN respectively to the initial bar axial forces induced by the external applied loads. 

Member i-j I Fax, (KN) "Extra Fax *Final Faxo (KN) 

1 1-3 +81.610 -18.592 +63.018 

2 24 +53.559 -15.541 +38.018 

3 14 +76.951 +32.200 + 109.151 

4 2-3 +38.935 +26.914 +65.849 

5 3-5 -46.353 +3.052 -43.301 

6 4-5 -40.250 -3.051 -43.301 

7 34 +30.264 -34.131 -3.867 

8 1-5 -57.448 - 18.588 -76.036 

9 2-5 -60.499 - 15.537 - 76.036 

*compressive force +ve, tensile force -ve. 

Table 8.7 Final joint deflection components in the maximum entropy design of the truss of Figure 
8.1, generated by adding the extra joint deflection components caused by precompressing of bars 
1-4 and 2-3 to the initial deflection components caused by the external applied loads. 

Initial deflection components 
1 [ 

Extra deflection components 
I FFinal 

deflection components 

0 0 0 0 0 0 

2 +1.021 0 +0.295 0 + 1.316 0 

3 +0.720 - 1.057 -0.148 +0.232 +0.572 -0.825 

4 +0.144 1 -1.042 +0.502 +0.274 +0.646 -0.768 

5 +0.497 
1 

- 1.649 +0.161 +0.441 +0.658 - 1.208 

*upwards and rightwards deflection +ve, downwards and leftwards deflection -ve. 

Having designed the truss of Figure 8.1 to carry maximum entropy bar axial forces 

calculated by solving the vertical component of force flow diagram using the alfa 

method computer programme, the truss is conventionally designed next and then 

compared from reliability point of view with the maximum entropy discrete optimum 

design obtained in this section. 
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8.5 CONVENTIONAL OPTIMUM STRUCTURAL DESIGN 

In this section, the segmental optimum design method presented in Chapter 3 as 
Problem 5 is used to design the truss of Figure 8.1 in a conventional way in which the 

analysis, optimization and rounding up phases are carried out iteratively until the 

converged discrete optimum design is achieved. The TRUSS21) computer programme 

is used to solve the analysis phase of the method for each iteration needed for 

convergence, while the EZLP algorithm is used for optimization. 

Using the same set of available bar sizes AE, used in the maximum entropy design, 

five iterations of analysis, optimization and rounding up of the segmental optimum 

structural design method were needed to obtain the converged conventional optimum 

design of the truss of the Figure 8.1, with the maximum entropy discrete optimum 

design shown in Table 8.4 being used as an initial design for the procedure. In each 

iteration, different sets of bar sizes chosen from the set AD have been assigned to each 

member of the truss in such a way that no stress limit or minimum gauge limit has 

been violated. The resulting conventional discrete optimum design for the last iteration 

along with its corresponding bar axial forces and joint deflection components is given 

in Table 8.8. 

Obviously, the abov6 conventional optimum design of the truss of Figure 8.1 differs 

from the maximum entropy design of the same truss in many aspects such as weight, 

bar axial forces distribution, bar cross-sectional areas and joint deflection components. 
The reliability of the two designs is tested next by means of two major reliability 

approaches, those being damage tolerance, and resilience or flexibility approaches. 
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Table 8.8 Last iteration results of the conventional discrete optimum design of the truss of Figure 
8.1, obtained by rive iterations of analysis, optimization and rounding up process of the segmental 
optimum structural design method using TRUSS2D and EZLP computer programmes. 
I 

Member I-j 
1 1 

Ad (mm) 1 [7ýýxu 
(KN) I I **Slh (-M) 

J I 
**S,, (mm) 

1 1-3 1900 +106.850 1 0 0 

2 2-4 1900 +77.082 2 + 1.318 0 

3 14 1900 +33.235 3 +0.669 - 1.005 

4 2-3 Soo - 1.809 4 +0.273 - 1.050 

5 3-5 500 -48.068 51 +0.613 - 2. OW 

6 4-5 5W -38.535 

7 34 1900 +79.027 

8 1-5 500 -32.208 

9 2-5 500 -36.975 

Weight W (Kg) 
I F- 

186.152 

*compressive force +ve, tensile force -ve. 
"upwards and rightwards deflection +ve, downwards and leftwards deflection -ve. 

8.6 MAXIMUM ENTROPY DESIGN AND CONVENTIONAL DESIGN 

RELIABILITY COMPARISON 

It is recalled from Chapter 3 that the damage tolerance of a structural truss is the 

capability of the truss to sustain partial damage (failure of one bar or more) without 
leading to a complete failure. Also, the flexibility or the resilience of a truss is its 

capability to withstand extra applied loads which are not specifically designed for. In 

this section, the damage tolerance of the maximum entropy design and the 

conventional design of the truss of Figure 8.1 is examined by considering the removal 

of each bar in the truss in turn and analysing the resulting nine reduced truss cases for 

each design using the TRUSS2D computer programme. Also in this section, the 

resilience of both designs is investigated by analysing the two designs using the 

TRUSS2D computer programme with each external load component applied to the 

truss is increased to 150 KN in turn. Therefore, there are four cases of resilience 

analysis to be considered for each design. 
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Because the final analysis results for the maximum entropy design are a combination 

of initial results and their corresponding results obtained by precompressing of bars 

1-4 and 2-3 as shown in Tables 8.6 and 8.7, damage tolerance and resilience analysis 

results for that design have been respectively calculated by adding the final maximum 

entropy results of Tables 8.6 and 8.7 to the results obtained by considering each 

reduced truss having external applied loads equal and opposite to axial forces in the 

removed bar as shown in Figure 8.7 for the case of bar 1-3 being removed for an 

example, and by adding the final maximum entropy results to the results obtained by 

analysing the truss to sustain the extra load applied to each external load component 

as shown in Figure 8.8 for the case of increasing the vertical load component of the 

external applied load at joint 5 as an example. All the final damage tolerance and 

resilience analysis results for the maximum entropy design are given in Tables 8.9- 

8.12. 

Table 8.9 Bar axial force results of damage tolerance analysis for the maximum entropy design 
of the truss of Figure 8.1. 

Member 1.3 2.4 1-4 2-3 3-5 4.5 3.4 I-S 2-5 

*Capadty +63.289 +42.757 +114.809 +66.885 +42.757 +42.757 +9.147 +42.757 +42.757 
(KN) 

-369.964 -292.681 -822.581 -623.777 -292.681 -292.681 - 135.577 -292.681 . 292.681 

cast 1 failed +39.488 +218.302 +63.304 +21.187 -107.789 -65.416 -139.056 -74.567 

case 2 +63.997 failed +I(Y7.456 +131.7(X) . 82.299 -4.303 -*). 9(y7 -75.057 -114.056 

case 3 +126.036 +36.549 failed +68.395 -107.788 +21.186 +57.682 -13.017 -77.506 

case 4 +62.040 +76.035 +110.847 failed -4.305 -82.297 +33.172 -77.015 . 38.01H 
-FaN 
(KN) case 5 +75.942 +72.592 +124.268 +86.766 failed -86.603 +21.980 -154.74 -111.438 

cm 6 +85.715 +17.413 +69.838 + 101.537 -86.603 failed -1.77 4 -53.339 -96.641 

civiai 7 +65.050 +39.853 +105.632 +62.670 -43.497 -43.105 failed -74. (X)4 -74.201 

case 8 +139.052 +36.245 -22.549 +68.920 1 -121.109 +34.507 +70.396 failed -77.809 
L. 

- + 114.052 +112.542 -65.951 
1 

. 691 +34 . 121.293 +70.211 -77.994 failed 

*compressive force +ve, tensile force -ve. 

213 



Table 8.10 Joint deflection component results of damage tolerance analysis for the maximum 
entropy design of the truss of Figure 8.1. 

1 
. 8. (mm) 

I 
-8ý (mm) 

I 
-6ý (mm) 

1 
-6. (mm) 

1 
. 8. (mm) 

1 
-8. (nim) 

I 
*s" (nim) 

eme 1 +1.849 -0.949 -4.346 +0.298 . 1.291 +1.204 . 2.892 

ewe 2 +1.637 +1.201 -1.196 +1.981 -3.062 +0.650 . 2.337 

case 3 +0.783 -0.027 -0.974 -1.125 -1.468 +0.112 -1.971 

case 4 +0.995 +1.354 -1.269 +0.723 4919 +0.666 -1.709 

case 5 +2.304 1 +1.394 -1.401 +0975 -1.494 +1.339 . 2.570 

cme 6 +1.299 +0.694 -1.074 +0.728 . 0.504 +0.461 . 2.073 

case 7 +1.283 +0.521 -0.812 +0.661 4758 +0.640 -1.177 

+5.786 +3.684 -3.219 +2 , 344 . 2351 
- 
ý: +5,113 -3.605 

+6.321 +3. W -2.528 +2.211 
---- 

514 

t 

3 40.675 -3.840 

*upwards and rightwards deflection +ve, downwards and leftwards deflection -ve. 

Table 8.11 Bar axial force results of resilience analysis for the maximum entropy design of the 
truss of Fieure 8.1. 

Member 1 1.3 2A 14 2-3 3.5 4.5 3.4 
1 

.. 
I 

.. 

-Capedty +63.289 +42.757 +114.809 +66.885 +42.757 +42.757 +9.147 +42.757 +42 : 757 

(KN) 

-369.964 -292.681 -822.581 -623.777 -292.691 -292.681 - 135.577 -292.681 -292.681 

case I +146.1(X) +51.158 +115.251 +93.091 -26.640 -59.962 +5.751 . 122.860 -106,199 

*Fax, cm 2 +71.222 -9.259 +181.542 +61.135 . 48.784 . 37.818 +7.059 42.832 48.314 
(KN) - 

,.. a 3 +75.362 +119.288 +137.772 +75.087 -60.978 . 25.624 +3.144 -I(M. 995 -124.672 

case 4 +92.813 +68.011 +132.546 +88.901 86.405 86.8(X) +12.619 111.194 -t 10.997 

*compressive force +ve, tensile force -ve. 

Table 8.12 Joint deflection component results of resilience analysis for the maximum entropy 
design of the truss of Fieure 8.1. 

*8. (min) 
I 

*8. (mm) 
I I 

- in) 
1 

Sý (m -8. (inin) (nim) 
- 

08, (nim) 
1 

. 8. (mm) 
1 

-8. (nint) 

case 1 -1.983 +0.951 -1.697 +0.842' -1.171 +1.063 . 1.898 

cme 2 +0.788 +0.120 -0.629 4). 014 -0.372 +0.371 -0.972 

case 3 +2. (X)5 +1.102 -1.228 +1.042 -1.750 +0.926 . 1.939 

4 +1.923 +1.063 1.343 +0.823 . 1.316 +0.962 . 2.264 

*upwards and rightwards deflection +ve, downwards and leftwards deflection -ve. 

For the conventional design, however, the results of all damage tolerance and 

resilience analysis cases have been respectively calculated by analysing each reduced 

truss in turn (see Figure 8.9 for the case of bar 1-3 being removed as an example), 

and by considering the whole truss subjected to all applied loads with each load 
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component increased to 150 KN in turn (see Figure 8.10 for the case of increasing the 

vertical component of the external load applied to joint 5 to 150 KN, as an example). 
All the damage tolerance and resilience analysis results for the conventional design 

are given in Tables 8.13-8.16. 

Table 8.13 Bar axial force results of damage tolerance analYsis for the conventional design of the 
truss of Figure 8.1. 

Mem 1-3 2-4 14 
1 

2-3 3-5 
1 

4-5 3.4 1.5 

*Capscity +112.877 +112.877 +41.475 +0. (KX) +9.147 +9.147 +112.877 +9.147 +9.147 
(KN) 

497.683 497.683 497.683 -135.577 -135.577 -135.577 497.683 -135.577 -135.577 

case I failed +55.807 +218.3(X) +35.041 +37.505 -124.110 -49. (Y)9 -139.060 -58.250 

case 2 +79.492 failed +80.619 +131.7(X) -97.794 +11.191 -25.414 -59.565 . 114.060 

case 3 +126.040 +80.903 failed -9A27 -63.436 -23.167 +102.040 . 13.020 -33.154 

* 
case 4 +106.480 +76.038 +33.877 failed 48.742 -37.961 +77.612 -32.579 -38.020 

Fax, 
(KN) case 5 +73.741 +92.044 +90.579 -27.724 failed -86.603 +60.881 -65.316 . 22.013 

caw 6 +133.390 +65.088 -12.735 +18.965 -86.603 failed +93.574 -5.667 . 49.969 

can 7 +58.483 +46.422 +117.010 +51.297 -30.363 -56.. 240 failed -80.574 . 67.636 

C-ase S. + 139 . 060 +83.495 22.551 12.917 -73.863 -12.740 +117.650 failed 30562 

9 1 . 

J L 

--L - 
+] 19 90 

-I 
+114.060 +10.507 

I 
-65.851 -24.216 -62.387 +129.120 

I 
19.4 - 

I 

*compressive force +ve, tensile force -ve. 

Table 8.14 Joint deflection component results of damage tolerance analysis for the conventional 
design of the truss of Figure 8.1. 

1 -8. (mm) 
I 

*S. (mm) 
I 

-Sý (mm) 
I 

os. (mm) 
1 

. 8. (mm) 
1 

-8. (mm) 
I 

%, (mm) 

case 1 +3.758 4808 -10.221 -0.562 . 2.917 +2.649 -7.401 

case 2 +3.307 +6.044 -3.950 +6.171 -12.089 +1.135 -8.935 

case 3 +0.880 +0.103 -0.789 . 0.408 -1.212 +0.248 -2.1(X) 

cam 41 +1.345 +0.661 -0.998 +0.272 -1.059 +0.621 -2.093 

case 5 +1.663 +0.271 -0.583 4). 035 -1.513 +1.244 -4.156 

can 6 +1.041 +0.988 . 1.343 +0.519 -0.678 +(). 1()8 -3.755 

case 7 +2.823 +3.436 . 2.323 -0.058 -1.932 +1.535 -4.088 

+3.372 +1.812 . 1.851 +1.222 -1.725 +2.790 -2.910 

+6.072 +2.372 -2.064 +1.725 -3.170 +0.364 -3.756 

*upwards and rightwards'deflection +ve, downwards and leftwards deflection -ve. 
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Table 8.15 Bar axial force results of resilience analysis for the conventional design of the truss of 
Figure 8.1. 

Mem 1-3 2-4 1-4 2-3 3-5 4-5 3.4 1-5 2-5 

-Copedty +112.877 +112.877 +41.475 +(). (XX) +9.147 +9.147 +112.877 +9.147 +9.147 
(KN) 

-497.683 -497.683 -497.683 135.577 -135.577 135.577 497.683 135.577 135.577 

case 1 +206.430 +101.930 +10.764 +5.332 -36.297 -50.306 +116.750 -62.537 -55.532 

*Fax, case 2 +115.870 +27.521 +104.220 -2.568 . 56.649 . 29.955 +88.482 +1.810 -11.537 
(KN) - 

3 +125.950 +169.840 +50.155 -12.470 -61.013 -25.590 +104.280 -56.411 -74.123 

ý4 +149.850 +120.190 +33.755 1.480 -91.260 -81.946 +121.840 -54.160 -58.817 

*compressive force +ve, tensile force -ve. 

Table 8.16 Joint deflection comPonent results of resilience analysis for the conventional design of 
the truss of Figure 8.1. 

1 
-8. (MM) 

1 
-8. (MM) 

1 
eý (MM) 

1 
-8. (MM) 

1 
-S. (MM) 

1 
-S. (MM) 

1 
sý (nim) 

case 1 +2.249 +1.322 -1.958 +0.737 -1.463 +1.191 -2.832 

case 2 +0.185 4.225 -0.541 «a 668 -0.652 . 0.034 -1.677 

eue 3 +2.486 +1.193 -1.418 +0.670 . 2.032 +1.075 -2.828 

L--2r f +2.152 1 +1.196 -1.558 +0.585 -1.600 +1.032 1 -3.660 

*upwards and rightwards deflection +ve, downwards and leftwards deflection -ve. 

Finally, the compressive and tensile strength capacities of each bar for both designs 

have been calculated according to British Standard Code of Practice for steel design 

BS 5950 and included in the tables of bar axial force results. This forms a convenient 

way of establishing the behaviour of the truss under the severe circumstances being 

considered. 

8.7 DISCUSSION 

Before discussing the reliability analysis results for both maximum entropy and 

conventional designs of the truss of Figure 8.1, a brief comparison between the two 

designs is presented next in terms of weight, bar axial force distribution, bar cross- 

sectional areas and joint deflection components. 

Table 8.17 shows a summary of the two designs with some statistical measures of 

mean and spread for the above-mentioned results. It can be seen from the table that 
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the conventional design is about 30% lighter than the maximum entropy design. Most 

of the extra weight used in the maximum entropy design is consumed by the two long 

and thick bars 1-4 and 2-3 which provide the main strength to the truss. Bar 2-3 in the 

conventional design is hardly used as can be seen from its very small axial force. 

Also, the coefficients of variation of bar cross-sectional areas, bar axial forces and 

joint deflection components for both designs show that the maximum entropy design 

results are more uniform than the corresponding conventional design results. This 

accords with the maximum entropy formalism which assigns the most uniform values 

to a system subject to available information. 

Table 8.17 Maximum entropy design and conventional design results for the truss of Figure 8.1 

with some statistical comparison. 

Member I-j 

Maximum entropy design Conventional design *-joint 
deflection 
component 

0 

1 1.3 14(K) +63.01 8 1900 +106.850 81, 0 0 

2 2-4 lj(X) +38.018 19W +77.082 S.. +1.316 +1.318 

3 14 32(X) +109.151 19W +33.235 80, 0 0 

4 2.3 2400 +65.849 500 _1.809 alb +0.572 +0.669 

5 3-5 1 IN) 43.301 5(X) 48.068 8A, 
-0.825 -JAX)5 

6 4-5 1100 43.301 5(X) -38.535 
kb +0.646 +0.273 

7 3.4 5(X) -3.867 19W +79.027 A . 1.050 

8 1.5 lI(X) 76.036 5(X) -32-208 
81b +0.613 

-, 

1 2.5 ll(X) -76.036- -36.975 81. -2. (XK) 

Mean 1444.444 59.410 1122.222 50.421 Mean 0.856 0.990 

827.815 31.359 737.865 31,684 0.1 0.291 0.561 

q, ýmesn 0.573 0.528 0.658 0.628 0.340 0.567 

Weigbt (Kg) 268.457 ] 1-6.152 
-J F- 

*compressive force +ve, tensile force -ve. 
"upwards and rightwards deflection +ve, downwards and leftwards -ve. 

The general uniformity of the maximum entropy design results may be considered as 

an advantage from a reliability point of view. For a truss with uniform bar cross- 

sectional areas, for example, there would be more possible alternate load paths in 

some emergency circumstances such as the case of unexpected extra load applied to 

the truss or the case of a partial damage to the truss. The same can be said about bar 
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axial forces as they follow their corresponding bar cross-sectional areas. However, the 

small force in bar 3-4 in the maximum entropy design may be due to the fact that 

only the vertical component of force flow diagram of the truss being considered has 

been solved, for which the horizontal bar 3-4 is not a member. In contrast, this bar in 

the conventional design is a main bar with high compressive axial force as shown in 

Table 8.17, while the long cross bar 2-3 is redundant as it carries very small tensile 

axial force. It cannot be usable for alternate load paths as it has minimum cross- 

sectional area. Finally, looking at joint deflection results for both designs shown in 

Table 8.17, it can be seen that deflection values for the maximum entropy design are 

relatively smaller than the corresponding values for the conventional design as 
indicated by the mean values. Obviously, this can be expected as the maximum 

entropy design is heavier than the conventional design. Also, the coefficients of 

variation for the deflection results for both designs show that these deflection results 

corresponding to the maximum entropy design are less spread than those 

corresponding to the conventional design for which the maximum deflection value is 

up to the limit (2 mm). 

Returning to the reliability analysis results given in Tables 8.9-8.16, it can be deduced 

that neither design is damage tolerant nor flexible enough to sustain the extra load 

applied to the truss. Failure of any member in the maximum entropy design, for 

example, leads to a failure of at least one other member leading to a progressive 
failure as can be seen from Table 8.9 by comparing the bar axial forces in each 

reduced truss case to their respective capacities. Because bar 3-4 in the maximum 

entropy design carries very small axial force, case 7 which is the case of removing 
that bar is the safest case amongst the nine cases. Only bar 1-3 is just above the limit 

capacity as shown in the table. This can be confirmed by the deflection results given 
in Table 8.10 where the deflection results of case 7 are the smallest. All the other 
deflection results in the table have no meaning since their corresponding truss cases 
have progressively been failed. Also, the resilience analysis results given in Table 8.11 

for the maximum entropy design show that increasing any external load component 

applied to the truss leads inevitably to a complete failure of the truss by progressive 
bar failures. Again, this leads to disregarding the deflection results of all four 
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resilience analysis cases shown in Table 8.12. 

The same can be said about the conventional design analysis results. Apart from case 
4 of damage tolerance analysis where, as expected, removing the redundant and 

unusable bar 2-3 leaves the truss perfectly safe, Tables 8.13 and 8.15 show 

respectively that the conventional design is neither damage tolerant nor flexible in 

sustaining extra load applied to it. Also, the deflection results of Tables 8.14 and 8.16 

can be disregarded due to the failure of the respective truss cases. Only the deflection 

results of case 4 of damage tolerance analysis are valid with the vertical component 

of the deflection at joint 5 just above the limit of 2 mm as shown in Table 8.14. 

The non-damage tolerance of the maximum entropy design and the conventional 

design can be justified as there are special ways of designing damage tolerant 

structures by designing those structures to have some residual strengths, as described 

in Chapter 3. However, the non-flexibility of both designs is valid only for the extra 

loads specified in the example. Because both designs behaved similarly in damage 

tolerance and flexibility analyses, the two designs are compared next by determining 

their probabilities of failure and survival analytically as described in Chapter 3. 

It is recalled from Chapter 3 that the failure probability of a system can be calculated 

from the following equation: 

NM 

pfisystem) =I [1-p(FMi)] (8.1) 

in which pf (system) is the probability of the system failure; p(FMi) is the probability 

of failure mode i, i=l,..., NM; where NM being the number of failure modes. 

The non-damage tolerance of the maximum entropy and conventional designs of the 

truss of Figure 8.1 as shown earlier suggests considering failure of each bar in the 

truss as a failure mode. Consequently, to calculate the probability of failure of each 
design , the probability of failure of each bar in each design has to be calculated first. 

Assuming both strength and load for each bar are normally distributed, the following 
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first order approximation of probability of failure can be used: 

Pf = 0(-P) = 1-0(p) (8.2) 

in which pf is the failure probability of a component; (D is the cumulative normal 
distribution function; and 0 is the safety index which for the fundamental case, e. g. 
the case of a truss bar, can be calculated as: 

R-L_ 
rCrR 2+ CrL2 

(8.3) 

in which and If are the mean values of strength and load respectively; CýRand CýL are 
respectively the standard deviations of strength and load. 

Once the system probability of failure is calculated using Eq. (8.1), the reliability of 

the system or its probability of survival p. (system) can be calculated from the 

following equation: 

P, (system) =I- Pf (system) (8.4) 

Applying the above four equations to the maximum entropy and conventional designs 

and assuming that the mean values of strength and load for each bar in both designs 

have respectively the same values of capacities and bar axial forces calculated earlier 
for the respective bar in the respective design, with (YR taken as 10% of R and crL taken 

as 15% of for each bar, Tables 8.18 and 8.19 show the safety index of each bar and 

its probability of failure for the maximum entropy design and the conventional design 

respectively, along with their system probabilities of failure and survival. 

220 



Table 8.18 Reliability analysis for the maximum entropy design of the truss of Figure 8.1. 

Member 1± 
-1 1 

Pru---] 

1 1-3 +63.289 +6.3289 +63.018 +9.4527 0.024 0.4904 

2 24 +42.757 +4.2757 +38.018 +5.7027 0.665 0.2530 

3 14 +114.809 +11.4809 +109.151 +16.3727 0.283 0.3886 

4 2-3 +66.885 +6.6885 +65.849 +9.8774 0.087 0.4653 

5 3-5 -292.681 -29.2681 -43. ýOl -6.4952 8.318 0.0000 

6 4-5 -292.681 -29.2681 -43.301 -6.4952 8.318 0.0000 

7 34 -135.577 -13.5577 -3.867 -0.5801 9.706 0.0000 

8 1-5 -292.681 -29.2681 -76.036 -11.405 6.897 0.0000 

9 2-5 -292.681 1 -29.2681 -76.036 -11.4054 6.897 0.0()()o 0.0 

I 

pf (system) F- 0.87555 
1 

p. (system) I F 0.12445 

*compressive force +ve, tensile force -ve. 
**P, j takes its absolute values for tension bars. 

Table 8.19 Reliabilitv analvsis for the conventional design of the truss of Figure 8.1. 

Member i E P,, -j 1 
1-3 +122.877 +11.2877 +106.850 +16.0275 0.307 0.3794 

2 2-4 +112.877 +11.2877 +77.082 +11.5623 2.215 0.0134 

3 14 +41.475 +4.1475 +33.235 +4.9853 1.271 0.1018 

4 2-3 -135.577 -13.5577 -1.809 -0.2714 9,865 0.0000 

5 3-5 -135.577 -13.5577 48.068 -7.2102 5.699 0.0" 

6 4-5 -135.577 -13.5577 -38.535 -5.7803 6.584 0.0000 

7 34 +112.877 +11.2877 +79.027 +11.8541 2.068 0.0193 

8 1-5 -135.577 -13.5577 -32.208 -4.8312 
- 

7.182 0.0000 

9 2-5 -135.577 -13.5577 -36.975 -5.5463 

J ý 
6.731 0.0ow 

p, (system) 0.46066 

P. (system) 0.53934 

*compressive force +ve, tensile force -ve. 
**P, j takes its absolute values for tension bars. 

Firstly, the relatively small system reliabilities of both designs as shown in Tables 

8.18 and 8.19 are due to the fact that both designs have been designed 

deterministically using the mean values of strengths and loads. Also, the highest safety 
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index values are, as expected, those for bars 2-3 and 3-4 for the conventional design 

and the maximum entropy design respectively, since these two bars are almost unused 
in their respective designs. All high safety indices which have almost zero 

probabilities of failure are those for tension members whose bar sizes have been 

bounded by minimum gauge of 500 mmý taking into account the very high tensile 

strength of steel, or by the minimum vertical deflection of 2 mm at joint 5 taking into 

account the very high elasticity of steel. 

Secondly, it can be seen from Tables 8.18 and 8.19 that the conventional design is 

more reliable than the maximum entropy design although the former is lighter than the 

latter. This can be argued by realizing that the larger bar sizes of the maximum 

entropy design have been used to sustain larger bar axial forces compared with the 

conventional design. These larger bar axial forces are due to the extra forces induced 

by precompressing bars 1-4 and 2-3 in the maximum entropy design. Therefore, the 

reliabilities of a stronger truss sustaining larger loads and a weaker truss sustaining 

smaller loads depend on the differences between bar capacities and bar loads for both 

designs. Accidently, the available bar sizes used in the two designs have strength 

capacities much closer to the maximum entropy bar axial forces than to those 

corresponding to the conventional design, making the latter design more reliable than 

the former design. Choosing another set of available bar sizes may produce a 

maximum entropy design which is more reliable than its corresponding conventional 

design. The above arguments justify the case being studied, but also lead to the 

conclusion that the current method of designing maximum entropy structural trusses 

does not produce the desirable and reliable trusses which are sought in this chapter. 

This may be due to the vectorial nature of bar axial forces compared with pipe water 

flows as demonstrated earlier by the difficulties encountered in solving the horizontal 

component of force flow diagram for the truss of Figure 8.1. 
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8.8 SUMMARY AND CONCLUSION 

The alfa method of calculating maximum entropy pipe flows presented in Chapter 4 

and illustrated in Chapter 5 for water distribution networks has been used in this 

chapter to calculate maximum entropy bar axial forces for a sample indeterminate 

structural truss in an attempt to obtain a reliable truss by designing it to carry 

maximum entropy bar axial forces. This parallels the results for reliable water 

distribution networks obtained by Tanyimboh and Templeman (1993c) by designing 

them to carry maximum entropy pipe flows. The motivation for this application was 

the striking similarities between structural trusses and water distribution networks in 

almost every aspect, as demonstrated in Chapter 3. 

Because of the Vectorial nature of the axial forces in the truss bars, force flow 

diagrams for two components (horizontal and vertical) are needed instead of a single 

pipe flow diagram. Solving either component by the alfa method should lead to the 

other, which together with the first component results gives the final maximum 

entropy bar axial forces in the truss. For the truss under research, the vertical 

component has been solved by the alfa method, and its results have been used-to 

determine the horizontal component of the force flow diagram leading to the sought 

maximum entropy bar axial forces in the truss. These final maximum entropy bar axial 

forces have been used to design the truss being considered by applying the segmental 

optimum design method presented in Chapter 3 as Problem 5 by means of the linear 

programming algorithm EZLP which is available in the Department of Civil 

Engineering of Liverpool University. Because the sample truss is indeterminate with 

two redundant bars, the bar axial forces induced by the applied loads in the resulting 

maximum entropy design were different from the desirable maximum entropy bar 

axial forces which the truss has been designed for. Therefore, the two redundant bars 

have been precompressed in such a way that final bar axial forces in the truss have 

been converted towards the desirable maximum entropy values. 

Also in this chapter, the truss under investigation has been conventionally designed 

using the segmental optimum design in which five iterations were needed for 
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convergence. The resulting conventional design was about 30% lighter than the 

maximum entropy design. Moreover, the two designs of the truss being considered 
have been compared from a reliability point of view by means of two major 

approaches, those being damage tolerance and resilience or flexibility approaches. The 

damage tolerance of both designs has been tested by considering the removal of each 

bar in the truss in turn and analysing the resulting reduced truss cases for each design. 

The resilience or the flexibility of both designs, however, has been studied by 

analysing the two designs with each external load component applied to the truss 

increased to 150 KN in turn. It has been shown that neither design is damage tolerant 

nor flexible to sustain the extra load applied to the truss. The stronger strengths used 

in the maximum entropy design bars (larger bar sizes) have been cancelled out by the 

larger bar axial forces which are due to the extra forces induced by precompressing 

the two redundant bars in the maximum entropy design. 

Finally, because both designs exhibited similar behaviour against damage tolerance 

and flexibility analysis approaches, a probabilistic reliability analysis has been carried 

out on both designs in order to calculate their probabilities of failure and survival for 

comparison reasons. For this purpose, all strength and load values used for both design 

bars have been assumed to be the mean values with standard deviations of 10% and 
15% of each bar strength and bar load respectively. The analysis showed that the 

conventional design was more reliable than the maximum entropy design. This was 
due to the fact that the probability of failure and hence the probability of survival 
depends on the gap between the strength and load of each individual bar, and 

accidently the strengths of available bar sizes used in both designs were closer to the 

maximum entropy bar axial forces than to those corresponding to the conventional 
design taking into account the above observation of the simultaneous increase of 

strengths and loads in the maximum entropy design bars compared with those 

corresponding to the conventional design. 

Armed with the above results, it can be concluded that the entropy-based approach to 

designing structural trusses does not produce reliable trusses as had been hoped for. 

The vectorial nature of bar axial forces in structural trusses in general and the inability 
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of solving the horizontal component of force flow diagram for the truss used in this 

chapter in particular may be the main reason for failing to obtain reliable maximum 

entropy designs. Because of that, it is unknown whether the maximum entropy force 

results of one component would lead to the maximum entropy force results of the 

other, or which component would give the final maximum entropy results in the case 

of each component giving different final results. Also, the extra axial forces induced 

in the maximum entropy design bars by precompressing the redundant bars in order 

to bring the bar axial forces up to the desirable maximum entropy results would 

undervalue the extra strengths achieved in the maximum entropy design. 

Clearly, the research described in this chapter must be regarded as unsuccessful and 

inconclusive. It has generated many more questions than answers, but has also brought 

to light some unsuspected difficulties in extending the scalar methodologies developed 

for water networks to the vectorial domain of structural trusses. Much further research 
is needed in this area. 
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Figure 8.1 A sample indeterminate structural truss 
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Figure 8.2 The truss of Figure 8.1 with the two redundant bars 
replaced by their bar axial forces 
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Figure 8.3 The vertical component of force flow diagram 
of the truss of Figure 8.1 
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Figure 8.4 The horizontal component of force flow diagram 
of the truss of Figure 8.1 
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Figure 8.5 Precompressing of bars 1-4 and 2-3 in the maximum entropy design 
of the truss of Figure 8.1 

Figure 8.6 The maximum entropy design of the truss of Figure 8.1 
under precompressing applied loads 
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Figure 8.7 Removing of bar 1-3 case which has to be added to the maximum 
entropy design results to give case I of damage tolerance analysis 

150-75=75 

Figure 8.8 Increasing the load at joint 5 case which has to be added to the maximum 
entropy design results to give case 4 of resilience analysis 
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Figure 8.9 Case I of damage tolerance analysis for the conventional design 

with bar 1-3 being removed 

150 

Figure 8.10 Case 4 of resilience analysis for the conventional design 

with the external load at joint 5 being increased 
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CHAPTER 9 

SUMNIARY, CONCLUSIONS AND 

RECOMMENDATIONS FOR FUTURE WORK 

9.1 INTRODUCTION 

In recent years, Jaynes' maximum entropy formalism, based on Shannon's 

informational entropy measure of uncertainty, has been used in the literature to 

generate solutions to a wide range of civil engineering problems under uncertainty. By 

casting in probabilistic terms the missing or uncertain information of the system being 

considered, as required by Shannon's informational entropy, so that an entropy 
function measuring the information can be developed, and by maximizing the resulting 

entropy function subject to any available information, the most-likely, or least-biased, 

performance estimates of the missing information can be inferred. In this thesis, 

methods of logical inference based on the maximum entropy formalism have been 

developed for two different civil engineering system models under uncertainty; those 

being water distribution networks and structural trusses. 

The first point tackled in the present research was the problem of estimating most- 
likely flows in old and inaccessible water distribution networks in which only source 
flow rates, demand flow rates and the topology of the networks with arc flow 

directions were assumed to be available. Other data such as pipe lengths, pipe 
diameters and roughness properties, which may have been lost or may have changed 

over time, were assumed not be available. This problem of incomplete information, 

causing uncertainty surrounding the multiplicity of the possible ways of routing flows 

in the network, has already been investigated by Tanyimboh and Templeman (1993a) 

using Shannon's informational entropy and the maximum entropy formalism. In this 

regard, they rigorously derived a nodal entropy function representing the network 
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flows by casting them probabilistically using the relative frequency interpretation of 

probabilities and then by applying the conditional entropy formula of Khinchin 

(Khinchin, 1953) for the entropy of compound probability schemes. By maximizing 

the resulting nodal entropy function of the network flows subject to the equilibrium 

equations at the network nodes, Tanyimboh and Templeman (1993a) produced a 

model for calculating maximum entropy flows in water distribution networks, which 
flows can be regarded as the most-likely flows in this case of incomplete information. 

The above model for calculating maximum entropy flows in water networks produced 
by Tanyimboh and Templeman (1993a) is non-linear, and hence requires non-linear 

programming. However, the present research has developed a simple and quick 

method for calculating maximum entropy flows in multi-source, multi-demand general 

networks based on path flows supplying each demand node from all the sources 

serving that demand node. Neither mathematical programming techniques nor iterative 

processes are needed in the proposed path-based method. The motivation behind 

developing such a simple method was the applicability of network flow entropy as a 

surrogate measure of reliability which is desirable in urban water distribution 

networks, a conjecture which has been established by Awumah et al. (1990,1991, 

1992) and rigorously confirmed later by Tanyimboh and Templeman (1993c) who 

showed that designing a water network to carry maximum entropy flows improves the 

network reliability very significantly. Therefore, simplifying the maximum entropy 

flow problem would be very useful if it is to be incorporated into a linearized least- 

cost optimum design formulation for water distribution networks such as the linear 

programming method of Alperovits and Shamir (1977) without introducing any extra 

complexity into the formulation. 

The second problem raised in the present research concerning water distribution 

networks was the possibility of using Shannon's entropy measure of uncertainty for 

calibrating computer models of existing water distribution networks, in which pipe 

characteristics, and hence pipe flows, are not known, without the need for physical 

measurement of the network pipe flows. The idea behind developing such a calibration 

model arose in the present research on the realization that the maximum entropy flow 
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problem mentioned earlier does not consider other obvious information which might 
be available in old water distribution networks. Data such as pipe lengths, pipe 
diameters and pressure heads at some nodes of the network can sometimes easily be 

measured and are often available. Also, the conservation laws of energy around the 

network loops must be satisfied in the estimated pipe flows. Additionally, similar 

information regarding other patterns of external flows which might be experienced in 

the network being considered should be taken into account. Only pipe characteristics, 

and hence pipe flows, may be assumed not to be available. The question was how the 

above extra information, along with the already considered information, can be 

incorporated in one single model. The present research has developed such a single 

model capable of estimating most-likely pipe flows and corresponding pipe 

characteristics in water distribution networks, opening up the possibility of calibrating 

old and inaccessible real water distribution networks. 

Turning to structural trusses, the work presented in this thesis has examined the 

possibility of extending some of the entropy-based inference methods developed for 

water supply networks to the optimum design of structural trusses. This has been 

encouraged by the research carried out by Templeman (1992b) who showed that 

structural trusses and water supply networks share similar characteristics in almost 

every aspect such as physical quantities, constitutive equations, methods of analysis 

and design and even some reliability approaches. He demonstrated that almost every 

method of analysis and design used in water supply networks has a counterpart in 

structural trusses, suggesting that other methods used in one of the two systems which 

have not yet been explored in the other system have the potential to be used in that 

other system. In the present research, an attempt has been made to design a reliable 

structural truss to carry maximum entropy bar axial forces as a parallel to that used 

in water distribution networks (Tanyimboh and Templeman, 1993c). 

A summary of the work carried out in the present research is presented next along 

with its main conclusions. This is followed by some suggestions and recommendations 

for future work which have been raised in the present work and have not been 

explored. 
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9.2 SUMMARY OF THE PRESENT WORK AND ITS MAIN CONCLUSIONS 

The simple method presented in Chapter 4 and illustrated in Chapter 5 for calculating 

maximum entropy flows for multi-source, multi-demand general networks has been 

developed using the idea of path flows. By visualizing the -network flows as a set of 

path flows supplying demand nodes by all possible routes, it has been argued that 

according to Laplace's principle of insufficient reason, which is a direct consequence 

of the maximum entropy formalism, the demand of any node in the network served 

by more than one path from any source should be distributed equally amongst all the 

paths supplying that node from that source. Treating all demand nodes in a network 

in this way is sufficient to generate the final pipe flows in water networks having only 

one source supplying all demand nodes in the networks (Tanyimboh and Templeman, 

1993b). In general networks, however, the amount of flow supplying a demand node 

from each source serving it is unknown. It has been shown in the present research that 

the maximum entropy flows in multi-source, multi-demand general networks are such 

that the ratio of the probabilities of path flows from each pair of sources to a demand 

node reachable from the corresponding pair of sources is the same for every demand 

node supplied by this pair of sources in the network. This conjecture can be also 

interpreted as a consequence of the maximum entropy formalism since the equal ratios 

of path flow probabilities treat all the corresponding demand nodes equally on a bias 

scale. The values of these probability ratios, however, depend on the external inflows 

and outflows in the network and are influenced by the network layout. They are, 

therefore, a simple means of making the flows supplied by each source to a demand 

node as uniform as possible subject to available information. 

The proposed method has been derived using the above conjecture. Accordingly, there 

are (NS-1) unknown ratios of path flow probabilities in a water network, where NS 

is the number of sources in the network. Calculating these (NS-1) unknown ratios 

yields a very simple means of calculating the final maximum entropy flows in water 
distribution networks. It has been shown that calculating such ratios only requires 

solving (NS-1) linear equations (the normality conditions) at (NS-1) source nodes in 

the network with (NS-1) unknown ratios. The remaining calculations through to the 
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final maximum entropy flows have been shown to be straightforward. 

The above path-based method is very simple and efficient. Neither mathematical 

programming techniques nor iterative processes are needed in the method. Its 

simplicity and efficiency have been demonstrated by formalising it into simple 

algorithms tackling all the aspects encountered in the method such as identifying the 

reachability of the network nodes from each source in the network and determining 

the number of paths from each source to each node reachable from that source. Also, 

coding these simple algorithms by means of a computer programme written in 

FORTRAN 90 has been shown to be straightforward. 

To facilitate the proposed method, a path entropy function representing the uncertainty 

associated with the path flows in a water distribution network has been developed. In 

this regard, (NS+l) finite probability schemes have been identified in a network. The 

first scheme is related to the source flow probabilities, and the remaining NS finite 

schemes represent the NS sets of path flow probabilities; each corresponds to a source 

and is conditional upon the flow probability of the corresponding source. The sought 

path entropy function has then been derived using the conditional entropy formula of 

Khinchin (Khinchin, 1953) for compound probability schemes. The derived path 

entropy function has the advantage of calculating the maximum entropy value of a 

water network directly from the path flow probabilities which have already been 

obtained by the proposed method without the need to maximize it. 

Finally, the general applicability'of the proposed algorithms and their coded computer 

programme has been demonstrated in Chapter 5 by means of three network examples 

exhibiting different aspects of complexity which can be expected in general real water 
distribution networks. It has been shown that the proposed algorithms are easy to 

operate by hand calculations especially for small networks similar to those used in the 

examples. Also, the running time of the computer programme for solving these 

examples was trivial. 
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It should be noted that although the proposed algorithms have been developed for 

multi-source networks, they can be used for single-source networks for which no 

unknown ratios of path flow probabilities exist. This special case matches exactly the 

simple algorithm proposed by Tanyimboh and Templeman (1993b) for calculating 

maximum entropy flows in single-source networks. However, their super-source 

approach, developed as an extension of the single-source method to multiple sources, 
has been shown in this thesis to be invalid and not to lead to optimal results. This 

suggests that the algorithms developed in this thesis should be used instead of the 

suPer-source approach for calculating maximum entropy flows for multi-source, multi- 
demand general networks. 

The possibility of calibrating computer models of old and inaccessible water 
distribution networks, addressed in the present research by using the maximum entropy 
formalism, has been investigated in Chapters 6 and 7 of this thesis. In order to 

calibrate water networks models, their pipe characteristics along with pipe flows have 

to be estimated as close as possible to the actual values. According to the maximum 

entropy formalism, all the sought missing information has to be cast probabilistically 

so that an entropy function representing it can be derived. Tanyimboh and Templeman 

(1993a) showed how this can be done for network flows by developing a nodal flow 

entropy formula containing (NN+I) entropy functions, where NN is the number of 

nodes in the network. The first entropy function is the entropy of a finite probability 

scheme representing the distribution of the total supply amongst the sources, and the 

remaining NN entropy functions are the entropies of NN conditional finite probability 

schemes, each representing the outflows from a node in the network and depending 

upon the probability of flow arriving at that node. 

In the present research, pipe characteristics in water distribution networks have been 

considered. By normalising the characteristic value of each pipe in the network by the 

sum of the characteristics values of all the network pipes, a finite probability scheme 

representing the probabilities of the network pipes having some characteristic values 
has been identified and an entropy function representing this finite probability scheme 
has been derived. In a compound problem, the joint entropy of a compound scheme 
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has been used to develop an entropy formula representing pipe flows and pipe 

characteristics in water distribution networks. Accordingly, the pipe characteristic 

entropy formula derived in the present research has been added to the (NN+I) flow 

entropy functions of Tanyimboh and Templeman (1993a) assuming that the pipe 

characteristic finite probability scheme is independent from all the finite probability 

schemes used in the (NN+I) flow entropy functions. 

It has been shown in Chapter 6 that maximizing the compound entropy function 

enables most-likely pipe characteristics and corresponding pipe flows to be estimated 
in water distribution networks using information which might be available such as 

multiple external flow patterns, pipe lengths and diameters, nodal pressure heads and 

nodal equilibrium equations along with conservation laws of energy around the 

network loops. 

The above calibration model has been coded in FORTRAN 77 in conjunction with the 

NAG library routine E04UCF for nonlinear constrained optimization. The resulting 

computer programme has been used in Chapter 7 to calibrate two network examples 

for which the available information has been considered step-by-step in order to 

investigate the influence of each new piece of information on the model results. The 

first example is a one-source network with one load case designed by Tanyimboh and 

Templeman (1993c) to carry maximum entropy flows. 'The second example is a 

simulated one-source network with five load cases. It has been shown from the first 

example that the calibration model generates the exact pipe characteristics and 

corresponding pipe flows in water distribution networks designed to carry maximum 

entropy flows for the case where roughness coefficients of some or all pipes have 

been lost. For real water networks such as the simulated network used in the second 

example, it has been demonstrated that the calibration model results improve 

remarkably for a single load case towards the actual values by adding step-by-step the 

available information about that load case. A slight improvement on the results can 

be obtained by adding information about extra load cases which share the same pipe 

flow directions with the original load case. However, changing flow directions in some 

pipes for any load case considered in the calibration model may cause the results to 
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move away from the actual values, suggesting that information about one load case 
is enough for the current calibration model to calibrate real water distribution 

networks. 

It can be seen that the calibration model developed in this thesis estimates most-likely 

characteristics and corresponding pipe flows in water networks. The objective of this 

calibration model, however, is to calibrate real water networks. Although the model 

generates the exact results for networks designed to carry maximum entropy flows, its 

results for the second example are not accurate enough to be practically useful for 

calibrating real water networks. This may be due to the assumption of independence 

used in developing the model between the pipe characteristic finite probability scheme 

and those representing the network pipe flows. However, the present calibration model 

is the first of its kind in the sense that it does nor require any physical measurement 

of the network pipe flows which might be expensive and time consuming. A 

suggestion which might improve this model in getting better accuracy is discussed in 

the next section. 

The last part of the present research is an attempt to extend network flow entropy 

concept to structural trusses following the striking similarities between the two 

systems. By handling axial forces of structural truss bars as bar axial force flows and 

external applied loads as demand and supplies, as described in Chapter 3, the path- 
based method derived in this thesis for calculating maximum entropy flows in water 

networks has been used in Chapter 8 to calculate maximum entropy bar axial forces 

for a sample indeterminate and two-dimensional structural truss which has been 

designed to carry these maximum entropy bar axial forces in an attempt to obtain a 

reliable truss paralleling reliable water networks designed to carry maximum entropy 

flows (Tanyimboh and Templeman, 1993c). 

Force flow diagrams for horizontal and vertical components were needed for 

calculating maximum entropy bar axial forces in the two-dimensional sample truss, 

instead of a single pipe flow diagram, due to the vectorial nature of the axial bar 

forces in the truss bars. Because the truss is indeterminate with two redundant bars, 
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the bar axial forces induced by the applied loads in the resulting maximum entropy 
design were different from the desirable maximum entropy bar axial forces. Therefore, 

the two redundant bars have been precompressed in such a way that the final bar axial 
forces in the truss induced by both the applied loads and the precompressing forces 

in the redundant bars match the maximum entropy results. 

For comparison reasons, the same truss has been conventionally designed and, along 

with the maximum entropy design, has been tested against damage tolerance and 

resilience reliability approaches. It has been shown that neither design is damage 

tolerant against removing any bar in the corresponding design nor resilient to sustain 

extra load which has not been designed for. Also, a probabilistic reliability analysis 

of both designs for calculating their probabilities of failure and survival has shown 

that the entropy-based approach to designing structural trusses does not lead to the 

sought reliable truss. This may be due to the vectorial nature of bar axial forces in 

structural trusses compared with the scalar pipe flows in water networks. Also, the 

difference between the well-established structural reliability concepts and their 

counterparts in water networks may play an important part in the failure to obtain 

reliable maximum entropy truss designs. This can be appreciated by realizing that the 

extra strengths achieved in the maximum entropy design have been largely cancelled 

by the extra bar axial forces induced by precompressing the two redundant bars. More 

fundamental research is needed in this area. 
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To sum up, the main conclusions which can be drawn from the present research are: 

1. , The path-based method developed in this thesis for calculating maximum 

entropy flows in water distribution networks provides further confirmation of 

the general correctness of the network flow entropy approach. By appreciating 

the applicability of network flow entropy as a surrogate measure of reliability, 

there would be a very simple means of designing least-cost and reliable water 

networks by incorporating the simple path-based method into one of the 

simplified optimum design methods such as the linearized method of 

Alperovits and Shamir (1977). 

The calibration model presented in this thesis can be considered as a possible 

way of calibrating existing water distribution networks in the sense that it does 

not require a physical measurement of the network pipe flows which might be 

expensive and time consuming. It produces very accurate results for networks 

designed to carry maximum entropy flows. For conventionally designed 

networks, however, the results are not accurate enough to be practically useful. 

Further work based on the present model is necessary to determine in what 
form available information must be added to get better accuracy. 

3. Using flow entropy as a surrogate measure of reliability in water distribution 

networks seems to have no direct parallel in the reliability of structural trusses 

due to two main factors. The first factor is related to the unsuspected 

difficulties brought to light in the present research regarding extending the 

scalar methodologies developed in water distribution networks to the vectorial 

domain of structural trusses. The second factor is the difference between 

reliability concepts in structural trusses and water networks. Any future 

research regarding this area should appreciate the above two factors. 

4. In general, the present research confirms the broad applicability of the 

maximum entropy formalism based on Shannon's entropy measure of 

uncertainty in generating solutions to a wide range of civil engineering 

problems which are not directly or obviously related to probabilities. 
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9.3 RECONMENDATIONS FOR FUTURE WORK 

The research carried out in this thesis has raised several points which have not been 

explored herein. Some proposals regarding these aspects are suggested next for future 

research. 

1. A linear programming method for designing optimum and reliable water 

distribution networks: 

The least-cost optimum design problem of water distribution networks is one of 

nonlinear optimization and hence requires nonlinear programming. It is very difficult 

to solve for networks of realistic sizes especially if the network pipes have to be 

chosen from a discrete set of commercially available sizes. Also, the desirability of 

water distribution networks being reliable under operation requires incorporating some 

measure of reliability in the least-cost optimum design formulation, making the 

problem more difficult to solve. 

Many attempts have been made in the literature to simplify the least-cost optimum 
design formulation. The Linear Programming Gradient approach of Alperovits and 
Shamir (1977) is the most widely-used simplified approach in which two phases, the 
linear programming phase and the gradient phase, are solved in an iterative scheme. 
In the linear programming phase, a set of pipe flows is specified and the least-cost 

optimum design formulation is linearized by replacing each pipe in the network by 

several segments of known diameters and unknown lengths, bearing in mind that for 

known pipe flows the formulation is nonlinear with respect to pipe diameters but 

linear with respect to pipe lengths. The resulting linear programming formulation is 

then used to obtain least-cost optimum design for the specified set of flows. In the 

gradient phase, however, the pipe flows used in the first phase are modified to further 

reduce the total cost of pipes. The resulting new set of pipe flows is then used in the 
linear programming phase to obtain a new design. The process continues iteratively 

between the two phases until convergence of network cost is achieved. 
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Taking into account reliability considerations, there is some evidence in the literature 

that network flow entropy is a good measure of reliability. It has been shown that the 

path-based method developed in this thesis for calculating maximum entropy flows for 

general water networks requires only solving (NS-1) linear equations with (NS-1) 

unknowns. Consequently, if the maximum entropy flows calculated by this simple 

path-method are used in the linear programming phase of the method of Alperovits 

and Shamir (1977), the gradient phase will not be needed and the problem of 
designing optimum and reliable water distribution networks becomes non-iterative and 

requires only linear programming. 

2. Calibrating existing water distribution networks: 

Although the calibration model developed in the present research produces very 

accurate results for networks designed to carry maximum entropy flows, its results are 

not accurate enough to be practically useful for conventionally designed real networks. 
An improvement of the present model is therefore needed. 

In developing the present calibration model, an entropy function representing the pipe 

characteristic finite probability scheme is added to (NN+I) flow entropy functions 

derived by Tanyimboh and Templeman (1993a) in order to develop a compound 

entropy formula representing pipe characteristics and pipe flows in water distribution 

networks assuming that the pipe characteristic finite probability scheme is independent 

from all the finite probability schemes used in the (NN+l) flow entropy functions. In 

the (NN+I) flow entropy functions, there are NN flow entropy functions representing 

the entropies of NN conditional finite probability schemes, each representing the 

outflows from a node in the network and depending upon the probability of flow 

arriving at that node. However, by adding pipe characteristic variables into the 

problem, the above NN conditional finite probability schemes will also depend upon 

the characteristic value of the corresponding pipe. This has not been considered in 

deriving the present calibration model. Considering this new extra dependence, new 
NN flow entropy functions can be derived using the conditional entropy formula of 
Khinchin (Khinchin, 1953) of compound probability schemes. The new NN flow 
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entropy functions will then replace the old NN functions to produce a new compound 

network entropy formula which can be used as before to produce a new calibration 

model. This new model needs to be tested for calibrating real water distribution 

networks. 

3. Entropy-based structural truss applications: 

The attempt made in the present research for designing reliable maximum entropy 

structural trusses paralleling designing reliable maximum entropy water networks 

(Tanyimboh and Templeman, 1993c) has raised many questions and problems 

regarding two main issues, these being the vectorial nature of bar axial forces as 

opposed to scalar pipe flows and the difference between reliability concepts in 

structural trusses and water networks. 

Regarding the vectorial issue, which has led to two components of force flow 

diagrams for the sample truss used in the present research, the inability to solve the 

horizontal component because the flows contradicted the behaviour of pipe flows in 

water networks has led to doubt about whether the maximum entropy force results of 

the two components would be identical and, if they are not the same, which one would 
be correct. Choosing carefully a truss in which both components of force flow 

diagrams are solvable by the path-based maximum entropy method, for example, 

would help in clarifying some points regarding these matters. 

On the other hand, the reliability concepts in structural trusses differ fundamentally 

from their counterparts in water networks. The well-established probabilistic reliability 

analysis for calculating failure probability in structural trusses has no counterpart in 

water distribution networks. The greater strengths generated in the maximum entropy 
design of the truss example by using larger bar sizes have been cancelled out by the 

larger bar axial forces induced by precompressing the two redundant bars in the 

maximum entropy design. This issue, which does not directly involve network 

reliability, may be the main reason behind flow entropy failing to improve reliability 
in structural trusses. Any future work regarding entropy-based structural reliability 
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must consider this point very closely. 

In conclusion, fundamental research directed towards overcoming the difficulties 

regarding the above two main issues is needed in developing an entropy-based 

optimum and reliable structural truss design method. The three-dimensional case of 

trusses should be also considered in such research. 
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NOTATION 

I set of all source nodes 
K arbitrary positive constant 
N number of nodes 
NDR set of all links or nodes immediately downstream of node n 
Poi q. j I T. 
NJ q. jl T,, 
P. probability of event n 
qj. external outflow at node i 
q. j flow from node n to node j 
q. j external inflow at node i 
S Shannon's entropy 
S. entropy of outflows at node n 
So entropy of external inflows 
T. total outflow from node n 
To total supply or demand 
r, j qijlT. 
R. T. IT. 
L set of all positive flow 
mL+ inflow links 

links, including outflow links 

The authors are to be congratulated on the presentation of their very interesting 
and stimulating work on flow entropy, and on their earlier papers"' which combine 
with this to form the definitive work on the subject. 

The theoretical derivation for Eqs. (1) to (6) which define flow entropy for a 
general network has been rigorously established'. However, it is interesting to take 
the analysis a few steps further, as detailed in the Appendix to this discussion, to 
give a value of Shannon's entropy for a distribution network as: 

N 

r,, In (r,, ) +ER. In (R. ) (A 1) 
(jem n-I 
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The above equation is perhaps easier to apply than the authors' equations, and does 
allow two interesting properties to be clearly seen. First Eq. (Al) does not distin- 
guish between inflows and outflows, and so by inspection, a network in which all 
flows are reversed will have the same numerical value of flow entropy. 

Second, if there is a single inflow (or outflow) to a node, the term r ln(r) for the 
pipe flow entering (or leaving) the node cancels with the term R ln(R) for the node, 
since r=R. For any non-looped section of a network each node has a single inflow, 
and it therefore follows that all link flow and nodal flow terms in (A I) cancel out, 
leaving only the external outflows contributing to the entropy. This is equally true 
for a network which is entirely tree structured, the flow entropy being determined 
only by the pattern of external flows at the demand nodes. Although no proof is 
offered here, it can be shown that a tree forms a minimum flow entropy network for 
supplying a given set of nodal demands, and from the above discussion any tree that 
connects the demand nodes will have the same minimum entropy value. 

Furthermore, it can be argued that a tree network is a special case of a looped 
network, in which the flows along some of the pipes are zero. Therefore when 
considering the flow entropy of a looped network as a, function of flow distribution, 
there will be multiple global minima for the entropy, each corresponding to a 
tree-like flow distribution. The present of multiple minima suggests the probability 
of multiple local maxima of the entropy function, and hence possible problems with 
the use of conventional optimization algorithms in the identification of the global 
maximum entropy. In this context it is interesting that both the two-source 
examples in the paper appear not to be global maximum entropy solutions, -as 
shown below. 

Whereas the authors' algorithm for determining maximum entropy flows for 
single source networks is rigorous and can be applied very readily, its application to 
multiple source networks by the super-source method proposed in the paper leads 
to inconsistencies. However, multiple sources can be correctly converted to equival- 
ent single sources by the addition of a 'super-source network' with multiple flow 
paths from the super-source to each supply node. For example, Figure Al is based 
on the authors' Figure 6 with the addition of the super-source network shown in 
dashed lines. Application of the authors' flow distribution algorithm to this network 
gives the flows indicated on the figure, and it can be seen that the inflows at nodes I 
and 2 are very close to the required values of 35 and 20 for the original two source 
problem. The resulting flow entropy, calculated over the original network and there- 
fore directly comparable to the authors' results, has a numerical value of 2.154 
compared to the authors' value of 1.947 for a significantly different pattern of flows, 
indicating that the authors' result was in fact a local rather than a global maximum. 

Unfortunately, it is not easy to determine the super-source network configuration 
that will give the correct set of inflows to the original network at the maximum 
entropy state. The super-source network used above was initially determined by trial 
and error until the ratio of paths between super-source and the two supply nodes 
gave approximately the correct inflows. A more analytical approach was tried for 
the example of Figure 5a, reproduced here as Figure A2, with x paths being 
assumed from super-source to node I and I path from super-source to node 2. 
Applications of the authors' algorithm then leads to path numbers and flows being 
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determined in terms or the unknown variable x by straightforward, but tedious, 
algebra. Equaling an expression for one of the inflows to a known value determines 

_x, which in this example is approximately 0.93, giving the flows indicated on the 
figure. The entropy for this flow arrangement is 2.45, which is again higher than the 
authors'result. 

In the above procedure it is assumed that the maximum entropy flow solution for 
the total network (with super-source sub-nctwork included) gives the maximum 
entropy flow set for the original system. Without giving a formal proof, this can be 
deduced either from the definitionor nowentropy derived by the authors or from 
the form of Eq. (A 1). 

The use of flow entropy as a surrogate measure for distribution system reliability 
is certainly an interesting topic, and the methodology of the paper for deriving 
maximum entropy flow distributions could well prove very useful in the context of 
designing reliable systems. However, it should be remembered that maximum 
entropy flow distribution is based only on the numbers of paths. A cluster of 
numerous short paths in one region or the network can produce illogical flow 
distributions, as can be seen when a small 3x3 grid is added to the network of 
Figure Ma, thereby changing the maximum entropy flow distribution radically to 
that shown in Figure A3b. The reliability or supply to the demand node is likely to 
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be significantly smaller with the latter flow pattern, thereby illustrating the difficulty 
of trying to relate flow entropy directly to reliability. 
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APPENDIX 

Defining r,, j = 
q. j and R,, - 

T' 
T. T. 

Eq. (4), S. =- 1: p,, jln(p,,, ) 
njc-ND. 

becomes S. r nJ In 
(r., ) 

,, JeND. R. 

IIE 
rjin(r,, j)- 

1: r,, In(R, ) 
Rn njeND. njeND. 

I 

But r. jln(R,, )=R, ln(R. ) 
njeND. 

Therefore S rj In (r,, j) +In Kn 
, jcND. 

From Eq. (6) P. 
T" 

= R,, 
T. 

SN 
Therefore Eq. (1) -k = S. + P"Sn 

becomes S. + R. I 
S 

r. jln(r. j)+In(R. ) 
aIR. jeND. 

so -r ln(r,, j)-R. ln(R,, ) F, 
IIJ M. I njeND. 

Defining L=set of all positive flow links ij in the network, including outflow 
links io 

N 

r, j In (r,, ) + R. In (R,, ) 
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FromEq. (2) S. =-Zp. jln(p. j)=-Fr. jln(r. j) 
ic-I 

sN Therefore Yr. iln(r. i)- 
E rjln(rj)+ Z Rin(R,, ) 

K R=l 
Defining Al = set of all positive flow links ij in the network, including inflow links oj 
and outflow links io, 

rj In (r, j) +ZR. n (A 1) 
IV 

n=l 

Reply by A. B. Templeman and T. T. Tanyimboh 
The authors thank the writer for a most helpful and interesting discussion and for 
the opportunity to correct some aspects of the paper. 

Eq. (A 1) extends the entropy expressions developed in the paper and transforms 
them from probability variables to network flow variables. This provides added 
insight on network flow entropy and a very convenient way of demonstrating the 
invariance of the entropy with respect to variable transformation (e. g. reversal of 
flow directions), an essential feature of a valid entropy measure and one which the 
authors had verified only numerically hitherto. The proof of Eq. (A 1) given in the 
Appendix is most helpful. 

That all spanning tree networks chosen from a prescribed, looped network will 
have the same (minimum) value of entropy which can be calculated solely from the 
external flows at the demand nodes is an interesting result. However, it applies only 
to single-source trees. For multiple-source trees it is possible for a node to have 
more than one inflow and the entropy value turns out to be dependent upon the tree 
layout. As an example, Figure A4(a) shows the permissible pipes, flow directions, 
supplies and demands in a two-source, four-demand system. Figures A4(b), (c) and 
(d) show three possible spanning tree. networks which could be chosen from this 
system and their associated entropy values. Figures A4(b) and A4(c) both have the 
same entropy value but the tree layout of Figure A4(d) has a smaller entropy value 
and represents the minimum entropy configuration. 

The authors do not agre6 that the presence of multiple minima necessarily SLIg- 
gests that multiple maxima may exist. There is no logical link between the two. On 
the contrary, all the features of the maximum entropy network flow problem suggest 
that it is convex and consequently has a single global maximum. One of the authors 
has made this conjecture in Ref. [4] although a formal proof is not available. How. 
ever, the lines of such a proof are evident from Eq. (Al). The form x1n(x) is a convex 
function for 0<x<I and so, in Eq. (A 1), the first negative summation is concave 
and the second positive summation is convex. Since the first summation is larger 
than the second, S/K is a concave function. Maximizing a concave function subject 
only to nodal flow equilibrium constraints which are linear is a convex problem 
which cannot possess local optima. There has never beed any hint of local optima in 
any of the many examples which the authors have studied. 
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The fact that the writer has found different and better solutions to the two 
examples presented in Section 4 or the paper should not be interpreted as implying 
that the various solutions found must be local optima of a non-convex problem. In 
fact, the results quoted in the paper are quite simply incorrect and invalid. The 
authors are most grateful to the writer for pointing out that better solutions can be 
found. As a consequence the authors have re-examined Section 4 of the paper in 
detail and have found that the entire Section 4 is theoretically invalid and should be 
deleted from the paper. 

The main thrust of the paper was towards the development of a quick method for 
calculating maximum entropy flows for single-source networks. The method and the 
algorithms developed in the paper remain valid for all single-source networks. How- 
ever, in Section 4 of the paper the authors attempted to extend this method to 
multiple-source networks by providing a single super-source to supply all the 
multiple sources. This super-source approach appeared to give sensible results and 
to be intuitively defensible. It now transpires that the super-source extension of the 
method as described in Section 4 of the paper was a step too far and is, in fact, 
completely wrong. In his discussion the writer has shown how the super-source idea 
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can be manipulated to give correct results for multiple source networks but, as lie 
has pointed out, it is not easy to operate this approach for anything but the simplest 
of networks. In the general case of a large network with many sources a more 
rigorous approach is still required. The authors have developed a rigorous gener- 
al method and quick algorithm for general multi-source networks which does not 
use the super-source idea. This is the subject of a further paper currently in prepara- 
tion. However, the method has been applied to the example networks in Section 4 of 
the paper and it has confirmed that the results shown in Figures AI and A2 of the 
discussion are approximately correct to the accuracy claimed by the writer. Tables I 
and 2 list what are now believed to be the exact results for pipe flows and entropy 
values for the two example networks in Section 4 of the paper. 

The writer's final point concerns Figures Ma and A3b and questions the ability of 
the flow entropy approach to provide intuitively-reliable flow distributions in the 
two networks shown. Clearly the flow distribution of Figure A3b, as suggested by 
maximum flow entropy, looks somewhat odd. However, the entropy measure de- 
pends only upon paths, inflows and demands and is independent or any factors such 
as length or scale. Consequently, in Figure A3b, the flow entropy measure cannot 
account for the fact that the 3x3 grid is defined by the writer to be "small". If it 
actually is "small" then the flows suggested in Figure A3b may look odd; but if it is 
actually "large" as shown in Figure A5, which has exactly the same topology, then 
the same maximum entropy flows no longer look as anomalous. 

Figure A3b is obviously a carefully contrived example but it is worth examining 
further. If, as the writer suggests, the 3x3 grid of pipes is small it can be noted that 
the grid does not have any nodal demands and is therefore simply a througliflow 
system. It represents a most peculiar feature of a network design and it is hard 
to imagine why any rational designer would wish to include such a feature. In 
the network modelling of real distribution networks a certain amount of lumping 

2 
Figure A5 Maximum entropy flows. 
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Table I Correct results for 
Figure 6 in the paper and AI 

Pipe Flow 

2-1 8.55537 
2-3 7.21392 
2-5 4.23071 
1-3 36.72609 
1-4 6.82928 
3-4 8.17072 
3-5 25.76929 
S/K 2.15383 

Table 2 Correct results for 
Figure 5a in the paper and A2 

Pipe Flow 

1-2 18.57080 
2-3 26.48121 
2-5 12.08959 
1-3 12.74999 
1-4 3.67921 
3-4 11.32079 
3-5 17.91041 
S/K 2.45001 

and aggregation is usually necessary. A small throughflow grid such as that in 
Figure A3b would probably be eliminated entirely from an overall network model 
so that main flows would be determined for the system of Figure Ma. Tile 3x3 grid 
would then be examined separately, if necessary, using the main inflows and out- 
flows of Figure Ma. 

Given the simplicity of Eq. (A I) and the minimal information required to calculate 
the flow entropy, it would be over-optimistic to expect a great deal more than a 
reasonable correlation between entropy and reliability. Carefully contrived hypo- 
thetical examples can demonstrate the fallibility of most existing measures of 
network reliability. Fortunately most practical networks are not hypothetically 
contrived and the authors have yet to encounter any practical networks in which the 
correlation between entropy and reliability is not very good. 
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APPENDIX B 

THE ALFA METHOD 

COMPUTER PROGRAMME 

MODULE ALFA. MODULE 
IMPLICIT NONE 
INTEGER:: NN, NL, NS, 1, J, K. L, KK, IK, N, LWA. IFAIL 
REAL(KIND=2):: FNORM, TOL, S 
INTEGER, DIMENSION (: ), ALLOCATABLE:: UN, DN 
INTEGER, DIMENSION (:,: ), ALLOCATABLE:: A, B, NP 
REAL(KIND=2), DIMENSION ALLOCATABLE:: FVEC, WA, Q, D, SP 
REAL(KIND=2), DIMENSION ALLOCATABLE:: X, PF, TQ, TP 
REAL(KIND=2) :: F06EJF, X02AJF 
CHARACTER (LEN=72) :: INPUT, OUTPUT 
EXTERNAL F06EJF, X02AJF 
EXTERNAL C05NBF 

CONTAINS 
SUBROUTINE FCN(N, X, FVEC, IFLAG) 
! SET UP THE EQUATIONS TO BE SOLVED IN THE FORM F(X)--O: 
INTEGER:: N, IFLAG, NE 
REAL(KIND=2), DIMENSION (:,: ), ALLOCATABLE:: C 
REAL(KIND=2):: FVEC(I: N), X(I: NS, O: NN) 
ALLOCATE (C(I: NS, O: NN)) 
IFLAG=I 
DO I=I, NS 

C(I, O: NN)=NP(I, O: NN)*(-D(l)) 
END DO 
NE--0 
DO I=NS+INN 

NE=NE+l 
FVEC(NE)=DOTý-PRODUCT(C(I: NS, I), X(I: NS, I))-D(I) 

END DO 
NE=NE+l 
FVEC(NE)=X(l, l)-l. 0-2 
DO I=I, NS 

DO J---O, NS 
IF (I/=J) THEN 

NE=NE+l 
FVEC(NE)=X(I, J) 

END IF 
END DO 

END DO 
DO I=I, NS 

DO J=NS+I, NN 
IF (C(I, J)=--O) THEN 

NE=NE+l 
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FVEC(NE)=X(I, J) 
END IF 

END DO 
END DO 
DO I=NS+INN 

DO J=INS-1 
IF (C(JJ)/=O) THEN 

DO L--J+INS 
IF (C(LI)/=O) THEN 

NE--NE+I 
FVEC(NE)=X(J, I)*X(L, L)-X(L, I)*X(J, J) 

END IF 
END DO 
EMT 

END IF 
END DO 

END DO 
DO I= I, NS- I 

NE--NE+I 
FVEC(NE)=DOT-PRODUCT(NP(I, NS+I: NN), X(I, NS+I: NN))-i. 0-2 

END DO 
DEALLOCATE(C) 

END SUBROUTINE 
END MODULE ALFA-MODULE 
PROGRAM ALFA. METHOD 
USE ALFA-MODULE 
PRINT*, 'ENTER THE NAME OF DATA FILE WITH PATH: ' 
READ '(A)', INPUT 
PRINT*, 'ENTER THE NAME OF OUTPUT FILE WITH PATH. ' 
READ '(A)', OUTPUT 
OPEN (5, FILE--INPUT, FORWFORMATTED', STATUS='OLD') 
OPEN (6, FILE-OUTPUT, FORWFORMATTED', STATUS='UNKNOWN') 

INPUT DATA: 
ALL NODES SHOULD BE NUMBERED BY POSITIVE CONSECUTIVE 
NUMBERS STARTING BY NUMBER ONE FOR ANY SOURCE IN THE 
NETWORK, THEN THE REST OF THE SOURCES, AND THEN THE 
REST OF THE NODES RANDOMLY. 

PRINT*, 'NN? ' 
READ*, NN! READ NUMBER OF NODES 
PRINT*, '# NODES =', NN 
PRINT*, 'NL? ' 
READ*, NL! READ NUMBER OF LINKS 
PRINT*, '# LINKS =', NL 
PRINT*, 'NST 
READ*, NS ! READ NUMBER OF SOURCES 
PRINT*, '# SOURCES =', NS 
N=NS*(NN+I)! NUMBER OF EQUATIONS TO BE SOLVED 
LWA=(N*(3*N+13))/2! THE DIMENSION OF THE WORKSPACE ARRAY WA 
ALLOCATE (UN(I: NL)) 
ALLOCATE (DN(I: NL)) 
ALLOCATE (D(I: NN)) 
ALLOCATE (A(I: NN, I: NN)) 
ALLOCATE (B(I: NN, I: NN)) 
ALLOCATE (NP(J: NN, o: NN)) 
ALLOCATE (X(I: NS, O: NN)) 
ALLOCATE (FVEC(I: N)) 
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ALLOCATE (WA(I: LWA)) 
ALLOCATE (PF(I: NS, O: NN)) 
ALLOCATE (TQ(I: NLl: NS)) 
ALLOCATE (Q(I: NL)) 
ALLOCATE (TP(I: NS, O: NN)) 
ALLOCATE (SP(I: NS)) 
PRINT*, 'FOR EACH LINK INPUT UN, DN' 
DO I= I. NL ! READ UPSTREAM AND DOWNSTREAM NODES FOR EACH LINK 

READ*, UN(I), DN(I) 
END DO 
PRINT*, 'FOR EACH NODE INPUT D, (SOURCE -VE)' 
DO I=I, NN! READ INFLOWS AND OUTFLOWS FOR EACH NODE (SOURCE -VE) 

READ*, D(I) 
END DO 
! PROGRAM TERMINATION AND ERROR MESSAGES: 
IF (COUNT(D<O. Q-2)/=NS) THEN 

PRINT*, 'INCORRECT INPUT FLOWS' 
PRINT*, 'PROGRAM TERMINATED' 
STOP 

END IF 
IF (ABS(SLTM(D(I: NS)))/=SUM(D(NS+I: NN))) THEN 

PRINT*, 'INFLOWS ARE NOT EQUAL OUTFLOWS' 
PRINT*, 'PROGRAM TERMINATED' 
STOP 

END IF 
! FIND OUT THE NODES REACHABLE TO EACH NODE: 
DO I= I, NN 

A(1,1)=l 
K=I 
IK=l 
DO J=INL 

IF (UN(J)=--A(l, I)) THEN 
A(K+I, I)=DN(J) 
K=K+l 
IK=IK+l 

END IF 
END DO 
KK=K-1 
K=I 

10 DO J=I, NL 
DO L--IK-KK, IK 

IF (UN(J)==A(LI). AND. COUNT(A(I: NN, I)==DN(J))=--O) THEN 
A(IK+I, I)=DN(J) 
K=K+l 
IK=IK+l 

END IF 
END DO 

END DO 
IF (K/=1) THEN 

KK=K-1 
K=I 
GOTO 10 

END IF 
END DO 
PRINT*, 'NODES REACHABLE TO EACH NODE ARE: ' 
DO I=I, NN 
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K=I 
DO J=2, NN 

IF (A(J, I)----O) EXIT 
K=K+l 

END DO 
IF (K==I) TlIEN 

PRINT*, 'TO NODE(', I, '): NO NODES' 
ELSE 

PRINT*, 'TO NODE(', I, '): ', (A(J, I), J=2, K) 
END IF 

END DO 
! FIND OUT THE NODES IMMEDIATELY UPSTREAM TO EACH NODE: 
DO I= INN 

B(1,1)=l 
K=I 
DO L--I, NL 

IF (DN(L)ý-I) THEN 
B(K+1,1)=UN(L) 
K=K+l 

END IF 
END DO 

END DO 
PRINT*, 'NODES IMMEDIATELY UPSTREAM TO EACH NODE ARE: ' 
DO I= INN 

K=I 
DO J=2, NN 

IF (B(J, I)==O) EXIT 
K=K+l 

END DO 
IF (K==I) THEN 

PRINT*, 'TO NODE(', I, '): NO NODES' 
ELSE 

PRINT*, 'TO NODE(', I, '): ', (B(J, I), J=2, K) 
END IF 

END DO 
! CALCULATE THE NUMBER OF PATHS FROM EACH NODE TO EACH NODE: 
NP=-I 
DO I=INN 

NP(1,0)--O 
END DO 
DO I=I, NN 

NP(1,1)=l 
DO J=I, NN 

IF (COUNT(A(I: NN, I)==J)=---O) THEN 
NP(I, J)--O 

END IF 
END DO 

END DO 
100 DO I=I, NN 

DO J=I, NN 
IF (NP(I, J)/=-1) CYCLE 
IF (COLTNT(NP(I, B(2: NN, J))==-I)==O) THEN 

NP(I, J)=SUM(NP(I, B(2: NN, J))) 
END IF 

END DO 
END DO 
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IF (COUNT(NP(I: NN, I: NN)==-1)/--O) GOTO 100 
PRINT*, 'NUMBER OF PATHS FROM EACH NODE TO EACH NODE ARE: ' 
DO I=I, NN 

PFJNT*, 'NP FROM NODE('J, ')TO NODES(', 1, '-', NN, & 
') RESPECTlVELY: ', (NP(IJ), J=INN) 

END DO 
! STARTING VALUES OF PROBABILITIES: 
DO I= INS 

DO J=ONN 
X(I, J)--0.5--2 

END DO 
END DO 
TOL--SQRT(XO2AJFo) 
! THE ACCURACY IN X TO WHICH THE SOLUTION IS REQUIRED. 
IFAIL--l 

SOLVING NONýýLINEAR EQUATIONS TO CALCULATE THE 
PROBABILITIES OF PATH FLOWS FROM EACH SOURCE TO 

I EACH DEMAND NODE, BY CALLING NAG LIBRARY C05NBF: 
CALL C05NBF(FCNNX, FVECTOL, WA, LWA, IFAIL) 
DO I= INS 

DO J=ONS 
IF (I/=J)THEN 

X(I, J)---0. Q-2 
END IF 

END DO 
END DO 
DO I= I, NS 

DO J=NS+INN 
IF (NP(IJ)----O) THEN 

X(I, J)--0. Q-2 
END IF 

END DO 
END DO 
DO I=NS+INN 

DO J=I, NS 
IF (D(I)----0. Q-2) THEN 

X(J, I)--0. Q-2 
END IF 

END DO 
END DO 
IF (IFAIL----O)THEN 

FNORM=FO6EJF(N, FVEC, I) 
PRINT*, 'FINAL 2-NORM OF THE RESIDUALS=', FNORM 
DO 1=2, NS 

PRINT*, 'ALFA(', I, ')='XI, I) 
END DO 
PRINT*, 'PROBABILITIES OF PATH FLOWS FROM EACH', & 
' SOURCE TO EACH DEMAND NODE ARE: ' 
DO I=I, NS 

DO J=NS+I, NN 
IF (X(IJ)----0.0-2) CYCLE 
PRINT*, 

END DO 
END DO 

ELSE 
PRINT*, 'IFAU--', IFAIL 
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IF (IFAIL>I)THEN 
DO 1=2, NS 

PRINT*, 'ALFA(', I, ')=', X(IJ) 
END DO 
PRINT*, 'PROBABILITIES OF PATH FLOWS FROM EACH', & 
' SOURCE TO EACH DEMAND NODE ARE: ' 
DO I=INS 

DO J=NS+I, NN 
IF (X(IJ)----O. Q--2) CYCLE 
PRINT*, 

END DO 
END DO 

END IF 
END IF 
! CHECK PROBABILITIES: 
DO I= I. NS 

SP(I)=DOTI-PRODUCT(NP(I, NS+I: NN), X(I, NS+I: NN)) 
END DO 
PRINT*, 'PROBABILITIES CHECKING: ' 
DO I= INS 

PRINT*, 'NORMALITY CONDITION AT SOURCE(', I, ')=', SP(l) 
END DO 
! CALCULATE THE PATH FLOWS FROM EACH SOURCE TO EACI 
DO I= l, NS 

PF(I, O: NS)---O. O 
-2 PF(I, NS+I: NN)=X(I, NS+I: NN)*(-D(l)) 

END DO 
PRINT*, 'PATH FLOWS FROM EACH SOURCE TO EACH DEMAND 
DO I=I, NS 

DO J=NS+I, NN 
IF (PF(I, J)=---0. Q_2) CYCLE 
PRINT*, 'PF(', I, '-', J, ')=', PF(I, J) 

END DO 
END DO 
! CALCULATE THE FINAL LINK FLOWS: 
DO I=INL 

DO J=I, NS 
TQ(I, J)=NP(J, UN(l))*DOT-YRODUCT(NP(DN(I), I: NN), PF(J, I: NN)) 

END DO 
END DO 
Q=SUM(TQ, DIM=2) 
PRINT*, 'FINAL LINK FLOWS ARE: ' 
DO I=I, NL 

PRINT*, 'Q(', UN(l), '-', DN(I), ')=', Q(I) 
END DO 
! CALCULATE THE ENTROPY VALUE OF THE NETWORK: 
DO I=I, NS 

IF (D(I)=---O. O. 
_2) 

CYCLE 
DO J=NS+I, NN 

IF (X(IJ)=--0.0_2) CYCLE 
TP(I, J)=X(I, J)*LOG(X(I, J)) 

END DO 
TP(1,1)=(D(I)/SUM(D(NS+I: NN)))* & 

DOT-PRODUCT(TP(I, NS+I: NN), NP(I, NS+I: NN)) 
TP(1,0)=(D(I)/SUM(D(I: NS)))*LOG(D(I)/SUM(D(I: NS))) 

END DO 
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S=SUM(T? (I: NS, I))-SUNI(TP(I: NS, O)) 
PFiNr*, 'ENTROPY VALUE OF THE NETWORK IS: ' 
PRINT*, 'S/K=', S 
PRINT*, 'END OF FILE' 

END PROGRAM ALFA_ME`rHOD 
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APPENDIX C 

SOME OF THE ALFA METHOD COMPUTER 

PROGRAMME APPLICATIONS OF CHAPTER 5 

CA EXAMPLE 1 

The input rile: 
9 
16 
2 
13 
14 
32 
34 
35 
25 
27 
45 
46 
56 
57 
58 
68 
78 
79 
89 
-60 
-40 
10 
10 
15 
15 
15 
15 
20 
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The output rile: 
NN? 
# NODES 9 
NL? 
# LINKS 16 
NS? 
# SOURCES =2 
FOR EACH LINK INPUT UN, DN 
FOR EACH NODE INPUT D, (SOURCE -VE) 
NODES REACHABLE TO EACH NODE ARE: 
TO NODE( I ): 34257689 
TO NODE(2): 5 7689 
TO NODE(3): 2 457689 
TO NODE(4): 5 6789 
TO NODE( 5): 6 789 
TO NODE( 689 
TO NODE( 789 
TO NODE( 89 
TO NODE( 9 NO NODES 
NODES IMMEDIATELY UPSTPEAM TO EACH NODE ARE: 
TO NODE( I NO NODES 
TO NODE( 23 
TO NODE( 31 
TO NODE( 4): 1 3 
TO NODE(5): 3 24 
TO NODE( 645 
TO NODE( 725 
TO NODE( 8): 5 67 
TO NODE( 9 ): 78 
NUMBER OF PATHS FROM EACH NODE TO EACH NODE ARE: 
NP FROM NODE( I )TO NODES( I-9) RESPECTIVELY: I112465 15 20 
NP FROM NODE( 2 )TO NODES( I-9) RESPECTIVELY: 010011246 
NP FROM NODE( 3 )TO NODES( I-9) RESPECTIVELY: 0111344 11 15 
NP FROM NODE( 4 )TO NODES( I-9) RESPECTIVELY: 000112 14 5 
NP FROM NODE( 5 )TO NODES( I-9) RESPECTIVELY: 000011134 
NP FROM NODE( 6 )TO NODES( I-9) RESPECTIVELY: 000001011 
NP FROM NODE( 7 )TO NODES( I-9) RESPECTIVELY: 000000112 
NP FROM NODE( 8 )TO NODES( I-9) RESPECTIVELY: 000000011 
NP FROM NODE( 9 )TO NODES( I-9) RESPECTIVELY: 000000001 
FINAL 2-NORM OF THE RESIDUALS= 6.4439277707994817E-10 
ALFA( 2 )= 5.5919905516210164 
PROBABILITIES OF PATH FLOWS FROM EACH SOURCE TO EACH DEMAND NODE ARE: 
P( I- 3)= 0.1666666666666667 
P( I- 4)= 8.3333333333333329E-02 
P( I- 5)= 3.2349922862496695E-02 
P( I- 6)= 2.569902979510110513-02 
P( I- 7)= 2.0070668976745656E-02 
P( I- 8)= 8.3578566873076538E-03 
P( I- 9)= 7.8675800626365130E-03 
P(2 - 5)= 0.1809004628250198 
P(2 - 6)= 0.1437087318440901 
P(2 - 7)= 0.1122349913372038 
P(2 - 8)= 4.6737056133894450E-02 
P(2 - 9)= 4.3995433020150770E-02 
PROBABILITIES CHECKING: 
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NORMALITY CONDITION AT SOURCE( 1 1.0000000000000000 
NORMALITY CONDITION AT SOURCE( 2 0.9999999999999998 
PATH FLOWS FROM EACH SOURCE TO EACH DEMAND NODE ARE: 
PF( I- 3)= 10.0000000000000000 
PF( I- 4)= 5.0000000000000000 
PF( 1- 5)= 1.9409953717498016 
PF( I- 6)= 1.5419417877060664 
PF( I- 7)= 1.2042401386047394 
PF( I- 8)= 0.5014714012384592 
PF( I-9 0.4720548037581908 
PF( 2-5 7.2360185130007917 
PF( 2-6 5.7483492737636031 
PF( 2-7 4.4893996534881513 
PF( 2-8 1.8694822453557780 
PF( 2-9 1.7598173208060308 
FINAL LINK FLOWS ARE: 
Q( I-3 )= 44.4047212904885384 
Q( 1-4)= 15.5952787095114633 
Q( 3-2 )= 10.7296318641683293 
Q( 3- 4)= 15.5952787095114633 
Q( 3-5 8.0798107168087476 
Q( 2-5 38.2012941763527465 
Q( 2-7 12.5283376878155703 

, 
Q(4 -5 16.1596214336174953 
Q(4 -6 5.0309359854054323 
Q( 5- 6)= 19.4395208107362762 
Q( 5-7 20.4778011298943099 
Q( 5-8 7.5234043861484086 
Q( 6-8 9.47(9567961417077 
Q( 7-8 12.1262301573068676 
Q( 7-9 5.8799086604030153 
Q( 8-9 14.1200913395969856 
ENTROPY VALUE OF THE NETWORK IS: 
SIK= 3.7489693125575236 
END OF FILE 
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C. 2 EYAMPLE 2 

The input rile: 
9 
13 
3 
14 
15 
54 
46 
58 
86 
27 
75 
79 
29 
38 
39 
98 
-20 
-35 
-15 
10 
10 
15 
10 
15 
10 
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The output rile: 
NN? 
# NODES 9 
NL? 
# LINKS 13 
NS? 
# SOURCES =3 
FOR EACH LINK INPUT UN, DN 
FOR EACH NODE INPUT D, (SOURCE -VE) 
NODES REACHABLE TO EACH NODE ARE: 
TO NODE( I ): 4568 
TO NODE(2): 7 95846 
TO NODE( 3): 8 96 
TO NODE( 4 ): 6 
TO NODE(5): 4 86 
TO NODE( 6 ): NO NODES 
TO NODE(7): 5 9468 
TO NODE( 86 
TO NODE( 986 
NODES IMMEDIATELY UPSTREAM TO EACH NODE ARE: 
TO NODE( I NO NODES 
TO NODE( 2 NO NODES 
TO NODE( 3 NO NODES 
TO NODE( 4 ): 1 5 
TO NODE( 5 ): 1 7 
TO NODE( 648 
TO NODE( 72 
TO NODE( 8): 5 39 
TO NODE(9): 7 23 
NUMBER OF PATHS FROM EACH NODE TO EACH NODE ARE: 
NP FROM NODE( I )TO NODES( I-9 RESPECTIVELY- 100213010 
NP FROM NODE( 2 )TO NODES( I-9 RESPECTIVELY: 0 10 1 14 132 
NP FROM NODE( 3 )TO NODES( I-9 RESPECTIVELY, 00 10 02021 
NP FROM NODE( 4 )TO NODES( I-9 RESPECTIVELY: 000101000 
NP FROM NODE( 5 )TO NODES( I-9 RESPECTIVELY: 000112010 
NP FROM NODE( 6 )TO NODES( I-9) RESPECTIVELY: 000001000 
NP FROM NODE( 7 )TO NODES( I-9) RESPECTIVELY: 000113 12 1 
NP FROM NODE( 8 )TO NODES( I-9) RESPECTIVELY: 000001010 
NP FROM NODE( 9 )TO NODES( I-9) RESPECTIVELY: 000001011 
FINAL 2-NORM OF THE RESIDUALS= 3.0142001896351236E-10 
ALFA( 2 0.4786637180902165 
ALFA( 3 1.7134212843979728 
PROBABILITIES OF PATH FLOWS FROM EACH SOURCE TO EACH DEMAND NODE 

ARE: 
P( 1 -4)= 0.1762014246845641 
P( I- 5)= 0.2720849287023921 
P( I- 6)= 8.4073384996603953E-02 
P( I- 8)= 0.1232920669386678 
P(2 - 4)= 8.4341228931926707E-02 
P(2 - 5)= 0.1302371835986331 
P(2 - 6)= 4.0242879109234519E-02 
P(2 - 7)= 0.2857142857142857 
P(2 - 8)= 5.9015439190458659E-02 
P(2 - 9)= 8.0844733873420269E-02 
P(3 - 6)= 0.1440531274970310 

282 



P( 3-80.2112512515409495 
P( 3-90.2893912419240388 
PROBABILITIES CHECKING: 
NORMALITY CONDITION AT SOURCE( I)= 1.00000000' 
NORMALITY CONDITIONAT SOURCE(2)= 1.00000000 
NORMALITY CONDITION AT SOURCE( 3 )= 0.99999999' 
PATH FLOWS FROM EACH SOURCE TO EACH DEMANE 
PF( 1-4)= 3.5240284936912825 
PF( 1 -5)= 5.4416985740478419 
PF( I- 6)= 1.6814676999320790 
PF( I-82.4658413387733567 
PF( 2-42.9519430126174346 
PF( 2-54.5583014259521573 
PF(2 - 6)= 1.4085007688232083 
PF( 2-7 10.0000000000000000 
PF(2 -82.0655403716660530 
PF(2 - 9)= 2.8295656855697096 
PF( 3- 6)= 2.1607969124554653 
PF(3 -83.1687687731142429 
PF( 3-94.3408686288605818 
FINAL LINK FLOWS ARE: 
Q( I- 4)= 5.2054961936233610 
Q( I- 5)= 14.7945038063766390 
Q(5 - 4)= 9.5659399750640048 
Q(4 -64.7714361686873659 
Q( 5-87.6213501791946960 
Q( 8- 6)= 10.2285638313126341 
Q( 2-7 28.6963931739410292 
Q( 7-5 12.3927863478820619 
Q( 7-96.3036068260589708 
Q( 2-96.3036068260589708 
Q( 3-85.3295656855697082 
Q( 3-99.6704343144302900 
Q( 9-8 12.2776479665482299 
ENTROPY VALUE OF THE NETWORK IS: 
S/K= 3.0284655536385880 
END OF FILE 
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C. 3 EXAMPLE 3 

The input rile: 
9 
13 
3 
14 
15 
54 
58 
86 
46 
27 
78 
29 
79 
98 
39 
38 
-30 
-35 
-15 
10 
10 
20 
10 
20 
10 
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The output rile: 
NN? 
# NODES 9 
NL? 
# LINKS 13 
NS? 
# SOURCES =3 
FOR EACH LINK INPUT UN, DN 
FOR EACH NODE INPUT D, (SOURCE -VE) 
NODES REACHABLE TO EACH NODE ARE: 
TO NODE( 1): 4586 
TO NODE(2): 7 986 
TO NODE( 3): 9 86 
TO NODE( 4 ): 6 
TO NODE(5): 4 86 
TO NODE( 6 ): NO NODES 
TO NODE( 7): 8 96 
TO NODE( 86 
TO NODE( 986 
NODES IMMEDIATELY UPSTREAM TO EACH NODE ARE: 
TO NODE( I NO NODES 
TO NODE( 2 NO NODES 
TO NODE( 3 NO NODES 
TO NODE( 415 
TO NODE( 51 
TO NODE( 684 
TO NODE( 72 
TO NODE(8): 5 793 
TO NODE(9): 2 73 
NUMBER OF PATHS FROM EACH NODE TO EACH NODE ARE: 
NP FROM NODE( I )TO NODES( I-9) RESPECTIVELY: 10 02130 10 
NP FROM NODE( 2 )TO NODES( I-9) RESPECTIVELY: 0 10 003 13 2 
NP FROM NODE( 3 )TO NODES( I-9 RESPECTIVELY: 001002021 
NP FROM NODE( 4 )TO NODES( I-9 RESPECTIVELY: 000 10 1000 
NP FROM NODE( 5 )TO NODES( I-9 RESPECTIVELY: 0001 12 010 
NP FROM NODE( 6 )TO NODES( I-9 RESPECTIVELY: 00000 10 00 
NP FROM NODE( 7 )TO NODES( I-9 RESPECTIVELY: 000002121 
NP FROM NODE( 8 )TO NODES( I-9 RESPECTIVELY: 00000 10 10 
NP FROM NODE( 9 )TO NODES( I-9 RESPECTIVELY: 000001011 
FINAL 2-NORM OF THE RESIDUALS= 4.0818719562093229E-13 
ALFA( 2 0.9745575742324593 
ALFA( 3 2.1945997656506231 
PROBABILITIES OF PATH FLOWS FROM EACH SOURCE TO EACH DEMAND NODE 

ARE: 
P( I- 4)= 0.1666666666666667 
P( I- 5)= 0.3333333333333333 
P( I- 6)= 7.7469373585320578E-02 
P( I- 8)= 0.1009252125773716 
P(2 - 6)= 7.549836479864351 IE-02 
P(2 - 7)= 0.2857142857142857 
P(2 - 8)= 9.8357430348222474E-02 
P(2 - 9)= 9.6359164422558138E-02 
P(3 - 6)= 0.1700142691154526 
P(3 - 8)= 0.2214904478705165 
P(3 - 9)= 0.2169905660280620 
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PROBABILITIES CHECKING: 
NORAIM= CONDITION AT SOURCE( 1 0.9999999999999999 
NORMALITY CONDITION AT SOURCE( 2 0.9999999999999999 
NORMALITY CONDITION AT SOURCE( 3 1.0000000000000002 
PATH FLOWS FROM EACH SOURCE TO EACH DEMAND NODE ARE: 
PF( I- 4)= 5.0000000000000000 
PF( I-5 )-- 10.0000000000000000 
PF( I- 6)= 2.3240812075596171 
PF( I- 8)= 3.0277563773211464 
PF( 2-6 )-- 2.6424427679525229 
PF(2 - 7)= 10.00000000000000()o 
PF(2 -83.4425100621877864 
PF( 2-93.3725707547895349 
PF( 3-62.5502140367317891 
PF(3 - 8)= 3.3223567180577471 
PF( 3- 9)= 3.2548584904209301 
FINAL LINK FLOWS ARE: 
Q( I- 4)= 7.3240812075596171 
Q( 1 -5)= 22.6759187924403811 
Q(5 - 4)= 7.3240812075596171 
Q( 5-8 )= 5.3518375848807640 
Q( 8- 6)= 15.3518375848807658 
Q(4 - 6)= 4.6481624151192342 
Q2-7 25.5424764150701549 
Q( 7-86.0849528301403097 
Q( 2-99.4575235849298451 
Q( 7-99.4575235849298451 
Q( 9-8 18.0424764150701549 
Q( 3- 9)= 9.1274292452104664 
Q( 3-8 )= 5.8725707547895363 
ENTROPY VALUE OF THE NETWORK IS: 
S/K= 2.9239736390456761 
END OF FILE 
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CA THE REVERSED EXAMPLE OF EXAMPLE I 

The input rile: 
9 
16 
7 
12 
14 
23 
24 
25 
35 
36 
45 
48 
56 
57 
58 
67 
69 
87 
79 
-20 
-15 
-15 
-15 
-15 
-10 
-10 
40 
60 
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The output rile: 
NN? 
# NODES 9 
NL? 
# LINKS 16 
NS? 
# SOURCES =7 
FOR EACH LINK INPUT UN, DN 
FOR EACH NODE INPUT D, (SOURCE -VE) 
NODES REACHABLE TO EACH NODE ARE: 
TO NODE( 124356789 
TO NODE( 23456879 
TO NODE( 3 ): 5 6789 
TO NODE(4): 5 8679 
TO NODE(5): 6 789 
TO NODE( 6): 7 9 
TO NODE( 7): 9 
TO NODE( 8 ): 79 
TO NODE( 9): NO NODES 
NODES IMMEDIATELY UPSTREAM TO EACH NODE ARE: 
TO NODE( I NO NODES 
TO NODE( 21 
TO NODE( 32 
TO NODE( 412 
TO NODE(5): 2 34 
TO NODE( 6 ): 35 
TO NODE( 7): 5 68 
TO NODE( 845 
TO NODE( 967 
NUMBER OF PATHS FROM EACH NODE To EACH NODE ARE: 
NP FROM NODE( I )TO NODES( I-9 RESPECTIVELY: I11245 15 6 20 
NP FROM NODE( 2 )TO NODES( 1-9 RESPECTIVELY: 011 13 4 11 4 15 
NP FROM NODE( 3 )TO NODES( 1-9 RESPECTIVELY: 001012416 
NP FROM NODE( 4 )TO NODES( I-9 RESPECTIVELY: 00011 14 25 
NP FROM NODE( 5 )TO NODES( I-9 RESPECTIVELY: 000011314 
NP FROM NODE( 6 )TO NODES( I-9) RESPECTIVELY: 000001102 
NP FROM NODE( 7 )TO NODES( I-9) RESPECTIVELY: 000000 10 1 
NP FROM NODE( 8 )TO NODES( I-9) RESPECTIVELY: 000000111 
NP FROM NODE( 9 )TO NODES( I-9) RESPECTIVELY: 000000001 
FINAL 2-NORM OF THE RESIDUALS= 5.6441212056564787E-10 
ALFA( 2 1.4164214326698088 
ALFA( 3 4.3552620932390171 
ALFA(4)= 3.4014133797101418 
ALFA( 5 5.4824012344012560 
ALFA( 6 21.1839811131386178 
ALFA(7)= 42.3679622272627725 
PROBABILITIES OF PATH FLOWS FROM EACH SOURCE TO EACH DEMAND NODE 

ARE: 
P( I- 8)= 8.7990866373981860E-02 
P( I- 9)= 2.3602740087805447E-02 
P(2 - 8)= 0.1246321490046590 
P(2 - 9)= 3.3431426932090925E-02 
P(3 - 8)= 0.3832232849652948 
P(3 - 9)= 0.1027961191724509 
P(4 - 8)= 0.2992933101449221 

288 



P( 4-98.0282675942031173E-02 
P( 5-80.4824012344010357 
P( 5-90.1293996913997411 
P( 6-90.5000000000000000 
P( 7-90.9999999999999979 
PROBABILITIES CHECKING: 
NORMALITY CONDMON AT SOURCE( 1 1.0000000000000000 
NORMALITY CONDITION AT SOURCE( 2 1.0000000000000000 
NORMALITY CONDMON AT SOURCE( 3 1.0000000000000000 
NORMALITY CONDMON AT SOURCE(4)= 1.0000000000000000 
NORMALITY CONDMON AT SOURCE( 5)= 1.0000000000000000 
NORMALITY CONDITION AT SOURCE( 6 1.0000000000000000 
NORMALITY CONDITION AT SOURCE( 7 0.9999999999999979 
PATH FLOWS FROM EACH SOURCE TO EAC H DEMAND NODE ARE: 
PF( I- 8)= 1.7598173274796372 
PF( I- 9)= 0.4720548017561089 
PF( 2-81.8694822350698854 
PF( 2-90.5014714039813639 
PF(3 -85.7483492744794216 
PF(3 - 9)= 1.5419417875867629 
PF(4 - 8)= 4.4893996521738311 
PF(4 - 9)= 1.2042401391304676 
PF(5 - 8)= 7.2360185160155357 
PF(5 - 9)= 1.9409953709961163 
PF( 6-9 )= 5.0000000000000000 
PF(7 - 9)= 9.9999999999999787 
FINAL LINK FLOWS ARE: 
Q( I- 2)= 14.1200913362601828 
Q( I- 4)= 5.8799086637398190 
Q( 2- 3-)= 9.4704567969743607 
Q(2 - 4)= 12.1262301537864090 
Q(2 - 5)= 7.5234043854994139 
Q( 3-5 19.4395208103258881 
Q( 3-65.0309359866484717 
Q( 4-5 20.4778011286991877 
Q(4 -8 12.5283376888270404 
Q( 5- 6)= 16.1596214333637498 
Q( 5-78.0798107166818749 
Q( 5-8 38.2012941744788677 
Q( 6-7 15.5952787100061094 
Q( 6-9 15.5952787100061094 
Q( 8-7 10.7296318633059240 
Q( 7-9 44.4047212899938870 
ENTROPY VALUE OF THE NETWORK IS: 
S/K= 3.7489693125575236 
END OF FILE 
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APPENDIX D 

THE CAMONET 

COMPUTER PROGRAMME 

IMPLICIT DOUBLE PRECISION (A-H, O-Z) 
PARAMETER(MXNN=20ývIXNL--40, MXNLC=10, MXCN=5) 
PARAMETER(MXNLP=MXNL-MXNN+I) 
PARAMETER(N=MXNLP*MXNLC+MXNL) 
INTEGER UN(MXNLC, NffNL), DN(MXNLC, NlXNL), NQL(MXNLC, MXNN), 

& ISTATE(N+MXNLC*(NIXNLP+I)), IUSER(l), IWORK(3*N+2*MXNLC*(MXNLP+I)), 
& FLDIR(MXNLP*MXNLC, NlXNL), HLP(NLXNLC, MXNL), LCEXCN(MXNLC) 
DOUBLE PRECISION D(MXNLC, MXNN), QN(MXNLC, O: MXNN), QL(MXNLC, MXNL), 

" PQL(AlXNLC, MXNNMXCN), PQD(MXNLC, ALXNN), PN(MXNN), 
" A(MXNLC, MXNN-1, MXNL), PQ(MXNL), X(N), AA(MXNN-1, MXNL+I), L(MXNL), 
" DI(MXNL), BL(N+MXNLC*(MXNLP+I)), BU(N+MXNLC*(MXNLP+I)), 
" C(AlXNLC*(MXNLp+l)), CJAC(AJXNLC*(MXNLP+I), N), OBJGRD(N), USER(l), 
" CLAMDA(N+MXNLC*(MXNLP+I)), R(N, N), ALFA(MXNL), PALFA(MXNL), 
" WORK(2*N*N+2*N*MXNLC*(NIXNLP+I)+20*N+21*MXNLC*(MXNLP+I)), 
" PHL(NlXNLC), AI(MXNN-1, MXNL), DI(NffNN), QLI(MXNL), HL(MXNLC, MXNL) 
LOGICAL OPTIMZ 
CHARACTER ANSWER* 1 
COMMON/IVAR/NN, NL, NS, NLC, NEXC 
COMMON/IARRAY/UN, DN, NQL, FLDIR, HLP, LCEXCN 
COMMON/RARRAY/D, QN, PN, PQD, PQL, A, AA, PQ, QL, L, D1, ALFA 
EXTERNAL E04UCFE04UEFOBJFUN, CONFUN 

C DATA INPUT 
OPEN(5, FILE='camonet. dat', FORM='FORMATTED') 
OPEN(6, FILE='camonet. res', FORM='FORMATTED') 
PRINT*, ' OPTIMIZE ENTROPY? (Y/N) 
READ 99999, ANSWER 
OPTIMZ--ANSVv'ER. EQ. 'Y'. OR. ANSWER. EQ. 'y' 
PRINT*, ' OPTIMZ =', OPTTMZ 
PRINT*, ' NN T 
READ*, NN 
PRINT*, '# NODES =', NN 
PRINT*, ' NL T 
READ*, NL 
PRINT*, '# LINKS =', NL 
PRINT*, ' NS T 
READ*, NS 
PRINT*, '# SOURCES =', NS 
NLP=NL-NN+l 
PRINT*, '# LOOPS =', NLP 
PRINT*, ' NLC T 
READ*, NLC 
PRINT*, '# LOAD CASES =', NLC 
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PRINT*, ' NEXC T 
READ*, NEXC 
PRINT*, '# EXTRA CONSTRAINTS =', NEXC 
IF(NLC. GT. MXNLC)THEN 

PRINT*, 'ARRAYS TOO SMALL, NLC. GT. MXNLC. PROG STOPPED' 
ELSE IF(NEXC. GT. MXNLC)THEN 

PRINT*, ' ARRAYS TOO SMALL, NEXC GT. MXNLC. PROG STOPPED' 
ELSE IF(NLP. GT. NlXNLP)THEN 

PRINT*, ' ARRAYS TOO SMALL, NLP. GT. MXNLP. PROG STOPPED' 
ELSE IF(NN. GT. MXNN)THEN 

PRINT*, ' ARRAYS TOO SMALL, NN. GT. MXNN. PROG STOPPED' 
ELSE IF(NL. GT. MXNL)THEN 

PRINT*, ' ARRAYS TOO SMALL, NL. GT. MXNL. PROGRAM TERMINATED' 
STOP 

END IF 
DO 550 I=INLC 
PRINT*, ' FOR LOAD CASE', I, ' INPUT THE FOLLOWING: ' 
PRINT*, ' 
PRINT*. ' FOR EACH LINK INPUT UN, DN' 
DO 100 J= 1, NL 
READ*, UN(I, J), DN(I, J) 

100 CONTINUE 
PRINT*, ' FOR EACH NODE INPUT D, (SOURCE -VE)' 
DO 150 J=I, NN 
READ*, D(I, J) 

150 CON71INUE 
C SET UP CONTINUITY MATRIX 

DO 250 J=I, NN-1 
DO 200 K=I, NL 
IF(UN(I, K). EQJ)A(I, J, K)=-I. 0D0 
IF(DN(I, K). EQJ)A(I, J, K)=l. 0D0 

200 CONTINUE 
250 CONTINUE 

PRINT*, ' INPUT (STARTING) FLOWS FOR THE LAST', NLP, ' LINK(S)' 
K=I-l 
READ*, (X(NLP*K+J), J=I, NLP) 
PRINT*, ' THE INPUT FLOWS ARE' 
DO 300 J=I, NLP 
K=I-l 
PRINT*, ' QL(', I, ', ', NL-NLP+J, ') =', X(NLP*K+J) 

300 CONTINUE 
DO 350 J=I, NLP 
K=I-I 
QL(I, NL-NLP+J)=X(NLP*K+J) 

350 CONTINUE 
C COMPUTE DEPENDENT FLOWS 

DO 360 J=INN-1 
DO 355 K=I, NL 
AI(J, K)=A(I, J, K) 
QLI(K)=QL(I, K) 

355 CONTINUE 
360 CONTINUE 

DO 365 J=I, NN 
DI(J)=D(I, J) 

365 CON71TNLJE 
CALL GAUSS(MXNN-1, NIXNL, NN-1, NL, NLP, A1, AA, DI, QLI) 
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DO 375 J=INN-1 
60 370 K=INL 
A(I, J, K)=AI(J, K) 
QL(I, K)=QLI(K) 

370 CONTINUE 
375 CONTINUE 

DO 380 J=INN 
D(I, J)=DI(J) 

380 CONTINUE 
ERR=I. OD-6 
DO 450 J=INN 
QIN--O. ODO 
QOUT=O. ODO 
DO 400 K=INL 
IF(QL(I, K). LT. O. ODO)THEN 
PRINT*, ' *** WARNING *** QL(', I, ', ', UN(I, K), DN(I, K), ')' 
PRINT*, ' IS -VE FOR LOAD CASE', I 
PRINT*, 'QL(', I, ', ', UN(I, K), DN(I, K), ') =', QL(I, K) 
IF(ABS(QL(I, K)). GT. ERR)PRINT*, ' EXECUTION ABORTED' 
STOP 
END IF 
IF(DN(I, K). EQ. J)QIN=QIN+QL(I, K) 
IF(LTN(I, K). EQJ)QOUT=QOUT+QL(I, K) 

400 CONTINUE 
IF(ABS(QIN-QOUT-D(I, J)). GT. ERR)THEN 
PRINT*, ' FLOWS DO NOT BALANCE AT NODE', J, ' FOR LOAD CASE'j 
PRINT*, ' NET INTERN. FLO = ', QIN-QOUT 
PRINT*, ' 
PRINT*, ' PROGRAM STOPPED' 
STOP 
END IF 

450 CONTINUE 
PRINT*, ' THE COMPLETE INPUT FLOWS ARE' 
DO 500 J=I, NL 
PRINT*, ' QL(', I, ', ', UN(I, J), DN(I, J), ') =', QL(I, J) - 

500 CONTINUE 
550 CONTINUE 

PRINT*, '- 
PRINT*, ' FOR EACH LINK INPUT (STARTING) PIPE CHARACTERISTIC ALFA, 
READ*, (X(l), I=NLP*NLC+I, NLP*NLC+NL) 
PRINT*, ' THE INPUT PIPE CHARACTERISTICS ARE' 
DO 600 I= I, ML 
J=NLP*NLC+l 
PRINT*, ' ALFA(', UN(l, I), DN(l, I), ') =', X(J) 

600 CONTINUE 
NV=NLP*NLC+NL 
CALL OBJFUN(MODE, NV, X, F, OBJGRD, NSTATE, IUSER, USER) 
PRINT*, ' FUNCTION VALUE FOR INPUT DATA IS' 
PRINT*, ' F =v, F 
IF(OPTIMZ)THEN 
PRINT*, ' FOR EACH LINK INPUT LENGTH L' 
READ*, (L(I), I=I, NL) 
PRINT*, ' FOR EACH LINK INPUT DIAMETER DI' 
READ*, (DI(I), I=l, NL) 
PRINT*, ' FOR EACH LOOP IN EACH LOAD CASE INPUT UNIT VALUE' 
PRINT*, ' FOR EACH LINK EXISTED IN THE LOOP, CLOCKWISE' 
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PRINT*, ' (+VE), WITH ZERO VALUE FOR EACH LINK NOT EXISTED' 
PRINT*, ' IN THAT LOOP' 
DO 650 I=I, NLP*NLC 
READ*, (FLDIR(I, J), J=I, NL) 

650 CONTINUE 
IF(NEXC. NE. O)THEN 
PRINT*, ' INPUT THE PATH HEAD LOSS FOR EACH EXTRA CONSTRAINT' 
READ*, (PHL(l), I=INEXC) 
PRINT*, ' FOR EACH PATH OF HEAD LOSS CONSTRAINT INPUT THE' 
PRINT*, ' CORRESPONDING LOAD CASE NUMBER, AND INPUT UNIT' 
PRINT*, ' VALUE FOR EACH LINK EXISTED IN THE PATH, WITH' 
PRINT*, ' ZERO VALUE FOR EACH LINK NOT EXISTED IN THAT PATH' 
DO 700 I=I, N"EXC 
READ*, LCEXCN(I), (HLP(I, J), J=INL) 

700 CONTINUE 
END IF 
PRINT*, ' FOR EACH LOAD CASE INPUT THE', NLP, ' FLOW LOWER BOUNDS' 
READ*, (BL(l), I=I, NLP*NLC) 
PRINT*, ' FOR EACH LOAD CASE INPUT THE', NLP, ' FLOW UPPER BOUNDS' 
READ*, (BU(I), I=I, NLP*NLC) 
PRINT*, ' INPUT PIPE CHARACTERISTIC LOWER BOUND' 
READ*, PCLB 
PRINT*, ' INPUT PIPE CHARACTERIST1C UPPER BOUND' 
READ*, PCUB 
DO 800 I=NLP*NLC+I, NLP*NLC+NL 
BL(I)=PCLB 
BU(I)=PCUB 

800 CONTINUE 
DO 900 I=NLP*NLC+NL+1,2*NLP*NLC+NL 
BL(I)--O. ODO 
BU(I)--O. ODO 

900 CONTINUE 
IF(NEXC. NE. O)THEN 
DO 950 I=I, NEXC 
BL(2*NLP*NLC+NL+I)=PHL(I) 
BU(2*NLP*NLC+NL+I)=PHL(l) 

950 CONTINUE 
END IF 
NCNLN=NLP*NLC+NEXC 
LDA=l 
LDCJ=NCNLN 
LDR=NV 
LIWORK=3*NV+2*NCNLN 
LWORK=2*NV**2+2*NV*NCNLN+20*NV+21*NCNLN 

C CALL X04AAF(1,6) 
C CALL X04ABF(1,6) 

CALL E04UEF(' DERIVATIVE LEVEL 0') 
CALL E04UEF(' MAJOR ITERATION LIMIT 1000') 
CALL E04UEF(' MINOR ITERATION LIMIT 2000') 

C CALL E04UEF(' LINESEARCH TOLERANCE 9. OOD-03') 
C CALL E04UEF(' HESSIAN YES') 
C CALL E04UEF(' STEP LIMIT I') 
C CALL E04UEF(' MAJOR PRINT LEVEL 30') 
C CALL E04UEF(' MINOR PRINT LEVEL 30') 
C CALL E04UEF(' OPTIMALITY TOLERANCE I. OD-3') 
C CALL E04UEF(' FUNCTION PRECISION LOD-8') 
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IFAIL--I 
CALL E04UCF(NVNCLJNNCNLN, LDA, LDCJLDR, 

& AB, B4BU, CONFUN, OBJFUN, ITER, ISTATE, C, CJAC, 
& CLAMDA, FOBJGRDR, X, IWORK, LIWORK, WORK, LWORK, 
& IUSEPUSER, IFAIL) 
DO 1150 1=1, NLC 
DO 1000 J= 1, NLP 
K=I-I 
QL(I, NL-NLP+J)=X(NLP*K+J) 

1000 CONTINUE 
DO 1010 J=INN-1 
DO 1005 K=I, NL 
AI(J, K)=A(I, J, K) 
QLI(K)=QL(I, K) 

1005 CONTINUE 
10 10 CONTINUE 

DO 1015 J=INN 
DI(J)=D(I, J) 

10 15 CONTINUE 
CALL GAUSS(MXNN-1, NLXNLNN-1, NL, NLP, A1, AA, DI, QLI) 
DO 1025 J=INN-1 
DO 1020 K=I, NL 
A(I, J, K)=AI(J, K) 
QL(I, K)=QLI(K) 

1020 CONTINUE 
1025 CONTINUE 

DO 1030 J= 1, NN 
D(I, J)=DI(J) 

1030 CONTINUE 
DO 1100 J= 1, NN 
QIN--O. ODO 
QOUT--O. ODO 
DO 1050 K=INL 
IF(QL(I, K). LT. 0.0D0)THEN 
PRINT*, ' *** WARNING *** QL(', I, ', ', UN(I, K), DN(I, K), ')' 
PRINT*, ' IS -VE FOR LOAD CASE'j 
PRINT*, 'QL(', I, ', ', UN(I, K), DN(I, K), ')=', QL(I, K) 
END IF 
IF(DN(I, K). EQJ)QIN=QIN+QL(I, K) 
IF(UN(I, K). EQ. J)QOUT=QOUT+QL(I, K) 

1050 CONTINUE 
IF(ABS(QIN-QOUT-D(I, J)). GT. ERR)THEN 
PRINT*, ' FLOWS DO NOT BALANCE AT NODE', J, 'FOR LOAD CASE', I 
END IF 

1100 CONTINUE 
1150 CONTINUE 

CALL OBJFUN(MODE, NV, X, F, OBJGRD, NSTATE, IUSER, USER) 
PRINT`*, - IFAIL =', IFAIL 
IF (IFAIL. EQ. O)THEN 
PRINT*, ' FUNCTION VALUE ON SUCCESSFUL EXIT IS' 
PRINT*, 'F=', F 
DO 1250 I= 1, NLC 
PRINT*, ' ALL THE OPTIMAL LINK FLOWS FOR LOAD CASE', I, ' ARE' 
DO 1200 J=I, NL 
PRINT*, ' QL(', I, ', ', UN(19J), DN(I, J), ') =', QL(I, J) 

1200 CONTINUE 
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1250 CONTINUE 
PRINT*, ' ALL THE OPTIMAL PIPE CHARACTERISTICS ARE' 
DO 1300 1= 1, NL 
J=NLP*NLC+I 
PRINT*, ' ALFA(', UN(IJ), DN(l, l), ') =', X(J) 

1300 CONTINUE 
END IF 
IF(IFAIL. NE. O)THEN 
PRINT*, '*** IFAIL =', IFAII., '!!! ' 
PRINT*, ' *** UNSUCCESSFUL EXITM' 
PRINT*, ' FUNCTION VALUE ON UNSUCCESSFUL EXIT IS' 
PRINT*, 'F=', F 
DO 1400 I= 1, NLC 
PRINT*, ' ALL LINK FLOWS ON EXIT FOR LOAD CASE', I, ' ARE' 
DO 1350 J= 1, NL 
PRINT*, * QL(', I, ', ', UN(IJ), DN(IJ), ') =', QL(I, J) 

1350 CONTINUE 
1400 CONTINUE 

PRINT*, ' ALL PIPE CHARACTERISTICS ON EMT ARE' 
DO 1450 I=INL 
J=NLP*NLC+l 
PRINT*, ' ALFA(', UN(l, l), DN(l, l), ') =', X(J) 

1450 CONTINUE 
END IF 
SUM=O. ODO 
DO 1500 I=NLP*NLC+INLP*NLC+NL 
SUM=SUM+x(l) 

1500 CONTINUE 
DO 1550 I=INL 
I=NLP*NLC+l 
PALFA(I)=X(JYSUM 

1550 CONTINUE 
PRINT*, ' ALL PIPE CHARACTERISTIC PROBABILITIES ARE' 
DO 1600 I=INL 
PRRqT*, ' PALFA(', UN(l, l), DN(l, l), ') =', PALFA(l) 

1600 CONTINUE 
DO 1700 I=INLC 
PRINT*, ' THE HEAD LOSSES IN THE LINKS FOR LOAD CASE', I, ' ARE' 
DO 1650 J= 1, NL 
K=NLP*NLC+J 
HL(I, J)=X(K)*L(J)*QL(I, J)**(1.852)*DI(J)**(-4.87) 
PRINT*, ' HL(', I, ', ', LJN(IJ), DN(IJ), ') =', HL(I, J) 

1650 CONTINUE 
1700 CONTINUE 

END IF 
STOP 

99999 FORMAT(A I) 
END 

C 
C SUBROUTINE OBJFUN COMPUTES ENTROPY VALUE FOR ANY GIVEN DATA 
C 

SUBROUTINE OBJFUN (MODE, NV, X, FOBJGRD, 
& NSTATEJUSER, USER) 
IMPLICIT DOUBLE PRECISION (A-H, O-Z) 
PARANIET'ER(MXNN=20, MXNL--40, MXNLP=21, MXNLC=10, MXCN=5) 
INTEGER LTN(MXNLCMXNL), DN(NlXNLC, MXNL), NQL(MXNLC, MXNN), 
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& IUSER(*), FLDIR(NlXNLP*NLXNLCJvL<NL), HLP(NLXNLC, MXNL), 
& LCEXCN(MXNLQ 
DOUBLE PRECISION D(NLXNLCMXNN), QN(MXNLC, O: MXNN), 

& QL(MXNLCAlXNL), PQL(MXNLC, MXNN, MXCN), PQD(MXNLC, MXNN), 
& PN(NlXNN), A(MXNLC, MXNN-1, MXNL), PQ(NlXNL), X(NV), 
& AA(MXNN-1, NaNL+I), OBJGRD(NV), USER(*), L(MXNL), 
& DI(MXNL), ALFA(MXNL), AI(MXNN-1, MXNL), DI(MXNN), QLI(MY. NL) 
COMMON/IVAR/NN, NL, NS, NLC, NEXC 
COMMON/IARRAY/UN, DN, NQL, FLDIR, HLP, LCEXCN 
COMMON/RARRAYID, QN, PN, PQD, PQL, A, AA, PQ, QL, L, DI, ALFA 
V(P)=-P*DLOG(P) 
NLP=(NV-NL)/NLC 
ENT---O. ODO 
DO 900 I= INLC! 
DO 100 J= 1, NLP 
K=I-l 
QL(I, NL-NLP+J)=X(NLP*K+J) 

100 CONTINUE 
DO 120 J=I, NN-1 
DO 110 K=I, NL 
AI(I, K)=A(I, T, K) 
QLI(K)=QL(I, K) 

110 CONTINUE 
120 CONTINUE 

DO 130 J=INN 
DI(J)=D(I, J) 

130 CONTINUE 
CALL GAUSS(MXNN-1, MXNL, NN-1, NLNLP, A1, AA, DI, QLI) 
DO 150 J=I, NN-1 
DO 140 K=I, NL 
A(I, J, K)=AI(J, K) 
QL(I, K)=QLI(K) 

140 CONTINUE 
150 CONTINUE 

DO 160 J=I, NN 
D(I, J)=DI(J) 

160 CONTINUE 
C SUM SOURCE SUPPLIES 

QN(I, O)=O. ODO 
DO 200 J=I, NS 
QN(1,0)=QN(1,0)-D(I, J) 

200 CONTINUE 
DO 400 J=1, NN 
NQL(I, J)--O 
QN(I, J)--O. ODO 
IF(J. GT. NS)QN(I, J)=QN(I, J)+D(I, J) 
DO 300 K=I, NL 
IF(UN(I, K). EQ. J)THEN 
NQL(I, J)=NQL(I, J)+l 
QN(I, J)=QN(I, J)+QL(I, K) 
END IF 

300 CONTINUE 
400 CONTINUE 

DO 600 J=I, NN 
IF(J. GT. NS)PQD(I, J)=D(I, J)/QN(I, J) 
K--O 
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DO 500 M=INL 
IF(UN(I, M). EQJ)THEN 
K=K+l 
PQL(I, J, K)=QL(I, Nl)/QN(I, J) 
END IF 

500 CONTINUE 
600 CONTINUE 

S=O. ODO 
DO 800 J=I, NN 
SI --O. ODO 
DO 700 K=I, NQL(IJ) 
IF(PQL(I, J, K). NE. O. ODO)SI=SI+V(PQL(I, J, K)) 

700 CONTINUE 
IF(J. GT. NS)SI=SI+V(PQD(I, J)) 
S=S+SI*QN(I, J)/QN(I, O) 

800 CONTINUE 
C ADD ENTROPY DUE TO DISTRIBUTION OF SOURCE FLOWS 

DO J=INS 
S=S+V(-D(I, J)/QN(1,0)) 

END DO 
ENT=ENT+S 

900 CONTINUE 
DPNLC=NLC 
ENT=ENT*DPNLC**(-I) 

C ADD ENTROPY DUE TO PIPE CHARACTERISTICS 
SUMALFA--0.0D0 
DO I=NLP*NLC+I, NLP*NLC+NL 

SUMALFA=SUNLA, LFA+X(l) 
END DO 
DO I=NLP*NLC+I, NLP*NLC+NL 

ENT=ENT+V(X(I)/SUMALFA) 
END DO 
F=-ENT 
RETURN 
END 

C 
C SUBROUTINE CONFUN COMPUTES THE VALUES OF THE NONLINEAR CONSTRAINTS 
C 

SUBROUTINE CONFUN(MODE, NCNLN, NV, LDCJNEEDC, X, 
& C, CJAC, NSTATE, IUSER, USER) 
IMPLICIT DOUBLE PRECISION (A-H, O-Z) 
PARAMETER(M, NM=20, MXNL--40, MXNLP=21, MXNLC=10, MXCN=5) 
INTEGER UN(MXNLC, MXNL), DN(MXNLC, MXNL), NQL(MXNLC, MXNN), 

& IUSER(*), NEEDC(*), FLDIR(MXNLP*MXNLC, MXNL), HLP(MXNLC, MXNL), 
& LCEXCN(MXNLC) 
DOUBLE PRECISION D(MXNLC, MXNN), QN(MXNLC, O: MXNN), 

& QL(MXNLC, MXNL), PQL(MXNLC, MXNN, MXCN), PQD(MXNLC, MXNN), 
& PN(MXNN), A(MXNLC, MXNN-1, MXNL), PQ(MXNL), X(NV), DI(MXNL), 
& AA(MXNN-1, MXNL+I), L(MXNL), C(MXNLC*(MXNLP+I)), CJAC(LDCJ, *), 
& USER(*), ALFA(MXNL), AI(MXNN-1, MXNL), DI(MXNN), QLI(MXNL) 
COMMON/IVAR/NN, NL, NS, NLC, NEXC 
COMMON/IARRAY/UN, DN, NQL, FLDIR, HLP, LCEXCN 
COMMON/RARRAY/D, QN, PN, PQD, PQL, A, AA, PQ, QL, L, DI, ALFA 
NLP=(NV-NL)/NLC 
DO 100 I=I, NL 
J=NLP*NLC+l 
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ALFA(I)=X(J) 
100 CONTINUE 

DO 500 I=INLC 
DO 200 J=INLP 
K=I-l 
QL(I, NL, -NLP+J)=X(NLP*K+J) 

200 CONTINUE 
DO 220 J= 1, NN- I 
DO 210 K=INL 
AI(J, K)=A(I, J, K) 
QLI(K)--QL(I, K) 

2 10 CONTINUE 
220 CONTINUE 

DO 230 J=IW 
DI(J)=D(I, J) 

230 CONTINUE 
CALL GAUSS(MXNN-1, MXNLNN-1, NýNLP, A1, AA, Dl, ( 
DO 250 J=I. W-1 
DO 240 K=INL 
A(I, J, K)=Al(J, K) 
QL(I, K)=QLI(K) 

240 CONTINUE 
250 CONTINUE 

DO 260 J=INN 
D(I, J)=DI(J) 

260 CONTINUE 
DO 400 J=I, NLP 
K=I-I 
C(NLP*K+J)=O. ODO 
DO 300 M=INL 
IF(FLDIR(NLP*K+J, M). NE. 0) THEN 
C(NLP*K+J)--C(NLP*K+J)+FLDIR(NLP*K+J, M)*ALFA(M) 

& QL(IM)**(1.852)*L(M)*DI(M)**(4.87) 
END IF 

300 CONTINUE 
400 CONTINUE 
500 CONTINUE 

IF(NEXC. NE. O)THEN 
DO 700 I=INEXC 
C(NLP*NLC+I)---O. ODO 
DO 600 J=INL 
IF(HLP(I, J). NE. 0) THEN 
C(NLP*NLC+I)=C(NLP*NLC+I)+HLP(I, J)*ALFA(J)* 

& QL(LCEXCN(l), J)**(1.852)*L(J)*DI(J)**(-4.87) 
END IF 

600 CONTINUE 
700 CONTINUE 

END IF 
RETURN 
END 

c 
C SUBROUTINE NAME: GAUSS 
c 
C PURPOSE: SOLUTION OF (NR)X(NC) (NR<NC) SIMULTANEOUS EQUATIONS BY 
GAUSS 
C ELIMINATION. THE LAST (NC)-(NR) VARIABLES MUST BE KNOWN AND SUPPLIED 
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C AS DATA. E. G IF FOR 7 (NC) VARIABLES &5 (NR) EQUATIONS, THE VALUE 
C OF THE LAST 2 VARIABLES MUST BE SUPPLIED AS DATA. 
C ARGUMENTS: 
C NR=NO. OF ROWS=NO. OF EQNS. 
C NC=NO. COLUMNS=NO. OF VARIABLES. 
C A=(NR)X(NC) MATRIX OF COEFFIEIDNTS OF THE VARIABLES X. UNCHANGED ON 
C EXIT. 
C AA=AUGMENTED MATRIX. CONTAINS UPPER 'TRAPEZOIDAL' MATRIX ON EXIT. 
C X=VECTOR OF THE NC VARIABLES 
C B=VECTOR OF THE RHS'S OF THE NR EQUATIONS. UNCHANGED ON EXIT 

SUBROUTINE GAUSS(IR, IC, NR, NC, NLPS, A, AA, B, X) 
IMPLICIT DOUBLE PRECISION (A-H, O-Z) 
DOUBLE PRECISION A(IR, IC), AA(IR, IC+I), B(IR), X(IC) 

C AUGMENT MATRIX A BY MATRIX B 
DO 200 I=I, NR 
DO 100 J=I, NC 
AA(I, J)= A(IJ) 

100 CONTINUE 
200 CONTINUE 

DO 300 I=INR 
AA(I, NC+I)=B(l) 

300 CONTINUE 
C REDUCE AUGMENTED MATRIX TO UPPER TRAPEZOIDAL MATRIX 

DO 800 I=INR-1 
C FIND LARGEST ELEMENT IN PIVOT COLUMN 

IPIVOT=I 
AMAX=ABS(AA(l, l)) 
DO 400 J=I+I, NC 
IF(ABS(AA(J, I)). GT. AMAX)THEN 
AMAX=ABS(AA(J, I)) 
IPIVOT=J 
END IF 

400 CONTINUE 
C PERFORM ROW EXCHANGE IF NECESSARY TO AVOID LARGE PIVOT RATIOS, 
HENCE 
C ROUDING OFF ERRORS 

IF(IPIVOT. NE. I)THEN 
DO 500 K=INC+l 
TEMP=AA(I, K) 
AA(I, K)=AA(IPIVOT, K) 
AA(IPIVOT, K)=TEMP 

500 CONTINUE 
END IF 

C PIVOT 
DO 700 J=I+I, NR 
PRATIO=AA(J, I)IAA(l, l) 
DO 600 K=I+I, NC+l 
AA(J, K)=AA(J, K)-AA(I, K)*PRATIO 

600 CONTINUE 
700 CONTINUE 
800 CONTINUE 
C BACKSUBSIITUTE 

DO 1000 I=NC-NLPS, I, -l 
SUm_-o. o 
DO 900 K=I+I, NC 
SUM=SUM+AA(I, K)*X(K) 
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X(I)=(AA(I, NC+I)-SUM)IAA(l, l) 
900 CONTME 
1000 CONTINUE 

RETURN 
END 
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APPENDIX E 

SOME OF THE CAMONET COMPUTER 

PROGRAMME APPLICATIONS OF CHAPTER 7 

E. 1 EXAMPLE 1 

E. 1.1 RUN I 

The inDUt rile: 
y 
6 

I 
0 
12 
24 
34 
46 
56 
13 
35 
-. 284 

. 028 

. 033 

. 075 

. 092 

. 056 

. 2.1 
1 
1 
1 
1 1-100-10 
001 1-10-1 

. 126.093 

. 255 . 147 
I. Od-3 
I. Od+3 
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The outDut rile: 
OPTIMIZE ENTROPY? (Y/N) 
OPTIMZ =T 
NN ? 
# NODES =6 
NL ? 
# LINKS =7 
NS ? 
#SOURCES= I 
# LOOPS =2 
NLC ? 
#LOAD CASES= I 
NEXC ? 
# EXTRA CONSTRAINTS =0 
FOR LOAD CASE I INPUT THE FOLLOWING: 

FOR EACH LINK INPUT UN, DN 
FOR EACH NODE INPUT D, (SOURCE -VE) 
INPUT (STARTING) FLOWS FOR THE LAST 2 LINK(S) 
THE INPUT FLOWS ARE 
QL( 1,6 0.20000000000000 
QL( 1,7 1.000000000000OD-01 
THE COMPLETE INPUT FLOWS ARE 
QL( 1,1 2)= 8.400000000000OD-02 
QL( 1,2 4)= 5.600000000000OD-02 
QL( 1,3 4)= 6.700000000000OD-02 
QL( 1,4 6)= 4.800000000000OD-02 
QL( 1,5 6)= 8. OOOOOOOOOOOOOD-03 
QL( 1,1 3)=0.20000000000000 
QL( 1,3 5)= 1.000000000000OD-01 

FOR EACH LINK INPUT (STARTING) PIPE CHARACTERISTIC ALFA 
THE INPUT PIPE CHARACTERISTICS ARE 
ALFA( 1 2)= 1.0000000000000 
ALFA( 2 4)= 1.0000000000000 
ALFA( 3 4)= 1.0000000000000 
ALFA( 4 6)= 1.0000000000000 
ALFA( 5 6)= 1.0000000000000 
ALFA( 1 3)= 1.0000000000000 
ALFA( 35)=1.0000000000000 
FUNCTION VALUE FOR INPUT DATA IS 
F= -3.8406898845982 
FOR EACH LINK INPUT LENGTH L 
FOR EACH LINK INPUT DIAMETER DI 
FOR EACH LOOP IN EACH LOAD CASE INPUT UNIT VALUE 

FOR EACH LINK EXISTED IN THE LOOP, CLOCKWISE 
(+VE), WITH ZERO VALUE FOR EACH LINK NOT EXISTED 
IN THAT LOOP 

FOR EACH LOAD CASE INPUT THE 2 FLOW LOWER BOUNDS 
FOR EACH LOAD CASE INPUT THE 2 FLOW UPPER BOUNDS 
INPUT PIPE CHARACTERISTIC LOWER BOUND 
INPUT PIPE CHARACTERISTIC UPPER BOUND 
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Calls to E04UEF 

DERWATIVE LEVEL 0 
MAJOR IMRATION LIMIT 1000 
MINOR ITERATION LIMIT 2000 

E04UCF 
Start of NAG Library implementation details 

Implementation title: Sun Solaris 
Precision: Fortran Double Precision 

Product Code: FLSOL16D 
Mark: 16A 

*** End of NAG Library implementation details *** 

Parameters 

Linear constraints ..... 
0 Linear feasibility ..... 1.0513-08 

Variables .............. 
9 Crash tolerance ........ 1.0013-02 

Infinite bound size .... 1.0013+20 COLD start ............. 
Infinite step size ..... 1.0013+20 EPS (machine precision) 1.1113-16 
Step limit ............. 2.0013+00 Hessian ................ 

NO 

Nonlinear constraints.. 2 Nonlinear feasibility.. 5.4313-06 
Nonlinear objectiv vars 9 Optimality tolerance... 3.2613-12 
Nonlinear Jacobian vars 9 Linesearch tolerance... 9. OOD-01 

Derivative level ....... 0 Function precision ..... 4.37D-15 
Verify level ........... 0 Monitoring file ........ -1 

Major iterations limit. 1000 Major print level ...... 10 
Minor iterations limit. 2000 Minor print level ...... 0 

Difference intervals to be computed. 

Workspace provided is IWORK( 3 1), WORK( 420). 
To solve problem we need IWORK( 3 1), WORK( 420). 

The user sets 0 out of 18 Jacobian elements. 
Each iteration, 18 Jacobian elements will be estimated numerically. 

The user sets 0 out of 9 objective gradient elements. 
Each iteration, 9 gradient elements will be estimated numerically. 

Computation of the finite-difference intervals 
- -- - ------ - ----- 

i X(J) Forward DX(J) Central DX(J) Error est. 

I 2.00D-O I 3.251179D-08 1.587252D-06 3.678735D-06 
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2 9.30D-02 5.760113D-09 1.445722D-06 2.076387D-05 
3 1.00D+00 9.897526D-07 9.897526D-06 1.208406D-07 
4 1.00D+00 9.897526D-07 9.897526D-06 1.208406D-07 
5 1.00D+00 9.897526D-07 9.897526D-06 1.208406D-07 
6 LOOD+00 9.897526D-07 9.897526D-06 1.208406D-07 
7 1.00D+00 9.897526D-07 9.897526D-06 1.208406D-07 
8 1.00D+00 9.897526D-07 9.897526D-06 1.208406D-07 
9 1.00D+00 9.897526D-07 9.897526D-06 1.208406D-07 

6 constant constraint gradient elements assigned. 

Maj Mnr Step Merit function Violtn Nonn Gz Cond Hz 
01O. OD+00 -3.669625D+00 4AD-02 4.2D-02 LOD+00 
13 LOD+00 -3.752099D+00 6.7D-01 2.3D-01 1.8D+00 
224. ID-01 -3.780615D+00 7.9D-04 IAD-01 1.5D+00 
31 LOD+00 -3.788903D+00 1.7D-04 4.5D-02 1.5D+00 
41 LOD+00 -3.791099D+00 2. ID-05 2.5D-02 1.7D+00 
51 LOD+00 -3.791757D+00 IOD-06 2.2D-02 2.9D+00 
61 LOD+00 -3.792764D+00 1.5D-05 IAD-02 2.4D+00 
71 LOD+00 -3.793033D+00 3.8D-06 5.8D-03 2.8D+00 
81 LOD+00 -3.793071D+00 IAD-06 1.2D-03 2.5D+00 
91 LOD+00 -3.793073D+00 4.7D-09 7.6D-04 3.8D+00 
10 1 LOD+00 -3.793074D+00 3AD-09 6.3D-04 3.2D+00 
11 1 LOD+00 -3.793075D+00 3.2D-09 4AD-04 4.9D+00 
12 1 LOD+00 -3.793075D+00 1.5D-09 2. OD-04 4.3D+00 
13 1 LOD+00 -3.793075D+00 6.7D-10 4.6D-05 3.8D+00 
14 1 LOD+00 -3.793075D+00 2.5D-1 I 2. OD-05 4.5D+00 
15 1 LOD+00 -3.793075D+00 IAD-12 1.7D-05 3.5D+00 
16 1 LOD+00 -3.793075D+00 3.6D-12 LOD-05 2.7D+00 
17 1 LOD+00 -3.793075D+00 2AD-12 4AD-06 2.5D+00 
18 1 LOD+00 -3.793075D+00 LID-12 9.9D-07 3.4D+00 
19 1 LOD+00 -3.793075D+00 1.3D-14 3.9D-07 3.5D+00 

Exit from NP problem after 19 major iterations, 
23 minor iterations. 

Varbl State Value Lower Bound Upper Bound Lagr Mult Residual 

V 1 FR 0.184348 0.126000 0.255000 0. 5.8348E-02 
V 2 FR 0.101208 9.300000E-02 0.147000 0. 8.2077E-03 
V 3 FR 1.30355 1.000000E-03 1000.00 0. 1.303 
V 4 FR 1.17704 1.000000E-03 1000.00 0. 1.176 
V 5 FR 1.14555 1.000000E-03 1000.00 0. 1.145 
V 6 FR 1.19679 1.000000E-03 1000.00 0. 1.196 
V 7 FR 1.03561 1.000000E-03 1000.00 0. 1.035 
V 8 FR 0.518965 1.000000E-03 1000.00 0. 0.5180 
V 9 FR 0.586509 1.000000E-03 1000.00 0. 0.5855 

N Con State Value Lower Bound Upper Bound Lagr Mult Residual 

*1 EQ - 1.065120E- 14 0.0.2.295 -1.0651E-14 
*2 EQ 6.642256E-15 0.0.5.747 6.6423E- 15 
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Exit E04UCF - Optimal solution found. 

Final objective value = -3.793075 
IFAIL =0 
FUNCTION VALUE ON SUCCESSFUL EXIT IS 
F= -3.7930752928082 
ALL THE OPTIMAL LINK FLOWS FOR LOAD CASE I ARE 
QL( 1,1 2)= 9.9651705627388D-02 
QQ 1.2 4)= 7.1651705627388D-02 
QL( 1.3 4)= 5.0140551311425D-02 
QL( 1,4 6)= 4.679225693881413-02 
QQ 1.5 6)= 9.2077430611863D-03 
QQ 1,1 3)= 0.18434829437261 
QQ 1.3 5)= 1.012077430611913-01 
ALL THE OPTIMAL PIPE CHARACTERISTICS ARE 
ALFA( 1 2 1.3035489749548 
ALFA( 2 4 1.1770424525642 
ALFA( 3 4 1.1455511193369 
ALFA( 4 6 1.1967903585545 
ALFA( 5 6 1.0356136950591 
ALFA( 1 3 0.51896498652445 
ALFA( 3 5 0.58650871327005 
ALL PIPE CHARACTERISTIC PROBABILITIES ARE 
PALFA( 1 2 0.18718339676657 
PALFA( 2 4 0.16901766534477 
PALFA( 3 4)= 0.16449566054445 
PALFA( 4 6)= 0.17185337017314 
PALFA( 5 6)= 0.14870917234688 
PALFA( 1 3 7.4520889392692D-02 
PALFA( 3 5 8.4219845431497D-02 
THE HEAD LOSS ES IN THE LINKS FOR LOAD CASE I ARE 
HL( 1,1 2)= 1.821046704600913-02 
HL( 1,2 4)= 8.9263038480448D-03 
HL( 1,3 4 4.4850232239074D-03 
HQ 1,4 6 4.1226865558273D-03 
HL( 1,5 6 1.7571526687855D-04 
HL( 1.1 3 2.2651747670157D-02 
HL( 1,3 5 8.431994512849513-03 
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E. 1.2 RUN 2 

The input file: 
y 
6 
7 

12 
24 
34 
46 
56 
13 
35 
-. 284 

. 028 

. 033 

. 075 

. 092 

. 056 

. 2.1 
11 

11 -1 00-10 
00 1 1-10-1 
20 
1001 1010 

. 126.093 

. 284.284 
I. Od-3 
I. Od+3 
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The output rile: 
OPTIMIZE ENTROPY? (YIN) 
OPMfZ =T 
NN? 
# NODES =6 
NI, ? 
#LINKS= 7 
NS ? 
#SOURCES= 1 
# LOOPS =2 
NTLC ? 
#LOAD CASES= I 
NEXC ? 
#EXTRA CONSTRAINTS= I 
FOR LOAD CASE I INPUT THE FOLLOWING: 

FOR EACH LINK INPUT UN, DN 
FOR EACH NODE INPUT D, (SOURCE -VE) 
INPUT (STARTING) FLOWS FOR THE LAST 2 LINK(S) 
THE INPUT FLOWS ARE 
QL( 1,6 0.20000000000000 
QL( 1,7 1.000000000000OD-01 
THE COMPLETE INPUT FLOWS ARE 
QL( 1,1 2)= 8.400000000000OD-02 
QL( 1.2 4)= 5.600000000000OD-02 
QL( 1,3 4)= 6.700000000000OD-02 
QL( 1,4 6)= 4.800000000000OD-02 
QL( 1,5 6)= 8. OOOOOOOOOOOOOD-03 
QL( 1,1 3)= 0.20000000000000 
QL( 1,3 5)=1.000000000000OD-01 

FOR EACH LINK INPUT (STARTING) PIPE CHARACTERISTIC ALFA 
THE INPUT PIPE CHARACTERISTICS ARE 
ALFA( 1 2)= 1.0000000000000 
ALFA( 2 4)= 1.0000000000000 
ALFA( 3 4)= 1.0000000000000 
ALFA( 4 6)= 1.0000000000000 
ALFA( 5 6)= 1.0000000000000 
ALFA( 131.0000000000000 
ALFA( 351.0000000000000 
FUNCTION VALUE FOR INPUT DATA IS 
F= -3.8406898845982 
FOR EACH LINK INPUT LENGTH L 
FOR EACH LINK INPUT DIAMETER DI 
FOR EACH LOOP IN EACH LOAD CASE INPUT UNIT VALUE 

FOR EACH LINK EXISTED IN THE LOOP, CLOCKWISE 
(+VE), WITH ZERO VALUE FOR EACH LINK NOT EXISTED 
IN THAT LOOP 

INPUT THE PATH HEAD LOSS FOR EACH EXTRA CONSTRAINT 
FOR EACH PATH OF HEAD LOSS CONSTRAINT INPUT THE 

CORRESPONDING LOAD CASE NUMBER, AND INPUT UNIT 
VALUE FOR EACH LINK EXISTED IN THE PATH, WITH 
ZERO VALUE FOR EACH LINK NOT EXISTED IN THAT PATH 

FOR EACH LOAD CASE INPUT THE 2 FLOW LOWER BOUNDS 
FOR EACH LOAD CASE INPUT THE 2 FLOW UPPER BOUNDS 
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INPUT PIPE CHARACTERISTIC LOWER BOUND 
INPUT PIPE CHARACTERISTIC UPPER BOUND 

Calls to E04UEF 

DERIVATIVE LEVEL 0 
MAJOR ITERATION LIMIT 1000 
MINOR MRAT70N LIMIT 2000 

E04UCF 
Start of NAG Library implementation details 

Implementation title: Sun Solaris 
Precision: Fortran Double Precision 

Product Code: FLSOL16D 
Mark: 16A 

End of NAG Library implementation details 

Parameters 

Linear constraints ..... 
0 Linear feasibility 

..... 
1.05D-08 

Variables 
.............. 9 Crash tolerance ........ 

1.00D-02 

Infinite bound size .... 
I. OOD+20 COLD start ............. 

Infinite step size ..... 
1.00D+20 EPS (machine precision) IJID-16 

Step limit 
............. 

2. OOD+00 Hessian 
................ 

NO 

Nonlinear constraints.. 3 Nonlinear feasibility.. 5.43D-06 
Nonlinear objectiv vars 9 Optimality tolerance ... 3.2613-12 
Nonlinear Jacobian vars 9 Linesearch tolerance ... 9. OOD-01 

Derivative level 
....... 

0 Function precision ..... 4.37D-15 
Verify level 

........... 
0 Monitoring file ........ -1 

Major iterations limit. 1000 Major print level 
...... 

10 
Minor iterations limit. 2000 Minor print level 

...... 
0 

Difference intervals to be computed. 

Workspace provided is IWORK( 33), WORK( 459). 
To solve problem we need IWORK( 33), WORK( 459). 

The user sets 0 out of 27 Jacobian elements. 
Each iteration, 27 Jacobian elements will be estimated numerically. 

The user sets 0 out of 9 objective gradient elements. 
Each iteration, 9 gradient elements will be estimated numerically. 

Computation of the finite-difference intervals 
----------- - -- -- ---- ----- ------------- 
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J X(J) Forward DX(J) Central DX(J) 

I 2. OOD-01 3A30007D-08 1.587252D-06 
2 93OD-02 6.187888D-09 1.445722D-06 
3 1.00D+00 1.063956D-06 1.063956D-05 
4 1.00D+00 1.063956D-06 1.063956D-05 
5 LOOD+00 1.063956D-06 1.063956D-05 
6 I. OOD+oo 1.063956D-06 1.063956D-05 
7 1.00D+00 1.063956D-06 1.063956D-05 
8 1.00D+00 1.063956D-06 1.063956D-05 
9 1.00D+00 1.063956D-06 1.063956D-05 

Error est. 

4.02938ID-06 
2.233526D-05 
1.299002D-07 
1.299002D-07 
1.299002D-07 
1.299002D-07 
1.299002D-07 
1.299002D-07 
1.299002D-07 

10 constant constraint gradient elements assigned. 

Maj Mnr Step Merit function Violtn Norm Gz Cond Hz 
0 6 O. OD+00 1.790036D+18 1.7D+03 O. OD+00 LOD+00 I 
1 8 5. OD-01 9.633685D+(g 1.6D+01 5.2D-03 LOD+00 LR 
2 1 LOD+00 -2.944674D+00 1.8D-01 3.2D-03 LID+01 R 
3 2 LOD+00 -3AO5383D+00 1.8D-04 3.3D-03 LOD+01 R 
4 1 LOD+00 -3.406177D+00 2AD-07 3. ID-03 9. OD+00 R 
5 1 LOD+00 -3.440285D+00 6. ID-04 2. ID-03 LID+01 
6 1 LOD+00 -3.489034D+00 2.5D-03 1.5D-03 3.5D+01 
7 1 LOD+00 -3.575972D+00 1.8D-02 9.3D-04 7. OD+01 
8 1 LOD+00 -3.640179D+00 2.7D-02 6AD-04 1.2D+02 
9 1 LOD+00 -3.676048D+00 2.7D-02 6.2D-04 1.7D+02 
10 1 LOD+00 -3.689175D+00 1.3D-02 6.9D-04 2. ID+02 
II I LOD+00 -3.692071D+00 3.2D-03 7.3D-04 2. ID+02 
12 1 LOD+00 -3.693090D+00 TID-04 7.5D-04 9.4D+02 
13 1 LOD+00 -3.695068D+00 1.2D-03 7.6D-04 2.2D+02 
14 1 LOD+00 -3.699469D+00 LID-03 7.5D-04 3.5D+01 R 
15 1 LOD+00 -3.708202D+00 TID-03 6.8D-04 1.3D+02 
16 1 LOD+00 -3.718169D+00 3.5D-02 5.5D-04 6.5D+02 
17 1 LOD+00 -3.725819D+00 5.7D-02 4. OD-04 5. OD+02 
18 1 LOD+00 -3.738484D+00 3.9D-02 3. ID-04 1.2D+03 R 
19 1 LOD+00 -3.746136D+00 5.2D-03 2.9D-04 8.9D+02 R 
20 1 LOD+00 -3.747099D+00 4AD-03 2.9D-04 5. OD+02 R 
21 1 LOD+00 -3.747298D+00 5.3D-04 2.8D-04 2. ID+03 
22 1 LOD+00 -3.747340D+00 3.8D-04 2.8D-04 9.5D+02 R 
23 1 LOD+00 -3.747355D+00 4.7D-06 2.8D-04 2.4D+02 R 
24 1 LOD+00 -3.749591D+00 7.5D-04 2.6D-04 7.4D+01 R 
25 2 IOD-01 -3.753846D+00 5.7D+02 2.6D-04 3. OD+01 R 
26 2 7AD-02 -3.758184D+00 7AD-03 2.3D-04 1.9D+02 
27 1 3.5D-01 -3.763526D+00 LID-02 2. ID-04 3. ID+01 R 
28 1 3.2D-01 -3.766551D+00 IAD-02 2. OD-04 4.3D+01 R 
29 1 3.6D-01 -3.768688D+00 1.6D-02 1.8D-04 5. ID+01 R 
30 1 4.7D-01 -3.770258D+00 1.6D-02 1.8D-04 5.9D+01 R 
31 1 LOD+00 -3.771225D+00 1.8D-02 1.7D-04 7.2D+01 R 
32 1 LOD+00 -3.772212D+00 LID-03 1.7D-04 6.2D+01 R 
33 1 LOD+00 -3.772363D+00 1.5D-03 1.6D-04 8.7D+01 R 
34 1 LOD+00 -3.772650D+00 2.5D-03 1.6D-04 LOD+02 R 
35 1 LOD+00 -3.773279D+00 6.2D-03 1.6D-04 LID+02 R 
36 1 LOD+00 -3.774542D+00 1.2D-02 1.5D-04 1.3D+02 R 
37 1 LOD+00 -3.776835D+00 1.9D-02 1.5D-04 1.6D+02 R 
38 1 LOD+00 -3.780207D+00 2.6D-02 1.3D-04 1.5D+02 R 
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39 1 LOD+00 -3.784167D+00 3.2D-02 LOD-04 1.5D+02 R 
40 1 LOD+00 -3.790097D+00 1.7D-02 6.8D-05 2.7D+02 R 
41 1 LOD+00 -3.791893D+00 1.8D-02 2.6D-05 1.4D+02 R 
42 1 LOD+00 -3.792970D+00 2. ID-03 7.6D-06 1.5D+02 R 
43 1 LOD+00 -3.793003D+00 1.7D-04 6AD-06 2.4D+02 R 
44 1 LOD+00 -3.793006D+00 1.5D-05 6.2D-06 1.3D+02 
45 1 LOD+00 -3.793007D+00 1.2D-06 6.2D-06 1.4D+02 R 
46 1 LOD+00 -3.793008D+00 4.2D-06 6.1 D-06 1.2D+02 R 
47 1 LOD+00 -3.793009D+00 TID-06 6. OD-06 1.8D+02 R 
48 1 LOD+00 -3.793014D+00 2.9D-05 5.8D-06 1.6D+02 R 
49 1 LOD+00 -3.793023D+00 6.3D-05 5.5D-06 1.7D+02 R 
50 1 LOD+00 -3.793040D+00 8.5D-05 4.8D-06 LID+02 R 
51 1 LOD+00 -3.793060D+00 2.3D-05 3AD-06 2. ID+01 
52 1 LOD+00 -3.793072D+00 TID-05 1.6D-06 3.4D+01 R 
53 1 LOD+00 -3.793075D+00 8.5D-05 4.8D-07 2.3D+01 R 
54 1 LOD+00 -3.793075D+00 1.2D-05 2. OD-07 1.2D+02 R 
55 1 LOD+00 -3.793075D+00 3.9D-07 LID-07 1.5D+02 R 
56 1 LOD+00 -3.793075D+00 5.8D-08 8.6D-08 1.2D+02 R 
57 1 LOD+00 -3.793075D+00 3.8D-09 8AD-08 1.3D+02 R 
58 1 LOD+00 -3.793075D+00 LID-10 8.3D-08 3.8D+01 R 
59 1 LOD+00 -3.793075D+00 4.5D-10 8.2D-08 2.9D+01 R 
60 1 LOD+00 -3.793075D+00 LOD-09 8. OD-08 9.9D+00 R 
61 1 LOD+00 -3.793075D+00 2AD-09 7AD-08 5.3D+00 R 
62 1 LOD+00 -3.793075D+00 2.6D-09 6.2D-08 5.2D+00 R 
63 1 LOD+00 -3.793075D+00 2AD-09 4. ID-08 5.2D+00 R 
64 1 LOD+00 -3.793075D+00 2.2D-09 1.9D-08 2.2D+00 R 
65 1 LOD+00 -3.793075D+00 1.5D-09 4.8D-09 4.5D+00 R 
66 1 LOD+00 -3.793075D+00 1.8D-10 6.6D-10 5.4D+00 R 
67 1 LOD+00 -3.793075D+004.7D-139.9D-115.3D+00 CR 

Exit from NP problem after 67 major iterations, 
83 minor iterations. 

Varbl State Value Lower Bound Upper Bound Lagr Mult Residual 

V 1 FR 0.184348 0.126000 0.284000 0. 5.8348E-02 
V 2 FR 0.101208 9.300000E-02 0.284000 0. 8.2077E-03 
V 3 FR 834.018 1.000000E-03 1000.00 0. 166.0 
V 4 FR 753.081 1.000000E-03 1000.00 0. 246.9 
V 5 FR 732.931 1.000000E-03 1000.00 0. 267.1 
V 6 FR 765.715 1.000000E-03 1000.00 0. 234.3 
V 7 FR 662.592 1.000000E-03 1000.00 0. 337.4 
V 8 FR 332.037 1-000000E-03 1000.00 0. 332.0 
V 9 FR 375.252 1.000000E-03 1000.00 0. 375.3 

N Con State Value Lower Bound Upper Bound Lagr Mult Residual 

N1 EQ -1.509903E-13 0. 
N2 EQ 3.339551E-13 0. 
N3 EQ 20.0000 20.0000 

0.3.5875E-03 -1.5099E-13 
0.8.9819E-03 3.3396E-13 

20.0000 -3.0189E-09 2.9132E-13 

Exit E04UCF - Optimal solution found. 

Final objective value = -3.793075 
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IFAIL =0 
FUNC17ION VALUE ON SUCCESSFUL EXIT IS 
F= -3.7930752928087 
ALL T HE OPTIMAL LINK FLOWS FOR LOAD CASE I ARE 
QL( 1, 1 2)= 9.9651700985929D-02 
QL( 1, 2 4)= 7.1651700985929D-02 
QL( 1, 3 4)= 5.0140553867158D-02 
QL( 1, 4 6)= 4.6792254853087D-02 
QL( 1, 5 6)= 9.2077451469129D-03 
QL( 1, 13 0.18434829901407 
QL( 1, 35 1.012077451469ID-01 
ALL THE OPTIMAL PIPE CHARACTERISTICS ARE 
ALFA( 1 2)= 834.01797711355 
ALFA( 2 4)= 753.08099057484 
ALFA( 3 4)= 732.93088694326 
ALFA( 4 6)= 765.71473269237 
ALFA( 5 6)= 662.59190282158 
ALFA( 13)= 332.03703864103 
ALFA( 3 5)= 375.25214922156 
ALL PIPE CHARACTERISTIC PROBABILITIES ARE 
PALFA( 1 2)= 0.18718313372464 
PALFA( 2 4)= 0.16901801116100 
PALFA( 3 4)= 0.16449561518617 
PALFA( 4 6)= 0.17185346975437 
PALFA( 5 6)= 0.14870905922191 
PALFA( 13 7.452085579807ID-02 
PALFA( 35 8.4219855153835D-02 
THE HEAD LOSSES IN THE LINKS FOR LOAD CASE I ARE 
HL( 1, 12 11.651158391209 
HL( 1, 24 5.7111185097479 
HL( 1, 3 4)= 2.8695466350482 
HL( 1, 4 6)= 2.6377230990431 
HL( 1, 5 6)= 0.11242373718517 
HL( 1, 13 14.492730265909 
HL( 1, 35 5.3948459969058 
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E. 13 RUN 3 

The input rile: 
y 
6 
7 
1 

I 
12 
24 
34 
46 
56 
13 
35 
-. 284 

. 028 

. 033 

. 075 

. 092 

. 056 

. 2.1 
1111111 
1000 1000 1000 1000 1000 1000 1000 
IIIIIII 
1 1-100-10 
0011 -10-1 
20 
10011010 

. 126.093 

. 284.284 
I. Od-3 
I. Od+3 
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The outDut rile: 
OPTIMIZE ENTROPY? (Y/N) 
OPMIZ =T 
NN? 
#NODES= 6 
NI, ? 
# LINKS =7 
NS ? 
#SOURCES= I 
# LOOPS =2 
NLC ? 
#LOAD CASES= I 
NEXC ? 
# EXTRA CONSTRAINTS =I 
FOR LOAD CASE I INPUT THE FOLLOWING: 

FOR EACH LINK INPUT UN, DN 
FOR EACH NODE INPUT D, (SOURCE -VE) 
INPUT (STARTING) FLOWS FOR THE LAST 2 LINK(S) 
THE INPUT FLOWS ARE 
QL( 1,6 0.20000000000000 
QL( 1,7 1.000000000000OD-01 
THE COMPLETE INPUT FLOWS ARE 
QL( I, 1 2)= 8.400000000000OD-02 
QL( 1.2 4)= 5.600000000000OD-02 
QL( 1,3 4)= 6.700000000000OD-02 
QL( 1,4 6)= 4.800000000000OD-02 
QQ 1,5 6)= 8. OOOOOOOOOOOOOD-03 
QL( 1,1 3)=0.20000000000000 
QL( I, 35)=1.000000000000OD-01 

FOR EACH LINK INPUT (STARTING) PIPE CHARACTERISTIC ALFA 
THE INPUT PIPE CHARACTERISTICS ARE 
ALFA( 1 2)= 1.0000000000000 
ALFA( 2 4)= 1.0000000000000 
ALFA( 3 4)= 1.0000000000000 
ALFA( 4 6)= 1.0000000000000 
ALFA( 5 6)= 1.0000000000000 
ALFA( 13)=1.0000000000000 
ALFA( 3 5)= 1.0000000000000 
FUNCTION VALUE FOR INPUT DATA IS 
F= -3.8406898845982 
FOR EACH LINK INPUT LENGTH L 
FOR EACH LINK INPUT DIAMETER DI 
FOR EACH LOOP IN EACH LOAD CASE INPUT UNIT VALUE 

FOR EACH LINK EXISTED IN THE LOOP, CLOCKWISE 
(+VE), WITH ZERO VALUE FOR EACH LINK NOT EXISTED 
IN THAT LOOP 

INPUT THE PATH HEAD LOSS FOR EACH EXTRA CONSTRAINT 
FOR EACH PATH OF HEAD LOSS CONSTRAINT INPUT THE 

CORRESPONDING LOAD CASE NUMBER, AND INPUT UNIT 
VALUE FOR EACH LINK EXISTED IN THE PATH, WITH 
ZERO VALUE FOR EACH LINK NOT EXISTED IN THAT PATH 

FOR EACH LOAD CASE INPUT THE 2 FLOW LOWER BOUNDS 
FOR EACH LOAD CASE INPUT THE 2 FLOW UPPER BOUNDS 

313 



INPUT PIPE CHARACTERISTIC LOWER BOUND 
INPUT PIPE CHARACTERISTIC UPPER BOUND 

Calls to E04UEF 

DERIVATIVE LEVEL 0 
MAJOR ITERATION LIMIT 1000 
MINOR ITERATION LIMIT 2000 

E04UCF 
Start of NAG Library implementation details 

Implementation title: Sun Solaris 
Precision: Fortran Double Precision 

Product Code: FLSOL16D 
Mark: 16A 

*** End of NAG Library implementation details *** 

Parameters 

Linear constraints 
Variables .............. 9 

Infinite bound size .... Loor 
Infinite step size ..... 1.0013-1 
Step limit ............. 2.0013+0 

Nonlinear constraints.. 
Nonlinear objectiv vars 
Nonlinear Jacobian vars 

Derivative level ....... Verify level 
........... 

0 

Major iterations limit. 11 
Minor iterations limit. 21 

Linear feasibility ..... 1.05D-08 
Crash tolerance ........ 1.0013-02 

COLD start ............. 
EPS (machine precision) 1.11 D- 16 

Hessian ................ NO 

Nonlinear feasibility.. 5.43D-06 
Optimality tolerance ... 3.2613-12 
Linesearch tolerance ... 9.0013-01 

Function precision ..... 4.37D-15 
Monitoring file ........ -1 

Major print level ...... 
10 

Minor print level ...... 
0 

vitterence intervais to t)e computea. 

Workspace provided is IWORK( 33), WORK( 459). 
To solve problem we need IWORK( 33), WORK( 459). 

The user sets 0 out of 27 Jacobian elements. 
Each iteration, 27 Jacobian elements will be estimated numerically. 

The user sets 0 out of 9 objective gradient elements. 
Each iteration, 9 gradient elements will be estimated numerically. 

Computation of the finite-difference intervals 
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J X(J) Forward DX(J) Central DX(J) Error est. 

I 2. OOD-01 1.683985D-08- 1.587252D-06 1.199702D-04 
2 9.30D-02 1.268873D-08 1.445722D-06 1.592184D-04 
3 1.00D+00 2.64542OD-06 2.64542OD-05 1.482225D-07 
4 1.00D+00 2.64542OD-06 2.64542OD-05 1.482225D-07 
5 1.00D+00 2.64542OD-06 2.64542OD-05 1.482225D-07 
6 1.00D+00 2.64542OD-06 2.64542OD-05 4.63665ID-09 
7 LOOD+00 2.64542OD-06 2.64542OD-05 4.63665ID-09 
8 1.00D+00 2.64542OD-06 2.64542OD-05 1.482225D-07 
9 1.00D+00 2.64542OD-06 2.64542OD-05 4.63665ID-09 

10 constant constraint gradient elements assigned. 

Maj Mnr Step Merit function Violtn Nonn Gz Cond Hz 
02O. OD+00 -3.365138D+00 6.2D+01 IOD-01 LOD+00 
II LOD+00 -3.775143D+00 3.7D+00 6.6D-02 LID+00 
21 LOD+00 -3.777739D+00 7.6D-02 4AD-02 1.4D+00 
31 LOD+00 -3.780798D+00 4.8D-02 4. ID-02 2. ID+00 
41 LOD+00 -3.784204D+00 5.6D-02 5.8D-02 1.9D+00 
51 LOD+00 -3.787843D+00 8.2D-03 6AD-02 8.8D+00 
61 LOD+00 -3.791148D+00 6.6D-02 4. ID-02 3.2D+00 
71 LOD+00 -3.792445D+00 1.9D-02 2.7D-02 2.9D+00 
81 LOD+00 -3.792956D+00 9.3D-03 1.5D-02 4.2D+00 
91 LOD+00 -3.793070D+00 2AD-03 2.5D-03 4.7D+00 
10 1 LOD+00 -3.793074D+00 6.2D-05 8.7D-04 3.5D+00 
III LOD+00 -3.793075D+00 2.2D-06 5. OD-04 3.3D+00 
12 1 LOD+00 -3.793075D+00 IAD-06 1.9D-04 5.2D+00 
13 1 LOD+00 -3.793075D+00 4AD-07 3.6D-05 2.3D+00 
14 1 LOD+00 -3.793075D+00 1.3D-08 UD-06 2.9D+00 
15 1 LOD+00 -3.793075D+00 6.5D-1 I 4.8D-06 3.4D+00 
16 1 LOD+00 -3.793075D+00 6.1 D- II1.9D-06 3.3D+00 
17 1 LOD+00 -3.793075D+00 2.8D- II4.7D-07 4.2D+00 

Exit from NP problem after 17 major iterations, 
19 minor iterations. 

Varb] State Value Lower Bound Upper Bound Lagr Mult Residual 

V 1 FR 0.184348 0.126000 0.284000 0. 5.8348E-02 
V 2 FR 0.101208 9.300000E-02 0.284000 0. 8.2077E-03 
V 3 FR 0.834017 1.000000E-03 1000.00 0. 0.8330 
V 4 FR 0.753078 1.000000E-03 1000.00 0. 0.7521 
V 5 FR 0.732928 1.000000E-03 1000.00 0. 0.7319 
V 6 FR 0.765712 1.000000E-03 1000.00 0. 0.7647 
V 7 FR 0.662590 1.000000E-03 1000.00 0. 0.6616 
V 8 FR 0.332038 1. OOOOOOE-03 1000.00 0. 0.3310 
V 9 FR 0.375251 1.000000E-03 1000.00 0. 0.3743 

N Con State Value Lower Bound Upper Bound Lagr Mult Residual 

N1 EQ -1.103828E-11 0.0.3.5876E-03 -1.1038E-11 
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N2 EQ 2.177636E-11 0. 
N3 EQ 20.0000 20.0000 

Exit E04UCF - Optimal solution found. 

0.8.9819E-03 2.1776E-11 
20.0000 7.1348E-08 1.3141E-11 

Final objective value= -3.793075 
IFAIL =0 
FUNCTION VALUE ON SUCCESSFUL EXIT IS 
F= -3.7930752928069 
ALL THE OPTIMAL LINK FLOWS FOR LOAD CASE 
QL( 1,1 2 9.9651820757195D-02 
QL( 1,2 4 7.165182075719513-02 
QL( 1,3 4 5.014047460717413-02 
QL( 1,4 6 4.6792295364369D-02 
QL( I, 5 6 9.2077046356307D-03 
QL( 1,1 3 0.18434817924281 
QL( I, 3 5 1.012077046356313-01 
ALL THE OPTIMAL PIPE CHARACTERISTICS ARE 
ALFA( 1 2)= 0.83401651024787 
ALTA( 2 4)= 0.75307846169771 
ALFA( 3 4)= 0.73292788162852 
ALFA( 4 6)= 0.76571235987741 
ALFA( 5 6)= 0.66258960959859 
ALFA( 1 3)= 0.33203799057462 
ALFA( 3 5)= 0.37525084104221 
ALL PIPE CHARACTERISTIC PROBABILITIES ARE 
PALFA( 1 2)= 0.18718330961534 
PALFA( 2 4)= 0.16901789968009 
PALFA( 3 4)= 0.16449538457196 
PALFA( 4 6)= 0.17185340095082 
PALFA( 5 6)= 0.14870894582715 
PALFA( 1 3)= 7.452127053853413-02 
PALFA( 3 5)= 8.4219788816107D-02 
THE HEAD LOSSES IN THE LINKS FOR LOAD CASE 
HL( 1,1 2 11.651163833699 
HL( 1,2 4 5.7111170117742 
HL( 1,3 4 2.8695264680095 
HL( 1,4 6 2.6377191545288 
HL( 1,5 6 0.11242243203747 
HL( 1.1 3 14.492754377475 
HL( 1.3 5 5.3948231904791 

I ARE 

I ARE 
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E. 1.4 RUN 4 

The inDut rile: 
y 
6 

1 
12 
24 
34 
46 
56 
13 
35 
-. 284 

. 028 

. 033 

. 075 

. 092 

. 056 

. 2.1 
10 10 10 10 10 10 10 
1000 1000 1000 1000 1000 1000 1000 

. 261 -235 . 234 . 234 . 185 . 367 . 294 
11 -100-10 
001 1-10-1 
20 
10011010 

. 126.093 

. 284.284 
1. Od-3 
1. Od+3 

317 



The output rile: 
OPMlIZE ENTROPY? (Y/N) 
OPTINtZ =T 
NN ? 
# NODES =6 
NI. ? 
#LINKS= 7 
NS ? 
# SOURCES =I 
# LOOPS =2 
NLC ? 
#LOAD CASES= I 
NEXC ? 
#EXTRA CONSTRAINTS =I 
FOR LOAD CASE I INPUT THE FOLLOWING: 

FOR EACH LINK INPUT UN, DN 
FOR EACH NODE INPUT D, (SOURCE -VE) 
INPUT (STARTING) FLOWS FOR THE LAST 2 LINK(S) 
THE INPUT FLOWS ARE 
QL( 1,6 )=0.20000000000000 
QL( 1,7 )=1.000000000000OD-01 
THE COMPLETE INPUT FLOWS ARE 
QL( 1,1 2)= 8.400000000000OD-02 
QL( 1,2 4)= 5.600000000000OD-02 
QL( 1,3 4)= 6.700000000000OD-02 
QL( 1,4 6)= 4.800000000000OD-02 
QL( 1,5 6)= 8. OOOOOOOOOOOOOD-03 
QL( 1,13)=0.20000000000000 
QL( I, 3 5)= 1.000000000000OD-01 

FOR EACH LINK INPUT (STARTING) PIPE CHARACTERISTIC ALFA 
THE INPUT PIPE CHARACTERISTICS ARE 
ALFA( 1 2)= 10.0000000000000 
ALFA( 2 4)= 10.0000000000000 
ALFA( 3 4)= 10.0000000000000 
ALFA( 4 6)= 10.0000000000000 
ALFA( 5 6)= 10.0000000000000 
ALFA( 1 3)= 10.0000000000000 
ALFA( 3 5)= 10.0000000000000 
FUNCTION VALUE FOR INPUT DATA IS 
F= -3.8406898845982 
FOR EACH LINK INPUT LENGTH L 
FOR EACH LINK INPUT DIAMETER DI 
FOR EACH LOOP IN EACH LOAD CASE INPUT UNIT VALUE 

FOR EACH LINK EXISTED IN THE LOOP, CLOCKWISE 
(+VE), WITH ZERO VALUE FOR EACH LINK NOT EXISTED 
IN THAT LOOP 

INPUT THE PATH HEAD LOSS FOR EACH EXTRA CONSTRAINT 
FOR EACH PATH OF HEAD LOSS CONSTRAINT INPUT THE 

CORRESPONDING LOAD CASE NUMBER, AND INPUT UNIT 
VALUE FOR EACH LINK EXISTED IN THE PATH, WITH 
ZERO VALUE FOR EACH LINK NOT EXISTED IN THAT PATH 

FOR EACH LOAD CASE INPUT THE 2 FLOW LOWER BOUNDS 
FOR EACH LOAD CASE INPUT THE 2 FLOW UPPER BOUNDS 
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INPUT PIPE CHARACTERISTIC LOWER BOUND 
INPUT PEPE CHARACTERISTIC UPPER BOUND 

Calls to E04UEF 

DERIVATIVE LEVEL 0 
MAJOR rrERATION LIMIT 1000 
MINOR ITERATION LIMIT 2000 

E04UCF 
Stan of NAG Library implementation details 

Implementation title: Sun Solaris 
Precision: Fortran Double Precision 

Product Code: FLSOL16D 
Mark: 16A 

End of NAG Library implementation details 

Parameters 

Linear constraints ..... 0 Linear feasibility ..... 1.05D-08 
Variables .............. 9 Crash tolerance ........ 1.0013-02 

Infinite bound size .... 1.00D+20 COLD start ............. Infinite step size ..... 1.0013+20 EPS (machine precision) 1AID-16 
Step limit ............ 2.0013+00 Hessian ................ NO 

Nonlinear constraints.. 3 Nonlinear feasibility.. 5.43D-06 
Nonlinear objectiv vars 9 Optimality tolerance ... 3.2613-12 
Nonlinear Jacobian vars 9 Linesearch tolerance ... 9.0013-01 

Derivative level ....... 0 Function precision ..... 4.3713-15 
Verify level ......... *.. 0 Monitoring file ........ -1 

Major iterations limit. 1000 Major print level ...... 10 
Minor iterations limit. 2000 Minor print level ...... 0 

Difference intervals to be computed. 

Workspace provided is IWORK( 33), WORK( 459). 
To solve problem we need IWORK( 33), WORK( 459). 

The user sets 0 out of 27 Jacobian elements. 
Each iteration, 27 Jacobian elements will be estimated numerically. 

Ile user sets 0 out of 9 objective gradient elements. 
Each iteration, 9 gradient elements will be estimated numerically. 

Computation of the finite-difference intervals 
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X(J) Forward DX(J) Central DX(J) Error est. 

I 2. OOD-01 9.34084ID-09 1.587252D-06 6.641494D-01 
2 9.30D-02 5.58918ID-09 1.445722D-06 1.109950D+00 
3 I. OOD+O 1 1.45498 1 D-05 1.454981D-04 2.152935D-05 
4 LOOD+01 1.45498 1 D-05 1.45498 1 D-04 2.152935D-05 
5 1.00D+01 1.45498ID-05 1.454981D-04 2.152935D-05 
6 LOOD+01 1.45498 1 D-05 1.454981D-04 6.133084D-05 
7 1. OOD+01 1.454981 D-05 1.454981D-04 6.133084D-05 
8 1.00D+01 1.454981D-05 1.454981D-04 2.152935D-05 
9 1.00D+01 1.454981D-05 1.454981D-04 6.133084D-05 

10 constant constraint gradient elements assigned. 

Maj Mnr Step Merit function Violtn Norm Gz Cond Hz 
07O. OD+00 6.591381D+04 2.413+05 0.013+00 1.013+00 
131.013+00 -1.906366D+00 4.2D+00 7.013-02 1.013+00 
251.013+00 -1.908304D+00 7.913-010.013+00 1.013+00 
321.013+00 -3.782932D+00 2.613+00 0.013+00 LOD+00 
441.213-0 1 -3.822042D+00 1.8D+00 2.7D+00 1.013+00 
552.213-01 -3.837025D+00 1.413+00 1.813+00 1.013+00 
621.313-02 -3.838643D+00 1.413+00 0.013+00 LOD+00 
741.9D-01 -3.863552D+00 1.113+00 4.813-01 1.013+00 
849.513-02 -3.870020D+00 9.813-010.013+00 1.013+00 
946.8D-02 -3.871170D+00 8.813-01 6.813-01 1.013+00 
10 5 2.613-02 -3.872175D+00 8.513-01 3.013-01 1.013+00 
11 6 1.713-02 -3.871205D+00 8.413-01 3.213+00 2.813+01 
12 3 5.213-03 -3.863632D+00 8.313-01 2.7D+00 3.713+00 
13 6 4.713-02 -3.863853D+00 8.013-01 7.813+00 1.513+00 
14 5 1.713-01 -3.861392D+00 6.313-01 3.013+00 1.513+01 
15 4 1.313-0 1 -3.860515D+00 5.413-01 1.413+01 1.5D+02 
16 3 1.6D-01 -3.860924D+00 4.513-01 LID+00 3.513+01 
17 2 1.913-01 -3.860496D+00 3.713-014.613+00 7.413+01 
18 1 1.013+00 -3.860952D+00 5.413-03 3.313-01 6.5D+01 
19 1 1.813-01 -3.860959D+00 4.5D-03 1.613-01 1.713+01 
20 1 1.013+00 -3.860961D+00 5.5D-06 LID-02 LID+01 
21 1 1.013+00 -3.860961D+00 3.813-08 6AD-04 5.013+00 

Mnr itn I- Re-solve QP subproblem. 
22 1 0.013+00 -3.860961D+00 3.813-08 4.513-02 2.113+02 C 
23 1 1.013+00 -3.860961D+00 2.613-07 2.413-03 1.2D+01 C 
24 1 1.013+00 -3.860961D+00 1.5D-10 2.113-04 2.5D+01 C 
25 1 1.013+00 -3.860961D+00 4AD-12 2.313-06 1.513+01 C 

Exit from NP problem after 25 major iterations, 
82 minor iterations. 

R 

R 

Varbl State Value Lower Bound Upper Bound Lagr Mult Residual 

V 1 FR 0.200028 0.126000 0.284000 0. 7.4028E-02 
V 2 FR 0.110157 9.300000E-02 0.284000 0. 1.7157E-02 
V 3 FR 1.301917E-03 1.000000E-03 1000.00 0. 3.0192E-04 
V 4 FR 1.302051E-03 1.000000E-03 1000.00 0. 3.0205E-04 
V 5 FR 1.317019E-03 1.000000E-03 1000.00 0. 3.1702E-04 
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V 6 FR 1.309086E-03 1.000000E-03 1000.00 0. 3.0909E-04 
V 7 FR 1297352E-03 1. OOOOME-03 1000.00 0. 2.9735E-04 
V 8 FR 1.303317E-03 1.000000E-03 1000.00 0. 3.0332E-04 
V 9 FR 1.287272E-03 1.000000E-03 1000.00 0. 2.8727E-04 

N Con State Value Lower Bound Upper Bound Lagr Mult Residual 

N1 EQ -3.634426E-12 0. 
N2 EQ 1-531220E-12 0. 
N3 EQ 20.0000 20.0000 

Exit E04UCF - Optimal solution found. 

0. -7.4599E-06 -3.6344E-12 
0.1.9802E-04 1.5312E-12 

20.0000 2.2851E-06 1.1902E-12 

Final objective value = -3.860961 
IFAIL =0 
FUNCTION VALUE ON SUCCESSFUL EXIT IS 
F= -3.8609611360736 
ALL THE OPTIMAL LINK FLOWS FOR LOAD CASE 
Q14 1.1 2)= 8.397227560267113-02 
QL( 1.2 4)= 5.597227560267113-02 
QL( 1.3 4)= 5.687065143230213-02 
QL( 1,4 6)= 3.7842927034974D-02 
QL( 1,5 6 1.8157G72965026D-02 
QU 1,1 3 a20002772439733 
QL( 1,3 5)= 0.11015707296503 
ALL 771E OpMfAL PIPE CHARACTERISTICS ARE 
ALFA( 12 1.3019171805675D-03 
ALFA( 24 1.3020506131335D-03 
ALFA( 34 1.317018728451OD-03 
ALFA( 4 6)= 1.309086160879513-03 
ALFA( 5 6)= 1.297351840321913-03 
ALFA( 13 1.303317138288513-03 
ALFA( 35 1.2872724979006D-03 
ALL PIPE CHARACTERISTIC PROBABILITIES ARE 
PALFA( 12)= 0.14278516766778 
PALFA( 2 4)= 0.14279980161808 
PALFA( 3 4)= 0.14444139978360 
PALFA( 4 6)= 0.14357141127155 
PALFA( 5 6)= 0.14228447309047 
PALFA( 13)= 0.14293870523600 
PALM 35)= 0.14117904133252 
THE HEAD LOSSES IN THE LINKS FOR LOAD CASE 
1-11.4 1.1 2)= 9.1842525148791 
HI. 4 1,2 4)= 7.2239262950028 
HL4 1,3 4)= 7.6835810561453 
HL( 1,4 6)= 3.5918211901157 
H14 1,5 6 2.8686948144992 
HL4 1.1 3 8.7245977537401 
111, ( 1,3 5 8.4067074317603 

I ARE 

I ARE 
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APPENDIX F 

SOME OF THE EZLP COMPUTER 

PROGRAMME APPLICATIONS OF CHAPTER 8 

F. 1 THE ALAXIMUM ENTROPY TRUSS DESIGN 

The input rile: 
51 10 
-12 
6.195E-5 4.564E-5 3.614E-5 2.710E-5 2.478E-5 
4.756E-5 3.737E-5 2.754E-5 2.180E-5 1.635E-5 1.495E-5 
8.121E-5 7.425E-5 
6.533E-5 4.899E-5 4.480E-5 
23.795E-5 10.816E-5 8.498E-5 6.262E-5 4.957E-5 3.718E-5 3.399E-5 
23.795E-5 10.816E-5 8.498E-5 6.262E-5 4.957E-5 3.718E-5 3.399E-5 
1.841E-15 0.837E-15 0.658E-15 0.485E-15 0.384E-15 0.288E-15 0.263E-15 
41.784E-5 18.993E-5 14.923E-5 10.996E-5 8.705E-5 6.529E-5 5.969E-5 
41.784E-5 18.993E-5 14.923E-5 10.996E-5 8.705E-5 6.529E-5 5.969E-5 
02000 
11111000000000000000000000 
0000000000000000000000000 
02000 
00000111111000000000000000 
0000000000000000000000000 
03464 
00000000000110000000000000 
0000000000000000000000000 
03464 
00000000000001110000000000 
0000000000000000000000000 
02000 
00000000000000001111111000 
0000000000000000000000000 
02000 
00000000000000000000000111 
1111000000000000000000000 
02000 
00000000000000000000000000 
0000111111100000000000000 
02000 
00000000000000000000000000 
0000000000011111110000000 
02000 
00000000000000000000000000 
0000000000000000001111111 
10 
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10.990E-3 14.915E-3 18.840E-3 25.120E-3 27.475E-3 
8.635E-3 10.990E-3 14.915E-3 18.840E-3 25.120E-3 27.475E-3 
25.120E-3 27.475E-3 
18.840E-3 25.120E-3 27.475E-3 
3.925E-3 8.635E-3 10.990E-3 14.915E-3 18.840E-3 25.120E-3 27.475E-3 
3.925E-3 8.635E-3 10.990E-3 14.915E-3 18.840E-3 25.120E-3 27.475E-3 
3.925E-3 8.635E-3 10.990E-3 14.915E-3 18.840E-3 25.120E-3 27.475E-3 
3.925E-3 8.635E-3 10.990E-3 14.915E-3 18.840E-3 25.120E-3 27.475E-3 
3.925E-3 8.635E-3 10.990E-3 14.915E-3 18.840E-3 25.120E-3 27.475E-3 
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The output rile: 

**** PROGRAM EZLP **** 

SOLUT70N OF LINEAR PROGRAMMING PROBLEMS 

ARTENTPLEMAN JULY, 1985 
(MODIFIED: NOV89) 

THE NUMBER OF VARLABLES IS 51 

THE NUMBER OF CONSTRAINTS (EXCLUDING NON-NEGATIVITY REQUIREMENTS) IS 
10 

THE INPUr CONSTRAINT INFORMAT10N IS: - 

CONSTRAINT NO. I IS LESS THAN OR EQUAL TO A RIGHT-HAND SIDE OF 
0.200000E+01 

THE COEFFICIENTS OF THE LEFT-HAND SIDE FUNCTION ARE, IN THE INPUT ORDER: - 

0.619500E-04 0.456400E-04 0.361400E-04 
j 

0.271000E-04 0.247800E-04 
0.475600E-04 0.373700E-04 0.275400E-04 0.218000E-04 0.163500E-04 
0.149500E-04 0.812100E-04 0.742500E-04 0.653300E-04 0.489900E-04 
0.448000E-04 0.237950E-03 0.108160E-03 0.849800E-04 0.626200E-04 
0.495700E-04 0.371800E-04 0.339900E-04 0.237950E-03 0.108160E-03 
0.849800E-04 0.626200E-04 0.495700E-04 0.371800E-04 0.339900E-04 
0.184100E-14 0.837000E-15 0.658000E-15 0.485000E-15 0.384000E-15 
0.288000E-15 0.263000E-15 0.417840E-03 0.189930E-03 0.149230E-03 
0.109960E-03 0.870500E-04 0.652900E-04 0.596900E-04 0.417840E-03 
0.189930E-03 0.149230E-03 0.109960E-03 0.870500E-04 0.652900E-04 
0.596900E-04 
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CONSTRAINT NO. 2 IS STRICTLY EQUAL TO A RIGHT-HAND SIDE OF 0.200000E+04 

THE COEFFICIENTS OF THE LEFT-HAND SIDE FUNCTION ARE, IN THE INPUT ORDER: - 

0.100000E+01 
O. OOOOOOE+00 
O. OOOOOOE+00 
O. OOOOOOE+00 
O. OOOOOOE+00 
O-OOOOOOE+00 
O. OOOOOOE+00 
O. OOOOOOE+00 
O. OOOOOOE+00 
O. OOOOOOE+00 
O. OOOOOOE+00 

0.100000E+01 
O. OOOOOOE+00 
O. OOOOOOE+00 
O. OOOOOOE+00 
O. OOOOOOE+00 
O. OOOOOOE+00 
O. OOOOOOE+00 
O. OOOOOOE+00 
O. OOOOOOE+00 
O. OOOOOOE+00 

0.1 OOOOOE+0 1 
0. OOOOOOE+00 
0. OOOOOOE+00 
0. OOOOOOE+00 
0. OOOOOOE+00 
0. OOOOOOE+00 
0. OOOOOOE+00 
0. OOOOOOE+00 
0. OOOOOOE+00 
0. OOOOOOE+00 

0.1 OOOOOE+0 1 
0. OOOOOOE+00 
0. OOOOOOE+00 
0. OOOOOOE+00 
0. OOOOOOE+00 
0. OOOOOOE+00 
0. OOOOOOE+00 
0. OOOOOOE+00 
0. OOOOOOE+00 
0. OOOOOOE+00 

0.1 OOOOOE+0 1 
0. OOOOOOE+00 
0. OOOOOOE+00 
0. OOOOOOE+00 
0. OOOOOOE+00 
0. OOOOOOE+00 
0. OOOOOOE+00 
0. OOOOOOE+00 
0. OOOOOOE+00 
0. OOOOOOE+00 

CONSTRAINT NO. 3 IS STRICTLY EQUAL TO A RIGHT-HAND SIDE OF 0.200000E+04 

THE COEFFICIENTS OF THE LEFT-HAND SIDE FUNCTION ARE, IN THE INPUT ORDER: - 

0. OOOOOOE+00 
0.1 OOOOOE+0 1 
0.1 OOOOOE+0 1 
0. OOOOOOE+00 
0. OOOOOOE+00 
0. OOOOOOE+00 
0. OOOOOOE+00 
0. OOOOOOE+00 
0. OOOOOOE+00 
0. OOOOOOE+00 
0. OOOOOOE+00 

0. OOOOOOE+00 
0.1 OOOOOE+0 1 
0. OOOOOOE+00 
0. OOOOOOE+00 
0. OOOOOOE+00 
0. OOOOOOE+00 
0. OOOOOOE+00 
0. OOOOOOE+00 
0. OOOOOOE+00 
0. OOOOOOE+00 

0. OOOOOOE+00 
0.1 OOOOOE+0 1 
0. OOOOOOE+00 
0. OOOOOOE+00 
0. OOOOOOE+00 
0. OOOOOOE+00 
0. OOOOOOE+00 
0. OOOOOOE+00 
0. OOOOOOE+00 
0. OOOOOOE+00 

0. OOOOOOE+00 
0.1 OOOOOE+0 1 
0. OOOOOOE+00 
0. OOOOOOE+00 
0. OOOOOOE+00 
0. OOOOOOE+00 
0. OOOOOOE+00 
0. OOOOOOE+00 
0. OOOOOOE+00 
0. OOOOOOE+00 

0. OOOOOOE+00 
0.1 OOOOOE+0 1 
0. OOOOOOE+00 
0. OOOOOOE+00 
0. OOOOOOE+00 
0. OOOOOOE+00 
0. OOOOOOE+00 
0. OOOOOOE+00 
0. OOOOOOE+00 
0. OOOOOOE+00 

CONSTRAINT NO. 4 IS STRICTLY EQUAL TO A RIGHT-HAND SIDE OF 0.346400E+04 

THE COEFFICIENTS OF THE LEFT-HAND SIDE FUNCTION ARE, IN THE INPUT ORDER: - 

O. OOOOOOE+00 O. OOOOOOE+00 O. OOOOOOE+00 
O. OOOOOOE+00 O. OOOOOOE+00 O. OOOOOOE+00 
O. OOOOOOE+00 0.100000E+01 O. IOOOOOE+01 
O. OOOOOOE+00 O. OOOOOOE+00 O. OOOOOOE+00 
O. OOOOOOE+00 O. OOOOOOE+00 O. OOOOOOE+00 
O. OOOOOOE+00 O. OOOOOOE+00 O. OOOOOOE+00 
O. OOOOOOE+00 O. OOOOOOE+00 O. OOOOOOE+00 
O. OOOOOOE+00 O. OOOOOOE+00 O. OOOOOOE+00 
O. OOOOOOE+00 O. OOOOOOE+00 O. OOOOOOE+00 
O. OOOOOOE+00 O. OOOOOOE+00 O. OOOOOOE+00 
O. OOOOOOE+00 

O. OOOOOOE+00 
O. OOOOOOE+00 
O. OOOOOOE+00 
O. OOOOOOE+00 
O. OOOOOOE+00 
O. OOOOOOE+00 
O. OOOOOOE+00 
O. OOOOOOE+00 
O. OOOOOOE+00 
O. OOOOOOE+00 

O. OOOOOOE+00 
O. OOOOOOE+00 
O. OOOOOOE+00 
O. OOOOOOE+00 
O. OOOOOOE+00 
O. OOOOOOE+00 
O. OOOOOOE+00 
O. OOOOOOE+00 
O. OOOOOOE+00 
O. OOOOOOE+00 
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CONSTRAINT NO. 5 IS STRICTLY EQUAL TO A RIGHT-HAND SIDE OF 0.346400E+04 

THE COEFFICIENTS OF THE LEFr-HAND SIDE FUNCTION ARE, IN THE INPUT ORDER*- 

O. OOOOOOE+00 
O-OOOOOOE+00 
O. OOOOOOE+00 
O. IOOOOOE+01 
O. OOOOOOE+00 
O-OOOOOOE+00 
O. OOOOOOE+00 
O. OOOOOOE+00 
O. OOOOOOE+00 
O. OOOOOOE+00 
O. OOOOOOE+00 

O. OOOOOOE+00 
O. OOOOOOE+00 
O. OOOOOOE+00 
O. OOOOOOE+00 
O. OOOOOOE+00 
O. OOOOOOE+00 
O. OOOOOOE+00 
O. OOOOOOE+00 
O. OOOOOOE+00 
O. OOOOOOE+00 

O. OOOOOOE+00 
O. OOOOOOE+00 
O. OOOOOOE+00 
O. OOOOOOE+00 
O. OOOOOOE+00 
O. OOOOOOE+00 
O. OOOOOOE+00 
O. OOOOOOE+00 
O. OOOOOOE+00 
O. OOOOOOE+00 

0. OOOOOOE+00 
0. OOOOOOE+00 
0.1 OOOOOE+0 1 
0. OOOOOOE+00 
0. OOOOOOE+00 
0. OOOOOOE+00 
0. OOOOOOE+00 
0. OOOOOOE+00 
0. OOOOOOE+00 
0. OOOOOOE+00 

0. OOOOOOE+00 
0. OOOOOOE+00 
0.1 OOOOOE+0 1 
0. OOOOOOE+00 
0. OOOOOOE+00 
0. OOOOOOE+00 
0. OOOOOOE+00 
0. OOOOOOE+00 
0. OOOOOOE+00 
0. OOOOOOE+00 

CONSTRAINT NO. 6 IS STRICTLY EQUAL TO A RIGHT-HAND SIDE OF 0.200000E+04 

THE COEFFICIENTS OF THE LEFT-HAND SIDE FUNCTION ARE, IN THE INPUT ORDER: - 

0. OOOOOOE+00 
0. OOOOOOE+00 
0. OOOOOOE+00 
0. OOOOOOE+00 
0.1 OOOOOE+0 1 
0. OOOOOOE+00 
0. OOOOOOE+00 
0. OOOOOOE+00 
0. OOOOOOE+00 
0. OOOOOOE+00 
0. OOOOOOE+00 

0. OOOOOOE+00 
0. OOOOOOE+00 
0. OOOOOOE+00 
0.1 OOOOOE+0 1 
0.1 OOOOOE+0 1 
0. OOOOOOE+00 
0. OOOOOOE+00 
0. OOOOOOE+00 
0. OOOOOOE+00 
0. OOOOOOE+00 

0. OOOOOOE+00 
0. OOOOOOE+00 
0. OOOOOOE+00 
0.1 OOOOOE+0 1 
0.1 OOOOOE+0 1 
0. OOOOOOE+00 
0. OOOOOOE+00 
0. OOOOOOE+00 
0. OOOOOOE+00 
0. OOOOOOE+00 

0. OOOOOOE+00 
0. OOOOOOE+00 
0. OOOOOOE+00 
0.1 OOOOOE+0 1 
0. OOOOOOE+00 
0. OOOOOOE+00 
0. OOOOOOE+00 
0. OOOOOOE+00 
0. OOOOOOE+00 
0. OOOOOOE+00 

0. OOOOOOE+00 
0. OOOOOOE+00 
0. OOOOOOE+00 
0.1 OOOOOE+0 1 
0. OOOOOOE+00 
0. OOOOOOE+00 
0. OOOOOOE+00 
0. OOOOOOE+00 
0. OOOOOOE+00 
0. OOOOOOE+00 

CONSTRAINT NO. 7 IS STRICTLY EQUAL TO A RIGHT-HAND SIDE OF 0.20000013+04 

THE COEFFICIENTS OF THE LEFT-HAND SIDE FUNCTION ARE, IN THE INPUT ORDER: - 

O. OOOOOOE+00 
O. OOOOOOE+00 
O. OOOOOOE+00 
O. OOOOOOE+00 
O. OOOOOOE+00 
0.100000E+01 
O. OOOOOOE+00 
O. OOOOOOE+00 
O. OOOOOOE+00 
O. OOOOOOE+00 
O. OOOOOOE+00 

0. OOOOOOE+00 
0. OOOOOOE+00 
0. OOOOOOE+00 
0. OOOOOOE+00 
0. OOOOOOE+00 
0.1 OOOOOE+0 1 
0. OOOOOOE+00 
0. OOOOOOE+00 
0. OOOOOOE+00 
0. OOOOOOE+00 

O. OOOOOOE+00 
O. OOOOOOE+00 
O. OOOOOOE+00 
O. OOOOOOE+00 
O. OOOOOOE+00 
0.100000E+01 
O. OOOOOOE+00 
O. OOOOOOE+00 
O. OOOOOOE+00 
O. OOOOOOE+00 

0. OOOOOOE+00 
0. OOOOOOE+00 
0. OOOOOOE+00 
0. OOOOOOE+00 
0.1 OOOOOE+0 1 
0.1 OOOOOE+0 1 
0. OOOOOOE+00 
0. OOOOOOE+00 
0. OOOOOOE+00 
0. OOOOOOE+00 

0. OOOOOOE+00 
0. OOOOOOE+00 
0. OOOOOOE+00 
o. OOOOOOE+00 
0.1 OOOOOE+0 1 
0.1 OOOOOE+0 1 
0. OOOOOOE+00 
0. OOOOOOE+00 
0. OOOOOOE+00 
0. OOOOOOE+00 
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CONSTRAINT NO. 8 IS STRICTLY EQUAL TO A RIGHT-HAND SIDE OF 0.200000E+04 

THE COEFFICIENTS OF THE LEFT-HAND SIDE FUNCTION ARE, IN THE INPUT ORDER: - 

0. OOOOOOE+00 
0. OOOOOOE+00 
0. OOOOOOE+00 
0. OOOOOOE+00 
0. OOOOOOE+00 
0. OOOOOOE+00 
0. IOOOOOE+01 
0.1 OOOOOE+0 1 
0. OOOOOOE+00 
0. OOOOOOE+00 
0. OOOOOOE+00 

0. OOOOOOE+00 
0. OOOOOOE+00 
0. OOOOOOE+00 
0. OOOOOOE+00 
0. OOOOOOE+00 
0. OOOOOOE+00 
0. IOOOOOE+01 
0.1 OOOOOE+0 1 
0. OOOOOOE+00 
0. OOOOOOE+00 

O. OOOOOOE+00 
O. OOOOOOE+00 
O. OOOOOOE+00 
O. OOOOOOE+00 
O. OOOOOOE+00 
O. OOOOOOE+00 
0.100000E+01 
O. OOOOOOE+00 
O. OOOOOOE+00 
O. OOOOOOE+00 

0. OOOOOOE+00 
0. OOOOOOE+00 
0. OOOOOOE+00 
0. OOOOOOE+00 
0. OOOOOOE+00 
0. OOOOOOE+00 
0.1 OOOOOE+0 1 
0. OOOOOOE+00 
0. OOOOOOE+00 
0. OOOOOOE+00 

0. OOOOOOE+00 
0. OOOOOOE+00 
0. OOOOOOE+00 
0. OOOOOOE+00 
0. OOOOOOE+00 
0. OOOOOOE+00 
0.1 OOOOOE+0 1 
0. OOOOOOE+00 
0. OOOOOOE+00 
0. OOOOOOE+00 

CONSTRAINT NO. 9 IS STRICTLY EQUAL TO A RIGHT-HAND SIDE OF 0.200000E+04 

THE COEFFICIENTS OF THE LEFr-HAND SIDE FUNCTION ARE, IN THE INPUT ORDER: - 

O. OOOOOOE+00 
O. OOOOOOE+00 
O. OOOOOOE+00 
O. OOOOOOE+00 
O. OOOOOOE+00 
O. OOOOOOE+00 
O. OOOOOOE+00 
O. OOOOOOE+00 
0.100000E+01 
O. OOOOOOE+00 
O. OOOOOOE+00 

O. OOOOOOE+00 
O. OOOOOOE+00 
O. OOOOOOE+00 
O. OOOOOOE+00 
O. OOOOOOE+00 
O. OOOOOOE+00 
O. OOOOOOE+00 
O. OOOOOOE+00 
0.100000E+01 
O. OOOOOOE+00 

0. OOOOOOE+00 
0. OOOOOOE+00 
0. OOOOOOE+00 
0. OOOOOOE+00 
0. OOOOOOE+00 
0. OOOOOOE+00 
0. OOOOOOE+00 
0.1 OOOOOE+0 1 
0.1 OOOOOE+0 1 
0. OOOOOOE+00 

0. OOOOOOE+00 
0. OOOOOOE+00 
0. OOOOOOE+00 
0. OOOOOOE+00 
0. OOOOOOE+00 
0. OOOOOOE+00 
0. OOOOOOE+00 
0.1 OOOOOE+0 1 
0.1 OOOOOE+0 1 
0. OOOOOOE+00 

0. OOOOOOE+00 
0. OOOOOOE+00 
0. OOOOOOE+00 
0. OOOOOOE+00 
0. OOOOOOE+00 
0. OOOOOOE+00 
0. OOOOOOE+00 
0.1 OOOOOE+0 1 
0. OOOOOOE+00 
0. OOOOOOE+00 

CONSTRAINT NO. 10 IS STRICTLY EQUAL TO A RIGHT-HAND SIDE OF 0.200000E+04 

THE COEFFICIENTS OF THE LEFMAND SIDE FUNCTION ARE, IN THE INPUT ORDER: - 

0. OOOOOOE+00 
0. OOOOOOE+00 
0. OOOOOOE+00 
0. OOOOOOE+00 
0. OOOOOOE+00 
ü. OOOOOOE+00 
0. OOOOOOE+00 
0. OOOOOOE+00 
0. OOOOOOE+00 
0.1 OOOOOE+0 1 
0. IOOOOOE+01 

O. OOOOOOE+00 
O. OOOOOOE+00 
O. OOOOOOE+00 
O. OOOOOOE+00 
O. OOOOOOE+00 
O. OOOOOOE+00 
O. OOOOOOE+00 
O. OOOOOOE+00 
O. OOOOOOE+00 
O. IOOOOOE+01 

0. OOOOOOE+00 
0. OOOOOOE+00 
0. OOOOOOE+00 
0. OOOOOOE+00 
0. OOOOOOE+00 
0. OOOOOOE+00 
0. OOOOOOE+00 
0. OOOOOOE+00 
0. OOOOOOE+00 
0.1 OOOOOE+0 1 

0. OOOOOOE+00 
0. OOOOOOE+00 
0. OOOOOOE+00 
0. OOOOOOE+00 
0. OOOOOOE+00 
0. OOOOOOE+00 
0. OOOOOOE+00 
0. OOOOOOE+00 
0. OOOOOOE+00 
0.1 OOOOOE+0 1 

0. OOOOOOE+00 
0. OOOOOOE+00 
0. OOOOOOE+00 
0. OOOOOOE+00 
0. OOOOOOE+00 
0. OOOOOOE+00 
0. OOOOOOE+00 
0. OOOOOOE+00 
0.1 OOOOOE+0 1 
0.1 OOOOOE+0 1 

327 



THE OBJECTIVE FUNCTION IS TO BE MMMIZED AND ITS COEFFICIENTS OF 
VARIABLES ARE, IN THE INPUT ORDER: - 

0.109900E-0 1 0.149150E-0 1 0.188400E-01 0.251200E-01 0.274750E-0 1 
0.863500E-02 0.109900E-01 0.149150E-0 1 0.188400E-01 0.251200E-01 
0.274750E-01 0.251200E-01 0.274750E-01 0.188400E-01 0.251200E-01 
0.274750E-01 0.392500E-02 0.863500E-02 0.109900E-01 0.149150E-0 1 
0.188400E-01 0.251200E-01 0.274750E-01 0.392500E-02 0.863500E-02 
0.109900E-0 1 0.149150E-01 0.188400E-01 0.251200E-01 0.274750E-01 
0.392500E-02 0.863500E-02 0.109900E-01 0.149150E-01 0.188400E-0 1 
0.251200E-01 0.274750E-01 0.392500E-02 0.863500E-02 0.109900E-01 
0.149150E-01 0.188400E-01 0.251200E-01 0.274750E-01 0.392500E-02 
0.863500E-02 0.109900E-01 0.149150E-01 0.188400E-01 0.251200E-01 
0.274750E-01 

"PHASE ONE COMPLETED" 

**SOLLMON POINT REACHED" 

OPTIMUM VALUES OF THE 51 INPUT VARIABLES ARE: - 

X( 1) = 0.200000E+04 X( 2) = 0. OOOOOOE+00 X( 3) = 0. OOOOOOE+00 

X( 4) = 0. OOOOOOE+00 X( 5) = 0. OOOOOOE+00 X( 6) = 0.200000E+04 

X( 7) = 0. OOOOOOE+00 X( 8) = 0. OOOOOOE+00 X( 9) = 0. OOOOOOE+00 

X( 10) = 0. OOOOOOE+00 X( 11) = 0. OOOOOOE+00 X( 12) = 0.346400E+04 

X( 13) = 0. OOOOOOE+00 X( 14) = 0.346400E+04 X( 15) = 0. OOOOOOE+00 

X( 16) = O. OOOOOOE+00 X( 17) = 0. OOOOOOE+00 X( 18) = 0.200000E+04 

X( 19) = 0. OOOOOOE+00 X( 20) = 0. OOOOOOE+00 X( 21) = 0. OOOOOOE+00 

X( 22) = 0. OOOOOOE+00 X( 23) = 0. OOOOOOE+00 X( 24) = 0.624127E43 

X( 25) = 0.137587E+04 X( 26) = 0. OOOOOOE+00 X( 27) = 0. OOOOOOE+00 
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X( 28) = 0. OOOOOOE+00 X( 29) = 0. OOOOOOE+00 X( 30) = 0. OOOOOOE+00 

X( 31) = 0.200000E+04 X( 32) = 0. OOOOOOE+00 X( 33) = 0. OOOOOOE+00 

X( 34) = 0. OOOOOOE+00 X( 35) = O. OOOOOOE+00 X( 36) = 0. OOOOOOE+00 

X( 37) = 0. OOOOOOE+00 X( 38) = 0. OOOOOOE+00 X( 39) = 0.200000E+04 

X(40)= O. OOOOOOE+00 X(41)= O. OOOOOOE+00 X(42)= O-OOOOOOE+00 

X( 43) = 0. OOOOOOE+00 X( 44) = 0. OOOOOOE+00 X( 45) = 0. OOOOOOE+00 

X( 46) = 0.200000E+04 X( 47) = 0. OOOOOOE+00 X( 48) = 0. OOOOOOE+00 

X(49)= O. OOOOOOE+00 X(50)= O. OOOOOOE+00 X(51)= O. OOOOOOE+00 

THE OPTIMUM VALUE OF THE OBJECTIVE FUNCTION IS 0.265518E+03 

THE ROW NUMBERS OF THE ACTIVE CONSTRAINTS ARE: - 

123456789 10 

**** END OF SOLUTION **** 
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APPENDIX G 

THE TRUSS2D 

COMPUTER PROGRAMME 

C PROGRAM TRUSS2D(INPUT, OUTPUT) 
C PROGRAM FOR 2-D TRUSSES USING CODE NUMBERS. 
C INPUT IS IN FREE FORM. 
C ******** 

DIMENSION BGK(100,30), XL(60), SINW(60), COSW(60), SK(4,4), AR(60), 
lNC(60,4), QL(I00), P(60) 
PRINT 4 

4 FORMAT(//, r *** TRUSS ANALYSIS USING CODE NUMBERS 
IrINPUT IS IN FREE FORM. '/) 
PRINT 8 

8 FORMAT(' TYPE THE NO. OF MEMBERS, THE NO. OF EXTERNAL', 
I'DISPLACEMENTS, 'P AND THE VALUE OF E. ') 
READ*, NM, ND, E 
PRINT 12 

12 FORMAT(' TYPE THE MEMBER END COORDINATES, MEMBER 1,2, ETC.. '/ 
I' IN THE ORDER: 'P XI YI XJ YJ') 
DO 16 I=INM 
READ*, M, YI, XJ, YJ 
XL(I)=SQRT((YJ-YI)**2+(XJ-Xl)**2) 
SINW(I)=(YJ-Yr)/XL(l) 

16 COSW(I)=(XJ-XI)/XL(I) 
PRINT 20 

20 FORMAT(' TYPE THE MEMBER AREAS - A(I), A(2), ETC. ') 
READ*, (AR(I), I=I, NM) 
PRINT 24 

24 FORMAT(' TYPE THE CODE NUMBERS; MEMBER 1,2, ETC. ') 
DO 28 I=INM 

28 READ*, (NC(IJ), J=1,4) 
PRINT 32 

32 FORMAT(' TYPE THE ELEMENTS OF Q. ') 
READ*, (QL(l), I=I, ND) 
PRINT 36 

36 FORMAT(/P INPUT VALUES: 'H'MEMBER', 30X, 'CODE'/, 
V NUMBER LENGTH AREA NUMBERS'/) 
DO 40 I=I, NM 

40 PRINT 44,1, XL(l), AR(I), (NC(I, J), J=1,4) 
44 FORMAT(2X, I4,2EI3.5, IX, 4I3) 

PRINT 48,13 
48 FORMATV' THE VALUE OF E IS ', EII. 5) 

PRINT 52 
52 FORMAT(IX/'ID NO. LOADS APPLIED'/) 

DO 56 I=I, ND 
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56 PRINT 60J, QL(l) 
60 FORMAT(2X, I3,4XE13.5) 

IBND--O 
DO 64 I=I, NM 
DO 64 J=1,3 
JJ=J+l 
DO 64 K=JJ, 4 
IF(NC(IJ). EQ. O. OR. NC(I, K). EQ. O)GO TO 64 
M=IABS(NC(I, J)-NC(I, K)) 
IF(M. GT. IBND)IBND=M 

64 CONTINUE 
IBND=IBND+I 
PRINT 68, IBND 

68 FORMAT(P THE BANDWIDTH IS ', 12) 
IF(IBND. LE. 30)GO TO 72 
PRINT 70 

70 FORMAT(P BANDWIDTH EXCEEDS DIMENSIONN) 
STOP 

72 DO 76 I=I, ND 
DO 76 J=I, IBND 

76 BGK(I, J)--O. 
DO 84 N=I, NM 
SK(l, l)--COSW(N)**2 
SK(3,3)=SK(l, l) 
SK(1,2)--SINW(N)*COSW(N) 
SK(3,4)=SK(1,2) 
SK(1,4)=-SK(1,2) 
SK(2,3)--SK(1,4) 
SK(1,3)=-SK(l, l) 
SK(2,2)=SINW(N)**2 
SK(4,4)=SK(2,2) 
SK(2,4)=-SK(2,2) 
DO 80 I=1,4 
DO 80 J=I, 4 

80 SK(IJ)=(E*AR(N)/XL(N))*SK(I, J) 
DO 84 1=1,4 
DO 84 J=I, 4 
K=NC(N, I) 
L--NC(Nj) 
IF(KEQ. O. OR. L. EQ. O)GO TO 84 
IF(Y-LE. L)GO TO 82 
rr=K 
K=L 
L--IT 

82 IPOS=L-K+l 
BGK(K, IPOS)=BGK(K, IPOS)+SK(I, J) 

84 CONTINUE 
CALL BNDSOL(BGK, QL, ND, IBND) 
DO 88 N=INM 
C=E*AR(N)fXL(N) 
SK(I. 3)--COSW(N) 
SK(1,1)=-SK(1,3) 
SK(1,4)=SU%AV(N) 
SK(1,2)---SK(1,4) 
P(N)--O. 
DO 88 J=1,4 
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K=NC(N, J) 
IF(K. EQ. O)GO TO 88 
P(N)=P(N)+C*SK(I, J)*QL(K) 

88 CONTINUE 
PRINT 92 

92 FORMAT(/P OUTPUT VALUES W ID NO. DEFLECTIONS', 3X, 
I'AXLAL FORC117) 
IF(NM-ND)96,106,106 

96 DO 98 I=INM 
98 PRINT 100,1, QL(l), P(I) 
100 FORMAT(3X, I3,2X, 2E 14.5) 

J=NM+l 
DO 102 I=J, ND 

102 PRINT 104, I, QL(l) 
104 FORMAT(3X, 13,2X, E14.5) 

GO TO 120 
106 DO 108 I= I, ND 
108 PRINT 100, I, QL(l), P(l) 

IF(NM. EQ. ND)GO TO 120 
J=ND+l 
DO I 10 I=J, NM 

I 10 PRINT 112, I, P(I) 
112 FORMAT(3X, I3,16X, E14.5) 
120 PRINT 124 
124 FORMAT(/' ANALYSIS COMPLETE. '///) 

STOP 
END 
SUBROUTINE BNDSOL(BGK, Q, NDIS, MB) 
DIMENSION BGK(100,30), Q(100), F(30) 
N--O 

500 N=N+1 
Q(N)=Q(N)/BGK(N, I) 
IF(N-NDIS)550,700,550 

550 DO 600 K=2, MB 
F(K)=BGK(N, K) 

600 BGK(N, K)=BGK(N, K)/BGK(N, I) 
DO 660 L--2, MB 
I=N+L-1 
IF(NDIS-1)660,640,640 

640 J--O 
DO 650 K=L, MB 
J=J+l 

650 BGK(IJ)=BGK(I, J)-F(L)*BGK(N, K) 
Q(I)=Q(I)-F(L)*Q(N) 

660 CONTINUE 
GO TO 500 

700 N=N-1 
IF(N)750,900,750 

750 DO 800 K=2, MB 
L--N+K-I 
IF(NDIS-L)800,770,770 

770 Q(N)=Q(N)-BGK(N, K)*Q(L) 
800 CONTINUE 

GO TO 700 A, 
900 RETURN 

END 

332 

im 

.... ..... 


