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ABSTRACT

Jaynes’ maximum entropy formalism, based on Shannon’s informational measure of
uncertainty, 1s used in this thesis to infer solutions to two different civil engineering
system models under uncertainty; those being water distribution networks and
structural trusses. In this regard, the following problems, formalised as questions, are

investigated.

1. By appreciating the applicability of the entropy of network flows as a

surrogate measure of reliability in water distribution networks, how can

maximum entropy flows be calculated in a looped network when only the
external inflows and outflows and the direction of pipe flows are available,
without requiring mathematical programming techniques or iterative processes,
so that they can be incorporated in one of the linearized least-cost optimum
design methods without inducing any extra complexity into the formulation?

2. How can various types of information which might be available in real water
distribution networks be used to infer most-likely pipe flows and their
correspondiﬁg pipe characteristics in a looped network, thus opening up the
possibility of calibrating computer models of existing water networks without
requiring a physical measurement of the network pipe flows which might be
expensive and time consuming?

3. Is it possible to extend the entropy-based method of designing reliable water
networks to structural trusses bearing in mind the striking similarities between

the two systems?

In an attempt to answer the above questions, the following aspects of the present

research are established.

1. Visualising network pipe flows as path flows supplying demand nodes from
the network sources, and appreciating that the demand of any node served by

more than one path from any source should be distributed equally amongst all
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the paths supplying that node from that source, the maximum entropy tlows

in a looped network are such that the ratio of the probabilities of path flows
from each pair of sources to a demand node reachable from the corresponding
pair of sources is the same for every demand node supplied by this pair of
sources in the network. Accordingly, a very simple algorithm for calculating
maximum entropy flows in general looped networks is developed. Its
simplicity and efficiency is noted. An algorithm using a path-based entropy
function, capable of calculating directly the maximum entropy value of
network flows, 1s derived.

A compound entropy formula representing pipe characteristics and pipe flows
in water distribution networks is derived. A calibration model 1s then
developed by maximizing the compound network entropy formula subject to
available information such as external flows for multiple load cases, pipe
diameters and lengths, nodal pressure heads and nodal equilibrium equations
along with conservation laws of energy for all load cases considered around
network loops. It is shown that the calibration method is very accurate for
networks designed to carry maximum entropy flows and less accurate for other
conventionally designed networks.

An attempt is made to design reliable structural trusses to carry maximum
entropy bar axial forces calculated by visualising bar axial forces as force
flows. This attempt shows that flow entropy concept seems to have little
significance in respect of structural reliability. However, unsuspected
difficulties regarding extending the scalar methodologies developed in water
distribution networks to the vectorial domain of structural trusses are
highlighted. Also, the difference between reliability concepts in the two

systems 1s observed.
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CHAPTER 1

INTRODUCTION

1.1 INTRODUCTION

In civil engineering projects, it is very common for engineers to deal with situations
where some of the data needed in the analysis and design procedure is unavailable or
uncertain. Load and strength data in structural reliability analysis, for example, have
to be fitted by some available analytical probability distributions which are needed for
estimating failure probability from their respective overlapping tail regions. Also, there
is uncertainty associated with future orders in every productive industry such as the
ready-mixed concrete industry, where prior1 probabilities for such orders need to be
estimated for each mix. For such cases and many more, involving data uncertainty, an
engineering judgement or a so-called "educated guess” is usually used to estimate the
missing information so that progress on the analysis or design procedure can be made.
However, such judgement or guess may sometimes introduce significant errors into
subsequent calculations. For example, choosing different probability distributions to
represent load and strength data 1n structural reliability analysis produces errors in
reliability estimates measured in orders of magnitude (Basu and Templeman, 1985).
Also, the evaluation of prior probabilities for future orders in the ready-mixed concrete
industry, for example, should be done objectively, not arbitrarily, and should not be
atfected by any personal bias. Consequently, a rigorous inference method for
estimating most-likely, or least-biased, performance estimates from partial information
has to be adopted for such cases of uncertainty so that no arbitrary guesses have to

be made to fill in the missing information if sensible data estimates are to be sought.

Recently, Jaynes’ maximum entropy formalism (Jaynes, 1957) based on Shannon’s
informational entropy measure of uncertainty (Shannon, 1948) has been used in such

cases as those outlined above to infer most-likely values for unknown probabilities

1



subject to available and incomplete information. The applicability of the maximum

entropy formalism, however, has not been limited only to the obvious cases of
inferring least-biased probability values. It has been used to generate solutions to a
wide range of civil engineering problems where the available information is
incomplete or uncertain, provided that the sought missing information can be somehow
cast 1n a probabilistic fashion as required by Shannon’s informational entropy. The
present research 1s concerned with developing methods of logical inference based on
the maximum entropy formalism for two different civil engineering system models

under uncertainty; those being water supply networks and structural trusses.

1.2 MOTIVATIONS AND OBJECTIVES OF THE PRESENT RESEARCH

In recent years, water supply networks have been the subject of much research
concerning least-cost optimum design and reliability. Entropy-based applications in
water supply networks have also been studied. Tanyimboh and Templeman (1993a)
used the maximum entropy formalism to calculate most-likely flows in water
distribution networks for which only supply and demand flows and the topology of
the networks, along with pipe flow directions, are assumed be available. Other data
such as lengths, diameters and roughness coefficients of the network pipes which may
have been lost or may have changed over time as in the case of old water distribution
networks are assumed not be available. In this case, the available information is
insufficient to uniquely determine the flows in the network pipes. Physical
measurements of pipe flows for such networks may be expensive and time consuming.
By modelling network pipe flows probabilistically using the relative frequency
Interpretation of probability, Tanyimboh and Templeman (1993a) were able to develop
a nodal flow entropy function of network pipes, and by maximizing it subject to
equilibrium equations only they obtained a nonlinear programming model for
calculating most-likely flows in water distribution networks with incomplete
information. In another paper, Tanyimboh and Templeman (1993c) showed that
entropy of pipe flows in water distribution networks can be used as a surrogate
measure of reliability. By adding an entropy constraint to the least-cost optimum

design formulation of water networks, they obtained a good compromise between cost



and reliability which is desirable in urban water distribution networks. However, the
least-cost optimum design formulation for water supply networks is one of non-linear
programming, and adding an entropy constraint, which 1s also non-linear, to the
formulation makes the problem more difficult to solve and computer time consuming.
Many attempts have been made in the literature to linecarize the least-cost design
formulation of water supply networks. The method of Alperovits and Shamir (1977)
is one of them. Therefore, simplifying the problem of calculating maximum entropy
flows in water networks so that it can be incorporated into such a linearized least-cost
design method without inducing any extra complexity would be most beneficial. Part
of the present research aims to develop a path-based method capable of estimating
most-likely flows in multi-source, multi-demand general networks without requiring

any mathematical programming techniques or iterative processes.

The entropy-based methods of calculating maximum entropy flows in water
distribution networks mentioned so far have assumed that only supply and demand
flows and the topology of the networks, along with pipe flow directions, are assumed
to be available. In practical situations, however, other data such as pipe lengths and
pipe diameters may also be available. Also, pressure heads at some network nodes can
be measured quite cheaply and easily. Additionally, the estimated pipe flows must
satisfy the conservation laws of energy around the network loops. All the above
information may be available in old and inaccessible water supply networks in which
only pipe characteristics and hence pipe flows are not known. The main objective of
the present research is to show how such normally available information can be
incorporated into one single model capable of estimating most-likely pipe flows and
corresponding pipe characteristics in old water distribution networks, and to
demonstrate that such a model can be used as a calibration method for calculating pipe
flows and pipe characteristics for inaccessible water networks which are as close as

possible to the actual values.

The second area covered in the present research is the optimum design of

indeterminate structural trusses. It is well appreciated that structural trusses and water

supply networks share similar characteristics in terms of pictorial representations.



Templeman (1992b) showed that such aspects of similarity can be extended almost
fully to include terms such as physical quantities, constitutive equations, methods of

analysis and design and even some reliability approaches. He concluded that such very
close similarity between the two systems enables methods of analysis and design of
structural trusses to be used in water supply networks and vice versa. An attempt 1s
made in this thesis to design a reliable structural truss to carry maximum entropy bar
axial forces calculated in a similar way to that of calculating maximum entropy flows

in water networks. The resulting truss design is tested against reliability and damage

tolerance approaches.

To sum up, the objectives of the research presented in this thesis are:

1. To develop a simple quick method of calculating maximum entropy flows in
multi-source, multi-demand general networks without requiring mathematical
programming techniques or iterative processes.

2. To produce an entropy-based inference model capable of calibrating
inaccessible water supply networks in which only pipe characteristics, and
hence pipe flows, are not available.

3. To apply the concept of network pipe flow entropy to structural trusses by
calculating maximum entropy axial forces in truss bars, and then to obtain
reliable structural trusses by designing them to carry those calculated

maximum entropy bar axial forces.

1.3 LAYOUT OF THESIS

Including this introductory chapter, the thesis i1s divided into nine chapters. The

background materials needed to understand the contents of this thesis are given in

Chapters 2 and 3. In Chapter 2, Shannon’s informational entropy and the maximum
entropy formalism are introduced along with a review of water distribution networks
concerning analysis, optimum design and reliability approaches. Applications of the
maximum entropy formalism in civil engineering in general and in water distribution

networks in particular are also reviewed in that chapter. In Chapter 3, analysis,



optimum design and reliability methods for structural trusses are reviewed. Also,

Chapter 3 examines aspects of similarity between structural trusses and water

distribution networks.

The new material presented in this thesis is distributed throughout Chapters 4 to 8.
Chapter 4 introduces a path-based method of calculating maximum entropy flows in
water distribution networks with incomplete information. Neither mathematical
programming techniques nor iterative processes are required in the method which 1s
illustrated in Chapter 5 by means of three sample network examples exhibiting
different aspects which might be encountered in real water distribution networks.
Chapters 6 and 7 are devoted to the mathematical model of calibrating inaccessible
water distribution networks for which only pipe characteristics and corresponding pipe
flows are not available. The theory behind the development of the calibration model
is presented in Chapter 6, while applications of the model on two network examples
are left to Chapter 7. Moving away from water distribution networks, Chapter 8 1s an
attempt to obtain a reliable structural truss by designing it to carry maximum entropy
bar axial forces calculated 1n a similar way to that of calculating maximum entropy
flows in water distribution networks. The resulting design is compared with a
conventional design of the same truss by testing both designs against reliability and

damage tolerance approaches.

Finally, the main conclusions of Chapters 4 to 8 and some recommendations for future
work are summarized and discussed in Chapter 9. All computer programmes written
to solve the new methods developed in the present research along with some sample
input and output files of some illustrative examples solved by those programmes are

given in the end of this thesis as appendices.



CHAPTER 2

THE MAXIMUM ENTROPY FORMALISM
AND ITS APPLICATIONS
IN WATER DISTRIBUTION NETWORKS

2.1 INTRODUCTION

Entropy is a known concept for scientists in the context of classical thermodynamics
in which the entropy concept was first originated and defined as a function of some
macroscopic properties which are experimentally observable such as temperature,
pressure and volume. This entropy is non-probabilistic in nature and known as

classical entropy.

In statistical mechanics which i1s concerned with the microscopic states of matter,
entropy evolved further and was used in a probabilistic sense to measure the
uncertainty associated with a particular micro-state. This entropy has no explicit

reference to information and is known as statistical entropy.

It was Shannon (1948) who first used entropy in new contexts which are unrelated to
thermodynamics. He related entropy to information by introducing entropy as a
measure of the amount of information or uncertainty about the possible outcomes of
a probabilistic experiment, enabling the information content of different probability
distributions to be compared quantitatively. This kind of entropy is referred to as
informational entropy and is described in detail shortly due to its direct relevance to

the present research.

Shannon’s measure of uncertainty was the inspiration which led Jaynes (1957) to his

revolutionary formalism in the history of science. Before Jaynes’ (1957) astonishing



paper, Shannon’s entropy was merely a measure of uncertainty in a probability

distribution, provided that all probabilities are known. In the case of unknown prior
probabilities which in practice is often the case, Jaynes (1957) suggested using the
Shannon’s entropy measure in a reverse sense to infer a probability distribution which
would have the maximum entropy, that is a distribution which would have the
maximum information available without introducing any unconscious arbitrary
assumptions about choosing some probability distribution which appears to fit the

available data. This criterion is known as the maximum entropy formalism which 1s

the core of the present work and is described fully in this chapter.

The maximum entropy formalism of Jaynes has opened up a wide range of
applications for the Shannon entropy in all areas of civil engineering. Special attention

will be given in this chapter to water distribution network applications which have

recently attracted attention in tackling the difficulties associated with including

reliability in water distribution designs.

In this chapter, Shannon’s informational entropy is first presented along with some of
its important properties. Then, the maximum entropy formalism i1s introduced, with a
survey of its applications in civil engineering. Finally, literature on water distribution

network analysis and design is reviewed, and the water distribution network entropy

major applications are described.

2.2 SHANNON’S INFORMATIONAL ENTROPY

Shannon (1948) was interested in information theory and in particular in the ways in
which information can be conveyed via a message. In his work, he needed to develop
a way of measuring the levels of information or uncertainty in different probability
distributions. For example, consider the probabilistic experiment of tossing a coin. If
the coin 1s perfectly fair, the probability of obtaining a head (H) is obviously equal
to the probability of obtaining a tail (T) and is equal to 0.5. Suppose now the coin is
loaded such that the probability of tossing a head is 0.95, and the probability of

tossing a tail 1s 0.05. Clearly, the first probability distribution represents more



uncertainty than the second distribution in which the result of the experiment is almost

surely the head. In the first case, any prediction is very uncertain.

Furthermore, imagine a fair three-faced coin. For such a coin, it is clear that the
probability of obtaining any face of its three faces in the next toss is 1/3. Comparing
this experiment with that of the fair two-faced coin, the amount of uncertainty
associated with the former experiment is greater than that associated with the latter
one, since the chance of having the right prediction of the next toss is one-in-two for

the fair two-faced coin, while the chance is one-in-three for the fair three-faced coin.

Analysing such types of experiments, Shannon (1948) raised the following question;
how can the degree of uncertainty in any finite probability scheme be measured
quantitatively? In this section, Shannon’s entropy measure of uncertainty is presented.
Some of its properties along with the well-established Uniqueness Theorem of the

measure are given.

2.2.1 ENTROPY OF FINITE PROBABILITY SCHEMES

Before Shannon’s entropy measure of uncertainty is presented, a finite probability

scheme has to be defined first.

In probability theory, a set of events or outcomes is said to be mutually exclusive if
one, and only one, of them can occur at each trial. Also, if it happens that one of
these events must occur at each trial, then the set is exhaustive and it represents a
complete system. The events of such a complete system together with their
corresponding probabilities form a finite scheme. Let us denote the events or outcomes
of a finite scheme by o,, and the corresponding probabilities by p,, i=1,...,N, where N

1s the number of events or outcomes. Thus the finite scheme O is given by:

O-=(,p) i=1,.N (2.1)

The probabilities of such a scheme are non-negative and satisfy the normality

condition since they form a complete system. That means:



p,20 Wi (2.2)

and,

N
 p=1 (2.3)

i=1

Every probabilistic scheme has some degree of uncertainty associated with it. A
scheme with probabilities (0.5, 0.5), for example, has more uncertainty than a scheme
with probabilities (0.95, 0.05). Moreover, there is more uncertainty about a scheme
with probabilities (1/3, 1/3, 1/3) than a scheme with probabilities (0.5, 0.5) although
both of them are uniform distributions. From these types of examples Shannon (1948)
extrapolated a set of desiderata which a sought measure of uncertainty must satisfy.

He found that the only form which would satisfy his desiderata and therefore can be
used as a general measure of uncertainty is the following function represented by a

finite probability scheme:

N
S =-KY p,logp, ' (2.4)
i=1
where S is the entropy or amount of uncertainty; K is an arbitrary positive constant

which depends on a suitable choice for the units of measure; and the logarithms can
take any arbitrary but fixed base. However, natural logarithms are used throughout this
thesis. Also, it is defined that 0 log 0 = 0. See Jones (1979) and Khinchin (1953) for

example. Finally, the probabilities p, which represent a finite scheme are non-negative,

exhaustive, mutually exclusive and satisfy the normality condition of Eq. (2.3).

Shannon’s measure of uncertainty, Eq. (2.4) , can also be regarded as a measure of
information depending on the measurement being taken before or after the experiment.
When an experiment is performed, the actual outcomes are known and the uncertainty
concerning the results of the experiment is removed. Therefore, the information gained
by the experiment is equal to the amount of uncertainty removed by performing it.
Consequently, Shannon’s entropy is rigorously considered as a measure of uncertainty

or amount of information. See Guiasu (1977) and Kapur (1989).



2.2.2 PROPERTIES OF SHANNON’S ENTROPY

Next are presented the properties of Shannon’s entropy, some of which are simply

expected of a reasonable measure of uncertainty. For more details and other properties,
Khinchin (1953), Guiasu (1977), Kapur and Kesavan (1987) and Kapur (1989) are the

recommended references that the interested reader may consult.

1.

Shannon’s function Sy(p,,...,py) iS @ continuous and symmetric function provided

that O In O is always replaced by 0. Thus S is invariant when the outcomes are

rearranged among themselves.

SN(PyseesPn) 2 0

The function takes its minimum value (0) only if one of the properties is unity
and the rest of them are zero. Such a scheme obviously contains no uncertainty.
SN(Pjs-+sPN) = Sn41(Pyse-+-Pn0)

This 1s expected as an impossible outcome does not affect the amount of
uncertainty about any scheme.

Sn(PpseesPn) S Sy(I/N,...,1/N)

The function takes 1ts maximum value when all the events are equally likely, i.e.
in a scheme with uniform distribution, which agrees with one’s expectation.

S 1s a monotonically increasing function of the number of outcomes N, since its
maximum value is: Sy(1/N,...,1/N) = K In N.

The entropy function S i1s a concave function. Since X In x is a well-known
convex function, 2. p, In p, is a convex function and S=- X p, In p, is a concave
one. Therefore, its local maximum value of K In N is a global maximum.

The joint entropy of two mutually dependent schemes is the entropy of one

scheme plus the conditional entropy of the other. i.e.

S(0,0,) = 80, + S(O\O,) = S0,) + S(O,\0,) (2.5)

where S(O,0,) is the joint entropy of two mutually dependent schemes O, and O,
whose entropies are S(O,) and S(O,) respectively; S(0O,\O0,) is the conditional
entropy of scheme O, provided that O, first occurs, and S(O\O,) is the
conditional entropy of O, given that O, has occurred. Defining the two finite

schemes O, and O, as: O; = (o, p,) Vi, and O, = (0, p;) Vj, the conditional
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entropy S(O,\0y) is given by:

S(Oz\ol) = -K E p(0) E P(OJ\O,-) In P(Oj\o,) (2.6)
i J

in which p(o;) is the probability of event o, in the scheme O, and p(o)\o,) is the

conditional probability of event o, in the scheme O, given that event o, in the

scheme O, has occurred.

Eq. (2.5) shows that the interchange of the positions of two schemes has no effect

on the joint entropy of these two schemes. In the case of two mutually

independent schemes, it is obvious that:

S(O,\O) = SO, (2.7a)
and,
S(O\Q,) = S(O) (2.7b)

siﬁnce each scheme has no effect on the occurrence of the other. Therefore:

S(0,0) = SO, + S, (2.8)

This means that the joint entropy of two mutually independent schemes is the

sum of their separate entropies.

The above properties of Shannon’s entropy are actually the requirements which any

reasonable measure of uncertainty has to satisfy. They stem from the actual meaning

of the concept of uncertainty. However, Shannon’s entropy is the only possible

function to satisfy these properties. (See Khinchin (1953) for example). Its uniqueness

1s stated next as a theorem.

2.2.2.1 THE UNIQUENESS THEOREM

Let Sy(py,....pn) be a function defined for any integer N and all values of p; , i=1,...,N,

are non-negative and satisfy the normality condition of Eq. (2.3). Suppose this

function has the following properties:
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1. Sn(py,.-Pn)s VN, is a continuous function with respect to all its arguments.

2. For a given N and for X p, = 1, i=1,...,N, Sy takes its largest value for p.=1/N,
i=1,...,N.

3. S(0,0,) = S(O)) + S(0O,\O)).

4. SN(Pyse-sPn) = Spet(Prse-Pr:0).

The only possible function to satisfy the above requirements is the entropy function

of Shannon which has the form:

N
S=-KY phap 4

i=1

where K 1s an arbitrary positive constant.

The proof of the above theorem is in no way necessary for the present research.

However, details can be found elsewhere. See Khinchin (1953) for example.
2.3 THE MAXIMUM ENTROPY FORMALISM

Consider a random variable x which may take several discrete values x,, i=1,...,N, in
a random process. Suppose the probability that x has the value x, i=1,...,N, i.e.
p;=p(x=X;) cannot be determined by the available information about the process under

examination. What is the best estimate of such probabilities and how can they be

found?

An early attempt to solve this problem was Laplace’s Principle of insufficient reason
in which two events are to be considered equally likely if there is no reason to think
otherwise. Therefore, the uniform probability distribution should be adopted if there

18 no other distribution which can be justified.

Unfortunately, Laplace’s Principle does not help a situation in which there are reasons

for thinking otherwise, i.e. in a situation where the uniform distribution does not fit

because of the presence of some information which might be available about the

process being considered. Such information may be things like the mean and standard

12



deviation of the x;, Vi, and may take the form:

glj p; Fnyx) = <Fn> j=1,.,NEC ‘ (2.9)
i-

where <Fn>, V], is the expected value of the function Fny(x), V1, and NEC is the
number of the expectation constraint functions. These NEC constraints together with
the axiomatic normality condition constraint of Eq. (2.3) are assumed to be less than
the number of p,, i=1,...,N, i.e. NEC+1<N so that there are many distributions which
will fit the available information (Egs. (2.3) and (2.9)). Which of these distributions
should be selected and why?

Jaynes (1957) recognized that every probability distribution which fits the available
information has a different value of Shannon’s entropy. Since entropy is a measure of
uncertainty, a distribution which has the maximum value of entropy within the
limitation of the available information must have maximum uncertainty, must be
maximally noncommittal to missing information and must contain minimum bias.
Jaynes stated:

"In making inference on the basis of partial information we must use that
probability distribution which has maximum entropy subject to whatever is
known. This is the only unbiased assignment we can make; to use any other

would amount to arbitrary assumption of information which by hypothesis we do
not have."

Mathematically, the above selection criterion, which is known as the maximum
entropy formalism, is equivalent to maximizing Shannon’s entropy function of Eq.

(2.4) subject to the given information of Egs. (2.3) and (2.9). i.e.

Problem 1

N
Maximize S/K = -Y p,Inp;, Vp, (2.4)

i=1

Subject to:

13



2. P =1 ﬁ_ (2.3)

=1
N
2 p; Fnyx) = <Fnp> Jj=1,..NEC | (2.9)
I=
pi ). 0 i=—l,...N . (2_2)

Problem 1 is the classical maximum entropy problem. Its analytical solution can be

found by examining the stationarity of its Lagrangean and is:

. NEC
exp [ Y, u; Fny)
P; = N "%EC—"—“ i=1,...N (2.10)
Y exp [ ), p; Fny
=1 J=1

in which p, j=1,...NEC, are the Lagrange multipliers associated with the expectation
constraints, Eq. (2.9) in Problem 1. However, the Lagrange multipliers p;, j=1,..., NEC,
in Eq. (2.10) are unknown and have to be calculated first if the maximum entropy
probabilities of Eq. (2.10) are to be determined. This can be done by substituting Egs.
(2.10) back into the expectation constraints of Eqs. (2.9) in Problem 1, and solving the
NEC non-linear equations for the NEC Lagrange multipliers. Then, the maximum
entropy probabilities of Eqs. (2.10) can be calculated. This 1s rather awkward and
tedious. However, Templeman and Li (1985) showed how the Lagrange multipliers
in Egs. (2.10) may be determined more easily by realizing that Problem 1 is a convex
programming problem and it should have a dual form of an unconstrained

minimization problem which may be easier to solve directly than Problem 1.

Consequently, they were able to calculate the LLagrange multipliers by solving the dual
unconstrained minimization problem very easily using a standard library subroutine
for unconstrained nonlinear programming. It should be noted that the resulting
maximum entropy distribution of Eq. (2.10) is a unique global maximum point for

Problem 1 due to the convexity of the problem.
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2.3.1 INTERPRETATIONS BEHIND THE MAXIMUM ENTROPY
FORMALISM

The maximum entropy formalism may be regarded as an extension of Laplace’s
principle of insufficient reason in which there is no information given about a
probability scheme except that all the probabilities sum to unity. In such a case,
maximizing the entropy subject to the normality condition only results in a uniform
pro‘bability distribution which concurs with the principle of insufficient reason.
However, the maximum entropy distribution is uniquely determined by virtue of the
positive reason of being maximally noncommittal to missing information, instead of

the negative one that there was no reason to think otherwise.

Moreover, any gain in information leads to an extra constraint in the maximum
entropy formalism and consequently reduces the entropy value of the system.

Conversely, any gain in entropy means loss of information.

Finally, the maximum entropy formalism has the potential power of discovering some
physical laws that are yet undiscovered. Jaynes (1979) argued that if the actual
probability distribution of a probabilistic experiment departs from the maximum

entropy prediction, then there must exist another new constraint beyond that used in
the calculation. Thus the maximum entropy formalism brings out the physics by

showing that some constraints have been i1gnored, and if such constraints are unknown

the maximum entropy formalism has the property of discovering them.
2.4 THE CONTINUOUS CASE OF THE MAXIMUM ENTROPY FORMALISM

In a situation of a continuous random process, the maximum entropy formalism is still
applicable. However, an integral over the continuous domain should replace the
summations and probability density functions must be used instead of the discrete
probabilities. Therefore, the continuous case of the maximum entropy formalism has

the following form:
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b
Maximize S/K = -[ fox) In (fix)) dx  Vfix) (2.11)
a

Subject to:
b
[ fo dx =1 (2.12)
b
f Fn(x) fix) dx = <Fnp>  j=1,..NEC (2.13)
a

in which x is a continuous random variable; <Fn>, Vj, is the expected value of the

function Fn,(x); and {(x) is a probability density function.

The continuous entropy formula of Eq. (2.11) is defined in terms of a probability
density function, so it may not be invariant under variable transformation. Moreover,
the continuous entropy, when N—oo, is strictly not the limit of the discrete entropy
whose properties therefore can not be extended to the continuous case. However, the
solution of the continuous maximum entropy formalism can be obtained following the

same process as for the discrete case, but this is not considered here since this

research is concerned with discrete probabilities only.

2.5 APPLICATIONS OF THE MAXIMUM ENTROPY FORMALISM IN CIVIL
ENGINEERING

The maximum entropy formalism has been used in applications of many areas of
science and engineering due to its simplicity and efficiency of generating solutions to
a wide range of problems where the available information is not complete. Only
applications in civil engineering areas, some of which were surveyed by Templeman
(1992a, 1993), are presented here, while other applications from widely different fields
can be found in a reference such as Levine and Tribus (1979) for example. However,
the use of entropy in optimization processes is mentioned here due to its general
significance, while water supply network applications are left to the next section

because of their close relevance to the present research.
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Li (1987) and Templeman and Li (1987, 1989) have used the maximum entropy
formalism in optimization processes in an attempt to develop a radically different

method of solving constrained nonlinear programming problems in order to match the
sophistication of nonlinear engineering design applications. They looked at the
problem in a probabilistic context and incorporated the principle of the maximum
entropy 1nto the process to improve convergence towards the optimum solution. Such
an entropy-based approach was used by Li and Templeman (1988) in optimum truss
sizing problems and was found to be very effective and encouraging to use in more

difficult structural optimization problems.

In a more obvious application of the maximum entropy formalism, Basu (1981) and
Basu and Templeman (1984, 1985) used the formalism to fit available probabilistic
data. They argued that fitting different probability distributions to probabilistic data
in most engineering problems is based on an ad hoc selection criteria which introduce
bias into the calculations. In the 1984 paper, they showed that over a wide range of
different distributions the maximum entropy distribution was the nearest to the actual
distribution being examined. In the second paper, they estimated the failure probability
of a structure by using the maximum entropy probability distribution to represent
random loads and strengths in structural reliability analysis. They demonstrated that

such an entropy-based approach produced a more logical and rigorous method to
generate accurate failure probabilities, casting doubt upon the conventional treatment

of structural reliability.

In another application, decision-making analysis is the key process in any productive
industry regarding the uncertainty associated with future orders. Thus, the evaluation
of prior probabilities for such orders should be made objectively and should not be
affected by any personal bias. Munro and Jowitt (1978) reélized this fact and used
therefore the maximum entropy formalism in the ready-mixed concrete industry to
estimate the least biased probability distribution associated with the orders for each
mix. They showed the ability of the entropy-based method to reproduce the common
sense decisions associated with simple examples and continue to make consistent

judgements when common sense decision-making becomes more difficult.
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Traffic engineering has attracted many entropy-based applications concerning the
estimation of the origin-destination matrix or the so-called trip matrix from limited

data. A typical transportation problem is to minimize the total travelling cost between
origins and destinations subject to available information about the total flows leaving
and entering each origin and destination respectively. Erlander (1977) added an
entropy constraint to the problem in order to preserve a desired level of accessibility
between all origins and destinations. He stated that a network with a low value of
entropy has a low level of accessibility, and vice versa. Also, Van Zuylen and
Willumsen (1980) and Bell (1983) used entropy to estimate the most probable set of
origin-destination movements that are consistent with available information. Van
Zuylen and Willumsen (1980), however, developed two models, the first of which was
to realize the trip matrix in the most number of ways by maximizing the entropy of
the trip movements, and the second was to minimize the information content of a
limited number of observations on the road network. A similar approach has been used
to estimate turning flows at road junctions. Mountain et al. (1983a, 1983b, 1986a,
1986b) showed that the entropy-based approach leads directly to the gravity model

which is well known in roundabout turning flow problems.

Finally, entropy applications have reached open channel flow studies. In a sequence
of papers, Chiu (1987, 1988, 1989, 1991) has used the maximum entropy formalism
in modelling the distributions of the velocity, shear stress and suspended sediment
concentration in open channel flows. He argued that the uncertainties surrounding
these distributions which are due to the inherent randomness and man’s ignorance can
be overcome by maximizing their individual probability density function entropies
subject to some conservation laws and others which govern fluid motion in open

channels.

Clearly, the above applications and others show that the maximum entropy formalism

can be used to generate solutions to wide problems where the available information

is not complete and is not directly concerned with probability distributions either.
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2.6 ENTROPY APPLICATIONS IN WATER DISTRIBUTION NETWORKS

In recent years the role of entropy in the analysis and design of water distribution
networks has been the subject of much research. Its participation may be classified
into two main areas, first as a method of estimating the most likely pipe flow rates in

looped water networks, where the available data is insufficient to uniquely determine

the pipe flows, and second as a surrogate measure of reliability.

The problem of not having enough information to determine the unique pipe flow
rates may occur in buried old networks where much of the information may be lost
or may have changed over time. Also, a physical measurement of the pipe flow rates
of such networks may be expensive and time consuming. Therefore, the behaviour of
the system 1n buried networks contains uncertainty which is not in the physical system
itself but in the inability of the engineer to determine uniquely that behaviour due to
the lack of some needed information. The presence of such uncertainty makes a
possible role for the maximum entropy formalism to play. This role is described fully

in this section due to its relevance to the present work.

The second area, the issue of reliability, is very important in urban water distribution
networks. However, there is no comprehensive definition of this reliability in the
literature because of its complexity and because of some uncertainty surrounding it.
This uncertainty comes from the fact that reliability in water distribution networks is
connected with 1issues naturally centring around uncertainty. Such issues are
component failures, durations of their repairs or replacements, sufficiency of pressure,
variations in demands and supplies, etc. Again, this uncertainty invokes an opportunity
for entropy to play a part in the reliability of water networks. In this section, a review
of entropy applicability as a surrogate measure of reliability in water networks is
presented, and how such a measure could be incorporated in the optimum design of
water networks is described. Before that, are briefly reviewed, some conventional

methods of analysis and design of optimum water distribution networks along with the

constitutive equations which govern the motion of water in networks.

1‘
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2.6.1 OPTIMUM DESIGN OF WATER DISTRIBUTION NETWORKS

The optimum design of water networks presented here is for general networks in
which the layout and external flows, including the direction of flow in each link, are
specified and the length and the roughness coefficient of each pipe are known. The
objective function of the problem is the least capital cost of a pipe network, and the
constraints are the constitutive equations and some other constraints arising from
practical considerations. Before the least capital cost design problem is stated, the

constitutive equations are presented and the most common method of analysis is

described.

2.6.1.1 CONSTITUTIVE EQUATIONS

These include the head loss equations for each pipe, the flow equilibrium equations

at each node and the loop and path equations for the conservation of energy. However,

the effects of pumps and valves on those equations are not considered here.

2.6.1.1.1 HEAD LOSS EQUATIONS

The head loss in pipes 1s defined as the energy loss per unit weight. This is caused by
frictional resistance of pipe walls to the fluid motion and due to the viscosity of the
fluid. It also occurs due to bending or changing of the cross-section of the pipes. Only
frictional head losses are considered here. The most practical approximation of friction

head loss 1s the Hazen-Williams equation which is used throughout this thesis and is

given by:
211 1.852
o« Le, (Cﬁ) ) (2.14)
]

in which h;; and g are, respectively, the head loss and the flow rate in pipe ij which
both are positive in the direction of flow; o is a dimensionless conversion factor for
units (=10.67 in S.L units); Le;, D, and C; are the length, the internal diameter and
the Hazen-Williams coefficient of pipe ij respectively; and 1J is the the set of all the
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links in the network.

Other equations may be used for head losses such as the Darcy-Weisbach equation
which needs some iterative scheme in its calculations. See Jeppson (1976) for more

details.

2.6.1.1.2 CONTINUITY EQUATIONS

All the inflows and outflows at each node must be in an equilibrium state. i.e.

>, Gn= >, du =94, n-1L..NN (2.15)
jeNU, keND,

where NN 1is the total number of nodes, NU, is the set of the upstream nodes of all
internal inflows at node n, and ND, is the set of the downstream nodes of all internal
outflows at node n. In the above equations, q, is the external flow at node n, Vn,

which 1s a supply for a positive value and a demand for a negative value.

It should be noted that only the first (NN-1) continuity equations of Egs. (2.15) are
required for analysis since the continuity at the last node will automatically be

satisfied if all external inflows and outflows are known and are in balance.

2.6.1.1.3 ENERGY CONSERVATION EQUATIONS
2.6.1.1.3.1 LOOP EQUATIONS

The net head loss around each loop in a pipe network should be equal to zero.

Therefore:

Y hy=0 I-1,.NLP (2.16)

ijel,

in which IJ, is the set of all links in loop 1 and NLP is the number of loops which

must satisty the following equation:
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NLK = NN + NLP -1 (2.17)

where NLK is the number of links in the network.

2.6.1.1.3.2 PATH EQUATIONS

If the heads at any two nodes in a network are known, then the total head loss along
any path between these two nodes must equal the difference between their heads,

which 1s usually known as path head loss. Thus:

E h:}' = hp p=1,...NP (2.18)

yell,

in which IJ is the set of all links in path p, Vp; h is the known path head loss; and
NP is the number of paths whose head losses are known and must satisfy the

following equation:

NP < NN -1 (2.19)

It must be noted that a path may contain one link only. Also, the NP paths must be
chosen so that equations (2.18) are linearly independent, 1.e. each path must have

some information which is not already contained in any other path.

2.6.1.2 WATER NETWORK FLOW ANALYSIS

The analysis problem is to estimate the pipe flow rates in a network whose pipe
lengths, diameters and roughness characteristics are known and the external flows are

specified. However, there are many methods to solve this problem, and the most

commonly-used one is the Hardy-Cross method which is described next.
2.6.1.2.1 HARDY-CROSS METHOD

In this method initial flow rates must be chosen first for all the pipes in the network

and they must satisfy the continuity equations (2.15). Then the current flow rates are
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corrected 1n each loop sequentially so that:

q,” = q," + Aqg VI, Vijell, (2.20)

in which g, is an estimated flow rate; aq,” is a correction to be applied to all link

flows in loop 1; q; is the corrected flow rate; and n is an iteration number.

To calculate aq,™ which is needed for corrections, the head loss equations (2.14) are

reconstructed as:

) = 1] 2.21
h;; C 1557 4% vi, Vijell, (2.21)
i ij
and the loop equations (2.16) as:
>, b =0 VI (2.22)
jel,
which can be reconstructed as:
- B
agi® = — Yyl
[ h (n-1) (2-23)
1852 ¢
jei, "

in which:

B 7D = a Ley g ™™ (2.24)

Cyl.BSZ Dv4.37
The resulting value of aq™ of Eq. (2.23) can then be used in Eq. (2.20) to estimate
new flow rates. Correcting all flow rates in all loops completes one iterative cycle.

The above process is repeated again by correcting each loop in turn until the

magnitudes of all loop corrections become very small.

Although the method is very time consuming especially for a network with many
loops since it corrects the flow rates in the loops sequentially rather than
simultaneously, it is very simple and is used in this thesis. Other methods exist but are

not presented here, such as the Linear Theory method which was developed by Wood
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and Charles (1972) and the Newton-Raphson method (Martin and Peters, 1963). See
Shamir and Howard (1968) for examples.

2.6.1.3 WATER NETWORK LEAST COST DESIGN FORMULATION

The least capital cost design of a pipe network described here 1s for general networks
having the layout and external flows including flow directions in the links prespecified
and the lengths and roughness coefficients of the pipes known. The formulation

consists of minimizing the capital cost of the pipes subject to the constitutive
equations presented earlier and to other practical constraints which are presented later.

The variables in this formulation are the diameters of the pipes, the flow rates and

hence the corresponding head losses in the links.
2.6.1.3.1 COST OBJECTIVE FUNCTION

The objective function considered here is the capital cost of the pipes only and may

be expressed in several forms including:

C =y E Le,j Duﬁ (2.25)
ifell

in which C is the total cost of pipes; 7 is a coefficient which depends on the units of

D,; and €, is an empitrical coefficient.

2.6.1.3.2 PRACTICAL CONSTRAINTS

These include flow velocity constraints, nodal pressure constraints, pipe diameter

constraints and non-negativity of flow constraints.

1. Flow velocity constraints:

Viin S Vi = —ﬁij_ <V VijEIJ (2.26)
U T Dtjz max

where v; is the flow velocity in pipe ij; and v_,, and v.;, are respectively the

max
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maximum and minimum velocities allowed in the links.

2. Nodal pressure constraints:

H

min,n

<H =H, -Y hﬁ <H,, Vn (2.27)
ijell,

in which H; is the head pressure at source s; IJ_ is the set of all links along a selected

path from source s to node n; and H,_,, , and H_,, , are respectively the maximum and
minimum heads allowed at node n.
3. Pipe diameter constraints:

D, <D;eDyp<D, Vijeld | (2.28)

in which Dy, 1s the set of commercially available discrete pipe diameters; and D__. and

D, are respectively the maximum and minimum diameters allowed in the network.

4. Non-negativity of flows:
q; >0 ViyelJ (2.29)
Having defined the objective function and the constraints which are to be satisfied in

the design, the following formulation of the least capital cost of a pipe network can

now be constructed as Problem 2 with some of the constraints rearranged.

Problem 2
Minimize C =y Yy Le; D VD, (2.25)
frelS
Subject to:
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Le EIL 1.852
& Xy (C:) (2.14)
hy = ———39 vijelJ
.48
v
>, @n-), 9u =9, n=1..NN-1 (2.15)
JeNU, keND,
Y h;=0 I=1,..NLP (2.16)
l'jEIJI
y hii = hp p=1,..NP (2.18)
tell,
T Voin o Dy T Vax VijelJ (2.30)
4 D2 4
y
H -H,,:< XL; hy s H - H, , Vn (2.31)
Jeij,
D..<DyeDy<D, Vijel (2.28)
g4; 20 Vyel (2.29)

Problem 2 is formulated as one of non-linear constrained optimization and can be
solved by any standard constrained non-linear programming algorithm assuming that
the pipe diameters are continuous-valued, i.e. relaxing the discreteness constraint of
Eq. (2.28). However, from a practical point of view, the diameter variables should be
obtained as discrete values and must be chosen from a set of discrete sizes
representing commercially available pipes. Yates, Templeman and Boffey (1984)

showed that this requirement makes Problem 2 extremely difficult to solve.
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Consequently, they suggested that good approximate solution methods should be

sought rather than attempting to solve Problem 2 directly. Many attempts have been

made to simplify Problem 2, and the Linear Programming Gradient method
(Alperovits and Shamir, 1977) and the method of Quindry, Brill and Liebman (1981)
are considered the main two approaches used in the literature for solving Problem 2.
However, these methods and others have no relevance to the present work, and
therefore they are not described here. The interested reader may consult the two papers

mentioned above for details.

Finally, it should be noted that Problem 2 is formulated for one demand pattern.
However, it can be easily formulated for multiple demand patterns by including a set
of constraints for each demand pattern in turn. Obviously, the multiplicity of demand

patterns makes Problem 2 more difficult to solve.

Having presented some methods of analysis and design of optimum water distribution
networks, the maximum entropy flows in water networks are described next, followed

by reviewing entropy as a surrogate measure of reliability.

2.6.2 MAXIMUM ENTROPY FLOWS IN WATER DISTRIBUTION
NETWORKS

Consider the case of a buried water network in which much of the information needed
to uniquely determine the pipe flow rates is missing. Such information are lengths,
diameters of pipes and roughness properties which are assumed not to be available.
However, source flow rates, demand flow rates and the topology of the network with
arc flow directions are assumed to be known. Under these circumstances, how can the

most likely pipe flow rates in the network be estimated?

Suppose this network has NLK links connecting NN nodes. Therefore, there are NLK
unknowns, those being the flow rates in all NLK links. Also, it can be recalled from
the previous subsection that there are NN-1 independent continuity equations which

relate those NLK unknowns together. If the network has no loops, 1.e. 1s a branched
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network, then Eq. (2.17) shows that the number of unknowns equals NN-1 with NLP,
the number of loops, equal to zero. Therefore, in such a case, the available NN-1

continuity equations are sufficient to determine uniquely the NN-1 pipe flow rates in
the system. In general, water distribution networks are looped, in which case there are
NN-1 equations with NN+NLP-1 unknowns [Eq. (2.17)], 1.e. there are more unknowns
than continuity equations available and, consequently, there are many possible flow
rate distributions which satisfy those available equations. The maximum entropy
formalism of Jaynes (1957), described earlier in this chapter, suggests choosing the
distribution which has the maximum entropy value and satisfies the available

information. The hurdle arising here is how pipe flow rates in a network can be
expressed in a probabilistic way as required by Shannon’s entropy and hence by the
maximum entropy formalism. In this subsection, entropy functions for a flow network
suggested by Awumah et al. (1990, 1991) are presented first, followed by those
developed by Tanyimboh and Templeman (1993a) which are found to be rigorous and
therefore are chosen to be the basis from which the entropy formulations of a network
developed in this thesis are derived. Then, the maximum entropy flows in a network
calculated by Tanyimboh and Templeman (1993a) are described and their relevance
to the present work is highlighted. Finally, a path-based approach for calculating

maximum entropy flows in single-source networks is presented.

2.6.2.1 FLOW ENTROPY FUNCTIONS OF AWUMAH, GOULTER AND
BHATT

In an attempt to cast pipe flow rates in a water distribution network in a probabilistic
form as required by Shannon’s entropy, Awumah, Goulter and Bhatt (1990, 1991)
started investigating the flows in links incident on a node n. They argued that the
probability quantities in Shannon’s entropy function of Eq. (2.4) may be regarded as
the fractions of total flows into node n carried by each link incident on that node.
Therefore, the following function could be used as an entropy measure of node n in

a network after setting K in Eq. (2.4) to unity:
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S =-Y inypdn (2.32)

in which S, is the entropy of node n,Vn; NU_, Vn, represents the upstream nodes of
link inflows at node n; q, is the flow in link jn, VjeNU,; and Q, 1s the sum of the

link flows entering node n and is given by:

Q.= >, g, Vn (2.33)
JeNU,

Awumah et al. (1990, 1991) then expanded Eq.h(2.32) to the whole network. They
argued that, in order to derive an entropy function for the whole network, it is
important, regarding the overall network performance, to replace Q, by Q,, which 1s
the sum of the flows 1n all the links in the network, before summing up the entropies
of all the nodes in the network together. Therefore, the entropy of the network may

be given by the following formula:

NN g, g :
S"'E(E Lin =LY wvn (2.34)
n=1 JjeNU, 0 0

in which S is the entropy of the network; NN is the number of nodes in the network;

and Q, 1s given by:

Q=3 gy (2.35)

ijell

in which 1J 1s the set of all the links in the network.

Eq. (2.34) 1s the basic entropy formula from which all the modified entropy functions
used by Awumah et al. (1990, 1991, 1992) have been derived.

It should be noted that the probability-like quantities, (q,/Q,), Vje NU,,Vn, used in Eq.
(2.34) are not mutually exclusive as the flow in a link exiting node n is dependent on

the flow in a link incident on that node. This violates the basic requirement of

Shannon’s entropy and, therefore, Eq. (2.34) is not rigorously formulated.
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However, Awumah et al. (1990, 1991) transformed Eq. (2.34) into another function
by substituting (q,/Q,) by (q;,Q.)/(Q,Q,) without changing it. The transformed

equation 1s therefore (see Awumah et. al (1990) for the derivation):

NN Q Q
S = =2 In =" (2.36)
E n=|\ Qo Qo

in which S, is the entropy of node n and is given by Eq. (2.32).

Some attempts have been made by Awumah et al. (1990, 1991) to modify Eq. (2.32).
In the first paper, Awumah et al. (1990) realized that the entropy of a node n given
by Eq. (2.32) treats the node n in isolation without considering the connectivity of that
node to the rest of the network. They argued that the number of alternate paths from

a source to a demand node passing through each link incident on that demand node

should be accounted for. Therefore, they introduced the following function:

q; q;
¢ ooy Iny In (2.37)
2 Qa0

in which a_,VjeNU_,Vn, is the effective number of independent paths to node n

Jn?

through link jn, and is given by:

nlp

Y, @1
a, = npt, [1 - -’fiir] vn, VjeNU, (2.38)

> &

k=1

in which npt,,Vn, Vje NU,, is the number of dependent or independent paths to node
n through the link jn; nl

mn

Vn, VjeNU,, is the number of links in the npt;, paths; d,

1s the number of paths in which link k is a member.

In the second paper, Awumah et al. (1991) presented another approach to modify Eq.
(2.32) by considering the transmissivity of entropy from one node to another which
1s immediately downstream to it. They approximated this transmissivity by the ratio

of the flow entering the downstream node from its immediate upstream node to the

total flow entering that upstream node. i.e.
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q n . t 4
L, = —Q-’; vn, VjeNU, (2.39)

in which t;, Vn, VjeNU,, is the transmissivity from node j to node n. Therefore, Eq.

(2.32) can be extended to include this transmissivity parameter as follows:

S/ =8 + je%! t, S; Vn (2.40)

in which S/ is the modified entropy of node n; Sj’ is the modified entropy of node j,
Vje NU,. Therefore, to calculate the modified entropy of any node, the modified

entropy of its all upstream nodes must be calculated first.

Finally, it may be noted that all nodal entropy functions presented so far have been
defined in terms of link inflows only. No consideration was given to the outflow links
which may become inflow links to the node being considered in the event of a link
failure. Obviously, this may only happen to outflow links which are part of a loop
since flow reversal cannot occur in a link which does not belong to a loop. To allow
for such a situation, Awumah et al. (1990) expanded Eq. (2.37) to the following

equation:

S;=-Y Inyy G oy Gy dm o, (2.41)
JeNU, Q. a;, Q, keNDL, Q, a, Q.

in which S~ is the new entropy of node n, Vn; NDL_is the set of all nodes
immediately downstream of the node n,Vn, which belong to a loop containing node
n; Q. 1s the total of all flow leaving and entering node n from the set of nodes NU,

and to the set of nodes NDL, respectively. 1.e.

Q=2 Gu* Y, Qqu Vn (2.42)
JeNU, keNDL,

The above Egs. (2.37), (2.40) and (2.41) can then be substituted for S, in the basic
function of Eq. (2.36) to obtain the entropy of the network. It will be recalled here
that Eq. (2.34) is questionable as it is based on probability-like quantities which are
not mutually exclusive. Since Eq. (2.36) is equivalent to Eq. (2.34), therefore, all the
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entropy functions presented earlier are not rigorously founded. Also, the quantities
(Q./Qyp) used in Eq. (2.36) are not probabilities as there is double counting in Q,. This
makes Eq. (2.36) incorrect theoretically from an entropy viewpoint. Moreover, the
entropy functions of Awumah, Goulter and Bhatt do not directly account for the

external inflows and outflows in the network. Although the external inflows and
outflows may be known, they have to be considered in entropy functions because of
the uncertainty surrounding the contributions of the source supply at each node to the
total flow reaching that node, and also surrounding the contributions of the total
inflow to satisfy abstraction at a demand node. Tanyimboh and Templeman (1993a)

realized the above weaknesses and proposed alternate and more rigorous flow entropy

functions which are presented next.

2.6.2.2 FLOW ENTROPY FUNCTIONS OF TANYIMBOH AND TEMPLEMAN

In general looped water networks, the flow entering or leaving node n, Vn, by link jn,
VjeNU, or link nk, VkeND,, respectively, depends on whether or not flow has
reached the node n. In other words, the probability of the flow entering node n, Vn,
by link jn, Vje NU,, and the probability of the flow leaving node n, Vn,by link nk,
VkeND,, are both conditional upon the probability that flow has reached that node
n. Therefore, the conditional entropy formula of Khinchin (1953), which was presented
earlier in this chapter as Eq. (2.6), has to be Llsed if the entropy of node n in a
network 1s to be defined. Tanyimboh (1993) and Tanyimboh and Templeman (1993a)
realized the above fact and used a multiple probability space to formulate a rigofous
entropy function for general water distribution networks in which each node must have
either an external inflow or outflow. They introduced two conditional finite probability
schemes for each node representing respectively the flow entering and leaving node

n, vn, as follows:

din :
Dj, = —,1{: vn, VjeNU, (2.43)
Puk = 5% Vi, VkeND, (2.44)

n
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where p,, 1s the conditional probability that flow, which is destined to reach node n,
Vn, uses link jn, VjeNU_; p.. is the conditional probability that flow, which is
destined to pass through node n, Vn, is included in q,, VkeND,; T, represents the

total flow reaching or leaving node n, Vn, i.e.

T, = Y Qjn = Y 4qu n=1..NN (2.45)
JeNU, keND,

It should be noted that NU, and ND, used in Egs. (2.43), (2.44) and (2.45) include
respectively any external inflow and outflow. Defining q,, and q,, being respectively
the external inflow and outflow at node n, Vn, then Eqgs. (2.43) and (2.44) respectively

include the following probabilities:

Pon = -‘;,ﬂ Vnel (2.46)
n
Pno = %1‘,—‘3 Vnelp, (2.47)

in which I, and I, respectively are the sets of source nodes and demand nodes in the
network; p,., Vnel, is the probability that a source node receives its total inflow T,
from its external inflow q,,; pP,o» VNE I, is the probability that a demand node uses its

total inflow T, to satisfy its demand g,

Tanyimboh (1993) and Tanyimboh and Templeman (1993a) stated that the two finite
probability schemes represented by Eqgs. (2.43) and (2.44) are conditional upon the
probability that flow reaches node n, Vn, by all possible paths. Considering the
conditional probability scheme of Eq. (2.44) which is associated with flow splitting
processes, and applying the conditional entropy function of Eq. (2.6), Tanyimboh and
Templeman (1993a) were able to define the entropy of a node n in a general network

as follows:
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S, = -P, m%,, Py Inp,. n=1,..NN (2.48)
in which S,° is the entropy of node n associated with the outflows from that node n,
Vn; ND, is the set of all downstream nodes of link outflows from node n, Vn,
including any demand; P, is the total probability of flow arriving at node n, Vn, by
all possible paths. Tanyimboh and Templeman (1993a) showed how P,, Vn, can be

calculated in a rather laborious way. However, algebraic manipulation of P,, Vn, gives

the following convenient equation (see Tanyimboh and Templeman, 1993b, for its

proof):
P, = _Yé Vn (2.49)
TO

in which T, is the total supply or demand, i.e.

Ty =) Gy =) 4y (2.50)

nel nelp

Having defined the conditional entropy of node n, Vn, the conditional entropy of the
entire network can then be defined using the general form of Eq. (2.5), which has the

form:

5(0,0,..0,) = S©O) + S(O,\0) +...+ SONO,0,..0, ) +..

+ SO,NO0,0,..0,,) M=23,.. 2<meZ*'<M (2.51)

in which S(O,0,...0,,,,) is the joint entropy of M number of schemes; Z'represents the
set [0,1,2,3,...].

The first term of Eq. (2.51) represents the entropy of an absolute rather than a
conditional finite scheme., Such an absolute scheme in a water network 1s a scheme

representing the fraction of the total supply provided by source node n, Vnel., i.e.
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P, =Jo yper (2.52)

n To

Theretore, 1n accordance with Eq. (2.51), Tanyimboh and Templeman (1993b, 1993c¢)

introduced the following function which defines the entropy of a general water

network as follows:

NN
S°=8+Y S, (2.53)
n=1
in which S° is the network entropy based on the outflows; S,° is the conditional
entropy of outflows, including any demand, at node n, Vn, as given by Eq. (2.48); S;°

1S the entropy of the distribution of T, amongst the sources and is given by:

Se = -y P, InP,, (2.54)

nel,

where Py, 1s given by Eq. (2.52).

The sample water supply network used by Tanyimboh and Templeman (1993a) and

shown here as Figure 2.1 1s used next to demonstrate the above equations.

If the supply, demand and link flows are specified in Figure 2.1a, and the associated

probabilities are shown in Figure 2.1b, then the following equations can be obtained:

Ty =qo + qg, [Eq. (2.50)]
T, =q3+q=qy
T, = qy + Q= qp

T3 = qQay + Q35 +q5

Ty = Qs + qu

Ts = qs6 + gs0

Ts = qe [Eq. (2.45)]

Por=0qo / To s Pa =0 / T [Eq. (2.52)]

Ps=qu/ Ty Pu=9qu/T,
Pi=dyu/ T, Pu=0qn/T,
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P3s = Qas / T3 i P3s = Qas / T3 5 P3o = Qo / T
Pas = Qas /T4 3 Pao = Qa0 /T4

Pss = Qs6 /Ts 5 Pso = Qso /Ts

Peo = qeo / Ts = 1 [Eq. (2.44)]

Also, P, Vn, can be calculated as the probability of flow arriving at node n, Vn, by
all possible paths. P,, for example, can be calculated as follows. Flow can arrive at
node 3 by two routes; those being 1-3 and 2-3. The probability of flow arriving at
node 3 by route 1-3 is Py,p,5, and by route 2-3 is Py,p,;. Thus, P, is the sum of those

two probabilities, i.e. Pyp;3 + Pyp,;. Using the above approach, P,, Vn, are:

P, =P,

P, = Py,

P; = ppsPy + pxbs

Py = puPy + pasls + Pasls
Ps = p;sP;

Pg = PasPs + Pseb’s

It should be noted that the above probabilities may be obtained by applying Eq. (2.49)
which is very easy to use. At this stage, Eqgs. (2.54) and (2.48) can be used to produce

the following entropy functions:

S, = - PyInP, - P,InP,
S,° = - P, [pslnp,; + plnpy.]
2 = = Py [pylnpas + paylnp,]
Sy = - Py [pylnpyy + pslnpss + pyolnpsgl
_S40 = - Py [PsslNPsg + PaolNPyo]
Ss° = - P [ps¢lnpseg + psolnps]
s =~ Pg [Peolnpeol = O

Se” being zero can be justified by the fact that there is no uncertainty about splitting

the flow leaving node 6 as there is only one outflow at node 6, this being q,. Finally,
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the total outflow entropy of the network can be calculated using Eq. (2.53):
S°=8,+S°+S,°+S5;°+S,° + S,° + S/°.

It should be noted that the network entropy given by Eq. (2.53) 1s based on the
conditional finite probability scheme of Eq. (2.44) which represents the outflows from
node n, Vn. Tanyimboh (1993) produced a similar network entropy function based on

the inflows at node n, Vn, which are represented by Eq. (2.43) as follows:

NN
Si=8 +Y Si (2.55)

n=l1

in which S'is the network entropy based on the inflows; S,' is the conditional entropy

of inflows, including any source supply, at node n, Vn, and 1s given by:

St =-P, ;%; Py, Inp, n=1,..NN (2.56)

where P, is given by Eq. (2.49) and p;, is given by Eq. (2.43). Also, in Eq. (2.55), Sy’

is the entropy of the distribution of T, amongst the demand nodes, 1.e.

$9- -3 PoinPy @sn

HEID

where P_, is the fraction of the total demand consumed at node n, Vne I, and is given

by:

Pro =90 viel, @5
TO

It should be noted that the entropy of the outflows, S° which is given by Eq. (2.53)

must equal the entropy of the inflows, S', which is given by Eq. (2.55). This can be

seen by contemplating Eq. (2.5). However, the network entropy of the outflows, S°

is used in this thesis, and the superscript o is therefore dropped hereafter.
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2.6.2.3 CALCULATING MAXIMUM ENTROPY FLOWS IN NETWORKS

Returning to the problem of determining the most likely flows in a buried network in
which only the supplies and demands, and the flow directions in the links are assumed
to be available, it has been suggested, according to Jaynes’ maximum entropy
formalism, that the flow distribution which has the maximum entropy and satisfies the
available information must be used. Having defined the appropriate entropy function
for network flows, Tanyimboh and Templeman (1993a) calculated the maximum
entropy tlows in a looped network by maximizing the network entropy of Eq. (2.53)
subject to the nodal flow equilibrium equations, Eqs. (2.15). However, the network
entropy of Eq. (2.53) is defined in terms of probabilities, while the variables in the
nodal equilibrium equations are the link flows. To simplify the optimization process,
Tanyimboh and Templeman (1993a) reformulated the network entropy in terms of
flows. This can easily be done by substituting Eqs. (2.44), (2.45), (2.47), (2.49) and
(2.50) in Eq. (2.48), and substituting Eqgs. (2.50) and (2.52) in Eq. (2.54), then Egs.
(2.48) and (2.54) can be substituted in Eq. (2.53) to obtain the new network entropy

in terms of link flows, which may have the form:

S=F (q.) | (2.59)

in which F,(q,) is the network entropy defined in terms of all link flows.

Maximizing the network entropy of Eq. (2.59), therefore, r;ubject to the nodal
equilibrium equations, Eqgs. (2.15), contains NLK variables, this number being the
number of links in the network. However, if the first (NN-1) independent equilibrium
equations, Egs. (2.15), are substituted in the network entropy of Eq. (2.59), the size
of the optimization process can be reduced from NLK number of variables to NLK-
(NN-1) variables, those being the independent flows whose number is NLP, the
number of loops, as shown in Eq. (2.17). Under these transformations, the nodal
equilibrium equations are no longer needed in the optimization process as they are

satisfied implicitly in the network entropy which may now have the form:
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- F, () @60

ind ¢

in which g™ is the vector of all independent flows in the network; F,( q,™ ) is the

network entropy defined in terms of qf“", 1=1,.... NLP.

Tanyimboh and Templeman (1993a) exploited the above simplifications to calculate
the maximum entropy flows in a general looped network. They maximized Eq. (2.60)
subject to non-negativity of all link flows to enforce the flow directions specified in

the links. The optimization problem which they proposed is presented next as

Problem 3.

Problem 3

Maximize S = F, (gq;) (2.60)
subject to:

g, = Fn,(¢"™) >0 i=1,.NLK (2.61)

in which q; is the flow in link i, i=1,...,NLK, derived from the equilibrium equations,

Eqgs. (2.15), and defined in terms of the independent flows ( g™ ).

Problem 3 is a convex programming problem because the objective function of Eq.

(2.60) is concave as it is the sum of a set of concave functions of the form -2.p,np,

and also the constraints in Problem 3, which are linear, represent a convex set.
Therefore, Problem 3 has a unique global maximum point which can be obtained
using any standard constrained non-linear programming algorithm. However,
Tanyimboh and Templeman (1993a) solved Problem 3 as an unconstrained
optimization problem after eliminating the non-negativity constraints of Eq. (2.61) by
arguing that the maximum entropy solution will be expected to have flows which are
as uniform as possible without any being equal to zero. Moreover, the network entropy
of Eq. (2.60) will be undefined in the infeasible region, thus satisfying the non-

negativity constraints implicitly in the objective function.
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It should be noted that the multiple probability space models produced by Tanyimboh
and Templeman (1993a) for general networks are capable of solving parallel networks.

A water network is said to be parallel if it has no links connected in series, i.e. each
link in a parallel network operates independently of the rest. This implies that each
link connects a source node to a demand node. Tanyimboh and Templeman (1993a)
applied the multiple probability space model to a parallel network and maximized the

network entropy function of Eq. (2.53) subject to its nodal equilibrium equations. The

resulting maximum entropy flows were shown to be as follows:

qu an

T, Vnkel] (2.62)

Ink =
in which an* is the maximum entropy flow in link nk, VnkelJ; the * is used herein
to denote the optimal value. The result of Eq. (2.62) corresponds to the well-known

gravity model of transportation engineering, see Erlander (1977) for example. This

may give further emphasis on the general correctness of the approach.

Finally, it may be noted that the above approach of determining the least biased flows
proposed by Tanyimboh and Templeman (1993a) 1s for general water networks 1n
which only the supply and demand, and the flow directions in the links are assumed
to be available. However, other information may be available such as lengths and
diameters of the pipes and the pressure head of any node in the network. Also, the
conservation of energy around each loop must be satisfied. Unfortunately, the
maximum entropy flows problem proposed by Tanyimboh and Templeman (1993a)

and presented here as Problem 3 is not able to cover the new information which may

be available in general networks. The above issues are investigated in Chapter 6, and
a new optimization problem is proposed to incorporate the new available information

in one general model.
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2.6.2.4 PATH-BASED ALGORITHM FOR CALCULATING MAXIMUM
ENTROPY FLOWS IN SINGLE-SOURCE NETWORKS

The problem of calculating maximum entropy flows in networks proposed by
Tanyimboh and Templeman (1993a) and presented earlier as Problem 3 involves non-
linear programming. A different and simpler path-based approach was described by
Tanyimboh and Templeman (1993b) to calculate maximum entropy flows in single-

source networks.

Considering any demand node served by more than one path from the source,
Tanyimboh and Templeman (1993b3 argued that, according to the maximum entropy
formalism, the demand of that node should be divided equally amongst all paths
supplying it if there is no further information about those paths. Therefore, each
demand node should be treated in turn, and the final maximum entropy flow in each
Iink 1s then obtained by summing the flows in all paths passing that link. To
demonstrate the above approach, the single-source network example used by
Tanyimboh and Templeman (1993b) is considered here and 1s shown as Figure 2.2.
The equal path flows from the source to each demand node are shown in Figure 2.3.
For example, node 5 is served by three paths 1-2-5, 1-2-3-5 and 1-3-35, each of which
must carry 8 units of flows; that i1s one-third of the demand of node 5. Finally, for
each link, the flow for all paths through that link are summed to obtain the maximum
entropy flow for that link. The resulting maximum entropy link flows are shown in
Figure 2.4. They are identical to those obtained by solving Problem 3 computationally
for the network of Figure 2.2. Tanyimboh and Templeman (1993b) presented

algorithms for the proposed method. They are a node numbering algorithm, a node

weighting algorithm and a flow distribution algorithm.

The same single-source network of Figure 2.2, which is shown now in Figure 2.5, is
used next to demonstrate the above algorithms. First, all nodes in the network are
numbered according to the node numbering algorithm. The source node is given the
number 1, then the rest of the nodes are numbered in an ascending sequence starting

with any node for which all upstream nodes have already been numbered. The
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numbering of nodes 4 and 5 1s arbitrary and may be interchanged.

The next step is to calculate the number of paths from the source to each node using
the node weighting algorithm, and then to enclose that number, as a weight of the
node, in a box next to it. This can be done by assigning a weight of 1 to the source
node, then, in ascending node numbering sequence, the weight of each node is equal
to the sum of the weights assigned to all nodes immediately upstream of it.
Consequently, the weight of node 2 is equal to the weight of node 1, and the weight
of node 3 is the sum of the weights of nodes 1 and 2, that is 1+1=2. Similarly, the
weight of node 4 equals the weight of node 1 plus the weight of node 3, and the
weight of node 5 is the sum of the weights of nodes 2 and 3, which, in both cases,
equals 3. It may be noted that the node numbering algorithm ensures that all nodes

immediately upstream of the node being considered have been weighted.

Finally, the flow distribution algorithm is used to determine maximum entropy link
flows. The total outflow at a node is shared among the inflowing links at that node
in proportion to the upstream nodal weights. The flow distribution algorithm operates
in descending node number order. Therefore, starting with node 3, the flow in link 2-5
is obtained by multiplying 24, this being the total outflow at node 5, by the ratio 1/3
which is the ratio between the weights of nodes 2 and 5. The flow in link 3-5 equals
24 multiplied this time by the ratio 2/3, this being the ratio between the weights of
nodes 3 and 5. Similarly, considering node 4, the flow in links 1-4 and 3-4 can be
obtained by multiplying 15 by the ratios 1/3 and 2/3 respectively. At this stage, the
flow in the links ending at node 3 can be calculated. The total outflows at that node
equal its demand plus the flows in links 3-4 and 3-5, resulting in 36 units.
Consequently, the flow in links 1-3 and 2-3 will share the total outflows at node 3
equally due to the equality of the weights of the immediate upstream nodes of these
two links. The only link left is link 1-2 whose flow is equal to 36, this being the total
outflows at node 2, multiplied by the ratio 1/1.

The above algorithms are rigorous for single-source networks. They produce identical

results to those given by solving Problem 3 in a much simpler and quicker method as
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it 1s not iterative and does not involve linear or non-linear programming.
Unfortunately, the above simple method is not capable of handling general multi-

source networks. Walters (1995) has pointed out that the attempt of Tanyimboh and
Templeman (1993b) to extend the simple single-source algorithm to multiple sources
by means of a super-source concept is actually incorrect. He showed how it should
correctly be used in a rather unwieldy method. In Chapter 4, a relatively simple
algorithm based on the path concept is proposed for calculating maximum entropy

flows for general multi-source networks without involving linear or non-linear

programming.

Having reviewed the use of entropy in estimating the most likely flows in water
networks, the second application of entropy in water distribution networks as a

surrogate measure of reliability is presented next.

2.6.3 ENTROPY AND RELIABILITY IN WATER NETWORKS

The efficiency of the design of water distribution networks in urban areas depends on
both the cost optimization and reliability of the system. The cost aspects of water
supply systems have been discussed earlier in this chapter and incorporated in the
least-cost optimum design of water distribution networks which is presented herein as
Problem 2. Templeman (1982) argued that if this cost optimization design problem is
formulated for a network with a prespecified looped layout it leads inevitably towards
an 1mplicit tree-type branched network where a few minimum diameter loop-
completing pipes, whose existence is ensured by the minimum diameter constraints,
do not provide spare capacities which are not immediately required by the design
demand pattern. In contrast, the basic requirement of reliability in water supply
networks is to provide alternate flow paths to each demand node by means of loops
in order to prevent or at least reduce the possibility of isolating some demand points
from the rest of the network in the event of random components failures. These
alternate paths must have adequate capacities to be usable under various adverse
conditions for which the network was not specifically designed. Therefore, it is

essential to incorporate some measures of reliability in the optimum design problem
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of water supply networks.

However, there is no comprehensive definition of the reliability of water distribution
networks 1n the literature. Although some reliability definitions have been established,
their practical applications for general networks are extremely complicated (see
Valliant, 1979 and Provan and Ball, 1983). Consequently, including such complex
reliability analysis in the optimum design problem, which 1s itself very difficult to
solve (Yates, Templeman and Boffey, 1984), makes it even worse. It can then be
concluded that a surrogate and simple measure of reliability has to be sought and
included in the optimum design of water networks in such a way that optimizing this
surrogate measure optimizes to some acceptable extent the overall reliability of the
network. Awumah et al. (1990, 1991, 1992) and Tanyimboh and Templeman (1993c¢)
used entropy as a surrogate measure of reliability in water distribution networks.

Before reviewing entropy as a surrogate measure of reliability, some definitions and

measures of actual reliability in water supply networks are presented next.

2.6.3.1 SOME DEFINITIONS AND MEASURES OF RELIABILITY

Two types of reliability may be recognized within a water distribution network. These
are mechanical reliability and hydraulic reliability. Mechanical reliability reflects the
need for any component in the network to be operational at any time, and it is affected
by the layout of all components and their individual mechanical reliability. On the
other hand, hydraulic reliability is concerned with the ability of the system to satisfy
all required nodal demands under severe conditions, and it depends on mechanical

reliability and the hydraulic performance of the network.

Tung (1985) defined the mechanical reliability of a network as the probability that all
demand nodes are reachable from a source. Therefore, the unreliability can be
1dentified as the probability that at least one demand node is isolated. Also, Wagner,
Shamir and Marks (1988a) used two definitions for mechanical reliability, first as the

probability that a given demand node in a system is reachable from at least one

source, and second as the probability that all demand nodes in a system are connected
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to a source.

The problem of testing the reachability and connectivity in water supply networks has
been found to be extremely difficult to solve (Provan and Ball, 1983). However, some
methods for solving this problem exist. Tung (1985) showed that the minimum cut set
approach 1s the most efficient method for calculating the mechanical reliability of
water networks. A minimum cut set is a minimum set of system components whose
simultaneous failure will cause the failure of the system. The complement of the sum
of failure probabilities of all minimum cut sets will give a lower bound for system

reliability.

Wagner, Shamir and Marks (1988a) showed that reachability and connectivity
measures can be used to identify unreliability in a system due to lack of network
interconnections or unreliable components. Connection to a source, however, is only
a necessary but not a sufficient condition to insure that a given node is functional. A

suffictent supply for a reachable and fully connected node may not be satisfied at

adequate pressure. Therefore, measures of hydraulic reliability should be defined and
calculated to estimate the overall reliability of a network. Wagner, Shamir and Marks
(1988a) defined the hydraulic reliability of a water network as the probability that a

system can meet a specified level of flow at each demand node. They showed that
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