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Abstract

Abstract

Yttrium has been grown epitaxially on W(110). The growth was 

monitored by using photoemission spectroscopy with a synchrotron 

radiation source.

The film thickness has been gauged by the attenuation of the W 4f 

7/2 bulk component. The films have been grown reproducibly and show a 

prominent surface state which is indicative of good order and low 

contamination

Angle-Resolved Ultra-Violet Photoemission Spectroscopy has been 

used to examine the valence band of these ultra-thin films. The films 

show a very different structure to the valence band of a bulk crystal of 

yttrium.

The differences have been investigated by a series of model 

calculations using the LMASA-46 tight-binding LMTO program. The 

calculations suggest that the ultra-thin film surface state may be 

hybridised with a tungsten orbital having (x2 - y2) character.
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Chapter 1

Chapter 1

Yttrium and Rare-Earth Metal Surfaces

The purpose of this chapter is to explain the motivation for this thesis, 

and to present a brisk overview of its study and organisation.

1.1 Introduction

The first question that can be asked of this thesis is: "What's so 

special about yttrium?" Named from the earth yttria, which was 

discovered by Gadolin in 1794 in a quarry close to the Swedish village of 

Ytterby, yttrium was first isolated by Mosander in 1843. Having the 

electronic configuration [Kr](4d5s)3, yttrium lies in the 4d row of the 

transition metals beneath scandium, with its configuration [Ar](3d4s)3, 

and above the strongly magnetic lanthanide series with their [Xe]4fx(5d6s)y 

configurations, where x = 0,1,..., 14 and y = 2, 3.

Yttrium thus sits squarely in the domain of the transition metals 

and we can expect to understand its material properties, such as its room 

temperature hexagonal close packed (HCP) crystal structure, through the 

electronic structure of its bands - an approach which has proved successful 

in numerous studies of other transition metals [1.1, 1.2].

However, despite its apparent designation as a 4d metal, yttrium 

shares its chemistry more closely with scandium and the lanthanides, and 

together these elements comprise the rare-earth metals, a highly reactive 

chemical group that has posed problems in both experimental and
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Chapter 1

theoretical studies for over two hundred years.

Whilst the initial difficulties in rare-earth studies were experienced 

by metallurgists, whose struggles to isolate the individual members of the 

rare-earth family lasted into the early years of this century, in more recent 

years it has been the theorists who have laboured to understand the role 

of the 4f electrons in the lanthanide series. The lanthanides derive their 

strong magnetic character from the partial occupancy of the 4f shell, and 

the degree to which the 4f electrons can be considered to be delocalised 

(band-like), or localised (retaining their atomic orbital structure) is still 

undecided.

Yttrium is therefore very useful in rare-earth metal studies, since 

the absence of any 4f structure provides an effective measure for 

identifying the 4f related features in the electronic structure of the 

lanthanides. While this is also true for scandium and lanthanum, we 

shall see shortly that yttrium single crystals may be purified to a higher 

degree than these other metals.

Yttrium is also commercially important; its oxide is used in the 

europium phosphors that produce the red colour in television screens, 

and yttrium iron, aluminium and gadolinium garnets have found a 

variety of uses, most notably as microwave filters, acoustic transducers 

and synthetic gemstones. The discovery of the high temperature 

superconductor YBaCuO in 1987 suggests that future commercial avenues 

may be available to yttrium.

1.2 The Surfaces of Metals

One of the most remarkable properties of metal crystals is the 

regularity and stability of their structure. We can understand this through 

the usual gross approximation for a metal as a regular array of positively
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charged ions immersed in a sea of valence electrons. It is through the 

interaction of the opposed electrical charges that we gain a repeating 

crystal structure, since this configuration secures a total energy minimum 

for the system when filling all space.

At the surface of a metal crystal, however, we find a unique 

environment; the subtle balance of forces that sustains the three 

dimensional crystal structure is broken, and a new equilibrium must be 

established.

The loss of symmetry at the surface invariably demands a new 

energy minimum to exist, and both the geometrical structure and the 

chemical activity of the crystal may change within the surface region. The 

exact extent of this surface region, however, is dependent on local 

bonding and since each crystal plane has its own local bonding criteria to 

satisfy, the extent of the surface is correlated with specific crystal faces.

The importance of these points cannot be over-stressed; the 

electronic structure of a crystal is intimately linked with its spatial 

symmetry and the reduced symmetry at the surface invariably leads to a 

new surface electronic structure.

1.3 Photoemission Spectroscopy

The electronic structure of matter can be explored experimentally 

by the technique of photoemission spectroscopy (PES), in which an 

electron is excited from a bound state with the assistance of a photon. To 

extract useful data from a photoemission experiment, it is obviously 

important that contamination is minimised. For surface electronic 

structure this is achieved when the experiment is performed in ultra-high 

vacuum (UHV). Since photons are only able to promote electron 

transitions with a probability that depends on the available electron
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population, we are led to the naive interpretation of PES which views 

photoemission as a mapping from the occupied density of states to the 

measured spectrum.

The different energy regimes for the photons, and the exact method 

used for electron detection, has given rise to a family of photoemission 

spectroscopies: ultraviolet (UPS) within the range 5-100 eV, soft x-ray (soft 

XPS) within the range 100-1000 eV, and x-ray (XPS) for energies above 1000 

eV. The earliest photoemission spectroscopy was simply interested in the 

intensity of the emitted electrons as a function of the incident radiation, a 

technique which is now called angle-integrated PES. With the advent of 

single crystal studies came the first angle-resolved PES experiments that 

mapped the dispersion of electron states, and more recently [1.3], spin- 

resolved experiments have been probing magnetic structures by 

identifying the relative populations of electron spin states.

The most useful of these spectroscopies for surface electronic 

structure is UPS, because low binding-energy electrons that are excited 

over this range of energies are strongly scattered within the crystal,

producing a short mean free path X so that only the first few atomic layers

can contribute electrons to the spectra (see figure l.a, overleaf).

In order to interpret photoemission spectra more precisely and thus 

identify the origin of particular spectral features, we must assume a model 

behaviour for the electrons that is amenable to calculation. These 

calculated electronic structures are necessarily approximate and ultimately 

justified by their agreement with experiment. Consequently, we have a 

symbiosis of experiment and theory in the determination of electronic 

structure, and we expect this dual approach to converge towards actual 

electronic structures in an almost 'self-consistent' manner.
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Figure l.a. The electron's mean free path X as a function of kinetic 
energy for various lanthanides. The parameter a signifies the 
thickness of a single monolayer. Adapted from Gerken et al [1.4],

1.4 The Surface Electronic Structure of Yttrium

The first high purity single crystal rare-earth metals became 

available in the 1980's from laboratories in America (Ames Laboratory, 

Iowa State University) and from England (The Centre for Materials 

Science, University of Birmingham). The purity of these samples can be 

gauged by their residual resistance ratio (RRR), a measure of the resistance 

of a material at the two convenient temperatures of 300 K and 4.2 K. For 

unpurified yttrium, a typical RRR value is ~10, whereas high purity 

yttrium samples have recorded a RRR value in excess of 1000 [1.5], This 

may be contrasted with a value of -520 for scandium obtained through 

the same purification process (solid state electrotransport). Single crystal 

samples of lanthanum are difficult to prepare, therefore RRR values are 

typically lower, and achieve at best -250 .

In order to probe the surface electronic structure of rare-earth 

metals, we need an atomically clean surface in UHV. This may currently 

be achieved in two different ways; by argon ion bombardment (sputtering)
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to remove in-situ surface contaminants from a macroscopic single crystal 

sample, and by the epitaxial growth in-situ of a microscopic single crystal 

on a suitable substrate. Both of these techniques have their relative 

merits.

Sputtering is a very effective technique for removing adsorbed 

molecules, but the impact of argon ions (accelerated to ~2 KeV) also 

disorders the surface. The surface order may be recovered by annealing, 

but this encourages residual contaminants from within the bulk to diffuse 

to the surface. Consequently, it is not uncommon for a sample to receive 

at least 40 hours worth of 'sputter and anneal' cleaning cycles before the 

surface is deemed to be both clean and ordered.

By contrast, a deposition rate as slow as one monolayer every 20 

minutes can produce reproducible ultrathin films, that show little 

contamination and form a well ordered (0001) surface after careful 

annealing. However, these films are formed in the presence of a substrate 

and this will necessarily introduce a lattice strain into the thin film that 

may not be relieved until the film's thickness approaches ~100 A [1.6].

The most suitable substrates for rare-earth thin film growth are 

the refractory metals, with the (110) surface of tungsten having properties 

which make it particularly useful; tungsten, with electronic configuration 

[Xe]5d46s2 is typical of the refractory metals and has a high surface energy. 

Tungsten possesses the greatest melting point and lowest vapour pressure 

of all metals, its surface is therefore rigid in comparison to a deposited 

rare-earth thin film and no alloying occurs at the rare-earth/tungsten 

interface [1.7]. Tungsten has a body-centred cubic (BCC) crystal structure, 

and since the (110) plane has a packing density similar to the (0001) plane 

of HCP metals, tungsten (110) gives rise to (0001) rare-earth crystals.

Although we would not expect the two different methods of
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surface preparation to produce identical photoemission spectra, we do 

expect representative surfaces to exhibit recognisable similarities. 

Unfortunately, as figure l.b shows below, this is not the case.

BindingEnergy /  eV

Figure l.b. Illustrating the differences in the UV photoemission spectra from a 
bulk Y (0001) sample, and ~ 5 monolayers of Y grown on W(110). The spectra were 
taken at normal incidence, with photon energies of 40 eV and 33 eV respectively.

The most dramatic difference in the two spectra is the intense 

feature from the bulk crystal which has a binding energy of ~ 9.6 eV, a 

feature which is absent from the thin film crystal. This has been named 

the surface order dependent state (SODS) and has been seen on all bulk 

rare-earth (0001) surfaces studied to date [1.5]. It is because the SODS is 

seen only on the (0001) surface of the bulk crystals that it is called surface 

order dependent. However, its origin remains a mystery since the 

calculated electronic structure of the rare-earths performed so far show no 

electron states existing at this binding energy.
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It has been suggested [1.8] that the SODS derives from adsorbate 

contamination, since the binding energy of 9.6 eV is roughly comparable 

to the binding energy of a simple molecular orbital. To investigate this 

possibility, the Rare Earth Group at Liverpool began a series of 

experiments that aimed to create a SODS with ultrathin film single 

crystals; the films were dosed with various diatomic and triatomic gases 

that are typically found as residual vacuum chamber gases. The 

experimental results [1.9, 1.10] showed the catalytic properties of the rare- 

earths, in that ED, O2 , CO, CO2 , H2O and H2 S were all adsorbed 

dissociatively, with only CH4 failing to interact appreciably with the thin 

film surface.

The first complete set of UPS spectra for the valence band of 

yttrium ultrathin films grown on W(110) are presented in the final 

chapter of this thesis, and were obtained as part of the initial study and 

characterisation of rare-earth thin films prior to the gas dosing 

experiments. Although a definitive explanation for the SODS is still 

lacking, the differences between the spectra for yttrium ultrathin film 

crystals and those from a previous studies of a yttrium bulk crystal [1.10] 

suggested that further investigation was needed.

This thesis also presents the first calculations for yttrium in the 

presence of a tungsten surface, and the first real-space photocurrent 

calculation for yttrium, in an attempt to elucidate the differences between 

the electronic structures of bulk and thin film crystals.

Following on from this introductory chapter, the discussion centres 

on a review of electronic structure and begins with an account of the 

single-electron approximation and band structure theory. Next, a 

thorough review of multiple scattering theory is presented, which aims to 

present enough of this theoretical framework to justify the real-space
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photocurrent equation. There follows a review chapter on photoemission 

spectroscopy, which concludes with a discussion on the real-space 

photocurrent equation. The final chapter presents experimental data for 

the W(110) surface and yttrium ultrathin films grown on W(110), and 

presents an analysis based on a series of model single-electron 

calculations.
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Chapter 2

The Electronic Structure Problem

The purpose of this chapter is twofold: to examine the 

approximations that must be made when reducing a many electron 

problem to an equivalent single electron problem, and to discuss the 

application of the resulting single electron theory to periodic systems. The 

chapter begins by presenting the Hamiltonian for the electronic structure 

problem, and discusses quasiparticles before an account of Hartree-Fock 

theory. This is followed by a review of Hohenberg-Kohn-Sham density 

functional theory. A brief summary of band theory follows, and the 

chapter concludes with a short discussion on the motivation for real- 

space methods in electronic structure calculations.

2.1 Single Particle States and the Many Body Problem

With the discovery of the electron in 1897 by J.J. Thomson [2.1] the 

classical concept of the atom as an indivisible particle was shattered. The 

atom now had an inner structure, the exact nature of which was an open 

question since the electron was known to be charged and Coulombic 

repulsion would prevent a localisation of the atomic electrons. By placing 

the atomic electrons within a vague globule of positive charge
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(Thomson's short-lived 'plum-pudding' model of the atom) he can be 

credited with qualitatively solving the first electronic structure problem.

One hundred years later, the study of electronic structure has 

matured within the domain of quantum mechanics and acquired a logical 

rigour through density functional theory, but the essential problem of 

electronic structure remains; to describe the energy states of a given 

configuration of electrons subject to a suitably defined external potential.

The most general Hamiltonian H for the electronic structure 

problem is written as H = T + U + V, where T is the kinetic energy 

operator, V is the potential energy operator and U is an operator 

denoting any other interactions. For crystalline systems we can fix the 

nuclei onto the lattice sites Rn by invoking the Born-Oppenheimer 

approximation, and thus write the many-body Schrodinger equation for 

M nuclei with atomic number Z„ and N electrons of mass m as

* 2  N M N L J  1 a  i

2m ; „ \R~r:

M N

2 ¡*i \ri ~ rj
= E'V, (2. 1)

where r(. relates the positions of the electrons, e is the fundamental unit 

of charge, h = 2 nh is Planck's constant, E is the energy eigenvalue and 

¥  = '¥(ri ,r2,...,rN) is a many-body eigenfunction.

This is without doubt a complicated problem, since the mutual 

interactions of the electrons introduces non-local energy terms which 

cannot be calculated in a precise way. The difficulty has initiated two 

broad philosophies for its solution: empirical methods such as the 

psuedopotential method rely on the specifics of experimental data to 

parameterise their calculations, whereas ab initio methods contain no 

adjustable parameters, using instead fundamental physical quantities 

(primarily the atomic number Z) in their calculative schemes.
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Much of the technical detail concerning the ab initio solution of 

electronic structure problems can be understood as an attempt to find 

pragmatic approximations to the troublesome electron-electron 

interactions, approximations which are ultimately validated by their 

agreement with experiment and which reduce the many-body equation to 

a more tractable form.

However, before examining some of these approximations, we 

need to consider one important model for inter-electron interactions 

which does allow single particle states to emerge from the many electron 

gas, this being the formation of quasiparticles.

2.1.2 Quasiparticles

The quasiparticle concept [2.2, 2.3] may be understood intuitively 

via a model of an electron-gas in its ground-state, which is later perturbed 

by the addition of an extra electron. The gas responds to this excitation in 

a way that screens the long-ranged Coulomb force of the additional 

electron, thereby localising its influence. The electron plus the response of 

the gas constitute a quasiparticle, which can only interact weakly with 

other quasiparticles. By forming quasiparticles, the many-electron system 

effectively reduces to an independent quasiparticle system.

Clearly, the "electron plus response" quasi-particle is only a valid 

concept over a limited range of energies near the Fermi level, since the 

extra electron is forbidden from interacting with occupied states at lower 

levels by the Pauli exclusion principle [2.4], but the concept of quasiparticle 

formation does supply a useful explanation for the appearance of single

particle features in electron spectroscopy data, if only in a limited sense.

We can now examine two different approaches to the many- 

electron problem which achieve a single-particle description; the wave
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function methods of Hartree-Fock theory and density functional theory.

2.2 The Hartree and Hartree-Fock Equations

Hartree conjectured [2.5, 2.21(a)] that a single-electron experiences 

the many-electron ensemble as a mean or "effective" potential field Uh 

acting locally. The conjecture is realised by assuming that the many- 

electron wave function ¥  can be represented by a product of single

electron states , the Hartree orbitals:

N

vF(r,,F2,...,r3) = (2-2)
i

which allows a charge density to be assigned, for instance, to the Jtth 

orbital ®(/j. ) as the product of its position probability density with charge 

- e .  This gives a total charge density for the remaining electrons in the 

system as

N

n (r) = -e£|<IK0 )|2' (2.3)
j*k

and solving Poisson's equation for the potential arising from the density 

n(r) gives a mean field Uh for 0(Ft),

U„
N  r

I  Kôj*k
<E> (r.) j j \ri ~ rt

(2. 4)

Hartree's equation for the k th orbital has now taken a single-electron 

form for the many-electron problem;

Hk® (rk) = etO(r4), (2.5)

where ek is a single-electron energy eigenvalue and the Hamiltonian Hk
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is now written as

M
Hk = 2 in v,2 - I

e 2Z„ + 2  Kĵ k
O . ( r )

j j Kj ~ Tk
(2 . 6)

Hence, with an N-electron system Hartree's method produces N 

single-electron, simultaneous, nonlinear integrodifferential equations 

which cannot be solved analytically, but they do permit an approximate 

solution through self-consistency (see figure 2.a, below).

In the self-consistent solution an effective potential, or its 

equivalent charge density, is assumed for the potential terms (V + Uh).

The Hartree equations (2.5) are solved to produce a new system of 

eigenfunctions; these are subsequently used to provide a better estimate 

for the potential. The cycle is halted when the eigenfunctions are 

'consistent' with the potential to a suitably high degree of accuracy; 

whence the two estimated functions are mutually agreeable and Hartree's 

equation produces essentially a single energy eigenvalue.
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Unfortunately Hartree's solution of the electronic structure 

problem suffers from a serious drawback. A simple product of wave 

functions (2.2) is unphysical because it does not make any allowance for 

antisymmetry properties. Consequently, Hartree's electrons do not obey 

the Pauli exclusion principle, and must be regarded as semi-classical.

The oversight was amended by Fock, who considered the many- 

electron wave function to be a Slater determinant of single-electron wave 

functions,

xi'(.rl ,r2, ... ,rN)

®,(r2) ... 0,(r„) 
$2^ ) ^ 2 (̂ 2) $ 2(u)

‘M 'D  ®n(Ïi) •••

(2. 7)

Fock's analysis of the problem identified an additional exchange term V 

that was subsequently incorporated into Hartree's equations;

Va  = (700.(7)5,,. (2.8)

The Hartree-Fock equations are thus governed by the Fock operator,

F = H h+Vexl (2.9)

so that, for the kth orbital, we must solve

F® k = £k<t>k, (2.10)

and we recognise that the Hartree-Fock equation has retained the single

electron form. However, by including Fock's exchange term, the Hartree- 

Fock operator (2.9) is non-local and it is no longer a Hamiltonian. This 

makes the solution of the Hartree-Fock equations technically very
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challenging, and in practice the exchange terms may be replaced by a 

suitably constructed potential [2.6].

2.3 Density Functional Theory

Despite the ingenuity of early attempts to solve the electronic 

structure problem, it was not until the 1960's that a unique solution was 

first shown to exist in principle through the ground breaking analysis of 

density functional theory (DFT).

The historical roots of DFT can be traced to the birth of quantum 

mechanics with the statistical Thomas-Fermi theory of the atom [2.5, 2.7, 

2.21(b)], which first recognised that a functional relationship exists 

between the density of electrons n(r) and the many-body wave function 

of the ground-state energy. The renaissance of this idea - that it is the 

single-electron density which is the fundamental parameter for the 

description of many-electron systems - arose from the work of Hohenberg 

and Kohn [2.8] who founded their modern DFT on two vital theorems 

that initially required the ground-state to be non-degenerate, a 

requirement which has since been lifted [2.9, 2.10].

Hohenberg-Kohn-Sham DFT

Hohenberg and Kohn's first theorem proves that the ground-state 

energy is a unique functional of the ground-state electron density £„[n(r)], 

by showing that there is a unique ground-state density for any applied 

potential field. The logical structure of DFT is completed by their second 

theorem that proves the existence of a minimum for £„[n(r)] at the 

ground-state density; this is identified as the true ground-state energy of 

the many-electron system. Although Hohenberg and Kohn provided an 

exact expression for the energy functional, their equation is just as
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intractable as solving the full many-electron problem.

In practice, the total energy functional £(j[n(r)] is constructed 

within DFT by approximating the dominant contributive energy terms as 

functionals of the electron density:

where the kinetic energy functional 7),[n(r)] is calculated from the ground 

state of a non-interacting gas at density n(r), Eext{n(r)} denotes the external 

potential functional arising from electron-nuclei interactions, /^[nfr)] is 

the Hartree functional for the electron interactions and the last term, 

£vC[n(r)], is the exchange-correlation functional that accounts for all other 

possible interactions. Writing these terms explicitly gives the Hohenberg- 

Kohn functional,

The ground-state density that minimises (2.12) was obtained by 

Hohenberg and Kohn using a variational principle constrained by a 

conservation rule on the number of electrons, and was shown to reduce 

to an equivalent problem that demonstrates a deep connection between 

many-electron and single-electron states: minimising the density in the 

Hohenberg-Kohn functional is equivalent to finding the motion of a 

single-electron in an effective potential field.

£f,[n(r)] = r„[n(r)] + Eext[ n(r)] + Ek[n(jr)] + EJn(r)], (2. 11)

(2. 12)
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The Kohn-Sham Equations and the LDA

Kohn and Sham [2.11] next extended DFT by assuming the ground- 

state density to be composed of determinental orbitals, and showed that 

the minimisation is equivalent to self-consistently solving a set of single

electron equations having the form of Schrödingers equation (the Kohn- 

Sham equations);

v 2 +  ^
0,(F) = £, 0,(F), (2.13)

y

where £, is a single-electron local density eigenvalue and the effective 

potential veff(r) is

v'/f(?) = -X Ze'
M = \ I r  Rfil

+ + v„(r). (2- 14)

The last term in (2.14), vxc(r), is the exchange-correlation potential which, 

once again, is an unknown quantity that signifies the electron-electron 

interactions.

Kohn and Sham next introduced the simplifying approximation 

that elevated DFT into a workable computational method. Although the 

density dependent exchange-correlation energy functional ¿q.c[n(r)] 

cannot be calculated precisely, a quantity which can be calculated is the 

exchange-correlation energy function for the homogeneous electron gas.

Kohn and Sham thus replaced the unknown functional Exc 

having variable spatial density, with a wholly tractable function having 

an equivalent density for every corresponding point in space. This is the 

local density approximation (LDA), which has proved to be surprisingly 

successful in reproducing by calculation the data from electron 

spectroscopy, since there is no formal justification for identifying the local
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density eigenvalues with the quasiparticle states of spectroscopy, other 

than noting that self-energy corrections to the LDA are small for most 

metallic systems [2.10].

The Hohenberg-Kohn-Sham DFT has recently been given a final 

rigorous mathematical foundation in terms of convex functional analysis 

with the work of Leib and Levy [2.9] and both Thomas-Fermi theory and 

Hartree-Fock theory have been subsumed into this more general work.

Having examined the relationship between many-electron and 

single-electron states, we can now consider the role of a periodic potential 

on single-electron states with some degree of confidence that this 

approach is suitable for a study of the electronic structure of crystalline 

systems.

2.4 Single Electron States and Band Theory

Concurrent with the development of methods to study many- 

electron systems, the foundation of quantum mechanics also generated 

the first investigations into the properties of Schrodinger's equation with 

a spatially periodic potential, and the existence of quasi-continuous bands 

of stationary states was duly reported by Strutt, and independently by 

Bloch [2.15].

The periodic Schrodinger equation is an example of a Hill's 

equation [2.23], a linear differential equation having the coefficient of the 

dependent variable as a periodic function of the coordinate. Mathieu 

provided solutions for this type of equation in 1868 that today correspond 

to band edges, and Floquet found more general solutions in 1883 that 

would now be recognised as one dimensional Bloch functions.

The key ingredients of band theory are conceptually simple; a single 

electron moves within a potential field which has the same discrete
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symmetry properties as a crystal lattice. The symmetry is expressed 

through the translation operator TR as

TrH'(r) = V (r +R) ,  (2.15)

where R is a vector in the space spanned by the crystal lattice vectors. 

Employing the cyclic Born-von Karmen boundary conditions leads to 

Bloch's theorem:

^ (r+ R )  = «'*'■*¥ (r), (2.16)

where k, the propagation vector for the electron, labels the energy 

eigenvalue. This labelling is permitted because the translation operator TR 

is compatible with the Hamiltonian of the periodic Schrodinger equation, 

and so £ and k are simultaneous eigenstates. Consequently, the solution 

of Schrodinger's equation can take the form

Hy¥k =£( k ) ^k/ (2.17)

whenever the Hamiltonian H contains a periodic potential.

Electron states satisfying Bloch's theorem are then Bloch functions; 

delocalised and existing everywhere within the lattice. Band states arise 

because the function e(k)  is both many-valued and analytic, with each 

analytic branch defining a band. The band structure, which is the 

dispersion relation for e(k),  is traditionally solved by numerical schemes 

that either employ partial wave summation or expansion by a fixed basis 

set to describe the electronic states [2.22].

A great advance for these schemes came in the 1980's with the 

linear methods championed by Andersen [2.16, 2.22], that use energy- 

independent fixed basis functions derived from the partial waves. 

Arguably, the most popular of these is the linear muffin-tin orbital
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method within the atomic sphere approximation (LMTO - ASA), which 

uses a fixed basis set of angular momentum eigenfunctions (the muffin- 

tin orbitals) to describe the electron states, an approach which works well 

with close-packed metal systems. In recent years, Andersen's LMTO 

programme has also incorporated the recursion method, in what is now 

called the 'tight-binding' LMTO [2.14]. Since this was the computational 

method used to generate the band structures and density of states in 

chapter five, a brief overview follows.

2.4.1 The Tight-Binding LMTO Method

At the heart of the tight-binding LMTO is the recursion method 

initially proposed by Haydock [2.13]. Haydock recursion is a rapidly 

converging real-space technique that calculates orthogonal basis states via 

a continued fraction algorithm. This has been included in the LMTO 

formalism through a transformation of the muffin-tin orbitals into an 

equivalent set of screened orbitals; these having a much shorter spatial 

range, so that only shells of nearest neighbour atoms need be considered 

in the calculation. The result is a more compact order N computational 

problem, and the tight-binding LMTO is a very fast technique in 

comparison to its predecessor.

Andersen and his co-workers have released the tight-binding 

LMTO program LMASA-46 for use in educational establishments. This 

code is a remarkably user-friendly suite of programs that can be used to 

calculate a variety of properties of interest in the study of crystalline 

materials (see figure 2.b, overleaf). The program input requires only the 

atomic species, their lattice coordinates within the unit cell, and the 

crystal’s space group number to be supplied by the user. The filling of 

atomic shells using Hund's rules and all symmetry checking operations
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are incorporated into the program. The self-consistent calculation 

produces a potential file for each atomic species, which is then available 

for any further calculations that may be necessary.

Figure 2.b, showing a schematic of the LMASA-46 program.

2.5 Surface Electronic Structure

At the surface of a crystal we can expect to experience difficulties 

when using Bloch's theorem; the calculations must assume a symmetry
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at the surface which simply may not exist. The metal surface responds to 

the breaking of the full three dimensional crystal symmetry usually by 

inter-layer relaxations and contractions, but it can also reconstruct into a 

completely different symmetry group. A dramatic example of this 

behaviour is provided by the giant reconstructions of the rare-earths [2.17],

Since the band structure is derived from the properties of the 

translation operator, it is not surprising that we may find an additional set 

of states within the surface region. For transition metals, the surface states 

are conventionally designated as being Tamm states [2.18], but in reality 

the exact nature of a surface state often requires a more detailed analysis.

We thus need to consider the surface electronic structure with 

regard to single-electron theory as a different kind of problem to the one 

tackled by Bloch. Weinberger has considered the problem to be more 

relevant to the work of Floquet, and has introduced an entirely new 

lexicon to discuss the problems associated with surfaces and interfaces

[2.19] . This is one motivation for calculating surface electronic structure in 

real-space. Another arises from its impact on the efficiency of 

computational methods. By combining a real-space Green function with 

screened structure constants (the tight-binding LMTO and KKR methods),

[2.20] it has also proved possible to calculate electronic structures more 

rapidly.

Flaving reviewed single electron theory and its approach to the 

electronic structure problem, we shall examine multiple scattering theory 

in the next chapter and show how this technique can be applied to 

calculate the density of states.
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Chapter 3

Scattering Theory and the Multiple Scattering Green Function

The purpose of this chapter is to establish the boundary conditions 

for scattering events, and to show how these lead to the multiple 

scattering Green function, since it is this Green function which underpins 

the photocurrent equation discussed in the next chapter. Rydberg units 

are used throughout this chapter, in which Ti2 = 2m -  e =1.

We begin with an account of the radial wave equation and phase 

shift analysis before discussing briefly the solution of inhomogeneous 

differential equations by Green functions. The Green function is then 

related to the density of states. Next, we present an analysis of potential 

scattering, which introduces the Lippmann-Schwinger equations, before 

discussing Gyorffy's scattering path operator and the multiple scattering 

Green function.

3.1 A Framework for Scattering Theory

The quantum mechanical theory of scattering is founded on the 

principle that it is the asymptotic scattering state which is an observable 

[3.1]; it is not necessary to know the exact microphysical interactions that 

occur during the brief interval of the scattering event and consequently
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scattering can be modelled as a 'black box' process, in which an initial 

'input' state is converted into an 'output' scattered state.

Although a more general treatment of scattering theory allows for 

energy exchanges we need only consider elastic scattering, since it is this 

so-called 'on the energy shell' condition (conservation of kinetic energy) 

which allows the scattered state to be derived from the phase shifts [3.2]. 

This will be discussed in more detail below.

The multiple scattering theory reviewed here is a single-electron 

theory that neatly divides the electronic structure problem into two parts; 

local (atomic) scattering properties are calculated and then used with the 

global (structural) properties of a distributed assembly of those scatterers to 

calculate observables. In applying this technique to problems of electronic 

structure, we assume that the potentials which act as scattering centres 

have been generated self-consistently using methods akin to those 

discussed in the previous chapter. The potential thus contains all the 

many-electron interactions, and the single-electron only interacts with the 

potential.

3.2 The Radial Wave Equation and Phase Shifts

In what follows we shall be investigating the effects of scattering 

from a spatially finite spherical potential; the so-called muffin-tin 

potential which has the form [3.3, 3.4]

where S is the radius of the muffin-tin sphere and C is a constant that 

denotes the interstitial region between the muffin-tin spheres. It is 

convenient to assume that C = 0 in what follows, without loss of 

generality (see figure 3.a, overleaf).

(3.1)
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If we incorporate a muffin-tin potential V(r) into the Hamiltonian 

for the time independent Schròdinger equation, we obtain the familiar 

energy eigenvalue problem:

[V2 + V(r )] |¥) = £ | 'F), (3.2)

where V2 is the kinetic energy operator and e is the single-electron energy 

eigenvalue. For non-core states we can set & = Ve, and the solution

Figure 3.a: showing the different regions in the muffin-tin potential. 
The potential shown has been adapted from an LMASA-46 potential 
for tungsten.

to (3. 2) can be written as:

^ ( r )  = 5 > t ( * ) S ,« r , ( r ) ,  (3.3)
L

where YL(r) is a spherical harmonic with r a unit vector and L = l,m 

denotes the angular and spin momentum indices respectively, a L(k) is 

the expansion coefficient and R,(r) is the radial wave function that 

satisfies the radial wave equation,
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1 d . 2  d 
dr'2-— (rz—) + £ ~ V(r) -■ dr

1(1 +1) R,(r) = 0. (3.4)

For a unique solution to the eigenvalue problem (3.2) we 

require 4^.(7) to be regular as and normalisable. The difficulties of

normalisation in the continuous spectrum of the eigenvalue problem are 

well known [3.16] and we shall assume that 4^(7) is normalised such that

{+■ | %  > =  5 (k -k ' ) ,  (3.5)

where 8 ( k - k ' )  is the Dirac delta function.

If we now make the substitution u¡(r,k)~ rR,(r) and set V(r) = 0, 

we can write the radial wave equation as

dr
+  £  -

/ ( / - h i ) u,(r ,k ) = 0. (3.6)

The solution to (3.6) which is regular at the origin r = 0 is provided by 

the spherical Bessel function j ,(kr),  and we emphasise that this is the 

free-space solution in what follows. The spherical Bessel function has the 

asymptotic form [3.5]

j , (kr)  - 1 . f, Ik " — sin kr -  —  . 
kr L 2 J (3.7)

Another solution to equation (3.6) which is, however, irregular at 

the origin is the spherical Neumann function, n,(kr), with asymptotic 

form [3.5]

n,(kr) ~ ------cos
' -  kr

Ikkr -  —  
2 (3.8)
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We are now in a position to discuss the conceptual basis of phase shift 

analysis.

3.2.1 The Meaning of the Phase Shift

We can write the general free-space solution to equation (3.4) as

R,(r,k) = B , ( k ) j  ,(kr ) + Cl(k )n l(kr), (3.9)

where B l(k) ,C ,(k)  are normalising coefficients. To obviate the irregular 

behaviour of n,(kr), we can choose C,(k) = 0 whenever the solution 

needs to include the origin.

Since the asymptotic forms (3. 7) and (3.8) may be combined into

R,(r,k) — sin kr -  —  + <5,(k)  , 
kr L 2 ' J (3.10)

the general solution has a phase<5; (&), which is additional to the free- 

space solution. If we identify the free-space solution j  ,(kr) with an 

incident wave and, taking account of the restriction on the spatial domain 

for n,(kr), identify the spherical Neumann function with the scattered 

wave that radiates from the surface of the potential sphere, then we note 

that the extra phase 8 ,(k)  arises from the scattered wave. The coefficients 

in (3.9) can now be expressed in accordance with equation (3.10) so that a 

'null' scattering event, characterised by 8 ,(k)  = 0, coincides with the 

free-space solution everywhere. This is the 'phase shift' form of the radial 

wave function:

R,(r,k) = cos8,(k)j,(kr) + sin8,(k) n,(kr). (3.11)

We can also express the linear combination (3.9) in the complex plane
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through the spherical Hankel functions [3.6],

hf(kr) = j,(kr) ± in,(kr), (3.12)

where h,+(kr) is a spherical Hankel function of the first kind and h,~(kr) is 

a spherical Hankel function of the second kind. These solutions behave 

asymptotically like spherical waves,

—(/+1) ±i*r

hf (kr )  ~ ----- ------- / (3.13)
r _>» kr

a property which makes them especially useful in scattering problems.

3.2.2 Calculating the Phase Shift

We can use the phase-shift form of the radial wave function to 

calculated,{k)  by considering the continuity of R,(r,k) at the boundary of 

the muffin-tin sphere. Continuity is established when both the function 

and its spatial-derivative have equal value across the boundary; that is, 

we require the logarithmic derivative P,(k) of the radial wave function 

evaluated at the muffin-tin boundary (r = S) to be

P,(k)
1

R,(r,k)
rdRt{r,k)' 

< dr j
r=S

(3.14)

With this matching condition for the wave function the phase shift can 

be calculated from the relationship

tand,(& )
kn't{kS) -  ¡3 l(k)nl (kS) 
kji(kS) -  P,(k)j ,(kS)'

(3.15)

where the primed functions have been differentiated with respect to the 

argument kr.
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3.3 Differential Equations and Green Functions

In the theory of linear differential equations, the inhomogeneous 

equation has the form

Lr| 4/) = a(r), (3.16)

where Lr is a linear differential operator and a{r) is called the source 

term [3.6]. The corresponding homogeneous equation is a special case of 

(3.16) when <y(r) = 0; its solution is known as the complementary 

function and we will write this as |0). The inhomogeneous differential 

equation (3.16) is solved by a linear combination of the complementary 

function and any |T0 that satisfies the prescribed boundary conditions for 

the full problem; this latter solution is the particular integral and we can 

find it by considering the following operator relationship,

L-,1 Lr = 1, (3.17)

where L~l is the inverse operator to Lr and 1 is the identity operator. 

Consequently, equation (3.16) may be solved by applying L“1 on the left 

and using the result (3.17). We then have the particular integral,

| TO = L->(r). (3.18)

The general solution of the inhomogeneous equation (3. 16) is therefore,

| '? )= | 3 > )+ L > (r ) .  (3.19)

Since Lr is a differential operator, the inverse operator is an 

integral operator and the 'solution' recasts (3.16) into an equivalent 

integral equation which must satisfy the same boundary conditions. The
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integral equation may be solved when Lr' is known explicitly.

The inverse operator called the Green function G(r,r')  uses an 

extra degree of freedom r' as an additional parameter and we adopt the 

convention that

G(r,r') Lr = d(r -  / ) .  (3.20)

This is the defining equation for the Green function belonging to the 

differential operator Lr. It may be interpreted as the response of the 

system to a unit source at r.  The extra degree of freedom also serves 

another purpose by shifting our attention to any region of interest within 

the space of the variable r, so it is not surprising that elsewhere in the 

literature G ( r , r )  is also called a propagator.

3.3.1 Green Functions and the Density of States

The Green function can be related to an eigenfunction which is 

complete in Hilbert space via its modal expansion [3.7], Calling the 

eigenfunction (T*,,), this is written as,

G±(r ,r'\e) =
T1
Lini V-> o* n £ -  £„ ± iri

(3. 21)

where £„ denotes the eigenvalue, iT] is a purely imaginary infinitesimal 

and the summation includes integration for any continuous part of the 

eigenvalue spectrum. Consequently, the Green function exists only 

fore *  en, since the eigenvalues £n appear as simple poles on the real 

axis for the discrete part of the spectrum and as a natural boundary in the 

continuum. The singular behaviour is 'smoothed7 by the imaginary 

infinitesimal ir], which displaces the poles from the real axis and into the 

complex plane.
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The limiting process which recovers the Green function serves as 

an additional boundary condition and more than one Green function can 

be constructed. We shall choose the 'outgoing' Green function G+ as the 

most suitable for what follows; we shall see later that G+ corresponds to a 

divergent spherical wave, whereas the alternative choice of G~ gives a 

spherically convergent wave - a difficult state to prepare in nature.

We can now derive an expression for the density of states [3.8]. The 

trace of a Green function is obtained by analogy with the trace of a matrix. 

Setting r = r' and integrating over all space, we find

jdr  G + (r, r,e) — Limil -* o+ -  sn + iri '
(3. 22)

We can make use of the formal identity [ 3.9 ]

Limn -> o* 1
1

£ -  £n + ill £  -  £
-  i n 8 ( e - e n), (3.23)

n /

where denotes the principal part, to establish the relationship

8 ( e -  £n) = - -  <$»
TC

Lim ----------------
ij -» 0+ £ -  £n +  irj (3. 24)

which gives, on inspecting the trace of the Green function (3. 22),

{ \dr G + (r,r;e)} = £< 5(£-£n). (3.25)
1̂  n

This last expression is the density of states, because it simply counts the 

number of eigenvalues within a given interval. Denoting the density of 

states by p(£), we can therefore write explicitly
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p(e) = ~ ~  '̂ m { jdr  G + (r,r;e)J. (3.26)

3.4 Potential Scattering

In considering scattering events, it is useful to separate the 

Hamiltonian H into two terms

H = H0 + V, (3. 27)

where H0 is a reference system that permits all eigenvalues and 

eigenvectors to be calculated, and V is an interaction term that acts as a 

perturbation to the reference system.

We can now recast the time independent Schrodinger equation 

(3. 2) as a single-electron scattering problem,

[£ -  V! ] m  = n o w  (3.28)

where the reference system H0 is the free-particle kinetic energy operator 

V 2, the interaction term V is a muffin-tin potential V(r) and e is the 

single-electron energy eigenvalue. This prescription for the scattering 

problem allows P(F)|lF) to be regarded as a source term by formal analogy 

to the inhomogeneous differential equation (3.16).

3.5 The Lippmann-Schwinger Equations

The boundary conditions for physically real solutions 

require^) -» |0) as V(r) -» 0, where |0) solves the homogeneous 

equation

[e -  V 2] |4>) = 0, (3.29)

and where e is the same energy eigenvalue as in the full problem (3. 28). 

The formal solution satisfying these requirements is provided by the
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Lippmann-Schwinger equation [3.10],

|y> = |®> + G0+V(F)|VF), (3.30a)

where we have written Gq to emphasise that the Green function belongs 

to the reference system. The Lippmann-Schwinger equation may also be 

written as

\V) = |<f>) + G0+1 |0),

which introduces the operator t that satisfies

(3. 30b)

t  |<b) = V(r)l'F). (3.31)

It is important to be clear about the meaning of this last 

relationship; it asserts that we can construct the effect of the interaction 

solely from the Hilbert space of the reference system, and that our 

problem is solved once we have a means to calculate t. Before 

progressing with this scheme, we shall first examine the Lippmann- 

Schwinger equation in the position representation, since this will provide 

some valuable insights into the nature of the scattered state.

The free-space Green function (belonging to the operator V2) in the 

position representation behaves like a spherical wave:

G0+(|F-F'|)
r*|r—r'\e 1 1

4/r|F -  F'| (3. 32)

where once again we have set k = -Je. If we allow F' —» °o and 

introduce suitable simplifying approximations [3.11] we can obtain the 

asymptotic form of the scattered state
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Vk{r)
r -+ o°

Jkr j — ]dr'e-iir  V(r')^k(r'), 4 nr ̂ (3. 33)

where k = kr. The scattered state T^fr) is therefore a superposition of

both an incident plane wave and a spherical scattered wave. Since k 

depends only on the direction of r we can consider the integral in (3.33) to 

be angular; this integral is the scattering amplitude (<!?. V that

defines the matrix element of the potential for scattering into a free state 

propagating in the k direction. The scattering amplitude may be used to 

establish a simple formula for the t matrix.

Recalling the defining relation for the t operator (3.31), we can

construct the 'on the energy shell' t matrix element, where k = k, in a 

similar manner. In an angular momentum representation we obtain

t, = ]dr  ,(r,/)j,(r')rL(t(3.34)

The t matrix element (3.34) may be used, together with the angular 

momentum decomposition of G0+;

G0+( ? ,F )  = ~ik'ZMr<)YL(r<)h;(r>)Y*(r>)r (3.35)
L

where rK (/;) denotes the lesser (greater) of vectors r and r', to construct 

the Lippmann-Schwinger equation for the radial wave function R,(r ,k) 

[3.2]. By performing the necessary algebraic trickery, we can derive the 

free-space form of the radial wave function that must be satisfied on the 

surface of a muffin-tin sphere,
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eiS'(k) R,(r,k)  = j , (kr)~ ikt,h,+(kr), (r > S). (3.36)

Substituting the phase shift form of R,(r,k) (3.11) into this boundary 

condition produces an expression for the t matrix element in terms of 

the phase shifts:

ets,w
t,(k)  = ---- —  sinS,(*). (3.37)

3.6 The Scattering Solutions of the Radial Wave Equation

An alternative radial wave function Z,(r,k) was introduced by 

Faulkner and Stocks [3.12], which has the free-space form

Zt(r,k) = j,(kr)t,-'-  ikh,+(kr), (r > S). (3.38)

Comparing equation (3.38) with (3.36) we can easily see that the two 

functions are related:

eiS‘w R'(r,k) = t ; (&) Zt(r,k). (3. 39)

It is important to understand the applicability of these solutions, 

and to illustrate their differences we can consider their behaviour when 

subject to a null scattering event.

3.6.1 Null Scattering Events

In the absence of a scattering potential we have no means to change 

the state of a freely propagating wave and 5 ,(k) = 0. With this condition 

the radial wave function (3.11) simply reduces to a spherical Bessel 

function, and we also find on examining (3.37) that t,(k)  = 0.

It is interesting to see how the case t ,(k)  = 0 affects the scattered 

state ^ ( r )  when this is defined in terms of R,(r,k). Consistency
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demands that the asymptotic form of the scattered state (3.33) should be 

related to its eigenfunction expansion (3.3) in the appropriate limit

% (r)  = ^ a i (k)R,(r)YL(r),
L

and this allows the coefficients a L( k ) to be determined. The analysis gives 

[3.13]:

¥ * (? )  = 4 * r 2 i V * w /?,(!-,* ) £ ( * ) r t (r), (3.40)
L

and substituting the condition8 ,(k) = 0, we find that we reproduce 

Bauer's expansion for a plane wave in an angular momentum basis,

e,Lf  = 47tJ^ilj,(kr)Y*(k)YL(r). (3.41)
L

Not surprisingly, we have found that a phase shift S ,(k) = 0 conditions 

the scattered state to be a pure incident wave; or equivalently, that t ,(k)  is 

responsible for generating the scattered wave in the scattered state .

The null scattering event for Z,(r,k) makes this function singular 

because it behaves as t,'1, and we can assert that the relationship between 

the two radial wave functions (3.39) no longer holds. Consequently, we 

recognise that the Z,{r,k)are only usefully defined in the presence of a 

scattering potential, and that they fully warrant their designation as the 

'scattering solutions' of the radial wave equation.

We shall now complete this chapter by reviewing multiple

scattering theory in the spirit of Gyorffy and Stott [3.14], which will lead to 

Faulkner and Stock's expression for the multiple scattering Green 

function [3.12].
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3.7 The Scattering Path Operator

To effect the transition from single to multiple scattering theory, 

we consider a total potential V(r) to be derived from an assembly of 

muffin-tin potentials v'(r ) located at points R , ;

V(r) = £ v '( r  "  *,-)• (3.42)
/

For brevity, we shall assume that the spatial dependence is understood 

and neglect to write this further here.

Recalling the defining equation for the Green function G + (3.20), 

we can rewrite the scattering problem (3.28) for the potential V as the 

operator equation;

[ - { V 2 + e} + V]G+ = 1, (3.43)

where 1 is again the identity operator. The expression in braces is the free- 

space Hamiltonian, which has the free-space Green function G0+. Taking 

advantage of this, we can write the operator equation

G+ = 1, (3. 44)

and thus obtain the full Green function G+ as a perturbation about the 

free-space Green function G0+,

G+ = G0+(l -  VG0+)~'. (3.45)

Expanding (3.44) (taking care over the non-commutativity of the 

operators) produces the perturbation series,

G+ = G0+ + G0+VG0+ + G0+VG0+VG0+ +... ,
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which can also be written more compactly as a Dyson equation:

G+ = G0+ + G0+ V G+ (3.46 a)

= G0+ + G+VG0+. (3.46 b)

The Dyson equation (3.46) is formally solved through the total scattering 

operator T:

G+ = G0+ + G0+TG0+, (3.47)

where

T = V + VG0+T (3.48 a)

= V + T G ;V ,  (3.48 b)

These relations are noteworthy since it is a simple task to reproduce the 

Lippmann-Schwinger equations (3.30) from (3.48).

We have now come to the crux of this analysis. Because we have 

not made any additional assumptions about the potential V in deriving 

the expressions above, the results (3.48) are completely general. 

Consequently, we can relate the single scattering operators t' associated 

with the potentials v' in a similar manner to relations (3. 48);

t' = v' + v'G0+t' = (1 -  G0V ) - V  (3.49a)

= v' + t'G0V  = v'(l -  G0V r !. (3.49b)

We can also relate the total scattering operator T to a particular site 

potential v' by a direct comparison of equation (3. 42) with (3. 48):

T = E v‘ + X v‘Go* T- (3.50)
i i,n

What we are aiming to do is to express the total scattering T in terms of
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individual scattering contributions from the potentials v'. To achieve 

this, we introduce the partial scattering operator Q', such that:

The difference between the operators Q' and t' should be clear: Q‘ 

denotes the scattering from site i in the presence of all other (multiple)

This last expression may be reduced further by using the single scattering 

t' relations (3.47);

and we appear to have achieved our objective; equation (3.53) relates the 

contribution to the total scattering from the potential v' as the sum of all 

scattering events within the assembly that contribute an incident wave to 

this site, plus the scattering from the direct wave incident to this site.

Gyorffy and Stott [3.14] further decomposed the partial scattering

t  = X e ' . (3. 51)

scattering events within the assembly, whereas t' denotes the (single) 

scattering solely from the potential v'.

Hence, we can replace the T operator in equation (3. 49):

(3. 52)

which allows us to isolate the contribution from site i,

Q‘ = »' + S '"G „* Q\
n

= v-' + v' G0+ Q' + X v V ô 1.
(3. 53)

q ‘ = t ‘ +
Sr-»

Direct n*1Direct

(3.54)

Assembly
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operator Q' to represent the elastically scattered elements of the total 

scattering operator T, by introducing the scattering path operatort ‘j 

where:

Q‘ = X T '7, (3.55)
j

and thus,

T = S 2 '  = Z T'7- (3-56)
/ i.y

By considering equations (3.54) and (3.55), the scattering path operator can 

be related to the single scattering operators;

%“ = t %  + t 'G 0* 5 > "
p* i

= t ‘Su + £ t ' G 0*T'\
p*i

(3.57)

where d, . is the Kronecker delta function.

3.8 Calculating the x Matrix

If we project the defining equation for the scattering path operator 

(3.57) into the position representation, and adjust the origin of the 

coordinate system to locate the scattering sites, we obtain;

T ii( r + R i,r' + Rj ) = t'(r + R „ r + R  J )8i
5, 52

+ ^ Jd / jJd r2[t'(F  + ̂ ,,F1+^,.) (3.58)
n*i 0 0

x Gq( rl +Ri ,r2+Rn)TiiO:2 + R n,r' + R j )j.
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The limits on the integrals arise from the muffin-tin character of the 

potential; since v'(r) = 0 outside the boundary of the muffin-tin sphere 

we can assert, after examining (3. 49) and (3. 57), that both t 1 and z'j have 

zero value unless r\ lies within site i and r2 lies within site j,and  hence 

that ij,r2 are constrained to lie within the boundaries of the muffin-tin 

spheres St,S2 respectively.

The spatial restrictions introduced by this geometry allow a 

convenient expansion of the free-space Green function G0+, which 

simplifies equation (3.57) considerably.

By examining G0+ in the position representation (3.32), we find it is 

permissible to write

G 0 ( F, +/?i ,F2 +R„) = G o ( r i ’ r 2 “ K in ) '  n  (-Q.(3. 59)

where Rin = R ,-R „ ; and substituting the RHS of (3.59) into the angular 

momentum decomposition of G0+ (3.34) produces:

G0+(q+R,.,F2+ R J  = (3.60)
L

where ̂  = r2- R in.

We can now make use of a beautiful relationship that expands a 

spherical Hankel function on one site, in terms of a spherical Bessel 

function centred on a different site;

-i*V (9t)n (3 t) = X sÜ .j,.(r2)i;.(r2). (3.61)
T '

We note that this expansion is only valid if R I, which is
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certainly true for the integrals above (3.57). The g'lL. in equation (3.61) are 

the real-space structure constants:

&  = C(L,L,Ll)hti(rnm)YLi (rnm)(3.62)
L

with the Gaunt factors C(L,Z/,L,) defined as

C{L,L\LX) = \dr Y*(r)YL.(r)YLi(r). (3.63)

By using the expansion (3.61) to define the Green function (3.60) we have 

effectively given it a local basis;

G*{rx+Ri,r2+Rn) = ^ j , ( r x) Y*(rx) g^L. jr(r2)YL,(r2). (3.64)
L ,V

If we now substitute this local basis Green function (3.64) into the 

real-space r matrix equation (3.58), recognise the angular momentum 

representation for the 'on the energy shell' r matrix elements;

= \d? jd r ' j i i?  )YL(ri)r['L,(r +Ri,r' + Rj ) j l (r')Y* (r'), (3.65)

and also recall the analogous matrix elements for the t matrix (3.33), we 

produce;

'L L ' = t  i r S,y + I * ; , . Si,
p'U
' L ,  V (3. 66)

which is the fundamental equation of multiple scattering theory.

It is easier to understand the structure of (3.66) as a matrix equation

[3.15]; if we define %'lL. = T, t ‘LL.du = t and let ( 1 -  d,7 )g/%2= T , where 1 

is the unit matrix, then (3. 66) becomes:
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T = t + t T T (3. 67 a) 

(3. 67 b)

We can now see explicitly how both local (t) and global (T) quantities 

contribute separately to the r matrix.

3.9 The Multiple Scattering Green Function

Faulkner and Stocks [3.12] derived the multiple scattering Green 

function by substituting T = ^ V 7 into the Dyson equation (3.47) and

projecting the resulting equation into a real-space representation. By 

considering the site dependent geometry as two separate cases, they 

produced:

where Z 'L, j,‘ are the regular and irregular scattering solutions for the i th

potential. The Green function (3.68) thus describes the scattering (per 

angular momentum channel) between two separated sites i , j  when r,r' 

fall within these sites, and describes the scattering at a single site when 

r,r' both fall within the same site. Since the irregular scattering solution 

is only included for the single site case, it can sensibly be interpreted as a 

"self-energy” term.

The Green function (3.68) has two properties which make it useful 

for the systems studied later in this thesis; it allows differing potentials 

derived from different atomic systems to be used, and it produces real 

values with real energies.

i.j.L.L' (3. 68)
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We shall show how the Green function (3. 68) can be modified to 

model spectroscopic phenomena in the next chapter, when we discuss the 

real-space photocurrent equation.

Figure 3.b: a flow diagram illustrating the development 
of the key concepts of multiple scattering theory and how 
these may be used to calculate the Green function.
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Chapter 3

Scattering Theory and the Multiple Scattering Green Function

The purpose of this chapter is to establish the boundary conditions 

for scattering events, and to show how these lead to the multiple 

scattering Green function, since it is this Green function which underpins 

the photocurrent equation discussed in the next chapter. Rydberg units 

are used throughout this chapter, in which ft2 = 2m = e =1.

We begin with an account of the radial wave equation and phase 

shift analysis before discussing briefly the solution of inhomogeneous 

differential equations by Green functions. The Green function is then 

related to the density of states. Next, we present an analysis of potential 

scattering, which introduces the Lippmann-Schwinger equations, before 

discussing Gyorffy's scattering path operator and the multiple scattering 

Green function.

3.1 A Framework for Scattering Theory

The quantum mechanical theory of scattering is founded on the 

principle that it is the asymptotic scattering state which is an observable 

[3.1]; it is not necessary to know the exact microphysical interactions that 

occur during the brief interval of the scattering event and consequently
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scattering can be modelled as a 'black box' process, in which an initial 

'input' state is converted into an 'output' scattered state.

Although a more general treatment of scattering theory allows for 

energy exchanges we need only consider elastic scattering, since it is this 

so-called 'on the energy shell' condition (conservation of kinetic energy) 

which allows the scattered state to be derived from the phase shifts [3.2]. 

This will be discussed in more detail below.

The multiple scattering theory reviewed here is a single-electron 

theory that neatly divides the electronic structure problem into two parts; 

local (atomic) scattering properties are calculated and then used with the 

global (structural) properties of a distributed assembly of those scatterers to 

calculate observables. In applying this technique to problems of electronic 

structure, we assume that the potentials which act as scattering centres 

have been generated self-consistently using methods akin to those 

discussed in the previous chapter. The potential thus contains all the 

many-electron interactions, and the single-electron only interacts with the 

potential.

3.2 The Radial Wave Equation and Phase Shifts

In what follows we shall be investigating the effects of scattering 

from a spatially finite spherical potential; the so-called muffin-tin 

potential which has the form [3.3, 3.4]

where S is the radius of the muffin-tin sphere and C is a constant that 

denotes the interstitial region between the muffin-tin spheres. It is 

convenient to assume that C = 0 in what follows, without loss of 

generality (see figure 3.a, overleaf).

(3.1)
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If we incorporate a muffin-tin potential V(r) into the Hamiltonian 

for the time independent Schrodinger equation, we obtain the familiar 

energy eigenvalue problem:

[V2 + V(r)] 1^) = £ I'F), (3.2)

where V2is the kinetic energy operator ande is the single-electron energy 

eigenvalue. For non-core states we can set k = Ve, and the solution

Figure 3. a: showing the different regions in the muffin-tin potential.
The potential shown has been adapted from an LMASA-46 potential 
for tungsten.

to (3. 2) can be written as:

Yt (r) = 2 , a L{k)Rl(r)YL(r), (3.3)
L

where YL(r)  is a spherical harmonic with r a unit vector and L = l,m 

denotes the angular and spin momentum indices respectively, a L(k) is 

the expansion coefficient and R,(r) is the radial wave function that 

satisfies the radial wave equation,
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1 d . 2 d
7^ (r + e

V(r) 1(1 + 1)
Rt(r) = 0. (3.4)

For a unique solution to the eigenvalue problem (3.2) we 

require ^ ( r )  to be regular as M »  and normalisable. The difficulties of 

normalisation in the continuous spectrum of the eigenvalue problem are 

well known [3.16] and we shall assume that vVk(r)  is normalised such that

| = S ( k - k ’), (3.5)

where d ( k - k ' )  is the Dirac delta function.

If we now make the substitution u,(r ,k)  = rR,(r) and set V(r) = 0, 

we can write the radial wave equation as

+ £ 1(1 +1) u,(r,k) = 0. (3.6)

The solution to (3.6) which is regular at the origin r = 0 is provided by 

the spherical Bessel function j ,(kr),  and we emphasise that this is the 

free-space solution in what follows. The spherical Bessel function has the 

asymptotic form [3.5]

j , (kr)  - Ik "
T  ' (3.7)

Another solution to equation (3.6) which is, however, irregular at 

the origin is the spherical Neumann function, n,(kr), with asymptotic 

form [3.5]

n.(kr) 1 I", In'— cos kr -  —  . 
kr L 2 (3.8)
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We are now in a position to discuss the conceptual basis of phase shift 

analysis.

3.2.1 The Meaning of the Phase Shift

We can write the general free-space solution to equation (3.4) as

R,{r,k) = B ,(k ) j  ,(kr) + Cl(k)n,(kr)/ (3.9)

where B,{k), C,{k)  are normalising coefficients. To obviate the irregular 

behaviour of n,(kr), we can choose C,(k) = 0 whenever the solution 

needs to include the origin.

Since the asymptotic forms (3. 7) and (3.8) may be combined into

Rt{r,k)
1 . — sin 

kr
Ik

~2
+ Ôi(k)  , (3.10)

the general solution has a phase 8 ,(k ) ,  which is additional to the free- 

space solution. If we identify the free-space solution j  ¡{kr) with an 

incident wave and, taking account of the restriction on the spatial domain 

for n^kr), identify the spherical Neumann function with the scattered 

wave that radiates from the surface of the potential sphere, then we note 

that the extra phase 8 ,(k)  arises from the scattered wave. The coefficients 

in (3.9) can now be expressed in accordance with equation (3.10) so that a 

'null' scattering event, characterised by 8 ,(k)  = 0, coincides with the 

free-space solution everywhere. This is the 'phase shift' form of the radial 

wave function:

R,(r,k) = cos5,{k)j,{kr) + s\r\8,{k) nt(kr). (3.11)

We can also express the linear combination (3.9) in the complex plane
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through the spherical Hankel functions [3.6],

hfikr) = j,(kr) ± in,(kr), (3.12)

where h,+(kr) is a spherical Hankel function of the first kind and h,~(kr) is 

a spherical Hankel function of the second kind. These solutions behave 

asymptotically like spherical waves,

• -(i+1) ±ikr

h ,* (kr) ------- —----- , (3.13)
r —» oo K r

a property which makes them especially useful in scattering problems.

3.2.2 Calculating the Phase Shift

We can use the phase-shift form of the radial wave function to 

calculated,(k)  by considering the continuity of R,(r,k) at the boundary of 

the muffin-tin sphere. Continuity is established when both the function 

and its spatial-derivative have equal value across the boundary; that is, 

we require the logarithmic derivative P,(k) of the radial wave function 

evaluated at the muffin-tin boundary (r = S) to be

P,(k)
_1__

R,(r,k)
rdR,(r,k)'

< dr j
(3.14)

With this matching condition for the wave function the phase shift can 

be calculated from the relationship

tand, ( k )
kn[{kS) -  p ,(k)n,(kS) 
kjl(kS) -  P ,(k)j,  (kS)' (3.15)

where the primed functions have been differentiated with respect to the 

argument kr.
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3.3 Differential Equations and Green Functions

In the theory of linear differential equations, the inhomogeneous 

equation has the form

Lr|vF) = (T(r), (3.16)

where Lr is a linear differential operator and a(r)  is called the source 

term [3.6]. The corresponding homogeneous equation is a special case of 

(3.16) when a(r) = 0; its solution is known as the complementary 

function and we will write this as |4>). The inhomogeneous differential 

equation (3.16) is solved by a linear combination of the complementary 

function and any I1?) that satisfies the prescribed boundary conditions for 

the full problem; this latter solution is the particular integral and we can 

find it by considering the following operator relationship,

L-,1 Lr = X (3.17)

where L~/ is the inverse operator to Lr and 1 is the identity operator. 

Consequently, equation (3.16) may be solved by applying L“1 on the left 

and using the result (3.17). We then have the particular integral,

| VT') = 17/<7 (r). (3.18)

The general solution of the inhomogeneous equation (3. 16) is therefore,

|y) = |0) + L/cr (r). (3.19)

Since Lr is a differential operator, the inverse operator is an 

integral operator and the 'solution' recasts (3.16) into an equivalent 

integral equation which must satisfy the same boundary conditions. The
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integral equation may be solved when Lr‘ is known explicitly.

The inverse operator called the Green function G (r,r ') uses an 

extra degree of freedom r' as an additional parameter and we adopt the 

convention that

G(r,r') Lr = 5(r -  r'). (3.20)

This is the defining equation for the Green function belonging to the 

differential operator Lr. It may be interpreted as the response of the 

system to a unit source at r . The extra degree of freedom also serves 

another purpose by shifting our attention to any region of interest within 

the space of the variable r, so it is not surprising that elsewhere in the 

literature G(r, r') is also called a propagator.

3.3.1 Green Functions and the Density of States

The Green function can be related to an eigenfunction which is 

complete in Hilbert space via its modal expansion [3.7], Calling the 

eigenfunction j^ ) ,  this is written as,

G±(r , r'-£) Limr] -> 0* n £  ~ £n ± in
(3. 21)

where en denotes the eigenvalue, ir] is a purely imaginary infinitesimal 

and the summation includes integration for any continuous part of the 

eigenvalue spectrum. Consequently, the Green function exists only 

fore *  e„, since the eigenvalues en appear as simple poles on the real 

axis for the discrete part of the spectrum and as a natural boundary in the 

continuum. The singular behaviour is 'smoothed' by the imaginary 

infinitesimal ir], which displaces the poles from the real axis and into the 

complex plane.
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The limiting process which recovers the Green function serves as 

an additional boundary condition and more than one Green function can 

be constructed. We shall choose the 'outgoing' Green function G + as the 

most suitable for what follows; we shall see later that G+ corresponds to a 

divergent spherical wave, whereas the alternative choice of G ' gives a 

spherically convergent wave - a difficult state to prepare in nature.

We can now derive an expression for the density of states [3.8]. The 

trace of a Green function is obtained by analogy with the trace of a matrix. 

Setting r = r' and integrating over all space, we find

\dr G + (r, r\£) = Lim f d r Y — — 
J n _» o+ J £  -  Sn +  ip/ (3. 22)

We can make use of the formal identity [ 3.9 ]

Lim Y =
n^o* r e  -  + rn V£ -  £n j

-  i j c S ( e - £ n), (3.23)

where dP. denotes the principal part, to establish the relationship

<S(£-£„) = —-  SJm
K

Lim ----------------
n -» o+ £ -  £n + irj (3. 24)

which gives, on inspecting the trace of the Green function (3. 22),

- -  & n { j d r  G + (r,r;£)} = £<5(£-£„). (3.25)
ft n

This last expression is the density of states, because it simply counts the 

number of eigenvalues within a given interval. Denoting the density of 

states by p(£), we can therefore write explicitly
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p(e) = jdr  G + (r,r;e)|. (3.26)

3.4 Potential Scattering

In considering scattering events, it is useful to separate the 

Hamiltonian H into two terms

H = H0 + V, (3. 27)

where H0 is a reference system that permits all eigenvalues and 

eigenvectors to be calculated, and V is an interaction term that acts as a 

perturbation to the reference system.

We can now recast the time independent Schrodinger equation 

(3. 2) as a single-electron scattering problem,

1« -  va] m = w in ,  p.28)
where the reference system H0 is the free-particle kinetic energy operator 

V 2, the interaction term V is a muffin-tin potential V(r) and e is the 

single-electron energy eigenvalue. This prescription for the scattering 

problem allows V(r )|SK) to be regarded as a source term by formal analogy 

to the inhomogeneous differential equation (3.16).

3.5 The Lippmann-Schwinger Equations

The boundary conditions for physically real solutions 

require IT1) -> |<£) as V(r) -> 0, where |0) solves the homogeneous 

equation

[e -  V 2] |0) = 0, (3.29)

and where e is the same energy eigenvalue as in the full problem (3. 28). 

The formal solution satisfying these requirements is provided by the
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Lippmann-Schwinger equation [3.10],

|T) =|®>+ Gq V(r)|vP)/ (3.30a)

where we have written G0+ to emphasise that the Green function belongs 

to the reference system. The Lippmann-Schwinger equation may also be 

written as

|vp) = 14») + G0+t Id)),

which introduces the operator t that satisfies

(3. 30b)

t |4>) = V(r)|»F). (3.31)

It is important to be clear about the meaning of this last 

relationship; it asserts that we can construct the effect of the interaction 

solely from the Hilbert space of the reference system, and that our 

problem is solved once we have a means to calculate t. Before 

progressing with this scheme, we shall first examine the Lippmann- 

Schwinger equation in the position representation, since this will provide 

some valuable insights into the nature of the scattered state.

The free-space Green function (belonging to the operator V2) in the 

position representation behaves like a spherical wave:

G0+(\r~r'\)
e ikl?~r'

4 7T |r — r'| (3. 32)

where once again we have set k = Ve. If we allow r' °° and 

introduce suitable simplifying approximations [3.11] we can obtain the 

asymptotic form of the scattered state
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V J r )  ~ eiif  -  ldr'e~iir  V(r')^k(r f), (3.33)
r -> «= 47rr_^

where k = kr. The scattered state xYk{r)  is therefore a superposition of

both an incident plane wave and a spherical scattered wave. Since k 

depends only on the direction of r we can consider the integral in (3.33) to 

be angular; this integral is the scattering amplitude (<E>-| V that

defines the matrix element of the potential for scattering into a free state 

propagating in the k direction. The scattering amplitude may be used to

establish a simple formula for the t matrix.

Recalling the defining relation for the t operator (3.31), we can

construct the 'on the energy shell' t matrix element, where k = fc, in a 

similar manner. In an angular momentum representation we obtain

t, = °\dr ]dr' j l (r)tl (r,r')jl (r')YL(r)YL*(r'). (3.34)
—  oo —  oo

The t matrix element (3.34) may be used, together with the angular 

momentum decomposition of G0+;

0, ! ( r , n  = -ikYJMY^KOOY(3.35)
L

where  ̂ ) denotes the lesser (greater) of vectors r and 7,  to construct

the Lippmann-Schwinger equation for the radial wave function Rt(r,k)  

[3.2], By performing the necessary algebraic trickery, we can derive the 

free-space form of the radial wave function that must be satisfied on the 

surface of a muffin-tin sphere,
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e's,(k)R,(r,k) = j , ( k r ) -  ik^ h^kr) ,  (r > S). (3.36)

Substituting the phase shift form of R,{r,k) (3.11) into this boundary 

condition produces an expression for the t matrix element in terms of 

the phase shifts:

J S , ( k )

t ,(* )  = ----- — sin S,(k). (3.37)
k

3.6 The Scattering Solutions of the Radial Wave Equation

An alternative radial wave function Z,(r,k) was introduced by 

Faulkner and Stocks [3.12], which has the free-space form

Z,(r,k) = j i (kr)t f l -  ikh,+(kr), (r > S). (3.38)

Comparing equation (3.38) with (3.36) we can easily see that the two 

functions are related:

eiS,(k) R,(r,k) = t,(fc) Z, (r,k). (3.39)

It is important to understand the applicability of these solutions, 

and to illustrate their differences we can consider their behaviour when 

subject to a null scattering event.

3.6.1 Null Scattering Events

In the absence of a scattering potential we have no means to change 

the state of a freely propagating wave and 8 ,(k)  = 0. With this condition 

the radial wave function (3.11) simply reduces to a spherical Bessel 

function, and we also find on examining (3.37) that t ,(k) = 0.

It is interesting to see how the case t,(k)  = 0 affects the scattered 

state T\(r)  when this is defined in terms of R,(r,k). Consistency
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demands that the asymptotic form of the scattered state (3.33) should be 

related to its eigenfunction expansion (3.3) in the appropriate limit

*!*(/•) = ^ a L(k ) R,(r)YL(r),
L

and this allows the coefficients a L{ k ) to be determined. The analysis gives 

[3.13]:

¥*(?) = 4 7 r J j i , e iS‘(k)Rl(r,k)Y*(k)YL(r)/ (3.40)
L

and substituting the conditionS,(k)  = 0, we find that we reproduce 

Bauer's expansion for a plane wave in an angular momentum basis,

erkT = 4  k Y J ' ji(kr)rL{k)YL(r)- (3.41)
L

Not surprisingly, we have found that a phase shift S ,(k) = 0 conditions 

the scattered state to be a pure incident wave; or equivalently, that t ,(k)  is 

responsible for generating the scattered wave in the scattered state .

The null scattering event for Z,(r,k) makes this function singular 

because it behaves as t,"', and we can assert that the relationship between 

the two radial wave functions (3.39) no longer holds. Consequently, we 

recognise that the Z,{r,k)are only usefully defined in the presence of a 

scattering potential, and that they fully warrant their designation as the 

'scattering solutions' of the radial wave equation.

We shall now complete this chapter by reviewing multiple

scattering theory in the spirit of Gyorffy and Stott [3.14], which will lead to 

Faulkner and Stock's expression for the multiple scattering Green 

function [3.12].
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3.7 The Scattering Path Operator

To effect the transition from single to multiple scattering theory, 

we consider a total potential V(r) to be derived from an assembly of

muffin-tin potentials v '(r ) located at points R j ;

V(r) = £ v '( r  -  */)• (3-42)
i

For brevity, we shall assume that the spatial dependence is understood 

and neglect to write this further here.

Recalling the defining equation for the Green function G + (3.20), 

we can rewrite the scattering problem (3.28) for the potential V as the 

operator equation;

+ e} + V]G+ = 1, (3. 43)

where 1 is again the identity operator. The expression in braces is the free- 

space Hamiltonian, which has the free-space Green function G0+. Taking 

advantage of this, we can write the operator equation

- (G / ) '1 + v ]g * = 1, (3. 44)

and thus obtain the full Green function G+ as a perturbation about the 

free-space Green function G0+,

G+ = G0+(l -  VG0T ‘. (3.45)

Expanding (3.44) (taking care over the non-commutativity of the 

operators) produces the perturbation series,

G+ = G0+ + G0+VG0+ + G0+VG0+VG0+ + ... ,
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which can also be written more compactly as a Dyson equation:

G+ = G0+ + G0+VG+ (3.46 a)

= G0+ + G+VG0+. (3.46b)

The Dyson equation (3.46) is formally solved through the total scattering 

operator T:

G+ = G0+ + G0+TG0+, (3.47)

where

T = V + VG0+T (3.48 a)

= V + T G0+ V. (3.48 b)

These relations are noteworthy since it is a simple task to reproduce the 

Lippmann-Schwinger equations (3.30) from (3.48).

We have now come to the crux of this analysis. Because we have 

not made any additional assumptions about the potential V in deriving 

the expressions above, the results (3.48) are completely general. 

Consequently, we can relate the single scattering operators t' associated 

with the potentials v‘ in a similar manner to relations (3. 48);

V = v-' + v' G0+1' = (1 -  G0+v ')-V  (3.49 a)

= v'' + t'G0V  = v'd -  G0V ) - ' .  (3.49b)

We can also relate the total scattering operator T to a particular site 

potential v' by a direct comparison of equation (3. 42) with (3. 48):

T = Z v' + S v' Go+ T- (3.50)
/ i,n

What we are aiming to do is to express the total scattering T in terms of
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individual scattering contributions from the potentials v'. To achieve 

this, we introduce the partial scattering operator Q‘, such that:

T = X f i ' .  (3.51)
i

The difference between the operators Q' and t' should be clear: Q‘ 

denotes the scattering from site i in the presence of all other (multiple) 

scattering events within the assembly, whereas t' denotes the (single) 

scattering solely from the potential v'.

Hence, we can replace the T operator in equation (3. 49):

X G ' = ! > '  + X v 'G 0+ Q\ (3.52)
i i  i,n

which allows us to isolate the contribution from site i,

Q‘ = v' + 2 » '< V  2 ",

„  . (3.53)
= V + v 'G0 Q‘ + X v'Go 2'-

n *i

This last expression may be reduced further by using the single scattering 

t' relations (3.47);

Q‘ = X  + X t,G o+2 ',  (3.54)
Direct

V
Assembly

and we appear to have achieved our objective; equation (3.53) relates the 

contribution to the total scattering from the potential v' as the sum of all 

scattering events within the assembly that contribute an incident wave to 

this site, plus the scattering from the direct wave incident to this site.

Gyorffy and Stott [3.14] further decomposed the partial scattering
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operator Q' to represent the elastically scattered elements of the total

scattering operator T, by introducing the scattering path operatorr'7 

where:

By considering equations (3.54) and (3.55), the scattering path operator can 

be related to the single scattering operators;

where <5, . is the Kronecker delta function.

3.8 Calculating the x Matrix

If we project the defining equation for the scattering path operator 

(3.57) into the position representation, and adjust the origin of the 

coordinate system to locate the scattering sites, we obtain;

(3.55)

and thus,

T = Z e '  = i y j .
i i j

(3. 56)

(3.57)

(3. 58)
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The limits on the integrals arise from the muffin-tin character of the 

potential; since v'(r) = 0 outside the boundary of the muffin-tin sphere 

we can assert, after examining (3. 49) and (3. 57), that both t ' and T,j have 

zero value unless rx lies within site i and r2 lies within site j ,  and hence 

that rx,r2 are constrained to lie within the boundaries of the muffin-tin 

spheres St,S2 respectively.

The spatial restrictions introduced by this geometry allow a 

convenient expansion of the free-space Green function G0+, which 

simplifies equation (3.57) considerably.

By examining G0+ in the position representation (3.32), we find it is 

permissible to write

( h ) — Go(rxrr2-Rin\ cq\(3. 59)

where Rin = Æ, -  Æ „ ; and substituting the RHS of (3.59) into the angular 

momentum decomposition of G0+ (3.34) produces:

G^(ri +Ri,r2+Rn) = W ( * )  W -  (3.60)
L

where 9Î = r2-R jn.

We can now make use of a beautiful relationship that expands a 

spherical Hankel function on one site, in terms of a spherical Bessel 

function centred on a different site;

- i * V W l i ( S )  = X * i  'rJrW(3.61)
r '

We note that this expansion is only valid if < R. which is
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certainly true for the integrals above (3.57). The g'[L. in equation (3.61) are 

the real-space structure constants:

g‘‘L. = - 4 * w - i r v -u ' Z r ' '  o t r . t . t l) « , ( o r t> ( O ,  (3.62)
L

with the Gaunt factors C(L,L' ,L,) defined as

C a , L ’,Lx) = \dfY^f)YL.{r)YLyr).  (3.63)

By using the expansion (3.61) to define the Green function (3.60) we have 

effectively given it a local basis;

G0+(7, +R,,r2+Rn) = X  h (h ) Yl  ( h ) 2 l x  Jr ( j2)YL,(r2). (3.64)
L X

If we now substitute this local basis Green function (3.64) into the 

real-space r matrix equation (3.58), recognise the angular momentum 

representation for the 'on the energy shell' T matrix elements;

•l x = \dr \drfj l {?)Y^ri ) ^ L\r+Rir  + Rj ) j l {r)Yl.Cr'), (3.65)

and also recall the analogous matrix elements for the t matrix (3.33), we 

produce;

Ti j
L V = tu-8u +

Y 1 I  / n
Z j  h L L ' *¿,¿2 
n*i

Tn j
L 2 L ' ' (3. 66)

which is the fundamental equation of multiple scattering theory.

It is easier to understand the structure of (3.66) as a matrix equation

[3.15]; if we define i'lL. = r , t 'LL.SU = t and let ( 1 -  8ij)g'L"Li = T , where 1 

is the unit matrix, then (3. 66) becomes:
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T = t + t r  T (3. 67 a) 

(3. 67 b)

We can now see explicitly how both local (t) and global (T) quantities 

contribute separately to the T  matrix.

3.9 The Multiple Scattering Green Function

Faulkner and Stocks [3.12] derived the multiple scattering Green 

function by substituting T = ]>V y into the Dyson equation (3.47) and

projecting the resulting equation into a real-space representation. By 

considering the site dependent geometry as two separate cases, they 

produced:

where Z[ , j,' are the regular and irregular scattering solutions for the z'th

potential. The Green function (3.68) thus describes the scattering (per 

angular momentum channel) between two separated sites i , j  when r,r' 

fall within these sites, and describes the scattering at a single site when 

r,r' both fall within the same site. Since the irregular scattering solution 

is only included for the single site case, it can sensibly be interpreted as a 

"self-energy" term.

The Green function (3.68) has two properties which make it useful 

for the systems studied later in this thesis; it allows differing potentials 

derived from different atomic systems to be used, and it produces real 

values with real energies.

(3. 68)
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We shall show how the Green function (3. 68) can be modified to 

model spectroscopic phenomena in the next chapter, when we discuss the 

real-space photocurrent equation.

Figure 3.b: a flow diagram illustrating the development 
of the key concepts of multiple scattering theory and how 
these may be used to calculate the Green function.

47



Chapter 3

3.10 References

[3.1] P. Roman, “Advanced Quantum Theory, An Outline of the 
Fundamental Ideas", Addison Wesley Series in Advanced Physics, 
Addison Wesley Publishing Company Inc., Chapter 3, (1965).

[3.2] P. Lloyd and P. V. Smith, Advances in Physics, Vol. 21, 69, (1972).

[3.3] D. Liberman, J.T. Waber and Don T. Cromer, Physical Review, Vol. 
137, A27, (1965).

[3.4] L. F. Matheiss, Physical Review, Vol. 134, A970, (1964).

[3.5] L. I. Schiff, "Quantum Mechanics", Third Edition, Chapter 4, 
McGraw-Hill Book Company, (1968).

[3.6] E. A. Kraut, "Fundamentals of Mathematical Physics", McGraw- 
Hill Series in Fundamentals of Physics, (1967).

[3.7] E. N. Economou, "Green's Functions in Quantum Physics", 
Springer Series in Solid State Sciences, Vol. 7, Springer-Verlag, (1979).

[3.8] J. S. Faulkner, "The Modern Theory of Alloys", Prog. Mat. Sci.,Vol 
27, No. 1-2,1, (1982).

[3.9] R. G. Newton, "Scattering Theory of Waves and Particles", 
International Series in Pure and Applied Physics, McGraw-Hill Book 
Company, page 179, (1966).

[3.10] B. A. Lippmann and J. Schwinger, Physical Review, Volume 79, 
469, (1950).

[3.11] J. J. Sakurai, "Modern Quantum Mechanics", Revised Edition, 
Chapter 7, Addison-Wesley Publishing Company, (1994);

M.D.Scadron "Advanced Quantum Theory and Its Applications 
Through Feynman Diagrams", Springer-Verlag, Chapter 7, (1979).

[3.12] J. S. Faulkner and G. M. Stocks, Physical Review B, Vol. 21, 8, 3222- 
3244, (1980).

[3.13] See, for instance, P. Roman, "Advanced Quantum Theory", (ibid), 
pages 159-165.

48



Chapter 3

[3.14] B. L. Gyorffy and M. J. Stott in "Band Structure Spectroscopy of 
Metals and Alloys", D. J. Fabian and L. M. Watson, (ed.s), Academic Press, 
(1973).

[3.15] P. J. Durham, "Multiple Scattering Theory Basic Working Notes", 
(private communication).

[3.16] A. Messiah, "Quantum Mechanics", Volume 1, North Holland 
Publishing Company, Chapter 5, (1961).

49



Chapter 4

Chapter Four

Photoemission Spectroscopy

This chapter discusses the experimental technique of angle- 

resolved ultra-violet photoemission spectroscopy (ARUPS), and begins 

with an account of the methods used to obtain photoemission spectra. 

The phenomenology of photoemission is presented and the use of Cooper 

minima to monitor the growth of rare-earth thin films is discussed. The 

chapter concludes with a model description of the photocurrent derived 

from multiple scattering theory. Rydberg units are used throughout, 

where h 2 = 2m = e = 1.

4.1 Introduction

In 1887, Hertz [4.1] was investigating the behaviour of sparks and 

made a seemingly innocuous discovery that was to have a profound 

impact on physics; the distance that a spark in an arc lamp could jump 

was increased in the presence of a second, nearby, spark.

Subsequent investigations by Hertz, Lenard and Thomson 

determined that UV light was responsible for liberating electrons from 

metals, thereby generating electrical currents that emanated from a metal 

whenever the light exceeded a particular frequency.

This phenomenon, the photoelectric effect, confounded all
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attempted explanations until 1905, when Einstein suggested a radically 

new interpretation that fully utilised Planck's quantum of action; he 

proposed that the maximum kinetic energy of an electron £max be related to 

the difference in energy between a quantum of light hco and a 

characteristic work function O that signifies a threshold for the onset of 

photoemission. Einstein's equation for the photoelectric effect,

£ma, = hco -  O, (4.1)

provides the fundamental basis for photoemission spectroscopy, arguably 

the most powerful experimental technique for determining the electronic 

structure of a wide class of materials.

For reasons of clarity, some notes on terminology are warranted. It 

is convenient to make a distinction between the photoemission spectra 

that are determined by experiment, and the photocurrents that arise from 

idealised theoretical models. The photocurrents are assumed to derive 

from the motion of photoelectrons, where a photoelectron is an electron 

that has been raised from its groundstate by a single photon. The energy 

which the photoelectron must exceed in order to contribute to the 

photocurrent is called the vacuum level - since final states beneath the 

vacuum level are bound states, whereas final states above the vacuum 

level have kinetic energy. However, a more convenient reference energy 

for photoemission spectra is the Fermi level, and the energy difference 

between the Fermi level and the vacuum level is defined to be the 

workfunction.

Einstein's equation (4.1) supplies an obvious and naive 

interpretation for photoemission spectra (see figure 4.a, overleaf). By 

illuminating a material with light of a sufficiently high frequency and 

discriminating the energy of the photoelectrons, the photoemission
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analyse electron energies [4.3], the predominant method for PES employs 

an electrostatic field to deflect the photoelectrons into a charge detector 

such as a channeltron (see figure 4.b).

Outer
hemisphere

Figure 4.b: the cross-section of a typical hemispherical analyser.

The analyser energy resolution is geometry dependent; for a given energy 

it is effectively determined by the ratio of the total path length in the 

analyser to the width of the entrance aperture.

The traditional laboratory UPS light sources are the spectral lines of 

the noble gases, obtained from gas discharge lamps. The discharge lamps 

can produce a somewhat restricted range of photon energies by ionising 

different high purity noble gases: Hell radiation gives an upper limit of

40.8 eV, while Arl gives a lower limit of 11.8 eV. Although gas discharge 

lamps are certainly effective light sources for photoemission experiments, 

the full experimental potential of PES is only realised through the use of 

synchrotron radiation since this provides a more "tunable" light source.

Synchrotron radiation is the light emitted by accelerating 

relativistic electrons, producing a continuum of photon energies with a
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spectra are assumed to furnish a proportional sampling of the occupied 

electronic states. It is the purpose of the remainder of this chapter to detail 

the limitations of this naive interpretation.

Final State Energy
A

Photoelectron 
Kinetic Energy

Photon Energy fiCO
Formal Electron 
Binding Energy

Groundstate Energy V.

[— Vacuum Level

Work Function <t>

Î
Fermi Level

Experimental Electron 
Binding Energy

Figure 4.a: showing the energy balance relations in photoemission.

4.2 Experimental Aspects of Photoemission Spectroscopy

The evolution of the photoelectric effect into the experimental 

technique of ARUPS had to wait until the 1960's for advances in UHV 

technology, and the development of electron analysers with a sufficiently 

high sensitivity and resolution.

In the UHV regime (~ 10"10mbar) the residual gas molecules in a 

vacuum chamber have a mean free path length of the order of 

kilometres. The rate of surface contamination by the residual UHV 

atmosphere is reduced to a level that allows an "atomically clean" surface 

to remain clean throughout the lifetime of a photoemission experiment. 

For rare-earth metals, this lifetime is typically less than 45 minutes. UHV 

is achieved by a variety of pumping methods that are best described 

elsewhere [4.2].

Although a number of different physical techniques can be used to
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high beam intensity and strong polarisation [4.4]. The experimental data 

for ultrathin films of yttrium presented in the final chapter of this thesis 

was taken at the Daresbury Synchrotron Radiation Source. This operates a 

15 m storage ring at a beam energy of 2 GeV; the typical ring current is 200 

mA and in normal operation (multi-bunch mode) this has a lifetime of 

approximately 24 hours.

4.3 Phenomenology

We have, so far, defined photoemission as an excitation process for 

an electron in which the energy exchange is mediated by a photon. We 

can note some important consequences immediately from this definition; 

firstly, photoemission is dependent on both the cross-section for photon 

capture and on the availability of a suitable final state at higher energy, 

and secondly, by removing an electron from a correlated N electron 

system, a hole state will be created which will induce a response amongst 

the remaining (N-l) electrons. Leaving aside the issue of cross section 

until later, we shall discuss the other points raised in turn.

4.3.1 The Photoelectron

A freely propagating non-relativistic electron satisfies the 

dispersion relation

S = k2 + C, (4. 2)

where e is the electron's kinetic energy, k is the propagation vector for 

the electron (see section 2.4), and C is a constant potential which we can 

choose to be zero without loss of generality.

The dispersion relation (4.2) constrains the possibilities for an 

electron-photon interaction; it specifies that an electron which changes its
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energy to a value e' must also change its ¿-quantum number to a new 

value k' through a quadratic relationship. Since the photon has a 

propagation vector that depends linearly on energy [4.5], it cannot satisfy 

relation (4.2) for arbitrary energy and we can deduce that a free electron 

cannot gain or lose a UV photon, simply because there are no final states 

available for these processes.

In the spatially periodic potential of a crystal, however, the 

electron's momentum is expressed through its Bloch wave vector k,

which is not unique but is defined modulo a reciprocal lattice vector G. 

We can therefore write

k' = k ± G, (4. 3)

and classify photoemission from a crystal as an Umklapp process, since 

the electron diffracts against the crystal lattice in order to acquire the

change in k.

This argument demonstrates why UPS is such a useful probe of 

single crystal electronic structure. A photoelectron is created when a 

photon excites a groundstate electron into a final state which does not 

permit further interactions with the photon field; the photoelectron 

achieves this state by satisfying the underlying dispersion relation for the 

crystal band structure, and this information is preserved in its transport to 

the detector. Thus, from these considerations, UPS elicits the electronic 

structure of crystals because it promotes ¿-conserving (direct) transitions.

In principle, the direct transition suggests that we can image the 

Brillouin zone through angle-resolving experiments, by relating the 

kinetic energy of the photoelectron to its trajectory (see figure 4.c). In 

practice, however, the reduced symmetry of the surface can only conserve
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momentum within the surface reciprocal net, and the normal component 

of momentum k± becomes uncertain. This loss of information prevents 

specific points in the Brillouin zone from being resolved, and the initial 

electron state lies somewhere along a "rod" in k space. Pendry has 

estimated [4.6] that the uncertainty in the normal component is 'smeared' 

over approximately one quarter of the Brillouin zone, but for rare-earth 

metals this is likely to be greater.

hv

Figure 4.c: the experimental parameters for ARUPS, used in bandmapping.
A photon arrives at angle <(> and an electron is emitted at angle 9 to the surface 
normal n. The sample azimuth is denoted by angle £ and p-pol is the polarisation 
vector oriented to plough the surface. If we resolve the photoelectron momentum k 
into components, k = k1 + where ki and kn are the normal and parallel 
components of momentum relative to the crystal surface, we can establish a 
relationship between the momentum, the kinetic energy etin and the angle of 
emission:

*x = V ^ cos*' *ii =
These equations are used to establish the experimental band structure.

If the only physical processes at work in UPS were direct transitions 

modified by some degree of uncertainty, we would expect the spectra to 

comprise a set of Lorentzian functions corresponding to the single
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electron states of the band structure. The fact that experimental UPS 

spectra show more structure than just broadening can be attributed to 

phenomena which lie beyond the single electron model.

4.3.2 The Hole State

The binding energy of a photoelectron is defined rigorously to be 

the minimum energy needed to remove a single electron from an N 

electron system to the vacuum level; it is, therefore, the difference in 

energy between the N and the (N-l) electron systems when the 

photoelectron is at rest at infinity. From this standpoint, we can regard the 

removal of the photoelectron as conceptually equivalent to the 

appearance of a hole state within the (N-l) electron system.

The hole state in the (N-l) electron gas induces a screening 

response that depends on the strength of the hole's 'positive charge', and 

since the strength of the hole charge is dependent upon the proximity of 

the photoelectron, the response of the electron gas can be correlated with 

the kinetic energy of the photoelectron. This correlation establishes a time 

scale for the onset and duration of a variety of response phenomena that 

are manifested in the line shapes and fine structure of spectral features. 

Figure 4.c presents a brief summary of these phenomena.

The influence of the hole state on the electron gas can also be 

categorised, in the language of Flartree-Fock theory, by its impact on the 

effective potential veff(r). If the sudden appearance of a hole state disturbs 

the configuration of the (N-l) electrons sufficiently, then veff(r) is notably 

altered and the (N-l) electrons are forced to adopt the eigenstates of a 

different Hamiltonian to the N electron system. This reduces the 

photoelectron's binding energy by an amount equal to the difference in 

total energies of the N and (N-l) electron gases, the aptly named
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Figure 4.d: showing characteristic time scales and energies for the formation of 
spectral features, and their underlying phenomena. Adapted from Gadzuk [4.7],
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By contrast, when veff(r) is not disturbed too greatly, we anticipate 

that the binding energy is adequately approximated by the single electron 

orbital energy and we can invoke Koopmans' theorem [4.8]. It is in this 

instance that we expect the single electron theory to provide a suitable 

description of spectral features.

In general [4.9], Koopmans' theorem may be applied when the 

bandwidth of the state that originates the photoelectron is of the same 

order as the intra-atomic electrostatic repulsion: Ae ~ U . Consequently, 

we would not expect the narrow bands associated with f electrons to be 

completely described within the single electron model.

The discussion above illustrates the main difficulty in the naive 

interpretation of photoemission spectra. The presence of a hole state can 

lead to a notable modification of the electronic structure, with a 

concomitant change in the measured energy of the photoelectron. For 

UPS, the hole state lies within the valence band and is therefore extended 

throughout the crystal, whilst at higher photon energies the hole state 

remains localised to the ion core. Thus, photoemission measures the 

excited states of a crystal and not the groundstate properties.

4.3.3 The Electron-Photon Interaction

We can consider the introduction of a radiation field into a crystal 

as a perturbation, A, which acts on the existing electronic states. It is, with 

hindsight, somewhat ironic that a fully quantised photon field is not 

necessary to model A [4.10]; a classical description parametrised by a 

vector potential A serves just as well, and this is the approach that we 

shall adopt in what follows.

The exact physical processes initiated within the crystal in response 

to an applied radiation field are not trivial; on a microphysical scale, we
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expect A to be modified through its interactions with the local atomic

fields. Furthermore, because the atomic fields at surfaces and interfaces 

will be different from those in the bulk of the crystal, we also expect a 

different optical response from these regions.

Fortunately, for UPS, we do not need to consider processes at quite 

this level of detail; in the UV range of energies a single wavelength can 

encompass around 100 atoms, and we can regard A as a slowly varying 

plane wave in the crystal. Hence, the incident radiation experiences the 

crystal surface (and possibly other interfaces) as a sharp boundary and 

transmission, reflection and refraction of the wave occurs. The optical 

response of the crystal in this approximation is therefore governed by its 

dielectric properties.

The dielectric function (̂co) for a crystal is a complex function, 

exhibiting a high degree of structure, which represents the elementary 

modes of excitation of an electron gas as a macroscopic average. The 

magnitude of the imaginary part of this function, {£(<»)}, is an 

important quantity because it gives a measure of the strength of energy 

loss processes. However, it is usually the case with transition metals that 

//m{ £ (« )} plateaus beyond 10 eV with little change in structure at

higher energies. Whilst this suggests that UV radiation will be attenuated 

in the crystal, the attenuation as a function of path length is much less for

A than it is for the electron scattering and direct transitions will still

occur. This has a useful consequence; we do not expect to find a strong 

contribution from secondary electrons with UV radiation above this 10 

eV threshold.
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4.3.4 The Dipole Operator

The standard development for analysing the motion of an electron 

in a constant electromagnetic field [4.11] employs a replacement of the 

momentum and potential terms in the Hamiltonian, which we can write 

using Rydberg units as

f r
P  -4 P  - V 0 . (4.4)

Here, 0 is the scalar potential of the radiation field, c is the velocity of 

light, P is the electron's momentum and A = A0 ê is the vector potential,

with ê a unit polarisation vector. We can thus write the Hamiltonian for 

electron states in the presence of radiation as

H Hn \_t  ̂ 7
c

[ P . Â  + À . P )  + +  0, (4.5)

where H0 is the kinetic energy operator. This may be further simplified. 

We can neglect the quadratic term in (4.5) because A is small in

comparison to P , and since A is also defined as being transverse, we can

choose to express (4.5) in the Coulomb gauge and set 0 = 0. Hence, we 

are left with the dipole operator,

A = - ( P . Â  + A.P), (4.6)
c v '

which can be written in a number of different forms that are more useful 

for the purposes of calculation [4.12], but (4.6) shows explicitly that the 

dipole operator is dependent on the polarisation of the vector potential, 

ê. The importance of this polarisation on the structure of photoemission 

spectra can be examined through a symmetry argument.
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4.3.5 Polarisation Effects and Parity

The reflection symmetry properties of the dipole operator are 

expressed in terms of a mirror plane containing both the photoelectron 

and the detector. If the polarisation vector e lies within this mirror plane, 

the dipole operator has even reflection symmetry. If, however, e is 

normal to this mirror plane, the image of e will have opposite sign and 

the dipole operator is assigned an odd reflection symmetry.

In order to detect a photoelectron, the matrix element for the 

excitation process (/|A| i) at the detector must be non-zero. This will be 

achieved when the integrand of the matrix element is an even function 

of its spatial coordinates, because an odd integrand will integrate to zero 

over all space. Since the final state wave function is a plane wave which 

has even parity, we can establish a symmetry selection rule for 

photoemission: A|i) must also have an even symmetry to contribute to 

the photocurrent. Thus, with a suitably oriented polarised light source, it 

is possible to identify the parity of specific states in photoemission spectra.

The last issue which must be considered is the cross-section for the 

photoexcitation process, since this plays an essential part in the method 

used to grow reproducible ultrathin films.

4.3.6 Photoionisation and Cooper Minima

The probability that a photon will excite an electron can be 

expressed in the language of scattering theory; it is the cross-section for 

photoionisation, and as such, it has a value which is derived from the 

wavefunction for the initial electron state. This has an important 

consequence for the structure of photoemission spectra, because an 

atomic sub-shell wave function which possesses a node at a given energy 

will have no available cross-section for photoionisation at that energy.
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The mechanism was first noticed by Cooper [4.13], and a suppressed 

emission of this type through an interval of the energy spectrum is 

named a Cooper minimum.

4.4 Cooper Minima and the Growth of Ultrathin Films

It is fortuitous that W has a Cooper minimum in the 5d band over 

an energy range 150-250 eV [4.14], since this corresponds to both an 

enhanced cross-section for emission from the Y 3d band and to the giant 

4f resonance in the lanthanides [4.15] (see figure 4.e, overleaf). 

Consequently, by tuning a SR light source to exploit these cross-sections 

effects, the growth of a rare-earth single crystal on W(110) may be 

monitored through the attenuation of a suitable W photoemission signal 

with time, leading to reproducible and well-characterised thin film single 

crystals [4.16]. Figure 4.f, overleaf, shows the degree to which the W(110) 

photoemission signal is effectively 'switched-off', whilst the signal from a 

Gd overlayer is boosted with a photon energy of ~150 eV.

The most convenient substrate features to monitor during growth 

are the W 4f core-levels, which are split into bulk and surface components 

on a clean surface. Since the magnitude of this surface core level shift 

(SCLS) is typically 300-320 meV the two components are easily resolved. 

The adsorbate coverage may be estimated by assuming that the decay in 

the bulk 4f peak intensity is exponential and correlated with a constant 

rate of epitaxial deposition [4.17]. These coverage estimates are, at best, 

provisional. One way for the assumptions to breakdown occurs through 

photoelectron diffraction, which may enhance the intensity of spectral 

features with increasing adsorbate coverages by forward-focussed 

scattering. However, the enhancement is only expected to be appreciable 

with photoelectron energies in excess of 200 eV [4.18], and it is not

63



Chapter 4

Mo 5d  

Nb 5d

W 5  d

Figure 4.e, showing the enhanced photoionisation cross-sections for Gd and Y that 
coincide with the 5d Cooper minima of the refractory metals W, Nb,Mo.
Adapted from Yeh & Lindau [4.14]

Figure 4.f, PES spectra of 3 ML of Gd on W(110) showing the effects 
of the giant 4d resonance at h (0  = 152 eV.
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expected to contribute significantly to the thin film spectra presented in 

chapter 5.

4.5 Modelling the Photocurrent

As we have seen above, PES encompasses a rich variety of energy- 

dependent phenomena, and a plethora of theoretical models have been 

proposed over the years as different investigators have chosen to 

approximate different aspects of the photoemission process.

Perhaps the best known of these is Berglund and Spicer's variant of 

the three-step model [4.19], which considers three processes as separate 

contributive factors to the photocurrent: the cross-section for 

photoionisation, the photoelectron's transport to the surface and its 

transport through the surface towards the detector. The fact that the three- 

step model is incompatible with the uncertainty principle and is known 

to over-emphasise photoemission from bulk states has not, however, 

detracted from its popularity with experimentalists [4.1]. Fortunately, a 

more exacting analysis based on scattering theory has produced a 

consensus on the salient aspects of photoemission theory and, by 

providing good agreement with experimental results, established the 

relative importance of single electron behaviour for measured PES 

spectra.

Starting with the proportional relationship between the intensity of 

the light source and the strength of the photocurrent, Schaich and 

Ashcroft [4.20] derived an expression using quadratic response theory, 

which reduces to a Fermi's Golden-rule expression in the single-electron 

approximation. Caroli et al [4.21] used the machinery of Keldysh diagrams 

[4.22] to show that the dominant contribution to the photocurrent can be 

expressed within the single-electron theory. However, by embracing
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single-electron theory from the outset, it was Adawi [4.23] who first 

produced what is arguably the most useful calculative scheme in the 

family of photoemission theories, by recognising the formal symmetry 

between PES and Low Energy Electron Diffraction (LEED).

We can understand the LEED/PES symmetry intuitively. The 

LEED electron is initially prepared as a plane wave and scatters from a 

crystal surface into directed beams. The ¿-dependent surface structure is, 

therefore, encoded in the LEED electron's final state. The photoelectron, 

however, has a ¿-dependent initial state and arrives at the detector as a 

final-state plane wave. The two processes thus mirror each other in their 

initial and final states, and are mathematically equivalent descriptions 

when the photoelectron's initial and final states are reversed.

Although this popular way of relating the LEED/PES symmetry has 

some appeal, designating the photoelectron as the time-reversed LEED 

state appears to be an arbitrary choice - we could just as easily ask for a 

time-reversed PES state to bring them into an equivalence. The correct 

way to understand the LEED/PES symmetry is through the more elaborate 

analysis built from scattering theory, which will be discussed shortly.

The single-electron photoemission theory has been revised and 

extended to suit particular experimental circumstances, most notably into 

the relativistic domain [4.27, 4.28] for spin-polarised experiments, but it 

obviously fails when many-electron processes contribute strongly to the 

spectrum - such as the famous 6 eV many-body satellite in the spectrum 

of nickel [4.29]. Calculations that explicitly incorporate the effects of excited 

states are substantially more difficult than those for the single-electron 

groundstate, and so far there is no consensus on a preferred calculative 

scheme [4.30].
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4.6 Calculating the Photocurrent

The standard single-electron approach to the photocurrent [4.24, 

4.25, 4.26] uses time-independent scattering theory, and no evolution of 

initial to final states is considered. The real-space model partitions the 

model into two distinct regions: the region representing the sample 

contains an assembly of finite-ranged (muffin-tin) scattering potentials, 

whilst the remaining region is empty space, except for an angle-resolving 

detector placed a large distance from the sample (see figure 4.g).

Figure 4.g, showing the experimental arrangement used to model the photocurrent. 

Adapted from Feibelman and Eastman [4.31]

The photocurrent is described by Caroli's equation, which may be 

written as

where G \,G 2 are outgoing and incoming single-electron Green

Detector CO

Sample
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functions at energy (e+ co ) , with co the photon energy, k n = /̂(e + co)

and G * is a single-electron Green function at energy e. Commutation 

relations give the acceleration formula for the dipole operator [4.32]

A = z h U lA .W )  (4.8)

and the potential thus acts as a source for the photocurrent in addition to 

being a scattering centre. The Caroli equation (4.7) is essentially an 

expression for the density of states covering the two energies e and 

(e+ (o), with the dipole operator providing the means for a transition 

between the energy domains.

Adawi recognised that the dyson equation (see section 3.7) for the 

higher energy Green function,

GH R,r; £+co) = G0(R -r ; £+co)

+ J  d~ r' G0( r - r ' ; £+co) V(r) G^r',R; £+co),
(4. 9)

permits the same asymptotic expansion for both free-space Green 

functions in a closed form. This occurs because V(r) exists only within 

the region of the sample, thereby constraining r to lie within the sample 

volume. Hence, by writing

ik(R-k-r)
G0(R -  r ;£  + a>) ---------

R —»■» R
, i kR

R

(4.10)

where k = -k R  , we have a momentum that flows from the detector and 

into the sample, which may also be interpreted as a hole-state current
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flowing towards the detector. By substituting (4.10) into both G0 terms in 

equation (4.9), we can form

i k R

G2(R rr ; e+co) = $>fED(r ■,£+(»), (4.11)
A

where is the Lippmann-Schwinger equation for the time-reversed

LEED state

O f£D(F;e+<») = e,e’r+ J_” dr"e'*-r  V(r")G+2(r",7) e+a).  (4.12)

This may be used to derive the multiple-scattering form of the time- 

reversed LEED state, and the real-space photocurrent equation [4.33] 

follows immediately by direct substition into the Caroli equation (4.7), 

which may now be written as

/(£„,£+to) « -----A* G\(e) A $ f £D( £ + « )}. (4.13)

A derivation of the multiple-scattering time-reversed LEED state will now 

be outlined.

We consider scattering within the sample according to the 

following geometry (see figure 4.h, overleaf):

r lies within a scattering site centred at R n ; r = Rn + rn,

V lies within a scattering site centred at R m ; r' = Rm + r'm.

Expressing equation (4.12) with these coordinates, and substituting the 

muffin-tin potential form for the potential V(r"), we can write

<D \r;e+co) = e

+ S J  °v (rm')G;(rfl,rm';£+Q)).
(4. 14)
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Figure 4.h; showing the labelling scheme used for the vectors in the multiple

scattering time-reversed LEED state.

The plane waves e'K' r" , e,K' r" may be expanded in an angular momentum 

basis using Bauer's formula,

ei(iT) = 4 K ^ i ‘ j l(Kr)YtL(K)YLCr), (4.15)
L

where L = / ,m  denotes the orbital and spin angular momentum indices 

respectively, producing

eS>fED{f-,e+(0) = e iic. R . 4 MKr,)YpK)YL(t , )
L

+ d ?: 0 5 ( 5 ,2 ;«+ »)
m L

X *OMKr'm)YLCO-

(4. 16)

Substituting the multiple-scattering form of the Green function,

G: (rn, Z £+0» = X I  zl’ (r.;«+<»)i;(f.) « ( ? . ,  ? ;;£ + » )
n m L V

x ZmL.{?,m-,e+(0)YL.{r'm)

-  Z ^ r <-f£+co)Y-(r<) j , n( r >>£+co)YL.(r>)öLL.önm ],

(4.17)

and rearranging, we can form an expression containing two integral terms
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(labelled A and B) that can be simplified:

Q>fED{r-,e+(o)  =  4/r
n L

I « ' * * -  I  z ;( r , ;£+® )li.(r,)
V

X v ( r . ')y ,O ro j  (4.18)

B r
y,O cr,) -  S  /<*?. Z - ^ e + O Y p f J

L'

j r\ r>)e+co)YL,(r>) j ,(Krn) }

+ e tic. R „

By writing the scattering solution in a radial wave function basis,

ZL{r) — ^  RL.(r ,£  + (0)tL.L,
L'

(4.19)

and recognising the defining equation for the t  matrix, the first integral

expression (A) can be simply reduced to the Kronecker deltaSLL„. The

remaining integral expression can be re-written in terms of the single-site 

scattering Green function and, after a little algebra, can be reduced to the 

Lippmann-Schwinger equation for single-site scattering

j,(Krn) -  RL(rn; e + co)

+ J dr G+(rn, r ; e  + co)v(r)j,(Kr) = 0,
(4. 20)

The multiple-scattering equation for the time-reversed LEED state 

becomes, therefore

<t>?ED(r;e+co) = 4 / r X ^ *" £/ 'l£ (£)Z £(rB;e+ © )l£(i;)
n L L ' (4. 21)

x vT M  ,2;e+fl>).
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For metallic systems, we can assume symmetry within the surface 

reciprocal net and derive a layer-resolved real-space photocurrent 

equation which is both computationally efficient and suitable for 

modelling a relaxed surface. In the final chapter of this thesis the results 

of a study of the Y/W(110) system will be presented, which includes 

calculated photocurrents for an idealised Y surface.
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Chapter 5

Experiments and Analysis

The principal aim of this chapter is to examine the surface 

electronic structure of Y(0001) by comparing and analysing photoemission 

spectra from both bulk and ultra-thin film single crystals. In particular, we 

aim to identify those changes to the electronic structure of Y(0001) that 

result from yttrium being in the presence of W(110). All of the original 

calculations presented in this thesis were performed using node tci25 of 

the IBM-cluster facility at Daresbury Laboratory.

The chapter begins with a review of previously published ARUPS 

data from a bulk Y(0001) crystal, which is compared with a bulk band 

structure calculated using the LMASA-46 code. Next, original ARUPS data 

from W(110) is presented, which is again compared with its bulk band 

structure. ARUPS data from the Y/W(110) ultra-thin film single crystal is 

then shown and analysed via a series of model calculations, which 

includes the first real-space photocurrent calculations for Y(0001). The 

chapter concludes with a summary of the results and suggestions for 

future work.

5.1 Bulk Single Crystal Studies

One of the earliest reported studies on the electronic structure of 

yttrium was by Loucks in 1966 [5.1], who used the augmented plane wave 

(APW) method to calculate the Fermi surface and provide a crude
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estimate for the density of states (DOS). However, it was not until 1978 

that Loucks' calculation was shown to be in reasonable agreement with 

the de Haas-van Alphen experiments of Mattocks and Young [5.2]. This 

paucity of literature, both theoretical and experimental, graphically 

illustrates the main problem with early studies on the electronic structure 

of elemental yttrium; obtaining a sufficiently pure sample to gain useful 

data. By the middle of the 1980's, however, refining using solid state 

electrotransport was producing the first high-purity rare earth metal 

samples, and surface science experiments first became feasible.

Barrett and Jordan [5.3] initiated the modern era of yttrium studies 

with single-crystal photoemission experiments on Y(0001). This was 

followed by a series of ARUPS experiments on various crystal faces, which 

showed the yttrium valence band to be in good agreement with self- 

consistent LMTO band structure calculations [5.4]. During this time, the 

anomolous SODS feature at the higher binding energy of ~9.6 eV was 

investigated and its main properties identified. To date, the origin of this 

state has eluded explanation, and we shall defer discussing the SODS in 

detail until later in the chapter.

In order to investigate one suggested explanation for the SODS as 

deriving from a many-body resonance with an unoccupied surface state, 

Blyth et al [5.5] performed the first momentum (k)-resolved inverse 

photoemission experiments (KRIPES) on Y(0001). The investigation 

found no evidence for many-body features in the unoccupied states and 

the authors noted that their data is well matched by the linear augmented 

plane wave (LAPW) band structure calculated by Blaha et al [5.6].

It will be instructive for the ultra-thin film analysis that follows to 

compare one data set from bulk single crystal yttrium, the 40 eV photon 

energy Y(0001) ARUPS data presented in Barrett [5.4], with an original
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bulk band structure and DOS calculated using the LMASA-46 code.

5.2 ARUPS for Y(0001) from a Bulk Single Crystal

Although the data shown overleaf (fig. 5.a) was first published by 

Barrett [5.4], a more complete account of this experiment was drafted by 

Blythcr al [5.7] and the experimental details derive from this latter source.

5.2.1 Experimental

The experiment was performed on beamline 6.2 of the Daresbury 

SRS in the early 1990's, when this beamline had a total energy resolution 

of 0.15 eV. The yttrium sample, obtained from Dr. D. Fort (School of 

Metallurgy and Materials, The University of Birmingham, U. K.), was 

cleaned in situ by approximately 30 cycles of argon bombardment (3-4 kV), 

followed by annealing to ~ 875 K to restore the surface order. After cooling 

to room temperature, the sample cleanliness was monitored using UPS. 

Blyth et al reported that the surface showed good order prior to data 

collection, as evidenced by sharp LEED spots, and that the base pressure 

during the ARUPS measurements was 2x l010mbar.

5.2.2 The Bulk Y(0001) ARUPS Spectra

The ARUPS data, shown in figure 5.a, has three prominent valence 

band features displaying a remarkable degree of symmetry in their 

dispersion about normal emission (0 = 0 °). By convention, these three

features with binding energies 0.4, 1.7 and 3.2 eV in normal emission are 

labelled a, b and c and are typical of the valence band for HCP rare earth 

metal samples of this kind.

The dispersion shown by the spectral features b and c along TM is
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Fig. 5.a: ARUPS data collected along TM from a Y(0001) 
bulk crystal, adapted from Barrett [5.4].The photon energy 
used was 40 eV, with angle of incidence 55°.

H

K
Fig. 5.b: symmetry points in the 
Brillouin zone for an FiCP lattice.
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indicative of a bulk-like character for these states, whilst the absence of 

any significant dispersion to the spectral feature labelled a is suggestive of 

a surface state. This last point will be discussed further in relation to the 

calculated band structure for yttrium. It is also interesting to note that the 

intensity of peaks a and c appear to be correlated, an observation which 

has been made by several authors as discussed below.

From an associated study (not shown here) that examined the 

photon-energy dependence of the spectra, Blyth [5.8] determined that the 

a, b and c spectral features are resonant at 38, 32 and 38 eV respectively, 

and that feature a does not disperse with increasing photon energy. The 

concomitant resonance energy for states a and c has also been observed in 

other HCP rare earth metals, being first discussed in a study of Gd(0001) by 

Himpsel and Reihl [5.9], where these authors proposed that features a and 

c shared a common origin in the band structure. Subsequent polarisation 

studies on Y, Gd and Ho [5.4], however, have determined that the a and c 

states possess different symmetry characteristics and so they cannot derive 

from a common origin.

Peak b was studied by Barrett and Jordan [5.3] with the assistance of 

photocurrent calculations. The calculations were performed using the 

Daresbury NEWPOOL code with a bulk LMTO yttrium potential, and led 

these authors to conclude that peak b corresponds to the upper (r4_)

critical point along TA . We shall next present the DOS and band structure 

of yttrium in order to gain more insight into the ARUPS data.

5.2.3 The Band Structure and DOS for Yttrium

The band structure and DOS are shown in figures 5.c and 5.d 

overleaf.The calculations were performed scalar-relativistically and are in 

excellent agreement with other similar calculations for yttrium [5.6, 5.8,
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5.10]. A lattice constant of 6.89259 atomic units (a.u.) was assumed together 

with a c/a ratio of 1.57937155. The self-consistent part of the calculation 

was extremely rapid and convergence was achieved within 10 iterations.

Among the more remarkable aspects of the bulk yttrium DOS are 

the dominance of the d-character states and the large number of states at 

the Fermi level, which increase slightly into the unoccupied region before 

a sharp reduction at 0.4 eV. It is the mainly d-character of the valence 

band which is responsible for yttrium sharing its chemistry with the 

lanthanides, since the lanthanide 4f states are predominately core-like and 

only contribute weakly to the total DOS [5.11]. It is also apparent that the 

peak in total states at -1.9 eV has a significant contribution from states 

with s-character, whereas the narrow peak at -0.9 eV has almost 

exclusively d-character.

Although there are some obvious discrepancies between the 

calculated energies and the actual energies of the spectral features a, b and 

c in the ARUPS data, the general form for the dispersion of the states can 

still be investigated. It is, however, worth noting that although the 

ARUPS data was collected along the TM direction, some folding with the

normal emission (rA) states is to be expected and that this may account, in

part, for some of the differences between the experimental data and the 

calculated bands.

The development of the band structure can be discussed by 

nominating the free-electron like band, which has energy -4.9 eV at the T 

point, to be the "first" band, with a similar labelling for the other two 

bands that appear along TM. Thus, the second band, which has an energy 

of -2eV at the Y point, develops along TM by initially moving to a lower 

binding energy, before changing direction midway between T and M and
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moving back to a higher binding energy, ending at the M point close to 

the third band. The third band enters the occupied region approximately 

midway between T and M and moves to a higher energy. This dispersive 

behaviour is certainly reminiscent of features b and c in the ARUPS data. 

However, it is the spectral feature closest to the Fermi edge (a) which can

be identified more precisely, because there are no states at the T point in 

both TM and TA directions. Recalling that feature a is most intense at the 

T point, and that it shows no dispersion with increasing photon energy, it

can unequivocally be assigned to emission from a surface state.

It is also notable that the first band defines the extent of the band 

structure, since no states exist beyond -4.9 eV. Consequently, this band 

structure does not account for the SODS, which would necessarily be 

placed at a higher energy. It will be interesting to examine some of the 

more defining properties of the SODS feature which may provide clues as 

to its origin before examining the Y(0001) ultra-thin film data.

5.3 Some Thoughts on the SODS

The SODS was first published in a study of Gd(0001) by Jordan [5.12], 

and has subsequently been seen on every bulk single crystal rare earth 

metal studied to date. The fundamental nature of this emission feature 

can be summarised in the following statements:

1) the SODS derives from a state deep in the valence band (~ 9.6 eV) 

which is only seen on clean (0001) bulk crystal surfaces (see figure 5.e 

overleaf);

2) the intensity (width) of this emission feature is directly (inversely) 

correlated with the degree of surface order;

3) it exhibits resonance with photon energies ~40 eV;
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4) experiments with Sc(OOOl) [5.13] have resolved two components in the 

SODS;

340 K

600 K 

610 K 

620 K 

630 K 

640 K 

650 K

Binding Energy / eV

Figure 5.e.The SODS exists only on the (0001) surface of 
rare earth metals.The spectra above show the emergence 
of the SODS feature as the yttrium reconstructs from the 
four-fold symmetric (1120) surface, maintained at an 
elevated temperature, to the (0001) surface at a lower 
temperature. An ideal (0001) surface is also shown for 
comparison. Adapted from Barrett et«/.[5.14].

5) single-electron theory cannot identify any state in any of the rare earth 

metals which could give rise to a SODS.
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There are two very obvious hypotheses that may be proposed to 

explain the list of properties above and these are not mutually exclusive. 

Firstly, we can postulate that the SODS does not appear in any calculated 

band structure because it is a many-body effect and is, therefore, simply 

not described within single-electron theory. Patchett et al. [5.13] have 

pursued an argument of this kind and suggested that the SODS may 

derive from a 2-hole satellite, analogous to the famous 6 eV many-body 

satellite in the valence band of nickel. The absence of a SODS feature on 

the ultra-thin films would then be attributable to the loss of this many- 

body mechanism, most likely due to the presence of an interface state. 

Consequently, 'thicker' single crystal films, relieved of their lattice strain 

and removed from the local potential of the substrate ought once again to 

display a SODS. However, no epitaxial rare earth single crystals published 

to date have ever shown a feature that could be identified with a SODS.

The second hypothesis considers the SODS to be derived from a 

contaminant. Thus, it is supposed that if the contaminant were correctly 

included in a single-electron calculation, the origin of the SODS may be 

found in the compound band structure. Also, the absence of a SODS on 

the ultra-thin films would then be conclusive proof that the epitaxial 

films are cleaner than the bulk single crystals.

The difficulty with this second hypothesis comes from naming a 

suitable candidate as the contaminant, since all reports on the SODS 

feature have claimed that the sample was clean at the time of data 

collection, and adsorbtion experiments which aimed to reproduce a SODS 

on ultra-thin films have merely demonstrated the catalytic properties of 

these films [5.15]. There is, however, one instance in which hydrogen can 

be proposed as the contaminant, and a short discussion on this argument 

will follow.
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It is well known that rare earth metals have an affinity for 

hydrogen [5.16]. Since hydrogen is not detectable through Auger 

transitions and since it also scatters LEED electrons weakly, it can be 

difficult to characterise on a surface. However, hydrogen adsorbed purely 

at the surface can be discounted as a source of contamination in ARUPS 

experiments because this has been well-characterised and is known to 

produce an emission feature at a binding energy of ~ 3.8 eV [5.17],

The formation of the bulk-like yttrium di-hydride ((3-phase) and tri

hydride (y-phase) can also be discounted, since these stable hydride phases 

have strikingly different physical properties to pure yttrium that are easily 

detectable: YH2 forms a BCC lattice whilst YH3 is an insulator which

usually crumbles to a powder [5.18]. This leaves only the disordered a-

phase hydride to be considered, the hydrogen solid-solution which exists 

for concentrations < 0.2 H/Y.

It is interesting to ponder on the possibility of a hydrogen-solid 

solution (the disordered a-phase hydride) being responsible for the SODS, 

possibly through the formation of sp-hybridised orbitals in sub-surface 

layers. It has been noted [5.4] that the SODS may ultimately derive from 

states with p-character, because the photon-energy resonance behaviour of 

the SODS is of the same order in energy as the highest energy p-levels of 

the rare earths. Unfortunately, calculations for the electronic structure of 

the various yttrium hydride phases are very difficult, and the electronic 

structure of the yttrium hydrides is still disputed [5.19].

It is the mobility of hydrogen within the HOP lattice which makes 

the a-phase hydride so difficult to model, and yet we can speculate that

this mobility may also drive the mechanism that causes the giant 

reconstructions of the rare earths, if this is considered to be instead a re
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crystallisation of the surface.

The model that we have in mind is of an open surface which is 

cooling in the presence of an escaping gas. A gas molecule at the surface 

may experience scattering with a phonon from the surface reciprocal net 

and propagate back into the crystal, thereby transporting momentum 

from the surface and into the bulk, or scatter away from the surface into 

free space, thereby removing momentum from the surface layer 

altogether. In this last instance, we have a mechanism for cooling which 

could seed the growth of a close-packed crystal from the surface and into 

the bulk. Evidently this rough model does little more than speculate on a 

possible mechanism for an unproven phenomenon, but Barrett has 

reported that it is only with slow cooling that the reconstructions form 

[5.10],

5.4 The W(110) ARUPS Experiments

Tungsten has a long and important history within the study of 

surface electronic structure, since it was the analysis of UPS data from 

W(001) that first conclusively demonstrated the existence of electronic 

states local to the surface [5.20, 5.21]. Although ultra-thin film studies of 

yttrium on iron [5.22], and a variety of rare earth metals on divers 

transition metal substrates have been reported [5.23], there is good 

evidence from core-level studies that substitutional alloying occurs. 

Consequently, no single crystals have been reported grown on non

refractory metal substrates. The reasons for choosing W(110) as a substrate 

for the growth of ultra-thin film yttrium have been discussed in the 

introductory chapter of this thesis. We quote them again here; no 

substitutional alloying takes place at the interface and the packing density 

of the W(110) face promotes Y(0001) growth.
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In order to understand the part played by W(110) in these ultra-thin 

film studies, we need first to examine and understand the electronic 

structure of W(110). In what follows, original data taken with a VG noble- 

gas discharge lamp is presented and consequently, the light source has no 

specific polarisation.

5.4.1 The ADES Chamber

Figure 5.f, below, depicts a schematic diagram of the Angle 

Dispersive Electron Spectrometer (ADES) UHV system used by the Rare 

Earth Group at Liverpool for ARUPS experiments.

Retractable 
LEED optics

Figure 5.f. A schematic of the ADES chamber.

At the heart of this system is the hemispherical ADES 400 angle 

resolving analyser, which is mounted on a goniometer permitting 

rotations up to 330° in the plane normal to the sample. The source of UV 

radiation is provided by a VG noble-gas discharge lamp. With helium gas 

supplied to the lamp, two photon energies are available for experiments; 

Hell provides a moderately bright source of 40.81 eV photons, while Hel 

supplies a somewhat higher intensity flux of 21.18 eV photons.

The chamber is also equipped with other standard surface science
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tools, such as a set of VG rear view retractable LEED optics which can be 

adjusted to obtain Auger spectra, and a Spectramass quadrupole mass 

spectrometer for residual gas analysis. UHV is maintained by a diffusion 

pump with the assistance of titanium sublimation pumps. The total 

pressure is measured with VG ion and pirani gauges and a base pressure 

better than 2xl0'n can be routinely achieved.

Samples are held in the chamber by a VG omniax manipulator. 

The sample temperature is controlled by electron beam heating, which 

uses a high voltage Glassman power supply to provide a typical current of 

400 mA at 1500 V.

5.4.2 W(110) Sample Preparation

The W(110) sample used was obtained from Goodfellow, who 

quoted a purity of 99.99% and a cut to within 0.5° from a boule. The most 

abundent contaminant in a freshly grown tungsten crystal is carbon, 

which migrates to interstitial sites in the bulk crystal lattice. It is the 

mobility of this carbon within the tungsten lattice which has led to the 

standard recipe for surface cleaning described below.

By heating (or 'roasting') a new tungsten sample to ~ 1500K, the 

carbon impurities undergo transport through the sample, giving rise to 

an enhanced concentration of carbon in the surface region. By roasting in 

an atmosphere of ~10'6 mbar of oxygen, the surface carbon may form CO 

and C 0 2 gases. These may be monitored via their partial pressures during 

the initial stages of cleaning to gauge the purity of the crystal. The 

treatment, however, results in the formation of a thick oxide layer, which 

is removed by rapidly heating (or 'flashing') the sample to a high 

temperature (~ 2300K) for a few seconds.

The crystal used in this experiment was cleaned in this manner
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several times before it was deemed suitable for photoemission 

experiments. During the course of the experiment, the sample was 

periodically 'flashed' to -1800 K to remove residual contamination from 

vacuum chamber gases. The sample cleanliness was monitored initially 

with Auger spectroscopy and the surface order was checked with LEED 

and showed good order prior to data collection.

5.4.3 The W(110) ARUPS Spectra

The ARUPS data for W(110) is presented on the following page and 

shows good agreement with a previous investigation by Peden and Shinn

[5.24], The Hell ARUPS study of W(110) by Holmes and King [5.25] was 

expected to show good agreement with the data presented here, since 

these authors reported using an ADES 400 analyser and employed a 

similar method of sample preparation to the one described above. 

However, their data does not compare particularly well with this study 

and by comparison with tungsten oxide ARUPS measurements [5.24, 5.26] 

(not shown here), it appears likely that their Hell TEN data was at least 

partially oxidised.

The W(110) normal emission spectrum collects data along the TN 

direction (see figures 5.g and 5.h, overleaf) and shows 3 prominent 

spectral features, here labelled as a, [3 and x, with binding energies of 0.25,

1.35 and 1.7 eV respectively. A broad and low intensity feature is also 

present in the spectra that displays a peak at 6.35 eV in normal emission,

although this only becomes prominent as the spectral feature labelled 8 

for emission angles 0 > 28 °.
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The off-normal measurements probe the states lying along TEN. Despite 

some obvious differences in intensity, the data does show some degree of 

symmetry about 0 = 0°, with features P and % exhibiting bulk-like 

dispersion whilst the more surface-like state a disperses only weakly.

In the normal emission spectrum, the feature a peaks at a binding 

energy of 0.2 eV and occupies a width of 0.9 eV. There is also some 

evidence for fine structure appearing on a as low intensity shoulders at 

0.6 and 0.9 eV respectively. As the emission angle is increased, the low 

intensity shoulders persist until 0 = 8°. Thereafter, the peak grows in 

intensity and moves towards a higher binding energy, reaching a 

maximum at 0.5 eV and narrowing to 0.7 eV at 0 = 14°, before drifting 

back to a binding energy of -0.25 eV.

The peaks labelled P and %, however, show a more complicated

behaviour. At normal incidence, P and x are responsible for a broad 

emission that shows peaks at 1.35 and 1.7 eV respectively. As the emission 

angle increases, both peaks move to a higher binding energy and 

apparently coalesce at 0 = 10°, when one state appears to contribute a 

shoulder to the more intense feature at 1.75 eV. Beyond this emission 

angle the features separate. One feature, which we shall continue to call x 

for convenience, moves towards a higher binding energy and achieves a 

maximum of 2.85 eV at 0 = 20°, after which a new state appears that 

moves towards higher energies. This new state reaches 3.3 eV at 0 = 34°, 

whilst P and x move towards lower binding energies and appear to 

coalesce once again.

91



Chapter 5

In order to gain a better understanding of this system, we need to 

examine the calculated band structure and DOS for tungsten.

5.4.4 Band Structure and DOS for W(110)

A scalar-relativistic band structure and DOS for tungsten, which 

has been calculated using the LMASA-46 code, is shown overleaf (figure 

5.i). The calculation used a lattice constant of 5.98136 a.u. for the tungsten 

and converged to self-consistency within 15 iterations.

The most remarkable aspects of the tungsten DOS are the wealth of 

structure in the unoccupied region and the predominance of the d-states. 

The high density of unoccupied d-states just above the Fermi level is also 

noteworthy, since it is these states which are available for hybridisation 

with adsorbates.

The calculated bulk band structure shows good overall agreement 

with previously published bulk band structures for tungsten [5.27, 5.28], 

but it does also show a few discrepencies with fully relativistic 

calculations. Most notably, the band structure does not clearly show the 

famous band gap in the unoccupied states. This loss of detail is not 

surprising, since tungsten's high atomic number places it firmly within 

the domain of relativistic materials, and a scalar-relativistic calculation 

that ignores spin-orbit interactions is necessarily approximate. Over the 

region of the occupied TIN states, however, the LMASA-46 calculation

compares favourably with the fully relativistic band structure that was 

used by Collins et al [5.29] in their investigation of the unoccupied states of 

W(110).

The calculated band structure shows an agreement in form with 

the dispersion of the emission features in the W(110) ARUPS data (figure 

5.g). Using the same labelling scheme for the bands as was done
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previously with yttrium, we can discuss the development of the 

calculated bands in relation to the ARUPS data.

The first band, which starts at the T point with an energy of -10 eV,

increases in energy as N is approached and reaches the N point with an 

energy of - 6.2 eV. The second band begins with an energy of roughly -1 eV 

amongst a complex of states at the T point, and moves to lower energies 

along X , achieving energy -3.5 eV at the N point. The third band also

begins amongst the complex of states at the T point and disperses initially 

towards the lower energies before reversing and moving towards higher 

energies midway through TN, and finally leaving the occupied states just

prior to the N point.The fourth band begins once more amongst the 

complex of states at - 1 eV and increases in energy until midway between 

T and N, at this point it crosses the Fermi level and enters the region of 

unoccupied states.

Evidently, the calculated bands show notable similarities with the 

dispersion of the a, (3, x arid 8 features in the ARUPS data. It is tempting

to assign the origin of the weak 5 feature in the ARUPS data to emission 

from the top of the first band at the N point, to assign the x states to

emission from the second band and the (3 states to emission from the 

third band. This would be, however, premature without full polarisation 

and photon-energy dependency studies.

Having gained some understanding of the electronic structure of 

both Y(0001) and W(110) through calculated band structures, we are now 

in a position to examine the ARUPS data for the ultra-thin films.
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5.5 ARUPS from Y/W(110)

At low adsorbate coverages, the structures formed by small 

transition-metal clusters on W(110) have been the subject of interest, 

mostly through efforts to understand the adatom-adatom interactions 

that govern the growth of the higher coverage ordered films. Tight- 

binding calculations performed by Dhanak and Bassett [5.31] investigated 

the stability of different geometries for Re and W clusters on W(110), and 

found that linear chains of Re had a smaller overall energy than a more 

close-packed triangular configuration. This result is notable because it 

suggests that the formation of linear chains may be a precursor to the 

Frank-van der Merwe (FM) monolayer-by-monolayer growth mode, 

which is believed to be the preferred initial growth mode for Y/W(110). 

The basic growth mechanisms for epitaxial films (see fig. 5.k., overleaf) 

arise in essence from a competition between adatom interactions, the 

sticking probability and the mobility of the adsorbate on the surface.

Amongst the rare earth metals, however, it is the growth of ultra- 

thin films of Gadolinium on W(110) which has been studied most 

thoroughly and a significant literature now exists for this system [5.30]. 

This is fortunate for the analysis of the Y/W(110) system, because Gd and 

Y share a similar valence electron configuration, they have the same 

metallic radius of 1.801 A and they also both adopt the HCP crystal 

structure at room temperature. Consequently, we shall draw on this 

resource whenever it is convenient in the analysis that follows.

5.5.1 Beamline 4.1 and Chamber

The experiments were performed on beamline 4.1 of the SRS at 

Daresbury Laboratory, which has been optimised for ARUPS experiments 

requiring high angular and energy resolution.
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Frank - van der 
Merwe

(Layer by layer growth)

, [ = z i , ,1 i.

| Adsorbate 
I | Substrate

Fig. 5.k, showing the four common types of ultrathin-film growth. After 
Rhead, Barthes and Argile [5.33].

The beamline monochromator comprises three spherical diffraction 

gratings that have been chosen to provide first order diffraction over the 

photon ranges 15-45 eV, 45-130 eV and 100-250 eV.

The beamline 4.1 end station used in these experiments was a 

Vacuum Science Workshop (VSW) UHV chamber, fitted with a VSW 

HA 54 angle-resolving electron analyser, Omicron LEED optics, a Vacuum 

Generators residual gas analyser, a high precision leak valve and a 

bespoke evaporator, originally used by Dowben etal [5.32], and graciously 

loaned by Dowben's research team to the Liverpool REG (see fig.l, 

overleaf). When operated at -1400 K, it has been estimated that a slow but 

constant evaporation rate of about 1 ML in 20 minutes is possible.

The yttrium source, which was an off-cut from a high purity bulk single 

crystal, was held loosely wound in the tungsten basket of the evaporator. 

Heat was applied directly using a low voltage high current (TSP) supply,

Volmer - Weber
(Island growth)

Stranski - Krastanov 

(Island growth after layers)
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whilst cooling was supplied from a flow of chilled water through a copper 

tube coiled around the evaporator body (a stainless steel vacuum pipe).

Figure 5.1. A schematic of the water-cooled, tungsten wire 
basket evaporator, used for the yttrium deposition.

Before use the evaporator was degassed for several days by 

periodically depositing sample films at about 1500 K. It was considered to 

be degassed when films could be grown without the pressure rising above 

10'9 mbar, after which the water-cooling was applied. This allowed the 

evaporator to be operated at pressures below 10‘10 mbar during data 

collection.

The yttrium source was degassed extensively in conjunction with 

the evaporator. Also, because this highly reactive metal behaves like an 

additional sublimation pump under these conditions, the experiment had 

excellent vacuum conditions (~ 5xlOn mbar). The ultra-thin film growth 

was monitored using the Cooper-Minimum technique, as described in the 

previous chapter.

5.5.2 ARUPS spectra for Y/W(110)

The photon energy dependency of the Y/W(110) system is shown 

in figure 5.m, overleaf. The data was collected at normal emission (TP for

tungsten) and used a range of photon energies, from 25 to 45 eV.

The most striking difference between the ARUPS data for the bulk 

single crystal (see fig. 5.a) and the spectra in fig. 5.m is the lack of any 

significant emission features over the range 1.5-3.5 eV in the ultra-thin
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film crystal. This is surprising, because the bulk yttrium single crystal (see 

fig. 5.a) has its most intense emission over this range of energies. In fact, 

we can estimate that the spectral features delimiting the region of the 

valence band for Y/W(110) occupy less than 50% of the energy region 

available to the bulk crystal valence band. This narrowing of the ultra- 

thin film valence band is suggestive of a reduction in the yttrium 

coordination number compared to that of the close-packed bulk crystal.

Binding Energy / eV
Figure 5. m. The photon energy dependence 
data for Y/W (110). The film thickness is 
estimated to be 3 ML. The data was 
collected in normal emission with an 
incidence angle of 5°.

The most prominent feature in the ultra-thin film spectra (fig. 5.m) 

is the intense emission at 0.1 eV, which has a width of ~ 0.1 eV and
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shows no significant dispersion as the photon energy increases. This 

emission has been attributed to a surface state, and is typically seen in the 

valence band of epitaxially deposited rare earth films [5.34]. The data 

shows that the surface state resonates at h o  = 38 eV, which we note is the

same resonance energy as the surface state (peak a) on the yttrium bulk 

single crystal. There is also a weak emission feature which emerges at 0.2-

0.25 eV for h o  = 38 eV and drifts to higher energies as the photon energy 

increases. A broad and low intensity emission having a binding energy of 

~ 1.8 eV resonates when ho  = 38 eV, which is the same resonance energy 

as the bulk single crystal peak c.

The ARUPS data for the ultra-thin film, which was collected along 

the TEN direction relative to the tungsten , is depicted in fig. 5.n (overleaf)

and shows the development of additional structures with dispersive 

characteristics in the spectra. The surface state shows another feature as a 

shoulder at binding energy ~ 0.35 eV for 0 = 4°, which broadens and 

disperses to a higher binding energy as 0 increases. For angles exceeding

18°, a further two spectral features become prominent, having binding 

energies 1.3 and 1.5 eV. Also, for angles above 24°, a further shoulder 

appears on the surface state with a binding energy of ~ 0.45 eV.

An analysis of this data will now follow, through a progression of 

models for the yttrium surface, for the tungsten surface and for the 

surface of an immiscible alloy of tungsten and yttrium. The calculations, 

however, will only attempt to establish the general form of the electronic 

structure and comparisons with absolute values, such as the binding 

energies of spectral features, will not be attempted.
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Binding Energy / eV
Figure 5.n. ARUPS data for Y/W (110). The film 
thickness is estimated to be 3 ML. The data was 
collected with photon energy = 33 eV and an 
incidence angle of 5°.

5.6 Model Calculations

We have until now tacitly assumed that it is the yttrium valence 

band that is being measured in the ultra-thin film ARUPS data. Important 

questions, however, must be answered before we can have any confidence 

that this is indeed the case. To what extent does the ultra-thin film behave 

like an ideal 2-dimensional Y(0001) surface? What is the effect of lattice 

strain on the yttrium electronic structure? How is the yttrium electronic 

structure altered by local bonding at the interface? It is the purpose of the 

calculations that follow to attempt to answer these questions.

The super-cell calculations forming this part of the study
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endeavoured to discover the best possible model for the electronic 

structure of Y/W(110). In particular, one feature that the calculations were

aiming to identify was the origin of the intense surface state at the r  point 

of the ultra-thin films. The calculations used the standard 'slab' technique 

for surfaces, in which the fully three dimensional periodic lattice is given 

an additional period of one "long" vector, the slab is then formed by 

partitioning this 'super'-unit cell into two contiguous regions: the 'filled' 

sites occuping one part and the 'empty' sites the remaining part. The 

layers comprising the filled sites, which ultimately contain the self- 

consistent potentials, are separated by the vacuum layers containing 

diffuse and extremely weak potentials. The surface is deemed to be 

isolated within the super-cell when the DOS for the vacuum region is 

negligable in comparison to the DOS for the filled region.

Figure 5.o, showing how W(110) forms the 
FCT unit cell in the slab geometry used for 
surface calculations.

The calculations used two different slab geometries in modelling 

the yttrium and the tungsten systems. The pure, unstrained yttrium used 

an HCP structure with the long vector on the c axis. The W(110) surface 

(see fig. 5.o, above) was modelled using a face-centred tetragonal (FCT)
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unit cell, having the long vector oriented normal to the 110 direction.

The structures were initially calculated with the smallest number 

of vacuum layers needed to ensure self-consistency. The thickest slabs 

were, in fact, the first to be calculated. The thinner slabs resulted from 

replacing filled layers with vacuum layers, so that the size of the supercell 

was constant throughout.

5.6.1 Calculations for Y(0001)

The band structure for a single layer of yttrium, calculated using the 

bulk lattice value and ignoring possible relaxations, has been plotted

along the TM direction (as shown in fig. 5.p, below). Because this system 

provides each atom with only 6 nearest neighbours, it is not surprising

Figure 5.p. The single layer 
yttrium band structure

to discover that the band structure has narrowed in comparison with that 

of the bulk band structure. Also noteworthy is the absence of any occupied

states at the T point and close to the Fermi level that can be identified 

with the ultra-thin film's surface state.

1 0 2



Chapter 5

with the ultra-thin film's surface state.

The bulk band structure has been reproduced in fig. 5.q, below, for 

reference. The bulk yttrium structure has already been discussed in some 

detail (see section 5.2.3), and nothing further will be added here.

for bulk yttrium.

The band structure for a double layer of HCP yttrium is depicted in 

fig. 5.r, below. The increased coordination number for this system leads to

Figure 5.r. The double-layer 
yttrium band structure.

a broader valence band than that of the single-layered yttrium. A 

comparison with the bulk band structure (fig. 5.q) shows that the bands 

are also significantly more 'bulk-like' and have substantially more
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It is interesting at this point to make a comparison between the 

'unstrained' (HCP) yttrium and a 'strained' (FCT) single layer of yttrium 

(see fig. 5.s, below). The FCT yttrium shows once again a familiar 

narrowing of the valence band.

Figure 5.s. The band structure for 'strained' yttrium; 
a single layer of yttrium in the FCT lattice.

However, the band structure for FCT yttrium does show a far richer 

development of states than that of the yttrium HCP system. In particular, 

one state near the Fermi level shows very little dispersion along the first 

half of TM, except for a slight drift towards lower binding energies. 

However, we cannot associate this with the features at the Fermi level in 

the ARUPS data because we require a dispersion towards higher binding 

energies.

Evidently, we may continue looking at the band structures of 

increasingly thicker slabs, with the proviso that eventually bulk-like 

characteristics will begin to appear. In general, the development of states 

plotted within a band structure become more difficult to follow as the slab 

thickness increases. However, the onset of bulk-like states can be much 

more easily seen through the DOS rather than the band structure. For 

example, fig. 5.t (below) shows the favourable comparison between the 

local density of states (LDOS) from the centre of a six-layered HCP yttrium
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slab and the density of states from bulk HCP yttrium, and we can conclude 

that a six-layered slab of yttrium suffices to calculate both surface and bulk 

properties.

Binding Energy / eV

Figure 5. t. The similarities between the LDOS 
from the centre of a six-layered yttrium slab and 
the DOS from a bulk calculation.

5.6.2 Calculations for the W(110) surface.

It is, perhaps, a conceptual simplification to consider the presence 

on tungsten of a few monolayers of yttrium as equivalent to an 

immiscible tungsten-yttrium alloy, with the tungsten and yttrium 

possessing their own local density of states. Consequently, in anticipation 

of the calculated properties of the alloy structures, it will be helpful to 

examine the pure W(110) surface. The calculations have assumed bulk 

values for the lattice spacing and therefore no relaxation at the surface is 

considered.
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Figure 5.u (below) shows the single-layer band structure 

calculation for tungsten, which displays the usual narrowing of the 

valence band.

Figure 5.u. Tire band structure for a single 
layer of tungsten in the W(110) lattice.

Aside from the apparent degeneracy of the tungsten bands, a comparison 

with the single-layer FCT yttrium band structure (fig. 5.s) shows some 

interesting similarities in form, the most noteworthy being the state at the 

T point beneath the Fermi level which disperses weakly to a lower 

binding energy.

The band structure from a three-layered tungsten slab is shown in 

figure 5.v (below), and has twice the width of the valence band of the
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single layer. Perhaps the most interesting aspect of this structure is the 

wealth of states between the Fermi level and - 5 eV, which disperse to

both higher and lower energies from T to N. Amongst these, there are 

states close to the T point and the Fermi level which have the correct 

dispersive form for the ARUPS features in the ultra-thin film.

5.6.3 Calculations for Y/W(110)

We have already remarked on the ultra-thin film system as being 

essentially an immiscible alloy. It will be helpful for the analysis of the 

ultra-thin film ARUPS data to examine the LDOS for the yttrium and 

tungsten in two different FCT slab configurations. The thicker slab 

comprises five filled layers having a Y-W1-W-W1-Y ordering, where W 

and W1 denote inequivalent lattice sites. The thinner slab is simply

T N
Figure 5.v. The band structure for a three-layered 
slab of tungsten in the FCT lattice.

107



Chapter 5

ordered as Y-W-Y. Although these were not the only slab configurations 

calculated, they are the most relevant for this analysis.

Figures 5.w and 5.x (overleaf) show the LDOS for the central 

tungsten layer and the yttrium for the thicker slab. This slab, which is 

probably the more intuitive physical model, evidently shows too much 

tungsten character in the yttrium potentials at the edge of the slab.

Figure 5.w. The LDOS for tungsten taken from the centre of a five-layered alloy 
slab compares favourably with the DOS from bulk tungsten.

The thinner (Y-W-Y) slab LDOS is shown in fig. 5.y, also overleaf, 

and displays a more amalgamated electronic structure; both yttrium and 

tungsten now share similar characteristics in their respective LDOS. The 

band structure for the Y-W-Y slab is shown in fig. 5.z (see page 110), and
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slab, has acquired mostly tungsten character and shows little resemblance to

Binding Energy / eV
Figure 5.y. The Y-W-Y alloy slab shows a mixing of tungsten 
and yttrium characteristics in the LDOS.

109



Chapter 5

Figure 5.z. The band structure for 
the Y-W-Y slab.

represents the best model so far for the electronic structure of ultra-thin 

film Y/W(110). The band structure for the Y-W-Y slab (fig. 5.z) shows the

dispersion of two nearby states at the V point, which cross through the 

Fermi level and progress to higher binding energies as they approach the 

N point. This is very similar to the dispersion of states in the ARUPS data. 

The orbital characteristics of the bands (see figure 5.A, overleaf) were 

investigated using the so-called 'fat-band' option and show that the 

prominent state at the T point which crosses the Fermi level derives from 

a hybrid of yttrium sp-states and a tungsten orbital with (x2 - y2) symmetry.

It is worth noting the following two points. Dowbenef al. have 

reported observing changes to the surface state of gadolinium single 

crystals grown on W(110) as the film thickness increases [5.34]. If the 

surface state does contain a hybridised orbital from a tungsten d-state, 

then increasing the film thickness should remove this component and 

the surface state character will change, in accordance with Dowben's 

report. Also, although these model calculations may be considered to be 

idealised, experiments investigating W-f7/2 Auger decay channels [5.35]
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have shown that the surface of W(110) permits decays more usually 

associated with the atomic state. Consequently, the surface is more 

'atomic-like' than 'crystal-like' and the single-layer calculations above 

may be sufficient to model W(110).

N
Figure 5.A. Plotting the orbital characteristics for the Y-W-Y slab 
shows that the T-point state at the Fermi level is hybridised, having 
the character mostly of yttrium sp-states (left) but also having the 
character of one of the tungsten states (right) with (x2 - y2) symmetry.

5.7 Photocurrent Calculations

The photocurrent calculations presented below were performed 

using the scckkr code, written by Dr. A. Ernst at Daresbury Laboratory. 

Unfortunately, the code was still under development when the 

photocurrent calculations were being prepared, and a more complete suite 

of calculations could not be completed.

The calculation of a photocurrent using scckkr proceeds in two 

stages. First, supplying the input with structural information (unit cell 

dimensions and space group) and information on the atomic species 

allows the code to generate the necessary self-consistent potentials. The 

potentials can be checked for suitability through a DOS calculation. The 

potentials are then distributed throughout real-space in a crystalline
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cluster. The real-space photocurrent equation (see section 4.6) can be 

calculated once additional information concerning the photon beam 

(energy, polarisation etc.) is supplied to the input. The calculations employ 

a final integration in the complex plane with a small imaginary 

component to the energy (~ 10'3 Rydbergs) to simulate spectral broadening.

Figures 5.C and 5.D (on the previous two pages) show calculated 

photocurrents for yttrium, using potentials generated from a bulk 

calculation and covering the two photon energies 33 and 40 eV 

respectively. The calculated peaks have been additionally broadened by 

convolution with a Gaussian having a width of ~ 0.1 eV.

Unfortunately, the results are somewhat difficult to understand, 

despite the potentials producing the DOS shown in figure 5. B below. The 

DOS has been optimised for calculations over the occupied states and so 

does not show the unoccupied states in any detail.

Figure 5.B. The DOS for 
yttrium, as calculated by 
the scckkr program.
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Both the 33 eV and the 40 eV photocurrents on the preceeding 

pages show a suppression in the states over the energy range 2-4 eV, 

which is precisely the range of energies over which the bulk crystal shows 

its most intense emissions. As the states disperse with changing emission 

angles they bear little relationship to the ARUPS data - even allowing for 

numerical inaccuracies in the calculated intensities. It is, however, 

possible that the calculations were performed with the energy mesh set to 

an inappropriately high number, allowing too many inconsequential 

fluctuations through to swamp the final calculation. When the scckkr- 

DOS calculation (fig. 5.B) was performed with different numbers of energy 

grid points, the overall shape of the DOS was seen to change, sometimes 

quite markedly.

5.8 Conclusions

ARUPS data shows that spectral features within the energy range 

usually attributed to the valence band of yttrium are substantially 

different for the bulk and ultra-thin film single crystals. The valence band 

for the ultra-thin film crystal apparently occupies an energy range which 

is ~ 50% narrower than that of the bulk single crystal.

The dispersion shown by the spectral features of a bulk single 

crystal with a changing angle of emission generally follows the calculated 

scalar-relativistic band structure obtained from a tight-binding LMTO 

program. Although the calculated energies for the bands do not match 

exactly the measured spectral features, the band structure does show good 

overall agreement. The yttrium bulk single crystal is, therefore, well 

described within the bulk single-electron theory.

The scalar-relativistic band structure calculated for tungsten shows 

some discrepencies with fully-relativistic band structures previously
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published, in that the band gap in the unoccupied states is not properly 

represented. The region of the occupied states probed by the 

photoemission experiments does, however, show dispersive 

characteristics with changing emission angle and these agree well with 

the general form of the scalar-relativistic band structure. Consequently,

we can assert that the tungsten crystal in the direction TEN is well

described by the scalar-relativistic band structure, but we should not expect 

this to be the case across the entire Brillouin zone.

A series of surface band structure and LDOS calculations have been 

performed in an attempt to synthesise the electronic structure of the ultra- 

thin film. Yttrium slab calculations in the HCP symmetry and with 

increasing numbers of yttrium layers have failed to show any significant 

structure that can be allied with the dispersive behaviour of the ultra-thin 

film. In fact, the yttrium HCP slab calculations rapidly adopt a bulk-like 

electronic structure.

Within the symmetry constraints of the LMTO program, it was 

possible to estimate the effects of strain on the ultra-thin film by placing 

the yttrium in an FCT lattice. This band structure showed states within

TIN that had more of the dispersive character of the ultra-thin film than 

the HCP lattice, suggesting that strain may play an important part.

Immiscible alloys of tungsten and the yttrium in the FCT lattice 

were also investigated and showed that the presence of tungsten can force 

significant changes to the LDOS and to the development of the TEN states.

In particular, the LDOS for tungsten in the Y-W-Y slab shows a marked 

loss of unoccupied states, which may be attributed to a charge transfer 

from the yttrium and to the tungsten at the interface. Also, the band 

structure for the Y-W-Y slab possesses states that accord well with the
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dispersive features in the ARUPS from ultra-thin film yttrium. One of 

these states has been examined to ascertain its orbital character, and has 

been shown to be due to mostly yttrium sp-states that have hybridised 

with a tungsten d-state having (x2 - y2) symmetry.

Photocurrent calculations were also performed to investigate the 

effects of different photon energies on the emission features. The 

calculated photocurrents were, however, inconclusive.

We can conclude from these results that tungsten is not a passive 

substrate that simply supports a somewhat strained yttrium crystal but is, 

in fact, actively shaping the electronic structure of these ultra-thin films.

5.9 Directions for Future Work

The Rare Earth Group at Liverpool are currently planning a series 

of experiments on the growth of HCP rare earth ultra-thin films using the 

(112) surface of refractory metals. This follows a recently re-discovered 

paper by Du and Flynn [5.36] who claim to have grown (1012) rare earths 

on W(112) without any lattice strain. Waldfried et al. [5.37] have also 

performed some initial studies on this system and suggest that the 

unstrained growth may only occur over a certain range of temperatures. If 

these studies prove to be reproducible, it may open a new field in the 

study of epitaxial rare earth systems. The prospect of calculating the 

electronic structure of an unstrained epitaxial lattice should also elucidate 

the role of the substrate in the complete alloyed electronic structure.
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