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ABSTRACT

The spin-flop phase transition has long been of interest to both

theoretical and experimental physicists, ever since it was first pre-

dicted by Louis Neel in 1936. In this work spin-flop transitions in

the antiferromagnetic materials K2FeF5, Rb2FeF5 and a-Fe203 have been
57studied by means of Fe MBssbauer spectroscopy.

Spectra of K2FeF5 and Rb2FeF5 single crystals were recorded at 4.2K

with external magnetic fields of up to 14T applied in different modes,

providing information on the effect of misalignment on the sharpness

or 'order' of the observed transition. Directing the applied field

parallel to the easy anisotropy axis resulted in a sharp 'first-order'

transition, while misaligning the field by ~30o produced a broadened

'second-order' transition.

Field-induced spin-flop transitions in a-Fe203 single crystal sam-

ples were studied at low temperatures by applying fields of up to lOT

either parallel to or perpendicular to the easy anisotropy axis. The

observed transitions were found to be of first-order in the 'parallel'

case, and second-order in the 'perpendicular' case. The Morin transi-

tion, a temperature driven spin-flop which occurs naturally in

a-Fe203 at ~260K, was also studied and was found to be of first-order.

Comparison of the character of the observed transitions with the

predictions of several theoretical models of the spin-flop led to the

conclusion that the conventional mean-field theory of the transition

provides a good qualitative description of the phenomenon.
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CHAPTER ONE INTRODUCTION

Phase transitions in magnetic systems have long been of interest

to both theoretical and experimental physicists. One such transition

is the 'spin-flop' phase transition that was initially predicted by

Louis Neel in 1936 and was subsequently observed experimentally in

CuCl2.2H20 by C.J. Gorter in 1953. This transition has since been

found to occur in a number of antiferromagnetic materials.

In simple terms the spin-flop transition may be described as fo1-

lows. The free energy of an antiferromagnet subject to an applied

magnetic field B is reduced by an amount -(1/2p )XB2, where p is theo 0

permeability of free space. The magnetic susceptibility X is generally

smaller in the direction of the antiferromagnetic axis of the spins

than in the perpendicular direction (X(Xl..)' and t.he.re.fore the spins
will tend to align perpendicular to the applied field. However this

effect is hampered if the antiferromagnet is slightly anisotropic and

has a preferred orientation ('easy axis') for the spins in the crys-

ta11ine lattice. In such a case an applied field directed along the

easy axis will induce a transition when the anisotropy energy -K is

balanced by the field energy term -O/2po) (Xl..-X,,)B2.At the critical

field BSf=[2KPo/(X~-X,,)]! the antiferromagnetic axis of the spins re-
orients to a direction perpendicular to the easy axis in what is known

as a 'spin-flop' transition.

The spin-flop phenomenon has found applications in many diverse

fields. For example, the spin-flop has recently been used as a prac-

tical method of measuring the magnetocrysta11ine anisotropies present

in randomly mixed antiferromagnets (Ita et al. 1986). In contrast,

Rohrer and Gerber (1977) have utilised the effect to test some pred-

ictions of the renorma1isation" group theory of crossover phenomena.
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However the majority of work to date has centered on obtaining a full

understanding of the mechanism of the transition itself.

Many investigators have studied the sharpness or 'order' of the

spin-flop transition. Neel (1936) predicted that the transition would

be abrupt provided the applied field was perfectly aligned with the

easy axis, but that any misalignment would result in a broadening of

the transition. More recent work (Chepurnykh 1968, Rohrer and Thomas
1969) has shown that if the misalignment angle exceeds a critical angle

~ (T) a gradual rotation of the antiferromagnetic axis away from thec

easy axis will take place. The critical angle ~c corresponds to the

edge of a 'shelf' of first-order transitions in the magnetic phase

diagram of the weakly anisotropic antiferromagnet. It has also been

found (Rohrer and Gerber 1978) that the nature of the anisotropy in

the system (e.g. uniaxial or orthorhombic) is of importance. In the

latter case the first-order 'shelf' may be very wide, extending to the

paramagnetic phase boundary.

In the present work the spin-flop transition in the orthorhombic

antiferromagnets K2FeF5 and Rb2FeF5' and the 'Dzyaloshinsky'

antiferromagnet a-Fe203 have been observed. The contrasting charac-

teristics of these materials allo~s a comparative study to be made,

both between the systems and with theoretical predictions.

K2FeFS and Rb2FeFS exhibit similar quasi one-dimensional proper-

ties, but they have quite different ordered magnetic structures. In

K2FeFS the spins align collinearly along the crystal b-axis, while in

Rb2FeFS four magnetic sublattices are present, with distinct easy axes

at -300 to the b-axis. Therefore in K2FeFS it is possible (in princi-

ple) to align the applied field with the easy axis, but in Rb2FeFS a

field directed along the b-axis is effectively misaligned by 30°. The

effect of misalignment on the transition can thus be investigated.
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Hematite (a-Fe203) is a three-dimensional antiferromagnet, noted

for its temperature dependent spin-flop at TM~260K known as the 'Morin

transition'. Below TM the spins lie along the crystal <111> axis, and

a magnetic field applied along that axis may induce a second spin-flop.

It is of interest to compare the field-dependent spin-flop with the

temperature-driven Morin transition.

The different dimensionalities of the systems studied also provides

insight into aspects of the spin-flop phenomenon, such as the applied

field dependence of the excitation of spin-waves (magnons) in the

lattices. Recent theories relating the spin-flop effect in

one-dimensional materials to non-linear spin waves or 'solitons' (de

Jongh 1982) may also be tested.

The experimental technique utilised in this study was S7Fe

Mbssbauer spectroscopy. The Mossbauer effect is a particularly useful
..

tool for observing spin-flop transitions since the presence of

unflopped, flopped or intermediate phases in the crystal may be di-

rectly observed in the positions, splittings and intensities of the
spectral lines.

An outline of this thesis is as follows. In Chapter 2 a review of

the theoretical basis of the spin-flop transition is given. The

technique of Mbssbauer spectroscopy is briefly discussed in Chapter

3, and in Chapter 4 the experimental details of the work are described.

Chapter S deals with the results of the experiments performed on

K2FeFS and Rb2FeFS' and the work on a-Fe203 is reported in Chapter 6.

Finally, the various results are summarised and discussed in Chapter

7.
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2.1 INTRODUCTION

Theoretical analysis of the spin-flop phase transition was first

performed by L. NeeI in 1932 and 1936 on the basis of a classical

mean-field model. This work was later extended by several authors,

including Van Vleck (1941), Nagamiya (1951) and Gorter and Haantjes

(1952). Chepurnykh (1969) and Rohrer and Thomas (1969) independently

described the nature of the spin-flop at zero temperature for a field

applied in an arbitrary direction with respect to the easy anisotropy

axis of a uniaxial antiferromagnet. Later work by Rohrer, Thomas and

co-workers has dealt with the temperature dependence of the critical

field values and with the effect of non-uniaxial anisotropy.

Several assumptions are inherent in the classical spin-flop theory.
All the spins in the lattice are regarded as moving independently, a.id

the interaction of their average values is taken as sufficient. This

approximation has serious limitations, particularly at low temper-

atures where it fails to allow for collective movement of the spins.

A more realistic approach using spin-wave theory (Bloch 1930) has been

applied to the spin-flop transition by Kanamori and Yosida (1955) and

Jacobs and Silverstein (1964). This· analysis indicates that in the

course of the spin-flop the applied field influences the spin-waves

in the system, a feature which may be observed as a field-dependent

mean spin value for the magnetic atoms.

It has recently been proposed that in low-dimensional systems the

spin-flop may be interpreted in terms of moving domain walls or

'solitons' (de Jongh 1982). In this model the transition corresponds

to a softening of the energy required for the creation of a soliton.

The width of the transition is found to be broader than that predicted

by either the classical or spin-wave theories.
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In this chapter the classical theory of the spin-flop transition

is described in some detail. First the simplest example of a uniaxial

antiferromagnet at zero temperature subject to a perfectly aligned

field is considered. Thereafter the effects of field misalignment,

non-zero temperature and non-uniaxial anisotropy are discussed. In

sections 2.3 and 2.4 the spin-wave and soliton theories are briefly

reviewed, with particular reference to those predicted effects that
were likely to be observable in the present experiment.

2.2 MEAN-FIELD THEORY

The earliest quantitative treatment of a magnetic phase transition

was made by P.Weiss in 1907, and is known as mean (or molecular) field
theory. In this theory every spin in a f ercromagne't Lc body is subject

to a virtual magnetic field which is proportional to the local value

of the average magnetisation. Heisenberg (1928) interpreted this

virtual field to be a consequence of a quantum-mechanical exchange

interaction between neighbouring atoms. Neel (1932,1936) introduced

the concept of antiferromagnetism by assuming a negative exchange

interaction between nearest neighbours in a lattice. He was able to

show that below some critical temperature (now known as the Neel tem-

perature) two magnetic sublattices would appear, with the atoms on one

sublattice experiencing a mean field of magnitude proportional to (but

of opposite direction to) the average magnetisation of the other

sublattice. Neel also noticed that the directions of the two sublattice

magnetisations would tend to align themselves perpendicularly to an

applied field, but that this tendency would be opposed by a crystalline

anisotropy favouring other directions. This observation forms the ba-

sis of the spin-flop phenomenon.
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Some years ago Rohrer and Thomas (1969), Thomas (1969a,1969b) and

Blazey et al. (1971a,1971b) studied the spin-flop transition in the

mean-field approximation. The main steps in their analysis may be

summarised as follows. The method is to minimise the free energy

F=E-TL, where E is the energy and L is the entropy of the system. F

is calculated as a function of the sublattice magnetisations <S.> and
1.

<S.>, the equilibrium values of which are found by minimising F with
J

respect to <S.> and <S.>. The stability limits of a given phase (e.g.
1. J

antiferromagnetic or spin-flopped) are then obtained from the second

derivatives of the free energy with respect to the sublattice

magnetisations.

In this section we illustrate the analysis of Rohrer, Thomas and

Blazey by taking as a simple example the uniaxial antiferromagnet at
zero temperature. The effect of finite temperature and other types of

anisotropy are also discussed. But first we shall consider the form

of the spin Hamiltonian which is used to describe the antiferromagnet:

2.2a The Spin Hamiltonian

The energy of an antiferromagnet may be given by the expectation

value of a Hamiltonian of the form

H = Hex + Hanis + Hfield
The first term is the isotropic (Heisenberg) exchange energy:

(2.1)

H = 2L .. J .. S.·S. ,ex 1.J 1.J-1. -J
where S. refers to the spins on one sublattice and S. to those on the

-1. -J

other sublattice, and the summation is restricted to pairs of

neighbouring spins. The exchange constants J .. are positive so that1.J
the antiparallel orientation of the neighbouring spins is preferred.

We may note that J .. may have different strengths along different di-1.J
rections in the lattice. In a quasi one-dimensional antiferromagnet

the coupling J between neighbours in the chain is much stronger than
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the coupling J' between chains. In a three-dimensional system J is

isotropic.
Magnetic anisotropy may arise from the coupling between the spin

and the orbital angular momentum of the ion : the orbital state is

directly affected by the atomic arrangement and the spin can therefore

'see' the lattice through this coupling. The anisotropy energy may be

written as a sum of anisotropic exchange and single-ion terms (Kanamori

1963) :
H . = -~ .. K ..S .S . - L~.[(S .)2-8(8+1)/3] .an1S 1J 1J Z1 ZJ 1 Z1

The anisotropic exchange is said to be of 'Ising' type if K ..>0 and1J
the spins prefer to lie along the crystal Z axis, and of 'X-Y' type

if K ..<0 and the spins lie in the xy-plane. The anisotropy energy is1J
often written in a simplified form. In the case of a uniaxial

antiferromagnet
H = -K~.(8 )2anis 1 zi ' K>O ,

designates the Z axis as the magnetically 'easy' axis and the xy-plane

as magnetically 'hard'. In the case of an orthorhombic antiferromagnet

with
H . = -K~.(S .)2 + K'~.(8 .)2an1S 1 Z1 1 y1 ' K,K'>O ,

and with K>K', the Z axis is described as 'easy', the y axis 'hard'

and the x axis 'medium'.

The last term in equation (2.1) represents the energy associated

with an applied field of flux density B :

where g is the spectroscopic splitting factor and ~=~B is the Bohr

magneton.
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2.2b Uniaxial Antiferromagnet at Zero Temperature

As an illustration of the classical treatment of the spin-flop

transition, let us consider the simplest of cases: the uniaxial

antiferromagnet at zero temperature. We use the Hamiltonian

H = 2Jt ..S .•S. - K(t.(S .)2+t.(S .)2) - g~B.(t.S.+t.S.), (2.2)1J-1 -J 1 Z1 J zJ - 1-1 J-J
where J>O and K>O, and 2J is the exchange constant between each spin

and its nearest neighbours. In general the applied field ~ is directed

at an angle ~ to the easy anisotropy axis (the Z axis). We define the

directions of a representative spin from each sublattice, ~l and ~2'
in terms of two angles: the 'canting angle' 6 between the spins and

their antiferromagnetic axis and the 'rotation angle' a between the

ferromagnetic axis of the spins and the applied field. These angles,

shown in Figure 2.1, are often directly measurable in a Nossbauer ef-

fect study of the spin-flop.

2.2b(i) Perfect Alignment

We first consider the situation for ~=(O,O,B) : the applied field

perfectly aligned with the easy axis (~=O). Assuming that 1~11=1~21=S,
the free energy of the system is

E = -NS[2JzScos26 + KS(sin2(a+6)+sin2(a-6)) + 2g~Bcosasin6] ,

where N is the number of spins on each sublattice and z is the number

of nearest neighbours each spin has. Writing the 'exchange field'

BE=2JzS/g~ and the 'anisotropy field' BA=2KS/g~ gives:

E = -NSg~[BEcos26 + tBA(sin2(a+6)+sin2(a-6)) + 2Bcosasin6] .(2.3)

The equilibrium values of a and 6 occur when E is a minimum and both

aE/aa=O and aE/a6=0. These equilibrium conditions are immediately

satisfied in the antiferromagnetic (AFM) phase where a=900,6=0, and

in the paramagnetic (PM) phase where a=O,6=90°. However, in the

spin-flop (SF) phase where a=O and 6<90° the equilibrium equations

impose the condition B=(2BE-BA)sin6. Using these equations we obtain

the following expressions of the ground state energies of each phase:



z

x

Figure 2.1 Definition of the sublattice spin directions in terms of

the canting angle e, the rotation angle a and the field misalignment

angle ~.

E'

o

o Bpm B

-BE
-B -BE A

Figure 2.2 Dependence of the ground state energies (E=NSg~E') of the

AFM, SF and PM phases of a uniaxial antiferromagnet on the magnitude

of applied field directed along the easy anisotropy axis.
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E = -NSgll[BE+ BA]afm ,

Esf = -NSgll[BE+ B%/(2BE-BA)]
and E = -NSgll[-BE+ BA + 2B]pm
These are shown as a function of B in Figure 2.2, assuming that

BA«BE. It is apparent that a first-order phase transition occurs when

Eafm=Esf' at a critical field
1Bsf = [BA(2BE - BA)] ,

which is known as the Ithermodynamic spin-flop field I. A smooth

second-order transition takes place between the SF and PM phases at

the critical field Bpm=2BE-BA.

The stability limits of a given phase are determined by the condi-

tion that the eigenvalues of the 2x2 matrix

a2E/aaasl
a2E/aSaSJ

be positive or zero. This may be interpreted as the condition that the

stationary point in the two-dimensional surface E(a,S) defined by VE=O

should not be a maximum. From equation (2.3) we obtain:

yl
I

ixJ

with x = BcosasinS - BAcos2acos2S, 'y = BsinacosS + BAsin2asin2S, and

z = 2BEcos2S. The eige~values are given by A± = 1[(2x+z)±(z2+4y2)1)],

and the stability criterion A_~O reduces to x(x+z) ~ y2.

Thus the PM phase (x=B+BA,y=O,z=-2BE) is stable provided B~2BE-BA

and the AFM phase (x=BA,y=B,z=2BE) may be stable up to the field

The limits of stability of the SF phase

(x=BsinS-BAcos2S,y=O,z=2BEcos2S) occur either when x=o and

B::;;B2=(2BE-BA)[BA/(2BE+BA)]1or when (x+z)=O and B=2BE-BA: The ine-

quality of the critical fields Bl and B2 is indicative of the phenom-

enon of hysteresis in the first-order spin-flop transition.
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2.2b(ii) Imperfect Alignment

We now consider the nature of the spin-flop when

~=(Bx,O,Bz)=B(sin~,O,cos~) is applied at a non-zero angle ~ to the easy

axis. The free energy of the system is then:

E = -NSg~[BEcos28 + tBA(sin2(~+a+8)+sin2(~+a-8)) + 2BcosasinB] ,

and the equilibrium conditions VE=O lead to

and
Bcosacos8 = (BE - tBAcos(2~+2a))sin2B
Bsinasin8 = tBAsin(2~+2a)cos28

(2.4a)

(2.4b)

The stability criterion is again in the form of an inequality
x(X+Z)~y2, with:

x = Bcosasin8

and
y = BsinacosB + BAsin(2~+2a)sin28

z = 2BEcos28 .

(2.5)

It is difficult to manipulate these e~uations into a recognisable

form, so we proceed numerically. Equating sinasin8x(2.4a) to

cosacos8x(2.4b) and dividing through by cos8 we obtain an expression

for 8 as a function of a :

sin28 = BAcosasin(2~+2a)/(4BEsina + 2BAsin(2~+a)) . (2.6)
An interesting feature of this relation, shown in Figure 2.3, occurs

at the onset of the PH phase where 8=90°. At that point the

ferromagnetic component of the spin,sis not (in general) parallel to

the applied field, but is tilted towards the easy anisotropy axis by

a small angle apM. In the perfectly aligned cases of ~=O or 90° apM=O,

but in general it is non-zero. By means of some tedious algebra one

can show that apM has a maximum value of ~BA/4BE near ~=4So.

Equations (2.4a) and (2.6) allow us to express B as a function of

the rotation angle a :
(2.7)

where ~1=2~+a and.~2~2~+2a. We are then able, with (2.6) and (2.7),

to calculate the equilibrium values of Band 8 (as a function of a)



e

a

Figure 2.3 Schematic diagram of the equilibrium values of the canting

angle a as a fUnction of the rotation angle a. (Not to scale.)

--------- ....
•••••••

B

B (a) tP=O

L- ~ __• a

o

(b) 0 < tP< tPc
B (c) tP> tPc

o
aa

o

Figure 2.4 Equilibrium values of B (a) for different misalignment an-

gles tP. Bold (or dotted) lines represent stable (or unstable) sol-

utions according to equations (2.5). Bl and B2 mark the stability
limits of the AFM-1ike and SF-like states.
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for any given magnetic system specified by BE' BA and~. The stability

of that solution may then be tested using equations (2.5).

Applying this procedure we can distinguish three types of spin-flop

transition, shown schematically in Figure 2.4 in terms of the depend-

ence of B on a. The first case is that of perfect alignment (~=O),

where hysteresis appears in the transition from the a=90o to a=Oo

states. If ~'O but is less than some critical angle ~ , the transitionc

is still of first-order but connects states with a<90o-~ to states with

a>-apM (see Figure 2.4b). Thus as B increases from zero the spins ro-

tate slightly before discontinuously flopping to a position close to

(but not exactly) perpendicular to the field. In the third case (Figure

2.4c) ~>~ and the transition is entirely continuous. As B increasesc

the spins rotate towards the field direction in a reversible transi-
tion, and no hysteresis is observed.

2.2b(iii) Phase Diagram

Continuing with this numerical analysis it is possible to map out

the regions of stability of the AFM, SF and P~1 phases in the

BxBz-plane. This has been done by Chepurnykh (1969) and Rohrer and

Thomas (1969). Their results are shown in Figure 2.5.

The PM phase boundary may be derived analytically by making a

suitable choice of coordinate angles. If we define land 6 as the an-

gles between the sublattice spins and the easy axis (corresponding to

l=~+a-e+900 and 6=~+a+e+270o in the previous notation) and solve the

equilibrium and stability equations for the PM phase in which l=6, we
obtain

B
x

and

This is a parameter representation of an ellipse which intersects the

Bx axis at ±(2BE+~A) and the Bz axis at ±(2BE-BA). When B lies outside

this ellipse the spins are in a PM state.



Figure 2.S Schematic phase diagram of the uniaxial antiferromagnet at

T=O. An ellipse marks the PM phase boundary and the 'star-shaped'

regions contain two stable states (SF and AFM), as discussed in the
text.

Bz

Figure 2.6 Schematic phase diagram of the uniaxial ferromagnet. Crit-

ical points on the B and B axes are at ±BA.x z
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Within the PM phase boundary the spins are mostly in a non-symmetric

rotated state. The exceptions are when B is parallel to the x axis

giving a symmetric SF phase, or when B is parallel to the z axis giving

the AFM and SF phases discussed in Section 2.2b(i). If B passes through

the 'star-shaped' regions on the z-axis then a first-order transition

takes place from an AFM-like state to a SF-like state. Within the

star-shaped region there are two stable states for the spins to be in,

while outside the star only one stable state is available.
The boundary curve of the star-shaped region is analogous to that

found in the uniaxial ferromagnet (Landau and Lifshitz 1960), where
B 2/3 + B 2/3 = B 2/3 .
x z A

This is shown in Figure 2.6. The situation in the uniaxial AFM is

similar, with two star phases situated at B =±B f where B f is thez s s

thermodynamic spin-flop field. The critical points B1 and B2 on the z

axis are not exactly equidistant from Bsf (see Section 2.2b(i)), but

to first order in BA/BE they lie at Bsf±BABsf/2BE. Similarly the
critical points in the Bx direction are close to ±BABsf/2BE (Chepurnykh
1969).

We therefore may obtain an estimate of the critical angle of misa-

radians. For ~>~ the applied field rotates the spins in a continuousc

manner until at B-2BE a second-order transition occurs and the spins

decouple from each other to become paramagnetic. For ~<~ a first-order
c

transition from an AFM-like phase to a SF-like phase takes place for
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2.2c Uniaxial Antiferromagnet at Finite Temperature

The temperature dependence of the critical magnetic fields of the

uniaxial antiferromagnet have been studied by Thomas (1969a) and

Blazeyet al. (1971a,1971b), following an extensive study of the phase

diagram of the uniaxial ferromagnet (Thomas 1969a, 1969b). The phase

diagram at finite temperature was found to be qualitatively similar

to that at zero temperature.
The analysis method employed was an extension of the method we have

discussed in the previous sections, with the difference that the free

energy F=E-Tt includes the entropy t of the system at temperature T.

The energy E was again calculated from a Hamiltonian of the form of

equation (2.2). Following the notation of Blazey et al. (1971b) we

write the free energy of an antiferromagnet containing N spins of

magnitude S per sublattice subject to an applied field B directed at

an angle ~ to the easy axis as
F = N{S2[2Ja.a.cos(a-~) - K(a.2cos2a + a,2cos2~)

1 J 1 J

- g~SB[a,cos(a-~) + a,cos(~-~)] - T[s(a,) + s(a,)]} .
1 J 1 J

The angles a and ~ define the directions of the sublattice spins with

respect to the easy axis, and are equivalent to the angles 0 and 6 used

in section 2.2b(iii); J and K are "the exchange and anisotropy con-

stants; and a. and a, are the average values of the spins on each
1 J

sublattice, normalised to one a=<S>/S. (Note that here we regard

the number of nearest neighbours, z, as implicitly defined in the value

of J.) The terms sea,) and sea,) represent the entropy per spin on
1 J

each sublattice, and are of the differential form :
-1ds(a)/da = -B (a),s

-1where B (a) is the inverse Brillouin function for spin S. The
s

Brillouin function is approximated by the Taylor series

B (a) ~ [(S+1)/3S] a - [(S+1)(2S2+2S+1)/90S3
] a3 +

s

provided a « 1.
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As in the preceding sections, the equilibrium positions of the

sublattice spins are found by putting the first derivatives of F with

respect to the variables - in this case a, ~, o. and o. - equal to zero.
l. J

The stability conditions are then found using the second derivatives
of F.

2.2c(i) Perfect Alignment

For the applied field perfectly aligned along the easy axis (~=O)

the equilibrium equations yield the following results: In the AFM state
(a=O, ~=180o) the sublattice spins are:

o. = B {(S2/T)[2Jo. + 2Ko. + gllB/S])
3. s J 3.

and o. = B {(S2/T)[2Jo. + 2Ko. - gllB/S])
J s l. J

in the SF state (0.=0.=0, a=-~=~)
3. J

o = B {2JoS2/T}s

(2.8a)

(2.8b)

(2.9)
and cos~ = gllB/[2So(2J-K)]

while in the PM state (0.=0.=0, a=~=O) :
3. J

o = B {(S2/T)[-2JO + 2Ko + gllB/S]} .s

The equilibrium state is stable as long as all the eigenvalues of

the 4x4 matrix of the second derivatives of F with respect to a, ~,

o . and o . are positive. The eigenvector belonging to the first
l. J

eigenvalue to become zero characterises the type of instability of that

state. The uniaxial antiferromagnet becomes unstable with respect to

the following deviations and restrictions (Blazey et al. 1971b) :

Along the AFM-PM phase boundary 50.=-50., 5a=5~=0 along SF-PM
3. J

50.=50.=0, 5a=-5~ ; along AFM-SF (moving from the AFM to SF phases)
3. J

50 .=50 =0 15ao.1< 15~o .1
l. j' 3. J

50.=-50., 5a=5~.
l. J

The critical field at the SF-PM phase boundary is readily obtained

and along SF-AFM (from SF to Ani)

from the stability criteria. The 4x4 V2F matrix decomposes into two

2x2 matrices, and the first eigenvalue to become zero is given by
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(2.10)

where BE=2JS/gp and BA=2KS/gp are the exchange and anisotropy fields,

and o(B ,T) is the spin value for field B and temperature T as givenc c

by equation (2.9). It is therefore apparent that the SF-PM phase

boundary is a Brillouin curve (see Figure 2.7). We may rewrite o(B ,T)c

in (2.10) in terms of the zero-field spins o(O,T) obtained from (2.8)

by utilising a reduced temperature T'. That is, o(B ,T)=o(O,T') forc

T'=TNT/T3, where TN=2S(S+1) (J+K)/3 is defined as the 'Neel temper-
ature' and T3=2S(S+1)J/3 is the 'triple-point temperature' at which

the AFM, SF and PM phases coexist.

The AFM-SF and AFM-PM phase boundaries are not simple functions of

Band T and numerical calculations are therefore necessary. The results
of such calculations (Blazey et al. 1971b) are shown in Figure 2.7.

For B=O the AFM state exists for T<TN, above which the PM phase is

stable. The thermodynamic spin-flop field Bsf(T) increases as T in-

creases, which may be qualitatively understood if one recalls that

BSf=[2POK/(XL-X~)]i as discussed in Chapter 1. XL is largely temper-

ature independent but X~ increases as T increases, and therefore Bsf
also increases. The hysteresis region between the SF-+AFM and AFM-+SF

stability limits decreases as T increases, and is zero at T=T3.

2.2c(ii) Imperfect Alignment

We saw in section 2.2b(iii) that at zero temperature there is a

critical angle of misalignment $ between the applied field and the
c

easy axis such that a first-order spin-flop will occur only for $~$ .c
Blazey et al. (1971b) studied the temperature dependence of $ andc

found it to be approximately linear

$c(T) ~ $c(0).(T3-T)/T3 ' (2.11)
with $c=O at the triple-point temperature T3. Thus for small but fi-

nite misalignment $<$ (0) a first-order transition occurs only for
c

temperatures T<Tc' where the critical temperature Tc is less than T3·
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Figure 2.7 Schematic phase diagram of a uniaxial antiferromagnet sub-

ject to (a) a field B II along the easy axis and (b) a field BtjI at a small

angle tjI<tjI to the easy axis. Dotted lines denote the stability limitsc .

of the first-order SF"'AFM and AFM"'SF transitions. Pairs of arrows

represent sublattice spin directions.
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The corresponding phase diagram is shown in Figure 2.7b. At temper-

atures slightly exceeding T the transition from AFM-like to SF-likec

states is not first-order, but is a continuous spin rotation. However,

the transition may take place over a narrow range of applied fields

so that experimentally it is hard to distinguish from a first-order

spin-flop. For large misalignment $>$ the first-order transition isc

avoided completely. When $=90° the AFM state exists only when B=O, and

the SF-PM phase boundary is the Brillouin curve :

(2.12)
which is analogous to equation (2.10).

It is convenient to summarise the effects of misalignment and tem-

perature on the phase diagram of the uniaxial antiferromagnet by

drawing a three-dimensional 'contour map' of the phase boundaries (see

Figure 2.8). In this diagram we treat B II' B..Land T as the orthogonal
coordinate axes, and for simplicity draw only one quadrant of the

surface. The diagram is further simplified in the region of the AFM-SF

boundary by drawing only the stability limits in the B..LT-plane.Figure

2.8 then allows us to regard equation (2.11) as defining a triangular

'shelf' of first-order transitions: i.e. if B($,T) passes through the

shelf a first-order flop will occur. Equation (2.12) specifies the

boundary curve in the B..LT-plane.

The phase diagram of Figure 2.8 has been well verified by exper-
iment, such as the study of MnF2 by King and Rohrer (1979). Figure

2.8 is known to also apply to the orthorhombic antiferromagnet provided

B..Llies in the direction of medium anisotropy (see later). Careful

studies of the orthorhombic crystals GdA103 (Blazey et al.
1971a,1971b, Rohrer 1975, and Rohrer and Gerber 1977) and

CsHnBr3·2D20 (Basten et al. 1980b) have compared favourably with the

theoretical predictions.



T

Figure 2.8 Schematic phase diagram of the uniaxial antiferromagnet,

as discussed in the text.

Be

T

Figure 2.9 Schematic phase diagram of the orthorhombic antiferromagnet

sUbject to an applied field in the easy-hard anisotropy plane, as

discussed in the text.
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2.2d Non-Uniaxial Anisotropy

Thus far we have considered the simplest form of anisotropic

antiferromagnet, that with uniaxial anisotropy. However, departures

from uniaxial anisotropy play an important role in determining the

magnetic phase diagram of the system. We consider here two non-uniaxial

types of anisotropy which are relevant to the present work
orthorhombic as in K2FeFS and Rb2FeFS' and antisymmetric or
'Dzyaloshinsky' as in a-Fe203.

2.2d(i) Orthorhombic Anisotropy
Crystals with orthorhombic lattice symmetry often exhibit

orthorhombic anisotropy. The anisotropy Hamiltonian may be written as:

H , = K L,(S ,)2 + K L,(S ,)2 + K L,(S ,)2 ,an1s x 1 X1 Y 1 y1 Z 1 Z1
where if for example K >K >K >0 the x axis is magnetically 'hard', thex y Z

yaxis 'medium' and the z axis 'easy'.

If the crystal is subject to an applied field in the easy-medium

plane the spins remain in that plane and S ,=0. The resultant phaseX1
diagram is then equivalent to that of the uniaxial antiferromagnet

(Figure 2.8), with an effective anisotropy of K -K along the easyz y

axis, The general case of an arbitrary applied field direction is more

complicated, Although it is possible in principle to use the methods

described in the preceding sections to compute the equilibrium spin

directions, in practice the algebraic calculations rapidly become

prohibitive. The preferred approach is therefore to make simplifying

approximations about the system and to consider only the gross features

of the phase diagram. Such methods have been employed by Gorter and

Haantjes (1952), Nagamiya (1954) and Nagamiya et al. (1955).

One approximation is to assume that the sublattice spins remain

antiparallel to each other as the field is applied (Nagamiya 1954).
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The anisotropy energy (relative to K) is then givenz
+ K P:. (S i) 2 + 1:.(S .)2) ,

Y 1 Y J YJ

by:

E = K [1:.(S )2 + 1: (S )2)anis x 1 xi j xj
= iNK1(a.2 + a.2) + iNK2(~.2 + ~. 2) ,

1 J 1 J

~ NK1a2 + NK2~2 ,
where K1 2 = 2S2K and the spins on sublattices i and j are written, x,y
in terms of direction cosines, e.g. Si = S(a.,~.,l.).

111
It is conven-

ient to write the exchange and field energies in terms of the suscep-
tibilities parallel to and perpendicular to the AFM axis of the spins.

Taking N=l for convenience, the total free energy is then:

F = -i(X~/Po)B~2 - i(xL/po)BL
2 + K1a

2 + K2~2

= -i(X~/po)B2(aaB+~~B+llB)2 - i(Xl/Po)B2(1-(aaB+~6B+IIB)2)
+ Kla2 + K262 ,

where B = B(aB'~B,lB) is the applied field and Po is the permeability
of free space. To find the equilibrium spin directions we look at the

first and second derivatives of F with respect to a, ~ and I. The
eigenvalues of the 3x3 V2F matrix are given by the secular equation:

A3 - [1+k1+k2)A
2 + [(kl+k2)IB2+k1~B2+k2aB2+klk2)A - k1k2lB2 = 0

where k1,2 = 2PoK1,2/[(XL-XII)B2). The smallest eigenvalue corresponds
to the stable state since it represents the smallest value of the free

energy.
When Bl lies in the direction of hard anisotropy (~ in the xz-plane)

~B=O and the secular equation yields:

A transition between two stable states occurs if A_=A1, for which

k1lB2=k2(1+k1-k2)' Writing Bx=BaB and Bz=BlB this implies that:

BZ2/2K2 - Bx2/[2(K2-K1)) = Po/(XL-X~) , (2.13)
which describes a hyperbola in the B B plane that cuts the B axisx z z

at:

(2.14)
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The perpendicular susceptibility is given to a fair approximation by

X~=2gpoPS/(2BE-BA) where BE=2JS/gp and BA=2KS/gp (Morrish 1965), so

that by t~king K=K2/2S2 equation (2.14) may be rewritten as:
tBsf = {BA(2BE-BA)/[1 - (X~/X~)]} , (2.15)

which is the thermodynamic spin-flop field (previously derived in

section 2.2b(i) for zero temperature, X·II=O).

The region of the BB-plane which lies above the hyperbola (con-x z

sidering only the Bz~O half of the plane) corresponds to the A1=k2

eigenvalue. The corre~ponding eigenvector is (a,(3,l)=(O,l,O), indi-

cating that the spins lie along the medium anisotropy y axis. Below

the hyperbola the spins lie in the xz-p1ane. Thus (2.13) defines a

critical line of first-order transitions between AF~l-like and SF-like

states"

The complete three-dimensional (B~,B~,T) phase diagram, as depicted
by Rohrer et al. (1977), is shown in Figure 2.9. The spin-flop surface,

which in the uniaxial case was a narrow triangular shelf, now extends

to the PM phase boundary. The critical angle of misalignment IJI is muchc

larger than in the uniaxial case, with tanlJlc=[(K1-K2)/K2]t.
It is important to note that Figure 2.9 is strictly only relevant

when B~ lies along the hard anisotropy axis. In the approximate anal-

ysis given above it appears that a first-order transition is possible

only if B lies in the easy-hard plane. We might expect, on the basis

of our more detailed analyses in sections 2.2b and 2.2c, that the re-

quirement would be that B should lie within IJIc=BA/2BE of the easy-hard

plane. However, recent experimental results have cast some doubt on

these predictions. Rohrer and Gerber (1978) studied the change in the

phase diagram of GdAI03 as B~ was rotated in the medium-hard plane,

at temperatures very close to the triple point T3. They observed ap-

preciable broadening of the spin-flop shelf for 1JI'-4Sobetween B~ and

the hard axis, and at 1JI'=10othe shelf was about five times its initial
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(~'=900) width. Although Rohrer and Thomas stated that the situation

was by no means clear, their result may indicate that the effect of

orthorhombic anisotropy on the nature of the spin-flop transition

might be more pronounced than theoretically predicted.

2.2d(ii) Dzya10shinsky Anisotropy

The second type of non-uniaxial anisotropy that we shall consider

is that which occurs in hematite (a-Fe203) as a result of the so-called

'Dzya1oshinsky exchange' interaction. The magnetic properties of
hematite have been studied extensively and have been reviewed by se-

vera1 authors, including Jacobs et al. (1971) and Creer et al. (1975).

Hematite is essentially antiferromagnetic below its Nee1 temperature

TN~960K, but undergoes a temperature driven spin-flop transition known
as the 'Morin transition' at TM~260K. Below TM the f erric spins are

antiferromagnetically aligned along the crystallographic [111]

(trigonal) axis. For T>TM the spins lie in the basal (111) plane but

are not precisely antipara11el, being slightly canted to produce a weak

ferromagnetic moment in the basal plane.

The microscopic origins of the weak ferromagnetism observed for

TM<T<TN were the subject of some controversy over many years, and will

be discussed further in Chapter 6. At this point, however, it is suf-

ficient to utilise the phenomenological description of Dzya10shinsky
(1958) and Moriya (1960). The exchange interaction between
neighbouring spins is taken to include an anisotropic term :

H = - D • S x _S2 'Dz --1 (2.16)

where Q is a constant vector parallel to the trigonal axis. It is clear

that this coupling acts to cant the spins in the basal plane since the
coupling energy is minimised when the two spins are perpendicular to

each other. The exchange of (2.16) differs from the exchange
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h 't' t riHamiltonians discussed in section 2.2a in t at it is an 1symme r1C ,

i.e. interchanging the two spins changes the sign of the term.

For temperatures below TM a spin-flop transition takes place if a

magnetic field B is applied along the trigonal axis. The Hamiltonian

describing the system may be written as :

H = 2Ji ..~.·S. - K[i.(S .)2 + i.(S .)2] - i1.J.Q.§1,x§J'1J 1 ~J 1 Z1 J ZJ
- g~B·(i.S.+i.S.) ,- 1-1 J-J (2.17)

which is a combination of equations (2.2) and (2.16). We identify the

Z axis with the trigonal axis, so that ~=(O,O,D) and ~=(O,O,B). As in

section 2.2b(ii) we obtain the thermodynamic spin-flop field B[c by
equating the ground state energies of the AFH and SF phases. The

Dzyaloshinsky exchange energy is zero in the AFM state since §lx~2 is

then perpendicular to Q, and Eafm=-NSg~(BE+BA) as in the uniaxial case.
However the SF state is affected by HDz' and might be more appropri-
ately referred to as the weakly ferromagnetic (WFH) state. At zero
temperature the energy of the WFM state is :

E = -NSg~[BE(sin28cos2~-cos28) + BAcos28

+ BDsin28sin2~ + 2Bcos8] , (2.18)

where BE=2JS/g~, BA=2KS/g~ and BD=DS/g~ are the isotropic exchange,
uniaxial anisotropy and,DzyalcshInsky anisotropy fields, and e and ~

are the polar angles of the spins as shown in Figure 2.10. The equi-

librium conditions aE/a8=aE/a~=0 give the ground state energy

Ewfm = -NSg~[BE' + B2/(BE+BE'-BA)] , (2.19)
where BE'=[BE2+BD2f! The spin-flop field is then found by putting

Eafm=Ewfm' giving:
B~c = [BA(2BE'-BA)-BD2]i

which in the approximation B »B »B reduces to
E D A

(2.20)
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Figure 2.10 Sublattice spin directions in theWFH phase of a-Fe203
subject to an applied field parallel to the easy axis.

z

Figure 2.11 Sublattice spin directions in a-Fe203 subject to an applied

field perpendicular to the easy axis.
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Ozhogin and Shapiro (1968) calculated that in hematite (at T=77K)

BE::450T, BD::3T and BA::O.05T, so the approximation of (2.20) looks

likely to be valid.
If a field B is applied in a direction perpendicular to the easy

axis the spins move towards the field direction. A 90° 'screw' rotation

accompanies this motion since the Dzyaloshinsky interaction favours a

WFM spin arrangement to be in the basal plane. Using a definition of

the sublattice spin directions in terms of a rotation angle a and a

canting angle ~ as shown in Figure 2.11, the free energy of the system

is given by :

E = -NSg~[BEcos2~ + BAcos2acos2~ + BDsinasin2~ + 2Bsin~] ,
where B is directed along the y axis. For applied fields B«BE the

equilibrium equations yield :

~ ~ BAB/(2BEBA-BD2)
~ ::(B+BD)/2BE and

for BSBl.. ,c

and sina ::1 for B~Bl.. .c

The critical field Bl..marks the second-order phase transition betweenc

the AFM-like and the WFM-like state (the WFM-like state is best defined

as that in which the AFH axis of the spins lies in the basal plane and

6=90°), and is given by :

Bl..c= (2BEBA-BD2)JBD

= BII//BD .

(2.21a)

(2.21b)

In the course of the 'screw' rotation the spins move in planes which

intercept the basal plane at a constant angle ~::BA/BD to the x axis.

These results are in accord with those derived by Cinader and Shtrikman

(1966), Cinader (1967) and Ozhogin and Shapiro (1968).

The case of arbitrary alignment of the applied field was considered

by Ozhogin and Shapiro (1968). They found that the phase boundary be-

tween the AFM-like and WFM-like sates could be described by :

(2.22)
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This curve is a circle which cuts the z axis at ±B Ilcand the y axis

at +BLC and -BD' By symmetry the phase diagram in the ByBz-plane has

the form shown in Figure 2.12, with the mirror image of (2.22) in the

z axis included. The elliptical PM phase boundary (of radius B=2BE)

is also shown in Figure 2.12.

The temperature dependence of the phase diagram has also been con-

sidered by Ozhogin and Shapiro (1968). They identified the anisotropy

field BA as having a larger temperature variation than BE or BD' and
deduced the phase diagram that is depicted in Figure 2.13 in the three

dimensions B
11

, B~ and T. The spin-flop transition fields between the

AFM-like and WFM-like (AnI axis in basal plane) phases go to zero at

the Morin temperature, and above the Neel temperature only the PM phase

is present.

On the basis of the theory outlined above the spin-flop transition

in a Dzyaloshinsky antiferromagnet is of first-order only if B is

parallel to the easy axis. For any other orientation of B a

second-order transition takes place. However, Kaczer and Shalnikova

(1965) and Flanders (1969) observed the spin-flop at temperatures just

below TM and with B perpendicular to the easy axis, and found it to

be abrupt. Several other.authors found direct contradictions with the

theoretical predictions. Voskanyan et al. (1968) and Foner and Shapira

(969) saw an anomaly in the perpendicular susceptibility near B~ ,
c

and both Ozhogin and Shapiro (1967,1968) and Jacobs et al. (1971) noted

that the value of B~ at 77K predicted by B~Cl/BD was almost 30% higher

than was observed. These discrepancies led to the development of an

improved theory in which higher order anisotropy terms were included

by Levitin and Shchurov (1968) and Ozhogin and Shapiro (1969). In the
earlier theory described above the anisotropy energy was taken to
be :
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Figure 2.12 Schematic phase diagram of a 'Dzyaloshinsky'

antiferromagnet at T=O, as discussed in the text. The dotted curve

is an unphysical continuation of equation (2.22).

T

B_l

Figure 2.13 Schematic phase diagram of a 'Dzyaloshinsky'

antiferromagnet (such as a-Fe203), as discussed in the text.
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where al and a2 are the angles between the sublattice spins and the

easy axis. In the improved theory the next term in the series expansion

of the anisotropy is included :

Eanis = NS2[-K(cos2al+cos2a2) - K'(cos4al+cos4a2)] ,

where K'~K. The addition of this term to the free energy of equation

(2.17) provides the desired modifications to the predicted magnitude
and character of the spin-flop transitions.

For a field applied parallel to the easy axis the second anisotropy

field BA'=2K'S/g~ is added to BA in the ground state energy of both
the AFM phase (a1=O,a2=1800) and the WFM phase (al=a2=900). Thus

BA+BA' replacesBA in Eafm and Ewfm' and the critical field of equation

(2.20) becomes:

B~c' = [2BE(BA+BA')-Bn2]i .
When the applied field is perpendicular to the easy axis the equilib-
rium equations yield :

-4BEBA'sin
38 + [2BEBA+4BEBA'-Bn2]sin8 - BnB = 0

and ~ = (BA-2BA'cos28)sin8/Bn
for B~B~ " where 8 and ~ are the angles defined previously in Figure

c

2.11. When 8=90° the critical field B~' is the same as given inc

(2.21a), but now the parallel and perpendicular critical fields are

related by :

This reduction in the value of B~ predicted from a measurement ofc

Bllcaccounts for the overestimation that (2.21b) had given (Jacobs et

al. 1971). It can also be shown (Ozhogin and Shapiro 1969, Jacobs et

al. 1971) that the magnitude of BA' in hematite is sufficient to change

the character of the B~ transition to one of first-order. A discon-c

tinuous transition is then predicted for all T<TW although at tem-

peratures below about 150K the transition is said to be 'nearly' of

second-order. This result is in accord with the experimental observa-
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tions of Kaczer and Shalnikova (1965) and Flanders (1969). It therefore

appears that in a-Fe
2
03 the spin-flop phase transition is of first

order for any direction of applied field, for all T<TM.

2.2e Demagnetisation Effects

To conclude this review of the mean-field theory of the spin-flop

phase transition, let us note that some of the results derived above

may depend on the morphology of the specimen being studied. To under-

stand this 'demagnetisation effect' it is useful to first recall the

distinction between the magnetic field quantities ~ and g.

Thus far we have described magnetic field in terms of the 'flux

density' (or 'induction') ~. We may however define a second field

quantity ~=~/~ where ~ is the 'permeability' of the medium in which
the field occurs. (Note that the symbol ~ was defined differently in

previous sections, where it was the symbol for the Bohr magneton.) g
is called the magnetic 'intensity' or 'force', and does not depend on

the medium. That is, g may be regarded as the cause or 'force' which

gives rise to a field of flux density ~=~!! in the material. The
permeability of the material may be written :

u = u (1 + X) ,o
-7 -1-1where ~ =4TIx10 WbA m is the permeability of free space and X is

o

the magnetic susceptibility. Furthermore, X defines the relation be-

tween magnetic field and the magnetisation ~ (magnetic moment per unit

volume) :

M = X B = (x/~)~ .
Bringing these definitions together yields

B = ~ (H + M) ,
o - -

(2.23)

which is a well known result that is independent of the specimen

morphology.
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2.2e(i) The Demagnetising Field

The phenomenon of 'demagnetisation' arises when a material medium

of finite size is placed in a magnetic field of intensity H due to-0

external sources. The field intensity g within the medium is found to

differ from the applied field go' with :

H = H + Hd .- -0 - m (2.24)
Edm is due to the magnetisation present in the sample (both induced
and/or inherent) and is called the 'demagnetising field' because it

tends to oppose go. This effect has been discussed in numerous texts,

including Morrish (1965) and Reitz and Milford (1969), while Kittel

(1976) describe~ the analogous electrical effect of depolarisation.

If the sample morphology is that of an ellipsoid of revolution (e.g.

a sphere, cylinder or disc) H is proportional to the-dm (uniform)
magnetisation in the material. It is then commonly written

Hdm = - Nt!,
where N is the 'demagnetisation factor', although it is possibly more

appropriate to define

H = -N Mdmx x x H = -N Mdmz z z '
where x,y,z are the principal axes of the ellipsoid. The
demagnetisation factors are positive and satisfy N +N +N =1 (in S.I.x y z
units). The values of N depend on the ratios of the ellipsoid principal

axes. In the limiting cases of a sphere, cylinder or disc the factors

have the values shown in Table 2.1.

Table 2.1 Demagnetisation factors of some ellipsoids of revolution.

Shape Axis N

Sphere any 1/3

Thin slab (disc) normal 1
in plane 0

Long circular.cylinder longitudinal 0
transverse 1/2
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In the spin-flop transition we are concerned with the value of the

'local' magnetic field acting on the spin. This local field is sig-

nificantly different from the macroscopic internai field H of equation

(2.23), and may be written:

Elocal = g + E2 + li3 '
where g2+tl3 is the field due to all the magnetic dipoles (with the
exception of the dipole at the site being considered) in the material.

The standard method of summing these dipole fields (Kittel 1976) is

to first sum individually over a moderate number of neighbouring atoms
inside an imagined sphere concentric with the reference atom. This

defines the field :

~3 = I.[3(m.·r.)r./r.5
- m./r.3l- 1 -1 -1 ~1 1 ~1 1

where r. is the distance of the ith dipole (of moment m.) from the
1 1

reference point. In crystal lattices with cubic symmetry H3=O, while
in non-cubic lattices it is usually small and often neglected. The

field E2 arises from the density of magnetic 'poles' on the surface

of the imagined spherical cavity, and is known as the 'Lorentz cavity
field'. It is in effect a demagnetisation field whose direction is
opposite to that which would accompany a solid sphere in an applied

field. That is, g2 ~ + ~/3, where the factor 1/3 is the

demagnetisation factor of a sphere. Combining these results we see

that the local field intensity at a lattice site in a cubic crystal

is :

~local = go - N~ + ~/3 . (2.25)

This equation may also be written in terms of the local magnetic flux

density B by recalling that the distinction between Band H as-local
defined by (2.23) is in essence a macroscopic formulation. From the

microscopic viewpoint we treat a magnetic medium as a system of mag-

netic dipoles in vacuum, so that Bl 1 = ~ HIland the distinction_ - oca 0- oca
between Band H largely disappears. Thus (2.25) is equivalent to :
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~local = ~o - ~o~ + potl/3 , (2.26)

where B =u H since the applied field is defined in the free space-0 0-0

outside the sample.

2.2e(ii) Influence on the Spin-Flop

Let us now consider the effect of the specimen morphology on the

spin-flop transition. Blazey et a1. (1971b) pointed out that

demagnetisation could affect the critical misalignment angle ~ in thec

uniaxial antiferromagnet. Their argument is illustrated as follows.

Consider a long cylindrical sample whose easy anisotropy axis is par-

allel to the cylinder's longitudinal axis, and which is subject to an

applied field that is slightly misaligned (~<~ ) with the easy axis.c

At first sight demagnetising effects might be thought negligible since

in both the AFM and SF states the magnetisation direction is close to

the cylinder axis, and since along that axis the demagnetisation factor

is zero. However, in the course of the transition from the AFM to SF

states the sublattice spins tilt away from the easy axis (see Figure

2.4b) and produce a component of magnetisation perpendicular to the

cylinder axis. This results in a demagnetising field directed towards

the cylinder axis which exerts a torque on the spins and inhibits their

motion away from the easy axis. The instability field CBI in Figure

2.4b) is therefore pushed to a higher value. Similarly, the instability

field for the SF ~ AFM transition (B2 in Figure 2.4b) is reduced by

the demagnetisation. Thus the hysteresis region BI-B2 of the transi-

tion is larger than expected, although the thermodynamic spin-flop

field Bsf is unchanged. Another consequence of the demagnetisation in

this case is that the critical angle ~ isc increased so that

first-order transitions will occur for larger misalignment angles than

otherwise predicted. Experimentally verified calculations by Blazey

et al. C197lb) for GdAl03 have shown that ~c is nearly tripled in the

case of a cylinder as outlined above. The effect is not so pronounced
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for other specimen morphologies, and is practically absent in a disc

with easy axis and applied field normal to its plane.

Another possible demagnetisation effect, proposed by King and

Paquette (1973), is the existence of an intermediate state between the

AFM and SF states. This state consists of domains of AFM and SF mate-

rial, and if present has a lower free energy than either of the 'pure'

AFM or SF states. The method of King and Paquette is to consider a

specimen of ellipsoidal shape which is placed in an external field of

intensity H parallel to the easy anisotropy axis. A domain state is
o

envisaged in which a fraction f of the sample is contained in narrow

'slabs' of SF material. Assuming that the domains are uniformly dis-

tributed, the macroscopic internal field H within the sample will be

uniform and given by H = H -N M- -0 z-' where Nz is the overall
demagnetisation factor of the sample in the direction of the applied

field. In a low temperature approximation we regard the magnetic

susceptibility along the AFM axis of the spins as being negligible so

that X II!:::O,and the susceptibility of the sample is taken to be X!:::Xj_.

Hence the magnetisation present in the sample arises only in the SF
domains and M=fXj_H.The internal field may therefore be written as

H = H /(1 + fN Xj_)- -0 Z (2.27)

It is seen in this equation that the first SF domain appears when

H=H =H f and f=O. As H is increased the value of H within the sample
o s 0

is screened to the value Hsf by the formation of domains. When f=l the

last AFM region disappears and since H=Hsf the applied field is

H =H f(l+N Xj_).Thus it is apparent that the extent of the domain re-
o s Z

gion is

~H = N Xj_Hfo Z s (2.28)

and that the intermediate state is mo~t easily observed in disc-shaped

samples (N =1), while being completely absent in cylindrical speci-
Z

mens. King and Paquette (1973) report very good agreement between
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(2.28) and the observed width of the spin-flop transition in MnF2.

However', in both CoBr2'6H20 (Basten et al. 1980a) and K2MnF4 (de Jongh

et al. 1982) domain states were observed over a larger range of applied

fields than (2.28) predicted, and additional effects (such as

solitons) were called upon to explain the results. It therefore ap-

pears that although experimental studies to date have not been con-

clusive, demagnetisation effects may in some cases be readily apparent

in the mechanism of the spin-flop phase transition.

2.3 SPIN-WAVE THEORY

The spin-wave theory of the spin-flop transition has been treated
by a number of authors, including Kanamori and Yosida (1955), Kittel

(1963), Jacobs and Silverstein (1964), Keffer (1966) and Gupta et ~l.

(1978a,1978b). One of the results of these analyses is the prediction

of a significant applied field dependence of the spin reduction present

in antiferromagnets with low Neel temperatures. This feature is of

relevance in the present work as both K2FeF5 and Rb2FeF5 have TN<lOK,

and is observed as a sharp minimum in the hyperfine field (corre-

sponding to a maximum in the magnan-induced spin fluctuations) for

applied fields near Bsf' In this section we will briefly sketch the

theoretical description of this phenomenon, leading to quantitative

expressions of the spin reduction as a function of applied field. It

is useful, however, to begin by discussing the related phenomenon of

zero point spin reduction.

2.3a Zero Point Spin Reduction

Following the standard theory for,an antiferromagnetic system in

the absence of an .applLed field (Kittel 1963, Keffer 1966), the
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sublattice spin reduction AS = S - <S> due to spin-waves may be given

by :

(2.29)
Here k is the wavevector, N is the number of spins on each sublattice,

and Xk is defined by :

tanh2Xk = -wE~k/(wE+wA) ,
where wE=2JzS/n is the exchange frequency and WA=gllBBA/ftis the
anisotropy frequency. In a system of loosely coupled linear chains the

structure factor ~k is :

~ = [cosk a + (J'/J)(cosk b+cosk c)]/(l + 2J'/J)k x Y z

(Ishikawa and Oguchi 1975), where a is the lattice constant along the

chains, band c are the lattice constants perpendicular to the chains,

and J and J' are the intrachain and interchain exchange constants. The

number of spin waves excited at temperature T is given by :

n =k

since spin-waves obey Bose-Einstein statistics, where

wk = [(wE+WA)2 - ~k2WE2]1

is the frequency of the magnon of wavevector k.

It is interesting to note that the spin reduction described by
equation (2.29) has a temperature-independent part:

-1AS(O) = N Lk1(cosh2Xk-1) , (2.30)

which is known as the 'zero point spin reduction' (ZPSR). It is further

instructive to note that the ZPSR is a direct consequence of the fully

aligned Neel state I~N>=I+-+-+- ...> (where '+' denotes 'spin up' etc.)

not being an eigenstate of the Heisenberg exchange Hamiltonian and

therefore not being a ground state of the spin system. This may be

seen by writing the exchange Hamiltonian (discussed in section 2.2a)
in terms of raising and lowering spin operators

H = L .. 2J ..[.s .S . + !(S+ .S .+S .S+ .)] ,ex 1J 1J Z1 ZJ 1 -J -1 J
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and considering (for simplicity) a spin 1/2 system. When H acts onex
I~N> the S+.S . terms convert pairs of spins -+ to +-, so that states

1 -J
such as 1-++-+-...>, 1++--+-...>, etc. are produced. The true ground

state of H is therefore a mixture of I~N> and all the other statesex
in which one spin on each sublattice is reversed. The average spin <S>

on each sublattice is thus less than that of the fully aligned state

(S), giving rise to the ZPSR that is approximated by equation (2.30).
The ZPSR may be numerically calculated (Anderson 19S2) by writing

-! -2cosh2Xk = (1-alk2) where a=(l+wA/wE) , and transforming the summa-

tion of (2.30) into a triple integral:

as(O) = ~-3jJJ![(1-alk2)-!-1]dK dK dK
x Y z

Here K =k a K =k band K =k c, and the integration limits (O~~) arex x' y y z z

chosen to be those appropriate for the periodicity of the function.

When a=l the ZPSR predicted for a three-dimensional material is found

from this integral to be as(0)=0.07836, which for a spin S=S/2 system

represents a spin reduction of -3.1%, while in a two-dimensional system

as(0)=0.19660, a -7.9% reduction. In the case of a one-dimensional
system with a=l as(0) diverges, indicating that a pure isotropic

one-dimensional system cannot sustain long range order, even at abso-

lute zero. Experimental' observation of ZPSR is often difficult in

three-dimensional crystals, but it has been found to be >30% in some

quasi one-dimensional materials, including K2FeFS and Rb2FeFS.

2.3b Field-Dependent Spin Reduction
The origin of the field-dependence of the spin reduction in

antiferromagnets lies in a modification of the normal mode f~equencies

Wk by the external field. This effect is different for spins lying

parallel to or perpendicular to the applied field direction, and is

particularly noticeable during the spin-flop transition in quasi

one-dimensional antiferromagnets.
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In the presence of an external field B<Bsf applied parallel to the

AFM axis of the spins the magnon dispersion curve splits into two

parts, with wk±=wk±wB' where wB=gPBB/~. The expression for the spin
reduction at temperature T and field B is then :

(2.31)

where nk± are the numbers of magnons corresponding to wk±' It may be
noted that this equation is essentially the same as (2.29) except that

nk is replaced by the average of nk+ and nk_. Another notable feature

of (2.31) is that although the frequencies wk± split symmetrically

about wk as B is increased, nk_ increases much faster than nk+ de-

creases and therefore the average of the two increases. This leads
to an increase in spin reduction with increasing applied field.

In the spin-flopped phase (B>Bsf) the magnon frequency has been

derived by Wang and Callen (1964) and Keffer (1966) to be :

wk± = wE{[-(wA/wE)+1+tk]cos2¢ + (WB/wE)Sin¢}l[(wA'/wE)+l±tk]l ,
where wAr allows for anisotropy within the plane perpendicular to the

applied field. ¢ is the angle by which the spins are canted out of

the perpendicular plane by the applied field, and is given by

(2.32)
(This equation may be derived by balancing the torques acting on a

given spin, gPB~lx(~+~E+~A)=O, where ~EII~2and gA=I~Alsin¢ is directed
along the easy anisotropy axis.) The spin reduction is then

-1
ASsf ~ N rkl[ak+ + ak_ - 1] , (2.33)

with ak± = (wE/wk±)(nk±+1)[l±lksin2¢-(wA/2WE)cos2¢+(wA'/2wE)]
(Wang and Callen 1964). Numerical calculations by Gupta et al. (1978a)

have shown that the predicted spin reduction is greatest for B~B f'. s

and decreases as B is increased. When B=2BE-BA the spins enter the

paramagnetic phase with ¢=90o given by (2.32), and ASsf reduces to
zero.
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It should be noted that in its essence the standard spin-wave

treatment of the spin-flop transition is a first-order model. That is,

it is usually assumed that the applied field is perfectly aligned with

the easy anisotropy axis of the antiferromagnet. The transition takes

place when WB~(2WEWA)1 and the long wavelength (k=O) magnon frequency

Wk_ goes to zero, producing an instability in the spin-wave modes which
then initiates the spin reorientation. In the case of imperfect

alignment of the applied field with the easy axis the spin reduction

calculation is greatly complicated by the non-diagonal nature of the

spin Hamiltonian. Gupta et a1. (1978b) obtained an approximate sol-

ution to this problem by assuming that any rotation of the

antiferromagnetic axis of the spins away from the easy axis was neg-

ligible. According to the mean-field theory outlined in the previous

section this assumption implies that the misalignment is slight, and

within the critical angle ~c~BA/2BE. A comprehensive treatment of the
problem with ~>~ has yet to appear in the literature.c

2.4 SOLITON THEORY

We conclude this chapter by considering a third theoretical model

of the spin-flop phase transition, one which is based on the concept

of travelling domain walls or 'solitons'. This theory has been brought

into prominence over the last few years by L.J. de Jongh and co-workers

at the University of Leiden. Several review articles have been pub-

lished by this group, including de Jongh (1982), de Jongh and de Groot

(1985) and de Groot and de Jongh (1986). One of the predicti?ns of this

soliton theory is that in low-dimensional systems the spin-flop tran-

sition will be considerably broadened by the motion of domain walls,

and its first-orde~ character lost. This feature is of interest in

the present work since both K2FeF5 and Rb2FeF5 are quasi
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one-dimensional antiferromagnets of the type that may support soliton

waveforms. In this section we shall sketch the soliton description of

the spin-flop, but begin by reviewing the concept of the non-linear

waveforms that are known as 'solitons'.

2.4a Solitons as Moving Domain Walls

Mathematically a soliton is defined as a solution Hz, t) of the

Sine-Gordon equation :

C02~ZZ - ~tt = wo2sin~ ,
where ~ =a~/az etc., and c and ware the characteristic wave velocityzoo

(2.34)

and frequency. In the small amplitude limit sin~~~ and the equation

reduces to the Klein-Gordon equation, which has the linear travelling

wave solutions ~(z,t)«cos(kz-wt) that are known as 'spin-waves' or
, ,magnons . However, large amplitude solutions of (2.34) may occur,

including the wave :

~(z,t) = 4tan-l{exp[±(ow Ic )(z-vt)]} , (2.35)
o 0

where o=(1-v2/c 2)-t and v is the wave velocity. These are theo

'soliton' solutions which describe localised waveforms in which ~

changes by 2~ over a finite width d =c Iw . Usually the low densitys 0 0

limit is considered in which the solitons may be treated as a dilute

gas of non-interacting quasi-particles. In this approximation the

soliton mass is given by m =w Ic ,s 0 0 the thermal velocity

v«c (kBT/E )t, and the particle density n «m (E IkBT)texP(-E IkBT),o s s ss· s
where E is the soliton energy.s

The importance of solitons in low-dimensional magnetism was first

pointed out by Enz (1964), and may be illustrated by considering the

spin Hamiltonian of a one-dimensional antiferromagnetic chain :

H = Li[2J§i·§i+1 - K(Sxi)2 + K'(Szi)2]
Here J>O is the exchange constant, K'>O is an anisotropy constant which

establishes a planar (xy-plane) preference for the spins, and K>K' is
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an Ising-type anisotropy constant which singles out the x axis as the

easy axis for the spins. In the 'continuum approximation' (Enz 1964,

Mikeska 1980,1981) this Hamiltonian may be rewritten in terms of the

sum of exchange, kinetic and anisotropy energy terms

where E =-iJS2, m2=K/J, c =4JS and the integration limits are ±oo.
o 0

8(z,t) is the angle that the spins make to the easy axis, and z is

position along the chain measured in units of the lattice spacing. The

Hamilton equation of motion dp/dt=-aH/aq may now be applied by noting

that the momentum p=mv is constant as the soliton velocity v is in-

variant, and the position variable q is equivalent to z. Thus aH/az=O,

which leads to an equation of the form :
-228zz - 2co 8tt = m2sin28

This is a Sine-Gordon equation of the form of (2.34), with ~ replaced

(2.36)

by 28, so that c may be recognised as the maximum (cutoff) velocity
o

of a soliton of mass m in the magnetic chain.

A physical picture of a soliton excitation in a one-dimensional AFM

chain thus emerges. Since e in (2.36) corresponds to !~in (2.34) the

soliton represents a ~ rotation of the spins. This ~-soliton separates

the two (degenerate) ordered configurations of the chain, and as such

may be regarded as a domain wall of the 'Bloch' type. The passage of

a soliton will be observed at a given spin site as a ~ rotation of the

spin direction from e.g. +x to -x, with the spin moving in the xy-plane

while the soliton propagates in the z direction.

2.4b Soliton Model of the Spin-Flop

In recent years it has been suggested that solitons may mediate the

spin-flop transition in low-dimensional magnetic systems, and may also

account for the broa~ening of the transition sometimes observed in such

materials. de Jongh (1982) considered the effect of an external field
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applied parallel to the easy axis of the spins by adding the term

-g~Bri~·§i to the spin Hamiltonian discussed above. In small fields

(B<Bsf) the energy of a single domain wall (soliton) that is N spins

wide may be estimated as the sum of exchange, anisotropy and applied

field energy terms :

Ewall
Minimising this expression with respect to N and making the low tem-

perature approximation that Xf~O, the wall energy (or soliton creation

energy) is given by :
(2.37)

A rigorous derivation of this result has been given by Leung et al.

(1980). Above the spin-flop (B>Bsf)' the spins lie along the y axis

and rotate from +y to -y during the passage of a soliton. The creation

energy of a soliton in this flopped phase is :

Es ~ g~BSBsf(B2/Bsf2-1)i . (2.38)

Equations (2.37) and (2.38) form the basis of a soliton description

of the spin-flop. As B approaches B f the soliton creation energy Es s

approaches zero so that both the width and the density of soliton

excitations in the chains become very large. Since over the width of

a soliton the spins have components perpendicular to the easy axis,

one may view these excitations as creating admixtures of small segments

of the SF phase in the AFM phase (for B<Bsf) and vice-versa. The mean

angle <8> of the spins to the z axis will therefore vary continuously

from <8>=0 for B«B to <8>=90° for B»B . Such a transition issf sf
clearly reversible and continuous, so that in terms of the soliton

theory the spin-flop may be regarded as of second-order.

We should note here that these solitons will occur in pairs because

of the influence of interchain interactions. The excitation of a single

n domain wall (be~ow TN) would imply that about half the spins in a
chain would be overturned, and would move against the interchain cou-
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pling J'. Although J' is small in quasi one-dimensional systems, the

cost in energy would be large because of the large number of spins

involved. Thus it is more likely that 'pair-states' consisting of a

soliton and an anti-soliton would be created (for energy 2E ), withs

only the spins inside and between the two walls contributing to the

interchain interaction energy.

The average angle <8> may be predicted from the soliton model.

Assuming that the density ns of solitons is small so that the

excitations do not interact, the mean free space available to each
-1pair-state is n It can then be shown (de Jongh and de Groot 1985)

s

that the mean angle is approximated by :

<8> ~ 2n d J(8/sin8)d8 ,s s

where the integration range is 04TI/2. The integral may be evaluated

numerically, giving <8>~3.66n d .s s
It has also been shown (Leung et

al. 1980) that in the low-density limit the soliton density is given

by :

Thus the mean angle of rotation may be estimated as

(2.39)

where we recall that the· excitation energy of the pair-state is 2E .s
Using (2.37) and (2.38) for E the field dependence of <8> may there-s

fore be calculated, although in the neighbourhood of Bsf the exponen-

tial diverges and unphysical behaviour is predicted, corresponding to

the breakdown of the low-density non-interacting particle approxi-

mation.

In conclusion it is perhaps useful to reiterate that the soliton

approach to the spin-flop transition is only valid in low-dimensional

systems. In a three-dimensional material a soliton excitation might

be envisaged as a 'droplet' or 'micro-domain' region of space in which

the antiferromagnetic sublattices are interchanged. However the
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excitation energy of such a micro-domain will typically be of the order

of l03K (de Groot and de Jongh 1986), compared to I-10K in a quasi

one-dimensional material. Thus the contribution of solitons to the low

temperature free energy of an antiferromagnet (and the subsequent
broadening of the spin-flop transition) will only be significant in

low-dimensional systems.
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3.1 INTRODUCTION

In the 1920's it was noted that it should be possible to observe a

nuclear analogue of the phenomenon of atomic resonant fluorescence

(Kuhn 1929). A l-ray emitted during a nuclear transition from an ex-

cited state to the ground state should be capable of exciting a second

ground state nucleus of the same isotope. However, the high energy and
momentum of the photon causes the nucleus to have a large recoil energy

and reduces the probability of detecting the resonant absorption to

negligible proportions.

A solution to the problem was found by R.L. l-lOssbauerin 1957-58

during his graduate work on the nuclear resonance scattering of 129
keY l-rays from 191Ir. He found that in the solid state it was possible

to produce recoilless emission and absorption events (Mossbauer

1958a,1958b) and that resonant absorption could then be easily de-

tected. His experiments formed the basis of a completely new branch

of solid state spectroscopy which is now referred to as 'Mossbauer

spectroscopy' .

Over the last thirty years Mossbauer spectroscopy has developed

into an important and· versatile tool for the study of solid state

properties. Since the !'-raysemitted in recoilless events are very

nearly monochromatic it is possible to observe the hyperfine inter-

actions between a nucleus and its environment. This high resolution,

coupled with the relative simplicity of the necessary instrumentation,

has promoted the use of Mossbauer spectroscopy in many diverse fields

and particularly in physics, chemistry, biology, geology and engi-

neering.

Numerous books and review articles have been written on the

Mossbauer effect, including Wertheim (1964), Greenwood and Gibb (1971)
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and May (1971). Frauenfelder (1962) provides a collection of the most

significant early papers, including translations of Mossbauer's work.

Although the Mossbauer effect has been observed in almost fifty

elements, the majority of work to date has been restricted to about a

dozen particularly convenient isotopes. Most notable are iron, tin and

antimony. In the present work Mossbauer experiments were performed

with a stable isotope of iron, 57Fe, and therefore much of the dis-

cussion which follows will relate to this isotope.

3.2 THE MOSSBAUER EFFECT

3.2a Recoilless Emission and Absorption

To better understand the Mossbauer effect, let us consider the en-

ergetics of I-ray emission and absorption. Most modes of ra~ioactive

decay produce a daughter nucleus in a highly excited state, which then

decays to the ground state by emitting a series of I-ray photons.

Consider an isolated free atom which has a nuclear excited state at

an energy E above the ground state. If a single I-ray of energy El is

emitted during de-excitation there is some energy loss to the recoiling

nucleus so that

E = E - E - EI R D (3.1)

is the photon energy. Here ER is the recoil energy, which by conser-

vation of energy and momentum can be shown to be

where c is the speed of light and M is the atomic mass. ED is a term

which is proportional to the initial velocity of the ato~, and is

called a 'Doppler-effect' or 'thermal-motion' energy. It has a mean

value
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where k is Boltzmann's constant and T is absolute temperature. The

Doppler energy leads to a broadening of the statistical distribution

of the emitted r-ray energies into a Gaussian curve of half-width

<ED>' centered at E-ER·
In the reverse process of absorption the r-ray distribution is

similar but displaced by +ER to give :

(3.2)

Nuclear resonant absorption will only have a significant probability

if the emission and absorption profiles defined by equations (3.1) and

(3.2) overlap strongly. Typical r-ray events in free atoms have

E - 104 eV and both ER and <ED> of order 10-2 eV, so that as shown in

Figure 3.1 the overlap may be quite small and the resonant absorption

difficult to detect.
The significance of the Mossbauer effect may now be seen in that

for a nucleus imbedded in a solid the recoil and Doppler energies may

be entirely eliminated. In a crystal lattice, if the recoil energy is

less than the chemical binding energy, the only way that ER can be

dispersed is by the creation of phonons. However, if ER is less than
the energy required to create a single phonon there is a finite pos-

sibility that the r-ray emission or absorption takes place without any

phonons being created. To conserve energy the crystal mass as a whole

must then move, so that the mass M in the equation for ER becomes that
15of a crystal containing perhaps 10 atoms, and ER is very small.

Similarly, the Doppler energy is associated with phonons and <ED> is

very small in a zero-phonon transition. With ER and ED thus eliminated

in the solid state, nuclear resonant absorption becomes a strong pos-

sibility.
In the absence of recoil or thermal broadening the width of the

r-ray energy dLst rLbut Lon is defined by the Heisenberg uncertainty

principle, t.Et.t~ n , in which the uncertainties in energy and time
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Figure 3.1 Statistical distributions of the r-ray energy for emission

and absorption, with the resonance overlap region shaded.

source absorber detector

/(e)

Figure 3.2 Schematic illustration of a Mossbauer effect experiment and

a corresponding Mossbauer absorption spectrum.
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are related to Planck's constant h (=21Tfi). Thus the width of the l-ray

distribution at half-height, ro ' is given by ro t = fi , where t is

the mean lifetime of the excited state..For the first excited state

of 57Fe at 14.4 keV, t=99ns and r =4.7x10-geV, a monochromaticity ofo

r /E 1 . 1012o r = part 1n
The probability of zero-phonon l-emission from a nucleus embedded

in a solid can be quantitatively related to the vibrational properties

of the lattice through dispersion theory (Frauenfelder 1962). This
probability, known as the 'recoil-free fraction' or 'f-factor' is

given by

where <x2> is the mean-square vibrational amplitude of the nucleus in
the direction of the r-ray. The f-factor is thus enhanced for

low-Energy r-rays (small E) in a strong lattice (small <x2».

3.2b The Mossbauer Spectrum
Experiments on the M~ssbauer effect usually utilise the recoilless

emission of l-rays from a solid matrix containing the excited nuclei

of a given isotope (the 'source'), followed by their resonant absorp-

tion by a second matrix containing the same isotope in the ground state

(the 'absorber'). Movement of the source relative to the absorber by
a velocity v alters the effective value of Er 'seen' by the absorber

by a small Doppler shift energy E = (v/c) El' A Mossbauer spectrum is

obtained by recording the rate of transmission of the source r-rays

through the absorber, as a function of the Doppler velocity v (i.e.
transmission as a function of energy). This is illustrated in Figure

3.2.
The line-shape of the absorption is derived from the source and

absorber energy dis~ributions. In the limit of a very thin source and

absorber it is of Lorentzian form with a width r - 2r where r isr s s
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the natural linewidth of the source. Thus the decrease in transmission

with respect to the l-ray energy E is given by :

I(E) = (r /2~)x[(E-Ev)2 + (r /2)2]-1 .
r 0 r

A small increase in the absorber thickness causes an increase in r
r

but only small distortion of the Lorentzian line-shape.

3.3 HYPERFlNE INTERACTIONS

The great usefulness of the H6ssbauer effect lies in the high de-

finition of the resonance (about 1 part in 1012) which is similar in

magnitude to the slight influences on the energy of a nucleus due to

its chemical environment.

The Hamiltonian describing the energy of the nucleus may be written

in the form

where H represents all terms other than the hyperfine interactionso

with the environment. The dominant term in H is due to intranuclearo

forces which give rise to quantised energy levels which have the nu-

clear spin quantum number I. The E term refers to electric monopoleo

(Coulomb) interactions between the nucleus and its surrounding

electrons. HI refers to the magnetic dipole interactions of the nuclear

spin with a magnetic field. E2 describes electric quadrupole inter-

actions of the nuclear quadrupole moment with the local electric field

gradient.

The three interactions Eo' HI and E2 have characteristic influences

on the H6ssbauer spectrum, known respectively as the 'isomer shift',

'magnetic hyperfine splitting' and 'quadrupole splitting'. It is con~

venient to discuss them individually.
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3.3a Isomer Shift

In a nuclear l-transition it is usual for the effective nuclear

radii of the excited and ground states to differ. The Coulomb inter-

action energy between the electronic charge at the nucleus and the

nuclear charge is therefore different for the two states. The e1ec-

tronic charge at the nucleus is in turn dependent on the chemical en-

vironment of the atom.

If in a Mossbauer experiment the chemical structures of the source

and absorber are different, the resonance line recorded by velocity

scanning may be measurably displaced from zero velocity by an amount

5, known as the 'isomer shift'. This is illustrated in Figure 3.3a for

57Fe as differing shifts in the 1=3/2 and 1=1/2 energy levels. For

convenience 5 is usually quoted in mm/s rather than in direct energy

units. Although 6 is not an absolute quantity it is possible to compare

values using a suitable reference, such as the l-ray source used or

another absorber (which in the case of 57Fe spectroscopy is usually a

natural iron foil at room temperature).

A mathematical expression of the above concepts has been derived

by DeBendetti et al. (1961) and Walker et al. (1961), assuming that

the nucleus is a uni fo.rml.y charged sphere and that the electronic

charge density is uniform over nuclear dimensions. These approxi-

mat ions give :

(3.3)

where Z is the atomic number of the nucleus, E is the permittivityo

of a vacuum and -e is the electronic charge. <R 2> and <R 2> are thee g

root mean square radii of the excited and ground states, and I~ (0)12a

and I~ (0)12 represent the s-electron densities at the absorber and
s

source nuclei.

Equation (3.3) contains the product of a nuclear term which is a

constant for a given transition, and a chemical term
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(If (0)12-lf (0)12) which describes the difference in s-electron den-a s
sity at the nucleus. Sometimes the two terms are referred to separately

as the 'isomer shift' and the 'chemical shift', but it is conventional

in Mossbauer spectroscopy to refer to their product as the 'isomer

shift' .

Another effect contributing to the measured isomer shift is the

second-order Doppler shift due to the thermal vibration of an atom on

its lattice site. The relativistic equation for the Doppler effect on

the emitted r-ray predicts a frequency shift relative to a stationary

atom of :
v = v (1 + ~v2>/2c2) ,

o

where <v2> is the mean-square velocity of the atom in the direction

of emission. There is a corresponding change in the r-ray energy of :

Since vibrations are temperature dependent, <v2> will increase as

temperature is raised, and the Mossbauer resonance will move to lower

velocity. For 57Fe this shift is typically ~0.07 mmls per lOOK. There

is also a significant zero-point motion contribution at absolute zero.

3.3b Quadrupole Splitting

In a chemically bonded atom the electronic charge distribution is

usually not spherically symmetric and an electric field gradient (EFG)

tensor at the nucleus may be defined as :

E = -V .. = -a2v/ax.ax. ,
ij 1J 1 J

where x.,x.=x,y,z and V is the electrostatic potential.
1 J

By a suitable choice of coordinate axes the EFG may be reduced to

diagonal form. The Laplace equation then demands that :

V2V = V + V + V = 0 ,xx yy zz
so it is only necessary to specify two parameters to define the tensor

completely. (Although the s-electron charge density at the nucleus is
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non-zero the charge distribution is spherically symmetric and does not

contribute to the EFG.) It is customary to define the axis system of

the atom so the V =eq is an extremal value of the field gradient, andzz
an 'asymmetry parameter'

n = (Vxx - Vyy)/Vzz '
where IV I>IV I~IV I so that 0 S n S 1. The EFG is then defined byzz yy xx
V and n.zz

The EFG at the nucleus has two sources : the incompletely filled

electron shells in the atom itself (the 'valence' contribution), and

the charges on distant ions in the crystal (the 'lattice' contrib-

ution) . NumerLcaI evaluation of the EFG is complicated by large

shielding and antishielding effects (Sternheimer 1957), but many of

the properties of the EFG may be deduced from the symmetry properties

of the crystal. For example, if the crystal has a fourfold rotational

symmetry axis then V lies along that axis, and since a 90° rotationzz
produces no change in the crystal and therefore no change in the EFG,

V =V and n=O.xx yy
A nucleus with a spin quantum number 1>1/2 has a non-spherical

charge distribution and hence a nuclear quadrupole moment eQ. This

moment interacts with the'EFG according to the Hamiltonian

H = (eQ/2I(2I-1)).(V I 2 + V I 2 + V I 2) ,zz Z yy Y xx x
where I ,I and I are conventional spin operators. In the case of

x y z

1=3/2 this equation may be solved exactly to give the eigenvalues

(3.4)

where MI=±3/2,±1/2 are the spin projection quantum numbers

(MI=I,I-1,...,-1). Thus the 1=3/2 energy level is split into ~wo levels

with MI=±3/2 and ±1/2 respectively. If the sign of V is positive thezz
M1=±3/2 states will be highest, as illustrated in Figure 3.3b. The

corresponding MBssbauer spectrum (for an I =3/2 -+1=1/2 transition)e g

comprises two lines with a separation :
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6 = ;eQIV I .(1+n2/3); ,zz
which is referred to as the 'quadrupole splitting'. The line intensi-

ties are equal for a randomly oriented absorber (see Section 3.4).

3.3c Magnetic Hyperfine Splitting

If there is a magnetic field of flux density B at the nucleus it

will interact with the nuclear magnetic moment p to split the nuclear

energy levels. The Hamiltonian describing the interaction is :
H = _p_e~ = -gp IeB- N- - ,

where PN is the nuclear magneton (=efl./2m)
p

and g is the nuclear

g-factor (=p/IPN). The solution of this Hamiltonian gives

Em = -gpNBMI '
and the nuclear level is split into 21+1 non-degenerate equally spaced
sub-levels.

57The magnetic hyperfine spectrum of Fe is shown in Figure 2.2c.

(The relative inversion of the I =3/2 and I =1/2 multiplets is due toe g

the difference in sign of the excited and ground state nuclear magnetic

moments). The selection rules for magnetic dipole transitions are that
MII=O,±l so that there are only six allowed transitions (see Section

3.4). The absorption lines have relative intensities 3:2:1:1:2:3 for

a randomly oriented absorber.

The magnetic field at the nucleus may be considered to be due to

two contributions :

B = Bl + Bhf- - oc -
Here Bl is the value that the macroscopic internal field in the~ oc
specimen takes at the nucleus, and ~hf is the hyperfine field !esulting
from the immediate environment of the nucleus.
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3.3c(i) The Local Field

The local field at a given atom site in a magnetic material is the

sum of the applied field B from external sources and the fields+app

arising from the magnetic dipoles within the specimen

~loc = ~app + ~1 + ~2 + ~3
The standard method of summing the dipole fields was discussed in

Chapter 2, section 2.2e. B1=-~ NM is the 'demagnetising field' asso-
'" 0 -

ciated with the outer boundary of the specimen, where N is the
demagnetisation factor and M is the sample magnetisation. B2=~ M/3 is- ~ o~

the 'Lorentz cavity field' corresponding to the magnetic poles on the

surface of an imagined spherical cavity concentric with the reference

atom. The third contribution, ~3' is the field due to the magnetic
dipoles within the imaginary sphere. This field is generally small,

and is zero for a lattice site with cubic symmetry.

In general the contributions of B1, B2 and B3 to the total local

field are small for dia-, para- and antiferro-magnets, but they can
be quite large for ferro- and ferri-magnets.

3.3c(ii) The Hyperfine Field

In the hyperfine field at the nucleus three contributions may be

distinguished

~hf = ~L + ~D + ~FC
(Marshall and Johnson 1962). The first term is the field produced by

the orbital magnetic moment of the parent atom ,
-3~L = -(~o~B/2~) <r > <~> , (3.5)

where ~O is the permeability of free space and ~B is the Bohr magneton
(=en/2m ). The expectation values refer to the radial coordinate rande

the orbital angular momentum ~ of the contributing electrons, which

in the case of 57Fe are the 3d electrons.

The second term in ~hf is the field produced by the dipolar inter-
action of the nucleus with the spin moment of the atom
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where S is the spin angular momentum operator. In a crystal with axial

symmetry
B = -(~ ~ /2~) <S> <r-3> <3cos2e - 1> ,-D 0 B - (3.6)

where e is the angle between the spin direction and the principal axis.

The Fermi contact field ~FC arises from an imbalance in the

s-electron density at the nucleus

~FC = -(4~ ~B/3E ) <L,s ,6(r.» ,- 0 0 1 Zl 1 (3.7)

where the expectation value is of the spin density at the nucleus, r.
1

being the radial coordinate of the ith electron and 6(r,) being a Delta
1

function. A spin imbalance may result from intrinsic impairing of the

s-electrons, or indirectly from polarisation of filled s-orbitals by
exchange interactions with unfilled shells. Since the field from a

single unpaired Is electron is very large (-104T in iron), small dif-

ferences in the s-electron orbitals can account for the occurrence of

large fields at the nucleus.

In the case of iron, the Fermi contact interaction leads to a con-

tact field directed antiparallel to the magnetic moment of the atom.

The magnetic moment of an unpaired electron is antiparallel to its

spin, therefore in a free atom subject to an applied field directed

upwards the 3d shell electrons will be polarised spin-down, with

s =-i. The quantum mechanical exchange interaction then leads to an
Z

attraction of the spin-down s-electrons (and a repulsion of the spin-up

s-electrons) to (from) the 3d electrons. This is shown schematically

in Figure 3.4. Thus the spin-up s-electrons have a greater density at

the nucleus and ~FC is negative, Le. directed antiparallel to the

atomic moment and to B+app
If we consider the various contributions to the hyperfine field in

a Fe3+ ion, we see from equation (3.5) that since in a weak crystal

field the five 3d electrons have parallel spins and a total orbital



~ B.pp

r

Figure 3.4 Schematic illustration of the Fermi contact interaction in

Fe3+. The solid arrows represent the 3d and 1s shell electron spins,
and ~2(r) represents the radial distributions of the 1s spin densities.

random U
(J = 90° U
(J = 45° LJ
(J = O'

Figure 3.5 The effect of orientation on the line intensities of the

magnetic and quadrupole split spectra for an I1=3/2 to I2=1/2 transi-

tion.
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angular momentum L=O, the orbital field BL=O. Similarly, since Fe3+

is a spherically symmetric ion the term <3cos28 - 1> in (3.6) vanishes

and the dipolar field BD=O. (However there may be small contributions

to BD from the other magnetic dipoles in the specimen). Thus the major

contribution to Bhf in ferric iron is due to the Fermi contact field.
Th . . . F 2+. . di ff t Th . f h be s1tuat10n 1n e 1S qU1te 1 eren. e s1gn 0 t e spin-or it

coupling (which is negative for six 3d electrons) causes the orbital

and spin angular momenta to be aligned parallel. ~FC is parallel to S

whereas ~L (which may be large since L=2) is antiparallel to~, so that

depending on their relative strength (and to a lesser extent on the

sign and value of ~D) the total field ~hf may be either positive or
negative, or zero.

3.3d Combined Magnetic and .Quadrupole Splitting

In simple cases the electric quadrupole and magnetic hyperfine

interactions are of very different size and one can be treated as a

perturbation on the other. However, generally they must be treated

together by diagonalising a combined Hamiltonian which is greatly

complicated by the angles between the axis systems of the two inter-

actions. Solutions cannot in general be found analytically and in

practice are obtained by a full mathematical analysis using a digital

computer.

One of the simple cases mentioned is when the quadrupole interaction

acts as a first-order perturbation on the magnetic interaction. If the

EFG is axially symmetric with its principal axis at an angle 8 to the

magnetic axis, and if eQIV 1« ~B, then the eigenvalues of the com-zz
bined Hamiltonian are
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57This level splitting is shown in Figure 3.3d for Fe, where the 1=3/2

sub-levels are shifted away from their 'pure magnetic' positions by

an amount :

£ = ieQIV l.t(3cos26 - 1) ,zz
sometimes known as the 'apparent quadrupole splitting' or the

'quadrupole shift'.

3.4 RELATIVE INTENSITIES OF THE ABSORPTION LINES

We have seen that from the shifts and splittings observed in a

Nossbauer spectrum one can extract information relating to the elec-

tric and magnetic hyperfine interactions acting in the nucleus. How-

ever, more information on the directions of these interactions may be
obtained by considering the relative intensities of the Nossbauer ab-

sorption lines.

In general, in a ~-ray transition between two nuclear levels of spin

II and 12 (and furthermore between the two substates with Iz values
ml and m2) the probability of a ~-emission in a given direction is :

P « < II J -ml m I 12 m2 >2 0(J,m)

(Condon and Shortley 1935, Greenwood and Gibb 1971). This expression

contains the square of the appropriate Clebsch-Gordan coefficient

(where J=Il+I2 and m=ml+m2) and an angular dependent term 0(J,m). J

is known as the 'multipolarity' of the transition : J=l is a dipole

transition, J=2 is a quadrupole transition, etc. The smaller values

of J give the larger intensities. If there is no change in parity

during the decay it is classified as magnetic dipole (NI) or electric

quadrupole (E2).

The l4.4keV level 57in Fe decays primarily by a magnetic dipole
transition. This ~estricts the values that am = m2 - mi can adopt

all values other than am=O,±l cause the coefficient to be zero. Thus
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57in Fe where 11=3/2, 12=1/2 and J=l there are only six allowed tran-

sitions, with the Am=±2 transitions forbidden. The relative probabil-

ities of the allowed transitions are given in Table 3.1, including the

angular dependence where e is the polar angle of the l-radiation in

the principal axis system. (For simplicity the EFG asymmetry parameter

n is assumed to be zero here.) The Am=O transitions have a classical

dipole radiation pattern given by sin2e, while the Am=±l transitions

have a (1+cos2e) pattern.

Table 3.1 Relative radiation probabilities for a magnetic dipole

11=3/2 to 12=1/2 transition.

Transitions Am Probability

+3/2 ~ +1/2 -1
3(1 + cos+B)

-3/2 ~ -1/2 +1

+1/2 ~ +1/2 0
4sin29

-1/2 ~ -1/2 0

-1/2 ~ +1/2 +1
1 + cos29

+1/2 ~ -1/2 -1

In a magnetically split 57Fe spectrum the relative intensities of

the outermost:middle:innermost pairs of lines are therefore given by

where 9 is the angle between the incident l-ray and the magnetic field

axis. (The probability distribution of l-absorption is the same as that

of l-emission). The limiting intensity ratios are 3:0:1 for 9=0° and

3:4:1 for 9=90°. A po1ycrystalline absorber in which the magne~ic field

axis is randomly oriented gives a 3:2:1 ratio, since the average of

cos29 over a sphere is 1/3 and the average of sin29 is 2/3. These cases

are illustrated in Figure 3.5.
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Similarly, in a quadrupole split 57Fe spectrum the relative inten-

sities of the two lines (which correspond respectively to the four

IMII = 1/2 ~ 1/2 transitions and the two 3/2 ~ 1/2 transitions) are

given by :

P(1/2,1/2) P(3/2,1/2) = 2+3sin2e : 3(1+cos2e) ,
where e is now the angle between the incident r-rays and the EFG

principal axis. The limiting ratios are 1:3 for 8=0° and 5:3 for

8=90°, and a polycrystalline absorber gives a 1:1 ratio (see Figure

3.5). Thus an angular dependence study of the quadrupole split spectrum

of a single crystal absorber will define which of the two lines is the

3/2 ~ 1/2 transition, therefore determining the sign of the EFG prin-

cipal component.
It is important to note that the intensity ratios given above are

strictly only applicable in the limit of a very thin absorber and

source, and that in reality the ratios are dependent on the finite

thickness of a real absorber and source. Margulies and Ehrman (1961)

have discussed this problem in detail. An effective absorber thickness

may be defined as

"( = f n a a t
o

where f is the recoil-free fraction, n is the density of the element

concerned (e.g. iron), a is the fractional abundance of the resonant

isotope (e.g. 57Fe) and a its absorption cross-section, and t is theo

absorber thickness (i.e. physical dimension). For t«l and assuming a

thin source, the resonance M5ssbauer line is Lorentzian with linewidth

r =2r , where r is the source natural linewidth. For 0 < t ~ 5 theroo
lineshape is still basically Lorentzian, but is broadened to a width

given approximately (Frauenfelder 1962) by :

r = (2.00 + 0.27t) r .
r 0

In a magnetic or quadrupole split spectrum the effective absorber
di t h .th b . l' bthickness correspon 1ng 0 t e J a sorpt10n ine 1S not t ut W.t,

J
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where W. is the relative intensity of the line. Thus the components
J

will show a difference in saturation behaviour with the larger inten-

sity lines being broadened more, causing an apparent accentuation of

the weaker lines with increasing absorber thickness.

3.5 TUm CONSIDERATIONS

To conclude this chapter let us note some of the time-scales of

relevance to the observation of a Mossbauer absorption spectrum.

The Heisenberg uncertainty principle states that if a system has

two possible energy states, E and E , then any measurements to de-n m
termine whether the system is in state n or in state m requires at

least a time T given by

T ~ 1i / (E -E )n m
Thus in a magnetic or quadrupole split spectrum the time required to

distinguish between the energies E = TICAl and E = TICAl of two nuclearn n m m
transitions is :

-1
T ~ (CAl -CAl )L n m '

which is often referred to as the 'Larmor precession time'.

In order to resolve hyperfine structure in a Mossbauer spectrum at

least one complete Larmor precession must take place before the nucleus

decays. In other words, we require that TN ~ TL ' where TN is the mean

lifetime of the Mossbauer isotope. For the 14.4keV state of 57Fe
-7TN~10 sec, so that the basic criterion for observing hyperfine

structure in an 57Fe Mossbauer spectrum is that TL~10-7sec.

A third relevant timescale, TR, characterises any relaxation

processes in the nuclear environment. For example, electronic

spin-spin interactions with neighbouring ions or spin-lattice inter-

actions may cause the spin directions of unpaired electrons to alter

or 'flip' over a period of time TR. Since the magnetic hyperfine field
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is often predominantly generated by the unpaired electron spins (via

the Fermi contact interaction), it will fluctuate as well. If the re-

laxation is 'fast' with tR«tL the nucleus will sense a time-averaged

field which is less than the instantaneous value of Bhf, and may even

be zero (as in a paramagnet). If the relaxation is 'slow' with tR»tL
the nucleus senses a static Bhf and yields a fully split spectrum. In

the intermediate regime tR-tL the nucleus will sense a range of
hyperfine fields and the spectrum will exhibit broadened lines. In this

way M6ssbauer spectroscopy may sometimes be used to investigate dy-

namic processes in the solid state.
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In this chapter the experimental techniques utilised for the work

presented in this thesis are discussed. Reference is made to the ex-

perimental apparatus used, the method of sample preparation and the

subsequent computer analysis of the spectral data.

4.1 EXPERHlENTAL APPARATUS

4.1a MtissbauerSpectrometer

Experimental methods in M6ssbauer spectroscopy are well established

(Cohen and Wertheim 1974) although the details of the instrumentation

used may vary considerably from one laboratory to another. The trans-

mission ~lossbauerspectrometers in use in Liverpool (Figure 4.1) are

based on those first used at AERE in Harwell (Cranshaw 1964). Each

spectrometer consists of a l-ray source, a mechanism for modulating

the l-ray energies (by vibrating the source), an absorber and a system
to detect the transmitted l-rays.

4.1a(i) l-Ray Source

The most commonly used l-ray source in this laboratory consists of

radioactive 57Co diffused into a foil of rhodium metal. These sources

are commercially produced (Amersham International Ltd.) and have an

initial activity of -100mCi and a half-life of -270 days. During the
57 57decay of Co to Fe a low energy 14.41 keY l-ray is emitted (see

Figure 4.2) which is ideally suited to Mossbauer effect experiments.
Rhodium is chosen as the host matrix for the 57Co because the emitted

l-rays make up a single-line source, and the source linewidth

r =O.llmm/s is close to the theoretical minimum linewidth r =0.097mm/sso'
as well as being largely temperature independent.

A d f d· L· 1· 57C d dsecon type 0 source use 1n 1verpoo 1S 0 ope into iron

metal. This is a six-line source since there is a hyperfine field

acting on the 57Co nuclei which splits the 1=3/2 and 1=1/2 levels of
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1=5/2

9% 91%
122keV

3/2 ----tf-------lI'--_r----

14.4keV
1/2 ----'"'--------"---

Figure 4.2 Decay scheme of 57Co.
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the 57Fe decay product. This source had a lower activity than the

others (initially ~25mCi) and is primarily used as a calibration source

(see later).

4.1a(ii) Drive System

The energy modulation of the l-rays is obtained by moving the source

relative to the absorber. This motion is provided by the 'drive system'

depicted in the upper left part of Figure 4.1. A waveform generator

produces an asymmetric triangular waveform which, when integrated by

the drive amplifier, generates a drive signal that determines the

source displacement. The source is mounted on the drive-shaft of a

'vibrator', which is an electromechanical device similar to a loud-

speaker.

The drive signal is parabolic for about 80% of each cycle and the

corresponding source motion undergoes a constant acceleration. During

this time the source moves away from the absorber, reaches a stationary

point and then returns towards the absorber. In the remaining 20% of

each cycle the source executes a rapid flyback. The quality or 'line-

arity' of the source motion is monitored by a voltage signal obtained

from a pick-up coil around a part of the vibrator's drive-shaft which

carries a small permanent magnet. Comparison of this 'feedback' signal

with the drive signal enables corrections to be applied by the drive

amplifier.

4.1a(iii) l-Ray Detection

The components of the spectrometer that comprise the l-ray de-

tection system are shown in the right half of Figure 4.1. A gas pro-

portional counter containing about 90% argon and 10% methan~ registers

voltage pulses whose magnitude (or 'pulse-height') is proportional to

the energy of the incident l-ray. The.pulses are shaped and amplified

by a pre-amplifier and a spectroscopic amplifier, and may be displayed

as a 'pulse-height spectrum' on a multi-channel analyser (HCA) after
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being fed through an analogue-to-digital converter (ADC). The 14.4 keY

r-ray pulses are selected by a single-channel analyser (SCA), the

setting of which is aided by reference to the MCA pulse-height spec-

trum.

4.1a(iv) CAMAC System

The overall operation of the spectrometer is controlled by a 'com-

puter automated measurement and control' (CAMAC) data acquisition

system that was developed by the Liverpool physics department's elec-

tronics group. At the beginning of a parabolic cycle of motion of the

source the waveform generator sends a 'start pulse' to the CAHAC which

sets it to the first channel and opens it to receive pulses from the

SCA. After a fixed length of time, corresponding to a specific change

in the source velocity, the CAHAC is sent an 'address advance pulse'

by the waveform generator. The CAMAC then adds the number of r-ray

pulses or 'counts' received in that time to the number already in that

channel before moving on to the next channel. This sequence continues

for 255 address advance pulses (256 channels) while the vibrator scans

through its full velocity range. There is then a period of 'dead-time'

during which no counts are recorded and the source undergoes its

flyback motion, before the entire process starts again.

In this way the CAMAC spectrometer accumulates a Hossbauer spectrum

of r-ray counts versus channel number. The spectrum may then be dis-

played on a terminal screen or sent via a data-line directly to a
main-frame computer for storage and analysis.

4.1b Control of the Absorber Environment

In the Liverpool laboratory there are eight spectrometers of the

form described above, each associateclwith a particular set of exper-

imental apparatus. 'The different experimental sets offer different

experimental conditions for the absorber, with a selection of
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cryostats and a furnace allowing sample temperatures of between 1.3K

and 1000K to be obtained, and with magnetic fields of up to l4T

available at 4.2K. In the present work experiments were for the most

part carried out on three different spectrometer sets : a variable

temperature cryostat and two superconducting magnets.

4.lb(i) Variable Temperature Cryostat

For experiments requiring a variable sample temperature an Oxford

Instruments CF500 'continuous flow' cryostat was used. This cryostat

(Figure 4.3) operates by controlling the transfer of a coolant (such

as liquid helium or liquid nitrogen) from a storage dewar to the sample

space, and has been described in some detail by Bell (1983).

The cryostat is constructed from aluminium alloy, copper and
stainless steel, and has sample space windows of aluminised mylar and

radiation shields of aluminium foil. The sample is cooled by thermal

contact with a 'heat exchanger' (a copper block) which is connected

by a capillary tube to the coolant. The thermal contact is provided

by the close proximity of the sample to the heat exchanger, and is

enhanced via a small amount of helium exchange gas (or any other ex-

traneous gases) in the sample space vacuum. The sample temperature is

maintained by an Oxford 'Instruments DTC2 digital temperature control-

ler which senses the sample temperature through a nickel-manganin grid

resistance thermometer mounted on the sample holder. A suitable rate

of coolant flow is selected manually by adjusting a needle valve on

the rotary suction pump and the controller then stabilises the sample

temperature by dissipating power into an electrical heater attached

to the heat exchanger. In this way temperature control of ~etter than

about ±O.2K may be obtained. A calibrated resistance thermometer

(carbon-glass) is also mounted on the sample holder. This thermometer

provides more accurate sample temperature measurements than the Ni-Hn

thermometer, but is not connected to the temperature controller.
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4.1b(ii) Ten Tesla Superconducting Magnet

In the majority of the spectra presented in this thesis the absorber

was subjected to an external magnetic field. For applied fields of up

to lOT a Thor Cryogenics Ltd. superconducting magnet was used. This

magnet consists of a split-pair of coils wound from NbTi wire, and is

approximately 21.6cm in height, 14cm in diameter and has a 25mm bore.

The solenoid is capable of carrying -57.7A of current and producing a

field of -lOT at the mid-point of the coils. Operation of the magnet

requires that it be immersed in liquid helium and it is therefore

housed in a low temperature cryostat (Figure 4.4) which was constructed

in the departmental workshops. The uniformity of the field produced

by the solenoid is very good (-±l%) within a vertical displacement of

about ±7mm from the mid-point of the coil pair, and radially over the

bore.
The ~lossbauerspectrometer on the lOT magnet may be set up so that

the applied field is either perpendicular to or parallel to the di-

rection of the ~-ray beam. In the perpendicular mode the sample is

suspended from the top of the cryostat and the ~-rays are directed

horizontally through it and through the gap between the two magnet

coils. To obtain the par~llel mode a''vertical drive' system is used,

which allows the ~-ray beam to be directed vertically through the

magnet bore. This system, shown in Figure 4.5, consists of a vibrator

which drives a long drive-shaft (a thin-walled stainless steel tube)

to which the source is attached. The sample is clamped at the bottom

end of a second stainless steel tube which surrounds the drive-shaft.

The distance between the source and the sample is fixed at -llcm, and

is such that when the sample is positioned in the centre of the

solenoid the source is in a region of zero applied field. The null

field region results from a small reverse-wound coil in the magnet at
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that point. Thus the potential problem of a broadening of the source

linewidth by the presence of a large magnetic field is avoided.

4.lb(iii) Fourteen Tesla Superconducting Magnet

Applied fields of greater than lOT were obtained using a Cryogenic

Consultants Ltd. superconducting magnet that was recently commissioned

in this laboratory. This magnet is a single solenoid wound from

sections of NbTi and Nb3Sn wire and is capable of carrying -93.3A of

current at 4.2K to give a field of -14T at its centre point. A diagram

of the magnet (which is about 27cm in height, 2Scm in diameter and has

a 2Smm bore) is shown in Figure 4.6. The uniformity of the field is

comparable to that of the lOT magnet, with a design specification of

less than ±O.4% deviation within a central cylinder Smm long and ISmm

in diameter. The liquid helium cryostat in which the magnet operates

is very similar to that of the lOT magnet (Figure 4.4). The design

of the magnet dictates that spectra may only be taken in the 'parallel

mode', with the l-rays parallel to the field. The vertical drive of

Figure 4.S is therefore used, although since the distance between the

null field point and the centre of the 14T magnet is larger than the

corresponding distance in the lOT magnet an elongated sample-holding

section is used.

One problem that was encountered whilst setting up the 14T magnet

apparatus was that the observed MCSssbauerspectra had very broad lines,

of width -O.4mm/s. This was attributed to mechanical vibrations in the

cryostat. In an attempt to reduce these vibrations the cryostat was

suspended from a 2cm aluminium alloy plate supported on two sides by

massive concrete blocks. The linewidth was then better but still not

good, so inflated rubber tyre inner-tubes were placed between thee

steel plate and the concrete blocks. The cryostat was thus supported

on a 'cushion of air' and mechanical vibrations were expected to be

nearly absent. However the Mossbauer lines were still somewhat broad.
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The source of this remanent broadening was eventually traced to elec-

trical effects known as 'earth loops' which produce random fluctu-

ations in the velocity drive signal. These effects were eliminated by

insulating the cryostat from all its attendant electrical devices

(pressure gauges, level sensors, etc.). A M5ssbauer linewidth of

~0.28mmjs was then obtained which is quite good in light of the in-

herent non-linearity and susceptibility to vibration of the vertical

drive system itself.

4.2 SAMPLE PREPARATION

4.2a Chemical Synthesis

Single crystals of K2FeFS and Rb2FeFS were prepared by Hrs B.M.

Wanklyn at the Clarendon Laboratory, Oxford, using the 'flux Jrowth'

method (Wanklyn 1975, Wanklyn et al. 1979). The component fluorides

AF (A=K,Rb) and FeF3 were combined in stoichiometric ratio and placed

in a platinum crucible along with some PbCl2 flux. The purpose of the

flux was to lower the melting point of FeF3 (normally more than

1000oC) to near that of PbCl2 (SSOoC). In this way the chemical re-

action 2AF + FeF3 = A2FeFS could be achieved by heating the crucible

to -6S0oC in a muffle furnace, avoiding the possibility of decomposing

the constituent fluorides. On slow cooling of the solution (-I.SoC per

hour) transparent crystals formed within the flux, the largest of which

were about 3x2xlmm in size. The powder X-ray diffraction patterns of

these crystals were then compared with those reported by Tressaud et

al. (1970), and the crystals thereby identified as the desired com-

pounds K2FeFS and Rb2FeFS.
Single crystals of a-Fe203 were prepared in the same way (at the

Clarendon Laboratory) by Mrs B.M. Wanklyn and Hr B.E. Watts. A variety

of different flux compounds were tried, with PbOjPbF2 and Na2B407
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providing the best results in the form of basal-plane platelets of area

up to ~4mmx3mm. The fluxes Bi203/V20S and NaV03 were also tried but

the resulting hematite crystallites were too small to be of use for

single-crystal MBssbauer experiments.

4.2b Absorber Preparation and Mounting

In order that the single crystal K2FeFS' Rb2FeFS and a-Fe203 samples

be made suitable for MBssbauer experiments, they needed to be

abrasively thinned. This was achieved by the following procedure.

First the crystal is set in a tablet of epoxy resin (Oxford Instruments

'MS Epoxy Resin Adhesive') with a chosen planar face of the crystal

parallel to the tablet base. That crystal face is then exposed and

polished by manually 'rubbing down' the base surface of the tablet with

a fine grade of silicon-carbide abrasive paper, before being covered

over again by a thin layer of epoxy resin. The top face of the tablet

is then rubbed down until the remaining slice of sample is of a

thickness that makes it suitable for transmission Me:>ssbauer

spectroscopy. The top face of the crystal is then covered with a

protecting layer of epoxy resin and a lead mask attached to prevent

~-rays from missing the sample and adding to the background counts of

the Mossbauer spectrum.

The optimum thickness of the sample is best determined by observing

the percentage absorption of the Mossbauer spectral lines several

times during the rubbing down process. In the beginning the sample is

thick and the absorption lines are broadened and have distorted rela-

tive intensities. As the sample is rubbed down both the observed ab-

sorption and the count rate (the number of ~-rays passing through the

sample in unit time) increases. When the sample is 'thin', continued

thinning gives rise 'toa decrease in the percentage absorption as there

are then less absorbing nuclei present. Thus the optimum thickness
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corresponds to the point where the observed percentage absorption has

just passed through its maximum and is beginning to decrease.

A less well-defined (but faster) method of determining optimal

thickness is to observe the pUlse-height spectrum of the r-ray beam

passing through the sample and rub down the crystal until the 14.4 keY

r-ray peak is well defined. This method is less time-consuming than

the previous one, but requires a practiced eye to know what constitutes

a 'good' pulse-height spectrum.

4.3 DATA ANALYSIS

In the previous sections we have seen how a single crystal absorber

may be prepared, placed in a controlled environment and have its

Mossbauer spectrum recorded. We now consider the way in which this

spectrum may be analysed.

4.3a Velocity Calibration

4.3a(i) Calibration Spectrum

A Mossbauer spectrum is recorded as a series of r-ray counts versus

channel number. Before analysing the spectrum the energy scale must

be established by finding the calibration relationship between channel

number and source velocity. The usual method of velocity calibration

is to measure the spectrum of a material with a well known hyperfine

splitting. In 57Fe Mossbauer spectroscopy the standard material is

usually iron metal (a-Fe) at room temperature. The ideal line posi-

tions of a-Fe are calculated from the spectroscopic splittirtgfactors

E =-2.2363±O.0007mm/s and E =3.9156±O.0017mm/s (depicted in Figuree g

2.2c of Chapter 2) that were reported 'by Stevens and Preston (1972).

Since the quadrupole splitting in a-Fe is thought to be identically

zero these values of E and E imply that in the six-line spectrume g
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obtained using a 57Co/Rh source the line positions are ±5.312, ±3.076

and ±O.840 mm/s relative to the centroid. These positions compare very

favourably with those measured by the United States National Bureau

of Standards (NBS 1971). A typical calibration spectrum taken in this

laboratory is shown in Figure 4.7a. Comparison of the experimental

line positions with the ideal values enables the velocity-to-channel

calibration to be made.

The Mossbauer spectrum of a-Fe also offers a calibration relation-

ship between magnetic hyperfine field and velocity. Since the

spectroscopic splittings E and E are related to the hyperfine fielde g

B by E=g~NB (where g=~/I~N is the nuclear g-factor), we may calculate

B from E =2~ B/3 and E =2~ B. Stevens and Stevens (1975) report thate egg
the ground state magnetic moment ~g=(O.090604±O.000009)~N and the ra-

tio ~ /~ =-1.7142±O.0004, which yields B=32.95±O.OlT at room temper-e g

ature. Comparing this field with the outer line splitting in a-Fe of

10.624mm/s thus provides a direct conversion factor between velocity

and field.

A second type of calibration spectrum, obtained with the six-line

57Co/Fe source, is shown in Figure 4.7b. The spectrum of a-Fe with such

a source consists of 36 lines, some of which overlap to yield 13 dis-

tinct lines. Since the ideal velocity of each of the 13 lines is known,

this spectrum offers a more complete velocity calibration than the 6

line type. However the 13 line spectrum requires a greater counting

time and necessitates a change of source (which may alter the character

of the spectrometer), and therefore it is not used as frequently as

the 6 line spectrum.

4.3a(ii) Computer Fitting with Fit-A

The experimental line positions a~e obtained by computer fitting

the calibration spectra using a program known as 'Fit-A'. This is a

simple curve-fitting program which was brought to this laboratory by
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G.J. Long and installed on the departmental IBM 4331 computer by I.G.

Rumford in 1983. In general Fit-A generates a theoretical spectrum

consisting of Lorentzian-line singlets, doublets and sextets which are

governed by a set of 'spectrum parameters' such as isomer shift,

quadrupole splitting, internal field, linewidth and percentage ab-

sorption. This calculated spectrum is then compared to the exper-

imental spectrum and the 'goodness-of-fit' parameter:

X2 = rk[E(k)-C(k)]2/E(k)

determined. Here E (k) and C(k) are the experimental and calculated

l-ray counts in channel k of the spectrum. The program then manipulates

the spectrum parameters (in a procedure known as 'least-squares fit-

ting') until a minimum in X2 is found. In an ideal spectrum the minimum

in X2 is equal to the number of channels minus the number of fitted

parameters, but in practice it is usually somewhat larger than that.

Having computed the experimental line positions the velocity cali-

bration may now be obtained. This is normally assumed to be linear and

of the form

v(k) = SCALEx[k-CENTRE] , (4.1)
where SCALE is the velocity increment per channel and CENTRE is the

channel at which the centroid of the a-Fe sextet lies. We should note

that (4.1) gives the velocity relative to the a-Fe centroid (as is

standard practice), and is not the absolute velocity. The channel which

corresponds to the stationary point of the source is called CENBOW in

Fit-A and differs from CENTRE by the equivalent of -O.llmm/s. CENBOW

also corresponds to the lowest point in the parabolic baseline of the

spectrum since at that point the source is at its largest distance from

the l-ray detector.

In practice the velocity parameters of a given calibration spectrum

are found by assuming values of SCALE and CENTRE and fitting the

spectrum with Fit-A to compute the line positions. These positions are
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then compared with the ideal values in a small program named 'CAL'

(written by D.H. Jones in 1985) which runs on the department's GEC 4085

computer, and the interpolated values of SCALE and CENTRE found. These

are then taken as input parameters and the spectrum re-fitted, to

confirm their applicability.

4.3a(iii) Linearity Tests

If the velocity calibration was strictly linear and of the form of

(4.1) the error on the observed line positions would show no corre-

lations. However, plots of the observed error versus ideal velocity

for four different spectrometers used in this laboratory (Figure 4.8)

show distinct trends. These trends appear to be roughly parabolic,

implying that a correction should be made to the velocity of (4.1),

to give :
v'(k) = v(k) - QCORRx[v(k)]2 , (4.2)

where QCORR is a constant. A small program called 'QCAL' has been

written by the author to computer fit the observed errors and thereby

determine QCORR.

The non-linearity is greatest in the vertical-drive system (S5),

for which QCORR~0.0033, but is also significant in the

horizontal-drive systems S3,S4 and S8. Further, it is notable that the

two spectrometers with the most non-linearity (S4 and S5) both operate

with J&P Engineering Ltd. vibrators, while the more linear

spectrometers (S3 and S8) use Harwell MBssbauer Group Ltd. vibrators.

This implies that drive non-linearity may depend on the quality of the

commercial components used, as well as the particular characteristics

of the individual spectrometer.

4.3b Computer Fitting with Fit-Q .

The majority of xhe spectra presented in this thesis were analysed

using a least squares fitting program called 'Fit-Q'. This program is
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more sophisticated than Fit-A and allows the interpretation of a

Mossbauer spectrum in terms of the spin Hamiltonian parameters of the

absorber.

Fit-Q is based on 'LANG6' which in turn is a modified version of

'LANG', a program written by Lang and Dale (1973,1974). In essence the

program consists of two parts - one which calculates a theoretical

spectrum for given parameters (via subroutines MGFITA, HINTER and

SPFN), and one which varies the parameters in such a way as to minimise

the mean square difference between the theoretical and experimental

spectra (subroutines VAOSA, CALFUN and LINFIT). The original program

(LANG) was written to accommodate 1=3/2 to 1=1/2 nuclear transitions

in paramagnetic and diamagnetic materials subject to applied fields.

Fit-Q is somewhat simpler than LANG and is intended for use with the

spectra of magnetically ordered powder or single-crystal absorbers in

applied fields.

The theoretical spectra in LANG are derived from a spin Hamiltonian

of the form H=HQ+HM where :

HQ = [eQV /41(21-1)] .[31 2-I(1+1)+n(1 2-1 2)]zz Z X Y (4.3)
is the nuclear quadrupole interaction (as discussed in Chapter 3.3b),

and

(4.4)
is the magnetic interaction. Here! is the nuclear spin, ~ the atomic

spin, ~ the applied field, gN and ~N the nuclear g-factor and magneton,
and g and A second-rank tensors representing the atomic g-factor and

z ~

the hyperfine interaction between the electronic spin and the nucleus.

All the terms are defined in the electric field gradient prin~ipal axis

coordinate system. The spin Hamiltonian used in Fit-Q is similar tb

this, except that the electronic Zeeman term in (4.4) is removed and

the remaining two te-rmstreated as an effective magnetic field acting

on the nucleus. Thus the magnetic interaction is taken as :
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H__' = -g p B eI--n N N~eff - , (4.5)

where ~eff = ~ + ~hf is the vector sum of the applied and hyperfine

fields.

It is interesting to note that the theoretical ~1Ossbauer spectra

generated in Fit-Q may contain up to eight lines. This feature appears

when the electric quadrupole and magnetic interactions are of a com-

parable size and the usual first-order perturbative methods (as dis-

cussed in Chapter 3.3d) are not applicable. In Fit-Q the spectral line

energies and intensities are computed in the subroutine SPFN, using a

method that is similar to that described by Kundig (1967). The

Hamiltonian matrices of the 1=3/2 excited state and the 1=1/2 ground

state are first constructed in the 11m> basis by expressing H=HQ+HM'

(We recall that

operator I and the ladderz

I±llm>=[l(l+l)-m(m±l)]~llm±l>

operatorsin terms of the projection

and that

I Ilm>=mIIm>.) These matrices are then diagonalised and the transi-z

tion energies obtained directly from the differences between the

eigenvalues of the excited and ground states. The transition proba-

bilities are calculated from the eigenvectors and the vector operator

representing the incident photon. Since the eigenvectors are linear

combinations of the 11m> basis vectors the photon may induce eight

distinct transitions while retaining the selection rule (discussed

previously in Chapter 3.4) that Am=±2 transitions be forbidden.

The input dataset that is used by Fit-Q contains a set of hyperfine

parameters, a 'constraint matrix' and the experimental spectrum. The

hyperfine parameters include those which specify the experimental

conditions under which the spectrum was recorded, such as th~ velocity

calibration parameters, the o-ray direction and the applied field

magnitude and direction. The remaining parameters describe the

Mossbauer spectra associated with up to four distinct sites in the

absorber, and consist of the isomer shift SH, quadrupole splitting
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SPL=teQV Cl+n2j3)t, asymmetry ETA, linewidth FW and hyperfine fieldzz
A. The 'constraint matrix' is a list of integers which determines

which of the parameters are to be varied. If two or more parameters

are given the same non-zero integer value in this list they are varied

in such a way that the ratio between them is kept constant.

It may also be noted that in Fit-Q all the lines in a given sub-

spectrum are assumed to have identical linewidth. The program may

therefore be regarded as operating in the 'thin absorber approxi-

mation' where the effect of line broadening due to finite sample

thickness (as discussed in Chapter 3.4) is taken to be negligible. Line

intensity ratios are similarly calculated on the basis of zero absorber

thickness. Both of these assumptions greatly simplify the theoretical

problem of constructing a Hossbauer spectrum but will not be precisely

realised in experimental spect ia , and consequently the mis-fit param-

eter X2 will often be rather higher in practice than its theoretical

minimum value.
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S.l INTRODUCTION

Initial interest in K2FeFS and Rb2FeFS came as part of a wider study

of the structural and magnetic properties of the fluorides of transi-

tion metals by the Solid State Chemistry group at Bordeaux University.

Portier et al. (1968), Tressaud (1969) and Tressaud et al. (1970)

studied the fluorides A Fe F where the monovalent cation A was onex y z

of Li, Na, K, Rb or Tl. These compounds were found to consist of net-
3-works of (FeF6) octahedra, ranging from three-dimensional lattices

in the phases AFeF3, to layer structures as in A3Fe2F7, AFeF4, A2FeF4
and ASFe3F14, and the chain systems A2FeFS. It was expected that there

would be some correspondence between the magnetic and structural

properties of these compounds, since earlier work by Anderson (1963)

and Goodenough (1963) had indicated that the magnetic coupling between

the ferric ions was primarily by superexchange via the fluorine ions.

In Liverpool the magnetic properties of K2FeF Sand Rb2FeF S were

subsequently studied, and both systems were found to exhibit quasi

one-dimensional characteristics. These observed properties included

low Neel temperatures, zero point spin reduction, applied field de-

pendent Neel temperatures and magnetisation curves, and the possible

presence of soliton spin excitations. Publications related to these

magnetic properties include Gupta et al. (1977, 1978a and 1979), Cooper

et al. (1982), Boersma et al. (1982) and Pankhurst et al. (198S and

1986) on K2FeFS and Gupta et al. (1978b) and Pankhurst et al. (1986)

on Rb2FeFS.

In the present work K2FeF Sand Rb2FeF S were chosen to be the subj ect

of a study of the spin-flop transition because of a number of advan-

tageous features. Single crystal samples were available and after the

considerable amount .of previous work on the compounds in this labora-

tory their properties were well known. The exchange and anisotropy
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fields in both K2FeF5 and Rb2FeF5 were known to be of such an order

that the spin-flop field BSf~(2BEBA)! was experimentally obtainable

(Bsf~3.7T in K2FeF5, ~7T in Rb2FeF5 at 4.2K). In fact the spin-flop

itself had already been observed in K2FeF5 (Guptaet al. 1978a), al-

though deficiencies in the experimental apparatus available at that

time made a more detailed study worthwhile. It was also recognised that

the anticipated critical fields were sufficiently large that readily

discernible changes would occur in the observed Mossbauer spectra on

passing through the transition.

considered well suited to a Mossbauer study of the spin-flop transi-

tion.

In the remainder of this introductory section we will review the

crystallographic, electric and magnetic structures of K2FeF5 and

Rb2FeF5. Subsequent sections of this chapter will then deal with the

experimental results obtained, and their interpretation.

5.1a Crystal Structures

In 1970 Tressaud et al. analysed the X-ray diffraction patterns of

K2FeF5 and Rb2FeF5 and found that both crystals possess orthorhombic

symmetry. The unit cell dimensions that were determined at that time

were only slightly revised in later work by Vlasse et al. (1977) on

K2FeF5 and Dance et al. (1980) on Rb2FeF5. These dimensions are shown

in Tables 5.1 and 5.2, which also illustrate the confusion that exists

in the literature over the assignment of the lattice parameters to the

crystallographic axes a, band c. The present author (Pankhurst et

al. 1986) has adopted the convention that b>c with a in extremum as a

way of emphasising the similarities between the two crystal struc-

tures.
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Table 5.1 Lattice parameters (in Angstroms) of K2FeF5 as quoted in the

literature.

abc References

7.35 12.76 19.66 Tressaud et al. (1970)

20.39 7.40 12.84 Vlasse et al. (1977), Hanzel et al. (1977),
Gupta et al. (1977,1979)

20.39 12.84 7.40 Sabatier et al. (1979), Dance et al. (1980),
Cooper et al. (198Z), Johnson (1985),
Pankhurst et al. (1985,1986)

Table 5.2 Lattice parameters (in Kngstroms) of RbzFeF5 as quoted in

the literature.

a b c References

9.83 16.76 14.70 Tressaud (1969), Gupta et al. (1978b)

7.53 11.99 5.78 Tressaud et al. (1970)

7.54 5.79 11.98 Dance et al. (1980), Tressaud et al. (1981)

5.79 11.98 7.54 Pankhurst et al. (1986)

Both KZFeF 5 and RbZFeF 5 are characterised by infinite chains of
3-(FeF6) octahedra running along the a axis. The major difference be-

tween the two crystals is that in RbZFeF 5 these chains are linear,

while in K2FeF 5 they form a zig-zag pattern in the ab-plane. This

difference is illustrated in Figure 5.1, which is a simplified diagram

of the projection of the two structures onto the ab-plane.

A study of the crystal structure of Rb2FeF5 by Dance et al. (1980)

showed it to be isomorphous to that of RbZCrF5 (Jacoboni et al. 1974).

The crystal consists of FeF6 octahedra sharing two adjacent ('cis')

vertices which form linear chains along the a axis that are isolated

from each other by the Rb atoms. The projection of the structure onto

the bc-plane is given in Figure 5.2. The lattice parameter along the

a axis, 5.79 A, corresponds to a repeating unit of two octahedra which

differ by a 'screw' symmetry operation about the chain axis. That is,
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Figure 5.1 Schematic diagram of the chains of (FeF6)3- octahedra which

characterise the crystal structures of K2FeF5 and Rb2FeF5.
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rotating any given octahedron by 1800 about the chain axis (the line

connecting the shared fluorine ions) and translating it up or down the

chain by ia will bring it into coincidence with its neighbouring

octahedron. Figure 5.2 also illustrates that neighbouring chains are

not identical but differ by a reflection symmetry operation in the

ac-p1ane.

The structure of K2FeF5 may be regarded as a similar but 'com-

pressed' form of the Rb2FeF5 structure (Vlasse et al. 1977). In this

case the chain axis (connecting shared fluorine ions) follows a zig-zag

path in the ab-plane, as shown in Figure 5.1. Neighbouring chains are

interspersed with K ions, as shown in a more complete unit cell diagram

in the ab-plane in Figure 5.3. The lattice parameter along the a axis

is 20.39 !, and represents a repeating unit of eight octahedra. Com-

parison of this distance with the corresponding distance in Rb2FeF5
(eight octahedra in 4x5.79=23.16 It) indicates the amount of com-

pression that the zig-zag structure has achieved compared to the linear

form.

5.1b Electric Field Gradient

Since the iron in K2FeF5 and Rb2FeF5 is in the high spin (S=5/2)
3+Fe state, the electric field gradient (EFG) at the ferric nuclei is

dominated by the 'lattice' contribution while the 'valence' contrib-

ution of incompletely filled electron shells is effectively absent.

Thus many of the characteristics of the EFG which may be observed by

Mossbauer spectroscopy can be related to the lattice structure of the

compounds, and in particular to the symmetry properties of the envi-

ronment of the ferric ions.

Vlasse et a1. (1977) noted that the FeF6 octahedra in K2FeF5 are

asymmetrically distorted. The average distance between a given Fe3+

ion and either of the two F ions that lie on the chain axis was de-
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termined to be "'2. 02A, while the Fe-F distance to any of the other four

'terminal' F ions is "'1.88!. A similar distortion was observed in

Rb2FeF5 by Tressaud et al. (1981), with Fe-F ~ 2.ooK for the 'chain'

fluorines and Fe-F ~ 1.86! for the 'terminal' fluorines. These dis-

tortions lead one to anticipate a corresponding asymmetry in the EFG

at the Fe3+ nuclei in both crystals.

Room temperature Mossbauer spectra of ac-plane single crystals of

K2FeF5 and Rb2FeF5 are shown in Figure 5.4. (The crystal specimens used

will be described in greater detail in following sections.) The spectra

display a marked similarity. Computer fitting yields an isomer shift

of 6~O.43mm/s and a quadrupole splitting of A~O.72mm/s in both spectra.

We recall from Chapter 3 that A is defined as A = !eQIV I(1+n2/3)! ,zz
where IVzzl is the magnitude of the EFG principal axis and
n=(V -V )/V is the asymmetry parameter.xx yy zz
that the room temperature evaluation of A provides limited information

It is therefore evident

on the EFG, and does not define either the sign of V or the degreezz
of asymmetry. A more complex experiment is required to enable the

determination of these quantities. Gupta et al. C1977,1978b) applied

magnetic fields of 6T to polycrystalline samples of K
2
FeF

S
and

Rb2FeF5 at temperatures 'C"'140K)at which the compounds were in their

paramagnetic states. The resultant M(jssbauer spectra could be unam-

biguous1y fitted to show that V is negative in sign in both crystalszz
and that the expected large asymmetry is present, with n~O.57±O.05 in

A second feature apparent in the room temperature spectra of Figure

5.4 is that in both cases the left-hand line is more intens~ than the

right-hand line, with LH : RH ratios of about 1.2:1 in K2FeFS and 1.4:1
in Rb2FeFS. As discussed in Chapter .3 the LH : RH intensity ratio is

indicative of the angle e between the incident l-rays and the EFG

principal axis direction. For negative V the ratio is theoreticallyzz
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LH (neglecting the effect of the

non-zero n values), which implies that e~47° in K2FeF5 and e~43° in

Since the r-rays were directed within a few degrees of the

b axis it follows that the V axis lies in the region of -45° to thezz
b axis in both crystals. More conclusive experiments have been con-

ducted by Gupta et al. (1978b,1979) in which external fields were ap-

plied to magnetically ordered single crystal samples (at T~4.2K). It

was thus found that in both crystals the V axis lies in (or closezz
to) the be-plane, at an angle ~ to the b axis, with ~~42°±5° in

~':K2FeF5 (Gupta et a1. 1979) and rfJ~400±7°in Rb2FeF5 (Gupta et a1.

1978b). V lies along the a axis in both cases.xx
It may be seen that the EFG principal axis directions discussed

above are in some accord with the known structures of the crystals.

In Rb2FeF5 the environnent of each Fe3+ ion has mirror symmetry in the

be-plane, and as a consequence V lies in that plane. However, thezz
measured angle ~~400 between V and the b axis does not appear tozz
coincide with any particular plane of symmetry in the lattice. Another

point is that by referring to the be-plane cross-section of the

Rb2FeF5 structure (Figure 5.2) it seems likely that there are in effect

two V directions in the crystal, each being associated with one ofzz
the two chain sublattices. That is, if the V direction at a givenzz
ferric site lies at 40° to the b axis, the V direction at a ferriczz
ion on a neighbouring chain will lie at 180°-40°=140° to the b axis.
This distinction between two sub1attices with differing EFG principal

axis directions will often be experimentally insignificant, as was the

case in the spectrum of Figure 5.4 where the r-rays were incident along

the b axis.

-;': The lattice characterisation system a>c>b quoted in the second
paragraph of Gupta et al. (1979) is misleading since the axes mentioned
in the remainder of that paper correspond to the convention a<b<c
(D.P.E. Dickson, private communication).
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Comparisons between the observed EFG axis directions and the crys-

tal structure of K2FeFS are not so well defined as in Rb2FeFS since

the environment of the ferric ions in K2FeFS does not possess mirror

symmetry in the bc-plane. The zig-zag chain axis intersects the

be-plane at an angle of ~28°, so the mirror symmetry plane of the

FeF6 octahedra may be regarded as alternating between +280 and -280

of the bc-plane. Thus the fact that V at the Fe3+ sites is observedzz
to lie in the bc-plane is presumably a result of a long range averaging

effect on the EFG in the crystal which overcomes the local symmetry

preferences of the ferric ions' immediate environment.

S.lc Magnetic Properties

The nature of the magnetic ordering in K2FeFS and Rb2FeFS has been

studied by several authors using a number of experimental techniques,

including neutron diffraction, magnetic susceptibility and M~ssbauer

effect measurements.

Neutron diffraction experiments on K2FeFS by Sabatier et al. (1979)

and Dance et al. (1980) showed that below ~lOK the ferric spins become

antiferromagnetically aligned along (or close to) the crystal b axis.

At 4.2K the Fe3+ ion magnetic moment was found to be -3.0~B' a value

which is -40% smaller than the nominal S~B associated with a spin 5/2

ion. Since the reduction in the moment due to covalency and crystal

field effects is not expected to exceed -10% the observed moment may

be taken to infer the presence of spin wave induced spin reduction.

The magnetic susceptibility X of a powder sample of K2FeFS was also

studied by Sabatier et al. (1979) and Dance et al. (1980). The observed
dependence of inverse susceptibility x-Ion temperature T is shown in

-1Figure 5.5. A broad minimum occurs atT~lOOK and X approaches a fi-

nite value as ~O, features that are indicative of antiferromagnetic

ordering in low dimensional magnetic systems. At high temperatures
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(T>3S0K) the susceptibility follows a Curie-Weiss law with X=C/(T+0)

and a Curie-Weiss temperature of 0~12SK. The intrachain exchange con-

stant J may be estimated from 0 via the mean-field expression

kB0=2zJS(S+1)/3 with z=2 nearest neighbours and spin S=5/2, giving

J/kB~10.7K (where kB is Boltzmann's constant). A more refined estimate

of J was determined by Sabatier et al. (1979) by fitting the X-1(T)

data for T~100K with a series expansion theory (Weng 1968). The fitted

curve, shown in Figure 5.5, yields J/kB~9.4SK for the exchange con-

stant. Furthermore, the value of the interchain exchange constant J'

may be estimated from the observed values of J, 0 and TN' The onset

of long-range three dimensional ordering at TN is largely governed by

the magnitude of J', in a similar manner to the way that short-range

correlations within the chains below e are governed by J. It is

therefore possible to derive a relation between the ratios J'/J and
, -3TN/e (Oguchi 1964). In this way the value J /J~3.8x10 may be esti-

mated from the neutron diffraction and magnetic susceptibility data.

Several Massbauer effect measurements on K2FeFS have confirmed its

quasi one-dimensional magnetic character. At low temperatures a satu-

ration hyperfine field of ~41T is approached (Gupta et al. 1977), a

value which represents a-reduction of about 30% from the field of a

free Fe3+ ion and is indicative of substantial zero point spin re-

duction. The Neel temperature was carefully measured by Cooper et al.

(1982) to be 6.9SK ± O.OSK. Experiments on oriented single crystal

samples (Gupta et al. 1979) confirmed that below TN the spins align

along the b axis. Gupta et al. (1978a, 1979) and Cooper et al. (1982)

compared the observed dependence of the hyperfine field on t~mperature

and applied field with the predictions of spin-wave theory (as dis-

cussed in Chapter 2) to obtain est Lmates for the exchange constant

ratio J'/J and the e~change and anisotropy fields BE and BA' The most
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recent of these calculations (Cooper et al. 1982) gave J'/J~9xI0-4,
-4BA/BE~8.5x10 and BE~83.0T.

A similar series of experiments have been performed on Rb2FeF5.

Neutron diffraction measurements by Dance et al. (1980) and Tressaud

et al. (1981) showed that three dimensional magnetic ordering takes

place below ~8.0K, but that in the ordered state the spins were not

collinear. Tressaud et al. (1981) established that the spins form four

magnetic sublattices and that all the spins lie in (or close to) the

bc-plane, canted at an angle ~~22°±4° to the b axis. This structure

is illustrated in Figure 5.2. The spins within any given chain are

antiferromagnetically coupled to each other, but the angle between the

AFM axis and the b axis alternates between ~ and 180o-~ for

neighbouring chains.
The temperature dependence of the magnetic susceptibility c.f

Rb2FeF5 (Dance et al. 1980, Tressaud et al. 1981), shown in Figure 5.5,

is very similar to that seen in K2FeF5. Curve fitting yields 0~125K

-3for the Curie-Weiss temperature and J/kB~8.78K and J'/J~2.5x10 for

the exchange constants.
Mossbauer spectra of Rb2FeF5 show that the saturation hyperfine

field is ~43T (Gupta et al. 1978b), representing a zero-point spin

reduction of ~28%. A Neel temperature of ~9.3K was reported by Gupta

et al. (1978b), although there is some doubt about this value. (The

same authors had earlier measured TN~11.2K in K2FeF5 (Gupta et al.

1977), a value that was later found to be in error because of inade-

quate thermal contact between the sample and temperature sensor. A

similar overestimate of TN in Rb2FeF5 is possible.)

spectra of single crystal samples confirm that four magnetic

sub1attices are present, with an angle ~=25°±5° between magnetic easy

axes and the b axis.at 4.2K. By comparing the observed variation of

hyperfine field with applied field and temperature with spin-wave
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theory Gupta et al. (1978b) estimated the ratio J'/JS10-3 for the ex-
-3constants and BA/BE=4x 10 and BE=74T for the exchange andchange

anisotropy fields.

Table 5.3 Parameters of K2FeFS and Rb2FeFS' as determined by magnetic

susceptibility (0, J/kB) and M5ssbauer effect (TN' J'/J, BE' BA/BE)

experiments.

IN 0 J/kB J'/J ~E ~AL!!E
6.9SK 12SK 9.4SK 9x10-4 83T -4K2FeFS 8.Sx10

12SK 8.78K _10-3 74T -3Rb2FeFS S9.3K 3.9x10

A summary of the various parameters of the magnetically ordered

states of K2FeFS and Rb2FeFS is given in Table 5.3. In most respects
it appears that the systems are quite sImi Lar , with an exception being

the magnitude of the anisotropy field BA which is about four times

larger in Rb2FeFS than in K2FeFS. This difference might explain the

different magnetic structures of the two compounds, with the greater

influence of the exchange field in K2FeFS resulting in a collinear spin

structure, and the larger anisotropy in Rb2FeFS accounting for the four

sublattice state present-there.

5.2 ~2FeFS EXPERIMENTAL RESULTS

In this section the results of a M6ssbauer study of the spin-flop

transition in K2FeFS are presented. Three distinct experiments were

performed. In a preliminary study a magnetic field was app~ied along

the easy axis (the b axis) of an ab-plane single crystal while the

a-ray beam was incident along the c axis. Subsequently a large ac-plane

crystal was obtained and the spin-flop experiment repeated in the

favourable geometry (see later) of both a-rays and applied field di-
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rected along the b axis. In the third experiment the effect of misa-

lignment on the transition was investigated by directing the applied

field and l-ray beam at ~30o to the b axis of the ac-plane crystal.

5.2a Applied Field Parallel to the Easy Axis

5.2a(i) ab-Plane Crystal

The first of the K2FeF5 spin-flop experiments utilised an ab-plane

single crystal whose axes had been identified via Laue X-ray

diffraction by Dr F.R. Wondre of the Clarendon Laboratory, Oxford.

Mossbauer spectra were recorded at 4.2K with the incident l-rays par-

allel to the c axis and applied fields of up to 6T along the b axis.

These spectra are shown in Figure 5.6.

In zero applied field a six line hyperfine spectrum was recorded

in which an Lnt.uns Lt y ratio of 3:4:1 in the outer:middle:inner pairs

of lines is evident. Such a pattern is indicative of a perpendicular

orientation of the spins with respect to the l-ray beam direction. In

an applied field of B=3.0T the spectral lines split into pairs. This

splitting implies that the applied field was being directed along the

magnetically easy axis of the spins so that two different effective

fields (corresponding to~he vector addition of the applied field to

the hyperfine field on each of the sublattices of the antiferromagnet)

were present. At higher fields (B=3.7T and 4.0T) the spectra showed

some evidence of structure, indicating that some kind of transition

was occurring. This transition appears to be complete in the B=6.0T

spectrum which is again a simple six line pattern of unsplit lines,

but whose line intensity ratio (about 3:2.6:1) is clearly ,different
to that seen in the zero field spectrum.

The spectra were computer analysed.using the program (Fit-Q) that

was discussed in Chapter 4.3b. In each case the quadrupole splitting

and asymmetry parameters were taken to be 6=-O.68mm/s and n=O.57, as
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determined by Gupta et al. (1977). With reference to Gupta et al.

(1979) the ~-ray direction (the c axis) was defined in the EFG coor-

dinate system by the polar angles a ~132° and ~ ~900 (see Figure 5.7).
g g

The applied field direction (the b axis) was similarly defined by

aH~42° and ~H~-900. (Note that here we have taken advantage of the

symmetry properties of the crystal, as discussed in section 5.lb, to

model the spectra via a single EFG coordinate system.) The parameters

that were allowed to vary in the fitting process included the isomer

shift 6, the linewidth r and the magnitude and direction of the

hyperfine field. It was found to be most convenient to define the

direction of ~hf in the lattice coordinate system with the polar angles

aB and ~B (see Figure 5.7) rather than in the EFG axis system. The

optimal values of these fitted parameters are given in Table 5.4.

A note on errors is in order here. Unless otherwise stated, an es-

timate of the uncertainty of a fitted parameter such as those presented

in Table 5.4 may be inferred from the number of significant figures

to which the value is quoted. For example the isomer shift in the zero

field spectrum might be read from Table 5.4 as 15=0.53±0.01mm/s. It

should also be noted that such an error estimate refers to 'computa-

tional uncertainty' only· and results from the spread of data points

in the Mossbauer spectrum. Other sources of error, such as systematic

errors due to uncompensated drive non-linearity and random errors due

to spectrometer drift and inherent instabilities in the experimental

apparatus, are acknowledged to be present but are not treated explic-

itly.

The zero field spectrum was fitted with ~ =90° assumed and gaveg ,

a =1300±1 ° which implies an angle of 400±1 ° between the V and b axes.
g zz

This value compares favourably with the 42°±5° reported by Gupta et

al. (1979) and the fit therefore confirms that the ~-rays were incident

along the c axis. The B=3.0T spectrum was fitted under the assumption
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Table 5.4 Fitted hyperfine parameters of the spectra of an ab-plane

K2FeF5 crystal subject to an applied field B along its b axis, as

discussed in the text. 0 and r measured in mm/s, B and Bhf in Tesla.

,,:denotes parameters that were not allowed to vary.

B 0 r ~hf ~B ~B Area

0.0 0.53 0.28 37.9 0'': 0'':

3.0 0.53 0.41 36.1 O,'r a'':

3.7 0.53 0.52 35.3 0"( 0'': 68%
91. 3°* 29° 32%

4.0 0.54 0.57 35.4 0,'\ 0* 58%
91.4°,,: 36° 42%

6.0 0.53 0.46 38.0 92.1°"r 33°
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that the applied and hyperfine fields were parallel (6B=O), corre-

sponding to the 'unflopped' spin configuration. The polar angles of

the applied field were found to be 6H~400 and <l>H~-900,a direction

which coincides with the b axis as expected.

In the 6.0T spectrum it was assumed that all the spins had flopped

into the 6B~900 configuration. In fact 6B was constrained to be

92.10, a value which incorporates a 2.10 field-induced canting of the

spins out of the ac-pLane. (This canting was discussed in Chapter

2.3b.) An azimuthal angle of <l>B~33°was fitted, indicating that the

medium anisotropy axis lies in the ac-plane at ~33° to the a axis. This

result is in reasonable agreement with the ~38° measured by Gupta et

al. (1979) from a bc-plane crystal, and the ~400 measured by Cooper

(1981) in an ab-plane crystal. Cooper (1981) also established that

there are two different medium anisotropy axes in the crystal (at
resulting from the different orientations 3-of the (FeF6)

octahedra, but this feature is not observable in the current exper-

iment.
The intermediate spectra CB=3.7T and 4.0T) were fitted as a super-

position of components corresponding to unflopped (aB=O) and flopped
ca ~900) phases in the crystal, the relative areas of which are given

B

in Table 5.4. Unfortunately the poor statistical quality of the spectra

makes it difficult to comment on the validity of the model. This

problem led to the experiment being repeated using a large ac-plane

crystal, with particular care being taken to obtain high quality

spectra in the transition region. This experiment is discussed in the

following section. Discussion of the observed dependence of hyperfine

field and linewidth on applied field in the ab-plane crystal will also

be deferred until later.
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S.2a(ii) ac-Plane Crystal

In the second K2FeFS spin-flop experiment an ac-plane single crys-

tal of approximate dimensions 8x6x1 mm3 was used. Again the crystal

axes had been identified via Laue X-ray diffraction by Dr F.R. Wondre

at the Clarendon Laboratory. M~ssbauer spectra were recorded at 4.2K

with both the incident r-rays and applied fields of up to 14T along

the b axis. These spectra are shown in Figure 5.8.

In zero applied field a four line spectrum was recorded. The com-

plete absence of the 6m=0 lines (lines two and five of a magnetic

sextet) implies that the r-ray direction was within a few degrees of

the magnetically easy axis. In small applied fields (BS3.OT) the

spectral lines split into pairs corresponding to the different effec-

tive fields on each of the two sublattices of the antiferromagnet. For

B-3.7T additional lines appeared at the 6m=0 line positions and the.

outer lines showed evidence of structure. At higher fields (B>3.8T) a

sextet with intensity ratios 3:4:1 in outer:middle:inner pairs of

lines was observed, characterising a perpendicular orientation of the

spins to the r-ray beam.

The spectra were computer analysed using Fit-Q with 6=-0.68mm/s,

n=0.S7, 9g=9H:::39°and 'g=cfJH=-90oassumed. The fitted parameters are

shown in Table 5.5, with the exception of the isomer shift 6 which did

not vary greatly between the spectra. The optimum value of the mis-fit
parameter X2 obtained from each fit is also given in Table 5.5. Note

that to 'normalise' x2 one should divide through by the number of de-

grees of freedom, which was about 240 in all of the fits.

The low field (BS3.0T) spectra could be well fitted with 9B='B=0,

implying that the r-ray and applied field direction was closely aligned

with the b axis. The high field (B~~.8T) spectra were fitted by as-

suming that the spins had flopped into the ac-plane and that 9B=90o+a

where a is the canting angle given in Chapter 2.3b by
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Table 5.5 Fitted hyperfine parameters of the spectra of an ac-plane

K2FeF 5 crystal subject to an applied field B along its b axis, as

discussed in the text. r measured in mm/s, Band Bhf in Tesla. * de-

notes parameters that were not allowed to vary.

B

0.00

1.50

3.00

3.60

3.65

3.70

3.75

3.80

4.00

6.00

8.00

10.00

12.00

14.00

0.30

0.34

0.34

0.47
0.51

0.53
0.66

0.47
0.59

0.63
0.60

0.44

0.43

0.34

0.34

0.34

0.34

0.34

r ~hf
38.0

Area

0*

0* 0*

395

338

371

608

401

437

430

439

263

365

273

250

245

273

Table 5.6 Fitted hyperfine parameters of the transition spectra of the

37.7

35.6

33.5
32.4

33.3
33.1

33.4
33.3

34.1
33.7

33.8

34.8

38.3

40.5

42.0

43.2

44.0

0*

81%
19%

ac-plane crystal using a spin-rotation model, as discussed in the text.

Symbols as in Table 5.5.

B

3.60

3.65

3.70

3.75

0.51

0.72

0.57

0.51

r ~hf
33.5

33.4

33.3

_33.5

49%
51%

25%
75%

14%
86%

457

434

507

396
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sina=B/C2BE+BA)' Good fits were obtained, although the fitted ~B val-

ues were quite variable. Since in these spectra ~B was largely deter-

mined by the line positions, this variability may indicate that

problems relating to the non-linearity of the velocity scale are still

present.

The four spectra recorded in the transition region C3.6T~B<3.8T)

were analysed using two different models. In the first model the

spectra were regarded as a superposition of components corresponding

to unflopped (AFM) and flopped (SF) phases or 'domains' in the crystal.

The unflopped spins contribute a subspectrum with split lines in 3:0:1

intensity ratio, and the flopped spins give an unsplit 3:4:1 sextet

component. The fits to this 'coexistence' model are shown in Figure

5.8 and also in Figure 5.9, and the fitted parameters are given in

Table 5.5.

The second model used to fit the transition spectra is a

spin-rotation model. The spectra are taken to result from spins that

are antiferromagnetically aligned along an axis which is rotated

through some angle aB with respect to the applied field direction.

The fits obtained using this model are shown in Figure 5.9 where they

may be compared with the 'coexistence' fits, and the fitted parameters

are given in Table 5.6.

It is not immediately apparent which of the two models provides the

better fits to the data. Comparing the x2 values of the fits it seems

that the 'coexistence' model is better for the B=3. 65T and 3.70T

spectra, but is worse for the B=3.60T and 3.75T spectra. However, by

careful appraisal one may become convinced that the 'coexistence'

model does at least attempt to reflect the features present in the

spectra, while the 'rotation' model does not cope with the unsplit

nature of some of ~he spectral lines. One may therefore conclude that

the 'coexistence' model is more appropriate for fitting the data.
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5.2a(iii) Width of the Spin-Flop

Some comments on the physical justification of the 'coexistence'

model may be collated by considering the observed width of the

spin-flop. Figure 5.10 shows the relative areas of the unflopped and

flopped parts of the spectra, from which the width of the transition

may be estimated as ~B=0.4T, centered at Bsf=3.65T. If the spin-flop

transition is of first-order this coexistence of AFM and SF phases

might be attributed to demagnetisation or hysteresis effects. Let us

consider these possibilities in turn.

As discussed in Chapter 2.2e(ii), demagnetising fields give rise

to a mixed-domain intermediate state over a range of fields

~B=N Xl..Bf near the critical field.
z s In the present experiment the

applied field direction was perpendicular to the plane of a thin-slab

crystal, so the demagnetisation factor N =1. We may estimate the sus-z

ceptibility (per unit volume) Xl..of K2FeF 5 from the experiments of

Sabatier et al. (1979) and Dance et al. (1980), who measured the in-

verse molar susceptibility of powder samples at 4.2K to be
-1XM =95mole/emu (see Figure 5.5). Assuming that the crystal density

is p=2g/cm3 so that 1 mole of K2FeF5 occupies about lllcm3, and that

X11=0 at 4.2K, the volume susceptibility is thus given by
-4Xl..=l.OxlO emu/cm3

• It is convenient to carry out the rest of the

calculation in CGS units, converting the field to units of Gauss and

taking N =41T (the CGS equivalent of N =1). The width of az z

demagnetisation broadened spin-flop in K2FeF5 is thus calculated to

be ~Bdm =46G. This figure may be checked by estimating Xl..from ~to/BE

(in CGS units) where M is the saturation sublattice magnetisation.o

Since the mean magnetic moment and
-4 3Xl..=l.lxlO emu/cm. The corresponding width is ~Bdm=49G, a value which

compares very favourably with the previous result. We thus conclude

that demagnetisation effects might produce a mixed AFM-SF state in
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K2FeFS over a range of fields ~Bdm~O.OOST near Bsf' This is clearly

much less than the observed ~B of O.4T.

A second mechanism for generating mixed-domain states near Bsf is

the hysteresis associated with a first-order transition. As discussed

in Chapter 2.2b(i), the spin-flop field BSf=[BA(2BE-BA)]1 is in the

centre of a region of instability bounded by the critical fields

Assuming that

BE=83.0T at 4.2K, the observed Bsf=3.6ST implies a value for BA of

about 8.0x10-2T. This then gives ~Bhy=B1-B2~3.6X10-3T, which again is

much less than the observed ~B.

To explain ~he large width of the observed coexistence region in

this experiment we are therefore driven to speculation. It is certainly

possible that there may be a distribution of 'local critical field'

values within the crystal which results from the effect of random im-

purities, defects or distortions on the local environments of the

ferric ions. The spin-flop in this case may be of first-order for each

individual ion, but the summation of these transitions over the entire

crystal would appear as a rather broadened transition in the Hossbauer

experiment. Although this explanation is somewhat unsatisfactory in

that it is neither quan~itative nor'predictable, it is clearly possible

and may well be true.

At this point it is of use to compare the 'rotation' model with

theoretical predictions. Although we have already concluded that the

'rotation' fits were inferior to the 'coexistence' fits there is some

justification, on the basis of both mean-field and soliton theory, for

anticipating a second-order transition to take place.

If for a moment we regard K2FeFS as a uniaxial antiferromagnet then

on the basis of the mean-field theory discussed in Chapter 2.2b a

second-order spin-flop will take place if the applied field is misa-
-1ligned from the easy axis by an angle exceeding ~c~tan (BA/2BE). In
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K2FeFS BE:=83.0T and BA:=0.08T at 4.2K, which gives tPc:=0.03°. This

critical angle is much smaller than the estimated uncertainty in

alignment (±2°), so that it would seem probable that a rotation tran-

sition would be observed. Referring to Chapter 2.2b(ii), the

field-dependence of the rotation angle a between the AFM axis of the

spins and the applied field direction is given by

(5.1)

where a=900-a, tP1=2tP+a, tP2=2tP+2a and tP is the misalignment angle. In

the 'rotation' fits for B~3.75T the rotation angle a was fitted as the

polar angle aB' while in the SF phase (B~3.80T) 9=90°. Thus the fitted

field dependenc.e of a is as shown in Figure 5.11. Also shown in Figure

5.11 is the theoretical curve found from equation (5.1) for a misa-

lignment of tP=0.5°. The agreement between theory and experiment ap-

pears to be quite good.

The soliton model of the spin-flop also predicts a second-order

transition, even if th~ applied field is perfectly aligned with the

easy axis. As discussed in Chapter 2.4b soliton theory predicts the

field-dependence of the mean value of the rotation angle between the

AFM and easy axes as :

<9> :=5.85 (2E IkBT) exp(-2E /kBT) ,s. s (5.2)
.l.

where 2Es=2g11BSBsf11-B2IBsf 212 is the creation energy of a soliton

pair-state. This curve is compared with the experimental data in Figure

5.12. The divergence of the theoretical curve in the neighbourhood of

Bsf arises from the breakdown of the low-density soliton approximation

(de Jongh and de Groot 1985), and the behaviour in the intermediate

region has been very roughly approximated by linear interpolation.

In any event, it is clear from Figure 5.12 that the curve predicted

by equation (5.2) is much broader than the observed transition. A much

better fit to the data was obtained by arbitrarily changing the term

2E in (5.2) to 6E (see Figure 5.12). This corresponds to an increases s
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in the zero-field soliton creation energy from 2Es/kB=24K to

2Es'/kB=72K. Such a modification to the creation energy might possibly

be justified by considering the effect of interchain interactions in

hindering the formation of solitons (de Groot and de Jongh 1986).

However in general it would seem that soliton theory (as it stands)

does not provide close quantitative agreement with the observed tran-

sition width.

One aspect of the observed spin-flop does however support the notion

of a soliton-mediated transition. In the neighbourhood of Bsf the width

of the fitted Mossbauer spectral lines show a large maximum (see Figure

5.13). This peak is evident in both the 'coexistence' and 'rotation'

fits, and was also apparent in the spectra taken on the ab-plane

crystal. The presence of such a maximum in the linewidth might result

from large numbers of finite-width domain walls in the crystal, as

predicted by the soliton model of the spin-flop. The resultant dis-

tribution in the angle between the spin and EFG axis directions would

then give a distribution in the line positions in the component

Mossbauer subspectra, so that line-broadening would appear in the full

spectrum. The 'coexistence' model of the transition might also support

this behaviour if one envisages that for B-B f a large number of AFM. s

and SF domains are present, and that some fraction of the crystal could

therefore be said to constitute the domain-wall regions. An alterna-

tive explanation is that some dynamic effects are present, such as

spin-spin or spin-lattice relaxation, which cause the spins to 'flip'

or change direction on such a timescale that the Hos sbaue r spectra are

broadened.

5.2a(iv) Field-Dependent Spin Reduction

Another notable feature of the observed spin-flop is the marked

variation in the hyperfine field Bhf as a function of the applied field

(see Figure 5.14). Since in high-spin ferric ions such as those in



44.0 - •• +

"42.0 f- .f .
:r:
-<
-0 .f .
rn 40.0 f-:D

"0---<Z • Trn 38.0 f- f· . . ·f
11
0---<

rrt 36.0 I-r J0
t

3 34.0 f- J
32.0 +-

I I I I I I I I

0.0 2.0 4.0 6.0 8.0 10.0 12.0 14.0
RPPLI EO FIELD m

Figure 5.14 Observed field-dependence of the hyper fine field, as fit-

ted using the I coexistence I model. The dotted curve is a guide to the

eye.



91

K2FeF5 the hyperfine field is (to a good approximation) proportional

to the mean spin <S> on the ion, the variation of Bhf with B is in-

dicative of field-dependent spin reduction. As discussed in Chapter

2.3, spin-wave theory predicts that an applied field B<Bsf parallel

to the easy anisotropy axis will promote the thermal excitation of

spin-waves along the magnetic chains. This increased spin fluctuation

is seen in Figure 5.14 as a drop in Bhf as B is increased. The fluc-

tuations are maximal at B=Bsf and Bhf is then a minimum. For B>Bsf the

spin axis is perpendicular to the applied field and the effect of B

is to inhibit the spin-waves. Thus above the spin-flop Bhf increases
as B increases.,as is apparent in Figure 5.14.

Spin-wave theory provides quantitative predictions of the spin re-

duction ~S due to spin-waves which results in an observed spin

<S>=S-~S that is less than the full spin S (see Chapter 2.3). Since

the hyperfine field associated with a free Fe3+ ion (with S=<S>=5/2)

is known to be ~64.0T, this predicted <S> may then be converted to a

hyperfine field. The solid curves in Figure 5.15 were determined in

this way, using the parameters T=4.2K,
-4 , -3J'/J=9x10 and wA /wA=10 . It is evident from Figure 5.15 that al-

though spin-wave theory gives a good qualitative description of the

observed spin-flop, the quantitative description of the dependence of

Bhf on B is not ideal.

S.2b Applied Field at ~30o to the Easy Axis

The object of the third K2FeFS spin-flop experiment was to inves-

tigate the effect of misalignment by directing the applied field at a

substantial angle. to the easy axis. To achieve this ~he ac-plane

crystal was mounted in a special nylon sample holder which ensured that

the crystal b axis was tilted at ~30o to vertical, in the approximate

direction of the c axis. The sample and holder were then placed in
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the vertical drive assembly in the lOT magnet, and a series of spectra

recorded in which the r-rays and applied field were directed at ~30o

to the b axis, in the be-plane. These spectra are shown in Figure 5.16.

The zero applied field spectrum contained six lines, with the

non-zero intensity of the ~m=O lines confirming that the r-rays were

incident at a non-zero angle to the easy axis. As the applied field

was increased the spectral lines split and the intensity of the ~m=O

lines increased. This behaviour is in keeping with a gradual rotation

(in unison) of the spins away from the field as it was increased. In

this transition region (3.0T~B<5.0T) the ~m=O lines were also split,

further implying that a 'rotation' transition was occurring (rather

than a 'coexistence' of AFM and SF phases). At higher fields (B~5.0T)

a simple sextet pattern was recorded, indicating that the spin-flop

was complete and the spins were lying in the plane perpendicular to

the applied field direction.

Computer analysis of the spectra using Fit-Q proved to be very

difficult. The major problem was that since the applied field was not

directed along the b axis the two different EFG coordinate systems

present in the crystal were no longer equivalent. Consequently it was

found to be simpler to, fit the spectra using the less sophisticated

program Fit-A. Despite the resultant loss in information it was then

at least possible to determine the hyperfine field Bhf and rotation

angle e from the fitted 'effective' fields Beff (see below). The

fitted values of these parameters are given in Table 5.7, along with

the quadrupole shift E and the linewidth r16 of the outer lines of the

magnetic sextets.

A line intensity ratio of about 3:0.69: 1 was fitted in the zero

applied field spectrum, indicating that the r-rays were incident at

e~33° to the spins. This figure compares well with the intended misa-

lignment of -30°. In the magnetically split spectra (3.0T~B~4.5T) two
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'effective' hyperfine fields were fitted, corresponding to the vector

addition of the applied and hyperfine fields. Assuming that the spins

had rotated an angle a away from the applied field but that the

sublattice spins remained perfectly antiparallel, these effective

fields are given by :

(5.3)

The splitting between the two effective fields is 8Beff=2Bcosa, so that

a could be directly estimated from the fitted data, and then (5.3) used

to determine Bhf. This procedure was used to find the Bhf and a values

given in Table 5.7. The high field spectra, B~5.0T, were presumed to

result from spin-flopped spins for which the angle between the AFN and

applied field axes was The usual canting by
-1a=sin [B/(2BE+BA)] was taken into account when determining the

hyperfine fields in these spectra.

Table 5.7 Fitted hyperfine parameters of the spectra of an ac-plane

K2FeF5 crystal subject to an applied field B at -300 to its b axis,

as discussed in the text. 6, E and r16 measured in mm/si B, Beff and

Bhf in Tesla. * denotes parameters that were not allowed to vary.

B

0.00 0.54

3.00 0.52
0.54

4.00 0.53
0.53

4.25 0.53
0.56

4.50 0.55
0.54

5.00 0.56

6.00 0.55

10.00 0.56

-0.10

-0.11
-0.08

-0.11
-0.10

-0.12
-0.07

-0.03
-0.04

-0.03

-0.04

-0.05

£16
0.31

0.39
0.34

0.56
0.45

0.61
0.48

0.46
0.69

0.45

0.44

0.45

~eff
38.2

34.5
39.4

32.9
38.8

32.5
38.4

34.7
36.9

36.2

38.1

41.9

~hf
38.2

a

36.9

35.8

35.4

35.5

36.0

37.9

41.3
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Apart from the obvious observation that this spin-flop appears to

be a second-order 'rotation' transition, there are two notable and

rather surprising features to consider. Firstly the 'smoothness' of

the transition is illustrated by the slow change in the rotation angle

6 as B was increased (see Figure 5.17). However the mean-field theory

prediction of the dependence of 6 on B for a misalignment of ~~33°,

described by equation (5.1) and shown in Figure 5.17, is a good deal

broader than the observed curve. The reason for such a large discrep-

ancy is not clear. Secondly, the transition exhibits an unexpectedly

'sharp' character in the field-dependence of Bhf, as shown in Figure

5.18. A sharp minimum in Bhf occurs at a critical field Bsf~4.3T. The

implication is that spin-waves continue to play an important role in

the transition, despite the misalignment of the applied field and easy
axes. However, it is still somewhat surprising to see such a sharp

minimum in Bhf in what otherwise appears to be a smooth second-order

transition.

5.3 Rb2FeF5 EXPERIMENTAL RESULTS

The Mossbauer study of the spin-flop transition in Rb2FeF5 dis-

cussed in this section utilised the same single crystal sample that

had been the subject of earlier work in this laboratory (Gupta et al.

1978b). Comparison of the results of that earlier work with the neutron

diffraction work of Tressaud et a!. (1981) allowed the
characterisation of the crystal axes in the sample, establishing that

it was an ac-plane single crystal. Mossbauer spectra were recorded

at 4.2K with both the incident ~-rays and applied fields of up to 14T

directed along the b axis. These spectra are shown in Figure 5.19. We

may note here that the modest size of the sample (-3xl mm~ in area)

meant that long counting times (-3 days) were required to obtain
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spectra of even moderate statistical quality, and consequently some

of the spectra in Figure 5.19 are rather ill-defined.

The zero applied field spectrum contained six lines, with the

non-zero Am=O lines implying that the spins and the r-ray beam were

not parallel. This is in keeping with the known magnetic structure of

Rb2FeF5 (see Chapter 5.lc) in which the spins are antiferromagnet-

ically ordered along two magnetically easy axes, both of which lie in

the be-plane at -25° to the b axis. As the applied field was increased

the spectral lines split and the intensity of the Am=O lines increased

in a manner that is reminiscent of the 'rotation' transition that was

observed in the 'misaligned' K2FeF5 experiment described in Chapter

5.2b. Thus the spectra imply that the spins were gradually rotating

away from the field as it was increased. At higher fields (B>10.0T)

the line splitting was smaller and the spectrl approached a six line

pattern, although even with B=14.OT applied some splitting was still

apparent in the first and fifth lines of the spectrum. It therefore

appears that even with the highest available field applied the

spin-flop transition was not complete.

The spectra were computer analysed using Fit-Q with A=-0.68mm/s,

n=0.50, 9 =9 ::40°and tfi =tfiH=-900 assumed, following the results ofg H -g

Gupta et al. (1978b). Since the applied field was incident along the

b axis it was once again possible to model the spectra via a single

EFG coordinate system, using the same angle definitions as were given
in Figure 5.7. The computer fit of the zero applied field spectrum

gave 9B=28°±10 with tfiB=900 assumed, which places the magnetic easy axes

in the bc-plane at -28° to the b axis. This result compares favourably
with the 250±5° reported by Gupta et al. (1978b) and the 22°±4° meas-
ured by Tressaud et al. (1981).

The non-zero applied field spectra were initially fitted by assum-

ing a 'rotation' model in which the sublattice spins remained anti-
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parallel while the AFM axis of the spins gradually rotated away from

the applied field as it was increased. This model proved to be inade-

quate for the high field spectra (B~B.OT). After a good deal of trial

and error an alternative model incorporating 'canting' as well as

'rotation' was found to be suitable. In this 'canted rotation' model

it is envisaged that in addition to a rotation of the AFM axis of the

spins by an angle S with respect to the applied field direction, the

sublattice spins will also be canted away from the AFM axis by an angle
-1a. This angle is expected to be of the order of a=sin [B~/(2BE+BA)]'

where B~ is the component of the applied field perpendicular to the

AFM axis. It is also expected that the hyperfine fields associated

with each of the magnetic sublattices will be different since (on the

basis of spin-wave theory) the field-dependent spin reduction will

depend on the the angle between the spins and the applied field. Thus

in the 'canted rotation' fits two different hyperfine fields (each with

an associated SB and ~B) were allowed to vary. In this way quite good

fits were obtained, and the intuitive supposition that the spins would

remain in the bc-plane (~B=±900) throughout the transition could be
retained. The hyperfine parameters thus found are given in Table 5.B.

Note that in order tha~ both hyperfine field vectors might be defined

with ~B=+90o the magnitude of the second field, ~hf2' was taken to be

negative. The magnitude and polar angles of ~hf2 are therefore given

in Table 5.B as -1~hf21, SB2 and ~B2=+90o, defining a vector which is
equivalent to that described by +1~hf21, 1BOo-SB2 and ~B2=-90o. Also
shown in Table 5.B are the fitted mean hyperfine fields

Bav=!(Bhf1+Bhf2)' rotation angles S=!(SB1+SB2) and canting angles
a=!(SB1-SB2) of each pair of sublattice spins.

Several comments on the validity of the 'canted rotation' model may

be inferred from the fitted parameters. At first sight the

field-dependence of the rotation angle S (shown in Figure 5.20) is



Table 5.8 Fitted hyperfine parameters of the spectra of an ac-pLane

Rb2FeF5 crystal subject to an applied field B parallel to its b axis,

as discussed in the text. r measured in mm/s; B, Bhf and Bav in Tes1a.

* denotes parameters that were not allowed to vary.

B r 1!hf QB B e ~-av
0.00 0.37 41.4 28° 41.4 28° 0*

2.00 0.27 41.3 27° 41.3 27° o-

4.00 0.35 40.3 34° 40.3 34° 0*

6.00 0.46 37.9 41° 37.9 41° 0*

7.00 0.49 35.1 58° 34.7 58° 0°
-34.2 58°

7.25 0.51 34.7 63° 34.3 63° 0°
-34.0 63°

7.50 0.50 35.4 75° 34.7 69° 5°
-34.0 64°

8.00 0.44 37.2 87° 35.7 80° 7°
-34.2 74°

9.00 0.40 38.1 92° 37.1 84° 8°
-36.1 76°

10.00 0.34 39.7 95° 38.4 86° 9°
-37,0 78°

11.00 0.29 41.4 100° 40.1 90° 10°
-38.7 79°

12.00 0.40 41.5 99° 40.3 91° 8°
-39.1 82°

13.00 0.37 42.3 100° 41.3 92° 9°
-40.3 83°

14.00 0.35 43.6 103° 42.6 91° 12°
-41.6 79°
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quite sensible, with 8 slowly changing from ~28° to ~900 as B is in-

creased from zero to 14.0T. However, the fitted 8=900 values for

B~11.0T must be regarded with some scepticism since in real terms a

8=900 configuration corresponds to the spin-flopped phase in which the

hyperfine fields on each sub1attice are identical and an unsplit

six-line MBssbauer spectrum is observed. The fact that splitting is

observed in the high field spectra indicates that the AFM axis of the

spins is not perpendicular to ~ so that in fact 8<90°. A second mis-

giving about the fits is that the fitted canting angles are larger than

theoretically expected, with e.g. a=12° fitted in the B=14.0T spec-

trum, compared to a predicted canting of a=6°. One other cause for

concern is that the fitted differences between the two sublattice

hyperfine fields (Bhfl-Bhf2) are surprisingly large. It is hard to
imagine that direction-dependent spin reduction could account for such

a large effect as the 6Bhf=2T fitted in the high field spectra. Taken

together, these observations may lead us to conclude that although the

'canted rotation' model appears to be physically reasonable, the

spectra which result when the relevant hyperfine parameters are al-

lowed to freely vary are the subject of some doubts. On the other hand

it should be recalled ~hat the model provided quite close agreement

between the experimental and theoretical spectra, and as such might

at least be regarded as a good first approximation to the real situ-

ation in the crystal.
It may be noted that the fitting difficulties discussed above might

perhaps be attributable to an inadvertent misalignment of the applied

field with the b axis. However, if such a misalignment were significant

it should have been observed in the low field spectra (B~6.0T) as a

superposition of two magnetically split spectra. Also, the similarity

between the spectra recorded in this work and those reported by Gupta

et al. (1978b) is sufficiently good to imply that the experiment is
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repeatable and that misalignment is not a problem. Furthermore, we

have no reason to expect the crystal ac.-plane to contain a strong

'medium' anisotropy axis for the spins, and as such misalignment by a

few degrees cannot explain the non-completion of the spin-flop that

is apparent in the high field spectra.

In conclusion it is interesting to note that the observed spin-flop

in Rb2FeFS' which appears to be a smooth second-order transition, has

one or two features that are similar to those seen in the 'misaligned'

K2FeF5 experiment. The variation of hyperfine field with applied

field, shown in Figure 5.21, exhibits a minimum at -7.2ST. This again

is presumably a result of field-induced spin reduction, and (as in the

'misaligned' K2FeFS experiment) seems to be an incongruously 'sharp'

feature in an otherwise 'smooth' transition. However, the Bhf-B curve

provides a useful method of estimating the anisotropy field in

Rb2FeFS. If we assume that the minimum in Bhf occurs when the component
of applied field along the easy axis reaches the critical value, so

that Bsf($)=Bsfcos$ where $~28° is the misalignment angle, then

Bsf~6.4T is obtained. Since BSf~(2BEBA)~ and BE~74T at 4.2K, we then
obtain BA~O.28T. These parameters may then be used to compute the

mean-field theory prediction for the field-dependence of the rotation

angle a, using equation (5.1). This curve is shown in Figure 5.20,

where it is apparent that it is significantly broader than the observed

curve, a feature that was also noted in the 'misaligned' K2FeFS ex-

periment. Thus it again appears that the mean-field theory does not

provide very good quantitative predictions of the nature of the

spin-flop.
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5.4 DISCUSSION

It is useful to compare the spin-flop phase transitions that were

observed in K2FeF 5 and Rb2FeF S· In essence three experiments were

performed: 'aligned' K2FeFS in which the applied field was parallel

to the easy axis; 'misaligned' K2FeFS in which the field was at ~33°

to the easy axis; and Rb2FeF5 in which the field was at ~28° to both

easy axes. Representative spectra from each of these three experiments

are shown in Figure S.22. Comparing the transitions it appears that

the character of the 'aligned' K2FeFS spin-flop is significantly dif-

ferent to that observed in the 'misaligned' K2FeFS and Rb2FeFS exper-

iments. This is in keeping with our earlier suggestions that the

transition in the 'aligned' K2FeFs experiment is of first-order, while

in the other two cases the transition is of second-order.

In support of the conclusion that the 'aligned' K2FeFS spin-flop

is a first-order transition we should make one or two qualifying re-

marks. The transition was observed as a coexistence of unflopped and

flopped phases over a range of applied fields ~B~O.4T, centered at

Bsf~3.6ST. This transition width is greater than the width that might

be associated with either demagnetisation or hysteresis effects

(~B~O.OOST and O.004T respectively), and so some other effect must be

present. One simple explanation is that the degree of randomness in

the crystal (due to impurities, defects, distortions etc.) is suffi-

ciently large that a distribution of 'local critical field' values

exists for the ferric ions. This could then account for the observation

of a somewhat broadened transition, while the spin-flop for each in-

dividual ion was of first-order.

Another question which then arises is whether or not a first-order

transition is a ~h70retically justifiable result of the 'aligned'

K2FeFS experiment. Mean-field theory predicts that in order to observe
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a first-order transition in a uniaxial antiferromagnet in which the

exchange and anisotropy fields are the same as those in KZFeFS' the

applied field must be aligned within ~0.03° of the easy axis. Since

the estimated accuracy of alignment in the experiment was of the order

of ±zo, it would therefore seem probable that a first-order transition

would not occur. However, mean-field theory also predicts that the

magnetic phase diagram of an orthorhombic antiferromagnet (such as

KZFeFS) is quite different to the uniaxial case (see Chapter Z.Zd).

In an orthorhombic antiferromagnet the 'shelf' of first-order transi-

tions extends to the paramagnetic phase boundary when the component

of applied fi~ld perpendicular to the easy axis lies near the axis of

hard anisotropy. In KZFeFS there are two magnetically hard axes (cor-

responding to two sublattices of antiferromagnetically ordered spins)

which lie in the crystal ac-plane at about ±40o to·the a axis. It is

therefore plausible that although we may not have had perfect alignment

of the applied field and the easy axis, a first-order transition could

have occurred at some of the ferric ions, resulting in a sharp tran-

sition as observed in the M~ssbauer experiment.

In the case of the RbZFeFS and 'misaligned' KZFeFS experiments there

can be little doubt that second-order transitions were observed. Even

so, the transitions exhibited some unexpected features. The observed

field-dependence of the angle of rotation between the applied field

and AFM axes was in both cases found to be less broad than the curve

predicted by mean-field theory. A similar discrepancy was observed in

a neutron diffraction study of CuCI2.ZDZO by Lynn et al. (1977), adding

weight to the idea that the problem is something other ~han exper-

imental error. It seems likely that the discrepancy is an indication

of some inadequacies in the quantitative aspects of the mean-field

description of the,spin-flop. A second surprising feature of both

experiments was the observation of a sharp minimum in the hyperfine
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field as the applied field was increased. This minimum is presumably

caused by the spin-wave induced spin reduction that is prevalent in

magnetic systems with low Neel temperatures, and corresponds to a

maximum in the spin-wave population at a given critical applied field.

However, it is difficult to reconcile this 'sharp' feature in what

otherwise are 'smooth' and second-order spin-flop transitions.

In conclusion it is clear that this mSssbauer study of the spin-flop

in the quasi one-dimensional antiferromagnets K2FeF5 and Rb2FeF5 has

provided some very interesting results relating to the mechanism of

the spin-flop transition. In the following chapter we shall hope to

find to what ~xtent these results are dependent on the dimensionality

of the systems, by looking at the nature of the spin-flop transition

in the three-dimensional antiferromagnet a-Fe203.
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6.1 INTRODUCTION

The magnetic properties of hematite (a-Fe203) have interested re-

searchers for many years, particularly after Morin (19S0) reported a

phase transition from a weakly ferromagnetic (WFM) to an

antiferromagnetic (AFM) state on cooling below TM:::260K.A neutron

diffraction study by Shull et a1. (19Sl) showed that a-Fe203 is in

essence an antiferromagnet below its Neel temperature TN:::960K,and

that the WFM-+AFM transition that Morin had observed was in fact a

temperature-driven spin-flop. Below TM the ferric spins are

antiferromagnetically aligned along the trigonal [111] axis, while

above TM the spins lie in the basal (111) plane but are not precisely

antiparallel, being slightly canted to produce a WFM moment in the

basal plane. Field-induced spin-flop transitions in the AFM state were

subsequently observed by several investigators. Besser and Horrish

(1964) and Foner (196S) applied magnetic fields parallel to the [111]

direction at T~77K and observed a spin-flop at Bsfll:::6.ST.A more unu-

sual transition induced by magnetic fields applied perpendicular to
the [111] axis was observed by Kaczer and Shalnikova (196S) at tem-

peratures just below TM, and was also found to be a spin-flop between

the AFM and WFM states.

The existence of these three distinct but complimentary phase

transitions in a-Fe203 prompted the M6ssbauer study undertaken in the

present work. It was also thought that since hematite is a

three-dimensional antiferromagnet the effect of spin-waves (either

magnons or 'solitons') on the spin-flop would be small and ,theobserved

transitions would therefore provide a useful foil to the work done on

K2FeFS and Rb2FeFS' Other advantageous features were that reasonably

large single crys~al specimens were commercially available, and that

the magnetic fields required for the field-induced transitions were
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within the scope of the apparatus available in our laboratory. Also,

despite the large number of reports in the literature on these tran-

sitions, there appears to have been relatively few Mossbauer exper-

iments on the field-induced transitions. To the knowledge of the

author only Blum et al. (1965) have published spectra of a field in-

duced transition (the BII[111] spin-flop), and as even those spectra

were of minimal quality it was anticipated that a careful MBssbauer

study would yield useful results.
In the remainder of this introductory section we will review the

crystallographic, electric and magnetic structures of a-Fe203. In

subsequent sections the experimental observations of the Morin tran-

sition, the 'parallel' (BII[lll])spin-flop transition and the 'trans-

verse' (B~[lll]) spin-flop transition will be presented and discussed.

6.1a Crystal Structure and Electric Field Gradient

The hematite crystal structure was first determined by Pauling and

Hendricks (1925) and was later refined by Blake et al. (1966), in both

cases using X-ray diffraction techniques. The unit cell was found to

be rhombohedral (as illustrated in Figure 6.1) with edge length -5.4A

and rhombohedral angle -55°, and contains two Fe203 molecules.

Slightly distorted layers of oxygen anions normal to the trigonal [111]

axis of the rhombohedral cell form a hexagonally close-packed lattice.

The ferric ions fill two-thirds of the octahedral interstices within

this lattice, following the stacking sequence ABCA where C corresponds

to a vacant site. Interatomic distances of -2.9A between nearest

neighbour ferric ions were measured, while the distance between two

ferric ions separated by a vacant site was found to be -4.0A. This

geometry is evident in Figure 6.1.
. h' . F 0 . . h hi h . F 3+ hS~nce t e ~ron ~~ a- e2 3 ~s ~n t e ~g -sp~n estate t e elec-

tric field gradient (EFG) at the ferric nuclei is dominated by the
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and below the Morin transition. Arrows represent the ferric spins.

10.2

10.0

H
CI.I~
~o

0.0 0.1 0.2 0.3

Figure 6.2 Temperature dependence of the magnetic dipole and

single-ion anisotropy fields of a-Fe203 (Besser et al. 1967).
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'lattice' contribution and may be directly related to the symmetry

properties of the crystal structure. As discussed above hematite has

a rhombohedral unit cell, the major axis of which passes through four

ferric ions. This implies that the ferric ion environment possesses

threefold rotational symmetry about the trigonal axis so that the

crystal is invariant to a 1200 rotation about the [111] axis. This

symmetry is sufficient to establish that V (the principal componentzz
of the EFG) will lie along the [111] axis and that V will equal Vxx yy
so that the asymmetry parameter n will be zero. This conclusion has

been borne out by experimental observation. In a careful MlSssbauer

study of hematite single crystal and powder samples van der Woude

(1966) confirmed that V was directed along the trigonal axis, andzz
measured an asymmetry of n~0.03.

6.1b Magnetic Properties

In early studies of the magnetic behaviour of a-Fe203 a "strange"

ferromagnetism with an ordering temperature of about 960K was discov-

ered. An anomalously small spontaneous magnetisation of -0.5emu/g was
-4observed at room temperature, corresponding to about 2x10 of the

nominal moment. Interest heightened in the 1950's when magnetic sus-

ceptibility measurements by Morin (1950) and Guillaud (1951) showed

that the weak ferromagnetic moment disappeared on moderate cooling

below room temperature in a narrow transition at about 260K. This
transition has now come to be known as the 'l'1orintransition', although

it is interesting to note that Honda and Sone (1914) and Charlesworth

and Long (1939) had previously reported the effect but their work had
been subsequently overlooked.

The nature of the Morin transition was revealed by a comprehensive

neutron diffraction and scattering study over the temperature range

80K to 1000K by Shull, Strauser and Wollan in 1951. Below the 'Morin
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temperature' TM=260K Shull et al. found that the ferric spins were

directed along the crystallographic trigonal axis. They determined

that the relative orientation of the spin directions at the four ferric

sites within a given unit cell was --++, as depicted in Figure 6.1.

Above TM the spins were found to lie in the basal (111) plane, again

with the --++ relative orientation. Thus the HorLn transition was es-

tablished as a temperature-driven spin-flop transition.

It is interesting to note that the overall magnetic lattice struc-

ture of hematite is somewhat similar to that found in simple cubic
oxides. If one visualises additional unit cells to that shown in Figure

6.1 it is seen that both above and below Tt-Ithe magnetic structure

consists of a series of 'puckered' basal plane sheets of ferric ions.
The ferric spins within any given sheet are parallel, while those
sheets that are separated by a single layer of oxygen ions are

antiferromagnetically coupled. This alternating 'ferromagnetic' sheet

structure with intermediate oxygen planes is reminiscent of the

structure of simple cubic oxides such as t-lnO(Shull et a1. 1951).

For much of the 1950's the origin of the weak ferromagnetism ob-

served for TM<T<TN was the subject of some controversy. Many possible

explanations were proposed, such as ferrous ion impurities,

rhombohedral magnetite imperfections and moment-bearing domain walls.

However, these ideas were later discarded in favour of the explanation

of Dzyaloshinsky (1958) who showed that the \vHImoment in hematite was

an intrinsic property of the symmetry of the crystal, arising from the

effect of relativistic spin-lattice and the magnetic dipole inter-

actions. By expanding the thermodynamic potential of the c~ystal as a

function of spin density, Dzyaloshinsky found that a stable state ex-

ists in which the spins are slightly canted to produce a weak net
-2 -5ferromagnetism whos~ strength is from -10 to -10 of the nominal

moment..This result compares favourably to the experimental value of
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-42x10 . In a later work Moriya (1960) developed a microscopic model

of the magnetic behaviour of hematite (based on anisotropic

super-exchange theory) and was able to express Dzyaloshinsky's spin

canting term as an antisymmetric interaction Q·~lx~2 between

neighbouring spins, where Q is a constant vector directed along the

[111] axis. Using this model Moriya obtained an estimate of the mag-

nitude of the WFM moment which was in good agreement with the exper-

imental value.

A theoretical interpretation of the Morin transition itself was

subsequently proposed by Tasaki and Iida (1961) and later by Artman

et a1. (1965) on the basis of competing magnetocrystalline

anisotropies. They showed that spin-orbit effects in hematite give

rise to a fine structure (single ion) anisotropy energy constant KSI
which keeps the 3pins in the [111] direction. Magnetic dipole inter-

actions give rise to a second anisotropy energy K~m which gives the

spins a preferred orientation in the (111) plane. The Morin transition

may therefore be explained as a differing temperature dependence of

the two anisotropies. Above TW KSI<K~m and the spins lie in the basal

plane, while below TN' KSI>KMD and the spins flop to the trigonal axis.
Besser et al. (1967) calculated the temperature variations of the

single ion and dipolar anisotropy fields BSI and B~m (via mean-field
theory) from the measured field-induced spin-flop fields at low tem-

peratures. The resultant curves (see Figure 6.2) show the anticipated

crossover at TM, confirming the applicability of the competing

anisotropy model of the Morin transition.
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6.2 EXPERIMENTAL RESULTS

In this section the results of a M6ssbauer study of the Morin

transition and of the 'parallel' and 'transverse' field-induced

spin-flop transitions in a-Fe203 are presented.

For the most part the experiments were performed on two large single

crystal specimens of hematite that had been synthetically grown at the

Clarendon Laboratory, Oxford, via the 'flux growth' method (see Chap-

ter 4.2a). The two crystals differed in the fluxes used during the

growing process: PbOjPbF2 for the so-called 'lead-flux' crystal, and

Na2B407 for the 'sodium-flux' crystal. Both crystals were received

as platelets, and were of approximate dimensions 4x4xO.5 mm] and

2xl.5xO.2 mm] respectively. X-ray diffraction measurements established

that both crystals were basal-plane platelets, with the trigonal [111]

axis perpendicular to the plane of the platelet. The 0.5mm thickness

of the lead-flux crystal was found to be too great to allow the passage

of r-rays through the sample, so it was set in a tablet of epoxy resin

and abrasively thinned (using the technique described in Chapter 4.2b)

to a thickness more suitable for M6ssbauer experiments. Unfortunately

the crystal was found to be very brittle and the thinning process had

to be stopped before an ideal thickness had been obtained in order that

total disintegration could be avoided. The sodium-flux crystal was

sufficiently thin in its original state to allow the acquisition of

M6ssbauer spectra, although again it was rather thicker than what would

normally be regarded as a 'thin' absorber. This excess thickness in

both crystals is evident in all the spectra subsequently recorded (see

later).
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6.2a The Morin Transition

In the first of the experiments the Morin transition was investi-

gated by recording the M~ssbauer spectra of both crystals at a number

of temperatures ranging between -220K and room temperature. The sam-

ples were cooled in a variable temperature cryostat (described in

Chapter 4.lb) which provided temperature control to better than ±O.lK

over the period of time taken to accumulate the spectra (about one day

each). Particular care was taken to ensure that the crystals were in

good thermal contact with the sample holder so that the reading from

the resistance thermometer mounted in the sample holder could be taken

to be a true reflection of the sample temperature. Spectra were re-

corded with the l-ray beam incident along the [111] axis of the crys-

tals.

6.2a(i) Lead-flux Crystal

Over twenty spectra of the lead-flux crystal were recorded at tem-

peratures ranging between 221K and 289K. From these spectra, seven

representative spectra are given in Figure 6.3.

At room temperature (T~289K) a six line hyperfine spectrum was re-

corded in which a line intensity ratio of about 1.8:2.0:1 in

outer:middle:inner pairs of lines was evident. This intensity ratio

is somewhat surprising since we expect that above the Morin transition

at TM-260K the ferric spins lie in the (111) plane, so that with the

l-rays directed along the [111] axis a spectrum with intensity ratio

3:4:1 should appear. The most probable explanation for this discrep-

ancy is that substantial thickness-effect line broadening is present,

with the larger intensity lines being broadened more than'the weaker

lines to give an apparent accentuation of the weaker lines in the ob-

served spectrum. (This effect was discussed in Chapter 3.4.) If this

were the case, and assuming that the thickness effect is not so great

that the Lorentzian line-shape is lost, the 289K spectrum could still
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be interpreted as a 3:4:1 spectrum, with the provision that it has a

3:4:1 line area ratio, rather than a 3:4:1 line intensity ratio. Com-

puter analysis of the spectrum (see later) shows this to be the case.

The spectrum recorded at 266K was quite similar to the 289K spec-

trum, with the intensity of the 6m=0 lines (lines two and five of the

sextet) diminishing slightly. On lowering the temperature further ma-

jor changes in the spectra became apparent. At 262K the innermost lines

and the right-most line were visibly split, implying that the spectrum

consisted of two component sextets with slightly different hyperfine

parameters. At 254K and 248K this splitting was still apparent (al-

though not so obvious) as an inequality in the intensities of the

left-most and right-most lines. In addition, between 266K and 242K the

6m=O lines (whilst remaining unsplit) decreased in their relative in-

tensity until at 242K they were virtually absent, implying that at that

temperature the ferric spins were almost parallel to the r-ray beam.

The spectrum recorded at 22lK was not appreciably different from the

242K spectrum.

It is noticeable that although the intensity of the 6m=0 lines in

the 22lK spectrum was very small, they were still evident. Since we

might have expected that the Morin transition would be complete at that

temperature (which appears to be the case considering the similarity

of the 242K and 22lK spectra) and that the spins would therefore be

aligned along the [111] axis, the presence of 6m=0 lines would appear

to indicate that the r-ray beam was not aligned with the [111] axis.

This possibility was tested by repeating the experiment after

re-positioning the crystal in the spectrometer. Rather surprisingly

an almost identical spectrum was recorded, implying that misalignment

might not be the cause of the non-zero 6m=O lines. In the review ar-

ticle of Creer et a1~ (1975) it was noted that several experimenters

have observed a small 'remanent' ferromagnetic moment in natural and
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(less commonly) synthetic crystals of hematite which persists at tem-

peratures well below TM. This remanent WFM moment is thought to be a

result of structural defects in these crystals, and as such is dis-

tinguished from the Dzyaloshinsky moment which is present only above

TM· Gallon (1968) has suggested that the remanence may be confined to

small regions (domains) in the crystal which do not undergo the Morin

transition. This model would explain our observations of small bm=O

lines at 221K as a small admixture of a 3:4:1 component subspectrum

due to domains of the high temperature WFM phase into a predominantly

3:0:1 spectrum corresponding to the low temperature AFM state.

In light 6f the above considerations the spectra shown in Figure

6.3 were computer analysed using Fit-A by assuming a superposition of

two component subspectra corresponding to the WFM and AFM phases. Fit-A

was used, despite the resultant loss of information and rigour that

Fit-Q could have provided, because it is better suited to the analysis

of thickness-broadened spectra. For example, using Fit-A the WFM sub-

spectrum could be specified as having a line area ratio of 3:4:1, while
allowing the spectral linewidths to vary independently. Similarly the

AFM subspectrum was specified by a 3:0:1 area ratio. The fitted values

of the isomer shift 6,'quadrupole shift E, linewidth r16 of the out-

ermost lines, and hyperfine field Bhf of each component are given in
Table 6.1.

The computer fits of the high temperature spectra (T=289K and 266K)

indicated that about 85% of the spins were in the WFM phase, although

the unrealistically large linewidth fitted for the AFM component casts

some doubt on this figure. It is likely that in fact nearly'all of the

spins are in the WFM state and that the 15% component of AFM-like

spectrum is an artefact of the fit that is related to the

thickness-effect problems known to be present. The low temperature

spectra (T=242K and 221K) both showed that about 10% of the spins re-
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mained in the WFM state whilst the remaining spins had undergone the

Morin transition. This estimate of the degree of completion of the

transition is fairly reliable since the area of the WFM component in

these spectra is largely determined by the intensity and linewidth of

the 6m=0 lines, which are sufficiently weak that thickness-broadening

should be negligible.

Table 6.1 Fitted hyperfine parameters of the spectra of the lead-flux

a-Fe203 basal-plane crystal, as discussed in the text. cS, £ and f16
measured in mmjs; Bhf in Tesla.

T s 2£ [16 ~hf Area

289.2 K 0.39 -0.18 0.33 51.4 85%
0.51 0.19 1.86 52.2 15%

265.5 K 0.41 -0.17 0.34 51.8 84%
0.51 0.23 0.75 52.6 16%

261.5 K 0.40 -0.18 0.35 52.0 71%
0.42 0.38 0.39 52.8 29%

253.9 K 0.41 -0.12 0.40 52.0 41%
0.41 0.46 0.41 52.7 59%

247.9 K 0.42 0.04 0.50 52.1 23%
0.41 0.47 0.42 52.9 77%

242.3 K 0.43 0.25 0.34 52.9 10%
0.41 ·0.48 0.45 52.8 90%

221.1 K 0.46 0.31 0.42 53.2 9%
0.42 0.49 0.46 53.1 91%

The spectra at the intermediate temperatures T~262K, 254K and 248K

were sufficiently well resolved to allow a reasonably accurate meas-

urement of the hyperfine parameters of both the AFM and the WHf

subspectra. In all three spectra the hyperfine fields of the two

phases were found to differ by about 0.8T. This figure compares very

favourably with the prediction by van der Woude (1966) of a change in

Bhf of -0.6T at the Morin transition as a result of the different di-
rection dependences of the orbital and dipolar components of the



112

hyperfine field. Another interesting feature evident from the fitted

parameters is that the quadrupole shifts of the subspectra are quite

different. As discussed in Chapter 3.3d, when n=O the observed shift

is related to the quadrupole splitting 6 by the expression

2E=i(3cos29-l)6, where 9 is the angle between the EFG principal axis

and the magnetic axis of the spins. Since V is directed along thezz

[111] axis both above and below the Morin transition we expect that

this angle will change from 9=90° above TM to 9=0 below TM as the spins

flop from the (111) plane to the [111] axis. Thus we anticipate that

the quadrupole shift will be 2E=-i6 above TM and 2E'=6 below TM. This

prediction would appear to be confirmed at 262K where the measured

shifts were 2E~-0.18mm/s and 2E'~0.38mm/s. At 254K and 248K the two

component sextets were not so well defined and the agreement is less

convincing.

,The observation of two distinct sextets in the transition region

spectra supports the idea that the Morin transition is a first-order

spin-flop, as predicted by Artman et al. (1952) and Levinson et al.

(1969). In addition the observed differences in hyperfine field and

quadrupole shift in the two sextets are in agreement with those ex-

pected for a 90° spin'reorientation. We may therefore envisage the

transition as a growth of AFM domains at the expense of WFM domains

in the crystal as the sample is cooled through TW The Norin transition

for each individual ion would then be of first-order, with the observed

transition width being a result of sample inhomogeneities or struc-

tural defects giving rise to a distribution of local environments for

the ferric ions.

However, if the transition is of first-order then hysteresis should

be a feature of the transition with the Norin temperature being de-

pendent on whether, it is approached from above (TM+) or from below

(TM_). Previous workers, including van der Woude (1966) and Nininger
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and Schroeer (1978), have observed such hysteresis in a number of

samples, with values for TM_- TM+ ranging from -IK to as much as -11K.

To investigate the possibility of hysteresis in our lead-flux crystal

two series of spectra were recorded for both ascending and descending

temperatures. The fitted relative areas of the WFM and AFM components

in each of these spectra are shown in Figure 6.4, where it is evident

that there is no obvious indication of hysteresis being present. Al-

though this is a somewhat surprising observation it is not un-

precedented. There are several reports in the literature, including

Blackman and Gustard (1962) and Gallon (1968), of a lack of hysteresis

in what otherwise would be interpreted as a first-order transition.

It is reasonable to suggest that this effect may again be a result of

sample inhomogeneity and the general variability in the quality of the

crystals studied by different researchers.

6.2a(ii) Sodium-flux Crystal

A total of six spectra of the sodium-flux hematite crystal were

recorded at temperatures ranging between 246K and 258K. The spectra

(shown in Figure 6.5) were very similar in character to those obtained

from the lead-flux crystal and therefore will not be described further.

The spectra were fitted using Fit-Q and gave the hyperfine parameters

listed in Table 6.2.

The major difference between the HorLn transitions in the lead-flux

and sodium-flux crystal is clearly in the 'sharpness' of the transi-

tion. This is illustrated in Figure 6.6 by the temperature dependence

of the WFM :AFM relative areas in the two samples. In the lead-flux

crystal the transition occurred over a range of temperatures ~T=25K

centered at TM=255K, whereas in the sodium-flux crystal ~T=12K and

TM=252K. Such a difference is not very surprising as it is clearly

evident in the literature that the width and mid-point of the Morin

transition is highly dependent on the quality of the particular sample



1.00 I-

~ • •rn • •r- 0.80 I-
:0
-l +
-<rn 0.60 I- .-
Ul ..
lJ +rn .-+n 0.40~ I- t4
:Il ...:D tr-
:0 0.20 ...- •::Drn +:0 + +

0.00 -

I I I I I I I I

220.0 230.0 240.0 250.0 260.0 270.0 280.0 290.0
TEMPERRTURE (K)

Figure 6.4 Observed temperature-dependence of the relative area of WFM

to AFM components in the lead-flux hematite Horin transition spectra,

as measured for ascending Ce) and descending C+) temperatures.

1.00 -
::D + • •rn + • •r- 0.80 -
:0~ •
-<rn 0.60 - •
(.f) •lJ •rn •n 0.40 - +A·~
:Il +.:0 •r- •
:0 0.20 •
:Il

l- e +rn • +:0 • •
0.00 I-

I I I I I I I I

220.0 230.0 240.0 250.0 260.0 270.0 280.0 ·290.0
TEMPERRTURE (K)

Figure 6.6 Observed temperature-dependence of the WFH:AFM relative

areas in the lead-flux Ce) and sodium-flux C+) hematite ~Iorin transi-

tion spectra.



0.00

2.00

4.00

.
0.00 of: ++ .. ...t ....

+ f'I"++"• +. + +

2.00

4.00

0.00

2.50 251.9 K
""Il
I"Tl
:Il 5.00n
I"Tlz
-t
:D
C1rn 0.00
:D ....+
co
Ul
Cl
:Il
-0 2.75-t 250.4 K
Clz

5.50

1" + ++:to
+

0.00
... ~.... +#."' ...+

• +

2.75

5.50

0.00

3.00 245.9 K

6.00

-10.0 10.0'

Figure 6.5 Spectra of the Nor Ln transition in the sodium-flux hematite

crystal, with r-rays directed along the [111] axis.



114

being used. For example, widths as high as -70K have been reported in

some natural single crystals (Imbert and Gerard 1963), while Besser

et al. (1967) observed AT<lK in a pure synthetic crystal. In general

the transition in synthetically grown crystals is sharper than in na-

tural crystals, although even with synthetic crystals the magnetic

properties are sensitive to the exact method of preparation (Takada

et al. 1965). The presence of foreign cations in hematite has also

been shown to have a large effect on the transition, usually lowering

the Morin temperature (Tasaki and Iida 1961, Curry et al. 1965, Besser

96) I . I T .4+ h ff het al. 1 7. n partlcu ar 1 as an enormous e ect, wit a doping

of only 0.3% being sufficient to completely suppress the transition.

Tin is also known to have a strong influence (Flanders and Remeika

1965).

Table 6.2 Fitted hyperfine parameters of the spectra of the sodium-flux

a-Fe203 basal-plane crystal, as discussed in the text. 6, £ and r16
measured in mm/s; Bhf in Tesla.

T 6 2£ I16 ~hf Area

258.2 K 0.42 -0.21 0.31 52.2 88%
0.41 -0.07 1.06 52.3 12%

255.1 K 0.42 -0.21 0.32 52.2 82%
0.45 0.30 0.49 53.1 18%

251.9 K 0.42 -0.15 0.31 52.3 41%
0.42 0.49 0.36 53.1 59%

250.4 K 0.47 -0.03 0.37 52.2 33%
0.43 0.49 0.34 53.2 6n~

249.1 K 0.51 0.08 0.44 52.0 18~;"
0.42 0.45 0.40 53.1 82%

245.9 K 0.35 0.17 0.28 53.0 8%
0.42 0.49 0.33 53.2 92%

It is therefore,natural to conclude from our observation of the

Morin transition in the two hematite crystals that the observed dif-
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ferences in transition width indicates that the sodium-flux hematite

is of a higher purity, or contains fewer structural defects, than the

lead-flux hematite.

6.2b The 'Parallel' Field-Induced Spin-Flop

In the first of the two field-induced spin-flop experiments

Mossbauer spectra of the lead-flux and sodium-flux crystals were re-

corded at 4.2K with both the incident ~-rays and applied fields of up

to lOT directed parallel to the [111] axis.

6.2b(i) Lead-flux Crystal

The spectra obtained from the lead-flux crystal are shown in Figure

6.7. In zero applied field a four line spectrum was observed. The

complete absence of the Am=O lines implies that the ~-ray beam was

directed within one or tW()degrees of the magnetically easy axis (the

[111] axis). It is also notable that the zero Am=O line intensity im-

plies that at 4.2K the Morin transition has taken place for all of the

spins in the crystal, and the residual magnetisation that had been

apparent in the 221K spectrum is no longer present. In applied fields

of up to 6.0T the spectral lines split into pairs and the intensity

of the Am=O lines (which were also split) increased. This behaviour

is in keeping with a gradual rotation (in unison) of the spins away

from the field as it was increased. The spectra obtained for

6.0T<B<9.0T were rather complicated, with additional lines appearing

at the Am=O line positions and the outer lines showing evidence of

structure. With B~9.0T applied a single sextet pattern was observed,

with a line intensity ratio of about 3:4:1, indicating that the

spin-flop was complete and the spins were lying in the basal plane.

The spectra were computer analysed using Fit-Q. This program was

used (despite being ill-equipped to simulate thickness-broadened

spectra) because it was thought that more information could be ex-
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tracted from the spectra by fitting the observed line positions within

the solid theoretical framework that Fit-Q provides. In other words,

using Fit-Q the spectra could be fitted with a more physically justi-

fiable model than could be obtained with the curve-fitting program

Fit-A. The fitted hyperfine parameters determined with Fit-Q are given

in Table 6.3. Since the EFG principal axis lies along the [111] axis

and since 11=0 the polar angles eg, ~g' eH and ~H of the l-rays and
applied field (in the crystallographic coordinate system) were all

taken to be zero in these fits.

Table 6.3 Fitted hyperfine parameters of the spectra of the lead-flux

hematite crystal subject to an applied field B parallel to its [111]

axis, as discussed in the text. 6 and r measured in mm/s, Band Bhf
in Tes La , ,'( denotes parameters that were not allowed to vary.

B

0.00 0.43

3.00 0.43

4.50 0.43

6.00 0.45

6.50 0.47

7.00 0.47

7.50 0.47

7.75 0.42

8.00 0.42

8.50 0.42

9.00 0.43

10.00 0.41

r

0.41

0.38

0.42

0.41

0.42
0.43

0.47
0.50

0.67
0.65

0.68
0.72

0.57
0.55
0.45
0.50

0.47
6.48

0.50

~hf
54.4

Area

54.4

54.4

54.3

54.3
54.6

95~~
5%

54.2
53.4

84%
16%

54.1
53.4

64%
36%

54.1
53.4

59%
41%

54.0
53.5

60~~
40%

53.4
53.4

26%
74~~

53.6
53.5

29%
71%

53.5
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The zero applied field spectrum was fitted with aB=o assumed, con-

firming that the ~-ray beam was well aligned with the [111] axis. For

moderate applied fields (B~6.0T) it was assumed that the AFM axis of

the spins had rotated by an angle aB away from the applied field di-

rection (the [111] axis). The fits obtained using this model show an

appreciable mis-fit in the intensities of the weak Am=O lines and the

two innermost lines. This mis-fit arises from the 'thin absorber ap-

proximation' that is used in Fit-Q, whereby equal linewidths are as-

signed to all of the lines in a given spectrum. The fitted linewidth

r is largely determined by the most intense (and therefore most

thickness-broadened) lines, resulting in a misrepresentation of the

intensities of the weaker lines. Fortunately this problem is not too

significant as regards the validity of the fits. The rotation angle

aB in the low-field spectra could be reliably determined from the ob-

served splitting ABeff=2BcosaB between the two effective fields re-

sulting from the vector addition of the applied and hyperfine fields.

The spectra in the transition region (6.ST~B~9.0T) were modelled
as a superposition of a 'rotated' spectrum with split lines and

intermediate intensity Am=O lines, and a 'flopped' spectrum of unsplit

lines in 3:4:1 intensity ratio. The effect of canting of the spins in
-1the flopped phase by an angle a~sin (Bj2BE) was considered to be

negligible since the exchange field in hematite is known to be large,

BE~4S0T (Ozhogin and Shapiro 1968). The relative spectral area of the

flopped component was found to increase a B increased, until at B=10.0T

it constituted the total spectrum. The quality of the fits in this

transition region is moderate, but sufficiently high that the model

may be regarded as an adequate description of the behaviour of the

sample.

Thus it appears from the spectra and the fits that the spin-flop

in the lead-flux hematite crystal has two parts : a gradual spin ro-
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tation from the [111] axis to the (111) plane in a broad transition

(see Figure 6.8), superimposed on a sharp transition of first-order

character beginning at B~6.5T in which a spin-flopped component ap-

pears (see Figure 6.9). Both of these transitions merge together at

B~9.0T, so that by B=lO.OT all the spins have flopped into the (111)

plane and the spin-flop is complete.

This observation of a combined first-order and second-order tran-

sition is rather unusual. Previous workers, including Kaneko and Abe

(1965), Besser et al. (1967) and Ozhogin and Shapiro (1968), have ob-

served abrupt spin-flop transitions at critical fields in the range

6.3T to 6.8T. Although some of these experiments were conducted at 77K

it is well established that Bsf varies only slightly below -130K

(Besser et al. 1967, Foner and Shapiro 1969), so the fact that our

experiment was conducted at 4.2K should have no bearing on the tran-

sition. It would appear that once again the quality of the sample may

be called into question, a possibility which we may investigate by

looking at the spin-flop in the sodium-flux crystal.

6.2b(ii) Sodium-flux Crystal

The spectra obtained from the sodium-flux hematite crystal are

shown in Figure 6.10, where it is evident that the transition was a

good deal sharper and more clear-cut than that which was seen in the

lead-flux crystal. The zero applied field spectrum showed no t.m=O

lines, confirming the alignment of the r-rays with the trigonal axis.

As B was increased to 6.0T the spectral lines split whilst the inten-

sity of the t.m=O lines remained zero, implying that the AHI axis of

the spins had not moved away from the [111] axis. At B~6.3T two un-

split t.m=Olines appeared while the outer lines showed structure con-

sistent with the spectrum being composed of an unsplit 3:4:1 component

superimposed on a spl~t 3:0:1 spectrum. As the field was increased the
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relative area of the 'flopped' 3:4:1 component increased until for

B~6.ST it accounted for the entire spectral area.

The spectra were analysed with Fit-Q, yielding the parameters given

in Table 6.4. The transition spectra were fitted as a composite of a

split 3:0:1 spectrum corresponding to unflopped spins aligned with the

[111] axis C8B=0), plus an unsplit 3:4:1 spectrum due to flopped spins

in the (111) plane (8B=900). The field dependence of the relative

spectral area of the flopped component is plotted in Figure 6.11, and

shows that the spin-flop took place over a range of fields ~B=O.6T

centered at Bsf=6.4T. The fitted hyperfine fields were ~54.3T for the

unflopped phase and ~53.5T for the flopped phase, a difference that

is comparable to the drop that was observed at the Morin transition.

It would appear that the spin-flop in the sodium-flux hematite is

an abrupt transition, with domains of floppe i spins growing at the

expense of unflopped spins as the applied field is increased. This

behaviour is similar to that observed in the 'aligned' K2FeFS exper-

iment. The spin-flop at each individual ferric ion seems to be of

first-order, with the 0.6T transition width being attributable to a

distribution of critical field values within the crystal resulting

from random impurities,'defects and distortions. The observed 'mean'

spin-flop field of Bsf=6.4T compares favourably with previously re-

ported values for the critical field.
Given that the spin-flop observed in the sodium-flux crystal is in

keeping with previous observations of the transition, it appears that

the unusual transition that was found in the lead-flux crystal is not

typical of hematite. The most likely reason for such atypical behaviour

is that the lead-flux hematite is of inferior quality, either in terms

of chemical purity or in terms of structural defects, to the

sodium-flux hematite', To test the chemical purity of the crystals

representative specimens from the lead-flux and sodium-flux hematite



Table 6.4 Fitted hyperfine parameters of the spectra of the sodium-flux

hematite crystal subject to an applied field B parallel to its [111]

axis, as discussed in the text. /!. and r measured in mmls, B and Bhf

in Tesla. aB was not allowed to vary.

B /!. r l!hf ~B Area

0.00 0.43 0.38 54.3 0°

6.00 0.42 0.37 54.1 0°

6.25 0.41 0.38 54.3 0° 92%
0.33 53.3 90° 8%

6.30 0.38 0.37 54.3 0° 74%
0.40 53.5 90° 26%

6.35 0.37 0.39 54.3 0° 73%
0.43 53.5 90° 27%

6.40 0.37 0.37 54.4 0° 64%
0.43 53.5 90° 36%

6.45 0.40 0.35 54.2 0° 61%
0.40 53.3 90° 39%

6.50 0.41 0.40 54.4 0° 14%
0.41 53.5 90° 86%

7.00 0.45 0.38 53.4 90°
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Figure 6.11 Observed field-dependence of the relative area of
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batches were sent to the Universities Research Reactor, Risley, for

neutron activation analysis. The r-ray emission spectra recorded after

the samples had been irradiated with neutrons showed that the major

impurity nuclides in both samples were V, Rh and Ir. Minor impurities

of Na and Sb were also found, and traces of Pt, Mn, Ti, Co and Ga were

discernible. (We should note that although we might anticipate that

Pb impurities would appear in the lead-flux crystal, Pb is one of the

few nuclides that is not easily observed via neutron irradiation.) With

the exception of Na and Sb the impurity concentrations were greater

in the lead-flux sample than in the sodium-flux sample. Quantitative

estimates of the concentrations of the major impurity elements (see

Table 6.5) showed that in general the lead-flux hematite is about one

hundred times more impure than the sodium-flux hematite.

Table 6.5 Concentrations in parts-per-million of the major impurity

nuclides found to be present in the synthetic hematite crystals used

in this work, as determined by neutron activation analyses.
Vanadium Rhodium Iridium

Lead-flux hematite 2040 ± 20 57.7 ± 0.9 34.2 ± 0.4

Sodium-flux hematite 9.1 ± 0.2 0.46 ± 0.04 0.38 ± 0.02

The presence of relatively large amounts of vanadium and iridium

in the lead-flux crystals might explain the broad Horin transition and

unusual spin-flop transition that were observed, especially if these

ions were in their 4+ valence state. Besser et al. (1967) explained

the high sensitivity of the Morin transition to the substitution of

titanium into hematite in terms of the lattice distortion produced by

1 T .4+ . F 3+ . 11 th . d farge 1 10ns on e s1tes, as we as e assoc1ate presence 0

charge-compensating Fe2+ ions which exhibit strong spin-orbit coupl-

ing. Similarly large effects may well be observed if V4+ and Ir4+ ions
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b· d F 3+ .are su st1tute onto e s1tes. The other major impurity detected in

the lead-flux crystal, rhodium, is also known to alter the properties

of hematite, and is unique in that doping Rh3+ ions into hematite

raises TM (Krens et al. 1965, Morrish and Eaton 1971), in contrast to

most other cations (such as Ti4+, A13+, Ga3+ and Sb4+) which lower

A second effect which is known to influence the properties of

hematite samples is the presence of structural defects and internal

stresses and strains. Several workers have noted that TM may be in-

creased by the application of external pressures (Whorlton et al.

1966, Kawai and Ono 1966, Searle 1967), and Besser et al. (1967) found

that basal-plane anisotropy could be induced in a single crystal

specimen simply by subjecting it to the non-uniform stresses invoked

by immersing the crystal in a tablet of slow-drying epoxy resin. This

latter result is particularly interesting, bearing in mind that the

lead-flux crystal used in this work was abrasively thinned and then

encased in an epoxy resin tablet, while the sodium-flux crystal was

kept in its original state. To further investigate this question a

second platelet was selected from the lead-flux hematite batch and (of

necessity) abrasively thinned, but instead of being fully immersed in

epoxy resin it was supported on one side only by a thin slab of resin.

Mossbauer spectra of the Morin transition were recorded with this

sample, and showed that the transition occured over a range of tem-

peratures 8T=25K centered at TM=248K. Comparison of these values with

the 8T=25K and TM=255K observed for the fully encased sample implies

that while the transition width was unaffected, TM was slightly smaller

in the 'half-mounted' crystal. This is perhaps indicative of a greater

pressure being transferred to the fully encased crystal via the sur-

rounding epoxy resin.
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From the above considerations it is apparent that several factors

may be contributing to the unusual behaviour of the lead-flux crystal

during the course of the 'parallel' field-induced spin-flop transi-

tion. However it is also clear that the response of the sodium-flux

crystal to the applied field is consistent with previous observations

of this spin-flop, and that it agrees with the predicted first-order

character of the transition.

6.2c The 'Transverse' Field-Induced Spin-Flop

In the last of the a-Fe203 spin-flop experiments the rather unusual

'transverse' field-induced transition was investigated. As discussed

in Chapter 2.2d(ii) mean-field theory predicts that this transition,

which is a particular feature of 'Dzyaloshinsky' antiferromagnets,

will occur in hematite when an applied field is directed perpendicular

to the magnetically easy [111] axis. In essence the transition takes

place because the Dzyaloshinsky exchange interaction establishes a

preference for any weakly ferromagnetic spin arrangement (such as that

which occurs naturally above the Morin transition) to be contained in
the basal (111) plane. The applica:tion of an external field perpen-

dicu1ar to the [111] axis induces a canted spin state which has an

associated WFM moment. Because of the Dzya10shinsky interaction it is

energetically preferable for this Wnt spin configuration to be con-

tained in the (111) plane, so that the AFM axis of the spins will move

away from the [111] axis and into the (111) plane as the applied field

passes through the critical value BJ.. • The transition is generallyc

thought to be abrupt, but there are also some conflicting theories

which predict that the transition will be of second-order.

In the experiment M6ssbauer spectra of the 'pure' sodium-flux

crystal were recorded at 230K and 245K with applied fields of up to

lOT perpendicular to the [111] axis and with the r-ray beam parallel
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to the [111] axis. The high sample temperatures were needed because

previous observations of the Itransverse I spin-flop had shown that

below ""lOOK the critical field B1..~16.2T (Foner and Shapira 1969,c

Jacobs et al. 1971), a value which is beyond the fields available in

this laboratory. At temperatures approaching the HorLn temperature

the critical field is considerably smaller owing to the strong tem-

perature dependence of the anisotropy field (see Chapter 2.2d(di ) .

Foner and Shapira (1969) measured B1..(230K)~5.4T and B1..(245K)~2.5T,c c

both of which are fields that were readily available in this labora-

tory. The high sample temperatures were obtained using a variable

temperature I insert I (Cooper 1981) which in essence consists of a

copper block (into which the crystal was mounted) inside an evacuated

tube which was lowered into the centre of the superconducting magnet

assembly. Sample temperature control to better than about ±O.2K could

be obtained by controlling the current flowing through a coil mounted

on the copper block.

The spectra obtained, five of which were recorded at 230K and one

of which was recorded at 245K, are shown in Figure 6.12. At 230K and

with zero applied field a four line pattern was observed, with the

absence of the ~m=O lines confirming that the ~-rays were well aligned

with the [111] axis. In an applied field of 3.0T the spectral lines

remained unsplit while two small ~m=O lines appeared. As the field

was increased to lO.OT the relative intensity of the ~m=O lines in-

creased until for B=lO.OT an unsplit sextet of lines with an intensity

ratio of about 3:2.6:1 was observed. This behaviour is in keeping with

a gradual rotation of the AFN axis of the spins away from the [111]

axis towards the (111) plane, although even with lO.OT applied it ap-

pears that the transition was not complete since a 3:4:1 spectrum was

not observed. Increaiing the sample temperature to 245K and applying

a field of lO.OT resulted in another simple sextet pattern, but with
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a slightly increased 6m=0 component and a line intensity ratio of about

3:3.6:1. This indicates that although at 245K a field of 10.OT brought

the spins closer to the (111) plane than the same field at 230K, the

transition was still not complete.

The spectra were computer analysed using Fit-Q, with n=O, eg=~g=o,

and ~ =0H
assumed. The quadrupole splitting was fitted as

6~0.4lmm/s in the zero applied field spectrum, and constrained to this

value for all the other fits. The fitted values of the linewidth and

the magnitude and polar angles (in the EFG coordinate system) of the

hyperfine field are given in Table 6.6. The isomer shift did not vary

greatly between the spectra and is not included in Table 6.6.

The zero applied field 230K spectrum could be well fitted with

aB=o assumed, confirming that the ~-rays were closely aligned with the
trigonal axis. The fits of the non-c.e ro applied field spectra showed

that the polar angle aB of the hyperfine field increased smoothly as

B was increased (see Figure 6.13), implying a gradual rotation of the

AFM axis of the spins away from the [111] axis. The same fits also

showed that the azimuthal angle ~B of the hyperfine field did not move

significantly away from -90°, implying that the spins remained in the

plane perpendicular to the applied field direction throughout the

transition. The magnitude of the hyperfine field Bhf fell slowly as
B was increased, an effect which is consistent with the known

direction-dependence of its orbital and dipolar components (van der

Woude 1966). With B=lO.OT applied the AFM axis of the spins had ro-

tated a ~62° away from the trigonal axis, well short of the 90° motion
B

normally associated with a complete spin-flop transition. At the

higher temperature of 24SK and with 10.OT applied the spins were closer

to the basal plane (aB~74°), but again the transition was incomplete.

Judging by the spectra and their fits it is quite clear that our

observation of the 'transverse' field-induced spin-flop in the



Table 6.6 Fitted hyper fine parameters of the spectra of the sodium-flux

hematite crystal subject to an applied field B perpendicular to its

[111] axis, as discussed in the text. r measured in mm/s, Band Bhf

in Tesla. * denotes parameters that were not allowed to vary.

T B r ~hf
53.3230.0 K 0.0 0.35

3.0 0.36 53.2

6.0 53.00.37

B.O 0.30 52.B

10.0 0.39 52.9

245.0 K 10.0 0.35 52.1
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sodium-flux crystal shows the transition to be a very slow and gradual

spin rotation in response to an increasing applied field. Even with

10.0T applied and T~245K (a temperature just below the region of the

Morin transition in the crystal) the transition was incomplete, with

a 74° rotation having occurred rather than the anticipated 90°

spin-flop. This result contradicts the reported observations of se-

veral previous experimenters. Voskanyan et al. (1968), Beyerlein and

Jacobs (1969) and Foner and Shapira (1969) all noted a sharp upturn
and 'step' in the perpendicular magnetic susceptibility Xl..at Bl..,c
separating two regions of different constant susceptibilities. Torque

and magnetisation measurements on highly pure synthetic crystals by

Kaczer and Shalnikova (1965) at temperatures just below TM revealed
abrupt and discontinuous transitions. Antiferromagnetic resonance

experLrrent.sby Ozhogin and Shapiro (1968) showed a similar disconti-

nuity in the net magnetisation parallel to the trigonal axis at Bl...c
Also, Ozhogin and Shapiro (1967,1968) and Jacobs et al. (1971) noted

that their measured values for Bl..were about 30% higher than thosec

predicted via conventional mean-field theory. As discussed in Chapter

2.2d(ii) this discrepancy could obe resolved by introducing a

fourth-order term K'cos4e into the description of the anisotropy en-

ergy, a modification which had the added effect of changing the pre-

dicted character of the transition to that of fist-order.

However, second-order transitions have also been reported in the

literature. Kaczer and Shalnikova found that while the spin-flop in

some of their crystal samples was of first-order, in other samples it

was gradual, an observation which they attributed to a 'smearing' of

the transition due to inhomogeneities in composition and internal

stresses in the latter samples. Cinader and Shtrikman (1966) searched

without success for the transition and concluded that an anisotropy

energy term of Kcos+B would account for the gradual rotation of the
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AFM axis of the spins towards the basal plane. Mossbauer measurements

by Blum and Frankel (1967) also indicated a gradual rotation of the

spins rather than an abrupt spin-flop.

In light of the above considerations it would seem likely that our

observation of a gradual spin rotation in the 'transverse' field in-

duced spin-flop experiment is simply an indication that even the nom-

inally 'pure' sodium-flux a-Fe203 crystal is not of sufficiently high

quality that a first-order transition might take place.

6.3 DISCUSSION

In this chapter three separate experiments on spin-flop phase

transitions in a-Fe203 have been described. The NorLn transition and

the 'parallel' field-induced spin-flop were studied in both the

lead-flux and the sodium-flux hematite crystals, and the 'transverse'

field-induced spin-flop was investigated in the sodium-flux crystal.

Representative spectra from the three experiments conducted with the

sodium-flux crystal are shown in Figure 6.14. Comparing the transi-

tions it appears that while the 'transverse-field' transition is of

second-order, the Morin and 'parallel-field' spin-flops are of

first-order as evidenced by the coexistence of the initial and final

states of the crystal over a finite transition region.

Before discussing the significance of these results, the question

of sample purity should be considered. Throughout this chapter the

possibility of sample inhomogeneity and structural imperfection has

been called upon to explain any anomalous features in the observed

transitions. This is not as much of an ad-hoc remedy as it might at

first appear. Over the last thirty-five years a large number of papers

have been published concerning the magnetic properties of a-Fe203,

amongst which a great diversity of behaviour has been observed in
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different natural and synthetic crystal samples. By about 1960 it was

recognised that reproducible and reliable results could be obtained

by conducting experiments with high purity synthetically grown crys-

tals. The substitution of foreign cations into hematite also displayed

the high sensitivity of the crystal's magnetic properties to any dis-

turbing influences in the lattice. In this way it has become well es-

tablished that the sample quality has a large and direct bearing on

the character of the magnetic behaviour observed in hematite.

In the present work two different synthetically grown hematite

crystals, both of which were nominally 'pure', were studied. However

the broad Morin transition and unusual parallel-field spin-flop that

were observed in the lead-flux crystal led to speculation as to its

true quality. Subsequent neutron activation analysis revealed that

significant quantities of vanadium, rhodium and iridium ions were

present in the crystal, at a level of concentration that was about one

hundred times greater than that found in the sodium-flux crystal. It

therefore seems likely that a relatively high impurity content may

indeed be the cause of the anomalous behaviour of the lead-flux crystal

during the parallel-field transition.

In the case of the sodium-flux crystal the observed widths of the

Morin and parallel-field spin-flops were sufficiently large to be in-

dicative of some degree of sample inhomogeneity. Despite this, in both

transitions the spin-flop at each individual ferric ion appeared to

be of first-order, in agreement with theoretical predictions. The ob-

served transition widths are attributable to the randomness in the

crystal due to the chemical impurity and structural defects giving rise

to a distribution of local Morin temperatures and spin-flop fields

within the crystal.

In light of the f Lrst+order character observed in the Morin and

parallel-field transitions, it is somewhat surprising that the
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transverse-field spin-flop in the sodium-flux crystal was found to be

a gradual, second-order spin rotation which did not reach completion

even with lO.OT applied and a sample temperature of 245K. A possible

explanation for this may be related to the current theory of the

spin-flop in Dzyaloshinsky antiferromagnets. Theoretically the

first-order character of the transverse-field spin-flop is established

by the inclusion of a small fourth-order term in the expression of the

anisotropy energy. This implies that only a small distortion of the

basal-plane anisotropy in hematite would be required to overcome this

subtle effect. Hence it is plausible that the small degree of random-

ness thought to be present in the sodium-flux crystal might well be

large enough to destroy the first-order character of the

transverse-field transition, while retaining the abrupt Morin and

parallel-field transitions.

In conclusion it is evident that while the question of sample purity

has a large bearing on the reliability of experimental observations

of the spin-flop transitions in hematite, we have in this work found

evidence to support the existence of first-order spin-flop phase

transitions in three-dimensional antiferromagnetic crystals.
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CHAPTER SEVEN CONCLUSIONS

In this thesis the results of a M~ssbauer study of the spin-flop

phase transition in the antiferromagnetic materials K2FeFS' Rb2FeFS
and a-Fe203 have been presented. The character of the transitions ob-

served in these crystals has provided information on the applicability

of several different theoretical descriptions of the spin-flop phe-

nomenon.

The first part of this work dealt with the quasi one-dimensional

antiferromagnets K2FeFS and Rb2FeFS' A spin-flop of first-order char-

acter was observed in K2FeFS when an external field was applied in a

direction parallel to the easy anisotropy axis of a single crystal

sample. The transition width was found to be greater than the width

anticipated from demagnetisation and hysteresis effects, and was at-

tributed to some randomness in the crystal lattice (due to impurities,

defects, distortions etc.) giving rise to a distribution of local

critical fields throughout the crystal. In two subsequent experiments

second-order transitions were observed when applied fields were di-

rected at -330 to the K2FeF5 easy axis, and at -280 to the Rb2FeF5 easy

axes. In both cases the measured field-dependence of the rotation of

the Ani axis of the spins away from the applied field direction was

found to be less broad than the curve predicted by mean-field theory,

implying some inadequacies in that theory. A notable feature of all

three experiments was the occurrence of a sharp dip in the observed

hyperfine field as the applied field passed through the critica~ value.

This minimum could be qualitatively explained on the basis of spin-wave

theory as a field-dependent spin reduction, although it was surprising

that the effect should be so prominent in the second-order transitions,

as well as in the first-order transition.
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The second half of this work was concerned with the three-dimensional

antiferromagnet a-Fe203, a material which is well known for its

'Dzyaloshinsky' type of anisotropy and the presence of a temperature

driven spin-flop known as the Morin transition. Sample purity was

found to be a problem with this material, and of the two synthetically

grown crystals studied only one (grown from the melt in a flux of

Na2B407) gave results that were consistent with previously reported

work. Three spin-flop transitions were observed in that crystal, with

both the Morin transition and the spin-flop induced by an applied field

directed along the easy anisotropy axis exhibiting first-order char-

acter. The finite transition widths observed in both of these cases

were attributed to a degree on inhomogeneity in the crystal giving rise

to a distribution of local Morin temperatures and critical field val-

ues. In the third experiment an applied field was directed perpendic-

ular to the easy anisotropy axis. As the field was increased the spins

remained perpendicular to the field but gradually rotated away from

the easy axis in a second-order transition. This transition confirmed

the predictions of the mean-field theory of a-Fe203, although it was

not as abrupt as some researchers have reported. In all three tran-

sitions the observed hyperfine field was constant both above and below

the critical regions, in keeping with the expected negligible effect

of spin-wave induced spin reduction in a-Fe203.

In conclusion it is evident from the similarity of the first-order

spin-flop transitions induced by the application of a magnetic field

parallel to the easy anisotropy axes of K2FeFS and a-Fe203 that the

dimensionality of the magnetic lattice of an antiferromagnet is not a

major factor in the spin-flop transition. Also, it seems that although

field-dependent spin reduction may be a very noticeable feature in some

systems, it does not have a direct bearing on the character of the

spin-flop. With regard to the various theoretical models of the
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spin-flop it appears that soliton theory cannot explain the observa-

tion of first-order transitions while in its present form spin-wave

theory cannot account for second-order transitions, and that despite

its inadequacies the mean-field theory of the transition can at least

qualitatively describe the characteristics of the spin-flop phenome-

non.
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MOSSBAUER MEASUREMENTS OF THE SPIN-FLOP TRANSITION
IN SOME a-Fe203 CRYSTALS

Q.A. PANKHURST, C.E. JOHNSON and M.F. THOMAS
Department of Physics, University of Liverpool, Liverpool L69 3BX, UK

Large differences are found in the Mossbauer spectra of the spin-flop transition in two synthetically grown crystals of
a-Fe203' A sharp first-order transition is seen at Bsf "" 6.4 T for one relatively pure sample, while the other undergoes a
complicated transition thought to result from Pb impurities in the crystal.

The magnetic properties of hematite (a-FeZ03) have
been studied extensively [1]. Below the Morin transition
at TM "" 260 K the ferric spins are antiferromagnetically
aligned along the crystallographic [Ill] (trigonal) axis.
The spins can be reoriented to the basal plane by
applying a sufficiently strong magnetic field along the
trigonal axis. Several investigators [2-6) have observed
this 'spin-flop transition' and found that the critical
field Bsf is in the range 6.3-6.8 T at 77 K. However, the
details of the transition process are not well understood.
Mossbauer spectroscopy provides a useful tool for
studying the spin-flop, as readily measurable changes
occur in the observed positions, splittings and intensi-
ties of the spectral lines.

Single crystals of a-FeZ03 were grown from the melt
using a flux of either PbO/PbFz or NazB407• Measure-
ments were made on basal-plane platelets of approxi-
mate dimensions 2 X 3 X 0.2 mm'.

57Fe Mossbauer spectra were recorded at 4.2 K with
both incident y-rays and applied field parallel to the
trigonal axis. These are shown in fig. 1 for the sodium-
flux crystal, and in fig. 2 for the lead-flux crystal.

In zero applied field the Mossbauer spectrum of the
sodium-flux crystal (fig. 1) consists of' four lines. The
complete absence of the t::.MI = 0 lines (lines two and
five of a magnetic sextet) shows that the field and y-ray
beam was aligned within a few degrees of the antiferro-
magnetic axis of the spins. With Bapp = 6 T the spectral
lines are split, corresponding to different effective fields
on each sublattice of the anti ferromagnet. At Bapp= 7 T
a sextet with intensity ratios 3: 4 : 1 in
outer: middle: inner pairs of lines is observed, char-
acteristic of a perpendicular orientation of the spins to
the y-ray beam. The intermediate spectra, 6 T < Bapp< 7
T, show a coexistence of the two phases: unflopped
spins with split lines in 3: 0: 1 intensity ratio, and
flopped spins with unsplit lines in 3 :4 : 1 ratio.

Computer analysis of the spectra showed that the
apparent quadrupole splitting changed from ("" 0.43
mmy's for the un flopped phase to e ' "" -0.21 mmys in
the flopped phase. This compares favourably with the
expected ratio (= - 2(' for a complete spin reorienta-

0304-8853/86/$03.50 © Elsevier Science Publishers B.Y.

tion [7]. The relative area of the flopped component was
found to vary smoothly through the transition region
(see fig. 3).

The spectra of the lead-flux crystal (Figure 2) show a
similar trend from a low field 3: 0 : 1 un flopped spec-
trum to a high field 3: 4 : 1 flopped pattern. However
the intermediate spectra are more complicated than in
the sodium-flux case. At Bapp= 6 T the splitting in the
outer lines is less than 2Bapp and split t::.MI = 0 lines are
present, indicating a rotation of the anti ferromagnetic
axis of the spins away from the trigonal axis. At higher
fields the rotation angle and intensity of the t::.MI = 0
lines increase, but also an unsplit 3: 4: 1 component
appears. This flopped component increases in relative
area until at Bapp= 10 T it constitutes the total spec-
trum (see fig. 3).

The spin-flop transition has been observed in two
synthetic single crystals of a-FeZ03' In the sodium-flux
crystal the transition was seen as a coexistence of the
flopped and un flopped phases over a range of fields
t::.Bapp"" 0.8 T centered at Bsf"" 6.4 T. This coexistence
may most easily be interpreted as a distribution of
critical field values within the crystal as a result of
random impurities, defects and distortions affecting the
local environment of each ferric ion. The spin-flop
transition for each individual ion appears to be of
first-order, since no evidence of a gradual spin rotation
was found in the spectra.

In contrast, the transition in the lead-flux crystal
showed a rotation of the spins away from the applied
field in addition to the growth of a spin-flopped phase
over t::.Bapp"" 3.0 T centered at s;» 7.5 T. The mag-
netic properties of hematite are known to be highly
sensitive to impurities [5,8], and so the presence of Pb
ion impurities in the lead-flux crystal may account for
its complicated spin-flop transition.

The authors are indebted to Mrs. B.M. Wanklyn of
the Clarendon Laboratory, Oxford, for the crystal sam-
ples used in this work. Q.A. Pankhurst wishes to thank
the Commonwealth Scholarship Commission UK for
their support.
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SPIN-FLOP PHASE TRANSITIONS IN THE ONE-
DIMENSIONAL ANTIFERROMAGNETS K2FeF 5 AND
Rb2FeFs
Q.A. PANKHURST, C.E. JOHNSON and M.F. THOMAS
Oliver Lodge Laboratory, University of Liverpool, Liverpool, L69 3BX, U.K.

The characteristics of the spin-flop transition in K FeF
and Rb2FeF5 are found by MO'ssbauer spectroscopy to be 2ver1
different, and are discussed in relation to the ordered
magnetic structures of the two systems.

1. INTRODUCTION

The spin-flop phase transition occurs when a magnetic field B
is applied along the easy anisotropy axis of a weakly anisotropic
antiferromagnet. At the critical field Bsf the antiferromagnetic
(AFM) axis of the spins reorients (' flOpS') to a direction
perpendicular to the easy axis. The transition will be abrupt
provided B is perfectly aligned with the easy axis. However, if
there is significant misalignment the transition may be smooth, with
the AFM axis gradually rotating away from the easy axis as the
applied field is increased.

MO·ssbauer spectroscopy provides a useful tool for studying the
spin-flop transition. The unflopped, flopped and rotated phases are
readily distinguishable in the observed positions, splittings and
intensities of the spectral lines.

2. EXPERIMENTALRESULTS

Although K2FeF5 and Rb2FeF5 display similar quas i one-
dimensional behaviour /1,2/ they have different lattice dimensions
and low temperature magnetic structures. K2FeF5 has an orthorhombic
lattice with unit cell dimensions a=Z. 03~nm, b=l. 284nm and
c=O.740nm, in which the Fe3+ ions form zig-zag chains along the a-
axis /3/. Below TN = 6.95K it shows AFM order with the spins
aligned collinearly along the b-axis. Rb FeF is also orthorhombic
with cell dimensions a=O. 579nm, b=1.198nr~ ana c=O.754nm (adopting
the convention b>c, a an extremum), and with the Fe3+ ions in zig-
zag chains along the a-axis /4/. Below TN = 9.3K it forms a four-
sUblattice magnetic structure in which the spins are confined to the
bc-plane and are canted at an angle ~25 0 to the b-axis /2,4/.

In this work S7Fe MO'ssbauer spectra were recorded at 4.2K from
single crystal samples of KzFeFs and Rb2FeF& in applied fields of up
to 7T and 14T respectively (Figure 1). In fne case of K2FeFs an ac-
plane crystal was used, and both the incident y-rays and the applied
field were parallel to the crystal b-axis (the magnetic easy
axis). In zero applied field the spectrum consisted of four
lines. The complete absence of the ilMI=Olines (lines two. and five
of a magnetic sextet) implies that the y-ray beam was aligned within
a few degrees of the b-axis. With B=3.0T applied the spectral lines

© J.C. Baltzer A.G., Scientific Publishing Company
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Figure 1. M6'ssbauer spectra of ac-plane single
crystals of K2FeF5 and RhleF 5 at 4.2K. y-rays and
applied field were parallel to the b-axes. Full
curves represent computer fits.

were split, corresponding to different effective fields on each AFM
sublattice. At Bk3.8T a sextet with intensity ratios 3:4:1 in
outer: middle: inner pairs of lines was observed, character ising a
perpendicular orientation of the spins to the y-ray beam. The
intermediate spectra, 3.0T<B<3.8T, showed a coexistence of two
phases: unflopped spins with split lines in 3:0:1 intensity ratio,
and flopped spins with unsplit lines in 3:4:1 ratio. Computer
analysis of the spectra /5/ showed that the relative area of the
flopped component underwent a sha.rp transition near B=3.6ST (Figure
2) •
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the M6·ssbauer spectra of KleF 5.

In the case of Rb2FeFs an ac-plane crystal was again used, with
the applied field and y-ray beam directed along the b-axis.
However, this meant that B was not parallel to the easy anisotropy
axis in the crystal, but was in effect misaligned by about 250 to
both easy axes. The zero applied field spectrum (Figure 1)
reflected this situation, with non-zero ~I=O line intensities.
Computer analysis indicated that the spins were canted at about 300
to the y-ray beam. As the external field was applied all the
spectral lines were seen to split, and the intensity of the ~I=O
lines increased. This implies that the spins were rotating in
unison away from the applied field. Even with B=14T the lines
showed splitting and the intensity ratio had not reached 3:4:1.
Computer fitting the spectra indicated that the AFM axis of the
spins had slowly rotated from .p=30 0 to the applied field to .p=87° as
B had increased from zero to l4T (Figure 3).
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Figure 3. Applied field dependence of the angle 4>
between the AFMaxis of the spins and the applied
field B in RhleF 5.
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3. DISCUSSION

The spin-flop transition in K2FeFs was seen as a coexistence of
unflopped and flopped phases over a range of fields m=0.4T centered
at Bsf=3.65T. Demagnetisation effects are too small in this case to
account for the width of the transition (Bdlll"O.OlT). The simplest
explanation of the coexistence might be a di.st rLbut i.cnof critical
field values within the crystal due to random impurities, defects
and distortions affecting the local environments of the ferric
ions. The spin-flop for each individual ion appears to be of first-
order, since no evidence of a rotated phase was found in the
spectra.

In contrast, the spectra of the spin-flop in Rb FeFs consisted
entirely of the rotated phase. This different be~aviour may be
related to the magnetic structure of the system, which is such that
a magnetic field applied along the crystal b-axis is effectively
misaligned by about 300 to the easy anisotropy axes. It is known
that if the misalignment angle ljIexceeds a critical angle ljIc(T), a
first-order transition will not occur /6/. This critical angle is
often small in a uniaxial antiferromagnet, being of the order of the
anisotropy to exchange field ratio, but may be larger in an
antiferromagnet with orthorhombic anisotropy when the component of B
perpendicular to the easy axis lies near the axis of hard anisotropy
/7/. In Rb leF 5 it appears that ljIexceeds ljIcso that a sharp
transition is not present, and a gradual rotation takes place. This
is consistent with the observation that even in large fields (B=14T)
a spin-flopped phase is not present. We would expect that as B was
increased to very large values the spins would continue to rotate
until they became uncoupled at the paramagnetic phase transition.
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A MOSSBAUER SPECTROSCOPIC STUDY OF THE
MAGNETOCRYSTALLINE ANISOTROPY IN a-FeOOH
A. MEAGHER"', Q.A. PANKHURST and D.P.E. DICKSON

Department of Physics, University of Liverpool, Liverpool L69 3BX, England

Mossbauer spectra are obtained for a single crystal of
a-FeOOH, with a magnetic field of up to lOT applied along
the c axis. No spin r~orie~tation is observed, indicating a
lower. limit of 6 x 10 Jim for the aniso5roPy3constant K.
A theoretical estimate gives K > 1.1 x 10 Jim.

1. INTRODUCTION
Mossbauer spectroscopy may be used to obtain information on

the magnetic anisotropy of small single-domain particles via the
observation of superparamagnetism /1/. For iron oxyhydroxide
materials quoted values of the anisotropy const~nt K range from
1xl03 J/m3 for ~-FeOOH (goethite) 12/ to 6.7x10- J/m3 for the iron
core of ferritin /3/ to 4-5x104 J/m3 for amorphous iron hydroxide
gels 14,5/.

An estimate of the magnetic anisotropy of bulk materials may
be obtained by observing spin reorientation in single crystals when
a magnetic field is applied along the easy axis. When the applied
field reaches a value given by

B )2/2(2KI X.L - x!! ( 1)

(where x and x are the perpendicular and parallel susceptibi-
lities) ,~then "the spins will abruptly reorientate into a direction
perpendicular to the original easy axis /6/. Our aim here is to
apply this method to ~~FeOOH, using Mossbauer spectroscopy to detect
the spin reorientation.
2. EXPERIMENTAL

~-FeOOH is antiferromagnetic below its Neel temperature of
403 ± 2K with the collinear spins lying parallel to the c axis /7/.
Natural crystals cleave perfectly normal to the b-axis and
moderately normal to the a axis /8/. Our single crystal was mounted
in our superconducting lOT ~~gnet with its c axis vertical, parallel
to the field direction. A' Co(Rh) source, external to the magnet
assembly, was used to transmit Y-rays through the sample parallel to
its b axis. The sample temperature was 4.2 K.

*present address Physics Department, Emory University,
Atlanta, GA 30322 , USA
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3. RESULTS
Figure 1 shows the spectra obtained in zero field, at 6 T and

at 10 T. Corresponding fit parameters are given in table 1. In
zero field the sextet observed has parameters close to those
oreviouslv observed for a-FeOOH at 4.2 K 17/. The 3:4:1 line
intensity"ratio indicates that the spins are oriented perpendicular
to the Y-ray direction. ~or applied fields of 6 and 10 T we
observe !:~osextets with fi.eldsgiven by

B!l_f(O) = Ba;>p
This shows that soin reorientation does not take olace at fields of
10 T or less. Putting B = 10 T and x -x (4.2K) ~ 0.28 JT-2kg-1 (a
value obtained from the data presented~in'!/9/,10/) into equation
(1), it is found that the lack of soin reorientation uo to 10 T
corresponds to a minimum value for K of 6X10~ J/m1, la~ger than any
of those previously mentioned for oxyhydroxide materials. We
therefore try to estimate K, the anisotropy constant for ~-FeOOH
from first principles.
4. CALCULATIONS

For Fe3+ ions the major sources of magnetic anisotropy are (i)
dipole-dipole anisotropy and (ii) single-ion anisotropy /11/.
4.1. dipole-dipole contribution

To estimate this contribution we have performed a classical
calculation using eq. 5.46 of 112/ for a sphere of ~-FeOOH of radius
1.4 nm. The iron atom positional parameters are taken from 171 and
the size of the unit cell from 113/. Each iron ion is assumed to
possess a moment of SUB' We find that c is the easiest axis, that a
is intermediate at 5.4 x 105 J/m3 above c and that the b axis is
hardest at 3.1X10S J/m3 above a. Although this value by itself is
large enough to explain the absence of spin reorientation up to 10
T, we need to also calculate the ~ingle-ion anisotropy since it may
possibly cancel with the dipole anisotropy just as it does in a-
Fez03 at low temperature 114/.

4.2. single-ion contribution
It is notoriously difficult to calculate this contribution for

S-like ions from first principles. We resort to using the
effective-spin Hamiltonian parameters for Fe3+ doped into a-AlOOH,
which is isomorphous to a-FeOOH. These parameters were obtained
using EPR by Gavrilov et al 115/. Their values are: D = -0.53 K and
E = -0.25 K. Using these values in the equation

dt = D (Szz - 1/3 S(S+l)J + E (Sx2 - Sy2)
where S = 5/2 is the effective spin and knowing the ionic volume in
goethite we calculate that z is easiest, x is at 5.55x105 J/m3 above
z and y is hardest at 9.9x105 above x. But z is coincident with c,
while x,y are rotated relative to a,b by 340 115/. Thus in goethite
the single-ion and dipole-dipole anisotropies reinforce each other.
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Fig.1. Mossbauer spectra at 4.2K or a single crystal of
~-FeOOH, with the y~rays directed along the b axis. Spectra
are shown in zero field and with 6 and 10 Tesla applied
parallel to the c axis.

Table 1
Fit parameters for the spectra of figure 1.

2dmm/s) IS(mm/s)a)

o
6

10
50.7

44.8,56.6
40.8,60.5

-0.24
-0.23
-0.23

0.48
0.50
0.49

a)relative to iron foil at room temperature.
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5. DISCUSSION
Our calculations indicate that goethite does not have uniaxial

anisotropy. We may note that M~rup et al /16/ have observed for
small particles of goethite a superparamagnetic Mossbauer behavior
different from that expected for uniaxially anisotropic particles.
Measurement of all three values of the magnetic susceptibility of
goethite is needed.

Our calculated and experimental values for the magnetic
anisotropy of bulk goethite are far larger than that reported for
small particles /2/, a trend opposite to that noted for Fe304 and a-
Fe203 /17/. The reason for this remains to be elucidated.
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AMossbauer investigation of the spin-flop transition in the one-
dimensional antiferromagnet K2FeF5
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Abstract, Mossbauer spectra of KzFeF 5 near the spin-flop phase transition indicate that
domains of antiferromagnetic and spin-flopped spins coexist over a range of applied fields
tl.B.pp = 0.4 T centred at Bst = 3.65 T. This is discussed with reference to the first-order
character of the spin-flop transition.

1. Introduction

The spin-flop magnetic phase transition occurs when a magnetic field Bapp is applied
along the easy axis of a weakly anisotropic antiferromagnet. At the critical field Bsf the
antiferromagnetic axis of the spins reorients (flops) to a direction perpendicular to the
easy axis.

Investigations of the spin-flop transition in a number of antiferromagnets have shown
that the reorientation takes place over a finite range of applied fields (Holmes et a11969,
Basten et aI1980). Such broadened transitions are often attributed to a misalignment of
Bapp and the easy axis. If the misalignment angle tjJ exceeds a critical angle tjJc (D,
corresponding to the edge of the first-order spin-flop shelf (Rohrer and Thomas 1969),
one will observe a gradual rotation of the antiferromagnetic axis away from the magnetic
easy axis as the applied field is increased.

However, even with near-perfect alignment one will not see a sharp transition if the
demagnetisation factor N of the sample is non-zero. In such a case an intermediate state
consisting of domains of antiferromagnetic and spin-flopped material may occur, over
the field range !lB = X.lN Bsfwhere X.lis the susceptibility perpendicular to the easy axis
(King and Paquette 1973).

In the present work the Mossbauer spectra of the one-dimensional antiferromagnet
K2FeF5 have been studied in detail close to the spin-flop transition. The Mossbauer
hyperfine spectrum is a powerful tool for studying the transition as both unflopped and
flopped spin configurations may be directly observed via different features, namely the
line splitting by an external field and the intensities of the !lM[ = 0 lines.

2. Experimental results

K2FeF 5 crystallises in an orthorhombic lattice with unit-cell dimensions a = 2.039 nm,
b = 1.284 nm and c = 0.7399 nm, and with the Fe3+ ions forming zigzag chains along

0022-3719/85/163249 + 05 $02.25 © 1985 The Institute of Physics 3249
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the a axis. This structure leads to quasi-one-dimensional behaviour and a low Neel
temperature of 6.95 K below which the spins align antiferromagnetically along the
magnetic easy axis which is the crystal b axis. A large single crystal was grown in the
form of an a-c plane and 57PeMossbauer spectra were recorded at 4.2 K with incident
gamma rays and applied field parallel to the b axis. These spectra are shown in figure 1.

In zero applied field a four-line hyperfine spectrum was observed. The complete
absence of the 11M/ = 0 lines (lines two and five of a magnetic sextet) implies that the b
axis was aligned within a few degrees of the y-ray direction. In small applied fields
(Bapp:<iS3.5 T) the spectral lines are seen to split, corresponding to different effective
fields on each of the two sublattices of the antiferromagnet. For Bapp= 3.7 T additional
lines appear at the 11M/ = 0positions, and the outer lines show evidence of structure. For
Bapp'" 3.8 T a sextet with intensity ratios 3:4:1 in outer:middle:inner lines is observed,

o t-o'-- ........

1.5 4.00

Or···· '" vn.fYn.n.1".'
2.5 t- . ij' ij V 6.00

2.5

-9 -6 -3 0 3
Velocity (mm s-')

Figure 1.Mossbauer spectra of an a-c plane single crystal of K2FeKs with gamma rays and
applied field parallel to the b axis. Full traces represent computer fits as discussed in the text.
Values by traces are of applied field in teslas.
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characteristic of a perpendicular orientation of spins to the y-ray beam. Increasing Bapp

to a maximum of 10T did not alter the relative line intensities and therefore did not
appreciably cant the spins out of the a-c plane.

The spectra were computer analysed with a modified form of the program of Lang
and Dale (1974), using a quadrupole splitting of -0.68 mm S-l and the asymmetry
parameter TJ = 0.57 found for polycrystalline samples (Gupta et aI1977). The electric
field gradient principal axis was taken to be at 42° to the crystal b axis, lying in the a-b
plane (Gupta et al 1979). Computer fits of the spectra obtained with Bapp < 3.5 T
confirmed that the applied field was aligned within two or three degrees of the b axis.
The Bapp > 3.8 T fits showed that the spins had flopped into the a-c plane.

Spectra in the transition region (Bapp = 3.7 T) could not be adequately fitted as the
superposition of two component sextets resulting from spins canted at some intermediate
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Figure 2. Applied field dependence of (a) the relative spectral area of spin-flopped to
antiferromagnetic components, (b) the hyperfine field and (c) the linewidth ofthe Mossbauer
spectra.
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angle to the b axis, as suggested for a misaligned antiferromagnet. Good fits were
obtained using a superposition of components corresponding to unflopped (anti-
ferromagnetic) and flopped phases. The antiferromagnetic phase is characterised by
intensity ratios 3:0:1and splitting of the lines by the applied field; the flopped component
has intensity ratios 3:4:1 and is not split by the applied field. The relative area of the
flopped component increased smoothly through the transition region from zero to one
(figure 2(a»).

In principle one should be able to observe hysteresis in a first-order spin-flop (Keffer
1966), but K2FeF5 has a very small anisotropy to exchange field ratio (BA/BE - 10-3)
resulting in a predicted hysteresis of less than 0.005 T in Bsi' This is too small to be
detected in the present experiment.

The variation of hyperfine field Bhi is shown in figure 2(b) and is characteristic of the
applied field dependence of spin reduction in antiferromagnets with low TN (Gupta et al
1978). An applied field Bapp< Bsi parallel to the easy axispromotes the thermal excitation
of spin waves (magnons) in the antiferromagnetic chains, and the increased spin fluctu-
ation is observed as a decreased Bhi. The fluctuations are maximal at Bapp = Bsi and Bhi
is at a minimum. For Bapp> Bsi the field is perpendicular to the spin axis and the spin
waves are inhibited so Bhi increases, approaching saturation for large Bapp'

A peak in the linewidth of the Mossbauer spectral lines is observed at the spin-flop
(figure 2(c»). This is consistent with the presence of finite-width domain walls separating
flopped and unflopped regions, although the possibility of dynamic effects has not been
discounted.

3. Conclusions

Direct evidence for the simultaneous existence of antiferromagnetic and spin-flopped
states has been observed in the Mossbauer spectra of K2FeF5. The mechanism of the
spin-flop is thought to involve the growth of domains of flopped spins at the expense of
unflopped spins over a finite range of applied fields near Bsi'

This result is somewhat surprising when one considers that the estimated mis-
alignment angle between Bapp and the easy anisotropy axis was 1/J = 0 ± 3°, compared
with the critical angle 1/Jc:!60.3° predicted for a uniaxial antiferromagnet with BA ~ BE
(Rohrer and Thomas 1969). However the phase diagram of an antiferromagnet with
orthorhombic anisotropy (as in K2FeF5)is quite different, with the 'shelf' of first-order
transitions extending to the paramagnetic phase boundary when the component of Bapp
perpendicular to the easy axis lies near the axis of hard anisotropy (Rohrer and Gerber
1978). These two cases are illustrated in figure 3. In the spin-flopped phase of K2FeF5
there are four distinct magnetic sublattices corresponding to different orientations of
the constituent (FeF6)3- octahedra (Vlasse et aI1977), and therefore two different axes
of hard anisotropy. Cooper (1981) established that each hard axis lies in the crystal a-c
plane at about 50° to the c axis. Thus it is possible that although we may not have perfect
alignment of Bapp and the easy axis we could still cross the first-order spin-flop shelf
(seeing a sharp transition in the Mossbauer spectra) at some of the ferric ions as Bapp is
increased.

The domain structure is reminiscent of that seen in MnF 2 (King and Paquette
1973) and K2MnF4 (de Jongh et aI1982). In MnF2 the domain state is established by
demagnetising fields, but in K2MnF4 such effects do not account for the width of the
observed transition region and an explanation in terms of soliton excitations 'issuggested
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Be Be

~ ~
Figure 3. Schematic phase diagrams of antiferromagnets with (a) uniaxial and (b) ortho-
rhombic anisotropy. In (a) Be and B L are magnetic fields applied parallel and perpendicular
to the axis of easy anisotropy, while in (b) the fields Be and Bh are along the easy and hard
anisotropy axes. The pairs of arrows represent sublattice spin directions, and the shaded
areas indicate surfaces of first-order spin-flop transitions.

(de Jongh 1982). For K2FeFs the maximum possible width of a demagnetisation-broad-
ened transition is 6.Bmax":; 0.01 Twhen the demagnetisation factor N = 1, and where X.l
is estimated from the susceptibility measurements on powder samples of Dance et at
(1980). Thus the width of the observed spin-flop transition in K2FeFs of 6.Bapp= 0.4 T
cannot be attributed entirely to demagnetising fields and some other effects, of which
solitons are an intriguing possibility, must be present.
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Abstract. Mossbauer spectra obtained from powder and single-crystal samples of the insu-
lating compound FeMgB04 show distributions in the nuclear quadrupole parameters. The
sign of the quadrupole splitting /!!.. is found to be positive, and a probability distribution P(/!!")
isdetermined, with the mean value A = 0.83 mm S-1 at30 K. The mean electric field gradient
has asymmetry if = 0.58 ± 0.05, and its principal axis lies preferentially in the crystallo-
graphic a-b plane.

1. Introduction

Low-dimensional magnetic systems and disordered crystals have aroused a great deal of
interest in recent years. The boroferrite insulator FeMgB04 has been reported as falling
into both categories.

FeMgB04 is an orthorhombic compound with the Warwickite space group
(V~6_Pnam) and unit-cell dimensions ao = 9.258 A, bo = 9.427 A and Co = 3.104 A
(Wyckoff 1964). Initially it may be thought to have the crystal structure represented in
figure 1: a pure system in which Fe3+ ions in the centres of 02- octahedra form zigzag
chains in the c direction; well separated by linear Mg2+ and B3+ chains. Magnetic
susceptibility measurements by Wiedenmann and Burlet (1978) have established that
strong antiferromagnetic interactions are present in the magnetic chains, with fdk =
-16 K between nearest-neighbour and f2/k = -8 K between next-nearest-neighbour
Fe3+ ions. Interchain coupling is weak with rtr, < 10-2 giving FeMgB04 its quasi-
one-dimensional nature. An interesting consequence of the competition between J, and
lz in the chain is that a ground state of helical spin order is predicted (Selke 1977), a
magnetic structure never before reported in a one-dimensional system.

However, x-ray and neutron diffraction studies (Wiedenmann and Burlet 1978)have
revealed a degree of crystallographic site inversion between some Fe3+ and Mg2+ions.
Strictly, the compound should be described as (Fe!-xMg,.).(Mg!-xFex).B04, where
x = 0.15. At temperatures below -13 K, susceptibility, magnetisation and neutron
diffraction measurements all show properties characteristic of a disordered material or
a spin glass. It is thought that the substituted Mg2+ ions sufficiently modify the one-
dimensional spin correlations in the Fe3+ chain that instead of complete three-dimen-
sional ordering at low temperatures, a highly frustrated spin glass state is established.

0022-3719/85/0612~5 + 07 $02.25 © 1985The Institute of Physics 1255
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1+---- ba ~--~o :Fe3' 0 :Mg2+

Figure 1. Projection onto the (OOl)plane of the idealised crystal structure of FeMgB04•
Oxygen ions have been omitted for clarity.

In this paper we report on a determination of the sign and direction of the electric
field gradient in FeMgB04, an essential prerequisite to the detailed study of the magnetic
properties of the compound by Mossbauer spectroscopy.

2. Experimental results

2.1. Crystal preparation

Crystalline platelets of FeMgB04 were prepared by melting stoichiometric quantities of
Fe203, MgO and B203 in a flux of PbO, PbF2, PbClz and Mo03 at 1250 °C followed by
slow cooling. The largest platelets obtained were generally of the morphology shown in
figure 2, and were typically of dimensions 4 x 1 x 0.2 mm", The orientation of the
crystallographic axes within the platelets was established using back-reflection Laue
x-ray diffraction.. .

57FeMossbauer spectra of both powder and single-crystal absorbers were recorded
on a conventional constant-acceleration spectrometer, at temperatures between 1.3 K
and room temperature.

a
1

b

Figure 2. Platelet morphology, indicating the orientation of the incident y-raybeam described
in § 2.3.
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Figure3. Mossbauer powder spectrum at 30 K. Full curves represent (a) Lorentzian and (b)
P(~) fits.

2.2 Powder spectra

Above T = 14K the spectrum consists of a single quadrupole-split doublet, shown in
figure 3 for a powder sample at 30 K. The absorption lines are very broad, with linewidth
I'= 0.41 mm S-l, compared with the experimental naturallinewidth fo = 0.25 mm S-l

of the innermost lines of a thin natural iron foil. This broadening is due to the disordered
nature of the compound, where each Fe3+ ion experiences one of a variety of possible
nuclear environments. The Mossbauer effect nuclear parameters isomer shift (6) and
quadrupole splitting (.1.) are therefore not unique, but are distributed about mean values
D and i:l corresponding to Fe3+sites in relatively undisturbed parts of the crystal.

The mean parameters may be estimated by fitting the spectrum as a pair of
Lorentzian lines, as in figure 3(a), giving D = 0.51 ± 0.02 mm S-l relative to metallic
iron, and i:l = 0.83 ± 0.02 mm S-l. Here the quadrupole splitting is defined as
.1. = ieQiVzzl(1 + TJ2/3)1/2 where Q is the nuclear quadrupole moment of the excited
state of 57Fe and Vzz is the principal axis of the electric field gradient (EFO). The
asymmetry parameter TJ is defined as TJ = (Vu - Vyy)/Vzz following the convention
IVzzl ~ IVyyl ~ IVul·

Since the Fe3+ ions are in sites of octahedral coordination and the diversity of local
environments is at most a second-nearest-neighbour effect, we may as a first approxi-
mation treat the spectrum as a pure quadrupole distribution. That is, we assume no
correlation between 6 and .1.. The observed symmetry of the absorption lines in the
powder spectrum is consistent with this assumption. We therefore fit the spectrum as a
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Figure 4. Fitted quadrupole distributions for powder at 30 K, using discrete (histogram) and
two-component Gaussian (full curves) models.

o 1.5

superposition of doublets with identical isomer shift, D = 0.51 mm S-I, and natural
linewidth fo (figure 3(b»), and extract a probability distribution P(~) shown in figure 4.
The distribution was smoothed using the lawPi = HPi-1 + 2Pi + Pi+ I)' Two peaks are
seen in the P(~) which we believe correspond to the majority of Fe3+ ions in largely
undisturbed environments at ~ = 0.85 mm S-I, and to those Fe3+ ions substituted into
Mg2+sites at ~ = 0.50 mm S-I which have a more nearly cubic arrangement of surround-
ing 02- ions.

The analysis was extended by assuming a probability distribution

where the Pi (~) are normalised Gaussian distributions of the form

(1)

(2)

centred about isomer shifts Di. The Ai and o, are the mean quadrupole splittings and
standard deviations for Fe3+ ions either in the linear Mg2+chains (i = 1) or in the zigzag
Fe3+chains (i = 2). Using this P(~) a fit of similar quality to that found with the discrete
P(~) was obtained, with parameters DI = 0.52 mm S-I, Al = 0.49 mm S-I, 01 = 0.12,
D2 = 0.51 mm s-l, A2= 0.89 mm S-I and 02 = 0.18. The Gaussian distributions Pi(~)
are shown in figure 4. Site inversion was estimated as x = 0.18 ± 0.02, which compares
favourably with the value x = 0.15 determined byWiedenmann and Burlet (1981) from
diffraction experiments.

2.3 Single-crystal spectra

Crystalline absorbers were made by forming a mosaic of three or four platelets, either
laid side by side or stacked on top of one another, and then set in an epoxy resin mount.
The absorber was then thinned by abrasion until a good transmission spectrum was
obtained. In this way both b-c plane and a-b plane absorbers were prepared.

Room-temperature spectra (figure 5) were taken with the absorber's a axis oriented
at a series of angles f3 to a y-ray beam incident in the a-c plane (figure 2), and showed
line asymmetry. Although four separate Fe3+ sites exist within the zigzag chains in the
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Figure 5. Single-crystal spectra at room temperature, with y-rays incident at angle f3 (given
by the spectra in degrees) to the a axis. Full curves represent Lorentzian fits.
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Warwickite structure, all are equivalent with respect to the quadrupole interaction with
a y-ray beam incident in the a-c plane. Therefore the observed line asymmetry was
indicative of awell defined preferred direction of the EFG principal axiswithin the crystal.

In a quadrupole-split 57PeMossbauer spectrum the absorption lines result from
nuclear transitions between the MJ = ±! and ±!excited states, and the MJ = ±!ground
state. The relative probabilities (and hence intensities) of these transitions (Zory 1965)
are

P(i~ !) _4(1 + 1]2/3)1/2+ (3 cos2 ()- 1 + 1]sin2()cos 2cp)
p(!~n - 4(1 + 1]2/3)1/2- (3cos2 ()-1 + 1]sin2()cos2cp) (3)
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where ()and q;are the polar angles of the incident y-ray beam relative to the EFG principal
axes.

The ratio of line intensities of the single-crystal spectra as a function of orientation
angle (3 was estimated by fitting as Lorentzian doublets, and is shown in figure 6.

1:15
o

~
e-,

~ 1.00
~=
~ 0.85

o 30 45 60 7515 90
Inclination angle. ~ Ideg)

Figure 6. Ratio of intensity of left-hand to right-hand lines of single-crystal spectra, as a
function of inclination angle {3. The full curve is a fit made using equation (3).

Thickness effects were considered to be unimportant since the spectra observed at
{3 ~ 60°for the b-c plane absorber showed a crossover of line intensities for {3> 45°, and
were consistent with the spectra taken with {3 ~ 60° on the a-c plane absorber. Least-
squares fitting the expression in equation (3) to the data yielded a unique solution, with
a positive quadrupole interaction, mean asymmetry i1 = 0.58 ± 0.05 and EFG principal
axes in the crystallographic coordinate system given by

Vxx = (0.00 ± 0.05,0.01 ± 0.05, 1.00 ± 0.05)

Vyy = (0.66 ± 0.05, -0.75 ± 0.05,0.01 ± 0.05)

Vzz = (0.75 ± 0.05,0.66 ± 0.05, -0.01·± 0.05).

~ ®
"'0/'"

,,
~

o Fe3+
o : Mg2+
0: 83+
0: 02-

<;>
I

I
I

///®."
tIllI----~' '0

o
Figure 7. Projection onto the (001) plane of the local environment of Fe!" ions in undisturbed
regions of the crystal. The arrows represent the direction of the EFG principal axis.
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This solution is represented in figure 7. The result that Vzz is confined to the a-b plane
is physically reasonable, since (disregarding the disorder in second and further neigh-
bours) the a-b plane is a mirror symmetry plane for the Fe3+ ions and the EFG tensor
should also have that symmetry.

The spectra were also fitted using the two-component Gaussian P(~) distribution
described in § 2.2. The relative line intensities of the component doublets were not well
defined, and the parameters resulting from a fit using equation (3) had large uncertain-
ties. Asymmetry parameters were estimated as ill = 0.40 ± 0.20 for the -18% of Fe3+
ions substituted into Mg2+chains, and il2 = 0.58 ± 0.10 for the remaining Fe3+ ions in
undisturbed sites. The EFG principal axes were close to those previously determined
using the Lorentzian fitted line intensities.

3. Conclusion

The sign and mean directions of the EFG principal components in FeMgB04 have been
determined. A detailed Mossbauer study of the magnetic properties of this compound
at low temperatures is now possible, and is currently being undertaken.
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