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ABSTRACT

The work presented in this thesis describes experimental and theoretical aspects 

associated with the structure of grain boundaries in hexagonal materials. It has been 

found useful to classify grain boundaries as low-angle, special or general on the basis 

of their structure. High-angle grain boundaries were investigated in tungsten carbide 

(WC) using conventional electron microscopy techniques, and three examples 

characteristic of the interfaces observed in this material were studied extensively. 

Three-dimensionally periodic patterns are proposed as plausible reference 

configurations, and the Burgers vectors of observed interfacial dislocations were 

predicted using a theory developed recently. The comparison of experimental 

observations with theoretical predictions proved to be difficult as contrast simulation 

techniques require further development for analysis to be completed confidently. 

Another part of this work involves the characterisation of high-angle grain boundaries 

in zinc oxide (ZnO) using circuit mapping. Two boundaries displayed structural 

features characteristic of the “special” category, however, one boundary presented 

features which did not conform to this model. It is proposed that the latter observation 

shows a structural transition from the special to a more general type.

Material fluxes involved in defect interactions were considered using the topological 

framework described in this work. A general expression was derived for the total flux 

arising which allows the behaviour of line-defects to be studied in complex interfacial 

processes.
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Chapter 1: Introduction

LI Introduction

It has long been recognised that the control of properties or improvement in 

performance can be achieved by controlling microstructure in materials. Grain 

boundaries are important elements of the microstructure of most engineering metallic 

and ceramic materials and are known to exert a profound influence on their properties. 

In some instances, it is the average response of the grain boundaries which determines 

the material’s behaviour [1], however, in other cases, the overall performance is best 

described by the properties of individual grain boundaries [2]. With regards to 

performance, the presence of grain boundaries may have beneficial or detrimental 

effects on material properties. For example, grain boundaries may act as barriers to slip 

propagation at low temperature , yet their part in processes such as creep at high 

temperature [3], may lead to catastrophic failures. The understanding of the role played 

by grain boundaries is fundamental to the control of properties, and their study has 

been an exciting subject of research for over a century. It is now well accepted that a 

microscopic description of the boundary is useful to determine or predict macroscopic 

properties, and both theoretical and experimental advances have been made which have 

extended our knowledge of grain boundary structures. Early observations of grain 

boundaries using electron microscopy techniques revealed the presence of defects at 

grain boundaries, and it is now well established that their motion, multiplication or 

interaction for example, provide mechanisms for processes which affect properties 

dramatically. The motion of interfacial line-defects, for example, causes deformation of 

polycrystalline materials which may also involve a diffusional flux [4], The latter can 

be described by an equation expressed in terms of the topological parameters which 

characterise the defects, namely their Burgers vectors and step heights, the defect 

velocity and the concentration of each atomic species in the two adjacent crystals [5]. 

This approach provides a framework for the study of the motion and interaction of 

individual defects in more complex interfacial processes [6].
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Chapter 1: Introduction

Several models and descriptions of grain boundaries evolved over the years to account 

for experimental observations, and it was found useful to classify grain boundaries as 

low-angle, special or general on the basis of their structure [7]. In the following, the 

term special refers to boundaries with misorientations close to singular values and 

which are capable of sustaining localised line defects. Low angle grain boundaries can 

be described by arrays of crystal dislocations embedded in otherwise perfect crystal, 

whereas in the special category, interfaces may contain defects other than crystal 

dislocations. The latter type of grain boundary has been shown to exhibit distinct 

physical and chemical properties, especially in cubic materials. Some of the properties 

accounted for include lower energy [8], less susceptibility to impurity or solute 

segregation for example [9j, [10]. The vast majority of grain boundaries, however, 

belong to the general class, and is by far the least understood due primarily to 

difficulties associated with observation of their structure. For example, high resolution 

microscopy techniques require the electron beam direction to be parallel to low-index 

directions in both crystals simultaneously and for the interface to be edge-on. This is 

usually incompatible with the crystallography of general grain boundaries.

The range of materials in which interfacial features have been investigated to date 

represents a small fraction of the total diversity, with the majority of the research 

having been carried out in materials belonging to the cubic class. The CSL and O  

lattice models were found to be useful geometrical constructs for the identification of 

both reference orientations and dislocation arrangements, however, there is 

considerable evidence that their application to materials outside the cubic system is 

limited. Since non-cubic materials are being increasingly used in new applications, a 

more detailed knowledge of interfacial structures in these materials is therefore 

required.
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Chapter 1: Introduction

1.2 Structure of this Thesis

The main objective of this work is to investigate the atomic structure of grain 

boundaries in material exhibiting hexagonal symmetry. The first part involved the 

identification of structural features in zinc oxide (ZnO) grain boundaries using a 

topological analysis developed by Pond [11], consistent with the topological theory of 

defects. ZnO materials are often used as varistors for the protection of electrical 

circuits in modem equipment and there is compelling evidence that grain boundaries 

play an important role in the formation of conduction barriers as described by other 

workers [12]. Bicrystals of ZnO used in this work were grown by solid-phase 

intergrowth (SPI) [13], a unique technique developed at The Russian Institute of 

Crystallography. The high resolution observations of the ZnO grain boundaries 

presented in this work were undertaken by the Russian group, and observations were 

interpreted in Liverpool. Unfortunately, it was not possible to obtain ZnO bicrystals 

for high-resolution microscopy work to be carried out in Liverpool.

The second part of this investigation consisted of characterising interfacial defects 

observed in high-angle grain boundaries in tungsten carbide (WC) using both 

conventional electron microscopy (CTEM) and the topological theory mentioned 

above. Previous work by Hagege [13] and Benjdir [14] revealed that characterisation 

of grain boundaries in this technologically important material was challenging, and WC 

material was obtained from the University of Caen for further investigation. Results 

from these experimental investigations are presented in this work.

Grain boundaries in a-alumina were also investigated but none of the boundaries

examined showed resolvable dislocation structures. Some of the work associated with 

the understanding of this result is presented in the results section 

This thesis is divided in eight chapters, which develop the ideas presented in this 

introduction. Chapter 2 is a critical review of theoretical and experimental studies of 

grain boundaries in hexagonal materials. In the first section of this chapter, the main 

concepts and geometrical models relevant to this study are briefly discussed (e.g. CSL, 

O-lattice). A section reviewing published observations of grain boundaries in selected
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Chapter 1: Introduction

hexagonal materials is then presented. Chapter 3 introduces the concepts behind the 

topological analysis of interfaces. The different applications of the technique (i.e. a 

posteriori or a priori ) are presented, and examples of both approaches are given. 

Using the framework developed by Pond [11], expressions for the diffusional fluxes 

associated with defect motion were derived and several examples illustrating this new 

approach are presented. Finally, the diffusive flux associated with two interactive 

defects was considered as an introduction to more general situations, and a general 

expression was derived.

Chapter 4 is a brief review of electron microscopical techniques used in the study of 

interfaces. Chapter 5 is a short account of analytical techniques used for the calculation 

of crystallographic parameters in the hexagonal system. The experimental methods 

used throughout this work are also discussed. Both experimental and theoretical results 

are given in Chapter 6, and discussed in chapter 7. Finally, the main conclusions 

drawn from this work are summarised in chapter 8.
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Chapter 2: Review of theoretical and experimental studies of interfaces in hexagonal materials

Overview

Grain boundaries (GB’s) are the interfaces between neighbouring crystals 

which differ in orientation. The structure of such interfaces has been an exciting 

subject of research for over a century, since it was apparent that their nature would 

exert some influence over the macroscopic properties exhibited by most metallic or 

ceramic materials. The earliest developments in this field simply regarded grain 

boundaries as adjacent grains held together by an amorphous cement layer [1], This 

theory provided little or no structural information and persisted until it was realised 

that such interfaces possessed an ordered structure. Hargreaves and Hill [2] 

recognised this fact and proposed the transition lattice model which related for the 

first time the crystalline state of the abutting grains to the properties of the grain 

boundary. Following this idea, Burgers [3] and Bragg [4] gave one of the most 

successful descriptions of interfacial structures by representing low-angle GB’s by 

means of periodic arrays of dislocations accommodating the misorientation between 

the constituent crystals. Although this approach failed to describe large-angle GBs, 

modelling in terms of discrete dislocations in order to deduce the properties 

exhibited by a grain boundary contributed to the advances subsequently made in this 

field.

The concept of the CSL, a purely geometrical tool for the characterisation of GB's, 

evolved from various experimental studies which showed that "special" GB's, 

characterised by specific relative orientations between the grains, displayed 

improved physical and chemical properties compared with "general" interfaces. 

Some of the properties accounted for include lower energy, greater resistance to 

grain boundary sliding, less susceptibility to impurity or solute segregation, and led 

to CSL’s often being taken as reference structures. This model, applied in 

conjunction with another geometrical construction called the O-lattice, successfully 

characterised many interfacial dislocation arrangements observed in cubic materials
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Chapter 2: Review of theoretical and experimental studies of interfaces in hexagonal materials

but failed, in many instances, to give an adequate description of interfacial structures 

in materials exhibiting non-cubic symmetry.

This chapter reviews some of the aspects cited above in more detail and presents 

alternative descriptions of interfacial structures . The experimental study of grain 

boundary structures in a range of materials exhibiting hexagonal symmetry is also 

briefly reviewed.

II.l Dislocation Models Of Low-Angle Grain Boundaries

ILU  Bragg and Burgers Model

In 1940, Bragg and Burgers proposed a new model for the structure of GB’s 

in which a periodic array of crystal dislocations was used to describe the 

misorientation between the grains constituting the boundary. Fig 2.1 is a schematic 

illustration of a symmetrical low-angle tilt boundary in a simple cubic lattice with 

lattice parameter b according to this model. Two crystals, denoted X and \i, have 

been rotated with respect to each other by an angle 0 about an axis describing the 

misorientation.

Fig 2.1: Schematic illustration of the dislocation model due to Bragg and Burgers of a symmetrical 
low-angle tilt boundary in a simple cubic lattice (Alter rcf4)
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Chapter 2: Review of theoretical and experimental studies of interfaces in hexagonal materials

As seen from this figure, the boundary consists of a periodic array of equally spaced 

edge dislocations (d represents the distance between each dislocation) with Burgers 

vector b . For small values of 9, the misorientation angle, which may be regarded as 

a net rotation resulting from the superposition of strain fields associated with each 

dislocation in the boundary, is given by 9 =|b|/d. These widely-spaced crystal 

dislocations, referred to as primary by some authors, are thought to accommodate 

any difference between the actual crystallographic parameters of the interface and 

those of an optimal structure, which in this case is the perfect crystal. It is now well 

established that primary dislocations are characterised by Burgers vectors equal to 

crystal lattice vectors. Evidence supporting this dislocation model was first obtained 

by Read and Shockley [5] who calculated the theoretical energy of a boundary 

composed of dislocations as a function of the misorientation between the grains, and 

obtained good agreement with experimental measurement of grain boundary energy . 

However, the most direct evidence for the presence of dislocations in grain 

boundaries came with the first observations by transmission electron microscopy 

(TEM) in aluminium by Hirch [6]. Despite the acceptance of this theory, it was 

recognised that such a description of GB's would lose its significance for values of 

9 > 15° (WT Read [7] ) (characterising high-angle GB’s according to the Brandon 

18j criterion) at which dislocations would become so closely spaced as to lose their 

characteristic elastic displacement fields.

An approach which overcomes the problem associated with the structure of high- 

angle grain boundaries was obtained through the use of the coincident site lattice and 

O-lattice concepts presented in sections II.3 and II.4.

II. 1.2 Frank’s low-angle formula

Frank’s low-angle formula can be derived with reference to Figs 2.2 (a) and 

(b). First, a reference lattice is cut along a plane ZZ’ which divides it into two 

lattices, A and p (Fig 2 .2(a)). Next, lattice A and p are rotated by an angle +9/2 and 

-9/2 respectively about an axis r pointing into the page and passing through the
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Chapter 2: Review of theoretical and experimental studies of interfaces in hexagonal materials

lattice point O (Fig.2.2 (b)). These two misoriented lattices are then juxtaposed to 

form a boundary as described in section II.3 and a probe vector v lying in the 

interface may be defined. Generally, v makes an angle a  with r and Frank showed 

that the Burgers vector magnitude was given by

| B | = | v | 2 sin (0 /2) sin a , (2.1)

in the direction (v x r).

As v x r = | v | sin a  , (2.2)

We have | B | = 2 sin (0 12) (v x r) . (2.3)

Expression (2.3) is known as Frank ‘s formula.

Fig 2.2: Derivation of Frank’s low-angle formula, (a) The reference lattice is divided into two 
lattices X and p and (b) X and p are rotated by +0/2 and -0/2 respectively.

1 1



Chapter 2: Review of theoretical and experimental studies of interfaces in hexagonal materials

II. 1.3 The Frank-Bilbv equation

Frank [9] derived an expression giving the net dislocation content 

required to make two misoriented lattices fit together at an interface. This result, 

later generalised by Bilby and Bullough [10] to account for heterophase boundaries, 

is derived in this section using the Burgers circuit construction proposed by Christian 

[11]. Consider two lattices, A, and p, meeting at an interface characterised by its 

normal n (see Fig 2.3 a). In Frank’s treatment, it is assumed that lattices ?i and p 

have been obtained from some reference lattice by pure rotations represented by Rx 

and R^ respectively. When RM acts on one of the reference lattice vectors, its 

components are transformed into components of a vector in lattice p (the same 

applies to R;J. I

I ig 2.3: Determination of the net Burgers vector content of a grain boundary, crossed by a probe 
vector v. (a) Burgers circuit construction and (b) mapping in the reference crystal.
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Chapter 2: Review of theoretical and experimental studies of interfaces in hexagonal materials

Consider now a probe vector v lying in the interface and joining points common to 

both crystals (Fig 2.3(b)). This can always be achieved to any degree of accuracy 

provided the probe vector v is sufficiently large. A closed right-handed circuit 

PAtOA2P encircling the interface can then be constructed as depicted in Fig 2.3(a). 

This circuit becomes Q 1B1OB2Q2 when mapped into the reference crystal depicted in 

Fig 2.3(b), and the closure failure Q 2Q t representing the dislocation content of the 

interface can be re-written as OQr  OQ2. Mathematically, Q ^ O B jQ , is obtained by 

applying the inverse transformations Rx 1 and R ^1 to the segments PAtO in lattice X, 

and OA2P in lattice p respectively. This gives the following equations

PA,0 = R x 1 v = OQj , (2.4)

and OA2P = R , 1 v = OQ2 . (2.5)

The total Burgers content, B, which represents the sum of the Burgers vectors of all 

dislocations crossing the probe vector v is therefore given by

B = OQr  OQ2 = Rx 1 v - RB1 v , (2.6)

or w II PO >> 1 to < (2.7)

expressed in the coordinate frame of the reference lattice. It might sometimes be 

convenient to choose one of the lattices X or p as the reference lattice, in which case 

equation (2.7) becomes

Bx = ( I - R ' ) v , (2.8)

if X is selected as the reference lattice

13
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and B^ =  (R  - I ) v , (2.9)

if the reference lattice is taken as (! (I represents the identity matrix and R= R^R*. J). 

Equation (2.8), derived for grain boundaries in 1950, was later generalised to 

heterophase boundaries by Bilby to include any kind of transformations P. Equation

(2.9) therefore becomes

= (I - P 1 ) v , (2.10)

and is known as the Frank-Bilby equation.

It must be noted that equation (2.10) does not specify the distribution of the net 

Burgers vector content in the interface whereas the approach developed by Bollmann 

“quantisises” B into discrete Burgers vectors. Clearly, the closure failure in 

Fig.2.3(b) is directly dependent upon the choice of the transformation P in equation

(2.10) . Thus, the dislocation description of a particular interface given by this model 

is not unique. The best representation must therefore be chosen between several 

possibilities and the latter does not necessarily correspond to the smallest Burgers 

content description.

11.2 The CSL and DSC Models

The CSL theory is based on the assumption that interfacial atoms 

occupying sites common to both crystal lattices are in regions of “good atomic fit”. 

The principles underlying this theory, which are valid at any angle of misorientation, 

are briefly explained here with reference to high-angle interfaces. Consider two 

identical interpenetrating crystal lattices which are free to take up any orientation 

with respect to each other. Two lattice sites (one from each lattice) are arbitrarily 

chosen and brought into coincidence to act as origin in any further re-orientation of
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the lattices. At special relative orientations, and due to the periodicity exhibited by 

the lattices, an infinite number of lattice sites coincide and form an array known as 

the coincidence site lattice (see figure 2 .4). A grain boundary can be constructed by 

passing a plane through the interpenetrating crystals and removing all the lattice sites 

from one crystal on one side of the boundary plane and from the second crystal on 

the other side. The volume ratio of the primitive unit cell of the CSL to that of the 

crystal lattice is described by the parameter I .  The latter may also be defined as the 

reciprocal of the fraction of sites which are in coincidence. A low value of L 

therefore implies a large density of coincidence sites and vice versa.

Fig. 2.4 : Representation of a I  =5 CSL { 36.877(100])
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Although all grain boundaries could in theory be represented by exact CSL 

relationships, E would, in some cases, take high values of little physical significance. 

Such boundaries are therefore best described by small angular deviations from low-E 

configurations, accommodated by a network of dislocations allowing the crystal to 

conserve the minimum energy pattern over most of the boundary surface. These 

dislocations are often referred to as secondary dislocations (SGBD’s) and have 

Burgers vectors equal to vectors of the displacement shift complete (DSC) lattice. 

The DSC lattice defines all the possible displacements of one lattice relative to the 

other which locally conserve the periodicity and property of the exact CSL. The 

Burgers vectors of SGBD’s usually correspond to the shortest translations of the 

appropriate DSC lattice (note that in the low-angle case, dislocations accommodating 

the misorientation would be primary dislocations with Burgers vectors equal to 

lattice vectors). Since Burgers vectors of interfacial dislocations scale with E, the 

maximum angular deviation (A6max) from an exact CSL for which the CSL model is 

still valid is often written as

A0max =15° (2 . 11)

where n has been proposed to be 1/2, 2/3, 5/6 and 1 [12]. This has not been verified 

experimentally.

113 The O-Lattice Model

As stated in the introduction, the O-lattice theory is a geometrical 

approach to the study of interfaces developed by Bollmann[13] which, like the 

coincidence site lattice model, associates periodic structures observed in some 

boundaries with optimum configurations exhibiting low energy. This approach can 

be regarded as a generalisation of the CSL model to include the coincidence of 

additional points in space which have the same internal cell coordinates in the two

16
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interpenetrating crystal lattices. Such coincidences, which may be equivalent points, 

lines or planes are referred to as O-elements and define the so-called O-lattice. In 

general, O-lines occur for rotations, O-planes for shears and O-points for other 

homogeneous transformations [14]. The O-elements are thought to represent regions 

of exact match between the interpenetrating lattices and act as origins with respect to 

which the latter are interrelated. Once the O-element configuration has been 

calculated, each element is enclosed by a Wigner-Seitz cell (constructed by bisecting 

the vectors joining the O-elements) and the path of the boundary selected as to pass 

as close as possible to O-elements. The lines of intersection between the boundary 

plane and this cell structure are thought to represent positions of worst matching 

which may be interpreted in terms of lines of interfacial dislocations to which the 

correct Burgers vector can be attributed. Whereas the CSL only exists at specific 

orientation between the crystals, the O-lattice is “continuous” and can be defined at 

any angle of misorientation. It is not within the scope of this section to give an 

extensive description of this theory as this is well documented elsewhere (see 

Bollmann for example), but we shall derive the basic expression from which the 

dislocation content of an interface can be analysed.

Consider two arbitrarily oriented crystal lattices, X and |i, which have been allowed 

to interpenetrate (X. and |i need not be of the same nature). Let us now consider a 

general transformation S which transforms lattice X into lattice p. A point defined 

by a vector y in lattice p is then generated from a point defined by a vector x in 

lattice X according to

y = S x . (2.12)

If a translation vector u can be found such that x+u coincides with y (see Fig 2.5), 

then the point defined by y is an O-point x(0).

17
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p . q

Fig 2.5: Diagram illustrating the definition o f an O-point with internal coordinates equal to (p,q)

From the above, one can write the following system of equations

o'"xII (2.13)

y = x + u (2.14)

y = S x <=>I x = S'1 y = S-1x(0) . (2.15)

This set of equation can be re-written as

lis

(2.16)

u = I x(0) - S 1 x(0) (2.17)

u = (I - S'1) x(0). (2.18)

The O-lattice is then defined by three basis vectors given by:

x (0) =  (I-S *1)-1 u , (2.19)

Or x (0) =  T 1 u (2.20)

When a cell wall is intercepted, the discontinuity is equal to u which in fact 

represents the Burgers vector of the dislocation, b(L) ( the subscript L indicating a 

crystal dislocation). Thus equation (2.19) can be written as
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b(L) = U = ( I - S'1) X(o) (2.21)

Depending on the rank associated with T, the O-lattice may be a point, line or plane 

lattice. It must be noted that due to the infinite number of choices for the deformation 

S which relates the two crystal lattices in a given relative orientation, there is an 

infinite number of possible O-lattices from which “the most significant” one must be 

chosen. Equation (2.21) is a general expression for a boundary containing crystal 

dislocations and defined in one of the perfect crystal lattices. At high-angle of 

misorientation, the procedure described above remains the same except that crystal 

lattices A and p are replaced by two DSC lattices and the angular deviation of the 

crystal lattices is replaced by the deviation from the coincident orientation. The two 

DSC lattices are related by S ’S'1 = A, where S’ is the transformation producing an 

orientation close to a coincidence, and an 02 lattice (composed of 02-elements) is 

constructed between them [15]. In this instance, the general expression given in 

(2.19) becomes

x (o2) = ( I - A 1 ) 1 d(sc). (2.22)

II.4 The Coincidence Model in Non-Cubic Structures

As mentioned in the introduction , the adaptation of the CSL model 

to the study of GB's in non-cubic materials failed to provide a successful description 

of such interfacial structures in many instances (see section II.4.2). This section 

describes the main modifications brought to the original CSL model for analysis of 

materials exhibiting hexagonal symmetry as this is of particular interest in this work, 

and highlights the limitations of this approach.
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II-4.1 The, CCSL model

As discussed in section II.3, the characterisation of interfacial dislocations 

using the "O-Lattice" theory is based on the existence of a coincidence site lattice. 

Indeed, the DSC lattice, whose shortest vectors represent possible Burgers vector of 

such dislocations, is directly linked to the existence of a CSL. In hexagonal 

materials, the three-dimensional coincident site lattice depends on the c/a ratio and 

only exists for rotations about the [0001] axis or when the ratio (c/a)2 is a rational 

fraction [16]. For most materials this ratio takes irrational values , and constraint is 

normally applied to the C-axis so that (c/a)2 is forced to a rational value describing a 

true CSL. The coincidence site lattice obtained in this way is referred to as a 

constrained CSL and is abbreviated CCSL. CCSL’s corresponding to c/a ratios close 

to those of most hexagonal metals have been tabulated by several authors 

(references [16] and [17] for example).

Following this approach, interfacial dislocations are characterised using a modified 

approach of the O-lattice which takes into account the constraint discussed above. 

This approach is described in detail elsewhere ([18] for example).

II.4.2 Physical significance of the CSL model and alternative approaches

As stated earlier, exceptional grain boundary properties exhibited 

at special orientations associated with low Z CSL’s mostly accounted for the choice 

of such configurations as reference structures. However, several limitations may be 

identified. For example, atomic relaxation at grain boundaries may invalidate the 

concept on which the CSL is based and in some cases, it is difficult to identify a 

coincidence site in a complicated pattern, or the existence of an infinity of 

orientations for which no coincident site lattice exist. In addition, small variations in 

the c/a ratio affect the dislocation pattern predicted by this method, as discussed by 

Shin and King [19]. The CSL model may therefore be useful in some cases but 

seems to contain disadvantages and questionable hypotheses. Its only physical
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significance appears to be the periodic structure exhibited by a boundary which is 

parallel to a rational plane of the CSL [20] . Pond [21] proposed an alternative 

approach to the characterisation of interfacial defects separating energetically 

degenerate regions of interfaces. This method does not contain any hypotheses and is 

completely consistent with the topological theory of defects. The only requirement 

needed to characterise interfacial discontinuities is the full symmetry and relative 

orientation of the crystals constituting the interface.Pond indicated that the symmetry 

reduction resulting from the creation of a bicrystal (by bonding together 

appropriately prepared surfaces on the two constituent crystals) can lead to the 

formation of interfacial defects which can be predicted or characterised topologically 

by means of a general expression. This topological approach to the study of 

interfacial defects is presented in detail in the following chapter.

II.5 Experimental Studies Of Grain Boundary Structures In 

Materials Exhibiting Hexagonal Symmetry.

Hexagonal materials are increasingly being used in technologically important 

applications and a considerable amount of literature concerning the study of 

interfacial features in such materials is now available. The vast majority of these 

studies uses the CCSL and O-lattice models described earlier, and the review 

presented below discusses the suitability of this approach for the characterisation of 

low and high angle grain boundaries.

H-5.1- Low-angle grain boundaries

MacLaren and Aindow [22] studied the structure of low-angle grain 

boundaries in high-purity zinc (Zn) by means of the O-lattice model described in

II.3. One of the boundaries presented consisted of a hexagonal network of near

screw dislocation segments with Burgers vectors found to be consistent with perfect
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crystal dislocations. Although the morphology of this network seemed to be 

consistent with that calculated using Bollmann’s approach, a significant discrepancy 

was found between the spacing of observed and predicted features. It is therefore 

unlikely that the approach adopted resulted in the correct identification of the 

Burgers vectors of the observed dislocations. A possible reason for this could be the 

large uncertainty associated with rotation axis measurements as reported by the 

authors. Other workers presented a study of a low-angle grain boundary in zinc 

consisting of a stepped arrangement of dislocations [23]. Again, this network of 

dislocations was compared with that predicted by the O-lattice approach, and a 

relatively good match was claimed. However, no comparison between measured and 

predicted line directions was indicated and, based on MacLaren’s work, one has to 

be sceptical about the validity of this result.

Lay, Delavignette and Vicens[24] studied several low-angle grain boundaries in 

deformed tungsten carbide (WC). Although the vast majority of the boundaries 

investigated were represented by very low angles of rotation (close to 1° ), more 

complex interfaces associated with higher misorientation angles were also observed. 

Most of the defects observed in the subgrain boundaries were perfect dislocations 

and were successfully characterised using transmission electron microscopy. 

However, the second class of observed boundaries consisted of more complex 

arrangements of interfacial dislocations and the O-lattice approach adopted here did 

not allow the correct Burgers vectors of the defects to be identified.

The approach used in the experimental studies presented above is characteristic of 

the methodology adopted by most workers in this field and often leads to similar 

inconsistencies in the reported results. Although a good match between the 

morphologies of calculated and experimentally observed dislocation networks is 

claimed, calculated line directions and dislocation spacings, for example, cannot be 

matched to experimental ones. These significant discrepancies suggest an incorrect 

characterisation of interfacial defects and reflect the difficulties associated with this 

method.
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The characterisation of interfacial defects in high angle grain boundaries requires the 

identification of plausible reference structures from which the experimental 

boundary deviates. Experimental evidence suggests that periodic structures 

corresponding to special orientations are suitable references and the CCSL model is 

therefore used extensively for such identifications. The section below presents 

examples of such studies and reviews the usefulness of the CCSL/O-lattice approach 

for the identification of interfacial defects in high-angle boundaries.

11.5.2 High angle grain boundaries

Vicens et al [25] analysed the structure of high-angle grain boundaries in tungsten 

carbide using HREM and showed that the most frequent orientations were close to 

£=2 (approximating the exact value of c/a= 0.976 to be 1). Two X=2 boundaries 

were analysed and interfacial defects were observed in both cases. The deviation 

from the exact coincidence was calculated to be 5° but no attempt was made to match 

these experimental observations and measurements to calculated configurations. 

MacLaren [26] investigated the possible reference structure adopted by high-angle 

grain boundaries in pure titanium. One of the boundaries analysed was found to 

have a mixed tilt-twist character and consisted of a well-defined array of 

dislocations. However, no suitable CCSL’s could be found close to the experimental 

orientation and an alternative approach considering a 2-D periodicity in the boundary 

plane was investigated. A list of the possible Burgers vectors associated with the 

observed interfacial dislocations was established using Pond’s topological approach 

and the morphology of the network was predicted using the 02-lattice algorithm 

described in II.3. A “morphological” match was obtained but a significant 

discrepancy was found between experimentally-measured and predicted line 

directions. Again, this inconstancy might suggest an incorrect identification of the 

topological parameters describing this boundary.

Chen and King [27] studied several high-angle grain boundaries with orientations 

close to the (0112) twin in zinc. Two of the selected boundaries contained a network
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of dislocations and the O-lattice approach described in II.4 was used to characterise 

these defects. Whereas the morphology of the first network seemed to match that 

predicted using a 1=13 CCSL reference structure, no solution was found for the 

second dislocation arrangement. Unfortunately, no comparison between the spacing 

of calculated and predicted individual dislocations making up the L=13 boundary 

was presented and it is therefore impossible to comment on the choice of this CCSL 

as a possible reference structure adopted by this boundary.

Lay and Nouet [28] investigated the structure of grain boundaries with orientations 

close to the (0112) in magnesium. These boundaries contained several networks of 

dislocations and various CCSL’s were considered as possible reference structures for 

this system. Whereas the choice of a specific CCSL did not seem to affect the 

predicted line directions of the observed dislocations, their spacing appeared to be 

significantly altered. Unfortunately, the identification of any plausible reference 

structures was not carried out by calculating the deviation from the ideal twin 

orientation and hence any conclusions reached seem to be questionable, as indicated 

by MacLaren [26]. Twin boundaries were also studied in a range a hexagonal-close- 

packed metals by Antonopoulos and co-workers [29], and Komninou et al [30]. 

Although several dislocation networks were observed in cadmium and titanium 

twins, the latter were not characterised topologically. Grimmer, Bonnet, Lartigue and 

Priester [31] studied 133 grain boundaries in a-alum ina using the 02-lattice 

algorithm presented in II.4. The analysis of a twin containing three sets of 

dislocations allowed three CCSL’s to be identified as possible reference structures 

for this system. The determination of the Burgers vectors associated with those 

dislocations was then attempted using both invisibility criteria and image simulation 

but the contrast displayed was very similar in each case. It followed that the 

identitication of a specific CCSL as reference structure was impossible using this 

approach.

Based on the arguments presented above it emerges that the use of the CCSL and O- 

lattice models for the characterisation of high-angle grain boundaries is often

24



Chapter 2: Review of theoretical and experimental studies of interfaces in hexagonal materials

problematic and often leads to discrepancies between experimental and predicted 

measurements. A indicated in II.4.1, the mathematical formulation of the CCSL 

approach contains some misrepresentations which may result in inconsistencies 

between experimental observations and theory. The method developed by Pond[21], 

which does not contain hypotheses and is consistent with the topological theory of 

defects, was successfully used by Braisaz et al [32], for the characterisation of twin 

boundaries in zinc and titanium using high resolution electron microscopy (HREM ). 

Having successfully identified several interfacial defects, the authors were then able 

to discuss possible interaction mechanisms between them. This study demonstrates 

the suitability of thes method for such purposes since, unlike the conventional 

CCSL/O-lattice models, experimental results are fully consistent with observations. 

This approach was therefore preferred for the characterisation of grain boundaries in 

ZnO presented in this work.
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Overview

Interfacial defects have been successfully characterised in a wide range of 

materials exhibiting cubic symmetry using geometrical constructs such as those 

presented in chapter 2. As discussed earlier, the adaptation of such techniques to the 

study of defects in non-cubic materials introduces hypotheses of questionable physical' 

significance. The method presented here does not contain such hypotheses and is 

completely consistent with the topological theory of defects. Indeed, the only 

requirement needed to characterise discontinuities is the full symmetry and relative 

orientation of the crystals constituting the interface . This approach may be applied a- 

priori to predict the nature of the defects that may arise in a given interface or a- 

posteriori to characterise observed discontinuities.

The techniques commonly used to characterise defects in single crystals are first 

discussed and the crystallographic origin of interfacial defects is briefly introduced. 

The topological theory is then presented together with examples of its application in 

various interfaces. The third part of this chapter uses the framework described above 

to derive diffusive fluxes associated with interfacial line-defect motion and examples 

are used to illustrate defect motion in grain and interphase boundaries. The interaction 

between individual defects in situations involving grain boundaries is then considered 

and a general expression for the interaction of two dislocations is derived for the first 

time.

I I I - l  Conventional Methods For Defect Characterisation In 

Single Crystals

HI. 1 • 1 Volterra's approach

This is an imaginary procedure facilitating the visualisation of line 

defects, in which a cut is made inside the body of an object, e.g. a hollow rubber tube 

[l], followed by displacements carried out on one face of the cut with respect to the 

other (see Fig.3.1). If those displacements are restricted to symmetry operations, the

29



Chapter 3: Topological Characterisation of Interfacial Defects and Associated Diffusive Fluxes

two surfaces may then be brought back together in proper registry by the addition or 

removal of extra material. The above procedure introduces a line defect known as a 

dislocation, disclination or dispiration depending on whether the symmetry operation 

relating the cut surfaces is a translation, proper rotation or proper screw-rotation 

respectively (see Fig 3.1). These operations are referred to as admissible.

F i g .  3 .1  : A schematic illustration of line discontinuities in a hollow circular cylinder, (a) initial 
cut, (b) and (c) edge dislocations, (d) screw dislocation, (e) and (f) disclinations ; (After ref. [1])

H I .  1.2 Characterisation bv construction of a Burgers circuit

This method was developed by Frank [2] in the 1950's for the characterisation 

of defects in single crystals and is illustrated in Fig. 3.2.(a and b). This analysis is 

carried out graphically by constructing a closed circuit around some kind of defect, in 

this case a simple dislocation, and subsequently mapping it into a reference space 

which is often taken as the perfect crystal. By convention, the defect is assigned a Une 

direction, Ç, and the circuit is constructed in a right-handed sense with respect to Ç 

(Fig. 3.2.a ). When the crystal contains a dislocation, the mapping process fails and 

the closure failure characterises the defect. By convention, the Burgers vector of the 

detect is equal to the displacement from the finish (F) to the start (S) of the circuit (Fig
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3.2.b) and the line direction of the defect is pointing into the page. Although Frank 

only dealt with translation symmetry, it is possible to generalise the method by 

including all the symmetries exhibited by the crystal. The latter consideration forms the 

basis of the method used in this work for the characterisation of interfacial line defects 

explained in section III.3.

F ig . 3 .2  : Illustration of the charactrisation of a dislocation in a single crystal, (a) A Burgers 
circuit, PQRSP, is constructed around the defect, (b) The circuit is mapped into the perfect crystal.

(after ref.[2])
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III-2 Crystallographic Origin of Interfacial Defects
Imagine two component crystals referred to as being black (p) and white (X), 

and exhibiting the symmetry operations contained in their respective space groups. A 

bicrystal may then be formed by bringing together surfaces that have been 

appropriately prepared on both the X and |i crystals. This process generally reduces the 

symmetry initially present in the component crystals and leads to the coexistence of 

several variant bicrystals separated by interfacial defects, as stipulated in the principle 

of symmetry compensation [3].

I I I .3 Topological Theory of Interfacial Defects

III.3.1 A-Priori Method

a) General expression for admissible line discontinuities

In this section, the formation of interfacial line-defects is 

visualised schematically and a general mathematical expression, derived by Pond [4], 

is used to predict the nature of all the possible defects that may be encountered in 

interfaces. The defects treated here are such that they separate interfacial structures that 

are crystallographically equivalent, hence energetically degenerate. Fig 3.3a shows the 

formation of such an interface by bringing together prepared surfaces on the X and p 

crystals, and allowing them to bond. Following the Volterra approach described in 

HI. 1.1 it is possible to expose new surfaces, equivalent to initial ones, on both the X 

and p crystals by making a cut along the interface and adding or removing extra 

material as depicted in Fig. 3.3. For example, the new X surface in Fig. 3.3(b) is 

related to the initial one by a symmetry operation ‘W(X) which could be a rotation, 

translation, mirror-glide, and is therefore crystallographically equivalent to it. If the 

same procedure is carried out on the p crystal, the new interface is energetically 

degenerate with the initial one. In the Volterra procedure, the operation which brings
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the two surfaces together is the operation characterising the defect and is always a 

symmetry operation belonging to the single crystal. For an interface, the operation that 

brings the new p surface onto the new A. surface is the inverse of the black operation, 

followed by the white one, as shown schematically in Fig. 3.4 for operations which 

are displacements only.

a ) b )
F i g  3 . 3  : (a) Initial surfaces to be joined together and (b) new surfaces exposed on the white and 
black crystals related to the initial ones by symmetry operations expressed as W(A) and W(p) 
respectively.

O i b)

F i g  3 . 4  : Formation of a bicrystal; (a) the initial surfaces to be brought together (locations 1 and 2 
represent equivalent points) and (b) the operation that brings the new black surface onto the new white 

is the inverse of the p operation followed by the white one.
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Thus, the total operation consists of a proper combination of symmetry operations, 

one from each crystal. In order to be able to predict the nature of all the line-defects 

that can be introduced into an interface, Pond’s treatment identifies the various 

surfaces which can be created on each of the component crystals by expressing the 

combined operation discussed above mathematically. First, the relative orientation of 

the two crystals is specified by the operation iP (P, p) where P is the matrix relating 

the black and white coordinate frames and p represents the relative position of the two 

crystals. Next, symmetry operations are expressed in their own coordinate frames 

using the notation adopted in the International Tables for Crystallography [5] . Thus, 

the j^1 symmetry operation of the white crystal’s spacegroup is expressed as ‘W (k). = 

( W (k ).; w (k ).) and (p). = ( W (p ) .; w (p ) .) represents the i^1 operation of the 

black crystal's spacegroup; where ‘W  (k). is the orthogonal part (e.g. rotation, mirror 

or inversion) and w (A,)j is the translation part (and similarly for the black crystal). By

convention the white crystal's frame is chosen as the reference space and a black 

operation re-expressed in this frame is given by iP Tf’(p). iP _1 . Let the operation that 

brings the new black surface onto the new white one be designated by i^ = (Q  q„). 

The inverse of the im black symmetry operation followed by the jth white operation will 

therefore be given by:

Q* = ‘W (k). i P ^ ( p )  - l ip - l  . (3.1)

This expression is completely general and Pond showed that it described the whole 

range of discontinuities that may be present in a given interface, as any pair of black 

and white symmetry operations can be substituted for ‘W  (k). and W  (p)„ The range

of admissible interfacial defects depends upon the extent to which symmetry has been 

broken when forming the bicrystal. The lesser the symmetries in common the greater 

is the range of admissible defects.
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III.3 .2  Catalogue of Interfacial Defects

As explained in the previous section , the general formulation given in 

(3.1) may lead to a very large variety of admissible defects for a given interface. The 

various possibilities have been investigated in detail by Hirth and Pond [6] who 

showed that the latter could be grouped into three distinct categories. Category one is 

associated with various types of dislocations whereas categories 2 and 3 contain more 

complex defects, rarely observed experimentally .

Category 1: D islocations

a) Crystal dislocations

Crystal dislocations are defects that can also arise in interfaces. This 

corresponds to the substitution of translation operations (characterised by t(X) and t(|i) 

in the white and black crystals respectively) into equation (1); e.g. clMX). = ( I, t(X). ) 

with ‘JT’(ii). taken as the identity <W  (|i). =(I, 0) or vice versa. In this particular case 

we have (^  = ( I, t (A,).) or = ( I, P t(|i). ) and the defect is either a white crystal 

dislocation with Burgers vector b = t (A,), or a black one with a Burgers vector equal 

to P t (p ) i . Dislocations of this type are often observed in low-angle grain boundaries 

(see chapter 2).

b) Interfacial dislocations

- Class 1: Broken-translation symmetry

Interfacial dislocations are confined to the interface and are predicted by 

substituting a white translation operation ( V^X). = ( I, t(A.) ) ) and a black one

( ,fH p)i = ( I, tOi). ) ) into equation (3.1). Dislocations of this type have Burgers 

vectors equal to

% = b„ = t (X). - P t 00 ., (3.2)
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and belong to the class of "broken-translation symmetry" [6]. An example of such 

defects are DSC - type dislocations ( see chapter 2).

Fig 3.3 (b) is a schematic representation of the formation of such dislocations. 

The black and white surfaces to be bonded exhibit different surface steps and this 

results in the introduction of a dislocation of the type described above. Note that the 

unique interfacial unit normal is taken to point into the white crystal and that the defect 

is characterised by operations which relate the crystal surfaces on its left to those on its 

right when looking along ^ and into the white crystal, which is consistent with the 

RH/FS convention.

- Class 2 ; Frustrated translation symmetry

In this class, dislocations may arise due to "frustrated symmetry" and 

are present when screw-rotation or mirror-glide planes in the two crystals forming the 

interface are aligned but have different displacements, w , associated with them. The 

black and white symmetry operations described above are expressed as W  (A). = ( W 

(A,).; w (A,).) and ‘W (p). = ( W (p ) .; w (p ).) where WiX). = P W (p). _1 P '1 due 

to the alignment of the symmetry elements. These dislocations have Burgers vectors 

defined as

b,i = w M j - p w 00, + ( w (A). - 1 ) p. (3.3)

Fig 3.5 is a schematic representation of the formation of such defects where the two 

surface features on either side of the defect are free surface demi-steps [6J.
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O i

F i g .  3 . 5  : formation of defects belonging to the class of frustrated translation symmetry 

- Class 3: "Broken-coincident symmetry"

Class 3 dislocations are a special case of the "frustrated translation 

symmetry" described above where the black and white symmetry operations are 

aligned and identical but the value of the associated displacement p breaks the 

coincident point symmetry [6]. These dislocations are characterised by Burgers vectors 

given by

b y = ( w (k). - 1 ) p , (3.4)

and are referred to as belonging to the class of "broken-coincident symmetry".

Categories 2 and 3 : Interfacial disclinations and dispirations

These types of defects belong to distinct categories and arise when CT 

is either a proper rotation (disclinations) or a proper screw-rotation (dispirations). 

These defects, although rarely observed, have been investigated by Hirth and Pond 16] 

who gave several examples of their occurrence. The reader is therefore referred to this 

reference for more details.
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III.4 A - P o s t e r i o r i  Method- Circuit Mapping

The a-posteriori method described here is a graphical approach to the 

characterisation of crystal/interfacial discontinuities based on the earlier work by Frank 

|2 |. Whereas Frank dealt exclusively with translation symmetry, the present method 

includes all the symmetries found in crystal spacegroups. The basics of the theory are 

first set out for single crystals and a detailed explanation of its application to the study 

of interfacial defects is subsequently given.

III.4.1 Circuit mapping in faulted single crystals

Imagine a material containing a dislocation or any other type of line- 

defect around which a right-handed circuit, linking sites related by symmetry 

operations is constructed. It is possible to express such a circuit mathematically in 

order to show the equivalence of the method with the a-priori approach described 

earlier. This is done by introducing an imaginary observer who is transported on an 

excursion through the faulted material in such a way that the steps constituting his 

journey correspond to the circuit constructed around the defect. In other words, the 

observer is only allowed to make displacements which correspond to the symmetry 

operations found in the spacegroup of the crystal. It is also convenient to consider the 

observer as having "special features" so that, for example, he cannot see the strain 

associated with the defect and always sees the material in his immediate environment 

as being perfect. His motions being restricted to symmetry operations, everytime the 

observer reaches a new site (atomic or not), the environment looks unchanged. As in 

Frank's treatment, once his journey is completed, it is mapped into some reference 

space. The operation which transports the observer from the final point of his journey 

to the starting point is then the operation characterising the defect. The dichromatic 

complex is a construction often chosen as the reference space in which the circuit is
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mapped, as it contains the symmetry exhibited by both crystals. The dichromatic 

complex is obtained by allowing the two crystal structures to interpenetrate. The whole 

sequence of operations making up the journey are written down mathematically by 

expressing individual stages as W , *W2, <WJ, .../IT' and the overall operation is then 

defined as C (C,c) where C is the orthogonal part and c the translation part. . Imagine, 

now that the observer starts his excursion in a specific orientation from a point S 

defined with respect to a chosen origin by the vector s. If, during the course of his 

journey, the next operation in the sequence (e.g. a translation), the i^1 say, acts on the 

observer at his present location, the latter displacement is represented by “W=(I,t).

However, when the next operation in the sequence does not act through the observer's 

current location but through some other point rj, the ith operation is written as

W* = ( I, r . ) TViCI, r ) - 1 . (3.5)

The complete journey is therefore mathematically written as:

C ( C , c )  = ‘W 'n .....‘W*2 . (3.6)

When C = ( I, 0 ) = 0, the circuit is closed and several examples of such situations 

have been illustrated by Hirth and Pond [6].

The meaning of the circuit operator C is that when it acts upon the observer's starting 

location, it takes him directly to the finishing point of his excursion. Moreover, in 

order to be consistent with the RF/FS convention, C _1 is the operation which 

characterises the defect and relates the observer's final status to his starting position 

and orientation.
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I I I . 4 . 2  Circuit mapping to characterise interfacial dislocations

The method described in III.4.1 for the analysis of discontinuities in 

single crystals can be extended to interfacial defects by considering a right-handed 

circuit through both the crystals constituting the bicrystal (see Fig 3.6). The circuit- 

now comprises two segments, one white and one black, which represent the 

observer’s journey in the X and |i crystals respectively. The sequence of operations in 

the white crystal, from the starting point S to a point X in vicinity of the interface, is 

represented by the operator C ( X ) and similarly, C ( p ) represents the observer's 

journey in the black crystal from a point Y to the location represented by Z. The latter 

becomes P C(|i) P 1 when re-expressed in the white reference frame.

r
\

A

\

\

Y r ^ p
0 -

\S  ^

r

1

i
F i g  3 . 6  : Schematic illustration of the circuit mapping technique adapted to bicrystals.

The observer starts his excursion from a point S and pursues his journey through the 

white crystal by successive white symmetry operations until he reaches X. At this 

point, he crosses the interface by a displacement represented by (I.p^ which takes him 

to Y in the black crystal. The sequence of operations in this crystal takes him to Z 

where he experiences a displacement defined by (I, p2) across the interface which
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closes the circuit. If the defect in question separates identical structures, the 

displacement (I, p2) is simply (I, p )_1. The total circuit is now mapped into a 

reference space and if the dichromatic complex is chosen, the circuit operation as the 

form:

C  (k, \ i ) = ( I, p2) P  C ( | i ) P -1 (I,Pi) C ( k ), (3.7)

for the simple case described above, and C  (X., q )'! characterises the defect. This 

method is now illustrated by considering an interfacial defect in a coherent interface 

between fee and hep crystals (see Fig 3.7). The fee material is taken to be white (k)

and the hep black (|i), and these are separted by an interface with the following parallel

directions; (111)1 // (0001/ and <110>x // <2110>H.The vectors t(A,) and t(|i)

indicated in Fig 3.7 characterise the steps associated with the defect in the white and 

black crystals respectively, and the circuit indicated characterises a defect with a

Burgers vector equal to b= l/6  [112] . The various symbols used in Fig 3.7 are 

explained in appendix 1)
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F i g  3 . 7  : Constniction of a circuit around an interfacial defect in a fccrhcp interface.(after ref[7]).

Additional fccihcp interfaces can be created by terminating the fee crystal by an a,b or 

c plane, although those terminations are all crystallographically equivalent. This can 

lead to the existence of a whole range of topologically distinct defects which were 

created and characterised by the author of this thesis. The presenrtation of these results 

is not within the scope of this work and the latter can be found elsewhere [6].

III.5 Diffusion Fluxes Associated With Interfacial Defects

As stated in the introduction (chapter 1), there is compelling evidence that defects 

present at interfaces mediate interfacial processes. In processes such as high- 

temperature deformation [8], source/sink action [9], and phase transformation [10] , 

the deformation of polycrystalline materials caused by the motion of interfacial defects 

may involve a flux of material [11]. In this work, these deformational and diffusional 

aspects are modelled in terms of the topological properties of the moving defects using
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the framework developed by Pond and co-workers and examples are used to illustrate 

the method (see III.3).

III.5.1 Step heights

Interfacial line-defects are characterised topologically by both their Burgers 

vector, b, and their step height, h. The Burgers vector of a dislocation is invariant with 

line-direction and the orientation of the interface plane, whereas the step height is 

invariant in a given plane |7]. The Burgers vector is associated with deformation but 

both b and h are relevant to diffusion fluxes. On a free surface of a single crystal, 

denoted by its outward pointing unit normal n, a step can arise as depicted in Fig 3.8. 

As indicated schematically on this figure, the adjacent regions are related by a 

translation vector of the crystal (I,t) which is not parallel to the surface. The height of 

the step is given by h=n.t, and its motion would lead to crystal growth or evaporation 

of material involving a flux. The step may be imagined to result from the emergence of 

a dislocation with Burgers vector b=t onto the surface as indicated. Note that step 

heights are scalar quantities which may imply positive or negative values (the step 

illustrated in Fig 3.8 is negative).

F i g  3 . 8  : Schematic illustration of a surface step showing the definition of t ,n  and h; the step could 
be formed by emergence at the surface of a crystal dislocation with t= b .

When considering interfacial dislocations, a unique interfacial unit normal n is taken to 

point into the white crystal as illustrated in Fig 3.9 . The step heights associated with

the two surfaces to be joined are given by h(A.)=n.t(A.) and h(pi)=n.Pt(pi) for the white 

and black crystals respectively, expressed in the white frame (A.).

h= n. t
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Fig 3.9 : Schematic illustration of non-complementary steps 

Joining the two surfaces depicted in Fig 3.9 so that the interfacial structures are 

identical on either side of these perturbations (degenerate interface) introduces a 

dislocation characterised by b, given by equation (3.2). The magnitude of the normal 

component of b, designated bz, is equal to the difference between the two step heights,

i.e. h(A,)-h(|i). Hirth and Pond [6] showed that it is useful to define an overlap step

height, representing the extent of material overlap normal to the interface when the 

adjacent crystals are placed together to bond the surfaces, as depicted schematically in 

Fig 3.10.

Fig 3.10: Schematic illustration of misfitting steps on juxtaposed black and white crystals to 
show the definition of bz and the “overlap” step height, h .

For such an overlap to exist h(k) and h(p) must have the same sign; the magnitude and 

sign of h is then that of the smaller of the two surface steps. Both steps in Fig 3.10 are
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positive and h(A,)<h(p); therefore h =h(A,)=n.t(X)=h(p)+br  Note that bz is antiparallel 

to n.

III.5.2 Diffusional fluxes due to defect motion

The analysis of diffusional fluxes associated with defect motion can be 

facilitated formally by considering the interfacial defect as comprising separate 

dislocation and step character. To illustrate the latter, the motion of a defect which has 

no component of b parallel to the interface is now considered (see Fig 3.11). In the

case illustrated in Fig 3.11, h = h(A,) is positive, and bz is negative since it is anti

parallel to n. For an advance of the defect by 8y, Hirth and Pond [6] showed that the 

volume change associated with the step portion for unit length of defect is

8V = h8y (3.8)

The (?i) crystal is assumed to comprise atomic species A, B, C... with X \ \  Xb \

X c ^ -  atoms o f  A, B, C... per unit volum e respectively, and similarly for the (p) crystal. 

The change in the number o f A atoms in the volum e swept is

ANa = NA^ -  NAF = (XA^ -  XAP)h8y = AXA h8y . (3.9)

For a diffusion current Ia in atoms/sec into unit length of the step, with the step 

velocity v = dy/dt, we have

IA = AXa hv , (3.10)

and similarly, for components B, C etc.

For the dislocation part, the flux is produced by the normal component bz, which is 

negative for the example of Fig. 3.11(c). Hence the volume of (p) removed by 

dislocation motion per unit length is 

SV = bz Sy
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b)

Fig 3.11: (a) Schematic illustration of the step and dislocation components of an interfacial
line-defect with no component of b parallel to the interface, (b) volume of material 
to be transformed from black to white by motion of the step portion by 8y , (c) 
volume of black material to be evaporated by motion of the dislocation portion by
5y.

In this case no (A.) phase is created so

ANa = X£bz8y (3.12)
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and similarly for ANb etc. Proceeding as for the step case, the current into the 

dislocation is

IA = X £  bz v, (3.13)

and the total current into the defect is

IA = v[hAXA + bz X / ]  , (3.14)

and similarly for Ib  etc.

Equation (3.14) describes the diffusive fluxes for a defect moving to the right (i.e. the 

direction n x %) in interfaces with the (k) crystal above the (|i), as in Fig. 3.11, and 

where h and bz have opposite signs. When h and bz have the same sign (i.e. 

h(?t)>h(|i)), the equation becomes

IA = v[hAXA + bzXAl ] . (3.15)

and similarly for Ig etc. The senses of the fluxes embodied in equations (3.14) and 

(3.15) in terms of X/|i material removal and transformation are summarised in Table

1. The symbol Xa ^  is used to represent the concentration in a general expression of

equation (3.14), and reference to Table 1 enables the appropriate concentration to be 

identified. When the two steps have opposite signs, no overlap exists (i.e. h = 0), and 

the flux of A is given by
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IA = v[h(A)XAx -  h ( n ) X / ]  , (3.16)

and similarly for IB etc.

We note that expressions (3.14), (3.15) and (3.16) for material fluxes to moving 

interfacial defects are independent of However, if the interface plane changes, i.e. n

changes, then both h and bz, and hence the flux associated with movement may 

change.

Table 1.Material fluxes and transformation associated with defect motion parallel to n x ^

h Dislocation
Portion

Step Portion

+ - |i removal A

+ + A addition H~*A

- + |i addition A -> ^

- -
X removal A -> H

III.5.3 Diffusional fluxes for interfacial defects in tirain boundaries 

In this section, the flux theory derived above is applied to interfacial defects in grain 

boundaries and the implications of expression 3.14 are then discussed. The flux 

arising due to the motion of dislocations in the bulk of single crytals is first presented 

and the case involving grain boundaries is then considered.

a) Dislocation motion in single crystals

Consider unit length of a straight dislocation moving in the bulk of a single crystal 

with a velocity v. If the Burgers vector, b, is inclined to the plane of movement

defined by the line direction, £, and v, a flux of material will be associated with the

motion. If the component of b perpendicular to this plane of motion is bz then the 

atomic flux of species A per unit length of dislocation is given by:
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IA = vbzXA , (3.17)

where XA is the number of A atoms per unit volume, and similarly for other species 

present, B, C etc. This result is consistent with expectations as dislocations only climb 

when their b includes a component which does not lie in the plane defined by % and

v. '

b) Interfacial defect motion in grain boundaries.

AX being zero for all species in grain boundaries, expression (3.14) can

therefore be simplified . The step contribution to the flux is always zero because the 

chemical composition and density of the two grains are identical and its motion does 

not require a material flux. As a result, equation (3.14) has exactly the same form as 

equation (3.17) and grain boundary dislocations therefore move by glide if b has no 

normal component, bz . These conclusions are valid irrespective of whether a defect 

has step character or not and schematic illustrations of defects which would move by 

glide and climb respectively are presented in Fig 3.12 (a) and Fig 3.12 (b), inthe case 

of boundaries between face-centred cubic (f.c.c) crystals for simplicity.
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Fig 3.12: (a) Schematic illustration of glissile edge dislocation in a symmetric (130) tilt

boundary between fee crystals; b=l/10 [310], h(X)=h()i)=h=2d( i3o>; (b) a sessile dislocation in the

same type ofinterface;b=l/10 [130], h(A.)=- d r  h(u>— ù r  \  h=0[nor [no]’
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cl Interfacial defect motion in interphase boundaries

In the case of interphase boundaries, AX may be finite for some or all of the species 

present. Even if the chemical composition of the two crystals is the same, their 

densities may be not, and hence AX would be finite. It is therefore necessary to

consider the contribution to the overall flux due to both the step and dislocation 

portions of the defect. On the basis of equation 3.13, it is apparent that the distinction 

between glide and climb may be more complex for defects in interphase interfaces than 

for grain boundaries. For example, dislocations in interphase boundaries with b

parallel to the interfacial plane will not move by glide if h^O and Ax is finite for any of

the species present. Conversely, a defect with a component bz may move 

conservatively if h?K) and the interface is an invariant plane, with the adjacent crystals 

having the same chemical composition.These points are discussed below with respect 

to the fcc:hcp martensitic transformation system depicted in Fig 3.7 (see appendix one 

for a description of the crystallography associated with this system). For simplicity,

the A, and p crystals are considered to be monatomic materials of the same atomic 

species, but more complex chemical structures could also be treated. If the two crystals 

have the same density, Xx =4ff'=X M=2iF , where Qx=(ax)'3 and ax is the cubic lattice

parameter, and QM={(31/2/2)(aM)2cH} ', aM and cM being the hexagonal parameters; thus 

AX=0.

During martensitic transformation, interfacial defects are thought to move along the 

interface and according to the formulation presented here, these would be expected to 

exhibit non-zero overlap step heights h, and non-zero b in order that transformation 

and deformation occur simultaneously. However, such transformations are 

diffusionless and the present formulation should therefore predict this result for the 

combined step/dislocation motion. First, a defect with normal component b equal to bz 

and a step height h is considered to move along an interface where the crystals are
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related by an invariant-plane strain. If the interfacial area per atom of species A is 

designated gA, the conservation of matter requires that the number of A atoms in

corresponding volumes of the X and p crystals must be equal; i.e.,

h(X)gA X A=h((i)gA . (3.18)

Expression 3.18 provides a second relationship between h(A.) and h(p) and we

therefore have the following set of equations

h(?t)-h(p)=bz (seell.5.1) (3.19)

and, from equation 3.18),

h(K) X*=h(p) X*. (3.20)

Thus, for the case depicted in Fig 3.11, where h=h(l) , and combining equations 3.19 

and 3.20, we have

(3.21)

and substituting of this value for bz into expression 3.14 yields IA=0, and similarly for 

other species if present. Thus, in the special circumstance of an invariant-plane-strain, 

the fluxes due to the step and dislocation terms in equation 3.14 are equal and opposite 

so that the total diffusive flux for the combined step/dislocation is zero. The defect 

illustrated in Fig 3.13 depicts the situation where the density of the 1 and m crystals are

identical. It is clear from this diagram that h(X)=h(p) and therefore b, =0. However,

the “overlap” step h defined earlier is equal to 2d(U1) (see Fig 3.13 ).On substitution of 

this value for bz into expression (3.14), we find that IA=() . Because the step and 

dislocation terms in equation (3.15) are identically zero, the resulting total flux is also 

zero.
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Fig 3.13: Illustration of the step heights h(k) and h(g) for the defect illustrated in Fig 3.7 

The defect depicted in Fig 3.14 is similar to that in Fig 3.13 except that the density of

the black crystal has been doubled by halving the spacing of the (0002/ planes, i.e.,

= 2 d|luj and hence AX = - X^. The normal component of this change is that b

now has a (positive) normal component, bz=d(1U), and the overlap step height is 

reduced to h=d(U1). Substituting these values into equation (3.16) for the present case 

yields

h  = v(hAXA + b X )  = v(-d(m) X i + d (lllj X j j  = 0 (3.22)

as required. Thus, motion of defects like that in Fig 3.14 would cause simultaneous 

diffusionless transformation and a shape change including components parallel and 

perpendicular to the interface.
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Fig 3.14 : Schematic illustration similar to Fig 3.12(a) except that the black crystal has had its
density doubled by halving the value C*.

III.6 Defect Interactions

It is now well established that defect interactions provide mechanisms for processes 

which affect material properties dramatically. Several defects may be interacting in 

complex processes and this section only treats the diffusive flux associated with two 

interacting defects as an introduction to more general situations .

III.6.1 Interaction of two straight defects

Imagine two straight interfacial defects, a  and p, with topological parameters

expressed as ba = [ b“ , b“ , b“ ], ha and bP = [ b^ , bjj|, b^ ], hP , as depicted in Fig

3.15. Let us also consider the total amount of material N \  etc., associated with 

interactive defect motion rather than the fluxes I a  etc. defined by expression (3.14).
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x ,  t ,y ^  v
~ i  b°

Fig 3.15: Schematic illustration of the two interfacial defects, a and b, before interaction

Let defect a  undergo a lateral motion ya  which involves interactive motion through

defect P, for which the lateral motion is yP . Now steps can move through each other 

without fluxes arising in addition to those associated with their lateral motion, and 

similarly for dislocations. However, the dislocation component of a  has to climb up

(or down) the step component of P and vice-versa. Thus, the total number of A atoms 

required in the interaction per unit length of the dislocations is given by

Na = (h° y° + hP / )  AXa + (b? ya + b5 yp) x “ “ + ( b j h“ -  b“ hp) X ^ ,

(3.23)

and similarly for the other species present N b , N c  etc. The first term on the right of 

equation (3.23) represents the flux due to the lateral motion of the a  and P steps. The

second term represents the climb of the a  and P dislocations due to their lateral 

motion. The third term represents the climb of the a  dislocation up (or down) the p 

step, and similarly for the P dislocation and the a  step. Note that the sign of the two 

terms in this bracket is opposite, because, whereas the a  defect moves left-to-right
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with respect to the (3, the (3 defect moves right-to-left with respect to a .  Again, for

grain boundaries, this equation is simplied as AX=0 for all species present and hence

the first term on the right of expression (3.23) is zero. Of course, other aspects of 

defect interaction, such as elastic and electrostatic interaction would need to be 

considered for a comprehensive analysis but this is outside the scope of this section. 

Equation (3.23) has proved very useful in charaterising defect interactions in 

martensite formation for example [7].
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Chapter 4: Transmission electron microscopy study of interfaces

Overview

Transmission electron microscopy provides invaluable contrast and 

diffraction information which facilitates the characterisation of interfacial structures 

and has consequently been used extensively in this field. However, the interpretation 

of such information relies on theories of electron diffraction and treatments which 

have been found useful are well documented in a number of textbooks for example 

Hirsch et al. [1J. It is not within the scope of this chapter to give an extensive 

description of such treatments, however, a background knowledge of the processes 

involved as well as the parameters which affect the image contrast is provided. 

Electron diffraction from a bicrystal can be considerably more complex than 

diffraction from single crystals and usually requires relatively simple diffracting 

conditions to be set up experimentally in order to interpret the observed contrast 

quantitatively. The second part of this chapter reviews the most common contrast 

effects associated with such imaging conditions and computer simulated images are 

used to illustrate their main characteristics.

IV.l The Kinematical Theory Of Electron Diffraction

The kinematical theory of electron diffraction is based on the assumption 

that the interaction between the crystal and the electrons is weak so that only a small 

number of incident electrons are thought to be scattered into the diffracted beam. As 

further scattering of diffracted electrons is neglected, the intensity of the main beam 

is therefore assumed to be constant as it propagates through the crystal. This theory 

has the advantage of being relatively simple and has found some successful 

applications in very thin crystals. However, the assumptions discussed above are 

rather poor for the analysis of thicker crystals where appreciable interaction between 

incident and diffracted beams does arise. The dynamical theory overcomes these 

limitations and is therefore preferred for the analysis of most electron micrographs.
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IV.2 The Two-Beam Dynamical Theory

IV.2,1 Basic equations in a perfect crystal

As discussed in the previous section, electron images of 

materials are normally interpreted in terms of the dynamical theory as the latter 

accurately describes the diffraction process taking place in the specimen. This 

treatment accounts for the interaction between scattered and transmitted electrons as 

well as absorption effects. The simplest form of the dynamical theory considers the 

amplitudes of only two electron waves T(z) and S(z) corresponding to the 

transmitted and scattered beams respectively (z representing the depth into the 

crystal in a direction parallel to the incident beam). As electrons from the diffracted 

beam may be scattered back into the transmitted one, a "dynamic exchange" results 

from the coupling of those two beams as they propagate into the crystal. An 

approximation, in which this exchange is assumed to take place within a narrow 

column taken through the crystal in the z direction, is used to describe this 

phenomenon; no exchange between the beams in adjacent columns is considered. 

Under such conditions, the coupling in an element dz, at a depth z in a small column 

of unfaulted material of thickness t (see Fig.4.1), is described by a pair of 

differential equations known as the Howie-Whelan equations and given below.

d T (z ) i n [ n
—  -----  = —  T (z) + —-  S (z) exp ( 2 7 r is z  ), (4.1)

d z 4  4

and

d S (z) i n  _ , , i n  ^  s
—  -----  = —  S (z) + —  T (z) exp ( - 2 ; r i s z  ) , (4.2)

d z £o

where s is a measure of the deviation from the exact Bragg angle (known as the 

excitation error), is the extinction distance for the diffracting vector g, 

represents the mean refractive index, g is the operating diffraction vector and the
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terms exp (2jtisz) describe a phase factor arising from the scattering process. The 

subscripts ‘g’ and ‘o’ apply to the diffracted and transmitted waves respectively .

Incident beam

Top

bottom

transmitted Diffracted

Fig 4.1 : Schematic illustration of the column approximation .

IV.2.2 Basic equations in a faulted material

In a column containing a dislocation, equations 4.1 and 4.2 are modified 

to introduce a phase factor 27tg.R (z) corresponding to the local bending of atomic 

planes caused by the strain field of the defect. R(z) is the displacement field 

associated with the discontinuity and in the case of dislocations the latter varies 

continuously throughout the crystal. The Howie-Whelan equations are therefore 

given by the following expressions

d T(z)  \n _  , . in  _ , . , _ .
---------  = —  T (z) + —  S (z) exp ( 2 7 n s z  + 2 ; r i g . R  (z) ) ,  (4.3)

and
d S(z) i n  _ . . i n  ^  „ .
---------  = —  S (z) + —-  T (z) exp ( - 2 7 T i s z - 2 7 r i g . R  (z))  (4.4)

d z 5o Sg

From the comparison of equations 4.1 with 4.3 (and 4.2 with 4.4), it emerges that the 

introduction of a defect alters the equation describing the perfect crystal by the term 

g.R(z) in both the transmitted and diffracted beam amplitudes. This aspect forms the
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basis of the so-called g.b invisibility criterion and the latter will be described further 

in section IV.3.

IV.2,3 Absorption of electrons

As electrons propagate through the crystal, an overall decrease in 

intensity corresponding to a loss by inelastic scattering is generally observed. This 

phenomenon, known as normal absorption, is also accompanied by anomalous 

absorption which relates to a selective absorption of electrons. Both types of 

absorption are allowed mathematically by replacing the terms l/^ g and l/^0 in the 

above equations by l/£ g +i/^g and l/^ 0 +i /^0' respectively. On making these 

substitutions, the Howie-Whelan have the following form

d T ( z )  
d z

and

d T(z) 
d z

= l n ' j _ +

V £o + £o y
T (z) + i K '  l S

k C ? . ,

= i n S ( z ) + in
v « .  + & y

S (z) exp ( 2 ; r i s z + 2 ; r i g . R ( z ) )

(4.5),

T (z) exp ( -  2 Trisz - 2  7ri g.R (z))

(4.6),

where and Çg’ are the parameters introduced to take account of absorption effects. 

Another set of equations, used for contrast calculations, may be obtained by 

multiplying the complex wave amplitudes S(z) and T(z) by suitable factors as 

follows

T (z) = T ( z ) e x p
(  • \  n  iz

(4.7)
v y

7riz
S (z) =S(z)exp |  2 ; r i z ------- + 27r i g . R (z)

*30
(4.8)

This substitution leads to another pair of differential equations related to the original 

ones by a phase factor which depend on z ; these are
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d T (z) 
d z V £o j

T (z) + n i
ySg + S g ,

S' ( z ) , (4.9)

and

d S (z) 
d z

= n i T (z) + S  (z) | —  + 2 ^ i s  + 2 ^ i d ( g ' R ( Z -
dz

(4.10)

The strain field of the defect enters equation (4.10) as g. dR(z)/dz and represents the 

local bending of crystal planes discussed earlier [1]. Finally, equations 4.9 and 4.10 

may be re-expressed in a unit of length equal to ^g/7i by substituting the variable z
Z7T

for another variable Z (where Z=—  ), which gives

d T (Z ) 
d Z

bs

V bo ;
t  (Z ) + i - •

V
S' (Z),

’g y
(4.11)

and, 

d S' (Z) 
d Z

i  Z )i
V £

T (Z)  +S'  (Z)
g \

E
8 + 2is£g + 27TÌ. d ( g . R ( Z ) )  

dZ

(4.12)

Equations 4.11 and 4.12 are now in the form used for contrast simulations [2]
£ E

The term —  denotes the apparent absorption mentioned earlier whereas
bo £g

represents the anomalous absorption A. The dimensionless term s^g represents a

measure of the deviation from the Bragg angle and is denoted w. d( g.R (Z))/dZ is 

designated Bg(Z) and correponds to an increase in the excitation s due to the

presence of a defect. It should be noted that the substitution of T ’ (z) and S’ (z) for 

T(z) and S(z) respectively, introduces a phase difference which can be neglected in 

contrast computer simulation as one is interested in the intensity of the electron 

waves at the bottom of each column, not in their amplitudes.
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IV.3 The “g.b = 0” Criterion for Grain Boundaries

The so called “g.b = 0” technique has been widely used for the 

determination of Burgers vectors associated with the observation of dislocations in 

single crystals. Provided that only two beams are excited the Howie-Whelan 

equations defined in 4.12 imply that dislocations vanish when B g’(z) =0. In 

elastically isotropic materials this condition is satisfied when g.b = 0 for screw 

dislocations, and when g.b and g.b x u = 0 for edge dislocations; u being a unit 

vector parallel to the dislocation line and b the Burgers vector of the defect. 

However, the above is not always true in anisotropic materials and the method may 

therefore not be reliable for identification of Burgers vectors in such materials. 

Another limitation to the use of this technique is associated with its rather poor 

resolution when dislocations having Burgers vectors of small magnitude have to be 

imaged (Pond [3]). As explained in Chapter 2, interfacial dislocations are often non

crystal dislocations whose Burgers vectors are usually small and the method should 

therefore be used with caution for the reasons given above. A matching technique, 

based on the theoretical simulation of micrographs from the integration of equations 

is therefore the preferred technique for the identification of interfacial defects.

IV.4 Weak-Beam-Dark-Field Imaging

In weak-beam-dark-field mode, the specimen is tilted so that a high- 

order diffraction spot is excited (e.g. 3g, 4g) and a dark-field image is then taken 

with an operating reflection such as -g for which the parameter s is fairly large. 

Under such conditions, the width of the defect is narrower and better resolution is 

therefore achieved. Under dynamical diffracting conditions and disregarding 

absorption effects, the diffracted and transmitted beam intensities are given by
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and

I0 (z) = ( 1 - I g (z) ) (4.14)

respectively, where Z is the thickness down a column in the diffracting grain, £,eff is 

the effective extinction distance (periodicity with which the two bloch waves beat 

together), and w is the deviation parameter defined earlier.

increases. Since the width of a dislocation is related to approximatively ^eff / 3, using 

large values of s results in a narrower image of most defects.

Fig.4.2 illustrates the main steps followed to obtain a weak beam image.

IV.5 Experimental Imaging Conditions

As stated earlier, electron diffraction from a bicrystal can be very 

complicated due to the relative crystallographic orientation of the constituent 

crystals. On crossing the interface, each of the beams excited in the upper crystal 

may give rise to further beams in the lower grain and these are coupled to an extent 

which depends upon the crystallographic relationship between the constituent 

crystals. A detailed interpretation of the micrograph may therefore be difficult unless 

relatively simple diffraction conditions are set up experimentally. Pond [4] reviewed 

the main diffracting conditions that have been found useful in the study of interfacial 

structures and these are briefly discussed below.

The effective exctinction distance is given by ¿;eff = and decreases as s
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F i g  4 . 2  : Schematic illustration of the weak beam dark field technique.

IV.5.1 Two-beam diffraction in one grain

The simplest imaging condition that may be set up 

experimentally consists in orientating the specimen so that one grain is set into a 

strong two-beam condition (generally using a low-order reflection) while negligible 

diffraction is maintained in the other grain. Either the upper (k) or lower (|i) crystal 

may be oriented for strong diffraction (see Fig.4.3 (a) and (b) ) and each situation 

generally leads to a different contrast. In what follows, the grain first irradiated by 

the incident beam is referred to as upper, and beam g ^  designates the diffracted 

beam having gW(1 as its reciprocal lattice vector. The “two-beam in one grain” mode 

is often selected to determine the topology of interfacial contours but should be used 

with care for quantitative contrast analysis as weak beams are inevitably excited in 

the “non-diffracting” grain and these may interact with the operating reflection in the
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diffracting crystal. Humble and Forwood [5] identified this problem and 

recommended the use of the simultaneous two-beam diffraction to overcome this 

issue.

b e a m

F i g  4 . 3  : Schematic illustration of the 2-beam diffraction mode; (a) the upper crystal X is diffracting 
and in (b) the lower one is orientated for strong diffraction.

IV.5.2 Simultaneous two-beam diffraction

This mode is set up by tilting the specimen so that a two-beam 

diffraction is obtained in one grain using a reflection gx, and subsequently tilting 

around an axis parallel gx until a two-beam condition, represented by the diffracting 

vector , in the other grain is satisfied (see Fig. 4.4). Best contrast is obtained by 

choosing diffraction vectors which are orthogonal . Forwood and Humble [6] 

showed that the main contrast features of images obtained in this mode are governed 

by strong beams and that weakly coupled beams have little influence. This makes 

this technique very useful and contrast analysis is generally carried out by 

comparison with theoretically simulated images.
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F i g  4 . 4  : Schematic illustration of the simultaneous 2-beam condition; the reciprocal vectors excited 
are represented by g> and in the upper and lower grains respectively.

IV.5.3 Same g diffraction condition

This is a special case of the simultaneous two-beam 

diffraction condition discussed above in which the sets of diffracting planes have 

identical spacings and orientation in the two crystals (see Fig. 4.5) i.e. gx = g . The 

lattices of the adjacent crystals are then referred to as being correlated. The diffracted 

beams g? and gM propagate in parallel directions and any offset of the diffracting 

planes at the interface can be detected.

F i g  4 . 5  : Schematic illustration of the simultaneous 2-beam diffraction condition in the case where 
the lattices of the adjacent grains are correlated.
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IV.6 Contrast Effects
Some distinct contrast effects are observed at interfaces where special 

diffraction conditions, such as those described in section IV.5.3, operate in the 

adjacent grains. This section reviews the main types of fringes arising at grain 

boundaries and their characteristic contrast behaviour is illustrated by computer 

simulated images.

IV.6.1 Thickness fringes

Thickness fringes are commonly observed at grain 

boundaries inclined to the specimen surface in which one of the constituent grains is 

diffracting strongly while negligible diffraction is maintained in the other crystal. 

Under such conditions, the “non-diffracting” grain can be regarded as an amorphous 

absorber and the bicrystal is therefore effectively a wedge-shaped crystal.

It is clear from equation (4.14) that the diffracted intensity becomes zero for z=0 

whereas, as z increases, it oscillates sinusoidally between zero and a maximum 

value which depends w. Consequently, the bright field (BF) image consists of a set 

of dark fringes (corresponding to I0 (z)=0) which run parallel to the intersection of 

the boundary with the surface of the foil . These connect regions of equivalent 

thickness and their separation depends on the effective extinction distance. When 

absorption effects are considered, the fringe intensity becomes damped with 

increased thickness and these will therefore display a stronger contrast away from 

the grain which is diffracting i.e. where the diffracting grain is the thinnest. The 

simulated image shown in Fig 4.6 together with the associated intensity profile 

illustrates this behaviour.
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a

Fig 4.6 : (a)Simulated image showing the decrease in thickness fringes intensity away from the 
diffracting crystal (k ) . (b) Corresponding intensity profile.

IV.6.2 A w fringes

A w fringes (also called 5 fringes) arise at interfaces imaged under the diffracting 

conditions described in section IV.5.3 and for which the deviation parameter w is 

different in the two adjacent crystals. Let w be designated by wx= sx £ in the upper

crystal and similarly w^ = s ^ g(l in the lower grain. The difference Aw is therefore 

given by Aw = wx - wM = sx ^gX - ŝ  £gM and will be non-zero if either the extinction 

distances associated with gx and g^ or the excitation errors sx and s  ̂are different. In 

other words, Aw is non-zero if either ^gX * £g(i ( with sx gx = sM g *0) or 

5,X=5gM ( with sx 8x * s^gj.

69



Chapter 4: Transmission electron microscopy study of interfaces

The contrast exhibited by Aw fringes has been extensively studied by Amelincks [7] 

in relatively thick specimens for the simple symmetrical case corresponding to sxgx=-

sMgM. It was shown that both the diffracted and transmitted beam intensities can be

written as the sum of three terms It( z ) , I2(z) and I3(z) which have either dominant or 

neglectable expressions at various depths z into the specimen. For instance, the 

expressions for I^z) and I2(z) can be neglected close to the entrance surface of the 

foil and the contrast at this depth can therefore be described in terms of I3(z) alone. 

Hence, by plotting the amplitudes of the dominant terms of I^ z ) , I2(z) and I3(z) as a

function of positions , one can deduce the contrast behaviour of Aw fringes by

studying extreme positions and phase differences. Details of the calculations can be 

found in the original paper [7] and will not be included here. However, the principal 

features exhibited by such fringes are summarised in Table 4.1 and illustrated below 

using computer-simulated images.

Table 4.1: Characteristics of Aw Fringes

' "v.  :
BRIGH T FIELD

___ ............'
— D A R k F lE tl)

Top Bottom Top Bottom

" v> "
w ;,\1. ..■ Af /A.yV v ‘

Aw < 0

Bright

Dark

Dark

Bright

Bright
.

Dark

Bright
VP-

■-V ■ V"
Dark

The observed feature consists of fringes of alternate contrast running parallel to the 

intersection of the boundary plane with the foil surface. The fringe pattern is 

asymmetric in bright field (i.e. outer fringes display different contrast) and 

symmetric in dark field. This effect is illustrated in Fig 4.7 for positive and negative

values of Aw. As the sign of Aw determines the nature of the top and bottom of the

foil (i.e bright or dark), the boundary plane inclination can then be identified.
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© In

Fig 4.7: Computer-simulated images of Aw fringes and associated intensity profiles.
(a) Aw >0 BF; (b) Aw >0 DF
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©

l/i

Fig 4.8 : Computer-simulated images of Aw fringes and associated intensity profiles,
(c) Aw<0 BF and (d) Aw<0 DF.
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IV.6.3 Displacement fringes

Displacement fringes (also called a  fringes) arise at interfaces oriented 

for simultaneous two-beam diffraction (see section IV.5.2) for which Aw is zero

(assuming that and sx = s^). If the planes giving rise to the scattering are

continuous through the interface (see Fig 4.9 ) no contrast will be observed provided 

gx and ĝ , are exactly parallel and have identical interplanar spacing in the two

crystals.

Fig 4.9 : Illustration showing diffracting planes being continuous across the interface.

However, if a displacement vector R is associated with one of the crystal (the bottom 

one say) these planes become offset at the interface and a phase factor a  = 27tgM. R is 

introduced (see Fig 4.10).

Fig 4.10: Schematic illustration o f the offset created by the displacement R at the interface.

This factor takes values from zero to 2n, depending on the value R, and this alters 

the observed contrast. The properties of such fringes are very similar to the contrast
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displayed by stacking faults and have been investigated by several authors [1], The 

same approach as the one discussed in section 5.2 can be adopted to describe the 

features exhibited by displacement fringes and these are summarised in Table 4.2 

and illustrated below.

Table 4.2: Characteristics exhibited by displacement fringes.

y 'y
k s s i s i r

b r i g h t  f i e l d DARK FIELD

Top Bottom Top Bottom

sin a  > 0

1 |®  f§

Bright Bright Bright Dark

sin a  < 0 Dark Dark Dark Bright

The contrast as a whole consists of bright and dark fringes which run parallel to the 

intersection of the boundary plane with the foil surface. In bright field, the fringe 

pattern is symmetrical (i.e. outer fringes are both dark or light) whereas it is 

asymmetric in dark field. This behaviour is illustrated in Figs.4.11and 4.12 for

positive and negative values of sina. The sign of sina  determines the nature of the

outer fringes and, again, this allows the boundary plane inclination to be determined. 

The set of fringes is invisible for g.R=0 and when g.R=l/2, the fringe pattern as a

whole is symmetrical about its centre and the fringes are referred to as k fringes (see

Fig 4.13). In this case only, the pattern is symmetric in both bright field and dark 

field.
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i

Fig 4.11: Computer-simulated images of displacement fringes and associated intensity profiles for
g.R=2/3 and sina >0. (a) Bright Field image and (b) Dark Field image
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F ig  4 .1 2 : Computer-simulated images of displacement fringes and associated intensity profiles for
g R=2/3 and sin« <0. (a) Bright Field image and (b) Dark Field image
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Ia

Fig 4.13: Computer-simulated images of n fringes and associated intensity profiles 
(a) BF image and (b) DF image.
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IV.6.4 Moire Fringes

Moiré fringes arise when two (or more) diffracted beams (gx and g ), originating

from a region where two crystals overlap, are allowed to interfere within the 

objective aperture of the microscope. The contrast displayed consists of regularly- 

spaced fringes superimposed on the image. One characteristic of moiré fringes is that

they always lie perpendicular to Ag= gx- g ,̂ and this feature allows the operator to

differentiate between the different types of fringes and moiré fringes. Moreover, 

moiré fringes tend to disappear when imaging conditions change. A detailed analysis 

of these fringes can be found in elsewhere [ 1], [2], for example.
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Overview

The first part of this chapter presents the main experimental techniques used for the 

preparation of both tungsten carbide and a-alumina thin films. As indicated in chapter

one, the study of interfacial features in zinc oxide was carried out from specimens and 

observations made at the Institute of Crystallography, Russian Academy of Science., 

Experimental techniques relevant to the successful preparation of zinc oxide bicrystals 

and determination of surface orientations can be found elsewhere [1].

The interpretation of interfacial features using the methods developed in earlier chapters 

necessitates prior knowledge of the boundary crystallography. It is therefore important 

to determine the orientation relationship between the constituent grains and also the 

boundary inclination and other crystallographic parameters accurately in order to 

perform a quantitative analysis. The necessary information may be obtained 

experimentally from observations made in the transmission electron microscope using 

the procedures outlined in this chapter. However, crystallographic calculations in the 

hexagonal system may be complicated unless a suitable coordinate frame is chosen. 

The four-dimensional framework in which all crystallographic calculations were 

performed facilitates vector manipulation and an outline of the method is therefore 

presented.

V.l Specimen Preparation and Observation

Specimens of tungsten carbide and a-alumina were prepared in the following 

way. 3 mm WC discs were spark-eroded and subsequently mounted on a metal 

support. Each disc was ground to a thickness approximative^ equal to 100 pm, and

both surfaces were given a 1 pm polish. Individual specimen were then mounted on a

copper grid. One face was then dimpled (see Fig 5.1) before thinning was carried out 

in a Gatan ion mill (model 691) at 8° until perforation. Further milling was 

subsequently carried out at shallower angles (typically between 2 or 5°). The
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t
preparation of thin specimens of a-alumina was found to be improved by dimpling

both specimen faces, however, care should be taken during this procedure due to the 

brittleness of the samples.

100 pm

Dimple

3 mm

Fig 5.1 : Schematic illustration of the specimen geometry befor ion-milling.

All specimens were observed in a JEOL 2000FX Transmission Electron Microscope 

(TEM) operating at 200 kv and grain boundaries were imaged using the diffracting 

conditions presented in chapter 4. Due to problems associated with charging of the

specimens, a-alumina samples were carbon coated and observed using low spot sizes.

a-alumina grain boundaries were also imaged in a VG601UX field emission Scanning

Transmission Electron Microscope (STEM) to determine the extent of interfacial 

segregation. The qualitative energy dispersive X-ray analysis data presented in chapter 

6 was obtained as follows. First, a boundary was chosen as near as possible oriented 

parallel to the electron beam, in a reasonably thin area. The scan rotation control was 

used to align the boundary image parallel to the line scan (the horizontal direction on 

the screen). The microscope was operated at nominal magnification IMx, 2Mx or 

5Mx, in the reduced-area mode and data was acquired by defining a box within the 

grain boundary area, and in the matrix for qualitative comparison.
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V .2  H ex a g o n a l C r y s ta l lo g r a p h y

The methods presented in this chapter involve numerous crystallographic 

manipulations performed in the four-dimensional frame introduced by Frank [2], This 

approach presents several advantages over conventional indexing techniques and 

facilitates crystallographic calculations in the hexagonal system. An account of Frank’s 

approach is given below together with a description of some of the hexagonal systems 

commonly encountered in the literature.

V.2.1 Miller notation

Fig 5.2(a) is a schematic representation of the Miller system. Three 

primitive vectors a,, a2 and c are used to define directions and planes (represented by 

[uvwj and (hkl) respectively). The main disadvantage associated with the application 

of this notation to hexagonal crystals lies in the fact that equivalent directions bear

different indices. For instance, [211] and [111] represent equivalent directions but

[ 111] and [ 11 l]do not. The Miller-Bravais notation makes the symmetry of the crystal 

apparent and is described below.

a b

Fig 5 .2  : Schematic illustration of the (a) Miller notation and (b) the Miller-Bravais notation
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V.1.2 Miller-Bravais notation

The Miller-Bravais notation uses four axes defined by the primitive 

vectors a,, a2, a, and c (see Fig 5.2(b)) where a,+ a2+ a3= 0. A direction is therefore 

represented by the four indices [uvtw] (also denoted [uv.w]) and a plane by (hkil) (or 

(hk.l)). Unlike in the cubic system where a plane and its normal are represented by the 

same set of indices, the normal to the plane (hkil) depends on the ratio c/a and is given 

by |hki 3/2(a/c)2lJ. Although the Miller-Bravais scheme presents some advantages 

over the Miller description, commonly performed calculations are relatively 

complicated. The method developed by Frank [2] removes these complexities and 

allows such operations to be carried out readily.

V.2.3 Frank’s method

Crystallographic calculations in materials belonging to the cubic system are 

facilitated by the use of a Cartesian set of axes. Frank [2] showed that if one imagines 

a conventional hexagonal cell as a three-dimensional projection of a four-dimensional 

cubic frame, the complexities associated with crystallographic calculations in the 

Miller-Bravais scheme are removed . The four-dimensional projection of a Cartesian 

frame in a three-dimensional space is best illustrated by initially considering the 

projection of a 3-D cube onto a two-dimensional plane as illustrated in Fig 5.3(a). The 

primitive vectors [100], [010] and [001] are projected along a body diagonal (here 

11111) and the components parallel to the plane of projection can be shown to be 1/3

| 2111, 1/3 [121], and 1/3 [112] respectively, as indicated in Fig 5.3(a). Consider 

now the analogous projection of a hypercube defined in a four-dimensional space by 

unit vectors e,, e2, e, and e4 equal to [1000]4, [0100]4, [0010]4 and [0001 ]4 

respectively , along the direction 11110]4 (the subscript 4 indicating a four-dimensional 

Cartesian frame). This projection defines a subspace cell represented by unit vectors

equal to, 1/3 [2110]4, 1/3 [ 1210]4, 1/3 [1120]4, and [0001]4 respectively as indicated 

in Fig 5.3(b). The conventional Miller-Bravais cell shown in Fig 5.2(b) can therefore 

be interpreted as the projection of the subcell described above providing the latter is 

scaled so that its dimensions correspond to the c/a ratio of the material investigated
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Frank showed that the scaling factor required, designated A, is equal to c/e=(2/3)1/2

c/a. The transformation between directions indexed according to the Miller-Bravais 

scheme and the four-vector notation is relatively easy. A direction (uvtw] in Miller-

Bravais notation for example, corresponds to the four-vector [uvt Aw]4 and the normal 

to the plane (hkil)MB is given by [hki 1/A]4.

llTTTl
I
l

(a)

1/3 [ 1 1 2 0 ] 4

1 / 3 [ 1 2 1 0 1
4

1/3 [ 21  1 0 ]
4

(b)

F ig  5.3: (a) Schematic representation of the projection of a cube along the <111> direction (after 
reB) and (b) basal plane of the hexagonal structure in Frank’s notation.
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The most commonly used crystallographic entities defined in this space are described 

below.

(i) The magnitude of the vector [uvt Aw]4 is given by

Vu2 + v2 + t2 + A2w2 in units of e (or J — a) V 2 (5.1)

(ii) The scalar product between [u,v,t, Aw,]4 and [u2v2t2 Aw2]4 is equal to

u iu2+viv2+tit2+ A2 wiw2 in units of e2. (5.2)

(iii) The angle between [ u ^ t ,  Aw,]4 and [u2v2t2 Aw2]4 is given by

cos 9 =
uiu2 + VjV2 + t,t2 + A2w,w2

■^uf + vf + t,2 + A2w2 ^/u2 + v2 + t2 + A2w
(5.3)

(iv) The vector product between [u^jtj Aw,]4 and [u2v2t2 Aw2]4 is obtained by 

expanding the following matrix ¡4]

el e2 e3 e4
1 1 1 0A Vi Vi

u, vi t, Aw,

u2 V2 12 Aw2

(v) The interplanar spacing (d) of the planes (hkil) can be calculated from

d= in units of e. (5.5)

h2 + k2 + i2 +
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V .3  O r ie n ta t io n  R e la t io n s h ip

V.3.1 General procedure

The relative orientation between crystals abutting at a grain boundary is 

generally expressed mathematically by means of a matrix P representing a right-handed

rotation 9 about an axis r common to both crystals. The pair r/0, referred to as the

axis/angle pair, may be obtained experimentally by determining at least two sets of 

parallel directions in each crystal. Beam directions represent a convenient choice for 

such directions as they can be calculated with good accuracy using the method 

described in V.3.2. The orientation relationship is therefore determined by indexing 

parallel beam directions with respect to both crystals for several goniometer settings. 

The axis/angle pair may be derived using the methods outlined in V.3.3 and the 

rotation matrix calculated as described in section V.3.4.

V.3.2 Accurate determination of beam directions (B)

Several methods may be used for the determination of beam directions (see 

Von Heinmendahl et al [5], or Pumphrey and Bowkett [6] for example). A typical 

procedure consists of orientating the specimen so that three pairs of Kikuchi lines 

intersect to form a triangle as depicted in Fig 5.4. The direction of the electron beam 

with the pattern is denoted O and the trace of a plane is represented by a dotted line 

midway through the associated pair of Kikuchi lines. In addition, the diffraction vector 

gj, perpendicular to the plane ( h ^ l ^ ,  is expressed as a reciprocal four-vector by

hjkjijlj/A (with i= l,2,3..n). Kikuchi lines can be indexed specifically by measuring the

spacings p,, p2, p3 ( proportional to the Bragg angle) and the angles between the 

diffraction vectors involved. Once the Kikuchi lines have been indexed, the poles A, B
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and C may be obtained by taking the respective cross products, for example, 

A = fh2k2i2l2/A]4 X £h1k1i1l,/A]4 (A pointing into the page).

1T92

N
9 3  91

Trace of (h3 k3 i3 h )

Fig 5.4 : Schematic illustration of the indexing of a Kikuchi pattern.

The calculation of the beam direction from such a pattern is based on the angular 

position of the Kikuchi lines with respect to O. The pattern can therefore be calibrated

so that the distances OA, OB and OC are converted into angles (¡)1, cj)2 and (j)3

respectively by calculating the angles separating the poles A, B and C using (5.3) and 

measuring the corresponding distances AB, BC and AC. If the beam direction is

represented by |uvtAco|4, the latter may then be calculated by solving the following

system of equations

cos
up, + vq, + tr, + A2ws

2 9 ?u~ + v~ + t~ + ^Awj
2 2  2  /  \  2 

P, +Qi + r ,  +(s,A)
(5.6)
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COS 0 2 =
up2 + v q 2 + tr2 + A2w s2 (5.7)

u2 + v2 + 12 + -\jp2 + q 2 + r 2 + ( s2a |

COS 03  =
itp3 + v q 3 + tr3 + A2w s3 (5.8)

u2 + v2 + t2 + ^Awj y p3 + q 3 + r 3 + ( s3a |

u + v + t = 0, (5.9)

where [p, q, r, As,j4 represents the indices of the poles A, B and C (with i= 1,2,3).

The above method clearly relies on the accurate conversion of distances into angles and 

is therefore limited by the accuracy of the measurements involved. The mathematical 

approach proposed by Ball [7] employs a least square minimisation to compute the best 

value of B from a set of experimental data. The method optimises the problems 

described above and was therefore used throughout this work. Although Ball’s 

algorithm was developed for cubic crystals, MacLaren [8] showed it is valid in the 

hexagonal system provided the 4-D cubic reference frame proposed by Frank was used 

throughout. An outline of the principles of the modified method is now presented. 

Ball’s derivation assumes that the centre of the Kikuchi pattern (point designated O in 

Fig 5.4) has been located and that Kikuchi lines have been identified and indexed.

For a Kikuchi line j, a unit vector ĝ , can be found so that

gj . B = sin 0j , (5.10)

where 0, is the Bragg angle and B the beam direction corresponding to this condition. 

Taking experimental errors into account, a parameter fj is defined so that

fj = gj • B - sin 6i , (5.11)

or f = g . B - sin 6 for simplicity. (5.12)
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Let the diffraction vectors g and B be defined by the general indices hkil/A and 

|uvtAwj4 respectively. Substituting for the indices of g and B in equation 5.12 gives

f = hu + kv + it + Iw - sin#, (5.13)

and since B is a unit vector we also have

w
( l - ( u 2 + v 2 + t2))

(5.14)

which yields

( u  +  v )  +  —  ,1 ( l - 2 ( u 2 +  v 2 +  t 2 ) )
' ' A  V\ \ >)

with u+v =-t.

Ball defined two parameters Fu and Fv minimising the sum of the squares of f as 

follows

and

(5.16)

(5.17)

where —  ( — ) is the derivative of Fu (Fv), and showed that if |u 0,
d.. ()„

,t0,Aw0]4 is a

good approximation forB, then a better solution is given by [(u0-U), (v0-V), -(u+v), 

( l- (u 2+v2+t2) 1/2], where u = u0-U,v = vn-V and t = -(u+v) and both U and V are 

solutions of the following simultaneous equations
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and

X ( F u)2 U + I ( F „ F Y) v  = X F „ f ,  (5.18)

X ( F , F , ) u + X ( F . ) 2 V = X F .f -  (5.19)

The summations designated by X are made over all the pairs of Kikuchi lines identified

on the micrograph and a minimum of seven should be selected to achieve reasonable 

accuracy. As a first approximation for B , the indices of poles such as A,B and C in

Fig 5.4 arc used; i.e [pj qj q AsJ4 = [u0, v0,t0,A w J4 . In practice, the solutions for B

converge rapidly (typically after five iterations) unless the first approximation is very 

p o o r . All the calculations can be performed on a personal computer in a very short 

time. A Kikuchi pattern, showing the Kikuchi lines selected for a typical calculation is 

presented in Fig 5.5.

Fig 5.5: Micrograph showing a typical Kikuchi pattern
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V.3.3 Determination of the Angle/axis pairlRZOl

As stated earlier, the angle/axis pair can be determined from the knowledge of 

at least two sets of parallel directions in each crystal. Several methods are available for 

such a calculation and the technique due to Forwood and Clareborough [9], presented 

below, involving simple crystallographic calculations is used throughout this w ork. 

Let p and q be a pair of parallel beam directions specified by the unit vectors xp , yp 

and xq , yq respectively as shown in Fig 5.6.

F i g  5 . 6  : Schematic representation of the determination of the axis/angle pair r /0 .(after ref 9 )
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It can be shown that for the beam direction p the rotation axis, R , lies on the zone PP’ 

given by

xp x (5.20)

Similarly with the beam direction q, r lies on the zone QQ’ defined by

Q = Xq X (5.21)

The intersection of the zones PP and QQ represents the rotation axis R; i.e,

r = [P x Q ]4 / [ p x Q ]4 , (5.22)

expressed as a unit vector. The angle 0 is given by

...... , f [R x x pL t Rxy
R x y p

V.3.4 Determination of the matrix P representing the misorientation

The rotation matrix corresponding to specific axis/angle pairs can be obtained 

following the procedure developed by Pond et al [4] and described below. A general

rotation 0 about an axis parallel to e , is first formulated in a 4-space frame. This

situation is illustrated schematically in Fig 5.7 where the axes before rotation are 

labelled e,, e2, e, and e, ,e2 ,e3 after rotation. It can be shown that the matrix 

represented such an operation is given by

R x x .
(5.23)
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costì -sintì 0 0
sintì costì 0 0

0 0 1 0
0 0 0 ±1

(5.24)

The column vectors of R are four-vectors representing the rotated axes expressed in

the initial coordinate frame.

e

® e 3

Fig 5 .7  : Schematic illustration of the derivation of the matrix R.

R may now be re-expressed as a rotation about a specific axis designated by its indices 

[u3,v3,t3,Aw3]4 in the coordinate frame of the reference crystal using the transformation 

P = TRT \  where the matrix T has the form

T =

U1 U2 U3
1

Vi

V1 V2 V3
1

■ s (5.25)

t. *2 t3
I

Vi
A Wj A w2 A w3 0
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The matrix T is composed of four unit 4-vectors parallel to the unrotated axes of the 

initial frame but expressed in the reference crystal. The first column corresponds to an 

arbitrary direction perpendicular to e3 while the second column is obtained by taking

the cross-product of |u 3,v3,t3,Aw3]4 with [u1,v1,t,,A w 1]4. The fourth column

corresponds to the unit vector parallel to the projection direction.

It is also convenient to be able to perform the reverse calculations, i.e. determining the

axis/angle pair [u3,v3,t3,Aw3J4 / 0, from a given rotation matrix P. The misorientation 

angle 0 can be readily obtained from the trace of the matrix; it is equal to (2+2 cos 0) if 

P leaves the fourth dimension invariant or (2 cos 0) in other cases [4], The rotation 

axis [u3,v3,t3,Aw3]4 can be obtained by expanding the following determinant

e, e2 e3 e4
1 1 1 0

p ( l . l ) - 1 p ( l ,2 ) p (i. 3) pM
V(2A) p ( 2 , 2 ) - l p (2 ,3 ) p (2 .4

, (5.26)

where p(i,j) represents the element in the i* column and j 'h row of P Pond et al [4]. 

Due to the symmetry exhibited by the constituent crystals, equivalent descriptions of 

the axis/angle pair and the rotation matrix P exist. These can be determined by 

combining the rotation matrix P with each of the proper symmetry operators contained

in the spacegroup of the reference crystal in turn. In other words, if X is taken as the

reference frame, equivalent descriptions of P will be given by

(5.27)

where W(A.), corresponds to the ith symmetry operation in white crystal’s spacegroup.

Equivalent descriptions of the axis/angle pair can then be determined from the set of 

equivalent matrices generated by (5.22) using the method described earlier. It is often
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useful to describe experimental descriptions as the deviation from a reference structure. 

If Pcxp and Pref are the matrices corresponding to the experimental and reference 

orientations respectively, the deviation from the reference structure (Pdev) is expressed

as:

P dev= Pexp Prêt ^  ( 5 - 2 8 )

V.4 D e te r m in a t io n  O f T h e  L in e  D ir e c tio n  O f I n te r fa c ia l  

D e f e c t s .

The method described here uses trace analysis to determine the true line 

direction u of discontinuities arising at interfaces . Images of the defects are taken in at 

least three different diffracting conditions gj (and three beam directions Bj) so as to 

obtain three corresponding projections of u denoted by u( (where i =1,2,3). For each

image, the angle 0, that the projected line direction u, makes with the diffracting vector

gi (in the direction g,’ ) is measured (see Fig 5.8). The true crystallographic direction 

of the defect can then be determined using trace analysis as described below.

First, the great circles associated with each beam direction B; are plotted on the 

stereogram and the corresponding diffraction vectors gt are marked accordingly (see 

Fig. 5.9). Next, each projected line direction Uj is plotted at the corresponding angle 

from g, and in the correct sense. The true line direction u lying in the plane containing 

both the beam direction and the projected line direction u, for each of the operative 

reflections, the region where these planes intersect (U in Fig 5.9) represents the true 

line direction of the defect.
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Fig 5.8: Schematic illustration of the measurement involved in the determination of the line
direction.

Fig 5.9 : Schematic illustration of the determination of the true line direction

V .5  D e te r m in a t io n  O f T h e  B o u n d a r y  P la n e

The boundary plane can be determined using the method presented in V.4 

provided two features lying in the interface can be identified. These can be dislocations 

or any other linear feature such as the intersection of the boundary plane with the
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specimen surface. If the line directions of these features are designated by u, and u2 

respectively, the boundary plane normal (n) is simply given by

n = u, x u2 (5.29)

from which the boundary plane indices can be determined (see section V.2.3)

V .6  D e te r m in a t io n  O f T h e F o il N o r m a l

The foil normal, indexed with respect to both grains, can be determined by 

stereographic techniques from the traces of features lying in the surface of the foil. 

However, a simpler method consists in determining the beam direction at zero degree 

tilt of the goniometer.
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O verview

As discussed in III-4, the topological theory may be used to characterise 

interfacial features a-posteriori, and this approach is therefore particularly useful for 

the interpretation of observations made by high-resolution microscopy (HREM). 

Circuit mapping was used in the present work to study the structure of ZnO grain 

boundaries exhibiting predetermined misorientations. The first section of this chapter 

presents the crystallography and observations associated with two boundaries which 

may be described as belonging to the “special” category introduced in chapter 1 . The 

characterisation of these interfaces was carried out from supplied micrographs (see 

chapter 5) and the details concerning both the fabrication of ZnO bicrystals and the 

HREM image parameters used can be found elsewhere [1], In the second section, 

experimental observations of three special high-angle grain boundaries are presented, 

and a detailed analysis of these observations can be found in chapter 7. Selected 

images, obtained under various diffracting conditions, are shown, and the 

crystallographic parameters describing each interface are given. Finally, a third section

discusses the observation and analysis of grain boundaries in a-alumina (sapphire). 

V I J  S tr u c tu r e  O f  G r a in  B o u n d a r ie s  In Z n O

VI. 1.1 Crystallographic considerations

A solid-phase method [2| was used to produce two bicrystals with specific 

target misorientations 0, corresponding to rotations equal to 19 and 30° about the 

common |(M)()1] direction. The [0001] axes were found to be aligned within 

experimental accuracy whereas measured rotation angles, 0cxp, deviated slightly from

0t, as indicated in Table 6.1. As explained earlier, dichromatic patterns are useful as 

reference spaces for characterisation of the defect content of interfaces, and the most 

appropriate ones, with rotation angles 0rcf close to that observed experimentally, were
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identified for each bicrystal. Table 6.1 shows the corresponding angular deviations A 6 

from these reference orientations.

Table 6.1. Crystallographic parameters

X surface p surface O e x p * * AQ

(1320) (0110) 19° 17.8 ± 0 .1° 17.89° 0.09°

(0110) (1120) 30° 31.5 ± 0.1° 32.2° -0.7°

The orientation [0001]/17.8 ±0.1° corresponds within experimental accuracy, to that 

of the periodic dichromatic pattern with rotation angle 0ref =17.89° shown in Fig

6.1(a). In CSL terminology, the orientation [0001 J/17.890 is referred to as X=13.

First, the white lattice (X) was constructed in an orientation corresponding to that 

observed experimentally, i.e. with hexagons connecting ZnO atomic columns (dark 

honeycomb structure in Fig 6.2). The X pattern was then copied and rotated by exactly

17.89° about [0001] to create the p lattice. The superimposition of the two lattices

corresponds to the configuration shown in Fig 6.1a. Similarly, the orientation 

[0001]/31.5±0.1° is very close to that of the periodic dichromatic pattern with 

0ref =32.2° (Z=31 ) depicted in Fig 6.1 (b).
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Fig 6.1: Dichromatic patterns formed by rotation of hexagonal lattices by (a) [00011 /17.890
(2=31) and (b) [0001 ]/ 32.2° (1=13)
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VI. 1.2 Experimental observations and specification of defect content 

a) 17.8° Tilt boundary

A high-resolution micrograph of this boundary is shown in Fig 6.2 and an 

image, obtained at a higher-magnification, is presented in Fig 6.3. In both images, 

the common [0001] direction points outwards from the page, and the dark honeycomb 

structure represents ZnO atomic columns whereas bright spots correspond to channels 

between them. The boundary is relatively flat in this region and adjacent crystals 

appear almost undistorted right up to the interface. The misorientation between the

grains being very close to that for the Z=31 periodic dichromatic pattern, the latter is

therefore the most appropriate reference for the specification of dislocation content and 

crystallographic features of the boundary. A first circuit SXF was constructed as

shown in Fig 6.2, with segments C(X)=SX=l/3[52 2 50 0 ]x and

C (|i)=X F=l/3[58 20 38 0 ]M.The interface normal, locally parallel to C(A,) x [0001]

in the X frame ([0001] x C(p) in the p. frame) was found to be [8 17 9 0],

/[ 3 16 13 0]M . With reference to Fig 6.1 (a), the interface plane is locally parallel to

PM and the circuit indicated corresponds to two periods of the Z=31 (8 17 9 0 \  

interface. The defect content, determined by mapping the constructed circuit into the 

1=31 periodic dichromatic pattern, leads to a closure failure equal to zero, i.e. C(X,p)

= C(A.)+P C(p) P 1 = 0 when expressed in the X frame. This result is consistent with

the region of interface encompassed by the circuit being locally defect-free and 

periodic. The same procedure was followed for the characterisation of another region 

of this interface, shown in Fig 6.3.
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Fig 6 .2  : High-resolution micrograph of 17.8° tilt boundary. After ref [1]

Fig 6.3: Another region of the 17.8° tilt boundary. After ref[l]

It is clear from Fig 6.3 that the boundary structure comprises a sequence of channels 

coordinated by fivefold, sixfold, and sevenfold arrangements of atomic columns and 

this will be discussed in more detail in chapter 7.

A circuit, labeled SXF, was constructed as illustrated, with 

C(X)=SX=l/3[22 2 20 0 ]x and C(|i)=XF=L 8 3 5 0]p. When this circuit is

mapped into Fig 6.1 (a), the closure failure is expressed as C(A,,p) = C(À,)+P C((i) P '1
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= 1/93'|7 11 4 0], and the total dislocation content has therefore a Burgers content

equal to l/93[7 114 0] which corresponds to an interfacial edge dislocation with 

minimum magnitude. Again, this will be discussed further in chapter 7.

b) 31.5° tilt boundary

A low-magnification image of the studied 31.5" tilt boundary is shown in Fig 6.4. In 

contrast to the 17.8° tilt boundary, this interface is not planar and exhibits several 

facets, labeled facets A to E in Fig 6.4, in the [0001] zone. The pairs of facets A and 

C, and B and D, have similar orientations and are described in more detail. As 

discussed earlier, the observed misorientation between the adjacent grains corresponds

to that for the periodic E=13 dichromatic pattern illustrated in Fig 6.1 (b ) . The latter is

therefore a suitable reference space for the specification of defect content and 

crystallographic features associated with this boundary. Circuits encircling the 

observed facets were constructed and the orientation of facets D and C were found to

be close to the (2 7 5 0)x and (1 3 4 0)x boundaries labeled TR and PR respectively

in Fig 6.1 (b).

Fig 6.4 : Low- magnification image of 31.5° tilt boundary exhibiting faceted structure. After ref[ 1 ]
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Filtered images of these facets, obtained at a higher magnification, are presented in Fig

6.5 (a) and Fig 6.5 (b) respectively (note that the tunnels between atomic columns 

appear in dark contrast in Fig 6.5 (b)). It is clear from these images that the structure of 

both these facets can be described in terms of arrangements of fivefold, sixfold- and 

sevenfold-coordinated channels, similarly to the 17.8° boundary.

Fig 6.5 : Filtered images of (a) facet D and (b) facet C of die 31.5° boundary. After ref[l]

The defect content of both facet D and C was characterised by circuit mapping as 

explained in section III.4. A circuit was constructed around facet D, as illustrated in

Fig 6.5 (a), with segments C(X)=SX=[31 8 23 0 ]x and C(|i)

=XF=1/3(31 23 8 ()]M, and subsequently mapped into Fig 6.1(b) to give a closure

failure C(X,fi)=l/39[ 2 7 5 0]x. Thus, the circuit encompasses an interfacial

dislocation with b= 1/39(2 7 5 0]x . The topological significance of this result is 

explained in detail in chapter 7. A second circuit was constructed in a similar way
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around facet C (see Fig 6.5 (b)) with segments C(A,)=SX=[19 11 8 0]x and C(|i)

=XF=l/3[ 46 53 7 0]r  When mapped into the dichromatic pattern shown in Fig 6.1

(b), this circuit gives a closure failure C(A,,p)=l/39[5 2 7 0]x. Again, the dislocation

content of this facet has a total Burgers vector equal to b= l/39[ 5 2 7 0]x, and this is 

discussed further in chapter 7.

V I .2 S tr u c tu r e  O f  G ra in  B o u n d a r ie s  In  T u n g ste n  C a r b id e

The vast majority of high-angle grain boundaries observed in this work were 

planar with no resolvable features in them. However, some planar and non-planar 

interfaces, both containing dislocation networks, were imaged and these are presented 

below. A brief description of the symmetry and grade of material used can be found in 

appendix 1.

VI-2.1 Example of a non-planar grain boundary ( grain boundary 1)

(a) Observations

Fig 6.6 (a-d) are micrographs of this non-planar boundary, taken under three 

different diffracting conditions using a JEOL 2000 FX microscope operating at 200kv. 

Two sets of closely-spaced dislocations (denoted set a and b ) are clearly visible on 

some of these images, however, it is interesting to note that the contrast displayed by 

both sets in Fig 6.6(d) is very weak. A schematic illustration of the boundary, 

showing the non-planar nature of this interface together with a schematic arrangement 

of the dislocation network, is represented in Fig 6.7. The orientation and
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crystallographic parameters describing this interface were calculated using the 

experimental methods described in chapter 5, and are summarised below.
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20 nm

Fig 6 .7 : Bright field micrograph of grain boundary 1 imaged with (a) gM= 0111 and (b) gx= 1011 (e)

&=1101 and(d)g*=1212.
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Fig 6.7 : Schematic illustration of grain boundary 1 showing its non-planar nature.

(b) Grain boundary crystallography
(i

The method presented in 5.2.3 gives one description of the relative orientation 

between the grains abutting at the interface. However, due to the symmetry exhibited 

by the constituent crystals, 12 equivalent descriptions can be derived using equation

(5.27), and these are given in Table 6.2.

Due to the non-planar nature of this interface, the boundary plane normal, n, was 

determined in regions where the line direction of the observed defects appeared 

invariant. Such a region is denoted by arrows in Fig 6.6(a), and the boundary plane 

normal in this area is given by n = [0.0286; 0.6870; -.7156; 0.1218]4. The spacing of 

dislocations in set b could not be determined accurately from observations but is

considerably smaller than that of dislocations in set a (~ 6.5 nm).
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Table 6.2 : 12 Equivalent descriptions of R/0 for grain boundary 1.

R 0 (Degrees)
1 [-.7466; .3663; .3803;-.4044]4 79.503

2 [ .3065;-.6016; .2951 ;-.6759]4 105.05

3 [-.2373; .2464; ,4837;-.8055]4 161.53

4 [-.7740; .6119; . 1621 ;-.0659]4 108.42

5 [-.1367; .6552;-.5185;-.5320]4 146.65

6 [ .5203;. 1371 ;-.6575;- .5272], 145.33

7 [-.5068;.7513; -.2443; -.3447], 119.56

8 [ .7547;-.2453;-.5089; -.3333]4 118.72

9 [ .2111; .4380; -.6492; -.5848], 179.50

10 [ .6862;-.6775;-.0848; -.2644], 74.66

11 [-.4869;-.0614; .4930; -.7209], 115.10

12 [-.0536; .4305; -.4258;-.8549]4 150.10

VI.2.2 Example of a planar grain boundary ( grain boundary 2)

(a) Observations

Several micrographs of this planar boundary, imaged under different 2-beam 

diffracting conditions, are presented in Fig 6.8 (a-c). Although one set of dislocations 

is only visible on each of the micrographs, the presence of at least one other non

resol vable set is very likely. The orientation relationship and the crystallographic 

parameters representing the boundary are presented below.

(b) Grain boundary crystallography

The 12 equivalent descriptions associated with the boundary orientation are given in 

Table 6.3. The boundary plane normal, calculated using the methods introduced in 

5.2.4, was determined with better accuracy in this case and was found to be
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1-0.5004; 0.0101; 0.4903; 0.7134]4. The spacing between the dislocations in the 

observed set was found to be ~ 8.8 nm.

I l l



Chapter 6: Theoretical and experimental results

Fig 6 .8 : Bright field micrograph of grain boundary 2 imaged with (a) gM= 0111, (b) gj= 0001, (c)

gr=H 20.

Table 6.3 : 12 Equivalent descriptions of R/0 for grain boundary 2

0 (Degrees)
1 [.6618;-.6832;.0213;-.3076]4 80.02

2 [ ,0165;.5111;-.5277;-.6781]4 112.68

3 [-.4494;.0140;.4353;.7799]4 155.55

4 [-.7327;.5302;.2025;-.3753]4 117.17

5 [-.2050;-.7418;.5368;-.3455]4 114.90

6 [ -.4526;-.1728;.6254;-.6116]4 178.03

7 [-.5828;.7863;-.2034;-.0222]4 104.60

8 [ -,6505;.1687;.4817;-.5623]4 146.14

9 [ -. 1704;-.4864;.6569;-.5501]4 142.63

10 [ .2668;.2424;-.5093;-.7814]4 157.18

11 [-.3842;.7655;-.4010;-.3247]4 80.68

12 [.6048;-.3168;-.2879;-.6714]4 111.27

112



Chapter 6: Theoretical and experimental results

VI 2.3 Example of a faceted Grain boundary ( grain boundary 3)

(a) Observations

Images of this faceted boundary are presented in Fig 6.9 (a-b) for two 

operating diffracting vectors. Two sets of facets a, c, e, (set 1) and b, d, f  (set 2) are 

clearly visible on these micrographs but no resolvable dislocation network was 

observed.

(b) Grain boundary crystallography

The orientation relationship between the constituent crystal was calculated as 

stated in section 5.2.4 and the 12 equivalent descriptions of the angle/axis pair 

representing this relationship are given in Table 6.4.

Table 6.4: 12 Equivalent descriptions of R/0 for grain boundary 3.

R 0 (Degrees)
1 [.6344;-. 1612;-.4731 ;-.5895]4 30.04

2 [ -.1334;. 1666;-.0331 ;-.9763]4 105.12

3 [.0299;. 1141 ;-.1440;-.9824]4 134.40

4 [.8052;-.4870;-.3279;-.0829]4 155.32

5 [.2767 ;-.7337;.4570;-.4197J4 179.98

6 [-.4974;-.2900;.7832;-.2203]4 161.52

7 [.6071;-.7112;.1040;-.3386]4 171.26

8 [ -.7571 ;. 1440;.6130;.1734]4 152.71

9 [ -.1089;-.5918;.7007;-.3831]4 179.81

10 [ .1501 ;.0726;-.2209;.9610]4 78.58

1 1 l-.3370;.2205;.1164;.9078]4 50.46

12 [-.0460;. 1395;-.0934;-.9847]4 158.29
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5 0 n m
-------

Fig 6 .9 : Bright fie ld  micrograph of grain boundary 3 imaged with (a) g(,= 0111, (b) gx= 1011

The intersection that the boundary plane makes with the specimen surface was used to 

calculate the normals n, and n2 to set 1 and set 2 respectively. Using trace analysis, 

n,= [-.0.4503; 0.8056; -0.3551; 0.1480]4 and n2= [0.1536; -0.1139; -0.0397;
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0.9807]4 and these directions are 0.83° and 3.31° away from the normals to (4731) 

and (1105)respectively.

VI.3 Analysis of Grain Boundaries in ot-Alumina (sapphire)

Two discs of sintered a-alumina were obtained from the University of Birmingham,

both had been heat treated at 1600°C for different cycle periods. Basic metallographic 

preparation and optical microscopy revealed numerous grain boundaries in both 

samples. X-ray diffraction was carried out on the as-received materials to confirm that 

no other phases were present. Numerous thin specimens were prepared from both 

discs following the method described in chapter 5, and a large number of boundaries 

were carefully imaged. However, none of the grain boundaries observed appeared to 

contain resolvable dislocation networks, and this result was thought to be associated 

with the presence of impurities segregated to grain boundaries. Samples containing 

high-angle grain boundaries were carbon-coated and imaged using scanning 

transmission microscopy ( STEM ) in order to determine segregant levels. Quantitative 

measurement of grain boundary segregation using STEM has historically been difficult 

and a method developed by Hunt and Seah [3] was used to obtain such information for 

boundaries appropriately oriented with respect to the electron beam (see chapter 5). 

The X-ray spectrum presented in Fig 6.10 is representative of the other boundaries 

studied. Peaks characteristic of the elements present in the matrix are represented by a 

dots and are compared with those corresponding to elements detected only in the grain 

boundary area . This spectrum clearly shows that significant levels of calcium and 

silicon segregated to the grain boundaries in both the materials studied, probably as 

CaO and SiO, as suggested by previous workers |4 |. An estimation of the number of 

atoms of segregants detected per unit area of grain boundary suggested that these levels 

were consistent with a thick layer of contaminants at the grain boundary. Segregation 

plays an important role in the determination of grain boundary properties but is not the 

main objective of this work. Consequently, further investigation into the reasons 

associated with the absence of resolvable dislocation networks in the as-received
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material was not pursued. However, it is suggested that the high concentration of 

segregants observed in the grain boundaries studied is directly linked to this result.

Counts (X10 )

box at gb in thin area Range ( keV )box in the matrixCthin area)

Fig 6.10: Energy Dispersive X-ray spectra from the matrix (dotted line), and from a region in the
grain boundary.
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O verview

This chapter discusses the observations and results presented in chapter 6 in more 

detail. First, a complete topological analysis of the features observed in ZnO grain 

boundaries is presented and aspects of the structure adopted by such interfaces is 

discussed. The second part of this chapter focuses on the characterisation of interfacial 

features in WC, and describes the suitability of specific reference structures for the 

description of the grain boundaries observed in this study.

VII.1 Analysis Of Grain Boundaries In ZnO

Two bicrystals, with large interfacial areas and misorientations close to 

approximately 19° and 30° about [00()1], were successfully prepared at the Institute of 

Crystallography (Russia) using the Solid-Phase Intergrowth (SPI) technique! 1], 

Surface orientations and their mutual alignment were first determined using an X-ray 

diffractometer technique [2], and experimental orientations were determined from 

selected area diffraction patterns. Successful preparation of bicrystals by SPI requires 

smooth surfaces of the component crystals to be prepared by cutting and polishing, 

followed by pressing these together at an elevated temperature (generally in the range 

12(H) -1800°C. The experimental orientation relationship between the adjacent crystals

was found to be 17.8 ± 0.1° for the bicrystal with target misorientation angle e,= 19° 

and 31.5 ± 0.1° for the bicrystal with target 9=30°. Dichromatic patterns arise from

the interpenetration of the lattices of the X and p crystals and are useful as reference

spaces tor the specification ot detect content in experimentally observed interfaces In 

the present work, the most appropriate ones were found to correspond to “special”

misorientations represented by the periodic patterns 1=31 and 1=13 in CSL

terminology ( see chapter 6). In the following, the term “special”, attributed to a 

boundary, refers to the tact that the measured experimental misorientation between the 

adjacent crystals is very close to that of a periodic CSL pattern. A detailed analysis of
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the topological features observed in two of the ZnO boundaries imaged by the russian 

group is presented in the following sections.

Vll.1.1 17.8" tilt boundary

The experimental misorientation for this boundary was found to be very close 

to that for the periodic pattern 1=31 (17.89° /[0001]), as stated above, and the latter

configuration was therefore chosen as the reference space for the characterisation of 

interfacial defects present in this boundary. The orientation of the interface is close to

the plane PM in Fig 6.1b, that is close to the (8 17 9 0)x-( 3 16 13 ())M periodic

interface. This can be confirmed by using the circuit SXF indicated in Fig 6.2 for

which c(X)=SX=l/3[52 2 50 0]x and c(p)=X F=l/3[58 20 38 0]„. This interface is

inclined by 8.9° to the target A, surface (1 3 2 0)x and 10.2° to the target p surface

( O i l  0)M. It is also interesting to note that this asymmetric interface, which exhibits a

relatively long period does not facet into combinations of symmetric (7 11 4 0)x and

(1 6 5 0)M interfaces (PL and LM in Fig 6. lb). The region emcompassed by the circuit 

indicated in Fig 6.2 was found to be at the exact CSL orientation, i.e when mapped 

into the reference space, C(A,,p)=0. However, occasional defects were detected in 

other parts of the boundary. Fig 6.3 is an example of such a region , where the 

Burgers content of the segment encircled by the circuit is b=l/93 [7 114 OJ.This 

value is consistent with t(A)= 1/3[4150] and t(p)= l/3 [5140], the shortest crystal

translation vectors leading to the smallest-magnitude values of the Burgers vector of 

admissible defects according to equation (3.2). Thus, The circuit shown in Fig 6.3 

encompasses an interfacial edge dislocation with minimum magnitude b. In order to 

fully characterise this dislocation topologically, the step heights associated with its
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formation are now considered. The defect character of interfacial defects can be 

imagined to arise as a consequence of bonding together surfaces exhibiting

incompatible steps. The height of these steps is given by h(À) =n.t(A.) and 

h(|i)= P 'n.tOi) in the white and black crystals respectively, where n is the normal to 

the interface locally, and t(A.) and t(q) are the translation vectors to be substituted in 

equation (3.2) . Experimentally, these heights are calculated from h(A.) =n.C()l)/d(hkjl) 

and h(|i)=P 'n.C(|i)/d(hkil), where d(hkjI) is the interplanar spacing of the lattice planes 

parallel to the interface ¡neither of the crystals, and C(A.)=SXx= l/3 [22  2 20 ()]. and

C(p)=XFM= l/3 [8  3 5 0]M have their usual meaning (see chapter 3, section III-4). By

comparing experimental and theoretical step heights with observations, the specific 

values of t(X) and t(p) which characterise the defect can then be determined. The step

heights associated with the defect above, expressed in units of d,g 17 9 0) ,̂ were found

to be h(A.)=-10 and h(p)=-7 in the X and (i crystals respectively. Again, these values

are consistent with the vectors t(A.),=[ 4150] and t((j),=( 5140] in equation (3.2), and 

a schematic diagram illustrating the defect formation is shown in Fig 7.1(a). Due to the 

sign of t(^), and t(n)„ the configuration depicted in Fig 7.1(a) exhibits re-entrant

steps which are not consistent with the observation shown in Fig 6.3. However, 

alternative configurations can arise due to the periodic nature of the interface, and the

steps associated with these are obtained by adding translation vectors of the X=31

dichromatic pattern to t(À), and t(p),. If a translation vector t equal to 1/3 [26 1 25 0];

is added to both t(A,), and t(|i), in Fig 7.1, a configuration consistent with the 

experimental observation is obtained as depicted in Fig 7.1(b). Indeed, the resultim:
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translation vectors t(X)2 and t(jn)2 in Fig 7.1 (b) correspond exactly to the vectors X sx

and XsM indicated in Fig 6.3, and the features observed in this region of interface are 

therefore consistent with the topological theory. The defect characterised here is a 

primitive interfacial edge dislocation exhibiting a long step riser (X sx in Fig 6.3). A

possible reason for this configuration as opposed to that depicted in Fig 7.1(a) is the 

minimisation of the interfacial area and reduction of the core and elastic energy of the 

dislocation.

( 8 , 17, 9 , 0 ) }

(b )

F i g  7 .1  : Schematic illustration of the formation of an interfacial defect with b= 1/93 [7  114  0] in

the 1=31, (8  17 9 0) interface, showing the incompatible steps on the adjacent crystal surfaces before 
bonding; (a) re-rentrant steps configuration and (b) alternative description.
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VII 1,2 3 1.511 tilt boundary

An example of a 31.5° boundary exhibiting several facets is illustrated in Fig 

6.4. Two pairs of facets, A and C, and B and D, with orientation close to the planes 

PR and TR in Fig 6.4 respectively, were observed. The structure of facets D and C are 

analysed separately below and the overall structure of this boundary is subsequently 

discussed. 

fa) Facet D

A filtered image of facet D, showing several periods of the (2750)* interface (TR in

Fig 6.1 (b)), is presented in Fig 6.5 (a). As illustrated on the micrograph, the 

boundary comprises a sequence of five-, six- and seven-fold polyhedra with repeating 

pattern ...5-6-7-5-7-5-7...., interrupted by a 5-7-5-7 polyhedra group. The Burgers 

content of the region of interface encircled by the circuit shown was found to be

b= 1/39 [ 2 7 5 0 ] x, and this is consistent with translation vectors t(A.)=l/3[7 2 5 0 ]  and

t(n)=l/3 [ 7 5 2 0 ]  in equation (3.2) . Thus, the region of interface encircled by the 

circuit shown in Fig 6.5 (a) encompasses a primitive edge dislocation with Burgers 

vector b= 1/39 [ 2 7 5 0 ] x, perpendicular to the interface, i.e. in the most efficient

orientation to accommodate the deviation from the 1=13 periodic orientation.

Moreover, it is anticipated that the polyhedral sequence interrupting periodic regions of 

interface identified above is associated with the core of this dislocation and this is 

investigated further below.

The step heights h(A.) and h(p) associated with the defect can be determined following 

a procedure similar to that described in VII. 1.1.Using the values of t(A.) and t(|i) given 

above leads to values consistent with experimental step heights and equal to h(X)=-1 

and h(|i)=l in units of d(2750)- A schematic illustration of the topological significance
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of this result is shown in Fig 7.2 (a), together with its equivalence with the polyhedron 

model discussed earlier (Fig 7.2(b)). As anticipated earlier, the 5-7-5-7 polyhedral

group is directly associated with the vectors t(X) and t(|i) given above and this

localised region of interface is therefore associated with the the core of the 

discontinuity.

(a)

Fig 7.2: Schematic illustration of the incompatible surface steps on the X and g crystals before 

bonding in the 1=13, ( 2 7 5 0 )  interface and (b) core structure o f the defect defined in terms of
topological parameters and polyhedral units.
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(h) Facet C
A circuit was constructed around facet C as illustrated in Fig 6.5, and subsequently 

mapped into the £=13 dichromatic pattern. This led to the characterisation of a

primitive interfacial defect with Burgers vector b= l/39[ 5270 J; i.e. inclined by 60° to 

the main ( 1340)^ facet orientation. This result is consistent with the shortest translation

vectors t(X)=\ lOlOj and t(p)=l/3[42201 in equation (3.2) and step heights calculated

from these values were found to be h; (A.) =5 and h1(q)= 6 (in units of d( j34 0>) *n the

white and black crystal respectively. Experimental step heights, calculated from h2(k)

=n.C(A,)/d( 1340,xand h .O i^ P - 'n .C O O /d ^ ^ ,, , were considerably larger than h,(A.)

and h,(p) and equal to 18 and 19 respectively. These values can be understood if a

defect-free step corresponding to one period of the (3410) interface and characterised 

by h3(A,)=h3(|i) =n. l/3[ 5270]/d(1340)=13, is introduced. This situation is represented

schematically in Fig 7.3(a). Based on this description, h2(A.) may be regarded as the

c o m b in a t io n  o f  h,(A.) and h3(k) in  the white crystal, and similarly, h2(n) may be

regarded as a combination of h,(q) and h3(n) in the black. Although the arguments

advanced above are in good agreement with the topological analysis of the defect, the 

resulting configuration depicted in Fig 7.3(a) does not correspond to the experimental 

observation shown in Fig 6.5 (b). Indeed, this image clearly shows a horizontal

segment separating (1340) periodic regions of interface. Its orientation was found to

correspond exactly to the abutment of the target (01I0)X and ( 1120)^ crystal surfaces

and a schematic illustration of this situation is shown in Fig 7.3 (b). It is therefore
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anticipated that the boundary structure has transformed locally from the configuration 

depicted in Fig 7.3 (a) to that in Fig 7.3 (b) and this issue is discussed further below.

F ig  7 .3  : Schematic illustration of (a) the total step height and Burgers vector of a combined defect- 

free step (one period of the (3 4 1 0 )  interface) and primitive interfacial dislocation with b=l/39[ 5270  ]. 

(b) the observed configuration including the (0110  )x - (112 0 )M horizontal interface.
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(c) General discussion on the structure of the 31.5° hennery

As discussed in (b), the overall boundary orientation is very close to that for 

the dichromatic pattern £=13, and this reference space is therefore very useful for the

specification of defect content in some regions of this interface. For example, the 

analysis of facet D suggests that the boundary belongs to the special class, i.e. vicinal 

to the singular misorientation [0001]/32.2°. The angular deviation from [0001 J/32.20 is 

accommodated by localised primitive edge dislocations exhibiting compact core 

structures (see section (a)). These occurred in the interface with appropriate spacing to 

accommodate the angular deviation efficiently. However, other regions present 

characteristics which do not conform to this special-boundary model. For example 

examination of facet C shows a horizontal segment of interface separating regions of 

periodic structure. More extensive portions of horizontal segments can also be seen in 

other regions, such as facet E in Fig 6.4. These observations do not correspond to 

expected configurations and suggest the existence of an alternative singular 

misorientation close to that observed experimentally. A dichromatic pattern 

characteristic of the horizontal portion of interface is represented in Fig 7.5 Here, the

crystal lattices are rotated 30° about the common [0001] and the (O lio \  and (1120)

surfaces constituting the horizontal segment are indicated in each crystal. This pattern 

exhibits one-dimensional periodicity parallel to [0001] but is incommensurate 

perpendicular to this. The defect content associated with this portion of interface can be 

determined by constructing a circuit S’X’F’ as depicted in Fig 6.5(b), and mapping it

into a chosen reference space. If the 1=13 dichromatic pattern is chosen as this

reference, the circuit encompasses a dislocation with Burgers vector b=l/39[5 2 70] 

(see section b), and, on the basis of the observed step heights, the configuration 

depicted in Fig 7.3 (a) is expected. On the other hand, when mapped into the 

incommensurate pattern, the circuit closes, indicating that the defect content relative to 

this reference is zero and that the orientation adopted by this segment is exactly that of 

the [(K)() 11/3() pattern. It is therefore suggested that the boundary structure exhibits
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two coexisting but distinct structural forms. One form designated “special” which 

comprises localised dislocations superimposed on two-dimensionally periodic facets, 

and one which is planar, periodic in one direction but incommensurate perpendicular to 

this, and does not exhibit localised defects in the segments observed. It is anticipated 

that the relative proportion of the two structural forms would vary systematically with 

changing misorientation, comprising entirely the special form for [0001 J/32.50 and 

correspondingly the incommensurate form for [0001]/30°. In addition, it is suggested 

that the planar facet has transformed locally from the special configuration shown in 

Fig 7.3 (a) to the incommensurate form illustrated in Fig 7.3 (b). It is also suggested 

that the driving force for this transition reflects both the relative free energies of the two 

forms and geometrical factors. These aspects are discussed further below.

h ig  7 .5 . Dichromatic pattern lormed by rotation of hexagonal lattices by 30° about [0001],
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The systematic^ of grain boundary energies have been extensively studied (see |3 | for 

a review) and it emerged that such interfaces tend to adopt low-energy configurations 

which depend on the misorientation between the adjacent crystals [4J. On the basis of

this argument, and if the free energy per unit area of the special form (ys) is taken to be

less than that for the incommensurate configuration (y) at their respective singular

misorientations, the formation of the special form will then be favoured at 

misorientations close to [00011/32.5°. However, due to the introduction of dislocations

at lower disorientations, y  will be augmented by Ay, and progressively the formation 

of the incommensurate form will be favoured. It is reasonable to expect Ay to be given 

by an expression resembling that for the energy of low-angle boundaries, i.e. Ay = 

A0 y0 (A - In A0), where A0 is the modulus of the angular deviation and y0 and A are 

parameters independent of A0. Indeed, A depends on the total core energy of

dislocations per unit area of the boundary, and y0 represents a constant energy per 

dislocation. Thus, the total energy of an interface with the special form would depend 

on ys, Ays and the area of faceted structure. Turning to the incommensurate case, it is

not known at present how y may be augmented as the misorientation increases from

[0001|/3()°. However, it is anticipated that if defects are introduced, their components 

of b parallel to the incommensurate direction may not be localised, thereby reducing 

stored elastic energy. In addition, at least for the present specimens, the area for an 

incommensurate interface would be less than that for the corresponding faceted special 

structure at any particular misorientation (the area of the facets being independent of 

their size). It is therefore anticipated that interfaces with misorientations intemiediate 

between 32.5° and 30° are likely to be composites of the two structural forms identified 

above with relative proportions systematically changing with disorientation. A 

schematic illustration of the singular and composite structural forms in this
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misorientation range is shown in Fig 7.6. The exact proportions of the two structural 

forms in a composite interface will depend on the energy and geometrical factors 

outlined above, and also on other thermodynamic variables such as temperature, stress 

and impurity segregation. The transition is thermodynamically irreversible, and there is 

probably hysteresis between transformations from special to incommensurate and vice- 

versa. It is also interesting to note that the abutting facets of the incommensurate 

segment of interface, schematically represented in Fig 7.3, correspond to low-index 

planes in the adjacent crystals. This would suggest a correlation between the atomic 

density of the planes comprising the grain boundary and the grain boundary energy, 

with widely spaced low-index planes displaying lower grain boundary energies. 

Previous work by Wolf and Merckle [5], who performed an extensive comparison 

between atomistic modeling and HREM observation of grain boundary structures, 

indicate that deep cusps corresponding to low energies exist for those configurations 

exhibiting low-index planes parallel to the grain boundary. This result is therefore 

consistent with the observation presented in this work, it is proposed that this 

observation (thought to be the first) suggests a mechanism whereby special boundaries 

transform into more general types as the crystallographic parameters pertaining 

gradually change.
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( 0 1  i  0 ) x  

( 1 1 2  0 )^

Fig 7.6 : Schematic illustration of the composite structural form of boundaries with 
misorientations intermediate between the singular values [0001J/32.50 (special) and 

[0001]/30° (incommensurate).

VII.2 Analysis Of Grain Boundaries In WC

This section discusses the structure of three grain boundaries in a grade of WC 

sintered in the absence of a binder phase. Observations of these boundaries are 

presented in chapter 6, together with the crystallographic parameters relevant to this 

analysis. As discussed in the previous section, it is useful to identify a singular 

orientation acting as a reference in order to interpret the experimental features observed 

at interfaces. There is much experimental and theoretical evidence that periodic 

structures corresponding to special orientations are suitable references, especially in 

cubic materials (see [6] for a review), however, there is less evidence that this is the
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case in materials exhibiting hexagonal symmetry. To investigate whether special 

orientations represent reference structures adopted by the boundaries investigated in 

this w ork, the application of the coincidence model to WC is first considered.

VII.2.1 Coincidence Models applied to WC

The application of the coincidence model to the hexagonal system requires the ratio p/o

to be determined; where |i and u are two integers chosen so that p/u is very close to 

(da)2 for the material under investigation. For tungsten carbide, (c/a)2=(0.976)2 and 

several pairs of p and x> may be found so that their ratio fall within 3% of this value.

Lists of coincidences may then be established following the mathematical approach due 

to Bleris [7], and these have been published by Hagege [8], In most cases, these 

tables are limited to a few coincidences, and experimentally-determined misorientations

are rarely close to such orientations. However, for p /u= l (i.e. c/a=l), the list of

coincidences comprises 92 cases for which Z < 50, and experimental data may then be

matched to a specific orientation. The ratio c/a=l was therefore used in the following to 

determine the possible vicinity of the boundaries studied to special orientations.

V1I-2-2 Structure of a non-planar grain boundary.

Several images of this boundary, obtained under different diffraction conditions are 

presented in Fig 6.6 (A to D). As discussed in VI.2.1(a), at least two sets of 

dislocations labeled a, and b, indicated by arrows, are visible on some of the 

micrographs. The misorientation between the adjacent crystals was found to be [- 

.7466, .3663; .3803; -.4044]4 and 12 equivalent angle/axis pairs describing this 

misorientation are given in Table 6.2. In order to determine whether any of these are 

close to special orientations, each description was converted to Miller-Bravais indices 

and compared with the list of coincidences obtained with c/a=l. Again, the term 

“special relates to CCSL configurations which form at “special” misorientations 

between the lattices of the adjacent crystals. Following this procedure, description n°
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11 (Table 6.2 ) was found to be close to [ 1012 |MB/1 15.10°, which, in CSL

terminology is identified as a 1=10 boundary . Both the CSL and experimental

matrices corresponding to these orientations were determined by the methods described 

in V.2.4, and these are given below

11 26 -7
6

2 2 26

A
12

17 2 11

A
-18

18 -12 -6
A

12
.A A A

3882 .8558 -.2441 .2389
1020 .0505 .8473 .5186
5097 .0935 .3967 -.7576
7609 -.5060 -.2548 .3160

where Rccsl and R„p represent the 1=10 and experimental misorientations respectively

and A=(2/3) . Assuming that the Z=10 singular orientation is the reference structure

adopted by this boundary, the experimental deviation from this configuration can be 

calculated as explained in v.2.4, and is given by

Rdfv/9dev= [0.7638; -.5853; -.1736; -.2091]4/4.78°.
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This result suggests a relatively large deviation about an axis «73° away from the

boundary plane normal n calculated in section VI.2 .1(b). Due to the relative difficulty 

in imaging the dislocations in set b , the characterisation of these defects was not 

attempted. However, dislocations in set a were strongly visible under all the 

diffraction conditions used, and the a-priori approach described in section III.3.1 was 

used to characterise them topologically. As discussed in this section, the Burgers 

vectors of admissible interfacial dislocations are given by equation (3.2), where the 

matrix P represents the matrix associated with reference misorientation (Rccsl in this

case), and t(A) and t(|i) are translation vectors in the A and (i crystal respectively.

Theoretically speaking, any translation vectors belonging to the space group P 6 m2 

may be substituted in equation (3.2), resulting in a large number of possible values for 

b. Feasible values, however, are those with small magnitude (|b|<a), obtained by the

combination of relatively short t(A) and t(|i), and making an angle close to 90° with

rdev (hence accommodating the deviation in the most efficient way). A list of possible 

candidates for b, which all satisfy the specifications discussed above, is presented in

Table 7.1. Based on the low contrast displayed when g= 1212/A, the most likely

value for b would be | '.015;. 424;.439;. 334]4 (see section IV.3), and this should be 

checked using contrast simulation techniques. Unfortunately, such methods require 

further developments and it was therefore impossible to comment on the validity of the 

arguments advanced above.
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Table 7.1: List of admissible Burgers veetors for the dislocations in set a .

t(k) t(H) b = t(À)-Pt(|i) Angle with Rdcv

[0(H) 2 A |4 l/3[22 40]4 [.151;.242; 0.393; .074]4 83.()4°

[O il A]4 [0110]4 [.045;. 272; 0 .318;. 185]4 86.35°

[0110]4 l/3[ 1210]4 [. 121;.393;.515;.222 ]4 90.04°

l/3[ 1453 A [4 1/3) 112 3 A ]4 [.015 ;.424 ;. 439;. 334]4 82.70°

[ 1012 A ]4 1/314156 A ]4 [. 075 ;. 121;. 196 ;. 779 ]4 OC o

l/3[ 2113 A ]4 l/3[ 4156 A ]4 [.045;. 272;. 3188;.185]4 93.64°

VII.2.3 Structure of a planar grain boundary.

Images of this boundary can be found in section VI.2.2 together with details of the 

experimental parameters associated with its crystallography. Although only one set of 

dislocations, indicated by arrows in Fig 6.8, displayed strong contrast under the range 

of diffraction conditions used here, it is believed that at least one other set of 

dislocations, not resolvable in the microscope, is present. The misorientation between 

adjacent grains was determined experimentally using the methods presented in V.2, 

and was found to be [0.6618; -0.6832; 0.0213; -0.3076]4 / 80.02° and equivalent 

descriptions are given in Table 6.3. Description n° 3, being very close to the

orientation [10121MB / 155.38° (I=22b in CSL terminology), was chosen as a 

possible reference structure for this boundary as no other description appeared to be 

close to alternative singular orientations. A schematic of the I=22b dichromatic pattern

in that orientation is illustrated in Fig 7.7. The rotations matrices corresponding to the 

coincidence (Rccsl) and experimental (R„p) orientations are given below.
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Fig 7 .7 : Shematic illustration of the £=22b dichromatic pattern

Rocs, = 1/22

3 10 9 -14
A

18 -6 10 4
A

1 18 3 10
A

-10 -4 14 A
A A A

Cf

(A= )
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.1122 .4382 . 4495 -.7702

.8109 -.2731 .4621 .2325

.0768 .8349 .0882 .5377
-.5690 -.1901 .7592 . 2520

and the deviation from the I=22b reference structure , is expressed as

d̂ev̂ dev [0.7638; -.5853; -.1736; -.2091]4/4.78°.

According to Frank’s formula (see section II. 1.2), if only one set of dislocations was 

present at the boundary, their spacing would be = 3.56 nm assuming |b|=|a|. However,

as other non-resolvable sets of dislocations are likely to be present, the experimental 

spacing quoted in IV.2.2 (b) (8nm) is therefore in agreement with the deviation angle 

calculated above.

The admissible Burgers vectors of dislocations observed experimentally in this 

boundary were calculated from equation 3.2 and a shorlist of possible candidates can 

be obtained by following the procedure described in VII.2.2. However, the problem of 

selecting a specific value for b arises, as none of the diffracting conditions used led to 

the extinction of the contrast displayed by the main set of dislocations. An approach 

due to Shin and King [9], which uses the “O-lattice” equation to predict the line 

direction of defects arising at a boundary from a specific b and a given misorientation, 

was then used to try and determine the most likely value for b . The “predicted” line 

direction of the defects was calculated for every b given by equation (3.2) using Shin 

and King’s approach, and compared with the line direction determined experimentally. 

Unfortunately, this approach was unsuccessful, as none of the “predicted” line 

directions fitted the experimental value indicated. As other authors reported 

inconsistencies with this approach [10], a geometrical approach developed by Wang 

[ 11] and predicting a value for b for was preferred. Following this method, values for
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b were calculated using equation (3.2) and those closest to that predicted using Wang’s 

approach are given in Table 7.2.

Table 7.2.

t(k) t(p) b =t(A)-PtOfT

by Wang’s method

1/312420], I110A], [ .2 8 7 ;.060;.348;. 185], l9 ’92°

1/3[1120], 1/3] 1213 A ], [.181;. 091;. 272;. 074], 12’55°

Again, simulation of the contrast should be used to compare the contrast displayed in 

each case with that observed experimentally . Not only would it be the best tool to

determine the likely value for b , but it would also allow the proposition of 1=22 as

the reference structure adopted by this boundary to be confirmed or rejected.

VII.2.4 Analysis of a faceted ¡train boundary.

The faceted structure exhibited by this boundary is clearly visible on the micrographs 

presented in section VI.2.3. Two sets of facets were observed and their contours were 

best imaged using the “2-beam in one grain” condition described in IV.5.1. As 

mentioned in the previous chapter, no dislocation network was observed, and the 

present analysis therefore discusses other crystallographic features such as the facet 

orientations with respect to plausible reference structures. The experimental orientation 

relationship describing the misorientation between the component grains was found to 

be [0.634; -0.161; -0.473; -0.585], /30.04°, and twelve equivalent descriptions were 

presented in Table 6.4, section VI.2.3 (b). As for the identification of possible 

reference structures adopted by the boundaries described earlier, each description was 

converted into Miller-Bravais indices and compared with the list of coincidences 

obtained for c/a=l. Following this procedure, description 5 was found to be close to

the periodic orientation described by I=22c. The deviation from this proposed
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reference was calculated as described in V.2.4 and expressed as Rdev= [-0.521, 0.29 1; 

0.230; -0.768114 / 3.38°.

In cubic materials exhibiting faceted boundaries, the facet orientations often correspond 

to short period planes common to both grains . The analysis of the 31.5° grain 

boundary in ZnO described previously suggests that this is also the case in this 

material. As indicated in chapter VI, the facet orientations were found to be very close

to (4731)XMB and (1105)>JvlB planes, and on the basis of the above argument, the latter 

were expected to correspond to specific planes of the proposed reference orientation 

(1=22c). However, this was not found to be the case, and alternative reference

structures (CCSL’s) for this boundary were sought using different values of c/a . 

Unfortunately, the facet orientations described earlier could not be associated with 

specific planes belonging to any of the alternative reference descriptions. This result 

suggests that the reference structure adopted by this boundary does not correspond to 

that of a periodic pattern, and emphasizes the difficulty associated with the 

determination of such structures in materials exhibiting hexagonal symmetry.

R E F E R E N C E S

1 Stcpensov E.A., USSR Patent N il 16100 cL C30B33100, Bull. Isobretenii, 

36, p77 (1986)

2 Solov’eva V.I., Bondarenko K.P., Bystrikova I.N., and Kheiser D.M., 

Crystallogr.Rep, 39, p671 (1994)

3 Howe J.M., Interfaces in Materials (J.Wiley, Wiley-Interscience, New 

York), p309 (1997)

4 Goodhew P.J., in Grain Boundary Structure and Kinetics (edited by 

R.W .Balluffi, ASM, Metals Park, Ohio), p i55 (1980)

5 Wolf D„ and Merkle K.L., in Materials Interfaces: Atomic-Level Structure and 

Properties (edited by D.Wolf and S.Yip, Chapman and Hall, London), p87 

(1992)

138



Chapter 7: Discussion of results

6 Smith D.A., Ultramicroscopy, 29, pi (1989)

7 Bleris G.L., Nouet G., Delavignette P., Acta Cryst., 38, p55() (1982)

8 Hagege S., Ph.D. thesis, Université de Caen (1985)

9 Shin K., and King A.H., Mater.Sci.Eng., A113, p 121 (1991)

10 MacLaren I., and Aindow M., Phil.Mag.Letters, 76, 1, p25 (1997)

10 Wang S., Mphil thesis, University o f Birmingham (1996)

139



Chapter 8

General Conclusions

140



Chapter 8: General conclusions

VIII - Conclusions

The objective of this work was to investigate the atomic structure of grain boundaries 

in materials exhibiting hexagonal symmetry. The topological analysis part of this study 

focused on the characterisation of high-angle grain boundaries in ZnO from high 

resolution images (HREM). Two boundaries, with misorientations close to those for

periodic patterns designated by 1=31 and 1=13 respectively, were analysed using the

a-posteriori method developed by Pond [ 11 and the main results emerging from these 

investigations are summarised below.

• Both boundaries displayed features characteristic of the special category ; however, 

some evidence was found in one boundary which did not conform to this model.

• Some regions of the 17.8° boundary were found to contain localised dislocations 

while other regions areas were oriented at the exact 1=31 CSL orientation. A

complete topological analysis was presented and the characterisation of the defects 

was found to be consistent with experimental observations.

• The 31.5° grain boundary exhibited a faceted structure. The analysis of facet D 

confirmed the special character of this boundary while facet D presented 

characteristics which did not conform to this model.

• The presence of an incommensurate segment of interface between periodic regions 

suggested a local transformation from the special configuration, and a model was 

proposed for the progressive structural transition between the two singular forms.

•  The analysis made in this work is believed to be the first observation of the 

transition at a grain boundary from a structure in the special category to a more 

general form.

• The consistency obtained between theoretical predictions and observations 

demonstrates the usefulness of the topological theory for high resolution 

characterisation of interfacial defects in complex materials.
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Another part of this thesis discussed the structure of high-angle grain boundaries in

tungsten carbide (WC), analysed using conventional transmission electron microscopy

(CTEM).

• Tire determination of reference structures is an important aspect in the 

characterisation of interfacial defects by CTEM, and instances exhibiting special 

orientations were taken as plausible reference structures in the observed boundaries

(e.g. 1=10).

• Candidate Burgers vectors for the observed defects were proposed, but 

comparison of these predicted values with the observed contrast was inconclusive 

and further development of contrast analysis techniques is required for a full 

analysis.

• Analysis of the faceted interface suggested that it was not associated with the 

proposed reference (I=22c), as the facet orientations did not correspond to

periodic planes of this CSL . This emphasizes the difficulty involved in the 

determination of reference structures in hexagonal materials.

• Identification of the reference configurations adopted by boundaries is currently 

challenging using the crystallographic approach described in this work, but it is 

believed that improved image contrast simulation techniques would be beneficial in 

this regard.

Another aspect of this work dealt with understanding the role played by interfacial line-

defects in interfacial processes.

• Several aspects such as defect motion and interaction were considered in a 

comprehensive analysis. Although a lot of work is required for an in-depth 

understanding, the analysis provided here represents a good introduction to more 

complex situations.
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• The diffusional flux resulting from defect motion was described by an equation 

expressed in terms of the Burgers vectors and step heights of the associated line- 

defects, but also the defects’ velocity and the concentration of each atomic species 

in the two adjacent crystals.

• The framework used to describe the material flux due to defect motion was then 

employed to derive an expression for the total diffusive fluxes associated with two 

interacting defects and was illustrated by an example.

[ 11 Pond R.C., in Dislocations and properties o f real materials, Ed.M.H.Loretto 

(Inst.of Metals, London), p71 (1985)
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A.l Hexagonal Crystal Structures

A. 1.1 The HCP Structure

The hexagonal close-packed (hep) structure consists of layers of closely packed atoms 

which, following Thompson’s notation [ 1], are stacked in the sequence ABABABAB. 

The structure is said to be ideally close-packed when the axis ratio c/a =1.633. In most 

materials, however, c/a is never exactly equal to this value (e.g. c/a= 1.588 for titanium 

and c/a =1.856 for zinc). The most closely packed planes in the ideal hep structure are 

the basal planes, and a projection of sites onto this plane is represented schematically in 

Fig A l.

Fig Al: Schematic representation of the projection of atomic sites on the basal plane of the
hexagonal stmeture.

As A and B types ot atoms are not identical in the hep structure, these are represented 

by circular and triangular symbols respectively. Large and small symbols represent the

level of sites projected along [21 10] direction and the latter projection is depicted in

Fig A2.

i l

[ 0  1 1 0 ]

Fig A2: Schematic representation of the projection of sites along the [2 -1 -1 0] direction.
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As a comparison, the face centered cubic (fee) structure has the stacking sequence 

ABC ABC A, and the most densely packed planes are of the type {111}. A schematic

projection of sites in an FCC crystal along [1111 and [ 110] is shown in Fig A3. Here, 

triangular, square and circular symbols represent the sequence of close-packed planes

and large and small symbols represent the level of sites along [110],

FCC

a A  zs 

b O  O
c □  □

A  A

<1<1 A  A  A

O0 o0 0O0

□ □ □ □ □ □ □

A  A A  A A  a A
1 /2  [1  1 2 ]

Fig A3: Schematic representation of the projection of atomic sites along a) [111] and b [ 110],

A. 1.2 Symmetry

A review of crystallographic calculations and manipulations using both the Miller- 

Bravais system, and Frank’s notation was described in section V .l. In the following, 

the former is used for simplicity.

A schematic projection of the hep crystal along the [0001] direction showing type A 

and B atoms, together with symmetry elements is shown in Fig A.4. As mentioned 

earlier, A and B atoms are not identical in this structure and are not interrelated by
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translations. However, their surroundings are crystallographically equivalent and may 

be related by c-mirror-glide operations for example (see Fig A4). The set of operations 

which leave the hep crystal invariant is represented by the space group P63/mmC, and 

some of the principal symmetry elements are indicated in Fig A4.

1/3[2TT0]

Fig A4: Schematic projection along [0001] of an hep crystal showing some of the principal 
symmetry operations. Type A and B type atomic sites are distinguished by different shading.(after

Ref2).

A.2 Tungsten Carbide Crystal Structure

Tungsten carbide exhibits hexagonal symmetry (space group P6m2) with lattice 

parameters a = 0.2906 nm and c = 0.2837 nm (see Fig A.5). The c/a ratio is very 

close to 1 (c/a = 0.976), and this aspect has played a significant role in the geometric 

description of grain boundary structure in this material to date (see section VII.2.1, 

chapter 7).
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Tungsten carbide is the major constituent of most cemented carbides, e.g. WC-Co 

composite materials. In this grade, the cobalt acts as a binder between regularly-shaped 

prismatic WC grains. This specific microstructure, together with almost perfect 

wetting, often results in planar grain boundaries, characterised by special orientation 

relationships between WC crystals [3]. The grade investigated in this work (WC 

A 100) was manufactured by hot sintering of WC powders with no binder phase,

resulting in ~ 5pm WC grains and a microstructure very different to that of WC-Co

cemented carbides.
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