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Abstract 

Morphological Filtering 

In Signal/Image Processing 

by 

Mohammad Hossein Sedaaghi 

The objective of this research is to develop a methodology which meets different 

specifications and representations of fast, efficient and real-time signal/image 

processing by means of mathematical morphology. Mathematical morphol

ogy is a relatively new non-linear theory for image processing, based on set 

theory. It considers images as sets which permits geometry-oriented transfor

mations of the images. This approach seems very appropriate for dealing with 

objects in images, and it has gained increasing attention in recent years. It 

was first developed for binary images, then extended for greyscale images, and 

finally, generalised for sets in a generic mathematical space, called complete 

lattices. The practical realisation of the algorithms is one of the major motiva

tions of this research. The differences, advantages and drawbacks between our 

approach and traditional methods are discussed. This thesis begins with a sys

tematical introduction to mathematical morphology. It first explains historical 

background of mathematical morphology (MM). Then it tries to convince the 

reader with the ability of MM as an advanced nonlinear tool for image process

ing. This work also performs a comparison between linear and morphological 

representations. Various morphological operations and their definitions are 

presented. The profound algebraic similarity, and the qualitative differences 

between the approaches are presented and analysed. After the definition of the 

operators, a great effort is done to propose fast and time-saving algorithms. 

Real-time implementation of morphological operators is then introduced. A 
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hardware architecture for parallel computation of morphological operators is 

presented. Convolved morphological filtering as hybrid representations com

bining both linear and morphological approaches, are also considered. New 

morphological operators, called weighted morphological operators, are investi

gated which their efficiency dominate over classical morphological operators. 

Some applications of morphological filtering in fingerprint processing and ECG 

waves detection are demonstrated. In these applications, many approaches, 

such as directional filtering and syntactic analysis, to pattern recognition and 

segment detection are involved. 

Our major contributions are mainly concentrated on some critiques about 

the conditions of defining the opening and closing operators, introducing fast al

gorithms for open-closing and close-opening, generalisation of real-time imple

mentation of morphological operators in I-D and 2-D, hybrid representation of 

MFs with convolution techniques, introducing new novel operators as weighted 

morphological filters, application of MF as a pre-processor for fingerprint pro

cessing, and as efficient technique for ECG wave filtering and analysis. 
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Chapter 1 

Introduction 

1.1 Motivation 

Computer science, mathematics and electrical engineering have very broad 

and rapidly expanding fields of study in many tasks of computer vision and 

image processing [58]. Jackway [39] addresses Levine's ( [49]) description of 

computer vision as "Computer vision largely deals with the analysis of pictures 

in order to achieve results similar to those obtained by man." Human being has 

a visual system that enables him to see and process a large amount of visual 

information quickly, easily and without a great effort. However, for example, for 

counting and measuring particles in images iteratively, machines show better 

performance without getting tired [58]. The important problem is that all 

information is buried in a raw image implicitly, but not in a useful form, and 

images are ambiguous at each of many levels of a contextual hierarchy. Image 

analysis tries to identify specific subparts of the image and to analyse them 

to extract useful information, and present them in a form that emphasises the 

desired characteristics. However there is no general purpose automatic vision 

system, yet, compared to that of the human [58]. 

Different techniques are applied in signal processing depending on the type 

4 



1.1 Motivation 5 

of information carried by the signal. Image processing has thus developed its 

own set of techniques apart from those used widely in signal processing [39]. 

Pavlidis [61] says that the recent years of research have only had a small 

progress in practical applications of image analysis. A multitude of method

ologies and techniques exist without a general framework indicating the scope 

of each. There is no coherent theory as in classical physics and mathematics, 

for example. A widespread attitude, used by researchers, is empiricism: try 

something (or even anything), and see what happens ( [39]). 

The important point is that analysis technique must be matched to the 

way in which information is being carried in the signal [6] (as Jackway [39] 

addresses) . 

Images in general are binary or multi-valued. Binary images are a mapping 

from 2D to 1D space, where the range is 0 or 1. There are different multi

valued image mapping as shown in table 1.1 ( [28]) mapping from mD -t nD. 

Table 1.1: Several types of multivalued images. 

Mapping mD -+nD Description 

!:(Xjy) -+Y 2-+1 grey-tone image 

!:(XjYjz) -+Y. 3-+1 3D grey-tone image 

!: (XjYjt) -+Y 3 -+ 1 moving grey-tone image sequence 

!: (Xjy) -+ (RjGjB) 2-+3 colour image 

! : (Xj Yj z) -+ (RjGjB) 3-+3 3D colour image 

! : (Xj Yj t) -+ (RjGjB) 3-+3 moving colour image sequence 

!: (Xjy) -+ (VXjVy) 2-+2 dense motion vector fields 

! : (Xj Yj t) -+ (Vx; Vy) 3-+2 dense motion vector sequence 

! : (Xj Yj Zj t) -+ (RjGjB) 4-+3 4D colour image 

!:(XjYjZjt) -+ (a,/3,-y,7r,T, /-I, ... ) 4 -+? real world 

MORPHOLOGICAL FILTERING M.H. Sedaaghi 



1.2 MM in image processing 6 

1.2 Mathematical morphology in image pro-

• cesslng 

1.2.1 Historical notes 

Matheron [54] and Serra [78] are considered as the leaders of the field 

of mathematical morphology (MM). They initiated a theory for the analysis 

of spatial structures in image processing at the Fontainebleau research cen

tre of the Paris School of Mines in 1964 [80], where Matheron was asked to 

investigate the relationship between the geometry of porous media and their 

permeabilities, and when J. Serra, at the same time was asked to quantify the 

petrography of iron ores, in order to predict their milling properties [78]. Due 

to their pioneering work, MM has achieved the status of a powerful tool in 

image processing with applications in materials science, microscopic imaging, 

pattern recognition, medical imaging, and computer vision. MM has become an 

important formalism in image processing and computer vision as a geometrical 

approach and is considered as a powerful tool for geometrical shape analysis 

( [88]). The original theoretical work of Matheron and Serra as a quantitative 

description of shape and size was initially used for binary images. However it 

can now be applied to grey-scale images and even for complete lattices [36], 

and can be realised by special hardware [72, 75, 44]. 

MM is a branch of digital image processing and analysis that uses con

cepts from algebra (set theory, complete lattices) and geometry (translation, 

distance, convexity) [37]. In set-theoretic methodology, signals are modeled 

as sets, systems (signal transformations) are viewed as set mappings, and 

translation-invariant systems are uniquely characterised by special collections 

of input signals [52]. 

Haralick [33] addresses some applications of morphological filtering in Golay 

logic processor [23], Diff3 [25], PI CAP [47], the Leitz Texture Analysis System 

MORPHOLOGICAL FILTERING M.H. Sedaaghi 



1.2 MM in image processing 7 

TAS [43], the CLIP processor arrays [13], and the Delft image processor DIP 

[22]. 

1.2.2 Definitions 

l\Iathematical morphology (MM) is not only a theory but also a powerful 

practical image analysis technique. "It is mathematical in the sense that the 

analysis is based on the set theory, topology, lattice algebra, random functions, 

etc. and it is called 'Morphology' since it aims at analysing the shape and 

form of the objects" (Serra [80]). Appropriate MM operations, as nonlinear 

transformations, tend to simplify image data, preserving their essential shape 

characteristics, and eliminate irrelevancies, by modifying geometrical features 

of an image locally [33]. The language of MM is set theory. Sets in MM 

represent the shapes manifested on binary or grey tone images [33]. The main 

notion in MM is the interaction between the image under analysis and a struc

turing element (SE), where images and SEs are considered as sets of points 

and the operations come from set theory [88]. MM can estimate and measure 

many useful geometric features in an image such as shape, size, connectivity 

and so on, based on set-theoretical methodology, employing specific sequences 

of neighbourhood transformations. Like any theory, MM has a perspective 

which allows it to focus on certain phenomena within images. It views images 

as set theory and geometry, thus, distinguishing itself from other image pro

cessing theories, e.g., syntactic theories based upon generative grammars and 

signal processing theories based on Fourier analysis. M~l provides an algebraic 

formulation to apply neighbourhood operations on images. SE, as a probe, 

slides through the image as a moving window, inspects its interaction with 

the image, and detects specific features in the neighbourhood of every point 

in the image. SE behaves as an elementary building block. Therefore a-priori 

knowledge of the information content of the image can help to choose a proper 
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SE [88]. As the identification of objects, object features, and assembly defects 

correlate directly with shape, MM is considered as a priceless tool for machine 

vision and recognition processes for robots [33]. In practice we consider mor

phological algorithms for extracting boundaries, connected components, the 

convex hull, and the skeleton of a region. Several methods, however, have been 

developed for region filling, thinning, thickening, and pruning that are often 

used in conjunction with these algorithms as pre- or post-processing steps. Also 

we have applied MM in ECG waves detection and fingerprint processing. 

1.3 MF versus non-MF 

Serra in [79] says: "When one scrutinises the behaviour of the scientists 

who access morphological filtering for the first time, a number of their reactions, 

more or less implicitly, refer to linear processing. They tend to extrapolate, if 

not the results, at least the style and the a-priori of the linear approach. Pro

gressively then, they usually set themselves free from these crutches." I3oom

gaard [88] discusses the differences between two techniques as: "In linear 

image processing the basic underlying assumption is the superposition of vi

sual stimuli. The visual signal is thought of as the weighted addition of basic 

signals. This assumption of linearity is questionable in case the image is formed 

by projection, where one object completely hides another object behind it. Due 

to using non-linear transformations, it is impossible to reconstruct the original 

image." 

Some major differences between the two approaches are listed in Table 1.2 

based on [79]. 
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Table 1.2: Morphological filtering versus convolution. 

Features I MM I Convolution 

Reversi bili ty No Yes 

Unique algebraic structure No Yes 

Idempotence and loss of Information Yes No 

Defined in complete lattice Yes No 

Iteration Yes No 

Flatness (~(log(J)) = 10g(~(J))) Yes No 

1.4 Citations 

MM operations have been applied successfully to a broad variety of im

age processing/analysis tasks (including noise suppression, image enhancement, 

coding, feature extraction, thinning, texture analysis, and shape recognition) 

encountered in diverse areas such as biomedical image processing, cellular au

tomata, electron microscopy, astronomy, and automated industrial visual in

spection [52]. We have also applied MF as a pre-processor in fingerprint 

processing and as an efficient technique in ECG wave analysis. 

A lot of scientists and research students are now working on the theory and 

application area of mathematical morphology. Appendix A addresses some of 

important English citations, categorised separately in tables. 

1.5 Overview of the thesis 

In the subsequent chapters we will undertake the following tasks: 

• Chapter 2 introduces a theoretical background on mathematical mor

phology. It also explains the existing confusion in literature about the 

definition of the operators. Binary and grey-scale operators are defined. 
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Properties of morphological operators are also discussed. Our critique 

about extensivity of closing and anti-extensivity of opening is also in

cluded. 

• Chapter 3 presents fast algorithms in 1-D and 2-D for morphological 

erosion, dilation, opening, closing, open-closing and close-opening. It 

covers our contributions to the development of fast algorithms for open

closing and close-opening. The algorithms applied in this chapter are 

direct implementation of the morphological operators, by single one-pass 

procedures. They are computationally simple and very efficient with a 

18-20 % reduction in computational effort for morphological operations 

compared with the fastest alternative method, and an order of magnitude 

improvements over naive implementations for large structuring elements. 

All the algorithms mentioned above, have been realised by a user-friendly 

package designed by author for 1-D and 2-D morphological systems de

sign. 

• Chapter 4 improves and generalises real-time implementation of 1-D 

and 2-D GS morphological operators, letting SE have its origin at any 

point of its domain. It shows the superb efficiency of the proposed meth

ods. Schematic diagrams of hardware implementations are presented. 

Our hardware architecture for real-time MF computation avoids unnec

essary operations and doesn't keep intermediate results. Therefore it 

is much faster than the classical cascade methods for opening, closing, 

open-closing and close-opening operations in which the intermediate re

sults are needed. It leads to demanding less memory, comparisons, addi

tions/subtractions and less computational time. 

• Chapter 5 proposes a technique to combine MF with convolution. It 

emphasizes the resultant operators' efficiency both in time and frequency 
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domain. It suggests the corresponding hardware architecture. The eMF 

performs based on morphological operations and their convolution with 

selected transfer functions and offers highly accurate characteristics of 

high-, low- and band-pass filtering. Designing a suitable structuring el

ement based on the characteristics of the input signal is discussed and 

hardware implementation of CMF is also investigated. We have discussed 

the design of CMF and shown its super performance in time domain 

and accurate characteristics in frequency domain when applied for sig

nal/image filtering. Its outstanding performance can be seen in both 

time and frequency domain. 

• Chapter 6 introduces novel operators called weighted morphological op

erators (WMOs). Using WMOs, weighted morphological filters (WMFs) 

are designed which illustrate their superb performance compared to clas

sical MFs. The newly introduced operators employ a weighted structur

ing element and apply multiplication or division in place of addition and 

subtraction in classical morphological operations. Experimental results 

prove that the new operators' performance dominate over classical ones 

for signals/images buried in salt&pepper, speckle and Gaussian noises. 

• Chapter 7 shows how MF can be applied for fingerprint classification as a 

pre-processor. It also introduces a syntactic approach to fingerprint clas

sification including the details of pattern classification and string anal

ysis. The application of l\IF speeds up pre-processing with a reliable 

output compared to the existing methods. The proposed algorithm for 

fingerprint classification extends and improves the existing approaches 

in literature. The algorithm, presented in this chapter, shows an im

provement of fingerprint processing and classification, compared to the 

existing methods, owing to a powerful morphological pre-processor and 

robust technique for smoothing and an efficient grammar. It can be im-
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plemented to process and match fingerprints with reliability. 

• Chapter 8 is about ECG waves detection using MF in different stages. 

Following an introduction and definition of the terms in ECG, a pre

processor based on MF is introduced. It emphasises the efficiency of the 

applied pre-processor in removing noise and baseline drift without losing 

necessary details of the signal. The existing Q RS detectors are reviewed 

and our contribution is included. The proposed method for ST - T 

detection is then followed. A residual signal is produced, resulting from 

interpolation of QRS and subtracting the median(s) of ST - T segments 

from the corresponding parts. Later step is about analysing the residue 

and detecting P waves, even when buried on T waves. 

• Chapter 9 concludes the thesis and discusses about the limitations of 

morphological approach and future work. 

• Appendix A addresses some of important English citations categorised 

separately in tables. 

• Appendix B presents the existing relations and proof of some properties. 

• Appendix C introduces some of arrhythmia types adopted from litera-

ture. 

1.6 Major contributions 

1. Fast algorithms for I-D and 2-D GS morphological operators 

( [69, 70]). 

2. Real-time implementation of GS morphological filtering ( [72, 

75, 73]). 

3. Convolved morphological filters ( [74, 77]). 
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4. Linearly-weighted morphological operators ( [76]). 

5. Morphological filters in fingerprint processing ( [71]). 

6. ECG waves detection using morphological filtering. 
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Chapter 2 

An introduction to MM 

2.1 Introduction 

The previous chapter established a systematic definition of MM. This chap

ter focuses on the exact definition of the operators which will be used in later 

chapters. It explains the existing confusion in literature about the definition 

of the Minkowski addition/subtraction and binary dilation/erosion, and in

troduces a specific and unique definition for the above-mentioned operators. 

Complete lattice is briefly discussed highlighting its relation to the definition 

of the grey-scale morphological filter (GSMF). Different approaches for GSMF 

are explained. Binary operators are discussed as the original MF operators. 

Our critique about the definition of opening and closing is also highlighted. 

Morphological operators are classified into three groups [53]: (1) set pro

cessing (SP) systems: in which both the input and output are binary, (2) 

function processing (FP) systems: in which both the input and output are 

grey-scale, and (3) function-and-set processing (FSP) systems: which are sub

classes of FP systems and can produce binary outputs whenever the input is 

also binary. These systems will be defined in the following sections. 

14 
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2.2 Literature confusion in definition of binary 

operators 

There exists a confusion in the literature about the definitions of binary 

dilation and erosion and also Minkowski addition and subtraction. Table 2.1 

compares the important existing definitions. The rest of the definitions by 

other authors are mainly similar to those of Table 2.1. vVe use our own nota

tions that are rather similar to the next definitions for grey-scale ones, whereas 

we use a reflected SE (structuring element) for dilation, and a non-reflected 

SE for erosion. Therefore the duality will exist between Minkowski addition 

and subtraction in one hand and dilation and erosion in another. \\Then SE 

is symmetric regarding to its origin, the definitions of the Minkowski addition 

and subtraction will be similar to those of dilation and erosion. In Table 2.1, 

A and B denote the input image and the structuring element, respectively, 

and fJ denotes the reflection of B around its origin which will later be defined 

in this chapter. Figure 2.1 shows the result of the Minkowski addition and 

subtraction, dilation and erosion of the test image A (Fig. 2.1-a) with differ

ent structuring elements whose origins are in different positions. The sign + 
denotes the origin of SE in parts g, h, m, n, sand t of Figure 2.1. Foreground 

and background are denoted "0" and "." respectively. Figure 2.1-b shows 

the complement of the image A. The second row of Figure 2.1 (i.e. c, d, e, 

f) is the shifted case of the third row (i.e. i, j, k, 1) as the SEs applied (i.e. 

B 1 and B2 shown in part g and m) differ only on the position of their origins. 

The complete details in section 2.5 illustrate the effect of the shift in the op

erations. B3 is symmetric (B3 (Figure 2.1-s) = B3 (Figure 2.1-t)), therefore 
M 

the result of the Minkowski addition (A El1 B3 as shown in Figure 2.1-0) is the 

same as of the dilation (A EB B3 as shown in Figure 2.1-p), and the result of 
M 

the Minkowski subtraction (A 8 B3 as shown in Figure 2.1-q) is the same as 
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of the erosion (A e B3 as shown in F igure 2.1-r) . 

Table 2.1: Dilation, erosion, Minkowski addition and subtraction. 

~ource lMinkowski nddit ionMinkowski s ubtrac tion Binary d ilation Binary e ros ion 

i-I ad wi ge r {a+b:a EA, b E B} { x : X + b E A, b E B} 

[30J 

Math cron A 6) B = A e B = (A < 6) B)< = !A 6) {j = { x : A n B . '" 0 } A e {j = {x : B . ~ A} 

[54J {a+b :aE A,bE B} { x : fJ + x C A} = { a - b : " E A, b E B} = { x : X + b E A , b E B} 

~t.c rnberg A 6) B = A e B = { x : (B). ~ A } A E9 B = !A e B = { x: ( B) .C;; A} 

[85J {a + b : a E A, b E B} = { x : X + b E A, b E B} {a + b : a E A, b E B} = { x: x + b E ,1,b E B} 

Harali ek A 6) B = U (A)b = ,1 e B = n (A} _ b = 
bE B bEB 

[33J {a + b : a E A , b E B} { x : B. C A } 
M M M 

O ur A 6) B = U (A); = A e B = (A< E9 B)< = A 6) B = U (A)b = A e H = (A <E9 B)< = 
bE B bEa 

notations: {a + b : a E A,b E B} { x: (8). C A {a + b : a E A. b E 8} { x:( B ).C A} 

........ ........ ···S· ... . ... . II ... . .. 
::: .: ... ..... . ........ 

(a) (b) 
.......... .. ........ I!l:¢ ¢~ ::. ... : . .... 

.~ 
.. .. 

.~ .. . 
(9) (h) · ... .. . ... . ... . : ... ,. .......... . ... .......... .......... 

(c) (d) (e) (I) 
.......... .......... . ......... . ......... et¢ ¢IS ••• .... ..... . . ......... . ..... .... · ... ••• ...W: ... . ......... · .. · .. ... . ... 

...~ ... : ': · . ... . .. ... . .. 
(m) (n) · . ... . ... ... . .. · .. · . . ........ ... . ... .. . .. .. .. . ......... . ........ ......... . .. .. . .. . ......... . ......... .......... .... ...... . ....... .. . ......... 

(i) (j) (k) (I) 
.......... .......... . ... ...... . ......... ® ® ••• ••• . .... ..... . ......... 
:. .:: .. . .. .......... . ......... · .. . .. ~ .... ...~ ... · . · . ... . ... ... . .. 

(5) (I) · . · . ... . ... ... . ... · ... · ... .... . ... .... . ... .. . .. .. . .. . .. .. ... .. . .... ..... ... . ... . ,. . ... . ......... . ......... ... ....... .......... . ......... . ......... 
(0) (p) (q) (r) 

M 
Figure 2.1: Binary operators with different SEs: (a):A , (b):Ac, (c):A E9 BI , 

M ~ M 
(d) :A E9 BI , (e) :A e B I , (f):A e BI , (g):BI' (h):Bl , (i) :A E9 B2 , (j): A E9 B2 , 

M ~ M M 
(k):A e B2 , (1):A e B2, (m):B2 ' (n):B2' (o) :A E9 B3 , (p):A E9 B3 , (q):A e B3 , 

(r):A e B3 , (S): B3, (t):~3' 
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2.3 Notion of a complete lattice 

MM is the application of the lattice theory to the spatial structures. The 

properties of a single binary relation "~" concerns the pure lattice theory [8]. 

This relation is assumed to have certain properties, the most basic of which 

lead to the following concept of a "partly ordered sef' or "posef'. A poset is 

a set in which a binary relation x ~ y is defined, which satisfies for all x, y, z 

the following conditions: ( [81]) 

1. Reflexive: For all x, x ~ x. 

2. Antisymmetry: If x ~ y and y ~ x, then x = y. 

3. Transitivity: If x ~ y and y ~ z, then x ~ z. 

We will define some definitions as follows ([8], [81]): 

1. Isomorphism: A function () : P ~ Q from a poset P to a poset Q is called 

order-preserving or isotone if it satisfies 

x ~ y =} (}(x) ~ (}(y). (2.3.1) 

An isotone function which has an isotone two-sided inverse is called iso

morphism. In other words, an isomorphism between two posets P and 

Q is a bijection (bijection means one-one correspondence) which satisfies 

Eq. 2.3.1 and also 

(}(x) ~ (}(y) => x ~ y. (2.3.2) 

An isomorphism from a poset P to itself is called an automorphism. 

2. Duality: The converse of any partial ordering is itself a partial ordering. 

3. Antitone: A function () : P ~ Q is antitone if and only if 

x ~ y =} (}(x) ~ (}(y), (2.3.3) 
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B(x) :::; e(y) ::} x ~ y. (2.3.4) 

A bijection e which satisfies Eqs. 2.3.3- 2.3.4 is called a dual isomor

phism. 

4. Lattice: A lattice 'J' is a poset P if any two elements of it (.1: and y) have 

a greatest lower bound (g.l.b. or inf) denoted by x /\ y, and a least upper 

bound (l.u.b. or sup) denoted x V y. 

5. Complete lattice: A lattice 'J' is complete when each of its subsets :J{ has 

a l.u.b. and a g.l.b. in 'J'. In other words, a complete lattice (either 

on the Euclidean space ]Rn or on digital space zn) is a partially ordered 

set ('J,:::;) in which every subset :J{ ~ 'J has a supremum and infimum 

denoted V:J{ and /\ 9-C respectively [4]. Any finite lattice or lattice of 

finite length is complete. Not every lattice is complete: thus the rational 

numbers are not complete, and the real numbers (in their natural order) 

are not complete unless ±oo are adjoined as universal bounds. 

In a lattice, any logical consequence of a choice of ordering remains true when 

we commute the symbols V and /\, and:::; and ~. This is called the principle 

of the duality with respect to the order ( [81]). For complete lattice we can 

write ( [46]): 

1. Commutativity: 

XvY=YvX X /\ Y = Y 1\ X. (2.3.5) 

2. Associativity: 

(X V Y) V Z = X V (Y V Z), (X /\ Y) /\ Z = X /\ (Y /\ Z). (2.3.6) 

3. The law of absorption: 

X /\ (X V Y) = X , X V (X /\ Y) = X. (2.3.7) 
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The following section explains function lattice briefly. Other kinds of lattices 

may be found in literature as [8]. 

2.4 Function lattice 

Let E be an arbitrary space. The class :J of the extended (including ±oo) 

real-valued functions u : E -+ lR is obviously ordered by the relation u :::; v, if, 

for each x E E, u(x) :::; v(x) and constitutes a complete lattice. 

2.4.1 Functions and umbrae 

An extension of morphological operators to functions is due to Sternberg 

[85], who uses the representation of a n-D function f{x) by a n+l-D set, its 

umbra. The umbra of a function f, denoted U(f), is the set of points below 

the surface represented by f(x): 

U(f) = {(x,y): y:::; f(x)}. (2.4.1) 

Figure 2.2 shows, as an example, the umbra of a sinus function. After getting 

the umbra, the binary morphological operators can be applied. The function 

f can be reconstructed from its umbra as ( [53]): 

f(x) = max{y: (x,y) E U(f)}. (2.4.2) 

We can easily show that f :::; 9 {:} U(f) ~ U(g). Some definitions for grey-value 

operations based on sets are defined as follows ( [88]): 

1. Grey-value union: The union of two functions f and 9 denoted as f V 9 

is defined as: 

(f V g)(x) = f(x) V g(x). (2.4.3) 
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-inl 

Figure 2.2: Umbrae (U) of a sinus. 

There will be a one-to-one correspondence between the union of functions 

and the set union: 

U(f V g) = U(J) U U(g). (2.4.4) 

2. Grey-value Intersection: The intersection of two functions f and 9 de

noted as f 1\ 9 is defined as: 

(f 1\ g)(x) = f(x) 1\ g(x). (2.4.5) 

The same one-to-one correspondence exists for the function and the set 

intersection: 

U(f 1\ g) = U(J) n U(g). (2.4.6) 

3. Grey-value transpose: The transpose j of a function f is defined as: 

j(x) = f( -x). (2.4.7) 

4. Grey-value complement: The complement r of a function f is defined 

as: 

r(x) = - f(x). (2.4.8) 
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We notice that I V r = III and 11\ r = -III. However for set domain 

we have A U A C = IE and A n A C = 0. 

Figure 2.3 shows the above properties. 

(a) (b) (c) (d) (e) 

5M5M5E2j5CQQJ5~ .' f '. .... .. .' '. 
o .' ,...... "':< ". 0.... : .... 0 .' ..... '" " ". 0 . . .. . 0'.' .... : .... :,' ". 

""""," 9 ..... : - .... : ..... ,' ...... : -5 -5 -5 -5 -5 o 5 10 0 5 10 0 5 10 0 5 10 0 5 10 

Figure 2.3: Grey-value operations: (a): two functions I and 9 plotted by" .. " 
and "- -" respectively, (b): I V 9 (solid), (c): I 1\ 9 (solid), (d): I V r (solid), 
(e): I 1\ r (solid). 

2.4.2 Functions and stacks of sets 

Another extension of morphological operators to functions is presenting 

them as stacks of sets. Instead of associating with function I : E -t lR its 

set-oriented umbra, we can alternatively consider the stack of its horizontal 

sections Tz (I) ( [78]): 

TzU) = {x, I(x) ~ z}. (2.4.9) 

As threshold level z increases, Tz U) decreases continuously, i.e. 

(2.4.10) 
z'<z 

Any set operations can be done over TzU). Conversely, it is easy to see that 

every continuously decreasing family {Tz } I z E Z of sets generates a unique 

function I, by the algorithm 

I(x) = sup{ z, x E TzU)}, (2.4.11) 

where sup is equal to max for grey-scale functions. Table 2.2 shows an example 

about the above relations. The symbol D indicates 1 for set operations. The 

reconstructed function is j(x). 
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Table 2.2: Threshold representation of a discrete function. 

f(x) 3 1 1 0 4 2 3 4 3 2 1 0 

To(J) 0 0 0 0 0 0 0 0 0 0 0 0 

TI(J) 0 0 0 0 0 0 0 0 0 0 

T2(J) 0 0 0 0 0 0 0 

T3 (J) 0 0 0 0 0 

T4(J) 0 0 

j(x) 3 1 1 0 4 2 3 4 3 2 1 0 

2.5 Definitions for binary operations 

The structure of a Boolean algebra provides the general framework on which 

we shall perform binary morphological operations. The sets in binary images 

are members of the 2-D integer space Z2, where each element of a set is a 2-D 

vector with (x, y) as co-ordinates and 0 or 1 as value of each pixel. Let A and 

B be sets in Z2, with components a = (aI, a2) and b = (b I , b2) respectively. 

We will assume that A and B represent the binary input image and the binary 

structuring element respectively (the size of B is considerably smaller than 

that of A) . The following definitions can be developed: 

1. Translation: The translation of A by x = (Xl, X2), denoted (A)x is defined 

as (A)x ={c: c = a + x, a E A}. 

2. Reflection: The reflection of B around its origin, denoted B, is defined 

as i3 = {x : X = -b, bE B}. Based on the above two equations, we can 

easily extract the following equation: 

(B)x c A =? B c (A)-x. (2.5.1) 

3. Complement: The complement of the set A, denoted AC, is 

AC ={x : x rt A}. (2.5.2) 
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4. Set difference: The set difference of two sets A and B, denoted as AlB, 

is defined as 

AI B = {x: x E A, x ¢ B} = An BC
• (2.5.3) 

5. Incidence: Two subsets X, Y c }Rn are incident if X n Y # o. 

2.5.1 Minkowski set addition and subtraction 
M 

[54]: The Minkowski addition denoted EB is defined as: 

M 
A EB B = {a + b: a E A, bE B} = U(A)b. (2.5.4) 

bEB 

M M 
It is assumed that A EB {o} = A and A EB 0 = 0. The dual operation is called 

M 
Minkowski subtraction, denoted e, and defined as 

MM. 
A e B = (AC EB B)C = {x : (B)x ~ A}. (2.5.5) 

The following relation will be true for Minkowski subtraction: 

(2.5.6) 

2.5.2 Binary dilation and erosion 

Dilation by disk SE corresponds to an isotropic swelling or expansion al

gorithms [33]. Our definition for dilation and erosion is similar to Minkowski 

addition and subtraction except that we use the reflected SE (B). \Ve define 

dilation as : 

A E9 B = {a + b: a E A, bE B} = U (A)b. 
bEB 

(2.5.7) 

, Erosion is the morphological dual to dilation. The structuring element (B) 

slides as a probe across the image (A), testing the spatial nature of the image 
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at every point [33]. Where Bx (B translated to x) can be contained in A (by 

placing the origin of B at x), then x belongs to the erosion A e B. vVe define 

erosion as 

(2.5.8) 

Similar to Minkowski subtraction we can say 

(2.5.9) 

Erosion is conceived of as a shrinking of the original image. 

2.5.3 Binary opening and closing 

Any set transform <9 in algebra satisfying the following three conditions is 

called opening: 

1. Anti extensivity: <9{A) c A. 

3. Jdempotency: <9(<9(A)) = <9(A). 

Similarly a set e is called algebraic closing if it satisfies the following conditions: 

1. Extensivity: A c e(A). 

3. Jdempotency: e(e(A)) = e(A). 

Matheron [54] defines algebraic opening as : 

<9 (A) = U A 0 B i • (2.5.10) 
BiEB 
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and for algebraic closing he has: 

e(A) = n A. Bi • (2.5.11) 
B;EB 

where Bi is structuring element belonging to the structuring element B. 

The morphological opening and closing can also be defined in terms of 

erosion and dilation. Opening and closing are defined, respectively, as: 

A 0 B = (A e B) EB B. 

A. B = (A EB B) e B. 

(2.5.12) 

(2.5.13) 

'Whenever we use opening and closing in this thesis, it is assumed that they are 

morphological (binary or grey-level) unless specified. Closing tends to smooth 

sections contours but, as opposed to opening, it generally fuses narrow breaks 

and long thin gulfs, eliminates small holes, and fills gaps in the contour. 

As in the case of dilation and erosion, opening and closing are dual with 

respect to set complementation and reflection. That is 

(2.5.14) 

The important features of opening and closing are that in either case the 

result is an elimination of specific image detail, smaller than the structuring 

element, without the global geometric distortion of unsuppressed features. Bar

alick et. al. [33] say: "For example, opening an image with a disk SE smoothes 

the contour, breaks narrow isthmuses, and eliminates small islands and sharp 

peaks or capes. Closing an image with a disk SE smoothes the contour, fuses 

narrow breaks and long thin gulfs, eliminates small holes, and fills gaps on the 

contours" . 

2.5.4 Is (opening) closing always (anti-)extensive? 

In this subsection we want to have a critique about a definition and prove 

that opening and closing are in some circumstances anti-extensive and exten

sive, respectively. Kresch [46] says "Opening is always anti-extensive and 
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closing is extensive, regardless to whether the origin is or is not contained in 

the structuring element" . However Figure 2.4 shows that it is not correct. 

Binary opening/ closing is anti-extensive/ extensive only when the structuring 

element is symmetric. Table 2.3 shows the extensive and anti-extensive re-

Input Erosion Dilation Opening Closing str-elem 

......... ...... ... ......... . ........ 
~ ......... ::.: . ........ . .... .... ......... 

::::~:: :::m:: :::::9::: ... .. 
(I) .. . ........ ....... ... .. ..... . .. ... .. ......... .... .. . ........ . ........ ......... ......... ...... ... . ........ ......... ........ . . ........ . ........ 

(a) (b) (e) (d) (e) 
......... ......... ......... . ........ ~: ......... ......... ......... . ........ ......... :::m: 

. ........ ..... .. .. 
:::::~:: .... .. :::::%: ::: :m: (k) ... .. ...... .. . .... .. ......... .... .. ... ... . .. .... .. ......... ......... . ........ . ........ .... ..... ......... . .... .. .. . ........ 

(g) (h) (i) G) 
......... ......... ......... . ........ It+.: ......... 

::~: 
. ........ . ........ ......... :::[0:::: :::~:: 

..0 

::: :¢:J::: . ....... 
(p) .. . :::: :¢:J:: .... . ... ...... .. ... . . ......... ... . . . ........ ......... ......... . ... ..... . ........ .. ....... ......... . ........ . ........ 

(I) (m) (n) (0) 
... .. .... ......... ......... . .. ... ... ?-f: ... ...... ......... .... ... .. . ........ .. ....... ......... ......... . ..... ... 
: :::0:0:: :::~: 

......... ......... 
(u) ::::@:: ....... ::::rnJj: ::::~: ... . ::::I#,¢: ..... . .. ......... .... . .. ..... .. ... ...... . ........ 

(q) (r) (s) (t) 

Figure 2.4: Extensivity and anti-extensivity. 

lations based on the symmetry and the origin of the structuring element. If 

only the structuring element contains the origin, erosion is anti-extensive (Figs. 

2.4-b and g) and di lation is extensive (Figs. 2.4-c and h) and the symmetry of 

the SE is not important . If only the SE is symmetric, opening is ant i-extensive 

(Figs. 2.4-d and n), and closing is extensive (Figs. 2.4-e and 0), whether (or 

not) the SE contains the origin . A morphological filter should be increasing, 

idempotent , and extensive/ or anti-extensive. Table 2.4 shows that opening 

and closing can be used as filters . However dilat ion and erosion can not be 

considered as filters alone because they are not idempotent. It is assumed that 

SE is symmetric and contains its origin. However if we define binary erosion , 
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Table 2.3: Extensivity and anti-extensivity in binary MM. 

Origin in SE B=B Relation 

+ + (A e B) ~ (A 0 B) ~ A ~ (A. B) ~ (A ED B) 

+ - (A e B) ~ A ~ (A EB B) 

- + (A 0 B) ~ A ~ (A • B) 

- - No (anti-)extensivity for operators 

dilation, opening and closing as below: 

AEBB = U (Ah, 
bEB (2.5.15) 

A 0 B = (A e B) EB B, 

A. B = (A EB B) e B, 

then we will have opening as anti-extensive and closing as extensive. In this 

regard, we will lose duality for defining dilation based on erosion, or closing 

based on opening, and vice versa. Therefore we prefer to follow our previous 

definitions in Table 2.l. 

Table 2.4: Properties of morphological operators based on the definitions of 
Table 2.3. 

Property Erosion Dilation Opening Closing 

Idempotent - - + + 
Increasing + + + + 
Extensive - + - + 

Anti-extensive + - + -
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2.6 Grey-scale morphological filtering 

Section 2.3 introduced two techniques available for GS morphological oper

ators as umbra and decomposition approaches. In this section we will develop 

direct relations for GS operators. Grey-scale digital images can be represented 

as sets whose components are in Z3. In this case, two components of each ele

ment of the set refer to the co-ordinates of a pixel, and the third corresponds to 

its discrete intensity value. Sets in higher dimensional space can contain other 

image attributes, such as color and time varying components. In this section 

the operators are assumed to be grey-scale unless specified, and to generalise 

the idea, we will assume grey-value is not restricted to the range 0 - 255, but 

any integer number unless specified. Let f(n) and g(n) denote respectively a 

1-D GS signal and a 1-D GSE of length L, Df and Dg denote their domains. 

1-D Grey-scale erosion, dilation, opening and closing, denoted respectively by 

(1 e g)(n), (1 e g)(n), ((1 e g) EB g)(n) and ((1 EB g) e g)(n) , are defined as 

follows. 

(1 e g)(n) = min{f(n + v) - g(v)}. 
v 

(2.6.1) 

(1 EB g)(n) = max{f(n - v) + g(v)}. 
v ~ 

(2.6.2) 

((1 e g) EB g)(n) = max{min{f(n + u - v) - g(u) + g(v)}}. 
v u 

(2.6.3) 

((1 EB g) e g)(n) = min{max{f(n - u + v) + g(u) - g(v)}}. 
v u 

(2.6.4) 

where u, v E Dg and f(o:),o: E Df. If the structuring element is fiat (i.e. 

g(k) = 0, Vk E Dg) , then the above equations will be simplified to: 

(j e g)(n) = min{f(n + v)}. 
v 

(2.6.5) 

(1 e g)(n) = max{f(n - v)}. 
v 

(2.6.6) 
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((I e g) EI7 g)(n) = max{min{f(n + u - vn}. (2.6.7) 
v u 

((I EI7 g) e g)(n) = min{max{f(n - u + vn}. (2.6.8) 
v u 

The above equations can easily be extended to 2-D. We let F(m, n) and C(m, n) 

denote respectively a 2-D GS image and a 2-D (L x K) GSE, Dp and Da 

denote their domains. 2-D Grey-scale erosion, dilation, opening and closing, 

denoted respectively by (F e C)(m, n), (F El1 C)(m, n), ((F e C) El1 C)(m, n) 

and (( F EI7 C) e C) (m, n), are defined as follows. 

(F e C)(m, n) = min{F(m + v, n + w) - C(v, wn. (2.6.9) 
v,w 

(F EI7 C)(m, n) = max{F(m - v, n - w) + C(v, wn. (2.6.10) 
v,w 

((F e C) EI7 C)(m, n) = max{min{F(m + t - v, n + u - w) 
v,w t,u 

-C(t, u) + C(v, wn}. (2.6.11) 

((F EI7 C) e C)(m, n) = min{max{F(m - t + v, n - u + w) 
v,w t,u 

+C(t, u) - C(v, wn}. (2.6.12) 

where (t,u),(v,w) E Da and F(a,/3), (a,/3) E Dp. If the structuring element 

is flat (Le. C(r, s) = 0, V(r, s) E Da) , then the above equations will be 

sim plified to: 

(F e G)(m, n) = min{F(m + v, n + wn. 
v,w 

(2.6.13) 

(F EI7 G)(m, n) = max{F(m - v, n - wH. 
v,w 

(2.6.14) 

((F e C) El1 G)(m, n) = max{min{F(m + t - v, n + u - wn}. (2.6.15) 
v,w t,u 

((F EI7 C) e C)(m, n) = min{max{F(m - t + v, n - u + w)}}. (2.6.16) 
v,w t,u 
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We can see that the above equations can easily be developed in n-D. As an 

example the following equation shows a 3-D grey-scale erosion of a 3-D function 

'J(l, m, n), with a 3-D flat SE l3(l, m, n): 

('J e l3)(l, m, n) = min{'J(l + u, m + v, n + w)}. 
u,v,w 

(2.6.17) 

where (u, v, w) E D<5 and F(ex, j3, 'Y), (ex, j3, 'Y) E D~. We will define the fol-

lowing GS relations similar to binary operations for translation, transpose and 

complement as: 

1. Grey-scale translation: The translation of a function f by k is defined 

as: 

f(nh = f(n + k). (2.6.18) 

2. Grey-scale transpose: The transpose j of a function f is defined as 

j(n) = f( -n). (2.6.19) 

3. Grey-scale complement: The complement r of a function f is: 

r(n) = - f(n). (2.6.20) 

4. Grey-scale (anti-)extensivity: Grey-scale dilation (erosion) is exten

sive (anti-extensive) if the value of the origin of SE is non-negative: 

g(O) ~ 0 => f e 9 :5. f :5. f ffi g. (2.6.21) 

GS opening is always anti-extensive fog :5. f and GS closing is always 

extensive f :5. f • g, and 

g(O) ~ 0 => f e 9 :5. fog :5. f :5. f • 9 :5. f ffi g. (2.6.22) 
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2.7 Remarks and summary 

In this chapter we have defined the basic operators engaged in MM, mainly 

as binary or grey-scale. We have realised that there are only two basic oper

ators: erosion and dilation, and the rest of the operators can be obtained by 

proper combination of them. More relations and some proofs of morphological 

operators have been given in Chapter B. \Ve have also adopted a unique defi

nition for all operators, and have shown the conditions for opening and closing 

to be anti-extensive and extensive, respectively. Also we have shown that MF 

can be easily developed in higher dimensions too. 

MORPHOLOGICAL FILTERING M.H. Sedaaghi 



Chapter 3 

Fast algorithms for GSMFs 

3.1 Introduction 

We have, so far, described MM and the important existing operators. This 

chapter covers our contributions to the development of fast algorithms for open

closing and close-opening. Fast algorithms for erosion, dilation, opening and 

closing are also presented to facilitate our contribution for fast open-closing 

and close-opening. 

Binary morphological filtering (MF) has deeply been investigated by a lot 

of authors in every aspect. However grey-scale MF (GSMF) has been noticed 

a little, and most of the efforts were to convert GSl\IF to binary equivalence 

using the thresholding and umbra approaches discussed in chapter 2. In this 

chapter we will deal with GSMF directly proposing fast MF techniques [69, 70]. 

It is assumed that all SEs are fiat, otherwise the classical algorithms of chapter 

2 should be applied. 
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3.2 Fast GS erosion and dilation 

Erosion and dilation are basic morphological operators, and the remaining 

operators can be made from proper combination of them. Therefore it is im

portant to find their fast implementations. In this section, the algorithms for 

fast I-D and 2-D erosion will be discussed. 

3.2.1 1-D as erosion 

Let the input signal I{n) and the flat SE g{w) have Nand H' samples 

respectively {flat means 9 ( w) = 0, wED g). The origin of 9 is assumed to 

be the first sample, otherwise the algorithms should slightly be modified. At 

first we consider a sirpple example to illustrate how fast the proposed method 

works. As an example let 

1 = {9,8,7,6,9~7,2,3,6,5,5,5,7,8,8,7,9,8}, 

9 = {Q,O,o,o,q}. 

The underlined sample in 9 shows its origin. Based on Eq. 2.6.5, as the SE is 

fiat, the first two samples of erosion are calculated as 

er{l) = min{/(l), 1(2), 1(3), 1(4), 1(5)} = 1(4) = 6, 

er(2) = min{/(2), 1(3), 1(4), 1(5), 1(6)} = 1(4) = 6. 
"-v-'~--~ 

* * * 

The underlined sample indicates the minimum within the search area. The 

symbol * under some samples means that they are not required for the current 

operation, as they have been controlled before. vVe realise that there are un

necessary comparisons for er(2) when repeating to find the minimum among 

the samples 1(2), 1(3), 1(4), 1(5) for er(2). The minimum occurs at sample 

4 as 1 ( 4) for er (1). Instead if we remember the location of 1 ( 4) as the last 

minimum (lastmin), we may calculate er(2) as 

er(2) = min{lastmin, 1(6)}, 
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because lastmin from the operations of er{l) is in the search area of the opera

tions for er(2). 1(6) isthelV-l.thsampleregardinger(2) (lV = 5,2+IV-1 = 
6). Again /( 4) is a minimum for er(2), and its value and location will be remem

bered as lastmin and lastminloc for the next operation. For er(3), lastminloc 

is still in search area, i.e. 

er(3) = min{/(3), /(4),1(5), /(6), /(7)} = min{ lastmin, /(7)} = /(7) = 2. 
~ ~~-- --

* * * 
The new minimum location needs to be updated to 7 as /(7) = 2 is the 

minimum. Therefore at this stage lastmin = 2 and lastminloc = 7. From the 

above simplifications, we have reduced the amount of the required comparisons 

for every output sample from IV - 1 = 4 to 1 comparison. For large-size 

input signals it considerably reduces the computation time. er( 4) : er(7) can 

be calculated the same way as lastminloc is inside the search area and they 

will all be equal to 2. However for er(8), the location of the last minimum 

(lastmin = 2 = /(7), lastminloc = 7) is not in the search area and a complete 

search is required as 

er(8) = min{/(8), /(9), /(10), /(11), /(12)} = 1(8) = 3. 

Therefore we conclude that if lastminloc for an operation is leftward of the 

search area (e.g. /(8) = lastmin is the leftward sample in operations for 

er(8)), we should have a complete search for the next operation. 

er(9) = min{/(9}, /(10), /(11), /(12), /(13}} = /(12) = 5. 

For er(9) there are more than one minimum (i.e. /(10) = 1(11) = /(12) = 5). 

\Ye candidate the rightmost sample as lastmin (i.e. lastmin = /(12)) to have 

lastmin inside the rightmost part of the search area for the next operation. 

er(lO) : er(12) = 5 as lastminloc is not leftward and lastmin remains minimum 

until er(13}. 

er(13) = min{/(13), /(14), /(15), /(16), /(17)} = /(16) = 7. 
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f(13) = f(16) = 7 and we choose the rightmost one f(16) as lastmin for next 

operation. 

er(14) = min{lastmin, f(18)} = lastmin = 7. 

'When approaching to the last samples we need to have extra input samples for 

com parisons as 

er(15) = {lastmin, f(19)}. 
~ 

? 

Noticing that N = 18, there is no real f (19). Therefore early/late sam pIes in 

dilation/erosion are not defined. There are three choices for such samples: 

1. the extra samples required are equal to o. 

2. the extra samples required are equal to the last real sample. 

3. their values are transparent for operation (big enough not to be consid

ered as minima for erosion and small enough for dilation). 

vVe choose the third option for instance. In this case 

er(15) = er(16) = min{lastmin} = lastmin = 7, 

er(17) = min{f(17),j(18)} = f(18) = 8, 

er(18) = f(18) = 8. 

Now we develop the fast algorithm: 

1. For er(l) make the search area from 1 to IV and find the minimum (as 

lastmin) and remember its location (as lastminloc). If there is more 

than one minimum, remember the rightmost location. Assign ptr = 1 

corresponding to the first sample of the output er(I). 

2. Increase the sample pointer (i.e. ptr f-- ptr + 1). If ptr > N then stop, 

otherwise do the following instructions: If the operation has reached to 
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the last samples (i.e. N - W < ptr < N), then assume extra null 

samples as necessary. If lastminloc is inside the current search area, 

then compare only lastmin with f(ptr + TV - 1), else make a complete 

search area. Update the new lastmin and lastminloc. Repeat step 2. 

Assuming full operations for late samples, the given example needs N(TV -

1) = 18 x 4 = 72 comparisons for erosion with classical method while only 

28 comparisons are required for fast proposed method. The speed-up ratio is 

therefore 72/28 = 2.57. 

3.2.2 2-D GS erosion 

\Ve can expect similar fast algorithm for 2-D erosion based on the fast 

algorithm for I-D GS erosion. The difference is only in the input signal which 

is 2-D (an AI x N image F(m,n)) and SE is also a 2-D (2L + 1 x 2L + 1) fiat 

square G(k, l). As an alternative, let SE be a fiat square with its origin at 

its centre (G(L, L)). Therefore the width and height of G is assumed to be 

odd (2L + 1). Let y = 1 -+ N and x = 1 -+ At be respectively column and 

row pointer sweeping all samples of the input image row-wise. The proposed 

algorithm is as follows: [70] 

1. Start from top left pixel and find the minimum inside a search area of 

length 2L+ 1 and width 2L+ 1 with the current pixel at its origin. Assign 

the minimum to the relevant pixel, and increase the column pointer by 

one. 

2. If the column location of the last minimum at the same row is inside 

the current search area, reduce the search area to the rightmost column 

of square. It means that if the current pixel position is (x, y), limit 

the search area to 2L + 1 points from F(x + L, y - L) up to F(x + 
L, y + L), because the remaining area has been searched for finding last 
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minimum of the previous operation. Then compare those pixels with the 

last minimum and find new minimum. increase the column pointer by 

one and go to step 5. 

3. If step 2 is not correct, consider whether the row and column location 

of the minimum from the previous row is inside the current search area. 

If so, reduce the search area to 2L + 1 points (last row of the search 

area from F{x - L, y + L) up to F{x + L, y + L). Then compare those 

pixels with the minimum from corresponding previous row, and find new 

minimum. increase the column pointer by one and go to step 5. 

4. If neither step 2 nor step 3 is correct, make a complete search area of 

2L + 1 by 2L + 1 with the current pixel position at origin and find the 

minimum. increase the column pointer by one and go to step 5. 

5. If last column, then increase the row counter by one and initialise the 

column counter to the first column. If the last row, then stop, otherwise 

go to step 2. 

Figure 3.1 shows the Nassi-Shneidermann chart of 2-D GS erosion. The 

description of the chart follows as below: 

Line 1: Afin_Loc1 and Afin_Loc_Y denote respectively two arrays re

quired for tracking the column and row locations of the minima obtained when 

processing a row of data. For beginning of the operations they need to be 

initialised to a negative value for the first row's comparisons indicating that 

there is no minima beforehand to compare their locations. The length of the 

arrays are equal to the size of the columns of the image. 

Lines 2 and 5: Initialise row counter (denoted with Row_Cntr) and column 

counter (denoted with CoLCntr) for tracking the rows and columns of the 

input image to 0 to start from the first row and column. 

MORPHOLOGICAL FILTERING M.B. Sedaaghi 



3.2 Fast GS erosion and dilation 38 

Line 3: Row_Off setJJown and CoLO f f set-Right, denoting the offset 

from the current pixel's row downward and the current pixel's column rightward 

respectively, when structuring element slides forward, are initialised to L (half 

size of the length of the structuring element noticing that the origin of the 

structuring element is at its origin). 

Lines 4-41 and 6-39: shows the loop when the row counter (Row_Cntr) and 

column counter (C oLCntr) scan respectively from the first up to the last row 

and from the first up to the last column. 

Line 7: evaluates a condition. If the column location of the minimum from 

the previous column (denoted by lHin_Loc-X[max(O, CoLCntr -1)]) is inside 

the search area (Le. greater than max(CoLCntr-L, 1) then execute lines 8-12, 

otherwise run lines 13-17. Don't worry about the row. max(O, CoLCntr - 1) 

prevents column counter subtracted from 1 to be negative and max(CoLCntr

L, 1) prevents the execution of the "if-clause" for the first column, because there 

is no column before it. 

Lines 8,9: Upper row offset limit (denoted with Row_OffseLUp) is as

signed to - L (all rows of the window for sliding the structuring element), and 

lefthand limit for the column offset (denoted with CoLOf fset.Left) is L (last 

column of the window). These two assignments limit the search area to the 

rightmost column of the window. 

Lines 10-12: The value and location of the minimum from the previous 

column is assigned as a possible candidate for the minimum of the current 

operations. 

Line 13: gives permission for full column operations. 

Line 14: If the row and column location of the minimum from the operations 

of the previous row and the same column is inside the search area, then run 

line 15, otherwise run lines 16-17. Notice that the location and value of 

every minimum found for the operations of a pixel are kept inside the relevant 

arrays, and before writing any new data inside them, their values represent the 
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previous information. 

Lines 15,13: limits the search area to the last row of the window. 

Lines 20,23: shows the initialisation of the row offset counter (denoted by 

Row_OjjseLCntr) and column offset counter (denoted by CoLOjjseLCntr) 

to start from the upper and leftmost limits defined in the previous lines. 

Lines 21-36 and 24-33: show respectively a loop for the row offset and 

column offset counter to slide the structuring element from top to bottom and 

leftmost to rightmost limit of the window. 

Lines 22 and 25: cares about the row and column pointer not to exceed the 

real borders. 

Lines 27-29: finds the new minimum if the value of the processed pixel is 

less than or equal to the current minimum. The evaluation is done in Line 25. 

Line 37: assigns the minimum found as the corresponding output pixel of 

the operation. 

To find out how the proposed algorithm is efficient, we consider an example 

below. Table 3.1 shows an 8 x 8 image F, a fiat 3 x 3 square SE denoted G, 

and the erosion of F by G denoted Fe G. Table 3.2 presents the details of the 

operation. It has been organised in 8 rows by 8 columns composed of a 3 x 3 

squares. \ Ve label each square as sqr( i, j) required as the search area for the 

pixel (i, j) of the image, i standing for i-tho row and j for j-th. column. The 

location of each pixel is shown as (i = 1 ... 8, j = 1 ... 8) above each square of 

Table 3.2. There are 4 different types of squares. \Ve label them respectively 

type 1 up to type 4. 

For type 1, the location of the last minimum obtained from the previous 

pixel and at the same row is inside the search area of the current pixel. There

fore we only need to make comparisons between the last minimum and the 

pixels in the last column of the square, i.e. (i - 1, j + 1), (i, j + 1), (i + 1, j + 1). 

One example for type 1 is sqr(2,4) at row 2, column 4 of Table 3.2. The 
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1. Initialise the arrays Min_Loc_X and Min_Loc_ Y to a negative Integer. 

2. Row_Cntr=O. 

3. Row _ Offset_Down=Col_ Offset_Right=L. 

4. While Row_Cntr<=Last_Row 

5. CoI_Cntr=O. 

6. While Col_Cntr<=Last_Column 

~xJmax(o,.co,-cntr,')J>= ---Yes (Type 1) max(Col_Cntr-L,1) ~ No 

8. Row_OffseCUp=-L. 13. Col_Offset_Left=-L. 

9. Col_Offset_Left=L. ~YICoI_CntrJ>=maX(RoW_Cntr'L ' 1~ 
10. MinICoLCntrl=M1nICol_Cntr·1]. 

Yes Min_Loc_X(Ccl'_Cntrl>z::max(CoI_Cnlr-l ,1)1 
(Type 2) . (Typo 3) 

11. Min_l.oc_XlCol_Cntrl· 116. Min[Col_Cntr]=MAXINT. 
Min_l.oc_XICoL Cntr-1 I. 15. Row_Offset_Up=L. 

1 17. Row_Offset_Up=-L. 
12. Min_l.oc_YICoI_Cntrl· 
Min_Loc_YICoI_Cntr-1]. 18. Endil(14) . 

19. Endif(7). 

20. Row_Offset_Cntr=Row_ Offset_ Up. 

21 . While Row_Offset<=Row_ Offset_Down 

Yes 22. rlmt Row< Row_Cntr+Row o~ "st Row? No 

23. Col Offset=Col Offset Left. 

24. While Col_ Offset_ Cntr<=Col _ OffseCRight 

Yes 
25. First CoI<-Coi Cntr+CoI 

""- Col ? 
Offsex 

No 

Yes 
'0. r\Kow_"nlr+~..,"'.!.'.'!c"O _"~ 

<-MIn(CoI enlr)? No 

~:I ~~~~ci~~~ow_Cntr+Kow_Offsel. 

28. Min Loc X[Col Cntr]=Col Cntr+CoI Offset_Cntr 

29. Min_Loc_Y[CoI_Cntr)=Row_Cntr+Row_Offset_Cntr. 

30. Endif(26}. 

31. Endif(25}. 

32. Increment Col_Offset. 

33. Endwhile(24) . 

34. Endil(22). 

35. Increment Row Offset. 

36. Endwhile(21). 

37. (I 9 g)(Row_Cntr,Col_Cntr)=Min[Col_Cntr]. 

38. Increment Col_Cntr. 

39. Endwhile(6). 

40. Increment Row_Cntr. 

41 . Endwhile(4}. 

42. End. 

Figure 3.1: Nassi-Shneidermann chart for 2-D erosion. 
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complete operation is to find 

(F e G)(2, 4) = min{ F{I, 3), F(1, 4), F(I, 5), 

F{2, 3), F{2, 4), F{2, 5), 

F(3, 3), F(3, 4), F(3, 5)}. 

41 

However as the location of the last minimum found for the operation of the 

location (2,3) (11 at row 3 and column 4) is inside the search area (i.e. F(3,4)), 

we realise that min{F(I, 3), F(I, 4), F(2, 3), F(2, 4), F(3, 3), F(3, 4) = 11} has 

been searched for the operation required for location (2,3). Therefore we only 

need to find min{l1, F{l, 5), F(2, 5), F(3, 5)}. 

For type 2, the location of the last minimum found from the previous pixel 

at the same row is not inside the search area of the current pixel. However the 

location of the minimum of the comparisons for the pixel at the same column 

and the previous row is instead inside the search area. Thus we only need to 

make comparisons between the minimum from the previous row and the pixels 

of the last row of the square, i.e. (i + 1, j - 1), (i + 1, j), (i + 1, j + 1). For 

example, sqr(3, 6) is of type 2. The full operation is: 

(F e G){3, 6) = min{ F{2, 5), F{2, 6), F(2, 7) , 

F(3, 5), F(3, 6), F(3, 7) , 

F(4, 5), F(4, 6), F(4, 7) }. 

The location of the last minimum found for the operation of the location (3,5) 

is not insiqe the search area (Le. F(3,4) = 11 ~ sqr(3,6)). However the 

location of the minimum found for the operation of (2, 6) (i.e. F(3,7) = 12 E 

sqr(3,6)). Thus we only need to find min{12, F{4, 5), F{4, 6), F{4, 7)}. 

For type 3 we need a full comparison, because none of the minima of type 

1 and type 2 is not inside the search area. An example for type 3 is sqr(5, 5). 

Type 4 is for some of the pixels of the last row or last column. They do not 

need any comparison. The minimum from the previous pixel either at the same 

row and the previous column, or the previous row and the same column is valid 
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for this pixel, and there are no new pixels to be compared. An example for 

type 4 is sqr(4, 8). Also we notice that the indexes for i-I and j -1, required 

respectively for the comparisons of the first row and column are negative and 

we assign the value of the adjacent pixels. In other words they are considered 

as "don't care". Similar discussion is valid for the pixels of the last row and 

column. The values of the pixels not required for comparison are presented 

with the symbol x standing for "don't care". The symbol. means that the 

corresponding input signal does not exist. The underlined values inside each 

square shows the minimum found as the result of erosion for the corresponding 

output pixel. In classical method, 8 comparisons need to be done for every 

Table 3.1: An example of 2-D GS Erosion. 
F FeG 

59 61 55 53 53 66 65 55 57 52 51 17 16 16 10 10 

58 57 52 51 17 16 28 10 14 14 11 11 11 12 10 10 

16 14 18 11 21 22 12 17 G 14 10 10 10 11 10 10 10 

17 20 10 20 33 17 10 32 0 0 0 11 10 10 10 11 10 10 10 

16 11 28 24 22 26 29 21 e 0 Q 0 11 10 10 10 17 10 10 10 

17 24 28 40 29 20 27 25 0 0 0 11 11 11 22 20 20 20 21 

25 23 30 39 58 59 52 56 17 17 23 24 20 20 20 21i 

31 30 29 24 26 23 26 27 23 23 23 24 23 23 23 2fl 

pixel of the image which will be 8 x 8 x 8 = 512 for the whole image. However 

we only need 136 comparisons with our fast algorithm (3.77 times faster for an 

8 x 8 image). For a large-size image (e.g. 512 x 512 which is considered as a 

normal size), it will be a great reduction in computation. 

Table 3.3 shows the types of the required comparisons for every pixel of 

the given example (four types defined in the previous paragraph). 

There is another fast algorithm for 2-D GS erosion which is less efficient 

than the proposed method. Regarding Eq. B.1.25 we can decompose the flat 

GSE based on Table 3.4 into two 1-D fiat GSE. Therefore with applying two 

fast 1-D GS erosions, we find, at first, the minima row-wise (across each row) 

and then apply another erosion, column-wise, upon the result of the previous 
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Table 3.2: Details of the required operations for output pixels of Table 3.1. 
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Table 3.3: Types of comparison required for the example of 2-D GS erosion. 

col. 1 col. 2 col. 3 col. 4 col. 5 col. 6 col. 7 col. 8 

row 1 3 1 1 1 1 1 1 4 

row 2 2 1 1 1 1 2 1 4 

row 3 2 1 1 1 2 2 1 4 

row 4 2 1 1 1 2 2 1 4 

row 5 2 1 1 1 3 1 1 4 

row 6 2 1 1 3 1 1 1 3 

row 7 3 1 3 3 1 1 1 3 

row 8 3 1 1 4 1 1 1 3 

one. 

Table 3.4: Decomposing a flat square GS 

0 0 0 o 

0 Q 0 =IOIQIOIEB Q 
0 0 0 o 

3.2.3 Fast I-D and 2-D dilation 

Based on Eqs. 2.6.6 and 2.6.14, we can apply similar fast algorithms for 1-D 

and 2-D GS dilation as we developed for erosion. The modifications will mainly 

concentrate on changing the terms minimum to maximum, and sweeping the 

signal/image from end to start due to the existing reflection of SE in dilation. 

The rest of the structure of the algorithm will remain the same. 

3.3 Fast GS opening and closing 

In this section the fast algorithms for I-D and 2-D GS opening are presented. 
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3.3.1 Fast 1-D GS opening 

Applying a combination of fast erosion followed by fast dilation, will defi

nitely be faster than finding the classical opening. This procedure needs to be 

completed in two steps. Developing an algorithm to obtain opening in single

pass will definitely speed up the operation. The main idea is adopted from 

vVang et. al. [89]. vVe will use the same notations for the input signal and SE 

as before. We assume that the origin of 9 is its first sample. The algorithm 

applied is as follows: 

1. For the first point n = 1, the smallest samples (lastmin) of the search 

area (Le. samples I:W) are found by a full comparison of all samples. If 

there are more than one smallest sample, remember the location of the 

rightmost one as lastminloc. Assign lastmin from lastminloc for the 

output samples with the locations smaller than, or equal to lastminloc. 

2. After the above step, if lastminloc is the leftmost sample of the search 

area and it is the only smallest sample, it will not be included in the 

next sample's search area. Therefore we need to make a full comparison. 

Otherwise we only need to compare lastmin with the rightmost sample 

of the search area and define the smallest value (This part is similar to 

what is mentioned for step one of the fast I-D GS erosion). If the recent 

smallest sample is less than lastmin, it means there is a new smallest 

value. If there is a new smallest value go to step 3 otherwise repeat step 

2. If the whole samples have been scanned, then go to step 4. 

3. If there is one or more new smallest value(s), we assign the corresponding 

output sample(s), from leftmost to rightmost sample, the same value as 

the new smallest value. The output samples between the leftmost new 

smallest location and lastminloc are assigned with 

max{lastmin, new smallest value}. 
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After assigning all output samples with correct values, we update the 

lastmin and lastminloc with the new smallest value, and then go to step 

2. 

4. The value of lastmin is assigned to the output samples after lastminloc 

and the algorithm ends up with this step. 

Table 3.5 illustrates, as an example, the fa.<;t single-pass algorithm for 1-D GS 

opening. 

Table 3.5: Illustration of the fast 1-D GS opening (lV = 5). 

II n II 0 I 1 I 2 I 31 41 51 61 71 81 91 101 111 121 131 141 11>1 161 1711 
fen) 9 8 T 6 9 T 2 3 6 8 9 1\ T 8 8 T 9 8 

_ Samples in n+L 9 8 7 l! 9 . . l! · 7 

-The smallest points are . 6 · · £ 
underlined. . · · £ 3 

· · £ · 6 

-The symbol' means the · £ · . 8 
related point is not £ · . • 9 
required for comparison. ;! 6 8 9 5 

6 8 9 ~ 7 . . ~ · 8 . 
~ · · 8 
~ · · · 7 

1 8 8 1 9 

· · 1 • 8 

· I · . 
I · . 

9 8 

(f 0 g)(n) 6 6 6 6 6 6 2 3 5 5 5 5 7 7 7 7 8 8 

Only 28 comparisons are required for the given example while the classical 

method needs 2N(lV - 1) = 144 comparisons. The speed-up ratio is about 

5.14. 

Table 3.6 shows the performance of the proposed method in [89] for fast 

1-D GS opening over the classical opening for a radar signal. 
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Table 3.6: The efficiency of fast 1-D GS opening over classical method adopted 
from [89] 

W (size of SE) 3 7 11 15 19 23 27 31 

The proposed method 2.09 4.00 6.00 8.00 10.00 12.17 14.08 16.08 

over classical one 

3.3.2 Fast 2-D GS opening 

We have experienced that the best fast technique for 2-D GS opening is 

applying fast 2-D GS erosion followed by dilation, otherwise single-pass fast 

2-D opening is rather difficult to be analysed. 

3.3.3 Fast I-D and 2-D closing 

For fast GS closing, similar dual algorithm regarding the start point and 

modifying the minima term with maxima can be applied. 

3.4 Fast GS open-closing and close-opening 

3.4.1 Fast I-D GS open-closing 

The fast technique for single-pass 1-D GS open-closing [69] is presented 

in this part. The current disscussion extends the method described for fast 

opening in [89] to combined open-closing operators within a single procedure 

for 1-D gray-scale signals. The structuring element is assumed to be flat. 

Open-closing, and close-opening of a 1-D signal with a line segment TV of 

length L(TV = {O, 1, ... ,L -1}) as SE may be done by translating TV point by 

point from left to right, looking for invariant points and assigning appropriate 

values to other points. The algorithm for open-closing is described below. A 

corresponding dual algorithm applies for close-opening. 
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1. For the starting point n=O, the smallest value(s) of the region lV + n is 

(are) found by comparing all the samples in the region. There may be 

several equally small sample values, and they will all be invariant points. 

This value is assigned to all samples up to the rightmost smallest sample. 

2. Moving the comparison pointer to the right, new smallest samples are 

sought by two different methods. If there is only one small?st sample in 

the region IV + n - 1 and it is the left-most sample of the region, the 

smallest sample will not be included in the region W + n, and the new 

smallest values are found by the comparison of all the samples in the 

region IV + n. Otherwise the region IV + n will only have a new sample 

to be compared at the location of tV + n - 1, which is not contained in 

the region lV + n - 1. Then if f(n + L - 1) is equal to, or smaller than 

the last smallest value of the region tV + n - 1, it is a new location with 

the possibility of being an invariant sample. Otherwise there is no new 

smallest sample in the region tV + n. vVe translate Wand repeat the 

second part. If a new smallest value(s) is (are) found, we go to step 3. 

3. If the location of the smallest value(s) is smaller than the size of the 

window (L), or if the new smallest value(s) is equal to, or greater than 

the last smallest, or the distance between the current smallest position 

and the first existing rejected sample between the last invariant sample 

and the current point is equal to, or greater than a window size, it is a new 

invariant point and go to step 4 for assigning data. Otherwise investigate 

other smallest points by sliding the window forward in the region n + W 

and put an index to the sought area for next comparisons. If the new 

smallest value is equal to, or greater than the smallest of the searched 

area, it will be an invariant point and go to step 4. Otherwise declare this 

point(s) as rejected points to be invariant, and the next time start data 

tracking from the sample after the rejected point. vVith this movement, 
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we will avoid the unnecessary comparisons between the current and the 

rejected point, and it will make the proposed algorithm more efficient 

than [89]. Of course a similar technique to step 2 is used for searching 

backward (or forward) to avoid seeking an area twice. 

4. Assign the new smallest value to the locations between the first new 

smallest location and the last new smallest location (if there is more 

than one smallest). Then assign the locations between the last smallest 

location and the new left-most location with two different ways. If there 

is a rejected invariant point between them, fill the locations between the 

last smallest, and the rejected invariant location with the minimum of 

the last smallest, and the new smallest value including the rejected points 

as well. Otherwise for the rest of the points left between them, choose 

the' maximum of the last and the new smallest. Candidate the right

most smallest location as last smallest location for the next operations, 

and use index to find whether there is a chance of moving forward the 

start location of the next tracking (another advantage of the proposed 

algorithm for speeding up compared to [89], and go to step 2. 

5. When the last invariant sample of a signal is found, its value is assigned 

to the remaining output samples after it. 

The proposed algorithm is illustrated by an example shown in Table 3.7. 

The window size of the structuring element (L) is 5 (Le. 9 = {O, 0, 0, 0, o} ). The 

first row of the table shows the location of 18 samples (0 -17). The second row 

shows how the smallest points are found. The underlined points are the smallest 

samples within VV +n. The symbol * indicates that the related points are not 

required for comparison. The symbol # shows the efficiency of the algorithm 

in order to avoid unnecessary comparisons, and moves forward the comparison 

pointer. The third row evaluates whether (or not) the smallest samples are 

invariant. The underlined points are invariant samples. The rejected points 

MORPHOLOGICAL FILTERING M.H. Sedaaghi 

LIVERPOOL 



3.4 Fast GS open-closing and close-opening 50 

are shown by the symbol x. The last row shows how the output values are 

found. 

Table 3.7: Illustration of fast 1-D open-closing (lV = 5) 

f(o) 9 8 7 6 9 7 2 S 6 8 9 II 7 8 8 7 9 8 

- Samples in n+L 9 8 7 § 9 

# # # # # 
-The smallest points are . 6 . . ~ 

underlined. # # # # # 

# # # # # 
-The symbol'" means the # # # # # 
related point is not # # # # # 
required for comparison. ~ 6 8 9 5 

6 8 9 §. 7 

-The symbol # indicates # # # # # 
that the relevant set of # # # # # 
data. is not required to # # # # # 
be compared. 1 8 8 1 9 

# # # # # 

# # # # 
# # # 

9 8 

-Accept 6 as invariant. § 

- Reject 2 aod 3 to be x 

invariant points. x 

-Accept 5,7,7,8 as §. 

invariant points. 1 1 

~ 
6 6 6 6 6 5 5 5 7 7 8 

opcJ(f)(o) § x x §. 1 1 ~ 
5 5 

Legend for Table 3.7 

1. Let the comparison pointer be identical to 0, to compare the set {9,8,7,6,9} 

and choose the smallest sample (6 in position 3). As the position is less 

than the window size, it will be an invariant point. Assign the same value 

to the positions less than 3 , i.e. assign 6 to the positions 0,1,2. Since 

the next point value after the searched area is greater than 6 (the point 

5 value is 7 > 6), we know that for the next comparison set (from point 

1 to 5) 6 will again be the smallest. So to increase the efficiency, the 
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comparison pointer is incremented by 1 and starts from 2 for the next 

comparison set. 

2. Now comparison pointer is at 2 to compare the set {*,6,*,*,2}. The 

symbol * means that there is no need to consider the relevant samples. 

Choose the smallest point (2 in position 6). The distance between this 

point and the last smallest point (6 in position 2) is less than the window 

size. Therefore we should evaluate whether it is greater than the next 

interval's smallest value, and whether this is true for more than a window 

size. vVe find that it is not true (due to 3 in location 7). Thus it will be 

declared as a rejected point. We may move the comparison pointer up 

to the next point for next operations (position 7). 

3. The pointer is now at 7. Compare the set {3,6,8,9,5}. Choose the smallest 

point (3 in position 7). To the same reason as in part b , define this sample 

as another rejected point. The pointer after this step will automatically 

be at position 8. 

4. vVith the pointer at 8, compare the set {6,8,9,5,7}. Choose the point (5 

in position 11) as the smallest. The distance between this point and the 

last smallest point is equal to the window size. So it will be an invariant 

point. The last invariant point is 6 in position 3. Therefore put the 

minimum of the two invariant samples in the rejected points (i.e. put 

min(5,6)=5 in the locations 6 and 7). Then fill the locations between the 

last invariant point and the rejected points (i.e. the locations 4 and 5) 

with the maximum of the two values (max(5,6)=6). Then fill the rest of 

the empty points between the rejected points and the current invariant 

point (i.e. locations 8,9, and 10 ) with 5 (=max(5,5)). Then increase 

the comparison pointer to 12, because 5 in location 11 is less than 7,8,8,7 

in locations 12 up to 15, and it will be again the smallest from pointer 9 

MORPHOLOGICAL FILTERING M.H. Sedaaghi 



3.5 Efficiency and experimental results 52 

up to 11. 

5. Compare the set {7,8,8,7,9} at position 12, and choose the smallest sam

ple (7 in positions 12 and 15). There are 2 equal smallest values in the 

set. Both of them are invariant, because they are greater than the last 

invariant point, and they will last for more than a window size. So write 

7 from the position 12 up to 15, and increment the position pointer to 

16. 

6. \Vhen the pointer is at position 16, compare the set {9,8} and choose the 

value 8 in position 17 as the smallest point. It will again be an invariant 

point. Put 8 in position 17, and choose 8 (=max(7,8)) for the position 

16. The processing in this example ends here. 

For the given example, our approach needs only 18 comparisons while the 

classical method needs 4N(}V - 1) = 4 * 18 * 4 = 288 comparisons, leading to 

a speed-up ratio of 16. 

3.4.2 Fast 2-D GS open-closing and close-opening 

For simplicity, we suggest applying proper cascades of fast 2-D GS erosion 

and dilation. 

3.5 Efficiency and experimental results 

The efficiency of the proposed algorithms arise because they avoid compar

isons along the locations which have been compared previously. On the other 

hand, the standard methods slide the structuring element over the data, and 

make exhaustive comparisons at every position. Therefore there are repeated 

comparisons which take much longer time to complete, especially for large SEs. 

The method suggested by [89] for opening has enhanced the computational 
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Table 3.8: Relative performance of required time ratio for the open-closing for 
an ECG data set of 2500 samples with different algorithms 

ECG data with a baseline shift ECO data with added Gaussian noise 

Window Time ratio of Time ratio of Time ratio of Time ratio of 

size our method over method (89) over our method over method (89) over 

(L) standard method standard method standard mpthod standard method 

3 0.606 0.860 0.627 0.886 

5 0.445 0.690 0.434 0.628 

10 0.270 0.471 0.218 0.390 

20 0.168 0.315 0.110 0.236 

30 0.116 0.260 0.079 0.177 

40 0.118 0.231 0.069 0.146 

50 0.102 0.215 0.058 0.127 

60 0.091 0.197 0.051 0.114 

Table 3.9: Relative performance of our method over [89] in Table 3.8 for fast 
I-D open-closing 

EeG data with a baseline shift ECG data with added Gaussian noise 

L our method over (89) our method over [Il!!] 

3 1.42 1.41 

5 1.55 1.45 

10 1. 74 1.79 

20 1.88 2.15 

30 2.24 2.24 

40 1.98 2.12 

50 2.11 2.27 

60 2.16 2.24 

efficiency of these operators and our method for open-closing has improved the 

method in [89] by both avoiding the unnecessary comparisons suggested in 

[89] and moreover, by putting a track point for the next required comparisons. 

Also the proposed algorithm can realise open-closing by a single pass when the 

method in [89] needs two passes. 

Table 3.8 compares the relative required time with different algorithms for 

an ECG data set of 2500 samples with several window sizes run on a 386 PC, 

for three different methods. 

Table tab:compopclll shows the results of Table tab:compopcll as absolute 

performance ratio of our method over the proposed method in [89]. 

The speed ratio of the proposed algorithm over the standard method for 
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erosion of a 512 x 512-point gray-scale image with different flat structuring 

elements is presented in table 3.10. 

Table 3.10: Relative performance of the speed ratio of fast 2-D erosion using a 
flat GSE for a 512 x 512 image. 

2-D flat Structuring element size 3x3 5 x 5 7 x 7 I 9 x 911 

Speed ratio of our method over standard method 1.29 2.25 3.00 I 3.98 II 

Vve can guess the amount of the efficiency for the remaining fast opera

tors. The worst case seems to happen when the input data is sorted ascending 

for erosion and descending for dilation. In either case the minima/maxima 

happens in leftward/rightward position of the search area and therefore a full 

comparison will be required for next operation. However with a simple change 

of the algorithm we can still apply the fast algorithms by changing the direction 

of sweeping the input signal/image from end/start for erosion/dilation. 

3.6 Remarks and conclusion 

This chapter has shown our contribution about fast implementation of 1-D 

GS open-closing and close-opening, 2-D erosion and dilation besides another 

fast algorithms for the remaining operators. The algorithms applied in this 

chapter are direct implementation of the morphological operators, by single 

one-pass procedures. They are computationally simple and very efficient with 

a 18-20 % reduction in computational effort for morphological operations com

pared with the fastest alternative method, and an order of magnitude improve

ments over naive implementations for large structuring elements. All the algo

rithms mentioned above have been realised by a user-friendly package designed 

by author for 1-D and 2-D morphological systems design. 
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Chapter 4 

Real-time implementation & 

hardware architecture of GSMF 

4.1 Introduction 

In previous chapter we had a look to fast algorithms in software. This 

chapter improves and generalises real-time implementations of GS (grey-scale) 

morphological operators proposed in [44] for any GSE (grey-scale structuring 

elements) having its centre in any position of the defined domain [72, 75, 

73]. Extended algorithms are also applied in 2-D (two dimension). Schematic 

diagrams of hardware architecture and real-time implementations are included. 

4.2 Background 

As mentioned in Chapter 2, MF operators are classified into three groups 

as SP (set processing), FP (function processing) and FSP (function and set 

processing) systems. There are a variety of algorithms for real-time implemen

tation of SP and FSP systems, however they are not easily applicable for FP 

systems. Some fast non-recursive methods for FP operators have been devel-
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oped [89, 69]. For real-time applications, recursive algorithms are required. 

The proposed method in [44] is one of the best techniques for real-time FP op

erations. However it is applied for a specific GSE. Sedaaghi and Wu [72,75, 73] 

improve and generalise the proposed algorithm in [44] and extend it to 2-D 

applications. 

4.3 The proposed algorithms 

If the centre of GSE is called b(O), there will be rn points to the left (Le. 

b(-rn), ... ,b(-l)) and n points to the right (Le. b(l), ... ,b(n)) of the centre 

point b(O) leading to a general GSE of the form: 

{b( -rn), ... ,b( -1), b(O), b(I),· .. ,b(n)}. 

The total length (L) is thus m + 1 + n. To find out how the centre position of 

GSE affects the result of a morphological operator, we consider the following ex

ample with m = n = 1 and 7 fnput samples defined as {J(O), ... , J(6)}. The ero

sion {er(O),··· ,er(6)}, dilation {di(O),··· ,di(6)}, opening {op(O),··· ,op(6)} 

and closing {cl(O),··· ,cl(6)} are shown in Eqs. 4.3.1- 4.3.4 respectively. 

er(O) = min{J(-l) - b(-I),J(O) - b(O),J(I) - b(l)} 

er(l) = min{J(O) - b( -1) ,J(I) - b(O), J(2) - b{l)} 

er(5) = min{J(4) - b( -1) ,J(5) - b(O), J(6) - b(l)} 

er(6) = min{J(5) - b( -1) ,J(6) - b(O), J(7) - b(l)} 

di (0) = max {J ( -1) + b (1), J (0) + b (0), J (1) + b( -1 ) } 

di(l) = max{/(O) + b(l) ,J(I) + b(O), J(2) + b( -I)} 

di(5) = max{J(4) + b(l) ,J(5) + b(O), 1(6) + b{ -I)} 

di(6) = max{f(5) + b(l) ,J(6) + b(O), J(7) + b( -I)} 

(4.3.1) 

(4.3.2) 
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and 

op(O) = max{er( -1) + b(I), er(O) + b(O), er(l) + b( -I)} 

op(l) = max{er(O) + b(l) ,er(l) + b(O),er(2) + b(-l)} 

op(5) = max{ er( 4) + b(l) ,er(5) + b(O), er(6) + b( -I)} 

op(6) = max{er(5) + b(l) ,er(6) + b(O),er(7) + b(-I)} 

cl(O) = min{di(-I) - b(-I),di(O) - b(O),di(l) - b(l)} 

cl(l) = min{ di(O) - b( -1) ,di(l) - b(O), di(2) - b(l)} 

cl(5) = min{di(4) - b(-I) ,di(5) - b(O),di(6) - b(l)} 

cl(6) = min{di(5) - b(-I) ,di(6) - b(O),di(7) - b(l)} 
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( 4.3.3) 

( 4.3.4) 

The morphological operations are not defined for their first/last samples. The 

number of undefined samples equals to m + n. For example the erosion using 

the above samples needs m (=1) more samples before f(O) (f( -1)) to calculate 

er(O) and n (=1) more samples after f(6) (f(7)) for er(6). Three assumptions 

can be taken respectively based on what mentioned in chapter 3: 

1. ignore early and late samples, 

2. assume f(-I) = f(O) and f(7) = f(6), 

-
3. assume f ( -1) and f (7) are large enough to be ignored when finding 

minima for er(O) and er(6). 

The dual assumption is required for dilation. We use the third assumption 

in Table 4.1 to illustrate how the position of the centre point b(O) affects 

the results. Except the early/late samples, the results in three columns are 

similar but have shifted values. This shift is very important when considering 

correlation between the input and output. Therefore the method proposed 
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Table 4.1: Results for f(n) = {29, 21, 18,23,26,20, 15} with different centre 
points for eSE. 

g(n) {~, 5, 3} {2,Q,3} {2,5,~} 

er(n) {15,13,16,17,12,10,13} {18, 15, 13, 16, 17, 12, 10} {26,18,15,13,16,17,12} 

di(n) {31,34,32,25,28,31,29} {34,32,25,28,31,29,23} {32,25,28,31,29,23,18} 

op(n) {17,20,18,21,22,20,15} {23,21,18,21,22,20,15} {29,21,18,21,22,20,15} 

cl(n) {29,22,20,23,26,24,27} {29,22,20,23,26,20,18} {29,22,20,23,26,20,15} 

opcl(n) {17,20,18,21,22,20,23} {23,21,19,21,22,20,18} {29,21,19,21,22,20,15} 

clop(n) {19,22,20,23,26,24,27} {24,22,20,23,22,20,18} {29,22,20,23,22,20,15} 

in [44] is only correct for 9 = {b( -m), ... , b{ -1), b{O)} (i.e. the centre is the 

rightmost sample in eSE). 

For hardware implementation, the equation 2.6.1 can be simplified. Let 

f3Li = b{O) - b{ -i), 0 < i ~ m and f3Rj = b{O) - b(j), 0 < j ~ n. The new 

results for the given example are: 

f(O) = min{f(-l) + f3Ll'f{O),f{l) + fJRl} 

f{l) = min{f{O) + f3Ll' f{l), f(2) + fJRl} 

f(5) = min{f(4) + f3Lll f(5), f(6) + fJRJ 

f(6) = min{f(5) + f3Lll f(6),j{7) + fJRJ 

The erosion will be: 

er{i) = f(i) - b{O), 0 ~ i ~ 6. 

Similarly we can have the next simplifications for the dilation: 

6(0) = max{f( -1) - f3Rllf{O) , f(l) - f3LJ 

6(1) = max{f{O) - f3RI' f{l), f(2) - f3LJ 

6(5) = max{f(4) - f3Rll f(5), f(6) - f3LJ 

6(6) = max{f(5) - fJRl' j(6), j(7) - f3Ll} 

MORPHOLOGICAL FILTERING 
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The dilation will be: 

di(i) = 8(i) + b(O), O:S i :S 6. 

The simplified opening will be: 

op(O) = max{t(-1) - ,BRpt(O),t(1) - /hJ 

op(1) = max{ t(O) - ,BRp t(1), t(2) - ,BLJ 

op(5) = max{t(4) - ,BRp t(5),t(6) - ,BLJ 

op(6) = max{ t(5) - ,BRp t(6), t(7) - ,BLJ 

The simplified closing will be: 

cl(O) = min{ 8( -1) + ,BLp8(0), 8(1) + ,BRJ 

cl(1) = min{ 8(0) + ,BLI' 8(1),8(2) + ,BRI} 

el(5) = min{8(4) + ,BLp 8(5),8(6) + ,BRJ 

cl(6) = min{ 8(5) + ,BLp 8(6), 8(7) + ,BRJ 
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(4.3.8) 

(4.3.9) 

(4.3.10) 

Figures 4.1-a, 4.1-b and 4.1-c show the outputs for erosion and opening 

respectively when 

1. (i) m = 0, n = 2 (i.e. b(O) in the left), 

2. (ii) m = n = 1 (i.e. b(O) in the middle), 

3. (iii) m = 2, n = 0 (i.e. b(O) in the right). 

Figure 4.2-a presents ,a generalised implementation of erosion and opening. 

The delay lines can be initialised properly to be correct for early/late samples. 

Considering the duality, the generalised implementation of dilation and closing 

are also shown in Figure 4.2-b. The recursive implementation for opel and clop 

can be achieved by proper cascade of the minima/maxima blocks of Figures 

4.2-a and 4.2-h. 
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Erosion 

-~ 
R2 

-~ 
RI 

MAX MAX MAX 

Opening Opening Opening 

(a) (b) (c) 

Figure 4.1: The fast recursive implementation of erosion and opening with 
GSE of size 3 with b(O) as centre: (a) 9(1) = {b(O), b(1), b(2)}, (b) 9(2) = 
{b( -1), b(O), b(1)}, (c) 9(3) = {b( -2), b( -1), b(O)} 

-~ 
Rn 

.-----------+t-I-i---_ Dilation 

-~ 
Rn 

L--_-+. Opening L--_-+) Closing 
(a) (b) 

Figure 4.2: The generalised implementation of fast recursive: (a) erosion and 
opening (b) dilation and closing. 
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We now extend the proposed method in 2-D. Let F(x, y) and G(k, l) denote 
respectively a 2-D image with width Y and height X and a 2-D GSE with width 
L and height K, Dp and DB denote their domains and F(a, (3) I (0'., (3) E Dp. 
recalling Eq. 2.6.9 for 2-D GS erosion, we know that the GSE is a matrix and 
is defined as (m + n + 1 = L,p + q + 1 = K): 

b(-p, -m) b(-p,-l) b( -p, 0) b(-p,l) b(-p,n) 

b(-I,-m) b(-I, -1) b(-I,O) b( -1,1) b( -1, n) 

G= bC~, -m) b(O,-I) b(O,O) b(O,I) b(O,n) 

bel, -m) bel, -1) b(I,O) b(I,I) bel, n) 

b(q, -m) b(q,-I) b(q,O) b(q, 1) b(q, n) 

As an example let m = n = p = q = 1. Then 2-D erosion will be: 

{F(-I, -I) - b(-I, -I) F(-I,O) - b(-I,O) , F(-I,I) -b(-I,I),} 

E R(O, 0) = min F(O, -I) - b(O, -I) F(O,O) - b(O, 0) F(O,I) - b(O,I), 

F(I, -I) - b(I, -I) F(I, 0) - b(I, 0) F(l, I) - b(l, I) 

{F(-I,S) - b(-I, -I) , F(-1,6) - b(-I,O) , F(-1,7) - b(-I, I),} 

E R(O, 6) = min F(O, 5) - b(O, -I) F(O,6) - b(O, 0) F(O, 7) - b(O, I), 

F(I,5) - b(l, -I) F(I,6) - b(l, 0) F(l,7) - b(l, I) 

{F(5,-I)-b(-I,-I) , F(5,0) - b(-I,O) , F(5, I) - b(-I, I),} 

E R(6, 0) = min F(B, -I) - b(O, -I) F(B, 0) - b(O, 0) F(6, I) - b(O, I), 

F(7, -I) - b(l, -I) F(7, 0) - b(I, 0) F(7,1) - b(I,I) 

{F(5' 5) - b{-I, -I) F(5,6) - b{-I, 0) F(5, 7) - b{-I, I), } 

ER{6, 6) = min F(6, 5) - b(O, -I) F(6,6) - b(O, 0) F(6, 7) - b(O, I), 

F{7, 5) - b{l, -I) F{7, 6) - b(I, 0) F(7, 7) - b{l, I) 

The dilation will be: 

DI{O,O) = max 

DI(0,6) = max 

DI6,Q = max 

DI(6,6) = max 

{

F(-I, -I) + b(l, I) 

F(O, -I) + b(O, I) 

F(I, -I) + b(-I, I) 

{

F( -1,5) + b{I, I) 

F{O, 5) + b(O, I) 

F(I, 5) + b(-I, I) 

{ 

F(5, -I) + b(I,I) 

F{6, -I) + b{O,I) 

F{7,-I)+b(-I,I) 

F(-I,O)+b(I,O) , F(-I,Il+b(I,-I),} 

F(O, 0) + b{O, 0) F{O, I) + b{O, -I), 

, F(I,O)+b(-I,O) , F(I,I)+b(-I,-I) 

, F(-1,6)+b{I,0) , F(-I'7)+b{I'-I)'} 

F(O, B) + b(O, 0) F(O, 7) + b(O, -I), 

, F(I,6)+b(-I,O) , F(I,7)+b(-I,-I) 

F{5, 0) + b(l, 0) 

F(6, 0) + b(O, 0) 

F(7,O)+b(-I,O) , 

F(5,1) + bO, -I), } 

F(6, I) +b(O, -I), 

F(7, I) + b(-I, -I) 

{ 

F(5,5)+b(I,I) , F{5,6)+b(I,O) 

F(6, 5) + b(O, I) F(6, 6) + b{O, 0) 

F(7,5)+b(-I,I) , F(7,6)+b(-1,0) , 

F(S, 7) + b{l, -I), } 

F(6, 7) + b(O, -I), 

F(7, 7) + b(-I, -I) 

(4.3.11) 

(4.3.12) 
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The opening will be: 

{

ER(-I' -I) + b(l, I) 

OP(O,O) = max ER(O, -I) + b(O, I) 

ER(I, -I) + b(-I, I) 

{

ER(-I'S)+b(I'I) 

OP(0,6) = max ER(0,5) +b(O, I) 

ER(I, 5) + b(-I, I) 

{ ER(5, -I) + b(l, I) 

OP(6,0) = max ER(6, -I) + b(O, I) 

ER(7, -I) + b(-I, I) 

{ ER(S,S)+b(I,I) 

OP(6,6) = max ER(6, 5) + b(O, I) 

ER(7, 5) + b(-I, I) 

The closing will be: 

C L(O, 0) = min 

CL(0,6) = min 

{

DI(-I' -I) - b(-I, -I), 

DI(O, -I) - b(O, -I), 

DI(I, -I) - b(l, -I), 

{

DI(-I'S) - b(-I, -I), 

DI(O, S) - b(O, I), 

DI(l, 5) - b(l, -1), 

ER(-I,O) +b(I,O) 

ER(O,O) + b(O, 0) 

ER(I,O) + b( -1,0) 

ER(-1,6)+b(I,0) 

ER(0,6) + b(O,O) 

ER(I,6)+b(-1,0) 

ER(5,0)+b(I,0) 

ER(6,0) + b(O, 0) 

ER(7,0) +b(-I,O) 

ER(S,6) +b(I,O) 

ER(6,6) +b(O,O) 

ER(7,6) +b(-I,O) 

DI(-I,O) - b(-I,O), 

DI(O,O) - b(O,O), 

DI(I, 0) - b(l, 0), 

DI(-1,6) - b(-I,O), 

DI(0,6) - b(O, 0), 

DI(I,6) - b(l, 0), 

CL6.0 = min 
{

DI(S' -I) - b(-I, -I), 

DI(6,-I) - b(O, I), 

DI(7,-I) - b(l, -I), 

DI(S, 0) - b(l, 0), 

DI(6, 0) - b(O, 0), 

DI(7, 0) - b(l, 0), 

C L(6, 6) = min 
{ 

DI(S, 5) - b(-I, -I), 

DI(6,S) - b(O,-I), 

DI(7, S) - b(l, -1), 

DI(S,6) - b(-I,O), 

DI(6,6) - b(O, 0), 

DI(7, 6) - b(I, 0), 

ER(-I, I) + b(l, -I),} 
ER(O, 1) + b(O, -I), 

ER(I, 1) + b(-I, -I) 

ER(-1,7) + b(I, -1), } 

ER(O, 7) + b(O, -I), 
ER(I, 7) + b(-I, -I) 

ER(S, 1) + b(I, -1), } 

ER(6, 1) + b(O, -1), 

ER(7, I) + b(-I, -I) 

ER(5,7)+b(I,-I), } 

ER(6, 7) + b(O, -I), 

ER(7, 7) + b(-I, -I) 

DI(-I, I) + b(-I'I)'} 

DI(O, I) - b(O, I), 

D/(I, I) - b(I, 1) 

DI(-I, 7) - b(-I, I),} 
DI(O, 7) - b(O, I), 

D/(I, 7) - b(l, 1) 

DI(5, I) - b( -I'I)'} 
DI(6, I) - b(O, I), 

DI(7, 1) - b(I, I) 

DI(S, 7) - b(-I'I)'} 

DI(6, 7) - b(O, I), 

DI(7, 7) - b(l, I) 

We let the following assumption for the terms of G: 

!3u~ L; = b(O, 0) - b( -k, -i) 

!3c L; = b(O, 0) - b(O, -i) 

!3D/L; = b(O,O) - b(l, -i) 

{3ukC = b(O,O) - b(-k,O) , !3Uk Rj = b(O,O) - b(-k,j) 

!3CRj = b(O,O) - b(O,j) 

!3D/C = b(O, 0) - b(l, 0) !3D/Rj = b(O, 0) - b(I,j) 
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( 4.3.13) 

( 4.3.14) 

a < k :::; p,a < 1 :::; q,a < i :::; m,D < j :::; n (i.e. there are p points above, q 

points beneath, m points on the left, and n points on the right of the centre 
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point b(O, 0)). The above results will be simplified to: 

{F(-I,_I)+flUI L I F(-I,O) +flUIC F(-I,I)+flUIRI'1 
2:(0,0) = min F(O, -1) + flCLI F(O,O) F(O, I) + flCRI' 

F(I, -1) + flVILI F(I,O) +flVIC F(l,I)+flvIRI 

{F(-1,5)+ flUILI F(-I,6) +flUIC F(-I,7)+ flU IRI'} 
2:(0,6) = min F(0,5) +flCLI F(0,6) F(O,7) + flCRI' 

F(I, 5) + i3VILI F(I,6)+ flv IC F(I, 7) + flVI RI 

(4.3.15) 
{ F(S, -I) + flUILI F(5, 0) + flUI C F(5,1)+fluI RI' } 

2:(6,0) = min F(6,-I)+ flcL I F(6,O) F(6,I) + flCRI' 

F(7,-I)+ flv ILI F(7,O)+flvlc F(7, 1) + flDI RI 

{ F(S, S) + flUI LI F(S, 6) + flUI C F(5, 7) + flUI RI' } 
2:(6,6) = min F(6,S) +flCLI F(6,6) F(6, 7) + i3c RI ' 

F(7,S)+ flv ILI F(7, 6) + flv! C F(7, 7) + flVI RI 

and the erosion will be 

ER(i, j) = 3(i, j) - b(O, 0), 0 ~ i, j ~ 6. (4.3.16) 

{

F(-I,-I) - flVIRI 

.0.(0,0) = max F(O,-I)-flcRI 

F(I, -1) - flUI R) 

F(-I,O) - flVIC F(-I,I) - flVI L), } 
F(O,O) F(O, I) - flCL) , 

F(I,O) - flUIC F(1, 1) - flu) LI 

{

F(-I,S)-flVI R I 
.0.(0,6) = max F(O, 5) - flc R) 

F(I,5) - flU)RI 

F(-I,6)- flv IC F(-I,7)- i3V ILI' } 
F(O,6) F(O, 7) - flCLI' 

F(I, 6) - flUI C F(I,7) -flUILI 

(4.3.17) 

(

F(5' -1) - flVIRI 

.0.(6,0) = max F(6, -1) - flCRI 

F(7, -1) - flu! RI 

F(5,O)- flv IC F(5,I) - flVILI' } 
F(6,O) F(6,I) - flCLI' 

F(7,O) - flu) C F(7, 1) - flUI LI 

{

F(S, 5) - flVIRI 

.0.(6,6) = max F(6,S) - flCRI 

F(7, 5) - flUIRI 

F(5,6) - flDIC F(5, 7) - i3V I L I 'I 
F(6,6) F(6, 7) - flCL), 

F(7,6) - flUI C F(7,7) - flu) LI 

and the dilation will be: 

DI(i,j) = tl(i,j) + b(O, 0), 0 ~ i,j ~ 6. (4.3.18) 
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The opening is simplified to: 

OP(O. 0) = max 

OP(O,6) = max 

OP(6,O) = max 

OP(6,6) = max 

{
=:~-I' 5) - (JD, RI 

=-(O,S)-(JCR, 

8(1,5) - (3UIR, 

{

8(S' -I) - (JDIRI 

8(6, -I) - (JCR, 

8(7, -I) - (3U,R, 

{

=:(S' 5) - (3D,R, 

8(6, S) - (3c R, 

8(7,5) - (3UI RI 

The closing is simplified to: 

{~(-I' -I) + (JUILI 

CL(O,O) = min Ll.(O,-I) + (3CLI 

Ll.(I, -I) + {3DI LI 

{Ll.(-I' 5) + .8UI LI 

CL(O,6) = min Ll.(O, 5) + {3CLI 

Ll.(I, 5) + .8DILI 

{ ~(S, -I) + .8UI LI 

CL(6, 0) = min ~(6, -I) + {3CLI 

~(7, -I) + {30,L, 

{~(S'S) +{3UILI 

CL(6,6) = min Ll.(6, 5) + {3CLI 

Ll.(7,S)+{30ILI 

, 

, 8(-I,O)-(3DIC 

=:(0,0) 

:::(1,0) - (JUI C 

=:(-1,6) - (JD,C 

8(0,6) 

=:(1,6) - (JUI C 

, 8(5,O)-(JDIC 

, 

=:(6,0) 

:::(7,0) - (JUI C 

=:(S,6) - (3DI C 

E(6,6) 

=:(7,6) - (3UI C 

Ll.(-I,O) + {3UIC 

Ll.(O,O) 

Ll.(I, 0) +.8DIC 

Ll.(-I,6) + {3UIC 

Ll.(O, 6) 

Ll.(I,6)+.8DIC 

~(S, 0) + {3u, C 

Ll.(6,O) 

Ll.(7, 0) +.8DIC 

Ll.(S, 6) + {3UI C 

Ll.(6,6) 

Ll.(7, 6) +{3DIC 

, 8~-I, 7) - (3DILI'} 

=-(0,7) - (JCLI' 

8(1,7) - (3u, L, 

':5,7) - (JD'L"} 
::.(6,7) - (JCLI' 

=:(7,7) - (JUILI 

Ll.(-I'I)+{3UIRI'j 
Ll.(O,I) +{3CRI' 

Ll.(l, I) + .80, R, 

~(-I'7)+.8UIRI'} 
Ll.(O, 7) + {3CRI' 

Ll.(I,7)+{3DIRI 

Ll.(S, I) + (JUI RI' } 

~(6,1) + {3CRI' 

~(7,1)+{3D,RI 

Ll.(S, 7) + {3UI RI 'j 
~(6, 7) + (JCR" 

Ll.(7, 7) + {3DI RI 
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(4.3.19) 

(4.3.20) 

The generalised implementation of 2-D operators are shown in Figures 4.3 

and 4.4. Each row of the image is controlled by a parallel-in/parallcl-out 

shift register which also has a sequential output as well. The length of each 

shift register equals to the width of the image (Y). The parallel-load action 

happens when a row is scanned completely. The parallel-load parts are shown 

with double thick lines in Figures 4.3 and 4.4. Open-closing and close-opening 

can be built by proper cascades of the above blocks. 

MORPHOLOGICAL FILTERING M.H. Sedaaghi 



4.3 The proposed algorithms 65 

Figure 4.3: The generalised implementation of fast recursive 2-D erosion and 

opening. 
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Figure 4.4: The generalised implementation of fast recursive 2-D dilation and 
closing. 
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4.4 Efficiency 

Our algorithm for real-time MF avoids unnecessary operations and doesn't 

keep intermediate results. Therefore it is much faster than the classical cascade 

methods for opening, closing, open-closing and close-opening operations in 

which the intermediate results are needed. For example if the signal(image) 

size is N = 512(X = Y = 512) and the GSE's size is L = 3(J( = L = 3), we 

have L « N(L « Y, K « X), and the result of the first sample for opening 

is ready after finishing the whole erosion which needs LN = 1536(XY K L = 

2359296) additions and N(L-1) = 1024(XY(J( L-1) = 2097152) comparisons 

and keeping the results into a buffer of size N = 512(XY = 262144) (see 

Table 4.2) while the result of the first opening sample in the proposed method 

is produced only after a few operations shown in Table 4.3. The proposed 

structures of morphological operators can be implemented by hardware and 

operated in real time. 

Table 4.2: The required operations and memory elements for classical method. 
(Let L = J( = 3, N = X = Y = 512) 

Oper- 1-D 2-D 

at ions Addition Comparison Memory Addition Comparison Memory 

op 2NL 2N(L -1) 2N+L 2XY1<L 2XY(1<L -1) 2XY + 1<L 

(3072) (2048) (1027) (4718592) (4194304) (524297) 

opel 4NL 4N(L - 1) 2N+L 4XY1<L 4XY(1<L -1) 2XY + 1<L 

(6144) (4096) (1027) (9437184) (8388608) (524297) 

4.5 Remarks and conclusion 

Our major contribution in this chapter is related to the real-time implemen

tation of 1-D and 2-D GS operators. We have tried to highlight the efficiency 

of the proposed methods. We have shown how our approaches generalise the 
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Table 4.3: The required operations and memory elements for proposed method. 
(Let L = K = 3, Y = 512) 

Oper- 1-D 2-D 

ations Addition Comparison Memory Addition Comparison Memory 

op 2L-2 2L-2 3L-3 2KL-2 2KL-2 2YK +3KL 

(4) (4) (6) (16) (16) -2K - 1(3092) 

opel 4L-4 4L-4 5L-5 4KL - 4 4KL - 4 4YK + 5KL 

(8) (8) (10) (32) (32) -4K - 1(6176) 

existing methods for any given SE. We have proved that how efficiently they 

operate, regarding the required hardware and execution time. 
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Chapter 5 

Convolved morphological filters 

5.1 Introduction 

In previous chapters we have defined GS morphological operators, and pre

sented fast algorithms and also real-time implementation of the operators. This 

chapter introduces novel convolved morphological operators (C110s) and con

volved morphological filters (CMFs) [74, 77]. As a reminder, a morphological 

operator is called a morphological filter if it is increasing, idempotent, and 

extensive or anti-extensive (see Chapter 2). The idea is to combine linear fil

tering with MF to take the advantage of both methods. The CMF operates 

using morphological operations and their convolution with selected impulse re

sponses and offers highly accurate characteristics of high-, low-, and band-pass 

filtering. Designing a suitable structuring element based on the characteristics 

of the input signal is discussed and hardware implementation of CMF is also 

investigated. 

By contrast to linear filtering which blurs the image, the MFs provide image 

enhancement without blurring the features. As examples, consider the quality 

of MF on aperiodic signals compared with linear filtering in Figures 5.1 and 

5.2. The SE applied in all cases is a flat SE of size 3 for 1-D and 3 x 3 for 2-D 
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applications. 

However there is no analytical method available for MF analysis due to 

their nonlinear features. Reconstruction of the origin al signal is impossible to 

be achieved after morphological operations (i .. MF operators are idempotent: 

7jJ el/J(f)) = j) , but linear methods are transferable in the time and frequ ncy 

domains for analysis and design. Some efforts have been made to combine MF 

and convolution [84, 12]. This section proposes a novel method for design 

of MFs with enhancement provided by convolution, which results in a much 

superior performance compared with that obtained by linear filters. 

Input Linear MF 

-5L-_____ --' -5 '--_____ ~ - 5 '--_____ ---1 

o 1000 
(a) 

2000 0 1000 2000 0 
(b) 

1000 
(c) 

Figure 5.1 : Noisy aperiodic square signal. 

Input image Linear MF 

Figure 5.2: Noisy MRI image. 

MORPHOLOGICAL FILTERING 

2000 

M.H. Sedaaghi 



5.2 Definition of GAiO 71 

5.2 Definition of CMO 

Let in(t) be an input signal of the form 

where fs is the sampling frequency and e(t) is white noise. 0 < fl < f2 < 

... < !k < 'to vVe want to extract the desired frequencies singly lor in a 

band. Linear filters will cause a time delay which is not desirable. However 

the frequency response of the MF, despite avoiding the time delays (preserving 

the original signal shape), is not as valid as for linear filters due to its nonlinear 

operations. Therefore we have proposed an algorithm to convolve MF with a 

proper transfer function h(t) to obtain a robust filter preserving the original 

signal shape in time domain with a desired frequency response. Let mo(t), 

h(t) and cmo(t) denote the output of the morphological operator, the impulse 

response of linear filter, and CMO output, respectively, and be defined as 

cmo(t) = h(t) * mo(t) = L h(T) . mo(t - T), (5.2.1) 
T 

where T E Dh , t - T E Dmo, and * denotes convolution. Equivalently we can 

express the terms in the frequency domain: 

GII10(1) = H(1) ·IIJO(1). (5.2.2) 

As convolved morphological operators, convolved erosion cer(t), dilation cdi(t), 

opening cop(t) , closing ccl(t), open-closing copcl(t) and close-opening cclop(t) 

are defined as (t, u, v, W E Dg and f(a), a E Df) 

cer(t) = L h(T) . er(t - T) = L h(T) . mJn{f(t + u - T) - g(u)} (5.2.3) 
T T 

cdi(t) = L h(T) . di(t - T) = L h(T) . max{f(t - u - T) + g(u)} (5.2.4) 
u 

T T 
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cop(t) ="E h(r) . op(t - r) 
T 

= 2: h(r) . max{min{f(t + u - v - r) - g(u) + g(v)}} 
T V U 

(5.2.5) 

ccl(t) ="E h(r) . cl(t - r) 
T 

= 2: h(r) . min{max{f(t - u + v - r) + g(u) - g(v)}} 
T V U 

(5.2.6) 

copel(t) = 2: h(r) . opel(t - r) = 2: h(r) . max{min{min{max{ 
T T W V U 8 (5.2.7) 

f(t - s + u + v - w - r) + g(t) - g(u) - g(v) + g(w)}}}} 

celop(t) = 2: h(r) . cl(t - r) = 2: h(r) . min{max{max{min{ 
T T W V U s (5.2.8) 

f(t + s - u - v + w - r) - g(t) + g(u) + g(v) - g(w)}}}} 

5.3 Convolved morphological filters 

\Ve will consider the above CMOs, as convolved morphological filters (CMFs) 

except cer and cdi which are only operators and not filters as they are not idem

potent. In this section we will use (opel + clop)j2 as morphological filter to be 

convolved with h(t). 

Figures 5.3- 5.7 show an example when k = 2, fl = 5, f2 = 20, fs = 128 

Hz, Al = A2 = 1 and 

h(t) = 2~ . cos(27r fot) . e-ot2
, (5.3.1) 

where fo = It for low-pass and fo = h for band-pass filtering, and Q is a 

parameter (=7r2). The linear filter applied for the example is a low- and band

pass butterworth of order 5. 

5.3.1 Choosing proper impulse response 

In this part we explain the reasons for choosing h(t) as mentioned in Eq. 

5.3.1 which seems to be a proper impulse response. If we assume h1(t) as 
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defined below: 

(5.3.2) 

In this case the frequency response HI (I) is 

(5.3.3) 

hl(t) and H1(l) have both a shape with peak at n = 0 and I = 0 respectively, 

and they both decay exponentially when moving away from 0 based on a. 

Therefore it can be ideal for clearing the unwanted frequencies using a proper 

a. If we shift HI (f) with 10, then 

A shift in frequency domain will result in 

If we consider the mirror frequency as well, we can develop H (I) as 

Then in time domain, we can develop the following relation 

h(t) = hl(t)· ei27r/ot + hl(t)· e- j27r!ot = 2hl(t)· cos(2rrlot) 

= 2/W . e-at2 
• cos(2rr lot). 

5.3.2 Towards eMF 

(5.3.4) 

(5.3.5) 

(5.3.7) 

vVe will use the impulse response h(t) defined in previous section. If we 

choose the structuring element SEI having the shape of half of a sinus with its 

peak at its centre and a length of /i~2, the following equation will remove the 

shapes smaller than the size of SEI : 

residue(t) = [opcl(in(t» + clop(in(t»]j2. (5.3.8) 
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We apply the average of opel and clop to have a symmetric result. As a 

reminder, we know that the higher the frequency of a signal, the smaller its 

shape in time domain. The signal residue(t) as the output of MF in Eq. 5.3.8 

contains the shapes greater than the shape of SE I . As the shape of SEI is 

half a sinus, it will remove the shapes smaller than SE I (i.e. smaller than the 

shapes with higher frequencies than h). The size of half a sinus is enough 

considering the effect of erosion and dilation on SEs. Therefore we will have 

the components related to 11 and 12 preserved in residue(t). If we increase the 

size of SE from SEI = 'j~2 to SE2 = 'j{2, the following equation will act as 

low-pass MF, removing 12 from residue(t), for the same reason as mentioned 

above: 

AIFlow(t) = [opel(residue(t)) + clop(residue(t))]/2. (5.3.9) 

As MF preserves the original structure, we can subtract AI Flow(t) from residue(t) 

to extract 12 acting as a band-pass MF: 

AI Fband(t) = residue(t) - Al Flow(t). (5.3.10) 

If we apply a convolution to Eqs. 5.3.9 and 5.3.10, we will have the desired 

CMF as low-pass and band-pass filters: 

Cl\! Flow(t) ~ AIIlow(t) * h(t), 

CAIFband(t) = Allban(t) * h(t). 

(5.3.11) 

(5.3.12) 

Now we take the following steps as a general rule for periodic signals: 

1. Choose a proper structuring element regarding both its shape and size. 

2. Apply a proper morphological operator to extract the desired shapes in 

time domain based on the relations discussed in section B.1. Experi

mental results have proven that the best operators are (opel + elop)/2. 
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3. Determine a suitable h(t) for convolution regarding both time and fre

quency domain. 

4. Convolve MF with h(t). 

Figures 5.8- 5.12 show another example when k = 2, il = 10, h = 40, 

is = 1024 Hz. The rest of the operators are the same as for 5.3- 5.7. Similar 

discussion exists for 2-D periodic signals (See Figures 5.13- 5.17 as an example 

of 2-D periodic signal and Figures 5.18- 5.22 as alternative example of 2-D 

periodic sip;nal with increased samplinp; frequency). 
Input Normalised spectrum 

2 -50 

-100 

_2L---~------~--~--~ 

o 0.2 0.4 0.6 0.8 

Figure 5.3: The input signal. 

MF low- pass Normalised spectrum 
0 

-50 

-100 

-150 

-200 

-250 

- 300 

-1 0 0.2 0.4 0.6 0.8 
- 350 

0 50 100 150 

Figure 5.4: MF low-pass signal. 
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CMF low- pass Normalised spectrum 
Onr---~---~-,---, 

- 5000 

-10000 

-0.6 

-0 .8 L--~-~--~-~---' 
o 0.2 0.4 0.6 0.8 so 

-lS000 L----~--~~----' 
o 100 lS0 

Figure 5.5: CMF low-pass signal. 

MF band-pass Normalised spectrum 
1 .S~-~-~--~-~---' Or--r--~---~----, 

-so 

o.s 
- 100 

o 
- lS0 

-o.s 

- 1 
- 200 

_1.5L--~-~--~-~------.J 

o 0.2 0.4 0.6 0.8 -2S0 O~-----:S'-:-O-----'---l 00--:------'1 SO 

Figure 5.6: MF band-pass signal. 

CMF band-pass 
0.6~-~-~--~-~-----' 

0.4 

0.2 

o 

-0.2 

-0.4 

- 0.6 

-0.8L--~-~--~-~----' 
o 0.2 0.4 0.6 0.8 

Normalised spectrum 
Or--r--~-------TA------' 

- SOOO 

-10000 

-lS000L----~---~-------.J 

o 50 100 lS0 

Figure 5.7: CMF band-pass signal. 
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Input 
3 ,---~--~----~--~---' 

2 

o 

- 1 

_2 L---~--~----~--~--~. 

o 0.2 0.4 0.6 0.8 

Normalised spectrum 
Orr--------------,r-------, 

- 100 

-400 L-______ ~ ______ ~ ____ __' 
o 500 1000 1500 

Figure 5.8: The inpu t signals{example 2). 

MF low- pass Normalised speclrum 
1.5 0 

~ h A A ~ A A fI A 
- 100 

0 .5 - 200 

0 - 300 ~ 
- 0.5 U V v v v V - 400 

- 1 - 500 
0 0.2 0.4 0.6 0.8 0 500 1000 1500 

Figure 5.9: MF low-pass signal{example 2) . 

eMF low- pass 
0.6 ,-----,---:-----:---;---:---:--:--:-. 

0 .4 

0.2 

o 

- 0.2 

- 0.4 

- 0.6 

- 0.8 L-__ ~ __ ~ ____ ~ __ ~ __ --' 
o 0.2 0.4 0.6 0 .8 

Normalised spectrum 
Or---------------r-------, 

- 5000 

- 10000 

- 15000 L-______ ~ ______ ~ ____ ___1 

o 500 1000 1500 

Figure 5.10: e MF low-pass signal{example 2). 
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MF band- pass 
1.5r----~-~-___ ~_, Normalised speclrum 

On------_-r ___ ~ 

- 100 

-1 

- 1. 5 L--_~_~_~ _ _ ~ __ 

o 0.2 0.4 0 .6 0.8 -5oo'"---~ ___ ~ ___ __' 
o 500 1000 1500 

Figure 5.11: MF band-pass signal(example 2). 

eMF band- pass 
Normalised Spectrum 

On------_ -r _ __ ~ 

-5000 

- 10000 

_ 1 L--~_~ __ ~_~_--, 

o 0.2 0.4 0 .6 0 .8 - 1 5ooo'----~ _ _ _ ~ ___ __' 
o 500 1000 1500 

Figure 5.12: eMF band-pass signal(example 2). 

Input 
Normalised spectrum 

Figure 5.13: The inpu t signals. 
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MF low-pass Normalised spectrum 

Figure 5.14: MF low-pass signa\. 

eMF Iow-pass Normalised spectrum 

Figure 5. 15: eMF low-pass signa\. 

MF band-pass Normalised spectrum 

Figure 5.16: MF band-pass signal. 
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e MF band- pass Normalised speclrum 

Figure 5.17: eMF band-pass signa\. 

Inpul Normalised spectrum 

Figure 5.18: The inpu t signals(exam ple 2). 

MF low-pass Normalised spectrum 

F igure 5.19: MF low-pass signal(example 2). 

5.4 Structuring element design 

We have empirically shown that the followin g rule exists for t he design of 

the st ructuring element (SE). For periodic signals (with a limited spectrum) , 
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CMF low- pass Normalised spectrum 

Figure 5.20: CMF low-pass sign al(example 2). 

MF band-pass Normalised spectrum 

Figure 5.21: MF band-pass signal(example 2) . 

CMF band- pass Normalised spectrum 

Figure 5.22: CMF band-pass signal(example 2). 
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the size of SE should approximately equal the number of samples building 

the corresponding frequency in time domain. For example for M Flow(t), as 

defined before, the length of SE should be equal to 11 e'i 2 = 128/2/5 = 
12.8 ---+ 11. It is a symmetric SE with the origin at its centre, and the size 

of SE should be odd). similarly the proper SE size for Tesid1.le(t) is fj{2 = 

128/2/20 = 3.2 ---+ 3. After the size of SE is determined, its shape should be 

constructed similar to the shape of the desired signal (i. e. sinusoidal in the 

above example) . For aperiodic signals we can design SE similar to the shape 

and size of the parts of the signal to be removed or preserved. If there is no 

pre-knowledge about the shape, the best guess is to apply a flat SE. With trial 

and error, the size of SE can be determined. 

5.4.1 Hardware implementation 

Based on the techniques of the previous chapter, we can realise CMFs by 

hardware (see Figure 5.23). Similar hardware for real-time implementation of 

other CMF operators can be developed. 

ho hi ho 

cop(n) 

di(n) 
,-------~--.8t----------T-~ 

~Lm 

hk ho ho hi 

ccr(n) ~ ccl(n) ~ cdi(n) 

Figure 5.23: Hardware implementation of CMF. 
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5.5 Remarks and conclusion 

"Ve have discussed the design of CMF and shown its super performance in 

time domain and accurate characteristics in frequency domain when applied 

for signal/image filtering. CMFs' outstanding performance can be seen in both 

time and frequency domain. We have tested the proposed method with different 

periodic waveforms. In all cases, the benefits of applying the MF part in time 

domain, and sharp and accurate frequency response as a result of convolution 

part, have accompanied us. 
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Chapter 6 

Weighted morphological filters 

6 .1 Introduction 

Previous chapter introduced a technique to improve the efficiency of MFs 

in frequency domain by convolving them with linear methods. This chap

ter presents a novel morphological filter using weighted morphological oper

ators (\Y~10s) [76]). The newly introduced operators employ a weighted 

structuring element and apply multiplication and division in place of addition 

and subtraction in classical morphological operations. Experimental results 

prove that the new operators' performance dominate over classical ones for 

signals/images buried in salt&pepper, speckle and Gaussian noises. Some out

standing approaches to promoting the efficiency of classical MF have been 

proposed [91, 83, 84]. In this chapter we introduce a weighted structuring 

element (SE) and new operators and present the results obtained using the 

novel weighted morphological filters (\V~IFs) for signals/images when buried 

in different noises. 
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6.2 Weighted morphological operators 

Classical 2-D grey-scale (GS) erosion (ER) and dilation (DI) are defined 

as (Eqs. 2.6.9, 2.6.1O): ER(k, I} = ~~n{f(k + u, 1 + v) - g(u, v)}, DI(k, l) = 
, 

max{f(k - u, 1 - v) + g(u, v)}, where f and 9 are the input image and SE 
u,v 

respecti\·ely. Opening and closing are cascades of erosion and dilation in the 

proper order [33]. \Ve define weighted erosion (TV ER) and dilation (TV DI) as: 

IVER(k,l) = min{f(k + u,l + v}/g(u, v)}, 
u,v 

ll'DI(k, I) = max{f(k - u, 1- v) . g(u, v)}. 
u,v 

(6.2.1) 

(6.2.2) 

The other operators like weighted opening (IVOP) and closing (IVCL) are sim

ply the cascades of weighted erosion and dilation as IVOP(J) = lV DI(lV ER(J)) 

and IFCL(J) = IV ER(Il' DI(J)), respectively. \Veighted open-closing (lVOPCL) 

and close-opening (H'CLOP) are defined as 

n"OPCL(J) = IVCL(IVOP(J)), 

lVCLOP(J) = n'OP(n'CL(J)), 

(6.2.3) 

(6.2.4) 

respectively. The structuring element 9 has a normalised weight factor and 

its elements are calculated such that the centre point's weight is 1 and the 

farthest point's weight is assigned a weight factor 0 < W < 1, leading to an 

emphasis over the effect of the central point and a reduction of the effect of 

the neighbourhood points. The rest of the weights are calculated based on 

an increment Aw = (1 - w)/d, where d is the distance between the centre 

point and the farthest point from the centre .. In the vertical and horizontal 

directions, the w('ights decrease by ~w, each step starting from the origin. In 

the oblique dir('ctions, the weights decrease by 2~w, each step starting from 

the centre. The centre can be located at any point of SE. For example, for SE 

of size 3 x 3 with its centre at its origin (i.e. (2,2)), if WI = 0.1, the SE will 

look like gh where ~w = 0.45, and for W2 = 0.9, for the same centre point 
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(underlined), it will change to g2, where ~w = 0.05. For SE of size 7 x 7 with 

its centre at (1,5) and W3 = 0.5, the SE will be g3, where ~w = 0.05. 

0.10 0.55 0.10 

gl = 0.55 1.00 0.55 (6.2.5) 

0.10 0.55 0.10 

0.90 0.95 0.90 

g2 = 0.95 1.00 0.95 (6.2.6) 

0.90 0.95 0.90 

0.80 0.85 0.90 0.95 1.00 0.95 0.90 

0.75 0.80 0.85 0.90 0.95 0.90 0.85 

0.70 0.75 0.80 0.85 0.90 0.85 0.80 

g3 = 0.65 0.70 0.75 0.80 0.85 0.80 0.75 (6.2.7) 

0.60 0.65 0.70 0.75 0.80 0.75 0.70 

0.55 0.60 0.65 0.70 0.75 0.70 0.65 

0.50 0.55 0.60 0.65 0.70 0.65 0.60 

6.3 Properties 

The weighted morphological operators (\V110s) imply the TV ER, TV DI, 

1 V 0 P and H' C L. They haw the following properties if 0 < w < 1: 

1. \V~IOs are increasing (It ~ h =} IV1UO(fd ~ IVAfO(h))· 

2. H'DI and lrCL are extensive (Le. ll' DI(f) ~ f and IVCL(f) ~ /), and 

H' ER and IrOp are anti-extensive (i.e. IVER(f) ~ f and IVOP(f) ~ 

/), 

3. IV ER and lrDI are not idempotent (i.e. IV ER(IV ER(f)) -I- IV ER(f) 

and H'DI(U'DI(J)) i= IVDIU))· However H'OP and lVCL are idem

potent (Lf>. Il'OP(n'oP(f)) = IVOP(f) and IVCL(TVCL(J)) = IVCL(J)). 
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These properties exist similarl) in classical MFs and are consistent with the 

established theory of mathematical morphology. A morphological filter should 

be increasing, idempotent and extensive or ant i-extensive. [78]. Therefore the 

\\ ~IOs can be u ed to con t ruct a vVMF because they have all t he above t hree 

required conditions and vVe will use lVCL or ltVOP as a filter (called WMF). 

However n ER and n ODI are considered as WMO. 

6.4 Results and discussion 

Figure 6.1-d confirm that the performance of WMF acts better than MF 

while ?\IF r move alt&pepper noise more efficiently t han the linear filter. 

Figures 6.2 and 6.3 how hat for both Speckle and Gaussian noises, the linear 

fi ltering i better than i\IF and v\OMF. However they confirm that WMF is still 

better than ;"IF. 

(a)lnput (b)Linear 

(c)MF (d)WMF(W=O.7) 

Figure 6.1: alt 0p pper noi e remoyal with linear, MF and vVMF. 

The following r ult prm·e the dominance of \1\ MF over MF in different 
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(a)lnput (b)Linear 

(c)MF (d)WMF(W=O.7) 

Figure 6.2: Speckle noi e removal with linear , MF and WMF. 

(a)lnput (b) Linear 

(c)MF (d)WMF(W=O.8) 

Figur 6.3: Gau ian noi e removal with linear MF and \ t\TMF. 
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noisy environments. \Ye consider the correlation (A) of the processed image 

with a reference (noise-free) image. First we test the effect of the size of SE 

on the results of classical and weighted open-closing and close-opening. In all 

experiments, the centre of SE is its origin to preserve the symmetry. Tables 6.1-

6.3 show the analysis for SE of size 3 x 3, 5 x 5, 7 x 7 and 9 x 9, when the image 

is buried in salt&pepper, speckle and Gaussian noise, respectively. The first 

rowS of the tables show two different parts for open-closing (opel) and close

opening (elop) operations. The second rows are about the size of SEs. The 

third rows of the tables show the results of classical MFs. The rest of the rows 

are related to \Y~IFs with different weights. In Table 6.1, for SE of size 3 x 3, 

we get the best results if w > .4 for open-closing and w > .5 for close-opening, 

where A > 0.9. \Vhile the size of SE increases, the efficiency of both filters fall 

although \V~lF always seems to be better than MF. Similar discussion can be 

carried out for speckle and Gaussian noise (see Tables 6.2, 6.3). The relative 

performance of \V~IF over l\IF (Awl A) based on the above results have been 

shown in Tables 6.4-6.6. Figures 6.4-6.6 illustrate their graphs. 

In another sets of the experiments, we have tested the efficiency of \VMFs 

while changing the parameters of the noises. Figure 6.7-a illustrates the result 

of weighted close-opening for salt&pepper noise while the parameter D (the 

noise intensity) changes from .01 to .5. The best results come true for w > .4. 

Figure 6.7:-b shows the similar action while the variance (V) of the speckle 

noise varies from .01 to .5. Figures 6.7-c:f show the results for Gaussian noise 

with different variances (~') upon different mean values (A1). \Ve realise that 

the effect of ~U for Gaussian noise is negligible and it only produces an offset 

to the same shapes generated with different AIs. In all cases, SE's size is 3 x 3 

with its centre at (2,2) and the step for increasing noise parameters is .Ol. 

Tables 6.7-6.12 show the about results numerically. 
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Table 6.1: Salt&pepper noise (D = 0.05) 
,\ SE for opc/ SE for c/op 

tv 3 5 7 9 3 5 7 9 

- 0.9268 0.7045 0.4668 0.2299 0.9180 0.7043 0.4835 0.2606 

0.1 0.7212 0.6595 0.4769 0.2447 0.6530 0.5464 0.4998 0.4475 

0.2 0.8318 0.7461 0.5159 0.2493 0.7070 0.6162 0.5538 0.4762 

0.3 0.8905 0.7615 0.5123 0.2468 0.7788 0.6962 0.5920 0.4814 

0.4 0.9198 0.7610 0.5035 0.2445 0.8585 0.7490 0.6099 0.4640 

0.5 0.9354 0.7547 0.4951 0.2426 0.9110 0.7769 0.6104 0.4271 

0.6 0.9429 0.7457 0.4876 0.2404 0.9391 0.7833 0.5977 0.3848 

0.7 0.9448 0.7349 0.4819 0.2382 0.9466 0.7733 0.5744 0.3465 

0.8 0.9420 0.7239 0.4763 0.2351 0.9420 0.7535 0.5434 0.3120 

0.9 0.9354 0.7136 0.4713 0.2324 0.9311 0.7287 0.5111 0.2831 

Table 6.2: Speckle noise (V 0.04) 
,\ SE for opel SE for c/op 

tv 3 5 7 9 3 I) 7 9 

- 0.9381 0.7913 0.6374 0.5510 0.9254 0.7733 0.6907 06435 

0.1 0.9247 0.8920 0.7557 0.6478 0.9224 0.8821 0.8092 0.7354 

0.2 0.9293 0.8742 0.7115 0.6069 0.9245 0.8871 0.8116 0.7379 

0.3 0.9369 0.8551 0.6884 0.5916 0.9315 0.8871 0.8007 0.7277 

0.4 0.9428 0.8415 0.6770 0.5829 0.9388 0.8721 0.7820 0.7158 

0.5 0.9469 0.8320 0.6700 0.5764 0.9452 0.8525 0.7632 0.7025 

0.6 0.9492 0.8251 0.6643 0.5710 0.9483 0.8334 0.7439 0.6858 

0.7 0.9501 0.8189 0.6588 0.5668 0.9469 0.8153 0.7268 0.6716 

0.8 0.9496 0.8116 0.6524 0.5624 0.9415 0.7996 0.7127 0.6608 

09 0.9453 0.8021 0.6449 0.5571 0.9341 0.7860 0.7012 0.6512 

Table 6.3: Gaussian noise (AID, V = 0.01) 
,\ SE for opel SE for c/OI' 

.... 3 5 7 9 3 5 7 9 

- 0.87U 0.61'62 0.4420 0.3210 0.8330 0.6703 0.5868 0.5334 

0.1 0.8504 0.7784 0.5191 0.3564 0.8192 0.7694 0.7101 0.6581 

0.2 08550 0.7440 0.4841 0.3389 0.8228 0.7583 0.6957 0.6433 

0.3 0.8595 0.7209 0.4655 0.3289 0.8294 0.7542 0.6917 0.6405 

0.4 0.8644 0.7121 0.4587 0.3270 0.8386 0.7480 0.6760 0.6258 

0.5 0.8693 0.7088 0.4558 0.3253 0.8469 0.7324 0.6548 0.6042 

0.6 0.8744 0.7062 0.4542 0.3249 0.8525 0.7168 0.6364 0.5837 

0.7 0.8782 0.7039 0.4532 0.3244 0.8535 0.7017 0.6208 0.5668 

0.8 0.8792 0.6998 0.4509 0.3240 0.8489 0.6899 0.6075 0.5520 

09 0.8772 0.6941 0.4470 0.3227 0.8423 0.6799 0.5970 0.5417 
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Table 6.4: Relative comparison for salt&pepper noise (D = 0.05) 
).,../). SE for opel SE for clop 

w 3 5 7 9 3 5 7 9 

.1 0.7782 0.9361 1.0216 1.0644 0.7113 0.7758 1.0337 1.7172 

.2 0.8975 1.0590 1.1052 1.0844 0.7702 0.8749 1.1454 1.8273 

.3 0.9608 1.0809 1.0975 1.0735 0.8484 0.9885 1.2244 1.8473 

.4 0.9924 1.0802 1.0786 1.0635 0.9352 1.0635 1.2614 1.7805 

.5 1.0093 1.0713 1.0606 1.0552 0.9924 1.1031 1.2625 1.6389 

.6 1.0174 1.0585 1.0446 1.0457 1.0230 1.1122 1.2362 1.4766 

.7 1.0194 1.0432 1.0323 1.0361 1.0312 1.0980 1.1880 1.3296 

.8 1.0164 1.0275 1.0204 1.0226 1.0261 1.0699 1.1239 1.1972 

.9 1.0093 1.0129 1.0096 1.0109 1.0143 1.0346 1.0571 1.0863 

Table 6.5: Relative comparison for Speckle noise (V = 0.04) 
)."'/). SE (or opel SE (or clop 

w 3 5 7 9 3 5 7 9 

.1 0.9857 1.1273 1.1856 1.1757 0.9968 1.1407 1.1716 1.1428 

.2 0.9906 1.1048 1.1163 1.1015 0.9990 1.1472 1.1750 1.1467 

.3 0.9987 1.0806 1.0800 1.0737 1.0066 1.1472 1.1593 1.1308 

.4 1.0050 1.0634 1.0621 1.0579 1.0145 1.1278 1.1322 1.1124 

.5 1.0094 1.0514 1.0511 1.0461 1.0214 1.1024 1.1050 1.0917 

.6 1.0118 1.0427 1.0422 1.0363 1.0247 1.0777 1.0770 1.0657 

.7 1.0134 1.0349 1.0336 1.0287 1.0232 1.0543 1.0523 1.0437 

.8 1.0123 1.0257 1.0235 1.0207 1.0174 1.0340 1.0319 1.0269 

.9 1.0077 1.0136 1.0118 1.0111 1.0094 1.0164 1.0152 1.0120 

Table 6.6: Relative comparison for Gaussian noise (At = 0, V = 0.01) 
). .. /). SE (or opel SE (or clop 

u' 3 5 7 9 3 5 7 9 

.1 0.9758 1.1344 1.1744 1.1103 0.9834 1.1478 1.2101 1.2338 

.2 0.9811 1.0842 1.0952 1.0558 0.9878 1.1313 1.1856 1.2060 

.3 0.9862 1.0506 1.0532 1.0246 0.9957 1.1252 1.1788 1.2008 

.4 0.9919 1.0377 1.0378 1.0187 1.0067 1.1159 1.1520 1.1732 

.5 0.9975 1.0329 1.0312 1.0134 1.0167 1.0926 1.1159 1.1327 

.6 1.0033 1.0291 1.0276 1.0121 1.0234 1.0694 1.0845 1.0943 

.7 1.0077 1.0258 1.0253 1.0106 1.0246 1.0468 1.0579 1.0626 

.8 1.0088 1.0198 1.0201 1.0093 1.0191 1.0292 1.0353 1.0349 

.9 1.0065 1.0115 1.0113 1.0053 I.01l2 1.0143 1.01 74 1.0156 
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Figure 6.4: Relative comparison for salt&pepper noise (D = 0.05) 
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Figure 6.5: Relative comparison for Speckle noise (V = 0.04) 
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Figure 6.6: Relative comparison for Gaussian noise (M = 0, V = 0.01) 
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., -. -- " .... 
-'. - - ... 

(a) Slat&pepper (b) Speckle (c) Gaussian(M = 0) 

(d) Gaussian(M = .05) (e) Gaussian(M = .1) (f) Gaussian(M = .15) 

Figure 6.7: The effect of weighted close-opening on three types of noises. 
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6.5 Remarks and conclusion 

In conclusion we realise the superb efficiency of \iVMF over MF in all noisy 

environments. If the average of the weighted open-closing and close-opening 

is applied it will be the most ideal operator. However for most cases such an 

accuracy is not required as it needs twice the operation necessary for single 

operators leading to slow speed of processing. As another experiment, we 

defined SE as: 

SE = exp( - J(r - rop + (c - coP /w), (6.5.1) 

were (ro eo) and (r , c) are the coordinates of the SE's centre and arbitrary point 

in SE's domain, respectively. For w : .5 -+ 10 with steps 0.5, we got the best 

results for weighted open-closing as ,\ = 0.9417 with w = 5.5, and weighted 

close-opening as ,\ = 0.9358 with w = 4, respectively, while the image was 

buried in salt&pepper noise, which is less than the best results with linearly

weighted SE (see Figure 6.8). In other experiments carried over speckle and 

Gaussian noises, we found out that the linearly weighted SE behaves better 

than exponentially \\eighted SE . 

• " . • J I . • r I • " ~. --:.--:-. -:--. -;-, --:-----:.---.., -:--. ~ • ......J .. 

(a) WOPCL (b) WCLOP 

Figure 6.8: Exponentially weighted SE for salt&pepper noise. 

In this chapter we proposed new operators called WMOs. Their perfor

mance over NIF was highlighted through this chapter. While MF fails to re-
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move speckle and Gaussian noise, compared to linear methods, \VMF improves 

the relevant performance. The only drawback of \VMF is its speed compared to 

l\IF as they use multiplication/division instead of addition/subtraction, unless 

fast existing methods for linear filter coefficient design are applied [10, 42]. 
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Table 6.7: The effect of \Vl\1F on salt&pepper 
Weight coefficient 

D 0.1000 0.2000 0.3000 0.4000 0.5000 0.6000 0.7000 0.8000 0.9000 

0.01 0.8723 0.M39 0.9104 0.9442 0.9640 0.9712 0.9694 0.9628 0.9536 

0.02 0.7926 0.8253 0.8734 0.9196 0.9493 0.9628 0.9637 0.9573 0.9480 

0.03 0.7426 0.7819 0.8362 0.8953 0.9346 0.9548 0.9587 0.9541 0.9449 

0.04 0.6842 0.7374 0.7978 0.8681 0.9172 0.9431 0.9508 0.9483 0.9401 

0.05 0.6502 0.7052 0.7787 0.8582 0.9099 0.9372 0.9441 0.9400 0.9295 

0.06 0.6241 0.6859 0.7549 0.8360 0.8948 0.9285 0.9396 0.9360 0.9243 

0.07 0.5961 0.6604 0.7354 0.8201 0.8852 0.9240 0.9383 0.9365 0.9259 

0.08 0.5831 0.6455 0.7221 0.8088 0.8713 0.9051 0.9136 0.9056 0.8873 

0.09 0.5601 0.6257 0.7049 0.7919 0.8597 0.8995 0.9130 0.9068 0.8876 

0.10 0.5434 0.6114 0.6889 0.7770 0.8443 0.8851 0.8959 0.8851 0.8624 

0.11 0.5299 0.5984 0.6778 0.7691 0.8396 0.8795 0.8882 0.8735 0.8444 

0.12 0.5242 0.5952 0.6712 0.7556 0.8190 0.8543 0.8585 0.8384 0.8057 

0.13 0.5039 0.5754 0.6494 0.7290 0.7897 0.8210 0.8168 0.7862 0.7398 

0.14 0.5021 0.5744 0.6472 0.7268 0.7849 0.8118 0.7999 0.7613 0.7098 

0.15 0.4975 0.5710 0.6442 0.7199 0.7740 0.7963 0.7804 0.7380 0.6833 

0.16 0.4846 0.5517 0.6191 0.6879 0.7353 0.7491 0.7235 0.6722 0.6100 

0.17 0.4747 0.5424 0.6111 0.6800 0.7234 0.7338 0.7053 0.6493 0.5834 

0.18 0.4676 0.5370 0.6053 0.6680 0.6996 0.6943 0.6554 0.5944 0.5285 

0.19 0.4592 0.5314 0.6014 0.6628 0.6954 0.6915 0.6505 0.5868 0.5172 

0.20 0.4498 0.5175 0.5803 0.6341 0.6585 0.6475 0.6020 0.5372 0.4705 

0.21 0.4422 0.5098 0.5744 0.6269 0.6464 0.6313 0.5815 0.5130 0.4455 

0.22 0.4319 0.4980 0.5578 0.6065 0.6203 0.5980 0.5435 0.4739 0.4083 

0.23 0.4360 0.5004 0.5608 0.6072 0.6223 0.5978 0.5403 0.4697 0.4036 

0.24 0.4256 0.4891 0.5465 0.5891 0.5960 0.5674 0.5098 0.4420 0.3805 

0.25 0.4189 0.4828 0.5374 0.5755 0.5778 0.5439 0.4840 0.4163 0.3551 

0.26 0.4185 0.4809 0.5353 0.5722 0.5717 0.5362 0.4759 0.4095 0.3520 

0.27 0.4109 0.4708 0.5224 0.5511 0.5425 0.5007 0.4394 0.3768 0.3236 

0.28 0.4015 0.4576 0.5038 0.5276 0.5143 0.4697 0.4093 0.3487 0.2984 

0.29 0.3976 0.4543 0.4970 0.5199 0.5064 0.4625 0.4042 0.3456 0.2968 

030 0.3957 0.4518 0.4960 0.5155 0.5007 0.4556 0.3964 0.3385 0.2909 

031 0.3875 0.4408 0.4837 0.5003 0.4829 0.4381 0.3826 0.3296 0.2867 

0.32 0.3825 0.4335 0.4699 0.4825 0.4619 0.4157 0.3594 0.3081 0.2666 

0.33 0.3863 0.4349 0.4738 0.4874 0.4652 0.4179 0.3623 0.3119 0.2722 

0.34 0.3816 0.4298 0.4645 0.4756 0.4535 0.4070 0.3537 0.3068 0.2695 

0.35 0.3686 0.4108 0.4408 0.4474 0.4229 0.3782 0.3296 0.2882 0.2555 

0.36 0.3653 0.4095 0.4396 0.4459 0.4209 0.3753 0.3264 0.2847 0.2523 

0.37 0.3638 04059 0.4336 0.4379 0.4120 0.3683 0.3212 0.2799 0.2481 

0.38 0.3541 0.3957 0.4231 0.4263 0.4014 0.3595 0.3154 0.2792 0.2513 

0.39 0.3514 0.3913 0.4164 0.4181 0.3919 0.3498 0.3069 0.2714 0.2439 

0.40 0.3489 0.3868 0.4115 0.4118 0.3853 0.3442 0.3032 0.2696 0.2438 

0.41 0.33M 0.3721 0.3952 0.3950 0.3685 0.3285 0.2898 0.2591 0.2356 

0.42 0.3443 0.3792 0.4021 0.4021 0.3771 0.3396 0.3038 0.2752 0.2527 

0.43 0.3380 0.3743 0.3958 0.3944 0.3690 0.3320 0.2961 0.2678 0.2458 

0.44 0.3342 0.3679 0.3869 0.3844 0.3596 0.3225 0.2875 0.2600 0.2391 

0.45 0.3243 0.3544 0.3713 0.3682 0.3449 0.3120 0.2813 0.2582 0.2406 

0.46 0.3225 0.3521 0.3706 0.3685 0.3459 0.3138 0.2841 0.2614 0.2437 

0.47 0.3162 0.3434 0.3600 0.3578 0.3357 0.3049 0.2771 0.2564 0.2403 

0.48 0.3133 0.3395 0.3553 0.3526 0.3308 0.3013 0.2748 0.2550 0.2401 

0.49 0.3107 0.3369 0.3515 0.3473 0.3259 0.2968 0.2710 0.2523 0.2378 

050 0.3048 0.3306 0.3446 0.3421 0.3236 0.2973 0.2738 0.2559 0.2423 
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Table 6.8: The effect of \VMF on Speckle noise 
Weight coefficient 

V 0.\000 0.2000 0.3000 0.4000 0.5000 0.6000 0.7000 0.8000 0.9000 

0.01 0.969~ 0.9666 0.9664 0.9666 0.9674 0.9668 0.9633 0.9569 0.9485 

0.02 0.9521 0.9498 0.9513 0.9543 0.9575 0.9587 0.9567 0.95\0 0.9431 

0.03 0.9365 0.9364 0.9406 0.9466 0.9518 0.9537 0.9526 0.9479 0.9408 

0.04 0.9232 0.9257 0.9319 0.9388 0.9453 0.9480 0.9466 0.9413 0.9333 

0.05 0.9110 0.9156 0.9238 0.9332 0.9404 0.9434 0.9420 0.9373 0.9298 

0.06 0.9004 0.9072 0.9183 0.9286 0.9362 0.9401 0.9390 0.9340 0.9264 

0.07 0.8911 0.9002 0.9127 0.9244 0.9324 0.9364 0.9362 0.9314 0.9234 

0.08 0.8840 0.8947 0.9084 0.9200 0.9287 0.9323 0.9318 0.9268 0.9196 

0.09 0.8777 0.8902 0.9048 0.9176 0.9267 0.9312 0.9318 0.9280 0.9206 

0.10 0.8727 0.8865 0.9017 0.9135 0.9231 0.9273 0.9264 0.9215 0.9144 

0.11 0.8667 0.8815 0.8969 0.9096 0.9187 0.9249 0.9253 0.9213 0.9136 

0.12 0.8606 0.8768 0.8939 0.9071 0.9176 0.9230 0.9233 0.9194 0.9130 

0.13 0.8596 0.8762 0.8930 0.9068 0.9162 0.9206 0.9218 0.9186 0.9123 

0.14 0.8529 0.8701 0.8872 0.9002 0.9099 0.9151 0.9159 0.9134 0.9077 

0.15 0.8502 0.8687 0.8854 0.8980 0.9083 0.9143 0.9147 0.9114 0.9056 

0.16 0.8483 0.8668 0.8848 0.8982 0.9081 0.9134 0.9146 0.9119 0.9062 

0.17 0.8442 0.8636 0.8821 0.8962 0.9054 0.9115 0.9133 0.9106 0.9049 

0.18 0.8411 0.8606 0.8797 0.8931 0.9025 0.9069 0.9082 0.9058 0.9005 

0.19 0.8355 0.8557 0.8752 0.8895 0.8996 0.9060 0.9064 0.9022 0.8957 

0.20 0.8331 0.8535 0.8731 0.8868 0.8977 0.9045 0.9055 0.9027 0.8968 

0.21 0.8320 0.8532 0.8724 0.8872 0.8971 0.9019 0.9016 0.8991 0.8928 

0.22 0.8279 0.8499 0.8697 0.8849 0.8956 0.9009 0.9027 0.9014 0.8961 

0.23 0.8282 0.8496 0.8681 0.8820 0.8917 0.8976 0.9000 0.8989 0.8931 

0.24 0.8247 0.8464 0.8651 0.8799 0.8907 0.8960 0.8982 0.8966 0.8924 

0.25 0.8251 0.8476 0.8671 0.8811 0.8912 0.8979 0.9006 0.8999 0.8956 

0.26 0.8162 0.8393 0.8604 0.8760 0.8857 0.8909 0.8915 0.8879 0.8825 

0.27 0.8205 0.8429 0.8623 0.8756 0.8841 0.8890 0.8907 0.8895 0.8854 

0.28 0.8165 0.8399 0.8606 0.8752 0.8854 0.8916 0.8946 0.8933 0.8893 

0.29 0.8151 0.8386 0.8582 0.8726 0.8835 0.8895 0.8916 0.8905 0.8862 

0.30 0.8120 0.8354 0.8563 0.8715 0.8830 0.8899 0.8918 0.8900 0.8857 

0.31 0.8145 0.8375 0.8573 0.8716 0.8807 0.8870 0.8901 0.8892 0.8851 

0.32 0.8121 0.8353 0.8549 0.8705 0.8817 0.8894 0.8914 0.8903 0.8872 

0.33 0.8072 0.8309 0.8502 0.8643 0.8743 0.8801 0.8837 0.8841 0.8808 

0.34 0.8039 0.8276 0.8470 0.8617 0.8128 0.8796 0.8821 0.8814 0.8777 

035 0.8050 0.8281 0.8484 0.8624 0.8727 0.8802 0.8837 0.8832 0.8800 

0.36 0.8069 0.8302 0.8501 0.8640 0.8731 0.8800 0.8829 0.8831 0.8799 

0.37 0.8030 0.8265 0.8460 0.8604 0.8709 0.8789 0.8827 0.8824 0.8798 

0.38 0.7996 0.8239 0.8438 0.8576 0.8681 0.8749 0.8773 0.8777 0.8738 

0.39 0.7966 0.8210 0.8416 0.8572 0.8679 0.8738 0.8761 0.8754 0.8733 

0.40 0.7957 0.8205 0.8411 0.8549 0.8647 0.8717 0.8755 0.8765 0.8734 

0.41 0.7944 0.8188 0.8400 0.8543 0.8638 0.8703 0.8727 0.8721 0.8692 

0.42 0.7924 0.8175 0.8377 0.8517 0.8613 0.8677 0.8689 0.8662 0.8618 

0.43 0.7889 0.8140 0.8346 0.8495 0.8599 0.8662 0.8699 0.8702 0.8665 

0.44 0.7913 0.8160 0.8364 0.8508 0.8613 0.8680 0.8713 0.8715 0.8682 

0.45 0.7865 0.81 \1 0.8320 0.8474 0.8566 0.8621 0.8651 0.8644 0.8619 

0.46 0.7854 0.8110 0.8317 0.8460 0.8560 0.8625 0.8660 0.8660 0.8629 

0.47 0.7837 0.8083 0.8287 0.8443 0.8548 0.8616 0.8657 0.8662 0.8637 

0.48 0.7895 0.8137 0.8318 0.8449 0.8546 0.8617 0.8658 0.8672 0.8653 

0.49 0.7859 0.8105 0.8306 0.8431 0.8535 0.8602 0.8646 0.8666 0.8653 

050 0.7824 0.8075 0.8284 0.8431 0.8540 0.8609 0.~634 0.8635 0.8614 
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Table 6.9: The effect of \VMF on Gaussian noise (Af 0) 
Weight coefficient 

V 0.1000 0.2000 0.3000 0.4000 0.5000 0.6000 0.7000 0.8000 0.9000 

0.01 0.8189 0.8222 0.8288 0.8379 0.8459 0.8522 0.8534 0.8505 0.8441 

0.02 0.7319 0.7392 0.7520 0.7663 0.7797 0.7893 0.7929 0.7906 0.7846 

0.03 0.6726 0.6823 0.6968 0.7134 0.7294 0.7409 0.7472 0.7478 0.7429 

0.04 0.6228 0.6346 0.6526 0.6725 0.6901 0.7042 0.7117 0.7121 0.7082 

0.05 0.5898 0.6027 0.6203 0.6418 0.6616 0.6770 0.6864 0.6892 0.6864 

0.06 0.5568 0.5706 0.5899 0.6120 0.6324 0.6473 0.6553 0.6573 0.6547 

0.07 0.5364 0.5509 0.5706 0.5931 0.6133 0.6290 0.6394 0.6426 0.6393 

0.08 0.5200 0.5345 0.5555 0.5789 0.5994 0.6143 0.6232 0.6265 0.6251 

0.09 0.4903 0.5063 0.5277 0.5534 0.5750 0.5907 0.6002 0.6031 0.6009 

0.10 0.4783 0.4933 0.5141 0.5391 0.5614 0.5773 0.5866 0.5901 0.5883 

0.11 0.4608 0.4759 0.4967 0.5209 0.5439 0.5619 0.5721 0.5754 0.5750 

0.12 0.4542 0.4705 0.4923 0.5169 0.5377 0.5533 0.5619 0.5667 0.5678 

0.13 0.4414 0.4562 0.4776 0.5023 0.5252 0.5418 0.5521 0.5560 0.5559 

0.14 0.4305 0.4457 0.4661 0.4896 0.5132 0.5308 0.5419 0.5473 0.5466 

0.15 0.4250 0.4401 0.4611 0.4856 0.5086 0.5263 0.5393 0.5454 0.5465 

0.16 0.4111 0.4269 0.4478 0.4723 0.4944 0.5105 0.5211 0.5264 0.5285 

0.17 0.4045 0.4196 0.4396 0.4624 0.4830 0.4984 0.5085 0.5135 0.5134 

0.18 0.4002 0.4148 0.4347 0.4585 0.4806 0.4974 0.5081 0.5136 0.5149 

0.19 0.3959 0.4110 0.4321 0.4557 0.4762 0.4915 0.5024 0.5085 0.5109 

0.20 0.3880 0.4032 0.4235 0.4469 0.4675 0.4830 0.4919 0.4964 0.4988 

0.21 0.3835 0.3991 0.4187 0.4416 0.4621 0.4784 0.4883 0.4929 0.4939 

0.22 0.3751 0.3902 0.4104 0.4324 0.4527 0.4678 0.4773 0.4822 0.4839 

0.23 0.3693 0.3833 0.4022 0.4243 0.4447 0.4605 0.4704 0.4766 0.4185 

0.24 0.3696 0.3846 0.4026 0.4229 0.4425 0.4585 0.4690 0.4756 0.4187 

0.25 0.3645 0.3186 0.3970 0.4174 0.4314 0.4530 0.4638 0.4688 0.4702 

0.26 0.3605 0.3155 0.3945 0.4146 0.4321 0.4475 0.4574 0.4635 0.4665 

0.27 0.3542 0.3617 0.3850 0.4048 0.4234 0.4382 0.4483 0.4529 0.4542 

0.28 0.3535 0.3660 0.3807 0.3987 0.4169 0.4302 0.4392 0.4446 0.4470 

0.29 0.3461 0.3593 0.3159 0.3940 0.4116 0.4252 0.4346 0.4408 0.4433 

030 0.3460 0.3596 0.3754 0.3931 0.4098 0.4230 0.4324 0.4383 0.4406 

031 0.3445 0.3572 0.3736 0.3905 0.4076 0.4205 0.4286 0.4334 0.4356 

0.32 0.3435 0.3563 0.3713 0.3888 0.4049 0.4190 0.4289 0.4354 0.4389 

0.33 0.3415 0.3546 0.3711 0.3892 0.4067 0.4213 0.4314 0.4376 0.4410 

0.34 0.3348 0.3479 0.3634 0.3799 0.3949 0.4085 0.4185 0.4241 0.4259 

0.35 0.3392 0.3516 0.3663 0.3838 0.3996 0.4114 0.4192 0.4238 0.4252 

0.36 0.3398 0.3530 0.3677 0.3840 0.3997 0.4130 0.4232 0.4288 0.4317 

0.37 0.3316 0.3444 0.3597 0.3161 0.3916 0.4041 0.4135 0.4204 0.4231 

0.38 0.3305 0.3437 0.3589 0.3759 0.3921 0.4057 0.4159 0.4210 0.4233 

0.39 0.3266 0.3391 0.3529 0.3687 0.3839 0.3960 0.4038 0.4085 0.4115 

0.40 0.3254 0.3377 0.3524 0.3690 0.3847 0.3973 0.4069 0.4114 0.4133 

0.41 0.3241 0.3363 0.3498 0.3652 0.3810 0.3944 0.4040 0.4092 0.4120 

0.42 0.3157 0.3278 0.3412 0.3567 0.3709 0.3823 0.3904 0.3959 0.3981 

0.43 0.3207 0.3337 0.3481 0.3625 0.3754 0.3862 0.3941 0.3980 0.3995 

0.44 0.3189 0.3306 0.3438 0.3583 0.3725 0.3839 0.3929 0.3991 0.4031 

0.45 0.3150 0.3273 0.3405 0.3550 0.3696 0.3818 0.3906 0.3956 0.3973 

0.46 0.3132 0.3261 0.3380 0.3515 0.3650 0.3763 0.3845 0.3897 0.3922 

0.47 0.3120 0.3241 0.3368 0.3499 0.3617 0.3714 0.3783 0.3814 0.3830 

0.48 0.3116 0.3235 0.3363 0.3490 0.3614 0.3718 0.3801 0.3853 0.3873 

0.49 0.3113 0.3236 0.3366 0.3502 0.3623 0.3729 0.3802 0.3846 0.3863 

0.50 0.3126 0.3234 0.3351 0.3474 0.3591 0.3700 0.3783 0.3828 0.3849 
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Table 6.10: The effect of \VMF on Gaussian nOIse (AI 0.05) 
Wei ~ht coefficient 

V 0.1000 0.2000 0.3000 0.4000 0.5000 0.6000 0.7000 0.8000 0.9000 

0.01 0.7890 0.7863 0.7850 0.7866 0.7907 0.7948 0.7958 0.7939 0.7881 

0.02 0.7055 0.7059 0.7095 0.7176 0.7273 0.7359 0.7404 0.7394 0.7347 

0.03 0.6483 0.6511 0.6576 0.6685 0.6815 0.6923 0.6994 0.7013 0.6979 

0.04 0.6013 0.6055 0.6154 0.6306 0.6459 0.6583 0.6674 0.6696 0.6670 

0.05 0.5702 0.5763 0.5870 0.6033 0.6206 0.6351 0.6448 0.6494 0.6478 

0.06 0.5393 0.5462 0.5586 0.5758 0.5939 0.6084 0.6176 0.6212 0.6198 

0.07 0.5195 0.5282 0.5416 0.5594 0.5774 0.5924 0.6030 0.6082 0.6067 

0.08 0.5045 0.5133 0.5278 0.5468 0.5654 0.5802 0.5897 0.5944 0.5941 

0.09 0.4769 0.4866 0.5014 0.5221 0.5428 0.5580 0.5689 0.5732 0.5727 

0.10 0.4661 0.4756 0.4897 0.5101 0.5307 0.5466 0.5570 0.5619 0.5617 

0.11 0.4490 0.4592 0.4743 0.4939 0.5143 0.5319 0.5440 0.5488 0.5495 

0.12 0.4427 0.4527 0.4690 0.4896 0.5094 0.5249 0.5347 0.5404 0.5429 

0.13 0.4310 0.4409 0.4564 0.4767 0.4978 0.5147 0.5258 0.5316 0.5324 

0.14 0.4209 0.4315 0.4469 0.4662 0.4871 0.5048 0.5167 0.5233 0.5243 

0.15 0.4144 0.4250 0.4405 0.4613 0.4821 0.4995 0.5129 0.5205 0.5234 

0.16 0.4029 0.4138 0.4292 0.4492 0.4698 0.4860 0.4974 0.5039 0.5075 

0.17 0.3951 0.4062 0.4217 0.4420 0.4616 0.4767 0.4867 0.4928 0.4945 

0.18 0.3890 0.3989 0.4138 0.4328 0.4511 0.4659 0.4770 0.4841 0.4881 

0.19 0.3875 0.3984 0.4130 0.4320 0.4516 0.4681 0.4799 0.4858 0.4881 

0.20 0.3812 0.3926 0.4085 0.4272 0.4453 0.4611 0.4725 0.4794 0.4827 

0.21 0.3747 0.3845 0.3986 0.4165 0.4347 0.4504 0.4606 0.4670 0.4701 

0.22 0.3677 0.3787 0.3937 0.4118 0.4301 0.4449 0.4551 0.4611 0.4639 

0.23 0.3643 0.3762 0.3906 0.4077 0.4248 0.4396 0.4508 0.4581 0.4617 

0.24 0.3613 0.3720 0.3865 0.4040 0.4211 0.4355 0.4466 0.4537 0.4570 

0.25 0.3533 0.3644 0.3781 0.3944 0.4120 0.4265 0.4369 0.4443 0.4481 

0.26 0.3525 0.3636 0.3776 0.3952 0.4129 0.4282 0.4402 0.4488 0.4532 

0.27 0.3529 0.3630 0.3763 0.3927 0.4104 0.4247 0.4358 0.4432 0.4469 

0.28 0.3464 0.3570 0.3697 0.3852 0.4018 0.4155 0.4267 0.4345 0.4389 

0.29 0.3428 0.3534 0.3669 0.3818 0.3973 0.4107 0.4209 0.4285 0.4328 

0.30 0.3419 0.3522 0.3653 0.3808 0.3971 0.4102 0.4199 0.4263 0.4290 

0.31 0.3386 0.3501 0.3641 0.3792 0.3952 0.4085 0.4184 0.4242 0.4263 

0.32 0.3345 0.3448 0.3573 0.3721 0.3862 0.3978 0.4056 0.4107 0.4136 

0.33 0.3348 0.3448 0.3569 0.3708 0.3851 0.3985 0.4082 0.4148 0.4183 

0.34 0.3349 0.3452 0.3576 0.3717 0.3864 0.3991 0.4089 0.4156 0.4200 

0.35 0.3304 0.3403 0.3517 0.3652 0.3790 0.3920 0.4024 0.4096 0.4134 

0.36 0.3273 0.3384 0.3508 0.3653 0.3801 0.3928 0.4026 0.4095 0.4121 

0.37 0.3240 0.3353 0.3483 0.3631 0.3763 0.3878 0.3964 0.4014 0.4037 

0.38 0.3230 0.3336 0.3460 0.3590 0.3717 0.3832 0.3920 0.3976 0.4016 

0.39 0.3219 0.3324 0.3443 0.3570 0.3697 0.3812 0.3901 0.3954 0.3978 

0.40 0.3228 0.3338 0.3461 0.3598 0.3731 0.3846 0.3935 0.3989 0.4025 

0.41 0.3192 0.3299 0.3419 0.3552 0.3693 0.3816 0.3908 0.3966 0.3993 

0.42 0.3173 0.3271 0.3382 0.3510 0.3640 0.3742 0.3812 0.3871 0.3912 

0.43 0.3179 0.3274 0.3386 0.3510 0.3643 0.3763 0.3857 0.3917 0.3944 

0.44 0.3112 0.3222 0.3337 0.3450 0.3560 0.3655 0.3728 0.3776 0.3804 

0.45 0.3174 0.3280 0.3400 0.3533 0.3659 0.3767 0.3844 0.3892 0.3906 

0.46 0.3149 0.3250 0.3362 0.3473 0.3583 0.3675 0.3747 0.3791 0.3810 

0.47 0.3162 0.3258 0.3374 0.3498 0.3615 0.3715 0.3789 0.3844 0.3863 

0.48 0.3073 0.3176 0.3288 0.3399 0.3506 0.3598 0.3670 0.3711 0.3729 

0.49 0.3092 0.3195 0.3311 0.3425 0.3539 0.3635 0.3712 0.3763 0.3786 

0.!l0 0.3062 0.3162 0.3273 0.33S9 0.M01 0.3602 0.3677 0.3728 0.3740 
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Table 6.11: The effect of \V}.IF on Gaussian noise (AI 0.1) 
Weight coefficient 

V 0.1000 0.2000 0.3000 0.4000 0.5000 0.6000 0.7000 0.8000 0.9000 

0.01 0.7575 0.7526 0.7470 0.7427 0.7416 0.7417 0.7417 0.7391 0.7334 

0.02 0.6791 0.6765 0.6740 0.6748 0.6788 0.6842 0.6876 0.6878 0.6843 

0.03 0.6258 0.6252 0.6259 0.6309 0.6394 0.6487 0.6549 0.6574 0.6546 

0.04 0.5871 0.5878 0.5907 0.5991 0.6105 0.6218 0.6295 0.6329 0.6323 

0.05 0.5567 0.5586 0.5634 0.5735 0.5865 0.5993 0.6076 0.6108 0.6089 

0.06 0.5294 0.5323 0.5391 0.5508 0.5662 0.5801 0.5897 0.5943 0.5933 

0.07 0.5036 0.5073 0.5155 0.5300 0.5464 0.5621 0.5718 0.5759 0.5754 

0.08 0.4831 0.4879 0.4964 0.5107 0.5281 0.5436 0.5541 0.5596 0.5601 

0.09 0.4682 0.4738 0.4840 0.4995 0.5173 0.5332 0.5446 0.5511 0.5540 

0.10 0.4546 0.4603 0.4704 0.4868 0.5039 0.5197 0.5309 0.5372 0.5387 

0.11 0.4430 0.4489 0.4596 0.4756 0.4944 0.5106 0.5214 0.5275 0.5292 

0.12 0.4301 0.4361 0.4458 0.4618 0.4809 0.4968 0.5074 0.5131 0.5150 

0.13 0.4238 0.4301 0.4393 0.4531 0.4700 0.4857 0.4958 0.5023 0.5049 

0.14 0.4107 0.4168 0.4277 0.4435 0.4615 0.4772 0.4884 0.4956 0.4985 

0.15 0.4050 0.4121 0.4223 0.4368 0.4543 0.4700 0.4815 0.4888 0.4919 

0.16 0.3979 0.4049 0.4153 0.4302 0.4472 0.4624 0.4740 0.4803 0.4837 

0.17 0.3918 0.3990 0.4092 0.4249 0.4422 0.4575 0.4691 0.4769 0.4804 

0.18 0.3786 0.3861 0.3965 0.4109 0.4280 0.4431 0.4543 0.4620 0.4655 

0.19 0.3780 0.3855 0.3963 0.4113 0.4273 0.4416 0.4525 0.4606 0.4644 

0.20 0.3755 0.3826 0.3935 0.4087 0.4254 0.4400 0.4516 0.4586 0.4616 

0.21 0.3677 0.3754 0.3861 0.4008 0.4170 0.4321 0.4439 0.4519 0.4559 

0.22 0.3625 0.3705 0.3807 0.3946 0.4102 0.4251 0.4368 0.4446 0.4485 

0.23 03566 0.3650 0.3761 0.3907 0.4064 0.4205 0.4312 0.4392 0.4428 

0.24 0.3544 0.3621 0.3721 0.3849 0.3994 0.4138 0.4260 0.4342 0.4394 

0.25 0.3506 0.3583 0.3681 0.3815 0.3957 0.4083 0.4182 0.4248 0.4283 

0.26 0.3512 0.3599 0.3709 0.3851 0.4008 0.4156 0.4273 0.4345 0.4382 

0.27 0.3438 0.3528 0.3628 0.3753 0.3887 0.4016 0.4112 0.4182 0.4227 

0.28 0.3437 0.3510 0.3599 0.3715 0.3847 0.3978 0.4094 0.4185 0.4232 

0.29 0.3434 0.3515 0.3620 0.3751 0.3894 0.4029 0.4128 0.4200 0.4241 

030 0.3397 0.3490 0.3607 0.3738 0.3878 0.3998 0.4094 0.4168 0.4215 

0.31 0.3346 0.3426 0.3528 0.3655 0.3793 0.3925 0.4038 0.4115 0.4157 

0.32 0.3308 0.3397 0.3500 0.3633 0.3770 0.3895 0.3990 0.4049 0.4078 

0.33 0.3321 0.3403 0.3491 0.3608 0.3739 0.3862 0.3967 0.4046 0.4095 

0.34 0.3284 0.3365 0.3457 0.3567 0.3689 0.3805 0.3893 0.3945 0.3971 

0.35 0.3281 0.3360 0.3455 0.3568 0.3694 0.3810 0.3904 0.3957 0.3986 

0.36 0.3233 0.3322 0.3422 0.3530 0.3647 0.3754 0.3842 0.3899 0.3917 

0.37 0.3245 0.3329 0.3423 0.3537 0.3656 0.3761 0.3849 0.3908 0.3947 

0.38 0.3215 03297 0.3391 0.3497 0.3611 0.3709 0.3788 0.3847 0.3877 

0.39 0.3212 0.3301 0.3406 0.3520 0.3636 0.3750 0.3838 0.3897 0.3929 

0.40 0.3166 0.3247 0.3336 0.3445 0.3561 0.3666 0.3753 0.3813 0.3842 

0.41 0.3175 0.3271 0.3369 0.3480 0.3592 0.3690 0.3768 0.3814 0.3838 

0.42 0.3139 0.3223 0.3318 0.3423 0.3533 0.3630 0.3712 0.3762 0.3784 

0.43 0.3139 0.3229 0.3317 0.3414 0.3515 0.3611 0.3683 0.3728 0.3744 

0.44 0.3095 0.3182 0.3274 0.3377 0.3479 0.3580 0.3658 0.3713 0.3749 

0.45 0.3110 0.3193 0.3285 0.3385 0.3484 0.3575 0.3644 0.3689 0.3716 

0.46 0.3107 0.3192 0.3281 0.3379 0.3478 0.3561 0.3624 0.3666 0.3689 

0.47 0.3093 0.3181 0.3277 0.3377 0.3479 0.3568 0.3637 0.3678 0.3698 

0.48 0.3081 0.3168 0.3261 0.3353 0.3447 0.3534 0.3604 0.3651 0.3669 

0.49 03074 0.3159 0.3249 0.3347 0.3446 0.3537 0.3614 0.3667 0.3699 

O.SO 0.3045 0.3135 0.3228 0.3328 0.3424 0.3514 0.3589 0.3635 0.3655 
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Table 6.12: The effect of \VMF on Gaussian noise (At = 0.15) 
Weight coefficient 

V 0.1000 0.2000 0.3000 0.4000 0.5000 0.6000 0.7000 0.8000 0.9000 

0.01 0.7213 0.7159 0.7091 0.7018 0.6963 0.6926 0.6914 0.6901 0.6865 

0.02 0.6529 0.6493 0.6447 0.6418 0.6424 0.6453 0.6484 0.6495 0.6479 

0.03 0.6016 0.5993 0.5968 0.5973 0.6011 0.6078 0.6145 0.6181 0.6164 

0.04 0.5702 0.5689 0.5684 0.5711 0.5778 0.5867 0.5938 0.5969 0.5963 

0.05 0.5406 0.5405 0.5413 0.5474 0.5573 0.5678 0.5760 0.5816 0.5817 

0.06 0.5138 0.5144 0.5163 0.5232 0.5344 0.5457 0.5554 0.5613 0.5621 

0.07 0.4943 0.4957 0.4985 0.5073 0.5200 0.5332 0.5433 0.5498 0.5517 

0.08 0.4750 0.4768 0.4811 0.4900 0.5029 0.5162 0.5265 0.5329 0.5354 

0.09 0.4580 0.4605 0.4652 0.4753 0.4905 0.5055 0.5173 0.5242 0.5264 

0.10 0.4476 0.4500 0.4543 0.4643 0.4786 0.4935 0.5051 0.5124 0.5160 

0.11 0.4300 0.4330 0.4384 0.4486 0.4632 0.4779 0.4902 0.4991 0.5031 

0.12 0.4232 0.4273 0.4341 0.4463 0.4616 0.4761 0.4862 0.4924 0.4948 

0.13 0.4163 0.4199 0.4253 0.4363 0.4513 0.4659 0.4781 0.4870 0.4923 

0.14 0.4027 0.4072 0.4142 0.4267 0.4422 0.4577 0.4712 0.4785 0.4829 

0.15 0.3952 0.4002 0.4074 0.4189 0.4342 0.4489 0.4611 0.4694 0.4747 

0.16 0.3887 0.3932 0.4000 0.4121 0.4263 0.4403 0.4510 0.4571 0.4611 

0.17 0.3804 0.3850 0.3919 0.4033 0.4168 0.4302 0.4416 0.4495 0.4551 

0.18 0.3778 0.3826 0.3895 0.4004 0.4145 0.4291 0.4415 0.4499 0.4539 

0.19 0.3743 0.3793 0.3865 0.3975 0.4116 0.4255 0.4365 0.4432 0.4463 

0.20 0.3677 0.3735 0.3813 0.3932 0.4079 0.4223 0.4341 0.4424 0.4467 

0.21 0.3616 0.3666 0.3731 0.3836 0.3969 0.4 107 0.4230 0.4318 0.4367 

0.22 0.3556 0.3611 0.3688 0.3797 0.3932 0.4062 0.4167 0.4247 0.4296 

0.23 0.3561 0.3617 0.3682 0.3784 0.3908 0.4036 0.4147 0.4227 0.4274 

0.24 0.3553 0.3609 0.3678 0.3776 0.3909 0.4045 0.4156 0.4244 0.4296 

0.25 0.3481 0.3545 0.3620 0.3725 0.3855 0.3979 0.4081 0.4156 0.4210 

0.26 0.3488 0.3546 0.3620 0.3732 0.3869 0.3996 0.4100 0.4177 0.4228 

0.27 0.3416 0.3480 0.3555 0.3652 0.3773 0.3892 0.3994 0.4066 0.4111 

0.28 0.3393 0.3453 0.3530 0.3627 0.3745 0.3854 0.3955 0.4022 0.4065 

0.29 0.3380 0.3439 0.3511 0.3608 0.3727 0.3841 0.3939 0.4015 0.4059 

0.30 0.3361 0.3420 0.3493 0.3590 0.3709 0.3827 0.3935 0.4012 0.4056 

0.31 0.3332 0.3395 0.3469 0.3561 0.3670 0.3775 0.3863 0.3924 0.3963 

0.32 0.3269 0.3336 0.3414 0.3507 0.3608 0.3707 0.3796 0.3854 0.3885 

0.33 0.3279 0.3343 0.3409 0.3494 0.3597 0.3701 0.3788 0.3846 0.3881 

0.34 0.3243 0.3304 0.3372 0.3456 0.3557 0.3659 0.3747 0.3818 0.3862 

035 0.3267 0.3333 0.3404 0.3496 0.3601 0.3711 0.3805 0.3871 0.3913 

0.36 0.3215 0.3284 0.3358 0.3447 0.3541 0.3641 0.3734 0.3806 0.3850 

0.37 0.3223 0.3301 0.3383 0.3476 0.3576 0.3680 0.3766 0.3824 0.3860 

0.38 0.3188 0.3255 0.3328 0.3422 0.3516 0.3611 0.3692 0.3751 0.3785 

0.39 0.3160 0.3223 0.3295 0.3382 0.3471 0.3554 0.3628 0.3685 0.3712 

0.40 0.3150 0.3221 0.3297 0.3382 0.3474 0.3567 0.3641 0.3691 0.3721 

0.41 0.3123 0.3192 0.3266 0.3351 0.3444 0.3533 0.3606 0.3653 0.3683 

0.42 0.3104 03180 0.3254 0.3338 0.3425 0.3509 0.3578 0.3625 0.3644 

0.43 0.3113 0.3188 0.3263 0.3347 0.3445 0.3534 0.3610 0.3666 0.3700 

0.44 0.3108 0.3176 0.3244 0.3317 0.3403 0.3491 0.3566 0.3608 0.3624 

0.45 0.3105 0.3176 0.3247 0.3320 0.3402 0.3481 0.3541 0.3583 0.3601 

0.46 0.3108 0.3180 0.3250 0.3328 0.3413 0.3488 0.3555 0.3593 0.3613 

0.47 0.3061 0.3136 0.3205 0.3277 0.3356 0.3438 0.3512 0.3564 0.3588 

0.48 0.3064 0.3140 0.3210 0.3287 0.3370 0.3449 0.3510 0.3553 0.3578 

0.49 0.3041 0.3113 0.3181 0.3251 0.3328 0.3401 0.3462 0.3506 0.3525 

0.50 0.3045 0.3122 0.3203 0.3287 0.3371 0.3445 0.3501 0.3532 0.3544 
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Chapter 7 

Fingerprint classification 

7.1 Introduction 

Previous chapters have all demonstrated the efficiency of MF. This chapter 

introduces the application of MF in fingerprint processing as a pre-processor 

for the first time. 

The quest for reliable personal identification in computerised access control 

has resulted in an increasing interest in biometrics [48]. Biometrics indi

cates physical or behavioural characteristics which uniquely identifies people. 

Fingerprint is one of the important biometrics. Secure personal identification 

is required in many other areas, except forensic use, such as secure systems, 

banking systems, replacing PIN codes and etc. [86]. All these areas need 

secure and fast algorithms for identification. Fingerprint processing includes 

operations such as enhancing contrast of the ridges, segmenting the image to 

separate ,ridges from the background and extracting structural features of the 

image [55]. Identification of fingerprint patterns has always been of scien

tists' favourites and also important for law enforcement authorities [57]. The 

fast-growing number of fingerprints gathered and the requirement for a fast 

recognition system have tremendously increased the demand for an automatic 
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7.1 Introduction 103 

fingerprint system [57]. An automatic system for fingerprint recognition should 

satisfy the following criteria [57]: either the system must match two finger

print impressions and conclude that the two patterns arc exactly the same, 

or it should provide a technique which can significantly improve the prCHcnt 

cumbersome manual matching process. 

A fingerprint presents a directional image consisting of many ridges at dif

ferent directions. Its structural information lies in the position and direction 

of its constituent ridges [41]. The characteristics or features, which identifies 

each fingerprint uniquely, are called minutiae [57]. Minutiae are interruptions 

of normal flow of the ridges such as abrupt ridge ending, dots, short ridge, 

logs, branches, and mergers. The minutiae and their relative locations are so 

crucial that although each fingerprint pattern has about 100 minutiae, as few 

as a dozen is considered sufficient to identify a pattern [15, 86]. 

The basic idea in fingerprint processing is thus to detcct local ridges ori

entations. This can be done by directional filtering. Experimental results 

show that a better performance can be achieved if directional opcrators arc 

employed instead of classical methods used for image enhancemcnt and seg

mentation which involve homogeneous operators [34]. Maio et. al. [51] 

suggest a direct gray-scale minutiae detection in fingerprints without thinning 

and binarization. Most of the methods presented for fingerprint proccsHing arc 

efficient only when the quality of images are fairly good which are not always 

the case, especially when images are acquired from on-paper fingerprints [41]. 

Rao et. al. [63] focuses on finding the core points in fingerprint. A syntactic 

approach for fingerprint impression has been proposed in [32] by conccntrating 

on topological representation of the patterns. Ratha et. al. [65] presents a 

real-time matching system for large fingerprint databascs. Kouta et. al. [45] 

present a graph-based structure to capture the topological relations within the 

fingerprint. Another syntactic method based on the ridge flow in the pattern 

area and the presence of deltas in the fingerprint can be found in [57]. The 
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main problem with this method happens when deltas are not detected at first 

level. A hierarchial fuzzy approach for fingerprint processing is presented in 

[41]. It looks very satisfactory when applying a mask with different sizes. How

ever it can not be applied robustly when the ratio of signal/noise is low. The 

best solution seems to be obtained from a kind of filtering that removes noise 

without affecting the details of the ridges. By experience we recommend mor

phological filtering as a pre-processor [71]. With fingerprint pre-processing 

and directional filtering, fingerprint classification is undertaken based on pat

tern conversion to strings of symbols. Our algorithm extends the conversion 

approach proposed in [64] to improve the quality of fingerprint classification. 

This chapter presents a syntactic approach to fingerprint classification based 

on the ridge flow of fingerprint impression, rather similar to thOl method pro

posed in [64]. It improves different parts of the algorithm which will be 

mentioned later. The approach is composed of the raw image pre-processing 

using the morphological erosion, background normalisation, directional filter

ing adopted to find the dominant directions of the ridges for each subpicture, 

pattern trace and conversion to the strings of symbols [71]. The procedure 

of implementation is presented in detail. Figure 7.1 shows the block diagram 

applied for fingerprint classification. 

7.2 Fingerprint pre-processing 

Sherlock et. al. [82] apply position-dependant Fourier domain filters to 

produce a directionally smoothed image which is then thresholded, yielding the 

enhanced image leading to a frequency-domain analysis rather than spatially, 

over the entire image rather than within small blocks. Their algorithm is based 

on linear filtering and takes the advantage of linear filters. We have previously 

discussed about the differences between linear filters and MFs. 

Morphological operators are faster than convolution methods and avoid 
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Fingerprint classification 

String analysis 

Figure 7.1: Block diagram of fingerprint classification. 

blurring the edges of an image when processed. These two key factors have 

made MF as a popular nonlinear processing tool. Applying MFs for removing 

noise from fingerprint shows promising results [71]. Experiments show that 

erosion is one of the best operators among other morphological operators for 

such a task. 

The input data (Figure 7.2), denoted I N(m, n) is eroded with a flat square 

structuring element B(m, n) of size 3 x 3 and then subtracted from the input 

data generating a clear image of the important edges related to the ridges of 

fingerprint denoted OUTl (m, n): 

OUTl(m,n) = IN(m,n) - (IN(m,n) e B(m,n)). (7.2.1) 

A thresholding is also introduced to normalise the background producing a 

clearer image (Figure 7.3). Thresholding is necessary to improve accuracy 

[82]. There is no specific pre-processing in [64]. Modifying the size of the 

filter mask is considered for noise reduction in [41]. However we apply the 

above algorithm as a very effective pre-processor. 
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Figure 7.2: Input fin gerprint . 

Figure 7.3: Pre-processing of input fingerprint with MF. 
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7.3 Pattern classification 

In this section we explain the terms, used frequently, in fingerprint classifi

cation. 

1. Delta: The delta point is the point on the ridge closest to the divergence 

centre of the ridge flow. 

2. Loop: A loop is that type of fingerprint in which one or more of the ridges 

enter on either side of the impression, recurve, and terminate 011 the same 

side of the impression. Loops whose ridges flow towards the thumb are 

called radial loops or simply loops, and those whose ridges flow in the 

direction towards the little finger are called ulnar loops. 

3. Whorl: A whorl is any pattern with two deltas and at least one recurving 

ridge which may be a spiral or any variation of a circle. 

4. Twin loop: The double (twin) loop pattern consists of two deltas and two 

separate loops, with separate distinct shoulders. 

5. Arch: An arch is any pattern in which ridges enter on one side, rise in 

the middle, and flow out on the other side. The tented arch has the same 

tendency to enter from one side and flow out on the other side, with the 

exception that the ridges form an upward thrust at the centre. 

6. Transients: Transients are the prints which do not belong to any of the 

types mentioned above. 

Figure 7.4 shows some fingerprints of different type. 

One of the difficulties of the classical classifiers, named "Henry classifiers" , 

is to determine the deltas. That is why Rao et. al. [64] has used the classifi

cation based on ridge pattern curves. Based on the direction of the recurving 

ridge, loops, ulnar loops and twin loops are divided into left and right sub

classes. Moreover we divide arch and tented arch in four subclasses based 
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(a) Left loop (b) Right loop (c) Plain arch 

(d) Tented arch (e) Whorl 

Figure 7.4: Differenet fingerprints. 
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on the angle as 0°, 900 , 180°, 270°, thus making sixteen types for classification 

scheme as follows (there are 10 schemes in [64]) : left loop, right loop, left 

ulnar loop, right ulnar loop, whorl, left twin loop, right twin loop, plain arch 

(0°) , plain arch (90°), plain arch (180°), plain arch (270°), tented arch (0°) , 

tented arch (90°) , tented arch (180°) , tented arch (270°) , transient. Figure 7.5 

shows another set of fingerprint of different type as defined above. Pattern 

(a) Left loop (b) Right loop (c) Left ulnar loop 

(d) Right ulnar loop (e) Whorl (f) Left twin loop 

(g) Right twin loop (h) Plain arch (i) Tented arch 

Figure 7. 5: Another set of different fin gerprints [64]. 
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classification involves three parts. 

1. Directional filtering. 

2. Smoothing. 

3. Feature extraction. 

Each item is described as follows. 

7.3.1 Directional filtering 

\Ve use directional filtering as an approximation for the ridge pattern. The 

reason is that the ridges in a fingerprint are parallel in nature and variations 

of direction is also smooth. Therefore, ridge data has some redundancy which 

is possible to be reduced by dividing the fingerprint into a number of squares. 

The dominant ridge direction in each of these squares can be determined. 

The matrix, which is called the sampling matrix ( [26]), can approximate the 

original print, preserving the global structure of the print. The directional filter 

applied, detects four major directions: -45,0,45,90. It is accurate enough to 

detect the direction of the ridges [40]. The pre-processed image is divided into 

small squares. Each square represents 32 x 32 picture elements. The Prewitt 

filter is adopted as a directional filter to detect the dominant ridge direction 

in each square (see Table 7.1). The output of the filter will be minimum 

Table 7.1: Directional operators 

t 
-1 0 1 1 1 1 0 1 1 1 1 0 

-1 0 1 0 0 0 -1 0 1 1 0 -1 

-1 0 1 -1 -1 -1 -1 -1 0 0 -1 -1 

for dominant direction, and maximum for the direction perpendicular to the 

dominant one. If there is no dominant direction for a block, the corresponding 
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block is left empty. The reason for not having a dominant direction in a window 

is that either the quality of the image is not good and it has been blurred, or 

the region, in fact, has not a dominant direction. Leaving a block empty, is 

preferred to assigning a random direction. Table 7.2 shows an example of a 

sampling matrix after applying directional filtering. 

Table 7.2: Sampling matrix 

/ / / / / - \ \ 
/ / / / - \ \ \ 
/ / / / \ \ \ \ 
/ / I I / I I \ 
/ I I I / I I I 
I I \ \ / / I 
\ \ \ \ - / / / 
\ \ \ \ - / / / 

We could use Sobel filter instead of Prewitt filter. However our experimental 

results show better performance with the latter one. 

7.3.2 Smoothing 

To ease tracing the ridge flow in every part of sampling matrix as well as 

removing ambiguities, a smoothing process is required. Some ambiguity may 

occur such as Figure 7.6. It is rather difficult to decide which path (lor 

,/ 
/+ 
1 2 

Figure 7.6: Ambiguity in direction. 

2) should be followed [64]. A special smoothing technique can remove such 
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ambiguity. Each of four direction codes in sampling matrix is first converted 

into a 3 x 3 matrix (as shown in Table 7.3) leading to an expansion of the 

size of the sampling matrix (new width and height is three times as big as the 

previous size). 

Table 7.3: Matrix capture 

H t ..?' '\t 
0 0 0 0 1 0 0 0 1 1 0 0 

1 1 1 0 1 0 0 1 0 0 1 0 

0 0 0 0 1 0 1 0 0 0 0 1 

The result is shown in Table 7.4 as the sampling matrix after expansion 

and before smoothing. 

Table 7.4: Sampling matrix before smoothing. 
1 1 1 

1 1 1 1 1 1 1 
1 

1 1 1 1 
1 1 1 1 1 1 1 1 

1 1 
1 1 1 1 1 

1 1 1 
1 

1 1 1 1 1 1 
1 1 1 1 1 

1 1 1 1 1 
1 1 1 1 1 1 

1 1 1 1 
1 1 1 1 1 
1 1 1 1 1 
1 1 1 1 1 
1 1 1 1 1 

1 1 1 
1 1 1 1 1 1 1 1 

1 1 1 
1 1 

1 1 1 1 1 1 1 
1 1 1 1 

Then, sliding from top to bottom and from left to right of the sampling 

matrix, the central point is modified from 0 to 1 if any of the neighbourhood 

cases 1-4 shown in Table 7.5 exists. Similarly if any of the neighbourhood 

cases a1-d4 shown in Tables 7.6- 7.9 exists, the central point will be changed 

from 1 to o. 
The effect of smoothing on the expanded sampling matrix is shown in Table 

7.10. Considering the above smoothing method as shown in Tables 7.5 and 

7.6, we realise how powerful, our algorithm smoothes the ambiguities compared 
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Table 7.5: Modifying the central point from Q. to 1 
case 1 case 2 case 3 case 4 

0 1 0 x x x x 1 0 0 1 x 

1 Q 1 1 Q. 1 x Q. 1 1 Q x 

x x x 0 1 0 x 1 0 0 1 x 

Table 7.6: Modifying the central point from 1 to Q: case a 

al a2 a3 a4 

x x x 1 1 1 1 x x x x 1 

x 1 x x 1 x 1 1 x x 1 1 

1 1 1 x x x 1 x x x x 1 

Table 7.7: Modifying the central point from 1 to Q: case b 

hI b2 b3 h4 

'x 1 x x 1 x x 1 1 x 0 x 
0 1 1 1 1 0 1 1 0 1 1 0 

x 0 1 1 0 x x 0 x x 1 1 

h5 b6 b7 b8 

x 0 1 1 0 x 1 1 x x 0 x 

0 1 1 1 1 0 0 1 1 0 1 1 

x 1 x x 1 x x 0 x 1 1 x 

Table 7.8: Modifying the central point from Q to 1: case c 

cl c2 c3 c4 

x x x 1 x x 1 x x x x x x x x x x x x x 

x x 1 x x x x 1 x x x x 0 x 1 1 x 0 x x 

x 1 1 0 x x 0 1 1 x x 0 1 1 x x 1 1 0 x 

1 x 0 x x x x 0 x 1 x x 1 x x x x 1 x x 

x x x x x x x x x x x 1 x x x x x x 1 x 
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Table 7.9: Modifying the central point from!! to 1: case d 
dl d2 d3 d4 

x x x x x x x x x x x x 1 x x x x 1 x x 

x 1 x x x x x x 1 x x x 1 x x x x 1 x x 

x x 1 1 1 1 1 1 x x x x 1 1 1 1 1 1 x x 

x x 1 x x x x 1 x x x 1 x x x x x x 1 x 

x x 1 x x x x 1 x x x x x x x x x x x x 

with the proposed method in [64] which only covers a few cases of the above

mentioned ambiguities. 

Table 7.10: Sampling matrix after smoothing. 
1 

1 1 1 1 1 1 1 1 1 
1 1 1 1 1 

1 1 
1111111 

1 1 1 
1 1 1 1 

1 1 1 1 1 
1 1 1 1 1 1 

1 1 1 1 1 1 1 
1 1 1 1 1 1 

1 1 1 1 1 1 1 
1 1 1 1 1 1 1 

1 1 1 1 1 
1 1 1 1 1 1 
1 1 1 1 1 1 
1 1 1 1 1 
1 1 1 1 1 1 
1 1 1 1 
1 1 1 1 1 1 1 1 1 

1 1 
1 

1 1111111 1 
1 1 

7.3.3 Feature extraction 

The algorithm applied for feature extraction determines the end points and 

the points where two lines make an angles [64]. Four different directions make 

eight possible endpoints, or equivalently starting points, as (-+ :N), (/" :M), 

(t :L), C\ :K), (+- :J), (/ :1), (.!. :H), and (\., :0). A line in one direction 

can make an angle with another line in six possible ways (e.g. -.J -, -1 \ 

-1 7)' The last two possibilities (angle < 90°) are eliminated by smoothing. 

Table 7.11 shows the symbols used for various endpoints and the angle points. 

We use the similar notation as used in [64] to make the comparison of two 

methods easier. Table 7.12 displays how the smoothed sampling matrix will 
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be labelled using these features. 

Table 7.11: Features used in classification 

-tN ~J tL .!.H )'1M 

0 0 x x 0 0 x 1 x 0 0 0 0 x 1 

0 1 1 1 1 0 0 1 0 0 1 0 0 1 x 

0 0 x x 0 0 0 0 0 x 1 x 0 0 0 

/1 ""K \.0 -1U '-V 
0 0 0 1 x 0 0 0 0 x 0 1 1 0 x 

x 1 0 x 1 0 0 1 x 1 1 0 0 1 1 

1 x 0 0 0 0 0 x 1 0 0 0 0 0 0 

r P ,Q )T \W ( R 

0 0 0 0 0 0 x 1 0 0 1 x 0 0 1 

0 1 1 1 1 0 0 1 0 0 1 0 0 1 0 

1 0 x x 0 1 1 0 0 0 0 1 0 1 x 

1 S rA IX -1y LZ 
1 0 0 0 0 0 0 0 0 0 1 0 0 1 0 

0 1 0 0 1 1 1 1 0 1 1 0 0 1 1 

x 1 0 0 1 0 0 1 0 0 0 0 0 0 0 

Table 7.12: Sampling matrix with pattern labels 
I I I I 0 

1 1 1 1 PI1111Q 1 
Mill M I K 

I 1 1 0 I 
I 1 1 PI1111Q I 1 

Mil I 11K 
1 1 Rl RPQI Os IS 11 

Mill SilK 
III I Tl 10 

1 R 1 I I liS 
M I 11M III 

I 1 I I I I 1 1 
R I 1 I 1 1 1 I 
III 1M 1 I L 
1 1 I I I I I 
11 WW 1 T 1 
I 1 I VU M 1 
1 1 ° I I 1 

W W 1 VI III IU T 
1 I I I ° 1 I I I VIIIIIU 1 1 
KKK M M 

7.4 String analysis 

String analysis plays a major role in fingerprint classification. The num

ber of strings belonging to plain arch and tented arch are very limited. In 
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these cases matching the string with prototype seems to be better than using 

grammars, but in the case of loops, whorl, and twin loops, the total number of 

strings is enormous. Therefore a grammar is used to analyse them. As the 1 's 

between the endpoints and angles (in Table 7.12) carry no extra information 

about the patterns, and they only provide connection between the symbols, 

they are ignored. As an example, two first strings (left top) in Table 7.12 are 

as "11M", and "1111M". They can both be simplified to identical symbol as 

"1M" showing two 45° lines. The strings left represent the characteristic ridge 

flow pattern and they can be used for classification. The algorithm applied to 

find the remaining strings is to search the matrix from left to right and top 

to bottom for endpoints. After an endpoint is found, it should be tracked by 

picking the connected symbols sequentially until another endpoint is found. 

vVe only need to keep one of each type of the strings. Therefore the number of 

patterns, to be analysed and classified, will be reduced. The following strings 

are attributed to different ridge patterns: 

1. Plain Arch: 

• Plain Arch (0°): AfPQ](, ](QPAf. 

• Plain Arch (90°): I R~V](, ](~V RI. 

• Plain Arch (180°): OVUI, IUVO. 

• Plain Arch (270°): OSTAf, AfTSO. 

2. Tented Arch: 

• Tented Arch{OO): NYH, HYN, JZH, HZJ. 

• Tented Arch(1800): N XL, LX N, J AL, LAJ. 

3. Right Ulnar Loop: 

• ](QAZU PQ](, ](QPU ZAQ](, 
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• KQAZUPQVJ, JVQPUZAQK, 

• JAZUPJ, JPUZAJ, 

• JVQAZUPQV J, JVQPUZAQV J. 

4. Left Ulnar Loop: 

• NU PQVY X PAl, AlP XYVQPU N, 

• NXYVQN, NQVYXN, 

• AfPXYVQPAf, AfPQVYXPAf, 

• AfPQVYXPUN, NUPXYVQPAI. 

5. Right Loop: 

• KQAIVK, IOVAQK, 

• KQAZJ, JZAQK, 

• JVQA1V K, K1V AQV J, 

• JVQAZJ, JZAQV J. 

6. Left Loop: 

• AfPXTAI, AITXPAf, 

• NUPXYN, NYXPUN, 

• AfPXYN, NYXPAI, 

• NUPXTAI, AfTXPUN. 

7. Whorl: (<I>: is an empty set, and fJ is any element of the symbolic set) 

XYZa{J, where a = (Axyz)n, n 2: 0 and fJ E {AXY, AX, A, <I>}. 

YZAafJ, where a= (XYZA)n, n 2: 0 and fJ E {XYZ, XY,X, <I>}. 

ZAXafJ, where a = (YZAx)n, n 2: 0 and fJ E {YZA, YZ, Y, <I>}. 

AXYa{J, where a = (ZAxy)n, n 2: 0 and fJ E {ZAX, ZA, Z, <Il}. 
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ZYXo:{3, where 0: = (Azyx)n, n 2:: 0 and {3 E {AZY, AZ,A, <p}. 

AZYo:{3, where 0: = (XAzy)n, n ~ 0 and j3 E {XAZ,XA,X,<p}. 

YXAo:j3, where 0: = (ZYXA)n, n 2:: 0 and j3 E {ZYX,ZY, Z, <p}. 

X AZo:{3, where 0: = (Y X Az)n, n ~ 0 and {3 E {Y X A, Y X, Y, <I>}. 

118 

8. Left Twin Loop: (<I> : is an empty set, and 0: is any element of the 

symbolic set) 

o:{3AXZ, where {3 = (Axyz)n, n 2:: 0 and 0: E {XYZ, YZ, Z, <I>}. 

o:j3ZXA, where {3 = (ZAxy)n, n ~ 0 and 0: E {AXY,XY, Y, <I>}. 

o:j3XZY, where j3 = (XYZA)n, n ~ 0 and 0: E {YZA,ZA,A,<I>}. 

o:{3YZX, where {3 = (YZAx)n, n ~ 0 and 0: E {ZAX,AX,X,<I>}. 

9. Left Loop+Loop3: 

Loop3: 

• IRZUI,IUZRI, 

• IRZYH, HYZRI, 

• IRZUPJ, JPUZRI, 

• HTRZUI,IUZRTH, 

• HTRZYH, HYZRTH, 

• HTRZUPJ, JPUZRTH, 

• JAZUI,IUZAJ. 

10. Right Twin Loop: (<I> : is an empty set, and 0: is any element of the 

symbolic set) 

o:j3XAY, where 0: E {AZY, ZY, Y, <p} and j3 = (XAzy)n, n ~ o. 
o:j3Y AX, where 0: E {X AZ, AZ, Z, <I>} and j3 = (Y X Az)n, n ~ o. 
o:j3AYX, where 0: E {YZX, ZX,X, <I>} and j3 = (Ayzx)n, n ~ o. 
o:j3XY A, where 0: E {AY Z, Y Z, Z, <I>} and {3 = (X AY z)n, n ~ o. 

MORPHOLOGICAL FILTERING M.H. Sedaaghi 



7.4 String analysis 119 

11. Right Loop+ Loop4: 

Loop4: 

• OVYXN, NXYVO, 

• HlVSYVQN, NQVYSlV H, 

• OSYVO, OVYSO, 

• OSYZH, HZYSO, 

• OSYVQN, NQVYSO, 

• HlVSYVO, OVYSlV H, 

• HWSYZH, HZYSlVH. 

The total number of the patterns may be reduced by using the following 

string transformations: 

1. PR-+A, RP-+A, 

2. QS-+X, SQ-+X, 

3. TU-+Y, UT-+Y, 

4. VlV -+ Z, lVV -+ Z. 

Figure 7.7 shows the resulted symbols after conversion. 

In the case of three right angles (or more) for a string, the following modi

fications are also used (it happens for whorl, twin loops): 

i. Leading/lagging lines before/after A, X, Y, Z (i.e. L, H, J, N) arc 

ignored (see Figure 7.8). 

ii. I R, RI, LR, RL and J P, P J, M P, P!v! are modified to A (Figure 

7.9-line 1). 

iii. LS, SL, as, so and KQ, QK, NQ, QN are changed to X (Figure 

7.9-line 2). 
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Figure 7.7: Some transformations required for simplification. 

iv. HT, TH, AfT, TAt and IU, UI, NU, UN are modified to Y (Figure 

7.9-line 3). 

v. [(lV, lV [(, HlV, lV H and lV, V J, av, va are changed to Z (Figure 

7.9-line 4). 

VI. UP, PU, QV, VQ, lV S, SlV, T R, RT are ignored (Figure 7.g-line 5). 

r ==t fA 

N • ~t ==t Xl 

N .~t =* ~ 
t~.J ==t~ 

Figure 7.8: Redundant features in whorl and twin loops. 

The grammar applied is shown in Tables 7.13 and 7.14. If the patterns 

in the second column of Table 7.14 match with the pattern of the string, 
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!.(: ./Pi.~ =trA 

~ .~.~.~ =tX] 

).;J .J.~ =t~ 

~.~.~.~=t~ 

f. \.~/ =tlg •• ~ 

Figure 7.9: Some simplifications for whorl and twin loops. 

the third column will be the next location of the table to be compared with 

next pattern of the string as a confirmation of matching, otherwise the current 

pattern of the string will be compared with the pattern of the location defined 

by the fourth column jump. If the third column jump equals to -1, it means 

the search should be started from the first for the rest of the string. The fifth 

column indicates the type of the string if end of string. Similar discussion holds 

for the fourth column if it equals to -1. Depending on the parsing path, the 

strings can be classified into one of the classes as defined before. For sampling 

matrix shown in Table 7.12, the strings and the paths they are classified, are 

as follows: 

• I At, OK: Line. 

• At PQ K: Plain Arch. 

• OSTAt: Plain Arch(2700). 
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• I R~V K: Plain Arch(900). 

• OSL: Angular Lines. 

• }';fTSQPR~VVUI (-+ YXAZY): the following lines of the grammar in 

Table 7.14 will be examined to detect the pattern: 

1, 11, 24, 34, 46, 59, 78, 81, 82, 83, 91, 111, 112, 110, 109, 111. 

The result is a ·Whorl. 

OVUTSQPRlVVUI (-+ ZYXAZY): similarly the following lines will 

be checked: 1, 11, 24, 34, 46, 59, 78, 81, 82, 83, 84, 95, 103, 104, 102, 

101, 103, 104. The result is again a Whorl. 

We notice that the results of classification agree with the sampling matrix. 

Table 7.13: Grammar syntax for line, arch, and tented arch detection 
No. pt go fail Type No. pt go fail Type No. pt go fail Type 

1 H 2 3 28 0 -1 -1 AL 55 W 56 -1 

2 L -1 17 Line 29 X 30 31 56 II -1 71 AL 

3 L 4 5 30 N -1 -1 TAI80 57 V 58 59 

4 H -1 25 Line 31 A 32 -1 58 J -1 73 AL 

5 N 6 7 32 J -1 -1 TAI80 59 S 60 -1 

6 J -1 33 Line 33 Y 34 35 60 L -1 77 AL 

7 J 8 9 34 H -1 -1 TA 61 P 62 63 

8 N -1 41 Line 35 X 36 37 62 J -1 65 AL 

9 I 10 11 36 L -1 -1 TA 63 T 64 -1 

10 M -1 49 Line 37 U 38 39 64 II -1 79 AL 

11 M 12 13 38 I -1 -1 AL 65 Q 66 -1 

12 I -1 61 Line 39 Q 40 -1 66 K -1 -1 PA 

13 0 14 15 40 K -1 -1 AL 67 P 68 -1 

14 K -1 57 Line 41 Z 42 43 68 M -1 -1 PA 

15 K 16 -1 42 H -1 -1 TA 69 W 70 -1 

16 0 -1 53 Line 43 A 44 45 70 K -1 -1 PA90 

17 W 18 19 44 L -1 -1 TAI80 71 R 72 -1 

18 K -1 -1 AL 45 V 46 47 72 I -1 -1 PA!)O 

19 T 20 21 46 0 -1 -1 AL 73 U 74 -1 

20 M -1 -1 AL 47 P 48 -1 74 I -1 -1 PAI80 

21 Y 22 23 48 M -1 -1 AL 75 V 76 -1 

22 N -1 -1 TA 49 U 50 51 76 0 -1 -1 PAI80 

23 Z 24 -1 50 N -1 75 AL 77 T 78 -1 

24 J -1 -1 TA 51 R 52 -1 78 M -1 -1 PA270 

25 R 26 27 52 L -1 69 AL 79 S 80 -1 

26 I -1 -1 AL 53 Q 54 55 80 0 -1 -1 PA270 

27 S 28 29 54 N -1 67 AL 

AL:Angular Line, TA:Tented Arch, TAl80:Tented Arch (180°) 
PA:Plain Arch, PA90:Plain Arch (90°), PAl80:Plain Arch (180°), PA270: Plain Arch (270°) 
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Table 7.14: Grammar syntax for the rest of patterns 
No. pt go fail Type No. pt go fail Type No. pl go fail Type 
1 K 2 11 44 X 39 76 87 Y 88 115 Whorl 
2 Q 4 3 45 M -1 -1 LUL 88 Z 86 127 Whorl 
3 W 4 -1 46 H 47 59 89 Y 91 117 Whorl 
4 A 5 20 47 T 48 56 90 X 89 -1 Whorl 
5 Q 6 9 48 R 49 60 91 Z 92 111 Whorl 
6 K -1 7 RL 49 Z 50 -1 92 A 90 118 Whorl 
7 V -1 -1 50 Y 51 52 93 Z 95 -1 Whorl 
8 J -1 14 RL 51 H -1 -1 Loop3 94 y 93 117 Whorl 
9 W 6 10 52 U 53 57 95 A 96 103 Whorl 
10 Z 8 -1 53 I -1 54 Loop3 96 X 94 -1 Whorl 
11 J 12 24 54 P 55 58 97 A 99 118 Whorl 
12 Z 4 13 55 J -1 -1 Loop3 98 Z 97 -1 Whorl 
13 V 2 4 56 Y 49 65 99 X 100 107 Whorl 
14 U 15 -1 57 R 53 61 100 Y 98 117 Whorl 
15 p 16 53 58 T 51 -1 101 Z 103 121 Whorl 
16 Q 17 18 59 I 48 78 102 A 101 -1 Whorl 
17 V 18 19 60 U 49 -1 103 Y 104 118 Whorl 
18 J -1 -1 RUL 61 A 55 -1 104 X 102 122 Whorl 
19 K -1 -1 RUL 62 -1 -1 105 A 107 -1 Whorl 
20 P 21 -1 63 P 49 -1 106 X 105 122 Whorl 
21 U 22 -1 64 A 49 -1 107 Z 108 121 Whorl 
22 Z 23 -1 65 Z 75 66 108 Y 106 -1 Whorl 
23 A 16 -1 66 W 67 -1 109 Y III -1 Whorl 
24 M 25 34 67 S 68 -1 110 Z 109 121 Whorl 
25 p 26 31 68 Y 69 -1 111 X 112 122 Whorl 
26 X 27 42 69 V 70 72 112 A 110 -1 Whorl 
27 T 28 29 70 Q 71 74 113 X 115 122 Whorl 
28 M -1 -1 LL 71 N -1 -1 Loop4 114 Y 113 -1 Whorl 
29 y 30 32 72 Z 73 -1 115 A 116 117 Whorl 
30 N -1 37 LL 73 H -1 -1 Loop4 116 Z 114 121 Whorl 
31 T 26 -1 74 0 -1 -1 Loop4 117 Z 120 -1 LTL 
32 P 33 -1 75 Y 76 80 118 X 119 -1 LTL 
33 U 30 28 76 S 77 -1 119 A 121 126 LTL 
34 N 35 46 77 W 73 74 120 Y -1 -1 LTL 
35 Y 26 36 78 0 79 81 121 Y 123 -1 RTL 
36 U 25 26 79 V 75 67 122 A 121 126 RTL 
37 V 38 -1 80 X 71 -1 123 Z 124 125 RTL 
38 Q 39 43 81 A 99 82 Whorl 124 X 122 -1 RTL 
39 P 40 41 82 X 87 83 Whorl 125 X -1 -1 RTL 
40 U 41 45 83 Y 91 84 Whorl 126 Y 127 -1 RTL 
41 N -1 -1 LUL 84 Z 95 -1 Whorl 127 A -1 -1 BTL 
42 Q 37 -1 85 X 87 117 Whorl 
43 y 44 70 86 A 85 118 Whorl 

RL:Right Loop, LL:Left Loop, RUL:Right Ulnar Loop 
LUL:Left Ulnar Loop, LTL:Left Twin Loop, RTL: Right Twin Loop 
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7.5 Decision 

The decision for matching a fingerprint to a similar impression among a 

large database is a very difficult task, because ( [65]): 

i. there may be no exact match (yes/no type), 

ii. the input image can be different from the stored image in the database 

even though they represent the same finger, 

lll. the input may be noisy and distorted, 

iv. the input image may contain only a partial image with severe distortions 

as in the case of a scene-of-crime fingerprint, 

Our algorithm can not however be applied for police investigation, as the sizc 

of the database is huge and we need a complete fingerprint. Based on these 

assumptions the proposed algorithm may be applied for personnel identification 

in not huge companies. 

7.6 Discussion and conclusion 

vVe have introduced the idea of applying MF as a pre-processor for fin

gerprint processing. The application of MF speeds up pre-processing with a 

reliable output compared to the existing methods. The proposed algorithm 

for fingerprint classification extends and improves the approach in [64]. The 

proposed method in [64] is one of the best syntactic analysis for fingerprint 

classification. However our approach dominates over [64] as follows. It presents 

more powerful smoothing procedure, whereas there is no dcfinite pre-processor 

in latter method. Our algorithm for smoothing the pre-processed data removes 

all possible ambiguities compared to the latter method. The integrated pro

grammed grammar covers a complete set of patterns, it may detect some pat

terns such as NXTAf, NYXPAf, NYXPUN, J(QPRJ( which [64] suggests 
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but can not detect. Our integrated programmed grammar may be developed 

for newer features very conveniently, and it is expandable for possible future de

velopments (see line 62 in Table 7.14), while there is no chance to develop the 

grammar table in [64] without modifying it generally. The algorithm presented 

in this chapter shows an improvement of fingerprint processing and classifica

tion, compared to the existing methods, owing to a powerful morphological 

pre-processor and robust technique for smoothing and an efficient grammar. It 

can be implemented to process and match fingerprints with reliability. 
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Chapter 8 

ECG waves detection 

8.1 Introduction 

This chapter concentrates on one of the applications of morphological fil

tering (MF) for ECG filtering. One of the major problems in recording ECGs 

is that the measurement is degraded by additive 50 or 60 lIz power line in

terference [62]. Existing computerised algorithms of rhythm analysis are not 

satisfactory for detecting complex atrial arrhythmias in ECG. They can detf'ct 

normal sinus rhythms and sinus arrhythmias, rather perfectly, where the P 

waves and QRS complexes exhibit a 1:1 ratio and the P R interval is constant, 

but their performance is not good in detecting complex arrhythmias [67]. Sev

eral methods have been reported in the literature to detect the atrial waves. 

Most of the methods limit their search to a pre-defined window in front of 

each QRS. However P waves are not always located before QRS. vVhen the 

ECG signal is noisy, it is difficult to detect the P waves buried in noise, while 

their shapes and amplitudes change. In most cases they will not be detected 

and, instead, some spurious waves will be detected as P waves. Reddy et. al. 

[67] apply a pre-processor for atrial wave detection. They subtract a median 

complex of leads II and VI from the rhythm data of the corresponding leads. 
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These signals are then low-pass filtered and decimated to 125 samples/sec, dif

ferentiated (1st and 2nd), rectified and added, to form a composite detection 

function. 11edian values of these measurements are computed and measure

ments of the candidate P waves are compared for closeness to the median. If 

they are within pre-defined limits, they are given positive scores representing a 

likelihood of a true P wave. This method seems to be very efficient for detect

ing complex arrhythmias. vVe, in general, have empirically experienced that 

the proposed method in [67] is the best to detect P waves, compared to other 

existing methods, and we will apply it on our own way which will be discussed 

later in this chapter. 

An approach to QRS complex detection using MM is presented in [87]. 

The proposed algorithm leads to an accurate QRS complex detection. A pre

processor using linear filtering is applied to enhance QRS complexes and sup

press the other parts of the signal as well as noise. The decision rule operates 

on this output and classifies the dominant events as QRS complexes or not. 

vVe confirm applying MM operators for ECG wave detection. However we do 

not agree with the idea of suppressing the other parts of the signal such as 

P, S, T waves. ECG signals are frequently plagued by impulsive noise, e.g., 

due to muscle activities and power line interference [11]. Impulsive noi~e has 

very large positive or negative values of short duration. Moreover, background 

normalisation is required to correct the baseline drift of the signal caused by 

the respiration and motion of the subject [2]. 

vVe apply 1'1M for noise suppression and background normalisation in ECG 

signals with similar method as what proposed in [11]. 

8.2 Definition of the terms in ECG 

The electrocardiogram (ECG) is the graphical representation of the po

tential difference between two points on a body surface, versus time. One of 
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universally accepted form of ECG is 12-lead ECG. The detailed explanat ion 

of other ECG methods and the physics of ECG can be found in li terature 

[31 , 24, 18J. 

The heartbeat usually starts in the sinus node (1 in Fig. 8.1) located 

in the right atrium (http://www.atlcard.com/hartbeat.html). The sinus node 

sends an electrical signal throughout the atria (2 in Fig. 8.1) and to the 

atrioventricular (AV) node (3 in Fig. 8.1). The signal then travels down 

the special pathways that conduct it to the ventricles (4,5 in Fig. 8.1) . As 

the signal travels through the heart, the heart contracts or beats. Figure 

8.2 (http://www.mei.com/resource/arrhythm/welcome.html) shows different 

parts of the heart. 

Figure 8.1: Heart beat. 

Figure 8.3 (http://www.mei.com/resource/arrhythm/welcome.html) shows a 

sample ECG wave on ECG sheet. 

In this part we will briefly explain the different waves in ECG: 

1. P wave: The P wave of the ECG represents atrial depolarisation . P 

wave is best viewd on leads II and VI and may be upward, downward 

and or diphasic. Its duration indicates the time required for an impulse 

MORPHOLOGICAL FILTERING M.H. Sedaaghi 



8.2 Definition of the terms in ECG 

$inCk1lrlal • ode 
ISA ) 

}\rrlov~n l rl(I"Jr ___ ~ 
Nod.11\ I 

R .~hl Bundle - --H';;; 
Bran h IRFI BI 

RICHT VENl'RICLE 

l EI'T ",'r RIUM 

III Bundle 

l.eft Bund l ' 
tl rllrt h IUlill 

Leh Po<tenor 
f'a'o(" ldc (I I'~ I 

L('h Anlellor 
F a"ldc II. F I 

6:.1,..;'--- _ l>urkh'lc Flb;,,~ 

Figure 8.2: Different parts of heart . 

Figure 8.3: A sample ECG wave. 
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to pass from the SA node to the AV node (atrial conduction time). The 

duration of the P wave is normally 0.07 - 0.10 sec but not greater than 

0.11 sec. The normal amplitude is ::; 0.25 mv. The P wave in lead VI 

is seen bipolar (positive at first and then negative). Increased voltage 

or increased duration of the P wave is usually diagnostic. Absence of P 

waves occurs in atrial standstill, during periods of sinus arrest, and in 

SA block. The P wave may not be recognisable in some AV junctional 

rhythms. In atrial flutter and fibrillation, the P waves are replaced by 

other oscillations called F and f waves, respectively. 

ii. QR8 complex: Activation or de polarisation of the ventricles is reflected 

by QRS complex. An initial upward and downward deflexion after P 

wave are called Q and R waves respectively. S wave usually represents 

the terminal part of ventricular activation. There may be a second R 

(called R') or 8 (called 8') waves, or only a single negative deflrction 

(called QS) representing the entire QRS complex. The maximum normal 

duration of the QRS complex is 0.08 - 0.10 sec. 

lll. P - R (or P - Q) interval represents the time required for an impulse to 

travel from the SA nodal to the ventricles. 

iv. T wave: T wave represents repolarisation of the ventricles. It may be 

upright, inverted or diphasic. The normal duration of the T wave is 

0.10 - 0.25 sec. 

v. S - T segment: 8 - T segment represents the greater part of ventricular 

repolarisation. The normal average duration of the 8 - T segment is 

0.05 - 0.15 sec. 

vi. U wave: U wave is a small rounded deflexion which occurs immediately 

after the T wave and it is normally in the same direction as the T wave. 

It is usually best seen in leads V2 to V 4. The deflexion may be so small 
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as to make accurate recognition difficult. The genesis of the U wave is 

uncertain and remains controversial. 

Vll. Q - T: Q - T interval represents the total duration of the ventricular 

activity. In some cases it is difficult to measure it. There are special 

tables to calculate another factor named Q - Tc instead of Q - T [18]. 

There are a lot of irregularities which make the waves look different from 

the normal shape. Appendix C introduces some of the arrhythmia including 

tables and figures as a reference. 

8.3 Pre-processing 

In this section we apply M1\1 for impulsive noise rejection and baseline drift 

removal. Noise suppression is typically the first step in ECG signal proc('ss

ing [60]. Linear low-pass and high-pass filtering are commonly used for noise 

suppression and baseline drift removal respectively [3]. Linear filtering is in

effective in impulsive noise suppression, and in general, regarding our previous 

discussions of comparison of linear filters versus nonlinear ones, about preserv

ing the shape of the original signal, we reject the idea of applying linear filters 

for ECG wave pre-processing. There is a report about applying median filters 

[21] and ranked-ordering methods [90]. 

The block diagram of the method applied is shown in Figure 8.4. The 

algorithm applied is similar to the proposed method in [11]. However Trahanias 

[87] uses open-closing instead of the average of open-closing and close-opening 

for baseline drift removal. The advantage of the method in [87] is that it is 

simpler, and therefore, faster than the method in [11], but less efficient. \Ve 

have empirically proven that the best morphological pre-processor for ECG 

signal is the one shown in Figure 8.4. 

The algorithm applied is as follows: 
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Openclosing with gl Openclosing with g2 

In 

Closeopening with gl 

+ 

Out2 

Figure 8.4: Block diagram of ECG pre-processing. 

i. A flat SE of size 3 with its origin at its centre (i.e. 91 = {O, Q., O}) is 

taken. The length of SE should be smaller than the smallest valuable 

component in ECG and bigger than the undesired parts such as noise. 

If the duration of the smallest valuable wave is T sec, and the sampling 

frequency is fs Hz, then the corresponding wave will be presented with 

T x fs samples. Therefore the length of the SE should be < (T x fs)/2. If 

the sampling frequency is, for example, 200 sps (sample per second), then 

3 samples will be equal to 3/200 = 15 msec. This size is smallcr than 

any sharp wave in ECG and can be applied as the size of SE to remove 

the impulsive noise from ECG. \Vith 91 as SE, we apply the following 

equation to remove the noise: 

outl(n) = (opcl(in(n)) + clop(in(n)))/2, (8.3.1) 

11. To remove the baseline drift, we need to increase the SE size to the size 

which is bigger than the size of the biggest ECG desirable component. 

For instance we use a flat SE of size 51 (92) with its origin at its centre. 

If we do the similar operation on out1 (n) as done on in(n) in Eq. 8.3.1, 

with 92 as SE, we will then remove all desirable components from outl (n), 

leaving the components related to baseline. If such a result is subtracted 

from outl (n), we will, instead, get rid of baseline drift. Therefore the 
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operation applied, is 

(8.3.2) 

Figure 8.5-a shows an input ECG that has baseline drift and is plagued by 

noise. Figure 8.5-b shows the result of noise removing. This is cOllsider<~d as 

out1 (n) in Figure 8.4. The baseline drift detected is shown in Figure 8.5-

c. Figure 8.5-d shows the desired output out2(n). We notice how well the 

morphological filtering has removed noise and baseline leaving an ideal signal 

for the next stages of ECG wave detection. Figures 8.6-a:d show the same 

input when the SE, applied for noise removal, is 91 = {O, 1, O}. \Ve have shown 

that when impulsive noise and baseline drift exist in ECG wave, our algorithm 

removes them successfully without losing the important details. However we 

need to be confident that if there is no noise and baseline drift, still applying 

the above-mentioned filters would cause no adverse effect. Figures 8.7-a:d 

illustrate that idea, illustrating that in the case of having a pure ECG wave, 

our pre-processor does not affect adversely. Figures 8.8-a:d show the same 

input when the SE, applied for noise removal, is 91 = {O, 1, o}. One of the 

most important benefits of applying MM, besides what mentioned above, is 

that the baseline of the processed data will move to 0 volt and it will cease the 

next processing as the reference line will be 0 volt. 

8.4 QRS detection 

This section reviews briefly the existing methods for Q RS detection and 

then proposes a better method. 

8.4.1 The existing QRS detectors 

The following algorithms exist for QRS detection in literature [19]: 
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(b) out •• (n) 

( c) Baseline drift 

Figure 8.5: ECG noise suppression and baseline drift removal(l). 

(a) inl (n) (b) outll(n) 

( c) Baseline drift 

Figure 8.6: ECG noise suppression and baseline drift removal(2). 
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(b) out21(n) 

· J~,d ·r+±+ffld 
(c) Baseline drift 

Figure 8.7: ECG noise suppression and baseline drift removal(3) . 

. ~ : illilld .{~ L. . .. ' . . 
(b) O'/.Lt21 (n) 

( c) Baseline drift 

Figure 8.8: ECG noise suppression and baseline drift removal ( 4). 
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i. Algorithms based on amplitude and first derivative 

(a) AF1 [50]: 

i. At first the amplitude threshold A1vfthrsh is calculated as a frac

tion of the maximum amplitude of the input ECG: 

AAfthrsh = 0.3 max{in{n)), n E Din. (8.4.1 ) 

ii. Then the first derivative in'{n) is calculated at each point of 

in{n) such that 

in'{n) = in{n + 1) - in{n - 1), n E Din. (8.4.2) 

iii. QRS occurs when (fs = 250 Hz) 

A. in'{n), in'{n + 1), in'(n + 2) > 0.5, and 

B. in'(m), in'(m + 1) < -0.3, where (n + 2) < m < (n + 25), 

and 

C. in(n), in(n + 1),·· . ,in(m + 1) 2:: Allfthrsh. 

(b) AF2 [17}: The second algorithm is as follows: 

i. A threshold is calculated as a fraction of the peak value of the 

ECG: 

A1vfthrsh = O.4max{in(n)), n E Din. (8.4.3) 

ii. The raw data is then rectified: 

outo(n) = l(in(n))I· (8.4.4) 

iii. The rectified ECG is passed through a low-level clipper: 

() 
{ 

outo(n) if outo(n) ~ AAfthrsh 
outl n = 

AJl.fthrsh otherwise 
(8.4.5) 
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iv. The first derivative is calculated at each point of the clipped 

rectified data: 

out~ (n) = outl (n + 1) - outl (n - 1), n E Dout !. (8.4.6) 

v. A QRS candidate occurs when a point in out; (n) exceeds the 

fixed constant threshold: out;(n) > 0.7. 

(c) AF3 [29]: The third algorithm is as follows: 

i. The first derivative in'{n) is calculated at each point of in{n) 

such that 

in'(n) = in{n + 1) - in(n - 1), n E Din. (8.4.7) 

ii. The result is searched for points which exceed a constant thresh~ 

old: in'(n) 2: 0.15. 

iii. Then the next three derivative values in'(n + 1), in'{n + 2) and 

in'(n + 3) must also exceed 0.15. 

iv. The next two sample points must have positive slope-amplitude 

products: 

in'(n + 1) . in(n + 1) > 0 and in'(n + 2) . in(n + 2) > O. 

If all the above conditions exist, then the current point is a Q RS 

point. 

11. Algorithms based on first derivative only 

(a) FDI [56]: The proposed algorithm is as follows: 

i. The first derivative is calculated as: 

in'(n) = 
(8.4.8) 

-2in(n - 2) - in(n - 1) + in(n + 1) + 2in{n + 2). 

MORPHOLOGICAL FILTERING M.H. Sedaaghi 



8.4 QRS detection 138 

ii. The slope threshold SLthrsh is calculated as a fraction of the 

maximum slope for in'(n): 

SLthrsh = 0.70max(in'(n)). (8.4.9) 

iii. in'{n) is searched for points which exceed the slope threshold. 

The first point that exceeds the slope threshold is taken as the 

onset of a QRS candidate. 

(b) FD2 [38}: The modified algorithm is as follows: 

i. The first derivative in' (n) is calculated at each point of in( n) 

such that 

in'{n) = in{n + 1) - in{n - 1), n E Din. (8.4.10) 

ii. in'{n) is searched until a point exceeds the slope threshold: 

in'{n) > 0.45. 

iii. A QRS candidate occurs if another point in the next three 

sample points also exceeds the threshold: in'{n + 1) > 0.45, or 

in'{n + 2) > 0.45, or in'{n + 3) > 0.45. 

iii. Algorithms based on first and second derivative 

(a) FBl [5J: 

i. The absolute values of the first and second derivative are cal

culated: 

in'(n) = lin{n + 1) - in{n - 1)1 

in"(n) = lin(n + 2) - 2in(n) + in(n - 2)1 
(8.4.11) 

ii. These two data are scaled and then summed: 

out(n) = 1.3in'(n) + 1.1in"(n). (8.4.12) 

iii. out(n) is scanned until a threshold is met: out(n) ~ 1.0. 
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iv. Once this occurs, the next eight points are compared to the 

threshold. If at least six of these points meet the threshold, the 

corresponding point is a candidate for Q RS. 

(b) FS2 [1}: 

i. The rectified first derivative is calculated: 

. outo(n) = lin(n + 1) - in(n - 1)1. (8.4.13) 

ii. The above result is then smoothed: 

outl(n) = (in(n - 1) + 2in(n) + in(n + 1))/4. (8.4.14) 

iii. The rectified second derivative is calculated: 

out2(n) = lin(n + 2) - 2in(n) + in(n - 2)1. (8.4.15) 

IV. The above two results are added to each other: 

(8.4.16) 

v. The maximum value of this array is determined and scaled to 

serve as primary and secondary thresholds: 

Primethrsh = 0.8 max(out3(n)) 

SeCndthrsh = 0.1 max(out3(n)) 

(8.4.17) 

(8.4.18) 

vi. out3(n) is scanned from the first up to the last point until a 

point exceeds Primethrsh' In order to be classified as a QRS 

candidate, the next six consecutive points must all be equal 

to, or greater than SeCndthrsh (i.e. out3(i) 2:: Primethrsh, and 

out3(i + 1), out3(i + 2)", . ,out3(I + 6) > SeCndthrsh. 

'v Algorithms based on digital filters 1 . 

(a) DFl [16}: 
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i. The input signal is passed through a differentiator with a G2.5 

Hz notch filter. 

outo(n) = in(n) - in(n - 4). (8.4.19) 

ii. outo (n) is then passed through a digital low-pass filter: 

out1(n) = outo(n) + 4outo(n - 1) + Gouto(n - 2) 

+4outo(n - 3) + 4outo(n - 4). (8.4.20) 

iii. Two thresholds are used, equal in magnitude but opposite in 

polarity. outl (n) is scanned until a point with amplitude greater 

than the positive threshold is reached. This point is the onset 

of the search. The number of alternate threshold crossings is 

used to classify the initial crossing as either a baseline shift, 

a QRS candidate, or as noise: If outl (i) > 21.0, then search 

region onset=i. If no other threshold crossings occur within 

the entire search, the occurrence is classified as a baseline shift. 

Otherwise, the following three conditions are tested: 

A. if outl (i + j) < -21.0, 0< j < 40, 

B. if out1(i + j) < -21.0, ° < j < 40, and outl(i + k) > 

21.0, j < k < 40, 

C. outl(i + j) < -21.0, ° < j < 40, and outl(i + k) > 

21.0, j < k < 40, and outl(i + l) < -21.0, k < l < 40. 

If any of the above conditions apply, the occurrence is classified 

as a QRS. If additional threshold crossings occur, the occur

rence is classified as noise. 

(b) DF2 [59}: 

i. The first stage smoothes the input ECG using a three-point 

moving average filter: 

outo(n) = (in(n - 1) + 2in(n) + in(n + 1))/4. (8.4.21) 
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ii. outo(n) is then passed through a low-pass filter: 

1 n+m 

outl(n) = 2m + 1 L outo(k), 
k=n-m 

m<n< N-m, (8.4.22) 

where N is the total length of the input samples. 

iii. The difference between outo{n) and out1(n) is squared: 

out2(n) = (outo(n) - out1{n)f, m < n < N - m. (8.4.23) 

iv. The squared difference is then filtered: 

out,{n) ~ out,{n) C~'m 01Lt, (k)) 2 

m<n < N -m. (8.4.24) 

v. out4{n) is made as: out4{n) = out3 (n) if (outo(n) - o'uto(n -

m))(outo(n) - outo{n + m)) > 0, otherwise out4(n) = O. 

vi. The maximum value of out4{n) is determined and scaled to form 

the threshold: 

Thrsh = 0.125 max(out4(n)), m < n < N - m. (8.4.25) 

Vll. A QRS occurs when a point in out4 (n) exceeds Thrsh. 

Experiments show that as m increases, the performance increases 

along with computational demands. The best value for m seems to 

be 6. 

For a detailed discussion about the comparison of the above methods, the paper 

by Frisen et. al. [19] is a good reference. \\That we can briefly conclude, is 

that none of the forementioned techniques does not act perfectly due to lack of 

a robust pre-processor. Therefore we apply our technique for QRS detection 

as explained in the next part. 
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8.4.2 Our approach to Q RS detection 

In some cases the amplitude of the T wave may be as big as of QRS on 

some leads. Therefore it is not wise to use the algorithms using the amplitude. 

Fulton [20] applies the absolute sum of all twelve leads. However regarding 

that only the leads I, II, VI, V2, V3, V 4, V5 and V6 are independent for twelve

lead ECG, we apply the absolute sum of the independent leads to detect the 

approximate place of Q RS complex. \Ve choose leads II and VI for single lead 

investigation, as P waves are usually (and not always) seen better in these 

leads. The algorithm applied is as follows: 

i. Apply a smoothing filter to each independent lead to remove small fluc

tuations caused by the pre-processors. 

where i = 1 .. ·8 for each independent lead. 

ii. Make the absolute sum of all Yi(n), denoted sum(n): 

8 

sum{n) = LYi{n). (8.4.27) 
i=l 

Figure 8.9 shows eight independent pre-processed leads and sum{n). 

iii. Find the global maximum amplitude of sum{n) (denoted AIAXSUAf). 

iv. Assign a threshold (denoted thrsh) and make an amplitude threshold: 

AAI Pthrsh = thr sh * AI AX SU}VI. If thr sh is too low, a lot of false 

peaks will be detected, and if it is too high, some peaks will be missing. 

Therefore a trade-off should be considered. We apply thrsh = 0.8. If it 

is too high, it will be reduced as explained below. 

v. Scan sum{n) to find the points that exceed AAI Pthrsh. 
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Figure 8.9: Eight pre-processed leads and their absolu te sum. 
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vi. Investigate any continuous interval exceeding AA! Pthrsh. Then find the 

local maximum amplitude inside every interval that exceeds AJ\! Pthr.~h' 

Vll. Remove false peaks due to large pacemaker spikes and T waves. In some 

cases the amplitude of the T waves on some leads may exceed the ampli

tude of the QRS complex. However it can not be true for smn(n), but 

can have noticeable amplitude. 

viii. Investigate the distance between the peaks. If there is a missing peak, 

then decrease thrsh and repeat the above stages. Figure 8.10 shows the 

peaks on sum(n) marked with "<". The corresponding peaks for leads 

II and VI are shown in Figures 8.11 and 8.12 respectively, confirming 

the results over the first derivative of E(n) with similar techniques acted 

on slope. 

ix. The distance between consecutive peaks is a good measure about the pe

riod of heart beat (ventricular beat) and also a reasonable approximation 

for the length of the structuring element used in pre-processing for base

line drift removal. If the SE's length was not within acceptable criterion, 

then all the procedure starting from pre-processing should be r{'peated 

with new length for SE. 

x. After making the peaks on sum( n), start the following process to find 

QRS onset and offset: 

(a) l\lake the first derivative on lead II. 

(b) Start from the location of the first corresponding peak on lead II. 

Evaluate the location and amplitUde of the relevant peak by search

ing a neighbourhood around the location of the peak. It may slightly 

differ, regarding the effect of the smoothing filter Y2(n) and based 

on the fact that different peaks (positive or negative) may occur 
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••• j .. i . 

Figure 8.10: The peaks on sum(n ). 

Figure 8.11: The peaks on II. 

~ 0 . " 

Figure 8.12: The peaks on VI. 
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on different leads. Scan leftward all adjacent points which have the 

same amplitude as the peak point. This happens for flat peaks. 

(c) The amplitude of the peak may be positive (for large R waves) or 

negative (large S waves). If the peak is positive, then move leftward 

while the first derivative is positive. Then the peak on Q wave will 

be the corresponding point. Then still move leftward while the first 

derivative is negative. Then at this point the onset of QRS has been 

detected. If the peak is negative, a dual tracking technique should 

be considered. The same technique but dual track for slopes should 

be considered for detecting QRB offset while the movement will be 

rightward. 

(d) Repeat the above steps for the rest of the peaks. 

(e) Evaluate all detected onsets and offsets. If they are beyond the 

acceptable ranges, exit the operation declaring that the program is 

not able to analyse the current data set. 

Similar procedure is applied for lead VI. The result of the proposed 

method is shown in Figures 8.13- 8.16. The QRB complexes are marked 

with red colour. After finding QRB onsets and offsets, the validity of 

them (duration and amplitude) should be evaluated. If any complex's 

amplitude and duration is not within the acceptable range, it will be 

rejected. 

8.5 ST - T detection 

The applied algorithm for BT - T detection, is alert enough to detect the 

buried P waves on T waves. In some cases, as mentioned, P wave can be on 

top of a T wave, changing the normal shape of the T wave. Therefore it will be 
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Figure 8.13: Detected QRS complexes on lead II (first part) . 

. . ~ 

Figure 8.14: Detected QRS complexes on lead II (second part). 
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Figure 8.15: Detected QRS complexes on lead V1 (first part) . 
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Figure 8.16: Detected QRS complexes on lead VI (second part) . 
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a big mistake to try to identify the T waves without considering the location 

of the P waves, as it exists among the current T wave detection algorithms in 

literature (e.g. [27, 14]). In fact we concentrate on ST - T detection instead 

of T waves. When later the P waves are detected, T waves can be separated. 

The T waves are positive or sometimes negative or even bipolar. They may 

occur immediately after QRS offset. The T waves are usually flat compared 

to the duration of QRS and they have higher amplitude than the P waves. 

The following part illustrates the algorithm for ST detection. This procedure 

should be repeated for each ST - T segment. 

i. Make a search over the interval between the current Q RS offset and the 

next Q RS onset for every Q RS to investigate the following instructions. 

ii. Apply open-closing (denoted by opel) for the search area. Experimental 

results show that a flat structuring element of size 9 satisfies the demands. 

iii. Construct the first derivative of the filtered data for the given intrrval 

(denoted deriv1). 

IV. Find the maximum of absolute value among 1/8, of the full interval range 

of opel and remember its location. Find out the real sign of the relevant 

maximum. Denote it as maxl8. 

v. The T waves can never occur too much closer to QRS complexes. There

fore bypass possible fluctuations and/or ST segment elevations by mov

ing rightward from the location of maxl8 and regarding derivl and the 

amplitude of opel to reach to a flat area. 

VI. Find the maximum of absolute value of opel from the above point up to 

half the full range as the most probable location for the T wave. Denote 

it as max12. 
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Vll. Move leftward and rightward from the location of maxI2 to find the 

onset and offset of the T wave with the similar technique as mentioned 

for finding QRS onset and offset, bearing in mind that the T waves are 

always flatter than the QRS complexes. 

Vlll. Evaluate the detected onset and offset. They should be in appropriate 

ranges and proper distances from the offset of the corresponding Q RS 

complexes. If they are beyond the acceptable ranges, then reject them. 

Figures 8.17- 8.20 show the detected ST - T segments marked by green colour 

on leads II and VI. 

8.6 Residue 

For difficult rhythms (where atrial waves are on top of ST segments, or they 

are spread all over the ECG with no fixed temporal relation to the QRS), it is 

better to form one single template of the ST for all the complexes which look 

alike. Moreover if the ST - T segment is zeroed, then we will not be able to 

see any atrial waves buried inside the T waves or in the ST segments. Reddy 

et. al. [67] apply ST median and QRS interpolation to leave a residue of 

carrying the information of the P waves as described below. VIe have carefully 

examined the recommended algorithm and discovered that it superbly helps 

for next stage to detect the P waves. Therefore our algorithm for making the 

residue is adapted from [67]. The proposed method is as follows. 

i. The correlation among all detected ST - T segments is evaluated. If 

the correlation exceeds a threshold, the corresponding segments are cat

egorised as the same template, otherwise a new template is built. The 

value for thresholding should be decided very carefully. The more the 

level of the threshold, the more, the number of templates, and vice versa. 
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F igure 8.17: Detected QRSTs on lead II (first part). 

•• j. . 
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Figure 8.1 8: Detected QRSTs on lead II (second part) . 
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Figure 8.19: Detected QRSTs on lead VI (first part) . 
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Figure 8.20: Detected QRSTs on lead V1 (second part). 
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ii. After categorising the ST segments into different groups, the median of 

each group is found. There are advantages of applying median instead of 

averaging [21]. 

iii. Each ST segment is subtracted from the median of its group. 

iv. All QRS complexes are substituted by interpolation of the values of their 

onsets and offsets. They are not replaced by zero values in order to avoid 

the abrupt discontinuities in the subtracted waveform. 

Applying the above algorithm will leave a residue mostly carrying informa

tion about the P waves. Figures 8.21- 8.24 show the residual signals on leads 

II and VI respectively. 

8.7 P wave detection 

Reddyet. al. [66] apply a nine-point central Differentiator upon the residue 

as below. 

y(n) = -x(n - 4)/256 - x(n - 3) * 3/32 - x(n - 2)/2 - x(n - 1) 
(8.7.1) 

+x(n + 4)/256 + x(n + 3) * 3/32 + x(n + 2)/2 + x(n + 1). 

Then they investigate the second difference computed as: 

z(n) = y(n) - y(n - 1). (8.7.2) 

A composite function f is then considered by rectifying and adding the first 

and second differences as: 

f(n) = ly(n)1 + Iz(n)l· (8.7.3) 

\Ve, instead, use morphological filtering and get a better result than theirs. 

Our approach is as follows: 
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F igure 8.21: Residue on lead II (first part) . 
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F igure 8.22: Residue on lead II (second pa rt). 
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F igure 8.23: Residue on lead VI (first part) . 
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Figure 8.24: Residue on lead VI (second part) . 
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1. Compu te the absolu te value of the open-close of the residual signa l 011 

leads II and VI. A flat structuring element of size 9 seems to be adequate. 

Take the average of the above tiignals for next titage. We denute it ati 

2. Make t he first derivative of the above signal. 

3. Investigate all the intervals between the offset of the current QRS a lld 

t he onset of the next one. 

4. Find the local maxima inside the intervals. 

iJ . Find the onset and offset a round each maximum with the similar tech

niques as mentioned before. 

6. Evaluale the validity of lhe points candidated as the onsets a nd offsets 

of different P waves by investigating their amplitudes and widths. 

Figures 8.25 and 8.26 show the detected P waves on opcl2 (n) marked 

by blue colour. Figures 8.27- 8.30 illustrate the detected P waves on the 

corresponding residues. Figures 8.31- 8.34 show the corresponding results on 

the original signal. 
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. ... .. ... .. . ~. . . . . . . . . . ... .. , . .. . 
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Figure 8.25: opcl2 (n) (first part ). 
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.. ; 
. .. •.. . ... . ~ . . .. .......... . 
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Figure 8.26: opd2 (n) (second part). 

Figures 8.35- 8.48 illust rate the whole procedure for a case which has buried 

P on top of T waves. 
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Figure 8.27: P waves on the residue of lead II (first pa rt) . 
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Figure 8.28: P waves on the residue of lead II (secolld part) . 
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F igure 8.29: P waves on the residue of lead VI (first part) . 
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F igure 8.30: P waves 0 11 the residue of lead VI (second part). 
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F igure 8.31: P waves on the original signal of lead II (first part). 
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F igure 8.32: P waves on the original signal of lead II (second part) . 
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F igure 8.33: P waves on the original signal of lead V I (first part). 
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F igure 8.34: P waves on the original signal of lead VI (second part). 
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Figure 8.35: Residue on lead II (1st.) in a complete heart block. 
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Figure 8.36: Residue on lead II (2nd.) in a complete heart block. 
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Figure 8.37: Residue on lead VI (1st) in a complete heart block. 
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F igure 8.38: Residue on lead Vl (2nd.) in a complete heart block. 
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Figure 8.39: opch(n) (first part) in a complete heart block. 
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Figure 8.40: opcl2(n) (second part) in a complete heart block. 
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8.8 Discussion and conclusion 

\Ve have tried our algorithm on the database obtained from Royal Liv

erpool University Hospital and Marquette Electronics Co. Ltd.. One of the 

disadvantages of our algorithm, despite its accuracy, is that due to a heavy 

computation, it is not suitable for ambulatory cases, or generally speaking, for 

real-time implementations, unless the algorithm is applied via the real-time 

morphological operators as explained in chapter 4 and suitable hardware for 

the rest of the operations. 

8.9 Future work 

The algorithm, applied for ECG analysis, has been evaluated by Liverpool 

\Vomen's Hospital experts and upon their demands, a similar robust technique 

has been required for fetal ECG monitoring. The algorithms for fetal ECG 

is supposed to differ from what applied for adult ECG processing. \Ve will 

develop new algorithms based on their demands. 
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Figure 8.41: P waves on the residue of lead II (1 st. ) in a complete heart block. 
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Figure 8.42: P waves on the residue of lead II (2nd .) in a complete heart block . 
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Figure 8.43: P waves on the residue of lead VI (1st. ) in a complete heart. 

block. 
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Figure 8.44: P waves on the residue oelead VI (2nd.) In a complet.e heart. 

block. 
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Figure 8.45: P waves on the original signal of lead II (1st.) in a complete heart 

block. 
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Figure 8.46: P waves on the original sIg°nal of lead IT (2nd.) IfI a complete 

heart block. 
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Figure 8.47: P waves on the original srg~al of lead VI (1st. ) In a complete 

heart block . 
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Figure 8.48: P waves on the original s ig~al of lead V1 (2nd .) in a compl ete 

heart block. 
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Chapter 9 

Summary and conclusion 

9.1 General Remarks 

This chapter concludes the dissertation. It summarizes the major results of 

the presented research work and indicates directions for further investigations 

based on this work. 

9.2 Summary of the thesis 

This thesis has traced the development of MM from its beginning to the 

latest propositions. The point of departure is the consideration of the problem 

of obtaining efficient and real-time morphological operators in 1-D and 2-D, and 

applying them in different areas where traditional methods fail to be applied 

successfully. 

In the preceding chapters we have presented the following work and ob-

tained promising results. 

Literature review was done in Chapter 1. The importance of considering 

MM as an advanced image processing tool was explained. Historical notes 

about MM were reviewed. A comparison between MM versus non-MF was 
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9.2 Summary of the thesis 163 

demonstrated. Also major contributions and overview of the thesis were indi-

cated. 

Chapter 2 introduced a theoretical background on mathematical morphol-

ogy. It also explained the existing confusion in literature about the definition 

of the operators. Definition of the terms and operators in binary and grey

scale modes were discussed. Properties of morphological operators were also 

highlighted. 

Chapter 3 presented new fast algorithms in I-D and 2-D for morphological 

erosion, dilation, opening, closing, open-closing and close-opening, relying on 

avoiding redundant comparisons. 

Chapter 4 improved and generalised real-time implementation of I-D and 

2-D GS morphological operators. 

Chapter 5 proposed a technique to combine MF with convolution, both in 

software and hardware, emphasising the power of our algorithm in using any 

kind of SE. 

Chapter 6 introduced new novel operators called weighted morphological 

filters and emphasized their superb performance compared with classical MFs 

for removing salt&pepper, speckle and Gaussian noises with dim'rent noise 

parameters. 

Chapter 7 showed how MF could be applied in fingerprint processing as a 

pre-processor. It also introduced a syntactic approach to fingerprint classifica

tion including the details of pattern classification and string analysis. 

Chapter 8 was about ECG waves detection using MF in different stages. 

After an introduction and definition of the terms in ECG, a pre-processor 

based on l\IF was introduced. It emphasised the efficiency of pre-processor in 

removing noise and baseline drift without loosing necessary details of the signal. 

The existing QRS detectors were reviewed and our contribution was included. 

The proposed method for ST - T detection was then followed. A residual 

signal was produced, resulting from interpolation of QRS and subtracting the 
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median(s) of ST - T segments from the corresponding parts. Later strp was 

about analysing the residue and detecting P waves, even when they wrre buried 

on T waves. 

Our major contribution was concentrated on the following topics: 

1. Fast algorithms for I-D and 2-D GS morphological operators 

( [69, 70]). 

ii. Real-time implementation of GS morphological filtering ( [72, 

75, 73]). 

iii. Convolved morphological filters ( [74, 77]). 

iv. Linearly-weighted morphological operators ( [76]). 

v. Morphological filters in fingerprint processing ( [71]). 

vi. ECG waves detection using morphological filtering. 

9.3 Limitations of the approach 

One of the major limitations using MM was the lack of analytical methods, 

due to the nonlinearity of the l\IF operators. The next drawback was about the 

evaluation of fingerprint recognition. vVe could not test our approach in real 

environment. As we reckoned, it could only be used for small companies whrre 

the size of database was limited. Besides time limitation, we did not have 

access to a good experimental database. In general, it has not been applied for 

a real-time fingerprint recognition. 

Another limitation of the research was about the adaptive structuring ele

ment design. \\'e tried genetic algorithms to design SE for ECG wave analysis 

and fingerprint processing. However the procedure was very slow, specially in 

2-D, and we did not get the satisfactory results. Therefore we only used SEs 

based on a pre-knowledge about the nature of the signals and images. 
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9.4 Recommendations for future work 

Designing the structuring element has been left as an open research topic 

in l\IM. It would be worth of having a research for SE design using another 

techniques instead of genetic algorithms. Our research about convolved and 

weighted morphological operators can be deeply extended to design a hybrid 

embedded operator. 

Fingerprint recognition using MF can be another topic for a research. The 

most important pre-requisite is obtaining a large data base to test the devclopc(l 

algorithms. Our research can be continued towards fingerprint recognition. 

"Ve stopped at classification step. Stretching MF in m-D, could be anothcr 

interesting research aspect, for example finding applications in colour image 

processing. Finally our research about ECG wave detection can be followed to 

get better results leading to commercial products. 
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Appendix A 

Morphological citations • In 

English 

Abrev. 

CSICC 

AIDIM 

AAECC 

BOOK-DOUGH 

BOOK-HARAL 

BOOK-O 

BOOK-SER-94 

CSSP 

CVGIP 

CVGIPIU 

CWI 

ECOLE 

ELEC-LET 

ELSSIG 

ELSSIGIC 

GMIP 

ICEE 

IECIPAIA 

IEECSP 

IEEPRC 

IEESLI 

IEETAI 

IEETBI 

IEETCI 

IEETC4 

Table A.l: Abbreviation of Journals, etc. 

Description 

Annual Conf. of Computer Society of Iran 

Advances in digital image proc., edit=P. Stucki, Plentum, New York 

Applicable Algebra in Engineering. Communication and Computing 

MM in Image Processing, E. R_ Dougherty, Marcel Dekker, New York 

MM. Theory and Hardware, ed.=R.M. Haralick, Oxford Univ. Pre.s, New York 

Shape in Picture: Mathematical Description of Shape in Grey-Level Images, 

ed.=Y-L. 0 et. aI., NATO ASI Series, Driebergen, The Netherlands, Sprinller, 

Berlin, vol.=126 

~IM and its applications to image proc., Kluwer Academic, The Netherlands 

Circuits, Systems, Sig. Proc. 

Comp. Vision, Graph. and Image Proc. 

Comp. Vision, Graph. and Image Proc.:lmage understanding 

Centrum voor Wiskunde en Informatica 

Ecole Nationale Superieure des Mines de Paris, Fontainebleau 

Electronics Letters 

Signal Processing 

Signal Processing: Image Communication 

Graphical Models and Image Processing 

Iranian Conf. on Electrical Eng. 

lEE Conf. on Imag. Proc. and its applic. 

IEEE Computer Society Press 

Proceedings of the IEEE 

IEEE Signal Proc. Letters 

IEEE Trans. Acoust. Speech Signal Process. 

IEEE Trans. Biomed. Eng. 

IEEE Trans. Circuits and Systems 

IEEE Trans. Comptlt. 
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• 

continued (rom pl't"vious page (Citatioo'Thfflry and tutodal) 

Abrev. 

lEETIl 

lEETP2 

lEETSI 

IEEWNSlP 

ISCSDSP 

ISMM 

JEI 

JMIV 

JVCIR 

PATR 

PATRL 

PhD 

PROCMM 

PROCIEVISP 

PROCIEEI8 

PROCIWMM 

PROCISSSE 

SSPR 

PROCWATRS 

PROCSSMISP 

RSE 

RTI 

RTMIP 

SIAMJ 

SIRL 

SPIE-OEP 

SPIEPRC-IAMIP 

SPlEPRC-CVCIP 

SPIE-NFlP 

Author 

L. Doyen et. aI. 

H. J.A. M. 

Heijrnans 

H. J. A. M. 

Heijmans 

H. J. A. M. 

Heijrnans 

H. J. A. M. 

Heijmans et. "t. 

H. J. A. M. 

Heijmans 

Description 

IEEE Trans. Image Proc." 

IEEE Trans. Pattern Anal., Machine lntell. 

IEEE Thans. Signal Proc." 

IEEE Workshop on Non-Linear Sig. and Image Proc. 

International Symp.on Communic. Systems and nsp 
International Symposium On Mathematical Morphology and its Applications 

to Image and Signal Processing IV 

Journal of Electronic Imaging 

Journal ot Mathematical Imaging and Vision 

Journal of Visual Comm. and Image Rep. 

Pattern Recognition 

Pattern Recognition Letters 

PhD Thesis 

Proc. of the Intern. Symp. on Mathematical Morphology 

Proc. lEE Vis., Image, Sig. Proc. 

Proc. IEEE 18th Convention of Elec. Eng. 

Proc. Intern. Workshop on Mathematical Morphology 

Proc. Internat. Syrnp. on Signal Systems, and Electronics 

Shape, Structure and Pattern Recognition, Edit.= O. Dod et. al., World 

Scientific 

Proc. Workshop on Applic.s and Theory of Random Sets, Minneapolis, edit=J. 

Goutsias et. aL, Springer, New York 

Proc. Summer School on Morpholo. Image and Signal Proc. 

Remote Sensing of the Environment 

Real-Time Imaging 

Real-time medical image proc" edit.=M. On08 et. al., Plentum, London 

SIAM J. Appl. Math. 

Signal and Image Research Laboratory 

SPIE Optical Engineering Press 

SPIE ProC. Image Algebra and Morphological Image Proc. 

Proc. SPIE-Conf. on Visual Comm. and Image Proc. 

SPIE, Nonlinear Filters for Image Proc. 

Table A.2: Citation:Theory and tutorial. 
Yr Title Description 

Mutational equations of 
BOOK-SER-94 94 

morphological dilation tubes 

87 MM: an algebraic approach CWI Newsletter, vol.=4 

Iteration of morphological 
89 CWI Quarterly, vol.=2 

transformations 

90 
Morphological filtering and SPJEPRC-CVCIP, 

iteration Lausanne,voI.=1360 

90 
The algebraic basis of MM: I. 

dilations and erosions 
CVGIP, vol.=50 

91 
Theoretical aspects of 

gray-level morphology 
IEETP2, vol.=13, no.=6 

PaKes 

13-20 

7-27 

19-36 

I1l6-ln 

245-295 

568-582 

C'ontllJuf'd on nt"xt pft1{e 
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continuN (rom previous page (Citatjon-Thl"Ory and tutorial) 

Author Yr Title Description PageR 

Thresholding!, umbrae, 

Y. Hsueh 94 residuals, and surpluses of BOOK-SER·94 21·28 

I-images 

Tutorial on Advances in 

P. Maragos 87 Morphological Image Optical Engineering, vol.=26 623-632 

Processing and Analysis 

J. Serra 86 Introduction to MM CYGIP, vol.=35, no.-3 2~:1-3()~ 

Anamorphoses and function 
M M in Image Processing: 

93 lattices (multivalued 
E.R. 

J. Serra 483-~23 

morphology 
Dougherty 

• Table A.3: Citation:Statistical analysis . 

Author Yr Title Descri pt ion PaReR 

M. Charif- Morphological representation of 
Chefchaouni et. 95 lEETH, vol.=4, no.=6 838-845 

order-statistics filters 
al. 

Statistical analysis of 

C.-S. Chen ot. al. 96 space-varying morphological IEETSI, vol.=44, no.=4 1010-1014 

openings with flat SEs 

92 
Some properties of 

CSSP, vol.=II, no.=1 H. A. David order.statistics filters 
109-114 

Statistical evaluation of 
M. A. Mohamed 95 sequential morphological IEETSI, vol.=43, no.=7 1703-1709 

et. aJ. operations 

93 
Statistical Analysis of 

A. Morales et. al. Morphological Openings 
IEETSI, voI.=41 • nO.=IO 3052-30r,6 

A study of statistical properties 

94 
of GS compound morphological 

SPIE, voI.=2180, no.=Y A. Morales et. al. operators using the basis 
124-135 

matrix 

Second·order statistics of 

S. Na et. al. 95 morphological dilation and IEETSI, vol.=43, no.=IO 2418-24~2 

erosion of a memoryless source 

Statistical analysis of median 
SPIEPRC-CVCIP, vol.=1818 J. Neejirvi et. al. 92 366-375 

type and morphological filters 

C. Regazzoni et. 94 
Statistical pattern spectrum for 

BOOK-SER-94 185-192 

al. binary pattern recognition 

Synthesis of adaptive weighted 

M. Ropert et. al. 94 order statistic filters with BOOK-SER-94 37-44 

gradient algorithms 

R. L. Stevenson Morphological filters: statistics 
87 IEETCI, vol.=CAS-34, no.=l1 1292-1305 

et. al. and further syntactic properties 

Some statistical properties of 
C. Wang et. al. 95 IEETSI, vol.=43, nO.=8 1955-1965 

MM 

• Table A.4: Citation:Representations and overviews . 

Author Yr Title Description Palles 

Minimal representation for 

G. J. F. Banon translation-invariant set 
91 SIAM J. Appl. Math., vol.=51 1782-1798 

et. al. mappings by mathematical 

morphology 

cont.inut'd on next page 
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continuM from prt>v;ous pagf!> (CitationoRtaprt'St"ntations and owrvit'ws) 

Author Yr Title Descri ptioD Pl\gel 

An algebraic approach for 
P. Bhat tacharya 

93 morphological operations on 2D PATR, vol.=26 17M-171l6 
et. al. and 3D images 

Fuzzy mathematical 

1. Bloch et. al. 95 morphologies~ a. comparative PATR, voL=28, no.=9 1341-1:1117 

study 

M. Charif- Morphological bounds on 
Chefchaouni et. 92 SPIEPRC-CVCIP, vol.=IB1B 414-425 

nonlinear filters 
al. 

M. Charif- On the invertibility of the 

Chefchaouni et. 94 morphological representation of lEETH, vol.=3 847-849 

al. binary images 

M. Charif- Morphological representation of 
Chefchaouni et. 94 JMIV. vol.=4 215-232 

nonlinear filters 
a\. 

M. Charif- Generalized morphological IEEWNSIP, vo\.=I, ed.=!. 
Chefchaouni et. 95 325-328 

center: convergence Pitas, Greece 
a\. 

M. Charif- Generalized morphological 
SIRL, Univ. of Illinois, Report, 

Chefchaouni et. 95 center: self-duality, 

idem potence, and convergence 
Chicago 

al. 

96 
Morphological residual 

IEETRII. vol.=5, no.=11 D. Coltuc et. al. 
representations of signals 

1569-1572 

Locality and adjacency stability 

J. Crespo et. al. 97 constraints for morphological JMIV, vol.=7, no.=1 85-102 

con nected operators 

Theoretical aspects of 

J. Crespo eot. aJ. 95 morphological filters by ELSSIG vol.=47, no.=2 201-225 

reconstruction 

New results on the theory of 

J. Crespo et. a\. 98 morphological filters by PATR, vol.=31, no.=4 419-429 

reconstruction 

Two dual representations of 

94 
morphology based on the 

BOOK-SER-94 L. Dorst et. al. parallel normal transport 
161-170 

property 

Orientation-based 
L. Dorst et. al. 95 SSPR 13-22 

representations (or MM 

E. R. Dougherty 
93 

Precision of Morphological 
SPIE, vol.=1902, no.=IV 61\-76 

et. al. estimation 

Minimal representation of 
PATRL, vol.=15 E.R. Dougherty 94 1029-1033 

r-openings via pattern bases 

Precision of 

morphological. representation 

E.R. Dougherty estimators for 
94 ELSSIG, vol.=40 129-154 

et. al. translation-invariant binary 

filters: increasing and 

nonincreasing 

Computational gray-scale 

mathematical morphology on 
E. R. Dougherty 

95 lattices (a comparator-based RTI, vol.=l, no.=1 69-8~ 

et. al. image algebra) Part 1: 

archite<"ture 

contJnuNi on 'It"xt past" 
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continued {rom previoU$ pa8~ (Ci'Rtion'Rf'prt'Sf"ntAtions and overviews) 

Author Yr Title Description Pap;es 

Computational gray-scale 

mathematical morphology on 
E. R. Dougherty 95 lattices (a comparator-based RTI. vol.=l. no.=1 283-205 
et. al. image algebra) Part 2: Image 

operators 

L. Doyen et. al. 95 
Mutational equations of the 

morphological dilation tubes 
JMIV. vol. =5, no.=3 219-230 

Morphological Transformations 
SPIEPRC-IAMIP. Belingham. 

J. Goutsias 1? of Image Sequences: A Lattice 20·22 
USA. vol.=llI 

Theory Approach 

92 
Morphological Analysis of 

JMIV. vol. J. Goutsias Discrete Random Shapes 
2 193-21~ 

Modeling Random Shapes: An 

J. Goutsias ?? Introduction to Random Set BOOK-HARAL 

Theory 

J. Goutsias et. 
91 

Morphological Representation 
IEETSI. vol.=39 1369-1379 

al. of Discrete and Binary Images 

R.M. Haralick 
87 Image analysis using MM IEETP2. Vol.:PAMI-9. No:4 532-550 

et. a1. 

R. M. Haralick 
87 Multiresolution morphology 

IEEPRC. First Int. Conf. 
516-520 

et. al. Camp. Vision 

R. M Haralick et. Model-based morphology: the 
95 GMIP. vol.=57. no.=1 1-12 

al. opening spectrum 

H. J. A. M. 
92 Graph morphology JVCIR. vol.=3 24-38 

Heijmans et. al. 

H. J. A. M. 92 
Convergence. continuity and 

JVCIR. vol.=3 84·102 
Heijmans et. al. iteration in MM 

H. J. A. M. 93 
Graph morphology in image 

BOOK-DOUGH 171-203 
Heijrnans et. al. analysis 

H. J. A. M. A note on the umbra transform 
93 PATRL. vol.=14 877-881 

Heijmans in gray-scale morphology 

Dominance and incidence 
H. J. A. M. 94 structures with applications to BOOK-SER-94 171-178 
Heijmans stochastic geometry and MM 

H.J.A.M. 95 MM: basic principles PROCSSMISP 
Heijrnans 

MM: a modern approach in 
H. J. A. M. 95 image processing based on SIAM Review. vol.=37. no.=1 1-36 
Heijmans algebra and geometry 

Similarity and Symmetry 
Report BS-R9610. CWI. 

H.J.A.M. 96 Measures for Convex Sets 
Heijmans et. al. Based on Minkowski Addition 

Amsterdam 

Mean-absolute-error 

representation and 

R. P. Loce et. al. 95 optimization of GM1P. vol.=57. no.=1 27-37 

computational-morphological 

filters 

A representation theory for 

P. MaragoS 89 morphological image and signal IEETP2. vol.=ll. no.=6 586-599 

processing 

89 
Pattern spectrum and 

IEETP2. vol.=l1. no.=7 P. Maragas multiscale shape representation 
701-716 

Threshold superposition in 
P. MaragoS et. 90 morphological image analysis IEETP2. vol.=12 4\)8-504 
al. systems 

conhnuf'd on nf'xt PARe 
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rontintWd {rom p~ious page (Citatjon'Re'p~ntatjons and oVE"rvif'ws) 

Author Yr Title Description Pa.Kf'l1i 

90 
Affine morphology and affine SPIEPRC-IAMIP, San Diego, 

P. Maragos signal models Vol.=1350 
31-43 

Morphological systems for 
P. Marago8 et. 

90 multidimensional signal IEEPRC, vol.=78, no.=4 690-7\0 
a!. processing 

95 
Minkowski operations a.nd Set-Valued Analysis, vol.=3, 

J Mattioli vector spaces no.=1 
33-~0 

On information contained in 
J. Mattioli et. al. 94 BOOK-O 177-19~ 

the erosion curve 

P. F. M. Nacken 93 Chamfer metrics in MM 
CW., Amsterdam, Report, 

no.=BS-R!l309 

Chamfer metrics in 
P.F.M. Nacken 94 JMIV, vol.=4 233-2~3 

math@omatical morphology 

Chamfer metrics. the medial 
P. F. M. Nacken 96 JMIV, vol.=6, no.=2/3 235-248 

axis and MM 

Medical Images: Formation, 

MM in hierarchical image 
Handling and Evaluation, Ed.= 

Y. L. 0 et. al. 91 A. E. Todd-Pokropek et. aI., 447-462 
representation 

NATO ASI Series F, 

Pub.=Springer, Heidelberg 

97 
Convexity Indicators Based On 

PATRL, vol.=18, no.=3 A.T. Popov Fuzzy Morphology 
259-267 

J. A. Rea et. al. 96 
Fuzzy logic and MM: 

implementation by stack filters 
IEETSI, vol.=44, no.=1 142-147 

J. M. Reinhardt 
96 

Efficient morphological shape 
IEETCI, vol.=5, no.=1 89-101 

et. aL representation 

J. 6. T. M. MM for structures without 
88 ELSSIG, vol.=l~ 271-277 

Roerdink et. al. translation-symmetry 

M M on homogeneous spaces -
CWI, Amsterdam, report, J. B. T. M. 89 Part I: The simply transitive 

Roerdink no.=AM-R8924 
case 

J. B. T. M. 90 
M M on homogeneous spaces - CWI, Amsterdam, report, 

Roerdink Part II: The transitive case no.=AM-R9006 

J. B. T. M. 90 MM on the sphere 
SPIEPRC-CVCIP, Lausanne, 

263-271 
Roerdink 

vol. 1360 

J. B. T. M. MM with non-commutatitive MM in Image Processing, 
93 20~-254 

Roerdink symmetry groups BOOK-DOUGH 

On the construction of 

J. B. T. M. translation and rotation 
?? BOOK-HARAL 

Roerdink invariant morphological 

operators 

J. B. T. M. Manifold shape: from 
94 BOOK-O 209-223 

Roerdink differential geometry to MM 

Fourier analysis, MM, and 
Working Document, 

C. Ronse 89 no.=WD54, Philips Research 
vision 

Laboratory, Brussels, Belgium 

Working Document, no.=WD, 

C. Ronse 90 Rf'gular open or closed sets Philips Research Laboratory, 

Brussels, Belgium 

90 
Why mathematical morphology 

ELSSIG, vol.=21 
C. Ronse nf'eds complete lattices 

129-164 

Morphological shape and region 
C. Ronse et:. al. 91 

description 
ELSSIG, vol.=25 91-105 

continuf'd on next pllJ(e 
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continued from pI?'Viou. page (Ci'ation'Rt"p~ntat;ons and OVf"rvit'ws) 

Author Yr Title Description Pap;p.8 

The algebraic basi. of 

C. Ronse et. al. 91 mathematical morphology - CVGlPIU, vol.=54 74·97 

Part II: Openings and closings 

Toggles of openings, and a new 

C. Ronse 92 family of idempotent operators AAECC, vol.=3 99·128 

on partially ordered spts 

Lattice-theoretical fixpoint 

C. Ronse 94 theorems in morphological JMIV, vol.=4 19·41 

image filtering 

A lattice·theoretical 

C. Ronse 96 morphological view on template JVCIR, vol.=7, no.=3 273·296 

extraction in imagps 

Proceedings of the 

Robust Morphological "International Conference on 
D. Schonfeld et. 

90 Representation of Binary Acoustics. Speech, and Signal 3·6 
1'1. Images Processing ft

, Albuquerque, New 

Mexico, pub.=IEEE 

On the Morphological 
D. Schonfeld et. 

91 Representation of BinAry JVCIR, vol.=2 17·30 
1'1. Images in a Noisy Environment 

fo'rom Pixels to Features, ed.==J. 

J. Serra 89 Toggle mappings C. Simon. Pub.=North 61·72 

Holland, Amsterdam 

Elements of functional analysis Report, no.=N-3\l/90/MM, 
J. Serra .t. al. 89 

in MM ECOLE 

92 
An Overview of morphological 

CSSP, Vol.=ll, no.=l J. Serra et. al. filtering 
47-108 

94 
Morphological filtering: .. n 

ELSSIG, vol.=38 J. Serra overview 
3·11 

A mathematical morphology 

F. Y. Shih et. al. 92 approach to Euclidean distance IEETII, voL=1 197·204 

transformation 

Further results on MAP 
N. D. optimality and strong 
Sidiropou)os et. 96 

consistency of certain classes of 
lEETH, vol.=5, no.=5 762-764 

al. morphological filters 

N. D. MAP signal estimation in noisy 

Sidiropoulos et. 96 sequences morphologically IEETIl, vol.=5, no.=5 1088-1003 

al. 
smooth images 

Analytical morphology: 
Fundamenta Informaticae. 

A. Skowron et. B.96 mathematical morphology of 
vol.=27 

255-271 

al. decision ta.bles 

90 
The analysis of morphological 

CVGIP, vol.=50 
J. Song et. a\. fllters with multiple SE. 

308-328 

Convex set symm'ttt'y 
A. V. Tuzikov e\. 97 measurement via Minkowski JMIV, vol.=7, no.=1 53·68 

a!. addition 

L. Vincf'nt 93 Morphological algorithms BOOK·DOUGH 25~·2~8 

Some Sequential Algorithms for 

a Generalized Dist~nce 
X. Wang el. al. 92 IEETP2, vol.=14, no.=11 1114-1121 

Transformation Based on 

l\.linkowski Operations 

S. S. Wilson 92 Theory of ma.trix morphology IEETP2. vol.-14 636-6b2 

93 
Training structuring elements 

S. S. Wilson in morphological networks 
BOOK·DOUGH 1·41 

cont.inuf'd on Pt-xt page 
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continuN (rom prrviOU5 pag~ (Citation"R,.prt"Sentations and ovt"Tviews) 

Author Yr Title Descri ption Pap;cs 

Shape description and 

95 
recognition using the high 

PATR, vol.=28, no.=9 Z. Xiaoqi order morphological pattern 
1333-1310 

spectrum 

• Table A.5: Citation:General filtering . 

Author Yr Title Description Pa~e8 

J. A. Bangham 
96 

Scale-Space from Nonlinear 
IEETP2, vol.=18, no.=5 520·528 

et. al. Filters 

Evolution equations for 
R.W. Brockett 94 continuous-scale morphological IEETSPI, vol.=42, no.=12 3377-33"6 
et. al. filtering 

M. H. Chen et. A Multiscale Approach Based 
IEETP2, vol.=ll, no.=7 89 694-700 

al. on Morphological Filtering 

94 
Adaptive parameterized 

BOOK-SER-94 Y. Chen et. al. 29-36 
openings 

Representation of finite-range 
E. R. Dougherty 

93 increasing filters in the context SPIE, vol.=1902, nO.=IV 53-63 
et. al. of computational morphology 

Error bounds for 
E. R. Dougherty 

87 morphologically derived SIAMJ, vol.47 425·440 
et. al. measurements 

Morphological 

pseudoconvolutions: 

E. D. Dougherty 92 one-parameter families of essp, vol.=ll, no.=1 195-228 

derived filters with increased 

invariant classes 

An image detection technique 

based on morphological edge 

M. Fathy et. al. 9::> detection and background PATRL, vol.=16, no.=12 1321-1330 

differencing for real-time traffic 

analysis 

MM operations oC 

P. K. Ghosh 96 boundary-represented JMIV, vol.=6, no.=2/3 199-222 

geometric objects 

Digitizations preserving 

A. Gross et. al. B.9::> topological and differential eVIU, vo1.=62, nO.=3 370·381 

geometric properties 

A greedy and branch and 

bound searching algorithm for 

e .• c. Han et. al. 94 finding the optinlal IEESLI, vol.=1 41-44 

morphological erosion~ filter on 

binary images 

N.R. Harvey et. 94 
Using genetic algorithms in the 

BOOK-SER-94 53·60 
al. 

design of morphological filters 

N.R. Harvey et. The use of genetic algorithms 
96 ELSSIG, vol.=8, no.=1 55·71 

al. 
in morphological filter design 

Geometrical Problems of Image 

H. J. A. M. 91 Morphological discretization Proc., Ed.=U. Eckhardt et. aI., 99-106 
Heijmans pub.= Akademie Verlag, Berlin 

H. J. A. M. 92 
Discretization of morphological 

JVelR, vol.=3 182-193 
Heijmans opf'rators 
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Author Yr Title Description Pa.P;AS 

Workshop on Design 

Apects of the theory of Methodologies for 
H.J.A.M. 93 morphological operators and Microelectronics and Signal 377·387 
Heijmans filters Processing, Oliwice·Cracow, 

Poland 

Construction of self-dual 
H. J. A. M. 94 morphological operators and 

IEECSP, Proceedings ICIP.94, 
402·406 

Heijmans modifications of the median 
Los Alamitos, vol.=11 

On the construction of 

H. J. A. M. 94 
morphological operators which 

ELSSIG, vol.=38 13·19 
Heijmans are self·dual and 

activity-extensive 

H. J. A. M. 95 
Composing morphological CWI, Research report, 

Heijmans filters Amsterdam, no.=RS-R9504 

H. J. A. M. 
95 Morphological filters 

PROCSSMISP, Zakopane, 

Heijmans Poland 

H. J. A. M. 96 
Self.dual morphological 

JMIV, vol.=6, no.=1 U·36 
Heijman! operators and filters 

H.J.A.M. 97 
Composing Morphological 

IEETIl, vol.=6, no.=5 713·723 
Heijrnans Filters 

H.J.A.M. 97 
Connected Morphological Report PNA·R9708, OWl, 

Heijmans Operators for Binary Images Amsterdam 

H. J. A. M. 97 
Easy recipes for morphological SPIE·NFIP, Ed.=E. R. 

Heijmans filters Dougherty et. &1. 

Properties of multi scale 

P. T. Jackway 94 morphological smoothing by PATRL, vol.=15 135·140 

poweroids 

X. C. Jin et. al. 95 
A domain operator for binary 

morphological processing 
IEETIl, vol.=4, no.=7 1042·10·16 

R. Jones et. al. 94 
Morphological filtering as 

IEETP2, vol.=16 
template matching 

438·443 

K.D. Lee et. al. 94 Threshold Boolean filters IF:ETSI, vol.=42 ~O22·20:\6 

94 
Minimal generator basis of a 

J. Mattioli 
BOOK·SER·94 61·68 

finite structure opening 

Morphological filters· Part I: 

P. Maragos et. 
87 

Their set·theoretic analysis and 
IE ETA I , vol.=ASSP·35, no.=8 1153·1169 

al. relations to linear 

shift·invariant filters 

Morphological filters· Part II: 
P. Maragas et. 87 Their relations to median, IEETA1, vol.=ASSP·35, no.=8 1170·1184 

al. order·statistic, and stack filters 

95 
Parallel genetic algorithms for 

IECIPAIA, nO.=410 762·767 
P. Kraft et. al. optimizing morphological filtera 

Openings Can Introduce Zero 

P. F. M. Nacken 94 Crossings in Boundary IEETP2, vol.=16, no.=6 656·658 

Curvature 

J. Neejarvi et. al. 90 
Sinusoidal and pulse responses 

IEEPRC vol.=78 
of morphological filters 

2136·2139 

97 
An efficient class of alternating 

GMIP, vol.=59, no.=2 S .. C. Pei et. al. sequential filters in morphology 
109·116 

95 
Morphological operations on 

IECIPAIA, nO.=410 A. T. Popov fuzzy sets 
837·840 

11 
Openings: main properties, and 

C. Ronse how to construct them 
BOOK·HARAL 
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continued {rom previous page (Citation"Ct>neralliltering) 

Author Yr Title Description Pa~f!1I 

Set-theoretical algebraic 

C. Ronse 98 approaches to connectivity in JMIV, vol.=8 41-58 

continuous or digital spaces 

linear combinations of 

M. A. Schulze et. 
93 

morphological operators: the 
IEEPRC vol.= V-67:V-60 

al. midrange, pseudomedian. and 

LOCO filters 

The power of morphological 
M. H. Sedaaghi 

98 filters alone and when ISMM'98, Amsterdam, 6-8 Apr. 
et. al. combined with linear filtering 

Optimal morphological filters 
N. D. for discrete random sets under 
Sidiropou)Os et. 92 SPIEPRC-CVCIP, vol.=181B 402-413 

a union or intersection noise 
al. model 

K. Sivakumar et. On the discretization of 
97 JVCIR, vol.=8, no.=1 39-49 

al. morphological operators 

92 
A study of the generalized 

CSSP, vol.=11, no.=1 J. Song et. al. 
morphological filter 

229-262 

S. R. Sternberg 86 Grayscale morphology CVGIP, vol.=35, no.=3 3:l3-3M 

91 
The geometry of Basis Sets for 

IEETP2, vol.=13, no.=12 I. D. Svalbe Morphologic Closing 
1214-1224 

Morphological transformations 

L. Vincent 91 of binary images with arbitrary ELSSIG, vol.=22 3-23 

SEs 

Morphological area openings 

L. Vincent 94 and closings for grey-scale BOOK-O 197-208 

images 

A spatially variant, locally 

R. Vogt 94 adaptive, background BOOK-SER-94 46-62 

normalization operator 

Compared performances of 

D. Wang et. al. 92 morphological, median type SPIEPRC-CVCIP, vol.=1818 384-3111 

and running mean filters 

93 
Root properties of 

ELSSIG, vol.=34 Q. Wang et. al. 131-148 
morphological filters 

Q. Wang et. al. 93 
Adaptation of grayscale 

SPIE, vol.=1902, no.=IV 2-7 
morphological filters 

96 
Morphological operations on 

PROCIEVISP, vol.=143, no.=3 171-176 G. R. Wilson crack coded binary images 

P. Deng-Wong et. 
92 

Adaptive morphological filters 
SPIEPRC-CVCIP, vol.=1818 368-3/)5 

al. for color image enhancement 

94 
Image enhancement using MM 

SPIE-NFIP, vol.=21BO, no.=V 198-208 Y. Yao et. al. with adaptive SEa 

93 
Adaptive thresholding through 

SPIE, vol.=1902, nO.=IV 148-158 D. Zhao morphological filtering 

• Table A.6: Citation:Hit-miss filtering, 

Author Yr Title Description Pag.s 

D. Bloomberg at. 
90 Generalized hit-miss operations SPIEIAMIP, vol.=1350 116-128 

al. 
Optimal morphological 

E. R. Dougherty 93 hit-or-miss filtering of SPIE, vol.=1902, nO.=IV 30-40 

gray-sC'ale images 
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t' eel fJ om pl?vious pltgt!' (Citation' Hit miss filtf'ring) con JOU r 

Author Yr Title Description Pagel 

Optimal mean-absolute-error 

94 
filtering of gray-scale signals by 

JMIV, vol.=4 E.R. Dougherty 2M-271 
the morphological hit-or-miss 

transform 

M. Khosravi and 
96 

Template matching based on 
IEETIl, vol.=5, no.=6 1060-1066 

R. W. Schafer OS hit-or-miss transform 

• Table A.7: Citation:Soft and recursive filtering . 

Author Yr Title Description PftKeS 

95 
Recursive erosion, dilation, 

IEETIl, vol.=4, no.=3 S. Chen et. al. 335-34~ 
opening. and closing transforms 

P. Kuosmanen et. 
93 

Analysis and extensions of soft 
SPIE, vol.=1902, no.=IV 41-52 

al. morphological filters 

P. Kuosmanen et. 
95 Soft morphological filtering JMIV, vol.=5, no.=3 231-262 

al. 
Shape preservation criteria and 

P. Kuosmanen et. 
95 optimal soft morphological IEETIl, vol.=5, no.=4 319-3311 

al. filtering 

C. Lay 87 Recursive algorithms in M M Acta StflreologicR, vol. =6 6\11-6"6 

Threshold decomposition of 

D. C. Pu et. al. 95 gray-scale soft morphology into GMIP, vol.=57, no.=6 522-526 

binary soft morphology 

Threshold decomposition 

95 
algorithm for gray-scale 80ft 

IECIPAIA, nO.=410 757-761 D. C. Pu et. al. 
morphological operations part 

II:erosion 

Pipeline architecture (or 

F.Y. Shih et. al. 95 recursive morphological IEETIl, vol.=4, no.=1 11-18 

operations 

F. Y. Shih et. al. 95 
Recursive soft morphological 

filters 
IEETIl, vol.=4, no.=7 1027-1032 

Analysis of the properties of 

F. Y. Shih et. al. 95 soft morphological filtering IEETSI, vol.=43, no.=2 539-544 

using threshold decomposition 

Recursive implementation of 

96 
erosions and dilations along 

IEETP2, vol.=18, no.=11 562-567 P. Soille et. al. 
discrete lines at arbitrary 

angles 

Shape decomposition and 

D. Wang et. al. 95 representation using a recursive PATR, vol.=28, no.=11 17R3-1792 

morphological operation 

Binary Image representation 

R. J. D. Wang et. 
96 

and coding by a 
ELSSIGlC, vol.=8 241-266 

al. double-recursive morphological 

algorithm 

M. A. Zmuda et. 
96 

Efficient algori th ms for the soft 
IEETP2, vol.=18, no.=11 1142-1147 

al. morphological operators 

• Table A.8: Citation:Annular filtering . 
Author Yr Title Description Pa~ •• 

H. J. A. M. 
96 

Annular filters for binary CWI, Research report, 

Heijrnans et. al images Amstp.rdam, no.=BS-R9604 
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continuf'd (rom previous pag~ (Citation-Annular filtering) 

Author Yr Title Description Pa"r;fl8 

A lattice-theoretical framework 

C. Ronse et. al. 96 for annular filters in 
LSIIT, Strasbourg, report, 

morphological imaKe processing 
no.=ERII-RR96/19 

• Table A.9: Citation:Slope transforms. 
Author Yr Title Description Pages 

al. 94 
Morphological signal processing 

ELSSIG, vol.=38 79·98 L. Dorst et. 
and slope transform 

H. J. A. M. Lattice Calculus of the Report BS-R9531, CWI, 
95 

Heijrnans et. al. Morphological Slope Transform Amst.erdam 

Morphology on Convolution 

H. J. A. M. 
96 

Lattices with Application to Report BS-R9603, CWI, 

Heijrnans et. al. the Slope Transform and Amsterdam 

Random Set Theory 

H. J. A. M. Lattice Calculus of the 
97 ELSSIG, vol.=59, no.=1 17-42 

Heij mans et. al. Morphological Slope Transform 

Morphology on convolution 

H. J. A. M. 
98 

lattices with applications to the 
JMIV. vol.=8, no.=3 199-214 

Heijrnans et. al. slope transform and random set 

theory 

Morphological systems: slope 

transforms and max-min 
P. Maragos 94 

difference and differential 
BOOK-SER-94 149-160 

equations, and sampling 

Morphological systems: slope 

transforms and max-min 
P. Maragos 94 ELSSIG, vol.=38 57-77 

difference and differential 

equations 

Slope transforms: theory and 

P. Maragos 95 application to nonlinear signal IEETS1. vol.=43, no.=4 864-877 

processing 

96 
Differential morphology and 

lEETH, vol.=5, no.=6 922-937 P. Maragos 
image processing 

• Table A.IO: Citation:Sequential filtering. 
Author Yr Title Description Pa~e. 

J. Goutsias et. 
95 

Morphological Operators for 
CVIU, vol. 62 326-346 

al. Image Sequences 

IEEPRC: Workshop on 

H. J. A. M. 
95 

A new class of alternating Nonlinear Signal and Image 
30-33 

Heijrnans sequential filters Proc., ed.= J. Pitas, Greece, 

vo!.=1 

A. Morales et. a1. B.95 
Morphological pyramids with 

lEETH, vo!.=4, no.=7 96~-977 
alternating sequential filters 

• Table A.II: Citation:Scale-space. 
Author Yr Title Description Pa~e. 

R. van den 
Towards a morphological 

Boomgaard et. 94 
scale-space theory 

BOOK-O 631-640 

al. 
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cont;nu~d (rom previous page (CitationoScalf."-space) 

Author Yr Title Description Pages 

The morphological structure of 

R. van den 
94 

images: the differential 
IEETP2, vol.=16 1101-1113 

Boomgaard equations of morphological 

scale space 

On Dimensionality in 

Paul T. Jackway 95 
Multiscale Morphological 

Scale-Space with Elliptic 
JVCIR, vol.=6, no.=2 1119-195 

Poweroid Structuring Functions 

Scale-Space Properties of the 
Paul T. Jackway 

96 Multiscale Morphological IEETP2. vol.=18. no.=1 311-51 
et. al. 

Dilation-Erosion 

K. R. Park et. al. 96 Scale-space using MM mETP2, vol.=18, no.-11 1121-112(1 

95 
Area and length preserving 

IEETP2, vol.=17, no.=1 G. Sapiro et. al. 
geometric invariant scale-spaces 

67-72 

• Table A.12: Citation:Sampling. 

Author Yr Title Description Pa~e8 

Critical morphological 
D. Flon?ncio et. 

94 sampling and applications to BOOK-SER-94 109-116 
al. image coding 

R. M. Haralick 
89 

The digital morphological 
IEETAI, vol.=37 2067-2090 

et. al. sampling theorem 

H. J. A. M. 
91 Morphological sampling CVGlPIU, vol.=54 3M-400 

Heijrnans et. al. 

Image sampling structure 

S.-C. Pei et. al. 94 conversion by morphological ELSSIGIC. vol.=6 13-24 

filters 

94 
A sampling approach based on 

BOOK-SER-94 J. Serra 
equicontinuity 

117-124 

Binary random fields, random 
K. Sivakumar et. 

96 closed sets, and morphological IEETIi, vol.=5, no.=6 899-912 
al. 

sampling 

• Table A.13: Citation:Geodesic methods. 
Author Yr Title Descri pt ion Pa~r8 

Geodesic saliency of watershed 

L. Najman et. al. 96 contours and hierarchical IEETP2, vol.=18, no,=12 1163-1173 

segmentation 

Generalized geodesic distances 

P. Soille 94 applied to interpolation and BOOK-SER-94 193-200 

shape description 

• Table A.14: Citation:Coding and compression. 
Author Yr Title Description Pages 

Morphological shape 

P. Brigger et ... I. 95 representation for very low ELSSIG, vol.=7, no.=4-6 297-311 

bit-rate video coding 

Three-dimensional 

R. J. Chen et. al. 95 
morphological pyramid and its 

application to color image 
ELSSIG, vol.=44, no.=2 163-IHO 

sP-quence coding 
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continuf'd (rom previous page (Citation:Coding and l"ompN"s.,,;on) 

Author Yr Title Description PagolJ 

P.J. Czerepinski 
96 

Morphological video coder with 
ELEC-LET, vol.=32, no.=7 645-647 

et. a1. conditional smoothing 

Image Coding Via IEEPRC. Conf. on Computer 
J. Goutsias et. 

89 Morphological Transformations: Vision and Pat. 4-8 Rec. ,San 
a!. 

A General Theory Diego, California 

Application of morphological 

C. Gu et. al. 94 filters for contour image BOOK-SER-94 125-132 

sequence coding 

Binary image representation 

R. Jeannot et. a!. 96 
and coding by a 

ELSSIGIC, vol.=8, no.=3 241-266 
double-recursive morphological 

algorithm 

A study of pyramidal 

X. Kong et. a!. 94 techniques for image JVCIR, vol.=5 190-203 

representation and compression 

91 
Multiscale morphological region 

SPIEPRC-CVCIP, vol.=1606 B. Macq et. al. 165-173 
coding 

Color Image Coding Using 
L. A. Overturf 

95 Morphological Pyramid IEETIl, vol.=4, 00.=2 177-185 
et. a!. 

Decomposition 

94 
Morphological multiscale 

ELSSIG. vol.=38 P. Salembier 
segmentation for image coding 

359-31\6 

96 
morphological operators Cor 

lEETH, vol.=5, 00.=6 P. Salembier 881-8118 
image and video compression 

Morphological image coding 

94 
based on a geometric sampling 

JVCIR, vol.=5 29-40 G. Sapiro et. al. 
theorem and a modified 

skeleton representation 

• Table A.15: Citation:Segmentation . 
Author Yr Title Description Pap;I's 

a!. 94 
The /lat zone approach and 

BOOK-SER-94 85-92 J. Crespo et. 
color images 

morphological segmentation 

W. Li et. a!. 94 applied to displaced frame ELSSIG, vo!.=38 45-~6 

difference coding 

Proc. of the 12th IAPR 
M. Lybanon et. 

94 
Segmentation oC diverse image 

International Conf. on Pat. 347-351 
al. types using opening and closing 

Rec., Jerusalem, Vol.=1 

B. Marcotegui et. 
94 

Morphological segmentation of 
BOOK-SER-94 101-108 

a!. image sequences 

94 
Minimum spanning forests for 

BOOK-SER-94 77-84 F. Meyer 
morphological segmentation 

Joint region and motion 

M. Pardlls et. al. 94 estimation with morphological BOOK-SER-94 93-100 

tools 

3-D morphological 

M. Pard as et. a!. 94 segmentation and motion ELSSIG, vo!.=38 31-43 

estimation for image sequences 

P. Salembier et. 
92 

Morphological multi scale image 
620-631 SPIEPRC-CVCIP, vol.=1818 

a!. segmentation 

94 
Morphological multiscale 

P. Salembier 
segmentation for image coding 

ELSSIG, vol.=38 359-386 

C'olltanu,.d on n,.xt pH.J(e 

MORPHOLOGICAL FILTERING M.H. Sedaaghi 



~Morphological citations in English 180 

continued (rom previous page (Citation-Sf"gmt"ntation) 

Author Yr Title Description PaKea 

Flat zones filtering, connected 
P. Salembier et. 

95 operators, and filters by IEETIl, vol.=4, no.=8 1153·1160 
al. reconstruction 

p.Soilie 96 
Morphological Partitioning of 

JEI, vol.=5, no.=3 252·265 
Multispectral Images 

al. 89 
The morphological approach to 

Report, ECOLE L. Vincent et. 
segmentation: an introduction 

Digital Image Processing 

aI. 94 
Morphological segmentation for Methods, edit.=E. R. 

43·102 L. Vincent et. 
textures and particles Dougherty, pub.=Marcel 

Dekker, New York 

Texture classification and 

E. Wang et. al. 93 segmentation based on iterative JVCIR, vol.=4 197·214 

morphological decomposition 

• Table A.16: Citation:Granulometries and shape description . 

Author Yr Title Description PaRes 

S. Banerjee et. C·factor: a morphological 
94 JMIV. vol.=4 43·55 

al. shape descriptor 

J. A. Bangham 
94 

The multiscale morphology 
BOOK·SER·94 179·184 

et. "I. decomposition theorem 

E. J. Breen et. 
96 

Attribute openings, thinning!, 
CVOIPIU, vol.=64, no.=3 377·3R9 

al. and granulometries 

Texture classiE. by OS 
Y. Chen et. al. 92 SPIEPRC·CVCIP, vol.=1818 931·{)12 

morphological granulometries 

Optimal and adaptive 

Y. Chen et. al. 97 reconstructive granulometric ELSSIO, vol.=61. no.=1 M·81 

bandpass filters 

90 
Characterization of gray-scale 

SPIE, vol. 1350 129·137 E. R. Dougherty 
morphological granulometries 

Morphological texture based 

E. R. Dougherty 
92 

maximum-likelihood pixel 
PATR, vol.=25, nO.=10 1181·1198 

et. al. classification based on local 

granulometric moments 

Euclidean gray-scale 

E. R. Dougherty 92 granulometries: representation jmiv, vol.=1 7·21 

and umbra inducement 

E. R. Dougherty 
92 

Detection of osteoporosis by SPIEPRC·CVCIP, San Jose, 

et. al. morphological granulometries vol.=1660 

Morphological 

E.R. Dougherty 
95 

pattern-spectrum classification 
PATR, vol.=28, no.=l 81·98 

et. a!. of noisy shapes exterior 

granulometries 

Representation of linear 

E. R. Dougherty 
95 

granulometric moments for 
JVCIR, vol.=6, no.=1 69·79 

et. a!. deterministic and random 

binary Euclidean images 

Morphological T-openings and 

E. R. Dougherty ?? granulometries: binary to BOOK·HARAL 

Euclidean gray-scale 

Morphological texture-based 

E. R. Dougherty 
?? 

maximum-likelihood pixel 

et. al. classification based on local 
PATR 

granulometric moments 
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contin ffl from previous pag~ (Citation'Granu/ometrif's and shape dt'scri tion) 
" p 

Author Yr Title Description PSfilies 

Texture classification using 

C. Gratin et. al. 94 neural networks and local BOOK-SER-94 309-316 

granlilometries 

H. J. A. M. 
94 

MM as a tool for shape Shape in Picture, Ed.="Y·L. 0 
147-176 

Heijmans description et. aI., pub.= prinp;er, Berlin 

96 
Periodic lines: cascades, and 

PATRL, vol.=17 R. Jones et. al. 1057-1063 
application to granuJometries 

E. J. Kraus et. 
93 

Gray.scale granulometries 
ELSSIG, vol.=34 1-17 

al. compatible with spatial scalings 

A mathematical morphological 

C. K. Lee et. al. 96 approach for segmenting PATR, vol.=29, no.=8 1347-1358 

heavily noise-corrupted images 

92 
Inverse problems for 

J. Mattioli et. al. 
granulometries by erosion 

JMIV, vol.=2 217-232 

Maximum-likelihood 
J. T. Newell et. 

92 morphological granulometric SPIEPRC-IAM[P, vol.=1657 386-395 
al. classifiers 

Off·line signature verification 
R. Sabourin et. 

97 by local granulometric size IEETP2, vol.=19, nO.=9 976-9R8 
al. distributions 

Asymptotic granulometric 

98 
mixing theorem: morphological 

PATR, vol.=31, no.=1 F. Sand et. al. 
estimation of sizing parameters 

53-61 

and mixture proportions 

On Estimating Granulometric 
K. Sivakumar et. 

96 Discrete Size Distributions of PROCWATRS 
al. Random Sets 

• Table A.17: Citation:vVatersheds . 

Author Yr Title Description PaJl;("s 

Segmentation of range images 

M. Baccar et. al. 96 via data fusion and PATR, vol.=29, no.=IO 1671-1687 

morphological watersheds 

The morphological approach to 

S. Beucher et. 801. 93 segmentation: the watershed BOOK-DOUGH 433-4111 

transformation 

Watershed, hierarchial 

S. Beucher 94 segmentation and waterfall BOOK-SER-94 69-76 

algorithm 

Gradient watersheds in 
P. T. Jackway 96 

morphological scale.sp8ce 
[EETIl, vol.=5, no.=6 913-921 

94 
Topographic distance and 

ELSS[G, vol.=38 113-[25 F. Meyer 
watershed lines 

94 
Implementation of a distributed 

A. Moga et. al. BOOK-SER-94 281-288 
watershed algorithm 

Parallel image component 

A. Moga et. al. 91 labeling with watershed [EETP2, vol.=19, no.=1> 441-450 

transformations 

94 
Watershed of a continuous 

L. Najman et. al. 
function 

ELSSIG, vol.=38 99-112 

Automatic watershed 
L. Shafarenko et. 

97 segmentation of randomly IEETIl, vol.=6, no.=11 1530-1544 
al. textured color images 

contjnu~ on nf"xt past' 
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continued (rom previoutJ page (Citation'Water!i'heds) .. 
Author Yr Title Description Pall;ea 

Watersheds in Digital Spaces: 

L. Vincent et. al. 91 An Efficient Algorithm Based IEETP2, vol.=13, no.=6 583-598 

on Immersion Simulations 

• Table A.I8: Citation:Skeletonisation . 

Author Yr Title Description PaK6s 

D. Attali et. al. 97 
Computing and simplifying 2D 

CYGIPIU, vol.=67, no.=3 161-273 
and 3D continuous skeletons 

94 
Digital skeletons in euclidean 

ELSSIG, vol.=38 S. Beucher 
and geodesic spaces 

127-141 

B. K. Jang et. al. 90 
Analysis of Thinning 

Algorithms Using MM 
IEETP2, vol.=12, no.=6 &41-551 

92 
Fast Homotopy-Preserving 

IEETP2, vo\'=14, no.=6 L. Ji et. al. 
Skeletons Using MM 

653-664 

Skeletonization via distance 
R. Kimmel et. al. 95 CVIU, vol.=62, nO.=3 382-391 

maps and level sets 

Morphological 

R. Kresch et. al. 92 Multi-Structuring-Element PROCISSSE, Paris 166-169 

Skeleton and Its Applic-ations 

Two-Sided Skeleton - A 

93 
Representation Composed of 

PROCIWMM, Barcelona R. Kresch et. al. 
Both Positive and Negative 

145-150 

Morphological Elements 

94 
Morphological reduction of 

ELSSIG, vol.=38 R. Kresch et. aI. 
skeleton redundancy 

143-1~1 

R. Kresch et. al. 94 
Morphological reduction of 

PROCIWMM, Barcelona 
skeleton redundancy 

145-150 

Multi-Parameter Skeleton 
R. Kresch et. al. 94 BOOK-SER-94 141-148 

Decomposition 

Multi·Parameter Skeleton 
R. Kresch et. al. 94 

Decomposition 
PROCMM, ISMM'94 141-1411 

Skeleton Redundancy 

R. Kresch et. al. 94 Reduction Based on a EUSIPCO, Edinburgh 

Generalization of Convexity 

An Efficient Coding Scheme for 

R. Kresch et. al. 95 
Binary Images Based on the 

Morphological Skeleton 
PROCIEEI8, Israel 

Representation 

New Morphological Skeleton 

R. Kresch et. al. 95 Properties Leading to Its IEEWNSIP, Greece 

Efficient Coding 

Quadtree and Bit-Plane 

R. Kresch et. a1. 95 
Decomposition as Particular 

Cases of the Generalized 
IEEWNSIP, Greece 

Morphological Skeleton 

J. Madrid et. al. 93 
Topological considerations on 

gray level skeletonization 
SPIEPRC-CYCIP, vol.=1818 392-401 

Morphological skeleton 

P. Maragos 86 representation and coding of IEETAI, vol.=34 1228-1244 

binary images 

Threshold parallelism in 

P. Maragos et. 
88 

morphological feature 
SPIEPRC-CVCIP 106-115 

al. extraction, skeletonization and 

pattern spectrum 
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continuM (rom pn-vious page (Citation'Ske-letonisation) 

Author Yr Title Description PI\(l;fHI 

MM and Image Analysis. II: 

88 
Examples oC Topological Theoretical Advances. Ed.=J. 

ch.=ll G. Matheron 
Properties of Skeletons Serra, pub.=Academic Press, 

London 

MM and Image Analysis. II: 

G. Matheron 88 Filters and lattices 
Theoretical Advances, Ed.=J. 

ch.=6 
Serra, pub.=Academic Press, 

London 

Boundary.constrained 

94 
morphological skeleton 

IEETP2, vol.=16, no.=2 T.-W. Pai et. a!. 
minimization and skeleton 

201-208 

reconstruction 

Comparison between the 

J. M. Reinhardt 
96 

morphological skeleton and 
IEETP2, vol.=18, no.=9 951-957 

et. a!. morphological shape 

decomposition 

J. Serra 91 Skeleton decompositions Preprint 

M. Schmitt 94 One pixel thick skeletons BOOK-SER-94 257-2n4 

An analysis of hexagonal 

R. C. Staunton 96 thinning algorithms and PATR, vo\'=29, no.=7 1131-1146 

skeletal shape representation 

Analysis and implementation of 

Z. Zhou et. a\. 92 morphological skeleton CSSP, vo\.=11, no.=1 253-2HO 

transforms 

• Table A.19: Citation:Random models and tesselations . 

Author Yr Title Description PaRes 

Incidence and lattice calculus 
A. J. Baddely et. 

95 with applications to stochastic AAECC, vol.=6, no.3 129-146 
al. geometry and image analysis 

94 
Optimization in Voronol 

BOOK-SER-94 209-216 E. Bertin et. a\. 
diagrams 

Maximum-likelihood estimation 

for the two-dimensional 

J. C. Handley et. discrete Boolean random set 
97 GMIP, vol.=59, nO.=4 221-231 

a\. and function models using 

multidimensional linear 

samples 

Discrete Random Set Models 
J. Goutsias et. 

91 for Shape Synthesis and 
SPIEPRC-CVCIP. Boston, 

11-13 
al. USA 

Analysis 

96 
Morphological Analysis of 

PROCWATRS J. Goutsias 
Random Sets: An Introduction 

Optimal nonlinear filter for 

signal-union-noise and 

J. C. Handley et. 
96 

run length analysis in the 
147-166 ELSSIG, vol.=51, no.=3 

a\. directional one-dimensional 

discrete Boolean random set 

model 

Performance analysis of a 
E. Kalaitzis et. 94 morphological Voronol BOOK-SER-94 201-208 
&1. tp.ssellation algorithm 

94 
A stochastic tessellation of 

T. Lee et. &1. digital space BOOK-SER-94 217-224 
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continued (rom previous page (Citation:Random modfOls and tesselations) 

Author Yr Title Description PaRes 

J. L. Quenec'h 
94 

Liquid phase sintered materials 

modelling by random closed BOOK·SER·94 225·232 
et. al. 

sets 

Algebraic analysis of the 

generating lunctional for 

N.D. Sidiropoulos discrete random sets and 
94 JMIV, vol.=4 273-2\10 

et. al. statistical inference for 

intensity in the discrete 

Boolean random-set model 

Monte-Carlo estimation of 
K. Sivakumar et. 

94 morphological granulometric BOOK-SER-94 233·240 
al. 

discrete size distributions 

• Table A.20: Citation:Algorithmic techniques . 

Author Yr Title Description PaR·' 

94 
An evaluation of priority 

BOOK-SER-94 249-256 E. Breen et. al. 
queues for MM 

R. Br.smond et. 
94 

Morphogenesis simulations 
BOOK-SER-94 297-304 

a!. with lattice gas 

J. Brown et. al. 96 
A morphological point thinning 

algorithm 
PATRL, vol.=17, 00.=2 197·207 

E. R. Dougherty 
94 Computational MM ELSSIO. vol. =38 21-29 

et. al. 

M. v 
94 

On the implementation of 
BOOK-SER-94 241-248 

Droogenbroeck morphological operations 

An efficient implementation 

S. Fejes et. al. 94 technique of adaptive BOOK-SER-94 273-280 

morphological operations 

Implementation of linear digital 
M. Khosravi et. 

94 filters based on morphological IEETSl, vol.=42, 00.=9 2264-2275 
al. representation theory 

Block basis matrix 

95 
implementation of 

IEESLI, vol.=2 7-9 S. J. Ko et. al. 
morphological open-closing and 

dos-opening 

A digit-serial architecture for 

L. Lucke et. al. 95 gray-scale morphological IEETIl, vol.=4, 00.=3 387-391 

filtering 

Visualization of Minkowski 
J. B. T. M. 

94 operations by computer BOOK-SER-94 289·296 
Roerdink et. al. 

graphics techniques 

• Table A.21: Citation:Decomposition techniques . 
Author Yr Title Description Pages 

Multiscale Nonlinear 
J. A. Bangham 

96 Decomposition: The Sieve IEETP2, vol.=I8, no.=5 529-539 
et. al. Decomposition Theorem 

Decomposition of mappings 

G. J. F. Banon 
93 

between complete lattices by 
ELSSIG, vol.=38 299-327 

et. a1. mathematical morphology: 

Part I. General Lattices 

contilluf"d on nfO.d PAgt' 

MORPHOLOGICAL FILTERING M.H. Scdaaghi 



.Morphological citations in English 185 

continued (rom pffvious pag~ (Citation-Decomposition tt-Chniquf!'s) 

Author Yr Title Description Pa~fOs 

Set operator decomposition and 
G. J. F. Banon 

94 conditionally translation BOOK-SER-94 5-12 
et. al. 

invariant elementary operators 

R. van den ?? 
Decomposition of structuring 

IEETP2 
Boomgaard elements 

O. J. Camps et. 
96 Gray-scale SE decomposition IEETIJ, vol.=5, no.=1 111-120 

al. 

The indecomposability problem 

P. K. Ghosh 96 in binary morphology: an JMIV, vol.=6, no.=2/3 169-198 

algorithmic approach 

A Euclidean distance transform 
C.T. Huang et. 

94 using grayscale morphology IEETP2, vol.=16 443-4411 
al. 

decomposition 

Algorithms for the 

R. Jones et. al. 94 Decomposition of Gray-Scale IEETP2, vol.=16, no.=6 581-588 

Morphological Operations 

A Comparison of Pyramidal 

93 
Image Decomposition SPIEPRC-IAMIP, San Diego, 

11-16 x. Kong et. 8l. 
Techniques for Image California 

Compression 

Composite morphological filters 

W. Li et. al. 95 in multiresolution IECIPAIA, no.=410 752-n6 

morphological decomposition 

Combinatorial and 

F. Mount et. al. G.91 computational aspects of Can cs, vol.=119 107-124 

Minkowski decomposition 

C. H. Richardson A lower Bound for SE 
91 IEETP2, voL=)3, no.=4 365-369 

et. al. Decompositions 

L.A. Overturf et. 
Color image coding using 

95 morphological pyramid IEETII, vol.=4, no.=2 177-185 
al. decomposition 

Doptimal ecomposition of 

94 
Convex morphological SEs for 

IEETP2, vol.=16, no.=3 304-313 H. Park et. &1. 
4-Connected Parallel Array 

Processors 

H. Park et. al. 95 
Decomposition of arbitrarily 

shaped morphological SEs 
IEETP2, vol.=17, no.=1 2-15 

3-D spatiotemporal subband 

al. 94 
decompositions for hierarchical 

ELSSIGIC, vol.=6 S.-C. Pei et. 83-99 
compatible video coding by 

MM 

Hierarchical image 

S.-C. Pei et. al. 95 
representation by mathematical 

PATRL, vol.=16 183-192 
morphology subband 

decomposition 

J. Pitas et. al. 90 
Morphological shape 

38-45 
decomposition 

IEETP2, vol.=12 

Size-sensitive multiresolution 
P. Salembier et. 

92 decomposition of images with ELSSIG, vol.=27, no.=2 205-241 
al. rank order based filters 

A simplified algorithm for 

96 
approximate separable 

B. Singh et. al. 
decomposition of morphological 

PATR, vol.=29, nO.=9 1519-1522 

templates 
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continufil from prt"vious pag~ (CitatioD-Dt>compos;tion ef'C'hniquf"s) 

Author Yr Title Descri pt ion P,,~el!l 

Decomposition of gray-scale 

P. Sussner et. al. 97 morphological templates using IEETP2, vol.=19, no.=6 619-658 

the rank method 

89 
A morphological pyramidal 

PATRL, vol.=9 A. Toet 
image decomposition 

255-261 

Decomposition of convex 

J. Xu 91 polygonal morphological SEs IEETP2, vol.=13, no.=2 153-162 

into neighbourhood subsets 

Morphological decomposition of 

J. Xu 96 2-D binary shapes into simpler PATRL, vol.=17, no.=7 759-769 

shape parts 

Morphological decomposition of 

96 
2~D binary shapes into 

PATR, vol.=29, no.=7 J. Xu conditionally maximal convex 
1075-1101 

polygons 

86 
Morphological SE 

CVGIP, vol.=35 X. Zhuang et. a!. 
decomposition 

370·3R2 

Decomposition of 

X. Zhuang 94 morphological structuring JMIV, vol.=4 5-18 

elements 

• Table A.22: Citation:Fast algorithms . 
Author Yr Title Description PaJl;f'8 

A new set of fast algorithms for 

A. Bleau et. a!. 92 mathematical morphology: I. CVGlPIU, vol.=56 178-209 

Idempotent geodesic transforms 

R. v. d. Methods for Fast morphological 

Boomgaard et. 92 image transforms using CVGIP, vol.=54, no.=3 252-251\ 

a!. bitmapped binary images 

The geodesic morphological 

P. Brigger et. a!. 94 skeleton and fast BOOK-SER-94 133-140 

transformation algorithms 

M. van Fast computation of 

Droogenbroeck 96 morphological operations with PATRL, vol.=17, no.=14 1451-1460 

et. al. arbitrary SEs 

A fast thresholded linear 
J. Kisacanin et. 

94 convolution representation of IEETIl, vol.=3 455-457 
a!. morphological operations 

Fast recursive algorithms for 

S. J. Ko et. a!. 96 
morphological operators based 

on the basis matrix 
IEETll, vol.=5, no.=6 1073-1077 

representation 

85 
Speeding up Successive 

PATRL, vol.=3 J. Pecht 113-117 
Minkowski Operations 

O. Schonfeld and 
A Fast Algorithm for the 

88 Morphological Coding of 
SPIEPRC-CVCIP, Cambridge, 

9-11 
J. Goutsias 

Binary Images 
Massachusetts 

Direct Implementation of 

M. H. Sedaaghi 97 open-closing in morphological ELEC-LET, vol.=33, no.=3 198-199 

filtering 

M. H. Sedaaghi 
97 

A Direct technique for 
ICEE, 5th. Conf. 7.80-7.85 

et. al- morphological filters 

M. H. Sedaaghi 
Real-time implementation of 

97 grey-scale morphological ELEC-LET, vol.=33, no.=21 1761-1763 
et. a!. operators 
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continul"d from pn-vious pag~ (Citation-Past algorithms) 

Author Yr Title Description P8.~es 

A reliable hardware for 
M. H. Sedaaghi 

98 
ISCSDSP 1st. 6-8 April. 

grey-scale morphological 147-150 
et. al. Sheffield 

filtering 

M. H. Sedaaghi 
98 

Hardware for grey-scale 
PDPTA 13-16 July. La. Vegas 

et. al. morphological filtering 

94 
Fast grayscale granulometry 

BOOK-SER-94 L. Vincent 
algorithms 

265-272 

94 
A fast implementation of 1-D 

JEETC1. vol.=41. no.=9 D. Wang et. al. 
GS morphological fllters 

634-6:16 

• Table A.23: Citation:Applications . 

Author Yr Title Description PRl(ea 

Multiscale median and 
J. A. Bangham 

94 morphological fllters for 2D ELSSIG. vol.=38 387-415 
et. al. pattern recognition 

J. Cardillo et. al. 96 
Target recognition in a 

PATR. vol.=29. no.=1 27-49 
cluttered scene using MM 

Morphological scheme for 

J. Casas et. al. 94 morphological analysis of BOOK-SER-94 325-332 

epidermal biopsy images 

Detection of occluded circular 
A. R. Chaudhuri 

95 objects by morphological ELSSIG, vol.=46. no.=2 233-242 
et. al. 

operators 

Variable duration hidden 

M.-Y. Chen et. Markov model and 
95 IEETIJ, vol.=4. no.=12 16n-IOXII 

al. morphological segmentation for 

handwritten word recognition 

Impulsive noise suppresion and 

C. H. H. Chu et. 
89 

background normalization of 
IEETB1. vol.=36, no.=2 262-273 

al. ECG signals using 

morphological operators 

Bayesian morphological peak 

estimation and its application 
E. R. Dougherty 

96 to chromosome counting via PATR. vol.=29. no.=6 987-9\16 
et. al. 

fluorescence in situ 

hybridization 

M. Duff 79 
Parallel processors for digital 

AIDIM 2115-279 
image processing 

Design and use of DIP-I: A 

F. Gerritsen et. 
81 

fast flexible and dynamically PATTERN RECOGNITION. 
3\9-330 

al. microprogrammable image vol.=14 

processor 

M. J. E. Golay 69 
Hexagonal parallel pattern 

IEETC4, vol.=C-18 733-740 
transformations 

D. Graham et. 
80 

The Diff3 analyzer: A 

parallel/serial Golay image RTMIP 163-182 
al. processor 

Single object geometry - the 

B. V. Howard 94 stereology of registered serial BOOK-SER-94 305-308 

sections 

J. C. Klein et. al. 77 The texture analY2er J. Micros('opy. vol.-95 349-3r.6 

Obtaining a 3-D orientation of 

J.-S. Kwon et. al. 96 projective textures using a PATR, vol.=29. no.=5 725-732 
morphological method 

continuf'd on nflxt PIl/(t' 
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continued (rom p"vious pag~ (Citation'Applications) 

Author Yr Title Description PaKes 

Image processing: a key to 

B. Lay 94 success in industrial BOOK-SER-94 341-3~2 

applications 

S. M. Lea et. al. 92 
Finding mesoscale ocean 

structures with MM 
RSE, vol.=44 26-33 

Grey.tone skeletons of 

elongated objects using the 
L. Leboucher et. 

94 concept of morphological PATRL, vol.=15 309-316 
al. 

automaton. Application to 

images of DN A molecules 

Residues of morphological 

W. Li et. al. 97 filtering by reconstruction for PATR, vol.=30, no.=7 IOSI-1093 

texture classification 

A morphological approach to 

94 
text string extraction from CVGIP, Graphica) Models and 

S. Liang et. al. 402-413 
regular periodic overlapping Image Proc., vol.=56, no=5 

text/background images 

Segmentation of handwritten 

interference masks using 

S. Liang et. al. 97 multiple directional stroke lEETH, vol.=6, no=8 119~-1202 

planes and reformalized 

morphological approach 

Fast color image quantization 

T.-S. Liu et. al. 95 with error diffusion and ELSSIG, vol.=43, no.=3 293-303 

morphological operations 

A lip. tracking system based on 

M.W. Mak et. al. 94 morphological processing and ELSSIGIC, vol.=6 3:15-3411 

block matching techniques 

Optimal Morphological Proc. 2nd International 

P. Maragos 88 approaches to Image Matching Conference on Computer 

and Object Detection Vision, Florida 

Morphology-based 6ymbolic lEEProc. Computer Society 

88 
image modeling, multi-scale Conference on Computer 

P. Maragos 
nonlinear smoothing, and Vision and Pattern 

pattern spectrum Recognition, Ann Arbor 

Automatic Quantification of 

F. Marques et. 
94 

spine parameters from X-ray 
BOOK-SER-94 333-310 

al. images by meanS of 

morphological tools 

Fusion of MR and CT images 
S. Marshall et. 

94 of the human brain using BOOK-SER-94 317-324 
al. multiresolution morphology 

G. K. Application of morphological 

Matsopoulos et. 95 pyramids: fusion of MR and JVCIR, vol.=6, no.=2 196-207 

al. CT phantoms 

Application of morphological 

C. Mering et. al. 94 
operators to supervised 

361-368 
multidimensional data 

BOOK-SER-94 

classification 

The Effect of Morphological 

J. A. Noble 96 Filters on Texture Boundary IEETP2, vol.=18, no.=5 654-661 

Localization 

R. A. Peters II 95 
A new algorithm for image 

lEETH, vol.=4, no.=6 554-668 
noise reduction using MM 
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tOn t'd {rom previous page (Citation'Applicatjons) con J U 

Author Yr Title Description PageR 

Signal and image processing 

K. Preston et. al. 92 using 3D binary ranking CSSP, vol. = 11 , no.=1 137-1~1 

transforms 

Conditional morphological 

S. J. Rees et. al. 95 operators for direct feature IECIPAIA, no.=410 747-751 

extraction and enhancement 

Implementing mathematical 
A. I. T. 

95 morphological in IECIPAIA, no.=410 847-M1 
Rowstron et. al. 

ISETL-LINDA 

Optimal single-stage 

K. R. Rystrom restoration of subtractive noise 
95 JEI, vol.=4, no.=3 

et. al. corrupted images by a 

morphological closing 

Proc. of the Workshop 

D. Schonfeld et. Parametric Morphological 
"Multidimensional Signal 

89 Processing". R, Asilomar 6·8 
al. Filters for Pattern Restoration 

Conference Center, Pacific 

Grove, California 

D. Schonfeld et. 
89 

Optimal Morphological Filters SPlEPRC-CVCIP, 
8-10 

aI. for Pattern Restoration Philadelphia, Pennsylvania 

Optimal SEs For the 

D. Schonfeld 94 Morphological Pattern IEETP2, vol.=16, no.=6 6119-601 

Recognition of Binary Images 

D. Schonfeld and 
91 

Optimal Morphological Pattern 

Restoration from Noisy Binary IEETP2, vol.=13 14-29 
J. Goutsias 

Images 

M. H. Sedaaghi 
97 

A syntactic approach to 
CSICC'97, Tehran, 22·24 Dec. 31-36 

et. al. fingerprint classification 

J. Serra 87 Morphological optics 
Journal of Microscopy, 

1-22 
vol.=145 

N.D. Sidiropoulos 
Optimal filtering of digital 

94 binary images corrupted by IEETIl, vol.=3 382·403 
et. al. 

union/intersection noise 

Discrete Black and White 

D. Sinha et. al. 90 Object Recognition Via IEETP2, vol.=I2, no.=3 276-293 

Morphological Functions 

Application of Morphological 

Transformations to Athe 
M. M. Skolnick 86 

analysis of 2D Electrophoretic 
CVGIP, vol.=35, no.=3 21\3-305 

Gels of Biological Materials 

X. Song ct. al. 93 
Robust edge detectors based on 

morphological filters 
PATRL, vol.=14 889-894 

Morphological Feature 

J. P. Thiran et. Extraction for the 
96 IEETBI, vol.=43, nO.=IO 1011-1020 

al. Classification of Digital Images 

of Cancerous Tissues 

An approach to QRS complex 

P. E. Trahanias 93 detection using mathematical IEETBI, vol.=40, no.=2 201-205 

morphology 

J. G. Verly et. al. 93 
Adaptive MM for Range 

IEETI1, vol.=2, no.=2 272·275 
Imagery 

Morphological extraction of 

T. Viero et. al. 95 line networks from noisy JVCIR, vol.=6, no.=4 3:15-347 

low-contrast images 

L. Vincent 88 MM on graphs SPIEPRC-CVCIP, CambridKo 95·105 

continllrd on nrxt page 
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continued (rom previous page (Citatjon'Appli£'at;on~) 

Author Yr Title Description Pap;ell 

L. Vincent 89 Graphs and MM ELSSIG, vol.=16 365-3N8 

MM for graphs applied to 
Proc. 

L. Vincent 89 image description and 
Electronic Imaging West. 

313-318 

segmentation 
Pasadena, voL:l 

Morphological GS 

93 
reconstrcution in image 

IEETIl, vol.=2, no.=2 L. Vincent 
analysis: applications and 

176-201 

efficient algorithms 

Grayscale area openings and 
MM and its Applications to 

closings, their efficient 
L. Vincent 93 Signal Processing, Barcelona, 22-27 

implementation and 
Spain 

applications 

Morphological grayscale 

93 
reconstruction in image 

IEETIl, vol.=2 L. Vincent analysis: efficient algorithms 
176-201 

and applications 

Bounded gray-level morphology 

D. Wang et. al. 96 and its applications to image IEETCI, vol.=5, no.=6 1067-1072 

representation 

94 
Morphological operations on 

G. R. Wilson crack coded binary images 
IEETll, vol.=143, no.=3 171-176 

D. L. Wilson et. 
95 

Morphological restoration of 
Langmuir, vol.=ll 26~-272 

al. AFM images 

93 
Gray Level Image Enhancement 

SPIE-NFIP, vol.=1902 S. S. Wilson Using a Projected Thickening 
20-29 

Directional MM and 

H. Yamada et. 
93 

Reformalized Hough 
IEETP2, vol.=15, no.=4 380-387 

al. Transformation for the 

Analysis of Topographic Maps 

J. Yang et. al. 95 Boundary detection using MM PATRL, vol.=16, no.=12 1277-12X6 

Min-max classifiers: 

P.-F. Yang et. al. 95 learnability, design and PATR, vol.=28, no.=6 879·899 

application 

Directional morphology and its 

J. Yang et. al. 95 application in boundary IECIPAIA, no.=410 742-746 

detection 

Convexity dependent 

R. D. Zhang et. 
94 

morphological transformations 
PATR, vol.=27 135-148 

al. for mode detection in cluster 

analysis 

• Table A.24: Citation:Books . 
Author Yr Title Description 

E. R. Dougherty 
87 

Image Processing - Continuous to 
Prentice-Hall, Englewood Cliffs, NJ 

et. al- Discrete 

An Introduction to Morphological 
SPIE, Tutorial Texts in Optical 

E. R. Dougherty 92 Eng., vol.=TT 9, Washington 
Image Processing 

E. R. Dougherty 93 MM in Image Processing 
Marcel Dekker, New York 

E. R. Dougherty 
97 Nonlinear Filters for Image Proc. 

et. al. 
SPIE-OEP 

C. R. Giardina 
88 

Morphological Methods in Image 

et. al. and Signal Processing Prentice-Hall, Englewood Cliffs, NJ. 
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continued {rom previous pagf> (Citation' Books) 

Author Yr Title Dp.scription 

R. M. Haralick 1? MM: Theory and Hardware Oxford University Press 

H.J.A.M. 
94 Morphological Image Operators 

Academic Press, Bm'lton 

Heijmans 

81 
20 Digital Signal Processing II: Springer, Berlin 

T. S. Huang 
Transforms and Median Filters 

75 
Random sets and integrated Wiley, New York 

G. Matheron 
geometry 

Mathematical morphology and its 
Kluwer Academic Publishers, 

P. Maragos et. 
96 applications to image and signal 

Computational Imaging and Vision, 

al. Boston 
processing 

Limit theorems for unions of random 
Springer, Lecture Notell in 

LS. Molchanov 93 Mathematics, vol. = 1561 
closed sets 

Shape in Picture: Mathematical 
NATO ASI Series, Drif"hergen, The 

92 Description of Shape in Grey-Level 
Netherlands, Springer, Berlin, 

Y-L. 0 et. al. vol.=126 
Images 

82 Image analysis and MM 
Academic Press, New York 

J. Serra 

Academic Press, New York, Vol. =2: 

J. Serra 88 Image analysis and MM Theoretical advances 

MM and its applications to image 
Kluwer Academic Publishers, The 

J. Serra et. aI. 94 Netherlands 
processing 

M. Schmitt et. 
?? 

Morphology: Algorithms and Cambridge University Presl 

al. Applications 

Convex Bodies: the 
Cambridge University Press, 

R. Schneider 93 Cambridge 
Brunn-Minkowski Theory 

J. C. Simon 89 From Pixels to Features North Holland, AmfitArciam 

• Table A.25: Citation:Thesis . 

Author Yr Title Description Tp 

R. van den 
92 

MM: Extensions towards camp. 
University of Amsterdam Til 

Boomgaard vision 

Multivalued morphology and Ecole Poly technique FMerale De 
C.Gu 95 Til 

segmentation-based coding Lallsanne 

Morphological Scale-Space With 

P. T. Jackway 94 Application to 3D Object Queensland Univ. of Tech. Til 

Recognition 

95 
Morphological image representation 

Israel Institute of Tech. Til R. Kresch 
for coding applications 

77 
Design and implementation of a University of Linkoeping, 

Til B. Kruse 
picture processor Linkoeping, Sweden 

Unified Theory of 

85 
Translation-Invariant Systems with School of Electrical Engineering, 

Til P. Maragos 
Applications to Morphological Georgia Ins. of Tech., Atlanta 

Analysis and Coding of Images 

Image analysis methods based on 

P. F. M. Nacken 94 hierarchies of graphs and multi-scale University of Amsterdam Til 

MM 

Distance Transform: Metrics, 
B. J. H. Verwer 91 Delft University of Technology Til 

A1gorithms and Applications 

-- .- - ~. -
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Appendix B 

Existing relations & proof of 

some equations 

B.l Existing relations 

The following relations are valid for the operators defined so far. They 

have been collected from literature and we have completed and corrected them 

based on our definitions. Some of the relations are proved in appendix B. 

The symbol (SA) before some of the equations means that there exists the 

same relations for dilation/erosion as the relation mentioned for Minkowski 

addition/subtraction 

• 
III _ 

AEBB=AEBB. (B.1.1) 

At _ 

A8B=A8B. (B.1.2) 

• Duality: 

(0.1.3) 

193 
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(0.1.4) 

(0.1.5) 

(0.1.6) 

(0.1.7) 

(0.1.8) 

(0.1.9) 

(0.1.10) 

(0.1.11) 

(0.1.12) 

• Commutative: 

M M 
A EB B = B EB A. (0.1.13) 

(0.1.14) 

(0.1.15) 

• Distributive: (SA) 
AI Af 

A EB (U B i ) = U(A EB Bi). (0.1.16) 
iEI iEI 

M AI 
A e (nBi) = n(A e Bi)· (0.1.17) 

iEI iEI 

(J V g) EB h = (J EB h) V (g EB h). (0.1.18) 

(J A g) e h = (f e h) A (g e h). (0.1.19) 
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• (SA) 

AI AI M M 
(A EB B) EB C = (A EI1 C) EI1 B. (13.l.20) 

(f EB g) EI1 h = (f EB h) EB g. (13.l.21) 

• Associative {chain rule}: 

M AI AI M AI 
A EI1 D = A EI1 (B EI1 C) = (A EI1 B) EI1 C. (13.l.22) 

AI AI M M At At 
(A e B) e C = (A e C) e B = A e (B EB C). (13.l.23) 

AI 
(A EB B) EI1 C = A EI1 (B EI7 C). (13.l.24) 

AI 
(A e B) e C = A e (B EB C). (13.l.2::» 

(f ffi g) EB h = f EI1 (g EI1 h). (13.l.20) 

(f e g) e h = f e (g EB h). (13.1.27) 

The length (len) of the input signal after morphological operations equals 

to its original size (e.g. len{f) = len{fEBg)). However Equations 13.l.20 

and B.1.27 are true only if len(g EB h) is extended to len(g) + len (h) - 1, 

otherwise they can not be true. As an example let 

f = {8,2,2,7,1,1,3,a,4,7}, 

9 = {I, 2,~, 2, I}, 

h = {a, -2, a}, 

(13.l.28) 

(underlined values in 9 and h show the position of their origins). [enU) = 

10, len(f$g) = 10, len({fEl1g)EI7h) = 10, len((feg)eh) = 10, len (g) = 5, 
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len(h) = 3, len(g(JJh) = 7(> len(g)). Then we will have (* means it has 

not been defined) 

9 (JJ h = {*, -1, 0, ;i, 1, 2, * }, 

(J (JJ g) EEl h = {*, *, *, 10, 8, 9, 8, 4, *, *, *} = fEEl (g (JJ h), 

f 9 9 = {*, *,0,0,0, -1, -1,0, -2, *, *}, 

The extended relation of the above equations can be written as: 

(B.1.29) 

(0.1.30) 

e Scale invariant: (SA) 

M M 
aA EEl aB = a(A (JJ B). (B.1.31) 

~[ M 
aA 9 aB = a(A 9 B). (0.1.32) 

af EEl ag = a(J (JJ g). (B.1.33) 

af9ag = a(J9g). (B.1.34) 

aAoaB = a(AoB}. (ll.1.35) 

aAeaB = a(AeB). (ll.1.36) 

af 0 ag = a(J 0 g). (B.1.37) 

af e ag = a(J. g). (B.1.38) 

where a is a real number. 
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• Compatibility under change of scale: (SA) 

Af A Af 
A EB aB = a( - EB B). 

a 

M A Af 
A e aB = a( - e B). 

a 

Similar compatibility exists for opening and closing 

197 

(I3.1.39) 

(B.1.40) 

(B.1.41) 

(I3.1.42) 

• Scaling with convex sets: (SA) The set A is convex if'v'x, YEA, a E [0,1]: 

ax + (1 - a)y E A. If A is convex and a and j3 are positive real scalars, 

then: 

Af 
aA EB j3A = (a + j3)A. (B.1.43) 

af EB j3f = (a + j3)f. (B.1.44) 

Therefore we can say that a convex set S is divisible for all integers f > 0: 

1 M1 M Af1 
A = -A EB -A EB ••• EB -A. 
"f f J 

(B.1.45) 

'Y' 

'Y terms 

or equivalently: 

M Af M 
fA = A EB A EB ... EB A. 

, v ~ 
(B.1.46) 

'Y terms 

'Yf=jEBjEB"·EBj. 
" 'V ., 

(B.1.47) 

'Y terms 
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• Translation Invariance: 

M M 
(A)x Ef) B = (A Ef) B)x. (D.1.48) 

M M 
A Ef) {B)x = (A Ef) B)x. (B.1.49) 

(A)x Ef) B = (A Ef) B)x. (D.1.50) 

A Ef) (B)x = (A Ef) B)-x. (B.1.51) 

(B.1.52) 

(B.1.53) 

M M 
(A)x e B = {A e B)x. (B.1.54) 

M M 
A e (B)x = {A e B)-x. (B.1.55) 

(A)x e B = (A e B)x. (B.1.56) 

A e (B) x = (A e B)-x. (B.1.57) 

(B.1.58) 

(B.1.59) 

The following equations will then be true: 

AI M M M M 
A Ef) B1 Ef) ••• Ef) (Bn)x Ef) ••• Ef) BN = 

AI AI AI AI AI 
(A EB B1 EB· .. EB En Ef) ••• Ef) BN )x. 

(B.1.60) 

fEB 91 Ef) ••• Ef) (9n)x Ef) ••• Ef) 9N = 

(f Ef) 91 Ef) ••• Ef) 9n Ef) ••• Ef) 9N )-x. 
(B.1.61) 
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• Insensitivity of opening and closing to translation of SE: 

A 0 (B) x = A 0 B. (13.1.62) 

A. (B)x = A • B. (13.1.63) 

f 0 (g) x = fog. (13.1.64) 

(13.1.65) 

• Shift compensation in image by properly shifting of SE: 

M M 
(A)x ED (B)-x = A ED B. (13.1.66) 

(A)x ED (B)x = A ED B. (13.1.67) 

(J)x ED (g)x = fED g. (13.1.68) 

Similarly we can compensate the shift in image with a proper shift in one 

of the decomposed SEs: 

~f M M M ~f 

(A) x ED B1 ED··· ffi (Bn)-x ED··· ED EN = 
~f M M M M 

A EB B1 EB··· EB Bn EB •.• ED B N · 

(13.1.69) 

(A)x EB B1 EB··· EB (Bn)x EB··· EB BN = 
(13.1.70) 

AEDB1 EB···ED Bn EB···EB EN· 

(J)x ED g1 EB··· ED (gn)x EB··· ED 9N = 
(B.1.71) 

f EB 91 ED ••• ED 9n EB ••. EB 9 N • 
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~ .. ... WD. .. ml" .. .... ... .. ... .. ... ....... . ..... . ....... .. . ..... .... . 
::::: ::::: ....... 

(a) (b) (c) (d) (e) 

M M 
Figure 8.1: Extensivity: (a):A , (b) :El , (c): A E9 E l , (d) :E2' (e): A E9 B2 . 

• Extensivity: (SA) Minkowski addition is extensive if the origin belongs 

to SE. Figures 8.1-a, b, d show an image and two SEs denoted by A, 

El and E2 respectively. E2 does not include the origin . Figures 8.1-c, 
M M 

e, denoted by A E9 El and A E9 E2 show the result of the Minkowski 
M 

addi tion of A by El and E2 respectively. We see that A c A E9 E l , bu t 
M 

A ct. A E9 E2 · For extensivity discussion of morphological operators refer 

to Table 2.3 . 

• A nti Extensivity: (SA) Minkowski subtraction is anti extensive if the 

origin belongs to SE. Figures B.2-a, b, d show an image and two SEs 

denoted by A, El and E2 respectively. B2 does not include the origin . 
M M 

Figures B.2-c, e, denoted by A e Bl and A e E2 show the result of 

the Minkowski subtraction of A by El and E2 respectively. 'vVe see that 
M M 

A e El c A, but A e E2 ct. A. Similar anti-extensivity exists for erosion. 

For ant i-extensivity discussion of morphological operators refer to Table 

2.3. 

~ .... .. . . ..... .. .. ..... .. . ..... ... . 
~ .. .. . .. ... .. . . ... .. .... ....... Q::::::: ... .... . ........ . ..... .... ....... .. . . .. .. ... .. ..... ..... . ......... ..... ..... . ...... .. . 

(a) (b) (c) (d) (e) 

M M 
Figure B.2: Anti extensivity: (a) :A , (b) :El' (c): A e El , (d) :E2 , (e): A e E2 . 
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• (SA) 

A EB (B e C) ~ (A EB B) e C . ( M M ) ( M M ) (B.1.72) 

• Adjunction relation: (SA) 

M M 
B ~ (A e C) {::=:} (B EB C) ~ A. (B.1.73) 

• 
M M l'1'l 

B ~ (- .. (A e Cd e ... ) e CN {::=:} 

M foil M 
( .. . (B EB Cd EB ... ) EB CN ~ A. 

(B.1.74) 

• Increasing: (SA) 

M M 
B ~ C ~ (B EB D) ~ (C EI7 D). (B.1.75) 

M M 
B ~ C ~ (B e D) ~ (C e D). (B.1.76) 

Figure B.3 illustrates the property of increasing in Minkowski addition 

and subtraction. Parts a , band g show B , C and D respectively (B c C) . 
M M M M 

Parts c, d , e and f show B EI7 D , C EI7 D, B e D and C e D respectively. 
M M M M 

We notice that B EB DeC EI7 D and B e D c C e D. 

::;.:.w(:: 
::~:: 
:::::::::: .......... 
:::::::::: 

(a) 

.. ~ .. .. .. .. . ... 
I' •••• .. . ... 
• 1 •••• .......... .......... 

(b) 

g~l 

. ......... 
(c) 

:m~:: 
EIJ "m' I' ... .. ~ .. I ••••• .. . .. . ......... .......... 

(d) (e) (I) (9) 

M M M 
Figure B.3: Increase: (a):B , (b) :C, (c):B EI7 D , (d):C EB D, (e):B e D , 

M 
(f):C e D , (g) D. 

B ~ C ~ (B 0 D) ~ (C 0 D) . (B.1.77) 

B ~ C ~ (B.D) ~ (C .D). (B.1.78) 
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(B.lo 79) 

(B.lo80) 

11::; 12 =} h og::; hog. (B.lo81) 

(B.lo82) 

• Anti-increasing: (SA) 

M M 
B c C =} (A e B) :J (A e C) . (B.lo83) 

Figure B.4 illustrates Equation B.lo83: Parts a, band c show A, B 
M M 

and C respectively (B c C) . Parts d and e show A e B and A e C 
M M 

respectively (A e B :J A e C). 

: : ;;,;,;;,: : : .. ~ .. .......... .......... .......... .......... .......... ... ....... 
(a) (b) (c) 

. ........ . 
:::~:: . ........ . .......... . ........ . .......... .......... .......... 

(d) 

:::~:: · ....... . · ....... . · ....... . · ....... . · ....... . · ....... . 
(9) 

M M 
Figure B.4: Anti increasing: (a):A , (b):B , (c):C, (d):A e B , (e):A e C . 

(B.lo84) 

(B.lo85) 

• (SA) 

M ~ 

AeA={o} . (B.lo86) 

• (SA) 

M M M 
A EB (B U C) = (A EB B) u (A EB C). (B.lo87) 
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• (SA) 

M M M 
A e (B U C) = (A e B) n (A e C). (B.1.88) 

• (SA) 

M M M 
(B n C) e A = (B e A) n (C e A). (D.1.S9) 

• (SA) 

!II M M 
A E9 (B n C) ~ (A E9 B) n (A E9 C). (B.1.90) 

• (SA) 

M M M 
A e (B n C) ;2 (A e B) U (A e C). (D.1.91) 

• (SA) 

!II M M 
(B U C) e A ;2 (B e A) U (C e A). (B.1.92) 

• Open set: The set A is open with respect to B if 

AoB=A. (B.1.93) 

• Closed set: The set A is close with respect to B if 

A.B=A. (D.1.94) 

• Sieving: If B is open with respect to C, then: 

(AoB) c (AoC) cAe (A.C) c (A. B). (D.1.95) 

• (SA) If Band 9 are symmetric, then 

M AI M 
A E9 B = (A E9 B) 0 B = (A. B) E9 B. (B.1.96) 

f E9 9 = (J E9 g) 0 9 = (J. g) $ g. (D.1.97) 
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• 

AoB = U{Bx: Bx ~ A}. (D.1.98) 

• 

(D.1.99) 

• Morphological gradient: Dilation and erosion often are used to compute 

the morphological gradient of an image denoted by GRAD: 

GRAD = (f EB g) - (f e g). (n. 1. 100) 

As opposed to gradients obtained using methods such as a Sobel oper

ation, morphological gradients obtained using symmetrical structuring 

elements tend to depend less on edge directionality. This price paid for 

this advantage is significant increase in computational requirements. 

• Top-hat transformation: The so called morphological top-hat transfor

mation of an image, denoted by TOPHAT, is defined as 

TOPHAT = f - (f 0 g). (n.l.lOl) 

It is useful for enhancing detail in the presence of shading. 

• Granulometry: Granulometry is a field that, among other things, deals 

with determining the size distribution of particles in an image. The 

following morphological approach can be used to determine size distri

bution. Opening operations with structuring elements of increasing size 

are performed on the original image. The difference between the original 

image and its opening is computed after each pass with a different struc

turing element is completed. At the end of the process, these differences 

are normalised and then used to construct a histogram of particle-size 

distri bu tion. 
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• Hit-or-miss operator ®: Hit-or-miss operator ( [78]) uses two binary SEs 

Band G which have empty intersection (otherwise it will not be a mean

ingful operation) and is defined as: 

A® (B,G) = {x: Bx ~ A,Gx ~ AC} 

= (A e B) n (AC e G). 
(B.l.I02) 

If Band G have even one pixel in common, the sesult will be empty 

set. In hit-or-miss, some properties similar to B in foreground and G in 

background of the image is required. Hit-or-miss is not increasing but 

translation invariant: 

(A)x ® (B, G) = [A ® (B, G)]x. (B. 1. 103) 

Figure B.5 illustrates an example. Parts a, b, c and d respectively show 

A, A ® (B, G), Band G. Hit-or-miss transformations are often used 

· ........ . · ........ . · ........ . · ........ . 
• • • DO· •••• · ........ . 
• • ·0· ••••• 
• • -ODD· ••• 
• ••• • DO· •• 

· ........ . 
• • ·0· ••••• · ........ . 

· .•. ·00· .. 
· •.. ·00· .. 

· ........ . 
• ••• ·0· ••• · ........ . · ........ . · ........ . 

(a) (b) 

·0· ·wo 

(c) 

0+· 
00· 

(d) 

Figure 8.5: Hit-or-miss operation. (a):A, (b):A ® (B, G), (c):B, (d):G. 

in digital topology where these transformations can be used to detect 

specific topological configuration in an image. Some applications of hit

or-miss operator can be found in [78, 36] . 

• Boundary extraction: The boundary of a set A, denoted by Jffi(A), can be 

obtained by 

Jffi( A) = A - (A e B). (8.1.104) 

where B is a suitable SE. 
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• Convex hull: 

Let Bi, i = 1,2,3,4 represent four structuring elements. The procedure 

to make convex hull is as follows. 

X~ = (X®Bi) UA, i = 1,2,3,4 and k = 1,2,3, ... (B.1.105) 

with X& = A. Now let Di = X~onv' where the subscript "conv" indicates 

convergence in the sense that X~ = XLI' Then the convex hull of A is 

4 

C(A) =UDi. (B. 1. 106) 
i=1 

In other words, the procedure consists of iteratively applying the hit-or

miss transform to A with B\ when no further changes occur, we apply 

the union with A and call the result Dl. The procedure is replaced with 

B2 until no further changes occur, and so on. The union of the four 

resulting D's constitutes the convex hull of A. 

• Thinning: The thinning of a set A by a structuring element B, denoted 

by A 0 B can be defined in terms of the hit-or-miss transform: 

(13.1.107) 

A more useful expression for thinning A symmetrically is based on a 

sequence of structuring elements: 

(13.1.108) 

where Bi is a rotated version of Bi-I. Using this concept, we now define 

thinning by a sequence of SEs as 

A 0 B = (( ... ((A 0 Bl) 0 B 2
) ••• ) 0 Bn). (13.1.109) 

In other words, the process is to thin A by one pass with Bl, then thin 

the result with one pass of B2, and so on, until A is thinned with one 

pass of nn. The entire process repeats until no further changes occur. 
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• Thickening: Thickening is the morphological dual of thinning and is de

fined by the expression 

A 0 B = A U (A ® B). (13.1.110) 

where B is a structuring element suitable for thickening. Thickening can 

be defined as a sequential operaton: 

A 0 B = (( ... ((A 0 B 1) 0 B2) ... ) 0 Bn). (13.1.111) 

The usual procedure practical for thickening is to thin the background of 

the set in question and then complement the result. Depending on the 

nature of A, this complementary procedure may result in some discon

nected points. Hence thickening by this method usually is followed by a 

simple post-processing step to remove disconnected points . 

• Skeletons: Serra [78] showed that the skeleton of a set (region) A can be 

expressed in terms of erosions and openings. That is, with S(A) denoting 

the skeleton of A, it can be shown that 

K 

S(A) = U Sk(A) (13.1.112) 
k=O 

with 
K 

Sk(A) = U{(A e kB) - [(A e kB) 0 Bn (13.1.113) 
k=O 

where B is a structuring element, (AekB) indicates k successive erosions 

of A; that is 

(A e kB) = (( ... (A e B) e B) e ... ) e B 

k times, and K is the last iterative step before A erodes to an empty set. 

In other words, 

I< = max{k I (A e kB) i= 0}. ---MORPHOLOGICAL FILTERING .M.H. Sedaaghi 
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• Annular opening and closing: With annular opening, parts of an image 

are removed on the basis of their isolation, while with the usual structural 

opening, parts of an image are removed on the basis of their size [35]. It 

is defined as: 

OPAnn = A n (A E9 B). (0.1.114) 

Similarly annular closing is defined as 

CLAnn = A U (A e B). (0.1.115) 

and it removes isolated hole points . 

• Geodesic operators and operators by reconstruction: Geodesic GS dilation 

(81 (J, r)) and erosion (t: 1 (J, r)) of size 1 are defined respectively as: ([GS]) 

81(J,r) = min{81(J),r}, 

t:1(J,r) = -81(-j,-r), 

(o.1.11G) 

(0.1.117) 

where r is a reference, and 61 is dilation. Reconstruction by dilation is 

defined as: 

Reconstruction by erosion is defined as: 

cjJree(J,r) = t:(oo)(J,r) = ... t:(l)( .. . t:(1)(J,r) ... ,r). (B.1.119) 

Opening by reconstruction of opening is defined as: ,,(ree) (op(J) , J). Clos

ing by reconstruction of closing is similarly defined as: cjJ(ree) (cl(J), J). 

Opening by partial reconstruction is defined as: ,,(ree) (fn (J), "(k (J)). Sim

ilarly closing by partial reconstruction is defined as: cjJ(ree)(8n(J),cjJk(J)). 

In above equations if k = n, then the above relations will be classical 

opening and closing. For k = 0, they will be opening and closing by 

reconstruction. 
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B.2 Proof of some morphological operations 

i. Proof of Eq. 2.5.6: 

M 
A8B 

(13)" 
M 

A8B 

Z E ( n (A)b) 
bEB 

M 
A8B 

ii. Proof of Eq. B.1.13: 

= 
Eq.~.5.5 

n (A)b 
bEB 

{x - b: bE B} 

{y: (13}y ~ A} = {y - b E A,b E B} 

Z E (A)b,b E B ~ Z - bE A,b E B 

n (A)b 
bEB 

(?) 
M 

AEBB = {a+b:aEA,bEB}={b+a:bEB,aEA} = 

(?) 

• 

M = B EB A • 
iii. Proof of Eq. B.1.22: 

M M 
A EB (B EB C) 

? M M 
(A EB B) EB C (?) 

M M M 
A EB (B EB C) {a + (b + c) : a E A, b + c E B EB C} 

= {a + b + c : a E A, b E B, c E C} = 
M 

{(a + b) + c : a + bE A EB B, c E C} 
M M 

= (A EB B) EB C • 
iv. Proof of Eq. B.1.26 

The length of 9 EB k will be extended to Length(g)+Length(h)-l (see Eq. B.1.28). Let "Y = fj - 0: 

(fEBg)EBh J /$(gEBh) (?) 

«(f EB g) EB h)(n) = max { max {fen - u - v) + g(u) + h(v)}} (1), 
vEDh uEDg 

(g EB h)(m) = k(m) = max {gem - 0:) + h(o:)} (2), 
oEDh 

(f EB k)(l) max {J(I - fj) + k(fj)} (2) = 
i3E D k 

= max {I(l - fj) + max {g(fj - a) + h(o:)}} (2), 
i3EDk oEDh 

(f EB k)(I) = max {max {I(I - 0: - "Y) + gC"Y) + h(a)}} (2) ¢} 
o+')EDg oEDh 

«(f EB 9) EB h)(n) = (f EB (g EB h»(n) • 
v. Proof of Eq. B.1.48: 

M 
(A EB B)., (?) 

M 
(A)., EBB {d:d=c+b,cE(A)""bEB} 

= {d:d=(a+x)+b,aEA,bEB} = 

{d : d = (a + b) + x, a E A, bE B} 
M 

{d: d = e + x,e E A EB B} 
M 

(A EB B)", • 
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vi. Proof of Eq. 8.1.53: 

, (B (g)x :1 
(f (B (g)" )(n) 

vii. Proof of Eq. B.1.54: 

(f (B g)-x (?) 

max {f(n - u) + (g)x(u)} 
uED(g)2 

= 
max {f(n - v - x) + g(v)} = 
vEDg 

(f (B g}-x (n) • 

M 
(.4)" e B 

M 
(A e B)" (?) 

M 
(A e B)" {y : (E}y C A}x Eq.,,;.5.1 {y : (E}y - x C A} 

= {y: (B)y C (A)z} = 
Eq.~.5.5 M 

(A)" e B 

viii. Proof of Eq. B.1.64: 

f 0 (g)" 
? 

(f 0 (g}",)(n) = 
fog 

max { min {f(n + u - v} - (g),,(u) + (g),,(v)}} 
vED(9)2 uED(9). 

max { min {f(n + (0: + x) - ({3 + x» - g(o:) + g({3)}} 
f3ED g oEDg 

= (f 0 g)(n) 

ix. Proof of Eq. B.1.55: 

M 
.4 e (B}", 

AI 
(A e B)-x = 

= 
Eq.~.5.5 

x. Proof of Eq. B.1.66: 

M 
(A)x Ell (B)-x 

M 
(A)x Ell (B)-x 

xi. Proof of Eq. B.1.72: 

(A ~ (B ~ G}) 
M 

BeG 
M M 

A Ell (B e G) t ~(B~C)~ M M 
A (B (B e G) 

M M 
A (B (B e G) 

M 
(A e B)-x 

{y : (B}y ~ A}-x Eq.,,;.5.1 {y : (E)y + x ~ A} 

{y: ((B)x}y C A} 
M 

A e (B)x 

? M 
AEllB 

Eq. ~.1.48 M M 
(A Ell (B)-x)x = (A Ell B),,-x 

M 

= AEllB 

? ((A~B)~G) ~ 

= {x: X + c E B,c E G} 

= {a + x + c: a E A,x + c E B,c E G} 

~ {a + x + c: a E A,x E B,c E G} 

~ 
M 

{(a + x) + c: a + x E A Ell B, c E G} 

~ ((A~B}~G) 

(?) 

• 

(?) 

=> 

=> 

==> 

• 

• 

(?) 

= 

= 

• 

(?) 

= 

= 
• 
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B.2 Proof of some morphological operations 

xii. Proof of Eq. B.1.73: 

M 7 M 
B ~ (A e G) ~ (B $ G) ~ A (?) 

M ?1 M 
B ~ (A e G) ~ (B $ G) ~ A (1 ?) 

M 
(B $ G) ~ A 

?2 
~ 

M 
B ~ (A e G) (2?) 

M 
B61G = {x: x = b + e, bE B, c E G} (1) ~ 

M M 
B61G e {x : x = b + e, b E (A e G), e E G} (1) 

M 
({x: x = b + c,b + c E A,e E G} = {x: x E A}) B61G e (1). 

M 
{x:x=b+c,bEB,CEG}~A B61G = (2) ~ 

~ {b + c : b + e E A, c E G} (2)~ 
M 

~ bE (A e G) (2) ~ 
M 

~ B ~ (A e G) (2). 

xiii. Proof of Eq. B.l.75: 

7 M M 
BeG => (B $ D) e (G $ D) (?) 

M M 
B61D {b + d: b E B,d E D},G $ D = {c + d: c E G,d ED} 

BeG -+ b E (B e G) ~ 

M M 
=> (B $ D) e (G $ D) • 

xiv. Proof of Eq. B.1.80: 

7 
/Jeg~heg (?) h~h => 

hen) ~ hen) ~ /J(n + u) ~ hen + u) ~ h(n + u) - g(u) ~ hen + u) - g(u) ~ 

~ min {hen + u) - g(u)} ~ min {hen + u) - g(u)} 
uED g uED g 

~ 

hen) ~ hen) ~ (h e glen) ~ (12 e glen) • 
xv. Proof of Eq. B.1.83: 

BeG 

BeG 

7 

=> 
Eq. £;1.75 

Eq=bS,S 

xvi. Proof of Eq. B.l.87: 

M 
A e (BUG) 

M M 
(A e B) :J (A e G) (?) 

M M M M 
AC $ B e AC $ G ~ (AC $ B)C :J (AC $ G)C ~ 

M M 
AeB:JAeG • 

M M 
(A e B) U (A e G) (?) 

M 
A e (BUG) 

Eq.~.S.4 U (Bx U Gx ) = ( U BX) U (U GX) 
:rEA :rEA :rEA 

M M 
(A $ B) U (A $ G) = • 

xvii. Proof of Eq. B.l.88: 

M 
A e (BUG) 

? M M 
(A e B) n (A e G) (?) 

M 
A e (BUG) 

Eq.~.S.S (AC ~ (B U G») C Eq. ~.1.87 (AC ~ B) U (Ae ~ G)) C = 

M M 
(AC e B)C n (AC $ G)C = 

Eq. !!..1.87 M M 
(A e B) n (A e G) • 
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B.2 Proof of some morphological operations 

xviii. Proof of Eq. B.1.89 

xix. 

xx. 

xxi. 

xxii. 

M 
(BnG) e A 

M 
(BnG) e A 

? 

Eq.~.5.5 

M M 
(B e A) n (C e A) 

(B n C)C EEl A = (BC U GC) EB A 

Eq. !!.1.87 ~ 
M )C ( M )C 

M M C M M 
(BC EB A) U (Gc EB A)) = (BC $ A)C n (CC EEl A)C 

Eq.~.5.5 M M 
(B e A) n (G e A) 

Proof of Eq. B.1.90 

(A ~ (BnG)) 
? 

(A ~ B)n(A ~ C)) C (?) 

(BnG) ~ B (BnG) ~ G Eq·b1.75 

(A ~ (BnG)) ~ (A ~ B) ~ A:;: (BnC») ~ (A II C) =:::} 

(A ~ (BnG)) 
M M) C (A EB B) n (A EB G) • 

Proof of Eq. B.1.91 

(A~(BnG)) 
? 

~(A:: B)U(A:: C») :::> (?) 

M Eq.~.5.5 
M r A e (BnG) AC EB (B n G) 

(AC ~ (BnG)) 
Eq. B.1.90 

M M ~ ~ (AC EEl B) n(AC EB G) =:::} 

(AC ~ (BnG)r 
M M C 

;2 (AC EEl B) n (AC EB G) =:::} 

M M) Eq=b5.5 
2 (AC EEl B)C U (Ae EB G)e 

(A ~ (BnG)) 
M M) :::> (A e B) U (A e G) • 

Proof of Eq. B.1.92 

? 

(BUG)~A) ;2 (B e A) U (C e A) ~ M M) (?) 

M C M M 
(B UG)C EB A) = (Be nGe) EB A (BUG) e A 

(BC nGC) ~ A) 
Eq. B.1.90 

(Be ~ A) n (Gc ~ A)) c =:::} 

(BC n Ge) ~ A r 
Eq. B.1.90 

[M M r :::> (BC 6) A) n (Gc 6) A) 

:::> (BC ~ A)C U (Ge ~ A)C) =:::} 

(BUG) e A) 
M M) :::> (B e A) U (C e A) • 

Proof of Eq. B.1.43 

M ? 
oA 6) fJA (0 + fJ)A 

M 
{a + b : a E oA, b E fJA} = {oa + .Bb : a E A, b E A} oA 6).BA = 

(0 +.B){ ataa + ~b: a E A,b E A} 

(?) 

= 
= 

• 

>. ~ =? 1- >. = ~,O::; >.::; 1 (A is convex) c = >.a + (1 - >.b) E A 
M 

oA 6) {3A = (0 + {3){c : c E A} = (o+{3)A 
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xxiii. Proof of Eq. B.1.96 

M ? M ? M 
AEBB (A EB B) 0 B == (A. B) EB B (?) 

M M M 
L = A EB B, M = L e B, N = M EB B ::} 

L 
7 N (?) 

L A ~ B Eq. £:1.73 A ~ L ~ B::} A ~ M ::} 

M M 
::} AEBB~MEBB ::} 

::} L~N (1). 

M = L ~ B Eq. £:1.73 M ~ B ~ L ::} 

::} N~L (2). 
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Appendix C 

Arrhythmia types 

The current appendix introduces some of arrhythmia types adopted from 

'literature [9, 7]. An arrhythmia is a change in the regular beat of the heart. 

The heart may seem to skip a beat or beat irregularly or very fast or very slowly 

(http://www.atlcard.com/arrhth.html). Arrhythmias may occur in people who 

do not have heart disease. In most cases, there is no recognisable cause of an 

arrhythmia. One reason can be heart disease. However other causes can be 

tobacco, alcohol, diet pills, stress, caffeine, and cough and cold medicines. 

Most of the people with arrhythmias have nothing to fear. They do not need 

extensive exams or special treatments for their condition unless arrhythmias 

are associated with heart disease. In these cases, heart disease, and not the 

arrhythmias, causes the greatest threat to the patient. In a very small number 

of people with serious symptoms, arrhythmias are really dangerous. These 

arrhythmias require medical treatment to keep the heartbeat regular. For 

example, a few people have a very slow heartbeat (bradycardia), causing them 

to feel light headed or faint. If left untreated, the heart may stop beating and 

these people could die. Arrhythmias occur commonly in middle-age adults. 

As people get older, they are more likely to experience an arrhythmia. Most 

people have felt their heart beat very fast, experienced a fluttering in their 
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Arrhythmia types 215 

chest, or noticed that their heart skipped a beat. Almost everyone has also 

felt dizzy, faint, or out of breath or had chest pains at one time or another. 

One of the most common arrhythmias is sinus arrhythmia, the change in heart 

rate that can occur normally when we take a breath. These experiences may 

cause anxiety, but for the majority of people, they are completely harmless. 

Describing how the heart beats, normally helps to explain what happens during 

an arrhythmia. The heart is a muscular pump divided into four chambers-two 

atria located on the top and two ventricles located on the bottom. Normally 

each heartbeat starts in the right atrium. Here, a special group of cells called 

the sinus node, or natural pacemaker, sends an eletrical signal. The signal 

spreads throughout the atria to the area called the atrioventricular (AV) node. 

The AV node connects to a group of special pathways that conduct the signal 

to the ventricles below. As the signal travels through the heart, the heart 

contracts. First the atria contract, pumping blood into the ventricles a fraction 

of a second later, the ventricles contract, sending blood throughout the body. 

Usually the whole heart contracts between 60 and 100 times per minute. Each 

contraction equals one heartbeat. An arrhythmia may occur for one of several 

reasons 

• Instead of beginning in the sinus node, the heartbeat begins in another 

part of the heart. 

• The sinus node develops an abnormal rate or rhythm. 

• A patient has a heart block. 

Heart block is a condition in which the electrical signal cannot travel nor

mally down the special pathways to the ventricles. For example, the signal 

from the atria to the ventricles may be 

1. delayed, but each one conducted; 

ii. delayed with only some getting through; or 
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iii. completely interrupted. 

If there is no conduction, the beat generally originates from the ventricles and 

is very slow. There are many types of arrhythmias. Arrhythmias are identified 

by where they occur in the heart (atria or ventricles) and by what happens 

to the heart's rhythm when they occur. Arrhythmias arising in the atria are 

called atrial or supraventricular (above the ventricles) arrhythmias. Ventricular 

arrhythmias begin in the ventricles. In general, ventricular arrhythmias caused 

by heart disease are the most serious. 

Sometimes an arrhythmia can be detected by listening to the heart with a 

stethoscope. However, the electrocardiogram is the most precise method for 

diagnosing the arrhythmia. An arrhythmia may not occur at the time of the 

exam even though the symptoms are present at other times. In such cases, 

tests will be done if necessary to find out whether an arrhythmia is causing 

the symptoms. First the doctor will take a medical history and do a thorough 

physical exam. The one or more tests may be used to check for an arrhythmia 

and to decide whether it is caused by heart disease. Many arrhythmias require 

no treatement whatsoever. Serious arrhythmias are treated in several ways 

depending on what is causing the arrhythmia. Sometimes the heart disease is 

treated to control the arrhythmia. Or, the arrhythmia itself may be treated 

using one or more of the following treatments. 

• Drugs: There are several kinds of drugs used to treat arrhythmias. One 

or more drugs may be used. Drugs are carefully chosen because they can 

cause arrhythmias or make arrhythmias worse. For this reason, the ben

efits of the drug are carefully weighed against any risks associated with 

taking it. It is important not to change the dose or type of your med

ication unless you check with your doctor first. If you are taking drugs 

for arrhythmia, one of the following tests will probably be used to see 

whether treatment is working: a 24-hour electrocardiogram (ECG) while 
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you are on drug therapy, and exercise ECG, or a special technique to see 

how easily the arrhythmia can be caused. Blood levels of antiarrhythmic 

drugs may also be checked. 

• Cardioversion: To quickly restore a heart to its normal rhythm, the doc

tor may apply an electrical shock to the chest wall. Called cardioversion, 

this treatment is most often used in emergency situations. After car

dioversion, drugs are usually prescribed to prevent the arrhythmia from 

recurring. 

• A utomatic implantable defibrillators : These devices are used to correct 

serious ventricular arrhythmias that can lead to sudden death. The defib

rillator is surgically placed inside the patient's chest. There, it monitors 

the heart's rhythm and quickly identifies serious arrhythmias. With an 

electrical shock, it immediately disrupts a deadly arrhythmia. 

• A rtificial pacemaker: An artificial pacemaker can take charge of sending 

electrical signals to make the heart beat if the heart's natural pacemaker 

is not working properly or its electrical pathway is blocked. During a 

simple operation, this electrical device is placed under the skin. A lead 

extends from the device to the right side of the heart, where it is perma

nently anchored. 

• Surgery: \Vhen an arrhythmia cannot be controlled by other treatmets, 

doctors may perform surgery. After locating the heart tissue that is 

causing the arrhythmia, the tissue is altered or removed so that it will 

not produce the arrhythmia. 

If the heart disease is not causing the arrhythmia, the doctor may suggest 

that you avoid what is causing it. For example, if caffeine or alcohol is the 

cause, the doctor may ask you not to drink coffee, tea, colas, or alcoholic 

beverages. 
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The arrhythmia differ from the originating point of view as: 

i. Originating in the Atria: 

• Sinus arrhythmia: Cyclic changes in the heart rate during breathing. 

Common in children and often found in adults. 

• Sinus tachycardia: The sinus node sends out electrical signals faster 

than usual, speeding up the heart rate. 

• Sick sinus syndrome: The sinus node does not fire its signals prop

erly, so that the heart rate slows down. Sometimes the rate changes 

back and forth between a slow (bradycardia) and fast (tachycardia) 

rate. 

• Premature supraventricular contractions or premature atrial con

tractions {PAC}: A beat occurs early in the atria, causing the heart 

to beat before the next regular heartbeat. 

• Supraventricular tachycardia {SVT}, paroxysmal atrial tachycardia 

{PAT}: A series of early beats in the atria speed up the heart rate 

(the number of times a heart beats per minute). In paroxysmal 

tachycardia, repeated periods of very fast heartbeats begin and end 

suddenly. 

• Atrial flutter: Rapidly fired signals cause the muscles in the atria to 

contract quickly, leading to a very fast, steady heartbeat. 

• Atrial fibrillation: Electrical signals in the atria are fired in a very 

fast and uncontrolled manner. Electrical signals arrive in the ventri

cles in a completely irregular fashion, so the heart beat is completely 

irregular. 

• Wolff-Parkinson- White syndrome: Abnormal pathways between the 

atria and ventricles cause the electrical signal to arrive at the ven

tricles too soon and to be transmitted back into the atria. Very fast 
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heart rates may develop as the electrical signal richochets between 

the atria and ventricles. 

ii. Originating in the Ventricles: 

• Premature ventricular complexes (PVC).: An electrical signal from 

the ventricles causes an early heart beat that generally goes unno

ticed. The heart then seems to pause until the next beat of the 

ventricle occurs in a regular fashion. 

• Ventricular tachycardia: The heart beats fast due to electrical sig

nals arising from the ventricles (rather than from the atria). 

• Ventricular fibrillation: Electrical signals in the ventricles are fired 

in a very fast and uncontrolled manner, causing the heart to quiver 

rather than beat and pump blood. 

In this part we will have a look to the name of some abnormalities: 

• First-degree A V block: Prolongation of the P - R interval is called first

degree AV block. 

The following part shows two tables and some figures about some of the 

arrhythmia. 

Table C.I: Arrhythmia recognition 

Heart rate Rhythm P Wave 
~'ig-

Disease 
PR(sec) QRS(sec) ure 

.12 -
Normal Sinus Rhythm 60-100 bpm Regular Before each QRS, identical < .12 C.I 

.20 

Usually .12 -
Sinus Arrhythmia Irregular Before each QRS. identical < .12 C.2-a 

60-100 bpm .20 

.12 -
Sinus Tachycardia > 100 bpm Regular Before each QRS. identical < .12 C.2-b 

.20 

.12 -
Sinus Bradycardia < 60 bpm Regular Before each QRS. identical < .12 C.2-c 

.20 

Before each QRS. identical. 
.12 -

Sinus Pause N/A Irregular Dropped beat. The P to P < .12 C.2-d 
.20 

interval is undisturbed. 

contJnut"Ci on next paSe 
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continuffl (rom pTf'vious pag~ 

Disease Heart rate Rhythm P Wave 
f'ig-

PR(.ec) QRS(.ec) ur. 

Before each QRS, identical. 

N/A 
New rhythmbegins after a ,12 -

Sinus Arrest Irregular 
pause. The P to P interval i. 

< .12 C.2-. 
.20 

disturbed 

PAC. / Isolated PAC'. 
N/A 

Premature and abnormal or 

Occur Single 
Irregular 

hidd.m 
< .20 < .12 C.2-g 

PAC. / Paired PAC'. 
N/A 

Premature and abnormal or 

Occur in Two's 
Irregular 

hidden 
< .20 < .12 C.3·& 

PAC. / Atrial Bigeminy: 
Premature and abnormal or 

Every Other Beat Is & N/A Irregular 
hidden 

< .20 < .12 C.4-& 

PAC 

PACs / Abberrantly 
Premature and abnormal or 

Conducted PAC: QRS Is N/A Irregular 
hidden 

< .20 < .12 C.3-c 

Bizarre 

Premature and abnormal or 
Nonconducted PAC N/A Irregular 

hidden 
N/A Absent C.3-d 

140 - 250 Abnormal P before each 
Atrial Tachycardia 

bpm 
Regular 

QRS (difficult to see) 
< .20 < .12 C.3-. 

A: 220 - 430 Regular 

Atrial Flutter bpm, V: or Sawtoothed appearance N/A < .12 C.3-£ 

< 300 bpm variable 

A: 350 - 650 

Atrial Fibrillation bpm, V: Irregular Fibrillatory (fine to coarse) N/A .12 C.3-g 

Slow to rapid 

Junctional Rhythm 40 - 60 bpm 
Inverted I absent or after 

Regular 
QRS 

< .12 < .12 C.3-h 

Accelerated Junctional 
60- 100 bpm Regular 

Inverted, absent or after 

QRS 
< .12 < .12 C.4-c 

Rhythm 
Inverted. absent or a.fter 

Junctional Tachycardia > 100bpm Regular 
QRS 

< .12 < .12 C.4-d 

Vari-
Wandering Pacemaker < 60bpm Irregular Multiple forms 

a.ble 
< .12 C.4-. 

Table C.2: Arrhythmia recognition, continue 

Disease Characteristics P Wave PR(sec) 
Fig-

QRS( •• c) ur. 

Right Bundle Branch 
RsR' in VI Before each QRS, identical .12-.20 ~ .12 C.4-£ 

Block 

Left Bundle Branch Block RR' in V5 Before each QRS, identical .12-.20 ~ .12 C.4-g 

Delta wave distorts Usually 
Preexcitation Syndrome Before each QRS, identical < .12 C.3-b 

QRS > .10 

First Degree AV Block Regular rhythm Be£ore each QRS, identical > .20 < .12 C.4-h 

Increas-

Second Degree AV Block QRS dropped in a 
Conduction Intermittent 

ingly 
< .12 C.4-b 

/ Mobit. I (Wenckebach) repeating pattern pro-

longed 

Interval 
~ .11 

Second Degree AV Block Fixed ratio of Usually 
Conduction Intermittent is con- C.2-h 

/ Mobit. 11 conduction (P:QRS) a BBB 
stant 

pattern 

Third Degree (Complete) No relationship Normal but not related to 

AV Block between P and QRS 
None N/A C.2-£ 

QRS 
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:--1 , . .. ..... . . . , ·· · ·n .~ ....... . 
) ~ - . : . . . . '" , ' 

(a) 

Figure C.l: Normal rhythm. 
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(a) Sinus Arrhythmia (b) Sinus Tachycardia 

(c) Sinus Bradycardia (d) Sinus Pau e 

(e) Sinus Arrest (f) AV Block (3rd) 

(g) Isolated PAC's Occur Single (h) AV Block (2nd)/Mobitz II 

Figure C.2: Arrhythmia recognition(l). 
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rrrT~TrT 
(a) Paired PAC's Occur in Two's (b) Preexcitation Syndrome 

(c) Abberrantly Conducted PAC (d) Nonconclucted PAC 

(e) Atrial Tachycardia (f) Atrial Flutter 

(g) Atrial Fibrillation (h) Junctional Rhythm 

Figure C.3: Arrhythmia recognition(2). 
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(a) PAC/Atrial Bigeminy (b) AV Block (2nd) Mobitz I 

(c) Accelerated Junctional Rhythm (d) Junctional Tachycardia 

~1~~I~~~ 
r-'--'~~!I-1~~~M~~ 

(e) Wandering Pacemaker (f) Right Bundle Branch Block 

.-JI'l~A_~, __ A·L-, ____ rl_r_)L,,~L -b-1y-++~ 

-ijl[vffl'-~~'--'~~ 
(g) Left Bundle Branch Block (h) AV Block(lst) 

Figure C.4: Arrhythmia recognition(3). 

MORPHOLOGICAL FILTERING M.B. Sedaaghi 



Bibliography 

[1] M. L. Ahlstrom and VV. J. Tompkins, Automated high-speed analysis of 

holter tapes with microcomputers, IEEE Trans. momed. Eng. BME-30 

(1983), 651-657. 

[2] , Digital filters for real-time ecg signal processing using micropro-

cessors, IEEE Trans. Biomed. Eng. BME-32 (1985),708-713. 

[3] J. A. V. Alste and T. S. Schilder, Removal of basel-ine wander and power

line interference from the ecg by an efficient fir filter with a reduced number 

of taps, IEEE Trans. Biomed. Eng. BME-32 (1985), 1052-1060. 

[4] A. J. Baddeley and H. J. A. M. Heijmans, Incidence and lattice calculus 

with applications to stochastic geometry and image analysis, Applicable 

Analysis in Engineering, Communication, and Computing 6 (1095), no. 3, 

129-146. 

[5] R. A. Balda, The hp ecg analysis program, Trends in computer processed 

electrocardiograms (J. H. vanBemnel and J. 1. Willems, eds.), North Hol

land, 1977, pp. 197-205. 

[6] R. G. Baraniuk, Beyond time-frequency analysis: Energy densities in one 

and many dimensions, Proceedings ICASSP'94 1994 International COll

ference on Acoustics, Speech and Signal Processing (Los Alamitos, CA, 

Adelaide, Australia), IEEE Signal Processing Society, 1994, pp. 111:357-

III:360. 

225 



BIBLIOGRAPHY 226 

[7J D. H. Bennett, Cardiac arrhythmias: practical notes on interpretation and 

treatment, Wright, Bristol, 1985. 

[8J G. Birkhoff, Lattice theory, American Mathematics Society, Providence, 

Rhode Island, 1979. 

[9] E. Braunwald (ed.) , Heart disease, a textbook of cardiovascular medicine, 

vol. 1, W. B. Saunders Co., USA, 1997. 

[10] D. R. Bull, Gray-scale structuring element decomposition, IEEE Trans. 

Industrial. Electronics 43 (1996), no. 5, 549-558. 

[11] C. H. H. Chu and E. J. Delp, Impulsive noise suppresion and background 

normalization of electrocardiogram signals using morphological oper'ator's, 

IEEE Trans. Biomed. Eng. 36 (1989), no. 2, 262-273. 

[12] E. R. Dougherty and E. Kraus, Morphological pseudoconvolutions: one

parameter families of derived filters with increased invariant classes, Cir

cuits, Systems, Signal Process 11 (1992), no. 1, 195-228. 

[13] M. Duff, Parallel processors for digital image processing, Advances in dig

ital image processing (P. Stucki, ed.), Plentum, New York, 1979, pp. 265-

279. 

[14] L. Edenbrandt, B. Devine, and P. W. Macfarlane, Classification of elec

trocardiographic st-t segments-human expert vs artificial neural network, 

European Heart Journal 14 (1993), 464-468. 

[15] M. Eleccion, Automatic fingerprint identification, IEEE Spectrum 10 

(1973), 36-45. 

[16] VV. A. H. Engelse and C. Zeelenberg, A single scan algorithm for qrs de

tection and feature extraction, IEEE Comput. Card. (Long Beach), IEEE 

Computer Society, 1979, pp. 37-42. 

MORPHOLOGICAL FILTERING M.H. Sedaaghi 



BIBLIOGRAPHY 227 

[17] J. Fraden and M. R. Neoman, Qrs wave detection, Med. BioI. Eng. Com

put. 18 (1980), 125-132. 

[18] H. H. Friedman, Diagnostic electrocardiography and vectorcardiography, 

McGraw-Hill, New York, 1985. 

[19] G. M. Friesen, T. C. Jannett, M. A. Jadallah, S. L. Yates, S. R. Quint, and 

H. T. Nagle, A comparison of the noise sensitivity of nine qrs detection 

algorithms, IEEE Trans. Biomed. Eng. 37 (1990), no. 1, 85-98. 

[20] M. C. Fulton, Ecg p wave analysis using neural networks, Master's thesis, 

University of Liverpool, 1994. 

[21] M. Gabbouj, E. J. Coyle, and N. C. Gallagher, An overview of median and 

stack filtering, Circuits, Systems, Signal Process 11 (1992), no. 1, 7-45. 

[22] F. Gerritsen and L. G. Aardema, Design and use of DIP-1: A fast flexible 

and dynamically microprogrammable image processor, Pattern recognition 

14 (1981), 319-330. 

[23] M. J. E. Golay, Hexagonal parallel pattern transformations, IEEE Trans. 

Comput. C-18 (1969), 733-740. 

[24] A L. Goldberger and E. Goldberger, Clinical electrocardiography: a szm

plified approach, Mosby, St. Louis, 1994. 

[25] D. Graham and P. E. Norgren, The diJJ3 analyzer: A parallel/serial golay 

image processor, Real-time medical image processing (M. Qnoe, K. Pre

ston, and A. Rosenfeld, eds.), Plentum, London, 1980, pp. 163-182. 

[26] A. Grasselli, On the automatic classification of fingerprints- some consid

erations of the linguistic interpretation of pictures, Methodologis of pat

tern recognition (S. Watanabe, ed.), Academic, New York, 1969, pp. 253-

273. 

MORPHOLOGICAL FILTERING M.H. Sedaaghi 



BIBLIOGRAPHY 228 

[27] F. Gritzali, G. Frangakis, and G. Papakonstantinou, Detection of the p 

and t waves in an ecg, Computers and Biomedical Research 22 (1989), 

83-91. 

[28] C. Gu, Multivalued morphology and segmentation-based coding, PhD the

sis, Ecole Poly technique Federale De Lausanne, 1995. 

[29] D Gustafson, Automated vca interpretation studies using signal analysis 

techniques, Research report R-1044, Charles Stark Draper Lab., 1977. 

[30] H. Hadwiger, Minkowskische addition und subtraktion beliebigcr punkt

mengen und die theoreme von Erhard Schmidt, Mathematische Zeitsch

rift 53 (1950), no. 3, 210-218. 

[31] J. R. Hampton, The ecg in practice, Chuchill Livingstone, Edinburgh, UK, 

1986. 

[32] W. J. Hankley and J. T. Tou, Automatic fingerprint interpretation and 

classification via contentual analysis and topological coding, Pictorial Pat

tern recognition (G. C. Cheng, R. S. Ledley, D. K. Pollack, and A Rosen

feld, eds.), Tompson, Washington DC, 1968, pp. 411-456. 

[33] R. M. Haralick, S. R. Sternberg, and X. Zhuang, Image analysis using 

mathematical morphology, IEEE Trans. Pattern Anal., Machine Intell. 

PAMI-9 (1987), no. 4, 532-550. 

[34] M. Hedlund, G. H. Granlund, and H. Knutsson, A consistency operation 

for line and curve enhancement, Conf. on Pattern Recognition and Image 

Processing, 1982, pp. 93-96. 

[35] H. J. A. M. Heijmans and C. Ronse, Annular filters for binary images, 

Research report BS-R9604, C\VI, 1996, Submitted to IEEE Trans. Image 

Proc. 

MORPHOLOGICAL FILTERING M.H. Scdaaghi 



BIBLIOGRAPHY 229 

[36] H.J.A.M. Heijmans, Morphological Image Operators, Academic Press, 

Boston, 1994. 

[37] , Mathematical morphology: Basic principles, Proceedings of Sum-

mer School on Morphological Image and Signal Processing (Zakopane, 

Poland), 1995. 

[38] \V. P. Holsinger, A qrs preprocessor based on digital differentiation, IEEE 

Trans. Biomed. Eng. BME-18 (1971), 212-217. 

[39] P. T. Jackway, Morphological scale-space with application to 3d object 

recognition, PhD thesis, Queensland University of Technology, 199·4. 

[40] M. Kass and A. Witkin, Analysing oriented patterns, Comput. Vision, 

Graphics, Image Processing 37 (1987), 362-385. 

[41] S. Khorsandi and A. N. Venetsanpoulus, Hierarchical fuzzy approach for 

fingerprint processing, Nonlinear image processing, vol. 1902, SPIE Pro

ceedings, no. IV, 1993, pp. 224-234. 

[42] 1\1. Khosravi and R.\V. Schafer, Implementation of linear digital filters 

based on morphological representation theory, IEEE Trans. Software En

grg. 42 (1994), no. 9, 2264-2275. 

[43] J. C. Klein, L. Cahn, C. Ray, and G. H. Urban, The texture analyzer, J. 

Microscopy 95 (1977), 349-356. 

[44] S. J. Ko, A. Morales, and K. H. Lee, Fast recursive algorithms for mor

phological operators based on the basis matrix representation, IEEE Trans. 

Image Proc. 5 (1996), no. 6, 1073-1077. 

[45] M. K. Kouta and R. A. Ragab, A new technique for fingerprint recognition, 

The egyptian computer journal 23 (1995), no. 2, 117-131. 

MORPHOLOGICAL FILTERING M.H. Sedaaghi 



BIBLIOGRAPHY 230 

[46] R. Kresch, Morphological image representation for coding applications, 

PhD thesis, Israel Institute of Tech., 1995. 

[47] B. Kruse, Design and implementation of a pict'ure processor, PhD thesis, 

University of Linkoeping, Linkoeping, Sweden, 1977. 

[48] S. Lawrence, C. L. Giles, A. C. Tsoi, and A. D. Back, Face recognition: A 

convolutional neural network approach, IEEE Trans. on Neural Networks 

8 (1990), no. 1,98-113. 

[49] M. D. Levine, Vision in Man and Machine, vol. McGraw-Hill Series in 

Electrical Engineering, McGraw-Hill, New York, 1985. 

[50] P. M. Mahoudeaux, Simple microprocessor-based system for on-line ecg 

analysis, Med. BioI. Eng. Comput. 19 (1981), 497-500. 

[51] D. Maio and D. Maltoni, direct gray-scale minutiae detection in finger

prints, IEEE Trans. on Pattern Anal. and Machine Int. 19 (1997), no. 1, 

27-40. 

[52] P. Maragos, A representation theory for morphological image and signal 

processing, IEEE Trans. Pattern AnaL, Machine Intell. 11 (1989), no. G, 

586-599. 

[53] P. Maragos and R. W. Schafer, Morphological systems for multidimen

sional signal processing, Proceedings of the IEEE 78 (1990), no. 4, G90-

no. 

[54] G. Matheron, Random sets and integrated geometry, \Viley, New York, 

1975. 

[55] B. M. Mehtre, Fingerprint image analysis for automatic identification, 

Machine Vision and Applications 6 (1993), no. 2-3, 124-139. 

MORPHOLOGICAL FILTERING M.H. Sedaaghi 



BIBLIOGRAPHY 231 

[56] A. Menrad, Dual microprocessor system for card'iovascular data acquisi

tion, processing and recording, Proceedings 1981 IEEE Int. Conr. Indus

trial Elect. Contr. Instrument., IEEE, 1981, pp. G4-~G9. 

[57] B. Moayer and K's. Fu, A tree system approach for fingerprint pattern 

recognition, IEEE Trans. Comput. C-25 (1976), no. 3, 262-274. 

[58] P. F. M. Nacken, Image analysis methods based on hierarchies of gmph.r; 

and multi-scale mathematical morphology, PhD thesis, University of Am

sterdam, 1994. 

[59] M. Okada, A digital filter for the qrs complex detection, IEEE Trans. 

Biomed. Eng. BME-26 (1979), 700-703. 

[60] O. Pahlm and L. Sornmo, Data processing of exercise ecg's, IEEE Trans. 

Biomed. Eng. BME-34 (1987),158-165. 

[61] T. Pavlidis, A critical survey of image analysis methods, Proc. 8th. Intcr

nat. Conf., Pattern Recognition, 1986, pp. 502-511. 

[62] S. C. Pei and C. C. Tseng, Elimination of ac interference in electro

cardiogram using iir notch filter with transient suppression, IEEE Trans. 

Biomed. Eng. 42 (1995), no. 11, 1128-1132. 

[63] C. V. K. Rao and K. Balck, Finding the core point in a fingerprint, IEEE 

Trans. on Computers C-27 (1978), no. 1, 77-81. 

[64] , Type classification of fingerprint: A syntactic approach, IEEE 

Trans. on Pattern Anal. and Machine Int. PAMI-2 (1980), no. 3, 223-

231. 

[65] N. K. Ratha, K. K. Shaoyun, and A. K. Jain, A real-time matching system 

for large fingerprint databases, IEEE Trans. on Pattern Anal. and Machine 

Int. 18 (1996), no. 8, 799-813. 

MORPHOLOGICAL FILTERING M.H. Sedaaghi 



BIBLIOGRAPHY 232 

[66] B. R. S. Reddy, P. E. Elko, D. W. Christenson, and G. 1. Rowlandson, 

Detection of p waves in resting ecg:a preliminary study, Proceedings of the 

IEEE 80 (1992), 87-90. 

[67] B. R. S. Reddy, P. P. Elko, D. \V. Christenson, and G. 1. Rowlandson, 

Detection of complex atrial arrhythmias in resting ecg, Proceedings of 

Computers in Cardiology (Bethesda, Maryland), IEEE Computer Soci

ety, September 1994, pp. 777-780. 

[68] P. Salembier, Morphological multiscale segmentation for image coding, Sig

nal Processing 38 (1994), 359-386. 

[69] M. H. Sedaaghi, Direct implementation of open-closing in morphological 

filtering, Electronics Letters 33 (1997), no. 3, 198-199. 

[70] M. H. Sedaaghi and P. J. G. Lisboa, A direct technique for morpho

logical jilters, Fifth Iranian Conference on Electrical Eng. (Tehran-Iran) 

(M. Ehsan, ed.), Sharif Univ. publication, May 1997, pp. 7.80-7.85. 

[71] M. H. Sedaaghi and Q. H. Wu, Application of morphological jiltering in fin

gerprint processing, Proceeding of the 3rd international Anual Computer 

Conference of the Computer Society of Iran (CSICC'97) 23-25 December, 

1997 (Tehran-Iran), Iran Univ. of Science and Tech., 1997, pp. 31-36. 

[72] , Real-time implementation of grey-scale morphological operators, 

Electronics Letters 33 (1997), no. 21, 1761-1763. 

[73] , Hardware for grey-scale morphological jiltering, CISST'98: The 

Proceedings of the 1998 International Conference on Imaging Science, Sys

tems, and Technology, July 6-9, 1998 (Monte Carlo Resort & Casino, Las 

Vegas blvd., Las Vegas, Nevada, USA), CSREA Press, 1998, pp. 389- 395. 

[74] , The power of morphological jilters alone and when combined with 

linear jiltering, ISMM'98: International Symposium On Mathematical 

MORPHOLOGICAL FILTERING M.H. Sedaaghi 



BIBLIOGRAPHY 233 

Morphology and its Applications to Image and Signal Processing IV, June 

3-5,1998 (Amsterdam, The Netherlands) (H. J. A. M. Heijmans and J. n. 

T. M. Roerdink, eds.), Computational Imaging and Vision, Kluwer Aca

demic Publishers, 1998, pp. 375-381. 

[75] , A reliable hardware for grey-scale morphological filter'ing, Pro-

ceedings of First International Symposium on Communication Systems 

and Digital Signal Processing 6-8 April 1998 (Sheffield-UK) (Z. Ghas

semlooy and R. Saatchi, eds.), vol. 1, Sheffield Hallam University, 1998, 

pp. 147-150. 

[76] , Weighted morphological filter, Electronics Letters 34 (1998), 

no. 16, 1566-1567. 

[77] , Morphological filtering and convolution, UKACC'98 (United 

Kingdom Automatic Control Council) International Conference on CON

TROL, University of Wales, Swansea, UK, 1-4 Sep. 1998, lEE, To appear. 

[78] J. Serra (ed.), Image analysis and mathematical morphology, Academic 

Press, New York/London, 1982. 

[79] , Morphological filtering: an overview, Signal Processing 38 (1994), 

3-11. 

[80] J. Serra and P. Soille, Mathematical morphology and its applications to 

image processing, Kluwer Academic Publishers, The Netherlands, 1994. 

[81] J. Serra and L. Vincent, An overview of morphological filtering, Circuits 

Systems and Signal Processing 11 (1992), no. 1, 48-108. 

[82] B. G. Sherlock, D. M. Monro, and K. Millard, Algorithm for enhancing 

fingerprint images, Electronics Letters 28 (1992), no. 18, 1720-1721. 

MORPHOLOGICAL FILTERING M.H. Sedaaghi 



BIBLIOGRAPHY 234 

[83] F. Y. Shih and P. Puttagunta, Recursive soft morphological filters, IEEE 

Trans. Image Proc. 4 (1995), no. 7, 1027-1031. 

[84] J. Song and E. J. Delp, A study of the generalized morphological filter, 

Circuits, Systems, Signal Process 11 (1992), no. 1, 229-252. 

[85] S. R. Sternberg, Grayscale morphology, Compo Vision, Graph. and Image 

Proc. 35 (1986), no. 3, 333-355. 

[86] E. N. Szekely and V. Szekely, Image recognition problems of fingerprint 

identification, Microprocessors and Microsystems 17 (1993), 110. 4, 215-

218. 

[87] P. E. Trahanias, An approach to qrs complex detection using mathematical 

morphology, IEEE Trans. Biomed. Eng. 40 (1993), no. 2, 201-205. 

[88] R. van den Boomgaard, Mathematical morphology: Extensions toward8 

computer vision, PhD thesis, University of Amsterdam, 1992. 

[89] D. Wang and D. C. He, A fa8t implementation of J-D grayscale morpholog

ical filters, IEEE Trans. Circuits and Systems 41 (1994), no. 9, 634-636. 

[90] P. D. Wendt, E. J. Coyle, and N. C. Gallagher, Stack filters, IEEE Trans. 

Acoust. Speech Signal Process. ASSP-34 (1986), 898-911. 

[91] Y. Yao, R. Acharya, and S. Srihari, Image enhancement using mathe

matical morphology with adaptive structuring elements, Nonlinear image 

processing, vol. 2180, SPIE Proceedings, no. V, 1994, pp. 198-208. 

MORPHOLOGICAL FILTERING ,- , ;'.' i'¥ 
L: "':,\ru,-

M.H. Sedaaghi 


