UNIVERSITY of LIVERPOOL

Morphological Filtering
In Signal/Image Processing

Thesis submitted in accordance with the
requirements of the University of Liverpool
for the degree of Doctor of Philosophy

in
Electrical Engineering and Electronics
by

Mohammad Hossein Sedaaghi , BSc, MSc

June 1998



In The Name Of The Most High

Morphological Filtering

In Signal/Image Processing

by

Mohammad Hossein Sedaaghi

Copyright 1998

it



To:

Dedication

My beloved
parents and brotherswho
encouraged me, My super-
visor who enabled me, My
friends and staff in Liverpool
University who helped me,
Sahand University of Tech-
nology who sponsored
me, and My wife and
sons who put up
with me.
Q

il



Acknowledgements

I would like to express my gratitude to my supervisor Professor Q.H. Wu, not
only for his dedicated and thorough supervision, but also for his wise advice
at moments of decision, his support, and encouragement at moments of uncer-
tainty , and for being source of inspiration throughout my Ph.D. programme.
He gave me intuition coming from the mathematical beauty and guided me to
enthusiasm for imagination.

I owe a debt of thanks to Prof. P. J. G. Lisboa who gave me initial idecas
about the research.

I would like to thank Dr. Goodyear who showed me the beauty of informa-
tion theory, coding and signal processing, Dr. Cheetham for signal processing
course, Dr. Shimmin who exposed me to Matlab-package approach.

Also, I have been very fortune to be surrounded by some very giving friends,
and I would like to take this opportunity to express my appreciation.

I would like to acknowledge the financial support provided by Sahand Uni-
versity of Technology, Tabriz, Iran.

I would like to thank Professor Michael Weindling, Dr. Rosaline Garr and
the rest of the staff in Neonatal Unit, Liverpool Women’s Hospital who pro-
vided me a chance to develop the ECG algorithms for recording and analysing
fetal ECG. I am deeply grateful to the Royal Liverpool University Hospital and
Marquette Electronics Co. Ltd., especially Dr. Shankara Reddy for providing
ECG data and guiding us to a better ECG analysis, Thorn EMI Co. for pro-
viding fingerprint samples, NIST ( National Institute of Standards and Tech-
nology, Gaithersburg, MD,USA) for providing fingerprint classifier database
on a CD, CIS (Center for Imaging Science, Electrical Engineering Department,
Washington University) for providing valuable images, and The University of
Texas Health Science Center in San Antonio for priceless images available in

“Image Tool” package.

iv



Also I would like to thank Dr. R. van den Boomgaard for providing me
valuable sources related to mathematical morphology such as his PhD. thesis
and also documents of ASCI course. I would like to thank Dr. H. J. A. M.
Heijmans, the editor of morphology digest. I was a member of the list and
found it very useful and updated.

Last, but certainly not least, my warmest appreciation goes to my wife,
sons, parents and brothers for giving me the love and understanding that with-
out their persistent encouragement, I would not have been able to complete

this research.



Abstract

Morphological Filtering

In Signal/Image Processing
by

Mohammad Hossein Sedaaghi

The objective of this research is to develop a methodology which meets different
specifications and representations of fast, efficient and real-time signal/image
processing by means of mathematical morphology. Mathematical morphol-
ogy is a relatively new non-linear theory for image processing, based on set
theory. It considers images as sets which permits geometry-oriented transfor-
mations of the images. This approach seems very appropriate for dealing with
objects in images, and it has gained increasing attention in recent years. It
was first developed for binary images, then extended for greyscale images, and
finally, generalised for sets in a generic mathematical space, called complete
lattices. The practical realisation of the algorithms is one of the major motiva-
tions of this research. The differences, advantages and drawbacks between our
approach and traditional methods are discussed. This thesis begins with a sys-
tematical introduction to mathematical morphology. It first explains historical
background of mathematical morphology (MM). Then it tries to convince the
reader with the ability of MM as an advanced nonlinear tool for image process-
ing. This work also performs a comparison between linear and morphological
representations. Various morphological operations and their definitions are
presented. The profound algebraic similarity, and the qualitative differences
between the approaches are presented and analysed. After the definition of the
operators, a great effort is done to propose fast and time-saving algorithms.

Real-time implementation of morphological operators is then introduced. A

vi



hardware architecture for parallel computation of morphological operators is
presented. Convolved morphological filtering as hybrid representations com-
bining both linear and morphological approaches, are also considered. New
morphological operators, called weighted morphological operators, are investi-
gated which their efficiency dominate over classical morphological operators.
Some applications of morphological filtering in fingerprint processing and ECG
waves detection are demonstrated. In these applications, many approaches,
such as directional filtering and syntactic analysis, to pattern recognition and
segment detection are involved.

Our major contributions are mainly concentrated on some critiques about
the conditions of defining the opening and closing operators, introducing fast al-
gorithms for open-closing and close-opening, generalisation of real-time imple-
mentation of morphological operators in 1-D and 2-D, hybrid representation of
MF's with convolution techniques, introducing new novel operators as weighted
morphological filters, application of MF as a pre-processor for fingerprint pro-

cessing, and as efficient technique for ECG wave filtering and analysis.
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Chapter 1

Introduction

1.1 Motivation

Computer science, mathematics and electrical engineering have very broad
and rapidly expanding fields of study in many tasks of computer vision and
image processing [58]. Jackway [39] addresses Levine's ( [49]) description of
computer vision as “Computer vision largely deals with the analysis of pictures
in order to achieve results similar to those obtained by man.” Human being has
a visual system that enables him to see and process a large amount of visual
information quickly, easily and without a great effort. However, for example, for
counting and measuring particles in images iteratively, machines show better
performance without getting tired [58]. The important problem is that all
information is buried in a raw image implicitly, but not in a useful form, and
images are ambiguous at each of many levels of a contextual hierarchy. Image
analysis tries to identify specific subparts of the image and to analyse them
to extract useful information, and present them in a form that emphasises the
desired characteristics. However there is no general purpose automatic vision
system, yet, compared to that of the human [58].

Different techniques are applied in signal processing depending on the type
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of information carried by the signal. Image processing has thus developed its
own set of techniques apart from those used widely in signal processing [39].
Pavlidis [61] says that the recent years of research have only had a small
progress in practical applications of image analysis. A multitude of method-
ologies and techniques exist without a general framework indicating the scope
of each. There is no coherent theory as in classical physics and mathematics,
for example. A widespread attitude, used by researchers, is empiricism: try
something (or even anything), and see what happens ( [39]).

The important point is that analysis technique must be matched to the
way in which information is being carried in the signal [6] (as Jackway [39]
addresses).

Images in general are binary or multi-valued. Binary images are a mapping
from 2D to 1D space, where the range is 0 or 1. There are different multi-

valued image mapping as shown in table 1.1 ( [28]) mapping from mD — nD.

Table 1.1: Several types of multivalued images.

Mapping mD - nD Description
fi(zy) =Y 221 grey-tone image
J (x5 2) =Y 31 3D grey-tone image
fi(myt) =Y 3—1 moving grey-tone image sequence
[ (zy) - (R;G; B) 23 colour image
Ji(zy32) -+ (R;G; B) 353 3D colour image
fi(z5ut) - (R, G;B) 33 moving colour image sequence
[z y) = (Vz; Vy) 22 dense motion vector fields
fi(ziyst) -+ (V; Vy) 32 dense motion vector sequence
T (@yist) = (RG; B) 43 4D colour image
[:@myizt) - (aB,y,7,7 u4,...) 4? real world

MORPHOLOGICAL FILTERING M.H. Sedaaghi



1.2 MM in image processing 6

1.2 Mathematical morphology in image pro-

cessing

1.2.1 Historical notes

Matheron [54] and Serra [78] are considered as the leaders of the field
of mathematical morphology (MM). They initiated a theory for the analysis
of spatial structures in image processing at the Fontainebleau research cen-
tre of the Paris School of Mines in 1964 [80], where Matheron was asked to
investigate the relationship between the geometry of porous media and their
permeabilities, and when J. Serra, at the same time was asked to quantify the
petrography of iron ores, in order to predict their milling properties [78]. Due
to their pioneering work, MM has achieved the status of a powerful tool in
image processing with applications in materials science, microscopic imaging,
pattern recognition, medical imaging, and computer vision. MM has become an
important formalism in image processing and computer vision as a geometrical
approach and is considered as a powerful tool for geometrical shape analysis
( [88]). The original theoretical work of Matheron and Serra as a quantitative
description of shape and size was initially used for binary images. However it
can now be applied to grey-scale images and even for complete lattices [36],
and can be realised by special hardware (72, 75, 44].

MM is a branch of digital image processing and analysis that uses con-
cepts from algebra (set theory, complete lattices) and geometry (translation,
distance, convexity) [37]. In set-theoretic methodology, signals are modeled
as sets, systems (signal transformations) are viewed as set mappings, and
translation-invariant systems are uniquely characterised by special collections
of input signals [52].

Haralick [33] addresses some applications of morphological filtering in Golay

logic processor [23], Diff3 [25], PICAP [47], the Leitz Texture Analysis System

MORPHOLOGICAL FILTERING M.H. Sedaaghi
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TAS [43], the CLIP processor arrays [13], and the Delft image processor DIP
[22].

1.2.2 Definitions

Mathematical morphology (MM) is not only a theory but also a powerful
practical image analysis technique. “It is mathematical in the sense that the
analysis is based on the set theory, topology, lattice algebra, random functions,
etc. and it is called ‘Morphology’ since it aims at analysing the shape and
form of the objects” (Serra [80]). Appropriate MM operations, as nonlinear
transformations, tend to simplify image data, preserving their essential shape
characteristics, and eliminate irrelevancies, by modifying geometrical features
of an image locally [33]. The language of MM is set theory. Sets in MM
represent the shapes manifested on binary or grey tone images [33]. The main
notion in MM is the interaction between the image under analysis and a struc-
turing element (SE), where images and SEs are considered as sets of points
and the operations come from set theory [88]. MM can estimate and measure
many useful geometric features in an image such as shape, size, connectivity
and so on, based on set-theoretical methodology, employing specific sequences
of neighbourhood transformations. Like any theory, MM has a perspective
which allows it to focus on certain phenomena within images. It views images
as set theory and geometry, thus, distinguishing itself from other image pro-
cessing theories, e.g., syntactic theories based upon generative grammars and
signal processing theories based on Fourier analysis. MM provides an algebraic
formulation to apply neighbourhood operations on images. SE, as a probe,
slides through the image as a moving window, inspects its interaction with
the image, and detects specific features in the neighbourhood of every point
in the image. SE behaves as an elementary building block. Therefore a-priori

knowledge of the information content of the image can help to choose a proper
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SE [88]. As the identification of objects, object features, and assembly defects
correlate directly with shape, MM is considered as a priceless tool for machine
vision and recognition processes for robots [33]. In practice we consider mor-
phological algorithms for extracting boundaries, connected components, the
convex hull, and the skeleton of a region. Several methods, however, have been
developed for region filling, thinning, thickening, and pruning that are often
used in conjunction with these algorithms as pre- or post-processing steps. Also

we have applied MM in ECG waves detection and fingerprint processing.

1.3 " MF versus non-MF

Serra in [79] says: “When one scrutinises the behaviour of the scientists
who access morphological filtering for the first time, a number of their reactions,
more or less implicitly, refer to linear processing. They tend to extrapolate, if
not the results, at least the style and the a-priori of the linear approach. Pro-
gressively then, they usually set themselves free from these crutches.” Boom-
gaard [88] discusses the differences between two techniques as: “ In linear
image processing the basic underlying assumption is the superposition of vi-
sual stimuli. The visual signal is thought of as the weighted addition of basic
signals. This assumption of linearity is questionable in case the image is formed
by projection, where one object completely hides another object behind it. Due
to using non-linear transformations, it is impossible to reconstruct the original
image.”

Some major differences between the two approaches are listed in Table 1.2

based on [79].
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Table 1.2: Morphological filtering versus convolution.

Features MM | Convolution
Reversibility No Yes
Unique algebraic structure No Yes
Idempotence and loss of Information | Yes No
Defined in complete lattice Yes No
Iteration Yes No
Flatness (v (log(f)) = log(v(f))) Yes No

1.4 Citations

MM operations have been applied successfully to a broad variety of im-
age processing/analysis tasks (including noise suppression, image enhancement,
coding, feature extraction, thinning, texture analysis, and shape recognition)
encountered in diverse areas such as biomedical image processing, cellular au-
tomata, electron microscopy, astronomy, and automated industrial visual in-
spection [52]. We have also applied MF as a pre-processor in fingerprint
processing and as an efficient technique in ECG wave analysis.

A lot of scientists and research students are now working on the theory and
application area of mathematical morphology. Appendix A addresses some of

important English citations, categorised separately in tables.

1.5 Overview of the thesis

In the subsequent chapters we will undertake the following tasks:

e Chapter 2 introduces a theoretical background on mathematical mor-
phology. It also explains the existing confusion in literature about the

definition of the operators. Binary and grey-scale operators are defined.
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Properties of morphological operators are also discussed. Our critique
about extensivity of closing and anti-extensivity of opening is also in-

cluded.

e Chapter 3 presents fast algori_thms in 1-D and 2-D for morphological
erosion, dilation, opening, closing, open-closing and close-opening. It
covers our contributions to the development of fast algorithms for open-
closing and close-opening. The algorithms applied in this chapter are
direct implementation of the morphological operators, by single one-pass
procedures. They are computationally simple and very efficient with a
18-20 % reduction in computational effort for morphological operations
compared with the fastest alternative method, and an order of magnitude
improvements over naive implementations for large structuring elements.
All the algorithms mentioned above, have been realised by a user-friendly
package designed by author for 1-D and 2-D morphological systems de-

sign.

e Chapter 4 improves and generalises real-time implementation of 1-D
and 2-D GS morphological operators, letting SE have its origin at any
point of its domain. It shows the superb efficiency of the proposed meth-
ods. Schematic diagrams of hardware implementations are presented.
Our hardware architecture for real-time MF computation avoids unnec-
essary operations and doesn’t keep intermediate results. Therefore it
is much faster than the classical cascade methods for opening, closing,
open-closing and close-opening operations in which the intermediate re-
sults are needed. It leads to demanding less memory, comparisons, addi-

tions/subtractions and less computational time.

e Chapter &5 proposes a technique to combine MF with convolution. It

emphasizes the resultant operators’ efficiency both in time and frequency
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domain. It suggests the corresponding hardware architecture. The CMF
performs based on morphological operations and their convolution with
selected transfer functions and offers highly accurate characteristics of
high-, low- and band-pass filtering. Designing a suitable structuring el-
ement based on the characteristics of the input signal is discussed and
hardware implementation of CMF is also investigated. We have discussed
the design of CMF and shown its super performance in time domain
and accurate characteristics in frequency domain when applied for sig-
nal/image filtering. Its outstanding performance can be seen in both

time and frequency domain.

e Chapter 6 introduces novel operators called weighted morphological op-
erators (WMOs). Using WMOs, weighted morphological filters (WMF's)
are designed which illustrate their superb performance compared to clas-
sical MFs. The newly introduced operators employ a weighted structur-
ing element and apply multiplication or division in place of addition and
subtraction in classical morphological operations. Experimental results
prove that the new operators’ performance dominate over classical ones

for signals/images buried in salt&pepper, speckle and Gaussian noises.

o Chapter 7shows how MF can be applied for fingerprint classification as a
pre-processor. It also introduces a syntactic approach to fingerprint clas-
sification including the details of pattern classification and string anal-
ysis. The application of MF speeds up pre-processing with a reliable
output compared to the existing methods. The proposed algorithm for
fingerprint classification extends and improves the existing approaches
in literature. The algorithm, presented in this chapter, shows an im-
provement of fingerprint processing and classification, compared to the
existing methods, owing to a powerful morphological pre-processor and

robust technique for smoothing and an efficient grammar. It can be im-
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plemented to process and match fingerprints with reliability.

o Chapter 8 is about ECG waves detection using MF in different stages.
Following an introduction and definition of the terms in ECG, a pre-
processor based on MF is introduced. It emphasises the efficiency of the
applied pre-processor in removing noise and baseline drift without losing
necessary details of the signal. The existing QRS detectors are reviewed
and our contribution is included. The proposed method for ST — T
detection is then followed. A residual signal is produced, resulting from
interpolation of QRS and subtracting the median(s) of ST — T segments
from the corresponding parts. Later step is about analysing the residue

and detecting P waves, even when buried on T waves.

o Chapter 9 concludes the thesis and discusses about the limitations of

morphological approach and future work.

o Appendiz A addresses some of important English citations categorised

separately in tables.
o Appendiz B presents the existing relations and proof of some properties.

o Appendiz C introduces some of arrhythmia types adopted from litera-

ture.

1.6 Major contributions

1. Fast algorithms for 1-D and 2-D GS morphological operators
( [69, 70]).

2. Real-time implementation of GS morphological filtering ( [72,
75, 73]).

3. Convolved morphological filters ( [74, 77]).
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4. Linearly-weighted morphological operators ( [76]).
5. Morphological filters in fingerprint processing ( [71]).

6. ECG waves detection using morphological filtering.
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Chapter 2

An introduction to MM

2.1 Introduction

The previous chapter established a systematic definition of MM. This chap-
ter focuses on the exact definition of the operators which will be used in later
chapters. It explains the existing confusion in literature about the definition
of the Minkowski addition/subtraction and binary dilation/erosion, and in-
troduces a specific and unique definition for the above-mentioned operators.
Complete lattice is briefly discussed highlighting its relation to the definition
of the grey-scale morphological filter (GSMF). Different approaches for GSMF
are explained. Binary operators are discussed as the original MF operators.
Our critique about the definition of opening and closing is also highlighted.

Morphological operators are classified into three groups [53]: (1) set pro-

“cessing (SP) systems: in which both the input and output are binary, (2)
function processing (FP) systems: in which both the input and output are
grey-scale, and (3) function-and-set processing (FSP) systems: which are sub-
classes of FP systems and can produce binary outputs whenever the input is

also binary. These systems will be defined in the following sections.

14
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2.2 Literature confusion in definition of binary

operators

There exists a confusion in the literature about the definitions of binary
dilation and erosion and also Minkowski addition and subtraction. Table 2.1
compares the important existing definitions. The rest of the definitions by
other authors are mainly similar to those of Table 2.1. We use our own nota-
tions that are rather similar to the next definitions for grey-scale ones, whereas
we use a reflected SE (structuring element) for dilation, and a non-reflected
SE for erosion. Therefore the duality will exist between Minkowski addition
and subtraction in one hand and dilation and erosion in another. When SE
is symmetric regarding to its origin, the definitions of the Minkowski addition
and subtraction will be similar to those of dilation and erosion. In Table 2.1,
A and B denote the input image and the structuring element, respectively,
and B denotes the reflection of B around its origin which will later be defined
in this chapter. Figure 2.1 shows the result of the Minkowski addition and
subtraction, dilation and erosion of the test image A (Fig. 2.1-a) with differ-
ent structuring elements whose origins are in different positions. The sign +
denotes the origiﬂ of SE in parts g, h, m, n, s and t of Figure 2.1. Foreground
and background are denoted “[1” and “.” respectively. Figure 2.1-b shows
the complement of the image A. The second row of Figure 2.1 (i.e. ¢, d, e,
f) is the shifted case of the third row (i.e. i, j, k, 1) as the SEs applied (i.e.
By and B, shown in part g and m) differ only on the position of their origins.
The complete details in section 2.5 illustrate the effect of the shift in the op-
erations. B is symmetric (B (Figure 2.1-s) = B (Figure 2.1-t)), therefore
the result of the Minkowski addition (A % Bj; as shown in Figure 2.1-0) is the
same as of the dilation (A @ Bj as shown in Figure 2.1-p), and the result of

M
the Minkowski subtraction (A © Bs as shown in Figure 2.1-q) is the same as

MORPHOLOGICAL FILTERING M.H. Sedaaghi



2.2 Literature confusion in definition of binary operators

16

of the erosion (A © By as shown in Figure 2.1-r).

Table 2.1: Dilation, erosion, Minkowski addition and subtraction.

|§ource ”Nlinkow-ki ndditionIMinkowski lubtrnction“

Binary dilation l

Binary erosion ”

Hadwiger|{a+b:a € A,bE B} {z:2+b€ A, b€ B}

[30]

Matheron A®B= AOB=(A®B) = [[A@B={r:ANB, #0} A6 B={z:B. C A}

[54) {a+b:a € A b€ B} {z:B+zC A} ={a-b:a€ Abe B} |={zx:z2+b€ A,bE B}

[Sternberg A®B= A© B ={z:(B)z C A} A® B = 1O B={z:(B)s C A}

(85] {a+b:a€ Abe B}Yf={c:x+b€ A,beE B} {at+b:a€ Abe B} |={z:z2+b€ A bE B}

Haralick A®B= | (A)yp = A9B= N (A)-p =

beB bEB

(33] {a+b:a € Abe B} {z:Bas C A}

Our ABB= U(A)y=|A06 B=(A°® B) = A®B= U (A)y= |AOB=(A°@B) =
bEB beB

notations:|[{a +b:a € A,b € B} {z:(B). CA {a+b:a € Abe B} {z:(B) C A}

111
T
1

essessssee
.

essecessee
e

essse
oo
oo

M

Figure 2.1: Binary operators with different SEs: (a):A, (b):A¢, (¢):A & By,
M £ M

(d):A @ By, (e):A © By, (f):A© By, (g):By, (h):By, (i):A & B, (j):A ® By,

M 2 M M
(k):A © By, (1):A© By, (m):By, (n):By, (0):A @ Bs, (p):A® Bs, (q):A © Bs,
(T):A &) Bg, (S)IB;}, (t)B3

MORPHOLOGICAL FILTERING

M.H. Sedaaghi



2.3 Notion of a complete lattice 17

2.3 Notion of a complete lattice

MM is the application of the lattice theory to the spatial structures. The
properties of a single binary relation “<” concerns the pure lattice theory (8].
This relation is assumed to have certain properties, the most basic of which
lead to the following concept of a “partly ordered set” or “poset’. A poset is
a set in which a binary relation z < y is defined, which satisfies for all z, y, z

the following conditions: ( [81])
1. Reflezive: For all z, z < z.
2. Antisymmetry: f z <y and y < z, then z = y.
3. Transitivity: If <y and y < z, then z < 2.
We will define some definitions as follows ( [8], [81]):

1. Isomorphism: A function § : P — Q from a poset P to a poset Q is called

order-preserving or isotone if it satisfies
z <y=0(z) <0(y). (2.3.1)

An isotone function which has an isotone two-sided inverse is called iso-
morphism. In other words, an isomorphism between two posets P and

Q is a bijection (bijection means one-one correspondence) which satisfies

Eq. 2.3.1 and also
f(z) <O0(y) =>z<y. (2.3.2)
An isomorphism from a poset P to itself is called an automorphism.
2. Duality: The converse of any partial ordering is itself a partial ordering.

‘3. Antitone: A function 0 : P — Q is antitone if and only if

z <y = 0() > 0(y), (2.3.3)
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0(z) <0(y)=>z>y. (2.3.4)

A bijection € which satisfies Eqs. 2.3.3- 2.3.4 is called a dual isomor-
phism.

4. Lattice: A lattice T is a poset P if any two elements of it (z and y) have
a greatest lower bound (g.1.b. or inf) denoted by z Ay, and a least upper
bound (L.u.b. or sup) denoted z V y.

5. Complete lattice: A lattice T is complete when each of its subsets H has
a Lub. and a glb. in 7. In other words, a complete lattice (either
on the Euclidean space R™ or on digital space Z") is a partially ordered
set (T,<) in which every subset H{ C T has a supremum and infimum
denoted \/ 3 and A H respectively [4]. Any finite lattice or lattice of
finite length is complete. Not every lattice is complete: thus the rational
numbers are not complete, and the real numbers (in their natural order)

are not complete unless oo are adjoined as universal bounds.

In a lattice, any logical consequence of a choice of ordering remains true when
we commute the symbols V and A, and < and >. This is called the principle
of the duality with respect to the order ( [81]). For complete lattice we can
write ( [46]):

1. Commutativity:
XvY=YVX |, XAY=YAX (2.3.5)
2. Associativity:
(XVY)VZ=XV(YVZ),(XAY)AZ=XAN(YAZ). (2.3.6)
3. The law of absorption:

XAXVY)=X |, XVXAY)=X. (2.3.7)
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The following section explains function lattice briefly. Other kinds of lattices

may be found in literature as [8].

2.4 Function lattice

Let E be an arbitrary space. The class F of the extended (including +00)
real-valued functions u : F — R is obviously ordered by the relation u < v, if,

for each z € E, u(z) < v(z) and constitutes a complete lattice.

2.4.1 Functions and umbrae

An extension of morphological operators to functions is due to Sternberg
[85], who uses the representation of a n-D function f(z) by a n+1-D set, its
umbra. The umbra of a function f, denoted U(f), is the set of points below

the surface represented by f(z):

U(f) = {(z,y) : y < f(z)}. (2.4.1)

Figure 2.2 shows, as an example, the umbra of a sinus function. After getting
the umbra, the binary morphological operators can be applied. The function

f can be reconstructed from its umbra as ( [53]):
f(z) = max{y : (z,y) € U(f)}. (24.2)

We can easily show that f < g & U(f) C U(g). Some definitions for grey-value

operations based on sets are defined as follows ( [88]):

1. Grey-value union: The union of two functions f and g denoted as fV g

is defined as:

(fVg)(z) = f(z) V g(x). (2.4.3)
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~inf

Figure 2.2: Umbrae () of a sinus.

There will be a one-to-one correspondence between the union of functions

and the set union:
U(f Vv g) = U(f) UL(g). (2.4.4)

2. Grey-value Intersection: The intersection of two functions f and g de-

noted as f A g is defined as:

(f A g)(z) = f(z) A g(2). (2.4.5)

The same one-to-one correspondence exists for the function and the set

intersection:
U(F A g) =U(f) N Ug). (2.4.6)
3. Grey-value transpose: The transpose f of a function f is defined as:
f(z) = f(-2). (2.4.7)

4. Grey-value complement: The complement f¢ of a function f is defined

as:

f(z) = - f(=). (2.4.8)
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We notice that fV f¢ = |f| and f A f¢ = —|f|. However for set domain
we have AUA*=E and AN A° = 0.

Figure 2.3 shows the above properties.

(a) (b) (© (d) ©
TN o7 of s BN L, ol Y VN A
-5 -5 -5 -5 _5

0 5 10 0 5 10 O 5 10 0 5 10 0 5 10

Figure 2.3: Grey-value operations: (a): two functions f and g plotted by “..”
and “ -” respectively, (b): fV g (solid), (c): f A g (solid), (d): fV f° (solid),
(e): f A f (solid).

2.4.2 Functions and stacks of sets

Another extension of morphological operators to functions is presenting
them as stacks of sets. Instead of associating with function f : E — R its

set-oriented umbra, we can alternatively consider the stack of its horizontal

sections T, (f) ( [78]):

T.(f) = {= f(z) = z}. (2.4.9)
As threshold level z increases, T,(f) decreases continuously, i.e.
L) = ( T(f). (2.4.10)
<z

Any set operations can be done over Tz(f). Conversely, it is easy to see that
every continuously decreasing family {7} | 2 € Z of sets generates a unique

function f, by the algorithm

f(z) =sup{z,z € T,(f)}, (2.4.11)

where sup is equal to max for grey-scale functions. Table 2.2 shows an example

about the above relations. The symbol O indicates 1 for set operations. The

reconstructed function is f(z).
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Table 2.2: Threshold representation of a discrete function.

flz) |3 1 1 0 4 2 3 4 3 2 1 0
W(f)]O DO OO OOOO0OOooOOoaOo
TW(f)|DO O 0O O0OO0OO0OOooano
Ty(f) | O ODOoOO0OO0Ooao
T3(f) | O 0 00 0O

Ty(f) 0 O

fzy |3 11 0 4 2 3 4 3 2 1 0

2.5 Definitions for binary operations

The structure of a Boolean algebra provides the general framework on which
we shall perform binary morphological operations. The sets in binary images
are members of the 2-D integer space Z2, where each element of a set is a 2-D
vector with (z,y) as co-ordinates and 0 or 1 as value of each pixel. Let A and
B be sets in Z2, with components a = (a;,a,) and b = (b}, b;) respectively.
We will assume that A and B represent the binary input image and the binary
structuring element respectively (the size of B is considerably smaller than

that of A) . The following definitions can be developed:
1. Translation: The translation of A by z = (z,, z;), denoted (A); is defined

as (A); ={c:c=a+z,a € A}.

2. Reflection: The reflection of B around its origin, denoted B, is defined
as B = {z : 2 = —b,b € B}. Based on the above two equations, we can

easily extract the following equation:

(B)s C A= B C (A)_s. (2.5.1)

3. Complement: The complement of the set A, denoted A¢, is

A°={z:x ¢ A}. (2.5.2)
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4. Set difference: The set difference of two sets A and B, denoted as A/B,

is defined as
A/B={zr:z€ A,z ¢ B} = An B (2.5.3)

5. Incidence: Two subsets X,Y C R" are incident if X NY # 0.

2.5.1 Minkowski set addition and subtraction

M
[54]: The Minkowski addition denoted @ is defined as:

A®B={a+b:ac AbeB)=|J(A) (2.5.4)
beB

M M
It is assumed that A ® {0} = A and A & @ = @. The dual operation is called

. M
Minkowski subtraction, denoted ©, and defined as

M M §
Ao B=(A°® B)*={z:(B), C A}. (2.5.5)
The following relation will be true for Minkowski subtraction:

A8 B = (A (2.5.6)

beB

2.5.2 Binary dilation and erosion

Dilation by disk SE corresponds to an isotropic swelling or expansion al-
gorithms [33]. Our definition for dilation and erosion is similar to Minkowski

addition and subtraction ekcept that we use the reflected SE (B). We define

dilation as :

A®B={a+b:ac Abe B} =J(A)s (2.5.7)

beB
Erosion is the morphological dual to dilation. The structuring element (B)

slides as a probe across the image (A), testing the spatial nature of the image
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at every point [33]. Where B, (B translated to z) can be contained in A (by
placing the origin of B at z), then z belongs to the erosion A © B. We define

erosion as
Ao B=(A°@® B)={z:(B), C A}. (2.5.8)

Similar to Minkowski subtraction we can say

A6 B =()(A. (2.5.9)
beB

Erosion is conceived of as a shrinking of the original image.

2.5.3 Binary opening and closing

Any set transform O in algebra satisfying the following three conditions is

called opening:
1. Anti extensivity: O(A) C A.
2. Increasing: A} C A2 = O(A;) C O(A4,).
3. Idempotency: O(O(A)) = O(A).
Similarly a set @ is called algebraic closing if it satisfies the following conditions:
1. Extensivity: A C C(A).
2. Increasing: A} C A; = C(A,) C C(A4,).
3. Idempotency: C(C(A)) = C(A).

Matheron [54] defines algebraic opening as :

0(4)= |J 40 B (2.5.10)

B;eB
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and for algebraic closing he has:

C(A)= () AeBi. - (2.5.11)
B;eB

where B; is structuring element belonging to the structuring element B.
The morphological opening and closing can also be defined in terms of

erosion and dilation. Opening and closing are defined, respectively, as:

AoB= (Ao B)®B. (2.5.12)
AeB=(A®B)O B. (2.5.13)

Whenever we use opening and closing in this thesis, it is assumed that they are
morphological (binary or grey-level) unless specified. Closing tends to smooth
sections contours but, as opposed to opening, it generally fuses narrow breaks
and long thin gulfs, eliminates small holes, and fills gaps in the contour.

As in the case of dilation and erosion, opening and closing are dual with

respect to set complementation and reflection. That is
Ao B = (A°e B)". (2.5.14)
The important features of opening and closing are that in either case the
result is an elimination of specific image detail, smaller than the structuring
element, without the global geometric distortion of unsuppressed features. Har-
alick et. al. [33] say: “For example, opening an image with a disk SE smoothes
the contour, breaks narrow isthmuses, and eliminates small islands and sharp
peaks or capes. Closing an image with a disk SE smoothes the contour, fuses

narrow breaks and long thin gulfs, eliminates small holes, and fills gaps on the

contours”.

2.5.4 Is (opening) closing always (anti-)extensive?

In this subsection we want to have a critique about a definition and prove
that opening and closing are in some circumstances anti-extensive and exten-

sive, respectively. Kresch [46] says “Opening is always anti-extensive and
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closing is extensive, regardless to whether the origin is or is not contained in
the structuring element”. However Figure 2.4 shows that it is not correct.
Binary opening/closing is anti-extensive/extensive only when the structuring

element is symmetric. Table 2.3 shows the extensive and anti-extensive re-

Erosion Dilation Opening Closing str-elem

()

Figure 2.4: Extensivity and anti-extensivity.

lations based on the symmetry and the origin of the structuring element. If
only the structuring element contains the origin, erosion is anti-extensive (Figs.
2.4-b and g) and dilation is extensive (Figs. 2.4-c and h) and the symmetry of
the SE is not important. If only the SE is symmetric, opening is anti-extensive
(Figs. 2.4-d and n), and closing is extensive (Figs. 2.4-e and o), whether (or
not) the SE contains the origin. A morphological filter should be increasing,
idempotent, and extensive/or anti-extensive. Table 2.4 shows that opening
and closing can be used as filters. However dilation and erosion can not be
considered as filters alone because they are not idempotent. It is assumed that

SE is symmetric and contains its origin. However if we define binary erosion,
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Table 2.3: Extensivity and anti-extensivity in binary MM.
Originin SE | B=B Relation
+ + |(AeB)C(4eB)CAC(AeB)C (40 B)
+ - (AeB)CAC(A® B)
- + (AcB)CAC (AeB)
- - No (anti-)extensivity for operators
dilation, opening and closing as below:
A6 B= (A,
beB
A® B = Ay,
(A (2.5.15)
AoB=(Ae B)® B,
AeB={(A® B)o B,

then we will have opening as anti-extensive and closing as extensive. In this

regard, we will lose duality for defining dilation based on erosion, or closing

based on opening, and vice versa. Therefore we prefer to follow our previous

definitions in Table 2.1.

Table 2.4: Properties of morphological operators based on the definitions of

Table 2.3.
Property Erosion Dilation Opening Closing
Idempotent - - + +
Increasing + + + +
Extensive - + - +
Anti-extensive + - + -
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2.6 Grey-scale morphological filtering

Section 2.3 introduced two techniques available for GS morphological oper-
ators as umbra and decomposition approaches. In this section we will develop
direct relations for GS operators. Grey-scale digital images can be represented
as sets whose components are in Z3. In this case, two components of each ele-
ment of the set refer to the co-ordinates of a pixel, and the third corresponds to -
its discrete intensity value. Sets in higher dimensional space can contain other
image attributes, such as color and time varying components. In this section
the operators are assumed to be grey-scale unless specified, and to generalise
the idea, we will assume grey-value is not restricted to the range 0 — 255, but
any integer number unless specified. Let f(n) and g(n) denote respectively a
1-D GS signal and a 1-D GSE of length L, Dy and D, denote their domains.
1-D Grey-scale erosion, dilation, opening and closing, denoted respectively by
(fe9)(n), (fog)n), (fO9) ®g)(n) and ((f ® g) © g)(n), are defined as

follows.

(f ©9)(n) = min{f(n+v) - g(v)}. (2.6.1)
(f @ 9)(n) = max{f(n = v) + g(0)}. (26.2)
(f ©.9) ® 9)(n) = max{min{f(n+u—v) - g(u) + g0)}}. (263

(f©9)©9)(n) = min{max{f(n —u+v) +g(u) —g(v)}}.  (2.64)

where u,v € Dy and f(a),a € Dy. If the structuring element is flat (i.e.
g(k) =0, Vk € D,), then the above equations will be simplified to:

(f ©9)(n) = min{f(n +v)}. (2.6.5)

( @ 9)(n) = max{f(n - v)}. (266)
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((f ©9) ® 9)(n) = max{min{f(n+u — v)}}. 6.7

((f ® 9) © 9)(n) = min{max{f(n —u+v)}}. (2.6.8)

The above equations can easily be extended to 2-D. We let F(m,n) and G(m,n)
denote respectively a 2-D GS image and a 2-D (L x K) GSE, Dr and Dg
denote their domains. 2-D Grey-scale erosion, dilation, opening and closing,
denoted respectively by (F © G)(m,n), (F & G)(m,n), (F 6 G) & G)(m,n)
and ((F ® G) 6 G)(m,n), are defined as follows.

(Foe G)(m,n) = IRLII{F(TH +v,n+w) — G(v,w)}. (2.6.9)
(F & G)(m,n) = T%X{F(m—v,n—w) + G(v,w)}. (2.6.10)

(FeG)®G)(m,n) = I%?UX{II}}P{F(m +t—v,n+u—w)
~G(t,u) + G(v,w)}}.  (2.6.11)

(Fe®G)e G)(m,n) = rtl)lzvn{n}%x{F(m —t+v,n—u+w)
+G(t,u) — G(v,w)}}.  (2.6.12)

where (t,u), (v,w) € Dg and F(a, 8), (o, B) € Dp. If the structuring element
is flat (i.e. G(r,s) =0, V(r,s) € Dg) , then the above equations will be
simplified to:

(Fe G)(m,n) = Imun{F(m +v,n+w)}. (2.6.13)
(F & G)(m,n) = rgl’?ux{F(m —v,n—w)}. (2.6.14)

(FeG)®G)(m,n) = nl}’?ﬂx{nt{in{F(m +t—v,n+u—w)}} (2.6.15)

(F®G)eG)(m,n) = r}}}‘)n{ntl%x{F(m —t+v,n—u+w)}} (26.16)
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We can see that the above equations can easily be developed in n-D. As an
example the following equation shows a 3-D grey-scale erosion of a 3-D function

F(l,m,n), with a 3-D flat SE &(l,m,n):
(Fo ®)(l,m,n) = 1rtrhig{g(l-i—u,m-+—v,n+w)}. (2.6.17)

where (u,v,w) € Dg and F(e,B,7),(a,B,7) € Dz. We will define the fol-
lowing GS relations similar to binary operations for translation, transpose and

complement as:

1. Grey-scale translation: The translation of a function f by k is defined

as:
f(n)e = f(n+k). (2.6.18)
2. Grey-scale transpose: The transpose f of a function f is defined as
f(n) = f(-n). (2.6.19)
3. Grey-scale complement: The complement f¢ of a function f is:
fé(n) = —f(n). (2.6.20)

4. Grey-scale (anti-)extensivity: Grey-scale dilation (erosion) is exten-

sive (anti-extensive) if the value of the origin of SE is non-negative:
9(0)>0=>fog<f<fayg. (2.6.21)

GS opening is always anti-extensive f o g < f and GS closing is always

extensive f < f e g, and

9(0)20= fog< fog< f<feg< fdg. (2.6.22)
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2.7 Remarks and summary

In this chapter we have defined the basic operators engaged in MM, mainly
as binary or grey-scale. We have realised that there are only two basic oper-
ators: erosion and dilation, and the rest of the operators can be obtained by
proper combination of them. More relations and some proofs of morphological
operators have been given in Chapter B. We have also adopted a unique defi-
nition for all operators, and have shown the conditions for opening and closing
to be anti-extensive and extensive, respectively. Also we have shown that MF

can be easily developed in higher dimensions too.
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Chapter 3

Fast algorithms for GSMF's

3.1 Introduction

We have, so far, described MM and the important existing operators. This
chapter covers our contributions to the development of fast algorithms for open-
closing and close-opening. Fast algorithms for erosion, dilation, opening and
closing are also presented to facilitate our contribution for fast open-closing
and close-opening.

Binary morphological filtering (MF) has deeply been investigated by a lot
of authors in every aspect. However grey-scale MF (GSMF) has been noticed
a little, and most of the efforts were to convert GSMF to binary equivalence
using the thresholding and umbra approaches discussed in chapter 2. In this
chapter we will deal with GSMF directly proposing fast MF techniques [69, 70].
It is assumed that all SEs are flat, otherwise the classical algorithms of chapter

2 should be applied.
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3.2 Fast GS erosion and dilation

Erosion and dilation are basic morphological operators, and the remaining
operators can be made from proper combination of them. Therefore it is im-
portant to find their fast implementations. In this section, the algorithms for

fast 1-D and 2-D erosion will be discussed.

3.2.1 1-D GS erosion

Let the input signal f(n) and the flat SE g(w) have N and W samples
respectively (flat means g(w) = 0, w € D,). The origin of g is assumed to
be the first sample, otherwise the algorithms should slightly be modified. At
first we consider a simple example to illustrate how fast the proposed method

works. As an example let
f= {9,8,7,6,9,7,2,3,6,5,5,5,7,8,8,7,9,8},
g= {0,0,0,0,0}.

The underlined sample in g shows its origin. Based on Eq. 2.6.5, as the SE is

flat, the first two samples of erosion are calculated as

er(l) = min{f(1), f(2), f(3), f(4), F(5)} = f(4)
er(2) = min{f(2), f(3), (4),f(5) f(6)}=f(4)
T

* * *

6,
6

]

The underlined sample indicates the minimum within the search area. The
symbol * under some samples means that they are not required for the current
operation, as they have been controlled before. We realise that there are un-
necessary comparisons for er(2) when repeating to find the minimum among
the samples f(2), f(3), f(4), f(5) for er(2). The minimum occurs at sample
4 as f(4) for er(1). Instead if we remember the location of f(4) as the last

minimum (lastmin), we may calculate er(2) as

er(2) = min{lastmin, f(6)},
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because lastmin from the operations of er(1) is in the search area of the opera-
tions for er(2). f(6) is the W —1.th sample regarding er(2) (W = 5,2+W -1 =
6). Again f(4) is a minimum for er(2), and its value and location will be remem-
bered as lastmin and lastminloc for the next operation. For er(3), lastminloc

is still in search area, i.e.

er(3) = min{@,f(4),®,®,@} = min{lastmin, f(7)} = f(7) = 2.

* * *

The new minimum location needs to be updated to 7 as f(7) = 2 is the
minimum. Therefore at this stage lastmin = 2 and lastminloc = 7. From the
above simplifications, we have reduced the amount of the required comparisons
for every output sample from W — 1 = 4 to 1 comparison. For large-size
input signals it considerably reduces the computation time. er(4) : er(7) can
be calculated the same way as lastminloc is inside the scarch area and they
will all be equal to 2. However for er(8), the location of the last minimum
(lastmin = 2 = f(7),lastminloc = 7) is not in the search area and a complete

search is required as

er(8) = min{f(8), f(9), f(10), f(11), f(12)} = f(8) = 3.

Therefore we conclude that if lastminloc for an operation is leftward of the
search area (e.g. f(8) = lastmin is the leftward sample in operations for

er(8)), we should have a complete search for the next operation.

er(9) = min{£(9), f(10), f(11), f(12), F(13)} = f(12) = 5.

For er(9) there are more than one minimum (i.e. f(10) = f(11) = f(12) = 5).
We candidate the rightmost sample as lastmin (i.e. lastmin = f(12)) to have
lastmin inside the rightmost part of the search area for the next operation.
er(10) : er(12) = 5 as lastminloc is not leftward and lastmin remains minimum

until er(13).

er(13) = min{f(13), f(14), £(15), f(16), f(17)} = f(16) = 7.
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f(13) = f(16) = 7 and we choose the rightmost one f(16) as lastmin for next

operation.
er(14) = min{lastmin, f(18)} = lastmin = 7.

When approaching to the last samples we need to have extra input samples for

comparisons as
er(15) = {lastmin, f(19)}.
?
Noticing that N = 18, there is no real f(19). Therefore early/late samples in
dilation/erosion are not defined. There are three choices for such samples:
1. the extra samples required are equal to 0.

2. the extra samples required are equal to the last real sample.

3. their values are transparent for operation (big enough not to be consid-

ered as minima for erosion and small enough for dilation).
We choose the third option for instance. In this case

er(15) = er(16) = min{lastmin} = lastmin =7,
er(17) = min{f(17), f(18)} = £(18) =38,

er(18) = f(18) =8.
Now we develop the fast algorithm:

1. For er(1) make the search area from 1 to IV and find the minimum (as
lastmin) and remember its location (as lastminloc). If there is more
than one minimum, remember the rightmost location. Assign ptr = 1

corresponding to the first sample of the output er(1).

2. Increase the sample pointer (i.e. ptr « ptr + 1). If ptr > N then stop,

otherwise do the following instructions: If the operation has reached to
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the last samples (i.,e. N — W < ptr < N), then assume extra null
samples as necessary. If lastminloc is inside the current search area,
then compare only lastmin with f(ptr + W — 1), else make a complete

search area. Update the new lastmin and lastminloc. Repeat step 2.

Assuming full operations for late samples, the given example needs N(W —
1) = 18 x 4 = 72 comparisons for erosion with classical method while only

28 comparisons are required for fast proposed method. The speed-up ratio is

therefore 72/28 = 2.57.

3.2.2 2-D GS erosion

We can expect similar fast algorithm for 2-D erosion based on the fast
algorithm for 1-D GS erosion. The difference is only in the input signal which
is 2-D (an M x N image F(m,n)) and SE is also a 2-D (2L + 1 x 2L + 1) flat
square G(k,l). As an alternative, let SE be a flat square with its origin at
its centre (G(L, L)). Therefore the width and height of G is assumed to be
odd (2L +1). Let y =1 — N and £ = 1 — M be respectively column and
row pointer sweeping all samples of the input image row-wise. The proposed

algorithm is as follows: [70]

1. Start from top left pixel and find the minimum inside a search area of
length 2L +1 and width 2L +1 with the current pixel at its origin. Assign
the minimum to the relevant pixel, and increase the column pointer by

one.

2. If the column location of the last minimum at the same row is inside
the current search area, reduce the search area to the rightmost column
of square. It means that if the current pixel position is (z,y), limit
the search area to 2L + 1 points from F(z + L,y — L) up to F(z +

L,y + L), because the remaining area has been searched for finding last
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minimum of the previous operation. Then compare those pixels with the
last minimum and find new minimum. increase the column pointer by

one and go to step 5.

3. If step 2 is not correct, consider whether the row and column location
of the minimum from the previous row is inside the current search area.
If so, reduce the search area to 2L + 1 points (last row of the search
area from F(z — L,y + L) up to F(z + L,y + L). Then compare those
pixels with the minimum from corresponding previous row, and find new

minimum. increase the column pointer by one and go to step 5.

4. If neither step 2 nor step 3 is correct, make a complete search area of
2L + 1 by 2L + 1 with the current pixel position at origin and find the

minimum. increase the column pointer by one and go to step 5.

5. If last column, then increase the row counter by one and initialise the
column counter to the first column. If the last row, then stop, otherwise

go to step 2.

Figure 3.1 shows the Nassi-Shneidermann chart of 2-D GS erosion. The
description of the chart follows as below:

Line 1: Min_Loc_X and Min_Loc.Y denote respectively two arrays re-
quired for tracking the column and row locations of the minima obtained when
processing a row of data. For beginning of the operations they need to be
initialised to a negative value for the first row’s comparisons indicating that
there is no minima beforehand to compare their locations. The length of the
arrays are equal to the size of the columns of the image.

Lines 2 and 5: Initialise row counter (denoted with Row_Cntr) and column
counter (denoted with Col_Cntr) for tracking the rows and columns of the

input image to 0 to start from the first row and column.
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Line 3: Row.-Of fset_Down and Col_Of fset_Right, denoting the offset
from the current pixel’s row downward and the current pixel’s column rightward
respectively, when structuring element slides forward, are initialised to L (half
size of the length of the structuring element noticing that the origin of the
structuring element is at its origin).

Lines 4-41 and 6-39: shows the loop when the row counter (Row-Cntr) and
column counter (Col_Cntr) scan respectively from the first up to the last row
and from the first up to the last column.

Line 7: evaluates a condition. If the column location of the minimum from
the previous column (denoted by Min_Loc X [max(0,Col_Cntr — 1)]) is inside
the search area (i.e. greater than max(Col_Cntr—L, 1) then execute lines 8-12,
otherwise run lines 13-17. Don’t worry about the row. max(0, Col_Cntr — 1)
prevents column counter subtracted from 1 to be negative and max(Col_Cntr—
L, 1) prevents the execution of the “if-clause” for the first column, because there
is no column before it.

Lines 8,9: Upper row offset limit (denoted with Row.Of fset Up) is as-
signed to —L (all rows of the window for sliding the structuring element), and
lefthand limit for the column offset (denoted with Col_Of fset_Left) is L (last
column of the window). These two assignments limit the search area to the
rightmost column of the window.

Lines 10-12: The value and location of the minimum from the previous
column is assigned as a possible candidate for the minimum of the current
operations.

Line 13: gives permission for full column operations.

Line 14: If the row and column location of the minimum from the operations
of the previous row and the same column is inside the search area, then run
line 15, otherwise run lines 16-17. Notice that the location and value of
every minimum found for the operations of a pixel are kept inside the relevant

arrays, and before writing any new data inside them, their values represent the
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previous information.

Lines 15,13: limits the search area to the last row of the window.

Lines 20,23: shows the initialisation of the row offset counter (denoted by
Row.O f fset_Cntr) and column offset counter (denoted by Col_Of fset_Cntr)
to start from the upper and leftmost limits defined in the previous lines.

Lines 21-36 and 24-33: show respectively a loop for the row offset and
column offset counter to slide the structuring element from top to bottom and
leftmost to rightmost limit of the window.

Lines 22 and 25: cares about the row and column pointer not to exceed the
real borders.

Lines 27-29: finds the new minimum if the value of the processed pixel is
less than or equal to the current minimum. The evaluation is done in Line 25.

Line 37: assigns the minimum found as the corresponding output pixel of
the operation.

To find out how the proposed algorithm is efficient, we consider an example
below. Table 3.1 shows an 8 x 8 image F', a flat 3 X 3 square SE denoted G,
and the erosion of F by G denoted F©G. Table 3.2 presents the details of the
operation. It has been organised in 8 rows by 8 columns composed of a 3 x 3
squares. We label each square as sqr(7, j) required as the search area for the
pixel (i, j) of the image, ¢ standing for i-th. row and j for j-th. column. The
location of each pixel is shown as (i=1...8,j = 1...8) above each square of
Table 3.2. There are 4 different types of squares. We label them respectively
type 1 up to type 4.

For type 1, the location of the last minimum obtained from the previous
pixel and at the same row is inside the search area of the current pixel. There-
fore we only need to make comparisons between the last minimum and the
pixels in the last column of the square, i.e. (t-1,5+1),(,5+1),(E4+1,j+1).
One example for type 1 is sqr(2,4) at row 2, column 4 of Table 3.2. The
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1. Initialise the arrays Min_Loc_X and Min_Loc_Y to a negative integer.

2. Row_Cntr=0.

3. Row_Offset_Down=Col_Offset_Right=L.

4. While Row_Cntr<=Last_Row

5. Col_Cntr=0.

6. While Col_Cntr<=Last_Column

7. Min_Loc_X[max(0,Col_Cntr-1)]>=
max(Col_Cntr-L,1) ?

Yes (Type 1) No
8. Row_Offset_Up=-L. 13. Col_Offset_Left=-L.
9. Col_Offset_Left=L. 14. Min_Loc_Y[Col_Cntr}>=max(Row_Cntr-L,1).and.

b : Yes Min_Loc_X[Col_Cntrl>=max(Col_Cntr-L,1)?

10. Min[Col_Cntr]=Min[Col_Cntr-1]. (Type 2) (Type 3
11. Min_Loc_X(Col_Cntr}= 16. Min[Col_Cntr]=MAXINT.
Min_Loc_X[Col_Cntr-1]. 15. Row_Offset_Up=L. T { OEs !
12. Min_Loc_Y[Col_Cntr}= 1 Fiow” Oftset Upe
Min_Loc_Y[Col_Cntr-1]. 18. Endif(14).
19. Endif(7).

20. Row_Offset_Cntr=Row_Offset_Up.

21. While Row_Offset<=Row_Offset_Down

22 First_Row<=Row_Cntr+Row_Offset<=
Mﬂ Row ? No

23. Col_Offset=Col_Offset_Left.

24. While Col_Offset_Cntr<=Col_Offset_Right

Yes

25. First_Col<=Col_Cntr+Col_Offset<=
t_Col ?

No

26. f(Row_Cntr+Row_Offset,Col_Cntr+Col_Offset]
Yes <=Min[Col_Cntr]?

No

27. Min[Col_Cntr]=f(Row_Cntr+Row_Offset,
Col_Cntr+Col_Offset).

28. Min_Loc_X[Col_Cntr]=Col_Cntr+Col_Offset_Cntr
29. Min_Loc_Y[Col_Cntr]=Row_Cntr+Row_Offset_Cntr.

30. Endif(26).

31. Endif(25).

32. Increment Col_Offset.

33. Endwhile(24).

34. Endif(22).

35. Increment Row_Offset.

36. Endwhile(21).

37. (f © g)(Row_Cntr,Col_Cntr)=Min[Col_Cntr].

38. Increment Col_Cntr.

39. Endwhile(6).

40. Increment Row_Cntr.

41. Endwhile(4).

42. End.

Figure 3.1: Nassi-Shneidermann chart for 2-D erosion.
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complete operation is to find
(FeG)(2,4) =min{ F(1,3),F(1,4), F(1,5),
F(2,3),F(2,4),F(2,5),
F(3,3),F(3,4),F(3,5)}.

However as the location of the last minimum found for the operation of the

)

location (2, 3) (11 at row 3 and column 4) is inside the search area (i.e. F(3,4)),
we realise that min{F'(1, 3), F'(1,4), F(2,3),F(2,4), F(3,3), F(3,4) = 11} has
been searched for the operation required for location (2, 3). Therefore we only
need to find min{11, F'(1,5), F(2,5), F(3,5)}.

For type 2, the location of the last minimum found from the previous pixel
at the same row is not inside the search area of the current pixel. However the
location of the minimum of the comparisons for the pixel at the same column
and the previous row is instead inside the search area. Thus we only need to
make comparisons between the minimum from the previous row and the pixels
of the last row of the square, ie. (z+1,5—1),(¢ +1,5),(¢+ 1,57+ 1). For
example, sqr(3, 6) is of type 2. The full operation is:

(FOG)(3,6) =min{ F(2,5),F(2,6),F(2,7) ,
F(3,5),F(3,6), F(3,7) ,
F(4,5),F(4,6), F(4,7) }.

The location of the last minimum found for the operation of the location (3, 5)
is not inside the search area (i.e. F(3,4) = 11 ¢ sqr(3,6)). However the
location of the minimum found for the operation of (2,6) (i.e. F(3,7) =12 €
sqr(3,6)). Thus we only need to find min{12, F'(4,5), F(4,6), F(4,7)}.

For type 3 we need a full comparison, because none of the minima of type
1 and type 2 is not inside the search area. An example for type 3 is sqr(5, 5).

Type 4 is for some of the pixels of the last row or last column. They do not
need any comparison. The minimum from the previous pixel either at the same

row and the previous column, or the previous row and the same column is valid
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for this pixel, and there are no new pixels to be compared. An example for
type 4 is sqr(4, 8). Also we notice that the indexes for ¢ — 1 and j — 1, required
respectively for the comparisons of the first row and column are negative and
we assign the value of the adjacent pixels. In other words they are considered
as “don’t care”. Similar discussion is valid for the pixels of the last row and
column. The values of the pixels not required for comparison are presented
with the symbol x standing for “don’t care”. The symbol . means that the
corresponding input signal does not exist. The underlined values inside each
square shows the minimum found as the result of erosion for the corresponding

output pixel. In classical method, 8 comparisons need to be done for every

Table 3.1: An example of 2-D GS Erosion.

F FoecG
59 61 55 53 53 66 65 55 57 52 51 17 16 16 10 10
58 57 52 51 17 16 28 10 14 14 11 11 11 12 10 10
16 14 18 11 21 22 12 17 G 14 10 10 10 11 10 10 10
17 20 10 20 33 17 10 32 0o 11 10 10 10 11 10 10 10
16 11 28 24 22 26 29 21| © [ = 11 10 10 10 17 10 10 10
17 24 28 40 29 20 27 25 0 o 11 11 11 22 20 20 20 21
25 23 30 39 58 59 52 56 17 17 23 24 20 20 20 25
31 30 29 24 26 23 26 27 23 23 23 24 23 23 23 26

pixel of the image which will be 8 x 8 x 8 = 512 for the whole image. However
we only need 136 comparisons with our fast algorithm (3.77 times faster for an
8 x 8 image). For a large-size image (e.g. 512 x 512 which is considered as a
normal size), it will be a great reduction in computation.

Table 3.3 shows the types of the required comparisons for every pixel of
the given example (four types defined in the previous paragraph).

There is another fast algorithm for 2-D GS erosion which is less efficient
than the proposed method. Regarding Eq. B.1.25 we can decompose the flat
GSE based on Table 3.4 into two 1-D flat GSE. Therefore with applying two
fast 1-D GS erosions, we find, at first, the minima row-wise (across each row)

and then apply another erosion, column-wise, upon the result of the previous
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Table 3.2: Details of the required operations for output pixels of Table 3.1.

(1,1) (1,2) (1,3) (1,4) (1,5) (1,6) 1.7 (1,8)
59 61 x x B35 x x 53 x x 53 x x 66 x x 65 x x 55 x x
58 57 x 87 52 x 52 51 x 51 17 x 17 16 x 18 28 16 x 10 x 10

(2,1) (2,2) (2,3) (2,4) (2,5) (2,6) (2,7) (2,8)
x x x x 55 x x 53 x x 53 x x 66 X X X x x 55 x x
x 57 x x 52 x x 51 x x 17 x x 16 x 16 x x x 10 x 10
16 14 x 14 18 14 x 11 x 11 21 11 x 22 21 22 12 x 12 17 X X

(3,1) (3,2) (3,3) (3,4) (3.5) (3.8) 3,7 (3.8)

x x x 52 x x 51 x x 17 X X x X x x X x 10| x 10
x 14 14 18 x x 11 x x 21 11 x x x x 12 x x 17| x x
17 200 | x x 1 x 10 200 | 10 x 33 { 20 33 170 | 33 17 10/ | x 10 32| | x =x
4,1) (4,2) (4,3) (4,4) (4,5) (4,8) (4.7) (4,8)
x 14 x x 18 x 11 X x 21 11 x x X x x x x 17] x X
x x x x 10 10 20 10 x 33 X x x x x 10| x 10 32 10 x
16 11} x 11 2 x 24 x x 22 24 22 26 22 26 29 x x 21 x x
(5.1) (5,2) (5,3) (5,4) (5.8) (5.6) (5.7) (5.8)
x x x x 10 x 10 20 10 x 3 20 33 17 x 17 10 x 10 32 10 x
x 11 x 11 28 x x 24 x x 22 24 22 2§ x x 29 x x 21 x x
17 24 x x 28 x 40, x x 29 40 29 20 x x 27 x x 25 x %

(6,1) (6.2) (6.3) (6,4) (8.5) (6,6) (6,7) (6.8)

x 11 x 11 28 11 x 24 28 24 22 x 22 26 x x 29 x x 21 29 21
x X x x 28 x x 49 28 40 29 x x 20 x 20 27 20 x 25 27 25
25 23] x x 3 x x 39 30 39 5§ x x 59 x x 52 x x 56 52 56
(7,1) (7,2) (7,3) (7.4) (7.5) (7.6) (7,7) (7.8)
17 24 17 x 28 24 28 40 28 40 29| x x 20 x 20 27 20 x 25 27 25
25 23 x x 30 23 30 39 30 39 5% x x 59 x x 52 x x 56 52 56
31 30 x x 29 30 29 24 29 24 26 24 x 23 x x 26 x x 27 26 27
&.1) (8,2) (8,3) (8,4) (8,3) (8,6) (8,7) (8.8)
25 23] x 23 39 23 x 3Y| X X X x x 59 x x 52 x x 56 52 56
31 30 x x 29 x x 24 x 24 x 24 x 23 x 23 26 23 x 27 26 27
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Table 3.3: Types of comparison required for the example of 2-D GS erosion.
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Table 3.4: Decomposing a flat square GS

0
0
0

0
0
0

0

0

0] =

el

3.2.3 Fast 1-D and 2-D dilation

0

Based on Egs. 2.6.6 and 2.6.14, we can apply similar fast algorithms for 1-D

and 2-D GS dilation as we developed for erosion. The modifications will mainly

concentrate on changing the terms minimum to maximum, and sweeping the

signal/image from end to start due to the existing reflection of SE in dilation.

The rest of the structure of the algorithm will remain the same.

3.3 Fast GS opening and closing

In this section the fast algorithms for 1-D and 2-D GS opening are presented.
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3.3.1 Fast 1-D GS opening

Applying a combination of fast erosion followed by fast dilation, will defi-
nitely be faster than finding the classical opening. This procedure needs to be
completed in two steps. Developing an algorithm to obtain opening in single-
pass will definitely speed up the operation. The main idea is adopted from
Wang et. al. [89]. We will use the same notations for the input signal and SE
as before. We assume that the origin of g is its first sample. The algorithm

applied is as follows:

1. For the first point n = 1, the smallest samples (lastmin) of the search
area (i.e. samples 1:W) are found by a full comparison of all samples. If
there are more than one smallest sample, remember the location of the
rightmost one as lastminloc. Assign lastmin from lastminloc for the

output samples with the locations smaller than, or equal to lastminloc.

2. After the above step, if lastminloc is the leftmost sample of the search
area and it is the only smallest sample, it will not be included in the
next sample’s search area. Therefore we need to make a full comparison.
Otherwise we only need to compare lastmin with the rightmost sample
of the search area and define the smallest value (This part is similar to
what is mentioned for step one of the fast 1-D GS erosion). If the recent
smallest sample is less than lastmin, it means there is a new smallest
value. If there is a new smallest value go to step 3 otherwise repeat step

2. If the whole samples have been scanned, then go to step 4.

3. If there is one or more new smallest value(s), we assign the corresponding
output sample(s), from leftmost to rightmost sample, the same value as
the new smallest value. The output samples between the leftmost new

smallest location and lastminloc are assigned with

max{lastmin, new smallest value}.
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After assigning all‘ output samples with correct values, we update the
lastmin and lastminloc with the new smallest value, and then go to step

2.

4. The value of lastmin is assigned to the output samples after lastminloc

and the algorithm ends up with this step.

Table 3.5 illustrates, as an example, the fast single-pass algorithm for 1-D GS

opening.

Table 3.5: Illustration of the fast 1-D GS opening (1V = 5).

M n [[ o 1|2|3I4|5]6|718]9|10[11] 12 13 14] 18] 16 1]
f(n) 9|1 876|972  3;6|/89|58|T7T|8{8{7)9(8
- Samples in n+L 91 81 7] 6| 9
| )l el|l | 7
-The smallest points are *] 61 %1 *| 2
underlined. “| *1 *{ 2| 3
|« 2] *]e
-The symbol * means the |21 *|s
related point is not 21« *[*]o
required for comparison. 3| 6|8{9}s
6| 8{9) 5|7
- - 5 - 8
- 5 - » 8
51+ «]+|7
Ty 8| 8129
*I *]1 1] |8
7 L} -
91 8
(f o g)(n) 6je6]6|6l6)6|2[3|s5]|s5{s|s5|z]7|7]7]38]|s

Only 28 comparisons are required for the given example while the classical
method needs 2N (W — 1) = 144 comparisons. The speed-up ratio is about
5.14.

Table 3.6 shows the performance of the proposed method in [89] for fast

1-D GS opening over the classical opening for a radar signal.
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Table 3.6: The efficiency of fast 1-D GS opening over classical method adopted
from [89]

W (size of SE) 3 7 11 15 19 23 27 31
The proposed method || 2.09 4.00 6.00 8.00 10.00 12.17 14.08 16.08

over classical one

3.3.2 Fast 2-D GS opening

We have experienced that the best fast technique for 2-D GS opening is
applying fast 2-D GS erosion followed by dilation, otherwise single-pass fast
2-D opening is rather difficult to be analysed.

3.3.3 Fast 1-D and 2-D closing

For fast GS closing, similar dual algorithm regarding the start point and

modifying the minima term with maxima can be applied.

3.4 Fast GS open-closing and close-opening

3.4.1 Fast 1-D GS open-closing

The fast technique for single-pass 1-D GS open-closing [69] is presented
in this part. The current disscussion extends the method described for fast
opening in [89] to combined open-closing operators within a single procedure
for 1-D gray-scale signals. The structuring element is assumed to be flat.
Open-closing, and close-opening of a 1-D signal with a line segment W of
length L(W = {0,1,---,L—1}) as SE may be done by translating W point by
point from left to right, looking for invariant points and assigning appropriate
values to other points. The algorithm for open-closing is described below. A

corresponding dual algorithm applies for close-opening.
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1. For the starting point n=0, the smallest value(s) of the region W + n is
(are) found by comparing all the samples in the region. There may be
several equally small sample values, and they will all be invariant points.

This value is assigned to all samples up to the rightmost smallest sample.

2. Moving the comparison pointer to the right, new smallest samples are
sought by two different methods. If there is only one smallest sample in
the region W + n — 1 and it is the left-most sample of the region, the
smallest sample will not be included in the region W + n, and the new
smallest values are found by the comparison of all the samples in the
region W + n. Otherwise the region W + n will only have a new sample
to be compared at the location of W + n — 1, which is not contained in
the region W + n — 1. Then if f(n + L — 1) is equal to, or smaller than
the last smallest value of the region W +n — 1, it is a new location with
the possibility of being an invariant sample. Otherwise there is no new
smallest sample in the region W + n. We translate W and repeat the

second part. If a new smallest value(s) is (are) found, we go to step 3.

3. If the location of the smallest value(s) is smaller than the size of the
window (L), or if the new smallest value(s) is equal to, or greater than
the last smallest, or the distance between the current smallest position
and the first existing rejected sample between the last invariant sample
and the current point is equal to, or greater than a window size, it is a new
invariant point and go to step 4 for assigning data. Otherwise investigate
other smallest points by sliding the window forward in the region n+W
and put an index to the sought area for next comparisons. If the new
smallest value is equal to, or greater than the smallest of the searched
area, it will be an invariant point and go to step 4. Otherwise declare this
point(s) as rejected points to be invariant, and the next time start data

tracking from the sample after the rejected point. With this movement,
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we will avoid the unnecessary comparisons between the current and the
rejected point, and it will make the proposed algorithm more efficient
than [89]. Of course a similar technique to step 2 is used for searching

backward (or forward) to avoid seeking an area twice.

4. Assign the new smallest value to the locations between the first new
smallest location and the last new smallest location (if there is more
than one smallest). Then assign the locations between the last smallest
location and the new left-most location with two different ways. If there
is a rejected invariant point between them, fill the locations between the
last smallest, and the rejected invariant location with the minimum of
the last smallest, and the new smallest value including the rejected points
as well. Otherwise for the rest of the points left between them, choose
the maximum of the last and the new smallest. Candidate the right-
most smallest location as last smallest location for the next operations,
and use index to find whether there is a chance of moving forward the
start location of the next tracking (another advantage of the proposed

algorithm for speeding up compared to {89], and go to step 2.

5. When the last invariant sample of a signal is found, its value is assigned

to the remaining output samples after it.

The proposed algorithm is illustrated by an example shown in Table 3.7.
The window size of the structuring element (L) is 5 (i.e. g = {0,0,0,0,0}). The
first row of the table shows the location of 18 samples (0 —17). The second row
shows how the smallest points are found. The underlined points are the smallest
samples within W+n. The symbol * indicates that the related points are not
required for comparison. The symbol # shows the efficiency of the algorithm
in order to avoid unnecessary comparisons, and moves forward the comparison
pointer. The third row evaluates whether (or not) the smallest samples are

invariant. The underlined points are invariant samples. The rejected points
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are shown by the symbol x. The last row shows how the output values are

found.
Table 3.7: Illustration of fast 1-D open-closing (W = 5)
| n [[ o] 1] 2]3]4 s|el 7 sl ol s nof 1o 1 1 1 1 17
f(n) 9| 8| 7 6|{9(7|2|3,6|8|9|l5|1|a|la8l7|e|s
- Samples in n+L 9| 81 71 6} 9
#| #| #| #| #
-The smallest points are I 8| "™ *| 2
underlined. #1 O#| #) #] #
# #) 2] #] #
-The symbol * means the #| #| #| #) #
related point is not #1 # #| #| #
required for comparison. 3|/ 6/8]l9]s
6| 8|91 5|7
-The symbol # indicates #1 #] #] #| #
that the relevant set of # #| #| #| #
data is not required to # # #] #| #
be compared. Ii1 8| 811l 9
#| O#| #| #|#
#| #| #| #
#|O#|#
9] 8
-Accept 6 as invariant. 6
-Reject 2 and 3 to be x
invariant points. x
-Accept 5,7,7,8 as 5
invariant points. 7 7
8
6] 6| 6 6] 6 515 5 K 8
opcl(f)(n) 6 x| x 511 2 8

Legend for Table 3.7

1. Let the comparison pointer be identical to 0, to compare the set {9,8,7,6,9}

| and choose the smallest sample (6 in position 3). As the position is less
than the window size, it will be an invariant point. Assign the same value

to the positions less than 3 , i.e. assign 6 to the positions 0,1,2. Since

the next point value after the searched area is greater than 6 (the point

5 value is 7 > 6), we know that for the next comparison set (from point

1 to 5) 6 will again be the smallest. So to increase the efficiency, the
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comparison pointer is incremented by 1 and starts from 2 for the next

comparison set.

2. Now comparison pointer is at 2 to compare the set {*,6,*,*,2}. The
symbol * means that there is no need to consider the relevant samples.
Choose the smallest point (2 in position 6). The distance between this
point and the last smallest point (6 in position 2) is less than the window
size. Therefore we should evaluate whether it is greater than the next
interval’s smallest value, and whether this is true for more than a window
size. We find that it is not true (due to 3 in location 7). Thus it will be
declared as a rejected point. We may move the comparison pointer up

to the next point for next operations (position 7).

3. The pointer is now at 7. Compare the set {3,6,8,9,5}. Choose the smallest
point (3 in position 7). To the same reason as in part b, define this sample
as another rejected point. The pointer after this step will automatically

be at position 8.

4. With the pointer at 8, compare the set {6,8,9,5,7}. Choose the point (5
in position 11) as the smallest. The distance between this point and the
last smallest point is equal to the window size. So it will be an invariant
point. The last invariant point is 6 in position 3. Therefore put the
minimum of the two invariant samples in the rejected points (i.e. put
min(5,6)=>5 in the locations 6 and 7). Then fill the locations between the
last invariant point and the rejected points (i.e. the locations 4 and 5)
with the maximum of the two values (méx(5,6)=6). Then fill the rest of
the empty points between the rejected points and the current invariant
point ( i.e. locations 8,9, and 10 ) with 5 (=max(5,5)). Then increase
the comparison pointer to 12, because 5 in location 11 is less than 7,8,8,7

in locations 12 up to 15, and it will be again the smallest from pointer 9
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up to 11.

5. Compare the set {7,8,8,7,9} at position 12, and choose the smallest sam-
ple (7 in positions 12 and 15). There are 2 equal smallest values in the
set. Both of them are invariant, because they are greater than the last
invariant point, and they will last for more than a window size. So write

7 from the position 12 up to 15, and increment the position pointer to

16.

6. When the pointer is at position 16, compare the set {9,8} and choose the
value 8 in position 17 as the smallest point. It will again be an invariant

point. Put 8 in position 17, and choose 8 (=max(7,8)) for the position

16. The processing in this example ends here.

For the given example, our approach needs only 18 comparisons while the
classical method needs 4N(W — 1) = 4 * 18 * 4 = 288 comparisons, leading to
a speed-up ratio of 16.

3.4.2 Fast 2-D GS open-closing and close-opening

For simplicity, we suggest applying proper cascades of fast 2-D GS erosion

and dilation.

3.5 Efficiency and experimental results

The efficiency of the proposed algorithms arise because they avoid compar-
isons along the locations which have been compared previously. On the other
hand, the standard methods slide the structuring element over the data, and
make exhaustive comparisons at every position. Therefore there are repeated
comparisons which take much longer time to complete, especially for large SEs.

The method suggested by [89] for opening has enhanced the computational
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Table 3.8: Relative performance of required time ratio for the open-closing for
an ECG data set of 2500 samples with different algorithms

ECG data with a baseline shift ECG data with added Gaussian noise
Window Time ratio of Time ratio of Time ratio of Time ratio of
size our method over method [89] over our method over method [89] over
(L) standard method standard method standard method standard method
3 0.606 0.860 0.627 0.886
5 0.445 0.690 0.434 0.628
10 0.270 0.471 0.218 0.390
20 0.168 0.315 0.110 0.236
30 0.116 0.260 0.079 0.177
40 0.118 0.231 0.069 0.148
50 0.102 0.215 0.058 0.127
60 0.091 0.197 0.051 0.114

Table 3.9: Relative performance of our method over [89] in Table 3.8 for fast
1-D open-closing

ECG data with a baseline shift ECG data with added Gaussian noise

L our method over [89] our method over [89)
3 1.42 1.41
1.55 1.45
10 1.74 1.79
20 188 2.15
30 2.24 2.24
40 1.98 2.12
50 2.11 2.27
60 2.16 2.24

efficiency of these operators and our method for open-closing has improved the
method in [89] by both avoiding the unnecessary comparisons suggested in
[89] and moreover, by putting a track point for the next required comparisons.
Also the proposed algorithm can realise open-closing by a single pass when the
method in [89] needs two passes.

Table 3.8 compares the relative required time with different algorithms for
an ECG data set of 2500 samples with several window sizes run on a 386 PC,
for three different methods.

Table tab:compopclll shows the results of Table tab:compopcll as absolute
performance ratio of our method over the proposed method in [89].

The speed ratio of the proposed algorithm over the standard method for
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erosion of a 512 x 512-point gray-scale image with different flat structuring

elements is presented in table 3.10.

Table 3.10: Relative performance of the speed ratio of fast 2-D erosion using a
flat GSE for a 512 x 512 image.

2-D flat Structuring element size 3x3 | 5%x5|7x7|9x9

Speed ratio of our method over standard method 1.29 2.25 3.00 3.98

We can guess the amount of the efficiency for the remaining fast opera-
tors. The worst case seems to happen when the input data is sorted ascending
for erosion and descending for dilation. In either case the minima/maxima
happens in leftward/rightward position of the search area and therefore a full
comparison will be required for next operation. However with a simple change
of the algorithm we can still apply the fast algorithms by changing the direction

of sweeping the input signal/image from end/start for erosion/dilation.

3.6 Remarks and conclusion

This chapter has shown our contribution about fast implementation of 1-D
GS open-closing and close-opening, 2-D erosion and dilation besides another
fast algorithms for the remaining operators. The algorithms applied in this
chapter are direct implementation of the morphological operators, by single
one-pass procedures. They are computationally simple and very efficient with
a 18-20 % reduction in computational effort for morphological operations com-
pared with the fastest alternative method, and an order of magnitude improve-
ments over naive implementations for large structuring elements. All the algo-
rithms mentioned above have been realised by a user-friendly package designed

by author for 1-D and 2-D morphological systems design.
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Chapter 4

Real-time implementation &

hardware architecture of GSMF

4.1 Introduction

In previous chapter we had a look to fast algorithms in software. This
chapter improves and generalises real-time implementations of GS (grey-scale)
morphological operators proposed in [44] for any GSE (grey-scale structuring
elements) having its centre in any position of the defined domain (72, 75,
73]. Extended algorithms are also applied in 2-D (two dimension). Schematic

diagrams of hardware architecture and real-time implementations are included.

4.2 Background

As mentioned in Chapter 2, MF operators are classified into three groups
as SP (set processing), FP (function processing) and FSP (function and set
processing) systems. There are a variety of algorithms for real-time implemen-
tation of SP and FSP systems, however they are not easily applicable for FP

systems. Some fast non-recursive methods for FP operators have been devel-
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oped [89, 69]. For real-time applications, recursive algorithms are required.
The proposed method in [44] is one of the best techniques for real-time FP op-
erations. However it is applied for a specific GSE. Sedaaghi and Wu [72, 75, 73]
improve and generalise the proposed algorithm in [44] and extend it to 2-D

applications.

4.3 The proposed algorithms

If the centre of GSE is called b(0), there will be m points to the left (i.e.
b(-m),...,b(—1)) and n points to the right (i.e. b(1),...,b(n)) of the centre
point b(0) leading to a general GSE of the form:

{b(_m)a Tt ’b(—l)’ b(O), b(l)’ T ’b(n)}'

The total length (L) is thus m + 1+ n. To find out how the centre position of
GSE affects the result of a morphological operator, we consider the following ex-
ample with m = n = 1 and 7 input samples defined as {f(0), ..., f(6)}. The ero-
sion {er(0),-- - ,er(6)}, dilation {di(0),--- ,di(6)}, opening {op(0),--- ,0p(6)}
and closing {cl(0),---,cl(6)} are shown in Eqs. 4.3.1- 4.3.4 respectively.

er(0) = min{f(-1) — b(~1), f(0) — b(0), f(1) — b(1)}
er(1) = min{f(0) - b(-1) , f(1) —b(0), f(2) — b(1)}

(4.3.1)
er(5) = min{f(4) — b(-1) , f(5) — b(0), f(6) - b(1)}
er(6) = min{f(5) — b(-1) , f(6) — b(0), f(7) — b(1)}
di(0) = max{f(~1) +b(1), £(0) + b(0), £(1) + b(~1)}
di(1) = max{f(0) + b(1) ,f(1) +b(0), f(2) + b(-1)}
: (4.3.2)

di(5) = max{f(4) + b(1) , f(5) + b(0), f(6) + b(-1)}
di(6) = max{f(5) + b(1) , f(6) +b(0), f(7) + b(-1)}
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op(0) = max{er(—1) + b(1), er(0) + b(0), er(1) + b(—-1)}
op(1) = max{er(0) + b(1) ,er(1) +b(0),er(2) +b(-1)}

(4.3.3)
op(5) = max{er(4) + b(1) ,er(5) + b(0),er(6) + b(-1)}
op(6) = max{er(5) + b(1) ,er(6)+b(0),er(7) +b(-1)}
and
cl(0) = min{di(—1) — b(—1),di(0) — b(0),di(1) — b(1)}
cl(1) = min{di(0) — b(=1) ,di(1) — b(0),di(2) — b(1)}
: (4.3.4)

cl(5) = min{di(4) — b(-1) ,di(5) — b(0),di(6) — b(1)}
cl(6) = min{di(5) — b(—1) ,di(6) — b(0),di(7) — b(1)}

The morphological operations are not defined for their first/last samples. The
number of undefined samples equals to m + n. For example the erosion using
the above samples needs m (=1) more samples before f(0) (f(—1)) to calculate
er(0) and n (=1) more samples after f(6) (f(7)) for er(6). Three assumptions

can be taken respectively based on what mentioned in chapter 3:

1. ignore early and late samples,

2. assume f(~1) = f(0) and f(7) = f(6),

3. assume f(—1) and f(7) are large enough to be ignoredv when finding

minima for er(0) and er(6).

The dual assumption is required for dilation. We use the third assumption
in Table 4.1 to illustrate how the position of the centre point b(0) affects
the results. Except the early/late samples, the results in three columns are
similar but have shifted values. This shift is very important when considering

correlation between the input and output. Therefore the method proposed
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Table 4.1: Results for f(n) = {29, 21, 18,23,26,20,15} with different centre
points for GSE.

g(n)

{2,5,3}

{2,5,3}

{2,5,3)

er(n)
di(n)
op(n)
cl(n)
opcl(n)
clop(n)

{15,13,16,17,12,10,13}
{31, 34, 32,25, 28, 31,29}
{17,20, 18,21, 22, 20,15}
{29, 22,20, 23, 26,24, 27}
{17,20,18,21,22, 20,23}
{19,22,20,23, 26, 24,27}

{18,15,13, 16,17, 12,10}
{34,32,25,28,31,29,23}
{23,21,18,21,22,20,15}
{29,22, 20,23, 26,20, 18}
{23,21,19,21, 22, 20,18}
{24,22,20,23,22,20,18}

{26,18,15,13,16,17,12}
{32,25,28,31,29,23,18}
{29,21,18, 21, 22,20, 15}
{29,22, 20,23, 26,20, 15}
{29,21,19,21, 22,20, 15}
{29,22, 20,23, 22,20, 15}

in [44] is only correct for g = {b(-m),...,b(=1),b(0)} (i.e. the centre is the

rightmost sample in GSE).

For hardware implementation, the equation 2.6.1 can be simplified. Let

Br; = b(0) — b(—),

0 < i < m and fg, = b(0) - b(j),

results for the given example are:

0 < j €£n. The new

€(0) = min{f(-1) + B.,,f(0), f(1) + B, }
¢(1) = min{f(0) + Br,, f(1),f(2)+ Ba,}

(4.3.5)

e(5) = min{f(4) + Br,, f(5),f(6)+ Br,}
€(6) = min{f(5) + Br,, f(6),f(7)+ Bn,}

The erosion will be:

er(i) = €(i) — b(0),

0<1<L6.

(4.3.6)

Similarly we can have the next simplifications for the dilation:

5(0) = max{f(—l) - IBRl’f(O)’f(l) - /BLl}
5(1) = max{f(O) ~ Brys f(l)a f(2) - ,BLl}

6(5) = max{f(4) - :BRn f(5), f(ﬁ) -
§(6) = max{f(5) - Br,, f(6),f(7)— Br,}

(4.3.7)

IBLI}
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The dilation will be:
di(i) = 6(i) + b(0), 0<i<6. (4.3.8)

The simplified opening will be:

op(0) = max{e(—1) — Br,,€(0), (1) — Br,}
Op(].) = max{e(O) - /BRM 6(1),6(2) - ,BLl}

(4.3.9)
op(5) = max{e(4) — Br,, €(5),€(6) — Br,}
op(6) = max{e(5) — Br,, €(6),€(7) = A}
The simplified closing will be:
cl(0) = min{6(~1) + £1,,6(0),6(1) + Br, }
cl(1) = min{é(0) + Br,, 6(1),6(2) + Br,}
: (4.3.10)

cl(5) = min{6(4) + Br,, 6(5),6(6) + Br,}
cl(6) = min{6(5) + Br,, 6(6),8(7) + Or,}
- Figures 4.1-a, 4.1-b and 4.1-c show the outputs for erosion and opening

respectively when
1. (i) m=0,n =2 (i.e. b(0) in the left),
2. (ii)) m =n =1 (i.e. b(0) in the middle),
3. (ii) m = 2,n =0 (i.e. b(0) in the right).

Figure 4.2-a presents a generalised implementation of erosion and opening.
The delay lines can be initialised properly to be correct for early/late samples.
Considering the duality, the generalised implementation of dilation and closing
are also shown in Figure 4.2-b. The recursive implementation for opcl and clop
can be achieved by proper cascade of the minima/maxima blocks of Figures

4.2-a and 4.2-b.
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Figure 4.1: The fast recursive implementation of erosion and opening with
GSE of size 3 with b(0) as centre: (a) g(1) = {b(0),b(1),5(2)}, (b) ¢(2) =

{b(-1),b(0),b(1)}, (c) 9(3) = {b(=2),b(~1),b(0)}

—)

1} 2l A 2 - 2T SH T} SO Y POT) R P
e, DBy le ik T NN
ré-bo > Erosion Y ({L)bo > Dilation
A 7t 7 Z-lT 1 ] o e
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a

Figure 4.2: The generalised implementation of fast recursive: (a) erosion and
opening (b) dilation and closing.
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We now extend the proposed method in 2-D. Let F(z, y) and G(k, 1) denote
respectively a 2-D image with width Y and height X and a 2-D GSE with width
L and height K, Dr and Dp denote their domains and F(«, 8) | (o, B) € Dp.
recalling Eq. 2.6.9 for 2-D GS erosion, we know that the GSE is a matrix and

is defined as (m+n+1=L,p+qg+1=K):

-b(_pv _m) b(—p,—-l)
b(~1,~m) b(~1,~1)

G =] b(0,-m) b(0,—1)
b(1, —m) b(1,—1)

L b(q: —m) b((], —1)

b(—p, 0) b(—pv 1)
b(_llo) b(—lyl)
b(0,0)  b(0,1)
5(1,0)  b(1,1)
b(g,0)  b(g,1)

As an example let m =n =p =g =1. Then 2-D

F(-1,-1)=b(-1,-1) ,

ER(0,0) = min F(0, —1) = b(0, ~1) s

|

F(1,-1) = b(1, ~1) ,

F(-1,5) - b(-1,-1) -,
ER(0,6) = min F(0,5) ~ b(0, —=1)
F(1,5) = b(1,-1)

F(5,—1) = b(—1,-1)
F(6,—1) — b(0, ~1)
F(7,~1) - b(1, -1)

The dilation will be:

|

ER(6,0) = min

F(5,5) — b{—1, ~1)
F(6,5) — b(0, ~1)

ER(6,6) = min
F(7,5) — b(1,-1)

L

F(=1,-1)+b(1,1)
F(0,~1) +b(0,1)
F(1,-1) +b(—1,1)

|
|

DI(6,6) = max {

DI1(0,0) = max

F(-1,5) +b(1,1)
F(0,5) +b(0,1)
F(1,8) + b(~1,1)

DI(0,6) = max

F(5,—-1) +5(1,1)
Dlg,o = max F(6,-1) +5(0,1)
F(1,-1) +b(-1,1)
F(5,5) +b(1,1)
F(6,5) +5(0,1)
F(7,5) +b(—-1,1)

F(-1,0) - b(-1,0)
F(0,0) - b(0,0)
F(1,0) - b(1,0)

F(-1,6) - b(—1,0)
F(0,6) - b(0,0)
F(1,6) - b(1,0)

F(5,0) - b(~1,0)
F(6,0) - b(0, 0)
F(7,0) — b(1,0)

F(5,6) - b(-1,0)
F(6,6) — b(0,0)
F(17,6) - b(1,0)

F(-1,0) +b(1,0)
F(0,0) +b(0,0)
F(1,0) +b(-1,0)

F(-1,6) + b(1,0)
F(0,6) + b(0,0)
F(1,6) + b(—1,0)

,  F(5,0)+b(1,0)
y F(6,0)+b(0,0)
, F(7,0)4+b(—1,0)

,  F(5,6)+b(1,0)
, F(6,6) +b(0,0)
y  F(7,6) +b(—1,0)

b(-p,n)]

b(-1,n)
b(0,n)
b(1,n)

b(g,n) J
erosion will be:

F(=1.1) —=b(-1,1),) ]
F(0,1) - b(0,1), }
F(1,1) - b(1,1)

F(-1,7) = b(~1,1),
F(0,7) - (0, 1), }
F(1,7) - 5(1,1)

(4.3.11)

F(5,1) = b(~1,1),
F(6,1) — b(0,1),
, F(7,1) -~ b(1,1)

|
|

y F(-1,1) + b(1, =1),
F(0,1) + b(0, -1),
F(1,1) +5(-1,-1)

, F(5,7)-b(-1,1),
, F(6,7) - b(0,1),
,  F(1,7) - b(1,1)

:
|
|

F(-1,7)+5(1,-1),
F(0,7) + b(0, —1),
F(1,7) +b6(-1,-1)

1

(4.3.12)

F(5,1) + b(1, —1),
F(6,1) +b(0, -1),
F(7,1) + b(-1,-1)

, F(5,7)+b(1,-1),
F(6,7) +b(0, -1),
v F(T,7)+b(-1,-1)
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The opening will be:

3 ER(-1,-1)+b(1,1) , ER(-1,0)+b(1,0) , ER(-1,1)+b(1,-1),
OP(0,0) = max ER(0,-1)+5(0,1) , ER(0,0)4+b(0,0) , FER(0,1)+b(0,-1),
ER(1,-1)+b(-1,1) , ER(1,0)+4-1,0) , ER(1,1)+b(~1,-1)
ER(-1,5)+b(1,1) , ER(-1,6)+4b(1,0) , ER(-1,7)+b(1,-1),
OP(0,6) = max ER(0,5)+b(0,1) , ER(0,6)+b(0,0) , ER(0,7)+ b(0,~1),
ER(1,5) +b(~1,1) , ER(1,6)+b(=1,0) , ERQ,7)+b(~1,-1)
(4.3.13)
ER(5,-1)+b(1,1) , ER(50)+5b(1,0) , ER(51)+5b(1,-1),
OP(8,0) = max ER(6,-1)+b(0,1) , ER(6,0)+b(0,0) , ER(6,1)+b(0,-1),
ER(7,~1) 4+ b(=~1,1) , ER(7,0)+b(=1,0) , ER(7T,1)+b(-1,-1)
ER(5,8)+b(1,1) , ER(5,6)+b(1,0) , ER(57)+5b(1,-1),
OP(6,6) = max ER(6,5)+b(0,1) , ER(6,6)+b(0,0) , ER(6,7)+b(0,~-1),
ER(7,5)+b(-1,1) , ER(7,6)+b(—-1,0) , ER(,7)+b(-1,-1)

The closing will be:

[ DI(~1,—1) — b(—1,-1),
DI(0, =1) = b(0, =1),

DI(1,—1) = b(1, -1),

DI(0,0) - b(0,0), DI(0,1) — (0, 1),

DI(=1,0) = b(=1,0), Di(=1,1)+b(=1,1),) |
DI(1,0) = b(1,0), DI(1,1) = b(1,1)

CL(0,0) = min {

DI(-1,8) — b(—1,-1), DI(—1,6) -~ b(—1,0), DI(-1,7) - b(-1,1),
CL(0,6) = min DI(0,5) - b(0,1), DI1(0,6) - b(0,0), DI(0,7) - b(0,1),
DI(1,5) — b(1, -1), DI(1,6) — b(1,0), DI(1,7)-b(1,1)
(4.3.14)

DI{(6,—1) — b(0,1), Di(s,0) - b(0,0), DI(6,1) - b(0,1),

DI(7,0) - b(1,0), DI(7,1) - b(1,1)

DI(5,—1) —b(—1,~-1), DI(5,0) - b(1,0), DI(5,1) —b(~1,1),
ClLg,0 = min

DI(7,-1) - b(1, ~1),

DI(5,5) = b(=1,~1), DI(5,6) —b(—1,0), DI(57) —b(~1,1),
CL(6,6) = min DI(6,5) - b(0,~1), DI(6,6) = b(0,0), DI(6,7) - b(0,1),

DI(7,5) - b(1, ~1), DI(7,6) - b(1,0), DI(7,7) - b(1,1)

We let the following assumption for the terms of G:

Bu,Rr; = b(0,0) = b(=k,j)
Ber; =B(0,0)-b(0.5)
Bpr; =b(0,0) - b(Lj)

Bu,L; =b(0,0) —b(=k,—%) , By,c =b(0,0)-b(-k0) ,

Bc; = b(0,0) — b(0, =3)
Bp,L; = b(0,0) = b(l, -1) s Bp,c

'

= b(0,0) — b{i,0) f

0<k<p0<l<qg0<i<m0<j<n (ie there are p points above, g

points beneath, m points on the left, and n points on the right of the centre
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point b(0,0)). The

A(6,0) = max

A(6,6) = max

!

above results

F(s,-1) - fcr,

{F(s. -1) - 68p, R,
F(1,-1) - Buyry

F(6,5) - Bcr,

{F(S. 5) - 8py R,
F(7,8) - Buyry

and the dilation will be:

DI(i,7) = A(Z, 5) + b(0,0),

. F(5,0) - Bp,c
F(8,0)
., F(1,0)=By,c

» F(5,6)-8p,c
F(6,6)
v F(7,6) - Bu,c

will be simplified to:

. F(6,1)=BcrLy,

' F(s.l)—ﬁu,,.,.}
R AR VR T

» F(6,7) - Bcry,

, F(5|7)~3D,Ll.}

v F(LT) = Buy i,

0<1i,j<6.

[ F(-1,-1)+Au, 1, F(-1,00 +8u,c » F(-1,1)48ury.) |
E(0,0) = min F(,-D)+8cL, . F(0,0) v FO,1)+8cr,y,
F(1,-1)+8pyL; » FQQL0+8p,c .+ F,1)+8pyr,
F(-1,5+8uv,L, , F(-1,6)+B8u,c .+ F(-1,7)+Bu,n;,
£(0,6) = min F(0,5) +8cL, . F(0,6) v F(0,7)+BcR,
F(L,S)+B8pyz, , FL&+8pc .+ FO,T+8pr,
(4.3.15)
F(5,-1)+B8ujL, + FG.O+Buc + F(5,1)+Bu Ry
E(6,0) = min F@6,-1)+B8cL, F(s,0) v F(8,1)+ Bcry»
F(,-1)+8pyr, + F(.0)+8pc + F(1,1)+8p,n
F(5,8)+BuyL, . F(5.86)+Bu,c » F(5,7)+Buyny»
E(6,6) = min F(6,5)+8cL, F(6,6) v F(6,7)+Bcr,y:
F(1,8)+8p,L, » F@6+Bpjc + F(IT)+Bpiry
and the erosion will be
ER(i,7) =Z(i,j) — b(0,0), 0<14,j <6. (4.3.16)
i F(-1,-1)=Bp,r, » F(-1,0)=8p,c . F(=1,1)=f8p 1, 1
A(0,0) = max F(0,-1) - Bcr, ’ F(0,0) , F(0,1) - BcLy»
FQ1.-1)-8u,r, FQ,0)-Bue  » F,1)-BuL,
F(-1,5) - Bp,r, ,» F(-1,6)-0p,¢c F(~-1,7)-Bp Ly
A(0, 6) = max F(0,5) — Bcr, s F(0,6) F(0,7) - Bcry»
F(L,5) - Buyry, o+ F(L&-fuic . FLT)=Bur, :
(4.3.17)

(4.3.18)
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The opening is simplified to:

OP(0,0) = max

OP(0,6) = max

OP(6,0) = max

OP(6,6) = max

L

|

E(-1,-1) - Bpy R,
£(0, -1) - B¢cr,
E(1,-1) - By Ry

=(-1,5)- 8D Ry
2(0,5) - Bcr,
E(1,5) - Buy Ry

|

=(5,-1) - 8p1Ry
=(6,-1) - Bcr,
2(7,-1) - Buy ry
E(5,5) - Bpy Ry
{ =(6,5) ~ Bcr,
E(7,5) = Bu, Ry

The closing is simplified to:

CL(0,0) = min

CL(0,6) = min

CL(6,0) = min

CL(6,6) = min

a(-1,~1) +8u; 1,
A0, -1) + BcL,

|

Al -1)+8p,1L,

A(-1,5) + By, 1,
A(0,5) + 8o,y
A(1,5)+ Bp, L,y

|

A5, -1) + By, L,
A(6,-1) + BeL,
A(7,-1) +Bp;L,
A(5,5) +Buy 1,
{ A(6,5) + Bcr,
A(7,8) +8p, 1,

’

’

£(-1,0) - Bp, ¢
£(0,0)
2(1,0) - By, ¢

£(~1,6) - Bp,c
E(0, 6)
E(1,6) - Buyc

=(5,0) - Bp, ¢
(6, 0)
2(7,0) - Bu, ¢

£(5,6) - Bp,c
=(6,6)
E(7,6) - Bu,c

A(—l.o) +Bu,c
A(0,0)
A(1,0) +8p,c

A(-1,6) +Bu, ¢
A(0, 6)
A(1,6) +Bp,c

. AG5,0)+Buyc

A(8,0)

, A(1,0+8p,c

A(5,6) + By, ¢
A(8, 6)
A(7,8) +8p, ¢

0

'

’

'

»

2(-1,1) - BpyL,y,
2(0,1) - Bcry»
2(1,1) = Buy L,

2(-1,7) -8p,Ly»
E(0,7) - Beirg»
=17 - 8u L,

A(-1,1) +Buyry
A(0,1) + Bc Ry
A(l,1) +8p, R,

=(s5,1) - ﬁDILl '
=(6,1) ~ Bery
E(7,1) - By,

E(5.7) - Bp,Ly>»
E(6,7) - Bery»
(1. 7) - Buy 1,

A(-1,7) + By,
A(0,7) 4+ Bcry»
A(LT)+8p, Ry

A5, 1)+ Buy Ry
A(6,1) + BeRry
A(7.1) +8py R,

A(5, 7Y+ By, Ry »
A(6,7) + BcRy
AT, )+ Bp, R,

|
|

(4.3.19)

:
]
|
|

(4.3.20)

The generalised implementation of 2-D operators are shown in Figures 4.3

and 4.4. Each row of the image is controlled by a parallel-in/parallel-out

shift register which also has a sequential output as well. The length of each

shift register equals to the width of the image (Y'). The parallel-load action

happens when a row is scanned completely. The parallel-load parts are shown

with double thick lines in Figures 4.3 and 4.4. Open-closing and close-opening

can be built by proper cascades of the above blocks.

MORPHOLOGICAL FILTERING

M.H. Sedaaghi



65

4.3 The proposed algorithms

Opening

Row Buffer

B'_< 'bm

Erosion

Row Buffer

Figure 4.3: The generalised implementation of fast recursive 2-D erosion and

opening.
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Row Buffer j«—

Be—< bug

Row Buffer

Closing

Dilation

-D dilation and

sive 2

Figure 4.4: The generalised implementation of fast recur

closing.
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4.4 Efficiency

Our algorithm for real-time MF avoids unnecessary operations and doesn’t
keep intermediate results. Therefore it is much faster than the classical cascade
methods for opening, closing, open-closing and close-opening operations in
which the intermediate results are needed. For example if the signal(image)
size is N = 512(X = Y = 512) and the GSE’s size is L = 3(K = L = 3), we
have L << N(L << Y, K << X), and the result of the first sample for opening
is ready after finishing the whole erosion which needs LN = 1536(XY KL =
2359296) additions and N(L—1) = 1024(XY (K L—1) = 2097152) comparisons
and keeping the results into a buffer of size N = 512(XY = 262144) (sce
Table 4.2) while the result of the first opening sample in the proposed method
is produced only after a few operations shown in Table 4.3. The proposed
structures of morphological operators can be implemented by hardware and
operated in real time.

Table 4.2: The required operations and memory elements for classical method.
(Let L=K =3, N=X=Y =512)

Oper- 1-D 2D

ations | Addition Comparison Memory | Addition Comparison Memory

op 2NL 2N(L-1) 2N+L | 2XYKL 2XY(KL-1) 2XY+KL
(3072) (2048) (1027) | (4718592)  (4194304) (524297)

opcl 4NL 4N(L-1) 2N+L | 4XYKL 4XY(KL-1) 2XY +KL
(6144) (4096) (1027) | (9437184) (8388608) (524297)

4.5 Remarks and conclusion

Our major contribution in this chapter is related to the real-time implemen-
tation of 1-D and 2-D GS operators. We have tried to highlight the efficiency

of the proposed methods. We have shown how our approaches generalise the
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Table 4.3: The required operations and memory elements for proposed method.
(Let L =K =3,Y =512)

Oper- 1-D 2-D

ations | Addition Comparison Memory | Addition Comparison Memory

op 2L -2 2L -2 3L-3 |2KL-2 2KL-2 2YK +3KL
(4) 4) (6) (16) (16) —2K - 1(3092)

opcl 4L — 4 4L -4 5L—-5 | 4KL -4 4KL -4 4YK +5KL
(8) (8) (10) (32) (32) —4K - 1(6176)

existing methods for any given SE. We have proved that how efficiently they

operate, regarding the required hardware and execution time.
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Chapter 5

Convolved morphological filters

5.1 Introduction

In previous chapters we have defined GS morphological operators, and pre-
sented fast algorithms and also real-time implementation of the operators. This
chapter introduces novel convolved morphological operators (CMOs) and con-
volved morphological filters (CMFs) [74, 77]. As a reminder, a morphological
operator is called a morphological filter if it is increasing, idempotent, and
extensive or anti-extensive (see Chapter 2). The idea is to combine linear fil-
tering with MF to take the advantage of both methods. The CMF operates
using morphological operations and their convolution with selected impulse re-
sponses and offers highly accurate characteristics of high-, low-, and band-pass
filtering. Designing a suitable structuring element based on the characteristics
of the input signal is discussed and hardware implementation of CMF is also
investigated.

By contrast to linear filtering which blurs the image, the MFs provide image
enhancement without blurring the features. As examples, consider the quality
of MF on aperiodic signals compared with linear filtering in Figures 5.1 and

5.2. The SE applied in all cases is a flat SE of size 3 for 1-D and 3 x 3 for 2-D
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applications.

However there is no analytical method available for ME analysis due to
their nonlinear features. Reconstruction of the original signal is impossible to
be achieved after morphological operations (i.e. MF operators are idempotent:
Y(1p(f)) = f), but linear methods are transferable in the time and frequency
domains for analysis and design. Some efforts have been made to combine MF
and convolution [84, 12]. This section proposes a novel method for design
of MFs with enhancement provided by convolution, which results in a much

superior performance compared with that obtained by linear filters.

Input Linear MF
5 5 5
0 0 0
-5 -5 -5
0 1000 2000 0 1000 2000 0 1000 2000
(a) (b) (c)

Figure 5.1: Noisy aperiodic square signal.

Input image Linear

Figure 5.2: Noisy MRI image.
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5.2 Definition of CMO

Let in(t) be an input signal of the form

in(t) = A, cos(27r?t + 1)+ + Ak cos(27r&t + &) + e(t),

where f, is the sampling frequency and e(t) is white noise. 0 < f; < fo <

< fr < -2& We want to extract the desired frequencies singly/or in a
band. Linear filters will cause a time delay which is not desirable. However
the frequency response of the MF, despite avoiding the time delays (preserving
the original signal shape), is not as valid as for linear filters due to its nonlinear
operations. Therefore we have proposed an algorithm to convolve MF with a
proper transfer function h(t) to obtain a robust filter preserving the original
signal shape in time domain with a desired frequency response. Let mo(t),
h(t) and cmo(t) denote the output of the morphological operator, the impulse

response of linear filter, and CMO output, respectively, and be defined as
cmo(t) = h(t) xmo(t) = > h(r) -mo(t — 1), (5.2.1)

where 7 € Dy,t — 7 € D,,,, and x denotes convolution. Equivalently we can

express the terms in the frequency domain:

CMO(f) = H(f) - MO(f). (5.2.2)

As convolved morphological operators, convolved erosion cer(t), dilation cdi(t),
opening cop(t), closing ccl(t), open-closing copcl(t) and close-opening cclop(t)

are defined as (t,u,v,w € D, and f(a),a € Dy)

cer(t) = Zh(r) cer(t—17) = Z h(r) - muin{f(t +u—7)—g(u)} (5.2.3)

edi(t) = Eh(r) dift—71) = Zh(T) . mfx{f(t —u—"7)+g(w)} (52.4)
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cop(t) =32 h(r)-op(t —7)

= Z h(r) - max{min{f(t +u - v - 1) - g(u) + g(v)}} (5.2.5)
Cd(t) = ZT: h(T) . Cl(t — T)
= XT: h(r) - m}n{mgx{f(t —u+v—1)+g(u) - g(v)}} (5.2.6)
copcl(t) =3 h(r)- opcl(t — 7) = " h(r) - max{min{min{max{
T T w v u 5 (5.2.7)

ft=s+utv—w=1)+9(t) - g(v) — g(v) + g(w)}}}}

cclop(t) = S h(r)-cl(t —7) = > h(r) - min{max{max{min{
z - wow e 5.2.8
f(t+8—u—v+w—7)~g(t)+g(U)+g(v)—g(W)}}}}( )

5.3 Convolved morphological filters

We will consider the above CMOs, as convolved morphological filters (CMFs)
except cer and cdi which are only operators and not filters as they are not idem-
potent. In this section we will use (opcl + clop)/2 as morphological filter to be
convolved with h(t).

Figures 5.3- 5.7 show an example when k =2, f, =5, f; = 20, f, = 128
Hz, A, = A2 =1and

h(t) = 2\/% - cos(2m fot) - €72, (5.3.1)

where fo = fi for low-pass and fo = f; for band-pass filtering, and « is a
parameter (=n?2). The linear filter applied for the example is a low- and band-

pass butterworth of order 5.

5.3.1 Choosing proper impulse response

In this part we explain the reasons for choosing h(t) as mentioned in Eq.

5.3.1 which seems to be a proper impulse response. If we assume hi(t) as
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defined below:

ha(t) = % e (5.3.2)

Hi(f) = e 555, (5.3.3)

h1(t) and Hi(f) have both a shape with peak at n = 0 and f = 0 respectively,
and they both decay exponentially when moving away from 0 based on a.

Therefore it can be ideal for clearing the unwanted frequencies using a proper

a. If we shift Hy(f) with fo, then

Hy(f)=Hi(f - fo) = e~ U (5.3.4)
A shift in frequency domain will result in
ha(t) = ha(t) - 227008, (5.3.5)
If we consider the mirror frequency as well, we can develop H(f) as
H(f) = Hi(f — fo) + Hi(f + fo) = (=525 4 == 525 (5.36)
Then in tim; domain, we can develop the following relation

h(t) = hi(t) - €270t 4 hy(t) - €927/t = 2hy(t) - cos(27 fot)

) (5.3.7)
=2,/% e - cos(2m fot).

5.3.2 Towards CMF

We will use the impulse response h(t) defined in previous section. If we
choose the structuring element SE| having the shape of half of a sinus with its
peak at its centre and a length of %22, the following equation will remove the

shapes smaller than the size of SE;:

residue(t) = [opcl(in(t)) + clop(in(t))]/2. (5.3.8)

MORPHOLOGICAL FILTERING M.H. Sedaaghi



5.3 Convolved morphological filters 74

We apply the average of opcl and clop to have a symmetric result. As a
reminder, we know that the higher the frequency of a signal, the smaller its
shape in time domain. The signal residue(t) as the output of MF in Eq. 5.3.8
contains the shapes greater than the shape of SE;. As the shape of SE; is
half a sinus, it will remove the shapes smaller than SE; (i.e. smaller than the
shapes with higher frequencies than f;). The size of half a sinus is enough
considering the effect of erosion and dilation on SEs. Therefore we will have
the components related to f; and f, preserved in residue(t). If we increase the
size of SE from SE; = f—’fzg to SE, = f—}lg, the following equation will act as
low-pass MF, removing f, from residue(t), for the same reason as mentioned

above:
MFlow(t) = [opcl(residue(t)) + clop(residue(t))]/2. (5.3.9)

As MF preserves the original structure, we can subtract M Flow(t) from residue(t)

to extract f, acting as a band-pass MF:
MFband(t) = residue(t) — M Flow(t). (5.3.10)

If we apply a convolution to Eqs. 5.3.9 and 5.3.10, we will have the desired
CMF as low-pass and band-pass filters:

CMFlow(t) = M flow(t) x h(t), (5.3.11)
CMFband(t) = M fban(t) * h(t). - (5.3.12)

Now we take the following steps as a general rule for periodic signals:
1. Choose a proper structuring element regarding both its shape and size.

2. Apply a proper morphological operator to extract the desired shapes in
time domain based on the relations discussed in section B.1. Experi-

mental results have proven that the best operators are (opcl + clop)/2.
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3. Determine a suitable h(t) for convolution regarding both time and fre-

quency domain.
4. Convolve MF with h(t).

Figures 5.8- 5.12 show another example when k£ = 2, fi = 10, f, = 40,
f, = 1024 Hz. The rest of the operators are the same as for 5.3- 5.7. Similar
discussion exists for 2-D periodic signals (See Figures 5.13- 5.17 as an example
of 2-D periodic signal and Figures 5.18- 5.22 as alternative example of 2-D

periodic signal with increased sampling frequency).

Input Normalised spectrum
3 0
2 -50
1 -100
0 -150
3 -200
-2 -250
0 0.2 0.4 0.6 0.8 1 0 50 100 150

Figure 5.3: The input signal.

MF low-pass Normalised spectrum

1 0
-50
0.5 -100
-150

0
-200
05 -250
-300
=] -350

0 0.2 0.4 0.6 0.8 1 0 50 100 150

Figure 5.4: MF low-pass signal.
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CMF low-pass Normalised spectrum
0.6 0
0.4
0.2 -5000
0
-0.2
-10000
-0.4
-0.6
-0.8 -15000
0 02 04 06 08 1 0 50 100 150
t f
Figure 5.5: CMF low-pass signal.
MF band-pass Normalised spectrum
1.5 0
1 -50
0.5
-100
0
-150
-0.5
i -200
-1.5 -250
0 02 04 06 08 1 0 50 100 150
t f
Figure 5.6: MF band-pass signal.
CMF band-pass Normalised spectrum
0.6 0
0.4
0.2 5000
0
-0.2
-10000
-0.4
-0.6
-08 - -15000
0 02 04 06 08 1 0 50 100 150

t f

Figure 5.7: CMF band-pass signal.
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Input Normalised spectrum
3 0
2
1
0
-1
_2 -400
0 02 04 06 08 1 0 500 1000 1500
t f
Figure 5.8: The input signals(example 2).
MF low-pass Normalised spectrum
15 0
1 -100
0.5 -200
0 -300
-0.5 -400
=] -500
0 02 04 06 08 1 0 500 1000 1500
1 f
Figure 5.9: MF low-pass signal(example 2).
CMF low-pass Normalised spectrum
0.6 0
0.4
e -5000
0
-0.2
~10000
-0.4
-06
-08 -15000
0 02 04 06 08 1 0 500 1000 1500

t f

Figure 5.10: CMF low-pass signal(example 2).
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MF band-pass Normalised spectrum
1.5 0
1 -100
0.5
) -200
0 i
I f | -300
~05 |
1 -400
-1.5 -500
0 0.2 04 0.6 0.8 1 0 500 1000 1500
t f
Figure 5.11: MF band-pass signal (example 2).
CMF band-pass Normalised spectrum
1 0 ﬂ\’\[‘\
0.5
-5000
0
-10000
-0.5
1 —— ] -15000 X_J
0 0.2 04 0.6 08 1 0 500 1000 1500

t f

Figure 5.12: CMF band-pass signal(example 2).

Input Normalised spectrum

Figure 5.13: The input signals,
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MF low-pass Normalised spectrum

Figure 5.14: MF low-pass signal.

CMF low-pass Normalised spectrum

Figure 5.15: CMF low-pass signal.

MF band-pass Normalised spectrum
A
" /V\f\ )
AY r\&)f‘eﬂ“'\ \MA
I.‘
Vs W,T ;

Figure 5.16: MF band-pass signal.
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CMF band-pass Normalised spectrum

Figure 5.17: CMF band-pass signal.

Input Normalised spectrum

Figure 5.18: The input signals(example 2).

MF low-pass Normalised spectrum

Figure 5.19: MF low-pass signal(example 2).

5.4 Structuring element design

We have empirically shown that the following rule exists for the design of

the structuring element (SE). For periodic signals (with a limited spectrum),
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CMF low-pass Normalised spectrum

Figure 5.20: CMF low-pass signal(example 2).

MF band-pass Normalised spectrum

Figure 5.21: MF band-pass signal(example 2).

CMF band-pass Normalised spectrum

Figure 5.22: CMF band-pass signal(example 2).
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the size of SE should approximately equal the number of samples building
the corresponding frequency in time domain. For example for M Flow(t), as
defined before, the length of SE should be equal to 11 (f—flﬁ =128/2/5"=
12.8 — 11. It is a symmetric SE with the origin at its centre, and the size
of SE should be odd). similarly the proper SE size for residue(t) is j.,h'z =
128/2/20 = 3.2 — 3. After the size of SE is determined, its shape should be
constructed similar to the shape of the desired signal (i.e. sinusoidal in the
above example). For aperiodic signals we can design SE similar to the shape
and size of the parts of the signal to be removed or preserved. If there is no

pre-knowledge about the shape, the best guess is to apply a flat SE. With trial

and error, the size of SE can be determined.

5.4.1 Hardware implementation

Based on the techniques of the previous chapter, we can realise CMF's by
hardware (see Figure 5.23). Similar hardware for real-time implementation of

other CMF operators can be developed.

——> cer(n)

Figure 5.23: Hardware implementation of CMF.
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5.5 Remarks and conclusion

We have discussed the design of CMF and shown its super performance in
time domain and accurate characteristics in frequency domain when applied
for signal /image filtering. CMFs’ outstanding performance can be seen in both
time and frequency domain. We have tested the proposed method with different
periodic waveforms. In all cases, the benefits of applying the MF part in time
domain, and sharp and accurate frequency response as a result of convolution

part, have accompanied us.
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Chapter 6

Weighted morphological filters

6.1 Introduction

Previous chapter introduced a technique to improve the efficiency of MFs
in frequency domain by convolving them with linear methods. This chap-
ter presents a novel morphological filter using weighted morphological oper-
ators (WMOs) [76]). The newly introduced operators employ a weighted
structuring element and apply multiplication and division in place of addition
and subtraction in classical morphological operations. Experimental results
prove that the new operators’ performance dominate over classical ones for
signals/images buried in salt&pepper, speckle and Gaussian noises. Some out-
standing approaches to promoting the efficiency of classical MF have been
proposed [91, 83, 84]. In this chapter we introduce a weighted structuring
element (SE) and new operators and present the results obtained using the
novel weighted morphological filters (WMFs) for signals/images when buried

in different noises.
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6.2 Weighted morphological operators

Classical 2-D grey-scale (GS) erosion (ER) and dilation (DI) are defined
as (Egs. 2.6.9, 2.6.10): ER(k,l) = rilivn{f(k +u,l +v) — g(u,v)}, DI(k,]) =
max{f(k — u,! — v) + g(xv,v)}, wher,e f and g are the input image and SE
r:svpectively. Opening and closing are cascades of erosion and dilation in the

proper order [33]. We define weighted erosion (WER) and dilation (1WDI) as:

WER(k,!) = rg}gl{f (k +u,l +v)/g(u,v)}, (6.2.1)
WDI(k,1) = I{l‘%x{f(k —u,l —v)-g(u,v)}. (6.2.2)

The other operators like weighted opening (1VOP) and closing (WWCL) are sim-
ply the cascades of weighted erosion and dilation as WOP(f) = WDI(W ER(f))
and WCL(f) = WER(WDI(f)), respectively. Weighted open-closing (\WOPCL)
and close-opening (1"'CLOP) are defined as |

WOPCL(f) = WCL(VOP(f)), (6.2.3)
IWCLOP(f) = WOP(WCL(f)), (6.2.4)

respectively. The structuring element g has a normalised weight factor and
its elements are calculated such that the centre point’s weight is 1 and the
farthest point’s weight is assigned a weight factor 0 < w < 1, leading to an
emphasis over the effect of the central point and a reduction of the effect of
the neighbourhood points. The rest of the weights are calculated based on
an increment Aw = (1 — w)/d, where d is the distance between the centre
point and the farthest point from the centre. In the vertical and horizontal
directions, the weights decrease by Aw, each step starting from the origin. In
the oblique directions, the weights decrease by 2Aw, each step starting from
the centre. The centre can be located at any point of SE. For example, for SE
of size 3 x 3 with its centre at its origin (i.e. (2,2)), if w1 = 0.1, the SE will

look like g1, where Aw = 0.45, and for w, = 0.9, for the same centre point
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(underlined), it will change to g;, where Aw = 0.05. For SE of size 7 x 7 with
its centre at (1,5) and w3 = 0.5, the SE will be g3, where Aw = 0.05.

0.10 0.55 0.10
a=1{055 1.00 055 (6.2.5)
0.10 0.55 0.10

[ 0.90 0.95 0.90 |
o= | 095 1.00 0.95 (6.2.6)
| 090 0.95 0.90

[ 0.80 0.85 090 0.95 1.00 0.95 0.90
0.75 0.80 0.85 0.90 0.95 0.90 0.85
070 075 0.80 0.85 0.90 0.85 0.80
0.65 070 0.75 0.80 0.85 0.80 0.75 |- (6.2.7)
0.60 065 0.70 0.75 0.80 0.75 0.70
0.55 0.60 0.65 0.70 0.75 0.70 0.65
| 050 0.55 060 0.65 0.70 0.65 0.60 |

gs

6.3 Properties

The weighted morphological operators (WMOs) imply the WER, WDI,
1wOP and WCL. They have the following properties if0<w<1:

1. WMOs are increasing (fi < fo = WMO(f,) < WMO(f,)).

9. W DI and WCL are extensive (i.e. WDI(f) > fand WCL(f) > f), and
1V ER and WOP are anti-extensive (i.e. WER(f) < f and WOP(f) <
f),

3. WER and W DI are not idempotent (i.e. WER(WER(f)) # WER(f)
and WDI(WDI(f)) # WDI(f)). However IWOP and WCL are idem-
potent (i.e. IWOP(WOP(f)) = WOP(f)and WCL(WCL(f)) = WCL(f)).
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These properties exist similarly in classical MFs and are consistent with the
established theory of mathematical morphology. A morphological filter should
be increasing, idempotent, and extensive or anti-extensive. [78]. Therefore the
WMOs can be used to construct a WME, because they have all the above three
required conditions and We will use WCL or WOP as a filter (called WMF).
However W ER and W DI are considered as WMO.

6.4 Results and discussion

Figure 6.1-d confirms that the performance of WMF acts better than MF
while MF removes salt&pepper noise more efficiently than the linear filter.
Figures 6.2 and 6.3 show that for both Speckle and Gaussian noises, the linear
filtering is better than MF and WNMEF. However they confirm that WMF is still
better than MF.

(a)lnput (b)Linear

(d)WMF(W=0.7)

Figure 6.1: Salt&pepper noise removal with linear, MF and WMF.

The following results prove the dominance of WMF over MF in different
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(a)Input (b)Linear

(c)MF (d)WMF(W=0.7)

Figure 6.2: Speckle noise removal with linear, MF and WMF.

(a)Input (b)Linear

(c)MF (d)WMF(W=0.8)
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noisy environments. We consider the correlation (M) of the processed image
with a reference (noise-free) image. First we test the effect of the size of SE
on the results of classical and weighted open-closing and close-opening. In all
experiments, the centre of SE is its origin to preserve the symmetry. Tables 6.1-
6.3 show the analysis for SE of size 3x 3, 5x 5, 7x 7 and 9 X 9, when the image
is buried in salt&pepper, speckle and Gaussian noise, respectively. The first
rows of the tables show two different parts for open-closing (opcl) and close-
opening (clop) operations. The second rows are about the size of SEs. The
third rows of the tables show the results of classical MFs. The rest of the rows
are related to WMFs with different weights. In Table 6.1, for SE of size 3 x 3,
we get the best results if w > .4 for open-closing and w > .5 for close-opening,
where A > 0.9. While the size of SE increases, the efficiency of both filters fall
although WMF always seems to be better than MF. Similar discussion can be
carried out for speckle and Gaussian noise (see Tables 6.2, 6.3). The relative
performance of WMEF over MF (Aw/A) based on the above results have been
shown in Tables 6.4-6.6. Figures 6.4-6.6 illustrate their graphs.

In another sets of the experiments, we have tested the efficiency of WMF's
while changing the parameters of the noises. Figure 6.7-a illustrates the result
of weighted close-opening for salt&pepper noise while the parameter D (the
noise intensity) changes from .01 to .5. The best results come true for w > 4.
Figure 6.7-b shows the similar action while the variance (V) of the speckle
noise varies from .01 to .5. Figures 6.7-c:f show the results for Gaussian noise
with different variances (V7)) upon different mean values (Af). We realise that
the effect of Af for Gaussian noise is negligible and it only produces an offset
to the same shapes generated with different Afs. In all cases, SE’s size is 3 x 3
with its centre at (2,2) and the step for increasing noise parameters is .01.

Tables 6.7-6.12 show the about results numerically.
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Table 6.1: Salt&pepper noise (D = 0.05)

A SE for opcl SE for clop

w 3 5 7 9 3 5 7 9

- 0.9268 0.7045 0.4668 0.2299 0.9180 0.7043 0.4835 0.2606
0.1 0.7212 0.6595 0.4769 0.2447 0.6530 0.5464 0.4998 0.4475
0.2 0.8318 0.7461 0.5159 | 0.2493 0.7070 | 0.6162 0.5538 0.4762
0.3 0.8905 0.7615 | 0.5123 0.2468 0.7788 | 0.6962 0.5920 0.4814
04 0.9198 0.7610 | 0.5035 0.2445 0.8585 0.7490 0.6099 0.4640
0.5 0.9354 0.7547 | 0.4951 0.2426 0.9110 0.7769 0.6104 0.4271
0.6 0.9429 | 0.7457 | 0.4876 | 0.2404 0.9391 0.7833 0.5977 | 0.3848
0.7 0.9448 | 0.7349 | 0.4819 | 0.2382 0.9466 { 0.7733 0.5744 0.3465
0.8 0.9420 0.7239 | 0.4763 | 0.2351 0.9420 | 0.7535 0.5434 0.3120
0.9 0.9354 0.7136 0.4713 0.2324 0.9311 0.7287 0.5111 0.2831

Table 6.2: Speckle noise (V' = 0.04)

SE for opcl SE for clop

w 3 5 7 9 3 5 7 9

- 0.9381 0.7913 0.6374 0.5510 0.9254 0.7733 0.6907 0.6435
0.1 0.9247 0.8920 0.7557 0.6478 0.9224 0.8821 0.8092 0.7354
0.2 0.9293 0.8742 | 0.7115 0.6069 0.9245 0.8871 0.8116 0.7379
0.3 0.9369 0.8551 0.6884 0.5916 0.9315 0.8871 0.8007 0.7277
0.4 0.9428 0.8415 0.6770 0.5829 0.9388 0.8721 0.7820 0.7158
0.5 0.9469 0.8320 0.6700 0.5764 0.9452 0.8525 0.7632 0.7025
0.6 0.9492 0.8251 0.6643 0.5710 0.9483 0.8334 0.7439 0.6858
0.7 0.9507 0.8189 0.6588 0.5668 0.9469 0.8153 0.7268 0.6716
0.8 0.9496 0.8116 0.6524 0.5624 0.9415 0.7996 0.7127 0.6608
0.9 0.9453 0.8021 0.6449 0.5571 0.9341 0.7860 0.7012 0.6512

Table 6.3: Gaussian noise (M =0, V' = 0.01)

A SE for opel SE for clop

w 3 5 7 9 3 s 7 9

- 0.8715 0.6862 0.4420 0.3210 0.8330 0.6703 0.5868 0.5334
0.1 0.8504 0.7784 0.5191 0.3564 0.8192 0.7694 0.7101 0.6581
0.2 0.8550 0.7440 0.4841 0.3389 0.8228 0.7583 0.6957 0.6433
0.3 0.8595 0.7209 0.4655 0.3289 0.8294 0.7542 0.6917 0.6405
0.4 0.8644 0.7121 0.4587 0.3270 0.8386 0.7480 0.6760 0.6258
0.5 0.8693 0.7088 0.4558 0.3253 0.8469 0.7324 0.6548 0.6042
0.6 0.8744 0.7062 0.4542 0.3249 0.8525 0.7168 0.6364 0.5837
0.7 0.8782 0.7039 0.4532 0.3244 0.8535 0.7017 0.6208 0.5668
0.8 0.8792 0.6998 0.4509 0.3240 0.8489 0.6899 0.6075 0.5520
09 0.8772 0.6941 0.4470 0.3227 0.8423 0.6799 0.5970 0.5417
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Table 6.4: Relative comparison for salt&pepper noise (D = 0.05)

Aw/A SE for opcl SE for clop

w 3 5 7 9 3 5 7 9

.1 0.7782 0.9361 1.0216 1.0644 0.7113 0.7758 1.0337 1.7172
.2 0.8975 1.0590 1.1052 1.0844 0.7702 0.8749 1.1454 1.8273
.3 0.9608 1.0809 1.0975 1.0735 0.8484 0.9885 1.2244 1.8473
.4 0.9924 1.0802 1.0786 1.0635 0.9352 1.0635 1.2614 1.7805
.5 1.0093 1.0713 1.0606 1.0552 0.9924 1.1031 1.2625 1.6389
.6 1.0174 1.0585 1.0446 1.0457 1.0230 1.1122 1.2362 1.4766
7 1.0194 1.0432 1.0323 1.0361 1.0312 1.0980 1.1880 1.3296
.8 1.0164 1.0275 1.0204 1.0226 1.0261 1.0699 1.1239 1.1972
.9 1.0093 1.0129 1.0096 1.0109 1.0143 1.0346 1.0571 1.0863

Table 6.5: Relative comparison for Speckle noise (V = 0.04)

Aw/A SE for opcl SE for clop

w 3 5 7 9 3 5 7 9

.1 0.9857 1.1273 1.1856 1.1757 0.9968 1.1407 1.1716 1.1428
.2 0.9906 1.1048 1.1163 1.1015 0.9990 1.1472 1.1750 1.1467
.3 0.9987 1.0806 1.0800 1.0737 1.0066 1.1472 1.1593 1.1308
.4 1.0050 1.0634 1.0621 1.0579 1.0145 1.1278 1.1322 1.1124
.5 1.0094 1.0514 1.0511 1.0461 1.0214 1.1024 1.1050 1.0017
.6 1.0118 1.0427 1.0422 1.0363 1.0247 1.0777 1.0770 1.0657
7 1.0134 1.0349 1.0336 1.0287 1.0232 1.0543 1.0523 1.0437
.8 1.0123 1.0257 1.0235 1.0207 1.0174 1.0340 1.0319 1.0269
.9 1.0077 1.0136 1.0118 1.0111 1.0094 1.0164 1.0152 1.0120

Table 6.6: Relative comparison for Gaussian noise (M =0

, V =0.01)

Aw/A SE for opel SE for clop

w 3 5 T 9 3 5 7 9

.1 0.9758 1.1344 1.1744 1.1103 0.9834 1.1478 1.2101 1.2338
.2 0.9811 1.0842 1.0952 1.0558 0.9878 1.1313 1.1856 1.2060
.3 0.9862 1.0506 1.0532 1.0246 0.9957 1.1252 1.1788 1.2008
.4 0.9919 1.0377 1.0378 1.0187 1.0067 1.1159 1.1520 1.1732
.5 0.9975 1.0329 1.0312 1.0134 1.0167 1.0926 1.1159 1.1327
.6 1.0033 1.0291 1.0276 1.0121 1.0234 1.0694 1.0845 1.0943
7 1.0077 1.0258 1.0253 1.0106 1.0246 1.0468 1.0579 1.0626
8 1.0088 1.0198 1.0201 1.0093 1.0191 1.0292 1.0353 1.0349
.9 1.0065 1.0115 1.0113 1.0053 1.0112 1.0143 1.0174 1.0156
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(a) Aw/A for open-closing

(b) Aw/A for close-opening

Figure 6.4: Relative comparison for salt&pepper noise (D = 0.05)

BB R 8T

(a) Aw/A for open-closing (b) Aw/A for close-opening

Figure 6.5: Relative comparison for Speckle noise (V' = 0.04)

(a) Aw/A for open-closing (b) Aw/A for close-opening

Figure 6.6: Relative comparison for Gaussian noise (M =0, V' = 0.01)
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Figure 6.7: The effect of weighted close-opening on three types of noises.
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6.5 Remarks and conclusion

In conclusion we realise the superb efficiency of WMF over MF in all noisy
environments. If the average of the weighted open-closing and close-opening
is applied, it will be the most ideal operator. However for most cases such an
accuracy is not required as it needs twice the operation necessary for single
operators leading to slow speed of processing. As another experiment, we

defined SE as:

SE = exp(—V/(r —10)? + (c — o) /w), (6.5.1)

were (o, ¢o) and (r, ) are the coordinates of the SE’s centre and arbitrary point
in SE’s domain, respectively. For w : .5 — 10 with steps 0.5, we got the best
results for weighted open-closing as A = 0.9417 with w = 5.5, and weighted
close-opening as A = 0.9358 with w = 4, respectively, while the image was
buried in salt&pepper noise, which is less than the best results with linearly-
weighted SE (see Figure 6.8). In other experiments carried over speckle and
Gaussian noises, we found out that the linearly weighted SE behaves better

than exponentially weighted SE.

et

(a) WOPCL (b) WCLOP
Figure 6.8: Exponentially weighted SE for salt&pepper noise.

In this chapter we proposed new operators called WMOs. Their perfor-

mance over MF was highlighted through this chapter. While MF fails to re-
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move speckle and Gaussian noise, compared to linear methods, WMF improves
the relevant performance. The only drawback of WMF is its speed compared to
MF as they use multiplication/division instead of addition/subtraction, unless

fast existing methods for linear filter coefficient design are applied [10, 42].
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Table 6.7: The effect of WMF on salt&pepper

Weight coefficient

D 0.1000 0.2000 0.3000 0.4000 0.5000 0.6000 0.7000 0.8000 0.9000
0.01 0.8723  0.8339 0.9104 0.9442 0.9640 0.9712 0.9694 0.9628 0.9536
0.02 0.7926  0.8253  0.8734 0.9196 0.9493 0.9628 0.9637 0.9573  0.9480
0.03 0.7426 0.7819 0.8362 0.8953 0.9346 0.9548 0.9587 0.9541 0.9449
0.04 0.6842 0.7374 0.7978 0.8681 0.9172 0.9431 0.9508 0.9483 0.9401
0.03 0.6502 0.7052 0.7787 0.8582 0.9099 0.9372  0.9441 0.9400 0.9295
0.06 0.6241 0.6859 0.7549 0.8360 0.8948 0.9285 0.9396 0.9360 0.9243
0.07 0.5961 0.6604 0.7354 0.8201 0.8852 0.9240 0.9383 0.9365 0.9259
0.08 | 0.5831 0.6455 0.7221 0.8088 0.8713  0.9051 0.9136 0.9056  0.8873
0.09 0.5601 0.6257 0.7049 0.7919 0.8597 0.8993 0.9130 0.9068 0.8876
0.10 0.5434 06114 0.6889 0.7770 0.8443 0.8851 0.8959 0.8851 0.8624
0.11 | 0.5299 05984 06778 0.7691 0.8396 0.8795 0.8882 0.8735 0.8444
0.12 0.5242 0.5952 0.6712 0.7556 0.8190 0.8543 0.8585 0.8384  0.8057
0.13 | 0.5039 0.5754 0.6494 0.7290 0.7897 0.8210 0.8168 0.7862 0.7398
0.14 0.5021 0.5744 0.6472 0.7268 0.7849 0.8118 0.7999 0.7613 0.7098
0.15 0.4975 0.5710 0.6442 0.7199 0.7740 0.7963 0.7804 0.7380 0.6833
0.16 0.4846 0.5517 0.6191 0.6879 0.7353 0.7491 0.7235 0.6722 0.6100
0.17 | 0.4747 0.5424 0.6111 0.6800 0.7234 0.7338  0.7053  0.6493 . 0.5834
0.18 0.4676 0.5370 0.6053 0.6680 0.6996 0.6943 0.6554 0.5944 0.5285
0.19 0.4592 0.5314 0.6014 0.6628 0.6954 0.6915 0.6505 0.5868 0.5172
0.20 0.4498 0.5175 0.5803  0.6341 0.6585 0.6475 0.6020 0.5372  0.4705
0.21 0.4422 0.5098  0.5744 0.6269  0.6464  0.6313  0.5815 0.5130  0.4455
0.22 0.4319 0.4980 0.5578 0.6065 0.6203 0.5980 0.5435 0.4739 0.4083
0.23 0.4360 0.5004 0.5608 0.6072 0.6223 0.5978 0.5403 0.4697 0.4036
0.24 0.4256  0.4891 0.5465  0.5891 0.5960  0.5674  0.5098  0.4420  0.3805
0.25 | 0.4189 0.4828 0.5374 0.5755  0.5778  0.5439  0.4840 0.4163  0.3551
0.26 0.4185 0.4809 0.5353 0.5722 0.5717 0.5362 0.4759 0.4095 0.3520
0.27 0.4109 0.4708 0.5224 0.5511 0.5425 0.5007 0.4394 0.3768 0.3236
0.28 0.4015 0.4576 0.5038 0.5276 0.5143 0.4697 0.4093 0.3487 0.2984
0.29 0.3976 0.4543 0.4970 0.5199 0.5064 0.4625 0.4042 0.3456 0.2968
030 | 0.3957 0.4518 0.4960 0.5155 0.5007 0.4556  0.3964  0.3385  0.2909
0.31 0.3875 0.4408 0.4837 0.5003 0.4829 0.4381 0.3826 0.3296 0.2867
0.32 0.3825 0.4335 0.4699 0.4825 0.4619 0.4157 0.3594 0.3081 0.2666
0.33 0.3863 0.4349 0.4738 0.4874 0.4652 0.4179 0.3623 0.3119 0.2722
0.34 0.3816 0.4298 0.4645 0.4756 0.4535 0.4070 0.3537 0.3068 0.2695
0.35 0.3686 0.4108 0.4408 0.4474 0.4229 0.3782 0.3296 0.2882 0.2555
0.36 0.3653  0.4095 0.4396 0.4459 0.4209 0.3753 0.3264 0.2847  0.2523
0.37 0.3638 0.4059 0.4336 0.4379 0.4120 0.3683 0.3212 0.2799 0.2481
0.38 0.3541 0.3957 0.4231 0.4263 0.4014 0.3595 0.3154 0.2792 0.2513
0.39 | 0.3514 0.3913  0.4164  0.4181 0.3919  0.3498 0.3069  0.2714  0.2439
0.40 0.3489 0.3868 0.4115 0.4118 0.3853 0.3442 0.3032 0.2696 0.2438
0.41 0.3355 0.3721 0.3952 0.3950 0.3685 0.3285 0.2898 0.2591 0.2356
0.42 0.3443 0.3792 0.4021 0.4021 0.3771 0.3396 0.3038 0.2752 0.2527
0.43 0.3380 0.3743 0.3958 0.3944 0.3690 0.3320 0.2961 0.2678 0.2458
0.44 0.3342 0.3679 0.3869 0.3844 0.3596 0.3225 0.2875 0.2600 0.2391
0.45 0.3243 0.3544 0.3713 0.3682 0.3449 0.3120 0.2813 0.2582 0.2406
0.46 0.3225 0.3521 0.3706 0.3685 0.3459 0.3138 0.2841 0.2614 0.2437
0.47 0.3162 0.3434 0.3600 0.3578 0.3357 0.3049 0.2771 0.2564 0.2403
0.48 0.3133 0.3395 0.3553 0.3526 0.3308 0.3013 0.2748 0.2550 0.2401
0.49 0.3107 0.3369  0.3515  0.3473  0.3259 0.2968  0.2710 0.2523  0.2378
0.50 0.3048 0.3306 0.3446  0.3421 0.3236  0.2973  0.2738  0.2559  0.2423
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Table 6.8: The effect of WMF on Speckle noise

Weight coefficient

v 0.1000 0.2000 0.3000 0.4000 0.5000 0.6000 0.7000  0.8000 0.8000
0.01 | 0.9695 0.9666 0.9664 0.9666 0.9674 0.9668 0.9633  0.9569  0.9485
0.02 | 0.9521 ©0.9498 09513 0.9543  0.9575 0.9587 0.9567  0.9510 0.9431
0.03 | 0.9365 0.9364 0.9406 0.9466 0.9518 0.9537 0.9526  0.9479  0.9408
0.04 | 0.9232 0.9257 09319 0.9388 0.9453 0.0480 0.9466 0.9413  0.9333
0.05 | 0.9110 0.9156 ' 0.9238 0.9332 0.9404 0.9434 0.9420 0.9373  0.9298
0.06 | 0.9004 09072 0.9183 0.9286 0.9362 0.9401 0.9390  0.9340  0.9264
007 | 0.8011 09002 09127 09244 0.9324 09364 09362 0.9314 0.9234
0.08 | 0.8810 0.8047 0.9084 0.9200 0.9287 09323 0.9318 0.9268 0.9196
0.09 | 08777 0.8%02 09048 09176 0.9267 0.9312 0.9318 0.9280  0.9206
0.10 | 0.8727 0.8865 09017 09135 0.9231 0.9273  0.9264 0.9215 0.9144
0.11 | 0.8667 0.8815 0.8969 0.0096 0.9187 09249 0.9253 0.9213  0.9136
012 | 0.8606 08768 0.8939 0.9071 0.9176  0.9230 0.9233  0.9194  0.9130
0.13 | 0.8596 0.8762 08930 0.9068 0.9162 0.9206 0.9218 0.9186 0.9123
0.14 | 0.8529 08701 0.8872 0.9002 0.9099 09151 0.9159 0.9134  0.9077
0.15 | 0.8502 08687 08854 0.8980 0.9083 0.9143 0.9147 0.9114  0.9056
0.16 | 0.8483 0.8668 0.8848 0.8982 0.9081 0.9134 0.9146 0.9119  0.9062
0.17 | 0.8442 0.8636 08821 0.8962 0.9054 09115 0.9133 0.9106 0.9049
0.18 | 0.8411 0.8606 0.8797 0.8931  0.9025 0.9069 0.9082 0.9058  0.9005
0.19 | 0.8355 0.8557 0.8752 0.8895 0.8996  0.9060 0.9064 0.9022 0.8957
0.20 | 0.8331 08535 ©0.8731 0.8868 0.8977  0.9045 0.9055  0.0027  0.8968
0.21 | 0.8320 08532 08724 08872 0.8971 0.9019 0.9016 0.8991 0.8928
022 | 0.8279 0.8499 08697 0.8849 0.8956 0.9009 0.9027 0.9014  0.8961
0.23 | 0.8282 0.8496 0.8681  0.8820 0.8917 0.8976 0.9000 0.8980  0.8931
0.24 | 0.8247 0.8464 08651 0.8799  0.8907 0.8960 0.8982 0.8066  0.8924
025 | 0.8251 0.8476 0.8671 0.8811 0.8912 0.8979 0.9006 0.8999 0.8956
0.26 | 0.8162 0.8303 0.8604 0.8760 0.8857 0.8909 0.8915 0.8879  0.8825
027 | 0.8205 08429 08623 0.8756 0.8841  0.8890 0.8907 0.8895  0.8854
028 | 0.8165 0.8399 0.8606 0.8752 0.8854 0.8916 0.8946 0.8933  0.8893
029 | 0.8151 08386 08582 0.8726 0.8835 0.8895 0.8916 0.8905 0.8862
030 | 08120 0.8354 08363 0.8715 0.8830 0.8899 0.8918 0.8900 0.8857
031 | 0.8145 08375 08573 0.8716 0.8807 0.8870 0.8901  0.8892  0.885]
032 | 08121 08353 0.8549 0.8705 0.8817 0.8894 0.8014 0.8903  0.8872
033 | 08072 08309 08502 0.8643 0.8743 0.8801 0.8837 0.8841  0.8808
034 | 0.8039 08276 0.8470 0.8617 0.8728 0.8796 0.8821 0.8814  0.8777
035 | 0.8050 08281 0.8484 0.8624 0.8727 0.8302 0.8837 0.8832  0.8800
0.36 | 0.8069 08302 0.8501 0.8640 0.8731  0.8800 0.8829 0.8831  0.8799
037 | 0.8030 08265 08460 0.8604 0.8709 08789 0.8827 0.8824  0.8798
0.38 | 0.7996 0.8239 0.8438 0.8576 0.8681 0.8749 0.8773  0.8777 0.8738
0.39 | 0.7966 08210 0.8416 0.8572 0.8679 0.8738 0.8761 0.8754  0.8733
0.40 | 0.7957 0.8205 0.8411 0.8549 0.8647 0.8717 0.8755 0.8765 0.8734
0.41 | 0.7944 0.8188 0.8400 0.8543 0.8638 0.8703 0.8727  0.8721  0.8692
0.42 | 07924 08175 08377 0.8517 0.8613 0.8677 0.8689  0.8662 0.8618
0.43 | 0.7889 0.8140 0.8346 0.8495 0.8599 0.8662 0.8699 0.8702  0.8665
0.44 | 0.7913 08160 0.8364 0.8508 0.8613 0.8680 0.8713 0.8715 0.8682
0.45 | 0.7865 0.8111  0.8320 0.8474 0.8566 0.8621 0.8651  0.8644  0.8619
0.46 | 0.7854 0.8110 0.8317 0.8460 0.8560 0.8625 0.8660 0.8660  0.8629
0.47 | 07837 0.8083 0.8287  0.8443 0.8548 08616 0.8657 0.8662  0.8637
0.48 | 0.7895 0.8137 0.8318 0.8449 0.8546 0.8617 0.8658 0.8672  0.8653
0.49 | 0.7850 0.8105 0.8306 0.8431 0.8535 0.8602 0.8646 0.8666  0.8653
0.50 | 0.7824 0.8075 0.8284 0.8431 0.8540 0.8609 0.8634 0.8635 0.8614
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Table 6.9: The effect of WMF on Gaussian noise (M = 0)

Weight coefficient

v 0.1000 0.2000 0.3000 0.4000 0.5000 0.6000 0.7000 0.8000 0.9000
001 | 0.8189 08222 0.8288 0.8379 0.8459 0.8522  0.8534  0.8505  0.8441
0.02 | 0.7319  0.7392  0.7520 0.7663  0.7797 0.7893  0.7929  0.7906  0.7846
003 | 0.6726 0.6823 0.6968 0.7134  0.7294 0.7409 0.7472  0.7478  0.7429
004 | 06228 06316 06526 0.6725 0.6901 0.7042 0.7117  0.7121  0.7082
0.05 | 0.5898 06027 0.6203 0.6418 0.6616 0.6770 0.6864 0.6892 0.6864
006 | 0.5568 0.5706 0.5899 0.6120 0.6324 0.6473 0.6553 0.6573  0.6547
0.07 | 0.5364 0.5509 05706 0.5931 0.6133 06290 0.6394 0.6426  0.6393
0.08 | 0.5200 05345 05555 0.5789  0.5994  0.6143  0.6232  0.6265 0.6251
0.00 | 0.4903 05063 05277 0.5534 0.5750  0.5907 0.6002 0.6031  0.6009
0.10 | 0.4783 04933 0.5141 0.5391 ©0.5614 0.5773  0.5866  0.5001  0.5883
0.11 | 0.4608 04759 0.4967 0.5209 0.5439  0.5619 0.5721  0.5754  0.5750
0.12 | 0.4542 04705 04923 0.516% 0.5377 0.5533 0.5619  0.5667 0.5678
0.13 | 0.4414 04562 04776 05023 0.5252  0.5418  0.5521 0.5560 0.5559
0.14 | 0.4305 0.4457 04661 0.4896  0.5132  0.5308 0.5419  0.5473  0.5466
0.15 | 04250 0.4401 0.4611 0.4856  0.5086  0.5263  0.5393  0.5454  0.5465
0.16 | 0.4111  0.4269 04478 0.4723 0.4944 05105 0.5211  0.5264  0.5285
0.17 | 0.4045 0.4196 0.4396 0.4624 0.4830 0.4984 0.5085 0.5135 0.5134
0.18 | 0.4002 0.4148 0.4347 0.4585 0.4806 0.4974 05081 0.5136 0.5149
0.19 | 0.3959 0.4110 0.4321 0.4557  0.4762  0.4915 0.5024  0.5085 0.5109
0.20 | 0.3880 04032 0.4235 0.4469 0.4675 0.4830 0.4919  0.4964  0.4988
0.21 | 0.3835 0.3991  0.4187 0.4416 0.4621  0.4784  0.4883  0.4920  0.4930
0.22 | 0.3751 0.3902 0.4104 0.4324  0.4527 0.4678 0.4773  0.4822  0.4839
023 | 0.3693 0.3833  0.4022 0.4243  0.4447  0.4605 0.4704 0.4766  0.4785
0.24 | 0.3696 0.3846  0.4026  0.4229  0.4425 0.4585 0.4690  0.4756  0.4787
0.25 | 0.3645 03786 0.3970 0.4174 0.4374  0.4530 0.4638  0.4688  0.4702
026 | 0.3605 03755 0.3945 0.4146 0.4327 0.4475 0.4574  0.4635  0.4665
027 | 0.3542 0.3677 0.3850 0.4048  0.4234 0.4382 0.4483  0.4529  0.4542
0.28 | 0.3535 0.3660 0.3807 0.3987 0.4169 0.4302 0.4392  0.4446  0.4470
020 | 0.3461 03593 0.3759 0.3940 0.4116 0.4252 0.4346  0.4408  0.4433
030 | 0.3460 03596 0.3754 0.3931  0.4098  0.4230 0.4324  0.4383  0.4406
031 | 0.3445 03572 0.3736  0.3905  0.4076 0.4205 0.4286 0.4334  0.4356
032 | 03435 0.3563 0.3713  0.3888  0.4049 0.4190 0.4289 0.4354  0.4389
0.33 | 0.3415 03516 03711 0.3892 0.4067 0.4213 04314 0.4375  0.4410
0.34 | 0.3348 03479 0.3634  0.3799  0.3949  0.4085 0.4185 0.4241  0.4259
0.35 | 0.3392 03516 0.3663 0.3838  0.3996  0.4114 0.4192 0.4238  0.4252
036 | 0.3398 0.3530 0.3677  0.3840 0.3997  0.4130 0.4232  0.4288  0.4317
0.37 | 0.3316 03444 03597 0.3761 0.3916 0.4041 0.4135 0.4204  0.4231
0.38 | 0.3305 03437 03589 0.3759  0.3921  0.4057 0.4159  0.4210 0.4233
039 | 0.3266 03391 0.3529 0.3687  0.3839  0.3960 0.4038  0.4085  0.4115
0.40 | 03254 03377 0.3524 0.3690 0.3847 0.3973  0.4069 0.4114 0.4133
0.41 | 0.3241 0.3363 0.3498  0.3652 0.3810 0.3944  0.4040  0.4092 0.4120
0.42 | 03157 03278 0.3412 0.3567 0.3709  0.3823 0.3904 0.3950  0.3981
0.43 | 03207 03337 0.3481  0.3625  0.3754  0.3862  0.3941  0.3980  0.3995
0.44 | 03189 ©0.3306 0.3438 0.3583  0.3725 0.3839  0.3929 03991  0.4031
0.45 | 0.3150 0.3273  0.3405 0.3550 0.3696 0.3818  0.3906 0.3956  0.3973
0.46 | 03132 0.3261 03380 0.3515 0.3650 0.3763 0.3845 0.3897  0.3922
0.47 | 03120 0.3241 0.3368 0.3499 0.3617  0.3714 0.3783  0.3814  0.3830
0.48 | 03116 03235 0.3363 0.3490 03614 0.3718  0.3801  0.3853  0.3873
049 | 03113 03236 0.3366 0.3502 0.3623  0.3729  0.3802 0.3846  0.3863
0.50 | 03126 03234 03351 0.3474 0.3591 0.3700 0.3783  0.3828  0.3849
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Table 6.10: The effect of WMF on Gaussian noise (M = 0.05)

Weight coefficient

v 0.1000 0.2000 0.3000 0.4000 0.5000 0.6000 0.7000 0.8000  0.9000
0.01 | 0.7890 0.7863 0.7850 0.7866 0.7907 0.7948  0.7958  0.7930  0.7881
0.02 | 0.7055 ©0.7059 07095 0.7176 0.7273  0.7350  0.7404 0.7394  0.7347
003 | 0.6483 0.6511 06576 0.6685 0.6815 0.6923 0.6994 0.7013  0.6979
0.04 | 06013 06055 06154 0.6306 0.6459 0.6583 0.6674 0.6696  0.6670
0.05 | 0.5702 ©0.5763 05870 0.6033 0.6206 0.6351 0.6448 0.6494  0.6478
0.06 | 0.5393 0.5462 05586 0.5758 0.5939 0.6084 0.6176 0.6212 0.6198
0.07 | 0.5195 0.5282 0.5416 0.5594 0.5774 0.5924  0.6030 0.6082  0.6067
0.08 | 0.5045 0.5133 05278 0.5468 0.5654 0.5802 0.5897 0.5944  0.5941
0.09 | 0.4769 0.4866 0.5014  0.5221  0.5428  0.5580 0.5689  0.5732  0.5727
0.10 | 0.4661 0.4756 04897 0.5101 0.5307 0.5466 0.5570 0.5619 0.5617
0.11 | 04490 0.4592 04743 04939 0.5143  0.5319  0.5440 0.5488  0.5495
0.12 | 0.4427 0.4527 04600 0.4896  0.5094  0.5240  0.5347 0.5404  0.5429
0.13 | 0.4310 0.4409 04564 0.4767 0.4978 05147 0.5258 0.5316 0.5324
0.14 | 0.4209 04315 04469 04662 0.4871 0.5048 0.5167 0.5233  0.5243
0.15 | 0.4144 04250 04405 04613  0.4821 0.4995 0.5120  0.5205 0.5234
0.16 | 0.4029 0.4138 04202 0.4492 0.4698 0.4860 0.4974 0.5039  0.5075
0.17 | 0.3951 0.4062 0.4217 0.4420 0.4616 0.4767 0.4867 0.4928  0.4945
0.18 | 03850 03989 04138 0.4328 0.4511 0.4659 0.4770 0.4841  0.4881
0.19 | 0.3875 0.3984 0.4130 04320 0.4516 0.4681 0.4799  0.4858  0.4881
020 | 03812 03926 04085 0.4272  0.4453  0.4611 0.4725  0.4794  0.4827
021 | 0.3747 03845 0.3986 0.4165 0.4347 0.4504 0.4606 0.4670  0.4701
0.22 | 0.3677 0.3787 0.3937 0.4118  0.4301  0.4449 0.4551 0.4611  0.4639
023 | 0.3643 0.3762 0.3906  0.4077 0.4248 0.4396 0.4508  0.4581  0.4617
0.24 | 0.3613 03720 0.3865 0.4040 0.4211  0.4355 0.4466  0.4537  0.4570
025 | 0.3533 03644 0.3781  0.3944 0.4120 0.4265 0.4369  0.4443  0.4481
026 | 03525 0.3636 0.3776  0.3952  0.4129  0.4282 0.4402  0.4488  0.4532
027 | 03529 03630 03763 0.3927 0.4104 0.4247 0.4358  0.4432  0.4469
028 | 0.3464 03570 0.3697 0.3852 0.4018 0.4155 0.4267 0.4345  0.4389
0.29 | 0.3428 0.3534 0.3669 0.3818  0.3973  0.4107 0.4209  0.4285  0.4328
030 | 03419 03522 03653 0.3808 0.3971  0.4102 0.4199  0.4263  0.4290
0.31 | 0338 03501 0.3641 0.3792 0.3952 0.4085 0.4184 0.4242 0.4263
0.32 | 0.3345 03448 0.3573  0.3721  0.3862 0.3978 0.4056  0.4107 0.4136
0.33 | 0.3348 03448 03569 0.3708 0.3851 0.3985 0.4082 0.4148  0.4183
0.34 | 03349 03452 0.3576 0.3717 0.3864 0.3001  0.4089  0.4156  0.4200
0.35 | 03304 03403 03517 0.3652 0.3790  0.3920 0.4024  0.4096 0.4134
036 | 03273 03384 03508 0.3653 0.3801 0.3928  0.4026  0.4095  0.4121
0.37 | 0.3240 03353 0.3483 0.3631 0.3763  0.3878 0.3964 0.4014  0.4037
0.38 | 0.3230 03336 0.3460 0.3590 0.3717  0.3832  0.3920  0.3976  0.4016
0.39 | 03218 0.3324 0.3443 0.3570 0.3697 0.3812 0.3901 0.3954  0.3978
0.40 | 03228 03338 03461 0.3598 0.3731 0.3846 0.3935 0.3989  0.4025
0.41 | 03192 03299 03419 0.3552 0.3693 03816 0.3908 0.3966  0.3993
0.42 | 03173 03271 03382 0.3510 0.3640 03742 0.3812 0.3871  0.3912
0.43 | 03179 0.3274 03386 0.3510 0.3643 0.3763  0.3857 0.3917  0.3944
0.44 | 03112 03222 0.3337 0.3450 0.3560 0.3655 0.3728  0.3776  0.3804
0.45 | 03174 0.3280 0.3400 0.3533  0.3659  0.3767 0.3844  0.3892  0.3906
0.46 | 03149 03250 0.3362 03473 0.3583 0.3675 0.3747 0.3791  0.3810
0.47 | 03162 03258 0.3374 0.3498  0.3615 0.3715  0.3789  0.3844  0.3863
0.48 | 03073 03176 03288 0.3399 0.3506 0.3598  0.3670  0.3711  0.3729
0.49 | 03092 03195 0.3311 0.3425  0.3539  0.3635 0.3712  0.3763  0.3786
050 | 03062 03162 03273 0.3389  0.3501 0.3602 0.3677 0.3728  0.3740
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Table 6.11: The effect of WMF on Gaussian noise (M = 0.1)

Weight coefficient

v 0.1000 0.2000 0.3000 0.4000 0.5000 0.6000 0.7000 0.8000 0.9000
0.01 | 0.7575 0.7526 0.7470 0.7427 0.7416 0.7417 0.7417  0.7391  0.7334
0.02 | 0.6791 0.6765 0.6740 0.6748 0.6788 0.6842 0.6876 0.6878  0.6843
0.03 | 0.6258 06252 0.6259 0.6309 0.6394 0.6487 0.6549  0.6574  0.6546
004 | 05871 0.5878 0.5907 0.5991 0.6105 0.6218  0.6295 0.6329  0.6323
005 | 0.5567 05586 0.5634 0.5735 0.5865 0.5993 0.6076 0.6108  0.6089
006 | 05294 05323 05391 0.5508 0.5662 0.5801 0.5897 0.5943  0.5933
0.07 | 0.5036 0.5073 05155 0.5300 0.5464 0.5621 0.5718 0.5750 0.5754
0.08 | 04831 04879 04964 0.5107 0.5281 0.5436 0.5541  0.5506  0.5601
0.00 | 04682 04738 04840 0.4995 05173  0.5332 0.5446  0.5511  0.5540
0.10 | 0.4546 0.4603 04704 0.4868 0.5039  0.5197 0.5309  0.5372  0.5387
0.11 | 04430 04489 04596 0.4756 0.4944  0.5106 0.5214  0.5275  0.5202
0.12 | 0.4301 0.4361 0.4458 0.4618 04809 0.4968 0.5074 0.5131  0.5150
0.13 | 0.4238 0.4301 04393 04531 0.4700 0.4857 0.4958  0.5023  0.5049
0.14 | 0.4107 0.4168 04277 0.4435 04615 0.4772 0.4884  0.4956  0.4985
0.15 | 0.4050 0.4121 04223 04368 04543 0.4700 0.4815 0.4888  0.4919
0.16 | 0.3079 0.4049  0.4153  0.4302  0.4472 0.4624 0.4740  0.4803  0.4837
0.17 | 0.3918 0.3990 0.4092 0.4249  0.4422 0.4575 0.4691 0.4769  0.4804
0.18 | 0.3786 ©0.3861  0.3965 0.4109  0.4280 0.4431 0.4543  0.4620  0.4655
0.19 | 0.3780 0.3855 0.3963 0.4113  0.4273  0.4416 0.4525 0.4606 0.4644
0.20 | 0.3755 0.3826 0.3935 0.4087 0.4254 0.4400 0.4516 0.4586 0.4616
021 | 0.3677 0.3754 0.3861 0.4008 0.4170 0.4321 0.4439  0.4519  0.4559
022 | 0.3625 0.3705 0.3807 0.3946  0.4102 0.4251 0.4368  0.4446  0.4485
023 | 03566 0.3650 0.3761 0.3907 0.4064 0.4205 0.4312  0.4302  0.4428
024 | 0.3544 0.3621  0.3721  0.3849  0.3994 0.4138  0.4260 0.4342  0.4394
025 | 0.3506 0.3583 0.3681  0.3815  0.3957 0.4083 0.4182 0.4248  0.4283
026 | 0.3512 0.3509  0.3709  0.3851 0.4008 0.4156  0.4273  0.4345  0.4382
027 | 0.3438 0.3528 0.3628  0.3753  0.3887  0.4016 0.4112  0.4182  0.4227
028 | 0.3437 03510 0.3599  0.3715  0.3847 0.3978  0.4094 0.4185  0.4232
0.29 | 0.343¢ 03515 03620 0.3751  0.3894 0.4029 0.4128  0.4200 0.4241
030 | 03397 03490 0.3607 0.3738  0.3878  0.3998 0.4094 0.4168  0.4215
031 | 03346 03426 03528 0.3655 0.3793  0.3925 04038  0.4115  0.4157
0.32 | 03308 0.3397 0.3500 0.3633  0.3770 0.3895  0.3990  0.4049  0.4078
033 | 0.3321 03403 0.3491  0.3608 0.3739 0.3862 0.3967 0.4046  0.4095
03¢ | 0.3284 03365 0.3457 0.3567 0.3689 0.3805 0.3893  0.3945  0.3971
0.35 | 0.3281 0.3360 0.3455 0.3568 0.3694 0.3810 0.3904  0.3957  0.3986
0.36 | 0.3233 03322 03422 0.3530  0.3647 0.3754 0.3842  0.3809  0.3917
0.37 | 0.3245 0.3320 03423 0.3537 0.3656 0.3761 0.3849  0.3908  0.3947
038 | 03215 03297 03391 0.3497 0.3611 0.3709 0.3788  0.3847  0.3877
039 | 03212 03301 03406 0.3520 0.3636 0.3750 0.3838  0.3897  0.3929
0.40 | 03166 03247 0.3336 0.3445 0.3561 0.3666  0.3753  0.3813  0.3842
0.41 | 03175 0.3271 0.3369  0.3480 0.3592 0.3690 0.3768  0.3814  0.3838
042 | 03139 03223 03318 0.3423  0.3533 0.3630 0.3712 0.3762  0.3784
0.43 | 03139 03220 03317 0.3414 0.3515 0.3611 0.3683 0.3728  0.3744
0.44 | 03085 0.3182 0.3274  0.3377  0.3479 0.3580 0.3658  0.3713  0.3749
0.45 | 03110 03193 0.3285 0.3385 0.3484 0.3575  0.3644  0.3689  0.3716
0.46 | 03107 03192 0.3281 03379 03478 0.3561 0.3624  0.3666  0.3689
0.47 | 03093 03181 0.3277 03377 03479 0.3568 0.3637 0.3678  0.3698
048 | 03081 03168 0.3261 0.3353  0.3447 03534  0.3604  0.3651  0.3669
0.49 | 03074 03159 0.3249  0.3347  0.3446  0.3537 0.3614  0.3667  0.3699
050 | 03045 03135 0.3228 03328 0.3424 0.3514 0.3580 03635  0.3655
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Table 6.12: The effect of WMF on Gaussian noise (M = 0.15)

Weight coefficient

v 0.1000 0.2000 0.3000 0.4000 0.5000 0.6000 0.7000 0.8000 0.9000
0.01 | 0.7213 0.7159 0.7091 0.7018 0.6963 0.6926 0.6914  0.6901 0.6865
002 | 06529 0.6493 0.6447 0.6418 0.6424 0.6453 0.6484  0.6495 0.6479
0.03 { 0.6016 0.5993 0.5968 0.5973 0.6011 0.6078 0.6145 0.6181 0.6164
0.04 | 0.5702 0.5689 0.5684  0.5711  0.5778 0.5867 0.5938 0.5969  0.5963
0.05 | 0.5406 0.5405 0.5413 0.5474 0.5573 0.5678  0.5760 0.5816 0.5817
0.06 | 0.5138 0.5144 0.5163 0.5232 0.5344 0.5457 0.5554 0.5613  0.5621
0.07 | 0.4943 0.4957 0.4985 0.5073 0.5200 0.5332  0.5433 0.5498  0.5517
008 | 0.4750 0.4768 0.4811 0.4900 0.5029 0.5162 0.5265 0.5329  0.5354
0.09 | 0.4580 0.4605 0.4652 0.4753 0.4905 0.5055 0.5173  0.5242  0.5264
0.10 | 0.4476 0.4500 0.4543 0.4643 0.4786 0.4935 0.5051 0.5124 0.5160
0.11 | 0.4300 0.4330 0.4384 0.4486 0.4632  0.4779  0.4902 0.4991  0.5031
0.12 | 0.4232 04273 04341 04463 04616 04761  0.4862 0.4924  0.4948
0.13 | 0.4163 0.4199 0.4253 0.4363  0.4513  0.4659 0.4781 0.4870 0.4923
0.14 | 0.4027 0.4072 04142 04267 04422 04577 0.4712 0.4785  0.4829
0.15 | 0.3952 0.4002 04074 0.4189  0.4342 0.4480 0.4611 0.4694  0.4747
0.16 | 0.3887  0.3932  0.4000 0.4121 0.4263 0.4403 0.4510 0.4571 0.4611
0.17 | 0.3804 0.3850 0.3919 0.4033  0.4168  0.4302 0.4416  0.4495  0.4551
0.18 | 0.3778 0.3826  0.3895 0.4004  0.4145 0.4291  0.4415 0.4499 0.4539
0.19 | 0.3743 0.3793  0.3865 0.3975  0.4116  0.4255 0.4365 0.4432  0.4463
0.20 | 0.3677 0.3735 0.3813  0.3932  0.4079  0.4223  0.4341  0.4424  0.4467
0.21 | 0.3616 0.3666 0.3731 0.3836  0.3969  0.4107 0.4230 0.4318  0.4367
0.22 | 0.3556 0.3611  0.3688  0.3797  0.3932  0.4062 0.4167  0.4247  0.4296
023 | 0.3561 ©0.3617  0.3682 0.3784  0.3908 0.4036 0.4147  0.4227 0.4274
024 | 0.3553 0.3609 0.3678 0.3776  0.3909  0.4045 0.4156 0.4244  0.4296
0.25 | 0.3481 0.3545  0.3620 0.3725 0.3855  0.3979  0.4081 0.4156 0.4210
0.26 | 0.3488 0.3546  0.3620 0.3732  0.3869  0.3996  0.4100 0.4177 0.4228
0.27 | 0.3416 0.3480 0.3555 0.3652 0.3773  0.3892  0.3994  0.4066 0.4111
0.28 | 0.3393 0.3453  0.3530  0.3627 0.3745 0.3854  0.3955  0.4022  0.4065
029 | 0.3380 0.3439  0.3511  0.3608  0.3727  0.3841 0.3939  0.4015  0.4059
030 | 0.3361 0.3420 0.3493  0.3590 0.3709  0.3827 0.3935 0.4012  0.4056
0.31 | 0.3332 0.3395 0.3469 0.3561 0.3670 0.3775 0.3863  0.3924  0.3963
0.32 | 0.3260 0.3336  0.3414  0.3507 0.3608 0.3707 0.3796 0.3854  0.3885
0.33 | 0.3279 0.3343  0.3409 0.3494 0.3597  0.3701  0.3788  0.3846  0.3881
034 | 0.3243 0.3304 03372 0.3456 03557 0.3659 0.3747 0.3818  0.3862
035 | 0.3267 0.3333  0.3404 0.3496 0.3601 0.3711  0.3805 0.3871  0.3913
036 | 0.3215 0.3284 0.3358  0.3447  0.3541 0.3641 0.3734  0.3806  0.3850
0.37 | 0.3223 03301 0.3383 0.3476 0.3576 0.3680 0.3766  0.3824  0.3860
0.38 | 0.3188 03255 0.3328 0.3422 0.3516 0.3611 0.3692 0.3751  0.3785
039 | 0.3160 03223 0.3295 0.3382 0.3471 0.3554 0.3628 0.3685  0.3712
040 | 0.3150 0.3221  0.3297 0.3382 0.3474 0.3567 0.3641  0.3691  0.3721
0.41 } 03123 0.3192 0.3266 0.3351 0.3444 0.3533  0.3606 0.3653  0.3683
0.42 | 0.3104 03180 03254 0.3338 0.3425 0.3509 0.3578  0.3625  0.3644
0.43 | 03113 03188 0.3263 0.3347  0.3445 0.3534  0.3610 0.3666  0.3700
0.44 | 03108 03176 0.3244 03317 0.3403 0.3491 0.3566 0.3608  0.3624
0.45 | 03108 03176 0.3247 0.3320 0.3402 0.3481  0.3541 0.3583  0.3601
0.46 | 0.3108 03180 0.3250 0.3328 0.3413 03488  0.3555 0.3593  0.3613
0.47 | 03061 03136 ©0.3205 0.3277  0.3356  0.3438  0.3512  0.3564  0.3588
0.48 | 03064 03140 0.3210 0.3287  0.3370  0.3449  0.3510 0.3553  0.3578
0.49 | 0.3041 03113 03181 0.3251 0.3328  0.3401  0.3462 0.3506  0.3525
0.50 | 03045 03122 0.3203 0.3287 03371 03445 0.3501 0.3532  0.3544
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Chapter 7

Fingerprint classification

7.1 Introduction

Previous chapters have all demonstrated the efficiency of MF. This chapter
introduces the application of MF in fingerprint processing as a pre-processor
for the first time.

The quest for reliable personal identification in computerised access control
has resulted in an increasing interest in biometrics [48]. Biometrics indi-
cates physical or behavioural characteristics which uniquely identifies people.
Fingerprint is one of the important biometrics. Secure personal identification
is required in many other areas, except forensic use, such as secure systems,
banking systems, replacing PIN codes and etc. [86]. All thesc areas need
secure and fast algorithms for identification. Fingerprint processing includes
operations such as enhancing contrast of the ridges, segmenting the image to
separate ridges from the background and extracting structural features of the
image [55]. Identification of fingerprint patterns has always been of scien-
tists’ favourites and also important for law enforcement authorities [57]. The
fast-growing number of fingerprints gathered and the requirement for a fast

recognition system have tremendously increased the demand for an automatic
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fingerprint system [57]. An automatic system for fingerprint recognition should
satisfy the following criteria [57]: either the system must match two finger-
print impressions and conclude that the two patterns are exactly the same,
or it should provide a technique which can significantly improve the present
cumbersome manual matching process.

A fingerprint presents a directional image consisting of many ridges at dif-
ferent directions. Its structural information lies in the position and direction
of its constituent ridges [41]. The characteristics or features, which identifies
each fingerprint uniquely, are called minutiae [57]. Minutiae are interruptions
of normal flow of the ridges such as abrupt ridge ending, dots, short ridge,
logs, branches, and mergers. The minutiae and their relative locations are so
crucial that although each fingerprint pattern has about 100 minutiae, as few
as a dozen is considered sufficient to identify a pattern [15, 86].

The basic idea in fingerprint processing is thus to detect local ridges ori-
entations. This can be done by directional filtering. Experimental results
show that a better performance can be achieved if directional operators are
employed instead of classical methods used for image enhancement and scg-
mentation which involve homogeneous operators [34]. Maio et. al. [51]
suggest a direct gray-scale minutiae detection in fingerprints without thinning
and binarization. Most of the methods presented for fingerprint processing are
efficient only when the quality of images are fairly good which are not always
the case, especially when images are acquired from on-paper fingerprints [41]_
Rao et. al. [63] focuses on finding the core points in fingerprint. A syntactic
approach for fingerprint impression has been proposed in [32] by concentrating
on topological representation of the patterns. Ratha et. al. [65] presents a
real-time matching system for large fingerprint databases. Kouta et. al. [45]
present a graph-based structure to capture the topological relations within the
fingerprint. Another syntactic method based on the ridge flow in the pattern

area and the presence of deltas in the fingerprint can be found in [57]. The
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main problem with this method happens when deltas are not detected at first
level. A hierarchial fuzzy approach for fingerprint processing is presented in
[41]. It looks very satisfactory when applying a mask with different sizes. How-
ever it can not be applied robustly when the ratio of signal/noise is low. The
best solution seems to be obtained from a kind of filtering that removes noise
without affecting the details of the ridges. By experience we recommend mor-
phological filtering as a pre-processor [71]. With fingerprint pre-processing
and directional filtering, fingerprint classification is undertaken based on pat-
tern conversion to strings of symbols. Our algorithm extends the conversion
approach proposed in [64] to improve the quality of fingerprint classification.

This chapter presents a syntactic approach to fingerprint classification based
on the ridge flow of fingerprint impression, rather similar to the method pro-
posed in [64]). It improves different parts of the algorithm which will be
mentioned later. The approach is composed of the raw image pre-processing
using the morphological erosion, background normalisation, directional filter-
ing adopted to find the dominant directions of the ridges for each subpicture,
pattern trace and conversion to the strings of symbols [71]. The procedure
of implementation is presented in detail. Figure 7.1 shows the block diagram

applied for fingerprint classification.

7.2 Fingerprint pre-processing

Sherlock et. al. [82] apply position-dependant Fourier domain filters to
produce a directionally smoothed image which is then thresholded, yielding the
enhanced image leading to a frequency-domain analysis rather than spatially,
over the entire image rather than within small blocks. Their algorithm is based
on linear filtering and takes the advantage of linear filters. We have previously
discussed about the differences between linear filters and MFs.

Morphological operators are faster than convolution methods and avoid

MORPHOLOGICAL FILTERING M.H. Sedaaghi



7.2 Fingerprint pre-processing 105

Fingerprint classification

| Input fingerprint |

l

l Preprocessing I

l Pattern classification I

[ Directiona fitering H

r Smoothing I

1

Feature extraction I

[ String analysis I

Figure 7.1: Block diagram of fingerprint classification.

blurring the edges of an image when processed. These two key factors have
made MF as a popular nonlinear processing tool. Applying MFs for removing
noise from fingerprint shows promising results [71]. Experiments show that
erosion is one of the best operators among other morphological operators for
such a task.

The input data (Figure 7.2), denoted IN(m, n) is eroded with a flat square
structuring element B(m, n) of size 3 x 3 and then subtracted from the input
data generating a clear image of the important edges related to the ridges of

fingerprint denoted OUTy(m, n):
OUT,(m, n) = IN(m,n) — (IN(m,n) © B(m, n)) (7_2.1)

A thresholding is also introduced to normalise the background producing a
clearer image (Figure 7.3). Thresholding is necessary to improve accuracy
[82]. There is no specific pre-processing in [64). Modifying the size of the
filter mask is considered for noise reduction in [41]. However we apply the

above algorithm as a very effective pre-processor.
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Figure 7.2: Input fingerprint.

Figure 7.3: Pre-processing of input fingerprint with MF.
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7.3 Pattern classification

In this section we explain the terms, used frequently, in fingerprint classifi-

cation.

1.

Delta: The delta point is the point on the ridge closest to the divergence

centre of the ridge flow.

Loop: A loop is that type of fingerprint in which one or more of the ridges

“enter on either side of the impression, recurve, and terminate on the same

side of the impression. Loops whose ridges flow towards the thumb are
called radial loops or simply loops, and those whose ridges flow in the

direction towards the little finger are called ulnar loops.

Whorl: A whorl is any pattern with two deltas and at least one recurving

ridge which may be a spiral or any variation of a circle.

Twin loop: The double (twin) loop pattern consists of two deltas and two

separate loops, with separate distinct shoulders.

Arch: An arch is any pattern in which ridges enter on one side, rise in
the middle, and flow out on the other side. The tented arch has the same
tendency to enter from one side and flow out on the other side, with the

exception that the ridges form an upward thrust at the centre.

Transients: Transients are the prints which do not belong to any of the

types mentioned above.

Figure 7.4 shows some fingerprints of different type.

One of the difficulties of the classical classifiers, named “Henry classifiers”

is to determine the deltas. That is why Rao et. al. [64] has used the classifi-

cation based on ridge pattern curves. Based on the direction of the recurving

ridge, loops, ulnar loops and twin loops are divided into left and right sub-

classes. Moreover we divide arch and tented arch in four subclasses based
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(d) Tented arch (e) Whorl

Figure 7.4: Differenet fingerprints.
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on the angle as 0°,90°,180°,270°, thus making sixteen types for classification
scheme as follows (there are 10 schemes in [64]): left loop, right loop, left
ulnar loop, right ulnar loop, whorl, left twin loop, right twin loop, plain arch
(0°), plain arch (90°), plain arch (180°), plain arch (270°), tented arch (0°),
tented arch (90°), tented arch (180°), tented arch (270°), transient. Figure 7.5

shows another set of fingerprint of different type as defined above. Pattern

(a) Left loop (b) Right loop (c) Left ulnar loop

3,:\\\
7, N
) SN
=\

. _/ v - -

(g) Right twin loop (h) Plain arch (i) Tented arch

Figure 7.5: Another set of different fingerprints [64].
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classification involves three parts.
1. Directional filtering.
2. Smoothing.
3. Feature extraction.

Each item is described as follows.

7.3.1 Directional filtering

We use directional filtering as an approximation for the ridge pattern. The
reason is that the ridges in a fingerprint are parallel in nature and variations
of direction is also smooth. Therefore, ridge data has some redundancy which
is possible to be reduced by dividing the fingerprint into a number of squares.
The dominant ridge direction in each of these squares can be determined.
The matrix, which is called the sampling matriz ( [26]), can approximate the
original print, preserving the global structure of the print. The directional filter
applied, detects four major directions: —45,0,45,90. It is accurate enough to
detect the direction of the ridges [40]. The pre-processed image is divided into
small squares. Each square represents 32 x 32 picture elements. Thé Prewitt
filter is adopted as a directional filter to detect the dominant ridge direction

in each square (see Table 7.1).  The output of the filter will be minimum

Table 7.1: Directional operators

© ? 7 gV
-1 01{1 1 110 1 1{1 1 O
-1 010 0 O|-1 0 1(1 0 -1
-1 014{-1t -1 -1}-1 -1 00 -1 -1

for dominant direction, and maximum for the direction perpendicular to the

dominant one. If there is no dominant direction for a block, the corresponding

MORPHOLOGICAL FILTERING M.H. Sedaaghi



7.3 Pattern classification 111

block is left empty. The reason for not having a dominant direction in a window
is that either the quality of the image is not good and it has been blurred, or
the region, in fact, has not a dominant direction. Leaving a block empty, is
preferred to assigning a random direction. Table 7.2 shows an example of a

sampling matrix after applying directional filtering.

Table 7.2: Sampling matrix

IS TN TN
~N N —— — 7

T T — e N TN TN
T T — — NN T
~ NN NN — —

T N TN TN N
T T — TN T

~—

We could use Sobel filter instead of Prewitt filter. However our experimental

results show better performance with the latter one.

7.3.2 Smoothing

To ease tracing the ridge flow in every part of sampling matrix as well as
removing ambiguities, a smoothing process is required. Some ambiguity may

occur such as Figure 7.6. It is rather difficult to decide which path (1 or

v
'
1 2

Figure 7.6: Ambiguity in direction.

2) should be followed [64]. A special smoothing technique can remove such
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ambiguity. Each of four direction codes in sampling matrix is first converted
into a 3 X 3 matrix (as shown in Table 7.3) leading to an expansion of the
size of the sampling matrix (new width and height is three times as big as the

previous size).

Table 7.3: Matrix capture
Ve
0
1
0

«
0
1
0

— = -

™
0
1
0

o O O
o oo

0 1
0 0
1 0

o = O
o = O

0
0
1

The result is shown in Table 7.4 as the sampling matrix after expansion

and before smoothing.

Table 7.4: Sampling matrix before smoothing.

-
—
-
-
-
-
-
-

[ e
-
— e

-
-
-
-

Then, sliding from top to bottom and from left to right of the sampling
matrix, the central point is modified from 0 to 1 if any of the neighbourhood
cases 1-4 shown in Table 7.5 exists. Similarly if any of the neighbourhood
cases al-d4 shown in Tables 7.6- 7.9 exists, the central point will be changed
from 1 to 0.

The effect of smoothing on the expanded sampling matrix is shown in Table
7 10. Considering the above smoothing method as shown in Tables 7.5 and

7.6, we realise how powerful, our algorithm smoothes the ambiguities compared
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Table 7.5: Modifying the central point from 0 to 1
case 1 case 2 case 3 case 4
01 O0fx x x|x 1 0]0 1 x
1 0 1|1 0 1|x 0 1|1 0 «x
x x x|0 1 O0]j]x 1 O[O0 1 x
Table 7.6: Modifying the central point from 1 to 0: casec a
al a2 al ad
x x x|1 1 1|1 x x{x x 1
x 1 xf{x 1 x|1 1 x|x 11
11 1]x x x|]1 x x|x x 1
Table 7.7: Modifying the central point from 1 to 0: case b
bl b2 b3 b4
x 1 x 1 x|x 1 1ix 0 x
0 1 1 1 01 1 01 1 0O
x 0 1 0 x 0 x{x 1 1
b5 b6 b7 b8
x 0 111 0 x{1 1 x|x 0 x
01111001 1j0 1 1
x 1 xtx 1 x 0 x|1 1 x
Table 7.8: Modifying the central point from O to 1: case ¢
cl c2 c3 c4
x x x 1 x[x 1 x X X|Xx X X X X|{X X X X X
x|x 1 x|x|x|x 1 x|{x|x}jx 0 x|1|1|x O x|x
x|{1 1 0}x(x|0 1 1ix{x|0 1 1f{x|x|1 1 0|x
1lx 0 x|x{x|{x 0 x|1|x|x 1 x|x|x|x 1 x|x
x Xx x x x|x x x x x|x 1 x x x|x x x 1 x
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Table 7.9: Modifying the central point from Q to 1: case d

dl d2 d3 d4
x x X x x|x x x x x{x x 1 x x[x x 1 x «x
x[1 x x[x]x|x x 1|x|x|x 1 x|[xf{x|{x 1 x|x
x{x 1 1}1]1]1 1 x|x|x|x 1 1]1f1]1 1 x|x
x|x 1 x|x|[x|x 1 x|x|x|]1l x x|{x|[x|[x x 1|x
x x 1 x x{x x 1 x x}Jx x x x x|x x x x x

with the proposed method in [64] which only covers a few cases of the above-

mentioned ambiguities.

Table 7.10: Sampling matrix after smoothing.

1 1 1 1 1
1 1 1 1 1111111 1
1 1 1

1 1
1 1 1 1111111 1 1
1 1 1 1
1 1 1 11 1 1 1

ettt ot o o et o B

o Bk ot o b o ot o e B
-

et et b D B ot et ot ot

1 11 1
1 1
ll 1111111

o o o ot ot o ot et ot
Pt Gt i Bt o ot ot ot et b

-
-

1 1 1
1 1 1 1111111
1 1

7 3.3 Feature extraction

The algorithm applied for feature extraction determines the end points and
the points where two lines make an angles [64]. Four different directions make
eight possible endpoints, or equivalently starting points, as (— :N), (' :M),
(1 :L), (N :K), (+:3), (« D), (I :H), and ( :0). A line in one direction
can make an angle with another line in six possible ways (e.g. - - W, -
A ). The last two possibilities (angle < 90°) are eliminated by smoothing.
Table 7.11 shows the symbols used for various endpoints and the angle points.
We use the similar notation as used in [64] to make the comparison of two

methods easier. Table 7.12 displays how the smoothed sampling matrix will
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be labelled using these features.

Table 7.11: Features used in classification

—N «J 1L JH /M
0 0 x 0 0lx 1 x[0 0 0f0 x 1
01 1({1 1 0{0 1 00 1 0[]0 1 x
00 x{x 0 0}l0 0 O0}lx 1 x{0 0 0
/1 K \O U v
0 00{1 x 0/0 0 O0]x 0 1]1 0 x
x 1 0{x 1 00 1 x|1 10|01 1
1 x 0{0 0 0j0 x 1{0 0 0|0 0 ©
~P [ Q| JT | AW | (R
0 00(00O|lx 10|01 x|0O0 1
01 1|11 0/010[0 100 10
1 0 x|x 0 1|1 0 0|0 0 1|0 1 x
\'S — A - X Jy Lz
1 0 0[0 0O 0[O0 OO0 1 O0[0 1O
01 0/0 1 1|1 1 0f1 100 1 1
x 1 0{0 1 0/0 1 0|0 0 0|0 0 O

Table 7.12: Sampling matrix with pattern labels

1 (o]
1 1 1 1 P11111Q 1
1 1 1 M 1

M
1 1 1 o 1
1 1 1 P11111Q 1 1
M 1 1 1 1 1 K
1 1 1 PQ o 1 1
1 1 R R 1 S S 1
M 1 1 1 S 1 1 K
1 1 1 1 T 1 1 O
1 R 1 1 1 1 1 S
M 1 1 1 M 1 1 1
1 1 1 1 1 1 1 1
R 1 1 1 1 1 1 1
1 1 1 1 M 1 1 L
1 1 1 1 1 1
1 1 w w 1 T 1
1 1 1 vu M 1
1 1 1 1
w w 1 Vviill1ivu T 1
1 1 1 1
(o] 1 1 1 1 1 I
1 1 1 vVviiiii1u 1 1
K K M

7.4 String analysis

String analysis plays a major role in fingerprint classification. The num-

ber of strings belonging to plain arch and tented arch are very limited. In
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these cases matching the string with prototype seems to be better than using
grammars, but in the case of loops, whorl, and twin loops, the total number of
strings is enormous. Therefore a grammar is used to analyse them. As the I's
between the endpoints and angles (in Table 7.12) carry no extra information
about the patterns, and they only provide connection between the symbols,
they are ignored. As an example, two first strings (left top) in Table 7.12 are
as “I1M”, and “I111M”. They can both be simplified to identical symbol as
“IM” showing two 45° lines. The strings left represent the characteristic ridge
flow pattern and they can be used for classification. The algorithm applied to
find the remaining strings is to search the matrix from left to right and top
to bottom for endpoints. After an endpoint is found, it should be tracked by
picking the connected symbols sequentially until another endpoint is found.
We only need to keep one of each type of the strings. Therefore the number of
patterns, to be analysed and classified, will be reduced. The following strings

are attributed to different ridge patterns:
1. Plain Arch:

e Plain Arch (0°): MPQK, KQPM.
e Plain Arch (90°): IRWK, KWRI.

Plain Arch (180°): OVUI, IUVO.

Plain Arch (270°): OSTM, MTSO.

9. Tented Arch:

e Tented Arch(0°): NYH, HYN,JZH,HZJ.

e Tented Arch(180°): NXL, LXN, JAL, LAJ.

3. Right Ulnar Loop:

e KQAZUPQK, KQPUZAQK,
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o KQAZUPQVJ, JVQPUZAQK,
e JAZUPJ, JPUZAIJ,

e JVQAZUPQVJ, JVQPUZAQV J.
4. Left Ulnar Loop:

e NUPQVYXPM, MPXYVQPUN,
e NXYVQN, NQVYXN,
o MPXYVQPM, MPQVYXPM,

e MPQVYXPUN, NUPXYVQPM.

5. Right Loop:

o KQAWK, KWAQK,
o KQAZJ, JZAQK,
o JVQAWK, KWAQVJ,

e JVQAZIJ, JZAQV J.

6. Left Loop:

e MPXTM, MTXPM,
e NUPXYN, NYXPUN,
e MPXYN, NYXPM,
e NUPXTM, MTXPUN.
7. Whorl: (@ : is an empty set, and 3 is any element of the symbolic set)
XY Zap, where a = (AXYZ)", n > 0and 8 € {AXY, AX, 4, 3}
Y ZAap, where o = (XY ZA)", n > 0 and 8 € {XYZ, XY, X, ®}.

ZAXap, where a = (YZAX)", n > 0 and § € {YZA,YZ,Y, ).
AXYap, where a = (ZAXY)*, n >0 and B € {ZAX, ZA, Z, d}.
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ZY Xaf, where a = (AZY X)™,

AZYap, where a = (XAZY )", n
Y X Aaf, where a = (ZY X A)", n >
XAZafB, where o = (YXAZ)", n >

n>0and g € {AZY,AZ, A, ®}.
0and g € {XAZ, XA, X, D}.
0 and 8 € {ZY X, ZY, Z, ®}.
0

and f € {YXA,YX,Y, ®}.

v

8. Left Twin Loop: (® :is an empty set, and « is any element of the
symbolic set)
aBAXZ, where § = (AXYZ)",n20and a € {XYZ,YZ, Z, 3}.
aBZXA, where 8 = (ZAXY)", n >0 and a € {AXY, XY,Y, ®}.
aBXZY, where f = (XYZA)",n20and a € {YZA,ZA, A, o}
aBYZX, where 8= (YZAX)", n>0and a € {ZAX, AX, X, D}.

9. Left Loop+Loop3:
Loop3:
e IRZUI, IUZRI,
e IRZYH, HYZRI,
e IRZUPJ, JPUZRI,
e HTRZUI, IUZRTH,
e HTRZYH, HYZRTH,
e HTRZUPJ, JPUZRTH,

o JAZUI, IUZAJ.

10. Right Twin Loop: (® : is an empty set, and « is any element of the
symbolic set) |
aBX AY, where a € {AZY, ZY,Y,®} and § = (XAZY)", n > 0.
aBY AX, where a € {XAZ,AZ,Z,®} and f = (YXAZ)", n> 0.
aBAY X, where @ € {YZX,ZX, X,®} and 8= (AYZX)", n > 0.
aBXYA, where a € {AYZ,YZ,Z,®} and § = (XAYZ)", n > 0.
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11. Right Loop+Loop4:
Loop4:
e OVYXN,NXYVO,
HWSYVQN, NQVYSWH,

e OSYVO, OVYSO,

e OSYZH, HZY SO,

e OSYVQN, NQVYSO,
e HWSYVO, OVYSWH,
e HWSYZH, HZYSWH.

The total number of the patterns may be reduced by using the following

string transformations:
1. PR— A, RP— A,
2. QS—X, SQ— X,
3. TU-Y,UT—=Y,

4. VW—=Z, WV 2.

Figure 7.7 shows the resulted symbols after conversion.
In the case of three right angles (or more) for a string, the following modi-

fications are also used (it happens for whorl, twin loops):

i. Leading/lagging lines before/after A, X, Y, Z (ie. L, H, J, N) are
ignored (see Figure 7.8).

ii. IR, RI, LR, RL and JP, PJ, MP, PM are modified to A (Figure
7.9-line 1).

iii. LS, SL, 08, SO and KQ, QK, NQ, QN are changed to X (Figure
7.9-line 2).
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I

b l >

I

N|.<

e

I

Figure 7.7: Some transformations required for simplification.

iv. HT, TH, MT, TM and IU, UI, NU, UN are modificd to Y (Figure
7.9-line 3).

v. KW, WK, HW,WH and JV, VJ, OV, VO are changed to Z (Figure
7.9-line 4).

vi. UP, PU, QV,VQ, WS, SW, TR, RT are ignored (Figure 7.9-line 5).

AJZ‘R

NX'-——:W
|:tll
) =2

H
A

Figure 7.8: Redundant features in whorl and twin loops.

The grammar applied is shown in Tables 7.13 and 7.14. If the patterns

in the second column of Table 7.14 match with the pattern of the string,
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P
=% Ignore

e
2 LSS
NPT

Figure 7.9: Some simplifications for whorl and twin loops.

the third column will be the next location of the table to be compared with
next pattern of the string as a confirmation of matching, otherwise the current
pattern of the string will be compared with the pattern of the location defined
by the fourth column jump. If the third column jump equals to -1, it means
the search should be started from the first for the rest of the string. The fifth
column indicates the type of the string if end of string. Similar discussion holds
for the fourth column if it equals to -1. Depending on the parsing path, the
strings can be classified into one of the classes as defined before. For sampling
matrix shown in Table 7.12, the strings and the paths they are classified, are

as follows:
e IM, OK: Line.
e MPQK: Plain Arch.

e OSTM: Plain Arch(270°).
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e IRWK: Plain Arch(90°).
e OSL: Angular Lines.

e MTSQPRWVUI (— YXAZY): the following lines of the grammar in
Table 7.14 will be examined to detect the pattern:
1, 11, 24, 34, 46, 59, 78, 81, 82, 83, 91, 111, 112, 110, 109, 111.
The result is a Whorl.
OVUTSQPRWVUI (= ZYXAZY): similarly the following lines will
be checked: 1, 11, 24, 34, 46, 59, 78, 81, 82, 83, 84, 95, 103, 104, 102,
101, 103, 104. The result is again a Whorl.

We notice that the results of classification agree with the sampling matrix.

Table 7.13: Grammar syntax for line, arch, and tented arch detection

No. pt go fail Type | No. pt g0 fail  Type No. pt go fail Type

1 H 2 3 28 O -1 -1 AL 55 W 56 -1

2 L -1 17 Line 29 X 30 31 56 H -1 71 AL

3 L 4 5 30 N -1 -1 TA180 | 57 V 58 59

4 H -1 25 Line 31 A 32 -1 58 J -1 73 AL

5 N 6 7 32 J -1 -1 TA180 59 S 60 -1

6 J -1 33 Line 33 Y 34 35 60 L -1 77 AL

7 J 8 9 34 H -1 TA 61 P 62 63

8 N -1 41 Line 3 X 36 37 62 J -1 65 AL

9 I 10 11 3 L -1 -1 TA 63 T 64 -1

10 M -1 49 Line 37 U 38 39 64 H -1 79 AL
1 M 12 13 38 I -1 -1 AL 65 Q 66 -1

12 1 -1 61 Line |39 Q 40 -1 66 K -1 -1  PA
13 O 14 15 40 K -1 -1 AL 67 P 68 -1

14 K -1 57 Line 41 Z 42 43 68 M -1 -1 PA
15 K 16 -1 42 H -1 -1 TA 69 W 70 -1

16 O -1 53 Line 43 A 44 45 70 K -1 -1 PA90
17 W 18 19 4 L -1 -1 TAI80 | 71 R 72 -1

18 K -1 -1 AL 45 V46 47 72 I -1 -1 PA90
19 T 20 21 46 O -1 -1 AL 3 U 74 A
20 M -1 - AL 47 P 48 -1 74 I -1 -1 PA180
21 Y 22 23 48 M -1 -1 AL 7%V 1 -1

22 N -1 -1 TA 49 U 50 51 % O -1 -1 PAIl80
23 Z 24 -1 5 N -1 75 AL T 718 -1

24 J -1 -1 TA 51 R 52 -1 78 M -1 -1 PA270
25 R 26 27 52 L -1 69 AL 79 S 8 -1

26 I -1 -1 AL 5 Q 54 55 80 O -1 -1 PA270
27 s 28 29 5 N -1 67 AL

AL:Angular Line, TA:Tented Arch, TA180:Tented Arch (180°)
PA:Plain Arch, PA90:Plain Arch (90°), PA180:Plain Arch (180°), PA270: Plain Arch (270°)
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Table 7.14: Grammar syntax for the rest of patterns

No. pt go fail Type | No. pt go fail Type No. pt go fail  Type
i K 2 11 44 X 39 76 87 Y 88 115 Whorl
2 Q 4 3 45 M -1 -1 LUL 88 Z 8 127 Whorl
3 w 4 -1 46 H 47 59 89 Y 91 117 Whorl
4 A 5 20 47 T 48 56 90 X 89 -1 Whorl
5 Q 6 9 48 R 49 60 91 Z 92 111 Whorl
6 K -1 7 RL 49 Z 50 -1 92 A 90 118  Whorl
7 A VAR . | 50 Y 51 52 93 Z 9 -1 Whorl
8 J -1 14 RL 51 H -1 -1 Loop3 94 Y 93 117 Whorl
9 W 6 10 52 U 83 57 95 A 96 103 Whorl
10 Y/ 8 -1 53 I -1 54 Loop3 | 96 X o4 -1 Whorl
noJ 12 24 54 P 55 58 97 A 99 118 Whorl
12 Z 4 13 55 J -1 -1 Loop3 | 98 z 97 -1 Whorl
13 VvV 2 4 5 Y 49 65 99 X 100 107 Whorl
4 U 15 -1 57 R 53 61 100 Y 98 117  Whorl
15 P 16 53 58 T 51 -1 101 Z 103 121 Whorl
6 Q 17 18 59 1 48 78 102 A 101 -1  Whorl
17 V18 19 60 U 49 -1 103 Y 104 118 Whorl
18 J -1 -1 RUL| 61 A 5 -1 104 X 102 122 Whorl
19 K -1 -1 RUL | 62 -1 -1 105 A 107 -1 Whorl

20 P 21 -1 63 P 49 -1 106 X 105 122 Whorl

21 U 22 -1 64 A 49 -1 107 Z 108 121  Whorl

2 Z 23 -1 65 Z 715 66 108 Y 106 -1  Whorl

23 A 16 -1 66 W 67 -1 109 Y 111 -1 Whor

24 M 25 34 67 S 68 -1 110 Z 109 121  Whorl

25 P 26 31 68 Y 69 -1 11 X 112 122 Whorl

26 X 27 42 69 VvV 70 72 112 A 110 -1 Whorl

27 T 28 29 0 Q 71 4 113 X 115 122 Whorl

28 M -1 -1 LL 71 N -1 -1 Loop4 | 114 Y 113 1 Whort

29 Y 30 32 2 Z 13 -1 115 A 116 117  Whorl

30 N -1 37 LL |73 H -1 -1 Loopd [116 Z 114 121 Whorl

31 T 26 -1 4 O -1 -1 Loopd4 | 117 Z 120 -1 LTL

32 P 33 -1 7% Y 76 80 118 X 19 -1 LTL

33 U 30 28 76 S 77 -1 119 A 121 126 LTL

34 N 35 46 77 W 13 74 120 Y .1 -1 LTL

3 Y 26 36 78 O 79 8l 121 Y 123 -1 RTL

36 U 25 26 79 V 75 67 122 A 121 126 RTL

37 Vv 38 -1 80 X 71 -1 123 Z 124 125 RIL

38 Q 39 43 81 A 99 82 Whorl | 124 X 122 -1 RTL

39 P 40 41 82 X 87 8 Whorl | 125 X -1 -1 RTL

40 U 41 45 83 Y 91 8 Whorl | 126 Y 127 -1  RTL

41 N -1 -1 LUL 84 Z 95 -1 Whorl { 127 A 1 -1 RTL

42 Q 37 -1 85 "X 87 117 Whorl

43 Y 44 70 8 A 85 118 Whorl

RL:Right Loop, LL:Left Loop, RUL:Right Ulnar Loop
LUL:Left Ulnar Loop, LTL:Left Twin Loop, RTL: Right Twin Loop
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7.5 Decision

The decision for matching a fingerprint to a similar impression among a

large database is a very difficult task, because ( [65]):

i. there may be no exact match (yes/no type),

ii. the input image can be different from the stored image in the database

even though they represent the same finger,
iii. the input may be noisy and distorted,

iv. the input image may contain only a partial image with severe distortions

as in the case of a scene-of-crime fingerprint,

Our algorithm can not however be applied for police investigation, as the size
of the database is huge and we need a complete fingerprint. Based on these
assumptions the proposed algorithm may be applied for personnel identification

in not huge companies.

7.6 Discussion and conclusion

We have introduced the idea of applying MF as a pre-processor for fin-
gerprint processing. The application of MF speeds up pre-processing with a
reliable output compared to the existing methods. The proposed algorithm
for fingerprint classification extends and improves the approach in [64]. The
proposed method in [64] is one of the best syntactic analysis for ﬁngerprint
classification. However our approach dominates over [64] as follows. It presents
more powerful smoothing procedure, whereas there is no definite pre-processor
in latter method. Our algorithm for smoothing the pre-processed data removes
all possible ambiguities compared to the latter method. The integrated pro-

grammed gramimar Covers a complete set of patterns, it may detect some pat-

terns such as NXTM, NYXPM, NYXPUN, KQPRK which [64] suggests
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but can not detect. Our integrated programmed grammar may be developed
for newer features very conveniently, and it is expandable for possible future de-
velopments (see line 62 in Table 7.14), while there is no chance to develop the
grammar table in [64] without modifying it generally. The algorithm presented
in this chapter shows an improvement of fingerprint processing and classifica-
tion, compared to the existing methods, owing to a powerful morphological
pre-processor and robust technique for smoothing and an efficient grammar. It

can be implemented to process and match fingerprints with reliability.
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Chapter 8

ECG waves detection

8.1 Introduction

This chapter concentrates on one of the applications of morphological fil-
tering (MF) for ECG filtering. One of the major problems in recording ECGs
is that the measurement is degraded by additive 50 or 60 Hz power line in-
terference [62]. Existing computerised algorithms of rhythm analysis are not
satisfactory for detecting complex atrial arrhythmias in ECG. They can detect
normal sinus rhythms and sinus arrhythmias, rather perfectly, where the P
waves and QRS complexes exhibit a 1:1 ratio and the PR interval is constant,
but their performance is not good in detecting complex arrhythmias [67]. Sev-
eral methods have been reported in the literature to detect the atrial waves.
Most of the methods limit their search to a pre-defined window in front of
each QRS. However P waves are not always located before QRRS. When the
ECG signal is noisy, it is difficult to detect the > waves buried in noise, while
their shapes and amplitudes change. In most cases they will not be detected
and, instead, some spurious waves will be detected as P waves. Reddy et. al.
[67] apply a pre-processor for atrial wave detection. They subtract a median

complex of leads IT and V1 from the rhythm data of the corresponding leads.
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These signals are then low-pass filtered and decimated to 125 samples/sec, dif-
ferentiated (1st and 2nd), rectified and added, to form a composite detcction
function. Median values of these measurements are computed and measure-
ments of the candidate P waves are compared for closeness to the median. If
they are within pre-defined limits, they are given positive scores representing a
likelihood of a true P wave. This method seems to be very efficient for detect-
ing complex arrhythmias. We, in general, have empirically experienced that
the proposed method in [67] is the best to detect P waves, compared to other
existing methods, and we will apply it on our own way which will be discussed
later in this chapter.

An approach to QRS complex detection using MM is presented in [87].
The proposed algorithm leads to an accurate QRS complex detection. A pre-
processor using linear filtering is applied to enhance QRS complexes and sup-
press the other parts of the signal as well as noise. The decision rule operates
on this output and classifies the dominant events as QRS complexes or not.
We confirm applying MM operators for ECG wave detection. However we do
not agree with the idea of suppressing the other parts of the signal such as
P, S, T waves. ECG signals are frequently plagued by impulsive noise, e.g.,
due to muscle activities and power line interference [11]. Impulsive noise has
very large positive or negative values of short duration. Moreover, background
normalisation is required to correct the baseline drift of the signal caused by
the respiration and motion of the subject [2].

We apply MM for noise suppression and background normalisation in ECG

signals with similar method as what proposed in [11].

8.2 Definition of the terms in ECG

The electrocardiogram (ECG) is the graphical representation of the po-

tential difference between two points on a body surface, versus time. One of
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universally accepted form of ECG is 12-lead ECG. The detailed explanation
of other ECG methods and the physics of ECG can be found in literature
31, 24, 18].

The heartbeat usually starts in the sinus node (1 in Fig. 8.1) located
in the right atrium (http://www.atlcard.com/hartbeat.html). The sinus node
sends an electrical signal throughout the atria (2 in Fig. 8.1) and to the
atrioventricular (AV) node (3 in Fig. 8.1). The signal then travels down
the special pathways that conduct it to the ventricles (4,5 in Fig. 8.1). As
the signal travels through the heart, the heart contracts or beats. Figure
8.2 (http:/ /www.mei.com/resource/arrhythm/welcome.html) shows different

parts of the heart.

Figure 8.1: Heart beat.

Figure 8.3 (http:/ /www.mei.com/resource/arrhythm/welcome.html) shows a
sample ECG wave on ECG sheet.
In this part we will briefly explain the different waves in ECG:

i. P wave: The P wave of the ECG represents atrial depolarisation. P
wave is best viewd on leads II and V1 and may be upward, downward

and or diphasic. Its duration indicates the time required for an impulse
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to pass from the SA node to the AV node (atrial conduction time). The
duration of the P wave is normally 0.07 — 0.10 scc but not greater than
0.11 sec. The normal amplitude is < 0.25 mv. The P wave in lead V1
is seen bipolar (positive at first and then negative). Increased voltage
or increased duration of the P wave is usually diagnostic. Absence of PP
waves occurs in atrial standstill, during periods of sinus arrest, and in
SA block. The P wave may not be recognisable in some AV junctional
rhythms. In atrial flutter and fibrillation, the P> waves are replaced by

other oscillations called F and f waves, respectively.

ii. QRS complez: Activation or depolarisation of the ventricles is reflected
by QRS complex. An initial upward and downward deflexion after P
wave are called Q and R waves respectively. S wave usually represents
the terminal part of ventricular activation. There may be a second R
(called R') or S (called S') waves, or only a single negative deflection
(called @S) representing the entire QRS complex. The maximum normal

duration of the QRS complex is 0.08 — 0.10 sec.

iii. P— R (or P—Q) interval represents the time required for an impulse to

travel from the SA nodal to the ventricles.

iv. T wave: T wave represents repolarisation of the ventricles. It may be
upright, inverted or diphasic. The normal duration of the T wave is

0.10 — 0.25 sec.

v. § —T segment: S — T segment represents the greater part of ventricular
repolarisation. The normal average duration of the S — T scgment is

0.05 — 0.15 sec.

vi. U wave: U wave is a small rounded deflexion which occurs immediately
after the 7 wave and it is normally in the same direction as the T wave.

It is usually best seen in leads V2 to V4. The deflexion may be so small
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as to make accurate recognition difficult. The genesis of the U wave is

uncertain and remains controversial.

vii. Q — T: Q — T interval represents the total duration of the ventricular
activity. In some cases it is difficult to mecasure it. There are special

tables to calculate another factor named Q — T, instead of Q@ — T [18).

There are a lot of irregularities which make the waves look different from
the normal shape. Appendix C introduces some of the arrhythmia including

tables and figures as a reference.

8.3 Pre-processing

In this section we apply MM for impulsive noise rejection and baseline drift
removal. Noise suppression is typically the first step in ECG signal process-
ing [60]. Linear low-pass and high-pass filtering are commonly used for noise
suppression and baseline drift removal respectively [3]. Lincar filtering is in-
effective in impulsive noise suppression, and in gencral, regarding our previous
discussions of comparison of linear filters versus nonlinear ones, about preserv-
ing the shape of the original signal, we reject the idea of applying lincar filters
for ECG wave pre-processing. There is a report about applying median filters
[21] and ranked-ordering methods [90].

The block diagram of the method applied is shown in Figure 8.4. The
algorithm applied is similar to the proposed method in [11]. However Trahanias
[87) uses open-closing instead of the average of open-closing and close-opening
for baseline drift removal. The advantage of the method in [87] is that it is
simpler, and therefore, faster than the method in [11], but less efficient. We
have empirically proven that the best morphological pre-processor for ECG
signal is the one shown in Figure 8.4.

The algorithm applied is as follows:
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Figure 8.4: Block diagram of ECG pre-processing.

i. A flat SE of size 3 with its origin at its centre (ie. g, = {0,0,0}) is
taken. The length of SE should be smaller than the smallest valuable
component in ECG and bigger than the undesired parts such as noise.
If the duration of the smallest valuable wave is T secc, and the sampling
frequency is f; Hz, then the corresponding wave will be presented with
T x f, samples. Therefore the length of the SE should be < (T x f,)/2. If
the sampling frequency is, for example, 200 sps (sample per second), then
3 samples will be equal to 3/200 = 15 msec. This size is smaller than
any sharp wave in ECG and can be applied as the size of SE to remove
the impulsive noise from ECG. With g, as SE, we apply the following

equation to remove the noise:
outy(n) = (opcl(in(n)) + clop(in(n)))/2, (8.3.1)

ii. To remove the baseline drift, we need to increase the SE size to the size
which is bigger than the size of the biggest ECG desirable component.
For instance we use a flat SE of size 51 (g,) with its origin at its centre.
If we do the similar operation on out; (n) as done on in(n) in Eq. 8.3.1,
with g, as SE, we will then remove all desirable components from out; (n),
leaving the components related to bascline. If such a result is subtracted

from out;(n), we will, instead, get rid of baseline drift. Therefore the
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operation applied, is
outy(n) = outy(n) — (opcl(outi(n)) + clop(out,(n)))/2.  (8.3.2)

Figure 8.5-a shows an input ECG that has baseline drift and is plagued by
noise. Figure 8.5-b shows the result of noise removing. This is considered as
out;(n) in Figure 8.4. The baseline drift detected is shown in Figure 8.5-
c. Figure 8.5-d shows the desired output outz(n). We notice how well the
morphological filtering has removed noise and bascline leaving an ideal signal
for the next stages of ECG wave detection. Figures 8.6-a:d show the same
input when the SE, applied for noise removal, is g1 = {0,1,0}. We have shown
that when impulsive noise and baseline drift exist in ECG wave, our algorithm
removes them successfully without losing the important details. However we
need to be confident that if there is no noise and baseline drift, still applying
the above-mentioned filters would cause no adverse effect. Figures 8.7-a:d
illustrate that idea, illustrating that in the case of having a pure ECG wave,
our pre-processor does not affect adversely. Figures 8.8-a:d show the same
input when the SE, applied for noise removal, is g; = {0,1,0}.  One of the
most important benefits of applying MM, besides what mentioned above, is
that the baseline of the processed data will move to 0 volt and it will cease the

next processing as the reference line will be 0 volt.

8.4 QRS detection

This section reviews briefly the existing methods for QRS detection and

then proposes a better method.

8.4.1 The existing QRS detectors

The following algorithms exist for QRS detection in literature [19)]:
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Figure 8.5: ECG noise suppression and baseline drift removal(1).
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Figure 8.6: ECG noise suppression and baseline drift removal(2).
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i. Algorithms based on amplitude and first derivative

(a) AF1 [50]:
i. At first the amplitude threshold AM,,, . is calculated as a frac-
tion of the maximum amplitude of the input ECG:

AMipren = 0.3max(in(n)), n € Djy. (8.4.1)

ii. Then the first derivative in'(n) is calculated at each point of

in(n) such that
in'(n) =in(n+1)—in(n—1), ne€ D, (8.4.2)
iti. QRS occurs when (f, = 250 Hz)

A. in'(n),in'(n+1),in’'(n + 2) > 0.5, and

B. in/(m),in'(m + 1) < —0.3, where (n + 2) < m < (n + 25),

and
C. in(n),in(n+1),--- ;in(m + 1) > AMyprsn.
(b) AF2 [17]: The second algorithm is as follows:

i. A threshold is calculated as a fraction of the peak value of the

ECG:
AMyon = 0.4max(in(n)), n € D;,. (8.4.3)
ii. The raw data is then rectified:

outy(n) = |(in(n))). (8.4.4)

iii. The rectified ECG is passed through a low-level clipper:

t i )
out,(n) = { outo(n)  if outo(n) 2 AMupry, (8.4.5)

AMp.on otherwise
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iv. The first derivative is calculated at each point of the clipped

rectified data:
outi(n) = outi(n+1) —out;y(n—1), n € Dyy,. (8.4.6)
v. A QRS candidate occurs when a point in out}(n) exceeds the
fixed constant threshold: out|(n) > 0.7.

(c) AF3 [29]: The third algorithm is as follows:

i. The first derivative in'(n) is calculated at each point of in(n)

such that
in'(n) =in(n+1) —in(n—1), n € Dj,. (8.4.7)

ii. The result is searched for points which exceed a constant thresh-

old: in'(n) > 0.15.

iii. Then the next three derivative values in'(n + 1), in'(n +2) and

in'(n + 3) must also exceed 0.15.

iv. The next two sample points must have positive slope-amplitude

products:
in'(n+1)-in(n+1)>0 and in'(n+2)-in(n+2) > 0.
If all the above conditions exist, then the current point is a QRS
point.
ii. Algorithms based on first derivative only
(a) FDI [56]: The proposed algorithm is as follows:
i. The first derivative is calculated as:

in'(n) =
—2in(n — 2) —in(n — 1) +in(n + 1) + 2in(n + 2). (8.4.8)
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ii. The slope threshold SL,s, is calculated as a fraction of the

maximum slope for in'(n):
SLiprsh = 0.70 max(in'(n)). (8.4.9)

iti. in'(n) is searched for points which exceed the slope threshold.
The first point that exceeds the slope threshold is taken as the
onset of a QRS candidate.

(b) FD2 [388]: The modified algorithm is as follows:

i. The first derivative in'(n) is calculated at each point of in(n)

such that
in'(n) =in(n+1)—in(n—-1), ne D, (8.4.10)
it. in'(n) is searched until a point exceeds the slope threshold:
in'(n) > 0.45.
iii. A QRS candidate occurs if another point in the next three

sample points also exceeds the threshold: in'(n + 1) > 0.45, or

in'(n +2) > 0.45, or in’(n + 3) > 0.45.
iii. Algorithms based on first and second derivative
(a) FS1 [5]:

i. The absolute values of the first and second derivative are cal-

culated:

in'(n) = |in(n + 1) —in(n — 1)|

iy ‘ ‘ 8.4.11
in"(n) = |in(n + 2) — 2in(n) + in(n — 2)| ( )
ii. These two data are scaled and then summed:

out(n) = 1.3in'(n) + 1.1in"(n). (8.4.12)

iii. out(n) is scanned until a threshold is met: out(n) > 1.0.
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iv. Once this occurs, the next eight points are compared to the
threshold. If at least six of these points meet the threshold, the
corresponding point is a candidate for QRS.

(b) FS2 [1]:
i. The rectified first derivative is calculated:
outy(n) = lin(n + 1) — in(n — 1)|. (8.4.13)
ii. The above result is then smoothed:
outy(n) = (in(n — 1) + 2in(n) +in(n + 1))/4.  (8.4.14)
iii. The rectified second derivative is calculated:
outy(n) = |in(n + 2) = 2in(n) +in(n — 2)|.  (8.4.15)
iv. The above two results are added to each other:
outs(n) = out;(n) + outy(n). (8.4.16)

v. The maximum value of this array is determined and scaled to
serve as primary and secondary thresholds:

Primey,,sn = 0.8 max(outz(n)) (8.4.17)
Secndprsn = 0.1 max(outz(n)) (8.4.18)
vi. outs(n) is scanned from the first up to the last point until a

point exceeds Primem,sn. In order to be classified as a QRS
candidate, the next six consecutive points must all be equal
to, or greater than Secndih,on (1.€. outs(i) > Primeyysn, and

OUt3(i + 1)’ OUt3(i + 2)7 e 1OUt3(I + 6) > Secnd,h”h.

iv. Algorithms based on digital filters

(a) DF1 [16]:
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i. The input signal is passed through a differentiator with a 62.5

Hz notch filter.
outy(n) = in(n) —in(n — 4). (8.4.19)
ii. outo(n) is then passed through a digital low-pass filter:
out1(n) = outo(n) + doute(n — 1) + Gouty(n — 2)
+4outo(n — 3) + 4douty(n — 4). (8.4.20)

iii. Two thresholds are used, equal in magnitude but opposite in
polarity. out;(n) is scanned until a point with amplitude greater
than the positive threshold is reached. This point is the onset
of the search. The number of alternate threshold crossings is
used to classify the initial crossing as either a bascline shift,
a QRS candidate, or as noise: If out;(i) > 21.0, then search
region onset=i. If no other threshold crossings occur within
the entire search, the occurrence is classified as a bascline shift.
Otherwise, the following three conditions are tested:

A. ifout(i+j) < =21.0, 0<y <40,

B. if out,(i + j) < —21.0, 0 < j < 40, and out,(i + k) >
21.0, j <k <40,

C. out;(i + j) < =210, 0 < j < 40, and out, (i + k) >
21.0, j <k <40, and out (i +1) < —21.0, k<! <40.

If any of the above conditions apply, the occurrence is classified

as a QRS. If additional threshold crossings occur, the occur-

rence is classified as noise.
(b) DF2 [59]:
i. The first stage smoothes the input ECG using a three-point

moving average filter:

outo(n) = (in(n — 1) + 2in(n) + in(n +1))/4.  (8.4.21)
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ii. outo(n) is then passed through a low-pass filter:

1 n+m
outi(n) =
U 1( ) 2m+ 1 kznz—mOUtO(k)i
m<n<N-—-m, (8.4.22)

where N is the total length of the input samples.

iii. The difference between outy(n) and out,(n) is squared:
outy(n) = (oute(n) — outi(n))’, m<n< N —m.(8.4.23)

iv. The squared difference is then filtered:

n+m 2
outz(n) = outz(n) ( Z outz(k)>

k=n—m

m<n<N-—-m. (8.4.24)

v. outy(n) is made as: outs(n) = outs(n) if (oute(n) — outo(n —
m))(outo(n) — oute(n + m)) > 0, otherwise outs(n) = 0.
vi. The maximum value of out;(n) is determined and scaled to form

the threshold:
Thrsh = 0.125 max(outs(n)), m <n <N —m. (8.4.25)

vii. A QRS occurs when a point in outs(n) excceds Thrsh.

Experiments show that as m increases, the performance increases

along with computational demands. The best value for m scems to

be 6.

For a detailed discussion about the comparison of the above methods, the paper
by Frisen et. al. [19] is a good reference. What we can briefly conclude, is
that none of the forementioned techniques does not act perfectly due to lack of
a robust pre-processor. Therefore we apply our technique for QRS detection

as explained in the next part.
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8.4.2 Our approach to QRS detection

In some cases the amplitude of the T' wave may be as big as of QRS on
some leads. Therefore it is not wise to use the algorithms using the amplitude.
Fulton [20] applies the absolute sum of all twelve leads. However regarding
that only the leads I, I, V1, V2, V3, V4, V5 and V6 are independent for twelve-
lead ECG, we apply the absolute sum of the independent leads to detect the
approximate place of QRS complex. We choose leads II and V1 for single lead
investigation, as P waves are usually (and not always) scen better in these

leads. The algorithm applied is as follows:

i. Apply a smoothing filter to each independent lead to remove small fluc-

tuations caused by the pre-processors.
yi(n) = (zi(n — 2) + zi(n — 1) + 2z;(n) + xi(n + 1) + z;(n + 2))/G8.4.20)
where i = 1---8 for each independent lead.

i. Make the absolute sum of all y;(n), denoted sum(n):

-

sum(n) = Zyi(n). (8.4.27)
Figure 8.9 shows eight independent pre-processed leads and sum(n).

iii. Find the global maximum amplitude of sum(n) (denoted MAXSUM).

iv. Assign a threshold (denoted thrsh) and make an amplitude threshold:
AMPyprsn, = thrsh x MAXSUM. 1f thrsh is too low, a lot of false
peaks will be detected, and if it is too high, some peaks will be missing.
Therefore a trade-off should be considered. We apply thrsh = 0.8. If it

is too high, it will be reduced as explained below.

v. Scan sum(n) to find the points that exceed AM Py, .
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Figure 8.9: Eight pre-processed leads and their absolute sum.
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vi. Investigate any continuous interval exceeding AM Pypren. Then find the

local maximum amplitude inside every interval that excecds AM Dy
TSh.

vii. Remove false peaks due to large pacemaker spikes and T waves. In some
cases the amplitude of the T" waves on some leads may exceed the ampli-
tude of the QRS complex. However it can not be true for sum(n), but

can have noticeable amplitude.

viii. Investigate the distance between the peaks. If there is a missing peak,
then decrease thrsh and repeat the above stages. Figure 8.10 shows the
peaks on sum(n) marked with “<”. The corresponding peaks for leads
II and V1 are shown in Figures 8.11 and 8.12 respectively, confirming
the results over the first derivative of > _(n) with similar techniques acted

on slope.

ix. The distance between consecutive peaks is a good measure about the pe-
riod of heart beat (ventricular beat) and also a reasonable approximation
for the length of the structuring element used in pre-processing for base-
line drift removal. If the SE’s length was not within acceptable criterion,
then all the procedure starting from pre-processing should be repeated

with new length for SE.

x. After making the peaks on sum(n), start the following process to find

QRS onset and offset:

(a) Make the first derivative on lead II.

(b) Start from the location of the first corresponding peak on lead II.
Evaluate the location and amplitude of the relevant peak by search-
ing a neighbourhood around the location of the peak. It may slightly
differ, regarding the effect of the smoothing filter y,(n) and based

on the fact that different peaks (positive or negative) may occur
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Figure 8.12: The peaks on V1.
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on different leads. Scan leftward all adjacent points which have the

same amplitude as the peak point. This happens for flat peaks.

(c) The amplitude of the peak may be positive (for large R waves) or
negative (large S waves). If the peak is positive, then move leftward
while the first derivative is positive. Then the peak on Q wave will
be the corresponding point. Then still move leftward while the first
derivative is negative. Then at this point the onset of QRS has been
detected. If the peak is negative, a dual tracking technique should
be considered. The same technique but dual track for slopes should
be considered for detecting QRS offset while the movement will be

rightward.
(d) Repeat the above steps for the rest of the peaks.

(e) Evaluate all detected onsets and offsets. If they are beyond the
acceptable ranges, exit the operation declaring that the program is

not able to analyse the current data sct.

Similar procedure is applied for lead V1. The result of the proposed
method is shown in Figures 8.13- 8.16. The QRS complexes are marked
with red colour. After finding QRS onsets and offsets, the validity of
them (duration and amplitude) should be evaluated. If any complex’s

amplitude and duration is not within the acceptable range, it will be

rejected.

8.5 ST — T detection

The applied algorithm for ST — T detection, is alert enough to detect the
buried P waves on T waves. In some cases, as mentioned, I” wave can be on

top of a T wave, changing the normal shape of the T wave. Therefore it will be
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a big mistake to try to identify the T waves without considering the location
of the P waves, as it exists among the current T' wave detection algorithms in
literature (e.g. [27, 14]). In fact we concentrate on ST — T detection instead
of T waves. When later the P waves are detected, T waves can be separated.
The T waves are positive or sometimes negative or even bipolar. They may
occur immediately after QRS offset. The T waves are usually flat compared
to the duration of QRS and they have higher amplitude than the P waves.
The following part illustrates the algorithm for ST detection. This procedure
should be repeated for each ST — T segment.

i. Make a search over the interval between the current QLS offset and the

next QRS onset for every QRS to investigate the following instructions.

ii. Apply open-closing (denoted by opcl) for the search area. Experimental

results show that a flat structuring element of size 9 satisfies the demands.

iii. Construct the first derivative of the filtered data for the given interval

(denoted derivl).

iv. Find the maximum of absolute value among 1/8, of the full interval range
of opcl and remember its location. Find out the real sign of the relevant

maximum. Denote it as maz18.

v. The T waves can never occur too much closer to QRS complexes. There-
fore bypass possible fluctuations and/or ST segment elevations by mov-
ing rightward from the location of maz18 and regarding derivl and the

amplitude of opcl to reach to a flat area.

vi. Find the maximum of absolute value of opcl from the above point up to
half the full range as the most probable location for the T wave. Denote

it as marl2.
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vii. Move leftward and rightward from the location of mazl12 to find the
onset and offset of the T wave with the similar technique as mentioned
for finding QRS onset and offset, bearing in mind that the T' waves are
always flatter than the QRS complexes.

viii. Evaluate the detected onset and offset. They should be in appropriate
ranges and proper distances from the offset of the corresponding QRS

complexes. If they are beyond the acceptable ranges, then reject them.

Figures 8.17- 8.20 show the detected ST —T segments marked by green colour
on leads II and V1.

8.6 Residue

For difficult rhythms (where atrial waves are on top of ST segments, or they
are spread all over the ECG with no fixed temporal relation to the QRS), it is
better to form one single template of the ST for all the complexes which look
alike. Moreover if the ST — T segment is zeroed, then we will not be able to
see any atrial waves buried inside the T waves or in the ST segments. Reddy
et. al. [67] apply ST median and QRS interpolation to leave a residue of
carrying the information of the P waves as described below. We have carefully
examined the recommended algorithm and discovered that it superbly helps
for next stage to detect the P waves. Therefore our algorithm for making the

residue is adapted from [67]. The proposed method is as follows.

i. The correlation among all detected ST — T segments is evaluated. If
the correlation exceeds a threshold, the corresponding segments are cat-
egorised as the same template, otherwise a new template is built. The
value for thresholding should be decided very carefully. The more the

level of the threshold, the more, the number of templates, and vice versa.
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ii. After categorising the ST segments into different groups, the median of

each group is found. There are advantages of applying median instead of

averaging [21].
iii. Each ST segment is subtracted from the median of its group

iv. All QRS complexes are substituted by interpolation of the values of their
onsets and offsets. They are not replaced by zero values in order to avoid

the abrupt discontinuities in the subtracted waveform.

Applying the above algorithm will leave a residue mostly carrying informa-
tion about the P waves. Figures 8.21- 8.24 show the residual signals on leads

II and V1 respectively.

8.7 P wave detection

Reddy et. al. [66] apply a nine-point central Differentiator upon the residue

as below.

y(n) = —z(n— 4)/256 — z(n —3) *3/32 — x(n - 2)/2 — z(n — 1)

4z(n+4)/256 +z(n +3) % 3/32+ z(n + 2)/2 + z(n + 1). (87.1)
Then they investigate the second difference computed as:
z(n) =y(n) —y(n - 1). (8.7.2)

A composite function f is then considered by rectifying and adding the first

and second differences as:
f(n) = ly(n)| + [z(n)]. (8.7.3)

We, instead, use morphological filtering and get a better result than theirs

Our approach is as follows:
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Lo

. Compute the absolute value ol the open-close of the residual signal on

leads IT and V1. A flat structuring element of size 9 seems to be adequate

Take the average of the above signals for next stage. We denote it as
opcly(n).

Make the first derivative of the above signal.

Investigate all the intervals between the offset of the current QRS and

the onset of the next one.
Find the local maxima inside the intervals.

Find the onset and offset around each maximum with the similar tech-

niques as mentioned before.

Evaluate the validity of the points candidated as the onsets and oflsets

of different P waves by investigating their amplitudes and widths

Figures 8.25 and 8.26 show the detected P waves on opcly(n) marked

by blue colour. Figures 8.27- 8.30 illustrate the detected P waves on the

corresponding residues. Figures 8.31- 8.34 show the corresponding results on

the original signal.

v alb

Figurc 8.25: opcly(n) (first part).
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Figure 8.26: opcly(n) (second part).

Figures 8.35-8.48 illustrate the whole procedure for a case which has buried

P on top of T waves.
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Figure 8.40: opcly(n) (second part) in a complete heart block.
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8.8 Discussion and conclusion

We have tried our algorithm on the database obtained from Royal Liv-
erpool University Hospital and Marquette Electronics Co. Ltd.. One of the
disadvantages of our algorithm, despite its accuracy, is that due to a heavy
computation, it is not suitable for ambulatory cases, or generally speaking, for
real-time implementations, unless the algorithm is applied via the real-time
morphological operators as explained in chapter 4 and suitable hardware for

the rest of the operations.

8.9 Future work

The algorithm, applied for ECG analysis, has been evaluated by Liverpool
Women’s Hospital experts and upon their demands, a similar robust technique
has been required for fetal ECG monitoring. The algorithms for fetal ECG
is supposed to differ from what applied for adult ECG processing. We will

develop new algorithms based on their demands.
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Chapter 9

Summary and conclusion

9.1 General Remarks

This chapter concludes the dissertation. It summarizes the major results of
the presented research work and indicates directions for further investigations

based on this work.

9.2 Summary of the thesis

This thesis has traced the development of MM from its beginning to the
latest propositions. The point of departure is the consideration of the problem
of obtaining efficient and real-time morphological operators in 1-D and 2-D, and
applying them in different areas where traditional methods fail to be applied
successfully.

In the preceding chapters we have presented the following work and ob-
tained promising results.

Literature review was done in Chapter 1. The importance of considering
MM as an advanced image processing tool was explained. Historical notes

about MM were reviewed. A comparison between MM versus non-MF was
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demonstrated. Also major contributions and overview of the thesis were indi-
cated.

Chapter 2 introduced a theoretical background on mathematical morphol-
ogy. It also explained the existing confusion in literature about the definition
of the operators. Definition of the terms and operators in binary and grey-
scale modes were discussed. Properties of morphological operators were also
highlighted.

Chapter 3 presented new fast algorithms in 1-D and 2-D for morphological
erosion, dilation, opening, closing, open-closing and close-opening, relying on
avoiding redundant comparisons.

Chapter 4 improved and generalised real-time implementation of 1-D and
2-D GS morphological operators.

Chapter 5 proposed a technique to combine MF with convolution, both in
software and hardware, emphasising the power of our algorithm in using any
kind of SE.

Chapter 6 introduced new novel operbators called weighted morphological
filters and emphasized their superb performance compared with classical MFs
for removing salt&pepper, speckle and Gaussian noises with different noise
parameters.

Chapter 7showed how MF could be applied in fingerprint processing as a
pre-processor. It also introduced a syntactic approach to fingerprint classifica-
tion including the details of pattern classification and string analysis.

Chapter 8 was about ECG waves detection using MF in different stages.
After an introduction and definition of the terms in ECG, a pre-processor
based on MF was introduced. It emphasised the efficiency of pre-processor in
removing noise and baseline drift without loosing necessary details of the signal.
The existing QRS detectors were reviewed and our contribution was included.
The proposed method for ST — T detection was then followed. A residual

signal was produced, resulting from interpolation of QRS and subtracting the
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median(s) of ST — T segments from the corresponding parts. Later step was

about analysing the residue and detecting P waves, even when they were buried
on T waves.
Our major contribution was concentrated on the following topics:
i. Fast algorithms for 1-D and 2-D GS morphological operators
( [69, 70)).

ii. Real-time implementation of GS morphological filtering ( (72,

75, 73]).
iii. Convolved morphological filters ( [74, 77]).
iv. Linearly-weighted morphological operators ( [76]).
v. Morphological filters in fingerprint processing ( [71]).

vi. ECG waves detection using morphological filtering.

9.3 Limitations of the approach

One of the major limitations using MM was the lack of analytical methods,
due to the nonlinearity of the MF operators. The next drawback was about the
evaluation of fingerprint recognition. We could not test our approach in real
environment. As we reckoned, it could only be used for small companies where
the size of database was limited. Besides time limitation, we did not have
access to a good experimental database. In general, it has not been applied for
a real-time fingerprint recognition.

Another limitation of the research was about the adaptive structuring ele-
ment design. We tried genetic algorithms to design SE fof ECG wave analysis
and fingerprint processing. However the procedure was very slow, specially in
2-D, and we did not get the satisfactory results. Therefore we only used SEs

based on a pre-knowledge about the nature of the signals and images.
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9.4 Recommendations for future work

Designing the structuring element has been left as an open rescarch topic
in MM. It would be worth of having a research for SE design using another
techniques instead of genetic algorithms. Our research about convolved and
weighted morphological operators can be deeply extended to design a hybrid
embedded operator.

Fingerprint recognition using MF can be another topic for a rescarch. The
most important pre-requisite is obtaining a large data base to test the developed
algorithms. Our research can be continued towards fingerprint recognition.
We stopped at classification step. Stretching MF in m-D, could be another
interesting research aspect, for example finding applications in colour image
processing. Finally our research about ECG wave detection can be followed to

get better results leading to commercial products.
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Morphological citations in

English

Table A.1: Abbreviation of Journals, etc.

Abrev. Description

CsICcC Annual Conf. of Computer Society of Iran

AIDIM Advances in digital image proc., edit=P. Stucki, Plentum, New York

AAECC Applicable Algebra in Engineering, Communication and Computing

BOOK-DOUGH MM in Image Processing, E. R. Dougherty, Marcel Dekker, New York

BOOK-HARAL MM. Theory and Hardware, ed.=R.M. Haralick, Oxford Univ. Press, New York
Shape in Picture: Mathematical Description of Shape in Grey-Level Images,

BOOK-O ed.=Y-L. O et. al., NATO ASI Series, Driebergen, The Netherlands, Springer,
Berlin, vol.=126

BOOK-SER-94 MM and its applications to image proc., Kluwer Academic, The Netherlands

CSSP Circuits, Systems, Sig. Proc.

CVGIP Comp. Vision, Graph. and Image Proc.

CVGIPIU Comp. Vision, Graph. and Image Proc.:Image understanding

CWI Centrum voor Wiskunde en Informatica

ECOLE Ecole Nationale Supérieure des Mines de Paris, Fontainebleau

ELEC-LET Electronics Letters

ELSSIG Signal Processing

ELSSIGIC Signal Processing: Image Communication

GMIP Graphical Models and Image Processing

ICEE Iranian Conf. on Electrical Eng.

IECIPAIA IEE Conf. on Imag. Proc. and its applic.

IEECSP IEEE Computer Society Press

IEEPRC Proceedings of the IEEE

1EESL1 IEEE Signal Proc. Letters

IEETA1 IEEE Trans. Acoust. Speech Signal Process.

IEETBI1 IEEE Trans. Biomed. Eng.

IEETC1 IEEE Trans. Circuits and Systems

IEETC4 1EEE Trans. Comput.

continued on next page
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continued from previous page (Citation:Theory and tutorial)

Abrev. Description
IEETI1 IEEE Trans. Image Proc.”
IEETP2 IEEE Trans. Pattern Anal., Machine Intell.
IEETS1 1IEEE Trans. Signal Proc.”
IEEWNSIP IEEE Workshop on Non-Linear Sig. and Image Proc.
ISCSDSP International Symp.on Communic. Systems and DSP
ISMM International Symposium On Mathematical Morphology and its Applications
to Image and Signal Processing IV
JEI Journal of Electronic Imaging
JMIV Journal of Mathematical Imaging and Vision
JVCIR Journal of Visual Comm. and Image Rep.
PATR Pattern Recognition
PATRL Pattern Recognition Letters
PhD PhD Thesis
PROCMM Proc. of the Intern. Symp. on Mathematical Morphology
PROCIEVISP Proc. IEE Vis., Image, Sig. Proc.
PROCIEE18 Proc. IEEE 18th Convention of Elec. Eng.
PROCIWMM Proc. Intern. Workshop on Mathematical Morphology
PROCISSSE Proc. Internat. Symp. on Signal Systems, and Electronics
SSPR Shape, Structure and Pattern Recognition, Edit.= D. Deori et, al., World
Scientific
PROCWATRS Proc. Workshop on Applic.s and Theory of Random Sets, Minneapolis, edit=J.
Goutsias et. al., Springer, New York
PROCSSMISP Proc. Summer School on Morpholo. Image and Signal Proc.
RSE Remote Sensing of the Environment
RTI Real-Time Imaging
RTMIP Real-time medical image proc., edit.=M. Onoe et. al., Plentum, London
SIAMJ SIAM J. Appl. Math.
SIRL Signal and Image Research Laboratory
SPIE-OEP SPIE Optical Engineering Press
SPIEPRC-1AMIP SPIE Proc. Image Algebra and Morphological Image Proc.
SPIEPRC-CVCIP Proc. SPIE-Conf. on Visual Comm. and Image Proc.
SPIE-NFIP SPIE, Nonlinear Filters for Image Proc.
. Table A.2: Citation:Theory and tutorial.
Author Yr | Title Description Pages
Mutational equations of
L. Doyen et. al. 94 morphological dilation tubes BOOK-SER-94 13-20
:.ei-;r.n:r.\sM‘ 87 | MM: an algebraic approach CWI Newsletter, vol.=4 7.27
H.J. A. M. 89 Iteration of morphological CWI Quasterly, vol.=2 o
Heijmans transformations ’ = -36
H. J. A. M. %0 Morphological filtering and SPIEPRC-CVCIP,
Heijmans iteration Lausanne,vol.=1360 166-175
H.J. A. M. 20 The algebraic basis of MM: 1. CVGIP. vol.=50
Heijmans et. al. dilations and erosions ’ . 245-295
H.J. A M. o1 Theoretical aspects of IEETP2. vol.=13
Heijmans gray-level morphology » vel.=13, no.=6 568-582
continued on next page
MORPHOLOGICAL FILTERING M.H. Sedaaghi




Morphological citations in English 168

continued from previous page (Citation:Theory and tutorial)

Author Yr | Title Description Pages
Thresholdings, umbrae,

Y. Hsueh 94 residuals, and surpluses of BOOK-SER-94 21-28
l-images

Tutorial on Advances in
P. Maragos 87 Morphological Image Optical Engineering, vol.=26 623-832

Processing and Analysis

J. Serra 86 Introduction to MM CVGIP, vol.=35, no.=3 283-305

Anamorphoses and function
MM in Image Processing: E.R.

J. Serra 93 | lattices (multivalued Doughert 483-523
morphology gherty
y Table A.3: Citation:Statistical analysis.
Author Yr | Title Description Pages
M. Charif-

Morphological representation of
Chefchaouni et. 95 T IEETI1, vol.=4, no.=86 838-845
order-statistics filters

al.

Statistical analysis of
C.-S. Chen et. al. 96 space-varying morphological IEETS], vol.=44, no.=4 1010-1014
openings with flat SEs

02 Some properties of cssP
. i ' l.=1 ) = -
H. A. David order-statistics filters ve 1, ne.=1 109-114

Statistical evaluation of

. A. Moh d . .
M. A. Mohame 95 sequential morphological IEETS]1, vol.=43, no.=7 1703-1709

et. al. .
operations

, 03 Statistical Analysis of IEETS
. t. al. 1 = = -
A. Morales et. a Morphological Openings , vol.=41 , no.=10 3052-3056

A study of statistical properties

| o4 of GS compound morphological SPIE
. et. al. . PIE, vol.=2180, = -

A. Morales operators using the basis ve 0, no.=v 124-135

matrix

Second-order statistics of
S. Na et. al. 95 morphological dilation and 1EETSI, vol.=43, no.=10 2418-2422

erosion of a memoryless source

. 92 Statistical analysis of median SPIEPRC-CVC
jarvi et. al. -CVCIP = 56
J. Neejirvi et. al type and morphological filters , vol.=1818 366-37%

. Ri oni et. Statistical pattern spectrum for
©C- Regazs 94 | ° N BOOK-SER.-94 185-102
al. binary pattern recognition
Synthesis of adaptive weighted
M. Ropert et. al. 94 | order statistic filters with BOOK-SER-94 37-44
gradient algorithms
R. L. Stevenson Morphological filters: statistics
87 IEETC]1, vol.= - = -
et. al. and further syntactic properties vol.=CAS-34, no.=11 1292-1308
Some statistical properties of
C. Wang et. al. 95 MM IEETSI, val.=43, no.=8 1955-1965
¢ Table A.4: Citation:Representations and overviews.
Author Yr Title Description Pages
Minimal representation for
G. J. F. Banon translation-invariant set
91 - s
et. al. mappings by mathematical SIAM J. Appl. Math., vol.=51 1782-1798
morphology

continued on next page
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continued from previous page (Citation: Representations and overviews)

et. al.

image algebra) Part 1:

architecture

Author Yr Title Description Pages
An algebraic approach for

P. Bhattacharya i

ct. al. 93 morphological operations on 2D PATR, vol.=26 1785-1796
and 3D images
Fuzzy mathematical

1. Bloch et. al. 95 morphologies: s comparative PATR, vol.=28, no.=9 1341-1387
study

M. Charif- A

Chefchaouni et. 92 Morphological bounds on SPIEPRC-CVCIP, vol.=1818 414-42
nonlinear filters ' T -425

al.

M. Charif- On the invertibility of the

Chefchaouni et. 94 morphological representation of IEETI, vol.=3 847-849

al. binary images

M. Charif- )

Chefchaouni et. 94 Morphological representation of IMIV, vol.=4 215232
nonlinear filters -

al.

M. Charif- Generalized morphological IEEWNSIP, vol.=1, ed.=1.

Clhefchaouni et. 93 center: convergence Pitas, Greece 325-328

al.

M. Charif- Generalized morphological

Chefchaouni et. 95 center: self-duality, SIRL, Univ. of lifinois, Report,

al. idempotence, and convergence Chicago

D. Coltuc et. al. 96 Morphological residual IEETRII, vol.=8, no.=11 15

: representations of signals TR A 569-1572

Locality and adjacency stability

J. Crespo et. al. 97 constraints for morphological IMIV, vol.=7, no.=1 85-102
connected operators
Theoretical aspects of

J. Crespo et. al. 95 morphological filters by ELSSIG vol.=47, no.=2 201-225
reconstruction
New results on the theory of

J. Crespo et. al. 98 morphological filters by PATR, vol.=31, no.=4 419-429
reconstruction
Two dual representations of
morphology based on the

L. Dorst et- al. o4 parallel normal transport BOOK-SER-94 161-170
property
Orientation-based

L. Dorst et. al. o3 representations for MM SSPR 13-22

E. R. Dougherty Precision of Morphological

o al. 93 estimation SPIE, vol.=1902, no.=1V 65-76
Minimal representation of

E.R. Dougherty o r-openings via pattern bases PATRL, vol.=15 1029-1033
Precision of
morphological-representation

E.R. Dougherty estimators for

et. al. ) o translation-invariant binary ELSSIG, vol.=40 129-154
filters: increasing and
nonincreasing
Computational gray-scale
mathematical morphology on

E. R. Dougherty 95 lattices (a comparator-based RTI, vol.=1, no.=1 69-85%
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Author Yr Title Description Pages
Computational gray-scale
mathematical morphology on
E. R. Dougherty 95 lattices (a comparator-based RTI, vol.=1, no.=1 283-20%
et. al. image algebra) Part 2: Image
operators
Mutational equations of the
L. Doyen et. al. 9 morphological dilation tubes IMIV, vol. =5, no.=3 219-230
Morphological Transformations
J. Goutsias ?? of Image Sequences: A Lattice SPIEPRC-IAMIP, Belingham, 20-22
Theory Approach USA, vol.=1ll
3. Goutsias 92 Morphological Analysis of IMIV. vol. 2 1o
) Discrete Random Shapes ' ' 3-218
Modeling Random Shapes: An
J. Goutsias 77 Introduction to Random Set BOOK-HARAL
Theory
J. Goutsias et. Morphological Representation
al. ot of Discrete and Binary Images IEETS1, vol.=39 1389-1379
: ':’]' Haralick 87 Image analysis using MM IEETP?2, Vol.:PAMI-, No:4 532-550
R. M. Haralick 87 Multiresolution morphology IEEPRC, First lat. Conf. 516-520
et. al. Comp. Vision
R. M Haralick et. Model-based morphology: the
al. % opening spectrum GMIP, vol.=57, no.=1 1-12
H. . A-M 92 Graph morphology JVCIR, vol.=3 24-38
Heijmans et. al.
H.J. A. M. Convergence, continuity and
Heijmans et. al. 92 iteration in MM JVCIR, vol.=3 84-102
H.J. A M. Graph morphology in image
Heijmans et. al. 9 analysis BOOK-DOUGH 171-203
H.J. A. M. 9 A note on the umbra transform PATRL. vol.e14
Heijmans in gray-scale morphology P 877-881
Dominance and incidence
H.J. A M. 94 structures with applications to BOOK-SER-94 171-178
Heijmans stochastic geometry and MM
H.J.A-M. 95 MM: basic principles PROCSSMISP
Heijmans
MM: a modern approach in
H.J. A. M. 95 image processing based on SIAM Review, vol.=37, no.=1 1-36
Heijmans algebra and geometry
Similarity and Symmetry
HJ.AM. 96 Measures for Convex Sets Report BS-R9610, CW1,
Heijmans et. 8l Based on Minkowski Addition | “reTdem
Mean-absolute-error
representation and
R. P. Loce et. al. 95 optimization of GMIP, vol.=57, no.=1 27-37
compluitational-morphological
filters
A representation theory for
P. Maragos 89 morphological image and signal IEETP2, vol.=11, no.=86 586-599
processing
Pattern spectrum and
P. Maragos 89 multiscale shape representation IEETP2, vol.=11, no.=7 701-716
Threshold superposition in
P. Maragos et. 90 morphological image analysis IEETP2, vol.=12 498-504

systems
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Author Yr Title Description Pages
Affine morphology and affine SPIEPRC-IAMIP, San Diego
P. Maragos 90 A ! 31-43
signal models Vol.=1350
Morphological systems for
. M o8 et. .
Pl arag 90 multidimensional signal IEEPRC, vol.=78, no.=4 690-710
al processing
Minkowski operations and Set-Valued Analysi l.=
J Mattioli 95 nelysia, vol.=3, 33.50
vector spaces no.=1
On information contained in
J. Mattioli et. al. } 94 . BOOK-O 177-195
the erosion curve
CWI, A
P. F. M. Nacken 93 Chamfer metrics in MM msterdam, Report,
no.=BS-R9309
94 Chamfer metrics in ™
. v = -
P.F.M. Nacken mathematical morphology » vol.=4 233-253
06 Chamfer metrics, the medial IMIV .
. F. M. ke vol.=6, = -
P. F. M. Nacken axis and MM ' no.=2/3 235-248
Medical Images: Formation,
. Handling and E i =
MM in hierarchical image ndling &n valuation, Ed.
Y. L. Oet. al 91 ) A. E. Todd-Pokropek et. al., 447-462
representation
NATO ASI Series F,
Pub.=Springer, Heidelberg
o7 Convexity Indicators Based On PA
. TRL, = = -
A.T. Popov Fuzzy Morphology vol.=18, no.=3 259-267
96 Fuzzy logic and MM: IEETS .
. al. 1, .=44, no.= N
1. A. Reaet. & implementation by stack filters ve 4, no.=1 142-147
. M. Reinhardt Efficient morphological shape
J e 96 ) IEETCI, vol.=5, no.=1 89-101
et. al. representation
.B. T.M. MM for structures without
). B 88 R ELSSIG, vol.=15 271-277
Roerdink et. al. translation-symmetry
MM on homogeneous spaces - CWL A
J3.B.T. M. 89 Part I: The simply transitive » Amsterdam , report,
Roerdink no.=AM-R8924
case
J.B. T. M. 00 MM on homogeneous spaces - CWI1, Amsterdam , report,
Roerdink Part I1: The transitive case no.=AM-RS006
. SPIEPRC-CVCIP, L
J.B.T.M 90 MM on the sphere pusanne. 263.271
Roerdink vol. 1360
J.B. T. M. MM with non-commutatitive MM in Image Processing,
93 205-254
Roerdink symmetry groups BOOK-DOUGH
On the construction of
B translation and rotation
J.B.T.M 7 frans k BOOK-HARAL
Roerdink invariant morphological
operators
CT. M. Manifold shape: from
J.B. T 04 i , BOOK-O 200-223
Roerdink differential geometry to MM
Working D
Fourier analysis, MM, and orking Dacument,
C. Ronse 89 . no.=WD54, Philips Research
vision
Laboratory, Brussels, Belgium
Working Document, no.=WD,
C. Ronse 90 Regular open or closed sets Philips Research Laboratory,
Brussels, Belgium
90 Why mathematical morphology ELSSIG
l.=
C. Ronse needs complete lattices » vol.=21 129-154
Morphological shape and region
91 ELSSIG, vol.=25 91-108

C. Ronse et. al.

description
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Author Yr Title Description Pages
The algebraic basis of
C. Ronse et. al. 91 mathematical morphology - CVGIPIU, vol.=54 74.97
Part I1: Openings and closings
Toggles of openings, and a new
C. Ronse 92 family of idempotent operators AAECC, vol.=3 99-128
on partially ordered sets
Lattice-theoretical fixpoint
C. Ronse 94 theorems in morphological JMIV, vol.=4 19-41
image filtering
A lattice-theoretical
C. Ronse 96 morphological view on template JVCIR, vol.=7, no.=3 273-295
extraction in images
Proceedings of the
D. Schonfeld et. Robust Mor?hﬂoslc.ﬂ “International Conference on
90 Representation of Binary Acoustics, Speech, and Signal 3-6
ol. Images Processing™, Albuguerque, New
Mexico, pub.=IEEE
On the Morphological
D. Schonfeld et- 91 Representation of Binary JVCIR, vol.=2 17-30
sl Images in a Noisy Environment
From Pixels to Features, ed.=J.
3. Serra 89 Toggle mappings C. Simon, Pub.=North 61-72
Holland, Amsterdam
Elements of functional analysis Report, no.=N-39/90/MM,
3. Serra et. al. 89 .
in MM ECOLE
An overview of morphological
J. Serra et. al. 92 fltering CSSP, Vol.=11, na.=1 47-108
Morphological filtering: an
J. Serra 94 overview ELSSIG, vol.=38 3-11
A mathematical morphology
F. Y. Shih et. al. 92 approach to Euclidean distance IEETU, vol.=1 197-204
transformation
Further results on MAP
N.D. optimality and strong
Sidiropoulos et. % consistency of certain classes of IEETIL, vol.=5, no.=5 762-764
al. morphological filters
TD. MAP signal estimation in noisy
Sidiropoulos et. 96 sequences morphologically IEETI1, vol.=5, no.=5 1048-1003
al. smooth images
Analytical morphology:
A. Skowron et. B. 96 | mathematical morphology of Fundamenta Informaticas, 255-271
al. decision tables vol.=27
The analysis of morphological
3. Song et. al. % filters with multiple SEs CVGIP, vol.=50 308-328
Convex set symmetry
A. V. Tusikov et. 97 measurement via Minkowski IMIV, vol.=7, no.=1 53-68
al. addition
T Vincent a3 Maorphological algorithms BOOK-DOUGH 255-288
I Some Sequential Algorithms for
a Generalized Distance
X. Wang et. al. 9 Transformation Based on IEETP2, vol.=14, no.=11 114-1121
Minkowski Operations
t-; S. Wilson 92 Theory of matrix morphology IEETP2, vol.=14 £36-652
— Training structuring elements
S. S. Wilson 93 in morphological networks BOOK-DOUGH 1-41
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Author Yr Title Description Pages
Shape description and
recognition using the high
Z. Xisoqi 9 order morphological pattern PATR, vol.=28, no.=9 1333-1340
spectrum
. Table A.5: Citation:General filtering,.
Author Yr Title Description Pages
J. A. Bangham 96 Scale-Space from Nonlinear IEETP2, vol.=18. no.<5 520.8
et. al. Filters ’ -=18, no.= -528
Evolution equations for
R.W. Brockett i i
et. al. 94 continuous-scale morphological IEETSP1, vol.=42, no.=12 3377.3386
filtering
M. H. Chen et. A Multiscale Approach Based
al. 8 on Morphological Filtering IEETP2, vol.=11, no.=7 694-700
Adaptive parameterized
Y. Chen et. al. 94 . BOOK-SER-94 29-36
openings
Representation of finite-range
E. R. Dougherty 93 increasing filters in the context SPIE, vol.=1902, no.=IV 53-63
et. al. of computational morphology '
Error bounds for
E. R. Dougherty 87 morphologically derived SIAMJ, vol.47 425-440
et. al. measurements
Morphological
pseudoconvolutions:
E. D. Dougherty 92 one-parameter families of CSSP, vol.=11, no.=1 195-228
derived filters with increased
invariant classes
An image detection technique
based on morphological edge
M. Fathy et. al. 95 detection and background PATRL, vol.=16, no.=12 1321-1330
differencing for real-time traffic
analysis
MM operations of
P. K. Ghosh 96 boundary-represented JMIV, vol.=6, no.=2/3 199.222
geometric objects
Digitizations preserving
A. Gross et. al. B. 95 | topological and differential CVI1U, vol.=62, no.=3 370-381
geometric properties
A greedy and branch and
bound searching algorithm for
C.-C. Han et. al. 94 finding the optimal IEESL1, vol.=1 41-44
morphological erosion filter on
binary images
N.R. Harvey et. Using genetic algorithms in the
al. g 94 design of morphological filters BOOK-SER-94 53-60
N.R. Harvey et. The use of genetic algorithms
al. % in morphological filter design ELSSIG, vol.=8, no.=1 53-71
WL AM Geometrical Problems of Image
o 91 Morphological discretization Proc., Ed.=U. Eckhardt et. al., 99-106
Heijmans pub.= Akademie Verlag, Berlin
TJ. A. M. 02 Discretization of morphological IVCIR. vol.=3
Heijmans operators » VOL= 182-103
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Author Yr Title Description Pages
Workshop on Design
Apects of the theory of Methodologies for
JAM. . . ,
H J 93 morphological operators and Microelectronics and Signal 377-387
Heijmans filters Processing , Gliwice-Cracow,
Poland
Construction of self-dual
H.J. A. M. i IEECSP, Proceedings ICIP-94,
94 morphological operators and Los Alami 402-4906
Heijmans modifications of the median os Alsmitos, vol.=I1
On the construction of
H.J. A M. morphological operators which
94 ELSSIG, vol.=38 13-19
Heijmans are self-dual and
activity-extensive
H.J. A. M. o5 Composing morphological CWI, Research report,
Heijmans filters Amsterdam, no.=BS-R0504
.M. R PROCSSMISP, Zak
H.J. A M 95 Morphological filters axopane,
Heijmans Poland
M. Self-dual morphological
H.J. A-M 96 IMIV, vol.=6, no.=1 15-36
Heijmans operators and filters
AM. Composing Morphological
H.J.A.M 97 , IEETIL, vol.=6, no.=5 713.723
Heijmans Filters
H.J.A.M. o7 Connected Morphological Report PNA-R9708, CWI,
Heijmans Operators for Binary Images Amsterdam
H.J.A. M. 97 Easy recipes for morphological SPIE-NFIP, Ed.=E. R.
Heijmans filters Dougherty et. al.
Properties of multiscale
P. T. Jackway 94 morphological smoothing by PATRL, vol.=15% 135-140
poweroids
A domain operator for binary
X. C. Jin et. al. 95 . . 1IEETI1, vol.=4, no.=7 1042-1046
morphological processing
Morphological filtering as
R. Jones et. al. 94 ) IEETP2, vol.=16 438-443
template matching
K.D. Lee et. al. 94 Threshold Boolean filters IEETS1, vol.=42 2022-2036
04 Minimal generator basis of a BOOK.SER
T -SER-94 61-68
J. Mattioli finite structure opening
Morphological filters-Part I:
. Their set-theoretic analysis and
P. Maragos et 87 _ ! 4 IEETA1, vol =ASSP.35, no.=8 | 1153-1169
al. relations to linear
shift-invariant filters
Morphological filters-Part II:
P. Maragos et. 87 Their relations to median, IEETAL, vol.=ASSP-35, no.=8 | 1170-1184
al. order-statistic, and stack filters
Parallel genetic algorithms for
P. Kraft et. al. 95 L. . IECIPAIA, no.=410 762-767
. optimizing morphological filtera
Openings Can Introduce Zero
P. F. M. Nacken 94 Crossings in Boundary IEETP2, vol.=16, no.=6 B656-658
Curvature
, 90 Sinusoidal and pulse responses IEEPRC vol 2
jarvi et. al. =78 136-2110
J. Neejirvi et. & of morphological filters ve 6-2139
o7 An efficient class of alternating GMIP, vol
- i et. al. . . , vol.=59, no.=2 109-116
§.-C. Pei et. al sequential filters in morphology "
Morphological operations on
A. T. Popov 95 IECIPAIA, no.=410 837-840
fuzzy sets
Openings: main properties, and
C. Ronse 7 BOOK-HARAL

how to construct them
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Author Yr Title Description Pages
Set-theoretical algebraic
C. Ronse 98 approaches to connectivity in JMIV, vol.=8 41-58
continuous or digital spaces
linear combinations of
M. A. Schulze et. 03 morphological operators: the IEEPRC vol.= V-57:V-60
al. midrange, pseudomedian, and
LOCO filters
The power of morphological
. H. Sedaaghi
M. H. Sedaaghi 98 filters alone and when ISMM’98, Amsterdam, 6-8 Apr.
et al- combined with linear filtering
Optimal morphological filters
N.D. for discrete random sets under
Sidiropoulos et. 92 . A . i SPIEPRC-CVCIP, vol.=1818 402-413
a union or intersection notse
al.
model
i . On the discretization of
K. Sivakumar et 97 n . JVCIR, vol.=8, no.=1 39-49
al. morphological operators
02 A study of the generalized CSSP. vol.=11 . 220.252
» YOL.= = -
J. Song et. al. morphological filter L o
S. R. Sternberg 86 Grayscale morphology CVGIP, vol.=35, no.=3 333-355
b o1 The geometry of Basis Sets for IEETP2 L=13 12 1214-1224
L. D. Svaibe Morphologic Closing » vol.=19, no.= -
Morphological transformations
L. Vincent 91 of binary images with arbitrary ELSSIG, vol.=22 3-23
SEs
Morphological area openings
L. Vincent 94 and closings for grey-scale BOOK-O 197-208
images
A spatially variant, locally
R. Vogt 94 adaptive, background BOOK-SER-94 45-52
normalization operator
Compared performances of
D. Wang et. al. 92 morphological, median type SPIEPRC-CVCIP, vol.=1818 384-391
and running mean filters
Root properties of
Q. Wang et. al. 93 prop ELSSIG, vol.=34 131-148
. morphological flters
t. al 93 Adaptation of grayscale SPIE, vol.=1902, no.=1V 2-7
Q. Wang et. al. morphological filters T
Morphological operations on
G. R. Wilson 96 ¢ . R PROCIEVISP, vol.=143, no.=3 171-176
crack coded binary images
- ) Adaptive morphological filters
P. Deng-Wong et. | ,, aptive morphologl SPIEPRC-CVCIP, vol.=1818 358-365
al. for color image enhancement
Image enhancement using MM
Y. Yao et. al. 94 i 8 SPIE-NFIP, vol.=2180, no.=V 198-208
) with adaptive SEs
Adaptive thresholding through
D. Zhao 83 . . SPIE, vol.=1902, no.=IV 148-158
morphological filtering
. Table A.6: Citation:Hit-miss filtering.
Author Yr Title Description Pages
t.
D. Bloomberg et: { o | ¢ peralized hit-miss operations | SPIEIAMIP, vol.=1350 116-128
al.
Optimal morphological
E. R. Dougherty 93 | hit-or-miss filtering of SPIE, vol.=1902, no.=IV 30-40

gray-scale images
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Author Yr | Title Description Pages
Optimal mean-absolute-error
filtering of gray-scale signals by
h 94 JMIV, vol.=4 255-271
E.R. Dougherty the morphological hit-or-miss
transform
. Khosravi and Template matching based on
M. Khosrav 96 i . 8 1IEETI1, vol.=5, no.=6 1060-1066
R.W. Schafer GS hit-or-miss transform
y Table A.7: Citation:Soft and recursive filtering.
Author Yr | Title Description Pages
Recursive erosion, dilation,
S. Chen et. al. 95 X . IEETI1, vol.=4, no.=3 335-345
opening, and closing transforms
t. Analysis and extensions of soft
P. Kuosmanen €t | o3 s SPIE, vol.=1802, no.=1V 41-52
al. morphological filters
t.
P. Kuosmanen e 95 Soft morphological filtering JMI1V, vol.=5, no.=3 231-262
al.
Shape preservation criteria and
t.
P. Kuosmanen et- | o5 | ,ptimal soft morphological IEETI1, vol.=5, na.=4 319-335
al. filtering
C. Lay 87 Recursive algorithms in MM Acta Stereologica, vol.=6 691-696
Threshold decompaosition of
D. C. Pu et. al. 95 gray-scale soft morphology into GMIP, vol.=87, no.=6 522.526
binary soft morphology
Threshold decomposition
algorithm for gray-scale soft
D. C. Pu et. al. 95 . ) IECIPAIA, no.=410 757-761
morphological operations part
II:erosion
Pipeline architecture for
F.Y. Shih et. al. 95 recursive morphological IEETII1, vol.=4, no.=1 11-18
operations
Recursive soft morphological
F. Y. Shih et. al. 95 Alte IEETI1, vol.=4, no.=7 1027-1032
TS
Analysis of the properties of
F. Y. Shih et. al. 95 soft morphological filtering IEETS]I, vol.=43, no.=2 539-544
using threshold decomposition
Recursive implementation of
erosions and dilations along
P. Soille et. al. 96 K . IEETP2, vol.=18, no.=5 562-567
discrete lines at arbitrary
angles
Shape decomposition and
D. Wang et. al. 95 representation using a recursive PATR, vol.=28, no.=11 1783-1792
morphological operation
Binary Image representation
. D. W t. and coding by a
R.J.D. Wanget: | g4 i ) ELSSIGIC, vol.=8 241-266
al. double-recursive morphological
algorithm
. A. Zmuda et. Efficient algorithms for the soft
M. A 96 '8 IEETP2, vol.=18, no.=11 1142-1147
al. morphological operators
. Table A.8: Citation:Annular filtering.
Author Yr | Title Description Pages
H.J. AL M. 96 Annular filters for binary CWI, Research report,

Heijmans et. al

images

Amsterdam, no.=BS-R9604
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Author Yr | Title Description Pages
A lattice-theoretical framework
. %6 P lar filt . LSHT, Strasbourg, report,
t. . or annular ers in
C. Ronse et. & no.=ERII-RR96/19
morphological image processing
. Table A.9: Citation:Slope transforms.
Author Yr | Title Description Pages
Morphological signal processin
L. Dorst et. al. 94 P 8 8 P 8 ELSSIG, vol.=38 79-98
and slope transform
H.J. A M. o5 Lattice Calculus of the Report BS-R9531, CWI,
Heijmans et. al. Morphological Slope Transform Amsterdam
Morphology on Convolution
H. . J. A M. % Lattices with Application to Report BS-R9603, CWI,
Heijmans et. al. the Slope Transform and Amsterdam
Random Set Theory
Lattice Calculus of the
H.J. A-M. o7 : ELSSIG, vol.=59, no.=1 17.42
Heijmans et. al. Morphological Slope Transform
Morphology on convolution
CALM. lattices with applications to the
H.J 98 PP JMIV, vol.=8, no.=3 199-214
Heijmans et. al. slope transform and random set
theory
Morphological systems: slope
04 transforms and max-min BOOK.SER.94 149-160
P. Maragos difference and differential ) .
equations, and sampling
Morphological systems: slope
04 transforms and max-min ELSSIG | =38 57.77
vol.= -
P. Maragos difference and differential ’
equations
Slope transforms: theory and
P. Maragos 95 application to nonlinear signal 1IEETS]1, vol.=43, no.=4 864-877
processing
Differential morphology and
P. Maragos 9 | 1al morphotogy IEETII, vol.=5, no.=6 922.937
image processing
y Table A.10: Citation:Sequential filtering.
Author Yr Title Description Pages
i . M logi O tors fi
J. Goutsias et 05 orphological Operators for CVIU, vol., 62 326-346
al. Image Sequences
IEEPRC: Workshop on
H.J. A. M. o5 A new class of alternating Nonlinear Signal and Image 30-33
Heijmans sequential filters Proc., ed.= 1. Pitas, Greece,
vol.=1
Morphological pyramids with
A. Morales et. al. | B.95 phological Py IEETI1, vol.=4, no.=7 968-977
alternating sequential filters
. Table A.11: Citation:Scale-space.
Author Yr | Title Description Pages
. d
R. van den Towards a morphological
Boomgaard et. 94 BOOK-O 631-640
scale-space theory
al.
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Author Yr | Title Description Pages
The morphological structure of
R.van den o4 | imoges: the differential IEETP2, vol.=16 1101-1113
Boomgaard equations of morphological
scale space
On Dimensionality in
Multiscale Morphological
Paul T. Jackway 95 Scale-Space with Elliptic JVCIR, vol.=86, no.=2 189-195
Poweroid Structuring Functions
Scale-Space Properties of the
Paul T. Jackway 96 Multiscale Morphological IEETP2, vol.=18, no.=1 38-581
et. al. Dilation-Erosion
K. R. Park et. al. 96 Scale-space using MM IEETP2, vol.=18, no.=11 1121-1126
Area and length preserving
G. Sapiro et. al. i geometric invariant scale-spaces IEETP2, vol.=17, no.=1 67-72
. Table A.12: Citation:Sampling.
Author Yr Title Description Pages
. Critical morphological
D. Floréncio et. 94 | sampling and applications to BOOK-SER-94 109-116
al. image coding
R. M. Haralick 89 The digital morphological IEETAL, vol.=37 2067-2090
et. al. sampling theorem
H.J. A M. 91 | Morphological sampling CVGIPIU, vol.=54 384-400
Heijmans et. al.
Image sampling structure
S.-C. Pei et. al. 94 conversion by morphological ELSSIGIC, vol.=6 13-24
filters
3. Serra 04 A st;mpl\.ng-approach based on BOOK-SER-94 17124
equicontinuity
X Binary random fields, random
K. Sivekumar et. 96 closed sets, and morphological IEETI1, vol.=5, no.=6 899-912
al. sampling
: Table A.13: Citation:Geodesic methods.
Author Yr Title Description Pages
Geodesic saliency of watershed
L. Najman et. al. 96 contours and hierarchical IEETP2, vol.=18, no.=12 1163-1173
segmentation
Generalized geodesic distances
P. Soille 94 applied to interpolation and BOOK-SER-94 193-200
shape description
. Table A.14: Citation:Coding and compression.
Author Yr | Title Description Pages
Morphological shape
P. Brigger et. al. 95 representation for very low ELSSIG, vol.=7, no.=4-6 297-311
bit-rate video coding
Three-dimensional
morphological pyramid and its
R.J. Chenet. al. | 95 | | @ tion to color image ELSSIG, vol.=44, no.=2 163-180
sequence coding
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Author Yr | Title Description Pages
.J. Czerepinski Morphological video coder with .
P.J. Czerep 96 - ) ELEC-LET, vol.=32, no.=7 645-647
et. al. conditional smoothing
Image Coding Via IEEPRC, Conf. on Computer
J. Goutsias et. . . ..
89 Morphological Transformations: Vision and Pat. Rec. ,San 4-8
1.
8 A General Theory Diego, California
Application of morphological
C. Gu et. al. 94 filters for contour image BOOK-SER-94 125-132
sequence coding
Binary image representation
and coding by a
R. Jeannot et. al. 96 . . ELSSIGIC, vol.=8, no.=3 241-266
double-recursive morphological
algorithm
A study of pyramidal
X. Kong et. al. 94 techniques for image JVCIR, vol.=8 190-203
representation and compression
Multiscale morphological region
B. Macq et. al. 91 K SPIEPRC-CVCIP, vol.=1606 165-173
coding
Color Image Coding Using
LA turf . .
L. A. Overtur 95 Morphological Pyramid IEETI1, vol.=4, no.=2 177-185
et. al. e
Decomposition
Morphological multiscale
P. Salembier 94 . ; i ELSSIG, vol.=38 359-386
segmentation for image coding
morphological aperators for
P. Salembier 96 i . . 1IEETI1, vol.=5, no.=6 B81.808
image and video compression
Morphological image coding
: o4 based on a geometric sampling IVCIR =5 29.40
i . al. vol.= -
G- Sapiro et. a theorem and a modified !
skeleton representation
Table A.15: Citation:Segmentation.
Author Yr | Title Description Pages
The flat zone approach and
J. Crespo et. al. 94 . BOOK-SER-94 85-92
color images
morphological segmentation
W. Liet. al. 94 applied to displaced frame ELSSIG, vol.=38 45-56
difference coding
s . ( di . Proc. of the 12th IAPR
. banon et. egmentation of diverse image X
M. Lybanon 94 & . . g International Conf. on Pat. 347-351
al. types using opening and closing
Rec., Jerusalem, Vol.=1
iet. Morphological s entation of
B. Marcotegui € o4 rp. gi egmentati BOOK-SER-94 101-108
al. image sequences
Minimum spanning forests for
F. Meyer 94 spanning forest BOOK-SER-94 77.84
morphological segmentation
Joint region and motion
M. Pard4s et. al. 94 | estimation with morphological BOOK-SER-94 93-100
tools
3-D morphological
M. Pardés et. al. 94 segmentation and motion ELSSIG, vol.=38 31-43
estimation for image sequences
P. Salembier et. Morphological multiscale image
92 . 8 | sPIEPRC-CVCIP, vol.=1818 620.631
al. segmentation
R Morphological multiscale
P. Salembier 94 . . ELSSIG, vol.=38 359-386
segmentation for image coding
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Author Yr | Title Description Pages
b Flat zones filtering, connected
. 1 ier et.
P. Salem 95 | operators, and filters by IEETIL, vol.=4, no.=8 1153-1160
al. reconstruction
Morphological Partitioning of
P. Soille 96 R g & JEI, vol.=5, no.=3 252-26%
Multispectral Images
The morphological approach to
L. Vincent et. al. 89 A i i Report, ECOLE
segmentation: an introduction
Digital Image Processing
Morphological segmentation for Methods, edit.=E. R.
L. Vincent et. al. 94 ’ 43.102
textures and particles Dougherty, pub.=Marcel
Dekker, New York
Texture classification and
E. Wang et. al. 93 segmentation based on iterative JVCIR, vol.=4 197-214
morphological decomposition

Table A.16: Citation:Granulometries and shape description.

Author Yr Title Description Pages
] t. C-factor: a morphological
S. Banerjee ¢ 94 morpholos IMIV, vol.=4 4355
al. shape descriptor
. h The multiscale morpholo,
J. A. Bangham 04 o phology BOOK-SER-94 179-184
et. al. decomposition theorem
. t. Attribute openings, thinnings,
E. J. Breen ¢ 96 penings, & CVGIPIU, vol.=64, no.=3 a77-389
al. and granulometries
Texture classif. by GS
Y. Chen et. al. 92 ) ) SPIEPRC-CVCIP, vol.=1818 931-942
morphological granulometries
Optimal and adaptive
Y. Chen et. al. 97 reconstructive granulometric ELSSIG, vol.=61, no.=1 65-81
bandpass filters
Characterization of gray-scale
E. R. Dougherty 90 i ) SPIE, vol. 1350 120-137
morphological granulometries
Morphological texturebased
. hert; maximum-likelihood pixel
E. R. Dougherty | 4, : P PATR, vol.=25, no.=10 1181-1198
et. al. classification based on local
granulometric moments
Euclidean gray-scale
E. R. Dougherty 92 granulometries: representation jmiv, vol.=1 7-21
and umbra inducement
E. R. Dougherty 92 Detection of osteoporosis by SPIEPRC-CVCIP, San Jose,
et. al. morphological granulometries vol.=1660
Morphological
.R. D hert, attern-spectrum classification
E.R. Dougherty | g5 | Po¥iern=ep _ PATR, vol.=28, no.=1 81-98
et. al. of noisy shapes exterior
granulometries
Representation of linear
. R. Dougherty ranulometric moments for
£ # os | 8 . JVCIR, vol.=6, no.=1 69-79
et. al. deterministic and random
binary Euclidean images
Morphological r-openings and
E. R. Dougherty ?? | granulometries: binary to BOOK-HARAL .
Euclidean gray-scale
Morphological texture-based
E. R. Dougherty ” maximum-likelihood pixel
7 e PATR
et. al. classification based on local
granulometric moments
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Author Yr | Title Description Pages
Texture classification using
C. Gratin et. al. 94 neural networks and local BOOK-SER-94 309-316
granulometries
.J. A M. MM as a tool for shape Shape in Picture, Ed.="Y.L. O
H.J o4 s 8 P P i} 147-178
Heijmans description et. al., pub.= pringer, Berlin
Periodic lines: cascades, and
R. Jones et. al. 96 L . PATRL, vol.=17 1057-1063
application to granulometries
. J. Kraus et. Gray-scale granulometries
E.J. Krau 93 y-sca’e gre , . ELSSIG, vol.=34 117
al. compatible with spatial scalings
A mathematical morphological
C. K. Lee et. al. 96 approach for segmenting PATR, vol.=29, no.=8 1347-1358
heavily noise-corrupted images
Inverse problems for
J. Mattioli et. al. 92 K A IMIV, vol.=2 217-232
granulometries by erosion
Maximum-likelihood
J.T. Newell et. 92 | morphological granulometric SPIEPRC-IAMIP, vol.=1657 386-395
al- classifiers
Off-line signature verification
in et.
R. Sabourin e :24 by local granulometric size IEETP2, vol.=19, no.=9 976-088
al. distributions
Asymptotic granulometric
mixing theorem: morphological
F. Sand et. al. 98 A i . PATR, vol.=31, no.=1 53-61
estimation of sizing parameters
and mixture proportions
On Estimating Granulometric
. Sivak t. . T
K. Sivakumar et- 1 g5 | Discrete Size Distributions of PROCWATRS
al. Random Sets
* Table A.17: Citation:Watersheds.
Author Yr Title Description Pages
Segmentation of range images
M. Baccar et. al. 96 via data fusion and PATR, vol.=29, no.=10 1671-1687
morphological watersheds
The morphological approach to
S. Beucher et. al. 93 segmentation: the watershed BOOK-DOUGH 433-481
transformation
Watershed, hierarchial
S. Beucher 94 segmentation and waterfall BOOK-SER-94 69-76
algorithm
Gradient watersheds in
P. T. Jackway 96 IEETI1, vol.=5, no.=6 913-921
morphological scale-space
Topographic distance and
F. Meyer 94 8 X ELSSIG, vol.=38 113-125
watershed lines
Implementation of a distributed
A. Moga et. al. 94 BOOK-SER-94 281-288
watershed algorithm
Parallel image component
A. Moga et. al. 97 labeling with watershed IEETP2, vol.=19, no.=5 441-450
transformations
Watershed of a continuous
L. Najman et. al. 94 . ELSSIG, vol.=38 99-112
function
Automatic watershed
L. Shafarenko et. .
97 | segmentation of randomly IEETI1, vol.=6, no.=11 1530-1544

al.

textured color images
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Author

Yr

Title

Description

Pages

L. Vincent et. al.

91

Watersheds in Digital Spaces:
An Efficient Algorithm Based

on Immersion Simulations

IEETP2, vol.=13, no.=8

583-598

Table A.18: Citation:Skeletonisation.

Author

Yr

Title

Description

Pages

D. Attali et. al.

97

Computing and simplifying 2D

and 3D continuous skeletons

CVGIPIU, vol.=67, no.=3

161-273

S. Beucher

94

Digital skeletons in euclidean

and geodesic spaces

ELSSIG, vol.=38

127-141

B. K. Jang et. al.

90

Analysis of Thinning
Algorithms Using MM

IEETP2, vol.=12, no.=6

541-551

L. Ji et. al.

92

Fast Homotopy-Preserving
Skeletons Using MM

IEETP2, vol.=14, no.=6

653-664

R. Kimmel et. al.

95

Skeletonization via distance

maps and level sets

CVIU, vol.=62, no.=3

382-391

R. Kresch et. al.

92

Morphological
Multi-Structuring-Element

Skeleton and Its Applications

PROCISSSE, Paris

166-169

R. Kresch et. al.

93

Two-Sided Skeleton - A
Representation Composed of
Both Positive and Negative
Morphological Elements

PROCIWMM, Barcelona

145-150

R. Kresch et. al.

94

Morphological reduction of

skeleton redundancy

ELSSIG, vol.=38

143-151

R. Kresch et. al.

94

Morphological reduction of

skeleton redundancy

PROCIWMM, Barcelona

145-150

R. Kresch et. al.

94

Multi-Parameter Skeleton

Decomposition

BOOK-SER-94

141-148

R. Kresch et. al.

94

Multi-Parameter Skeleton

Decomposition

PROCMM, ISMM'94

141-148

R. Kresch et. al.

94

Skeleton Redundancy
Reduction Based on a

Generalization of Convexity

EUSIPCO, Edinburgh

R. Kresch et. al.

95

An Efficient Coding Scheme for
Binary Images Based on the
Morphological Skeleton

Representation

PROCIEE18S, Israel

R. Kresch et. al.

95

New Morphological Skeleton
Properties Leading to Its
Efficient Coding

IEEWNSIP, Greece

R. Kresch et. al.

95

Quadtree and Bit-Plane
Decomposition as Particular
Cases of the Generalized

Morphological Skeleton

IEEWNSIP, Greece

J. Madrid et. al.

93

Topological considerations on

gray level skeletonization

SPIEPRC-CVCIP, vol.=1818

392-401

P. Maragos

86

Morphological skeleton
representation and coding of

binary images

IEETAL, vol.=34

1228-1244

P. Maragos et.

al.

88

Threshold parallelism in
morphological feature

extraction, skeletonization and

pattern spectrum

SPIEPRC-CVCIP

106-115
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Author Yr Title Description Pagesa
MM and Image Analysis. II:
Examples of Topological Theoretical Advances, Ed.=J.
G. Matheron 88 Properties of Skeletons Serra, pub.=Academic Press, ch-=11
London
MM and lmage Analysis. II:
G. Matheron 88 Filters and lattices Theoretical Advances, Ed.=J. ch.=6
Serra, pub.=Academic Press,
London
Boundary-constrained
morphological skeleton
T.-W. Pai et. al. o minimization and skeleton IEETP2, vol.=16, no.=2 201-208
reconstruction
Comparison between the
J. M. Reinhardt 96 morphological skeleton and IEETP2, vol.=18, no.=9 051.957
et. al. morphological shape
decomposition
J. Serra 91 Skeleton decompositions Preprint
M. Schmitt 94 One pixel thick skeletons BOOK-SER-94 257-264
An analysis of hexagonal
R. C. Staunton 96 thinning algorithms and PATR, vol.=29, no.=7 1131-1148
skeletal shape representation
Analysis and implementation of
Z. Zhou et. al. 92 morphological skeleton CSSP, vol.=11, no.=1 253-2R0
transforms
Table A.19: Citation:Random models and tesselations.
Author Yr Title Description Pages
Incidence and lattice calculus
A. J. Baddely et. 95 with applications to stochastic AAECC, vol.=6, no.3 129-146
al- geometry and image analysis
Optimization in Voronoi
E. Bertin et. al. 94 BOOK-SER-94 209-216
diagrams
Maximum-likelihood estimation
for the two-dimensional
J. C. Handley et. o7 discrete Boolean random set GMIP, vol.=59, no.=4 221231
al. and function models using
multidimensional linear
samples
Discrete Random Set Models
3. Goutsias et. 91 for Shape Synthesis and SPIEPRC-CVCIP, Boston, 11-13
al. Analysis USA
Morphological Analysis of
J. Goutsias 9 Random Sets: An Introduction PROCWATRS
Optimal nonlinear filter for
signal-union-noise and
3. C. Handley et. | o | runlength malys;.s in the ELSSIG, vol.=51, no.=3 147-166
al. directional one-dimensional
discrete Boolean random set
model
o Performance analysis of a
E. Kalaitzis et. 94 | morphological Vorono} BOOK-SER-94 201-208
al. tessellation algorithm
A stochastic tessellation of
T. Lee et. al. 94 digital space BOOK-SER-94 217-224
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Author Yr Title Description Pages
" Liquid phase sintered materials
J. L. Quenec 94 | modelling by random closed BOOK-SER-94 225-232
et. al. sets
Algebraic analysis of the
generating functional for
N.D. Sidiropoulos o4 discrete random sets and IMIV, vol.=4 273200
et. al. statistical inference for
intensity in the discrete
Boolean random-set model
N Monte-Carlo estimation of
i t.
K. Sivakumar ¢ 94 | morphological granulometric BOOK-SER-94 233-240
al. discrete size distributions
g Table A.20: Citation:Algorithmic techniques.
Author Yr | Title Description Pages
An evaluation of priority
E. Breen et. al. 94 BOOK-SER-94 249-256
queues for MM
t. Morphogenesis simulations
R. Brémond e 9q | T OTPROES BOOK-SER-94 207304
al. | with lattice gas
A morphological point thinning
J. Brown et. al. 96 N PATRL, vol.=17, no.=2 197-207
algorithm
hert;
E. R. Dougherty | o, | o) imputational MM ELSSIG, vol. =38 21-29
et. al.
M. v On the implementation of
94 . . BOOK-SER-94 241-248
Droogenbroeck morphological operations
An efficient implementation
S. Fejes et. al. 94 technique of adaptive BOOK-SER-94 273-280
morphological operations
Implementation of linear digital
iet.
M. Khosravi e 94 | filters based on morphological IEETS1, vol.=42, no.=9 2264-2275
al. representation theory
Block basis matrix
implementation of
S. J. Ko et. al. 95 . A IEESL1, vol.=2 7-9
morphological open-closing and
clos-opening
A digit-serial architecture for
L. Lucke et. al. 95 gray-scale morphological IEETI, vol.=4, no.=3 387-301
filtering
Visualization of Minkowski
. M.
J.B.T 94 operations by computer BOOK-SER-94 289-206
i t. al.
Roerdink et. a graphics techniques
. Table A.21: Citation:Decomposition techniques.
Author Yr Title Description Pages
Multiscale Nonlinear
. ham s
J. A. Bang 96 Decomposition: The Sieve IEETP2, vol.=18, no.=5§ 529-539
et. al. Decomposition Theorem
Decomposition of mappings
. J. F. Banon between complete lattices b,
G- 93 . v ELSSIG, vol.=38 209.327
et. al. mathematical morphology:
Part I. General Lattices
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Author Yr Title Description Pages
Set operator decomposition and
G.J. F. Banon 94 conditionally translation BOOK-SER-04 512
et. al. invariant elementary operators
R. van den 29 Decomposition of structuring |EETP2
Boomgaard elements
Ol. 1. Camps et. 96 Gray-scale SE decomposition IEETII, vol.=35, no.=1 111-120
al.
The indecomposability problem
P. K. Ghosh 96 in binary morphology: an JMIV, vol.=6, no.=2/3 169-198
algorithmic approach
A Euclidean distance transform
C.T. Huang et. 94 using grayscale morphology 1EETP2, vol.=16 443-448
al. decomposition
Algorithms for the
R. Jones et. al. 94 Decomposition of Gray-Scale IEETP2, vol.=16, no.=6 581-588
Morphological Operations
A Comparison of Pyramidal
Image Decomposition SPIEPRC-1IAMIP, San Diego,
X. Kong et. al. 9 Techniques for Image California 11-16
Compression
Composite morphological filters
W. Li et. al. 95 in multiresolution IECIPAIA, no.=410 7562-756
morphological decomposition
Combinatorial and
F. Mount et. al. G. 91 computational aspects of Con cs, vol.=119 107-124
Minkowski decomposition
C. H. Richardson 01 A lower Bound for SE IEETP?2, vol.=13, no.=4 365-360
et. al. Decompositions
Color image coding using
L.A. Overturf et. 95 morphological pyramid IEETI1, vol.=4, no.=2 177-185
al. decomposition
Doptimal ecomposition of
Convex morphological SEs for .
H. Park et. al. 94 4-Connected Parallel Array IEETP2, vol.=16, no.=3 304-313
Processors
H. Park et. al. 95 Decomposition of f\rbnranly IEETP2, vol.=17, no.=1 2.15
shaped morphological SEs
3-D spatiotemporal subband
decompositions for hierarchical
S..C. Pei et. al. 94 R . i ELSSIGIC, vol.=6 83-99
compatible video coding by
MM
Hierarchical image
S..C. Pei et. al. 95 representation by mathematical PATRL, vol.=16 183-192
morphology subband
decomposition
Morphological shape
1. Pitas et. al. 90 decomposition IEETP2, vol.=12 38-43
Size-sensitive multiresolution
P. Salembier et. 92 decomposition of images with ELSSIG, vol.=27, no.=2 2053-241
al. rank order based filters
A simplified algorithm for
approximate separable
B. Singh et. al. 96 decomposition of morphological PATR, vol.=29, no.=9 1519-1522
templates
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Author Yr Title Description Pages
Decomposition of gray-scale
P. Sussner et. al. 97 morphological templates using IEETP2, vol.=19, no.=6 649-658
the rank method
A morphological pyramidal
A Toet 8 image decomposition PATRL, vol.=9 265-261
Decomposition of convex
3. Xu 91 polygonal morphological SEs IEETP2, vol.=13, no.=2 153-162
into neighbourhood subsets
Morphological decomposition of
J. Xu 96 2-D binary shapes into simpler PATRL, vol.=17, no.=7 759-769
shape parts
Morphological decomposition of
2-D binary shapes into
J. Xu % conditionally maximal convex PATR. vol.=29, no.=7 1075-1104
polygons
Morphological SE
X. Zhuang et. al. 86 decomposition CVGIP, vol.=358 370-382
Decomposition of
X. Zhuang 94 morphological structuring JMIV, vol.=4 5-18
elements
. Table A.22: Citation:Fast algorithms.
Author Yr Title Description Pages
A new set of fast algorithms for
A. Bleau et. al. 92 mathematical morphology: 1. CVGIPIU, vol.=58 178-209
Idempotent geodesic transforms
R. v. d. Methods for Fast morphological
Boomgaard et. 92 image transforms using CVGIP, vol.=54, no.=3 252-258
al. bitmapped binary images
The geodesic morphological
P. Brigger et. al. 94 skeleton and fast BOOK-SER-94 133-140
transformation algorithms
M. van Fast computation of
Droogenbroeck 96 morphological operations with PATRL, vol.=17, no.=14 1451-1460
et. al. arbitrary SEs
X A fast thresholded linear
J. Kisacanin et. 94 convolution representation of IEETI, vol.=3 455-457
al. morphological operations
Fast recursive algorithms for
morphological operators based
S. J. Ko et. al. 96 . . IEETI1, vol.=5, no.=6 1073-1077
on the basis matrix
representation
Speeding up Successive
J. Pecht 85 . . ) PATRL, vol.=3 113-117
Minkowski Operations
A Fast Algorithm for the .
D. Schonfeld and 88 Morphological Coding of SPIEPRC-CVCIP, Cambridge, 011
J. Goutsias Binary Images Massachusetts
Direct Implementation of
M. H. Sedaaghi 97 | open-closing in morphological ELEC-LET, vol.=33, no.=3 198-199
filtering
. H. Sedaaghi A Direct technique for
:’:. al. ® o7 morphological filters ICEE, 5th. Conf. 7.80-7.85
Real-time implementation of
M. H. Sedaaghi R
ot ol 97 | grey-scale morphological ELEC-LET, vol.=33, no.=21 1761-1763

operators
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Author Yr | Title Description Pages
A reliable hardware for
M. H. Sedasghi 98 grey-scale morphological ISCSDSP 1st. 6-8 April, 147-150
et. al. fltering Sheffield
M. H. Sedaaghi Hardware for grey-scale
98 X i PDPTA 13-16 July, Las Vegas
et. al. morphological filtering
Fast grayscale granulometry
L. Vincent 94 algorithms BOOK-SER-84 205-272
A fast implementation of 1-D
D. Wang et. al. 94 GS morphological flters IEETCI, vol.=41, no.=9 634-636
Table A.23: Citation:Applications.
Author Yr | Title Description Payges
Multiscale median and
J. A. Bangham 94 | morphological filters for 2D ELSSIG, vol.=38 387-415
et. al. pattern recognition
J. Cardillo et. al. | 96 ::":i‘re:“::i::'::’:: ;M PATR, val.=29, no.=1 27-49
Morphological scheme for
J. Casas et. al. 94 morphological analysis of BOOK-SER-94 325-332
epidermal biopsy images
Detection of occluded circular
A. R. Chaudhuri 95 objects by morphological ELSSIG, vol.=46, no.=2 233-242
et. al. operators
Variable duration hidden
M.-Y. Chen et. g5 | Markov model and IEETI1, vol.=4, no.=12 1675-1088
al. morphological segmentation for
handwritten word recognition
Impulsive noise suppresion and
C. H. H. Chu et. 89 background normalization of IEETB1, vol.=36, no.=2 262-273
al. ECG signals using
morphological operators
Bayesian morphological peak
estimation and its application
E. R. Dougherty 96 to chromosome counting via PATR, vol.=29, no.=6 987-996
et. al. fluorescence in situ
hybridization
M. Duff 79 .Parallel proce.ssors for digital AIDIM 265-279
image processing
Design and use of DIP-1: A
F. Gerritsen et. 81 fast flexible and dynamically PATTERN RECOGNITION, 319-330
al. microprogrammable image vol.=14
processor
M. J. E. Golay 69 i::?:::::::"el pattern IEETC4, vol.=C-18 733-740
The Diff3 analyzer: A
D. Graham et. 80 | parallel/serial Golay image RTMIP 163-182
al. processor
Single object geometry - the
B. V. Howard 94 stereology of registered serial BOOK-SER-94 305-308
sections
J. C. Klein et. al. | 77 | The texture analyaer J. Microscopy, vol.=95 349-356
Obtaining a 3-D orientation of
J.-S. Kwon et. al. 96 projective textures using a PATR, vol.=29, no.=5 725-732
morphological method
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noise reduction using MM

Author Yr | Title Description Pages
Image processing: a key to
B. Lay 94 | success in industrial BOOK-SER-94 341-352
applications
Finding mesoscale ocean
S. M. Lea et. al. 92 i RSE, vol.=44 25-33
structures with MM
Grey-tone skeletons of
elongated objects using the
L. Leboucher et. 94 concept of morphological PATRL, vol.=15 309-315
al. automaton. Application to
images of DNA molecules
Residues of morphological
W. Li et. al. 97 filtering by reconstruction for PATR, vol.=30, no.=7 1081-1003
texture classification
A morphological approach to
text string extraction from CVGIP, Graphical Models and
S. Liang et. al. o4 regular periodic overlapping Image Proc., vol.=56, no=§ 403413
text/background images
Segmentation of handwritten
interference masks using
S. Liang et. al. 97 multiple directional stroke IEETII, vol.=6, no=8 1195-1202
planes and reformalized
morphological approach
Fast color image quantization
T.-S. Liu et. al. 95 with error diffusion and ELSSIG, vol.=43, no.=3 293-303
morphological operations
A lip-tracking system based on
M.W. Mak et. al. 94 morphological processing and ELSSIGIC, vol.=8 335-348
block matching techniques
Optimal Morphological Proc. 2nd International
P. Maragos 88 approaches to Image Matching Conference on Computer
and Object Detection Vision, Florida
Morphology-based symbolic 1EEProc. Computer Society
image modeling, multi-scale Conference on Computer
P. Maragos 88 nonlinear smoothing, and Vision and Pattern
pattern spectrum Recognition, Ann Arbor
Automatic quantification of
F. Marqués et. 04 spine parameters from X-ray BOOK.SER.94 333-340
al. images by means of
morphological tools
Fusion of MR and CT images
S. Marshall et. 94 | of the human brain using BOOK-SER-94 317-324
al. multiresolution morphology
G. K. Application of morphological
Matsopoulos et. 95 pyramids: fusion of MR and JVCIR, vol.=6, no.=2 196-207
al. CT phantoms
Application of morphological
operators to supervised
C. Mering et. al. 94 multidimensional data BOOK-SER-94 361-368
classification
The Effect of Morphological
J. A. Noble 96 Filters on Texture Boundary IEETP2, vol.=18, no.=5§ 554-561
Localization
A new algorithm for image
R. A. Peters I1 95 IEETI1, vol.=4, no.=5 554-568
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Author Yr Title Description Pages
Signal and image processing
K. Preston et. al. 92 using 3D binary ranking CSSP, vol.=11, no.=1 137-151
transforms
Conditional morphological
S. J. Rees et. al. 95 operators for direct feature IECIPAIA, no.=410 747-751
extraction and enhancement
Implementing mathematical
A LT 95 morphological in IECIPAIA, no.=410 847-851
Rowstron et. al. ISETL.LINDA
Optimal single-stage
K. R. Rystrom o5 restoration of subtractive noise JEL vol.=4, no.=3
et. al. corrupted images by a
morphological closing
Proc. of the Workshop
i . “Multidimensional Signal
D. Schonfeld et. 89 Parametric Morphological . Processing”, R, Asilomar 6-8
al. Filters for Pattern Restoration .
Conference Center, Pacific
Grove, California
D. Schonfeld et. 89 Optimal Morphological Filters SPIEPRC-CVCIP, 810
al. for Pattern Restoration Philadelphia, Pennsylvania
Optimal SEs For the
D. Schonfeld 94 Morphological Pattern IEETP2, vol.=16, no.=6 589-601
Recognition of Binary Images
Optimal Morphological Pattern
D. Schonfeld and 91 Restoration from Noisy Binary IEETP2, vol.=13 14-29
J. Goutsias Images
M. H. Sedaaghi g7 | A syntactic approach to CSICC'97, Tehran, 22-24 Dec. | 31-36
et. al. fingerprint classification
Journal of Microscaopy,
J. Serra 87 Morphological optics 1-22
vol.=14%
Optimal filtering of digital
N.D. Sidiropoulos 94 binary images corrupted by 1EETI1, vol.=3 382-403
et. al. union/intersection noise
Discrete Black and White
D. Sinha et. al. 90 Object Recognition Via IEETP2, vol.=12, no.=3 275-203
Motphological Functions
Application of Morphological
M. M. Skolnick ge | [ransformations to Athe CVGIP, vol.=35, no.=3 283-305
analysis of 2D Electrophoretic
Gels of Biological Materials
X. Song et. al. 93 Robust edge detectors based on PATRL, vol.=14 889-804
morphological filters
Morphological Feature
J. P. Thiran et. 96 Extra.ction for the IEETBI, vol.=43, no.=10 1011-1020
al. Classification of Digital Images
of Cancerous Tissues
An approach to QRS complex
P. E. Trahanias 93 detection using mathematical IEETB]1, vol.=40, no.=2 201-205
morphology
Adaptive MM for Range
J. G. Verly et. al. | 93 Imagery IEETI, vol.=2, no.=2 272-275
Morphological extraction of
T. Viero et. al. 95 line networks from noisy JVCIR, vol.=86, no.=4 315-347
low-contrast images
L. Vincent 88 { MM on graphs SPIEPRC-CVCIP, Cambridge 95-108

continued on next page
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continued from previous page (Citation:Applications)

Author Yr Title Description Pages
L. Vincent 89 Graphs and MM ELSSIG, vol.=186 365-388
MM for graphs applied to
i R Proc. Electronic Imaging West,
L. Vincent 89 | image description and 313-318
N Pasadena, vol.=1
segmentation
Morphological GS
reconstrcution in image
L. Vincent 93 . L IEETI1, vol.=2, no.=2 176-201
analysis: applications and
efficient algorithms
Grayscale area openings and
K X . MM and its Applications to
closings, their efficient .
L. Vincent 93 i Signal Processing, Barcelona, 22.27
implementation and .
. Spain
applications
Morphological grayscale
01 reconstruction in image IEETI1 =2 176.201
. vol.= -20
L. Vincent analysis: efficient algorithms vve
and applications
Bounded gray-level morphology
D. Wang et. al. 96 and its applications to image IEETC], vol.=5, no.=6 1067-1072
representation
04 Morphological operations on IEETI =1 17
. =14 = -
G. R. Wilson crack coded binary images P ve 3, no.=3 1-176
i t. Morphological restoration of
D. L. Wilson e 95 P! . 4 Langmuir, vol.=11 265-272
al. AFM images
03 Gray Level Image Enhancement SPIE.NFIP. vol.=1902 202
. - , vol.= y -29
$. 5. Wilson Using a Projected Thickening
Directional MM and
t. Reformalized Hough
H. Yamada e 93 S Tene IEETP2, vol.=15, no.=4 380.387
al. Transformation for the
Analysis of Topographic Maps
J. Yang et. al. 95 Boundary detection using MM PATRL, vol.=18, no.=12 1277-1286
Min-max classifiers:
P.-F. Yang et. al. 95 learnability, design and PATR, vol.=28, no.=6 879.899
application
Directional morphology and its
J. Yang et. al. 95 application in boundary IECIPAIA, no.=410 742-746
detection
Convexity dependent
. et. morphological transformations
R. D. Zhang 94 phological trans’ PATR, vol.=27 135-148
al. for mode detection in cluster
analysis
. Table A.24: Citation:Books.
Author Yr | Title Description
. R. Dougherty Image Processing - Continuous to .
E & 87 . Prentice-Hall, Englewood Cliffs, NJ
et. al. Discrete
, SPIE, Tutorial Texts in Optical
An Introduction to Morphological
E. R. Dougherty 92 ] Eng., vol.=TT 9, Washington
Image Processing
. Marcel Dekker, New York
E. R. Dougherty 93 MM in Image Processing ar » hew Tor
. R. Dougherty . .
E . & 97 Nonlinear Filters for Image Proc. SPIE-OEP
et. al.
C. R. Giardina gg | Morphological Methods in Image

et. al.

and Signal Processing

Prentice-Hall, Englewood Cliffs, NJ.

continued on next page
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continued from previous page (Citation:Books)

Author Yr | Title Description
R. M. Haralick 7? MM: Theory and Hardware Oxford University Press
AM. Academic Press, Bost

H.J.AM 94 Morphological Image Operators onton
Heijmans

2D Digital Signal Processing II: Springer, Berlin
T. S. Huang 81 . .

Transforms and Median Filters

Random sets and integrated Wiley, New York
G. Matheron 75

geometry

. X Kluwer Academic Publishers,

Mathematical morphology and its .

P. Maragos et. L. . N Computational Iinaging and Vision,
96 applications to image and signal

al. ) Boston

processing

o X Springer, Lecture Notes in
Limit theorems for unions of random K
1.S. Molchanov 93 Mathematics, vol.=1561
closed sets

NATO ASI Series, Driebergen, The

Shape in Picture: Mathematical
Netherlands, Springer, Berlin,

92 Description of Shape in Grey-Level
Y-L. O et. al. escrip P 4 vol.=126
Images
. Academic Press, New York
J. Serra 82 Image analysis and MM
Academic Press, New York, Vol. =2:
J. Serra 88 Image analysis and MM Theoretical advances

. L X Kluwer Academic Publishers, T'he
MM and its applications to image

J. Serra et. al. 94 . Netherlands

processing
M. Schmitt et. . Morphology: Algorithms and Cambridge University Press
al. a Applications

. Cambridge University Press,
03 Convex Bodies: the Cambrid

. id ambridge
R. Schneider Brunn-Minkowski Theory 8

J. C. Simon 89 From Pixels to Features North Holland, Amsterdam

. Table A.25: Citation:Thests.

Author Yr Title ‘ Description Tp
MM: Extensions towards comp.
R. van den 92 . P University of Amsterdam TH
Boomgaard vision
Mutltivalued morphology and Ecole Polytechnique Fédérale De
C. Gu 95 . . TH
: segmentation-based coding Lausanne

Morphological Scale-Space With
P. T. Jackway 94 Application to 3D Object Queensiand Univ. of Tech. TH

Recognition

Morphological image representation
R. Kresch 95 v ] g i g L4 Israel Institute of Tech. TH
for coding applications

Design and implementation of a University of Linkoeping,

B. Kruse 77 \ . . ™
picture processor Linkoeping, Sweden
Unified Theory of
Translation-Invariant Systems with School of Electrical Engineering,

P. Maragos 85 L. . . TH
Applications to Morphological Georgia Ins. of Tech., Atlanta
Analysis and Coding of Images
Image analysis methods based on

P. F. M. Nacken 94 hierarchies of graphs and multi-scale University of Amsterdam TH
MM
Distance Transform: Metrics,

B. J. H. Verwer 91 Deift University of Technology TH

Algorithms and Applications
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Appendix B

Existing relations & proof of

some equations

B.1 Existing relations

The following relations are valid for the operators defined so far. They
have been collected from literature and we have completed and corrected them
based on our definitions. Some of the relations are proved in appendix B .
The symbol (SA) before some of the equations means that there exists the

same relations for dilation/erosion as the relation mentioned for Minkowski

addition/subtraction
®
M .
A B=A®B. (B.1.1)
M .
AeB=A4eB. (B.1.2)
o Duality:
M M
A© B= (49 B)". (B.1.3)
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M M
A® B =(A°S B)°. (B.1.4)
Ao B=(A°® B)". (B.1.5)
A®B = (A°0 B)°. (B.1.6)
feg=(foy" (B.1.7)
feg=(fre39)" (B.1.8)
AoB = (A°e B). (B.1.9)
Ae B = (A0 B)". (B.1.10)
fog=(fe3). (B.1.11)
feg=(f 09y (B.1.12)
o Commutative:
M M
A®B=B®A. (B.1.13)
A®B=BoA. (B.1.14)
feg=go/f (B.1.15)
e Distributive: (SA)
M M
Ao (JB)=JA e B). (B.1.16)
iel i€l
A8 (" B) =4 & By). (B.1.17)
iel iel
(fvg)oh=(fah)V(gdh). (B.1.18)
(fAg)©h=(fSh)A(g0h). (B.1.19)
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e (SA)
(AG&B)&C=(A8C)® B. (B.1.20)
(fogoh=(foh) oy (B.1.21)

o Associative (chain rule):

ABD=A®BSC)=(A®B)&C. (B.1.22)
U8B EC=(A8C)8B=A6B&C).  (B1.23)
(A@B)©C=A® (B®C). (B.1.24)
(AeB)6C=A46(B&C). (B.1.25)
(fog@h=Ffo(90h). (B.1.26)
(fegloh=fo(gah). (B.1.27)

The length (len) of the input signal after morphological operations equals
to its original size (e.g. len(f) = len(f © g)). However Equations B.1.26
and B.1.27 are true only if len(g @ h) is extended to len(g) +len(h) — 1,

otherwise they can not be true. As an example let

f= {8a272’711’1a370a4,7}a
9= {112’3., 231}, (B128)
h = {0,=2,0},

(underlined values in g and h show the position of their origins). len(f) =

10, len(f@g) = 10, len((f®g)@h) = 10, len((fOg)Oh) = 10,len(g) =5,
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len(h) = 3, len(g® h) = 7(> len(g)). Then we will have (* means it has
not been defined)

godh= {*,-1,0,3,1,2,%},

f®g=1{*%978,7,3,6,6,%%},

(fog®h= {,%,%,10,8,9,8,4, %, %, x} = f ® (¢ ® h),
feg=1{*+%0,0,0,—-1,-1,0,-2, %%},

(fogoh= {*,%,%,—-1,-2,-2,-1,=-3,%,%,x} = fS (¢ D h).

The extended relation of the above equations can be written as:

M M M M M M
AS(B1® - ®By)=(---A0B))6---0 B,). (B.1.29)

fO@® - ®g)=((f09)OOg) (B.1.30)

e Scale invariant: (SA)

oA ® aB = a(A® B). (B.1.31)
QA8 aB = a(AS B). (B.1.32)
af ®ag=a(f© ). (B.1.33)
af oag=a(fOg) (B.1.34)
aAoaB =a(AdoB). (B.1.35)
aAeaB=a(AsB). (B.1.36)
afoag=a(fog). (B.1.37)
af eag=a(feg). (B.1.38)

where « is a real number.
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e Compatibility under change of scale: (SA)

A5a3=q253y (B.1.39)
AgaBzmggBy (B.1.40)
f@ag=M£®m. (B.1.41)
feagzdgew. (B.1.42)

Similar compatibility exists for opening and closing

e Scaling with convez sets: (SA) The set A is convex if Vz,y € A, o € [0,1):

az+ (1—-a)y € A. If A is convex and « and B are positive real scalars,

then:
M
ad @ A = (a+ P)A. (B.1.43)
af ® Bf = (a+B)f. (B.1.44)

Therefore we can say that a convex set S is divisible for all integers v > 0:

1 M ] M M1
A=A -Ad.--® -A. B.1.45

7 > . (B.1.45)

04 ?;rms

or equivalently:
M M M

YA=AGAD---DA. (B.1.46)

v terms
=fOfD - Df. (B.1.47)

v terms
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e Translation Invariance:

M M
(A), ® B=(A® B),. (B.1.48)

M M
A®(B), =(A® B),. (B.1.49)
(A), ® B=(A® B),. (B.1.50)
A® (B):=(A® B)_,. (B.1.51)
(e®9=(fDY)a (B.1.52)
f@(9e=(fD9)-a (B.1.53)

M M
(A), © B= (Ao B),. (B.1.54)

M M
Ao (B),=(A6 B)_,. (B.1.55)
(A);© B= (A6 B);. (B.1.56)
Ao (B),=(A6 B)_,. (B.1.57)
(flz09=(f©9)s (B.1.58)
fe (g)x = (f © g)x- (B.1.59)

The following equations will then be true:
M M M M M
A®B &---® (B,); ©:---® By=
M M M M M (B.1.60)
(AEBB} D B, H---P BN)z
feéq @@ (gn): &0 =

1 (9) N (B.1.61)

(f@gl Db gn D gN)—:c-
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e Insensitivity of opening and closing to translation of SE:

Ao(B),=AoB. (B.1.62)
Ae(B),=AeB. (B.1.63)
fo(g)z=Tfog. (B.1.64)
fo(9)z=feg (B.1.65)

e Shift compensation in image by properly shifting of SE:

(A); & (B)-s = A ® B. (B.1.66)
(4), ® (B), = A® B. (B.1.67)
(H®(9)z=fDg (B.1.68)

Similarly we can compensate the shift in image with a proper shift in one

of the decomposed SEs:

M M M M M

M M M M M (B169)

A®B, &---® B, ®&--© DBy.

(A);®B, ©---® (B,)), ©--® By=
(B.1.70)

A®D, ®--® B, ©--® By

(fl2®g OB (o) O ® —
I (B.L.71)

fOoqg & g, DD gn.
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7 () (b) TS )

M
Figure B.1: Extensivity: (a):A, (b):By, (¢):A @ By, (d):Bs, (e):A ég Bs.

e FErtensivity: (SA) Minkowski addition is extensive if the origin belongs
to SE. Figures B.l-a, b, d show an image and two SEs denoted by A,
B, and B, respectively. B, does not include the origin. Figures B.l-c,
e, denoted by A Qé By and A g B, show the result of the Minkowski
addition of A by B, and B, respectively. We see that A C A éé By, but
Ag A ‘eg B,. For extensivity discussion of morphological operators refer

to Table 2.3.

o Anti Extensivity: (SA) Minkowski subtraction is anti extensive if the
origin belongs to SE. Figures B.2-a, b, d show an image and two SEs
denoted by A, By and B, respectively. By does not include the origin.
Figures B.2-c, e, denoted by A g B, and A g B; show the result of
the Minkowski subtraction of A by B; and B, respectively. We see that
A 29[ B, C A,but A 5 By ¢ A. Similar anti-extensivity exists for erosion.

For anti-extensivity discussion of morphological operators refer to Table

2.3

< () A (b) S (d)

s M
Figure B.2: Anti extensivity: (a):A, (b):By, (¢):A © By, (d):Bs, (e):A © Bs.
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e (SA)
(A & (B & C)) C ((A & B) & C) . (B.1.72)

e Adjunction relation: (SA)

M M
BC(Ae(C)«< (B () C A. (B.1.73)
[ J
BC (--(A6C)&--)&¢C
= SR A 1 e e N <:>
P e (B.1.74)

M
(--BoC)®---)®Cy CA.

e Increasing: (SA)

M

BCC= (B&D)C(C®D) (B.1.75)
M M

BCC= (B&D)C(C&D) (B.1.76)

Figure B.3 illustrates the property of increasing in Minkowski addition
and subtraction. Parts a, b and g show B, C and D respectively (B C C).
Parts ¢, d, e and f show B é; D, C Qé D&B g D and C g D respectively.
\\’enoticethatBégDCCé}gDanngDCCgD.

: @) 1 HH (b)." b (c).... (e)... o (f).... @

M M

Figure B.3: Increase: (a):B, (b):C, (c):B @ D, (d):C & D, (e):B g D,
M

(f):C & D, (g) D.

BCC= (BoD)C(CoD). (B:%77)

BCC= (BeD)C (CeD). (B.1.78)
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figh=hHheg< 2Dy (B.1.79)

hH<fo=f69<L f2679. (B.1.80)

fi£fa= ficg< faoy. (B.1.81)

fi<fi=fieg< faeyg. (B.1.82)

e Anti-increasing: (SA)
M M
BcC=(AeB)D>(Ae0). (B.1.83)

Figure B.4 illustrates Equation B.1.83: Parts a, b and ¢ show A4, B

and C respectively (B C C). Parts d and e show A 29’ B and A 29’ C

: M M
respectively (A6 B D A© C).

(b) (c)

Figure B.4: Anti increasing: (a):4, (b):B, (c):C, (d):A g B, (e):A g C.

G <gp=>f0n<fdg.

G <gp=>fon2fOg.

e (SA)

M .
A6 A= {0}

e (SA)

M M M
A®(BUC)= (A B)U(A® O).

(B.1.84)

(B.1.85)

(B.1.86)

(B.1.87)
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. (S4)

AS (BUC)= (A8 B)N(ASC). (B.1.88)
. (SA)

(BNC)B A= (BEAN(CS A). (B.1.89)
e (S4)

AB(BNC)C(A®B)N(A&C). (B.1.90)
e (SA)

AB(BNC)D (A8 B)U(ASC). (B.1.91)
. (SA)

(BUC)S AD (B A)U(C & A). (B.1.92)

Open set: The set A is open with respect to B if

AoB = A. (B.1.93)

Closed set: The set A is close with respect to B if

Ae B = A (B.1.94)

Sieving: If B is open with respect to C, then:

(AoB)C(AoC)CAC (AeC)C (Ao D). (B.1.95)

e (SA) If B and g are symmetric, then

M M M
A®B=(A®B)oB=(AeB)®B. (B.1.96)
f@g=(fDglog=(feg)®yg. (B.1.97)
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AoB=|J{Bz:B, C A}. (B.1.98)

AeB={z:z€B,= B,NA#0Q}. (B.1.99)

e Morphological gradient: Dilation and erosion often are used to compute

the morphological gradient of an image denoted by GRAD:
GRAD = (f®g) - (foy9). (B.1.100)

As opposed to gradients obtained using methods such as a Sobel oper-
ation, morphological gradients obtained using symmetrical structuring
elements tend to depend less on edge directionality. This price paid for

this advantage is significant increase in computational requirements.

e Top-hat transformation: The so called morphological top-hat transfor-

mation of an image, denoted by TOPH AT, is defined as
TOPHAT = f — (f o g). (B.1.101)
It is useful for enhancing detail in the presence of shading.

e Granulometry: Granulometry is a field that, among other things, deals
with determining the size distribution of particles in an image. The
following morphological approach can be used to determine size distri-
bution. Opening operations with structuring elements of increasing size
are performed on the original image. The difference between the original
image and its opening is computed after each pass with a different struc-
turing element is completed. At the end of the process, these differences
are normalised and then used to construct a histogram of particle-size

distribution.
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e Hit-or-miss operator ®: Hit-or-miss operator ( [78]) uses two binary SEs
B and C which have empty intersection (otherwise it will not be a mean-

ingful operation) and is defined as:

A®(B,C) ={z:B, CAC,C A%}
(B.1.102)
=(AeB)n (A6 0).
If B and C have even one pixel in common, the sesult will be empty
set. In hit-or-miss, some properties similar to B in foreground and C in

background of the image is required. Hit-or-miss is not increasing but

translation invariant:
(4): ® (B,C) =[A® (B,C)].. (B.1.103)

Figure B.5 illustrates an example. Parts a, b, ¢ and d respectively show

A A® (B,C), B and C. Hit-or-miss transformations are often used

(a) (b) () (d)

Figure B.5: Hit-or-miss operation. (a):A4, (b):A® (B,C), (c):B, (d):C.

in digital topology where these transformations can be used to detect
specific topological configuration in an image. Some applications of hit-

or-miss operator can be found in [78, 36].

e Boundary eztraction: The boundary of a set A, denoted by B(A), can be
obtained by

B(A) = A— (Ao B). (B.1.104)

where B is a suitable SE.
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e Convez hull:

Let B',i = 1,2,3, 4 represent four structuring elements. The procedure

to make convex hull is as follows.
",‘; = (X@B") UA, i=1,2,3,4 and k=1,2,3,... (B.1.105)

with X} = A. Now let D' = X}, where the subscript “conv” indicates

convergence in the sense that X; = X;_;. Then the convex hull of 4 is
4

c(4) =o' (B.1.106)
i=1

In other words, the procedure consists of iteratively applying the hit-or-
miss transform to A with B'; when no further changes occur, we apply
the union with A and call the result D!. The procedure is replaced with
B? until no further changes occur, and so on. The union of the four

resulting D’s constitutes the convex hull of A.

e Thinning: The thinning of a set A by a structuring element B, denoted

by A ® B can be defined in terms of the hit-or-miss transform:
AB=A-(A®B)=AN(A® B)". (B.1.107)

A more useful expression for thinning A symmetrically is based on a

sequence of structuring elements:
{B} = {B',B%, B%...B"} (B.1.108)

where B! is a rotated version of B*~!. Using this concept, we now define

thinning by a sequence of SEs as
A®B=((...(A®B")® B?)...)® B"). (B.1.109)

In other words, the process is to thin A by one pass with B!, then thin
the result with one pass of B2, and so on, until A is thinned with one

pass of B™. The entire process repeats until no further changes occur.
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e Thickening: Thickening is the morphological dual of thinning and is de-

fined by the expression
A®B=AU(A®B). (B.1.110)

where B is a structuring element suitable for thickening. Thickening can

be defined as a sequential operaton:
AOB=((...(A®@B")© B?%...) 0 B"). (B.1.111)

The usual procedure practical for thickening is to thin the background of
the set in question and then complement the result. Depending on the
nature of A, this complementary procedure may result in some discon-
nected points. Hence thickening by this method usually is followed by a

simple post-processing step to remove disconnected points.

Skeletons: Serra [78] showed that the skeleton of a set (region) A can be
expressed in terms of erosions and openings. That is, with S(A) denoting

the skeleton of A, it can be shown that

S(4) = | Sk(4) (B.1.112)
with
Si(4) = | J{(A©kB) - [(A©kB) o B} (B.1.113)
k=0

where B is a structuring element, (A©kB) indicates k successive erosions

of A; that is
(AekB)=((...(A6B)eB)e...)oB

L times, and K is the last iterative step before A erodes to an empty set.

In other words,

K =max{k | (A© kB) # 0}.
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e Annular opening and closing: With annular opening, parts of an image
are removed on the basis of their isolation, while with the usual structural
opening, parts of an image are removed on the basis of their size [35]. It

is defined as:

OPpnn = AN (A® B). (B.1.114)
Similarly annular closing is defined as

CLanm = AU (A S B). (B.1.115)
and it removes isolated hole points.

e Geodesic operators and operators by reconstruction: Geodesic GS dilation

(6'(f, 7)) and erosion (¢'(f,)) of size 1 are defined respectively as: ([68])

6*(f,r) = min{& (f), 7}, (B.1.116)
e(f,r) = =8 (=f, -1), (B.1.117)

where r is a reference, and 4, is dilation. Reconstruction by dilation is

defined as:

yee(f,r) = 5(00)(f’,.) -.. .5(1)(. . .5(1)(f,,~) coo,1). (B.1.118)
Reconstruction by erosion is defined as:

o (f,r) = € (f,r) = eD(- M (f,r)--- 7). (B.1.119)

Opening by reconstruction of opening is defined as: ¥"}(op(f), f). Clos-
ing by reconstruction of closing is similarly defined as: ¢ (cl(f), f).
Opening by partial reconstruction is defined as: ("¢ (e,(f), vc(f)). Sim-
ilarly closing by partial reconstruction is defined as: ¢ (8,(f), #x(f))-
In above equations if k& = n, then the above relations will be classical
opening and closing. For k& = 0, they will be opening and closing by

reconstruction.
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B.2 Proof of some morphological operations

i. Proof of Eq. 2.5.6:

M ?
A©B = N (A )
) beB
(B)z = {z—-b:b€ B} ,
M Egq. 2.5.5 .
AeB 2% (B, CcA)={y-beAseB}
ze(bQB(A),,) = z€(A)pbEB=>2z-bEADEB =
M
ASB = N (A ™
beB
ii. Proof of Eq. B.1.13:
M ? M
A®B = BoA ™
M
A®B = {a+b:acAbeB}={b+a:beB,acA} =
M
iii. Proof of Eq. B.1.22:
M M M M
AG(BOC) = (ABB)BC )
M M
ASBYC) = {av(+c)iacAbiceBBHC) =

= {a+b+c:a€AbeB,ceC} =
M
= {(a+b)+c:a+beADB,ceC} =
M M
= (A®B)BC m

iv. Proof of Eq. B.1.26
The length of g @ k will be extended to Length(g)+Length(h)-1 (see Eq. B.1.28). Let y =8 - a:

(fog)oh = fo(30h) ™
(fog)@h)(n) = urgg)i{urgg;{f(n —u—v)+g(u) + h(v)}} (1,
(g@h)m) = k(m)= argig;{y(m - @)+ h{a)} (2),
Jor®m = max{f(-6)+ k(8)} 2=
= B'E%’i{f(l = B)+ max {9(8 = a) + h(a)}} (),
(forW) = aﬂ%’b,{a"é%’ﬁ‘”(’ —a-7)+9(7) +h(a)}} ()&
(fog)eh)(n) = (f&(9dh)(n) n
v. Proof of Eq. B.1.48:
(4: 8B L (A& B), )
(A):?é’B = {d:d=c+b,c€(A),b€ B} =

= {d:d=(a+1z)+bac Abe€ B}

= {d:d=(a+b)+x,a€ A bEB} =
= {d:d:e-{-z,eEAgB} =
= (A®B), =
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vi. Proof of Eq. B.1.53:

f8(@: = (@9 6]
(olge)n) = max {f(n-w)+(9a(w)} =
= ggig;{f(n—v—ng(v)} =
= (f 32 g)—:(") a
vii. Proof of Eq. B.1.54:
(.88 L (48B). )
M .
(A6B). = {g:(Bhcakp I {y:(B)y-2zca =
= {v:(B)y C(A)} =
Ee.255 (4 8B =
viii. Proof of Eq. B.1.64:
fole)e = fog 6]
(folg)e)n) = ve",‘;"("g‘),{..e'%i(';),“(" +u—v) = (9(u) + (9)=(v)}} =
= [;g%ﬁ{;gglg{f(" +{a+z)-(B+12) —g(a)+9(8)}} =
= (fog)(n) L]
ix. Proof of Eq. B.1.55:
a8m. 2  ép.. )
M .
ASB-. = {y:BnCA "2 {y:(B)y+zca) =
= {v:((B):)y C A} =
E‘q.=2.5.5 A Ael (B)s .
x. Proof of Eq. B.1.66:
(A B(B-. L AGB ™
(A B (B)—e "V E™ (AB(B)-2):=(ABBls =
= AGB n
xi. Proof of Eq. B.1.72:
(A & (B6& C)) ¢ ((A eBe c) )
BgC = {z:z4+c€B,ceC} )
M M
A9(BeC) = {e+z+c:a€Az+c€B,ceC} =
M M
A®(Bo ) C {a+z+c:acA,x€B,ceC} =
M M
Ao (BeC) - {(a+1)+c:a+x€AgB,c€C} =
A3 BS0) ¢ ((A?éa)’é‘c) .
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xii. Proof of Eq. B.1.73:

Bc(abc) <& @BoHCO)CA )
BCc(ABo) & B®C)CA a?)
(BECo)ca & BC@sO @7
BgC = {z:z=b+cbeB,ceC} =
BBC C {z:z=b+cbe(ABC)ceC) (1)
B%C C (z:z=b+cbtccAceCl={z:zcAl) ()W
BaC = {z:z=b+cbeB,ceC}CA 2=

= {b+c:btceAceC} (2) >

M
= be(AB0) (2)=>
= BC(AGC) @m

xiii. Proof of Eq. B.1.75:

M M
BcC > (B&D)c(C®D) ™
M M
BeD = {b+d:beB,deD},CdD={c+d:c€C,deD} ,
, BCCobe(BCC) =
M M
= (B@&D)c(CeD) a

xiv. Proof of Eq. B.1.80:

fi<fa > hoeg<fog €9
) < f2ln) = Hntu) < faln+u) = iln+u) —g(u) € o(n+u) —gu) =
= min {fi(n+u) - g(w)} < min {f2(n +u) - g(u)} =
) < faln) = (J189)n) <(f209)(n) [ ]
xv. Proof of Eq. B.1.83:
Bcc 3 (A8B)>(480) )
Bcc FeBM LM pcacBos U 8Bro@sor =
Eq. 2.5.5 M M
= AeBD>AsC n
xvi. Proof of Eq. B.1.87:
aBBuoy I (EBUMEC) Q)
M Egq. 2.5.4
A® (BUC) = U(B:uC,):(U B:)U(U Cz:) =
€A r€EA €A
M M
= (Ad B)u(A& C) n
xvii. Proof of Eq. B.1.88:
¥4 ?
ASmBuey 2 uéBmnubo )
M c c
A8 Buc) Fr2ss (Ac &(BU C)) Eq. B.1.87 ((Ac & B)U(A° & C)) =

M M
= (A° @ B)* N (A° ® C)° =
Eq. B.1.87 M
= (AS BN (A8 C)

MORPHOLOGICAL FILTERING M.H. Sedaaghi



B.2 Proof of some morphological operations 212

xviii. Proof of Eq. B.1.89

M ? M M
(BNC)B A = (B8 A)n(C 6 A) ™
(BnC)S A Fr235 ((gno) & A) = ((BC uee) & A)c =
Eq. 2.187 (BCIegA)U(C"gA))c=(B°}€gA)cﬁ(C°gA)c —
Fe255 (B8 A)N(CE 4) -
xix. Proof of Eq. B.1.90
(A & (BN C)) ¢ ((A & B)NAS C)) ?)
(BnC)CB , (BNC)CC Fa B)78
M M M M
(Ae(BnC))g(AeBB) , Aea(BnC))g(AeaC) =
M M M
(A@(BnC)) C (AeBB)n(AeaC)) [ |
xx. Proof of Eq. B.1.91
(A & (BN C)) 3 (A8 BUMUS C)) )
adinoy P25 (4§ (Bn C))c ,
(A‘ & (Bn C)) Fe 2 ((4c § Byn(ac & ©) =
M ¢ M M €
(Ac ® (BnC)) o) (A° ® B)N(A° & C) =
2 (Ac g B)c u (Ac g C)c) E0$5-5
M M M
(Ae(BnC)) D) (AeB)U(AeC)) ]
xxi. Proof of Eq. B.1.92
((BuC)g A) 5 (BAé’A)U(Cg A)) €]
(Buc) G A = (BuC)ch)c=(BCncc)gA ,
M Eq. B.1.90 M M
((B"' nee) & A) C ((BC ®AN(C D A)) =
c Eq. B.1. ¢
((Bc neey & A) 2 (e & aynce B A)) :
M M
) (B° @ A)FU(C® ® A)‘) =
M M M
((BUC)eA) o) (BeA)u(CeA)) ]
xxii. Proof of Eq. B.1.43
M ? )
aA® A = (a+PB)A @)
aAgﬂA = {a+b:acaAdbeBA}={ca+pb:a€ AbeE A} =
= (a+B) {3550+ ;550 € 4,b€ A} ,
" A= ﬁil—/\=a+ ,0<A<1 (Aisconvex) c=Aa+(l—-A)eA =
aA®BA = (a+pP){c:ce A} =(a+p8)A a
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xxiii. Proof of Eq. B.1.96

M ? M ? M
A®B % (A®B)oBL(AeB)&B )
M M M
L = A®BM=L6BN=MgB =
L £ N )
M M
L = aeB 2" AcLeBAcM >
M M
= A®BCM®B =
> LCN (1)m
M M
M = LB 2 meBCL =
> NCL (2)m
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Appendix C

Arrhythmia types

The current appendix introduces some of arrhythmia types adopted from
“literature [9, 7). An arrhythmia is a change in the regular beat of the heart.
The heart may seem to skip a beat or beat irregularly or very fast or very slowly
(http://www.atlcard.com/arrhth.html). Arrhythmias may occur in people who
do not have heart disease. In most cases, there is no recognisable cause of an
arrhythmia. One reason can be heart disease. However other causes can be
tobacco, alcohol, diet pills, stress, caffeine, and cough and cold medicines.
Most of the people with arrhythmias have nothing to fear. They do not need
extensive exams or special treatments for their condition unless arrhythmias
are associated with heart disease. In these cases, heart disease, and not the
arrhythmias, causes the greatest threat to the patient. In a very small number
of people with serious symptoms, arrhythmias are really dangerous. These
arrhythmias require medical treatment to keep the heartbeat regular. For
example, a few people have a very slow heartbeat (bradycardia), causing them
to feel lightheaded or faint. If left untreated, the heart may stop beating and
these people could die. Arrhythmias occur commonly in middle-age adults.
As people get older, they are more likely to experience an arrhythmia. Most

people have felt their heart beat very fast, experienced a fluttering in their
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chest, or noticed that their heart skipped a beat. Almost everyone has also
felt dizzy, faint, or out of breath or had chest pains at one time or another.
One of the most common arrhythmias is sinus arrhythmia, the change in heart
rate that can occur normally when we take a breath. These expericnces may
cause anxicty, but for the majority of people, they are completely harmless.
Describing how the heart beats, normally helps to explain what happens during
an arrhythmia. The heart is a muscular pump divided into four chambers-two
atria located on the top and two ventricles located on the bottom. Normally
each heartbeat starts in the right atrium. Here, a special group of cells called
the sinus node, or natural pacemaker, sends an eletrical signal. The signal
spreads throughout the atria to the area called the atrioventricular (AV) node.
The AV node connects to a group of special pathways that conduct the signal
to the ventricles below. As the signal travels through the heart, the heart
contracts. First the atria contract, pumping blood into the ventricles a fraction
of a second later, the ventricles contract, sending blood throughout the body.
Usually the whole heart contracts between 60 and 100 times per minute. Each
contraction equals one heartbeat. An arrhythmia may occur for one of several

reasons

e Instead of beginning in the sinus node, the heartbeat begins in another

part of the heart.
e The sinus node develops an abnormal rate or rhythm.

e A patient has a heart block.

Heart block is a condition in which the electrical signal cannot travel nor-
mally down the special pathways to the ventricles. For example, the signal

from the atria to the ventricles may be

i. delayed, but each one conducted;

ii. delayed with only some getting through; or
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iil. completely interrupted.

If there is no conduction, the beat generally originates from the ventricles and
is very slow. There are many types of arrhythmias. Arrhythmias are identified
by where they occur in the heart (atria or ventricles) and by what happens
to the heart’s rhythm when they occur. Arrhythmias arising in the atria are
called atrial or supraventricular (above the ventricles) arrhythmias. Ventricular
arrhythmias begin in the ventricles. In general, ventricular arrhythmias caused
by heart disease are the most serious.

Sometimes an arrhythmia can be detected by listening to the heart with a
stethoscope. However, the electrocardiogram is the most precise method for
diagnosing the arrhythmia. An arrhythmia may not occur at the time of the
exam even though the symptoms are present at other times. In such cases,
tests will be done if necessary to find out whether an arrhythmia is causing
the symptoms. First the doctor will take a medical history and do a thorough
physical exam. The one or more tests may be used to check for an arrhythmia
and to decide whether it is caused by heart disease. Many arrhythmias require
no treatement whatsoever. Serious arrhythmias are treated in several ways
depending on what is causing the arrhythmia. Sometimes the heart disease is
treated to control the arrhythmia. Or, the arrhythmia itself may be treated

using one or more of the following treatments.

e Drugs : There are several kinds of drugs used to treat arrhythmias. One
or more drugs may be used. Drugs are carefully chosen because they can
cause arrhythmias or make arrhythmias worse. For this reason, the ben-
efits of the drug are carefully weighed against any risks associated with
taking it. It is important not to change the dose or type of your med-
ication unless you check with your doctor first. If you are taking drugs
for arrhythmia, one of the following tests will probably be used to see

whether treatment is working: a 24-hour electrocardiogram (ECG) while
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you are on drug therapy, and exercise ECG, or a special technique to see
how easily the arrhythmia can be caused. Blood levels of antiarrhythmic

drugs may also be checked.

e Cardioversion : To quickly restore a heart to its normal rhythm, the doc-
tor may apply an electrical shock to the chest wall. Called cardioversion,
this treatment is most often used in emergency situations. After car-
dioversion, drugs are usually prescribed to prevent the arrhythmia from

recurring.

e Automatic implantable defibrillators : These devices are used to correct
serious ventricular arrhythmias that can lead to sudden death. The defib-
rillator is surgically placed inside the patient’s chest. There, it monitors
the heart’s rhythm and quickly identifies serious arrhythmias. With an

electrical shock, it immediately disrupts a deadly arrhythmia.

e Artificial pacemaker : An artificial pacemaker can take charge of sending
electrical signals to make the heart beat if the heart’s natural pacemaker
is not working properly or its electrical pathway is blocked. During a
simple operation, this electrical device is placed under the skin. A lead
extends from the device to the right side of the heart, where it is perma-

nently anchored.

e Surgery : When an arrhythmia cannot be controlled by other treatmets,
doctors may perform surgery. After locating the heart tissue that is
causing the arrhythmia, the tissue is altered or removed so that it will

not produce the arrhythmia.

If the heart disease is not causing the arrhythmia, the doctor may suggest
that you avoid what is causing it. For example, if caffeine or alcohol is the
cause, the doctor may ask you not to drink coffee, tea, colas, or alcoholic

beverages.
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The arrhythmia differ from the originating point of view as:

i. Originating in the Atria:

Sinus arrhythmia: Cyclic changes in the heart rate during breathing.

Common in children and often found in adults.

Sinus tachycardia: The sinus node sends out electrical signals faster

than usual, speeding up the heart rate.

Sick sinus syndrome: The sinus node does not fire its signals prop-
erly, so that the heart rate slows down. Sometimes the rate changes
back and forth between a slow (bradycardia) and fast (tachycardia)

rate.

Premature supraventricular contractions or premature atrial con-
tractions (PAC): A beat occurs early in the atria, causing the heart

to beat before the next regular heartbeat.

Supraventricular tachycardia (SVT), parozysmal atrial tachycardia
(PAT): A series of early beats in the atria speed up the heart rate
(the number of times a heart beats per minute). In paroxysmal
tachycardia, repeated periods of very fast heartbeats begin and end

suddenly.

Atrial flutter: Rapidly fired signals cause the muscles in the atria to

contract quickly, leading to a very fast, steady heartbeat.

Atrial fibrillation: Electrical signals in the atria are fired in a very
fast and uncontrolled manner. Electrical signals arrive in the ventri-
cles in a completely irregular fashion, so the heart beat is completely

irregular.

Wolff-Parkinson- White syndrome: Abnormal pathways between the
atria and ventricles cause the electrical signal to arrive at the ven-

tricles too soon and to be transmitted back into the atria. Very fast
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heart rates may develop as the electrical signal richochets between

the atria and ventricles.
ii. Originating in the Ventricles:

o Premature ventricular complezes (PVC).: An electrical signal from
the ventricles causes an early heart beat that generally goes unno-
ticed. The heart then seems to pause until the next beat of the

ventricle occurs in a regular fashion.

e Ventricular tachycardia: The heart beats fast due to electrical sig-

nals arising from the ventricles (rather than from the atria).

e Ventricular fibrillation: Electrical signals in the ventricles are fired
in a very fast and uncontrolled manner, causing the heart to quiver

rather than beat and pump blood.
In this part we will have a look to the name of some abnormalities:

o First-degree AV block: Prolongation of the P — R interval is called first-
degree AV block.

The following part shows two tables and some figures about some of the

arrhythmia.
Table C.1: Arrhythmia recognition
Heart rat Rhyth P Wi Fig-
i eart rate m ave
Disease T Y PR(sec)] QRS(sec) | ure
12 -
Normal Sinus Rhythm 60 — 100 bpm Regular Before each QRS, identical 20 < .12 C.i1
Arrhythmi Usually Ircegular | Bef h QRS, identical 12 12 c.2
; t al R t . 2-
Sinus Arrhythmia 60 — 100 bpm rregular efore each Q identical 20 < a
. 12—
Sinus Tachycardia > 100 bpm Regular Before each QRS, identical 20 < .12 C.2-b
. 12 =
Sinus Bradycardia < 60 bpm Regular Before each QRS, identical 20 < .12 C.2-¢
Before each QRS, identical. 12
Sinus Pause N/A Irregular Dropped beat. The P to P '20 < .12 C.2-d
interval is undisturbed. '

continued on next page
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continued from previous page

Disease Heart rate Rhythm P Wave Fig-
PR(gec)| QRS(sec) ure
Before each QRS, identical.
N/A N ) New rhythmbegins after a 12 ~ 2 ¢
i A t rregular .12 .2-
Sinus Arres g pause. The P to P interval is .20 < N
disturbed
PACs / Isolated PAC’s Premature and abnormal or
N/A Irregular . < .20 < .12 C.2-g
Occur Single hidden
ired PAC's Premature and abnormal or
PACs / Paire N/A Irregular . < .20 < .12 C.3-a
Occur in Two’s hidden
ol Bi P
PACs / Atrial Bigeminy Premature and abnormal or
Every Other Beat Is a N/A Irregular i < .20 < .12 C.4-a
hidden
PAC
tl
PAGs / Abberrantly Premature and abnormal or
Conducted PAC: QRS Is N/A Irregular . < .20 < .12 C.3-¢
hidden
Bizarre
Premature and abnormal or
Nonconducted PAC N/A Irregular . N/A Absent C.3-d
hidden
140 ~ 250 Rexul Abnormal P before each 20 12 ca
. di egular < . . .3-
Atrial Tachycardia bpm & QRS (difficult to see) < °
A: 220 - 430 Regular
Atrial Flutter bpm , V: or Sawtoothed appearance N/A < .12 C.3-f
< 300 bpm variable
A: 350 — 650
Atrial Fibrillation bpm , V: Irregular Fibrillatory (fine to coarse) N/A 12 C.3-g
Slow to rapid
Inverted, absent or after
Junctional Rhythm 40 — 60 bpm Regular QRS < .12 < .12 C.3-h
ti 1 Inverted, absent or after
Accelerated Junctional 60 - 100 bpm Regular ' < .12 < .12 C.d-c
Rhythm QRS
Inverted, absent or after
Junctional Tachycardia > 100bpm Regular QRS < .12 < .12 C.4.d
) Vari-
Wandering Pacemaker < 60bpm Irregular Multiple forms bl < .12 C.4-e
able
Table C.2: Arrhythmia recognition, continue
Characteristi P W, PR(sec) Fig-
1 aracteristics ave sec
Disease QRS(sec) | ure
i B h
Right Bundle Branc RsR' in V1 Before each QRS, identical | .12-.20 | > .12 c.a-f
Block
Left Bundle Branch Block RR’in V5 Before each QRS, identical .12~.20 > .12 C4-g
Synd Delta wave distorts Bef h QRS, identical <12 Usually C.3b
itati e efore eac , identica . .3-
Preexcitation Syndrom QRS > .10
First Degree AV Block Regular rhythm Before each QRS, identical > .20 < .12 C.4-h
Increas-
D e AV Block RS dropped in a ingl
Second Degre Q A Conduction Intermittent gy < .12 C.4-b
/ Mobitz 1 (Wenckebach) repeating pattern pro-
longed
>.11
AV Block Fixed io of Interval Usuall
d Degree oc ixed ratio o sua
Second Degr K Conduction Intermittent is con- Y C.2-h
/ Mobitz 11 conduction (P:QRS) a BBB
stant
pattern
Third Degree (Complete) No relationship Normal but not related to
None N/A c.2-f
AV Block between P and QRS QRS
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(a)

Figure C.1: Normal rhythm.
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(b) Sinus Tachycardia

(a) Sinus Arrhythmia
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SR V7 U P S P S g ] \J\/\-.Aﬂi/\_qr\___m -._,JV.»\N1V/\M‘|J/
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(c) Sinus Bradycardia (d) Sinus Pause

£ A 1
RN AR
/ - e
e PP e el e el Nt et
\/ \

i ek i o i i i S a4 <A DL RS
i 1
{ i i

Please aoter tace and ynid have been teduced in size

(e) Sinus Arrest (f) AV Block (3rd)

Sl e e ol |
! b i

'*"L\J ! M!uk& “"’4: I[ /\H,_dql ‘/ \“"’"M‘ | AGH
| |
|

(g) Isolated PAC’s Occur Single (h) AV Block (2nd)/Mobitz II

Figure C.2: Arrhythmia recognition(1).
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N

L;\JL/J JL«JL/JLJ L,k
LAll LNL |! Wl T“ ~\,\,.\'\
J

|

(a) Paired PAC’s Occur in Two’s (b) Preexcitation Syndrome

L L ah e

Pwave is burled In the T wave

; M ‘ o /Nou. nOtch i8 POL present in other T waves
] ' \/ V &’“ wl{‘“"“‘k"\——————d—ﬂl—’\‘ wrﬂ- Hﬁﬂr‘\

(c) Abberrantly Conducted PAC (d) Nonconducted PAC

LI LLLLLLLLLL | $bsonponconprandd

~ A‘f/d /‘4 /\)?/ \ E/J /\4 A~ /\4 {/\“/\ /\1 b -*‘i/\/\‘/‘f\-’\q/\"\/\’(\—«/w ("YW"W

(e) Atrial Tachycardia (f) Atrial Flutter
,—«r‘—-.—w—-« M&m WMM N—— }\/— P’\/ Jr\h
(g) Atrial Fibrillation (h) Junctional Rhythm

Figure C.3: Arrhythmia recognition(2).
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By

A

' Nﬂyﬁ\qﬁw A‘rﬂ/\ﬁ‘r’ /\ et m-ﬂﬁ\s.n.ww._ﬁr/ AT
| o fime

(a) PAC/Atrial Bigeminy (b) AV Block (2nd) Mobitz I
2 e /\W '/\Jﬂ{(\dﬂ

r\m,«/\, /\.-} .\.4/‘\ \W/"v

[ v

'i

| |
l | ) |

“’\

(c) Accelerated Junctional Rhythm (d) Junctional Tachycardia

& e e EURRRORIRO

B s o e B o et Vo

(e) Wandering Pacemaker (f) Right Bundle Branch Block
Ky ’ a \ / 2N
-1{1. !/ v-.fwll ’J'/\N/‘l " \,—./.'_‘“( \A./\q’ I\N\'—\]' /HJ ' ;
Bl b ) s e e
(g) Left Bundle Branch Block (h) AV Block(1st)

Figure C.4: Arrhythmia recognition(3).
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