COMPARATIVE SOFT TISSUE MORPHOLOGY OF THE EXTANT HOMINOIDEA, INCLUDING MAN

Thesis submitted in accordance with the requirements of the University of Liverpool for the degree of Doctor of Philosophy

by
Sally Gibbs

VOLUME II

Hominid Palaeontology Research Group, Department of Human Anatomy and Cell Biology, The University of Liverpool, PO Box 147, Liverpool, L69 3BX

3.4 UPPER LIMB AND SHOULDER GIRDLE

3.4.1 MUSCLES

3.4.1.1 Shoulder

Deltoid

In all apes and Homo the deltoid takes origin from the lateral third of the superior clavicular border, the lateral margin of the clavicle and the whole length of the inferior border of the scapular spine ${ }^{35,89,106}$. The acromial fibres may be absent in Homo as a variant ${ }^{106}$. In both species of Pan ${ }^{73,88,89,108}$ and Pongo ${ }^{89,93}$ deltoid has fibres of origin from the infraspinous fascia; in Pan also from the intermuscular septa with teres minor and major ${ }^{3}$ and in Pongo also from the supraspinous fascia ${ }^{3,93}$. Deltoid is fused with the clavicular part of pectoralis major in $6 / 7 \mathrm{Pan}^{3,11,23,35,63,96}$, and with triceps in $2 / 3 \operatorname{Pan}^{3,38}$. The muscle is fused with brachialis in $3 / 4 \mathrm{Pan}^{23,38,}$ ${ }^{88}$, Gorilla ${ }^{82}$, and Pongo ${ }^{3}$. Fusion with neighbouring muscles occurs as a variant in Homo ${ }^{106}$.

In all apes and Homo the deltoid components converge to a tendon, inserting onto the region occupied in Homo by the deltoid tuberosity ${ }^{106}$ on the lateral side of the middle of the humerus ${ }^{11,35,89}$. In no ape does it extend below the middle of the humeral shaft ${ }^{35}$. The insertion is more elongated in Hylobates than in great apes ${ }^{35}$.

In Homo, Pan paniscus and Gorilla the deltoid is innervated by the axillary (circumflex) nerve ${ }^{73,82,106}$.

3.4.1.2 Arm

3.4.1.2.1 Ventral

Biceps brachii

In all apes and Homo biceps brachii has a double origin ${ }^{3,73,82,89,106}$, while in Hylobates the muscle may have only a single head ${ }^{72}$.

In great apes and Homo, the short head originates from the coracoid process of the scapula with coracobrachialis ${ }^{3,73,82,93,106}$. The origin is also shared with the coracohumeral ligament and the pectoralis abdominalis (3.3.1.1) in Gorilla ${ }^{82}$. The short head of Hylobates takes origin from the lesser tuberosity of the humerus, the proximal part of the bicipital groove and the medial intermuscular septum ${ }^{35,44}$. This corresponds to a septal head ${ }^{4 \dot{6}}$, which presents as a third bicipital head in $1 / 10 \mathrm{Homo}$, extending from the humerus to the belly of biceps ${ }^{53,106}$.

The origin of the long head in all apes and Homo is from the region of the supraglenoid tubercle ${ }^{73,82,93,106}$. However, in 1/6 Pongo where the supraglenoid tubercle is absent, the long head originates from the anterior surface of the scapula and the synovial sheath of the shoulder joint ${ }^{89}$. The long head in Hylobates originates from the apex of the glenoid fossa ${ }^{35}$.

In all apes and Homo the two bellies unite distally, inserting onto the radial tuberosity on the proximal radius ${ }^{3,44,73,82,88,89,93,106}$. The unusual short head of Hylobates additionally inserts fleshily into the interfascicular septa of flexor digitorum superficialis, having an intimate relationship with the fasciculi of digits III and IV ${ }^{44}$, and the tendon of insertion also merges with the intermuscular fascia giving origin to flexor carpi radialis ${ }^{44}$.

The bicipital aponeurosis, blending with the fascia over the flexor muscles of the forearm and passing to the ulna, is absent from Pongo ${ }^{89,93}$, while in African apes the aponeurosis is smaller than in $\mathrm{Homo}^{73,82, ~ 88, ~} 115$.

Innervated by a branch of the musculocutaneous nerve in all apes and $\mathrm{Homo}^{35,50,73,}$ 82, 88, 89, 106

Brachialis

In all apes and Homo brachialis originates from the distal half of the anterior humerus ${ }^{3,73,82,89,93,106}$, extending further proximally in Pongo ${ }^{89}$. In Homo, Gorilla and Pongo it also takes origin from the intermuscular septa ${ }^{3,82,106}$. In $1 / 5$ Pongo the origin is split into two parts from the anteromedian and anterolateral surfaces of the humerus respectively, which then fuse distally ${ }^{89}$. Brachialis is fused with coracobrachialis in great apes ${ }^{3,82,89}$. This origin is distal to the insertion of the deltoid in $\mathrm{Homo}^{106}, \mathrm{Pan}^{3,88}$ and $1 / 5$ Pongo 93, interdigitates with this insertion in Gorilla 82 and $1 / 5$ Pongo 93, and lies proximal to this insertion in 3/5 Pongo ${ }^{3,89}$.

In Pan, brachialis embraces a fascial band to pectoralis major ${ }^{88}$. In the right arm of a specimen of Pan, two 6 mm wide fleshy slips left the centre of the anterior aspect of brachialis and ran distally to join the posterior aspect of biceps near its tendon of insertion ${ }^{115}$. Such slips are recorded as rare anomalies in Homo ${ }^{106,115}$.

Insertion in great apes and Homo is into the ulnar tuberosity, on and distal to the coronoid process ${ }^{3,73,82,88,89,93,106}$. Some fibres in Gorilla and Pongo insert into the capsule of the elbow joint ${ }^{82,89}$, and in Pongo it is continuous with the ligament binding the humerus and ulna ${ }^{3}$. In African apes there is a fasciculus from the proximolateral margin of brachialis to the fascia of the forearm ${ }^{82,83,88}$.

It is innervated by the musculocutaneous nerve in all apes and $\mathrm{Homo}^{35,50,73,82,88,89,}$ ${ }^{106}$, in addition by the radial nerve in Homo and Gorilla ${ }^{35,82,106}$ and also by the median nerve in Gorilla ${ }^{35,82}$.

Coracobrachialis

In all apes and Homo coracobrachialis originates from the coracoid process of the scapula 3,23,63,73,82,50,88,89,106, in all but Hylobates along with the short head of biceps brachii ${ }^{3,11,23,63,82,88,89,106,112,113}$. In African apes, and as a variation in Homo, it sends fibres to the intermuscular septum ${ }^{35,88,106}$, and in Pan alone to dorsoepitrochlearis ${ }^{23,88}$.

A single muscle in Homo ${ }^{106}, 3 / 15$ Pan $^{22,63,104}, 1 / 5$ Gorilla 82 and Hylobates ${ }^{35,72}$, it has two parts as a variation in Homo^{61}, in 5/15 $\mathrm{Pan}^{3,11,23,35,88}$ and in $4 / 5$ Pongo 35, ${ }^{81}$. Three parts have been noted in $1 / 5$ Gorilla 35. The primitive coracobrachialis possessed 3 heads; coracobrachialis longus, brevis and medius ${ }^{112,113}$. The brevis head of the muscle has disappeared in all apes and $\mathrm{Homo}^{35,88,89}$, except in a rudimentary form in Gorilla ${ }^{35}$. The single-headed coracobrachialis results from fusion of the medius and longus heads ${ }^{112,113}$. In great apes coracobrachialis is fused with brachialis ${ }^{3,82,89}$, and in Pan alone with triceps ${ }^{3}$.

In all apes and Homo with the exception of Gorilla ${ }^{35,50,82}$ and Hylobates ${ }^{35,50}$, the musculocutaneous nerve passes through an interval in the muscle ${ }^{11,14,23,35,50,73,88,}$ 89, 106

In all apes and Homo the insertion of coracobrachialis is onto the medial surface of the humerus ${ }^{3,23,35,50,73,82,89,96,106}$, extending anteriorly in Homo and African apes $^{23,73, ~ 82,106 . ~ T h e ~ i n s e r t i o n ~ e x t e n d s ~ f u r t h e r ~ d i s t a l l y ~ i n ~ P a n ~ a n d ~ P o n g o, ~ a t t a i n i n g ~}$
the medial supracondyloid ridge ${ }^{3,35}$, almost to the medial condyle ${ }^{38}$, which is a variation in Homo^{106}. In Pan as part of a double insertion it may send muscular fibres into the brachial fascia ${ }^{23}$, while in Pongo it may insert additionally into the tendon of latissimus dorsi ${ }^{3}$.

In all apes and Homo, branches of the musculocutaneous nerve innervate coracobrachialis ${ }^{35,50,82,88,89,106}$, with the exception of $1 / 3$ Gorilla 50 and 1/2 Hylobates ${ }^{50}$. Branches of the median nerve also innervate coracobrachialis in Pan 88.

3.4.1.2.2 Dorsal

Anconeus

This is a small muscle, present in all apes and $\mathrm{Homo}^{3,11,35,37,73,82,93,106,115}$. In Homo and great apes it originates from the dorsal surface of the lateral epicondyle of the humerus ${ }^{73,82,93,106}$, additionally in Homo from the radial collateral ligament ${ }^{106}$.

In Pan, Pongo and Hylobates anconeus appears to be a continuation of the triceps ${ }^{3}$, 35, 38, 73, 89, 93 . Anconeus was blended with fibres of extensor carpi ulnaris in Hylobates ${ }^{35}$ and variably so in $H o m o{ }^{106}$.

In Homo and great apes it inserts onto the dorsal ulna ${ }^{73,82,93,106}$, extending laterally in Gorilla ${ }^{82}$.

Innervated by the radial nerve in Homo, Pan paniscus and Gorilla ${ }^{73,82,106}$, or by the ulnar nerve in $P a n^{115}$.

Dorsoepitrochlearis

In all apes, and in Homo when present, dorsoepitrochlearis originates from the tendon of latissimus dorsi ${ }^{4,5,7,8,17,19,24,28,34,36,38,39,42}$, in apes from the anteromedial aspect ${ }^{5,10,34,38}, 2.5 \mathrm{~cm}$ (Pan, Gorilla, Pongo, Hylobates ${ }^{15}$) to 5 cm $\left(\mathrm{Pan}^{5}\right)$ before the insertion. It may originate from the junction of the belly and tendon in Pan and Pongo ${ }^{4,36,37,45}$. In Gorilla it also takes origin from the lateral scapular border with the long head of triceps ${ }^{34}$.

A muscular dorsoepitrochlearis is present in around 5% of $\mathrm{Homo}^{3,22}$, although a fibrous slip is usually present ${ }^{42,45}$.

The muscle is described as being pierced by the ulnar nerve in Gorilla and Pongo ${ }^{6,8}$. It receives fibres from coracobrachialis in Pan ${ }^{24,36}$, but not Pongo ${ }^{37}$. Fibres of pronator teres arise from the inferior part of dorsoepitrochlearis in Pan^{5}, while the distal part of dorsoepitrochlearis inserts into the intermuscular septum from which pronator teres arises in Homo^{5}.

The insertion in all apes is into the medial humeral condyle ${ }^{4,5,10,19,24,28,34,36,38,39,}$ ${ }^{45}$, in Homo and all apes into the medial intermuscular septum between the condyle and coracobrachialis ${ }^{15,19,36,38}$. In Homo and great apes the insertion is connected with the long head of triceps ${ }^{5,26,42}$, and this forms the primary insertion in Homo, when present ${ }^{42}$.

Nerve supply in all apes (no information for Homo) is from a branch of the radial nerve ${ }^{5,15,28,34,38,45}$, described in Pan and Gorilla as giving rise to the branch to the long head of triceps ${ }^{5,34}$. Although dorsoepitrochlearis takes origin from latissimus
dorsi, it shares its nerve supply with triceps, and can be considered as a part of the latter muscle ${ }^{15,28,34,45}$.

Triceps brachii

In all apes and Homo triceps has three heads of origin ${ }^{3,35,63,82,89,93,106}$, while a 4th head is a frequent variation in Homo^{56}.

The long head in all apes and Homo originates from the lateral border of the scapula adjacent to the glenoid fossa ${ }^{3,38,82,89,106}$, with a more distally extended origin in apes than in Homo^{35}, involving a quarter to almost all of the border in $\mathrm{Pan}^{35,63,73,88,}$ 115, a third to a half in Gorilla ${ }^{35}$ and Hylobates ${ }^{35}$, and a half in Pongo ${ }^{35,}$ 89, 93 . In Pan the long head also takes origin from the intermuscular septa ${ }^{3}$. An additional origin from the capsule of the shoulder joint is a rare variation in Homo^{106}.

The lateral head in Homo, Pan and Pongo originates from the humerus just inferior to the humeral head and the insertion of teres minor ${ }^{3,73,88,89,93,106}$. In Homo and Pan it also originates from the lateral intermuscular septum ${ }^{3,106}$, and in Pan alone from the distal part of the capsule of the shoulder joint ${ }^{88}$.

The medial head in great apes and Homo originates further distally than the lateral head, on the posterior humerus distal to the insertion of teres major ${ }^{73,} 82,88,89,93,106$. In Homo, Pan and Pongo ${ }^{\text {3, 93, } 106}$ it originates additionally from the intermuscular septum. The humeral origin is situated further proximally in Pan than in Gorilla ${ }^{35,} 82$. Triceps is continuous with the anconeus in Pan, Pongo and Hylobates ${ }^{3,35,38, ~ 73, ~ 89, ~} 93$, and continuous with the deltoid in Pan^{63}. The dorsoepitrochlearis is associated with the triceps muscle in great apes and as a variation in $\mathrm{Homo}^{5,26,38,42}$. See 3.5.1.1.3 for further details.

The conjoined heads in great apes and Homo insert onto the proximal end of the ulnar olecranon ${ }^{73,82,88,93,106}$, in Pan and Pongo also giving fibres to the posterior wall of the elbow joint capsule ${ }^{88,89}$ and in Homo and African apes expanding to the fascia of the forearm ${ }^{23,82,106}$.

Innervated by the radial nerve in all apes and $\mathrm{Homo}^{35,73,82,88,89,106}$. Part of the triceps is innervated by a branch of the ulnar nerve in Pan ${ }^{11}$.

3.4.1.3 Forearm

3.4.1.3.1 Ventral

3.4.1.3.1.1 Superficial layer

Flexor carpi radialis

In great apes and Homo flexor carpi radialis takes origin from the medial humeral epicondyle ${ }^{3,82,89,93,106}$. In all apes, and as a variation in Homo^{106}, there is an additional origin from a fibrous septum attached to the oblique line of the radius, medial to the insertion of pronator teres ${ }^{3,23,27,28,35,54,82,88,89,93,115}$. In Homo and Pan there is an additional origin from the intermuscular septum ${ }^{3,106}$, which in Hylobates also receives the insertion of the short head of biceps brachialis ${ }^{44}$. In Pongo alone there is an additional origin from the ulna in common with pronator teres ${ }^{93}$.

In great apes flexor carpi radialis may be fused with flexor digitorum superficialis ${ }^{82}$, ${ }^{88,89}$, and in Pan and Pongo with pronator teres ${ }^{88,89}$.

Insertion in all apes and Homo is onto the palmar surface of the base of $\mathrm{MII}^{3,23,35,82,}$ $88,89,93,106,115$. Further insertion to the palmar surface of the base of MIII is present
in $\mathrm{Homo}^{106}, 5 / 10 \mathrm{Pan}^{35,88,115}$, Gorilla $^{35,82}, 3 / 7$ Pongo 35,89 and the single described Hylobates ${ }^{35}$. In African apes, and Homo as a variant, the insertion may display an extra tendon to the trapezium ${ }^{82,106,115 .}$

Innervated by the median nerve in great apes and $H o m o^{82, ~ 88,89, ~} 106$.

Flexor carpi ulnaris

In all apes and Homo flexor carpi ulnaris has a humeral origin from the medial epicondyle, and an ulnar origin from the olecranon and the superior two-thirds of the posterior ulnar surface ${ }^{3,35,73,82,88,89,93,106}$. The aponeurotic origin from the posterior ulna may extend in Pongo almost to the distal end of the bone ${ }^{93}$. In all except Hylobates fibres also originate from the antebrachial fascia ${ }^{3,82,93}$ and in Homo, Pan, and Pongo from the intermuscular septa ${ }^{3,106}$. In Pan there may be a slip from the annular ligament ${ }^{23}$.

Insertion in all apes and Homo is onto the pisiform ${ }^{3,23,35,73,82,88,89,93,106}$. A double insertion may be present in Pan and Gorilla ${ }^{22,23}$, and the insertion extends to the base of MV in Homo and Pan paniscus ${ }^{73,106}$.

Relative to flexor carpi radialis, flexor carpi ulnaris is larger in Pan than in Homo^{69}. The pisiform is also larger in Pan^{88}. In Pan and Pongo flexor carpi ulnaris gives origin to some fibres for flexor digitorum superficialis ${ }^{23,89,93}$.

The muscle is supplied in all apes and Homo by the ulnar nerve ${ }^{11,35,73,82,88,89,106}$. The ulnar nerve passes between the two heads in all apes ${ }^{23,35,82,88,89}$, with the exception of $1 / 5$ Pongo in which it runs along the deep surface of the muscle ${ }^{93}$, as it does in Homo^{106}.

In all apes and Homo flexor digitorum superficialis takes origin from the medial humeral epicondyle ${ }^{3,14,23,35,64,82,88,89,93,106}$, and with the exception of $1 / 3$ Gorilla, also from the coronoid process of the ulna ${ }^{23,35,63,82,88,89,106}$. The radial origin is present in all apes and Homo, with the exception of $2 / 13 \mathrm{Pan}^{33,62}$ and as a variation in $\mathrm{Homo}^{56,106}$. In Homo and African apes the humeroulnar head also takes origin from the intermuscular septum ${ }^{3,23,63,106}$, and in Homo alone from the medial collateral ligaments of the elbow ${ }^{106}$.

It forms four tendons in all apes and Homo ${ }^{3,35,52,89,106}$.
The tendon for digit II in all apes and Homo arises from the humeroulnar head ${ }^{3,23,35,}$ 63, 88, 89, 93, 106 , with the exception of $1 / 13 \mathrm{Pan}^{83}, 1 / 6 \mathrm{Pongo}^{89}$ and Hylobates ${ }^{35}$, in which it arises from the radial head.

The tendon for digit III arises from the radial head in all apes and $\mathrm{Homo}^{3,23,35,52,63,}$ 89, 93, 106, with the exception of $\mathrm{Homo}^{106}, 1 / 13 \mathrm{Pan}^{23}$ and $1 / 6 \mathrm{Pongo}^{93}$ in which it arises from the humeroulnar head.

The tendon for digit IV originates from the radial head in all apes and Homo ${ }^{23,} 35,106$ except Hylobates, in which it arises from the ulnar head ${ }^{35}$, and $\mathrm{Homo}^{106}, 1 / 13 \mathrm{Pan}^{88}$ and $1 / 6$ Pongo ${ }^{89,93}$ in which it originates from the humeroulnar head.

The tendon for digit V in all apes and Homo is produced by the humeroulnar head ${ }^{23,}$ 35, 88, 89, 93, 106 . In general, the tendons in apes are more split than in Homo.

In Pan, the tendons for digits II, III and IV also receive fibres from flexor carpi radialis ${ }^{63}$, those for digits IV and V take origin from the intermuscular septum ${ }^{63}$, and that for digit III additionally from the brachial fascia ${ }^{63}$. Flexor digitorum superficialis
is fused with flexor carpi radialis in great apes ${ }^{82,88,89,93}$ and fused with flexor pollicis longus in Gorilla ${ }^{82}$. Flexor digitorum superficialis was also fused with flexor carpi ulnaris in Pan and Pongo ${ }^{88,89,93}$. A slip may connect flexor digitorum superficialis with flexor digitorum profundus for digits II and IV in Pan ${ }^{23}$. The tendon for digit II in $1 / 3$ Gorilla is a separate muscle originating from the coronoid process ${ }^{82}$. In Pan this tendon may have two distinct heads with an incomplete tendinous intersection ${ }^{11,63}$, which can be present as a variation in $H o m o{ }^{63}$.

Many gibbons have flexor digitorum superficialis muscles that are slightly larger than flexor digitorum profundus, a condition not noted in great apes ${ }^{103}$.

Innervated by the median nerve in great apes and $\mathrm{Homo}^{82,88,89,106}$.

Palmaris longus

When present, in all apes palmaris longus originates from the medial humeral epicondyle ${ }^{3,63,82,93,106 . ~ I n ~ H o m o ~ a n d ~ P o n g o ~ t h e ~ o r i g i n ~ e x t e n d s ~ t o ~ t h e ~ i n t e r m u s c u l a r ~}$ septa ${ }^{93,106}$.

Palmaris longus is present in 19/28 Pan 11,13,14,23,35,45,52,83,88,104,115, in 6/19 Gorilla $^{45, ~ 82, ~} 104$, all Pongo ${ }^{3,14, ~ 22, ~ 27,28, ~ 35, ~ 71, ~ 93, ~ 104, ~ a n d ~ a l l ~ H y l o b a t e s ~}{ }^{35,104}$. In Homo, the incidence of absence of palmaris longus is given as between 3.9% and $20.4 \%^{1,12,}$ 56. 65 . Palmaris longus is fused with flexor carpi radialis and pronator teres in Gorilla 82. A slender muscle, in Pongo it has been described as separating into three slips inserting into abductor pollicis brevis, the palmar fascia and flexor digiti minimi brevis ${ }^{27,28}$.

In great apes and Homo, palmaris longus inserts into the deep fascia of the forearm ${ }^{3}$. 38, 93, ${ }^{106}$, including an aponeurotic attachment to the radius, extending into the radial
carpal ligaments ${ }^{63,82}$. The human attachment to the palmar aponeurosis is represented in Pan and Pongo by insertion into the palmar fascia ${ }^{3,63,93,106 .}$

Innervated by a branch of the median nerve in Homo and great apes ${ }^{82,89,106,115}$.

Pronator teres

In all apes and Homo pronator teres originates from the medial humeral epicondyle ${ }^{3,12,82,88,106}$. In Homo, Pan and Pongo it also takes origin from the medial intermuscular septum ${ }^{3,88,106}$. In Homo $^{106}, 5 / 9$ Pan $^{35,62,88}, 1 / 4$ Gorilla 35,82, and 3/7 Pongo ${ }^{35,89,93}$ there is an ulnar origin from the coronoid process, which is absent from Hylobates ${ }^{35}$. The ulnar head may be absent from Homo ${ }^{106}$. In Gorilla there may be an additional origin from the capsule of the humeroulnar joint ${ }^{82}$, in 1/9 Pan from the distal part of the tendon of dorsoepitrochlearis ${ }^{11}$, and in Pongo from the radius ${ }^{3}$. In Pan, and as a variation in $\operatorname{Homo}^{77,88}$, the ulnar head is fused with flexor digitorum superficialis, while in Pan the proximal fibres insert into the supinator muscle ${ }^{88}$. In Pan and Pongo, the humeral head is fused with flexor carpi radialis ${ }^{3,88,89}$.

Insertion in all apes and Homo is to the middle of the lateral surface of the radius ${ }^{3,11}$, 35, 82, 89, 93, 106, 115 , extending anteriorly in Hylobates ${ }^{35}$.

Innervation of pronator teres is via the median nerve in great apes and Homo ${ }^{11,13,14,}$ 23, 35, 82, 88, 89, 93, 106 , and via the ulnar nerve in Gorilla ${ }^{82}$. The nerve in each case passes through an interval between the humeral and ulnar heads ${ }^{11,13,14,35,82,88,89,93,}$ 106

3.4.1.3.1.2 Deep layer

In all apes and Homo flexor digitorum profundus originates from the proximal twothirds of the anterior ulnar surface and the interosseous membrane ${ }^{3,11,23,35,63,73,82,}$ 88, 93, 103, 106 . In Homo and Gorilla the origin extends proximally to the medial aspect of the coronoid process ${ }^{82,106}$, while in Hylobates and Homo as a variation, the muscle attaches to the medial humeral condyle ${ }^{35,103,106}$. Fibres of origin from the aponeurosis of flexor carpi ulnaris are present in Homo, Pan and Pongo ${ }^{88,89,106}$, also attaching to deep fascia in Pongo ${ }^{89}$. In all apes, there is an additional bony origin from the proximal two-thirds of the anterior radial surface ${ }^{3,23,35,63,73,82,93,103}$, in great apes extending to the intermuscular septum ${ }^{3,63,82}$.

The radial part (humeroradial in Hylobates ${ }^{35}$) corresponds to the flexor pollicis longus of Homo^{106}. In those great apes in which a true flexor pollicis longus is not present, this radial part inserts onto the distal phalanx of digit $\mathrm{II}^{3,22,35,38,63,73,93}$, occasionally inserting in addition onto digit $\mathrm{I}^{22,35}$. In Hylobates, the radial part also inserts onto digit III^{35}.

The ulnar part in all apes and Homo inserts onto the bases of the distal phalanges of digits IV and $\mathrm{V}^{3,11,23,35,52,63,73,82,88,93,106}$ and in great apes and Homo also onto digit $\mathrm{III}^{3,23,35,52,63,73,82,88,93,106}$. Homo and Pan alone share an insertion of this ulnar part onto digit $\mathrm{II}^{23,106}$. Slips may connect the terminal tendons of digits III and IV, or IV and V in Homo ${ }^{106}$ and $P a n^{52,63}$.

Innervation in all apes and Homo is jointly from branches of the median nerve and the ulnar nerve ${ }^{11,35,73,82,88,89,106}$.

Flexor pollicis longus

In African apes and Homo flexor pollicis longus originates from the anterior radius and the interosseous membrane ${ }^{3,66,82,88,106}$. In Homo^{106} the origin is from the middle half of the radius, and in Pan from almost the whole length ${ }^{88}$. In Pan it also takes origin from the intermuscular septum ${ }^{3}$, in Gorilla and Pongo from the carpus ${ }^{19,}$ ${ }^{35}$ and in the African apes it may originate from the palmar fascia ${ }^{38,40,52,115}$. A slender muscle ${ }^{10,19,82}$, in all apes it is usually attached to the flexor digitorum profundus ${ }^{11,13,14,22,23,35,38,82,92,104}$, but is independent in $\mathrm{Homo}^{106}, 1 / 43 \mathrm{Pan}^{52}$ and 2/9 Pongo ${ }^{14}$. In these apes it may appear to arise from the areolar tissue between flexor digitorum superficialis and flexor digitorum profundus ${ }^{10}$. A long flexor tendon to the pollex from flexor digitorum profundus is absent from $13 / 43$ Pan 19,45,66,92, ${ }^{104}, 11 / 23$ Gorilla $^{7,12,35,45,66}, 3 / 9$ Pongo 13,14,27,28,45,89 and as a variation in Homo ${ }^{106}$.

In great apes and Homo the muscle inserts onto the base of the distal phalanx of the pollex ${ }^{10,23,35,38,40,82,88,104,106,115}$. An additional tendon from flexor pollicis longus to digit II may be present in Pan ${ }^{3,11,35,88,115}, 1 / 5$ Hylobates 45 and as a variation in Homo ${ }^{35,}$ 63, 115.

McMurrich ${ }^{64}$ and Keith ${ }^{45}$ conclude that when absent, the flexor pollicis longus should be regarded as still undifferentiated from the radial element of flexor profundus. Gradually the portion associated with the thumb increases, and dissociates from the part belonging to digit II until the pollical portion grows large enough to be a true flexor pollicis longus ${ }^{35}$.

Innervated by the median nerve in Homo and African apes ${ }^{11,82,106}$. In Homo and Pan, the innervation is by one, or frequently two branches from the anterior interosseous branch of the median nerve ${ }^{11,66,106}$.

Pronator quadratus

In great apes and Homo pronator quadratus takes origin from the distal anterior part of the ulna ${ }^{3,23,73,82,88,89,93,106 .}$

A small thin muscle ${ }^{12,35,82}$, the direction of the muscle fibres is more oblique in Asian apes than in African apes, and least oblique of all in Homo^{35}. It forms two layers in Pan ${ }^{23}$, and two parts in Gorilla, in which the distal part is smaller and more oblique, and the proximal part is larger and less oblique ${ }^{82}$.

Insertion in great apes and Homo is to the distal anterior radius ${ }^{3,73,82,88,89,93,106}$. In Pan pronator quadratus inserts in addition into the joint capsule of the wrist and onto the ridge of the trapezium ${ }^{23}$.

Innervated by anterior interosseous branches of the median nerve in Homo, Pan paniscus, Gorilla and Pongo ${ }^{\text {73, 82, 89, 106 }}$, but by the posterior interosseous branch of the radial nerve in Hylobates ${ }^{35}$.

3.4.1.3.2 Dorsal

3.4.1.3.2.1 Superficial group

Brachioradialis

This muscle originates in all apes and Homo from the lateral supracondylar crest of the humerus and the intermuscular septum ${ }^{3,35,73,82,88,89,90,93,106,115, \text { originating }}$ more distally in Homo ${ }^{106}$ and Hylobates ${ }^{90}$ than in the great apes ${ }^{13,14,35,90,115 .}$

The muscle is fused with brachialis anticus in both species of $\mathrm{Pan}^{73,88}$ and Hylobates ${ }^{35}$, and with coracobrachialis in Pongo ${ }^{3}$. In the latter it also gives origin to flexor carpi radialis ${ }^{93}$.

Insertion in all except Hylobates is onto and above the lateral surface of the radial styloid process ${ }^{3}$, 35, 73, 82, 88, 89, 93, 115 . The insertion in Hylobates does not reach the styloid process ${ }^{35, ~ 90}$, although still on the anterolateral surface of the radial shaft, extending further proximally than in all except Pongo ${ }^{35,} 89,90$.

The muscle is innervated by the radial nerve in Homo and great apes ${ }^{73,82,89,90,106,}$ 115

Extensor carpi radialis brevis

In all apes and Homo extensor carpi radialis brevis originates by a common head with the other extensor muscles from the lateral humeral epicondyle ${ }^{3,73,82, ~ 88, ~ 88, ~ 90, ~}$ 93, 106 . In Homo, Pan and Pongo it also takes origin from the radial collateral ligament ${ }^{35, ~ 88, ~ 89, ~ 90, ~} 106$ and in Homo and Pongo from the intermuscular septum ${ }^{3,89,}$ ${ }^{106}$. Pan has a origin from the fascia over extensor digitorum ${ }^{88}$, and Pongo from the fascia over supinator ${ }^{3}$.

In Homo ${ }^{106}$ and Pan 3 the muscle becomes tendinous about midway down the forearm, while in Gorilla ${ }^{82}$ and Pongo ${ }^{3,93}$ this point is much nearer the wrist. Fusion of this muscle with extensor carpi radialis longus is present in 22% of Homo^{105}, and in occasional specimens of Pan 3,88, Pongo 3 and Hylobates ${ }^{90}$. In all apes and Homo the muscle runs deep to abductor pollicus longus ${ }^{82,90,93,106}$.

The insertion is onto the dorsoradial base of MIII in all apes and Homo ${ }^{3,73,82, ~ 88, ~ 89, ~}$ ${ }^{90,93,106}$, while additional insertion to MII is present in Gorilla ${ }^{82}$ and Hylobates ${ }^{48}$ to

MII alone in H .pileatus ${ }^{90}$, and as a variant in $1.5-32 \%$ of Homo 105, 106, 109-114. Additional insertion to MI is occasionally present in Pongo^{71} and as a rare variation in Homo^{90}.

Innervated by branches of the radial nerve in Homo, Pan paniscus and Gorilla ${ }^{35,73,}$ ${ }^{82,} 106$, specifically the posterior interosseous branch of the radial nerve in Homo^{106}.

Extensor carpi radialis longus

This muscle originates in all apes and Homo from the lateral supracondylar crest, and the lateral intermuscular septum as far as the lateral humeral epicondyle ${ }^{3,35,73,82,88,}$ 89, 90, 93, 106

In all apes and Homo the muscle runs with extensor carpi radialis brevis, and is crossed by the pollical extensor tendons ${ }^{3,35,82,88,89,93,106}$. The tendinous part of the muscle is longer than the fleshy part in all except Pongo ${ }^{35,82,93}$. Fusion of this muscle with extensor carpi radialis brevis is present in 22% of Homo^{105}, and in occasional specimens of Pan $^{3.88}$, Pongo 3 and Hylobates ${ }^{90}$.

In all apes and Homo it inserts onto the dorsolateral aspect of the base of $\mathrm{MII}^{3,35, ~ 73, ~}$ ${ }^{82,88,89,90,93}$, occasionally extending to the proximal centimetre of the shaft in Pan ${ }^{88}$.

An accessory tendon to MI is present in 4.5-12.5\% of Homo ${ }^{56,109-114}$, and has been found in $4 / 8$ Hylobates ${ }^{35,90}$. Homo may also have an accessory attachments to the carpus or the radius; these are not found in other apes ${ }^{90}$.

Innervated by the radial nerve in all apes and $\operatorname{Homo}^{35,73,82, ~ 88, ~ 89, ~} 106$.

In all apes and Homo extensor carpi ulnaris originates from the lateral humeral epicondyle and the ulna ${ }^{3,35,73,82,89,90,93,106 . ~}$

The muscle in all apes and Homo inserts onto the ulnar surface of the base of MV^{3}. 35, 73, 82, 89, 90, 93, 106.

The metacarpal insertion is onto the ulnar aspect of the dorsal surface in African apes 82,90, the ulnar surface in Homo and Hylobates ${ }^{90,106}$, and the ulnar aspect of the volar surface in Pongo ${ }^{90}$. A prolongation to the first phalanx of digit V has been found in a single specimen of Pan^{62}, which is present in less than 10% of $\mathrm{Homo}{ }^{56,60}$, 62, 109-114

Innervated by branches of the radial nerve in Homo, Pan paniscus and Gorilla ${ }^{73,82,}$ 106

Extensor digiti minimi

In all apes and Homo with the exception of Pan, extensor digiti minimi originates from the intermuscular septum ${ }^{35,82,88,89,90,93,106}$. In all except Hylobates ${ }^{35}$ and occasionally in Gorilla ${ }^{35}$ the bony origin is from the lateral humeral epicondyle with extensor digitorum ${ }^{2,73,89,93}$. An ulnar origin may be present in Homo, Pan and Asian apes ${ }^{63,90}$.

Absence of the entire muscle has been reported in 2-5\% of $\mathrm{Homo}^{56}, 3 / 31 \mathrm{Pan}^{3,11,90}$ and 1/23 Pongo ${ }^{90}$.

Insertion in all apes and Homo is to the dorsal aponeurosis of digit $\mathrm{V}^{2,11,13,62,63,73,}$ ${ }^{90,106}$, although Pongo shows an additional tendon to digit IV in 20/23 cases ${ }^{2,3,14,35,}$

89, 90, 93 , and this is present in $6-11 \%$ of $\mathrm{Homo}^{56,79,90,106,109-114}, 5 / 31 \mathrm{Pan}^{23,90}$, and 1/14 Gorilla ${ }^{90}$.

Restriction to digit V is normal for Homo (89-94\%), Pan (73\%), Gorilla (93\%) and Hylobates (12/12) ${ }^{90}$.

Innervated by branches of the radial nerve in Homo, Pan paniscus and Gorilla ${ }^{73}$, 82,106

Extensor digitorum

In all apes and Homo extensor digitorum originates from the lateral humeral epicondyle ${ }^{3,63,73,88,89, ~ 93,106 . ~ H o m o, ~ P a n, ~ a n d ~ P o n g o ~ s h a r e ~ a n ~ o r i g i n ~ f r o m ~ t h e ~}$ intermuscular septa ${ }^{\text {3, 63, 88, 89, 106 }}$, Pan and Pongo from the interosseous membrane ${ }^{3,}$ ${ }^{63,88,89}$ and great apes occasionally show a double origin from the radius and ulna ${ }^{63}$. 89, 90, 93 , more commonly the ulna alone in Asian apes ${ }^{2,90,93}$. Homo alone has an origin from the ligaments of the elbow ${ }^{106}$, but shares with Pan an origin from the antebrachial fascia ${ }^{3,88,106 .}$

The tendon for digit IV sends a slip to that for digit V in Homo ${ }^{106}$, African apes ${ }^{11,23,}$ 63, 73, 82, 88, 90 and Hylobates ${ }^{35}$, and sends a slip to that for digit III in Homo and great apes 3,11,63,90,106. A connection between digits III and II in Homo is weak, and may be absent ${ }^{58}$. These interconnections may constrain independent extension of the digits ${ }^{106}$.

The insertion of the muscle is by tendons into the bases of the proximal phalanges of digits II to V in all apes and $\mathrm{Homo}^{2,3,14,52,63,73,82,88,89,90,103,106}$, although the tendon to digit V is absent from approximately 27% of $\mathrm{Homo}^{39,63,105}$ and occasionally absent from $\mathrm{Pan}^{90,104}$ and Asian apes ${ }^{90,93}$. The insertion in great apes
may extend to the middle or distal phalanges ${ }^{3,73,82,88,93}$. While Homo shows an insertion into the capsules of the metacarpophalangeal joints ${ }^{106}$, Pan and Pongo share an insertion into the interphalangeal joints ${ }^{88,93}$.

Innervated by branches of the radial nerve in Homo, Pan paniscus, and Gorilla ${ }^{73,} 82$, 106

3.4.1.3.2.2 Deep group

Abductor pollicis longus

In all apes and Homo abductor pollicis longus originates from the dorsal ulna, interosseous membrane and dorsal radius ${ }^{3,63,73,82, ~ 88, ~ 90, ~ 93, ~ 106 . ~ P a n ~ a n d ~ P o n g o ~ a l s o ~}$ show an origin from the intermuscular septum ${ }^{3,63}$.

The muscle is variably fused with abductor pollicis longus at origin in all apes and Homo $^{3,20,23,25,35,52,76,78, ~ 79, ~ 82, ~ 87, ~ 88, ~} 97$ 105, 106, 115.

The insertion of this muscle is complex and variable. In all apes and Homo, there is always an insertion to the base of $\mathrm{MI}^{2,11}, 35,38,52,63,73,78,82,89,90,93,103,104$.

An insertion to the trapezium is present in around 58% of $\mathrm{Homo}^{78,90}, 39 / 39 \mathrm{Pan}^{3,10,}$ 11, 23, 35, 62, 63, 73, 88, 90, 104, 115 , 11/19 Gorilla ${ }^{82,90}, 17 / 23$ Pongo 2,10,35,90,93 and 12/15 Hylobates ${ }^{\text {10, 35, } 90}$.

A radial sesamoid bone, which is usually absent from Homo ${ }^{90,115}$ and Gorilla ${ }^{57}$, forms a point of insertion in 11/39 Pan $^{3,10,23,35,88,90,115}, 1 / 19$ Gorilla $^{90}, 6.5 / 23$ Pongo ${ }^{35,89,90}$, and 10/15 Hylobates ${ }^{10,35,90}$.

From the literature, the most common pattern of insertion is to all three osseous structures in Hylobates, and to MI and the trapezium in great apes and Homo.

Insertion onto all 3 structures never occurs in Homo or Gorilla ${ }^{90}$, while insertion onto MI alone never occurs in Pan^{90}. Additionally, insertion onto the scaphoid bone has been reported in $P a n^{10,38}$.

	Homo	Pan	Gorilla	Pongo	Hylobates
MI, trapezium, sesamoid	-	28%	-	15%	47%
MI, trapezium	58%	72%	58%	59%	27%
MI, sesamoid	-	-	5%	13%	20%
MI	$37-42 \%$	-	37%	13%	6%

Table 3.4.1. Variation in the osseous insertion of abductor pollicis longus in hominoids.
Innervated in Homo, Pan paniscus and Gorilla by branches of the radial nerve ${ }^{73,82,}$
106

Extensor indicis

In all apes and Homo extensor indicis originates from the dorsal ulna ${ }^{3,63,73,82,90,93,}$ ${ }^{106}$. Homo and Asian apes share an additional origin from the interosseous membrane ${ }^{3,90,93,106}$. Origins from the distal radius and the intermuscular septum have been described in Pan and Pongo ${ }^{3,88,93}$.

It has been described as small or absent in great apes ${ }^{7,22,34,47,49,55,70,90}$, but is rarely absent from $\mathrm{Homo}^{31,56,98,105}$

In addition to dorsal aponeurotic digital insertions, all apes except Gorilla occasionally show slips to the dorsal aspect of the base of the 1 st phalanges ${ }^{3,35,63,93}$. Extensor indicis in Gorilla has been described as inserting onto the dorsal hamate and the capitate ${ }^{82}$.

The insertion of extensor indicis is fairly complex. The most common pattern of insertion in Homo and African apes is digit II alone ${ }^{3,23,35,38,63,73,82,88,90,106,108}$, in Pongo digits II and $\mathrm{III}^{3,35,89,90}$, and in Hylobates digits II, III and IV ${ }^{35,90}$.

	Homo	Pan	Gorilla	Pongo	Hylobates
II, III, IV, V	-	-	-	5%	7.5%
II, III, IV	very rare	4%	-	11%	92%
II, III	$5-13 \%$	21%	-	66%	-
II, IV	-	4%	-	-	-
III	-	4%	-	13%	-
II	$87-95 \%$	68%	100%	5%	-

Table 3.4.2. Variations in the insertion of extensor indicis in hominoids. Adapted from data in ${ }^{\mathbf{9 0}}$. Innervated by the radial nerve in Homo, Pan paniscus and Gorilla ${ }^{73,82,106}$, specifically by the posterior interosseous branch of the radial nerve in Homo 106.

Extensor pollicis brevis

When present, in all apes and Homo extensor pollicis brevis originates from the distal radius ${ }^{3,35, ~ 88, ~} 106$, in African apes and Homo it also takes origin from the interosseous membrane and in African apes, and rarely in Homo, from the ulna distal to abductor pollicis longus ${ }^{3,82, ~ 88,90,106}$. The muscle is variably fused with abductor policis longus at origin in all apes and $\mathrm{Homo}^{3,20,23,25,35,52,76,78,79,82, ~ 87, ~ 88,97 ~ 105, ~}$ 106, 115 . In Pan, the muscle also takes origin from the intermuscular septa ${ }^{3}$.

Extensor pollicis brevis is absent from 1-6\% of Homo $^{78,105,} 109-114,6 / 14$ Pan 2,111,13, ${ }^{47,73,90}, 8 / 18$ Gorilla $^{2,90}, 3 / 6$ Pongo 2,14,90 and 14/15 Hylobates ${ }^{90}$.

The insertion in Homo and Gorilla is to the base of the proximal phalanx of digit I^{35}. ${ }^{82,90,103,106}$. In all apes, the muscle inserts onto the lateral base of $\mathrm{MI}^{3,22,23,35,38,52,}$ 82, 88, 89, 115

Innervated by the radial nerve in Homo and Gorilla ${ }^{82,106}$, specifically by the posterior interosseous branch of the radial nerve in Homo^{106}.

Extensor pollicis brevis should perhaps apply only to the part of the muscle complex which inserts upon the phalangeal part of the thumb ${ }^{90}$, but Ziegler believes this is unreasonable in view of the general variability of muscle insertions ${ }^{115}$.

Extensor pollicis longus

In all apes and Homo extensor pollicis longus originates from the proximodorsal ulna and the interosseous membrane ${ }^{2,3,11,23,73,82,88,90,93,106}$. In Pan it also takes origin from the intermuscular septa ${ }^{3}$.

Extensor pollicis longus is absent from 1.5% of Homo^{78}. Kohlbrügge concluded that extensor pollicis longus is smaller in great apes than in Homo^{49}, but it is not true of all individuals, and the muscle can also be poorly developed in Hylobates ${ }^{91}$.

The muscle inserts onto the base of the distal phalanx of the pollex in all apes and Homo 2,3,23,38,73,82,88,89,90,93,106,115. All apes also show an insertion as an expansion or slip to the base of the proximal phalanx of the pollex ${ }^{11,35,82,89,90,93,}$ ${ }^{115}$, and this occurs as a variant in Homo^{78}. Gorilla occasionally has a slip to digit II^{35}, and the tendon in Pongo may attain insertion via the capsule of the metacarpophalangeal joint ${ }^{90,93}$.

Innervated by the radial nerve in Homo, Pan paniscus and Gorilla ${ }^{73,82,106}$, specifically by the posterior interosseous branch of the radial nerve in Homo^{106}.

Supinator

In all apes and Homo supinator originates from the supinator crest on the proximal ulna $^{\text {3, 73, 82, 90, 93, } 106 \text {, and also (variably in Pongo)from the lateral humeral }}$ epicondyle ${ }^{73,82,90,93,106}$. An origin from the ligaments of the elbow joint is present in Homo ${ }^{106}$ Gorilla 82 and Pongo ${ }^{3}$.

Supinator comprises about 7% of total antebrachial musculature in great apes, 6% in hylobatids and less than 5% in Homo^{103}. Homo is highly significantly different from hylobatids and great apes, but there appears to be no significant differences between apes ${ }^{103}$. In $1 / 7$ Pan, rather than being embedded in the supinator muscle as in Homo and all other apes ${ }^{11,13,82,88,89,90,106}$, the posterior interosseous nerve was covered by fascia on the surface of the muscle ${ }^{35}$.

The insertion is onto the proximal radius in all apes and Homo, extending further distally in apes ${ }^{3,73,82,88,89,90,93,106,115}$.

In all apes and Homo the muscle is pierced and innervated by the deep branch of the radial nerve ${ }^{11,35,73,82,88,89,90,106}$.

3.4.1.4 Hand

3.4.1.4.1 Hypothenar

The hypothenar musculature constitutes a similar percentage of the total hand musculature in Homo and Pan ${ }^{103}$.

Palmaris brevis

Data on palmaris brevis are sparse. In Homo and Gorilla the muscle originates from the annular ligament ${ }^{82,106}$, and in Homo and both species of Pan from the palmar fascia ${ }^{13,73,106}$. In Gorilla alone it also originates from the pisiform ${ }^{82}$.

It is absent from $1 / 5$ Pan 35, from 1/2 Gorilla ${ }^{35}$ and from single specimens of Pongo and Hylobates ${ }^{35}$. In Homo and Gorilla the muscle is described as flat ${ }^{82,106}$, although in Gorilla the muscle has a triangular apex at insertion, and the pisiform part is
almost longitudinal ${ }^{82}$. Raven comments that palmaris brevis appears to be a specialized split from abductor digiti minimi ${ }^{82}$.

In African apes and Homo it inserts onto the skin of the ulnar border of the palm ${ }^{73,82,}$ 106

Innervation in Homo, Pan paniscus and Gorilla is via the superficial branch of the ulnar nerve ${ }^{73,82,106}$.

Abductor digiti minimi

Abductor digiti minimi originates in all apes and Homo from the pisiform bone ${ }^{35,73 \text {, }}$ 82, 88, 93, 106 . In Homo alone it also takes origin from the pisohamate ligament and the tendon of flexor carpi ulnaris ${ }^{106}$.

Pan and Pongo differ in the proportions of the muscle; a short belly and long tendon is present in Pan, while in Pongo the muscle has a long belly and a short tendon ${ }^{89}$. In all it lies along the ulnar border of the palm ${ }^{35,82,88,93,106}$.

In all apes and Homo the muscle inserts onto the ulnar margin of the base of the proximal phalanx of digit $\mathrm{V}^{35,73,82,88,93,106}$. In apes the insertion is blended with the insertion of flexor digiti minimi brevis ${ }^{35,88}$ which may occur as a variation in $H o m o{ }^{106}$. The muscle also partly radiates into the extensor aponeurosis of digit V in Homo and Pan paniscus ${ }^{73,106}$ and inserts into the capsule of the metacarpophalangeal joint in Gorilla ${ }^{82}$.

Innervated by the ulnar nerve in Homo, Pan paniscus and Gorilla ${ }^{73,82,106}$.

Flexor digiti minimi brevis

In all apes and Homo flexor digiti minimi brevis originates by a single head from the flexor retinaculum and the hamulus of the hamate bone ${ }^{35,73,82,88,93,106}$. In all apes the origin is closely blended with that of opponens digiti minimi ${ }^{35,82,88}$. Flexor digiti minimi brevis may be absent from Homo ${ }^{106}$.

Insertion in all apes and Homo is onto the palmar surface of the base of the proximal phalanx of digit V in common with abductor digiti minimi ${ }^{11,29,35,73,82, ~ 88, ~ 93,106,}$ while in Hylobates it may send tendinous extensions to fibrous structures at the distal end of the proximal phalanx or base of the middle phalanx ${ }^{29,35}$ and a weak tendon may continue from the base of the middle phalanx into the pulp of digit V^{29}. In Gorilla it also inserts into the capsule of the metacarpophalangeal joint, and has an aponeurotic expansion to the extensor tendon on the dorsal surface ${ }^{82}$. Innervated by the ulnar nerve in Homo, Pan paniscus and Gorilla ${ }^{73,82,106}$.

Opponens digiti minimi

In all apes and Homo opponens digiti minimi originates from the flexor retinaculum, and the hamulus of the hamate bone ${ }^{35,73,82,88,93,106}$. The origin is blended with that of flexor digiti minimi brevis in all apes ${ }^{35,82,88}$.

The deep ulnar nerve and vessels pass over the dorsal surface of the muscle in all apes and Homo ${ }^{35,106}$.

It crosses obliquely ulnarwards to insert onto the ulnar margin of MV in all apes and $H_{o m o}{ }^{35,73,82,88,93,106}$, extending ventrally in Gorilla ${ }^{82}$.

Innervated by the ulnar nerve in Homo, Pan paniscus and Gorilla ${ }^{73,82,106}$.

3.4.1.4.2 Thenar

Abductor pollicis brevis

In all apes and Homo abductor pollicis brevis originates from the scaphoid tubercle and the radial superior aspect of the flexor retinaculum ${ }^{10,23,35,73,82,88,89,106}$. Fibres of origin from the trapezium may be present in Homo and great apes ${ }^{2,82,93,106}$. The muscle divides into slips in $2 / 4 \mathrm{Pan}^{2,88}$ and Gorilla ${ }^{82}$, and may be reinforced by slips from flexor pollicis brevis in Pan^{23} and Hylobates ${ }^{10}$.

The insertion in all apes and Homo is to the radial sesamoid bone and the proximal phalanx of the pollex ${ }^{10,23,35,73,82,88,93,106}$, extending to the middle or distal phalanx in 2/6 Pan 23,35. The insertion may include MI in Pan 2,52, Gorilla ${ }^{82}$, and Hylobates ${ }^{35}$. Innervation in all apes and Homo is via the median nerve ${ }^{10,73,82,106}$, while Gorilla has additional innervation from a branch of the deep palmar ramus of the ulnar nerve ${ }^{82}$.

Flexor pollicis brevis

In Homo flexor pollicis brevis usually has two heads, a radial or superficial head, and an ulnar or deep head ${ }^{106}$.

The radial head in all apes and Homo originates from the flexor retinaculum ${ }^{10,82,88,}$ ${ }^{93,103}$, in Homo and great apes from the trapezium ${ }^{10,73,82,88,93,103,106}$, while Asian apes share an additional origin from the proximal end of MI^{10}.

The radial head may be fused with opponens pollicis in Gorilla ${ }^{82}$, which occurs as a variation in Homo ${ }^{106}$.

When present, in great apes and Homo the ulnar head originates from the trapezoid ${ }^{10,73,93}$, from the capitate in Homo alone ${ }^{106}$, while in Homo and Hylobates it originates from ligaments in the vicinity of these bones ${ }^{35,106}$. It additionally takes origin from the distal end of MI in all apes ${ }^{10,35,82,88,93,103}$, extending to MII in Pan paniscus and Hylobates ${ }^{35,73}$. African apes and Hylobates also share an origin from the flexor retinaculum ${ }^{88}$.

The ulnar head is absent from 3/12 Pan ${ }^{19,23,35}, 1 \star / 6$ Gorilla 19,35 and $1 / 5$ Hylobates ${ }^{19}$ and may be absent from Homo as a rare variation ${ }^{18}$.

As a consequence of the increase in size in adductor pollicis obliquus, the true ulnar head of the flexor pollicis brevis has become reduced in size and pressed into a deeper position in great apes ${ }^{6,35}$. An ulnar head is found in all primates in which the thumb is truly opposable, with the exception of those in which the thumb is reduced, such as African apes, or modified such as Hylobates ${ }^{19}$. However an ulnar head is present in Pongo, even though the thumb in Pongo is more reduced than in African apes. Day and Napier suggest that as structural brachiators there is little need for special musculature for opposition in African apes ${ }^{19}$.

Insertion in all apes and Homo with the exception of Pan is to the radial sesamoid bone of the metacarpophalangeal joint of the thumb ${ }^{9,82,103,106}$, and to the capsule of this joint in Gorilla, extending to MI itself ${ }^{82}$. Great apes share an insertion to the proximal phalanx of the thumb ${ }^{10,73,82,88,93,103}$, extending to the distal phalanx in all apes 9,38,52,82,103,104. The ulnar head in Gorilla inserts onto the bases of MII and MIII, and the palmar ligaments ${ }^{82}$.

A dual innervation from the median and ulnar nerves is present in Homo, Pan paniscus and Pongo ${ }^{\text {10, 35, 73, 106 }}$, the other apes obtaining innervation solely from the median nerve ${ }^{10,11,35,82}$.

Opponens pollicis

In great apes opponens pollicis takes origin from the radial sesamoid bone ${ }^{10,82}$, and in Homo and African apes from the tubercle of the trapezium ${ }^{10,82,88,106}$. In addition Homo and Pan share an origin from the flexor retinaculum ${ }^{10,22,23,73,88,106 .}$

The muscle is small or absent in $\mathrm{Pan}^{19,26,63}$ and Pongo ${ }^{10,15}$, but described as strong in Hylobates ${ }^{10}$.

In all apes and Homo the muscle inserts onto the radial margin of $\mathrm{MI}^{10,35,73,82,88,93,}$ ${ }^{106}$, extending ventrally in Gorilla 82, and sending slips forward to the radial sides of the bases of the proximal and middle phalanges in Hylobates ${ }^{35}$.

3.4.1.4.3 Digital

Accessory interosseous

An accessory interosseous muscle is present in Hylobates and Symphalangus, originating from the first dorsal interosseous or from flexor pollicis brevis ${ }^{29,30,48,95}$.

The accessory interosseous inserts onto the base and ventrolateral shaft of the second phalanx of digit $\mathrm{II}^{29,40}$, sometimes with a small fleshy extension to the pulp of the digit ${ }^{29,41}$. It may insert into the extensor expansion at or just distal to the proximal interphalangeal joint ${ }^{29,95}$, and appears to have a more extensive insertion in Hylobates than in Symphalangus, reaching to the distal phalanx in Hylobates ${ }^{10,48}$, but only to the distal end of the middle phalanx in Symphalangus ${ }^{48}$.

Dorsal interossei

Four dorsal interossei are present in all apes and Homo $^{11,23,35, ~ 73, ~ 82, ~ 89, ~ 93, ~} 106$.

The first dorsal interosseous has an origin from ulnar MI and radial MII in all apes and $\mathrm{Homo}^{10,73,82,93,106}$, with the exception of a single specimen of Pan in which the origin is entirely from MII^{11}. The origin from MI is reduced in Hylobates ${ }^{10}$. The muscle extends dorsoproximally on MI in Gorilla ${ }^{82}$. In addition, in Gorilla the muscle takes origin from the triquetrum ${ }^{82}$, and in Hylobates from the trapezium ${ }^{10}$.

The second dorsal interosseous takes origin in great apes and Homo from ulnar MII and radial MIII ${ }^{73,82,93,106}$, extending ventrally on MIII in Gorilla ${ }^{82}$, and dorsally on MII in Pongo ${ }^{93}$.

The third dorsal interosseous originates in great apes and Homo from ulnar MIII and radial MIV ${ }^{73,82,93,106}$, extending dorsally on MIV in Gorilla and Pongo ${ }^{82,93}$.

The 4th dorsal interosseous originates in great apes and Homo from ulnar MIV and radial MV ${ }^{73,82,93,106}$, extending dorsally on MV in Gorilla and Pongo ${ }^{82,93 .}$

The insertion of the dorsal interossei is to the proximal phalanges and dorsal aponeurosis of the digits in all apes and Homo ${ }^{\text {10, 23, 29, 59, 73, 82, 93, 103, 106 }}$. The first dorsal interosseous inserts onto the radial margin of digit II, the second dorsal interosseous onto the radial side of digit III, the third dorsal interosseous onto the ulnar side of digit III and the fourth dorsal interosseous onto the ulnar side of digit IV in great apes and $\mathrm{Homo}^{59,82,93,106}$. The fourth interosseous in Pan may also extend to the radial side of digit V^{59}.

Innervated by the deep ramus of the ulnar nerve in Homo, Pan paniscus and Gorilla 73,82,106.

Lumbricals

Four lumbricals are present in all apes and $\mathrm{Homo}^{3,23,35,73,89,93,106}$. No further information for Hylobates. The origins of all the lumbricals are from the tendons of flexor digitorum profundus ${ }^{3,11,73,88,89,94,103,106}$.

The first lumbrical originates in Homo, Pan, Pongo and Hylobates from the radial side of the tendon to digit $\mathrm{II}^{23,35,73,89,93,106}$ and also from the tendon of flexor pollicis longus in Gorilla ${ }^{82}$.

It runs under the palmar aponeurosis to insert onto the dorsal aponeurosis of digit II in great apes and $\mathrm{Homo}^{3,73,93,106}$, including the dorsal surface of the proximal phalanx in Gorilla and Pongo ${ }^{3,82}$.

The second lumbrical originates in Homo, Pan, Pongo and Hylobates from the radial side of the tendon to digit $\mathrm{II}^{3,23,35,73,89,93,106}$. This lumbrical in great apes, but not Homo or Hylobates, occasionally has a double origin ${ }^{11,23,73,93}$, the other component in Pan and Pongo coming from the ulnar side of the tendon to digit II ${ }^{11,23,73,93}$.

The first and second lumbricals in Pan are connected by a slip ${ }^{88}$, absent from Pongo ${ }^{89}$.

Insertion in great apes and Homo is to the dorsal aponeurosis of digit $\mathrm{III}^{3,73,93,106}$, including the dorsal surface of the proximal phalanx in Gorilla and Pongo ${ }^{3,82}$. The third lumbrical originates in Homo, Pan and Pongo from the radial side of the tendon to digit $\mathrm{IV}^{3,23,73,89,93,106}$. In all apes, including Gorilla and Hylobates, this muscle has a double origin ${ }^{3,23,35,89,93}$, unlike Homo^{106}. The second part of the origin in Pan and Pongo comes from the ulnar side of the tendon to digit $\mathrm{III}^{3,23,73,89,}$ 93

The insertion in great apes and Homo is to the dorsal aponeurosis of digit IV ${ }^{3,93,106}$, including the dorsal surface of the proximal phalanx in Gorilla and Pongo ${ }^{3,82}$.

The fourth lumbrical originates in Homo, Pan and Pongo from the radial side of the tendon to digit $\mathrm{V}^{35,73,89,93,106}$. In Pan alone, the origin may alternatively come from the ulnar side of the tendon to digit IV alone ${ }^{23,35,108}$, or as a double origin from both sources ${ }^{3,11}$.

This lumbrical is the smallest in all apes, and is frequently absent from hylobatids ${ }^{103}$. Thus, the first lumbrical has a single origin in Homo and great apes ${ }^{3,23,35, ~ 82, ~ 93, ~} 106$, the second may have, and the third lumbrical always has, a double origin in great apes 3,11,23,35,82,89,93, and the fourth lumbrical may have a double origin in $\mathrm{Pan}^{3,11}$. The insertion of all these muscles in Homo is to the joint capsules of the metacarpophalangeal joints ${ }^{106}$, while in Gorilla they are described as extending to the ligaments of the proximal and intermediate phalanges of the digits ${ }^{82}$.

The first and second lumbricals are innervated by the median nerve and the third and fourth by the deep branch of the ulnar nerve in Homo, Pan paniscus and Gorilla ${ }^{73,82,}$ 106

Palmar interossei

Three palmar interossei are present in all apes and Homo 22,35,82,89,93,106. No further information available for Hylobates. Six or seven palmar interossei have been described for both species of Pan ${ }^{11,23,30,35,59,73,88}$, the extra muscles being palmar deviated portions of the second, third and fourth dorsal interossei ${ }^{11,35,59,73,88}$.

The first palmar interosseous in great apes and Homo originates from the ulnar side of MII, inserting onto the proximal phalanx and dorsal aponeurosis on the ulnar side of digit II $^{11,22,23,35,73,82,93, ~} 106$.

The second palmar interosseous in great apes and Homo originates from the radial side of MIV, inserting onto the proximal phalanx and dorsal aponeurosis of digit IV $^{11,22,23,35,73,82,93,106 .}$

The third palmar interosseous in great apes and Homo originates from the radial side of MV, inserting onto the proximal phalanx and dorsal aponeurosis of digit $V^{11,22,23,}$ 35, 73, 82, 93, 106

In addition, all the interossei take origin from the intermuscular septa in great apes ${ }^{11}$, 82,93. The muscles in Gorilla insert onto the capsules of the metacarpophalangeal joints ${ }^{82}$.

Innervated by twigs from the deep ramus of the ulnar nerve in Homo, Pan paniscus and Gorilla ${ }^{73,82,106}$.

3.4.2 Vessels

3.4.2.1 Arteries

3.4.2.1.1 Axillary b

Axillary
The axillary artery enters the axilla below the brachial plexus in all apes ${ }^{32,67}$, while in Homo the lateral and posterior cords of the brachial plexus run on the lateral side
of the artery ${ }^{106}$. The artery runs in front of the medial cord of the brachial plexus in Homo, Gorilla and Pongo ${ }^{67,106}$.

The axillary artery lies in front of the radial nerve and behind the median nerve in Homo and Pongo ${ }^{67,106}$, and is crossed by the ulnar nerve in Homo and Pan ${ }^{67,106}$. In Pan the axillary artery lies in front of the median nerve ${ }^{74,75}$.

The medial cutaneous nerve of the arm lies medial to the axillary artery in Homo^{106}, while it is crossed by the medial cutaneous nerve of the arm in Pan and Hylobates ${ }^{67}$.

Anterior and posterior circumflex humeral

The anterior and posterior circumflex humeral arteries are independent branches from the axillary artery in Homo^{106}, but arise in all apes from a common circumflex trunk ${ }^{23,32,67,74,75}$. The posterior circumflex may arise independently from the profunda brachii as a variant in Homo^{106}.

The common circumflex trunk in Pan and Asian apes may also include the profunda brachii ${ }^{67,74,75}$, in African apes and Hylobates the circumflex scapular ${ }^{67}$, and in Pan and Hylobates also the subscapular artery ${ }^{67,74,75}$.

The posterior circumflex humeral is larger than the anterior circumflex humeral in Homo and African apes ${ }^{32,67,106 .}$

3.4.2.1.2 Brachial $^{\text {b }}$

Brachial

The brachial artery in Homo lies deep to the median nerve ${ }^{106}$, while in all apes the brachial artery passes superficial to this nerve, and is thus a superficial brachial artery ${ }^{32,67,74,75,88}$.

Its terminal branches, the radial and ulnar arteries, are present in all apes and Homo ${ }^{12,}$ 23, 32, 67, 89.

Apart from those branches described below, the brachial artery also gives off a nutrient artery to the humerus in Homo and Gorilla ${ }^{67,106}$, muscular branches to the biceps and brachialis in Homo and all apes ${ }^{32,67,88}$ and also to the coracobrachialis in Homo and African apes ${ }^{32,67,106}$, but not in Pongo 89. Muscular branches to teres major, latissimus dorsi and dorsoepitrochlearis are present in Pongo 89, and to triceps in Pan and Asian apes ${ }^{67,88,89}$.

Profunda brachii

Originates in Homo, 2/3 Pan, and sometimes in Hylobates, from the brachial artery ${ }^{23,}$ $32,67,74,75,88,106$, but usually in all apes from the axillary artery ${ }^{67,74,75}$.

Superior ulnar collateral

Originates in Homo and African apes from the brachial artery ${ }^{32,67,106}$, but in Asian apes and as a variant in Homo, from the profunda brachii ${ }^{67,106}$.

Inferior ulnar collateral

Originates from the brachial artery above the elbow joint in all apes and Homo ${ }^{32,} 67$, 74, 75, 106

The inferior ulnar collateral artery winds round the posterior surface of the humerus in all apes and $\mathrm{Homo}^{67,106}$.

The artery anastomoses with the superior ulnar collateral artery and the anterior ulnar recurrent artery in Homo and Pongo ${ }^{67,106}$. In Homo, this artery also anastomoses
with the middle collateral branch of the profunda brachii and the posterior ulnar recurrent artery ${ }^{106}$.

3.4.2.1.3 \quad Radial $^{\text {b }}$
 Radial

The radial artery enters the palm at the dorsum of the first interosseous space in Homo and African apes ${ }^{11,32,68,88,106}$, whilst in Asian apes it enters the palm at the dorsum of the second interosseous space ${ }^{68,89}$.

The branch of the radial artery called "dorsalis pollicis" is present in Gorilla and Asian apes ${ }^{68}$, but not in Homo or Pan 68,106.

Radial recurrent

Originates from the radial artery in $\mathrm{Homo}^{106}, 1 / 3$ Pan 74,75, Gorilla ${ }^{68}$ and Hylobates ${ }^{68}$, but from the end of the brachial artery in $2 / 3$ Pan 67,68,88 and in Pongo ${ }^{67,68,74,75}$.

Palmar carpal

No information for Pan.

Originates from the radial artery in Homo and Asian apes ${ }^{68,106}$, but from the radial recurrent artery in Gorilla ${ }^{68}$.

Superficial palmar

In all apes and Homo except Gorilla this artery originates from the radial artery ${ }^{67,68,}$
74, 75, 88, 89. In Gorilla it originates either from the brachial artery or the radial recurrent artery ${ }^{67,68}$. It may be absent from Hylobates ${ }^{68}$.

In all apes and Homo the artery pierces the thenar muscles ${ }^{32,68,106}$, although as a variant in Homo and Pan it may pass over these muscles ${ }^{88,106}$. In Gorilla and

Hylobates the artery ends in the thenar muscles ${ }^{68,74,75}$, while in Homo, Pan and Pongo the artery continues to complete the superficial palmar $\operatorname{arch}^{32,68,88,89,106 .}$

Dorsal carpal

No information for Pan or Hylobates.

The dorsal carpal artery is present in Homo, Gorilla and Pongo ${ }^{68,106}$. In Homo and Gorilla it anastomoses with the dorsal carpal branch of the ulnar artery ${ }^{68,106}$.

Princeps pollicis

Princeps pollicis is a branch of the radial artery in Homo, African apes and Hylobates ${ }^{68,106}$. In Pongo the princeps pollicis is a branch of the superficial palmar $\operatorname{arch}^{68,89}$.

In $1 / 2$ Hylobates the princeps pollicis is the completing artery for the superficial palmar arch ${ }^{74,75}$. This occurs as a rare variation in Homo^{16}.

Radialis indicis

Originates in Homo from the radial artery, or the princeps pollicis, or with the princeps pollicis from the first palmar metacarpal artery ${ }^{106}$. In African apes it springs from the first palmar metacarpal artery ${ }^{68}$ and in Asian apes from the deep palmar $\operatorname{arch}^{68,89}$.

3.4.2.1.4 Ulnar ${ }^{\text {b }}$

Ulnar artery

Branches of the ulnar artery in the hand include a dorsalis pollicis branch in Gorilla and Asian apes ${ }^{68}$ and in addition dorsalis indicis and dorsal metacarpal branches in Gorilla and Pongo ${ }^{68}$.

The digital supply of the ulnar artery involves digits IV and V in all apes and Homo ${ }^{68,88,106}$, extending to digit III in all except Gorilla ${ }^{68}$.

Branches of the ulnar artery contribute to both the superficial, and the deep palmar arches in all apes and $\mathrm{Homo}^{32, ~ 68, ~ 88, ~ 89, ~} 106$.

Anterior and posterior ulnar recurrent

Originate from the brachial artery in all apes ${ }^{67,68}$ but from the ulnar artery in $H_{o m o}{ }^{106}$. As a variant in Homo, 1/2 Pan and in Asian apes, the anterior and posterior arteries originate from a common trunk, rather than as independent branches ${ }^{32,} 68,74$, 75, 89, 106

Common interosseous

A common interosseous is present in Homo and Pan ${ }^{32,67,68,106}$, being absent from all other apes ${ }^{67,68,74,75}$.

In both Homo and Pan the artery may arise either from the ulnar ${ }^{32,106}$, or from the brachial artery ${ }^{67,68,106}$.

Anterior interosseous

The anterior interosseous artery is a branch of the brachial artery in all apes ${ }^{68,74,75}$, ${ }^{88}$, with the exception of $2 / 3 \mathrm{Pan}^{32,67,68}$, in which it arises from the common interosseous artery as in Homo^{106}.

In Hylobates the anterior interosseous artery joins a large artery connecting the ulna and radial arteries near the wrist ${ }^{68}$.

Posterior interosseous

The posterior interosseous artery is a branch of the common interosseous artery in Homo and Pan ${ }^{32,68,106}$, but of the brachial artery in Gorilla and Asian apes ${ }^{68,74,75}$.

Dorsal carpal

A dorsal carpal branch of the ulnar artery is present in all apes and $\mathrm{Homo}^{68,88,89,106}$ with the exception of Hylobates ${ }^{68}$.

Palmar carpal

No information for Gorilla.

A palmar carpal branch of the ulnar artery is present in Homo, Pan and Asian apes ${ }^{68,}$ 89, 106

Deep palmar

A deep palmar branch of the ulnar artery is present in all apes and $H o m o^{68,74,75,89,}$ 106

3.4.2.1.5 Anastomoses

Deep palmar arch

The deep palmar arch is formed mainly by the deep palmar ramus of the ulnar artery and completed by the radial artery in all apes and $\mathrm{Homo}^{32,68,88,89,106}$.

This radial completing branch may be the princeps pollicis in African apes ${ }^{68,88}$, or the radialis indicis in $1 / 2$ Pongo 89. The radial contribution in Hylobates is slight, the main vessel being the deep palmar ramus of the ulnar artery ${ }^{68}$. Ikeda et al. give the radial contribution to the deep palmar arch in Homo and great apes as the first dorsal metacarpal artery ${ }^{42,43}$.

In Gorilla the deep palmar ramus divides into two branches, both of which anastomose with the radial artery ${ }^{68}$.

The deep palmar arch is very fine in Pongo ${ }^{68}$.

Palmar metacarpal

The palmar metacarpal arteries in Homo, Hylobates and Gorilla originate from the deep palmar arch ${ }^{68}$, and in Pan directly from the radial artery ${ }^{68}$.

The arteries appear to be absent from Pongo ${ }^{68}$.

The hand of Pongo is peculiar in having most of the digits and digit I supplied by branches of the superficial palmar arch, whilst in other apes these common palmar digital arteries are reinforced by the palmar metacarpal arteries from the deep palmar arch^{68}.

The palmar metacarpal arteries reach the second, third and fourth spaces in Homo, 1/2 Pan and Gorilla ${ }^{68,106}$, or the third and fourth spaces and medial side of digit V in $1 / 2$ Pan 32. The palmar metacarpals run in the second and third spaces in Hylobates ${ }^{68}$.

The superficial palmar arch is formed mainly by the ulnar artery, completed by the superficial palmar ramus of the radial artery in all apes and $\mathrm{Homo}^{32,68,88,89}$ with the exception of $1 / 2$ Hylobates in which the completing artery is the princeps pollicis branch of the radial artery ${ }^{74,75}$. This may occur as a rare variation in Homo ${ }^{16}$.

Common palmar digital

The digital branches of the superficial palmar arch supply the adjacent sides of II to V in Homo and 1/2 Pan ${ }^{32,106}$, of digits III to V in $1 / 2 P^{2} n^{68}$, and of digits I to V in Pongo ${ }^{68,89}$.

In Gorilla ${ }^{21,68,89}$ and $1 / 2$ Hylobates 68 where the superficial palmar arch is not defined, the ulnar artery supplies the medial side of the hand, and the adjacent sides of digits IV and V in Gorilla ${ }^{68}$, and of digits I to V in Hylobates ${ }^{68}$.

The digital arteries are reinforced by palmar metacarpal arteries from the deep palmar arch in all taxa except Pongo ${ }^{68,106}$.

3.4.2.2 \quad Veins b

3.4.2.2.1 Superficial

Veins of the hand

Veins from the radial side of the hand in Gorilla and Pongo do not directly join the cephalic vein ${ }^{82,89}$. In Gorilla, these veins pass to the anteromedial side of the wrist, but no further information was given ${ }^{82}$. In Pongo these veins form a vessel which joins the cephalic vein in the upper forearm ${ }^{89}$, which is a frequent variation in Homo ${ }^{106}$.

Cephalic

The cephalic vein, or lateral superficial vein ${ }^{100,101}$, is present in all apes and Homo ${ }^{12,}$ 82, 88, 89.

In the majority of Homo, 1/6 Pan and in Asian apes the vein is "long", extending from the radial side of the dorsal venous network to terminate in the infraclavicular region by piercing the clavipectoral fascia to enter the axillary vein ${ }^{80,100,101}$.

In $20-25 \%$ of Homo, 5/6 Pan and in Gorilla, the cephalic vein is "short", being found only in the forearm ${ }^{4,8,86,100,101}$. In these African apes the vein extends from the radial side of the dorsal venous network to terminate by piercing the fascia in the cubital fossa to unite with the brachial vein ${ }^{82,88,100,101}$.

The polymorphism in Homo can be interpreted as an intermediate condition between the "long" and "short" states, supported by the fact that in Homo the "short" lateral vein is usually accompanied by segments or networks representing the brachial portion of the vein ${ }^{101}$.

	\mathbf{N}	Vein length $(\mathbf{c m})$	No. valves	Mean valve index	SD of index
Homo	29	48	8.8	0.18	0.04
Pan	4	23	4.7	0.22	0.08
Gorilla	1	20	2.0	0.10	-
Hylobates	5	40	6.2	0.15	0.02

Table 3.4.3. Valve indices for the cephalic veins in Homo, Pan, Gorilla and Hylobates. Mean valve index $=$ Number of valves/vein length. Adapted from ${ }^{99}$.

Basilic

The basilic vein, or medial superficial vein ${ }^{100,101}$, is present in Homo^{106}, and absent from all apes ${ }^{82,88,89,100.101}$, although variably so in Gorilla ${ }^{12}$ and Pongo ${ }^{101}$.

3.4.2.2.2 Deep

Brachial

The brachial veins are present on each side of the brachial artery in Homo^{106}. A single vein accompanies that part of the brachial artery which runs superficial to the median nerve in all apes and in 27% of $H o m o{ }^{88,100}$. This vein should be termed the "superficial brachial vein" ${ }^{100}$. In addition to the "superficial brachial vein", Gorilla also possessed the deep continuation of the cephalic vein in the arm ${ }^{100}$. Raven found the brachial veins in Gorilla to be as in Homo^{82}.

Tributaries of the deep veins of the arm included the veins accompanying the main arteries of the arm in all apes and Homo^{100}.

A large perforating vein opened into the superficial brachial vein in Hylobates ${ }^{100}$.

Ulnar

Ulnar venae comitantes are present in the forearm in all apes and Homo ${ }^{\text {12,100,106. }}$ Tributaries of the ulnar venae comitantes included the veins accompanying the interosseous arteries, numerous muscular veins and also perforating veins in all apes and Homo^{100}.

Radial

Radial venae comitantes are present in the forearm in all apes and Homo ${ }^{\text {12, 100, } 106}$. Tributaries of the radial venae comitantes included numerous muscular veins and also perforating veins in all apes and $H o m o{ }^{100}$.

3.4.2.2.3 Communicating

Hand

The medial side of the superficial dorsal venous network communicates with the deep ulnar venae comitantes at the wrist adjacent to the ulnar head in 16% of Homo and in great apes, but not in Hylobates ${ }^{100}$.

In Homo and 1/5 Pan forelimbs there were also perforators connecting the superficial dorsal veins on the radial side and the deep metacarpal vein in the first or second interosseous space ${ }^{100}$.

Forearm

The distal part of the radial forearm in Homo displayed numerous perforating veins ${ }^{100}$. In apes, this region showed one perforating vein in Hylobates, and one or two such veins in great apes, connecting the cephalic vein and the radial venae comitantes ${ }^{100}$.

A perforator connected the posterior forearm superficial veins and the deep muscular veins in Pan, Pongo and 4/6 Hylobates limbs, but not in Gorilla ${ }^{100}$.

In 1/5 Pan and 1/6 Hylobates forelimbs there was a perforator in the mid-forearm region which connected the cephalic vein and the deep veins ${ }^{100}$.

In Homo, 3/5 Pan, Gorilla and Hylobates there are one or two perforating veins in the cubital fossa ${ }^{100,106}$, while these veins are absent from the cubital fossa in $2 / 5$ Pan ${ }^{100}$ and in Pongo ${ }^{89,100 .}$

Arm

In Hylobates a large perforator connected the cephalic vein to the superficial brachial vein, and in addition a perforator pierced the triceps muscle, connecting the cephalic vein to the deep veins within the muscle ${ }^{100}$.

Apart from those described in the above paragraphs, in Homo numerous perforating veins, variable in position and incidence, can be found along the length of the forelimb ${ }^{100,106}$

3.4.2.3 Lymphatics

Axillary lymph nodes

No information for Gorilla or Hylobates.

Lateral and posterior axillary nodes are present in Homo, Pan and Pongo ${ }^{89,106}$, while anterior axillary nodes, present in Homo^{106}, are absent from Pan and Pongo ${ }^{89}$.

In Homo, central and apical axillary nodes are also present ${ }^{106}$.

Infraclavicular lymph nodes

No information for Gorilla or Hylobates.

These nodes are present in Homo, Pan and Pongo ${ }^{89,106}$.

Supratrochlear lymph nodes

No information for Gorilla or Hylobates.

Present in Homo ${ }^{106}$, absent from Pan and Pongo ${ }^{89}$.

3.4.3 NERVES

3.4.3.1 Brachial plexus

The brachial plexus consists of the ventral rami of the lower four cervical nerves and the first thoracic nerve in all apes and Homo ${ }^{32,35,50,72, ~ 84, ~ 89, ~} 106$.

The fourth cervical nerve usually gives a branch to the fifth cervical in Homo and also in $2 / 5$ Pan 50,72, Gorilla ${ }^{35,72,50}$ and Asian apes ${ }^{35,72,89}$, while the second thoracic nerve frequently gives a branch to the first thoracic nerve in Homo and Pongo ${ }^{5,} 17,72$, 85, 89, 106 , always absent from African apes and Hylobates ${ }^{32,35,50,72, ~ 84, ~ 102 . ~ H o w e v e r ~}$ both are subject to variation in Homo^{106}.

The most constant arrangement of the roots in Homo is as follows:

The fifth and sixth cervical nerves unite to form the upper trunk of the plexus. The eighth cervical and first thoracic nerves unite to form the lower trunk, while the seventh cervical nerve itself forms the middle trunk.

Each trunk splits into anterior and posterior divisions. The anterior divisions of the upper and middle trunks unite to form the lateral cord, the anterior division of the lower trunk forms the medial cord, and the posterior divisions of all three trunks unite to form the posterior cord ${ }^{106}$.

In Pan, two varieties have been found. In the first, the trunks are formed as in $H o m o^{72}$, while in the second, no true upper trunk is formed, as the fifth cervical nerve unites only with the anterior division of the sixth cervical nerve ${ }^{32,88}$. In both of these cases, the posterior divisions of all the nerves form a posterior cord as in Homo ${ }^{32,} 88$, but the anterior divisions of all the trunks form a single large cord, which

Glidden and De Garis have called the "superolateral" cord ${ }^{32,} 88$. In these cases the musculocutaneous nerve may represent the lateral cord ${ }^{88}$.

In Gorilla, three varieties have been found. The first is identical to that found in $H o m o{ }^{2435}$. In the second, the trunks and cords are formed as in Homo, but the lateral and middle trunks continue to form a common cord, similar to the "superolateral" cord of Pan, which then bifurcates into two branches, a musculocutaneous-median trunk, and the ulnar nerve ${ }^{50}$. The third variety displays only two trunks, one from the fourth to sixth cervical nerves, and the second from the seventh to eight cervical nerves plus the first thoracic nerve. The middle trunk is thus absent. The lateral and middle cords are formed from the anterior divisions of these two trunks, and the posterior cord is formed as in Homo^{72}.

Two varieties of brachial plexus have been described in Pongo. The first type is identical to that found in $\mathrm{Homo}^{35,72}$. In the second type, there is no true upper trunk, as only the anterior divisions of the fifth and sixth cervical nerves unite. The middle and lower trunks and the cords are formed as in Homo^{89}.

In Hylobates, the plexus has been found to be identical to that of $\mathrm{Homo}^{35,50}$.

3.4.3.2 Spinal nerves

Intercostobrachial

The intercostobrachial nerve originates from the second thoracic nerve in Homo^{106}, from the first and third thoracic, or only the second thoracic in Pan ${ }^{72}$, from the first and second thoracic nerves in Gorilla and Hylobates ${ }^{72,82}$ and from the first and third thoracic nerves in Pongo ${ }^{72}$.

The intercostobrachial nerve communicates with the medial cutaneous nerve of the arm in Homo and 1/3 $\mathrm{Pan}^{89,106}$, but not in 2/3 Pan^{89} or Pongo 89.

3.4.3.3 Branches of the brachial plexus ${ }^{\text {b }}$

3.4.3.3.1 Supraclavicular

Dorsal scapular

No information for Pan, Pongo or Hylobates.

The dorsal scapular nerve arises from the fifth cervical nerve in Homo and Gorilla ${ }^{82,}$ ${ }^{106}$, with an additional branch from the fourth cervical nerve in Gorilla ${ }^{82}$.

Long thoracic

The long thoracic nerve consists of spinal components of the fifth to seventh cervical nerves in all apes and $\mathrm{Homo}^{32,35,72,82,88,89,106}$. The root from the seventh cervical nerve may be absent from Homo^{106}, and is absent from Gorilla and 1/3 Pongo ${ }^{35,82}$. The origin may also include the fourth cervical nerve in Pan and Pongo ${ }^{35,89}$. The nerve innervates serratus anterior in Homo, Gorilla and Pongo ${ }^{35, ~ 82, ~ 88, ~ 89, ~} 106$.

Suprascapular

The suprascapular nerve has its spinal origin from the fourth cervical nerve in Gorilla $^{24} 35,72,82$, from the fifth cervical in all apes and Homo ${ }^{11,2432,35,48,72,82,88,}$ ${ }^{89}$, and from the sixth cervical nerve in $\mathrm{Homo}^{72,106}, 2 / 6$ Pan $^{35,72}, 1 / 4$ Gorilla $^{72}, 2 / 5$ Pongo ${ }^{35,72}$ and $1 / 3$ Hylobates ${ }^{72}$.

3.4.3.3.2 Infraclavicular

3.4.3.3.2.1 Pectoral

The lateral and medial pectoral nerves are derived from all the roots of the brachial plexus in all apes and $\mathrm{Homo}^{\text {11, 32, 35, 72, 82, }} 106$.

3.4.3.3.2.2 Musculocutaneous

The musculocutaneous nerve originates in all except Hylobates from the lateral cord of the brachial plexus ${ }^{32,72}$; from the fifth to seventh cervical nerves in Homo, Pan, 1/3 Gorilla and Hylobates ${ }^{13,50,82,88,106}$. In Gorilla, the origin may be from the fifth cervical or fourth and fifth cervical ${ }^{50}$.

The musculocutaneous nerve pierces coracobrachialis in Homo and great apes ${ }^{\text {11, 12, }}$ 35, 50, 88, 89, but not in $1 / 3$ Gorilla 50 or in Hylobates ${ }^{35,} 50$.

The muscular branches of the nerve supply coracobrachialis, biceps brachii and brachialis in all apes and $\mathrm{Homo}^{35,50,73,82,88,89,106}$. It did not supply coracobrachialis in $1 / 3$ Gorilla 50 or $1 / 2$ Hylobates 50.

The musculocutaneous nerve produces the lateral cutaneous nerve of the forearm in all apes and $\mathrm{Homo}^{35,82,89}$.

3.4.3.3.2.3 Medial cutaneous nerves

The medial cord of the brachial plexus supplied medial cutaneous nerves to the arm and forearm in all apes and Homo ${ }^{\text {13, 32, 35, } 106}$.

The medial cutaneous nerve of the arm was derived from the eighth cervical and first thoracic nerves in Homo and Pan ${ }^{13,106}$, and from the second and third thoracic nerves in Gorilla ${ }^{82}$.

3.4.3.3.2.4 Median

The spinal nerve components of the median nerve are the fifth to eighth cervical nerves, and the first thoracic nerve in all apes and $\mathrm{Homo}^{50,72,82,106}$, extending to the second thoracic nerve in Pongo ${ }^{72}$. The fifth cervical nerve is a variable component in Homo ${ }^{106}$.

Muscular branches of the median nerve innervate abductor pollicis brevis, flexor digitorum profundus, flexor pollicis brevis and opponens pollicis in all apes and Homo ${ }^{11,35,73,82,89,106}$, flexor carpi radialis, flexor digitorum superficialis, and pronator teres in all except Hylobates ${ }^{11,13,14,23,35, ~ 82, ~ 88, ~ 89, ~ 93, ~} 106$ and palmaris longus in Homo and great apes ${ }^{82,89,115}$. Branches innervate coracobrachialis in Pan^{88}, and brachialis and flexor indicis in Gorilla ${ }^{35,82}$. The median nerve supplies two or three lateral lumbricals in Homo^{106}, one or two lumbricals in Pan and Pongo ${ }^{88,89}$ and two lumbricals in Gorilla and Hylobates ${ }^{35,} 82$.

The digital branches innervate the lateral three and a half digits in Homo and African apes 12,82,106 and two and a half digits in Asian apes ${ }^{35,89}$, although the distribution varies in Homo^{106}, and may do so in other hominoids.

It musculocutaneous pierces the coracobrachialis in Homo and great apes ${ }^{11,12,35,50,}$ ${ }^{88,89}$, but not in $1 / 3$ Gorilla 50 or in Hylobates ${ }^{35,50}$.

Anterior interosseous

The median nerve gives off an anterior interosseous nerve in all apes and Homo ${ }^{11.82,}$ 89, 106

It innervates flexor digitorum profundus in all apes and $\mathrm{Homo}^{11,82,89,106}$, flexor pollicis longus in Homo and Pan ${ }^{11,106}$, and pronator quadratus in Gorilla and Pongo ${ }^{82,89}$, but not in Hylobates ${ }^{35,89}$.

3.4.3.3.2.5 Ulnar

The ulnar nerve in all apes and Homo courses between the two heads of flexor carpi ulnaris ${ }^{35,82,88,89,106}$, with the exception of $1 / 5$ Pongo in which it runs along the deep surface of the muscle ${ }^{93}$.

In Gorilla it is embedded in the substance of dorsoepitrochlearis ${ }^{12}$.

Muscular branches of the ulnar nerve innervate flexor carpi ulnaris, flexor digitorum profundus, adductor pollicis and the interossei in all apes and $\mathrm{Homo}^{11,35, ~ 73, ~ 82, ~ 88, ~ 89, ~}$ ${ }^{106}$, the hypothenar muscles in Homo, Pan and Pongo ${ }^{88,89,106}$, palmaris brevis in $H o m o^{106}$ and part of the triceps in Pan^{11}. Innervation from the ulnar nerve to flexor pollicis brevis is present in 48% of Homo and in Pongo ${ }^{35,106}$. It innervates the two inner lumbricals in Homo and Asian apes ${ }^{35,} 89,106$, the innermost lumbrical in Pan^{35} and three inner lumbricals in Gorilla ${ }^{35}$.

Cutaneous branches run to the skin of the dorsal surface of the forearm and hand in all apes and Homo ${ }^{35, ~ 82, ~ 89, ~} 106$.

The digital supply is to the medial one and a half digits in all apes and Homo, but may extend to two and a half digits in all except Pan ${ }^{12,25,33,35,36,48,51,88,89,91,106,}$ 107

3.4.3.3.2.6 Radial

The radial nerve originates in all apes and Homo from the fifth to eighth cervical nerves, and the first thoracic nerve ${ }^{32,72,82,88,106}$. In Pongo it also involves the second thoracic nerve ${ }^{72}$.

The radial nerve pierces the supinator muscle in all except Homo, in which the posterior interosseous branch of the radial nerve pierces supinator ${ }^{35,82, ~ 88, ~ 89, ~ 90, ~} 106$. There is a gangliform enlargement at the junction with the posterior interosseous nerve in Homo and Pan ${ }^{11106}$.

Muscular branches of the radial nerve innervate triceps brachii, extensor carpi radialis longus and supinator in all apes and $\mathrm{Homo}^{35, ~ 82, ~ 88, ~ 89, ~}{ }^{106}$, dorsoepitrochlearis in all apes but not in Homo $^{11, ~ 35, ~ 82, ~ 88, ~ 89 ~, ~ b r a c h i o r a d i a l i s ~ i n ~ H o m o ~ a n d ~ g r e a t ~ a p e s ~}{ }^{73,82}$. ${ }^{89,106}$, brachialis in Homo and Gorilla ${ }^{35,82,106}$, and extensor carpi radialis brevis in Gorilla ${ }^{82}$.

Cutaneous branches supply the skin of the dorsum of the forearm and hand in all apes and Homo ${ }^{\text {12, 35, 82, 88, 89, } 106 .}$

The digital supply is to the lateral two and a half digits in Homo and Gorilla ${ }^{35,} 82,106$ and to the lateral one and a half digits in Pan and Asian apes ${ }^{35,89}$.

Posterior interosseous

In $1 / 7$ Pan, rather than being embedded in the supinator muscle as in Homo and all other apes ${ }^{11,13,82,88,89,90,106}$, the posterior interosseous nerve is covered by fascia on the surface of the muscle ${ }^{35}$.

In Homo, this branch of the radial nerve supplies extensor carpi radialis brevis, supinator, extensor digitorum, extensor digiti minimi, extensor carpi ulnaris, extensor pollicis longus, extensor indicis, abductor pollicis longus and extensor pollicis brevis ${ }^{106}$. It is described as supplying the same muscles in great apes as in Homo ${ }^{35,89}$. Unlike other apes and Homo, in Hylobates the posterior interosseous nerve supplied pronator quadratus ${ }^{35}$.

In Homo^{106}, but not in apes ${ }^{35,82,88,89,90}$, the posterior interosseous branch of the radial nerve pierces supinator rather than the radial nerve. There is a gangliform enlargement at the junction of the radial and posterior interosseous nerves in Homo and $P a n^{11,106}$.

3.4.3.3.2.7 Axillary

The axillary nerve in all apes and Homo originates from the fifth and sixth cervical nerves ${ }^{11,32,72,82,106}$. It also includes the seventh cervical nerve in apes and as a variation in $\mathrm{Homo}^{11,32,72,82,106}$, in all apes also the eighth cervical nerve ${ }^{32,72,82}$, and in African apes also includes the first thoracic nerve ${ }^{32,72}$.

A pseudoganglion on the branch to teres minor is usually present in Homo and Pan ${ }^{11}$, 35, 106 , which is absent from Asian apes ${ }^{35}$. No information for Gorilla.

Muscular branches of the nerve supply teres minor in all apes and $H o m o{ }^{35,82,88}$, deltoid in all except Pongo ${ }^{82,88}$ and subscapularis in Gorilla and Pongo ${ }^{35,89}$. It also supplies teres major in Gorilla ${ }^{35}$.

The axillary nerve forms the lateral cutaneous nerve of the arm in all taxa except Pongo ${ }^{82,88,106}$.

3.4.3.3.2.8 Subscapular

Subscapular

The subscapular nerves originate from the fifth and sixth cervical nerves in all apes and $\mathrm{Homo}^{32,72,82,88,106}$. They also include the seventh cervical nerve in all apes ${ }^{32,72,}$ 82, 88, the eighth cervical in African apes and Hylobates ${ }^{72,88}$, and the first thoracic nerve in African apes ${ }^{32,72,88}$.

The subscapular nerves are given off from the axillary nerve in Gorilla and Asian apes ${ }^{35,72,89}$.

Thoracodorsal

No information for Pan, Pongo or Hylobates.

The thoracodorsal nerve arises from the sixth, seventh and eighth cervical nerves in $H o m o^{106}$, and from the fifth, sixth and seventh cervical nerves in Gorilla ${ }^{82}$.

BIBLIOGRAPHY

1. Adachi, B (1900): Anatomische Untersuchungen an Japanern. III. Muskelvarietaten. Z.Morphol.Anthropol. 2, p211-222.
2. Aziz, MA and Dunlap, SS (1986): The human extensor digitorum profundus muscle with comments on the evolution of the primate hand. Primates. 27(3), p293-319.
3. Beddard, FE (1893): Contributions to the anatomy of the anthropoid apes. Trans.Zool.Soc.Lond. 13, p177-218.
4. Berry, RJA and Newton, HAS (1908): A study of the superficial veins of the superior extremity in 300 living subjects. Anat.Anz. 33, p591-601.
5. Birmingham, A (1896): The nerve of Wrisberg. J.Anat.Phys. 30, p63-69.
6. Bischoff, TLW (1870):Beiträge zur Anatomie des Hylobates leuciscus and zu einer vergleichenden Anatomie der Muskeln der Affen und des Menschen. Abh.Bayer.Akad.Wiss.München. Math.Phys.Kl. 10, p197-297.
7. Bischoff, TLW (1880): Beiträge zur Anatomie des Gorilla. Abh.Bayer.Akad.Wiss. 13(3), pl-48.
8. Bouchet, A (1973): Contribution à l'étude anatomique de la veine céphalique du bras. C.R.Ass.Anat.154, p971-985.
9. Brooks, HSJ (1885-6): On the morphology of the intrinsic muscles of the little finger, with some observations on the ulnar head of the short flexor of the thumb. J.Anat.Phys. 20, p645-661.
10.Brooks, HSJ (1887): On the short muscles of the pollex and hallux of the anthropoid apes, with special reference to the opponens hallucis. J.Anat.Phys. 22, p78-95.
11.Champneys, F (1872): On the muscles and nerves of a chimpanzee (Troglodytes niger) and a cynocephalus anubis. J.Anat.Phys. 6, p176-211.
12.Chapman, HC (1878): On the structure of the gorilla. Proc.Zool.Soc.Lond. p385394.
13.Chapman, HC (1879): On the structure of the chimpanzee. Proc.Zool.Soc.Lond. p52-63.
14.Chapman, HC (1880): On the structure of the orang outang. Proc.Zool.Soc.Lond. p160-174.
15.Church, WS (1861/2): On the myology of the orang utang(Simia morio). Nat.Hist.Review. 1, p510-516, 2, p89-94, p414-423.
16.Coleman, SS and Anson, BJ (1961): Arterial patterns in the hand based upon a study of 650 specimens. Surg.Gynecol.Obstet. 113, p409-424.
17.Cunningham, DJ (1877): Note on a connecting twig between the anterior divisions of the first and second dorsal nerves. J.Anat.Phys. 11, p539-540.
18.Cunningham, DJ (1887): The flexor pollicis brevis and the flexor brevis hallucis in Man. Anat.Anz. 2, p186-192.
19.Day, MH and Napier, J (1963): The functional significance of the deep head of flexor pollicis brevis in primates. Folia Primatol. 1, p122-134.
20.Duckworth, WLH (1904): Dissections of the upper limb of Gorilla, Hylobates and Cynocephalus. Studies from the Anthropological Laboratory, the Anatomy School, Cambridge. Cambridge University Press, Cambridge. 16, p91-97.
21.Duckworth, WLH (1915): Morphology and anthropology. 2nd ed. Cambridge University Press, Cambridge.
22.Duvernoy, M (1855-6): Des caractères anatomiques de grands singes pseudoanthropomorphes. Arch.Mus.Natl.Hist.Nat.(Paris). 8, p1-248.
23.Dwight, T (1895): Notes on the dissection and brain of the chimpanzee "Gumbo". Mem.Boston Soc.Nat.Hist. 5, p31-51.
24.Eisler, P (1890): Das Gefäss- und periphere Nervensystem des Gorilla. Tausch and Grosse, Halle.
25.Eisler, P (1895): Die Homologie der Extremitaeten. Abh.Naturforsch.Ges. Halle. 19, p87-346.
26.Embleton (1864): Cited in Chapman (1879).
27.Fick, R (1895a): Vergleichend-anatomische Studien an einem erwachsenen Orang-utang. Arch.Anat.Physiol. Anat.Abt. p1-100.
28.Fick, R (1895b): Beobachtungen an einem zweiten erwachsenen Orang-Utang und einem Schimpansen. Arch.Anat.Physiol. Anat.Abt. p289-318.
29.Fitzwilliams, DCL (1910): The short muscles of the hand of the agile gibbon (Hylobates agilis), with comments on the morphological position and function of the short muscles of the hand of man. Proc.Roy.Soc.Edinb. 30, p202-218.
30.Forster, A (1916): Die Mm.contrahentes und interossei manus in der Säugetierreihe und beim Menschen. Arch.Anat.Physiol. 16, p215-230.
31.Frohse, F and Fränkel, M (1908): Die Muskeln des menschlichen Armes. In: Bardeleben, K (ed); Handbuch der Anatomie des Menschen. Part 2, section 2, pl-414. Gustav Fischer, Jena.
32.Glidden, EM and De Garis, CF (1936): Arteries of the chimpanzee. I. The aortic arch; II. Arteries of the upper extremity; III. The descending aorta; IV. Arteries of the lower extremity. Am.J.Anat. 58(2), p501-527.
33.Gratiolet, LP and Alix, PHE (1866): Recherches sur l'anatomie de Troglodytes aubryi, chimpanzé d'une espéce nouvelle. Nouv.Arch.Mus.Natl.Hist.Nat.(Paris). 2, p1-264.
34.Hartmann, R (1886): Anthropoid apes. D.Appleton and Co. New York.
35.Hepburn, D (1892): The comparative anatomy of the muscles and nerves of the superior and inferior extremities of the anthropoid apes. J.Anat.Phys. 26, p149-186, 324-356.
36.Höfer, W (1892): Vergleichend-anatomische Studien über die Nerven des Armes und der Hand bei den Affen und dem Menschen. Münchener Med.Abh. 30(7:3), pl-106.
37.Howell, AB and Straus, WL Jr (1931): The brachial flexor muscles in primates. Proc.U.S.Natl.Mus. 80(13), pl-30.
38.Humphry, GM (1866/7): On some points in the anatomy of the chimpanzee. J.Anat.Phys. 1, p254-268.
39.Humphry, GM (1873): Lectures on the varieties in the muscles of man, II. Brit.Med.J. p51-54.
40.Huxley, TH (1864): Lectures on the structure and classification of the Mammalia. Med.Times and Gaz.(Lond.). 1, p564-565.
41.Huxley, TH (1871): The anatomy of vertebrated animals. J and A Churchill, London.
42.Ikeda, A; Matsumoto, S and Tanaka, H (1988): Comparative anatomical study of arteriographs of the hand of primates - deep palmar arterial arches and
their correlating arteries in Cercopithecidae, Pongidae and Hominidae. Acta Anat. 133(1), p30-34.
43.Ikeda, A; Matsumoto, S; Yoshi, I and Ikeda, K (1993): Comparative anatomical studies of arteriographs of the hand and foot in primates including man. Kaibogaku Zasshi. 68(3), p263-80.
44.Jungers, WL and Stern, JT Jr (1981): Preliminary electromyographical analysis of brachiation in gibbon and spider monkey. Int.J.Primatol. 2(1), p19-33.
45.Keith, A (1894): Notes on a theory to account for the various arrangements of the flexor profundus digitorum in the hand and foot of primates. J.Anat.Phys. 28, p335-339.
46.Keith, A (1896): A variation that occurs in the manubrium sterni of higher primates. J.Anat.Phys. 30, p275-279.
47.Keith, A (1899): On the chimpanzees and their relationship to the gorilla. Proc.Zool.Soc.Lond. p296-312.
48.Kohlbrügge, JHF (1890/91): Versuch einer anatomie des Genus Hylobates. Muskeln und periphere Nerven. Zoologische Ergebnisse einer Reise in Niederländisch Ost-Indien. 1, p211-354; 2, p138-206. E.J.Brill; Leiden.
49.Kohlbrügge, JHF (1897): Muskeln und Periphere Nerven der Primaten, mit besonderer Berücksichtigung ihrer Anomalien. Verh. K.Akad.Wet. Amsterdam. Section 2, 5(6), pl-246.
50.Koizumi, M and Sakai, T (1995): The nerve supply to coracobrachialis in apes. J.Anat. 186, p395-403.
51.Kosinski, C (1927): The cutaneous innervation of the dorsum of the human hand. J.Anat. 61, p509-511.
52.Landsmeer, JMF (1986): A comparison of fingers and hand in Varanus, opposum and primates. Acta Morphol.Neerl.Scand. 24, p193-221.
53.Lane, WA (1885): Supernumerary cervico-dorsal vertebra-bearing ribs, with vertebral and costal asymmetry; abnormal articulation in a sternum. J.Anat.Phys. 19, p266-273.
54.Langer, C (1879): Die Muskeln der Extremitäten des Orang als Grundlage einer vergleichend-anatomischen Untersuchung. Sitzungsber.Kaiserl.Akad.Wiss.Wien. Math.Naturwiss.Cl. 80, p177-222.
55.Leche, W (1900): Muskulatur. Bronn's Klassen und Ordnungen des Thierreichs. 6(5), (Säugethiere: Mammalia), p649-919.
56.Le Double, F (1897): Traité des variations du système musculaire de l'homme et de leur signification au point de vue de l'anthropologie zoologique, I et II. Librairie C.Reinwald, Paris.
57.Le Minor, JM (1994): The sesamoid bone of Musculus abductor pollicis longus (os radiale externum or prepollex) in primates. Acta Anat. 150(3), p227-231.
58.Leslie, DR (1954): The tendons on the dorsum of the hand. Aust.N.Z.J.Surg. 23, p253-256.
59.Lewis, OJ (1965): The evolution of the mm. interossei in the primate hand. Anat.Rec. 153, p275-288.
60.Loth, E (1912): Beiträge zur Anthropologie der Negerweichteile(Muskelsystem). Stud.Forsch.Menschen-u.Völkerkunde, Stuttgart. 9, p1-254.
61.Lubosch, W (1899): Ein M.coraco antibrachialis beim Menschen. Morphol.Jahrb. 27(2), p309.
62.MacAlister, A (1871): On some points in the myology of the chimpanzee and of the primates. Ann.Mag.Nat.Hist. 7(2), p341-351.
63.MacDowell, EC (1910): Notes on the myology of Anthropopithecus niger and Papio-thoth ibeanus. Am.J.Anat. 10, p431-460.
64.McMurrich, JB (1902-3): The phylogeny of the forearm flexors. Am.J.Anat. 2, p177-209.
65.Machado, AB and DiDio, LJ (1967): Frequency of the musculus palmaris longus studied in vivo in some Amazon indians. Am.J.Phys.Anthropol. 27, p11-20.
66.Mangini, U (1960): Flexor pollicis longus muscle. Its morphology and clinical significance. J.Bone.Jt.Surg. 42A, p467-470.
67.Manners-Smith, T (1910a): The limb arteries of primates (part 1). J.Anat.Phys. 44, p271-302.
68.Manners-Smith, T (1910b): The limb arteries of primates(part I cont.). J.Anat.Phys. 45, 23-64.
69.Marzke, MW; Wullstein, KL and Viegas, SF (1992): Evolution of the power ("squeeze") grip and its morphological correlates in hominids. Am.J.Phys.Anthropol. 89, p283-298.
10. Mayer, JC (1856): Zur Anatomie des Orang-utang und des Schimpansen. Arch.Naturgesch. 22(1), p279-304.
11. Michäelis, P (1903): Beiträge zur vergleichenden Myologie des Cynocephalus babuin, Simia satyrus, Troglodytes niger. Arch.Anat.Phys. Anat.Abt. p205256.
12. Miller, RA (1934): Comparative studies upon the morphology and distribution of the brachial plexus. Am.J.Anat. 54(1), p143-175.
73.Miller, RA (1952): The musculature of Pan paniscus. Am.J.Anat. 91(2), p182232.
74.Müller, E (1903): Beiträge zur Morphologie des Gefasssystems. I. Die Armarterien des Menschen. Anat.Hefte. 22, p279-574.
75.Müller, E (1905): Beiträge zur Morphologie des Gefasssystems. II. Die Armarterien des Säugetiere. Anat.Hefte. 27, p73-241.
76.Muller, T (1959): Variations in the abductor pollicis longus and extensor pollicis brevis in the South African Bantu. S.Afr.J.Lab.Clin.Med. 5, p56-62.
77.Nebotcegarra, J; Reinadelatorre, F and Perezberruezo, J (1994): Accessory fasciculi of the human pronator teres muscle - incidence, morphologicalcharacteristics and relation to the median nerve. Anat.Anz. 176(3), p223-227.
78.Parsons, FG and Robinson, A (1899): Eighth report of the Committee of Collective Investigation of the Anatomical Society of Great Britain and Ireland for the year 1897-1898. J.Anat.Phys. 33, p189-203.
79.Pira, A (1913): Beiträge zur Anatomie des Gorilla. I. Das Extremitätenmuskelsystem. Morphol.Jahrb. 47, p309-354.
80.Platzer, W (1971): The blood vessels of the chimpanzee. In: Bourne,GH(ed); Behaviour, growth, and pathology of chimpanzees. Karger, Basel; p325-348.
81.Primrose, A (1900): The anatomy of the orang-outang. Univ.of Toronto Studies. Anat.series 1, pl-94.
82.Raven, HC (1950): Regional anatomy of the Gorilla. In: Gregory,WK(ed); The anatomy of the Gorilla. Columbia University Press, New York; p 15-188.
83.Rolleston, G (1868): On the homologues of certain muscles. Trans.Linn.Soc. 26.
84.Saberton, CWS (1906): The nerve plexuses of Troglodytes niger. Studies in Anatomy, Univ.of Manchester. 3, p165-270.
85.Sherrington, CS (1898): Experiments in examination of the peripheral distribution of the fibers of the posterior roots of some spinal nerves. Part II. Phil.Trans.Roy.Soc.B. 190, p45-186.
86.Singh, SP; Ekandem, GJ and Bose, S (1982): A study of the superficial veins of the cubital fossa in Nigerian subjects. Acta Anat. 114, p317-320.
87.Sommer, A (1907): Das Muskelsystem des Gorilla. Jena.Z.Naturwiss. 42, p181308.
88.Sonntag, CF (1923): On the anatomy, physiology, and pathology of the chimpanzee. Proc.Zool.Soc.Lond. 23, p323-429.
89.Sonntag, CF (1924): On the anatomy, physiology, and pathology of the orangoutan. Proc.Zool.Soc.Lond. 24, p349-450.
90.Straus, WL Jr (1941a): The phylogeny of the human forearm extensors. Human Biol. 13, p23-50.
91.Straus, WL Jr (1941b): The phylogeny of the human forearm extensors (concluded). Human Biol. 13, p203-238.
92.Straus, WL Jr (1942): Rudimentary digits in primates. Q.Rev.Biol. 17, p228243.
93.Sullivan, WE and Osgood, CW (1927): The musculature of the superior extremity of the orang-utan, Simia satyrus. Anat,Rec. 35(3), p193-239.
94.Susman, RL and Stern, JT Jr (1980): EMG of the interosseous and lumbrical muscles in the chimpanzee (Pan troglodytes) hand during locomotion. Am.J.Anat. 157, p389-397.
95.Susman, RL; Jungers, WL and Stern, JT Jr (1982): The functional morphology of the accessory interosseous muscle in the gibbon hand: determination of locomotor and manipulatory compromises. J.Anat. 134(1), p111-120.
96.Sutton, JB (1883): On some points in the anatomy of the chimpanzee (Anthropopithecus troglodytes). J.Anat.Phys. 18, p66-85.
97.Symington, J (1890): Observations on the myology of the gorilla and chimpanzee. Rep.Brit.Assoc.Adv.Sci. 59, p629-630.
98.Testut, L (1884): Les anomalies musculaires chez l'homme expliquées par l'anatomie comparée. Leur importance en anthropologie. G.Masson, Paris.
99.Thiranagama, R; Chamberlain, AT and Wood, BA (1989a): Valves in superficial limb veins of humans and nonhuman primates. Clin.Anat. 2, p135-145.
100.Thiranagama, R; Chamberlain, AT and Wood, BA (1989b): The comparative anatomy of the forelimb veins of primates. J.Anat. 164, p131-144.
101.Thiranagama, R; Chamberlain, AT and Wood, BA (1991): Character phylogeny of the primate forelimb superficial venous system. Folia Primatol. 57, p181-190.
102.Todd, TW (1912): The hinder end of the brachial plexus in man and mammals. Anat.Anz. 42, p129-144.
103.Tuttle, RH (1969): Quantitative and functional studies on the hands of the Anthropoidea. J.Morphol. 128, p309-364.
104.Vrolik, W (1841): Recherches d'anatomie comparée, sur le chimpansé. Johannes Miller, Amsterdam.
105.Wagenseil, F (1936): Untersuchungen über die Muskulatur der Chinesen. Z.Morphol.Anthropol. 36, p39-150.
106.Warwick, P and Williams, PL (1973): Gray's Anatomy. 35th British Edition. Saunders Co., Philadelphia.
107.Westling, C (1884): Beiträge zur Kenntniss des peripherischen Nervensystems.
(I. Pithecus satyrus; II. Ornithorhyncus paradoxus). Bihang K.Svenska Vetensk.Akad.Handl.(Stockholm). 9(8), p1-48.
108.Wilder, B (1862): Contributions to the comparative myology of the chimpanzee. Boston J.Nat.Hist. 6, p352-384.
109.Wood, J (1864): On some varieties in human myology. Proc.Roy.Soc. 13, p299303.
110.Wood, J (1865): Additional varieties in human myology. Proc.Roy.Soc. 14, p379-393.
111.Wood, J (1866): Variations in human myology observed during the Winter Session of 1865-6 at King's College, London. Proc.Roy.Soc. 15, p229-244.
112.Wood, J (1867a): On human muscular variations and their relation to comparative anatomy. J.Anat.Phys. 1, p44-59.
113.Wood, J (1867b): Variations in human myology observed during the Winter Session of 1866-7 at King's College, London. Proc.Roy.Soc. 15, p518-545.
114.Wood, J (1868): Variations in human myology observed during the Winter Session of 1867-8 at King's College, London. Proc.Roy.Soc. 16, p483-525.
115.Ziegler, AC (1964): Brachiating adaptations of chimpanzee upper limb musculature. Am.J.Phys.Anthropol. 22, p15-32.

3.5 BACK

3.5.1 MUSCLES

3.5.1.1 Extrinsic

3.5.1.1.1 Cranio-cervical

Splenius capitis

No information for Hylobates.

In great apes and Homo splenius capitis originates from the spinous processes of C 5 to $\mathrm{T}^{28,34,36,37,42}$, extending further superiorly to C 4 in Homo, Gorilla and Pongo ${ }^{34,}$ 37, 42, to C3 in Gorilla and Pongo ${ }^{34,37}$, and to C2 in Pongo alone ${ }^{37}$. Inferior extension of the origin is present to T4 in both species of Pan and Pongo ${ }^{28,36,37}$, and as far as T5-T7 in Pan^{36}, in which the splenius capitis and cervicis form a single mass ${ }^{36}$. The muscle also takes origin from the supraspinous ligaments in Gorilla and Pongo ${ }^{34,37}$. The insertion of the muscle in great apes and Homo is to the mastoid process and the occipital bone beneath the superior occipital line ${ }^{9,28,34,36,37,42}$, in Gorilla and Pongo beginning more inferiorly on the occipital bone, in the region of the occipital crest ${ }^{34,}$ ${ }^{37}$. There is a slip to levator scapulae in Pan^{36}.

Innervation in Homo and Pan paniscus is from the dorsal rami of the cervical nerves ${ }^{28,42}$.

Splenius cervicis

No information for Hylobates.

It takes origin from T3 to T6 in Homo^{42}, from T5 in Pan paniscus ${ }^{28}$, and in Gorilla from T 1 to T 3 and their supraspinous ligaments ${ }^{34}$.

The muscle may be absent from Pongo ${ }^{37}$, or part of a splenius mass as in Pan^{36}. Splenius cervicis receives a slip from longissimus cervicis at the level of C2 in Pan paniscus ${ }^{28}$.

Insertion in Homo, Pan paniscus and Gorilla is to the transverse process of $\mathbf{C l}^{28,34,}$ ${ }^{42}$, extending inferiorly to the transverse process of C 2 in Homo and Gorilla ${ }^{34,42}$. In Pan it blends with the levator scapulae ${ }^{36}$.

Innervation in Homo and Pan paniscus is from the dorsal rami of the lower cervical nerves ${ }^{28,42}$.

3.5.1.1.2 Cervicothoracic

Serratus posterior superior

No information for Hylobates.

The muscle originates from the spinous processes of C 7 in African apes and $\mathrm{Homo}^{28,}$ 34, 36, 42, additionally from C6 in Homo, Pan paniscus and Gorilla ${ }^{28,34,42}$, and from T1 in Homo and both species of $\mathrm{Pan}^{28,36,42}$. The origin extends inferiorly to T2 in Homo and Pan paniscus ${ }^{28,42}$, and superiorly as far as C3 in Pan paniscus and Gorilla ${ }^{28,34}$. Gorilla possesses additional digitations from C 1 and $\mathrm{C} 2^{34}$.

Serratus posterior superior is absent or represented by tendinous threads in Pongo ${ }^{35}$, ${ }^{37}$, and may be absent from Homo as a variant ${ }^{42}$.

The muscle inserts in African apes and Homo onto the second to fifth ribs lateral to their angles ${ }^{23,28,34,36,42}$, extending superiorly to the first rib in Pan^{36}, and inferiorly to the sixth rib in Gorilla ${ }^{34}$.

It is innervated by branches of the second to fifth intercostal nerves in $H o m o^{42}$, the first four intercostal nerves in Pan paniscus ${ }^{28}$, and the first five intercostal nerves in Gorilla ${ }^{34}$.

3.5.1.1.3 Thoracolumbar

Serratus posterior inferior

No information for Hylobates.

In great apes and Homo serratus posterior inferior originates from the thoracolumbar fascia ${ }^{28,36,37,42}$.

The muscle is absent from Gorilla 34, and occasionally absent from Homo ${ }^{42}$.

Serratus posterior inferior inserts onto the inferior four or five ribs, lateral to their angles, in great apes and $\mathrm{Homo}^{28,36,37,39,42}$.

Innervation is via the ventral rami of the ninth to twelfth thoracic spinal nerves in Homo and Pan paniscus ${ }^{28,42}$.

3.5.1.1.4 Upper limb

Dorsoepitrochlearis See 3.4.1.2.2

Latissimus dorsi

In great apes and Homo latissimus dorsi takes origin from the supraspinous ligaments and spinous processes of T 9 to T 12 , extending superiorly to T 8 in all except Gorilla ${ }^{5}$, 15, 28, 34, 36, 37, 38, 42 and as far superiorly as T 7 in Homo^{42}. In great apes and Homo, the muscle takes origin from the thoracolumbar fascia ${ }^{4,34,36,37,38,42}$, and in great apes (except Pan paniscus ${ }^{28}$) and Homo from the posterior third of the iliac crest ${ }^{4,5,15,24,}$ $28,34,37,38,42,45$. The iliac origin in great apes reaches almost to the anterior superior
iliac spine ${ }^{5,15,34,36,45}$. The costal part of the origin involves three or four ribs in Homo and Pan 5, 15, 24, 36, 42, five ribs in Pan paniscus and Hylobates ${ }^{15,28}$, or six ribs in Gorilla and Pongo ${ }^{4,15,37}$. The costal origin may be absent from Pongo ${ }^{15,38}$. Fibres of origin from the inferior scapular angle, frequently present in Homo, are absent from all apes ${ }^{15,36,37,38}$ except Pan paniscus ${ }^{28}$.

Latissimus dorsi is fused superiorly with trapezius in great apes ${ }^{24,34,38}$.

In all apes and Homo the flat tendon passes to insert on the floor of the intertubercular groove of the humerus ${ }^{4,5,10,15,24,28,34,36,37,38}$, in common with the insertion of teres major in all except Gorilla ${ }^{15,34}, 4 / 5$ Pan 4,5,15,24 and 3/6 Pongo ${ }^{15,}$ ${ }^{33}$, although in these specimens of Pan and Pongo a slip passes to the posterior aspect of the tendon of teres major, and inserts anterior to $\mathrm{it}^{5,15,45}$. Coracobrachialis inserts onto the tendon of insertion of latissimus dorsi in Pongo ${ }^{4}$.

Latissimus dorsi is innervated in all apes and Homo by the thoracodorsal nerve ${ }^{5,15,}$ 28, 42.

Levator scapulae

No information for Hylobates.

Levator scapulae takes origin in great apes and Homo by four slips from the dorsal tubercles of the transverse processes of Cl to $\mathrm{C} 4^{15,28,34,37,38,42,43}$, with the exception of both species of Pan in which the origin is shorter, from C 1 and $\mathrm{C}^{5,45}$, C 1 to $\mathrm{C} 3^{15,28}$, or C 2 and $\mathrm{C} 3^{14}$, or longer from C 1 to $\mathrm{C} 5^{36,39}$. A single specimen of Pongo has 5 slips of origin, with 2 slips coming from C 3 and fusing soon afterwards ${ }^{38}$. The origin in Homo may be from all cervical vertebrae, or as few as two, although larger numbers are more common ${ }^{42,45}$. Levator scapulae takes origin
in Pongo also from the outer surface of the mastoid process under the sterno (cleido)mastoid muscle ${ }^{15}$.

The slips from C3, C4 and C5 in the Pan specimens with the long origin, fuse with splenius cervicis ${ }^{36}$. The C 1 and C 2 slips in Gorilla fuse with atlantoclavicularis, the C2 slip is fused with scalenus posterior, and the $\mathrm{C} 2, \mathrm{C} 3$ and C 4 slips are fused with iliocostalis cervicis ${ }^{34}$.

The insertion of levator scapulae in great apes and Homo is to the part of the medial scapular border inferior to the superior angle, not occupied by the rhomboidei ${ }^{4}, 15,28$, 34, 36, 37, 38, 39, 42, 45 . The insertion may be split into two parts in Pan ${ }^{4}$.

Innervation of levator scapulae is from the third and fourth cervical nerves in $H o m o^{42}$, from the third and fifth cervical nerves ${ }^{36}$ or the fourth cervical nerve ${ }^{5}$ alone in Pan, the dorsal scapular nerve in Pan paniscus ${ }^{28}$, and from the second to fourth cervical nerves in Gorilla ${ }^{34}$.

Rhomboid major and minor

No information for Hylobates.

The rhomboids are present as a single muscle mass in great apes ${ }^{4,15,31,23,28,36,37,38,}$ 39, 40, 43, with the exception of single specimens of Pan ${ }^{5}$ and Pongo ${ }^{4}$ in which they are separated, as in Homo^{42}.

Treating the human muscle as if it had a combined origin, which may be present as a variation ${ }^{42}$, the rhomboidei take origin from the spinous processes of C 6 to T 4 in great apes and $\mathrm{Homo}^{4,28,34,36,37,38,42}$, extending superiorly to C3 in great apes ${ }^{4,28,}$ 34, 37, 38 , and to the medial portion of the superior nuchal line of the occipital bone in a single specimen of Pan^{14}, in Pongo ${ }^{4,15,31,37,38}$, and as a variation in Homo ${ }^{42}$. This
occipital slip, absent from Gorilla, has been called the rhomboid capitis or omooccipitalis ${ }^{11,12,15,36,37,38}$. The inferior extent of the origin is to T5 in Homo and Pan ${ }^{5}$, T6 in Gorilla and Pongo 15, 34, 37, 38, and to T7 in Pongo alone ${ }^{38}$.

The rhomboidei insert in great apes and Homo to the medial scapular border between the inferior scapular angle and the scapular margin at the base of the scapular spine ${ }^{4,}$ $5,15,28,34,36,37,38,42$.

Innervation of the rhomboidei is via the dorsal scapular nerve in Homo and Pan paniscus ${ }^{28,42}$, and from the fifth cervical nerve in Pan 5,36.

Trapezius

Trapezius originates in Homo and all apes except Hylobates, from the superior nuchal line and the external occipital protuberance ${ }^{15,28,34,36,37,38,42}$. There is no occipital origin in Hylobates ${ }^{37}$, and this may be absent from Homo^{42}. The remainder of the origin is from the spinous processes and supraspinal ligaments of C 7 and all the thoracic vertebrae in great apes and $\mathrm{Homo}^{36,37,38,42}$, while great apes have an extensive cervical origin from $\mathbf{C} 2$ to $\mathrm{C}^{28,36,37,38}$, extending to C 1 in both species of Pan ${ }^{28,36}$. The cervical origin begins at C5 in Hylobates ${ }^{37}$. The thoracic part of the origin ends at T 9 in Pan paniscus ${ }^{28}$, and may continue inferiorly onto the last rib in Gorilla ${ }^{34}$, or L1 in Pongo ${ }^{38}$. In Homo, the thoracic origin may end at T8 as a variation ${ }^{42}$.

In the midspinal region in Homo, the origin is tendinous ${ }^{42}$, and this is present in Pan paniscus ${ }^{28}$, but absent from Pan and Pongo ${ }^{36,37,38}$.

The nuchal ligament is absent from all apes with the exception of Hylobates ${ }^{37}$, thus the nuchal origin present in Homo^{42} is absent from great apes ${ }^{31,36,37,38}$.

Fusion with latissimus dorsi is present in $2 / 5$ Pan 39, Gorilla ${ }^{34}$ and Pongo 38, and is also fused with the deltoid muscle in Pan^{36}, but not in Pongo^{37}. In great apes but not in Homo^{21}, cranial trapezius is thicker than the caudal portion ${ }^{2,27,34,37}$. The middle part of trapezius is most strongly developed in hylobatids, with thinner cranial and caudal margins ${ }^{1}$. Oxnard has produced tables of relative weights and comparative features of trapezius in Homo, brachiators, semi-brachiators and quadrupeds ${ }^{32}$.

Insertion is onto the lateral third of the clavicle, the whole length of the superior border of the scapular spine and the acromion process in great apes and $\mathrm{Homo}^{4,15,28,}$ ${ }^{34,36,37,38,42}$. There is no special insertion into the root of the scapular spine in Pan or Pongo ${ }^{37}$, unlike Homo^{42}. Fibres pass into the coracoclavicular ligament from the deep surface of trapezius in Gorilla 34, and in Pongo some fibres insert into the infraspinatus fascia ${ }^{38}$.

Innervation of trapezius in Homo, Pan paniscus and Gorilla is from the accessory nerve ${ }^{28,34,42}$, and also from muscular branches of the third and fourth cervical nerves in Homo and Pan ${ }^{36,42}$ and the third cervical nerve in Pan paniscus ${ }^{28}$.

3.5.1.1.5 Scapular

Deltoid \quad See 3.4.1.1

Infraspinatus

No information for Hylobates.

Infraspinatus takes origin in great apes and Homo from the infraspinous fossa and the infraspinatus fascia ${ }^{4,28,34,36,38,42}$. In Homo, Pan, and Pongo it also takes origin from the scapular spine ${ }^{4,38.42}$, while Pan and Pongo share an origin from the intermuscular septa ${ }^{4}$.

Larger than supraspinatus in all apes and $\mathrm{Homo}^{15,18,36,37,42}$, the muscle is fused with supraspinatus at its insertion in Pongo ${ }^{4,38}$, and also in Gorilla and Pongo with teres minor ${ }^{34,}{ }^{38}$, which occurs in Homo as a variant ${ }^{42}$.

The insertion of infraspinatus in great apes and Homo is to the middle facet of the greater tubercle of the humerus ${ }^{4,20,28,34,36,37,38,42}$, extending in great apes to the capsule of the shoulder joint ${ }^{4,34,38}$.

Innervation is by the suprascapular nerve in Homo, Pan paniscus and Gorilla ${ }^{28,34,42}$.

Subscapularis

In all apes and Homo subscapularis originates from the subscapular fossa ${ }^{4,15,20,34,36,}$ 37, 38, 42, in Pan taking additional fascial origin from the inferior scapular angle ${ }^{4}$. Accessory bundles are present as a variation in Homo^{42}, and an accessory bundle is present in a specimen of Pan, originating from the superior part of the lateral scapular border, inserting into the capsular ligament and the humerus one centimetre distal to the greater tubercle ${ }^{45}$. An independent superior bundle is present in a specimen of Pongo ${ }^{38}$.

Triangular in Homo and Gorilla ${ }^{34,42}$, the muscle consists of three parts in Homo and Pan ${ }^{20,36,42}$, seven or more fascicles in Gorilla ${ }^{34,37}$ and is continuous in Pongo ${ }^{37}$.

Insertion in all apes and Homo is onto the lesser tubercle of the humerus ${ }^{15,34,36,37,38,}$
42, extending onto the shaft below in Homo, Pan and Pongo ${ }^{4,36,42,45}$, but not in Gorilla ${ }^{34}$. Subscapularis also inserts into the capsule of the shoulder joint in the African apes ${ }^{34,36,45}$, while in Homo it passes in close proximity to the joint capsule ${ }^{42}$.

Innervation in Homo and Pan paniscus is from the subscapular nerve ${ }^{28,42}$, with five subscapular nerves supplying the muscle in Gorilla ${ }^{34}$.

Supraspinatus

Supraspinatus originates in great apes and Homo from the supraspinatus fossa ${ }^{4,28,34,}$ 36, 38, 42, while Homo and Gorilla share an origin from the supraspinatus fascia ${ }^{34,42}$. In Pongo, the origin extends from the suprascapular notch to the superior angle, and on the medial border to the base of the scapular spine, and along the scapular spine to the acromion ${ }^{38}$.

Smaller than infraspinatus in all apes and Homo ${ }^{\text {15, 18, 36, 37, 42 }}$, in Homo, Gorilla and Pongo the muscle is fused with the capsule of the shoulder joint ${ }^{34,38,42}$, and in Pan with the tendon of pectoralis minor ${ }^{15}$. Supraspinatus is fused distally with infraspinatus in Pongo alone ${ }^{4,38}$.

Insertion of supraspinatus is onto the superior facet of the greater tubercle of the humerus in great apes and $\mathrm{Homo}^{28,} 34,36,37,38,42$.

Supraspinatus is innervated by the subscapular nerves in Homo^{42}, by the suprascapular nerve in Pan paniscus ${ }^{28}$, but is described in Gorilla as being innervated by the infraspinatus nerve ${ }^{34}$.

Teres major

In all apes and Homo teres major originates from the lateral border of the dorsal surface of the scapula ${ }^{4,15,28,37,38,42}$. The scapular origin involves a third of the lateral border in Homo, Gorilla and Pongo 4, 15, 37, 38, 42, half the border in both species of Pan ${ }^{15,28,36}$ and more than half in Hylobates ${ }^{15}$. Fibres of origin from the adjacent infraspinous fossa are present in Homo and Pan ${ }^{5,42,45}$. In Homo, Pan and

Pongo there are fibres of origin from the intermuscular septa with teres minor and infraspinatus ${ }^{4,42}$. In $1 / 7$ Pongo, the muscle was fused at origin with infraspinatus ${ }^{38}$, and with subscapularis in 2/7 Pongo ${ }^{37,38}$.

A flat strap-like muscle, it is overlapped laterally by the long head of triceps in Homo and great apes ${ }^{5,34,38,42}$, and medially by latissimus dorsi in Homo and Gorilla ${ }^{34,42}$. Teres major may be absent from Homo as a variant ${ }^{42}$.

Insertion in all apes and Homo is onto the medial lip of the intertubercular groove anterosuperior to the insertion of coracobrachialis ${ }^{15,36,37,38,42}$, in African great apes and Homo posterior to the insertion of latissimus dorsi ${ }^{42}$. Teres major is fused with latissimus dorsi in 2/7 Pan 15,36, Pan paniscus ${ }^{28}, 1 / 2$ Gorilla $^{34}, 4 / 7$ Pongo 4,15,37,38 and Hylobates ${ }^{15}$, and as a variant in Homo ${ }^{42}$.

In Homo and African apes teres major is supplied by the subscapular nerves ${ }^{\text {5, 28, 34, } 42}$.

Teres minor

In all apes and Homo originates from the lateral border of the dorsal surface of the scapula, involving the superior two-thirds in $\mathrm{Homo}^{42}, 1 / 4 \mathrm{Pan}^{15}$ and 1/5 Pongo^{38}, the superior half in $1 / 4$ Pan 36, Pan paniscus ${ }^{28}$, and $2 / 5$ Pongo 15,37, the middle third in 1/4 Pan 5 and Gorilla ${ }^{15}$, while in Hylobates the origin occupies only the superior part of the border close to the glenoid cavity ${ }^{15}$. In Homo and great apes the muscle also has fibres of origin from the intermuscular septum with infraspinatus ${ }^{4,34,37,42}$, and in Homo and Pan from the intermuscular septum with teres major ${ }^{4,42}$. In Homo and Pongo teres minor is separated from teres major by the long head of triceps ${ }^{38,42}$.

The muscle may be fused with infraspinatus as a variant in Homo^{42}, and is so fused in Gorilla ${ }^{34}$ and Pongo ${ }^{37}$.

The insertion in all apes and Homo is onto the inferior facet of the greater tubercle of the humerus ${ }^{15,20,36,37,38,42}$, extending to the shaft just below in Homo and African apes ${ }^{20,36,42}$, and onto the humeral head in Pan and Pongo ${ }^{4}$. In Pan paniscus the muscle also inserts into the posterior capsule of the shoulder joint ${ }^{28}$, and in Pan onto the scapular ligament ${ }^{4}$.

Innervation is from the axillary (circumflex) nerve in Homo and African great apes ${ }^{28,}$ 34, 36, 42

3.5.1.2 Intrinsic

3.5.1.2.1 Long

Erector spinae

No information for Hylobates.

Originates in great apes and Homo from the dorsum of the sacrum and the sacroiliac ligaments, from the iliac crest, and the spinous processes of the lumbar vertebrae ${ }^{28,}$ 34, 36, 37, 41, 42. In African apes and Homo it also takes origin from the thoracolumbar fascia ${ }^{34,36,42}$.

3.5.1.2.1.1 Lateral

Iliocostalis

No information for Hylobates.

The costal origin of iliocostalis is from all the ribs in Pan and Pongo ${ }^{36,37}$, from all ribs except the first two in Homo and Gorilla ${ }^{34,42}$, and from all except the first four ribs in Pan paniscus ${ }^{28}$.

The origin of iliocostalis is fused with longissimus in Homo, African apes and Pongo ${ }^{28,34,36,37,42}$, while the cervical part of iliocostalis is fused with levator scapulae and splenius cervicis in Gorilla ${ }^{34}$.

The insertion in the cervical region is to the transverse processes of C 4 to C 7 in Homo $^{42}, \mathrm{C} 7$ and T 1 in Pan paniscus ${ }^{28}, \mathrm{C} 2$ to C 4 in Gorilla ${ }^{34}$ and C 4 to C 6 in Pongo ${ }^{37}$. The rest of the muscle inserts onto the first to sixth ribs in Homo^{42}, the first to ninth ribs in Pan^{36}, the seventh to fourteenth ribs in Pan paniscus ${ }^{28}$, the twelfth and thirteenth ribs in Pan and Gorilla ${ }^{34,36}$ and the first to twelfth ribs in Pongo ${ }^{37}$. Innervation in Homo and Pan paniscus is from the dorsal rami of the spinal nerves ${ }^{28,}$ 42.

3.5.1.2.1.2 Intermediate

Longissimus

No information for Hylobates.

In great apes and Homo, iliocostalis originates in addition from the transverse processes of the lumbar vertebrae ${ }^{28,34,37,41,42}$. The thoracic origin is from the transverse processes of T1 to T6 in great apes ${ }^{28,34,36}$ except Pongo, in which the inseparable thoracic part arises from the transverse processes of T 1 to T 4 , as in Homo 37,42. The inferior extent of the thoracic origin extends to T 8 in Gorilla ${ }^{34}$. In Pan there is also an origin from the spinous processes of the last two thoracic vertebrae, T12 and T13 ${ }^{36}$. In the cervical region, the origin is as far superiorly as the transverse process of C 5 in Homo and Gorilla ${ }^{34,42}, \mathrm{C} 4$ in Pongo ${ }^{37}$, and C3 in Pan paniscus ${ }^{28}$.

In Homo and both species of Pan and Homo, longissimus is fused with iliocostalis ${ }^{28,}$ 34, 36, 37, 42, in Pan paniscus sending slips to splenius cervicis and longus capitis and cervicis ${ }^{28}$. In Pan and Pongo the muscle is fused with semispinalis capitis ${ }^{36,37}$, in Pan also with scalenus posterior ${ }^{36}$.

The cranial insertion of longissimus is to the occiput in great apes ${ }^{28,36,37}$, including the mastoid process in Homo, Pan paniscus and Gorilla ${ }^{28,34,42}$.

The cervical insertion in great apes and Homo is onto the transverse processes of C3 to $\mathbf{C} 5^{28,34,36,37,42}$, extending superiorly to $\mathbf{C} 2$ in all these with the exception of Pan ${ }^{28,34,37,42}$, inferiorly to C6 in Pongo and Pan paniscus ${ }^{28,37}$, and to C7 in Gorilla ${ }^{34}$. An insertion onto the atlas is present in Pan and Gorilla ${ }^{34,36}$.

In the thoracic region, longissimus inserts onto the transverse processes of the thoracic vertebrae in Homo and both species of $\mathrm{Pan}^{28,36,42}$. In all great apes and Homo with the exception of Pongo longissimus inserts onto the ribs between the costal angle and the transverse processes of the thoracic vertebrae ${ }^{36}$. In Homo and Gorilla this involves all the ribs ${ }^{34,42}$, while in both species of Pan the extent of the costal insertion is from the fourth rib to the last rib ${ }^{28,36}$.

Innervated by branches from the dorsal rami of the spinal nerves in Homo, Pan paniscus and Gorilla ${ }^{28,34,42}$.

3.5.1.2.1.3 Medial

Spinalis

No information for Pongo or Hylobates.

In Homo and African apes spinalis originates from the spinous processes of T11 and T12 ${ }^{28,34,36,42}$. It extends superiorly to T 10 in Homo and Pan paniscus ${ }^{28,42}$, reaching its most superior origin at T9 in Gorilla ${ }^{34}$. The origin extends inferiorly to T13 in Gorilla ${ }^{34}$, reaching L1 to L3 in Homo and Pan paniscus ${ }^{28,42}$. The muscle is fused with semispinalis capitis in Pan and Gorilla ${ }^{34,36}$. A cervical part of the muscle, originating in Homo from T2 to T^{42}, is not present in African apes ${ }^{28,34,36}$. The insertion of spinalis is to the spinous processes of T2 to T6 in African apes and Homo ${ }^{28,} 34,36$, extending superiorly to T 1 in Pan^{36}, and to C 7 in Pan paniscus and Gorilla ${ }^{28,34}$. The superior extent of the insertion in Gorilla continues as far as C^{34}, which may correspond to the insertion of spinalis cervicis in Homo, which involves C 2 to $\mathrm{C} 4^{42}$. The insertion extends inferiorly in Homo and both species of Pan to T7 and $T 8^{28,36}$.

Innervated by branches from the dorsal rami of the spinal nerves in Homo and Pan paniscus ${ }^{28,42}$.

3.5.1.2.2 Short

3.5.1.2.2.1 Transversospinal

Semispinalis thoracis

No information for Gorilla or Hylobates.

Semispinalis thoracis is separable at origin from semispinalis cervicis in Homo and Pongo ${ }^{37,42}$, but not in Pan 36,44. In both Homo and Pongo, the muscle originates from the transverse processes of T 6 to $\mathrm{T} 11^{37,42,44}$, extending superiorly to T 5 in $\mathrm{Homo}{ }^{42}$ and inferiorly to T12 in Pongo ${ }^{37}$.

Semispinalis thoracis has not been described in Pan paniscus or Gorilla ${ }^{28,34}$. It has a combined origin with semispinalis cervicis in $P a n^{36,44}$, which is described with the latter muscle.

The insertion of semispinalis thoracis in Homo, Pan and Pongo is to the spinous processes of T 2 and $\mathrm{T} 3^{36,37,42,44}$, extending superiorly to C 6 in Homo and Pongo ${ }^{37}$, ${ }^{42}$. The insertion extends inferiorly to T4 in Homo and Pongo ${ }^{37,42,44}$, and may reach as far inferiorly as T8 in Pan^{44}.

Semispinalis cervicis

No information for Hylobates.

In great apes and Homo semispinalis cervicis originates from the transverse processes of T 1 to $\mathrm{T}{ }^{28,34,36,37,42,44}$, extending inferiorly to T 7 in Homo and Gorilla ${ }^{34,42}$, to T10 in Pan^{44} and in Gorilla and Pongo also originating from the articular processes of C 4 to $\mathrm{C} 7^{34,37}$. The origin extends superiorly to the articular process of C3 in Gorilla ${ }^{34}$. In Pan and Gorilla semispinalis cervicis also takes origin from the spinalis muscles ${ }^{34,44}$.

The combined origin of semispinalis thoracis and cervicis in Pan involves the transverse processes of all the thoracic vertebrae and the articular processes of $\mathbf{C} 2$ to $C 7^{36,42}$. Winckler puts the division between thoracis and cervicis at the level of its seventh fascicle, which arises from T7 to T10 and inserts onto T1 ${ }^{44}$.

The insertion of semispinalis cervicis in great apes and Homo is to the spinous processes of $\mathbf{C} 2$ to $\mathbf{C} 5^{28,34,36,37,42,44}$, extending superiorly to $\mathbf{C} 1$ in both species of Pan ${ }^{28,36}$. The inferior extent of the insertion is to C6 in Homo and both species of $P a n^{28,36,42,44}$, reaching inferiorly to C 7 in Gorilla 34 and as far as T1 in Pan ${ }^{44}$.

Semispinalis capitis

No information for Hylobates.

Semispinalis capitis originates in great apes and Homo from the articular processes of C 5 to $\mathrm{C} 7^{28,34,36,37,42,44}$, extending superiorly to C 4 in Homo and Pan paniscus ${ }^{28,}$ ${ }^{42}$, to C3 in Pan and Pongo ${ }^{34, ~ 36, ~ 37, ~ 44, ~ a n d ~ f u r t h e r ~ t o ~ C 2 ~ i n ~ G o r i l l a ~}{ }^{34}$. The inferior extension of the origin is to T 4 in Pan paniscus ${ }^{28}$, extending further inferiorly to T5 in Gorilla ${ }^{34}$, and to T6 in Pan 36, Pongo 37 and as a variant in Homo ${ }^{42,44}$. It may extend as far inferiorly as T7 in Homo and $\mathrm{Pan}^{42,44}$. There is a slip of origin from the spinous process of C 7 occasionally in Homo^{42} and in Pongo^{37}, but not in Pan^{36}.

Semispinalis capitis is fused with longissimus capitis in Pongo 37, with longissimus thoracis and spinalis thoracis at its origin in Pan^{36}, and with semispinalis cervicis in Gorilla ${ }^{34}$.

The insertion of semispinalis capitis is to the occipital bone between the superior and inferior nuchal lines in great apes and $\mathrm{Homo}^{28,34,36,37,42}$.

Semispinalis capitis in Pongo has, on its internal surface, a separate slender Yshaped bundle of fibres, the vertical limb arising from fascia covering semispinalis capitis and the two diverging limbs blending with capitis itself before its insertion into the occipital bone ${ }^{37}$. This is the biventer cervicis, which is usually blended with semispinalis capitis in Homo^{42}, but may be a separate muscle ${ }^{44}$. This fasciculus is not separable from the muscle in Pan^{36}, although a tendinous intersection in the muscle, as in Homo^{44}, is present in both species of Pan 28,44.

Innervation of the semispinales in Homo is from the dorsal rami of C 1 to C 6 and T 4 to $\mathrm{T} 6^{42}$ and by the dorsal rami of C 2 to T 3 in Gorilla ${ }^{34}$, while semispinalis cervicis and capitis are supplied by the dorsal rami of the cervical nerves in Pan paniscus ${ }^{28}$.

Multifidus

No information for Pongo or Hylobates.

Originates in Homo and African apes from the sacrum and sacroiliac ligaments, the mammillary processes of the lumbar vertebrae, the transverse processes of the thoracic vertebrae, and the articular processes of C 7 to $\mathrm{C} 4^{28,34,36,42,44}$, extending superiorly to C 3 in Pan paniscus ${ }^{28}$. The inferior extent of the origin in Homo is $\mathrm{S} 4^{42}$, ${ }^{44}$, while in Pan it is Co^{44}.

Lying subjacent to semispinalis ${ }^{34,36,42,44}$, the muscle fascicles insert into the lamina and entire length of the spinous processes of lumbar, thoracic and cervical vertebrae two to four vertebrae above the vertebra of origin reaching superiorly to C 2 in great apes and $\mathrm{Homo}^{28, ~ 34, ~ 36, ~ 42, ~ 44, ~ e x t e n d i n g ~ t o ~} \mathrm{C} 1$ in Pan paniscus alone ${ }^{28}$.

Innervated by dorsal rami of the spinal nerves in Homo and Pan paniscus ${ }^{28,42}$.

Rotatores breves and longi

No information for Pongo or Hylobates.

Rotatores originate in Homo and African apes from the transverse processes of the thoracic vertebrae ${ }^{34,36,42}$, extending as far superiorly as $C 2$, and as far inferiorly as the sacrum in Gorilla ${ }^{34}$. Rotatores in the cervical and lumbar regions are variably present in Homo^{42}.

Insertion of the short fibres in Homo and African apes is to the lamina and base of the spinous process of the vertebra above ${ }^{34,36,42}$, while rotatores longi, which insert onto the vertebra after that appear to be present only in Homo and Gorilla ${ }^{34,42}$.

3.5.1.2.2.2 Interspinales

Interspinales

No information for Pan, Pongo or Hylobates.

In Homo and Gorilla interspinales originate from the spinous processes of the cervical and lumbar vertebrae ${ }^{34,42}$.

The cervical part extends as far superiorly as C 2 in $\mathrm{Homo}^{42}, \mathrm{C} 3$ in Gorilla ${ }^{34}$, and as far inferiorly as T 3 in Homo^{42} and T 2 in Gorilla ${ }^{34}$. Additional thoracic interspinales are present in Homo between T11 and T12, and between T12 and L1 ${ }^{42}$.

They insert onto the spinous processes of the adjacent vertebrae in Homo and Gorilla ${ }^{34,42}$.

3.5.1.2.2.3 Intertransversarii

Intertransversariii

No information for Hylobates.

The intertransversarii in great apes have been described as similar to Homo ${ }^{34,36,37}$.

3.5.2 VESSELS

3.5.2.1 Arteries

3.5.2.1.1 Subclavian

Suprascapular

The suprascapular branch of the thyrocervical trunk is present in great apes and Homo ${ }^{34, ~ 36,37,42 .}$

In Homo and Gorilla it supplies the subclavius muscle ${ }^{34}$, while in Pan branches of the suprascapular and the descending branch of the transverse cervical arteries take the place of the superior thoracic branch of the axillary artery in Homo^{36}.

In Homo and Pongo it gives off acromial branches ${ }^{37,42}$.

Transverse cervical

The transverse cervical artery is found in about one-third of Homo, giving rise to the superficial cervical and dorsal scapular arteries ${ }^{16,42}$. The artery has also been found in specimens of Pan and Pongo ${ }^{36,37}$.

3.5.2.1.2 Axillary

Subscapular

The subscapular artery arises as an independent branch of the axillary artery in Homo $^{42}, 1 / 4$ Pan 36, Gorilla ${ }^{25}$ and Pongo ${ }^{25,}$ 29, 30. In 3/4 Pan ${ }^{13,25,29,30}$ and Hylobates ${ }^{25,29,30}$ the artery arises from a common trunk with the circumflex humeral and circumflex scapular arteries, or with the circumflex humeral and profunda brachii, which may occur in Homo as a variant ${ }^{42}$.

There is a separate common trunk for the circumflex humeral and profunda brachii in Pongo ${ }^{25}$, and for the circumflex humeral and circumflex scapular arteries in Homo^{42}, while in Homo^{42} and $1 / 3$ Pongo 29,30 all three branches arise independently.

3.5.3 NERVES

Dorsal scapular

Subscapular

Suprascapular

See 3.4.3.3.1

See 3.4.3.3.2.8

See 3.4.3.3.1

BIBLIOGRAPHY

1. Andrews, P and Groves, CP (1976): Gibbons and brachiation. In: Rumbaugh,DM (ed); Gibbon and siamang. Vol.4. Karger, Basel' p167-218.
2. Ashton, EH and Oxnard, CE (1963): The musculature of the primate shoulder. Trans.Zool.Soc.Lond. 29, p553-550.
3. Bardeen, CR (1907): Cited in MacDowell (1910).
4. Beddard, FE (1893): Contributions to the anatomy of the anthropoid apes. Trans.Zool.Soc.Lond. 13, p177-218.
5. Champneys, F (1872): On the muscles and nerves of a chimpanzee (Troglodytes niger) and a cynocephalus anubis. J.Anat.Phys. 6, p176-211.
6. Chapman, HC (1878): On the structure of the gorilla. Proc.Zool.Soc.Lond. p385394.
7. Chapman, HC (1879): On the structure of the chimpanzee. Proc.Zool.Soc.Lond. p52-63.
8. Chapman, HC (1880): On the structure of the orang outang. Proc.Zool.Soc.Lond. p160-174.
9. Dean, MC (1984): Comparative myology of the hominoid cranial base: The muscular relationships and bony attachments of the digastric muscle. Folia Primatol. 43, p234-248.
10.Dwight, T (1895): Notes on the dissection and brain of the chimpanzee "Gumbo". Mem.Boston Soc.Nat.Hist. 5, p31-51.
11.Fick, R (1895a): Vergleichend-anatomische Studien an einem erwachsenen Orang-utang. Arch.Anat.Physiol. Anat.Abt. pl-100.
12.Fick, R (1895b): Beobachtungen an einem zweiten erwachsenen Orang-Utang und einem Schimpansen. Arch.Anat.Physiol. Anat.Abt. p289-318.
13.Glidden, EM and De Garis, CF (1936): Arteries of the chimpanzee. I. The aortic arch II. Arteries of the upper extremity III. The descending aorta IV. Arteries of the lower extremity. Am.J.Anat. 58 (2), p501-527.
14.Gratiolet, LP and Alix, PHE (1866): Recherches sur l'anatomie de Troglodytes aubryi, chimpanzé d'une espéce nouvelle. Nouv.Arch.Mus.Natl.Hist. Nat.(Paris). 2, pl-264.
15.Hepburn, D (1892): The comparative anatomy of the muscles and nerves of the superior and inferior extremities of the anthropoid apes. J.Anat.Phys. 26, p149-186, 324-356.
16.Huelke, DF (1962): The dorsal scapular artery - a proposed term for the artery to the rhomboid muscles. Anat.Rec. 142, p57-62.
17.Humphry, GM (1866/7): On some points in the anatomy of the chimpanzee. J.Anat.Phys. 1, p254-268.
18.Inman, VT; Saunders, JB de CM and Abbott, LC (1944): Observations on the function of the shoulder joint. J.Bone.Jt.Surg. 26, pl-30.
19.Jungers, WL and Stern, JT Jr (1981): Preliminary electromyographical analysis of brachiation in gibbon and spider monkey. Int.J.Primatol. 2 (1), p19-33.
20.Larson, SG and Stern, JT Jr (1986): EMG of scapulohumeral muscles in the chimpanzee during reaching and "arboreal" locomotion. Am.J.Anat. 176, p171-190.
21.Larson, SG; Stern, JT and Jungers, WL (1991): EMG of serratus anterior and trapezius in the chimpanzee: scapular rotators revisited. Am.J.Phys.Anthropol. 85, p71-84.
22.Le Double, F (1897): Traité des variations du système musculaire de l'homme et de leur signification au point de vue de l'anthropologie zoologique, I et II. Librairie C.Reinwald, Paris.
23.MacAlister, A (1871): On some points in the myology of the chimpanzee and of the primates. Ann.Mag.Nat.Hist. 7 (2), p341-351.
24.MacDowell, EC (1910): Notes on the myology of Anthropopithecus niger and Papio-thoth ibeanus. Am.J.Anat. 10, p431-460.
25.Manners-Smith, T (1910): The limb arteries of primates (part 1). J.Anat.Phys. 44, p271-302.
26.Michaëlis, P (1903): Beiträge zur vergleichenden Myologie des Cynocephalus babuin, Simia satyrus, Troglodytes niger. Arch.Anat.Phys. Anat. Abt. p205-256.
27.Miller, RA (1932): Evolution of the pectoral girdle and forelimb in the primates. Am.J.Phys.Anthropol. 17, pl-56.
28.Miller, RA (1952): The musculature of Pan paniscus. Am.J.Anat. 91 (2), p182232.
29.Müller, E (1903): Beiträge zur Morphologie des Gefasssystems. I. Die Armarterien des Menschen. Anat.Hefte. 22, p279-574.
30.Müller, E (1905): Beiträge zur Morphologie des Gefasssystems. II. Die Armarterien des Säugetiere. Anat.Hefte. 27, p73-241.
31.Owen, R (1830/1): On the anatomy of the orangutan (Simia satyrus, L.). Proc.Zool.Soc.Lond. 1, p4-5,9-10, 28-29, 66-72.
32.Oxnard, CE (1967): The functional morphology of the primate shoulder as revealed by comparative anatomical, osteometric and discriminant function techniques. Am.J.Phys.Anthropol. 26, p219-240.
33.Primrose, A (1900): The anatomy of the orang-outang. Univ.of Toronto Studies. Anat.series 1, p1-94.
34.Raven, HC (1950): Regional anatomy of the Gorilla. In: Gregory,WK (ed); The anatomy of the Gorilla. Columbia University Press, New York; p 15-188.
35.Seydel, O (1892): Cited in Sonntag (1924).
36.Sonntag, CF (1923): On the anatomy, physiology, and pathology of the chimpanzee. Proc.Zool.Soc.Lond. 23, p323-429.
37.Sonntag, CF (1924): On the anatomy, physiology, and pathology of the orangoutan. Proc.Zool.Soc.Lond. 24, p349-450.
38.Sullivan, WE and Osgood, CW (1927): The musculature of the superior extremity of the orang-utan, Simia satyrus. Anat.Rec. 35 (3), p193-239.
39.Sutton, JB (1883): On some points in the anatomy of the chimpanzee (Anthropopithecus troglodytes). J.Anat.Phys. 18, p66-85.
40.Vrolik, W (1841): Recherches d'anatomie comparée, sur le chimpansé. Johannes Miller, Amsterdam.
41.Ward, CV (1993): Torso morphology and locomotion in Proconsul nyanzae. Am.J.Phys.Anthropol. 92, p291-328.
42.Warwick, P and Williams, PL (1973): Gray's Anatomy. 35th British Edition. Saunders Co., Philadelphia.
43.Wilder, B (1862): Contributions to the comparative myology of the chimpanzee. Boston J.Nat.Hist. 6, p352-384.
10. Winckler, G (1947): Recherches sur le système musculaire du transversospinalis. Arch.Anat.Histol.Embryol. 30, p151-231.
45.Ziegler, AC (1964): Brachiating adaptations of chimpanzee upper limb musculature. Am.J.Phys.Anthropol. 22, p15-32.

3.6 ABDOMEN AND PELVIS

3.6.1 MUSCLES

3.6.1.1 Anterior abdominal wall

3.6.1.1.1 Longitudinal

Rectus abdominis

No information for Pongo.

In Homo and African apes rectus abdominis takes origin from the outer surface of the costal cartilages of the fifth to seventh ribs ${ }^{121,136,170}$, extending to the eighth and ninth costal cartilages in Gorilla ${ }^{136}$. The origin may involve more ribs in Homo as a variation ${ }^{170}$. In Homo and Gorilla it also originates from the xiphoid process of the sternum ${ }^{136,170}$.

There are three tendinous intersections in Homo^{170}, four in both species of Pan ${ }^{22,121,}$ ${ }^{152}$, and five in Gorilla ${ }^{136}$. Of these, one or two are sometimes present below the umbilicus in Homo ${ }^{170}$, two are below the umbilicus in Pan paniscus ${ }^{121}$, and one may be in this position in Gorilla ${ }^{136}$.

The superficial rectus sheath is formed in Pan, Gorilla and Hylobates by the external and internal oblique, and the deep sheath by transversus abdominis alone ${ }^{22,112,121,}$ ${ }^{169}$, whilst in Homo the internal oblique splits into two laminae, the anterior of which forms the superficial sheath with the external oblique, and the posterior of which forms the deep sheath with transversus abdominis ${ }^{169,170}$.

Rectus abdominis inserts in Homo, Pan paniscus and Gorilla into the region of the pubic crest ${ }^{121,136,170}$, and in Homo and Gorilla also into the symphysial ligaments 136, 170

Innervated by the lower intercostal nerves in Homo, Pan paniscus and Gorilla ${ }^{\text {121,136, }}$ ${ }^{170}$, and also by the first lumbar nerve in Gorilla ${ }^{136}$

Pyramidalis

No information for Pongo or Hylobates.

Pyramidalis is absent from Pan ${ }^{22,152,168}$ and Gorilla ${ }^{136}$, and unilaterally absent from Pan paniscus ${ }^{121}$. In Homo the muscle may be absent or variably developed ${ }^{170}$

On the left side in Pan paniscus, and in Homo when present, the muscle originates from the pubic crest between rectus abdominis and the rectus sheath, radiating into the linea alba ${ }^{121,170}$.

Innervated by the twelfth thoracic nerve in Homo and Pan paniscus ${ }^{121,170}$.

Tensor linea semilunaris

No information for Homo, Pan, Pongo or Hylobates.

This muscle appears to be present only in Gorilla. A small, wide flat muscle distinct from rectus femoris, it originates near the pubic symphysis more superiorly than the insertion of rectus femoris ${ }^{136}$.

The fibres run anteriorly, parallel to the lateral border of rectus femoris, terminating in a small round tendon at the junction of the aponeurosis of transversus abdominis with the internal oblique, spreading out into the aponeurotic fibres of the internal oblique ${ }^{136}$.

3.6.1.1.2 Oblique

Cremaster

Cremaster takes origin in all apes and Homo with the exception of a single specimen of Hylobates ${ }^{118}$, from the internal abdominal oblique ${ }^{80,112,120,121}$. In all apes and Homo it also contains a contribution from the transversus abdominis ${ }^{80,112,118,120}$. The muscle is attached to the inguinal ligament in Homo alone ${ }^{13,170}$. It is a large heavy muscle in Pan and Pongo, but weaker in Gorilla ${ }^{120}$.

External abdominal oblique

In Homo and African apes the external abdominal oblique originates by fleshy slips from the external surface of the sixth to eleventh ribs ${ }^{22,121,136,152,170,179}$. In Homo, Pan paniscus and Gorilla its origin extends inferiorly to the last rib ${ }^{121,136,170}$, which may be the twelfth or thirteenth rib, dependant on the number of thoracic vertebrae ${ }^{136}$. The cranial extent of the origin is to the fifth rib in Homo ${ }^{170}$, and variably so in all apes ${ }^{22,136,152,179}$ with the possible exception of Pan paniscus ${ }^{121}$. In hylobatids it may reach as far superiorly as the fourth rib ${ }^{179}$.

The upper part of the muscle interdigitates with slips of serratus anterior and the lower part with slips of latissimus dorsi in Homo and Pan 22, 152, 170 . In Pan it interdigitates medially with pectoralis major ${ }^{152}$. No further information for Pongo. Insertion of the fibres from the last ribs in Homo and great apes is onto the iliac crest and its lateral lip, as far as the anterior superior iliac spine ${ }^{22,103,121,152,170,171}$. From the anterior superior iliac spine to the pubic tubercle, the muscle has a free lower aponeurotic border in Homo and African apes ${ }^{\text {103, 112, 121, 136, 152, 170 }}$, although it is not thickened in Gorilla ${ }^{136}$.

Innervation in Homo and Pan paniscus is via branches of the lower intercostal nerves ${ }^{121,170}$ and in Pan paniscus also from the iliohypogastric and ilioinguinal nerves ${ }^{121}$.

There is no true inguinal ligament in any ape, only a series of tendinous arches over sartorius and the femoral vessels and nerves, merging with the fascia lata ${ }^{61,111,120,121}$. A true inguinal ligament has been stated to be an exclusively human character ${ }^{111,120,}$ 143, although ligament-like connective tissue in a plane ventral to the pelvic girdle has been identified in all mammals ${ }^{111}$.

Internal abdominal oblique

The internal abdominal oblique originates in Homo and African apes from the anterior part of the iliac crest ${ }^{112,121,136,152,170}$, in Homo, Pan paniscus and Gorilla from the deep layer of the thoracolumbar fascia ${ }^{121,136,170}$, and in Homo, Pan and Gorilla from the aponeurosis of the external oblique, or inguinal ligament ${ }^{112,120,121,}$ 136, 152, 170 .

In all apes and Homo the internal abdominal oblique forms the conjoint tendon with transversus abdominis, described with the latter ${ }^{80,112,120,136,170}$. No further information for Asian apes.

The cranial part of the muscle inserts onto the inferior margins of the cartilage of the last three or four ribs in Homo^{170}, and the last four ribs in African apes ${ }^{121,136,152}$. The middle fibres become aponeurotic medially, forming the anterior and posterior walls of the rectus sheath in Homo^{170}, and the anterior wall alone in African apes ${ }^{22,112,121,}$ 169

Innervation of the internal oblique is from branches of the lower intercostal nerves and the first lumbar nerve in Homo, Pan paniscus and Gorilla ${ }^{121,136,170}$.

Transversus abdominis

Transversus forms the posterior layer of the rectus sheath in all apes ${ }^{22,112,121,169}$, while in Homo a lamella of the internal oblique supplements the transversus in this role ${ }^{170}$.

Heavy and muscular in Gorilla, the transversus abdominis is more weakly developed and thinner in other apes ${ }^{120}$.

The fibres of transversus abdominis decussate in the linea alba, and in all apes and Homo the aponeurotic part forms with the internal oblique, the conjoined tendon ${ }^{80}$, 112. 120, 136, 170, which in all apes and Homo inserts into the superior pubic surface in the region of the pubic crest ${ }^{112,120,121,152,170}$. The weak conjoint tendon of Hylobates may attach to the anterior wall of the rectus sheath above the pubis ${ }^{80,120}$.

Innervation is via the lower intercostal nerves and first lumbar nerve in Homo, Pan paniscus and Gorilla ${ }^{121,136,170}$.

3.6.1.1.3 Inguinal canal

The length of the inguinal canal is 11.6 mm in Symphalangus, 11.0 mm in Hylobates hoolock and 11.3 mm in an adult Hylobates concolor ${ }^{80}$. In Homo, the inguinal canal is about 40 mm long ${ }^{170}$.

Deep inguinal ring

The deep inguinal ring is bounded by the inguinal ligament, the conjoint tendon and the transversalis fascia in Homo^{170}. In Pan the deep ring is bounded by all the muscle
layers of the anterior abdominal wall ${ }^{120}$, in Gorilla and Hylobates by the internal oblique and transversus ${ }^{120}$ while in Pongo the deep inguinal ring is bounded almost entirely by the internal oblique ${ }^{120}$. The deep inguinal ring is large in Hylobates ${ }^{80,120}$.

Superficial inguinal ring

The superficial inguinal ring is bounded by the aponeurosis of the external oblique in all apes and Homo ${ }^{120,121,170}$, and its lateral third also by the muscular fibres of the internal oblique in Homo^{170}.

The lateral crus of the aperture is stronger than the medial crus in Homo^{170}, but weaker in Asian apes ${ }^{120}$. It is formed by fibres of the inguinal ligament inserted into the pubic tubercle in Homo^{170}. The inguinal part of the aponeurosis of the external oblique attaches to most of the pubic ramus in both species of $\mathrm{Pan}^{120}, 1952$, and with a reduced attachment to the pubis in Hylobates ${ }^{120}$.

The medial crus attaches to the anterior aspect of the pubic symphysis in Homo and Pan ${ }^{120,170}$, and to the pubic crest in all apes ${ }^{120,121}$. Intercrural bands in the fascia of the external oblique may arch above the apex of the ring in all apes and Homo^{120}, 121,170

3.6.1.2 Posterior abdominal wall

Iliacus ${ }^{\text {a }}$

In all apes and Homo iliacus originates from the iliac fossa ${ }^{72,170}$. In all apes it originates from the entire anterior surface of the ilium ${ }^{149}$, and in Homo alone from the region of the anterior inferior iliac spine ${ }^{149,170}$. In Gorilla there may be an additional origin from the lumbodorsal fascia ${ }^{136}$. As a variation in Homo the origin may be from the capsule of the hip joint and the sacrum ${ }^{170}$.

In all apes and Homo it inserts in combination with psoas major onto the medial aspect of the lesser trochanter ${ }^{8,22,136,149,170}$.

Iliacus is supplied by the femoral nerve in all apes and Homo ${ }^{136,149,170}$. In Gorilla the iliac branch of the iliolumbar nerve is stated to ramify on the surface of iliacus as in Homo^{136}.

Psoas major ${ }^{\mathbf{a}}$

In all apes and Homo psoas major originates from the lateral surfaces of the bodies and the costal processes of the lumbar vertebrae ${ }^{17,22,72,136,149,170}$, extending proximally to T12 in Homo, Gorilla, Pongo and Hylobates ${ }^{72,136,149,170}$ and in some Pan ${ }^{22,149}$, extending distally to $S 1$ in Asian apes ${ }^{149}$, some Gorilla ${ }^{149}$ and most Pan ${ }^{72,}$ 149. In all apes and Homo it takes origin from the intervening intervertebral discs ${ }^{72,}$ 149, 170. An origin from the head of the twelfth rib may be present in Pan ${ }^{22}$. Psoas major in Hylobates has an additional origin from the lateral side of the tendon of origin of rectus femoris ${ }^{72,101}$.

As a variation in Homo, psoas major may be divided into longitudinal slips ${ }^{27,96}$. In all apes and Homo psoas major joins with iliacus, and inserts as iliopsoas onto the lesser trochanter and distally on the adjacent shaft ${ }^{8,17,22,72,136,149,170 .}$

Nerve supply is via the first two or three lumbar nerves and the femoral nerve in all apes and $\mathrm{Homo}^{22,72,136,149,152,153,170 .}$

Psoas minor ${ }^{\text {a }}$

In all apes and Homo with the exception of a single Gorilla ${ }^{136}$, the muscle originates from the anterolateral surface of $\mathrm{Ll}^{22,72,101,136,149,162}$. An origin from the last
thoracic vertebra is present in Homo, Gorilla and Pongo ${ }^{72,136,149,170}$, and in half of all Pan ${ }^{22,72,149,162}$ and Hylobates ${ }^{149}$. An origin from L2 may be present in all apes ${ }^{72}$. ${ }^{101}$. In a single specimen of Gorilla, the origin extends further superiorly to T11 1^{136} and in a single Hylobates, it extends further inferiorly to $\mathrm{L3}{ }^{101}$. Psoas minor is stated to take origin from the intervertebral discs in all apes and $\mathrm{Homo}^{149,162,170}$.

In all apes and Homo it lies on the anteromedial surface of psoas major ${ }^{149,170}$. Psoas minor is absent from about 40% of human subjects ${ }^{170}$, and is fused with psoas major in two-thirds of Hylobates ${ }^{149}$.

In all apes and Homo psoas minor inserts onto the iliopubic eminence and pectineal line ${ }^{22,72,136,149,162,170}$. This insertion is more anterior in Pan than in Gorilla or Pongo ${ }^{72}$.

Innervation is via the first lumbar nerve in all apes and $\mathrm{Homo}^{22,149,170}$. Psoas minor may also be innervated by the twelfth thoracic nerve in African apes ${ }^{72,149}$, but in Asian apes that nerve also contributes a supply ${ }^{149}$.

Quadratus lumborum

No information for Pongo or Hylobates.

In Homo, Pan paniscus and Gorilla quadratus lumborum originates from the medial lip of the iliac crest and the iliolumbar ligament ${ }^{\text {121, 136, } 170}$.

The anterior fibres are continuous with iliacus in Pan paniscus and Gorilla ${ }^{121,136}$, and with psoas major in Gorilla ${ }^{136}$.

The insertion of the muscle is to the last rib in these two apes and Homo ${ }^{121,136,170}$, extending to the penultimate rib in Pan paniscus ${ }^{121}$ and to the body of the last rib-
bearing vertebrae in Gorilla ${ }^{136}$. The second part of the insertion is to the transverse processes of L1 and L2 in both these apes and Homo ${ }^{\text {121, 136, 170 }}$, extending to L3 or L4 in Homo and Pan paniscus ${ }^{121,170}$. The insertion is also onto the bodies of L1 and L2 in Gorilla ${ }^{136}$.

Innervation of the muscle is from the ventral rami of the first to third or fourth lumbar nerves in Homo^{170}, of all the lumbar nerves in P.paniscus ${ }^{121}$ and of the first and second lumbar nerves in Gorilla ${ }^{136}$. Homo and Gorilla also show an innervation from the last thoracic nerve ${ }^{136,170}$.

3.6.1.3 Pelvis

3.6.1.3.1 Pelvic diaphragm

Coccygeus

Coccygeus takes origin in Homo, Gorilla and Hylobates from the ischial spine ${ }^{48,136,}$ ${ }^{170}$, the origin extends to the dorsal surface of the ilium in Gorilla ${ }^{48,136}$.

Mostly tendinous with few muscle fibres ${ }^{48,121,136,151}$, it is most extensively developed among apes in Hylobates ${ }^{48}$. The caudal border is continuous with pubococcygeus in both species of Pan ${ }^{48,121}$, and it interdigitates with the sacrospinous ligament in all apes and Homo ${ }^{48,121,136,170}$. In Pongo the muscle is mostly replaced by the strong sacrospinous ligament ${ }^{48}$, and coccygeus may be absent as a variant in Homo^{170}.

Insertion in all apes and Homo is to the side of the coccyx ${ }^{48,121,170}$, in Homo and Gorilla to the inferior part of the sacrum ${ }^{48,170}$ and in Gorilla and Hylobates to the anococcygeal raphe ${ }^{48}$. In Pan coccygeus is fused at insertion with the coccygeal part of the origin of gluteus maximus ${ }^{22}$.

Innervated by the third sacral nerve in Pan and Gorilla ${ }^{22,136}$ and by the fourth and fifth sacral nerves in Homo and Pan paniscus ${ }^{121,170}$.

Flexor caudae

There is no trace of flexor caudae in Pan or Hylobates ${ }^{48}$, but remnants have been reported in Gorilla ${ }^{48,136}$ and Pongo ${ }^{45,109}$.

In a specimen of Gorilla, a small irregular cord runs from the anococcygeal raphe just inferior to the last coccygeal vertebrae to insert into the rectal wall ${ }^{136}$.

Iliococcygeus

The muscle is absent from Hylobates, being replaced by fascia ${ }^{48}$, and may be absent or thin in Homo and great apes ${ }^{48,151,170}$.

Iliococcygeus is aponeurotic at origin in great apes ${ }^{35,165}$, which in Homo, Gorilla and Pongo is from the obturator fascia ${ }^{35,48,136,165}$, extending in Homo and Pongo as far as the ischial spine ${ }^{165,170}$.

Iliococcygeus belongs to the vertebral column muscle group, which includes the flexor caudae ${ }^{151}$, and is homologous with the most superior fibres of levator ani ${ }^{35,136,}$ 165. In Pongo the muscle is continuous with the sacrosciatic ligaments and piriformis ${ }^{165}$.

Insertion in Homo and great apes is onto the coccyx ${ }^{35,48,136,165,170}$ and in Gorilla also onto the sacrum ${ }^{48}$.

Innervated by the fourth sacral nerve and the inferior rectal nerve in Homo ${ }^{170}$, and by the first to third sacral nerves in Gorilla ${ }^{136}$.

Levator ani

No information for Hylobates.

Levator ani is formed by two plates from each side of the inner wall of the lesser pelvis in Homo and great apes, originating from the obturator fascia from the pubic symphysis to the ischial ramus ${ }^{121,152,165,170}$.

The fibres encircle the rectum and insert into the anococcygeal raphe behind the anus, inserting in addition into the tip of the coccyx in Homo and great apes ${ }^{35,121,136,}$ 152, 170

Innervated by branches of the inferior rectal nerve in Homo, from the second and third sacral nerves in Gorilla ${ }^{136}$, the fourth sacral nerve in Homo and Pan paniscus ${ }^{121,170}$, and also from the first sacral nerve in Gorilla ${ }^{136}$ and the fifth sacral nerve in Pan paniscus ${ }^{121}$.

Ligamentum puboprostaticum (puboampullaris, pubovesicalis, rectovesicalis)

No information for Pan, Pongo or Hylobates.

This consists of smooth muscle, originating from the pubis medial to the origin of pubococcygeus in Homo and Gorilla ${ }^{35,136,170}$.

The puboampullaris lies on the superficial surface of pubococcygeus but is separated from it by a thin fascial plane in Gorilla ${ }^{35}$. The two muscle masses appear to provide support for the urogenital structures as well as elevating and pulling the rectum forward in Gorilla ${ }^{35}$.

The muscles of the two sides unite, and insert into the smooth muscle of the rectal wall, and the inferolateral aspect of the bladder in Homo and Gorilla ${ }^{35,136,170}$.

Pubococcygeus

In Homo and great apes pubococcygeus originates from the posterior surface of the pubic body ${ }^{35,48,136,165,170}$, extending in Pan and Pongo to the ischial spine ${ }^{48,151}$. The muscle also takes origin in Homo and great apes from the obturator fascia ${ }^{48,136,165,}$ 170

In all apes and Homo the pubococcygeus muscles of the two sides unite at the midline ${ }^{48,151,165,170}$, and in Homo and Gorilla the muscle mingles with posterior fibres of the deep part of the external anal sphincter ${ }^{35,136,170}$.

The muscle inserts in all apes and Homo onto the rectal wall ${ }^{35,48,136,165}$ (variably in Pan ${ }^{48}$). This part may be described as the puborectalis in Homo ${ }^{170}$. Pubococcygeus also inserts onto the tip of the coccyx in all apes and Homo ${ }^{48,136,151,170}$ (variably so in Gorilla ${ }^{35}$), in Homo, Pan and Hylobates into the anococcygeal raphe ${ }^{48,170}$, and in Pan onto the sacrum ${ }^{151}$.

Innervated by the fourth sacral nerve and a branch from the inferior rectal nerve in Homo ${ }^{170}$ first to third sacral nerves in Gorilla ${ }^{136}$.

Puborectalis

No information for Hylobates.

In Homo puborectalis takes origin with the rest of levator ani from the pubic bone near the symphysis ${ }^{170}$, while in Gorilla the muscle originates aponeurotically from connective tissue in the region of the symphysial angle ${ }^{35}$.

In great apes puborectalis is homologous with the inferior fibres of pubococcygeus ${ }^{35}$, 48, 136, 165 . In Homo and Gorilla, a puborectal sling is formed, encircling the upper part of the anal canal ${ }^{35}$.

In Homo, puborectalis blends with the longitudinal coat of the rectum, descending as a longitudinal coat for the anal canal, deep to the external anal sphincter ${ }^{170}$. In Gorilla fibres intermingle with the deep external anal sphincter ${ }^{35}$.

3.6.1.3.2 Perineum

3.6.1.3.2.1 Anal region

External anal sphincter

The sphincter encircles the anus in all apes and $\mathrm{Homo}^{35,48,121,136,170}$, extending from the anococcygeal raphe in Homo and African apes ${ }^{121,136,152,170}$ to the perineal body in Homo and great apes ${ }^{48,121,136,170}$.

The sphincter ani in Gorilla, as in Pongo and to a less marked degree in Pan, forms a muscular basin for the support of both alimentary and urogenital viscera ${ }^{48}$.

Some deeper fibres blend with the inferior margin of levator ani in Homo and African apes ${ }^{35,48,136,152}$, while other fibres radiate into the raphe of bulbospongiosus in Homo, Gorilla and Asian apes ${ }^{35,48,136}$. In Homo, dorsal and ventrolateral tetherings of the external anal sphincter may be adaptations to erect posture ${ }^{178}$.

Fibres radiate to the tip of the coccyx in Homo^{170}, but do not reach the coccyx in Gorilla ${ }^{35,48,136}$.

Innervated by branches of the second and third sacral nerves in Homo and Gorilla ${ }^{136,}$ ${ }^{170}$, by the fourth sacral nerve in Homo and Pan paniscus ${ }^{121,170}$, also by the first sacral nerve in Gorilla ${ }^{136}$ and by the fifth sacral nerve in Pan paniscus ${ }^{121}$.

3.6.1.3.2.2 Urogenital region

Bulbospongiosus (bulbocavernosus)

In all apes and Homo bulbospongiosus originates from the median raphe of the penile bulb ${ }^{35,48,136}$, and in addition in Homo, Pongo and $1 / 3$ Gorilla from the perineal body ${ }^{48,136}$. African apes and Hylobates share an origin from the ischium ${ }^{35,48}$, which is more extensive in Hylobates than in African apes ${ }^{48}$.

The muscle surrounds the bulb and the corpora of the penis in all apes and Homo ${ }^{35}$, ${ }^{48,136}$, and fibres of the external anal sphincter merge with the superior fibres in Homo, Gorilla and Asian apes ${ }^{35,48,136}$.

The muscle in Homo and Gorilla extends into a dorsal fibrous expansion on the penis ${ }^{48,136}$, while in Gorilla and Pongo, it is described as inserting onto the inferior surface of the penis ${ }^{35,39,136}$.

Ischiocavernosus

No information for Pongo or Hylobates.

A paired muscle ${ }^{136}$, in Homo and Gorilla the ischiocavernosi take origin from the ischial ramus anterior to the ischial tuberosity ${ }^{35,136,170}$, and from the ascending pubic ramus in $P a n^{152}$.

In Gorilla the muscle is slightly shorter and thicker than in Homo^{136}.

The muscle spreads from the origin, over the penile crus, to insert in Homo and Gorilla onto the proximal end of the corpora cavernosum ${ }^{35,136,170}$.

Sphincter urethrae

No information for Pongo or Hylobates.

In an adult male Gorilla the sphincter urethrae is a true sphincter ${ }^{35}$, with no invasion of the prostate, similar to that found in prepubescent Homo^{35}. In adult male Homo the continued growth of the prostate causes a major loss of muscle fibres ${ }^{35}$.

In female Homo and Pan, fibres of the sphincter urethrae also interlace in the vaginal wall 139,170.

Transversus perinei profundus

No information for Pongo or Hylobates.

In Homo and Gorilla this muscle originates from the fascia just above the ischial ramus ${ }^{35,170}$.

In Pan, some fibres of the bulbospongiosus which lie in contact with the pelvic diaphragm and insert into the ischia, may be homologous with the deep transverse perineal muscle ${ }^{48}$. In Gorilla the transversus perinei profundus is continuous with the sphincter urethrae ${ }^{35}$, while in Homo the voluntary sphincter has separated from the deep transverse perineal muscle ${ }^{170}$.

In Homo the muscles interlace and insert onto the perineal body ${ }^{170}$, while in Gorilla the fibres interdigitate at the midline with the external anal sphincter, the bulbospongiosus and the smooth muscle of the rectal wall ${ }^{35}$. This point may be analogous to a perineal body ${ }^{35}$.

Transversus perinei superficialis

No information for Pongo or Hylobates.

In Homo, and when present in Gorilla, the muscle originates from the ischial tuberosities ${ }^{136,170}$.

The muscle is absent from Pan^{152}, and may be absent from Homo as a variation ${ }^{170}$. When absent from Gorilla, a few fibres of the superficial external anal sphincter radiate towards the ischial tuberosities, but do not reach them ${ }^{35}$.

In Homo the muscle inserts into the perineal body with the external anal sphincter and bulbospongiosus ${ }^{170}$, while in Gorilla although part of the muscle inserts into the bulbospongiosus muscle, the majority of fibres insert into the external anal sphincter ${ }^{136}$.

3.6.2 Vessels

3.6.2.1 Arteries

3.6.2.1.1 Abdominal aorta ${ }^{b}$

The abdominal aorta begins at the aortic hiatus of the diaphragm(see 3.2.1.3).

In all apes and Homo it terminates by dividing into the two common iliac arteries. This occurs at the level of L4 in Homo and all apes ${ }^{92,99,152,153}$ with the exception of 1/2 Pongo, in which the abdominal aorta branches at the level of $\mathrm{L} 3^{92}$.

Dimensions of the abdominal aorta in Gorilla have been provided by Kleinschmidt ${ }^{96}$ and Steiner ${ }^{156}$.

3.6.2.1.1.1 Ventral

3.6.2.1.1.1.1 Coeliac

Coeliac trunk

No information for Pongo or Hylobates.

The coeliac trunk divides into left gastric, hepatic and splenic branches in Homo and Pan ${ }^{152,170}$.

Unnamed branches of the coeliac trunk supply the liver, gall-bladder, stomach, superior half of the duodenum, greater omentum, pancreas and spleen in Gorilla ${ }^{83}$.

Left gastric

No information for Pongo or Hylobates.

In Homo and Pan the left gastric artery runs along the lesser curvature of the stomach ${ }^{152}$.

In Homo and Pan the artery gives off gastric arteries to both surfaces of the stomach, and oesophageal arteries which ascend through the oesophageal opening in the diaphragm ${ }^{152,170}$. The left gastric artery in Homo and Pan anastomoses with the right gastric artery ${ }^{152,170}$.

The left gastric artery gives off a branch to the liver in Gorilla ${ }^{83}$.

Hepatic

The right gastric artery anastomoses with the left gastric artery in Homo and Pan ${ }^{152}$. 170

In Homo and Pan the right gastro-omental artery anastomoses with the left gastroomental artery ${ }^{152,170}$.

The cystic artery is a branch of the hepatic artery in Homo and Pan ${ }^{152,170}$. The cystic arterial supply of the gall-bladder has a bi-pinnate pattern in Homo and Hylobates, and a pinnate pattern in Gorilla and Symphalangus ${ }^{62}$. In Gorilla and hylobatids the cystic artery reaches the gall-bladder by running immediately beside the cystic duct, closely bound to it by firm areolar tissue, while in Homo the cystic artery is never in contact with any part of the cystic duct ${ }^{62}$.

Splenic

No information for Hylobates.

The splenic artery is shorter in Pongo than in Homo^{150}.
Pancreatic branches of the splenic artery are present in Homo and Pan ${ }^{152,170}$.
Short gastric branches of the splenic artery are present in Homo, Pan and Gorilla ${ }^{83,}$ 152, 170, although they appear to have a longer course in Gorilla than in Homo ${ }^{83}$.

The left gastro-omental artery anastomoses in Homo and Pan with the right gastroomental artery ${ }^{152,170}$.

3.6.2.1.1.1.2 Superior mesenteric

Superior mesenteric

No information for Pongo or Hylobates.

The superior mesenteric artery supplies the whole of the small intestine, except the superior half of the duodenum and half of the colon, in Homo and African apes ${ }^{83,152,}$ 170

The middle colic artery is a branch of the superior mesenteric artery in Homo and Gorilla ${ }^{136,170}$.

3.6.2.1.1.1.3 Inferior mesenteric

Inferior mesenteric

No information for Pongo and Hylobates.

The origin of the inferior mesenteric artery is more superior in Gorilla than in Homo and $\operatorname{Pan}^{61,152}$, being from midway along the anterior aspect of the abdominal aorta ${ }^{99}$. The inferior mesenteric artery supplies the inferior half of the colon in Homo and African apes ${ }^{83,152,170}$, although the inferior mesenteric artery supplies the whole of the transverse colon in Gorilla ${ }^{83}$, compared with the left part of the transverse colon in Homo^{170} and Pan^{152}.

The left colic branch anastomoses with the middle colic artery in Homo and Pan ${ }^{152,}$ 170

The superior rectal artery is relatively larger in Pan than in Homo ${ }^{152}$.

3.6.2.1.1.2 Lateral

3.6.2 1.1.2.1 Inferior phrenic

No information for Gorilla or Hylobates.

The inferior phrenic arteries arise from the abdominal aorta in Homo and Pan ${ }^{61,152,}$ ${ }^{170}$, but from the coeliac axis in Pongo ${ }^{153}$ and as a variation in Homo ${ }^{170}$.

In Pan the right and left inferior phrenic arteries arise from a common trunk ${ }^{61,152}$, as may also occur in Homo^{170}.

In Homo and African apes the phrenic arteries supply the inferior surface of the diaphragm and the suprarenal glands ${ }^{61,99,152,170}$, and may also supply the liver and spleen in Homo^{170}.

3.6.2.1.1.2.1 Middle suprarenal

No information for Hylobates.

Suprarenal arteries arising from the aorta are absent from Pongo ${ }^{153}$ and from 1/2 Pan ${ }^{152}$.

In Homo and 1/2 Pan there are two middle suprarenal arteries arising directly from the aorta ${ }^{61,170}$, while in Gorilla there are three middle suprarenal arteries, two on the right and one on the left ${ }^{99}$.

3.6.2.1.1.2.2 Renal

No information for Pongo or Hylobates.

Right and left renal arteries are present in Homo and African apes ${ }^{61,99,136,152,170 .}$

The renal arteries supply inferior suprarenal branches in Homo and African apes ${ }^{61,}$ 99, 152, 170

Interlobular arteries branch in the outer third of the cortex in Pan^{157}, either forming Y-shaped bifurcations as in Homo^{110} or multiple branches as in Macaca. ${ }^{157}$.

3.6.2.1.1.2.3 Gonadal

Ovarian

No information for Gorilla, Pongo or Hylobates.

The ovarian arteries are long and slender in Homo and $P a n^{61,170}$.

In $1 / 2$ Pan the left ovarian artery arises from the left renal artery, but the right ovarian artery is a branch of the abdominal aorta ${ }^{152}$, as in Homo^{170}.

Testicular

No information for Gorilla or Pongo.

In Homo, the testicular artery passes along the spermatic cord with little or no convolution ${ }^{69,68}$. In Pan^{68} the testicular arteries are convoluted both along the spermatic cord and along the posterior and anterior borders of the testis. In Hylobates the testicular artery is less convoluted on the spermatic cord and posterior border of the testis than in Pan, subsequently running straight or slightly convoluted on the anterior surface of the testis ${ }^{68}$.

Each testicular artery divides into two branches supplying the medial and lateral surfaces of the testis in Homo, Pan and Hylobates ${ }^{68}$.

3.6.2.1.1.3 Dorsal

3.6.2.1.1.3.1 Lumbar

No information for Pongo or Hylobates.

Four pairs of lumbar arteries arise from the abdominal aorta in Homo, 1/2 Pan ${ }^{152}$ and Gorilla 99. In 1/2 Pan, only two pairs of lumbar arteries are present ${ }^{61}$.

3.6.2.1.1.3.2 Median sacral

No information for Gorilla or Hylobates.

In Homo and Pan the median sacral artery arises from the posterior surface of the aorta, slightly above its bifurcation ${ }^{61,170}$.

The median sacral artery is absent from Pongo ${ }^{153}$.

3.6.2.1.2 Internal iliac

Internal iliac

No information for Hylobates.

The internal iliac artery in Homo and Pan divides into anterior and posterior trunks ${ }^{61,}$ 152, 170

3.6.2.1.2.1 Anterior trunk

In Homo and Pan the anterior trunk of the internal iliac terminates in the medial umbilical ligament, passing superiorly on the deep surface of the anterior abdominal wall 61,170.

Obturator

No information for Hylobates.

In Homo and unilaterally in 1/2 Pan, the obturator artery is a branch of the internal iliac artery ${ }^{54,170}$.

The obturator artery is a branch of the inferior epigastric branch of the external iliac artery unilaterally in $1 / 2 \mathrm{Pan}^{54}$ and in Gorilla and Pongo ${ }^{47,132,136}$. This is also the case in 20 to 30% of Homo^{170}.

The obturator artery is absent from 1/2 Pan, with its area of distribution taken over by the medial femoral circumflex artery ${ }^{61}$.

Inferior gluteal

No information for Hylobates.

In Homo and 1/2 Pan, the inferior gluteal artery is a branch of the internal iliac artery ${ }^{61,170}$.

In $1 / 2$ Pan and Gorilla, the inferior gluteal artery is a branch of the internal pudendal artery ${ }^{47,152}$. The inferior gluteal and internal pudendal arteries may be a common stem from the internal iliac in Homo^{170}.

The inferior gluteal artery is absent from Pongo ${ }^{132}$.

The uterine, middle rectal and internal pudendal arteries are given off as branches of the inferior gluteal artery in $1 / 2 \mathrm{Pan}^{61}$. Branches of this artery may replace the middle rectal artery in Homo^{170}.

Vesical branches of the inferior gluteal artery are present in Homo and Pan ${ }^{61,170}$. The artery also supplies gluteus maximus, the gemelli, obturator internus, and the hip joint in Homo and Pan ${ }^{\text {152, } 170}$.

Vesical

No information for Hylobates.

Two vesicular arteries, superior and inferior, are given off from the internal iliac artery in Homo and Pongo ${ }^{132,170}$, while only the superior vesicular artery is given off by the internal iliac artery in Pan and Gorilla ${ }^{47,61,152 .}$

In Pan, the inferior vesical artery is a branch either of the inferior gluteal ${ }^{61}$ or internal pudendal ${ }^{152}$ arteries, while in Gorilla it is given off from the internal iliac artery with the uterine artery ${ }^{47}$. The inferior vesical artery may arise from the internal iliac with the middle rectal artery in Homo^{170}.

Uterine

No information for Hylobates.

The internal iliac gives off the uterine artery in Homo and great apes ${ }^{47,61,132,152,170}$. The uterine artery may be a branch of the inferior gluteal artery ${ }^{61}$, or given off from the internal iliac with the vaginal artery as a uteri-vaginal trunk in Pan ${ }^{152}$.

Middle rectal

No information for Gorilla, Pongo or Hylobates.

The middle rectal arteries arise from the internal iliac artery in Homo^{170}, but from the inferior gluteal artery in Pan^{61}.

Internal pudendal

No information for Hylobates.

The internal iliac artery gives off the internal pudendal artery in Homo and great apes ${ }^{47,61,132,152,170}$.

The internal pudendal artery in Gorilla is given off with the middle rectal artery and the inferior gluteal artery ${ }^{47}$. The inferior gluteal and internal pudendal arteries may be a common stem from the internal iliac in Homo^{170}.

The internal pudendal artery in Pan gives off the inferior vesical artery ${ }^{152}$.

In 1/2 Pan and Gorilla, the inferior gluteal artery is a branch of the internal pudendal artery ${ }^{47,152}$.

3.6.2.1.2 $2 \quad$ Posterior trunk

Iliolumbar

No information for Hylobates.
The iliolumbar artery originates from the internal iliac artery in Homo and Pongo ${ }^{132,}$ ${ }^{170}$, from the superior gluteal artery in Pan^{61}, and from the distal end of the aorta in Gorilla ${ }^{47}$.

As variations, the iliolumbar artery may arise from the common iliac artery, but not from the aorta or the medial sacral artery in Homo^{132}.

Lateral sacral

No information for Gorilla, Pongo or Hylobates.

The lateral sacral artery is given off by the internal iliac artery in Homo and 1/2 $P a n^{152,170}$, but from the superior gluteal artery in 1/2 Pan 61.

Superior gluteal

No information for Hylobates.
The internal iliac artery gives off the superior gluteal artery in Homo and great apes ${ }^{47,}$ 61, 132, 152, 170

In Homo and Pan the superior gluteal artery divides into two branches ${ }^{152}$. In Homo the superficial branch supplies gluteus maximus and the skin posterior to the sacrum, while the deep branch supplies gluteus medius and minimus and the hip joint ${ }^{170}$. In Pan the superior branch supplies gluteus medius and the nutrient artery to the ilium, while the inferior one descends to supply gluteus medius, gluteus minimus and the scansorius muscle ${ }^{152}$.

The superior gluteal artery gives off the iliolumbar and lateral sacral arteries in $1 / 2$ $P a n^{61}$.

3.6.2.1.3 External iliac ${ }^{\text {b }}$

Inferior epigastric

No information for Hylobates.

The obturator artery is a branch of the inferior epigastric branch of the external iliac artery unilaterally in $1 / 2$ Pan 54, and in Gorilla and Pongo ${ }^{47,132,136}$. This is also the case in 20 to 30% of Homo^{170}.

The superficial circumflex iliac artery is a branch of the inferior epigastric artery in Pongo ${ }^{132}$, while in Homo it is a branch of the femoral artery ${ }^{170}$.

A pubic branch is present in Homo and Gorilla ${ }^{136,170}$.

The medial circumflex femoral artery is a branch of the external iliac artery with the inferior epigastric artery in $2 / 3 \mathrm{Pan}^{54,61}$, while in Homo it is a branch of the profunda femoris or the femoral artery ${ }^{170}$.

Deep circumflex iliac

No information for Pongo or Hylobates.

The deep circumflex iliac artery is a branch of the lateral aspect of the external iliac artery in Homo and African apes ${ }^{61,136,170}$.

3.6.2.2 Veins

3.6.2.2.1 Inferior vena cava See 3.3.2.3.4

3.6.2.2.2 Portal system

No information for Pongo or Hylobates.

The hepatic portal system collects blood from the abdominal alimentary tract, spleen and pancreas in Homo and African apes ${ }^{83,122,152,170}$.

It is formed by the confluence of the gastric, splenic, duodenal, inferior mesenteric, superior mesenteric ${ }^{122}$ and cystic veins from the transverse colon in Homo and Pan, in both of which the portal vein divides into two branches before entering the liver ${ }^{152,}$ 170

3.6.2.3 Lymphatics

Common iliac nodes

No information for Gorilla, Pongo or Hylobates.

Present in Homo and Pan ${ }^{152,170}$.

External iliac nodes

No information for Pan, Pongo or Hylobates.

These nodes drain the bladder and spermatic cord in Homo and Gorilla ${ }^{136,170}$.

Gastric nodes

No information for Gorilla, Pongo or Hylobates.

Present in Homo and Pan along the lesser and great curvatures of the stomach ${ }^{152,170}$.

Inguinal nodes

No information for Gorilla, Pongo or Hylobates.

Superficial inguinal nodes are found close to the midpoint of the inguinal ligament in Homo and Pan ${ }^{152,170}$.

Mesenteric nodes

No information for Gorilla, Pongo or Hylobates.

Present in Homo and Pan ${ }^{152,170}$.

Thoracic duct

The thoracic duct begins at the cisterna chyli in Homo, Pan and Pongo ${ }^{89,152,170}$. The cisterna chyli is 5 to 7 cm long in Homo, but nearly 18 cm long in Pongo ${ }^{89}$.

Two vessels arise from the cisterna chyli in Pan, which later unite at a variable level to form a single thoracic duct ${ }^{89,95,114,152}$. This point of junction may be at the level of T6 ${ }^{152}$ or $\mathrm{T} 12^{95}$.

3.6.3 NERVES

3.6.3.1 \quad Vagus \quad See 3.2.3.1
3.6.3.2 Lumbar $^{\text {b }}$

Iliohypogastric

No information for Pongo or Hylobates.

The iliohypogastric nerve arises from the first lumbar nerve in Homo and Gorilla ${ }^{136 .}$
${ }^{170}$, and is described as arising from the thirteenth thoracic nerve in Pan ${ }^{15,22,152}$.
It communicates with the genitofemoral nerve in Gorilla ${ }^{136}$, and with the subcostal and ilioinguinal nerves in Homo^{170}.

Ilioinguinal

No information for Pongo.

The ilioinguinal nerve arises from the first lumbar nerve in Homo, 2/4 Pan, Gorilla and Hylobates ${ }^{72,152,170}$. In 1/4 Pan the origin is solely from the thirteenth thoracic nerve ${ }^{22}$ while in 1/4 Pan the ilioinguinal nerve is jointly formed by the first lumbar and thirteenth thoracic nerves ${ }^{15}$.

Genitofemoral

The genitofemoral nerve has spinal components from the first lumbar nerve in all taxa ${ }^{12,39,88,102,103,116}$ except Hylobates ${ }^{39}$, and from the second lumbar nerve only in Homo, Gorilla and Hylobates ${ }^{39,116 .}$

The nerve pierces psoas major in all taxa ${ }^{39,116}$ except $1 / 2 P^{12} n^{12}$ and $1 / 2$ Gorilla, where it passes lateral to psoas major ${ }^{88}$.

3.6.3.3 Sacral nerves

Pudendal

No information for Pongo or Hylobates.

In Homo and Pan the pudendal nerve arises from the second sacral nerve ${ }^{15,152,170}$, and also from the third and fourth sacral nerves in Homo^{170}.

Branches of the pudendal nerve supply the rectum, external anal sphincter, levator ani and ischiocavernosus in Homo and Pan ${ }^{152,170}$. No branches to the transverse perineal muscles are present in Pan, as the muscles are absent ${ }^{152}$.

It supplies the bulbospongiosus in Homo and Gorilla ${ }^{136,170}$.

3.6.3.4 Autonomic

Sympathetic trunk

The pelvic part of the sympathetic trunk consists of four or five sacral ganglia connected by sections of the trunk in Homo and African apes ${ }^{47,152,170}$, and four ganglia in Asian apes ${ }^{134}$.

The two pelvic sympathetic trunks unite inferiorly in front of the coccyx as the ganglion impar in Homo, Pan and Pongo ${ }^{134,170}$. The ganglion impar lay on Col in Pan and Asian apes ${ }^{134}$.

On the right side in Pan, there may be an elongated ganglion formed by the fusion of the last lumbar and first sacral ganglia, and more inferiorly a smaller ganglion formed by the fusion of the second and third sacral ganglia ${ }^{134}$.

		Number of ganglia	
Species	Sacral vertebrae	Right	Left
Pan troglodytes	6	4	5
Pan troglodytes	6	5	5
Pan troglodytes	6	4	5
Pongo	5	4	4
Symphalangus	5	4	4
Symphalangus	5	4	4
Symphalangus	5	3	4

Table 3.6.1. Number of sacral vertebrae and sacral sympathetic ganglia in Pan, Pongo and Symphalangus ${ }^{134}$.

3.6.4 ALIMENTARY SYSTEM

3.6.4.1 \quad Intestine b

3.6.4.1.1 Oesophagus See 3.3.4.1

3.6.4.1.2 Stomach

In Homo and Pongo the stomach lies obliquely ${ }^{28,170}$, while in Pan the long axis of the stomach is more horizontal than in Homo ${ }^{28,152}$. It lies mostly to the left of the midline in Gorilla ${ }^{156}$, and entirely to the left of the midline in Pongo ${ }^{25}$.

In Gorilla the cardiac and pyloric orifices are closer together than in Homo ${ }^{49,83}$. In Pongo, the cardiac portion of the heart is elongated ${ }^{25}$ and constricted from the pyloric part as in Homo and African apes ${ }^{49,152,170}$, the latter of which is thicker and narrower than the cardiac part ${ }^{25,125}$.

Sex	BW (kg)	Length	Breadth	Height	Weight
Male	130	285	150	250	$720 \mathrm{~g}(0.55)$
Female	68	260	150	200	$700 \mathrm{~g}(1.029)$

Table 3.6.2. Dimensions (mm) and weight (g) of the stomach in male and female Gorilla. Adapted from ${ }^{83}$. Numbers in parentheses are stomach weight in percentage of body weight (BW).

Species	Water-filled	Surface area	Greater curvature
Pan troglodytes	-	1079	965
	-	135	72
Gorilla	-	116	88
Symphalangus	240	156	264
	350	385	296
Hylobates pileatus	580	499	-

Table 3.6.3. Estimation of stomach volume (cm^{3}), considering the stomach as a sphere in African apes and hylobatids, and'also estimation of stomach volume by filling the organ with water without stretching the wall in hylobatids. Adapted from ${ }^{26}$.

Species	Sex	BW	Surface area	Weight	Volume
Pan troglodytes	F	-	472	-	965
	M	34000	690	-	1705
Gorilla	M	51000	1087	-	3370
Pongo	M	8620	256	71	385
	M	-	880	331	2457
Hylobates lar	M	5000	204	58	274
	F	5400	104	53	100
Hylobates pileatus	F	7260	304	56	499
Symphalangus	F	11340	457	146	919
	M	7250	140	55	156

Table 3.6.4. Measurements of body weight (BW, in g), and of surface area ($\mathrm{cm}^{\mathbf{3}}$), weight (g) and volume (cm^{3}) of the stomach. Adapted from ${ }^{26}$.

3.6.4.1.3 Small intestine

Plica circulares (valvulae conniventes)

No information for Hylobates.
The plica circulares are variably developed in Homo and the great apes ${ }^{49,74,152,170 .}$

Small intestine

The small intestine, including the duodenum, in vivo, has an average length of around 590 cm in female Homo , and around 635 cm in male Homo^{166}. The length of the small intestine was found to be correlated with height in Homo^{166}. The length of the jejunum and ileum together has been noted as 350 cm in Pan^{152} and 945 cm and 1021 cm in two adult Gorilla ${ }^{49,156}$ males.

In Homo and Pan the villi of the small intestine contain a single central vein draining a subepithelial capillary plexus converging at the apex of the villus. These villi also
contain a single eccentrically located artery rising to the midlevel of the villus, where it branches into subepithelial capillaries over the rest of its length ${ }^{161}$.

Species	Sex	BW	Surface area	Weight	Volume
Pan troglodytes	F	-	1700	-	815
	M	34000	3761	-	1967
Gorilla	M	51000	4018	-	1897
Pongo	M	8620	1263	124	461
	M	-	6564	568	4046
Hylobates lar	M	5000	453	81	154
	F	5400	268	35	68
Hylobates pileatus	F	7260	592	77	596
Symphalangus	F	11340	2278	150	1007
	M	7250	1708	183	697

Table 3.6.5. Measurements of body weight (BW , in g), and of surface area (cm^{3}), weight (g) and volume ($\mathrm{cm}^{\mathbf{3}}$) of the small intestine in great apes and hylobatids. Adapted from ${ }^{\mathbf{2 6}}$.

3.6.4.1.3.1 Duodenum

Duodenum

No information for Hylobates.

The duodenum can be divided in Homo and African apes into superior, descending, horizontal and ascending portions, ending at the duodenojejunal junction ${ }^{49,152,170}$.

The superior portion is more freely movable than the other sections, and the descending portion is partly covered by the colon in Homo and Gorilla ${ }^{49,170}$.

Mitchell found no distinct duodenum in Gorilla or Pongo ${ }^{122}$.

Duodenal glands

No information for Gorilla, Pongo or Hylobates.
Duodenal glands are present in Homo and Pan ${ }^{104}$.

3.6.4.1.3.2 Ileum

Aggregated lymphatic follicles (Peyers patches)

No information for Hylobates.

These patches have been found in Homo and great apes ${ }^{23,24,25,152,170}$.

Solitary lymphatic follicles

No information for Hylobates.

These scattered follicles have been reported as present in Homo and great apes ${ }^{25,125,}$ 126, 156, 170

3.6.4.1.4 Large intestine

No information for Hylobates.

The large intestine is about 150 cm long in Homo^{170}, in Pan $76 \mathrm{~cm}^{24}$ to $122 \mathrm{~cm}^{152}$ long, in adult male Gorilla the large intestine was $168 \mathrm{~cm}^{156}$ or $193 \mathrm{~cm}^{83}$ long, 175 cm long in an adult female Gorilla ${ }^{83}$ and in Pongo $122 \mathrm{~cm}^{25}$ long.

Haustrations are present in Homo and great apes ${ }^{2,12,25,44,49,52,83,125,152,170}$, and appendices epiploicae are present in Homo^{170} and Pan^{152}.

Division of the large intestine into ascending, transverse, descending and sigmoid parts as in Homo^{170}, is not generally found in great apes.

In Gorilla the colon may be differentiated into a proximal portion continuous with the caecum and a very large loop incorporating three rather irregular wide loops, the
most distal of which may be regarded as the equivalent of the sigmoid colon, as in Pongo ${ }^{122}$.

The ascending and descending colon are relatively shorter, and the transverse portion more elongated in Gorilla than in Homo and Pan ${ }^{74}$.

The ascending colon is kinked medially in juvenile Pan^{74}, but is straight in Homo, adult Pan and Pongo ${ }^{74,170}$. It measures $15-18 \mathrm{~cm}^{83}$ in diameter, or $30 \mathrm{~cm}^{156}$ in circumference in adult Gorilla, compared to $14 \mathrm{~cm}^{156}$ in Homo. A true ascending colon may be absent from Gorilla ${ }^{74}$.

The transverse colon is very coiled in great apes ${ }^{74}$. It measures $10-14 \mathrm{~cm}$ in diameter in an adult male Gorilla ${ }^{83}$.

The descending colon is coiled in great apes ${ }^{74,160}$. It measures $8-13 \mathrm{~cm}$ in diameter in an adult male Gorilla ${ }^{83}$. No true descending colon is found in Pan, as a recurrent limb is present ${ }^{74}$.

The sigmoid colon is a large loop in Homo and great apes ${ }^{74,137,170}$, but may be composed of a number of small loops in Pongo ${ }^{122}$. It measures $4-5 \mathrm{~cm}$ in diameter in an adult male Gorilla ${ }^{83}$. The sigmoid colon may be replaced by a small curve in the descending colon in Gorilla ${ }^{156}$.

Species	Sex	BW	Surface area	Weight	Volume
Pan troglodytes	F	-	1812	-	1451
	M	34000	2925	-	4335
Gorilla	M	51000	4813	-	7006
Pongo	M	8620	978	157	1071
	M	-	5774	980	7800
Hylobates lar	M	5000	383	74	259
	F	5400	403	68	267
Hylobates pileatus	F	7260	1128	144	920
Symphalangus	F	11340	1557	230	1891
	M	7250	954	184	883

Table 3.6.6. Measurements of body weight (BW, in g), and surface area (cm^{3}, weight (g) and volume ($\mathbf{c m}^{\mathbf{3}}$) of the colon in great apes and hylobatids. Adapted from ${ }^{\mathbf{2 6}}$.

Mesocolon

No information for Hylobates.

The transverse and sigmoid colons possess a mesentery in Homo and Gorilla ${ }^{49,74,159,}$ 170. Ascending and descending mesocolons may be present in Homo as a variation ${ }^{170}$.

In Pan, there may be no mesentery for the ascending and sigmoid colons or for the majority of the descending colon, the iliac part of the descending colon being the only part with a mesentery ${ }^{152}$. A transverse mesocolon may be present in Pan ${ }^{24}$. The sigmoid mesocolon in Gorilla may extend proximally onto the iliac part of the descending colon ${ }^{74}$.

In juvenile Pongo, the ascending, transverse, descending and sigmoid colons may have a mesentery ${ }^{74}$, while in adult Pongo the recurrent part of the descending colon and the sigmoid colon have a mesocolon, the ascending and descending mesocolons being absent ${ }^{74}$.

Taeniae coli

Three taeniae coli are present in $\mathrm{Homo}^{170}, 3 / 4$ Pan 74,145,160, Gorilla ${ }^{49,74,156}$ and Pongo ${ }^{2,74,145}$, while two are present in 1/4 Pan ${ }^{152}$ and four in Hylobates ${ }^{77}$.

3.6.4.1.4.1 Caecum and appendix

Caecum

Species	Sex	BW	Surface area	Weight	Volume
Pan troglodytes	F	-	162	-	91
	M	34000	286	-	407
Gorilla	M	51000	590	-	955
Pongo	M	8620	70	17	56
	M	-	155	22	55
Hylobates lar	M	5000	15	4	3
Hylobates pileatus	F	7260	77	17	34
Symphalangus	F	11340	75	10	34

Table 3.6.7. Measurements of body weight (BW, in g), and of surface area (cm^{3}), weight (g) and volume ($\mathrm{cm}^{\mathbf{3}}$) of the caecum in great apes and hylobatids. Adapted from ${ }^{\mathbf{2 6}}$.

Iliocaecal valve

No information for Gorilla or Hylobates.
An iliocaecal valve is present in Homo, Pan and Pongo ${ }^{25,44,152,170 .}$

Vermiform appendix

The vermiform appendix is present in all apes and $\mathrm{Homo}^{10,23,24,25,44,49,64,77,83,122,}$ 125, 145, 152

The appendix varies from 2 to 20 cm in length, with an average of about $9 \mathrm{~cm}^{170}$ in Homo. In Pan, the appendix is reported as 11.5 to 16.5 cm long ${ }^{24,152}$. It has been
described as 7 cm to 25.5 cm long in Gorilla ${ }^{14,23,49,52,83,115,156}$, and 17 cm long in Pongo ${ }^{25}$.

Appendicitis as a cause of death has been described in all apes ${ }^{51,66,76,100,117,173,174,}$ 175

3.6.4.1.5 Rectum

Unlike Homo ${ }^{170}$, the rectum and anal canal form a straight canal with no flexures in Pan ${ }^{152}$

Species	Length	Diameter
Homo 170	120	40
Pan $^{152 .(a)}$	140	-
Gorilla(male) 83	350	50
Gorilla(female) 83	150	-

Table 3.6.8. Dimensions (mm) of the rectum in Homo and African apes. ${ }^{\left({ }^{(2)}\right.}$ includes anal canal.

Rectococcygeus(caudoanalis)

No information for Pan, Pongo or Hylobates.

The rectococcygeus is present in $1 / 2$ Gorilla, and vestiges may be present in Homo^{48}.

In Homo ${ }^{170}$, two fasciculi of striated muscle arise from the anterior surface of Co 2 and Co3, while in Gorilla ${ }^{48,136}$ the paired muscles originate from the last coccygeal vertebra and the fascia caudal to it, running obliquely across the inner surface of pubococcygeus ${ }^{136}$.

A thin muscle, it tapers to insert into the sheath of the rectum deep to the external anal sphincter in Gorilla ${ }^{48,136}$, blending with the longitudinal muscle fibres of the posterior wall of the anal canal in Homo^{170}.

Innervated in Gorilla ${ }^{136}$ by a branch of the nerve to pubococcygeus.

No information for Pan, Pongo or Hylobates.

Rectourethralis consists of smooth muscle which in Homo and Gorilla originates from the inferior part of each side of the rectal wall ${ }^{35,170}$, at the rectal ampulla in $H o m o ~^{170}$ and in Gorilla ${ }^{35}, 8$ to 10 cm above the anal verge.

In Homo^{170} the fibres of the rectourethralis insert into the perineal body, while in Gorilla they insert into the sphincter urethrae and dorsal urethra, extending proximally to the superior border of the bulb of the corpus spongiosum ${ }^{35}$.

3.6.4.1.6 Anal canal

No information for Pongo or Hylobates.

Anal columns are present in Homo and African apes ${ }^{49,152,170}$. Anal valves are present in Homo^{170} but are absent from Pan^{152}, while anal sinuses are present in Homo and Gorilla ${ }^{49,170}$.

3.6.4.2 Glands

3.6.4.2.1 Liver

No information for Hylobates.

The number of lobes is four in Homo^{170}, while in Gorilla the number of lobes has been stated to vary from 3 to $7^{21,49,83,91,100,136,156}$.

Caudate lobe

The caudate lobe and caudate process are present in Homo and the African apes ${ }^{21.24,}$ 49, 83, 152

The caudate lobe is absent from Pongo ${ }^{25}$ and has been described as "not developed" in Gorilla ${ }^{156}$.

Left lobe

In Gorilla, the left lobe is subdivided by a deep fissure into left central and left lateral lobules, the lateral being larger than the central lobule ${ }^{21,29}$. The dividing fissure is continuous with the fissure for the ligamentum teres ${ }^{21}$.

Quadrate lobe

The quadrate lobe was present, but not well demarcated in Pan and Gorilla ${ }^{21,24,156 .}$ In Gorilla the lobe was roughly triangular ${ }^{21}$, rather than rectangular than in Homo^{170}.

A shallow transverse fissure subdivides the quadrate lobe into two lobules in Gorilla ${ }^{21}$.

Right lobe

The right lobe is slightly larger than the left in Pan and Gorilla ${ }^{21,49,152 \text {, unlike Homo }}$ where the right lobe constitutes five-sixths of the liver ${ }^{170}$.

In Gorilla the right lobe is subdivided into a right central and a right lateral lobule, the central being larger than the lateral ${ }^{21,49}$.

Species	BW $(\mathbf{k g})$	Length	Breadth	Weight
Pan $^{\text {128 }}$	19.3	-	-	$907(4.70)$
Pan paniscus 9	4.6	-	-	$171(3.72)$
Pan paniscus 9	4.5	-	-	$230(5.11)$
Pan paniscus 9	-	-	-	775
Pan paniscus 9	40	-	-	$750(1.88)$
Gorilla 83	130	37	15	$2020(1.55)$
Gorilla 83	68	31	18	$2110(3.10)$
Gorilla 156	227	-	-	$2200(0.97)$
Gorilla 21	134	30.5	26.7	$3900(2.91)$
Gorilla 1	-	-	-	1818

Table 3.6.9. Dimensions (cm) and weights (gm) of the liver in African apes. Numbers in parentheses are liver weight in percentage of body weight(BW).

3.6.4.2.2 Gall bladder

Cystic duct

No information for Pan, Pongo or Hylobates.
The cystic duct is 2.5 cm long in Gorilla ${ }^{156}$ and 3 to 4 cm long in Homo^{170}.

Gall bladder

No information for Pongo or Hylobates.

The gall bladder is present on the inferior surface of the right central lobe in Homo and Gorilla ${ }^{21,49,83,156,170}$. It may be embedded in the substance of the liver in Pan ${ }^{152}$. The gall bladder does not project below the inferior margin of the liver in Gorilla ${ }^{21}$, unlike Homo and Pan ${ }^{152,170}$.

The valves at the gall bladder neck are few and simple in Gorilla ${ }^{156}$.

	BW $\mathbf{(k g)}$	Length	Breadth
Male 83	130	9	3.5
Female 83	68	12	6
Male 156	227	17.5	4.5
$-{ }^{21}$	134	15.2	5.1

Table 3.6.10. Dimensions of the gall bladder (cm) in Gorilla.

3.6.4.2.3 Pancreas

Pancreas

No information for Pongo.

The pancreas is dark in colour in African apes ${ }^{156,152}$, while in Homo 170 the pancreas is described as greyish-pink.

In Homo, Pan and Symphalangus the greatest vertical dimension of the head of the pancreas is usually half of the greatest length of the whole pancreas ${ }^{106}$. The head of the pancreas lies within the curve of the duodenum in Homo, Pan, Gorilla and Symphalangus ${ }^{49,106,170}$. The head of the pancreas is often described as smaller in proportion to the body of the pancreas in Gorilla than in Homo ${ }^{49,83,156}$.

In Homo, Pan and Symphalangus, the end of the pancreatic tail is directed superiorly ${ }^{106,170}$. The tail is contact with the spleen in Homo and Gorilla ${ }^{49,170}$.

An additional pancreatic process runs up along the portal vein for a short distance ${ }^{152}$.

	BW $\mathbf{(k g)}$	Total length	Breadth of body	Length of head	Breadth of head	Weight
Male 83	130	20	2	11	3.5	$75(0.057)$
Female 83	68	17	3	6.5	-	$47(0.069)$
Male 156	227	31.5	1.8	-	6.5	$105(0.046)$

Table 3.6.11. Length (cm) and weight (g) of the pancreas in Gorilla. Numbers in parentheses are pancreas weights in percentage of body weight (BW).

Pancreatic duct

In Pan, there is an accessory duct and an inferior duct of the pancreatic head, both of which join the main pancreatic duct before it enters the duodenal wall ${ }^{106}$. The accessory duct is present, but the inferior duct of the head is absent from Symphalangus ${ }^{106}$. The accessory duct in Symphalangus opens into the main duct ${ }^{106}$, while in Homo it usually opens onto a minor duodenal papilla above the main papilla ${ }^{170}$, and may do so in Pan and Symphalangus ${ }^{106}$.

In Homo, 3/5 Pan, 1/2 Gorilla and Symphalangus the bile duct and the pancreatic duct have a common orifice ${ }^{49,106,152,170}$, although in these African apes there may be no definite papilla ${ }^{49,106,152,170}$. The papilla is better defined in Pan than in Gorilla ${ }^{106}$. The hepatic and pancreatic ducts enter the duodenum separately but close together in $2 / 5$ Pan $^{106,160} 1 / 2$ Gorilla 49 and in Pongo ${ }^{25,125,159 .}$

In Homo there are delicate reinforcing fibres from the duodenal musculature to the sphincter of the hepatopancreatic ampulla ${ }^{97}$, which have also been found in fetal Pan ${ }^{105}$.

3.6.4.2.4 Spleen

No information for Hylobates.

The spleen is more pointed at its extremities in Pongo than in Homo ${ }^{125}$, and is more elongated in Gorilla than in $\mathrm{Homo}^{49,83}$.

A small, oval, accessory spleen connected to the transverse colon has been found in Pan ${ }^{152}$, while no accessory spleens have been found in Pongo ${ }^{153}$.

Species	BW (kg)	Length	Width	Breadth	Weight
Homo $^{\mathrm{T} 76}$	-	12	7	$3-4$	$80-300$
Pan $^{\mathrm{I26}}$	-	12.7	10.2	-	-
Pan 128	19.3	-	-	-	$71(0.37)$
Pan 152	-	9.7	7.0	3.1	-
Pan paniscus 9	4.6	-	-	-	$12(0.26)$
Pan paniscus 9	4.5	-	-	-	$17(0.38)$
Pan paniscus 9	-	-	-	-	62
Pan paniscus 9	40	-	-	-	$100(0.25)$
Gorilla 83	130	16	8.5	-	$250(0.19)$
Gorilla 83	68	12.5	7.0	-	$120(0.18)$
Gorilla 156	227	18.8	9.7	3.8	$372(0.16)$
Gorilla 49	-	33	7	-	-
Corilla 97	-	18	7	3	-
Gorilla 15	-	-	-	-	680
Pongo 153	-	10.9	3.8	0.8	-

Table 3.6.12. Dimensions (mm) and weight (g) of the spleen in Homo and great apes. Numbers in parentheses are pancreas weights in percentage of body weight (BW).

3.6.5 URogenital system

3.6.5.1 Urinary system ${ }^{\text {b }}$

3.6.5.1.1 Kidney

In Homo, Pan, 2/4 Gorilla and Symphalangus, the left kidney lies higher than the right ${ }^{54,83,106,152,170}$. In $1 / 4$ Gorilla, the left kidney is lower than the right ${ }^{49}$, and in 1/4 Gorilla the kidneys are nearly on the same level ${ }^{83}$.

On both sides the ilium lies behind the inferior portion of the kidney in Gorilla, unlike $\mathrm{Homo}^{49,170}$.

In Homo, the number of papillae present has been noted as between 3 and $20^{82}, 5$ to 11^{107} or 6 to 14^{4}.

A single papilla is usually present in apes ${ }^{12,25,38,41,42,46,49,60,85,118,125,158,163,183}$, although up to six papillae have been reported in $\operatorname{Pan}^{24,152,154,155,167,176}$ and Gorilla ${ }^{58,154,176,183}$. Two papillae or four fused papillae have been described in Pongo ${ }^{118,153,18}$, while in Hylobates ${ }^{154,176,183}$ as many as four papillae have been noted. In Pongo ${ }^{118}$ the single papilla may have a subdividing groove, or no papilla may be present ${ }^{57,153}$.

The boundary between the medulla and cortex is frequently scalloped, the pyramid thus being divided into secondary pyramids ${ }^{49,156}$. Three to five secondary pyramids have been noted in Pan and Pongo ${ }^{158}$, while a female Gorilla ${ }^{49}$ showed five subpyramids on the right side, but no subdivision on the left. Three to six secondary pyramids have been described in Hylobates ${ }^{38,158}$.

The renal columns are well demarcated in Pan and Pongo ${ }^{25,60,85,118, ~ 154, ~ 167, ~ 172, ~ 176, ~}$ 183

In Gorilla ${ }^{156}$ the cortex averaged 16 mm and the medulla 28 mm in thickness.
Values for renal plasma flow in Pan are similar to those for Homo ${ }^{56,67}$.

The fetal kidneys of Homo and Gorilla are externally lobulated ${ }^{37,170}$.

	\mathbf{N}	\mathbf{A}	\mathbf{B}	\mathbf{C}	\mathbf{D}	\mathbf{E}
Homo 82	15	-	-	-	-	15
Pan $^{\mathrm{I} 8}$	15	6	2	7	-	-
Pongo 158	6	-	-	6	-	-
Hylobates 158	2	-	-	2	-	-

Table 3.6.13. Distribution of the five types of medullary pelvic surface in Homo, Pan, Pongo and Hylobates. $\mathbf{A}=$ Flattened or concave; $\mathbf{B}=$ Flattened or concave with dividing grooves; $\mathbf{C}=$ Undivided papilla; $\mathbf{D}=$ Subdivided papilla; $\mathbf{E}=$ Two or more papillae.

Species	$\begin{aligned} & \mathrm{BW} \\ & (\mathrm{~kg}) \end{aligned}$		Length	Breadth	Thickness	Weight
Homo ${ }^{170}$	-		11.0	6.0	3.0	135-150
Pan ${ }^{152}$	-	R	$\begin{aligned} & 6.6 \\ & 5.5 \end{aligned}$	$\begin{aligned} & 3.3 \\ & 3.3 \end{aligned}$	$\begin{array}{l\|} \hline 1.8 \\ 1.6 \end{array}$	-
Pan ${ }^{128}$	19.3	R	-	-	-	$\begin{array}{\|l\|} \hline 85 \\ 85 \end{array}$
Pan paniscus ${ }^{9}$	4.62	R	-	-	-	$\begin{aligned} & 23 \\ & 23 \end{aligned}$
Pan paniscus ${ }^{9}$	4.46	R	-	-	-	$\begin{aligned} & 26 \\ & 27 \end{aligned}$
Pan paniscus ${ }^{9}$	-	R	-	-	-	$\begin{array}{\|l\|} \hline 98 \\ 108 \end{array}$
Pan paniscus ${ }^{9}$	40	R	-	-	-	$\begin{array}{\|l\|} \hline 100 \\ 100 \end{array}$
Gorilla ${ }^{83}$	130	$\begin{aligned} & \mathrm{R} \\ & \mathrm{~L} \end{aligned}$	$\begin{aligned} & 10.5 \\ & 10.5 \end{aligned}$	$\begin{array}{\|l\|} \hline 8.0 \\ 7.2 \end{array}$	$\begin{aligned} & 4.5 \\ & 5.0 \end{aligned}$	$\begin{aligned} & 178(0.13) \\ & 178(0.13) \end{aligned}$
Gorilla ${ }^{83}$	68	R	$\begin{array}{\|l\|} \hline 10.5 \\ 10.0 \\ \hline \end{array}$	$\begin{aligned} & 7.5 \\ & 7.5 \end{aligned}$	$\begin{array}{\|l\|} \hline 3.5 \\ 3.7 \end{array}$	$\begin{aligned} & 175(0.257) \\ & 165(0.242) \end{aligned}$
Gorilla ${ }^{\text {I56 }}$	227	R	13.0	7.0	4.5	$\begin{aligned} & 268 \\ & 280 \end{aligned}$
Pongo ${ }^{25}$	-	-	3.2	-	-	-

Table 3.6.14. Measurements (cm) and weights (g) of the kidneys in great apes and Homo.
Numbers in parentheses are kidney weights in percentage of body weight (BW).

3.6.5.1.2 Ureter

No information for Pan or Hylobates.

The ureters average 25 to 30 cm in length in Homo^{170}, while in an adult male Gorilla they measured 36.5 cm in length ${ }^{156}$, and in Pongo 12.7 cm in length ${ }^{25}$.

The diameter of the ureter in Homo averages $3 \mathrm{~mm}^{170}$, while in Gorilla it measures 5 to $6 \mathrm{~mm}^{83,156}$.

3.6.5.1.3 Bladder

No information for Pan, Pongo or Hylobates.

Roughly tetrahedal in Homo^{170}, in Gorilla the bladder is tapered towards the urethra ${ }^{35}$, or pear-shaped ${ }^{83,136}$.

The capacity of the bladder in Homo varies from 120 to $320 \mathrm{ml}^{170}$ and has been noted in Gorilla as 120 to $160 \mathrm{ml}^{83,136}$.

The mucous membrane may contain smooth muscle fibres in Gorilla ${ }^{83}$, but not in $H o m o ~^{170}$.

The sphincter vesicae is composed of smooth muscle in Homo and Gorilla ${ }^{35,170}$.

3.6.5.1.4 Urethra

3.6.5.1.4.1 Male

Prostatic utricle

This structure is a diverticulum of the urethra, which in Homo runs posterosuperiorly into the substance of the prostate ${ }^{170}$.

The prostatic utricle has not been found in Gorilla ${ }^{136}$, but is present in Pan 186 and Hylobates ${ }^{70}$.

Urethra

No information for Pongo.

The diameter of the urethra is 6 mm in Homo^{170} and has been noted as 7.5 mm in Gorilla ${ }^{35}$.

The length of the urethra from the base of the bladder to the beginning of the corpus spongiosum is around 43 mm in Homo^{170} and 45 mm in Gorilla ${ }^{35}$.

A navicular fossa is formed in the glans penis in Homo, African apes and hylobatids ${ }^{80,87,136,139,170}$.

The urethra runs through the prostate in Homo and Hylobates ${ }^{70,80,170}$. The proximal part of the urethra may penetrate the prostate in Gorilla ${ }^{83}$. The prostate does not encircle the urethra in African apes, the anterior surface being free of prostatic tissue ${ }^{35,84,139}$. The urethra may be entirely anteprostatic in Pan ${ }^{152}$, Pongo 133 and Symphalangus ${ }^{118}$.

The ducts of the bulbourethral glands enter the spongiose urethra in Homo and Gorilla ${ }^{35,170}$ while a seminal colliculus is present in the proximal urethra of Homo, Gorilla and hylobatids ${ }^{80,136,170 .}$

The mucosa is arranged in longitudinal folds in Homo and African apes ${ }^{35,136,139,170}$.

Species	Age	Prostatic	Membranous	Penile
H.agilis 68	Adult	$7.0-8.0$	12.0	-
H.concolor 80	Adult	10.0	5.5	32.2
H.hoolock 80	Juvenile	9.5	3.5	18.5
H.hoolock 80	Subadult	9.0	4.5	18.5
H.leuciscus 68	Immature	2.0	8.0	-
Symphalangus 80	Subadult	13.5	5.5	32.5
Symphalangus $^{\text {80 }}$	Juvenile	10.0	4.0	19.0
Symphalangus 80	Immature	10.0	5.5	24.0

Table 3.6.15. Dimensions (mm) of the urethra in hylobatids.

3.6.5.1.4.2 Female

Urethra

No information for Gorilla, Pongo or Hylobates.

The epithelium of the urethra in Homo and Pan is transitional near the bladder, stratified or pseudostratified in the mid-urethra, becoming stratified squamous epithelium distally ${ }^{139,170}$.

Longitudinal and circular muscle layers are present in addition to spongiose tissue in Homo and Pan ${ }^{139,170 .}$

Urethral opening

The urethral opening in Homo and Hylobates is an anteroposterior slit ${ }^{70,170}$, while in Gorilla the urethra opens in the vestibule by a transverse slit ${ }^{180}$. The slit has prominent margins in Homo ${ }^{170}$ and is guarded by a small mucosal fold in Gorilla ${ }^{180}$. It is situated anterior to the vaginal opening in Homo and African apes ${ }^{75,136,170}$, but may be present on the vaginal wall in $P a n^{152}$.

The opening may be located on a papilla or eminence in Gorilla and Hylobates ${ }^{6,32,33 .}$ 70, 116. This papilla is absent from Homo, Pan and Pongo ${ }^{\text {16, 75, } 180}$.

Paraurethral glands

No information for Pongo or Hylobates.

These glands are present in Homo and African apes ${ }^{6,139,170}$.

Paraurethral ducts are present in Homo and Gorilla ${ }^{6,170}$.

3.6.5.2 Genital system ${ }^{\text {b }}$

3.6.5.2.1 Male

3.6.5.2.1.1 Testis and epididymis

Tunica vaginalis
The tunica vaginalis is a closed sac in all apes and $H o m o o^{25,80,126,136,170 .}$
Communication with the peritoneal cavity may be present in Homo^{170}, and has been noted in a specimen of Hylobates hoolock ${ }^{80}$.

Testis

Hill and Harrison-Matthews found no asymmetry in the position of the testes in Gorilla ${ }^{78}$, while Hartmann and McKenney et al. record the left testis lower than the right ${ }^{71,115}$ and Wislocki found the right testis to be lower than the left ${ }^{176}$.

The testes of Gorilla often appear atrophied, with little or no spermatogenesis ${ }^{3,53,65}$, 100, 115, 135, 156. Unilateral cryptorchidism has been noted in $3 / 62$ wild Hylobates (12 juvenile, 50 adult) ${ }^{144}$.

Species	Glandular	Connective	Total
Homo	2.54	1.98	4.52
Pan	3.17	1.33	4.50
Hylobates	2.30	2.19	4.49

Table 3.6.16. Weights (g) of glandular tissue and connective tissue in the testis in Homo, Pan and Hylobates. Adapted from ${ }^{144}$.

Primates with relatively large testes appear to have a considerably greater proportion of sex-cell producing glandular tissue and a smaller proportion of connective tissue than those with comparatively small testes ${ }^{144}$.

Dahl et al. provide testicle volumes relative to body weight in Homo and Pongo ${ }^{34}$.
Testicle weight relative to female body weight produces a ratio which is not statistically significantly different for Homo (0.059-0.066), Pongo (0.069) or Hylobates (0.088), indicating that selection for testicular size is similar among all three species ${ }^{34}$.

Species	Age	Length	Transverse	Dorsoventral	Weight
Homo ${ }^{170}$	Adults	40-50	25	30	10.5-14
Homo 148	Adults	-	-	-	19-42
Pan ${ }^{144}$	Adults	-	-	-	108-129
Gorilla ${ }^{83}$	Adult	40	20	27	-
Gorilla ${ }^{3}$	16.5 years	38	-	-	-
Gorilla ${ }^{156}$	Adult	-	-	-	19-23
Gorilla ${ }^{97}$	Adult	-	-	-	10.5
Pongo ${ }^{25}$	3 years	19.1	-	-	-
Pongo ${ }^{14}$	-	-	-	-	16.6-40.8
Hylobates ${ }^{\text {I44 }}$	Adults	-	-	-	2.9-6.1
Hylobates agilis ${ }^{68}$	Adult	28	18	-	-
H.concolor ${ }^{80}$	Adult	13.6	7.75	9.5	-
H.hoolock ${ }^{80}$	Juvenile	9.0	3.5	5.0	-
H.hoolock ${ }^{80}$	Subadult	9.8	5.8	7.8	-
Hylobates leuciscus ${ }^{68}$	Immature	10	7.0	-	-
Symphalangus ${ }^{80}$	Subadult	10.2	5.2	7.0	-
Symphalangus ${ }^{80}$	Juvenile	9.0	3.5	6.0	-
Symphalangus ${ }^{80}$	Immature	12.7	3.7	8.5	-

Table 3.6.17. Dimensions (mm) and weights (g) of the testis in the Hominoidea.

	Sample size	Body mass $(\mathbf{k g})$	Testes mass (g)	Testes $/$ Body $\%$	Relative testes size
Homo $^{\text {144 }}$	3	64	50	0.08	0.50
Pan troglodyte $^{\text {144 }}$	3	44	119	0.27	1.53
Gorilla $^{\text {44 }}$	1	134	23	0.02	0.14
Gorilla 83	1	130	18	0.01	-
Pongo $^{\text {144 }}$	2	75	35	0.05	0.31
Hylobates lar $^{\text {94 }}$	1	6	6	0.10	0.32
Hylobates moloch $^{\text {144 }}$	4	6	6	0.10	0.33

Table 3.6.18. Testes mass as a percentage of body mass and relative testes size (ratio of observed/predicted body testes size) in the Hominoidea. Adapted from ${ }^{93}$.

Epididymis

No information for Pan or Pongo.

The epididymis is present on the posterolateral side of the testis in Homo and Hylobates ${ }^{80,170}$.

In Homo and Hylobates the caput epididymis reaches the cranial pole of the testis and the cauda epididymis reaches the caudal pole ${ }^{80,170}$, which is not the case with the smaller epididymis of Gorilla ${ }^{136}$. The large caput epididymis projects above the cranial pole of the testis in Hylobates ${ }^{70,80}$.

3.6.5.2.1.2 Spermatic cord

Ejaculatory duct

The thin-walled ejaculatory duct is about 20 mm long in Homo^{170} and about 10 mm long in Gorilla ${ }^{35}$.

The ejaculatory ducts do not pass through the prostate in Gorilla ${ }^{35}$, unlike Homo or Pan ${ }^{84,139,170}$.

Spermatic cord

The diameter of the spermatic cord in a 16.5 year old Gorilla is 15 to $20 \mathrm{~mm}^{3}$. In Symphalangus the diameter of the cord is uniformly 6.8 mm in diameter ${ }^{80}$, while in Hylobates the maximum diameter of the cord ranges from 6.3 to 6.9 mm , narrowing proximally to $4.7-4.9 \mathrm{~mm}^{80}$.

Vasa deferentia

The vasa deferentia pass on the posterior surface of the bladder, converging toward the midline in Homo and Gorilla ${ }^{35,136,170 .}$

Each vas deferens unites with the duct of the seminal vesicle before entering the urethra in Homo and African apes ${ }^{35,} 84,136,170$.

The wall of the duct is thicker than the diameter of the lumen in Homo, Gorilla and hylobatids ${ }^{35,80,170}$. It is more muscular in Gorilla than in Homo or Pongo, while the vas of Pan has a greater cross-sectional area than Homo or any other great ape ${ }^{39}$. Longitudinal and circular muscle fibres are present in Homo and hylobatids ${ }^{80,170}$. The calibre of the duct gradually increases posterior to the bladder in Gorilla ${ }^{136}$, but there is no distinct ampulla, such as is present in Homo and Hylobates ${ }^{70,170}$.

3.6.5.2 1.3 Prostate and seminal vesicles

Prostate

A single body in Homo and apes ${ }^{70,80,83,84,156,170}$, in Gorilla, however, paired prostates may be present ${ }^{35}$, and Raven found the gland to be united anteriorly, with the posterior lobes in contact but unfused ${ }^{136}$. Hosokawa and Kamiya found a single prostate divided by two longitudinal clefts on its posterior surface into three lobes in Gorilla ${ }^{83}$.

The apex of the gland is directed inferiorly in Homo and Hylobates ${ }^{80,170}$, but superiorly in Gorilla ${ }^{35}$.

The anterior part of the prostate is narrow in Homo, Pan and Hylobates ${ }^{70,80,84,170 .}$

The base of the gland is in contact with the neck of the bladder in Homo and Hylobates ${ }^{80,170}$, but not in Symphalangus ${ }^{80}$.

The relationship between the prostate and the urethra is given in 3.6.5.1.4.1.

Species	Age	Height	Width	AP Thickness	Weight
Homo 170	Adult	30	40	20	8
Gorilla $^{\text {a/3 }}$	Adult	25	15	7	-
Gorill 83	Adult	18	30	11	-
Gorilla 156	Adult	32	26	10	-
Gorilla 136	Adult	20	20	20	-
Gorilla 3	16.5 years	40	-	-	-
Gorilla 88	32 years	-	-	-	15
Hylobates hoolock 80	-	-	11	9.5	-

Table 3.6.19. Dimensions (mm) and weight (g) of the prostate in Homo, Gorilla and Hylobates. a
Dimensions for one of a pair.

Seminal vesicles

No information for Pan.

Each seminal vesicle consists of a coiled tube with diverticula in Homo and
Symphalangus ${ }^{80,170}$, while no diverticula are found in Pongo or Hylobates ${ }^{70,80,133}$.

Species	Age	Length	Width	Breadth
Homo 170	Adult	50	-	-
Gorilla 35	-	$50-60$	$5-7$	-
Gorilla 83	Adult	R 40	9	9
		L 35	11	4
Gorilla 136	Adult	45	$5-8$	-
Pongo 25	-	25	-	-
Hylobates hoolock 80	Juvenile	5.0	-	-
Hylobates concolor 80	Adult	10.0	-	-
Hylobates agilis 68	Adult	20	7.5	-
${\text { Hylobates } \text { leuciscus }^{68}}$	Immature	5	1.5	-
Symphalangus 80	Subadult	11.2	-	-
Symphalangus 80	Juvenile	15.0	-	-
Symphalangus 80	Immature	6.1	-	-

Table 3.6.20. Dimensions (mm) of the seminal vesicles in Homo, Gorilla and Asian apes.

Bulbo-urethral glands

These glands are present in all apes and $\mathrm{Homo}^{\mathbf{2 5 , 3 5 , 7 0 , 8 0 , 1 3 9}}$, although Raven did not find them in Gorilla ${ }^{136}$.

The paired glands are situated within the sphincter urethrae in Homo and African apes 35,139,170, lying on either side of the membranous urethra in Hylobates ${ }^{70,80}$. The duct of each gland opens into the penile urethra in Homo, Gorilla and Hylobates ${ }^{35,70,80,170}$.

3.6.5.2.1.4 Urethra See 3.6.5.1.4.1

3.6.5.2.1.5 External genitalia

3.6.5.2.1.5.1 Penis

Corpora cavernosa

No information for Pongo.

A fibrous septum is present between the corpora cavernosa in Homo and Gorilla ${ }^{136,}$
${ }^{170}$, while in both species of Pan the corpora cavernosa are undivided ${ }^{87}$.

The crura are more cylindrical in Hylobates hoolock than in Hylobates concolor ${ }^{80}$, while in Symphalangus the crura are relatively more flattened craniocaudally than in Hylobates hoolock ${ }^{80}$.

Glans

The glans penis is demarcated in $\mathrm{Homo}^{170}, 3 / 6$ Pan $^{43,118,181,182}, 1 / 2$ Pan paniscus ${ }^{141}$, 5/8 Gorilla ${ }^{43,63,79,86,182}, 2 / 20$ Pongo $^{31}, 1 / 3$ Hylobates 80 and $1 / 2$ Symphalangus 80.

In the remaining Pan specimens ${ }^{29,87,130,154}$ and 10/21 Pongo ${ }^{25,31,154,182}$ the apex of the penis is cylindrical and smooth, while in 3/8 Gorilla ${ }^{78,115,136}, 8 / 21$ Pongo ${ }^{31,131,}$ 138 and $3 / 5$ hylobatids ${ }^{80,130}$ it is dome-like.

A ventral groove in the glans is present in Gorilla ${ }^{43,136,153}$ and Hylobates ${ }^{80}$, represented in Homo by a hiatus from the meatus to the coronal sulcus ${ }^{153}$.

The urethral opening on the tip of the penis is a sagittal slit in $\mathrm{Homo}^{170}, \mathrm{Pan}^{73}$ and 3/6 Gorilla ${ }^{79,136}$, but crescentic in $3 / 6$ Gorilla 78 and in Hylobates ${ }^{80}$. In Pan paniscus ${ }^{87}$, Hylobates ${ }^{7}$ and Symphalangus ${ }^{80}$ the meatal opening is described as Y shaped, and as lobate in Pan paniscus ${ }^{87}$ and Symphalangus ${ }^{80}$ in the former of which there are four lobes, or lappets ${ }^{87}$.

Species	Age	Proximodistal	Transverse	Sagittal	Length of EUM
Gorilla 136	Adult	20	20	8	-
Gorilla 79	Juvenile	3.6	4.2	6.9	4.0
Gorilla 78	Juvenile	6.5	7.0	8.2	4.4
Gorilla 78	Subadult	8.0	11.0	13.0	6.5
Gorilla 78	Adult	7.5	10.0	12.0	6.0
Hylobates concolor 80	Newborn	3.7	1	2.5	3
Hylobates hoolock 80	Juvenile	4	4	-	4
Hylobates hoolock 80	Subadult	3	3.8	5.3	2
Symphalangus 80	Subadult	4	4	7	3
Symphalangus					
Symphalangus					

Table 3.6.21. Dimensions (mm) of the glans penis in Gorilla and hylobatids.

Os penis

The penis bone, or baculum, is a rod of bone or cartilage at the distal end of the septum joining the two corpora cavernosa ${ }^{116}$.

The penis bone is absent from Homo^{78}, and has been reported as absent from specimens of Gorilla ${ }^{59,78}$, Pongo ${ }^{25}$ and fetal Hylobates concolor ${ }^{80}$. Hill and Harrison-Matthews review the literature with regard to penis bones in Homo^{78}.

Species	Length	Details
Pan^{78}	8.4	Two adults
Pan ${ }^{39}$	8.5	Juvenile
Pan ${ }^{170}$	8.5	Adult
Pan ${ }^{143}$	9.0	Subadult, 40.2 kg
Pan ${ }^{143}$	10.5	Adult, 43.8 kg
Pan ${ }^{152}$	13	Adult
Pan paniscus ${ }^{87}$	8.5	12-13 years
Gorilla ${ }^{78}$	12.7	Adult
Gorilla ${ }^{78}$	7.0	Subadult
Pongo ${ }^{\text {143 }}$	11	77.1 kg
Pongo ${ }^{170}$	12	Adult
Pongo ${ }^{\text {131 }}$	12	Two adults, one 76.5 kg
Pongo ${ }^{133}$	15	-
Pongo ${ }^{78}$	11.4	Bornean
Pongo ${ }^{78}$	13.7	Bornean
Pongo ${ }^{78}$	14.7	Sumatran
Pongo ${ }^{59}$	8	Subadult
Pongo ${ }^{50}$	<15.7	Adult
Hylobates hoolock ${ }^{80}$	3	Juvenile
Hylobates concolor ${ }^{80}$	9	Adult
Hylobates ${ }^{6}$	2.7	Infant
Hylobates agilis ${ }^{68}$	6	Adult
Hylobates leuciscus ${ }^{68}$	3	Immature
Hylobates leuciscus ${ }^{59}$	2.75	Juvenile
Hylobates leucogenys ${ }^{\text {I13 }}$	8-10	Fifteen specimens
Hylobates concolor ${ }^{\text {IT3 }}$	6-9	Ten specimens
Symphalangus ${ }^{59}$	14.5	Adult
Symphalangus ${ }^{59}$	7	Juvenile
Symphalangus ${ }^{80}$	3.5	Subadult
Symphalangus ${ }^{80}$	2.5	Juvenile

Table 3.6.22. Penis bone length (mm) in hominoids.

Penile spines

Spines or spicules are normally absent from the penile surface of Homo 170, Gorilla $^{78 .}$ ${ }^{79}$ and Pongo ${ }^{30,73,133,131}$. They may be found on the glans of Homo as a rare anomaly ${ }^{700}$.

In Pan, the spicules are most numerous on the sides of the glans ${ }^{70,73,79,87}$. In Hylobates the spicules are better developed, and are absent from the glans and the dorsum of the shaft ${ }^{70,80}$, while in Symphalangus the spicules are present on the shaft adjacent to the glans ${ }^{80}$.

Penis length

Scores of penile complexity, based on a scale of 1-5 for each of the following characters: length of pars libera, distal penis morphology, size of penile spines and baculum length, result in a rating of $11 / 20$ in both species of Pan, $7 / 20$ for Gorilla, $9 / 20$ in Pongo and $8 / 20$ in hylobatids ${ }^{31,39}$.

Species	Details	Length	Diameter
Homo ${ }^{30}$	54 adults	130	-
Pan ${ }^{147}$	-	80	-
Pan ${ }^{30}$	6 adults	140	-
Pan paniscus ${ }^{87}$	12-13 years	43.0	-
Gorilla ${ }^{136}$	Adult	90.0	20-30
Gorilla ${ }^{81}$	6 months	11.0	-
Gorilla ${ }^{147}$	-	30.0	-
Gorilla ${ }^{\text {I15 }}$	Adult	100.0	15
Gorilla ${ }^{78}$	Adult	11.5	-
Gorilla ${ }^{79}$	Juvenile	18.0	-
Gorilla ${ }^{78}$	3 years	20.0	5-12.1
Gorilla ${ }^{78}$	Subadult	11.5	14
Gorilla ${ }^{78}$	Adult	10.0	15-27
Gorilla ${ }^{156}$	Adult	60	12
Gorilla ${ }^{176}$	2 years 8 months	20	-
Gorilla ${ }^{3}$	16.5 years	60	-
Gorilla ${ }^{164}$	8 years	140	15
Gorilla ${ }^{108}$	7 years	50	-
Gorilla ${ }^{30}$	-	30	-
Pongo ${ }^{25}$	3 years	51	-
Pongo ${ }^{40,147}$	-	40	-
Pongo ${ }^{31}$	9 adults	90	-
Pongo ${ }^{31}$	4 subadults	70	-
Hylobates agilis ${ }^{68}$	Adult	20	10
Hylobates leuciscus ${ }^{68}$	Immature	10	3
Hylobates concolor ${ }^{80}$	Newborn	11.4	1.0-5.6
Hylobates concolor ${ }^{80}$	Adult	13.5	4.3-9.0
Hylobates hoolock ${ }^{80}$	Juvenile	15.0	3.5-7.5
Hylobates hoolock ${ }^{80}$	Subadult	17.2	3.2-7.2
Symphalangus ${ }^{68}$	Subadult	18	3.7-6.6
Symphalangus ${ }^{68}$	Juvenile	17	4.0-7.0
Symphalangus ${ }^{68}$	Immature	18	3.5-7.5

Table 3.6.23. Dimensions (mm) of the pars libera of the penis in the Hominoidea.

Prepuce

The prepuce may be absent from Gorilla ${ }^{156}$.
The prepuce is pigmented in Gorilla and hylobatids ${ }^{78,80}$ and unpigmented in Pongo ${ }^{31}$ and fetal Hylobates concolor ${ }^{80}$, while a few hairs are present on the prepuce in Gorilla ${ }^{78}$.

A frenulum is present in Homo and Symphalangus ${ }^{80,170}$, but absent from Pan ${ }^{73}$ and Pongo ${ }^{182}$.

3.6.5.2.1.5.2 Scrotum

Scrotum

The scrotum is a dependant sac in Homo ${ }^{170}$, semi-pendulous in Pan ${ }^{120,181,182}$ and some hylobatids ${ }^{7,80,118,146,177,182}$, while in Gorilla ${ }^{23,46,63,71,78,98,136,156}$, Pongo 55,78, 120 and most hylobatids ${ }^{102,130,153,154,177,183}$, the scrotum is hardly developed, represented by bilateral low, transverse (Gorilla ${ }^{129}$; Pongo ${ }^{78}$) or ovoid (Gorilla ${ }^{79}$; Hylobates ${ }^{80}$) areas, close to the body wall.

Hill and Kanagasuntheram suggest that in gibbons, postpenial scrotal sacs appear during fetal life. The testes are then withdrawn, returning, if at all, to a perineal site during late adolescence ${ }^{80}$.

The scrotal area in all apes and Homo is divided by a sagittal cutaneous raphe ${ }^{46,63,70,}$ $78,79,80,98,170,182$, with the exception of $2 / 3$ Pan 73,78 and Symphalangus ${ }^{182}$.

The surface of the scrotal area is smooth in Pan^{78} and hylobatids ${ }^{80}$, and rugose in Gorilla ${ }^{78}$, Pongo ${ }^{78}$ and Symphalangus ${ }^{80}$, but the appearance of the scrotum varies with age and circumstances in Homo^{170}.

The scrotal skin is pigmented in all ${ }^{73,78,79,80,182}$, except a juvenile Pongo ${ }^{182}$ and a juvenile Symphalangus ${ }^{80}$, while the raphe is unpigmented in African apes ${ }^{73}$. The hair covering of the scrotum is sparse in all ${ }^{55,73,78,79,136,182}$ except Hylobates, in which the scrotal region is densely haired and may have a contrasting hair tuft ${ }^{177,80}$.

The scrotal area is postpenial in Homo and Pan ${ }^{170,182}$, postpenial or post/parapenial in Gorilla ${ }^{78,77,182}$, Pongo ${ }^{182}$, and Symphalangus ${ }^{80,119,146,182}$ and prepenial, parapenial or postpenial in Hylobates ${ }^{7,70,80,130,146}$.

3.6.5.2.2 Female

3.6.5.2.2.1 Ovary

Ligament of the ovary

The ligament of the ovary is round in Homo and African apes ${ }^{180}$, but flattened in Hylobates ${ }^{70,180}$.

The ligament is relatively shorter in Gorilla ${ }^{6}$ and Pongo 180 than in Hylobates ${ }^{180}$.

Ovary

The ovaries lie closer to the uterus in Pongo ${ }^{180}$ than in Homo, African apes or Hylobates ${ }^{180}$. In 2/5 Pan, there was an asymmetrical distribution of cortical ovarian stroma on the stalk, while in 1/5 Pan, the left ovary was enlarged and cystic ${ }^{184}$.

The ovaries are almond-shaped in Homo^{170}, elongated and thin ${ }^{152,180}$ or flat and rounded ${ }^{152}$ in Pan, elongated in Gorilla ${ }^{180}$, oval ${ }^{180}$ or elongated and narrow ${ }^{127}$ in Pongo, and oval in Hylobates ${ }^{70,180}$. The ovaries are less fusiform and flattened in Asian than in African apes ${ }^{70,180}$, and appear to be less richly innervated in Asian apes than the ovaries of Homo or African apes ${ }^{19}$.

The estimated number of ova in both ovaries of a 10 year old Pan was around 310 k , in a pregnant Gorilla around 105 k and in a 16-17 year old Pongo was around 450 k^{140}.

In general similarity to Homo, Saglik ranks the ovaries as follows: Pongo, Pan, Gorilla, then Hylobates, the latter of which differs markedly from the other apes. Great ape ovaries are of the "fibrous" type, while in Hylobates follicular tissues predominate ${ }^{140}$.

	Side	Length	Width	Dorso-ventral
Homo ${ }^{170}$	-	30	15	10
Pan ${ }^{180}$	R	19	11	4
	L	30	13	6
Pan ${ }^{152}$	R	20	15	15
	L	25	5	2
Pan ${ }^{179}$	L	27	15	10
Gorilla ${ }^{180}$	R	40	11	9
	L	43	28	10
Gorilla ${ }^{(\mathrm{a}), 180}$	R	38	26	26
	L	38	12	12
Gorilla ${ }^{(\mathrm{a})}, 180$	R	30	16	12
	L	28	21	14
Gorilla ${ }^{5}$	-	40	-	-
Pongo ${ }^{180}$	R	21	16	10
	L	20	17	17
Hylobates pileatus ${ }^{\text {I80 }}$	R	16	12	7
	L	16	10	10
Hylobates ${ }^{36}$	-	10-18	5-10	5-10
Hylobates ${ }^{36}$	-	12	6	3
		12	8	7
Hylobates hoolock ${ }^{68}$	R	11	8	7
	L	9	7.5	5.5

Table 3.6.24. Greatest dimensions (mm) of the ovaries in the Hominoidea. (a) Pregnant.

3.6.5.2.2.2 Uterine tubes

Fimbriae

No information for Pongo.

The fimbriae are irregular in length in $H o m o{ }^{170}$, while in Gorilla they are approximately equal in length ${ }^{6,180}$. The fimbriae of Hylobates are between 6 and 10 mm in length ${ }^{11,70,}$.

The ovarian fimbria reaches the tubal extremity of the ovary in Homo, Pan and Hylobates ${ }^{152,170}$ (unilaterally in Pan 180), but fails to reach the ovary in Gorilla ${ }^{6,58,180}$. The gap in Gorilla and unilaterally in Pan may be filled by a ligament ${ }^{180}$.

Mesosalpinx

No information for Pongo.
The mesosalpinx contains more fat in Gorilla than in Homo, Pan or Hylobates ${ }^{6,180}$. A superior mesosalpinx has been found in some Hylobates ${ }^{36,70}$, but seems to be absent from other specimens of Hylobates, and from Homo and African apes ${ }^{180}$.

Uterine tube

No information for Pongo.

The abdominal orifice of the uterine tube is 2 mm in diameter in Gorilla ${ }^{6}$, and 3 mm in Homo ${ }^{170}$.

A dilated ampulla forms more than half of the length of the uterine tube in Homo^{170}. The diameter of the tube is relatively constant throughout in African apes ${ }^{6.152,180}$, although there may be slight enlargement to form an ampulla in Gorilla ${ }^{6}$.

The muscular layer of the uterine tube is more developed in Gorilla than in Homo^{180}. The uterine orifice of the uterine tube is smaller than the abdominal orifice in Homo and Gorilla ${ }^{6,170}$. No muscular sphincter is found at this orifice in Homo or Gorilla although longitudinal muscle fibres are present ${ }^{170,180}$.

3.6.5.2.2.3 Uterus and cervix

Broad ligament

The area of attachment of the broad ligament to the uterus is more extensive in apes than in $\mathrm{Homo}^{70,180}$.

The broad ligaments of Hylobates are more delicate and closer together than those of Pongo ${ }^{180}$.

Cervix

The infravaginal portion of the cervix is cylindrical in Homo, Gorilla and Pongo ${ }^{170,}$
180 and oval in Pan ${ }^{180}$.

Harrison-Matthews found the cervix in Hylobates to project obliquely into the vagina, so that on the anterior surface it is represented only by a low ridge ${ }^{68}$.

The external os is slit-shaped ${ }^{180}$ or circular ${ }^{170}$ in Homo, round ${ }^{152}$ or slit-like ${ }^{180}$ in Pan, slit-shaped ${ }^{6}$ or funnel-shaped (pregnant ${ }^{180}$) in Gorilla, and funnel-shaped in Hylobates ${ }^{180}$.

The muscular walls of the cervix appear to be much thicker in Gorilla than in Homo ${ }^{180}$.

Species	Age	Length	Diameter
Homo 180	Adult	$30-32$	$19-27$
Pan 180	Adult	14	8
Pan $^{[23,(a)}$	-	20	-
Pan 152	-	12	11
Pan 140	10 years	35	-
Gorilla 180	Adult	38	32
Pongo 180	Adult	8	6
Hylobates pileatus 180	Adult	8	8
Hylobates pileatus 180	Adult	9	8
Hylobates hoolock 68	Adult	11	-

Table 3.6.25. Largest diameter (mm) of the infravaginal segment of the cervix in the Hominoidea. $\left.{ }^{(\boldsymbol{}}\right)$ Pregnant.

Myometrium

Young found ovarian tissue in the connective tissue surrounding the myometrium near the uterotubal junction in $1 / 5$ Pan, although this may have been due to accidental transplantation during surgery ${ }^{184}$.

External, middle and internal muscle layers are less distinct in Gorilla ${ }^{180}$ than in Homo ${ }^{170}$ due to the increased interlacing of the fibres.

The external layer of Homo consists mainly of longitudinal fibres, the middle layer has no regular arrangement, while the internal layer contains longitudinal and circular fibres ${ }^{170}$.

In Gorilla, the external surface of the uterus has a thin layer of oblique and circular muscle fibres, followed by a layer of longitudinal fibres, a layer of oblique interlacing bundles, a second layer of longitudinal fibres and finally non-laminar interlacing fibres making up three-quarters of the uterine wall ${ }^{180}$.

The thickness of the muscular wall of the uterus is about 12.5 mm in non-pregnant Homo ${ }^{170}$, hypertrophying in pregnancy. In a pregnant mountain Gorilla the uterine muscle reaches 28 mm thick, but only 17 mm thick in a pregnant lowland Gorilla ${ }^{180}$.

Round ligament

No information for Pongo.

Described as flat bands in Homo^{170} and Hylobates ${ }^{70}$, the round ligaments are thick in Pan ${ }^{140,152}$.

The round ligament in African apes is attached nearer to the cervix than in Homo and Hylobates ${ }^{6,70,140,180}$.

The ligament of the ovary, uterine tube and the round ligament attach to the uterus at relatively widely separated points in Gorilla, while in Homo these ligaments converge more or less to a single point on the side of the uterus ${ }^{180}$.

Uterus

No marked fundus is present in Pan ${ }^{152}$, unlike Homo, Gorilla or Hylobates ${ }^{36,170,180}$. There is no distinct boundary or flexion between the body of the uterus and the cervix in Gorilla ${ }^{6}$, unlike Homo^{170}.

Dorso-ventral flattening of the uterus is more evident in Homo, Pan and Asian apes than in Gorilla ${ }^{70,180}$.

Species	Age	Length	Breadth	Dorsoventral
Homo 170	Adult	75	50	25
Pan 152	Juvenile	15	15	-
Pan 179	Adolescent	50	30	20
Pan 140	10 years	30	29	26
Pan 180	Adult	51	37	21
Pan 46	Adult	65	40	27
Gorilla 5	Subadult	40	-	-
Gorilla 180	Adult	101	52	46
Gorilla 180	Adult	(a)	111	81
Gorilla 180	Adult	(a,b		
Pongo 180	105	90	76	
Hylobates 36	$16-17$ years	42	28	18
Hylobates hoolock 68	Adult	26	20	12
Hylobates pileatus 180	Adult	45	25	19
Hylobates pileatus 180	Adult	44	25	19

Table 3.6.26. Greatest dimensions (mm) of the uterus in the Hominoidea. ${ }^{\text {(a) }}$ Pregnant. ${ }^{\text {(b) }}$ Fetus of crown-rump length 88.5 mm .

3.6.5.2.2.4 Vagina

Hymen

No information for Pongo or Hylobates.

When present in Homo, the hymen vaginae is a thin fold of mucous membrane at the vaginal orifice, variable in shape and extent ${ }^{170}$.

The hymen is absent from Pan ${ }^{152}$, although Hill and Wislocki have found remnants ${ }^{75}$, 180

Ashley-Montagu did not find any trace of a hymen in an infant Gorilla ${ }^{4}$, while two further Gorilla had relatively well-developed hymens ${ }^{58,136}$.

Vagina
As in Homo^{170}, the posterior fornix is deeper than the anterior fornix in African apes and Hylobates ${ }^{6,70,140,152 .}$

Transverse ridges in the mucous membrane of the vagina are present in Homo ${ }^{170}$ and in African apes, although less well demarcated ${ }^{6,58,152,180}$. The rugae are practically absent from Asian apes ${ }^{180}$, although they may be more developed in fetal Hylobates ${ }^{37}$. Variations in the size of the mucosal folds in Hylobates may be related to the phase of the reproductive cycle ${ }^{36}$.

The lower part of the vagina in all apes, but not in Homo 170, displays longitudinal folds ${ }^{70,75,152,180}$.

Vestibule

No information for Hylobates.
The vestibule is narrow and "boat-shaped" in Homo^{75}, irregularly shaped in Pan^{75}, triangular in Gorilla ${ }^{136}$ and almost circular in Pongo ${ }^{182}$.

Greater vestibular glands are present in Homo^{170} and variably in $\mathrm{Pan}{ }^{75,} 152$.

3.6.5.2.2.5 External genitalia

3.6.5.2.2.5.1 Clitoris

Clitoris

No information for Pongo.

Body

The body of the clitoris in Homo, Pan and Hylobates consists of two corpora cavernosa separated by an incomplete pectiniform septum ${ }^{70,75,152,170}$. The external surfaces of the clitoris are pigmented in Gorilla ${ }^{5}$ and Hylobates hoolock ${ }^{70}$.

Species	Age	Length	Breadth	AP diameter
Pan 75	Juvenile	12.7	-	-
Pan 75	Juvenile	9.5	-	-
Pan 75	Adult	16.5	-	-
Pan 75	Adult	16.0	-	-
Pan 75	Adult	16.7	-	-
Gorilla 4	About 2.5 years	9.0	5.0	7.0
Hylobates hoolock				

Table 3.6.27. Dimensions (mm) of the corpus clitoris in African apes and Hylobates.
No os clitoridis has been found in Hylobates ${ }^{70}$, while Gerhardt noted an os clitoridis about 4 mm long in Symphalangus ${ }^{59}$. Glans

No information for Pongo.
The glans may be absent from Pan paniscus ${ }^{87}$, but has been noted in this species ${ }^{141}$. The glans clitoridis has a ventral cleft in African apes and Hylobates ${ }^{5,6,11,32,33,37,58 .}$ 70,75,142,182,185

In Pan, the glans may be pigmented or unpigmented ${ }^{75}$.

Species	Age	Height	Breadth	Dorso-ventral
Pan 75	Juvenile	6.2	6.0	2.4
Pan 75	Juvenile	7.2	6.4	6.0
Pan 75	Adult	7.6	8.0	8.2
Pan 75	Adult	5.0	6.0	10.0
Pan 75	Adult	8.5	7.5	8.4
Gorilla 4	About 2.5 years	5.0	6.0	-

Table 3.6.28. Dimensions (mm) of the glans clitoridis in African apes.

Frenulum

No information for Pongo.

The frenulum of the clitoris in Homo is the point where the labia minora of the opposing sides unite on the inferior surface of the clitoris ${ }^{170}$.

A frenulum is present in Homo and African apes ${ }^{5,24,75,87,136,170}$. In Pan, the frenulum has a greater extent than in Homo, being continued from the glans onto the whole length of the body of the clitoris ${ }^{75}$.

Wislocki did not find the frenulum in an infant Gorilla ${ }^{182}$, while the frenulum of Hylobates may not be continuous with the labia minora ${ }^{32,33,70,182}$.

Prepuce

No information for Pongo.

The labia minora in Homo divide into two parts, the upper divisions of which unite above the clitoris to form the prepuce of the clitoris ${ }^{170}$.

The prepuce is also present in African apes and Hylobates ${ }^{5,24,32,33,75,87,136,142,182}$, although Harrison-Matthews states that the prepuce in Hylobates is rudimentary ${ }^{70}$.

The prepuce is unpigmented in $\mathrm{Pan}^{75,90,185}$, unlike Gorilla ${ }^{5}$.

In Gorilla, the prepuce possesses a few short hairs ${ }^{5}$. Ashley-Montagu gives its dimensions in an infant Gorilla as 26 mm transversely, and 19 mm anteroposteriorly ${ }^{5}$.

Bright orange smegma is produced by preputial glands in Pan^{75}.

Species	Age	Preputial thickness
Pan	Juvenile	2.5
Pan	Adult	12.0
Pan	Adult	4.5

Table 3.6.29. Thickness (mm) of the clitoral prepuce in Pan. Adapted from ${ }^{75}$.

3.6.5.2.2.5.2 Labia majora

Labia majora

The labia majora of Homo consist of prominent longitudinal folds extending from the mons pubis to the perineum. The external surface of each labia in Homo is pigmented and haired, which the internal surface is smooth and studded with sebaceous follicles ${ }^{170}$.

In $P a n^{185}$, two rolls of hair-bearing unpigmented fibrous and adipose tissue superior to the vulva correspond to the labia majora. Labia majora are absent from adult Pan ${ }^{75}$, while in juveniles they are represented by smooth, relatively hairless, unpigmented cutaneous ${ }^{75}$ or adipose ${ }^{152,182}$ folds bordering the anterior parts of the vulva. In adults the area formerly occupied by the labia majora contains subcutaneous fat which ends at the base of the labia minora ${ }^{75}$.

Pan paniscus ${ }^{29}$ shows wrinkled folds of tissue at the dorsal and dorsolateral margin of the vulva, which become lobular when tumescent.

In Gorilla ${ }^{5,182}$ the labia majora consist of bilateral adipose cushions extending from the pubic symphysis to the perineum, most prominent anteriorly. As in Pan, the labia majora appear to become less prominent with increasing maturity ${ }^{58,70,124}$. The external surfaces are sparsely haired and deeply pigmented ${ }^{5}$.

In Pongo ${ }^{30,55,182}$ the labia majora are crescentic adipose cushions extending from the pubic symphysis to the perineum and the region of the labia majora is sparsely haired ${ }^{182}$.

The labia majora in Hylobates are folds bordering the vulva, from the symphysis to the perineum ${ }^{37,142,182}$, pigmented ${ }^{182}$ and sparsely haired ${ }^{130,182}$. The labia majora persist postnatally ${ }^{32,33,70,142,182}$, although Deniker states that they become less prominent with age ${ }^{37}$, while others have not found the labia majora in Hylobates ${ }^{\text {12, }}$ 154, 183

3.6.5.2.2.5.3 Labia minora and mons pubis

Labia minora

The labia minora in Homo are small cutaneous folds, devoid of fat, extending from the clitoris, obliquely on either side of the vagina, to end between the vagina and the labia majora ${ }^{170}$.

In both species of Pan the labia minora are relatively large, dependant, unpigmented, puckered folds ${ }^{29,75,152,180}$. As in Homo^{170}, adipose tissue is absent ${ }^{75}$, the labia minora being composed of loose areolar tissue with some muscular fibres ${ }^{75}$.

The labia minora in Gorilla are represented by bilateral quadrilateral adipose cushions ${ }^{5}$. The external surfaces are hairless and pigmented, while the internal surfaces are unpigmented ${ }^{5,32,33,182}$. The medial edges of the labia are relatively
unpuckered ${ }^{5,32,33}$. Some authors describe hairs on the lateral surface of the labia minora ${ }^{6,142}$, and may therefore be describing labia majora.

The labia minora of Pongo are large and puckered, being described as "rosettelike ${ }^{\text {" }}{ }^{82}$.

The labia minora are large, fleshy and convoluted in Hylobates ${ }^{32,33}$, although they have been described as rudimentary low folds ${ }^{70,182}$. The colour of the labia minora appears to vary cyclically in Hylobates ${ }^{20}$.

Species	Age	Lateral thickness	Maximum protrusion	Length
Pan 75	Juvenile	3.0	17.8	-
Pan 75	Juvenile	-	30.0	-
Pan 75	Adult	7.7	30.0	-
Pan 75	Adult	6.9	64.0	-
Gorilla 4	Infant	-	12.0	11.0

Table 3.6.30. Dimensions (mm) of detumescent labia minora in African apes.

Mons pubis

The mons pubis, a rounded eminence anterior to the pubis, is formed in Homo from subcutaneous adipose connective tissue ${ }^{170}$.

In Pan, a fatty subcutaneous eminence has been noted on either side of the vestibule ${ }^{155,163}$, while two low fatty eminences either side of the midline, anterior to the vulva, have been described in Hylobates ${ }^{182}$.

The mons pubis is absent from Gorilla and Pongo ${ }^{5.58,75,182}$, although Deniker shows a fetal Gorilla with indications of a mons pubis ${ }^{37}$.

Wislocki suggests that the mons pubis of Homo may be homologous with the portion of the labia majora that extends forwards onto the symphysis in great apes ${ }^{176}$.

3.6 ENDOCRINE

3.6.1 Suprarenal

Suprarenal glands

No information for Pongo or Hylobates.

In Homo and Gorilla the suprarenal glands lie in contact with the superior poles of the kidneys ${ }^{49,83}$. In a specimen of Gorilla, the right suprarenal gland lay on the posterosuperior aspect of the right lateral lobule of the liver ${ }^{21}$.

The right suprarenal gland in Gorilla may be either triangular as in $\mathrm{Homo}^{83,170}$, or elongated as in Pan ${ }^{152,156}$.

The left suprarenal gland in Gorilla is either elongated as in $\mathrm{Pan}^{83,152}$ or triangular ${ }^{156}$, while in Homo it is crescentic ${ }^{170}$.

Species	BW $(\mathbf{k g})$	Length	Breadth	Thickness	Weight
Homo $^{\text {170 }}$	-	50	30	10	5
Pan paniscus 9	4.62	-	-	-	$1.5(0.033)$
					$1.5(0.033)$
Pan paniscus 9	4.46	-	-	-	$2.0(0.045)$
					$2.2(0.049)$
Pan paniscus 9	-	-	-	-	3.5
					4.0
Gorilla 49		-	-	80	-
Gorill 83	R	130	$85,70,50(3$ sides)	40	15
Gorilla 156	L		75	25	15
	R	227	85	32	16

Table 3.6.31. Dimensions (mm) and weights (g) of the suprarenal glands in Homo, Pan paniscus and Gorilla. Numbers in parentheses are suprarenal weights in percentage of body weight (BW).

BIBLIOGRAPHY

1. Allbrook, DB; Galloway, A and Wilson, AMM (1959): The study of Gorilla gorilla beringei with a post-mortem report by A.M.M Wilson. S.Afr.J.Sci. 55, p205-209.
2. Anthony, R (1898): Mémoire sur les organes viscéreaux d'un jeune orang-outan femelle. Bull.Soc.Anthropol. 9, p246-270.
3. Antonius, JL; Ferrier, SA and Dillingham, LA (1971): Pulmonary embolus and testicular atrophy in a gorilla. Folia Primatol. 15, p277-292.
4. Arvis, G (1969): Considérations anatomiques sur le hile et le sinus du rein. Ann.Radiol. 12, p75-106.
5. Ashley-Montagu, MF (1937): Note on the external genitalia in three female old world primates. Anat.Rec. 69(4), p389-405.
6. Atkinson, WB and Elftman, H (1950): Female reproductive system of the gorilla. In: Gregory,WK (ed); The anatomy of the gorilla. Columbia University Press, New York, p205-207.
7. de Beaux, O (1917): Sul pene digli antropomorfi. G.Morf. 1, p222-227.
8. Beddard, FE (1893): Contributions to the anatomy of the anthropoid apes. Trans.Zool.Soc.Lond. 13, p177-218.
9. Benirschke, K; Bogart, MH and Adams, F (1980): The status of the pygmy chimpanzee Pan paniscus in the USA. Int.Zoo Yearb. 20, p71-76.
10.Berry, RJA (1900): The true caecal apex, or the vermiform appendix: its minute and comparative anatomy. J.Anat.Phys. 35, p83-100.
11.Bischoff, TLW (1870):Beiträge zur Anatomie des Hylobates leuciscus and zu einer vergleichenden Anatomie der Muskeln der Affen und des Menschen. Abh.Bayer.Akad.Wiss.München. Math.Phys.Kl. 10, p197-297.
12.Bischoff, TLW (1879/80): Vergleichende anatomische Untersuchungen über die äusseren weiblichen Geschlechts- und Begattungsorgane des Menschen und der Affen, insbesondere der Anthropoiden. Abh.Bayer.Akad.Wiss.München. Math.Phys.Kl. 13(2), p207-274.
13.Blunt, MJ (1951): Posterior wall of the inguinal canal. Brit.J.Surg. 39, p230-233.
14.Bolau, H (1876): Cited in Elftman and Atkinson (1950).
15.Bolk, L (1898): Beitrag zur Neurologie der unteren Extremität der Primaten. Morphol.Jahrb. 25, p305-361.
16.Bolk, L (1907): Beiträge zur Affen-Anatomie - VI. Zur Entwicklung und vergleichenden Anatomie des Tractus Urethrovaginalis der Primaten. Z.Morphol.Anthropol. 10, p250-316.
17.Boyer, EL (1935): The musculature of the inferior extremity of the orang-utan Simia satyrus. Am.J.Anat. 56(2), p192-256.
18.van den Broek, AJP (1908): Ueber einige anatomische Merkmale von Ateles in Zusammenhang mit der Anatomie der Platyrrhinin. Anat.Anz. 33, pl11-124.
19.van Campenhout, E (1951/2): Nouvelle contribution concernant les relations neuro-interstitielles des glandes génitales des primates. Arch.Anat.Histol.Embryol. 34, p95-103.
20.Carpenter, CR (1941): The menstrual cycle and body temperature in two gibbons(Hylobates lar). Anat.Rec. 79(3), p291-296.
21.Chagula, WK (1961): The liver of the mountain gorilla(Gorilla gorilla beringei). Am.J.Phys.Anthropol. 19, p309-315.
22.Champneys, F (1872): On the muscles and nerves of a chimpanzee(Troglodytes niger) and a cynocephalus anubis. J.Anat.Phys. 6, p176-211.
23.Chapman, HC (1878): On the structure of the gorilla. Proc.Zool.Soc.Lond. p385394.
24.Chapman, HC (1879): On the structure of the chimpanzee. Proc.Zool.Soc.Lond. p52-63.
25.Chapman, HC (1880): On the structure of the orang outang. Proc.Zool.Soc.Lond. p160-174.
26.Chivers, DJ and Hladik, CM (1980): Morphology of the gastrointestinal tract in primates: comparisons with other mammals in relation to diet. J.Morphol. 166, p337-386.
27.Clarkson, RD and Rain, JH (1889): Unusual arrangement of the psoas muscle. J.Anat.Phys. 23, p504-506.
28.Cunningham, DJ (1906): The varying form of the stomach in Man and the Anthropoid apes. Trans.Roy.Soc.Edinb. 45, p9-43.
29.Dahl, JF (1985): The external genitalia of female pygmy chimpanzees. Anat.Rec. 211, p24-28.
30.Dahl, JF (1988): External genitalia. In: Schwartz,JH(ed); Orang-utan biology. Oxford University Press, New York. p133-144.
31.Dahl, JF (1994): Size and form of the penis in orang-utans. J.Mammal. 75 (1), pl-9.
32.Dahl, JF and Nadler, RD (1992a): Genital swelling in females of the monogamous gibbon, Hylobates(H.) lar. Am.J.Phys.Anthropol. 89, p101-108.
33.Dahl, JF and Nadler, RD (1992b): The external genitalia of female gibbons, Hylobates(H.) lar. Anat.Rec. 232, p572-578.
34.Dahl, JF; Gould, KG and Nadler, RD (1993): Testicle size of orang-utans in relation to body size. Am.J.Phys.Anthopol. 90, 229-236.
35.Delrich, TM (1978): Pelvic and perineal anatomy of the male gorilla: selected observations. Anat.Rec. 191, p433-446.
36.Dempsey, EW (1940): The structure of the reproductive tract in the female gibbon. Am.J.Anat. 57(2), p229-254.
37.Deniker, J (1885): Sur un foetus de gibbon et son placenta. C.R.Acad.Sci. 100, p654-656.
38.Deniker, J (1885/6): Recherches anatomiques et embryologiques sur les singes anthropoides: Foetus de gorille et de gibbon. Arch.Zool.Exp.Gen. Ser.2, 3(3), pl-265.
39.Dixson, HF (1987): Observations on the evolution of the genitalia and copulatory behaviour in male primates. J.Zool. 213, p423-443.
40.Dixson, HF; Knight, J; Moore, HDM and Carman, M (1982): Observations on sexual development in male Orang-utans Pongo pygmaeus. Int.Zoo Yearb. 22, p222-227.
41.Dönitz (1872) Cited in Straus (1934).
42.Duckworth, WLH (1915): Morphology and anthropology. 2nd ed. Cambridge University Press, Cambridge.
43.Duvernoy, M (1855-6): Des caractères anatomiques de grands singes pseudoanthropomorphes. Arch.Mus.Natl.Hist.Nat.(Paris). 8, pl-248.
44.Dwight, T (1895): Notes on the dissection and brain of the chimpanzee "Gumbo". Mem.Boston Soc.Nat.Hist. 5, p31-51.
45.Eggeling, H (1896): Zur Morphologie der Damm-muskulatur. Morphol.Jahrb. 24, p511-631.
46.Ehlers, E (1881): Beiträge zur Kenntnis des Gorilla und Chimpanse. Abh.K.Ges.Wiss.Göttingen, Math.Phys.Kl. 28, p3-77.
47.Eisler, P (1890): Das Gefäss- und periphere Nervensystem des Gorilla. Tausch and Grosse, Halle.
48.Elftman, HO (1932): The evolution of the pelvic floor of primates. Am.J.Anat. 51(2), p307-346.
49.Elftman, H and Atkinson, WB (1950): The abdominal viscera of the gorilla. In: Gregory,WK (ed); The anatomy of the gorilla. Columbia University Press, New York; p197-204.
50.Fick, R (1895): Beobachtungen an einem zweiten erwachsenen Orang-Utang und einem Schimpansen. Arch.Anat.Physiol. Anat.Abt. p289-318.
51.Fiennes, RT-W (1972): Cited in Scott (1980).
52.Flower, WH (1872): Lectures on the comparative anatomy of the organs of digestion of the Mammalia. Med.Times and Gaz.(London) 62 (1), p334-337, 392-394.
53.Foster, JW and Rowley, MJ (1982): Testicular biopsy in the study of gorilla infertility. Am.J.Primatol. 2, S1, p121-125.
54.Fransen, JWP (1907): Cited in Glidden and De Garis(1936).
55.Friedenthal, H (1910): Sonderformen des menschlichen Liebesbildung. Beiträge zur Naturgeschichte des Menschen. 5, p1-100. Cited in Wislocki(1936).
56.Gagnon, JA and Clarke, RW (1957): Renal functions in the chimpanzee. Am.J.Physiol. 190, pl17-120.
57.Gegenbaur, C (1901): Vergleichende Anatomie der Wirbelthiere. Vol.II. Leipzig.
58.Gerhardt, U (1906): Die Morphologie des Urogenitalsystems eines weiblichen Gorilla. Jena. Z.Naturwiss. 41, p632-654.
59.Gerhardt, U (1909): Über das Vorkommen eines Penis-und Clitorisknochen bei Hylobatiden. Anat.Anz. 35, p353-358.
60.Gerhardt, U (1914): Das Urogenitalsystem der Säugetiere. Bronn's Klassen und Ordnungen der Thier-Reichs. 6(5);2(5), p1-4,1-48.
61.Glidden, EM and De Garis, CF (1936): Arteries of the chimpanzee. I. The aortic arch; II. Arteries of the upper extremity; III. The descending aorta; IV. Arteries of the lower extremity. Am.J.Anat. 58(2), p501-527.
62.Gordon, KCD (1967): A comparative anatomical study of the distribution of the cystic artery in man and other species. J.Anat. 101, p351-359.
63.Goss, LJ (1947): The external genitalia of the gorilla, Gorilla gorilla gorilla(Savage and Wyman). Zoologica N.Y. 32, p97-98.
64.Gulliver, G (1839): Observations on the muscular fibres of the oesophagus and heart in some of the Mammalia. Proc.Zool.Soc.Lond. 7, p24-129.
65.Hall-Craggs, ECB (1962): The testis of Gorilla gorilla beringei. Proc.Zool.Soc.Lond. 139, p511-514.
66.Hamerton, AE (1941): Report on the deaths occurring in the Society's Gardens during 1939-1940. Proc.Zool.Soc.Lond. 3, p151-185.
67.Hamlin, RL; Smith, CR and Carter, WT (1964): A baseline study of the renal functions, body fluid volumes, and electrolyte intake and output in immature chimpanzees. Tech.Doc.Report No. AR1-TDR-64-48.
68.Harrison, RG (1949): The comparative anatomy of the blood-supply of the mammalian testis. Proc.Zool.Soc.Lond. 119, p325-342.
69.Harrison, RG and Barclay, AE (1948): The distribution of the testicular artery(internal spermatic artery) to the human testis. Brit.J.Urol. 20, p57-66.
70.Harrison-Matthews, L (1946): Notes on the genital anatomy and physiology of the gibbon (Hylobates). Proc.Zool.Soc.Lond. 116, p339-364.
71.Hartmann, R (1885): Anthropoid apes. Kegan Paul, Trench and Co. London.
72.Hepburn, D (1892): The comparative anatomy of the muscles and nerves of the superior and inferior extremities of the anthropoid apes. J.Anat.Phys. 26, p149-186, 324-356.
73.Hill, WCO (1946/7): Note on the male external genitalia of the chimpanzee. Proc.Zool.Soc.Lond. 116, p129-133.
74.Hill, WCO (1949): Some points in the enteric anatomy of the great apes. Proc.Zool.Soc.Lond. 119, p19-32.
75.Hill, WCO (1951): The external genitalia of the female chimpanzee; with observations on the mammary apparatus. Proc.Zool.Soc.Lond. 121, p133145.
76.Hill, WCO (1954): Appendicitis in gibbons. Proc.Zool.Soc.Lond. 124, p13-16.
77.Hill, WCO (1958): Pharynx, oesophagus, stomach, small and large intestine: form and position. Primatologia. 3, p139-207.
78.Hill, WCO and Harrison-Matthews, L (1949): The male external genitalia of the gorilla, with remarks on the os penis of other Hominoidea. Proc.Zool.Soc.Lond. 119, p363-378.
79.Hill, WCO and Harrison-Matthews, L (1950): Supplementary note on the male external genitalia of Gorilla. Proc.Zool.Soc.Lond. 120, p311-316.
80.Hill, WCO and Kanagasuntheram, R (1959): The male reproductive organs in certain gibbons (Hylobatidae). Am.J.Phys.Anthropol. 17, p227-241.
81.Hill, WCO and Sabater Pi, J (1971): Anomaly of the hallux in a lowland gorilla (Gorilla gorilla gorilla Savage and Wyman). Folia Primatol. 14, p252-255.
82.Hon-Jensen, HM (1930): Cited in Straus(1934).
83.Hosokawa, H and Kamiya, T (1961): Anatomical sketches of visceral organs of the mountain gorilla (Gorilla gorilla beringei). Primates. 3 (1), pl-28.
84.Humphry, GM (1866/7): On some points in the anatomy of the chimpanzee. J.Anat.Phys. 1, p254-268.
85.Huxley, TH (1864): Lectures on the structure and classification of the Mammalia. Med.Times and Gaz.(London). 1, p564-565.
10. Huxley, TH (1871): The anatomy of vertebrated animals. J and A Churchill, London.
87.Izor, RJ; Walchuk, SL and Wilkins, L (1981): Anatomy and systematic significance of the penis of the pygmy chimpanzee, Pan paniscus. Folia Primatol. 35, p218-224.
88.Jacobs, SC; Beehler, BA; Boese, G; Story, MT; Clowry, LJ and Lawson, RK (1984): The prostate of the gorilla. Prostate. 5(6), p597-603.
89.Jdanov, DA (1965): Anatomie comparée du canal thoracique et des principaux collecteurs lymphatiques du trong chez les mammifères. Acta Anat. 61, p1583.
90.Kanagasuntheram, R (1954): Observations on the anatomy of the Hoolock Gibbon. Ceylon J.Sci.(G). 5, p71-122.
91.Keith, A (1900): The position and manner of fixation of the liver of primates, and the part these factors played in the lobulation of liver. J.Anat.Phys. 33, xxi.
92.Keith, A (1902): The extent to which the posterior segments of the body have been transmuted and suppressed in the evolution of man and allied primates. J.Anat.Phys. 37, p18-40.
93.Kenagy, GJ and Trombulak, SC (1986): Size and function of mammalian testes in relation to body size. J.Mammal. 67 (1), pl-22.
94.Kennard, MA and Willner, MD (1941): Findings at autopsies of seventy anthropoid apes. Endocrinol. 28, p977-984.
95.Kihara, T and Teshima, G (1935): Cited in Jdanov (1965).
96.King, AD; Hine, AL; McDonald, C and Abrahams, P (1993): The ultrasound appearance of the normal psoas muscle. Clin.Radiol. 48, p316-318.
97.Kirkman, H (1946): A simian, deeply cleft, bilobed gall bladder with a "phrygian cap". Anat.Rec. 95(4), p423-441.
98.Klaatsch, H (1890): Über den Descensus testiculorum. Morphol.Jahrb. 16, p587646.
99.Kleinschmidt, A (1949/50): Vergleichend-anatomische Untersuchungen an der Aorta des Gorilla. Anat.Anz. 97, p363-366.
100.Koch, W (1937): Bericht über das Ergebnis der Obduktion des Gorilla Bobby, des Zoologischen Gartens zu Berlin. Ein Beitrag zur Vergleichenden Konstitutionspathologie. Veröff.Konstit.Wehrpath. 9(3), pl-36.
101.Kohlbrügge, JHF (1890/91): Versuch einer anatomie des Genus Hylobates. Muskeln und periphere Nerven. Zoologische Ergebnisse einer Reise in Niederländisch Ost-Indien. 1, p211-354; 2, p138-206. E.J.Brill; Leiden.
102.Kohlbrugge, JHF (1892): Versuch einer Anatomie des Genus Hylobates. Zool.Ergeb.einer Reise in Nied.Ost-Indien. Max Weber, Leiden. 2(2), Urogenital system, p185-186.
103.Kohlbrügge, JHF (1897): Muskeln und Periphere Nerven der Primaten, mit besonderer Berücksichtigung ihrer Anomalien. Verh.K.Akad.Wet. Amsterdam. Section 2, 5(6), pl-246.
104.Krause, WJ (1975): The duodenal glands of fourteen primate species. Acta.Anat. 93, p580-589.
105.Kreilkamp, BL and Boyden, EA (1940): Variability in the composition of the sphincter of Oddi. A possible factor in the pathologic physiology of the biliary tract. Anat.Rec. 76, p485-497.
106.Kubik, W (1967): The pancreatic ducts in lower primates. Folia Morphol. 26, 226-242.
107.Lake, G; Schneider, W and Schneider, U (1966): Cited in Warwick and Williams (1973).
108.Lang, EM (1959): The birth of a gorilla at Basle Zoo. Int.Zoo Yearb. 1, p3-7.
109.Lartschneider, J (1895): Zur vergleichende Anatomie des Diaphragma pelvis. Sitzungsber.Kaiserl.Akad.Wiss.Wien, Math.Naturwiss.Kl. 104, p160-190.
110.Ljungquist, A and Lagergren, C (1962): Normal intrarenal arterial pattern in adult and aging human kidney. J.Anat. 96, p285-300.
111.Lunn, HF (1948): The comparative anatomy of the inguinal ligament. Anat.Phys. 82, p58-67.
112.Lunn, HF (1949): Observations on the mammalian inguinal region. Proc.Zool.Soc. 118, p345-355.
113.Ma, S; Wang, Y and Poirier, FE (1988): Taxonomy, distribution, and status of gibbons (Hylobates) in southern China and adjacent areas. Primates. 29(2), p277-286.
114.McClure, CFW and Silvester, CF (1909): A comparative study of the lymphatico-venous communications in adult mammals. I. Primates, Carnivora, Rodentia, Ungulata and Marsupialia. Anat.Rec. 3, p534-552.
115.McKenney, FD; Traum, J and Bonestell, AE (1944): Acute coccidiomycosis in a mountain gorilla (Gorilla beringei) with anatomical notes. J.Am.Vet. Med.Assoc. 105, p136-140.
116.Machida, H and Giacometti, L (1967): The anatomical and histochemical properties on the skin of the external genitalia of the primates. Folia.Primatol. 6, p48-69.
117.Meehan, T and Lowenstine, L (1997): Causes of mortality in captive lowland gorillas. In: Ogden,J and Wharton, $\mathrm{D}(\mathrm{eds})$; The management of gorillas in captivity. Gorilla SSP, Atlanta.
118.Mijsberg, WA (1923): Über den Bau des Urogenitalapparates bei den männlichen Primaten. Verh.K.Akad.Wet.Amsterdam. 23 (1), p1-92.
119.Miller, GS Jr (1933): The classification of gibbons. J.Mammal. 14, p158-159.
120.Miller, RA (1947): The inguinal canal of primates. Am.J.Anat. 76, p67-87.
121.Miller, RA (1952): The musculature of Pan paniscus. Am.J.Anat. 91(2), p182232.
122.Mitchell, PC (1905): On the intestinal tract of mammals. Trans.Zool.Soc.Lond. 17, p437-536
123.Morton, WRM (1956): A chimpanzee placenta and foetus in situ. J.Anat. 91, p605.
124.Noback, CR (1939): The changes in the vaginal smears and associated cyclic phenomena in the lowland gorilla (Gorilla gorilla). Anat.Rec. 73(2), p209221.
125.Owen, R (1830/1): On the anatomy of the orangutan (Simia satyrus, L.). Proc.Zool.Soc.Lond. 1, p4-5,9-10, p28-29, 66-72.
126.Owen, R (1836): On the morbid appearances observed in the dissection of the chimpanzee (Simia troglodytes, Linn.). Proc.Zool.Soc.Lond. 4, p41-43.
127.Owen, R (1843): Notes of the dissection of a female orang-utan(Simia satyrus, Linn.). Proc Zool.Soc.Lond. 11, p123-124.
11. Owen, R (1846): Notes on the dissection of a female chimpanzee. Proc.Zool.Soc.Lond. 14, p2-3.
129.Owen, R (1865): Memoir on the gorilla (Troglodytes gorilla, Savage). Taylor and Francis, London.
130.Pocock, RI (1925): The external characters of the Catarrhine monkeys and apes. Proc.Zool.Soc.Lond. p1479-1579.
131.Pohl, L (1928): Zur Morphologie der männlichen Kopulationsorgane der Säugetiere; inbesondere der Versuch einer vergleichend-anatomischen Studie über den Penis der Primaten, einschliesslich des Menschen. Z.Anat.Entwicklungsgesch. 86, p71-119.
132.Popowsky, J (1895): Das Arteriensystem der unteren Extremitäten bei den Primaten. Anat.Anz. 10, p55-80, 99-114.
133.de Pousargues, E (1895): Note sur l'appareil génital male des orang-outans. Nouv.Arch.Mus.Natl.Hist.Nat.(Paris). 7, p56-82.
134.Prejzner-Morawska, A (1971): The sacral portion of the sympathetic trunk in lower catarrhine monkeys and anthropoid apes. Folia Morphol. 30, p188-197.
135.Rasmussen,AT and Rasmussen, T (1952): The hypophysis cerebri of Bushman, the gorilla of Lincoln Park Zoo, Chicago. Anat.Rec. 113(3), p325-347.
136.Raven, HC (1950): Regional anatomy of the Gorilla. In: Gregory,WK(ed); The anatomy of the Gorilla. Columbia University Press, New York; p 15-188.
137.Reider, N (1936): The primate colon. Proc.Zool.Soc.Lond. p433-453.
138.Rijksen, HD (1978): A field study on Sumatran orang utans(Pongo pygmaeus abelii Lesson 1827): ecology, behaviour and conservation. H.Veenman and Zonen, Wageningen, Netherlands.
139.Roberts, JA and Seibold, HR (1971): The histology of the primate urethra. Folia Primatol. 14, p59-69.
140.Sâglik, S (1938): Ovaries of gorilla, chimpanzee, orang-utan and gibbon. Carnegie Inst.Wash.Pub. Contrib.Embryol. 27, p179-189.
141.Savage-Rumbaugh, ES and Wilkerson, BJ (1978): Socio-sexual behaviour in Pan paniscus and Pan troglodytes. A comparative study. J.Hum.Evol. 7, p327-344.
142.Schultz, AH (1927): Studies on the growth of the gorilla and of other higher primates, with special reference to a fetus of gorilla preserved in the Carnegie Museum. Mem.Carneg.Mus. 11, pl-86.
143.Schultz, AH (1936): Characters common to higher primates and characters specific for man. Q.Rev.Biol. 11(3), p259-283, p425-455.
144.Schultz, AH (1938): The relative weight of the testes in primates. Anat.Rec. 72, p387-394.
145.Scott, GBD (1980): The primate caecum and appendix vermiformis: a comparative study. J.Anat. 131, p549-563.
146.Selenka, E (1903): Studien über Entwicklungsgeschichte, Heft 10. Menschenaffen, Entwicklung des Gibbon(Hylobates und Siamanga). Zur vergleichenden Keimgeschichte der Primaten, p163-201.
147.Short, RV (1981): Sexual selection in man and great apes. In: Graham,CE(ed); Reproductive biology of the great apes: comparative and biomedical perspectives. Academic Press, New York; p319-341.
148.Short, RV (1984): Testis size, ovulation rate, and breast cancer. In: Ryder,OA and Byrd,MI(eds); One Medicine. Springer-Verlag, Berlin; p32-44.
149.Sigmon, BA (1974): A functional analysis of pongid hip and thigh musculature. J.Hum.Evol. 3, p161-185.
150.Sinzinger, H; Unterberger, H and Reisinger, L (1973): Länge, Verlauf und Hilusaufzweigung der Arteria lienalis bei Primaten. Acta Morphol.NeerlScand. 11, p13-29.
151.Smith, WC (1923): The levator ani muscle; its structure in man, and its comparative relationships. Anat.Rec. 26(3), p175-204.
152.Sonntag, CF (1923): On the anatomy, physiology, and pathology of the chimpanzee. Proc.Zool.Soc.Lond. 23, p323-429.
153.Sonntag, CF (1924a): On the anatomy, physiology, and pathology of the orangoutan. Proc.Zool.Soc.Lond. 24, p349-450.
154.Sonntag, CF (1924b): The morphology and evolution of the apes and man. John Bale Sons and Danielsson, Ltd, London.
155.Sperino, G (1897): Anatomia del cimpanzè (Anthropopithecus troglodytes). Unione Tipografica, Torino.
156.Steiner, PE (1954): Anatomical observations in a Gorilla gorilla. Am.J.Phys.Anthropol. 12, p145-165.
157.Stinson, JM (1971): Intrarenal arterial patterns in nonhuman primates. Folia Primatol. 14(1), p70-9.
158.Straus, WL Jr (1934): The structure of the primate kidney. J.Anat.Phys. 69, p93108.
159.Straus, WL Jr (1936): The thoracic and abdominal viscera of primates with special reference to the orang-utan. Proc.Am.Phil.Soc. 76, p1-85.
160.Straus, WL (1937): The visceral anatomy of an infant chimpanzee. J.Mammal. 18, p501-507.
161.Swan, KG; Spees, EK; Reynolds, DG; Kerr, JC and Zinner, MJ (1978): Microvascular architecture of anthropoid primate intestine. Circ.Shock 5(4), p375-382.
162.Swindler, DR. and Wood, CD (1973): An atlas of primate gross anatomy; baboon, chimpanzee, and man. University of Washington Press, Seattle.
163.Symington, J (1890): On the viscera of a female chimpanzee. Proc.Roy.Phys.Soc.Edinb. 10, p297-312.
164.Thomas, WD (1958): Observations on the breeding in captivity of a pair of lowland gorillas. Zoologica N.Y. 43, p95-104.
165.Thompson, P (1901): On the arrangement of the fasciae of the pelvis and their relationship to the levator ani. J.Anat.Phys. 35, p127-141.
166.Underhill, BML (1955): Intestinal length in man. Brit.Med.J. 2, pl243-1246.
167.Vallois, HV (1929): Les preuves anatomiques de l'origine monophyletique de l'homme. Anthropologie. 39, p77-101.
168.Vrolik, W (1841): Recherches d'anatomie comparée, sur le chimpansé. Johannes Miller, Amsterdam.
169.Walmsley, R (1937): The sheath of the rectus abdominis. J.Anat.Phys. 77, p404414.
170.Warwick, P and Williams, PL (1973): Gray's Anatomy. 35th British Edition. Saunders Co., Philadelphia.
171.Waterman, HC (1929): Studies on the evolution of the pelvis of man and other primates. Bull.Am.Mus.Nat.Hist. 55, p585-642.
172.Weber, M (1904): Die Säugetiere. Einführung in die Anatomie und Systematik der Recenten und Fossilen Mammalia. Jena.
173.Weinberg, M (1904): Un cas d'appendicite chez le chimpanzé. Ann.Inst.Pasteur, Paris. 18, p323-331.
12. Weinberg, M (1906): Appendicitis et vers intestinaux chez le chimpanzee. CR.Séances Soc.Biol(Paris). 60, p661-662.
175.Weinberg, M (1908): Un cas d'appendicite chez le gorilla. Bull.Soc.Pathol.Exot. 1, p556-560.
176.Weinert, H (1932): Ursprung der Menschheit. Über den engeren Anschluss des Menschengeschlechts an die Menschenaffen. Stuttgart. 380pp. In ${ }^{143}$
177.Welch, FD (1911): Observations on different gibbons of the genus Hylobates now or recently living in the Society's Gardens, and on Symphalangus syndactylus, with notes on skins in the Natural History Museum, S.Kensington. Proc.Zool.Soc.Lond. p353-358.
178.Wendell-Smith, CP (1962): Adaptations of anal musculature. J.Anat. 97, p489.
179.Winckler, G (1950): Contribution a l'étude des muscles larges de la paroi abdominale. Étude d'anatomie comparée. Arch.Anat.Histol.Embryol. 33, p157-228.
180.Wislocki, GB (1932): On the female reproductive tract of the gorilla with a comparison with that of other primates. Cont.Embryol.Carneg.Inst. 23, p163204.
181.Wislocki, GB (1933): Observations on the descent of the testes in the Macaque and in the chimpanzee. Anat.Rec. 57, p133-148.
182.Wislocki, GB (1936): The external genitalia of the simian primates. Human Biol. 8, p309-347.
183.Wood-Jones, F (1929): Man's place among the mammals. Longman, Green and Co., London.
184.Young, WC (1944): Genital cycles following incomplete oöphorectomy in the chimpanzee. Anat.Rec. 89(4), p475-493.
185.Zuckerman, S and Fulton, JF (1934): The menstrual cycle of the primates VII. The sexual skin of the chimpanzee. J.Anat. 69, p38-46.
186.Zuckerman, S and Parkes, AS (1935): Observations on the structure of the uterus masculinus in various primates. J.Anat.Phys. 69, p484-496.

3.7 LOWER LIMB

3.7.1 MuSCLES

3.7.1.1 Gluteal region

3.7.1.1.1 Superficial

Gluteus maximus

In all apes and Homo gluteus maximus originates from the posterior iliac crest, thoracolumbar fascia, sacrum, coccyx, the sacrotuberal ligament and the fascia over gluteus medius ${ }^{3,7,8,11,12,36,39,51,67,72,76,86,87,88,97,102,103,115}$. In all apes there is an origin from the ischial tuberosity ${ }^{3,7,11,12,22,36,39,67,87,88,97,102,103,122}$, which may occur as a variation in Homo^{115}. In Homo, Gorilla and Hylobates it also originates from the posterior superior iliac spine ${ }^{103,115}$, and in African apes and Hylobates the muscle shares its origin with the long head of biceps femoris ${ }^{12,103}$, while in Pongo it may fuse with biceps more distally ${ }^{102}$. In Gorilla it may originate from the intermuscular septum ${ }^{87}$, and in Pongo from the sacrospinous ligament ${ }^{97,102}$. A thin, flat muscle, with the proximal portion thinner than the distal portion in all apes ${ }^{39,77,97,102,122}$, it is a much larger muscle in Homo with the proximal portion equal to, or thicker than, the distal portion ${ }^{97}$. The gluteus maximus is usually continuous in all taxa, but it may be separated into two parts in apes ${ }^{11,12,39,102}$, and into as many as three parts in Pan and Hylobates ${ }^{36}$. In Gorilla it has been described as multifasciculated ${ }^{87}$. The ischiofemoral head of biceps femoris described in Pongo is equivalent to a distal head of gluteus maximus ${ }^{83,102,103}$.

In all apes and Homo gluteus maximus inserts into the iliotibial tract (when present) and into the posterolateral aspect of the femur in the region of the gluteal tuberosity ${ }^{1,}$

7, 11, 12, 15, 36, 40, 67, 87,97, 102, 115 . In all apes gluteus maximus inserts into the aponeurosis of vastus lateralis ${ }^{11,40,67,103}$, in all except Gorilla into the lateral intermuscular septum ${ }^{36,103}$ and in the great apes into the hypertrochanteric fossa on the lateral aspect of the femur ${ }^{1}$. The insertion of the muscle is generally more distal on the femur in apes than in Homo, extending almost to the lateral condyle in African apes 22,36,39,67,97,122, and two-thirds down the femur in Gorilla, Pongo and Hylobates ${ }^{36,97,103}$. In Symphalangus the insertion extends down the proximal fourfifths of the femoral shaft ${ }^{97}$.

Innervation is via the inferior gluteal nerve in Homo, Gorilla and Pongo ${ }^{87,97,115}$.

Gluteus medius

Gluteus medius originates from the lateral surface of the ilium and the gluteal fascia in all apes and $\mathrm{Homo}^{3,7,12,87,97,115}$. In Homo alone it has a specific origin from the iliac crest ${ }^{115}$. Great apes have an additional origin from the fascia lata ${ }^{3,87}$, and in Gorilla also from the sacroiliac membrane and sacral spines ${ }^{87}$.

Gluteus medius is the largest of the gluteal muscles in great apes ${ }^{7,12,15,77,97}$, but is smaller than gluteus maximus in Homo^{115} and Hylobates ${ }^{97}$. The tendon of insertion is split by vastus lateralis in Pan ${ }^{12,39,102 .}$

The muscle always fuses with piriformis at its insertion in Pongo and Hylobates ${ }^{3,7 .}$ 97, 102, and often fused with this muscle in Homo and African apes ${ }^{\text {12, 22, 39, 97, 115. }}$. Insertion is into the lateral aspect of the greater trochanter in all apes and Homo, extending anteriorly in African apes and Hylobates ${ }^{87,97}$, superiorly in Gorilla and Pongo ${ }^{7,87}$, and posteriorly in Pan ${ }^{12}$. A deep slip of the muscle may be attached to the superior border of the trochanter in Homo^{115}.

Innervation is from the superior gluteal nerve in all apes and $\mathrm{Homo}^{87,97,115}$.

Gluteus minimus

In all apes and Homo gluteus minimus originates from the dorsolateral surface of the ilium, extending from just distal to the anterior superior iliac spine, towards the acetabulum ${ }^{7,12,15,87,97,102,115}$. In great apes and Homo, but not Hylobates, the muscle originates from the margin of the greater sciatic notch ${ }^{3,97,115}$. In all apes, but not $H o m o$, the origin extends to the ischial spine ${ }^{7,97}$. The origin in great apes, and sometimes in Homo ${ }^{115}$, is in two parts ${ }^{12,97}$, but is continuous in Homo and Hylobates ${ }^{97,115}$. There may be fibres of origin from the sacrospinous ligament in Pongo ${ }^{7}$.

In all apes and Homo the muscle is triangular or fan-shaped ${ }^{87,97,115}$, larger in African apes than in Asian apes ${ }^{39,102}$.

Insertion is into the anterior aspect of the greater trochanter in all apes and Homo ${ }^{12,}$ 39, 97, 102, 115 , extending medially in Gorilla ${ }^{87}$, and laterally in Pongo ${ }^{7}$. In Gorilla there is an insertion into the femoral neck ${ }^{87}$, and in Homo and Pongo into the capsule of the femoral head ${ }^{3,115}$.

Innervation in all apes and Homo is via the superior gluteal nerve ${ }^{87,97,115}$.

Scansorius

Scansorius is always present in Pongo ${ }^{2,7,84,96,116}$ and has also been found occasionally in other apes ${ }^{3,5,12,39,65,83,96,119}$. Scansorius in Homo is thought to be represented by a fascicle from the anterior margin of gluteus minimus, inserting onto the anterior border of the greater trochanter ${ }^{97}$.

In Pan and Pongo it originates from the anterolateral ilium adjacent to the acetabular rim 3,7,22,101, in Pongo extending from the anterior superior iliac spine to the anterior inferior iliac spine ${ }^{7,97}$, while in Pan and Gorilla it originates from the fascia lata ${ }^{3,87}$. When present, it is a flat triangular muscle ${ }^{3,7,87,97,119}$. Scansorius is fused with gluteus minimus in all apes except Pongo ${ }^{7,12,22,39,83}$, and with gluteus medius in Gorilla alone ${ }^{87}$. The rounded tendon of insertion is embraced by the origin of vastus lateralis in Pongo ${ }^{7}$, and scansorius is fused with this muscle in Gorilla ${ }^{87}$. In Pongo scansorius is fused proximally with iliacus ${ }^{97}$.

Insertion is onto the anterior border of the greater trochanter in Pan and Pongo, distal to that of gluteus minimus ${ }^{3,7,12,39,77,97,101,119}$, and in Gorilla onto the ventrolateral femur just distal to the greater trochanter in common with gluteus minimus ${ }^{83,87}$. Innervation in Pan and Pongo is via the superior gluteal nerve ${ }^{7,12,96,97}$.

3.7.1.1.2 Deep

Superior gemellus

The superior gemellus is absent from all hylobatids ${ }^{97}$, although in one case a small fasciculus can be raised from obturator internus ${ }^{39}$. It is absent from some specimens of Pongo ${ }^{97}$ and the majority of Gorilla ${ }^{87,97}$, but present in all specimens of Pan ${ }^{3,12 .}$ 22,39,97. The muscle is unilaterally, or bilaterally, absent in 8.6 to 14.5% of $\mathrm{Homo}^{64,}$ 108, 120.

When present, the superior gemellus originates in Homo and great apes from the region of the ischial spine ${ }^{7,12,39,115}$, in Pan and Pongo between the ischial spine and the ischial tuberosity ${ }^{7}{ }^{77}$.

The inferior is the smaller of the two gemelli in $\operatorname{Pan}{ }^{12,22,39}$, while the superior is the smaller in Pan and Pongo ${ }^{7,39,77,102,115 .}$

In Homo, Pan and Pongo it has a common insertion onto the trochanteric fossa with the tendon of obturator internus, with which it is fused ${ }^{3,7,12,97,102,115}$.

The superior gemellus, when present, is innervated in Homo and great apes by sacral nerves via the sacral plexus ${ }^{12,97,115}$.

Inferior gemellus

In all apes and Homo the inferior gemellus originates from the region of the ischial tuberosity 7,12,39,87,115, just above the tuberosity in all apes ${ }^{7,97}$.

The muscle is difficult to isolate from quadratus femoris in great apes ${ }^{39,87}$, and is fused with the capsule of the hip and the ligamentum teres in Gorilla ${ }^{87}$.

Close to its insertion in all apes and Homo it fuses with the inferior border of obturator internus ${ }^{7,39,97,115}$, and then the two muscles insert into the trochanteric fossa ${ }^{3,12,87,97,102,115}$.

In all apes and Homo innervation is from the sacral nerves ${ }^{12,87,97}$, and from the fifth lumbar nerve in Homo alone ${ }^{115}$. In Pan the inferior gemellus is supplied by a branch from a single nerve, whereas in Homo the inferior gemellus may be innervated by its own nerve ${ }^{12}$.

Obturator externus

In all apes and Homo obturator externus originates from the external surface of the medial bony margin of the obturator foramen and from the obturator membrane ${ }^{7,87 .}$ 97, 115

In all apes and Homo it inserts into the trochanteric fossa ${ }^{7,39,87,97,102,115}$, in Pan and Hylobates it is always fused with obturator internus ${ }^{39}$ and is usually so fused in Gorilla and Pongo ${ }^{3,39}$. In one case of Gorilla it inserts into the superior femoral neck ${ }^{87}$, and in Pan in one case posterior to the lesser femoral trochanter ${ }^{3}$.

Nerve supply in all apes and Homo is via the obturator nerve ${ }^{87,97,115}$.

Obturator internus

In all apes and Homo obturator internus originates from the margin of the obturator foramen and the obturator membrane ${ }^{7,12,87,97,106,115}$, in all except Hylobates extending to the superior part of the descending pubic ramus and the medial surface of the inferior ischial ramus ${ }^{7,12,87,97,106,115}$. In Pan the origin may extend to the ischial tuberosity and pubic symphysis, and a tendinous arch running across the obturator foramen ${ }^{12}$.

In all apes and Homo it is a flat muscle, running through the lesser sciatic foramen ${ }^{7}$. 39, 115. Unlike Homo^{115}, in apes there are no ridges and grooves where the tendon takes a right-angled turn into the butock ${ }^{39}$.

The insertion in all apes and Homo is common with the gemelli into the trochanteric fossa 3,7,12,87,97,115, anterosuperior to the insertion of obturator externus ${ }^{39,102}$.

Nerve supply in all apes and Homo is via sacral nerves ${ }^{87,97,115}$, with additional innervation in Homo from the fifth lumbar nerve ${ }^{115}$. The muscle in Gorilla may take innervation from the third lumbar nerve ${ }^{87}$.

In all apes and Homo piriformis originates by slips from the anterolateral surface of the distal half of the sacrum ${ }^{7,12,39,97}$, extending as far proximally as $\mathbf{S} 2$ in great apes and Homo ${ }^{12,39,68}$; no information for Hylobates, and in one specimen of Gorilla as far proximally as $\mathrm{S} 1^{87}$. The distal extent of the origin is to S 4 in $\mathrm{Homo}^{68}, \mathrm{~S} 5$ in African apes ${ }^{12,39}$ and even as far distally as Col in a single Gorilla ${ }^{87}$; no information for Pongo or Hylobates. An origin from the margin of the greater sciatic notch is present in great apes and Homo ${ }^{15,97}$, but not in Hylobates ${ }^{97}$.

In a single specimen of Pongo the sacral portion of the origin is absent, leaving only the greater sciatic notch portion as representative of piriformis ${ }^{15}$. Piriformis may be partially or completely absent in Homo as a variant ${ }^{68}$. The muscle is always fused with gluteus medius in Pongo and Hylobates ${ }^{3,7,97,102}$, and often fused with this muscle in Homo and African apes ${ }^{12,22,39,97,115}$.

Piriformis descends through the greater sciatic foramen to an insertion in all apes and Homo at the anteromedial aspect of the tip of the greater femoral trochanter ${ }^{3,7,12,15 .}$ 39, 87, 97, 115

Nerve supply is from branches of the sacral plexus in all apes and Homo ${ }^{97,115}$. In a specimen of Gorilla, piriformis is described as three digitations separated by sacral nerves ${ }^{87}$, which occurs in Homo as a variant ${ }^{115}$.

Quadratus femoris

In great apes and Homo quadratus femoris originates from the anterolateral aspect of the ischial tuberosity ${ }^{3,7,22,72,97,102,115}$, although in Pongo it may extend medially ${ }^{7}$. No information for the origin in Hylobates.

A small, thick, fleshy muscle in all apes ${ }^{3,97}$, it is flat in Homo^{115}. In Homo and Pongo it is described as quadrilateral ${ }^{39,115}$. In Pongo, Hylobates and some specimens of Pan there are two parts at insertion ${ }^{39,102}$. In all apes and Homo the muscle is separated from adductor magnus ${ }^{39}$, and in all apes the superior border of the muscle is closely related to the inferior gemellus ${ }^{39}$. Quadratus femoris and adductor magnus may be fused, or quadratus may be absent from Homo as variations ${ }^{115}$.

The insertion in all apes and Homo is to the intertrochanteric crest ${ }^{7,22,39,97,115}$. In all apes the insertion extends to the posterior surface of the greater trochanter ${ }^{39,102}$, and in Pan and Pongo posterior to the lesser trochanter ${ }^{12,22,39,102}$, fusing with pectineus in one specimen of Pongo ${ }^{102}$.

Nerve supply to the muscle in all apes is solely via sacral nerves ${ }^{97}$, while in Homo there is an additional supply from the inferior gluteal nerve ${ }^{115}$.

3.7.1.2 Thigh

3.7.1.2.1 Anterior femoral

Articularis genu

Articularis genu is present in all apes ${ }^{39}$, but may be absent from Homo, Pan and Pongo ${ }^{12,102,115}$. In Gorilla, and when present in Homo, it is a flat, ribbon-like, muscle lying deep to vastus intermedius, originating from the ventrodistal femur, and inserting on the superior convexity of the synovial membrane of the knee joint ${ }^{87,115}$. Supplied by a branch of the femoral nerve in Homo and Gorilla ${ }^{87,115}$.

Quadriceps femoris

Rectus femoris

Rectus femoris possesses two heads in Homo $^{115}, 2 / 3$ Gorilla ${ }^{39}, 1 / 3$ Pan $^{22,39,114}, 1 / 5$ Pongo ${ }^{7,39}$ and no specimen of Hylobates ${ }^{39,97}$. In a single specimen of Pongo the single head is divided by a fibrous septum ${ }^{102}$.

The short head, originating from the anterior inferior iliac spine, is usually present in all apes and $\mathrm{Homo}^{7,12, ~ 87,97,102,115 .}$

The reflected head, when present, originates from the ilium superior to the acetabulum ${ }^{3,7,39,97,115}$. It is absent from Hylobates ${ }^{97}$, sometimes absent from great apes ${ }^{15,97}$ and may be missing from Homo as a variant ${ }^{115}$.

In a single specimen of Pan, rectus femoris is fused with vastus lateralis ${ }^{3}$.

Vastus intermedius

In all apes and Homo vastus intermedius originates from the anterior femoral shaft ${ }^{87}$, ${ }^{97,115}$. In Homo the origin extends laterally ${ }^{115}$, and in Gorilla medially ${ }^{87}$. The origin in Gorilla may include the capsule of the femoral neck ${ }^{87}$. The cranial extension is narrow in all apes ${ }^{7,97}$.

Vastus lateralis

In all apes and Homo vastus lateralis originates from the lateral aspect of the greater femoral trochanter and the distal two-thirds of the lateral femoral shaft, in the region of the lateral lip of the linea aspera ${ }^{3}, 7,97,87,102,115$. These two origins are continuous in Hylobates 97. Great apes possess a further origin from the iliofemoral ligament ${ }^{87,97}$.

In Pan and Pongo the vasti may be fused, forming a single vastus muscle ${ }^{3,22,102}$. In Gorilla vastus lateralis may be fused with vastus intermedius and scansorius ${ }^{87}$. In Pan vastus lateralis splits the tendon of gluteus medius ${ }^{102}$.

Vastus medialis

In all apes and Homo vastus medialis originates from the posteromedial femoral shaft, in the region of the linea aspera ${ }^{3,7,12,87,97,102,115}$, more proximally in Hylobates than in other apes and Homo^{97}. In all apes it also takes origin from the iliofemoral ligament ${ }^{3,97}$, and in Homo from the distal part of the intertrochanteric line ${ }^{115}$. In both Homo and Pongo the muscle attaches to intermuscular septa ${ }^{102,115}$. Vastus medialis is fused with the other vasti in great apes ${ }^{3,87,102}$, and may be so fused as a variation in Homo^{115}.

The common insertion of quadriceps femoris is to the superolateral border of the patella in all apes and Homo, and then via the patellar tendon, to the tibial tuberosity ${ }^{3,7,39,87,102,115}$. In all apes the muscle along with the other vasti contributes to the anterolateral aspect of the knee capsule ${ }^{39}$.

Innervated by the femoral nerve in Homo ${ }^{115}$ and Gorilla 87.

Sartorius

In all apes and Homo sartorius originates from the anterior iliac border ${ }^{3,12,39,40}$, often stated as the region of the anterior superior iliac spine ${ }^{7,40,84,87,97,102,115}$. In Gorilla, Pongo and Hylobates the origin has been noted as the lateral iliac border ${ }^{87,97}$. The ribbon-shaped muscle in all apes and Homo courses obliquely over the thigh posterior to the medial femoral condyle ${ }^{3,7,14,39,97,115}$.

In all apes, the insertion is the medial border of the tibial shaft ${ }^{3,7,39,87,97,102,115}$. An insertion to the crural fascia medial to the tibial tuberosity, as found in Homo ${ }^{115}$, was present merely as an extension in a few cases of each hominoid ${ }^{39,54}$. In all apes and Homo the insertion of sartorius is superficial to those of gracilis and semitendinosus ${ }^{3}$, $7,39,115$, while the level of insertion is more proximal in Gorilla than in other apes ${ }^{39}$. Innervated by the femoral nerve in all apes and $H o m o^{87,97,115}$.

Tensor fasciae latae

This muscle is present in all taxa except Pongo, in the latter of which it is mostly ${ }^{7}$.17. 39, 77, 97, 102 , and diminutive when present ${ }^{15,44}$. It has been suggested that it may have been replaced functionally by scansorius ${ }^{97}$.

No information on origin in Pongo. In all other apes and Homo it originates from the region of the anterior superior iliac spine ${ }^{12,40,44,87,97,115}$. In apes, and as a variation in Homo, it may also originate from the gluteal fascia ${ }^{44,97,115}$. In Pan the origin is common with sartorius ${ }^{12}$.

The muscle is described as quadrangular in Gorilla ${ }^{87}$. The muscle is fused proximally with gluteus maximus in Gorilla, Pongo and Hylobates ${ }^{39,} 97$, but only infrequently in Homo and $\mathrm{Pan}^{97,106}$. Laterally the muscle is fused with gluteus medius and minimus in African apes and Hylobates ${ }^{12,97}$.

In all apes and Homo the insertion is into the iliotibial tract ${ }^{15,21,39,44, ~ 87,97,115}$.

Nerve supply is from the superior gluteal nerve in Homo and African apes ${ }^{83,87.97,115}$, while the inferior gluteal nerve is cited as the nerve supply in Pan paniscus ${ }^{73}$. In Hylobates, the mediodorsal part of tensor fasciae latae is innervated by the superior gluteal nerve, the anterolateral part being innervated by the femoral nerve ${ }^{97}$.

3.7.1.2.2 Medial femoral

Adductor brevis

In all apes and Homo adductor brevis originates from the body of the pubis ${ }^{3,22,39,97 .}$ ${ }^{115}$, and solely from this origin when present in Hylobates ${ }^{39}$. In great apes and Homo it also originates from the inferior pubic ramus near the symphysis ${ }^{3,87,102,115}$. This origin is single in Homo and Hylobates ${ }^{39}$, but in two parts in great apes ${ }^{39}$. In great apes alone there may be fibres of origin from the superior pubic ramus ${ }^{7,97}$. In a single Pan adductor brevis has a secondary origin from the ischium and intermuscular septa ${ }^{3}$. In all apes and Homo the origin of adductor brevis lies between those of gracilis and obturator externus ${ }^{39,97,115}$, and in Homo, Pan and Pongo anterior to, or distal to the origin of adductor magnus ${ }^{3}$.

The division into two parts is present as a variation in Homo ${ }^{115}, \mathrm{Pan}^{3,12,39,102}$ and Pongo ${ }^{7.39}$ and a third of Gorilla ${ }^{97}$, but is absent from Hylobates ${ }^{39}$. Adductor brevis is partly fused with the short head of adductor magnus in all apes ${ }^{39,87,97}$, and also anteriorly with adductor longus in Gorilla ${ }^{87}$. Sigmon states that adductor brevis is completely fused with adductor magnus in Hylobates ${ }^{97}$, and this may occur as a variation in Homo^{115}. In a single Pan the adductor muscles are described as being indistinguishable from each other, forming an "adductor mass" 22 .

Insertion of the muscle in Homo and African apes is distal to the lesser trochanter into the superior third of the medial lip of the linea aspera on the mid-dorsal femoral surface, onto the pectineal line ${ }^{1,3,7,12,22,39,87,97}$. In great apes and Homo the insertion lies posterolateral to that of pectineus ${ }^{7,39,97,115}$, and overlaps adductor longus in Homo and Gorilla ${ }^{39,87,115}$. It is inserted between pectineus and gluteus
maximus in Pongo 3, and between pectineus and the superior part of adductor magnus in Homo and Hylobates ${ }^{\text {39, } 115}$.

Innervation of adductor brevis in all apes and Homo is from the anterior division of the obturator nerve ${ }^{12,36,97,115}$.

Adductor longus

Adductor longus in all apes and Homo originates by a flat tendon from the anterior superior pubic ramus in the region of the pubic tubercle ${ }^{3,22,40,87,97,102,115}$. In a single specimen of Pan the adductor muscles are indistinguishable from each other, forming an "adductor mass" ${ }^{22}$. In a single specimen of Pongo adductor longus originates from the superior margin of pectineus ${ }^{7}$, otherwise being close to pectineus only in Gorilla and Pongo ${ }^{87}$. In Pan it may take origin also from the intermuscular septum ${ }^{3}$.

The insertion in all apes and Homo is to the middle of the medial lip of the linea aspera or mediodorsal femoral shaft ${ }^{1,3,7,22,39,40,87,97,102,115}$, beside and anterior to the proximal half of the insertion of the short head of adductor magnus ${ }^{3,97,115}$, inserting more proximally in Hylobates than in great apes ${ }^{1}$. In Pan there may be an expansion to the medial condyle ${ }^{40}$. The insertion of adductor longus may be fused with adductor magnus in Homo and Pan 3,12,115, with adductor brevis in Homo and Gorilla ${ }^{87,115}$, and with vastus medialis in Pongo ${ }^{3,102}$.

Adductor magnus

In all apes and Homo adductor magnus originates from the anterior surface of the inferior pubic ramus, lateral to the pubic symphysis, and from the inferior ischial ramus as far as the ischial tuberosity ${ }^{3,7,12,22,39,40,87,97,102,115,121}$. This origin is
continuous in Pongo and Hylobates ${ }^{3,39,97,102}$, while the muscle divides distally in great apes ${ }^{3,7,12,22,87,97,102}, 2 / 3$ Hylobates 97 and Homo^{115} into two parts distally, remaining joined until insertion in Symphalangus and 1/3 Hylobates ${ }^{97}$. In Pan and Hylobates adductor longus is described as fasciculated ${ }^{3,12,39,102}$. In all apes, but not in Homo, adductor magnus may take origin from the inferomedial border of semitendinosus and the long head of biceps ${ }^{97}$.

The insertion in all apes and Homo is into the medial lip of the linea aspera or the posteromedial surface of the femur, and to the adductor tubercle of the medial epicondyle ${ }^{3,7,12,22,39,40,87,97,102,115}$. The short head in African apes attaches also to the lateral border of the common tendon of insertion of adductor longus and adductor brevis ${ }^{3,12,87}$. In Pongo and Hylobates the attachment to the linea aspera runs upwards to the inferior border of the insertion of quadratus femoris ${ }^{39}$, while in Pongo alone there is an additional insertion to a curved line from the mid-point of the intertrochanteric line to the intertrochanteric surface of the lesser trochanter ${ }^{7}$. Innervation of the short head of adductor magnus is via the obturator nerve in all apes and $\mathrm{Homo}^{12,39,87,97,105,115}$. The long head is innervated by the tibial nerve in Homo and $1 / 2$ Gorilla ${ }^{87,115}$. In all other apes the long head is innervated by the flexores femoris nerve ${ }^{97}$, with the exception of two specimens of Pan in which the long head is innervated by the sciatic nerve ${ }^{12,39}$, and two specimens of Pongo where the nerve supply is derived respectively also from the nerve to quadratus femoris, and the nerve to the hamstrings ${ }^{7}$. The flexores femoris nerve does not exist in Homo, and the tibial nerve in apes (except in a single Gorilla) does not supply adductor magnus ${ }^{97}$.

Adductor minimus

Adductor minimus is absent from Hylobates ${ }^{97}$, although the adherence of adductor brevis to adductor magnus may represent a stage in its differentiation as an independent structure ${ }^{39}$. It is absent from a third of great apes ${ }^{39,97}$.

When present it originates from the inferior pubic ramus ${ }^{7,22,39,115}$, extending to the pubic body in Gorilla ${ }^{87}$.

Usually described as an superior subdivision of adductor magnus, it has been described in great apes as a deep slip of adductor brevis ${ }^{39}$, or as the most inferior of the accessory adductor muscles ${ }^{1}$.

The insertion in great apes and Homo is into the linea aspera on the posterior femoral shaft ${ }^{39,115}$, or in great apes as a muscular insertion onto the lateral lip of the accessory adductor groove ${ }^{1}$. In Pongo the muscle may be in two parts, with an associated additional insertion around the insertion of quadratus femoris; it fuses with this muscle on the left side only ${ }^{7}$.

Gracilis

In all apes and Homo gracilis originates from the inferior pubic ramus near to the pubic symphysis, slightly onto the ischial ramus ${ }^{3,7,12,39,87,97,102,115}$. This origin extends to the whole pubic body in African apes and Hylobates ${ }^{39}$, and onto the superior pubic ramus in great apes ${ }^{7,88,102}$. The origin may be fused with adductor longus in Pan ${ }^{12}$.

A strap-like muscle in all taxa, it is wide and flat in great apes ${ }^{7,12,87,97,105}$, and slender in Homo and Hylobates ${ }^{97,115}$.

In all apes and Homo the insertion of the muscle is to the anteromedial surface of the tibia ${ }^{7,12,39,40,84,87,97,102,115}$, and in all apes there is an aponeurotic expansion to the fascia of the leg ${ }^{7,12,22,39,102,115}$. This insertion in all apes and Homo is between those of sartorius and semitendinosus, mediodistal to sartorius, and lateroproximal to semitendinosus ${ }^{3,7,12,39,77,97,102,115}$. The insertion is more proximal in Gorilla than in the other apes ${ }^{39}$, and in Homo and Pan the insertion may be adherent to sartorius ${ }^{39}$, 102,115

Innervation in all apes and Homo is via the anterior branch of the obturator nerve ${ }^{87}$. 97, 115

Pectineus

In all apes and Homo pectineus originates from the superior pubic ramus ${ }^{7,39,87,97,102,}$ 115

It passes superiorly to adductor longus in Homo, African apes and most Pongo 3, 97, ${ }^{115}$, in the latter of which the two muscles may be partially fused ${ }^{97}$. The muscle is described as bilaminar in some specimens of $P a n^{65}$, and may have two heads as a variation in Homo ${ }^{109,} 115$.

In all apes and Homo the muscle inserts onto the dorsal femur just distal to the lesser trochanter ${ }^{3,7,39,87,97,102,115}$, in Homo inserting onto the proximal part of the linea aspera ${ }^{115}$. The groove at insertion is well-marked in Gorilla and Hylobates, and less so in Pan and Pongo ${ }^{1}$.

Pectineus is supplied in all apes and Homo by the femoral nerve ${ }^{7,12,87,97,115}$, and in occasional specimens of Pan and Pongo, but not in Gorilla ${ }^{87}$, also from the anterior branch of the obturator nerve ${ }^{7,12,97}$. This occurs as a variant in Homo ${ }^{115}$.

3.7.1.2.3 Posterior femoral

Biceps femoris

The long head of biceps femoris in all apes and Homo originates from the ischial tuberosity in common with semitendinosus ${ }^{3,7,12,36,53,77,87,97,102,82,115}$. In great apes, it also arises in common with semimembranosus ${ }^{3,12,87}$. In all taxa except Homo the origin is common with gluteus maximus ${ }^{12,97,102,103}$, in Pan with the posterior part of gracilis ${ }^{12}$, and in Pongo with quadratus femoris ${ }^{3}$.

The short head of biceps femoris originates in all apes and Homo from the posterolateral femur in the region of the lateral lip of the linea aspera ${ }^{3,36,53,77,97,102,}$ 82, 87, 115 , extending more distally in great apes than in Hylobates and Homo ${ }^{26,97}$. In Homo, Pan and Hylobates it also takes origin from the lateral intermuscular septum ${ }^{3,}$ 36, 82, 115

The short head may be absent as a variant in Homo^{115} and is absent from a single specimen of Pan^{105}. The two heads of the muscle are fused in $\mathrm{Homo}^{115}, 21 / 26 \mathrm{Pan}^{3,}$ 12, 39, 82, 90, 97, 102, $1 / 4$ Gorilla $^{39}, 4 / 9$ Pongo 3,7,39,82, and 7/9 hylobatids ${ }^{39,53,82,97}$, often close to the insertion in all apes and $\mathrm{Homo}^{3,7,36,39,53, ~ 82, ~ 97,115 . ~}$

The insertion of the long head of biceps femoris in all apes is to the tibial head ${ }^{39,} 82$, 87, 97 , and to the tibial tuberosity, or condyle, in all taxa, including Homo ${ }^{7,12, ~ 22, ~ 44, ~ 45, ~}$ 82,97,99, 101, 102, 115 . In all taxa except Gorilla ${ }^{87}$ it inserts into the fibular head and fascia of the leg ${ }^{3,7,12,22,36,53,77,82,87,97,115}$. In great apes it may insert into the iliotibial tract ${ }^{\text {3, 36, 87, } 97}$. In Pongo and Hylobates this head may also insert into the capsule of the knee joint ${ }^{39,82}$, and in Pongo alone to the distal femur and intermuscular septum ${ }^{7,17, ~ 82, ~ 97, ~ 102 . ~ T h e ~ l o n g ~ h e a d ~ m a y ~ b e ~ b i p a r t i t e ~ i n ~ P o n g o ~}{ }^{97}$, in
which case the part inserting onto the distal femoral surface has been named the "ischiofemoralis" 82 .

The short head in Homo ${ }^{115}$, and in all apes except Symphalangus ${ }^{82}$ inserts onto the fibular head and fascia of the leg ${ }^{3,7,12,22,36,39,53,77,82, ~ 87,97,102 . ~ I n ~ P o n g o ~ a n d ~}$ Hylobates it inserts onto the tibial tuberosity ${ }^{782,97}$, and in Pan and Pongo onto the lateral intermuscular septum ${ }^{7,82}$.

Innervation of the long head of biceps femoris is via the flexores femoris nerve in all apes ${ }^{12,97}$, except in $1 / 2$ Gorilla 87 in which it is innervated by the tibial nerve, as in $H o m o{ }^{115}$. Innervation of the short head is via the common peroneal nerve in all apes and Homo ${ }^{\text {12, 87, 97, } 115 .}$

Semimembranosus

In all apes and Homo semimembranosus has a long, flat, ribbon-like origin from the ischial tuberosity, inferior and lateral to semitendinosus ${ }^{7,12,87,97,115}$. In some Pan 3,12 and a single Pongo these two muscles are fused at origin ${ }^{3}$, a variant that occurs in Homo ${ }^{115}$.

The muscle is larger than the long head of biceps and semitendinosus in Homo ${ }^{115}$, but smaller than semitendinosus and equal to the long head of biceps femoris in Pan^{12}, and is described as fleshier in African apes than in Homo ${ }^{12,13}$. As variations in Homo, the entire muscle may be absent or doubled, or the insertion into the knee joint capsule may be absent ${ }^{115}$.

The tendon of insertion is rounded in all apes and $\mathrm{Homo}^{7,12,39,115}$. The insertion is to the posterior surface of the medial tibial condyle in all apes and Homo ${ }^{3,7,12,97,102}$,
with additional insertions to the popliteal fascia, and the posterior wall of the knee capsule via the oblique popliteal ligament only in Homo and Gorilla ${ }^{39,115}$.

Innervation is via the tibial nerve in Homo and $1 / 2$ Gorilla 87,115, while in all other apes, including $1 / 2$ Gorilla, the source of innervation is given as the flexores femoris nerve, which does not exist in Homo^{97}.

Semitendinosus

In all apes and Homo semitendinosus originates from the ischial tuberosity in common with the long head of biceps femoris ${ }^{7,12,39,77,87,97,102,115}$. In some specimens of Pan and Pongo the origin is also common with semimembranosus ${ }^{3,12,}$ 39, 77, 97, 102, this variant is not present in Gorilla or Hylobates ${ }^{97}$, but may be present in Homo ${ }^{115}$.

An oblique tendinous intersection in the muscle belly of semitendinosus, present as a variation in Homo^{115}, is occasionally present in all apes except Gorilla ${ }^{39,65}$. The muscle is described as fleshy in great apes ${ }^{3,13,14}$.

The insertion is by a narrow, flat tendon in all apes ${ }^{3,12,77,87}$, rounded in Homo^{115}, to the medial tibial surface just distal to the tibial tuberosity ${ }^{7,12,39,40,77,97,115}$, extending further distally in Pan, Pongo and Hylobates than in Homo and Gorilla ${ }^{12,39,77}$. In some specimens of great ape and Homo there is, in addition, an aponeurotic expansion to the fascia of the leg in this region ${ }^{7,12,40,77,87,102,115}$. The insertion is distal to that of gracilis in all apes and $\mathrm{Homo}^{3,39,97,115}$, although in some specimens of Pongo and Hylobates the insertion is medial to (both species) ${ }^{7,97}$, or above (Pongo) ${ }^{3}$ that of gracilis.

Innervation is from the tibial nerve in Homo^{115} and $1 / 2$ Gorilla 87, while in all other apes and the second Gorilla innervation is via the flexores femoris nerve ${ }^{12,97}$, which does not exist in Homo^{97}.

3.7.1.3 Leg

3.7.1.3.1 Anterior crural

Extensor digitorum longus

In all apes and Homo extensor digitorum longus originates from the head and medial crest of the fibula, and from the intermuscular septum ${ }^{3,7,61,67,73,87,102,115}$. In all taxa except Gorilla, there is also an origin from the lateral tibial condyle ${ }^{3,7,44,61,67,73,115}$, and in great apes and Homo there is an additional origin from the interosseous membrane ${ }^{3,44,67,87,115}$. In Homo and Pan there is also an origin from the crural fascia ${ }^{3,44,115}$.

In all taxa the muscle inserts into the dorsal aponeurosis of digits II to $\mathrm{V}^{3,7,39,61,67,73,}$ 87, 102, 115. However, in Pongo the slip to digit II is reported as absent in two cases ${ }^{3,77}$, and in Pan this slip has been noted as small ${ }^{3}$.

Innervated by branches of the deep peroneal nerve in Homo, Pan paniscus and Gorilla ${ }^{73,87,115}$.

Extensor hallucis longus

In all apes and Homo extensor hallucis longus originates from the medial surface of the fibula ${ }^{3,61,73,87,102,115}$. In Homo and great apes there is an additional origin from the interosseous membrane ${ }^{3,7,61,73,87,115}$, while in Pan and Hylobates there is a
further origin from the lateral tibial condyle ${ }^{61}$. In Pan it also originates from the crural fascia and intermuscular septa ${ }^{3}$.

In all apes and Homo the tendon of extensor hallucis longus passes along the shaft of $\mathrm{MI}^{3,7,39,87,115}$ to the dorsal aponeurosis of the hallux ${ }^{73}$, and inserts into the terminal phalanx of the hallux ${ }^{3,7,61,73,77,87,102,115}$. In Pan paniscus, Gorilla, and usually in Homo, the insertion is also onto the first phalanx ${ }^{73,87,115}$.

Innervated by branches of the deep portion of the peroneal nerve in Homo, Pan paniscus and Gorilla ${ }^{73,87,115}$.

Peroneus tertius

Peroneus tertius is present in 95% of $\mathrm{Homo}^{49,50}$ as an additional tendon attached to the base of MV and sometimes also to the base of MIV, with a separate origin from the distal third of the anterior edge of the fibula ${ }^{115}$.

It is reported as being present in 5% of Pan $^{38,64,74,89}, 30 \%$ of Gorilla ${ }^{24,49,50,74,100}$, in $1 / 2$ Hylobates 43, but is absent from Pongo ${ }^{3,7,15,39,42,77,102}$.

When present in Gorilla, it has a fascial insertion to MV^{75}.

Tibialis anterior

In all apes and Homo tibialis anterior originates from the lateral tibia ${ }^{3,7,61,67,73,77,87,}$ 102, 105, 115. In great apes and Homo there is an additional origin from the interosseous membrane ${ }^{7,73,87,115}$, while Homo and Pongo share an origin from the crural fascia ${ }^{3,7 .}$ 115. Pongo may also have a more extensive tibial origin, from the anterior, posterior and medial surfaces ${ }^{102}$, and the origin in this species blends with extensor digitorum longus ${ }^{102}$.

In all apes except Homo, the muscle splits into two bellies relatively close to the origin rather than in the terminal portion ${ }^{3,7,12,14,15,18,39,40,61,66,67,71,73,80,87,100,102,}$ 105, 114 , although duplication of the muscle belly occurs occasionally in $\mathrm{Homo}^{56,61}$. All apes and Homo show an insertion into the plantar surface of the medial cuneiform ${ }^{3,7,12,39,40,61,66,67,73,80,87,100,102,105,115}$, this insertion being the larger of the two terminations. The insertion to the proximal end of MI is present in all taxa ${ }^{7}$. 12, 39, 40, 61, 67, 73, 77, 80, 87, 102, 105, 115, although in juvenile Hylobates the secondary insertion has been given as a cartilaginous "prehallux" in the tarsometatarsal joint ${ }^{61}$. A metatarsal insertion has been described as a separate muscle, abductor hallucis longus ${ }^{40,105}$.

Innervated by a branch of the deep peroneal nerve in Homo, Pan paniscus and Gorilla ${ }^{73,87,115}$.

3.7.1.3.2 Lateral crural

Peroneus brevis

In all taxa except Hylobates, peroneus brevis originates from the distolateral fibula and from the intermuscular septa ${ }^{3,7,66,67,73,77,87,102,115}$. In Hylobates it originates from the anterior region of the fibula ${ }^{61}$, and in Pongo is reported to originate also from the anterior and posterior fibular surfaces ${ }^{77,102}$, and from the fascia of the leg^{3}. The muscle in Pongo is fused with extensor digitorum longus and peroneus longus ${ }^{77 .}$ ${ }^{102}$, and connected with flexor hallucis longus ${ }^{77}$.

In all taxa except Gorilla ${ }^{87}$ the insertion of peroneus brevis is into the tuberosity at the base of $\mathrm{MV}^{3,7,12,22,39,61,67,73,77,102,115}$. In great apes an insertion is reported to the extensor digitorum tendon ${ }^{3,12,39,40,67,87,102}$. Pan sometimes has a double
insertion ${ }^{12}$, and Pongo has been reported with a triple insertion ${ }^{39}$, the third part inserting into connective tissue ${ }^{7}$. Pan has a small tendon to the first and second phalanges of digit $\mathrm{V}^{12,67,114}$, as is occasionally present in Homo^{67} and Gorilla ${ }^{66,87}$. Innervated by branches of the superficial peroneal nerve in Homo, Pan paniscus and Gorilla ${ }^{73,87,115}$,

Peroneus longus

In all apes and Homo peroneus longus originates from the fibular head and proximal fibula ${ }^{3,7,61,67,73,77,87,91,102,115}$. In Homo, Pan and Hylobates it also originates from the lateral tibial condyle ${ }^{61,73,115}$, and with the exception of Hylobates has an attachment to the intermuscular septa ${ }^{3,7,87,115}$. In Homo and Pongo there is an additional fascial origin ${ }^{7}$.

In Pongo the muscle is fused with peroneus brevis and extensor digitorum longus anteriorly ${ }^{3,77,102}$, and connected with flexor hallucis longus ${ }^{3,77,102}$.

In all taxa the tendon of peroneus longus runs in a groove on the cuboid bone ${ }^{7,61,115}$, and inserts onto the tuberosity of $\mathrm{MI}^{3,7,22,39,61,67,73,77,87,102,115}$. In Homo alone the tendon inserts into the medial cuneiform ${ }^{115}$. In Pan and Hylobates there is a fibrous attachment to MV^{61}, which may occur as a variation in Homo ${ }^{115}$.

A sesamoid bone in the tendon of peroneus longus is present in $8-9 \%$ of $\mathrm{Homo}^{69,78,}$ ${ }^{115}$. A slight thickening, or nodule, has been reported in the great apes ${ }^{69,73,78}$, while a small bony sesamoid is present in Hylobates ${ }^{69}$.

Innervated by branches of the superficial peroneal nerve in Homo, Pan paniscus and Gorilla ${ }^{73,87,115}$.

3.7.1.3.3 Posterior crural

3.7.1.3.3.1 Superficial

Gastrocnemius

In all apes and Homo gastrocnemius has two heads and joins with soleus, originating from the medial and lateral femoral condyles and the capsule of the knee joint ${ }^{3,7,29,}$ $39,73,87,102,112,115$

In all apes the calf is relatively flat ${ }^{39,67}$, and in great apes and Homo the muscular fibres of the medial head extend further distally than those of the lateral head ${ }^{39,} 102$, 112, 115. Pongo in one case shows a slip separating at the distal third of the tibia ${ }^{7}$. The lateral head in Pan connects with the gluteal musculature ${ }^{40}$, in one case fusing with plantaris ${ }^{3}$, and in Pongo the lateral head may have a common origin with the long head of flexor hallucis longus ${ }^{3,7}$.

In all apes and Homo it inserts into the calcaneal tuberosity ${ }^{3,7,65,73,102,115}$, being fleshy to, or close to, the insertion in the majority of great apes ${ }^{3,12,77,87,102,105,112,119}$. A sesamoid bone is present in both heads in Hylobates ${ }^{29,39}$, being absent in all other taxa ${ }^{12,29,77,87,112}$, except as a variation in Homo^{115}.

Innervated by branches of the tibial nerve in Homo, Pan paniscus and Gorilla ${ }^{73,87,}$ 115

Plantaris

Plantaris is absent from $5-10 \%$ of $\mathrm{Homo}^{29,56,115}$. It has not been reported in Hylobates ${ }^{37,39,84,107}$ and Gorilla ${ }^{13,19,21,37,39,84,87}$, and is not identified in all ${ }^{3,7,15,17 .}$ 21, 37, 39, 71 except in two cases Pongo ${ }^{84,93 .}$

In Pan the muscle is absent in two-fifths of all cases ${ }^{14,25,39,52,62,63,71,90,110,112,}$ unilaterally present in a fifth of cases ${ }^{12,65,119}$, and bilaterally present in two-fifths ${ }^{3,19,}$ 22, 29, 37, 40, 41, 67, 73, 105, 112, 114

Innervated by a branch of the tibial nerve in Homo and Pan paniscus ${ }^{73,115}$.

Soleus

In all apes and Homo soleus has an origin from the head and superiodorsal aspect of the fibular shaft ${ }^{3}, 7,12,13,14,39,40,41,58,65,73,87,102,105,112,115$, although this origin is sometimes reported as absent from Pan ${ }^{114}$. The tibial origin, which is the primary origin in $\mathrm{Homo}^{59,112,115}$, is as often absent ${ }^{12,14,66,67,71,112}$ as present ${ }^{29,39,40,90,112,114}$ in Pan, is absent, or trivial, in Gorilla ${ }^{13,21,87}$ and absent from Hylobates ${ }^{39,58}$ and Pongo ${ }^{7.17,77,}$

The tibial head may be included with the lateral part of gastrocnemius in those cases where it is "absent"71.

In all apes and Homo the insertion is to the calcaneal tuberosity ${ }^{3,7,65,73,102,115}$, in the great apes remaining fleshy to, or close to, its insertion ${ }^{3,12,77,87,102,105,112,119 .}$

Innervated by branches of the tibial nerve in Homo, Pan paniscus and Gorilla ${ }^{73,87,}$ 115

3.7.1.3.3.2 Deep

Flexor digitorum longus

Flexor digitorum longus in great apes and Homo arises from the posterior aspect of the tibial shaft ${ }^{3,67,73,87,102,105,115}$. In Pongo the origin is more extensive, from the
anterolateral and medial tibia ${ }^{3,7}$, and in common with Homo from the tibialis posterior fascia ${ }^{7,115}$. In Pan it also arises from the intermuscular septum ${ }^{3}$.

The tendon to digit II in a specimen of Hylobates is fused with flexor hallucis longus ${ }^{39}$; this may also occur in great apes and $\mathrm{Homo}^{12,14,73,87,104,115}$. In all apes the muscle may be fused to a lesser or greater degree with flexor digitorum brevis ${ }^{7,87,105}$.

The tendon distribution is variable in the apes.
Digit V is supplied in all apes and $\mathrm{Homo}^{3,7,12,13,14,15,20,22,39,40,47,58,67,73,77,87,102,}$ 105, 115

Digit IV is supplied in Homo^{115}, in 4/23 Pan 3,14,22,39, in 3/6 Gorilla ${ }^{13,20,39}$ in 12/22 Pongo ${ }^{7,15,39,47,77,102}$, and all Hylobates ${ }^{39,58}$, while digit III is supplied in Homo ${ }^{115}$, 2/23 Pan 39,47, 3/6 Gorilla ${ }^{20,39,87}, 8 / 22$ Pongo 3,47 and 1/3 Hylobates ${ }^{39}$.

The tendon to digit II is present in Homo^{115}, in 19/23 $\mathrm{Pan}^{3,12,22,39,40,47,58,67,73,105}$, all Gorilla ${ }^{13,20,39,47,87}, 15 / 22$ Pongo 3,7,15,39,47,77,102 and 2/3 Hylobates ${ }^{58}$.

The most common distribution pattern appears to be II and V in Pan, either II, III, IV and V, or II, III and V, in Gorilla and II, IV and V in Pongo and Hylobates.

Innervated by a branch of the tibial nerve in Homo, Pan paniscus and Gorilla ${ }^{73,87 .}$ 115

Flexor hallucis longus

Flexor hallucis longus originates from the interosseous membrane and posterior crural intermuscular septum in all apes and $\mathrm{Homo}^{3,7,67,73,87,115}$, and in great apes and Homo also from the distoposterior fibula ${ }^{3,7,12,73,77,87,102,105,115}$. In one case of Pan the fibular origin is noted as the proximal two-thirds ${ }^{3}$. An origin of flexor
hallucis longus from the lateral femoral condyle is frequently present in Pongo ${ }^{\text {3, 7, 39. }}$ 77, 102.

In Pongo there are frequently two heads to the muscle - a femoral and a fibular head, the femoral head fusing with gastrocnemius ${ }^{7,77,102}$. In Pongo in the space usually occupied by flexor hallucis longus there may be a small muscle arising from MI and inserting into the hallucial phalanx ${ }^{77}$.

In all apes and Homo the muscle inserts onto the base of the terminal phalanx of the hallux ${ }^{3,12,13,39,40,47,58,67,71,73,87,105,115}$, with the exception of Pongo ${ }^{7,9,15,39,77,85}$. In Homo, insertions to digits II and III occur as a variant, and are rarely present to digit IV 116. In all apes additional insertions to digits III and IV are present ${ }^{3,7,12,13,15,39,40,}$ 47, 58, 67,71,73,77, 87, 102, 105, an insertion to digit II occurring most frequently in Hylobates ${ }^{47}$, although present occasionally in Gorilla ${ }^{87}$. An insertion onto digit V has been noted in Hylobates ${ }^{47}$ and Gorilla ${ }^{13}$.

Innervated by branches of the tibial nerve in Homo, Pan paniscus and Gorilla ${ }^{73,87,}$ 115

Popliteus

Popliteus has a lateral femoral condylar head of origin in all apes and $\mathrm{Homo}^{3,7.39,73 .}$ 87, 102, 115. In great apes there is a second head of origin, from the fibular head and adjacent capsule in Pongo 39, and from the capsule alone in Pan and Gorilla ${ }^{39,73,87}$. Fibres of popliteus originate from the lateral part of the capsule in Homo ${ }^{115}$.

A sesamoid bone in the tendon at the lateral tibial condyle is absent from all ${ }^{28,47,51}$, ${ }^{113,118}$ except a single $\mathrm{Hylobates}^{79}$, in all Pan $^{47,79,113}, 6 / 8$ Gorilla 113,118 and from all
but exceptional cases of $\mathrm{Homo}^{46,56,79,98}$. It is present in $2 / 8$ Gorilla ${ }^{47,66}$ and 18/21 Pongo ${ }^{7,28,30,57,77,79,113,118 .}$

In all apes and Homo popliteus inserts into the posterior tibial surface ${ }^{3,7,73,87,102,115}$. Innervated by a branch of the tibial nerve in all apes and $\mathrm{Homo}^{39,73,87,115}$.

Tibialis posterior

Tibialis posterior in all apes and Homo originates from the interosseous membrane and the adjoining sides of the tibia and fibula ${ }^{3,7,73,87,115}$. In Homo and Pan it also takes origin from the intermuscular septa ${ }^{3,115}$.

The sesamoid fibrocartilage in the tendon of tibialis posterior in Homo^{115} is absent from Pan and Pongo ${ }^{\text {12,77 }}$.

The medial part in all apes and Homo inserts into the navicular bone ${ }^{7,12,39,59,73,77,87 .}$ 102, 104, 115, but the lateral part is more variable. In Homo, it inserts in 94% of cases onto the bases of MII-MIV and the cuboid bone ${ }^{59}$. The extended insertion to MIIMIV, but not the cuboid, is present in Pan and Hylobates ${ }^{59,73}$, in which there may also be an insertion to the plantar ligaments ${ }^{3,39}$. In all apes there is an insertion to the sheath of the tendon of peroneus longus ${ }^{7,39,40,59,87,102}$, but not in Homo. In Homo a bursa intervenes between the two muscles ${ }^{115}$. A complete cuneiform insertion is present in Homo, Pan paniscus and Pongo ${ }^{759,73,115}$, while in Gorilla it is only to the lateral cuneiform ${ }^{39,87}$, while in Pan it can be to the medial ${ }^{40,59}$, medial and lateral ${ }^{39}$ or lateral cuneiforms ${ }^{12}$, but never to all three.

Innervated by a branch of the tibial nerve in Homo, Pan paniscus and Gorilla ${ }^{73,87,}$ 115

3.7.1.4.1 Dorsal

Extensor digitorum brevis

Extensor digitorum brevis is very similar in all apes and Homo. The calcaneal origin and division into three tendons for the dorsal aponeuroses of digits II to IV is present in all apes and $\mathrm{Homo}^{3,7,12,39,61,73,77,87,91, ~ 102,115}$. However, in $\mathrm{Pan}^{61,73}$ and 1/2 Hylobates ${ }^{61}$ there is an additional tendon for digit V which merges with peroneus brevis, absent from Gorilla and Pongo, and only occasionally present in Homo ${ }^{115}$. The insertions of the digital tendons in Gorilla are to the second and third phalanges, fused with the tendons of extensor digitorum longus ${ }^{87}$, and in a specimen of Pongo there is a double insertion to digit II, one tendon to the proximal phalanx, and a second to the middle and distal phalanges ${ }^{77}$.

Extensor hallucis brevis

Extensor hallucis brevis is a separate muscle originating from extensor digitorum brevis in all apes and Homo ${ }^{3,7,12,39,61,73,102,115}$. In Pongo, and as a variation in Homo, there is an additional navicular origin ${ }^{77,91,115}$, and in Gorilla the muscle takes origin from the calcaneus and the lateral limb of the cruciate ligament ${ }^{87}$.

The muscle in Pongo is fused with the tendon of extensor hallucis longus ${ }^{7}$.
In all apes and Homo the insertion is to the base of the first phalanx of the hallux ${ }^{7,39}$, 61, 73, 77, 87, 102, 115 . In a single specimen of Pan the insertion extends to the second phalan x^{22}. Gorilla possesses an accessory slip to the first phalanx of digit II^{87}, which has been found in Homo as a variant ${ }^{33}$.

Both muscles are innervated by the deep branch of the peroneal nerve in Homo, Pan paniscus and Gorilla ${ }^{73,87,115}$.

3.7.1.4.2 Plantar

3.7.1.4.2.1 Superficial

Abductor digiti minimi

No information for Hylobates.

Abductor digiti minimi in great apes and Homo originates from the medial and lateral calcaneus ${ }^{3,7,12,55,73,87,102,115}$, and from the plantar aponeurosis in Homo, Pan and Pongo ${ }^{3,7,12,115}$. In Pongo alone there is an origin from the sheath of peroneus longus ${ }^{102}$.

In great apes and Homo the insertions are to the proximal phalanx of digit $V^{3,12,73,87,}$ 102,115, and to the base of $\mathrm{MV}^{3,7,12,73,87,115}$. In Pan there may be an additional insertion to the second phalanx ${ }^{114}$, while in Pongo there may be a small insertion to the dorsal expansion of the extensor tendons ${ }^{7}$.

Innervated by the lateral plantar nerve in Homo and Pan paniscus ${ }^{73,115}$.

Abductor hallucis

In all apes and Homo abductor hallucis originates from the medial and plantar surface of the calcaneus ${ }^{3,7,9,39,73,87,102,115}$, and from the medial part of the plantar aponeurosis ${ }^{3,17,39,87,115}$, and in Pongo may also originate from the posterior surface of the calcaneus ${ }^{7}$, and in Gorilla from the cuboid ${ }^{87}$.

Gorilla, Pongo and Hylobates possess a separate slip (two tendons in Gorilla) to the base of $\mathrm{MI}^{9,17,39,87,102}$, which has been named the abductor ossis metacarpi hallucis.

In Hylobates there is a sesamoid bone in the tendon of this accessory muscle, and it amalgamates at its insertion with an extension of tibialis anterior ${ }^{9}$. In all apes and Homo there is some fusion of abductor hallucis with flexor hallucis brevis ${ }^{3,4,9,12,73,}$ 87, 92, 115 . The muscle in Pan and Pongo is laterally blended with flexor digitorum brevis ${ }^{12,102,105}$.

The muscle inserts onto the base of the proximal phalanx of the hallux in all apes and Homo 3,7,39,73,77,87,102,115. As is occasionally the case in Homo^{9}, in Pan there is sometimes an additional insertion to the medial cuneiform, and in one case to the lateral cuneiform ${ }^{114}$.

Innervated by the medial plantar nerve in all apes and $\mathrm{Homo}^{9,73,87,115}$.

Abductor os metatarsi digiti minimi

No information for Hylobates.

This muscle has been described in great apes as quite distinct from abductor digiti minimi ${ }^{14,73,84,87,105}$, and in Homo as a variant ${ }^{115}$.

In Gorilla it is described as a stout, short, quadrangular muscle on the lateral side of the foot between the plantar aponeurosis lateral and abductor digiti minimi medially. It originates from the lateral process of the calcaneal tuberosity, extending anteriorly to the peroneal trochlear process of the calcaneus ${ }^{87}$.

In Gorilla it converges to insert on the peroneal tubercle of MV immediately deep to the insertion of peroneus brevis ${ }^{87}$ and is innervated by the lateral plantar nerve ${ }^{87}$. In Pongo it arises from the plantar surface of the calcaneus in common with the lateral part of flexor digitorum brevis, immediately overlying the inner head of
abductor digiti minimi ${ }^{84}$, and inserts into the lateral and plantar aspects of the base of $M V^{84}$.

Flexor digitorum brevis

In all apes and Homo flexor digitorum brevis originates from the calcaneus, usually the medial and ventral surfaces ${ }^{3,7,12,13,22,39,67,73, ~ 87,94, ~ 102, ~ 105, ~ 115, ~ a l t h o u g h ~ i n ~ P o n g o ~}$ the origin is more variable, extending anteriorly, medially or posteriorly ${ }^{7,39,77}$. There is an origin from the proximal plantar aponeurosis in Homo^{115} and Pan^{12}, and from the plantar aspect of flexor digitorum longus in Pan 39,67,73,105, Gorilla 87 and Hylobates ${ }^{39}$. The superficial head in Pongo may also originate from the distal plantar aponeurosis, calcaneal tendon and medial soleus ${ }^{7}$. The deep head in Gorilla may have an origin in the leg ${ }^{104}$.

In all apes and Homo the muscle is deep to the central plantar fascia ${ }^{39,87,115}$. In Pan and Pongo the muscle may be fused with abductor hallucis ${ }^{12,102,105}$. The tendon to digit V (when present) in Pongo, is fused with flexor digitorum longus, and a tendon from the deep head may join the fourth lumbrical muscle proximally ${ }^{7}$.

In all apes and Homo, the muscle supplies tendons to digits II and III ${ }^{3,7,12,13,14,15,22 .}$ 37, 39, 67, 73, 77, 85, 87, 94, 102, 105, 115 , providing a tendon to digit IV in all hylobatids and Homo 39,94,115 and usually doing so in the great apes ${ }^{3,7,12,22,39,67,73,85, ~ 87,94,105}$. When present, the tendon to digit V is derived from a deep head in the apes ${ }^{7,39,67,85,87,94}$, and this head occasionally supplies digit IV ${ }^{39,94}$. When a deep head is present in Homo it may supply digit V, or IV and V, even digit III, and the superficial head is often smaller ${ }^{27,35,104,111,117}$. The deep head in Hylobates supplies digits III, IV and
$\mathrm{V}^{39,94}$, although in Symphalangus the superficial head may contribute fibres to digit III ${ }^{95}$.

Innervated by the medial plantar branch of the tibial nerve in Homo, Pan paniscus and Gorilla ${ }^{73,87,115}$.

3.7.1.4.2.2 Intermediate

Quadratus plantae (flexor accessorius)

No information for Hylobates.

In great apes and Homo, a lateral head originates from the lateral margin of the plantar surface of the calcaneus ${ }^{12,15,39,87,115}$. A medial head is always present in Homo ${ }^{115}$, is usually present in Pongo ${ }^{34,58}$, but is absent from African apes ${ }^{12,87}$. Insertion is into the common tendon of flexor digitorum longus before the differentiation of flexor hallucis longus in Homo, Pan and Gorilla ${ }^{12,39,87,115}$, with the exception of some specimens of Pan in which quadratus plantae is present unilaterally, and did not reach flexor digitorum longus ${ }^{12,40}$. Insertions into individual tendons of the long flexor to digits II, III or IV are variably present in $\mathrm{Homo}^{\text {I15 }}$. In Pongo, the attachment to flexor digitorum longus has been reported as the tendon to digit V^{17}, and in a specimen of Pan the insertion is into digital tendons III and IV ${ }^{22}$. Innervated by the lateral plantar nerve in Homo and Gorilla ${ }^{87,115}$.

Lumbricals

There are four lumbricals in all apes and $\mathrm{Homo}^{3,7,15,22,39,73,87,102,105,115}$. One author reported seven lumbricals in Pan, but counting hallucial heads as separate muscles ${ }^{40}$. Another noted three lumbricals in Pan^{3}.

The first lumbrical always has a single head from the flexor digitorum longus tendon to digit $\mathrm{II}^{3,7,12,15,22,39,73,102,105,115}$, although in the specimen of Pan with three lumbricals, the first lumbrical is reported as having a double origin, with the additional head arising from the tendon of flexor hallucis longus to digit II^{3}.

The second lumbrical has a double origin in all apes and Homo ${ }^{3,7,12,15,22,39,40,73,102,}$ 105, 115 . In a single Pongo the left second lumbrical had a single origin ${ }^{7}$.

The third lumbrical has a double origin in Homo ${ }^{115}$, African apes ${ }^{12,22,40,73,105}$ and some specimens of Pongo ${ }^{3,7}$. This lumbrical may have a single head in Pongo ${ }^{39,102}$. The fourth lumbrical has a double origin in Homo^{115}, African apes ${ }^{3,12,22,40,73,105}$ and some specimens of Pongo ${ }^{84}$. In the majority of Pongo the fourth lumbrical has a single head of origin ${ }^{7,39,102}$.

In all apes and Homo, the tendons of the lumbricals radiate into the extensor aponeuroses of their respective digits ${ }^{7,73,87,105}$.

Innervated by the medial plantar nerve to the first lumbrical and the lateral plantar nerve to the second, third and fourth lumbricals in Homo and Gorilla ${ }^{87.115}$, and by the medial plantar nerve to the first and second lumbricals, and the lateral plantar nerve to the third and fourth lumbricals in Pan paniscus ${ }^{73}$.

3.7.1.4.2.3 Deep

Adductor hallucis

The two heads of adductor hallucis are variably united in $P a n^{9,12,22,114}$, separate in Gorilla $a^{21,87}$ and Pongo ${ }^{7,84}$ and always fused in Hylobates ${ }^{9}$.

The oblique head in all apes and Homo originates from MII and MIII ${ }^{3,9,12,73,87,105,}$ ${ }^{115}$, with an additional origin from MIV in Homo, African apes and Hylobates ${ }^{9,87,105,}$ 115. In Homo, Pan and Pongo the head also originates from the sheath of the tendon of peroneus longus ${ }^{3,9,12,22,73,102,105,115}$. Pongo and Hylobates have an origin from the interosseous fascia ${ }^{7,9}$, while Pan has been stated to have an origin from the cuboid ${ }^{114}$, Gorilla from the ligaments between MII and the intermediate cuneiform ${ }^{87}$, and Pongo from a slip between MII to the transverse head ${ }^{7}$.

The oblique head inserts into the base of the proximal phalanx of the hallux in all $\operatorname{taxa}^{9,74,105,115}$ except Gorilla. In all apes the muscle inserts onto MI ${ }^{3,7,9,12,87}$. In Pan and Hylobates the tendon extends to the distal phalanx ${ }^{9}$, and in Homo, Pongo and Hylobates inserts onto a sesamoid bone ${ }^{9,115}$, which in Pongo is situated at the combined oblique head/flexor hallucis brevis insertion ${ }^{3,9,92}$.

The transverse head of adductor hallucis originates in all apes from MII and MIII ${ }^{3,7}$. 9, 12, 22, 73, 105. An origin from MIV is present in African apes and Hylobates ${ }^{22,73,87,105,}$ 114, and an origin from the third and fourth metatarsophalangeal joints and ligaments is present in Homo, Pan and Hylobates 3, 9, 73,115. In Pan and Hylobates there is an origin from the second metatarsophalangeal joint and interosseous fascia ${ }^{3,9,73}$, and in Homo alone sometimes from the fifth metatarsophalangeal joint and ligaments ${ }^{115}$. Gorilla has origins from the deep dorsal fascia and an aponeurotic sheet ${ }^{87}$, while Pongo has origins from connective tissue ${ }^{3,7}$ and from a fascial band extending from MII to the third tarsometatarsal joint ${ }^{9}$.

The insertion of the transverse head is to the base of the proximal phalanx in all apes and Homo ${ }^{7,9,73,77,87,105,115}$, and to MI in all apes ${ }^{3,9,12,87}$. The combined muscle in Hylobates extends to the distal phalanx, sesamoid bone and capsular ligaments ${ }^{9}$. In

Gorilla the transverse insertion extends to the capsules of the metatarsophalangeal and interphalangeal joints ${ }^{87}$.

In all apes and Homo the muscle is innervated by the deep branch of the lateral plantar nerve ${ }^{9,39,73,87,101,115}$, although an additional innervation from the medial plantar nerve has been found in Pan and Pongo ${ }^{9,39,101,102}$. The same additional innervation occurs rarely in Homo^{9}.

Flexor digiti minimi

No information for Hylobates.

Flexor digiti minimi in Homo and great apes originates from the base of $\mathrm{MV}^{7,73,87}$, 102, 115, extending dorsomedially in Pongo ${ }^{7}$. In Homo and Pongo it also originates from the sheath of the tendon of peroneus longus ${ }^{102,115}$. In African apes the origin extends to the plantar interosseous ligaments ${ }^{87}$, and in Pan the origin may be shared with opponens digiti minimi and a plantar interosseous muscle ${ }^{12}$. There is an origin from MIV in Gorilla ${ }^{87}$ and the muscle may originate from the plantar aponeurosis in Pongo ${ }^{7}$.

Flexor digiti minimi may be absent from Pan^{89}.

In Homo and great apes the muscle inserts onto the base of the proximal phalanx of digit $V^{7,73,87,104,115}$.

Innervated by the lateral plantar nerve in Homo, Pan paniscus and Gorilla ${ }^{73,87,115}$.

Flexor hallucis brevis

In all apes and Homo, flexor hallucis brevis is double-headed ${ }^{3,9,39,77,87,102,115}$, in great apes and Homo (except possibly Pan^{60}) originating from the intermediate
cuneiform and the tendon of tibialis posterior ${ }^{7,60,87,114,115}$. In Homo, Pan and Pongo it also originates from the medial and lateral cuneiforms ${ }^{9,12,17,20,73,115}$, in African apes, and as a variation in Homo, also from the calcaneus ${ }^{14,87,115}$, and in African apes and Pongo also from the metatarsophalangeal joint ${ }^{9,87}$. In Gorilla and Pongo it originates also from the navicular bone ${ }^{20}$. In Pongo alone it arises from the plantar fascia ${ }^{17}$, and in Gorilla alone from the tarsometatarsal ligament ${ }^{87}$. In Homo, and a single Pan, an origin is present from the cuboid ${ }^{3,115}$. No information available for the origin in Hylobates.

The lateral head is larger than the medial in all apes ${ }^{9,102}$, being almost equally-sized in Pan and Hylobates ${ }^{9}$. In Gorilla and Pongo the medial and lateral heads are separated by a septum ${ }^{9,87}$, not present in the fused muscles of Homo or Hylobates ${ }^{9,}$ ${ }^{115}$. The entire muscle is fused with abductor hallucis in Pan and Hylobates 9, 12, 73, while only the medial head is fused with the abductor in Homo, Gorilla and Pongo ${ }^{3,}$ 4, 92, 115. The lateral head is fused with adductor hallucis in great apes and $\mathrm{Homo}^{3,12,}$ 74, 87, 92, 115, and with opponens hallucis in Pongo ${ }^{7}$.

The insertion in all apes and Homo is onto the proximal phalanx of the hallux ${ }^{7}$, 9, 14, 73, 77, 87, 115 , while in all taxa ${ }^{3,9,12,17,73,87}$ except Homo^{9} there are additional insertions to MI. The muscle is observed in all taxa except Gorilla to contain sesamoids ${ }^{9,12,115}$.

In all apes and Homo the muscle is innervated by the medial plantar nerve ${ }^{9,12,73,87}$. 115

Opponens digiti minimi

No information for Hylobates.

Opponens digiti minimi consists of a deep fascicle from the flexor digiti minimi in $H_{o m o}{ }^{115}$, and as a separate muscle is often absent from Pongo ${ }^{7,26,39,102}$. It has been described as present in Pan and Gorilla ${ }^{87}$. In Pongo the muscle is described as comparable to a part of flexor digiti minimi that originates from the plantar aponeurosis ${ }^{7}$.

When present, it originates from the tendon sheath of peroneus longus in Pan paniscus ${ }^{73}$ and Pongo ${ }^{84}$. In Gorilla it originates from the base of MIV, and from a sesamoid bone between the bases of MIV and MV^{87}, but is medially fused with flexor digiti minimi ${ }^{87}$. In Pan it has a common origin from flexor digiti minimi and the plantar interosseous muscle of digit V^{12}.

In Homo and great apes it inserts into the lateral surface of MV ${ }^{12,73,84,87}$, extending onto the plantar surface in Pan^{12}.

Innervated by the lateral plantar nerve in Homo and Pan paniscus ${ }^{73,115}$.

Opponens hallucis

Opponens hallucis has been described in detail in apes only in Pongo ${ }^{4,7,9,15,17,41,54,}$ ${ }^{84}$, although it may be present in Gorilla ${ }^{21,66}$, and as a variant in Hylobates ${ }^{4}$, Pan 12, 114 and Homo^{9}. In the latter, it may be present as a slip from adductor hallucis attaching to MI^{115}.

In Pongo it originates from the medial cuneiform ${ }^{17}$, passes beneath abductor hallucis, and is entirely or partially fused with the lateral belly of flexor hallucis brevis ${ }^{7,9,84}$.

In a single Pongo, where the muscle was two-thirds fused with flexor hallucis brevis ${ }^{9}$, the separate third arose from a cartilaginous nodule in the tendon of tibialis posterior, and had a more dorsal insertion than the fused portion. Some fibres of
adductor hallucis can form a secondary "adductor opponens" which inserts onto MI in Homo and Pongo ${ }^{9,17}$.

The insertion in Pongo is to the distal, middle third, or entire lateral length, of $\mathrm{MI}^{\mathbf{7}, 9}$, $17,41,84$, and to the phalangeal base ${ }^{7}$.

It is innervated by the medial plantar nerve in Pongo ${ }^{9}$.

Transversus pedis

Transversus pedis in Homo corresponds to the transverse head of adductor hallucis in apes ${ }^{9,12,39}$.

3.7.1.4.2.4 Deepest

Dorsal interossei

The dorsal interossei number four in great apes and $\mathrm{Homo}^{7,40,73,102,115}$, with the exception of single specimen of Pan that possessed six^{22}. Each muscle has two heads of origin, with the exception of the first dorsal interosseous of Hylobates ${ }^{9}$, and sometimes the fourth dorsal interosseous of Pan^{22}. The first dorsal interosseous of Hylobates has a single head of origin from the medial side of MII 9.

The reference line for action in great apes is through digit III, rather than digit II as in Homo ${ }^{7,12,21,105}$.

In Homo and Pan the first dorsal interosseous originates from the lateral side of MI and the medial side of $\mathrm{MII}^{9,12,22,73,115}$, although the hallucial head in Pan, Pongo and Hylobates may be rudimentary or absent ${ }^{9}$. In Gorilla and Pongo this muscle originates from the medial cuneiform and the medial side of MII ${ }^{7,9,87,102}$. The muscle inserts into the medial aspect of the base of the proximal phalanx of digit II in

African apes and Homo ${ }^{22,40,73,87,115}$; the side of digit II not specified for Pongo ${ }^{7,77}$. In Hylobates the insertion is extended to the ungual phalanx via the extensor aponeurosis ${ }^{9}$.

The second dorsal interosseous originates from the lateral side of MII and the medial side of MIII in great apes and $\mathrm{Homo}^{7,22,73,87,115}$. No further information available for Hylobates. It inserts into the medial side of digit III in African apes ${ }^{22,40,73,87}$; the side of digit III not specified for Pongo ${ }^{7,9}$, but the insertion is into the lateral side of digit II in Homo^{115}.

The third dorsal interosseous originates from the lateral side of MIII and the medial side of MIV in great apes and $\mathrm{Homo}^{7,22,73,87,115}$. It inserts into the lateral side of digit III in African apes and Homo ${ }^{22,40,73,87,115}$; the side of digit III not specified for Pongo ${ }^{7,9}$.

The fourth dorsal interosseous originates from the lateral side of MIV and medial side of MV in Homo^{115}, Gorilla 87, Pongo 7, and excluding accessory interossei, in Pan ${ }^{22,40,73}$. Gorilla has a tertiary origin from a sesamoid bone lying ventral to the bases of MIV and MV ${ }^{87}$. It inserts into the lateral aspect of the proximal phalanx of digit IV in African apes and $H o m o^{22,73,87,115}$; side of digit IV not specified for Pongo ${ }^{7,9}$.

A small first accessory interosseous in a specimen of Pan lies between the third and fifth dorsal interossei, originating from the dorsal side of MIV, and inserting to the medial side of digit IV. The second accessory interosseous arises with the true fourth dorsal interosseous from the lateral side of MIV and medial side of MV, inserting
into the medial side of digit V . The fourth dorsal and second accessory interossei might be considered as a single muscle with two separate insertions ${ }^{22}$.

The dorsal interossei are innervated by the deep ramus of the lateral plantar nerve in Homo, Pan paniscus and Gorilla ${ }^{73,87,115}$.

Plantar interossei

No information for Hylobates.

There are three plantar interossei in Homo and great apes ${ }^{7,40,73,87,102,115}$, with the exception of a specimen of Pan stated to possess five plantar interossei ${ }^{22}$. The reference line for action is digit III in great apes, rather than digit II as in $\mathrm{Homo}^{7,12,87,}$ 102, 105

In Homo, Pan and Pongo, each interosseous muscle has a single head of origin ${ }^{7,22,40 .}$ 73, 115 , while double heads of origin are present in Gorilla ${ }^{88}$.

The first plantar interosseous originates from MII in all apes ${ }^{7,87}$, and from MIII in $H o m o^{115}$ and as a second origin in Gorilla ${ }^{87}$.

It inserts into the lateral side of the proximal phalanx of digit II in all apes ${ }^{7,22,40,73,}$
${ }^{87}$, and into the medial side of digit III in Homo^{115}, while Gorilla has a secondary insertion into the second metatarsophalangeal joint ${ }^{87}$.

The second plantar interosseous originates from the medial side of MIV in Homo, Gorilla and Pongo ${ }^{7,87,115}$, and excluding two accessory interossei, also in Pan ${ }^{22,40}$. Gorilla has a secondary origin from a sesamoid bone at the bases of MIV and MV ${ }^{87}$.

It inserts into the medial side of digit IV in Homo and African apes 22,73, 87, 115, and into the lateral side of digit IV in Pongo ${ }^{7}$. Gorilla has a secondary insertion into the third metatarsophalangeal joint ${ }^{87}$.

The third plantar interosseous originates from the medial side of MV in Homo, Gorilla and Pongo ${ }^{7,87,115}$, and from the lateral side of MIV in Pan ${ }^{22}$. Gorilla has a secondary origin from the sesamoid bone at the bases of MIV and MV ${ }^{87}$.

It inserts into the medial side of digit V in $H o m o$ and African apes ${ }^{22,40,73,87,115}$ and into the lateral side of digit V in Pongo 7. Gorilla has a secondary insertion into the fourth metatarsophalangeal joint ${ }^{87}$.

No great ape has plantar interossei for digit III^{7}, with the exception of the Pan specimen with five plantar interossei ${ }^{22}$. In the latter, the accessory interossei originate from the medial and lateral sides of MIII respectively, and insert onto the medial and lateral sides of the proximal phalanx of digit $\mathrm{III}^{\mathbf{2 2}}$.

Plantar interossei are innervated by the lateral plantar nerve in Homo, Pan paniscus and Gorilla ${ }^{73,87,115}$.

3.7.2 VESSELS

3.7.2.1 Arteries

3.7.2.1.1 Femoral $^{\text {b }}$

No information for Pongo.

The deep circumflex iliac artery is a branch of the femoral artery in African apes ${ }^{70}$, ${ }^{101}$, rather than the external iliac artery, as in Homo^{115}.

Muscular branches of the femoral artery supply the adductor muscles in Homo, African apes and Hylobates ${ }^{31,40,70,87,115}$, vastus medialis in Homo and African apes 31,40,87,115, and sartorius in Homo^{115}.

3.7.2.1.1.1 Superficial

Superficial epigastric

No information for Hylobates.

The superficial epigastric artery is a branch of the femoral artery in Homo ${ }^{115}$ and $1 / 2$ Pongo ${ }^{70}$, but not in Pan^{70}. In Gorilla the superficial epigastric is a branch of the lateral femoral circumflex ${ }^{81}$.

Superficial circumflex iliac

No information for Hylobates.

The superficial circumflex iliac artery is a branch of the femoral artery in great apes and $H o m o^{22,31,70,83,102,115 .}$

Superficial external pudendal
See 3.7.2.1.1.2

3.7.2.1.1.2 Deep

Deep external pudendal

No information for Hylobates.
The external pudendal arteries are branches of the femoral artery in $\mathrm{Homo}{ }^{115}, \mathrm{Pan}^{31,}$ 70 and unilaterally in Gorilla ${ }^{81}$. No external pudendal arteries are given off by the femoral artery in Pongo ${ }^{102}$.

Profunda femoris

The profunda femoris artery in all apes and Homo originates from the femoral artery ${ }^{10,22,31,70,87,101,102,106,115}$.

Muscular branches supply the adductor muscles in all apes and $\mathrm{Homo}^{22,31,70,101,115,}$ the quadriceps muscles in Homo, Pan and Pongo ${ }^{31,101,102,115}$, and the hamstrings in Homo and Pan ${ }^{101,115}$. It also supplies the sartorius in Pongo ${ }^{102}$, and the pectineus, gracilis and iliopsoas muscles in Pan^{31}.

The perforating branches of the profunda femoris are absent from $1 / 3$ Pongo ${ }^{102}$. In the remaining specimen of Pongo, and in Pan and Hylobates there are two perforating branches ${ }^{31,70,81}$, while in Homo and Gorilla, three perforating branches are present ${ }^{70,115}$.

Lateral femoral circumflex

The lateral femoral circumflex artery is a branch of the profunda femoris in all taxa ${ }^{10}$, 22,23,70, 80, 101, 102, 115 except $1 / 2$ Gorilla 70. In Homo it may arise directly from the femoral artery ${ }^{115}$.

The lateral femoral circumflex artery divides into three branches in Homo, Pan and Asian apes ${ }^{70,101,102,115}$. It may divide into five branches in Pongo ${ }^{81}$.

In Gorilla the ramus ascendens and descendens of the lateral femoral circumflex issue from the femoral artery independantly ${ }^{70}$.

The medial femoral circumflex artery is a branch of the femoral artery in Gorilla and Pongo and as a variation in $\mathrm{Homo}^{23,70,81,115}$, and of the profunda femoris in Homo and $2 / 4$ Pan 10,70,115.

In $2 / 4 \mathrm{Pan}^{31,106}$ and $\mathrm{Hylobates}^{70}$, the medial femoral circumflex is a branch from the distal part of the external iliac artery.

Descending genicular

No information for Gorilla and Hylobates.
A descending genicular artery is given off by the femoral artery in Homo, Pan and Pongo ${ }^{31,81,115}$.

Saphenous

A large saphenous artery is given off by the femoral artery in all apes ${ }^{13,15,22,23,31,70,}$ ${ }^{87}, 101,102,105$. In Homo the saphenous artery is a small branch of the descending genicular artery ${ }^{115}$.

The saphenous artery accompanies the saphenous nerve to the medial side of the knee, between sartorius and gracilis in Homo and Pan ${ }^{16,22,31,115}$.

The saphenous artery runs on the medial side of the knee in Homo and great apes ${ }^{22 .}$ ${ }^{31,70,115}$, subsequently being distributed to the skin of the proximomedial part of the leg and anastomosing with the medial inferior genicular artery in Homo 115, while in apes the saphenous artery continues with the saphenous nerve to the foot ${ }^{22,23,40,70,81}$. It enters the first interosseous space and completes the plantar arch in all apes ${ }^{70,81}$, 101, 102

In all apes, except $1 / 2$ Gorilla 70, the saphenous gives off close to its origin, a suprema genu artery ${ }^{70,87}$.

In Pongo, but in no other ape, a small posterior tibial artery arises from the saphenous artery ${ }^{70}$.

In Pongo, and in some specimens of Pan^{31}, there is an anastomosis between the saphenous and anterior tibial arteries ${ }^{70}$, and in Pan and Hylobates between the saphenous and the perforating branch of the peroneal artery ${ }^{70}$.

The artery provides the dorsalis pedis in great apes ${ }^{16,87,101,102}$.

3.7.2.1.2 Popliteal

Popliteal

The popliteal artery in all apes and Homo originates from the femoral artery ${ }^{31,115}$. The artery lies deep in the popliteal fossa of the knee in Homo alone ${ }^{71,115}$. In all taxa except Pan the popliteal artery divides into anterior and posterior tibial branches ${ }^{70,102,115}$, while in Pan it divides into a posterior tibial artery and a common branch for the anterior tibial and peroneal arteries ${ }^{31,70}$. Variations in Homo include branching into anterior tibial and peroneal arteries, and a common trunk dividing into anterior tibial, posterior tibial and peroneal branches ${ }^{70,115}$.

The genicular branches of the popliteal artery are the superior lateral genicular and the medial genicular in all apes and $\mathrm{Homo}^{31,70,81,101,11}$, the superior medial genicular in all taxa except Hylobates ${ }^{70,115}$, and inferior medial and inferior lateral genicular in Homo, Pan and Hylobates ${ }^{31,70,115}$.

3.7.2.1.3 Anterior tibial

Anterior tibial

No information for Hylobates.

The anterior tibial artery passes between the tibia and fibula in Homo, Pan and Pongo ${ }^{31,102,115}$.

An anterior tibial recurrent branch is given off in Homo and Pongo ${ }^{102,115}$.

The peroneal artery arises from the anterior tibial artery in Pan ${ }^{123}$ and Pongo 70, rather than from the posterior tibial artery as in Homo^{115}. The anterior tibial and peroneal arteries may arise from a common trunk in Pan^{31}.

Unlike Homo ${ }^{115}$ or Pan ${ }^{10,22}$ the artery does not reach the foot unilaterally in Gorilla ${ }^{81}$, or in Pongo ${ }^{81,102}$.

It may be partially or entirely replaced distally by the saphenous artery in African apes ${ }^{14,31,40,81}$.

Dorsal artery of the foot

No information for Hylobates.
The dorsalis pedis is the terminal branch of the anterior tibial artery in Homo ${ }^{115}$. In Pan there may be two terminal branches of the anterior tibial artery ${ }^{10}$.

In great apes the dorsalis pedis is a continuation of the saphenous artery ${ }^{14,31,87,102}$, or of the posterior tibial artery in Pan ${ }^{101}$. It completes the plantar arch in Homo, Pan and Pongo ${ }^{31,101,102,115 .}$

3.7.2.1.4 Posterior tibial

Posterior tibial

The posterior tibial artery is the terminal branch of the popliteal artery in all taxa ${ }^{70}$ except Pan, in which the posterior tibial artery branches from the popliteal artery before its termination ${ }^{70}$.

It may be absent in Homo, in which case the peroneal artery takes its place ${ }^{115}$. Calcaneal branches are present in Homo and great apes ${ }^{31,70,102,115}$.

In all taxa, except Hylobates, the posterior tibial artery divides into medial and lateral plantar arteries ${ }^{31,70,101,115}$. The lateral plantar artery is absent from Hylobates ${ }^{70}$.

Peroneal

In Homo, Gorilla and Hylobates, the peroneal artery is a branch of the posterior tibial artery ${ }^{70,115}$, in Pongo a branch of the anterior tibial artery ${ }^{70}$, and in Pan a branch of the popliteal artery ${ }^{31,70}$.

The peroneal artery in all taxa except Pongo is larger than the posterior tibial artery ${ }^{70}$. 115

In all apes and Homo the peroneal artery divides into perforating and lateral calcaneal rami 31,70,115. In Homo, Pan and Hylobates the perforating branch anastomoses with the anterior lateral malleolar artery ${ }^{71,115}$, which is a branch of the anterior tibial artery in Homo^{115}, and of the saphenous artery in apes ${ }^{70}$.

Medial plantar

In Homo branches of the medial plantar artery supply the medial side of digit I^{115}, and in Homo and Pan the first, second and third interosseous spaces ${ }^{70,101,115}$. In.

Pongo branches of the medial plantar supply the second and third interosseous spaces ${ }^{70}$.

In Hylobates the medial plantar artery completes the plantar arch at the base of the first interosseous space ${ }^{70}$.

Lateral plantar

The lateral plantar artery is smaller than the medial plantar artery in $2 / 3$ Pongo ${ }^{70,102}$, is of equal size in Pan^{70}, and larger than the medial plantar artery in Homo ${ }^{115}$, Gorilla 70 and 1/3 Pongo ${ }^{81}$.

The lateral plantar artery is absent from Hylobates ${ }^{70}$.

In great apes and Homo, the artery crosses the sole obliquely, and completes the plantar arch by communicating with the dorsalis pedis ${ }^{31,70,101,102,115}$. However, in Hylobates the medial plantar artery completes the plantar arch ${ }^{70}$.

3.7.2.1.5 Anastomoses

Deep plantar arch

The deep plantar arch consists of the lateral plantar artery and dorsalis pedis in great apes and Homo ${ }^{31,70,115}$, and in Hylobates of the medial plantar artery and the dorsalis pedis ${ }^{70}$. The dorsalis pedis is a branch of the saphenous artery in apes ${ }^{70}$, and of the anterior tibial artery in Homo^{115}.

Digital branches of the deep plantar arch run to the adjacent sides of digits III, IV and V in all apes and $\mathrm{Homo}^{31,70,115}$, II and III in all except Pongo 70 and $1 / 2$ Pan 70, the adjacent sides of digits I and II, and the lateral side of digit V in Pongo alone ${ }^{70}$, and both sides of digit'I in $1 / 2$ Pan 31.

Plantar metatarsals

No information for Pongo.

Four plantar metatarsal arteries are given off from the plantar arch in Homo and Pan 70,115, three in Gorilla ${ }^{70}$ and a single vessel in Hylobates ${ }^{70}$ which subsequently divides.

3.7.2.2 \quad Veins b

3.7.2.2.1 Superficial

3.7.2.2.1.1 Foot

No information for Hylobates.

In Pan and Pongo three superficial veins arise from the dorsal venous arch ${ }^{101,102,}$ while only two are present in Homo ${ }^{115}$.

A medial and a lateral marginal vein are present in Homo^{115}, while in African apes two medial veins and one lateral are found ${ }^{87,101}$, and in Pongo one medial and two lateral veins are present ${ }^{102}$.

3.7.2.2.1.2 Long saphenous

No information for Hylobates.

In Homo the medial marginal vein continues as the long saphenous vein ${ }^{115}$, while in great apes single (Pan, Pongo) or dual (Gorilla) lateral veins occupy this position ${ }^{87}$. 101, 102

A superficial medial vein may be absent from Pan ${ }^{16,32}$.

There is no saphenous opening in Pan ${ }^{14,101}$, unlike Homo and Gorilla ${ }^{14,16,115 .}$

The medial vein of Pongo ${ }^{102}$ and the two medial veins of Gorilla run with the saphenous artery ${ }^{87}$, while the two medial veins of Pan and Gorilla ascend to terminate in the femoral vein ${ }^{87,101}$.

3.7.2.2.1.3 Short saphenous

No information for Hylobates.

The lateral marginal vein of Homo continues as the small saphenous vein ${ }^{115}$, while one of two lateral veins occupies this position in Pongo ${ }^{102}$. In Gorilla the lateral marginal vein joins with a vein from the medial side of the heel to form the small saphenous vein, which subsequently divides into two branches, ascending to unite once more in the popliteal space ${ }^{87}$.

Two venae comitantes unite to form a popliteal vein in Pan^{101}.

3.7.2.3 Lymphatics

Superficial inguinal nodes

No information for Pan, Pongo and Hylobates.

In Homo there are nine to eleven superficial inguinal nodes ${ }^{115}$, and fourteen lymph nodes in the superficial inguinal region in Gorilla ${ }^{87}$.

Popliteal nodes

No information for Hylobates.

Present in Homo, Gorilla and Pongo ${ }^{87,102,115}$, but absent from Pan ${ }^{102}$.

Six or seven popliteal nodes are present in Homo^{115}, compared with four in Gorilla ${ }^{87}$.

3.7.3 Nerves

3.7.3.1 Lumbosacral plexus

Lumbar plexus

The lumbar plexus in Homo, Pan and Pongo consists of the first three lumbar nerves and the greater part of the fourth lumbar nerve ${ }^{101,102,115}$, the first lumbar nerve being supplemented by a branch from the last thoracic nerve in Homo^{115}.

In Pongo, the plexus includes the first four lumbar nerves, but no branch from the last thoracic nerve was found ${ }^{102}$.

Five lumbar nerves are present in Gorilla and Hylobates ${ }^{39}$.

Lumbosacral trunk

The lumbosacral trunk is formed by the fourth and fifth lumbar nerves in Homo, Gorilla and Hylobates ${ }^{39,115}$, and by the third and fourth lumbar nerves in 1/2 Pan ${ }^{101}$ and Pongo ${ }^{39,102}$. The lumbosacral trunk may involve only the fourth lumbar nerve in $P a n^{39}$.

Sacral plexus
In all apes and Homo the lumbosacral trunk forms part of the sacral plexus ${ }^{39,115}$. The first four lumbar nerves may be involved in $P a n^{12}$.

The first four sacral nerves form the rest of the sacral plexus in Homo and 1/3 Pan ${ }^{101 .}$ ${ }^{115}$, while only the first two sacral nerves are involved in the remaining great apes ${ }^{12}$. 39

3.7.3.2 \quad Branches of lumbosacral plexus ${ }^{\text {b }}$

3.7.3.2.1 Muscular branches

Nerve to quadratus femoris and inferior gemellus

This nerve originates from the first sacral nerve in all apes and Homo ${ }^{39,115}$, from the second sacral nerve in Pan and Pongo ${ }^{39}$ and from the fourth and fifth lumbar nerves in Homo^{115}.

It may be given off by the tibial nerve ${ }^{6}$ or the sciatic nerve ${ }^{101}$ in Pan.

The nerve for the inferior gemellus arises independently from the sacral plexus in Pongo ${ }^{39}$.

Nerve to obturator internus and superior gemellus

This nerve arises from the first and second sacral nerves in all apes and Homo ${ }^{39,} 87$, 101, 115 , from the fifth lumbar nerve in $H o m o o^{115}$, and from the third and fourth lumbar nerves in Gorilla ${ }^{87}$.

Nerve to piriformis

No information for Hylobates.
This nerve originates from the first sacral nerve in Homo, Gorilla and Pongo ${ }^{39,} 87,115$, and from the second sacral nerve in Homo ${ }^{115}$, Pan 12,39,101 and $1 / 2$ Gorilla 87. An origin from the lumbosacral trunk is present in $1 / 2$ Gorilla and in Pongo ${ }^{39}$.

The contribution from the first sacral nerve may be absent from Homo as a variation ${ }^{115}$.

It may originate from the peroneal nerve in $P a n^{6}$.
3.7.3.2.2 Genitofemoral See 3.6.3.2

3.7.3.2.3 Lateral cutaneous nerve of thigh

Lateral cutaneous nerve of the thigh

The lateral cutaneous nerve of the thigh has spinal components from the second lumbar nerve in all apes and $\mathrm{Homo}^{6,12,39,101,102,115}$, from the first lumbar nerve in $2 / 4$ Pan 6,12 and Pongo ${ }^{39,102}$, and from the third lumbar nerve in all taxa ${ }^{39,101,115}$, except Pongo ${ }^{39}$ and 2/4 Pan 6,12.

The nerve runs across the surface of iliacus, and its distribution is to the skin over the anterior and lateral surfaces of the thigh in all apes and $\mathrm{Homo}^{39,87,102,115}$.

3.7.3.2.4 Femoral

Femoral

The femoral nerve has spinal components from the second and third lumbar nerves in all apes and $\mathrm{Homo}^{6,12,39,101,102,115}$, additionally from the first lumbar nerve in Pan $^{6 .}$ 12, 39, 101 and Pongo ${ }^{39,102}$, and from the fourth lumbar nerve in all taxa ${ }^{12,39,115}$, except 3/4 Pan ${ }^{6,39,101}$ and Pongo ${ }^{39}$.

The average central point of origin for the femoral nerve is more cranial in Pongo than in African apes and Homo; and most caudal in Hylobates ${ }^{48}$.

Muscular branches innervate iliacus, psoas major, pectineus, sartorius and quadriceps in all apes and Homo ${ }^{\text {12, 39, 87, 101, 102, 115 }}$, psoas minor in African apes and Homo ${ }^{87,106,}$ 115 and gracilis in Pan alone ${ }^{101}$.

In all taxa, the femoral nerve divides into medial and middle cutaneous nerves, and the saphenous nerve ${ }^{39,87,102,115}$.

3.7.3.2.5 Obturator

Obturator

The obturator nerve in all apes and Homo has spinal components from the second, third and fourth lumbar nerves ${ }^{6,12,39,87,101,102,115}$, and may also contain elements from the first lumbar nerve in Pan and Pongo ${ }^{6,12,39,101}$. The origin from the second lumbar nerve may be absent from Hylobates ${ }^{39}$, and that from the fourth lumbar nerve may be absent from African apes ${ }^{12,87}$.

In Homo the points of origin of the femoral and obturator nerves are practically the same ${ }^{115}$. In Gorilla and Asian apes the origin of the obturator is distal to that of the femoral nerve, while in Pan the origin of the obturator is slightly proximal to that of the femoral ${ }^{48}$.

The obturator nerve pierces the oblique posterior ligament of the knee in Homo^{115}, but does not do so in apes ${ }^{39}$.

Muscular branches innervate the adductor muscles, obturator externus and gracilis in all apes and $\mathrm{Homo}^{12,36,39,87,97,115}$, also pectineus in $1 / 2 \mathrm{Pan}^{101}$, and frequently in Homo ${ }^{115}$.

3.7.3.2.6 Superior gluteal

Superior gluteal
The superior gluteal nerve arises from the lumbosacral trunk in all apes and $H o m o^{12}$. 39, 102, 115 , and also from the first sacral nerve in Homo and great apes ${ }^{12,39.102,115}$, but not in Hylobates ${ }^{39}$.

3.7.3.2.7 Inferior gluteal

Inferior gluteal

No information for Gorilla or Hylobates.

The inferior gluteal nerve originates from the second sacral nerve in Homo, Pan and Pongo ${ }^{6,102,115}$, the first sacral nerve in Homo and Pan 6,115, and from the fifth lumbar nerve in Homo^{115}, and the fourth lumbar nerve in Pan^{6}.

It may originate from the superior gluteal nerve in Pan^{101}.

3.7.3.2.8 Posterior femoral cutaneous

Posterior femoral cutaneous

This nerve arises from the first, second and third sacral nerves in Homo ${ }^{115}$, from the superior part of the sacral plexus in apes ${ }^{12,39}$, and from the third and fourth lumbar nerves in $P a n^{12}$.

It originates from the sciatic nerve in Gorilla ${ }^{87}$.
The nerve enters the thigh between two heads of gluteus maximus in Pongo ${ }^{39}$, and subjacent to this muscle in Homo, African apes and Hylobates ${ }^{39,87}$.

Cutaneous branches of the nerve supply the gluteal region, perineum and flexor aspect of the thigh and leg in all apes and $\mathrm{Homo}^{39,115}$.

3.7.3.2.9 Sciatic

The sciatic nerve is formed by the lumbosacral trunk and all the sacral nerves in $H o m o^{115}$, and from the lumbosacral trunk and the first two sacral nerves in apes ${ }^{6,12 .}$ 39, 101, 102. It may also include the upper lumbar nerves in Pan^{12}. Keith places the
central point of origin for the sciatic nerve almost equally in Homo and African apes, but further proximally in Pongo, and further distally in Hylobates ${ }^{48}$.

Muscular branches of the sciatic nerve supply biceps femoris, semitendinosus, semimembranosus and the ischial head of adductor magnus in Homo and great apes 12,87,101,102,115.

The sciatic nerve divides into tibial and common peroneal nerves in all apes and $H o m o{ }^{102,115}$, at the inferior third of the thigh in Homo and Pongo ${ }^{102,115}$, and in the popliteal space in Pan ${ }^{12,101}$, although the bifurcation can be artificially carried more proximally in all apes and $\mathrm{Homo}^{39,115}$.

3.7.3.2.9.1 Tibial

Tibial

The tibial nerve is the larger continuation of the sciatic nerve in all apes and Homo^{39}. 102, 115 , involving the first two sacral nerves in all apes and $\mathrm{Homo}^{39,115}$. It also includes the fourth and fifth lumbar and third sacral nerves in Homo ${ }^{115}$. Muscular branches innervate gastrocnemius, soleus and popliteus in all apes and $H o m o^{39,87,102,115}$, flexor digitorum longus in African apes and Homo ${ }^{73,87,115}$, tibialis posterior and flexor hallucis longus in Homo and Gorilla ${ }^{87,115}$, abductor hallucis in Gorilla ${ }^{87}$, and plantaris in Homo^{115}.

It supplies the lateral side of the foot and digit V in all apes and $\mathrm{Homo}^{39,87,102,115}$.

3.7.3.2.9.1.1 Medial plantar

Medial plantar

The medial plantar nerve is a terminal division of the posterior tibial nerve in all apes and $\mathrm{Homo}^{39,101,115}$.

Muscular branches innervate flexor digitorum brevis, flexor hallucis brevis, and abductor hallucis in all apes and Homo 12, 39, 87, 101, 102, 115 , adductor hallucis in Pan and Pongo ${ }^{39,101,102, ~ t h e ~ m e d i a l m o s t ~ l u m b r i c a l ~ a l o n e ~ i n ~ H o m o ~ a n d ~ G o r i l l a ~}{ }^{39,87,115}$, and the second inner lumbrical in Pan, Pongo and Hylobates ${ }^{39,101 .}$

Cutaneous branches run to the adjacent sides of digits I to IV in all apes and Homo ${ }^{39}$, 87, 101, 102, 115 except Hylobates in which they reach the adjacent sides of digits I to III ${ }^{39}$.

3.7.3.2.9.1.2 Lateral plantar

Lateral plantar

The lateral plantar nerve is a terminal division of the posterior tibial nerve in all apes and $\mathrm{Homo}{ }^{39,101,115}$.

Muscular branches innervate abductor digiti minimi, flexor digiti minimi brevis, and the muscles of the fourth interspace, the interossei and lumbricals in all apes and $H o m o{ }^{39,87,101,115}$, flexor accessorius (when present) in great apes and Homo ${ }^{39,115}$, and adductor hallucis in all apes and $\mathrm{Homo}^{9,} 39,73,87,101,115$.

Cutaneous branches run to the lateral one and a half digits in all apes and $\mathrm{Homo}{ }^{39,87,}$ ${ }^{115}$, extending to the adjacent sides of digits III and IV in great apes ${ }^{39}$.

3.7.3.2.9.2 Common peroneal

Common peroneal

The second main division of the sciatic nerve, the common peroneal nerve arises from the lumbosacral trunk in all apes and $\mathrm{Homo}^{39,115}$, and from the first and second sacral nerves in Homo^{115}.

The nerve ends deep to peroneus longus in Homo and 1/2 Gorilla ${ }^{87,115}$, but in the substance of peroneus longus in Pan, 1/2 Gorilla and Asian apes ${ }^{39}$, in all taxa by dividing into superficial and deep peroneal nerves ${ }^{39,87,101,115}$.

3.7.3.2.9.2.1 Deep peroneal (anterior tibial)

Deep peroneal

No information for Hylobates.

Muscular branches are given to tibialis anterior, extensor hallucis longus, extensor digitorum longus in Homo, Gorilla and Pongo ${ }^{87,102,115}$, peroneus tertius in Homo ${ }^{115}$ and flexor digitorum brevis in Pan^{101}.

The nerve does not reach the foot in Pongo ${ }^{39,91,102}$, unlike Homo and African apes ${ }^{39 .}$ 87, 115

The digital supply of the deep peroneal nerve involves digits II and III in Homo and African apes ${ }^{39,87,101,115}$, digit I in Homo and Pan ${ }^{101,115}$ and IV in Homo ${ }^{115}$.

3.7.3.2.9.2.2 Superficial peroneal

Superficial peroneal

The superficial peroneal nerve in all apes and Homo innervates the peroneal muscles, and the skin of the dorsum of the foot with the exception of the borders of the sole,
the lateral side of digit V and the medial side of digit $\mathrm{I}^{39,87,91,102,115}$. In Homo and Pan it does not supply the medial side of digit $\mathrm{II}^{39} 101,115$.

BIBLIOGRAPHY

1. Appleton, AB (1922): On the hypotrochanteric fossa and accessory adductor groove of the primate femur. J.Anat.Phys. 56, p295-306.
2. Barnard, WS (1875): Observations on the membral musculation of Simia satyrus (Orang) and the comparative myology of man and the apes. Proc.Am.Assoc.Advanc.Sci. 24, p112-144.
3. Beddard, FE (1893): Contributions to the anatomy of the anthropoid apes. Trans.Zool.Soc.Lond. 13, p177-218.
4. Bischoff, TLW (1870): Beiträge zur Anatomie des Hylobates leuciscus and zu einer vergleichenden Anatomie der Muskeln der Affen und des Menschen. Abh.Bayer.Akad.Wiss.München. Math.Phys.Kl. 10, p197-297.
5. Blake, ML (1967): The quantitative myology of the hind limb of Primates with special reference to their locomotor adaptations. PhD Thesis, Magdalene College, University of Cambridge.
6. Bolk, L (1921): The relations between the ductless glands and evolution of the Primates. Lancet. p588-592.
7. Boyer, EL (1935): The musculature of the inferior extremity of the orang-utan Simia satyrus. Am.J.Anat. 56(2), p192-256.
8. van den Broek, AJ (1914): Studien zur Morphologie des Primatenbeckens. Morphol.Jahrb. 49, pl-118.
9. Brooks, HSJ (1887): On the short muscles of the pollex and hallux of the anthropoid apes, with special reference to the opponens hallucis. J.Anat.Phys. 22, p78-95.
10.Brown, JM (1881): The femoral artery in apes. J.Anat.Phys. 15, p523-535.
11.Brown, B (1983): An evaluation of primate caudal musculature in the identification of the ischiofemoralis muscle. Am.J.Phys.Anthropol. 60, p177178 (Abst).
12.Champneys, F (1872): On the muscles and nerves of a chimpanzee (Troglodytes niger) and a cynocephalus anubis. J.Anat.Phys. 6, p176-211.
13.Chapman, HC (1878): On the structure of the gorilla. Proc.Zool.Soc.Lond. p385394.
14.Chapman, HC (1879): On the structure of the chimpanzee. Proc.Zool.Soc.Lond. p52-63.
15.Chapman, HC (1880): On the structure of the orang outang. Proc.Zool.Soc.Lond. p160-174.
16.Chapple, CR and Wood, BA (1980): Venous drainage of the hind limb in the monkey (Macaca fascicularis). J.Anat. 131, p157-171.
17.Church, WS (1861/2): On the myology of the orang utang (Simia morio). Nat.Hist.Review. 1, p510-516; 2, p89-94, 414-423.
18.Deniker, J (1885/6): Recherches anatomiques et embryologiques sur les singes anthropoides: Foetus de gorille et de gibbon. Arch.Zool.Exp.Gen. Ser.2, 3(3), p1-265.
19.Duckworth, WLH (1898): Note on a foetus of Gorilla savagei. J.Anat. 33, 82-90.
20.Duvernoy, M (1853): Cited in Brooks(1887).
21.Duvernoy, M (1855-6): Des caractères anatomiques de grands singes pseudoanthropomorphes. Arch.Mus.Natl.Hist.Nat.(Paris). 8, pl-248.
22.Dwight, T (1895): Notes on the dissection and brain of the chimpanzee "Gumbo". Mem.Boston Soc.Nat.Hist. 5, p31-51.
23.Eisler, P (1890): Das Gefäss- und periphere Nervensystem des Gorilla. Tausch and Grosse, Halle.
24.Eisler, P (1895): Die Homologie der Extremitaeten. Abh.Naturforsch.Ges. Halle. 19, p87-346.
25.Embleton (1864): Cited in Chapman(1879)
26.Fick, R (1895): Vergleichend-anatomische Studien an einem erwachsenen Orangutang. Arch.Anat.Physiol. Anat.Abt. p1-100.
27.Flower, WH and Murie, J (1867): Account of the dissection of a bushwoman. J.Anat.Phys. 1, p189-208.
28.Forster, A (1903): Die Insertion des Musculus semimembranosus. Arch.Anat.Physiol. Anat.Abt. p257-320.
29.Frey, H (1913): Der Musculus triceps surae in der Primatenreihe. Morphol.Jahrb. 47, p1-192.
30.Fürst, CM (1903): Der Musculus Popliteus und seine Sehne. E.Malstrom, Lund.
31.Glidden, EM and De Garis, CF (1936): Arteries of the chimpanzee. I. The aortic arch; II. Arteries of the upper extremity; III. The descending aorta; IV. Arteries of the lower extremity. Am.J.Anat. 58(2), p501-527.
32.Gratiolet, LP and Alix, PHE (1866): Recherches sur l'anatomie de Troglodytes aubryi, chimpanzé d'une espéce nouvelle. Nouv.Arch.Mus.Natl.Hist.Nat.(Paris). 2, pl-264.
33.Gregory, WK (ed) (1950): The anatomy of the Gorilla. Columbia University Press, New York.
34.Hafferl, A (1929): Bau und Funktion des Affenfusses. Ein Beitrag zur Gelenk und Muskel-mechanik. Z.Anat.Entwicklungsgesch. 88, p749-783.
35.Hallisy, JE (1930): The muscular variations in the human foot. A quantitative study. Am.J.Anat. 45, p411-442.
36.Hamada, Y (1985): Primate hip and thigh muscles: comparative anatomy and dry weights; In: Kondo,S (ed); Primate Morphophysiology, Locomotor Analyses and Human Bipedalism. University of Tokyo Press, Tokyo; p131-152.
37.Hartmann, R (1883): Cited in MacDowell(1910).
38.Hecker, P (1922): Formation du peronier anterieur chez un chimpanzee. Arch.Anat.Histol.Embryol. 1, p147-155.
39.Hepburn, D (1892): The comparative anatomy of the muscles and nerves of the superior and inferior extremities of the anthropoid apes. J.Anat.Phys. 26, p149-186, 324-356.
40.Humphry, GM (1866/7): On some points in the anatomy of the chimpanzee. J.Anat.Phys. 1, p254-268.
41.Huxley, TH (1864): Lectures on the structure and classification of the Mammalia. Med.Times and Gaz.(London). 1, p564-565.
42.Jungers, WL; Meldrum, DJ and Stern, JT (1993): The functional and evolutionary significance of the human peroneus tertius muscle. J.Hum.Evol. 25, p377-386.
43.Kaneff, A (1986): Die Aufrichtung des Menschen und die morphologisches Evolution der Musculi extensores digitorum pedis unter dem Gesichtpunkt der evolutiven Myologie. Teil I. Gegenbaur's Morphol.Jahrb. 132, p375-419.
44.Kaplan, EB (1958a): The iliotibial tract. Clinical and morphological significance. J.Bone.Jt.Surg. 40A, p817-832.
45.Kaplan, EB (1958b): Comparative anatomy of the extensor digitorum longus in relation to the knee joint. Anat.Rec. 131(2), p129-149.
46.Keats, TE (1988): Atlas of normal roentgen variants that may simulate disease. Year Book Medical Publ., Chicago.
47.Keith, A (1894): The myology of the catarrhini: A study in evolution. PhD thesis. University of Aberdeen.
48.Keith, A (1902): The extent to which the posterior segments of the body have been transmuted and suppressed in the evolution of man and allied primates. J.Anat.Phys. 37, p18-40.
49.Keith, A (1923): The adaptational machinery concerned in the evolution of man's body. Nature. 112, p257-268.
50.Kimura, K and Takahashi, Y (1985): The peroneus tertius muscle in the crabeating monkey (Macaca fascicularis). Okajimas Folia Anat.Jpn. 62, p173186.
51.Kohlbrügge, JHF (1890/91): Versuch einer anatomie des Genus Hylobates. Muskeln und periphere Nerven. Zoologische Ergebnisse einer Reise in Niederländisch Ost-Indien. 1, p211-354; 2, p139-206. E.J.Brill; Leiden.
52.Kohlbrügge, JHF (1897): Muskeln und Periphere Nerven der Primaten, mit besonderer Berücksichtigung ihrer Anomalien.
Verh.K.Akad.Wet.Amsterdam. Section 2, 5(6), pl-246.
53.Kumakura, H (1989): Functional analysis of the biceps femoris muscle during locomotor behavior in some primates. Am.J.Phys.Anthropol. 79, p379-391.
54.Langer, C (1879): Die Muskeln der Extremitäten des Orang als Grundlage einer vergleichend-anatomischen Untersuchung. Sitzungsber.Kaiserl.Akad.Wiss.Wien. Math.-Naturwiss.Cl. 80, p177-222.
55.Latimer, B and Lovejoy, CO (1989): The calcaneus of Australopithecus afarensis and its implications for the evolution of bipedality. Am.J.Phys.Anthropol. 78, p369-386.
56.Le Double, F (1897): Traité des variations du système musculaire de l'homme et de leur signification au point de vue de l'anthropologie zoologique, I et II. Librairie C.Reinwald, Paris.
57.Le Minor, JM (1992): Brief communication: The popliteal sesamoid bone (cyamella) in primates. Am.J.Phys.Anthropol. 87, p107-110.
58.Lewis, OJ (1962): The comparative morphology of M.flexor accessorius and the associated long flexor tendons. J.Anat. 96, p321-333.
59.Lewis, OJ (1964a): The evolution of the long flexor muscles of the leg and foot. Int.Rev.Gen.Exp.Zool. 1, p165-185.
60.Lewis, OJ (1964b): The tibialis posterior tendon in the primate foot. J.Anat. 98, p209-218.
61.Lewis, OJ (1966): The phylogeny of the cruropedal extensor musculature with special reference to the primates. J.Anat. 100, p865-880.
62.Loth, E (1908): Die Aponeurosis plantaris in der Primaten reihe. Gegenbaurs Morphol.Jahrb. 38, p194-322.
63.Loth, E (1914): Zur Anthropologie der Plantaraponeurose. Morphol.Jahrb. 48, p83-96.
64.Loth, E (1931): Anthropologie des parties molles (muscles, intestins, vaisseaux, nerfs peripheriques). Mianowski-Masson et Cie, Varsovie, Paris.
65.MacAlister, A (1871): On some points in the myology of the chimpanzee and of the primates. Ann.Mag.Nat.Hist. 7(2), p341-351.
66.MacAlister, A (1873): The muscular anatomy of the gorilla. Proc.Royal Irish Acad. 11, p501-506.
67.MacDowell, EC (1910): Notes on the myology of Anthropopithecus niger and Papio-thoth ibeanus. Am.J.Anat. 10, p431-460.
68.McMinn, RMH (1990): Last's Anatomy: regional and applied; 8th ed. Churchill Livingstone, Edinburgh.
69.Manners-Smith, T (1908): A study of the cuboid and os peroneum in the primate foot. J.Anat.Phys. 42, p397-414.
70.Manners-Smith, T (1912): The limb arteries of primates. Part 1. J.Anat.Phys. 46, p95-172.
71.Michaëlis, P (1903): Beiträge zur vergleichenden Myologie des Cynocephalus babuin, Simia satyrus, Troglodytes niger. Arch.Anat.Phys. Anat.Abt. p205256.
72.Miller, RA (1945): The ischial callosities of primates. Am.J.Anat. 76, p67-87.
73.Miller, RA (1952): The musculature of Pan paniscus. Am.J.Anat. 91(2), p182232.
74.Morton, DJ (1922): Evolution of the human foot. Part 1. Am.J.Phys.Anthropol. 5, p305-336.
75.Morton, DJ (1924): The peroneus tertius muscle in gorillas. Anat.Rec. 27(5), p323-328.
76.Mysberg, WA (1917): Über die Verbinderungen zwischen dem Sitzbeine und der Wirbelsäule bei den Säugetieren. Anat.Hefte. 54, p641-668.
77.Owen, R (1830/1): On the anatomy of the orangutan (Simia satyrus, L.). Proc.Zool.Soc.Lond. 1, p4-5,9-10, p28-29,66-72.
78.Oxnard, CE and Lisowski, FP (1980): Functional articulation of some hominoid foot bones: Implications for the Olduvai (Hominid 8) foot. Am.J.Phys.Anthropol. 52, p107-117.
79.Pearson, K and Davin, AG (1921): On the sesamoids of the knee joint. Biometrika. 13, pl33-175, 350-400.
80.Pira, A (1914): Beiträge zur Anatomie des Gorilla. I. Das Extremitätenmuskelsystem. Morphol.Jahrb. 48, p167-238.
81.Popowsky, J (1895): Das Arteriensystem der unteren Extremitäten bei den Primaten. Anat.Anz. 10, p55-80, 99-114.
82.Prejzner-Morawska, A and Urbanowicz, M (1971): The biceps femoris muscle in lemurs and monkeys. Folia Morphol. 30, p465-482.
83.Preuschoft, H (1961): Muskeln und Gelenke der Hinterextremitat des Gorillas. Morphol.Jahrb. 101, p432-540.
84.Primrose, A (1899): The anatomy of the Orang-outang (Simia satyrus), an account of some of its external characteristics; and the myology of the extremities. Trans.R.Can.Inst. 6, p507-594.
85.Primrose, A (1900): The anatomy of the orang-outang. Univ.of Toronto Studies. Anat.series 1, pl-94.
86.Ranke, K (1897): Muskel- und Nervenvariationen der dorsalen elemente des Plexus ischiadicus der Primaten. Arch.Anthropol. 24, pl17-144.
87.Raven, HC (1950): Regional anatomy of the Gorilla. In: Gregory,WK(ed); The anatomy of the Gorilla. Columbia University Press, New York; p 15-188.
88.Robinson, JT; Freedman, L and Sigmon, BA (1972): Some aspects of pongid and hominid bipedality. J.Hum.Evol. 1, p361-369.
89.Rolleston, G (1867/8): Cited in Champneys(1872).
90.Rózycki, S (1922): Cited in Urbanowicz and Prejzner-Morawska(1972).
91.Ruge, G (1878a): Untersuchung uber die Extensorengruppe aus Unterschenkel und Füsse der Säugethiere. Morphol.Jahrb. 4, p592-643.
92.Ruge, G (1878b): Zur vergleichenden Anatomie der tiefen Muskeln in der Fusssohle. Morphol.Jahrb. 4, p644-659.
93.Sandifort, G (1840): Ontleedkundige beschouwing van een' volwassen Orangoetan (Simia satyrus, Linn.) van het mannelijk geslacht. In: Temminck,CJ; Verhandelingen over de Natuurlijke geschiedenis der Nederlandische overzeesche bezittingen, door de leden der Natuurkundige commissie in Indië en andere Schrijvers(Zoologie). 3, p29-56, Leiden.
94.Sarmiento, EE (1983): The significance of the heel process in anthropoids. Int.J.Primatol. 4, p127-152.
95.Sawalaschin, M (1911): Die musculus flexor communis brevis digitorum pedis in der Primatenreihe mit spezielier Berücksichtigung des Menschlichen Varietäten. Morphol.Jahrb. 42, p557-663.
96.Sigmon, BA (1969): The scansorius muscle in pongids. Primates. 10, p247-261.
97.Sigmon, BA (1974): A functional analysis of pongid hip and thigh musculature. J.Hum.Evol. 3, p161-185.
98.Slanina, J (1956): Fabella distalis: A new sesamoid bone. Radiol.Clin. 25, p274277.
99.Sneath, RS (1955): The insertion of the biceps femoris.J.Anat. 89, p550-553.
100.Sommer, A (1907): Das Muskelsystem des Gorilla. Jena.Z.Naturwiss. 42, p181308.
101.Sonntag, CF (1923): On the anatomy, physiology, and pathology of the chimpanzee. Proc.Zool.Soc.Lond. 23, p323-429.
102.Sonntag, CF (1924): On the anatomy, physiology, and pathology of the orangoutan. Proc.Zool.Soc.Lond. 24, p349-450.
103.Stern, JT (1972): Anatomical and functional specializations of the human gluteus maximus. Am.J.Phys.Anthropol. 36, p315-340.
104.Straus, WL Jr (1930): The foot musculature of the highland gorilla (Gorilla beringei). Q.Rev.Biol. 5, p261-317.
105.Sutton, JB (1883): On some points in the anatomy of the chimpanzee (Anthropopithecus troglodytes). J.Anat.Phys. 18, p66-85.
106.Swindler, DR. and Wood, CD (1973): An atlas of primate gross anatomy; baboon, chimpanzee, and man. University of Washington Press, Seattle.
107.Tappen, NC (1955): Relative weights of some functionally important muscles of the thigh, hip and leg in a gibbon and in man. Am.J.Phys.Anthropol. 13(3), p415-420.
108.Terry, RJ (1942): Absence of the superior gemellus muscle in American whites and Negroes. Am.J.Phys.Anthropol. 29, p47-56.
109.Testut, L (1884): Les anomalies musculaires chez l'homme expliquées par l'anatomie comparée. Leur importance en anthropologie. G.Masson, Paris.
110.Traill, T (1817): Anatomy of a chimpanzee. Mem.Wernerian Nat.Hist.Soc.Edinb. 3, pl-149.
111.Turner, W (1864): Cited in Lewis(1962).
112.Urbanowicz, M and Prejzner-Morawska, A (1972): The triceps surae muscle in chimpanzees. Folia Morphol. 31, p433-440.
113.Vallois, H (1914): Étude anatomique de l'articulation du genou ches les Primates. L'Abeille, Montpellier.
114.Vrolik, W (1841): Recherches d'anatomie comparée, sur le chimpansé. Johannes Miller, Amsterdam.
115.Warwick, P and Williams, PL (1973): Gray's Anatomy. 35th British Edition. Saunders Co., Philadelphia.
116.Waterman, HC (1929): Studies on the evolution of the pelvis of man and other primates. Bull.Am.Mus.Nat.Hist. 55, p585-642.
117.Wells, LH (1952): The flexor digitorum brevis muscle in the foot of the South African negro. J.Anat. 86, p486.
118.Van Westrienen, A (1907): Das Kniegelenk der Primaten, mit besonderer Berücksichtigung der Anthropoiden. Petrus Camper. 4, pl-60.
119.Wilder, B (1862): Contributions to the comparative myology of the chimpanzee. Boston J.Nat.Hist. 6, p352-384.
120.Wood, J (1867): On human muscular variations and their relation to comparative anatomy. J.Anat.Phys. 1, p44-59.
121.Yirga, S (1987): Interrelation between ischium, thigh extending muscles and locomotion in some primates. Primates. 28(1), p79-86.
122.Zihlman, A and Brunker, L (1979): Hominid bipedalism: Then and now. Yearb.Phys.Anthropol. 22, p132-162.
123.Zuckerman, S (1895): Cited in Glidden and De Garis (1936).

CHAPTER 4

STATISTICAL RESULTS AND DISCUSSION

4.1 RESULTS OF PARSIMONY AND BOOTSTRAP ANALYSES

4.1.1 First hypothesis

The principal hypothesis tested in this thesis was the ability of soft tissue anatomical characters to reconstruct a pattern of cladistic relationships among the extant hominoids that was consistent with the consensus molecular phylogenetic tree (see Figure 4.1).

The results of the bootstrap analysis, and the length and fit measures for the most parsimonious trees of Datasets A and B (after the exclusion of the uninformative characters) are shown below.

Of the original 200 characters of Dataset A, 45 were excluded as uninformative, while of the original 130 characters of Dataset $B, 16$ were excluded as uninformative.

	Dataset A	Dataset B
Potential clade	Frequency	Frequency
Pan-Homo	92	42
Gorilla-Pan-Homo	85	96
Pongo-Pan-Homo	12	>0.1
Gorilla-Homo	3	13
Pongo-Pan	2	1
Pongo-Gorilla	2	3
Pongo-Gorilla-Homo	1	-
Pongo-Gorilla-Pan	1	4
Pongo-Homo	>1	42
Gorilla-Pan	293	182
Length	0.65	0.75
CI	0.34	0.60
RI		

Table 4.1. Bootstrap values (\%) for datasets A and B, and lengths, CI and RI of tree 2 (Dataset $\mathrm{A}, 155$ characters) and tree 3 (Dataset $\mathrm{B}, 114$ characters). $\mathbf{C I}=$ Consistency index, RI = Retention index.

Bootstrap analysis of Dataset A supports the hypothesis that soft tissue anatomy can be used to reconstruct the cladistic relationships between the Hominoidea.

Both the Homo-Pan and Homo-Gorilla-Pan cladistic groups are significantly favoured, with bootstrap values of 92% and 85% respectively.

Neither Gorilla-Homo or Gorilla -Pan, the main alternative cladistic groupings, are significantly supported by Dataset A. Dataset B differs from Dataset A in weakly supporting Gorilla-Pan (42\%), in fact, at a very similar level to that at which Dataset B supports the favoured molecular consensus clade Pan-Homo ${ }^{156}$.

Figure 4.1. Tree 1. Consensus molecular tree.

Treelength: 293
Cl: 0.65
RI: 0.34

Figure 4.2. Tree 2. Most parsimonious tree generated by Dataset A (155 characters).

Treelength: 213+
CI: 0.78
RI: 0.60

Figure 4.3. Tree 3. Most parsimonious tree generated by Dataset B (114 characters).

As Dataset B consists mainly of skeletal and dental characters, it is possible that these anatomical structures are subject to more homoplasy than the soft tissue characters of Dataset A. Collard found cranial and dental characters to be unreliable in the reconstruction of cladistic relationships between catarrhine species and genera ${ }^{21}$.

4.1.2 Second hypothesis

The second hypothesis tested was whether different regions of the body differ in their ability to reconstruct the cladistic relationships between the genera.

The results of the bootstrap analysis, and the length and fit measures for the most parsimonious cladograms of subsets A1 and A2 (after the exclusion of the uninformative characters) are shown below.

Of the original 71 characters of Subset A1, 15 were excluded as uninformative, while of the original 71 characters of the Subset A2, 16 characters were excluded as uninformative.

	A1 (upper limb)	A2 (lower limb)
Potential clade	Frequency	Frequency
Pan-Homo	69	73
Gorilla-Pan-Homo	74	15
Pongo-Pan-Homo	12	8
Gorilla-Homo	13	5
Pongo-Pan	10	4
Pongo-Gorilla	5	69
Pongo-Gorilla-Homo	10	20
Pongo-Gorilla-Pan	>1	>1
Pongo-Homo	9	>0.1
Gorilla-Pan	102	100
Tree length	0.65	0.65
CI	0.36	0.36
RI		

Table 4.2. Bootstrap values (\%) for subsets A1 and A2, with tree lengths and CI for corresponding trees 4 (56 characters) and 5 (55 characters). $\mathbf{C I}=$ Consistency index, $\mathrm{RI}=$ Retention index.

The bootstrap analysis does show a difference in the clades reconstructed using the two regional subsets. Both subsets provide good support for the Pan-Homo clade, although A1 provides a bootstrap value slightly less than the 70% level required for strong support (69\%). A2 shows a slightly higher bootstrap value (73\%) than for A1. However, Subset A1 also provides strong support for the African ape-Homo clade (74\%), which is not the case for Subset A2 (15\%).

Treelength: 102
CI: 0.65
RI: 0.36

Figure 4.4. Tree 4. Most parsimonious tree generated by subset A1 (56 characters).

Treelength: 100
Cl: 0.65
RI: 0.36

Figure 4.5. Tree 5. Most parsimonious tree generated by subset A2 (55 characters).

Additionally, Subset A2 gives good support, although at less than 70\%, to a PongoGorilla clade (69\%). This grouping is not favoured by the consensus molecular cladogram.

This may suggest that with regard to Pongo and Gorilla the lower limb is subject to different levels of homoplasy than the upper limb, the "true" cladistic relationships being masked by convergence, reversals or parallelisms.

4.2 ReSUlTS OF BRaNCH SWAPPING WITH MacClade

4.2.1 Dataset A

Relationships	Tree length (steps)	Number of extra steps	CI; RI
Pan-Homo	293	0	$0.65 ; 0.34$
Pongo-Pan-Homo	301	8	$0.63 ; 0.28$
Gorilla-Homo	304	11	$0.63 ; 0.26$
Pongo-Gorilla	306	13	$0.62 ; 0.25$
Gorilla-Pan	307	14	$0.62 ; 0.25$
Pongo-Pan	309	18	$0.61 ; 0.23$
Pongo-Homo	311	19	$0.61 ; 0.21$
Pongo-Gorilla-Pan	312	20	$0.61 ; 0.21$
Pongo-Gorilla-Homo	313		

Table 4.3. Results of branch-swapping within the Hominoidea, based on dataset A and tree 2. $\mathbf{C I}=$ Consistency index, $\mathrm{RI}=$ Retention index.

Based on branch-swapping, the following phylogenetic groupings are all within 5\% of the tree length of the most parsimonious tree: Pongo-Pan-Homo, Gorilla-Homo, Pongo-Gorilla and Gorilla-Pan. Therefore, the two alternative groupings within the African ape-Homo clade are not significantly less supported by the tree topology than
the preferred Pan-Homo clade, although Gorilla-Pan appears to be less supported than Gorilla-Homo.

4.2.2 Upper limb

Relationships	Tree length (steps)	Number of extra steps	CI; RI
Pan-Homo	102	0	$0.65 ; 0.36$
Gorilla-Homo	105	3	$0.63 ; 0.30$
Gorilla-Pan	106	4	$0.62 ; 0.29$
Pongo-Pan-Homo	107	5	$0.62 ; 0.27$
Pongo-Gorilla-Pan	108	6	$0.61 ; 0.25$
Pongo-Pan	109	7	$0.61 ; 0.23$
Pongo-Gorilla	113	11	$0.58 ; 0.16$
Pongo-Gorilla-Homo	113	11	$0.58 ; 0.16$
Pongo-Homo	115	13	$0.57 ; 0.13$

Table 4.4. Results of branch-swapping within the Hominoidea, based on Subset A1 and tree 4. $\mathbf{C I}=$ Consistency index, RI $=$ Retention index.

Similarly to the branch-swapping results for Dataset A, the two main alternative groupings among the Hominoidea are less than 5% from the tree length of the most parsimonious tree. However, Pongo-Gorilla, which in Dataset A was within the 5\% boundary, is significantly less supported by the upper limb Subset A1.

4.2.3 Lower limb

Relationships	Tree length (steps)	Number of extra steps	CI; RI
Pongo-Gorilla	100	0	$0.65 ; 0.36$
Pan-Homo	103	3	$0.63 ; 0.31$
Pongo-Pan-Homo	104	4	$0.63 ; 0.29$
Pongo-Gorilla-Homo	107	7	$0.61 ; 0.24$
Gorilla-Homo	109	10	$0.60 ; 0.20$
Pongo-Pan	110	10	$0.59 ; 0.18$
Pongo-Gorilla-Pan	110	11	$0.59 ; 0.16$
Pongo-Homo	111	112	0.18
Pan-Gorilla			$0.58 ; 0.15$

Table 4.5. Results of branch-swapping within the Hominoidea, based on Subset A2 and tree 5.
$\mathbf{C I}=$ Consistency index, $\mathbf{R I}=$ Retention index.
Despite the appearance of a Pongo-Gorilla clade as the most parsimonious
reconstruction for Subset A2, Pan-Homo and Pongo-Pan-Homo are within 5\% of the tree length. The two main alternative groupings within the African ape-Homo clade, Pan-Gorilla and Gorilla-Homo, are significantly less supported by lower limb Subset A2.

4.3 SYNAPOMORPHIES FOR HOMO, PAN AND GORILLA

4.3.1 Dataset A

Using Dataset A, there are 60 synapomorphies for African apes and Homo, of which a total of 38 synapomorphies have a CI of 1.0 , as follows:
$1(0 \rightarrow 1), 10(0 \rightarrow 2), 16(0 \rightarrow 1), 32(0 \rightarrow 1), 33(0 \rightarrow 1), 58(0 \rightarrow 2), 59(0 \rightarrow 1), 62$
$(0 \rightarrow 1), 66(1 \rightarrow 0), 69(0 \rightarrow 1), 71(0 \rightarrow 1), 82(0 \rightarrow 1), 83(0 \rightarrow 1), 86(0 \rightarrow 1), 96(0 \rightarrow 1)$, $99(0 \rightarrow 2), 101(0 \rightarrow 1), 103(0 \rightarrow 1), 110(0 \rightarrow 1), 113(0 \rightarrow 1), 120(0 \rightarrow 2), 121(0 \rightarrow 1)$,
$123(0 \rightarrow 2), 129(0 \rightarrow 1), 131(1 \rightarrow 0), 140(0 \rightarrow 1), 142(0 \rightarrow 1), 145(0 \rightarrow 1), 147(0 \rightarrow 1)$, $153(0 \rightarrow 3), 161(0 \rightarrow 2), 163(0 \rightarrow 1), 166(0 \rightarrow 1), 173(0 \rightarrow 1), 174(0 \rightarrow 1), 179(0 \rightarrow 1)$, $184(0 \rightarrow 1), 189(0 \rightarrow 1)$ and $198(0 \rightarrow 2)$.

In addition, there are seven other relatively good synapomorphies, but with a CI of less than 1.0. They are characters $13(0 \rightarrow 1,0.67), 102(0 \rightarrow 1,0.67), 108(0 \rightarrow 1$, $0.67), 124(0 \rightarrow 1,0.67), 125(0 \rightarrow 2,0.67), 156(0 \rightarrow 2,0.67)$ and $196(0 \rightarrow 2,0.67)$.

This clade is well supported by dataset A, with a bootstrap value of 85%.
Shoshani et al. also found this clade well supported, quoting a bootstrap value of $99 \%{ }^{158}$. However, having rerun their dataset (Dataset B), I have found a bootstrap value of 96% for the African ape-Homo clade.

Of the characters with a CI of 1.0 , some appear more informative and will be discussed by region.

4.3.1.1 Lower limb and pelvic girdle

Characters that appear to be particularly informative for the African ape-Homo clade are character 1 (state 1), piriformis sometimes unfused with gluteus medius; character 16 (state 1), the absence of the insertion of adductor magnus into the inferior border of the insertion of quadratus femoris; character 32 (state 1), peroneus brevis may insert onto the second and third phalanges of digit V ; and character 189 (state 1), psoas minor innervated by the femoral nerve.

Piriformis in Homo rotates the extended thigh laterally, but abducts the flexed thigh ${ }^{193}$, also playing a role in extension of the thigh ${ }^{51}$. Actions produced by piriformis in all apes are lateral rotation and abduction at the hip ${ }^{160}$. It appears that
piriformis in apes, including African apes, has a reduced role in extension of the thigh. In human bipedal gait, extension of the hip is important at the midstance phase of the stride when the whole weight of the body is over the supporting foot and at toe-off when the body weight passes over the hallux.

The anterior fibres of gluteus medius in Homo act as a medial rotator and flexor of the hip, and the posterior part as a lateral rotator and extensor of the hip, while the whole muscle can function as an abductor ${ }^{51,64}$. Along with gluteus minimus, gluteus medius acts to counteract the dipping of the pelvis on the unsupported side during walking, running and the carrying of loads in one hand ${ }^{64,106}$, and is inactive during symmetrical standing ${ }^{193}$. In apes, gluteus medius is an important thigh extensor, and also acts in abduction and medial rotation of the thigh at the hip joint ${ }^{1,160,201}$. In African apes, the gluteus medius is relatively much larger than the gluteus medius of Homo, reflecting its increased importance in African apes as an extensor of the thigh at the hip joint ${ }^{1}$.

That these two muscles are sometimes unfused in African apes and Homo may reflect the necessity for a greater range of independent muscular action at the hip joint, enabling the muscles to respond at slightly different times. The motor point for gluteus medius is adjacent to the superior margin of the piriformis in Homo^{14} while other studies on the innervation of the two muscles suggest that piriformis consists of a caudal element of gluteus medius, and possibly also a caudal element of gluteus minimus ${ }^{3}$. The inconsistent appearance of this fusion leads to the supposition that either this is a derived feature relative to the Asian apes, and thus an adaptation for terrestrial locomotion as opposed to the mainly arboreal locomotor activity of the Asian apes, or that it is a symplesiomorphic feature, perhaps related to vertical
climbing activity, which was subsequently lost in Pongo and Hylobates. However, a similar separation of functionally-related components, in this case of the gluteus minimus into the ventrolateral scansorius and the caudomedial gluteus minimus component, occurs in Pongo ${ }^{159}$. It seems unlikely that Pongo, with its predisposition toward a flexible hip joint, would have secondarily lost one adaptation for freedom of movement, only to develop another, very similar one. Therefore, as a synapomorphy of African apes and Homo, the lack of fusion between piriformis and gluteus medius indicates either a adaptation for terrestrial locomotion, or to a variety of arboreal activity not shown by Pongo.

Adductor magnus in Homo is essentially a synergist and controller of posture ${ }^{\text {105. 193 }}$, and a powerful adductor, particularly in crossing the legs ${ }^{51}$. The part that reaches the medial epicondyle is responsible for medial rotation of the laterally rotated and flexed leg ${ }^{26,51,131}$ and extension of the thigh at the hip joint, also showing activity during flexion and extension of the knee ${ }^{48}$. However, other authors state that in Homo the adductor magnus has lost its function of thigh extension and has become exclusively an adductor ${ }^{125}$ due to the downward orientation of the human ischium, unlike the posteriorly-protruded ischium of nonhuman primates (NHPs). Gluteus maximus has taken over the thigh extension function in Homo^{199}. In apes, as in Homo, adductor magnus functions as a thigh extensor, powerful adductor and medial rotator of the thigh ${ }^{124,160}$. However, Sigmon also states that in apes the long head of adductor magnus is responsible for lateral rotation of the thigh, while the short head also acts as a flexor of the thigh ${ }^{160}$. In human bipedal gait at heel strike the hip is flexed, the knee extended and the leg laterally-rotated. The adductor muscles then pull the weight of the body over the supporting limb.

Quadratus femoris in Homo is a strong lateral rotator and adductor of the thigh ${ }^{51}$. Sigmon however, states that in apes quadratus femoris is an abductor and a lateral rotator of the thigh at the hip joint ${ }^{160}$. The apparent disparity in function between humans and apes may be real, or could be the result of typographic error.

In a similar fashion to character 1 , this character reveals a lack of fusion between two muscles acting at the hip joint in African apes and Homo, once more indicating a greater range of independent muscular action at the joint.

Peroneus brevis in Homo may prevent excessive inversion of the foot, relieving the stress on the lateral part of the interosseous talocalcanean, lateral talocalcanean and calcaneofibular ligaments. It participates in the eversion of the foot, and may help to steady the leg on the foot ${ }^{193}$, pronating and plantar flexing the foot along with peroneus longus ${ }^{61}$, and limiting ankle dorsiflexion, particularly in fast pace running ${ }^{128}$. In Homo peroneus brevis is active during the second half of the stance phase when weight is transferred onto the anterior part of the foot and medially onto the ball of the foot ${ }^{50,130,166}$. However, in Pan, peroneus brevis is inactive in terrestrial locomotion but active in arboreal locomotion ${ }^{166}$ and also during part of the stance and swing phases of bipedal locomotion ${ }^{50}$. Eversion of the foot in arboreal locomotion may control the transfer of weight to the anterior part of the foot between the opposed digit I and digit II ${ }^{166}$. Skeletal features such as a wide peroneal groove on the fibular malleolus ${ }^{90}$ and a large peroneal trochlea on the calcanei ${ }^{69,71}$ indicate that the lateral crural musculature was well-developed in Australopithecus afarensis, with the possibility that the peroneal musculature in this hominid may have provided a somewhat greater proportion of plantarflexion force than in modern Homo^{70}. Based on the above, however, there can be no justification for assuming from this either a
terrestrial bipedal gait as in modern Homo, or a tendency toward arboreal locomotion, as in modern Pan.

The consistent insertion of peroneus brevis onto the middle and distal phalanges of digit V in African apes and Homo, in contrast to the inconstant insertion in Asian apes, may indicate an increased reliance on the muscle, either in an arboreal, or a terrestrial locomotor configuration.

The innervation of psoas minor by a muscular branch of the femoral nerve in African apes and Homo, or rather, the absence of an independent muscular branch of the femoral nerve for psoas minor in Asian apes, may indicate the greater importance of psoas minor in the former group, as the emergence of a muscle as a separate entity brings about the formation of separate nerve to supply it^{100}. However, this does not seem to be the case, as in Homo psoas minor is present as a separate muscle in less than half of all subjects ${ }^{51}$. Quite possibly, rather than being truly absent, the muscle has simply fused with psoas major, as occurs in Hylobates ${ }^{160}$. In Homo, and in all apes, psoas minor flexes the trunk in the lumbar region ${ }^{1,160}$. Psoas major is involved in lateral bending, and with the iliopsoas, flexes the thigh and bends the trunk forward ${ }^{12,51,138}$. It is possible that the increased level of fusion of the psoas muscles in Homo represents an increased requirement for anteroposterior stabilization of the trunk, and that the separate femoral-based nerve supply pertains to those cases where the muscle remains separate, as in African apes.

4.3.1.2 Upper limb and shoulder girdle

Characters that appear to be particularly informative for the African ape-Homo clade are character 59 (state 2), palmaris brevis present; character 62 (state 1), the
humeroulnar head of flexor digitorum superficialis originates from the intermuscular septum; character 66 (state 0), palmaris longus sometimes absent; character 71 (state 1), flexor pollicis longus originates from the anterior radius and the interosseous membrane; character 82 (state 1), a slip from the extensor digitorum tendon for digit IV to digit II is present; character 83 (state 1), coracobrachialis originates from the intermuscular in some specimens; character 96 (state 1), extensor pollicis brevis originating from the ulna and interosseous membrane; character 120 (state 1), subclavius originates from the first rib only; character 145 (state 1), lateral thoracic artery usually originates directly from the axillary artery; character 147 (state 1), presence of a supreme thoracic artery; character 173 (state 1), radial artery enters the palm at the dorsum of the first interosseous space, rather than the second interosseous space; character 174 (state 1), superior ulnar collateral artery originates from the brachial artery; and character 179 (state 1), the median nerve supplies 3.5 rather than 2.5 digits.

Palmaris brevis in Homo wrinkles the skin on the ulnar side of the palm and deepens the hollow in the palm by accentuating the prominence of the hypothenar eminence, also called cupping ${ }^{193}$. This is important in the squeeze grip, for grasping cylindrical objects, the spherical grip, where large spherical objects are held against the palm by the flexed thumb and fingers, and the five-jaw chuck grip, where the tip of digit V must be finely adjusted to the size and shape of large objects ${ }^{1}$.

Flexor digitorum superficialis in Homo flexes first the middle, and then the proximal phalanges, flexes the wrist ${ }^{193}$, and is a weak flexor of the elbow ${ }^{51}$. Its action on the digits is impaired when the wrist is maximally flexed ${ }^{51}$. It may also provide some stabilization for the medial aspect of the elbow ${ }^{25}$. The short, tendonized flexor
digitorum superficialis of African apes, preventing full extension of the digits, has been viewed as a knuckle-walking adaptation ${ }^{179,183}$, the short tendons preventing the wrist from buckling in the knuckle-walking posture by maintaining the metacarpophalangeal joints of digits II to V in the close-packed position of hyperextension with minimal muscle activity ${ }^{179}$. A tendency toward shortening of the flexor digitorum tendons has been noted in adult Pongo that have fist-walked for several years, while adult orangutans that retain palmigrade locomotion maintain the ability to fully extend the digits ${ }^{181}$. Others allege the shortened tendons of the digital flexors create a perpetual partial flexion of the digits that is useful in brachiation ${ }^{200}$. An origin from the intermuscular septum may provide a more extensive origin, and therefore provides stability ${ }^{20}$ and spreads the force of the muscle over a wider area at origin. Flexor digitorum superficialis in Homo is responsible mainly for forceful flexion, while finer flexion movements are controlled primarily by flexor digitorum profundus ${ }^{73}$.

Palmaris longus is variably present in African apes and Homo, rather than constantly present as in Asian apes. In Homo, palmaris longus flexes the wrist and tenses the palmar aponeurosis ${ }^{193}$. Possibly with the increased importance of the long digital flexors, the wrist flexion function of palmaris longus is no longer essential. Certainly, a recent study observed that in $4 / 11$ human forearms in which the muscle was present, it was not recruited during wrist flexion ${ }^{33}$.

In Homo, flexor pollicis longus flexes the terminal phalanx of the thumb ${ }^{162}$, and may also abduct the thumb slightly in the radial direction ${ }^{51}$. In Pan, since the flexor pollicis longus is often non-functional, and flexor pollicis brevis acts only on the proximal phalanx, about half of all chimpanzees cannot flex the distal phalanx of the
thumb ${ }^{200}$. This suggests a selective pressure on Homo for the retention of flexor pollicis longus for manipulative ability, particularly with reference to tool making and tool use ${ }^{42}$, and a recent study finds that neural control of this muscle is more specialized than for the muscles controlling digit II^{58}. The expanded origin in comparison with Asian apes, however, would suggest some similarity between the manipulatory abilities of the African apes and Homo.

In Homo, extensor digitorum is involved with the fine movements of the hand, and extends and spreads the digits at the metacarpophalangeal and interphalangeal joints, as in opening the hand to relax the grip in preparation for grasping. It is also an equal prime mover with the carpal extensors in extending the wrist ${ }^{91}$, and the strongest dorsiflexor of the wrist ${ }^{51}$. It tends to abduct digits II, IV and V as it extends them, but not so for digit III ${ }^{193}$. Architecturally, in Homo extensor digitorum is designed more for velocity and excursion than for force generation ${ }^{144}$. In knuckle-walking there is considerable hyperextension at the metacarpophalangeal joints of the four fingers ${ }^{179}$. ${ }^{180}$. It has been suggested that the increased size of extensor digitorum in Pan is related to the use of the extended proximal phalanges in quadrupedal terrestrial locomotion rather than to manipulation ability ${ }^{200}$.

Slips between the tendons of extensor digitorum are present in all apes. They may affect independent extension of the digits, so that in African apes and Homo, digits II, IV, and indeed V, all tend to extend simultaneously. Certainly, if one attempts to extend digit IV in isolation, it is impossible without first consciously flexing the remaining digits, particularly against resistance. From the author's own observations, the extensors of digit IV appears to be connected with those of digit V and digit III, but not of digit II. However, there is variation in these interconnections in Homo ${ }^{193}$,
particularly on the ulnar side of the hand ${ }^{142,144}$. The greater interconnection of the digits in African apes and Homo does not appear to correlate with fine movements, but rather with the unified release of power grips in which the ulnar side of the hand acts as a component.

In Homo, coracobrachialis draws the arm anteriorly (flexion) and medially (adduction), especially from the posteriorly swung position. When the arm is raised from the side, it acts with the anterior fibres of the deltoid to prevent side-sway ${ }^{193}$. It also holds the head of the humerus in the joint socket ${ }^{51}$.

As the attachments of coracobrachialis are similar in apes, its action can be assumed to be fundamentally the same. An origin from the medial intermuscular septum will provide the same benefits as described for flexor digitorum superficialis, that is, the spreading of the force generated in the muscle over a wider area.

Extensor pollicis brevis in Homo extends and also abducts the thumb because of its close relationship with abductor pollicis longus ${ }^{51,112,162}$. The pollex takes no part in the knuckle-walking posture in Pan, and the increased size of the pollicial extensors in this species may be due to their role as supinators rather than to movements of the thumb itself ${ }^{200}$.

An expanded origin of extensor pollicis brevis could indicate the increased importance of this muscle in the African apes and Homo, although a recent study has found non-functional, or absent, extensor pollicis brevis muscles in 23% of human hands ${ }^{15}$. However, if Ziegler is right, this expanded origin may be homoplastic rather than synapomorphic. Alternatively, this suggests another factor in the similarity of the manipulative abilities of these taxa, and casts some doubt on the assertion of

Marzke et al. that skeletal evidence of tool use in fossil hominids will be in the regions of the hand stressed by, among others, the intrinsic muscles of the thumb ${ }^{98}$. Extensor indicis in Homo extends digit II, and assists in dorsiflexion of the wrist and midcarpal joints ${ }^{51}$.

In African apes and Homo^{143} extensor indicis inserts most frequently onto digit II alone, while in Asian apes it inserts most frequently onto digits II and III (Pongo) or digits II, III and IV (Hylobates). This appears to be a variation on the same mechanism as the interconnecting tendons of extensor digitorum, although in this case, it suggests that the importance of the independent extension of digit II has increased in the African apes and Homo, compared to Asian apes. In Homo, extensor indicis proprius is responsible for more than two-thirds of the extension of digit II^{142} and may have a double tendon as a variant ${ }^{38}$. It may be that these two groups have independently arrived at different methods of producing this specialized extensor outcome. From a another viewpoint, both these extensor muscles are also involved in dorsiflexion of the wrist in Homo^{51}, and thus a reduction in the number of terminal tendons of extensor indicis could be seen as a reduction in its importance as a dorsiflexor, since extensor digitorum is the strongest dorsiflexor of the wrist in Homo, to become a specialized extensor for digit II. The similarity in the insertion of extensor indicis in African apes and Homo, as for extensor pollicis brevis, casts some doubt on the theory of skeletal evidence of tool use in fossil hominids of Marzke et al. ${ }^{98}$.

In Homo, subclavius pulls the point of the shoulder anteroinferiorly, and steadies the clavicle during movements of the shoulder by bracing it against the disc of the
sternoclavicular joint. However, the muscle is inaccessible to palpation and difficult to investigate by electromyography ${ }^{193}$.

The costal origin of subclavius is most extensive in hylobatids, less so in Pongo, and least of all in African apes and Homo. From a locomotor viewpoint, it might be suggested that a more extensive origin of subclavius is related to arboreal locomotion with habitual use of an elevated arm, particularly brachiation, where a greater degree of stability is required in the shoulder girdle. This does not, however explain why chimpanzees, who are modified brachiators, do not share this character with the Asian apes. The external appearance of the clavicle in apes shows that the chimpanzee clavicle is closest to the S-bend formation of the modern human clavicle ${ }^{146}$. Perhaps it is the high-stress use of arm-hanging beneath the bough rather than simply arboreal locomotion per se that separates the extensive costal origin of Asian apes, particularly hylobatids, from the minimal costal origin of the African apes and Homo.

In African apes and Homo, the lateral thoracic artery originates directly from the axillary artery, rather than as a branch of the thoracoacromial artery as in Asian apes. The latter origin may also be present as a variant in Pan. In Homo, this artery supplies serratus anterior, subscapularis and the pectoral muscles, and in females gives off lateral mammary branches ${ }^{193,197}$.

The supreme or superior thoracic artery in Homo provides a partial supply for the pectoralis major ${ }^{117}$. This arterial branch appears to be absent from Asian apes.

The last two arterial characters may be explained as the result of an increase in the size and usage of a muscle, such as pectoralis major, producing an increase in the bloodflow to that structure, requiring larger and more numerous vessels ${ }^{95,120}$.

The radial artery enters the palm at the dorsum of the first interosseous space in African apes and Homo, rather than the second interosseous space. It is the dominant vessel to the hand in Homo ${ }^{177}$. The incidence in Homo of the radial artery entering the dorsum of the second interosseous space, as in Asian apes, is around $16 \%{ }^{110}$.

The superior ulnar collateral artery originates from the brachial artery in African apes and Homo, rather than from the profunda brachii as in Asian apes. In Homo it supplies the medial aspect of the arm ${ }^{72,99}$.

The median nerve in Homo and African apes supplies $31 / 2$ rather than $21 / 2$ digits as in Asian apes. Despite its larger area of cutaneous supply ${ }^{68}$, and its innervation of the thenar muscles ${ }^{109}$, the median nerve in Homo is less important in grip strength and pinching movements than the ulnar nerve ${ }^{62}$. The artery that accompanies the median nerve is distributed to flexor digitorum superficialis in Homo^{132}, while the muscular supply of the nerve involves pronator teres, flexor carpi radialis, flexor digitorum superficialis, palmaris longus and flexor digitorum superficialis, and the anterior interosseous nerve ${ }^{41}$.

4.3.1.3 Others

4.3.1.3.1 Skin

Sternal glands and glandular concentrations are found in many non-human primate species ${ }^{29,37,43,92,103,104,120}$. In Pongo a sternal gland is found chiefly in young males, and has been described as being in a stage of regressive evolution. In

Symphalangus the colouration of the sternal patch is produced by glandular secretions staining the skin and can be removed. The fresh secretion is a pungentsmelling yellowish sticky substance, somewhat similar to human earwax. In the skin of the lateral chest, only sebaceous glands, attached to hair follicles, were observed. In contrast to this, the skin in the sternal region contained a conspicuous concentration of coiled tubular glands, thus forming a specialized glandular field. High secretory activity and especially strong body odour has been observed mainly on hot days and in arousal. Geissmann suggests that the sternal gland is derived from a gland used for marking behaviour, subsequently altering in function to converge with the independently evolved axillary gland of African apes and Homo ${ }^{37}$. Apocrine glands form the major element of the axillary organ, marked by transverse rows of hairs on the axillary surface. The apocrine glands produce a thicker secretion than the more widespread eccrine glands and are involved in temperature regulation by the evaporation of sweat ${ }^{193}$. Like the sternal gland of Asian apes, the axillary organ produces and propagates specific human odours ${ }^{102}$, and may have a similar function in African apes.

4.3.1.3.2 Alimentary

In Asian apes, but not in African apes and Homo, conical filiform papillae of the tongue predominate in number over cylindrical filiform papillae. The author has been unable to find any references to possible functional differences between these forms of papillae.

4.3.1.3.3
 Genital

In Homo, transverse rugae in the vaginal mucosa are most pronounced on the posterior wall of the vagina, and near the vaginal orifice, particularly before parturition ${ }^{193}$. These epithelial folds account in part for the ability of the vagina to distend. Stretching of the vaginal walls is caused by sexual intercourse, and increased by parturition. Repeated parturition leads to obliteration of the rugae, causing the vagina to become smooth-walled. Even in nulliparous women, the vagina loses its rugae after the menopause ${ }^{49}$.

Well-developed transverse vaginal rugae are present in Homo and African apes, and those in Homo are even more developed than in African apes. The rugae are practically absent from Asian apes, although they may be more developed in fetal Hylobates.

As a tentative suggestion, if the expansive ability of the vagina is a selective factor, it may be related to neonatal size. Many studies have correlated pelvic dimensions with neonatal dimensions ${ }^{75,76,78,79,149,172}$, but none have examined the role of soft tissues in the birth process.

Gibbons have larger infants than great apes, with Homo occupying an intermediate position. In fact, relative neonatal head size within the Hominoidea forms two groups, Homo and Hylobates, and great apes. However, in Gorilla, the main diameters of the female pelvic canal are remarkably large compared with the head dimensions of the neonate, permitting easy delivery ${ }^{75,76,77,79}$. This does not appear to support a correlation between transverse rugae and increased expansion ability of the vagina. Nor do penile dimensions appear to be a factor (see 3.6.5.2.1.5.1). Average penis length in adult Homo is 13 cm , while penis lengths of up to 14 cm have been reported for Pan and Gorilla, up to 9 cm in Pongo, and up to 2 cm in hylobatids. A
far larger sample size is required, especially for the Asian apes, including a range of ages and parities, before any conclusions can be drawn on the function of transverse vaginal rugae.

4.3.2 Upper limb

Having analysed the Subset Al of 71 characters, there are 24 characters synapomorphic for African apes and Homo, of which there are 17 characters synapomorphic for African apes and Homo with a CI of 1.0.

They are: $58(0 \rightarrow 2), 59(0 \rightarrow 1), 62(0 \rightarrow 1), 66(1 \rightarrow 0), 69(0 \rightarrow 1), 71(0 \rightarrow 1), 82$
$(0 \rightarrow 1), 83(0 \rightarrow 1), 86(0 \rightarrow 1), 96(0 \rightarrow 1), 99(0 \rightarrow 2), 161(0 \rightarrow 2), 163(0 \rightarrow 1), 166$
$(0 \rightarrow 1), 173(0 \rightarrow 1), 174(0 \rightarrow 1)$ and $184(0 \rightarrow 1)$.

The clade is well supported by Subset A1, with a bootstrap value of 74%.

4.3.3 Lower limb

Subset A2 shows only weak support for the African ape-Homo clade, with a bootstrap value of 20%.

However, this subset does show relatively strong support for a Pongo-Gorilla clade, with a bootstrap value of 69%.

Of the 71 characters involved in the subset, there are 23 synapomorphies for this Pongo-Gorilla clade, of which 12 have a CI of 1.0.

They are: $11(0 \rightarrow 1), 23(0 \rightarrow 1), 31(0 \rightarrow 1), 35(0 \rightarrow 1), 43(0 \rightarrow 1), 47(0 \rightarrow 2), 48$ $(0 \rightarrow 1), 49(0 \rightarrow 2), 51(0 \rightarrow 2), 150(0 \rightarrow 1), 154(0 \rightarrow 1)$ and $155(0 \rightarrow 3)$.

There is an additional synapomorphic character with a relatively good CI, but less than 1.0 ; this is $156(0 \rightarrow 1, \mathrm{CI}=0.67)$.

Nine of these apparently good synapomorphies for Pongo and Gorilla deserve some investigation.

4.3.3.1 Putative synapomorphies for Pongo and Gorilla

These are character 23 (state 1), absence of an origin of the short head of biceps femoris from the lateral intermuscular septum; character 31 (state 1), absence of an origin for peroneus longus from the lateral tibial condyle; character 35 (state 1), absence of a tendon of extensor digitorum brevis to digit V ; character 48 (state 1), presence of a separate opponens hallucis; character 49 (state 2), presence of a separate abductor os metatarsi digiti minimi; character 51 (state 2), origin of the first dorsal interosseous from the medial cuneiform; character 150 (state 1), absence of the anastomosis between the perforating branch of the peroneal artery with the anterior lateral malleolar artery; character 154 (state 1), absence of the inferior medial and inferior lateral genicular branches of the popliteal artery; and character 155 (state 3), the medial femoral circumflex artery originates from the femoral artery. In Homo, biceps femoris flexes the leg on the thigh, and draws the trunk upright against gravity when it is raised from the stooping position. With a semi-flexed knee, biceps femoris can act as a lateral rotator of the leg. It also laterally rotates the thigh when the hip is extended ${ }^{51,193}$. It is possible that biceps femoris can produce movement at either the hip or the knee whilst simultaneously offering no resistance to the antagonistic movement of the other joint ${ }^{96}$. During bipedal gait, near the end of the legs swing the hamstrings, including biceps femoris, contract to stop it and the
foot is planted ${ }^{89}$. In all apes, the long head functions as a thigh extensor and knee extensor, also laterally rotating the thigh, while the short head is a knee flexor in all apes ${ }^{160}$.

Assuming that the molecular consensus tree is accurate, the lack of an origin from the intermuscular septum in these two great apes must be the result either of homoplasy, or of symplesiomorphy. In the former case, the loss of the origin from the septum must be the result of functional convergence. In the latter case, it is then the possession of such an origin that has been independently acquired in the PanHomo clade and the hylobatids, while Pongo and Gorilla retain the ancestral trait. Assuming that an origin from the intermuscular septum is a result of the increased importance of that muscle, then why would the biceps femoris, particularly the short head, be reduced in Pongo and Gorilla or conversely, enlarged in Homo, Pan and the hylobatids? It has been stated that biceps femoris is particularly large, relative to the anterior femoral musculature, in terrestrial quadrupeds ${ }^{44}$, but this would not account for its reduction in Gorilla, the most terrestrial of all extant apes. An alternative function for biceps femoris is the lateral stabilization of the knee ${ }^{53}$, which may well be important in extended leg positions such as bipedal standing. However, all hominoids are known to stand bipedally for at least short periods, and in humans at least, biceps femoris is silent during symmetrical standing, although any action that carries the line of body weight in front of the transverse axis of the hip joints, such as forward arm raising, forward sway at the ankle joint, or forward bending at the hips, is accompanied by strong contraction of biceps femoris ${ }^{193}$. Injury to the short head of biceps femoris in Homo causes an anterior translation instability in the flexed knee, where the tibia can be pulled anteriorly ${ }^{174}$. In Pan, the short head of biceps femoris is
active during the stance phase of climbing when the knee is extended, and also during the stance and swing phases of bipedal walking with a flexed knee ${ }^{65}$.

Peroneus longus in Homo can evert and dorsiflex the foot, and may help to steady the leg on the foot ${ }^{193}$, although the latter function decreases with increased speed ${ }^{88}$. There is little or no peroneal activity in standing, and peroneus longus maintains the concavity of the foot at take-off and in tip-toeing ${ }^{193}$. It also aids plantar flexion ${ }^{51,61}$ and abducts the forefoot in the transverse plane ${ }^{176}$. It maintains the first metatarsal in an adducted position in Homo^{13}. In Homo peroneus longus is recruited during the support phase of walking, usually just after midphase. Although peroneus longus is active during part of the support phase in some bipedal steps of Pan and Hylobates, this muscle is also frequently recruited during swing phase ${ }^{50}$.

The absence of an origin for peroneus longus from the lateral tibial condyle is another feature that appears to be either derived separately in Pan-Homo and hylobatids, or to be homoplastically lost in Pongo and Gorilla. In an interesting aside, there appears to be a functional relationship between the muscles of mastication, and the peroneus longus and gastrocnemius. Artificially induced alteration in occlusion produces marked changes in the activity of both these muscles, but not in tibialis anterior. This is a consequence of complex nervous reflexes ${ }^{192}$. Is it possible that similarities in the masticatory complexes of Pongo and Gorilla ${ }^{127,175,196}$ are responsible for this observed similarity in the origin of peroneus longus?

Extensor digitorum brevis in Homo assists in the dorsiflexion of digits II to IV, also acting only on the first phalanx of digit I^{193}. It plays a major role in stabilizing posture ${ }^{141}$.

The absence of a tendon of extensor digitorum brevis to digit V, found commonly in Pongo and Gorilla, also occurs in Homo as a variant ${ }^{193}$.

In Homo, opponens hallucis corresponds to the part of adductor hallucis that inserts onto MI^{193}. Adductor hallucis in Homo is a tensor of the plantar arches, also adducting digit I and may then plantar flex the proximal phalanx of digit I^{51}. Adductor hallucis obliquus is one of the largest intrinsic foot muscles in Homo indicating its functional importance ${ }^{66}$.

A separate opponens hallucis is not exclusive to Pongo and Gorilla, being found as a variant in all other hominoids, including Homo, in latter of which, opposition of the hallux is no longer part of the foot movement repertoire. Despite the obvious function of this muscle in opposition of the hallux, a reduced hallux is normally present in Pongo ${ }^{188}$, and has been reported in a lowland gorilla, suggesting a similar hereditary trend ${ }^{45}$.

The abductor os metatarsi digiti minimi corresponds in Homo to the part of abductor digiti minimi that originates from the lateral calcanean process and inserts onto the tip of the tuberosity of MV^{193}. Abductor digiti minimi in Homo supports the arch of the foot, plantarflexes digit V and acts to a small extent as abductor ${ }^{51}$.

The presence of this muscle separate from abductor digiti minimi may reflect an increased grasping potential of the fibular side of the foot in Pongo and Gorilla, or alternatively, a reduced grasping function in the other hominoids. The variable presence of this muscle as a separate entity in Homo represents a 'throwback' to this prehensile foot condition, suggesting that with a larger sample of ape material, a variable incidence of abductor os metatarsi digiti minimi may also be revealed.

The first dorsal interosseous in Homo is an abductor, also working with the plantar interossei as plantar flexors at the metatarsophalangeal joint ${ }^{51}$. According to its innervation it also contains elements derived from flexor digitorum brevis in Homo ${ }^{4}$. The medial cuneiform, to which the first dorsal interosseous attaches in Pongo and Gorilla, shows more morphological differences between humans and apes than the other cuneiforms, specifically the facet for MI on the anterior surface of the human medial cuneiform is markedly different from that of apes with prehensile great toes. The medial edge of the human joint projects further posteriorly than the lateral edge, the opposite plane to apes. The opposite condition in apes accentuates the abducted position of digit I^{1}.

The absence of the anastomosis between the perforating branch of the peroneal artery with the anterior lateral malleolar artery, and the absence of the inferior medial genicular and inferior lateral genicular branches of the popliteal artery may reflect the increased importance of the structures supporting the knee joint and the ankle in Pan-Homo and the hylobatids. The inferior lateral genicular artery supplies the lateral femoral condyle, in combination with the superior lateral genicular artery, in Homo ${ }^{129}$.

The origin of the medial femoral circumflex artery from the femoral artery can be seen as part of a process whereby the artery originates progressively more distally. Thus, in hylobatids it originates from the external iliac artery, in Pongo and Gorilla from the femoral artery, and in Homo from the profunda femoris. However, in Pan the origin varies between the profunda femoris, as in Homo, and the external iliac as in Hylobates. In addition, as a variant in Homo the medial femoral circumflex may originate from the femoral artery, as in Pongo and Gorilla ${ }^{193}$. Therefore, although
there appears to be a phylogenetic distal progression of the origin of the medial femoral circumflex artery, it is by no means clear-cut.

4.4 SyNAPOMORPHIES FOR HOMO AND PAN

4.4.1 Dataset A

Based on dataset A, there are fifty-two synapomorphies for the Homo-Pan clade, of which 30 have a CI of 1.0 .

They are characters $5(0 \rightarrow 1), 29(0 \rightarrow 1), 34(0 \rightarrow 2), 36(0 \rightarrow 1), 41(0 \rightarrow 1), 43(0 \rightarrow 1)$, $45(0 \rightarrow 1), 51(2 \rightarrow 1), 52(0 \rightarrow 1), 88(0 \rightarrow 1), 93(0 \rightarrow 1), 100(1 \rightarrow 2), 115(0 \rightarrow 1), 116$ $(2 \rightarrow 1), 123(2 \rightarrow 3), 126(1 \rightarrow 2), 131(0 \rightarrow 2), 138(1 \rightarrow 2), 139(2 \rightarrow 1), 140(1 \rightarrow 2), 155$ $(3 \rightarrow 1), 157(0 \rightarrow 1), 165(0 \rightarrow 1), 170(0 \rightarrow 1), 172(0 \rightarrow 1), 175(0 \rightarrow 1), 182(0 \rightarrow 1), 193$ $(0 \rightarrow 1), 195(0 \rightarrow 1)$ and $199(0 \rightarrow 1)$.

In addition, there are five other relatively good synapomorphies with a CI less than 1.0. They are characters $30(0 \rightarrow 1, \mathrm{CI}=0.67), 73(0 \rightarrow 1, \mathrm{CI}=0.67), 76(0 \rightarrow 1, \mathrm{CI}=$ $0.67), 146(0 \rightarrow 1, \mathrm{CI}=0.67), 178(0 \rightarrow 1, \mathrm{CI}=0.67)$.

The Homo-Pan clade is strongly supported by dataset A, with a bootstrap value of 92\%.

In addition, Shoshani et al. list seven characters synapomorphic for Homo-Pan with a CI of 1.0, and five such characters with a CI of 0.67^{158}. Shoshani et al., however, found the Homo-Pan clade to be weakly supported, with a bootstrap value of $42 \%{ }^{158}$.

Of the characters with a CI of 1.0, some appear to be particularly informative.

4.4.1.1 Lower limb and pelvic girdle

Characters that appear to be particularly informative for the Pan-Homo clade are character 5 (state 1), tensor fascia latae sometimes unfused proximally with gluteus maximus; character 29 (state 1), extensor digitorum longus originates from the crural fascia; character 36 (state 1), absence of a slip from abductor hallucis to the base of MI; character 41 (state 1), abductor hallucis inserts onto the medial cuneiform; character 43 (state 1), absence of a slip from abductor hallucis to the base of MI; character 45 (state 1), flexor hallucis brevis has no insertion onto MI; character 51 (state 1), the first dorsal interosseous originates from the lateral side of MI; character • 52 (state 1), flexor digitorum brevis originates from the plantar aponeurosis; character 157 (state 1), presence of muscular branches of the profunda femoris artery for the hamstrings(posterior femoral muscles); character 193 (state 1), genitofemoral nerve does not pierce psoas major in some specimens; character 195 (state 1), presence of muscular branches of the obturator nerve for the pectineus; and character 199 (state 1), absence of superficial peroneal nerve supply for the medial side of digit II.

In Homo, tensor fasciae latae, through the iliotibial tract, extends the knee with lateral rotation of the leg, and may also assist in abduction and medial rotation of the thigh ${ }^{8,51}$, although its role as an abductor has been denied ${ }^{52}$. In the erect posture, it helps to steady the pelvis on the head of the femur ${ }^{51}$, and through the iliotibial tract it steadies the condyles of the femur on the tibia, and thus helps maintain erect posture ${ }^{16,105}$. It is also active in flexion of the thigh with the knee extended and assists the anterior bundles of the gluteus medius and minimus ${ }^{51}$. On the basis of innervation, tensor fasciae latae is closely-related to the anteromedial muscle layer of
gluteus medius ${ }^{2}$. In African apes and Hylobates, tensor fasciae latae has a different orientation to that in Homo, so it flexes rather than extends the knee, although it also flexes, abducts and medially rotates the hip joint, and tenses the iliotibial band to brace the extended knee, as in Homo ${ }^{1,160}$. Perhaps in Pongo the antero-laterally placed scansorius has functionally-replaced tensor fasciae latae, as the scansorius also abducts and flexes the thigh, and is located in a position similar to that which tensor fascia latae would occupy if present ${ }^{160}$.

Gluteus maximus in Homo acts from the pelvis to extend the flexed thigh and bring it in line with the trunk ${ }^{9}$. It may prevent the forward momentum of the trunk from causing flexion of the hip during bipedal gait ${ }^{9.105}$. In standing, the muscle is inactive and remains so in forward swaying at the ankle joints, or during bending at the hip to touch the toes. However, with the posterior femoral muscles (hamstrings) it is active in raising the trunk after stooping, by rotating the pelvis posteriorly on the head of the femur ${ }^{163}$. It is intermittently active in climbing upstairs, and continuously active in strong lateral rotation of the thigh ${ }^{9}$. Its upper fibres are active in powerful abduction of the thigh ${ }^{193}$. Gluteus maximus in Homo is active at the end of the recovery (swing) phase, and the beginning of stance phase ${ }^{9}$. It has a significant role as a stabilizer of the sacroiliac joint, and thus the whole vertebral column ${ }^{163}$. The poorly-developed proximal part of gluteus maximus acts as an abductor and lateral rotator in great apes, while the more distal portion, known as the ischiofemoralis in Pongo, acts as an extensor of the ape hip joint ${ }^{\text {135, 160, 161, 164, 189, 190, 191, } 201 \text {. Along }}$ with tensor fasciae latae, the proximal part acts to tense the iliotibial band and thus brace the extended knee ${ }^{201}$.

Pan and Homo share an absence of proximal fusion between tensor fascia latac and gluteus maximus. Both these muscles act to steady the pelvis on the head of the femur, and to abduct the thigh. In addition, through the iliotibial tract, both are involved in the stabilization of the extended knee. As has been stated previously, the separation of muscles that are normally fused may reflect the necessity for a greater range of independent muscular action at the hip joint, enabling these muscles to respond at slightly different times. The large size of gluteus maximus relative to the other gluteal muscles in Homo, compared with great apes ${ }^{160}$, may be related to its increased activity in extension at the hip during bipedal walking, as opposed to the flexed hip bipedal posture of apes ${ }^{1}$. Alternatively, as stated above, the thin cranial part of gluteus maximus in great apes acts with tensor fasciae latae to tense the iliotibial tract to brace the extended knee, which may reflect a increased requirement for knee stabilization in Homo.

In Homo, in the non-weight bearing leg, extensor digitorum longus extends the digits and dorsiflexes the foot and with extensor hallucis longus tautens the plantar aponeurosis ${ }^{193}$. In the weight-bearing leg, it approximates the leg to the dorsum of the foot, as for example in skiing or rapid walking ${ }^{5!}$.

Extensor digitorum longus originates from the crural fascia in Homo and Pan. This fascia is continuous with the fascia lata, and around the knee is attached to the patella, the ligamentum patellae, the tubercle and condyles of the tibia and the fibular head ${ }^{193}$.

In Homo, abductor hallucis acts as an abductor and a weak flexor, and helps to maintain the arch of the foot ${ }^{51}$. Electromyography (EMG) studies show that abductor hallucis in Homo is important to stabilize the foot during bipedal locomotion ${ }^{39,94}$,
and particularly the positioning of the anterior part of the foot relative to the posterior part of the foot and to the leg ${ }^{130}$. Abductor hallucis has a greater cross-sectional area than any other intrinsic foot muscle except adductor hallucis obliquus, indicating its functional importance ${ }^{66}$. An abnormal insertion of abductor hallucis in Homo may result in a varus deformity of MI, giving the appearance of an ape-like foot ${ }^{56}$.

The absence of two metatarsal slips in Homo and Pan may reflect a decrease in the importance of the hallux for prehensile grasping. In Homo, however, it maintains its importance as a stabilizer of the foot, as can be seen from the large cross-sectional area of the muscle ${ }^{66}$. The insertion of abductor hallucis onto the medial cuneiform is variable in both Homo and Pan, but absent from other apes. Given the relatively small ape sample sizes involved, further study would be required to detect whether this is a true reflection of the situation in these species.

In Homo, flexor hallucis brevis is an important plantar flexor, especially in ballet dancing ${ }^{51}$. The size of this muscle in Homo reflects the importance of the flexion of digit I in bipedal locomotion, while in African apes this muscle is much smaller ${ }^{1}$.

The lack of an insertion onto MI in Homo and Pan may reflect a decrease in the importance of prehensile movements of the hallux.

The role of the first dorsal interosseous has been discussed in 4.3.3.
In Homo, flexor digitorum brevis plantarflexes the middle phalanges of the digits ${ }^{51}$. An origin from the calcaneus allows it to stabilize the human longitudinal arch during locomotion and the muscle plays a major role in stabilizing upright posture ${ }^{141}$. EMG studies show it to be active when the force of flexor digitorum longus is insufficient, or when more force is needed at the interphalangeal joints to enable the
toes to grip the substrate ${ }^{130}$. In addition, contraction of the digital plantar flexors helps to counteract the strain placed on the metatarsals by body weight ${ }^{156}$. In African apes, the part of flexor digitorum brevis leading to the lateral digits originates from the tendon of flexor digitorum longus and not from the calcaneus; this arrangement may increase the grasping power of the lateral digits ${ }^{55}$.

Flexor digitorum brevis originates from the plantar aponeurosis in Homo and Pan, which may increase its function as a stabilizer of the arch of the foot during locomotion.

Muscular branches of the profunda femoris for the posterior femoral muscles (hamstrings) may be related to increased bloodflow to these structures.

Generally, when a muscle is pierced by a nerve, this indicates that at some point in its development, the muscle has incorporated more than one element, that have subsequently fused ${ }^{100}$. That the genitofemoral nerve does not pierce psoas major in some specimens of Pan and Homo may indicate a greater degree of fusion in these species. The author has been unable to find any developmental anatomy for the psoas major muscle, but greater fusion of psoas major may reflect its increased role in stabilizing the trunk ${ }^{12,51,138}$, particularly during sitting in Homo^{54}. With the iliopsoas, psoas major in Homo flexes the thigh ${ }^{51}$.

The arrangement of the branches of the obturator nerve for the pectineus in Homo and Pan can be taken as part of the general trend for increased innervation of more active structures ${ }^{100}$. In Homo, pectineus flexes the hip, adducts the thigh and may act as a weak medial rotator ${ }^{51}$.

The innervation of the medial side of digit II by the deep peroneal nerve in Homo and Pan rather than by the superficial peroneal nerve as in other hominoids, appears to have no obvious functional implication.

4.4.1.2 Upper limb and shoulder girdle

Characters that appear to be particularly informative for the Pan-Homo clade are character 88 (state 1), the lateral head of triceps originates from the intermuscular septum; character 93 (state 1), extensor carpi ulnaris attains the first phalanx of digit V in some specimens; character 123 (state 3), cranial extension of the costal origin of pectoralis major; character 126 (state 2), origin of pectoralis major from the medial third of the clavicle; character 165 (state 1), posterior interosseous artery originates from a common trunk; character 170 (state 1), superficial palmar artery passes over the thenar muscles in some specimens; and character 172.(state 1), dorsalis pollicis artery absent.

In Homo, triceps brachii extends the forearm on the arm at the elbow joint. The action of the lateral head is, however, minimal except when the forearm is acting against resistance ${ }^{8}$, such as forward thrusting or pushing, or when the body weight is partly supported on the hands, with semiflexed elbow joints. Carlsöö and Johansson observed that triceps was active before and during the braking period in all falls, and thus stabilized the elbow joint ${ }^{17}$. During forceful supination of the semiflexed forearm, involving active contraction of both supinator and biceps brachii, the triceps contracts synergistically to fix the position of semiflexion at the elbow joint ${ }^{193}$. In African apes, triceps is active during knuckle-walking and protraction or abduction, but not during humeral retraction or arm-hanging ${ }^{46,185}$. The three heads of triceps act
separately in Homo ${ }^{118,178}$, while discrete action of the three heads is not common in Gorilla ${ }^{185}$.

The lateral head of triceps originates from the intermuscular septum in Homo and Pan, conferring additional soft tissue origin and spreading the force of the muscle at the point of origin.

In Homo the extensor carpi ulnaris, in association with extensor carpi radialis longus and brevis, acts synergistically with the digital flexors in order to extend and fix the wrist when objects are being gripped, or when the fist is clenched ${ }^{113}$. It is impossible to grip strongly unless the wrist is extended. Acting with the extensores carpi radiales, it extends the wrist, while acting with the flexor carpi ulnaris, it adducts the hand ${ }^{193}$. The principal action of extensor carpi ulnaris is as a strong ulnar abductor, its antagonist being abductor pollicis longus ${ }^{51}$. In African apes, extensor carpi ulnaris is a strong carpal extensor and somewhat of an ulnar abductor. Its power of abduction is greatest in Homo and Hylobates, while in Pongo, the muscle acts not only as an ulnar abductor of the hand but also as a hyperpronator, and a comparatively slight alteration in the course of the tendon relative to the wrist joint in this species would produce a flexor action ${ }^{169}$.

The extension of the insertion of extensor carpi ulnaris to the proximal phalanx of digit V in Homo and Pan occurs as a variation. Larger sample sizes would be necessary in order to rule out its occurrence in other hominoids, before any functional inferences can be made.

The two parts of pectoralis major in Homo, sternocostal and clavicular, can act in combination or independently. As a whole, pectoralis major is active in adduction
and medial rotation of the humerus ${ }^{51,63}$, but the activity is only marked if resistance has to be overcome ${ }^{193}$. When the arm is drawn posterolaterally, that is to say, extended, pectoralis major draws it anteromedially ${ }^{193}$. All the parts of pectoralis major act together, forcibly and rapidly lowering the raised arm ${ }^{51}$. Pectoralis major is also active in deep forcible inspiration ${ }^{193}$. With the arm abducted the clavicular and sternal parts of pectoralis major can produce anteversion, a movement common in swimming. The sternocostal and abdominal parts together lower the shoulder anteriorly ${ }^{51}$, but pectoralis major is completely silent during abduction ${ }^{1}$. When the arm is swung anteromedially, the sternocostal fibres take no part in the movement, which is carried out by the clavicular fibres along with the anterior fibres of deltoid and coracobrachialis ${ }^{193}$. The upper or clavicular fibres are active during flexion of the humerus ${ }^{1,119}$, and their activity is proportional to the degree of shoulder movement, but unrelated to elbow motion in the long head of biceps and lateral head of triceps ${ }^{40}$. When posterolateral movement, usually with gravitational assistance, is resisted, the sternocostal part assists latissimus dorsi and teres major. When the raised arms are fixed, such as by gripping a branch of a tree, the same combination of muscles operates to draw the trunk upwards and forwards in climbing ${ }^{193}$.

EMG studies have shown that pectoralis major is active in static quadrupedal posture in great apes ${ }^{187}$. Both cranial and caudal parts are relatively large in Pan. Caudal pectoralis major is most active during humeral retraction in the support phase of vertical climbing, while cranial pectoralis major is active in rapid non-weight bearing protraction of the arm during climbing, and may also aid in reaching during feeding ${ }^{46}$.

Cranial extension of the costal origin of pectoralis major and the origin of the clavicular part of pectoralis major from the medial third of the clavicle are synapomorphies for Homo and Pan. In general terms, a clavicular origin may be necessary to promote flexion of the forelimb in animals in which the humeral insertion is on the same transverse plane as, or superior to, the manubrium, that is, in animals with a cranially displaced shoulder joint. Although present in Homo and Pan, the clavicular origin is far more extensive in Asian apes and Gorilla. Modern adult Homo has a relative shoulder height index less than 1^{145}, and therefore their shoulder is on the same level as the manubrium, while higher values, indicating a more cranial shoulder joint, characterize the other hominoids (Hylobates $=13$; Pongo $=16 ;$ Pan $=17 ;$ Gorilla $=13)$. However, there is an ontogenetic descent to achieve this state in Homo, so the fetal condition suggests a high, mobile, shoulder in an arboreal human ancestor ${ }^{167}$. It is interesting to note that Pan possesses a reduced clavicular origin for pectoralis major, but has the most cranially displaced shoulder joint of all hominoids. This does not appear to conform with the assertion of Stern et al. that a strong link exists between a clavicular origin of pectoralis major and the cranial displacement of the shoulder ${ }^{167}$. In fact, a clavicular origin of pectoralis major is absent from 80% of Pongo and 30% of Pan, even though these are apparently the two hominoid species with the most cranially displaced shoulder joints.

A cranial extension of the costal origin of pectoralis major may be a response to demands for strength or rapidity of flexion of the adducted forelimb in animals with enhanced upper limb mobility ${ }^{167}$. Although Homo and Pan share this feature to the exclusion of Gorilla, it should be noted that it is also present in Pongo in combination with a caudal extension of the origin.

The posterior interosseous and anterior interosseous arteries originate from a common trunk in Homo and Pan. The posterior interosseous artery supplies the extensor digitorum, extensor digiti minimi and extensor carpi ulnaris in Homo, while the anterior interosseous artery supplies part of flexor digitorum profundus, flexor pollicis longus and pronator quadratus. Both vessels supply extensor indicis, extensor pollicis longus, abductor pollicis longus and extensor pollicis brevis equally ${ }^{132}$. As can be seen from this list, the development of the interosseous arteries is inherently linked to the development of many extrinsic and intrinsic muscles of the hand, forming another link between the evolution of the muscles of the hand in these two species. In previous paragraphs, character 93 has shown a synapomorphy in the Homo-Pan clade of extensor carpi ulnaris, which is supplied in Homo by the posterior interosseous artery.

The superficial palmar artery in Homo supplies the area over the proximal parts of the abductor pollicis brevis and opponens pollicis muscles ${ }^{111}$. A branch of the radial artery, in hominoids other than Homo and Pan, its importance in the supply of the thenar part of the hand appears to be reduced, especially in Hylobates and Gorilla, as it continues to complete the superficial palmar arch in Homo, Pan and Pongo. The dorsalis pollicis arteries in Asian apes and Gorilla are branches of the radial and ulnar arteries. In Homo, the dorsum of the pollex is supplied directly by the radial artery before it descends through the first interosseous space into the palm ${ }^{193}$. In Asian apes, if not in Gorilla, the radial artery passes into the palm via the second interosseous space, and therefore bypasses the dorsum of the pollex.

4.4.1.3 Others

4.4.1.3.1 Skin

The reduced total body hair density in Homo and Pan is part of a general trend in primates for larger primates to have systematically sparser coats. Surface area, not phylogeny, is a better predictor of relative hair density ${ }^{152}$. Schwartz and Rosenblum report negative correlations between relative hair density and total body surface area, which may represent a thermal adaptation in anthropoid primates ${ }^{152}$. Both New World and Old World primates have converged upon a similar solution to the same biological problem. Thermal sweating may have evolved as a necessary compensation for the loss of body hair in the high radiant heat loads of the Pliocene savannah in early hominids ${ }^{101,107,152}$. However, the possession of an axillary organ in African apes and Homo, as well as similarities in their cutaneous sweat glands ${ }^{171}$ appears to indicate that cutaneous sweating as a method of heat loss predates the divergence of hominids from the ape-human lineage. Wheeler has stated that the hair coat of Pan troglodytes allows more heat to reach the skin surface than the coat of savannah mammals that rely on respiratory heat loss ${ }^{195}$. This may be explained by the general reduction of hair density present in all higher primates, resulting in the reduction of the insulatory properties of the hair coat ${ }^{152}$, both in the prevention of heat loss and of heat gain.

4.4.1.3.2 Genital

A consistently postpenial, dependant scrotum is present in Homo and Pan.
Developmentally, dilation of the scrotal sac is related to dilation of the gubernaculum testis via fluid uptake. The upper end of the gubernaculum testis attaches to the testis
in its embryonic position on the posterior abdominal wall, and also to the adjacent part of the peritoneum and to the mesonephric duct (which later becomes the epididymis and vas deferens). At the time of descent, the attached structures are dragged behind the gubernaculum into the scrotum. Androgen sensitivity ${ }^{27}$ and intra-abdominal pressure ${ }^{6 .}$ ${ }^{34}$ are the principal factors in testicular descent. If in Homo the scrotum is not wellformed, the gubernaculum has not dilated and there is probably a deficiency of interstitial cell testosterone production. The author has been unable to find data on androgen levels in fetal and infant hominoids. Such a study would be useful in order to ascertain whether the failure of the formation of a dependant scrotum is linked to hormone levels in these apes. Frey has suggested a link between extra-abdominal testes and a fast mode of locomotion in mammals ${ }^{34}$.

A retained testis in Homo has a smaller average testicular volume (10.5 ml) compared with those with normal descent (14.1 ml). Testicular volume correlates with total sperm count in the ejaculate, sperm penetration ability and normal sperm morphology ${ }^{74}$.

These facts may imply that the position of the scrotum in the hominoids has a developmental basis. Maldescent in Homo can result in testes positioned at the root of the penis or the upper part of the thigh ${ }^{193}$, similar to the para- or pre-penial conditions found in Asian apes and Gorilla. This is not to suggest that this is 'abnormal' for these species, although the testes of captive gorillas are often congenitally atrophied and poor in sperm quality ${ }^{122}$, but it may be that a postpenial, dependant scrotum allows the development of larger, more productive testes ${ }^{148}$. Relative to body size, Homo and Pan, particularly the latter species, have by far the largest testes among hominoids ${ }^{57}$. It has been suggested that the testes of hominoids with one-male mating systems, such as

Pongo, Gorilla and Homo, are much smaller than those with multimale mating systems, such as Pan ${ }^{157}$. However, it seems that the monogamous gibbons and Pongo have similar relative testicle sizes, with those of Gorilla even smaller, while the testes of Homo are intermediate in size between the single-male and multi-male species ${ }^{57}$.

4.4.2 Upper limb

Of Subset A1 consisting of 71 characters, 16 characters were synapomorphic for Homo-Pan. Of these, 7 characters had a CI of 1.0.

They are: $88(0 \rightarrow 1), 93(0 \rightarrow 1), 165(0 \rightarrow 1), 170(0 \rightarrow 1), 172(0 \rightarrow 1), 175(0 \rightarrow 1)$ and $182(0 \rightarrow 1)$.

In addition, two further characters had a relatively good CI , but less than 1.0; 73 $(0 \rightarrow 1, \mathrm{CI}=0.67)$ and $76(0 \rightarrow 1, \mathrm{CI}=0.67)$.

This clade is well supported by Subset A1, with a bootstrap value of 69%.

4.4.3 Lower limb

Of Subset A2, consisting of seventy-one characters, twenty-four characters were synapomorphic for the Pan-Homo clade. Of these, 13 had a CI of 1.0.

They are: $5(0 \rightarrow 1), 29(0 \rightarrow 1), 34(0 \rightarrow 2), 36(0 \rightarrow 1), 41(0 \rightarrow 1), 43(0 \rightarrow 1), 45(0 \rightarrow 1)$, $51(0 \rightarrow 1), 52(0 \rightarrow 1), 155(0 \rightarrow 1), 157(0 \rightarrow 1), 195(0 \rightarrow 1)$ and $199(0 \rightarrow 1)$.

In addition, four characters had a relatively good CI , but less than $1.0 ; 10(0 \rightarrow 1, \mathrm{CI}=$ $0.67), 30(0 \rightarrow 1, \mathrm{CI}=0.67), 33(0 \rightarrow 1, \mathrm{CI}=0.67)$ and $198(0 \rightarrow 1, \mathrm{CI}=0.67)$.

This clade is well supported by subset A2, with a bootstrap value of 73%.

4.5 CONCLUSIONS

"The morphological distance between humans and chimpanzees is large by frog standards" Cherty et al.(1978).

From the anatomical data in Chapter 3, and the listing of anatomical structures in Appendix 5, it is obvious that there remains a great deal to learn about the soft tissue anatomy of our closest living relatives, the Asian and African apes. Considerable gaps exist, especially for certain regions and species. In particular, I have been able to find surprisingly little information about the alimentary organs, heart, respiratory system, peripheral nervous system, urinary system, lymphatic system and veins. Hylobates and Pan paniscus are the least-researched hominoids, while Pan troglodytes is the most comprehensively studied. More work needs to be done, especially in these areas, for all species.

With regard to cladistic analysis, this thesis concludes that soft tissue anatomy, utilizing characters from the entire morphological pattern, can be used to reconstruct the phylogenetic relationships between the Hominoidea, based on the consensus molecular cladogram. Both Homo-Pan and Homo-Gorilla-Pan are significantly favoured, with bootstrap values of 92% and 85% respectively, while neither of the main alternative cladistic groupings (Gorilla-Homo or Gorilla-Pan) are significantly supported. This builds on the results obtained from the dataset of Shoshani et al. ${ }^{158}$. Their dataset, although containing some soft tissue characters, consisted mainly of skeletal and dental characters, that may be unreliable in reconstructing cladistic relationships between catarrhine species ${ }^{21}$.

Both regional subsets, A1 (upper limb) and A2 (lower limb) support a Pan-Homo clade, although A1 provides slightly weaker support than A2. Subset A1 does, however, strongly support an African ape-Homo clade, while A2 does not, due to homoplastic features in Pongo and Gorilla.

However, the branch-swapping technique shows that other phylogenetic groupings are within 5% of the tree length of the most parsimonious tree for Dataset A. These include Gorilla-Homo, Gorilla-Pan and Pongo-Gorilla. Of these, however, GorillaPan creates the greatest difference from the most parsimonious tree.

From this analysis, there are four lower limb synapomorphies for the African apeHomo clade, three related to muscles acting at the hip joint, and one related to a muscle acting on the foot. In the upper limb, thirteen synapomorphies exist for the African ape-Homo clade. Of these, five relate to structures acting at the shoulder joint, three to antebrachial flexors, two to antebrachial extensors and three to intrinsic muscles of the hand. The integumentary, genital and alimentary systems show one synapomorphic character each.

For the Homo-Pan clade, twelve synapomorphies are present in the lower limb. Four relate to muscles acting on the hip and knee, one to a digital extensor and seven to intrinsic muscles of the foot. In the upper limb, there are seven synapomorphies for Homo and Pan. Two act at the shoulder, two are related to the extensor aspect of the forearm, one is an extensor of the wrist, and two are related to the arterial supply of the thenar region. Single synapomorphies are present in the genital and integumentary systems.

The putative synapomorphic lower limb characters for a Pongo-Gorilla clade may be explained in terms of convergent evolution, as shown by other lower limb features such as relative limb length ${ }^{137,147}$, degree of sexual dimorphism ${ }^{93,133}$, some measures of the talus ${ }^{7,93,155}$ and the width of the lateral metatarsals ${ }^{93}$. However, most skeletal lower limb features do not indicate a close relationship, functional or otherwise, between these two hominoid species. In fact, in some aspects of lower limb morphology, Pongo is either unique among hominoids ${ }^{35,77,147,150,151,188}$, or more closely linked with the hylobatids ${ }^{147,151}$.

In general terms, it appears that the upper limb provides more synapomorphies for the African ape-Homo clade than the lower limb, while the reverse is true for the Pan-Homo clade.

The human lower limb and foot may bear a closer resemblance to the ape structures as used in arboreal than in terrestrial locomotion ${ }^{28,47,59,60,85,108,116,134,139,168,173 .}$ ${ }^{198}$, but other authors suggest that hominid locomotor evolution has passed through a quadrupedal terrestrial phase ${ }^{36}$.The hominoid foot tolerates postural and locomotor stress in a wide range of ankle orientations. These patterns suggest that living and fossil hominoids are closer to the common ancestral design of the anthropoid foot ${ }^{67}$. Based on the upper limb and shoulder girdle, it has been variously suggested that the prebipedal ancestors of modern humans were primarily adapted for suspension ${ }^{80,81}$. 83, 84, 87, 114, 115, 182, 186, quadrupedal climbing ${ }^{18,31,33,97,126,153,154,184,194, ~ t e r r e s t r i a l ~}$ quadrupedality ${ }^{10,11,22,23,82,140,170}$ or a combination of the three ${ }^{24,136,165}$, and certainly some features of the shoulder girdle in modern Homo resemble brachiating primates, while others are similar to quadrupedal primates ${ }^{5}$. Given the variation in locomotor behaviour among the extant great apes, this may be an unresolvable
problem ${ }^{30}$. Biomechanically, vertical climbing promotes erect body posture and knee extension, and develops hip extensors. Bipedal walking on large branches requires a motion pattern of the knee joint similar to that of Homo, and demands strong knee joint extensors ${ }^{198}$, while some studies suggest that the vertical climbing performed by Pan and Pongo is more similar biomechanically to human bipedalism than more terrestrial primates such as Japanese macaques and baboons ${ }^{47,59,60,108}$.

This thesis has assembled information about the soft tissue anatomy of the extant hominoids, and has compared the distribution pattern of the characters derived from that information with the consensus molecular phylogenetic tree. This procedure will hopefully provide a new perspective on the debate about whether, in the evolution of Miocene hominoids, homoplasy is more likely in cranial, or in postcranial, skeletal characters ${ }^{121}$.

BIBLIOGRAPHY

1. Aiello, L and Dean, C (1990): An introduction to human evolutionary anatomy. Academic Press, London.
2. Akita, K; Sakamoto, J and Sato, T (1993): Innervation of the anteromedial muscle bundles of the gluteus medius. J.Anat. 182(3), p433-438.
3. Akita, K; Sakamoto, H and Sato, T (1994): Arrangement and innervation of the glutei medius and minimus and the piriformis - a morphological analysis. Anat.Rec. 238(1), p125-130.
4. Akita, K; Niiro, N; Murakami, G and Sato, T (1999): First dorsal interosseous muscle of the foot and its innervation. Clin.Anat. 12(1), p12-15.
5. Ashton, EH and Oxnard, CE (1961): Functional variation in the primate shoulder girdle. J.Anat. 96, p415.
6. Attah, AA and Hutson, JM (1993): The role of intra-abdominal pressure in cryptorchidism. J.Urol. 150(3):994-6.
7. Barnett, CH (1955): Some factors influencing angulation of the neck of the mammalian talus. J.Anat. 89, p225-230.
8. Basmajian, JV (1967): Muscles alive. Williams and Wilkins, Baltimore.
9. Basmajian, JV (1972): Biomechanics of human and locomotion: Perspectives from electromyography. In: Tuttle,RH (ed); Functional and evolutionary biology of primates. Aldine, Chicago.
10. Begun, DR (1992): Miocene fossil hominids and the chimp-human clade. Science. 247, p1929-1933.
11. Begun, DR (1994): Relations among the great apes and humans: New interpretations based on the fossil great ape Dryopithecus. Yearb. Phys.Anthropol. 37, p11-63.
12. Bogduk, N; Pearcy, M and Hadfield, G (1992): Anatomy and biomechanics of psoas major. Clin.Biomech. 7(2), p109-119.
13. Bohne, WHO; Lee ,KT and Peterson, MGE (1997): Action of the peroneus longus tendon on the first metatarsal against metatarsus primus varus force. Foot and Ankle Int. 18(8), p510-512.
14. Botte, MJ; Nakai, RJ; Waters, RL; McNeal, DR and Rubayi, S (1991): Motor point delineation of the gluteus medius muscle for functional electricalstimulation - an in vivo anatomic study. Arch.Phys.Med.Rehab. 72(2), pl12114.
15. Brunelli, GA and Brunelli, GR (1992): Anatomy of the extensor pollicis brevis muscle. J.Hand Surg. 17B(3), p267-269.
16. Buchanan, TS and Lloyd, DG (1997): Muscle activation at the human knee during isometric flexion-extension and varus-valgus loads. J.Orthop.Res. 15(1), pl1-17.
17. Carlsöö, S and Johansson, O (1962): Stabilization of and load on the elbow joint in some protective movements. Acta Anat. 48, p224-231.
18. Cartmill, M and Milton, M (1977): The lorisiform wrist joint and the evolution of "brachiating" adaptations in the Hominoidea. Am.J.Phys.Anthropol. 47,p249-272.
19. Cherty, LM; Case, SM and Wilson, AC (1978): Frog perspective on the morphological difference between humans and chimpanzees. Science. 200(4338), p209-211.
20. Cohen, MS and Hastings, H (1997): Rotatory instability of the elbow - The anatomy and role of the lateral stabilizers. J.Bone Jt.Surg.(Am.Vol.). 79A(2), p225-233.
21. Collard, M (1998): Morphological evolution of the extant hominoids and papionins: Implications for palaeoanthropological cladistics. PhD Thesis, University of Liverpool.
22. Conroy, GC and Fleagle, JG (1972): Locomotor behavior in living and fossil pongids. Nature. 237, p103-104.
23. Corruccini, RS (1978): Comparative osteometrics of the hominoid wrist joint, with special reference to knuckle-walking. J.Hum.Evol. 7, p307-321.
24. Corruccini, RS and Ciochon, RL (1975): Morphometric affinities of the human shoulder. Am.J.Phys.Anthropol. 45, p19-38.
25. Davidson, PA; Pink, M; Perry, J and Jobe, FW (1995): Functional anatomy of the flexor pronator muscle group in relation to the medial collateral ligament of the elbow. Am.J.Sports Med. 23(2), p245-250.
26. De Sousa, OM and Vitti, M (1966): Estudio electromyografico de los músculos adductores largo y mayor. Arch.Mex.Anat. 7, p52-53. (Abstract).
27. Elder, JS; Isaacs, JT and Walsh, PC (1982): Androgenic sensitivity of the gubernaculum testis: Evidence for hormonal/mechanical interactions in testicular descent. J.Urol. 127:170-175.
28. Elftman, H and Manter, J (1935): The evolution of the human foot, with especial reference to the joints. J.Anat.Phys. 70, p56-67.
29. Feistner, ATC (1991): Scent marking in mandrills, Mandrillus sphinx. Folia Primatol. 57(1), p42-47.
30. Feldesman, MR (1982): Morphometric analysis of the distal humerus of some Cenozoic catarrhines: The late divergence hypothesis revisited. Am.J.Phys.Anthropol. 59, p73-95.
31. Fleagle, JG (1976): Locomotion and posture of the Malayan siamang and implications for hominoid evolution. Folia Primatol. 26, p245-269.
32. Fleagle, JG; Stern, JT Jr; Jungers, WL and Susman, RL (1981): Climbing: A biomechanical link with brachiation and with bipedalism. Symp.Zool.Soc.Lond. 48, p359-375.
33. Fleckenstein, JL; Watumull, D; Bertocci, LA; Nurenburg, P; Peshock, RM; Payne, JA and Haller, RG (1994): Muscle recruitment variations during wrist flexion exercise - MR evaluation. J.Comput.Assist.Tomogr. 18(3), p449-453.
34. Frey, R (1991): On the cause of the mammalian descent of the testes (Descensus testiculorum). Z.Zool.Syst.Evolutionsforsch. 29(1), p40-65.
35. Gebo, DL (1989): Locomotor and phylogenetic considerations in anthropoid evolution. J.Hum.Evol. 18, p201-233.
36. Gebo, DL (1992): Plantigrady and foot adaptation in African apes: Implications for hominid origins. Am.J.Phys.Anthropol. 89, p29-58.
37. Geissmann, T (1987): A sternal gland in the Siamang gibbon. Int.J.Primatol. 8 (1), pl-15.
38. Gonzalez, MH; Weinzweig, N; Kay, T and Grindel, S (1996): Anatomy of the extensor tendons to the index finger. J.Hand.Surg.(Am.Vol.). 21A(6), p988991.
39. Gray, EG and Basmajian, JV (1968): Electromyography and cinematography of leg and foot ('normal' and flat) during walking. Anat.Rec. 161, pl-5.
40. Gribble, PL and Ostry, DJ (1998): Independant coactivation of shoulder and elbow muscles. Exp.Brain Res. 123(3), p355-360.
41. Gunther, SF; Dipasquale, D and Martin, R (1992): The internal anatomy of the median nerve in the region of the elbow. J.Hand Surg.(Am.Vol.). 17A(4), p648-656.
42. Hamrick, MW; Churchill, SE; Schmitt, D and Hylander, WL (1998): EMG of the human flexor pollicis longus muscle: Implications for the evolution of hominid tool use. J.Hum.Evol. 34(2), p123-136.
43. Hanson, G and Montagna, W (1962): The skin of primates. XII. The skin of the owl monkey (Aotus trivirgatus). Am.J.Phys.Anthropol. 20, p421-430.
44. Haxton, HA (1947): Muscles of the pelvic limb: A study of the differences between bipeds and quadrupeds. Anat.Rec. 98, p337-346.
45. Hill, WCO and Sabater Pi, J (1971): Anomaly of the hallux in a lowland gorilla (Gorilla gorilla gorilla Savage and Wyman). Folia Primatol. 14, p252-255.
46. Hunt, KD (1991): Mechanical implications of chimpanzee positional behavior. Am.J.Phys.Anthropol. 86, p521-536.
47. Ishida, H; Kumakura, H and Kondo, S (1985): Primate bipedalism and quadrupedalism: comparative electromyography. In: Kondo,S (ed); Primate morphophysiology, locomotor analysis and human bipedalism. University of Tokyo Press, Tokyo.
48. Janda, V and Stará, V (1965): The role of thigh adductors in movement patterns of the hip and knee joint. Courrier, Centre Internat. de l'Enfance. 15, pl-3.
49. Jeffcoate, TNA (1962): Principles of gynaecology. 2nd Ed. Butterworths, London.
50. Jungers, WL; Meldrum, DJ and Stern, JT (1993): The functional and evolutionary significance of the human peroneus tertius muscle. J.Hum.Evol. 25, p377-386.
51. Kahle, W; Leonhardt, H and Platzer, W (1992): Color atlas and text of human anatomy. Vol.1. Locomotor system. Thieme Verlag, Stuttgart/New York.
52. Kaplan, EB (1958a): The iliotibial tract. Clinical and morphological significance. J.Bone Jt.Surg. 40A, p817-831.
53. Kaplan, EB (1958b): Comparative anatomy of the extensor digitorum longus in relation to the knee joint. Anat.Rec. 131(2), p129-149.
54. Keagy, RD; Brumlik, J and Bergan, JL (1966): Direct electromyography of the psoas major muscle in man. J.Bone Jt.Surg. 48A, p1377-1382.
55. Keith, A (1929): The history of the human foot and its bearing on orthopaedic practice. J.Bone Jt.Surg. 11, p10-32.
56. Kelly, IP; O’Byrne, JM; Mulcahy, D and Stephens, M (1996): Surgical correction of a simian foot. Foot Ankle Internat. 17(3), p174-176.
57. Kenagy, GJ and Trombulak, SC (1986): Size and function of mammalian testes in relation to body size. J.Mammal. 67 (1), pl-22.
58. Kilbreath, SL and Gandevia, SC (1993): Neural and biomechanical specializations of human thumb muscles revealed by matching weights and grasping objects. J.Physiol. 472, p537-556.
59. Kimura, T (1985): Bipedal and quadrupedal walking of primates: comparative dynamics. In: Kondo,S (ed); Primate morphophysiology, locomotor analysis and human bipedalism. University of Tokyo Press, Tokyo.
60. Kimura, T; Okada, M and Ishida, H (1979): Kinesiological characteristics of primate walking: its significance in human walking. In: Morbeck,ME; Preuschoft,H and Gomberg,N (eds); Environment, behavior and morphology: dynamic interactions in primates. Gustav Fischer, New York.
61. Klein, P; Mattys, S and Rooze, M (1996): Moment arm length variations of selected muscles acting on talocrural and subtalar joints during movement: An in vitro study. J.Biomech. 29(1), p21-30.
62. Kozin, SH; Porter, S; Clark, P and Thoder, JJ (1999): The contribution of the intrinsic muscles to grip and pinch strength. J.Hand.Surg.(Am.Vol.). 24A(1), p64-72.
63. Kuechle, DK; Newman, SR; Itoi, E; Morrey, BF and An, KN (1997): Shoulder muscle moment arms during horizontal flexion and elevation. J.Shoulder Elbow Surg. 6(5), p429-439.
64. Kumagai, M; Shiba, N; Higuchi, F; Nishimura, H and Inoue, A (1997): Functional evaluation of hip abductor muscles with use of magnetic resonance imaging. J.Orthop.Res. 15(6), p888-893.
65. Kumakura, H (1989): Functional analysis of the biceps femoris muscle during locomotor behavior in some primates. Am.J.Phys.Anthropol. 79, p379-391.
66. Kura, J; Luo, ZP; Kitaoka, HB and An, KN (1997): Quantitative analysis of the intrinsic muscles of the foot. Anat.Rec. 249(1), p143-151.
67. Langdon, JH (1983): Functional comparison of Miocene hominoid feet with those of living Old World anthropoids. Am.J.Phys.Anthropol. 60, p216(abst).
68. Laroy, V; Spaans, F and Reulen, J (1998): The sensory innervation pattern of the fingers. J.Neurol. 245(5), p294-298.
69. Latimer, B and Lovejoy, CO (1989): The calcaneus of Australopithecus afarensis and its implications for the evolution of bipedality. Am.J.Phys.Anthropol. 78, p369-386.
70. Latimer, B and Lovejoy, CO (1990): Hallucal tarsometatarsal joint in Australopithecus afarensis. Am.J.Phys.Anthropol. 82, p125-133.
71. Latimer, BM, Lovejoy, CO; Johanson, DC and Coppens, Y (1982): Hominid tarsal, metatarsal and phalangeal bones recovered from the Hadar formation: 1974-1977 collections. Am.J.Phys.Anthropol. 57, p701-719.
72. Lehuec, JC; Liquois, F; Leger, O; Chauveaux, D; Midy, D and Lerebeller, A (1995): A study of the fasciocutaneous vascularization of the arm - surgical applications. Surg.Radiol.Anat. 17(2), p121-128.
73. Leijnse, JNAL (1997): The controllability of the unloaded human finger with superficial or deep flexor. J.Biomech. 30(11-12), p1087-1093.
74. Lenz, S; Giwercman, A; Elsborg, A; Cohr, KH; Jelnes, JE; Carlsen, E and Skakkeback, NE (1993): Ultrasonic testicular texture and size in 444 men from the general population: correlation to semen quality. Eur.Urol. 24(2):231-238.
75. Leutenegger, W (1970a): Das Becken der Primaten und seine Beziehungen zur Lokomotion. Z.Morphol.Anthropol. 62, p328-333.
76. Leutenegger, W (1970b): Beziehungen zwischen der Neugeborengrösse und dem Sexualdimorphismus am Becken bei simischen Primaten. Folia Primatol. 12, p224-235.
77. Leutenegger, W (1973): Maternal-fetal weight relationships in primates. Folia Primatol. 20, p280-293.
78. Leutenegger, W (1974): Functional aspects of pelvic morphology in simian primates. J.Hum.Evol. 3, p207-222.
79. Leutenegger, W (1979): Evolution of litter size in primates. Am.Nat. 114, p525531.
80. Lewis, OJ (1971): Brachiation and the early evolution of the Hominoidea. Nature. 230, p577-579.
81. Lewis, OJ (1972): Evolution of the hominoid wrist. In: Tuttle,RH (ed); The functional and evolutionary biology of primates. Aldine-Atherton, New York.
82. Lewis, OJ (1973): The hominoid os capitatum, with special reference to the fossil bones from Sterkfontein and Olduvai Gorge. J.Hum.Evol. 2, pl-13.
83. Lewis, OJ (1974): The wrist articulations of the Anthropoidea. In: Jenkins,FA (ed); Primate locomotion. Academic Press, New York.
84. Lewis, OJ (1977): Joint remodelling and the evolution of the human hand. J.Anat. 123, p157-201.
85. Lewis, OJ (1980): The joints of the evolving foot. Part III. The fossil evidence. J.Anat. 131, p275-298.
86. Lewis, OJ (1989): Functional morphology of the evolving hand and foot. Oxford University Press, New York.
87. Lisowski, FP; Albrecht, GH and Oxnard, CE (1974): The form of the talus in some higher primates: A multivariate study. Am.J.Phys.Anthropol. 41, pl95216.
88. Louwerens, JWK; van Linge, B; de Klerk, LWL; Mulder, PGH and Snijders, CJ (1995): Peroneus longus and tibialis anterior muscle activity in the stance phase - A quantified electromyographic study in 10 controls and 25 patients with chronic ankle instability. Acta Orthop.Scand. 66(6), p517-523.
89. Lovejoy, CO (1988): Evolution of human walking. Sci.Am. 259(5), pl18-125.
90. Lovejoy, CO; Johanson, DC and Coppens, Y (1982): Hominid lower limb bones recovered from the Hadar formation: 1974-1977 collections. Am.J.Phys.Anthropol. 57, p679-700.
91. McFarland, GB Jr; Krusen, UL and Weathersby, HT (1962): Kinesiology of selected muscles acting on the wrist: electromyographic study. Arch.Phys.Med. 43, p165-171.
92. Mainoya, JR and Urasa, FM (1982): Occurrence and histology of the sternal gland in the greater bushbaby, Galago crassicaudatus. Afr.J.Ecol. 20(3), p199-205.
93. Manley-Buser, KA (1991): Sexual dimorphism in the foot of Gorilla and Pongo. Paper for the AAPA 60th AM, Wisconsin.
94. Mann, R and Inman, VT (1964): Phasic activity of intrinsic muscles of the foot. J.Bone Jt.Surg. 46A, p469-481.
95. Manners-Smith, T (1912): The limb arteries of primates. Part l. J.Anat.Phys. 44, p277-302.
96. Markee, JE; Logue, JT; Williams, M; Stanton, WB; Wrenn, RN and Walker, LB (1955): Two joint muscles of the thigh. J.Bone Jt.Surg. 37A, pl25-142.
97. Martin, CP (1934): A comparison of the joints of the arm and leg and the significance of the structural differences between them. J.Anat. 68, p511-520.
98. Marzke, MW; Toth, N; Schick, K; Reece, S; Steinberg, B; Hunt, K;

Linscheid, RL and An, KN (1998): EMG study of hand muscle recruitment during hard hammer percussion manufacture of Oldowan tools. Am.J.Phys.Anthropol. 105(3), p315-332.
99. Matloub, HS; Ye, Z; Yousif, NJ and Sanger, JR (1992): The medial arm flap. Ann.Plast.Surg. 29(6), p517-522.
100. Miller, RA (1934): Comparative studies upon the morphology and distribution of the brachial plexus. Am.J.Anat. 54(1), p143-175.
101. Montagna, W (1972): The skin of nonhuman primates. Am.Zool. 12, pl09121.
102. Montagna, W (1985): The evolution of human skin(?). J.Hum.Evol. 14, p3-22.
103. Montagna, W and Ellis ,RA (1963): New approaches to the skin of primates. In: Buettner-Jansch,J (ed); Evolutionary and genetic biology of primates. Vol.1. Academic Press, New York; p179-196.
104. Montagna, W and Yun, JS (1962): The skin of primates. VIII. The skin of the anubis baboon (Papio doguera). Am.J.Phys.Anthropol. 20, p131-142.
105. Montgomery, WH; Pink, M and Perry, J (1994): Electromyographic analysis of hip and knee musculature during running. Am.J.Sports Med. 22(2), p272278.
106. Neumann, DA (1996): Hip abductor muscle activity in persons with a hip prosthesis while carrying loads in one hand. Phys.Therapy. 76(12), p13201330.
107. Newman, RW (1970): Why man is such a sweaty and thirsty naked mammal: A speculative review. Human Biol. 42, p12-27.
108. Okada, M (1985): Primate bipedal walking: comparative kinematics. In: Kondo,S (ed); Primate morphophysiology, locomotor analysis and human bipedalism. University of Tokyo Press, Tokyo.
109. Olave, R; Prates, JC; Gabrielli, C and Pardi, P (1996): Morphometric studies of the muscular branch of the median nerve. J.Anat. 189(2), p445-449.
110. Olave, E; Prates, JC; Gabrielli, C and Mandiola, E (1998): Perforating branches: Important contribution to the formation of the dorsal metacarpal arteries. Scand.J.Plst.Reconstr.Surg.Hand.Surg. 32(2), p221-227.
111. Omokawa, S; Ryu, JY; Tang, JB and Han, JS (1997): Vascular and ncural anatomy of the thenar area of the hand: Its surgical applications. Plast.Reconstr.Surg. 99(1), pl16-121.
112. van Oudenaarde, EV and Oostendorp, R (1992): Significance of the innervation pattern of the human abductor pollicis longus muscle. J.Anat. 181(1), p155-159.
113. van Oudenaarde, E; Brandsma, JW and Oostendorp, RAB (1997): The influence of forearm, hand and thumb positions on extensor carpi ulnaris and abductor pollicis longus activity. Acta Anat. 158(4), p296-302.
114. Oxnard, CE (1969): Mathematics, shape and function: A study in primate anatomy. Am.Sci. 57(1), p75-96.
115. Oxnard, CE (1973): Functional inferences from morphometrics: Problems posed by uniqueness and diversity among the primates. Syst.Zool. 22(4), p409-424.
116. Oxnard, CE and Lisowski, FP (1980): Functional articulation of some hominoid foot bones: Implications for the Olduvai (Hominid 8) foot. Am.J.Phys.Anthropol. 52, 107-117.
117. Pandey, SK; Tripathi, FM; Shukla, VK; Tripathi, CB and Sonoo, J (1991): An anatomic basis for the clinical-application of the arterial supply of musculus-pectoralis major. Acta Anat. 141(4), p302-306.
118. Pauly, JE; Rushing, JL and Scheving, LE (1967): An electromyographic study of some muscles crossing the elbow joint. Anat.Rec. 159, p47-54.
119. Pearl, ML; Perry, J; Torburn, L and Gordon, LH (1992): An electromyographic analysis of the shoulder during cones and planes of arm motion. Clin.Orthop.Relat.Res. 284, p116-127.
120. Perkins, EM Jr and Machida, H (1967): The skin of primates. XXXIV. The skin of the golden spider monkey (Ateles geoffroyi). Am.J.Phys.Anthropol. 26, p35-43.
121. Pilbeam, D (1996): Genetic and morphological records of the Hominoidea and hominid origins: A synthesis. Mol.Phyl.Evol. 5(1), p155-168.
122. Platz, CC; Wildt, DE; Bridges, CH; Seager, SW and Whitlock, BS (1980): Electroejaculation and semen analysis in a male lowland gorilla, Gorilla gorilla gorilla. Primates. 21(1), p130-132.
123. Popowsky ,J (1893): Phylogenesis des Arteriensystems der unteren Extremitäten bei den Primaten. Anat.Anz. 8, p657-665.
124. Preuschoft, H (1970): Functional anatomy of the lower extremity. In: Bourne,GH (ed); The Chimpanzee Vol.3. Karger, Basel; p221-294.
125. Preuschoft, H (1978): Recent results concerning the biomechanics of man's acquisition of bipedality. In: Chivers,J (ed); Recent advances in primatology. Academic Press, London and New York; p435-458.
126. Prost, JH (1980): Origin of bipedalism. Am.J.Phys.Anthropol. 52, pl75-189.
127. Raven, HC (1950): Regional anatomy of the Gorilla. In: Gregory,WK(ed); The anatomy of the Gorilla. Columbia University Press, New York; p 15-188.
128. Reber, L; Perry, J and Pink, M (1993): Muscular control of the ankle in running. Am.J.Sports Med. 21(6), p805-810.
129. Reddy, AS and Frederick, RW (1998): Evaluation of the intraosseous and extraosseous blood supply to the distal femoral condyles. Am.J.Sports Med. 26(3), p415-419.
130. Reeser, LA; Susman, RL and Stern, JT (1983): Electromyographic studies of the human foot: experimental approaches to hominid evolution. Foot and Ankle. 3, p391-407.
131. Reimann, R; Sodia, F and Klug, E (1996): The disputed rotating function of certain muscles in the hip. Anat.Anz. 178(4), p353-359.
132. Revol, MP; Lantieri, L; Loy, S and Guerinsurville, H (1991): Vascular anatomy of the forearm muscles - a study of 50 dissections. Plast.Reconstr.Surg. 88(6), p1026-1033.
133. Richmond, BG and Jungers, WL (1995): Size variation and sexual dimorphism in Australopithecus afarensis and living hominoids. J.Hum.Evol. 29, p229-245.
134. Riesenfeld, A (1974): Metatarsal robusticity in primates and a few other plantigrade mammals. Primates. 15 (1), pl-25.
135. Robinson, JT; Freedman, L and Sigmon, BA (1972): Some aspects of pongid and hominid bipedality. J.Hum.Evol. 1, p361-369.
136. Rose, MD (1991): The process of bipedalization in hominids. In: Coppens, Y and Senut,B (eds): Origine(s) de la bipedie chez les hominides. Cah.Paleoanthropol.Paris. CNRS. p39-48.
137. Ruff, C (1987): Structural allometry of the femur and tibia in Hominoidea and Macaca. Folia Primatol. 48, p9-49.
138. Santaguida, PL and McGill, SM (1995): The psoas major muscle - A 3dimensional geometric study. J.Biomech. 28(3), p339-345.
139. Sarmiento, EE (1983): The significance of the heel process in anthropoids. Int.J.Primatol. 4(2), p127-152.
140. Sarmiento, EE (1988): Anatomy of the hominoid wrist joint: Its evolutionary and functional implications. Int.J.Primatol. 9, p281-345.
141. Schieppati, M; Nardone, A; Siliotto, R and Grasso, M (1995): Early and late stretch responses of human foot muscles induced by perturbation of stance. Exp.Brain Res. 105(3), p411-422.
142. von Schroeder, HP and Botte, MJ (1993): The functional significance of the long extensors and juncturae tendinum in finger extension. J.Hand.Surg.(Am.Vol.). 18A(4), p641-647.
143. von Schroeder ,HP and Botte, MJ (1995): Anatomy of the extensor tendons of the fingers - variations and multiplicity. J.Hand.Surg.(Am.Vol.). 20A(1), p2734.
144. von Schroeder, HP and Botte, MJ (1997): Functional anatomy of the extensor tendons of the digits. Hand Clinics. 13(1), p51-64.
145. Schultz, AH (1926): Fetal growth of man and other primates. Q.Rev.Biol. 1, p465-521.
146. Schultz, AH (1930): The skeleton of the trunk and limbs of higher primates. Human Biol. 2, p303-438.
147. Schultz, AH (1937): Proportions, variability and asymmetries of the long bones of the limbs and the clavicles in man and apes. Human Biol. 5, p212-255.
148. Schultz, AH (1938): The relative weight of the testes in primates. Anat.Rec. 72, p387-394.
149. Schultz, AH (1949): Sex differences in the pelves of primates. Am.J.Phys.Anthropol. 7, p401-423.
150. Schultz, AH (1953): The relative thickness of the long bones and the vertebrae in primates. Am.J.Phys.Anthropol. 11, p277-311.
151. Schultz, AH (1963): Relations between the lengths of the main parts of the foot skeleton in primates. Folia Primatol. 1, p150-171.
152. Schwartz, GG and Rosenblum, LA (1981): Allometry of primate hair density and the evolution of human hairlessness. Am.J.Phys.Anthropol. 55, p9-12.
153. Senut, B (1982): Reflexions sur la brachiation et l'origine des hominides a la lumiere des hominoides Miocenes et des hominides Plio-Pleistocenes. Geobios. 6, p335-344.
154. Senut, B (1989): La locomotion des pre-hominids. Proc. 2nd Int.Congr.Hum.Paleont. 2, p53-60.
155. Sewell, RBS (1906): A study of the astragalus. Part IV. J.Anat.Phys. 40, pl52161.
156. Sharkey, NA; Ferris, L; Smith, TS and Matthews, DK (1995): Strain and loading of the 2nd metatarsal during heel-lift. J.Bone Jt.Surg.(Am.Vol.). 77A(7), p1050-1057.
157. Short, RV (1977): Sexual selection and the descent of man. In: Calaby,JH and Tyndale-Biscoe, CH (eds); Reproduction and Evolution. Australian Academy of Sciences, Canberra; p3-19.
158. Shoshani, J; Groves, CP; Simons, EL and Gunnell, GF (1996): Primate phylogeny: morphological vs. molecular results. Mol.Phyl.Evol. 5, p101153.
159. Sigmon, BA (1969): The scansorius muscle in pongids. Primates. 10, p247-261.
160. Sigmon, BA (1974): A functional analysis of pongid hip and thigh musculature. J.Hum.Evol. 3, p161-185.
161. Sigmon, BA (1975): Functions and evolution of hominid hip and thigh musculature. In: Tuttle, RH (ed); Primate functional morphology and evolution. Mouton, The Hague; p235-252.
162. Smutz, WP; Kongsayreepong, A; Hughes, RE; Niebur, G; Cooney, WP and An, KN (1998): Mechanical advantage of the thumb muscles. J.Biomech. 31(6), p565-570.
163. Steindler, A (1955): Kinesiology of the human body. Charles C.Thomas; Springfield, Illinois.
164. Stern, JT (1972): Anatomical and functional specializations of the human gluteus maximus. Am.J.Phys.Anthropol. 36, p315-340.
165. Stern, JT Jr (1975): Before bipedality. Yearb.Phys.Anthropol. 19, p59-68.
166. Stern, JT Jr and Susman, RL (1983): The locomotor anatomy of Australopithecus afarensis. Am.J.Phys.Anthropol. 60, p279-317.
167. Stern, JT; Wells, JP; Jungers, WL; Vangor, AK and Fleagle, JG (1980): An electromyographic study of the pectoralis major in atelines and Hylobates with special reference to the evolution of a pars clavicularis. Am.J.Phys.Anthropol. 52, p13-25.
168. Straus, WL Jr (1927): Growth of the human foot and its evolutionary significance. Contr.Embryol. 19, p93-124.
169. Straus, WL Jr (1941): The phylogeny of the human forearm extensors. Hum.Biol. 13, p23-50.
170. Straus, WL Jr (1949): The riddle of man's ancestry. Q.Rev.Biol. 24, p200223.
171. Straus, WL Jr (1950): Microscopic anatomy of the gorilla skin. In:

Gregory,WK (ed); The anatomy of the gorilla. Columbia University Press, New York; p213-227.
172. Tague, RG and Lovejoy, CO (1986): The obstetric pelvis of A.L.288-1 (Lucy). J.Hum.Evol. 15, p237-255.
173. Tappen, NC (1955): Relative weights of some functionally important muscles of the thigh, hip and leg in a gibbon and in man. Am.J.Phys.Anthropol. 13(3), p415-420.
174. Terry, GC and La Prade, RF (1996): The biceps femoris muscle complex at the knee - Its anatomy and injury patterns associated with acute anterolateralanteromedial rotatory instability. Am.J.Sports Med. 24(1), p2-8.
175. Thomson, A (1915): On the presence of genial tubercles on the mandible of man, and their suggested association with the faculty of speech. J.Anat.Phys. 50, p43-74.
176. Thordarson, DB; Schmotzer, H; Chon, J and Peters, J (1995): Dynamic support of the human longitudinal arch - a biomechanical evaluation. Clin.Orthop.Relat.Res. 316, p165-172.
177. Tonks, AM; Lawrence, J and Lovie, MJ (1995): Comparison of ulnar and radial arterial blood-flow at the wrist. J.Hand.Surg. 20B, p240-242.
178. Travill, AA (1962): Electromyographic study of the extensor apparatus of the forearm. Anat.Rec. 144, p373-376.
179. Tuttle, RH (1967): Knuckle-walking and the evolution of hominid hands. Am.J.Phys.Anthropol. 26, p171-206.
180. Tuttle, RH (1969a): Knuckle-walking and the problems of human origins. Science. 166, p953-961.
181. Tuttle, RH (1969b): Quantitative and functional studies on the hands of the Anthropoidea. J.Morphol. 128, p309-364.
182. Tuttle, RH (1969c): Terrestrial trends in the hands of Anthropoideda. Proc.2nd Int.Congr.Primatol. 2, p192-200.
183. Tuttle, RH (1974): Darwin's apes, dental apes, and the descent of man: normal science in evolutionary anthropology. Curr.Anthr. 15, p389-398.
184. Tuttle, RH (1975): Parallelism, brachiation, and hominoid phylogeny. In: Luckett,WP and Szalay,FS (eds); Phylogeny of the primates: A multidisciplinary approach. Plenum Press, New York.
185. Tuttle, RH and Basmajian, BV (1974a): Electromyography of brachial muscles in Pan gorilla and hominoid evolution. Am.J.Phys.Anthropol. 41, p71-90.
186. Tuttle, RH and Basmajian, JV (1974b): Electromyography of forearm musculature in Gorilla and problems related to knuckle-walking. In: Jenkins,FA (ed); Primate locomotion. Academic Press, New York.
187. Tuttle, RH and Basmajian, BV (1978): Electromyography of pongid shoulder muscles. III. Quadrupedal positional behaviour. Am.J.Phys.Anthropol. 49, p57-78.
188. Tuttle, RH and Rogers, CM (1966): Genetic and selective factors in reduction of the hallux in Pongo pygmaeus. Am.J.Phys.Anthropol. 24, p191-198.
189. Tuttle, RH; Basmajian, BV and Ishida, H (1975): Electromyography of the gluteus maximus in Gorilla and the evolution of bipedalism. In: Tuttle,RH (ed); Primate functional morphology and evolution. Mouton, The Hague.
190. Tuttle, RH; Basmajian, BV and Ishida, H (1978): Electromyography of pongid gluteal muscles and hominid evolution. Recent Adv.Primatol. 3, p463-468.
191. Tuttle, RH; Cortright, GW and Buxhoeveden, DP (1979): Anthropology on the move: Progress in experimental studies of nonhuman primate positional behavior. Yearb.Phys.Anthropol. 22, p187-214.
192. Valentino, B and Melito, F (1991): Functional-relationships between the muscles of mastication and the muscles of the leg - an electromyographic study. Surg.Radiol.Anat. 13(1), p33-37.
193. Warwick, P and Williams, PL (1973): Gray's Anatomy. 35th British Edition. Saunders Co., Philadelphia.
194. Washburn, SL (1973): Primate field studies. In: Bourne,GH (ed): Nonhuman primates and medical research. Academic Press, London/New York.
195. Wheeler, PE (1991): The influence of bipedalism on the energy and water budgets of early hominids. J.Hum.Evol. 21, p117-136.
196. Winkler, LA (1991): Morphology and variability of masticatory structures in the orangutan. Int.J.Primatol. 12(9), p45-65.
197. Wuringer, E; Mader, N; Posch, E and Holle, J (1998): Nerve and vessel supplying ligamentous suspension of the mammary gland. Plast.Reconstr.Surg. 101(6), p1486-1493.
198. Yamazaki, N and Ishida, H (1984): A biomechanical study of vertical climbing and bipedal walking in gibbons. J.Hum.Evol. 13, p563-571.
199. Yirga, S (1987): Interrelation between ischium, thigh extending muscles and locomotion in some primates. Primates. 28 (1), p79-86.
200. Ziegler, AC (1964): Brachiating adaptations of chimpanzee upper limb musculature. Am.J.Phys.Anthropol. 22, p15-32.
201. Zihlman, A and Brunker, L (1979): Hominid bipedalism: Then and now. Yearb.Phys.Anthropol. 22, pl32-162.

APPENDICES

APPENDIX 1

DATASET A

MUSCLES: HINDLIMB (Characters 1-53)

1 Piriformis fused with gluteus medius.
Character states:- $0=$ Yes; $1=$ Variable
2 Origin of gluteus minimus is continuous.
Character states:- $0=$ Yes; $1=$ Variable; $2=$ No
3 Gluteus medius origination from the fascia lata.
Character states:- $0=\mathrm{No} ; 1=$ Yes
4 Gluteus medius is bipinnate.
Character states:- $0=$ No; $1=$ Yes
5 Tensor fascia latae fused proximally with gluteus maximus.
Character states:- $0=\mathrm{Yes} ; 1=$ Variable
6 Tensor fascia latae fused laterally with gluteus medius and minimus.
Character states:- $0=$ Yes; $1=$ No
7 Gluteus maximus fused with biceps femoris.
Character states:- $0=$ At origin, $1=$ No fusion, $2=$ More distally
8 Gluteus maximus insertion into the hypertrochanteric fossa.
Character states:- $0=$ No; $1=$ Yes
9 Superior gemellus absent.
Character states:- $0=$ Variable; $1=\mathrm{Yes} ; 2=$ No
10 Quadratus femoris split at insertion.
Character states:-0=Yes; $1=$ Variable; $2=$ No
11 Obturator externus fused at insertion with obturator internus.
Character states:- $0=$ Yes; $1=$ Variable
12 Gracilis origin extends to the whole pubic body.
Character states:- $0=$ Yes; $1=$ No
13 Single origin of adductor brevis.
Character states:- $0=$ Yes; $1=$ Variable; $2=$ No
14 Adductor brevis origination from the superior pubic ramus.
Character states:- $0=$ No; $1=$ Yes
15 Adductor brevis inserted between pectineus and upper part of adductor magnus.

Character states:- $0=$ Yes; $1=$ No

16 Adductor magnus insertion into inferior border of quadratus femoris insertion.

Character states:- $0=$ Yes; $1=$ No
17 Adductor minimus absent.
Character states:-0=Yes; $1=$ Variable; $2=$ Yes
18 Rectus femoris has two heads.
Character states: $0=$ No; $1=$ Variable; $2=$ Yes
19 Vastus medialis origination from the intermuscular septa.
Character states:- $0=\mathrm{No} ; 1=$ Yes
20 Vastus medialis insertion onto the medial patellar surface.
Character states:- $0=$ No; $1=$ Variable; $2=$ Yes
21 Vastus lateralis origination from the iliofemoral ligament.
Character states:- $0=\mathrm{No} ; 1=$ Yes
22 Articularis genu present.
Character states:- $0=$ Yes; $1=$ Variable
23 Origin of short head of biceps femoris.
Character states:- $0=$ Posterolateral femur and lateral intermuscular septum; $1=$ Posterolateral femur only

24 Insertion of long head of biceps femoris into iliotibial tract.
Character states:- $0=$ No; $1=$ Yes
25 Insertion of short head of biceps femoris onto lateral intermuscular septum.
Character states: $0=\mathrm{No} ; 1=\mathrm{Yes}$
26 Common origin of semitendinosus and semimembranosus in some specimens.

Character states: $0=\mathrm{No} ; 1=$ Yes
27 Semimembranosus insertion into the popliteal fascia, and the posterior wall of knee capsule via oblique popliteal ligaments.
Character states:- $0=\mathrm{No} ; 1=$ Yes
28 Tibialis anterior origination from the crural fascia.
Character states:- $0=\mathrm{No} ; 1=$ Yes
29 Extensor digitorum origination from the crural fascia.
Character states:- $0=\mathrm{No} ; 1=$ Yes
30 Peroneus tertius present.
Character states: $0=$ Yes ($30-50 \%$), $1=$ Yes (5\%) or No; $2=$ Yes (95%)
31 Peroneus longus origination from the lateral tibial condyle.
Character states:- $0=$ Yes; $1=$ No

Character states:- $0=$ No; $1=$ Variable
33 Tibial origin of soleus present.
Character states:- $0=$ No; $1=$ Variable; $2=$ Yes
34 Plantaris absent.
Character states:- $0=$ Yes; $1=$ Majority, $2=50 \%, 3=5-10 \%$
35 Extensor digitorum brevis tendon to digit V present in some specimens.
Character states:- $0=$ Yes; $1=$ No; $2=$ Variable
36 Slip from abductor hallucis into base of MI.
Character states:- $0=$ Yes; $1=$ No
37 Both heads of flexor hallucis brevis fused with abductor hallucis.
Character states:- $0=$ Yes; $1=$ No
38 Lateral head of flexor hallucis brevis fused with adductor hallucis.
Character states:- $0=$ No; $1=$ Yes
39 Two heads of adductor hallucis fused.
Character states:- $0=$ Yes; $1=$ Variable; $2=$ No
40 Oblique head of adductor hallucis origination from sheath of peroneus longus.

Character states:- $0=\mathrm{No} ; 1=$ Yes
41 Insertion of abductor hallucis onto medial cuneiform in some specimens.
Character states:- $0=$ No; $1=$ Yes
42 Medial and lateral heads of flexor hallucis brevis separated by septum.
Character states:- $0=\mathrm{No} ; 1=$ Yes
43 Slip from abductor hallucis to base of MI present.
Character states: $-0=$ Yes; $1=$ No
44 Both heads of flexor hallucis brevis fused with abductor hallucis.
Character states:- $0=$ Yes; $1=$ No
45 Flexor hallucis brevis insertion into MI.
Character states:- $0=$ Yes; $1=$ No
46 Heads of adductor hallucis fused.
Character states:- $0=$ Variable; $1=$ No
47 Origin of transverse head of adductor hallucis.
Character states:- $0=$ MIV, second, third and fourth metatarsophalangeal joints and ligaments; 1= Third, fourth (fifth) metatarsophalangeal joints and ligaments; 2= MIV; 3= Neither

Character states:- $0=$ Variable; $1=$ Yes
49 Abductor os metatarsi digiti minimi present.
Character states:- $0=$ No; $1=$ Variable; $2=$ Yes
50 Fourth dorsal interosseous has two heads.
Character states:- $0=$ Yes; $1=$ No
51 Origin of first dorsal interosseous.
Character states:- $0=$ Medial side MII; 1= Lateral side MI, medial side MII, 2= Medial cuneiform, medial side MII

52 Flexor digitorum brevis origination from the plantar aponeurosis.
Character states: $0=\mathrm{No} ; 1=\mathrm{Yes}$
53 Flexor digitorum brevis fused with abductor hallucis in some specimens.
Character states:- $0=$ No; $1=$ Yes

MUSCLES: FORELIMB (Characters 54-99)

54 Abductor pollicis brevis divides into slips.
Character states:- $0=$ No; $1=$ Variable; $2=$ Yes
55 Occasional reinforcement of abductor pollicis brevis by slips from flexor pollicis brevis.

Character states:- $0=\mathrm{Yes} ; 1=$ No
56 Abductor pollicis brevis insertion into MI.
Character states:- $0=$ Yes; $1=$ No
57 Site of origin of radial head of flexor pollicis brevis.
Character states:- $0=$ Flexor retinaculum and MI; $1=$ Flexor retinaculum, MI and trapezium; 2= Flexor retinaculum and trapezium
58 Opponens pollicis sends slips forward to radial side of the base of proximal and middle phalanges.

Character states:- $0=\mathrm{Yes} ; 1=$ No
59 Presence/absence of palmaris brevis.
Character states:- $0=$ Absent; $1=$ Variable; 2= Present
60 Site of origin of pronator teres.
Character states:- $0=$ Medial humeral epicondyle; $1=$ Medial humeral epicondyle; medial intermuscular septum
61 Humeral head of pronator teres fused with flexor carpi radialis.
Character states:- $0=$ No; $1=$ Yes
62 Humeroulnar head of flexor digitorum superficialis takes origin from the intermuscular septum.

Character states:- $0=\mathrm{No} ; 1=$ Yes
63 Flexor carpi radialis insertion into intermuscular septum.
Character states:- $0=\mathrm{No} ; 1=$ Yes
64 Flexor carpi radialis fused with flexor digitorum superficialis.
Character states:- $0=\mathrm{No} ; 1=$ Yes
65 Flexor carpi radialis insertion into palmar surface of base of MIII.
Character states:- $0=$ Variable; $1=$ Yes
66 Presence/absence of palmaris longus.
Character states:- $0=$ Variable; $1=$ Present
67 Flexor carpi ulnaris origination from the intermuscular septum.
Character states:- $0=\mathrm{No} ; 1=$ Yes
68 Flexor carpi ulnaris gives origin to some fibres for flexor digitorum superficialis.

Character states:- $0=\mathrm{No} ; 1=$ Yes
69 Orientation of pronator quadratus.
Character states:- $0=$ Strongly oblique; $1=$ Moderately oblique; $2=$ Weakly oblique 70 Extension of origin of flexor digitorum profundus.
Character states:- $0=$ None; $1=$ Medial coronoid process; $2=$ Medial humeral condyle; 3= Both
71 Flexor pollicis longus origination from the anterior radius and interosseous membrane.
Character states:- $0=\mathrm{No} ; 1=$ Yes
72 Flexor pollicis longus takes origin from the palmar fascia.
Character states:- $0=\mathrm{No} ; 1=$ Yes
73 Flexor pollicis longus gives origin to tendon to digit II.
Character states:- $0=\mathrm{No} ; 1=$ Variable; $2=$ Yes
74 Extensor carpi radialis brevis origination from the radial collateral ligament.
Character states:- $0=\mathrm{No} ; 1=\mathrm{Yes}$
75 Origin of extensor carpi radialis brevis from the intermuscular septum.
Character states:- $0=\mathrm{No} ; 1=$ Yes
76 Insertion of extensor carpi radialis brevis to MII.
Character states:- $0=$ Yes; $1=$ Variable; $2=$ No
77 Accessory tendon of extensor carpi radialis longus to MI.
Character states:- $0=\mathrm{No} ; 1=$ Variable ($4-12 \%$), $2=$ Variable (50%)
78 Fusion of brachioradialis with brachialis.

Character states:- $0=$ Yes; $1=$ Variable; $2=$ No
79 Extensor digitorum origination from the intermuscular septum.
Character states:- $0=\mathrm{No} ; 1=$ Yes
80 Origin of extensor digitorum from the radius and/or ulna in some specimens.
Character states:- $0=$ Ulna, $1=$ Radius and ulna, $2=$ Neither
81 Origin of extensor digitorum from the antebrachial fascia.
Character states:- $0=\mathrm{No} ; 1=$ Yes
82 Slips from extensor digitorum tendon for digit IV.
Character states:- $0=$ To digit $\mathrm{V}, 1=$ To digit II, digit $\mathrm{V}, 2=$ To digit III
83 Coracobrachialis origination from the intermuscular septum in some specimens.
Character states:- $0=\mathrm{No} ; 1=$ Yes
84 Coracobrachialis fused with brachialis.
Character states:- $0=\mathrm{No} ; 1=$ Yes
85 Multiple parts of coracobrachialis present in some specimens.
Character states:- $0=\mathrm{No} ; 1=$ Yes
86 Extension of insertion of coracobrachialis.
Character states:- $0=$ None; $1=$ Anteriorly, $2=$ Anteriorly and distally, 3= Distally
87 Brachialis origination from the intermuscular septa.
Character states:- $0=\mathrm{No} ; 1=$ Yes
88 Lateral head of triceps brachii origination from the lateral intermuscular septum.
Character states:- $0=\mathrm{No} ; 1=\mathrm{Yes}$
89 Insertion of extensor digitorum extends into middle or distal phalanges in some specimens.

Character states:- $0=\mathrm{No} ; 1=$ Yes
90 Insertion of extensor digitorum into interphalangeal joints.
Character states:- $0=\mathrm{No} ; 1=\mathrm{Yes}$
91 Ulnar origin for extensor digiti minimi in some specimens.
Character states:- $0=$ Yes; $1=$ No
92 Extensor digiti minimi absent from some specimens.
Character states:- $0=\mathrm{No} ; 1=$ Yes
93 Extension of extensor carpi ulnaris to first phalanx of digit V in some specimens.
Character states:- $0=$ No; $1=$ Yes
94 Supinator origination from the ligaments of elbow.

Character states:- $0=\mathrm{No} ; 1=\mathrm{Yes}$
95 Abductor pollicis longus origination from the intermuscular septum.
Character states:- $0=\mathrm{No} ; 1=\mathrm{Yes}$
96 Extensor pollicis brevis origination from the ulna and interosseous membrane.

Character states:- $0=\mathrm{No} ; 1=$ Yes
97 Extensor pollicis brevis insertion onto base of proximal phalanx of digit I.
Character states:- $0=\mathrm{No} ; 1=\mathrm{Yes}$
98 Extensor indicis origination from the interosseous membrane.
Character states:- $0=$ Yes; $1=$ No
99 Most common pattern of insertion of extensor indicis.
Character states:- $0=$ Digits II, III, IV, $1=$ Digits II and III, $2=$ Digit II

SKIN (Characters 100-103)

100 Ranked position of average total body hair density $/ \mathrm{cm}^{2}$.
Character states:- $0=3 ; 1=8$ or $9 ; 2=12$ or 13
101 Sternal glands.
Character states:- $0=$ Present; $1=$ Absent
102 Ratio of nipple position to horizontal height index of nipple position.
Character states:- $0=2.625 ; 1=1.654$ and $1.783 ; 2=1.011$ and 1.070
103 Axillary organ.
Character states:- $0=$ Absent; $1=$ Present

CRANIAL (Characters 104-111)

104 Number of bellies of omohyoid.
Character states:- $0=$ Three; $1=$ One; $2=$ Two or three; $3=$ One; two or three
105 Anterior bellies of digastric in contact in midline.
Character states:- $0=$ Yes; $1=$ No
106 Cricothyroid insertion onto the external surface of the posterior thyroid lamina.

Character states:- $0=$ Yes; $1=$ No
107 Apex of tongue.
Character states:- $0=$ Rounded, $1=$ Square
108 Apical lingual gland present/absent.
Character states:- $0=$ Absent; $1=$ Variable; 2= Present
109 Filiform papillae on posterior third of tongue.
Character states:- $0=$ Present; $1=$ Absent

Character states:- $0=$ Yes; $1=$ No
111 Sublingual fold triangular.
Character states:- $0=$ Yes; $1=$ No

BACK (Characters 112-119)

112 Deltoid origination from the infraspinous fascia.
Character states:- $0=\mathrm{No} ; 1=\mathrm{Yes}$

113 Insertion of teres minor.

Character states:- $0=$ Greater tubercle; $1=$ Greater tubercle and shaft below; $2=$ Greater tubercle, shaft below and humeral head, $3=$ Greater tubercle and humeral head only;
114 Origin of teres minor.
Character states:- $0=$ Lateral border; $1=$ Lateral border and intermuscular septum; $2=$ Lateral border and intermuscular septum, separated from teres major by long head of triceps
115 Latissimus dorsi origination from the inferior scapular angle.
Character states:- $0=\mathrm{No}$; $1=$ Variable; $2=$ Yes

116 Extent of costal origin of latissimus dorsi.

Character states:- $0=$ Five ribs; 1= Four or five ribs; 2= Six ribs; 3= Three ribs
117 Extent of origin of teres major from the lateral scapular border.
Character states:- $0=30 \% ; 1=50 \% ; 2=$ More than 50%
118 Insertion of subscapularis.
Character states:- $0=$ Lesser humeral tubercle; $1=$ Lesser humeral tubercle and shaft below; 2= Lesser humeral tubercle, shaft below and capsule of shoulder joint; 3= Lesser humeral tubercle and capsule of shoulder joint
119 Accessory bundles of subscapularis absent/present.
Character states:- $0=$ Absent; $1=$ Variable
THORAX (Characters 120-128)
120 Extent of costal origin of subclavius.
Character states:- $0=$ First; second, third ribs; $1=$ First and second ribs; 2= First rib
121 Extent of costal origin of serratus anterior.
Character states:- $0=1-9,10$ and $11 ; 1=1-9,10,11$ and last rib; $2=1-9$ (10)
122 Pectoralis major insertion into tendon of short head of biceps brachii.
Character states:- $0=$ Yes; $1=$ No
123 Extent of costal origin of pectoralis major.
Character states:- $0=$ None; $1=$ Cranial and caudal; $2=$ Caudal; $3=$ Cranial

124 Cranial extent of costal origin of pectoralis major.
Character states:- 0=Absent; 1=Second rib; 2= First rib
125 Caudal extent of costal origin of pectoralis major.
Character states:-0=Absent; $1=$ Seventh rib; 2= Eighth rib
126 Extent of clavicular origin of pectoralis major.
Character states:- $0=$ Two-thirds; $1=$ Half; $2=$ Medial third
127 Incidence of absence of clavicular head of pectoralis major.
Character states:- $0=\mathrm{No} ; 1=$ Yes (30\%); $2=$ Yes (80%)
128 Divisions of pectoralis major.
Character states:- $0=$ Two parts; $1=$ Variable
ABDOMEN AND PELVIS (Characters 129-143)
129 Origin of psoas major extends to S1.
Character states:- $0=$ Yes; $1=$ Variable; 2= No
130 Origin of psoas minor from T12.
Character states:- $0=$ Variable; $1=$ Yes
131 Origin of psoas minor from L2.
Character states:- $0=$ Variable (30\%); $1=$ Variable (50\%); $2=$ Variable (75\%); $3=$ No
132 Bulbospongiosus origination from the ischial ramus.
Character states:- $0=$ Yes; $1=$ No
133 Bulbospongiosus origination from the perineal body.
Character states:- $0=$ No; $1=$ Variable; $2=$ Yes
134 Coccygeus insertion into the anococcygeal raphe.
Character states:- $0=$ Yes; $1=$ No
135 Coccygeus insertion into the sacrum.
Character states:- $0=\mathrm{No} ; 1=$ Yes
136 Penile spines present/absent.
Character states:-0=Present; $1=$ Absent
137 Ventral groove in glans penis present/absent.
Character states:-0 $=$ Present; $1=$ Absent
138 Scrotal position.
Character states:-0=Pre; para or postpenial; 1= Postpenial or para/postpenial; 2= Postpenial
139 Dependency of scrotum.
Character states:- $0=$ Variable; $1=$ Dependant; $2=$ Non-dependant
140 Relative testes size (ratio of observed/predicted body testes size).

Character states:- $0=0.31-0.33 ; 1=0.14 ; 2=0.50 ; 3=1.53$
141 Urethral papilla present/absent.
Character states:- $0=$ Present; $1=$ Absent
142 Transverse rugae of vagina.
Character states:- $0=$ Less developed; $1=$ More developed
143 Number of taeniae coli.
Character states:- $0=$ Three; $1=$ Four; $2=$ Variable
VESSELS: BACK (Character 144)
144 Origin of subscapular artery.
Character states:- $0=$ Common trunk; $1=$ Axillary artery
VESSELS: THORAX (Characters 145-149)
145 Origin of lateral thoracic artery.
Character states:- $0=$ Thoracoacromial artery; $1=$ Axillary artery
146 Pectoral branch of thoracoacromial artery present/absent.
Character states:- 0= Absent; 1= Variable; 2= Present
147 Supreme thoracic artery present/absent.
Character states:- $0=$ Absent; $1=$ Present
148 Thyroidea ima arises from the left common carotid in some specimens.
Character states:- $0=$ Yes; $1=$ No
149 Most common form of branches from the aortic arch.
Character states: $0=\mathrm{E} ; 1=\mathrm{B} ; 2=\mathrm{C}$

VESSELS: HINDLIMB (Characters 150-158)

150 Perforating branch of peroneal artery anastomoses with anterior lateral malleolar artery.
Character states:- $0=$ Yes; $1=$ No
151 Origin of peroneal artery.
Character states:- $0=$ Posterior tibial artery; 1= Popliteal artery; 2= Anterior tibial artery
152 Digital branches of deep plantar arch to adjacent sides of II and III, present/absent.

Character states:- 0= Present; 1= Variable; 2= Absent
153 Size of lateral plantar artery.
Character states:- $0=$ Absent; $1=$ Smaller than medial plantar; $2=$ Equal to medial plantar; 3= Larger than medial plantar

154 Inferior medial and inferior lateral genicular branches of popliteal artery present/absent.

Character states:-0 Present; $1=$ Absent
155 Origin of medial femoral circumflex artery.
Character states:- 0= External iliac; 1= Variable; 2= Profunda femoris; 3= Femoral artery

156 Number of perforating branches of profunda femoris.
Character states:- $0=$ Two; $1=$ None; $2=$ Three
157 Muscular branches of profunda femoris for hamstrings.
Character states:- $0=$ No; $1=$ Yes
158 Muscular branches of profunda femoris for quadriceps.
Character states:- $0=$ No; $1=$ Yes
VESSELS: FORELIMB (Characters 159-175)
159 Perforating veins in cubital fossa.
Character states:- $0=$ Present; $1=$ Variable; 2= Absent
160 Basilic vein.
Character states:- 0= Absent; 1= Variable; 2= Present
161 Cephalic vein "short" in some specimens.
Character states:- $0=$ No; $1=$ Yes ($20-25 \%$); $2=$ Yes ($80-100 \%$)
162 Origin of palmar metacarpal arteries.
Character states:- $0=$ Deep palmar arch; $1=$ Radial artery; 2= Absent
163 Origin of radialis indicus.
Character states:- $0=$ Deep palmar arch; 1= First palmar metacarpal artery; 2= Radial artery

164 Superficial palmar arch present/absent.
Character states:- 0= Variable; 1= Absent; 2= Present
165 Origin of posterior interosseous artery.
Character states:- $0=$ Brachial artery; $1=$ Common interosseous
166 Anterior and posterior ulnar recurrent arteries originate from the common trunk.

Character states:- $0=$ Yes; $1=$ Variable; $2=$ No
167 Palmar carpal branch of ulnar artery.
Character states:- $0=$ Present; $1=$ Absent
168 Dorsalis indicis and dorsal metacarpal branches of ulnar artery.
Character states:- $0=$ Absent; $1=$ Present
169 Termination of superficial palmar artery.
Character states:- $0=$ Thenar muscles; $1=$ Superficial palmar arch Superficial palmar artery passes over the thenar muscles in some specimens.
Character states:- $0=\mathrm{No} ; 1=\mathrm{Yes}$
171 Origin of radial recurrent artery.
Character states:- $0=$ Radial artery; 1= Variable; 2= Brachial artery
172 Dorsalis pollicis.
Character states:- $0=$ Present; $1=$ Absent
173 Point at which radial artery enters palm.
Character states:- $0=$ Dorsum of second interosseous space; $1=$ Dorsum of first interosseous space

174 Origin of superior ulnar collateral artery.
Character states:- $0=$ Profunda brachii; $1=$ Brachial artery
175 Profunda brachii origination from the brachial artery in some specimens.
Character states:- $0=\mathrm{No} ; 1=$ Yes
NERVES: BACK (Character 176-177)
176 Latissimus dorsi innervated in common with teres major.
Character states:- $0=$ Yes; $1=$ Variable; $2=$ No
177 Origin of subscapular nerves.
Character states:- $0=\mathrm{C} 5, \mathrm{C} 6, \mathrm{C} 7,1=\mathrm{C} 5, \mathrm{C} 6, \mathrm{C} 7, \mathrm{C} 8 ; 2=\mathrm{C} 5, \mathrm{C} 6, \mathrm{C7}, \mathrm{C} 8, \mathrm{~T} 1 ; 3=\mathrm{C} 5$, C6

NERVES: FORELIMB (Characters 178-187)

178 Number of lumbricals supplied by median nerve.
Character states:- $0=$ Two; $1=$ Two or three; 2= One or two
179 Number of digits supplied by median nerve.
Character states:- $0=2.5 ; 1=3.5$
180 Digits supplied by radial nerve.
Character states:- $0=1.5 ; 1=2.5$
181 Radial nerve innervates brachioradialis.
Character states:- $0=\mathrm{No} ; 1=$ Yes
182 Gangliform enlargement at junction of radial and posterior interosseous nerves.
Character states:- $0=$ Absent; $1=$ Present
183 Axillary nerve innervates subscapularis.
Character states:- $0=\mathrm{No} ; 1=\mathrm{Yes}$
184 Origin of axillary nerve.
Character states:- $0=\mathrm{C} 5, \mathrm{C} 6, \mathrm{C} 7, \mathrm{C} 8 ; 1=\mathrm{C} 5, \mathrm{C} 6, \mathrm{C} 7, \mathrm{C} 8, \mathrm{~T} 1 ; 2=\mathrm{C} 5, \mathrm{C} 6, \mathrm{C} 7$

Character states:- $0=T w o ; 1=$ One; $2=$ Three
186 Ulnar nerve innervates flexor pollicis brevis in some specimens.
Character states:- $0=\mathrm{No} ; 1=$ Yes ($\sim 50 \%$); $2=$ Yes (100%)
187 Ulnar nerve supplies hypothenar muscles.
Character states:- $0=\mathrm{No}$; $1=$ Yes
NERVES: THORAX (Character 188)
188 Intercostobrachial nerve includes elements from T3 in some specimens.
Character states:- $0=\mathrm{No} ; 1=$ Yes
NERVES: ABDOMEN AND PELVIS (Character 189)
189 Psoas minor innervated by femoral nerve.
Character states:- $0=\mathrm{No} ; 1=$ Yes
NERVES: HINDLIMB (Characters 190-200)
190 Origin of lateral cutaneous femoral nerve from L1 and L3.
Character states:- $0=\mathrm{No}$; $1=$ Variable; $2=$ Yes
191 Femoral nerve origination from L1 and L4.
Character states:- $0=\mathrm{L} 4 ; 1=$ Variable; $2=\mathrm{L} 1$
192 Genitofemoral nerve origination from L2.
Character states:- $0=$ Yes; $1=$ No
193 Genitofemoral nerve pierces psoas major.
Character states:- $0=$ Yes; $1=$ Variable
194 Obturator nerve origination from L1.
Character states:- $0=\mathrm{No} ; 1=$ Yes
195 Muscular branches of the obturator nerve.
Character states:- $0=$ Adductors, obturator externus, gracilis; $1=$ Adductors, obturator externus, gracilis, pectineus
196 Muscular branches of the medial plantar nerve.
Character states:- $0=$ Two medial lumbricals; $1=$ Two medial lumbricals; adductor hallucis; $2=$ One medial lumbrical
197 Digital branches of the lateral plantar nerve.
Character states:- $0=1.5 ; 1=2.5$
198 Muscular branches of the tibial nerve.
Character states:- $0=$ None of these; $1=$ Flexor digitorum longus; $2=$ Flexor digitorum longus, tibialis posterior, flexor hallucis longus
199 Superficial peroneal nerve supplies medial side of digit II.

Character states:- $0=$ Yes; $1=$ No
200 Flexores femoris nerve present/absent.
Character states:- $0=$ Yes; $1=$ Variable; $2=$ No
APPENDIX 2

DATA MATRIX FOR DATASET A

	$1{ }^{\prime \prime}$	2	3	4	5	6	7	8	9	10	11	12	13	14	15	16	17	18	19	20	21	22
Hylobates	0	0	0	0	0	0	0	0	1	0	0	0	0	0	0	0	0	0	0	0	0	0
Pongo	0	2	1	0	0	1	2	1	0	0	1	1	2	1	1	0	1	1	1	0	1	1
Gorilla	1	2	1	1	0	0	0	1	0	2	1	0	1	1	1	1	1	1	0	1	1	0
Pan	1	2	1	1	1	0	0	1	2	1	0	0	2	1	1	1	1	1	0	0	1	0
Homo	1	1	0	0	1	1	1	0	0	2	?	1	1	0	0	1	2	2	1	2	0	1

	23	24	25	26	27	28	29	30	31	32	33	34	35	36	37	38	39	40	41	42	43	44
Hylobates	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0
Pongo	1	1	1	1	0	1	0	1	1	0	0	1	1	0	1	0	2	1	0	1	0	1
Gorilla	1	1	0	0	1	0	0	0	1	1	1	0	1	0	1	1	2	0	0	1	0	1
Pan	0	1	1	1	0	0	1	1	0	1	1	2	0	1	0	0	1	1	1	0	1	0
Homo	0	0	0	1	1	1	1	2	0	1	2	3	2	1	1	1	2	1	1	0	1	1

6	-	-	O	O	\bigcirc
6	-	0	-	0	-
ত	0	-	-	-	0
$\hat{0}$	-	\bigcirc	\bigcirc	-	-
O	O	\bigcirc	-	-	-
6	0	-	\bigcirc	-	0
8	0	-	\bigcirc	-	-
n	0	\bigcirc	-	-	N
$\left\lvert\, \begin{aligned} & \infty \\ & n \end{aligned}\right.$	0	-	N	N	N
n	0	N	-	0	0
0	0	-	0	0	-
n	0	-	-	0	-
n	0	0	N	-	0
$\|n\|$	0	-	0	-	O
$\|n\|$	0	\bigcirc	0	-	-
n	0	N	N	-	-
\cdots	O	0	-	-	0
\%	O	N	N	0	\square
$\stackrel{\infty}{+}$	O	-	-	0	0
\%	O	m	N	0	
\%	\bigcirc	-	-	\bigcirc	-
\%	0	0	0	\square	-
	告	$\left\|\begin{array}{l} 0 \\ 0 \\ 0 \\ 0 \end{array}\right\|$	0 0 0 0 0	2	-

[^0]

	133	134	135	136	137	138	139	140	141	142	143	144	145	146	147	148	149	150	151	152	153	154
Hylobates	0	0	0	0	0	0	0	0	0	0	1	0	0	0	0	0	1	0	0	0	0	0
Pongo	2	1	0	1	1	1	2	0	1	0	0	1	0	2	0	1	2	1	2	2	1	1
Gorilla	1	0	1	1	0	1	2	1	0	1	0	1	1	0	1	0	0	1	0	0	3	1
Pan	0	1	0	0	1	2	1	3	1	1	2	0	1	1	1	0	0	0	1	1	2	0
Homo	2	1	1	1	1	2	1	2	1	1	0	1	1	2	1	1	0	0	0	0	3	0

	155	156	157	158	159	160	161	162	163	164	165	166	167	168	169	170	171	172	173	174	175	176
Hylobates	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0
Pongo	3	1	0	1	2	1	0	2	0	2	0	0	1	1	1	0	2	0	0	0	0	1
Gorilla	3	2	0	0	0	1	2	0	1	1	0	2	1	1	0	0	0	0	1	1	0	2
Pan	1	0	1	1	1	0	2	1	1	2	1	1	1	0	1	1	1	1	1	1	1	1
Homo	2	2	1	1	0	2	1	0	2	2	1	1	0	0	1	1	0	1	1	1	1	0

	177	178	179	180	181	182	183	184	185	186	187	188	189	190	191	192	193	194	195	196	197	198
Hylobates	1	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0
Pongo	0	2	0	0	0	0	1	0	0	2	1	1	0	2	2	1	0	1	0	1	1	0
Gorilla	2	0	1	1	1	0	1	1	2	0	0	0	1	0	0	0	0	0	0	2	1	2
Pan	0	2	1	0	0	1	0	1	1	0	1	1	1	1	1	1	1	1	1	1	1	1
Homo	3	1	1	1	1	1	0	2	0	1	1	1	1	0	0	0	1	0	1	2	0	2

APPENDIX 3

DATASET B

This dataset is derived from the larger dataset of Shoshani et al. (1996). Numbers in parentheses at the end of the character name refer to the character number in the original paper. The criteria for character selection were as follows: Data must be available for all five species, at least two character states must be present, and one of these character states must be present in two, or more, species.

SKULL: MANDIBLE

1 Orientation of the mandibular symphysis - Angle in degrees (29).
Character states:- $0=$ Angle 170 to $155 ; 1=$ Angle 150 to 145; 2= Angle 137 to 115;
3 = Angle 100 to 90 or less

SKULL: DENTITION

2 Honing (48).
Character states:- $0=$ Absent; 1= Present; 2=Reduced; 3=Further reduced

BODY: VERTEBRAL COLUMN AND APPENDAGES

3 Humeral supratrochlear foramen (61).
Character states:-0=Absent; 1= Present
4 Ulnar styloid process (65).
Character states:- $0=$ Long; $1=$ Shortened; $2=$ Very short
5 Obturator groove or notch (70).
Character states:- $0=$ Absent; $1=$ Shallow; 2= Deep
CHARACTERS FROM GROVES $(1986,1995)$
6 Middle ear (102).
Character states:- $0=$ Shallow; $1=$ Deepened
7 Axis of ear bones (103).
Character states:- $0=$ Acute angle; $1=$ Right angle or more
8 Area of inner ear (104).
Character states:- $0=$ Low; $1=$ Increased
9 Angle of manubrium mallei (105).
Character states:- $0=\mathrm{High} ; 1=$ More acute
10 Klinorhynchy (106).
Character states:- 0=Airorhynch or straight; 1= More klinorhynch; 2= Strongly klinorhynch
11 Relative upper face height (108).
Character states:- $0=$ High; $1=$ Reduced
12 Facial index (109).

Character states:- $0=$ Low; $1=$ Increased
13 Mandibular symphysis (110).
Character states:- $0=$ Low; $1=$ Deepened
14 Frontal sinus (111).
Character states:-0 Absent; 1= Present
15 Orientation of zygomatic bone (114).
Character states:- $0=$ More frontally; $1=$ More superolaterally; 2= Still further superolaterally

16 Frontal bone (115).
Character states:- 0= Flat; 1= More convex; 2= Strongly convex
17 Glabella prominence (116).
Character states:-0=Strong; $1=$ Reduced; 2= Absent
18 Incisive foramen (117).
Character states:- $0=$ Double; $1=$ Single
19 Supraorbital development (119).
Character states:- $0=$ Weak; $1=$ More marked; $2=$ Torus-like
20 Supraorbital trigon (122).
Character states:- $0=$ Not developed; $1=$ Developed
21 Nasals (124).
Character states:- $0=$ Long; $1=$ Shortened
22 Size of incisive foramina (128).
Character states:- $0=$ Large; $1=$ Reduced; $2=$ Tiny
23 Premaxillary suture (130).
Character states:- $0=$ Patent in adult; $1=$ Obliterated in adult
24 Foramen lacerum medium (131).
Character states:- $0=$ Absent; $1=$ Present
25 Temporal lines (132).
Character states:- $0=$ Converge posteriorly; $1=$ Do not converge
26 Number of lumbar vertebrae (133).
Character states:- $0=$ High; $1=$ Reduced; 2= Further reduced
27 Lumbar region (134).
Character states:- $0=$ Long; $1=$ Shortened
28 Sacrum (135).
Character states:- $0=$ Short; $1=$ Enlarged
29 Relative chest girth (136).

Character states:- $0=$ Narrow; $1=$ Increased; 2= Very weak
30 Carpus (137).
Character states:- $0=$ No conjunct rotation; $1=$ Conjunct rotation
31 Os centrale (138).
Character states:- $0=$ Free; $1=$ Fused with scaphoid with age; $2=$ Always fused with scaphoid

32 Metacarpal heads (dorsal transverse ridges) (139).
Character states:- $0=$ Absent; $1=$ Present
33 Metacarpal heads (articular surfaces) (140).
Character states:- $0=$ Restricted; $1=$ Expanded
34 Humerus robusticity (141).
Character states:- 0= High; 1= Reduced; 2= Humerus slender
35 Radial neck (144).
Character states:- $0=$ Narrow; $1=$ Widened compared to head
36 Femur-humerus (145).
Character states:- $0=$ Index high; $1=$ Index reduced; $2=$ Index low
37 Talus (146).
Character states:- $0=$ Narrow; $1=$ Widened
38 Lower limb relative to trunk length (148).
Character states:-0=Low; 1= Increased slightly; 2= Extremely elongated
39 Upper limb relative to lower limb (149).
Character states:- 0= Low; 1= Increased slightly; 2= Extremely elongated; 3= Increased even further
40 Foot length relative to trunk length (150).
Character states:- $0=$ Low; $1=$ Increased
41 Hand length relative to body height (151).
Character states:- $0=$ Low; $1=$ Increased; 2=Further lengthened
42 Power arm of foot (152).
Character states:- $0=$ Low; $1=$ Increased relative to lever; $2=$ Further increased
43 Dental development (153).
Character states:- $0=$ Early relative to epiphyseal; $1=$ Delayed relative to epiphyseal
44 Ankle epiphyses (154).
Character states:- $0=$ Delayed; $1=$ Not delayed
45 Trochlear keel (155).
Character states:- $0=$ Poor; $1=$ More prominent

Character states:- $0=$ Short; $1=$ Lengthened; $2=$ Greatly lengthened
$47 \quad$ Fifth cervical spine (158).
Character states:- $0=$ Short; $1=$ Lengthened; 2= Greatly lengthened
$48 \quad I^{2}$ occlusal edge (161).
Character states:- $0=$ Slopes distally; $1=$ Does not slope distally
49 Basal keel of mandibular canine (163).
Character states:-0 $=$ Present; $1=$ Absent
50 Upper premolars; basal area of paracone (164).
Character states:- $0=$ Subequal to protocone; $1=$ Smaller than protocone
51 Molar cingulum (165).
Character states:- $0=$ Prominent; $1=$ Reduced, incomplete; 2=Fragmented or absent
52 Protoconid apex on dP3 (166).
Character states:- $0=$ More lingual from median axis; $1=$ Located buccally from median axis

53 Metaconid of dP_{3} (167).
Character states:- $0=$ Present; $1=$ Absent
54 Protocristid of dP_{3} (168).
Character states:- $0=$ Aligned with tooth mesiodistal; $1=$ Angled
55 Talonid basin of dP_{3} (169).
Character states:- $0=$ Open distally; $1=$ Closed
56 Metaconid of dP4 (170).
Character states:- $0=$ Subequal to protoconid; $1=$ Increased relative to protoconid $57 \quad$ Crista obliqua on dP_{4} (171).

Character states:- $0=$ Does not reach protoconid apex; $1=$ Reaches protoconid apex
58 Talonid basin on dP_{4} (172).
Character states:- $0=$ Open distally; $1=$ Closed
59 Protocone of dP^{3} in crown view (173).
Character states:- $0=$ Larger than paracone; $1=$ Smaller than paracone
60 Postprotocrists of dP^{4} (175).
Character states:- $0=$ Poor; 1= More developed; 2= Still more developed
61 Molars; protocristid grooves (176).
Character states:- $0=$ Prominent; $1=$ Barely visible
62 Enamel thickness on molars (178).

Character states:- $0=$ Thin; $1=$ Increased thickness; 2= Very thick
63 Long fibular flexor (181).
Character states:- $0=$ Extends to toe of digit IV, $1=$ Withdrawn from digit IV
64 Flexor pollicis brevis; deep head (183).
Character states:- $0=$ Large; $1=$ Reduced
65 Flexor pollicis longus (184).
Character states:- $0=$ Present; $1=$ Reduced; 2=Absent
66 Genioglossal insertion (185).
Character states:- $0=$ Above inferior transverse torus; $1=$ Shifted to inferior transverse torus

67 Geniohyoid insertion (186).
Character states:- 0= Basally on inferior transverse torus; $1=$ Higher on inferior transverse torus; $2=$ Above inferior transverse torus
68 Insertion of digastric (187).
Character states:- $0=$ Posterior to inferior transverse torus; $1=$ Inferior transverse torus; 2= Not on symphysis
69 Extrinsic pedal flexors (188).
Character states:- $0=$ Small; $1=$ Increased; $2=$ Enlarged
70 Relative mass of vasti (189).
Character states:- $0=$ Small; $1=$ Increased; 2= Further increased
71 Right lung (190).
Character states:- $0=$ Four lobes; $1=$ Fewer than four lobes
72 Laryngeal air sac (191).
Character states:- $0=$ Small or absent; $1=$ Enlarged
73 Tuberculum cuneiforme (192).
Character states:- $0=$ Large; $1=$ Reduced
74 Caecum (193).
Character states:- $0=$ Absent or short; $1=$ Lengthened relative to small intestine; 2= Very long

75 Vermiform appendix (194).
Character states:- $0=$ Absent or short; $1=$ Lengthened relative to caecum; 2= Very long
76 Vermiform appendix (195).
Character states:- $0=$ Spiral; $1=$ Straightened; $2=$ Straight
77 Kidney type (196).
Character states:- $0=$ Type C; $1=$ Type B; $2=$ Type E

Character states:- $0=$ Short; $1=$ Lengthened relative to head and body
79 Valvulae conniventes (198).
Character states:- $0=$ Absent or develop early; $1=$ Found in adults only
80 Rectum flexure (199).
Character states:- $0=$ Absent; $1=$ Present
81 Parotid gland (200).
Character states:- $0=$ Postero-ventral to ear; $1=$ Shifted forward; $2=$ Shifted well forward

82 Accessory lobes of parotid gland (201).
Character states:-0= None; $1=$ Developed
83 Parotid gland (202).
Character states:- $0=$ Overlies sternomastoid, $1=$ Freed from sternomastoid
84 Orifice of parotid gland (203).
Character states:- $0=$ Level with molars; $1=$ Shifted forwards
85 Foliate papillae (206).
Character states:- $0=$ On lateral tongue; $1=$ Shifted to dorsum of tongue
86 Frenulum (207).
Character states:- $0=$ Absent or poorly developed; $1=$ Developed
87 Palatine ridges (209).
Character states:- $0=$ On whole palate; $1=$ Restricted in extent; $2=$ Very reduced
88 Ileo-caecal valve (210).
Character states:- $0=$ Slit-like; $1=$ Widened, $2=$ Wide
89 Number of folds of ileocaecal valve (211).
Character states:- $0=$ One; $1=$ More than one
90 Tuberculum intervenosum in heart (213).
Character states:- $0=$ Large; $1=$ Reduced
91 Anterior papillary muscle of heart (214).
Character states:- $0=$ Multiple; $1=$ Reduced
92 Cranial end of heart (215).
Character states:- $0=$ Level with ribs 2-3; $1=$ Shifted upward; 2= Shifted further upward

93 Caudal end of heart (216).
Character states:- $0=$ Level with rib 6; $1=$ Shifted downward
94 Thoracalis suprema artery (217).

Character states:- $0=$ Present; $1=$ Absent
95 Recurrens radialis artery (218).
Character states:- $0=$ Origin from radial artery; $1=$ Shifted to brachial artery
96 Recurrens ulnaris artery (219).
Character states:- $0=$ Split to communis and interossea; $1=$ Split to anterior and posterior

97 Encephalization (220).
Character states:- $0=$ Low; $1=$ Increased; $2=$ High
98 Palaeocortex index (221).
Character states:- $0=$ Small; $1=$ Relatively enlarged; $2=$ Much enlarged
99 Frontal pole of cerebrum (222).
Character states:- $0=$ Narrow; $1=$ Broadened
100 Female receptivity (223).
Character states:- $0=$ Restricted; $1=$ Less restricted; 2 $=$ Unrestricted
101 Puberty (224).
Character states:- $0=$ Less than 3 years; $1=3-5$ years; $2=6-7$ years; $3=$ More than 7 years

102 Ovum (225).
Character states:- $0=$ Small; $1=$ Enlarged
103 Mitochondrial coils (226).
Character states:- $0=$ Many; $1=$ Reduced in number
104 Testes (227).
Character states:- $0=$ More than 0.5% body weight; $1=$ From 0.1 to $0.5 \% ; 2=$ From 0.05 to $0 . \%$; $3=$ Less than 0.05%

105 Scrotum (228).
Character states:- $0=$ Less pendulous; $1=$ Pendulous
106 Ovaries (230).
Character states:- 0=Small; 1= Enlarged; 2= Very large
107 Uterus (231)
Character states:- $0=$ Small; $1=$ Enlarged
108 Corona of glans penis (233).
Character states:- $0=$ Present; $1=$ Reduced
109 Baculum (234).
Character states:- $0=$ Long; $1=$ Reduced; $2=$ Tiny or absent
110 Penis; when erect (235).

Character states:- $0=$ Short; $1=$ Lengthened
111 Labia minora (236).
Character states:- $0=$ Small or absent; $1=$ Developed
112 Oestriol concentration in pregnancy (237).
Character states:- $0=$ Low lever, $1=$ Raised concentration
113 Pregnandiol concentration in pregnancy (238)
Character states:- $0=$ Low level; $1=$ Raised
114 Fluorescent F body (239).
Character states:- $0=$ None; $1=$ Present in sperm
115 Oestrus swelling in female (241).
Character states:- $0=$ Large and prominent; $1=$ Reduced
116 Plantar pattern intensity (242).
Character states:- $0=$ Less than palmar; $1=$ Predominates over palmar
117 Thenar pattern intensity (243).
Character states:- $0=$ Less than hypothenar on sole; $1=$ Predominates over hypothenar; 2= Greatly predominates
118 Hypothenar pattern intensity (244).
Character states:- $0=$ Less than thenar on palm; $1=$ Predominates over thenar
119 Development of palmar and plantar transverse pattern groups (245).
Character states:- $0=$ Distal group less than proximal; $1=$ Distal group predominates 120 Ear breadth (246).
Character states:- $0=$ More than 75% of height; $1=$ Less relative to height
121 Ear lobe (247).
Character states:- $0=$ Absent; $1=$ Present
122 Upper ear height (248).
Character states:- $0=$ High; $1=$ Reduced; 2= Very reduced
123 Apocrine glands (249).
Character states:- $0=$ Many; $1=$ Reduced over body surface
124 Eccrine glands (250).
Character states:- $0=$ Few over body surface; $1=$ Increased over body surface; $2=$ Predominate over body surface
125 Axillary organ (251).
Character states:- $0=$ Absent; $1=$ Small; $2=$ Developed
126 Sebaceous glands (253).
Character states:- $0=$ Large; $1=$ Reduced in size

127 Hair density on scalp (254).
Character states:- $0=$ More than 450 per square $\mathrm{cm} ; 1=$ Reduced; $2=$ Further reduced 128 Hair density on back (255).

Character states:- $0=$ More than 450 per square $\mathrm{cm} ; 1=$ Reduced; $2=$ Further reduced 129 Hair density on chest (256).
Character states: $-0=$ More than 100 per square $\mathrm{cm} ; 1=$ Reduced; $2=$ Very sparse
130 Sexual dimorphism in body size (257).
Character states:- $0=$ Male larger than female; $1=$ Reduced sexual dimorphism

DATA MATRIX FOR DATASET B

	$1^{\text {m" }}$	2	3	4	5	6	7	8	9	10	11	12	13	14	15	16	17	18	19	20	21	22
Hylobates	2	2	1	0	0	0	1	0	1	1	1	0	0	0	0	1	2	0	1	0	1	0
Pongo	2	2	1	1	1	0	1	0	1	0	0	1	1	0	1	2	1	1	0	1	0	2
Gorilla	1	2	1	2	1	1	1	1	0	2	0	1	1	1	2	0	0	0	2	1	0	1
Pan	2	3	0	2	2	1	0	1	1	2	0	1	1	1	2	0	0	0	2	1	0	1
Homo	3	3	0	2	2	1	0	1	0	2	1	0	0	1	2	2	0	1	2	0	1	1

	23	24	25	26	27	28	29	30	31	32	33	34	35	36	37	38	39	40	41	42	43	44
Hylobates	0	0	1	1	0	0	1	0	1	0	0	2	1	2	0	2	3	1	2	0	0	0
Pongo	0	1	0	2	1	1	2	0	1	0	0	1	0	2	0	0	3	1	2	0	0	0
Gorilla	0	0	0	2	1	1	2	1	2	1	1	0	1	2	1	1	2	0	1	2	1	0
Pan	1	0	0	2	1	1	1	1	2	1	1	0	0	1	0	1	2	1	2	1	1	1
Homo	1	1	1	1	0	0	1	1	2	1	0	2	0	0	1	2	1	0	1	2	1	1
	45	46	47	48	49	50	51	52	53	54	55	56	57	58	59	60	61	62	63	64	65	66
Hylobates	0	1	0	0	0	1	1	0	0	0	0	0	1	1	0	1	1	0	1	1	0	0
Pongo	0	2	2	0	0	1	2	1	0	1	1	0	1	1	1	1	1	1	0	0	1	1
Gorilla	1	2	2	0	0	0	1	0	1	0	0	1	0	0	0	2	0	0	0	1	2	1
Pan	1	1	1	1	1	0	2	0	1	0	0	1	0	0	0	2	1	0	0	1	2	1
Homo	1	0	0	1	1	0	2	1	0	1	1	0	1	1	1	2	0	2	1	0	0	0

- These numbers refer to characters listed in Appendix 2.

	67	68	69	70	71	72	73	74	75	76	77	78	79	80	81	82	83	84	85	86	87	88
Hylobates	1	0	2	2	0	0	0	0	1	1	0	0	0	0	1	0	0	0	0	0	1	2
Pongo	0	2	2	0	1	1	0	1	2	2	0	0	1	0	2	1	0	1	1	0	1	2
Gorilla	1	0	1	1	0	1	1	0	1	2	1	1	1	1	2	0	1	1	1	1	2	0
Pan	2	1	1	1	1	0	1	1	2	1	0	1	0	0	1	0	1	1	0	1	2	1
Homo	2	1	0	2	1	0	1	0	1	1	2	1	1	1	2	1	1	0	0	1	2	1

APPENDIX 5

INDEX TO ANATOMICAL STRUCTURES

Structure ALIMENTARY SYSTEM	Homo	Pan	Gorilla	Pongo	Hylobates	Section
Cavitas oris						
Caruncula sublingualis					*	3.2.4.2
Corpus adiposum buccae		*	*			3.2.4.1
Frenulum labii						
Gingivae						
Labia oris						
Palatum molle	*	*	*	*	*	3.2.4.1.1
Papilla incisiva						
Papilla parotidea						
Philtrum	*	*	*	*		3.2.4.1
Plica palatinae transversae						
Plica sublingualis						
Raphe palati						
Tunica mucosa oris						
Vestibulum oris						
Glandulae oris						
Lingualis anterior	*	*	*	*	*	3.2.4.2
Parotidea	*	*				3.2.4.2
Salivariae minores						
Sublingualis	*	*	*	*	*	3.2.4.2
Submandibularis	*	*	*	*		3.2.4.2
Lingua						
Apex	*	*	*	*	*	3.2.4.3
Aponeurosis linguae						
Corpus	*	*	*	*	*	3.2.4.3
Dorsum	*	*	*	*	*	3.2.4.3
Ductus thyroglossus						
Facies inferior linguae						
Folliculi linguales						
Foramen caecum linguae	*	*	*		*	3.2.4.3
Frenulum						
Papillae linguales	*	*	*	*	*	3.2.4.3.2
Radix						
Septum linguae						
Sulcus medianus linguae						
Sulcus terminalis						
Tonsilla lingualis						
Tunica mucosa linguae						
Fauces						
Fossa supratonsillaris						
Fossa tonsillaris						
Isthmus faucium						
Plica salpingopalatina						
Plica semilunaris						
Plica triangularis						
Tonsilla palatina	*	*	*			3.2.4.4.2
Cavitas pharyngis						
Fascia buccopharyngealis						
Fascia pharyngobasilaris	*			*		3.2.4.4.2
Fornix pharyngis						
Pars laryngea pharyngis						
Pars nasalis pharyngis						

Structure		Homo	Pan	Gorilla	Pongo	Hylobates	Section
	Pars oralis pharyngis						
	Raphe pharyngis						
	aphe pterygomandibularis						
	Recessus piriformis						
	Tela submucosa						
	Tonsilla pharyngealis	*	*			*	3.2.4.4.2
	Tunica mucosa						
	Vallecula epiglottica						
Oesophagus							
	Pars abdominalis						
	Pars cervicalis	*	*		*		3.2.4.5
	Pars thoracica	*	*	*	*		3.3.4.1
	Tela submucosa						
	Tunica adventitia						
	Tunica mucosa						
	Tunica muscularis						
Gaster		*	*	*	*	*	3.6.4.1.2
	Corpus gastricum						
	Curvatura gastrica major						
	Curvatura gastrica minor						
	Fornix gastricus						
	Fundus gastricus						
	Paries anterior						
	Paries posterior						
	Pars cardiaca						
	Pars pylorica						
	Pylorus						
	Tela submucosa						
	Tela subserosa						
	Tunica mucosa						
	Tunica muscularis						
	Tunica serosa						
Intestinum tenue		*	*	*	*	*	3.6.4.1.3
	Tela submucosa						
	Tela subserosa						
	Tunica mucosa						
	Tunica muscularis						
	Tunica serosa						
Duodenum		*	*	*	*		3.6.4.1.3.1
Jejunum							
Ileum		*	*	*	*		3.6.4.1.3.2
Intestinum crassum							
Caecum							
	Appendix vermiformis	*	*	*	*	*	3.6.4.1.4.1
	Frenulum valvae ilealis						
	Ostium ileocaecale						
	Ostium valvae ilealis						
	Papilla ileocaecalis						
	Valva ileocaecalis	*	*		*		3.6.4.1.4.1
Colon							
	Appendices epiploicae	*	*				3.6.4.1.4
	Colon ascendens	*	*	*	*		3.6.4.1.4
	Colon descendens	*	*	*	*		3.6.4.1.4
	Colon sigmoideum	*	*	*	*		3.6.4.1.4
	Colon transversum	*	*	*	*		3.6.4.1.4

Margo inferior
Incisura ligamenti teretis

Tela subserosa
Tunica fibrosa
Tunica subserosa
Venae centrales
Venae interlobulares
Vesica bilaris * * *
3.6.4.2.2

Ampulla hepatopancreatica
Collum vesicae biliaris
Corpus vesicae biliaris
Ductus choledochus
Ductus cysticus
3.6.4.2.2

Fundus vesicae biliaris
Tela subserosa vesicae biliaris
Tunica mucosa vesicae biliaris
Tunica muscularis vesicae biliaris
Tunica serosa vesicae biliaris
Pancreas
Caput pancreatis

$*$	$*$	$*$	$*$	$3.6 \cdot 4.2 .3$
$*$	$*$	$*$	$*$	3.6 .4 .2

Incisura pancreatis Processus uncinatus																
Cauda pancreatis	$*$	$*$	$*$		$*$	3.6 .4 .2 .3										
Corpus pancreatis	$*$	$*$	$*$	$*$	$*$	3.6 .4 .2 .3										
Ductus pancreaticus	$*$	$*$		$*$	$*$	3.6 .4 .2 .3										

Tuber omentale

ARTERIES						
Alveolaris inferior	*	*		*		3.2.2.1.1
Alveolares superiores anteriores						
Alveolaris superior posterior	*	*		*		3.2.2.1.1
Aorta	*	*	*	*		3.3.2.2.1
Arcus aortae	*	*	*	*		3.3.2.2.1.2
Ascendens	*	*	*	*		3.3.2.2.1.1
Descendens						
Thoracica	*	*	*	*		3.3.2.2.1.3
Abdominalis	*	*	*	*	*	3.6.2.1.1
Appendicularis						
Arcus palmaris profundus	*	*	*	*	*	3.4.2.1.5
Arcus palmaris superficialis	*	*			*	3.4.2.1.5
Arcus plantaris profundus	*	*	*		*	3.7.2.1.5
Auricularis posterior	*	*		*		3.2.2.1.1
Auricularis profunda						
Axillaris	*	*	*	*	*	3.4.2.1.1
Basilaris	*	*		*	*	3.2.2.1.3
Brachialis	*	*	*	*	*	3.4.2.1.2
Buccalis	*	*		*		3.2.2.1.1
Bulbi penis						
Bulbi vestibulae						
Caecalis anterior						
Caecalis posterior						
Callosomarginalis						
Canalis pterygoidei						
Caroticotympanicae						

Structure	Homo	Pan	Gorilla	Pongo	Hylobates	Section
Carotis communis		*				3.3.2.2.1.2
Carotis externa	*	*	*	*		3.2.2.1.1
Carotis interna	*	*		*	*	3.2.2.1.2
Carpalis dorsalis (radialis)	*		*	*		3.4.2.1.3
Carpalis dorsalis (ulnaris)	*	*	*	*	*	3.4.2.1.4
Carpalis palmaris (radialis)	*		*	*	*	3.4.2.1.3
Carpalis palmaris (ulnaris)	*	*		*	*	3.4.2.1.4
Caudae pancreatis						
Centrales anterolaterales						
Centrales anteromediales						
Centrales posterolaterales						
Centrales posteromediales						
Centralis brevis						
Centralis longa						
Centralis retinae						
Cerebri anterior	*	*	*	*	*	3.2.2.1.2
Cerebri media						
Cerebri posterior	*	*		*	*	3.2.2.1.3
Cervicalis ascendens						
Cervicalis profunda						
Choroidea anterior						
Ciliares anteriores						
Ciliares posteriores breves/longae	*			*		3.2.2.1.2
Circulus arteriosus cerebri	*	*				3.2.2.1.2
Circumflexa anterior/posterior humeri	*	*	*	*	*	3.4.2.1.1
Circumflexa femoris lateralis	*	*	*	*	*	3.7.2.1.1.2
Circumflexa femoris medialis	*	*	*	*	*	3.7.2.1.1.2
Circumflexa iliaca profunda						
Circumflexa iliaca superficialis	*	*	*	*		3.7.2.1.1.1
Circumflexa scapulae						
Colica dextra						
Colica media	*		*			3.6.2.1.1.1.2
Colica sinistra	*	*				3.6.2.1.1.1.3
Collateralis media						
Collateralis radialis						
Collateralis ulnaris inferior	*	*		*		3.4.2.1.2
Collateralis ulnaris superior	*	*	*	*	*	3.4.2.1.2
Comitans nervi ischiadici						
Comitans nervi mediani						
Communicans anterior	*	*		*	*	3.2.2.1.2
Communicans posterior	*			*		3.2.2.1.2
Conjunctivales anteriores						
Conjunctivales posteriores						
Coronaria dextra	*	*	*	*		3.3.2.2.1.1
Coronaria sinistra	*	*	*	*		3.3.2.2.1.1
Cremasterica						
Cystica	*	*	*		*	3.6.2.1.1.1.1
Descendens genicularis	*	*		*		3.7.2.1.1.2
Digitales dorsales(foot)						
Digitales dorsales(hand)						
Digitales palmares communes	*	*	*	*	*	3.4.2.1.5
Digitales palmares propriae						
Digitales plantares communes						
Digitales plantares propriae						
Dorsalis clitoridis						
Dorsalis nasi	*			*		3.2.2.1.2
Dorsalis pedis	*	*	*	*		3.7.2.1.3

Structure	Homo	Pan	Gorilla	Pongo	Hylobates	Section
Dorsalis penis						
Dorsalis scapulae						
Ductus deferentis						
Epigastrica inferior	*	*	*	*		3.7.2.1.1.1
Epigastrica superior						
Episclerales						
Ethmoidalis anterior						
Ethmoidalis posterior						
Facialis						
Femoralis	*	*	*		*	3.7.2.1.1
Fibularis						
Frontobasalis lateralis						
Frontobasalis medialis						
Gastrica dextra	*	*				3.6.2.1.1.1.1
Gastrica posterior		*	*			
Gastrica sinistra	*	*	*			3.6.2.1.1.1.1
Gastricae breves	*	*	*			3.6.2.1.1.1.1
Gastroduodenalis						
Gastro-omentalis dexter	*	*				3.6.2.1.1.1.1
Gastro-omentalis sinistra	*	*				3.6.2.1.1.1.1
Glutea inferior	*	*	*	*		3.6.2.1.2.1
Glutea superior	*	*	*	*		3.6.2.1.2.2
Gyri angularis						
Hepatica communis						
Hepatica propria						
Hypophysialis inferior						
Hypophysialis superior						
Ileales						
Ileocolica						
Iliaca communis						
Iliaca externa						
Iliaca interna	*	*				
Iliolumbalis		*	*			3.6.2.1.2.2
Inferior anterior cerebelli	*			*		3.2.2.1.3
Inferior lateralis genus						
Inferior medialis genus				*		
Inferior posterior cerebelli	*			*		
Infraorbitalis	*	*		*		3.2.2.1.1
Insulares						
Intercostales	*	*	*	*		3.3.2.2.1.3
Interossea anterior	*	*	*	*		3.4.2.1.4
Interossea communis	*	*	*	*		3.4.2.1.4
Interossea posterior	*	*	*	*	*	3.4.2.1.4
Interossea recurrens						
Jejunales * * 3.221						
Labialis inferior	*	*		*		3.2.2.1.1
Labialis superior	*	*		*		3.2.2.1.1
Labyrinthi	*			*		3.2.2.1.3
Laryngea superior	*	*	*			3.2.2.1.1
Ligamenti teretis uteri Lingualis	*	*		*		3.2.2.1.1
Lobi caudati						
Lumbales	*	*	*			3.6.2.1.1.3.1

Structure	Homo	Pan	Gorilla	Pongo	Hylobates	Section
Lumbales imae						
Malleolaris anterior lateralis						
Malleolaris anterior medialis						
Masseterica	*			*		3.2.2.1.1
Maxillaris	*	*		*		3.2.2.1.1
Media genus						
Meningea media	*	*	*	*		3.2.2.1.1
Meningea posterior						
Mesencephalicae						
Mesenterica inferior	*	*	*			3.6.2.1.1.1.3
Mesenterica superior	*	*	*			3.6.2.1.1.1.2
Metacarpales dorsales						
Metacarpales palmares	*	*	*	*	*	3.4.2.1.5
Metatarsales dorsales						
Metatarsales plantares	*	*	*		*	3.7.2.1.5
Musculophrenica	*	*				3.3.2.2.1.2
Nasales posteriores laterales						
Nutriciae femoris						
Nutriciae fibulae						
Nutriciae humeri						
Nutriciae tibiae						
Obturatoria	*	*	*	*		3.6.2.1.2.1
Occipitalis	*	*		*		3.2.2.1.1
Occipitalis lateralis						
Occipitalis medialis						
Ophthalmica	*	*		*		3.2.2.1.2
Ovarica	*	*				3.6.2.1.1.2.3
Palatina ascendens						
Palatina descendens	*	*		*		3.2.2.1.1
Palatina major						
Palatinae minores						
Palmaris profundus	*	*	*	*	*	3.4.2.1.4
Palmaris superficialis	*	*	*	*	*	3.4.2.1.3
Palpebrales laterales						
Palpebrales mediales						
Pancreatica dorsalis/inferior/magna	*	*				3.6.2.1.1.1.1
Pancreaticoduodenalis inferior						
Pancreaticoduodenalis superior anterior						
Pancreaticoduodenalis superior posterior						
Paracentralis						
Parietales anterior et posterior						
Parieto-occipitalis						
Pericardiacophrenica						
Perinealis						
Peronealis	*	*	*	*	*	3.7.2.1.4
Pharyngea ascendens	*	*		*		3.2.2.1.1
Phrenica inferior	*	*		*		3.6.2.1.1.2.1
Phrenicae superiores						
Plantaris lateralis	*	*	*	*	*	3.7.2.1.4
Plantaris medialis	*	*	*	*	*	3.7.2.1.4
Plantaris profundus						
Pontis	*			*		3.2.2.1.3
Poplitea	*	*	*	*	*	3.7.2.1.2
Precunealis						
Princeps pollicis	*	*	*	*	*	3.4.2.1.3

Structure	Homo	Pan	Gorilla	Pongo	Hylobates	Section
Profunda brachii	*	*	*	*	*	3.4.2.1.2
Profunda clitoridis						
Profunda femoris	*	*	*	*	*	3.7.2.1.1.2
Profunda linguae						
Profunda penis						
Pterygomeningea						
Pudenda externae	*	*	*	*		3.7.2.1.1.2
Pudenda interna	*	*	*	*		3.6.2.1.2.1
Pulmonalis dextra	*	*		*	*	3.3.2.2.2
Pulmonalis sinistra	*	*		*	*	3.3.2.2.2
Radialis	*	*	*	*	*	3.4.2.1.3
Radialis indicis	*	*	*	*	*	3.4.2.1.3
Rectalis inferior						
Rectalis media	*	*				3.6.2.1.2.1
Rectalis superior	*	*				3.6.2.1.1.1.3
Recurrens radialis	*	*	*	*	*	3.4.2.1.3
Recurrens tibialis anterior						
Recurrens tibialis posterior						
Recurrens ulnaris	*	*	*	*	*	3.4.2.1.4
Renalis	*	*	*			3.6.2.1.1.2.2
Rete articulare cubitii						
Rete articulare genus						
Rete malleolare laterale						
Rete patellae						
Retroduodenales						
Sacrales laterales	*	*				3.6.2.1.2.2
Sacralis mediana	*	*		*		3.6.2.1.1.3.2
Saphena	*	*	*	*	*	3.7.2.1.1.2
Segmenti anterioris						
Segmenti anterioris superioris						
Segmenti anterioris inferioris						
Segmenti lateralis						
Segmenti medialis						
Segmenti posterioris						
Segmenti superioris						
Sigmoideae						
Sphenopalatina	*	*		*		3.2.2.1.1
Spinalis anterior	*			*		3.2.2.1.3
Spinalis posterior						
Splenica	*	*	*	*		3.6.2.1.1.1.1
Stylomastoidea						
Subclavia	*	*	*	*		3.3.2.2.1.2
Subcostalis	*	*		*		3.3.2.2.1.3
Sublingualis						
Submentalis	*	*				3.2.2.1.1
Subscapularis	*	*	*	*	*	3.5.2.1.2
Sulci centralis						
Sulci postcentralis						
Sulci precentralis						
Superior cerebelli	*			*		3.2.2.1.3
Superior lateralis genus						
Superior medialis genus						
Suprarenalis inferior	*	*	*			3.6.2.1.1.2.2
Suprarenalis media	*	*	*	*		3.6.2.1.1.2.1
Suprarenales superiores						
Suprascapularis	*	*	*	*		3.5.2.1.1

Structure	Homo	Pan	Gorilla	Pongo	Hylobates	Section
Supratrochlearis						
Surales						
Tarsalis lateralis						
Tarsalis medialis						
Temporalis anterior						
Temporalis media						
Temporalis posterior						
Temporalis profunda anterior/posterior	*	*		*		3.2.2.1.1
Temporalis superficialis	*	*		*		3.2.2.1.1
Testicularis	*	*			*	3.6.2.1.1.2.3
Thoracica interna	*	*	*			3.3.2.2.1.2
Thoracica lateralis	*	*	*	*	*	3.3.2.2.3
Thoracica superior	*	*	*	*	*	3.3.2.2.3
Thoracoacromialis	*	*	*	*	*	3.3.2.2.3
Thoracodorsalis						
Thyrocervicalis						
Thyroidea inferior						
Thyroidea superior	*	*	*	*		3.2.2.1.1
Tibialis anterior	*	*	*	*		3.7.2.1.3
Tibialis posterior	*		*	*	*	3.7.2.1.4
Transversa cervicis	*	*		*		3.5.2.1.1
Transversa facialis	*	*		*		3.2.2.1.1
Truncus brachiocephalicus	*	*	*	*		3.3.2.2.1.2
Truncus coeliacus	*	*	*			3.6.2.1.1.1.1
Truncus costocervicalis						
Truncus pulmonalis						
Tympanica anterior						
Tympanica inferior						
Tympanica posterior						
Tympanica superior						
Ulnaris	*	*	*	*	*	3.4.2.1.4
Umbilicalis						
Urethralis						
Uterina	*	*	*	*		3.6.2.1.2.1
Vaginalis	*	*				3.6.2.1.2.1
Vertebralis	*	*	*	*	*	3.2.2.1.3
Vesicales inferior/superiores	*	*	*	*		3.6.2.1.2.1
Zygomatic-orbitalis						
BURSAE						
Bicipitoradialis						
Infrahyoidea						
Infrapatellaris profunda						
Intermusculares musculorum gluteorum						
Ischiadica musculi glutei maximi						
Ischiadica musculi obturatoris interni						
Musculi bicipitis femoris superior						
Musculi piriformis						
Musculi semimembranosi						
Musculi tensoris veli palatini						
Retrohyoidea						
Subacromialis						
Subcutanea infrapatellaris						
Subcutanea malleoli lateralis						
Subcutanea malleoli medialis						
Subcutanea olecrani						

Structure	Homo	Pan	Gorilla	Pongo	Hylobates	Section
Subcutanea prepatellaris						
Subcutanea prominentiae laryngealis						
Subcutanea trochanterica						
Subcutanea tuberositatis tibiae						
Subdeltoidea						
Subtendinea calcanea						
Subtendinea iliaca						
Subtendinea musculi gastrocnemius lateralis						
Subtendinea musculi gastrocnemius medialis						
Subtendinea musculi infraspinatus						
Subtendinea musculi latissimus dorsi						
Subtendinea musculi obturatoris interna						
Subtendinea musculi subscapularis						
Subtendinea musculi teretis majoris						
Subtendinea musculi trapezii						
Subtendinea musculi tricipitis brachii						
Subtendinea prepatellaris						
Suprapatellaris						
Tendinis calcanei						
Trochanterica musculi glutei maximi						
Trochanterica musculi glutei medii						
Trochanterica musculi glutei minimi						
COR						3.3.2.1
Annuli fibrosi						
Apex cordis * * * * *						
Atrium dextrum	*	*		*		3.3.2.1.2.2
Auricula dextra	*			*		3.3.2.1.2.2
Crista terminalis	*	*		*		3.3.2.1.2.2
Foramina venarum minimarum ** ${ }^{\text {a }}$						
Fossa ovalis	*	*		*		3.3.2.1.2.2
Limbus fossae ovalis						
Musculi pectinati	*	*		*		3.3.2.1.2.2
Ostium sinus coronarii						
Ostium venae cavae inferioris	*	*		*		3.3.2.1.2.2
Ostium venae cavae superioris						
Sinus venarum cavarum						
Sulcus terminalis						
Tuberculum intervenosum						
Valvula venae cavae inferioris	*	*		*		3.3.2.1.2.2
Valvula sinus coronarii	*			*		3.3.2.1.2.2
Atrium sinistrum	*	*		*		3.3.2.1.2.1
Auricula sinistra	*	*		*		3.3.2.1.2.1
Musculi pectinatiOstia venarum pulmonalium ${ }^{\text {a }}$ (${ }^{\text {a }}$						
Endocardium						
Myocardium						
Septum atrioventriculare						
Septum interatriale						
Septum interventriculare						
Sulcus coronarius						
Sulcus interventricularis anterior						

Structure	Homo	Pan	Gorilla	Pongo	Hylobates	Section
Sulcus interventricularis posterior						
Tendo infundibulum						
Trigonum fibrosum dextrum						
Trigonum fibrosum sinistrum						
Ventriculus dexter	*	*		*		3.3.2.1.3.2
Conus arteriosus	*	*		*		3.3.2.1.3.2
Crista supraventricularis	*	*		*		3.3.2.1.3.2
Musculus papillaris anterior Musculus papillaris posterior						
Ostium atrioventriculare dextrum	*	*		*		3.3.2.1.3.2
Ostium trunci pulmonalis						
Trabecula septomarginalis	*	*				3.3.2.1.3.2
Trabeculae carneae						
Valva atrioventricularis dextra	*	*		*		3.3.2.1.3.2
Valva trunci pulmonalis	*	*				3.3.2.1.3.2
Ventriculus sinister	*	*		*		3.3.2.1.3.1
Musculus papillaris anterior						
Musculus papillaris posterior						
Ostium aortae						
Ostium atrioventriculare sinistrum	*			*		3.3.2.1.3.1
Trabeculae carneae	*	*				3.3.2.1.3.1
Valva aortae						
Vortex cordis						
ENDOCRINE GLANDS						
Corpus pineale	*	*	*	*		3.2.6.2
Glandula parathyroidea inferior/superior	*	*	*			3.2.6.1
Glandula suprarenalis	*	*	*			3.6.6.1
Cortex						
Facies anterior						
Facies posterior						
Facies renalis						
Hilum						
Margo medialis						
Margo superior						
Medulla						
Glandula thyroidea	*	*	*	*		3.2.6.4
Hypophysis	*	*	*	*	*	3.2.6.3
Thymus	*	*	*	*		3.3.6.1
INTEGUMENT						3.1
Cornu						
Dermis						
Epidermis						
Glandulae cutis	*	*	*	*	*	3.11
Glandula mammaria						
Mamma	*	*	*	*	*	3.14
Pilus	*	*	*	*	*	3.12
Tela subcutanea						
Unguis	*	*		*		3.13
LYMPHATICS						
Ductus						
Cisterna chyli						
Ductus lymphaticus dexter						

Structure	Homo	Pan	Gorilla	Pongo	Hylobates	Section
Ductus thoracicus						
Pars thoracica	*	*	*			3.3.2.4
Pars abdominalis	*	*		*		3.6.2.3
Nodes						
Aortici laterales						
Appendiculares						
Axillaris	*	*		*		3.4.2.3
Buccinatorius						
Cavales laterales						
Cervicales anteriores superficiales/profundi	*	*	*	*		3.2.2.3
Cervicales laterales superficiales/profundi	*	*	*	*		3.2.2.3
Coeliaci						
Colici						
Epigastrici inferiores						
Gastrici	*	*				3.6.2.3
Gastro-omentales						
Gluteales						
Hepatici						
Ileocolici						
Iliaci communes	*	*				3.6.2.3
Iliaci externi	*		*			3.6.2.3
Iliaci interni						
Infra-auriculares						
Inguinales	*	*				3.6.2.3
Intercostales						
Interiliaci						
Intraglandulares						
Jugulares anteriores						
Jugulares laterales						
Jugulodigastricus						
Jugulo-omohyoideus						
Juxta-esophageales pulmonales						
Lumbales dextri						
Lumbales intermedii						
Lumbales sinistri						
Malaris						
Mandibularis						
Mastoidei						
Mediastinales anteriores						
Mediastinales posteriores	*		*			3.3.2.4
Mesenterici	*	*				3.6.2.3
Mesocolici						
Nasolabialis						
Obturatorii						
Occipitales	*	*		*		3.2.2.3
Pancreatici						
Pancreaticoduodenales						
Paramammarii						
Paracolici						
Pararectales						
Parasternales						
Paratracheales						
Para-uterini						
Paravaginalis						

Structure	Homo	Pan	Gorilla	Pongo	Hylobates	Section
Paravesiculares						
Parotidei superficialis/profundi	*	*	*	*		3.2.2.3
Phrenici inferiores						
Phrenici superiores						
Popliteales	*	*	*	*		3.7.2.3
Postaortici						
Postcavales						
Postvesiculares						
Pre-aortici						
Preauriculares						
Precaecales						
Precavales						
Prelaryngeales	*	*		*		3.2.2.3
Prepericardiales laterales						
Pretracheales	*		*			3.2.2.3
Prevertebrales						
Prevesiculares						
Promontorii						
Pylorici						
Rectales superiores						
Retrocaecales						
Retropharyngeales	*	*		*		3.2.2.3
Sacrales						
Sigmoidei						
Splenici						
Subaortici						
Submandibulares						
Submentalis	*	*		*		3.2.2.3
Supraclaviculares						
Thyroidei						
Tracheobronchiales						
Vesicales laterales						
Splen	*	*	*	*		3.6.4.2.3
Extremitas anterior Extremitas posterior						
Facies diaphragmatica						
Facies visceralis						
Folliculi lymphatici splenici						
Hilum splenicum						
Margo inferior						
Margo superior						
Penicilli						
Pulpa splenica						
Rami splenici						
Sinus splenicus						
Splen accessorius	*	*		*		3.6.4.2.3
Trabeculae splenicae						
Tunica fibrosa						
Tunica serosa						
Trunks						
Bronchomediastinales dexter/sinister						
Intestinales						
Jugularis dexter/sinister						
Lumbaris dexter/sinister						
Subclavius dexter/sinister						

Structure	Homo	Pan	Gorilla	Pongo	Hylobates	Section
MUSCLES						
Abductor digiti minimi(foot)	*	*	*	*	*	3.7.1.4.2.1
Abductor digiti minimi(hand)	*	*	*	*	*	3.4.1.4.1
Abductor hallucis	*	*	*	*	*	3.7.1.4.2.1
Abductor os metatarsi digiti minimi*	*	*	*	*		3.7.1.4.2.1
Abductor pollicis brevis	*	*	*	*	*	3.4.1.4.2
Abductor pollicis longus	*	*	*	*	*	3.4.2.3.2.2
Adductor brevis	*	*	*	*	*	3.7.1.2.2
Adductor hallucis	*	*	*	*	*	3.7.1.4.2.3
Adductor longus	*	*	*	*	*	3.7.1.2.2
Adductor magnus	*	*	*	*	*	3.7.1.2.2
Adductor minimus	*	*	*	*	*	3.7.1.2.2
Adductor pollicis						
Anconeus	*	*	*	*	*	3.4.1.2.2
Antitragicus						
Arrectores pilorum						
Articularis genu	*	*	*	*	*	3.7.1.2.1
Aryepiglotticus	*	*				3.2.5.2.1
Arytenoideus obliquus/transversus	*	*	*	*		3.2.5.2.1
Auriculares	*	*	*	*		3.2.7.1.2.1
Biceps brachii	*	*	*	*	*	3.4.1.2.1
Biceps femoris	*	*	*	*	*	3.7.1.2.3
Brachialis	*	*	*	*	*	3.4.1.2.1
Brachioradialis	*	*	*	*	*	3.4.1.3.2.1
Bronchooesophageus						
Buccinator	*	*	*	*		3.2.1.2.4
Bulbospongiosus	*	*	*	*	*	3.6.1.3.2.2
Chondroglossus						
Coccygeus	*	*	*	*	*	3.6.1.3.1
Compressor urethrae						
Constrictor pharyngis inferior	*	*				3.2.4.4.1
Constrictor pharyngis medius	*	*				3.2.4.4.1
Constrictor pharyngis superior	*	*	*	*		3.2.4.4.1
Coracobrachialis	*	*	*	*	*	3.4.1.2.1
Corrugator supercilii	*	*	*	*		3.2.1.2.2
Cremaster	*	*	*	*	*	3.6.1.1.2
Cricoarytenoideus lateralis	*	*		*		3.2.5.2.1.
Cricoarytenoideus posterior	*	*		*		3.2.5.2.1
Cricothyroideus	*	*	*	*	*	3.2.5.2.1
Dartos						
Deltoid	*	*	*	*	*	3.4.1.1
Depressor anguli oris	*	*	*	*		3.2.1.2.4
Depressor labii inferioris	*	*	*	*		3.2.1.2.4
Depressor septi						
Depressor supercilii	*	*	*	*		3.2.1.2.2
Detrusor vesicae						
Diaphragm	*	*	*		*	3.2.1.3
Digastric	*	*	*	*	*	3.2.1.4.3
Dilator pupillae						
Dorso-epitrochlearis	*	*	*	*	*	3.4.1.2.2
Extensor carpi radialis brevis	*	*	*	*	*	3.4.1.3.2.1
Extensor carpi radialis longus	*	*	*	*	*	3.4.1.3.2.1
Extensor carpi ulnaris	*	*	*	*	*	3.4.1.3.2.1
Extensor digiti minimi	*	*	*	*	*	3.4.1.3.2.1
Extensor digitorum	*	*	*	*	*	3.4.1.3.2.1
Extensor digitorum brevis	*	*	*	*	*	3.7.1.4.1

Structure	Homo	Pan	Gorilla	Pongo	Hylobates	Section
Extensor digitorum longus	*	*	*	*	*	3.7.1.3.1
Extensor hallucis brevis	*	*	*	*	*	3.7.1.4.1
Extensor hallucis longus	*	*	*		*	3.7.1.3.1
Extensor indicis	*	*	*	*	*	3.4.1.3.2.2
Extensor pollicis brevis	*	*	*	*		3.4.1.3.2.2
Extensor pollicis longus	*	*	*	*	*	3.4.1.3.2.2
Flexor carpi radialis	*	*	*	*	*	3.4.1.3.1.1
Flexor carpi ulnaris	*	*	*	*	*	3.4.1.3.1.1
Flexor digiti minimi(foot)	*	*	*	*		3.7.1.4.2.3
Flexor digiti minimi brevis	*	*	*	*	*	3.4.1.4.1
Flexor digitorum brevis	*	*	*	*		3.7.1.4.2.1
Flexor digitorum longus	*	*	*	*	*	3.7.1.3.3.2
Flexor digitorum profundus	*	*	*	*	*	3.4.1.3.1.2
Flexor digitorum superficialis	*		*			3.4.1.3.1.1
Flexor hallucis brevis	*		*			3.7.1.4.2.3
Flexor hallucis longus	*	*	*			3.7.1.3.3.2
Flexor pollicis brevis	*	*	*			3.4.1.4.2
Flexor pollicis longus	*	*	*	*	*	3.4.1.3.1.2
Galea aponeurotica						
Gastrocnemius	*	*	*	*	*	3.7.1.3.3.1
Gemellus inferior	*	*	*		*	3.7.1.1.2
Gemellus superior	*	*	*	*	*	3.7.1.1.2
Genioglossus	*	*				3.2.4.3.1
Geniohyoideus	*	*	*			3.2.1.4.3
Gluteus maximus	*	*	*	*	*	3.7.1.1.1
Gluteus medius	*	*	*	*	*	3.7.1.1.1
Gluteus minimus	*	*	*	*	*	3.7.1.1.1
Gracilis	*	*	*	*	*	3.7.1.2.2
Helicis major						
Helicis minor						
Hyoglossus	*	*		*		3.2.4.3.1
Iliococcygeus	*	*	*	*	*	3.6.1.3.1
Iliocostalis	*		*			3.5.1.2.1.1
Infraspinatus	*	*	*	*		3.5.1.1.5
Inguinal canal	*	*	*	*	*	3.6.1.1.3
Intercostales externi	*	*	*			3.3.1.2
Intercostales interni						
Intercostales intimi						
Interossei dorsales(hand)	*	*	*	*	*	3.4.1.4.3
Interossei palmares	*	*	*	*		3.4.1.4.3
Interossei dorsales(foot)	*	*	*	*	*	3.7.1.4.2.4
Interossei plantares	*	*	*	*		3.7.1.4.2.4
Interspinales	*		*			3.5.1.2.2.2
Intertransversarii	*	*	*	*		3.5.1.2.2.3
Ischiocavernosus	*	*	*			3.6.1.3.2.2
Latissimus dorsi	*	*	*	*	*	3.5.1.1.4
Levator anguli oris	*	*	*	*		3.2.1.2.4
Levator ani	*	*	*	*		3.6.1.3.1
Levator claviculae	*	*	*	*		3.2.1.4.2
Levatores costarum	*	*	*			3.3.1.1
Levator labii superioris	*	*	*	*		3.2.1.2.4
Levator labii superioris alaeque nasi	*	*	*	*		3.2.1.2.4
Levator palpebrae superioris	*	*		*		3.2.7.2.2.1
Levator prostatae[pubovaginalis]						
Levator scapulae	*	*	*	*		3.5.1.1.4
Levator veli palatini	*	*	*	*		3.2.4.1.1

Structure	Homo	Pan	Gorilla	Pongo	Hylobates	Section
Longissimus						3.5.1.2.1.2
Longitudinalis inferior						
Longitudinalis superior						
Longus capitis	*	*	*	*		3.2.1.4.1
Longus colli	*		*	*		3.2.1.4.1
Lumbricales(foot)	*	*	*	*	*	3.7.1.4.2.2
Lumbricales(hand)	*	*	*	*	*	3.4.1.4.3
Masseter	*	*	*	*	*	3.2.1.3
Mentalis	*	*	*	*		3.2.1.2.4
Multifidus	*	*	*			3.5.1.2.2.1
Mylohyoideus	*	*	*	*		3.2.1.4.3
Nasalis	*	*	*	*		3.2.1.2.3
Obliquus auriculae						
Obliquus capitis inferior	*	*	*	*		3.2.1.1
Obliquus capitis superior	*	*	*			3.2.1.1
Obliquus externus abdominis	*	*	*	*	*	3.6.1.1.2
Obliquus inferior	*	*		*		3.2.7.2.2.1
Obliquus internus abdominis	*	*	*	*	*	3.6.1.1.2
Obliquus superior	*	*		*		3.2.7.2.2.1
Obturator externus	*	*	*	*	*	3.7.1.1.2
Obturator internus	*	*	*	*	*	3.7.1.1.2
Occipitofrontalis	*	*	*	*		3.2.1.2.1
Omohyoideus	*	*	*	*	*	3.2.1.4.4
Opponens digiti minimi(foot)	*	*	*	*		3.7.1.4.2.3
Opponens digiti minimi(hand)	*	*	*	*	*	3.4.1.4.1
Opponens hallucis*	*	*	*	*		3.7.1.4.2.3
Opponens pollicis	*	*	*	*	*	3.4.1.4.2
Orbicularis oculi	*	*		*		3.2.1.2.2
Orbicularis oris	*	*	*	*		3.2.1.2.4
Orbitalis						
Palatoglossus	*	*				3.2.4.1.1
Palatopharyngeus						
Palmaris brevis	*	*	*	*	*	3.4.1.4.1
Palmaris longus	*	*	*	*		3.4.1.3.1.1
Pectineus	*	*	*	*	*	3.7.1.2.2
Pectoralis major	*	*	*	*	*	3.3.1.1
Pectoralis minor	*	*	*	*	*	3.3.1.1
Peroneus brevis	*	*	*	*	*	3.7.1.3.2
Peroneus longus	*	*	*	*	*	3.7.1.3.2
Peroneus tertius	*	*	*	*	*	3.7.1.3.1
Piriformis	*	*	*	*	*	3.7.1.1.2
Plantaris	*	*	*	*	*	3.7.1.3.3.1
Platysma	*	*	*	*		3.2.1.4.2
Pleurooesophageus						
Popliteus	*	*	*	*	*	3.7.1.3.3.2
Procerus	*	*	*			3.2.1.2.3
Pronator quadratus	*	*	*	*	*	3.4.1.3.1.2
Pronator teres	*	*	*	*	*	3.4.1.3.1.1
Psoas major	*	*	*	*	*	3.6.1.2
Psoas minor	*	*	*	*	*	3.6.1.2
Pterygoideus lateralis	*		*	*		3.2.1.3
Pterygoideus medialis	*		*	*		3.2.1.3
Pubococcygeus	*	*	*	*	*	3.6.1.3.1
Puboprostaticus	*		*			3.6.1.3.1
Puborectalis	*	*	*	*		3.6.1.3.1
Pubovaginalis						

Structure	Homo	Pan	Gorilla	Pongo	Hylobates	Section
Pubovesicalis			*			3.6.1.3.1
Pyramidalis	*	*	*			3.6.1.1.1
Pyramidalis auriculae						
Quadratus femoris	*	*	*	*	*	3.7.1.1.2
Quadratus lumborum	*	*	*			3.6.1.2
Quadratus plantae	*	*	*	*	*	3.7.1.4.2.2
Quadriceps femoris	*	*	*	*	*	3.7.1.2.1
Rectococcygeus	*		*			3.6.4.1.5
Rectourethralis	*		*			3.6.4.1.5
Rectouterinus						
Rectovesicalis						
Rectus abdominis	*	*	*		*	3.6.1.1.1
Rectus capitis anterior	*	*	*	*		3.2.1.1
Rectus capitis lateralis	*	*	*	*		3.2.1.1
Rectus capitis posterior major	*	*	*	*		3.2.1.1
Rectus capitis posterior minor	*	*	*	*		3.2.1.1
Rectus femoris	*	*	*	*	*	3.7.1.2.1
Rectus inferior	*	*		*		3.2.7.2.2.1
Rectus lateralis	*	*		*		3.2.7.2.2.1
Rectus medialis						
Rectus superior	*			*		3.2.7.2.2.1
Rhomboideus major and minor	*	*	*	*		3.5.1.1.4
Risorius	*	*	*	*		3.2.1.2.4
Rotatores	*	*	*			3.5.1.2.2.1
Salpingopharyngeus						
Sartorius	*	*	*	*	*	3.7.1.2.1
Scalenus anterior	*	*	*	*	*	3.2.1.4.1
Scalenus medius	*	*	*	*		3.2.1.4.1
Scalenus minimus						
Scalenus posterior	*	*	*	*		3.2.1.4.1
Scansorius*	*	*	*	*	*	3.7.1.1.1
Semimembranosus	*	*	*	*	*	3.7.1.2.3
Semispinalis	*	*	*	*		3.5.1.2.2.1
Semitendinosus	*	*	*	*	*	3.7.1.2.3
Serratus anterior	*	*	*	*	*	3.3.1.1
Serratus posterior inferior	*	*	*	*		3.5.1.1.3
Serratus posterior superior	*	*	*	*		3.5.1.1.2
Soleus	*	*	*	*	*	3.7.1.3.3.1
Sphincter ani externus	*	*	*	*	*	3.6.1.3.2.1
Sphincter ani internus						
Sphincter ductus choledochi						
Sphincter ductus pancreatici						
Sphincter pupillae						
Sphincter pyloricus						
Sphincter urethrae	*		*			3.6.1.3.2.2
Spinalis	*	*	*			3.5.1.2.1.3
Splenius capitis	*	*	*	*		3.5.1.1.1
Splenius cervicis	*	*	*	*		
Stapedius						
Sternalis	*	*		*		3.3.1.1
Sternocleidomastoideus	*	*	*	*	*	3.2.1.4.2
Sternohyoideus	*	*	*	*		3.2.1.4.4
Sternothyroideus	*	*	*			3.2.1.4.4
Styloglossus	*	*	*	*		3.2.4.2.1
Stylohyoideus	*	*	*	*		3.2.1.4.3
Stylopharyngeus	*	*		*		3.2.4.4.1

Structure	Homo	Pan	Gorilla	Pongo	Hylobates	Section
Subclavius	*	*	*	*		3.3.1.1
Subcostales						
Subscapularis	*	*	*	*	*	3.5.1.1.5
Supinator	*	*	*	*	*	3.4.1.3.2.2
Supraspinatus	*	*	*	*	*	3.5.1.1.5
Suspensorius duodeni						
Tarsalis inferior						
Tarsalis superior						
Temporalis	*	*	*	*		3.2.1.3
Temporoparietalis	*	*				3.2.1.2.1
Tendo calcaneus						
Tensor fasciae latae	*	*	*	*	*	3.7.1.2.1
Tensor linea semilunaris			*			3.6.1.1.1
Tensor tympani						
Tensor veli palatini	*	*	*	*		3.2.4.1.1
Teres major	*	*	*	*	*	3.5.1.1.5
Teres minor	*	*	*	*	*	3.5.1.1.5
Thyroarytenoideus	*	*		*		3.2.5.2.1
Thyroepiglotticus	*	*				3.2.5.2.1
Thyrohyoideus	*	*	*	*		3.2.1.4.4
Tibialis anterior	*	*	*	*	*	3.7.1.3.1
Tibialis posterior	*	*	*	*	*	3.7.1.3.3.2
Thyrohyoideus						
Tracheales						
Tragicus	*	*		*		3.2.7.1.2.1
Transversus abdominis	*	*	*	*	*	3.6.1.1.2
Transversus auriculae						
Transversus linguae						
Transversus perinei profundus	*	*	*			3.6.1.3.2.2
Transversus perinei superficialis	*	*	*			3.6.1.3.2.2
Transversus menti						
Transversus thoracis	*	*	*			3.3.1.2
Trapezius	*	*	*	*	*	3.5.1.1.4
Triceps brachii	*	*	*	*	*	3.4.1.2.2
Ưvulae	*	*		*		3.2.4.1
Vasti	*	*	*	*	*	3.7.1.2.1
Verticalis linguae						
Vocalis	*	*				3.2.5.2.1
Zygomaticus major	*	*	*	*		3.2.1.2.4
Zygomaticus minor	*	*	*	*		3.2.1.2.4

MEDIASTINUM

NERVES					
Abducens(VI)	$*$	$*$			3.2 .3 .1
Accessorius(XI)	$*$	$*$	$*$		3.2 .3 .1
Alveolares superiores					
Alveolaris inferior					
Ampullaris anterior					
Ampullaris lateralis					
Ampullaris magnus		$*$		$*$	
Ampullaris posterior				$*$	3.2 .3 .2
Auriculares anteriores					3.2 .3

Structure	Homo	Pan	Gorilla	Pongo	Hylobates	Section
Autonomica						
Plexus aorticus abdominalis Plexus aorticus thoracicus Plexus hypogastricus superior						
Axillaris	*	*	*	*	*	3.4.3.3.2.7
Buccalis						
Canalis pterygoidei						
Caroticotympanici						
Cervicales						
Chorda tympani	*	*		*		3.2.3.1
Ciliares breves	*	*				3.2.3.1
Ciliares longi						
Clunium inferiores						
Clunium medii						
Cochlearis						
Cutanei cruris mediales						
Cutaneous antebrachii lateralis	*	*	*	*	*	3.4.3.3.2.2
Cutaneous antebrachii medialis	*	*	*	*	*	3.4.3.3.2.3
Cutaneous antebrachii posterior						
Cutaneous brachii lateralis inferior						
Cutaneous brachii lateralis superior						
Cutaneous brachii medialis	*	*	*	*	*	3.4.3.3.2.3
Cutaneous brachii posterior						
Cutaneous dorsalis intermedius						
Cutaneous dorsalis lateralis						
Cutaneous dorsalis medialis						
Cutaneous femoris lateralis	*	*	*	*	*	3.7.3.2.3
Cutaneous femoris posterior	*	*	*	*	*	3.7.3.2.8
Cutaneous surae lateralis						
Cutaneous surae medialis						
Digitales dorsales manus						
Digitales dorsales pedis						
Digitales palmares communes/proprii	*	*	*	*	*	3.4.3.3.2.4-5
Digitales plantares communes						
Digitales plantares proprii						
Dorsalis clitoridis				-		
Dorsalis penis						
Dorsalis scapulae	*		*			3.4.3.3.1
Ethmoidalis anterior						
Ethmoidalis posterior						
Facialis(VII)	*	*		*		3.2.3.1
Femoralis	*	*	*	*	*	3.7.3.2.4
Fibularis communis[peroneus]	*	*	*	*	*	3.7.3.2.9.2
Fibularis profundus	*	*	*	*		3.7.3.2.9.2.1
Fibularis superficialis	*	*	*	*	*	3.7.3.2.9.2.2
Frontalis						
Ganglion caudalis						
Ganglion ciliare	*	*		*		3.2.3.1
Ganglion cochleare						
Ganglion geniculi						
Ganglion oticum						
Ganglion pterygopalatinum	*			*		3.2.3.1
Ganglion rostralis						
Ganglion submandibulare						
Ganglion trigeminale	*			*		3.2.3.1
Ganglion vestibulare						

Structure	Homo	Pan	Gorilla	Pongo	Hylobates	Section
Genitofemoralis	*	*	*	*		3.6.3.2
Glossopharyngeus(IX)	*	*				3.2.3.1
Gluteus inferior	*	*		*		3.7.3.2.7
Gluteus superior	*	*	*	*	*	3.7.3.2.6
Hypoglossus(XII)	*	*	*	*		3.2.3.1
Iliohypogastricus	*	*	*			3.6.3.2
Ilio-inguinalis	*	*	*		*	3.6.3.2
Infraorbitalis	*	*				3.2.3.1
Infratrochlearis						
Intercostales	*	*	*			3.3.3.1
Intercostobrachialis	*	*	*	*	*	3.4.3.2
Intermedius						
Interosseous anterior	*	*	*	*	*	3.4.3.3.2.4
Interosseous cruris						
Interosseous posterior	*	*	*	*	-	3.4.3.3.2.6
Ischiadicus[sciatic]	*	*	*	*	*	3.7.3.2.9
Labiales anteriores						
Labiales posteriores						
Lacrimalis						
Laryngeus inferior	*	*				3.2.3.1
Laryngeus recurrens						
Laryngeus superior	*	*				3.2.3.1
Lingualis	*	*				3.2.3.1
Lumbales						
Mandibularis	*			*		3.2.3.1
Massetericus						
Maxillaris	*	*		*		3.2.3.1
Meatus acustici externi						
Medianus	*	*	*	*	*	3.4.3.3.2.4
Mentalis						
Musculi quadrati femoris	*	*	*	*	*	3.7.3.2.1
Musculi tensoris tympani						
Musculi tensoris veli palatini						
Mylohyoideus						
Musculocutaneous	*	*	*	*	*	3.4.3.3.2.2
Nasociliares						
Obturatorius	*	*	*	*	*	3.7.3.2.5
Obturatorius accessorius						
Obturatorius internus	*	*	*	*	*	3.7.3.2.1
Occipitalis major						
Occipitalis minor	*	*	*			3.2.3.2
Occipitalis tertius						
Oculomotorius(III)	*	*		*		3.2.3.1
Olfactorii(I)						
Opthalmicus	*			*		3.2.3.1
Opticus(II)	*	*		*		3.2.3.1
Palatinus major						
Palatini minores						
Parasympathica						
Pectoralis lateralis/medialis	*	*	*	*	*	3.4.3.3.2.1
Perineales						
Petrosus major						
Petrosus minor						
Petrosus profundus						
Phrenicus	*	*	*	*		3.3.3.2
Piriformis	*	*	*	*		3.7.3.2.1

Structure	Homo	Pan	Gorilla	Pongo	Hylobates	Section
Plantaris lateralis	*	*	*			3.7.3.2.9.1.2
Plantaris medialis	*	*	*	*	*	3.7.3.2.9.1.1
Plexus brachialis	*	*	*	*	*	3.4.3.3
Plexus dentalis inferior						
Plexus dentalis superior						
Plexus intraparotideus						
Plexus lumbalis	*	*	*	*	*	3.7.3.1
Plexus lumbosacralis	*	*	*	*	*	3.7.3.1
Plexus oesophageus						
Plexus pharyngeus						
Plexus sacralis	*	*	*	*	*	3.7.3.1
Plexus tympanicus						
Pterygoideus lateralis						
Pterygoideus medialis						
Pudendus	*	*	*			3.6.3.3
Radialis	*	*	*	*	*	3.4.3.3.2.6
Rectales inferiores						
Saccularis						
Saphenus						
Scrotales anteriores						
Scrotales posteriores						
Stapedius						
Subclavius						
Subcostalis	*	*	*			3.3.3.1
Sublingualis						
Suboccipitalis						
Subscapulares	*	*	*	*	*	3.4.3.3.2.8
Supraclaviculares	*	*	*			3.3.3.2
Supraorbitalis						
Suprascapularis	*	*	*	*	*	3.4.3.3.1
Suralis						
Sympathetica						
Ganglion cervicale medium	*	*				3.2.3.3
Ganglion cervicale superius						
Ganglion cervicothoracicum	*	*				3.2.3.3
Ganglion lumbalia Ganglion sacralia Ganglion thoracica	*	*	*	*	*	3.6.3.4
Plexus caroticus internus	*	*				3.2.3.3
Temporalis profundi						
Thoracici						
Thoracicus longus	*	*	*	*	*	3.4.3.3.1
Thoracodorsalis	*		*			3.4.3.3.2.8
Tibialis	*	*	*	*	*	3.7.3.2.9.1
Transversus colli	*	*	*			3.2.3.2
Trigeminus(V)	*			*		3.2.3.1
Trochlearis(IV)	*	*				3.2.3.1
Tympanicus						
Ulnaris	*	*	*	*	*	3.4.3.3.2.5
Utricularis						
Utriculoampullaris						
Vagus(X)	*	*	*	*		3.2.3.1
Vestibularis						
Vestibulocochlearis(VIII)						
Zygomaticus						

Structure
Cavitas pericardialis
Sinus obliquus pericardii
Sinus transversus pericardii
Pericardium fibrosum
Ligamenta sternopericardiaca
Pericardium serosum
Lamina parietalis
Lamina visceralis

PERITONEUM

Bursa omentalis
Cavitas peritonealis
Foramen omentale
Ligamenta hepatis
Ligamentum coronarium Ligamentum falciforme
Ligamentum hepatorenale
Ligamentum triangulare dextrum
Ligamentum triangulare sinister
Mesenterium
Mesocolon
Omentum majus
Ligamentum gastrocolicum
Ligamentum gastrophrenicum Ligamentum gastrosplenicum

Ligamentum splenorenale
Omentum minus
Ligamentum hepatogastricum
Ligamentum hepatoduodenale
Peritoneum parietale anterius
Fossa inguinalis lateralis
Fossa inguinalis medialis Fossa paravesicalis
Fossa supravesicalis
Plica umbilicis lateralis
Plica umbilicis medialis
Plica umbilicis mediana
Plica vesicalis transversa
Trigonum inguinal
Peritoneum urogenitale
Fossa ovarica
Fossa paravesicales
Excavatio rectouterine
Excavatio rectovesicalis
Excavatio vesicouterina
Ligamenta latum uteri
Mesometrium
Mesovarium
Mesosalpinx
Ligamenta supensorium ovarii
Peritoneum viscerale
Plicae et fossae
Fascia retinens rostralis
Plica caecalis vascularis
Plicae caecales

Homo Pan Gorilla Pongo Hylobates Section
3.3.2.1.1
3.3.2.1.1
3.3.2.1.1

Plica duodenalis inferior Plica duodenalis superior Plica ileocaecalis
Recessus duodenalis inferior
Recessus duodenalis superior
Recessus hepatorenalis
Recessus ileocaecalis inferior
Recessus ileocaecalis superior
Recessus intersigmoideus
Recessus retrocaecalis
Recessus subhepatici
Recessus subphrenici
Sulci paracolici
Spatium extraperitoneale

RESPIRATORY SYSTEM

Bronchi
Bronchus principalis
Bronchi lobares et segmentales Rami bronchiales segmentorum

Tela submucosa
Tunica mucosa
Tunica muscularis
Cavitas nasi
Agger nasi
Atrium meatus medii
Bulla ethmoidalis
Choanae
Hiatus semilunaris
Infundibulum ethmoidale
Limen nasi
Meatus nasi inferior
Meatus nasi medius
Meatus nasi superior
Meatus nasopharyngeus
Nares
Organum vomeronasale Plexus cavernosi concharum Recessus sphenoethmoidalis

Septum nasi
Sulcus olfactorius
Cavitas laryngis
Aditus laryngis
Cavitas infraglottica
Conus elasticus
Glottis
Ligamentum vestibulare
Ligamentum vocale
Membrana quadrangularis
Rima glottidis
Rima vestibuli
Sacculus laryngis
Tunica mucosa
Ventriculus laryngis
Vestibulum laryngis

Homo Pan Gorilla Pongo Hylobates Section

Structure	Homo	Pan	Gorilla	Pongo	Hylobates	Section
Larynx						
Cartilago arytenoidea	*	*		*		3.2.5.2.2
Capsula articularis cricoarytenoidea						
Ligamentum cricoarytenoideum						
posterius						
Ligamentum cricopharyngeum						
Cartilago corniculata	*	*		*		3.2.5.2.2
Cartilago cricoidea	*	*	*	*		3.2.5.2.2
Ligamentum ceratocricoideum						
Ligamentum cricothyroideum	*	*		*		3.2.5.2.2
medianum						
Ligamentum cricotracheale	*	*		*		3.2.5.2.2
Cartilago cuneiformis	*	*	*	*	*	3.2.5.2.2
Cartilago thyroidea	*	*	*	*	*	3.2.5.2.2
Cartilago triticea		*		*		3.2.5.2.2
Membrana thyrohyoidea	*	*		*		3.2.5.2.2
Epiglottis						
Ligamentum hyoepigloticum	*	*				3.2.5.2.2
Ligamentum thyroepiglotticum						
Nasus externus						
Alae nasi						
Apex nasi						
Cartilago alares minores						
Cartilago alaris major	*	*	*	*	*	3.2.5.1.1
Cartilago nasales accessoriae		*	*	*		3.2.5.1.1
Cartilago nasi lateralis						
Cartilago septi nasi	*	*	*	*	*	3.2.5.1.1
Cartilago vomeronasalis						
Pars mobilis septi nasi						
Radix nasi						
Pulmones						
Apex pulmonis						
Basis pulmonis						
Bronchioli						
Facies costalis						
Facies diaphragmatica						
Facies interlobaris						
Facies mediastinalis						
Fissura horizontalis						
Fissura obliqua						
Hilum pulmonis						
Lingula pulmonaris sinistriLobus inferior						
Lobus medius						
Lobus superior						
Margo anterior						
Margo inferior						
Pleura	*		*			3.3.5.5
Pulmo dexter	*	*	*	*	*	3.3.5.4
Pulmo sinister	*	*	*	*	*	3.3.5.3
Radix pulmonalis						
Recessus costodiaphragmaticus						
Recessus costomediastinalis						
Recessus phrenicomediastinalis						
Segmenta bronchopulmonalia						

Structure Trachea		ture	Homo	Pan	Gorilla	Pongo	Hylobates	Section
		Bifurcatio trachea	*		*			3.3.5.1
		Carina trachea						
		Cartilagines tracheales	*		*			3.3.5.1
		Lig.annularia						
		Paries membranaceus						
		Pars cervicalis						
		Pars thoracica						
		Tunica mucosa						
SENSORY ORGANS								
Ear * * * 3.7 .1								
Auricula $*$ $*$ $*$ $*$ $*$ 3.2.7.1								
Labyrinthus membranaceus								
Labyrinthus vestibularis								
Ligamenta auricularia								
Ligamentum ossiculorum auditus								
		Membrana tympani	*	*				3.2.7.1.1
Pars cartilaginea tubae auditive								
Tunica mucosa cavitatis tympani								
Vasa auris internae								
Eye								
Apparatus lacrimalis * * * 3.2.7.2.2.3								
Camera anterior bulbi								
Camera posterior bulbi								
Camera vitrea bulbi								
		Choroidea	*	*				3.2.7.2.1
Cornea * * * * 3.2.7.2.1								
Corpus ciliare								
Lens								
Ligamentum palpebrale laterale								
Ligamentum palpebrale mediale								
		Palpebra inferior/superior	*	*		*		3.2.7.2.2.2
Pupilla								
Raphe palpebralis lateralis								
	Retina * * 3.2.7.2.1							
ScleraTarsus								
Tunica conjunctiva * * * 3.2.7.2.2.2								
			Tunica interna bulbi					
Vasa sanguinea retinae								
UROGENITAL SYSTEM								
Ren			*	*	*	*	*	3.6.5.1.1
		Area cribrosa						
		Arteriae renis						
		Capsula adiposa						
		Capsula fibrosa						
		Columnae renales						
		Cortex renalis						
		Extremitas inferior						

Structure		Homo	Pan	Gorilla	Pongo	Hylobates	Section
	Extremitas superior Facies anterior						
	Facies posterior						
	Fascia renalis						
	Hilum renale						
	Margo lateralis						
	Margo medialis						-
	Medulla renalis Lobi renales						
	Papillae renales	*	*	*	*	*	3.6.5.1.1
	Pelvis renalis						
	Pyramides renales	*	*	*	*	*	3.6.5.1.1
	Segmenta renalia						
	Sinus renalis						
	Venae renis						
Ureter		*		*	*		3.6.5.1.2
	Pars abdominalis						
	Pars pelvica						
	Tunica adventitia						
	Tunica mucosa						
	Tunica muscularis						
Vesica urinaria		*		*			3.6.5.1.3
	Apex vesicae						
	Cervix vesicae						
	Corpus vesicae						
	Fundus vesicae						
Ligament	umbilicale medianum						
	Tela submucosa						
	Tela subserosa						
	Trigonum vesicae						
	Tunica mucosa						
	Tunica muscularis						
	Tunica serosa						
	Uvula vesicae						
Organa g	talia masculina terna						
Ductus deferens		*	*	*	*	*	3.6.5.2.1.2
	pulla ductus deferens						
	Ductus ejaculatorius	*	*	*			3.6.5.2.1.2
	Tunica adventitia						
	Tunica mucosa						
	Tunica muscularis						
Epididymis		*		*			3.6.5.2.1.1
	Caput epididymidis	*		*		*	3.6.5.2.1.1
	Cauda epididymidis	*		*		*	3.6.5.2.1.1
	Corpus epididymidis						
	Ductulis aberrantes						
	Ductus epididymidis						
	Lobuli epididymidis						
	Paradidymis						
Funiculus sperm				*		*	3.6.5.2.1.2
	Fascia cremasterica						
	ia spermatica externa						
Glandula bulbo	scia spermatic interna	*	*	*	*	*	3.6.5.2.1.3

Structure Prostata	$\underset{*}{\text { Homo }}$	$\underset{*}{\text { Pan }}$	Gorilla	Pongo	Hylobates	Section 3.6.5.2.1.3
Apex prostatae	*		*		*	3.6.5.2.1.3
Basis prostatae	*				*	3.6.5.2.1.3
Capsula prostatici						
Ductuli prostatici						
Facies anterior						
Facies inferolateralis						
Facies posterior						
Isthmus prostatae	*	*			*	3.6.5.2.1.3
Lobus dexter/sinister/medius						
Parenchyma						
Substantia muscularis						
Testis	*	*	*	*	*	3.6.5.2.1.1
Ductuli efferentes testis						
Lobuli testis						
Mediastinum testis						
Parenchyma testis						
Rete testis						
Septula testis						
Tubuli seminiferi contorti						
Tubuli seminiferi recti						
Tunica albuginea						
Tunica vaginalis testis	*	*	*	*	*	3.6.5.2.1.1
Vesicula seminalis	*		*	*	*	3.6.5.2.1.3
Ductus excretorius						
Tunica adventitia						
Tunica mucosa						
Tunica muscularis						
$\underset{\text { Externa }}{\text { Organa genitalia masculina }}$						
Penis	*	*	*	*	*	3.6.5.2.1.5.1
Arteriae helicinae Bulbus penis						
Cavernae corporis spongiosi						
Cavernae corporum cavernosum						
Corpus cavernosum penis	*	*				3.6.5.2.1.5.1
Corpus penis	*	*	*	*	*	3.6.5.2.1.5.1
Corpus spongiosum penis						
Crus penis						
Dorsum penis						
Facies urethralis						
Fascia penis profunda						
Fascia penis superficialis						
Glandulae preputiales						
Glans penis	*	*	*	*	*	3.6.5.2.1.5.1
Preputium penis	*	*	*	*	*	3.6.5.2.1.5.1
Tunica albuginea corporis spongiosi						
Tunica albuginea corporum						
cavernosorum						
Trabeculae corporis spongiosi						
Trabeculae corporum cavernosorum						
Venae cavernosae						
Urethra masculina	*	*	*		*	3.6.5.1.4.1
Lacunae urethrales						
Ostium urethrae externum	*	*	*		*	3.6.5.2.1.5.1

Structure	Homo	Pan	Gorilla	Pongo	Hylobates	Section
Parametrium						
Tela subserosa						
Tunica mucosa[Endometrium]						
Tunica muscularis[Myometrium]	*	*	*			3.6.5.2.2.3
Tunica serosa[Perimetrium]						
Vagina	*	*	*	*	*	3.6.5.2.2.4
Fornix vaginae	*	*	*		*	3.6.5.2.2.4
Hymen	*	*	*			3.6.5.2.2.4
Tunica mucosa						
Tunica muscularis						
Tunica spongiosa						
Organa genitalia feminina						
Externa						
Bulbus vestibuli	*	*	*	*		3.6.5.2.2.4
Clitoris	*	*	*		*	3.6.5.2.2.5.1
Corpus cavernosum clitoridis	*	*			*	3.6.5.2.2.5.1
Corpus clitoridis	*	*	*		*	3.6.5.2.2.5.1
Crus clitoridis						
Fascia clitoridis						
Frenulum clitoridis	*	*	*		*	3.6.5.2.2.5.1
Glans clitoridis	*	*	*		*	3.6.5.2.2.5.1
Preputium clitoridis	*	*	*		*	3.6.5.2.2.5.1
Septum corporum cavernosorum Labium majus pudendi	*	*	*	*	*	3.6.5.2.2.5.2
Commissura labiorum anterior						
Commissura labiorum posterior						
Labium minus pudendi	*	*	*	*	*	3.6.5.2.2.5.3
Frenulum labiorum pudendi						
Mons pubis	*	*	*	*	*	3.6.5.2.2.5.3
Ostium vaginae						
Urethra feminina	*	*				3.6.5.1.4.2
Crista urethralis						
Ostium urethrae externum	*	*	*	*	*	3.6.5.1.4.2
Tunica muscularis						
Tunica spongiosa						
Perineum						
Arcus tendineus fasciae pelvis						
Centrum tendineum perinei						
Diaphragma pelvis						
Fascia diaphragmatis pelvis						
Fascia diaphragmatis pelvis superior						
Fascia pelvis parietalis						
Fascia obturatoria						
Fascia pelvis visceralis						
Fascia peritoneoperinealis						
Fascia prostatae						
Fascia perinei superficialis						
Ligamentum anococcygeum						
Ligamentum puboprostaticum						
Ligamentum transversum perinei						
Membrana perinei						
Musculi perinei						
Raphe perinealis						

Structure	Homo	Pan	Gorilla	Pongo	Hylobates	Section
VEINS						
Anastomotica inferior						
Anastomotica superior						
Angularis						
Anterior septi pellucidi						
Anteriores cerebri						
Appendicularis						
Aqueductus cochleae						
Arcus venae azygos						
Arcus venosus dorsalis pedis	*	*	*	*		3.7.2.2.1.1
Arcus venosus jugularis						
Arcus venosus palmaris profundus						
Arcus venosus palmaris superficialis						
Arcus venosus plantaris						
Articulares anteriores						
Atriales						
Atrioventriculares						
Auricularis posterior						
Axillaris						
Azygos	*	*	*	*	*	3.3.2.3.5
Basilica	*	*	*	*	*	3.4.2.2.1
Basilis						
Basilis communis						
Basilis inferior						
Basilis superior						
Basivertebrales						
Brachialis	*	*	*	*	*	3.4.2.2.2
Brachiocephalica						
Bronchiales						
Bulbi penis						
Bulbi vestibuli						
Bulbus inferior venae jugularis						
Bulbus superior venae jugularis						
Canalis pterygoideus						
Cardiaca magna	*		*			3.3.2.3.2
Cardiaca media	*		*			3.3.2.3.2
Cardiaca parva	*		*			3.3.2.3.2
Cardiacae anteriores	*		*			3.3.2.3.2
Cardiacae minimiae						
Centralis retinae						
Cephalica	*	*	*	*	*	3.4.2.2.1
Cervicalis profundus						
Choroidea inferior						
Choroidea superior						
Ciliares						
Ciliares anteriores						
Circumflexa iliac profunda						
Circumflexa superficialis ilium						
Circumflexae mediales femoris						
Circumflexae laterales femoris						
Colica dextra						
Colica media						
Colica sinistra						
Comitans nervi hypoglossi						
Conjunctivales						
Cystica						

Structure	Homo	Pan	Gorilla	Pongo	Hylobates	Section
Digitales palmares						
Digitales plantares						
Diploica frontalis						
Diploica occipitalis						
Diploica temporalis anterior						
Diploica temporalis posterior						
Directae laterales						
Dorsales superficiales clitoridis						
Dorsales superficiales penis						
Dorsalis corporis callosi						
Dorsalis linguae						
Dorsalis profunda clitoris						
Dorsalis profunda penis						
Emissaria condylaris						
Emissaria mastoidea						
Emissaria occipitalis						
Emissaria parietalis						
Epigastrica inferior						
Epigastrica superficialis						
Epigastricae superioris						
Episclerales						
Ethmoidales						
Facialis	*			*		3.2.2.2.4
Femoralis						
Fibulares						
Frontales						
Gastrica dextra						
Gastrica sinistra						
Gastricae breves						
Gastro-omentalis dextra						
Gastro-omentalis sinistra						
Geniculares						
Gluteae inferioris						
Gluteae superioris						
Gyri olfactorii						
Hemiazygos	*	*	*	*	*	3.3.2.3.5
Hemiazygos accessoria	*	*	*			3.3.2.3.5
Hepaticae dextrae						
Hepaticae intermediae						
Hepaticae sinistrae						
Ileales						
Ileocolica						
Iliaca communis						
Iliaca externa						
Iliaca interna						
Iliolumbalis						
Inferior vermis						
Inferiores cerebri						
Inferiores hemispherii cerebelli						
Insulares						
Intercapitulares						
Intercostales anteriores						
Intercostales posteriores						
Intercostalis superior dextra						
Intercostalis superior sinistra						
Intercostalis suprema						

Structure	Homo	Pan	Gorilla	Pongo	Hylobates	Section
Intermedia antebrachii						
Intermedia basilica						
Intermedia cephalica						
Intermedia cubitii						
Internae cerebri						
Intervertebralis						
Jejunales						
Jugularis anterior	*			*		3.2.2.2.1
Jugularis externa	*	*		*		3.2.2.2.1
Jugularis interna	*	*	*	*		3.2.2.2.2
Labiales anteriores						
Labiales posteriores						
Labialis inferiores						
Labialis superiores						
Labyrinthi						
Lacrimalis						
Laryngea inferior						
Laryngea superior						
Lateralis atrii						
Lingualis						
Lumbales						
Lumbalis ascendens						
Magna cerebri						
Marginalis lateralis	*	*	*	*		3.7.2.2.1.1
Marginalis medialis	*	*	*	*		3.7.2.2.1.1
Maxillares						
Mediastinales						
Media profunda cerebri						
Mediae superficiales cerebri						
Medialis atrii						
Mediastinales						
Medulla oblongatae						
Meningeae						
Meningeae mediae						
Mesenterica inferior						
Mesenterica superior						
Metacarpales dorsales						
Metacarpales palmares						
Metatarsales plantares						
Musculophrenicae						
Nasales externae						
Nuclei caudati						
Obliqua atrii sinistri						
Obturatoriae						
Occipitales						
Occipitalis						
Oesophageales						
Opthalmica inferior						
Ovarica dextra						
Palatina externa						
Palpebrales						
Palpebrales inferiores						
Palpebrales superiores						
Pancreaticae						
Pancreaticoduodenales						
Paraumbilicales						

Structure	Homo	Pan	Gorilla	Pongo	Hylobates	Section
Parietales						
Parotideae						
Pectorales						
Pedunculares						
Perforantes	*	*	*	*	*	3.4.2.2.3
Pericardiacae						
Pericardiacophrenicae						
Pericardiales						
Petrosa						
Pharyngeales						
Phrenicae inferiores						
Phrenicae superiores						
Plexus pampiniformis						
Plexus pharyngeus						
Plexus pterygoideus	*	*				3.2.2.2.4
Plexus venosus areolaris						
Plexus venosus canalis hypoglossi						
Plexus venosus caroticus internus						
Plexus venosus foraminis ovalis						
Plexus venosus prostaticus						
Plexus venosus rectalis						
Plexus venosus sacralis						
Plexus venosus subobccipitali						
Plexus venosus uterinus						
Plexus venosus vaginalis						
Plexus venosus vertebralis externus anterior		.				
Plexus venosus vertebralis externus posterior						
Plexus venosus vertebralis internus anterior						
Plexus venosus vertebralis internus posterior						
Plexus venosus vesicalis						
Pontis						
Pontomesencephalica anterior						
Porta hepatis	*	*	*			3.6.2.2.2
Posterior corporis callosi						
Posterior septi pellucidi						
Posterior ventriculi sinistri	*		*			3.3.2.3.2
Precentralis cerebelli						
Prefrontales						
Prepylorica						
Profunda faciei						
Profunda femoris						
Profunda linguae						
Profundae cerebri						
Profundae clitoridis						
Profundae penis						
Pudenda externae						
Pudenda interna						
Pulmonalis dextra inferior	*	*		*	*	3.3.2.3.1
Pulmonalis dextra superior	*	*		*	*	3.3.2.3.1
Pulmonalis sinistra inferior	*	*		*	*	3.3.2.3.1
Pulmonalis sinistra superior	*	*		*	*	3.3.2.3.1
Radiales	*	*	*	*	*	3.4.2.2.2

Structure	Homo	Pan	Gorilla	Pongo	Hylobates	Section
Recessus lateralis ventriculi quarti						
Rectales inferiores						
Rectales mediae						
Rectalis superior						
Rete venosum dorsale manus						
Rete venosum dorsale pedis						
Sacralis laterales						
Sacralis mediana						
Saphena accessorius						
Saphena parva	*	*	*	*		3.7.2.2.1.3
Saphena magna	*	*	*	*		3.7.2.2.1.2
Scapularis dorsalis						
Scrotales anteriores						
Scrotales posteriores						
Sigmoideae						
Sinus cavernosus	*	*		*	*	3.2.2.3
Sinus coronarius	*		*			3.3.2.3.2
Sinus occipitalis						
Sinus petrosquamosus	*	*		*	*	3.2.2.2.3
Sinus petrosus inferior						
Sinus rectus						
Sinus sagitalis inferior						
Sinus sagitalis superior						
Sinus sigmoideus						
Sinus sphenoparietalis	*	*	*	*	*	3.2.2.2.3
Sinus transversus						
Spinales anteriores/posteriores						
Splenica						
Sternocleidomastoidea						
Stylomastoidea						
Subclavia						
Subcostalis						
Subcutaneae abdominis						
Sublingualis						
Submentalis						
Superficialis cerebri						
Superior vermis						
Superiores cerebri						
Superiores hemispherii cerebelli						
Supraorbitalis						
Suprarenalis dextra						
Suprarenalis sinistra						
Suprascapularis						
Supratrochleares						
Temporales profundae						
Temporales superficiales						
Temporalis media						
Testicularis dextra						
Thalamostriatae inferiores						
Thalamostriatae superior						
Thoracica lateralis						
Thoracicae internae						
Thoracicoepigastricae						
Thoracoacromialis						
Thymicae						
Thyroidea inferior						

Structure
Thyroidea mediae
Thyroidea superior
Thyroideus impar
Tibialis anteriores
Tibialis posteriores
Tracheales
Transversa faciei
Transversae cervicis
Tympanicae
Ulnares
Umbilicalis sinistra
Unci
Uterinae
Vena cava inferior
Vena cava superior Ventriculares
Ventricularis inferior
Vertebralis
Vertebralis anterior
Vesicales
Vorticosae

Homo Pan Gorilla Pongo Hylobates Section 3.2.2.2.2
3.4.2.2.2
3.3.2.3.4
3.3.2.3.3

[^0]: The numbers refer to the characters listed in Appendix 1.

