
, 

THE BEHAVIOUR OF WIRE ROPE 

by 

Mohd. Amin Bin Mohd. Sura 

A thesis submitted in accordance with the requirements 
of the University of Liverpool for the 

Degree of Doctor in Philosophy 

Department of Mechanical Engineering, 
The University of Liverpool. 

Liverpool August, 1984 



In the name of Allah, the Beneficient, 
the Merciful. 

Read: In the name of thy Lord Who createth. 

Createth man from a clot. 

Read: And thy Lord is the most Bounteous, 

Who teacheth by the pen, 

Teacheth man that which he knew not. 

,J 



ii 

ACKNOWLEDGEMENTS 

I would like to register my gratitude towards my supervisor, 

Professor Norman Jones, for his patient guidance and encouragement 

and above all for the concern and sympathy he showed particularly 

during the period of my illness. 

I am grateful to the staff of the Computer Laboratory, 

University of Liverpool, for the advice and assistance that I 

received during the period of my research. 

I would like to thank Dr. W.S Utting for the useful 

discussions that I had with him on the experimental aspects of the 

work on wire rope. 

My thanks are also due to Miss E. Mooney who typed a large 

proportion of the thesis and to Mrs. B. Lussey who finished it off 

from where Miss Mooney left off. 

I am also indebted to the University of Malaya, Malaysia, for 

giving me the necessary study leave and also to the Public Services 

Department, Malaysia, for providing me with the grant to complete 

this course of research. 

Last but not least, I am particularly grateful to my wife, 

Rohana and children Aishah, Aiman and Kauthar for the encouragement, 

support and patience which helped a great deal in ensuring the 

completion of this thesis. 



a 

b 

c 

h 

k 

1 

m 

n 

r 

s 

x,y,z 

Z 1 

A 

A,B 

B,C 

D1 

E 

E(k' ) 

F 

Fr 

NOMENCLATURE 

Semi-minor axis of an ellipse. 

Semi-major axis of an ellipse. 

Constant defined by equation (4.1). 

Pitch of a helical wire. 

iii 

Ratio of Semi-major axis to semi-minor axis of an ellipse. 

Length of a helical wire. 

Number of wires in a strand. 

Defined by equation (3.25). 

Helix radius. 

Constant defined in equation (4.2). 

Coordinates defined by equation (2.1) and shown in Fig 2.2. 

Perpendicular distance from the tangent plane to any point 

on the surface of the body near the pOint of contact. 

Defined by equation (5.27). 

Constants defined by equations (3.18)a-b. 

Constants defined by equations (2.15)a-b. 

Defined by Equation (3.57). 

Generalised strain rate vector. 

Elliptic integral. 

Axial load on a strand as illustrated in Fig 2.4a. 

Total axial load. 

F($',k') Elliptic integral. 

G,G' Bending moments per unit length in the direction shown in 
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Fig 2.3. 

Go Defined by equation (5.4)a. 

G'* Defined by equation (5.24)a. 

H Twisting moment. 

Hco Defined by equation (5.39)a. 

Ho Defined by equation (5.4)b. 

H* Defined by equation (5.24)b. 

H(~',k') Elliptic integral. 

J Defined by equation (3.24). 

K,K' External bending moments per unit length about the x and 

y axis, respectively. 

L Length of strand or core wire. 

M • Torsional moment. 

Mr· Total torsional moment. 

N,N' Transverse shear forces per unit length. 

Q Line contact force per unit length. 

Q' Point contact force defined by equation (3.29). 

R Radius of an individual wire in a strand. 

Rc Radius of core wire. 

R Radius of wire in the outer layer. 

Rl,R 1 ' Minimum and maximum radii of curvature of the surface of 

body 1, respectively. 

T 

minimum and maximum radii of curvature of the surface of 

body 2, respectively. 

Axial force in a wire. 

Defined by equation (3.43). 

Defined by equation (7.2)a. 

Defined by equation (5.39)b. 

Lines lying in plane sections containing the maximum radii 
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Rl' and Rz', respectively. 

Lines lying in plane sections containing the minimum radii 

Rl and R 2 , respectively. 

X,Y,Z External forces per unit length acting in the x,y and z 

directions, respectively. 

x Resultant normal distributed line load acting on the inner 

strand. 

a Helix angle. 

aD Initial helix angle. 

a Angle made by line of action of contact force with line of 

action of line load X. 

a Angle defined in Fig 2.2. 

Y Defined by equation (2.29)b. 

6 Axial extension of a single pitch of a strand. 

£ Defined by equation (2.29)a. 

€ Centre line strain of a wire. 
OJ 

n Displacement of a wire parallel but in a sense opposite to 

e 

e 
, 

K K , 

J.I 

J.I 1 ,J.I 2 

p 

0 0 

the principal normal vector of a helix. (i.e n is positive 

in negative x direction). 

External twisting moment per unit length. 

Angle as shown in Fig 2.6b. 

Curvatures defined by equations (2.4) and (2.10), 

respectively. 

Defined by equation (5.15). 

Non-dimensionalised external twisting moment. 

Poisson's ratio for bodies 1 and 2, respectively. 

Poisson's ratio. 

Defined by equation (2.29)c. 

Uniaxial yield stress. 
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C1,~) C1 Principal stresses at a point o,n the z-axis and at a 
x J z 

distance z from the origin which lies in the surface of 

contact of two bodies. 

T Twist defined by equation (2.12). 

T Octahedral shearing stress. oc 

$ Non-dimensionalised axial force defined by equation (5.6). 

x 

6s 

A 

Angle defined in equation (3.2) and shown in Fig 3.3. 

Non-dimensionalised contact force defined by 

equation (3.42) 

Angular rotation of a single pitch of a strand. 

Distance between contact points along the inner lines. 

Defined by equation (3.26). 

Angle shown in Fig 3.3. 

Angle VI makes with ~ • 

a ( ) I 
at 

Refers to the outer strand. 

Derivative with respect to s. 

Subscript· c Refers to the core. 

Subscript T Refers to total values. 
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INTRODUCTION 

Without doubt wire rope has been recognised as an important 

engineering component. It plays an important part in our daily 

lives : we have only to look at our skyscrap~rs where we are 

whisked from floor to floor by lifts using wire rope - indeed the 

construction of such buildings would be very difficult without the 

use of hoisting equipment utilising this product. Wire rope has 

found extensive use in the marine environment(l) due to its high 

flexibility and availability in long lengths as well as superior 

handling and storage characteristics. It is used in the mooring 

and towing of ships and exploration rigs, in cranes, power 

shovels, slings for cargo handling and in construction nets. In 

fact, wherever a combination of high resistance to tensile loads 

with low resistance to bending is required, a wire rope is a prime 

candidate. 

From historical evidence, ropes are known to have been used 

since as early as the Paleolithic Period(2). The art of rope 

making developed through the centuries, which led eventually to 

the making of wire ropes which are considerably stronger, will 

respond to load 'With little stretch, are much stiffer and are 

proportionately heavier than the. natural or man-made fibre ropes 

of a given size. A copper cable found in the ruins of Nenevah near 

Babylon indicates that wire rope was used as a structural element 

in about 700 B.C(3,4). 

Eventhough, wire rope has been around for many centuries) 

there is still a large area of research. required,· especially in 
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developing theoretical methods that can confidently be used to 

predict the stresses in a wire rope. The knowledge of these 

stresses is necessary for the proper design of a wire rope. So 

far, very little has been done to understand the theoretical 

behaviour of wire rope subjected to plastic loads. Only Jones and 

Christodoulides(64) have attempted work in this area. The 

knowledge of the maximum possible load that a rope can support 

prior to failure would allow an estimate of the reserve strength 

beyond the elastic range and aid in the selection of a meaningful 

factor of safety or in the appropriate rope construction. Due to 

the importance that is placed on the rope breaking load by rope 

manufacturers and users of wire rope, it is thus necessary to 

explore further the characteristics of wire rope loaded beyond the 

elastic limit. 

The object of the present work is to extend the work by 

Jones and Christodoulides(64) and study ropes with more realistic 

configurations. The assumption that the rope is made of rigid 

inextensible wires will be removed and the influence of the 

contact stresses on the strength of the wire rope will be 

explored. 

In Chapter 1, a literature survey of the research done on 

wire rope is presented. 

The basic equations governing a helical wire and a strand are 

presented in Chapter 2. 

Chapters 3 and 4 introduce the contact problem in wire rope 

and provide values of contact force for· line and point contacts 
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that will cause yield and indentation in the wires. The contact 

force to produce indentation in the wire is taken as an 

approximation to the collapse value of X' which is used to predict 

the plastic collapse of wire rope in Chapters 5 and 7. 

Static plastic collapse of wire rope in which the helical 

wires are inextensible is presented in Chapter 5 for a single 

strand, a strand with core wire, a lX19 rope and a rope with 

n-layers of strand. A similar analysis but with the inextensible 

assumption removed, is presented in Chapter 7. 

In Chapter 6, equilibrium equations governing helical wires 

with finite extension is developed and using The Principle of 

Virtual Work, consistent strain relations are obtained. The 

results obtained are compared with work by Costello and , 

Phillips(55), which is for a linear elastic case. 

In Chapter 8, the theoretical results obtained from ,the 

plastic collapse analysis are compared with experimental results, 

and the conclusions and suggestions for further work are presented 

in Chapter 9. 
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CHAPTER 1 

Research on wire rope - A literature survey. 
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One of the earliest works related to wire ropes was carried 

out by Thomson and Tait(5), who looked at the behaviour of curved 

wires and applied it in the study of spiral springs. Later Love(6) 

made an analysis on the kinematics of thin curved rods and the 

governing equilibrium equations. Basset(7) commented that Love's 

treatment of the physical portion of the subject was not 

satisfactory and himself provided a further exposition on the 

theory of wires. 

Apart from the above, the early works on wire rope have 

been, on the main, experimental in nature. One of the earliest 

organised research programmes on wirer rope was carried out by the 

Wire Rope Research Committee(8,9,lO,11,12) set-up by the British , 

Institution of Mechanical Engineers, with, W.A. ScobIe as its 

reporter. It was appointed to investigate the repeated bending of 

wire ropes over pulleys, sheaves, drums and the like(lO). In its 

first report(8), a thorough literature review was carried out and 

one of the conclusions arrived at by the commit~ee was that the 

calculation of the bending stress for design, then, did not appear 

to be satisfactory. It was suggested that an attempt should be 

made at an analysis which will separate the three destructive 

effects, namely, outside wear, wear between the wire and bending 

fatigue. In the same report, there was also a mention of a work by 

Howe(13), who developed a method for calculating the Modulus of 

Elasticity of any strand or rope. In the rest of the 

reports(9,10,11,12), numerous test results were presented for 

tests carried out with various sizes and types of wire ropes, 

running over pulleys with different diameters. A long list of 

references to the subject could be found in the first(8) and the 

fifth(12) reports. At about the same time, there was aaimUar 
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research programme carried out in Germany under the direction of 

Dr. Richard Woernle(14). Drucker and Tachau(15) analysed the 

experimental data obtained by Scoble and Woernle and concluded 

that the bearing pressure is of far greater importance than 

nominal bending and direct tensile stresses, in the choosing of 

wire rope. They demonstrated this by a plot of number of cycles to 

failure against the dimensionless bearing pressure ratio. 

Additional test results on the bending of wire ropes are reported 

in (16,17). 

Besides the above experiments, there are various other tests 

that were carried out on wire rope. De Forest and Hopkins(18) 

developed test methods for the study of fatigue properties of wire 

rope. Layland(19) carried out torsion tests on stranded mining 

wire ropes and arrived at several conclusions including equations 

for the relationship between tension and torque for a 6/7 ropes. 

Their validity was checked and confirmed by experime.nt at 

different dimensions. Hind(20) determined the transmission losses 

due to the bending of loaded wire ropes over sheaves in term of 

rope variables and sheave thread diameter. He found that the 

transmission loss at a sheave is usually about 1 per cent of rope 

load and in the worst case, it is about 1.6 per cent of the rope 

load. Laura, Vanderveldt and Gaffney(21,22) introduced a method of 

detection of wire rope failure by means of monitoring stress waves 

emitted during the loading cycle of the cabl t . Vanderveldt, Chung 

and Reader(23) described experimental and analytical results on 

the absorption characteristics of wire rope during the propagation 

of transverse waves. 

In a theoretical paper, Hall(24) developed equations for 
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axial load on a rope, on a strand and on a wire in terms of rope 

variables such as' lay angle and the number of wires and strands in 

the rope. But, various assumptions were made : (i) all rope loads 

are equally distributed amongst the several strands, and all 

strand loads are equally distributed over the individual wires, 

(ii) all strands and wires are free from friction and binding, one 

against the other, (iii) all strands and wires are in full and 

complete contact with each other and (iv) there is no stretch 

under load. From the results, he found that stresses in the outer 

wires for any given load on the rope, are greater than those in 

the inner wires, so that the outer wires tend to break first. 

Inspired by the above-mentioned paper, Hruska produced a series of 

three papers(25,26,27). The first paper(25) is concerned with the 

calculation of stresses in wire ropes due to tension only. He 

noted a few disagreements with Hall(24) including the assertion 

that the wire cores are less stressed. In the second paper(26), he 

dealt with the radial forces in wire ropes and in the third(27), 

with tangential forces. 

The importance of compressive contact stresses began to be 

appreciated through the work of Messrs. Drucker, Tachau and 

Hruska(28). Leissa(28) investigated the contact stresses in wire 

rope. In his analysis, he used the expression for the radial force 

derived by Hruska(26) which is expressed as a function of the 

tensile loading and geometry of the rope, and also the equations 

obtained by Seely and Smith(29), which relate the three principal 

compressive stresses due to the compressive radial force, to the 

load, geometry and elastic properties of the material. He then 

applied the two failure· theories - the maximum-shear-stress theory 

and the maximum-normal-stress theory, and looke4 at two critical·· 
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regions : (1) along the lines of contact between the individual 

wires in a strand, and (2) between adjacent wires in neighbouring 

strands of the wire rope. Starkey and Cress(30) pursued the work 

by Leissa(28) and his analysis shows that the critical stresses in 

a wire rope are due largely to contact stresses and are much 

higher than direct-tensile-stress, the stress which is often used 

as the primary criterion of failure of wire rope. They performed 

experiments to investigate' fretting and proposed a probable mode 

of failure of wire rope i.e. propagation of fretting-induced 

fatigue cracks. Karamchetty and Yuen(31) approached the contact 

problem geometrically. Contact points developed due to geometry 

changes while laying and due to loading of the rope are determined 

and calculations of contact stresses follow the method described 

by Seely and Smith(29). Karamchetty(32) also considered a small 

element of a wire as a portion of a torus. An element of the torus 

containing the contact point is described and tangential sections 

are obtained which can be used in numerical methods'of calculating 

contact stresses and deformations. The problem of contact is also 

discussed by Bert and Stein(33) and Durelli, Machida and 

Parks(34). Dong and Steidel(35) has carried out an experimental 

study of interstrand contact stresses using the stress-freezing 

photoelastic technique. 

The study of the geometrical characteristics of wires in 

wire ropes is reported in the work by Karamchetty(36). When a rope 

is bent into a circular arc, geometrical characteristics of an 

individual wire are defined and simple strain calculations for 

such cases are presented. Wire ropes make use of strands with 

circular and non-circular iross sections. For the wire rope 

designer, the determination of wire sizes is necessary for all the 
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elements to fit together easily. Hobbs(37) presented a method of 

calculation for circular strands and Karamchetty(38) provided a 

procedure for non-circular strands. 

The behaviour of continuous filament yarn has been 

investigated by many authors. Review of their work is contained in 

a paper by Hearle(39). Even though these yarns are not used 

frequently in practice, they are particularly convenient for 

theoretical and experimental investigations, and could provide 

valuable insight into the mechanics of wire rope(40). Huang and 

Funk(41) listed the assumptions made by earlier investigators on 

small extension of linearly elastic continuous filament yarns with 

circular cross-sections. In their paper, several assumptions were 

removed and in the analysis, the equations of equilibrium of 

curved rods obtained by Huang(42) were employed. This curved rod 

approach is also used by Huang in his investigation of small 

deformation of two-ply filament yarn subjected to axial 

extension(43) and bending(44), finite viscoelastic deformation of 

two-ply filament yarns(45) and finite extension of elastic strand 

with a central core(46). 

Machida and Durelli(47) carried out a theoretical study on 

the response of a strand to axial and torsional displacements. 

Their study is based on the strength of materials approach. They 

developed explicit expressions for the determination of axial 

force, bending and twisting moments in the helical wires, and for 

axial force and twisting moment in the core of a 7-wire strand 

subjected to axial and torsional displacements •. Measurements of 

strains, stresses and displacements using mechani~al and 

electrical strain gauges, dial 'gauges and brittle coat~ngs on 
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oversized epoxy models of strand (48),show good correlation with 

the theory(47). The above approach is also employed in (49) in the 

study of a single helix with end load. 

, 

An analysis of multiwire strands in tension and combined 

tension and torsion is reported in the work by Chi (SO). A 

geometrical relationship of deformed and undeformed wire strands 

is derived. In conjunction with balance laws of forces and 

moments, the governing equations for computing the strains, 

elongations, and end rotations of a strand with free or fixed ends 

and with tensile and torsional loadings are derived. 

Of all the study on wire ropes, the analyses performed by 

Phillips and Costello(S1,S2,S3), like that of Huang's(46), is 

probably the most rigorous. In their analyses, the rope or strand 

is separated into thin helical wires and for each wire, Phillips 

and Costello solved the six equations of equilibrium obtained by 

Love(6), with Huang using the equations he developed using the 

principle of virtual work(42). In the work of Phillips and 

Costello, it is assumed that the cable is loaded by an axial force 

and an axial twisting moment ; that there are no frictional forces 

between the wires ; and that in the initial unloaded configuration 

of the rope, the wires are just touching each other. For the 

calculation of stresses due to line contact loads(51,52), the 

equations derived by Lubkin(54) for Hertz contact problem of two 

parallel cylinders of infinite extent, are employed. 

In (55), Costello and Phillips studied the elongation and 

rotation of a wire rope,or strand subjected to an axial force and 

an axial twisting moment. Even though the inextensibil1ty 



11 

assumption is removed, the wire strain is still assumed small, so 

that the equations of equilibrium for infinitesimal displacements 

with no finite deflection are valid. A plot of the effective 

modulus is shown"as a function of the original helix angle of a 

wire where the effective modulus is determined by investigating 

the slope of the load deflection curve at the origin. Two common 

types of end-condition are considered i.e. cable ends free to 

rotate and no end-rotation. 

The works by Phillips and Costello reported above are 

pursued and extended by Phillips, Costello, Miller and 

Sinha(56,57,58,59,60,61). Phillips and Costello(56) investigated 

the axial impact of wire cables. The longitudinal impact of a 

finite length wire rope fixed at one end is considered in detail, 

and numerical results for this case are presented. Costello and 

Sinha(57) looked at torsional stiffness in twisted wire cables and 

in (58), determined the axial, bending and torsional stiffnesses 

for a strand and then treating this strand as a wire with these 

properties in the more-complex-cross-section wire rope~ The 

bending stiffness is determined by a theory presented in the work 

of Costello(62) for the large deflections of a helical spring 

subjected to bending. Costello and Miller(59) investigated the 

effect of winding and unwinding of a strand due to twisting 

moments on the torsional stiffness of the strand. It is found that 

in the right lay - regular lay rope under tension, a tightening up 

of wires in the strand is produced resulting in a stiffer rope 

when compared with the right lay - lang lay rope. Costello and 

Miller(60) then extended the work above(59) to determine the 

initial configuration of a rope which will not rotate under an 

axial load. Phillips, Miller and Costello(61) investigated, in 
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particular, the localised stresses due to the contact forces 

between wires in adjacent layers of a stretched, multi layer, 

cross-lay 1X19 wire rope. In the computation of the contact 

stresses, the work of Boresi, Sidebottom, et al.(29) has been 

used. The works above(51,53,55,S6,57,S9) have also been the basis 

of the theory developed by Costello and Butson(63) to predict the 

static response of wire rope subjected to tension, torsion and 

bending i.e. those loads associated with a rope wrapped around a 

sheave. 

All theoretical works on wire ropes have been studying the 

behaviour of ropes which are loaded within the elastic range. Only 

Jones and Christodoulides(64) haveattempted to explore the 

characteristics of the rope when loaded beyond the elastic limit. 

The knowledge of the maximum possible load that a rope can support 

prior to failure would allow an estimate of the reserve strength 

beyond the elastic range and aid in the selection of a meaningful 

factor of safety or in the appropriate rope construction. In 

examining the static plastic collapse of a single strand, the 

limit theorems of plasticity for infinitesimal displacements are 

employed. 



13 

CHAPTER 2 

The strand - Basic equations. 
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2.1 Definitions 

The wire is the basic element of a wire rope. They are laid 

into a strand and several such strands are laid to form a wire rope. 

Fig. 2.1 shows the elements of a typical wire rope. 

Some ropes may have a strand for a core while others may have 

some flexible hemp rope or another wire rope. 

Wires may be laid either right-handed or left-handed into the 

strand and the strands in turn are laid either right-handed or 1eft-· 

handed into the rope. Depending on the way they are laid, the ropes 

are classed as right-hand or left-hand and ordinary or lang's lay. 

2.2 Geometry of a Helical Wire 

The centre-line of a helical wire may be described by the 

equations of a right circular helix. 

If we define the orthogonal cartesian co-ordinates XYZ as shown 

in Fig. 2.2, with the radius of the cylinder on which the centre-line 

of the helical wire is wrapped being r and the pitch being h, the 

governing equations are [65]: 

x = rcosB, y = rsinB, 
hB 

z == 'fi 

The helix angle ~ is defined as 

-1 h ) ~ = tan (/2 I.r 

(2.1 c) can now be rewritten as 

Z == rBtan« 

(2.1 a-c) 

(2.2 ) 

(2.3 ) 
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2.2.1 Curvatures of a Helical Wire 

In a helical wire, when the principal axes of the cross-section 

are coincident with its principal normal and binormal vectors [65], 

curvature 

Ie == 0 

Curvature, ~'is defined as [65], 

where 

Using (2.1 a-b) and (2.3) 

dx == - rsinBdB, dy == rcosBdB, dz == rtanadB 

and 

From (2.6) and (2.7 a-c), 

ds == .!.2.!L 
cosa 

substituting (2.8) and (2.9) into (2.5) 

or the curvature, IC~ = cos2 a 
r 

2.2.2 TWist of a Helical Wire 

TWist is defined and can be written 

dx 2I. d'S ds 

1 d2 
X ~ "C ::rr asr K ds 

d' x H dar ds 

in determinant 

dz 
d'S 

d2 z 
d7 

d' z 
W 

(2.4) 

(2.5 ) 

(2.6 ) 

(2.7 a-c) 

(2.8 a-c) 

(2.9) 

(2.10 ) 

form as [65], 

(2.11) . 
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Using (2.7), (2.8), (2.9) and (2.10) in (2.11), 

- sinScosa cosScosa sina 

r2 - cosScos2a - sinScos2a 
T = cos'a r r 

o 

sinScos'a - cosScos'a o 
r2 r2 

or the twist of the helical wire 

sinacosa 
T = --------r 

(2.12) 

2.3 Equilibrium Equations for a Helical Wire 

Consider a curved bar as shown in Fig. 2.3. The axis of Z, of 

the orthogonal cartesian co-ordinates XYZ is directed along the tangent 

to the centre-line, and the axes of X and Yare coincident with its 

principal normal and binormal vectors. 

The forces Nand NI are shearing forces, the force, T is the 

tension, the couples G and GI are flexural couples and the couple H 

is the torsional couple. 

Let us apply forces to the rod which are estimated by means of 

their force and couple resultants per unit length of the central-line. 

The components of these resultants referred to the principal torsion-

flexure axes of the bar are X, Y, Z and K, K',e respectively. 

If we disregard the extension of the bar, and assume that the 

resultant components of curvature and twist are K., K I and T respectively, 

then the force and moment equilibrium of the curved bar is given by [6], 



17 

dN ds - N' 't + TK' + X = 0 

dN' "d"S - TK + N't + Y = 0 

dT ds - N K' + N' K + Z = 0 

(2.13 a-f) 
dG 
ds - G' 't + RK' - N' + K = 0 

dG' "d"S - H.K + G't + N + K' = 0 

dH ds - G K' + G' K + e = 0 

, ¥ 
By a generalisation of the 'Bernoulli-Eulerian' theory, the 

stress-couples G, G' and H are connected with the curvature and twist 

of the curved bar by the equations of the form [7], 

(2.14 a-c) 

where A, Band C are constants depending on the elastic quality of 

the material and the shape and dimensions of the cross-section. 

In the case of a helical wire, which in most wire ropes has a 

circular cross-section, the cross-section of the wire has kinetic 

symmetry, and therefore A = B. 

For a helical wire with circular cross-section, the constant B 

and Care 

(2.15 a-c) 

where E is the Young's modulus of elasticity, v is the Poisson ratio 

and R is the radius of the wire. 

¥ This theory attributes the resistance to flexure of beams entirely to extension and 
contraction of the longitudinal filaments. Saint-Venant then brought the problems 
of the torsion and flexure of beams under a general theory. (For a historical 
development of the theory on beams, see Reference (6)). 
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Therefore (2.14) becomes, 

G' - 1tE~ d ' - 4 K, (2.16) 

If the helical wire is not subjected to external bending and 

torsional moments per unit length, i.e. K '" K' '" e = 0, and that 

when loaded behaves identically at all sections (which requires the 

vanishing of all derivatives with respect o~ s), (2.13) and (2.4) gives 

G '" N '" Z '" Y = 0 

and 

- N'T + Tic' + X '" 0 

- G'T + HK' - N' '" 0 

(2.17) 

(2.18) 

(2.19) 

As derived in Section 2.2, the curvature, K' and twist, T are given 

by 

sinClcosCl 
T '" ......... --..;...;..;.... 

r 

(2.20 ) 

(2.21 ) 

where Cl is the helix angle and r is the helix radius of the helical 

wire. 

2.4 Axial and Torsionai Equilibrium of a Strand 

Let us now lay these helical wires to form a strand, as shown in 

Fig. 2.4a. We apply, at its ends, an axial load, F and 'a torsional 

moment, M. The direction of the moments G' and H and the forces N' 

and T in one of the wires is shoWn in Fig. 2.4b. 

The axial and torsional equilibrium of the entire strand in 

Fig. 2.4a will then require 
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F = m(Tsinu + N'cosu) (2.22 ) 

and 

M = m(Hsinu + G'cosa + rTcosu - rN'sina) (2.23 ) 

respectively, where m is the number of wires in the strand. 

2.5 Consistent Strain Relations 

If we define 0 and ~ as the axial extension and the angular rotation 

of one pitch (h) of a strand, respectively, n, as the displacement of 

a wire parallel but in a sense opposite to the principal normal 

direction (X) (Fig. 2.5), and £ as the centre-line strain of a 
til 

single wire, then by the principle of virtual work, we can write 

• L L 
Fo + M6 - mJ Xn ds = mJ (T£ + G'K' + Hi)ds 

o 0 til 
(2.24) 

since K = 0 (equation 2.4). 

Here, we will consider a case where there is no axial extension of the 

wire and in arriving at the equilibrium equations (2.13) we have also 

disregarded this extension. 

Therefore, 

Referring to Fig. 2.2b, 

e '"' 0 
til 

(2.25 ) 

If the wires in the strand behave identically at all sections, 

and we use (2.18),(2.19),(2.20), (2.21),(2.22),(2.23) and (2.25) in 

(2.24), we will have 

[Tsina + H cos' a _ 
r 

i a • G. s nacos a] 0 
r 

• 
+ [Hsina + G'cosa + rTcosa + G'sin2 acosa - Hsinacos2 a]A 

'"' h SiriCi 
cosa a • T ] n 

r 

• 
+ G'I(' + Ht} (2.26 ) 
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If G', Hand T are non-zero, we can group their coefficients 

together and make them equal zero. Thus, collecting the coefficients 

of T, we have 

sin2 a· rsinacosa· cos2 a 
h 6 + h A + r n = 0 (2.27) 

Therefore, 

(2.28) 

where 

6 ~ ~ 
£ = Ih, 'Y = /21, P = Ir (2.29) 

collecting the coefficients of G', we have 

s ina Q.cos2 0.. S incx,cosc£· sin' acosCi • 
hr 6 + h A + h b. 

sin2 acos2 a 
+ --r"Wz-- n - K ' = 0 (2.30 ) 

By virtue of (2.29), (2.30) becomes 

ain2 acos2 a coa2 a sin2 acos2 a 
K' = - £ ------- + i + i -----r r r 

Therefore, 

sin2 acos2 a cos2 a 
K' = --~-- (i - £ + P> + .y ---r r 

(2.31) 

Similarly, collecting the coefficients of H, we have 

sinacos2 a· sin2 a : _ sin2 acos2 a • 
hr 6 + h L1 h b. 

sinacoss a --"'r--- n - t • 0 r a " 

and therefore 

(2.32 ) 

Equations (2.28), (2.31) and (2.32) are therefore consistent with 

the equilibrium equations (2.13), accordting to the Principle of 
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virtual work. These relations can also be derived geometrically by 

considering an axial extension, an angular rotation and a change in 

the helix radius when the helical wire is loaded (Appendix 1). 

2.6 Geometrical Relation Between a and r for an m-Strand 

We will ccnsider a strand made up of m wires and the wires are 

touching each other. A transverse section of the strand yields wire 

cross-sections that are approximately elliptical¥ (Fig. 2.4c). 

We can therefore define the cross-section of the wire (Fig. 2.6) 

by 

= 1 

Therefore, 

x 
- = y 

Differentiating (2.33) with respect to x, we have 

therefore, 

2x 2y 21-ar + bT • dx = 0 

~ __ ~ (2.)2 
dx - y a 

But referring to Fig. 2.6, 

* = - tan a 

substituting (2.34) and (2.36) into (2.35) we have, 

(2.33) 

(2.34) 

(2.35) 

(2.36) 

¥ It should be noted that this is only valid for certain values of a. For the special 
cases when a • 0° and a-gOo, the cross-sections are as shown in Fig. 2.7. 



therefore, 

2 

tan2 e = (!.) 
y 

1 1 
yr=l;r[1 + (~) 

b 

2 

a 2 - (-) 
b 

. y = ;:::==::;::=== /1 + (~)2 tatf e 

substituting (2.37) into (2.34) we have 
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(2.37) 

(2.38) 

From Fig. 2.6b, if (x,y) are the co-ordinates of the point of contact 

between the wires, 

= r-v tane ~ 
x 

substituting (2.37) and (2.38) into (2.39) 

But a = si~a ' b = R and since there are m wires e.! - ; 

therefore 

2 11: . I) 
r tan (2 - m 
R = 1 + sin!! a 

(2.39) 

(2.40) 

(2.41) 

Equation (2.41) is the 

Costello [51]. 

same equation obtained by Phillip and 
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CHAPTER 3 

Contact problem in wire rope. 
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3.1 Introduction 

The importance of the role that contact stresses play in deter

mining the failure of a wire rope cannot be over-emphasised. A 

number of works directed in this area have been described in 

Chapter 1. 

The theory on contact stresses is attributed to Hertz [66], who 

derived mathematical expressions for the distribution of pressure on 

the contact area of bodies having an initial point contact. He was 

able to determine the limiting size of the axes of the elliptical 

contact area and the relative displacements of the bodies. For 

circular areas of contact, he was able to determine the stress in 

the centre of the area and for bodies having initial line contact, 

he obtained expressions defining the width of the contact strip and 

the pressure distribution across the strip. Hertz verified his 

analysis by determining the areas of contact between a spherical 

glass lens and a glass plate at various loads and also between crossed 

cylindrical glass rods. Since the measured areas showed good agree

ment with those calculated, he took this as a check also of the 

stress components. 

For over 100 years, since the theory was first developed, it has 

been a basis for the many studies related to contact problems [67]. 

Thomas and Hoersch [68] extended Hertz's work and determined the law 

of distribution for the stress components along the z-axis in the 

plane of symmetry of the loading curve (Fig. 3.1). They'were able 

to express the expressions obtained by Hertz in terms of F(,',k') 

and E(,',k'), the elliptic integrals of the first and second kind 

for which tables have been computed. They found that the maximum 
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shearing stress in the zone of contact is at some distance below 

the contact surface. 
'I 

By using Fry-strain-etch method, they were 

able to verify the mathematical computation for crossed cylinders. 

Seely and Smith [29] utilise.Thomas and Hoersch's work in one 

of the chapters in their book. They were able to present t~e theory 

in a more comprehensive manner and probably due to this, their book 

has become a common reference used by investigators studying contact 

stresses in wire ropes (see Chapter 1). 

In wire ropes, primarily there are two types of contact: 

1) line contact - produced by contact between individual wires in 

a strand and, 

2) point contact - produced by contact between adjacent wires in 

neighbouring strands of the wire rope. 

In this chapter, both types of contact will be looked at and 

values of contact force that will cause the wire t9. yield will be 

obtained. 

3.2 Contact Theory (based largely upon Thomas and Hoersch'~68) work) 

3.2.1 Principal Radii of Curvature 

Consider two bodies being pressed together by forces Q', as 

shown in Fig. 3.2. The load Q' lies along the axis which passes 

through the centres of the bodies and through the point of contact 

and is perpendicular to a plane which is tangent to both bodies at 

the point of contact. The two bodies are initially in contact at 

a single point, and the effect of the load Q' is to cause the surface 

¥ After the material has been subjected to a stress exceeding the yield point, it is 
heated for half an hour at approximately 400oF. The specilen may then be cut and 
then etched with a solution of cupric chloride in hydrochloric acid and water. 
Regions which have been overstressed will etch darker than the remainder of the 
section. 
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of the bodies to be deformed elastically over a region surrounding 

the initial point of contact, thereby bringing the two bodies into 

contact over a small area as shown in Fig. 3.2. The points which 

come into contact simultaneously are points on the two surfaces 

which were initially equal distances apart. 

Let the minimum and maximum radii of curvature of the surface 

of the body 1 at the point of contact be Rl and Rl' respectively 

and for the body 2 be R2 and R2 ' respectively. These are called 

the principal radii of curvature of the surface. 

Now consider only body 1 assuming that the bodies are free from 

loads and are in contact at a point as shown in Fig. 3.3. In Fig. 

3.2a, lines Vl and V2 lie in the plane sections containing the 

minimum radii Rl and R2 , respectively and lines Ul and U2 lie in 

the plane sections containing the maximum radii Rl' and R2 ' respec-

tively. Line Vl makes an angle ~ with line V2 • 

From Fig. 3.3 

• 
• . 

Therefore, 

JP = u l /tan ~ 

tan (&) == 

tan (&) == 

== 

== 

tan (&) == 

== 

R ' -1 JP 
U l 

R ' .:::.L- _ 1 
ul tan t 

1 1 
sin t tan 

1 - cos t 
sin. 

t tan ( /2) 

t 

(3.1 ) 

(3.2 ) 



therefore, (&J = 

and ~ tan( /2) 
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(3.3 ) 

(3.4) 

where Zl is the perpendicular distance from the tangent plane to any 

point on the surface of the body near the point of contact. If 

~ is small, 

(3.5) 

Since JP is approximately equal to Rl' 

(3.6 ) 

From (3.5) and (3.6) 

(3.7) 

Similarly, for distance Zl to points K and N lying in the plane of 

radius Ru 

(3.8 ) 

Now assume that the distance Zl to any point H not lying in 

either plane of principal curvature is given by 

(3.9) 

The assumption is justified since when U 1 = 0, (3.9) reduces to 

(3.8) and when VI = 0, (3.9) reduces to (3.7). Also, when Zl is a 

constant, (3.9) is an ellipse and if U1Vl terms are present, the 

centre of the ellipse will be displaced from the line of action of 

the forces acting on the bodies, which is not the case expected. 

Similarly, the distance za from the tangent plane to any point 

in the surface of body 2 near the point of contact is given by 

, 
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(3.10 ) 

where Ua and Va are co-ordinates with respect to axes lying in the 

tangent plane and also in the planes of the principal radii of 

curvature Ra' and Ra respectively. 

a a 
+ Ua 12R a' + Va 12R a (3.11 ) 

where z is the distance between points on the two surfaces near the 

point of contact. 

The co-ordinates Ua and Va can be eliminated by using the 

transformation (Fig. 3.4) 

(3.12 a-b) 

Therefore, 

(3.13 ) 

where 

2A' • (l/Rl t) + (l/R' a) cosal\l + (l/Ra}sinal\l 

2H' = [(lIRa' - (lIRa)] sin", cos 1\1 (3.14 a-c) 

2B' 1 1 - ( IR 1 ) + ( IR'a) sina ", 1 
+ ( IRa) cosa ", 

The product term U1Vl in (3.13) can be eliminated by the 

transformation 

u l • X cos z - y sin z 
(3.15 a-b) 

VI • x sin z + y cos z 

where z is the angle through which the axes Ul and VI must be rotated 

to eliminate the product term U1Vl (Fig. 3.2a). 
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From (3.13) and (3.15 a-b), 

(3.16 ) 

where 

1 1 1 1 1 
A == 4" (-R + R + -R I + -Rt ) 

1 a 1 a 

1 1 1 1 1 
- 4 [(- - -) + (- - -)] 

Rl Rl' Ra. Ra' 
1-1)1 1) a - 4(- - - (- - - sin '41 Rl Rl' Ra Ra I 

1 1 1 1 1 
B == 4"(-R + R + -R I + -R' ) 

1 a 1 a 

(3.17 a-b) 

Therefore the constants A and B depend upon the principal radii of 

curvature of the two bodies and upon the angle '41 between the corres-

ponding planes of the minimum (or maximum) principal curvatures. 

If the lines VI and Va (Fig. 3.2a) are parallel, '41 - 0 and 

eqns. (3.17 a-b) reduce to 

(3.18 a-b) 

3.2.2 Expressions for Principal Stresses - General Case 

The expressions for the principal stresses a t a and a at a 
x y z 

point on the Z-axis and at a distance z from the origin which lies in 

the surface of contact of the two bodies were obtained by Thomas and 

Hoersch [68]. 

In the expressions, there are 4 elliptic integrals. They are: 



F(cp',k') = fP I de 
o ~..J;l=-~k::;;' 2;:S~i=n;2:;9 

H (cp I , k I) = 1CP I .Jl _ k I 2 S i n2 9 d 9 
o 

1t 

E(k ' ) = H(!,k ' ) = 1012 .Ji - k ,2 sin2e de 

where kl = .Ji - k2 

30 

(3.19 a-d) 

(3.20) 

where k is the ratio of the semi-minor axis of ellipse of contact to 

the semi-major axis of ellipse of contact, i.e. 

k == b la (3.21) 

cotcp I == k (z Ib) (3.22) 

where z 1s the depth below the surface of contact to the point on 

Z-axis at which stresses are to be calculated. 

The principal stresses are given by, 

in which 

b Ox == [J{Ox + pOlx)]r 

b oy == [J(01 + pOlY)]r 

Oz == 

n == 

[!t!. - n)]~ 
:Cn A 

k2 + k2 (z /b )2 

1 + ka (Z /b)a 

(3.23 a-c) 

(3.24 ) 

(3.25 ) 

(3.26) 

where E l , Ea are tensile (or compressive) moduli of elasticity for 

bodies 1 and 2 respectively. Pl tPa are Poisson's ratio for bodies 1 

and 2 respectively. 
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Ox = - ¥ + k Z /b [F (cp , ,k ,) - H (cp , ,k ' ) ] 

a ' x = - i?- + 1 + k Z /b [fr H (cp , , k ,) - F (cp , ,k ' )] 

a I Y = _ 1 + n + k Z /b [F (cp , ,k I) - H (cp I , k ' )] (3.27 a-d) 

When the principal radii of curvature of the surfaces near the point 

of contact are known, the value of k can be found from 

B (1/k2 )E(k l ) - K(k ' ) 
A = K(k I) - E(k I ) 

(3.28) 

Also, if the value of b can be found, the contact force Q' can be 

worked out from 

Q' = 3kAE(k' ) 
(3.29) 

3.2.3 Special Case, k = 0 

From (3.21), if a • ~, k • O. This is a case when 2 straight 

parallel cylinders are in contact where the contact area forms a long 

narrow rectangle. 

For this case, Thomas and Hoersch [68] obtained the expressions 

for the principal stresses as follows: 

ax = 

t:1y= (3.30 a-c) 

If b can be found, the contact force Qiper unit length of the cylinders 

can be evaluated using 

¥ See Reference (68) for derivation.· 
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(3 .31) 

3.3 Contact Between Wires in the Same Strand 

3.3.1 Depth Below Contact Surface where Shear Stress is Maximum 

Assume that the contact between wires in the same strand 

approaches that for the case of two long straight parallel cylinders 

in line contact. 

Thomas and Hoersch[68] found that the maximum shearing stress in 

the zone of contact occurs at some distance below the contact surface. 

Seely and Smith' [29] also found that the maximum octahedral shearing 

stress in the zone of contact occurs at the same distance as the 

maximum shearing stress reaches its maximum value. 

Octahedral shearing stress, ~ is given by oc 

a }I (3.32) 
x 

where a , a and a are prinCipal stresses. x y z 

Using (3.30) in (3.32), the distance z below the contact max 

surface where the octahedral shearing stress reaches its maximum value 

can be found. 

From (3.32), 

d~ oc -. dz 
1 -1/2 .,.. [{ ax .. a )2 + {a .. a )2 + (a _ a )2] 
o ,y y z z x 

,do do 
x {2 (a .. a )(-! _ -2) 

x y dz dz 

~ay daZ ) + 2(0 - 0)( .. -r-
y z Z QZ 

do do 
+ 2(0 .. a )(2 - -!)} 

Z x dz dz 

(3.33) 



For maximum 't , oc 

Therefore, 

d't oc 
---- - O. dz 

dO' dO' dO' dO' 
(0' - 0' )(~ - --2) + (0' - 0' )(--2 - ....!.) 

x y dz dz y z dz dz 

dO' dO' 
+ (0' - 0' ) (....!. -~) = 0 

z x dz dz 

From (3.30 a-c) 

0' =-
Y 

(.Jl + j)i - D )2 b 
A .Jl + j)i 

1 b 
a = - -

Z .Ji + j)i A 
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(3.34) 

(3.35 a-c) 

where D = z/b (3.36) 

and 
dO' 2 D 
dX=-~[ -1] 

Z A.Jl + j)i 

dO' 1 if: = - (1 + j)i )A [2« .Ji + j)i - D)D - .Ji + j)i) 

2 
D(.Jl + j)i - D) ] (3.37: a-c) 

.Jl + j)i 

If (3.35) and (3.37) are substituted into (3.34) the value· of D that 

satisfies (3.34) can be computed. 

3.3.2 Contact Force that will Cause Wire to Yield 

Using the octahedral shearing stress theory of failure which gives 

the same result as the energy distortion theory (von Mises), yielding 
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is expected to start at a point where the octahedral shearing stress 

is a maximum, i.e. 'at a distance z below the contact surface. max 

Using von Mises' theory of failure 

20 2 = (0 _ 0 )2 + (0 _ 0 )2 + (0 _ 0 )2 (3.38) 
o x' Y Y z z x 

where 0 is the uniaxial yield stress and 0 , 0 and 0 are principal o x y z 

stresses. 

If the value of D obtained from the computation is substituted 

into (3.35) and (3.35) is substituted into (3.38), the value of b, 

which is the width of the contact area, can be evaluated. 

The contact force, Q per unit length of the wire that will 

produce yield in the wire may then be found from (3.31) where A 

in the equation is given by 

2 
A=A+B 

(3.39) 

since the wires are made of the same material. Since Rl' = R2 ' = CIO and 

Rl = Rz = R, where R is the radius of the wire, A = 0 and B = l/R. 

3.3.3 Dimensionless Force X to Cause Yield 

In Fig. 3.5, let 8
0 

be the angle that the line of action of the 

contact force Q makes with the line of action of the force x. 
Therefore, 

x == - 2Q cos8 o 
(3.40) 
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From geometrical consid~ration, Costello and Phillips [47] found 

that 

1 
cos~ = -'""'1_ o cos2 a 

2 (11: 11:) tan - - -z m 

tan 2 11: 1t (- - -) 1 + -------------------:---------~---------tan2 acos2 (!. - .!)[sin2 a + tan2 (o! - .!)] + sin4 a z m 
z m z m 

(3.41 ) 

where a is the helix angle of the wire in the strand and m is the 

• 
number of wires in the strand. 

Now define a dimensionless force, X such that 

Xr 
X =---To 

(3.42) 

where r is the helix radius of the wire in the strand and To is the 

fully plastic axial load, T given by 

To -= ltO R2 
o 

(3.43) 

where a is the uniaxial yield stress and R is the radius of the wire. 
o 

The helix radius, r can be calculated from Eqn. (2.44). 

USing (3.43), (2.44) and (3.40) in (3.42) the value of X can be 

calculated. Fig. 3.7 shows the variation of X with helix angle and 

Fig. 3~ shows the variation of X with the number of wires in the 

strand. 

3.4 Contact Between Adjacent Wires in Neiihbouring Strands 

3.4.1 Spacing of Contact ZOD§li 

When two layers of strand with different helix angles are in 

contact, point contacts will occur at equally spaced distance along 
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each of the wires in the strands. 

If the wires in both strands are developed onto a flat plane, 

the contact points can be located and thus the distance between the 

contact points along the inner and outer wires can be obtained. 

Superscript bar (-) will be used to denote variables associated with 

the outer layer. 

Fig. 3.6 gives 

~s sinCe - a) _ 21(r'~ R) sin a -m 

~s sinCe _ a), _ 21(r + R)sina . 
m 

(3.44) 

(3.45) 

where ~s is the distance between contact points along the inner wires, 

a is the helix angle for inner strand 

m is the number of wires in inner strand 

r is the helix radius of inner strand 

R is the radius of the wires. 

3.4.2 PrinciEal Radii of Curvature at Contact 

Consider one of the points of contact as shown in Fig. 3.9 

(3.46 ) 

(3.47) 

Fig. 3.10a shows a plane con.taining the centre-line of a strand, 

and Fig. 3.10b shows a view perpendicular to the normal direction of 

a wire in the inner strand. 



From Fig. 3.10b 

• • 

But from Fig. 3.10a, 

Therefore 

Similarly, 

where r == r + -
R + R 

and 

r • .Jrl + yl 
- ,..-".. __ - _-_-"..- 1)61 I 
.J r" + yi &.f.' 

r 
y - Co8ci 

IR 1 • r ( 1 + co!I (l ) 

-
lRI_'!(l+ 1 

COSla 

Rl I == IR 1 + I 

Ra I == IR I - R 
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(3.48) 

(3.49) 

(3.50) 

(3.51 ) 

(3.52 ) 

(3.53 ) 

(3.54 ) 

since IRl and ~a are radii of curvature of the centre-line of the wires 

in the inner and outer strands, respectively. 

3.4.3 Depth Below Contact, Surface Where Shear Stress is Maximum 

The principal stresses at each of the contact points are given 

by (3.23). 

To find the depth below the contact surface where shear stress 

is maximum, the procedure as in section 3.3 i.e. uling calculus, will 

not be adopted since in thil case, the expressions for the principal 

stresSeS involve elliptic integrals ,(,',k')and R(,',k'). Instead, 
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a plot of the octahedral shear stress against the ratio kZ fb will be 

kz produced as shown in Fig. 3.12 a-c so that a value of fb at which 

the octahedral shear stress is a maximum can be found. 

The procedure for plotting the graph is as follows: 

1. B A graph of k versus fA as shown in Fig. 3.11 is plotted using 

eqn. (3.28). 
. B 

Thus, when fA is known from the geometry of the 

surface at contact, k can be determined. 

2. With the value of k, k' can be obtained using (3.20). 

3. Eqns. (3.25) and (3.27) are rewritten as 

n == (3.55) 

and 

Ox == - ¥ + Dl [F(cp I ,k I) - H(cp I,k I)] 

o IX == - ~ + 1 + Dl [lr H(cp I ,k I) - F(cp I ,k I)] 

1 1 n 1 ) ( )] Oy = 2n + r - ~ + D 1 [~H (cp I , k ' - F cp', k ' 

O'y == -1 +n + Dl [F(cp',kt) - H(cp',k')] (3.56 a-d) 

where 

Dl = kZ fb (3.57) 

Since all wires are of the same material, eqn. (3.26) becomes 

(3.58) 

Values of A and B can be obtained by substituting (3.46),(3.47), 

(3.53) and (3.54) into (3.17). 

4. Assume a value of D1 • From (3.22), cp' can be determined. 

5. With the values of k' and cp', values of F(cp' ,k t) and H(cp' ,k ,) 

can be looked up from Tables of Elliptic Integrals [69]. 



39 

Procedure 1-5 with (3.24) will give 0 , 0 and 0 in terms of 
x y z 

b /A • These values can then be substituted into (3.32) to give a 

kz value of ~ for a given value of Ib (or D1 ). oc 

3.4.4 Contact Force that will Cause Yield 

The von Hises theory of failure will again be used which gives 

equation (3.38). 

Values of 0 , 0 and 0 in terms of b /A for which the octahedral 
x y z 

shear stress is maximum can be calculated using procedure 1-5 in 

section 3.4.3 when the associated value of kZ/b,has been found. These 

values can then be substituted into (3.38), so that the value of b 

can be obtained when Equations (3.35) are used. 

The contact force Q' can be found by substituting the value of b 

into (3.29). 

3.4.5 -Dimensionless Force X to Cause Yield 

The resultant normal distributed line load acting on the outer 

wire, X is related solely to the point contact loads Q' which are 

applied at regular intervals Ai along the inside of the outer layer 

as illustrated in Fig. 3.14. 

This gives 

0' i:. - ~ (3.59) 

Therefore the value of the line load X can be obtained by substituting 

(3.29) and (3.45) into (3.58). 

As in sectlon (3.3.3), a dlmensionless line load i will be defined 

as 
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-X 
xr ... -To 

(3.60 ) 

The rope considered is a lX6X12 rope t the cross-section of which 

is shown in Fig. 3.14. The wires are of the same size. 

The values of X that will cause yield in the wire of the outer 

strand are shown in Fig. 3.13 t for various values of inner and outer 

strand helix angles. 
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3.5 DISCUSSION 

Contact stresses should no doubt be an important consideration 

in the design of wire rope. Starkey and Cress(30) have shown that 

the critical stresses in a wire rope are due largely to contact 

stresses and are much higher than direct-tensile-stress. Similarly, 

Phillips, Miller and Costello(61) show that for a 1X6X12 rope, the 

maximum contact stress due to the inter layer contact force is about 

7.4 times as large as the tensile stress due to the tension in the 

outer wires of the rope. 

In this chapter, two types of contact that occur in wire ropes 

have been described - (i) line contact which is produced by contact 

between individual wires in a strand and (ii) point contact which is 

produced by contact between adjacent wires in neighbouring strands. 

Comparing Figures 3.7 and 3.8 with figure 3.13, it is obvious that 

point contact is more critical between the two. The contact force 

required to initiate yield in the contacting wires is about a 

hundred times higher in line contact as compared to point contact 

(in the range of contact angles (a-a) as shown in figure 3.13). 

Figure 3.7 shows that for line contact, as the helix angle a 

increases, the value of X also increases but the increase becomes 

smaller as the helix angle approaches 90°. The value of contact 

force Q is the same irrespective of the value of a since the contact 

has been assumed to approach that for the case of ~wo straight 

parallel cylinders. Thus, from equations (3.40) and (3.42), the 

value of X, the dimensionless line force X for a given size of wire 

and number of wires in a strand m, will depend on coss , where S 
o 0 

is the angle that the line of action of the contact force Q makes 
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with the line of action of X, and also r, the helix radius. cosS is o 

given by equation (3.41) and r, by equation (2.44). 

The value of X decreases as the number of wires in the strand 

increases as can be seen in Figure 3.8. But, for value of m>9, the 

decrease becomes very small that X is almost constant. 

With point contact, X, the dimensionless line force X required 

to initiate yield in the wires, depends on the contact angle, the 

difference in the helix angle between the inner and the outer 

strand. As the contact angle increases from 0° to 90°, the contact 

area will decrease from a maximum to a minimum. Thus, it is expected 

that X will decrease as the contact angle increases. This is 

illustrated in figure 3.13 which shows the variation in X for 

various combinations of helix angle between the inner and the outer 

strand. 



CHAPTER 4 

Improved approximation on X to cause collapse 
derived from plasticity consideration. 
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4.1 Introduction 

It is well known that in elastic contact of solids, the yield 

point is first reached beneath the surface of contact. Hence, for 

loads not greatly in excess of the elastic limit, plastic deformation 

will be fully "contained" by elastic material and the order of 

magnitude of both elastic and plastic strains will be the same. Due 

to this, Johnson [70] argued that the departure of the mean contact 

pressure from its 'elastic' value in the early stages of plastic 

deformation is fairly gradual and thus Hertz's [66] original suggestion 

that the point of first yield could be used as a rational measure of 

hardness proved to be impractical. V 

With the above viewpoint as a basis, we seek to find a better 

approximation on the collapse value for X, than that obtained in 

Chapter 3, that will be used in the subsequent chapters (i.e. Chapters 

5 and 7) to predict the static plastic collapse of a wire rope. 

4.2 Rigid-Plastic Deformation 

A rigid plastic solid is a hypothetical solid which, under any 

stress system, would be rigid when stressed below the yield point, 

that is, the elastic modulus is infinitely large. The yield point '\ 

of a rigid plastic body is that load in the loading sequence for 

which deformation first becomes possible. For materials, such as 

metals, with a high ratio of Young's modulus of elasticity to uniaxial 

yield stress (E/a >, the theory of rigid perfectly-plastic solids has 
o 

been successful in predicting the indentation pressure in terms of 

the yield stress of the material,' except when the indentation is very 

shallow. 

V It is appreciated that during the aanufacture of wire ropes, residual stresses will 
occur. It is acknowledged that the present analysis does not take this into account. 
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Thus, the problem of indentation may be used to provide a better 

estimate on the collapse value for x. 

Most studies of indentation pro?lems have been made in terms of 

plane strain which makes the mathematical aspects very much simpler. 

In plane flow, the velocity vector is everywh~re parallel to a certain 

plane and is independent of the distance. from the plane. Plane 

plastic flow is in fact one of the most highly developed branches of 

plasticity theory, largely as a result of the work by Hill [11] in 

developing and applying the theory of the "slip-line field", a theory 

whose simplicity is derived largely from the restrictions imposed by 

plane strain conditions. 

The indentation of a rigid-plastic semi-infinite medium was first 

investigated by Prandtl [12]. For ductile metals, Tabor [13] has 

shown that the mean contact pressure can be related to the yield stress 

of the material in simple compression, o by an expression based on 
c 

the theory of indentation of a rigid perfectly-plastic solid, viz. 

, . 

p - co (4.1) 
m c 

where c 1s a constant whose value is about 3, depending to some extent 

upon the geometry of the indenter. 

Levin [74] used the limit design theorem of Drucker, Prager and 

Greenberg [75] to compute an upper bound for the indentation pressure 

of a smooth circular punch. He found that 5.848 is an upper bound 

on the indentation pressure where 8 i.s the yield stress in sbaple shear. 
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Shield and Drucker [76] obtained a lower bound of 5s for the 

indentation pressure for any convex area of indentation. 

Spencer [77] used perturbation methods. in plasticity to study 

the problem of indentation of a semi-infinite solid by the curved 

surface of a smooth circular cylinder. He obtained a value of s(2 + I) 

for the initial contact pressure which is the same as the upper 

bound value for the indentation pressure due to a punch whose cross

section is a very long rectangle. 

The problem of mutual indentation of crossedcylinders and wedges 

of various metals in various states of work-hardening was investigated 

by Atkins and Tabor [78]. For mutual indentation of highly work

hardened crossed cylinders, they found that the mean contact pressure 

was 2.3 times the uniaxial yield stress as compared to 2.8 for ball 

indentation of a flat. The reason they gave for the difference 1s 

that, compared with a ball in a flat, there is less constraint to 

deformation with crossed cylinders, because of the material '~issing" 

from the flanks of the cylinders. 

4.3 Contact Between Wires in the Same Strand 

As in Chapter 3, assume that the contact between wires in the 

same strand approaches that for the case of two long straight parallel 

cylinders in line contact. 

Indentation pressure obtained by indenting the curved surface 

of a smooth circular cylinder on a semi-infinite solid is 8(2 + .) 

(section 4.2). 
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Using the von Mises criterion 

s = a 1.J3 (4.2) 
o 

where a is the uniaxial yield stress. Therefore the indentation 
o 

pressure is 2.97 a • 
o 

For the same reason given for the difference in the value for 

the indentation pressure of a ball in a flat and the crossed cylinders, 

the indentation pressure for the case of a mutual indentation of two 

straight parallel cylinders is expected to be less than 2.97 a • o 

Atkins and Tabor [78] also found that the difference between the 

two indentation pressures (ball in a flat and mutual indentation of 

two crossed cylinders) is by a factor 1.2. Therefore, if it is 

assumed that the difference in this case (mutual indentation of two 

straight parallel cylinders and indentation of the curved surface of 

a smooth circular cylinder on a semi-infinite solid) is of the same 

order, then the indentation pressure is ~ 2.5 a • 
o 

The contact force to cause collapse, Q per unit length of the 

wires can be found if the width of the contact area (indentation) due 

to the indentation pressure is known, viz. 

Q ~ 5ba 
o 

where b is half the width of the indentation. 

(4.3) 

Provided that the plastic layer is small compared to the radius 

of the wire, the Hertz contact theory may be employed to determine 

the values of band Q when the indentat ion pressure is known. 
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Using the Hertz theory, it was found that the plastic layer is 

about 1.5% of the radius of the wire (Appendix 2). Therefore, the 

value of Q associated with the indentation pressure ~ 2.5a , is 
o 

evaluated using the Hertz contact theory. 

Substituting (4.3) into (3.31) 

b ~ !! (Sa) 
11: 0 

therefore, substituting (4.4) into (4.3), 

(4.4) 

(4.5 ) 

The corresponding value of X to cause collapse of the wire may be 

evaluated following the procedure outlined in Section (3.3.3). 

i.e. assuming that the ~ire remains elastic up to Q given by Equation 

(4.3) even though the wire is actually behaving in an elastic-plastic 

manner. 

Fig. 4.1 shows the variation of the collapse value of X with 

helix angle and Fig. 4.2 shows its variation with the number of wires 

in the strand. The changes in the values of X should the factor c 

chosen is other than 2.5 is shown in Fig. 4.3. From the figure 

for a change of 1% in the value of c, there is a change of 1.9% in 

the value of x. 

4.4 Contact Between Adjacent Wires in Neighbouring Strands 

Assume that the contact of adjacent wires in neighbouring strands 

approaches that of two crossed cylinders. Atkins and Tabor (78] found 

that the indentation pressure for the case of mutual indentation of 

highly work-hardened crossed cylinders was 2.3 a • 
o 



49 

For fully work-hardened metals, the yield stress is essentially 

constant and thus unaffected by the indentation process. By contrast, 

with annealed or partially work-hardened materials, the deformation 

produced by an indentation will cause the local yield stresses to 

increase. 

If it is assumed that the wires are fairly highly work-hardened 

due to the process they undergo during rope manufacture, then it is 

expected that the indentation pressure is > 2.3 o. Also the results 
o 

of Shield and Drucker [76] indicate that the upper bound of the 

indentation pressure increases as the ratio of indentation area to 

perimeter increases. Compared to the mutual indentation of two 

parallel cylinders (whose indentation area is that of a very long 

rectangle), the mutual indentation of two crossed cylinders (whose 

indentation area is circular) should have a larger area to perimeter 

ratio. Thus, it is expected that the indentation pressure for the 

mutual indentation of crossed cylinders to be > 2.5 a (i.e. greater 
o 

·than that for the case of parallel cylinders). If it is assumed 

that the difference is of the same order to that for the case of 

indentation by a punch on a semi-infinite solid, then the indentation 

pressure for the mutual indentation of two crossed cylinders is 

~ 2.8 a • 
o 

For the same reason given in section (4.3), the Hertz contact 

theory will again be employed to determine the value of contact 

force Q'. 

Q' ~ 2.8aabo 
o 

(4.6) 

where a is the semi-major axis of the ellipse of contact and b, its 

semi-minor axis. 



50 

B When the ratio fA is known from the geometry of the surface 

at contact, k can be determined from Fig. 3.11. 

b Since k = /a (eqn. 3.21), a can be written in terms of b, viz. 

b 
a = /k 

Substituting (4.7) into (4.6) 

Substituting (4.8) into (3.29), 

b s::! 4.2AE(k')0 
o 

(4.7) 

(4.8) 

(4.9) 

The value of E(k') can be found from the Tables of Elliptic Integral 

[69]. 

By substituting (4.9) into (4.8), Q' can be found, viz. 

(4.10) 

The corresponding values of i to cause collapse of the wires 

may be found following the procedure outlined in Section 3.4.5. 

The values of i to cause collapse of wires for various 

combinations of inner and outer strand helix angles are shown in 

Fig. 4.4. 

The changes in the values of X for factor c being slightly greater 

or smaller than 2.8 is shown in Fig. 4.5. The figure shows that for -
a change of 1% in the value of c, there is a change of 0.96% in the 

-value of x. 
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4.5 DISCUSSION 

It has been assumed that the mean contact pressure to produce 

an indentation will provide a better approximation on the collapse 

value of X due to the reason given in Section 4.1. 

For line contact, Figs. 4.1 and 4.2 show that the value of X to 

produce an indentation is about twice that to initiate yield in the 

wires(Figs. 3.7 and 3.8). But, Fig. 4.4 shows that for point 

contact, the value of X to produce an indentation is about 16 times 

that to initiate yield in the wires(Fig. 3.13). This result is not 

unexpected since for line contact, the contact force Q is 

proportional to c 2 (Equation 4.5), where coo is the indentation 

pressure. From the contact force to produce yield in the wires, c 

is equivalent to =1.7 whereas the value of c to produce an 

indentation is =2.5. For point contact, the equivalent value of c 

at yield is =1.1 and its value to produce an indentation is =2.8, 

and from Equations (4.8), (3.29), (4.9) and (4.10), the contact 

force Q' is proportional to c'. 

The results shown in Fig. 4.4 agrees well with the experimental 

results obtained by Hamlet(90) (see Fig. 4.7) for tests carried out on 

crossed-cylinders. Both show that a large contact load is required 

to produce a given indentation when the contact angle is small and 

as the contact angle approaches 90°, the contact load drops sharply 

and then levels off. 

Using the size of the rods used by Hamlet(90), it is found that 

the load required to produce an indentation in the rods, when it is 

in line contact, is 19kN/m. When this value is checked against the 
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load-deflection curve obtained by Hamlet (see Fig 4.6), it shows a 

ver.y close a8~eement as it lies in the region of the curve where 

plastic deformation has occurred. 

\ 



CHAPTER 5 

Static plastic collapse - No axial strain 
in individual wire. 
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5.1 Limit Anal¥sis 

5.1.1 Introduction 

54 

Limit analysis is not a new concept. It has been around for a 
, 

couple of centuries but only in this century has it received 

popularity. In [79], using examples, Prager traces the ~low development 

of the concept in the 18th and 19th centuries, its temporary eclipse 

by the emerging theory of elasticity and its final establishment in 

the 20th century. 

An important consideration in an engineering structure is not 

whether the yield stress is exceeded at some point, but whether the 

structure will carry the intended loads or perform its intended 

function, and there is no reason for assuming that the stress in the 

structure should never exceed the elastic limit. The practice is 

therefore becoming more widespread to design structures into the 

plastic range, where the materials are assumed to behave in an elastic-

perfectly plastic manner. In this type of design practice, no attempt 

is made to determine the stresses and strains in the structure, but 

rather what is sought is the load-carrying capacity or limiting load 

at which the structure will collapse. This load at collapse is called 

the plastic collapse load. 

Theoretical research on wire ropes has been, in the main, 

concentrated on the behaviour of the wire ropes which are subjected to 

loads within the elastic range (see Chapter 1). By performing a 

limit analysis on wire ropes, one would be in a pOSition to estimate 

the reserve strength beyond the elastic range and this would help in 

the selection of a meaningful factor of safety or in making an 
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appropriate rope construction. Work in this area has been started by 

Jones [64]. Due to the contributions that it would offer to the 

proper design of wire ropes, the present work will pursue and extend 

the above work to include an analysis on wire rope with configurations 

which are more realistic. 

5.1.2 The Limit Theorems 

The theorems were first presented by Gvozdev [80] and independently 

proved by Hill [81, 82] for rigid-perfectly plastic material and by 

Drucker, Greenberg and Prager (83, 84] for the elastic perfectly-plastic 

material with the conventional small displacement assumption. 

The theorems are complementary principles which permit us to 

compute load parameters which lie respectively within or outside the 

limit surface in load space. The two theorems are obtained by 

comparing first the constraints imposed on the solution by equilibrium 

requirements and the yield condition (Lower Bound), and second the 

constraints imposed by kinematic requirements including the normality 

requirements of the constitutive equations (Upper Bound). 

The theorems may be stated in several equivalent ways. One of 

the ways of stating them is'as follows:-

a) Lower Bound Theorem. 

A statically admissible state can be associated with a load state 

if and only if the load state is on or within the yield interaction 

surface. 

A statically admissible stress state is defined as a generalised 
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stress distribution such that the generalised stress distribution 

is in internal equilibrium, is in equilibrium with the external 

loads and satisfies the yield condition. 

b) Upper Bound Theorem 

A kinematically admissible state can be associated with a load 

state if and only if the load state is outside of or on the 

yield-point interaction surface. 

A kinematically admissible state is defined as one where the 

total external rate of work done by the actual loads on a 

velocity field is positive and that the velocity field satisfies 

the velocity (or displacement) constraints. 

5.1.3 Exact Solution 

The limit theorems can be used as a tool by which the exact limit 

surface can be found. This happens when the lower bound to the limit 

surface coincides with the upper bound. 

If the limit surface cannot be found exactly, we can attempt to 

find bounds on the limit surface by determining a series of points 

within the limit surface and a series of points outside the limit 

surface. This may sometimes be sufficient depending upon the purposes 

that we have at hand. 

5.2 Yield Criterion 

The law that defines the limit of elasticity under any possible 

combination of loads is known as the criterion of yielding. 

For bars with circular cross-sections and subjected to combined 
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bending and torsional loads, Hill and Siebel [85] found 

(5.1 ) 

where G' and H are defined in Fig. 2.3. 

When the bars are subjected to combined loads of torsion and 

tension, they found that 

(5.2 ) 

where T is defined in Fig. 2.3. 

For the case of bars subjected to combined torsion, bending and 

tension, the yield criterion is given as 

(5.3 ) 

If the rods are of radius R and are made from a perfectly plastic 

material with a uniaxial yield stress 0 , then o 

G • 40 ~ /3 and H - 11 0 RS /3 
o 0 0 0 

(5.4 a,b) 

are the fully plastic generalised forces when G' and H act alone, 

respectively, while 

T - 1[ 0 Rt . 
o 0 

is the fully plastic tangential load T. 

(5.4 c) 
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5.3 Plastic Collapse Load for a Sinele Strand (mainly based on Reference(64) 

5.3.1 ~roxlmatlon from Below 

For a helical wire which is inextensible, the moments G' and H 

control its plastic yielding. For this· case, the tensile force T in 

a sense tangential to the helical wire is a reaction. The influence 

of the transverse shear force N' on yielding is disregarded, which is 

customary when considering plastic yielding of structural members with 

cross-sectional dimensions much smaller than the overall length. 

Therefore, in order to obtain a lower bound to the exact values 

of F (axial force on a strand) and M (torsional moment on a strand) 

required for the collapse of an elastic perfectly plastic strand, it 

is necessary to seek a statically admissible generalised stress field 

which satisfies the equilibrium equations (2.2l) and (2.22) and lies 

wholly inside or on the yield surface described by equation (5.l) 

[86, 87]. 

Eliminating N' from equations (2.21) and the expression for F 

(2.25) and using equations (2.23) and (2.24) gives, 

where 

and 

T 
T 

o 
• ,sin a - X 

, -F 
~T o 

X - rIIT o 

Eliminating T from the same equations above gives 

(5.5) 

(5.6) 

(S.7) 



F , N' .. - cos Cl + Xrtan Cl 
m 

Using (2.22) and (2.21) to eliminate G' and T, respectively from 

(2.26) gives 

M· 
H = - sin Cl + Xr2 tan Cl + N'r m 

Substitute (5.8) into (5.9) 

H = M F - sin Cl + - rco! Cl + 2Xr2 tan Cl m m 

Using (5.4 b,c) in (5.10) gives 

where 

H 
ir-

o 

M 
l-\" -mH 

o 

Similarly, by eliminating H from (2.26) 

G' 
C-

o 
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(5.8) 

(5.9) 

(5.10) 

(5.11) 

(5.12) 

(5.13 ) 

Finally, substituting equations (5.11) and (5.13) into equation (5.1) 

gives 

where 

R 
A - Ir (5.15) 

Equations (5.5)-(5.15) are identical to equations (9)-(15) in [64]. 
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A lower bound to the exact non-dimensionalised collapse moment 

* ~ for given values of " a and m can be obtained from equation ( 5.14). 

Alternatively, the lower bound to the exact non-dimensionalised collapse 

load, for given values of ~, a and m may be obtained. Thus, an 

interaction curve lying in a ,-~ plane may be constructed given the 

values of a and m. 

5.3.2 ~proximation from Above 

An upper bound to the exact values of F and M (equations 2.25 

and 2.26) associated with the collapse of an elastic perfectlY 

plastic strand is obtained by equating the external work rate to the 

corresponding internal energy dissipation. This is achieved by 

selecting any kinematically admissible displacement field and employing 

the normality requirements of plasticity to seek the relevant active 

portions of the yield surface (equation 5.1) [86, 87]. 

Thus, equating the external work rate to the internal energy 

dissipation of a strand gives 

-IChZ + (21lr)l) 
Xnds - m ~ 

+ G'.' + Hf)de (5.16 ) 

where 6 and ~ are the axial extension and angular rotation of one 
," 

pitch (h) of a strand, respectively, ~ is the displacement of a wire 

parallel but in a sense opposite to the principal normal direction, 

* A as defined by equation (5.15) may be calculated from equation (2.41) 
with given values of a and m and for the same values of a and m, the 
value of X can be obtained from Figs. 4.1 and 4.2. 



and £ is the centre-line strain of a single wire. K' and i 
II) 

are given by equations (2.31) and (2.32) respectively. 
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Now, the wire was assumed inextensible and T was taken as 

a reaction in the lower bound calculations. 

From equation (2.28), 

thus, £ == o. 
(a) 

(5.17) 

Substituting equations (2.31) and (2.32) into equation (5.16) with 

Ell) = 0 and using equation (2.29 c) gives 

• • 

(5.18) 

With the aid of equations (2'.31), (2.32) and £ == 0, the generalised 
(a) 

strain rate vector i = K'i + t J. + £ k can be recast in the form 
- (a)-

.; {s in2 a.cos' a. (t _ £ + p) _ t s ina.cosa.} J../r r r 
(5.19) 

In order to satisfy the normality requirements of plasticity, i 

must be parallel to vt where • == 0 represents the yield condition 

(equation 5.1). 

thus, 

2G'2H 
Vt == !. QJ" +.1 Hoi 

(5.20) 

(5.21 ) 



For E to be parallel to vt. 

Therefore 

2G* {sinacos' a (i - • + p) • stnacosa} +- s - "( Go r r 
where 

G' and H G'* =- H* =-Go Ho 

Substituting (5.17) into (5.23) gives 

Go (t cos' 0. - £ sinlo.) 
G'* 

Ho sinacosa(i + £) 
= H* 

Substituting (5.4) into (5.25) gives 

where 

4H*cos2 a/I - G*'sinacosa 
4H*sini al I + G*'sinacosa - A 

A - Eli 
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(5.22 ) 

- 0 (5.23) 

(5.24 a,b) . 

(5.25) 

(5.26) 

(5.27) 

Using equations (5.4), (5.6), (5.7), (5.12), (5.15), (2.29), (5.24) 

and (5.27), and tana = h/2Ir , equation (5.18) can be rewritten as 

tA sino. + ~Acosa/3 - - (1 + Atan1a)x 

(5.28 ) 

Equation (5.28) 1s the same as equation (27) in [64]. 

5.3.3 Exact Solution 

It may be shown (Appendix 3) that equation (5.28) reduces to 

equation (5.14). Therefore, the lower and upper bound calculations 

lead to identical predictions so that the theoretical solution is 



exact according to the classical theory of plasticity. 

5.3.4 AnalIsis for Computation and Results 

Substituting (5.24) into (5.1) and eliminating H* from 

equations (5.26) and (5.1) gives 

and therefore 

,. 
Substituting (2.23) and (2.24) into (2.22) gives 

N' .. _ G' sin~cos~ + H cosa~ 
r r 
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Substituting (5.31) into (2.21) and using equations (2.23) and 

(2.24) gives 

Hsin~cos~ 

r 

Therefore, using (5.4 a-c) in (5.32) 

T H*~sin~cos~ --T o 3 

(5.29) 

(5.30 ) 

(5.31 ) 

(5.32 ) 

(5.33 ) 

For given values of ~ and m, ~ may be calculated from equation (2.41) 

and X can be obtained from Chapter 4. Then for a given value of 

A, G*' and H* Can be found from equations (5.29) and (5.30), 

respectively. Values of X, G'* and H* can then be substituted 

into equation (5.33) to obtain value for TIT. Thus,. can be 
a 

calculated from equation (5.5) and p from equation (5.11) or (5.13). 

This procedure is repeated for values of -~ < A < ~ to obtain an 

interaction curve lying in a .-~ plane. 



64 

Fig. 5.1 shows the exact interaction curves in the dimensionless 

axial load ~ and bending moment 11 space for various values of a. 

while Figs. 5.2a and 5.2bY show that for various numbers of wires, m. 

5.4 Plastic Collapse Load for a Sinele Strand with Core Wire 

5.4.1 Relationship between the Strand and the Core 

It will be assumed that the strand and the core extend and 

rotate as a unit. Therefore,_ if subscript c refers to variables 

for the core, 

and 

where 5 is the axial 

pitch of the strand. 

and 

5 ... 5 
c 

A ... A 
c 

extension and 

Also, it is 

FT ... F c 

Mor- M c 

(5.34) 

(5.35) 

A, the angular rotation on one 

obvious that, 

+ F (5.36) 

+ M (5.37) 

where FT is the total axial load and Mor' the total torsional moment 

acting on the rope. 

5.4.2 The Core 

It is assumed that when the rope is subjected to axial and 

torsional loads, no bending occurs in the core wire. Thus, the 

tension T and twisting moment H will control plastic yielding c c _ 

in the core wire. Therefore, from equation (5.2), the yield criterion 

can be written as 

H 2 

(-S.) 
H co 

T I 

+ <f) 
co 

... 1 (5.38) 

¥ Fig. 5.2a shows the average axial collapse load in an individual wire and Fig. 5.2b shows 
the total axial collapse load of the strand. 
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where 

H = xa R S /3 and T = xa R a co co c coco c 
(5.39 a,b) 

where a is the uniaxial yield stress of the material for the core 
co 

and R is the radius of the core wire. 
c 

Since the core wire is straight, 

and 

F = T c c 

M .. H 
c c 

(5.40 ) 

(5.41 ) 

Therefore, the lower bound to the exact values of Fc and Mc 

required for the collapse of an elastic perfectly plastic core wire 

is given by 

F 2 

(-=-) 
T co 

M a 
+ (u c ) • 1 

co 

(5.42 ) 

The upper bound to the exact values of F and M associated with c c 

the collapse of an elastic perfectly plastic core wire is obtained by 

equating the external work rate to the corresponding internal 

energy dissipation, viz. 

• L 
F 6 + M A • J (T e + H ~ ) ds c c c c 0 c c c c 

(5.43 ) 

where L is the length of the rope, £ , the axial strain of the core 
c 

wire and 'tc its twist per unit length. 

To satisfy the normality requirements of plasticity, the 

generalised strain rate vector imust be parallel to vt where t - 0 

represents the yield condition (equation 5.38) 
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2H 2T 
c c 

Vt == J. 'i{'T + 1i.. r-r 
co co 

(5.44) 

(5.45) 

lherefore, 

2H 2T 
c. c. 0 n-r £c - "f"T 'tc == 

co co 

H T I 
• ==~(~) 
'tc T H e c 

(5.46) 
c co 

substituting equation (5.46) into equation (5.43) gives 

H I T I 
• 

F 6 + M Il. == 6 [T c (~) ] +-c c c c c c T H 
(5.47) 

c co 
since 

6 == L£ (5.48: 
C C 

Relating the core to the strand by Equation (5.47) gives the upper 

bound to the exact values of F and M required for the collapse of an 
c c 

elastic perfectly plastic core wire. 

It can be shown (Appendix 4) that equation (5.47) reduces to 

equation (5.42) with the aid of equations (5.27), (5.38), (5.40), 

(5.41), (2.29) and (5.48). Therefore, exact values of Fc and Mc 
• 

required for the collapse of an elastic perfectly plastic core wire 

can be obtained. 

Using equations (5.27), (5.34), (5.35) and (2.29 a,b) and / 

h /2xr == tana, equation (5.47) can be written as 

T IH I + H IT I 
MAt [c . co c co _ F ]' 
c == r an~ T H I C 

(5.49) 

C co 
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Also, using equations (2.29 a,b), (5.27), (5.48) and A ,. L~ , c c 

equation (5.46) can be written as 

T H a 
c co 

rAtano. = R (r) 
c co 

(5.50) 

Substituting equations (5.40) and (5.41) into equation (S.50) and 

eliminating M using equation (S.42) gives c 

Alternatively, eliminating F from these equations gives 
c 

a 

(S.51) 

(S .S2) 

S.4.3 Exact Solution for the Plastic Collapse of a SinSle 

Strand with Core Wire. 
e 

Since exact solutions are obtained for a single strand (section 

5.3) and a core wire (section 5.4 .. 2), it follows from equations (5.36) 

and (5.37) that exact values of FT (total axial force on the rope) 

and MT (total torsional moment on the rope) requirea for the collapse 

of an elastic perfectly plastic rope can be found. 

From equations (S.36) and (S.37), 

tT ,. t + tc (5.53 ) 

IlT ,. 1J. + Ilc 

where 

IT ,. FT/mTo 

I • F ImT ceo 

and 1J. T • MorlmHo (5.55 a-d) 

1J. • M ImH ceo 
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From equations (5.5), (5.51), (5.53) and (5.55 a,b) 

Also, from equations (5.5), (5.11), (5.52), (5.54) and (5.55 c,d), 

H :& 
co 

3xcosa. (1 + 2sin' a.) 
~sini a. 

From equations (5.4 b,c) it can be deduced that 

(5.57) 

H = 10 R 3 /3 and T _ 10 R:& (5.58 a-b) 
co co c co co C 

If the cot'e wire and the helical wires in the strand are made of the 

same material and are of the same diameter, 

and 

Therefore equations 

'T ,. 

and 

H ,. H 
co 0 

T ,. T 
co 0 

(5.56) and (5.57) 

(T/T + X) 
0 

+ 

become 

rAtana. T 
0 

sina. m[r2 AI tan' a.T ' 
0 

(5.59 a) 

(5.59 b) 

(5.60 ) 
+ Hoa H· 

(5.61) 

However, if the diameters of the core wire and the wires in the 

strand are different, Hand T in equations (5.56) and (5.57) 
cO co 

become 



R , 
H = H (-S) and co 0 R 

respectively. 

R 2 

T = T (-S) 
co 0 R 

5.4.4 Analxsis for Computation and Results 
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(5.62 a,b) 

For given values of u and m, r may be calculated from equation 

(2.41), and X may be found from Figs. 4.1 and 4.2. When the value 

of A is given, Hand T may be found from equations (5.30) and (5.33) 

respectively. Thus, 'T and P
T 

can be calculated from equation (5.56) 

and (5.57), 

is given. 

when the ratio of radii R IR in equations (5.62 a,b) 
c 

This may be repeated for vaiues of - ~ < A < ~ and an 

interaction curve lying in a 'T - P
T 

plane can thus be constructed. 

Fig. 5.3 shows the exact interaction curves in the dimensionless 

total axial load. 'T and total.bending moment PT space for various 

values of u while Fig. 5.4 shows that for various numbers of wires, m. 

Fig. 5.5 shows the curves for various radii ratio, R IR. c 

5.5 Plastic Collapse Lo!~ .. !or a ~pe Made Y2 of Two talers of Strand 

and a Core Wire 

5.5.1 The Rope-Governinl !gua~!2~ 

The rope considered is a 1 x 19 rope whose cross-section is 

shown in Fig. 3.14. The method however, can be easily adapted to 

ropes with different number of wires in each strand. 

It will be assumed that the two layers of strand and the core 

wire extend and rotate as a unit. Therefore, 

(5.63 ) 
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and (5.64 ) 

where the superscript bar (-) denotes variables associated with the 

outer strand. Also, for equilibrium, 

(5.65 ) 

and (5.66) 

5.5.2 The Outer Strand 

Unlike the inner strand, the wires in the outer strand are 

not in contact with each other. Instead, contacts only occur with 

wires in the inner strand. When the two strands are of different 

helix angles, point contacts will occur at equally spaced distance 

along each of the wires in the strands. These distances are given 

by equations (3.44) and (3.45). 

The resultant normal distributed line load acting on each of 

the wires in the outer strand X is given by equation (3.58) and its .. 
corresponding dimensionless value is given by equation (3.59) where 

(5.67) 

The equations that govern the outer strand are aimilar in form 

to that of a single strand (Section 5.3). Thus 

where 

and 

T -. T 
o 

- -, 8in .. - X 

- F,-,. mT 
o .-

X • rX/To 

(5.68) 

(5.69) 

(5.70) 



l 

where 

-G' 
-= 
G 
o 

-- M-
11 = 1mB o 

when the wires are made of the same material. 

Also, 

and 

where 

lltana (l + 1) 
H* = [ 1? tan2 & {I + 1)2 + 16 {l _ Itani &)1 ]t 

- -• • 
A = ell 

Using equations (2.29 a,b) 

• 
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(5.71) 

(5.72) 

(5.73 ) 

(5.74 ) 

(5.75) 

(5.76 ) 

(5.77) 

substituting equations (5.63) and (5.64) into equation (5.77) and 

using equations (2.29 a,b) 

where 

- h A=-A 
ii. 

e • 
A = Il 

Equation (5.78) can be rewritten as 

since 

and 

A • rtana. A 
- -rtana. 

h tana.. /2u 

tan« • h/2u 

It has been defined that [equation (5.15)], 

(5.78) 

(5.79) 

(5.80) 



Thus, similarly, 

R 
~-r 
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(5.81 ) 

(5.82) 

Substituting equation (5.67) into equation (5.82) and eliminating 

r using equation (5.81) gives 

- R 1 ~ '" i [.Tl-....;;...~--~ 
- + 1 + R/R 
~ 

(5.83) 

Substituting equations (5.81) and (5.82) into equation (5.83) gives 

(5.84) 

Therefore, substituting equation (5.84) into equation (5.80) gives 

- tan« 1 
A", -- [1 _]A 

~tann r + 1 + R/R 
(5.85 ) 

5.5.3 Exact Solution 

Since it has been found (section 5.3) that an exact solution 

exists for the plastic collapse of a single strand, exact values of 

F (axial load on the outer strand) and M (torsional moment on the 

outer strand) for the plastic collapse of the outer strand can also 

be found. Therefore, from equations (5.65) and (5.66) it follows 

that exact values of FT and MT for the plastiC collapse of a rope 

made of two layers of strand and a core wire can be found. 

5.5.4 AnalYsis for Cameutation and ~sults 

The procedure for constructing the interaction curves are 

similar to that mentioned in the previous sections. 
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Substituting equations (5.55 a,b) and (5.69) into equation 

(5.65) gives 

-m -
CPT - cp + - cp + cp (5.86) 

m c 

Similarly, substituting equations (5.55 c,d) and (5.72) into 

equation (5.66) gives 

-m -
"'T == '" + ;- '" + "'c (5.87) 

For given values of a, m and A, cp and '" can be found from c c -section (5.4.4) i can be obtained from Figs. 4.4 when values of a 

and m are known. A can be calculated from equation (5.80) and 

-following the same procedure as for a single strand, values of , 

and ~ can be found. 

For the wires in the inner strand, the line load X due to 

contact with wires in the outer strand may be regarded as an 

additional normal line load. Thus (see Fig 5.13) 

x-x -X 
I 

(5.88) 

where XI is the line load on the inner wire due to the contact that 

occurs between wires in the inner strand. X is the resultant normal 

line load acting on the wires in the inner strand. 

For the given values of a and m, XI can be obtained from 

Figs. 4.1 and 4.2. Finally, following the same procedure as in 

section (5.3.4), values of cp and '" can be calculated. 

Thus, for given values of a, «, m, m and A exact values of 'T 

and llT for the plastic collapse of the rope can be found. 
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Figures 5.7, 5.8 and 5.9 show the exact interaction curves 

for the plastic collapse of rope with two layers of strand. When 

the wires are of the same size and Figures 5JO¥and 5.H show the 

curves for various values of ratios of radii Rc/R and R/R. 

5.6 Rope with n-Layers of Strand 

The previous analyses can easily be extended to study plastic 

collapse of a rope with any number of layers of strand. 

The total axial force on the rope will be the sum of forces 

on the core wire (if it is present) and the layers of strand, viz. 

(5.89) 

Similarly, the total torsional moment acting on the rope will be 

the sum of the moments on the core wire (if it is present) and 

the layers of strand, viz. 

(5.90 ) 

Equations (5.89) and (5.90) can be written in dimensionless form 

such that 

.. and 

where 

FT 
'T· lInt To 

'e • Fe/ms. T 
0 

fPt 
F .1/m .. T 

0 

IP2 • Fa IfII:a T 
0 

'n • Fn/m T 
n 0 

m 
n + ........... , 

Int n 

m 
n 

+ •••• - 11 
Int n 

(5.91 ) 

(5.92) 

(5.93 ) 

¥ This is considering the values of RC/
R 

less than one and increasing from that .. lut. 
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and M 
liT == T/m1 H . 

0 

M 
11 == /m1 H c c 0 

111 = l1/~H (5.94) 
0 

l1a = Ma Irna H 
0 

M 11 = . nlm H 
n· n 0 

where mi is the number of wires in the strand. 

It may be assumed that rotationally and axially, the core wire 

and the layers of strand move as a unit 80 that 

and 

It is defined that 

() = ~ c 
= •• .lJ 

n 

6. == ~ == ~ == •• ~ c n 

A ~ I· == '11 

Therefore, since £ == o/n and '1 == 6.'2~ 

If it is also defined that 

A Ei /-
t == '1 i 

(5.95 ) 

(5.96) 

(5.97) 

(5.98) 

(5.99) 

it can be shown using equations (5.95) (5.96) and (5.98) that 

(5.100) 

h 
where tanCl i II: i /211' i (5.101) 
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Using equation (5.85), equation (5.95) can be written as 

A tan~ [ __ --~l--~] 
i - ~1 tancxi I Ri 

-+ 1 +
~1 Rl 

(5.102) 

The collapse value of the normal line load Xi acting on the 

wires in each layer of strand will depend on the nature of contacts 

experienced by each of the wires and that of the wires in the outer 

layers. It will be assumed that apart from the first layer, the 

wires in the other layers are in contact with wires in neighbouring 
.. 

layers and they are not in contact with wires in the same layer. 

Thus, there will be an interaction between the various layers. 

If Xl is the normal line load for wires in the first layer due to 

contact between wires in the same layer, Xa, its equivalent in the 

second layer due to contact between wires in the second and first 

layer, X" its equivalent in the third layer due to contact 

between wires in the third and second layer, etc. 

Xi' - Xi - Xi - Xi ••••••• X +1 +a n 
(5.103) 

where Xli is the resultant normal line load acting on the wires 

th in the i layer. 

The values of Xi can be calculated from equations (4.5) and 

(4.10). Since it has been shown that exact solution exists for the 

plastic collapse of a single strand and also that for a core wire, 

it is possible to obtain exact values of 'T and PT for the plastic 

collapse of a rope with n layers of strand from equations (5.91) 

and (5.92). 



Value of 'i can be calculated from 

Ti 
where 1: is obtained from 

where 

o 

Ti Xi 4G'* R sinz a iii 
~ == - -c-os'""'2-a-

i 
+ 3 tr i 

{l + tanZ (1.,2 -
I. 

r 1 = Rl Im~ ) 
. sini ~ 

rz - rl + Rl + Rz 

r, = rl + Rl + 2R z + Rs 

} 

H*iRisinaicosai 

3r i 

t 

r = rl + Rl + 2(R z + Rs •••• + R - 1) + R n n n 
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(5.104) 

(5.105) 

(5.106) 

when the wires are of the same diameters. From equations (5.29) 

and (5.30), 

G'* i 

H* 
i 

value of ~i can then be calc~lated from 

(5.107) 

(5.108) 

(5.109) 

Thus, with values of, and ~ calculated from section (5.4), 
c c 

for given values of helix angles of the layers of strand, the radius 

and the number of wires in each layer of strand, and A, the exact 

values of 'T and ~T for the plastic collapse of the rope with n 

layers of strand can be calculated. By repeating the procedure with 

values of _c < A < ., and interaction curve lying in the 'T-~T plane 

may be constructed. 
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5.7 DISCUSSION 

5. 7 • 1 No rma 1i t y 

Figure 5.12 shows a typical dimensionless load interaction 

curve. The ellipse can be divided into two halves - the curve PQR 

is obtained with the positive values of the square root in equations 

(5.29) and (5.30) and the curve PSR constructed using the negative 

values of the square root. The directions of the strain rate vector 

are shown at points P,Q,R and S. At points P and R, A has the value 

+~, and -m respectively. Thus, they show the direction of the 

strain rate vector, ; (i.e = 5/h) which must be parallel to the , 

axis. Since, the direction is also normal to the interaction curve 

at P and R, the normality requirement has been satisfied. 

Similarly, at points Q and S, A has the value zero and thus the 

arrows show the direction of the strain rate vector, y (i.e = A/2w) 

which must be parallel to the p axis. 

Figure 5.12 is the interaction curve for a single strand where 

m=6 and a=7 5°. In this example, the axial collap~e load (,>0, p =0) 

is associated with either axial stretching (6)0) and a slight . . .. 
winding (6)0) or with axial contraction (6< 0) and unwinding (A<O). 

5.7.2 Effect of the change in helix angle. 

It is evident from Figure 5.1 that the maximum axial collapse 

load increases as the helix angle approaches 90', but the difference 

between the maximum and the minimum values of the dimensionless 

twisting moment p decreases. Also, the maximum axial collapse load 

• • . is associated with an axial stretching (6) 0) and winding (6)0) .when 

Q-.::600, and as a increases, the winding diminishes until eventually 

when a=800, the axial collapse load is associated with an axial 
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• • 
stretching (6))) and a slight unwinding (6)0). 

5.7.3 Effect of the number of wires in the strand. 

Figures 5.2a and 5.2b show the dimensionless load interaction 

curves for a single strand with a=75° but with varying number of 

wires in the strand. As expected the collapse load for any 

particular end condition increases as the number of wires increases, 

but doubling the number of wires does not make the axial collapse 

load twice as large as can be seen in figure 5.2b. However, the 

maximum value of ~, does increase by more than a factor of two. 

Thus, this result suggests that if a strand is to undergo a lot of 

twisting, then it is more efficient to have it made with larger 

number of wires. Figure 5.2aexplains further this point as the 

number of wires in the strand increases, the average axial collapse 

load in an individual wire decreases but the maximum value of the 

collapse load ~, increases. 

5.7.4 Effect of introducing a core wire. 

Comparing Figures 5.1 and 5.2 with figures 5.3 and 5.4, it can 

be seen that by introducing a core wire in a single strand, the 

maximum axial collapse load is increased by 0.17 which is equivalent 

to 18.5% of the axial collapse load for a strand with core wire with 

a=80o. The difference between maximum and minimum collapse load ., 

is also increased by a factor of two. However, there is little 

change in ~ except for a slight increase in its minimum collapse 

load. Figure 5.5 shows the effect of the size of the core wire on 

the load interaction curve. When the diameter of the core wire is 

larger than that of the wires in the strand, contact will no longer 

occur between wires in the strand. Instead, contact will occur 
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between the wires in the strand and the core wire. This is 

illustrated in Figure 5.6. Figure 5.5 shows that the maximum axial 

collapse load increases as the diameter of the core increases but 

when the core wire is larger than the wires in the strand, the 

maximum axial collapse load drops to a lower value. This is due to 

the fact that the contact stresses are more critical between the 

core and the wires in the strand than between adjacent wires in the 

strand. It has to be noted here that the rope in which the core 

• wire is smaller than the wires in the strand is a hypothetical one 

since the core wire will not be held together in the rope. This can 

however be overcome by introducing soft fibres around the core wire 

which helps little in improving the rope strength but does hold the 

core wire in place. 

5.7.5 Rope with two layers of strand. 

In a rope with two layers of strand, the 

inter-strand-wire-contact greatly influence the strength of the 

rope. This is because the contact stresses developed from point 

contact is more critical than that developed from line contact as 

shown in Chapters 3 and 4. 

It is evident from Figures 5.7, 5.8 and 5.9 that as the 

contact angle between the wires in the inner strand and that of the 

outer strand (~_a) increases, the collapse load decreases. This is 

due mainly to the reduction in the contact area which increases the 

critical contact stresses for a given contact force. Figures 5.7, 

5.8 and 5.9 also suggest a suitable configuration for rope with two 

layers of strand. When compared to the load interaction curve for a 

single strand with core wire (dashed curve), it can be seen that the 
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helix angle for the second strand should be less than ~105°. Also, 

for the rope to withstand a higher axial load, the helix angles of 

the strands have to be a value approaching 90°. 

Effect of the size of the core wire on the load interaction 

curve is similar to that discussed in Section 5.7.4 for a rope with 

a single strand. This is shown in Figure 5.10. 

~ 

Figure 5.11 shows that when the radius of the wires' in the 

outer strand is increased by a factor of O.lR, the axial collapse 

load (~T>O, ~T=O) is increased by 1.3%. Thus, since the increase is 

small, the variation in the size of the wires in the outer strand 
\ 

from its nominal size (when ~=R) is not very critical. 
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, 
CHAPTER 6 

Finite extension of helical wires. 
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6.1 Equilibrium Equations 

Consider an element of a curved rod with finite extension as 

shown in Fig. 6.1. The length of the rod is initially ds and due to 

the forces and moments as shown, the rod extends by an amount £ ds, 
III 

where £ is the axial strain in the rod. There are also rotations . w .. 

Kds, K'ds and Tds which are positive about the -G, -G' and -H sense, 

respectively. 

6.1.1 Equilibrium of Forces 

For equilibrium in the T direction. 

aT 
(T + as ds)cos(K 'ds)cos Kds - T 

oN' . 
+ (N'+ as ds)cos(Tds)sin(Kds)cos(tc: 'ds) 

oN 
- (N + as ds )cos ('fda )sin(K 'ds )cos (K ds) 

+ Zds "" 0 (6.1 a) 

For equilibrium in the N' direction. 

oN' 
(N' + as ds )cos (Tds )cos (K ds) - Nt 

oN 
+ (N + as ds)sin(Tds)cos(K tdS)COS(Kds) 

aT 
- (T + as ds)cos(K'ds)sin(Kds)cos('fds) 

+ Yds "" 0 (6.1 b) 

For equilibrium in the N direction. 

oN . 
(N + as dS)COS(Tds)cOS(K'ds) - N 

aT . 
+ (T + as ds)cos(Kds)sin(K'ds)cos('fds) 

. oN' 
- (N' + as ds)sin(Tds)cos(K 'ds)cos4c ds) 

+ Xds "" 0 (6.1 c) 
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Using the Maclaurin's series expansion, 

r yft X6 
COS(X) = 1 - 2r + 4T - 6T + •••• 

r r x' 
sin(x) = x - 3T + ~ - ~ + •••• (6.2 a,b) 

Neglecting terms of second order and higher and dividing equations 

(6.1 a-c) throughout by ds gives 

~ + N'IC - Nt<:' + Z = 0 as 

aN' as - T K + N't + Y = 0 

aN Os + TIC' - N''t' + X = 0 

6.1.2 §quilibrium of Moments 

For equilibrium in H direction. 

aH 
(R + as ds)cos(K'ds)cos(Kds) - H 

aG' 
+ (G' + as ds)cos('tds)sin(~ds)cos(IC'ds) 

aG 
- (G + as ds)cos('tds)sin(lC'ds)cosCKds) 

+ ads = 0 

For equilibrium in the G' direction. 

8G' 
(G' + as ds)cos('t'ds)cos(t<:ds) - G' 

aG 
+ (G + as ds)sin('t'ds)cos(K'ds)cosCteds) 

... 
8R - (H + as ds )cos ( KIds )sin(K ds )COS ('tds) 

+ Nds(l + E ) + K'ds = 0 
«Il 

For equilibrium in the G direction. 

8G 
(G + as ds)cos('t'ds)cos(K'ds) - G 

( 6H 
+ H + as ds)cos(Kds)sin(Klds)cos('t'ds) 

(6.3 a-c) 

(6.4 a) 

(6.4 b) 



- N'ds(l + & ) + Kds = 0 
~ 
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(6.4 c) 

Again using equation (6.2) in equation (6.4), neglecting terms of second 

order and higher, and dividing throughout by ds gives 

aGe as + G~ - HK + N(l + &~) + K' = 0 (6.5 a-c) 

It should be noted here that equations (6.3)and (6.5) are the same as 

equations obtained by Reissner [88) when the transverse strains in his 

equations are made to vanish and due allowance made for the difference , 

in ~igns. 

Also, it should be noted that when & - 0, equations (6.3) and 
~ 

(6.5) reduce to equation (2.18), the equilibrium equations for the case 

of infinitesimal extension. 

6.1.3 Equilibrium of a Helical Wire 

Now, consider a helical wire governed by equations (6.3) and (6.5). 

When K = 0 (the principal axes (x,y) of the cross-section are coincident 

with the principal normal and binormal vectors of the helix) and that 

when loaded, behaves identically at all sections (which requires the 

vanishing of all derivatives with respect to s), equations (6.3) and 

(6.5) become 

TK' - N'~ + X = 0 
(6.6 a,b) 

where K ' and ~ are given by equations (2.23) and (2.24) respectively. 
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6.1.4 Axial and Torsional Equilibrium of a Strand 

When m helical wires are placed together to make up a strand, the 

resultant line contact force per unit length, X becomes an internal 

force in the strand. 

The total axial force and the total axial twisting moment are 

respectively given by 

F = meT sin~ + N'cosa) (6.7) 

and 

M = m(Hsin~ + G'cosa + Trcosa - N'rsina) (6.8) 

which are the same as equations (2.25) and (2.26). 

6.2 Consistent Strain Relations 

Strain relations which are consistent with the equilibrium equations 

(6.6), (6.7) and (6.8) can be obtained using the principle of virtual 

work [89]. Therefore, equating external work rate to internal energy 

dissipation of a strand, gives 
• L L 

Fo + M 1:. - m l X~ ds = l m(T£w + G'~' + Hi)ds 

substituting (6.6 a), (6.7) and (6.8) 

L 

into (6.9) gives 

L 
1 (Ti + G'~' + H~)ds • -o I&) 

• 

1 (N'-r - T ICt)1'\ ds 
o 

+ [T sin a + N'cos a]O + [H sin ~ + G'cos ~ 

• 
+ rT cos a - rN'sin ~]A 

Using integration by parts. 

L *_ • L 
1 N' Ods = [N'O] -o 0 

L * 1 N'o ds o 

* where superscript ( ) is derivative with respect to s. 

Therefore, 
• L 

N'6 • J 
o 

(6.9) 

(6.10 ) 

(6.11 ) 
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Since it has been assumed that the helical wires behave identically at 

all sections, 

* N' ... 0 

substituting (6.12) into (6.11) gives 

similarly, 

• 
N' 6 ... 

L .* 
I N' 6 ds 
o 

• L .* 
To ... £ To de 

• L .* 
~ = I HA ds o 

(6.12 ) 

(6.13 a) 

L .* 
G'~ ... I G'~ ds 

o 
(6.13 b-f) 

• L .* 
T~ ... I T ~ ds 

• 
o 

L .* 
= I N'~ ds 

o 

From equation (2.29) 

• 
t1 = rp ; o ... hE • , 

• • 
A ... 21'( 

substituting (6.13) and (6.14) into (6.10) gives 

L L 
~ (TEw + G'K' + Ht)ds ... - l r(N'~ -

. L 
+ I o {(Tsina + N'cosa)he*+ (Reina + G'cosa 

• 
+ rT cosa - rN'sina) 21'Y*}ds 

From equation (6.6 b) 

RK' - G'~ 
N' = {l + e ) 

w 

(6.14 a-c) 

(6.15) 

(6.16) 

Substituting (6.16) into (6.15), and if G't Rand T are non-zeros, we 

can deduce the following equations. 

• • 
Ew II: cos2 ap + hsina e* + 21,r cos a 'Y* (6.17) 

• 
sinacosa~. ~cosah&* sin2 acosa)2 • * 

ie'... 1 + e P - 1 + e + (cosa + 1 X'Y 
til til + &w 

(6.18) 
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;. ... -

If the helical wire is developed onto a flat plane, it can be shown that 

h 'Ttr .. tanOL (6.20 ) 

and ~ ... ds(1 + £ ) COSOL . (1). 

(6.21) 

Substituting (6.20) into (6.17) gives 

(6.22) 

Substituting (6.21) into (6.22) gives 

(6.23) 

If E and yare initially zero, (6.23) ean be written as 

(6.24 ) 
, 

Substituting (2.23) and (2.24) into (6.18) 

sin2 OLCOS2 Cl • {[ sin2 CleosCl]·* 
iC' = r U + £ ~ P + 2'1 COSCl + 1 + £ "( 

W II) 

(6.25) 

Using equation (6.20) and (6.21) in (6.25) 

ie' = s in2 Cleos2 Cl • eosan + £«1) {sin2 OLeo.a (i - E) r(l+£)P+ r 1 + £ 
W W 

+ COSOL i} 

Therefore, 

sin2 aeos2 a • cos2 an + £w) . , {i - . p } 
. (6.26 ) 

Ie ... £ + 1 + "( 
r + £ r 

«I) 

similarly, 

. s inCleos' OL H- • I> } ainacosOL (1 +£ >i (6.27) 't ... - £ + 1 + 
r + £ r «I) 

C/J 



It can be shown that when E - 0 (helical wire inextensible), 
(&) 
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equations (6.24), (6.26) and (6.27) reduce to the equations for the 

inextensible case, (2.28), (2.31) and (2.32), respectively. Equations 

(6.24), (6.26) and (6.27) are therefore consistent according to the 

principle of virtual work [89] with the equilibrium equations (6.6), 

(6.7) and (6.8) for the case of finite extension. 

6.3 Comparison with Work by Costello and Phillips for Linear Elastic 

Case 

6.3.1 Introduction 

In the work of Costello and Phillips [55] the inextensibility 

assumption imposed on the wires in the wire rope was removed. However, 

the wire strain was considered small so that Love's [6] equilibrium 

equations which they used were valid. 

In section (6.1), equilibrium equations for helical wires with 

finite extension have been developed. Thus, in this section, with the 

aid of the equilibrium equations developed, the extent to which the 

analysis by Costello and Phillips [55] is valid will be explored. 

6.3.2 Analysis for Computation 

The rope that will be looked at is the same as that used by Costello 

and Phillips [55] which is a single-lay cable or a strand with m-wires. 

The axial strain of the strand, E, is defined as (t-to)/to' in 

which to - the original length of the strand and t - final length of 

the strand. The rotational strain of the strand, ~,is defined as 

r (6-6 )/t in which 6 _ the originat' total angle that a given helical 
000 0 

wire sweeps out in a plane perpendicular to the axis of the strand; 

6 = the final total angle the same wire sweeps out in a plane perpendicular 

to the axis of the strand and r = initial helix radius of the strand. 
o 
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From Fig. 6.2, which shows the initial and final configurations 

of a developed wire helix, 

R. - L sino. o 0 

! - L(l + E )sina 
IIJ 

Therefore the axial strain of the rope, 

Also, 

E _ (1 + E ) sina .. 1 
IIJ sina 

e 
o 

! 
o ----r tana 

o 0 

! e--rtana 

o 

Therefore, the rotational strain of the rope 

r 
t == ..2. 

r 
1 1 

(1 + E) - .. .....-tana tana 
o 

(6.28) 

(6.29) 

(6.30 ) 

(6.31 ) 

(6.32) 

(6.33) 

(6.34 ) 

". 

Equations (6.30) and (6.34) are the same as equations (20) and (21) in 

(55]. From equation (6.30), 

Therefore, 

and 

sina ( 1 + E) 
o 

sin« • -"'("l-+-E-)~(&) 

sin« (1 + s) 
tan« • :: ____ ~~:o::~;::;;:::~ 

(1 + E(&)11 .. 8ini o.:U + £)1 

U+E)i 
(I) 

(6.35) 

(6.36 ) 

(6.37) 
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The bending and twisting couples, G' and H respectively are 

related to curvature, K' and twist, ~ by (equation 2.15), 

(6.38) 

and 

(6.39 ) 

where E = the Young's Modulus; R _ radius of the helical wire; and 

v = the Poisson's ratio; and the wire tension, T, is related to the 

wire strain, £ , by 
I&) 

T - IE~ £ 
I&) 

The initial curvature and twist are given by 

K 

COSl Cl 
o .---o r 

o 

and the configuration is given by 

cosl Cl K'----r 

sinCl COSCl 
o 0 

't = -.-;--..--o r o 

sinClcosCl 
~ -.;;.;;.;.;.;.;.;;..;.. ....... 

r 

(6.40) 

(6.41 a,b) 

(6.42 a,b) 

Equation (2.41) gives a geometrical relation between Cl and r, viz. 

where m is the number of helical wires in the strand. 

It also follows that 

r 
o 

(6.43 a) 

(6.43 b) 

If equations (6.43 a,b) are substituted into equations (6.41) and (6.42), 

and the resulting equations are substituted into equations (6.38) 

and (6.39), with the aid of equations (6.35), (6.36) and (6.37), it 

can be shown that G' and H are functions of £1&) alone for given values 

.. 



of £, a , m, R, E and v. 
o 
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Costello and Phillips [55] employed Love's [6] equilibrium 

equations for curved bars in their analysis which as shown in section 

(2.3) reduce to 

-N' 't + TIC' + X = 0 (6.44) 

-G''t + HIC' + N' - 0 (6.45) 

• for helical wires. 

In section (6.13), when the helical wires are treated with finite 

extension, it was found that 

-N''t + TIC' + X - 0 

-G 1 't + RIC 1 - N 1 (1 + £ ) _ 0 
w 

(6.46 ) 

(6.47) 

Therefore, the only difference in the equilibrium equations, is the 

presence of the £ term in equation (6.47). w 

When m helical wires are laid together to form a strand, the 

total axial force and the total axial twisting moment of the strand 

are given by equations (6.7) and (6.8) which are the same as the 

equations obtained by Costello and Phillips [55]. 

From equation (6.47), 

N' = (- G' 't + Hie t) /(1 + £ ) (6.48) 
w 

It has been shown earlier that GI and R are functions of £ alone and w 

with the aid of equations (6.35), (6.36), (6.37), (6.42) and (6.43), 

it can also be shown that 't and K ' are functions of £ alone for given 
CIl 

values of £, ao ' m, R, E and v. Thus, it follows from equation (6.48) 
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that N' is also a function of £ alone for given values of £, « , w 0 

m, R, E and v. 

a) Strand ends free to rotate 

In this case, no moment will be generated at the strand ends. 

lherefore, 

M.O (6.49) 

Substituting equations (6.40) and (6.49) into equation (6.8) yields 

Hs In<< + G' cos« + 1t ER' £ reo sa. 
CI) 

- N'rsin« • 0 (6.50 ) 

From equations (6.35) and (6.36), it can be seen that sin« and cos« 

are function,s of £ for given values of a. and &. Also by w 0 

substituting equation (6.35) into equation (6.43 a), it can be shown 

that r is also a function of £. lherefore, since it has been shown 
CI) 

earlier that Hand G' are also functions of & alone, equation (6.50) 
CI) 

can be written in the form 

f(& ) • 0 
CI) 

(6.51 ) 

For given values of £, «0' m, a, E and v, value of &CI) can be 

computed from equation (6.51). The corresponding value of F can be 

calculated from equation (6.7) when equations (6.35), (6.36), (6.38) 

(6.39), (6.40), (6.41), (6.42), (6.43 a,b) and (6.48) are used. 

The results for a strand with 3 wires, of initial helix angles 

60°, 70° and 800 are shown in Fig. 6.3. Similar curves for strand 

with 6 wires are shown in Fig. 6.4. 



b) Strand ends constrained against rotation 

In this case, the rotational strain of the strand, t "" O. 

Thus, equation (6.34) becomes 

ro 1 1 r (l + e) tarui - tan(l "" 0 
o 
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(6.52) 

By virtue of equations (6.43 a,b), £ can be obtained directly from 

equation (6.52) when, forgiven values of m and (I , the value of (I 
o 

is specified. Value of £ may be calculated from equation (6.30) 
tI) 

and the wire tension T can then be calculated using equation (6.40). 

Using the equations (6.38), (6.39), (6.41), (6.42) and (6.43 a,b), 

the value of N' can be obtained from equation (6.48). Thus, the 

corresponding value of F can be determined from equation (6.7). 

The plot of dimensionless axial load F/(ERI) against the axial 

strain of the strand is shown in Figs. 6.3 and 6.4 for ,3 and 6-wire 

o 0 
strands, respectively, when the initial helix angles are 60 , 70 

o and 80 • 

6.3.3 Discussion 

Figures (6.5) and (6.6 a-c) show the difference between axial 

loads obtained by Costello and Phlllips [55] and that obtained using 

equilibrlum equations developed in section (6.1) for helical wires 

with finite extension. Fig. 6.5 shows the difference when there is 

no end-moment acting on the strand while Figs. 6.6 a-c show the 

curves for the case in which there is no end-rotation. 

When there is no end-moment acting on the strand, the axial loads 
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calculated from the present analysis are smaller than that obtained 

by Costello and Phillips [55], but when there is no end-rotation in 

the strand, the axial loads obtained are larger than that obtained 

by Costello and Phillips [55]. 

For the two types of end-condition, the difference increases when 

the number of wires in the strand becomes smaller and when the initial 

helix angle of the strand gets smaller than 900
• For given values of 

ao ' m and £, the difference is larger when there is no end-moment 

acting on the strand as compared to when there is no rotation at the 

strand ends. As one would expect, for both types of end-condition, 

the difference increases as the axial strain, £, increases but when 

there is no end-moment acting on the strand, a maximum value is reached 

at a particular value of £ and further increase in £ will result in 

a reduction in the difference. The maximum difference occurs at a 

larger value of £ as the value of initial helix angle gets smaller 

o than 90 • 

The main pOint to note is that for the values of parameters 

considered, the difference in axial loads obtained by Costello and 

Phillips [55] and that of the present analysis is small, being less 

than one-half percent. Since wire ropes normally have large helix 

angles (> 60
0

), Love's [6] equilibrium equations, which were used by 

Costello and Phillips [55] is adequate, when performing elastic 

analYSis on wire ropes. However, in plastic analysis which naturally 

involves large strains, it will be shown in Chapter 7 that there is 

a marked difference in the collapse loads predicted when the wire 

is conSidered rigid (& • 0) and when there is finite extension in the 
w 

wire. 
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CHAPTER 7 

Static plastic collapse - Finite extension. 
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7.1 Introduction 

In Chapter 5, static plastic collapse of wire ropes in which the 

strands consist of rigid helical wires (Ew = 0) was considered. In 

practice, the wires will extend, the extension of which will depend upon 

the load applied on the wire rope and the physical properties of the wires. 

This extension may be small when the rope is subjected to elastic loads, 

but when the rope becomes plastic, the value of the extension is such 

that it cannot be ignored. 

Thus, in the present chapter, the static plastic collapse of wire 

rope with finite extension will be analysed. The analysis will be on 

wire ropes with. configurations similar to the ropes used in Chapter 5. 

7.2 Plastic collapse load for a single strand 

7.2.1 Approximation from below 

If a helical wire extends when loaded its plastic yielding is 

controlled by the moments G' and H and the tensile force, T in the wire. 

The yield criterion is thus given by equation (5.3), viz 

where 

T 2 + 
* 

T 
T 

o 

H 2 + G ' [ 1 _ H 2]t = 1 
* * * 

G ' = 
* 

G' 
G 

o 

and T ,H and G are defined by equations (5.4a-c). 
000 

(7.1) 

(7.2a-c) 

To obtain a lower bound to the exact values of F, the axial force 

on a strand and M, the torsional moment on a strand, required for the 

collapse of an elastic perfectly plastic strand which consists of 

extensible helical wires, it is necessary to seek a statically admissible 

generalised stress field which satisfies the equilibrium equations (6.3) 

and (6.5) and lies wholly inside or on the yield surface described by 

, 
.\ 
! 



equation (7.1) [86,87]+ 

Eliminating N' from equations (6.6a) and (6.7) and using 

equations (2.23) and (2.24) gives 

where 

T* = ~ sinu - X 

F 
~ = iiiT 

o 

X 
r 

X =T o 

Eliminating T from the same equations above gives 

N' 
( ~ + 

xsinu 
2 cos u 

) COSOL 

Eliminating G' from equations (6.6b) and (6.8) and using 

equations (7.2a-c) and (5.4a-c) gives 

H* 
11 = - + sinu 

where . 11 = M 
iiiH 

o 

3rN'sinu 1 + e 
--- (1 +' 2 jIl ) 

RTo sin u 
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(7.3) 

(7 .4a, b) 

(7.5) 

(7.6) 

(7.7 ) 

Substituting equations (7.3) and (7.5) into equation (7.6) gives 

11 = 
H* 
- + sinu 3r~osu { ~sinu - X 

_ sinu (~ + Xsinu )(1 + 1 + Sa). } . 2 2 
cos OL sin OL 

Therefore, 

3rcosu 
H* == l1SinOL + R 

X (2 + e~sinOL } {(l + e )~ + 'l..~"";""~_~-
1.1) 

cos OL 

Using equations (7.2b,c) and (5.4a-c), 

G*' = -411: [ H ~ _ 3r N' (1 +~) ] 
* sinu Rsinucosa T 

o 

(7.8 ) 

(7.9) 

(7 .10) 

+ It should be noted that the limit theorems have been developed for _ 
case of infinitesimal deflections. Therefore, the lower bound and 
also the upper bound calculations will not be exact. 
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Thus, substituting equations (7.5) and (7.9) into (7.10) and simplifying 

yields 

G*' = z {pcos« - if [ .s(1 + ~)sina. 

2 + X (tan a. (1 +eJ - 1) ] } (7.1l) 

The equation for the lower bound to the exact non-dimensionalised 

collapse momentlJ. for given values of t/>, e +, a. and m * may now be 

obtained by substituting equations (7.3), (7.9) and (7.11) into equation 

(7.1). Alternatively, when the value of 11 is known, the lower bound to 

the exact non-dimensionalised collapse load, ;, for given values of e 

a. and m may be obtained. Thus, an interaction curve lying in a ; -IJ. 

plane may be constructed given the values of E , a. and m. 

The lower bound equation can be written as 

{sin2a. + [3(1 +EW) cosa./~ ]2} .s2 

+ sin
2
a.l + {I + [3(2 +E,)tana.! A ]2} ~ 2 

+ 6(1 + YSin().Cosa. ;lJ./A 

+ '1(14 { lJ.COS()' - i [ t/>(l + eJ sina. 

+ X(tan
2

a.(1 +eJ - 1)}{ 1 - 9(1 +eli)2 2 cos a. 

2 2 2 2 2 2 2 sin a.lJ. - 9(2 + E,) sin a.X IA cos a. 

- 6(1 + ~sin().cosa. 9lJ./A 

. 2 
- 18 ( 1 + EIi)H 2 + Eli) si n t/J xl A 

, 

- 6( 2 + Eli) sin2 a.11xl ACos o.}t - 1 • 0 (7.12) 

---------------------------------------------------------------------~ 
+ 

* 

The corresponding value ofew can be calculated using the procedure 
in Appendix 6. 

A ( = R/r) may be calculated from equation (2.41) with the given 
values of 0. and m, and for the same values of 0. and m, the value of X 
can be obtained from Figures (4.1) and (4.2). 
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When E = 0 and thus tension T regarded as a reaction, the above equation 
w 

(equation 7.12) reduces to equation (5.14) for the infinitesimal case. 

7.2.2 Approximation from above 

An upper bound to the exact values of F and M associated with 

the collapse of an elastic perfectly plastic strand with finite extension 

is obtained by equating the external work rate to the corresponding internal 

energy dissipation. This is achieved by selecting any kinematically 

admissible displacement field and employing the normality requirements 

of plasticity to seek the relevant active portions of the yield surface 

(equation 7.1) [86,87].+ 

In order to satisfy the normality requirements of plasticity, ~ , 

the generalised strain rate vector ( • ~I! + ~.1 +tw k ) must be parallel 

to V~ where ~. 0 represents the yield condition (equation 7.1) and 

a~ a~ a~ 
V~ =! aG + .1 6H + ! ~ . Therefore, 

(1 _ H*2)1 2H 
V~ = __ -=--__ * 

G i +(- -
o Ho H (1 - H 2)1 

o * 
) .J. 

i 0V~ = (aB - bA) k + (cA - aC) .J. + (bC - cB) ! 

where . 
a = lei b = of 

and 2 1 
A = (1 - H* ) 

G 
o 

. 
c. It w 

+ See footnote on page 98. 

(7.13) 

(7.14) 

(7.15a-C> 

(7.16a-c) 



Therefore, for E and V~ to be parallel, 

(aB - bA) k + (cA - aC) 1 + (bC - cB) i = 0 

For equation (7.17) to be valid 

a B = b A ; cA = aC ; bC = c B 

Therefore, 

2H* 
(H-

• 
K' 

o 

FW = 

(1 - H 2)1-• *. Ie' = _~ ___ 't 
G 

o 

J 
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(7.17) 

(7.18a-c) 

(7.19a) 

(7.19b) 

(7.19c) 

When Ew = 0 and thus tension T regarded as a reaction (and does not 

appear in the yield condition), equations (7.19 a-c) reduce to equation 

(5.26) for the case of infinitesimal deflection. 

Using equations (5.4 a-c), equations (7.19 a-c) become 

G' 
* ( 2 - (1 _ H Z)1- ) 
* 

• t 31(1 _ H*2)t 
-L= 

£ 8T*R w 

• 3H* G' 't * r,:= 
T*R 

(1 -
2(1 - H 2)1- ) 

w 
* 

From equation (6.24) 
. 

• £w 2 • 
p - - 2. - (1 + £) (tan Cl £ +~) 

cos ex: II) 

Substituting equation (7.21) into equation (6.26) gives 

(7.20a) 

(7.20b) 

(7.20c) 

(7.21) 



2 2 sin OLeos OL 
r 

~ 2· • } (1 +~)[ tan 0.£ + "( ] 
2 cos OL 

2 2 2 2 2 +£",) sin a.cos OL • sin Q.cos Q. • cos Q.(1 . ... "( £ + 'Y r r r 

2 4 2 2 
sin OL • sin Q. • sin Q.cos Q. t + r(l +£(0) e: oo e: -r r 

Therefore, 

2 sin Q. 
r(l + e:J + 

2 cos Q. (1 +'1\1) .y 
r 

and 

2 cos a. (1 + e: w) 
= r 

Substituting equation (7.20b) into equation (7.23) gives 

1 
i+,£ 00 + 

(1 + £cu).y 
2 • tan Q. ew 

Substituting equation (7.21) into equation (6.27) gives 

• t ... 

= 

3 sinQ.cos Q. { 
r<1 + £00) 

3 sina.cos Q. 
r 

sinQ.cosQ. • 
rCl + Eoo) 

E 

Therefore 

• t 
T; ... 

sinCY.CosQ. 
r 

{.y - U 

£w 2 • } ---z - (1 + Eoo) [ tan Q.E +.y] 
cos Q. 

3 
~ sinQ.cos Q. • sinQ.cosa.( 1 + Ew).y E - 'Y + r r 

3 sin 3 sin Q.COSQ. • cos a. • + E + 'Y 00 r r 

1 
- (1 + Ew) } 
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(7.22) 

(7.23) 

(7.24) 

(7.25) 
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Substi tuting equations (7. 20c) and (7.24) into equation (7.25) gives 

3H* 3G*H* sinOLcosOL • 

T*R - 3T .. R(1 H 2)1- - { (1 + Ell) ) r-r 
'* II) 

1 1 31 r(1 - lJw2)1-
- (1+£11) + (1 + e: ) 2 II) 8T .. Rsln OL 

2 i cos OL (1 + £(1) } + 2 -r: sinOL 

Therefore 

• »r (1 _ H* 2)1-
3r tanOL G*H* J-= 8T*R(1 + £(1) 

+ 2T*R(1 + £(1) 
[ 2H - U + H Z)1- ] £(1) .. .. 

Flnally, substituting equation (7.27) into equation (7.24) gives 

3r tanOL 
+ 

Therefore 

.. 
E 
-r:,-

+ (1 + s,) 
2 tan OL 

] 

+ 

} 

(7.26) 

(7.27 ) 

(7.26) 

Equating the external work rate to the internal enersy dissipation of 
., 
a strand gives 

F. M. L. L 
iii I) + in b. - 1 XTlds .. 1 (T~ + G'.c'+ H'i) de 

o 

As in equations (6.13 a-f), 

and 

F • 1 
- 1)"m m 

L ... 
1 F I) ds 
o 

o 

(7.30) 

(7.31a) 



L 
J MA* ds 
o 

where the superscript (*) is derivative with respect to s. 

Substituting equation (6.21) into equations (7.31 a,b) gives 

F • !J • (1 + £111) cosa 
-0 = F dO 2n ds 
m m 

M • !'J . (1 + e~) cosa 
-/). = M d/). 2n ds m m 
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(7.31b) 

(7.32a) 

(7.32b) 

• • If 0 and /). are initially zero, equations (7.32 a,b) can be written as 

!. (, = 1 J FO (1 +Sp" )cosa ds 
m m 21T 

~ ~ = l J M~ m m 
(l + E:w) cosa ds 

2n 

Substituting equations (7.33 a, b) into equation (7.30) and using 

equations (2.29 b,c) 

• • 
[ i. e. 0 = he: • /). = 211 ] gives 

F sina(l + e: w) &: M cosa (1 + £w).y - +- -m m r 
-, • • T~ + GIl<: I • = + H't . + XrP 

Using equations (5.4 a-c), equation 97.34) becomes 

• R • ,p sin (1 + e:~ L +).1 3r cosca (1 + e: ) 'Y . T e:w r w 
• w 

" 4R I<: ' R t 
+ X 

P 
= T* + G I 3i T + H* 3 r r * tAl tAl w 

where 

,p = F M X 
Xr 

mT ).I- mH • -T 
0 0 0 

(7.33a) 

(7.33b) 

(7.34) 

(7.35) 

(7.36 a-c) 

Finally, substituting equations (7.20 b,c) and (7.21) into equation (7.35) 

gives 
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1 
- -2 ] 

cos OL 

G 'H 2 
* * ] 

(1 _ H 2)1-
(7.37 ) 

* 
It may be shown that when~ = 0 and tension T regarded as a reaction . 
(and thus does not appear in the yield condition) equation (7.37) reduces 

to equation (5.28) which is the upper bound equation for the case of 

infinitesimal deflection. 

7.2.3 Exact solution 

It may be shown (Appendix 5) that the upper bound equation 

(equation 7,.37) reduces to the lower bound equation (equation 7.12). 

Therefore, the lower and upper bound calculations lead to identical 

predictions so that the theoretical solution is exact according to the 

classical theory of plasticity. 

7.2.4 Analysis for computation, and results 

Dividing equation (7.29) by equation (7.27) gives 

1(1 - H 2)t 
* A {--'":"4-- + [ 

.• (1 - H 2)1-
* 

4 

G 'H (1 _ H 2)t 
* * * 1 

] tati'U 

where A = E I ~ • 

Thus, 

] tanOL } 

) (7.38) 



... 

H G ' (1 _ H 2)t 
* * * + [ 2H -

* (l_H 2 ) 
* 

] [ A tana _ ( 1 + ;0) ] 
tana 

where 

A = R/r 

From equation (7.10), 

N' T = ( 
o 

4G ' 
* +H ~) * sina 

sinacosa 
3{1 +£IJl> 

Substituting equation (7.41) into equation (7.5) gives 

tb = 
4G*' sina 

(H*cosa- x ) -
xsina 

cost 

Substituting equation (7.42) into equation (7.3) then gives 

4G I sin2a 
* T* = 3(1 + £() (H*sinacosa - ) x 

- -2 
cos a 

Eliminating T* from equations (7.39) and (7.43) gives 

2 2 
8G*' sin a 

91(1 + £ ) 
II.) 

H G '(1 _ H 2)1-
* * * 

(1 _ H*2) 
[ A tano. _ (1 + €w) 

tan 0. 
] 
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(7.39) 

(7 .40) 

(7.41) 
-

(7.42) 

(1.43) 

2 
2H*A sinaeosa 

= { 9(1 + £ ) 

... * 
2>.. 2 .1. (.1 + 5.) ) ""' 

[~(1 -H* )~][A + (1 +£IJ.)] - 2H*(A ta~o. - tana' ~ ~ 
II.) 

- -2 -
3eos a 

(7.44) 

Therefore, 

2 
2H*~ sinacosa 

9(1 + eo) 
w 

2 AX 2 _ ( ~' (1 _ H* 2) t] (A + (1 + E:II) ] 

3cos a 

_ 2H*[ Atantt _ (1 + f:tu) ) 
tantt 



G ' * 

from the bottom of previous page 

2 2 H 0 - H 2), 
8~ sin Ot * * 

[A tan« -
91t 0 + £(1) (1 - H 2 ) 

* 

* FOI given values of A, £ II) , H*, m and 
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0+ ~Ia ) ] (7.45) 
tan« 

Ot+ G*' may be found from , 
from equation (7.45). T* can then be calculated from equation (7.43). 

The values of H*, G*' and T* may then be substituted into the yield 

condition (equation 7.1) to check whether it is satisfied. Thus, a value 

of H* that satisfies the yield condition may be computed using an iterative 

procedure. Therefore, the value of ~ for given values of A,EII) , m and a 

may be fo~d from equation (7.42). The corresponding value of p may then 

be found from equation (7.8). The procedure is repeated for values of 

- CD < A < + CD , and this yields an exact interaction curve in dimensionlea8 

axial load ~ and bending moment p space for given values of Ell) , m and a • 

Figs. 7.1, 7.2 and 7.3 show the exact interaction curves in 

dimensionless axial load ~ and bending moment p space for various valuea 

of Ot , m and £ " respectively. 

7.3 Plastic collapse load for a single strand with core wire 

7.3.1 Plastic collapse of a core wire 

It has been shown in section 5.4 that for the core wire, the lower 

bound and the upper bound calculations led to identical predictions. Thus, 

exact values of axial load, F and torsional moment M required for the 
c c 

collapse of an elastic perfectly plastic core wire can be obtained. When 

linked to the strand, these values are given by equations (5.51) and (5.52), 

viz. 

* The corresponding value of £ can be calculated using procedure m, 
Appendix 6. 

+A( • R/r) may be calculated from equation (2.41) with the given values 
of a and m, and for the same values of a and m, the value of X can be 
obtained from figures (4.1) and (4.2). 

1 
I 



where 

and 

F = c 

M = C 

T co 

H co 

r 

OL 

A 

= 

2 rAtanOLT co 
2 2 2 2 2 t [T r A tan OL + H ]. 

co co 

the 

H· 2 
co 

222 2 [T r A tan OL + 
co 

fully plastic tangential load T , c 

= the fully plastic generalised moment H , c 

= the helix radius of the wires in the strand. 

= the helix angle of the wires in the strand. 

= . '" € 'Y • 
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(7.46) 

(7.47 ) 

When the core wire and the wires in the strand are made of the same 

material, the values of Hand T are given by equations (5.62 a,b), 
co co 

viz. 
R 

H = H (~ )3 (7.48) 
co 0 R 

R 
T = T (~ )2 (7.49 ) 

co 0 R 

where 
H = the fully plastic generalised moment, H of the wire in 

0 

the strand, 

T = 
0 

the fully plastic tangential load T of the wire in the 

strand, 

R = the radius of the core wire, c 

and R = the radius of the wires in the strand. 

7.3.2 Exact solution for the plastic collapse of a single strand 
with core wire 

Since exact solutions are obtained for a single strand, in which 

the wires experience finite extension (Section 7.2), and a core wire 

(Section 5.4.2), it follows from equations (5.36) and (5.37) that exact 
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values of FT (total axial load on the rope) and MT (total torsional 

moment on the rope) required for the collapse of an elastic perfectly 

plastic rope consisting of a single strand with core wire can be found. 

7.3.3. Analysis for computation and results 

Equat.ions (5.36) and (5.37) can be written in dimensionless 

form as follows 

where 

'11 _"+" "T -.. "c 

~T = FT/mTo 

f> = F ImT c c 0 

liT = M.r/mHo 

II = M ImH c c 0 

(7.50) 

(7.51) 

(7.52a-d) 

From Section (7.2.4), it has been shown that for given values of 

A, EW, m and a , value of H and thus G ' and T that satisfy the yield 
* * * 

condition (equation 7.1), may be computed using an iterative procedure. 

The value of f> may then be obtained from equation (7.42), and the 

corresponding value of II from equation (7.8). For the same given values 

above, f>c and llc can be found using equations (7.46), (7.47), (7.48), 

(7.49) and (7.52 b,d) when the ratio of radii, R IR is known. Thus, 
c 

the total dimensionless axial load ~T and torsional moment liT can be 

obtained from equations (7.50) and (7.51). An interaction curve lying 

in a ~T - liT plane can be constructed if the procedure is repeated with 

values of A from - 00 to +00 • 

Fig. 7.4 shows the exact interaction curveS for various values 

of a I Fig. 7.5 for various values of m, Fig. 7.6 for various values of £ I 

1 



and Fig. 7.7 for various values of ratio of radii R IR. c 

7.4 Plastic collapse load for a rope made up of two layers of 
strand and a core wire 

7.4.1 The rope - governing equations 
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As in Chapter 5, the rope considered is a 1 x 19 rope which 

consists of a core wire, 6 wires in the inner strand and 12 wires in the 

outer strand. The method, however, can be easily adapted to ropes with 

different numbers of wires in each strand. 

It will be assumed that the two layers of strand and the core 

wire extend and rotate as a unit. Therefore, 

and 

o = 0 = 0 c 

11= 11 =11 c 

(7.53) 

(7.54) 

where the superscript bar (-) denotes variables associated with the outer 

strand. 

For equilibrium 

FT = F + F + Fc 

M.r = M + M + Mc 

(7.55) 

(7.56) 

where FT is the total axial load on the rope and Mr is the total torsional 

moment. 

Equations (7.55) and (7.56) can be written in dimensionless form 

as 

m 
+

m 
m 

+
m 

i+; c 

II + II c 

respectively, where 

;T = FT/mTo 

'" = F/mT o 

¢'c = F ImT 
c 0 

1 = 1'/'ffiT 
o 

(7.57 ) 

(7.58) 

(7.59 a-d) 

1 
I 



and 

liT = M.r/mHo 

11 = M/mH 
o 

11 = M /mH 
c C 0 

11 = 'M/mH 
o 

when the wires are made of the same material. 

7.4.2 The outer strand 
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(7.59 e-h) 

Unlike the inner strand, the wires in the outer strand are not 

in contact with each other. Instead, contacts only occur with wires in 

the inner strand. When the two strands are of different helix angles, 

point contacts will occur at equally spaced distance along each of the 

wires in the strands. These distances are given by equations (3.44) 

and (3.45). 

The helix radius of the wires in the outer strand is given by 

(7.60) 

The equations that govern the outer strand are similar in form 

to that of a single strand (Section 7.2). Therefore, from equation (7.42) 

i = r 
------ (H* cosu -
3(1 + e. ) 

II) 

where H* = ~ 
o 

-and A is given by equation (5.83) , i.e. 

- R [ 1 A=- ] 
R 1 1t 

1+ 1 +-R 

From equation (7 .8) , 

H* 3 cosa { i sin'i -11= -_+ . sina 1 -
( 1 + 1 + ell) _ sin«(i + X sina ) 

cos2(i sin2 1'1 

X 

) } 

xsina ) 
2-cos a 

(7.61) 

(7.62 a, b) 

(7 .63) 

(7.64) 



From equation (7.45) 

2H ",2 sin~cos~ 2 Xx [ !. (1 _ H 2)1-] { * [A + (1 
9(1 +£w) 3 2- 4 * cos OL 

2 -H [ - (1 + £w) ] } - A tanCl -
* 

G' = 
* 2 2-{8X sin OL 

91 (1 + Tw) 

,-

tanOL 

[ - - --,-(1~+_£...1iIWI\,;.,o)]} A tanOL - - -
tanOL 

where A is given by equation (5.85), i.'e. 

A=~ 
"'tana x + 1 

From equation (7.43) 

1 
] A t 

+-R 

112 

+E ) ] 
w 

(7.65) 

(7.66) 

costa: (7.67) 

Finally, from equation (7.1) 

(7.68) 

7.4.3 Exact solution 

Since it has been shown than an exact solution exists for the 

plastic collapse of a single strand in which the wires experience finite 

extension (Section 7.2), exact values of F (axial load on the outer strand) 

and M (torsional moment on the outer strand) for the plastic collapse of 

the outer strand can also be found. Therefore, from equations (7.55) 

and (7.56) it follows that exact values of F the total axial load and 
T' 

l 
I 
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~, the total torsional moment for the plastic collapse of a rope made 

of two layers of strand and a core wire can be found. 

7.4.4 Analysis for computation and results 

The procedure for constructing the interaction curves are similar 

to that mentioned in the previous sections. 

For given values of Cit, m and A, f> and II can be found from 
c c 

Section (7.3.2). 

The value of i can be obtained from Fig. 4.4 when values of a 
and m are known. A can be calculated from equation (7.66) and following 

the same procedure as for a single strand, values of l and ~ can be found 

from equations (7.61) and (7.64) respectively. 

For the wires in the inner strand, the line load i due to contact 

with wires in the outer strand may be regarded as an.additional normal 

line load. Thus, X, the resultant normal line load. Thus, X, the 

resultant normal line load acting on the wires in the inner strand is 

given by 

X = X - i I 
(7.69 ) 

where XI is the line load on the inner wire due to the contact that occu~_ 

between wires in the inner strand (Fig. 5.13 ) • 
• 

For the given values of 0. and m, the dimensionless value of 
XIr 

XI (i.e. XI = ~ ) can be obtained from Figures 4.1 and 4.2. Finally, 
o 

following the same procedure as in Section (7.2.4), the values of ; and 

II can be computed. 

Thus, for given values of 0., 0., m, iii, e+ and A, exact values of 

----------------------------------------------~ 

The corresponding value of e and £, can be calculated using 
til til 

procedure in Appendix 6. 



~T and ~T for the plastic collapse of the rope can be found from 

equations (7.57) and (7.58), respectively. 
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Figures (7.8) - (7.10) show the exact interaction curves in 

~T - ~T plane for values of ~ being 60°, 700 and 800
, and a with 

values of 950
, 1050 

and 1150
• Figures (7.11) and (7.12) show the 

effect of different sizes of core wire and wires in the outer strand, 

respectively, with respect to the wires in the inner strand while Figure 

(7.13) shows the effect of £ , on the interaction curves. 

7.5 Rope with n-layers of strand 

The previous analyses can easily be extended to study plastiC 

collapse of a rope with any number of layers of strand. 

The total axial force on the rope will be the 8ume of the forces 

on the core wire (if it is present) and the layers of strand, viz. 

(7.70) 

Similarly, the total torsional moment acting on the rope will be 

the sum of the moments on the core wire (if it is present) and the layers 

of strand, viz. 

(7.71) 

Equations (7.70) and (7.71) can be written in dimensionless form 

such that 

and 

where 

m 
n ••••• + _ "L 

m "'n 1 

m2 m 
llT = II + 1.\1 + - 112 + •••••• + n II c ml m

l 
n 

t/JT = FT/mlTo 

t/J = F ImlT c c 0 

t/Jl = FIlm T 
1 0 

(7.72) 

(7.73) 



" 

and 

" = F 1m T n n n 0 

l)- = M.r/mlHo 

l.I = M ImlH ceo 

11. = Ml/ml Ho 

~ = M2/mlHo 

• 
• 

l.In = M 1m H 
n n 0 

where mi is the number of wires in the strand. 
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(7.74) 

(7.75) 

It may be assumed that rotationally and axially, the core wire 

and the layers of strand move as a unit so that 

and 

6 = c 

fl := 
C 

A is defined as 

••••••• 6 
n 

••••• •• ll 
n 

where £1 = 61/hl and 'Yl := fll/2X • 

From equation (7.66) A can be written in terms of A, viz. 
i 

tanc;, \ 

~l tanai 
[ 1 ] A 

(7 .76) 

(7.77) 

(7.78 ) 

(7.79) 

The collapse value of the normal line load Xi acting on the wires in each 

layer of strand will depend on the nature of. contacts experienced by a 

wire on a strand and that of the wires in the outer strands. It will be 

assumed that apart· from the first layer, the wires in the other layers 

are in contact with wires in neighbouring layers and they are not in contact. 
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with wires in the same layer. Thus, there will be an interaction between 

the various layers. If Xl is the normal line load for wires in the first 

layer due to contact between wires in the same layer, X2, its equivalent 

in the second layer due to contact between wires in the second and first 

layer, X3 ' its equivalent in the third layer due to contact between wires 

in the third and second layer, etc. 

(7.80) 

where Xi' is the,resultant normal line load acting on the wires in the 

ith layer. 

The values of Xi can be calculated from equations (4.5) and (4.10). 

Since it has been shown that exact solution exists for the plastiC 

collapse of a single strand and also that for a core wire, it is possible 

to obtain exact values of ~T and P
T 

for the plastiC collapse of a rope 

with n- layers of strand from equations (7.72) and (7.73), respectively. 

The value of ¢i can be calculated from 

\ 
3(1 + €(1) (H*i cosai -

¢i = ) 
I 

xt sinai 

2 (7.81) 
cos a

i 

where H*i 
Hi 

G' = 
Gi =- G H *i 

0 0 

(7.82 a-b) 

~i = Ri 
[ 1 

] R 1 Ri -+ 1 + 
A R 

(7.83) and 

Also, 
r 

tana
i 

} 
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G' = *1 

{ from the bottom of previous page } 
O~ 2 2 2 i 

(1 + ~W1) 
{ 1 

sin a
1 H*i (l - H*i ) 

] } 9 (1 + £W1) (1 - H 2) [Ai tanai -
*i tanOL 

(7.84) 

2 
4G' *i sin a i 
--~I--- ) (7.85) 

(7.86) 

Thus, the value of ~i can be obtained from 

~i = 

1 + lW i 
)(1 + 2 )} 

sin OL
i 

(7.87 ) 
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7.6 DISCUSSION 

7.6.1 Effect of extension. 

The results obtained are generally similar and follow the same 

trend as that obtained for the case of infinitesimal 

extension(Chapter 5), but with finite extension, there is an 

increase in the maximum value of the axial collapse load as shown in 

Figs. 7.3,7.6 and 7.13. The increase in the maximum axial collapse 

load depends on the extension at collapse and as the extension 

increases, the maximum axial collapse load becomes. larger. For a 

strand, the maximum axial collapse load when £ =0.01 is 10% higher 

than that when there is no extension. 

For a single strand and a strand with core wire(Figs. 7.3 and 

7.6, respectively), the interaction curve shifts to the left about 

the 'axis as the extension increases, but for a rope with two 

layers of strand, the interaction curve shifts to the right. The 

reason for this difference is that in a rope with two layers of 

strand, the second layer is made up of twelve wires as compared to 

six in the inner layer and they are wound in the opposite direction. 

Thus, the second layer is about twice as strong in torsion in one 

direction as compared to the inner layer in the other direction. 

The resultant effect is that the maximum torsional collapse load 

becomes larger for the rope with two layers of strand. 

7.6.2 Normality 

A typical dimensionless load interaction curve is shown in 

Fig. 5.12~ The ellipse can be divided into two halves - the curve 

PQR is obtained with the negative values of the square root in 

equation (7.45) and the curve PSR constructed using the positive 
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values of the square root. The directions of the strain rate vector 

are shown at points P,Q,R and S. At points P and R, A has the value 

+m, and -m respectively. Thus, they show the direction of the 

• • strain rate vector, £(i.e = ~/h) which must be parallel to the. 

axis. Since, the direction is also normal to the interaction curve 

at P and R, the normality requirement has been satisfied. 

Similarly, at points Q and S, A has the value zero and thus the 
• • 

arrows show the direction of the strain rate vector, y(i.e = 6/2w) 

which must be parallel to the ~ axis. 

7.6.3 Effect of the change in helix angle. 

As shown in Fig. 7.1, the maximum axial collapse load 

increases as the helix angle approaches 90°, but the difference 

between the maximum and the minimum torsional collapse load 

decreases. This result justifies the choice of large helix 

angles{>73°) on wire rope by manufacturers since a larger helix 

angle would mean a higher collapse load. 

7.6.4 Effect of the number of wires in the strand. 

As the number of wires in a strand increases, the maximum 

axial collapse load increases as shown in Fig. 7.2b, but the axial 

collapse load in an individual wire decreases as illustrated in Fig. 

7.2. Thus doubling the number of wires does not make the axial 

collapse load twice as large. However, Fig. 7.2b shows that the 

maximum value of ., does increase by more than a factor of two. 

Thus, if a strand is to undergo a lot of twisting, then it is more 

efficie~t to have it made with larger number of wires. ' 
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7.6.5 Effect of introducing a core wire. 

Comparing Figures 7.1 and 7.2 with Figures 7.4 and 7.5, it can 

be seen that by introducing a core wire in a single strand, the 

maximum axial collapse load when £=0.01 is increased by 

0.17 which is equivalent to 16.7% of the axial collapse load for a 

strand with core wire with a=80o. However, there is little change 

in the maximum and the minimum valuE$of ~T' 

When the diameter of the core wire is larger than that of the 

wires in the strand, contact will no longer occur between wires in 

the strand. Instead, contact will occur between the wires in the 

strand and the core wire. This is illustrated in Figure 5.6. 

Figure 7.7 shows that the maximum axial collapse load increases as 

the diameter of the core increases but when the core wire is larger 

than the wires in the strand, the maximum axial collapse load drops 

to a lower value. This is due to the fact that the contact stresses 

is more critical between the core and the wires in the strand than 

between adjacent wires in the strand. It has to be noted here that 

the rope in which the core wire is smaller than the wires in the 

strand is a hypothetical one since the core wire will not be held 

together in the rope. This can however be overcome by introducing 

soft fibres around the core wire which helps little in improving the 

rope strength but hold the core wire together. 

7.6.6 Rope with two layers of strand. 

Figures 7.8, 7.9 and 7.10 suggest a suitable configuration fo~ 

rope with two layers of strand. When compared to the load 

interaction curve for a single strand with core wire (dashed curve), 

it can be seen that the helix angle for the second strand should be 
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less than =105°. Also, for the rope to withstand a higher axial 

load, the helix angles of the strands should be a value approaching 

90°. 

Effect of the variation in the size of the wires in the outer 

strand is small as can be seen in Fig. 7.12. This is particularly 

obvious as an increase in the size of the wires produces only a 

small increase in the maximum axial collapse load. Thus, the 

variation in the size of the wires in the outer strand from its 

nominal size (when R=R) is not very critical. 
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CHAPTER 8 

Comparison of theoretical and experimental results. 
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8.1 Comparison with experimental results. 

8.1.1 Introduction. 

There have been many tests carried out on wire ropes(Chapter 1) 

but those tests were either carried out within the elastic range 

(except for bending tests) or the ropes used were different in 

configurations than those described in the present work. However, 

at the University of Liverpool in the recent years, there have been 

extensive tensile tests carried out on wire rope with similar 

configuration to that described here(91,92).The results obtained 

by w.s Utting(92) will be used to check the validity of the 

theoretical analysis presented in this thesis. 

8.1.2 Comparison of theoretical and experimental results. 

Fig 8.1 shows the results obtained from tensile tests by W.S 

Utting(92) on wire rope with cross-section as shown in Fig 5.6b and 

specifications as follows:-

Diameter of helical wire = 3.73mm. 

Diameter of core wire = 3.91mm. 

Grade of wire = 180kgf/mm2 minimum breaking load 

to BS2763. 

Since the load-extension curves do not have distinct yield 

points, the 0.1% proof load will be used to calculate the stress at 

which the rope becomes plastic. From Fig 8.1, the loads that are 

required to make the rope plastic are as follows :, 
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Helix Angle Load to yield 0.2i'0 proof load Failure Load 
(0.1% proof load) (kN) (kN) 

(kN) 

75.4° 89 (£=0.0055) 96 (£=0.0065) 130.5 

76.01° 99 (£=0.0082) 110 (£=0.011) 139.6 

77.8° 106 (£=0.0075) 116 (£=0.009) 145.4 

78.9° 107.5 (£=0.0074) 119 (£=0.0085) 136.7 

80.9° 109 (£=0.007) 122 (£=0.008) 137.9 

Table 8.1 

The above values are obtained from tests in which the rope 

ends are fixed. Thus, in this case, there will be no angular 

rotation and y becomes zero. • • Therefore, A (=E/Y) is m and the 

yield load is equivalent to the load at point P on the interaction 

curve as shown in Fig 5.12. 

Using the characteristics (dimensions, helix angle and 

material) of the rope used in the tests, the dimensionless line load 

X to cause indentation in the wires is obtained following the 

procedure described in Chapter 4. This value of X is then used to 

determine the axial collapse load of the wire rope following the 

procedure described in Section 7.3. The values of the axial 

collapse load obtained are as follows:-
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Theoretical Axial 
Helix Angle 'X Co llapse Load 

(kN) 

75.4° -0.018955 8.7 

76.01° -0.0189571 8.9 

77.8 0 -0.018959 10.06 

78.9 0 -0.018962 11.5 

80.9 0 -0.018964 13.1 

Table 8.2 

It can be seeri that the theoretical values for 

collapse,in Table 8.2 are less than 10% of the experimental 

failure loads 'reported' in Table 8.1. This is much 

too small and the possible source of di~crepancy could be the 

assumption that the contact load at collapse is equivalent to that 

load required to produce an indentation in the wires. Thus, 

presumably, whilst the area near the contact points is plastic, the 

rest of the cross-section may still remain elastic. Therefore, it 

is now desirable to determine the combined loading (line load, axial 

force and torsional moment) required to produce full plastic 

condition throughout the cross-section of the wire, which will then 

be in a state of full plastic collapse. 
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8.1.3 Determination of collapse load by considering stress at 

a point due to tension, torsion, bending and contact. 

Consider a section of a wire as shown in Fig 8.2 being 

acted upon by the tension T, bending G', torsion H and contact force 

Q. At point 0 in the cross-section of the wire, the stresses 0 ox 

o and 0 due to the contact force Q can be found as shown in oy oz 

Chapter 3. There will also be direct stresses 0 and 0 due to 
xt xg 

tension and bending, respectively and a shear stress th due to 

torsion. Therefore, there will be resultant stresses 0 (=0 + axt x ox 

+ 0 ), 0 (=0 ) and 0 (=0 ) and a shear stress t(=t
h
). From these xg y oy Z oz 

stresses, the principal stresses 0 1 , ozand a, can be found from(93) 

, 

0
3 

- (a + 0 + 0 )0 2 + (0 0 + a 0 + 0 0 t 2 )0 
x Y Z xy yz zx 

(a a a 
x y Z = 0 

Using the von Mises' theory of failure 

20 2 o = + (0 0 S) 2 
2 - + 

(8.1) 

(8.2) 

Thus, for a given contact force Q, which will yield values of 

tension T, bending G' and torsion H when the configuration of the 

d •• d rope an value of A(=£/y) are known, it is possible to etermine 

whether a point in the cross-section of the wire has become plastic. 

A block diagram of the procedure for calculating the axial load 

at which the cross-section of the wire has become plastic is shown 

in Fig 8.3. A value c in equation (4.1) is assumed and this yields 

the value of X following the procedure described 1n Chapter 4. The 

value of X, together with'the rope variables (dimensions, helix 

angle, material and A=co) are then used to obtain values of 'T'. p!, T. 
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G; and H* using method of computation described in Section 7.3.2. 

With the aid of equations (S.4)a-c and (7.2)a-c, the values of 

T, G' and H can be found. viz. 

T = T*'II'cr o 
R2 (8.3) 

G'= 4G'cr R' /3 (8.4) 
* 0 

H = H* 'II'cr 0 R' /3 (8.5) 

For a given point 0 in Fig 8.2, z is its distance from the 

contact surface. Thus, the stress at that point due to bending is 

given by 

cr 
xg. 

where y = R - z 

= £I 
I 

and I = moment of inertia (= 'll'R" ) 
2 

and the shear stress due to torsion is given by 

Hr 
'th = .-

J 

where r = R - z 

and J = Polar moment of inertia. (=1I'R") 
4 

The stress due to tension is given by 

= 

where R is the radius of the wire. 

(8.6) 

(8.7) 

(8.8) 

The distance z also determines the stresses f1 ' f1 and C1 
. . ox oy oz 

due to contact which can be calculated following the procedure in 

Chapter 3. Thus, the stresses a , f1 , a and 't can be found and the 
x y z 
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principal stresses °1 , 02 and Os evaluated by iterative computation 

from equation (B.l). Using equation (B.2), it will be known if the 

point 0 has become plastic. This procedure is repeated for values 

of z that cover the cross-section of the wire and a value of c that 

will determine the value of X can be found for which full plasticity 

has just been achieved (i.e minimum stress in the cross-section is 

equal to the yield stress of the material). The values of collapse 

loads obtained by the above procedure are as follows:-

.. 
Helix Machida Theoretical Collapse Load(kN) 
Angle and 

Durelli's 
t predictions e: = 0 E = 0.01 E = 0.025 E = 0.03 

(kN) 

75.4 74.53 B4 93.B 123.1 130.7 

76.01 74.70 91 102 131. 2 139 

77.B 75.16 104 112 140 14B.4 

. 78.9 75.41 lOB 120 147.3 155 

BO.9 75.BO 119 12B 155.2 163 

(see Appendix B for detai~d results) 
Table B.3 

-
t These are an estimate of the plastic collapse loads. 

See Appendix 7. 



8.1.4 Discussion. 

Comparing the results obtained in the above section to the 

experimental values shown in Table 8.1, it can be seen that the 

theoretical collapse loads(E=0.025~ are about 4-11% lower than the 

failure loads obtained experimentally. The largest deviations are 

with helix angles 78.9° and 80.9°, where the difference are 9% and 

11%, respectively. The theoretical predictions(Table 8.3) show. 

that the failure loads should increase as the helix angle approaches 

90° and this agrees with the failure loads obtained for helix angles 

from 75.4° to 77.8°. However, the failure loads for helix angles 

78.9° and 80.9° obtained experimentally(Table' 8.1) are lower 

than that for 77.8° even th~ugh the 0.1'7. an'd 0.2% proof loads show 

the same trend as predicted theoretically i.e the loads increase as 

the helix angle approaches 90°. Thus, it may be suspected that the 

deviations from the theoretical predictions for wire ropes with 

helix angles 78.9° and 80.9° may be largely due to experimental 

discrepancies. For the rope with helix angle 80~9°, one helical 

wire broke at· t'he end grip and shook loose from the .remaining wires 

over the whole lengtn(92), but for the rope with helix angle 78.9 0
, 

apparently the nature of failure is the same as the rest of the 

rope. 

Again comparing with the experimental results(Table 8.1), it 

can be seen that the load to cause initial elastic yielding in the 

rope using Machida and Durelli's(47) predictio~ is about 40% lower 

than the actual failure load. It is also about 17% lower than the , 

load to cause experimentally detectatile yielding in'the rope. 

¥ This is approxi.ated by comparing the load-extension curves with the lOld-surfaee
strain curves obtained by w.s Utting(92). This is done by considering the differences 
in the strain and extension values as the 10ld is increased. A relationship is 
established between the. and the load-extension curves are extrapolated up to the 
failure loads. The actual value of extension at collapse was not obtained since the 
extensometer had,to be removed before failure Occurred. 



130 

Looking at the theoretical results(Table 8.3), it can be 

seen that the theoretical predictions obtained with infinitesimal 

extensions are about 20-35% lower that that when the extension is 

finite(E=0.025). Thus, the collapse theory for infinitesimal 

deflection(Chapter 5) will predict collapse loads which are more 

than 20-35% lower than the actual failure loads. In fact, the 

collapse loads predicted by that theory lie in the region 

of the 0.1% proof loads obtained experimentally. Therefore, if the 

0.1% proof load is used as the safe working load, then the collapse 

theory for infinitesimal deflection may be used to predict this. 

8.2 Rope with two layers of strand and a core wire. 

The analysis presented in Section 8.1.3 may be extended to 

include an additional layer of strand. In this case, two contact 

areas will have to be considered _ (i)contact between the outer and 

the inner layer of strand and (ii)contact between the core wire and 

the inner layer. For the former, the type of contact(line or point) 

will depend on the helix angles of the wires in the inner and the 

outer layers. If the helix angles are different, point contact will 

occur and for the special case in which the helix angles are the 

same, line contact will result. Depending on the type of contact, 

either Section 3.3 or Section 3.4 will be used to evaluate the 

stresses due to contact. 

In evaluating the value of X to cause full plasticity in each 

layer of the strand in this type of rope, the analysis can either 

start from the outer layer and then proceeding towards the core or 

start from the core wire and work towards the outer wires. Here, the 

former is considered. Thus, the first contact area to be considered 

is the contact between the inner and the outer layers. The analysis 
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here is similar to that described in Section 8.1.3 except that if it 

is a point contact(i.e the helix angles of the wires in the inner 

and the outer layers are different), Section 3.4 will be used to 

evaluate the stresses due to contact. From the iterations, a value 

of Xwill be established for which full plasticity is achieved 

throughout the cross-section of the wires in the outer layer. 

Next, the wires in the inner layer will be considered. They 

will experience contact with the outer wires and the core wire(Fig. 

8.4). Since X has already been found, a value of XI (line force due 

to contact between the core wire and the inner layer) can be found 

for which full plasticity is achieved throughout the cross-section 

of the wires in the inner layer using the procedure described in 

Section 8.1.3. In this case however, there will be additional 

- - -stresses a a and ox' oy a due to contact with the outer wires. oz 

Thus, the resultant stresses at a point 0, in the cross-sectio,n of 

the inner wire are:-

-a = a + a + a + a x ox xt xg ox 
- (8.9)a-c a = a + a y oy oy 
-a = a + a z oz oz 

Finally, using equation (7.69), the resultant normal line load 

acting in the inner strand, X can be found. 

The value of XI obtained will then be used to check if the core 

wire has become plastic. For the core wire, contacts occur at 

equally spaced points with the wires in the inner layer(Fig. 8.5). 

For a given value of A, the values of F and M can be found from 
. c c 

equations (7.46) and (7.47), respectively. The stresses due to these 
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can be evaluated using equations (8.7) and (8.8) but with Hand T 

replaced by Mc and Fc' respectively. Thus, following Section 8.1.3, 

it may be found if the core wire has become plastic. In obtaining 

the results given in the next section, it is found that the core 

wire reached full plasticity after it has been achieved in the inner 

and the outer wires. 

8.2.1 Results and discussion. 

Currently, at the Mechanical Engineering Department, University 

of Liverpool, preparations for tensile tests on ropes with two 

layers of strand and a core wire has just begun. Details of the 

rope used are as follows:-

Diameter of wires in the inner and the outer strand 1. 27mm. 

Diameter of the core wire 1.41mm. 

overall diameter of the rope 6.4Omm. 

Helix angle of the inner and the outer wires 

Using the above dimensions and following the procedure 

described in the previous section, the theoretical axial collapse 

load for the rope are as follows:-

Inner Outer Theoretical Axial Collapse Load(kN) 
Helix Helix 

I 

Angle Angle 
E = 0 E = 0.01 E = 0.02 (; =0.03 £ =0.05 (; =0.1 

75° 30.3 36.2 40.7 43 47.3 54.2 

75° 80 0 29 35.7 38 42.4 45.9 50.1 

105° 27.2 32.4 35.3 40.1 40.5 47 

(see Appendix 9 for detailed results) 
Table 8.4 
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It has to be noted here that the 'rope' used is an element of a 

6X19 rope(i.e one of the strands of the rope). It has been removed 

from the rope and thus it is not straight but is initially bent in a 

helical manner. Also, it is observed that the helix angles of the 

wires in the inner and the outer layers are the same and thus, line 

contact instead of point contact occurs between the wires in the 

inner and the outer layers. This is a desired configuration since 

line contact is less critical than point contact. This can also be 

seen from the above results in which the collapse load at a given 

extension is highest when the helix angle of the outer wires is the 

same as that for the inner wires. 

When the helix angles for.the inner and the outer wires are 

different, point contact will occur and the contact stresses for a 

given load will increase as the contact angle(a-a) increases. This 

results in the collapse load being higher when the contact angle is 

smaller as can be seen from the results above in which the 'rope' 

with an outer layer helix angle of 80° has a collapse load about 

3-9% higher than that when the helix angle is 105°. 

• 
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CHAPTER 9 

Conclusions and suggestions for further work. 
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As wire rope finds widespread use, particularly in the offshore 

industry, the need to understand its behaviour becomes a concern to 

designers, manufacturers and users of wire rope. Various research 

programmes(as reported in Chapter 1 and also by the SERe Marine 

Technology Directorate, U.K) have been undertaken to study the 

various facets of its behaviour. Also, since the size of wire ropes 

has grown steadily in the recent years, which will make it 

difficult, if not impossible, for it to be tested to failure in 

tension, a theoretical model that is able to predict its strength is 

desirable. 

The present work has been an attempt to understand further the 

behaviour of wire rope loaded beyond the elastic limit where very 

little work has been done. It has been inspired by the work by 

Jones and Christodoulides(64), where in their analysis, extension in 

the wires has been assumed infinitesimal and the actual evaluation 

of the line load X due to contact between the wires has not been 

attempted. Also, in the present analysis, besides the 'rope' with a 

single strand, analysis is also done for a 'rope' with a single 

strand and a core wire, a rope with two layers of strand and a core 

wire, and also a rope with n-layers of strand and a core wire. 

The work in Chapters 3 and 4 has been useful in understanding 

the contact stresses in wire rope and in evaluating the value of 

line load X at collapse. Chapter 6 introduces finite extension and 

the analysis for the plastic collapseo:f wire rope is presented in 

Chapter 5, for extension assumed infinitesimal and in Chapter 7 for 

finite extension. Finally, in Chapter 8, a further analysis on 

contact is attempted which provides values of collapse load which 

are about 4-11% lower than the actual failure loads obtained 



136 

experimentally(Section 8.1.4)~ 

9.1 Conclusions. 

The importance of a study of rope behaviour beyond the elastic 

limit need no further mentioning. It does not only provide an 

estimate of the reserve strength beyond the elastic limit, which 

will help in the selection of a meaningful factor of safety, but the 

knowledge of the theoretical behaviour of wire ropes loaded beyond 

the elastic limit can also help in the proper design and 

construction of a wire rope. 

In the present work, an analysis that would be able to predict 

the plastic collapse load of a wire rope has been presented. The 

results obtained from the analysis has been able to predict to a 

reasonable degree of accuracy, the collapse load of a lX7 rope. 

However, the experimental results available are still too few to 

fully confirm the theory and more experimental results with wire 

rope of different sizes, helix angles and end conditions would have 

been useful. 

In the analYSis, the effect of contact stresses and extension 

in the wire have been given particular attention. As the results 

suggest~ contact stresses play an important part in determining the 

collapse load for a given rope. The contact stresses depend on the 

manner the wires are laid in the rope and the analysis provide a 

rope configuration for which the contact stresses are minimised and 

the collapse load increased. Also, it has been shown that with the 

extension assumed infinitesimal, the collapse load predicted is 

about 20-35% lower than the actual collapse load in wire strands 

haVing £=0.025 at failure. 
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9.1.1 Role of inter-wire contact. 

The problem of contact in wire rope has been and will be a 

concern to investigators attempting work on wire rope. It is not 

difficult to realise this as can be seen in the present work where 

contact stresses playa major part in determining the collapse load 

of a wire rope. 

Since contact stresses depend on the manner in which the wires 

are laid in a rope, the knowledge of contact behaviour in wire rope 

will help to reduce these stresses and thus produce a rope which is 

capable of withstanding a larger load. It can be seen in Chapters 3 

and 4 that for a single strand with core wire, the contact force 

required to produce an indentation increases as the helix angle of 

the wires in the strand approaches 90°, and for a rope with two 

layers of strand, this contact force increases as the contact angle 

(a-a) approaches 0°. Thus, to reduce the stresses due to contact 

in a wire rope, the helix angle of the helical wires should be a 

value approaching 90° and for a rope with two layers of strand, the 

difference in the helix angle between the inner and the outer wires 

should be small, and preferably the helix angles should be the same. 

It has been seen that the contact load at collapse is much 

larger than the load required to produce an indentation in the wire. 

Thus, this further strengthens the fact that the stresses developed 

from contact in a rope are very large 'and cannot be ignored(61). 

9.1.2 ~ffect of wire extension. 

It has been seen in Chapter 6 that wire extension hasa very 

small effect and may be ignored when performing elastic analysis on 
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wire ropes. However, in plastic analysis, it has been shown that 

there is substan~ial increase in collapse load with extension and 

thus, it has to be considered in the analysis. 

9.1.3 Suitable helix angle for wire rope. 

It has been a practice of wire rope manufacturers to produce 

wire ropes with helix angles approaching 90°. This practice is 

justified as can be seen that the collapse load of a wire rope 

increases as the helix angle approaches 90°. Also, from the 

experimental results obtained from the work of W.S. Utting(92) as 

shown in Section 8.1.2, it can be seen that as the helix angle 

approaches 90°, the failure load and the load to cause yielding in 

the wire rope also increase except for the failure loads for rope 

with helix angles 78.9° and 80.9° , which may be due to experimental 

discrepancies(Section 8.1.4). 

9.1.4 Effect of a core wire. 

Wire ropes may have a metal core or a soft fibre core and a 

metal core would ,obviously increase the strength of a wire rope. In 

a 1x7 rope, the core wire diameter would normally be slightly larger 

than the diameter of the helical wires. It has been found that the 

collapse load for this rope is smaller than a rope in which the core 

wire is of the same size or slightly smaller than the helical wire. 

However, the latter rope is an hypothetical one as the core wire 

will not be held together in the rope unless soft fibres are 

introduced between the core wire and the strand. 

9.1.5 Suitable rope configuration for a rope with two layers 

of strand. 

From the results obtained for a rope with two layers of strand, 
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the present work has been able to show that the best configuration 

for this type of rope is to have the helix angle for the inner and 

the outer strands approaching 90° and the helix angle for the outer 

strand should be less than =105°. 

9.2 Suggestions for further work. 

1. It has been realised that more experimental results are required 

to check the theoretical analysis that has been presented. 

Thus, a next stage to the present work is to carry out tensile 

tests to failure of a similar configuration rope but with 

varying sizes and helix angles, and also with various end 

conditions. The theoretical predictions of the collapse load 

should then be computed following the analysis described in 

Section 8.1.3 and the values compared with that obtained 

experimentally. 

2. As wire ropes may also be bent over and around pulleys and drums 

during operation, the present analysis may also be extended to 

include the effect of bending. This may be done by studying the 

changes in curvature and twist of the wires in the rope and also 

their effect on the contact stresses when the rope is bent, and 

incorporating them in the analysis. Such analysis on a simple 

rope(lx7), which forms an element of a strand in a complex rope, 

will help greatly in the analysis for wire ropes with complex 

configurations. 

3. With the knowledge of the effect of bending, the analysis may be 

extended to study wire ropes with more complex configurations 

such as that shown in Fig. 2.1, in which the core wire in the 

strand forms a 'double helix'. Here however, it is more 
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difficult to locate the contact points and thus to evaluate the 

contact stresses, but Karamchetty and Yuen(31,32) have 

produced an analysis for which this may be done. 
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APPENDICES 



APPENDIX 1 

Deriving strain relations (2.28), (2.31) 
and (2.32) geometrically 
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With the aid of Fig. 2.2a, the governing equations for a helical curve 

can be written as [65] 

, 
x = r cosB , y = r sinB , z -

hB 
Ii (AI. la-c) 

where rand h are the radius and pitch of a circular helix, respectively. 

It is evident from Fig. 2.2b which shows a helical curve developed onto 

a flat plane that 

tana. = 

coso. = 

and sino. -

h 
211:r 

h 

where a. is the helix angle. 

(AI.2) 

(AI.3) 

(AI.4) 

If a helical curve with an initial length L along the z axis 

is loaded, then it elongates by an amount atth and rotates through 

an angle ALth about the z axis as shown in Fig. 2.5 ( a and A are the 

axial extension and angular rotation for one pitch (h), respectively). 

In addition, the radius r beco~es r + II • 

The initial arc length of the segment AS in Fig. 2.5 is 

(Al.5) 

while the deformed length A'S' is 

(Al.6) 

provided A'S' is part of a helical curve with a radius r +ll. The centre-

line engineering strain of the helical curve in Fig. 2.5 i. therefore 



£ = (8' - 8>1S 
w 
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(Al.7 ) 

Substituting equations (Al.S) and (Al.6) into equation (Al.7) gives 

when 

a = 
2 2 2 

£ S in a + y cos a + p cos a 

e: = 0, £ = (j/h , y = A/2'1 and P=T'I Ir 
w 

and £ , Y and p are small compared to unity. 

The pitch of the deformed helical curve in Fig. 2.5 is 

h' = (h + (j )2'1 1(2'1 + A) 

or h'=h(l+£-y) 

when £ , Y « 1. 

(Al.8 ) 

(Al.9 a-d) 

(Al.lO) 

With the aid of equations (Al.3) and (Al.4), equations (2.10) and (2.12) 

may be rewritten as 

IC' = (21 )2r I {h2 + (21tro)2} (AI. 11) 

and 
't = 21th I { h2 + (21tr )2} (Al.12) 

Equations (AI. 11) and (Al.12) with h replaced by h' and r replaced by 

r +n give the curvature and torsion of the deformed helical curve which 

is shown in Fig. 2.5. Thus 

and 

dlC' == (21t)2(r +,,)1 {h,2+ (21t)2(r +Tl)2} 

_ (2'1 )2rl {h2 + (2'1r)2 } (Al.l3) 

(Al.l4) 

Using equations (Al.3), (Al.4), (Al.lO) and (Al.9), equations (Al.l3) 

and (Al.14) become 

2 2 2 
die' = 

sin a cos a. (Y -£+p) + 'Y cOs Cl (Al.lS) 
r r 

sin a. COs 3 
( y _ £ + P) + "( s in a. cos Cl d't a. (Al.l6) = r r 

Therefore equations (Al.8), (Al.lS) and (Al.16), given equations (2.28), 

(2.31) and (2.32), respectively. 



1S6 

Equations (AI.1S) and (AI.16) are the same as Equations (A.12) 

and (A.13), respectively, in Reference(64) if Equation (A1.8) is used 

in Equations (A1.1S) and (A1.16). 
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APPENDIX 2 

Extent of the plastic layer due to indentation. 

(i) Contact between wires in the same strand(line contact). 

The indentation force, Q is given by Equation (4.5), viz. 

(A2.1) 

where A is given by Equation (3.39). 

Substituting Equation (A2.1) into Equation (3.31) gives 

. b = 2A (Sa ) 
11' 0 

(A2.2) 

Substituting b into Equations (3.35) and using the resulting 

equations in Equation (3.38), a value of D (i.e =z/b) that 

satisfies the equation may be found by iteration. 

Therefore, the extent of the plastic layer equivalent 

to the indentation force, Q 

z = Db (A2.3) 

From the computation the following results are obtained :-

Q = 6082.9 N/m. 

b = 5.793E-6 m. 

z = 0.0149R m. 

where R is the radius of the wires. 

Therefore, the plastic layer is 1.49% of the radius of 

the wires. 

(ii) Contact between adjacent wires in neighbouring strands 

(point contact). 

The indentation force, Q' is given by Equation (4.8), viz. 

Q' = 2.811'b~~ 
k 

(A2.4) 
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and b is given by Equation (4.9), vtz. 

b = 4.2 E(k') (A2.5) . 

kz) The value of b may be used to determine the value of 01 (i.e - b 

that satisfies the Equation (3.38) where a ,a and a are given x y z 

by Equations (3.23), following procedure 1-5 in Section 3.4.3. 

Thus, the extent of the plastic layer equivalent to the 

indentation force, Q' 

From the 

z = °lb 
k 

computation the following 

Q' = 0.472 N. 

b = 7.8283E-6 m. 

k = 0.24. 

z = 0.0238R m. 

results are obtained 

( a = 75 0 a = 1050 ) 

(A2.6) 

:-

Therefore, the plastic layer is 2.38% of the radius of 

the wires. 



APPENDIX 3 

Rewriting equation (5.28), 

A( ~ sin« + tan
2

«X + 4~ G'* sin2 « 13'1- ~H* sin« cos« 13) 

= -p~cos«/3 -x + 4~G'* cos
2

«/3'1 + ~H* sin«cos«/3 

Substituting equation (5.26) into equation (A3.1), gives 
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(A3.1) 

(4H*cos
2
«/'I = G. sin«cos«) ( '" sin« + tan~x + ~G* s1n2a /3'1 -AH* sinacosa/3) 

2 
= (4H* sin «/'1 + G~ sinacos«) ( -11~cos«/3 - X 

2 
+ 4~G* cos «/3'1 + ~H* sin«cos «/3) (A3.2) 

4H* '" sin«cos
2
a ITt - G* '" sin

2
«cos« + 4 H* X sin2a ". 

2 2 2 2 
- G~ X sin «tana+ 16~H* G* sin acos a /31 

2 3 2 3 
- 4~ G* sin «cos«/3Tt - 4~H* sina cos a/31 

2 2 
+ ~G* H* sin «cos a/3 

2 2 = - 4~ H*psin acosa/3'1- ~G~l1sinacos a/3 

2 . 222 
- 4H*Xsin «/'1 - G'" XSinacosa+ 16~G* H* sinacos a/31 

22322 
+ 4~G* sin«cos3a/3'1 + 4~ H* sin acosa./3r. + ~G* H* sin acos a/3 (A3.3) 

Simplifying (A3.l) and using equation (5.1) gives 

lH* '" cos«/~ = * G* '" sina + H*l1sin a 
I 31 2 

+ '4 G~l1cosa + 6 H*X tanal~ - 4r G.X (tan a - 1) - 1 • 0 (A3.4) 

Substituting equation (5.15) into equations (5.11) and (5.1l) gives 

H* = psina + 3 '" cosa/~ + 6 X tanol~ (Al.5) 

'I 3'1 II 2 
G* = 4" l1cosa - 4I '" sina - 4I X (tan a - 1) (Al.G) 

Therefore, substituting equations (Al.5) and (A3.6) into eq~tion 

(Al.4) gives 
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3f> 11 SinClCOSCl/A + 9t/J2 cos
2

Cl/>.. 2 + 18~ X sin~/A 2 

3l 9i 2 2 9.,,2. 2 = IbA f>11 sinClCOSCl + ---2 ~ sin Cl + -- 2 • X sinCl(tan Cl - 1) 
16>.. 16>.. 

+ 11
2 

sin
2

Cl + 3t/J1l sinClCosCl/>" + 611 xsinCltanCl/A 

'>..2 2 2 3. 2 3.? 2 
+Ib 11 cos Cl - m t/J1l sinClcosCl - 16>.. 11 XcosCl(tan Cl - 1) 

+ 6 11 X sim tana/>.. + 18 ~ X sinClI A 
2 + 361 tan

2
Cl/>.. 

2 

31t
2 

2 912 
2 

- Ib'>.. l1X cosCl(tan cl- '1) + -2 tPxsin Cl(tan Cl- 1) 
16 X 

912 2 2 2 
+ ---2 X (tan cl - 1) - 1 = 0 

16A 
(A3.7 ) 

Finally, simplifying equation (A3.7) gives the lower bound equation 

(equation 5.14) which is 

2 + sinQ.CosCl (6 - 31t 18) 1l ~I >.. 
\ 

2 2 
+ 3 [4 tanClsinCl- 1l cosa.(tan a. - 1)/8] llX I>" 

(A3.S) 



APPENDIX 4 

Showin that the u er bound and lower bound 
calculations for the core wire lead to identica predictions 
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The upper bound equation for a core wire is given by equation (5.47) 

i.e. 
H 2 T 

F 6 + M A ~ 6 [T + ~ ( ~ )2 
c c c c c c T H 

] 
c co 

Substituting equation (5.38) into equation (A4.1) gives 
T 2 

co 
F6 +MA.6 [,--] c c c c c c 

Using equation (5.48) and A == L~ equation (A4.2) becomes 
c c 

T 2 
M [ co] FcEc + c~c == EC ~ 

C 

Substituting equation (5.46) into equation (A4.3) gives 

M H c c 
Fe + ,-

c 

T 2 
( CO ) 
~ . 

co 

T 2 
co 
~ c 

(A4.1) 

(A4.2) 

(A4.3) 

(A4.4) 

Finally, substituting equations (5.40) and (5.41) into equation (A4.4) 

gives 
M 2 

F c .-c F c 

T 2 
co F =-c F c 

F •• ( .....s )2 
T co 

2 T T 
( co )2 == co 
il -F co c 

M 2 
[ 1 c ] --2 H co 

M 2 
+ (if ) == 1 (A4.5) 

co 

Equation (A4.5) is the lower bound equation. Thus, the upper bound and 

lower bound calculations for the core wire lead to identical predictions. 



APPENDIX 5 

Showing that the upper bound and lower bound 
calculations lead to identical predictions for a 

single strand with finite wire extension 

Substituting equation (7.3) into equation (7.9) gives 

. 

3r cosa. 
H* = }.Is ina. + R { (1 + £w.> ~ 

(2 +£w) sina. 
[ ~sina. - T* ] } + 2 cos a. 

3t/>r (1 2 
• H* = }.Isina. + RC'OSa.[ + £w) + sin a. ] 

3'T*r( 2 + £w) sina. 

R cosa. 

Substituting equation (7.3) into equation (7.11) gives 

. . 

G* 1 = 4'l {l1cosa. _ 3~ [~( 1 + £w) sina. 

4G 1 

* 11 = - + 'lcosa. 

Rcosa. -

3r~~+£w) sina. 3r sina. 

3 Rcos a. -R-~ 

2 tan a. (1 + ew) 

Now, substituting equation (AS.2) into equation (AS.1) gives 

4G* 1 sina. 3r~ (1 + eCl)sln2a. 3r sin
2

u 
H*= + 3 --R .--ICOS a. cosu 

R cos a. 

3rT*sina. 3rT* 3 + 3r; (1 + £w) + R cos ot. R tan Q( + £w) ReosQ 

2 
+ 

3r;sin a. 3T*1" 
£b» sinQ RCOS<l - (2 + RCOSQ 

which, after simpl~fying can be written as 
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(AS.1) 

• 

(As.a) 
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4G*'Rsin~cos2~ 
+ T* sin~ . 311:r (1 + eU)) 

Substituting equation (AS.3) into equation (AS.2) gives 

J.I = - + 
1I:COS~ 

3rT* 
Rcos~ 

2 tan Q. (1 + Qn) 

3r(l + Ew) sinQ. 
+ 

3 
H*R cos Q. 

[ 3dl + ew) 

2 
4G*' RsiMCOS Q. 

31r (1 + ew) ] 3 Rcos Q. 

3rsinQ. [ 
Rcos Q. 

3 
H*Rcos Q. 

3r n + ew 

and simplifying gives 

2 
4G*' RsinQ.cos Q. 

311:r (1 + £(1)) 

4G ' 2 3rT*cosQ. * [ cos Q. sin Q. COSQ. ] J.I = - + (1 + £w) + It R 

2 
+ H*sinQ. (1 _ cos Q. ) 

1 + £w 

Substituting equation (AS.3) into equation (7.3) gives 

3 H*RsinQ.cos Q. 

X = 3r U + £w) 

2 2 4G* 'R sin Q. cos a. 

31r{1 + £(0) 

] 

(AS.3) 

(AS.4) 

(AS.S) 

Finally, substituting equations (7.27), (7.29), (AS.3), (A5.4) and 

(AS.S) into the upper bound equation (equation (7.37) ) gives 

3 
H*R cos Q. 

{ 3d 1 + Ell!) 

2 
4G*' Rsin cos a. 
3 (1 ) + T*sin« + Ir + £w 

+ 

3 
4G*'Rsin Q. 

31tr (1 + £w ) 

3r (1+ £oo)H*cos « 

T*R 

2 
H*Rs in a. cos a. 

3r (1 + £(0) 



4G*R cosa 2 
{ [cosa + 

+ 31lr 
sin acosa ] 2 
(I + £00) + T*cos a 

2 

+ 
[I _ cos a ] + 

I + £00 

2 2 
4 G*'R sin acos a 2 

3 r(I + £00) - T* cos a }{ 

- 3 
H*RsinClcos a 

3r (I + £00). 

3u (l - H* 2}1-

8T* R 

+ 
3r H* sina 

T*R cosa 
} 

cosa 

= 

+ 

H*R sinacosa 

3rU + £00) 

Simplifying and introducing equation (7.I) gives 

H*R sinacosa 

3r(I + £W) 

4G~ H* sinacosa 

IT* 

H*llsinacosa (1 _ H*2)' 

8T* 
+ 

2 4G'*R sin a 

3tr (1 +£w5 + 
G*' sin2a (1 _ H*2). 

2T* 

+ 

2 2 • 
G*cos a (1 - H* ) 

2T 
* 

4G ' cosasinaH* 
. 2 

H* s inacoscu (1 _ H 2). 
* 2 G* H*sinacosa * + 

+ 

= 

tT* 

H 2 2 
* 

sin a 

T* 

H*R s inaeos a 

3r (l +eoo) 
2 

G* H* 

H 2}i 
+ 

8T* ltT*(l - * 
2 2 

G*H* sin a-

2T (1 _ H 2)' 
* * 
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(AS.6) 

(AS.7 ) 

Finally, substituting equations (7.3), (7.9) and (7.11) into equation 

(AS.7) gives equation (7.12) which is the lower bound equation. 



APPENDIX 6 

Relationship between E'I> and ElM with £ 

INITIAL FINAL 

The figure shows a helical curve developed on a flat plane. 

sincx = 

But L = h/sina 
o 
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(A6.1) 

(A6.2) 

Therefore, substituting equation (A6.2) into equation (A6.1) gives 

£ = (1 + £) 
sinaa 

- 1 (A6.3) w sina 

where £ = 6/h (A6.4) 

COsa (2. + ~)r (A6.5) = L(1 + e:w ) 

and L = 2lro (A6.6) 
cosCU 

Therefore, substituting equations (A6.3) and (A6.6) into equation 

(A6.5) gives 
r tan a 

'Y = (1 + £) 0 0 _ 1 
r tan a (A6.7 ) 

where 'Y = ~/2. (A6.8 ) 

If r is the helix radius when the wires in the strand are just o 

touching each other, r will be the helix radius when the wires have 

undergone an indentation at the area of contact between the wires due 
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to the contact pressure resulting from the loads applied on the strand. 

From Chapter 4 (Section 4.3), it has been found that the plastic 

layer is about 1.5% of the radius of the wire. Thus, the indentation 

will have t.o be less than 1. 5"/0 of the radius of the wire, and since the 

helix radius is more than twice the radius of the wire (i.e. for strand 

with m > 6 ), the indentation is very small compared to the helix radius. 

Therefore, it can be assumed that r =:s r. 
o 

Therefore, equation (A6.7) becomes 

'Y = 
tAna 

(l+E)t 0_ 1 ana 

It has been defined that 

A = Ell 

Thus, A = at! a'Y 

(A6.9) 

(A6.l0) 

(A6.ll) 

If the initial extension and angular rotation are zero, then equation 

(A6.11) can be written as 

A == E/'Y (AG.12) 

Thus, for a given value of E and A, 'Y can be found from equation 

(A6.12). The value of a can then be found from equation (A6.9) and 
o 

finally, the corresponding value of £ can be found from equation (AG.3). 
II) 

Similarly, for a rope with two layers of strand, the value of £ 
CAl 

can be found if equations (A6.3), (AG.9) and (A6.12) are written as 

follows, 

e ::a (l + E) sin1!o 
- 1 (A6.l3) II) 

sin:a 

- (1 + E) tanCio 'Y = - 1 (A6.14) tanG 

and A == "Ely (A6.1S) 
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For a given value of €, the extension of the inner strand 6 can be 

found from 

6 '" 21tr tana 

From equation (7.53) 

Thus, 

6 '" ~ = 21r tana 

€ = 21tr tana€ 

2 '1r tan'"(; 

The value of A can be obtained from equation (7.66) 

(A6.16) 

(A6.17 ) 

(A6.18 ) 



APPENDIX 7 

An Estimate of Plastic Collapse Load following the work by 

Machida and Durelli(47). 

N c 

The external axial force acting on the strand, 

N = Nc + 6Nh cosa' 

where N is the axial force acting in the core wire, c 

168 

(A 7.1) 

Nh is the axial force acting in the helical wire, 

and a' is the helical wire lay angle after deformation. 

where 

a' = tan- 1 ( 1 + 'Y tanS) 
1 + £ 

(A7.2) 

y is the normalised rotation per original one pitch length 

of the strand, 

E is the axial displacement of the strand per unit length. 

For a fixed end case,'Y = 0 and thus 

a' = tan- 1 ( 1 tanS) 
1 + £ 

(A7.3) 

If 0 is the yield stress of the material, the axial forces to y 

cause yielding in the core and the helical wire are 

N = A 0 
c c Y 

and Nh = Ah 0y 

(A7.4) 

(A7.5) 

respectively, where Ac and Ah are the cross-sectional areas of the 

core wire and the helical wire, respectively. 
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The yield stress of the material for the rope used in the 

tests(92) is determined from the load-extension graphs obtained 

for the helical wires(Figs. A5.4 - A5.9 in (92». The 0.1% 

proof load is used as there is no distinct yield point. 

The average 0.1% proof load = 1100 kgf. 

2 = 10.791 kN. (when g=9.81m/s ) 

Therefore, the 0.1% proof stress 

= 

= 

10.791 x 103 

~/4 x 0.00373 2 

987.5 MN/m2• 

Thus, the load to cause initial elastic yielding 

= Nc + 6NhcosB' 

= ( 11.86 + 64.76cosB' ) kN. 



APPENDIX 8 

Results associated with the theoretical collapse loads in Table 8.3 

Helix Angle = 75.4° 

--
, ' 

£ X G' H* T* ·T (11 (12 (1, * (N/m2 
) (N/m2 

) (N/m2 
) 

0 -0.977 53.125 3.8E-3 7.23 6.097 -2.032E8 -1.83E8 -3.33E4 

0.01 -1. 0953 55.375 3.5E-3 7.51 6.813 -2.140E8 -1.873E8 -6.312E6 

0.025 -1.129 70.931 1.9E-3 8.53 8.935 -3.297E8 -2.413E8 -9. 613E6 

0.03 -1.195 73.134 1.7E-3 8.91 9.487 -3. 52E8 -2.63E8 -1.27E7 
, ,. - ~ , - ~-.- .. --.--.---- .. - .... - . --- -

, 
.... ....., 
o 



Helix Angle = 76.010 

£ X G' ,* H* T* 

0 -0.989 55.111 3.6E-3 7.39 

0.01 -1.103 61.715 3.3E-3 7.76 

0.025 -1. 207 73.9B6 1.65E-3 8.97 

0.03 -1.241 75.012 1.42E-3 9.19 

Helix Angle = 77.Bo 

£ )( G' 
* H* T* 

0 -1.115 62.312 2.81E-l 7.B7 

0.01 -1.127 66.93 2.39E-l B.241 

0.025 -1.243 75.311 1.41E-3 9.21 

0.03 j -1.26 l 77.125 1.19E-l 9.49 

J -

4lT 0 1 
(N/m2 

) 

6.605 -2.073E8 

7.404 -2.341EB 

9.523 -3.62E8 

10.09 -3. 84E8 

·T °1 
(N/m2 

) 

7.55 -2.51E8 

B.13 -2. 86E8 

10.16 -1.87E8 

10.77 -4.01EB 

O 2 

(N/m2 
) 

-1.852E8 

-2.013EB 

-2.B1E8 

-2.97EB 

°2 
(N/m2 

) 

-2. 143EB 

-2.21E8 

-l.OlEB 

-3.27E8 

0, 

(N/m2 
) 

-5.531E5 

-7.73E6 

-2.34E7 

-2.741E7 

0, 

(N/m2 
) 

-9.36E6 

-1.23E7 

-1.87E7 

-5.53E7 
..... ..... ..... 



Helix Angle = 78.90 

~ 

E X G' * H* 

0 -1.117 63.122 2.55E-3 

0.01 -1.134 68.517 2.17E-3 

0.025 -1. 253 73.011 1. 23E-3 

0~03 -1.29 79.012 1.01E-3 

Helix Angle = 80.90 

e X G' * H* 

0 -1.131 68.555 2. 16E-3 

0.01 -1.187 71.911 1.71E-3 

0.025 -1.292 79.012 1.01E-3 
I , 

0.03 -1.302 80.713 0.98E-3 
I J -

T* tT a 1 

(N/m2 
) 

7.93 7.839 -2.55E8 

8.43 8.71 -3.061E8 

9.41 10.69 -3.98E8 

9.77 11. 25 -4. 55E8 

T* ·T a 1 

(N/m2 
) 

8.41 8.637 -2.9788 

8.82 9.29 -3.34E8 

9.71 11.26 -4.5788 

9.84 11.83 -4.8288 

a 2 

(N/m2 
) 

-2.22E8 

-2.31E8 

-3.11E8 

-3.65E8 

a 2 

(N/m2 
) 

-2.24£8 

-2. 44E8 

-3.7288 

-3.96E8 

a, 
(N/m2 

) 

-9.761E6 

-8.55E6 

-8.16E7 
--_._ ... _._--

-1. 27£8 
~ --~- - ----' 

as 
(N/m2 

) 

-7.66E6 

-1.01E7 

-1.2988 

-2. 24E8 

... 

...... 
N 



APPENDIX 9 

Results associated with the theoretical collapse load predictions in Table 8.4 

for lX6x12 wire ropes 

a = 75 0 a = 75 0 

, - - - -£ X X G' * H* T* G' * H* T* 

0 -0.016 --0.043 3.731 0.147 1.503 1.743 0.287 0.831 

0.01 -0.0173 -0.047 3.846 0.168 1.731 1. 821 0.310 0.946 

0.02 -0.0177 -0.057 3.878 0.181 2.037 1.855 0.355 1.112 

0.03 -0.0181 :..0.062 3.914 0.210 2.291 1.877 0.398 1.213 

~ 0.05 -0.0185 -0.069 4.021 0.281 2.544 1.902 0.432 1.330 

0.10 -0.0192 -0.077 4.541 0.312 3.12 1.977 0.487 1.52 

~T 

2.201 

2.629 

2.956 

3.123 

J.436 

3.937 

.... ...., 
w 



a = 750 a = 80 0 

-
£" X X G' * H* 

0 -0.0147 -0.038 3.641 0.127 

0.01 -0.0165 -0.045 3.753 0.152 

0.02 -0.049 -0.049 3.852 0.173 

0.03 -0.0179 -0.059 3.905 0.187 

0 .. 05 -0.0182 -0.065 3.989 0.213 

0.10 -0.0188 -0.072 4.121 0.289 . . 

T* G; . H* 

1.433 1.692 0.261 

1.654 1.812 0.293 

1.856 1.837 0.322 

2.145 1.860 0.365 

2.441 1.882 0.411 

2.846 1.952 0.444 

T* 

0.811 

0.897 

0.989 

1.154 

1.231 

1.473 

+T 

2.106 

2.593 

2.76 . 

3.08 

3.334 

3.639 

..... 
"'-J 
.t:-



a = 75 0 ; a = 105 0 

-
£ X )( G' * H* 

0 -0.0144 -0.032 3.522 0.113 

0.01 -0.0161 -0.044 3.742 0.151 

0.02 -0.0163 -0.04.5 3.749 0.157 

0.03 -0.0176 -0.052 .3.867 0.177 

0.0.5 -0.0177 -0.0.54 .3.871 0.180 

"" 

0.10 -0.018.5 -0.069 4.016 0.274 

T* (;' 
* H* 

1.343 1.586 0.247 

1.621 1. 767 0.292 

1.689 1.789 0.301 

1.973 1.810 0.347 

1.986 1.842 0.350 

2.592 1.898 0.421 

T* 

0.765 

0.867 

0.874 

1.080 

1.087 

1.361 

·r 
1. 975 

2.353 

2.564 

2.912 

2.943 

3.414 

.... 

...... 
VI 
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FIGURES 
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FIG 2.1 CHIEF COMPONENT PARTS OF A STRANDED WIRE ROPE. 

'" 
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FIG 2.2 RIGHT CIRCULAR HELIX. 
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FIG 2.3 

GENERALISED STRESS RESULTANTS IN A CURVED BAR. 
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FIG 2.4a A STRAND. 
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H 

I' 
T 

FIG 2.4b FORCES AND MOMENTS IN 
A HELICAL WIRE. 

FIG 2.4c TRANSVERSE CROSS-SECTION OF A STRAND. 
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FIG 2.5 DEFORMATION OF AN INDIVIDUAL WIRE. 
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(a) 

(b) 

FIGURE 2.6 WIRE CROSS-SECTION FROM A TRANSVERSE CROSS-SECTION 
OF A STRAND. 
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G • 90· 

Fig. 2.7 TRAN9lERffi SECTICN OF A srRAND WITH LIMITING 

VALUES OF G 
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FIG 3.1 PRESSURE DISTRIBUTION ACROSS THE WIDTH OF 
THE CONTACT SURFACE. 
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(a) 

(b) 

Q' 

FIG 3.2 TWO BODIES IN CONTACT. 
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FIG 3.3 DISTANCE OF THE CONTACT SURFACE FROM THE 
TANGENT PLANE. 
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U. 

V, 

FIG 3.4 TRANSFORMATION OF COORDINATES. 

• 
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Q Q 

FIG 3.5 TRUE CROSS-SECTIONAL VIEW OF A WIRE 
SHOWING CONTACT ANGLE ~ 

LLJ 
Q. 
o 
0:: 

1.1... 
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c.I) ->< 
<C 

2u(r +R) 

m 
FIG 3.6 WIRES IN OUTER AND INNER STRAND DEVELOPED 

ON A FLAT PLANE. 
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FIG 3.7 VARIATION OF X WITH HELIX ANGlE. ( •• 6 ) 
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FIG 3.9 CONTACT BETWEEN WIRES IN NEI6H8QUIINQ STRANDS. 
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FIG 3.10 PRINCIPAL RADCUS OF CURVATURE, R
1
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FIG 3.14 POINT CONTACT LOADS ON THE WIRE IN THE 
OUTER STRAND. 
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FIG 3.15 CROSS-SECTION OF A lX19 ROPE SHOWING SOME 
OF THE WIRES. 
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FIG 4.1 VARIATION OF COLLAPSE VALUE OF ~ WITH HELIX 
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FIG 4.3 CHANGES IN X WITH A CHANGE IN FACTOR C. 
( 0' = 75°, m = 6 ) 



201 

FIG 4.4 VALUES OF X DUE TO CONTACT BETWEEN WIRES IN 
NEIGHBOURING STRANDS. 
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FIG 5.3 EXACT INTERACTION CURVES FOR SINGLE STRAND WITH CORE 
WIRE FON VARIOUS VALUES OF HELIX ANGLES AND m=6. 
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FIG 5.4 EXACT INTERACTION CURVES FOR SINGLE STRAND WITH CORE WIRE 
WITH VARIOUS NUMBERS OF WIRES IN THE STRAND ~D .=75". 
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FIG 5.5 EFFECT OF THE SIZE OF CORE WIRE ON THE EXACT INTERACTION 
CURVES. ( m=6 and a=750 ) 
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FIG 5.6 LINE LOAD RESULTING FROM THE CONTACT FORCE. 
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FIG 5.7 EXACT INTERACTION CURVES FOR ROPE WITH TWO 
LAYERS OF STRAND WHEN a=70°. (WITH CORE WIRE) 
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FIG 5.8 EXACT INTERACTION CURVES FOR ROPE WITH TWO 
LAYERS OF STRAND WHEN a=75°.(WITH CORE WIRE) 
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rIG 5.9 EXACT INTERACTION CURVES FOR ROPE WITH TWO 
LAYERS OF STRAND WHEN a=80o.(WITH CORE WIRE} 
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FIG 5.10 EXACT INTERACTION CURVES FOR ROPE WITH TWO LAYERS 
OF STRAND WITH VARIOUS CORE SIZES. 
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FIG 5.11 EXACT INTERACTION CURVES FOR ROPE WITH TWO LAYERS 
OF STRAND WITH VARIOUS SIZES OF WIRE IN THE OUTER 
STRAND. (WITH CORE WIRE) '. 
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FIG 5.12 NORMALITY OF THE STRAIN RATE VECTOR TO THE YIELD 
SURFACE. ( m=6 ; Q=75° ix=O.01744 ) 
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FIG 6.2 HELICAL WIRE CENTRE LINE IN INITIAL AND FINAL 
CONFIGURATlONS DEVELOPED ON A FLAT PLANE. 
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FIG 6.3 NORMALISED AXIAL FORCE AS A FUNCTION OF AXIAL STRAND 
STRAIN FOR 3-WIRE STRANDS WITH INITIAL HELIX ANGLES 
60°, 70° AND 80°. 
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FIG 6.4 NORMALISED AXIAL FORCE AS A FUNCTION OF AXIAL STRANO t 

STRAIN FOR 6-WIRE STRANDS WITH INITIAL HELIX ANGLES 
60°,70° AND 80°. 
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FIG 6.5 PERCENTAGE DIFFERENCE IN AXIAL LOAD OBTAINED BY COSTELLO AND 
PHILLIPS AND THE PRESENT ANALYSIS-- NO END-MOMENT. (ELASTIC) 
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FIG 6.6a PERCENTAGE DIFFERENCE IN AXIAL LOADS OBTAINED BY COSTELLO 
AND PHILLIPS AND THE PRESENT ANALYSIS _ NO END-ROTATION 
AND INITIAL HELIX ANGLE BEING 600. (ELASTIC) 
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FIG 6.6b PERCENTAGE DIFFERENCE IN AXIAL LOADS OBTAINED BY COSTELLO 
AND PHILLIPS AND THE PRESENT ANALYSIS _ NO END-ROTATION 
AND INITIAL HELIX ANGLE BEING 70 0 .(ElASTIC) 
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AND PHILLIPS AND THE PRESENT ANALYSIS - NO END-ROTATION 
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FIG 7.2a INTERACTION CURVES IN DIMENSIONLESS AXIAL LOAD AND 
BENDING MOMENT SPACE FOR VARIOUS NUMBERS OF WIRES 
IN THE STRAND. ( m=6 ; E=O.O") - SINGLE STRAND 
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FIG 7.2b INTERACTION CURVES IN m~ AND mp SPACE FOR VARIOUS 
NUMBERS OF WIRES IN A STRANO AND Q=75

0
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FIG 7.3 INTERACTION CURVES IN DIMENSIONLESS AXIAL LOAD AND 
BENDING MOMENT SPACE FOR VARIOUS VALUES OF AXIAL 
EXTENSION. ( m=6 ; 0=75°. ) - SINGLE STRAND 
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FIG 7.4 INTERACTION CURVES FOR STRAND WITH CORE WIRE. 
( m=6 ; t=O. 01 ; Rc/R= 1 .0 ) 
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VARIOUS VALUES OF AXIAL EXTENSION. 
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FIG 7.8 INTERACTION CURVES FOR ROPE WITH TWO LAYERS OF 
STRAND WHEN a=70° (FINITE EXTENSION).- WITH CORE WIRE 
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FIG 7.9 INTERACTION CURVES FOR ROPE WITH TWO LAYERS 
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FIG 7.11 INTERACTION CURVES FOR ROPE WITH TWO LAYERS 
OF STRAND WITH VARIOUS CORE SIZES. 
( a=75° ; ~=95° ; ~/R=1.0 ; £=0.01 ) . 
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FIG 7.12 EFFECT OF DIFFERENT SIZE OF WIRES IN THE OUTER 
LAYER ON THE INTERACTION CURVES. 
( a=75° ; a=95° ; Rc/R=1.0 ; €=O.Ol ) 
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FIG 8.2 SECTION OF A WIRE ALI ED UPON BY TENSION, BENDING, 
TORSION AND CONTACT. 
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FIG 8.4 LINE LOAD DUE TO CONTACT IN WIRE ROPE WITH TWO 
LAYERS OF STRAND . 
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