
THREE-DIMENSIONAL SEDIMENT TRANSPORT MODEL

LIMPOOL
UNIV IERSITY

13 OR 441 Y

Thesis. submitted in accordance with the requirements

of the University of Liverpool

for the degree of Doctor in Philosophy

by Hyoseob Kim

May 1993



to my wife Youngae



ACKNOWLEDGEMENT

I wish to thank my supervisor Professor B. A. O'Connor, Liverpool University, U.K.

for his setting-up my thesis structure, introducing the vertical modelling area, improving

my writing skill, advice on accurate presentation, extensive revision of the thesis, and

arrangement of grants. I also wish to thank Dr. K.-D. Yum, and Dr. W. 0. Song, Korea

Ocean Research and Development Institute (KORDI), for providing me the opportunity

to work at Liverpool University. I am grateful for financial assistance from the

Department of Civil Engineering, Liverpool University, KORDI, the British Council in

Seoul, and UNDP. I am indebted to Dr. J. Nicholson, Liverpool University, for

providing me with technical information, and Mr. J. Harris, Liverpool University, for

his help with my English in my draft thesis.

111



ABSTRACT

The thesis describes the development of a number of simplified numerical models for the

simulation of sediment transport and medium-term bed level changes at coastal sites with

structures, where flow processes are dominated by wave-induced currents. Emphasis is

placed on the development of the simplest level of model which retains the dominating

processes leading to bed level changes. The complete model system is found to be

composed of wave-period-averaged, two-dimensional depth-mean wave and wave-induced

current models combined with a three-dimensional suspended sediment model and an

associated bed level change model.

Ebersole et al. 's(1986) elliptic evolution wave model is modified by ignoring the second

derivative term of wave amplitude in the direction of main wave propagation. The

modified model results gave close agreement with Ebersole et al.'s own model, and with

experimental data. The numerical schemes are modified at land grid points for application

to general seabed and coastal bathymetry. In the lee of coastal structures, it has been

necessary to introduce a separate computational method based on Penney and

Price' s(1952) analytical diffraction method in order to reproduce the diffracting effect of

the structures.

Yoo and O'Connor' s(1986a) wave-induced current model was used to calculate wave-
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induced currents but was modified to avoid the need for a complex lateral mixing sub-

model. The unsteady momentum equations were simplified by ignoring the turbulent

lateral mixing terms, but their effect was simulated by using a diffusion approach to

spread the radiation stress terms over the surf zone. The spreading method was found to

give good agreement with both Longuet-Higgins'(1970) velocity profile solutions and

laboratory measurements on a plane beach.

The three-dimensional suspended sediment mass conservation equation and the seabed

level change equation were adopted to reproduce seabed changes. The relevant equations

were solved by finite difference numerical methods. The governing equation of suspended

sediment was transformed into a boundary-fitted, and vertically stretched coordinate

system. A new inter-wave-period (IWP) empirical formula for the reference level

concentration was proposed and calibrated with laboratory and field data from Chulcpyon

Harbour, Korea; data being collected using a new four-trap device. Bed load was

predicted by a new IWP formula, which was calibrated with Chukpyon data. The

sediment model results were compared with analytical solutions and gave close

agreement.

The bed shear stress, vertical diffusion coefficient profile, and horizontal velocity profiles

in the sediment transport model were obtained from a new 2DV boundary layer model

for wave and current flows. The boundary layer model included the effect of the

nonlinear advection terms and the vertical velocity. This approach was able to simulate
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different velocity profiles for following and opposing currents with waves. The 2DV

boundary layer model results were compared with laboratory data and gave good

agreement. For the simulation of siltation at Chukpyon, the 2DV model results were

parameterized for a restricted range of general variables and stored in a tabular form in

the computer; linear interpolation being used to obtain particular values.

The total wave, current, and sediment model system was applied to Chukpyon Harbour,

Korea to reproduce bed level change over a five month period. The wave model results

showed reasonable agreement with measurement. The wave-induced current model was

found to give a similar order of velocity at field measurement points; velocities being

measured with an RCM-5P current meter mounted on a bed frame. The sediment model

was found to reproduce the measured suspended sediment concentration profiles quite

well, although considerable scatter was found in the field results. Finally, the bed level

change during a five month storm period was reasonably well reproduced by the total

model system.
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CHAPTER 1. INTRODUCTION

1.1 Initiation of the Study

Many coasts have suffered erosion or accretion as a result of the development of new

ports and harbours. Traditionally, such problems have been investigated by a combination

of field and physical model studies supplemented by experience. In more recent times,

numerical computer model studies have started to replace physical model studies. Such

numerical modelling is potentially very cost effective.

Considerable progress has been made over the last decade in the computer modelling of

coastal processes, see O'Connor(1991). Unfortunately, many of the newly-emerging

models are too expensive to use for the study of medium or long-term( > 1 year) changes

in coastal bathymetry. In addition, many recent models are very complex involving many

interacting processes and are untested in field situations. A need exists, therefore, for the

development of a series of relatively simple models which retain dominating processes

but which can be used for medium to long-term simulation. The present work describes

such a development and its application to study the seasonal variation of seabed

bathymetry in the vicinity of Chukpyon Harbour, which is situated on the east coast of

Korea, see Fig. 1.1, and Plate 1.1.
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Initial work on the construction of a fishing harbour at Chukpyon began in 1905, but in

1963 increasing harbour siltation led to the construction of a western breakwater in an

attempt to reduce the problem. Subsequently, the eastern breakwater was extended

between 1968-1972 in a further attempt to limit harbour dredging, but with limited

success, see Fig. 1.2. In 1986, a field study was initiated by the Pohang District

Maritime and Port Authority in order to assist with both an understanding of the problem

and the design of new works. Further fieldwork was undertaken in 1987, 1988, and

1989, by staff from the Korea Ocean Research and Development Institute(KORDI) in

Korea. The present author, as a part-time member of KORDI' s staff, has assisted in the

planning and collection of data from the site for use in the present work.

Fieldwork at Chukpyon showed that tidal effects at the site were small with the amplitude

of the major tidal components (M2 , S2 , 01 , K 1 ) being only 4.9 cm, 1.1 cm, 4.3 cm, and

4.2 cm, respectively, while wind and density-induced currents were also found to have

a negligible influence on sediment movements. Wave periods were found to be in the

range 4-10 seconds and to be associated with significant wave heights up to 3 m in size.

The fieldwork suggests that the sediment transport processes at Chukpyon are likely to

be dominated by waves and nearshore wave-induced currents, produced by winds from

only a limited number of directions. Consequently, it is possible to use a series of

simplified models to study sediment movements at the site and to build up long-term bed

level changes by combining together the seabed accretion/erosion patterns produced by
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the dominated seasonal winds.

A key element in the development of accretion and erosion patterns along coastlines with

fine to medium sandy sediments and coastal structures is the three-dimensional nature of

sediment movements, particularly in suspension. The present work, therefore, adopts the

combination of a two-dimensional horizontal wave height and direction model, an

associated wave-induced current model and a three-dimensional sediment transport model

to study the three-dimensional suspended sediment pattern. The associated seabed

accretion/erosion pattern is then obtained by using a bed level change sub-model, which

interfaces with the suspended sediment model.

The total model system thus involves the use of a wave propagation model to route the

seasonal design wave (characterized by its significant height and peak period of the wave

spectrum) inshore. The computed wave height field is then used to calculate wave

radiation stresses in a wave-induced current model, assuming no interaction between the

wave and current fields. The results from the wave and current models are then used to

determine the movement of sediment in suspension and as bed load in the three-

dimensional sediment transport model. Finally, seabed accretion/erosion zones are

determined from a sediment continuity equation. The total model system is illustrated

diagrammatically in Fig. 1.3.
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For long term changes, the individual erosion/accretion patterns are combined together

depending on the occurrence of the individual seasonal events.

1.2 Scope of the Study

In order to produce cost-effective, working engineering models, it is necessary to

introduce a number of simplifications into the model system. These are listed below.

(i) It is assumed that all models use wave-period-average variables. Such a step is

necessary to enable the choice of sensible model space and time steps and thus the

coverage of a sufficiently large computational area so that model offshore boundaries are

independent of nearshore effects, while model computation time and cost is kept to a

minimum.

(ii) Wave boundary conditions are assumed to be provided at the open sea model

boundary, either from a deep water wave hindcast model or preferably from measured

field data. Wind growth effects are ignored, therefore, over the nearshore modelled area.

(iii) A design-wave approach is used for the wave model involving the significant wave

height and peak period of the wave spectrum. Such an approach has been shown,

O'Connor et al.(1992a), to give a good approximation of peak orbital velocities.
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(iv) Linear wave theory is used to determine near-bed velocities. Such an approach has

also been shown by recent EC MAST research (O'Connor personal communication) to

describe peak velocities, even in the surf zone, although inter-wave distribution is

distorted.

(v) Only turbulent wave and current flow is considered to be important to the

transporting process. Wind-induced and tide-induced transport is neglected as suggested

by field data at Chukpyon.

(vi) Individual seasonal storms are assumed to last long enough so that a steady-state

transport pattern is established.

(vii) Eddy viscosity enhancement by wave and current motion is included but not by

wave breaking in the surf zone; it being assumed that plunging breakers are not present

due to the smallish bed slope (1/50).

(viii) On-offshore sediment transport and shoreline advance/retreat is neglected, since the

shoreline movement is not the main interest of the present study; the main purpose being

to look at siltation around the structures, which causes blockage of the harbour navigation

channel.
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1.3 Contents

Two wave and wave-induced current sub-models provide input data to the sediment

transport model. Chapter 2, therefore, reviews existing wave and current flow models,

while Chapter 3 reviews existing sediment transport models. Chapter 4 provides details

of the proposed wave model, including modification to deal with deformation by

structures as well as comparison with experimental data. Chapter 5 gives details of the

wave-induced current model. Chapter 6 provides details of the three-dimensional

suspended sediment transport model. Chapter 7 explains how coefficients are obtained

for use in the suspended sediment model. Chapter 8 presents application of the series of

models to the Chukpyon Harbour site, Korea. Finally, conclusions and suggestions for

future work are given in Chapter 9.
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CHAPTER 2. REVIEW OF WAVE AND WAVE-INDUCED CURRENT MODELS

2.1 Introduction

To determine sediment transport rates from a numerical model, it is necessary to have

hydrodynamic information as input data. The accuracy of the hydrodynamic data cannot

be under-estimated. The transport of sediment depends upon flow velocities raised to a

high power (3-5). Consequently, small errors in the prediction of flow velocities, say 10

%, leads to much larger errors in transport rates, some 30-60 %. Given the accuracy of

measuring flow velocities in the field, which is essential for the calibration of any

hydrodynamic model, it is also important to minimize sediment transport errors by use

of as much field information as possible. Fortunately, bed level changes are less sensitive

to absolute values of the transport rates since they depend upon spatial gradients of the

transport rate. Nevertheless, the use of a good hydrodynamic model helps to reduce

possible sediment transport errors.

The objective of the present chapter is, therefore, to select an effective approach to

providing accurate hydrodynamic information to enable the prediction of medium-term

bed level changes in wave-dominated situations, such as that at Chukpyon Harbour,

Korea. Such hydrodynamics involves two components. Firstly, the prediction of the
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nearshore wave climate, including its modification by structures, and secondly, the

prediction of the associated wave-induced currents. Consequently, the present chapter

reviews approaches currently available for the prediction of both wave climate and wave-

induced currents.

2.2 Review of Wave Propagation Models

2.2.1 Classification of Wave Propagation Models

Short-period waves are generated by wind, and propagate toward the coast. Usually the

theories on the generation of waves have been developed separately from those on wave

propagation and deformation in shallow water. The present review assumes that deep

water (offshore) wave information is available and that existing wave theories are

sufficient for present purposes. Thus the review concentrates on a discussion of wave

propagation theories only.

Wave propagation modelling may be divided into two groups, horizontal (or plan) models

and vertical (or laterally-uniform) models. The two-dimensional plan modelling assumes

that wave boundary layer thickness is very small compared with the flow depth, and

consequently the three-dimensional equation can be depth-integrated using an appropriate

wave theory. Such depth-average models are useful to track waves propagating inshore.
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Vertical modelling, which involves longitudinal and vertical coordinates, has been used

to examine wave deformation in one vertical section at wave breaking, or wave run-up

on steep slopes for waves approaching normal to seabed contours or to structures. Since

vertical modelling cannot be used for general plan areas, this approach is not included

in the present study.

Wave propagation modelling has developed using linear mono-frequency waves, although

real waves are always random in space and time domains. Horizontal wave model

classification is not easy and can be done in several different ways. Waves used can be

linear mono-frequency waves, or asymmetric mono-frequency waves, or long-crested

random waves, or short-crested random waves. Different physical phenomena can also

be included in the governing equations, such as: shoaling, refraction, diffraction,

reflection, wave-current interaction, energy dissipation by sea bed friction, wave breaking

or surface wind stress. Classification can also be made by the type of governing equation

used. For example, it is possible to use a time-dependent hyperbolic equation, or a

steady-state parabolic equation, or an eLliptic equation. In addition, some models use a

Lagrangean grid co-ordinate system, while others use a fixed Eulerian grid. Different

numerical techniques have also been used. For example, finite difference methods, finite

element methods, and boundary element methods. Equally, some models solve wave-

period-average variables, while other models solve inter-wave-period variables.
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Recently Yoo et al.(1988), Yoo et al.(1989), and O'Connor(1991) have presented

summaries of plan wave propagation modelling, and argued that three main types exist,

These are termed inter-wave-period(IWP), evolution, and wave-period-average(WPA).

They have also argued that each type of model is adequate for different sizes of

modelling area. The IWP model needs some 10 points per wavelength to provide an

adequate description of the internal changes within the wave period, and is appropriate

for small areas of some 1-10 km 2, while the evolution and WPA models are appropriate

for large areas( > 10 km2).

An examination of the technical literature shows that a wide range of wave models

related to shoaling, bed and current refraction, diffraction, reflection, wave-current

interaction, slope-related shoaling, bed friction, and wave breaking now exist. A selection

of the more relevant ones is given below, and their merits and demerits are compared.

2.2.2 IWP Boussinesq Wave Equation Models

Boussinesq(1872) incorporated vertical accelerations in the depth-integrated horizontal

motion equations. The assumptions used in the derivation of the Boussinesq equation are

a uniform horizontal velocity distribution and a large wave length compared to the water

depth, which are valid for long waves. Additional terms appear in the IWP Boussinesq

equations that account for the excess horizontal momentum flux. These terms are higher
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order differentials of the dependent variables, and equation solution determines the

instantaneous currents and water surface elevations. Wave shoaling, diffraction,

refraction, reflection, and current-interactions are automatically part of the solution due

to the non-linear interaction terms. The basic Boussinesq equations for continuity and

momentum conservation on a flat bottom in one-dimension can be written as:

aa	 aa—	 = V
at ax ax

au - au aa	 2  a3a 
at

+U-r
x

+g-
x

=---h 
ax2at

(2.1)

(2.2)

where a is the instantaneous total water depth(E+h), see Fig. 2.1, h is the still water

depth, is the instantaneous water surface variation, t is the time, x is the longitudinal

axis, a is the depth-averaged instantaneous velocity, and g is the acceleration due to

gravity.

Peregrine(1967) has derived a Boussinesq type equation for the propagation of arbitrary

long waves over slowly-varying bathymetry. Peregrine's(1967) one-dimensional

momentum equation is:

au - au aa	 a a	 au	 a a au—+U—+g—=—h— (—(h—))--h2(—(--(—))) (2.3)
at ax ax 2 ax ax at	 6	 ax ax at

The equation (2.3) reduces to equation (2.2) for a horizontal bottom.
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Abbott et al.(1978) have produced a class of Boussinesq equations for application over

two-dimensional variable bathymetries, and Yoon and Lui(1986) produced a Boussinesq

equation to account for the effect of current-interaction. Larsen and Darcy(1983), and

Madsen and Warren(1984) used Boussinesq equations to describe combined refraction

and diffraction of long waves around breakwaters adding extra-terms such as bed friction

or porosity of breakwaters. Madsen and Sorensen(1992) have proposed a form of the

Boussinesq equations for irregular wave propagation on a slowly varying bathymetry.

Although the Boussinesq equation models solve various wave deformation phenomena in

an inter-wave-period mode, the approach still requires empirical wave breaking

simulation which may play an important role in driving wave-induced current in the surf

zone. Because the development of the model is based on weakly dispersive wave motion

over the water depth(Masse1,1989), its application is limited to shallow water (say, a

water depth/wave length ratio less than 0.05). A satisfactory solution technique for the

refilled equations is yet to be developed for a wider range of applications. Furthermore,

since any IWP model automatically involves large computer storage and long

computation time, the Boussinesq approach is not desirable for long term simulation of

siltation.
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2.2.3 Elliptic, Parabolic, and Two-Equation Hyperbolic Mild-Slope Equation Models

2.2.3.1 Elliptic Mild-Slope equation Models

When the sea bed is sloped, not only diffraction but also refraction and shoaling occur.

For such situations, a number of wave propagation models have been produced based on

the "mild-slope equation". The mild-slope equation has been established as an adequate

governing equation for describing combined refraction and diffraction from deep water

to shallow water. It is a depth-averaged equation, and based on the requirement that wave

energy is conserved and that the rate of change of depth and current within a typical

wavelength is very small. The original mild-slope equation without the effect of current

was derived by Berkhoff(1972,1976), and was named the "mild-slope equation" by Smith

and Sprinks(1975).

A detailed derivation of the mild-slope equation is given by Berkhoff(1972).

Berkhoff(1972) started from the conservation of wave energy which is the sum of the

kinetic and potential energies, that is:

DDEt 4. iffB ( u aapc + v aapy+w aapz) dx. dy dz ,. 0
	

(2.4)

where E is the wave energy density, D/Dt .---010t+(u013x+v0h3y+w018z), B is a spatial

volume of interest, and p is the static pressure in the fluid.
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With the assumption of incompressibility of fluid, and a steady state, harmonic solution,

the mild-slope equation of Berkhoff(1972), ignoring energy dissipation, can be derived

in the form:

ax
(cc 84) + a	 ,	 act.	 c

Qx	 g-j- • .-,--	
_ +0.2 g(1)=0

	

X d_Y	 g ay
(2.5)

where (I) (x, y) is a complex velocity potential which is obtained from c13(x,y,t)= 4:1)

eat; i is-V(4); it. is obtained from the velocity potential 4-(x,y,z,t) = F(z) (1), F = cosh

k(z+h)/cosh kh; x,y are the longitudinal and lateral spatial cartesian co-ordinates,

respectively; c, cg are the wave phase velocity and group velocity, respectively; 0- is the

angular wave frequency (defined to be 27/T); and T is the wave period.

Equation (2.5) is a two-dimensional second-order partial differential equation. Second-

order partial differential equations are often classified as elliptic, parabolic, or hyperbolic

equations. A general two-dimensional second-order partial differential equation has the

form:

a24) +c 824) +c	 +C	 4H-c, =0
2 axay 3 a_17 2 4 aX 5 ay 6

(2.6)

where x,y are arbitrary independent variables, 4:1) is an arbitrary dependent variable,

C I ,C2 ,C3 ,C4 ,C5 ,C6 , and C7 are arbitrary coefficients. The equations are often said to be

elliptic when C 22-4C,C3 <0, parabolic when C 22-4C 1 C3 =0, and hyperbolic when C22-

4C,C3 >0. Each type of equation has different characteristic directions, and requires
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different initial or boundary conditions for the solution.

Using the above classification, Berkhoff's(1972) mild-slope equation (2.5) is an elliptic

equation, so that equation (2.5) can be solved as a boundary-value problem with

appropriate boundary conditions along the entire boundary. Since transmission and

reflection boundary conditions are easily implemented into the solution schemes, this

approach is a popular one for modelling the response of harbours to short and long

waves.

Later Lui(1983), and Kirby(1984) also produced modified forms of the equation for

interacting wave/current situations. The inclusion of current effects on the wave field in

the same type of elliptic wave equation is useful, but if the current speed and its spatial

gradient are small so that they do not affect the wave propagation, the current-related

terms may be neglected. Thus the selection of model type, that is, whether to use the

mild-slope equation with of without modification for currents for a particular problem

is dependent upon the order of magnitude of the current speed and its gradient in the

computational domain.

Although the mild-slope equations solve for the spatial distribution of the potential

function, the solution can consists of a rapid variation within a wave length due to the

presence of reflected or crossing wave trains. Consequently, such models need to be used

with small space increments in order to resolve the variation in the potential function.
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To simulate a wave-induced current in the surf zone, wave-breaking is involved.

Unfortunately, the location of wave-breaking is usually not known a priori. Thus, it

becomes difficult to model wave transformation using the mild-slope equation directly.

The mild-slope method also becomes computationally unsuitable for large areas, as well

as for short-wave problems because of its great expense. Firstly, grid size has to be small

enough that there are at least some ten nodes within each wavelength. Secondly, the

entire domain of interest must be discretized and solved simultaneously, either involving

large matrix inversion or use of an iteration method.

Parabolic approximation models or two-equation hyperbolic equation models have been

developed more recently to overcome some defects of the elliptic mild-slope equations.

2.2.3.2 Parabolic Approximation Models

Radder(1979), and Booij(1981) have derived simplified forms of the wave energy

equation, which are generally referred to as the parabolic wave equations with some

approximation, as an alternative method to solve the wave propagation problem.

Radder(1979) split the velocity potential into two, one for forward-propagating waves,

the other for backward-propagating waves with respect to the x axis which is the main

wave propagation direction. The velocity potential for backward-propagating waves was
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ignored. Radder's equation is as follows:

1 a (kccg)  +  i 	 a cc a a4)	 .
=(ik- 2kcc	 2kcc'g ay 

gay )
ax	 g ax

(2.7)

where k is the wave number (27r/L), and L is the wave length. Only one-directional

second order derivative exists in equation (2.7) in contrast to the elliptic equation (2.5).

It has been reported that equation (2.7) is numerically efficient for the calculation of

refraction and diffraction. Reflection has also been included in the parabolic approach

through an iterative computational scheme. Kirby and Dalrymple(1986) have also

proposed a modification of the parabolic equation to include the effect of currents.

However, there is a limit of wave propagation direction relative to the computation grid,

since the wave angle inside the calculation domain should not exceed a narrow range

relative to the x axis for an accurate solution.

The "external" diffraction, that is diffraction produced by structures can not be accurately

solved by this approach. The grid size should still be a small fraction of the wave length

as for the elliptic mild-slope equation (2.5) due to the nature of the composite velocity

potential.
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a-(Q)±ccgvE=0
at

(2.8)

aE + c v. ( -0)
=0

at C, (2.9)

2.2.3.3 IW13 Hyperbolic Two-Equation Wave Models

Another alternative way to solve the mild-slope equation has been developed by

Copeland(1985). He developed a two-equation form of the mild-slope equation. This can

be used from deep water to shallow water, using a similar technique to that of Ito and

Tanimoto(1972), who developed two-equations for long waves. Copeland(1985)

transformed the Berkhoff's(1972) equation to a pair of first order equations by including

separation of the variables in the velocity potential function in time and space.

Copeland(1985) suggested the following equations, which have been described as

"Hyperbolic Two-equation type models", see Yoo et al.(1989):

where -d is a vertically integrated function of horizontal velocity and is used as a

dummy variable in the mutual integration of equations (2.8) and (2.9), and V is the two-

dimensional spatial gradient operator (a/ax, a/ay).

Watanabe and Maruyama(1986), and Yoo et al.(1989) have modified equations (2.8) and

(2.9) to include the effect of a current.
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Copeland(1985) showed that the pair of first-order hyperbolic equations are easier to

solve than the second-order elliptic equation in some ways due to the simpler boundary

conditions at inland boundary. The major advantage of the IWP hyperbolic type wave

models is that they have no limitation on the wave angle, and consequently represent a

distinct improvement over the parabolic models in the treatment of external diffraction.

However, simulation of partial wave reflection, wave transmission, or absorption at rigid

or open boundaries in the hyperbolic two-equation models involves a complex calculation

of wave angle which is not straightforward due to the existence of superimposed

reflective waves.

The IWP hyperbolic two-equation models have similar drawbacks to the IWP Boussinesq

equation models. They take a long computational time until the solution reaches final

equilibrium. A minimum of about ten grid nodes per wave length are needed for

simulation of IWP wave transformation. In addition, the hyperbolic two-equation models

still rely on empirical methods for the calculation of wave breaking.

2.2.4 Evolution Wave Models

As previously stated, the mild-slope equation models reviewed in Section 2.2.3 require

a minimum number of ten nodes per wave length for computational purposes. Evolution
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models, so called by Yoo, O'Connor and McDowell(1989), have been developed to

provide greater computational efficiencies over that of IWP mild-slope equation models.

For the development of the evolution model, the velocity potential for linear waves is

expressed in a complex notation as:

(1) = ae is 	 (2.10)

where a(x,y) is the wave amplitude, s(x,y) is the wave phase function ( =k„x + kyy), lc,

Icy are the x, y components of wave number vector (k.---27r/L), and L is the wavelength.

Berkhoff(1976) substituted equation (2.10) into equation (2.5), and obtained the following

two equations from real and imaginary parts of the equation (2.5):

1 a2a a2 a	 1
g)) +k -177,s12=0___ ( 	 + ___ + __ (va.v (cc

a ax 2 337 2 cc	
2

9
(2.11)

V. (a 2 ccgVs) =0	 (2.12)

The above equation (2.11) is still an elliptic form with regard to wave amplitude (a). The

dependent variables of the evolution model, thus become wave amplitude (a) and the

gradient of wave phase function (Vs) instead of the velocity potential function of

Berkhoff's(1972) elliptic mild-slope equation.

In the evolution model, each position has a single value of wave amplitude and gradient

of wave phase function, and the superimposed waves at a point are given by a single
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representative wave amplitude and phase function, so that a smoothed approximate wave

field is solved by the model. Since the representative wave amplitude and the gradient

of wave phase function are considered to vary more slowly in space than the original

velocity potential function, much coarser grids can be used for the evolution model.

Ebersole et al.(1986) used the evolution elliptic wave equations (2.11) and (2.12) for a

simple propagation problem without reflection. They used equation (2.11) for the solution

of the gradient of wave phase function. In order to obtain the wave direction, they used

the idea of irrotationality of wave phase function, which is mathematically expressed by

the curl of the gradient of the phase function (s) being zero, that is:

Vx (Vs) = 0	 (2.13)

where x represents a vector cross product.

Decomposing the gradient of the wave phase function into two components using the

wave direction 0, equations (2.12) and (2.13) can then be expressed as:

—a (a 2 cc IV's!cos()) +—a (a 2 cc ivsisin0) =0
ax	 g	 ay	 g

..a.-?. (1Vsisine) --a ( lvsicose) =0c 
ay

(2.14)

(2.15)

where 0 is the counter-clockwise wave propagation direction relative to the negative x

axis.
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Ebersole et al.(1986) solved equations (2.11), (2.14) and (2.15) on a square grid of

computation points using a simple forward marching finite difference technique. The

model was tested against experimental results from a hydraulic model of wave

propagation over a submerged shoal. The results were generally in good agreement with

the laboratory data, see Ebersole et al.(1986). The evolution elliptic model is very

efficient in computation time due to use of a direct solution procedure in one direction,

and a grid size which is only dependent upon the rate of change of seabed contours.

Ebersole et al.(1986) used a non-centred finite difference scheme for second order

derivatives along the x axis. However, no proof was given that such an approach using

a non-centred scheme for the second derivative along the x axis increases the accuracy

of the solution of the two-directional second-order partial differential elliptic equation.

The evolution elliptic model has not been tested on any external diffraction phenomena

around structures.

Not only have evolution elliptic models been developed, but also evolution parabolic

models(Liu(1983), Kirby(1986)) have been developed from the parabolic models, see

Section 2.2.3.2. The evolution parabolic models are known to be efficient in terms of

computation time. They are also able to describe weakly reflected waves after minor

modification. However, the use of the evolution parabolic model is limited if wide angle

external diffraction occurs, as with the original parabolic model.
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An evolution hyperbolic two-equation model has also been presented by Madsen and

Larsen(1987) modifying hyperbolic two-equation models. Yoo et al. (1989) have proposed

a modified evolution hyperbolic two-equation model to include the effect of a current.

The evolution hyperbolic model can handle external diffraction as well as internal

diffraction. However, when using the evolution hyperbolic model, the solution can only

be obtained asymptotically involving an iterative procedure. The evolution hyperbolic

model has a short history and few applications to engineering situations have been made

as of yet.

2.2.5 Wave-Period-Average Models

2.2.5.1 Introduction

Another class of wave model has been developed using the kinematic conservation

equation, which is different from the mild-slope equation. These models can be

classified as "wave-period-average" models, see Yoo et al.(1989). Wave-period-average

models include the traditional ray approach which uses a Lagrangian method, and a

recent hyperbolic WPA model which uses a Eulerian grid system.
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2.2.5.2 Ray-Tracking Approach

The traditional WPA type model is represented by the Ray-Tracking approach, whereby,

a wave ray (and hence wave energy) is tracked forward from offshore to inshore

(forward tracking) or from inshore to offshore (back-tracking). These models have

traditionally been used with a design-wave approach, and ignore many processes such as

diffraction, both by the seabed and by structures, seabed friction, and wave-current

interaction. More recently, modifications have been suggested to include seabed friction

and wave-current interaction by Barber(1981), for seabed diffraction by Yoo and

O'Connor(1986b), and for random waves by Gilvert and Abernethy(1975), and for

diffraction and reflection by structures by Southgate(1989).

While WPA ray models have advanced over the years, their major drawback is that wave

information is determined along a set of non-uniformly-spaced computation points.

Inclusion of wave-current interaction effects requires, some form of interpolation

procedure, which can be inaccurate in areas of widely scattering rays. An Eulerian mesh

of computation points is to be preferred, therefore, if wave-induced currents are to be

calculated.
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2.2.5.3 Hyperbolic WPA Refraction-Diffraction Model

Yoo and O'Connor(1986b,1988a,b), and Yoo et al.(1989) have developed a hyperbolic

WPA refraction-diffraction model by modifying the existing kinematic conservation

equation, which is normally used for the determination of wave ray tracks. Their model

includes diffraction effects, and uses an Eulerian grid system.

The kinematic conservation equation and the energy conservation equation constitute a

complete governing equation system for the hyperbolic WPA model. The equations are:

ax, 
+(U.+nC.)—

aKi
+K• 

u • + 0 0 (2n-1) ad
at	 3	 3 ax 	 axi 	2d	 axi

nC 1 aa a2 a 	 a3a  ) -o
2ka ( a —axi ax ax1a4

aa i as . au.
(u.+nc.)a2+  j- -7	 2 -0

at 2a axi "	 pga axi

(2.16)

(2.17)

where the tensor subscripts i,j are x, and y, d is the water depth, 0-0 is the angular

frequency relative to the water mass (on a moving frame with the water mass), k is a

separation factor given by 0-02.--gk tanh kd, a is the angular frequency relative to the sea

bed (on a fixed frame, a=u0-KU), Ki is the wave number vector, U; is the depth-mean

horizontal velocity vector, Ci is the wave phase velocity vector, a is the wave amplitude,

n is cg/c, p is the water density, and S ti is the radiation stress tensor which has the form:
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K. K.	 1S..= (n--1 -2-+ (n--) 8 ..) —1 pga 2
23	 k k	 2 

(2.18)

where 8 ii is the delta function (=-1 for i =j, =0 for i � j).

Since the wave energy equation (2.17) was obtained by wave-period averaging as well

as depth-integrating the fundamental energy conservation equation, there is no

computational restriction on the selection of the size of computational grid. The model

can solve internal and external diffraction, and includes the effect of currents. However,

since the governing equations are of hyperbolic type, solution requires iterative procedure

which involves long computation time as with other hyperbolic type models.

2.3 Review of Wave-Induced Current Models

2.3.1 Classification of Wave-Induced Current Models

Once details of the wave number and wave amplitude are known, it is possible to

determine the wave-induced current pattern in the study area. This can be done either in

a coupled method (solving wave and wave-induced current coincidently) or in a

decoupled method (solving wave and wave-induced current sequentially), using the same

computational grid as for the wave model.
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Comprehensive reviews on nearshore circulation modelling have been done by

Basco(1982,1983), Basco and Coleman(1982), Yoo and O'Connor(1986a), Arcilla and

Lemos(1990), and Battjes et al.(1990). Basco(1982,1983) and Basco and Coleman(1982)

presented a state-of-the-art on surf zone currents, reviewing laboratory experiments, field

measurements, and numerical modelling, and stressed that the Boussinesq type approach

will improve in the future. Yoo and O'Connor(1986a) reviewed existing models, and

argued that a depth-integrated, horizontal, two-dimensional, wave-induced flow model

which is run with a hyperbolic WPA wave model (see Section 2.2.5.3) in a coupled way

is one of the most comprehensive of existing wave-induced current models. Battjes et

al. (1990) presented a state-of-the-art review on nearshore circulation phenomena,

laboratory and numerical experiments, and highlighted the quasi-three-dimensional

approach as the prospective research direction for the future.

Model approaches are generally described in the present review in dimensional order,

starting from three-dimensional models for convenience and following the transformation

of the governing equations.

Recently, with the increased power of computers, multi-layer three-dimensional models

have been produced, which have also been suggested for use in nearshore areas, see

Nizam(1992). Three-dimensional modelling implies that information is obtained in x, y,

and z directions.
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Horizontal modelling means that basic equations have been depth-averaged so that only

variations in lateral (y) and longitudinal (x) co-ordinates are retained. Vertical modelling

implies that lateral averaging or uniformity has been done or assumed so that only

variations in vertical (z) and longitudinal (x) co-ordinates are retained.

Most of the existing models solve WPA variables. The Boussinesq type wave/current

models are an exception, solving the depth-integrated IWP variation of water surface

level and horizontal velocities. The WPA wave-induced current can be obtained by wave-

period-averaging after IWP calculation by a Boussinesq wave model. However, the

Boussinesq type model has been developed mainly for the study of wave transformation

as of the present so that any application of direct calculation of wave-induced current

using this approach has not been presented yet. This may be due to the difficulty of IWP

treatment of wave breaking in the Boussinesq model. The Boussinesq model requires

small mesh size and long computational time, which are major drawbacks for long term

simulation of siltation, and is not considered further in the present review.

The existing WPA models may be grouped into three-dimensional models and depth-

integrated two-dimensional horizontal models. Three-dimensional modelling work is a

more recent development than the depth-integrated, two-dimensional modelling, and the

basic equations solved are more general than those for depth-integrated two-dimensional

horizontal equations. Vertical two-dimensional models are considered to be a subset of

the three-dimensional models, and are briefly referred to Section 2.3.2.
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Depth-integrated continuity and momentum equations are derived from three-dimensional

equations, and are widely used for horizontal circulation modelling. Horizontal models

can be divided into two groups, one solves primitive variable equations, see Section

2.3.3, and the other solves a stream function equation, see Section 2.3.4. One-

dimensional horizontal models for longshore current parallel to a plane beach are a subset

of depth-integrated two-dimensional horizontal models, and are briefly reviewed in

Section 2.3.3.

2.3.2 Three-Dimensional WPA Models

All existing wave-induced current models are based on universal laws of conservation of

mass, and momentum. Three-dimensional models solve the three-dimensional mass

continuity and momentum equations.

The law of governing the conservation of matter is expressed as:

E +  apu +  apv + apw_o
at ax ay az

(2.19)

where p is the water density, and u,v,w are the instantaneous fluid velocities in the x,y,z

directions, respectively. If the fluid is assumed to be incompressible, which is usually

accepted for free surface water flows, equation (2.19) is reduced to:
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au + av aw,0
ax ay az

(2.20)

The Navier-Stokes equations are used for the basic equations for the momentum

conservation. These are:

au au au auap—+u—+v—+w_=-_--+vv2u
at ax ay az p ax

ay +u ay + ay ay	 aiD
at ax 	 _V az p ay

aw aw aw aw	 p
=-g+v V2w

(2.21)

(2.22)

(2.23)

where v is the kinematic viscosity, and V is the three-dimensional gradient operator.

Since the inter-wave-period simulation of instantaneous velocities is not feasible due to

the large computational effort, existing three-dimensional models solve WPA equations.

To obtain the WPA basic equations from the equations (2.20), (2.21), (2.22), and (2.23),

a decomposition of variables can be applied for flow with oscillatory wave and

turbulence, similar to the Reynolds' decomposition for turbulent flow without wave:

u=ii+Ci+u i ; v=17+i)--+vi
w=i47+17v- + w / : p=5+13+pl

(2.24)

where bar(-) is for the turbulent and wave mean values, tilde() is for the wave-related

variation values, and dash(') is for the turbulent variation values.
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Substituting equation (2.24) into equation (2.20), the three-dimensional WPA continuity

equation is obtained as:

az7 + 	at7=0

ax ay az
(2.25)

Ignoring the laminar shear stresses, and substituting equation (2.24) into equations (2.21),

(2.22), and (2.23), wave-period and turbulence-period-average momentum equations can

also be derived, see Nizam(1992), as follows:

—az-7 	
ay

+ 	 17	 a	 a
c<u2>-<-02>)-	 <ciffr>

at a-- Tc	 az	 p ax	 ay	 (2.26)
a	 a ,	 )	 a <	 l> 

	

k<u >-<w >	 u v -	 u >
az	 a7x	 ay	 az

az-7 17- +  a7-2 	 _
at ax ay az

a- a_
az

<vw> --
ax

<u v>-

1 az-5_ a	 a
<-(2-1-7->--

ay
(627->-<-02>)

ap y ax	 (2.27)

(<1712 > -<147 12 >)	 <111141/>
ay	 aZ

where < > means the wave-period average( =---1/T 1 oT dt). The vertical momentum

equation (2.23) is often simplified and results in the equation:

T=P0-P <Tv>
	 (2 .2 8)

where Po is the hydrostatic pressure (-----pg(n-z)).

The normal or shear stress terms appearing in equations (2.26) and (2.27) require closure

schemes (that is, equations to relate the turbulence terms to the variables ü, ) to

complete the equations.
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Examination of equation 2.26 and 2.27 shows that the effect of wave motion is to

introduce extra "stress-type" terms. These have been called "Radiation Stress" terms by

several authors.

Battjes et al.(1990) have presented a review on the three-dimensional modelling of

nearshore circulation. They described full three-dimensional modelling, and quasi-three-

dimensional modelling. The former solves the wave and turbulent-average equations in

x,y,z directions, see Nizam(1992). The lattermost approach is simply an extension of the

horizontal, two-dimensional circulation model, and seeks to establish approximately, both

the depth-averaged flow and the vertical structure in the lower two or three layers. For

three layers, top layer is often taken between the wave crest and the wave trough levels;

the middle layer is taken between the wave trough and the upper boundary of the bed

wave boundary layer; and the bottom layer is taken as the lower wave boundary layer,

see de Vriend and Stive(1987), and Svendsen and Lorentz(1989).

It should be noted that the continuity and momentum equations (2.25), (2.26), and (2.27)

are valid only below wave trough level, since the flow above this level is not continuous

due to the temporary exposure of the computational grid points to the atmosphere. The

radiation stress in the top layer has been treated as a sort of surface stress at mean water

level or wave trough level, which is a drawback of the three-dimensional model.

Although three-dimensional modelling is flexible and general, it has had little laboratory

or field testing to assess its usefulness. Such three-dimensional flow models also require
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considerable computation time and consequently, it is less suited to long term siltation

calculations.

Recently two-dimensional vertical models have been applied to the simulation of

undertow currents across a beach during storms. The two-dimensional vertical current

model is a subset of the three-dimensional current model. However, vertical modelling

is only appropriate in existing models (also called profile models) to laterally-uniform

beaches and consequently is not considered further.

2.3.3 Depth-averaged Horizontal Models Solving Primitive Variables

Since the wave boundary layer thickness is rather small in comparison with the water

depth, it is possible to decompose the instantaneous velocities and pressure. Then, by

depth-averaging the basic turbulent-mean fluid flow momentum and mass continuity

equations, a depth-integrated, wave-period-average, two-dimensional in plan, wave-

induced current governing equations can be produced.

Two-dimensional horizontal modelling is useful for simulation of wave-induced

circulation in relatively shallow sea areas, where the water is not stratified by density

differences. Depth-integrated continuity and momentum equations have been used widely

for describing shallow water turbulent flows for currents and/or waves.
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a	 a —(pd)+ fi+)=0 (2.29)

So far, many researchers have presented two-dimensional horizontal numerical models

of wave-induced current, but the main features of all such approaches are similar with

regard to the type of governing equations finally used. To incorporate wave effects,

depth-integrated wave-period-average continuity and momentum equations have been

derived using the decomposition of variables shown in equation (2.24). Phillips(1977),

Yoo and O'Connor(1986a), and Arcilla and Lemos(1990) have presented a similar

procedure of depth-integration and wave-period-averaging of the basic three-dimensional

continuity and momentum equations.

Yoo and O'Connor(1986a)'s typical derivation of depth-integrated and wave-period-

average continuity and momentum equations are briefly described here. Applying the

kinematic boundary condition (describing the movement of a water particle at the water

surface), and Leibnitz's rule (related to differentiation of the integrated quantity) to the

continuity equation (2.20), the horizontal depth-integrated continuity equation becomes:

where d is the mean water depth, see Fig. 2.1, and M, gi are the current-related

and wave-related depth-integrated mass transport rates, respectively in tensor notation,

which have the form:

171.=<f	 ;	 piiidz>
	

(2.30)

where is the instantaneous water surface level, and h is the still water depth.

34



a (du) =0
iat

+
 ax,

(2.31)

Defining the depth-mean velocity U, V) as the summation of current and

wave-induced flow so that the wave-induced mass flux is implicitly included in the

variable Ui , we have

where 7) is the WPA mean water level.

In a similar manner to the continuity equation, the horizontal momentum equations are

depth-integrated and wave-period-averaged. Depth-integration of the momentum equations

and the use of an eddy viscosity closure for turbulent terms lead to:

a p
aX -h

— pu.dz+ a
at -h	

J (pujuj+pOii) dz-P ah
h aXi

a	 au
=_h -t;Tc P e 7)--xec dZ

—P

(2.32)

where E is the turbulent eddy viscosity coefficient, ce,0 are tensor indices x,y,z, hat(A)

is for a sum of current and wave components( + -), and Ph is the pressure at the sea

bed.

By defining the radiation stress, the turbulent shear stress, and the depth-mean pressure

gradient as:
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(2.33)
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P

a	 t
P

l 
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dz-<

Ph 
ah

	

aXi -h	 	 aXi

(2.34)

(3.35)

and applying the decomposition of variables and the wave-period-averaging process, the

horizontal momentum equation (2.32) is expressed in a compact form:

u- g +S. •)+13•=i
13	 1a t aXi	3

(2.36)

Yoo and O'Connor(1986a) have presented a general form of the WPA radiation stress

terms for linear waves on a sloping bed, equation (2.18). The simplest expressions for

the WPA radiation stress terms for linear waves have been derived by Longuet-Higgins

and Stewart(1960,1961,1962,1964), Longuet-Higgins(1970a,b).

According to Longuet-Higgins and Stewart(1960), the component Sxx of the radiation

stress along a wave ray is explained as the time-average value of the total flux of

horizontal momentum across a vertical plane minus the still water hydrostatic pressure

force. They have taken the main X axis as the wave propagation direction first, and

transformed the expressions for arbitrary wave direction later. Assuming n=0, the

normal radiation stress Sxx (in direction X) is:
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P1= pgd L
ax, (2.43)

sxx=<f (p+pu 2 ) dz> - f
0 
podz

-d	 -d
(2.37)

Similarly, the transverse stress component Syy (in direction Y, normal to X) is:

Syy=< (p+ p v2 ) dz>- f
o
podz

-d	 -d
(2.38)

Inserting small-amplitude linear wave theory for the particle orbital velocities (u,v), water

elevation (0, and dispersion relation (0 2 =gk tanh kd), and wave-period-averaging the

two radiation stress terms leads to the results:

s=s,occos 2 0 +Syysin20 (2.39)

Sxy=Sxxsinecose-Syycosesine (2.40)

Syy=Sxxsin2 0 +Syycos2e (2.41)

2c
Sxx=E( g -0.5),	 Syy=E(-cg -0.5) (2.42)

where E is the wave energy per unit area of sea surface ( pga2/2), 0 is the counter-

clockwise wave direction from the negative x axis, S xx , Sxy , Syy are the radiation stress

components in the cartesian co-ordinate system (x,y,z).

Equation (2.35) for the pressure term can be further approximated as:
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If the advection terms are also approximated ignoring the terms of second order, which

implies strong currents and weak waves, then the depth-integrated WPA momentum

equations become:

au au au gar) 1 as as	 ts
_+u--Fv-4--+ (  Xx+ X Y ) - --2-c =0
at ax ay ax pd ax ay	 pd

av +u av _w ay + gai 1 as  as t+	 ( 	 xy +	 Y ) - y =0
at ax ay ay p d ax ay	 p d

(2.44)

(2.45)

where U,V are the depth-average velocities in the x, y co-ordinate directions,

respectively.

Comparing the wave-period-average, depth-integrated continuity and momentum

equations (2.44), and (2.45) with those without waves, we can see that the contribution

of the wave motion to the current field is via the new radiation stress terms S,

Syy) , and interacted friction terms ( 1"x, ) , which contain both bed friction and lateral

mixing components. While the WPA wave-induced radiation stress terms can be obtained

explicitly for periodic waves, the turbulent stress (friction) terms can not be calculated

algebraically due to the random nature of the motion which occupies a wide range of

frequencies. The basic unsteady momentum equations can only be solved if some closure

schemes are provided for both lateral mixing and turbulent shear stresses at the sea bed

and water surface.
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The turbulent stress terms which appear in the last terms on the left-hand-side of equation

(2.44) and (2.45) can be split into the bed shear stress term (Fb,) and the lateral mixing

term (F1,i) as:

17i=Fb,i +F.7,1
	 (2.46)

Several different models for the calculation of bed friction term (Fb,i) for wave and

current flows have been developed using different assumptions and solution techniques.

The level of sophistication of each model varies from a constant coefficient to one-

dimensional (vertical) Reynolds stress closure models.

The lateral mixing term (FL) has also been modelled by many different ways, from a

simple eddy viscosity assumption to two-equation turbulence closure sub-models, see

Longuet-Higgins(1970), Basco(1982), Yoo and O'Connor(1986a), and Wind and

Vreugdenhill(1986). However, the use of the more sophisticated approaches adds

considerably to the complexity and operational use of such models.

The late 1970's and 1980's has seen the development of various numerical models for

general seabed geometry. Such numerical models are distinguished by the type of

dependent variables (primitive or stream function) used; by the approximations adopted

to simplify them; and by the particular formulation of bed friction, lateral mixing, wave

breaking, and numerical techniques used. However, most existing WPA depth-integrated

numerical models for wave-induced currents solve the primitive continuity and
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momentum equations (2.31), (2.44) and (2.45). Some particular examples are given

below.

Birkemeier and Dalrymple(1975) developed a model of wave-induced current which

solves time-dependent primitive variables, for water level, and horizontal velocities.

Their model included the effects of set-up and coastal flooding, but excluded nonlinear

advection and lateral mixing terms.

Ebersole and Dalrymple(1980) presented a model similar to Birkemeier and

Dalrymple(1975). Their model included the advection and lateral mixing terms, but

excluded current interaction on waves.

Liang(1983) reported a finite-element model of wave-induced current. An interesting

feature of the solution technique is that he neglected the time-dependent term and solved

the resulting continuity and momentum equations to obtain equilibrium solution directly,

while most existing models of wave-induced current solve the unsteady depth-integrated

basic equations. The limitation of the model is that the numerical method used in the

model requires more computation effort than explicit finite difference methods used by

other researchers, and that the water level set-down or set-up due to the radiation stress

cannot be calculated due to the use of the approximation of water level that the water

level is the same as still water level.

40



Wind and Vreugdenhill(1986) developed an implicit finite difference wave-induced

current model. They included advection and mixing terms, and compared the model

result with a laboratory experiment on mono-frequency waves with general agreement.

They used a two-equation turbulence closure sub-models for the calculation of the lateral

mixing terms, which require a long computation time.

Yoo and O'Connor(1986a) developed one of the most comprehensive wave-induced

current model including both coastal flooding (set-up) and wave-current interaction,

which was coupled with an unsteady WPA wave model, see Section 2.2.5.2. The

formulations of bed friction and lateral mixing are based on a mixing length and a two-

equation turbulence model, respectively, so that the model requires a long computation

time. However, their comprehensive model may be useful for comparison or verification

of any other simplified wave-induced current models.

When seabed contours are assumed to be parallel along the y axis, and only a steady

state situation is considered, then the momentum equations are reduced to a much simpler

one-dimensional form, which is useful for describing on-offshore /ongshore current

distribution on parallel beaches. This approach is a sub-set of general two-dimensional

horizontal modelling. Early models produced in the 1960's and 1970's produced the first

results for longshore current distribution on parallel beaches.
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Ignoring the water surface wind shear stress, the momentum equation (2.45) is reduced

to:

as,
g' -Fb -F1 = 0

ax	 ,y	 ,y (2.47)

where Fb,y is the WPA bed shear stress for wave and current flows in the y direction, and

F1,y is the lateral mixing stress in the y direction. Bowen(1969) produced one of the first

longshore current profiles using the momentum balance equation (2.47). Longuet-

Higgins(1970) also developed a longshore current model, but used a different formulation

of the three terms in equation (2.47) from Bowen(1969). Longuet-Higgins' solution is

introduced later in Chapter 5. Other models have been presented by Thornton(1970),

Jonsson et al. (1974), Kraus and Sasaki(1979) with minor differences in the formulations

for the three terms involved. However, the application of the one-dimensional horizontal

model is limited to the concept of parallel bathymetry, and is not adequate for general

engineering problems.

2.3.4 Depth-averaged Horizontal Models Solving Stream Function

Another group of models have used a transformation of the momentum equation by

changing the dependent variables of primitive velocities and mean water level for a

stream function. Researchers, such as Bowen(1967, 1969), obtained an analytical solution

of the stream function for simple beach cases, although considerable approximations were
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needed. Noda(1972) was one of the first to model nearshore circulation for general two-

dimensional geometries using the stream function approach. Noda's(1972) model results

showed the presence of circulation cells (rip current), although the model was unstable

with wave and current interaction.

Noda(1974) introduced a stream function ilf defined by:

vallr =-Ud
'
. Ar-= d

ay	 ax

Ignoring water level set-up, Noda(1974) induced the following equation.

a2 ,4r +  a2 nr + 1 aF ali + 1 aF all
ax2 ay2 F ay ay F ax ax

= g ( a ( 1 ( 3s„ 4.  as,o, ) ) _ a ( 1 ( asyy, asxy ) ) )

F ay d ax ay	 ax d ay ax

(2.48)

(2.49)

where F is 2fH/d2T sinh kd, f is a friction coefficient(=0.01), H is the wave height, d

is the water depth.

Sasaki(1975), Liu and Mei(1975), and Dalrymple et al.(1977) have also used the stream

function approach with particular bed shear stress formulations, and showed various

applications. Advection terms and lateral mixing terms have not been included in their

stream function approaches, probably due to the difficulty of numerical treatment of the

nonlinear terms.
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The steady state stream function equation was solved as a boundary value problem.

Therefore, all boundary values should be properly specified a priori. It is rather simple

to assign the boundary values for the stream function where the velocities are known a

priori. However, it is not easy to give adequate boundary conditions where currents exist,

which are part of the solution that is desired. It is also difficult for the stream function

approach to include the modification of the mean water level due to the existence of

waves and currents, since the water depths are kept unchanged while the stream function

is solved.

2.4 Conclusions

2.4.1 Wave Models

For simulation of sediment transport and bathymetric change for medium or long term

periods, the simplicity of each wave or current model is vital for the whole system. But,

the models used should still reproduce important mechanisms, so that they should not be

oversimplified.

The present short review of wave propagation models indicates that a wide range of

models have been described to predict nearshore wave climate.
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The IWP-type model, such as the Boussinesq model, appears to offer the best

possibilities for including all nearshore transformation processes. However, the cost of

using such approaches for medium-term siltation modelling is likely to be prohibitive for

the foreseeable future.

While Elliptic, Parabolic, and Hyperbolic models which solve for the wave velocity

potential directly require a large number of computational grid points, Evolution

approaches allow the use of coarse grids. Evolution Parabolic or Elliptic approaches

solve on regular grids but the assumptions made in some Parabolic models make them

unsuitable for situations with widely scattering wave energy, since they have been

derived under the assumption that wave motion is largely propagated in the direction of

the main axis of the computational grid.

At present, engineering design makes extensive use of WPA Ray models, but these have

difficulty when dealing with diffraction processes. It is also difficult to use the Ray

approach to calculate wave-induced currents. The hyperbolic WPA wave model has

flexibility for external diffraction and current interaction, but it requires an iteration

procedure until the final steady state solution is obtained.

For present purposes, it is proposed to use the Evolution Elliptic approach of Ebersole

et al.(1986), since it retains the essential processes of seabed shoaling, refraction and

diffraction; it being assumed that reflection and wave-current interaction effects are
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small. The model will be modified to include the external diffraction produced by

structures.

2.4.2 Wave-Induced Current Models

The short review of wave-induced current models shows that both WPA two and three-

dimensional models have been developed but that the three-dimensional approaches lack

laboratory and field testing. They are also likely to be expensive to use for long-term

simulations.

It is also considered that the stream function approach for the WPA depth-integrated

horizontal two-dimensional modelling is less useful for general geometry than the

primitive variable approach, since the stream function approach is more restricted by the

approximations involved.

Thus, for present purposes, it is proposed to use the WPA depth-average primitive

variable approach of Yoo and O'Connor(1986a) but to simplify it in the surf zone.
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CHAPTER 3. REVIEW OF SEDIMENT TRANSPORT MODELS FOR WAVE AND

CURRENT FLOWS

3.1 Introduction

Coastal sediment transport problems arise generally from the siltation of port and harbour

navigation channels or pipeline trenches, from siltation within the relatively calm areas

in harbours behind breakwaters, and in the re-alignment of coastlines produced by the

construction of harbour breakwaters, land reclamations, coastal jetties or beach protection

structures, such as groynes, revetments and offshore breakwaters. Such problems have

generally been tackled by physical models, but more recently by computer models. For

example, Irie and Nadaoka(1984) used a physical model to examine depth changes caused

by wave and wave-induced currents around a breakwater, while Deigaard et al. (1986b)

used a computer model to study siltation of a pipeline trench along the Danish coastline.

The majority of coastal situations involve sandy sediment and consequently, the present

chapter is not concerned with cohesive sediment problems. Similarly, because many

situations are dominated by wave-induced currents, it is proposed to ignore tidal

modelling, and any influences of long-term unsteady sediment behaviour produced by

variations in tidal conditions.
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The chapter is concerned with providing a background to the choice of sediment model

to be used to study medium term bed level changes at sites such as Chukpyon Harbour.

Previous authors have produced extensive reviews of both scientific computer models,

which have been used to reproduce detailed coastal processes on time-scales of a few

seconds, to the more general engineering models which involve time-scales from several

hours during a storm to many tens of years as coastlines slowly adjust to the impact of

new structures. Typical reviews include those by McDowell and O'Connor(1977),

0'Connor(1979), Sleath(1984), Horikawa(1986), O'Connor and Nicholson(1988b),

Nielsen(1988), van Rijn(1990), and O'Connor(1991). For present purposes, only a short

review is given with emphasis on the more recent three-dimensional approaches.

All particulate sediment numerical models require information of bed roughness. The bed

roughness value may be one of the most important parameters to simulate sediment

transport. Theoretical and experimental researches have been done by many workers

including Nielsen(1981), Vonvisessomjai(1984), Hedegaard(1985), Raudldvi(1988),

Sato(1988), Amos et al.(1988), Lee-Young and Sleath(1990), and O'Connor(1992). Van

Rijn(1982) has also shown an analysis of experimental data to determine the relation of

bed geometric shape and resultant conceptual bed roughness. More recently, Madsen et

al. (1990) has modified the description of bed roughness to include the smoothing effect

of random waves. Despite such advances, it is generally recognized that the techniques

for prediction of bed roughness for wave and current flows is still at an early stage.

Consequently, in the present study, it is assumed that the bed roughness is known for the
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sediment transport model by direct field measurement of bed grain size and bed form

size.

Considering a relatively shallow sea area, including the surf zone, sediment is found to

move not only along the depth-mean longshore current direction but also in the wave

propagation direction. The former is called longshore sediment transport or current

direction sediment transport. The latter is called onshore-offshore sediment transport or

cross-shore sediment transport. Considering wave transformations on a beach with

parallel seabed contours, it is known that the wave direction becomes almost normal to

the beach as the waves approach breaking while the wave-induced current flows parallel

to the beach along the seabed contours.

The modelling of onshore-offshore sediment transport and longshore sediment transport

has generally developed separately due to the different mechanism for each of them.

Onshore-offshore sediment transport has been studied by Watanabe and Horikawa(1980),

Nairn(1988), and O'Connor et al.(1992c) using a Box approach, and by Deigaard et

al. (1986a) using a 1DV IWP approach.

Since the instantaneous behaviour of sediment transport is related to both the magnitude

of the total (wave + steady current flow) current and wave phase, other researchers

have proposed a combined onshore-offshore and longshore sediment transport model for

general use, see Watanabe et al.6986r, and O'Connor and Nicholson(1989).
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In the present study, onshore-offshore transport is neglected, since the main objective of

the study is to simulate horizontal two-dimensional bed level change near harbour

entrances, rather than shoreline changes.

In the absence of tides, engineering modelling has developed along two main lines

dictated by time-scale. For short term predictions covering 5-10 hours - the so-called

"worst storm" situation in the lifetime of a structure - either a "Continuum" approach or

a "Box" approach has been used. For long term (100 years) predictions, one- and multi-

(also called n-) line models have been developed in which the surf zone is described by

a single or by n-lines of computational points spaced along the beach direction.

The Continuum approach uses a mesh of computation points but solves either depth-

average two-dimensional or three-dimensional time-dependent suspended sediment

equations coupled with a bed level change mass continuity equation. Such equations can

operate through the wave-period (IWP) but more usually operate in a WPA mode.

The Box approach distributes a "mesh" of computation points over the coastal area and

then uses the sediment transport rates at the mesh intersections to calculate the bed level

changes using a two-dimensional-horizontal, depth-averaged, sediment mass conservation

equation. The sediment transport rates are either calculated from WPA empirical

formulae or from IWP one-dimensional vertical over the depth (1DV) time-dependent

suspended sediment equations.

50



For the present siltation modelling study, only WPA type models are considered to be

adequate for medium or long term morphological change due to their small total

computational time. WPA modelling of sediment transport is conceptually divided into

3 groups as Continuum models, Box models, and shoreline change models. Continuum

models are further divided into three-dimensional models and depth-integrated two-

dimensional horizontal models.

3.2 Three-Dimensional Continuum Models

3.2.1 Introduction

Sediment transport is usually described by suspended load and bed load or total load. The

movement of suspended sediment can be described by a diffusion-advection mathematical

equation. When sediment transport is separately described by suspended sediment

transport and bed load transport, bed level change can be obtained from the information

of suspended sediment concentration and bed load transport. Final bed level changes are

calculated from the difference in vertical erosion rate and deposition rate, and the effects

of spatial gradients on the bed load transport rate. Entrainment is usually calculated from

empirical equations using local flow and sediment characteristics, while deposition is

calculated from a numerical solution of the suspended sediment equation. Bed load

transport is usually estimated by an empirical formula.
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Solving the three-dimensional equation of the movement of suspended sediment

concentration is the most general method to incorporate the non-uniformity of the

suspended sediment concentration accurately. Three-dimensional modelling also includes

the minimum number of assumptions and can consider non-uniformity or unsteadiness,

although it involves more computational effort as a compensation for the generality.

Model accuracy to predict the suspended sediment transport is dependent on the mixing

coefficients, bed reference level concentration, and velocity distribution.

Typical models involving currents have been described by a number of authors. For

example, Nicholson(1978,1983), who reviewed 3D sediment transport modelling for

current flows up to 1983, and presented 3D sediment transport models for particulate and

cohesive sediments using a regular grid system; Sheng(1983), who presented a 3D

cohesive sediment transport model which is linked to a 3D hydrodynamic flow model

using a sigma coordinate transformation; Nicholson and O'Connor(1986), who described

a 3D cohesive sediment transport model and its application to a field situation; O'Connor

and Nicholson(1988a), who described a 3D particulate sediment transport model and its

application to a laboratory experiment situation.

Typical models involving both waves and currents have been described by van

Rijn(1985), who described a 2DV particulate sediment transport model; van Rijn and

Meijer(1988, 1991), who described a 3D particulate sediment model using a finite

element method; Van Rijn(1989), and van Rijn and Kroon(1992) described a 1DV
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c=F+E+c l ; us=r2s+iis+u (3.2a)

(3.2b)

sediment transport model which has relevant theories for their 3D model. A description

of the essential features of such models is given below.

3.2.2 Basic Equation of Suspended Sediment Concentration

Sediment mass is conserved in a finite fixed volume of fluid moving by advection, and

can be described by the equation, see Fischer et al.(1979):

—a
a
t (pc)+—a (pcu )+—a (pcv )+—a (pcw ) =0

ax	 s ay	 ' az	 s
(3.1)

where us, v„ ws are the instantaneous sediment velocities in the x,y,z directions,

respectively; c is the instantaneous sediment concentration in volume of sediment per unit

volume of solution; and p is the sediment/water mixture density in mass per unit volume

of mixture.

It is next assumed that only very small changes in mixture density occur and that all

quantities can be written in terms of turbulent ('), turbulent mean (-), and wave-phase-

point mean (-) values, that is:

Substitution of equation (3.2) into equation (3.1) and wave-period averaging (denoted by
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(3.3)

bracket < >) produces the result:

a (L- 
s 

a7)
—E —87c 

a	 /<u c

--a <171 -S

Use is now made of Fick's law to relate the turbulent sediment fluxes to turbulent

diffusion coefficients (ex , Ey , cz), that is:

/ ,	 az,	aF‘-<usc =e — ; -<vsc > =e,,—, ; -< 	 > =ez-a-;
x ax	 o_y

(3.4)

While the sediment velocities are related to hydrodynamic fluid velocities by the

equation:

'147-s =r7- wf.	 ( 3 5)

where ii, w- are the wave-period-average fluid velocities, and wf is the particle fall

velocity, and the z axis is assumed to be positive in an upward vertical direction.

Equation (3.3) can now be reduced to the equation:

+ a (7E) + a ( .7-c-), + aza(047-._wf)3)
at ax	 ay
= a (e a-E ) + a (e a-c- )

 +_Q (eza)
ax ay Y ay az az

(CisE)(fisO)	 ('v)

(3.6)

In many past studies, the wave correlation terms (the last three terms of equation (3.6))

have been neglected. However, Van Rijn(1989) and O'Connor(1991) have suggested that
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(1-n) —
t +	

+

at —a-Tay

Az. ag-bxaqb'- (D — P) = 0 (3.8a)

ac
D=wfca ; P= (esz ) bed = WfCa (3.8h)

these terms are not zero but that their effect can be included into the diffusion terms. The

diffusion terms are thus renamed to Esx, Esy , and E sz , respectively.

Finally, making use of the fluid continuity equation (2.25), that is:

the basic three-dimensional WPA equation for suspended sediment is given below after

dropping the overbars for convenience:

acac+__ac+__ac+,___wf) az

at axu	 v ay "I'
a	 ac	 a

-	

ac) _ a (e ac ) =0

- ax (esx 'T;c ) TT (es-v TT az — az

(3.7)

3.2.3 Basic Equation of Seabed Level Change

While the suspended sediment concentration above a reference level near to the sea-bed

is solved by equation (3.7), the change in bed level is obtained from the sediment mass

conservation equation:

where zb is the mean bed level above a horizontal datum; D, P are the amounts of
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aX ay
(3.9)

sediment deposition and erosion at the bed, respectively in net volume per unit area per

unit time; ca, ca ' are the near-bed suspended sediment concentrations at time t and at

t= cc (infinity), respectively; (E sz ac/az) bcd is the entrainment of sediment at the nearbed

level (a), usually taken as half the bed form height(4) for a rippled bed, see Fig. 3.1;

n is the porosity of the seabed; b) -ibya a are the x, y components of the bed load transportAx 

rate (qb) which has units of net volume per unit area per unit time.

If the wave and current field lasts long enough to achieve a steady state situation

(3c/t=0), then the deposition minus erosion rate (D-P) becomes identical to the gradient

of suspended sediment load as can be shown by depth-integration of equation (3.7),

which leads to equation (3.9):

Substituting equation (3.9) into equation (3.8), the bed level change can be obtained from

the spatial gradients ((Ix, qty of the total (bed+ suspended) sediment load (q):

(1—n) 
az

b + aqtx +  
ago

' -o
at aK ay

qt.--qb,c+grs. ; qsx=f n uc dz
21,

(3.10a)

(3.10b)

qty=gby+qsy ; gay- J
en 

vc dz
zb

(3.10c)

where n is the mean water level, see Fig. 3.1.
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Solution of the equation for bed level change (3.10) requires details of the location of the

"near bed level", the bed load transport in waves and currents, and the suspended load

transport in waves and currents, which is obtained from the solution of the equation of

suspended sediment concentration (3.7), which, in turn, requires velocity distribution.

Solution of the equation for suspended sediment concentration (3.7) requires details of

the near-bed concentration (c.'), the diffusion coefficients e sx , E u , and E,,, and details of

the three-dimensional flow field (u,v,w).

3.2.4 Reference Level Concentration (ca')

The two near-bed quantities, bed load (q b) and reference level concentration (ca') are

usually predicted by empirical formula, and they are closely related. Ideally, both

formula for bed load and reference level concentration should be calibrated by direct

measurements. However, once one quantity is calibrated by direct measurements, the

other quantity can be predicted from the relation between the two quantities.

Various authors have proposed empirical equations for c a '. Nielsen(1984) proposed a

formula for waves:

c:--0.005*;
	

(3.11)

where tkr is a grain-related Shields parameter modified to include the effect of ripples.
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1
D.--d50 ( (s-i)g/v 2 ) 3

(3.14)

Fredsoe et al. (1985) related the instantaneous reference level suspended sediment

concentration within a wave period with a Shields parameter for a flat bed.

Van Rijn(1989) is one of the few authors to address the case of waves and currents. He

proposed an empirical formula for the reference level sediment concentration for wave

and current flows over a rippled or flat bed, and represents the most recently published

formula. Originally he developed the formula for reference level suspended sediment

concentration for situations with only currents, and he compared it with measured data

for currents. The formula was also calibrated by laboratory measurements for wave

situations. The reference level for "near-bed" position was selected to be half a ripple

height for rippled sediment beds, or the sediment boundary layer thickness for a flat bed.

Van Rijn's equation has the form in net sediment volume per water volume (m3/0):

d T
1.5

ca=0.015 50  *	 (3.12)
a D,,° • 3

where

1
t b

'
 wc - t cr

T.- 	 ,	 i f tib,„� tcr
Tcr

T. = 0 ,	 i f tib,wc<Tar

/	 __,./	 j_,./„,.6 b, wc- 4 b, w ' 4 b, c

tb,w= -4. 1)11 wk wU-

(3.13)

(3.15)

(3.16)
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(3.20)

(3.21)

CC -
wc

8
1n2 (90	 ''')ka

8
1n2 (90—Z)ks

(3.22)

c= p a [1,f, U2

T er = ( Ps- P ) gd50lircr

ili cT =0.24 D 1 ,	 1<D, � 4
= 0.14 D;0" 64 , 4<D, � 10
=0.04 D, 0.1 ,	 10<D,s20
= 0.013 D 29 , 20<1J � 150
= 0.055,	 D, � 150

(3.19)

4=0.24 1og-2(12d/3d90)

fc=0.24 1og-2 (12 Wks)

fa =0 .24 1og-2 (12 d/ka)

8s=31cs

ks=3 A r , for a rippled bed
ks =8,,„	 for a flat bed

(3.23)

(3.24)

(3.25)

(3.26)

(3.27)
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2 sinh(- 27cd-) (3.29)

itH
7c,

T sinh( 2d
 )

L

(3.30)

ô = 0 . 0 72 A (A/1(s ) -(3.25	 (3.28)

where a is the reference level from the mean bed level, d50 is the median diameter of bed

material, T. is the dimensionless shear stress parameter, D. is the dimensionless particle

diameter, s --= (p 5-p)I p, p s is the sediment density, p is the water density, v is the water

kinematic viscosity, Tbovo ' is the wave and current-related effective (grain-drag) bed-shear

stress (N/m2), Tb,w ' is the wave-related effective (grain-drag) bed-shear stress (N/m 2), Tb,c'

is the current-related effective (grain-drag) bed-shear stress, Tor is the critical bed-shear

stress according to Shields (N/m 2), U is the depth-mean current velocity, U. is the near-

bed wave maximum orbital velocity given by linear wave theory, p.m, is an efficiency

factor for waves, po is an efficiency factor for currents, k s is the bed roughness, ka is the

apparent roughness, see Fig. 3.2, fc, fc ' , fa are current-related friction factors, f, is a

wave-related friction factor, awe is the wave-current interaction coefficient, 8, is the

wave-related boundary layer thickness, Ss is the sediment-related near-bed mixing layer

thickness, A is the wave orbital excursion length amplitude near the bed, U. is the wave

orbital velocity amplitude near the bed, H is the wave height, d is the water depth, L is

the wave length, and T is the wave period.
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For a rippled bed, the selection of the reference level height is an important problem,

considering the rapid variation of wave-period-average suspended sediment concentration

near the bed. Van Rijn(1989) selected half a ripple height from the mean bed level as the

reference level. He also treated a flat bed differently from a rippled bed by using the

concept of the near-bed mixing layer thickness, equation (3.26).

Van Rijn(1989) calibrated equation (3.12) with a set of laboratory data involving waves.

The factor p,„, was needed to fit the calculated reference concentration values to the

measured reference concentration data, and resulted in the functional dependence

(equation 3.21) on effective bed grain size (D.).

At first sight Van Rijn's expression for c a  appears to be a combination of the non-

dimensional groups a/d50 , T. and D. However, if the critical shear stress term is ignored

in the numerator of the expression for T., and putting the weak relation of c a ' with D.-°.3

and the proportional relation between a and d50 (implied by existing bed roughness

models) into the scaling parameter C 1 , the equation reduces to the form:

Ca = C1 1 1P 1 1 1. 5
	 (3.31)

where is an effective (grain-drag) Shields parameter for wave and current

( =Tb,,O(ps-p)gd50). The functional relationship of the reference level concentration in

equation (3.31) is a simple function of the Shields parameter, as the Nielsen(1984)'s

equation (3.11). However, the power of 1.5 in equation (3.31) is smaller than

Nielsen' s(1984) value of 3.
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Van Rijn(1989) obtained the representative bed-shear stress for waves and current by

adding the two separate shear stresses for waves and current, with somewhat arbitrary

reduction parameters, p,w , and p c . It is hardly expected that the correlation between the

efficiency factor for waves (p w) with the particle size parameter (D.) can be explained

by a physical mechanism. Therefore, it is suggested that if variation of instantaneous

shear stress can be properly accounted for without involving any reduction factor, the

relationship between the WPA reference level concentration and the Shields parameter

could be improved.

For present purposes, a new formula for specifying the WPA reference level suspended

sediment concentration is proposed. The formula for the suspended sediment

concentration in terms of net volume of sediment per unit volume (m3 1m3) has the form:

c:= c'2 < I f wc 11 .5>

	 (3.32)

where C2 is a scale factor, *,,,, is the instantaneous vector Shields parameter based on

the total shear stress, defined as:

'O w (t) —	 t'b'wc(t)
C	 ( S-1) p gd50

t. b, ivc ( t) =;6 b, cm+f b, w ( t)

(3.33)

(3.36)

f
i

= cm .,-c.	 _.

b, an fc b, C ; tb,c=Pfc(Iltil (3.34)
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tib, ,,,= p1-UodUcdc0s (crt)	 (3.35)

where 'tib, ,, is the wave and current-related total bed shear stress; 'fb, ,,„is the current-

related total bed shear stress which includes the effect of waves; f b, w is the

instantaneous wave-related vector shear stress, see Fig. (3.3); a is the wave angular

frequency (27r/T); Cl. is the depth-mean current velocity vector; 0.0 is the near-bed

maximum wave orbital velocity vector; f„, is the wave friction coefficient (no currents);

fo is the current friction factor (no waves, =K2/(1n(d/z0)-1)2; K is the von Karman

constant, zo = k/30; and fcm is a current friction factor modified by waves. The bracket

< > indicates a wave-period-average, that is 1/T - S 01.0dt.

The wave friction coefficient f„, is obtained from a 1DV wave boundary layer model, see

Chapter 7, as:

fw=0 .000684 exp (7.80 (-21-) -0.106)
zo

(3.37)

The current friction factor modified by waves (fm) is introduced in Chapter 7 in detail.

For a flat bed, van Rijn's(1989) bed roughness (kJ may be used. The power of 1.5 is

suggested as that of van Rijn(1989)'s equation (3.12) for the wave-period-average

reference concentration.

The above equation (3.32) ignores the minimum or critical Shields parameter which is

needed for incipient motion of bed sediment. However, the error by ignoring the
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minimum Shields value may not be significant in strong current or wave situations.

Considering waves in the field, especially random wave and current situations, which

occur in real fields, the maximum bed shear stress within a wave period is usually much

larger than the WPA bed shear stress so that the critical Shields value becomes less

important. Davies(1991) also excluded the effect of critical Shields parameter from the

calculated Shields parameter for the IWP simulation of suspended sediment concentration

in his 1DV suspended sediment model so as to always obtain a non-zero positive

reference level concentration.

Equation (3.32) implies that the instantaneous suspendtd sedimeut conce,1\tratim is

directly related to the instantaneous near-bed shear stress and that the wave-period-

average value is obtained by a direct time average. Equation (3.32) is also different from

van Rijn(1989)'s formula (3.12), since it uses a vector-summed shear stress rather than

a scalar addition of wave and current shear stresses; the wave-period-average value then

being obtained by a direct time integration. Clearly, it may be possible to parameterize

this approach, but it is not attempted in the present work. Instead, direct integration is

done at each grid point by using 16 time-steps per wave-period.

It should be noted that the Shields parameter for combined waves and currents in

equation (3.32) is for total shear stress. Ideally, the skin-friction component of the shear

stress should be used since this quantity is directly responsible for moving grains. In the

present work, it is assumed that the skin-friction component is related to the total shear
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stress and the self-adjusted bed roughness. Such simplification is considered justified for

present purposes.

In order to complete equation (3.32) for an engineering usage, the scale factor C2 needs

to be calibrated. The calibration of the factor is shown in Chapter 6 using limited data

sets from laboratories and a field (Chukpyon, Korea).

3.2.5 Bed Load (qb)

Sediment transport by rolling bed-grain or a saltation process has usually been called bed

load. Since the movement of sediment and water mixture within a thin bed load layer is

very complex, the bed load transport has been predicted by empirical formulae. Typical

empirical bed load formulae for current flows have been proposed by Einstein(1950),

Brown(1950), and van Rijn(1984). Empirical bed load formulae for wave and current

flows have also been proposed by Bijker(1967), Grant and Madsen(1976), and van

Rijn(1989).

Brown(1950) suggested an empirical bed load formula for current flows as follows:

4)b40* 	 ( 3 . 3 8 )

where orto b is the non-dimensional bed load transport, tir 	 is the Shields parameter,

which have the form:
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(1)b- 
qb 

wfd50
(3.39)

tb 
741- p ( s-i) gd50

(3.40)

Grant and Madsen(1976) proposed a modified scale factor in equation (3.38) for wave-

period-mean bed load transport.

Einstein(1950) proposed a relationship between the bed load and the reference level

sediment concentration for current flows on a flat bed. He assumed that the concentration

is constant inside the bed load layer and that the bed load can be obtained by multiplying

the reference level concentration (c a '), the bed load layer thickness (a), and the depth-

mean velocity in the layer (u b), which is:

qb =CN'Ub	 (3.41)

He further assumed that the thickness for the bed load on a flat bed is 2d 50, and

approximated the mean horizontal velocity inside the bed load layer to be 11.6 u., where

u. is the shear velocity.

Bijker(1971) also proposed a relationship between the bed load and the reference level

sediment concentration for wave and current flows on a rippled bed. He assumed the

thickness of the bed load as half the ripple height (4/2), and the mean velocity inside

the bed load layer as 6.34 u., where u. is the total bed friction velocity.
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D,,,° • 3
qb=0 . 25 -u * cc/50 (3.42)

Van Rijn's (1989) bed load formula (3.41) is the most recently published formula for

wave and current flows. Van Rijn(1989) proposed an empirical bed load formula for

wave and current flows, which is a simple extension of his bed load formula for current

flow alone. Thus:

where us ,e ' = (Tb I p)" , d50 is the median diameter of the bed material. Van Rijn(1989)

has not specifically mentioned about the usage of his formula (3.43) for the surf zone.

Van Rijn does not report if the formula has been calibrated against measured bed load

data for wave and current flows. Comparing van Rijn's(1989) equation (3.12) for the

reference level suspended sediment concentration and equation (3.42) for the bed load,

the depth-mean velocity inside the bed load layer results in 16.7 which is somewhat

greater than Einstein's value. However, since Einstein used u. rather than us', it is

possible that van Rijn's value is reasonably close to Einstein's value. The coefficient for

the bed load formula (3.42) was from the bed load formula for current-only flows, and

not from direct calibration with measurements of bed load for wave and current flows,

while the scale factor for the empirical equation (3.12) for reference level concentration

was calibrated from laboratory measurements for wave only flows.

Similarly to van Rijn's(1989) equation (3.12) for the reference level concentration,

equation (3.42) uses the scalar sum of the bed shear stresses for waves and currents with

efficiency coefficients. Such an approach is reasonable for co-linear motion but less so
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for angled wave and current flows. Therefore, it is proposed that a direct integration of

the instantaneous bed shear stress for combined wave and current be used and may

improve the accuracy of the prediction of bed load transport in a similar way to the

formula for the reference level concentration.

When a non-dimensional expression for the bed load transport is to be used, and the

depth-mean velocity inside the bed load layer is assumed to be proportional to the bed

friction velocity as in Einstein' s(1950) or Bijker's(1971) equations, equation (3.41) has

the form:

a((s-1)g)°.5 0.5 co
1:131b = C3 	 11/ ca.) Ca

Wfd50 °•S
(3.43)

where ifibiS the dimensionless bed load (=qb/wfd50), C3 is a proportional constant of the

bed layer velocity to the friction velocity, *cm 	 is the current-related Shields

parameter modified by waves (=u.,2/(s-1)gd50). If it is assumed that the variation of a((s-

1)g)° .5/wfd500.5 is small (for example, a is proportional to d50 according to existing bed

roughness theories, wf is proportional to d50" according to experimental results for a

coarse particle), equation (3.43) can be expressed in a similar form to Brown's(1950)

equation (3.38), but with a power of 2 rather than 3.

For present purposes, a formula for the bed load for wave and current flows is proposed

to obtain compatibility with equation (3.32) for the reference level suspended sediment

concentration, which is expressed in a non-dimensional form as follows:
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14;b1=c4C5< l'Owc1 1. 5 >

	 (3.44)

where (lib = db/ Wfd5 0 , the unit of bed load (q b) is net volume per unit width per unit

time; and * cinis the Shields parameter for the modified current-related shear stress due

to waves.

The functional relationship of the bed load equation (3.44) is also similar to Brown's

formula, which relates the dimensionless sediment transport rate to the Shields parameter,

although Brown's formula was originally developed for steady current flow. However,

the power of 1.5 is proposed for equation (3.44) for the compatibility with equation

(3.32) for the reference level concentration, while Brown's formula uses a power of 3.

The former current-related Shields parameter represents the transport capability, while

the latter wave and current-related Shields parameter represents the agitation capability.

The equation has a scaling coefficient C4 . Up to the present, there are not many bed load

data available for wave and current situations. The calibration of the bed load equation

(3.44) for waves and currents is done later in the theses (Chapter 6) using a limited

number of field data sets from Chukpyon Harbour, Korea.

3.2.6 Diffusion Coefficients ( ca, E sp Esz)

Selection of the appropriate diffusion coefficient values to use for three-dimensional

69



(3.45)

models is not an easy task since there is no relevant theory to produce analytical

expressions because of the complexity of real flows. Most modellers assume that

sediment mixing coefficients are proportional to fluid eddy viscosity coefficients with the

coefficient of proportionality being almost unity or slightly less. The diffusion

coefficients for waves have been described differently from those for currents by several

researchers.

In steady uniform open channel flows, it is possible to derive an analytical expression for

the vertical eddy viscosity coefficient, see McDowell and O'Connor(1977). The common

parabolic distribution of the diffusion coefficient over the depth for current flows (E„,e)

has the form:

where (3 is the proportional constant between the sediment diffusion coefficient and the

fluid eddy viscosity; and u. ,c is the current-related total friction velocity. Van Rijn(1984)

has proposed a modification of equation (3.45) for the upper half of the water depth,

based on the analysis of measurements, as follows:

esz,c=0. 25KP u. , ,d,	 for z� 0.5d	 (3.46)

Many modellers then use the depth-average value of this vertical diffusion coefficient for

lateral and longitudinal directions with appropriate scale factors, see O'Connor and

Nicholson(1988). Due to lack of accurate experimental measurements, some researchers
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have used a constant horizontal diffusion coefficient through the depth. Van Rijn and

Meijer(1988) used 0.1 to 1.0 m2/s. Kalinske and Pien(1943) argued from their

experiments in steady currents that the lateral diffusion coefficient for sediment mass is

slightly greater than its vertical counterpart. Considering the general turbulence

characteristics, there should be a close relationship between vertical and horizontal

diffusion coefficients.

For waves, many researchers have tried to produce empirical equations. For example,

Homma and Horikawa(1962), Bijker(1967), Lungren(1972), Swart(1976), Nielsen(1979),

and Kosyan(1985) have proposed empirical theories to describe the vertical diffusion

coefficient for suspended sediment. Some workers have derived the vertical coefficient

from the solution of a 1DV bed boundary layer model. For example, typical 1DV models

include van Kesteren and Bakker(1984), Deigaard et al.(1986a), Fredsoe et al.(1985),

Justesen et al.(1986), and Davies(1990). In some of these cases, the researchers have

assumed flat bed conditions as might occur in sheet flow in the surf zone. However,

recent work, see O'Connor et al.(1992a), has shown the importance of including mass

transport effects in such models, otherwise incorrect results are obtained.

Van Rijn(1989) has examined many of the previous attempts to produce empirical

expressions or 1DV model results for sediment diffusion coefficients, see Fig. 3.4. He

concluded that each produces widely different results. Van Rijn(1989), therefore,

analyzed various laboratory data sets and suggested his own set of empirical equations
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based upon fitting the 1DV steady state(P=D) sediment equation to the laboratory data

and thereby balancing E sz and its vertical distribution directly.

van Rijn(1989)'s empirical equations for diffusion coefficient related to wave flows (Esz,w)

are thus:

esz, w=esz, w, bed'	 for Z� 8 s
	 (3 .47a)

esz,w=esz,w, max 	 for z� 0. 5d
	

(3.47b)

Iesz, w=esz, w, bed+ (esz, w,max -e sz, w, bed) 	

for 8s<z<0.5d

where

esz,w,bed=0 . 004D.abi8sU,.

dH=aesz, w, max 0. 035 br

(3.47c)

(3.48)

(3.49)

r	
H,

h =3 --) -0.8,
- 	 d

a =1br

for —H� O . 6

for
(3.50)

where 0/br is a breaking coefficient ( > 1 for plunging breakers, =1 for spilling breakers).

For wave and current flows, van Rijn(1989) proposed the following equation:

esz :: ( €2,sz,w+es2 z, c) 0.5
	

(3.51)
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Since the above equations are purely based on the analysis of experimental data, the

applicability of van Rijn's(1989) equation (3.47) may be limited to the range of variables

covered by the measurement data.

3.2.7 Velocity Data Input

One final problem in dealing with three-dimensional models is that the solution of the

suspended sediment equation (3.7) needs details of the three-dimensional flow field. In

previous models, researchers have either used direct measurements of the horizontal flow

field, see O'Connor and Nicholson(1988a), and then determined the vertical velocity

from the local equation for fluid continuity (2.25), or have assumed a simple logarithmic

velocity profile matched to a predicted depth-mean velocity, typical of steady, open-

channel flow, see for example, Van Rijn and Meijer(1988). However, Lungren(1972),

van Kesteren and Bakker(1984), O'Connor and Yoo(1988), and van INACM% have

suggested that the simple logarithmic profile should be modified in wave/current flows

to allow for the enhanced frictional dissipation in the bed boundary layer, which causes

a distortion of the current velocity profile; near-bed velocity being reduced, see Fig. 3.2.

Van Rijn(1989) suggests splitting the mean-velocity profile into two straight lines as

indicated by the following equation:
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(3.52b)

-1+1n( 30d )
ka

Ci. 1 n (  
908

')
ka

C18- (3.53)

(3.54)

0 ln( 30z)
ka

0- 	 , for z� 38 	 (3.52a)
-1+1n( 30z)

ka

1, , 3oz,a -1-11 X -/6	 lc

ln(  908
ks

W)
, for z<38

where

where F18 is the velocity vector at the upper edge of the wave boundary layer. Van

Rijn(1989) used an empirical equation for the effective Nikuradse roughness height (la)

related to the strength of the wave and currents fields

( u./101, 101=Vu2 + V2 ) as:

U.
ka =ksexp(

y
—=-_, ) ,

IUI
ka=10,

if Ica � 10

if ka � 10

where 7 is an empirical parameter. The parameter -y is 0.75, 0.75, 1.1 for wave-current

interaction angles MO of 0, 7r/2, -n- radians, respectively; the parameter for an

intermediate angle being obtained by linear interpolation, see van Rijn(1989), or by the

following equation, see van Rijn and Kroon(1992):
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(3.55)

where 0, is in radian. Van Rijn's(1989) and van Rijn and Kroon's(1992) engineering

formulae for velocity profile (3.52) include an important effect. Their formulae include

the effect of wave-current interaction up to angles of 180 °, and produce different

velocity profiles for following and opposing currents, while Lungren's(1972), and van

Kesteren and Bakker' s(1984) 1DV boundary layer models treat the following currents and

opposing currents identically. The different flow pattern for both flows has been pointed

out by many experimentalists, but no prediction method had been proposed until Van

Rijn(1989).

Once the horizontal velocities are obtained, the vertical velocity can be calculated from

the two horizontal velocities using the water mass conservation equation (2.25) as:

	

z au	 f z av

	

147= f .-.,-	 dz+	 -,-,-	 dz

	

zo ax	 zo ay
(3.56)

3.3 Depth-Average Two-Dimensional Horizontal Continuum Models

Some researchers have used a depth-integrated horizontal two-dimensional form of the

three-dimensional sediment mass conservation equation (3.7) to simulate sediment

transport. The governing equation has the form:
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ac ,ac „ac 1 a ,,„, ac, _ 1 a ,—, L., --- ' V	 =	 k L.A.L., - / " -	 k
at ax ay

-
 Ti -Ec x ax d ay Y8y

C
+SS (3.57)

where C is the depth-mean suspended sediment concentration, D x, Dy are the dispersion

coefficients in the x, y axis, respectively, SS is the source or sink term due to the

entrainment from the bed or deposition onto the bed. The dispersion coefficients

represent the effect of shear dispersion and turbulent diffusion.

Traditionally this type of modelling has been widely used for studying the unsteady

movement of mud, fine silts and sands, where it is assumed that the variation of

concentration over the depth of the water column is not too large or can be calculated on

the basis of local equilibrium conditions. Bed level changes are then determined in the

same way as for the three-dimensional Continuum approach. Such modelling is

traditionally used for tidal flows with wave effects introduced on a WPA basis. Typical

model examples include Jin et al.(1992) for current flows, de Vriend(1987), Katopodi

and Ribberink(1992) for wave and current flow, and O'Connor and Nicholson(1989),

who calculated the siltation at a trench along the Danish coastline.

The problem with such modelling is the need to specify the vertical distribution of

suspended sediment. The use of a vertical equilibrium profile is only an approximation

and is usually based on current-dominant conditions, as assumed by Bijker(1967). The

non-uniformity effects of structures and spatial non-uniformity of the flow and wave field

are less easy to incorporate into this type of model.
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3.4 Box Models

The simplest method to calculate bed level change for both longshore and onshore-

offshore sediment transport is to use a ready-made sediment transport formulae or one-

dimensional vertical (1DV) suspended sediment model at each model grid point, and then

solve the bed level change equation. Such an approach assumes that the flow and

sediment transport at every point is in equilibrium with local conditions. The assumption

can be accepted for mildly-sloped sea bed with coarse sediment grains, since such

material rapidly adjusts to local changes in flow and wave conditions, see

O'Connor(1991).

The main requirement of such models is a predictor of bed and suspended sediment

transport separately or combined (the total load approach) under local waves and

currents.

Many sediment transport formula can be found in the literature and are either

modifications of river or tidal formulae with modification for waves or are obtained by

applying the river formulae to local conditions during a wave cycle and then averaging

the result over a wave period.
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Some widely used formulae for total load are Engelund and Hansen(1967), Ackers and

White(1973) for current flows, and Grant and Madsen(1976) for wave and current flows.

Bed and suspended load approaches are due to Bijker(1967), van Rijn(1989), and

Raudkivi and Dette(1991).

A better approach is to use a 1DV suspended sediment model and to solve it as an IWP

basis, see Ribberlink and Al-Salem(1990), Fredsoe et al.(1985), and O'Connor et

al. (1992a). These include modelling of IWP suspended sediment modelling over a rippled

or a flat bed, on a 1DV or 2DV dimensional domain. Some researchers included the

effect of the enhanced eddy viscosity due to wave breaking. Typical 1DV wave boundary

layer flow and suspended sediment models are briefly described below.

Nielsen(1986) modelled IWP suspended sediment for wave flow, and Ribberink and Al-

Salem(1990) modelled IWP suspended sediment for wave and current flows over a

rippled bed by a 1DV model. Justesen et al. (1986) and Ifuku and Kaldnuma(1988) have

included enhanced eddy viscosity by wave breaking in their IWP suspended sediment

models. Davies(1990) has stressed the importance of IWP suspended sediment modelling,

showing the quite big difference between WPA and IWP suspended sediment transport

rate. Blondeaux and Vittori(1990), and Chapalain and Boczar-Karakiewicz(1992)

modelled IWP suspended sediment over ripples using 1DV flow and sediment models.
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Bakker(1974), Fredsoe at al.(1985), and Armanini and Ruol(1988) modelled IWP

variation of the suspended sediment concentration over a flat bed. Sheet flow of water

and sediment mixture over a flat bed has also been studied by Bakker et al.(1988).

More fundamental studies have been done by some researchers using detailed 2DV flow

and suspended sediment models. The flow and the suspended sediment concentration has

been modelled over a ripple length using a periodic condition for both side boundaries.

The 2DV modelling approach on a non-sloped bed may be regarded as a point model in

a broad meaning, since it assumes a horizontally uniform condition. Typical works on

the 2DV flow or suspended sediment modelling are listed below.

Du Toit and Sleath(1981), Broker and Fredsoe(1983), Sato(1987) have done experiment

on 2DV flows over ripples. Kennedy and Locher(1972) and Bosman(1982b) has

measured the 2DV IWP variation of the suspended sediment concentration over ripples.

Sleath(1974a,1974b ,1982 ,1984) ,Longuet-Higgins(1981) ,Macpherson(1984) , Sato(1987) ,

Horikawa and Ikeda(1990), Hansen et al.(1991) have done numerical modelling on 2DV

flows over ripples, and Macpherson(1984) Sato(1987) and Hansen et al.(1991) have

carried out 2DV flow and suspended sediment modelling.

Asaeda et al.(1989) have tried to separate bed sediment entrainment over a rippled bed

into two sources, vortex entrainment and skin friction-induced entrainment on a ripple
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surface for uniform current flows. O'Connor et al.(1992a) have also proposed to separate

the sea-bed entrainment for wave and current flows into the vortex entrainment and the

sea-bed surface entrainment, and to use two different levels for the two entrainments.

Measurements or modelling for random waves include Green and Vincent(1990), who

have shown near-breakerline IWP field measurement of suspended sediment concentration

in random waves; and O'Connor et al.(1992a), who have compared a set of field

measurements of the near-bed velocity variation inside the wave boundary layer with a

1DV model result, which incorporates short-crested random wave and current flows.

Unfortunately, these detailed IWP, 1DV or 2DV micro-scale modelling approaches have

not yet been well established or parameterized to be used for field sediment transport

applications due to insufficient data to verify the various theories. The direct use of IWP

modelling for a field problem is also prohibited by its long computation time.

Although the Box approach is simple to use, this type of modelling is based on an

equilibrium state at each computational point, so that it cannot reflect the effect of non-

uniform or unsteady sediment behaviour around structures nor the lateral dispersion that

results from non-uniform flow fields. It has been pointed out that the inclusion of non-

uniformity has a smoothing effect on the final bed level change, see Kadopodi and

Ribberink(1992). Conversely, when non-uniformity is ignored, the bed level change may

be exaggerated.
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3.5 Simple Shoreline Change Models

These models calculate onshore-offshore movement of the coastline due to longitudinal

differences in sediment transport rate. The longitudinal sediment transport rate is usually

calculated from an empirical formula, such as the CERC formula(U.S. Corps of

Engineers, 1984) which relates the total integrated longshore transport rate across the surf

zone to the wave energy at breaking and the angle of wave breaking, see also

Horikawa(1986), and Gravens et al. (1991). Since the model involves simple empirical

formulae and numerical techniques, it has been effectively used for long-term calculation

of shoreline change. If the bulk longshore sediment transport rate is distributed across

the surf zone, it is then possible to form a multi-line (n-line) model, see Perlin and

Dean(1983) , Horikawa(1986) .

In most one-line applications, any onshore-offshore transport due to wave motion

asymmetry, beach slope or undertow current is neglected. However, on-offshore

sediment transport can be added to the model, using the concept of an equilibrium

profile, so that more realistic shoreline change can be included in the model, see

Cacoutas(1982). A simpler onshore-offshore approach is used in n-line models.

While such models provide a useful description of shore-line changes, they are less useful

if structures are present since the effect of the structure can only be included by altering

model boundary conditions. Unfortunately, structures also change the onshore-offshore
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distribution of sediment and the shape of the equilibrium profile. Such effects cannot

readily be included in such simple models.

3.6 Conclusions

Sediment transport around structures is highly non-uniform due to the rapidly varying

wave and current field around them. Unfortunately while many modelling approaches

now exist, the majority are unable to provide full details of the non-uniform flow and

sediment transport processes. Depth-mean two-dimensional horizontal Continuum

modelling provides a reasonable approximation but still requires details of the depth

variation in sediment concentration. Three-dimensional Continuum modelling of

suspended sediment transport is the most general and effective model approach to

simulate particulate sediment distribution and transport around structures, but needs to

be used in a WPA mode to reduce costs.

In the present work, it is proposed to use the three-dimensional Continuum approach to

sediment modelling and to make use of many of van Rijn' s(1989) equations to allow for

wave-current interaction effects on current profiles as well as with seabed entrainment.

While Van Rijn also proposes a methodology for vertical diffusion coefficients it is

proposed to look at a 1DV bed boundary model as a means of improving the

specification of the vertical diffusion coefficients as suggested by O'Connor et al. (1992a).
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CHAPTER 4. WAVE PROPAGATION MODEL

4.1 Introduction

Ebersole et al.(1986) have developed an evolution elliptic wave propagation model based

upon the solution of an elliptic wave equation. The model includes the processes of wave

shoaling, refraction, diffraction, and breaking. Because the model solves the equilibrium

form of the wave equation without the unsteady term, it provides a very efficient model.

Ebersole et al. (1986)' s general approach is adopted for the present study, although some

simplification is done to produce a more efficient result; the resulting equations being

solved by finite difference methods.

Ebersole et al.(1986) applied the model to an open coast without structures. However,

in the present application, it is proposed to use the model for a situation with structures

and consequently some modification to Ebersole et al.'s approach is introduced.

The usefulness of the modified model is tested against laboratory tests of Berkhoff et

al.(1982) for an elliptic-shaped shoal located on a sloping seabed as well as against

Penney and Price' s(1952) analytical results for conditions in the lee of a semi-infinite

breakwater.

83



4.2 Governing Equations

The basic equations used by Ebersole et al. (1986) have already been given in Chapter

2. Thus equation (2.11) is needed for the gradient of wave phase function:

, a2 a a2 a 	 1
l- +- +- 

/ r7
Va'V

T7
(CC ) ) +k2-1VS12=0

a ax2 ay2 CCg
(2.11)

where a is the wave amplitude; x,y are longitudinal and lateral spatial cartesian co-

ordinates; c, cg are the wave phase velocity and group velocity, respectively; V is the

two-dimensional spatial gradient operator (a/ax, a/ay), k is the wave number; and s is

the wave phase function, while equation (2.14) and (2.15) are needed for wave amplitude

and wave direction, respectively, in the open sea away from structures:

a (a 2 cc ivslcoso) ±—a ( a 2 ccg l ysIsine) =0
ax	 ay

—a (1Vsisin0) --a ( Ivslcose) =0
ax	 ay

(2.14)

(2.15)

where 6) is the counter-clockwise wave direction relative to the negative x direction.

However, these equations can be further simplified for open sea situations to produce a

somewhat simpler model than that of Ebersole et al.(1986). Several approximate

parabolic wave equations have been proposed by many researchers including

Radder(1979), Booij(1981), and Liu and Boissevain(1988). The parabolic approximations
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are based on the assumption of small diffraction along the x axis(main wave propagation

direction), see Section 2.2.3.2. Dalrymple and Kirby(1988) have examined the error

produced by Radder's(1979) approximation of the elliptic mild slope equation, and have

shown that it is insignificant within an angle of some + 43 ° of the main direction of

wave propagation.

Liu and Boissevain(1988) proposed a simple approximation by transforming the elliptic

mild slope equation into the Helmholtz equation and then simply neglecting the second

derivative of the potential function with respect to x. Consequently, the second derivative

of wave amplitude along the main wave propagation direction (x) in equation (2.4) is

simply omitted in the present model. The assumption is similar to that used by Liu and

Boissevain(1988) in their parabolic modelling. The new equation for wave phase function

can then be written as:

ivs12=k2+_1 ( _a2 a +1 (Va •V( ccg) )
a ay 2 ccg (4.1)

while equations (2.14) and (2.15) are retained and solved for wave amplitude and wave

direction.

In the surf zone a wave breaking criterion must be used. Various methods exist related

to quantities such as bed slope, wave steepness, and Iribarren Number (bed slope over

square root of wave steepness). For present purposes, a simple criterion is used, that is:

Ilbn'd
	

(4.2)
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where Ilb is the breaking wave height and ay value of 0.78 has been used as suggested

for a solitary wave by McCowan(1894).

4.3 Boundary and Initial Conditions

When modelling a general area, the model is likely to have four boundaries. Firstly, an

offshore boundary along which wave height and direction are assumed known. Secondly,

two open boundaries are likely, one to the left of the direction of wave propagation, and

the other to the right of it. Thirdly, a land boundary along which a breaking wave

criterion is assumed.

If the offshore boundary is not in deep water, Snell's law is used to provide the wave

amplitude and direction along the boundary from values in deep water; it being assumed

that the water depth at the offshore boundary is deep enough so that diffraction effects

are small.

At side boundaries, a parallel beach condition is applied, that is:

aa =0 . ae =0 . alvsl -0
ay' TT ' ay

(4.3)

Since the solution near the side boundaries may not be very accurate, the side boundary

should be selected sufficiently far from the main study area as possible.
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When waves reach a land boundary, the waves are modified by breaking or absorbed or

partially reflected. While the waves are modified by a type of breaking (spilling,

plunging or surging) on a mild slope plane beach, they are modified by plunging or run-

up on a steep slope structure or a rocky cliff. For present purpose, wave reflection is

ignored under the assumption that the whole wave energy is dissipated at land

boundaries. Thus a proper decaying condition is used for both plane beach and abrupt

structure boundaries so that the waves disappear when they reach a land boundary. The

plan shape of the land boundary is not always straight so that computation grid for the

land boundary includes saw-tooth shaped grids, if a rectangular grid system is used. In

order to deal with the irregular land boundary grids, some modification of finite

difference schemes for the open sea area are required.

If there is a protected area in the study area, such as in the lee of a structure, the solution

for the protected area is provided separately from the finite difference model calculation

domain, since the present model cannot solve the external diffraction situation which

involves wide angle deviation from the x axis. Details are given in Section 4.6.

The elliptic wave problem does not require an initial condition, since it solves the

equilibrium state directly. However, the model has iterations at each calculation step,

which increases the computation effort somewhat. Initial values are simply used in the

model as a first guess, and do not affect the final solution. The number of iterations for

wave height, wave angle, and wave phase function gradient can be reduced if the initial
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values are accurately provided. Snell's law of refraction is generally used for the initial

values. Details are given in Appendix A.

4.4 Numerical schemes

A convenient coordinate system is selected, which assigns the x axis as the opposite

direction of main wave propagation, and the y axis as the longshore direction, see Fig.

4.1.

Any partial derivatives in the three governing equations (4.1), (2.14), and (2.15) are

substituted by finite difference equations. A simple space-centred finite difference

equation is used for the second order derivative along the x axis of the wave amplitude

in equation (4.1). A simple second-order correct centred scheme is used for any first

order derivative of any variable along the y axis, while a first-order upwind scheme is

used along the x axis, since the direction of propagation is from offshore to inshore.

Detailed schemes are given in Appendix B.

Unfortunately, the wave direction relative to the x axis is limited. Since the diffusion

term of the governing equation (4.1) is discretized by a second order scheme, the

computational domain of influence is confined within + 45 ° relative to the negative x

direction from a reference grid point (when assuming Ax=4). Furthermore, Dalrymple

88



and Kirby(1988) have recommended that the wave direction should be within + 43

relative to the negative x axis for an accurate solution (a wider range is allowed if a

higher order accurate scheme is used).

No restriction exists for the selection of grid sizes, since the model solves the evolution

equations, which are derived on the assumption of a smooth spatial variation of the

model variables. Therefore, the user can choose a grid size dependent upon the desired

accuracy, the resolution of the seabed, and computation costs.

4.5 Test on an Elliptic Shoal

The model was tested on Berkhoff et al. (1982)'s laboratory experimental data for wave

transformation over a submerged shoal. Berkhoff et al. (1982) used monochromatic waves

and determined wave heights at a number of points covering a submerged elliptic-shaped

shoal and adjacent plane-sloped seabed.

The geometry used in the laboratory tests is shown in Fig. 4.2. The location of the outer

boundary of the shoal is given by the equation:

,,//	 ,ll(_y ) 2 ÷( — )2=1
3	 4

(4.4)
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xi/Nh=o .45-0.02 (5 .84-37") +0.3-0.5 (1- ( 	 2—
5 )-

„II
_ ( 	 ..r 	 )2) 0.5 m,

3.75
inside the shoal

(4 . 5c)

where x" and y" are local coordinates in metric units, whose origin is located at the

centre of the shoal and rotated 20 ° in the clockwise direction relative to the x and y

axes.

Water depths are calculated from the following equations:

h=o .45 m,	 for yll�5.84 m	 (4.5a)

h=o .45-0.02 (5.84 -y") m,	 outside the shoal
	

(4.5b)

The model experiments were undertaken with an incident wave of period 1.0 second, a

height of 10.6 mm, and a direction of 0 ° from the negative x direction.

A model boundary was set up with a length of 25 m in the x axis direction, and 20 m

in the y axis direction. An x-directional grid size of 0.25 m and y-directional grid size

of 0.20 m are used for the model simulation so that the longitudinal axis of elliptic shoal

had about 50 grid points.

The calculated model wave height and wave direction distribution are shown in Fig. 4.3,

where the length of arrows represents wave height, and the direction of the arrow
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represents wave propagation direction. The general refraction and diffraction behind the

shoal is seen from Fig. 4.3 to be well simulated, including the caustic zone and beyond.

Calculated wave heights (in terms of amplification ratio = wave height at a point divided

by offshore incident wave height) along several profiles are shown in Figs. 4.4a-h for

Ebersole et al. ' s(1986) model result, the modified model, and the measured data. In

general, both model results show good agreement with the measured data. Ebersole et

al.' s(1986) model, which includes the second order derivative of wave amplitude along

the x axis produces almost the same results as the present model. This supports the

assumption of the small magnitude of the second order derivative along the x axis. The

maximum relative error of peak wave height calculated by the present model to the

maximum wave height calculated by Ebersole et al. 's(1986) model is -7 % at profile 2

and less than 1 % at profile 3,4 and 5. These are negligible values from an engineering

point of view. The maximum relative error of wave height calculated by the present

model to the maximum wave height measured in the laboratory at profile 5 is 20 %. The

error becomes bigger as waves approach the shoreline. Considering the simplification

involved in the model, the results seem to be satisfactory.

A discrepancy between the data and the model results is seen around the small wave

amplitude zones just next to the largest peaks, see Figs. 4.4c-4.4e. While the

measurements show a shape change of wave amplitude next to the caustic peak, the

model results show a smoother variation of the wave amplitude (minimum values of

model results are much larger than those of measurements). The smoothing effect is
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produced by the assumption involved in the derivation of the evolution wave equations

that the wave amplitude and the wave phase function are represented by values of a

single wave. Actually, after the waves pass over the submerged shoal, waves of a wide

range of angle converge on the caustic zone, and low amplitude zones appear due to the

phase difference of the waves. Although the present model contains local smoothing, the

overall capability of the model is shown to be good.

The present results can be improved further, since Kirby(1983) has shown that the

incorporation of a nonlinear wave theory (Stoke's second order wave) can simulate the

experimental conditions better. His model results gave slightly better agreement after

profile 3 of Fig. 4.2. However, any improvement is only likely to be marginal, and

consequently, wave nonlinearity is not considered further in the present study.

4.6 Test on a Semi-Infmite Breakwater

When an artificial structure, such as a breakwater, exits, inside the computation domain

with a lee protected area, restrictions are necessary when applying the present modified

Ebersole et al. 's(1986) model. Firstly, boundary values behind the breakwater are not

available (wave amplitude, wave direction). Secondly, the wave direction in the lee

region exceeds the limit of the allowable range (within 45 ° on both sides of the negative

x direction). Therefore, any protected area behind a structure is split from the main
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computation domain; the solution in the protected area being obtained by another method,

Penney and Price's(1952) analytical method. Penney and Price's (PP) solution is based

on the assumption of constant water depth, so that the solution is less accurate if the

protected area behind the structure has a sloping bed. In order to reduce the area in

which the PP solution is used, the dividing line between the two solutions is selected as

close to the structure as possible, i.e. 45 ° relative to the negative x direction from the

tip of the breakwater, see Fig. 4.5.

Penney and Price's(1952) solution along the dividing line is also used as boundary values

for the calculation in the open computation domain for the present numerical model.

Penney and Price's solution is based on constant water depth and full reflection at the

rear wall of the structure. It can be obtained from a tabular form of the Fresnel integral,

or by means of an approximation functions, see Abramowitz and Stegun(1965). Details

are given in Appendix B.

The Penney and Price modified model was next tested for the case of a semi-infinite

breakwater which lies parallel to the y axis with constant water depth for three incident

wave angles, -45, 0, and 45 ° expressed in the model variable notation and

corresponding to 45, 90 and 135 ° from the breakwater direction, respectively, see Figs.

4.6a-c. The calculated diffraction coefficient (the ratio of wave height to incident wave

height) for each test is shown in Figs. 4.6a-c (the diffraction coefficient in the lee area
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calculated by Penney and Price's method is not shown), while Penney and Price's(1952)

analytical solutions are shown in Figs. 4.7a-c. Detailed comparisons along two sections

at (-x/L=2, 8) are also shown in Figs. 4.8a-f.

Due to the relatively poor resolution just around the breakwater tip where the gradient

of wave height is large, the solution near the breakwater tip is not expected to be so

accurate. The diffraction coefficient along the straight line starting from the breakwater

tip along the incident wave angle and inside the shadow zone shows slightly larger values

than the analytical solution for all three incident wave angles. The solution outside the

shadow zone is close to the analytical solution, but the oscillatory shape of the analytical

solution is not reproduced by the model. The major reasons for this are again the

singleness of wave phase function gradient smoothing effect shown in the elliptic shoal

tests described in Section 4.5. The maximum relative error of computed wave height to

incident wave height is 11, 12, and 14 % for 45, 90, and 135 °, respectively for -x/L=2

(where L is the wavelength), and 12, 13, and 18 % for 45, 90, and 135 °, respectively

for -x/L=8. All are less than 20 %. These errors are considered to be acceptable for

engineering use.
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4.7 Conclusions

The Elliptic mild slope wave equation proposed by Berkhoff(1972) has been solved by

a modification of Ebersole et al. 's(1986) evolution elliptic approach. The modification

follows the idea of Liu and Boissevain(1988) in so far that the second order derivative

term of wave amplitude along the x axis is ignored, since it is considered to be of small

value. At present the model uses a simple constant wave height to water depth ratio to

simulate wave breaking.

Ebersole et al. 's(1986) model can be applied only to a rectangular domain with a straight

shoreline. For the present purpose, Ebersole et al.'s model was modified to treat non-

straight-shaped land boundary, by omitting the second derivative of the wave amplitude

along the y axis and using an upwind scheme for the first derivative of variables along

y axis instead of the central scheme.

The model was tested against Berkhoff et al. 's(1982) laboratory data which involves

shoaling, diffraction and refraction of waves over a submerged elliptic-shaped shoal, and

for constant depth diffraction around a semi-infinite breakwater. The test on the elliptic

shoal shows reasonable agreement with the measured data, and only minor differences

between the present model and Ebersole et al. 's(1986) approach.
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The model was also tested for the case of wave diffraction behind a semi-infinite

breakwater with constant depth. The model was applied to a part of the sea area except

the lee area of the breakwater. The boundary values along the dividing line were

provided by Penney and Price' s(1952) analytical solution. Penney and Price' s(1952)

analytical solution was also used for the lee area between the 45 ° line relative to the

negative x axis and the structure. The wave height inside this shadow zone is so small,

that it is expected that the analytical solution is acceptable if the depth variation in the

zone is not large. The test for a semi-infinite breakwater shows good agreement with

Penney and Price' s(1952) analytical solution, although some wave-length scale oscillation

is not produced.

Both applications for an elliptic shoal and a breakwater showed the smoothing nature of

the evolution model. However, the model operates generally well for the two geometries,

and is considered to be useful for engineering use. The model can be effectively used for

most seabed geometry with structures. The scheme is able to give accurate answers ( <

20 % maximum error) solution within the range of + 45 ° from the negative x direction.

96



CHAPTER 5. WAVE-INDUCED CURRENT MODEL

5.1 Introduction

Field and laboratory measurements of wave-induced currents on plane beaches always

show smooth profiles in the cross-shore direction, see Sonu(1975). Such smooth profiles

are produced in mathematical models by the use of a lateral (cross-shore) eddy viscosity

term, although Basco(1982) has argued that the mechanism of lateral turbulent eddy

viscosity is stidl very poorly understood. This is apparent in the technical literature,

where turbulent length scales have been assumed to be related to many variables

including water depth, wave particle excursion, surf zone width, plunging wave breaking

shear stress, bore-bore interactions, and swash zone mixing length. Nielsen(1977) has

argued that the lateral mixing that occurs in the surf zone is not a true turbulent eddy

viscosity but is a combined transport-dispersion process, since much fluid is advected

shoreward in the upper layer of a breaking wave between the wave crest and the wave

trough. Horilcawa(1978) suggests that from the point of view of a momentum balance,

the common belief is that the bottom shear stresses only dictate the strength of the

longshore current, while the lateral turbulent stresses only redistribute or smooth the

velocity profile normal to the shore. Jonnson et al.(1974) also showed from their

numerical model sensitivity test that the bottom roughness was more important than the
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lateral eddy viscosity in determining longshore current magnitude. Many computer

models also make use of linear wave theory in the surf zone, although the wave motion

at breaking is non-linear. Errors are involved, therefore, if the radiation stress calculated

by linear wave theory is used inside the surf zone.

From a modelling point of view, early work on nearshore circulation has involved

numerical models without lateral mixing terms, see Birkemeier and Dalrymple(1975,

1976), and Ebersole and Dalrymple(1979, 1980). Bettes et al.(1978) showed that even

a constant horizontal mixing coefficient could simulate wave-induced currents around

structures reasonably well. Spatially-variable surf zone eddy viscosity coefficients have

also been used in models by many authors using a range of formulations. Typical

examples are given by Bowen(1969), Longuet-Higgins(1970), Madsen et al.(1978),

Vreugdenhill(1980), Yoo(1986), and Yoo and O'Connor(1986a). Battjes(1983) has

suggested that two-equation (k,e) turbulent closure methods are needed to get correct

answers.

Considering the uncertainties of the physical processes and the weak base of the eddy

viscosity concept for lateral mixing, the present work adopts a more engineering

approach to the simulation of lateral mixing which results in a more efficient model for

wave-induced currents. Thus in the present work the lateral mixing term is eliminated

and replaced by an appropriate spatial spreading operator applied directly to the wave-

produced radiation stresses. This has merits in saving computational time and in
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enforcing numerical stability.

The present chapter describes the methods used to simulate the lateral mixing process in

the surf zone, the finite difference solution of the relevant hydrodynamic equations, and

the testing of the finite difference model against laboratory data of Nishimura et al. (1985)

for the case of wave-driven currents around a nearshore breakwater.

5.2 Governing Equations

The water mass continuity equation (2.31) is used for the calculation of water surface

elevation:

ai + a , ,jr•r% + a , _J., A =0

at ax ' ' If ' ay '1 "
(2.31)

where n is the WPA water level; t is time; x, y are the longitudinal and lateral cartesian

co-ordinates, respectively; d is the mean water depth; and U, V are the depth-mean

velocities in the x, y direction, respectively.

The depth-integrated WPA momentum equations (2.44) and (2.45) form the basic

equations:
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au +u au+v au,	 Rx
at ax WT. ga7f -Vc1 

_ 
C 

_
lp

av+u av+v av+	Ry _
at ax ay g ay pd pd

(2 . 44 )

(2.45)

where g is the acceleration due to gravity, p is the water density, Rx , Ry are the driving

force terms due to the gradient of the wave radiation stress in the x, y direction,

respectively (Rx=as„./ax+ as,,/ay, Ry =0S„y/ax+asyyiay), and rt, ty are the turbulent

shear stresses in the x, y direction, respectively.

The turbulent shear stress terms (Ti, ty) can be split into bed friction terms (Fb,„, Fb,y)

and lateral mixing terms (F1,x , F1,y), respectively, as:

t=Fb,i +F.Li	 (2.46)

where i is the index for x,y. Equations (2.44) and (2.45) are then simplified by the

elimination of the lateral mixing terms as follows:

aU +u au +v au	 Rx, f _Fb,x

at ax ay g ax pd pd u

av±u av±v av+g ari+ _____ 0
at ax ay ay pd pd

(5.1)

(5.2)

where RX , f, Ry , f are the smoothed driving force terms in the x, y direction, respectively.

The bed frictional force terms (F b,„, F") are calculated by a separate sub-model taking

account of wave-current interaction in boundary layer, see Section 7.7. Radiation stress
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terms (S„., S xy , Syy) are calculated by equations (2.39)-(2.42). A smoothing process

applied to the driving force terms is proposed to compensate for the elimination of the

lateral mixing terms, and an appropriate method is introduced in the following sections.

5.3 Representation of Lateral Mixing

In order to simplify the lateral mixing terms in the wave-induced current model, use is

made of Longuet-Higgins' analytical approach to the calculation of longshore currents

on an infinitely long plane beach in the y direction as shown in Fig. 5.1. Under such

conditions, the longitudinal momentum equation (2.45) reduces to the simple form:

Ry-Fb,y-F1, y = 0
	

(5.3)

where Ry =aS„,y/ax, since aSyy/ay =0 for a parallel beach. In the absence of lateral mixing

(FLy =0), equation (5.3) shows that the driving force or the local longshore gradient of

the radiation stress (Ry) balances the local dissipation of wave energy by bed friction

(Fb,y).

Ry. Fb , y= 0
	

(5.4)

Longuet-Higgins(1970) derived an analytical expression for R y which has the following

form:
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Fb, y —
_ —2 f cmp UV

71
(5.6)

3
R= 5 ov 2 (gd) ( sine ) ad

	

Y 16 r '	 c	 ax
5	 4	 5	 3

- 16 P g `Y 2 (tanp) (  sine , __
1 A i

C

(5.5a)

for x � xb (inside the surf zone)

R=0 ,
	 for x>xb (outside the surf zone)	 (5.5b)

where 7 is the breaker ratio, 0 is the wave direction at the calculation point relative to

the negative x direction, 0 is the angle of the sea bed slope relative to the still water

level, x is the distance from the shoreline in the offshore direction, c is the wave phase

celerity, and the subscript b is for the breaking point, see Fig. 5.1.

Longuet-Higgins derived an equation for the calculation of the bed friction term F b,), in

strong waves and weak currents given by the equations:

where fcm is the friction coefficient for mean current modified by waves, and U. is the

absolute maximum wave orbital velocity at the top of the boundary layer. By using linear

wave theory in shallow water for U., equation (5.6) reduces to the form:

1	 1 1

Fb —
_ 

—
1 pf 9' - y (tan13) 2 X 2 VV

• Y Tc 	 cm
(5.7)

By equating equation (5.5) to equation (5.7), Longuet-Higgins(1970) obtained an equation

for the offshore distribution of the longshore current when the lateral mixing term is

ignored, that is:
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Vb
V= —x , for xsxb
Xb 

V=0,	 for x> xb

where

Vb = 	 (gd	 sin0b) tan13
16 f	 c lb

(5.8a)

(5.8b)

Longuet-Higgins(1970) then introduced a depth-dependent eddy viscosity formulation for

the lateral mixing term, that is:

a	 av,
F =--	 /

1	 aX X aX

where Ex is the turbulent eddy viscosity. Longuet-Higgins(1970) assumed:

ex=Npx(gd) 2

(5.9)

(5.10)

where N is a turbulent closure coefficient for the lateral mixing to be of the order

N �. 0.016. Defining three constants as:

3	 5

r=--pgiy2(tani3) 2 (sin-) b
16

1

q= P f cmY (tan) 2
TE

1	 3

p=Npg 2 (tanfl) 2

(5.11)

the lateral momentum equation (5.3) becomes:

3	 1	 5	 3
ay ,,	 ÷—px — = Vrx -qx	 kpx. a2v 5
axax 2 2

(5.12)
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V* =Ax* +B1xf-1	 0<x*s1
V* =B2x,f2	x*>1

where

(5.17)

Longuet-Higgins(1970) next introduced the non-dimensional variables, x * and V* and a

constant p * defined as follows:

V	 _	 _PVb Ahrtanp x* = — ; V* =—
V ;Xb rxb	 fcm?

Equation (5.12) can then be expressed as follows:

3	 13
a2 V	 - a V2	 * -	 2	 *

x* -x* V*+p *x*	 + p*x* —	 -0
ax*2 2	 ax*

(5.13)

(5.14)

Longuet-Higgins obtained the solution of equation (5.14) with two boundary conditions,

V* =0 at x * =0, and the gradient of the velocity solution is continuous at x * =1, as

follows:

(5.15)

A= 	 1 
5

For p * is 0.4, Horikawa(1978) gave the solution:

V* —10 
X* - 

7
-5 X*1nx*,

49 
5

10 -
= 49

(5.16)3 ,\I 9 + 1

	

,\!	 +
9	 1 ;n = - -3- -I- — - P2 = --,T	 16 P*

.L-1	 4	 16 P*

P -1	 P -1_ 1 	 A,	 100.4
p 1

A f B2

	

p1-p2.°1---'	 - p 2	 '
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Longuet-Higgins(1970) suggested that constant p. lies in the range 0.1-0.4 after

comparing the solution with laboratory data. The peak non-dimensional velocities for p.

= 0.1 and p. = 0.4 are 0.52 and 0.38, respectively, compared to the no lateral mixing

solution, see Fig. 5.2. It is interesting to note that more than half of the velocity profiles

that have been measured in the laboratory or the field, see Sonu(1975), are confined in

the range which was suggested by Longuet-Higgins(1970), see Fig. 5.3.

It is clear from Fig. 5.2 that the effect of the lateral mixing term is to "diffuse" the

triangular "non-lateral-mixing" velocity solution in the offshore direction. An alternative

approach to this "diffusion" process is suggested, therefore, by applying a diffusion-type

process (or smoothing approach) not to the velocity profile directly but to the radiation

stress term, see Fig. 5.4.

In order to determine an appropriate smoothing operator, it is proposed to treat the

spreading of the radiation stress term in the offshore direction as a transient (time-

dependent) diffusion-problem. Thus taking the initial shape (for the non-dimensional time

t.=0) of the driving force term (the gradients of the radiation stress terms) as:

3

Ry (x* , 0) =C1 .2c*
2 

f
	 0<x,s1
	

(5.1 8)
=0,	 x.>1

where R.1 is a function of x. and t. (Ry=Ry(x.,t.)), and C i =rx.3'. The coefficient C 1 is

eliminated when the velocity profile is calculated (V.=Ry,f/Cix.', where RyS is the

spread driving force at time t. ,f, t. ,f is the time when the artificial diffusion stops). The
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diffusion equation is now written in the form:

aR	 a2Y- 	
e* 

Ry

at 	 alf*n 2

where E * is a non-dimensional diffusion coefficient.

(5.19)

According to Longuet-Higgins(1970), the lateral turbulent eddy viscosity coefficient

varies with x* as the power 1.5, see equation (5.10). The present diffusion coefficient (e*)

is not strictly the same as Longuet-Higgins' lateral mixing coefficient (E x), although the

former has similarity with the latter. However, when comparing Longuet-Higgins'

solution with laboratory data, his model is found to underestimate the velocity at large

x* values, see Fig. 5.3. Basco(1982) has also argued that random wave-induced longshore

current models also enhance the velocity for large x * values.

Considering the uncertainty of the problem and the convenience of modelling, the non-

dimensional diffusion coefficient E * is assumed to have a quadratic variation with x* , that

is:

e*=€*,1*x!

	
( 5 . 2 0 )

where e*,1 is the value of E * at the breaker line (x* =1). The solution to equation (5.19)

is obtained by a numerical method using a simple forward-time space-centred explicit

finite-difference scheme. Thus:
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R31,2, i _ 1 -2Ry12,i +Ryn, i+i

zxA t* (5.21)

which can be rearranged to give the equation:

Ryn,1 = a (	 i _i +Ryn,	 + (1-2 a ) Ryn,	 (5.22)

where a =E*At./Ax.2. The coefficient a is a function of x. as is E*, that is:

(x* )	 (5.23)

where a, =€.,iAt./Ax.2.

In order to obtain a stable solution from the fmite difference solution, it is necessary to

keep the value of a �. 0.50. Given that the offshore limit of the simple plane beach surf-

zone is located at x * = 4, where the longshore current velocity V = 0.1 % of the

reference velocity V b for Longuet-Higgins' p * =0.1, a value of al 0.015625 will

ensure that a = 0.25 at x * = 4 and hence a stable solution.

The longshore velocity distribution at any time t * = nAt., where n is an integer with

successive values 1,2,3,• • ,n t. (where subscript f is for a final value that ensures good

agreement with Longuet-Higgins' maximum velocity value). Once the value of R y is

known at each nAt, the longshore velocity profile is obtained by equating R y to

Fb,y(=C i x.112V.). The calculation procedure is continued up to t. ,f = n fAt. (or 6p ,it*,f -=--

a i AX*2nt,f) until the best fit is obtained between the peak velocities calculated from the
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radiation stress diffusion approach and either the Longuet-Higgins analytical solution or

the laboratory measurements used by Sonu(1975). A typical example of the velocity

profile obtained at various times (32 26P-1)At., ip	 - - - ) is shown in Fig. 5.5.

For al = 0.015625 and Ax. = 0.1, the number of iterations, n f were found to be

between 670 and 2000, which correspond to €* , 1t* , f values of 0.11 and 0.32, respectively.

The solution becomes less-sensitive when E *,its ,f becomes larger. This can be seen from

the analytical solution of the diffusion equation for a delta function for which the initial

condition corresponds to a mass M released at time t * = 0 at a point x * = 0, this is:

F (x„, 0) =MS (0)	 (5.24)

The analytical solution at time t* is:

2-x*
F(x* , t * ) - 	 	 exp ( 

4e, t, 
)

V4ne„ t,

At x* = 0, the solution is:

(5.25)

V47ce,t,
	 (5.26)

Although the initial condition of the present longshore velocity problem is different from

the delta function, both solutions are similar in so far that the peak velocity will reduce

at a rate of (€*,1t*)-112.

Fig. 5.6 shows the numerical model results for an a l value of 0.015625, and E *,i t*, f of

0.1 and 0.3, with Longuet-Higgins analytical solutions for p * = 0.1 and 0.4. It is clear
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that a very good fit has been achieved with the velocity profile shape for both cases,

although the present diffusion model with its diffusion coefficient related to x. 2 seems to

give higher offshore values and slightly lower inshore values.

However, comparison with Sonu's experimental data shows that the diffusion model

provides a better fit in the offshore area, see Fig. 5.7. For present purposes, where the

interest is in the offshore region as well as the inshore region, the present diffusion

approach has been used for wave-induced current modelling. It can also readily be

adjusted for a specific field situation, if adequate field data is available.

Since the above solution is for a specific combination of numerical parameters, a general

method is needed for the case when the effect of using different degrees of spatial

resolution in the diffusion solution is needed, although the use of 10 points per

wavelength (of the surf zone width) is usually considered to be adequate for numerical

calculations. The solutions for additional different Ax. values of 0.05 (20 points) and 0.2

(5 points) were investigated, therefore, with the model, see Fig. 5.8. Using an a l value

of 0.015625, the value of e. ,it. ,f was found to be between 0.10-0.30, and between 0.12-

0.39, respectively, which are very similar to the previous values of 0.11 - 0.32 for Ax.

= 0.1. The differences are due to the non-normally distributed shape of the initial

radiation stress function, the existence of a limit on the maximum value of coefficient al,

and numerical computational errors. Nevertheless, the differences are still considered to

be quite small for engineering purposes.
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In order to use the diffusion approach in a computer model, it is simply necessary to

calculate the radiation stress term (R1) at each grid point, and then to use equation (5.22)

with a given by equation (5.23) (a = 0.015625) for nf time steps. It is suggested that a

value of between 670 and 2000 be used for rif.

When the surf zone width is known before calculation and is constant in the computation

domain, the coefficients of the diffusion approach can be directly assigned from the non-

dimensional x. values. However, the surf zone width varies spatially by wave shoaling,

refraction, and diffraction on a general arbitrary geometry. If the surf zone width cannot

accurately be estimated due to the complex geometry, or the width varies spatially in the

computation domain, it is necessary to estimate the expected surf zone width in order to

produce a non-dimensional x. value and related coefficients. Thus to use the approach

for general geometry, it is necessary to iterate the calculation using the appropriate surf

zone width at the end of each iteration. Fortunately, there is no need to change the

number of diffusion steps between iterations, as explained below.

There are two sets of parameters for a correctly non-dimensionalind situation (x.=1 at

the breaking point) and an incorrectly non-dimensionalized situation (an iteration)

(x.=x.,a at the breaking point). Then, to ensure the same total "diffusion" time and

c.,ats,f,,, for the two situations, where subscript a is for the incorrect iteration case, we can

express the diffusion time as:
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. A v.	 =
°C a = (XIX*, a

2 
I '-`"*,a X*,a

A x* (5.28)

e *,1 t*, f=cciAx!nf

e.,at*,f,a=C‘aAX*2,anf,a
(5.27)

where an is the coefficient for the incorrect spatial increment (Ax *,a), and Ax*,a is the

relative spatial increment for the incorrect surf zone width. The appropriate a a and Ax*,a

values to use, are then simply given by the expression:

Multiplying these two items (a c , .Ax*,a), it is seen that the iteration numbers n f and nf,a for

the two cases are identical, if both values of diffusion coefficient multiplied by time

(e*,f t*,f and e*,at*,f,a) are to be identical. This shows that the coefficient a and the iteration

number of the finite difference scheme n f do not need adjustment between iterations. We

can obtain the spreading coefficient and iteration number from the estimated surf zone

width for the whole calculation domain. Furthermore, once the coefficients are provided

for a model grid system, they can be used repeatedly for various conditions of wave

height or direction.

To date all discussion has been confined to a one-dimensional plane beach situation.

However, the natural beach is not always parallel or single-sloped as assumed in the

Longuet-Higgins approach. It is often curved with a varying bed slope.

For general geometry, the non-dimensionalization of horizontal distance by the surf zone

width is changed to a scaling of the local depth to the depth at the breaking point. The
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, d n 2a=a ,---)1 db (5.30)

spreading factor a is thus given as:

where db is the water depth at the breaking point. This is still valid for a plane beach,

and may be used for complex geometry.

In order to extend the plane-beach approach to two-dimensional situations, it is proposed

to make use of the two-dimensional diffusion equation:

aF 
-e

a2F a2F
.( 	 + 	 )

at,,	 d a.y. (5.31)

where F is now either R. or Ry , R., = asyjax+as„yiay in equation (2.44), Ry =

asuiax+asyytay in equation (2.45), and y. = y/x b . Equation (5.31) is identical with

equation (5.3) for a plane beach since asway = 0, 8Sxy/3x=0, and 0S„y/8y=0.

The finite difference form of equation (5.31) is thus:

.1Rxn,+±, j = a x ( Rxn, i , j+i +Rxn, i, j _i +-RX12, i+i, i +Rxn, i -1, j)

+ ( 1-4 ax)

Ryn,+±, j = ay (Ryn, i , j +1 +Ryn, i , j _ i +Ryn	 n, i+i, i +Ry, i _. 1, j)

+ (1-4 ay) R 1 i

(5.32)

where superscript n is the value of the driving force at time level nit, and subscript (i,j)

is for a space-staggered grid point (i,j), and a x and ay are the coefficient a's, defined to

the points where R., Ry are defined, respectively. The driving force terms R. and Ry are

defined to the points of depth-mean velocities U and V, respectively, see Fig. 5.9. Once
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the spread solutions of the driving forces (Rx,f and Ry,f) are obtained from equation

(5.37), they are then used in equations (5.1) and (5.2).

5.4 Initial and Boundary Conditions

The solution of the governing equations (2.31), (5.1), and (5.2) requires initial

conditions. In the present approach, a simple "cold start" condition is used in the whole

computation domain for the present wave-induced current flow model, which is:

ri = LT= V=0	 (5.33)

The solution of the governing equations also requires boundary conditions. Again three

types of boundary need to be considered. Firstly, the offshore open sea boundary,

secondly, lateral open sea boundaries, and thirdly, solid boundaries such as occur with

coastal structures or natural beaches.

Normally, on the open sea boundary, the water surface elevation, or the horizontal

velocity across the boundary, or both can be given.

For present purposes, it is proposed to use the conditions related to the water elevation.

Thus, the water elevation is prescribed for each grid point adjacent to and inside the

model boundary. Then the equation of continuity for a grid element can be re-arranged
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adEI	 adV
ax at ay

(5.34)

to give the component of current across the boundary in terms of known quantities. On

a y-directed open boundary, see Fig. 5.9, the continuity equation is re-arranged as:

Equation (5.34) can be discretized to form a finite difference equation, see Appendix C.

On an x-directed open boundary, a similar re-arrangement can be done to obtain an

explicit expression for the current across the open boundary.

Ignoring tidal water level variations, a fixed water elevation can be given throughout the

calculation. For the present steady state wave-induced current flow modelling (the final

solution is for a steady state), the water elevation approach can be used if the open sea

boundary is far enough away from the area of interest not to have any significant set-up

or set-down on the boundary.

A radiational boundary condition can also be applied on the open sea boundary which

allows disturbances generated within the model to propagate outwards across the

boundary as free progressive waves. However, the radiation condition requires both

water elevation and the water flux which involves complex numerical treatment, see

Proctor et al.(1992). For modelling tidal situations, the fast removal of the unwanted

internal numerical oscillation is important, since the solution also has the time variation.

However, for steady wave-induced current situations, numerical disturbances do not need

to be removed quickly since the final solution can be selected after a sufficient model
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computation time when the solution reaches equilibrium, and the numerical oscillation

disappears. Therefore, for the present wave-induced current model, radiation conditions

are not used, and the condition to assign the water elevation on the boundary is used

instead.

Lateral open boundaries need more complex conditions compared to the offshore open

sea boundary. The water elevation or velocity along the side boundary is not known

beforehand. In most cases the side boundary is assumed to be a parallel beach so that the

parallel condition can be used, which is:

ay ay
	 (5.35)

If the lateral boundary lies on an arbitrary bed geometry, it is necessary to have field

data on velocities and elevations in order to adjust the model values to reproduce

observed conditions. Because of the difficulties of the measurement of field data, it is

essential that the lateral boundary line should be taken as far away as possible from the

area of interest.

For land boundaries or those at structures, a simple no-flux condition normal to the

boundary is used (U=0, where Un is the normal velocity to the boundary). For the

velocity parallel to the land boundary, there can be two conditions, a slip or non-zero

velocity boundary condition (Up � 0 or 0U/0n = 0, where Up is the parallel velocity to

the boundary), and non-slip or zero-velocity condition (U p =0). Around a structure, the
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former non-zero velocity condition is adequate, since the drag friction of the structure

is usually negligible. Along a natural beach boundary, the velocity component parallel

to the shoreline is reduced as the distance from the shoreline becomes smaller, and is

zero at the shoreline. Thus a non-slip boundary condition is adequate for it. However,

the non-zero velocity condition also gives a correct solution at the shoreline, since the

velocity is still reduced near the shoreline by the reduction of the driving force and the

relative increment of the bed frictional force as water depth is reduced, even if the slip

boundary condition is used. Therefore, the non-zero velocity condition is used for both

structure and beach boundaries.

For comparison with laboratory experiments, the offshore or lateral open boundaries are

replaced by a land boundary, which should be set-up far from the area of interest. This

technique can also be used for the wave-induced current computer models which do not

involve long period tidal motion. In this Case, the boundary should also be placed far

from the area of interest.

5.5 Numerical Schemes

In order to determine the wave-induced currents from equations (2.31), (5.1), and (5.2)

using the diffusion approach, a regular uniform grid system identical to that of the wave

model is adopted, which can make use of the wave model results directly. The numerical
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grid system is shown in Fig. 5.9. It is seen that the U and V velocity components are

evaluated on either side of the grid while the surface elevations are evaluated at the

centre of the grid to ensure proper centring of variables for the continuity equation.

The choice of numerical solution procedure is not a simple matter. Explicit finite

difference schemes have some merits compared to implicit schemes, especially for

regular horizontal grids. First of all, they generally require small computational time

steps compared to implicit schemes which gives low truncation errors and avoids the

inversion problem of a big matrix. Finite element techniques may be included in implicit

schemes but produce more complicated computer programmes than finite difference

approaches. Although some implicit schemes have unconditional stability, they can still

exhibit oscillatory behaviour if large intervals are used. Implicit methods also smooth

solutions which is not desirable for treatment of any discontinuities. Explicit schemes

ensure that the characteristics of the flow are propagated locally, and that the solution is

not oversmoothed by the numerical procedure.

Consequently, for present purposes, an explicit finite difference approach is adopted. In

particular, the explicit numerical schemes of Flather and Heaps(1975) are used for the

present governing equations. Details of the finite difference equations are given in

Appendix C.
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Since the governing momentum equations are nonlinear, a special stability condition is

required. Flather and Heaps(1975) suggested that the Courant-Friedrichs-Lewy (CFL)

criterion (Richtmyer and Morton, 1967) could be used as a guide for the stability

condition, that is:

AxA ts 	  ; A ts  Ay	 (5.33)
V2 gcl.„	 V2 gdmax

where Ax, Ay are the spatial increments in the x, y directions, respectively; At is the

time increment; and d.max is the maximum depth in the computation domain.is

However, as Flather and Heaps(1975) mentioned, the true stability condition is more

restricted than the above criterion, and can only be found by trials for each specific

modelling site and condition.

5.6 Application of the Model to a Laboratory Experiment

The present wave-induced current model is applied to a laboratory experiment on wave-

induced current circulation behind a detached nearshore breakwater, see Nishimura et

al.(1985). The bed slope of the model beach was 1/50. A detached breakwater was

installed parallel to the shoreline at a depth of 0.06 m. The breakwater length was 2.7

m, corresponding to three wave lengths. The beach and breakwater were exposed

perpendicularly to incident waves 20 mm in height and 1.2 seconds in period.
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Under such conditions, waves are transformed by diffraction in the lee of the breakwater,

and a pair of symmetric circulation cells are generated behind the breakwater. This will

lead to the formation of a tombolo in the field. Unfortunately, Nishimura et al. (1985)

have not presented the bed roughness of the laboratory experiment, but used a friction

coefficient of 0.01 in their flow computation.

The wave propagation model (described in the previous Chapter) and the present wave-

induced current model used a regular grid with 0.2 m spacing on both axes. A special

boundary condition was assigned along the rear of the breakwater. Two solutions are

superimposed behind the detached breakwater, each of which is obtained from Penney

and Price's method. The wave height at a point on the breakwater rear was approximated

using a weighting of the square of the two wave heights obtained from both sides of the

breakwater, and the wave direction was also approximated using a weighting of the

square of the two wave amplitudes from both sides.

The wave information was then modified by the diffusion spreading operator in order to

be used as the input data for the wave-induced current flow model. The parameters of

the diffusion spreading operator were chosen as a l = 0.015625; Ax. = 0.1; nr = 670.

The same friction coefficient (=0.01) as Nishimura et al.(1985) was used. The calculated

wave height and current velocities are shown in Figs. 5.10, and 5.11, respectively. The

calculated wave field seems reasonable, but it could not be compared with measurements,

since Nishimura et al.(1985) did not report on wave measurements. The calculated wave-
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induced flow field generally agrees with the measured flow field on the circulation size,

the position of the centre of the circulation cells, and the velocity magnitude, see Fig.

5.12. However, the computer model results show weak secondary circulation in front of

the detached breakwater, which may be due to basin scale oscillation which has not

completely disappeared, although the model was run until the main flow pattern behind

the breakwater reached equilibrium. Velocity profiles along three profiles (profiles 1,2,3

in Fig. 5.11) were compared with measurements, see Figs. 5.13a-c. The maximum

magnitude and the variance of velocity along the profiles were reasonably reproduced,

although the calculated rip current velocities were generally slightly smaller than the

measured one, which showed some irregularity, see Fig. 5.12. Irregularity in velocity

data can normally be expected, considering the difficulty of measuring velocity and

controlling the whole circulation system in the laboratory. In view of the lack of further

information about the laboratory tests, it was decided not to conduct any further fitting

tests. In general, it appears that the accuracy of calculation is satisfactory.

5.7 Conclusions

Wave-induced currents can be calculated from appropriate depth-averaged fluid continuity

and momentum equations, provided wave data in the calculation domain are available.

The effect of waves is included in these basic equations via radiation stress terms, while

lateral mixing in the surf zone is simulated by using effective eddy viscosity terms. By
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examining Longuet-Higgins' (1970) one-dimensional solution of the basic equation for a

plane-beach situation, a methodology is suggested to replace the effect of the lateral

mixing terms. In essence, the lateral mixing terms are neglected, and their effect is

simulated by smoothing out the radiation stress terms using a simple time-dependent

diffusion equation; the finite difference equation for the diffusion equation being applied

iteratively for a specified number of time steps. Comparison of the diffusion approach

with Longuet-Higgins' analytical solution for longshore velocity distribution on a plane

beach and with Sonu's(1975) experimental data showed good results, and enabled

estimates to be made of a suitable diffusion time and model constants.

For general application, the one-dimensional diffusion approach is extended to a two-

dimensional form and the model scale factors for non-dimensional distance related to the

depth of breaking rather than the width of the surf zone, since the width is more difficult

to determine in a general situation. Both approaches are identical for a plane beach.

The diffusion approach has a number of advantages. Since the governing equations do

not include the lateral mixing terms, there is no need to include any effect in the

numerical stability criteria for the finite difference scheme. It is known that the mixing

coefficient for adequate reproduction of the longshore current profile is so large that it

can seriously restrict the time increment for explicit schemes, see Yoo(1986). Also, since

the smooth driving force (the gradient of the radiation stress) remains steady throughout

the numerical calculation up to final equilibrium, computational time is saved.
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The new wave-induced current model solves continuity and horizontal momentum

equations without lateral mixing terms using an explicit numerical scheme in a similar

manner to Flather and Heaps(1975). The model stability condition can be estimated by

a CFL criterion, but is more restricted by the nonlinear advection terms. Model details

are given in Appendix C.

The present wave-induced current model has been applied to Nishimura et al. 's(1985)

laboratory situation involving the generation of wave-induced currents behind a nearshore

breakwater. Quite good agreement was obtained with measured velocity data using

reasonable values for model constants. The application suggests that the present model

can be used for any general geometry, although more extensive laboratory testing is

needed.
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CHAPTER 6. THREE-DIMENSIONAL SEDIMENT TRANSPORT MODEL

6.1 Introduction

A wave-period-average, three-dimensional suspended load equation has been chosen for

the present study to take account of the spatial non-uniformity of the sediment field near

structures and the large vertical concentration gradients produced by sandy sediments.

The sediment model is used in conjunction with a two-dimensional plan wave propagation

model and a two-dimensional plan wave-induced current model; the same horizontal grid

being used by the wave propagation model, the wave-induced flow model, and the

present sediment transport model.

The movement of sediment in the coastal zone is described by a combination of

suspended and bed load. The present chapter gives details of the governing equations for

suspended sediment and bed level change, boundary conditions, coordinate transformation

of the governing equation for suspended sediment, and the numerical schemes. The

suspended sediment model is applied to simple situations, and the results are compared

with analytical solutions in the present chapter.
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6.2 Model Description

6.2.1 Governing Equation for Suspended Sediment Concentration

The governing equation for suspended sediment concentration has been given in Chapter

3, that is:

ac ac	 ac
at ax ay (w-wf) az

a	 ac	 a	 a(e	 _	 a ,	 ac
a), sx ax )	 ay) —az esz	 =0

(3.7)

where c is the WPA sediment concentration; t is the time; u,v,w are the WPA velocities

in the x,y,z direction, respectively; x,y,z are longitudinal, lateral, and vertical cartesian

coordinates, respectively; w f is the sediment settling velocity; and c, are the WPA

diffusion coefficients in the x,y,z directions, respectively.

If a three-dimensional model is to be used for general bathymetry (water depth varies),

two grid systems can be used. One is a undistorted regular cubic grid in cartesian

coordinates, and the other is a distorted cubic grid obtained by a boundary fitted

coordinate. The former regular grid represents the sloped bed by steps so that it requires

very many vertical grid numbers if there is a shallow area in the computational domain.

The lattermost boundary fitted grid can express a sloped bed smoothly, although it

involves a coordinate transformation of the governing equation and boundary conditions.

In the present work, a sigma-transformation (one of the latter coordinate transformation

methods) is adopted, since the modelling area includes a shallow surf zone.
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z-zb
a- 	

d
( 6 .1)

do-._
az d

(6.2)

The new vertical coordinate a is defined as:

where zb is the mean bed level, and d is the mean water depth.

The new coordinates x' and y' are not orthogonal to the z coordinate so that the

transformation of the derivatives in the (x,y,z) directions introduces additional terms in

the new (x',y',o) directions:

at_ at + at ao
ax ax/ ao ax

at_ at _F at do
ay ay/ ao ay

at_at do (. 1 at
Yz-- aoaz d au

where f is an arbitrary dependent function.

Equation (3.7) is then transformed into:

(6.3)

(6.4)

(6.5)
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, aa	 aa	 aaw =u—+v—+w
ax ay az

(6.7)

ac ÷ u ac +v ac + (wi_ wt ) ac
at ax/ ay'	 f aa

_ea.-{---1- (€ 	 ) +HoT1}-{J- (€
axi sx ax'	 ay' s yY a/

) +HOT21

1 a e ac__ 	 ( sz _ ) =0
d ao d ao

(6.6)

where HOTi , HOT2 are higher order derivative terms, and w' is the vertical velocity

defined in the new (x',y',o) coordinate system which has the form:

and wf' is wf/d. The new governing equation (6.6) has additional terms, HOT 1 and

11012 , which are from horizontal diffusion terms. If the sea bed slope is mild with

typical maximum values of 1/20, see van Rijn and Meijer(1988), the extra terms (HOTi

and HOT2) arising from the curvature of the new horizontal axis, see Sheng(1983), can

be ignored. For present purposes, the bed slope is assumed to be mild, and the higher

order terms are ignored.

In order to obtain various numerical advantages, a splitting technique is applied to the

governing equation, see O'Connor(1971). Equation (6.6) is split into the following three

partial differential equations:

ac
1st step: — +(147 /-144) ''- 1 a ( esz ac 1 n

at	 aa	 dd aa 	aa '
(6.8)

2nd step: ac + ac,	 ac,

at u-	 -a-r/vaT-7/°
(6.9)
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1=0 -A_ (  Z-Zb ) -A

d
(6.11)

ac	 a ,	 ac ,	 a ,	 ac ,3 rd step: --- kesx— I -, kesY/ / -`'at ax/	 ax/ ay	 ay (6.10)

In order to resolve the suspended sediment concentration near the bed where the

concentration gradient is large, a further non-uniform transformation of the vertical

coordinate a needs to be introduced. Several types of transformation have been used by

previous researchers. Although these transformations take somewhat different forms, the

basic concepts are almost the same (using a fme grid near the seabed and a coarse grid

near the water surface), see, for example, Davies et al. (1988), and Fredsoe et al. (1985).

In the present work, use is made of a power relation transformation, as indicated by the

following equation:

where n is the new vertical co-ordinate, and A is a scale parameter which controls the

relative size of the bed grid to the surface grid.

Equation (6.11) has an infmite value at z-zb = 0, but this does not cause any problem

since this point is outside the computation domain, which starts at a level dictated by the

effective roughness height (zb +a) of the sediment boundary.

In order to use the transformation approach with the three-dimensional equation, it is also

necessary to choose an appropriate value for the parameter A in the computation domain.
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Fredsoe et al. (1985) have used the magnitude of the bed shear stress to select the

parameter of conversion for their 1DV sediment diffusion equation. However, using the

local shear stress at every plan grid point is unsuitable for an area model, since a

spatially non-uniform value of A should be used, that is, the new vertical coordinate n

becomes non-orthogonal to the x' and y' coordinates, and introduces extra terms.

In the present study, therefore, the parameter A has been selected to be a constant for

the whole domain for convenience. This gives the same proportional vertical positions

at all plan grid points, and thus the vertical velocity relative to the transformed model

grid will be minimal provided unseparated flow exists, that is, the lines joining adjacent

lateral grid points will have the character of streamlines. Therefore, only equation (6.8)

is transformed into a new form, while equations (6.9) and (6.10) keep the same form.

The derivative of a function in the z direction is changed to:

af_ar an
-a-- all az

1
al ._ A 74+1

az dil

Equation (6.8) is thus replaced by the transformed equation:

ac .F ac +Ga2c
at a1	a12

(6.12)

(6.13)

(6.14)

where
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-

d/z-1 ) Z
(

Ca d/a-1
(6.16)

z	 z2 1+1
F( 1 ) = (wH_w_)	 A	

d2
.1.1 A H (1)

d" 
2

A 2 —+2
G( 1 ) = 7:7

2
1 A esz

a	 1+1Ho-i )	 ci A esz)

(6.15)

where w" is defined as w'd.

The effect of the vertical coordinate transformation by equation (6.11) on vertical

concentration profiles can be demonstrated by use of Rouse's equilibrium (t= co) vertical

sediment profile, which is represented by the equation:

where Z is the Rouse exponent (=wf/0Ku.), wf is the sediment fall velocity, 0 is the ratio

of sediment to fluid eddy viscosity, K is Von Karman's constant, u. is the flow shear

velocity (=(7-b,c1 p)°-5), Tb,, is the bed shear stress due to a uniform current, and p is the

flow density.

By relating u. to the depth-mean flow velocity (U), that is:

g0.5 u	 (6.17)

where C is Chezy's coefficient and g is the acceleration due to gravity (9.81 m/s 2), and

using a typical coastal velocity of U = 1 m/s and friction values of C/g° .5 = 15, equation

(6.16) indicates Z values of 0.12-1.08 for sediment grain sizes between 100 - 500 11 m,

129



see Table 6.1.

Table 6.1 Variation of Z with d50.

d50 (/Lm) wf (mm/s) u. (cm/s) Z

100 7.8 6.67 0.12

250 35 6.67 0.53

500 72 6.67 1.08

d50 =median grain size; K = 0.40; )3=1; U=1 m/s; C/g"=15; Water Temperature=20°C

Fig. 6.2 shows the effect of the vertical transformation on equation 6.16 for a Z value

of 1.0, and for A values of 0.1,0.5,1.0, respectively. The effect of the exponential

transformation is clearly seen to linearize the high concentration gradients near the

seabed.

6.2.2 Initial and Boundary Conditions

The time-dependent suspended sediment model needs initial and boundary conditions.

The present model produces a steady state solution, since tidal variations are ignored.

Thus, bed shear stress and bed reference level concentration, the three diffusion

coefficients, and the three directional velocities (u,v,w) are all steady throughout the

calculation. Since the initial condition does not affect the final steady state solution, the

initial condition of suspended sediment concentration can be arbitrarily given. A simple

zero or constant concentration or an estimated concentration profile may be used. In the
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(6.20)

present work, a zero concentration condition was used.

The fmal solution can then be selected by a reasonable equilibrium criterion. For

example, the condition that the absolute or relative concentration change between time

steps at every grid point is within a particular range can be used for the criterion. In the

present model, The condition that the change of concentration at each grid point is within

0.1 % of the maximum reference level concentration in the computational domain was

used.

The model has four boundaries at the water surface, at the seabed, at the open sea, and

at the land.

Firstly, at the water surface boundary, the no-sediment-flux condition is used, that is:

ac,w
f

c-Fe
sz
7z =0

Equation (6.18) is transformed into the form:

A 711 +1 ) 6, ac =0wfc- (-Ti ii	 , - sz an

(6.18)

(6.19)

Secondly, at the seabed, two kinds of boundary conditions can be used. One is a

specified bed boundary concentration:



and the other is a specified vertical gradient of suspended sediment concentration:

aca	 wf

az	 a
sz

Equation (6.21) is transformed into the form:

	

aca , d	 wf

	

—	 / — Ca
al	A	 esz

(6.21)

(6.22)

Van Rijn(1985) and van Rijn and Meijer(1991) have shown that both boundary conditions

produce almost the same results for practical field applications, which may reflect the

relatively long length scale in the horizontal direction compared to the vertical length

scale, and the fact that the near bed sediment concentration is almost at its equilibrium

value for mild slopes, especially for coarse materials. For present purposes, it has been

decided to adopt the former condition of assigning a bed reference level concentration

at the bed for field application, since it is easier to use in the model. However, it is also

designed that the model still has an option to select any one bed boundary type for any

specific calculation. For example, the model is compared to an analytical solution of

Dobbins(1944) which is the case of a gradient bed boundary condition, see Section 6.4.

Thirdly, at the open sea boundaries, two possibilities exist. Firstly, for an incoming flow

boundary, the suspended sediment concentration should be known. The suspended

sediment concentration information can be provided from direct field measurement, or

other estimation method. Secondly, for an outgoing open flow boundary, no condition
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ac
0- e — =

sn an
(6.23)

q= 	 ; qsx=.1 7.1C uZ
Zb

(3.10b)

is needed, since information is provided by "upstream" model values.

Fourthly, at the land (solid) boundary, a no-sediment-flux condition is applied:

where n is the normal direction to the land, e sn is the diffusion coefficient in the normal

direction. For a horizontally rectangular grid system, equation (6.23) becomes:

ac	 ac-e — -._ 

a1 
0 ;	 -0

X 	 aY
(6.24)

This boundary condition indicates that there is no diffusive sediment transport across a

land boundary. A no-sediment-flux condition is not needed, since a no-water-flux

condition is already applied in the flow model.

6.2.3 Basic Equation for Seabed Level Change

The governing equation for the bed level change has been given in Chapter 3, that is:

az, + aq, + aq, _0
(1-n) —at ax ay

(3.10a)

where zb is the seabed level above a horizontal datum; n is the porosity of the seabed;
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1
qty=gby±qsy ; qsy=f VC dz

Zb
(3.10c)

cito city are the total (bed+suspended) sediment load in the x, y directions, respectively;

qbx, qby are the bed load in the x, y directions, respectively; qsx , qv are the suspended

load in the x, y directions, respectively; and n is the mean water level, see Fig. 3.1.

The calculated suspended sediment concentration is multiplied by the steady velocity

profile to produce the suspended load per unit flow width, while integration of the

sediment flux over the water depth plus the bed load at each point gives the total

sediment flux at each point. The bed level change is calculated from the gradient of the

total load (equation (3.10)).

6.2.4 Reference Level Concentration

For present purposes, a new formula for specifying the WPA reference level suspended

sediment concentration has been proposed in Chapter 3. The unit of suspended sediment

concentration is in terms of net volume of sediment per unit volume (m 3/m3), that is:

ca = C2 <lif,,,1 1.5 >	 ( 3.32)

where ca is the reference concentration at the reference level (z b +a), a is half a ripple

height for a rippled bed, C2 is a scale factor, Vwc is the instantaneous vector Shields

parameter based on the total shear stress, defmed as:
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c_ ( 0 _  ib,wc(t) 

wc	 (s-1) pgc150

i b,wc (t) =f b,cm+f b,w ( t)

	

..binf
c =—Lnfc	

'c
fb 	 ; tb,c=Pfc[11[11

'	 c 

f _
fb,w=plUco lUeo lcos (at)

(3.33)

(3.34)

(3.35)

(3.36)

—
where T b,cin is the current-related total bed shear stress which includes the effect of

_
waves; T b,w is the instantaneous wave-related vector shear stress, see Fig. (3.4); a is the

wave angular frequency (2/r/T); CI is the depth-mean current velocity vector; Ct. is

the near-bed maximum wave orbital velocity vector; fw is the wave friction coefficient;

fc is the current friction factor (=K2/(1n(d/z0)-1)2; and f crn is the current friction factor

modified by the existence of waves. The bracket < > indicates a wave period average,

that is 1/T - f jOdt. The wave friction coefficient f, is obtained from a 1DV wave

boundary layer model, see Chapter 7, as:

fw= 0 . 0 0 068 4 exp (7.80 (±) - 0.106)
Zo

(3.37)

The modified current friction factor fcm is introduced in Chapter 7 in detail.

The scaling factor C2 in equation (3.32) is calibrated from a limited number of laboratory

data, and from field measurement data at the Chukpyon Site, in Korea. At present, there

is a lack of direct measurement data of near-bed reference level concentration over
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rippled beds. Consequently, the scaling parameter (C 2) may need to be adjusted on any

new site.

The available laboratory data obtained from the literature are those of Nieuwjaar and van

der Kaaij(1987), Nap and van Kampen(1988), Bosman(1982), van Rijn(1987), and van

der Valden(1986). A total of 36 data sets have been used for the calibration of the scaling

factor C2 . However, in the use of Van der Valden's(1986) data, which were obtained

from a water tunnel, it has been necessary to use an artificial wave height with a water

depth of 1.0 m in order to produce a consistent data set. The wave height and depth were

chosen so as to reproduce the same orbital near-bed velocity as measured in the flume

when using linear wave theory.

Table 6.2 Laboratory reference concentrations and associated C 2 values.

d	 U	 H	 T O 	 d90 A,	 a Te psC„,„, < lfwc11.5>103C2
(in) (m/s) (m) (s) (°) (Am) (Am) (mm) (mm) (°C) (kg/m 3) (-)	 (-)

.51 0. .077 2.5 0. 200 280 15 7.5 21. .08 0.0627 0.482

.50 0. .101 2.5 0. 200 280 15 7.5 21. .3 0.116 0.975

.50 0. .122 2.4 0. 210 320 18 9 23. .6 0.191 1.18

.50 0. .153 2.4 0. 205 310 18 9 24. 1.6 0.326 1.85
2.1 0. .5 5.1 0. 220 280 20 10 8. 3. 0.524 2.16
2.1 0. .4 5.1 0. 220 280 20 10 8. 2. 0.315 2.40
2.1 0. .3 5.1 0. 220 280 20 10 7. .8 0.164 1.84
2.1 0. .21 5.1 0. 220 280 20 10 7. .2 0.0739 1.02
2.72 0. .67 5.1 0. 215 270 20 10 5. 1.7 0.724 0.886
4 0. .27 2.2 0. 105 150 15 7.5 20. 20. 3.82 1.98
.6 0. .234 2. 0. 105 150 15 7.5 20. 12. 1.48 3.06
.6 0. .154 1.8 0. 105 150 15 7.5 20. 6. 0.561 4.04
.5 0. .241 2.0 0. 105 150 15 7.5 20. 20. 2.13 3.55
.4 0. .114 1.8 0. 105 150 15 7.5 20. 8. 0.571 5.28
.4 0. .135 2.0 0. 105 150 15 7.5 20. 10. 0.824 4.58
.4 0. .191 2.0 0. 105 150 15 7.5 20. 17. 1.78 3.61
.5 0. .223 2.0 0. 105 150 15 7.5 20. 35. 1.79 7.39
.5 0. .136 1.8 0. 105 150 15 7.5 20. 8. 0.588 5.14
.6 0. .256 2.0 0. 105 150 15 7.5 20. 22. 1.81 4.59
.6 0. .153 1.9 0. 105 150 15 7.5 20. 5. 0.569 3.31
.5 0. .248 2.1 0. 105 150 15 7.5 20. 25. 2.28 4.14
.4 0. .15 1.9 0. 105 150 15 7.5 20. 14. 1.04 5.07
1. 0. .290 2. 0. 360 725 20 10 16. 3. 0.178 6.36
1. 0. .387 2. 0. 360 725 28 14 16. 7. 0.440 6.00
1. 0. .484 2. 0. 360 725 35 17.5 16. 11. 0.861 4.82
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1. 0. .209 4. 0. 360 725 50 25 16. 1. 0.214 1.77
1. 0. .279 4. 0. 360 725 60 30 16. 1.5 0.465 1.22
1. 0. .314 4. 0. 360 725 60 30 16. 2.6 0.601 1.63
1. 0. .199 6. 0. 360 725 80 40 16. .2 0.226 0.334
1. 0. .290 2. 0. 220 240 15 7.5 16. 6. 0.295 7.67
1. 0. .387 2. 0. 220 240 16 8 16. 10. 0.588 6.42
1. 0. .484 2. 0. 220 240 23 11.5 16. 15. 1.28 4.41
1. 0. .190 4. 0. 220 240 23 11.5 16. 1.3 0.193 2.54
1. 0. .209 4. 0. 220 240 28 14 16. 1.5 0.279 2.03
1. 0. .279 4. 0. 220 240 30 15 16. 4.5 0.558 3.04
1. 0. .199 6. 0. 220 240 35 17.5 16. 1.1 0.242 1.72

U.depth mean velocity; H=wave height; T=wave period; 0 0=wave and current
interaction angle; A r=ripple height; Te=water temperature; c,m=measured
reference concentration.

The scaling factor C2 is found to be 0.0033 (mean) + 0.0020 (variance) from Table 6.2.

The IWP calculation of the shear stress term ( <Ifigc11.5> ) for the first data set in

Table 6.2 is given in Appendix D.

In order to obtain more information on near-bed suspended sediment concentrations for

further calibration of the scale factor C2 in equation (3.32), a new device has been

developed and applied at Chukpyon field site by the author and his colleagues at KORDI.

A review of the technical literature reveals that a number of approaches have been used

to measure the near-bed suspended sediment concentration. Typical types of device of

HR Ltd (Wallingford, UK), Rosati et al. (1990), ICinderen(1982), Jansen(1981), and

Salkield et al. (1981) are shown in Fig. 6.3a-e, respectively.

For example, HR Ltd. uses an intake nozzle mounted on a weighted triangular

framework and connected to a small centrifugal pump on-board a ship or walking

platform. The water-sediment sample is pumped through a filter which separates all
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particles larger than the mesh size of the filter. The sample is simply analyzed in a

laboratory. However, the intake nozzle has a limited angle of horizontal rotation, it being

connected to a large vertical fm so as to ensure alignment with the flow, and was

designed for sampling in tidal currents. The device is thus less useful in heavy wave

action. It can also only sample down to some 10 cm above the seabed. The large

supporting framework is also likely to produce considerable disturbance in wave-

dominated regions.

The streamer-type trapping device for use in the nearshore was introduced by

Katori(1982), and has been refined by Kraus et al. (1989) and Rosati et al. (1990). They

simultaneously mounted several streamers (gauze bags) vertically on stainless steel racks.

However, the method involves difficulty to analyze the trapped sediment amount if the

contribution of short wave orbital velocity is significant.

Kinderen(1982) has presented an optical probe. The method is based on the principle of

transmission and scattering of light. The measurement is sensitive to ambient light.

Jansen(1981) has presented an acoustic probe. The method is based on the transmission

and scattering of ultrasonic sounds by the suspended sand particles. Both optical and

acoustic probes enable the continuous automatic measurement of sediment concentration

even in short wave period mode. However, the devices require frequent calibration, and

are large, expensive, fragile electronic equipments, which are readily damaged in field

applications.
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Salkield et al.(1981) have presented an impact probe based on the momentum -transfer

principle. High density sediment particles tend to strike a transducer placed in the stream.

The output is a count of frequency of impacts. The probe has small dimensions compared

to the optical or acoustical probe. However, velocity information measured

simultaneously with sediment concentration is needed for conversion of the output signal,

which makes the measurement more complex.

Conclusively, the streamer-type device is easy to handle and cheap, while electronic

equipment (optical, acoustic, impact probes) has common drawbacks of frequent

calibration and fragility. If the streamer-type device is to be used for a surf-zone where

waves are strong, the arrangement of the traps needs to be modified from that used by

Rosati et al. (1990).

For present purposes, a new streamer-type device has been produced based on the use

of gauze bags (made from polyester). The new measuring device consists of four near-

bed traps, see Plate (6.1) and Fig. (6.4). The shape of trap is similar to Rosati et

al.' s(1990) device. The four openings of the present device have four directions, while

Rosati et al. used a vertical array of traps with all openings in the same direction of

measurement of sediment transport for uni-directional current flows. The mouth opening

of the traps is designed to be 100 mm long, and 50 mm high, similar to the ARNHEM

bed load sampler. The mesh size of the basket was selected to be 40 ilm, which is similar

to the lower limit of gauze filter used in the pumping line of the HR Ltd. pumped-
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sampler. Each gauze fits over the end of the steel frame and is held in place by tying a

piece of string around the steel frame.

To measure the longshore sediment transport, one trap is considered to be insufficient

for a coexisting wave-current field. The wave orbital velocity can add sediment to the

traps although it does not actually contribute to longshore sediment transport. Thus, the

new device has two traps with opposite directional openings, which coincide with the

longshore direction, see Fig. (6.4). The difference in trapped sediment quantity between

the two traps is regarded as the net longshore sediment transport quantity. In order to

obtain the on-offshore directional sediment transport rate, two more traps are installed

at right-angles to the longshore traps. However, the on-offshore sediment transport rate

is not analyzed in the present study. The four traps are mounted on a support frame,

which has four poles to adjust the height of the traps, so that the number of traps and the

heights can be adjusted at each measuring point. The frame is designed to be very open

and to be capable of mounting two traps in the vertical direction also, so that some idea

of vertical suspended sediment profile can be obtained. However, actual measurements

were undertaken using only one trap at each direction at the reference level.

The total device is held in place by the self-weight of the supporting frame. The weight

of the total device is 15 kg. The new device is moored at each measurement point in a

fixed orientation. Mooring the trap in an accurate direction which matches the flow is a

problem, since two of the traps are intended for the longshore direction, while the other
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two are for the onshore-offshore direction. If the water depth is small, the direction of

orientation can be distinguished on the ship, helped by painting the two alongshore and

two onshore-offshore traps in different colours. In order to distinguish the four traps after

the device is collected from the field, the four traps need to have different colours. If the

water depth is large, a skin diver should check the device direction. A small marker buoy

is attached to the device for collection later. The mooring time was found to be between

8 - 24 hours, depending on the weather. It is important that the gauze traps should not

be too full for accurate measurement. If the trapped sediment quantity is too small, the

data is not used for analysis.

The analysis of the measured results is not straightforward since the wave orbital velocity

is non-negligible. If a pumping device is used for the measurement of the reference

concentration, and the direct measurement at the reference level is not available, the

reference level concentration can be obtained by plotting the measured concentrations at

several level on a semi-logarithmic scale and applying a straight line fit which is

extrapolated to the required reference level. However, in the present measurement, the

concentration was not directly measured. In order to convert the trapped sediment amount

to the concentration value, the measured trapped sediment amount at the reference level

is divided by the measurement time and the mean velocity at mid-height of the trap

opening which is calculated from the 2DV wave current boundary layer model, see

Chapter 7, as:
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' m p tinuaA,
(6.25)

where mm is the trapped sediment amount in weight (kg), ps is the sediment density, t„,

is the measurement duration time, u a is the horizontal velocity at the centre of the trap

opening, and Aa is the cross-sectional area of the trap opening. The measured reference

concentrations are used for the calibration of the scale coefficient C2 in Table 6.3.

Table 6.3 Chukpyon reference concentrations and associated C2 values.

d	 U	 H	 TO„c dm,	 d90 A,	 a Te psC„,,r, <1.0wc11.5>	 05c2

(n) (m/s) (m) (s) (°) (Am) (Am) (mm) (mwn) (°C) (kg/m 3) (-) 	-

3.1 .449 1.05 7 90 200 300 	 62 31 15 0.173	 4.31 1.52
3.1 .239 .63 7 90 200 300	 62 31 15 0.311	 1.32 8.90
1.6 .234 .20 7 90 200 300	 32 16 15 0.0126 0.169 2.80
2.1 .178 .26 7 90 200 300	 42 21 15 0.0360 0.234 5.82
3.8 .387 .51 7 90 200 300	 76 38 15 0.0475 0.866 2.07
3.5 .234 .73 7 90 200 300	 70 35 15 0.0270 1.69 0.600
7.1 .948 .83 7 90 200 300 142 71 15 0.0390 3.47 0.424
2.1 .249 .92 7 90 200 300	 42 21 15 0.276	 3.82 2.73
5.1 .737 1.20 7 90 200 300 102 51 15 0.182	 5.17 1.33
2.9 .426 .81 7 90 200 300	 58 29 15 0.0833 2.55 1.23
5.0 .506 .70 7 90 200 300 100 50 15 0.0148 1.55 0.360

The IWP calculation of the shear stress term ( < 1*wc1 1.5> ) is given in Appendix E.

The scaling coefficient C 2 is found to be 2.5x10' + 2.5x10-5 for Chukpyon field data.

These values are much smaller than those for laboratory data. The reason for this

difference may be on the different measurement methods between the laboratory and the

Chukpyon site. Since the gauze bags of the present device have fine holes of size 40 pcm,

the bag and the steel frame act as resistance to the flow so that the flow velocity through

the trap is reduced compared with the free flow. Unfortunately, it has not been possible

to calibrate the sand trap in a laboratory flume, since no flume existed in KORDI during
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the time the device was used at the Chukpyon site (A large wave/current flume was

installed in 1991).

When the different scaling coefficients for the laboratory and field are used, the

calculated concentrations agree well with the measured values, see Fig. 6.5. Analysis of

the results indicate that 68 % of the predictions lie within a factor of 2 of actual values

while 87 % lie within a factor of 3. It is also clear from Fig. 6.5 that the field data are

more scattered than the laboratory data. The calculated concentrations for small bed shear

stresses also give slightly larger concentrations than the measured ones.

Van Rijn' s(1989) empirical equation is also applied to the same data sets for comparison

with the present results. Van Rijn's results show that 72 % of the predictions lie within

a factor of 2 of measured value, and 94 % within a factor of 3, see Fig. 6.6. These

values are slightly bigger than those for the present results, but are very close to each

other.

Given that most sediment transport theories have been judged as acceptable in

engineering if they predict within a factor of two, it is proposed that both van

Rijn's(1989) and the present prediction formula for the reference level concentration can

be used, until more laboratory or field data for wave and current situations become

available. In the present work, the present approach will be used for the field simulations

of bed level change in Chapter 8.
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6.2.5 Bed Load (qb)

For present purposes, a formula for the bed load for wave and current flows has been

proposed in Chapter 3, which is expressed in a non-dimensional form:

14;b1= c4C5 < 1*„11.5>
	 (3.44)

where Tb b -= q b/w id50 (in net volume per unit width per unit time), fl cm is the Shields

parameter for the modified current-related shear stress due to waves, and C4 is a scale

coefficient.

No existing measurements of the bed load for wave and current situations were available

from the literature. In order to obtain field data to calibrate the scaling coefficient C4,

eight direct measurements of bed load were undertaken at Chukpyon site, using a basket

type device (ARNHEM) developed by Delft Hydraulics Laboratory. The method

traditionally has been used in Holland for river situations, see van Rijn(1985), and Plate

6.2. ARNHEM consists of a stainless steel bag mounted on an open support framework

and held in contact with the seabed by a steel spring. Measurement duration time was in

a range of 8 to 24 hours, depending on the weather. After recovery of the instrument,

the sediment is washed out of the bag, and then dried, and weighed. The bed load was

then calculated from the equation:
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qb— 

tbbb
(6.26)

where Mb is the trapped sediment amount, tb is the measurement duration time, and bb

is the width of the opening mouth. The measured data is given in Table 6.4. However,

some data for low amount of trapped sediment were discarded for analysis.

Table 6.4. Chukpyon bed load rate and associated C 4 values.

dU	 HT Awc dm	 dm A,.	 a Te	 107milmn <I-L1 1.5 > 10C4

(m) (m/s) (m) (s) (°) (Am) (Am) (mm) (mm) (°C) 	 (kg/ms)	 -	 -

2.0 .314 0.415 7 90 200 300 40 20 18 0.122 0.718 0.0853
3.0 .222 0.287 7 90 200 300 60 30 18 0.0611 0.260 0.168
1.0 .231 0.320 7 90 200 300 20 10 20 0.420 0.542 0.485
3.1 .106 0.685 7 90 200 300 62 31 15 1.94 1.54 1.48
3.4 .166 0.750 7 90 200 300 68 34 15 1.94 1.80 0.807
1.0 .189 0.255 7 90 200 300 20 10 18 0.559 0.318 1.34
6.3 .318 0.684 7 90 200 300 126 63 15 0.0765 1.09 0.0341
7.0 .336 0.662 7 90 200 300 140 70 15 0.0814 0.975 0.0391

The coefficient C4 is found to be 0.055 (mean) + 0.055 (variance). The variance is quite

large. The reason may be partially due to errors involved in measurement of input

variables (velocity, wave height, ripple size), and partially due to the errors arising from

the scouring near the device opening. Since the bed is usually rippled, then setting of

the bed load sampler on a rippled bed may also cause error.

After multiplying the scaling coefficient, the calculated bed load values were compared

to measured values in Fig. 6.7, which shows a large scatter. 50 % of the data are inside

a factor of 3 lines, and 100 % of the data are inside a factor of 10 lines. Until more

accurate measurements become available, the present mean scaling coefficient value of
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0.055 is suggested for use in a field situation.

6.2.6 Diffusion Coefficients (esx) Esy , Es)

The WPA diffusion coefficients should be provided to solve the governing equation (6.8)

and (6.10) for suspended sediment concentration. The sediment diffusion coefficients are

assumed to be the same as flow eddy viscosity coefficients (f3 ---- 1).

Ideally, the flow eddy viscosity should be obtained from direct measurement or from a

full three-dimensional turbulent wave-current flow model. However, a detailed three-

dimensional flow model requires long computation time, and thus is not desirable from

an engineering point of view.

The WPA vertical eddy viscosity for wave current flow can be approximated from a 1DV

or 2DV boundary layer model, assuming locally uniform flow conditions at each plan

grid point.

The new method consists of using a 2DV bed boundary layer model to reproduce the

inter-wave-period eddy viscosity profiles for a mono-wave at arbitrary-angles and steady

currents. Operation of the model for a number of wave periods allows the formation of

the wave-modified WPA eddy viscosity profile. By running this 2DV model for a number
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of typical wave and current combinations for water depths and bed roughness similar to

those at Chukpyon, it is possible to produce a series of results which can be schematized

into a suitable tabular form for interpolation at each model grid point. Full details are

given in Chapter 7.

The value of the horizontal diffusion coefficients E and E v cannot be calculated from

theory. However, O'Connor and Nicholson(1988a) have shown that the exact value of

these coefficients is less important in three-dimensional models since the spreading

process is dominated by the three-dimensional nature of the flow field. Thus, for present

purposes, the horizontal diffusion coefficients Esx , Esy are assigned to the same value as

the vertical diffusion coefficient at each grid point.

6.2.7 Velocities

Wave-period-average flow velocities u, v, and w can be provided from field

measurements, or from numerical models. Given that a depth-average type of flow model

is to be used for the present work, it is necessary to generate local velocity values from

depth-average values. In tidal conditions where vertical velocities are small compared

with horizontal values, it is possible to distribute the depth-average value over the flow

depth with a logarithmic function, see Van Rijn and Meijer(1988). Unfortunately this

method is less useful when waves and currents are present due to enhanced eddy
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viscosity in the wave boundary layer, which modifies the depth-distribution of horizontal

velocity.

Some researchers have attempted to overcome the problem by using a logarithmic

spreading function but with an enhanced bed roughness, see Van Rijn(1989). Such

approaches allow for the reduction of wave-period-average velocity near the sea bed,

using two separate log functions which involve various empirical parameters. This

lattermost approach could have been used in the present work. However, a better

method, which does not include such arbitrary assumptions, and provides full details of

the velocity profile in the lower layers of the water column, where the largest sediment

concentrations exist, is proposed in the present work.

The new method consists of using a 2DV bed boundary layer model to reproduce the

inter-wave-period velocity profiles for a mono-wave at arbitrary-angled waves and steady

currents. Operation of the model for a number of wave periods allows the formation of

the wave-modified steady velocity profile as for the eddy viscosity. By running this 2DV

model for a number of typical wave and current combinations for water depths and bed

roughness similar to those at Chukpyon, it is possible to produce a series of results which

can be schematized into a suitable tabular form for interpolation at each model grid point.

Full details are also given in Chapter 7.
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au . av + aw .0
ax ay az

(2.25)

Once the horizontal velocity is known at four adjacent model grid points, it is possible

to determine the vertical velocity from the water mass continuity equation (2.25), that

is:

Making use of the definition of w', equation (6.7), equation (2.25) is transformed into:

aud + avd +  aw ld _0
ax/ ay/ aa

Transforming equation (6.26) into (x',y',n) coordinates:

aud + avd + t	 l +1) awld -0
ax / ay/

(6.27)

(6.28)

Equation (6.28) is solved for w' by a simple finite difference method starting from the

seabed where w' =0.

6.3 Numerical Schemes

Following the splitting of the governing equation, each split partial differential equation

is transformed into a finite difference equation. The splitting approaches are known to

have some merits from the computational point of view. One merit is the reduction of

computation time compared to non-split implicit schemes, since solution matrices are

smaller in size. A further merit is that the computer programme is much simpler
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compared to unsplit schemes.

For present purposes the governing equation is split into three steps: a vertical diffusion

and vertical advection step, a horizontal advection step, and a horizontal diffusion step.

The numerical grid system used by the suspended sediment model is shown in Fig. 6.1a-

b. The suspended sediment concentration (c), seabed level (zb), are defined at the centre

of the horizontal grid, while velocities, and bed load fluxes are defined at the border of

the square grid.

Solution of the vertical diffusion and vertical advection step is done by a second-order

accurate Crank-Nicolson implicit finite-difference scheme, while the horizontal advection

step is solved by the method of characteristics, which is also called the projection

method, see Verboom(1975), and Nicholson(1983). Finally, the horizontal diffusion step

is solved by a second order explicit finite-difference scheme. Further details of the

numerical schemes for the split governing equations and boundary conditions at the water

surface, bed, and side boundaries are given in Appendix G.

The governing equation (3.10) for the seabed level change has been solved using fmite

difference methods. A simple explicit finite difference equation for the partial differential

equation (3.10) is used for the present work, see Appendix H.
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Vertical velocities are calculated between horizontal velocities, and four-point-averaged

for the solution of the vertical diffusion-settling equation. Details are given in Appendix

I.

6.4 Commutability, Consistency, and Stability of the Numerical Schemes

The commutability of the splitting technique has been checked by Nicholson(1984).

Nicholson mentioned that the splitting of the governing equation does not fulfil the

commutability condition. However, he suggested that the error occurring from the non-

commutability is likely to be small. In the present work, the governing equation is solved

with the sequence: horizontal advection, horizontal diffusion, and vertical diffusion and

settling with vertical advection.

Consistency, also called compatibility, of the fmite difference equations for the first

vertical diffusion and vertical advection step, and the third horizontal diffusion step is

satisfied for the schemes adopted. The consistency of the present second order schemes

for the governing equation (6.8) and (6.10) is examined and found to be satisfied, see

Appendix J.

Each numerical method used to solve the individual steps of the splitting approach must

also be checked for stability of computation. Stability for the implicit scheme for vertical
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diffusion and vertical advection is known to be unconditionally satisfied, see

Smith(1965). A stability condition is not required for the characteristic scheme for

horizontal advection due to its geometrical interpolation aspect, although errors can arise

from the interpolations needed in the approach, see Nicholson(1983). The explicit scheme

for horizontal diffusion has a stability condition, see O'Connor and Nicholson(1988a) of

the form:

A x2	 1,2
A ts	 ; A ts 	

2e 	 2esy
(6.29)

where At is the time increment; Ax, Ay are the spatial increments in the x and y

direction, respectively.

6.5 Accuracy of the Numerical Schemes for Suspended Sediment Concentration

Numerical solutions always involve numerical error. To appraise the reliability and

accuracy of a numerical model for general use for complex geometry, it is usual to apply

the general model to simple ideal situations which have analytical solutions.

Unfortunately, analytical solutions exist for only quite restricted flow and sediment

conditions. Thus, for unsteady diffusion and settling, Dobbins(1944) has given a solution

for a vertically constant diffusion coefficient over the depth. Mei(1969) has solved the

steady state two dimensional vertical non-uniform solution for the case of a constant

diffusion coefficient, while Hjelmfelt and Lenau(1970) have produced a solution to the
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same problem with a parabolic shape of diffusion coefficient over the flow depth.

The present numerical solution of the three-dimensional equation is compared with

Dobbins' (1944) analytical time-varying solution and with Hjelmfelt and Lenau's(1970)

steady state non-uniform solution.

Firstly, the model solution is compared with Dobbins' solution. The values of

independent variables and the parameters used for the numerical calculation are the same

as for Dobbin's analytical solution, see Table 6.5. The same time increment of 414.8148

as in Dobbins' solution was used for the numerical calculation (there is no limitation on

the time increment). A number of vertical grid points of 20 was used for the numerical

calculation.

Table 6.5 Values assigned to variables in Dobbins'(1944) analytical solution.

Variable Value Remarks

d (m) 17.07 56.00 ft

wf (mm/s) 4.115 0.0135 ft/s

Esz (M2/S) 0.04561 0.491 ft2/s

PA (kg/m3) 1.0

At (s) 414.8148
,i

Initial condition =zero concentration; Bed boundary condition: gradient condition used.
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Fig. 6.8 and Table 6.6 show that the model is accurate near the bed, but less accurate

near the water surface. The maximum error relative to the equilibrium bed concentration

is 3 % at mid-depth and surface after 5000 seconds, which is quite satisfactory for

engineering use.

Table 6.6 Comparison of numerical and analytical solutions (Dobbins,
1944).

c/ca bed	 c/camid-depth	 c/ca surface
nt	 A	 N	 A	 N	 A	 N

	1	 37.14	 34.08	 2.49	 3.11	 0.07	 0.50

	

2	 48.82	 46.68	 7.48	 7.94	 1.00	 1.89

	

3	 56.55	 54.99	 12.09	 12.69	 2.69	 3.77

	

4	 62.41	 61.30	 16.17	 16.98	 4.61	 5.77

	

5	 67.18	 66.43	 19.76	 20.78	 6.49	 7.67

	

6	 71.21	 70.75	 22.92	 24.12	 8.21	 9.41

	

7	 74.69	 74.47	 25.71	 27.05	 9.77	 10.96
	8	 77.73	 77.68	 28.16	 29.63	 11.15	 12.33

	

9	 80.39	 80.46	 30.33	 31.88	 12.37	 13.54

	

10	 82.73	 82.94	 32.23	 33.86	 13.35	 14.60

	

11	 84.79	 85.08	 33.91	 35.59	 14.40	 15.53

	

12	 86.60	 86.96	 35.39	 37.11	 15.24	 16.35

Values are .96-; nt=time step; A=analytical solution; N=numerical solution.

Secondly, the present model solution is compared with Hjelmfelt and Lenau's solution.

When the unsteady equation is used for the steady solution, it is necessary to run it for

a sufficiently large time so as to reach equilibrium. Thus the numerical model solution

for the equilibrium state is chosen when the variation of solution with time at each grid

point falls within a limit sufficiently small (0.1 % relative to the bed reference

concentration per time step).

Hjelmfelt and Lenau(1970) proposed an analytical solution for a simplified situation

which excludes horizontal diffusion. The same variable values were used for the
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comparison of the numerical and analytical solutions, see Table 6.7. A number of

vertical grid points of 20, Ax =0.2 m, At =0.2 s were used for the numerical calculation.

Table 6.7 Values assigned to variables in Hjelmfelf and Lenau's(1970) analytical
solution.

Variable Value Remarks

d (m) 1.0

U (m/s) 1.0 Uniform along Depth

w f (cm/s) 2

u. (m/s) 0.1

PA (kg/m3) 1.0

u.= seabed shear velocity; E s, = KUZ(1-z/d); Initial condition: zero concentration.

Fig. 6.9 and Table 6.8 show the model results compared with the analytical solution. The

numerical solution is generally quite accurate compared to the analytical solution. The

solution near the bed is clearly more accurate than at high levels due to the improved bed

boundary condition. Maximum error relative to the bed concentration is found to be some

4 % at high level, and is again considered to be acceptable.

Table 6.8 Comparison of numerical and analytical solutions (Hjelmfelt and
Lenau, 1970).

No.
c/ca=0.05
A	 N

c/ca=0.1
A	 N

c/ca=0.2
A N

c/ca=0.5
A	 N

0 0.050 0.050 0.050 0.050 0.050 0.050 0.050 0.063
1 0.199 0.213 0.164 0.173 0.129 0.133 0.083 0.084
2 0.269 0.279 0.214 0.219 0.160 0.163 0.093 0.093
3 0.324 0.332 0.252 0.257 0.183 0.185 0.099 0.100
4 0.371 0.378 0.286 0.290 0.203 0.205 0.105 0.105
5 0.410 0.415 0.316 0.319 0.219 0.221 0.109 0.109
6 0.451 0.457 0.341 0.344 0.235 0.236 0.112 0.113
7 0.483 0.487 0.366 0.369 0.248 0.249 0.115 0.116
8 0.517 0.522 0.389 0.391 0.260 0.261 0.118 0.118
9 0.548 0.552 0.408 0.410 0.273 0.274 0.121 0•121
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10 0.573 0.576 0.429 0.431 0.283 0.284 0.123 0.123
11 0.599 0.603 0.449 0.451 0.293 0.294 0.125 0.126
12 0.627 0.630 0.467 0.468 0.303 0.304 0.127 0.127
13 0.650 0.652 0.482 0.484 0.313 0.314 0.129 0.129
14 0.671 0.672 0.498 0.500 0.322 0.323 0.131 0.131
15 0.690 0.689 0.516 0.517 0.331 0.331 0.132 0.132
16 0.710 0.707 0.532 0.532 0.339 0.339 0.134 0.134
17 0.731 0.726 0.546 0.546 0.346 0.346 0.135 0.135
18 0.749 0.741 0.560 0.559 0.353 0.353 0.136 0.137
19 0.766 0.755 0.572 0.570 0.362 0.362 0.138 0.138
20 0.781 0.768 0.584 0.581 0.370 0.369 0.139 0.139
21 0.794 0.778 0.598 0.593 0.377 0.376 0.141 0.141
22 0.806 0.788 0.611 0.604 0.384 0.383 0.142 0.142
23 0.817 0.797 0.624 0.615 0.391 0.389 0.143 0.143
24 0.827 0.805 0.635 0.625 0.397 0.395 0.144 0.144
25 0.836 0.812 0.646 0.634 0.403 0.400 0.146 0.145
26 0.843 0.818 0.656 0.642 0.408 0.405 0.147 0.146
27 0.849 0.824 0.665 0.649 0.414 0.410 0.148 0.147
28 0.854 0.829 0.674 0.656 0.420 0.414 0.149 0.148
29 0.859 0.834 0.682 0.663 0.426 0.419 0.149 0.149
30 0.863 0.838 0.690 0.669 0.432 0.424 0.150 0.150
31 0.867 0.842 0.697 0.674 0.438 0.429 0.151 0.150
32 0.871 0.845 0.705 0.679 0.443 0.434 0.152 0.151
33 0.874 0.848 0.712 0.684 0.448 0.438 0.153 0.152
34 0.877 0.851 0.719 0.689 0.453 0.442 0.154 0.153
35 0.880 0.853 0.726 0.693 0.458 0.445 0.154 0.153
36 0.882 0.855 0.732 0.697 0.462 0.449 0.155 0.154
37 0.884 0.858 0.738 0.701 0.466 0.452 0.156 0.154
38 0.886 0.860 0.743 0.704 0.470 0.455 0.156 0.155
39 0.888 0.861 0.748 0.708 0.474 0.458 0.157 0.155

Values are z/d; A.analytical solution; N=numerical solution.

6.6 Conclusions

Near structures the suspended sediment concentration distribution is not uniform. The

present three-dimensional sediment transport model can simulate the non-uniform

behaviour of sediment diffusion-advection.

The model requires bed reference level concentration, bed load transport, three diffusion

coefficient components, and three velocity components. A modified Brown's empirical
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formula for the reference level suspended sediment concentration, which is based on the

analysis of laboratory and field data, was calibrated using laboratory and field data. The

field data were obtained using a new four-directional near-bed sand trap. An empirical

bed load transport formula was also calibrated from field measurements.

Model diffusion coefficients are obtained from a wave-current boundary layer model

described in Chapter 7. Depth-mean horizontal velocities are obtained from a depth-

averaged wave-induced flow model, and the horizontal velocity profiles over the depth

are calculated using depth-average velocities and the wave-current boundary layer model

results in Chapter 7. The vertical velocity is obtained from the WPA fluid continuity

equation.

The three-dimensional governing equation is transformed using a sigma-transformation

so that it is applicable for general geometry. The equation is split into three equations for

numerical convenience. The vertical diffusion and advection equation (6.8) is further

transformed to give a more accurate solution near the seabed.

The split equations are solved by appropriate numerical schemes. The vertical diffusion

and advection terms are solved by an implicit scheme, the horizontal advection step is

solved by a characteristic method, and the horizontal diffusion step is solved by a second

order explicit scheme.
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General model coding and accuracy are tested by numerical calculations for two

analytical solutions, that is an unsteady one-dimensional vertical diffusion-settling

problem (Dobbins, 1944), and a non-uniform two-dimensional vertical diffusion-settling

problem (Hjehnfelt and Lenau, 1970). Both numerical solutions show small numerical

errors (<5 % at the surface), which are considered satisfactory for engineering use.
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CHAPTER 7. CHARACTERISTICS OF WAVE CURRENT BOUNDARY LAYER

FLOWS

7.1 Introduction

The three-dimensional suspended sediment model needs information on wave-period-

average bed shear stress for the calculation of the reference concentration, diffusion

coefficients, and horizontal velocity profiles at each plan grid point in the model

computational domain for wave and current situations.

In the past, such information has been provided by either empirical equations or by using

one-dimensional models of wave/current processes at a plan grid point, so called 1DV

point models.

Empirical methods are based on the analysis of a limited number of experimental data,

and consequently, the variable values are in a very restricted range.

Existing 1DV models for wave and currents, for example, Deigaard et al. (1986a) for the

surf zone or Davies(1990) for the offshore zone, usually neglected the effect of vertical

wave-induced flow velocities. Such models have shown their capability to describe
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various experimental features reasonably well, including the IWP variation of velocity,

shear stress, and eddy viscosity in the boundary layer, and WPA enhanced eddy viscosity

and modified velocity profile near the seabed due to wave-current interaction.

However, recent experiments by Bakker and van Doorn(1978), Kemp and

Simons(1982,1983), Nieuwjaar and van der Kaaij(1987), and Nap and Kampen(1988)

have revealed not only the existence of wave-induced mass transport but the fact that the

depth-mean horizontal velocity of the steady current in a combined wave and steady

current situation for the same wave conditions but with opposite current directions are

much different from each other due to the effect of vertical wave-induced velocities. Such

a difference caused by opposite current directions cannot be described by existing 1DV

models.

In order to explain the wave-induced wave mass transport phenomena, another group of

vertical wave boundary layer numerical models have been presented in the literature.

These include the effect of wave-induced vertical orbital velocity. However, this

approach has been confined to wave only situations up to the present time.

For present purposes, therefore, a new two-dimensional (longitudinal and vertical

coordinates, x-z) numerical model has been developed and tested for various different

situations, to take account of both co-existing wave and current situations at arbitrary

intersection angles as well as the effect of wave-induced vertical orbital velocities. The
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model uses a vertical two-dimensional periodic grid to include the effect of the vertical

wave-induced orbital velocities, and also adopts a mixing-length turbulence closure.

The model is applied to situations with waves to study Eulerian mass transport, and to

situations with waves; and in-line following, and opposing currents with waves; and

currents with waves at arbitrary angles, to study the interaction effects on horizontal

velocity profiles. The inter-wave-period variation of velocity, shear stress, and eddy

viscosity over the flow depth is described by the model as are also wave-period-averaged

properties such as increase in seabed roughness.

Model results are first compared with experimental data to show the relative accuracy

of the new approach, and secondly, to determine its sensitivity to input variables. Finally,

model results are obtained for a range of variables appropriate to the Chukpyon site and

parameterized to enable the rapid calculation of the wave-period-average bed shear stress,

the diffusion coefficients, and the wave-period-average horizontal steady-current velocity

profiles within the three-dimensional model .
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7.2 Review

7.2.1 Experiments and Empirical Methods

Experimental work on wave-only flows has been done by a number of workers including

Bijker and Pieters(1974), Nadaoka et al. (1982), Hwung and Lin(1990), Kyriacou(1988),

and Simons and Kyriacou(1990). The experiments have generally shown the existence

of wave-induced mass transport in the bed boundary layer.

Laboratory experimental work for wave and current flow have been done by various

researchers including van Doom and Godefroy(1978), van Doorn(1981), Kemp and

Simons(1982,1983), Tanaka et al.(1983), Savell(1986), Coffey and Nielsen(1986),

Nieuwjaar and Kaaij(1987), Sleath(1987,1990), Nap and van Kampen(1988),

Kyriacou(1988), Lee-Young and Sleath(1988). The experiments have shown the existence

enhanced eddy viscosity inside the wave boundary layer, and the enhanced bed roughness

near the bed due to the enhanced eddy viscosity.

Coffey and Nielsen(1986) proposed an engineering method based on a logarithmic

velocity profile with an enhanced (apparent) bed roughness za. The ratio of za/zb was

obtained from experimental data and was related to the ratio of the wave shear velocity

to the current shear velocity. However, their method requires an iterative computational

procedure.
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Van Rijn(1989) also proposed an engineering method for the modification of the steady

current horizontal velocity profile for wave and current situations based on the analysis

of Nap and van Kampen' s(1988) experimental data, see Section 3.2.7. His analysis

clearly showed that the apparent roughness for opposing currents is much larger than that

for following currents. His formula retains the aspect that the following and opposing

current to the waves produce twodifferent velocity profiles. However, since his formula

is driven from a limited number of experimental data, it is only valid for a limited range

of conditions. For example, the ratio of apparent roughness to bed roughness can only

have a maximum value of 10 according to his formula.

Both empirical models are based on the analysis of a limited number of experimental data

within a narrow range of input variable values. Little information exists for waves and

currents at arbitrary intersection angles, mainly because such experiments require special

facilities. Therefore, in order to develop an engineering model for the general wave and

current situations, it is necessary to develop a general turbulent flow computer model.

7.2.2 1DV Boundary Layer Models Ignoring Vertical Orbital Motion

Various theories have been used as the basis for 1DV models, which have then been used

to study a wide range of problems, not only for waves, but also for co-linear waves and

currents, and arbitrary angled waves and currents; it being assumed that the wave motion
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is similar to water oscillations in a water tunnel.

A large number of different models have been developed with a range of closure options.

Typical examples include Kajiura(1968), Lungren(1972), Bakker(1974), Bakker and van

Doorn(1978), Jonsson(1978), Grant and Madsen(1979), Tanaka and Shuto(1981,1984),

Sheng(1983), van Kesteren and Balcker(1984), Fredsoe(1984), Tanaka(1989),

Myrhaug(1989), Myrhaug and Slaattelid(1990), Huynh-Thanh and Temperville(1990),

Davies(1988,1990), Sleath(1991), Davies, A.M.(1991,1992), Davies, A.M. and

Jones(1991), Justesen(1991), Soulsby et al.(1993),44 and O'Connor et al.(1992a). Basic

features of the models are described below.

Bakker(1974), Bakker and van Doorn(1978), and van Kesteren and Bakker(1984)

examined wave and current boundary layer flows by using a mixing-length closure. For

this lattermost approximation, they stressed the importance of second harmonics in the

wave motion. However, considering the inherent non-linearity of the relation between

shear stress and velocity gradient, it is expected that higher harmonics than second are

not negligible, see Trowbridge et al.(1986).

Davies(1988) has used a one-equation (k) turbulence closure for combined wave and

current boundary layer flow simulation. Use of this model shows that when the depth-

mean velocity is given, the pressure gradient is not the same as for current-only flow due

to the enhanced bed shear stress. More recently, Davies(1991) has used a method to
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obtain the given depth-mean velocity in his 1DV numerical model by adjusting the

pressure gradient value at every wave period.

Justesen(1991) has compared the performance and the effectiveness of three turbulence

closures (mixing length, k equation, k-e and k-1 equations) for 1DV wave boundary layer

modelling, and showed that k equation and k-e equation models give similar results.

Tanaka(1989) has modelled the non-linear wave boundary layer flow, using a mixing

length theory.

O'Connor et al.(1992a) have modelled both long and short-crested directional random

waves and steady currents with a 1DV numerical model and a mixing length closure, and

shown reasonable comparison of near-bed flows with data from the North Sea.

While a great deal of useful modelling has been done, the influence of vertical wave-

induced motion has generally been neglected so that the wave-induced mass transport

cannot be simulated by 1DV model. The difference in the WPA velocity profiles for

following and opposing currents to waves cannot be shown by the 1DV model, either.
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7.2.3 Wave Boundary Layer Theories Including Wave-Induced Vertical Orbital Velocity

The mass transport current in wave motion is relatively small in size compared to the

maximum wave orbital velocity. However, when the bed boundary layer thickness

becomes comparable to the whole depth, possibly due to long period motion or large bed

roughness, the mass transport rate can no longer be treated as negligible.

Given that sediment movement depends upon a high power (usually 3-5) of the water

velocity, it follows that wave-period-average sediment transport is sensitive to the non-

linearity of the wave motion. Previous work on residual wave-induced current flows

(mass transport currents) has looked at the wave situation analytically or by using a

pseudo-two-dimensional-vertical modelling technique for a laminar or turbulent wave

boundary layer.

Considerable modelling of wave-induced mass transport flows has been done using a

wide variety of approaches. Typical approaches are due to Longuet-Higgins(1953),

Johns(1970,1975,1977), Sleath(1972,1973), Isaacson(1976,1978), Door(1977,1982),

Thomas(1981,1990), Craik(1982), Jacobs(1984), Trowbridge and Madsen(1984a, 1984b),

Trowbridge et al. (1986), Takhar and Thomas(1991), Iskandarani and Liu(1991a,b), and

Soulsby et al. (1993). Relevant works are described below in more detail.
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Longuet-Higgins(1953) proposed a solution for the depth-distribution of mass transport

velocity for boundary layers in laminar progressive waves and standing waves (obtained

by superposition of reflected waves). He derived his solution from the x-directional

horizontal momentum equation which retains advection terms (uau/ax, wau/az), but

simply treated the first advection term as a part of the pressure gradient term. He

obtained the vertical orbital velocity from the continuity equation (in the x-z domain) by

numerical integration. He used a non-slip boundary condition and a zero shear stress or

vertical zero-gradient of horizontal velocity at the top of the wave boundary layer. The

main features of his solution are as follows:

1. A positive (in the wave direction) Eulerian mass transport velocity occurs just near

the bed for a progressive wave.

2. A negative Eulerian mass transport velocity occurs just near the bed for a standing

wave.

Johns(1970) extended the Longuet-Higgins work from laminar wave flow to turbulent

wave flow. He used similar governing equations as Longuet-Higgins(1953), but adopted

a time-invariant turbulent eddy viscosity assumption. His solution showed a similar trend

to that for laminar flow with the same maximum mass transport velocity but with a much

bigger boundary layer thickness than for laminar waves.

Johns(1977) adopted a turbulence energy equation (k) closure, so that the eddy viscosity

varied during the wave period. Due to the complex time and spatial variation of the
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turbulent energy, he used a finite difference method for the horizontal momentum

equation, and "pseudo-spectral" technique to calculate the advection term which included

the vertical velocity. He approximated the spatial gradient of the horizontal velocity

(au/ax) by a time gradient of the horizontal velocity (1/c - au/at). Then at the end of

each wave period, he applied a Fourier transformation, and integrated the spatial gradient

value up to the calculation point to obtain the vertical velocity. However, he used a

smoothing technique to suppress the development of instability, and chopped out higher

harmonics than 3. His model result showed that the maximum mass transport over the

depth closely matches with Longuet-Higgins' maximum mass transport velocity for a

turbulent wave. However, Johns(1977) has not quantitatively described the error caused

by the smoothing and chopping procedure.

Hedegaard(1985) has calculated Eulerian and Lagrangean wave mass transport using

Fredsoe's 1DV wave boundary layer flow model, and graphically presented a functional

relationship between three non-dimensional variable groups, the ratio of the horizontal

WPA velocity at the top of the wave boundary layer (u) to the wave-induced orbital

velocity amplitude (U.), the wave orbital excursion length amplitude (A) to the bed

roughness divided by 30 (zo), and the wave length (L) to the wave excursion length

amplitude (A). She stressed the importance of including Lagrangean mass transport in

the suspended sediment transport calculation.
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Trowbridge et al. (1986) have used a 1DV finite difference model with two nonlinear

advection terms. They used the conversion of the spatial (x) derivative to the time

derivative of the horizontal velocity as did Johns(1977) to obtain the vertical velocity.

Since the problem includes a highly implicit expression, including vertical integration of

the time derivative of velocity, the x-derivative of the horizontal velocity and some other

terms were approximated from a first order solution (1DV), which did not include the

effect of the nonlinear terms with the vertical velocity. However, they did not

quantitatively describe the error caused by the approximation.

Although existing models, which take account of the vertical velocity, can quite

accurately predict the wave-induced mass transport phenomena, the previous studies have

been confmed to the situation involving only waves; the objective of the study being to

understand experimental mass transport phenomena produced by waves in a flume or in

deep water without currents. Thus previous work has largely remained isolated from any

engineering usage, and is limited to situations involving only waves.

For large waves and weak onshore currents, such as occurs in shallow water near the

wave breaker line, where the depth-mean velocity remains quite small, mass transport

flow becomes relatively more important, and is significantly modified by wave current

interaction. The effect of wave direction on the mean velocity profile is also significant,

when the current is weak.
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7.2.4 Conclusions

A review of the prediction methods for bed shear stress, eddy viscosity, and steady

current velocity distribution has revealed that empirical methods, 1DV numerical models

ignoring the vertical velocity effect, and 1DV numerical models including the vertical

velocity effect have their own defects. For example, empirical methods can provide

accurate solutions for only a narrow range of variable values, while 1DV models, which

ignore the vertical velocity, cannot predict the wave-induced mass transport; the latter

being important for wave-dominated situations.

1DV numerical models, including the vertical velocity effect, have been successfully

applied for various wave situations. However, this approach has two major drawbacks.

Firstly, a method to adjust the WPA pressure gradient for wave and current situations

has been lacking, so that these techniques could not be applied for such flows. Secondly,

the vertical velocity has been approximated either by Fourier analysis at the end of wave

period or by using an other simplified model solution. Therefore, the 1DV numerical

models of Johns(1977) or Trowbridge(1986), which retain the vertical velocity effect

need to be further modified to have pressure gradient adjustment method for wave and

current flows, and also a method to obtain a more accurate vertical velocity value and

advection term(wau/az).
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For present purposes, therefore, a two-dimensional vertical (2DV) numerical model has

been set-up to obtain a better solution to the combined wave and current problems for

waves and currents at arbitrary angles, since it does not involve any undesirable

approximation for the calculation of the vertical velocity, although it requires more

computational time due to the larger number of points required compared with 1DV

methods. The present model also uses Davies's(1991) modified scheme for adjusting the

pressure gradient for wave-current flows for faster conversion of the solution.

7.3 2DV Boundary Layer Model

7.3.1 Introduction

A two-dimensional model is presented here to simulate the combined wave and current

boundary layer flow for general arbitrary angles of wave and current intersection. The

isometric view of modelling space is shown in Fig. 7.1, while the numerical grid system

used in the model is shown in Fig. 7.2 and is seen to include a non-uniformly-spaced

vertical grid so as to provide details of the near-bed velocities. For a convenient

representation of the 2DV model results, a simplified one-dimensional vertical (1DV)

model, which omits the vertical orbital velocity term, is also used in Section 7.6.
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The model uses simplified forms of the two horizontal momentum equations. The vertical

momentum equation is ignored, since the vertical orbital velocity magnitude is relatively

small compared to horizontal velocity magnitudes. The vertical wave velocity is obtained

from the local mass continuity equation.

The model adopts a mixing length closure to simulate turbulent effects. The mixing

length hypothesis was developed originally for steady flow near a plane rough wall, but

has been successfully applied to a very wide range of turbulent flow situations, including

unsteady flows. It implies an equilibrium situation in which production and dissipation

of turbulence is in equilibrium, which is not absolutely true in unsteady flows. However,

experimental work by Sato(1987) and Taplin(1989) suggests that even in unsteady wave

flows, the mixing length approach may be a reasonable assumption in so far that

turbulent production and dissipation are approximately equal. Taplin(1989) has analyzed

laboratory experimental data conducted on a flume at Manchester University, see

O'Connor et al. (1993), on turbulence production rate and dissipation rate for 1.5 second

waves at height 0.36 mm from the bed within the wave boundary layer, and showed that

both rates follow very closely, see Fig. 7.3. Sato(1987) has shown similar results from

an experiment over a rippled bed for a 4.0 second wave, see Fig. 7.4. Although the two

data sets may be insufficient to prove that mixing length theory is accurate for all short

wave motion, the experiments suggest that the effect of delay of turbulence energy

between production and dissipation rate is small for both flume scale waves as well as

field-scale waves.
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It is also noted that Trowbridge et al.(1986) tested two different turbulence models, a

mixing length hypothesis and a one-equation model for simulating boundary layer flows,

and showed that the difference between the two models were negligible for velocity or

shear stress fields. Thus the mixing length theory is adopted for the present study.

Four further approximations are used in the present model. Firstly, the mixing length is

assumed to increase linearly with elevation near the seabed but to return to zero at mean

water level. Secondly, the water depth is assumed to be shallow enough so that variation

of the wave-induced horizontal velocity outside the wave boundary layer can be

neglected. Thirdly, the effects of vertical shear stresses are assumed to be small in

comparison with horizontal stresses. Fourthly, large-scale vertical momentum exchange

is neglected so that pressure distributions outside the thin wave boundary layer are

hydrostatic. Wave-induced vertical velocities are calculated by integration of the water

mass conservation equation over a water depth.

7.3.2 Governing Equations

The model uses momentum equations (2.21), (2.22), and (2.23) derived from the Euler

equations for turbulent flow.

The horizontal axis x and y can be chosen arbitrarily regardless of wave and current
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au av
Ty ay

(7.1)

direction. However, for present purposes, the x-axis is set in the wave propagation

direction for convenience (Ow =0, Owe =0°). Then y-derivatives of velocities disappear, that

is:

where u,v are the horizontal velocities in the x,y direction, respectively; and y is the

lateral cartesian coordinate.

The simplified horizontal momentum equations in the boundary layer are thus given as:

au au - 1 ap + 1au_
at ' , c -w ,

z P ax p az

av 	 av av
2

at uw-w.T; 
_ pay

.t_3 +,
aryz

 p az

(7.2)

(7.3)

where t is time; x,z are the longitudinal and vertical cartesian coordinates, respectively

(the mean bed level is used for a datum level, that is, zb =0); w is the vertical velocity;

p is the pressure; p is the water density; and rxz , r the turbulent shear stresses in

the x, y directions, respectively.

The pressure gradients, -(1/p - 0p/8x) and (-lip - aplay) are assumed to be composed of

contributions from the wave pressure field and the steady current pressure field. For

nearly-horizontal steady flows, the current pressure field is assumed to be hydrostatic,

while for a thin wave boundary layer, the wave pressure field is assumed constant over
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the wave boundary layer thickness and to be related to the local acceleration. Thus,

_ 1 ap .p = au+p
p ax - at c,x

1 app
p ay c, Y

(7.4)

(7.5)

where PC,X 9 PO,y are the current related pressure gradients in the x, y directions,

respectively (=-gan/ax, -gantay); o is the WPA water elevation above a horizontal

datum; g is the acceleration due to gravity; iTT is the wave-induced horizontal velocity

component at the top of the wave boundary layer and is given by the equation:

CI= EI., •cos (a t-kx)	 (7.6)

where cr is the wave angular frequency, and k is the wave number.

The equations generally used in the 1DV model are obtained by discarding the two

advection terms on the right hand sides of equations (7.2) and (7.3). The result is then:

au =_ 1 ap + 1 at.
at p ax p az

av__ 1 ap + 1 aryz
at -13- W- p az

(7.7)

(7.8)

Equations (7.7) and (7.8) for 1DV models are used only for the presentation of the 2DV

model results in the present work.
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The shear stress terms are then replaced using the eddy viscosity concept with a mixing

length hypothesis. Thus:

au	 av
t'="z-aTz ; tYz=Pez-Z

ez=12 ‘,	
)

au, 2÷( av)2
.T;	 aZ

,\I

(7.9)

(7.10)

_L
i z

1 =K Z1 \ I - -T for z� zo (7.11)

where Ey is the vertical eddy viscosity, 1 is the mixing length, d is the water depth, zo is

the equivalent Nikuradse roughness of the seabed divided by 30, and K is the von Karman

constant ( =0.4).

It should be noted that the mixing length expression, equation (7.11) represents the

analytical form for a steady flow with a constant shear stress distribution over the flow

depth and a logarithmic horizontal velocity profile. However, the mixing length theory

has been developed for the near wall region (1=Kz), but is often used for the whole

depth, see Bakker and van Doorn(1978). The form of equation (7.11) is thought to be

more appropriate than Bakker and van Doorn(1978), since it gives the same mixing

length values very close to the bed, but it also satisfies the requirement for a logarithmic

profile of the steady current in the absence of waves.
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The momentum equations are next transformed in the vertical direction using a power

relationship:

11= (—zd)

	
(7.12)

Such an approach produces a higher resolution of flow variables near the seabed. The

vertical derivative of an arbitrary function has the form:

at _,at ._ A - +1

7:1 11 A

The equations are modified, therefore, to give the forms:
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(7.15)

where

au	 aez
=1

2 F\1 (	 ) 2 + ( v)2
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1

/=Kull	
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(7.16)

(7.17)

and A is a scale parameter which affects the distortion of the grid.

The effect of the transformation on a steady, uniform, open-channel, logarithmic velocity

profile, that is:
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U = 1 in ( Z )

U. K	 Zo
(7.18)

au + av + aw=0
ax ay az

(2.25)

is shown in Fig. 7.5 for three A values (0.1, 0.5, 1.0). It is clear that the truncation

error is smallest when the transformed solution is linear. The model used a constant of

0.1 for the coefficient A.

The model vertical velocity is calculated from the local fluid mass conservation equation:

which is simplified using the assumption of parallel conditions along the y direction.

Thus:

au + aw.0
ax az

Equation (7.19) is transformed into:

au aw
a

+F—
n 

=0x a

(7.19)

( 7 . 2 0 )

7.3.3 Initial and Boundary Conditions

The momentum equations (7.15), (7.16) and the continuity equation (7.20) need to be

solved subject to appropriate initial and boundary conditions.
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The final equilibrium solution is not affected by the choice of the initial condition.

However, accurate initial conditions can reduce the iteration number of wave periods

required to reach the fmal state. A constant horizontal current velocity over the depth (U,

V in the x, y direction, respectively) is given as the initial condition. A constant wave-

induced horizontal orbital velocity over the depth (0) is also added to the current

velocity.

Three boundary conditions are needed, at the mean water level, at the seabed, and at

both x-directional sides of the computation domain.

The surface boundary condition is taken to be zero shear stress (r x, = ryz =0) which

corresponds to a zero vertical gradient of horizontal velocity (au/az = av/az =0). Due to

the coordinate transformation used in the model, which produces a relatively large grid

size near the water surface, the zero gradient of velocity can give a somewhat different

shape from an ideal logarithmic profile. However, since the interest of the present study

is in the near-bed flow structure, the boundary condition of zero gradient of surface

velocity is adopted in the present work.

The bed boundary condition is a simple non-slip horizontal velocity condition (u =v =0)

at a level, zo. This non-zero level ensures a positive finite mixing length, and excludes

the singularity at z =O. The vertical velocity at the bed is also zero (w .-- 0). The bed

roughness is simply expressed as a constant times some representative physical height of
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(7.22)

the bed shape (for example, 3d50 for a flat bed of sediment grains of size d50, or 3A, for

a rippled bed of ripple height sr). The level of zero horizontal velocity for a steady

current flow (z0) is set, therefore, to one-thirtieth of the bed roughness.

The side boundary condition is given by a periodic condition governed by the wave

length of the water motion.

u(Lwc , z, t) = u(0 , z, t) ; v(Lwc , z, t) = v(0 , z, t)	 (7.21)

where L the wave length relative to the fixed frame for a combined wave and current

flow. Assuming that the wave is transforming from no-current region to a with-current

region for a constant water depth, and that same number of waves passes at every

point(Barber,1969), that is:

where T is the wave period, c is the wave celerity, L is the wave length, and U is the

depth-mean horizontal current velocity vector in the x direction. The wave length can

then be simply calculated by the equation:

Lwc =L-F TU	 (7.23)
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7.3.4 Numerical Schemes and Solution Procedure

The governing equations (7.15), (7.16) are transformed into appropriate finite difference

equations using an implicit scheme. The continuity equation (7.20) is solved by numerical

integration. Details are given in Appendix K.

Required input data are water depth, bed roughness, wave period, wave height or wave

near-bed orbital velocity amplitude, depth-mean current velocity, and wave-current

intersection angle. The surface pressure gradient is not given as an input variable in the

present work, but is obtained through the model calculation.

When the wave-interacted depth-mean steady velocity is known from the start of a model

simulation, as for example with experimental data, then the horizontal pressure gradient

in the model is adjusted by a trial and error method to reach final equilibrium conditions.

When the required condition for equilibrium is reached, that is 0.1 % change of mean

pressure gradient from that of a former wave period at every grid point, then the

execution is stopped. In most cases the criterion is satisfied within about 30 wave

periods.
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7.4 Model Characteristics

7.4.1 Initial Model Tests

The number of time steps to be used in the model during a wave period is not limited by

any stability criteria, since an implicit scheme is used in the numerical solution.

However, if too large a time step is used, unwanted oscillations can occur, as reported

by Roache(1982), although the oscillations may eventually be dampened out after a long

execution time. For present purposes, the minimum number of time steps was set to 256

in a wave period, although a larger number was used for small zo/d cases if the

oscillatory behaviour did not vanish in about 10 wave periods.

The number of vertical grids also needs to be properly chosen. Ideally, the solution

should be insensitive to the number of vertical grids. To see the effect of different

vertical grid numbers, the 1DV model instead of the 2DV model was tested for three

different values, namely, 16, 32 and 64, for exactly the same flow conditions, see Table

7.1.

Table 7.1 Values assigned to variables in the initial model tests.

Variable Value Remarks

d (in) 5.0

4 (mm) 5

H (m) 0.745
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T (s)
	

7.0

1.1 00 =0.449 m/s; wave excursion length amplitude =0.5 m; L=45.63 m.

Figs 7.6-8 shows the relatively insensitive nature of the model solution to the number of

grids for wave orbital velocity, shear stress, and eddy viscosity. It is clear from the

figures that 16 intervals is sufficient to describe the variation of orbital velocity and shear

stress but that a larger number is needed for the eddy viscosity in the upper layers of the

flow. The variation of the shear stress amplitude and the maximum eddy viscosity at 4

cm from the bed for several vertical grid numbers are shown in Fig. 7.9, and Fig. 7.10,

respectively. Taking the solution from a vertical grid number of 128 for an accurate one,

to a grid number of 32 gives 6 % error in the shear stress, and 4 % in the eddy

viscosity, which is quite small. For the majority of the flow depth, 32 intervals is

sufficient. Consequently, for most subsequent tests, 32 intervals was used unless greater

precision was required.

7.4.2 Asymptotic Behaviour of the Model Solution

For situations involving a steady depth-mean current, two situations are possible. One

is to assume that the energy gradient (water surface slope) is the same for the current-

alone case and for the combined wave and current case. If the value of the depth-mean

velocity is unknown, it is necessary to operate the model until an equilibrium situation
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is reached, and the effect of the enhanced eddy viscosity in the wave boundary layer has

had a chance to influence the solution. Davies(1991) has shown that when a constant

pressure gradient is applied to his 1DV wave and current boundary layer model, the

near-bed flow structure approaches the equilibrium value earlier than the water surface

flow.

The second possibility is to keep the water flux across the whole depth constant. If we

consider the situation in which the water flux is controlled in a laboratory experiment by

a particular valve setting in a water circulation system, it is clear that a numerical model

needs a similar function to control water flux. In such a case, the surface pressure

gradient is unknown beforehand, and so some trial and error system is needed whereby

the surface gradient is gradually adjusted until a specified depth-mean velocity is

obtained.

In the present study, the lattermost case is considered, assuming that the depth-mean

velocity of the steady current is known or given. A proper method for adjustment of the

pressure gradient is thus needed for model operation as described below.

Davies(1991) has also faced the same problem referred to above, and presented a method

to obtain a depth-mean velocity after many wave periods of computation. He started the

model from an incorrect depth-mean velocity condition, and then adjusted the mean

pressure gradient every wave period. It is not clearly described in his paper how he
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adjusted the pressure gradient, but it is anticipated that the pressure gradient is modified

at the end of the wave period by a scale parameter related to the ratio of the target depth-

mean velocity value and the depth-mean current value averaged for a wave period. His

method allows the depth-mean velocity to change every wave period, and to approach

the given depth-mean velocity asymptotically by applying an appropriate new pressure

gradient at each end of wave period.

A new method to obtain the desired depth-mean current and the pressure gradient is

proposed in the present work. Instead of running the model forward every wave periods,

the present model is run forward twice for every wave period as trials and is then run

as a final computation using an interpolation of solutions of the two trials. Firstly, an

initial condition is given with the exact value of the desired depth-mean velocity. This

can easily be done by assigning a constant velocity over the water depth. The flow

condition at the beginning of the calculation wave period should be stored so that the two

trials can start from exactly the same condition. The first trial is run for a wave period

with a guessed value of the mean pressure gradient (Pc,1), where Pc is the pressure

gradient in the current direction (— 	 x_ (p , 2 + cp ,y2)0.5 \ ,
) and a new WPA depth-mean velocity

( A ) is obtained. Then, the second trial is run for the same wave period starting

from the same starting condition as the first trial with another guess value of the mean

pressure gradient (P0,2), and another WPA depth-mean velocity ( I CII2 ) is obtained.

The appropriate pressure gradient for the wave period is then approximated from the

results of the two trials:
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Pc 2 Pc1
pc*, f— -.,	

, 

1u12-101 
( 1 (71 - 1°11 ) +Pc,1-. (7.24)

where Pc; is the pressure gradient which is to be finally applied to the wave period, and

a is the given depth-mean velocity. Superscript * is for a temporary value.

By starting at the beginning of the same wave period, and applying the pressure gradient

13, ,f* , desired depth-mean velocity can be obtained at the end of the wave period. This

procedure is applied at every wave period.

The present interpolation method can only be used when the response of the depth-mean-

velocity is linear to the applied pressure gradient for one wave period. Although the

relationship between mean pressure gradient and the resultant depth-mean-velocity for

current flow is nonlinear, for example, the relationship is a "squared" one for the steady

current problem, the short period response of the depth-mean-velocity to the pressure

gradient is very close to linear, since flow modification is largely confined to the near

bed zone.

The almost linear response is shown for a situation of 5 m depth, z 0 =5 mm, depth-mean-

velocity of 0.336 m/s, and excursion length amplitude of 0.5 m. After 3 wave periods,

three different pressure gradients are applied and show the linear response of Fig. 7.11.
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. ID;f+Pip

-& c, f	 '
(7.25)

However, if the calculated pressure gradient Pc; is applied at the end of each wave

period, the model result show two wave-period oscillations. Although the oscillations

eventually disappear, it takes very many wave periods to reach the final equilibrium. In

order to reach the final equilibrium state sooner, oscillations are suppressed by using a

new pressure gradient obtained by averaging the temporary pressure gradient (P c;) with

the pressure gradient value of the former wave period (Pc-1):

This averaging ensures that the oscillation amplitude is reduced by a half every wave

period. Since it takes a certain number of wave periods to modify the internal full-depth

flow structure, and this number is usually larger than 10, the error induced by halving

the pressure gradient is less than 1/2 10 or 0.1 % in ten wave periods, which is negligible.

In order to compare the efficiency of the present method to find the final pressure

gradient with a given depth-mean velocity value for the present 2DV model (or 1DV

model) with that of Davies(1991), the simplified 1DV model is applied to the same flow

condition as Davies(1991). The variable values of the test run are shown in Table 7.2.

Table 7.2 Test condition for pressure gradient adjustment method.

Variable Values Remarks

d (m) 10.0 >> Sw

zo (mm) 5 Ar= 50 mm,
X= 500 mm
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Variable Values Remarks

H (m) 2.33

T (s) 10

U (m/s) 0.5

ewe (°) 0

A (m) 1.59

Ueo (m/s) 1.00

L (m) 92.4 >> depth

Ar = ripple height; X =ripple length; 5, =wave  boundary layer thickness.

The variation of the pressure gradient with time is shown in Fig. 7.12. The final pressure

gradient values from the two models show slightly different values, but this is because

of the different turbulence closures, not the pressure gradient adjusting method. Since the

present method keeps the depth-mean-velocity from the first wave period, it shows a

faster adjustment of the pressure gradient. The present method shows the peak pressure

gradient at the end of the first wave period, while Davies' method shows a peak value

at the second wave period. The peak value of the present method is larger than that of

Davies'. The pressure gradient approaches the final equilibrium value at 6 wave periods

with 10 % error from the present method, compared to about 11 wave periods from

Davies' method for the same 10 % error. The test results support the view that the

present method is an efficient method to obtain a desired depth-mean velocity.
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7.4.3. Model Sensitivity Tests

In order to have an insight into the mechanisms in the boundary layer through sensitivity

testing, the non-dimensional forms of the governing equations needs to be analyzed. The

non-dimensional variables are then changed to see the model sensitivity.

Non-dimensional variables are defined as follows:

t* =1- t
T

1	 1=— z ; x* -- —.K
z	 A0
T	 Tu * = — u ; w*=—w
A	 zo

Using equation (7.26), other variables are non-dimensionalized as follows:

	

T	 'V )	 T2 ( I'e*- 	  

	

Azo	 P * A2 p

	

T2 z0Zo p	 T2 z0
P	 _ 	  	 P

A 2 	 c,x, A2

(7.26)

(7.27)

The governing equations (7.2) and (7.3) are transformed into:

au * __	 au *	au* au* A	 A a(./P)* ) (7.28)
at	 u * -, * -w -+

—
*.* at *+ zo 

p	 +	 (c, x, * z
0	 az*

av*	av*	av* A	 A a(t /p)yz	 *
— Ll * 	—W*	 +— Pc, y ,+	 ( 	 )

at*	ax*	az* zo	 ,	 z0	 az*

with the non-dimensional mixing length:

(7.29)
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1*=-Kz*,\11--z*
d

(7.31)

where d*=d/zo.

The wave related pressure gradient is obtained from the non-dimensional wave horizontal

orbital velocity at the top of the wave boundary layer ( t..T.* ), that is:

E7* = 2 .rccos (271 t.-2n 2—x* )	 (7.32)

The periodic condition at both sides of the computation domain is transformed into:

A
	 t * ) = u * (0 , t*)	

(7.31)
v* (—

A
, t * ) = v* (0, t*)

Since the model assumes the mixing length to be a function of bed roughness and water

depth, the non-dimensional governing equation shows that the solution is a function of

(A/z0, Lwo/A, O, and d/zo). When assuming the mixing length relation with depth

is weak, then the solution is a function of (A/z 0, Lwo/A, Pc,* , and Oo). When the mean

pressure gradient is not involved (wave-only situation), the solution is a function of

(A/z0 , L 0/A). When the two advection terms, and related periodic condition are excluded

(1DV model without advection terms), the solution is a function of (A/zo) only.

190



A typical set of values for the above variables are next selected to test the sensitivity of

the model results, see Table 7.3.

Table 7.3 Values assigned to variables in the model sensitivity tests.

Variable Value Remarks

d (m) 5.0

zo (m) 0.005

T (s) 7.0

A (m) 0.5 Uce=0.449 m/s

L (m) 45.6

U (m/s) 0.336

O. (°) 0

H=0.745 m.

The variable values in Table 7.3 were selected by considering the field situation near

natural beaches, especially near Chukpyon Harbour, Korea.

The non-dimensional pressure gradient term can also be replaced by other non-

dimensional variable groups. For example, erb,c/Tb, where Th,e= I fb, cl
	

, and Tb,w =

maximum of 1.);,,w1
	

) has been widely used for presentation of wave and current

boundary layer model results, see Bakker and van Doorn(1978), and Soulsby et

al.(1993), since it explicitly represents the relative strength of the wave and current

forces near the bed. In the present work, the non-dimensional variable group (rb,./Tbm)

is also adopted. The current-related bed shear stress (r b,e) is calculated from the current
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f Clexp ( C2 (	 ) C3 )
Zo

(7.34)

friction factor (fe), that is:

tb,c.pf,r).2	 fc_f 	 0.4 	 )2

ln ( —d ) -1
0

(7.33)

while the wave related bed shear stress can be calculated from the wave friction factor

(C) (Tb,„, = p fwIT., 2/ 2) .

There exist empirical formulae for the wave friction factor. The simplified version (1DV

without advection terms) of the present model results can also be used to produce an

expression for the wave friction factor, for example:

where the coefficients can be obtained by fitting the equation to model results. In fact,

a Newton-Raphson method was subsequently used together with data from three model

runs. Equation (7.34) was found to have the form:

f w= 0 . 000684 exp(7.80 ( A ) -0.106)
Zo

(3.37)

The wave friction factor calculated by the present model was also compared with the

results of other authors and found to lie between Swart's(1976) formula and

Myrhaug's(1991) two equation turbulence closure model results, see Fig. 7.13. For small

A/zo, the factor approaches Myrhaug's solution, and for large A/zo, the factor is closer

to Swart's expression. All three model results are in agreement with measurements which
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show a quite widely scattered results. This fact may mean that the measurement of near

bed shear stress and its analysis is still a difficult problem.

The variable values in Table 7.3 correspond to non-dimensional variable groups of

z0/d=0.001, A/z0 =100, Lwe/A=91.3, Tb,w ITb,c = 0.0625, and Oe=0.

While other non-dimensional variables are kept constant, each non-dimensional variable

is changed to see the effect of only one term. Considering that the peak wave period at

Chukpyon site is about 7 seconds, and that the wave length at a point does not vary, the

variable (L/A) is not separately considered. The variation of wave orbital excursion

length amplitude (A) is indirectly included in the variable A/zo.

The sensitivity of the model solution (WPA pressure gradient response) to other variable

values are discussed below. Firstly, the mean pressure gradient solution shows only

minor variation with z0/d, see Fig. 7.14. Existing theories have shown that the response

of the final pressure gradient value to zo/d is relatively sensitive for small Tb,w b,c) see

Davies and Li(1991). Even though the Tb

present test, the variation of pressure gradient with zo/d was not significant. Secondly,

the A/zo ratio was found to give a quite sensitive response to the solution for the pressure

gradient, see Fig. 7.15. Equally, a very sensitive response was also found for rb,e/rb,w,

see Fig. 7.16. The high sensitivity of the solution to the latter variable has also been

described by other existing theories, see van Kesteren and Baldcer(1984). Fourthly, the

,w/rb,e value of 0.0625 was quite small for the
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model was min for every 22.5° intersection angle (Owe) from 00 to 180° for a given

condition. The variation of horizontal velocity profiles for various wave and current

intersection angle (0) are shown in Fig. 7.17. The solution of the mean pressure

gradient for several wave and current intersection angles was also found to follow a

sinusoidal shape of curve. An equation is proposed to express the variation of the

solution along the wave and current angle by the summation of two cosine functions

which involve three known values for 0 0 , 90°, 180° as:

f —
1 

( 
f0 +f180 + .F.	 _  f180 —f0	 aCOSu wc

13wc 2	 2	 '90/	 2
f +(  0 f 180 _ f90) cos2Owc

2	 2

(7.35)

where f is an arbitrary variable of the model solution, subscript 0, 90, 180 are for the

wave and current intersection angle (Owe). The approximate curve calculated from

equation (7.35) was found to represent the model solutions very accurately, see Fig.

7.18.

7.5 Comparison of the Model Results with Measurements

7.5.1 Wave-Only Flows

To examine the model accuracy for the wave-only flow case, the model was run for two

experimental conditions of van Doom and Godefroy's(1978) and O'Connor et al. (1993).
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Firstly, van Doom. and Godefroy's(1978) experimental condition is given in Table 7.4.

Table 7.4 Values assigned to variables in van Doom and Godefroy's(1978) experiment.

Run No. RB

d (m) 0.3

zo (mm) 0.2

H (cm) 12.0

T (s) 2.0

U (cm/s) -3.0

owe (0) 180

U„, (cm/s) 30.8

The velocity over the wave trough was not measured due to the exposure of the flow

measuring device. Although the experiment was done for purely wave motion, a net

return flow was measured due to the enclosure of the water mass in the flume (net depth-

mean water mass flux at a section in a flume should be zero). Nadaoka et al. (1982) have

also measured the existence of such return flow on a sloping beach.

Dalrymple(1976) has derived an equation for the net mass transport in the top layer of

water between the wave crest and the trough for an unbounded situation from linear wave

theory, that is:

(7.36)
8 c

An approximate depth-mean return flow velocity (U r) can then be obtained by dividing
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Dalrymple' s(1976) mass transport value ( g) at the top layer by the height between the

bed and the wave trough (d r), that is:

Ur -- - Tirtvi
	

(7.37)

The calculated depth-mean return flow velocity from equation (7.37) is -2.8 cm/s for van

Doom and Godefroy's(1978) condition (Table 7.4), which is similar to the value of -3

cm/s from the measurements.

Figs. 7.19, 7.20, and 7.21 show the calculated velocity, shear stress, and eddy viscosity

profiles, respectively, and give good agreement with van Doom's measured velocity data.

The height where the WPA velocity profile bends agrees well with the measurements.

The near bed Eulerian mass transport shows qualitatively a good agreement with the

measured values, but the order of magnitude of the WPA velocity inside the wave

boundary layer is slightly smaller than that of the experimental data. The mixing length

hypothesis is known to slightly overestimate the vertical eddy viscosity, see van

Doorn(1981), which may be the reason for the present discrepancy between model results

and the measurements of van Doom and Godefroy(1978).

Secondly, the variable values for O'Connor et al. 's(1993) experiment conducted at

Manchester University, U.K. is given in Table 7.5, see also Wong(1985).
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Table 7.5 Values assigned to variables in O'Connor et al. 's(1993) experiment.

Run No. 53 Remarks

d (m) 0.3

zo (mm) 0.03 ks=1.04 mm

T (s) 1.53

O 0we () 0

Uo, (cm/s) 17.0

ks =bed roughness.

Fig. 7.22 shows the data and model simulation, and indicates that the agreement is

reasonable. The height of overshooting is a little higher than the measurements, and this

again may be due to the overestimation of eddy viscosity by the mixing length theory.

The simulated oscillation amplitude near the bed is slightly smaller than the measured

values. The measurement of the velocity inside the very thin wave boundary layer is

quite a difficult problem, since the bed roughness has a two-dimensional or three-

dimensional shape, and the measured velocity values at a level very near the mean bed

level may be much different depending upon the exact horizontal position of the

measurement device. The approximation adopted in the model (neglecting laminar

molecular viscosity) is likely to produce some errors, especially near the bed, where the

laminar viscosity becomes more important relative to the turbulent eddy viscosity. This

error may also cause the discrepancy between the calculated and measured velocity

profiles near the bed.
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7.5.2 In-Line Current Flows with Waves

The present model was applied to two experimental conditions of Nieuwjaar and van der

Kaaij(1987) and Nap and van Kampen(1988) for wave and in-line current flows.

Firstly, the model was applied to the Nieuwjaar and van der Kaaij's(1987) experimental

conditions with waves and in-line currents. Nieuwjaar and van der Kaaij's(1987)

experimental conditions are given in Table 7.6.

Table 7.6 Values assigned to variables in Nieuwjaar and van der
Kaaij's(1987) experiment.

Run No. T15,10 T15,-10 Remarks

d (cm) 50.3 0.49.8

ks (cm) 6.0 6.0 Ar=0.02 m

H (cm) 14.6 14.9

T (s) 2.37 2.49

U (cm/s) 10.7 13.2

Ow,, (°) 0 180

Uo, (cm/s) 28.2 26.8

Fig. 7.23 shows comparison of the model result and Nieuwjaar and van der Kaaij's

experimental data for a following current, while Fig. 7.24 shows that for an opposing

current. The calculated mean velocity profile for the following current agrees reasonably

well with the measured data, although the calculated velocity profile deviate slightly from

the measurements near the bed. The calculated mean velocity profile for the opposing
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current gives a better agreement with the measured data than that for a following current.

Secondly, the model was applied to Nap and van Kampen's(1988) experimental

conditions, which were used by van Rijn(1989) for the determination of an empirical

parameter in van Rijn's engineering formula to predict the ratio of apparent roughness

to physical roughness. Nap and van Kampen(1988) had target flow conditions which

appear in the run titles (for example, T15,10 means 15 cm wave height and 10 cm/s

depth mean velocity), but the measured flow conditions were slightly different from the

target conditions, see Table 7.7. For application of the present model, 12 conditions were

selected similar to Nap and van Kampen's target conditions, see also Table 7.7.

Table 7.7 Values assigned to variables in Nap and van Kampen's(1988) experiment.

Run No. T15,1
0

T15,
-10

TO,
-10

T7.5,40 T7.5,
-40

Present
Tests

d (m) 0.5 0.5 0.5 0.5 0.5 0.5

ks (cm) 2.3 2.3 2.3 4.0 4.0 4.0

11 (cm) 14.7 14.9 0.0 7.7 7.23 7.5, 15.0

T (s) 2.6 2.3 - 2.3 2.4 2.4

U (cm/s) 9.2 12.1 12.1 36.4 38.8 10,20,
40

Owc (0) 0 180 - 0 180 0, 180

U., (cm/s) 28.2 26.8 - 15.6 13.2

The calculated ratio of the apparent roughness to physical roughness are shown in Fig.

7.25 with the measured values and van Rijn's lines to fit the measured data. Generally
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the model results show fairly good agreement with measurements, considering the widely

scattered experimental data. The model results also show a similar trend with van

Rijn' s(1989) approximation lines. However, there are two differences between van Rijn's

fittings and the present model results. Firstly, the model results show that the relation

between the logarithm of the ratio of the apparent roughness and physical roughness

(log(ka/ks)) and the ratio of current velocity to wave orbital velocity (U/1.1 0,) is nonlinear.

For bigger UAL, values, the increment of (log(ka/ks)) is smaller according to the present

model, in contrast to van Rijn's linear relation. Secondly, the relationship between the

roughness enhancement and the current velocity and wave orbital velocity amplitude ratio

from the present model is not a single function for the two other wave heights: van Rijn

assumed a single relationship between them. This implies that the single relationship

between the non-dimensional roughness ratio and other non-dimensional wave-current

velocity-ratio seems not to be sufficient. The effects of other non-dimensional variable

groups (wave length to wave orbital velocity amplitude (Lwe/A), or wave orbital velocity

to bed roughness (A/zo)) need to be considered. If the wave period is kept constant, the

effect of the latter variable group (A/zo) needs to be considered.

7.5.3 Wave and Current Flows with General Intersection Angle

The data for arbitrary wave-current interaction angle is still very rare. Van der Stel and

Visser's(1985) experimental data for 90 0 angle of wave and current intersection was
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available for comparison with the model results. Van Rijn(1989) obtained a value of 0.75

for the parameter (y) in his empirical formula to estimate the enhanced bed roughness

from van der Stel and Visser's(1985) experimental data. In order to compare the present

model results with measurements for cases of 90 0 wave and current intersection angle,

the model was applied to van der Stel and Visser's experimental condition, which is

given in Table 7.8.

Table 7.8 Values assigned to variables in van der Stel and Visser's(1985) experiment.

Run No. T441

d (m) 0.2

ks (cm) 1.0

H (cm) 6.8

T (s) 2.0

V (cm/s) 10.5

0. (0) 90

Ucc, (cm/s) 21.0

Calculated and measured velocity profiles for run T441 match very well, see Fig. 7.26,

although there is a slight difference near the bed. It should be noted that the experiments

were carried out on a natural gravel bed so that measured WPA horizontal velocity data

very near the bed may be influenced by gravel-induced vortex motion.
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7.6 Use of the Results for Engineering Use

7.6.1 Presentation of Model Results for Engineering Use

There are a few ways to make use of the present time-dependent point numerical model.

Firstly, the present wave-current boundary layer model can be applied at each plan grid

point of the sediment transport model to obtain necessary information for the sediment

model. However, this method involves a very long computation time, which is not

economic. Secondly, the model results could be fully parameterized over a very wide

range of variables. The model results are then replaced by algebraic functions which can

be used easily for engineering purposes. However, it is not an easy thing to find adequate

mathematical functions for a multi-variable, highly nonlinear problem. If non-adequate

functions are used for the parameterization, errors are induced through the curve fitting

procedure. Thirdly, a piecewise interpolation method can be used based upon linear or

nonlinear interpolation methods. This method is especially useful for the presentation of

a highly nonlinear problem. However, solutions with small increments of dependent

variables need to be stored in the form of Tables or Figures for engineering use.

For present purposes, the third method is adopted. Only a limited range of variables are

considered, aiming for application to a specific site, Chukpyon Harbour, Korea. For

general use of the model results for the sediment transport model, many runs were

executed for selected conditions and stored in a tabular form.
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4 t b, c	 fc

'I' b cm f cm (7.38)

Since the sensitivity test shows the non-sensitivity of the model results to the zo/d

variable, the variation of this quantity is not considered here. The wave data at Chukpyon

showed that the typical wave period is about 7 seconds. Consequently, we confine the

wave period to 7 seconds for convenience. Therefore, the variation of variable group

(Lwo/A) can be ignored. However, the variation of (A/zo) is taken into account. Only the

minimum number of runs was selected. Namely, two values of A/zo, 100 and 500; 7

values of rb,c/Tb,,, 1, 0.5, 0.25, 0.125, 0.0625, 0.03125, and 0.015625.

The objective of the execution was to store model results in a form which could be used

to obtain information on the WPA bed shear stresses modified by waves; on the WPA

eddy viscosity profile; and on the WPA velocity profiles (u,v); which are needed for the

sediment transport model.

Firstly, bed shear stress values calculated from the present 2DV boundary layer model

were expressed by a non-dimensional value C4 , defined as:

The WPA bed shear stress from the present 2DV boundary layer model is expressed by

the ratio of shear stress for wave-only flow to that for current-only flow. It is seen that

bed shear stress is biased toward the wave propagation direction in Fig. 7.27, 28. For

an opposing current, the mean bed shear stress is more enhanced than for following or

perpendicular currents.
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Secondly, model results for WPA eddy viscosity values need to be

stored in a convenient form. Since the sediment model requires eddy viscosity values at

every vertical grid point over the depth, the model results are needed over the flow

depth.

A method to make use of the model results for the eddy viscosity is proposed in the

present work. The eddy viscosity profile is approximated by functions, and the

coefficients of the functions are stored, instead of storing the whole eddy viscosity

information over the depth. The present method using functions can then provide a

simple and effective procedure to obtain the eddy viscosity profile from the stored model

results.

The eddy viscosity profiles calculated from the present 2DV model show a rather

complex shape over the water depth, see Fig. 7.29. When waves are strong compared

to current, the WPA eddy viscosity profile has two peaks over the depth, one near the

bed and the other at mid-depth. When currents are strong, the WPA eddy viscosity

profile has only one peak at mid-depth, since the magnitude of the current related eddy

viscosity is bigger than that of the wave related eddy viscosity over the whole water

depth. Therefore, it is convenient to split the eddy viscosity profile into two parts, a

wave related part (lower zone) and a current related part (upper zone).
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Both eddy viscosity profiles in the lower zone calculated from the 2DV model and the

simplified 1DV model which ignores the advection terms have a similar shape, see Fig.

7.30. The eddy viscosity profile obtained from the present 2DV model is assumed to be

proportional to that from the 1DV model in the lower zone. Therefore, the ratio of the

2DV eddy viscosity model results to the 1DV eddy viscosity model results in the lower

zone are stored. This ratio expresses the relative enhancement of the wave-related eddy

viscosity in the lower zone due to the presence of a current.

The WPA eddy viscosity profile from the 1DV model for a given (A/zo) is assumed to

have the form:

C5 z exp ( C6 z 
c., 

)ez , . ,.zow=	 * 	 *
(7.39)

The three coefficients in equation (7.39) for a given (A/zo) can be obtained by the

Newton-Raphson method with three known sets of (z* , ez,* or acz,*/(3z*). In the present

work, the peak eddy viscosity value (ez,*,peak) and the zero vertical gradient (aez,*/3z*=0)

are given at the peak height (Z*,pej . The third piece of information is provided by the

height, where the eddy viscosity is half the peak eddy viscosity value. Of course, there

exists two heights, which have half the peak value. In the present work, the height above

the peak height is chosen, as the fitting parameter.

The three coefficients in equation (7.39) for (A/zo) of 100, 3000, and 100000 were

obtained by the Newton-Raphson method, which are given in Table 7.9.
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Table 7.9 Computed coefficients for eddy viscosity profiles.

AJZO C5 C6 C7

100 0.2570 -0.009099 1.454

3000 0.1336 -0.0007857 1.261

100000 0.06560 -0.000003433 1.435

The approximated eddy viscosity profiles for the three A/zo values in Table 7.9 using

equation (7.39) give close agreement with the model results over the depth, see Fig.

7.31a-c.

In order to obtain the coefficients of equation (7.39) for intermediate A/zo value, two

possibilities exist. The first possibility is to obtain the peak height, the peak eddy

viscosity value, and the height of half the peak eddy viscosity in an appropriate method.

For example, the peak height, peak eddy viscosity value at the peak height, and the

height for half the peak eddy viscosity (Z*,half) can be obtained from the following

equations:

A
peak = 7 . 14-10 -6 exp (12.0 (	 0—) 04 60 )

z0

ez,*,peak=0 • 00210 exp (3.56 (± ) 0.0845)
Zo

Z*,half=2 ' 33 Z*,peak

(7.40)

(7.41)

(7.42)

Equations (7.40), (7.41) are shown in Fig. 7.32, 7.33, respectively. However, the

Newton-Raphson method should be used to obtain the three coefficients of equation
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(2DV)
(1DV)

(7.43)

(7.39), although we have necessary three sets of information from three equations (7.40),

(7.41), and (7.42).

A simpler method is to use interpolation for the three coefficients in Table 7.9 for a

particular A/zo value. This method may be justified if the intervals of A/zo in the tabular

form are small. In the present work, the latter method is used to avoid the iterative

Newton-Raphson method.

It is assumed here that the peak eddy viscosity height does not change even when a

current is superimposed, and the vertical profile of eddy viscosity is multiplied by a

constant inside the whole wave boundary layer when a current is imposed. The ratio of

the eddy viscosity from the present 2DV model to that from the 1DV model is defined

as:

e*, peakc8-
e*,peak

The model results (CO are shown in Figs. 7.34 and 7.35. An interesting feature of the

near bed eddy viscosity for wave and current situations is that the enhancement of the

eddy viscosity due to current is dominant for opposing currents for large A/zo. This

explains the results that the effect of the vertical wave orbital motion is more significant

when the wave length (wave length changed by the current) is small, and the orbital

excursion length amplitude is large.
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di3c,
c- 	
9 Tb, c/ P

(7.45)

( 	 KU 	 )2
ln(z/zdCn - (7.46)

The upper part of the vertical diffusion coefficient is approximated by a parabolic

function over z, similar to that for steady current. But for the present purposes, the eddy

viscosity is related to the calculated mean pressure gradient instead of bed shear stress,

since the WPA shear stress profile varies rapidly near bed, see for example Fig. 7.20.

ez,up=x{d7Pc z(1--)
	

(7.44)

The pressure gradient multiplied by water depth (d130) is non-dimensionalized by the

current related shear stress (rb, ) as:

Thus, C9 represents the degree of enhancement of the pressure gradient relative to the

current-related pressure gradient. The pressure gradient and the mid-depth eddy viscosity

are more enhanced for opposing currents, and for large A/z 0 , see Figs. 7.36 and 7.37.

Thirdly, the calculated WPA velocity profile is approximated by two straight lines, one

for the near-bed layer (lower layer), the other for the upper layer, see Fig. 7.38. For an

accurate expression of the velocity profile in the lower layer, the gradient of velocity at

the bed (z =z0) is obtained from the calculated velocity profile. Defining a coefficient as:

then, C 10 expresses the relative degree of reduction of the velocity gradient. The

calculated coefficients C 10 from the model are shown in Figs. 7.39 and 7.40. The change
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z
C1 1=-2'zo (7.48)

of the near bed velocity gradient variation shows the same trend as that of eddy viscosity

or shear stress, but more severe for an opposing current, and for large A/zo.

The velocity profile in the upper zone can be approximated by a logarithmic function

using an apparent roughness. Defining a coefficient as:

The calculated coefficient C 11 (ratio of apparent roughness to given roughness from the

present 2DV model are plotted in Figs. 7.41 and 7.42. It should be noted that Nap and

van Kampen's(1988) experimental data have shown that the enhancement of bed

roughness for 180° is larger than for 00 or 90°. The present model also confirms this

trend for both A1z0 =100 and 500 cases, but more clearly for the A14=500 case.

7.6.2 Calculation Procedure of Seabed Shear Stress, Eddy Viscosity Profile, and

Velocity Profiles

For present purposes, a simple linear interpolation is used for most variables. The only

exception is for the wave current intersection angle, where the solution can be

approximated by equation (7.35) which uses two cosine functions.
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c,
z,*,/ow=C8 C5 Z*exp (C6 Z* ) (7.49)

 low (7.50)

Given the values of the variables, for example, d, zo, H, T, U, O wo , then A is calculated

from linear wave theory (H/sinh(kd)), is calculated from  I 01 2 , fo is from

(0.4/(1n(d/z0)-1))2, and Tb ,wIP is calculated from equation (7.37).

Firstly, the WPA bed shear stress is obtained by interpolation of coefficients C4 for given

A/zo, and Ti, ,e/T6 ,w values, and by equation (7.35) using C4 values for three wave-current

intersection angles. C4 values are interpolated for a known rb,o/rb,w value. Next, they are

interpolated for A/zo value. Finally, equation (7.35) is applied to obtain C4 for a given

wave current-intersection angle.

Secondly, the eddy viscosity in the lower zone is calculated in a similar manner to the

bed shear stress. Coefficient C8 is obtained by interpolation in a similar manner to the

case for bed shear stress. Three coefficients C5, C6, and C7 are also interpolated for A/zo.

The eddy viscosity profile in the lower zone can then be obtained from:

The eddy viscosity profile in the upper zone can be obtained from coefficient C9dPo with

equation (7.44), where dPo is obtained from C9T0.
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ez =max ( e• - z,	 ez, up) (7.51)

b,c  ) ° • 5 ln (	 )
ZO

(7.52)

The eddy viscosity over the water depth is obtained from:

The velocity profile in the lower zone can be obtained from coefficient C 10 with equation:

The velocity profile in the upper zone can be obtained from coefficient C 11 with equation:

ln ( z/ eza) 
Illup1=1C-11 1n (dieza)

The velocity profile over the water depth is obtained from:

a =max ( Ci/owl aup I )

(7.53)

(7.54)

7.7 Conclusions

The flow structures for wave and current flows in nature are different from those

produced in a water tunnel due to the existence of vertical wave orbital velocity. In order

to obtain precise wave-period-average information on bed shear stress, eddy viscosity,

and horizontal velocity over the water depth, a 2DV numerical model has been used

instead of existing empirical methods or 1DV models which ignore the wave-induced
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vertical orbital velocity effect.

A 2DV Boundary layer model was set up to incorporate the vertical wave orbital velocity

effect for co-existing wave-current flows. A simple mixing length hypothesis was used

to take account of time and space varying eddy viscosity characteristics inside the wave

boundary layer. The bed roughness was simply assumed to be a constant, proportional

to geometric shape.

Model results were compared with several experimental data sets, and gave good

agreement on overall aspects. In particular, the difference between the following and

opposing current profiles were well reproduced by the present model. The model results

show that the wave and current interaction can be simulated by the present general

turbulent theory with no ad-hoc parameter or assumption.

Sensitivity testing of the model showed that the model results are sensitive to (A/zo), and

(Tb,./Tb,w)• The variation of the model results with O w° was accurately expressed by a

cosine function.

In order to use the results from the 2DV model in the 3D sediment model, a method has

been proposed to parameterize the eddy viscosity profiles in waves and combined wave

and current flows as well as the horizontal steady current profile - as affected by waves -

and the increase in WPA bed shear stress. Tests of the proposed parameterizing
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approach showed good comparison with the full 2DV model results.

The bed shear stress obtained from the present model is used for the calculation of the

reference level concentration, and the eddy viscosity and velocity profiles are used for

the calculation of suspended sediment in the 3D diffusion-advection model.
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CHAPTER 8. MODEL APPLICATION TO CHUKPYON HARBOUR, KOREA

8.1 Introduction

The present chapter brings together all the elements needed to operate the new three-dimensional

sediment model and shows the results of applying them to a field situation at Chukpyon Harbour

on the East Coast of Korea. Because of continual siltation at the harbour site following the

construction of breakwaters in 1905, the area has been the subject of study by the Korea Ocean

Research and Development Institute (KORDI). During the 1980's, KORDI staff undertook a

number of field campaigns, KORDI(1987, 1988, 1989), to provide data on waves, currents, and

sediment transport rates, all of which have helped with the calibration of the new model. Some

of the model application results have already been reported by O'Connor et al. (1992b).

8.2 Site Characteristics

Chulcpyon Harbour is situated on the east coast of Korea and is used by fishing vessels. The

inner harbour size at present is about 400 m by 400 m. The mean water depth of the harbour

is about 5 m. Two breakwaters have been constructed in stages since 1905. Since the
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construction started, the bathymetry around the harbour has suffered significant change, see Fig.

1.2. The bed slope toward deep water is about 1/50 up to a water depth of 20 m. The bed

material around the coast is composed of sand and rocks. The Chukpyon beach has a pocket

shape with rock projections at either end, see Fig. 1.2. Inside the pocket, a sandy beach is

developed. There is a small stream which supplies sand from inland during the stormy season.

However, measurements by KORDI(1987) have revealed that the amount supplied from the

stream is negligible. Outside the Chukpyon beach region, there are a few small rivers, which

supply sand to the coast. However, the movement of sand beyond the northern and southern

limit of the Chukpyon Harbour region is not thought to have a major influence upon conditions

at Chukpyon because of the protruded shape of the rocky sections at both ends of the Chukpyon

Harbour region limits.

The annual wave climate at the Chukpyon site (measured between 1 Jan. 1975 and 31 Dec.

1985, excluding 1 Jan. 1977 to 31 Dec. 1977) is given in Fig. 8.1 in terms of percentage of time

for each wave condition. Fig. 8.1 reveals that NE waves are dominant during the winter season,

while NE, E, or SE waves are equally distributed during the summer season at Chukpyon.

Measurements were undertaken on several items to understand the dominant mechanism of

sediment transport, and to provide calibration or verification of the numerical models from 1987

to 1989, see KORDI(1987, 1988, 1989).
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A wide range of items have been covered in the field work, although a limited amount of the

data has been used directly in the present thesis.

Wind direction and speed, temperature, and humidity were measured by a Weather Station

manufactured by Aanderaa, Norway. Tidal levels were measured by a WLR-5 current meter

instrument manufactured by Aanderaa, Norway. Wind-induced flow field data were obtained by

floating drogues, and tidal currents were measured with an RCM-5 manufactured by Aanderaa,

Norway. Bed material was collected from more than 100 points over the whole study area using

a grab sampler.

Directly used data sets are described in each relevant section below.

8.3 Application of the Wave Propagation Model

Waves were measured during every field work period, using waverider buoys. Some of the

measured wave data sets are used for comparison with the present model results. Details of wave

measurements are given in Table 8.1, and Fig. 8.2.
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Table 8.1 Details of wave measurements at Chukpyon (after KORDI, 1987).

Station	 X(EW)	 Y(NS)	 d (m)	 Period	 Ow	 Hw (m)

W	 239,509 394,011 39.0 14 Aug 87 -14 Sep 87 ESE
W3	 237,050 394,802	 5.5 16 Aug 87 11:05-13:11 ESE	 0.748
W4	 237,259 394,723	 6.3 16 Aug 87 16:55-18:08 ENE	 0.654
W5	 237,185 394,514	 8.2	 9 Sep 87 12:35-14:35 ENE	 0.421
W6	 238,358 394,883	 6.6	 9 Sep 87 10:20-12:20 ENE	 0.419
W8	 237,274 394,244 12.0 10 Sep 87 11:30-13:30 ENE	 0.457
W9	 237,628 394,342 14.0 10 Sep 87 15:55-17:55 ENE	 0.599
W11	 237,477 394,052 13.0 10 Sep 87 13:40-15:45 ENE	 0.566
W12	 238,072 393,637 22.0 11 Sep 87 9:10-11:10 ENE	 0.768
W13	 237,524 393,804	 9.0 11 Sep 87 11:20-13:20 ENE	 0.740

d=depth relative to MSL; O w=wave direction; Hw=wave height at Station W.

The wave propagation model was applied to strong wave conditions of incident wave height of

5.5 m, and directions of ENE and ESE, and the results (wave height distribution) are shown in

Figs. 8.3a, and b.

Unfortunately, the large significant wave heights at shallow water (water depth < 15 m) were

not obtained during the field measurements. Since large wave data could not directly be

obtained, except for the deep water station (W), Yoo and O'Connor's(1986a) numerical model

was applied to a case of deep water wave height of 5.5 m, and a direction of ESE for

comparison with the present model results. Yoo and O'Connor's model result is shown in Fig.

8.3c. Both models showed very similar wave height values.

It is clear that the Eastern Breakwater provides significant protection to the harbour. ENE waves

produce quite a small wave height distribution around Chukpyon Harbour due to strong

refraction towards the Eastern breakwater. The present wave propagation model was also applied
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to each wave condition in Table 8.1. The significant wave height at station W was assigned to

the incident wave condition. The calculated ratios of the wave height at a shallow depth station

(Wl-W13) to the wave height at station W were compared to measured ratios, see Table 8.2.

Table 8.2 Comparison of calculated and measured wave heights.

Station Measured
Wave Height
Ratio (H /	 H at W)

Calculated Wave
Height
Ratio (H / H at W)

Relative Error to
Incident Wave (%)

W3 0.63 0.60 -0.5

W4 0.74 0.35 -7.1

W5 0.62 0.54 -1.5

W6 0.18 0.42 4.3

W8 0.77 0.71 -1.1

W9 0.80 0.76 -0.7

W11 0.86 0.80 -1.1

W12 0.94 0.96 0.3

W13 0.86 0.85 -0.2

In most cases, the calculated wave height ratios agree well with measured wave height ratios.

However, the calculated wave height ratios at Stations W4 and W6 are quite different from the

measured ones. These two points are near a strong diffraction area, so that the solution is

sensitive to the exact position. In general, the present wave propagation model reproduced

accurate wave height distribution in the whole computational domain.
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8.4 Application of the Wave-Induced Current Model

8.4.1 Field Measurements of Wave-Induced Currents

Ideally the wave-induced current profile on a beach should be measured at several stations in a

direction normal to the beach, especially for big waves. Unfortunately, budget and time-

scheduling allowed only a minimum number of direct measurements to be undertaken to confirm

the trend and magnitude of the wave-induced currents at Chukpyon beach and to calibrate the

wave-induced current flow model.

An RCM-5P propeller type current meter was used for the measurement of wave-induced current

flow, see Plate 8.1, and Fig. 8.4. The device is equipped with a reversible propeller which can

measure instantaneous currents in both forward and backward wave directions. The sensor

counts the number of rotation on both sides of zero flow. The device was fixed on a frame and

moored on the seabed, so that the current probe did not move even for large wave or current

actions. The RCM-5P was set to take measurements at a time interval of 10 minutes at Station

L2. The current meter also has a second time setting which determines the integration time

period over which the count of number of revolutions of the propeller is recorded. At Chukpyon,

this second time setting was put to 10 minutes. The number of revolutions was simply converted

to a current speed by a conversion curve which was calibrated by the manufacturer. Since the

orbital velocity of the short period waves are included in the number of revolutions, the net
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residual current can be obtained by subtracting one direction current readings from the other.

For a pure wave case without a steady current, the residual current will result in an almost zero

value.

The frame for the RCM-5P was carefully designed not to disturb the main flow, see Fig. 8.4

and Plate 8.1. The frame consisted of two cylindrical frames one inside the other. The inner

frame (the upper part in Fig. 8.4) could be moved telescopically and fixed in position by nuts

and bolts. The propeller was generally placed at 60 % of the water depth, since the 60 % of the

water depth velocity gives a good representation of the depth-mean velocity for steady flows,

see Chow(1959). The frame also had enough weight to resist quite severe external forces.

The measurement Station (L2) is shown in Fig. 8.5, and the details of its deployment are in

Table 8.3.

Table 8.3 Details of wave-induced current measurement at Chukpyon.

Station X (EW)	 Y (NS)	 Period	 At (m) d (m) Remarks

L2	 236,790 394,305 30 Jun 88-11 Jun 88 10 2.0 good quality

At.record interval; d=water depth.

The measured residual flow velocity with wind direction and strength, and significant wave

height and peak wave period for Station L2 is shown in Fig. 8.6. During the observation period,

the significant wave height had two peaks. The wave-induced current record at the bottom box

in Fig. 8.4 also shows two peaks, one peak for southerly flow on the 3-4 July 1988 and the
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acceleration due to gravity, db is the breaking water depth (=1.6/0.78), c is the wave phase

velocity, Ob is the breaking wave direction (=22.5 °), )3 is the bed slope angle (=1/50).

The velocity at depth 2 m for the wave-induced current model for a plane beach with "artificial

diffusion" is found from Fig. 5.7 to be 0.2 to 0.3 of the reference velocity (V b), i.e. 5.4 to 8.1

cm/s. Thus the measured maximum velocity of 8 cm/s agrees reasonably well with the model

result. The southern wave-induced current flow at 16:00 hrs. on 6 July 1988 also gives a similar

agreement with calculated values. For this case, the significant wave height was 1.0 m and the

maximum measured velocity was 9 cm/s.

It seems that the wave-induced current model can reproduce the correct order of magnitude of

the wave-induced current for a significant wave height of up to 1.6 m, although quite a lot of

uncertainties can be involved in measuring wind or wave direction, and the wave-induced

currents.

8.4.3 Comparison of the Computed Results (Present Model and Yoo and O'Connor, 1986a)

Direct measurement of wave-induced currents could not be performed due to the severe wave

and wind forces during typhoon conditions. For bigger wave conditions, sediment transport is

stronger, and has a large effect on bed levels.
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other peak for northerly flow on the 6-7 July 1988. The significant wave heights for the

measurement periods were between 0.3 m to 1.6 m. These are relatively small wave heights

compared to the extreme wave conditions which may cause large sediment transport, including

movement in relatively deep water. However, the measured wave-induced current data could be

used for evaluating the present wave-induced current model.

8.4.2 Comparison of the Model Results with Measurements

The model results were compared to field measurements for small wave conditions under an

assumption of plane beach bathymetry. To evaluate the measured wave-induced current data by

a simple method, a 1DH parallel beach solution was used instead of the 2DH model results.

The artificial maximum velocity at the breakerline without lateral mixing term can be calculated

for a plane beach from Longuet-Higgins' (1970) theory. For the peak wave height with a

northerly direction for noon on 3 July 1988, the result is:

v =.	 Y (ad \ tan ,  sine ,-, b ) canp k
b 16 fc,	 C lb

_ 5 0.78 
(9.82.05) 1  

(sin 22 .5)  )
16 0.01	 50 V9.82.05

=0.27 (m/ s)

(5.8h)

where y is the breaking constant ( =0.78), fcm is a current friction factor (=0.01), g is the
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In order to confirm the model applicability for larger wave conditions, the model was next

applied to Chukpyon Harbour for combinations of significant wave heights of 5.5 m, 4.5 m, and

3.5 m, and wave directions of ENE and ESE. The model bed roughness was assumed to be 6

% of the water depth over the whole computation domain, based on echo sounder records.

Typical wave-induced current results for the two typhoon cases (11=5.5 m, ENE and ESE) are

shown in Fig. 8.7a, b.

It can be seen from Figs. 8.7a,b that both wave directions produce strong nearshore currents

which are capable of moving sediment into the harbour area. The wave-induced-flow is seen to

be more strongly developed for the southern waves than for the northern waves. This is the

effect of the distance needed for the development of a spatially uniform wave-induced current.

Figs. 8.7a,b also show that the longshore current in front of the beach in the southern direction

from the West Breakwater is always directed to the north, contributing sediment towards the

harbour entrance. Equally, the wave-induced current for both incident wave directions is seen

to generate a South-West current in front of the Eastern Breakwater. It is expected that unless

the incident wave direction is S or SSE, which is very rare or impossible considering the large

scale geometry of the site, the wave-induced current in front of the Eastern Breakwater will

mostly be directed towards the harbour entrance. This also contributes to siltation near the

harbour entrance.
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In order to check the accuracy of the present model approach, the model result for a wave height

of 5.5 m and direction of ESE was compared with Yoo and O'Connor's(1986a) model result for

the same field situation but with the harbour considered as a land area in order to avoid the use

of very small grid spacings in the shallow harbour area. Yoo and O'Connor's comprehensive

numerical wave-induced current model has been used for various laboratory and field situations,

see Section 2.3.3. The calculated wave-induced current fields from the two models shows a very

similar results, and the same order of maximum velocities on two profiles, see Fig. 8.9a-b. The

minor differences in the current profiles may be due to the different wave model, the turbulent

lateral mixing closure, and the bed friction closure. It is concluded that the present model is

likely to give reasonable results for bigger wave conditions.

8.5 Application of the Sediment Transport Model

8.5.1 Comparison of Calculated and Measured Suspended Sediment Concentrations

Measurement of suspended sediment concentration was undertaken at several stations, using an

HR Ltd. (U.K.) suspended sediment pump sampler, see Plate 8.2. Measurement stations are

shown in Fig. 8.10, and the details of the measurements are given in Table 8.4.
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Table 8.4 Details of suspended sediment concentration measurements at Chukpyon

Station X(EW)	 Y(NS)
	

Period	 d (m) O	 H (m)

R2 237,288 394,834 16 Aug 87 12:30-13:30 5.3 ESE 0.817
R4 237,053 393,899 17 Aug 87 10:00-13:30 2.0 ENE 0.745
R6 236,769 393,802 16 Aug 87 15:00-18:00 3.9 ENE 0.758

The wave conditions given in Table 8.4 were simulated by the wave propagation model, the

wave-induced current model, and the sediment transport model. The same horizontal grid (92

x 68) was used for the sediment model. The spatial increments in the x, y directions (Ax, Ay)

were both 30 m. The number of vertical grid points (nk) was 10, and the coordinate

transformation coefficient A of 0.1 was used. The time increment At was set to 1.0 second. The

scaling parameters for the reference level concentration (C 2), and for the bed load (C4) were set

to 2.5x10-5 , and 0.055, respectively.

The calculated suspended sediment concentration profiles over the depth at three stations are

shown in Fig. 8.11a-c. The model results give reasonable agreement with the measured

suspended sediment concentrations at the three stations. However, it is clear that the

measurements show a wide scatter. The measurement heights were also quite high starting from

0.5 m from the bed. For future work, a greater number of measurement points over the depth,

including levels closer to the bed, would be of more value.
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8.5.2 Comparison of the Calculated and Measured Bed Level Change

The seabed bathymetry around Chukpyon Harbour was measured several times using an echo-

sounder. The period between 10 June 1987 to 3 November 1987 was selected for simulation of

bathymetric change, since bathymetric charts were available for the start and end of the period

and the Harbour area was subjected to two grade B typhoons on the 10 July 1987 (Thelma) and

30 August 1987 (Dinah) with maximum significant wave heights of 5.4 m and 5.6 m,

respectively. Fortunately, continuous wave recordings were made during the period. The wave

data for the period between 10 June 1987 to 3 Nov. 1987 is summarized in Table 8.5.

Table 8.5 Distribution of the significant wave heights and the wave directions between 10 June
1987 and 3 Nov. 1987.

Wave Height
(m)

Wave Direction Total
(hour)

NE E SE

1.0-2.0 12 520 12 544

2.0-3.0 72 57 2 131

3.0-4.0 46 2 48

4.0-5.0 18 2 20

5.0-6.0

.

8 1 9

Data below 1.0 m wave height were counted as for calm periods.

Ideally, the whole system can be sequentially applied for the full time-series of wave conditions

(for example, the wave condition varies every three hours). The bed geometry should be

continuously modified, too. However, the total time-series simulation of a field situation for
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medium or long term simulations requires enormous computation time, which is not desirable

from the engineering point of view. Some alternative ways have been proposed.

Firstly, a simulation technique can be used, see Vemulakonda et al.(1988). A synthetic time-

series wave conditions can be generated. The artificial record is expected to represent the real

wave statistics at the field. Since the number of wave conditions is still much smaller than that

of the measured full time-series wave conditions, the computation time can be reduced.

Secondly, one representative wave can be used, which is the minimum number of wave

condition. Therefore computation time is reduced. Chesher and Miles(1992) have described a

methodology to select the representative wave height, period, and direction by a weighting

method. However, if too small a number of wave conditions is used, the characteristics of the

sediment transport pattern at a specific site may not be properly reproduced, especially for the

cases when the effect of wave direction is significant.

Thirdly, the wave conditions at a field site can be grouped into a small number of wave

conditions. The number should be chosen carefully, considering both the accuracy and the

calculation efficiency. The grouped wave conditions represent the wave height, period, and

direction. Each wave condition is applied on the same initial bed geometry. Then the total

bathymetric change is obtained by summation of each bed level change for each wave condition

with an appropriate time weighting. For present purposes, the lattermost grouping method is
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adopted.

Analysis of the wave records suggested that the wave climate over the study period could be

divided into six representative groups composed of two predominant directions (ENE and ESE)

and three wave height bands with a peak period of 7 sec: the largest wave heights corresponding

to the typhoon conditions. The wave data during the period were grouped into 6 groups. The

minimum number of wave directions, ENE and ESE, were chosen to distinguish the directional

effect of incident waves on wave-induced flow and resulting sediment transport. The ENE

direction included NE waves and 50 % of E waves, while the ESE direction included SE waves

and 50 % of E waves. Wave heights were grouped into three representative sizes, 5.5 m, 4.5

m, and 3.5 m. Smaller waves were simply included in the 3.5 m wave group with a simple

weighting proportional to the square of the wave height (the time for 2.5 m wave height was

reduced by 2.5 2/3.52 , and the time for 1.5 m wave height was reduced by 1.52/3.52 and the two

reduced times were added to the time for the 3.5 m wave height). The weighting power of two

was selected from existing empirical integrated longshore transport formulae, see Kraus et

al.(1982), and Ozasa and Brampton(1980). The times for the six wave condition are given in

Table 8.6.
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Table 8.6 Weighting times for the six wave conditions.

Wave Direction
H (m)
	

ENE	 ESE

3.5 147.2 67.5
4.5 18 2
5.5 8 1

Unit: hour

Measured and calculated depth changes are shown in Fig. 8.12, and 8.13, respectively. The

general accretion or erosion pattern matches each other quite well. Comparison of the sediment

model bed level changes with those from the bathymetric charts confirms the effect of the wave-

induced currents. The measured average accretion height during the period around Chukpyon

Harbour (in the square area surrounded by x grid numbers 40-68, y grid numbers 60-92,

excluding inner harbour) was 0.4 m, while the calculated average accretion height in the area

was 0.2 m. Fig. 8.12 and Fig. 8.13 clearly show accretion near the Western Breakwater and off

the tip of the Eastern Breakwater, although coastline accretion is less well represented. The

erosion zone off the harbour entrance is also well reproduced. Detailed bed level changes on EW

and NS transects are also shown in Fig. 8.14a-b. Seeing two profiles around the two

breakwaters, the magnitude of erosion or accretion is within an order of 2, which is considered

to be a reasonable reproduction. Quite good qualitative agreement is obtained along the EW

transect with less good agreement along the NS transect. A very good location is obtained for

the major shoal area. Possibly a better comparison could be obtained by allowing a feedback

loop in the model system whereby the changes in bed level are allowed to influence the wave

and current flows, and thereby the sediment transport rates.
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Fluorescent tracer tests were conducted to obtain qualitative information on sediment transport

direction around Chukpyon. Sandy material at Chukpyon was covered with fluorescent paints,

and was deposited at three points on 30 June 1988, see Fig. 8.15. 26 days after deposition, bed

material was collected at over 300 points around the three original points. The number of

fluorescent sand particles in a unit volume was counted, see Fig. 8.15. The wave climate during

the period was similar to the typical wave climate in the season (Fig. 8.1). The test results

revealed the sediment transport pattern toward the harbour entrance from both the Eastern

Breakwater and south beach. This also supports the validity of the calculated wave-induced

current pattern and the calculated bed level change pattern.

8.6 Conclusions

The relatively simple system of nearshore coastal models has been applied to study a particular

siltation problem at Chukpyon in eastern Korea. The lack of nearshore tidal currents in the study

area enables wave and current fields to be decoupled while the dominance of sediment

movements by typhoon conditions has enabled the wave climate to be synthesized by a limited

number of wave patterns. The new three-dimensional wave-period-average sediment model has

been interfaced with both an inshore wave prediction model and a wave-induced current model

and shown to be capable of giving quite a good representation of sediment load and seabed

changes in the vicinity of the harbour.
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Comparison of model results with rather limited field data confirms the accuracy of the wave

and wave-induced current models, the new 3D sediment model concentrations and the presence

of residual sediment movement towards the harbour entrance as well as the location of shoal

zones near the west groyne and east breakwater. Overall sediment bed level change accuracy

appears to be within a factor of two and is considered to be good enough for engineering use,

provided sediment field data can be obtained to calibrate the model constants. Further work is

needed to include bed level change feed back into the model system to see if this approach would

increase model accuracy.
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CHAPTER 9. CONCLUSIONS AND SUGGESTIONS FOR FUTURE WORK

9.1 Assessment of the Present Model System

A numerical model system for the simulation of suspended sediment transport and bed level

changes around structures due to wave and wave-induced currents has been established.

Compared with existing approaches, the new models are the simplest level of model for

simulation of medium or long term siltation.

The new model system is composed of three sub-models: a 2D plan wave propagation model;

a 2D plan wave-induced current model; and a 3D suspended sediment transport model and a 2D

plan bed level change model.

Wave propagation model

Berkhoff's(1972) evolution elliptic mild-slope wave equation is solved by numerical schemes

modified from those of Ebersole et al.(1986). The second order derivative term of wave

amplitude (diffraction term) in the direction of wave propagation is ignored, and land boundaries

are treated without diffraction terms. The model reproduces shoaling, refraction, diffraction and

breaking processes, and was tested on a caustic wave propagating over a submerged elliptic
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shoal, with good results. It was shown that the simplification of the governing equation does not

significantly affect the accuracy of the solution. Diffraction around structures was also

reproduced in the model. However, it was found necessary to use a special approach for

condition in the lee of structures. The modified Ebersole et al. model has a limitation of a wave

propagation angle of + 45 ° from the x-axis (set in the opposite direction of main wave

propagation) due to the one-directional sweep calculation procedure used. For conditions in the

zone outside the 450 sector at structures, it is necessary to use a subsidiary solution when

dealing with diffraction by structures. In the present model, Penney and Price's analytical

solution is used to provide boundary conditions for the numerical model along a line taken 450

from the direction of wave propagation (negative x axis) at the tip of the structure. For angles

greater than 450 in the shadow zone, the Penney and Price solution is used completely. If

crossing wave trains occur in the shadow zone, an averaging approach is used to determine wave

heights and directions. Generally, the wave model was found to be fast and cost-effective, and

useful for general bathymetry. Tests against Penney and Price's analytical method for semi-

infinite breakwaters showed good results and suggested that model coding error were absent.

Wave-induced current model

Wave-induced currents are simulated by a new current flow model, using information on wave

directions and heights from the wave propagation model. The new model uses a similar approach

to that of Flather and Heaps(1975) with the addition of wave-induced radiation stress terms. The
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approach is further simplified by introducing a spreading of the gradients of radiation stress

terms in the surf zone. The spreading approach is run separately from the unsteady momentum

difference equations, and replaces lateral mixing terms. Application of the spreading concept to

a plane beach situation shows similar longshore velocity profiles to those of Longuet-

Higgins' (1970) solution. The model was applied to a laboratory experiment of circulation behind

a detached breakwater. The model results showed good agreement with the measured velocity

distribution. Model computer runs were again found to be fast due to the simplification of the

lateral mixing terms.

Sediment transport model

With information on wave conditions and wave-induced currents, the suspended sediment

concentration and the bed level change are calculated from a new three-dimensional suspended

sediment transport model and an associated bed level change model. The non-uniformity of

suspended sediment distribution around structures can be reflected by the three-dimensional

suspended sediment model. The model adopts a splitting technique of processes for efficient

calculation.

A new empirical formula for the reference level suspended sediment concentration was proposed,

and calibrated with existing laboratory data, and Chukpyon field data. The formula reflects the

variation of Shields parameter in a wave period, which has not been taken into account in
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existing formula.

The Chukpyon data sets were obtained by a new four-trap device. The four openings on the

device have four different orientations (down-contour, up-contour, onshore, offshore), so that

the net sediment transport can be obtained by subtraction of one value from the other. The

scaling coefficient for the reference level concentration was obtained from existing laboratory

and field data. A new bed load formula was also proposed, and the scale parameter was obtained

from field data. The field bed load data showed rather scattered plots, and the scaling

coefficients in the new empirical formulae need to be further calibrated for each field site.

3D model results were compared with two analytical solutions for simple situations and gave

accurate solutions.

The three-dimensional sediment transport model requires a knowledge of WPA bed shear stress,

vertical diffusion coefficient profile, and horizontal velocity profiles at each plan grid point.

These are supplied from a two-dimensional vertical (2DV) wave and current boundary layer

model.

Existing empirical methods as well as existing 1DV wave and current boundary layer models,

which do not include the vertical velocity term, together with 1DV wave boundary layer models,

which do not include the current effect have some drawbacks. Therefore, a new boundary layer
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model, which takes account of the effect of both wave (vertical) orbital velocities, and the steady

current, has been developed. The model enables the wave-period-average velocity profiles for

waves with a following current and for waves with an opposing current, which are different for

strong wave situations, to be simulated. This phenomena has already been pointed out by

experimentalists, such as Kemp and Simons(1982), Nieuwjaar and van der Kaaij(1987), and Nap

and van Kampen(1988). The model can also be applied for situations involving arbitrary wave

and current intersection angles. Model results were obtained for a limited general range of wave

and current parameters at Chukpyon, and stored in the computer in a tabular form. Values at

a particular plan grid point were then obtained by interpolation.

Chukpyon Application

The model system was applied to the real field situation at Chukpyon Harbour, Korea. Each sub-

model was found to give reasonable agreement with measured data for wave height field

(Waverider buoy), wave-induced currents (RCM-5P on a bed frame), suspended sediment

concentration (HR pump sampler), and seabed level change (echo-sounder); the various field data

being obtained between 1987 and 1989 at Chukpyon. The depth-change for a stormy period of

143 days was reasonably reproduced by the present model system. It is thought that the models

can be used for other similar situations to simulate past bathymetric change, or to predict future

medium or long term bed level change. However, field data must be used to set-up and calibrate

the model for each site.
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9.2 Future Work

The present work involves three separate models, wave, wave-induced current, and sediment

transport models. These models contain various empirical parameters which have been calibrated

from only a small number of data. Each model can, therefore, be improved by further

calibration with more data sets, and with more accurate data sets.

Firstly, the recommended future research for the wave propagation model is listed below:

Comparison of the present wave model with nonlinear wave, or random wave models on

accuracy and efficiency

- Comparison of the present model with models which includes other terms, such as wave-

current interaction

Future work for the wave-induced current model include:

- Comparison of the model with three-layer or three-dimensional modelling

- Comparison of the model with nonlinear wave, or random wave-induced current models
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Future work for the sediment transport model include:

-	 Research on the near bed vortex movement behaviour (It is known to play an important

role in the sediment transport, see O'Connor(1991), and O'Connor et al.(1992a).

This effect becomes more dominant when waves are strong, bed roughness is large, and

bed material is coarse.

Linking IWP modelling with separation of entrainment into vortex and skin friction

entrainments

Making use of the results of 2DV flow or 2DV sediment model over a rippled bed

Comparison of the present model with nonlinear or random wave sediment models

Inclusion of on-offshore sediment transport, bed slope effect, sediment grading effect,

and sheet flow transport for a flat bed zone

Inclusion of an adequate bed roughness prediction model

Inclusion of the enhancement of the eddy viscosity due to wave breaking
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The wave-current boundary layer model supplies the important parameters for the sediment

model. The sub-model may be refmed as follows:

Comparison of the present mixing-length hypothesis with higher order turbulence closure

models

...	 Parameterization of the model result for a wider range of variable values for general use

for other sites

...	 Further comparison of the model with other accurately obtained laboratory or field data

- Extension of the model for random wave and current situations, and tidal situations

While upgrading or refining the model system in the future, the simplification of the whole

system will also need to be looked at for better engineering use for long term siltation

predictions.

The four-trap device for measuring suspended sediment near the seabed needs further calibration

in a flume. It may also be desirable to install a probe for measuring near bed velocity on the

device.
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APPENDIX A. FINITE DIFFERENCE EQUATIONS FOR THE WAVE PROPAGATION

MODEL

The three governing equations (4.1), (2.14), and (2.15) are solved using finite-difference

numerical methods applied to a regular grid of computation points of constant sized, rectangular

cells, see Fig. 4.1. The governing equations are:

32 a	 1IVs1 2 =k 2 + 1— ( - +- (Va'V ( CC ) )
a 3y 2 ccg	 g

aa (a 2 cc 1V'slcosO) +— (a 2 ccg Psisin0) =0g	 ay

—a (1Vs	 aIsin0) - 	 (1Vslcos0) =0
ax	 ay

(4. 1)

(2.14)

(2.15)

where V is the two-dimensional spatial gradient operator (010x, atay); s is the wave phase

function; k is the wave number; a is the wave amplitude; x,y are longitudinal and lateral spatial

cartesian co-ordinates, respectively; c, cg are the wave phase velocity and group velocity,

respectively; and 0 is the counter-clockwise wave direction relative to the negative x direction.

All variables which vary as a function of space are defined at the cell centre, see Fig. 4.1. When

a dependent variable F and its derivatives are single-valued, finite, and continuous functions, it
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can be expanded by Taylor's theorem. Then, the following central-difference, second order

correct finite difference operators are used to approximate the partial derivatives of F at position

(ij):

a2F 	 1 	 (Fi j+1 -2Fi,j +Fi,j _1 ) +0(Ay2)
ay2 (Ay) 2	 •

	

aF  
•	 •

ay 2Ay 11" 2,3+1-F +0(Ay2)

(A.1)

(A.2)

where O(y2) denotes terms containing second and higher powers of Ay; subscripts ij are x,y

grid point numbers, respectively; and superscript n is the time step number. The following

upwind, first order correct finite difference operator is used to approximate the partial derivative

of F at position (ij):

aF
=-

1 (F.+ '1 .-F1 
'
.)+0(Ax)

ax	 3	 3
(A.3)

where 0(Ax) denotes terms containing first and higher powers of Ax.

The magnitude of the gradient of wave phase function at any point (i,j) is then computed from

the following finite difference equation, that is:

1, j+
IVs1 2, ,j -

k2

(A_Y) 2
cc	 -cc1 / 	 )	 gi•i)

X k

cc	 Ax	 Ax
gi,i

-cc	 ) 	 cgi,j+3. 	 ) )
2Ay	 2Ay

(A.4)
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aF aG .0
ax ay

(A.5)

The equations (2.14), and (2.15) can both be expressed in the general form:

where F, G are eccg I Vs I cog', and a2ccg I Vs I sinO, respectively, for equation (2.14); or F, G are

I Vs I sin°, - I Vs I cosO, respectively, for equation (2.15). If partial derivatives in both x and y

directions are estimated using central differences about the point (i+1/2,j), see Fig. A.1, then

the following finite difference equation results:

aF i	 .+ aG
=

ay i+-2-	
0

aF	 Fi +1, j	 j
nTic	 Ax

aG	 _8G	 aG
T3-7 li+4	 (1—W) —ay

w( Gi,j+l — Gi,j _l ) (1—w) (	 j+i—Gi+i,j_i )

2 Ay	 2 Ay

(A.6)

(A.7)

(A. 8)

where W is a weighting factor (0 � W 1) which designates the relative importance between the

two calculation columns i, and i+1. If W = 0.5, the fmite difference equation is spatially

exactly centred at (i+1/2,j). The factor W is given 1.0 here as Ebersole et ad. (1986).

Substituting equations (A.7) and (A.8) into equation (A.6), equation (A.6) becomes:

G2 +.• =1-1 G.1.1-1,	 )	 + W ( 	
) + (1 — W) ( 1 2Ax	 2Ay	 Ay

(A.9)

where F1+1; is an intermediate value for F1+1,3 , which is introduced in the following

242



approximation.

The additional approximation is made by the following weighted sum for function F:

Fi*+1,i=--aF1+1,j+1+ (1-2a) Fi+Li+ccFi+i,j_i	 ( A. 10)

The above "dissipative interface" is used to enhance the stability of the numerical scheme. The

value of a is set to be 0.167 as Ebersole et al.(1986), see Abbott(1975). Then the equations

(A.9) and (A.10) give:

F1,j =aFi+1,i+1 + (1-2a) Fi+Lj+aFi+i,j_i

	

G, •+,	 •
+Ax(w(  i ' j	 -"3-1)

2Ay
G•	 • -G• + •

	

+ ( 1- w) (  2+1,3+1	 2 1, J-1 ) )
2AY"

Substituting the following expressions for F and G,

F= 17/.91 sin° ; G—IVslcos0

the finite difference form of equation (2.15) becomes:

is nei+i,
1 

((a l Vs 1sine i ,	 'vs!	 i+i, j+1
I2,J

+ (1-2a) IVsji+1,isinOi+1,j

wAx ( Fsl i , j +icosei,j+i -IVsl_icosOii )- 2Ay
(1-	 (Vs	 jcow) Ax 1l +ise	 -Ms icosO) )- 

2Ay

Using the substitutions as:

the finite difference form of equation (2.14) becomes:

(A.11)

(A.12)

(A.13)
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sin (00-0b) ) _Fob0=Tc-sin-1(
co

C

(A.17)

(A. 14a)

(A. 14b)

F=a 2A ; G=a2B

A=ccg lVslcose ; B=ccgiVsisine

a 2 ._  1 ((_,2
k u•czi+1,j+lAi+1,j+12'3 Ai, j

	

2	 2
+ (1 -2a ) ai+LiAi+i,i+ocal+i,J-3Ai+1,3*-3.)

+  
2
W

A
A

y
x (aT

	

+  (1-W) Ax i n 2 	 , 2
2 Ay.

(A.15)

At the offshore open boundary, wave direction, wave height, and the gradient of wave phase

function should be given. Given deep water wave conditions, Snell's law is used for the cases

when bottom contours are parallel with the y-axis:

sin 0_  sin 60	
(A.16)

C	 c0

where co is the wave phase celerity at deep water, 0 0 is the wave direction at deep water. If the

bottom contours make a non-zero angle with the y-axis, the following equation can be used for

better approximation of the wave solution, as in Ebersole et al.(1986):

where Ob is the angle between the bottom contours and the y axis.

The wave heights at the open boundary are then estimated as the product of the deep water wave

height, a shoaling coefficient K s , and a refraction coefficient K„ thus:
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H=HoKsKr	 (A.18)

where

1
1 

Ks -{ 	 17
2	 kd 

(1+	 ) tanh (kd)
sinh (2 kd)

cos° 1-
K,-- (	 0 ) 2

CO Se

(A.19)

(A.20)

The gradient of wave phase function at the open boundary is approximated as the wave number

(1Vsl =k). Initial values inside the computation domain can be provided by the same way as for

the open sea boundary, since the initial conditions are simply used as a first guess.

At the side open boundaries, the parallel condition is applies as:

1 Vs li,1'I Vs li,2 ; ai,l' ai,2 ; 0i,i'€)i,2

IVSli,ni=1VSl1,nj-1 ; a1,nj =a1,nj-1 ; °i,nj=ei,nj-1

At the land boundary, the decaying wave condition is used. If there is any land boundary grid

point in the calculation column (i), the finite difference equations (A.4), (A.13), and (A.15) for

the open sea cannot be used, since the equations involve values on the land. In the present study,

the numerical schemes are modified for the calculation at the land boundary. Firstly, the

diffraction term involving the second derivative of amplitude along the y direction is omitted.
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(A.23)

(A.24)

Secondly, the lateral first order derivatives along the x axis are expressed by an upwind scheme.

For a grid point which has a land boundary in the positive y direction, see Fig. A.2, the finite

difference equation (A.4) is reduced to:

	

lvs 1 12 , 3 _ 1(22, ..i. 	 1	 x ( ( ai+i,i -ai, j) ( CCgi÷i, j — CCgi, i )

j C	 Ax	 A
cgi,..1	

x

a , .___	 cc,..,.. .-cc . .

	

+ ( 	 1,3	 l'J 1 ) ( 	 -1,J	 917-,J-1 ) )

Ay	 Ay

Equation (A.13) is reduced to:

inei' 1	s	 ( ( a 1 Vs1
'	 1.9%913:,;

. -

+ (1-21x) 1Vsli+1,Jsinei+1,..;
-Fa I Vs 1 i+i,j _ i Bis_n_i+1,;_i)

WAx (177sl i,icose i,j -IVsl i,j _icose i,j _i )-
Ay

(1-W) Ax-
Ay

And equation (A.15) is reduced to:

2 _ 	 1 	 ( (,,, 2
C3 -1 / 3	 A,..i,j 

\ u•al i+1, j+lAi+i, j+1

+ ( 1 -2 a ) aL , jAi +1, ; + a 4+1, j-1Ai+1, j-1 )
,-,-  WA X i _ 2 Bp,	 n 2Ay 

(1-w)	 Ax ,...,2	 , 2+	 k ai+1,3 .13i +i, rozi+i, j_iBi+i, j _i ) )
Ay

(A.25)

Similarly, for a grid point which has a land boundary in the negative y direction, see Fig. A.3,

the finite difference equation (A.4) is reduced to:
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IVsl!i,J=k_t_I-1-	
1 	 x ( (  ai+i,i -ai,j) ( cc	 -ccgi+1,j	 gi, j )

ccgii	 Ax	 Ax
,

a, ..i. _ _a . .	 ccgij+1 -cc „, .
+ ( 	 -1 13 1	 113 ) ( 	,

	
'1,3 ) )

Ay	 Ay

Equation (A.13) is reduced to:

s	
1

ine. 3 	 1	 «alVsli+i,j+isinOi+i,j+1
'

+ (1 -2a) 1Vsli+1,isin0i,,i
-Fa

WAx (Ivsl i ,j+icos0i,J+3. - Ns li,icosOi,j )-
Ay

_  (1-W) Ax (,iv'	 . cos •	 • - 77,s1 •	 .c.	 .) )
Ay	 ivii+1,.7+1	 e 2+1, _7+1 1	i+1,	 ose3	 2+1,3

And equation (A.15) is reduced to:

1	 2

ALj
2	 2

+ (1-2a) ai+1,JAI.+1,J+acl1+i,i-l•Ai+i,J-1)
2

Ay
+  (1-w) Ax 2 pe	 2 B

Ay

(A.26)

(A.27)

(24.28)

At the special boundary where the computation domain is divided between the present model and

Penney and Price's method, the wave heights obtained from Penney and Price's method are

simply assigned. Wave direction is approximated geometrically (straight from the breakwater

tip), see Fig. A.4. The wave phase function gradient is also approximated by the wave number.
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The offshore boundary values are given along the column (ni), and the solution of the

computation domain is obtained column by column starting from the column (ni-1).

The solutions of equations (A.13) and (A.15) for the wave angle and the wave amplitude along

the calculation column (i) are obtained iteratively because of the implicit finite difference

formulation used (W =1.0). For the calculation, the initial guess values for the wave phase

function gradient are used. Iteration for the calculation of the wave angle and the wave amplitude

continues until the average change along a column in each variable from one iteration to the next

is less than a particular limit. The convergence criteria of 1.4 0 for wave angles, 0.15 mm for

wave heights are used for present purposes.

When the wave angle and the wave amplitude are obtained along the calculation column (i), the

wave phase function gradient is solved by equation (A.4). Using the new wave phase function

gradients, equations (A.13) and (A.15) are solved again. When equation (A.4) is solved using

the new wave angles and wave amplitudes, the values are different from the former solution.

This iteration continues until the change in new wave phase function gradient from one iteration

to the next is less than a limit, say 0.5 percent of the newly computed value at each cell along

the computation column (i). As the new wave phase function gradients are obtained, the values

are averaged with the old values at each grid cell to remove cell-to-cell oscillations, see Sheng

et al.(1978).
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APPENDIX B. DIFFRACTION BY THE PENNEY AND PRICE(1952) METHOD

Penney and Price(1952) have presented a solution for the elliptic wave equation for a specific

case of uniform depth around a semi-infinite breakwater at the ends of a breakwater, and also

for the case of a gap in a breakwater. Penney and Price(1952) have used Sommerfeld's(1896)

solution of diffraction of light to simulate water wave diffraction for constant water depth and

a rigid breakwater, see also Wiegel(1964). The diffraction coefficients for a semi-infinite rigid

impermeable breakwater with the incident waves approaching the breakwater at any angle can

be calculated by Penney and Price's method.

Defining the incident wave angle 00 as a counter-clockwise angle relative to the breakwater

direction; r as the distance of the calculation point from the breakwater tip; and 0 as the counter-

clockwise wave angle of the line from the breakwater tip to the calculation point, the area

around the breakwater is divided into three regions, shadow region S, open region Q, and

reflection region R, see Fig. B.1. Then the diffraction coefficient can be calculated for each

region as follows.
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In Region S, the diffraction coefficient (KO is obtained by:

K= (D1 ) 2÷ ( DO 2
	

(B.1)

where

Di =cos (kr cos (0-0 0 ) ) • (4 (1. 0 +C-F S) )

+sin (kr COS (0-0 0 ) ) • ( - 1 (S-C))

+cos (kr cos (0+0 0 ) ) -(4 (1. 0+CI+SI))

+sin (kr cos (0+0 0 ) *(-1 (5d-C 1 ) )

(B.2)

1D2 =cos (kr cos	 —2
(0-0 0 ) ) •(-

	
(S-C))

+sin (kr cos (0 -0 0 )) • (4 (1. 0 +C+S) )

+cos (kr cos (0+0 0 ) ) • (	 (S'-C"))
(B.3)

+sin (kr cos (0+0 0 ) • (4 (1. 0+CI+SI))

-sin- 	 (0-00)
7C (B.4)

ci 1=-2\11(-1 Sill 1 (0-00)
IC	 7

C=f
o
°cos1-nu,›-du

2 (B.5)
S= f asin—lnu2du

2
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1+0.926a C(a)
2+1.792a+3.104a2

(B. 7)

C'
,
=f

o
cos-1 nu 2 du

2

Si=f a sin—lnu2du
0	 2

(B.6)

where k is the wave number. The values of Fresnel integral (C,S,C',S') are found from rational

approximation functions, see Abramovitz and Stegun(1965). Using the functions is more

convenient than using interpolation from tabular forms of solutions.

1	S (a)

	

	 (B.8)
2+4.1420+3.49202+6.670°3

The solution for open region Q is obtained similarly,

pl .-cos (kr cos (0-0 0 ) )

- cos (kr cos (0-0 0 ) ) •(1-(. 0 +C+S))

- sin (kr cos (0-0 0 ) )•(-1 (5-C))

+cos (kr cos (0+0 0 ) ) • (1 (1.0 +CI+SI))

+sin (kr cos (0+0 0 ) • ( 22: (g'-C'))

(B.9)
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D2 —sin(kr cos (0-0 0 ) )

-cos (kr cos (0-0 0 ) )-(-1 (S-C))

+sin (kr cos(0-00))•(-32:(1.0+C+S))

+cos (kr cos(0+0 0 ) ) • (4 (S'-C"))

-sin (kr cos (0+00 ) • ( i- (1. 0+CI+SI))

(B.10)

The solution for reflection region (R) can be obtained similarly, but is not used here, since

reflection is ignored in the present work.
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APPENDIX C. FINITE DIFFERENCE EQUATIONS FOR THE WAVE-INDUCED

CURRENT MODEL

The continuity and momentum equations constitute the governing equations for the wave-induced

current model, see Chapter 5. The continuity equation has the form:

+ a (dU)+ a (dV) =0
at ax	 ay

(2 . 31)

where n is the WPA water level; t is time; x, y are the longitudinal and lateral cartesian co-

ordinates, respectively; d is the mean water depth; and U, V are the depth-mean velocities in

the x, y direction, respectively.

The depth-integrated WPA momentum equations are:

1R, f Fb x
at ax ay ax pd pd

al7+Ualf+aV+gan R
	 Fb, y 0

at ax 
V

ay ay pd pd

( 5 . 1)

(5.2)

where R„,f, Ry , f are the modified driving force terms (derived from RA, Ry) in the x, y direction,

respectively; 12„, Ry are the driving force terms due to the gradient of the wave radiation stress

in the x, y direction, respectively (Rx =as,,„Jax+asuiay, Ry =3Sxy/8x+0Syy/ay); g is the
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acceleration due to gravity; p is the water density; and Fb,,, Fbz, are the turbulent bed shear

stresses in the x, y directions, respectively.

The radiation stress terms (S., S xy , S yy) and the driving force terms (R,„ Ry) are calculated from

equations (2.39)-(2.42), and the modified driving force terms (R x,f, Ry,f) are obtained through

the application of the spreading operators (explained in Section 5.4) to the driving force terms

(Rx, Ry).

The bed frictional force terms (Fb,x , FI, ,y) are calculated by the relationship between the depth-

mean velocity and the shear stress:

Fb,x= f cm UV U2 +V2

Fb, y= f cm V11 U2 +V2
(C . 1 )

where fem is the friction coefficient modified by waves, and can be obtained from the separate

sub-model taking account of wave-current interaction in the boundary layer, see Section 7.7.

The variable n i: is defined at the centre of grid (i,j) at a time step n, where subscript i,j are the

indices for the grid numbers in the x, y direction, respectively. Superscript n is the index for

the time step number, see Fig. 5.8. The variables U, 	 are defined at the grid border in

the x direction, while V;	 j are defined at the grid border in the negative y direction.

254



1
i•J 2	 1,3	 113	 1+1.3	 2+113 (C.3)

Equation (2.31) is then represented by the following finite difference equation using simple

differences as:

..s.r2+1	
Ur, j —Din_i LTin_ i,	ein,j+1 Vin, +1	 (C.2)

At	 Ax	 Ay

where Ax, Ay are the spatial increments in the x, y direction, respectively; At is the time

increment; d, e are the average depths defmed by the following equations:

1
•	 •=—ei, 3	 2 (	 •+1-1 •	 .+	 •	 .	 +ri •h2,J	 2,J	 122,3-1 ) (C.4)

The two depth-averaged momentum equations are expressed in finite difference form following

the approach of Flather and Heaps(1975). However, the present equations are distinguished from

Flather and Heaps' (1975) equations for tidal current without waves by the radiation stress terms

and the modified friction coefficient for wave and current flows.

Flather and Heaps(1975) proposed three numerical schemes with different treatments for the non-

linear advection terms. The advection terms were ignored in their first scheme. For the second

and third schemes, they used the angled-derivative approach of Roberts and Weiss(1966). In

these cases, the advection terms are properly centred in space and time. The second scheme used
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a two-step calculation procedure for the advection terms, while the third scheme used a one-step

calculation process. In the present work, Flather and Heaps(1975)'s third scheme (one-step

scheme) is adopted for the momentum equations due to the simple calculation procedure.

The angled-derivative scheme uses two finite difference equations for each of the momentum

equations for time and space-centring. For time-centring, the newly-obtained velocity values at

the (n+1) time step (U1:+1, Vit 1) are immediately used for the calculation of the velocity

values at the next calculation grid point when the calculation grid point moves from one spatial

point to the next. For space-centring, the calculation order of the two variables (U, V) is

reversed every time step, and the calculation grid point order of each variable is reversed, too.

For an odd time step, the calculation of U starts from the top row (nj) to the bottom row (1)

(from the left grid (1) to the right grid (ni) in each row). And the calculation of V follows the

same order. For even time steps, the calculation of V starts from the bottom row to the top

(from the right grid to the left in each row), and the calculation of U is followed.

The x direction momentum equation (5.1) has the following finite difference form for odd time

steps:
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+ ( vi + Vin4. 1, j) ( Uin, j -Uin, j-i) )

f„ Urj- ( ( Uin, j) 2 + 17in j ) 2 ) ° • 5
(C.5)

(U12,+1 - Uin, j)	 1  —
--Li

A t	 n (UP • -rIn Un+1
2Ax
1 

- 4 Ay ( ( Vfi+1 +1712+1,i+1) (U13+1-U123)

Din, j
n+1	 n+1	 r,

112+1,

Ax

and for even time steps:

( 1.2+ -UP .)2,3	 2,3	 1 T.T. :,2 „iv . _ TTI2+1 +771.1 _ 7- Tn

At	 2	 A.x.(-Ji, i L.%,/ 1, 3 L'.1,3	 41,3

1 

- 4Ay ( (VP + 1 1-V12+ 1 _1+0 (UT,i+i-U1,i)

+ ( Vi +	 j) ( UT,+j- - U123_1 ) )
fcin Urj- ( ( UP, j) 2+ (	 j ) 2 ) °• 5

(C.6)

Din, j
„n+1	 n+1
qi+1, j

„
-1 1	 _

- g Ax

where

j =max ( j , dmin)
Ei,j =max (ei,j , dmin)

1 .=-1 (U.,..7 4	 2-1, j	 2,3	 2-1,3-1	 2,3-1

..= 1 ( v. .	+Tr.	 .+1.7.

2 ' 3 4	 J+3.	 v 1+1,31

- 1
(U.	 .+2U2• +U2. 1-1,j )1,3 4

- 1V
4
 ( V • +1 +2 V. .+ V.	 )1,3	 2,3-1

(C.7)

where dmi,, is assigned as the minimum depth for the denominator in the frictional terms which
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for odd time step:

(vf3-vip.;)

At

and for even time steps:

(	 j)	 1 
17n (VT j+1 -1712, j +VT3 —V123_1)

At	 2A y
1 	 / rrp	 7-7-p	 T7.7+1 .—Trz.2+1\

vi,j4Ax

f cm vf-j- j ) 2 +	 j ) 2 ) 0 . 5

Ein, j

-.9' Ay
pEJ j

(C.9)

could otherwise contain a singularity at d=0 or e=0.

The y direction momentum equation (5.1) has the following fmite difference form of equation

--

-

1 —n	 n+i
2A  vi,i (vi,j+l -vf3+vf J -1712 j_1)

	  (
4Ax 

(uP .+u
1 1
P ) (v

+1
P

,
 .-vP .)

1 -7	 -7-	 13	 1-7
(1423-17fri,;))

fon vrj-	 j) 2 4. (	 j ) 2) 0 . 5

E in, j
n+1 _ n+1

j+1 _ Ry, j,i
- g Ay	 pEin,j

(C.8)
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Boundary conditions

Three types of boundaries exist. Namely, an offshore open boundary, an open side boundary,

and a land boundary.

Firstly, consider that the offshore open boundary faces in the x direction, see Fig. (C.1). Then,

the velocity across the boundary is calculated from the finite difference form of the continuity

equation (5.34) as:

d in, j Tin, j UP-1, _ _ 11 1/ +,	 _ ein, j + 1 Vin, j + ein,J Vin, j	 (C.10)
Ax	 At	 Ay

The water elevation at the new time step should be provided in the above equation. If the set-up

or set-down at the open sea boundary is negligible, zero elevation can be given at the open

boundary grid points.

Secondly, at the side boundaries, a parallel boundary condition (an/ay =8V/ay =0) (equation

5.35) is applied. The finite difference forms of the boundary condition for the side boundary

facing in the y direction, see Fig. (C.2), are:

TI—TT

111,J=11_11,J-3.
	 (C.11)

For the side boundary facing in the negative y direction, the finite difference forms are given

as:
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1712,..1=v11,j,1

TIL=111,J+1
(C.12)

Thirdly, at the land boundary, the simple condition of no-flux in the normal direction to the land

boundary is used. Thus, any velocity U or V across the land boundary is zero, see Fig. (C.3).

That is:

Uid = 0 , if di,j <0 or cii+1,j<0
if d<0 or d1,j_1<0

(C.13)

The various equations have been coded in FORTRAN 77, and calculated results were obtained

using the SUN-4/690 machine at Liverpool University. The programme requires 80 KB storage

for a typical 68 x 92 area with 6256 computation points. A typical run for Chukpyon Harbour

requires 600 cpu seconds. Results from program were obtained in a dataille, NkAnch storage mean

water elevation, x, y components of current vector at each grid point. Vector plots, see Fig.

8.7a, were obtained from the datafile using standard UNIRAS software.
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APPENDIX D. EXAMPLE CALCULATION OF IWP SHIELDS PARAMETER:

TABLE 6.2

The WPA calculation of If.c1 1.5 is done numerically by dividing the wave period into 16

equal time intervals. An example calculation for the first data set in Table 6.2 is given below.

No.	 Tb,cm	 Tbox	 IL,c1

1 0.0000 0.6990 0.6990 0.2159
2 0.0000 0.5350 0.5350 0.1653
3 0.0000 0.2895 0.2895 0.0894
4 0.0000 0.0000 0.0000 0.0000
5 0.0000 -0.2895 0.2895 0.0894
6 0.0000 -0.5350 0.5350 0.1653
7 0.0000 -0.6990 0.6990 0.2159
8 0.0000 -0.7566 0.7566 0.2337
9 0.0000 -0.6990 0.6990 0.2159

10 0.0000 -0.5350 0.5350 0.1653
11 0.0000 -0.2895 0.2895 0.0894
12 0.0000 0.0000 0.0000 0.0000
13 0.0000 0.2895 0.2895 0.0894
14 0.0000 0.5350 0.5350 0.1653
15 0.0000 0.6990 0.6990 0.2159
16 0.0000 0.7566 0.7566 0.2337

1*.c1 1.5	. 0.0627
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APPENDIX E. EXAMPLE CALCULATION OF IWP SHIELDS PARAMETER:

TABLE 6.3

The WPA calculation of Ifwc11.5 is done numerically by dividing the wave period into 16

equal time intervals. An example calculation for the first data set in Table 6.3 is given below.

No. Tb,cm T b,w b, WCI P	 WC1

1 2.3553 11.1894 11.4346 3.5321
2 2.3553 8.5640 8.8820 2.7436
3 2.3553 4.6348 5.1989 1.6059
4 2.3553 0.0000 2.3553 0.7275
5 2.3553 -4.6348 5.1989 1.6059
6 2.3553 -8.5640 8.8820 2.7436
7 2.3553 -11.1894 11.4346 3.5321
8 2.3553 -12.1113 12.3382 3.8113
9 2.3553 -11.1894 11.4346 3.5321

10 2.3553 -8.5640 8.8820 2.7436
11 2.3553 -4.6348 5.1989 1.6059
12 2.3553 0.0000 2.3553 0.7275
13 2.3553 4.6348 5.1989 1.6059
14 2.3553 8.5640 8.8820 2.7436
15 2.3553 11.1894 11.4346 3.5321
16 2.3553 12.1113 12.3382 3.8113

. 4.3121
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APPENDIX F. EXAMPLE CALCULATION OF IWP SHIELDS PARAMETER:

TABLE 6.4

The WPA calculation of 1*„11's is done numerically by dividing the wave period into 16

equal time intervals. An example calculation for the first data set in Table 6.4 is given below.

No.	 Tb,cm	 rbm	 It.b,WCl/P

1 C).9151. 1.251_6 3.3946 1.0486
2 0.9751 2.4887 2.6729 0.8256
3 0.9751 1.3468 2.6628 0.5136
4 0.9751 0.0000 0.9751 0.3012
5 0.9751 -1.3468 1.6628 0.5136
6 0.9751 -2.4887 2.6729 0,8256
7 0.9751 -3.2516 3.3946 1.0486
8 0.9751 -3.5195 3.6521 1.1281
9 0.9751 -3.2516 3.3946 1.0486

10 0.9751 -2.4887 2.6729 0.8256
11 0.9751 -1.3468 1.6628 0.5136
12 0.9751 0.0000 0.9751 0.3012
13 0.9751 1.3468 1.6628 0.5136
14 0.9751 2.4887 2.6729 0.8256
15 0.9751 3.2516 3.3946 1.0486
16 0.9751 3.5195 3.6521 1.1281

I*.,1 1.5	. 0.7184
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APPENDIX G. FINITE DIFFERENCE EQUATIONS FOR THE SEDIMENT TRANSPORT

MODEL

The split governing equations (6.14), (6.9), and (6.10) are solved by finite difference methods.

Thus each equation is solved sequentially using starting values obtained from the previous

solution. The splitting technique, see Verboom(1975), has the advantage that advection and

diffusion steps can be separated and an appropriate numerical method selected for each separate

step.

Vertical diffusion and advection step is:

at, ...F ac _EG a2 c
at	 ar,	 an2

(6.14)

where c is the suspended sediment concentration, t is the time, n is the vertical coordinate (=((z-

zb)/d))-A , zb is the mean bed level, A is the transformation constant, and F and G are defined as:

A 1+1 A 2 1+1F= ( 0 _ 1 4 7 ) _ n A i___ Ti A H

f d"	 d 2
2

A 2 7+2G= —1 - esz
d2
a	 1+1H=	 (1 A esz)
al

(6. 15 )

where w" is the distorted local vertical velocity (=dw') on the boundary-fitted coordinates, (w'

has been defined in equation (6.7)), w f is the sediment settling velocity, d is the water depth, and
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E„ is the vertical sediment diffusion coefficient.

Horizontal advection step is:

ac ac	 aC n
-• U- • V-
at ax/ ay/

and Horizontal diffusion step is:

ac_ a (€ ac ) _ a 	 ac-
sx ax

,
	ayi sY ay/ut ax

(6.9)

(6.10)

G.1 First step: vertical diffusion and vertical advection

Firstly, equation (6.14) is transformed into a finite difference equation using an implicit scheme.

Three terms in equation (6.14) are discretized as follows:

ac In+W _ 1 „n+1
at	

t	 j,k/

m aC	
k

in+	

,602
w _  F r

j,k11 + (
1-W) ( c	 k+i	 )	 (G.2)

' ari 	-1

(G.1)

a2 c I n+W_ G	 r,, f n+1	 n+11,2,k
k vv n Li,j,k+1-6Ci,j,k-rLi,j,k11

ari2	 Ai2
n

	

± (1-w) ( n
	 _	

k+Ci,j,ki) )

(6.3)

where each derivative term is located at a spatial grid point Lax', jay', kE (i,j,k are integer
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values) at time level (n +W)At (n is an integer) in the four-directional space-time continuum. W

is a weighting factor (0.5 � W 1) which designates the relative importance of the old and new

time step values; subscript i,j,k are the grid numbers in the x' ,y' ,n directions, respectively; and

superscript n is the index for the time step number. Equation (6.14) is then expressed in the

following general form for a general computational grid point:

	

( W
F	 WG  

)cn	(
+1 k- + 1 +2WG n-Ei) Ck+ (- 

WF	 WG ,...,n+1
-

\1 1...i,j,k+1-
2A11 Al2l'j'''-1

	
At An 2 	 2A i wri2

in  	 F	 n	 G	 ,,,n ,_ n (1 - 	 +ik,3_-L.,,, j,-,J_	 1C-1) +	 (1-w) (Cf22A ii	 Aro

(G.3)

Defining L,D,U, and B as:

WF WG 
2A1 - Al2

)

1 2 WG
k =	 -A,n2

WF WG 
2Ari - Al2

1 r.,n + 
2

F
11 

( 1-W) (cin,i,k+i -Cin,j,k-1- )Bi,j,k= A

G ( 1-W) ( Cin, j,k-1 -2 C j , k+C12, j k-1)Aro

equation (G.4) is briefly written as follows.

L	 c p+1	 n+1
i,j,k	 • ku • • k± U . 	 C.	 -R1,3,	 1 ,7,	 i,j,k for 2sksnkl

At the water surface, the zero-flux condition, equation (6.19) is applied:

, A 7 +1 ,	 acw c-	 ) e sz -4g,711 =0
f	 d

(6.19)

which is written in finite difference form at time step (n +1) for the surface grid point (i,j,1) as:
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1 ,,
n+1	 A	 •-	 1	 n+1	 n+1

Wf C1 ,3
• • 

/ 
1 - — T1

d SZ A n 
(c; 2 c 7. 1 ) 

_-0 (G.5)

Matrix elements are next defined as:

1D	 =w + —
A n 7+les

f d	 z A ri

-
1LT. _; ,	 —

A 
11

7+l
es

l ta,--	 d	 z

At the sea bed, two kinds of boundary condition can be used, either suspended sediment

concentration or the concentration gradient.

If the concentration condition is used, that is:

(6.20)Ca = Ca

at grid point i,j,nk and time level (n+1):

n+1
, j , nk- L- a (G.6)

The general finite difference equation for general grid point (nk-1) is then modified as:

n+1„ n+1	

*L nk-1 Ci ,:7, 1.21C-2+D nk-1 `-i . j t r21C-1 =Bi, j , nic (G.7)

where
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n+1

By application of the general finite difference equation to each grid point over the flow depth,

including the surface and bed boundary points, a series of (nk-1) equations are obtained, which

can be written in tridiagonal matrix form:

Di j, 1 U1,3,1 X C i J o. =-- B1,j,1

L1,,2 Di j,2 UI. j,2 B1,j,2

L1,3,3 D1,,3 U1. ,j,3 B1,3

• • . •

. • . .

• • • •

Li JA-1 Di joik4 B.1,j,n1c-1

If the gradient boundary condition is used, that is:

ace d -4-iw

a
Ca

l A sz

Equation (6.22) is transformed for point i,j,nk at time level (n+W) into:

(6.22)
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n+1	 n+1	 1 ,Ci , j , nk — Ci , j , nk_i_ 	vvf
11	 — L.- aA ri	 A	 e S Z

(G.8)

The following relationship can thus be defined as:

1
L• •	 =nk A ri

1 n
d - 71 -1 wf

Bi, j , =nk A 1 	— a
esz

(G.9)

The solution of the above finite difference equations over a time step, thus reduces to the

solution of the following (nk) by (nk) tridiagonal matrix:

I.Jij, i x Cij91 =

L1j,2 D1,2 Uixo Bij92

L1,,3 Di J,3 Uij,3 B1j,3

Li j,nk Di j 9nk Bij,nk
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G.2 Second step: Horizontal advection

The horizontal advection step is solved by a four-point interpolation characteristic method (first

order characteristic method, see O'Connor(1971), and Nicholson(1983)). This approach enables

an update of sediment concentration (cc) from known values (c). The straight projection line

from the calculation point follows in the opposite direction of the flow. Then, the "projection

point" P lies (-uAt,-vAt) in the x' and y' directions, respectively, from the calculation point, see

Fig. G.1. The "projection square" is defined as a square which links four grid centres

surrounding the projection point. The plan grid indices for the projection square are (ip,jp),

(ip+1,jp), (ip +1,jp +1), and (ip,jp +1), and the ratio of the fraction of distance between the

point (ip,jp) and P to the x', y' grid increments are termed r x, ry in the x,', y' direction,

respectively, see Fig. G.1. Then the concentration at the grid centre is calculated from the

following equations.

cupper =Cip, jp, k+ ( Cip+1, jp, C ip, jp,k ) r x

Clower =671p, jp+1,k +	jp+1,k)

Cleft =Cip, jp, k + (Cip , jp+1, lc — C ip, jp,	 y

Cright= ip+1, jp,k+Cip+1, jp+1, k C‘ ip+1, iP, k ) .-r y

Cup, low= Cupper + ( clowerc upper ) ry

C 1, r -=' C lef t + (Cright—Cleft ) .-rx

(Cup, low+ C , r) 
CCi,j, k-

2

(G.10)

where cc is the sediment concentration after the second step, and the superscript (n +1) are

omitted for all c and cc in equation (G.10) for convenience.

270



At the incoming flow open boundary, the projection point P lies outside the computation domain,

see Fig. G.2. The sediment concentration value is given by interpolation of boundary values as

defined by intersection of the projection vector with the boundary grid points.

G.3 Third step: Horizontal diffusion

Equation (6.10) is solved by an explicit scheme, and enables an update of concentration values

(ccc) from known values (cc). The finite difference form for general grid point ix, jAy, kAn

using a forward difference for the time step and weighted forward and backward differences for

the diffusion terms is:

n+1 —•  •, k CCCi , kCCC1, 
At

,.„_,n	 ,,,, a
1	 t,	 Ct.- t., i +1, i , k — CL, L.- i , i , k

‘'sx, i+2, j,k
A x i	 Ax"

CCCin, j , k — CCCirli, i , k ,
-esx, i-1/2,j,k Ax'
	 )

n	 „..,,,,n

	

i i ,	 CCCi, j+1, lc —Cc- L. i, j ,k
±----7 ‘'sy, i, j+1/2

A y	 Ay/
cccr, i k — CCCin, i _ 1, k )

Ay'

(G.11)

where ccci j,kn is equivalent to CCi,j,k
n+1.

If any grid next to the plan calculation point (i,j) is a land grid, the concentration value at the
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adjacent land grid has the same concentration value as the calculation point (acian, n is the

normal direction to the land). For example, if grid (i-1,j) is a land grid (c i_u ,k =c ; j,k), see Fig.

G.3, then, equation (G.11) is reduced to:

n+1	 nCCCi, j,k—CCCi,j,k

At
,,,,.., n	 ,..,,,,n

1	 CL, I.,1 +1 , j , k— CI....1....i, j , k )
—__ (e 	

AxI sx AXI

1	(e ccci,J+1,1c-	 , j,k	 CCCi,i	 -1, k )
Ay/ sy	 A yl	 —esy Ay '

(G.12)

For other directional land boundaries, similar modification of the fmite difference equation is

applied.

Tk\e, fvttdiffeselw,e, Nuations have been coded in FORTRAN 77, and results were obtained

using the SUN-4/690 machine at Liverpool University. The program requires 53 KB storage for

a typical 68 x 92 x 10 area with 6256 plan computation points and 10 grid point at every plan

point. A typical run for Chukpyon Harbour required 1200 cpu seconds. Results from the

programme were obtained in a datafile, which storage suspended sediment concentration at each

grid points, and bed level change at each plan grid point. Concentration profile plots, see Fig.

8.11, and bed level change contours, see Fig. 8.13, were obtained from the datafile using

standard UNIRAS software.
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APPENDIX H. FINITE DIFFERENCE EQUATION FOR THE BED LEVEL CHANGE

Bed level change is calculated from equation (3.10):

azb aqt aqt
(1-n) —+--)s + 	 Y-0at ax ay

(3.10)

<KZ-tece 4, ZS ate mean bed ZeveZ above a horizontal datum; and q,„ ci ty are the total sediment loads

along x, y axis, respectively. The sediment transports along x and y directions qty,i j) are

d.efuted at each grid border as the water velocities, where i, are the indices for the grid number

in the x, y directions, see Fig. 6.1a. Equation (3.1)) is then approximated by an explicit finite

difference equation:

n+1 _ „ n	 t qtx, j -qtx, j qty, 1,	 j-1 )
1 -n	 Ax	 Ay

(H.1)

where Ax, Ay are the grid sizes along x, y direction, respectively; At is the time increment; and

subscript n is the time step number.

At the open boundary, bed level change is assumed to be zero (zb,;:+1--=zb,;:).

At the side boundary, bed level change is also zero due to the parallel (lateral uniformity)

condition, since the gradient of the sediment flux along the x axis is zero.
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At the land boundary, the sediment flux across the land boundary is automatically zero due to

the zero water flux. Therefore equation (A.1) is used without any modification.

The finite difference equation is solved in a subroutine in the 3D sediment transport model

(Appendix G).
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APPENDIX I. NUMERICAL CALCULATION OF VERTICAL VELOCITY

Equation (6.28) is used for calculation of the WPA vertical velocity field, that is:

auc avd	 +11	 awm
— A  -

ax' ay/
(6.28)

The vertical velocity can be obtained by numerical integration in a water column (i,j), that is:

1 -

-11	

-a- f llbed (
—	 —

a u d 
+_

avd 
)

A	 ax' ay'

Starting from the bottom grid, w" is calculated as:

_1
11 1	 I 

-1 u
2 _7
, , K d,- . 

•	 . , • ,x1- • , •2 
wid,k=wi,J,k+3.--Ank

,d,r1

Ay

(I. 2

for k=nk-1, nk-2,	 2. At the water surface (k=1),	 d =(cli+1,J±d)/2, and

=(di,j+i +di j)/2.

The finite difference equation is solved in a subroutine in the 3D sediment transport model

(Appendix G).
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APPENDIX J. CONSISTENCY OF THE FINITE DIFFERENCE EQUATIONS FOR

SUSPENDED SEDIMENT

The finite difference equations (G.4), (G.10), and (G.11) for the three split governing equations

(6.14), (6.9), and (6.10) should be consistent to their original governing equations.

The consistency of the vertical diffusion and vertical advection equations is considered below.

The governing equation for the vertical direction has the form:

ac .,F ac +Ga2c
at	 an	 ari2

(6.14)

Consider the time derivative first. Expanding an arbitrary function f to the time step (n+1) and

(n) from m(n+W) by the Taylor theorem:

fn+i=fn + W+ (1-W)	
afA t at+  (1-po2At2

2!
ac W2 A L 2 fn .= fn+W_R76, t
at	 2!

Equating f to c, and subtracting the two equations in equation (J.2), we obtain:

(J.1)
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sac n+ w C n+l -C n + 1-2	 (w) A t a2 c_ 	( ____)
‘ at'	 A t	 2! at2

Cn+l-Cn
At

(J.2)

Equation (J.2) is first order accurate to At. If W=0.5 (Crank-Nicolson scheme), the accuracy

imposes to second order.

Consider the righthand-side term of equation (6.14). Defining a function f as:

f=F—ac
 +G a2c

ari	 a1 2

Then, the value f at time step (n+W} can be approximated by equation (J.2) as:

32 .t.fn+W= wfn+1 4. (1-w) f n_w	
wi

(1_ \ A 4-	 + ...

-PtTfn+1 + (1-P0 fn

(J.3)

(J.4)

Equation (J.4) has first order accuracy as equation (J.2).

Consider the spatial (vertical) derivative on the righthand-side of equation (6.14). Time step

index (n+W) and horizontal spatial indices (ij) are omitted afterwards for convenience. ck.",

ck_ i are expanded from ck as:

a
c Al2 32 Ar1 3 a3c

Ck+1 =Ck+Ari-+---+ 	  +—
ail	 2! a1 2	 31 aii3

(J.5)

The derivative of c to n is obtained by:
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A ac + Al2 82 c_  ATI 3 a3 c +...ck--3. =c,k- ta 11
all	 2! a1 2	 3 ! arc

aC _  Ck1-1 -Ck-1 _ A112 03

ai	 2A1	 3! a1 3

Q2=  ck-i -Ck+ck-Fi _  2Al 2 04c +—

a12	 An2	 4! aril

(J.6)

(J.7)

(J.8)

Both equations (J.5) and (J.6) are second order accurate. Equations (J.4), (J.5) and (J.6)

constitute the original partial differential equation (6.14) and the truncation error. As At and An

tend to zero so does the truncation error. Thus, the finite difference equation (G.4) is consistent

with the original differential equation (6.14).

The application of the above procedure to the other two finite difference equations for the second

and third steps shows that they are also consistent with their respective differential equations.
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APPENDIX K. FINITE DIFFERENCE EQUATIONS FOR THE 2DV BOUNDARY LAYER

MODEL

The two governing horizontal momentum equations have been given in Chapter 7, these are:

auau	 au	 a	 au—=- -u wF— +p +F

at	 ax	 a1 	-r(e-F.T-)

ay ._ ay	 ay

at	 Li	 —swF73— P

+	
F ay,

	

11	 'Y	
al)

(7.14)

(7.15)

where x is the longitudinal cartesian coordinate, n is the vertical coordinated (=(z/d)-A , A is a

scale parameter which controls the relative grid size of the seabed grid and the water surface

grid); d is the water depth; u, v, w are WPA velocities in the x, y, and z directions,

respectively; Px is the pressure gradient due to wave and current In the x direction

(= au/at +1)); Pe,x , Pe,y are the steady pressure gradients in the x, y directions, respectively;

is the wave horizontal orbital velocity at the top of the wave boundary layer; and c z and 1 are

defined by:
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ez=i 2.F\I ( aarili ) 2 + (aariV ) 2

__I	 -1
/=icon" A V 1 -1 A

(7.16)

(7.17)

Since the solution of equation (7.15) (7.16) involves three co-ordinates (t, x, n), the equations

are solved in three-dimensions.

These equations are solved on a uniform rectangular transformed grid of dimensions Ax, An as

shown in Fig. 7.2. The horizontal and vertical grid sizes are calculated by:

11 bed-11 sur face
A iri - 	  ; A x=/,/ nink-1

(K.1)

where ni, nk are grid numbers in the x, and n directions, respectively; andtwe is the wave

length relative to a fixed frame. Two horizontal velocities are defmed at the same position on

a square grid side, and vertical velocities are defmed at another grid side, see Fig. 7.2.

The various terms in the equations (7.15) and (7.15) are thus discretized using an implicit,

space-centred fmite difference scheme as follows:

au _  UT ,+11c- —Uin,k
	 (K.2)

at	 A t
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(K.3)

k

„n
au	 n "i+1,k-Ui-1,k11

U TIC :=1-12'k 2 Ax
(K.4)

au nWF—ari
2A1

(K.Sal

1	 11'1 k+1-11i,k= WF2,k—Aii ( ez, j,k+Il Fi,k+.4  '
ATI

-e	 iF. 	 Lli, lc L 1- i , k-1 ) n+1
z, i, k- = 2 k--i•-z ' 2	 Al

1
+ (1-W) Fi k— (e . iF• 1, A TI	 z,2,k+i .7.,k+-

	 )n-€	 iF.2,k- ATI

where W is a weighting factor which controls the relative importance of the variable values at

the old and new time steps (0.5 � W 1.0), subscripts i, k are the grid numbers in the x, n

directions, respectively; The nonlinear advection terms are discretized by a time forward scheme

as:

where ai is the vertical velocity defined as:

1 ,=— W• +W•	 +W•	 +W•2,k	 2,k	 2+1,k	 2,k+14
(K.5b)

The terms in the y-directional momentum equation are discretized in a similar way.

Firstly, the x directional momentum equation (7.15) is thus transformed into the form:
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n+1 „ n au. k_
Li t 	a +Pc,.

_ (uin k Ui+1, k-Ui-1, k + ,77 F ui,k+i - lii, k_i ) n

2Ax	 '''' i, k k 2A1

	

1	 ui,k÷i-ui,k
	k Ari	 z, 2,+WF - (€ • k+ 1 Fk2 + 1	 A 12

n+1A ri
1

( 1 - W)F — (ek A ri	
k+71.1i,

A 1

(K.6)

114
—

/„.-Ili,k_i ) n

(K.7)

(K.8)

'	 2	 2	
Ali

2
e
z,i,k+-

F lkk+ 1
2 	 2

_
/	 =Kdirik+	 k+

A ri

1 -11 k+ 1 -77	
7 2

Fk=-- id	 'k
(K.9)

Equation (K.6) is then briefly expressed as:

„n+1	 n+1.L. TT	 n+1
k+1 =B1 , k

where (L,D,U,B)i,k are defined as:

(K.10)

1L	 e 1.Fk-	 k-

+ez
2	 2	 '

F )7

(K.11)

(K.12)

k= -F
k A,n 2 	z,

-Di	 ez,k	 i,k4-1- Fk+A t	 k A TI 2
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(K.15)

1 ,
Ul,j = — WFk_z k+ 117k+ 1A i 2	 , 2 2

J.,	 auBi k = 111 , k+	 +Pc
,	 at	 ,x

Ui+1,1c-lli-1,k -	 Vi, k+1 +Vi, k-1 ) n
- (Ua, k	 -Wi,i-F k2Ax	 2Ari

1	 u 4 fr+ , ..- Ui , k_i
+ ( 1 - W) ( Fk- (e . 1	A i z, a k+ F k+	 An

(K.13)

(K.14)

Ui
1F	 '	

1.1

At the upper and lower boundaries of the solution domain, it is necessary to include the model

boundary conditions.

At the upper boundary, a zero gradient of horizontal velocities is used. Thus:

)n

In other words:

	

1	 1D1,1 =-—=--- ; U., = ----	 B. =0

	

-1, 1 Ali	 2 ,	 2,1 (K.16)

At the bed boundary, a non-slip boundary condition is applied for the horizontal velocities as:

=0
	

(K.17)

Therefore, the diagonal values at the bed grid (nk) are not needed. The finite difference

equations for all vertical grid (k) for the calculation column (i) over a time step construct a (nk-
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1) by (nk-1) tridiagonal matrix.

1.11,1 x uo = B1,1

1.1,2 D1,2 U1,2 Bo

Li,3 D1,3 Ui,3 Bo

. . . .

. . . .

• • • •

L1o1 Dioik_i B.1,n1c-1

Tridiagonal matrix is solved by the Thomas algorithm, see Lapidus and Pinder(1982). The

calculation of the horizontal velocities repeats for all columns (2 � i � ni+1).

Secondly, the y directional velocities (v) are calculated in a similar way for all columns

(2 � i � ni+1), solving the following finite difference equation:
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ATI
V• — 11. •1,1	 / 2

—0 (K.19)

; Uni÷2,k=U2,k

V1, k=Vni+1, k ; Vni+2,k=V2,k
(K.21)

n+1Tr nVi , kv— i,k

A t	 c, y

— ( 1-ii ,k Vi ' k+l—Vi ' ic-1 —4,- . F Vi,k+ 1 —Vi,k-1) /1

	2 A x	 1,k k	 2A ri
1

	

+WF — (E. iF 1 Vi'k+i—Vi'k1, k+ — k+ _k A i

	

2	 2	 A ri

	

-E.	 .5,	 Vi‘k—Vi,k_i )n+i

	

a,	 A ri
V.	 —V•

+ (1 — W) Fk—Ari (Ei,k+ 1Fk+ 1 
1,k

2	 2	 A

(K.18)

with the top boundary condition as:

and the bed boundary condition as:

V =0i,nk (K.20)

Once the horizontal velocities are solved, the side boundary condition is applied, see Fig. K.1,

that is:

This enables the calculation of vertical velocities at all columns.

Thirdly, vertical velocities are calculated from the continuity equation (7.20), that is:
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au aw
ax+=0 (7.20)

The vertical velocity (w) can be obtained from a numerical integration starting from the seabed

level where w =0, that is:

U•k 2-1k
W•	 _A,	 2,,
2,k 2,k+1	 k	 A x

(K.22)
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APPENDIX L. EXAMPLE CALCULATION OF BED SHEAR STRESS, EDDY VISCOSITY,

AND HORIZONTAL VELOCITIES

Variable Value Remarks

d (m) 5.0 r10 cm

zo (cm) 1.0

H (m) 2.0

T (s) 7.0

1 0 1	 (m/s)
1.0

oc (0) 45

d=depth; zo=Nikuradse roughness/30; H=wave height; T=wave period; WI =depth-mean
current velocity; Oc =WPA current direction; r = ripple height; Ow =wave direction (=0).

Basic values are calculated from the given information.

fo = (0.4/1n(d/z0)-1)2 	0.005884

/P = f 101 2 = 0.005884

From the dispersion relation,

L = 45.6552

k = 0.1376

Uo, = 1.2069

A = 1.3446

Wave friction factor is obtained from equation (3.37):
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= 0.000684 exp(7.80 (A/z0)-°.106) = 0.07078

rb,w1 p= fw/2 U 0,2 = 0.05155

The non-dimensional groups (A/zo) and ( I 	 c irb,w) are:

A/zo = 134.46

/71, = 0.1141

1. Calculation of the bed shear stress

C4 values for a I	 c /Tb ov of 0.1141 are obtained from the values for F b ,,1 /7-b,„„ of 0.0625

and 0.125, for (A/z 0 =100,500), for (00 =0,90,180), see Figs. 7.33, 7.34.

C4 = 2.1285 for A/z 0 = 100, 00=0

C4 = 1.5723 for A/z0 = 100, 00=90

C4 = 1.7635 for A/z 0 = 100, 00=180

C4 = 2.9264 for A/z0.---500, 00=0

C4 = 1.7741 for A1z0 =500, 00=90

C4 = 1.9156 for A1z0 =500, 00=180

C4 values for A/zo of 134.46 are obtained by interpolation:

C4 = 2.1972 for 00=0
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C4 = 1.5897 for Oc=90

C4 = 1.7766 for Oc=180

C4 for Oc of 45 ° is calculated from equation (7.35):

C4 = 1/2 ((2.1972+1.7766)/2+1.5897)-(1.7766-2.1972)/2- cos 450

+ 1/2 ((2.1972+1.7766)/2-1.5897)cos 900

= 1.937

Bed shear stress is calculated as:

it.b,cml -C4 it'b' al -0.01140 (m2/s2)
p	 p

tb,c,x=1.;,c1c°sewc
Tb,c,y=lf b,,IsinOwc,

2. Calculation of the vertical viscosity profile

Coefficient C5 , C5 , and C6 for an (A/zo) of 134.46 are obtained by an interpolation as:

C5 = 0.2555

C6 = 6.0139000

C, = -1.4517

Firstly, eddy viscosity in the lower layer is calculated. C 8 is calculated from Figs. 7.33, 7.34

in a similar way to C4.

C8 = 1.507
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The eddy viscosity profile in the lower layer is then obtained by the following equation as:

€z,low = Azo/T C 8C5 z/zo exp(C6(z/z0 ) C.') )

= (1.3446-0.01/7.0) 1.507-0.2555 (z/0.01)

-exp(-0.009(z/0.01)"517)

Secondly, the eddy viscosity in the upper layer is calculated from the interpolated coefficient C9

in a similar way to C4.

C9 = 1.830

l'i:,,c1 dP, = C9	 _ 1.830-0.005884 = 0.01077
A

The eddy viscosity in the upper layer is given by:

= ic (dP,)" z(1-z/d)

= 0.4-0.01077" z(1-z/5.0)

At every vertical grid point, the final eddy viscosity is obtained by:

Ez = MaX( Ez,low 7 ez,up)

3. Calculation of the vertical velocity profile

For the lower layer, C10 is obtained by an interpolation as:

C 10 ;--- 0.4556
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The velocity profile in the lower layer is then:

17 ,
I C 1C 

0 bcl ° ln ( -L)
ic	 zo

1 (0.4556 . 0.005884)° .5 1n( 	 z )0.4	 0.01

For the upper layer, C11 is obtained by an interpolation as:

C11 = 2.451

The velocity profile in the upper layer is then:

ln ( z/eza)
laup1=101 ln ( d/eza)

ln(z/e .0 .02451) = 1 . 0
ln(d/e-0 .02451)

At every vertical grid point, the final horizontal velocity is obtained by:

I =max ( I	 ClupI)

Veering of the velocity vector over the depth is ignored. Therefore, the two components of the

horizontal velocity are:

u = lalcosec ; v=lizisinec
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5.1	 Schematics of the longshore current on a plane beach

(after Basco, 1982).
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Plate 1.1	 Chukpyon Western Breakwater.

Leic.v...v.umwl.,4

Plate 6.1	 Four-trap device used for measuring reference level suspended
sediment concentration.



Plate 6.2	 ARNHEM bed load sampler.

Plate 8.1	 RCM-51P and the frame used for measuring wave-induced currents.
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Plate 8.2a	 HR suspended sediment pump sampler used for measuring suspended
sediment concentration: intake pipe.

Plate 8.2b	 HR suspended sediment pump sampler used for measuring suspended
sediment concentration: on-board equipment (filter, discharge gauge).
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