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Abstract

The Generation, Segregation and Mobilisation of Granitic Melt in the Continental Crust

An understanding of the origin and evolution of granitic rocks is fundamental to a wider
understanding of the origin and evolution of the continental crust. Many granites originate by partial
melting of lower crustal rocks, but our understanding of the physical processes which lead to a
granitic melt fraction in the lower crust segregating from its protolith, mobilising to form a magma,
and ascending to the emplacment level in the upper crust are poorly understood. The process of melt
segregation is particularly poorly understood; moreover, the evidence presents a paradox: granitic
melt fractions correspond to only small degrees of partial melting of their source rocks, and appear to
segregate from partially molten rocks in which the contiguity of the solid matrix is maintained (i.e.
melt fractions are less than the Critical Melt Fraction (CMF», yet magma mobilisation occurs only if
the contiguity of the solid matrix breaks down (i.e. melt fractions are greater than the CMF).
Previous models of melt generation and segregation in the crust have failed to resolve this paradox.

A new, quantitative physical model is presented of phase change and phase transport in a
multicomponent material which is heated from below. Solid-liquid phase change leads to the
formation of a mushy, mixed phase region adjacent to the heat source; the liquid phase is buoyant and
interconnected along grain edges, and the solid phase may viscously deform in response to liquid
phase transport. This model represents the most general description of partial melting in the crust
following underplating or asthenospheric upwelling. The I-D results indicate that the spatial
distribution of the liquid volume fraction (porosity) within the mixed phase region depends upon the
relative transport rates of heat and liquid, and is governed by the magnitude of a dimensionless
parameter termed the effective thermal diffusivity (Kerr). Both the position of the solidus isotherm
(which defines the 'top' of the mixed phase region) and the buoyant liquid migrate upwards away
from the heat source, and in systems characterised by a wide range of values for Kerr, the liquid phase
migrates more quickly than the solidus isotherm and accumulates below it, which results in the
formation of a porosity wave, the amplitude of which increases with time until it exceeds the CMF
and a mobile slurry forms. Because the liquid in the slurry has thermodynamically equilibrated with
the solid phase at low temperatures near the top of the mixed phase region, its composition
corresponds to only a small degree of melting of the solid phase.

This general model is applied to the partial melting of fertile source rocks in the lower crust, and the
results indicate that granitic (sensu-lato) melt, the composition of which corresponds to only a small
degree of partial melting «CMF) of the source rock, may segregate and form a mobile magma;
moreover, the solid matrix of the source rock is not disrupted during segregation except in the
localised region of magma mobilisation. Thus is the paradox resolved. However, the results are
sensitive to the values of the dimensional variables which govern the magnitude of the dimensionless
parameter Kerr; in particular, the viscosities of the melt and partially molten rock matrix, the grain size
and the permeability constant. These variables are poorly constrained for crustal rocks; the limited
experimental and theoretical data available is used to estimate suitable values. Magma mobilisation is
likely in partial melt zones characterised by values of the variables in the mid-range of those
estimated, or in partial melt zones.where. for example, a large grain size is countered by small matrix
viscosities. For a basaltic protolith, mobilisation is predicted within -15.000 yrs. to -10 M.y .• and the
composition of the mobilised melt ranges from granodioritic - trondjhemitic. Until the values of the
governing variables are better constrained, it must suffice that the model predicts the segregation and
mobilisation of granitic (sensu-lato) melt within geologically reasonable timescales, and in agreement
with the geological and geochemical evidence.

A quantitative description of heat transport in the underlying heat source is included in the model,
and the results indicate that. in partial melt zones characterised by a wide range of values for 1Cetr.
basaltic underplating provides sufficient heat to generate mobile granitic magma in the overlying
source rock; for example. underplate thicknesses of 700m - 10km are required to generate mobile
granitic magma in a basaltic protolith. The granitic magma is likely to migrate laterally through the
source region and ascend to the emplacement level through a localised zone of dykes. If the dykes can
extract melt from high porosity zones before magma mobilisation, then different melt compositions
may be extracted from the same protolith, and the order of extraction is in agreement with the order of
intrusion of many granitic plutons and suites.



Faust:

Mephistopheles:

Then to the moment could I say:

Linger you now, you are so fair!

Now records of my earthly day

No flights of aeons can impair -

Foreknowledge comes, and fills me with such bliss,

I take my joy, my highest moment this.

A foolish word, bygone.

How so then, gone?

Gone, to sheer Nothing, past with null made one!

What matters creative endless toil,

When, at a snatch, oblivion ends the coil?
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Chapter 1: Introduction.

"We recognise such a close connection between the composition of the continental crust, especially

the upper crust, and granitoid rocks, that to explain one may take us a long way to explaining the

other." (Clarke, 1992, p. 8).

An understanding of the processes which lead to the formation of granitic' bodies is fundamental to a

wider understanding of the origin and evolution of the continental crust. Granitic plutonism is

intimately linked with the generation of continental crust. Throughout Earth history, from the

trondhjemite-tonalite-granodiorite batholiths which characterise the earliest Archaean continental

crust to the common Phanerozoic composite batholiths, granites are, and have been, the most

abundant plutonic rocks in the upper crust (Clarke, 1992). The geochemical differentiation of the

continental crust into a felsic upper and mafic lower crust observed today has evolved as a result of

granitic magmatism through time (Fyfe, 1973; Leake, 1990; Vielzuf et al., 1990).

During the first half of this century, the debate on the formation of granitic rocks was centred on

whether they were metasomatic or magmatic in origin (Bowen, 1948; Read, 1948, 1949). Following

the publication of papers by Bowen and Tuttle (1950) and Tuttle and Bowen (1958), most geologists

today would agree that the debate was won by the "magmatists", whilst acknowledging that

metasomatic granitisation can explain the formation of some granites (Atherton, 1993). The

recognition that most granitic bodies are magmatic in origin generated a host of new questions

concerning the physical and chemical processes which are responsible for their formation, many of

which remain unanswered.

The intrusive nature of most granites is evidence that they crystallised from magma which was mobile

and which had migrated from its site of origin. This observation leads to the sub-division of the

formation of a granitic body into three separate, but interrelated processes (e.g. Miller et al., 1988;

Atherton, 1993; Brown, 1994):

i) granitic melt production at depth (the source)

ii) magma' migration through the crust (the ascent)

iii) magma intrusion, cooling, and crystallisation (the emplacement)

I unless otherwise specified. 'granite' and 'granitic' sensu lato are used in preference to 'granitoid' to describe
granites. granodiorites. tonalites, and trondhjemites.
2 throughout this dissertation, melt refers to crystal free liquid, magma refers to melt plus suspended crystals,
whilst mush refers to a continuous. interconnected solid matrix containing interstitial liquid.

1



Chapter 1: Introduction

Geochemical evidence indicates that many granites are produced, migrate, and are emplaced entirely

within the continental crust (figure 1.1). Granitic melt is produced at depth by partial melting of

crustal rocks, and then migrates upwards through the crust to higher structural levels where it is

intruded and cools to form a pluton (e.g. Chappell, 1984; D'Lemos et al., 1992; Atherton and Petford,

1993; Brown, 1994). However, although geochemical evidence confirms that many high level

granitic bodies originated as partial melts within the crust, the physical processes which lead to a

partial melt in the lower crust eventually forming a pluton in the upper crust are poorly understood.

Source, ascent, and emplacement processes have each been studied in isolation, but no convincing

unified physical model has yet been proposed.

Our understanding of source region processes is particularly poor, because the lower crustal zones in

which partial melting occurs to produce large quantities of granitic melt are rarely exposed, and as

yet, no convincing, quantitative models of source region processes have been developed. Yet source

region processes are important because they exert a fundamental control on the composition of the

magma which reaches the emplacement level (Bergantz and Dawes, 1994; Brown, 1994); for

example, chemical heterogeneities within and between genetically related granitic bodies can be

inherited from the source region (e.g. Tepper et al., 1993; Petford et al., 1996). To understand how

this petrological diversity is produced, a better understanding of the physical processes which operate

in the source region is required. How is partial melting initiated? How efficiently can the granitic

melt fraction separate from the unmelted protolith? By what physical mechanism does this separation

occur? Can the separation process generate petrological diversity? How long must partial melting be

sustained to produce batholithic quantities of granite? Can partial melting be sustained for this length

of time?

The objective of this dissertation is to develop a new, quantitative physical model of a crustal granite

source region, with the aim of answering, or at least constraining the answer to, some of these key

questions concerning granite petrogenesis. It is important to place this new work in the context of a

changing outlook on the rheology of granitic magmas. The traditional view is that they are crystal

laden and behave as non-Newtonian fluids with high viscosities (_lOIS - 1019 Pa s) (e.g. Ramberg,

1970; Bateman, 1984; Kukowski and Neugebauer, 1990). But recent studies have challenged this

orthodoxy, arguing that hot, granitic magmas which contain volatiles and bear a relatively low

fraction of crystals, behave as Newtonian fluids with much lower viscosities (_104 - 107 Pa s) (Kerr

and Lister, 1991; Petford et al., 1993; Petford, 1995; Wolf and Wyllie, 1991, 1995). A dramatic

reduction in the proposed viscosity of granitic magmas implies an increase in the rate of fluid-

dynamical processes associated with granitic magmatism. Is granitic magmatism dominated by slow

processes, hindered by high magma viscosity, or by rapid processes, facilitated by low magma

viscosity?

2
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Chapter 1: Introduction

The contrast between old and new doctrines is most clearly manifested in the debate between those

who believe that granitic magmas ascend as diapiric bodies, and those who believe that granitic

magmas ascend through dykes, faults, or fractures in a manner analogous to that of basaltic magmas.

Diapirism is the "upwelling of relatively mobile rock material through, or into, overlying rocks" (van

den Eeckout et al., 1986), and is a slow process limited by the high viscosity of the surrounding crust

(_1015
- 1025 Pa s) (e.g. Marsh, 1982; Weinberg and Podladchikov, 1994). In contrast, magma ascent

via dykes is a rapid process limited only by the viscosity of the magma (Clemens and Mawer, 1992;

Petford et al., 1993; Petford et al., 1994). Whether granitic magmas ascend as diapirs or through

dykes may be dictated by processes in the source region, such as the rate of melting, the degree of

melting, and the ability of the melt to migrate. A better understanding of source region processes may

therefore help constrain possible ascent mechanisms, and should make an important contribution to

the current debate on granitic magma dynamics.

3



Chapter 2: Melt generation and mobilisation in the
continental crust.

"Despite the undoubted involvement of the mantle, there is now good isotopic and other evidence

that usually the continental crust is at least an important contributor to the material which

constitutes most granite batholiths 0" (Leake, 1990, p. 580)

201 Introduction

The aim of this chapter is to briefly review the processes which lead to the production of anatectic

granitic melt, which is mobile and so is able to migrate upwards through the crust from its source

region in the mid- to lower crust, to the emplacement level in the upper crust. The first step must be

the generation of granitic melt by partial melting; the importance of dehydration melting reactions,

and the role of basaltic intra/underplating in this process will be highlighted. The granitic melt must

then become mobilised; the importance of melt segregation in this process will be emphasised. Melt

segregation is defined as "the separation of the melt fraction from its restite" (Sawyer, 1994). Unless

melt segregation is completely effective, the mobilised melt will contain at least a small proportion of

solid, restitic material. Following the definitions of melt and magma presented in chapter I, the

mobilised melt will be termed magma, although it is accepted that, depending upon the efficacy of the

segregation process, the magma may contain a negligibly small proportion of restite.

202 Melt generation

To partially melt a rock, either a flux such as water must be added, the rock must decompress

adiabatically, or heat must be supplied (e.g. Wilson, 1989). Crustal rocks which can produce partial

melts of granitic composition are termedfertile (Brown, 1994; Vielzuf et al., 1990), and include many

common compositions ranging from meta-sediments to hydrated basalt (e.g. Vielzuf and Holloway,

1988; Rushmer, 1991). Regions which have already been partially melted and differentiated cannot

produce further granitic melt, and are termed sterile (Brown, 1994).

2.2.1 Flux melting

Flux melting may occur when a volatile rich fluid is introduced to the protolith which depresses its

solidus temperature. It has been invoked as the cause of granitic melt generation in some cases. For

example, small volumes of granitic melt in the rnid- to upper crust are believed to be generated by flux

melting of sediments following the introduction of water (e.g. Strong and Hanmer, 1981; Wickham,

1987a). However, granitic melt produced by melting in the presence of excess water is cool and

4



Chapter 2: Melt generation and mobilisation

water-saturated; consequently, even if the melt becomes mobilised as a magma, the magma is

effectively immobile because on ascent and decompression the water exsolves, and the magma rapidly

crosses its solidus and crystallises. Mobile granitic magmas are water-undersaturated, and must

originally form by dehydration melting in a water-undersaturated or water-absent environment (e.g.

Tuttle and Bowen, 1958; Clemens 1984; Clemens and Vielzuf, 1987; Whitney, 1988; Tepper et al.,

1993, Brown, 1994). Numerous melting experiments have demonstrated that melts of granitic

composition are produced by dehydration melting of common crustal rock types (e.g. Wyllie, 1977;

LeBreton and Thompson, 1988; Vielzuf and Holloway, 1988; Beard and Lofgren, 1991; Patino Douce

and Johnston, 1991; Rapp et al. 1991; Rushmer, 1991; Wolf and Wyllie, 1994; Rapp and Watson,

1995); moreover, high pressure melting experiments under water-saturated conditions, used to model

melting in the mid- to lower crust, have produced melt compositions unlike those of most silicic rocks

(Beard and Lofgren 1989, 1991).

2.2.2 Pressure release melting

Pressure release melting may occur when rocks adiabatically decompress by rapidly migrating

upwards without cooling. Although adiabatic decompression melting of upwelling mantle rocks is a

primary source of basaltic magmatism (Wilson, 1989), decompression melting in the crust would

require extremely rapid rates of uplift, and has been suggested as a potential mechanism for the

generation of granitic melt only in conjunction with crustal heating (e.g. Thompson, 1982, 1990;

Brown, 1983, 1994; Jones and Brown, 1990).

2.2.3 Melting due to crustal heating

In general, to generate significant amounts of mobile granitic melt, heat must be supplied to the mid-

to lower crust (e.g. Clemens and Vielzuf, 1987; Huppert and Sparks, 1988; Clemens, 1990; Brown,

1994; Bergantz and Dawes, 1994). This is especially true of dehydration melting, which occurs at

higher temperatures than water-saturated melting. The available heat sources for crustal melting are

heat transferred from the mantle, and internal heat production within the crust due to radioactive

decay. Heat must be transferred from the mantle to the crust by some form of advection, because the

lower crust is not normally partially molten during steady state conductive heat transfer.

2.2.3.1 Intra! underplating

Heat may be advected from the mantle into the crust via the intrusion of mantle derived basalt

(Huppert and Sparks, 1988; Bergantz and Dawes, 1994). The interaction of mantle derived basalt

with the crust has been described as magmatic intra/underplating, although the term underplating has

also been used to describe a variety of other lower crustal processes. I follow Bergantz and Dawes

(1994) in using the terms intra- and underplating to describe only the accumulation of mantle derived

basalt in the mid- to lower crust. The importance of underplating as a mechanism for crustal growth

5



Chapter 2:Melt generation and mobilisation

has been confirmed by both geophysical and geochemical evidence (e.g. Drummond and Collins,

1986; Klemperer et al., 1986; Feeley and Grunder, 1991; Nelson, 1991; Rudnick, 1992; Tepper et al.

1993; Atherton and Petford, 1993; Petford and Atherton, 1996; Petford et al., 1996); moreover, some

exposures of exhumed deep crust, such as the Ivrea-Verbano zone in northern Italy, provide direct

evidence of underplating (Voschage et al., 1990; Zingg, 1990; Handy and Zingg, 1991). Numerous

quantitative models have demonstrated that underplating may supply sufficient heat to generate

significant quantities of granitic partial melt from fertile crustal rocks (Hodge, 1974; Huppert and

Sparks, 1988; Bergantz, 1989; Fountain et al., 1989; Bergantz and Dawes, 1994).

Underplating is an important mechanism in granitic magmatism, because it can act both as a heat

source to drive melting, and as a material source of granitic partial melt. Repeated underplating leads

to the production of a young, mafic lower crust, which may be partially re-melted by subsequent

underplating (Bergantz and Dawes, 1994). Newly underplated basalt concomitant with crustal

thickening has been invoked as the source rock of the Cordillera Blanca batholith in the Peruvian part

of the Andes (Atherton and Petford, 1993; Petford and Atherton, 1996; Petford et al., 1996), a

proposal supported by the results of experimental work which has demonstrated that granitic melt can

be produced during the dehydration melting of hydrated basalt (e.g. Beard and Lofgren, 1989, 1991;

Rushmer, 1991; Wolf and Wyllie, 1994; Rapp and Watson, 1995).

2.2.3.2 Asthenospheric upwelling

Heat may be advected to the base of the crust if hot, buoyantly upwelling asthenosphere replaces

colder mantle lithosphere. Several workers have proposed that cooling mantle lithosphere can

become gravitationally unstable, detach from the overlying crust, and fall away, to be replaced by

asthenospheric material; a process described as delamination (e.g. Bird, 1979; Kay and Mahlburg-

Kay, 1991; Nelson, 1991). Alternatively, during crustal thickening, cold mantle lithosphere may be

pushed downwards into the convecting asthenosphere, with the same result (Houseman et al., 1981).

In continent-continent collision zones, buoyancy forces may result in the subducting plate undergoing

rifting and eventually complete break-off, allowing asthenospheric material to rise and fill the gap

(Davies and von Blanckenburg, 1995). In all cases, hot asthenospheric material is brought into close

proximity with the lower crust, leading to rapid heating of the crust which may be accompanied by

intraplating of basalt derived from the upwelling asthenosphere (Kay and Mahlburg-Kay, 1991;

Nelson, 1991). Granitic melt may be produced if the lower crust is fertile (e.g. Houseman et al.,

1981), although no quantitative models of granitic melt production as a result of this process have

been developed. In support of these models, Seber et al. (1996) have presented recent geophysical

evidence which, in conjunction with observed surface volcanism and high surface heat flow, is

consistent with asthenospheric upwelling in the western Mediterranean. They note that melting of the

lower crust would be expected.

6



Chapter 2: Melt generation and mobilisation

The viability of delamination due to gravitational instability of the mantle lithosphere alone has been

questioned by Ellis (1992). He argues that compositional differences between depleted mantle

lithosphere and asthenosphere, neglected in earlier physical models of delamination, cause even cold

mantle lithosphere to remain less dense than the underlying asthenosphere. However, he accepts that

detachment of the mantle lithosphere may occur if the lithosphere is forced downwards into the

asthenosphere as a result of crustal shortening or subduction, and that asthenospheric upwelling will

follow detachment.

2.2.3.3 Crustal thickeninglthinning

Heat may be advected with the crust during crustal thickening or thinning. Several workers have

developed quantitative models of the thermal regime in crust which is thickened by collision or

overthrusting, or thinned by extension, with specific reference to crustal anatexis and the production

of granitic melt (England and Thompson, 1984; Zen, 1988, 1995; Patino Douce et al., 1990). These

models are not applicable to crust which is actively being, or has recently undergone,

intra/underplating or delamination, because in developing them it is assumed that the only available

heat sources are conductive transfer to the base of the crust from the upper mantle, and radioactive

decay within the crust. Generally, the results suggest that temperatures high enough to cause

dehydration melting of fertile crustal rocks may be achieved by crustal thickening or thinning; in

particular, Patino Douce et al. (1990) suggest that dehydration melting of fertile meta-sediments is

possible in the mid-crust, and predict the formation of significant quantities of granitic melt. In

contrast, England and Thompson (1984), and Zen (1988), predict small degrees of dehydration

melting restricted to the deep crust. Crustal thickening/thinning is unlikely to generate significant

quantities of melt from a basic igneous protolith, because of the high solidus temperatures of basic

igneous rocks (Patino Douce et al., 1990).

2.2.4 Summary

Large volumes of mobile granitic melt are generated in the crust by dehydration melting of fertile rock

under fluid-absent or fluid-undersaturated conditions. Intra/underplating of mantle derived basaltic

magma can provide sufficient heat to generate significant quantities of granitic melt, and may also act

as a material source of melt. Asthenospheric upwelling may cause partial melting, but no quantitative

models of the volume or composition of melt produced have yet been developed; crustal

thickening/thinning may cause partial melting, but models predict that only small volumes of melt

will be produced unless a suitable meta-sedimentary protolith is available in the mid crust.

Intra/underplating is likely to be the most significant heat source for the generation of granitic melts,

especially from basic igneous protoliths in deep crustal environments.
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Chapter 2: Melt generation and mobilisation

2.3 Magma mobilisation

2.3.1 Magma mobilisation and the Critical Melt Fraction

When a rock partially melts, the unmelted solid fraction maintains a continuous, interconnected

crystalline matrix until the melt volume fraction reaches a certain value, usually termed the Critical

Melt Fraction (CMF) (Arzi, 1978; van der Molen and Paterson, 1979). A solid matrix containing

interstitial fluid is termed a mush. When the melt fraction reaches the CMF, the solid matrix

disaggregates, resulting in the formation of a mobile magma. The concept of the CMF was developed

as a result of investigations into the rheological behaviour of partially molten rocks, and is strictly

defined as the melt fraction at which the flow behaviour of a partially molten rock changes between

"flow as a granular mass [low melt fraction] and flow as a dense suspension [high melt fraction]" (van

der Molen and Paterson, 1979,p.3(0). It is related to the concept of contiguity, which is a measure of

solid grain-grain contact and originated in the metallurgical literature. The contiguity of a mush

depends upon the liquid volume fraction, the microscopic distribution of liquid throughout the mush,

and the solid grain size distribution, and is used in metallurgy to estimate the liquid volume fraction

at which a mush will disaggregate. However, the value of the CMF for a particular geological mush

may depend not only upon grain contiguity, but also factors such as the rate of externally imposed

deformation. Experimentally and theoretically derived estimates of the CMF for a variety of common

lower crustal rock types range from 0.2-0.70 (e.g. Arzi, 1978; van der Molen and Paterson, 1979;

Marsh, 1981;Cheadle, 1989; Lejeune and Richet, 1995; Philpotts and Carroll, 1996).

2.3.2 The importance of melt segregation

To form a mobile granitic magma, a granitic partial melt fraction must be able to segregate to some

extent from its restite. Several workers have proposed that melt segregation occurs after magma

mobilisation; a process termed restite unmixing. They argue that partial melting of the protolith

proceeds until the melt fraction exceeds the CMF, in which case both melt and restite become

mobilised en masse and migrate upwards through the crust. The bulk composition of the buoyantly

ascending magma is initially unchanged from that of the original protolith, but partial or complete

segregation of the melt from the restite during ascent results in the formation of a granitic magma

(e.g. White and Chappell, 1977, 1990; Chappell, 1984; Chappell et al., 1987). However, abundant

laboratory and field evidence indicates that granitic partial melt must usually segregate in the source

region before magma mobilisation, from partially molten rock in which the solid fraction maintains

an interconnected matrix (Wickham, 1987b; Brown, 1994; Sawyer, 1994). For example,

experimental work on the melting relations of fertile lower crustal rocks, ranging in composition from

meta-sedimentary to basaltic, suggests that partial melts of granitic composition represent small

degrees of partial melting, which are less than the CMF (table 2.1). Moreover, many exposed lower
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Reference ProtoIith Melt compositions Degree of melting
obtained required

Beard and Lofgren, Basaltic and Trondhjemitic - tonalitic - 10-40% (0.1-0.4).
1991. Andesitic granodioritic.

Greenstones and
AmphiboIites.

Rapp and Watson, Metabasalt. High K20 granitic. -5% (0.05).
1995. Trondhjernitic. -5-10% (0.05-0.1).

Tonalitic-Granodioritic. 20-40% (0.2-0.4).

Vielzuf and Holloway, Meta-pelite. "S- Type granitic." -40% (0.4).
1988.

Rushmer, 1991. Amphibolite. Tonalitic. -30% (0.3).

Table 2.1. A summary of the results of melting experiments on naturally occuring rock types. In all
cases melting occurs under fluid absent or fluid undersaturated conditions. "Degree of melting
required" refers to the modal quantity of glass recorded after rapidly cooling the partially melted rock;
expressed as a percentage and as a fraction.
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crustal granulite terrains, such as the Ivrea-Verbano zone, exhibit geochemical and mineralogical

characteristics which suggest they are residues left after the in-situ extraction of a granitic partial melt

fraction (e.g. Fyfe, 1973; Clifford et al., 1981; Clemens, 1989, 1990; Pin, 1990;Vielzuf et al., 1990;

Rudnick, 1992). Of these, some retain mesoscopic layering structures which indicate that the solid

matrix was not disrupted during segregation of the melt (Clemens, 1989).

The evidence that granitic melt segregation and mobilisation occurs in the source region is consistent

with the evidence that granitic magmatism has led to the differentiation of the continental crust into a

felsic upper crust and a restitic, mafic lower crust (Christensen and Mooney, 1995). Indeed, without

an efficient mechanism of granitic melt segregation and mobilisation at lower crustal levels, which

has operated consistently throughout Earth history, it is difficult to envisage how such differentiation

could have come about.

2.3.3 Minimum requirements for melt segregation

Melt may segregate from a partially molten rock matrix only if the matrix is permeable, and a

pressure gradient is present to drive melt migration relative to the matrix. The permeability of a

partially molten rock depends upon the microscopic distribution of the melt, which in tum depends

upon the pore space morphology, and has been investigated both theoretically and experimentally.

Theoretical studies have successfully determined the pore space morphology in an equigranular,

monominerallic mush of isotropic grains, which has attained thermodynamic and textural equilibrium

(Beere, 1975; von Bargen and Waff, 1986; Cheadle, 1989). In this ideal mush, the pore space

morphology is governed only by the liquid-solid and solid-solid interfacial energies, and liquid

interconnectivity is governed by the magnitude of the dihedral angle, which is defined as 'the angle

formed between the two walls of a pore at a solid-solid-fluid junction' (Smith, 1948, 1964; Bulau et

al., 1979). For dihedral angles between 0° and 60°, the liquid is interconnected along grain edges

even for very small liquid fractions «0.01), so the mush is permeable (von Bargen and Waff, 1986;

Cheadle, 1989). Partial melting experiments on fine grained powder compacts of silicate rocks have

revealed equilibrium melt distributions in agreement with those predicted by theory (e.g. Waff and

Bulau, 1979; Jurewicz and Watson, 1984, 1985; von Bargen and Waff, 1988; Laporte, 1994);

moreover, measured values of the dihedral angle range between 30° and 60° (Cheadle, 1989, and

references therein), a result which has been used as evidence that a partially molten rock matrix is

likely to be permeable if local equilibrium is maintained during melting and melt segregation.

However, the crystalline anisotropy of the grains in partially molten rocks, and the polymineralic

nature of the matrix, may playa more important role than the magnitude of the dihedral angle in

dictating equilibrium melt interconnectivity (Waff and Faul, 1992). Moreover, even if local

equilibrium is not achieved, the melt may still be interconnected. In an experimental study of a

partially molten amphibolite, Wolf and Wyllie (1991) found that, despite the failure to achieve an
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equilibrium melt distribution, melt interconnectivity along grain edges was achieved for melt fractions

of <0.02 and above. They suggested that the melt distribution was dictated predominantly by the

morphologies and distribution of hornblende and plagioclase crystals.

Although the majority of models of melt segregation in the continental crust have assumed that the

partially molten rock matrix is permeable at the grain edge scale, the origin of the pressure gradient

invoked to drive melt segregation has differed. Models based on theoretical studies of melt

segregation in the mantle have assumed that the pressure gradient is due to the buoyancy of the melt;

models based on field studies of exposed crustal terrains have assumed that the pressure gradient

results from the deformation of an anisotropic protolith (Brown, 1994).

2.3.4 Previous models of melt segregation in the continental crust

The paradox that models of melt segregation must resolve, is that the available evidence suggests that

granitic melts correspond to small degrees of melting, and are extracted from partially molten rocks in

which the solid fraction maintains an interconnected matrix (Le. melt fractions are less than the

CMF), yet a mobile magma is produced only if the connectivity of the matrix breaks down (i.e. melt

fractions are greater than the CMF). How then does a small, granitic partial melt fraction become

mobilised? The existing models of melt segregation in the continental crust will be reviewed, and

their failure to resolve this paradox highlighted.

2.3.4.1 Buoyancy driven melt segregation

Several workers have presented the equations governing conservation of heat, mass, and momentum,

which are required to quantitatively describe buoyancydriven melt segregation from a permeable rock

matrix (McKenzie, 1984; Scott and Stevenson, 1984, 1986). The equations are a macroscopic

continuum approximation of the system, valid for lengthscales which are much larger than the

characteristic spacing of the liquid channels, and smaller than any characteristic variation in porosity

(Speigelman, 1993). They are a special case of the general equations governing liquid migration

through a permeable mush, which are well established in the engineering and metallurgical literature

(e.g. Hills et al., 1983; Bennon and Incropera, 1987a, 1987b; Beckerman and Viskanta, 1988).

However, models developed in the engineering and metallurgy literature are not directly applicable to

geological systems, because they assume the matrix is rigid. A partially molten rock matrix is not

rigid, because melt enhanced diffusional creep processes provide a mechanism for changing the

morphology of the solid matrix, so that on a macroscopic scale the matrix may viscously deform in

response to melt transport (e.g. Pharr and Ashby, 1983; Cooper and Kohlstedt, 1984, 1986; Hollister

and Crawford, 1986; Karato et al., 1986; Dell' Angelo et al., 1987, Dell' Angelo and Tullis, 1988;

Wheeler, 1992; Kohlstedt and Chopra, 1994). Melt migration along grain edges, accompanied by

matrix deformation, is often termed compaction. As melt migrates out of a region, the solid matrix

10



Chapter 2: Melt generation and mobilisation

viscously deforms and compacts to occupy the space previously occupied by melt; conversely, if melt

migrates into a region the matrix dilates to accommodate it.

The equations of McKenzie (1984), and Scott and Stevenson (1984, 1986), have been used to develop

numerous quantitative models of melt segregation in the mantle (e.g. Scott and Stevenson, 1986; Ribe

and Smooke, 1987: Spiegelman and McKenzie, 1987; Wiggins and Spiegelman, 1995); in contrast,

only a simplified model examined byMcKenzie (1984), and Richter and McKenzie (1984), has been

applied to the crust. They investigated a subset of the equations governing compaction, which

describe the behaviour of a deformable, porous, permeable mush of thickness h, with initially uniform

liquid volume fraction <l> (the porosity), when placed on an impermeable surface. Liquid and matrix

are individually conserved; hence, as Richter and McKenzie (1984) point out, this is not, strictly

speaking, a model of melt segregation. The buoyant liquid migrates upwards through the permeable

matrix, and is expelled from the top, whilst the matrix compacts within a boundary layer at the base

(figure 2.1). The fundamental time and length scales of this process are the compaction length 5:

(2.1),

and the characteristic compaction time required to reduce the amount of liquid in the deformable

mush by a factor e:

(2.2),

(see table 2.2 for a list of the terms used). The compaction length is obtained by solving the

governing equations analytically, and describes the initial thickness of the compacting layer

(McKenzie 1984, 1985, 1987; Richter and McKenzie, 1984). The characteristic compaction time,

valid when h»5, is a simplification of an analytic expression which agrees well with numerical

results (Richter and McKenzie, 1984). These equations have been used to assess the viability of

buoyancy driven compaction as a segregation mechanism in the crust (Wickham, 1987b; Wolf and

WylIie, 1991, 1994; Petford, 1995). The common approach has been to equate the initial liquid

volume fraction ., with the melt content of the source region; for a melt of granitic composition, • -

0.05 - 0.4 (table 2.1). The compaction length (a) is then used to estimate the maximum thickness of a

partial melt zone from which melt is likely to segregate by compaction, whilst the characteristic

compaction time (th) is used to estimate the time required for melt to segregate from a partial melt

zone of thickness h. Figure 2.2 shows the compaction length as a function of initial liquid fraction for

a typical granitic melt-restite system. For liquid viscosities> 104 Pa s, the compaction length has a

maximum value of -220m, which is at least an order of magnitude smaller than a partial melt zone

capable of generating batholithic quantities of granitic magma. Figure 2.3 shows the characteristic

compaction time as function of initial liquid fraction. For liquid viscosities> 104 Pa s, the estimated
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Symbol Description Units

Time. s

h Layer thickness. m

o Compaction length: the thickness of the compacting boundary layer m
soon after the onset of compaction (t « I).

K Initial (uniform) permeability of material before onset of m2

compaction (t = O).

I;. Bulk viscosity of the deformable solid matrix. Pa s

u, Shear viscosity of the deformable solid matrix. Pa s

III Shear viscosity of the liquid. Pa s

th Characteristic compaction time: the time required to reduce the s
total liquid content of the layer from h~ to h~e.

~ Initial (uniform) liquid content of material before the onset of dimensionless
compaction (t = O),expressed as a liquid volume fraction.

p, - PI Density contrast between melt and matrix. kg m"

g Acceleration due to gravity. rns"

Table 2.2. Nomenclature for the buoyancy driven compaction model (after McKenzie, 1984, 1985;
Richter and McKenzie, 1984).
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time for segregation is >10 m.y., and ranges up to »1000 m.y. for liquid viscosities >106 Pa s. In

contrast, quantitative models of crustal melting, as a result of both intra/underplating and crustal

thickening/thinning (§2.2.3), predict that the maximum duration of a crustal melting event is

<20-30 m.y. From this evidence, both Wickham (l987b) and Petford (1995) conclude that, for typical

granitic melt viscosities (~ - 104_107 Pa s), the melt will freeze before it can segregate from the source

rock, and that, except for high degrees of partial melting, buoyancy driven compaction alone is not a

viable segregation mechanism in the crust except over short (cm-m) lengthscales. The conclusions of

Wolf and Wyllie (1991, 1994) are generally in agreement, although they suggest that segregation by

compaction may occur for particularly low melt viscosities (<104 Pa s).

Several workers have proposed that buoyancy driven melt segregation may operate efficiently in the

crust if a pervasive network of interconnected fractures is present in the partially molten protolith

(Clemens and Mawer, 1992; Petford, 1995). A fracture network provides a high permeability network

through which melt may rapidly migrate; melt is assumed to flow along grain edges only into the

nearest fracture. This is a potential segregation mechanism originally suggested by Sleep (1988) for

melt segregation in the mantle beneath mid-ocean ridges. However, he did not present a complete

quantitative description of a fractured partial melt zone, and his approach cannot be directly applied

to the crust, because the deviatoric stress field beneath a mid-ocean ridge differs from that in the crust.

As yet, only qualitative or semi-quantitative models of melt migration through a fracture network

have been presented for crustal melt zones. The detailed dynamics of melt flow along grain edges,

fracture nucleation and growth, and melt flow through fractures, and the Interplay of pressure

gradients as the system evolves through time, have not been explicitly considered. Moreover, the

formation a magma which can migrate away from the source region, and the composition of the

magma, have also not been explicitly considered. Buoyancy driven melt segregation through fractures

may be an effective mechanism in the continental crust, but the evidence as yet is inconclusive.

2.3.4.2 Migmatites and deformation enhanced melt segregation

An alternative approach to the problem of granitic melt segregation is based on the study of

migmatites. Read (1957) was amongst the first to propose that high grade migmatite terrains

represent the "birth zones of granite", and migmatites have the advantage of being exposed for field

study. Several workers (e.g. Sawyer, 1991, 1994; Brown, 1994; Brown et al., 1995) have proposed

models of melt segregation based on studies of migmatites, which invoke deformation rather than

buoyancy as the dominant driving force for melt migration. Melt is assumed to flow along grain

edges, collecting in dilatant sites such as shear bands, tension gashes, and boudins. However, several

workers have suggested that studies of migmatites do not lead to a greater understanding of the

processes which lead to the formation of a mobile granitic magma, because migmatites represent

'failed' granites. They argue that migmatites are produced when the granitic melt remains trapped in
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the source region as leucosome, rather than escaping to higher crustal levels (e.g. White and

Chappell, 1990;Clemens and Mawer, 1992).

2.3.4 Summary

When a rock partially melts, the solid fraction maintains an interconnected crystalline matrix until the

melt volume fraction reaches the Critical Melt Fraction (CMF), which denotes the melt fraction at

which the solid matrix disaggregates, and a mobile magma forms. In order to form a granitic magma,

a granitic partial melt fraction must segregate to some extent from its restite; field and experimental

evidence indicates that granitic melt must usually segregate in the source region before magma

mobilisation, from partially molten rock in which the solid fraction maintains an interconnected

matrix. Models of granitic melt segregation and mobilisation must therefore resolve the paradox that

segregation appears to occur at melt fractions which are less than the CMF, yet mobilisation can occur

only at melt fractions which are greater than the CMF. How does a small, granitic partial melt

fraction form a mobile magma? Previous models of melt segregation in the continental crust have

failed to resolve the paradox; moreover, they have failed to answer the questions posed in Chapter 1.

2.4 The need for a quantitative, coupled model of melt generation and

segregation in the continental crust

Most previous models of melt generation and segregation in the continental crust have treated them as

separate processes. Models of melt generation consider the thermal conditions required to produce

granitic melt, and calculate the static volumes of melt produced if no melt migration occurs (e.g.

Clemens and Vielzuf, 1987; Bergantz, 1989; Patifio Douce et al., 1990). Conversely, models of melt

segregation assume a pre-existing melt distribution, and then model how this melt migrates or

becomes mobilised (e.g. Richter and McKenzie, 1984; McKenzie, 1985). Often the chosen melt

distributions are unrealistic. For instance, use of equations (2.1) and (2.2) to evaluate compaction in

the crust assumes the entire source region is melted uniformly and simultaneously, with no movement

of melt during melting, yet thermal modelling indicates that melt distributions will not be uniform

(e.g. Yoder, 1990; Bergantz and Dawes 1994). Melt generation and segregation in the continental

crust are complementary, coupled processes which occur simultaneously, and a new physical model is

required which is capable of describing them quantitatively as such. Moreover; the model must be

able to produce results which answer, or at least constrain the answers to, the questions posed in

chapter I.
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Chapter 3: A general continuum model for the transport

of heat, mass, and momentum in a deformable,
multicomponent mush undergoing solid-liquid phase

change.

"A central question is, how easily can liquid separate out from crystal mush?"

(Pitcher, 1993, p, 104)

3.1 Introduction

Most silicate rock types are complex, non-eutectic, multicomponent substances which undergo solid-

liquid phase' change over a temperature and pressure range, leading to the formation of a mixed

phase region, such as a partial melt zone, in which both solid and liquid phases coexist. If the phases

are mobile, then during phase change they may migrate relative to one another, resulting in their

partial or complete separation; this occurs when melt segregates from a melting rock, or crystals

separate from a solidifying magma. These coupled, multicomponent, phase change and phase

transport processes are of fundamental importance in the Earth sciences, because they are responsible

for the origin and chemical diversity of all the igneous rocks.

Interest in binary and multicomponent phase change processes spans a range of scientific and

engineering disciplines outside of the Earth sciences, including metallurgy and materials science, and

has motivated the development of an increasing number of quantitative transport models (e.g. Loper

and Roberts, 1978; Hills et al., 1983; Bennon and Incropera, 1987a, 1987b; Beckerman and Viskanta,

1988; Hills and Roberts, 1988). Most of these concern binary phase change systems such as metallic

alloys, and have been applied to solidification processes such as casting and welding (e.g. Clyne,

1982; Viskanta, 1988). In contrast. few quantitative coupled models of phase transport during

multicomponent melting have been developed. Those which are available in the engineering

literature cannot be directly applied to geological systems, because of differences in the initial and

boundary conditions of the mixed phase region (Bergantz, 1992), and because they assume that the

solid matrix forms a rigid mush. In a partially molten rock. the solid matrix does not form a rigid

mush; liquid enhanced creep processes provide a mechanism for changing the morphology of the solid

matrix at the microscopic scale, which means that the solid matrix may viscously deform in response

to the migration of liquid at the macroscopic scale (e.g. Pharr and Ashby. 1983; Cooper and

I In this context, phase refers to the solid or liquid (melt). rather than to solid phases. Solid phases are referred
to as components.
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Kohlstedt, 1984, 1986; Hollister and Crawford, 1986; Karato et al., 1986; Dell'Angelo et al., 1987,

Dell' Angelo and Tullis, 1988; Wheeler, 1992; Kohlstedt and Chopra, 1994; see also §2.3.4.l).

Previous quantitative models of liquid transport through a melting, deformable mush have decoupled

the phase change and phase transport processes. Either a simple initial distribution of liquid is

imposed, and the subsequent migration of the liquid is modelled in the absence of phase change, or a

simple rate of phase change is imposed, which is not coupled to the local thermodynamic conditions

(*2.4). However, whilst this may be a valid approach for modelling melting and melt segregation in

the mantle (e.g. Scott and Stevenson, 1986; Ribe and Smooke, 1987: Spiegelman and McKenzie,

IY87; Sparks and Parmentier, 1991; Wiggins and Spiegelman, 1995), it is not valid for models of

melting and melt segregation in the crust, because melting and melt segregation are complementary

processes which occur simultaneously (§2.4).

The aim of this chapter is to develop a new, quantitative, coupled physical model of phase change and

phase transport in a deformable mush, which may be applied to the problem of melt segregation from

a melting rock in the continental crust. Melting of the rock will be assumed to be due to heating from

below, following the emplacement of hot, mantle derived magma; in the crust, this may be as a result

of either basaltic intra/underplating, asthenospheric upwelling, or a combination of these processes

(§2.2). Heating of the rock and cooling of the magma are conjugate processes which should, and

subsequently will, be modelled simultaneously (Bergantz, 1992; see chapter 5); however, in this

chapter cooling of the magma will be neglected, so as not to obscure the processes which occur in the

partially molten rock. Only the mathematical and physical details of the model will be considered; a

discussion of the choice of geologically relevant parameters is deferred until the model is applied to

specific geological systems in chapters 4 and 5.

The partially molten rock is described in general terms as a viscously deformable, multicomponent

mush which is being heated from below. The liquid2 phase is assumed to be both interconnected

along grain edges, and compositionally and thermally buoyant, leading to relative phase migration

(§2.3.3). The system is complex because compositional gradients exist in both phases, and the phases

may interact and exchange components during phase transport (Lowell and Bergantz, 1987). A

continuum approach is adopted, because continuum formulations are well suited for modelling the

transition between solid and liquid phases over a temperature and pressure interval, with associated

latent heat evolution and coupled transport processes (Bennon and Incropera, 1987a). Although

motivated by a geological problem, the formulation presented in this chapter may be applied to any

melting, multicomponent mush in which fluid migration coupled with solid deformation is an

important process, and which satisfies the assumptions made in deriving the governing equations.

2 As befits a general model, the term liquid rather than melt will be used throughout this chapter, except when a
specifically geological context is implied.
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3.2 Model Formulation

Consider a homogenous, isotropic, muIticomponent material which is initially at its solidus

temperature Tsol. and which is semi-infinite in the positive z (vertical) direction. At t = 0 the

temperature of the z = 0 plane is instantaneously increased to a temperature T, which is greater than

the solidus of the overlying material, and is subsequently maintained at this temperature for all time

(figure 3.1). Solid-liquid phase change in the material leads to the formation of a mushy mixed phase

region adjacent to the z=O plane. The liquid phase produced is buoyant and interconnected along

grain edges; the solid phase can viscously deform in response to liquid phase transport. Liquid and

solid phases are assumed always to be in local thermodynamic equilibrium,

3.2.1 Governing equations

The equations governing conservation of mass, energy, and momentum in the mixed phase region are

presented in Cartesian coordinates throughout, with z positive upwards.

Assuming there are no void spaces or other phases present in the mixed phase region, the statement of

conservation of mass of the liquid and solid phases may be expressed in terms of the liquid volume

fraction (porosity) cl> as (Loper and Roberts, 1978; Hills et al., 1983; McKenzi~, 1984; Bennon and

Incropera, 1987a; Beckerman and Viskanta, 1988; Hills and Roberts, 1988)

~ (p,cI»+ V.(P,cI>vl)= r, (3.1)

(3.2)

(see table 3.1 for the nomenclature).

Neglecting kinetic energy, the rate at which surface stresses do work on the solid and liquid, the work

done by body forces, and assuming there is no internal heat production, and given that the mixed

phase region is assumed to be in local thermodynamic equilibrium, the statement of conservation of

energy in the mixed phase region may be expressed as (McKenzie, 1984; Bennon and Incropera,

1987a)

V.(km V. T) = Lr, +[(l-cI> )l.c~ +cI>p,c~]~ +(I-cI> )lsc~ vS'VT +cI>p,c~VI' VT (3.3)

with

(3.4)

Derivation of the statement of conservation of linear momentum in the mixed phase region requires

specitic consideration of its structure and rheology. Assuming that the pressures in the solid and
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Figure 3.1. The development of a mushy mixed phase region due to heating from below.
At t=O, the temperature at z=O is increased from T"I to Tb' and maintained at the new
temperature T, for all time.



Symbol Description Units

a solid phase grain radius m
b constant in permeability relationship None
c specific heat capacity J kg" KIp

Cell effective specific heat capacity J kg" KI
Cl specific heat capacity of liquid phase J kg" KIP

CS specific heat capacity of solid phase J kg' KIP

C dimensionless compaction rate None
D; normalised difference between the ith isotherms None
g acceleration due to gravity m S-2

I interphase force per unit volume Nm-3
k thermal conductivity WKlm-1
kl thermal conductivity of liquid phase WKlm-1
k, thermal conductivity of solid phase WKlm-1
km thermal conductivity of mixture WKlm-1
k permeability m-2
K characteristic permeability m-2

k unit vector in the vertical None
L latent heat Jkg-I
n exponent in permeability relation None
P pressure Pa
Ste Stefan number None
t time s
T temperature K
Tb temperature at z = 0 K
Tsol solidus temperature K
Tliq liquidus temperature K
VI liquid phase velocity vector m s'
Vs solid phase velocity vector m s"
Vm mixture velocity vector m s'
WI vertical component of liquid phase velocity m s"
Ws vertical component of solid phase velocity m s"
Wm vertical component of mixture velocity m s'
z vertical Cartesian coordinate m
Zsol position of solidus isotherm m
Zo position of dimensionless solidus isotherm (9 = 0) None
0 characteristic Jengthscale (McKenzie's compaction length) m
<I> liquid volume fraction (porosity) None
q> dimensionless temperature at z = 0 None
r, rate of production of liquid phase kg m" sot
Keff dimensionless effective thermal diffusivity None
JlI liquid shear viscosity Pas
u, solid matrix shear viscosity Pas
VI equilibrium liquid volume fraction None
vi equilibrium liquid volume fraction at z = 0 Noneb

e dimensionless temperature None
p density kg m"
PI density of liquid phase kg m"
ps density of solid phase kg m"
pm density of mixture kg m?
01 stress tensor in the liquid phase Pa
o, stress tensor in the solid phase Pa
CJ) characteristic velocity scale m s"
t characteristic timescale s
~ solid matrix bulk viscosity Pas

Table 3_1. Nomenclature for chapter 3_
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liquid phases are equal, that both phases may be treated as Newtonian fluids which are incompressible

at the microscale, that the rate of change of momentum in each can be neglected, that the Reynolds

number of each is small compared to unity, and that the body force acting upon each phase is due only

to gravity, then conservation of linear momentum in the liquid and solid may be expressed as (Bennon

and Incropera, 1987a)

V.(q,aI)-PI~gk -1=0

V.((I-~)cr.)-Ps(I-~)gk +1 =0

(3.5)

(3.6)

Note that the interphase force per unit volume (I) acting upon the solid is equal and opposite to that

acting upon the liquid, and so satisfies Newton's third law (Prescott et al., 1991). The interphase

force per unit volume may be expressed as

l=e(vl-vs)-pV~ (3.7)

where the value of e depends upon the distribution of phases within the mixed phase region

(Mckenzie, 1984). Substituting equation (3.7), and the standard equation for the stress tensor within

an incompressible fluid (Landau and Lifshitz, 1987) into equation (3.5), and simplifying, yields

VI-V. =- ~V(P+Plgz) (3.8)

If v, = 0 then equation (3.8) corresponds to 0'Arcy's law with

e=J.l.1~2/k (3.9)

The deformable solid matrix will expel the liquid phase if subjected to isostatic compression, and may

be treated at the macroscopic scale as a viscous, compressible fluid (McKenzie, 1984; Scott and

Stevenson, 1986). Substituting equations (3.7), (3.9), and the standard equation for the stress tensor

within a compressible fluid (Landau and Lifshitz, 1987) into equation (3.6), and simplifying assuming

that the bulk and shear viscosities of the matrix are constant, yields

V(P+Plgz) = (~. +~J.l..)V(V.v.)+J.l.sV2v. -(I-~XPs -PI)gk (3.10)

Summation of equations (3.8) and (3.10), having substituted for e in equation (3.8) using equation

(3.9), yields the statement of conservation of linear momentum in the mixed phase region, valid if the

liquid volume fraction does not exceed the eMF (McKenzie, 1984)

(3.11)

Practical use of this expression requires that the permeability of the solid matrix be specified.

Generally, for an isotropic matrix, permeability may be related to porosity by an equation of the form

(3.12)

where b is a constant, and a is the radius of the solid grains (Bear, 1972). The form of ft.) and value

of b depend upon the microscopic distribution of the liquid phase. Several expressions for ft.) have
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been proposed (e.g. Bear, 1972; Scott and Stevenson, 1986); a simple, commonly used form, based on

the Blake-Kozeny-Carman equation, yields the permeability-porosity expression

(3.13)

where n varies between 2 and 3 (Scott and Stevenson, 1986).

3.2.2 Phase compositions and the rate of phase change

To close the system of conservation equations, the rate of phase change and the composition of each

phase must be specified. The rate of phase change is dictated by the rate at which the phases

experience changing thermodynamic conditions; in this system, a phase may experience changing

thermodynamic conditions both because the conditions throughout the mixed phase region are

changing temporally, and because the phases are migrating through conditions which vary spatially.

Migration may occur because the mixture itself is mobile, and because the phases migrate relative to

the mixture. Consequently, the net rate of change of thermodynamic conditions experienced by the

phases at any point is given by

j(P. T) = ~ (J(P,T))+{v, + Vs - vm}V(J(P, T)) (3.14)

where Vrn is the mass averaged mixture velocity

vm =p,q,vdpm +Ps(l-q, )vs/Pm (3.15)

and the mixture density is given by

(3.16)

If a system is in local thermodynamic equilibrium, phase change may be related to the thermodynamic

conditions by a suitable equilibrium phase diagram or phase distribution curve (Hills et al., 1983;

Bennon and Incropera, 1987 a, 1987b; Hills and Roberts, 1988; Bergantz, 1992). Phase distribution

curves give the volume fraction and composition of each phase present at given thermodynamic

conditions; they have been derived for several commonly occurring silicate rock types (e.g. Rutter and

Wyllie, 1988; Vielzuf and Holloway, 1988; Patino Douce and Johnston, 1991; Rushmer, 1991; Beard

and Lofgren, 1991; Rapp and Watson, 1995). Once the equilibrium liquid volume fraction VI is

known as a function of the thermodynamic conditions, equation (3.14) may be rewritten in terms of

p,v" and the rate of solid-liquid phase change is given by

r, =i(P,T)=! (p,v,)+(v, +vs -Vm}V(PtVt) (3.17)

The second term on the right hand side of equation (3.17) demonstrates that relative phase transport

coupled with local thermodynamic equilibration leads to component exchange between solid and

liquid phases. A full continuum description of a multicomponent system would strictly require an

explicit statement of conservation of mass for each component, but for most geological materials this
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would lead to a prohibitive increase in the complexity of the formulation due to the large number of

components present (Bergantz, 1992). In the system discussed here, phase compositions are fixed by

the requirement of local thermodynamic equilibrium, and may be deduced at given thermodynamic

conditions using empirical data derived from equilibrium melting experiments. Consequently, an

explicit description of mass conservation for each component is not given. This approach is no less

rigorous than one in which macroscopic continuum equations for each component are explicitly

stated, because in the absence of an atomic level description of the system, component exchange must

in any case be deduced from empirical data (Hills et al., 1983; Bennon and Incropera, 1987a, 1987b;

Hills and Roberts, 1988).

3.2.3 A one-dimensional Boussinesq model of the mixed phase region

Equations (3.1), (3.2), (3.3), (3.11), (3.13) and (3.17) together with the necessary empirical data

represent a complete description of the system, but the task of solving them in their current form

would be considerable. At this stage, in order to identify the generic features of the system, a

simplified one dimensional (I-D) subset of the governing equations will be considered, and the

solutions investigated numerically. An understanding of the essential physics may then lead to the

solution of more complex formulations.

Expressed only in terms of vertical velocity components, the governing equations become

(3.18)

(3.19)

(3.20)

(3.21)

a ( ) ( )dp,V,r, = at \p,v, + w, +w, -wm -a;-
subject to the initial and boundary conditions

T(z,O) = Tso'

cp(z,O)= v,(z,O) = w,(z,O) = w.(z,O)= °

(3.22)

T(O,t) =Tb

v,(O, t) = v~

T(Zsoht) = T so,

V,(Zsoht) =°

(3.23a),

(3.23b)

(3.23c)

(3.23d)

(3.23e)

where v~ denotes the equilibrium liquid volume fraction at z = 0, and Zsol denotes the time-dependant

position of the solidus isotherm, which defines the 'top' of the mixed phase region (figure 3.1).
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Applying the Boussinesq approximation, substituting equation (3.18) into equation (3.19), and

integrating subject to the condition that w. = WI = 0 at z = 0 yields (McKenzie, 1984)

(3.24)

Assuming that the thermodynamic properties of the solid and liquid are constant and identical,

substituting equation (3.24) into equations (3.18)-(3.22), and simplifying yields

acp a (
Pat-Paz (I-q,)ws)=rl (3.25)

(3.26)

(3.27)

(3.28)

Note that in the heat conservation equation (3.26), the velocity terms which describe advective heat

transport have now cancelled. Physically, this is because the upwards advection of hot liquid is

exactly balanced by the downwards advection of cold solid; heat transport occurs only by conduction

and latent heat exchange during phase change.

Phase change due to heating may be expressed as a function of temperature only (see §4.2.2), and for

simplicity a linear variation of equilibrium liquid volume fraction with temperature will be used

T-Tsol
VI =

Ttiq -Tsol
(3.29)

This is a reasonable approximation for a range of silicate rock types (Rutter and Wyllie, 1988; Vielzuf

and Holloway, 1988; Patino Douce and Johnston, 1991; Rushmer, 1991; Beard and Lofgren, 1991;

Rapp and Watson, 1995; see also §4.2.2). In addition, latent heat will be assumed to be released

linearly as phase change proceeds (Carslaw and Jaeger, 1986). A convenient scheme for non-

dimensionalising temperature may be obtained from equation (3.29); by writing

T = T-Tsol
Ttiq -Tsol

(3.30)

the dimensionless temperature T' is numerically equivalent to the equilibrium liquid volume fraction

VI. In the interests of clarity, a new variable e will be invoked which represents both these quantities;

i.e. e = T' = VI. Liquid volume fractions may be normalised by writing

(3.31a)

(3.31b)
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where the scaling factor <p denotes both the equilibrium liquid volume fraction, and the dimensionless

temperature, at z=O; i.e. <p = T~ = v~. Assuming a constant density contrast and liquid shear

viscosity. the remaining variables may be non-dirnensionalised by writing (McKenzie, 1984)

t'=t/t,

with S= ((~' + :,/3)Kr
with t= 1 (~I(~s+4~s/3))1/2

(1- <pXPs - PI )g K

with CO = KO - <pXPs - PI)g
~I

(3.32)z' = z/B,

(3.33)

W' = w/co, (3.34)

k'= k/K, with K = ba2<pn (3.35)

where the characteristic lengthscale B is the compaction length of McKenzie (1984, 1985).

Substituting (3.29) into equation (3.28), substituting equation (3.28) into equations (3.25) and (3.26),

substituting equation (3.13) into equation (3.27), substituting the scaled and dimensionless variables

(3.31 )-(3.35), simplifying, and dropping primes yields the dimensionless governing equations

aq, IO( ae ae
at= <paz (l-<p$)Ws)+at+(WI+Ws)az (3.36)

ae a2e ae
- = 1C ff - - Ste(WI + W )-at e az2 S az (3.37)

a2Ws = Ws + (I-<p$)
az2 cl>D (1- cp)

<p$wI = -(1- <pcI> )wS

(3.38)

(3.39)

with

(3.40)

L
Ste = --:------,-

ceff(Tliq - TsoI) (3.41)

(3.42)

The liquid phase velocity WIhas not been eliminated using equation (3.39), because in this form, the

effect of the net phase velocity (WI+ w.) on the governing equations is clear. The initial and boundary

conditions become

9(z,0) = cl>(z,O)= w.(z,O) = WI(Z,O)= 0
9(0,t) = 1 9(Zo,t) = °

w.(O,t) = WI(O,t)= w.(Zo,t) =w.(Zo,t) = 0.

(3.43a)

(3.43b)

(3.43c)

where Zo denotes the position of the e = 0 isotherm.
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As discussed by Bennon and Incropera (1987b), and Bergantz (1992), the results of binary and

multicomponent phase change models are difficult to generalise, because of the large number of

governing parameters and wide variety of naturally occurring equilibrium phase fraction distributions.

Using suitable approximations, assuming a linear equilibrium liquid volume fraction distribution, and

non-dimensionalising, the model description has been reduced to a system of four coupled equations

in four unknowns, governed by four externally prescribed dimensionless parameters: Ketr, Ste, n, and

tp. The equations are amenable to solution using standard numerical techniques; in the next section

the results are presented of numerical experiments designed to characterise, in terms of the externally

prescribed dimensionless parameters, rnulticomponent phase change and phase transport in a

deformable mush.

3.3 Results

Equations (3.36)-(3.39) were approximated using explicit finite difference schemes (Morton and

Mayers, 1994), and solved numerically using FORTRAN codes (Press et al., 1992) processed on a

Sun SPARC 5 workstation. CPU times increased with increasing Keff, from several minutes to several

tens of hours. Accuracy of the finite difference scheme for equation (3.37) was tested against a

published analytic approximation to the solution of a diffusion-advection problem (Siemieniuch and

Gladwell, 1978); accuracy of the scheme for equations (3.36) and (3.38) was tested against the

published analytic solution for a solitary porosity wave with n=3, no phase change (rl = 0), and in the

limit of small background porosity (Barcilon and Richter, 1986). The implementation and testing of

the finite difference schemes is described in Appendix A. All numerical experiments were performed

using a value of n=3, to allow comparison with the analytic solution.

The numerical solutions were investigated for a variety of values of <p and Ste, over a fixed range of

Kelf between _10-8 and _10+8
• This range is representative of most silicate rock phase change systems,

and its size reflects the uncertainty in estimated values of the constant in the permeability relation (b),

the liquid shear viscosity (fJ.I), and the matrix bulk and shear viscosities (/;s and fJ,s), all of which

appear in the definition of K'err (equation (3.40» (see §4.2.4.l for a discussion of the magnitude of the

uncertainty in the estimated values for these variables). Neither <p or Ste are independent of K'err;

substituting equations (3.32) and (3.33) into equation (3.40) reveals that K'err varies with <p as

Keff - 1/(1- <p)<p9(J. (3.44)

while both Ste and Ketr are governed by the values of the thermal parameters L, cp' Tuq and Tool'

However, re-writing the expression for the Stefan number as
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(3.45)

it is clear that it is constrained to lie between 0 and 1, whereas for a fixed value of Ste, lCeff may still

vary over effectively its entire range. Consequently, in all numerical experiments Ste is assumed to be

independent of K'eff.

3.3.1 Relative importance of conduction and pseudo-advection during heat transport

Models of heat transport within a mush often assume conduction is the dominant transport

mechanism, implicitly assuming that phase transport has negligible effect on heat transport (e.g.

Clyne, 1982; Viskanta, 1988; Bergantz, 1992). In the model presented here, phase transport affects

heat transport due to the exchange of latent heat during local thermal equilibration, and is described

in the energy conservation equation (3.37) by the second term on the right hand side, which is

referred to as a 'pseudo-advection' term. Heat transport is governed externally by the dimensionless

effective thermal diffusivity (lCeff), and the Stefan number (Ste), The Stefan number represents the

ratio of latent heat to effective specific heat during phase change; for Ste = 1 all heat is exchanged as

latent heat, while for Ste = 0 all heat is absorbed as specific heat.

To assess the importance of phase transport on heat transport, the governing equations were solved

with Ste = 1 (maximum pseudo-advection), and with Ste = 0 (conduction only). The difference

between the resulting thermal profiles was measured as a function of lCeff by recording the difference

between the positions of selected isotherms, and normalising them to the conductive case

D. = Zi(Ste=l) - Zi(Ste=O)
I

Zi(Ste=O)

(3.46)

A value of D, = 0 indicates that the isotherm positions are identical. and that heat transport is

dominated by conduction, whilst a value of DI = 1 indicates that they differ significantly and that heat

transport is dominated by pseudo-advection. Figure 3.2 shows the normalised difference between the

ZO.h, Zo.], and Zo isotherms after 30 time units, as a function of lCeff, for three values of <po In all cases,

for large values of lCeff heat transport is dominated by conduction. With decreasing lCar, pseudo-

advection becomes increasingly important, and dominates for values of Ketr in the range 10-7 - 10-2•

Conduction then becomes increasingly significant for small as well as large values of lCar. As <p

decreases, the maximum in D, occurs at larger values of lCe«.

Lowell and Bergantz (1987) investigated heat transport in a deformable binary mushy zone heated

from below, and concluded that in systems with large values of lCar (their 'dimensionless conduction

lengthscale') and small values of Ste, heat transport is dominated by conduction. whilst in systems

with small values of lCeff and large values of Ste, heat transport is dominated by pseudo-advection
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Figure 3.2. Normalised difference between the 7.0.6' ZO.1' and Zoo isotherms for the Ste = 1 (maximum
pseudo advection) and Ste = 0 (conduction only) cases, as a function of Keft) after 30 time units, with
(a) <p = 0.5; (b) <p = 0.3; (c) <p = 0.1.
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(their 'compaction dominated'). Their treatment neglects the effect of the net phase velocity (WI+W.)

on the magnitude of the pseudo-advection term. As discussed in §3.2, the increasing significance of

conduction in systems with small values of lCeff, and the quantitative variation in the significance of

pseudo-advection with decreasing cp, are both due to the effect of the net phase velocity.

3.3.2 Form of the liquid volume fraction (porosity) distributions

Figure 3.3(a-d) shows a representative selection of normalised spatial porosity (eI» and equilibrium

liquid volume fraction (9) distributions, for the case cp = 0.5, after 30 time units have elapsed. Note

that the normalised equilibrium liquid volume fraction distribution denotes the predicted liquid

volume fraction distribution in the absence of relative phase transport; it is also numerically

equivalent to the normalised dimensionless temperature (§3.2.2).

In systems with large lCeff (~105), there is little difference between the porosity and the equilibrium

liquid fraction distributions (figure 3.3(a». In systems with lCeff between _104 and -10, the upwardly

migrating liquid develops a high amplitude 'porosity wave', and trailing porosity waves begin to

develop behind the leading wave (figure 3.3(b». In this range, as lCeff decreases, the amplitude ofthe

leading wave increases, and the position of the porosity maximum moves closer to zoo In systems with

Kef)' between -10 and _10.3, the trailing waves are well developed, and display decreasing amplitude

with depth (figure 3.3(c». In this range, as lCeff decreases, the amplitude of the leading Wave

decreases. the position of the porosity maximum moves closer to Zo, and the Wave frequency increases.

In systems with small lCeff (~:ao·4), the porosity distribution breaks down into a series of small

amplitude waves (figure 3(d».

The spatial porosity distribution in a given system depends upon the relative rates of upward transport

of liquid and heat, which for a particular value of <p is primarily governed by the magnitude of lCeff.

Using equations (3.37) and (3.39), the mass conservation equation (3.36) may be written in a form

more open to physical interpretation

(3.47)

with

c= :z(eI>w1)

The first term on the right hand side of equation (3.47), C, governs the compaction rate, and

(3.48)

demonstrates that gradients in the liquid phase flux (eI>WI)cause local changes in porosity. If the liquid

phase flux at any point increases with height the compaction rate (C) is positive, the porosity locally

decreases, and the deformable matrix compacts to occupy the space previously occupied by liquid:

Conversely, if the liquid phase flux decreases with height the compaction rate is negative, the porosity
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locally increases, and the deformable matrix dilates to accommodate the accumulating liquid. The

second and third terms are source terms which describe phase change due to conductive heat

transport, and phase change due to pseudo-advective heat transport respectively.

For the case Ste = I, the pseudo-advective source term is zero, so porosity change is governed by the

relative magnitudes of the compaction and conduction terms only. For large Kerr, the conductive heat

transport term dominates the compaction term, and equation (3.47) may be approximated as

acp aa a2e
-::::-::::1Cff-at at e az2 (3.49)

Consequently, there is little difference between the normalised spatial porosity and equilibrium liquid

volume fraction distributions.

As !Cell decreases, the rate of liquid phase transport increases relative to the rate of heat transport, until

the liquid phase migrates upwards faster than the dimensionless solidus isotherm, Zoo At Zo the

porosity and hence permeability falls to zero, so upward migrating liquid must accumulate below it,

resulting in the development of a porosity wave. In the region immediately below a porosity wave, the

liquid phase flux increases with height, the compaction term is positive, so the porosity locally

decreases. If the relative rate of liquid transport is sufficiently high that the compaction term in

equation (3.47) dominates the conduction term, then trailing porosity waves develop, because

compaction leads to a reduction in the permeability for which the creation of liquid by phase change

cannot compensate. This acts as a local restriction to liquid transport, below which liquid

accumulates and a new porosity wave develops. As the relative rate of liquid transport increases, so

the local compaction rate below an incipient porosity wave increasingly outstrips the rate of phase

change, leading to an increase in the wave frequency.

When !CelT becomes very small, the conductive heat transport term in equation (3.47) becomes very

small. Consequently, too little liquid is produced by phase change for a large amplitude porosity wave

to develop. The generally low porosities and permeabilities inhibit phase transport, so phase

velocities are low, the net phase velocity is small, and the pseudo-advective term in the energy

conservation equation (3.37) is also small. Consequently, heat transport is dominated by conduction

for small values of Kerr, as observed in figure 3.2.

For the case Ste = 0, the pseudo-advective source term in equation (3.47) exerts maximum influence

on the porosity distribution. Figure 3.3(e) illustrates the effect of this, and should be compared with

tigure 3.3(c); the most significant differences are that the amplitude of the leading porosity wave is

reduced, and the wave frequency increased. Because aa/m is always negative, if !wll > Iw,l, the

pseudo-advection term in equation (3.47) is negative, and so acts to reduce the porosity. Physically,

this is because the rate at which liquid is migrating upwards (WI) into cooler regions and freezing is
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greater than the rate at which solid is migrating downwards (w.) into hotter regions and melting.

Consequently, less liquid is produced by phase change, and porosity waves are more efficiently

generated by compaction.

The effect of reducing <p is illustrated by figure 3.3(f), which again should be compared with figure

3.3(c). The amplitude of the leading porosity wave is similar in both cases, but the wave frequency is

increased. This is because, over the range 0 < <p < 0.8, Ketr effectively varies with <p as

(3.50)

Consequently, reducing <p at constant Ketr is qualitatively similar to reducing Ketr at constant <p. because

reducing <p causes the range of values of Ketr available from varying the other constituent variables to

be shifted upwards. The changes are quantitatively different because <p also appears independently in

both the mass and momentum conservation equations (3.36 and 3.38).

Figure 3.4(a) shows dimensionless liquid and matrix velocities for a system with Ketr = I, Ste = I, and

<p = 0.5, after 30 time units. and should be compared with figure 3.3(c). Positive liquid velocities

retlect the upwards migration of buoyant liquid; negative solid velocities reflect the downwards

migration of matrix. Changes in velocity correlate with changes in porosity. because the permeability

is governed by the local porosity. Figure 3.4(b) shows the dimensionless compaction rate (C) and

matrix strain rate (aw,/az). for the same parameters. and should again be compared with figure 3.3(c).

Negative compaction rates above local porosity maxima demonstrate that the porosity is increasing;

conversely, positive compaction rates below local porosity maxima demonstrate that the porosity is

decreasing. The association of negative and positive compaction rates with each porosity wave causes

new waves to develop below existing waves. and existing waves to migrate upwards. The effect of

this on the matrix is demonstrated by the matrix strain rate; negative compaction rates correlate with

positive (dilating) strain rates. and vice-versa.

3.3.3 Increase in maximum porosity with time: formation of a slurry

If the amplitude of the porosity waves continually increases with time. then the local liquid volume

fraction may eventually exceed the CMF. in which case the contiguity of the solid matrix grains will

break down. and the rheological description of that part of the mixed phase region will change from

mush to slurry' (Hills and Roberts 1988; Bergantz, 1992). The mush-slurry transition is important.

because the liquid fraction of the slurry has effectively segregated from the mush. A slurry is mobile.

and if a suitable route is made available. may migrate away from the mushy zone .

.' 'Slurry' is a general term which describes a mixture of crystals suspended in liquid. In geological systems. a
slurry is termed a magma. As befits a general model. the term slurry rather than magma will be used throughout
this chapter, except when a specifically geological context is implied. .
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Figure 3.5 shows a representative selection of the maximum normalised porosity against time curves.

In systems with large values of Keff. (~I 05). the maximum porosity changes little with time (figure

3.5(a». In systems with values of Kcff between _104 and _10-3, the rate of increase of maximum

porosity is rapid with time (figure 3.5(b-c)); in systems with small values of Kcff, (:5:10-4), the

maximum porosity initially falls until the slope abruptly changes and the maximum porosity begins to

increase, although the rate of increase is slow (figure 3.5(d)). The mush-slurry transition is possible

only if the maximum normalised porosity eventually exceeds the normalised CMF, where the

normalised CMF is given by CMF/<p. For the momentum conservation equation (3.38) to be valid, the

normalised CMF must be greater than or equal to I (i.e. CMF/<p ~ 1); consequently, the minimum

requirement for slurry formation is that the normalised porosity exceeds I. Maximum normalised

porosity against time curves obtained for the full range of values for Keff, indicate that slurry formation

is possible in systems with Kcff in the range 10-4 < Kctr < 105.

The model may be used to estimate the time required to initiate the mush-slurry transition, which is

termed the segregation time, by recording the time required for the porosity at any point to reach the

CMF. For most silicate rock types, the CMF lies in the range 0.3 - 0.65 (van der Molen and Paterson,

1979; Cheadle, 1989; Philpotts and Carroll, 1996; see also the discussion presented in §4.2.4.3). The

segregation time depends upon the rate of increase of the maximum porosity, and the magnitude of

the eMF. If the rate of increase of the maximum porosity is rapid and the eMF small, then the

segregation time is small; if the rate of increase of the maximum porosity is slow and the eMF large,

then the segregation time is large. Figure 3.6 shows an example of the dimensionless segregation

time as function of Ketr, for Ste = I, with <p= CMF = 0.5 and <p= CMF = 0.3 (i.e. CMF/<p = 1).

Taking <p= CMF is a convenient approximation to the situation in which the equilibrium liquid

fraction at z=O (<p) lies fractionally below the CMF, and results in the shortest segregation times for

the chosen parameters. Segregation times for both the cases <p= eMF = 0.5 and <p= eMF = 0.3 are

shortest in systems with Kctr in the range 1< 1Cetr <104; the segregation time then increases in systems

with both decreasing and increasing Ketr. A maximum dimensionless time of 200 was imposed, to

avoid excessive computational expense.

3.3.4 Prediction of phase compositions

Figure 3.7(a) shows the empirically derived liquid phase composition for a common lower crustal rock

type, as a function of the normalised equilibrium liquid volume fraction (also termed the 'fraction of

equilibrium melting'). As the normalised fraction of equilibrium melting increases from -0.1 to -0.8,

the composition of the liquid phase changes from 'trondhjemitic' to 'tonalitic', and then to

'granodioritic'. These compositions are all 'granitic'(sensu-lato}. Empirical data such as this may be

combined with the results presented in §3.3.2, to deduce liquid phase compositions for a given
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material during phase change and phase transport. For example, consider the liquid composition at

the position of the porosity maximum shown in figure 3.3(b). The porosity maximum is located at a

dimensionless position of -48; the normalised dimensionless temperature at this position is -0.6. The

normalised dimensionless temperature is numerically equivalent to the normalised fraction of

equilibrium melting; therefore the liquid at the position of the porosity maximum has a composition

which corresponds to a normalised fraction of equilibrium melting of -0.6. For the rock type shown

in figure 3.7(a), its composition would be described as granodioritic. In like fashion, it may be

deduced that the composition of the liquid at the position of the porosity maximum in figure 3.3(c)

corresponds to a normalised fraction of equilibrium melting of -0.08; for the rock type shown in

figure 3.7(a), its composition would be described as trondhjemitic.

Because the phases are always in local thermodynamic equilibrium, their compositions change in a

prcdictab!e manner in response to spatial and temporal changes in temperature. With increasing

distance from the origin, the temperature in the mixed phase region decreases (figure 3.3);

consequently, as the liquid phase migrates upwards, its composition changes to correspond to a

smaller fraction of equilibrium melting of the solid phase. Physically, this is because it

thermodynamically equilibrates with solid phase at progressively lower temperatures; the exchange of

components between the phases is described mathematically by the third term on the right hand side

of equation (3.36). For a given material, the composition of the liquid phase in a porosity wave

therefore depends upon the position of the porosity wave relative to the position of the solidus

isotherm z,,; for example. the liquid in the leading porosity wave shown in figure 3.3(c) corresponds to

a smaller fraction of equilibrium melting than that of the liquid in the leading porosity wave shown in

figure 3.3(h). because the liquid in the porosity wave shown in figure 3.3(c) has thermodynamically

equilibrated with solid at a lower temperature, closer to the position of the solidus isotherm. With

decreasing Ken, the position of the leading porosity wave moves closer to the position of the solidus

isotherm (~3.3.2); consequently. in systems with small values of KelT «10\ the liquid phase which

accumulates to form the leading porosity wave has a composition which corresponds to only a small

(dUn normalised fraction of equilibrium melting of the solid phase (e.g. figure 3.3(c».

Empirical data such as that shown in figure 3.7(a) may also be used to deduce the initial composition

of the liquid part of the slurry which forms if the liquid volume fraction exceeds the CMF (§3.3.3).

For a given material. the initial composition of the slurry depends upon the temperature at the

position of incipient mush-slurry transition; this temperature is termed the segregation temperature.

Figure 3.7(b) shows a plot of the normalised dimensionless segregation temperature (fraction of

equilibrium melting) as a function of Ketf, for the case <p = CMF = 0.5 (cf. *3.3.3). The segregation

temperature increases with increasing Kef}", from -0.05 to -0.95. In systems with small KefT, the

position of the porosity maximum, and hence the mush-slurry transition, occurs in the coolest part of
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the mixed phase region just below the solidus isotherm zoo so the segregation temperature is low; in

systems with larger Keff. the position of the porosity maximum lags further behind to (§3.3.2). so the

mush-slurry transition occurs in hotter parts of the mixed phase region and the segregation

temperature increases. Generally. the segregation temperature depends upon the values of <po Keff. and

theCMF.

For a system with KelT - 3 and CMF = <p = 0.5. the dimensionless segregation temperature is -0.2

(figure 3.7(b»; consequently. the composition of the liquid fraction of the slurry corresponds to

normalised fraction of equilibrium melting of -0.2; for the rock type shown in figure 3.7(a). its

composition would be described as trondhjemitic. In like fashion. it may be deduced that. for systems

with larger Keff. the composition of the liquid part of the slurry corresponds to a larger normalised

fraction of equilibrium melting. and for the rock type shown in figure 3.7(a). its composition would be

described as tonalitic or granodioritic. In phase change systems with Keff < !O3. the liquid phase at the

position of incipient mush-slurry transition thermodynamically equilibrates with the solid phase at

low temperatures near the top of the mixed phase region. so the composition of the liquid fraction of

the mobile slurry corresponds to only a small normalised fraction «0.05-0.8) of equilibrium melting

of the solid phase. despite having accumulated until it exceeds the normalised CMF.

3.4 Discussion

3.4.1 Heat. mass and momentum transport in a deformable mush

The transport of heat. mass and momentum in a deformable. mushy mixed phase region undergoing

solid-liquid phase change has. for a simple 1-0 system heated from below, been characterised in terms

of four externally prescribed dimensionless parameters: the effective thermal diffusivity (lCefr); the

Stefan number (Ste); the equilibrium liquid fraction at z = 0 (<p) (which is numerically equivalent to

the dimensionless temperature at z = 0); and the exponent in the permeability relation (n).

The dominant mode of heat transport within the mixed phase region depends upon the values of ICe«

and Ste, and also upon the net phase velocity (WI + w.). In systems characterised by large values of

Ste, heat transport is dominated by phase transport for a wide range of values of lCefr. Caution must

therefore be exercised when describing the transport of heat in a deformable mushy zone; in many

systems a conductive only formulation will be inadequate.

The spatial distribution of the liquid volume fraction (porosity) within the mixed phase region

depends upon the relative transport rates of heat and liquid, and for given values of <p and ste, is

effectively governed by the magnitude of Keff. Large values of Keff result from conditions which
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promote slow liquid phase transport but rapid conductive heat transport, such as small matrix grain

size, high liquid phase viscosity, and high thermal conductivity (equation (3.40»; conversely, small

values of Keffresult from conditions which promote rapid liquid phase transport but slow conductive

heat transport. Consequently, in systems characterised by large values of Keff(~IOs), the rate of liquid

phase transport is slow compared to the rate of heat transport, and the spatial distribution of liquid is

similar to that obtained in the absence of phase transport. In systems characterised by small values of

Ken (~I 0-4), the rate of liquid phase transport is rapid compared to the rate of heat transport, yet

porosities are generally low, and little phase transport occurs. This is because phase change occurs

both as a result of conductive heating of the mixed phase region (described by the second term on the

right hand side of equation (3.36)), and in response to phase transport coupled with local

thermodynamic equilibration (described by the third term on the right hand side of equation (3.36».

In systems characterised by small values of KetT, phase change due to conductive heating is dominated

by phase change due to phase transport, which acts to reduce the porosity because the rate at which

the liquid phase migrates upwards into cooler regions and freezes (WI), is greater than the rate at

which the solid phase migrates downwards into hotter regions and melts (..vs) (Le. Iwll > 1w.1).

Consequently, in systems characterised by small values of KetT, porosities are generally low.

In systems characterised by values of KetT in the range 10.4 < KetT < lOs, the liquid phase migrates

upwards more rapidly than the position of the solidus isotherm and accumulates below it. leading to

the formation of a porosity wave. The amplitude of this wave increases with time, until the contiguity

of the solid matrix breaks down, and the rheological description of that part of the mixed phase region

changes from mush to slurry. The mush-slurry transition is important, because the liquid fraction of

the slurry has effectively segregated from the mush. As the liquid phase migrates through the mixed

phase region, its composition continually changes to correspond to a smaller fraction of equilibrium

melting of the solid phase, because it locally thermodynamically equilibrates with solid at

progressively lower temperatures. The initial composition of the slurry therefore depends upon both

the initial composition of the solid phase, and the position of incipient slurry formation relative to the

position of the solidus isotherm (Le. relative to the top of the mixed phase region). The significant

result is that, in systems characterised by values of 10-4< KetT < 10:', the liquid phase at the position of

incipient mush-slurry transition has thermodynamically equilibrated with the solid phase at low

temperatures near the top of the mixed phase region, so the composition of the liquid fraction of the

mobile slurry corresponds to only a small normalised fraction «0.05-0.8) of equilibrium melting of

the solid phase, despite having accumulated until it exceeds the CMF.
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3.4.2 The assumptions of the model

In deriving the equations governing conservation of energy and mass. it is assumed that the mixed

phase region is always in local thermodynamic equilibrium. This assumption has a significant effect

on the dynamics of phase change and phase transport; for example. the compositional evolution of the

liquid phase as it migrates through the mixed phase region occurs in response to local equilibration.

and results in the segregation of liquid which has a composition which corresponds to only a small

fraction of equilibrium melting of the solid. It is therefore important to investigate the conditions for

which the assumption of local thermodynamic equilibrium is valid during phase change and phase

transport.

Maintenance of local equilibrium requires that the rate at which thermal and chemical equilibrium is

attained is rapid compared to the thermodynamic evolution of the mixed phase region. Rates of

thermal equilibration are rapid in geological systems; the kinetic limit on the rate of chemical

equilibration is component diffusion in the solid phase. Chemical equilibrium is maintained only if

the rate at which components diffuse in the solid is rapid compared to the rate at which components

are advected by the liquid. A measure of the relative rates of diffusion and advection is provided by

the Peelet number (Pe)

Pe = 41vla2
DL

(3.51)

where v is the velocity at which components are advected, D is the component diffusivity in the solid

phase. and L is the length scale over which compositional variations occur. In diffusion-advection

systems characterised by values of Pe « I O. the rate of diffusion is rapid compared to the rate of

advection. and equilibrium will be maintained; conversely, in systems characterised by values of

Pe» I O. the rate of diffusion is slow compared to the rate of advection, and equilibrium will not be

maintained (Bickle and McKenzie, 1987; Kenyon, 1990; Speigelman and Kenyon, 1992).

For the system discussed in this chapter, a suitable estimate of the rate at which components are

advected by the liquid phase is provided by the 0'Arcy separation velocity

v = k(Ps - PI)g (3.52)
cI>~1

Assuming marginal equilibrium (Pe = 10), substituting equation (3.13) into equation (3.52),

substituting equation (3.52) into equation (3.51), simplifying, and re-arranging, yields an expression

for the minimum diffusivity in the solid phase required for local equilibrium to be maintained

D = 2c1>2ba4(ps -PI)g (3.53)
CC! 5~IL
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In a homogenous, isotropic mixed phase region, the lengthscale L over which compositional

variations occur depends only upon the spatial gradient in the fraction of equilibrium melting. If the

gradient is steep, then compositional variations occur over a small lengthscale; conversely, if the

gradient is shallow, then compositional variations occur over a large lengthscale. In the crust, the

mixed phase region (partial melt zone) is typically -Skrn thick, and the fraction of equilibrium

melting varies from -0.5 at the base to zero at the top, in which case the spatial gradient in the

fraction of equilibrium melting is _10.4 km". Assuming that a change in the fraction of melting of

-I OJ (0.2%) causes a negligible variation in the composition of each phase, yields a value of L - 10m.

For comparison, both Speigelman and Kenyon (1992) and McKenzie (1984) have considered the

validity of assuming local thermodynamic equilibration during phase change and phase transport in

the mantle, and suggested values for L. Speigelman and Kenyon (1992) set L equal to the total

thickness of the mixed phase region (L - SOkm), which is equivalent to assuming that the spatial

gradient in the fraction of equilibrium melting is zero; in contrast, McKenzie (1984) estimated a value

of L - 300m.

Figure 3.8 shows the minimum diffusivity required to maintain marginal equilibrium, as a function of

the matrix grain radius, for the values of Ill, (P. - PI), and b, which correspond to the fastest (curve

(a», slowest (curve (cj), and 'average' (curve (b) predicted advective transport rates in a lower

crustal partial melt zone (§4.2.4), with L - 10m and cjI- 0.5. Also shown on figure 3.8 is the range of

estimated component diffusivities in lower crustal minerals (shaded area; data from Freer, 1981). For

the fastest predicted advective transport rates, and grain sizes > 1.4 mm, the smallest estimated

component diffusivities fall below the curve denoting the minimum diffusivity required to maintain

marginal equilibrium (curve (a»; consequently, it is possible that equilibrium will not be maintained.

However, for slower advective transport rates (curves (b) and (c», it is likely that equilibrium will be

maintained.

This simple analysis indicates that the assumption of local thermodynamic equilibrium is valid during

phase change and phase transport in a lower crustal partial melt zone, except for the fastest predicted

rates of phase transport and slowest estimated component diffusivities. If chemical equilibrium is not

maintained, component exchange will still occur between the phases during phase change and phase

transport, and it is likely that the composition of the liquid phase will still evolve to correspond to a

smaller fraction of melting of the solid phase as it migrates upwards through the mixed phase region.

However, the compositions of the phases no longer correspond to their equilibrium values, and cannot

be deduced using empirical data derived from equilibrium melting experiments.

In deriving the equation governing conservation of linear momentum (equation (3.11», it is assumed

that the pressures in the solid and liquid phases are equal. The assumption of equal pressures requires

that the matrix (solid fraction) has no strength, which is equivalent to assuming that the matrix creep
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has any meaning.
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rate is rapid compared to the matrix strain rate. Maximum dimensional matrix strain rates predicted

by the model are of the order l/'t, where 't is the characteristic time; values of l/'t range from 10-13 to

10-211 S-I for silicate rock phase change systems (equation (3.33); see §4.2.4 for suitable values of the

constituent variables). Data on liquid enhanced diffusional creep rates in silicate materials is limited;

the results of deformation experiments on an olivine matrix saturated with basaltic liquid indicate that

the diffusional creep rate in small (-I OJ-1m)olivine grains, at porosities of -0.08 and temperatures of

-1573K, must be rapid compared to the applied strain rate of _10-4 sol (Kohlstedt and Chopra, 1994).

When extrapolated to a matrix of Imm grains, typical of crustal rocks, the equivalent stress would

result in a strain rate of _10-10 sol (Kohlstedt and Chopra, 1994, equation (2); see also the

extrapolation of experimental results in §4.2.4.1 (iii»; this figure represents the best available estimate

of the maximum strain rate for which deformation by liquid enhanced diffusional creep in a partially

molten silicate rock will satisfy the equal pressures approximation. Strain rates predicted by the

model are 3-10 orders of magnitude less than this estimate, which indicates that the equal pressures

approximation is reasonable.

3.4.3 Stability of the 1-0 solutions in 2- and 3-~

The results presented in this chapter are intended to identify some of the generic features of a

deformable mush undergoing solid-liquid phase change, to facilitate the development of more

complex models. Future models will need to investigate phase change and phase transport in a

deformable mush in 2- and 3-D. However, to a first approximation, the 1-0 solutions appear to be

robust.

Lowell and Bergantz (1987) suggest that thermal and compositional convection of the liquid phase

may cause decoupling of the solid and liquid phase velocities, and convection of the liquid phase in 2-

and 3-D. However, in the system discussed here, the liquid is always at its solidus, and so its density

is governed only by its composition. Heating of the mush from below produces a stable compositional

density gradient in the liquid for materials in which increasing fractions of equilibrium melting

produce liquid of increasing density; this is the case for most silicate rocks (§4.4.5). Hence this

simple analysis indicates that convection of the liquid phase is unlikely within partially molten rocks

which are heated from below.

Wiggins and Speigelman (1995) have developed solutions in 3-D to the problem of a buoyant liquid

migratinp through a deformable mush, in the absence of phase change (r. = 0), and in the limit of

small background porosity. Their results indicate that an initially I-D porosity wave will develop into

groups of spherical, 3-D porosity waves. However, they placed no constraint on the vertical distance

available for the development of 3-D waves. In the system discussed in this chapter, a 1-0 porosity

wave forms only because the vertical extent of the mixed phase region is constrained by the position of
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the solidus isotherm, and the upward rate of migration of the leading wave is primarily governed by

the upward rate of migration of the solidus isotherm rather than the dynamics of the deformable

mush. Furthermore, phase change due to phase transport and local equilibration (described by the

third term on the right hand side of equation (3.36» acts to inhibit the localisation of flow. In any

region in which the upwards transport of liquid becomes localised, such as a chimney, the net phase

velocity (WI + ws) increases, so phase change due to phase transport becomes more significant (i.e. the

magnitude of the third term on the right hand side of equation (3.36) increases). Phase change due to

phase transport acts to reduce the porosity; consequently, in any region in which the upward flow of

liquid became localised, the permeability would be reduced and liquid transport would be inhibited,

pushing the system back to its stable, I-D configuration.

3.5 Conclusions

The development of the model presented in this chapter was originally motivated by the need to

understand better the coupled processes of granitic melt generation and segregation in the continental

crust. It was argued in chapter 2 that the production of mobile, granitic magma by partial melting of

rocks in the mid- to lower crust presents a paradox. Melt fractions which are granitic in composition

correspond to only small fractions of equilibrium melting of the source rock; melt generation and

segregation therefore appears to occur at melt fractions which are less than the CMF, yet magma

mobilisation can occur only at melt fractions which are greater than the CMF. The results obtained in

this chapter are significant because they indicate a possible resolution of the paradox. The results

presented in §3.3.2 and §3.3.3 indicate that liquid will segregate from a melting, deformable mush

with suitable thermal and physical characteristics, forming a mobile slurry; figure 3.6 allows an

estimate of the time required for segregation. The results presented in §3.3.4 indicate that the

composition of the segregated liquid will correspond to a small fraction of equilibrium melting of the

solid.
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of granitic melt in the continental crust.

"....partial re-melting to a sufficient degree to produce batholithic quantities of magma must

normally occur in very deep crustal or mantle environments which are rarely revealed by erosion,

so that the processes of segregation and collection of granitoid magmas thus become matters for

speculation." (Pitcher, 1979, p. 643).

4.1 Introduction

The review presented in chapter 2 argued that the production of mobile, granitic magma by partial

melting of rocks in the mid- to lower continental crust presents a paradox. The available evidence

indicates that melting occurs under water-absent or water-undersaturated conditions, and is caused by

the advection of heat from the mantle to the crust, either by basaltic underplating, asthenospheric

upwelling, or a combination of these processes (§2.2.4). During partial melting of the protolith, the

unmelted solid fraction (restite) maintains an interconnected matrix, so the partially molten rock

forms a mush, unless the melt volume fraction reaches the Critical Melt Fraction (CMF). The CMF

denotes the melt fraction at which the solid matrix disaggregates and a mobile magma is formed

(§2.3.1). In order to form a granitic magma, the granitic partial melt fraction must separate to some

extent from its restite; experimental and field evidence indicates that melt volume fractions which are

granitic in composition are less than the CMF, and segregate in the source region from partially

molten rock in which the restite maintains an interconnected matrix (§2.3.2). The paradox is that

melt generation and segregation appears to occur at melt fractions which are less than the CMF, yet

magma mobilisation can occur only at melt fractions which are greater than the CMF. How then does

a small granitic partial melt fraction form a mobile granitic magma?

Most previous models of melt generation and segregation in the continental crust have treated them as

separate processes. Models of melt generation consider the thermal conditions required to produce

granitic melt, and calculate the static volumes of melt produced if no melt migration occurs (e.g.

Clemens and Vielzuf, 1987; Bergantz, 1989; Patino Douce et al., 1990); conversely, models of melt

segregation assume a pre-existing melt distribution, and then model how this melt migrates or

becomes mobilised (e.g. Richter and McKenzie, 1984; McKenzie, 1985). However, treating melt

generation and segregation in the continental crust as separate processes is not valid; they are

complementary, coupled processes which occur simultaneously (§2.4). Only Fountain et al. (1989)

have attempted to present a quantitative, coupled model, and their approach is rather different to that

presented in this chapter. Their model is discussed in §4.4.6; a close examination of their formulation
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Chapter 4: Melt generation and segregation in the crust

and method of solution reveals a number of significant errors, including a failure to correctly

formulate the equations governing both conservation of heat and conservation of mass. As yet, no

model has successfully resolved the paradox of granitic melt generation, segregation and mobilisation

in the continental crust.

A partially molten rock may be described in general terms as a viscously deformable, multicomponent

mush; in chapter 3, motivated by the need to understand better the coupled processes of melt

generation and segregation in the continental crust, a general, quantitative, coupled model was

developed of phase transport in a deformable, multicomponent mush which is melting due to heating

from below. The results of this general model indicate a possible resolution of the paradox. They

demonstrate that the spatial distribution of the liquid fraction in the mush effectively depends upon

the relative upward transport rates of heat and liquid, and that, for a wide range of the dimensionless

governing parameters, the liquid fraction accumulates below the solidus isotherm and a porosity wave

develops (§3.3.2). The amplitude of this wave increases with time, until the local liquid volume

fraction exceeds the eMF, and a slurry forms. The liquid in the slurry has a composition

corresponding to a small degree of equilibrium melting of the solid, because it has thermodynamically

equilibrated with cool matrix near the top of the mushy zone, yet the slurry is mobile, and may

migrate away from the mushy zone if a suitable route is made available (§3.3.3).

In this chapter the general model will be applied to a partial melt zone in the lower crust, which is

produced by heating from below following the emplacement of hot magma adjacent to the protolith.

The aim is to investigate whether, for parameters which are suitable for the lower crust, granitic

partial melt fractions will collect and form a mobile magma. The paradox of granitic melt generation,

segregation, and mobilisation may then be resolved. Before the general model can be applied to the

crust, it must be modified to include a suitable steady state crustal geotherm. The inclusion of a

geotherm requires the formulation of a new equation to describe the transport of heat in the solid rock

overlying the partial melt zone, and results in the introduction of two new dimensionless governing

parameters. In this chapter, as in chapter 3, cooling of the underlying magma heat source is

neglected, so as not to obscure the processes which occur in the partially molten rock; a detailed

description of the heat source is deferred until chapter 5. Moreover, only the processes which lead to

the formation of a mobile granitic magma are considered; the consequences of magma formation and

the subsequent evolution of the magma are discussed in chapter 6.
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4.2 Model Formulation

Consider a region of homogenous, isotropic rock in the lower crust, into which basaltic magma is

emplaced. Let the spatial origin of the model (z = 0) denote the position of the magma/rock contact,

and the temporal origin (t = 0) denote the time at which the magma is 'instantaneously' emplaced.

Before magma emplacement (t < 0), the temperature profile is dictated by a steady-state lower crustal

geotherm, the rock is at its solidus (Tso1) at z = 0, and there is no melt present (figure 4.l(a». At

t = 0, magma emplacement in the region z < 0 causes the temperature at the contact (z = 0) to be

increased from Tsol to T, (figure 4.1(b», which causes partial melting of the rock in the region z » 0

(figure 4.1(cj). The contact temperature T, is held constant for t > 0; a valid approach if the timescale

of cooling of the magma is long compared to the timescale of melting and melt migration in the

overlying rock (see chapter 5). In contrast to the general model presented in chapter 3, the model

presented in this chapter can be divided into two distinct regimes: the partially molten rock in the

region 0 ~ z ~ zso,"and the solid rock in the region z > Zsol. In the region 0 ~ z ~ Zool,the transport of

heat, mass and momentum is described by the model presented in chapter 3; Le. the melt is assumed

to be both buoyant, and interconnected along grain edges (§2.3.3); the solid matrix is assumed to

viscously deform in response to melt transport (§2.3.4), and both melt and matrix are assumed to be

always in local thermodynamic equilibrium (§3.4). In the region Z > Zso,"the transport of heat is

described by a conductive formulation; mass and momentum transport are zero because there is no

melt present.

4.2.1 Governing Equations

The 1-D conservation equations governing the transport of heat. mass and momentum in the partially

molten rock (Le in the region 0 ~ Z ~ Zsol)may be written as (§3.2.3)

a2T ar
k az2 = PCp-at+Lrm (4.1)

P: -P:z(l-~)ws)=rm

(
J:: 4 )

a2W
s (X ) ~mw8-,.+3~. az2 = 1-~ Ps -Pm g--k-

Also required are the supplementary relations

(4.2)

(4.3)

~wm =-(l-~)ws

r dvm ( )dvm
m =P-at+P wm+w. Tz

k = ba2~n

(4.4)

(4.5)

(4.6)
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(c) Raising the temperature at the contact
(z=O) from to T"" to T, causes partial
melting in the overlying rock; T, is asswned
constant for all time. In the region O<Z<z..,1
(i.e. in the partially molten rock), the
transport of heat, mass and momentwn is
described by the model presented in chapter
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Figure 4.1. Model formulation for chapter 4: the production of a partial melt zone in the lower
crust due to heating from below, following the emplacement of hot magma. Cooling of the
magma is neglected, so as not to obscure the processes which occur in the partially molten rock.
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(see table 4.1 for an explanation of the nomenclature). Equation (4.1) describes conservation of heat,

equation (4.2) describes conservation of mass, equation (4.3) describes conservation of momentum,

equation (4.4) relates the melt and matrix velocities, equation (4.5) describes the rate of melt

production in terms of the equilibrium melt volume fraction (also termed the 'degree of melting'), and

equation (4.6) is a simple expression which relates the permeability of the matrix to the local porosity

(melt volume fraction). The l-D conservation equation governing the conductive transport of heat in

the solid rock above the partially molten rock (i.e. in the region z < zso')may be written as

(4.7)

Equations (4.1) - (4.6) are valid assuming (i) that the matrix is saturated with melt; (ii) that the

thermodynamic properties of the melt and solid matrix are identical and constant; (iii) no internal

heat production; (iv) that the pressures in melt and matrix are equal; (v) that both melt and matrix

may be treated as Newtonian fluids with constant viscosities; (vi) that the flow of both melt and

matrix has a low Reynolds number; (vii) that the Boussinesq approximation is valid; (viii) a constant

melt-matrix density contrast, and (ix) that the solid fraction maintains an interconnected network (i.e.

that the melt volume fraction does not exceed the eMF). The validity of these assumptions is

discussed in §4.4.5.

The initial conditions of the model are

T(O,O) = Tso,

:z (T(z,O))=Tgeo

«z,O) = vm(z,O)= wm(z,O)= w.(z,O)= 0

(4.8a)

(4.8b)

(4.8c)

where Tget> is the initial lower crustal geothermal gradient, which is assumed to be linear. The

boundary conditions are that both the melt and matrix velocities are zero at the contact (z = 0), and

zero at the time dependent position of the solidus isotherm (z = ZllO,),that the degree of melting is

constant at the contact, and zero at the position of the solidus isotherm, that the contact temperature is

constant, and that the temperature gradient tends towards the geothermal gradient as z tends to

infinity. They are expressed as

T(O,t) = Tc T(ZIOl,t)= TIDI

a
-(T(z -+ oo,t))-+ Tgeo
dZ

(4.9a)

(4.9b)

(4.9c)

(4.9d)
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Symbol Description Units

a matrix grain radius m
b constant in permeability relationship None
cr specific heat capacity Jkg-I KI

Cell effective specific heat capacity Jkg-I KI
C dimensionless compaction rate None
Dy effective grain boundary diffusivity rrr' S-I
g acceleration due to gravity ms'
k thermal conductivity WKlm-1

k permeability m-2

K characteristic permeability m-2

k" Boltzmann's constant (= 1.381xlO-23) JKI
L latent heat J kg'
m grain size exponent in equation (4.31) None
n exponent in permeability relation None
Q activation energy for creep Jmorl

q stress exponent in equation (4.31) None
R molar gas constant (= 8.314) JKI mol"
Ste Stefan number None
t time s
t,.,g dimensionless segregation time None
T temperature K
To temperature at the contact (z = 0) K
Tsol solidus temperature K
Tliq liquidus temperature K
r.; initial geothermal gradient Kkm"
Wm melt velocity m s"
Ws matrix velocity m s'
z vertical Cartesian coordinate m
Zsol position of solidus isotherm m
zo position of dimensionless solidus isotherm (0 = 0) None

X ratio of thermal diffusivities in the partially molten and solid rock None
s characteristic lengthscale (McKenzie's compaction length) m
E strain rate S-I

<j) melt volume fraction (porosity) None

G>c percolation threshold (equation 4.29) None
<p dimensionless temperature (degree of melting) at the contact (z = 0) None
rm rate of production of melt kg m? S-I

KelT dimensionless effective thermal diffusivity None

Jlm melt shear viscosity Pas

Jls matrix shear viscosity Pas
Vm degree of equilibrium melting None

v~ degree of equilibrium melting at the contact z = 0 None
Q atomic or molecular volume of diffusing species m3

8 dimensionless temperature (normalised degree of melting) None
8,.,g dimensionless segregation temperature None
p density kgm"

ps - pm matrix - melt density contrast kg m"
co characteristic velocity scale m s"
o stress Pa
t characteristic timescale s
1; matrix bulk viscosity Pas

'IIgeo dimensionless initial geothermal gradient None

rable 4.1. Nomenclature for chapter 4.
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4.2.2 The degree of melting and melt/solid compositions

To complete the mathematical description of the partial melt zone, the degree of melting (vm), and the

compositions of solid and melt, must be described in terms of the local thermodynamic conditions.

The assumption of local thermodynamic equilibrium permits the use of empirical data (e.g. Hills et

al., 1983; Bennon and Incropera, 1987; Bergantz, 1992), obtained from individual melting

experiments in which a rock is brought to complete thermodynamic equilibrium at known conditions,

then rapidly quenched and the modal quantities and compositions of solid and glass (quenched melt)

recorded. This data has been obtained for a variety of lower crustal rock compositions (Rutter and

Wyllie, 1988; Vielzuf and Holloway, 1988; Patino Douce and Johnston, 1991; Rushmer, 1991; Beard

and Lofgren, 1991; Rapp and Watson, 1995).

Melting due to heating in the crust may be expressed as a function of temperature only, because the

variation in lithostatic pressure across a typical (-5km) melt zone in the lower crust is negligible

« 2kbar); figure 4.2 shows the degree of melting as a function of temperature, for a variety of

common lower crustal rock types. The melting experiments used to produce the curves were

performed under water absent or water undersaturated conditions, to reflect conditions in the lower

crust (§2.2.1). The curves are of interest only for melt fractions which are less than the eMF, because

the momentum equation (4.3) is valid only if the degree of melting (melt volume fraction) at the

contact (<p) is less than the CMF (§3.2.1); in §4.2.4.3, the maximum value ofthe CMF is estimated to

be -0.65. For melt fractions less than -0.65, both continuous, linear increases in melt fraction with

temperature (e.g. plots (a), (b) and (cj), and discontinuous, stepwise increases in melt fraction with

temperature (e.g. plots (d) and (e, 16kbar curve» are observed, depending upon the composition ofthe

melting rock.

Melting under water absent or water undersaturated conditions is governed by the breakdown of

hydrous minerals such as micas and amphiboles (Clemens and Vielzuf, 1987; Rutter and Wyllie,

1988; Vielzuf and Holloway, 1988; Patino Douce and Johnston, 1991; Rushmer, 1991). Compositions

which exhibit a continuous, linear increase in melt fraction, such as the meta-pelite, meta-basalt, and

tonalite shown in plots 4.2(a)-(c), do so because the hydrous minerals break down gradually over a

temperature range; for example, the linear increase in melt fraction exhibited in plot 4.2(a) occurs due

to the breakdown of biotite over a temperature range of -200 K (Patino Douce and Johnston, 1991).

In contrast, compositions which exhibit a discontinuous, stepwise increase in melt fraction, such as

the meta-pelite shown in plot 4.2(d), do so because the hydrous minerals break down at specific

temperatures; for example, the stepwise increase in melt fraction exhibited in plot 4.2(d) occurs due to

the rapid breakdown of biotite followed by hornblende at a temperature of -1140 K (Vielzuf and

Holloway, 1988). Consequently, in order to represent the general melting behaviour of lower crustal

rocks, both continuous, linear melting, and discontinuous, stepwise melting, should be incorporated in
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the model; however, following the approach of chapter 3, the degree of melting will be described as a

continuous, linear function of temperature for all rock compositions

T-Tsolv =__ ~i.....

m T1iq-r'!Ol (4.10)

and furthermore, latent heat will be assumed to be absorbed linearly as melting proceeds (Carslaw and

Jaeger, 1986). The assumption of linear melting will be made for simplicity, and because it is

reasonable for compositions in which the hydrous minerals break down over a temperature range;

moreover, although stepwise melting could be incorporated in the model, the number of boundary

conditions required in the partially molten zone would increase, and much of the convenience of the

continuum formulation would be lost.

4.2.3 Simplification and non-dimensionalisation of the governing equations

The assumption of linear melting leads to a convenient scheme for non-dimensional ising temperature;

by writing

T' = T-Tsol
Tuq -r'!Ol

the dimensionless temperature T' is numerically equivalent to the degree of melting Vm (§3.2.3). For

(4.11)

clarity, both of these quantities will be represented by a new variable e; i.e. e = T' = Vm. Liquid

volume fractions may then be normalised by writing

e'= e/IP,

<1>' = <!l/IP,

(4.12a)

(4.l2b)

where the scaling factor <pdenotes both the degree of melting, and the dimensionless temperature, at

the contact; i.e. IP= T: = v~. The remaining variables are non-dimensionalised by writing (§3.2.3)

z' = zlB, with a=(~'+::,/3)1<)", (4.13)

t' = tIt, with <_ I (~m(l;.+4~./3)r
(I-<pXps -Pm)g K (4.14)

w' = wloo, with
00= K(1-<pXps -Pm)g

(4.15)
Ilm

k'= klK, with K= ba2<pD (4.16)

where the characteristic lengthscale 0 is identical to the compaction length of McKenzie (1984, 1985).

Substituting for the degree of melting (vm) in equation (4.5) governing the rate of melt production,

substituting for the rate of melt production in the heat and mass conservation equations (4.1) and

(4.2), substituting for the permeability (k) in the momentum conservation equation (4.3), substituting
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the scaled and dimensionless variables (4.12)-(4.16), simplifying, and dropping primes, yields the

dimensionless governing equations

(4.17)

(4.IS)

a2Ws Ws (I-<PC!»-- = -+~_;_;~az2 <1>" (I-<p)

<pc!>w m = -(I - <pc!>)w s

a9 a29at = XlCeff dZ2

(4.19)

(4.20)

(4.21)

with

(4.22)

(4.23)

(4.24)

(4.25)

The initial conditions become

9(0,0) = 0

a
dZ (9(z,O)) = '" geo

<l>(z,O)= Wm(Z,O) = W.(Z,O) = 0

(4.26a)

(4.26b)

(4.26c)

with

(4.27)

The boundary conditions become

9(0,t) = I (4.28a)

(4.2Sb)

(4.2Sc)

Wm(O,t) =W.(O,t) = Wm(Zo,t) = Ws(Zo,t) = 0

9(Zo,t) = 0

(4.28d)

where Zo denotes the dimensionless position of the 9 = 0 isotherm.
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Simplification and non-dimensionalisation of the governing equations has reduced them to a system

of five equations (4.17) - (4.21) governed by six externally prescribed dimensionless parameters: the

effective thermal diffusivity in the partial melt zone (Ken); the Stefan number (Ste); the exponent in

the permeability relation (n); the degree of melting at the contact (<p); the ratio of the thermal

diffusivity in the solid rock to the effective thermal diffusivity in the partial melt zone (X); and the

initial geothermal gradient (\JIgec). The expression given for X (equation 4.25) has been simplified.

and demonstrates that its value depends only upon the variables L. cp. Tliq and Tso1•

4.2.4 Governing parameters

4.2.4. 1 Dimensional variables

The values of the dimensionless governing parameters Ken. Stet X and '!'gec. depend upon the

dimensional variables which appear in their defining equations (4.22. 4.23. 4.25. 4.27). These

variables are listed. along with suitable values for lower crustal rocks. in table 4.2. With the exception

of the constant (b) in the permeability-porosity equation (4.6). and the melt and matrix viscosities (~.

11" 1;,,). the variables are well constrained. In contrast. the constant in the permeability-porosity

equation and the melt and matrix viscosities are poorly constrained. and the choice of suitable values

for partially molten crustal rocks warrants further discussion.

4.2.4. J (i) Characterisation of permeability. The simple permeability-porosity equation presented in

§3.2.1 and used in this chapter (equation (4.6». is based upon the semi-empirical Blake-Kozeny-

Carman equation. in which the constant b is chosen to fit experimentally derived permeability-

porosity data for a given material (Bear. 1972; Dullien, 1979). As yet. no permeability-porosity

measurements of partially molten crustal rocks have been made. and so suitable values of b must be

deduced from other data.

The relationship between permeability and porosity for any material is defined uniquely by its pore

space morphology (Dullien, 1979; Sahimi, 1993). During melting and melt migration. the grains of a

partially molten rock must be either completely texturally equilibrated. completely texturally

unequilibrated, or at some intermediate stage. If the grains are completely equilibrated, then the pore

space morphology is governed only by the solid-solid and solid-liquid interfacial energies at the

minimum energy configuration. even if the surface energies of the grains are anisotropic (von Bargen

and Waff. 1986; Cheadle. 1989; Waff and Faul, 1992; and see the discussion in §2.3.3); if the grains

are completely unequilibrated, then the pore space morphology is governed by individual grain

morphologies. and the spatial distribution of the grains within the rock matrix. For a completely

equilibrated. fluid saturated. equigranular mush of isotropic grains. the pore space morphology. and

hence the relationship between permeability and porosity. may be uniquely characterised;
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Symbol Description Minimum-maximum values Units

k thermal conductivity I I-3 WKlm'1

cl' specific heat capacity' 1,020 - 1,220 Jkg'lKI

L latent hear' 200,000 - 600,000 J kg"

Tliq-Tsol liquidus-solidus interval" 200 - 600 K

r: initial geothermal gradient' 5 - 20 Kkm'l

p density" 2,700 - 3,100 kgm"

ps-pm matrix-melt density difference 300 - 700 kg m"

a matrix grain radius" 2.5xlO,4 - 5xlO,3 (0.25-5mm) m

n exponent in permeability relation" 3 None

b constant in permeability relation 112500 - 1/50 None

J-lm melt shear viscosity 103_ 107 Pas

J-ls matrix shear viscosity 1015_ 1020 Pas

~ matrix bulk viscosity 1015_ 1021 Pas

CMF Critical Melt Fraction 0,3 - 0.65 None

<p degree of melting at the contact'? ~0.65 None

Keff dimensionless effective thermal lO's _ lO+s None
diffusivity

"'geo dimensionless initial geothermal 10,6 _ 10+2 None
gradient

Ste Stefan number 0.21 - 0.75 None

X ratio of thermal diffusivities in the 1.27 - 3.94 None
partial melt zone and solid rock

Table 4.2. Summary of the dimensional variables and dimensionless parameters used in the model,
with suitable values.

I Data for common lower crustal rocks from Clauser and Huenges (1995), valid over the temperature range 600-

1300 K. Thermal conductivities vary by less than 25% over this temperature range. Lower values represent

quartz poor rocks (e.g. gabbro, amphibolite); higher values represent quartz rich rocks (e.g. tonalite, granodiorite,

meta-pelite). The experimentally determined values presented by Murase and McBirney (1973) for basalt,

andesite. and rhyolite melts also lie within this range.



2 Calculated for common lower crustal rock compositions using data for individual minerals (albite/anorthite,

sanidine, diopside, enstatite, quartz, muscovite) from Robie et al. (1978), valid over the temperature range 600-

1300 K. Specific heat capacities of minerals vary by less than 20% over this temperature range, and by less than

25% between minerals and their melts (Richet and Bottinga, 1986; Neuville et al., 1993).

.1 Calculated for common lower crustal rock compositions using enthalpies of fusion of individual minerals

(albite/anorthite, sanidine, diopside, quartz) from Richet and Bottinga (1986). Lower values represent quartz

rich rocks; higher values represent quartz poor rocks.

4 Data from the melting experiments used to derive the equilibrium melt fraction curves shown in figure 4.2.

Mica hearing rocks (e.g. meta-pelites) generally have the largest liquidus-solidus interval, because they have

lower solidus temperatures than mica free rocks, but similar liquidus temperatures.

5 Data from Pollack and Chapman (1977). Shallow geothermal gradient represents regions with low surface heat

flow (e.g. Baltic Shield); steep geothermal gradient represents regions with high surface heat flow (e.g. Basin

and Range Province).

I> Densities for common lower crustal rock compositions calculated using mineral modal analysis from Rutter and

Wyllie (1988), Vielzufand Holloway (1988), Patino Douce and Johnston (1991), Rushmer (1991), Beard and

Lofgren (1991), and Rapp and Watson (1995), and density data for individual minerals (Deer et al., 1992). The

values presented by Turcotte and Schubert (1982) lie within the range of calculated values.

7 Densities for common lower crustal rock compositions from 6. Densities for granitic melt compositions

calculated using the model of Lange and Carmichael (1987), and compositional data from Beard and Lofgren

( 1991), Rushmer (1991), Rapp and Watson (1995), and analysis of granitic dykes from the Rosses pluton, Co.

Donegal, Eire. The experimentally determined values presented by Murase and McBimey (1973) for rhyolite

melt lie within the range of calculated values.

x Typical grainsize for high grade metamorphic (granulite facies) rocks, many of which are interpreted to be the

residues left after the extraction of a granitic partial melt fraction (§2.3.2). Grainsize measurements from

Vernon (1968); Spry (1969), Yardley et al. (1990), and sections of granulite facies rocks from the Ivrea Zone,

north-west Italy.

<) In the original derivation of the Blake-Kozeny-Carman permeability equation, n=2 for a network of randomly

oriented tubes of constant cross section, while n=3 for a bed of packed spheres (Scott and Stevenson, 1986). The

experimental results of Wark and Watson (1997) and Zhang et al. (1994), and the theoretical data of Cheadle

(1989), indicate that a value of n=3 is the most suitable for both texturally equilibrated and unequilibrated rocks

(see also figure 4.3).

III The degree of melting at the contact depends upon the initial temperature of the crust, the initial temperature

of the intruded magma, and the kinetics of heat transfer in the magma. It must be less than the eMF for the

model to be valid (§4.2.l). The degree of melting at the contact is discussed in more detail in chapter 5.
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permeability-porosity data for such a mush has been derived theoretically by Cheadle (1989), and will

be used to obtain a suitable value of b for texturally equilibrated rocks. The data, for a dihedral angle

of 50°, is shown in figure 4.3(a); also shown is a best line fit to the data using the permeability-

porosity equation (4.6) with b=l/SO. The fit is good, except for a slight tendency to overestimate the

permeability at high (cl> > 0.2) porosity. In contrast, for a completely unequilibrated, fluid saturated

mush, the pore space morphology, and hence the relationship between porosity and permeability,

cannot be uniquely characterised, because of the potentially 'infinite' number of possible grain

morphologies and distributions; however, permeability-porosity data for an unequilibrated, hot

pressed calcite aggregate has been obtained experimentally by Zhang et al. (1994), and will be used to

indicate a suitable value of b for texturally unequilibrated rocks. The data is shown in figure 4.3(b)

(inset); also shown are best line fits to the data. In contrast to the data for the equilibrated mush

(figure 4.3(a», the fit of equation (4.6) to the data for the unequilibrated calcite aggregate is good only

for porosity in the range cl> > 0.06, with b = 112500. For porosity in the range 0.04 < cl> < 0.06, a

modified form of equation (4.6) is required, with cl> replaced by (cl> - <l>c), <l>c = 0.04, and b = 11100, while

for porosity in the range cl> < 0.04 (Le. cl> < <l>c), the aggregate is impermeable (Zhang et al., 1994).

In any natural porous material, the pore space may be divided into pore bodies, in which most of the

porosity resides, and pore throats, which connect the pore bodies (Sahimi, 1993). If all pore bodies

are connected by pore throats at all porosities, then the variation in permeability with porosity is due

only to the variation in the effective radii of the pore throats (and hence their resistance to flow) with

porosity; moreover, the material is permeable at vanishingly small porosities (Bryant et al., 1993).

This is the case for a texturally equilibrated mush of isotropic grains, if the dihedral angle is less than

60° (Cheadle, 1989); the permeability decreases smoothly with decreasing porosity (figure 4.3(a», and

equation (4.6) is valid over the entire porosity range. Experimentally determined values of the

dihedral angle in partially molten silicate rocks range between 30° and 60° (Cheadle, 1989, and

references therein); consequently, a texturally equilibrated, partially molten silicate rock is likely to be

permeable at very small porosities « 0.001), in which case equation (4.6) is valid for equilibrated

rocks over the entire porosity range. However, if all pore bodies are not connected by pore throats at

all porosities, then the variation in permeability with porosity is due both to the variation in the

effective radii of the pore throats, and the variation in the number of connected pore bodies, with

porosity; moreover, if at some critical porosity <l>c (the percolation threshold) the pore throats no longer

form a connected network, then the material becomes impermeable (Bourbie and Zinszner, 1985;

Bryant et al., 1993). This is the case for the unequilibrated calcite aggregate investigated by Zhang et

al. (1994). For porosity in the range cj> > 0.06, all pore bodies are interconnected, the permeability

decreases smoothly with decreasing porosity, and the permeability-porosity equation (4.6) is valid.

For porosity in the range cl> < 0.06, an increasing number of pore bodies become disconnected with
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Figure 4.3. (a) Permeability - porosity relations for texturally equilibrated and unequilibrated partially
molten rocks with a grain size (diameter) of Imm. The upper black curve is given by the permeability-
porosity equation (4.6) with b = ]/50, and denotes the best fit to the theoretical data of Cheadle (1989),
for a texturally equilibrated, monominerallic, fluid saturated mush of isotropic grains with a dihedral
angle of 50° and a grain size (diameter) of 1mm. This curve represents the permeability-porosity
behaviour of texturally equilibrated rocks. The lower black curve is given by the permeability-porosity
equation (4.6) with b=1/2500, and represents the permeability-porosity behaviour of texturally
unequilibrated rocks for porosity in the range <p > 0.06. The red curve is given by the modified
permeability-porosity equation (4.29) with b = ]/100 and <l>c = 0.04, and represents the permeability-
porosity behaviour of texturally unequilibrated rocks for porosity in the range 0.04 < <I> < 0.06. Below
the percolation threshold .pc, texturally unequilibrated rocks are impermeable.

(b) (Inset) Experimentally determined permeability - porosity relations for a texturally
unequilibrated, hot pressed calcite aggregate with a grain size (diameter) of 1-3~m (Zhang et al.,
1994), which was used to deduce the permeability -porosity relations for texturally unequilibrated
rocks shown in (a). The black curve is given by the permeability-porosity equation (4.6) with
b= I12500, and denotes the best fit to the experimental data of Zhang et al. (1994) for porosity in the
range <I> > 0.06. The red curve is given by the modified permeability-porosity equation (4.29) with
b=I/IOO and <l>c = 0.04, and denotes the best fit to the experimental data of Zhang et al. (1994) for
porosity in the range 0.04 < <I> < 0.06. When fitting the curves to the experimental data, the mean grain
size of the inequigranular calcite aggregate was assumed to be Sum, based on the argument that the
permeability of inequigranular materials is governed by the small grains, because they reside in
channels between large grains (Wark and Watson, 1997). Axis labels are identical to those of plot (a).
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decreasing porosity. so the permeability decreases more rapidly. and equation (4.6) is not valid. At

II> = II>c = 0.04 the pore throats no longer form a connected network. and the aggregate becomes

impermeable (Zhang et al.• 1994). For porosity in the range 0.04 < «I> < 0.06; equation (4.6) is valid

only if the porosity «I> is replaced by the connected porosity (<<I> - «!>c), and equation (4.6) becomes

(4.29)

Consequently. in contrast to texturally equilibrated rocks, unequilibrated rocks are likely to be

permeable only at porosities greater than the percolation threshold (<<!>c), in which case equation (4.6) is

not valid for unequilibrated rocks over the entire porosity range.

These arguments yield the permeability-porosity relations for completely texturally equilibrated. and

completely texturally unequilibrated, partially molten rocks, shown in figure 4.3(a). The maximum

and minimum values of b given in table 4.2 are based upon these permeability-porosity relations, and

the range of values includes that proposed by McKenzie (1984) of b = 111000, based upon

permeability-porosity data obtained experimentally by Maaloe and Scheie (1982) for compacted glass

beads. However, the data of Cheadle (1989) for an ideal, equilibrated mush overestimates the

permeability at high porosities; in equilibrated rocks. there is a maximum porosity for which the solid-

liquid interfacial energies are a minimum (-0.19-0.01 for typical dihedral angles of 300 _ 600

(Cheadle, 1989», and at porosities greater than this the melt becomes inhomogeneously distributed

and does not all contribute to the permeability (Jurewicz and Watson, 1984, 1985; Cheadle, 1989).

Moreover. it must be emphasised that the values of b and «I>c (the percolation threshold) obtained for

unequilibrated rocks from the data of Zhang et al. (1994), do not uniquely define the permeability-

porosity relations of all unequilibrated rocks. For example, Wolf and Wyllie (1991) estimate a value

of II>c < 0.02 for an unequilibrated, partially molten, hydrated basalt. The effect of a percolation

threshold on solutions of the governing equations is investigated in §4.3.1.2; based on the arguments

presented there, all the other solutions presented in this chapter are obtained using the perrneability-

porosity equation (4.6) over the entire porosity range.

4.2.4.1(ii) Melt shear viscosity. The viscosity of a silicate melt depends primarily upon its

composition and temperature (Bottinga and Weill, 1972). The variation of viscosity with temperature

for granitic (sensu-lato) melts of constant composition has been investigated experimentally using

melted samples of rhyolitic obsidians; measured viscosities vary by over seven orders of magnitude

(Shaw, 1963; Murase and McBirney, 1973; Ryan and Blevins, 1987). However, the variation of

viscosity with temperature for granitic melts produced during partial melting has not been

investigated; during melting, the composition of the melt continuously changes. If the composition of

the melt is known. its viscosity may be calculated using the empirical model of Shaw (1972); melt

compositions during partial melting have been obtained experimentally for a variety of lower crustal
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rock compositions (Rutter and Wyllie, 1988; Vielzuf and Holloway, 1988; Patino Douce and Johnston,

1991; Rushmer, 1991; Beard and Lofgren, 1991; Rapp and Watson, 1995). Figure 4.4 shows the

calculated variation of viscosity with temperature, for the granitic melt produced during partial

melting of hydrated basalts, andesites, and meta-petites. The water content of the melt is a critical

control of its viscosity, and during dehydration melting, is governed by the breakdown of hydrous

minerals such as amphibole and biotite (Clemens and Vielzuf, 1987; Rushmer, 1991). The 'wet' melt

viscosities shown in figure 4.4 were calculated using experimentally determined water contents when

available. or alternatively, water contents determined using the model of Clemens and Vielzuf (1987)

(see figure 4.5 for details); the 'dry' melt viscosities were calculated assuming anhydrous melt

compositions, and are shown for comparison only. The effect of water on viscosity is clear; wet melt

viscosities are between 3 and 7 orders of magnitude lower than the corresponding dry viscosities.

Moreover, dry melt viscosities decrease by -0.5 - 5 orders of magnitude with increasing temperature;

in contrast, wet melt viscosities decrease by only -0.1 - I orders of magnitude with increasing

temperature.

The observed variation in viscosity with temperature is due only to the compositional variation of the

melt with temperature; the melt is always at its solidus temperature, and as the degree of melting

increases. the composition of the melt changes. In general, an increase in the silica content of the

melt causes an increase in viscosity; in contrast, an increase in the water content of the melt causes a

decrease in viscosity (McBirney and Murase, 1984). To illustrate this, figure 4.5 shows the silica and

water content of the melt as a function of temperature. The decrease in the silica content of the melt

with increasing temperature (with the exception of the melt from the meta-petite) causes the large

decrease observed in the dry viscosity (figure 4.4). However, the decrease in the water content of the

melt with increasing temperature compensates for the decrease in silica; consequently, the decrease

observed in the wet melt viscosity with temperature is small (figure 4.4). This viscosity-temperature

dependence is different to that observed in melt of constant composition, which is due only to the

Arrhenius type behaviour of silicate melts, and should not be confused with it. Despite the different

compositions of the melting rocks, the wet melt viscosities vary by less than 3 orders of magnitude,

between -450 Pa sand -1.5 x IDs Pa s. The values of the melt shear viscosity given in table 4.2 are

based upon these calculated values, and the selected range includes the values obtained experimentally

by Shaw (1963) for hydrous rhyolite.

4.2.4./(iii) Matrix shear and bulk viscosities. The rheology of a partially molten rock is primarily

governed by its mineralogy and grain size, and the strain rate regime. The grain size and strain rate

govern the deformation mechanism for a particular mineralogy (Ranalli, 1987). Large grain sizes

and/or high strain rates favour deformation at the grain scale by dislocation creep, while small grain

sizes and/or low strain rates favour deformation at the grain scale by diffusion creep (Dell' Angelo et
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Lofgren (1991). 'Wet' melt viscosities were calculated using the water contents shown in figure 4.5;
'dry' melt viscosities were calculated assuming anhydrous melt compositions, and are shown for
comparison only.
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Figure 4.5. The water (H20) and silica (Si02) content versus temperature, of the granitic melt produced
during partial melting of hydrated basalts, andesites, and meta-pelites, expressed as a mass fraction (f).
Mass fraction of water plots on the left hand ordinate axis; mass fraction of silica plots on the right
hand ordinate axis. Data from (I) Patifio-Douce and Johnston (1991); (2) Rushrner (1991); (3) Beard
and Lofgren (1991). The mass fraction of water for (1) was obtained directly from their experimental
results. The mass fraction of water for (2) and (3) was obtained using the model of Clemens and
Vielzuf (1987), following the approach adopted by (2). In the absence of hydrous residual phases, the
mass traction of water in the melt is given by

j{HP in melt) = j{H20 in rock before melting) / j{melt formed) (4.30)

Clemens and Vielzuf (1987) have proposed that during dehydration melting, the water content of the
melt is buffered by the presence of hydrous residual phases, and remains approximately constant while
they remain stable. The significant hydrous phase in the basaltic and andesitic rocks investigated by (2)
and (3) is amphibole. The stability of amphibole during dehydration melting is poorly understood
(Rapp, 1995). (2) found amphibole as a stable residual phase in the presence of melt; in contrast; (3)
found that amphibole was unstable and decomposed soon after the onset of melting, leaving an
anhydrous residue. For temperature regimes in which amphibole was a stable residual phase, the mass
fraction of water in the melt was assumed to be constant, and equal to that when amphibole eventually
decomposed (calculated using equation (4.30)). For temperature regimes in which amphibole was not a
stable residual phase, the mass fraction of water was calculated using equation (4.30).
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al., 1987; Dell'Angelo and Tullis, 1988). Deformation in the solid lower crust is thought to occur by

dislocation creep (Ranalli, 1987), but deformation in the partially molten lower crust is poorly

understood. Unless the deformation mechanism is known, the rheology of a rock cannot be specified.

In deformation experiments on sintered, fine grained 'granitic' aggregates, composed of quartz, albite

and rnicrocline, Dell' Angelo et al. (1987) found that, at a strain rate of _10-6 s , confining pressure of

ISOO MPa (15 kbar), and temperature of 1173 K, deformation was dominated by dislocation creep in

melt free aggregates with a grain size (diameter) of -2-10Ilm, but that the addition of 3-5% melt

induced a transition to deformation dominated by 'melt-enhanced' diffusion creep. Melt was

produced by adding -I wt% water to the samples before sintering. Melt-enhanced diffusion creep is

effectively a form of grain boundary (Coble) creep. in which the microscale diffusion rate of

components along solid-solid grain boundaries governs the macroscale creep rate (Pharr and Ashby,

1983; Cooper and Kohlstedt, 1984; Ranalli, 1987). In texturally equilibrated rocks, the melt is

confined to grain edges, and the presence of melt enhances the creep rate only by shortening the

effective (dry) diffusion length of the solid-solid grain boundaries (Cooper and Kohlstedt, 1984). In

texturally unequilibrated rocks, the presence of melt is likely to have a similar effect unless the melt

completely wets the solid-solid grain boundaries, in which case the creep rate is enhanced by the rapid

diffusion of components through the melt. However, the melt in a compacting, unequilibrated rock is

unlikely to completely wet the grain boundaries, because the compressional stress will act to expel it

(Pharr and Ashby, 1983).

In order to estimate the strain rates for which deformation in partially molten crustal rocks will be

governed by either dislocation creep, or melt-enhanced diffusion creep, the experimental results of

Dell' Angelo et al. (1987) for fine grained (a - 2.5Ilm) aggregates must be extrapolated to represent

coarse grained (a - O.5mm) crustal rocks. Assuming that the strain rate may be related to grain size

and applied stress using a power law of the form (Kohlstedt and Chopra, 1994)

aq£ = A-exp(-Q/RT)am (4.31)

then for a given applied stress a, the strain rate may be scaled to a new grain size using an equation of

the form

(4.32)

where strain rate £1 corresponds to grain size ai, and strain rate E2 corresponds to grain size a2.

Using a value of m = 3, suitable for grain boundary diffusion creep (Ranalli, 1987; Kohlstedt and

Chopra, 1994), the experimental strain rate of _10-6 S-I at which Dell'Angelo et al. (1987) found a

transition from dislocation to melt-enhanced diffusional creep scales to _10-13 S-I for a typical grain

size (diameter) of - lmrn. For strain rates equal to or less than this figure, the extrapolated results of
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Dell' Angelo et al. (1987) indicate that the rheology of a partially molten crustal rock will be governed

by melt-enhanced diffusion creep. Maximum strain rates predicted by the model during compaction

in the crust are _10.13 - 10.20 S-I (§3.4)I, up to seven orders of magnitude less than the transition

estimate; deformation is therefore likely to be governed by melt-enhanced diffusion creep. For

comparison, the results of Kohlstedt and Chopra (1994) indicate that melt-enhanced diffusion creep

governs the rheology of olivine aggregates containing - 9% basaltic melt, at temperatures of -1573 K,

for strain rates of -10-10 S-Iand a grain size (diameter) of Imm (§3.4).

The rheology of an aggregate undergoing steady-state deformation by diffusion creep is Newtonian

(Cooper and Kohlstedt, 1984; Ranalli, 1987). For the simplest case of a single component,

equigranular aggregate deforming by grain boundary creep, the shear viscosity may be expressed as

(Ranalli, 1987)

k Ta3
Jl

_ ___..b __
s _ l4IQDy

where kh is Boltzmann's constant (= 1.381x 10-23 J KI), 0 is the atomic volume of the material, and

(4.33)

Dr is the effective grain boundary diffusivity. If the aggregate contains a small fraction « O.l) of

spherical pores, the bulk viscosity may be expressed as (Arzt et al., 1983)

[3(~2/3 _1)+(~213 +l)n(l/~)] kbTa3
Ss =(l-~) t_~213 54nDy (4.34)

Application of these simple expressions to crustal rocks is hampered by the lack of available data for

the effective grain boundary diffusivity (Dy). den Brok (1992) suggests a value of Dy - 10-21 m2s-1 for

oxygen in wet quartz aggregates, at 1200 MPa (12 kbar) and 1073K, based upon the work of Farver

and Yund (I99 l). The value ofO for quartz is 1.16xlO·28 m3 (Lide and Frederiske, 1996). Assuming

that the diffusion of oxygen rather than silicon governs creep, assuming a temperature of 1073K, and

substituting these values into equation (4.33), yields a maximum shear viscosity of _1020 Pa s for a

quartz aggregate with a grain size (radius) of 5 mm, and a minimum shear viscosity of _1016 Pa s for

a quartz aggregate with a grain size (radius) of 0.25 mm (table 4.2). Equation (4.34) yields bulk

viscosities as a function of porosity shown in figure 4.6. Except at very low porosities (~< 0.00 I),

equation (4.34) yields a maximum bulk viscosity of - t 021 Pa s for a quartz aggregate with a grain size

(radius) of 5 mm, and a minimum bulk viscosity of _1016 Pa s for a quartz aggregate with a grain size

(radius) of 0.25 mm (table 4.2).

I Alternatively, an order of magnitude estimate of the strain rate during compaction in the lower crust may be
obtained in the following way: assume 10%of the melt is completely extracted from a 'typical' 5 km thick partial
melt zone in 500,000 years. The partial melt zone is shortened by 500m in this time, requiring an 'average'
strain rate of -1 x10-18 S·I. Longer extraction times will lead to smaller 'average' strain rates.
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It is not clear how these estimated viscosities for quartz aggregates relate to the viscosities of partially

molten crustal rocks. Most crustal rocks are polymineralic, and the diffusion controlled creep of

polymineralic aggregates is poorly understood. Ranalli (1987) states that when more than one

diffusing component is present, the slowest moving controls creep, yet Wheeler (1992) argues that

components may mix and interact during diffusion, leading to complex behaviour which may

significantly enhance diffusional creep rates in polymineralic aggregates when compared to their

monomineralic counterparts. Neither of the equations for the shear and bulk viscosity includes the

effect of melt in the pore spaces, which should enhance the creep rate (Cooper and Kohlstedt, 1984;

Dell' Angelo, et al., 1987), although during compaction the melt must be expelled from the pores and

the effect of this on the bulk viscosity is unknown (Dingwell et al., 1993). Moreover, the spherical

pores assumed in the derivation of equation (4.34) are not likely to be a good approximation of the

interconnected pores of a partially molten rock (McKenzie, 1984). However, in the absence of

experimental data for either the bulk and shear viscosities of crustal rocks, or the effective grain

boundary diffusivities for crustal minerals other than quartz, the estimated shear and bulk viscosities

for quartz aggregates will be used to provide order of magnitude estimates for the shear and bulk

viscosities of partially molten crustal rocks. The values of the shear and bulk viscosities given in table

4.2 are based upon these estimates, except that the lower values have been reduced by an order of

magnitude; the estimates obtained here are for low porosities, and as the porosity increases, both the

shear and bulk viscosities are expected to decrease (Scott and Stevenson, 1986). The selected range

includes the values proposed byMcKenzie (1984, 1985) and Scott and Stevenson (1986) for partially

molten mantle rocks.

4.2.4.2 Dimensionless parameters

Substituting suitable values for the dimensional variables into the defining equations (4.22, 4.23, 4.25,

4.27) yields the values for the dimensionless parameters Keff, Stet X and \jIgeo. given in table 4.2. The

large variation in the values of Keff and \jIgeo primarily reflects the large variation in the melt and

matrix viscosities. which appear in the defining equations for both the characteristic lengthscale

(equation (4.13» and the characteristic timescale (equation (4.14». In contrast. the variation in

values for Ste and X is small.

4.2.4.3 The Critical Melt Fraction (CMF)

The CMF does not appear directly in the governing equations. or in the equations defining the

dimensionless governing parameters. yet is important because it dictates the porosity at which a

partially molten rock forms a mobile magma (§2.3.1). If the rock is in textural equilibrium. then the

value of the CMF depends only upon the contiguity of the matrix (Miller et al .• 1988). Contiguity is a

quantitative measure of the solid grain-grain interconnectivity in a fluid saturated mush. and depends

upon the fluid volume fraction, the microscopic distribution of fluid throughout the mush, and the
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solid grain size distribution. The contiguity of an ideal, texturally equilibrated, monomineralic,

equigranular mush of isotropic grains as a function of porosity and dihedral angle has been derived

theoretically by Cheadle (1989), and for dihedral angles of 30° - 60° (§4.2.4.1 (i», yields values for the

CMF of 0.37 - 0.46. These represent minimum values, because in equilibrated rocks at porosities

greater than the minimum energy porosity the melt becomes inhomogeneously distributed and does

not all contribute to reducing the contiguity (§4.2.4.1(i». For partially molten rocks which are not in

textural equilibrium, experimentally and theoretically obtained estimates of the CMF range from 0.2

to 0.7 (e.g, Arzi, 1978; van der Molen and Paterson, 1979; Philpotts and Carroll, 1996). The values

of the CMF given in table 4.2 are based upon these estimates for equilibrated and unequilibrated

rocks, with the exception of the lowest estimate of 0.2 ± 0.1 presented by Arzi (1978), which was

obtained theoretically using simple arguments based upon the Einstein-Roscoe equation for rigid

particles suspended in a viscous, Newtonian melt. This is a poor approximation of a partially molten

rock. Also, the highest estimate of -0.7 obtained experimentally by Philpotts and Carroll (1996) for a

partially molten tholeiitic basalt has been reduced to 0.65. They performed their experiments at

compressive stresses of the order of kPa, yet compressive stresses in the lower crust are of the order of

GPa, and it is unlikely that their sample would have maintained its strength at such high melt

fractions for stresses of this magnitude.

4.3 Results

The governing equations (4.17) - (4.21) are amenable to solution using standard numerical

techniques; they were approximated using explicit finite difference schemes, and solved numerically

using FORTRAN codes processed on a Sun SPARC 5 workstation. The implementation and testing

of the finite difference schemes is described in Appendix A.

None of the governing dimensionless parameters <p, X, Ste or 'llgee>' are independent of Keff; substituting

for the characteristic time (t) and length (a) scales in equation (4.22) reveals that Keff varies with <p as

Kef{ - 1/{1- <p)<p9/2 (4.35)

(§3.3), while KdY,X and Ste are governed by the values of the variables L, Cp, T1iq and TIIOI (equations

(4.22) - (4.25». Both KdYand 'llgee> depend upon the value of the characteristic lengthscale a, which in

turn depends upon the variables l;., J.1.s, ~, b and a (equations (4.13) and (4.16». However, for fixed

values of X and Ste, KdYmay still vary over effectively its entire range; consequently, X and Ste are

assumed to be independent of KdYin all numerical experiments. However, X and Ste cannot be

assumed to be independent; inspection of equations (4.23) and (4.25) reveals that Ste varies with X as

Ste = ("1..-1)/"1..; i.e. the largest values of X correspond with the largest values of Ste and vice-versa.
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More significantly, KetJ and '!'goo cannot be assumed to be independent, and both vary over a wide

range of values, the magnitude of which is governed predominantly by the magnitude of the matrix

and melt viscosities (1;., ~ and f.!m), the grain size (a), and the permeability constant (b). Substituting

for the characteristic time (e) and length (0) scales in equations (4.27) and (4.22) reveals that ,!,goo and

Kel1 vary with 1;., ~, f.1m, a and b as

(4.36)

(4.37)

Inspection of equations (4.36) and (4.37) reveals that the smallest values of KetJ must correspond with

the largest values of '!'goo, and vice-versa. Substitution of the values of 1;., ~, f.1m, a and b given in

table 4.2 reveals the range of available values for KetJ and ,!,goo shown in table 4.3. For the smallest

value of Kel!' (I O-s),the smallest corresponding value of '!'goo is -100; for the largest value of KetJ (10+s),

the largest corresponding value of ,!,goo is _10-6• Consequently, rather than assuming ,!,geo is

independent of KetJ, the governing equations were solved only for the values of KetJ and ,!,geo shown in

table 4.3.

4.3.1 Dimensionless results

4.3.1.1 Form of the spatial porosity distributions

Figure 4.7(i - iii) shows a representative selection of normalised spatial porosity and degree of melting

(dimensionless temperature) distributions, for cp = 0.5, X = 2.5, and Ste = 0.5, after 30 time units have

elapsed. Note that the degree of melting distribution denotes also the distribution of melt in the

absence of compaction and melt migration. The form of the distributions depends upon lCeff in a

similar manner to that found in §3.3.2. In partially molten rocks with large values of KelT G~104), there

is little difference between the porosity and degree of melting distributions (figure 4.7(iii) (dj). In

rocks with values of KetJ between _103 and -10, the upwardly migrating melt develops a high

amplitude 'porosity wave', and trailing porosity waves begin to develop behind the leading wave

(figure 4.7(iii) (a-d); figure 4.7(ii) (c-dj), In rocks with lCetr between -10 and _10-2, with the exception

of the largest ('!'goo = I) geotherm, the trailing waves are well developed, and display decreasing

amplitude with depth (figure 4.7(ii) (a-c); figure 4.7(i) (b-dj). In rocks with small values of lCeff

(SIO-3), the amplitude of the leading porosity wave is small (figure 4.70) (a».

In a partial melt zone with a given value of lCeIr, the effect of increasing ,!,geo is to maintain or increase

the amplitude of the leading porosity wave, and to move the position of the porosity maximum

upwards relative to the position of the solidus isotherm (Zo); i.e. closer to the top of the partial melt
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Table 4.3. The range of available values for the dimensionless initial geotherm \jIgeo, and the
dimensionless effective diffusivity Keff, obtained using equations (4.36) and (4.37) and values of the
constituent variables (Ss, f.ls etc.) from table 4.2. The dimensionless initial geotherm \jIgeo and the
dimensionless effective diffusivity Keff are not independent; for a given value of Keff, the range of
available values for \jIgeo is restricted. Available values are denoted by a dot. The range of values of
\jIgeo and Keff within the red square denotes the range of values for which the formation of a mobile
magma is predicted; see text for details.
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Figure 4.7(i). Normalised dimensionless spatial porosity (+) and degree of melting (9) distributions,

after 30 time units, with: (a) K.f!' = 10-3, <p = 0.5, 'V_ = I; (b) Kef!' = 10'2, <p = 0.5, 'V_ = 1;

(c) KelT = 0.1, <p = 0.5, 'VKco= 1; (d) Kef!' = I, <p = 0.5, "'_ = 1. In all cases, Ste = 0.5 and X = 2.5.
Liquid volume fractions (porosity and degree of melting) are normalised to the degree of melting at
z=0 (o). Note that both ordinate and abscissa seales differ between plots.
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Figure 4.7(ii). Normalised dimensionless spatial porosity (+> and degree of melting (9) distributions,
after 30 time units, with: (a) Kelt" = 0.1, <p = 0.5, 'lip = 10.2; (b) Kelt" = 1, <p = 0.5, 'llpo = 10-2;
(c) KelT = 10, <p = 0.5, '1',00 = 10-2; (d) Kelt" = 100, <p = 0.5, 'llpo = 10-2, In all cases, Ste = 0.5 and 1=
2.5. Liquid volume fractions (porosity and degree of melting) are normalised to the degree of melting
at z=O (<p). Note that both ordinate and abscissa scales differ between plots.
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Figure 4.7(iii). Normalised dimensionless spatial porosity (+) and degree of melting (9) distributions,

after 30 time units, with: (a) "-ff = 10, <p = 0.5, 'llpo = lQ-4; (b) "-ff = lOO, <p = 0.5, 'llpo = 10-4;
(c) KelT= 103, <p = 0.5, "''co = 10-4; (d) K"ff= 104, <p = 0.5, 'llpo = lQ-4. In all cases, Ste = 0.5 and
X = 2.5. Liquid volume fractions (porosity and degree of melting) are normalised to the degree of
melting at z=O (<p). Note that both ordinate and abscissa scales differ between plots.
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zone (compare figures 4.7(i) (c) and (d) with figures (4.7)(ii) (a) and (b); also figures 4.7(ii) (c) and

(d) with figures (4.7)(iii) (a) and (bj), For the largest value of "'geo = I, the trailing porosity waves

observed for smaller values of "'ceo are suppressed (compare figures 4.7(i) (c) and (d) with figures

(4.7)(ii) (a) and (b); also figure 4.7(i) (d) with figure (3.3) (cj),

As discussed in §3.3.2, the spatial porosity distribution in the partial melt zone depends upon the

relative rates of upward transport of melt and heat, which for a particular value of <p, and in this case

"'geo, is primarily governed by the magnitude of KetJ. Porosity waves form in melt zones with Ke!r in the

range 10.2 $; Keff < 104, because the rate of melt transport is rapid relative to the rate of heat transport,

which results in the melt migrating upwards faster than, and accumulating below, the position of the

solidus isotherm (zo). The effect of increasing the initial geothermal gradient "'geo, for a given value

of Keff, is to move the position of the solidus isotherm closer to the origin, and hence reduce the spatial

extent of the partial melt zone; for example, compare the spatial extent of the partial melt zone in

figure 4.7(i) (d) with that in figure 4.7(ii) (b). Increasing the initial geothermal gradient from 10.2

(figure 4.7(ii) (b) to I (figure 4.7(i) (d) has reduced the size of the melt zone from -14.5 to 0.95

compaction lengths. Consequently, the distance over which the melt must migrate before it reaches

the top of the melt zone is reduced, which enhances the accumulation of melt below the solidus

isotherm and causes the increase in maximum porosity with increasing "'gco observed in figure 4.7.

Trailing porosity waves are suppressed for the largest value of 'lisco = I, because trailing waves are

formed only when the compaction rate in the region immediately below a porosity wave exceeds the

melting rate (§3.3.2). The presence of a steep geothermal gradient enhances the rate of heating and

hence the rate of melting, so the compaction rate never exceeds the melting rate.

Figure 4.8(a) and (b) shows the effect of varying X and Ste on the form of the normalised spatial

porosity distributions, in a partial melt zone with Kdr = 10 and "'geo = 10-2, after 30 time units have

elapsed, and should be compared with figure 4.7(ii) (c). Figure 4.8(a) corresponds to the maximum

values of X = 3.94 and Ste = 0.75; figure 4.8(b) corresponds to the minimum values of X = 1.27 and

Ste = 0.21. Comparison of these figures demonstrates that varying X and Ste between their maximum

and minimum values has a negligible effect on the form of the spatial porosity distribution.

Consequently, in all subsequent dimensionless numerical experiments, the values of X and Ste are

assumed fixed at X = 2.5and Ste = 0.5*2.

4.3.1.2 The effect of a percolation threshold

The results presented both in this chapter and in chapter 3 are obtained using the permeability-

porosity equation (4.6) over the entire porosity range. As discussed in §4.2.4.I(i), partially molten

2 A value of X = 2.5 corresponds to a value of Ste = 0.6; an oversight led to the value of Ste = 0.5 being used in
the numerical experiments. However, this minor discrepancy has a negligible effect on the numerical results.

51



35
(a)

30
N
~

~
25

X = 3.94
'":.e 20 Ste = 0.75
'"'"~C 15.9 e'"
.~ 10
Cl

5

0.2 0.4 0.6 0.8 1.2 1.4
Dimensionless liquid volume fraction

35
(b)

30
N
Q)

~
25

'" X= 1.27:.e 20
'" Ste = 0.21'"Q)
C 150 e.~
.5 lO
Cl

5

0.2 0.4 0.6 0.8 1.2 1.4
Dimensionless liquid volume fraction

Figure 4.8. Normalised dimensionless spatial porosity (+) and degree of melting (9) distributions,
after 30 time units, with: (a) X= 3.94 and Ste = 0.75; (b) X= 1.27 and Ste = 0.21. In both cases,
KelT = 10, <p = 0.5, and 'l'geo = 10.2• Liquid volume fractions (porosity and degree of melting) are
normalised to the degree of melting at z=0 (<p).
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rocks which are texturally equilibrated are likely to be permeable at very small porosities «0.001), in

which case equation (4.6) is valid over the entire porosity range; however, rocks which are texturally

unequilibrated may be permeable only at porosities greater than the percolation threshold (4)c), in

which case equation (4.6) is not valid over the entire porosity range. The dimensional percolation

threshold estimated by Zhang et al. (1994) for an unequilibrated calcite aggregate is 4>c = 0.04,

although this value does not necessarily represent all texturally unequilibrated rocks (§4.2.4.1(i».

Figure 4.9(a - d) shows the effect of a dimensional percolation threshold of 4>c = 0.04 on the form of

the normalised spatial porosity distributions, for a partial melt zone with lCeff = 10 and 100, and

'l'geo = lO-2 and lO·4, after 30 time units have elapsed. The curves are obtained assuming that the

permeability is given by equation (4.6) for dimensional porosity in the range q, > 0.04, and is zero for

dimensional porosity in the range q,::; 0.04. This assumption represents a simplification of the

permeability-porosity relations for texturally unequilibrated rocks presented in figure 4.3(a), as

strictly, for dimensional porosity in the range 0.04 < q, < 0.06, the permeability is given by equation

(4.29); however, neglecting equation (4.29) has a negligible effect on the permeability-porosity

relations, and obviates the requirement to modify D'Arcy's law to account for the isolated porosity

(Ahern and Turcotte, 1979).

Comparison of figure 4.9(a-d) with the corresponding solutions in the absence of a percolation

threshold (figure 4.7(ii) (c) and (d); figure 4.7(iii) (a) and (b» reveals that in partial melt zones with

these values of lCeff and 'l'geo, the introduction of a percolation threshold has little effect on the form of

the spatial porosity distributions. Only for the case lCeff = 10 and 'l'geo = 10.2 is there a noticeable

difference; the maximum normalised porosity obtained in the presence of a percolation threshold is

-1.48 (figure 4.9(a», compared to a value of -1.35 in the absence of a percolation threshold (figure

4.7(ii) (cj). This counter-intuitive result may be explained if the evolution of the spatial porosity

distribution through time is considered. Figure 4.10 shows the normalised spatial porosity

distribution for the case lCeff = lO and 'l'geo = to-2, after 5, 10, 15, 20, 25 and 30 time units have elapsed

(cf. figure 4.9(a». Tracing the evolution of the spatial porosity distribution, it is clear that the

porosity at the leading edge of the leading porosity wave does not fall to the percolation threshold

until t - 25, by which time the wave is well developed. Consequently, during the evolution of the

leading porosity wave, the presence of a percolation threshold is irrelevant to the dynamics of melt

migration.

However, the presence of a percolation threshold limits the range of values of lCeff and 'l'geo which may

be investigated using the model formulation presented in this chapter. The restriction that the

permeability is zero in regions where q, ::; 4>c, strictly requires that the melt and matrix velocities, and

the compaction rate C (= d(q,wm)loz; §3.3.2), are also zero. The former requirement (wm= WI = 0)

follows simply from the zero permeability restriction, and may be rigorously implemented when
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Figure 4.9. Normalised dimensionless spatial porosity (,) and degree of melting (a) distributions,
after 30 time units, for unequilibrated rocks with a dimensionless percolation threshold of ,; = 0.08
(which corresponds to a dimensional percolation threshold of '0 = 0.04 if <p = 0.5; equation (4.12».
The distributions shown are for (a) K.1f = 10, "'100 = 10.2; (b) K.fI' = 100, "'100 = 10-2; (c) K.fI' = 10,
'l'goo = 10"'; (d) K.IT = 100, "'goo = 10.... In all cases, <p = 0.5, Ste = 0.5, and X. = 2.5. Liquid volume
fractions (porosity and degree of melting) are normalised to the degree of melting at z=O (<p). Note
that both ordinate and abscissa scales differ between plots.
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Figure 4.10. Normalised dimensionless spatial porosity (4)) and degree of melting (8) distributions,
for an unequilibrated rock with a dimensionless percolation threshold of 4>~= 0.08 (which corresponds
to a dimensional percolation threshold of 4>< = 0.04 if rp = 0.5; equation (4.12)). The distributions
are shown after 5, 10, 15,20, 25 and 30 time units, for Kef[ = 10,\if gee = 10-2, <p = 0.5, Ste = 0.5, and
X = 2.5. Liquid volume fractions (porosity and degree of melting) are normalised to the degree of

melting at z=0 (o).
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solving for coriservation of momentum (Appendix A). However, the latter requirement (C = 0)

follows from the resulting change in the rheology of the partially molten rock; because the melt

cannot be 'squeezed' out of the pore space, the bulk viscosity (Ss) of the rock is infinite and so it

cannot compact. This requirement cannot be rigorously implemented because of the way in which the

dimensionless governing equations are formulated. Numerically forcing the compaction rate C to be

zero in regions where <P :s; <Pc correctly represents the change in the rheology of the matrix (Appendix

A). but for values of Ketr :s; 1 and '!'goo ~ I, the numerical solutions no longer conserve mass. The

solutions shown in figure 4.9 are those with the smallest values of Ketr for which mass is satisfactorily

conserved (Appendix A); they correspond to those in which the porosity rarely falls below the

percolation threshold even in the absence of such a threshold (cf. figure 4.70i) (c) and (d) and figure

4.7(iii) (a) and (bj); i.e. to those in which the numerical forcing of the compaction rate C is negligible.

Ironically, it is the solutions with Ketr $ 1 and '!'goo ~ 1which may be most affected by the presence of a

percolation threshold, because it is for these values of Ketr and '!'8oo that the porosity in the absence of a

percolation threshold falls to its lowest values (figure 4.7(i) (a-d». However, as in the case of the

solution shown in figure 4.10, it is likely that for solutions with these values of Ketr and "'800' the

porosity at the leading edge of the leading porosity wave will not fall to the percolation threshold until

the wave is well developed, and it seems reasonable to assume that the most significant effect of a

percolation threshold on the spatial porosity distributions will be to increase the residual porosity left

behind the leading wave.

The results of this section indicate that the presence of a percolation threshold has a significant effect

on the form of the spatial porosity distributions only in partial melt zones with values of Keff :s; 1 and

"'goo ~ I. These values represent a small fraction of the available range (table 4.3); for the majority of

values of Ketr and "'800' the effect of a percolation threshold is negligible. Consequently, the use of the

permeability-porosity equation (4.6) to obtain the results presented in this chapter and in chapter 3

would appear to be justified. Furthermore, the available evidence indicates that partially molten rocks

in the lower crust will be at, or near, textural equilibrium, in which case the percolation threshold is

likely to be negligibly small «0.001) and equation (4.6) is valid in all partially molten rocks

regardless of the value of Keff and "'800 (§4.2.4.l(i». Cheadle (1989) has estimated the time required

for textural equilibrium to be achieved if the rate of equilibration is controlled by diffusion; for a grain

size (diameter) of lrnm, equilibrium will be attained within -10 years. Although this probably

represents a minimum value, and is based on the results of experimental studies on olivine-basalt

systems which represent the partially molten mantle rather than crust, it is significantly less than

typical lower crustal melting times of -0.5-10 M.y. (Hodge, 1974; Fountain et al., 1989), indicating

that textural equilibrium will be achieved. Moreover, lower crustal granulites, many of which are

interpreted to be residues left after the extraction of a granitic partial melt fraction (§2.3.2), are

usually observed to be texturally equilibrated (e.g. Vernon, 1968). However, this observation is based
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on the use of dihedral angle measurements to identify textural equilibrium, an approach which may

not be valid (Elliott et al., 1997); furthermore, the observation that many granulites are texturally

equilibrated now does not necessarily mean that they were so during partial melting and melt

migration.

4.3.1.3 Increase in maximum porosity with time: formation of a magma

If the amplitude of the leading porosity wave continuously increases with time, then the local melt

volume fraction may eventually exceed the eMF, in which case the contiguity of the solid grains

breaks down and a mobile magma forms (§3.3.3). Figure 4.11(a - c) shows a representative selection

of the maximum normalised porosity against dimensionless time curves. In partially molten rocks

with small values of Kdf (::;; to·2) the maximum porosity initially falls until the slope abruptly changes

and the maximum porosity begins to increase, although the rate of increase is slow (figure 4.11(a)).

In rocks with larger values of Keff, the rate of increase of maximum porosity is rapid (figure 4.l1(b -

c)). The effect of increasing 'Vgeo is generally to maintain, or enhance, the rate of increase in the

maximum porosity, especially at large dimensionless times (>25), which is in agreement with the

results of §4.3.1.1. The minimum requirement for magma formation is that the normalised porosity

exceeds I (§3.3.3), maximum normalised porosity against time curves obtained for the full range of

values of Keff and 'l'geo indicate that magma formation is possible in melt zones with values of KetT in

the range 10.2::;; Kdf < t04 and 'Vgeo in the range to-4 ::;; 'l'geo ::;;1 (c.f. §3.3.3). These values are enclosed

by the red square shown in table 4.3; it is clear that they represent the majority of the available values

of Keff and 'Vgeo'

4.3.2 Dimensional Results

4.3.2.1 Form of the spatial temperature, porosity, and degree of melting distributions

The dimensionless spatial porosity and degree of melting (dimensionless temperature) distributions

obtained from the model may be 'dimensionalised' using the characteristic length, time, velocity, and

melt volume fraction scales B, t, Cl), and cp presented in §4.2.3 (equations (4.11) - (4.16». However,

because of the large number of dimensional governing variables which define these characteristic

scales (see table 4.2), the dimensional results are difficult to generalise. In this section, no attempt

will be made to exhaustively investigate the dimensional results which may be obtained; rather,

'typical' results will be presented for given values of the dimensional governing variables. The values

of the dimensional governing variables used are given in table 4.4.

Figure 4.12 shows the porosity (melt volume fraction), temperature, and degree of melting as a

function of vertical distance, after an arbitrary but reasonable time of 2 M.y. (18.4 dimensionless time

units), for 'typical' values of the governing variables (table 4.4). Note that the curve labelled

'Temperature T' represents both the temperature (T) if read from the upper abscissa axis, and the
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Symbol Description Value Units

All results

k Thermal conductivity 2 WK'm"

cp Specific heat capacity 1,120 Jkg"K'

L Latent heat 400,000 J kg"

Tli4 Liquidus temperature of source rock 1440 K

Tsol Solidus temperature of source rock 1160 K

Tli4-Tsol Liquidus-solidus interval 280 K

Tgeo Initial geothermal gradient 7 Kkm"

p Density 2,900 kg m'

pm-ps Melt-matrix density difference 550 kg m?

n Exponent in permeability relation 3 None

Figure 4.12

a Matrix grain radius 3x10'3(3 mm) m

b Constant in permeability relation 111000 None

I-Im Melt shear viscosity lOS Pa s

u, Matrix shear viscosity 10'8 Pa s

1;, Matrix bulk viscosity 10'8 Pa s

Figure 4.13( a)

a Matrix grain radius 3xlO,3(3 mm) m

b Constant in permeability relation 111000 None

I-Im Melt shear viscosity 103 Pas

I-l,; Matrix shear viscosity lOll) Pas

1;, Matrix bulk viscosity lOll) Pa s

Figure 4,13(b)

a Matrix grain radius 3x10'3(3 mm) m

b Constant in permeability relation 111000 None

I-Im Melt shear viscosity 104 Pas

u, Matrix shear viscosity 1019 Pa s

1;, Matrix bulk viscosity 1019 Pa s

Figure 4,13(c)

a Matrix grain radius 5xlO,3 (5 mm) m

b Constant in permeability relation 1/347 None

11m Melt shear viscosity 4xlOs Pa s

I-l,; Matrix shear viscosity 2xlOI8 Pas

~, Matrix bulk viscosity 2xlOI8 Pa s

Table 4.4. Values of the dimensional governing variables used to obtain the results shown in figures
4.12-4.15.



Symbol UnitsDescription Value

Figure 4. I 3(d)
a Matrix grain radius

b Constant in permeability relation

Figure 4. 14(a)

Figure 4.14(b)

Figure4.14(c)

Figure 4.14( d)

Figure 4.15

Melt shear viscosity

Matrix shear viscosity

Matrix bulk viscosity

1.5x 10.3 (l.5 mm)

1/1000

IxlO5

2.5x1017

2.5x1017

m

None

Pa s

Pa s

Pa s

m

None

Pa s

Pa s

Pa s

m

None

Pa s

Pa s

Pa s

m

None

Pas

Pa s

Pa s

m
None

Pa s

Pa s

Pas

m

None

Pas

Pas

Pa s

a Matrix grain radius

Constant in permeability relation

Melt shear viscosity

Matrix shear viscosity

Matrix bulk viscosity

3x I 0-3 (3 mm)

111000

103

1016

1016

Table 4.4 (continued). Values of the dimensional governing variables used to obtain the results
shown in figures 4.12 - 4.15.

a Matrix grain radius

Constant in permeability relation

Melt shear viscosity

Matrix shear viscosity

Matrix bulk viscosity

3x 10-3 (3 mm)

1/1000

104

1017

1017

b

a Matrix grain radius

Constant in permeability relation

Melt shear viscosity

Matrix shear viscosity

Matrix bulk viscosity

l.75xlO-3 (1.75 mm)

1/1000

103

3xlol8

3xlOl8

h

a Matrix grain radius

Constant in permeability relation

Melt shear viscosity

Matrix shear viscosity

Matrix bulk viscosity

3x 10-3 (3 mm)

111000

106

1019

1019

a Matrix grain radius

Constant in permeability relation

Melt shear viscosity

Matrix shear viscosity

Matrix bulk viscosity

3xlO-3 (3 mm)

1/87.5

105

1018

1018



Temperature T (K)

1048
25 ~--------~--------~----------r---------'---------~

20

! 15

N

~
!S
CIl

CS to

1104 1160 1216 1272 1328

\

K"tT - 100
\jI BOO - 10.3
8 -106.1 m
r - 109000 yrs.
t-2 M.y.

Temperature T

,
~\~,
~\
0'~\

\

\
Solid rock ,

\ ,---------------~-------,
Partially

5 molten rock

,,,
\

\ ,,,
o 0.2 0.4

Porosity ~ and degree of melting Vm

0.6
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Chapter 4:Melt generation and segregation in the crust

degree of melting (vm) if read from the lower abscissa axis. The temperature is dimensionalised

assuming that the source rock has a solidus temperature of 1160 K, and a liquidus temperature of

1440 K; these values represent an andesitic greenstone (Beard and Lofgren, 1991; see figure 4.16(a)).

After 2 M.y., the thermal perturbation caused by the emplacement of hot magma has propagated -25

km from the underlying heat source at z=O, and a partial melt zone -8 km thick has been generated.

Melt migration in the partial melt zone has resulted in the formation of a porosity wave, with an

amplitude of -0.5.

Figure 4.13 shows the effect of varying the values of the governing dimensional parameters such that

the characteristic timescale (r) remains (approximately) constant (table 4.4). In all cases, the results

are shown after 2 M.y. has elapsed (18.4 dimensionless time units). The curve labelled 'T and vm'

represents both the temperature (T) if read from the upper abscissa axis, and the degree of melting

(vm) if read from the lower abscissa axis. After 2 M.y., the partial melt zone is -9 km thick for all

cases except that shown in figure 4.13(c). The amplitude ofthe leading porosity wave varies between

plots from -0.25 (figure 4.13(a)) to >0.5 (figure 4.13(b) and(c)); in these latter cases, a mobile magma

would have formed if the CMF - 0.5. Figure 4.14 shows the effect of varying the values of the

governing dimensional parameters such that the characteristic lengthscale (0) remains

(approximately) constant (table 4.4). In all cases, the results are shown after 18.4 dimensionless time

units have elapsed (except for figure 4.l4(a), which is shown after 36.8 time units have elapsed);

however, as the characteristic timescale is no longer constant, the dimensional time elapsed varies

between plots from only -40000 yrs. (figure 4.14(a)) to -20 M.y. (figure 4.l4(d)). The partial melt

zone varies in thickness between plots from -2 km (figure 4.l4(a)) to -18 km (figure 4.l4(d)), and the

maximum porosity varies between plots from -0.48 (figure 4.14(d)) to >0.5 (figure 4.14(b)); again, in

this latter case, a mobile magma would have formed if the CMF - 0.5.

Figure 4.15 shows the effect of varying the value of the degree of melting at the contact (<p), after 2

M.y. (25.2 dimensionless time units) have elapsed. Note the high frequency of the trailing porosity

waves (cf. §3.3.2), and that the maximum porosity attained after 2 M.y. is <0.3, which indicates that

the formation of a mobile magma is unlikely for values of <p :s; 0.2, given that estimated values of the

eMF range from 0.3 - 0.65 (table 4.2).

These results give an indication of the diversity of the dimensional spatial porosity (melt) distributions

which may be obtained using geologically reasonable values of the governing dimensional parameters,

and of the dimensional length and timescales over which melting and melt migration are predicted to

occur (-2 - 20 km and -40000 yrs. - 20 M.y. respectively). Note that these length and timescales are

geologically reasonable; i.e. the thickness of the partial melt zone does not, for example, exceed the

thickness of the crust, and the timescale of melting and melt migration does not exceed the timescale

of heating of the crust (Hodge, 1974; Fountain et al., 1989).

55



Temperature T (K) Temperature T (K)
1160 1188 1216 1244 1272 1300 1328 1160 1188 1216 1244 1272 1300 1328
10 9

9 (a) 8

8 KctT- 10-2 7
(b)

7 'Vgoo -0_1
-6

Kcff- 1
,.-._

o-10607m 'Vgco - 0_01
g6 ]
N

t-2M_y_ 'N'5 0-1061 m
~ 5 j 4

t-2 M_y.u

N 4
'" fIl

is 3 i:S 3

2 <I> T and vm 2 T and Vm

0 0
00 0.1 0.2 OJ 0.4 0.5 0.6 0.1 0.2 0.3 0.4 0.5 0.6

Porosity cjI and degree of melting Vm Porosity cjI and degree of melting Vm

Temperature T (K) Temperature T (K)
1160 1188 1216 1244 1272 1300 1328 1160 1188 1216 1244 1272 1300 1328
4 9

3.5
(c) 8

(d)

3 7 Keff-l()3
'Vlco - 10-3

,.-._

:!6 8 -26.52 m..e 2.5
KcIT- 10 t-2M.y.'-' N 5N

~ 2 'V,co - 10.2 j 4u
Q 0-212.1 mS fIl.~ 1.5 t-2M.y.

....
Cl Cl 3

2

0.5 <I>

0 0
0 0.1 0.2 OJ 0.4 0.5 0.60 0.1 0.2 OJ 0.4 0.5 0.6

Porosity cjI and degree of melting Vm Porosity 4> and degree of melting Vm
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Chapter 4:Me" generation and segregation in the crust

4.3.2.2 Prediction of melt compositions

Figure 4.16(a-d) shows the empirically derived composition, as a function of the temperature and

degree of melting, of the melt obtained during partial melting of a variety of common lower crustal

rock types. The composition of the melt is always granitic (sensu-lato) for degrees of melting up to

-0.4. However, the composition of the melt produced during partial melting of the meta-igneous rock,

types shown in figure 4.l6(a-c) changes from granitic (sensu-stricto) to trondhjernitic, to tonalitic and

finally granodioritic as the degree of melting increases to -0.4 (see figure 4.17 for definitions of these

terms); in contrast, the composition of the melt produced during partial melting of the meta-

sedimentary rock type shown in figure 4.16(d) is granitic (sensu-stricto) for all degrees of melting up

to -0.4.

As discussed in §3.3.4, empirical data such as that shown in figure 4.16 may be used to estimate the

melt composition for a given lower crustal source rock during melting and melt segregation. For

example, consider the melt composition in the leading porosity wave shown in figure 4.12. The

porosity wave is located at a height of -3km; the composition of the melt at this location corresponds

to a degree of melting of -0.28, and for an andestic greenstone, hornblende hornfels, or meta-basalt

source rock, its composition would be described as tonalitic (figure 4.16(a) - (C»3. For a meta-petite

source rock, its composition would be described as granitic (sensu-stricto) (figure 4.16(d». In like

fashion, it may be deduced that the melt composition in the leading porosity wave shown in figure

4.13(b) corresponds to a degree of melting of only -0.04, and would be described as granitic (sensu-

stricto) to trondhjemitic depending upon the source rock type; in contrast, the melt composition in the

leading porosity wave shown in figure 4.l4(d) corresponds to a degree of melting of -0.4, and would

be described as granitic (sensu-stricto) to granodioritic depending upon the source rock type.

Generally, in partial melt zones characterised by smaller values of lCeff, the composition of the melt in

the leading porosity wave corresponds to a smaller degree of melting of the source rock (e.g. compare

figures 4.13(b) and 4.14(d».

As the melt migrates upwards through the partial melt zone, its composition changes to correspond to

a smaller degree of melting of the source rock, because it thermodynamically equilibrates with

partially molten rock at progressively lower temperatures (§3.3.4). For a given source rock

composition, the composition of the melt in a porosity wave therefore depends upon the position of the

3 The temperature scale in figures 4.12-4.15 is dimensionalised using the solidus and liquidus temperatures of
the andesitic greenstone rock shown in figure 4.16(a) (§4.3.2.1). The hornblende hornfels, meta-basalt, and
meta-pelite rocks shown in figure 4.16(b-d) have different solidus and liquidus temperatures; consequently, using
the solidus and liquidus temperatures of these rock types to dimensionalise the temperature scale in figures 4.12-
4.15 changes the temperature scale. However, the shape of the curves, and the porosity/degree of melting seale
from which they are read, is unchanged, so long as the contact temperature is chosen to yield the externally
prescribed value of <p (equation (4.12». Consequently, although the solidus and liquidus temperatures of the
rock types shown in figure 4.16(b-d) are different from those used to dimensionalise the temperature scale in
figures 4.12-4.15, the melt composition which corresponds to a given degree of melting in figures 4.12-4.15 may
nevertheless be estimated for those rock types using figure 4.16(b-d).
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porosity wave relative to the position of the solidus isotherm (the top of the partial melt zone); for

example, the melt in the leading porosity wave shown in figure 4.13(b) corresponds to a smaller

degree of melting than that of the melt in the leading porosity wave shown in figure 4.14(d), because

the melt in the porosity wave shown in figure 4.13(b) has thermodynamically equilibrated with

partially molten rock at lower temperatures, closer to the position of the solidus isotherm. With

decreasing Keff, the position of the leading porosity wave moves closer to the position of the solidus

isotherm (figures 4.7(i-iii) and 4.12-4.14; figure 3.3; see also the discussions in §4.3.1.1 and §3.3.2);

consequently, the composition of the melt in the wave corresponds to a smaller degree of melting of

the source rock. In partial melt zones characterised by values of lCetr <104
, the melt in the leading

porosity wave may occupy a large volume fraction (>0.5) of the source rock, yet its composition

corresponds to only a small «0.4) degree of melting of the rock.

4.3.3 Segregation times and temperatures: estimates of mobile magma compositions

4.3.3.1 Segregation times and temperatures

The results presented in §4.3.1.3 indicate that the formation of a mobile magma is possible in partial

melt zones with values of lCetr in the range 10.2 ~ lCetr < 104 and "'gea in the range "10-4~ "'geo ~ 1. For

these values of lCetr and ",gea, the model may be used to determine the dimensionless time required to

initiate magma formation (the segregation time (tseg»,by recording the time required for the porosity

at any point to reach the eMF (§3.3.3). The model may also be used to determine the initial

normalised dimensionless temperature of the magma (the segregation temperature (9seg», by

recording the temperature at the position of incipient magma formation (§3.3.4). The segregation

time is important, because it may be used to estimate whether the time required for magma formation

is geologically reasonable (§4.3.3.2); the segregation temperature is important, because it dictates the

initial composition of the magma (§4.3.3.2). Figures 4.18-4.20 show examples of the segregation

time, and segregation temperature, as a function of lCetr, for several values of "'gea, <p, and the eMF. In

all cases, Ste = 0.5 and X = 2.5.

Figure 4.18(a, c, e) shows the segregation time as a function of lCetr for "'geo = 10-4, lO-2 and 1, with

<p = eMF = 0.5 and <p = eMF = 0.3 (c.f. §3.3.3). For "'geo = lO-4 and 10-2, segregation times are

shortest (tseg- 5-40) in partially molten rocks with values of KelT in the range 5 to 5x lO3, and increase

with both increasing and decreasing values of KelT; they are shorter for the case <p = eMF = 0.3 than

for the case <p = eMF = 0.5 (figure 4.18(a and cj). For "'geo = 1, segregation times are shortest

(t<eg- 25-30) in rocks with values of 1Ce« in the range 0.25 to lO (figure 4.l8(e». Figure 4.18(b, d, t)

shows the corresponding segregation temperatures as a function of KelT. For "'sea = 10-4, the

segregation temperature for both the cases <p = eMF = 0.5 and <p = eMF = 0.3 increases

monotonically with increasing lCetr, from <0.1 to -0.9 (figure 4.18(b)). In contrast, for "'sea = 10-2, the
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segregation temperature for both the cases <p= CMF = 0.5 and <p= CMF = 0.3 initially increases with

increasing !Cell, and then decreases, ranging from <0.1 to -0.37 (figure 4.18(d». For "'geo = I, the

segregation temperature is always low «0.15) and increases with increasing lCeff (figure 4.18(f).

Figures 4.19 and 4.20 show the effect of increasing the CMF relative to the degree of melting at the

contact (<p). Figure 4.19(a, c, e) shows the segregation time as a function of KelT for "'geo= 10-4, 10-2

and I respectively, with <p = 0.5 and CMF = 0.625 (Le. CMF/<p = 1.25). For "'geo = 10-4, the

segregation time is shortest (tseg - 40) in partially molten rocks with a value of lCeff - 10 (figure

4.1 Yea»~. For 'l'geo= ro', segregation times are shortest (tseg- 20-30) in rocks with values of KelT in the

range 5 to 102 (figure 4.l9(c»; for 'l'geo= I, the segregation time is shortest (tseg- 60) in rocks with a

value of !Cell - 1 (figure 4.19(e». Figure 4.19(b, d, f) shows the corresponding segregation

temperatures as a function of KelT. For both "'geo= 10-4 and I, the segregation temperature increases

monotonically with increasing Kdr, from <0.05 to -0.3 for the case 'l'geo= 10-4, but from only -0.04 to

0.05 for the case "'geo= 1 (figure 4.19(b and f). In contrast, for 'l'geo = 10-2, the segregation

temperature initially increases with increasing Kdr, and then decreases, ranging from -0.05 to -0.2

(figure 4.19(d». Figure 4.20 (a and c) shows the segregation time as a function of KelT for "'8"0 = 10-4

and 10.2 respectively, with <p = 0.4 and CMF = 0.6 (Le. CMF/<p = 1.5). For 'l'geo = 10-4, the

segregation time is shortest (tseg - 60) in partially molten rocks with a value of lCeff - 30 (figure

4.20(a»; for 'l'geo= 10-2, segregation times are shortest (tseg- 30-40) in rocks with values of Kdr in the

range 10 to t03 (figure 4.20(c». Figure 4.20(b and d) shows the corresponding segregation

temperatures as a function of KelT. For "'8"0 = 10-4, the segregation temperature increases

monotonically with increasing Kdr, from <0.1 to -0.3 for the case "'8"0 = 10-4 (figure 4.20(b»; for

'l'gco= 10.2, the segregation temperature initially increases with increasing Kdr, and then decreases,

ranging from -0.015 to -0.04 (figure 4.20(d».

In general, the segregation time (tseg)depends upon the rate of increase of the maximum porosity (e.g.

figure 4.11), and the magnitude of the CMF. The segregation time is a minimum in partial melt

zones with KelT in the range 5 to 5xl03, 'l'geo= 10-4, and CMF = <p(figure 4.18(a», and for a given

value of KelT generally increases with increasing 'l'geoand CMF/<p. The segregation temperature (eq)

depends upon the position of incipient magma formation relative to the position of the solidus

isotherm (§3.3.4); for example, if magma formation occurs in the coolest part of the partial melt zone

just below the solidus isotherm, then the segregation temperature is low. The segregation temperature

is a minimum (-0.01) in partial melt zones with smaillCelr, large 'l'geo, and large CMF/q> (e.g. compare

figures 4.20(d) and 4.18(b», and with the exception of the case "'&eo = 10-2, increases with increasing

!Cell. decreasing 'l'geo, and increasing CMF/q>. The segregation temperature generally increases with

increasing KelT. because in partially molten rocks with small values of Ke«, the position of the porosity
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maximum, and hence the position of magma formation, occurs in the coolest part of the partial melt

zone just below the solidus isotherm (i.e. the top of the partial melt zone); with increasing Ke!r, the

position of the porosity maximum lags further behind the solidus isotherm, so magma formation

occurs in hotter parts of the partial melt zone (§3.3.4 and §4.3.2.2; see also figures 4.7(i-iii) and 4.12-

4.14). Likewise, the segregation temperature increases with decreasing '!'goo and eMF/cp, because the

position of the porosity maximum, and hence the position of magma formation, occurs in cooler parts

of the partial melt zone, closer to the position of the solidus isotherm. The anomalous decrease in the

segregation temperature with increasing Ke!r (for values >10-1(0) observed for the case 'JIgeo = 10.2

(figures 4.18(d), 4.19(d) and 4.20(d») occurs because for these values of Ke!r, the leading porosity wave

bifurcates, and with increasing Ke!r the position of the porosity maximum moves closer to the position

of the solidus isotherm.

4.3.3.2 Predicting magma mobilisation times and compositions

For a given set of dimensional variables, the dimensional time required to initiate magma formation,

and the dimensional temperature (T) (and corresponding degree of melting (vm» at the position of

incipient magma formation, may be estimated using the dimensionless segregation time (tscg)and

temperature (Oseg) against Ke!r plots presented in §4.3.3.1 (figures 4.18-4.20). The procedure is

relatively straightforward:

(i) calculate values for the dimensionless effective thermal diffusivity (Ke!r) and the dimensionless

initial geotherm ('JIgoo) using the expressions (simplified from those presented in §4.2.3)

(4.38)

and

(4.39)

(ii) using a plot (figures (4.18-4.20» suitable for the values of 'JIgeo' cp, and the eMF, record the

dimensionless segregation time (tscg)which corresponds to the calculated value of Ke!r.

(iii) convert this to the corresponding dimensional time (t) using the expression (§4.2.3)

(4.40)

(iv) using a plot (figures (4.18-4.20» suitable for the values of 'JIFO' cp, and the eMF. record the

dimensionless segregation temperature (escg)which corresponds to the calculated value of Ke!r.

(v) convert this to the corresponding dimensional degree of melting (vrn>using the expression (§4.2.3)

(4.41)
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(vi) convert this to the corresponding dimensional temperature (T) using the expression (§4.2.3)

(4.42)

The dimensional segregation times and temperatures obtained using equations (4.38)-(4.42) and

figures 4. 18-4.20 compare favourably with those obtained directly from the numerical solutions. For

example, consider the dimensional variables used to obtain the solution shown in figure 4.13(b) (table

4.4). Substituting these values into equations (4.38) and (4.39) yields a value of K'dr = 0.991 (-1) and

"'geo = 0.032 (_10-2). Assuming that <p - 0.5, and that the eMF - 0.5, figure 4.18(c) yields a

segregation time of tseg- 23, and figure 4.18(d) yields a segregation temperature of 9seg- 0.06.

Substituting these values into equations (4.40) - (4.42) yields a dimensional segregation time of -2.2

M.y., a dimensional degree of melting of -0.03, and a dimensional segregation temperature of

-1170 K. For comparison, the numerical solution yields a dimensional segregation time of -2 M.y, a

degree of melting of -0.03, and a segregation temperature of -1170 K. The slight discrepancy

between the dimensional segregation time obtained directly from the numerical solution and that

estimated from figure 4.18(c) occurs because the value of "'gea used to obtain the numerical solution

("'geo - 0.032) is slightly different to that used to obtain the segregation times shown in figure 4.18(c)

("'geo - 0.0 I).

Having estimated the dimensional degree of melting (vm) at the point of incipient magma formation,

the initial composition of the melt fraction of the magma may be deduced using empirical data such as

that shown in figure 4.16. For example, consider again the partial melt zone shown in figure 4.13(b),

in which the degree of melting at the position of incipient magma formation is -0.03. The initial

composition of the melt fraction of the magma therefore corresponds to a degree of melting of -0.03,

and for an andesitic greenstone, hornblende hornfels, or meta-basalt source rock, its composition

would be acidic (high Si02) granitic (sensu-stricto) to trondjhemitic (figure 4.16(a-c». For a meta-

pelite source rock, its composition would be granitic (sensu-stricto). Note that the composition of the

melt fraction which forms the magma corresponds to a small degree of melting of the source rock

(-0.03), despite having accumulated until it exceeds the eMF (-0.5).

When the dimensionless segregation temperature shown in figures 4. t 8-4.20 is dimensionalised to

yield the corresponding degree of melting (equation (4.41), it becomes apparent that the degree of

melting at the position of incipient magma formation is always small relative to the CMF. For

example, if q> = 0.5, then the degree of melting generally varies from only -0.01 (figure 4.l9(d); note

that the CMF = 0.625) to -0.2 (figure 4.18(d); note that the CMF = 0.5); only in figure 4.l8(b), for

values of KetJ ~ 103 and "'sea= 10-4, does the degree of melting exceed -0.4. Consequently, in partial

melt zones with values of KdJ < 103 and "'sea~ 10-4(i.e. the majority of values of lCc« and "'po for

which magma formation is predicted), the composition of the melt fraction which forms the magma
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corresponds to only a small «0.4) degree of melting of the source rock. In typical lower crustal

source rocks, a degree of melting of <0.4 yields melt which is granitic (sensu-lata) in composition

(figure 4.16; see also table 2.1); consequently, the composition of the melt fraction which forms the

magma is granitic.

4.4 Discussion

4.4.1 The mobilisation of granitic melt in the continental crust

A quantitative, I-D physical model of a partial melt zone in the lower crust has been presented, and

the dynamics of melt generation, segregation and mobilisation within the zone have been

characterised in terms of five externally prescribed dimensionless parameters: the dimensionless

effective thermal diffusivity (Keff); the dimensionless initial geothermal gradient ('!'goo), the degree of

melting at the contact between the partially molten rock and the underlying heat source (<p), the Stefan

number (Ste), and the ratio of the thermal diffusivities in the partially molten rock and the overlying

solid rock (X).

The spatial distribution of the melt volume fraction (porosity) within the partial melt zone depends

upon the relative rates of upward transport of melt and heat, and for given values of'llgco,<p, Ste and X,

is predominantly governed by the magnitude of 1Ce«. In melt zones characterised by values of ICe« in

the range 10-2S lCetf < 104, the rate of melt transport is rapid compared to the rate of heat transport, so

the melt migrates upwards faster than the position of the solidus isotherm. The melt cannot migrate

beyond the position of the solidus isotherm, because at that position the porosity and hence

permeability falls to zero; effectively, the solidus isotherm acts as a 'lid' on the top of the partial melt

zone. Consequently, the melt accumulates below the solidus isotherm, and a porosity wave forms.

The amplitude of the leading porosity wave increases with time, and eventually, the local melt volume

fraction may exceed the CMF, in which case the solid matrix disaggregates and a mobile magma

forms, which may migrate away from the partial melt zone if a suitable route is made available;

magma formation is predicted unless the eMF is more than 50% greater than the degree of melting at

the contact (e),

With increasing height, the temperature in the partial melt zone decreases; consequently, as the melt

migrates upwards, it continually thermodynamically equilibrates with solid phase at progressively

lower temperatures, and its composition changes to correspond to a smaller degree of melting of the

source rock. If the melt accumulates to form a porosity wave close to the position of the solidus

isotherm where the temperatures is low, then the composition of the melt corresponds to only a small

degree of melting of the source rock, despite occupying a large volume fraction of the rock.
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Moreover, if the amplitude of the porosity wave increases until a mobile magma forms, then the

composition of the melt fraction of the magma corresponds to only a small «0.4) degree of melting of

the source rock. This result, in conjunction with empirical data, indicates that in partially molten

source rocks characterised by Keff in the range 10-2 S; Keff S; 103, the composition of the meltfraction of

the mobile magma is granitic (sensu-lato).

4.4.2 Application of the numerical results

Ideally, for a given lower crustal rock type and tectonic setting, the values of the dimensional

governing variables would be uniquely defined, in which case the values of the dimensionless

governing parameters Keff, 'Vgeo, Ste and Xwould also be uniquely defined, and the only 'free' variable

would be <p, the degree of melting at the contact between the partially molten rock and the underlying

heat source. If this were the case, the model could be used to predict specific timescales for magma

mobilisation, and in conjunction with empirical data, specific magma compositions. Variables such

as the latent heat (L), specific heat capacity (cp), thermal conductivity (k), solidus-liquidus interval

(Thq- Tsol), and density (p) are well constrained for a given rock type (§4.2.4.1), and the melt shear

viscosity may be calculated if compositional data is available (e.g. figure 4.4). However, the matrix

bulk and shear viscosities (1;., and Jls), and the permeability constant (b), are poorly constrained;

moreover, although values of the grain size (a) are likely to lie within the range given in table 4.2, it is

difficult to allocate a specific value. Consequently, the magnitude of the key dimensionless governing

parameter Keff is poorly constrained even for a given lower crustal rock type and tectonic setting

(equation 4.38).

By inspection of equation (4.38), it is possible to gauge the effect of varying the dimensional variables

on the magnitude of Keff, and hence on the dynamics of melt generation, segregation and mobilisation.

Low matrix bulk and shear viscosities (_1015), high melt viscosities (_107), a small permeability

constant (1/2500), and a small grain size (radius - 0.25mm), promote large values of Keff (>103), for

which magma mobilisation will not occur. Conversely, high matrix bulk and shear viscosities

(_1021), low melt viscosities (_103), a large permeability constant (1/50), and a large grain size

(radius - 5mm), promote small values of lCeff «10-2), for which mobilisation will again not occur.

This latter result is counter-intuitive; low melt viscosities, a large permeability constant, and a large

grain size might be expected to promote efficient melt segregation. However, in partial melt zones

characterised by values of 1Ceff <10-2, the melt freezes rapidly as it migrates into cooler regions of the

partial melt zone, so the porosity, and hence permeability, is always low; consequently, melt

segregation is inhibited (§3.4.1). Melt segregation and magma mobilisation is predicted in partial

melt zones with matrix and melt viscosities, permeability constants, and grain sizes in the mid-range

of those presented in table 4.2, or in partial melt zones where, for example, high melt viscosities are
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countered by high matrix viscosities, or a large grain size is countered by a small matrix viscosity, to

yield a value of ICeIT in the range 10-2 ~ ICeIT < 104
• Within this range of values of 1Ce«, higher matrix

viscosities, larger grain sizes, and smaller melt viscosities yield mobile magma in which the

composition of the melt fraction corresponds to a smaller degree of melting of the source rock.

The advantage of working with dimensionless equations is that the results obtained are general, and

are not invalidated by the use of poorly constrained variables. However, the results are of limited

value unless they may be used by other workers. The dimensionless segregation time and temperature

curves presented in figures 4.18-4.20 were derived because, in conjunction with equations (4.38)-

(4.42), they may be used to estimate the dimensional time required for melt segregation, and the

degree of melting to which the composition of the segregated melt corresponds (§4.3.3.2). Previous

estimates of the time required for melt segregation in the crust have been based on the characteristic

compaction time of McKenzie (1985, 1987)

hllmell

in which the porosity ell is equated with the degree of melting of the source rock, and h denotes the

source region thickness (see the discussion in §2.3.4.1). Yet equation (4.43) is obtained from a simple

model of buoyant fluid flow through a deformable mush which does not adequately reproduce the

complexity of a crustal partial melt zone, and generally yields unreasonably high estimates of the time

required for melt segregation (§2.3.4.1). For example, consider the time required for melt segregation

in a partial melt zone with ;. - J..ls - 1018 Pa s, J..I.m - lOSPa s, a - 2.5mm, b - 111000, (PI - Pm) - 500

kg m', <p - CMF - 0.5, and the values of k, Cp, L, (Tliq - Tsol), Tgeo' and P given in table 4.4. Using

figures 4.18-4.20 and equations (4.38) - (4.42), yields a geologically 'reasonable' time of -4 M.y to

segregate a granitic melt fraction with a composition corresponding to a degree of melting of -0.1. In

contrast, setting cl> = 0.1, assuming a source region thickness of h -5 km, and substituting for the

values of f.Lm, a, b, and (P. - Pm) in equation (4.43), yields a geologically unreasonable time of -45 M.y.

4.4.3 Comparison of the model predictions with geological evidence

The geological evidence suggests that granitic (sensu-lato) melt must often segregate in the source

region, from partially molten rock in which the solid matrix maintains an interconnected matrix

(§2.3.2). For example, partial melts of granitic composition represent only small (<CMF) degrees of

partial melting of their source rocks; moreover, many exposed lower crustal granulite terrains exhibit

geochemical and mineralogical characteristics which indicate that they are residues left after the in-
situ extraction of a granitic partial melt fraction (e.g. Fyfe, 1973; Clifford et al., 1981; Clemens, 1989,

1990; Pin, 1990; Vielzuf et al., 1990). Of these, some retain mesoscopic layering structures which

indicate that the matrix was not disrupted during segregation of the melt (Clemens, 1990). The model
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presented in this chapter predicts that in partial melt zones characterised by a wide range of values for

the governing variables, melt which corresponds to only a small «CMF) degree of partial melting of

the source rock, and which is granitic (sensu-lato) in composition, will segregate and accumulate until

it forms a mobile magma. Except in the localised region of magma mobilisation, the solid matrix of

the partially molten rock is not disrupted during segregation, and remains in the source region as a

'restitic' residue. The mineralogy of the residue, predicted from empirical data (Vielzuf and

Holloway, 1988; Beard and Lofgren, 1991; Patino Douce and Johnston, 1991; Rushmer, 1991; Rapp

and Watson, 1995), corresponds to that of many granulite terrains (anhydrous plagioclase + pyroxene

± quartz, olivine, garnet, magnetite, ilmenite).

Geochemical evidence suggests that many trondjhemite-tonalite-granodiorite (TIG) suites, such as

the Cordillera Blanca Batholith in the Peruvian part of the Andes, originate by partial melting of

newly underplated basalt (e.g. Atherton and Petford, 1996; Petford and Atherton, 1996). For a

basaltic source rock, empirical data is available from which melt compositions may be deduced (figure

4.16), and the dimensional time required for segregation, and the composition of the segregated melt,

may be estimated using figures 4.18-4.20 in conjunction with equations (4.38)-(4.42). Table 4.5

shows suitable values for the latent heat (L), specific heat capacity (cp), thermal conductivity (k),

solidus-liquidus interval (Tliq-T""I), and density (p). The viscosity of the granitic melt produced during

partial melting of a basaltic rock is _104 Pa s (figure 4.4); assuming that the rock is at or close to

textural equilibrium, a suitable value for the constant b in the permeability equation is -1/500

(§4.2.4.1(i». The remaining variables required are the matrix bulk and shear viscosities (I;. and ~),

the grain size (a), the CMF, and the degree of melting at the contact «j). If it is assumed that the

grain size (diameter) is -5mm, and that (j) - CMF - 0.5, then for matrix viscosities of

1;,. - u, _1015 Pa s, the time required for melt segregation is -15,000 yrs, and the composition of the

segregated melt is granodioritic-tonalitic. With increasing matrix viscosity, the time required for melt

segregation increases, and the composition of the segregated melt becomes tonalitic. For matrix

viscosities of I;. - ~ _1020 Pa s, the time required for melt segregation is -10 M.y., and the

composition of the segregated melt is trondhjemitic. Note that the the most abundant rock type in the

Cordillera Blanca Batholith is trondhjemite (Atherton and Petford, 1996); these results may therefore

indicate that the bulk and shear viscosities of partially molten basalt are most likely to lie in the range

_1017 - 102°Pas.

The model in its current form uses only a simple pararneterisation of the 'degree of melting' to

predict, semi-quantitatively, melt and matrix compositions during melting and melt segregation.

However, until the values of the governing variables, and the compositions and melting relations of

the source rocks, are better constrained by experimental and theoretical data, a more sophisticated

approach is not warranted. At this stage, it suffices that the model predicts the generation and
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Symbol Description Values Units

k thermal conductivity 2 WK1m-1

cp specific heat capacity 1,200 Jkg-1K1

L latent heat 600,000 Jkg'

Tliq- Tsol liquidus-solidus interval 300 K

P density 3,000 kgm"

Ps-Pm matrix-melt density difference I 600 kg m"

f.lm melt shear viscosity' 104 Pas

b constant in permeability relation' 11500 None

Tgeo initial geothermal gradient 7 Kkm"

a matrix grain radius 2.SxlO-3 (2.Smm) m

CMF Critical Melt Fraction O.S None

<p degree of melting at the contact 0.5 None

Table 4.5. Suitable values of the dimensional variables for a basaltic source rock in the lower crust.

I Obtained from figure 4.21.

2 Obtained from figure 4.4.

~ Assuming the partially molten rock is at, or near, textural equilibrium. The value of 1/50 predicted for
texturally equilibrated rocks using the data of Cheadle (1989) was not used, because the data of Cheadle (1989)
overestimates the permeability at high porosities (>0.01 - 0.19) (§4.2.4.1 (i».
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segregation of granitic (sensu-lata) melt within geologically reasonable timescales, and in agreement

with the geological evidence.

4.4.4 The effect of fractures in the partial melt zone

The results presented both in this chapter, and in chapter 3, were obtained assuming that melt in the

partially molten crust flows solely along grain edges until the formation of a mobile magma. In

contrast, melt in the partially molten mantIe appears to flow along grain edges only until it reaches a

network of macroscopic fractures, through which it may rapidly migrate upwards away from the

partial melt zone (e.g. Lister and Kerr, 1991; Takada, 1994). Ifmelt flow occurs predominantly along

grain edges, then the melt thermodynamically equilibrates with the matrix through which it passes,

and its composition corresponds to that predicted by batch (equilibrium) melting (§3.2.2). In contrast,

if melt flow occurs predominantly through fractures, then its composition corresponds more closely to

that predicted by fractional melting (McKenzie and Bickle, 1988;Watson and McKenzie, 1990). The

presence of fractures may therefore have a significant effect on the composition of the melt which

segregates from the partial melt zone.

Significant quantities of melt will flow through fractures only if they extract melt efficiently from the

partial melt zone. The results of Lister and Kerr (1991) indicate that a fracture filled with buoyant

melt will spontaneously propagate if its length is of the order of (1-2) hundreds of metres and its

width is of the order of millimetres; if such fractures are present in a crustal partial melt zone, they

will propagate upwards towards the position of the solidus isotherm. However, the conductive

transport of heat from the melt at the tip of the propagating fracture is rapid compared with the

advective transport of heat to the tip; consequently, freezing of the melt at the tip halts the fracture

soon after it propagates beyond the position of the solidus isotherm into the overlying solid rock

(Rubin, 1995). Consequently, it is unlikely that such fractures will transport significant quantities of

melt through the partial melt zone. Moreover, the nucleation of such fractures is poorly understood.

A large positive volume change on melting may generate cracks at the grain scale (Clemens and

Mawer, 1992), but the coalescence of these small cracks to form a fracture with the critical size

required for propagation has not been considered. Banks (1996) has modelled numerically the

nucleation of fractures in the partially molten asthenosphere, and concludes that externally driven

horizontal extension at strain rates greater than _10.14 s' generates large vertical fractures near the

top of a high porosity region. However, granitic bodies are not found exclusively in extensional

regimes (Brown, 1994), which indicates that extension is not required to facilitate granitic melt

segregation. In short, it is not clear how fractures are initiated in a crustal melt zone, and in contrast

to the mantle, any fractures which do form are unlikely to transport significant quantities of melt.
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4.4.5 The assumptions of the model

The conservation equations (4.1) - (4.6) governing the model presented in this chapter are valid

assuming (i) that the thermodynamic properties of the melt and matrix are identical and constant; (ii)

no internal heat production; (iii) that the pressures in melt and matrix are equal; (iv) that both melt

and matrix may be treated as Newtonian fluids with constant viscosities; (v) that the flow of both melt

and matrix is low Reynolds number; (vi) validity of the Boussinesq approximation; (vii) a constant

melt-matrix density contrast (§4.2.1); (viii) local thermodynamic equilibrium, and (ix) that the

partially molten rock is homogeneous and isotropic. It is reasonable to question the validity of these

assumptions when applied to a partial melt zone in the lower crust.

The assumption that the thermodynamic properties of both melt and matrix are identical and constant

is valid; thermal conductivities and specific heat capacities for common lower crustal minerals vary by

less than 20-25% over the temperature range 600 - 13ooK, and differ by less than 25% between

minerals and their melts (Murase and McBimey, 1973; Richet and Bottinga, 1986; Neuville et al.,

1993; Clauser and Huenges, 1995). The assumption of no internal heat production in the lower crust

is also valid, as the available evidence indicates that radiogenic isotopes tend to be concentrated in the

upper crust (Lachenbruch, 1970; Lachenbruch and Sass, 1978; Pollack and Chapman, 1977). If

significant internal heat production did occur, the effect would be to increase the volume of melt

generated in the partial melt zone, and consequently enhance the porosity, permeability, and rate of

melt migration.

The assumption of equal melt and matrix pressures is discussed in §3.4; it is equivalent to assuming

that the matrix creep rate is rapid compared to the matrix strain rate. For the strain rates predicted by

the model, the matrix deforms by melt enhanced diffusion creep (§4.2.4.1(iii», and the assumption of

equal melt and matrix pressures is valid (§3.4.2). Likewise, the assumption of a Newtonian rheology

for the matrix is valid (§4.2.4.1 (iii», although the assumption of constant matrix bulk and shear

viscosities may not be. The values of the bulk and shear viscosity depend upon composition,

temperature, grain size, and porosity, and the dependence is poorly understood (§4.2.4. 1(iii»,

although the effect of compositional and temperature variations across the partial melt zone is likely

to be negligible compared to the effect of grain size and porosity variations. Assuming a constant

mean grain size, the key control becomes porosity; the variation in bulk viscosity with porosity (void

space) shown in figure 4.6 is less than 1 order of magnitude for porosities in the range

0.005 < cl> < 0.1. Although this data is derived from equation (4.33), which ignores the effect of melt

in the pore spaces, a small «1 order of magnitude) variation in both the bulk and shear viscosities

with melt volume fraction (porosity) is in agreement with the results of deformation experiments

(Arzi, 1978; van der Molen and Paterson, 1979), which indicate that the strength of the matrix

remains approximately constant until the melt volume fraction approaches the eMF.
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Although the rheology of silicate melts at high viscosities (> lO9 Pa s) and strain rates (> lO-4 S-I) is

non-Newtonian (e.g, Webb and Dingwell, 1990); for the melt shear viscosities predicted in

*4.2.4.1 (ii), and the strain rates predicted by the model, the assumption of a Newtonian rheology for

the melt is valid. The viscosity of granitic (sensu - lato) melt of constant composition varies by -4 to

7 orders of magnitude over the temperature range 973 - 1293 K (e.g. Shaw, 1963; Murase and

McBirney. 1973; Ryan and Blevins, 1987), an observation which prompted Fountain et al. (1989), in

their model of melt generation and segregation in the crust, to assume that the melt viscosity varies by

- 6 orders of magnitude over the temperature range 973 - 1293 K. However, the results of §4.2.4.1 (ii)

indicate that the viscosity of granitic melt produced during partial melting over the temperature range

1093 - 1293 K varies by less than 0.1 - larders of magnitude, because of changes in the silica and

water content of the melt during melting. The assumption of constant melt viscosity is therefore

reasonable.

The assumption that the flow of both melt and matrix has a low Reynolds number (Re) is valid if

Re )vlL «I (4.44)
v

where v is a characteristic velocity, L is a characteristic lengthscale, and v is the kinematic viscosity.

With v - 0) and L - a (McKenzie 1984), the maximum Reynolds number for the melt is _10-9, and for

the matrix _10-22; the assumption that the flow of both melt and matrix has a low Reynolds number is

therefore valid.

The Boussinesq approximation is commonly invoked in fluid dynamics; essentially, it is equivalent to

assuming that volume, rather than mass, is a conserved quantity. The effect of this assumption is to

under-estimate the volume of melt produced, although the effect will be negligible unless the volume

change on melting is large. For meta-sedimentary rocks with densities of -2600 - 2800 kg m",

containing -lO - 40 wt% biotite, Clemens and Mawer (1992) calculate the volume change on melting

to be -3 - 18 vol%, which does not lead to a significant underestimate of the volume of melt produced.

The density contrast between the melt and matrix (PI - pm>depends upon the densities of the melt (Pm)

and matrix (P.), which in turn depend upon their compositions. During melting, the compositions of

both melt and matrix continually change (cf. 4.2.4.1(ii». If the composition of the melt is known, its

density may be calculated using the empirical model of Lange and Carmichael (1987); if the mineral

mode of the matrix is known, then the density of the matrix may be calculated using density data for

individual minerals (Deer et al., 1992). Figure 4.21 shows the calculated melt density, matrix

density, and melt - matrix density contrast as a function of temperature, during partial melting of

hydrated basalts and andesites. As melting proceeds, the denser, more refractory minerals are

consumed, and both the melt and matrix densities generally increase with increasing temperature.
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However, the density contrast remains approximately constant, varying by <10% from its mean value

in each case, which indicates that the assumption of a constant density contrast is reasonable. Note

that a volume change on melting of -25% is required to produce the density contrast of -600 kg m"

observed in figure 4.21, which indicates that in these meta-igneous rocks, which melt primarily by the

decomposition of amphibole rather than biotite, the volume change on melting is higher than that

estimated by Clemens and Mawer (1992) for meta-sedimentary rocks.

Local thermodynamic equilibration during melting and melt segregation has a significant effect on the

compositional evolution of the melt as it migrates through the partial melt zone. Maintenance of

equilibrium requires that the rates of thermal and chemical equilibration are rapid compared to the

rate of thermodynamic evolution. Rates of thermal equilibration are rapid; the kinetic limit on the

rate of chemical equilibration is component diffusion in the solid phase (§3.4.2). Local

thermodynamic equilibrium is maintained only if the rate at which components diffuse in the solid is

rapid compared to the rate at which components are advected by the melt. Assuming that melt flow

occurs along grain edges, the assumption of local equilibrium during melting and melt segregation in

a crustal melt zone is valid except for the fastest rates of advective component transport, the slowest

rates of component diffusion, and a grain size (radius) greater than -1.4mm (§3.4.2).

Finally, the assumption that the lower crust is homogeneous and isotropic is unlikely to be valid in all

lower crustal melt zones. For example, meta-sedimentary protoliths are likely to be layered, and both

the composition and rheology of the layers may differ (Brown et al., 1995). Rheological differences

between the layers may facilitate deformation enhanced melt segregation, in which melt flows along

grain edges and collects in dilatant sites such as shear bands, tension gashes, and boudins (Sawyer,

1991. 1994; Brown, 1994; Brown et al., 1995). Deformation enhanced melt segregation operates at

the cm-m scale, rather than at the km scale predicted by the model presented in this chapter, and if

the segregated melt cannot escape from the source region, results in the formation of migmatites

(Brown, 1995). The model presented in this chapter is most likely to be suited to melting of meta-

igneous protoliths in the deep crust; for example, in regions such as convergent plate margins where

the lower crust is comprised of homogeneous primitive basalt emplaced by repeated underplating

(Kana et al., 1989; Rudnick, 1992; Atherton and Petford, 1996; Petford and Atherton, 1996; Petford

et al., 1996).

4.4.6 The model of Fountain et al. (1989)

The only previous attempt to formulate a quantitative model of melt generation and segregation in the

continental crust is that of Fountain et al. (1989). They correctly observe that the phase change and

phase transport aspects of melt generation and segregation are coupled processes, and formulate a set

of conservation equations governing the transport of heat, mass and momentum which they solve
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numerically. Their results are qualitatively similar to those obtained from the model presented in this

chapter in that they too predict the formation of a mobile magma (their 'melt pool'), yet in all other

aspects they are dissimilar. However, the problem they attempt to solve is rather more complex than

that considered in this chapter. For example, rather than modelling the partial melt zone only until

the incipient formation of a mobile magma ('melt pool'), they attempt to include a description of the

subsequent development of the melt pool. Furthermore, they include a description of the underlying

magma heat source rather than assuming constant heating, and include a description of variable melt

viscosity rather than assuming constant melt viscosity.

However, a close examination of their formulation and method of solution reveals a number of

significant errors and ambiguities. For example, the I-D expressions they present governing both

conservation of heat and mass are incorrectly formulated, because they do not include the term

(WI +Ws - Wm)dPIVl/dZ when describing the rate of phase change (or rate of melt production) (cf.

equation 3.22). Rather, they describe the rate of phase change as a function of the rate of temperature

change only, and do not recognise that phase change occurs both because the temperature field

changes temporally, and because the phases migrate through a temperature field which changes

spatially (see §3.2.2). The term (WI + W. - wm)dp,v,/dZ is important because it describes component

exchange between the melt and matrix during melt migration, which causes the composition of the

melt to evolve and results in the segregation of granitic melt. Its neglect means that the model of

Fountain et al. (1989) fails to describe a crucially important process.

Their method of solution is ambiguous because they do not explain how they solve for the melt and

matrix velocities. The purpose of the Boussinesq approximation invoked in chapter 3 is to locate the

melt and matrix velocities in the barycentric reference frame, in which the mixture velocity is zero,

and in which the melt and matrix velocities are related by ~wm= -(1-~)ws- The melt velocity may then

be eliminated from the equation governing conservation of momentum (equation 3.21), and the

equation solved independently for the matrix velocity. No such procedure is described by Fountain et

al. (1989), yet unless the mixture velocity is specified, the melt and matrix velocities cannot be related

to one another (equation 3.15), and the governing equations cannot be solved independently for the

melt or matrix velocity. Furthermore, they do not explain how they solve for variable melt viscosities;

nor how they non-dimensionalise the governing equations prior to solution. In view of this, and the

preceding discussion, the validity of the results presented by Fountain et al. (1989) should be treated

with caution.
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4.5 Conclusions

In chapter 2 it was argued that the production of mobile, granitic magma by partial melting of rocks

in the mid- to lower continental crust presents a paradox. Melting occurs under water-absent or

Water-undersaturated conditions, and is caused by the advection of heat from the mantle to the crust,

either by basaltic underplating, asthenospheric upwelling. or a combination of these processes.

During partial melting of the protolith, the unmelted solid fraction (restite) maintains an

interconnected matrix unless the melt volume fraction reaches the Critical Melt Fraction (CMF). In

order to form a granitic magma. the granitic partial melt fraction must separate to some extent from

its restite; experimental and field evidence indicates that melt volume fractions which are granitic in

composition are small «0.4). and segregate in the source region from partially molten rock in which

the restite maintains an interconnected matrix. The paradox is that melt generation and segregation

appears to occur at melt fractions which are less than the CMF, yet magma mobilisation can occur

only at melt fractions which are greater than the CMF. How then does a small granitic partial melt

fraction form a mobile granitic magma?

In this chapter. a quantitative physical model has been presented of a crustal partial melt zone which

is produced by heating from below. The results obtained indicate that in partial melt zones with

suitable thermal and physical characteristics, melt which corresponds to only a small (<0.4) degree of

partial melting of the source rock. and which is granitic (sensu-lato) in composition, will segregate

from the partially molten rock matrix and accumulate until it exceeds the CMF. The resulting

granitic magma is mobile, and may migrate away from the partial melt zone if a suitable route is

available. Except in the localised region of magma mobilisation, the solid matrix of the partially

molten rock is not disrupted, and remains in the source region as a 'restitic' residue; the predicted

mineralogy of the residue corresponds to that of many granulite terrains. Thus the paradox is

resolved: a small granitic melt fraction has segregated in the source region, from partially molten

rock in which the restite maintains an interconnected matrix, and has accumulated until it forms a

mobile magma.

The values of the variables which govern the dynamics of melting and melt segregation. such as the

matrix bulk and shear viscosities, are poorly constrained even for a given rock type and t~tonic

setting; consequently. the model cannot as yet be used to predict specific timescales for segregation or

specific melt compositions. However, a series of dimensionless curves are presented which may be

used to estimate the segregation timescale. and in conjunction with empirical data, the composition of

the segregated melt. For example. melt is estimated to segregate from a basaltic source rock in

-15,000 yrs. to 10 M.y .• depending upon magnitude of the matrix bulk and shear viscosities, and the

estimated composition of the segregated melt varies from trondjhemitic to granodioritic. In general.

melt segregation and mobilisation is predicted in partial melt zones characterised by values of the
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variables in the mid-range of those estimated for lower crustal rocks, or in partial melt zones where,

for example, high melt viscosities are countered by high matrix viscosities, or a large grain size is

countered by a small matrix viscosity.

The model presented in this chapter is formulated assuming that heating occurs from below, following

the emplacement of hot magma adjacent to the protolith; however, cooling of the underlying magma

heat source is neglected, so as not to obscure the processes which occur in the partially molten rock.

Moreover, only the model represents only the processes which lead to the formation of a mobile

granitic magma. In chapter 5, the heat source required for melt generation and magma mobilisation

is considered; in chapter 6, the consequences of magma formation and the subsequent evolution of the

magma are discussed.
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Chapter 5: The heat source for melt generation:

conjugate solidification of underplated basalt and melting

in the overlying crust.

"....granite emplacement is.....often accompanied by important magmatic activity involving basic

magma, largely or entirely derived/rom the mantle." (Leake, 1990, p. 580)

5.1 Introduction

The quantitative model of melt generation and segregation presented in chapter 4 is formulated

assuming that melting of the source rock occurs due to heating from below, following the

emplacement of hot, mantle derived magma; in the mid- to lower crust, this may be as a result of

basaltic underplating, asthenospheric upwelling, or a combination of these processes (§2.2). The

results obtained indicate that, for a wide range of the governing parameters, granitic (sensu - lato)

melt may segregate from its partially molten host rock and form a mobile magma. However, the

model does not consider explicitly the transport of heat from the underlying magma to the overlying

source rock; rather, a constant temperature is assumed at the contact between magma and rock. As

discussed by Bergantz (1992), heating of the rock and cooling of the magma are conjugate processes

which should be modelled simultaneously; in this chapter, a suitable description of heat transport

within and from the underlying magma heat source will be coupled with the description of heat, mass

and momentum transport in the overlying rock presented in chapter 4. The aim of the chapter is to

investigate the viability of basaltic underplating as a heat source for the generation of mobile granitic

melt.

Previous models of underplating have considered melt generation in meta-sedimentary source rocks

(Bergantz, 1989), and tonalitic-granodioritic source rocks (Huppert and Sparks. 1988; Bergantz,

1989; Fountain et al. 1989; Bergantz and Dawes, 1994). However, underplated basalt may itself act

as a fertile source of granitic melt; for example. newly underplated basalt concomitant with crustal

thickening has been invoked as the source rock of granitic batholiths such as the Cordillera Blanca in

the Peruvian part of the Andes (Atherton and Petford, 1996; Petford and Atherton. 1996), and the

Chilliwack in the western U.S.A (Tepper et al., 1993). In this chapter, the source rock will be

assumed to be basaltic, and the thermal properties and solidus and liquidus temperatures of the source

rock and underplated basalt will be assumed to be identical. This leads to a simplification of the

governing equations, yet results in the most stringent test of basaltic underplating as a heat source for

the generation of mobile granitic melt. Fertile source rocks other than basalt generally have lower
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solidus temperatures, smaller latent and specific heat capacities, and a larger solidus-liquidus

temperature interval; these conditions promote melting of the rock, because the underplated basalt can

be significantly hotter than the source rock, and the latent heat released during crystallisation of the

basalt is greater than that absorbed during melting of the source rock. Consequently, in the model

presented in this chapter, the melt volumes which are predicted to be generated by underplating

represent minimum values.

Melting of the overlying source rock and cooling of the underplated basalt will be considered

following the instantaneous emplacement of a single, sub-horizontal sill. Although underplating may

result in the emplacement of both dykes and sills, the emplacement of horizontal sills is the most

efficient way of generating significant volumes of granitic melt, because horizontal intrusions

concentrate their heat at a particular level in the crust, while vertical intrusions dissipate their heat

over a wide depth range (Huppert and Sparks, 1988). The transport of heat within and from the

cooling sill will be assumed to be by conduction only; the transport of heat by convection of the

magma will be neglected. This assumption is based on the work of Marsh (1989), and Bergantz and

Dawes (1994). Marsh (1989) argues that crystallisation ofthe magma during cooling rapidly leads to

the formation of a cool, essentially rigid mush at the margin of the sill, within which the transport of

heat occurs by conduction. Most of the temperature difference between the sill and the surrounding

rock occurs within the mush; consequently, though the magma within the interior of the sill is

convecting, the transport of heat from the sill to the rock is governed primarily by conduction within

the mush. His arguments are supported by the results of Bergantz and Dawes (1994), who

investigated heat transport in a cooling, crystallising, basaltic sill using a sophisticated numerical

model, which includes conductive heat transport in the mush and the surrounding rock, convective

heat transport in the magma, and the effect of variations in temperature, composition, and crystal

content on the viscosity and hence convective vigour of the magma. They found that magma within

the interior of the sill convects, yet the transport of heat to the surrounding rock 'is as if the magma

were cooling by conduction only,' and concluded that 'calculating the progress of melting following a

single episode of underplating can be facilitated by assuming a simple, but still non-linear, conductive

cooling modeL' Their results are supported by observational data from cooling basaltic lava lakes,

which indicates that heat transport from the lava is predominantly conductive (e.g. Helz et al., 1989).

Note that if the magma is superheated, then the mush which initially forms at the margin may be

remelted, in which case heat transport from the sill to the surrounding rock is dominated by

convection until the magma cools to its liquidus (Huppert and Sparks, 1988). However, the 'well

known absence of magmatic superheat' (Marsh, 1989) indicates that this will rarely occur.
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5.2 Model Formulation

The formulation presented in this chapter is that presented in chapter 4 (see §4.2 and figure 4.1),

modified to include a description of heat transport in the underlying magma heat source. The magma

is modelled as a horizontal sill of thickness Zsil" which is emplaced at a temperature Tsill (figure

5.1 (a)). As in chapter 4, the spatial origin of the model (z = 0) denotes the position of the sill/rock

contact, and the temporal origin (t = 0) denotes the time at which the sill is 'instantaneously'

emplaced. The transport of heat from the sill in the region z < 0 to the rock in the region z > 0 causes

heating and melting of the rock and conjugate cooling and crystallisation of the sill; in contrast to the

formulation presented in chapter 4, the temperature at the contact is governed by the dynamics of heat

transport between sill and rock, and is not assumed constant. Moreover, the conjugate model

presented in this chapter may be divided into three distinct regions: the solid rock in the region

Z > Zsol; the partially molten rock in the region 0 :s; z :s; Zsoh and the sill in the region Z < o. In the

regions Z > Zsol and 0 :s; Z :s; zso(, the transport of heat, mass and momentum is described by the model

presented in chapter 4; in the region Z < 0, the transport of heat is described by a conductive

formulation, and is assumed to be symmetric about a horizontal plane at the centre of the sill (figure

5.1 (b)). This assumption leads to an underestimate of the heat transported from the sill to the

overlying rock; consequently, the melt volumes predicted by the model represent minimum values.

5.2.1 Governing Equations

The l-D conservation equation governing the conductive transport of heat in the solid rock above the

partially molten rock (i.e. in the region z> Zsol) may be written as (§4.2.1)

a2T aT
k az2 =pcPat (5.1)

The l-D conservation equations governing the transport of heat, mass and momentum in the partially

molten rock (i.e. in the region 0 :s; Z :s; Zsol) may be written as (§4.2.l)

a2T aT
k-2 =pcp-;:-+Lrm
i)z CJt

(5.2)

(5.3)

(5.4)

with the supplementary relations

(5.5)

(5.6)
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(b) The transport of heat from the
magma in the region z<O to the rock in
the region z>O causes heating and
melting of the rock and conjugate
cooling and crystallisation of the
magma; in contrast to chapter 4 (cf.
figure 4.1), the temperature at the
contact (T.) is not assumed constant.
In the region z>0 (i.e. in the partially
molten rock, and in the overlying solid
rock), the transport of heat, mass and
momentum is described by the model
presented in chapter 4; in the region
z<O (i.e. in the sill), the transport of
heat is conductive, and is assumed to
be symmetric about a horizontal plane
located at z = -l,,;,/2 (the centre of the
sill).

Figure 5.1. Model formulation for chapter 5: conjugate melting and solidification of the
overlying rock and underlying magma following the emplacement of a single, horizontal basaltic
sill of thickness Zsill.
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(5.7)
(see table 5.1 for an explanation of the nomenclature).

Given that the thermal properties of the overlying basaltic source rock are assumed to be identical to

those of the underlying sill, the l-D conservation equation governing the conductive transport of heat

in the sill (i.e. in the region Z< 0) may be expressed as (Bergantz, 1992)

a2T aT
k az2 = pC-at-Lrc (5.8)

where re denotes the rate of production of crystals (rate of crystallisation). If the degree of melting in

the source rock and the degree of crystallisation in the sill are identical functions of temperature, then

the rate of crystallisation may be expressed as

r =_pOvrn
c at (5.9)

The initial conditions are given by

T(O,O)= Tool

a
az (T(z,O))= Tgeo '

(5.1Oa)

z>O (5.1Ob)

T(z,O)=Tsill, z x O

«z,O) = vrn(z,O)= wm(z,O)= ws(z,O)= 0

(5.1Oc)

(5.IOd)

and the boundary conditions by

T(Zsol,t)= Tsol (5.11a)

a
az (T(z~ +oo,t))~ ~eo

:z (T(-zsm/2,t))=0

(5.lIb)

(5.11c)

(5.lId)

(5.11e)

The boundary condition (5.1Ie) is valid assuming that there is no transport of mass from the sill to the

overlying rock; the boundary condition (5.l1c) follows from the assumption that conductive heat

transport in the sill is symmetric about a horizontal plane at the centre.

5.2.2 Simplification and non-dimensionalisation of the governing equations

Following the approach of chapter 4, the degree of melting of the rock will be described as a

continuous, linear function of temperature (§4.2.2)

T-T I
Vrn = so

Tliq -Tsol
(5.12)
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Symbol Description Units

a matrix grain radius m
b constant in permeability relationship None
cp specific heat capacity Jkg-l Kl

CelT effective specific heat capacity Jkg-l Kl
g acceleration due to gravity ms'
k thermal conductivity WKlm-l

k permeability m-2

K characteristic permeability m-2

L latent heat Lkg'
n exponent in permeability relation None
Ste Stefan number None
t time s
tseg dimensionless segregation time None
T temperature K
Te temperature at the contact (z = 0) K
Tsol solidus temperature K
r., liquidus temperature K
Tsill initial temperature of sill K
Tgeo initial geothermal gradient Kkrn-l

Wm melt velocity m s"
Ws matrix velocity m s"
z vertical Cartesian coordinate m
Zsol position of solidus isotherm m
Zo position of dimensionless solidus isotherm (e = 0) None
Zsill thickness of sill m
Z.\·ill dimensionless half thickness of sill None
Zmin dimensionless sill half thickness required for magma mobilisation None

X ratio of thermal diffusivities in the partially molten and solid rock None
0 characteristic lengthscale (McKenzie's compaction length) m

<I> melt volume fraction (porosity) None
q> initial degree of melting at the contact (z = 0) None
re rate of production of crystals kg m" S-I

rm rate of production of melt kg m? S-I

Keff dimensionless effective thermal diffusivity None

Ilm melt shear viscosity Pas

J.1s matrix shear viscosity Pas

Vm degree of equilibrium melting None
9 dimensionless temperature (normalised degree of melting) None

9seg dimensionless segregation temperature None
ee dimensionless contact temperature None
es dimensionless temperature at the centre of the sill None

P density kg m"
Ps - Pm matrix - melt density contrast kg m?

0) characteristic velocity scale m s"
t characteristic timescale s

~ matrix bulk viscosity Pas

"'geo dimensionless initial geothermal gradient None

Table 5.1. Nomenclature for chapter S.
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and furthermore, latent heat will be assumed to be absorbed/released linearly as melting/crystallisation

proceeds. Following the approach of §3.2.3, the dimensionless temperature may be written as

T' T-Tsol
(5.13)

in which case it is numerically equivalent to Vm, and will be represented by a new variable 9; i.e.

8 = T' = Vm. The melt volume fraction (ell) and dimensionless degree of melting (8) may then be

normalised by writing

9'= 8/q>,

11>'= 11>/<p,

(5.14a)

(5.14b)

Note that the scaling factor <p is defined in this chapter as the initial degree of melting (and the initial

dimensionless temperature) at the contact (z = 0) immediately after magma emplacement; this

definition is different to that used in chapters 3 and 4 because the contact temperature is no longer

assumed to be constant (cf. equation (4.12». Defining <p as the initial degree of melting at the contact

is equivalent to defining it as the maximum degree of melting.

The remaining variables are non-dimensionalised by writing (§3.2.3)

z'=z/o, with 5=( (S.+~:./3)Kr
t= 1 (J.lm(~s+4J.ls/3))1/2

(1-<pXps -Pm)g K

(5.15)

t' = tit, with (5.16)

w' = w/oo, with 00= K(I-<pXps -Pm)g
Ilm

(5.17)

k'= k/K, (5.18)

Substituting for the degree of melting (v,J in equations (5.6) and (5.9), substituting for the rate of melt

production in equations (5.2) and (5.3), substituting for the rate of crystallisation in equation (5.8),

substituting for the permeability (k) in equation (5.4), substituting the scaled and dimensionless

variables (5.14)-(5.18), simplifying, and dropping primes, yields the dimensionless governing

equations

z > la (5.19)

ClcII 1 a( ) as asat= <paz (1-<i>t1>)ws +at+(wm+ws)az

as a29 as
at= Keffaz2 -Ste(wm +ws)fz,

(5.20)

(5.21)
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a2w s = W s + (1- <pc!> )
aZ2 c!>D (1-<p)

<pc!>W m = -(1- <pc!> )w s

ae a2e
at = Keff az2 '

(5.22)

(5.23)

z<O (5.24)

with

kt
Keff = 5:2

pCeffU
(5.25)

Ste= L
ceff(Tliq - "I:",,))

L
Ceff = Cp +---Tliq -"I:",,)

(5.26)

(5.27)

(5.28)

Note that equation (5.24) governing conductive heat transport in the sill is valid only if cooling of the

sill is always accompanied by crystallisation (with associated latent heat exchange). Consequently,

the emplacement temperature of the sill (Tsm) is restricted to be less than or equal to its liquidus; this

restriction is in agreement with the observation that magmas are rarely superheated (Marsh, 1989).

The initial conditions become

e(o,O) = 0

a
az (e(z,O»= \Jf geo '

e(z,O) = 2,

(5.29a)

z>O (S.29b)

z<O (S.29c)

(S.29d)«z,O) = wm(z,O) = ws(z,O)= 0

with

(5.30)

The boundary conditions become

:Z (e(-Z.vill,t»)=O (s.31a)

wm(O,t)= w.(O,t) = wm(zo,t) = w.(zo,t) = 0

e(zo,t) = 0

a
dZ (e(z -+ +oo,t» -+ \Jf geo

(S.31b)

(s.31c)

(s.31d)

where Zodenotes the dimensionless position of the e = 0 isotherm, and Zslll denotes the dimensionless

half thickness of the sill.
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Coupling the model formulation presented in chapter 5 with a description of heat transport in the

underlying sill has resulted in the addition of a new governing equation to the five presented in

chapter 4, (equation (5.24) is the addition; equations (5.19 - 5.23) are those presented in chapter 4).

As in chapter 4, the equations are governed by six externally prescribed dimensionless parameters: the

effective thermal diffusivity in the partial melt zone and sill (KelT); the Stefan number (Ste); the

exponent in the permeability relation (n); the degree of melting at the contact (<p); the ratio of the

thermal diffusivity in the solid rock to the effective thermal diffusivity in the partial melt zone (X);

and the initial geothermal gradient ("'goo). The formulation presented here represents the simplest

which can describe the conjugate processes of solidification in the sill and melting and melt

segregation in the overlying rock.

5.3 Results

The governing equations (5.19) - (5.24) were approximated using finite difference schemes and solved

numerically using FORTRAN codes processed on a Sun SPARe 5 workstation. The schemes used are

identical to those used to solve the governing equations presented in chapter 4; consequently, they are

not described again.

As discussed in chapter 4, the values of the dimensionless governing parameters KetT and "'po cannot

be assumed to be independent; consequently, the governing equations are solved only for the values

shown in table 4.3. However, both Xand Ste can be assumed to be independent of KetT, and based on

the results obtained in §4.3.1.1, their values are fixed at X= 2.5 and Ste = 0.5. As in chapter 4, values

of <p are prescribed externally; however, in the model presented here, the range of available values of

<p is dictated by the range of available values of T'ilhTsohand T1iq(equation (5.14». Given that the sill

and source rock are assumed to have identical solidus and liquidus temperatures, and that the

emplacement temperature (T'iII)of the sill is constrained to be less than or equal to its liquidus (Tuq),

the maximum value of <p is constrained to be 0.5.

5.3.1 Dimensionless results

5.3.1.1 Form of the spatial porosity and normalised temperature distributions

Figure 5.2 shows a representative selection of the normalised spatial porosity and dimensionless

temperature distributions, for <p = 0.5, X = 2.5, and Ste = 0.5, after 30 time units have elapsed. In all

cases, the dimensionless half thickness of the sill is given by Zslll = 2(KetTt)112. Although not marked on

the figure, note that the initial dimensionless temperature of the sill is 2 (condition (S.29c», and that

the initial dimensionless contact temperature between the underlying sill and the overlying rock is 1.
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These dimensionless porosity and temperature distributions may be compared with those obtained

assuming a constant contact temperature in chapter 4 (figure 4.7(i-iii». Figure 5.2(a) should be

compared with figure 4.7(i)(a); note that although the dimensionless contact temperature in figure

5.2(a) has fallen to -0.54 (i.e. is -46% less than its original value), and the temperature at the centre

of the sill has fallen to -0.85 (-58% less than its original value). the amplitude of the leading porosity

wave in the source rock is reduced by only -8% from that shown in figure 4.7(i)(a). Figure 5.2(b)

should be compared with figure 4.7(ii)(b); note that although the temperature at the centre of the sill

in figure 5.2(b) has fallen by -15%, the contact temperature is unchanged', and the spatial porosity

distribution in the source rock is unchanged from that shown in figure 4.7(ii)(b). Figure S.2(d) should

be compared with figure 4.7(ii)(d); again, although the contact temperature in figure 5.2(d) has fallen

by -22%, and the temperature at the centre of the sill has fallen by -35%, the amplitude of the

leading porosity wave is reduced by only -6% from that shown in figure 4.7(ii)(d). However, in

contrast to figure 4.7(ii)(d), the porosity distribution shown in figure S.2(d) exhibits well developed

porosity waves trailing the leading wave.

Because the underlying basalt sill is cooling. the contact temperature between the sill and the source

rock must eventually begin to fall. However, unless the contact temperature begins to fall within the

timescale of melting and melt segregation in the overlying source rock, the porosity and temperature

distributions in the source rock are identical to those obtained assuming a constant contact

temperature (e.g. figure 5.2(b». Moreover, even if the contact temperature does begin to fall within

the timescale of melting and melt segregation, the effect is minimal if a porosity wave has already

developed near the top of the partial melt zone (e.g. figure 5.2(a», although the reduced melting rate

which results from the falling contact temperature may enhance the formation of trailing porosity

waves (e.g. figure 5.3(d); see the discussion in §3.3.2).

5.3. 1.2 The minimum sill thickness required for granitic magma mobilisation

As discussed in §4.3.1.3 and §3.3.3, if the amplitude of the leading porosity wave in the source rock

continually increases with time, then eventually the local melt volume fraction will exceed the eMF,

in which case a mobile magma forms (§3.3.3). If the contact temperature remains constant. then

magma mobilisation is predicted in partial melt zones characterised by values of lCdf in the range

10-2::; lCeff < 104 and 'l'p in the range 10.4::; 'l'p::; I, (§4.3.1.3). However, if the contact temperature

begins to fall before a porosity wave has developed, then the source rock cools too quickly for magma

mobilisation to occur. The timescale over which the contact temperature begins to fall is governed by

the thickness of the sill, and the values of the dimensionless effective thermal diffusivity Ketr and the

1 Close observation of figure 5.2(b) reveals that the contact temperature is actually slightly higher than its
original value. This increase occurs because 'pseudo-advection' acts to inhibit heat transport in the partially
molten rock (§3.3.l).
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dimensionless initial geotherm "'geo. For given values of Keff and "'gco, the model may be used to

estimate the minimum dimensionless sill thickness required for magma mobilisation in the overlying

source rock, by investigating melt migration in the source rock for progressively thinner sills, and

identifying the sill thickness for which cooling causes the maximum porosity to decrease before the

eMF is exceeded.

Figure 5.3(a and c) shows the minimum dimensionless sill half thickness (Zmin) required for magma

mobilisation in the overlying source rock, as a function of KetJ, for "'gco = 10.4 and 10.2 respectively,

and <p = eMF = 0.5. In both cases, the minimum half thickness increases with increasing KetJ, from

Zmin - 8 to Zmin - 400 for the case "'geo = 10.4 (figure 5.3(a», and from Zmin - 2 to Zmin - 55 for the case

"'goo = 10.2. Figure 5.3(b and d) shows the corresponding dimensionless temperatures at the contact

(8e) and the centre of the sill (es), at the time of magma mobilisation. In both cases, ee and es increase
with increasing Kell, from ee - 0.7 to ee - 1 and 9, - 0.75 to 9s - 1.7 for the case 'llgeo= 10.4 (figure

5.3b), and from ge - 0.18 to ge - 0.6 and 9s - 0.25 to 9. - 0.75 for the case 'IIgco = 10.4 (figure 5.3d).

Figure 5.4(a and c) shows the resulting segregation time (the segregation time toesis defined as the

dimensionless time required to initiate magma mobilisation in the source rock (§3.3.3» which is

obtained using the minimum sill thickness, as a function of KetJ. for 'llgee>= 10-4 and 10-2 respectively.

and <p = eMF = 0.5. Also shown is the segregation time which is obtained assuming a constant

contact temperature (cf. figure 4.18). In both cases, the segregation times are similar. although there

is closer agreement for the case 'IIgco = 10-4 (figure 5.4(a» than for the case 'llgee>= 10.2 (figure 5.4(c»,

and the times obtained using the minimum sill thickness are generally longer except at small KdJ «I).

Figure 5.4 (b and d) shows the corresponding segregation temperatures (the segregation temperature

9seg is defined as the dimensionless temperature at the point of incipient magma formation (§3.3.4» as

a function of lCeff (cf. figure 4.18). Again. in both cases the segregation temperatures are similar.

although there is closer agreement for the case 'llgee>= 10.4 (figure 5.4(b» than for the case 'llaeo= 10.2

(figure 5.4(d», and the temperatures obtained using the minimum sill thickness are generally smaller.

The generally low dimensionless temperatures in the sill and at the silVrock contact at the time of

magma mobilisation (figure 5.3(b and d» indicate that, for these minimum sill thicknesses. magma

mobilisation in the overlying source rock occurs while the source region as a whole is cooling. The

temperatures in the sill and at the contact increase with increasing Ke«. because with increasing Ke« the

position of the porosity maximum, and hence of incipient magma formation. moves closer to the

sill/rock contact (§4.3.3). in which case the sill must be hotter for magma mobilisation to occur.

Because thicker sills cool more slowly. this requirement contributes to the rapid increase observed in

the minimum sill thickness required for magma mobilisation with increasing Ke« (figure 5.3(a and cj),
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That there should be such a close agreement between the segregation times and temperatures obtained

for the minimum sill half thickness (Zmin), and for an 'infinite' sill thickness (Le. a constant contact

temperature) (figure 5.4) is perhaps surprising, as the range of values obtained for these extreme cases

includes all the values which would be obtained for sill thicknesses greater than the minimum.

However, the similarity of the segregation times and temperatures observed in figure 5.4 indicates that

the dimensionless time required for magma mobilisation (tseg),and the dimensionless temperature

(8seg), and hence composition, of the melt which forms the magma, are well approximated by the

results obtained in §4.3.3.2, even though they were obtained assuming a constant contact temperature.

5.3.2 Dimensional results

5.3.2.1 Form of the spatial temperature and porosity distributions for a basaltic source rock

The dimensionless spatial porosity and temperature distributions obtained from the model may be

'dimensionalised' using the characteristic length, time, velocity, and melt volume fraction scales ~, 't,

0), and <p presented in §5.2.2 (equations (5.14) - (5.18». Suitable values of the governing variables for

a basaltic source rock and underplate are presented in table 5.2 (see also §4.4.3). With the exception

of the shear and bulk viscosities of the partially molten source rock, the variables are reasonably well

constrained; estimates of the bulk and shear viscosities vary from 1015 Pa s to 1021 Pa s (table 4.2; see

also §4.2.4.l (iii)).

Figure 5.5 shows the porosity (melt volume fraction) and temperature distributions as a function of

vertical distance in a basaltic source rock at the time of incipient magma mobilisation, assuming that

melting is caused by the intrusion of a basaltic sill with the minimum thickness required for

mobilisation. Note that the curve labelled 'Temperature T' denotes both the temperature (T) if read

from the upper abscissa axis, and the degree of melting of the source rock (vm) if read from the lower

abscissa axis. The distributions are obtained assuming that the initial degree of melting at the

sill/rock contact is <p - eMF - 0.5, and that the bulk and shear viscosities of the source rock are given

by: ~ -Ils _1015 Pa s (figure 5.5(a»; 1;. - J.ls - 1017 Pa s (figure 5.5(b»; I;s - J.ls - 1019 Pa s (figure

5.5(c)); and 1;. - u, - 1021 Pa s (figure 5.5(d».

For the lowest source rock bulk and shear viscosities, the emplacement of a sill -700m thick leads to

the formation of a mobile granitic (sensu-lato) magma in the overlying source rock after -15,000 yrs

(figure 5.5(a». The composition of the melt fraction of the magma corresponds to a degree of melting

of -0.15, and from the empirical data presented in figure 4.16, it may be deduced that its composition

is tonalitic. For higher bulk and shear viscosities, the sill thickness required for magma mobilisation

increases to 900m, 2km, and finally to 25km, and the time required for magma mobilisation increases

to 0.2M.y., 1.6M.y., and finally to 25M.y. (figures 5.5b - d respectively). Moreover, the composition

of the melt fraction of the magma becomes more acidic and trondhjemitic. Note that in all cases, the
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Symbol Description Values Units

k thermal conductivity 2 WK'm-'

cp specific heat capacity 1,200 Jkg-1K1

L latent heat 600,000 J'kg'

Tliq-Tsol liquidus-solidus interval 300 K

Tliq liquidus temperature 1460 K

Tsot solidus temperature 1160 K

P density 3,000 kg m?

Ps-Pm matrix-melt density contrast 600 kg m"

11m melt shear viscosity 104 Pas

Jls matrix shear viscosity lOIS _ 1020 Pas

I;; matrix bulk viscosity lOIS _ 1021 Pas

b constant in permeability relation 1/500 None

Tgeo initial geothermal gradient 7 Kkm-I

a matrix grain radius 2.5xlO-3 (2.5mm) m

CMF Critical Melt Fraction 0.5 None

q> degree of melting at the contact 0.5 None

Table 5.2. Suitable values of the dimensional variables for a basaltic source rock and underplate.
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which denotes the temperature (T) also denotes the degree of melting (vrn>if read from the
lower abscissa axis. The temperature profile in the upper half of the sill only is shown; in
both cases eMF - <p - 0.5.
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against the lower abscissa axis; temperature (T) is plotted against the upper abscissa axis. The
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the lower abscissa axis. The temperature profile in the upper half of the sill only is shown; in
both cases eMF - <p - 0.5.
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temperature of the sill is significantly less than its initial emplacement temperature

(T'ill = Tliq = 1460K), and that in figures 5.5(b - d), cooling has resulted in solidification of the source

rock close to the sill/rock contact.

These results indicate that the intrusion of small (cl km) basaltic sills may lead to the rapid (15,000-

200,000 yrs.) mobilisation of granitic magma from a basaltic source rock if the bulk and shear

viscosities of the source rock are low (- 101
S - 1017 Pa s). Repeated underplating would lead to the

formation of small, distinct batches of mobile granitic magma. If the bulk and shear viscosities of the

source rock are higher (_1018 - 1020 Pa s), then the minimum sill thickness required for magma

mobilisation is -2 - IOkm, and the timescale of magma mobilisation is -1-10 M.y. The minimum sill

thickness required is greater than would be expected to be intruded in a single event; however, the

repeated intrusion of smaller sills in the region below the source rock results in a similar rate of heat

transport from the underplate to the source rock, and would lead to the formation of a large batch of

mobile granitic magma. Moreover, the thickness of underplate required and the timescale of

mobilisation is not excessive; for example, Petford et al. (1996) estimate that the lower 20km of the

thickened crust beneath the Cordillera Blanca Batholith is comprised of underplated basalt, while

Petford and Atherton (1992) estimate that the batholith itself was emplaced over a timescale of -10

M.y. However, if the bulk and shear viscosities of the source rock are high (_1021 Pa s), then it is

unlikely that underplating will lead to the mobilisation of granitic magma, because the thickness of

underplate required (-25km) exceeds that which is likely to be emplaced within the crust. Note that

the estimated mobilisation times and magma compositions presented in this chapter compare

favourably with those presented in §4.4.3, which were obtained assuming a constant contact

temperature.

5.3.2.2 Predicting the minimum thickness of basaltic underplate required

For a given set of dimensional variables, the minimum dimensional thickness of underplated basalt

required for the mobilisation of granitic magma may be estimated using the dimensionless minimum

sill half thickness (zm;,,) against lCdr plots presented in §5.3.1.2. The procedure is similar to that

described in §4.3.3.2:

(i) calculate values for the dimensionless effective thermal diffusivity (lCeff) and the dimensionless

initial geotherm ('I'geo) using equations (4.38) and (4.39).

(ii) using a suitable plot (figure 5.3), record the dimensionless sill half thickness (z".;/I) which

corresponds to the calculated value of lCdr.

(iii) convert this to the corresponding dimensional sill thickness using the expression (§5.2.2)

(5.32)

82



Chapter 5: The heat source for melt generation

The dimensional minimum sill thicknesses obtained using equations (5.32) and figure 5.3 compare

favourably with those obtained directly from the numerical solutions. For example, consider the

dimensional variables used to obtain the solution shown in figure 5.5(a) (table 5.2). Substituting these

values into equations (4.38) and (4.39) yields values of Kew = 36 and 'IIgco = 6x 10-4 (_10.4). Assuming

that <p - 0.5, and that the eMF - 0.5, figure 5.3(a) yields a minimum dimensionless sill half thickness

of Zmin - 50; substituting this value into equation (5.32) yields a dimensional sill thickness of -650m.

For comparison, the numerical solution yields a dimensional sill thickness of - 700m. The slight

discrepancy between the dimensional sill thickness obtained directly from the numerical solution and

that estimated from figure 5.3 occurs because the value of 'IIgco used to obtain the numerical solution is

slightly different to that used to obtain figure 5.3(a).

5.4 Discussion

A suitable description of heat transport within and from a basaltic underplate has been coupled with

the description of heat, mass and momentum transport in the overlying source rock presented in

chapter 4. The formulation represents the simplest which can describe the conjugate processes of

solidification in the underplate and melting and melt segregation in the overlying rock, and has been

used to investigate the viability of basaltic underplating as a heat source for the generation of mobile

granitic magma from a basaltic protolith.

The results obtained indicate that cooling of the underplate does not significantly affect the dynamics

of melting and magma mobilisation in the source rock unless the contact temperature begins to fall

before the leading porosity wave is established. The timescale over which the contact temperature

begins to fall is governed by the thickness of the underplate, and the values of Kew and 'lip. For given

values of Kew and 'lip, magma mobilisation occurs only for underplates with thicknesses greater than

a minimum value; the model has been used to deduce the dimensionless minimum value (Zmin) as a

function of Kew and 'IIgco. Using this minimum underplate thickness to deduce dimensionless

segregation times and temperatures reveals that they are similar to those obtained in chapter 4

assuming an infinite underplate thickness (i.e. a constant contact temperature); consequently, the time

required for segregation, and the composition of the segregated melt, are well approximated by the

results presented in chapter 4.

Underplating is a viable heat source for the generation of mobile granitic magma from a basaltic

source rock unless the bulk and shear viscosities of the partially molten rock are large (_t021 Pa s),

For viscosities less than this, the thickness of underplate required for mobilisation varies from -700m

to -IOkm, and the time required for segregation varies from -20,000 yrs. to -10 M.y. These

underplate thicknesses and mobilisation times are consistent with the geological evidence. Short
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mobilisation times indicate that repeated underplating may lead to the formation of small, discrete

batches of magma, while longer segregation times indicate that repeated underplating may lead to the

formation of a single, large batch of granitic magma. A pulsed magma supply is consistent with the

internal contacts and compositional zonation observed in many granitic bodies (Pitcher, 1979; 1993);

however, until the ascent mechanism of the magma through the crust is considered in more detail, a

pulsed supply at the emplacement level should not necessarily be associated with a pulsed supply in

the source region.
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mechanisms and a possible origin of chemical diversity.

"...though there may be granites and granites, most of them are of one kind and all of them may

likely be of one connected source." (Read, 1944, p, 90)

6.1 Source region processes and ascent mechanisms

The results presented in chapter 4 indicate that, in crustal partial melt zones characterised by a wide

range of values for the governing variables. melt which corresponds to only a small «CMF) degree of

partial melting of the source rock. and which is granitic (sensu-lato) in composition. will segregate

and accumulate until it forms a mobile magma. This magma must subsequently ascend from the

source region to the emplacement level (see figure 1.1). The ascent mechanism of granitic magmas is

still a source of controversy (e.g. Weinberg and Podlachikov, 1994; Petford et al .• 1994); the orthodox

view is that granitic magmas ascend through the crust as diapirs (e.g. Ramberg. 1970; White and

Chappell. 1977. 1990; Chappell, 1984, Weinberg and Podlichakov, 1994), yet magma ascent via

diapirism is a slow process limited by the high viscosity of the surrounding crust, and theoretical

studies indicate that diapirs cool and crystallise before reaching upper crustal levels (e.g. Marsh,

1982; Mahon et al .• 1988). A recently proposed alternative is that granitic magmas ascend through

dykes. faults or fractures in a manner analogous to that of basaltic magmas (Clemens and Mawer,

1992; Petford et al.• 1993; Petford et al., 1994). In contrast to diapirism. magma ascent via dykes is a

rapid process limited only by the viscosity of the magma (petford et al., 1993; Petford et al., 1994).

The ascent mechanism may ultimately be governed by the rheology and geometry of the mobile

magma body which forms in the source region; unfortunately, the results presented in chapter 4 are I-

D, and therefore cannot be used to quantitatively predict the 3-D geometry of the magma body.

However. in §3.4.3 it was argued that in a homogeneous, isotropic mush heated constantly from

below. the J-D results are likely to be robust in 3-D, in which case the magma would form a

horizontal. 'sill' like layer. Such a mush is most likely to be produced in the crust by partial melting

of regions comprised of primitive basalt emplaced by repeated underplating (§4.4.5), although even in

this 'homogeneous' crust, lateral variations in composition and texture are likely to lead to lateral

variations in porosity and permeability, and hence to differential melt flow and the formation of

instabilities in 3-D. However, it seems reasonable to assume that, given the buoyant melt will

generally flow vertically, and given the presence of the 'lid' (the solidus isotherm) at the top of the

partial melt zone, a laterally continuous 'sill' of granitic magma is likely to form, although the

detailed geometry of the sill may be complex (figure 6.1).
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A continuous 'sill' of mobile granitic magma may act as a reservoir from which magma is easily

extracted by dykes. The results of Rubin (1995) indicate that isolated, granitic magma filled dykes

propagating out of a partial melt zone are rapidly halted by freezing of the magma at the tip (see also

the discussion in §4.4.4); however, the presence of a magma reservoir facilitates repeated dyking

which warms the surrounding rock and promotes the propagation of subsequent dykes. Repeated,

localised dyking leads to the formation of a localised ascent zone, to which granitic magma could

migrate laterally through the 'sill' (figure 6.1). Such an ascent zone is similar to that proposed by

Ryan et al. (1981) and Ryan (1988) for the ascent of basaltic magma beneath Kilauea Volcano,

Hawaii; moreover, granitic plutons are often associated with granitic dyke swarms (Pitcher, 1979,

1993), which may represent the surface manifestation of the ascent zone.

In order to ascend as a diapir rather than through dykes, the viscosity contrast between the magma in

the 'sill' and the surrounding crust must be small (Rubin, 1993), in which case the magma must be

crystal rich and highly viscous (_1014 - lOIS Pa s); moreover, the thickness of the sill must exceed the

minimum thickness required for buoyant overturn. Initially, the magma is crystal rich; for example, if

the Critical Melt Fraction is -0.5, then the magma initially contains -50% crystals. However, the

crystals can settle out of the magma; an estimate of the (reduced) settling velocity v, of crystals in a

crystal rich liquid is given by (Richardson and Zaki, 1954)

v = 2(ps - PI)ga
2
(1- eII)S.6S (6.1)

r 9111

where (p, - PI) denotes the crystal-liquid density contrast, 'a' denotes the crystal size (radius), III

denotes the liquid shear viscosity, and ell denotes the volume fraction of crystals.· Substituting typical

values for a granitic magma of (P. - Pt) = 300 kg m", a = 1mm and ~ = ro' Pa s (table 4.2), and

assuming ell = 0.5, yields a settling velocity of -2cm per year; this figure represents the lowest velocity

for the given density contrast, crystal size and melt viscosity, yet indicates that within -20,000 yrs. a

4oo-500m thick sill would be entirely crystal free. Furthermore, the continued segregation of melt

from the underlying partially molten rock adds new melt to the sill which effectively decreases its

crystal content (figure 6.1). Consequently, the viscosity of the magma in the sill is likely to be too low

(_105 Pa s) to produce the viscosity contrast required for ascent via diapirism (Rubin, 1993);

moreover, the magma is likely to be extracted via dykes before the sill thickness can increase to the

minimum required for buoyant overturn. These very simple arguments indicate that the results of the

model presented in chapter 4 are more consistent with magma ascent via dykes than via diapirism.
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6.2 Source region processes and a possible origin of chemical diversity

Granitic plutons may often be arranged into suites which exhibit systematic variations in both

mineralogy and chemistry with place and time; individual plutons may also exhibit variations between

their centre and margin (e.g. Pitcher, 1979; 1993). Often this petrologic diversity originates in the

source region (Tepper et al., 1993; Bergantz and Dawes, 1994; Brown, 1994; Zen, 1995; Petford et

al., 1996), and although variations within and between suites and plutons may be produced by melting

different source rock compositions, systematic variations must be produced by the underlying physical

processes of melting, melt segregation and magma mobilisation. The model presented in chapter 4

predicts that different melt compositions segregate from source rocks with identical compositions but

different physical characteristics; for example, a basaltic protolith may yield granodioritic-tonalitic

melt if the matrix bulk and shear viscosities are low, and trondjhemitic melt if the bulk and shear

viscosities are high (§4.4.3). However, systematic variations in the composition of the melt extracted

from the source region have not been considered.

As discussed in §4.4.3, the Cordillera Blanca Batholith in the Peruvian part of the Andes is a

trondhjemite-tonalite-granodiorite (TTG) body, which originated by partial melting of newly

underplated basalt (Atherton and Petford, 1996; Petford and Atherton, 1996). The batholith is

composed predominantly of trondhjemite, with volumetrically minor tonalite and granodiorite, and

the order of intrusion is estimated to be granodiorite-tonalite-trondhjemite (Petford and Atherton,

1996). Yet the melting relations shown in figure 4.16 indicate that during progressive melting of

basalt, the first melt formed (i.e. the lowest temperature melt) is trondhjemitic, while the last melt

formed is granodioritic; consequently, if it is assumed that the first melt formed is the first to be

extracted from the source region, then the order of intrusion observed in the Cordillera Blanca

Batholith is the opposite of that expected.

Figure 6.2 shows the porosity (melt volume fraction), temperature, and degree of melting as a function

of vertical distance in a basaltic source rock, after 0.1, 0.2 and 1 M.y. have elapsed. Note that the

curve labelled 'T and vm' denotes both the temperature (T) if read from upper abscissa axis, and the

degree of melting (vm) if read from the lower abscissa axis. The governing variables used to produce

the curves are those given in table 5.2; the matrix bulk and shear viscosities are assumed to be

J.1.,. - <;. - 1017 Pa s, and the contact temperature is assumed constant. Figure 6.2 shows that a porosity

wave forms in the partially molten basalt, the vertical position and amplitude of which increase with

time. After 0.1 M.y., the composition of the melt in the porosity wave corresponds to a degree of

melting of -0.3, and from figure 4.16, its composition is granodioritic. After 0.2 M.y., the

composition of the melt in the porosity wave has evolved to tonalitic, while after 1 M.y., the

composition of the melt in the wave has evolved to trondhjemitic.
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If the CMF is assumed to be -0.5-0.6. then a mobile magma will not form until t -0.9-1 M.y .• and if

no melt could be extracted from the source region until after magma mobilisation, then the

composition of the first melt extracted would be trondhjernitic. However, if the melt in the leading

porosity wave migrated laterally to a localised ascent zone before magma mobilisation, then melt

could be extracted from the source region via dykes. The first melt extracted by this process would be

granodioritic; with increasing time, the composition of the extracted melt would evolve to tonalitic

and then to trondhjemitic. The extraction of melt from the leading porosity wave would rapidly

reduce the porosity of the wave, in which case further lateral melt migration and extraction would be

inhibited until the accumulation of melt below the solidus isotherm caused the porosity of the wave to

increase once again. Consequently, only small volumes of granodioritic and tonalitic melt would be

extracted before magma mobilisation, compared to the large volume of trondhjemitic melt extracted

after magma mobilisation.

The process of melt extraction via dykes from zones of high porosity before magma mobilisation is a

possible origin of chemical diversity in the source region: the composition of the extracted melt

depends not only upon the initial composition of the source rock, but also upon when extraction

occurs. The process explains the order of intrusion of the tonalite-granodiorite-trondhjernite

compositions observed in the Cordillera Blanca Batholith, and also qualitatively explains their

relative volumetric proportions. Moreover, it also explains the observation that in many granitic

plutons and suites, the most felsic (granitic sensu-stricto) compositions which correspond to the first

(lowest temperature) melts formed in the source region, were intruded after the least felsic

(granodiorite, quartz diorite) compositions which correspond to the last (highest temperature) melts

formed in the source region (Pitcher, 1979, 1993).
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"In searching for the origin of granites, it is tempting to view them as purely chemical systems"

(Pitcher 1979, p. 90)

This dissertation presents a new, quantitative physical model of a granitic source region in the crust,

the development of which was motivated by the need to understand better the physical processes

which lead to a granitic partial melt fraction in the lower crust eventually forming a granitic pluton in

the upper crust. Source region processes are particularly poorly understood, yet they are important

because they exert a fundamental control on the composition of the magma which reaches the

emplacement level. Key questions which must be answered include: How is partial melting initiated?

How efficiently can the granitic melt fraction segregate from the unmelted protolith? By what

physical mechanism does this segregation occur? Can the segregation process generate petrological

diversity? How long must partial melting be sustained for segregation to occur? Can partial melting

be sustained for this length of time?

The results of the model indicate that granitic partial melt may segregate from its protolith by

buoyancy driven flow along grain edges, and accumulate in the source region until it forms a mobile

magma. The separation process is intrinsically efficient; for a given protolith, the composition of the

melt which accumulates to form a magma depends only upon its vertical location in the source region,

and all the melt of that composition becomes mobilised. Moreover, the results indicate that basaltic

underplating can initiate partial melting, and sustain melting for the length of time required for

segregation and mobilisation to occur. Petrological diversity may be generated in the source region if

the melt is extracted through dykes from regions of high porosity before mobilisation. The

composition of the melt changes as it migrates upwards through the partial melt zone and

thermodynamically equilibrates with cooler matrix; consequently, the composition of the melt depends

not only upon the composition of the protolith, but also upon when it is extracted.

However, the results of the model are sensitive to the values of the variables which govern the

dynamics of melt segregation; in particular, the shear viscosity of the melt, the bulk and shear

viscosities of the partially molten protolith, the grain size, and the permeability constant. These

variables are poorly constrained for crustal rocks, and the limited experimental and theoretical data

has been used to estimate suitable values. The model predicts that magma mobilisation is likely in

partial melt zones characterised by values of these variables in the mid-range of the estimated values,

or in partial melt zones where, for example, high melt viscosities are countered by high matrix

viscosities, or a large grain size is countered by small matrix viscosities. Under these conditions, the
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model predicts that melt segregation and mobilisation will occur in a basaltic protolith within -15,000

yrs. to -10 M.y., that underplate thicknesses of -7oom - 10 km are required to sustain melting for this

length of time, and that the composition of the melt which becomes mobilised ranges from

granodioritic - trondjhemitic. Until the values of the governing variables are better constrained, it

must suffice that the model predicts the segregation and mobilisation of granitic (sensu-lato) melt

within geologically reasonable timescales, and in agreement with the geological and geochemical

evidence.

Clearly, a granitic source region in the lower crust is a complex system, and the model presented in

this dissertation represents only the first step in gaining a fuller understanding of the processes which

lead to the generation, segregation and mobilisation of granitic melts. The results obtained from the

model are only as valid as the assumptions made in deriving the governing equations, and although

many of these appear reasonable, future models will need to investigate the significance of the two

most fundamental assumptions: that the source rock is homogeneous and isotropic, and that only

vertical components of velocity need be considered. However. despite its relatively simple nature, the

model presented in this dissertation represents a significant advance on the qualitative and semi-

quantitative models of granitic melt generation, segregation and mobilisation which have previously

been developed, and some general aspects of the 1-D results obtained are likely to carry through into

future models. For example. the spatial distribution of melt in a homogeneous, isotropic mush which

is undergoing solid-liquid phase change clearly depends upon the relative rate at which heat and mass

are transported, and may be characterised in terms of a single dimensionless parameter: the effective

thermal diffusivity (Kerr). This result provides a framework for the systematic investigation of more

complex systems.

The development of 2 and 3-D models of heterogeneous source rocks will be complex and

computationally intensive; a suitable approach might be that used by the water and oil industries when

modelling reservoir rocks with heterogeneous permeability distributions. The approach is termed

upscaling; the rock is subdivided into homogeneous units each of which is allocated a value for the

permeability, and the units are then combined and the effective permeability of the combined units is

calculated using a continuum model. The combined (upscaled) units are then further combined, until

a single value for the effective permeability has been deduced for the entire reservoir (e.g. King, 1989;

King et al .. 1995; McCarthy, 1995). In a heterogeneous source region, the source rocks could be

subdivided into homogeneous units and each allocated a value of Kerr. The units could then be

upscaled and a single effective value of Kerr deduced for the entire source region, in which case the

region is effectively homogeneous. If the source rocks were anisotropic, then Kerr could be recast as a

tensor which incorporates the directional and spatial variation of the governing variables. This
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approach would be particularly suitable if field evidence were available from which the

heterogeneities of the source rocks could be characterised.

Finally, the results presented in this dissertation should be placed into the context outlined in chapter

I, of a changing outlook on the rheology of granitic magmas. The traditional view is that they are

crystal rich, have high (- 1015 Pa s) viscosities, and ascend slowly through the crust as diapirs; granitic

magmatism in this view is dominated by slow processes hindered by high magma viscosity. The

results presented in this dissertation, in conjunction with some simple semi-quantitative arguments,

support the alternative view that granitic magmas are crystal poor, have low (- 105 Pa s) viscosities,

and ascend rapidly through the crust in dykes; moreover, the results indicate that granitic magmatism

is dominated by rapid processes facilitated by low magma viscosity. For example, predicted

segregation times of -15,000 yrs. indicate that the time which elapses from the inception of melting in

the lower crust to the emplacment of magma in the upper crust may be geologically short.
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Appendix A: Numerical Methods.

This appendix describes, and discusses, the numerical methods used to solve the governing

conservation equations presented in chapters 3, 4, and 5.

A.1 Numerical methods: chapter 3

The coupled, dimensionless, I-D equations governing the model presented in chapter 3 are

~ a~ ~
-;:- = Kelf-2 - Ste( wI + wJ;-
Ul dZ oz

(A.I)

acp I d ( ) de ( )de
at= <pdZ (l-~)ws +at+ WI+ws dZ

_d2_W_s = _w s +~(1_-....:....~:...t..)
dZ2 ~n (I-<p)

~WI =-(I-~)ws

(A.2)

(A.3)

(A.4)

subject to the initial and boundary conditions

e(Z,o) = ~z,O) = ws(z,O)= ° (A.5a)

e(o,t) = I e(Zo,t) = ° (A.Sb)

w.(O,t) = WI(O,t)= ws(zo,t) = WI(Zo,t)= 0. (A.Sc)

(see table A.I for a reminder of the nomenclature). Equations (A.I) and (A.2) define an initial value

or Cauchy problem, and describe the propagation of e and ~ through time; equation (A.3) defines a

boundary value problem for w; They were solved using suitable explicit finite difference

approximations.

A.1.1 Finite difference approximations of the governing equations

The heat conservation equation (A.I) was approximated using a forward-time-centred-space (FrCS)

difference scheme, with upstream differencing on the pseudo-advection term for the case IWII> Iw.l,

and downstream differencing on the pseudo-advection term for the case Iw.1> IWII(Siemieniuch and

Gladwell, 1978; Morton and Mayers, 1994). This scheme is first order accurate in time, second order

accurate in space for the diffusive term, and first order accurate in space for the advective term, and

yields the explicit difference scheme for propagating e through time'

. ej + ej - 2ej (. . ) ej - ejei+1 = eJ +K k+1 k-I k at-Ste [w 11 +[w 1.1 k k-I at
k k elf az2 ·Jk Uk az '

ei+1 = ej + K etl + e·L. - 2et at _ Stef[w ]j + [w 'Ii ) et+1 - et at
k k elf az2 \ Ski Jk az '

(A.6)

I Where there may be ambiguity between variables, subscripts, and the finite difference notation, variables and
subscripts are enclosed within square brackets [ ].
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Symbol Description

amplitude of porosity wave
initial amplitude of porosity wave, obtained using the analytic solution
normalised difference between the initial and propagated amplitudes
phase velocity of porosity wave
initial phase velocity of porosity wave, obtained using the analytic solution
normalised difference between the initial and propagated phase velocities
compaction rate
normalised difference between the positions of the ith isotherm
porosity exponent
Stefan number
time

tseg segregation time
t~iff normalised difference between segregation times obtained with Ilz and Ilzl2

t~iff normalised difference between segregation times obtained with Ilt and fltl2

A
r;
Aerror
c

Cerror

c
E;
n
Ste

WI liquid velocity
Wm melt velocity
w, solid velocity
z vertical Cartesian coordinate
Z; position of the ith isotherm
X ratio of thermal diffusivities in the partially molten and solid rock
4> porosity
4>c percolation threshold
<p temperature (fraction of equilibrium melting) at z = 0
Ketr effective thermal diffusivity
e temperature (fraction of equilibrium melting)

eerror normalised difference between analytic and numerical solutions (equation (A.19»
eseg segregation temperature
e~iff normalised difference between segregation temperatures obtained with flz and flzI2

e~iff normalised difference between segregation temperatures obtained with flt and Iltl2

'!'gee dimensionless initial geothermal gradient

Finite difference notation

j temporal node
k spatial node
Ilt temporal node spacing
flz spatial node spacing

Table A.I. Nomenclature for Appendix A. Note that all quantities are dimensionless.



Appendix A: Numerical Methods

The upstream/downstream difference scheme used for the advective term has the advantage of

removing any limit on the size of the spatial node spacing (dZ) required to achieve stability

(Siemieniuch and Gladwell, 1978), and overall the scheme is still 'effectively second order' accurate

in space (Price et al., 1966). Stability of the numerical solutions is predicted if the local time step (dt)

is restricted by (Morton and Mayers, 1994)

d < &2
t - 21lCeffi +d~Ste(wl +ws~

(A.7)

The mass conservation equation (A.2) was approximated using a staggered-leapfrog scheme. This

scheme is second order accurate in both time and space (Morton and Mayers, 1994), and yields the

explicit difference scheme for propagating <!> through time

. I . I ((I-cpcpL+IXwsl+I)-((l-cpcpLXwsK_I)
",]+ = "']- + dt+
~k ~k ~ (A.8)

The staggered-leapfrog scheme, if correctly implemented, has the advantage of introducing no

numerical diffusion (Press et al., 1992). Stability of the numerical solutions is predicted if the local

time step dt is restricted by the Courant-Friedrichs-Lewy (CFL) condition

Ivldt S; I
dz

(A.9)

where v is the maximum velocity at which information is locally propagated between spatial nodes

(Mitchell and Griffiths, 1980; Press et al., 1992; Morton and Mayers, 1994).

The momentum conservation equation (A.3) was approximated using a centred scheme. which is

second order accurate in space

(A.I0)

Re-arranging equation (A.I 0) yields a tridiagonal system of coupled linear equations of the form

i []i bi [ ]i j [ ]j - djak Ws k-I - k Ws k +ck Ws k+1 - k (A.ll)

with

(A.12a)

b( =(~y.+IJ
di _[q,3]~(I-cpcpL)

k - l-cp

(A. I 2b)

(A.l2c)
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Appendix A: Numerical Methods

A.1 .2 Method of solution

Given the initial values of e, c!l and Ws prescribed by condition (A.5a), the explicit difference equations

were solved sequentially (figure A.I). The temperature e was propagated through one time increment

using equation (A.6); the porosity q,was then updated using equation (A.S). In order to solve for the

matrix velocity ws, the conditions at both the upper (z=zo) and lower (z=O) boundaries are required;

the position Zo of the upper boundary was located at the spatial node k at which a = 0, and which was

also closest to the origin. Finally, the tridiagonal system of coupled linear equations (A.t0) was

solved for Ws• subject to the boundary conditions (A.5c), by matrix inversion (Press et al., 1992).

These steps were repeated for each time increment j until the solutions had been propagated to the

required time, using a FORTRAN code executed on a Sun SPARe 5 workstation. Maximum run

times were several hours, when investigating systems governed by large values of lCeff.

A.1 .3 Accuracy of the numerical solutions

Unless numerical approximations are carefully selected and implemented, the numerical solutions

obtained may be inaccurate because of errors introduced and propagated by the approximations. The

suitability of a particular numerical scheme, and the likely source of error, depends upon the nature of

the equation to be solved. The heat conservation equation (A.I) is a special case of the general I-D

parabolic diffusion-advection equation

au a2u auat = a(z) az2 + b(z) az (A.l3)

Numerical solutions of parabolic diffusion-advection equations can be susceptible to transport errors

introduced by the advective term (Siemieniuch and Gladwell, 1978; Press et al., 1992). The mass

conservation equation (A.2) is a special case of the generall-D hyperbolic flux-conservative equation

dU a-=-f(u)at az (A.14)

where the conserved flux is given by

f(q,)=(t-<pcj))ws (A.l5)

and Ws is obtained from the momentum conservation equation (A.3). Numerical solutions of

hyperbolic equations can be susceptible to amplitude and phase dissipation due to numerical diffusion

(Press et al., 1992; Morton and Mayers, 1994). To ensure accuracy of the numerical solutions

obtained for the full set of governing equations (A.l)-(A.4), the numerical schemes used to

approximate the parabolic and hyperbolic conservation equations were tested separately for accuracy.

Using the insight gained from the individual numerical tests, suitable criterion were deduced to ensure

stability and accuracy of the full solutions.

A.3



Prescribe initial values of'B, 4>, and w.,
using condition (A.Sa).

Evaluate (}i+1 for all k using
equation (A.6).

NO

Figure A.I. Flow chart showing the order in which the n\UD.erical approximations of the governing
equations presented in chapter 3 were evaluated.

Evaluate e"! for all k using
equation (A.S). .

Locate the spatial node k at which 9 = 0,
and for which k is a minimum; this is the

position lo of the upper boundary.

Solve the simultaneous equations (A.ll) for
[W.]i+I, subject to the boundary conditions

(A.5c), using matrix inversion.

t=t + At

j=j+l

STOP
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A. 1.3. 1 Heat conservation

Accuracy of the numerical scheme used to approximate the parabolic heat conservation equation (A. I )

was investigated using a published analytic approximation to the solution, for the case

Ketr=l,

Stetw, + w.) = A.,

(A.16a)

(A.16b)

where A. is a constant. The approximate analytic solution is given by (Siemieniuch and Gladwell,

1978)2

eam (z, t) = ~ {erfc((z -A.t )/2Jt)+erfc((z+A.t )/2Jt)}
+exp(-A. *1+ ~A.(2- Z + A.t)~rfc((2 - Z + A.t)/2..ft)- A.~(t/1t)exp(-(2 - z - A.t)2/4t)}

(A.I7)

subject to the initial and boundary conditions

e(z,O) = 0,

e(O,t) = I,
aeaz (I,t) = 0,

0< z < I,

t >0,

(A.I8a)

(A.I8b)

t> 0 (A.ISc)

(figure A.2). The accuracy with which the FrCS with downstream differencing scheme reproduced

the analytic solution was investigated by recording the difference between numerical (8num(z,t» and

analytic (eana(z,t» solutions, normalised to the analytic solution

(A.I9)

The normalised difference was recorded as a function of dimensionless time, at three spatial locations

z = 0.25. 0.5 and 0.75. Defined in this way, a positive error indicates that the numerical solution is

overestimating the analytic solution, and vice-versa.

Figure A.3 shows the effect of varying Az on the accuracy of the numerical solutions, as a function of

time. for A.= I and 10. The value of At used is constant, and is given by

Az2
At = -:----:----:-

1.l(2+Mz) (A.20)

which is equivalent to equation (A.7), with !Cdr = I, Ste(w, + ws) = A, and an extra factor of 1.1 in the

denominator which is required to ensure stability of the numerical solutions (see following

paragraph). In all cases, the error between the numerical and analytic solutions decreases as the

solutions are propagated through time; with the exception of the cases I.. = 10 and z = 0.5 and 0.75,

the decrease is monotonic. The maximum error at t = 0.5 is <0.5% (figure A.3(e». The effect of

reducing Az from 11100 to 11400 is always to reduce the magnitude of the error; at t = 0.5, the most

significant reduction is by <0.25% (figure A.3(e».

2 The solution presented by Siemieniuch and Gladwell (1978) contains a typographic error, which was eliminated
by obtaining the University of Manchester report in which the solution was originally presented (Siemieniuch
and Gladwell. 1976).
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Figure A4 shows the effect of varying ~t on the stability and accuracy of the numerical solutions.

Plot A.4(a) shows the importance of the factor of l.l in the denominator of equation (A.20) on the

stability of the solutions, for the case z = 0.25, ~z = 1/50, and A = 10. Without the factor the

solutions are unstable; with the factor the solutions are stable. The factor of 1.1 is the smallest for

which the numerical solutions are stable. The large value of ~z = 1150 ensures that the instabilities in

the solution may be clearly observed. Plots A4(b) and (c) show the effect of halving ~t on the

accuracy of the numerical solutions, for the cases z = 0.25, ~z = 11200, and A = 1 and 10. The effect

of halving ~t is negligible; the error at t = 0.5 is reduced by <0.005% in both cases.

The error between the numerical and analytic solutions shown in figures A.3 and A.4 decreases as the

solutions are propagated through time, because the numerical solution initially lags, or

underestimates, the analytic solution; as the solutions are propagated they converge. The timescale

over which the solutions are investigated (t = 0.5) is restricted because the lengthscale of the system is

fixed at I; at large times (t > 0.5) the temperature 9 tends to 1 for all values of z, and the solutions

break down. The full system of equations is propagated for significantly larger times (t > to) than

those investigated here (see the results in §3.3.2). The small errors found at t = 0.5, and the

convergence of the solutions, indicates that at large times the errors introduced by the numerical

scheme are negligible.

The results of these numerical tests indicate that the FTCS with upstream/downstream differencing

scheme accurately reproduces analytic solutions of the parabolic heat conservation equation (AI) with

KelT = I and Steiw, + ws) = A, when a spatial node spacing of ~z = 1/200 is used, and ~t is evaluated

using equation (A.20), which is equivalent to equation (A.7) with an extra factor of 1.1 in the

denominator. Using these values, halving ~ improves the accuracy of the solutions at t = 0.5 by

<0.1 %; halving ~t improves the accuracy of the solutions at t = 0.5 by <0.005%. Maximum errors

introduced by the numerical scheme at t = 0.5 are <0.2%, and have a negligible effect on the accuracy

of the solutions.

A. 1.3.2 Mass and momentum conservation

Accuracy of the numerical scheme used to approximate the hyperbolic system of coupled mass and

momentum equations (A.2) and (A3), was investigated using a published analytic solution to the

equations for the case of a solitary porosity wave propagating with constant amplitude A, and constant

phase velocity c. The solution is valid in the absence of phase change, for the case n = 3 and in the

limit <p« I, and may be expressed as (Richter and McKenzie, 1984; Barcilon and Richter, 1986)3

~The solution presented by Barcilon and Richter (1986) is expressed in terms of A rather than cpc, and was used
here to eliminate typographic errors in the solution presented by Richter and McKenzie (1984). The solution
presented by B & R also contains a typographic error; the (A + 112) term should read (A + 112)112.

A.5
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of reducing At on the stability of the numerical solutions. If At < Ail/(2+AAz) then the solutioDS are
stable; if At = Ail/(2+AAz) then the solutions are unstable. The large value of Az - lIS0 ensures that
the instabilities may be clearly observed. Plots (b) and (c) show the effect of halving At on the
accuracy of the numerical solutions. In both cases Az ... 11200.
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,-ct=±~-2~+ lI.ln[J¥-~]1 (A.21)"l 2 V<PC=3 ~<PC2-3 +~<PC2-1_<I>

with

A=(<pc-l)/2 (A.22)

Equation (A.21) was used to provide an initial solitary wave with amplitude Aa and phase velocity co,

which was then propagated numerically using the staggered-leapfrog scheme, subject to the boundary

conditions

<l>(z, t) ~ 1,

w.(z, t) ~ -1,

(A.23a)

(A.23b)

(figure A.S). For the scheme to be accurate, the initial waveform described by equation (A.21) must

be propagated with constant amplitude and phase velocity. The accuracy with which the numerical

solution maintained constant amplitude was investigated by recording the difference between the

propagated amplitude A(t) and the initial amplitude Aa, normalised to the initial value, as a function

of dimensionless time

(A.24)

Likewise, the accuracy with which the numerical solution maintained constant phase velocity was

investigated by recording the difference between the propagated phase velocity c(t) and the initial

phase velocity co, normalised to the initial value, as a function of dimensionless time

(A.25)

Defined in this way, a positive error represents spurious growth in the amplitude and phase velocity of

the propagated wave; a negative error represents spurious amplitude dissipation and phase lag.

Figure A.6(i) shows the effect of varying az on the accuracy of the amplitude of the numerically

propagated wave, for a variety of values of cp and Aa. The value of At used is given by the CFL

condition (At = AzJco)' In all cases, some amplitude dissipation is observed, with a maximum error of

-5% (figure A.6(i)(e», and a minimum error of -0.1% (figure A.6(i)(b». For all values of az and Aa.
the error is reduced by approximately one order of magnitude when the value of cp used in the

numerical solution is reduced by one order of magnitude, a result which is clear when plots A6(i)(a).

(c), and (e) are compared with plots A6(i)(b), (d) and (f). The effect of reducing az from 112 to 118 is

predominantly to reduce the oscillations in the error; the mean error in each plot is reduced by <0.5%.

Increasing Aa leads to an increase in the error, by an order of magnitude in the largest case (compare

figures A6(a) & (ej), In all cases, once the numerical solution is established, the magnitude of the

mean error subsequently remains constant.
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Analytic
solution at
t=O

Numerical
solution at
t=O.5

Aa=5
<p = 0.001
Co = 11000

Analytic

5600

Figure A.5. Examples of the analytic solution for a solitary porosity wave
propagating with constant amplitude Aa and phase velocity co' at t=O and t=O.5. The
numerical solution at t=O.5 is shown for comparison. Note the truncated abscissa
scale, which was employed in order to show the shape of the porosity wave at t=O and
t=O.5. Aa = 5, <p = 0.001, and from equation (A.22), CO = 11000.
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Figure A.6(ii) shows the effect of varying Ilz on the accuracy of the phase velocity of the numerically

propagated wave, for the same values of <p, Ao and Ill. Some phase lag is observed, with a maximum

error of -9% (figure A.6(ii)(e», and a minimum error of -0.3% (figure A.6(ii)(b». The effects of

varying <p, Ilz and Ao are similar to those observed in figure (A.6(i»; the exception is that reducing Ilz

from 112 to 1/8 leads to an increase in the mean error, although by < I% even for the largest case

(figure A.6(ii)(e) and (f).

Figure A.7 shows the effect of halving Ilt on the accuracy of amplitude and phase propagation. The

results are for Ilz = 1/8, Ao = 2, and the values of <p used in figure A.6. The effect of halving Ilt is

negligible; both the amplitude and phase errors are reduced by <0.01 % in all cases.

For the values of Ilz and Ao used, the size of both the amplitude and phase error is most effectively

reduced by decreasing <p, which indicates that the errors are predominantly due to the use of a finite

value of <p in the numerical solutions, rather than the infinitesimally small value (<p « 1) assumed in

the derivation of the analytic solution (A.21). The constant nature of both the mean amplitude and

phase errors as the solution is propagated through time therefore indicates that the staggered-leapfrog

scheme is being accurately implemented; when the CFL condition is met, the scheme introduces no

numerical diffusion, and so no amplitude or phase dissipation is expected (Mitchell and Griffiths.

1980; Press et al., 1992; Morton and Mayers, 1994). The oscillations in the errors are interpreted to

be due to the finite mesh size. and the method of calculating the errors. As the numerical solution is

propagated, the position of the amplitude maximum is located at the nearest spatial node k; the phase

velocity is then calculated by evaluating the number of nodes traversed by the amplitude maximum.

For large spatial node spacings (Az), the nearest node does not always accurately represent the

position of the amplitude maximum. At each node, the numerical amplitude maximum leads and

then lags the analytic amplitude maximum, causing oscillations in the calculated error. As ll.z is

reduced, the nearest node more accurately represents the position of the amplitude maximum, and the

amplitude of the oscillations in the error is reduced.

The results of these numerical tests indicate that the staggered-leapfrog scheme accurately maintains

the amplitude and phase velocity of a solitary porosity wave when a spatial node spacing of ll.z = 114

is used, and Ilt is evaluated using the CFL condition (equation A.9). Using these values, halving ll.z

improves the accuracy of the solutions by <0.01 % for the amplitude, while reducing the accuracy of

the solutions by <0.1 % for the phase velocity; halving Ilt improves the accuracy of the solutions by

<0.005% for the amplitude and <0.01 % for the phase velocity. Maximum errors for the smaller value

of <p are <0.6% for the amplitude, and <0.8% for the phase velocity; these errors are predominantly

due to the finite value of <p used in the numerical solutions. and have a negligible effect on the

accuracy of the solutions.
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A. 1.3.3 The full system of governing equations

The numerical schemes used to approximate the parabolic and hyperbolic governing equations (A.l)-

(A.4) are governed by different requirements for stability and accuracy. The FrCS with

upstream/downstream differencing scheme used to approximate the parabolic heat conservation

equation (A. I ) must satisfy the condition

(A.26)

for stability, and the condition I::.z = 1I200 for accuracy (§A.1.3.I); the staggered leapfrog scheme used

to approximate the hyperbolic mass conservation equation (A.2) must satisfy the CFL condition

I::.t= t::.z
ISte(wl +ws~

(A.27)

for stability, and the condition I::.z = 1/4 for accuracy (§A.1.3.2). These conditions must be combined

to produce stable, accurate solutions for the full system of governing equations (A. I) - (A.4).

A key result from the individual numerical tests of §A.1.3.1 and §A.1.3.2 is that, with the exception

of the phase properties of the hyperbolic solution, decreasing I::.z or I::.t leads to an increase in the

accuracy of the solutions", and although over-resolution of the hyperbolic solution does reduce the

accuracy at which the phase information is propagated, the reduction is negligible. This result is

important, because it means that if the stability or accuracy requirement is more stringent for either

the parabolic or hyperbolic solution, the more stringent requirement may be applied to the full system

of equations without the other solution losing accuracy. Furthermore, values of tu and I::.t deduced

from the individual numerical tests may be applied to the full system of equations, and the accuracy of

the solutions tested by halving I::.z and I::.t,with confidence that this procedure ensures accuracy of both

the parabolic and hyperbolic solutions.

Although the accuracy conditions for the numerical schemes appear similar, they are not because the

lengthscales of the solutions are different. The condition I::.z = 1/4 required for accuracy of the

staggered-leapfrog scheme is equivalent to using 4 nodes per compaction length, because the

compaction length is the characteristic Iengthscale of the solutions (§3.2.3). The node spacing tu
defined in this way is lengthscale independent; if the compaction length is changed, the accuracy

condition is still given by I::.z = 114. In contrast, the condition tu = 1/200 required for accuracy of the

FrCS with upstream/downstream differencing scheme is valid only for solutions with 1Ce« = 1 and a

fixed lengthscale of 1. If the lengthscale of the problem changes, the accuracy condition is no longer

given by t::.z = 11200. The accuracy condition for the FrCS with upstream/downstream differencing

4 With the possible exception of rounding errors. In an attempt to minimise these, all numerical operations were
carried out using double precision. On the Sun SPARe 5 workstation used, this yields a floating point error rI
<lxIO·IH•
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scheme must be recast in a form which is lengthscale independent. In the absence of advection, the

length scale of solutions to the heat conservation equation (A. I) is governed by the magnitude of

2~Kefft (Carslaw and Jaeger, 1986). The accuracy condition i\z = 1/200 was obtained for solutions

with t = 0.5 (§A.3.l.2), in which case the lengthscale is governed by the magnitude of ~2lCeff ' and

the lengthscale independent accuracy condition

i\z = ~2lCeff /200 (A.28)

is suggested.

The accuracy conditions for the parabolic (i\z = 1/4) and hyperbolic (equation (A.28» solutions are

equivalent when

~2Keff /200 = 1/4 (A.29)

i.e. when Keff = 1250. For values of Kerr ~ 1250, the accuracy condition for the staggered leapfrog

scheme is more stringent; for values of Kerr ~ 1250, the accuracy condition for the FrCS with

upstream/downstream differencing scheme is more stringent. A suitable stability condition must now

be deduced. The stability conditions (A.26) and (A.27) are the most stringent for large values of

Stetw, + w.). Assuming Ste = 1 (its maximum value (§3.3», and (WI + w.) - I, the stability conditions

(A.26) and (A.27) reduce to

(A.30)

i\t = i\z (A.31)

and it is clear that condition (A.30) is always the more stringent.

These arguments yield the stability and accuracy conditions for the full set of governing equations

i\z2
i\t = (A.30)l.l(21lCeff1+ i\z)

i\z = ~2lCeff /200 for Kerr s 1250 (A.32a)

i\z = 1/4 for KdJ;::: 1250 (A.32b)

which were tested by recording the dimensionless segregation time <r..) (§3.3.3), and the

dimensionless segregation temperature (9aeg) (§3.3.4), as a function of the dimensionless effective

thermal diffusivity (Kerr), and ensuring that the results remained unchanged when i\z and L1twere

halved (typical values of tscg and 8scg are shown as a function of KdJ in figures 3.6 and 3.7a

respectively). Solutions for the spatial porosity distribution have a wave like form (§3.3.2), which is a

common result of liquid migration through porous, permeable, deformable media (e.g. Richter and

McKenzie, 1984; Barcilon and Richter, 1986; Scott and Stevenson, 1986); it is important that the

numerical solutions accurately reproduce the amplitude and phase information of the porosity waves.
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Ensuring that the segregation time and the segregation temperature remain unchanged when At and

!J.zare halved directly tests this. The segregation time is defined as the time required to initiate the

mush-slurry transition (i.e. the time required for the porosity to reach the Critical Melt Fraction). and

depends upon the amplitude of the leading porosity wave (§3.3.3). The segregation temperature is

defined as the temperature at the position of incipient slurry formation, and depends upon the

position, and hence phase velocity, of the leading wave (§3.3.4).

Figure A.8(a) shows the difference between the segregation times for solutions obtained using !J.zand

!J.Z/2,normalised to those obtained using Sa; as a function of KelT

t~iff (lCeff) = (t:;2 (lCeff)- t~ (lCeff))/t~ (lCeff) (A.33)

Similarly, figure A.8(b) shows the difference between the segregation times for solutions obtained

using !J.tand !J.tJ2, normalised to those obtained using !J.t,as a function of KelT

t~iff (lCeff) = (t!,~2 (Keff )- t!~ (Keff ))/t!~ (Keff ) (A.34)

Figure A.8(c) shows the difference between the segregation temperatures for solutions obtained using

!J.zand !J.Z/2,normalised to those obtained using Ilz, as a function of KelT

(A.35)

Similarly, figure A.8(d) shows the difference between the segregation temperatures for solutions

obtained using Ilt and IltJ2, normalised to those obtained using Ilt, as a function of XdJ

e~iff (lCeff) = (e!~2 (lCeff)-e!~ (lCeff))/9!~(lCeff) (A.36)

In all cases the solutions were obtained with cp = CMF = 0.5, and Ste = 1. Plots (a) and (b) show that

the effect of halving Ilz is to decrease the segregation time, but by <0.1% for all values of 1Cdr;

likewise, the effect of halving At is also to decrease the segregation time, but by <0.02% for all values

of Keff. Plots (c) and (d) show that the effect of halving !lz is to increase the segregation temperature,

but by <0.2% for all values of Keft'; in contrast, the effect of halving Ilt is to decrease the segregation

temperature, but by <0.06% for all values of KelT.

These results indicate that the numerical schemes used to solve the full set of governing equations

presented in chapter 3 produce stable, accurate results if the conditions (A.30) and (A.32) are

satisfied. Halving Az and !J.tchanges the quantitative results by <0.2% in all cases, which has a

negligible effect on the values of the segregation time and temperature.

A.1.3.4 Conservation of mass

A final confirmation of the accuracy of the numerical solutions was obtained by comparing the total

volume of liquid produced by phase change, with the total porosity, at the end of each run; i.e. by

confirming the equality
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I Zpaq, IZf(ae as,J J .:;::ozat = J J - + (w 1 + W s )-a zat
OOUI 00 at z

If the numerical solutions have been accurately implemented then this equality must hold, in order to

(A.37)

satisfy conservation of mass. Both left and right hand sides were integrated numerically, and if the

difference between the values obtained, normalised to the total volume of liquid produced, differed by

>0.1%, then the results of that run were discounted, and the source of the error located.

A.2 Numerical methods: chapter 4

The dimensionless, coupled, I-D equations governing the model presented in chapter 4 are

aq, 1 a ( ) ao ( )as
at= q> az (1-<pel»)ws +at+ wm +ws az

ae a2e as
- = Keff-2 -Ste(wm +Ws)-a
at ~ z

a2ws = Ws + (1-<pel»)
az2 cjln (1-q»

<pel)w m = -(1- <pel))ws

(A.38)

(A.39)

(A.40)

(A.41)

(A.42)

subject to the initial conditions

0(0,0) = 0

a
az (O(z,o))= '" geo

cjl(z,O)= Wm(Z,O)= Ws(Z,O)= 0

(A.43a)

(A.43b)

(A.43c)

and the boundary conditions

ero.o = 1 (A.44a)

(A.44b)

(A.44c)

Wm(O,t)= W,(O,t) =Wm(Zo,t)=W,(Zo,t) = 0

O(Zo,t) = °
a
az (O(z -+ oo,t))-+ "'gee (A.44d)

(see table A.I for a reminder of the nomenclature). The governing equations describe two distinct

regions: the partially molten rock in the region (0 S; Z S; Zo), and the solid rock in the region (z > Zo).

The equations governing the transport of heat, mass and momentum in the partially molten rock

(equations (A.38) - (A.41» are identical those given in chapter 3, with WI replaced by Wm(a change in

the nomenclature only). The equations governing both regions were solved using suitable explicit

finite difference approximations.
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A.2.1 Finite difference approximations of the governing equations

The equations governing the transport of heat, mass and momentum in the partially molten rock

(0::; z::; zo) (equations (A.38) - (A.4I» were approximated using the schemes described in §A.I.I,

which yield the explicit difference equations (A6) and (A.8) for propagating the dimensionless

temperature (e) and dimensionless porosity (<<1» through time, and the tridiagonal system of coupled

linear equations (A. I I ) for the matrix velocity (w.).

The parabolic equation governing the transport of heat in the solid rock (z > zo) (equation (A.42» was

approximated using a simple forward-time-centred-space (FrCS) scheme which is first order accurate

in time, second order accurate in space, and yields the explicit difference scheme for propagating e
through time

(A.45)

A.2.2 Method of solution

The explicit difference equations were solved sequentially in a similar manner to that described in

*A.I.2 (figure A.9). The initial values of e, «I> and w. were prescribed by condition (A.43). The

temperature e was propagated through one time increment in both the regions (0 ~ z ~ Zo) and (z > Zo)

using equations (A.6) and (A.45) respectively; the porosity «I> was then updated using equation (A.S).

In order to solve for the matrix velocity w., the conditions at both the upper (z=Zo) and lower (z=O)

boundaries of the partially molten rock are required; the position Zo of the upper boundary was located

at the spatial node k at which the modulus of the dimensionless temperature (191) was a minimum.

Finally, the tridiagonal system of coupled linear equations (A. I I ) was solved for w., subject to the

boundary conditions (A.44b), by matrix inversion (Press et al., I992). These steps were repeated for

each time increment j until the solutions had been propagated to the required time (§Al.2).

A.2.3 Accuracy of the numerical solutions

As discussed in §A.l, unless numerical approximations are carefully selected and implemented, the

numerical solutions obtained may be inaccurate because of errors introduced and propagated by the

approximations. To ensure stability and accuracy of the numerical solutions obtained for the full set

of governing equations (A.38) - (A.42), the conditions required to ensure stability and accuracy of the

numerical schemes used to approximate the governing equations in the regimes (0 ~ z S Zo) (i.e. in the

partially molten rock) and (z>zo) (i.e. in the solid rock) were deduced separately. Using the insight

gained, suitable criterion were deduced to ensure stability and accuracy of the full solutions.

Al2



Prescribe initial values ofe,~, and w.,
using condition (A.43).

Evaluate 9i+1 for all k using
equations (A6) and (A.45) in the

regions 0:::;z s Zo and z > Zo respectively.

Evaluate 1j>i+1 for all k using
equation (A8).

Locate the spatial node k at which lei is a
minimum; this is the position Zo of the upper

boundary of the partially molten rock

Solve the simultaneous equations (All) for
[w.rl, subject to the boundary conditions

(A.44b), using matrix inversion.

t=t + t1t

j=j+l

NO

STOP

Figure A9. Flow chart showing the order in which the numerical approximations of the governing
equations presented in chapter 5 were evaluated.



Appendix A: Numerical Methods

A.2.3.1 Heat, mass and momentum conservation in the region (05,zs,zo)

The conditions required to ensure stability and accuracy of the numerical schemes used to

approximate the equations governing the transport of heat, mass and momentum in the region

(0 :::;Z :::; zo) (equations (A.38) - (A.41» were deduced in §A.l, and are given by equations (A.30) and

(A.32).

A.2.3.2 Heat conservation in the region (z>zo)

Stability of the FrCS scheme used to approximate the conservation equation governing the conductive

transport of heat in the region (z>zo) (equation (A.45» is predicted if the local time step (£\t) is

restricted by (Morton and Mayers, 1994)

£\t:::; (£\z)2
2XKeff

(A.46)

Accuracy of the FrCS scheme was investigated using the analytic solution to equation (A.42) for a

semi-infinite half space in which the boundary at z=O is kept at a constant temperature of 1 and the

initial temperature is zero. The solution is given by (Carslaw and Jaeger, 1986)

(A.47)

(figure A.IO). The accuracy with which the scheme reproduced the analytic solution was investigated

by recording the difference between the positions of selected isotherms (Zl) for the numerical and

analytic solutions, normalised to the positions for the analytic solution

(A.48)

where i denotes the selected isotherm. The normalised difference was recorded for the Zo.S and Zo

isotherms as a function of dimensionless time. Defined in this way, a positive error indicates that the

numerical solution lags the analytic solution, and vice-versa.

Figure A.ll shows the effect of halving £\z and £\t on the accuracy of the numerical solutions. As a

'best guess' for the accuracy requirement, the value of L\z used is given by condition (A.32); the value

of £\t used is given by the stability requirement

£\t = (L\z)2
2XKeff

Plots A.ll(a) - (d) show the effect of halving £\z on the normalised difference between the numerical

(A.49)

and analytic solutions obtained for values of XKetr= Sx 10-3 and XKetr= Sx 10+3. These values were

chosen, because for the former L\z is given by condition (A.32a) (plots A.ll(a) and (b», while for the

latter £\z is given by condition (A.32b» (plots A.ll(c) and (dj), In all cases, the error between the

numerical and analytic solutions decreases monotonically as the solutions are propagated through
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Figure A.I0. Analytic solution to the equation governing conductive heat transport in the solid rock,
(equation (A.42), obtained using equation (A.47), for a semi-infinite half space in which the boundary
at z=0 is kept at a constant temperature of 1 and the initial temperature is O. The solution shown is for
the case XKeff= 100,after 50 time units.
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time. The maximum error at t = 0.5 is <0.1% (plot A.llb). The effect of halving az is negligible; the

error at t = 0.5 is reduced by <0.001 % in all cases.

Plots A.II (e) and (f) show the effect of halving at on the normalised difference between the numerical

and analytic solutions obtained for values of XKeff= SxlO-3 and XKeff= Sx 10+3
. Again, the error

between the numerical and analytic solutions decreases monotonically as the solutions are propagated

through time. The maximum error at t = 0.5 is <0.1 % (plot A.ll f), The effect of halving at is

negligible; the error at t = 0.5 is reduced by <0.001 % in all cases.

The error between the numerical and analytic solutions shown in figure A.ll decreases as the

solutions are propagated through time, because the numerical solution initially lags the analytic

solution; as the solutions are propagated they converge. The solutions were investigated for

dimensionless times up to t = 10; the results are shown in figure 4.11 only for times up to t = 0.5, so

that the initial lag of the numerical solution may be observed. The full results obtained demonstrate

that for times >0.5, the normalised error asymptotically approaches zero; i.e. the numerical and

analytic solutions continue to converge.

The results of these numerical tests indicate that the FrCS scheme accurately reproduces the analytic

solution of the heat conservation equation (A.42) for a semi-infinite half space, when the spatial node

spacing az is given by condition (A.32), and the temporal node spacing at is given by equation

(A.49). Using these values, halving dz and at improves the accuracy of the solutions at t = 0.5 by

<0.001%. Maximum errors introduced by the numerical scheme at t = 0.5 are <0.3%, and have a

negligible effect on the accuracy of the solutions.

A.2.3.3 The full system of goveming equations

The key result from the numerical test in §A.2.3.2 is that condition (A.32) ensures accuracy of the

numerical schemes used to approximate the governing equations in both the region (0 S z S Zo), and

in the region (z > Zo). Consequently, condition (A.32) ensures accuracy of the numerical solutions for

the full system of governing equations (A.38) - (A.42). However, the conditions to ensure stability d

the numerical schemes used to approximate the governing equations in the regions (0 S z S Zo) and

(z> zo) are different, and must be combined to ensure stability of the numerical solutions for the full

system of governing equations.

Substituting for the accuracy conditions (A.32a) and (A.32b) in the stability requirement (A.30) yields

at = lCeif
2200(2lCeif +(J2lCeif /200))

for Ke« S 1250 (A.SOa)

and

A.14
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~t=-----
35.21Ceff+4.4 for lCeIf ~ 1250 (A SOb)

Likewise, substituting for the accuracy conditions (A32a) and (A32b) in the stability requirement

(A.49) yields

for lCeIf S; 1250 (A5Oc)

and

for lCeIf ~ 1250 (A SOd)

It is not clear whether condition (A.50a) or (A.5Oc) is the most stringent for KeIT:S; 1250, or whether

condition (A50b) or (A.50d) is the most stringent for lCeIf ~ 1250. Substituting for the values of lCeIf

and X used in chapter 4 (see table 4.2) reveals that no one condition is the most stringent for all values

of Kef! and X; consequently, the numerical code was developed so that the most stringent stability

condition would be identified and implemented before each run.

Following the approach of §A.l.3.3, the stability and accuracy conditions (A.50) and (A.32) for the

full system of governing equations (A.38) - (A42) were tested by recording the dimensionless

segregation time (tseg)(§4.3.3), and the dimensionless segregation temperature (9seg)(§4.3.3), as a

function of the dimensionless effective thermal diffusivity (lCeIf), and ensuring that the results

remained unchanged when t1.z and ~t were halved (typical values of tscgand 9!1egare shown as a

function of lCeIf in figures 4.19 - 4.20).

Figure A.12(a) shows the difference between the segregation times for solutions obtained using t1.z and

tlzl2, normalised to those obtained using tlz, as a function of lCeIf (equation A33); figure A.12(b)

shows the difference between the segregation times for solutions obtained using tlt and I!.tl2,

normalised to those obtained using ~t, as a function of lCeIf (equation A34). Similarly, figure A12( c)

shows the difference between the segregation temperatures for solutions obtained using & and Azl2,

normalised to those obtained using tlz, as a function of lCetf (equation A.35); figure A.12(d) shows the

difference between the segregation temperatures for solutions obtained using tlt and tltl2, normalised

to those obtained using ~t, as a function of lCetf (equation A.36). In all cases the solutions were

obtained with cp = eMF = 0.5, 'l'geo = to-2, Ste = 0.5, and X= 2.5.

Plots AI2(a) and (b) show that the effect of halving ~z is to decrease the segregation time, but by

<0.2% for all values of 1Cetr; likewise, the effect of halving tlt is also to decrease the segregation time,

but by <0.025% for all values of 1Cetf. Plots A12(c) and (d) show that the effect of halving t1.z is to

increase the segregation temperature, but by <0.25% for all values of lCetf; in contrast, the effect of

halving ~t is to decrease the segregation temperature, but by <0.2% for all values of lCetf.
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These results indicate that the numerical schemes used to solve the full set of governing equations

presented in chapter 4 produce stable, accurate results if the conditions (A.50) and (A.32) are

satisfied. Halving tJ.z and tJ.t changes the quantitative results by <0.25% in all cases, which has a

negligible effect on the values of the segregation time and temperature.

A.2.3.4. Conservation of mass

A final confirmation of the accuracy of the numerical solutions was obtained by comparing the total

volume of melt produced, with the total porosity, at the end of each run; Le. by confirming the

equality (A.37). If the numerical solutions have been accurately implemented, then this equality must

hold in order to satisfy conservation of mass. Both left and right hand sides were integrated

numerically, and if the difference between the values obtained, normalised to the total volume of melt

produced, differed by >0.1 %, then the results of that run were discounted, and the source of the error

located (cf. §A.1.3.4).

A.2.3.S The effect of a percolation threshold

In order to obtain the results presented in §4.3.I.2, the numerical schemes were modified to include

the effect of a percolation threshold (<<1>.:). The percolation threshold denotes the minimum porosity at

which the partially molten rock is permeable. In regions with porosities less than the percolation

threshold, the permeability is zero; consequently, the melt and matrix velocities, and the compaction

rate C (= a(<Ilwm)/az)are required to be zero. The former requirement (wm = W. = 0) was rigorously

implemented when solving for the matrix velocity (equation (A.ll». The <Il3term in the coefficients

(A.12) represents the dimensionless permeability; in regions with cl>~ cl>.: the cl>3term was set to zero, in

which case the coefficients reduce to

(A.SIa)

(A.!Hb)

and the matrix velocity [w s fk is zero. However, the latter requirement follows from the physical

requirement that the bulk viscosity of the partially molten rock become infinite if the permeability is

zero (§4.3.1.2), and cannot be rigorously implemented. Rather, in regions with cl>~ «1>.:, the compaction

term (the second term on the right-hand-side) in equation (A.8)5 was set to zero, in which case, noting

that the melt and matrix velocities are also zero, equation (A.S) reduces to

cl>rl =cI>t +2(er1-et) (A.52)

However, although this numerical forcing of the compaction term correctly represents the change in

the rheology of the partially molten rock, it was found that for solutions with lCeIr S; land '11100 ~ I, the

5 This term is identical to the compaction rate C, but is expressed in terms of the matrix velocity w, rather than
the melt velocity Wm.
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numerical solutions no longer satisfied the equality (A.37); i.e. mass was not conserved. This

problem could not be resolved using the numerical techniques outlined. Only the solutions for which

mass is satisfactorily conserved are presented in §4.3.1.2.

A.3 Numerical methods: chapter 5

The dimensionless, coupled I-D equations governing the model presented in chapter 5 are those

presented in chapter 4, with the addition of an equation governing conservation of heat in the

underlying sill (i.e. in the region Z < 0)

ae a2e
at = Keff az2 (A.53)

This equation is identical to that governing conservation of heat in the solid rock (i.e. in the region

z > zo), with the exception of the factor X (see equation A.42).

The equations governing the transport of heat, mass, and momentum in the overlying rock (z > 0)

were approximated using the schemes described in §A.2.1, while equation (A.53) governing the

transport of heat in the underlying sill was approximated using the FrCS scheme described in §A.2.1.

Stability of the scheme is ensured if the local time step (~t) is restricted by

.M = (~Z)2
2Keff

(A.54)

This condition is similar to condition (A.49), which is required to ensure stability of the scheme when

used to approximate the heat conservation equation (A.42) in the region z > zoo Given that the X term

in condition (A.49) is always greater than 1 (table 4.2), it is clear that condition (A.49) is always more

stringent than condition (A.54); moreover, it was shown in §A.2.3.2 that the FrCS scheme accurately

reproduces the analytic solution of the heat conservation equation when the spatial node spacing (&)

is restricted by the accuracy condition (A.32). Consequently, the conditions required to ensure

stability and accuracy of the governing equations presented in chapter 4 also ensure stability and

accuracy of the FrCS scheme when used to approximate equation (A.53), which means that those

conditions «A.32) and (A.50» ensure stability and accuracy of the full set of governing equations

presented in chapter 5.

Following the approach of §A.2.3.3, the stability and accuracy conditions (A.50) and (A.32) were

tested by recording the dimensionless segregation time (tsea) (§5.3.1.2), and the dimensionless

segregation temperature (eseg) (§5.3.1.2), as a function of the dimensionless effective thermal

diffusivity (lCeff), and ensuring that the results remained unchanged when ~z and At were halved

(typical values of tsegand 9segare shown as a function of 1Car in figure 5.4).
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Figure A.13(a) shows the difference between the segregation times for solutions obtained using llz and

/).zl2, normalised to those obtained using /).z, as a function of KelT (equation A.33); figure A.13(b)

shows the difference between the segregation times for solutions obtained using llt and lltJ2,

normalised to those obtained using /).t,as a function of KelT (equation A.34). Similarly, figure A.13(c)

shows the difference between the segregation temperatures for solutions obtained using llz and llzl2,

normalised to those obtained using /).z,as a function of KelT (equation A.35); figure A.13(d) shows the

difference between the segregation temperatures for solutions obtained using llt and lltJ2, normalised

to those obtained using llt, as a function of KelT (equation A.36). In all cases the solutions were

obtained using the minimum sill thickness required for magma mobilisation, with <p = eMF = 0.5,

"'geo = 10.4, Ste = 0.5, and X= 2.5 (§5.3.1.2).

Plots A.13(a) and (b) show that the effect of halving llz is to decrease the segregation time, but by

<0.4% for all values of KelT; likewise, the effect of halving llt is also to decrease the segregation time,

but by <0.03% for all values of KelT· Plots A.13(c) and (d) show that the effect of halving llz is to

increase the segregation temperature, but by <0.3% for all values of KelT; in contrast, the effect of

halving llt is to decrease the segregation temperature, but by <0.25% for all values of KelT.

These results indicate that the numerical schemes used to solve the full set of governing equations

presented in chapter 5 produce stable, accurate results if the conditions (A.50) and (A.32) are

satisfied. Halving llz and llt changes the quantitative results by <0.4% in all cases, which has a

negligible effect on the values of the segregation time and temperature.

A final confirmation of the accuracy of the numerical solutions was obtained by comparing the total

volume of melt produced, with the total porosity, at the end of each run; i.e. by confirming the

equality (A.37). If the difference between the values obtained, normalised to the total volume of melt

produced, differed by >0.1%, then the results of that run were discounted. and the source of the error

located (cf. §A.1.3.4).
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Figure Al3. Effect of halving Az and at on the numerical solutions for chapter 5. (a) Normalised
difference t~trbetween the segregation times for solutions obtained with Az and Ilzl2, against K"tr('tr
given by equation (A.33». (b) Normalised difference ~tr between the segregation times for solutions
obtained with Ilt and Ilti2, against K"tr«(.;trgiven by equation (A34». (c) Nonnalised difference 9~fI'
between the segregation temperatures for solutions obtained with Ilz and 11712, against K"tr(e~tr given
by equation (A.35». (d) Normalised difference e~trbetween the segregation temperatures for solutions
obtained with Ilt and 1lt12against IC"tr (e~tr given by equation (A.36». Az is given by the condition
(A32); Ilt is given by the condition (A50). In all cases, the solutions were obtained using the
minimum sill thickness required for magma mobilisation, with q> = CMF = 0.5; 'II..., = 1()-4, Ste=O.5and
X= 2.5, and are shown in figure 5.4(a) and (b).
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