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Abstract

Abstract

The thesis describes the development of one- and two-equation turbulence models for the
simulation of random wave boundary layers. The models make use of the transport equations
for the turbulent kinetic energy, k, and the isotropic dissipation rate, €. In addition, a
moveable bed model has been developed which enables the variation in the bed roughness to

be simulated as a time-series within the boundary layer models.

The model equations are solved at a point through the vertical (1DV) using the semi-implicit
Crank-Nicolson finite difference scheme. The method has the advantage of being
unconditionally stable and offers higher-order accuracy. Further, in order to allow for the

calculation of the large velocity gradients close to the wall (seabed), a logarithmic grid

transform has been introduced in the vertical space direction.

The boundary layer models were first run using monochromatic waves. Results from these
initial runs were compared with Lamb’s analytical solution for laminar flow and then with
laboratory data for fully turbulent flow (Jonsson and Carlsen 1976; and Jensen et al. 1989)
and for transitional rough turbulent flow (McDowell 1983; Savell 1986). Results for the
transitional rough turbulent flow regime were compared with a standard high-Reynolds
number k-€ model and a two-layer k-¢ model. Application of the high-Reynolds number k-¢
model leads to poor results since the assumption of a fully turbulent flow regime has not been
reached. However, the two-layer model shows excellent agreement with the velocity

measurements and good agreement with the laboratory results overall.
From the results with a monochromatic wave it was decided to adapt only the two-equation k-

€ model initially to run with random waves. The choice of model was made on the basis of

computational efficiency. The random wave boundary layer model has been compared with
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Abstract

the random wave experiments of Ostrowski (1993). As part of these tests, measurements of

the bed shear stress were performed using a shear plate device.

In addition to the laboratory data of Ostrowski (1993), the random wave boundary layer
model has been tested against field measurements (Williams 1996). These measurements

were undertaken as part of an European Community funded project, CSTAB.

Reasonable agreement between the model results and both the laboratory and field
measurements was obtained. However, the approach used to compare the field measurements

to the model predictions has been shown to be questionable.

Significantly, the random wave boundary layer model has demonstrated that turbulent kinetic
energy can be carried over from one half period to the next. This has important implications
for sediment transport calculations. Further, previously suggested approaches which assume
that for random waves each wave can be treated individually as a monochromatic wave, for

example Smith (1977), are clearly incorrect.

The moveable bed model has been developed using laboratory results for both
monochromatic and irregular waves. The assumption that a ripple can be treated as an
increased roughness length, such as 4 x the ripple height, has been shown to be invalid for a
1DV, one- or two-equation turbulence model and without modifying the models leads to
underprediction in the energy dissipation factor. It has been hypothesized that the

underprediction is due to vortex shedding off the ripples. A new coefficient, C_, has been

vor ?
proposed that adjusts the dissipation term in the turbulent kinetic energy transport equation,
compensating for the vortex action. Lack of suitable experimental data has prevented a full

description of C,, being determined.

It has been demonstrated that the proposed moveable bed for random waves is capable of

enabling the ripple geometry to be determined as a continuous time-series.
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Notation

Notation

Near-bed orbital amplitude

Amplitude of second harmonic of turbulent eddy viscosity
Turbulence model constant

Turbulence model constant

Turbulence model constant

Factor on length scale

Mean grain diameter

Exponential (1) =2.71828......

Energy density

Energy dissipation factor

Wave friction factor

Multiplying function in low-Reynolds number k-€ model
Multiplying function in low-Reynolds number k- model
Multiplying function in low-Reynolds number k-¢ model
Gravitational vector (g, = 0; g, = 0; g, = - g; where g is the
acceleration due to gravity)

J-1

Turbulent kinetic energy (: (E,'_u,_') / 2)

Wave number (= 2n/L)

Wave number of the nth component
Nikuradse equivalent roughness
Mixing length

Length scale

Length scale
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Notation

p = Hydrodynamic pressure

ug = Modified shear velocity

uy = Defect velocity (u, = u, — u)

u; = Instantaneous velocity tensor at position (xi ,t)

u = Turbulence mean velocity

u = Fluctuating turbulent velocity component

u; = Wave-induced velocity component

U = Free stream velocity

U, = Velocity amplitude

u, = Shear velocity

U, = Bed shear velocity

Wp max = Maximum bed shear velocity

Upe = Current related bed shear velocity

s = Specific gravity

Sjj = Rate of strain

t = Time

X = Horizontal co-ordinate

y = Horizontal co-ordinate

z = Vertical co-ordinate

A Dimensionless wall distance (= u,,z/ v, )

zy, = Vertical level at which the velocity is assumed zero (= k,/30)
Zop = Upper limit of computational domain

A = Constant (=0.0081) in Pierson-Moskowitz spectrum
A = Turbulence model constant

Acp = Turbulence model constant

A, = Turbulence model constant

A = Turbulence model parameter

B = Constant (= 0.74) in Pierson-Moskowitz spectrum
Cpb = Drag coefficient
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Notation

o

oa

or

Re
Re

Relative group velocity

Group velocity in zero current region

Lift coefficient

Added mass coefficient

Turbulence model constant

Absolute, or apparent, wave celerity

Relative wave celerity

Vortex coefficient

Flow depth

Constant (Brevik 1981)

Energy dissipation

Wave energy density

Wave energy density in zero current region
Wave generation fetch

Spreading function within the equilibrium range
Wave height

Hankel function of the first kind, zeroth order

Hankel function of the first kind, first order
Root-mean-square wave height

Significant wave height

Slope of energy line

Free parameter

Deep water wave length for stationary observer

Deep water wave length for moving frame of reference

Real part of a complex number

Amplitude Reynolds number (= u,a/v,)
Turbulence Reynolds number (= \/fz/ vL)
Turbulence Reynolds number (= k?/ (vLs))

Spectral density of the surface elevation
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Notation

S,(@,,U)

o o o

3 3 Jx o

Spectral density of the surface elevation in current region

Wave period or turbulent averaging period
Absolute, or apparent, wave period
Constant (Brevik 1981)

Relative wave period

Zero crossing period

Current velocity

Wind speed at 19.5 m above mean sea level

Angle between wave crests and current direction

Turbulence model constant

Inverse of the Stokes length (= Jo/ 2VL)

Turbulence model constant

Turbulence model constant

Turbulence model constant (Section 3.6.3)

Peak enhancement factor in JONSWAP spectrum (Section 4.7.3)
Boundary layer thickness

Boundary layer thickness as defined by Jonsson

Boundary layer thickness as defined by Kajiura

Boundary layer thickness as defined by Sleath

Boundary layer thickness defined as when the velocity defect has
reached 1% of the free stream amplitude

Thickness of inner layer

Kronecker delta (8; = 1 if i = j, otherwise §;; = 0)

Random phase angle (values between 0 and 27)

Isotropic dissipation rate

Dimensionless parameter

Surface elevation

Transformed space co-ordinate (Chapter 5)

Function of z

Shields parameter

Modelling Random Wave Boundary Layers

xii



Notation

Critical Shields parameter

Von Karman constant

Dynamic viscosity

Kinematic (molecular) viscosity

Shape function

Turbulent eddy viscosity

Stream function

Fluid density

Turbulence model constant

Instantaneous stress tensor at position (x;,t)
Turbulence model constant

Standard deviation of 1, the surface elevation
Variance of n, the surface elevation
Turbulence model constant

Bed shear stress

Current related shear stress

Function of z

Mobility number

Angular frequency of oscillation

Absolute, or apparent, angular wave frequency
Relative, or intrinsic, angular wave frequency

Vorticity density

Upper point of overlap layer
Ripple height (Chapter 10)

Overbar denotes the Reynolds’ time-average

Tilde denotes a phase-average in relation to the wave period
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Sub-scripts:

o
n

¢]
il

£ » £ 8
Il

Abbreviations:

ABS
CSTAB
DNV
ECM
IBW PAN

ISVA

LDA
LDV
P-M
STABLE
SWOP
GWK

Bed
Current
Maximum
Waves
Swell
Wind

Acoustic backscatter (probe)

Circulation and Sediment Transport Around Banks
Det Norske Veritas

Electromagnetic Current Meter

Institute of Hydroengineering,

Polish Academy of Sciences,

80-953 Gdansk.

Institute of Hydrodynamics and Hydraulic Engineering,
Technical University of Denmark,

DK - 2800 Lyngby.

Laser-Doppler Anemometer

Laser-Doppler Velocimeter

Pierson-Moskowitz

Sediment Transport And Boundary Layer Equipment
Stereo Wave Observation Project

Grofler Wellenkanal
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Chapter 1 Introduction

Chapter 1

Introduction

The investigation of wave and wave and current boundary layers is of importance in a large
number of areas in coastal and offshore enginecering. Within the coastal region the
hydrodynamics and associated sediment transport are essential in any attempt to understand
changes in coastal morphology, erosion around structures and longshore and cross-shore
sediment transport. In particular, flow inside the seabed boundary layer is a significant factor
in wave attenuation, sediment transport and bedform formation as well as in areas such as the

transport of pollutants.

Interest in the seabed boundary layer has arisen due to its dynamic characteristics. The region
is an interface allowing exchanges of particles, chemicals and organisms with the water
column above. The seabed boundary layer provides an area for turbulent mixing and

frictional dissipation.

Boundary layer flows can be extremely complex. For example, water motion on the
continental shelf is driven by various mechanisms such as tides, wind, sea surface slope,
density differences and atmospheric pressure gradients. The importance of each driving

mechanism will vary depending on location. Tidal flows dominate much of the seas around

Britain.

Tidal flows in shelf seas are affected by friction at the seabed. In deep water, the boundary
layer where these frictional forces act is generally relatively thin, whilst in shallow water, the
boundary layer may occupy the whole depth and dominate the tidal dynamics. A similar

behaviour is also observed with steady and meteorologically induced currents (Soulsby
1983).

Modelling Random Wave Boundary Layers 1



Chapter 1 Introduction

The scale difference between the thickness of tidal / current boundary layers and, say, wind
wave boundary layers can be easily demonstrated. Nielsen (1985) relates the boundary layer
thickness, 8, to the period of the flow, T and the turbulent eddy viscosity, v, , such that:-

8 o< \/Tv, (1.1)

Assuming the eddy viscosity to be constant, then for a semi-diurnal tide ( T = 12.42 hours )
and wind waves of period 6 seconds, the tidal boundary layer will be approximately 86 times
thicker than for the waves. Grant and Madsen (1986) suggest that the wave boundary layer is
typically of 3 - 30 cm in thickness depending on wave conditions, though it is possible for the

upper limit to be greater and of the order of 50 cm.

Therefore, following on from this, it is clear that for a combined wave-current flow two
distinct boundary layer scales exist. Firstly, in the immediate vicinity of the bed, the wave
boundary layer develops with contributions to the turbulence from both the waves and
current. The height to which the wave-induced turbulence can diffuse acts as the vertical limit

to this layer. Above this region is a layer where the turbulence is due to the current alone.

Lundgren (1973) was one of the first researchers to investigate the mechanism of wave-
current interaction. Lundgren developed a simple model for a current in waves, however,
non-linear interaction was ignored. The first models to account for non-linear wave-current

interaction are those of Smith (1977) and Grant (1977) (see also Grant and Madsen 1979).

In the 1970’s and early 1980°s there was a rapid expansion in the offshore oil and gas
industries. With it came a need for greater understanding of how structures would respond to

hydrodynamic forces. In particular, there was a need to protect piles and platform legs as well

as pipelines from scour.

For example, exposed seabed pipelines in shallow or intermediate water depths are also
subject to the hydrodynamic forces in the wave or combined wave-current boundary layer. It
is the fluid motion in this region that is the major mechanism which governs sediment
transport and hence scour. Deigaard et al. (1985) reviewed bed boundary layer models with a

view to investigating marine pipeline stability. They took the combined wave-current flow

Modelling Random Wave Boundary Layers 2
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field as being the most general case to which pipelines would be exposed. It had previously
been shown that the lift (C, ) and drag (Cy, ) coefficients attain greater values in waves than in

currents alone (e.g. Sarapkaya and Rajabi 1979).

Investigation of wave and combined wave-current boundary layers has been undertaken on
three fronts, direct measurements in the field, laboratory experiments and from a theoretical

approach using both analytical and computer (numerical) models of varying complexity.

Measurements in the wave boundary layer are difficult to take in the field. Not only can the
environment be extremely hostile to equipment, leading to possible loss, but for the
measuring devices to survive in such an environment they tend to be quite bulky, which is a
problem because of the wave boundary layer thickness being relatively small. To date, there
is a lack of such data and this is a major obstacle which will need to be overcome if a full
understanding of boundary layer processes is to be attained. Only Myrhaug er al. (1992) and
Soulsby and Humphrey (1990) have made field measurements of flow velocities below 15 cm
from the bed. Myrhaug er al. deployed a tripod in the North Sea equipped with acoustic
current meters with the lowest measurement point at 10 cm from the bed. However, the data
is limited in that it was recorded at a frequency of 1 Hz, excluding turbulence from the data.
Soulsby and Humphrey also had a measurement point at 10 cm above the bed. Chriss and
Caldwell (1982) performed measurements of flow velocities with their lowest point 15 cm
from the bed. Unfortunately, most data sets have measurement points at 20 cm or more from
the seabed: Drake and Cacchione (1985; 1986); Lambrakos (1985), Lambrakos et al. (1988);
Madsen et al. (1993); Gross et al. (1994); Williams (1996).

With typical wave boundary layer thickness’ of between 10 cm and 50 cm most of the data
sets contain no or at best one measurement point within this region. Therefore, to be able to
relate their data to the wave boundary layer many researchers have fallen back on modelling
techniques. There is, therefore, a need to try and ensure that any model applied to aid such

deficiencies in field data collection are able to provide sufficiently accurate simulations if

their output is to be of use.
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Recently Agrawal and Aubrey (1992) used a laser Doppler velocimeter (LDV) in the field to
take measurements in the trough, lee and crest of a bed ripple in 2.5 m of water. It is the
application of such measurement techniques in the field that will eventually help to provide a
greater number of measurement points within the wave boundary layer. However, for now,

researchers will have to rely on the use of models to aid their interpretation of the real world.

Whilst laboratory experiments may be seen as a way of obtaining more detailed information
on processes such as turbulence in the wave boundary layer, it was not until the development
of equipment such as the oscillating wave tunnel (Lundgren and Serensen 1959) that it was
possible to reproduce the conditions found at prototype scale. The oscillating water tunnel
developed by Lundgren and Serensen consisted of two vertical risers connected by a
horizontal tunnel. The water was oscillated by air pressure. Since the original oscillating
water tunnel was built at ISVA, Denmark, several other institutions have acquired similar
tunnels, (see King et al. 1985).

As there is no free surface in an oscillating tunnel no waves are formed. Therefore, the flow
field is unable to fully reproduce wave motion because there are no vertical oscillatory
velocities. Further, such facilities are unable to reproduce phenomenon such as turbulence

due to wave breaking.

However, with the development of large scale facilities such as the Delta flume in the
Netherlands, SUPERTANK in the USA and the GWK in Germany, it is now possible to carry
out experiments at prototype scale. Whilst field data should be seen as the ideal, the
difficulties of measuring in the field as well as the lack of control on external conditions (such

as sea state and wind action) makes the use of prototype scale facilities very attractive.

The first detailed set of measurements in the turbulent wave boundary layer were those of
Jonsson (1963). Jonsson used a micro-propeller meter to measure the velocity over a bed
covered in triangular roughness elements used to simulate ripples. Further tests were reported
in Jonsson and Carlsen (1976) (see Chapter 6 for further details). More recently, the work of
Jensen er al. (1989) stands out for its quality and breadth, investigating oscillatory wave

boundary layers for a range of Reynolds numbers for both smooth and rough beds.
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Of the earliest laboratory studies to investigate the combined wave-current boundary layer,
the most detailed are those due to Bakker and Van Doorn (1979) and Kemp and Simons
(1982; 1983).

To date very few experiments have been performed to investigate the hydrodynamics of
random wave and combined wave-current boundary layers. To this author’s knowledge the
first detailed investigation of such flows was due to O’Connor et al. (1988), who reported on
a series of experiments performed at The University of Manchester. However, although the
report highlights a comprehensive set of experiments no results were shown. More recently
Ostrowski (1993) performed a series of tests using a shear plate to measure the bed shear
stress under random waves (See Chapter 8). Unfortunately, the data is limited in that the
lowest velocity measurement point is 13 mm above the bed. Simons et al. (1995) also
describe experiments with a shear plate to investigate bottom shear stress under random

waves with an imposed current.

The lack of data on such flows leaves many uncertainties as to how the flow field behaves
under irregular waves. For example, Smith (1977) assumes that for irregular waves each wave
can be treated individually as a monochromatic wave. However, if the turbulent kinetic

energy were to persist into the next half wave period such an assumption would be flawed.

Modelling presently provides the link between the field and laboratory. As models have
become more sophisticated so too has their ability to provide more detailed answers. Early
modelling techniques were analytic in form due to the level of computer technology at the
time. Kajiura (1968) developed a three-layer time-invariant eddy viscosity model yielding an
ordinary differential equation which could be solved analytically. This was the first of this

type of model based on Boussinesq’s viscosity assumption.

As computers became more powerful and more accessible so boundary layer modelling
techniques became more complex. Bakker (1975) adopted a mixing length closure, rewriting
the linear flow equation in terms of a dimensionless shear velocity. Johns (1977) presented a

one-equation k-model which included the horizontal advective term introduced through the
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Chapter 1 Introduction

use of a pseudo-spectral method. However, prior to Johns (1977), Vager and Kagan (1969;
1971) had used a one-equation k-model to study the boundary layer of tidal flows.

Smith and Takhar (1977) describe the use of mean Reynolds stress and mean turbulence
energy closure models for the prediction of oscillatory flow in open channels. Smith and
Takhar applied three models which required the solution of some or all of the differential
equations governing the dominant Reynolds shear stress, the turbulent kinetic energy, k and
the isotropic dissipation rate, €. Smith and Takhar concluded that a one-equation k-model was

a sufficient order of closure for the solution of environmental problems.

Sheng (1985) applied a Reynolds stress model to the turbulent wave boundary layer. Such
models remove the need to use the Boussinesq eddy viscosity hypothesis. However, Sheng
failed to make a detailed investigation of the wave boundary layer. Brors and Eidsvik (1994)
compared the results from a Reynolds stress model with the oscillatory boundary layer data of
Jensen er al. (1989). In addition, they included a sediment transport module in the model, the
results of which they compared with the laboratory data of Ribberink and Al-Salem (1992).
Brers and Eidsvik concluded that a k- model provided results for stratified sediment-laden
flows that were not that different than those predicted by the Reynolds stress model.

Therefore, the k-¢ model was a sufficient level of closure for modelling such flows.

The most sophisticated model used to study oscillatory flow is that of Spalart and Baldwin
(1987). Spalart and Baldwin modelled oscillatory flow over a smooth wall using direct
simulation techniques, that is, solving the full three-dimensional Navier-Stokes equations
using a spectral method. However, due to computer resources, their results were limited to a

maximum Reynolds number of Re = § x 10°.

As present knowledge stands, modelling provides an essential link between the reality of the
field and the ideal of the laboratory. Through the use of models it is possible to aid in the
interpretation of data, in particular field data where the measurement points might be limited.
Additionally, such data helps to validate the numerical model. Within the European

Community MAST 1 research programme, researchers at the University of Liverpool’s
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Department of Civil Engineering developed a boundary layer model that could simulate wave

and combined wave-current boundary layers under random sea states O’Connor et al. (1993).

The boundary layer modelling work developed under MAST I was further refined in a second
project CSTAB (O’Connor 1996) which was part of the MAST II programme O’Connor et
al. (1994). Part of the CSTAB project involved the deployment of STABLE (see Humphrey
1987) an autonomous boundary layer tripod supporting a suite of sensors. With the use of the
data collected by STABLE the performance of the boundary layer model, which used a
simple mixing-length closure, was tested further. In addition, results from the model helped
in the interpretation of some of the measurements made by STABLE. As part of the results
from STABLE, it was found that wave groups exerted a ‘pumping’ action on the bed
sediments and hence on sediment transport concentrations. It was unclear though as to what
the exact mechanism in the boundary layer was causing this effect. One possibility was that
there was a carry over of turbulence from one half wave period to another. However, whilst
the mixing length model showed that it could predict the flow field and shear stress
adequately, it was unable to provide any insight into the turbulence structure. Therefore, to

investigate such phenomenon, a higher order model would be required.

In addition to the effect of wave groups on the turbulence structure within the wave boundary
layer it has also been suggested (O’Connor 1996) that the time-varying bed roughness might
also enhance the pumping action of the waves. Clearly any influence of one wave on the next
makes it difficult to justify the operation of models of suspended sediment transport (Davies

and Li 1997) with an equivalent mono-frequency wave.

The present research, therefore, chose to look at higher order eddy viscosity models based on
one- and two-equation closures to investigate random wave and wave-current boundary
layers. Initial work involved comparing the models against existing laboratory data in order to
ascertain whether there was a clear advantage over using a particular level of closure. Smith
and Takhar (1977) stated that for environmental problems a one-equation k-model was a
sufficient level of closure. Also, Brers and Eidsvik (1994) suggested that a two-equation k-¢

model was adequate for prediction of sediment laden flows.
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In addition, a moveable bed module would be added to the boundary layer model to enable
the bed roughness to vary with time in order to determine the effect on the turbulence
structure within the boundary layer as well as comparing this model with existing theories for

moveable bed roughness under random waves (e.g. Madsen et al. 1991).

The proposed work is organized as follows:-

Chapter 2 describes the pertinent hydrodynamic equations for the present problem.

Chapter 3 presents a state-of-the-art review of wave and wave/current boundary layer
modelling. The aim of the review is to provide a context in which the present modelling work
may be viewed and describes the various methods available for modelling wave and
wave/current boundary layers. In addition, the relative novelty of modelling the random sea

boundary layer directly rather than employing a representative monochromatic wave is
highlighted.

Chapter 4 describes the theoretical background for the methods employed in modelling
monochromatic as well as random wave boundary layers. A description of the equations
involved in the various models is provided together with the boundary conditions applied
within the numerical schemes. A detailed description of the transport equations involved in
modelling turbulence enables the reader to gain a better understanding as to why such models
do not always provide ‘perfect’ answers. Use of appendices allows greater detail to be

provided for the interested reader (Appendices A and B).
Chapter 5 presents a brief overview of the numerical scheme employed in the model together
with a summary of the results of stability and convergence tests carried out. Further details

are provided in Appendices C and D.

Chapters 6 to 10 describe the results from the present work. In Chapters 6 and 7 the initial

model development is compared with established laboratory data for monochromatic waves.
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Chapter 6 compares the performance of various levels of eddy viscosity model applied to the
prototype scale data of Jonsson and Carlsen (1976) and Jensen et al. (1989). A comparison of
three different models; mixing length, k, and k-¢ models is shown. Using these results it is
intended to select the most appropriate model with which to simulate random wave boundary

layers based on accuracy and efficiency.

Chapter 7 compares results from some of the data collected at the University of Manchester
(McDowell 1983; Savell 1986) with two numerical models; a high-Reynolds number k-¢
model and a two-layer k-¢ model. Both experimental tests chosen for comparison (Tests 52
and 59) were conducted in a small wave flume (see Chapter 7). The scale of the
measurements places the flow in the transitional stage of development. Test 52 (waves alone)
indicates the importance of choosing the appropriate model to match the physics, whilst test

59 (waves and imposed current) shows that the addition of a current enhances the turbulence

development of the flow.

Chapter 8 describes the results of the random wave boundary layer model as tested against

laboratory data from IBW PAN, Gdansk, Poland.

Chapter 9 shows the results of the random model run for field data gathered by STABLE
during the CSTAB project. The model has been modified to allow for multi-directional

waves.

Chapter 10 describes results from the investigation into moveable bed roughness and its
application in the random wave boundary layer model. Initial work focuses on flow over
ripples and in particular fixed bed experiments of Bagnold (1946) and Sleath (1985) and the
moveable bed experiments of Carstens ef al. (1969), Lofquist (1986), Rosengaus (1987) and
Mathisen (1989). The measured energy dissipation factors over ripples obtained during the
experiments are compared with output from the boundary layer model using a modified
equivalent roughness based on 4 x the ripple height. Development of a moveable bed model

for random waves is shown and comparison is made with other existing models.
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Chapter 11 draws together the key results from each chapter enabling conclusions about the
numerical models and wave boundary layers to be made. Recommendations for further

research are also presented.

Appendices provide additional details on the work conducted, in particular some of the model

results (Appendix E) as well as experimental data from the ripple tests (Appendix F).
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Chapter 2
The Hydrodynamic Equations

2.1 Introduction

Chapter 2, introduces the hydrodynamic equations which form part of the theory used in the
present work. The necessary equations are derived from the Navier-Stokes equations and for

brevity, the initial formulation uses tensor notation.
2.2 The flow field in the turbulent boundary layer

The equations of motion for an incompressible fluid can be written in tensor form:

o g 10 @1
ox;  p OX;

ot
ou,
T 2.2
ox. 22)

where u; is the instantaneous velocity at position (x;,t) and represents the Cartesian
velocities u, v, w in the X, y and z planes respectively. Eq. (2.2) is the fluid mass continuity
equation. The other various quantities can be defined as:-

o; = the instantaneous stress tensor at position (xi ,t).

g; = the gravitational vector (g, =0; g, =0; g, = —g; where gis the

acceleration due to gravity).

If the fluid is Newtonian, that is, elements of the stress tensor and the deformation tensor are
related through linear relationships then,

G; = —pd; +2ps; 2.3)
where:-

;= the Kronecker delta and is further defined as &; = 1 if i = j otherwise §; = 0.

p=  the hydrodynamic pressure.

u=  the dynamic viscosity

Modelling Random Wave Boundary Layers 1



Chapter 2 The Hydrodynamic Equations

s; = the rate of strain

The rate of strain s; is defined as
1{ Ou;, Ou,
’ 2( Ox, J (

Substituting Eqgs. (2.3) and (2.4) into Eq. (2.1) and using the mass continuity equation

produces the equation:-

du  du_ 1dp {VL‘?“JJ,& 2.5)
o o, pox, ox\ ~ox,

)

where v, is the kinematic (or molecular) viscosity (vL =p/ p) ; p is the fluid density.

Using Reynolds’ method of relating the instantaneous local velocities to the turbulence-mean
(u,) and fluctuating (u;) values (see Reynolds 1894) that is:-

u, =1 +u 2.6)
Eq. (2.5) becomes:-

o, N B, . 18
—a—t(ui +ui)+(uj+uj)a—x—(ui +u)) = —;g(p +p))

] i

2.7
2y i(ﬁ +u')) +g
axj L axj i i i
However, by definition the time-average of u] is zero such that:-
1 tg+T
= u - ﬁ dt = 0 2.8
ITLIPT I( - T) 2.8)

where T is a turbulent averaging period which is long compared to the frequency of

oscillation of the turbulence.

Therefore time-averaging Eq. (2.7) gives

gﬁ—i+ﬁ—‘— 15 6( )

o,
. 2.9
0t Jax pax axj[vLax)J'Fgl ( )

where the overbar, ~ indicates a time-average over the time-scale T.

j
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For combined wave-current flow, it has become more common practice to describe the
instantaneous local velocity by the inclusion of a third component. Therefore,

u, =4 +uj+ 1 (2.10)

where §;, and u] are defined as previously and T

1

represents the wave-induced flow. It is
usual to assume that these three terms all operate on different time-scales and are not
mutually related. U, is taken as operating on the largest time-scale and u; the smallest, whilst

~

the orbital wave motion U, is assumed to operate on a time-scale large enough to allow
turbulent fluctuations to die out. This latter point is not valid since the turbulent properties
vary at a much greater time-scale than the orbital wave motion. However, as present
knowledge stands, the exact nature of the correlation between the wave and turbulent parts is

not clearly understood and as a consequence they are assumed to be uncorrelated. Therefore,

to+T
lim— Judt =1, (2.11)
Tow to

to+T .
lim= fuidt=ui =0 (2.12)
T to

to+T _
lim; [mdt=1 =0 (2.13)
T to

and following from this, the cross-products of the three terms are assumed to be zero.

Further, the periodic component represented by the tilde is described as the phase-average

over N periods minus the time-average:-

029 =1 Y u(ot+nT) - (2 @.14)

n=1
It is therefore possible to derive similar equations to that of Eq. (2.9) by introducing Eq.
(2.10) into Eq. (2.5). Thus:-

) i

2.15)
+—a—(v i(1‘1 +u’+ﬁ)J+
x| L3 i TY T g;

J

9 (- - 5 [ 0 = - 10 -~
5t—(ui +u! +ui)+(uj +u +uj)a—x—(ui +u+ 1) = __Ex-(pi +p+7;)

i

Time-averaging Eq. (2.15) leads to the following equation:-
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i _ou _ow . ou 1P, 61‘1)
s IS+ Sl SV b A s St < B v +g; 2.16
& U, ek, ox,  pox, 6X(L8x & @16)
If Eq. (2.15) is phase-averaged then the following equation results:-
! ) : 1op. 1
ou, v ﬁj%ﬁ%?%"@
i pox; poX @2.17)

ou, o _ du,
+0, L+ T +uj—
ox, o, j

—l 4y -1
o ot oy
5 (aﬁi o,
v ]+ e

ox; 0%

Eq. (2.17) represents the momentum equation for phase-averaged flow for combined waves

and currents. From this equation it is possible to derive an equation for periodic flow with no

applied current.
Assuming the steady component, T; to be varying only very slowly in time, then 0u; /0t can

be neglected. Therefore, Eq. (2.17) can be written as
135, 138,

aﬁ+uaﬁ+1‘1aﬁ‘+u'au€+ﬁ@+ti@——————
ot iox.  Jox. ‘ox. ‘ox.  pox. pox

ot ax axJ axJ ; ; pox, pox 2.18)
0 ou, O,

o —+—L[t+g,

6x 6x ax

respectively.
For the case when the steady component, U, =0u;/0x; =0 , that is, there is no imposed

current, Eq. (2.18) becomes:-
(2.19)

o, L ou O i
— U+ = — v
ax, ‘ox; pox, ox %

ot j
Comparing Eq. (2.20) with Eq. (2.9) reveals that for the case of waves alone Eq. (2.19) and

Eq. (2.9) are of a similar form.

Substituting Eq. (2.10) into Eq. (2.2) leads to the equation:-
ou, 0 ,_ ou. oul Ou
A= (Q+u+i)=— 4 T4 02 2.20
ox, i (B + v ) ox, ox, Ox (2:20)
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In Egs. (2.9) and (2.19) the terms including the turbulent velocity fluctuation components are
known as the ‘Reynolds stresses’. These stresses provide a description for the exchange of
momentum between different elements of the fluid due to turbulent fluctuations. They are
also the source of the problem in any attempt to solve the Navier-Stokes equations for
turbulent flow. Exact solution requires a vast time and space resolution which is only just

becoming feasible with the super-computers of today.

Boussinesq (1877) introduced an eddy viscosity concept such that the turbulent stresses are

assumed to be proportional to the gradients in the mean velocity field:-

3 ox.

— . ou,
W = 2k, - v,(@ ¥ _,J @21)
0x, ;
where v, =turbulent eddy viscosity; k = the turbulent kinetic energy and is defined by the
equation:-

k=—uu 2.22
Sy, (2.22)

and all other terms are defined as previously.

Models which use Boussinesq’s hypothesis are collectively known as eddy viscosity models.
Based on Eq. (2.21) it is possible to substitute for the Reynolds stresses in Eq. (2.19) leading

to the equation:-

(v, + v,)%} +g (2.23)

From Eq. (2.23) it is now possible to write the flow equations (the x- and z-directions) for a

two-dimensional turbulent shear boundary.

ou 0 A
e (VR S VAR SRS

-1 i{(vt + VL)%} + %{(vt + vL)%} —g(225)

Consider now the equation of motion for the horizontal component only. For a thin boundary

layer, the flow inside the boundary layer is normally assumed as being horizontal in which

case:-
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~

w=0
Further, assuming the gradient of U in the z-direction is much greater than that in the x-

direction then the following term may be neglected.

Zfo)

Eq. (2.24), therefore, reduces to:-
Q_ﬁ_+ﬁ@=_l§i+i{(vt+w)?} (2.26)
/A

This is still not an easy equation to solve due to the non-linear convective acceleration term
U0U/0x. If the flow is considered to be horizontally uniform then generally it is considered
acceptable to omit this term. In order to obtain horizontal uniformity, the free stream velocity,
u, must be uniform. Secondly, any non-uniformities due to the bed roughness elements

should be restricted to a layer which is much thinner than the boundary layer itself.

The final simplification in solving Eq. (2.26) is replacing the pressure term. Assuming that
the wave boundary layer is thin and that the flow outside the boundary layer is irrotational
(that is the shear stress is zero) the pressure distribution in the boundary layer can be

considered as hydrostatic. Therefore, outside the boundary layer the following equation
holds:-

o _ 15 2.2
o 5 x (2.27)

which follows from Eq. (2.26) when applied at the top of the wave boundary layer.

Therefore, Eq. (2.26) can be written as:-

ou ou, 0O ou
—a—t- = Tat—o + é;{(v, + VL)EZ—} (2'28)

23  Hydrodynamic boundary conditions
2.3.1 Introduction

In steady boundary layer flow the characteristics of the boundary layer are dependent on
boundary roughness. In unsteady flows the effect that a hydraulically rough or smooth bed
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has on the boundary layer has been less well studied. In oscillatory wave boundary layer flow
most research has concentrated on flow over rough beds (see Chapter 3). However, Hino et
al. (1983) performed experiments to measure the velocity and turbulence profiles in smooth
and transitionally rough turbulent oscillating flow in a wind tunnel. More recently, Sumer et
al. (1987) and Jensen et al. (1989) describe results from extensive experiments in the
oscillating wave tunnel at ISVA. These provided measurements of the velocity and
turbulence structure in smooth, transitionally rough and rough turbulent oscillatory boundary

layers.

Whilst much modelling work has been presented for oscillatory wave boundary layers over
rough beds, very little work has been performed for the smooth bed case. The earliest attempt
to model oscillatory flow over a smooth bed is probably that of Kajiura (1968). Fredsee
(1984) presented results for flow over a smooth bed using the integral momentum approach.
Justesen (1988a) showed results from a one equation model of an investigation of a
developing oscillatory wave boundary layer over a smooth bed. Recently, Wiberg (1995) has
examined flow over a smooth bed using a simple eddy viscosity model. However, in the

present work, modelling has been restricted to the rough bed case.

In order to be able to model wave boundary layer flows it is necessary to specify boundary
conditions for both the bed and the upper computational domain. For a non-porous bed it is
normal to apply a no-slip boundary condition in the hydrodynamic equations. However, for
the surface boundary condition the specification can be slightly more complex. In wave
boundary layer flows many modellers choose the top of the wave boundary layer as their
upper computational domain. However, in tidal flows the boundary layer normally extends to

the surface in coastal waters.

2.3.2 Sinusoidal waves
For the case where the free stream velocity, u, is assumed to be sinusoidal, then the velocity

is given by the equation:

u, = u,, sin(ot) 2.29)
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where u_ is the velocity amplitude and ® is the angular frequency of oscillation. Further,

o =2n/T where T is the wave period.

To enable solution of the hydrodynamic equations it is necessary to specify boundary
conditions. For the flow equations a no-slip boundary condition is applied at the bed. At the

upper edge of the computational domain the velocity gradient is set to zero. Therefore:-

(z,,t) =0 at z=2z, (2.30)
ou
g—z—(zmp,t) =0 at z=2,, (2.31)

where z, is defined as the vertical level at which point the velocity is assumed to be zero and

can be expressed as:

_k
30

where kg is the Nikuradse roughness. z

Z,

(2.32)

op 18 the upper limit of the computational domain and

has generally been taken to be at the water surface, D.

2.3.3 Sinusoidal waves and current

To enable the model to represent the combined wave-current boundary layer, it is necessary

to return to Eq. (2.17).

ou, oW _ou _ow ou _ou _ of 10p;, _10p,
— 0 T U+ T T L = - -
o0 ot ox, 'ox; 'ox; Yox; Yox;  pdx, pox

Based on similar assumptions to those used for the case of waves alone, Eq. (2.17) reduces to

the equation:-

which for combined wave-current flow in the x-direction leads to the equation:-
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@=__1.QE_10§ (vt +vL)(@+@) (2.34)
ot pox pox oz 0z 0z
The pressure gradient due to the wave motion is determined as previously:
_l(@) = 9y (2.35)
p\ox ot

and

u, = u,sin(owt)
The pressure gradient due to the mean current is determined from steady flow where the shear
stress distribution is taken as being triangular in shape such that:-

yA

o uzc(1 i, B) 2.36)

where D is the flow depth; 1 is the current related shear stress and u.c is the current related

bed shear velocity. The sub-script ¢ corresponds to the current. Therefore,

i(%}n =—gID (2.37)

where [ is the slope of the energy line and g is the gravitational constant.

Averaged over a wave period, the pressure gradient due to waves (6’5 / ax) goes to zero which

leaves only the pressure term due to the current. However, since the mean flow gradient must
be known prior to solution, the mean current velocity can only be solved for via an iterative

Process.

Justesen (1988a) uses the iterative process as proposed by Deigaard er al. (1986). This

requires assuming an initial value for the mean current profile. After one wave period, the

shear stresses are averaged over the period and the deviation AT(z) from the required

distribution determined such that
2n
AY(z) = 1c - It(z,mt)dcot (2.38)
0
The velocity profile is then adjusted using the following correction, At(z)

Ai(z) = [0 itt((zz)) (2.39)
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where AU(z) is the velocity correction and Vi(z)is the mean turbulent eddy viscosity over

one wave period. The iteration is continued until the required convergence is reached.

Justesen (1988a) proposes a correction to the length scale used in the one-equation model on
the grounds that beyond a certain distance from the boundary, the presence of that boundary

is no longer affecting the turbulence. The modified length scale is given as:

C,Z for z< 0.07D
l= 2 (2.40)
007D for z> 0.07D
C
and
c; =ki/c, (2.41)

where « is the von Karman constant (=~ 0.4) and c, is a turbulence model constant (see

Chapter 4).

Davies et al. (1988) apply the current as a horizontally uniform motion in the direction of the
applied current (Davies ef al. allow for a current at an angle to the waves). The current is
initially generated as a tidal input in the model which generates an oscillatory pressure
gradient. Once the initial transient motion has ceased then the pressure gradient is replaced by

a constant pressure gradient and the solution is run until a steady state is reached.

Development of boundary conditions for the hydrodynamic equations for random waves and
combined random waves and current will not be developed in this Chapter. Such theory will

be left until Chapter 4.
24 Conclusions

The development of the hydrodynamic equations has been given and the equation of motion
in the x-z plane has been developed and reduced to one which can be solved relatively easily.
The boundary conditions have been introduced for this equation for both the case of waves
alone and also that of co-linear waves and current. Development of the boundary conditions

for the random case are presented elsewhere (see Chapter 4).
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Chapter 3

Literature Review

3.1 Introduction

The seabed boundary layer is important for many reasons. To adequately describe such
phenomenon as wave energy loss, sediment transport, transport of pollutants and bedform
formation requires knowledge of the boundary layer flow field. Over the last three decades
various theoretical models have been proposed. Until very recently, all these models have
been written to describe a pure sinusoidal wave boundary layer or that under a non-linear
wave. The first model to describe a truly random wave and wave-current boundary layer was
described in O’Connor et al. (1993). This model was based on a mixing length assumption,
and whilst the closure method used might have it detractors, the results show the model to

give reasonable answers, O’Connor et al. (1993), O’Connor et al. (1994).

The inability of a mixing length model to describe more than the basic physics of boundary
layer flow is an inherent problem. To provide a more ‘physically’ accurate model requires
greater computational power, the level of which is dependent on the type of model used. The
complexity of the numerical model can be increased by the addition of equations to the
solution: k - models; k - € and k - / models; Reynolds stress models; and direct simulation of
the Navier-Stokes equations. Because of computational implications, such as memory and
time, it would be currently unrealistic to attempt to describe a random boundary layer using

the latter two approaches.

Since, generally, the aim in coastal hydrodynamic models is to provide a flow description to
assist in the calculation of sediment transport, the ability of the flow model to adequately
describe the hydrodynamics is essential. In real seas, modellers have, until recently, tended to
drive models with representative values rather than simulate a random sea, due to the added
complexities involved, for example Ockenden and Soulsby (1994). However, workers in the

field (e.g. Williams (1996)) have shown that the effects of wave groups on sediment
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entrainment is significant. Wave groups have a pumping action such that the wave-period-
mean sediment concentrations increase with the passage of each group so that the effect of
groups cannot be ignored. Also, whilst a parameterization of the effect of wave groups may
be incorporated into a monochromatic boundary layer model by using a higher than average
wave condition, it is impossible for such a model to directly account for the non-linearity and
random nature of a real sea. In addition, the effect of waves and currents on bedform size and
hence bed roughness has always been treated as a fixed quantity in such models, and under a
pure sinusoidal wave this is a reasonable assumption. However, in reality the size of
bedforms varies in time due to the flow field and in turn this affects the hydrodynamics.
Studies have shown that random waves create ripples that are less steep and of shorter length
and height than those generated under monochromatic waves (e.g. Nielsen 1981). Madsen et
al. (1991) suggested that the rounded nature of ripple crests found under random waves was

due to the larger waves shaving off the sharp ripple crests.

It is the intention of this work to provide a better description of the random wave and wave-
current flow field via the use of one- and two-equation models. In addition, the effects of

varying the bed roughness are to be studied in an attempt to provide a better description of a

random wave and combined wave-current boundary layer.

3.2  The wave boundary layer

It is perhaps useful to look briefly at the bed boundary layer formed close to a solid bed.
Researchers have shown for wave motion over a horizontal bed that the particle motion close
to that bed oscillates horizontally, for example see Svendsen and Jonsson (1976). The bed
boundary layer is created by the fluid adhering to the boundary causing a layer to develop
having vorticity and shear stresses. The thickness of this wave boundary layer has been

defined differently by researchers.

Jonsson (1967):
Jonsson defined the top of the boundary layer as the minimum elevation where u(z,t) equals

the free stream velocity uy(t) when the latter is a maximum (see Figure 3.1). This corresponds

to the equation:-
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8, = T /2_‘1 (3.1)
2V o

where o is the wave angular velocity and is defined by:

_2n
T

® (3.2)

Where T is the wave period and v, is the kinematic viscosity.

Kajiura (1968):
Kajiura defined the top of the boundary layer via the use of a displacement thickness defined

as.-

1 (=
O = a{!(uo - u)dz} 3.3)

max

a is the water particle amplitude just outside the boundary layer, see Figure 3.1.

Sleath (1987):
Sleath’s definition for the top of the boundary layer is defined as the position where the
amplitude of the velocity defect has dropped to 5% of the velocity amplitude u,_ .

5 = |2 3.4)
®

The boundary layer thickness represents the transitional area between zero velocity at the wall
(non-porous bed) and the free-stream velocity. In time, the thickness of the layer will grow
influencing a larger part of the flow field. Nielsen (1992) suggests that the practical limit for
measuring boundary layer structures is where the velocity defect has reached one percent of
the free stream amplitude, 8, ;. The relationship of 8, ¢, to the other expressions for boundary

layer thickness defined above is shown in Figure 3.1.

In wave motion, the particles in the area of the bed move in the direction of oscillatory
motion until the maximum particle velocity is achieved and deceleration of the fluid particles
starts. At this stage the particles closest to the bed begin to move in the reverse direction to
the main outer flow which has not stopped its motion yet. This effect is called separation of

the boundary layer and is the point at which a new boundary layer will begin to develop.
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This effect is very important in any attempt to accurately model the boundary layer. The
cause of this deceleration of particles outside the boundary layer is due to an adverse pressure
gradient, in other words, an increasing pressure gradient acting in the direction of the particle
motion within the boundary. This will happen twice every wave period in pure oscillatory
flow, ensuring that, for short period waves (high frequency), the boundary layer remains thin

compared to the water depth.

In the absence of wave breaking, this enables simple wave theory based on irrotational flow
to be used. Therefore, from the above it is clear that the flow within the boundary layer does
not always follow the ‘law of the wall’ (logarithmic layer) for at least part of the cycle. It has

been argued (Shima 1993 ) that a model applicable up to the wall itself is required to properly
predict this flow.

33 Laminar flow

In the real world, the steady currents within the sea are virtually always turbulent. However, it
has been shown that if steady currents are small then wave-induced flows may be laminar for
a range of conditions. Stokes (1851) presented a solution for an infinite flat bed oscillating in

still water. This work was later extended by Lamb (1932) who obtained a first approximation

for waves over a flat bed.

u= uw(cos(mt) - cof(ot - Bz)) (3.5)
where B is a height scale given by the equation:
®
= |— 3.6
B 2w 3.6)

(see also Eq. (3.4)) and; T is the wave period. In addition, the shear stress distribution is given
by:

L -pz BT
. «/vaBuwe sm(cot Bz+4) 3.7

Numerous researchers have measured laminar profiles in the laboratory and have found

excellent agreement with Eq. (3.5), see Figure 3.2.
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3.4  Boundary layer modelling

Amongst the earliest theoretical works those of Jonsson (1963; 1967) and Kajiura (1964) are
key works. Kajiura (1964) attempted to produce a theoretical approach to predicting the
frictional coefficient for fully developed turbulent oscillatory flow over rough and smooth
beds under long waves (seiches/tsunamis). In such a case the boundary layer occupies a
significant part of the water depth. This work was later extended in an attempt to provide a

description of the oscillatory turbulent boundary layer for wind waves, Kajiura (1968).

Jonsson (1963; 1967) suggested using the integrated momentum equation to obtain an
expression with which to evaluate the friction factor. Jonsson assumed a logarithmic velocity
profile to extend to the free stream velocity. For rough turbulent flow Jonsson obtained the

semi-empirical relationship:-

1 a a
+lo = —-0.08 + log;o — — > 157 3.8
e B, k, G

Kamphuis (1975) suggested a slightly different empirical relationship:-

1 1 4 a a
———+logyg———=-035+—-log;, — —>157 3.9
4\/E 810 4\/_f: 3 glok K 3.9

s s

For further comparison of wave friction factors see Chapter 10.

The following sections are intended to provide a state-of-the-art review of wave boundary
layer modelling techniques in order to provide a context for the present work. Whilst the list
of papers is intended to be as comprehensive as possible, it is not exhaustive. Many of the
models have been written with the intention of describing sediment transport effects within
wave and wave/current boundary layers. However, it is not intended to discuss detailed

sediment transport aspects in the present work.
Before discussing the modelling schemes for turbulent wave boundary layers in detail, it is

perhaps useful to mention the work of Bijker (1967) and Lundgren (1973) who are some of

the first researchers to address the topic of wave-current interaction.
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Bijker’s model is primarily based on two main assumptions. Firstly, that the combined
velocity field is formed by the linear superposition of the velocities due to the individual
wave and current components. Secondly, the instantaneous bed shear stress can be calculated

from the velocity field derived from steady flow equations.

Bijker introduces a dimensionless constant p (p = V2 / 1n(336/ k) , Where k = bed roughness ;
& = boundary layer thickness) which is derived from a logarithmic turbulent boundary layer
assumption. The bed shear stress for the combined case is found by integrating the

instantaneous bed shear stress over the wave period. Bijker’s model allows for waves and

current to interact at any angle.

However, the assumptions made by Bijker are questionable. The thickness of the wave
boundary layer is not constant and, therefore, neither is p constant. The vector addition of the
wave and current fields introduces inconsistencies between the mean velocity and mean shear
stress gradients. Finally, the logarithmic assumption is not valid for all the phases of the wave

motion.

Swart (1977) attempted to address the problem of the varying boundary layer thickness using
Jonsson’s definition for the thickness. However, Swart failed to fit this modified equation
against the data used by Bijker to calibrate his model. Savell (1986) argues that since p was
used as a calibration factor, it possibly compensated for the incorrect assumption. Savell
contends that using Swart’s equation with Bijker’s experimental results leads to an average

error of 100% in the enhanced shear stress.

Lundgren (1973) proposed a model for the mean velocity and eddy viscosity distributions in a
combined wave-current flow. The combined eddy viscosity is taken to be the vector sum of
the individual eddy viscosities for the steady and wave flow fields. Initially the current

velocity component is unknown, since it is defined by the shear stress.

The current viscosity is represented by a mixing length expression while that for the waves is

curve fitted from the experimental data of Jonsson (1963) and Carlsen (cited in Lundgren
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1973). The total eddy viscosity is then calculated from the vector sum of the individual

components.

The mean velocity profile is obtained by integrating the velocity gradient from the theoretical
bed level to the top of the boundary layer. Since the eddy viscosity is increased within the
wave boundary layer the velocity above this layer is reduced, however, the gradient remains

the same as for the steady flow case.

Finally, the paper of Grant and Madsen (1979) deserves a mention since Grant and Madsen
were the first to point out the influence of waves on a steady current above the wave
boundary layer and the apparent increase in bed roughness felt by the current. However,

Fredsee (1984) suggests that this could also have been deduced from Lundgren (1973).
3.5 Eddy viscosity modelling

Kajiura (1968) introduced a three-layer, time-invariant eddy viscosity model for oscillatory
turbulent flow for both a smooth and rough bed. The three layers consisted of an inner layer,

overlap layer and outer layer (see Eq. 3.12 and Figure 3.3).

The inner layer is often referred to as the viscous or laminar sublayer for smooth beds. In this
layer the viscous stresses are dominant. For rough beds this layer is less clearly defined since

the region still exists but is located between the bed roughness elements or ripples.

The overlap layer is so called because it is the area of overlap between the wall and ‘defect’

layer. The defect layer being the region where the velocity defect is unaffected by viscosity.

The outer layer (sometimes called the ‘wake’ region) is the area of the defect layer unaffected

by the wall layer.
Within the solution procedure, Kajiura assumed continuity between the overlap and outer

layer in both the shear velocity, u. and velocity, u, whilst only assuming continuity in the

turbulent eddy viscosity, v, . However, although the model is conceptually quite simple, the
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analytical calculations are not so straight forward. Using the linearized equation of motion,

Kajiura assumed that the relationship between shear stress and velocity is given by:

0 o=

“u— =12 3.10

at(u u,) az(p) (3.10)
ou =

v, a - ; (3.11)

Ignoring Kajiura’s solution for smooth beds, Kajiura’s three-layer model for rough turbulent

flow assumed the following eddy viscosity distribution:

Inner layer 0.185ku, Kk, for 0<z<k,/2
Overlap layer v, = Ku, Z for k,/2<z<A (3.12)
Outer layer xu, A for z>A

and A = the upper point of the overlap layer.

Kajiura (1968) suggested that the overlap layer would disappear if the condition

a
— <30 3.13
k (3.13)

was satisfied. However, Horikawa and Watanabe (1968) suggested that Kajiura’s results were

more closely fitted if the following condition was used:-

ki <115 (3.14)

Kajiura’s model is also able to describe the phase difference, ¢, between the bed shear stress
and the free-stream velocity. However, the model makes no allowance for the variation of the
boundary layer thickness with time. Jonsson (1978a; 1980) shows good comparison between

Kajiura’s model and his experimental results.

Brevik (1981) introduced a simplified model based on that of Kajiura (1968). Brevik
proposed a two-layer model omitting the inner part of the boundary layer description and
extending the overlap layer down to the z = gz, (see Figure 3.4). Brevik assumed that the

physics were such that the overlap layer existed and proposed the following eddy viscosity

relations:

Il

Overlap layer KUz z,<z<A

v, = Ku,
—_ max 3.15
v, A z>A (3-13)

Outer layer

KU,

*max
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The solution of Brevik’s model is similar to that of Kajiura (1968). It is analytical in nature
and involves the concept of a defect velocity as introduced by Jonsson (1978a) which is
defined as:

U, =u,—u (3.16)
Assuming the effects of molecular viscosity to be negligible, the linearized equation of

motion can be written as;-

ouy _ i(vt a_ui) (3.17)
ot oz oz

Brevik (1981) introduced complex notation by allowing the free stream velocity to be

expressed as:-

u, = u,, exp(iot) (3.18)
Therefore the mean and defect velocities become:-

u=u, e (3.19)

Ug = Ugy, € (3.20)

Where i = v/~1. The solution to the physics is provided by the real part. Equation (3.17) can

now be written as:-

— du,

d .
a(v, E) —iou, =0 (3.21)

In turn, this equation reduces to a standard differential equation for Kelvin functions of zeroth

order in the overlap layer, such that:-

uy = u,Dy[A(bert + ibeit) + B(ker& + ikeit)] (3.22)

Where D, is a constant and £ is a non-dimensional variable defined as (see also Brevik

1981):-

| —

§=(4co z ) (3.23)

KWmax

In the outer layer equation (3.22) becomes

uy = ~u,T,D™ exp[—(1+i)B(z - a)| (3.24)
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Where T, is another constant which is generally complex in nature. Solution of these
equations requires the determination of boundary conditions and to match equations (3.22)
and (3.24) at the interface. The thickness of the overlap layer has to be determined before the
problem is solved finally.

Brevik (1981) noted that whilst there appeared to be no experimental evidence against
extending the overlap layer down to z = z, , there was some uncertainty about where the
upper limit of this layer should be. Using two definitions for A, Brevik investigated the
sensitivity of the model. Firstly, A was chosen as (Jonsson 1963; 1978a; 1980):-

1
A==9% 3.25
5 (3.25)

where & = the boundary layer thickness and is given by Eq. (3.1) and secondly the definition
of A as given by Kajiura (1968) was used:-

1
A= 0.05(% fw) ‘a (3.26)

where f,, = wave friction factor. The results indicated that the velocity profile was relatively
insensitive to the choice of A. However, the phase of the velocity was best predicted by

Jonsson’s simple relationship.

Various authors have produced similar models of this type with a time-invariant eddy
viscosity distribution. The ability of these models to provide reasonable agreement with both
field and laboratory data could be considered somewhat surprising given the assumptions
made in many of these works. Further, whilst models of this type are capable of predicting the
velocity and shear stress distributions relatively well, at least for maximum values (see
Wiberg 1995), such models are totally incapable of providing a detailed description of the
variation of the turbulent properties of the flow. Since the eddy viscosity is a function of these

turbulent properties then such simple models are unable to represent the detailed physics.

The assumption that the eddy viscosity is independent of time has been shown to be incorrect
experimentally by several investigators (for example Horikawa and Watanabe 1968; Sleath
1987). Research has, however, shown that, at least for certain heights, the eddy viscosity is

linear in form (compare with Eq. 3.12). Sleath (1987) found that whilst this latter point
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corresponded to his experimental results, the value of the constant of proportionality (the von
Karman constant, k) was significantly different from accepted values (x, = 0.1, as opposed to
the normally accepted value of x, ~ 0.4). In addition, Sleath (1987) found that the eddy
viscosity went negative near the bed, though little work on this aspect appears to have been

studied by other researchers (Figure 3.5).

Hunt and Maxey (1978) have shown that under certain circumstances it is theoretically

possible for the viscosity to go negative. They showed that for rapid changes in the flow, the
concept of an eddy viscosity defined by v, = 1/ (6ﬁ/ az) is incorrect in principle, one reason
being that t is not zero when &tu/0z is zero. It is unclear though what are the implications or
physical meaning of a negative viscosity. However, maybe the outcome of any theoretical
reasoning is dependent on what is taken as your initial starting point, in this case the eddy

viscosity concept. The theoretical approach used within this work is unable to operate with

negative values of eddy viscosity.

Despite technical advances in experimental measuring techniques there is still much that is
not understood about boundary layer dynamics. In addition, the ability to make velocity
measurements in the field within the first 10 cm of the bed is still far from being routine, see
Agrawal and Aubrey (1992). It is, therefore, necessary to try and model the wave and
wave/current boundary layer as accurately as possible so as to enable interpretation of near-

bed measurements as well as providing invaluable data with which to test models.

Sleath (1991a) presents an eddy viscosity model for combined wave-current flows over rough

beds. Sleath assumes that the eddy viscosity is given by:
Vi= Vv 4V, 3.27)
and that that eddy viscosity for current alone and waves alone are given by:-
vy, = KLz (3.28)
v, =VI (3.29)

respectively. It might be reasonable to add the two eddy viscosities if the turbulence produced

by the oscillatory flow and steady flow are statistically independent. Sleath suggests that
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whilst there exists a fluctuation in turbulence intensity over a wave cycle, the time-mean
turbulence intensity may remain little changed. Sleath justifies this assumption on the basis of

laboratory experiments (Sleath 1991b).

In calculating the mixing length, / for the periodic eddy viscosity component, Sleath assumes
a value of 0.1 for the von Karman constant, k. Sleath bases his choice of x on previous
experiments (Sleath 1987; 1990) which indicated that rather than taking the normally
accepted value for k (~ 0.4) for steady flows, in oscillatory flows a value of 0.1 - 0.2 should
be adopted. These lower values were obtained when Sleath tried to obtain agreement with his

measured data (Sleath 1987; 1990).

Sleath (1991a) uses a solution method similar to that of Grant and Madsen (1979). Sleath’s
approach avoids the division of the boundary layer into one for waves and one for currents,
avoiding any assumption as to what height this occurs at. The model makes use of oscillatory
flow measurements for the eddy viscosity near the bed. However, the model is limited in its

application. The paper is short on results on which to make a full assessment of its merits.

Wiberg (1995) describes the use of an eddy viscosity model based on that proposed by Smith
(1977), to investigate smooth, transitional and rough turbulent boundary layers under waves.
In addition, a comparison is made with a time-invariant and a time-variant form of the model.
Whilst overall, both forms of the eddy viscosity model give reasonable agreement with the
data used (Jonsson and Carlsen 1976; Jensen et al. 1989), Wiberg (1995) concludes that the
time-invariant form does not adequately describe the wave boundary layer through the wave
period. However, good agreement with the velocity and shear stress distribution at maximum

velocity is obtained with the simple model.
In addition to Wiberg (1995), the use of time-variant eddy viscosity models has been

proposed by Trowbridge and Madsen (1984a; b) and Davies (1986a). Further, the use of the
integral momentum equation has also been proposed by Patel (1981) and Fredsoe (1984).
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Trowbridge and Madsen (1984a) proposed a time-variant eddy viscosity model based on the
time-invariant form as given by authors such as Kajiura (1968), Brevik (1981) and Myrhaug

(1982). Trowbridge and Madsen suggested the following temporal variation for the viscosity:

Ve =V, Re(l + aze”‘*") (3.30)
and
<z<L9;
Vo=KL A=E 3.31)
Si z> 6i

The shape function, v,, is averaged over the wave period. The value of §; ,the thickness of
the inner layer, is assumed to be:
_ Ku.

5= (3.32)

Re represents the real part and a, is a complex constant representing the amplitude of the

second harmonic and is given by:

a, = 2e2"u,

(3.33)

Using this description for the eddy viscosity and the linearized equation of motion,
Trowbridge and Madsen (1984a) produce an analytical solution to the problem. Results are
shown for the mean components only and this makes evaluation of the improved model
difficult. Trowbridge and Madsen (1984a) report that the time-variant eddy viscosity model
suggest that the temporal variation is not significant for reproducing the first harmonic.
However, their results indicate that higher harmonics are present in the velocity and shear
stress distribution and in a linear model this feature can only be represented by the use of an
eddy viscosity that varies with time. As in all of the above models, Trowbridge and Madsen
(1984a) assume that the boundary layer thickness is constant in time, but this has clearly been

shown not to be the case (for example see Sleath 1987; Jensen et al. 1989).

In a second paper, Trowbridge and Madsen (1984b) include second order effects into their
model. The effect of wave-induced mass transport on the turbulent wave boundary layer was
studied. The results show that a time-variant eddy viscosity has an important effect on the
mass transport. Also, Trowbridge and Madsen (1984b) showed that for relatively long waves,

reversal of the mass transport took place.
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An earlier paper by Lavelle and Mofjeld (1983) also addressed the question of time-varying
viscosity. Their approach was similar to that of Trowbridge and Madsen (1984a). They

assumed the viscosity to be given by the equations:-

V= Klun(t)lz 2o <250 (3.34)

Sv, =k[up(t)d z>8 (3.35)
where 8 is the matching height and ug is a modified shear velocity and are defined by the
equations:-

— 2
o= Ei (3.36)

ou,

|us(t)| = {uf(t) + czuf(t + -})}% (3.37)

and c is given an arbitrary value of 0.2.

Lavelle and Mofjeld (1983) conclude that time-varying viscosities introduce higher
harmonics of the fundamental velocity signal which can be important for certain phases of the
flow, as was found by Trowbridge and Madsen (1984a) . Further, there was an indication that
neglecting time variations in viscosity could lead to an under-estimation of maximum bed

shear stress and distortion of the flow profile close to flow reversal.

Takhar and Thomas (1991) investigated turbulent mass transport and wave attenuation in
Stokes waves using numerical methods to solve first and second order turbulent boundary
layer equations. They noted that the eddy viscosity should possess time dependence if such
flows are to be modelled correctly. Any attempt to model the behaviour of turbulent mass
transport using a time-invariant eddy viscosity would fail to capture the fundamental
mechanism. Takhar and Thomas concluded that the simplest model of turbulence with the

requisite properties to predict turbulent mass transport is the mixing length model.

Davies (1986a) has also addressed the question of time-varying viscosity. The model chosen

by Davies uses the following eddy viscosity description:

v (z,t) = %Ku,m (H—LK) {1 + Ksin(2o3t)} (3.38)
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where K is a free parameter in the range 0 < K < 1. The linearized flow equation is solved in
the form:-

u=uy-— i {(p.. (z)sin(not) + 1, (z)cos(nmt)} 3.39)

n=1
where @, and n, are functions of z. Whilst approximate analytical solutions are shown for N =

2 and N = 3, solution by computer is required.

Davies illustrates the influence of the time-varying viscosity in the paper through the
parameter, K. K= 0 represents a time-invariant solution, whilst K = 1 gives a sinusoidal eddy
viscosity distribution with a minimum of zero twice every period. Based on a more

sophisticated turbulence model Davies suggests that 0.5 should be the approximate value for
K.

Fredsee (1984) assumed that the velocity profile in the wave boundary layer was logarithmic.

uw_1 1n( 302) (3.40)
[V k.

Fredsee also assumed that for each half period the flow field could be considered to start from

rest. Integrating the momentum equation, Eq. (3.41) was obtained:-

8+k,/30

- | 2 (u, —u)dz (3.41)

Tp
P k,/30 ot

using the upper limit in the integral as § + ky/30 rather than & since & =0 fort = 0.

Fredsee (1984) chose the upper boundary condition as :

k
z=0+—= : u=u 3.42
30 0 (3.42)
Substituting into Eq.(3.40) gives
5= (e 1) (3.43)
where
g=2 (3.44)
u,
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After a little manipulation, Fredsee (1984) obtains the following differential equation for the

variation of non-dimensional velocity with phase:-

d¢ . sinfot) ge*-¢-1) 1 dy,
d(ot) ' ef(E-1)+1 e(¢-1)+1u, d(ot)

(3.45)
where

2@
B=30x" - (3.46)

Equation (3.45) must be solved numerically. Fredsee’s approach predicts the phase lead of
the bed shear stress over the free stream velocity, an effect that the previous time-invariant
eddy viscosity models fail to predict. The phase lead is a result of the small thickness of the
boundary layer allowing the pressure gradient to penetrate undisturbed through the boundary
layer down to the bed. The bed shear stress has a maximum at an angle, ¢, before the free
stream velocity reaches a maximum. In a laminar boundary layer ¢ = 45° . The results also
show good agreement with the wave friction factor results of Jonsson and Carlsen (1976) and
Kamphuis (1975) for values of a/k, greater than about 30. However, the failure of the model
for values of a/k less than 30 is perhaps to be expected since the logarithmic layer

assumption must be questionable in this range.

Fredsee (1984) also provides solution for the smooth wall case as well as for a wave/current

boundary layer.

Finally, within these class of simple models the papers of Tanaka (1989) and Supharatid et al.
(1993) require a mention. Tanaka proposed an extension to a simple time-invariant eddy
viscosity model in order to represent non-linear wave motion via the stream function, as
suggested by Dean (1965). The eddy viscosity was represented by:

v = Ku._z (3.47)
and

u, o [ f ike H(E)| ioc-e
Yy = —TRe[{Slnhk(Z— Zo) + Z—II-IE,T e(kx-ot) (3.48)

where HSI) is the Hankel function of the first kind, zeroth order and Hﬁ') is the Hankel

function of the first kind, first order.
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c=2 (3.49)
KU,
and
£ = 2e"* (3.50)
Tanaka’s manipulation results in the representation of the stream function as:-
L u? ( z)
X,2)= —z—-——2zIn| — | -1
\If( ) TZ KU, z{n Zo }
N
+Y sinh{ nk(z - 2,)} { X(n) cos(nkx) + Y(n)sin(nkx)} (3-51)

n=1

N kg, HO(E,) .

Re = —22{X(n) - iY(n)} exp(inkx
|:§ 2 HQ)(E_.no){ ( ) ( )} p( )

Tanaka’s analysis is only for rough fully turbulent flow. Comparison is made with the

laboratory data of van Doorn (1981) and Nadaoka et al. (1982). Reasonable agreement is

obtained for the results presented. Tanaka concludes that for velocity prediction in the surf

zone, Dean’s wave (stream function) theory provided better results over other wave theories.

Supharatid et al. (1993) extended the analysis of Tanaka (1989) to include currents.
Supharatid er al. modified the current profile and formulated their model with the stream
function formulated in terms of a truncated Fourier series. Their results show reasonable
agreement with data except in the velocity ‘overshoot’ region. However, as Supharatid et al.

point out their time-invariant eddy viscosity assumption is not valid.

3.6  Turbulence models
The use of higher order models to study turbulent flows has generally been led by the

aerospace and mechanical engineering disciplines. In coastal engineering the application of

such models has always followed from these developments.
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3.6.1 Zero-equation models

Bakker (1975) was the first to use a mixing length closure model in the context of modelling
turbulent wave boundary layers. Following from the approach of Prandtl (1925), the shear

stress in the boundary layer is assumed to be given by the equation:-

T_pt a“\ 3.52)
where
l =KZ (3.53)
and / is a mixing length. Therefore the shear velocity is defined as:-
Ou
U, = KZ— 3.54
™ (3.54)
The linearized equation of motion can be written as:
o _ 8 ( 2,2 0y audD
—4 = 41— 3.55
ot 0oz ©e 0z | 0z ' 659

using Jonsson’s definition of a defect velocity (see Eq. 3.16). Further, using the substitution,

T =pp’ gives:-

o __ 2 (rlp)
o o2’

Bakker (1975) introduces a non-dimensionalized form of this equation before solving using a

(3.56)

finite difference scheme, (p, = p/p, ) where P, is the maximum bed shear stress. Since the
model solves for p,, a distribution for this must first be prescribed. Bakker assumes a
sinusoidal variation at the bed. In a later paper, Bakker and van Doorn (1979), the bed

boundary condition was modified by the inclusion of harmonics up to the third order.

Wong (1984) used Bakker’s (1975) approach but solved the equation using a simpler explicit
finite difference method. The numerical results were compared with laboratory data from the
University of Manchester studies (Savell 1986; O’Connor et al. 1988; Taplin 1989) and that
of Jonsson and Carlsen (1976). The comparison with the Manchester flume experiments
showed the model to provide only a first order fit even when second and third harmonic
effects were included. However, when the model was compared with data for wave and

current conditions a better fit was found. This would indicate that, to a certain extent, the
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presence of a current acts to suppress non-linear effects in the wave field. In a later modified
model, Solomou (1987) used a different numerical scheme based on a variable grid spacing
over the flow depth, to investigate the influence of artificial viscosity on Bakker’s results. The

results suggested that numerical viscosity was of secondary importance.

Johns (1975) proposed a mixing length model which was valid from the bed to the free
surface. Unlike Bakker (1975), Johns (1975) solved for the velocity. Unfortunately the paper

is short on results and as such any model evaluation is difficult to make.

Vongvisessomjai (1984) also proposed a mixing length model solved using the velocity
distribution. Vongvisessomjai investigated the difference between the boundary layer
parameters for an oscillating bed (e.g. Bagnold 1946) compared with an oscillating fluid. The
results showed that whilst the velocity profiles for the different cases were the same, values
for the boundary layer thickness, the shear stress and the friction factor were larger for the
oscillating flow. The differences are due to the difference in turbulence production. Vincent
(1959) was probably the first to recognize the difference between the results from oscillating
the fluid and oscillating the bed. Nielsen (1992) also notes the distortion of the

inertia/pressure forces on sediment particles on oscillating beds.

Van Kesteren and Bakker (1985) proposed a mixing length model which could deal with a
‘three-dimensional’ bed boundary layer for waves and current. The model is not truly three-
dimensional in that it is still solving at a point in space (i.c. one-dimensional), however, it

allows for waves and current interacting at an angle with each other.

3.6.2 One-equation models

The one-equation k model has been used to study the boundary layer of tidal flows by Vager
and Kagan (1969; 1971); Smith and Takhar (1977); Johns (1977) and wave and wave/current
boundary layers by King et al. (1985); Davies (1986b; 1991); Davies et al. (1988);
Trowbridge et al. (1987); Justesen (1988a; 1988b; 1990; 1991); Davies and Jones (1987);
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Johns (1977) describes the use of a one-equation model which retained the advective terms in
the equations. This enabled the modelling of second-order effects such as wave-induced mass
transport. A pseudo-spectral method enabled the advective terms to be calculated.

Unfortunately the paper only provides results for the mass transport effects.

King et al. (1985), Davies (1986b) and later Davies et al. (1988) use a one-equation k-model
to describe the boundary layer for both waves and tidal conditions. In Davies et al. (1988) the

model is extended to include waves and currents.

King et al. (1985) use two different descriptions for the mixing length term. The first is the
method proposed by Vager and Kagan (1969) which is time dependent and the second is the
simple expression derived from steady flow which allows the length-scale to increase linearly

away from the wall.

The work of Trowbridge et al. (1987) deserves special mention since they incorporate
second-order effects into their one-equation k-model. They use a simplification based on the
assumption of periodicity in space and time together with the continuity equation to enable
the vertical velocity to be calculated. Trowbridge et al. found that the steady second-order
velocity field only became established after a few hundred wave periods. They also
concluded from their results that both first- and second-order advection and diffusion of

turbulent kinetic energy played only a minor part in determining the averaged velocity field.

Davies (1991) investigated transient effects in wave-current boundary layer flows using a
one-equation k-model. The investigation studied the effect of superimposing waves on a co-
linear current and also the case when waves are removed from a combined wave-current flow.
Davies found that in both cases immediate changes to the near-bed period-averaged velocity,
turbulent kinetic energy and shear stress distributions occurred. These changes gradually
extended upwards through the water column to the surface as the flow attempted to reach a
new equilibrium. In addition the time-scale required for such adjustments depended not only
on the physical parameter settings but on whether the mass flux was held constant or the

pressure gradient was held constant. The time-scale was shorter for the former case. Davies
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suggests that such conditions would be relevant for a wave-current field at a coastal site

should they alter suddenly due to refraction effects or tidal elevation variations.
3.6.3 Two-equation models

Two-equation k- models are probably the most widely used turbulence models for boundary
layer study. Over the last ten years, various authors have presented papers for both high- and
low-Reynolds number models. Smith and Takhar (1977) applied three different mean
turbulence energy models to oscillatory flow in open channels, one of which was a high-
Reynolds number k- model. Cousteix et al. (1979); Hagatun and Eidsvik (1986); Justesen
(1988a; 1988b; 1990; 1991) Celik and Rodi (1985); Sato (1987); and Utnes (1988) have all
applied high-Reynolds number k-¢ models to the turbulent wave boundary layer. Utnes
(1988) used a finite element scheme in his solution. Papers detailing the use of low-Reynolds
number k-¢ models have been presented by Aydin and Shuto (1988); Asano et al. (1988);
Tanaka and Sana (1994).

In addition to the k- model, two-equation models of the k-/ type have been proposed, based
on the earlier work of Lewellen (1977). Models of this type have been used by Bocar-
Karakiewicz et al. (1990) Huynh Thanh and Temperville (1991a; 1991b); Chapalain and
Bocar-Karakiewicz (1992).

Of the high-Reynolds number k-¢€ model studies, the work of Hagatun and Eidsvik (1986) and
that of Justesen (1988a; 1988b; 1990; 1991) stand out. The theory behind such eddy viscosity

models can be found in Chapter 4.

Sato et al. (1985) and Sato (1987) applied a two-equation k- model to flow over ripples. Sato
(1987) describes the taking of a comprehensive set of measurements above symmetric and
asymmetric ripples using hot-film and laser anemometer techniques. Both references use

these results to compare with the model predictions with reasonable agreement with the

velocity distributions.
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It is worth mentioning a slightly different two-equation model based on that proposed by
Saffman (1970; 1974). Saffman proposed that the turbulence components responsible for
mixing and momentum transfer could be expressed through an energy density, ¢ and a

vorticity density, ®¢ and are described through the equations:-

1

2)2
b0l _ bo} .)[ &5, 3, O dwg
s 5 9s _ e} - —_ —S 3.5
ot +u| axi a(o(DS axj Bm(os+axj cmvt axj ( 7)
1

Oe 0 1{ éu, Oou | 0 oe

e i '
40— =02 = —+— -B.ew+—| o,v,— 3.58
ot l ox; ) [z[a"j 6x,):| P 6xj( taxjj ( )

and where a,,B,,o,, ., B,, 0, are assumed to be universal constants. Further, the

turbulent eddy viscosity, v, is given by the equation:-

v, = IO)E (3.59)

where y is another universal constant.

Jacobs (1984) used Saffman’s approach to study mass transport in a turbulent wave boundary
layer and Blondeaux (1987) employed Saffman’s turbulence model to investigate the
turbulent bed boundary layer due to gravity waves. It is not clear whether such an approach

has any advantage over, say, the k- scheme.
3.6.4 Algebraic stress (Reynolds stress) models

All the models reviewed so far use the Boussinesq hypothesis relating the turbulent stresses
to the mean strain. Reynolds stress models (also referred to as second-order closure schemes)
model the production terms and body force terms that influence the Reynolds stresses exactly.
This allows the Reynolds stress model to correctly account for effects induced by additional
mean flow strains introduced for example in swirling flows or buoyancy driven flows.

However, correctly modelling the pressure and dissipation terms is not straight forward.

In some cases up to 28 transport equations have been proposed in Reynolds stress models

which include higher order correlations (see Rodi 1980). Whilst such models undoubtedly
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have much to offer where the transport of stresses and fluxes is essential to the solution and
where such terms cannot be approximated, they are computationally expensive. For many
situations a much simpler turbulence model will provide results not that different from the

Reynolds stress approach.

Some of the earliest attempts to use Reynolds stress models in coastal engineering problems
were presented by Sheng (1985; 1987). More recently Shima (1993) and Brers and Eidsvik
(1994) have described the use of such second-moment closures to model oscillatory wave

boundary layers.

Sheng (1985) first proposed a Reynolds stress model for modelling turbulent wave and wave-
current boundary layers. Sheng described the problem through the use of seven equations.
Comparison was made with the data of Jonsson and Carlsen (1976). However, it is not clear
whether these results are any more superior than those obtained with a one or two equation
model. Sheng also ran the model for a cnoidal wave in an attempt to provide a better

description of a boundary layer in a real sea.

In a later paper, Sheng (1987) discussed the application of a Reynolds stress model to a
broader range of problems. Sheng attempted to show that the Boussinesq eddy viscosity
assumption was an inadequate basis for studying turbulent boundary layers by comparing the
results of the Reynolds stress model with the eddy viscosity values calculated from Jonsson
and Carlsen’s (1976) laboratory data. Like many other experimental results for eddy viscosity
(for example see Sleath 1987) the experimental data is often scattered and sometimes
negative, and as such has no physical meaning. Because Reynolds stress models remove the
need for the Boussinesq eddy viscosity assumption by modelling the second-order turbulent
correlations in terms of transport equations they are seen as being of higher accuracy than the
models discussed up to now. However, these transport equations cannot be solved directly
and empirical approximations are introduced in order to allow solution. Therefore, because of

these introduced simplifications the superiority of such methods over more simple models is

less clear.
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Sheng (1985; 1987) fails to properly present any comparison of the Reynolds stress model
with any turbulence measurements. This makes judgement of Sheng’s approach difficult,

since it must be on these quantities that the model’s performance is assessed.

Shima (1993) uses an extension of the high-Reynolds number closure of Gibson and Launder
(1978) to assess the performance of the Reynolds stress model when applied to free surface
boundary layers with a periodic pressure gradient. Whilst Gibson and Launder took the
coefficients of the redistribution terms to be constants, Shima makes the coefficients

dependent on the two invariants of the anisotropic stress tensor (see Shima 1993 for further

details).

Shima compares his model with the direct numerical simulation data for an oscillating
boundary layer of Spalart and Baldwin (1987) (see below). Shima argues that as the
logarithmic law of the wall assumption does not hold true for all of the flow cycle, a model
which is applicable up to the wall itself is required to predict such flows. The adapted model
is valid up to the wall. Shima (1993) shows that the extended high-Reynolds number closure

model, which is valid to the wall, is capable of reproducing the complex behaviour of the

oscillatory flow well.

Brers and Eidsvik (1994) present a standard dynamic Reynolds stress model based on the
model of Gibson and Launder (1978) and which includes a sediment transport module. Brors
and Eidsvik compare the model against the high-Reynolds-number oscillating tunnel data of
Jensen et al. (1989). They show results for tests 12 and 13 of Jensen et al. (see Chapter 6).
However, whilst the model reproduces the flow physics well, it is less clear how superior

these results are to, say, those predicted by a k-¢ turbulence model.

Brors and Eidsvik test their sediment module against data from Ribberink and Al-Salem
(1992). Their results show reasonable agreement considering they perform no model
adjustment. The measured and calculated phase lag between the low level sediment
concentration and the free steam velocity is clearly different. Comparison of results from the

Reynolds stress model sediment module against those predicted by a sediment module

Modelling Random Wave Boundary Layers 44



Chapter 3 Literature Review

attached to k-e model (Hagatun and Eidsvik 1986) imply that the k-€ model predicts sediment

transport in oscillatory flows as well as the Reynolds stress model.

Lewis ef al. (1996) presented a comparison of laboratory measurements for flow over vortex
ripples against a range of numerical models from different research institutes; two k-¢
models, a k-/ model, a Reynolds stress model and a discrete vortex model (the latter type of

model is not discussed in the present work). Only limited details are given in the paper on the

model formulations.

Lewis et al. found that from time-series comparisons, the Reynolds stress model predicted the
phases of the Reynolds stresses most accurately whilst one of the k-€ models provided the
best description of the magnitude of the stresses. Clearly from this it can be surmised that the
formulation of a numerical model is important, otherwise one would expect that both k-¢

models would be equally better at predicting the magnitudes of the stresses.
3.6.5 Direct numerical simulation (DNS) models

Spalart and Baldwin (1987) solved the time-dependent, three-dimensional, incompressible
Navier-Stokes equations using a numerical method which is fully spectral in space and
second-order-accurate in time. The numerical technique is described in detail by Spalart
(1986). The time integration uses a low-storage Runge-Kutta scheme (Wray 1987) for the
transport term and the Crank-Nicolson scheme for the Stokes terms. Such solution methods
are termed direct numerical simulation (DNS). Spalart and Baldwin present results for

oscillatory flow over a flat plate conducting direct numerical simulations for Reynolds

numbers up to 5 x 10°,

In addition, Spalart and Baldwin applied a high-Reynolds number k-& model to the oscillatory
flow case but with their first grid point at z > 2,/2v, /o . Boundary conditions for u, k and ¢

at z=2,/2v; /o were taken from the direct simulations. Their results showed very good
agreement with the direct numerical simulations. By adjusting one of the standard constants

in the k-€ model (see Chapter 4), ¢, = 0.085 rather than the normally accepted value of 0.09

Modelling Random Wave Boundary Layers 45



Chapter 3 Literature Review

agreement was further improved. The results also suggested that a lower value of o, (0.8
instead of 1.0) should be used, though such a change had much less of an effect on the results.
Excluding the wall region, Spalart and Baldwin have shown that a simple high-Reynolds

number k- model is quite capable of accurately predicting oscillatory wave boundary layer

flows.

3.7 Modelling random sea boundary layers

All of the previous models reviewed were written to model linear mono-frequency or mildly
non-linear mono-frequency waves. The first work which truly tackled the modelling of
random sea boundary layers is that of O’Connor et al. (1993). This model uses a mixing
length closure scheme so that the eddy viscosity varies in time and space. Model results were

compared with data from the North Sea (See also O’Connor et al. (1994)).

The early work of investigating random bed boundary layers involved the development of
two mixing length models, one of which used an approach similar to Bakker (1975) driving
the model using the shear velocity, the other used the free stream velocity as a boundary
condition. The former approach made the development of a random model more complicated
with extra computational steps and assumptions. Results for the random zero-equation model
(based on the free stream velocity approach) are presented in O’Connor et al. (1993; 1994).
Results were shown for a multi-directional sea state and show the influence of wave groups
on the hydrodynamics. In particular, that the effect of wave groups has a tendency to produce

lower values of actual seabed roughness than methods based on significant wave height and

peak period.

More recently, Kaczmarek and Ostrowski (1995) presented results from a random two-layer
time-invariant eddy viscosity model. In addition, their approach involves the use of Fredsge’s
momentum integral equation to determine the representative shear velocity and the boundary
layer thickness. Kaczmarek and Ostrowski compare their model results with random time-
series obtained from the laboratory data of Ostrowski (1993) (see Chapter 8 for further

details). Their approach of driving the eddy viscosity model is identical to the method used
by O’Connor et al. (1993; 1994).
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Whilst the results of O’Connor et al. (1993; 1994) and Kaczmarek and Ostrowski (1995)
compare favourably with field and laboratory data respectively, such models are incapable of
providing details of turbulence properties as highlighted previously. In an attempt to improve
the representation and understanding of the physics of random bed boundary layers, the

present author has developed one- and two-equation turbulence models.

3.8 Conclusions

It is clear from having reviewed the literature that there are a large variety of models available
for which to study the turbulent wave boundary layer. Surprisingly, even with the advances in
computational power many researchers choose to use very simple time-invariant eddy
viscosity models. Whilst these models undoubtedly give reasonable results for maximum
velocity and shear stress, many of the assumptions on which these schemes are based are
questionable or incorrect. Takhar and Thomas (1991) noted that if turbulent mass transport
effects are to be modelled correctly, the eddy viscosity should possess time dependence,
otherwise, using a time-invariant eddy viscosity will fail to capture the fundamental
mechanism of such flows. Takhar and Thomas concluded that the simplest model of
turbulence with the correct properties to predict turbulent mass transport effects is the mixing
length model. However, there is an optimum level of simulation based on the results obtained

and the work required to obtain a solution to a given problem.

To be able to simulate a real sea and to attempt to understand the complex processes involved
requires a level of modelling which is sufficient to adequately describe the physics. This must
at least involve the prediction of turbulence if the model is to eventually be used to model
sediment transport since turbulence is an essential part of sediment transport events on the
continental shelf (Gross et al. 1994). From a modelling approach, Smith and Takhar (1977)
describe the use of mean Reynolds stress and mean turbulence energy closure models for the
prediction of oscillatory flow in open channels. Smith and Takhar concluded that a one-

equation k-model was a sufficient order of closure for the solution of environmental

problems.
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Assumptions used in some models have been shown to be incorrect. For example, the
experimental results of Sleath (1987) and Jensen er al. (1989), have shown that the eddy
viscosity varies with time. In addition Jensen et al. (1989) have shown experimentally that

the logarithmic law of the wall is not valid at all phases of the wave cycle.

Whilst second-order closure models provide the ability to model the individual stress terms,
not only are the computational costs prohibitive, the level of sophistication has yet to be
clearly justified. The importance of highly advanced numerical models serves to provide a
control level for the less complex schemes so that any failings in these more simple models
can be identified and quantified. Spalart and Baldwin (1987) used their direct numerical
simulation data to assess the capability of a simple high-Reynolds number k-¢ model in
predicting oscillatory wave boundary layer flows. Spalart and Baldwin showed that,

excluding the wall region, the oscillating boundary layer was well reproduced by a k-& model.

In addition to Spalart and Baldwin (1987), Brers and Eidsvik (1994) showed that a k- model

predicted sediment transport in oscillatory flows as well as a more sophisticated Reynolds

stress closure model.

Clearly, in attempting to improve any description of the flow in random wave boundary

layers over that of existing models (e.g. O’Connor et al. 1993) the following points should be

considered.

¢ Smith and Takhar (1977) concluded that a one-equation k model is the lowest order of

model closure necessary for the prediction of environmental problems.

¢ Choice of model formulation is important and influences the performance of the model in

accurately reproducing the flow physics.
* A two-equation k-€ model is capable of accurately reproducing oscillatory wave boundary

layer flows, excluding the near-wall region, and has been shown to provide a similar level

of accuracy in predicting sediment transport as that of a Reynolds stress model.
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Figure 3.1:  Sketch showing relationship between different definitions for wave boundary
layer thickness. 8x ,5; and 8s represent Kajiura’s, Jonsson’s and Sleath’s
definitions, respectively. (4fter Nielsen 1992).
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Figure 3.2:  Instantaneous velocity profiles for laminar waves, Manchester Experiments. e

Experiment (Test 30); Analytical solution for laminar flow, Lamb (1932).
(After Savell 1986).
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Figure 3.3:  Schematic showing Kajiura’s mean eddy viscosity distribution.

Figure 3.4:  Schematic showing Brevik’s mean eddy viscosity distribution.
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Figure 3.5:  Variation of time-mean eddy viscosity with height (4After Sleath 1987).
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Chapter 4
Theory

4.1 Introduction

Chapter 2, showed the development of the hydrodynamic equations which form a major part
of the present work. In Chapter 3 a state-of-the-art review of wave boundary layer modelling
was given. From this it was concluded that in order to model coastal seabed boundary layers
for waves and the combined wave-current case a one-equation turbulence model is the lowest
model closure that should be used if such flows are to be modelled sufficiently accurately
(Smith and Takhar 1977). In the present chapter the theory behind the closure schemes used
in the present work will be introduced. Further, one- and two-equation turbulence models will

be discussed in more detail since they form an important part of this investigation.

It is not the intention of the author to provide a detailed insight into all of the theoretical
techniques used. Not only would such a task be outside the scope of this present work, but
any attempt would fail to adequately address the questions which still require resolving with
some of the methods. An example of this would be the simulation of directional seas.
Numerous methods have been proposed (see Huang et al. 1990), however, progress has been

slow compared to the work done on describing one-dimensional spectra because of limited

observational methods.
4.2  Introduction to turbulence modelling

In Chapter 3, a review of existing boundary layer models applied to the coastal zone was
undertaken with a view to providing a context in which to place the present work. However,
in addition to that review it is worth a more detailed look at the general background to

turbulence modelling and, in particular, modelling turbulent flows using k- and &- transport

equations.
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In the early 1980’s, a competition was held at Stanford University to evaluate the various
turbulence models used for calculating complex turbulent flows, Kline ef al. (1981). In total,
67 different methods were used and their numerical results compared with experimental data.
One of the conclusions of those evaluating the tests was that the satisfactory performance of

the models was quite limited and that further study and refinement was required.

At the Stanford conference, the k-e model was one of the most extensively used methods.
Generally such models are run with empirical wall functions, by which surface boundary
conditions are transferred to points in the fluid which are at some distance from the
boundaries. However, those evaluating the models also pointed out that in many situations,
the use of wall functions is not well established and that methods which allowed calculations

to continue right to the wall were superior to the use of wall functions, Kline et al. (1981).

Jones and Launder (1972;1973) were the first to extend the high-Reynolds number version of
the k-e model to form what is known as a low-Reynolds number model, which allows
calculations right up to a solid wall. Since then, numerous forms of low-Reynolds number k-¢
model have been proposed but will not be listed here (see Patel et al. 1985; Shih and Mansour
1990). Of note is the modified k-¢ model of Lam and Bremhorst (1981). However, even these
versions of the k-e model have been shown to fail to adequately predict the effects of an

adverse pressure gradient, Rodi and Scheuerer (1986).

The inability to properly predict the effects of an adverse pressure gradient on shear flows not
only by simple mixing-length models but especially two-equation and Reynolds stress
equation models, employing a transport equation for a characteristic length-scale, was a
worrying result of the 1980-81 Stanford conference. The numerical calculations predicted the
flow to be still attached when experiments were showing that separation had occurred. Rodi
and Scheuerer (1986) point out that the reason for these poor predictions is due to the length-
scale determined by the e-equation rising more steeply near the wall than is the case for a zero
pressure gradient. Experimental data suggests that the length-scale gradient is virtually
independent of the pressure gradient for a wide range of values. For this reason, one-equation
models which use an empirical length-scale provide much better predictions for adverse

pressure gradient boundary layers than does the k-¢ model.
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The oscillatory boundary layer experiments of Jensen et al. (1989) suggest that even for
relatively high Reynolds numbers (Re = 6 x 10°) the logarithmic layer does not exist for all of
the flow cycle (see also Jensen (1989)). The experiments of Hino et al. (1983) also show
similar results. Jensen et al. (1989) show that the logarithmic layer exists for longer as the
Reynolds number increases. However, even for fully developed turbulent flow over a rough

wall Jensen ef al. show that the logarithmic layer is not always present.

More recently, researchers have proposed two-layer turbulence models (see Rodi (1991)).
This approach involves using k-g or Reynolds-stress-equation models within the turbulent
part of the flow field whilst close to the wall where viscous effects are greatest, a simpler one-
equation model is employed. Previously, because of the steep gradients often present in the
near-wall layer, the numerical resolution required was beyond available computer resources.
Wall functions were used to relate the velocity and turbulence transport terms at the first grid
point above the wall using the assumption of a logarithmic velocity distribution and the local
equilibrium of the turbulence, that is, production = dissipation. However, such assumptions
are not always valid, particularly in separated flows. Low-Reynolds-number models were
developed to enable the k-¢ model to remain valid in the near-wall region by replacing some
of the model constants with viscosity dependent functions. However, even these models

require quite high numerical resolution close to the wall mainly due to the steep gradient of

the dissipation term, .

To overcome the problem of numerical grid resolution close to the wall and increase the
robustness of the method, the use of a simpler model involving a length-scale prescription has
been proposed, for example Iacovides and Launder (1987); Chen and Patel (1988; 1989). The
use of such models has almost been exclusively confined to the mechanical and aerospace
disciplines, although recently Utnes and Eidsvik (1995) used a two-layer turbulence model to
investigate oscillatory flow over two-dimensional ripples. More recently, the present author

has investigated their use for modelling wave boundary layers under monochromatic and

random waves, Harris and O’Connor (1997).
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4.3 The k-¢ model
4.3.1 Introduction

The k-g two-equation model derives both the velocity and length scales using two local
turbulence quantities. The distribution of these quantities is obtained through the solution of
two transport equations. Almost all two-equation models derived to date use the turbulent
kinetic energy, k as one of the transported turbulence variables. The length scale equation

does not necessarily require that the length scale itself is the dependent variable (see Rodi

1980) and can be selected as almost any turbulence quantity with the form k™" since k is
known from solving the k-equation. Chou (1945); Davidov (1961); Harlow and Nakayama

(1967) and Jones and Launder (1972) suggested an equation for the isotropic dissipation rate
£, where € o k’*]. However, other approaches have been proposed involving an equation for

kI, an equation for the frequency k"?/I and an equation for a turbulence vorticity k//’(see
Rodi 1980).

The k-e approach has become the more popular method used since all the other approaches
require the inclusion of a near-wall correction term which is not required in the e-equation.
Further, the dissipation equation is relatively easily obtained and also the € term appears in
the kinetic energy equation. Generally, most development with this level of turbulence model
has been in steady flows. However, Chapter 3 reviewed work undertaken in unsteady flows

with higher level models, for example Johns (1977), Sheng (1985), Justesen (1988a).

4.3.2 The exact k-equation

The exact transport equation for the turbulent kinetic energy, k, is given by the following
expression (see Appendix A):
Dk

=B+ L+, +D, ¢ (4.1a)

where D/Dt represents a total differential and is given by the equation:-

D_o2.,,2 (4.1b)
Dt &t 'ox
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the individual terms are defined as:

Rate of production:
- 5u
P, =—uu 2L
k uluj axj
Rate of turbulence transport:
10 (75
K= —Eaj(uiuiuj)
Rate of pressure diffusion:
1 0 (—
I, = _Ea(uipi)

Rate of viscous diffusion:

P o Ve,

j j

Rate of dissipation:

B ]

®T Vo ox,
j j

As Hinze (1975) pointed out, Eq. (4.6) only represents dissipation in homogeneous
turbulence. Mansour ef al. (1987) produced a figure (see Figure 4.1) showing the magnitude
of the various terms based on the results of Kim ez al. (1987). The viscous term Dy becomes
significant in the buffer layer and laminar sub-layer. Very near the wall, the viscous diffusion
balances the dissipation €. In the fully turbulent region the only terms that matter are the
production and dissipation. However, in the buffer layer and viscous sub-layer all terms

except the pressure diffusion are required to be modelled correctly.

4.3.3 The modelled k-equation

The turbulent transport and pressure diffusion terms can be combined assuming that the

diffusion of k is isotropic, that is, that the diffusion occurs equally in all directions. Therefore,

am, -2k

ox; 0, Ox;

where o, is a model constant (see Section 4.3.6).
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Also, through consistency with Boussinesq’s (1877) hypothesis (Eq. 2.21) which assumes

that the turbulent stresses are related to the mean strain, P, can be written as:-

P, = v{i‘_‘_‘_uiﬁ_i ou; 4.8)
ox, " ox, ) ox,

Combining Egs. (4.5), (4.6) and (4.8) gives:-

Dk_ O vok 0, % &, & 4.9)
Dt ox, 0, 0x, 0x, “ox, \ox; ox,)ox,

Dk_ 2o (VL*‘L]Q(— +Vt(a_ﬁ'_+__l)_a_‘__ﬁ_8 (4.10)
Dt a5 |\ e o, | ek, o, ) ox

The resulting Eq. (4.10) becomes the modelled equation for k. Since deriving this equation
did not require any significant assumptions it is expected that the equation should be adequate

for modelling the kinetic energy distribution in both the fully turbulent and near wall regions.

4.3.4 The exact e-equation

The exact transport equation for the isotropic dissipation rate, €, is given by the following
expression (see Appendix B):

De
Dt

where the individual terms are defined as:

=P +P2+P’+P'+ T, +I1,+D, -y 4.11)

Rate of production by mean velocity gradient:

oulou’ au.
P! = gy, %} OO 4.12)
0%, 0%, OX;
Rate of mixed production:
, oudu; du;
PP=2y 1 1 (4.13)
0x,0%,, 0X,,
Rate of gradient production:
ou; &',
P = <2v,u— —— 4.14
" ox, 0x,0x,, (4.14)
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Rate of turbulent production:

! du! Ou!
p: = _2\,‘%% i
ox; 0x,, OX,,
Rate of turbulent transport:
, 0 oul ou]
T, =-vuj——"F—
ox; 0x,, 0x,,
Rate of pressure transport:
_2v, 2 By o,
: p axi axm axm

Rate of viscous transport:

b0 %
ox; 0,
Rate of dissipation:

2
=2v? o'y,
ki Py

Kim et al. (1987) produced the magnitude of these terms from direct simulation.

In the fully turbulent region P and y dominate and approximately balance each other (see
Figure 4.2). The terms I, , T, and P} are all negligible throughout compared to the other

terms. The dissipation term y is significant in all regions and is non-zero at the wall. The

viscous diffusion term D, is significant very close to the wall and is the main term balancing

the dissipation y. Also, P!, P? and P? are significant in the near wall region (z" < 30), where

z' is defined as:-

S = UnZ

VL

(4.15)

(4.16)

(4.17)

(4.18)

(4.19)

(4.20a)

where v, is the kinematic viscosity and u,, is the bed shear velocity and is defined as:

p

where 1, is the bed shear stress and p is the fluid density.

Modelling Random Wave Boundary Layers

(4.20b)



Chapter 4 Theory

4.3.5 The modelled s-equation

The e-equation has many terms involving higher order correlations that require to be

modelled if the Two Equation Model is to achieve closure.

The terms IT, + T, are combined and modelled as

v, Oe
c

I, +T, = 4.21)

aaxk

where 6, is a model constant (see Section 4.3.6).

This is not altogether satisfactory as direct simulation results show (Figure 4.3 after Mansour
et al. 1987). The model does not agree well with the data below z* < 40 and does not have the
correct asymptotic behaviour at the wall. However, the contribution of this term to the overall

balance is very small and the discrepancies are of little significance.

Through dimensional arguments, Mansour et al. (1987), P’, can be shown to be much

smaller than the other production terms and is therefore neglected. Again by dimensional

arguments the remaining terms can be represented as (see Mansour et al. 1987):-

2
P!+ P24+ P! —y =ce,f;—€—cez% 4.22)

Where ¢, and c,, are turbulence model constants (see section 4.3.6).

The interpretation of this dimensional argument is somewhat divided amongst modellers.

Kim et al. (1987) interpret the first term on the right hand side as representing P! and P’ and

the second term as the sum P/ and y. However, their direct simulation, whilst showing

reasonable agreement in the fully turbulent region (z' > 30) is quite poor close to the wall.

Alternatively, it has been suggested that at high Reynolds numbers the dissipation scale

eddies are isotropic and hence the terms P! and P? are zero. Therefore the terms of the right

hand side of Eq. (4.21) represent the balance between P} andy. However, since either
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interpretation leads to the same model form the debate as to which approach is correct is

somewhat academic.

Therefore the modelled e-equation becomes

. ou, 2
De_ o (_)E A ﬂ+_ui)@_cﬁe_ 423
Dt ox, o) ox;| k \&x, ox)0dx k

€ J

This is the high-Reynolds number form of the g-equation.
4.3.6 Turbulence model constants

The standard values of the constants used in the k and k-e models as recommended by

Launder and Spalding (1974) are given in Table 4.1.

c o, c c

€ el cez

0.09 1.0 1.3 1.44 1.92

Table 4.1: Values of standard constants in k and k- models.

The empirical constants in the standard k-¢ model were determined as follows (see Rodi
1980);

In the decay of turbulence, k behind a fixed grid, c,, is the only constant appearing in the k
and ¢ transport equations (Eqs. 4.1 and 4.11). Therefore, c,, can be determined directly from

the measured decay rate behind the grid and was found to be in the range 1.8 - 20.

The constant ¢, appears in both the one- and two-equation models. For local equilibrium

shear layers, production = dissipation (Eq. 4.2 = Eq. 4.6). The turbulent eddy viscosity, v, is
described by the equation:-
2
v, =¢,— 4.29)
€

Combining Eq. (4.24) with Eq. (4.1) (see Rodi 1980) yields:-
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—2
¢, = (ﬂ) (4.25)

Measurements in these flows yielded uw/k =~ 0.3 thus ¢, = 0.09.

In near-wall regions a logarithmic velocity profile exists, the production is approximately
equal to the dissipation and the convection of dissipation is negligible. Therefore the ¢-

transport equation reduces to:-

C1 = Cer —

(4.26)

c. o,
Once the values of the other constants have been determined, then the value of ¢, can be

found.

The diffusion constants o, and o, were assumed to be close to unity and they, along with

¢, » were tuned using computer optimization. For further details see Rodi (1980).

The above constants were established under steady flow conditions. However, there is no

reason to believe that the same set of constants should be applicable for all complex turbulent

flows.

Spalart and Baldwin (1987) applied a high-Reynolds number k-¢ model to oscillatory flow

case but with their first grid point at z > 2,/2v, /o . Using direct numerical simulation data

for u, k and € at z>2,/2v, /o Spalart and Baldwin found that by adjusting c, to 0.085

rather than the normally accepted value of 0.09 agreement was further improved. The results

also indicated that a lower value of o, (0.8 instead of 1.0) should be used.

Justesen (1988a) also carried out a sensitivity study for the constants used in the k-g model
although the method chosen was not intended to provide optimized values for the particular

problem of turbulent wave boundary layers.

Justesen used the following values of the constants in his study:
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Constant c, o, o, C. C.,
High value 0.10 1.1 1.5 1.50 2.05
Standard value 0.08 1.0 1.3 1.44 1.92
Low value 0.06 0.9 1.1 1.38 1.79

Table 4.2:  Values of model constants used in Justesen’s (1988) sensitivity study.

Justesen concluded that although a change in the model constants leads to a response in the

results, the standard values are a good choice for the wave boundary layer. (see Justesen
1988a for further details.

In the present work the values for the model constants have been taken as follows:

c o, c c

M € €l csZ

0.085 0.8 1.3 1.44 1.92

Table 4.3:  Values of model constants used in the present work.

4.3.7 Low-Reynolds number k-¢ model

The low-Reynolds number model of Lam and Bremhorst (1981) uses the standard k equation

but a modified expression for the dissipation rate.

~ Ou. | au. 2
Pﬁzi (VL.*..\l)ﬁ +.&3..I_fll8 .?E..}.__J_ ﬂ—csszG_ (4.27)
Dt &, o,/ 0X; k ox; 0x,) 0%, k
and the turbulent eddy viscosity, v, is given by the equation:
c fk?
€

t =

(4.28)

where ¢, is a model constant and f, is a function used as a multiplier in the turbulent eddy

viscosity relationship to mimic the direct effect of molecular viscosity on the shear stress.
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£, =(1-eA™ )2(1 + %) (4.29)
t
A 3
f, = 1+( f‘”) (4.30)
iy
f,=1-¢™ 4.31)

Where A, Ac;, A, are constants equal to 20.5, 0.05 and 0.0165 respectively; R, is the

turbulence Reynolds number defined as = \/Ez/ v, and R, is the turbulence Reynolds number

defined as = k’/(vie) and v, is the kinematic (molecular) viscosity.

There are many different proposed forms for low-Reynolds number models, for example see
Patel et al. (1985), however, the Lam and Bremhorst model has been shown (see Patel et al.
1985) to be one of the better formulations for steady flow conditions and this form of low
Reynolds number model was adapted for wave boundary layer flows. Whilst such a
formulation is inappropriate for fully developed turbulent flow, in laminar and transitional
boundary layers such models may well be of use. Tanaka and Sana (1994) compared several
low-Reynolds number models to the experimental wave boundary layer data of Jensen et al.
(1989) for a smooth bed. Tanaka and Sana found that the original Jones and Launder (1972)
model gave the best results when compared with experimental data for transitional flow.
However, Rodi (1991) has shown that by using the standard k- model in that part of the flow
away from the wall and using a one-equation model to simulate the viscosity-affected near-
wall region a more computationally efficient and robust model can be created. Further, such
hybrid models have in many instances either been as good as or have out-performed both

high- and low-Reynolds k-¢ models.

4.3.8 Two-layer model

The two-layer model employed in the present work uses a standard high-Reynolds number k-

€ model to describe the flow away from the wall. The viscosity-affected near-wall region is
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modelled using a one-equation k-model with the turbulent eddy-viscosity and the dissipation
rate € determined by the following equations (see Rodi 1991):
v = ¢, Jki, (4.32)
k2

L,

€= (4.33)

The length scales /, and I, behave in the same manner in the log-law region, where they vary
linearly. However, very close to the wall, they both deviate from the linear distribution and
this deviation is different for the two functions. The damping of the eddy viscosity very close
to the wall is brought about by the use of an exponential function (see Eq. 4.34).

R, 25
I =C,21-exp| —2x 4.34
. ’7{ XP( A, A‘]} (4.34)

Where C; and A, are constants and C, is defined as:-

C =xc, " (4.35)
andc, is a constant defined as previously (see Section 4.3.6) and x is the von Karman
constant. A, is given a value of 50.5 (after Rodi 1991). However, other researchers have
employed different values: Chen and Patel (1988; 1989) use a value of 70.0 and lacovides
and Launder (1990) a value of 62.5. R, is the turbulence Reynolds number and is defined as

= \/EZ/ VL. A" is a parameter that is kept constant in the present model (A’ = 25), but which
Fujisawa et al. (1990) allow to vary (see Rodi 1991).

Rodi (1991) points out that the damping of the turbulent eddy-viscosity caused by the

exponential function in Eq. (4.34) is not actually a viscous effect, but is due to the near-wall

. . —2 . .
reduction of the normal fluctuations w'~ caused by a pressure-strain mechanism.

The other length scale term is given by the equation:

I, = (C“’;) (4.36)

1+ —
k

Eq. (4.36) was proposed by Norris (1975).
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More recently Rodi ef al. (1993) presented a new one-equation model based on the
—\ V2
suggestion by Durbin (1991) that in near-wall shear layers, the normal fluctuations (w’z)

may be a better velocity scale than k"> and that no damping functions may be required using

this approach. However, this suggestion has not been developed further during the present

work.

4.4 The k model

In addition to the k- model, a one-equation k model has also been used in the present work.

The transport equation employed is identical to Eq. (4.10) with the dissipation term being

described by the equation:-
15
g = oK (437)
l

The mixing length, /, has been described by both a time-dependent expression (Vager and

Kagan 1969) and a simple time-independent expression.

Vager and Kagan (1969) suggested the following expression:

l= —Kﬂ{—i(ﬂ] }_l (4.38)
I |oz\ !

This equation can be integrated to give the following
/= KJE{ jk'°"dz+zok5°'5} (4.39)

where x is the von Karman constant; z, is defined as the vertical level at which point the
velocity is assumed to be zero (see Eq. 2.35); and k, is the value of turbulent kinetic energy

at z,. Eq. (4.39) is an expression which is more easily applied than Eq. (4.38).

The time-independent mixing-length expression used is a simple linear assumption

l=xz (4.40)
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4.5 Boundary conditions

For monochromatic waves:

The boundary conditions for the k-equation are taken as:

ou

1

=——v| = (4.41a)
k(Zo,t) \/q v 0z
?E(zmp ,)=0 (4.41b)

0z

where z, and z,,, are defined as previously (see Chapter 2).

The bed condition for the k equation is derived from steady rough turbulent boundary layer
information. Unlike a smooth bed, the turbulent velocity fluctuations do not disappear at a
hydraulically rough bed. The upper boundary condition assumes that the gradient of the
turbulent kinetic energy is zero. In the case of the two-layer model, the lower boundary

condition for the turbulent kinetic energy transport equation is usually given as:

K(zo,t) = %ﬁ(a,t) -0 (441c)
The boundary conditions for the € equation follow from Rodi (1980).
4 k3/2
&(z,.t) = (cp) — (4.42a)
Ot
ra (Ztop ’ t) =0 (4.42b)

In a two-layer model the lower boundary condition becomes:
o’k
&(zo,t) = VL(Q) (4.42¢)
4.6 Random seas

In a real sea the elevation of the water surface (measured from mean-water-level, mwl) is a
random process with waves travelling in many different directions. However, whilst the

generation of upper boundary conditions is more complex the underlying principles are the
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same as for monochromatic waves. It is necessary to treat the problem statistically and it is
useful to review statistical wave theory before writing the equation for the upper boundary

condition. The following is based on Tickell (1985).

However, before reviewing the statistical approach it is important to outline all the methods
available for arriving at boundary conditions for the numerical models. The spectral approach
is based on using an actual measured spectrum or generating a spectrum using the techniques
described below. Alternatively, it is possible to drive the model using a Fourier
transformation of an actual velocity time-series. This enables the free stream velocity time-

series to be reproduced exactly and also permits the boundary layer models to be run for real

situations.

For a narrow-banded process it is possible to approximate 1, the surface elevation, as the sum
of a large number of linear regular waves all propagating in the x-direction such that:-

(6 t) = 3 a, coslk,x—w,1+8,) (4.43)

n+l

a, = the amplitude of the nth component
Where:- o, = the frequency of the nth component
k, = the wave number of the nth component

The angles &, (with n = 1 to N) allow for arbitrary phase relationships between the various
components. If the random independent variables are drawn from a uniform distribution
between 0 and 2, then the probability density function (pdf), p(8) is given by:-

p(8) = % (4.44)

Assuming that the process is Gaussian (an assumption which is valid for a large number of

components), then the probability density of n is given by the equation:-

2 /2
p(n) = Mﬂ] (4.45)

2ncn

where o, is the standard deviation and o'f, is the variance of n, respectively. In addition, the

mean of 7 is zero (see Figure 4.4).
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Considering the n™ component and taking , and x to be fixed, enables the variance of the

component to be calculated as:-

I R _a 4.46
—T—Iancos( @, t)dt = 5 (4.46)

n 0

2
n

Q

Since the phase angles, 8, are independent of the various components then

N a2
ol=% (4.47)
n=1 2
The wave spectrum can now be defined as the distribution of surface-elevation variance with
frequency. If the total frequency range is divided into N intervals each of width Aw, and
defining the spectral density, S,, (), such that the variance associated with the band centred

on the frequency o, is S, (0,)Aw, then it follows that:-

2
Sa(@a)A0 = a? (4.48)

For a real sea, the number of component waves is considerable, ensuring that N approaches
infinity. Further, combining equations (4.47) and (4.48) gives:-

ol = ISn(mn)dm (4.49)

However, from Eq. (4.45) if n(x,t) is a Gaussian process it can be shown that the wave
heights follow a Rayleigh distribution and:
2
p(H) = —}—I—eXP[— H—} (4.50)

2 2
40,] 80"]

where H is the wave height.

From Eq. (4.50) it is possible to express the root-mean-square (rms) wave height by the

equation:-

H_, = []'Hzp(H)dH]z =220, (4.51)

Therefore, the variance of n, 62 can be expressed as:-

o2 = —ms (4.52)
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Returning to Eq. (4.43) and substituting for a, enables the simulation of water elevations in a

random sea, provided the form of the spectrum can be defined.

n(x,t) = i:(ZS,,(m“)Aco)o'5 cos(KaX —@nt +8,) (4.53)

n=1

At a point (x = 0) equation (3.75) reduces to:

n(t) = i(ZSn(con)Aco)o's cos(—0,t +8,) (4.54)

n=1

Eq. (4.54) can be further simplified as follows:-

From the surface spectrum the co-cumulative spectrum can be calculated by integrating the
area under the former (see Figure 4.6). Dividing the vertical axis IS,,(m)dm into elements of

equal energy leads to (see Figure 4.6):-

©ny

Area = mj S, (0)do - ISq(m)dm

luc 2
"N JSioko =3

Where subscripts LC and UC are the lower and upper cut-off values of the spectrum and o

(4.55)

is the variance of 1.

2
n

N o N 5?
22 Z;Wn (4.56)

n=]

However, to avoid periodicity in the simulated time-series o /N is made constant. The

periodicity will occur because if the range of o is, say, 0 to @, where o is the upper limit
of the surface spectrum, then Aw =w /N will give ®, values which will cause the

repetition of 1(t) within a finite period. However, if a, is chosen to be a constant and equal
to 203‘ /N , the corresponding o, values will be spaced at non-linear intervals (see Figure

4.6) and thus the cyclic behaviour of n(t) will be eliminated (Borgman 1969).

n(t) = ,/l;aicos(-mnt +5,) 457)
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To simulate a velocity time-series from the surface spectrum, the horizontal velocity
component of a water particle located a distance z below mean-sea-level in water of depth D

is given by linear wave theory as:-

S, (wo,coshk,(z+ D)J
t)=) a,| — . cos(—w,t + 9§, (4.58)
u( ) ,.Z=:‘ ( sinhk,D S( )
However, assuming the boundary layer to be very small compared to the depth then z = -D,
therefore:
20‘2 N 0 j
u,(t) = L L cos(—w t+8§, (4.59)
ot N ;(sinh k,D { )

substituting for a, as well.

Equation (4.59) therefore provides the random driver in the boundary layer model and forms
the upper velocity boundary condition. The other boundary conditions remain unchanged.

The final choice to be made is what type of spectrum to apply to drive the model.

4.7  Wave spectra
4.7.1 Introduction

The type of spectra used to describe random waves can take many forms (see Huang et al.
(1990)). Two of the most commonly applied methods are those proposed by Pierson and
Moskowitz (1964) and Hasselmann et al. (1973; 1976). The Pierson-Moskowitz (P-M)
spectrum is based on extensive field data and is designed to represent a fully developed sea
state. In reality, only a small percentage of observed spectra fulfil this proposed form (=10%)
indicating that fully developed sea states are perhaps not that easily achieved.

The work of Hasselmann et al. (1973; 1976) was based on an extensive field experiment, the
Joint North Sea Wave Project, and has commonly become known as the JONSWAP
spectrum. This spectrum is a general form of the P-M spectrum allowing for a developing sea

while the original form of the spectrum was dependent on the wind speed and fetch.

Modelling Random Wave Boundary Layers 69



Chapter 4 Theory

However, whilst the above spectral formulations can be used to represent single peaked
spectra, they are unable to describe spectra that exhibit two peaks. The so-called double-
peaked spectrum arises when both swell and wind seas are present simultaneously or when a
changing wind direction creates a developing wave system. Guedes Soares (1984) proposed a
four-parameter representation of such spectra based on a JONSWAP approach. Guedes
Soares compared the theoretical formulation with data from the North Atlantic and North Sea,

showing a good fit.

Through the use of the above spectral formulations it is therefore possible to describe the
majority of sea states encountered on the continental shelf. In addition, by using the
techniques described below it is possible to provide appropriate upper boundary conditions
for the model. However, whilst the methods chosen appear to be able to adequately represent
developing and fully developed seas as well as seas of a double-peaked nature, they are not
the only methods available. A full review of spectral representation is outside the scope of the

present work but a good general review is provided by Huang et al. (1990).
4.7.2 The Pierson-Moskowitz (P-M) spectrum

The Pierson-Moskowitz spectrum is defined by the equation:-
Ag? -Bog
S,(0) = 28 exp[ : } (4.60)
© ®

Where A and B are constants and are equal to 0.0081 and 0.74 respectively; g is the

acceleration due to gravity and o is the wave angular frequency. In addition, ®, , is defined
by

g
Wy =
" Uss

(4.61)

where Uy is the wind speed at 19.5m above mean sea level.

If it is required to express the P-M spectrum in terms of significant wave height, Hg and zero
crossing period, T, then paramaterized versions of the formulation exist. One such

formulation is the Det Norske Veritas (DNV) spectrum defined as:-
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$,(0) = HiT; Fﬁ]_ exp[_l(@_) ] (4.62)

8n’ | 2n n

A typical P-M spectrum as generated by the model formulation is shown in Figure 4.7.

4.7.3 The JONSWAP spectrum

The JONSWAP spectrum has the form:

2 4
S,(0)= 21t0tsg exp{—l.ZS(—(?—p—) }yq (4.63)
® )
Where
F -0.22
o= 0.076(g—2) (4.64)
Ulo
gl (0= 0) (4.65)
a=cxp 26’0
and
o= 007 o<aw, (4.66)
009 o>o0,
y=33

where F is the wave generation fetch.

The value of 3.3 for the peak enhancement factor, y, is an averaged value derived by
Hasselmann et al. (1973). However, Hasselmann et al. found a range of values for y between

1 and 6. Figure 4.8 shows an example of a JONSWAP spectrum

4.7.4 Double-peaked spectra

Guedes Soares (1984) proposed a four parameter representation for a double-peaked spectrum
based on a two-parameter description of a JONSWAP spectrum. Guedes Soares chose to
model both the wind and swell seas using two JONSWAP spectra. The wind sea is in a

developing state which makes such a choice appropriate, however, the choice to use a
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JONSWAP spectrum for a swell sea was based on the narrowness of such sea spectra. Once
the shape of the two spectral components has been defined, a double-peaked spectrum is

totally described by knowing the ratios of the peak frequencies and spectral peaks. The
spectrum is therefore defined as:

Sn(0) = Sys(@) + Sqw(®) (4.67)

Where S,5(@) and S,y(w) are the swell and wind sea components respectively.

Also, the moments of the sea spectrum must be equal to the sum of the moments of the

individual components. Hence,
M, = Mg + Mgy, (4.68a)
M, =M, +M,, (4.68b)

Where M, and M, are the zeroth and first moments of the wave spectrum; M, and M,
are the zeroth moments of the swell and wind components of the double peak spectrum; and
M;s and M, are the first moments of the swell and wind components of the double peak

spectrum. Further, the moment of a spectrum is given by the equation:-
M, = Im 'S, (0)do (4.69)
0

which defines the ith moment of spectrum k.

In turn, it is possible to relate these quantities to the significant wave height, Hs , and the

zero-crossing period, T;.

H = 4JM, (4.70)
T,=— Mo (4.71a)
27T M]

normally T, is defined by the equation:-

T, =27 | Mo (4.71b)
M

2

However, in the present work Eq. (4.71a) is applied, as suggested by Guedes Soares (1984).
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Using these expressions and substituting into Eqs. (4.68a) and (4.68b) gives the following

equations:
1
He = H (4.72)
MU+ H)
Hy
He = He | R __ 4.73)
(e H)
2
1+ (HR TR) 474
Tow =| —2|T, (4.
2 1+ H; z
2
Tys = (T" * PZR]TZ 4.75)
1+ Hy
where H; and T, are defined as:-
H, = Oss (4.76)
HSW
T, = 128 4.77)
W

Figure 4.9 shows a typical double-peaked spectrum as generated by the model.

4.7.5 Multi-directional seas

It is not sufficient to describe sea waves from their frequency spectra alone. To do so would
describe so-called long-crested waves, waves having straight parallel crest lines when viewed
from above. However, from the patterns of wave crests in most seas, it is clear that they

consist of many component waves propagating in various directions, so-called short-crested

seas.

Researchers have therefore introduced the concept of directional spectra allowing the
description of superimposed directional components. The directional spectrum enables not
just the representation of wave energy in the frequency domain, but also in direction and

generally takes the form:
S(w,8) = S(0)G(w,0) (4.78)
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where S(w,0) is the directional wave spectrum ; S(®) is the frequency spectrum; G(w,0) is a

directional spreading function and 6 is the wave direction.

The spreading function G(w,0) represents the directional distribution of wave energy and has

been shown to vary with frequency. It is a dimensionless function, normalized as :

]‘G(m,e)de =1 4.79)

4.7.5.1 The directional spreading function

The difficulty in making reliable field measurements has hindered the understanding of how
the directional energy of sea waves is distributed. Various expressions to represent the
spreading function have been proposed and Huang et al. (1990) present a comprehensive

review of existing methods.

The earliest model of the form of the directional spectrum was suggested by Arthur (1949).
This idea was taken up by Pierson et al. (1955) who developed a cosine-squared directional

spreading function which is independent of frequency and takes the form:-

G(0,0) = 3cos2 0 (4.80)
n

The directional spectral analysis of sea surface contours obtained using
stereophotogrammetry in the SWOP project (Stereo Wave Observation Project) resulted in

Cote et al. (1960) proposing a spreading function of the following form:-

4
G(m,e)=l 1+| 050+ 0.82exp Lo Heos2e
T 2\0,
1 ! T
+0.32exp, ——(3] cos40} for |0<—
2\ o, 2

G(w,6) =0 for |6 > g (4.82)

(4.81)

Where © = 2nf and f=1/T; o, = g/Us, and Us is the wind speed at 5.0 m above the sea
surface.
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It has been suggested (see Huang ef al. 1990) that the form of these two proposed
distributions for the directional spreading function are unrealistic since they give equal
directional divergence to all wave components. Huang et al. (1990) point out that the short

waves in a wind wave field have greater directional diversity than the main energy-containing

components.

Mitsuyasu et al. (1975) proposed the following expression based on detailed field
measurements with a cloverleaf buoy (see also Cartwright and Smith 1964) as well as with
other available field data.

G(m,e) =G, cos"(-g—) (4.83)
The function, G,, was introduced to satisfy the condition given by Eq. (4.79). G, is given by
the equation:
. -1
G, = { | coszs@ de} (All about 6 = 0) (4.84)
0 iy

where s is a parameter related to the frequency and represents the degree of directional energy
concentration and 0, and ©__ represent the range of directional spread (typically n/2 to
—n/2 ). The parameter, s , has a peak value close to the frequency of the spectral peak. In the

original paper Mitsuyasu et al. relate s to the wind speed.

5
§= { smu(m/m p)zj (a) > mP) (4-85)
smax((o/wp) ((o > cop)
where @, is the angular frequency at the spectral peak and s, is defined by the equation:-
-25
5, = 115(°’P_IJ“’) (4.86)
g

Because of limited field data, the directional distribution function is not considered fully

validated. However, Goda et al. (1979) suggested the following values for s_, .

10 (wind waves)
Smax =125 (swell with short decay distance) (4.87)
75 (swell with long decay distance)

Modelling Random Wave Boundary Layers 75



Chapter 4 Theory

It is the Mitsuyasu et al. (1975) approach for representing a directional spreading function
that has been used in the present study. However, whilst other similar expressions exist,
without better theoretical guidance for defining the angular spreading function use of any
more elaborate scheme is unwarranted (see Huang et al. 1990). Without more detailed field
data and a greater understanding of air-sea interaction processes, further advancement on

developing improved spectral forms for directional seas will be slow.

4.7.6 The effect of currents on wave spectra

In order to describe the effect of a current on random waves it is useful to consider briefly the
effects of a current on a regular wave train. However, the following is not intended to provide
a full description of those effects and the reader should consult more detailed texts such as

Hedges (1981; 1987), Hedges et al. (1985), Hedges et al. (1993) and Jonsson (1978b; 1990).

Consider a train of regular waves travelling on a current, U which is constant with depth. The
current is travelling at an angle, a, to the wave crests and is positive if the component along

the wave orthogonal is in the direction of wave propagation (see Figure 4.10).

To an observer who is stationary, the waves appear to be moving with celerity C, and there
is a current velocity Usina in the direction of wave propagation (Figure 4.11). However, to an
observer who is moving with the wave orthogonal at velocity Usino apparently the waves

have celerity C, and there is no current. Therefore,

C. = C, - Usina (4.88)
The waves pass the stationary observer with period T,
C, =L (4.89)
T,
and to the moving observer with period T,
C =L (4.90)
T;

From Eq. (4.88) the following expression can be obtained by multiplying through by the
wave number, k (= 2m/L) where L is the wavelength.

o, =0, -kUsina 4.91)
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Where o, =2n/T, is the angular frequency in the moving frame of reference and

®, = 2n/T, is the apparent wave angular frequency as seen by the stationary observer.

Substituting for C, and C, in Eq. (4.88) leads to the expression:

1. L(l _ M) (4.92)
T T, L

In deep water, the wavelengths become L, and L, for the moving frame of reference and

the stationary observer, respectively.

where
2
L, =8 4.93)
2n
and
2
L (4.94)
2n

The interactions of currents with random waves are more complex than with regular waves.
Huang et al. (1972) were the first to describe the changes in wave spectra due to currents.

However, their formulation ignored the increased level of wave breaking observed when an

opposing current is met.

The wave energy density, E is given by:-

E- %ngz (4.95)

where H is the wave height and p and g are the fluid density and acceleration due to gravity,

respectively.

Bretherton and Garrett (1969) and Bretherton (1971) showed that the conservation of wave

action, defined as E/w , is governed by the equation:

56{(5) +%{(U+ cg,):;‘i}a,%{(mcy)g} 0 (4.96)

r r r

where C,, is the relative wave group velocity.

In steady state Eq. (4.96) reduces to:-
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3{(U+ Cg,)E} =0 (4.97)
ox ®

T
Considering one wave component in both a zero current region and a region where a steady
current exists then:-
E,C,, E(U+C,)
o, )

a T

(4.98)

where subscript ‘0’ represents a quantity existing in the zero current area. Eq. (4.98) can be

arranged as:-

o 1 g

E- Cog, (U+CF)E°

(4.99)

Considering the spectral density of the surface elevation in a fixed frame of reference in the

current area, S, (@,,U) and noting that o, is the same in both regions then:-

) 1
S, (w,,U)do, =C,,—-+——8§ do, (4.100)
n(ma ) o, Cgo ®, (U+Cg) 'l((‘oa)
$,(©,,U)=Cp 2 —1 5 (0,) (4.101)
e Lo, Uu+C,) " *
where
Cpo = 1(1 +,—2k‘&) Da (4.102)
2\ sinh2k,D/ k,
and
C, = 1(1 +—29_) @ (4.103)
2\" " sinh2kD/ k

Therefore the spectral density for the surface wave in the current region, S,(®,,U), is related

to the value in the quiescent area, Sq(m,) , through the expression (see Hedges et al. 1979):

o |14 2KD
S, (0,,U) _ | sinh2k,D (4.104)
S,(@,) ( 2kD )m
W) ok | U1 |8
°[ U sinh2kD) 2k
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4.7.6.1 Equilibrium range constraint

Wave growth at a particular frequency and direction cannot continue indefinitely since wave
breaking must occur, regardless of whether the spectrum is propagating in a current
dominated area or not. There exists a range of frequencies, the equilibrium range, beyond
which the spectrum becomes saturated. Phillips (1958) suggested an approach for calculating
the equilibrium range spectrum for waves alone. Hedges et al. (1993) have suggested an
expression which is valid for both long- and short-crested seas encountering a current flowing
in or directly against the predominant wave direction. The expression can also be applied to

waves propagating on still water.

Hedges et al. (1993) proposed
Bk

S4(04.:0,0) = =
ga

Gex(6) (4.105)

Where, Gx(0) is a spreading function which describes the angular distribution of wave

component energy within the equilibrium range; B’ is a non-dimensional constant and Ci, is

defined as:
Ci = Usina + C, (4.106)

and C, is the magnitude of the relative group velocity and is defined by the expression:

Cy = -“’—'[1 + ﬂ] (4.107)
2k sinh2kD

For long-crested waves, Ggr(0) is omitted from Eg. (4.105). Kitaigordskii er al. (1975)
discuss possible forms for the function , Ger (0) , however, there is a scarcity of information.

Hedges ef al. (1993) propose the following form for Ggx(9) -
Ger(8) = —— [S,ua(©,.8,UNo, (4.108)

where S,‘WA(con,G,U) is the spectral density based on the assumption that wave action is

conserved and o}y, is the associated total variance of surface elevation. These results are

valid for a general water depth.
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4.8 Conclusions

The present chapter has described briefly the theory behind a number of different topics, the
combination of which are required in order that a random wave boundary layer can be
modelled. The turbulence transport equations employed in the hydrodynamic model have
been outlined along with the necessary boundary conditions and values for any empirical
constants used. Detailed discussion of many of the topics, in particular, the description of

directional seas is outside the scope of the present work.

The turbulence closure schemes described are of varying complexity and all contain a number
of simplifying assumptions. The simplest scheme described is the one-equation k closure.
The most complex scheme is the two-layer k-¢ closure, where the turbulence away from the
near-wall is modelled with a standard high-Reynolds number approach, whilst in the near-
wall region a one-equation model is used. To this author’s knowledge, use of such models in
investigating wave boundary layers is unique, although Utnes and Eidsvik (1995) have

investigated oscillatory flow over ripples using a similar approach.
The description of most sea states encountered on the continental shelf has been enabled

using the methods described in Section 4.7. This includes allowance for the effects of currents

on wave spectra and representation of a directional sea.
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Figure 4.1: Terms in the exact equation of the turbulence kinetic energy, k for
dimensionless height. (After Mansour et al. 1987).
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Figure 4.2: Terms in the exact equation of the dissipation rate, € for dimensionless height
(After Mansour et al. 1987).
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Figure 4.3: Plot showing a comparison of the turbulent transport rate of €, for model of
Mansour et al. against laboratory data. (After Mansour et al. 1987).
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Figure 4.5:  Figure showing the definition of the spectral density.
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Figure 4.6  Figure showing the development of the co-cumulative spectrum (b) from the
surface spectrum (a). The dashed lines show the division of the co-cumulative

spectrum into segments of equal energy and hence unequal angular frequency
components.
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Figure 4.10: Sketch showing the wave and current directions. (4fter Hedges 1987).
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Figure 4.11: Sketch showing : (a) waves in a stationary frame of referenge_containing wave
orthogonal; (b) waves in a moving frame of reference containing wave
orthogonal. (After Hedges 1987).
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Chapter S

Numerical Scheme and Convergence
5.1 Introduction

The equations described in the previous chapters (Chapters 2 and 4) cannot be solved
analytically and require numerical solution. There are two main methods for solving partial
differential equations; finite-difference and finite-element methods. The present work will

concentrate only on numerical solution using finite-difference methods.

The problem statement cannot be considered complete until the boundary and initial
conditions have been specified. The boundary conditions for the equations of motion and
turbulence transport have already been described in Chapters 2 and 4. In addition, because of
the large velocity gradients present close to the seabed in wave and wave-current boundary
layers, a logarithmic straining of the vertical co-ordinate, z, has been introduced to enable the

near-bed velocities to be calculated without causing excessive numerical instability.

The accuracy of the numerical schemes introduced has been tested against the analytical

solution of laminar flow presented by Lamb (1932). The results of these tests are presented

and discussed.
5.2  Vertical grid transformation

It is necessary, when using turbulence models to model boundary layer flows, to ensure that
there are a sufficient number of calculation points within the boundary layer. This requires
that the calculation volume is divided into a large number of points, or a split grid is applied
or a varying grid is applied. The first approach is all but impractical except for laboratory
scale and even this could involve hundreds of grid points. The second method will result in

numerical diffusion, the severity of which is dependent on the scale of the two grids applied.
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The final approach allows for a grid which will be of a fine scale within the boundary layer

and which will gradually become more coarse with distance from the bed.

The present work employs a logarithmic grid transform in the vertical such that real space, z

is described by the equation:-

2= (2], 5.1
Z,

Where D is the water depth; z, is the roughness height and n is transformed space in the

vertical. A schematic showing the variable grid as represented in real space is given in Figure
5.1

Within the numerical scheme the logarithmic grid transform is implemented through the

replacement of 8/8z and 6°/6z* such that:-

__6_ = R—a— where R = ¢ (5.2)
oz on z
and
c=_1_ (5.3)
)
Inl =
z,
and
2 2
. Rz(_li+ _6_) (54)
oz Com on’

For further details see Appendix C.

53 Numerical scheme

The solution of fluid flow problems through the use of numerical methods has become more
general as digital computers have developed. The present problem requires the solution of
non-linear partial differential equations for which the methodology is less well established. It

is usual that a comparison is made with its linear counterpart when attempting to solve a non-
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linear equation. In particular, the equations involved in the present work are of the parabolic

type with a corresponding linear expression of the form:

& _ E(VL @) (5.5)
& o2\ %z

Various numerical methods exist for solving this equation. However, only finite difference

methods are considered here. Within finite difference methods exist two sub-groups, explicit

and implicit methods. For further details see Appendix C.

The numerical scheme used within the present work is the well known Crank-Nicolson semi-
implicit method (Crank and Nicolson 1947). The scheme has the advantage of being
unconditionally stable and offers higher-order accuracy (see also Abbott and Basco 1989).

The discretization of the equations is explained in Appendix C and will not be considered
further in this chapter. However, Figure 5.2 shows a schematic of the semi-implicit Crank-

Nicolson method as applied to the transformed space with an equal vertical grid spacing of
An.

5.4  Numerical stability and convergence

The non-linear equations used to describe the physics require numerical solution and this
requires the introduction of an ‘approximation technique’. The finite difference method has
been chosen here for solving the partial differential equations and whilst such methods
generally provide solutions which are as accurate as required such methods do contain
truncation errors. Therefore, it is important to assess the performance of the numerical

scheme employed to ensure that it is efficient and also that it is as accurate as the problem

warrants.

Stokes (1851) presented a solution for an infinite flat bed oscillating in still water. Lamb
(1932) extended this work obtaining a first approximation for waves over a flat bed. The

equations for Lamb’s solution are shown in Chapter 3 (Egs. 3.5 - 3.7), see also Appendix D.
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In order to test the accuracy of the numerical scheme as well as the convergence of the k and
k-g models solution for varying densities of points in the vertical grid, a comparison between

Lamb’s analytical equations was undertaken. Results for a phase angle of zero are shown in
Figures 5.3 - 5.4,

Figures 5.3a and 5.4a show a comparison of Lamb’s analytical solution for velocity against
the k-¢ and k models, respectively. In both model solutions for grid densities of 40 and 60
points in the vertical excellent agreement with Lamb is seen. Appendix D shows tabulated
values of depth-averaged results for the 3 different grid densities along with Lamb’s
analytical solution for both velocity and shear stress (t/p). The percentage errors for the

depth-averaged values as calculated by the models against Lamb’s solution have the

following ranges:

Velocity:
k-g (60): 0.214% - 0.868% k (60): 0.214% - 0.868%
k-g (40): 0.586% - 1.479% k (40): 0.586% - 1.479%
k- (20): 0.365% - 3.507% k (20): 0.365% - 3.507%

Shear stress, 1/p:

k- (60):  0.775% - 14.247% k (60): 0.580% - 10.335%
k-e (40):  1.775%-31.154% k (40): 1.335% - 22.370%
k-e (20::  5.348% - 87.487% k (20): 3.580% - 52.460%

Figures 5.3b and 5.4b show the results of the comparison with the analytical shear wave
solution against those for the k and k- models for the same phase angle. Overall, the model
results for grid densities of 40 and 60 points in the vertical show excellent agreement with
Lamb. However, for the phases of 150° and 330° the percentage error between the results
from k and k-¢ models and Lamb’s solution increases significantly over the other phases
through the wave period (= 5 - 6 times). This larger error occurs during flow reversal (see
Appendix D) and as such the depth-averaging does not provide a sufficiently accurate

assessment of the models performance during these phases and the use of such a method is
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questionable. In order that a better assessment can be made, the root-mean-square deviation

for all the results was calculated such that:
—\2
o, = JM (5.6)
N

This removed the bias created during flow reversal and provided the following error ranges:-

Velocity:
k-g (60): 0.093% - 0.997% k (60): 0.093% - 0.997%
k-€ (40): 0.088% - 2.076% k (40): 0.088% - 2.076%
k-g (20): 0.517% - 5.221% k (20): 0.517% - 5.221%

Shear stress, 1/p:

k-g (60): 0.099% - 1.378% k (60): 0.020% - 0.700%
k-ge (40):  0.274%-3.047% k (40): 0.003% - 1.523%
k-€ (20): 1.373% - 9.589% k (20): 0.207% - 3.585%

For grid densities of 40 and 60 the maximum percentage error from both velocity and shear
stress results is of the order of only 3%. For the lowest grid density of 20, the maximum error
is less than 10%. Overall, the k model provides better results for the shear stress calculations

than does the k-¢ model, whilst the velocity results show a negligible difference.

Interestingly, for both the velocity and shear stress results, the lowest grid density of 20
points shows excellent agreement with the analytical solution of Lamb close to the bed
(approximately 2 mm). This is probably due to the varying space transform used in the
model. The transform ensures a sufficiently fine grid spacing close to the wall and only when
the space step increases at some point away from the bed does the vertical grid density
become important. Clearly, this will only be true up to a minimum number of vertical points.

Appendix D contains the detailed results of the comparison of the models with Lamb’s
analytical solution.
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5.5 Conclusions

From the comparison of the model results against the analytical solution of Lamb (1932) it
can be concluded that the numerical finite difference schemes (including the vertical grid
transformation) are performing well. The accuracy of the numerical schemes and their

application to the non-linear equations used to model the wave boundary layer have been

verified.

The tests carried out using varying grid densities have shown that whilst, overall, the lowest
grid density of 20 points through the vertical fails to fully reproduce the analytical solution,
close to the wall the results are reasonable due to the vertical grid straining applied in the
numerical models. For grid densities of between 40 to 60 points the velocity results show a
maximum percentage error (calculated from root-mean-square deviations) of about 2% of the
analytical solution. Similar results from the shear stress solutions show a maximum error of
about 3%. Use of depth-averaging to provide an assessment of model performance is

misleading due to flow reversal leading to unrepresentative percentages being generated.

The k model appears to out-perform the k-e model based on the results of the shear stress
calculations. However, the k-¢ model is computationally more efficient despite the extra
turbulence transport equation due to the summation required in calculating the time-

dependent mixing length term in the k model.

It has been demonstrated that for typical model runs where grid densities of between 40 and
60 points are applied, the computational scheme is sufficient to ensure numerical errors are

minimal. For further details, see Appendices C and D.
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Figure S.1:  Schematic showing the variable grid as represented in real space.
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Figure 5.2:  Schematic showing the Crank-Nicolson semi-implicit scheme.
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Chapter 6
Results: Part1

6.1 Introduction

This chapter presents the results from the first of the model tests against laboratory data for
monochromatic waves. All the tests were carried out at ISVA, Denmark in the large
oscillating tunnel. As such these tests are of prototype scale since the tunnel is able to

generate conditions similar to those experienced in the field though at small scale.

6.2 Monochromatic waves without current

6.2.1 Jonsson and Carlsen (1976)

The first detailed investigation of the turbulent wave boundary layer was performed by
Jonsson (1963), see Chapter 3. Jonsson (1963) presented results for a single test, Test No. 1,
and later in Jonsson and Carlsen (1976) these same results were presented alongside the
results of a second test, Test No. 2. Test No. 2 is generally considered to be less reliable than
Test No. 1, see Jonsson and Carlsen (1976), and the value of the roughness parameter in this
test was not determined correctly, see Jonsson (1980). Therefore, for these reasons Test No. 2

has not been used for comparison purposes. The experimental parameters used in the first test

are shown in Table 6.1.

The measurements were performed in the oscillating water tunnel at ISVA (then the Coastal
Engineering Laboratory). The tunnel has been described in detail by Lundgren and Serensen
(1959), but briefly, it is a large U-shaped tube, consisting of two vertical risers at each end of
a horizontal tunnel. The working section is 10 m in length, 0.3 m high and 0.4 m wide. The
top and sides of this section are made of plexi-glass and the natural resonance of the tunnel is
about 9.5 secs. The water is forced to oscillate by pneumatic machinery (see Figure 6.1a). The

velocities were measured using a 5 mm micro-propeller, Jonsson (1965). In the experiments
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Jonsson and Carlsen used two-dimensional triangular roughness elements to simulate ripples,
Figure 6.1b.

Wave period, T (s) 8.39
Free stream amplitude, a (mm) 2850
Mean free stream velocity amplitude, u,, (mm/s) 2110
Nikuradse sand roughness, kg (mm) 23.0
Height of roughness above theoretical bed level (mm) 2.5
Amplitude Reynolds number, Re 6.01 x 10°
Amplitude to roughness ratio, a/kg 124

v, =100x 102 cm? /s

Table 6.1:  Jonsson and Carlsen (1976) main parameters for Test No. 1.

The results of the tests show that the velocity signal in the wave tunnel was not perfectly
sinusoidal and this led to the velocity fields being unsymmetric for the two half periods. To

compensate for this the numerical model has been driven using the following scheme:

Uy(2,0t) = 0.5(1, sin(wt) -1, sin(et + ) (6.1)

Differentiating Eq. (6.1) with respect to t provides an expression which enables the input
values for the pressure term in the horizontal momentum equation to be determined and
provides the upper boundary condition for the equation. All other boundary conditions are as

given in Chapters 2 and 4. The values of the model constants used in the present work are

also given in Chapter 4, Section 4.3.6.

Results from the one-equation k-model (time dependent mixing length) show good agreement
with the velocity measurements for Test No. 1, see Figure 6.2. The k-model has been run with
two different turbulent eddy viscosity descriptions. The first uses the mixing length
description suggested by Vager and Kagan (1969) and is time dependent (see Eq. 4.39). The
second expression for mixing length is a simple time independent expression (see Eq. 4.40).
The time dependent description shows a better fit than that for the more simple expression.
Figure 6.2 shows a comparison of the two k-models against the velocity data of Jonsson and

Carlsen, test 1. Clearly using the time dependent expression for mixing length suggested by
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Vager and Kagan provides better agreement with the laboratory data. This implies that the
specification of the mixing length is of some importance when considering the performance
of a one-equation model. Therefore, the choice of mixing length specification will affect the
accuracy of such models and should be considered with care. However, it should also be
noted that the expression of Vager and Kagan (1969) requires more computational time than

the simple linear expression since it involves a summation.

Figure 6.3 shows a comparison of the high-Reynolds number k-€ model with the velocity data
of Jonsson and Carlsen, test 1. The model clearly gives very good agreement with the
laboratory measurements. Figure 6.4 compares three different models against the same data.
The three model types shown are a zero-equation mixing length model (approach of Bakker
1975; Eq. 3.56), the k-model (time dependent mixing length; Egs. 4.10, 4.37 and 4.39) and
the high Reynolds number k-e model, Egs. (4.10), (4.23) and (4.24). Overall, the worst fit is
given by the zero-equation mixing length model. The k-¢ model shows a better fit to the
laboratory data in the ‘overshoot’ region over both the mixing length and k-equation models.
All models show a reasonable fit close to the wall, however, the k-model appears to provide
the best fit close to the wall. There is an obvious advantage of using the k and k-¢ models

over the basic mixing length model, however, it is more difficult to chose between the k and

k-¢ models.

Using root-mean-square deviations of the depth-average velocities obtained from the
numerical models and comparing them to those of the experimental data, a percentage error
was calculated. For the phases through the wave period shown in Figures 6.2 - 6.4 the
following range of errors was obtained (see also Table 6.4):-

I 25.835% - 48.602%

k: 10.105% - 30.681%

k-€: 6.666% - 35.733%

Whilst such methods enable error values to be assigned to the particular models, they are
determined on the basis that the experimental data are correct and ignore errors which occur
in the measurement process. Therefore, the percentage errors should be seen as a guide rather

than a true indicator of the models performance. The k and k- models appear to provide a
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similar level of accuracy based on the root-mean-square deviation. See Table 6.4 for further
details.

Eliminating the zero-equation mixing length model from further discussion, the one- and two-
equation turbulence models have been studied further. To this end, the shear stress values

calculated by Jonsson and Carlsen provide an additional check.

Jonsson and Carlsen (1976) suggested two methods for calculating the shear stress

distribution. The first method involved integrating the equation of motion to obtain the shear
stress.

:- jg(uo—u)dz 62)

where z, = z,, the vertical level at which point the velocity is assumed to be zero; z, is a

level at which T =0 and u, is the free stream velocity.

Jonsson and Carlsen (1976) integrated over the depth of the oscillating tunnel, but Sumer et

al. (1987) have pointed out that the limit could be at any depth where © = 0, that is where
ou/oz=0.

The second method suggested by Jonsson and Carlsen (1976), is to fit the velocities to a
logarithmic velocity distribution. However, both methods are quite sensitive and show quite
large deviations between values except at the maximum bed shear velocity (see Figure 6.7).
Regarding the sensitivity of such methods, the accuracy of the integral method is dependent
on the accuracy of the measured velocities. The logarithmic velocity distribution is affected
by the close links between the theoretical bed level, the bed roughness and the shear stress.
The difficulty is deciding the height which should be taken as the bed level for calculation

purposes, since the logarithmic velocity distribution could exist for a wide range of bed

levels.

The results from the numerical simulation tend to underpredict the values of shear stress

calculated by Jonsson and Carlsen (1976), Figures 6.5 - 6.7. Hagatun and Eidsvik (1986) and
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Justesen (1988a) also found the experimental values to be generally higher than those
predicted by theory. However, despite numerous studies into this effect, no explanation has
been found. Justesen (1988a) suggested that a possible cause is due to the flow structure in
the vicinity of the two-dimensional roughness elements used by Jonsson and Carlsen (1976)
not conforming to the idea of a Nikuradse equivalent roughness as would be valid for a three-
dimensional sand grain covered bed. This point is worth further consideration and will be

returned to later in the present Chapter.

A comparison between the present models and those of Hagatun and Eidsvik (1986) and
Justesen (1988a) has not been possible since none of the authors provide values for their

model results in their papers.

Figures 6.5 - 6.7 show a comparison of the shear stress data of Jonsson and Carlsen (test 1)
with the results for the k and k-g models. It is difficult to decide which gives a better a fit to
the laboratory data since neither model fit the data well. However, on the basis of the root-

mean-square deviations (Table 6.5) the k-model shows the best agreement with the

experimental values.
6.2.2 Jensen et al. (1989)

The most recent and, arguably, the most detailed published study of turbulence in oscillatory
boundary layers is that performed at ISVA, Denmark. The early results of this work were
published by Sumer er al. (1986;1987). Jensen (1989) and Jensen et al. (1989) describe the

experiments in detail.

The experimental programme covered a wide range of a’k values for both hydraulically
smooth and rough beds. The experiments compliment the earlier smooth wall tests of Hino et

al. (1983) performed in a wind tunnel, as well as the rough bed tests of Sleath (1987) carried

out in an oscillating water tunnel.

Jensen et al. (1989) describe 15 tests in total which were undertaken in the oscillating water

tunnel at ISVA. Tests 1 - 11 were all performed over a smooth bed, whilst tests 12 - 15 were
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carried out over a rough bed. All the tests were for monochromatic waves with no added
current. The rough-wall experiments were further divided into two sets; tests 12 and 13 were
performed with a roughness height of k = 0.35 mm and tests 14 and 15, a roughness height of

k= 1.5 mm. The k and k-¢ models have been run against tests 12 and 13.

Test No. Period, T U a Re= a/k,
(s) (m/s) (m) Al/Vy.

12 9.72 1.02 1.58 1.6 x 10° 1880

13 9.72 2.00 3.10 6.0 x 10° 3700

v, =114x 102 cm? /s

Table 6.2:  Experimental parameters for Tests 12 and 13 Jensen et al. (1989).

For tests 12 and 13 the rough bed was achieved by gluing a sheet of sandpaper onto the bed.
As mentioned above the roughness height for these tests was k = 0.35 mm. Jensen er al.
(1989) calculated the density of the sand to be 80 grains / cm® . The resulting Nikuradse
equivalent roughness was found to be k; = 0.84 mm. The velocity measurements were made
using both a one-component and two-component laser Doppler anemometer (LDA) system.

The basic test parameters for the two tests are shown in Table 6.2.

Jensen et al. (1989) found that in their rough bed experiments, the flow did not feel the effect
of the roughness until ot had reached a value of approximately 15° and for test 12, the flow
did not respond to the roughness until ot ~ 45°. This indicates that for a certain part of the
flow fully turbulent conditions do not apply. This raises the question as to the validity of
many turbulence models which assume fully turbulent conditions at all stages of the flow.
The implication is that in order to accurately model the hydrodynamics of such flows, it

requires a model which is valid all the way to the wall and is able to take account of such

laminar effects.
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6.2.3 Model results for test 12, Jensen ef al. (1989)

Between the two tests of Jensen ef al. presented here, test 12 has the lower amplitude
Reynolds number (1.6 x 10° ). The flow is still considered to be fully turbulent in nature.
Figures 6.8a and 6.8b show a comparison of the numerical models against the experimental
velocity data of Jensen et al.. Profiles are shown at 15° intervals, from 0° to 165°. Laboratory
data was not made available for the full wave cycle, however, the data enables the effect of
flow reversal to be seen. Both the k-¢ and the time-dependent k-model show excellent
agreement with the velocity data. The k-model tends to underpredict the overshoot as was

seen with the data of Jonsson and Carlsen (1976).

The percentage errors of the root-mean-square deviation of the depth-average velocities from
the experimental data were calculated for the 12 phases through the wave cycle shown in
Figure 6.8 (see Table 6.6). The results show an average error for all the phases of 4.24% and

3.42% for the k-¢ and k models, respectively. The smallest percentage error is 0.172%
calculated by the k-¢ model.

A visual comparison of the shear stress results from the two models would appear to show
reasonable agreement with the laboratory data (Figure 6.9). The k-¢ model has a tendency to
overpredict the overshoot, with the k-model showing better overall agreement. However,
results from the root-mean-square deviation calculations for the various phases are less

encouraging, with average errors of 79.37% and 52.27% for the k- and k models,

respectively.

As mentioned previously, in Section 6.2.1, the percentage errors assume the measurements to
be correct. Clearly this is not possible, no matter how carefully the experiments are
undertaken. In addition, the Reynolds stress values are calculated on the basis of two
measured values v’ and w’ which are in themselves subject to errors. Jensen et al. (1989)
calculated the mean values of their measured quantities using ensemble averaging. The total
number of periods sampled was 80 in tests 12 and 13. Sleath (1987) found no significant
improvement in the reliability of the statistics for record lengths greater than about 50 cycles.

Jensen ef al. observed similar findings. It is suggested that, whilst the percentage errors
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provide a guide to the relative performance of each model, they are not a true indicator of the

accuracy of the models.

Figure 6.10 shows a comparison of the bed shear stress measurements and those calculated by
the k-¢ model. The agreement is best between wt = 45° - 150° . Values for the bed shear stress
over the whole wave period were not provided so it is not possible to observe the total fit. The
free stream velocity profile is shown alongside that of the shear velocity. It is possible to
observe the phase lead of the shear velocity over the free stream velocity. For test 12 the
phase lead is 14° which is much lower than that for the laminar case (45°). This decrease in
the phase lead is to be expected, since in turbulent flow, the near-wall velocities are not

reduced as much as in the laminar case because of the vertical exchange of momentum by the
eddies.

Jensen et al. (1989) measured the turbulent components in the x and z directions but not in
the cross-stream direction (y). This means that some assumptions have to be made if the

turbulent kinetic energy is to be calculated. The kinetic energy is given by the equation:

= Cad ') (6.32)
, (=2 —
k - E(UI + vl ) (6.3b)
Flow Relative values of Reynolds stress k/K
components
—2 —2 —_1
u’ v’ w'
Boundary layer:
Inner layer 0.61 0.28 0.10 1.42
Outer layer 0.45 0.33 0.22 1.47
Plane jet 0.42 0.29 0.30 1.40
Plane wake 0.42 0.26 0.32 1.35
Homogenous 0.33 0.33 0.33 1.50
isotropic turbulence

Table6.3:  Relative values of Reynolds stress components for a range of flows. After
Townsend (1976).
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Jensen er al. only measured u’ and w’ therefore, it is necessary to try and relate these to Eq.
(6.3). Townsend (1976) quotes the relative values for the Reynolds stress components for
different types of shear flow (see Table 6.3). Based on these measurements it is possible to

estimate a value for k based on only the two stress components.

The range of values for k/k’shown in Table 6.3 indicate a factor of between 1.3 and 1.5 in

order to correct for the missing Reynolds stress component. Justesen (1988) assumes a value
of 1.5.

Figure 6.11 shows the comparison of the turbulent kinetic energy measurements of Jensen ef
al. test 12 against the k and k-g¢ model. The experimental data is shown for two k/k’ratios.
The first ratio assumes that there is no turbulent component in the y-direction (that is a factor
of 1) and the second is based on a factor of 1.3. Whilst, overall, both models provide a
reasonable fit to the data it could be argued from the profiles that the k-model fits the test data
best. This can be confirmed from the root-mean-square deviation calculations shown in Table

6.8. A better fit is observed for a factor of 1.3.

The laboratory data shows a decrease in the turbulent kinetic energy close to the bed and this
reduction is observed in the corresponding numerical results, though not perfectly. On a
visual inspection of the model results of Justesen (1988a) and Chapalain and Boczar-
Karakiewicz (1992) this reduction appears to be not so well reproduced suggesting that the
present model formulation provides a better description of the physics. Unfortunately, any
real qualitative comparison between the models of Justesen and Chapalain and Boczar-
Karakiewicz and those used in the current work is not possible since the former authors
provide no numerical output with which to compare. The reason for the improved fit is most
likely due to the logarithmic depth transform applied in the model allowing a finer grid to be

applied at the wall than in the models of Justesen and Chapalain and Boczar-Karakiewicz.

6.2.4 Model results for test 13, Jensen ef al. (1989)

The results of a comparison of the experimental velocity profiles for test 13, against the

numerical models again show a reasonable fit (Figure 6.12). The performance of the k-¢
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model over that of the k-model has been assessed as before using root-mean-square
deviations, see Table 6.9. The deviation from the experimental results is greater than for test
12. The mean error for the phases shown are 15.92% and 13.17% for the k-¢ and k models,
respectively. Whilst the k- model tends to predict the extent of the velocity overshoot better
than the k model, for some phases both models fail to predict the true extent of the velocity
overshoot. Whether this discrepancy in the velocity results is due to some experimental
failing, for example boundary layer development being curtailed by the oscillating tunnel’s

cross-section, a feature seen in the experimental results of Jonsson and Carlsen (1976), is

unclear.

A comparison of results for the shear stress (Figure 6.13) show better agreement with the
models than was seen for test 12 of Jensen et al. The experimental results show the shear
stress to decrease close to the bed for many of the phases shown and this feature is well
reproduced in the models. The k-¢ model shows good agreement with the data for most
phases whilst the k-model tends to underpredict the extent of the overshoot in the profiles.
During part of the decelerating phase of the flow, ot = 135° - 165° , both of the models
underpredict the extent of the overshoot (see Figures 6.13j - 6.131). Results from the root-
mean-square deviation calculations confirm the visual inspection with mean errors of 11.32%

and 16.30% for the k-€ and k models, respectively (see Table 6.10).

Figure 6.14 shows a comparison of the bed shear stress calculated by the k- and k-& models
against the measured values. Since a non-smoothed version of the laboratory data is used
there is much fluctuation (see Figure 6.14). However, during the first half of the wave period,
the measured bed shear stress appears to be significantly higher than that predicted by the
models. Whether this is due to experimental errors in the LDA measurements, such as signal

loss due to reflection from the bed is uncertain.

Figure 6.14 also shows the results from a modified turbulence k-model which has been run
with the inclusion of molecular viscosity. In theory, since the flow is fully developed it is
expected that the effect on the bed shear stress will be negligible. However, when the results
are plotted on the same graph a clear difference can be seen. Since Jonsson and Carlsen’s test

1 is of a similar amplitude Reynolds number to test 13 of Jensen et al. (6.01 x 10° and 6.0 x
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10° respectively) it was decided to investigate whether the same effect would be observed by
including molecular viscosity in the k-model run for test 1 of Jonsson and Carlsen.
Interestingly, the inclusion of molecular viscosity in the model had no discernible effect on
the calculated shear velocity values, as theory would suggest for fully turbulent flow. Since
both experiments were performed in the oscillating water tunnel at ISVA the only significant
difference in the tests is the measurement technique and the bed roughness used. Jonsson and
Carlsen used triangular roughness elements whilst Jensen et al. used sandpaper glued to the
bed of the tunnel. Intuitively, it would seem most reasonable to assume that the difference in
shear velocity is due primarily to the difference in bed roughness rather than due to
experimental error. Obviously, the triangular roughness elements provide more turbulence
than the sandpaper due to vortex shedding. The underprediction of the shear stress in Jonsson
and Carlsen could, therefore, be as Justesen (1988a) suggested, that is, the triangular

roughness elements deform the flow structure such that the Nikuradse roughness assumption

is invalidated.

However, the other important point that should be made is that the flow structure in Jensen et
al. test 13 is fully developed turbulent and yet molecular viscosity appears to still be
significant. Does this indicate a failing in the theory surrounding fully developed turbulent
wave boundary layers? Jonsson and Carlsen calculated their shear stress from their velocity
measurements based on the integral momentum equation, Eq. (6.2). In Jensen et al. the shear
stress is calculated from the Reynolds stress components as measured by the laser system.
Whilst generally, laser measurements are seen as being more accurate than intrusive
measurement techniques, such as the use of a propeller meter, errors when measuring close to
the bed can be significant. Certainly, close to the bed reflection from the sand grains can
cause significant signal disruption when using a laser and the measurement volume of the
laser beams (typically 0.3 mm in diameter and 1.0 mm long) limits how close to the bed
measurements can be undertaken. Therefore, a possible source of error is in the measurement
technique. Jensen ef al. (1989) report a high drop-out rate in the laser measurements in the
near-wall region (z = 1 - 2 mm) for their smooth bed experiments due to reflection from the

bed. Jensen et al. found that this was improved in the rough bed experiments, but they do not

discuss to what extent.
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Jensen et al. (1989) found that for smooth-turbulent flow the logarithmic layer comes into
existence some time after flow reversal and grows in size as the flow progresses. The larger
the Reynolds number the earlier the logarithmic layer is established. A similar effect was
observed for fully turbulent flow. Therefore, for part of the flow the logarithmic layer will not
exist because the boundary layer thickness is too small to support it. Hence, it could
reasonably be expected that even for high-Reynolds number flows, the effect of kinematic
viscosity should be included at some phases of the flow. Ultimately, there must be a Reynolds
number beyond which the flow is fully turbulent at all phases through the cycle and hence the

kinematic viscosity has a negligible effect as appears to happen in Jonsson and Carlsen’s Test
1.

The problem with this explanation is that the solution including the effect of kinematic
viscosity could be expected to deviate little from the measured values for a significant part of
the cycle since the turbulent component should be considerably greater. Clearly, from Figure
6.14 this is not the case. Secondly the measured bed shear stress is not symmetric, with
greater shear being generated in the first half period than in the second. It is not clear why this
should be so, since the free stream velocity profile shows symmetry. It has, therefore, not
been possible to conclude why the inclusion of kinematic viscosity in the model solution has
such a significant effect in test 13 of Jensen et al. when for a similar test (Jonsson and Carlsen

test 1) shows the inclusion of the kinematic viscosity to be negligible.

The measured shear values from the laser only include the Reynolds stress component.
Maybe, the assumption of fully turbulent flow which would suggest that the total shear is
given wholly by the turbulent component is incorrect and the viscous component is still
significant. The total stress would then be given as:

turbulent (6'4)

tlotal =71 +1

viscous
Comparison of the measured turbulent kinetic energy data against the results from the one-
and two-equation turbulence models is shown in Figure 6.15. As for test 12, results are 