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Abstract

Abstract

The thesis describes the development of one- and two-equation turbulence models for the

simulation of random wave boundary layers. The models make use of the transport equations

for the turbulent kinetic energy, k, and the isotropic dissipation rate, E. In addition, a

moveable bed model has been developed which enables the variation in the bed roughness to

be simulated as a time-series within the boundary layer models.

The model equations are solved at a point through the vertical (IDV) using the semi-implicit

Crank-Nicolson finite difference scheme. The method has the advantage of being

unconditionally stable and offers higher-order accuracy. Further, in order to allow for the

calculation of the large velocity gradients close to the wall (seabed), a logarithmic grid

transform has been introduced in the vertical space direction.

The boundary layer models were first run using monochromatic waves. Results from these

initial runs were compared with Lamb's analytical solution for laminar flow and then with

laboratory data for fully turbulent flow (Jonsson and Carlsen 1976; and Jensen et al. 1989)

and for transitional rough turbulent flow (McDowell 1983; Savell 1986). Results for the

transitional rough turbulent flow regime were compared with a standard high-Reynolds

number k-e model and a two-layer k-s model. Application of the high-Reynolds number k-s

model leads to poor results since the assumption of a fully turbulent flow regime has not been

reached. However, the two-layer model shows excellent agreement with the velocity

measurements and good agreement with the laboratory results overall.

From the results with a monochromatic wave it was decided to adapt only the two-equation k-

E model initially to run with random waves. The choice of model was made on the basis of

computational efficiency. The random wave boundary layer model has been compared with
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Abstract

the random wave experiments of Ostrowski (1993). As part of these tests, measurements of

the bed shear stress were performed using a shear plate device.

In addition to the laboratory data of Ostrowski (1993), the random wave boundary layer

model has been tested against field measurements (Williams 1996). These measurements

were undertaken as part of an European Community funded project, CSTAB.

Reasonable agreement between the model results and both the laboratory and field

measurements was obtained. However, the approach used to compare the field measurements

to the model predictions has been shown to be questionable.

Significantly, the random wave boundary layer model has demonstrated that turbulent kinetic

energy can be carried over from one half period to the next. This has important implications

for sediment transport calculations. Further, previously suggested approaches which assume

that for random waves each wave can be treated individually as a monochromatic wave, for

example Smith (1977), are clearly incorrect.

The moveable bed model has been developed using laboratory results for both

monochromatic and irregular waves. The assumption that a ripple can be treated as an

increased roughness length, such as 4 x the ripple height, has been shown to be invalid for a

IDV, one- or two-equation turbulence model and without modifying the models leads to

underprediction in the energy dissipation factor. It has been hypothesized that the

underprediction is due to vortex shedding off the ripples. A new coefficient, Cvor' has been

proposed that adjusts the dissipation term in the turbulent kinetic energy transport equation,

compensating for the vortex action. Lack of suitable experimental data has prevented a full

description of Cvor being determined.

It has been demonstrated that the proposed moveable bed for random waves is capable of

enabling the ripple geometry to be determined as a continuous time-series.
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Notation

Notation

a = Near-bed orbital amplitude

a2 = Amplitude of second harmonic of turbulent eddy viscosity

Cel = Turbulence model constant

Ce2 = Turbulence model constant

cJ.1 Turbulence model constant

C2 = Factor on length scale

dso = Mean grain diameter

e = Exponential (1) = 2.71828 ......

e = Energy density

fe Energy dissipation factor

fw = Wave friction factor

fJ.1 Multiplying function in low-Reynolds number k-s model

fl = Multiplying function in low-Reynolds number k-s model

f2 = Multiplying function in low-Reynolds number k-s model

gj = Gravitational vector (gx = 0; gy= 0; gz= - g; where g is the

acceleration due to gravity)

= ..J-i
k = Turbulent kinetic energy (= (uj 'uj ')/2)
k = Wave number (= 21t/L)
kn = Wave number of the nth component

ks = Nikuradse equivalent roughness

I = Mixing length

le = Length scale

1J.1 = Length scale
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Notation

p = Hydrodynamic pressure

UB Modified shear velocity

Ud = Defect velocity (ud = Uo - u)

Uj = Instantaneous velocity tensor at position (Xi' t)

lli = Turbulence mean velocity

ui = Fluctuating turbulent velocity component

U. = Wave-induced velocity component
I

110 = Free stream velocity

u, = Velocity amplitude

u. = Shear velocity

U.b = Bed shear velocity

u.B,max= Maximum bed shear velocity

U.c Current related bed shear velocity

s = Specific gravity

sij = Rate of strain

t = Time

X = Horizontal co-ordinate

y Horizontal co-ordinate

z = Vertical co-ordinate

+ Dimensionless wall distance (= u.bz / vL)z =

Zo = Vertical level at which the velocity is assumed zero (= kJ30)

Ztop = Upper limit of computational domain

A = Constant (=0.0081) in Pierson-Moskowitz spectrum

At = Turbulence model constant

ACl = Turbulence model constant

AI! = Turbulence model constant

A· = Turbulence model parameter

B = Constant (= 0.74) in Pierson-Moskowitz spectrum

CD = Drag coefficient
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Notation

Cgr = Relative group velocity

CgO = Group velocity in zero current region

CL = Lift coefficient

Cm = Added mass coefficient

Cl = Turbulence model constant

Ca Absolute, or apparent, wave celerity

Cr = Relative wave celerity

Cvor = Vortex coefficient

D = Flow depth

DB = Constant (Brevik 1981)

DE Energy dissipation

E = Wave energy density

Eo Wave energy density in zero current region

F = Wave generation fetch

GER(e) = Spreading function within the equilibrium range

H = Wave height

H(I) = Hankel function of the first kind, zeroth order0

H(I) Hankel function of the first kind, first order1

Hrms = Root-mean-square wave height

Hs = Significant wave height

I = Slope of energy line

K = Free parameter

Loa = Deep water wave length for stationary observer

Lor = Deep water wave length for moving frame of reference

Re = Real part of a complex number

Re = Amplitude Reynolds number (= uOa/vL)

a, = Turbulence Reynolds number (= Jkz/vL)

Rt = Turbulence Reynolds number (= k 2/( VLE) )

S1l(COn) = Spectral density of the surface elevation
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Notation

ST](ron,U) =
T =
Ta =
TB =
Tr =
Tz =
U =
U)9.5

Spectral density of the surface elevation in current region

Wave period or turbulent averaging period

Absolute, or apparent, wave period

Constant (Brevik 1981)

Relative wave period

Zero crossing period

Current velocity

Wind speed at 19.5 m above mean sea level

a. = Angle between wave crests and current direction

a.m = Turbulence model constant

13 = Inverse of the Stokes length (= ~ro/2VL)

13e Turbulence model constant

13m = Turbulence model constant

y = Turbulence model constant (Section 3.6.3)

y = Peak enhancement factor in JONSWAP spectrum (Section 4.7.3)

0 = Boundary layer thickness

oJ Boundary layer thickness as defined by Jonsson

OK = Boundary layer thickness as defined by Kajiura

Os = Boundary layer thickness as defined by Sleath

00.0) = Boundary layer thickness defined as when the velocity defect has

reached 1% of the free stream amplitude

OJ = Thickness of inner layer

Ojj = Kronecker delta (Ojj= 1 if i = j, otherwise oij = 0)

on = Random phase angle (values between 0 and 21t)

E = Isotropic dissipation rate

l; Dimensionless parameter

11 = Surface elevation

11 Transformed space co-ordinate (Chapter 5)

11n = Function of z

8 = Shields parameter
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Notation

8c = Critical Shields parameter

1( = Von Karman constant

~ :::: Dynamic viscosity

VL == Kinematic (molecular) viscosity

Yo == Shape function

vt = Turbulent eddy viscosity

~ = Stream function

p = Fluid density

cre = Turbulence model constant

cr·· = Instantaneous stress tensor at position (Xi' t)I)

crk = Turbulence model constant

cr1] :;:: Standard deviation of rh the surface elevation
2

:;:: Variance of 11,the surface elevationcr1)
aro :::: Turbulence model constant

'rb :::: Bed shear stress

're = Current related shear stress

<Po = Function of z

\jI = Mobility number

ID == Angular frequency of oscillation

IDa = Absolute, or apparent, angular wave frequency

ror == Relative, or intrinsic, angular wave frequency

IDS == Vorticity density

= Upper point of overlap layer

Ripple height (Chapter 10)=

Overbar denotes the Reynolds' time-average

Tilde denotes a phase-average in relation to the wave period
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Notation

Sub-scripts:

b Bed

c = Current

m Maximum

w = Waves

S = Swell

W Wind

Acoustic backscatter (probe)

Circulation and Sediment Transport Around Banks

Det Norske Veritas

Electromagnetic Current Meter

Institute of Hydroengineering,

Polish Academy of Sciences,

80-953 Gdansk.

ISVA Institute of Hydrodynamics and Hydraulic Engineering,

Abbreviations:

ABS

CSTAB

DNV

ECM

IBWPAN

LDA

LDV

P-M

STABLE

SWOP

GWK

Technical University of Denmark,

DK - 2800 Lyngby.

Laser-Doppler Anemometer

Laser-Doppler Velocimeter

Pierson-Moskowitz

Sediment Transport And Boundary Layer Equipment

Stereo Wave Observation Project

GroBer Wellenkanal
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Chapter I Introduction

Chapter 1

Introduction

The investigation of wave and wave and current boundary layers is of importance in a large

number of areas in coastal and offshore engineering. Within the coastal region the

hydrodynamics and associated sediment transport are essential in any attempt to understand

changes in coastal morphology, erosion around structures and longshore and cross-shore

sediment transport. In particular, flow inside the seabed boundary layer is a significant factor

in wave attenuation, sediment transport and bedform formation as well as in areas such as the

transport of pollutants.

Interest in the seabed boundary layer has arisen due to its dynamic characteristics. The region

is an interface allowing exchanges of particles, chemicals and organisms with the water

column above. The seabed boundary layer provides an area for turbulent mixing and

frictional dissipation.

Boundary layer flows can be extremely complex. For example, water motion on the

continental shelf is driven by various mechanisms such as tides, wind, sea surface slope,

density differences and atmospheric pressure gradients. The importance of each driving

mechanism will vary depending on location. Tidal flows dominate much of the seas around

Britain.

Tidal flows in shelf seas are affected by friction at the seabed. In deep water, the boundary

layer where these frictional forces act is generally relatively thin, whilst in shallow water, the

boundary layer may occupy the whole depth and dominate the tidal dynamics. A similar

behaviour is also observed with steady and meteorologically induced currents (Soulsby

1983).

Modelling Random Wave Boundary Layers



Chapter J Introduction

The scale difference between the thickness of tidal/current boundary layers and, say, wind

wave boundary layers can be easily demonstrated. Nielsen (1985) relates the boundary layer

thickness, 8, to the period of the flow, T and the turbulent eddy viscosity, VI ,such that.-

8 ex: JTV: (1.1)

Assuming the eddy viscosity to be constant, then for a semi-diurnal tide ( T ~ 12.42 hours)

and wind waves of period 6 seconds, the tidal boundary layer will be approximately 86 times

thicker than for the waves. Grant and Madsen (1986) suggest that the wave boundary layer is

typically of 3 - 30 cm in thickness depending on wave conditions, though it is possible for the

upper limit to be greater and of the order of 50 cm.

Therefore, following on from this, it is clear that for a combined wave-current flow two

distinct boundary layer scales exist. Firstly, in the immediate vicinity of the bed, the wave

boundary layer develops with contributions to the turbulence from both the waves and

current. The height to which the wave-induced turbulence can diffuse acts as the vertical limit

to this layer. Above this region is a layer where the turbulence is due to the current alone.

Lundgren (1973) was one of the first researchers to investigate the mechanism of wave-

current interaction. Lundgren developed a simple model for a current in waves, however,

non-linear interaction was ignored. The first models to account for non-linear wave-current

interaction are those of Smith (1977) and Grant (1977) (see also Grant and Madsen 1979).

In the 1970' s and early 1980' s there was a rapid expansion in the offshore oil and gas

industries. With it came a need for greater understanding of how structures would respond to

hydrodynamic forces. In particular, there was a need to protect piles and platform legs as well

as pipelines from scour.

For example, exposed seabed pipelines in shallow or intermediate water depths are also

subject to the hydrodynamic forces in the wave or combined wave-current boundary layer. It

is the fluid motion in this region that is the major mechanism which governs sediment

transport and hence scour. Deigaard et al. (1985) reviewed bed boundary layer models with a

view to investigating marine pipeline stability. They took the combined wave-current flow

Modelling Random Wave Boundary Layers 2
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field as being the most general case to which pipelines would be exposed. It had previously

been shown that the lift (CL) and drag (CD) coefficients attain greater values in waves than in

currents alone (e.g. Sarapkaya and Rajabi 1979).

Investigation of wave and combined wave-current boundary layers has been undertaken on

three fronts, direct measurements in the field, laboratory experiments and from a theoretical

approach using both analytical and computer (numerical) models of varying complexity.

Measurements in the wave boundary layer are difficult to take in the field. Not only can the

environment be extremely hostile to equipment, leading to possible loss, but for the

measuring devices to survive in such an environment they tend to be quite bulky, which is a

problem because of the wave boundary layer thickness being relatively small. To date, there

is a lack of such data and this is a major obstacle which will need to be overcome if a full

understanding of boundary layer processes is to be attained. Only Myrhaug et al. (1992) and

Soulsby and Humphrey (1990) have made field measurements of flow velocities below 15 cm

from the bed. Myrhaug et al. deployed a tripod in the North Sea equipped with acoustic

current meters with the lowest measurement point at 10 cm from the bed. However, the data

is limited in that it was recorded at a frequency of 1 Hz, excluding turbulence from the data.

Soulsby and Humphrey also had a measurement point at 10 em above the bed. Chriss and

Caldwell (1982) performed measurements of flow velocities with their lowest point 15 cm

from the bed. Unfortunately, most data sets have measurement points at 20 cm or more from

the seabed: Drake and Cacchione (1985; 1986); Lambrakos (1985), Lambrakos et al. (1988);

Madsen et a/. (1993); Gross et al. (1994); Williams (1996).

With typical wave boundary layer thickness' of between 10 cm and 50 cm most of the data

sets contain no or at best one measurement point within this region. Therefore, to be able to

relate their data to the wave boundary layer many researchers have fallen back on modelling

techniques. There is, therefore, a need to try and ensure that any model applied to aid such

deficiencies in field data collection are able to provide sufficiently accurate simulations if

their output is to be of use.
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Recently Agrawal and Aubrey (1992) used a laser Doppler velocimeter (LDV) in the field to

take measurements in the trough, lee and crest of a bed ripple in 2.5 m of water. It is the

application of such measurement techniques in the field that will eventually help to provide a

greater number of measurement points within the wave boundary layer. However, for now,

researchers will have to rely on the use of models to aid their interpretation of the real world.

Whilst laboratory experiments may be seen as a way of obtaining more detailed information

on processes such as turbulence in the wave boundary layer, it was not until the development

of equipment such as the oscillating wave tunnel (Lundgren and Serensen 1959) that it was

possible to reproduce the conditions found at prototype scale. The oscillating water tunnel

developed by Lundgren and Serensen consisted of two vertical risers connected by a

horizontal tunnel. The water was oscillated by air pressure. Since the original oscillating

water tunnel was built at ISVA, Denmark, several other institutions have acquired similar

tunnels, (see King et al. 1985).

As there is no free surface in an oscillating tunnel no waves are formed. Therefore, the flow

field is unable to fully reproduce wave motion because there are no vertical oscillatory

velocities. Further, such facilities are unable to reproduce phenomenon such as turbulence

due to wave breaking.

However, with the development of large scale facilities such as the Delta flume in the

Netherlands, SUPERTANK in the USA and the GWK in Germany, it is now possible to carry

out experiments at prototype scale. Whilst field data should be seen as the ideal, the

difficulties of measuring in the field as well as the lack of control on external conditions (such

as sea state and wind action) makes the use of prototype scale facilities very attractive.

The first detailed set of measurements in the turbulent wave boundary layer were those of

Jonsson (1963). Jonsson used a micro-propeller meter to measure the velocity over a bed

covered in triangular roughness elements used to simulate ripples. Further tests were reported

in Jonsson and Carlsen (1976) (see Chapter 6 for further details). More recently, the work of

Jensen et al. (1989) stands out for its quality and breadth, investigating oscillatory wave

boundary layers for a range of Reynolds numbers for both smooth and rough beds.
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Of the earliest laboratory studies to investigate the combined wave-current boundary layer,

the most detailed are those due to Bakker and Van Doom (1979) and Kemp and Simons

(1982; 1983).

To date very few experiments have been performed to investigate the hydrodynamics of

random wave and combined wave-current boundary layers. To this author's knowledge the

first detailed investigation of such flows was due to O'Connor et al. (1988), who reported on

a series of experiments performed at The University of Manchester. However, although the

report highlights a comprehensive set of experiments no results were shown. More recently

Ostrowski (1993) performed a series of tests using a shear plate to measure the bed shear

stress under random waves (See Chapter 8). Unfortunately, the data is limited in that the

lowest velocity measurement point is 13 mm above the bed. Simons et al. (1995) also

describe experiments with a shear plate to investigate bottom shear stress under random

waves with an imposed current.

The lack of data on such flows leaves many uncertainties as to how the flow field behaves

under irregular waves. For example, Smith (1977) assumes that for irregular waves each wave

can be treated individually as a monochromatic wave. However, if the turbulent kinetic

energy were to persist into the next half wave period such an assumption would be flawed.

Modelling presently provides the link between the field and laboratory. As models have

become more sophisticated so too has their ability to provide more detailed answers. Early

modelling techniques were analytic in form due to the level of computer technology at the

time. Kajiura (1968) developed a three-layer time-invariant eddy viscosity model yielding an

ordinary differential equation which could be solved analytically. This was the first of this

type of model based on Boussinesq's viscosity assumption.

As computers became more powerful and more accessible so boundary layer modelling

techniques became more complex. Bakker (1975) adopted a mixing length closure, rewriting

the linear flow equation in terms of a dimensionless shear velocity. Johns (1977) presented a

one-equation k-model which included the horizontal advective term introduced through the

Modelling Random Wave Boundary Layers 5
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use of a pseudo-spectral method. However, prior to Johns (1977), Yager and Kagan (1969;

1971) had used a one-equation k-model to study the boundary layer of tidal flows.

Smith and Takhar (1977) describe the use of mean Reynolds stress and mean turbulence

energy closure models for the prediction of oscillatory flow in open channels. Smith and

Takhar applied three models which required the solution of some or all of the differential

equations governing the dominant Reynolds shear stress, the turbulent kinetic energy, k and

the isotropic dissipation rate, E. Smith and Takhar concluded that a one-equation k-model was

a sufficient order of closure for the solution of environmental problems.

Sheng (1985) applied a Reynolds stress model to the turbulent wave boundary layer. Such

models remove the need to use the Boussinesq eddy viscosity hypothesis. However, Sheng

failed to make a detailed investigation of the wave boundary layer. Br01's and Eidsvik (1994)

compared the results from a Reynolds stress model with the oscillatory boundary layer data of

Jensen et al. (1989). In addition, they included a sediment transport module in the model, the

results of which they compared with the laboratory data of Ribberink and Al-Salem (1992).

Brers and Eidsvik concluded that a k-s model provided results for stratified sediment-laden

flows that were not that different than those predicted by the Reynolds stress model.

Therefore, the k-e model was a sufficient level of closure for modelling such flows.

The most sophisticated model used to study oscillatory flow is that of Spalart and Baldwin

(1987). Spalart and Baldwin modelled oscillatory flow over a smooth wall using direct

simulation techniques, that is, solving the full three-dimensional Navier-Stokes equations

using a spectral method. However, due to computer resources, their results were limited to a

maximum Reynolds number of Re = 5 x 105 .

As present knowledge stands, modelling provides an essential link between the reality of the

field and the ideal of the laboratory. Through the use of models it is possible to aid in the

interpretation of data, in particular field data where the measurement points might be limited.

Additionally, such data helps to validate the numerical model. Within the European

Community MAST I research programme, researchers at the University of Liverpool's

Modelling Random Wave Boundary Layers 6
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Department of Civil Engineering developed a boundary layer model that could simulate wave

and combined wave-current boundary layers under random sea states O'Connor et al. (1993).

The boundary layer modelling work developed under MAST I was further refined in a second

project CSTAB (O'Connor 1996) which was part of the MAST II programme O'Connor et

al. (1994). Part of the CSTAB project involved the deployment of STABLE (see Humphrey

1987) an autonomous boundary layer tripod supporting a suite of sensors. With the use of the

data collected by STABLE the performance of the boundary layer model, which used a

simple mixing-length closure, was tested further. In addition, results from the model helped

in the interpretation of some of the measurements made by STABLE. As part of the results

from STABLE, it was found that wave groups exerted a 'pumping' action on the bed

sediments and hence on sediment transport concentrations. It was unclear though as to what

the exact mechanism in the boundary layer was causing this effect. One possibility was that

there was a carry over of turbulence from one half wave period to another. However, whilst

the mixing length model showed that it could predict the flow field and shear stress

adequately, it was unable to provide any insight into the turbulence structure. Therefore, to

investigate such phenomenon, a higher order model would be required.

In addition to the effect of wave groups on the turbulence structure within the wave boundary

layer it has also been suggested (O'Connor 1996) that the time-varying bed roughness might

also enhance the pumping action of the waves. Clearly any influence of one wave on the next

makes it difficult to justify the operation of models of suspended sediment transport (Davies

and Li 1997) with an equivalent mono-frequency wave.

The present research, therefore, chose to look at higher order eddy viscosity models based on

one- and two-equation closures to investigate random wave and wave-current boundary

layers. Initial work involved comparing the models against existing laboratory data in order to

ascertain whether there was a clear advantage over using a particular level of closure. Smith

and Takhar (1977) stated that for environmental problems a one-equation k-model was a

sufficient level of closure. Also, Brers and Eidsvik (1994) suggested that a two-equation k-e

model was adequate for prediction of sediment laden flows.
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In addition, a moveable bed module would be added to the boundary layer model to enable

the bed roughness to vary with time in order to determine the effect on the turbulence

structure within the boundary layer as well as comparing this model with existing theories for

moveable bed roughness under random waves (e.g. Madsen et al. 1991).

The proposed work is organized as follows:-

Chapter 2 describes the pertinent hydrodynamic equations for the present problem.

Chapter 3 presents a state-of-the-art review of wave and wave/current boundary layer

modelling. The aim of the review is to provide a context in which the present modelling work

may be viewed and describes the various methods available for modelling wave and

wave/current boundary layers. In addition, the relative novelty of modelling the random sea

boundary layer directly rather than employing a representative monochromatic wave is

highlighted.

Chapter 4 describes the theoretical background for the methods employed in modelling

monochromatic as well as random wave boundary layers. A description of the equations

involved in the various models is provided together with the boundary conditions applied

within the numerical schemes. A detailed description of the transport equations involved in

modelling turbulence enables the reader to gain a better understanding as to why such models

do not always provide 'perfect' answers. Use of appendices allows greater detail to be

provided for the interested reader (Appendices A and B).

Chapter 5 presents a brief overview of the numerical scheme employed in the model together

with a summary of the results of stability and convergence tests carried out. Further details

are provided in Appendices C and D.

Chapters 6 to 10 describe the results from the present work. In Chapters 6 and 7 the initial

model development is compared with established laboratory data for monochromatic waves.
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Chapter 6 compares the performance of various levels of eddy viscosity model applied to the

prototype scale data of Jonsson and Carlsen (1976) and Jensen et al. (1989). A comparison of

three different models; mixing length, k, and k-e models is shown. Using these results it is

intended to select the most appropriate model with which to simulate random wave boundary

layers based on accuracy and efficiency.

Chapter 7 compares results from some of the data collected at the University of Manchester

(McDowell 1983; Savell 1986) with two numerical models; a high-Reynolds number k-s

model and a two-layer k-s model. Both experimental tests chosen for comparison (Tests 52

and 59) were conducted in a small wave flume (see Chapter 7). The scale of the

measurements places the flow in the transitional stage of development. Test 52 (waves alone)

indicates the importance of choosing the appropriate model to match the physics, whilst test

59 (waves and imposed current) shows that the addition of a current enhances the turbulence

development of the flow.

Chapter 8 describes the results of the random wave boundary layer model as tested against

laboratory data from lBW PAN, Gdansk, Poland.

Chapter 9 shows the results of the random model run for field data gathered by STABLE

during the CSTAB project. The model has been modified to allow for multi-directional

waves.

Chapter 10 describes results from the investigation into moveable bed roughness and its

application in the random wave boundary layer model. Initial work focuses on flow over

ripples and in particular fixed bed experiments of Bagnold (1946) and Sleath (1985) and the

moveable bed experiments of Carstens et al. (1969), Lofquist (1986), Rosengaus (1987) and

Mathisen (1989). The measured energy dissipation factors over ripples obtained during the

experiments are compared with output from the boundary layer model using a modified

equivalent roughness based on 4 x the ripple height. Development of a moveable bed model

for random waves is shown and comparison is made with other existing models.
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Chapter 11 draws together the key results from each chapter enabling conclusions about the

numerical models and wave boundary layers to be made. Recommendations for further

research are also presented.

Appendices provide additional details on the work conducted, in particular some of the model

results (Appendix E) as well as experimental data from the ripple tests (Appendix F).
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Chapter 2

The Hydrodynamic Equations

2.1 Introduction

Chapter 2, introduces the hydrodynamic equations which form part of the theory used in the

present work. The necessary equations are derived from the Navier-Stokes equations and for

brevity, the initial formulation uses tensor notation.

2.2 The flowfield in the turbulent boundary layer

The equations of motion for an incompressible fluid can be written in tensor form:

(2.1)

(2.2)

where u, is the instantaneous velocity at position (Xi' t) and represents the Cartesian

velocities u, v, w in the x, y and z planes respectively. Eq. (2.2) is the fluid mass continuity

equation. The other various quantities can be defined as:-

oij= the instantaneous stress tensor at position (Xi' t) .

gi = the gravitational vector (g, = 0 ; gy = 0 ; gz = -g; where g is the

acceleration due to gravity).

If the fluid is Newtonian, that is, elements of the stress tensor and the deformation tensor are

related through linear relationships then,

cr·· = -po ..+ 21Is ..IJ IJ r: IJ (2.3)

where:-

oij= the Kronecker delta and is further defined as 0 ij= 1 if i = j otherwise 0 ij= o.
p = the hydrodynamic pressure.

J..l = the dynamic viscosity
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s, = the rate of strainI)

The rate of strain sij is defined as

_ 1 (Qui Quj]s··-- -+-
I) 2 Ox. Ox.

) I

(2.4)

Substituting Eqs. (2.3) and (2.4) into Eq. (2.1) and using the mass continuity equation

produces the equation:-

Qui + u. Qui = _.!. Gp + ~(VL Qui] + g.
Ot ) Ox

j
P Ox

i
Ox

j
Ox

j
I

where vL is the kinematic (or molecular) viscosity (VL= J.l/p); p is the fluid density.

(2.5)

Using Reynolds' method of relating the instantaneous local velocities to the turbulence-mean

(uj) and fluctuating (un values (see Reynolds 1894) that is:-

(2.6)

Eq. (2.5) becomes:-

a (_ ') (_ ,) a (u ') 1 a (_ ')- u· +u· + u· +u· - Il, +u· = --- p. +p.Ot I I J ) Ox. lip Ox. 1 1

) I

+ ~(VL .s.(uj + un] + gj
Oxj Oxj

However, by definition the time-average of u: is zero such that:-

(2.7)

(2.8)

where T is a turbulent averaging period which IS long compared to the frequency of

oscillation of the turbulence.

Therefore time-averaging Eq. (2.7) gives

OUj _ ouj 1 Opj ~ -u:Uj) a ( OuiJ-+U.-=---+ +- vL- +g.
at ) Ox. P Ox. Ox. Ox. Ox. 1

) I ) J J

(2.9)

where the overbar, - indicates a time-average over the time-scale T.
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For combined wave-current flow, it has become more common practice to describe the

instantaneous local velocity by the inclusion of a third component. Therefore,

(2.10)

where uj and u; are defined as previously and uj represents the wave-induced flow. It is

usual to assume that these three terms all operate on different time-scales and are not

mutually related. uj is taken as operating on the largest time-scale and u; the smallest, whilst

the orbital wave motion uj is assumed to operate on a time-scale large enough to allow

turbulent fluctuations to die out. This latter point is not valid since the turbulent properties

vary at a much greater time-scale than the orbital wave motion. However, as present

knowledge stands, the exact nature of the correlation between the wave and turbulent parts is

not clearly understood and as a consequence they are assumed to be uncorrelated. Therefore,

(2.11)

1 to+T _

lim- JU;dt = u; = 0
T-HO T to

(2.12)

(2.13)

and following from this, the cross-products of the three terms are assumed to be zero.

Further, the periodic component represented by the tilde is described as the phase-average

over N periods minus the time-average:-

1 N
iqz,t) = - L uj{z,t + nT) - Uj{z)

N n=1

(2.14)

It is therefore possible to derive similar equations to that of Eq. (2.9) by introducing Eq.

(2.10) into Eq. (2.5). Thus:-

(2.15)

Time-averaging Eq. (2.15) leads to the following equation:-
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- - ()00. 00. au~ Ou. 1. a au.
-I+U.-I+U~-I+U.-I =--Bpl+- VL-1 +g.
Ot J ax. J ax. J ax. pax. ax. ax. 1

J J J 1 J J

(2.16)

IfEq. (2.15) is phase-averaged then the following equation results:-

ooi Oui _ ooi _ Oui ,au: _ ooi _ Oui 1Bpi 1 GPj
-+-+u·-+u·-+u·-+u·-+u·-=------Ot Ot J ax. J ax. J ax. J ax. J ax. pax. pax.

J J J J J 1 1

a { (Ou. au.)}+- vL_I +_1 +gi
axj axj axj

(2.17)

Eq. (2.17) represents the momentum equation for phase-averaged flow for combined waves

and currents. From this equation it is possible to derive an equation for periodic flow with no

applied current.

Assuming the steady component, ui to be varying only very slowly in time, then Oui /Ot can

be neglected. Therefore, Eq. (2.17) can be written as

(2.18)

respectively.

For the case when the steady component, ui= ooi/axj = 0 , that is, there is no imposed

current, Eq. (2.18) becomes:-
r-o.J r-o.J

oui , au; _ Oui 1 Opi a ( OUi)-+u·-+u.-=---+- vL- +g.
Ot J ax. J ax. pax. ax. ax. 1

J J 1 J J

(2.19)

Comparing Eq. (2.20) with Eq. (2.9) reveals that for the case of waves alone Eq. (2.19) and

Eq. (2.9) are of a similar form.

Substituting Eq. (2.10) into Eq. (2.2) leads to the equation:-

au. a ( ) au. au~ au·
-I =_ ii, +u'+11.=_I +_1+_1=0ax

l
. ax. 1 1 1 ax. ax. ax.

1 1 1 1

(2.20)
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In Eqs. (2.9) and (2.19) the terms including the turbulent velocity fluctuation components are

known as the 'Reynolds stresses'. These stresses provide a description for the exchange of

momentum between different elements of the fluid due to turbulent fluctuations. They are

also the source of the problem in any attempt to solve the Navier-Stokes equations for

turbulent flow. Exact solution requires a vast time and space resolution which is only just

becoming feasible with the super-computers of today.

Boussinesq (1877) introduced an eddy viscosity concept such that the turbulent stresses are

assumed to be proportional to the gradients in the mean velocity field:-

u~u~= ~k8 .._ v (Wj + Wj)
1 J 3 IJ t Ox. Ox.

J I

(2.21)

where VI = turbulent eddy viscosity; k = the turbulent kinetic energy and is defined by the

equation:-

k 1-,-,
=-u·u·2 I I

(2.22)

and all other terms are defined as previously.

Models which use Boussinesq's hypothesis are collectively known as eddy viscosity models.

Based on Eq. (2.21) it is possible to substitute for the Reynolds stresses in Eq. (2.19) leading

to the equation:-

OUj _ ouj 1 BPj a {( ) OUj}-+uj-=---+- vI+vL - +gj
at Oxj P Oxj Oxj Oxj

From Eq. (2.23) it is now possible to write the flow equations (the x- and z-directions) for a

(2.23)

two-dimensional turbulent shear boundary.

(2.24)

Consider now the equation of motion for the horizontal component only. For a thin boundary

layer, the flow inside the boundary layer is normally assumed as being horizontal in which

case:-
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W~O

Further, assuming the gradient of ij in the z-direction is much greater than that in the x-

direction then the following term may be neglected.

Eq. (2.24), therefore, reduces to:-

au +uau =_! op +~{(Vt+vd au}
at Ox pOx Bz 8z

(2.26)

This is still not an easy equation to solve due to the non-linear convective acceleration term

ijau/ Ox. If the flow is considered to be horizontally uniform then generally it is considered

acceptable to omit this term. In order to obtain horizontal uniformity, the free stream velocity,

Uo must be uniform. Secondly, any non-uniformities due to the bed roughness elements

should be restricted to a layer which is much thinner than the boundary layer itself.

The final simplification in solving Eq. (2.26) is replacing the pressure term. Assuming that

the wave boundary layer is thin and that the flow outside the boundary layer is irrotational

(that is the shear stress is zero) the pressure distribution in the boundary layer can be

considered as hydrostatic. Therefore, outside the boundary layer the following equation

holds:-

Buo 1 op
=---

at pOx

which follows from Eq. (2.26) when applied at the top of the wave boundary layer.

(2.27)

Therefore, Eq. (2.26) can be written as:-

(2.28)

2.3 Hydrodynamic boundary conditions

2.3.1 Introduction

In steady boundary layer flow the characteristics of the boundary layer are dependent on

boundary roughness. In unsteady flows the effect that a hydraulically rough or smooth bed
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has on the boundary layer has been less well studied. In oscillatory wave boundary layer flow

most research has concentrated on flow over rough beds (see Chapter 3). However, Hino et

af. (1983) performed experiments to measure the velocity and turbulence profiles in smooth

and transitionally rough turbulent oscillating flow in a wind tunnel. More recently, Sumer et

al. (1987) and Jensen et al. (1989) describe results from extensive experiments in the

oscillating wave tunnel at ISVA. These provided measurements of the velocity and

turbulence structure in smooth, transitionally rough and rough turbulent oscillatory boundary

layers.

Whilst much modelling work has been presented for oscillatory wave boundary layers over

rough beds, very little work has been performed for the smooth bed case. The earliest attempt

to model oscillatory flow over a smooth bed is probably that of Kajiura (1968). Fredsee

(1984) presented results for flow over a smooth bed using the integral momentum approach.

Justesen (1988a) showed results from a one equation model of an investigation of a

developing oscillatory wave boundary layer over a smooth bed. Recently, Wiberg (1995) has

examined flow over a smooth bed using a simple eddy viscosity model. However, in the

present work, modelling has been restricted to the rough bed case.

In order to be able to model wave boundary layer flows it is necessary to specify boundary

conditions for both the bed and the upper computational domain. For a non-porous bed it is

normal to apply a no-slip boundary condition in the hydrodynamic equations. However, for

the surface boundary condition the specification can be slightly more complex. In wave

boundary layer flows many modellers choose the top of the wave boundary layer as their

upper computational domain. However, in tidal flows the boundary layer normally extends to

the surface in coastal waters.

2.3.2 Sinusoidal waves

For the case where the free stream velocity, Uo is assumed to be sinusoidal, then the velocity

is given by the equation:

Uo = u""sin( IDt) (2.29)
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where UQ() is the velocity amplitude and co is the angular frequency of oscillation. Further,

co= 21t/T where T is the wave period.

To enable solution of the hydrodynamic equations it is necessary to specify boundary

conditions. For the flow equations a no-slip boundary condition is applied at the bed. At the

upper edge of the computational domain the velocity gradient is set to zero. Therefore:-

u(zo, t) = 0

: ( Ztop' t) = 0

at z = Zo (2.30)

at z = Ztop (2.31)

where Zo is defined as the vertical level at which point the velocity is assumed to be zero and

can be expressed as:

k
Z =_s
o 30 (2.32)

where ks is the Nikuradse roughness. Ztop is the upper limit of the computational domain and

has generally been taken to be at the water surface, D.

2.3.3 Sinusoidal waves and current

To enable the model to represent the combined wave-current boundary layer, it is necessary

to return to Eq. (2.17).

Wi Dui - 8Ui _ Dui , au; _ 8Ui _ Dui 1 OPi 1 Opi
-+-+u·-+u·-+u·-+u·-+u.-=------
~ ~ J&j J&j J&j J&j J&j p&i p&i

(}{ (au. Du.]}+_ vL -I +-1 +gj
&j &j &j

Based on similar assumptions to those used for the case of waves alone, Eq. (2.17) reduces to

(2.17)

the equation:-
f".J

oui - oui - oui 1 OPi 1 GPi (} {( )(OUj OUi]}-+u·-+u·-=------+- V +v -+- +g
~ J &. J &. P &. P Ox. &. I L Ox. Ox. i

J J 1 1 J J J

(2.33)

which for combined wave-current flow in the x-direction leads to the equation:-
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(2.34)

The pressure gradient due to the wave motion is determined as previously:

1 (BP) _ 000-- ---
p Ox at

(2.35)

and

Uo = UCX)sin( rot)

The pressure gradient due to the mean current is determined from steady flow where the shear

stress distribution is taken as being triangular in shape such that:-

~ = u;c(1- ~)

where 0 is the flow depth; 're is the current related shear stress and U.e is the current related

(2.36)

bed shear velocity. The sub-script c corresponds to the current. Therefore,

(2.37)

where I is the slope of the energy line and g is the gravitational constant.

Averaged over a wave period, the pressure gradient due to waves (BP/Ox) goes to zero which

leaves only the pressure term due to the current. However, since the mean flow gradient must

be known prior to solution, the mean current velocity can only be solved for via an iterative

process.

Justesen (1988a) uses the iterative process as proposed by Deigaard et al. (1986). This

requires assuming an initial value for the mean current profile. After one wave period, the

shear stresses are averaged over the period and the deviation At(z) from the required

distribution determined such that

2lt

At(z) = 're - J'r(z,rot)drot
o

(2.38)

The velocity profile is then adjusted using the following correction, AU(z)

(2.39)
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where dU(Z) is the velocity correction and vt{z) is the mean turbulent eddy viscosity over

one wave period. The iteration is continued until the required convergence is reached.

Justesen (1988a) proposes a correction to the length scale used in the one-equation model on

the grounds that beyond a certain distance from the boundary, the presence of that boundary

is no longer affecting the turbulence. The modified length scale is given as:

1"'Z for
0.07Dz$

[- C2
0.07D

0.07D for z>
C2

and

C2=K~

(2.40)

(2.41)

where K is the von Karman constant (~ 0.4) and c
ll

is a turbulence model constant (see

Chapter 4).

Davies et al. (1988) apply the current as a horizontally uniform motion in the direction of the

applied current (Davies et al. allow for a current at an angle to the waves). The current is

initially generated as a tidal input in the model which generates an oscillatory pressure

gradient. Once the initial transient motion has ceased then the pressure gradient is replaced by

a constant pressure gradient and the solution is run until a steady state is reached.

Development of boundary conditions for the hydrodynamic equations for random waves and

combined random waves and current will not be developed in this Chapter. Such theory will

be left until Chapter 4.

2.4 Conclusions

The development of the hydrodynamic equations has been given and the equation of motion

in the x-z plane has been developed and reduced to one which can be solved relatively easily.

The boundary conditions have been introduced for this equation for both the case of waves

alone and also that of co-linear waves and current. Development of the boundary conditions

for the random case are presented elsewhere (see Chapter 4).
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Chapter 3

Literature Review

3.1 Introduction

The seabed boundary layer is important for many reasons. To adequately describe such

phenomenon as wave energy loss, sediment transport, transport of pollutants and bedform

formation requires knowledge of the boundary layer flow field. Over the last three decades

various theoretical models have been proposed. Until very recently, all these models have

been written to describe a pure sinusoidal wave boundary layer or that under a non-linear

wave. The first model to describe a truly random wave and wave-current boundary layer was

described in O'Connor et al. (1993). This model was based on a mixing length assumption,

and whilst the closure method used might have it detractors, the results show the model to

give reasonable answers, O'Connor et al. (1993), O'Connor et al. (1994).

The inability of a mixing length model to describe more than the basic physics of boundary

layer flow is an inherent problem. To provide a more 'physically' accurate model requires

greater computational power, the level of which is dependent on the type of model used. The

complexity of the numerical model can be increased by the addition of equations to the

solution: k - models; k - E and k - I models; Reynolds stress models; and direct simulation of

the Navier-Stokes equations. Because of computational implications, such as memory and

time, it would be currently unrealistic to attempt to describe a random boundary layer using

the latter two approaches.

Since, generally, the aim in coastal hydrodynamic models is to provide a flow description to

assist in the calculation of sediment transport, the ability of the flow model to adequately

describe the hydrodynamics is essential. In real seas, modellers have, until recently, tended to

drive models with representative values rather than simulate a random sea, due to the added

complexities involved, for example Ockenden and Soulsby (1994). However, workers in the

field (e.g. Williams (1996)) have shown that the effects of wave groups on sediment
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entrainment is significant. Wave groups have a pumping action such that the wave-period-

mean sediment concentrations increase with the passage of each group so that the effect of

groups cannot be ignored. Also, whilst a parameterization of the effect of wave groups may

be incorporated into a monochromatic boundary layer model by using a higher than average

wave condition, it is impossible for such a model to directly account for the non-linearity and

random nature of a real sea. In addition, the effect of waves and currents on bedform size and

hence bed roughness has always been treated as a fixed quantity in such models, and under a

pure sinusoidal wave this is a reasonable assumption. However, in reality the size of

bedforms varies in time due to the flow field and in turn this affects the hydrodynamics.

Studies have shown that random waves create ripples that are less steep and of shorter length

and height than those generated under monochromatic waves (e.g. Nielsen 1981). Madsen et

al. (1991) suggested that the rounded nature of ripple crests found under random waves was

due to the larger waves shaving off the sharp ripple crests.

It is the intention of this work to provide a better description of the random wave and wave-

current flow field via the use of one- and two-equation models. In addition, the effects of

varying the bed roughness are to be studied in an attempt to provide a better description of a

random wave and combined wave-current boundary layer.

3.2 The wave boundary layer

It is perhaps useful to look briefly at the bed boundary layer formed close to a solid bed.

Researchers have shown for wave motion over a horizontal bed that the particle motion close

to that bed oscillates horizontally, for example see Svendsen and Jonsson (1976). The bed

boundary layer is created by the fluid adhering to the boundary causing a layer to develop

having vorticity and shear stresses. The thickness of this wave boundary layer has been

defined differently by researchers.

Jonsson (1967):

Jonsson defined the top of the boundary layer as the minimum elevation where u(z,t) equals

the free stream velocity Uo(t)when the latter is a maximum (see Figure 3.1). This corresponds

to the equation:-
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(5J = 1t ~2VL
2 Cl)

where Cl) is the wave angular velocity and is defined by:

21t
Cl) =-

T

(3.1)

(3.2)

Where T is the wave period and vL is the kinematic viscosity.

Kajiura (1968):

Kajiura defined the top of the boundary layer via the use of a displacement thickness defined

as:-

(3.3)

a is the water particle amplitude just outside the boundary layer, see Figure 3.1.

Sleath (1987):

Sleath's definition for the top of the boundary layer is defined as the position where the

amplitude of the velocity defect has dropped to 5% of the velocity amplitude u"".

Os = ~2~L (3.4)

The boundary layer thickness represents the transitional area between zero velocity at the wall

(non-porous bed) and the free-stream velocity. In time, the thickness of the layer will grow

influencing a larger part of the flow field. Nielsen (1992) suggests that the practical limit for

measuring boundary layer structures is where the velocity defect has reached one percent of

the free stream amplitude, (50.01' The relationship of (50.01 to the other expressions for boundary

layer thickness defined above is shown in Figure 3.1.

In wave motion, the particles in the area of the bed move in the direction of oscillatory

motion until the maximum particle velocity is achieved and deceleration of the fluid particles

starts. At this stage the particles closest to the bed begin to move in the reverse direction to

the main outer flow which has not stopped its motion yet. This effect is called separation of

the boundary layer and is the point at which a new boundary layer will begin to develop.
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This effect is very important in any attempt to accurately model the boundary layer. The

cause of this deceleration of particles outside the boundary layer is due to an adverse pressure

gradient, in other words, an increasing pressure gradient acting in the direction of the particle

motion within the boundary. This will happen twice every wave period in pure oscillatory

flow, ensuring that, for short period waves (high frequency), the boundary layer remains thin

compared to the water depth.

In the absence of wave breaking, this enables simple wave theory based on irrotational flow

to be used. Therefore, from the above it is clear that the flow within the boundary layer does

not always follow the 'law of the wall' (logarithmic layer) for at least part of the cycle. It has

been argued (Shima 1993 ) that a model applicable up to the wall itself is required to properly

predict this flow.

3.3 Laminar flow

In the real world, the steady currents within the sea are virtually always turbulent. However, it

has been shown that if steady currents are small then wave-induced flows may be laminar for

a range of conditions. Stokes (1851) presented a solution for an infinite flat bed oscillating in

still water. This work was later extended by Lamb (1932) who obtained a first approximation

for waves over a flat bed.

u = u"'( co!( rot) - e-pzco!( rot - ~z)) (3.5)

where ~ is a height scale given by the equation:

(3.6)

(see also Eq. (3.4» and; T is the wave period. In addition, the shear stress distribution is given

by:

~ = .J2vL~uooe-PzSi~ rot - ~z+ :)

Numerous researchers have measured laminar profiles in the laboratory and have found

(3.7)

excellent agreement with Eq. (3.5), see Figure 3.2.
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3.4 Boundary layer modelling

Amongst the earliest theoretical works those of Jonsson (1963; 1967) and Kajiura (1964) are

key works. Kajiura (1964) attempted to produce a theoretical approach to predicting the

frictional coefficient for fully developed turbulent oscillatory flow over rough and smooth

beds under long waves (seiches/tsunamis). In such a case the boundary layer occupies a

significant part of the water depth. This work was later extended in an attempt to provide a

description of the oscillatory turbulent boundary layer for wind waves, Kajiura (1968).

Jonsson (1963; 1967) suggested using the integrated momentum equation to obtain an

expression with which to evaluate the friction factor. Jonsson assumed a logarithmic velocity

profile to extend to the free stream velocity. For rough turbulent flow Jonsson obtained the

semi-empirical relationship.-

1 1 are + 10glO re = -0.08 + log., -
4" fw 4" fw k,

a
- > 1.57
ks

(3.8)

Kamphuis (1975) suggested a slightly different empirical relationship»

1 1 4 are + log., re = -0.35 + -log)o-
4" fw 4" fw 3 k,

a
-> 157
ks

(3.9)

For further comparison of wave friction factors see Chapter 10.

The following sections are intended to provide a state-of-the-art review of wave boundary

layer modelling techniques in order to provide a context for the present work. Whilst the list

of papers is intended to be as comprehensive as possible, it is not exhaustive. Many of the

models have been written with the intention of describing sediment transport effects within

wave and wave/current boundary layers. However, it is not intended to discuss detailed

sediment transport aspects in the present work.

Before discussing the modelling schemes for turbulent wave boundary layers in detail, it is

perhaps useful to mention the work of Bijker (1967) and Lundgren (1973) who are some of

the first researchers to address the topic of wave-current interaction.
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Bijker's model is primarily based on two main assumptions. Firstly, that the combined

velocity field is formed by the linear superposition of the velocities due to the individual

wave and current components. Secondly, the instantaneous bed shear stress can be calculated

from the velocity field derived from steady flow equations.

Bijker introduces a dimensionless constant p (p = .J2/ln(330/k), where k = bed roughness;

8 = boundary layer thickness) which is derived from a logarithmic turbulent boundary layer

assumption. The bed shear stress for the combined case is found by integrating the

instantaneous bed shear stress over the wave period. Bijker's model allows for waves and

current to interact at any angle.

However, the assumptions made by Bijker are questionable. The thickness of the wave

boundary layer is not constant and, therefore, neither is p constant. The vector addition of the

wave and current fields introduces inconsistencies between the mean velocity and mean shear

stress gradients. Finally, the logarithmic assumption is not valid for all the phases of the wave

motion.

Swart (1977) attempted to address the problem of the varying boundary layer thickness using

Jonsson's definition for the thickness. However, Swart failed to fit this modified equation

against the data used by Bijker to calibrate his model. Savell (1986) argues that since p was

used as a calibration factor, it possibly compensated for the incorrect assumption. Savell

contends that using Swart's equation with Bijker's experimental results leads to an average

error of 100% in the enhanced shear stress.

Lundgren (1973) proposed a model for the mean velocity and eddy viscosity distributions in a

combined wave-current flow. The combined eddy viscosity is taken to be the vector sum of

the individual eddy viscosities for the steady and wave flow fields. Initially the current

velocity component is unknown, since it is defined by the shear stress.

The current viscosity is represented by a mixing length expression while that for the waves is

curve fitted from the experimental data of Jonsson (1963) and Carlsen (cited in Lundgren
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1973). The total eddy viscosity is then calculated from the vector sum of the individual

components.

The mean velocity profile is obtained by integrating the velocity gradient from the theoretical

bed level to the top of the boundary layer. Since the eddy viscosity is increased within the

wave boundary layer the velocity above this layer is reduced, however, the gradient remains

the same as for the steady flow case.

Finally, the paper of Grant and Madsen (1979) deserves a mention since Grant and Madsen

were the first to point out the influence of waves on a steady current above the wave

boundary layer and the apparent increase in bed roughness felt by the current. However,

Fredsee (1984) suggests that this could also have been deduced from Lundgren (1973).

3.5 Eddy viscositymodelling

Kajiura (1968) introduced a three-layer, time-invariant eddy viscosity model for oscillatory

turbulent flow for both a smooth and rough bed. The three layers consisted of an inner layer,

overlap layer and outer layer (see Eq. 3.12 and Figure 3.3).

The inner layer is often referred to as the viscous or laminar sub layer for smooth beds. In this

layer the viscous stresses are dominant. For rough beds this layer is less clearly defined since

the region still exists but is located between the bed roughness elements or ripples.

The overlap layer is so called because it is the area of overlap between the wall and 'defect'

layer. The defect layer being the region where the velocity defect is unaffected by viscosity.

The outer layer (sometimes called the 'wake' region) is the area of the defect layer unaffected

by the wall layer.

Within the solution procedure, Kajiura assumed continuity between the overlap and outer

layer in both the shear velocity, u, and velocity, u, whilst only assuming continuity in the

turbulent eddy viscosity, Vt • However, although the model is conceptually quite simple, the
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analytical calculations are not so straight forward. Using the linearized equation of motion,

Kajiura assumed that the relationship between shear stress and velocity is given by:

(3.10)

au 't
VI-=-

Oz P
(3.11)

Ignoring Kajiura's solution for smooth beds, Kajiura's three-layer model for rough turbulent

flow assumed the following eddy viscosity distribution:

Inner layer _ {0.185KU.B .... k,
Overlap layer VI = KU. Z

B.....

Outer layer KU. /l.
B.....

for 0 s Zs kJ2

for kJ2 < Zs /l.
for z > /l.

(3.12)

and /l.= the upper point of the overlap layer.

Kajiura (1968) suggested that the overlap layer would disappear if the condition

~<30
ks

was satisfied. However, Horikawa and Watanabe (1968) suggested that Kajiura's results were

(3.13)

more closely fitted if the following condition was used:-

a
-<115
ks

(3.14)

Kajiura's model is also able to describe the phase difference, cp, between the bed shear stress

and the free-stream velocity. However, the model makes no allowance for the variation of the

boundary layer thickness with time. Jonsson (1978a; 1980) shows good comparison between

Kajiura's model and his experimental results.

Brevik (1981) introduced a simplified model based on that of Kajiura (1968). Brevik

proposed a two-layer model omitting the inner part of the boundary layer description and

extending the overlap layer down to the z = Zo (see Figure 3.4). Brevik assumed that the

physics were such that the overlap layer existed and proposed the following eddy viscosity

relations:

Overlap layer VI = KU.maxZ Zos Zs /l.
Outer layer VI = KU.max/l. z> /l.

(3.15)
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The solution of Brevik's model is similar to that of Kajiura (1968). It is analytical in nature

and involves the concept of a defect velocity as introduced by Jonsson (1978a) which is

defined as:

(3.16)

Assuming the effects of molecular viscosity to be negligible, the linearized equation of

motion can be written as:-

Dud = ~(V Dud)
at f)z If)z

Brevik (1981) introduced complex notation by allowing the free stream velocity to be

(3.17)

expressed as:-

Uo= u'" exp(irot)

Therefore the mean and defect velocities become:-

(3.18)

(3.19)

(3.20)

Where i = J=1 . The solution to the physics is provided by the real part. Equation (3.17) can

now be written as:-

d (- dUd). 0- v1- -lroUd =
dz dz

(3.21)

In turn, this equation reduces to a standard differential equation for Kelvin functions of zeroth

order in the overlap layer, such that:-

ud = uoDB[A(ber~ + ibei~) + B(ker ~ + ikei~)] (3.22)

Where DB is a constant and ~ is a non-dimensional variable defined as (see also Brevik

1981):-

~=(40)_Z )~
KU.max

(3.23)

In the outer layer equation (3.22) becomes

ud = -UoTBD-lexp[-(l+i)~(z-~)] (3.24)
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Where TB is another constant which is generally complex in nature. Solution of these

equations requires the determination of boundary conditions and to match equations (3.22)

and (3.24) at the interface. The thickness of the overlap layer has to be determined before the

problem is solved finally.

Brevik (1981) noted that whilst there appeared to be no experimental evidence against

extending the overlap layer down to z = Zo, there was some uncertainty about where the

upper limit of this layer should be. Using two definitions for ~, Brevik investigated the

sensitivity of the model. Firstly, ~ was chosen as (Jonsson 1963; 1978a; 1980):-

~ = .!.o
2

(3.25)

where 0 = the boundary layer thickness and is given by Eq. (3.1) and secondly the definition

of ~ as given by Kajiura (1968) was used:-

1

~ = 0.O\~fw)2 a (3.26)

where fw= wave friction factor. The results indicated that the velocity profile was relatively

insensitive to the choice of ~. However, the phase of the velocity was best predicted by

Jonsson's simple relationship.

Various authors have produced similar models of this type with a time-invariant eddy

viscosity distribution. The ability of these models to provide reasonable agreement with both

field and laboratory data could be considered somewhat surprising given the assumptions

made in many of these works. Further, whilst models of this type are capable of predicting the

velocity and shear stress distributions relatively well, at least for maximum values (see

Wiberg 1995), such models are totally incapable of providing a detailed description of the

variation of the turbulent properties of the flow. Since the eddy viscosity is a function of these

turbulent properties then such simple models are unable to represent the detailed physics.

The assumption that the eddy viscosity is independent of time has been shown to be incorrect

experimentally by several investigators (for example Horikawa and Watanabe 1968; Sleath

1987). Research has, however, shown that, at least for certain heights, the eddy viscosity is

linear in form (compare with Eq. 3.12). Sleath (1987) found that whilst this latter point
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corresponded to his experimental results, the value of the constant of proportionality (the von

Karman constant, K) was significantly different from accepted values (K, ~ 0.1, as opposed to

the normally accepted value of K, ~ 0.4). In addition, Sleath (1987) found that the eddy

viscosity went negative near the bed, though little work on this aspect appears to have been

studied by other researchers (Figure 3.5).

Hunt and Maxey (1978) have shown that under certain circumstances it is theoretically

possible for the viscosity to go negative. They showed that for rapid changes in the flow, the

concept of an eddy viscosity defined by VI = t/(au/Oz) is incorrect in principle, one reason

being that t is not zero when aufOz is zero. It is unclear though what are the implications or

physical meaning of a negative viscosity. However, maybe the outcome of any theoretical

reasoning is dependent on what is taken as your initial starting point, in this case the eddy

viscosity concept. The theoretical approach used within this work is unable to operate with

negative values of eddy viscosity.

Despite technical advances in experimental measuring techniques there is still much that is

not understood about boundary layer dynamics. In addition, the ability to make velocity

measurements in the field within the first 10 cm of the bed is still far from being routine, see

Agrawal and Aubrey (1992). It is, therefore, necessary to try and model the wave and

wave/current boundary layer as accurately as possible so as to enable interpretation of near-

bed measurements as well as providing invaluable data with which to test models.

Sleath (1991a) presents an eddy viscosity model for combined wave-current flows over rough

beds. Sleath assumes that the eddy viscosity is given by:

(3.27)

and that that eddy viscosity for current alone and waves alone are given by:-

(3.28)

(3.29)

respectively. Itmight be reasonable to add the two eddy viscosities if the turbulence produced

by the oscillatory flow and steady flow are statistically independent. Sleath suggests that
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whilst there exists a fluctuation in turbulence intensity over a wave cycle, the time-mean

turbulence intensity may remain little changed. Sleath justifies this assumption on the basis of

laboratory experiments (Sleath 1991b).

In calculating the mixing length, I for the periodic eddy viscosity component, Sleath assumes

a value of 0.1 for the von Karman constant, 1(. Sleath bases his choice of 1( on previous

experiments (Sleath 1987; 1990) which indicated that rather than taking the normally

accepted value for 1( (~ 0.4) for steady flows, in oscillatory flows a value of 0.1 - 0.2 should

be adopted. These lower values were obtained when Sleath tried to obtain agreement with his

measured data (Sleath 1987; 1990).

Sleath (l991a) uses a solution method similar to that of Grant and Madsen (1979). Sleath's

approach avoids the division of the boundary layer into one for waves and one for currents,

avoiding any assumption as to what height this occurs at. The model makes use of oscillatory

flow measurements for the eddy viscosity near the bed. However, the model is limited in its

application. The paper is short on results on which to make a full assessment of its merits.

Wiberg (1995) describes the use of an eddy viscosity model based on that proposed by Smith

(1977), to investigate smooth, transitional and rough turbulent boundary layers under waves.

In addition, a comparison is made with a time-invariant and a time-variant form of the model.

Whilst overall, both forms of the eddy viscosity model give reasonable agreement with the

data used (Jonsson and Carlsen 1976; Jensen et al. 1989), Wiberg (1995) concludes that the

time-invariant form does not adequately describe the wave boundary layer through the wave

period. However, good agreement with the velocity and shear stress distribution at maximum

velocity is obtained with the simple model.

In addition to Wiberg (1995), the use of time-variant eddy viscosity models has been

proposed by Trowbridge and Madsen (l984a; b) and Davies (1986a). Further, the use of the

integral momentum equation has also been proposed by Patel (1981) and Fredsee (1984).
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Trowbridge and Madsen (1984a) proposed a time-variant eddy viscosity model based on the

time-invariant form as given by authors such as Kajiura (1968), Brevik (1981) and Myrhaug

(1982). Trowbridge and Madsen suggested the following temporal variation for the viscosity:

(3.30)

and

(3.31)

The shape function, vo, is averaged over the wave period. The value of OJ ,the thickness of

the inner layer, is assumed to be:

&. = KU.
I tiro (3.32)

Re represents the real part and a2 is a complex constant representing the amplitude of the

second harmonic and is given by:

(3.33)

Using this description for the eddy viscosity and the linearized equation of motion,

Trowbridge and Madsen (1984a) produce an analytical solution to the problem. Results are

shown for the mean components only and this makes evaluation of the improved model

difficult. Trowbridge and Madsen (1984a) report that the time-variant eddy viscosity model

suggest that the temporal variation is not significant for reproducing the first harmonic.

However, their results indicate that higher harmonics are present in the velocity and shear

stress distribution and in a linear model this feature can only be represented by the use of an

eddy viscosity that varies with time. As in all of the above models, Trowbridge and Madsen

(1984a) assume that the boundary layer thickness is constant in time, but this has clearly been

shown not to be the case (for example see Sleath 1987; Jensen et al. 1989).

In a second paper, Trowbridge and Madsen (1984b) include second order effects into their

model. The effect of wave-induced mass transport on the turbulent wave boundary layer was

studied. The results show that a time-variant eddy viscosity has an important effect on the

mass transport. Also, Trowbridge and Madsen (1984b) showed that for relatively long waves,

reversal of the mass transport took place.
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An earlier paper by Lavelle and Mofjeld (1983) also addressed the question of time-varying

viscosity. Their approach was similar to that of Trowbridge and Madsen (1984a). They

assumed the viscosity to be given by the equations:-

VI = KluB{t)lz Zo ~ z ~ 0

oVI=KluB{t)lo z>o

(3.34)

(3.35)

where 0 is the matching height and UB is a modified shear velocity and are defined by the

equations:-

(3.36)

1

[uo(t~ = {u~(t)+C2U~(t+ !)}' (3.37)

and c is given an arbitrary value of 0.2.

Lavelle and Mofjeld (1983) conclude that time-varying viscosities introduce higher

harmonics of the fundamental velocity signal which can be important for certain phases of the

flow, as was found by Trowbridge and Madsen (1984a) . Further, there was an indication that

neglecting time variations in viscosity could lead to an under-estimation of maximum bed

shear stress and distortion of the flow profile close to flow reversal.

Takhar and Thomas (1991) investigated turbulent mass transport and wave attenuation in

Stokes waves using numerical methods to solve first and second order turbulent boundary

layer equations. They noted that the eddy viscosity should possess time dependence if such

flows are to be modelled correctly. Any attempt to model the behaviour of turbulent mass

transport using a time-invariant eddy viscosity would fail to capture the fundamental

mechanism. Takhar and Thomas concluded that the simplest model of turbulence with the

requisite properties to predict turbulent mass transport is the mixing length model.

Davies (1986a) has also addressed the question of time-varying viscosity. The model chosen

by Davies uses the following eddy viscosity description:

(3.38)
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where K is a free parameter in the range 0 ::;;K ::;;1. The linearized flow equation is solved in

the form:-

N

U = Uo - L {CPo (z)sin(nrot) + 1')0 (z)cos(nrot)}
0=1

(3.39)

where CPn and 1')n are functions of z. Whilst approximate analytical solutions are shown for N =

2 and N = 3, solution by computer is required.

Davies illustrates the influence of the time-varying viscosity in the paper through the

parameter, K. K= 0 represents a time-invariant solution, whilst K = 1 gives a sinusoidal eddy

viscosity distribution with a minimum of zero twice every period. Based on a more

sophisticated turbulence model Davies suggests that 0.5 should be the approximate value for

K.

Fredsee (1984) assumed that the velocity profile in the wave boundary layer was logarithmic.

~ = _!_ In( 30Z)
u. K ks

(3.40)

Fredsee also assumed that for each half period the flow field could be considered to start from

rest. Integrating the momentum equation, Eq. (3.41) was obtained:-

6+k,/30 a
~ = J -(uo -u)dz
p k,/30 at

using the upper limit in the integral as 0 + ks/30 rather than 8 since 8 = 0 for t = O.

(3.41)

Fredsee (1984) chose the upper boundary condition as :

kz=o+_s : u=uo
30

Substituting into Eq.(3.40) gives

(3.42)

(3.43)

where

s= KU

u. (3.44)
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After a little manipulation, Fredsee (1984) obtains the following differential equation for the

variation of non-dimensional velocity with phase:-

~ = 13 sin(rot)
d(rot) el;(~-I)+1

~(el; - ~ - 1) 1 duo
el;(~ -1) + 1 Uod(rot)

(3.45)

where

(3.46)

Equation (3.45) must be solved numerically. Fredsee's approach predicts the phase lead of

the bed shear stress over the free stream velocity, an effect that the previous time-invariant

eddy viscosity models fail to predict. The phase lead is a result of the small thickness of the

boundary layer allowing the pressure gradient to penetrate undisturbed through the boundary

layer down to the bed. The bed shear stress has a maximum at an angle, <p, before the free

stream velocity reaches a maximum. In a laminar boundary layer <p = 45° . The results also

show good agreement with the wave friction factor results of Jonsson and Carlsen (1976) and

Kamphuis (1975) for values of a/k, greater than about 30. However, the failure of the model

for values of a/k, less than 30 is perhaps to be expected since the logarithmic layer

assumption must be questionable in this range.

Fredsee (1984) also provides solution for the smooth wall case as well as for a wave/current

boundary layer.

Finally, within these class of simple models the papers of Tanaka (1989) and Supharatid et al.

(1993) require a mention. Tanaka proposed an extension to a simple time-invariant eddy

viscosity model in order to represent non-linear wave motion via the stream function, as

suggested by Dean (1965). The eddy viscosity was represented by:

(3.47)

and

'" ;: _ u""Re[{sinhk(Z- Z ) + ik~ HP)(~)}ei(kx-CIlt)]
k 0 2c H(I)

o
(3.48)

where Hbl) is the Hankel function of the first kind, zeroth order and HP) is the Hankel

function of the first kind, first order.
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ID
c=--

leu·ow
(3.49)

and

(3.50)

Tanaka's manipulation results in the representation of the stream function as:-

",(x,z) = Lz- u:c z{ln(~) -I}
T leu.ow Zo

N

+Lsinh{ nk(z- zo)}{X(n)cos(nkx) + Y(n)sin(nkx)}
0=1

(3.51)

Tanaka's analysis is only for rough fully turbulent flow. Comparison is made with the

laboratory data of van Doom (1981) and Nadaoka et al. (1982). Reasonable agreement is

obtained for the results presented. Tanaka concludes that for velocity prediction in the surf

zone, Dean's wave (stream function) theory provided better results over other wave theories.

Supharatid et al. (1993) extended the analysis of Tanaka (1989) to include currents.

Supharatid et al. modified the current profile and formulated their model with the stream

function formulated in terms of a truncated Fourier series. Their results show reasonable

agreement with data except in the velocity 'overshoot' region. However, as Supharatid et al.

point out their time-invariant eddy viscosity assumption is not valid.

3.6 Turbulence models

The use of higher order models to study turbulent flows has generally been led by the

aerospace and mechanical engineering disciplines. In coastal engineering the application of

such models has always followed from these developments.
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3.6.1 Zero-equation models

Bakker (1975) was the first to use a mixing length closure model in the context of modelling

turbulent wave boundary layers. Following from the approach of Prandtl (1925), the shear

stress in the boundary layer is assumed to be given by the equation:-

(3.52)

where

1= KZ

and I is a mixing length. Therefore the shear velocity is defined as:-

(3.53)

au
u, =KZ-

az
(3.54)

The linearized equation of motion can be written as:

(3.55)

using Jonsson's definition of a defect velocity (see Eq. 3.16). Further, using the substitution,

't = pp2 gives:-

Gp 82(plpl)- = KZ----'-:-~at az2
Bakker (1975) introduces a non-dimensionalized form of this equation before solving using a

(3.56)

finite difference scheme, (P. = P/Pb) where Ph is the maximum bed shear stress. Since the

model solves for P., a distribution for this must first be prescribed. Bakker assumes a

sinusoidal variation at the bed. In a later paper, Bakker and van Doom (1979), the bed

boundary condition was modified by the inclusion of harmonics up to the third order.

Wong (1984) used Bakker's (1975) approach but solved the equation using a simpler explicit

finite difference method. The numerical results were compared with laboratory data from the

University of Manchester studies (Savell 1986; O'Connor et al. 1988; Taplin 1989) and that

of Jonsson and Carlsen (1976). The comparison with the Manchester flume experiments

showed the model to provide only a first order fit even when second and third harmonic

effects were included. However, when the model was compared with data for wave and

current conditions a better fit was found. This would indicate that, to a certain extent, the
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presence of a current acts to suppress non-linear effects in the wave field. In a later modified

model, Solomou (1987) used a different numerical scheme based on a variable grid spacing

over the flow depth, to investigate the influence of artificial viscosity on Bakker's results. The

results suggested that numerical viscosity was of secondary importance.

Johns (1975) proposed a mixing length model which was valid from the bed to the free

surface. Unlike Bakker (1975), Johns (1975) solved for the velocity. Unfortunately the paper

is short on results and as such any model evaluation is difficult to make.

Vongvisessomjai (1984) also proposed a mixing length model solved using the velocity

distribution. Vongvisessomjai investigated the difference between the boundary layer

parameters for an oscillating bed (e.g. Bagnold 1946) compared with an oscillating fluid. The

results showed that whilst the velocity profiles for the different cases were the same, values

for the boundary layer thickness, the shear stress and the friction factor were larger for the

oscillating flow. The differences are due to the difference in turbulence production. Vincent

(1959) was probably the first to recognize the difference between the results from oscillating

the fluid and oscillating the bed. Nielsen (1992) also notes the distortion of the

inertia/pressure forces on sediment particles on oscillating beds.

Van Kesteren and Bakker (1985) proposed a mixing length model which could deal with a

'three-dimensional' bed boundary layer for waves and current. The model is not truly three-

dimensional in that it is still solving at a point in space (i.e. one-dimensional), however, it

allows for waves and current interacting at an angle with each other.

3.6.2 One-equation models

The one-equation k model has been used to study the boundary layer of tidal flows by Vager

and Kagan (1969; 1971); Smith and Takhar (1977); Johns (1977) and wave and wave/current

boundary layers by King et al. (1985); Davies (1986b; 1991); Davies et al. (1988);

Trowbridge et al. (1987); Justesen (1988a; 1988b; 1990; 1991); Davies and Jones (1987);
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Johns (1977) describes the use of a one-equation model which retained the advective terms in

the equations. This enabled the modelling of second-order effects such as wave-induced mass

transport. A pseudo-spectral method enabled the advective terms to be calculated.

Unfortunately the paper only provides results for the mass transport effects.

King et al. (1985), Davies (1986b) and later Davies et al. (1988) use a one-equation k-model

to describe the boundary layer for both waves and tidal conditions. In Davies et al. (1988) the

model is extended to include waves and currents.

King et al. (1985) use two different descriptions for the mixing length term. The first is the

method proposed by Yager and Kagan (1969) which is time dependent and the second is the

simple expression derived from steady flow which allows the length-scale to increase linearly

away from the wall.

The work of Trowbridge et al. (1987) deserves special mention since they incorporate

second-order effects into their one-equation k-model. They use a simplification based on the

assumption of periodicity in space and time together with the continuity equation to enable

the vertical velocity to be calculated. Trowbridge et al. found that the steady second-order

velocity field only became established after a few hundred wave periods. They also

concluded from their results that both first- and second-order advection and diffusion of

turbulent kinetic energy played only a minor part in determining the averaged velocity field.

Davies (1991) investigated transient effects in wave-current boundary layer flows using a

one-equation k-model. The investigation studied the effect of superimposing waves on a co-

linear current and also the case when waves are removed from a combined wave-current flow.

Davies found that in both cases immediate changes to the near-bed period-averaged velocity,

turbulent kinetic energy and shear stress distributions occurred. These changes gradually

extended upwards through the water column to the surface as the flow attempted to reach a

new equilibrium. In addition the time-scale required for such adjustments depended not only

on the physical parameter settings but on whether the mass flux was held constant or the

pressure gradient was held constant. The time-scale was shorter for the former case. Davies
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suggests that such conditions would be relevant for a wave-current field at a coastal site

should they alter suddenly due to refraction effects or tidal elevation variations.

3.6.3 Two-equation models

Two-equation k-s models are probably the most widely used turbulence models for boundary

layer study. Over the last ten years, various authors have presented papers for both high- and

low-Reynolds number models. Smith and Takhar (1977) applied three different mean

turbulence energy models to oscillatory flow in open channels, one of which was a high-

Reynolds number k-e model. Cousteix et al. (1979); Hagatun and Eidsvik (1986); Justesen

(1988a; 1988b; 1990; 1991) Celik and Rodi (1985); Sato (1987); and Utnes (1988) have all

applied high-Reynolds number k-s models to the turbulent wave boundary layer. Utnes

(1988) used a finite element scheme in his solution. Papers detailing the use of low-Reynolds

number k-e models have been presented by Aydin and Shuto (1988); Asano et al. (1988);

Tanaka and Sana (1994).

In addition to the k-e model, two-equation models of the k-/ type have been proposed, based

on the earlier work of Lewellen (1977). Models of this type have been used by Bocar-

Karakiewicz et al. (1990) Huynh Thanh and Temperville (1991a; 1991b); Chapalain and

Bocar-Karakiewicz (1992).

Of the high-Reynolds number k-s model studies, the work of Hagatun and Eidsvik (1986) and

that of Justesen (1988a; 1988b; 1990; 1991) stand out. The theory behind such eddy viscosity

models can be found in Chapter 4.

Sato et al. (1985) and Sato (1987) applied a two-equation k-e model to flow over ripples. Sato

(1987) describes the taking of a comprehensive set of measurements above symmetric and

asymmetric ripples using hot-film and laser anemometer techniques. Both references use

these results to compare with the model predictions with reasonable agreement with the

velocity distributions.
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It is worth mentioning a slightly different two-equation model based on that proposed by

Saffman (1970; 1974). Saffman proposed that the turbulence components responsible for

mixing and momentum transfer could be expressed through an energy density, e and a

vorticity density, ms and are described through the equations:-

I

2 2 {( J 2}2 (2)oms _ Oms 2 DUi 3 0 Oms- + u. -- = a ID - - A m +- ° V --at I Ox. m S Ox. 1-'10 S Ox. m t Ox.
I J J J

(3.57)

I

{
2}-2

Be + \1. ~ = a. e 2[.!.(OUi + OUj)] - A em +~((J V ~)at 'Ox. e 2 Ox. Ox. I-'e Ox. e t Ox.
t J t J J

(3.58)

and where am' f3m, Om' ae, f3e' o, are assumed to be universal constants. Further, the

turbulent eddy viscosity, VI is given by the equation:-

yevt=-m

where y is another universal constant.

(3.59)

Jacobs (1984) used Saffman's approach to study mass transport in a turbulent wave boundary

layer and Blondeaux (1987) employed Saffman's turbulence model to investigate the

turbulent bed boundary layer due to gravity waves. It is not clear whether such an approach

has any advantage over, say, the k-e scheme.

3.6.4 Algebraic stress (Reynolds stress) models

All the models reviewed so far use the Boussinesq hypothesis relating the turbulent stresses

to the mean strain. Reynolds stress models (also referred to as second-order closure schemes)

model the production terms and body force terms that influence the Reynolds stresses exactly.

This allows the Reynolds stress model to correctly account for effects induced by additional

mean flow strains introduced for example in swirling flows or buoyancy driven flows.

However, correctly modelling the pressure and dissipation terms is not straight forward.

In some cases up to 28 transport equations have been proposed in Reynolds stress models

which include higher order correlations (see Rodi 1980). Whilst such models undoubtedly
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have much to offer where the transport of stresses and fluxes is essential to the solution and

where such terms cannot be approximated, they are computationally expensive. For many

situations a much simpler turbulence model will provide results not that different from the

Reynolds stress approach.

Some of the earliest attempts to use Reynolds stress models in coastal engineering problems

were presented by Sheng (1985; 1987). More recently Shima (1993) and Br01's and Eidsvik

(1994) have described the use of such second-moment closures to model oscillatory wave

boundary layers.

Sheng (1985) first proposed a Reynolds stress model for modelling turbulent wave and wave-

current boundary layers. Sheng described the problem through the use of seven equations.

Comparison was made with the data of Jonsson and Carlsen (1976). However, it is not clear

whether these results are any more superior than those obtained with a one or two equation

model. Sheng also ran the model for a cnoidal wave in an attempt to provide a better

description of a boundary layer in a real sea.

In a later paper, Sheng (1987) discussed the application of a Reynolds stress model to a

broader range of problems. Sheng attempted to show that the Boussinesq eddy viscosity

assumption was an inadequate basis for studying turbulent boundary layers by comparing the

results of the Reynolds stress model with the eddy viscosity values calculated from Jonsson

and Carlsen's (1976) laboratory data. Like many other experimental results for eddy viscosity

(for example see Sleath 1987) the experimental data is often scattered and sometimes

negative, and as such has no physical meaning. Because Reynolds stress models remove the

need for the Boussinesq eddy viscosity assumption by modelling the second-order turbulent

correlations in terms of transport equations they are seen as being of higher accuracy than the

models discussed up to now. However, these transport equations cannot be solved directly

and empirical approximations are introduced in order to allow solution. Therefore, because of

these introduced simplifications the superiority of such methods over more simple models is

less clear.
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Sheng (1985; 1987) fails to properly present any comparison of the Reynolds stress model

with any turbulence measurements. This makes judgement of Sheng's approach difficult,

since it must be on these quantities that the model's performance is assessed.

Shima (1993) uses an extension of the high-Reynolds number closure of Gibson and Launder

(1978) to assess the performance of the Reynolds stress model when applied to free surface

boundary layers with a periodic pressure gradient. Whilst Gibson and Launder took the

coefficients of the redistribution terms to be constants, Shima makes the coefficients

dependent on the two invariants of the anisotropic stress tensor (see Shima 1993 for further

details).

Shima compares his model with the direct numerical simulation data for an oscillating

boundary layer of Spalart and Baldwin (1987) (see below). Shima argues that as the

logarithmic law of the wall assumption does not hold true for all of the flow cycle, a model

which is applicable up to the wall itself is required to predict such flows. The adapted model

is valid up to the wall. Shima (1993) shows that the extended high-Reynolds number closure

model, which is valid to the wall, is capable of reproducing the complex behaviour of the

oscillatory flow well.

Brers and Eidsvik (1994) present a standard dynamic Reynolds stress model based on the

model of Gibson and Launder (1978) and which includes a sediment transport module. Brers

and Eidsvik compare the model against the high-Reynolds-number oscillating tunnel data of

Jensen et al. (1989). They show results for tests 12 and 13 of Jensen et al. (see Chapter 6).

However, whilst the model reproduces the flow physics well, it is less clear how superior

these results are to, say, those predicted by a k-s turbulence model.

Brers and Eidsvik test their sediment module against data from Ribberink and Al-Salem

(1992). Their results show reasonable agreement considering they perform no model

adjustment. The measured and calculated phase lag between the low level sediment

concentration and the free steam velocity is clearly different. Comparison of results from the

Reynolds stress model sediment module against those predicted by a sediment module
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attached to k-e model (Hagatun and Eidsvik 1986) imply that the k-s model predicts sediment

transport in oscillatory flows as well as the Reynolds stress model.

Lewis et al. (1996) presented a comparison of laboratory measurements for flow over vortex

ripples against a range of numerical models from different research institutes; two k-s

models, a k-J model, a Reynolds stress model and a discrete vortex model (the latter type of

model is not discussed in the present work). Only limited details are given in the paper on the

model formulations.

Lewis et al. found that from time-series comparisons, the Reynolds stress model predicted the

phases of the Reynolds stresses most accurately whilst one of the k-e models provided the

best description of the magnitude of the stresses. Clearly from this it can be surmised that the

formulation of a numerical model is important, otherwise one would expect that both k-e

models would be equally better at predicting the magnitudes of the stresses.

3.6.5 Direct numerical simulation (DNS) models

Spalart and Baldwin (1987) solved the time-dependent, three-dimensional, incompressible

Navier-Stokes equations using a numerical method which is fully spectral in space and

second-order-accurate in time. The numerical technique is described in detail by Spalart

(1986). The time integration uses a low-storage Runge-Kutta scheme (Wray 1987) for the

transport term and the Crank-Nicolson scheme for the Stokes terms. Such solution methods

are termed direct numerical simulation (DNS). Spalart and Baldwin present results for

oscillatory flow over a flat plate conducting direct numerical simulations for Reynolds

numbers up to 5 x io'.

In addition, Spalart and Baldwin applied a high-Reynolds number k-e model to the oscillatory

flow case but with their first grid point at z ~ 2J2vL/ro . Boundary conditions for u, k and e

at z = 2J2vL/ro were taken from the direct simulations. Their results showed very good

agreement with the direct numerical simulations. By adjusting one of the standard constants

in the k-e model (see Chapter 4), cl' = 0.085 rather than the normally accepted value of 0.09
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agreement was further improved. The results also suggested that a lower value of O'k (0.8

instead of 1.0) should be used, though such a change had much less of an effect on the results.

Excluding the wall region, Spalart and Baldwin have shown that a simple high-Reynolds

number k-s model is quite capable of accurately predicting oscillatory wave boundary layer

flows.

3.7 Modelling random sea boundary layers

All of the previous models reviewed were written to model linear mono-frequency or mildly

non-linear mono-frequency waves. The first work which truly tackled the modelling of

random sea boundary layers is that of O'Connor et al. (1993). This model uses a mixing

length closure scheme so that the eddy viscosity varies in time and space. Model results were

compared with data from the North Sea (See also O'Connor et al. (1994».

The early work of investigating random bed boundary layers involved the development of

two mixing length models, one of which used an approach similar to Bakker (1975) driving

the model using the shear velocity, the other used the free stream velocity as a boundary

condition. The former approach made the development of a random model more complicated

with extra computational steps and assumptions. Results for the random zero-equation model

(based on the free stream velocity approach) are presented in O'Connor et al. (1993; 1994).

Results were shown for a multi-directional sea state and show the influence of wave groups

on the hydrodynamics. In particular, that the effect of wave groups has a tendency to produce

lower values of actual seabed roughness than methods based on significant wave height and

peak period.

More recently, Kaczmarek and Ostrowski (1995) presented results from a random two-layer

time-invariant eddy viscosity model. In addition, their approach involves the use of Fredsee's

momentum integral equation to determine the representative shear velocity and the boundary

layer thickness. Kaczmarek and Ostrowski compare their model results with random time-

series obtained from the laboratory data of Ostrowski (1993) (see Chapter 8 for further

details). Their approach of driving the eddy viscosity model is identical to the method used

by O'Connor et al. (1993; 1994).
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Whilst the results of O'Connor et al. (1993; 1994) and Kaczmarek and Ostrowski (1995)

compare favourably with field and laboratory data respectively, such models are incapable of

providing details of turbulence properties as highlighted previously. In an attempt to improve

the representation and understanding of the physics of random bed boundary layers, the

present author has developed one- and two-equation turbulence models.

3.8 Conclusions

It is clear from having reviewed the literature that there are a large variety of models available

for which to study the turbulent wave boundary layer. Surprisingly, even with the advances in

computational power many researchers choose to use very simple time-invariant eddy

viscosity models. Whilst these models undoubtedly give reasonable results for maximum

velocity and shear stress, many of the assumptions on which these schemes are based are

questionable or incorrect. Takhar and Thomas (1991) noted that if turbulent mass transport

effects are to be modelled correctly, the eddy viscosity should possess time dependence,

otherwise, using a time-invariant eddy viscosity will fail to capture the fundamental

mechanism of such flows. Takhar and Thomas concluded that the simplest model of

turbulence with the correct properties to predict turbulent mass transport effects is the mixing

length model. However, there is an optimum level of simulation based on the results obtained

and the work required to obtain a solution to a given problem.

To be able to simulate a real sea and to attempt to understand the complex processes involved

requires a level of modelling which is sufficient to adequately describe the physics. This must

at least involve the prediction of turbulence if the model is to eventually be used to model

sediment transport since turbulence is an essential part of sediment transport events on the

continental shelf (Gross et al. 1994). From a modelling approach, Smith and Takhar (1977)

describe the use of mean Reynolds stress and mean turbulence energy closure models for the

prediction of oscillatory flow in open channels. Smith and Takhar concluded that a one-

equation k-model was a sufficient order of closure for the solution of environmental

problems.
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Assumptions used in some models have been shown to be incorrect. For example, the

experimental results of Sleath (1987) and Jensen et al. (1989), have shown that the eddy

viscosity varies with time. In addition Jensen et al. (1989) have shown experimentally that

the logarithmic law of the wall is not valid at all phases of the wave cycle.

Whilst second-order closure models provide the ability to model the individual stress terms,

not only are the computational costs prohibitive, the level of sophistication has yet to be

clearly justified. The importance of highly advanced numerical models serves to provide a

control level for the less complex schemes so that any failings in these more simple models

can be identified and quantified. Spalart and Baldwin (1987) used their direct numerical

simulation data to assess the capability of a simple high-Reynolds number k-e model in

predicting oscillatory wave boundary layer flows. Spalart and Baldwin showed that,

excluding the wall region, the oscillating boundary layer was well reproduced by a k-s model.

In addition to Spalart and Baldwin (1987), Br0I's and Eidsvik (1994) showed that a k-s model

predicted sediment transport in oscillatory flows as well as a more sophisticated Reynolds

stress closure model.

Clearly, in attempting to improve any description of the flow in random wave boundary

layers over that of existing models (e.g. O'Connor et al. 1993) the following points should be

considered.

• Smith and Takhar (1977) concluded that a one-equation k model is the lowest order of

model closure necessary for the prediction of environmental problems.

• Choice of model formulation is important and influences the performance of the model in

accurately reproducing the flow physics.

• A two-equation k-E model is capable of accurately reproducing oscillatory wave boundary

layer flows, excluding the near-wall region, and has been shown to provide a similar level

of accuracy in predicting sediment transport as that of a Reynolds stress model.
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Figure 3.1: Sketch showing relationship between different definitions for wave boundary

layer thickness. Bx. ,~h and Bs represent Kajiura's, Jonsson's and Sleath's
definitions, respectively. (After Nie/sen 1992).
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Figure 3.2: Instantaneous velocity profiles for laminar waves, Manchester Experiments. •
Experiment (Test 30); -- Analytical solution for laminar flow, Lamb (1932).
(After Savell 1986).
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Figure 3.3: Schematic showing Kajiura's mean eddy viscosity distribution.
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Figure 3.5: Variation of time-mean eddy viscosity with height (After Sleath 1987).
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Chapter 4

Theory

4.1 Introduction

Chapter 2, showed the development of the hydrodynamic equations which form a major part

of the present work. In Chapter 3 a state-of-the-art review of wave boundary layer modelling

was given. From this it was concluded that in order to model coastal seabed boundary layers

for waves and the combined wave-current case a one-equation turbulence model is the lowest

model closure that should be used if such flows are to be modelled sufficiently accurately

(Smith and Takhar 1977). In the present chapter the theory behind the closure schemes used

in the present work will be introduced. Further, one- and two-equation turbulence models will

be discussed in more detail since they form an important part of this investigation.

It is not the intention of the author to provide a detailed insight into all of the theoretical

techniques used. Not only would such a task be outside the scope of this present work, but

any attempt would fail to adequately address the questions which still require resolving with

some of the methods. An example of this would be the simulation of directional seas.

Numerous methods have been proposed (see Huang et al. 1990), however, progress has been

slow compared to the work done on describing one-dimensional spectra because of limited

observational methods.

4.2 Introduction to turbulence modelling

In Chapter 3, a review of existing boundary layer models applied to the coastal zone was

undertaken with a view to providing a context in which to place the present work. However,

in addition to that review it is worth a more detailed look at the general background to

turbulence modelling and, in particular, modelling turbulent flows using k- and E- transport

equations.
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In the early 1980's, a competition was held at Stanford University to evaluate the various

turbulence models used for calculating complex turbulent flows, Kline et al. (1981). In total,

67 different methods were used and their numerical results compared with experimental data.

One of the conclusions of those evaluating the tests was that the satisfactory performance of

the models was quite limited and that further study and refinement was required.

At the Stanford conference, the k-e model was one of the most extensively used methods.

Generally such models are run with empirical wall functions, by which surface boundary

conditions are transferred to points in the fluid which are at some distance from the

boundaries. However, those evaluating the models also pointed out that in many situations,

the use of wall functions is not well established and that methods which allowed calculations

to continue right to the wall were superior to the use of wall functions, Kline et al. (1981).

Jones and Launder (1972;1973) were the first to extend the high-Reynolds number version of

the k-e model to form what is known as a low-Reynolds number model, which allows

calculations right up to a solid wall. Since then, numerous forms of low-Reynolds number k-e

model have been proposed but will not be listed here (see Patel et al. 1985; Shih and Mansour

1990). Of note is the modified k-e model of Lam and Bremhorst (1981). However, even these

versions of the k-s model have been shown to fail to adequately predict the effects of an

adverse pressure gradient, Rodi and Scheuerer (1986).

The inability to properly predict the effects of an adverse pressure gradient on shear flows not

only by simple mixing-length models but especially two-equation and Reynolds stress

equation models, employing a transport equation for a characteristic length-scale, was a

worrying result of the 1980-81 Stanford conference. The numerical calculations predicted the

flow to be still attached when experiments were showing that separation had occurred. Rodi

and Scheuerer (1986) point out that the reason for these poor predictions is due to the length-

scale determined by the s-equation rising more steeply near the wall than is the case for a zero

pressure gradient. Experimental data suggests that the length-scale gradient is virtually

independent of the pressure gradient for a wide range of values. For this reason, one-equation

models which use an empirical length-scale provide much better predictions for adverse

pressure gradient boundary layers than does the k-e model.
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The oscillatory boundary layer experiments of Jensen et al. (1989) suggest that even for

relatively high Reynolds numbers (Re = 6 x 106) the logarithmic layer does not exist for all of

the flow cycle (see also Jensen (1989». The experiments of Hino et al. (1983) also show

similar results. Jensen et al. (1989) show that the logarithmic layer exists for longer as the

Reynolds number increases. However, even for fully developed turbulent flow over a rough

wall Jensen et al. show that the logarithmic layer is not always present.

More recently, researchers have proposed two-layer turbulence models (see Rodi (1991».

This approach involves using k-s or Reynolds-stress-equation models within the turbulent

part of the flow field whilst close to the wall where viscous effects are greatest, a simpler one-

equation model is employed. Previously, because of the steep gradients often present in the

near-wall layer, the numerical resolution required was beyond available computer resources.

Wall functions were used to relate the velocity and turbulence transport terms at the first grid

point above the wall using the assumption of a logarithmic velocity distribution and the local

equilibrium of the turbulence, that is, production = dissipation. However, such assumptions

are not always valid, particularly in separated flows. Low-Reynolds-number models were

developed to enable the k-e model to remain valid in the near-wall region by replacing some

of the model constants with viscosity dependent functions. However, even these models

require quite high numerical resolution close to the wall mainly due to the steep gradient of

the dissipation term, E.

To overcome the problem of numerical grid resolution close to the wall and increase the

robustness of the method, the use of a simpler model involving a length-scale prescription has

been proposed, for example Iacovides and Launder (1987); Chen and Patel (1988; 1989). The

use of such models has almost been exclusively confined to the mechanical and aerospace

disciplines, although recently Utnes and Eidsvik (1995) used a two-layer turbulence model to

investigate oscillatory flow over two-dimensional ripples. More recently, the present author

has investigated their use for modelling wave boundary layers under monochromatic and

random waves, Harris and O'Connor (1997).
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4.3 The k-e model

4.3.1 Introduction

The k-s two-equation model derives both the velocity and length scales using two local

turbulence quantities. The distribution of these quantities is obtained through the solution of

two transport equations. Almost all two-equation models derived to date use the turbulent

kinetic energy, k as one of the transported turbulence variables. The length scale equation

does not necessarily require that the length scale itself is the dependent variable (see Rodi

1980) and can be selected as almost any turbulence quantity with the form kmfDsince k is

known from solving the k-equation. Chou (1945); Davidov (1961); Harlow and Nakayama

(1967) and Jones and Launder (1972) suggested an equation for the isotropic dissipation rate

E, where E ex: k~/. However, other approaches have been proposed involving an equation for

kl, an equation for the frequency k1/2/1 and an equation for a turbulence vorticity kl [2 (see

Rodi 1980).

The k-E approach has become the more popular method used since all the other approaches

require the inclusion of a near-wall correction term which is not required in the s-equation.

Further, the dissipation equation is relatively easily obtained and also the E term appears in

the kinetic energy equation. Generally, most development with this level of turbulence model

has been in steady flows. However, Chapter 3 reviewed work undertaken in unsteady flows

with higher level models, for example Johns (1977), Sheng (1985), Justesen (l988a).

4.3.2 The exact k-equation

The exact transport equation for the turbulent kinetic energy, k, is given by the following

expression (see Appendix A):

Dk
- = Pk + Tk + ilk + Dk - E
Dt

(4.1a)

where DIDt represents a total differential and is given by the equation:-

D a a
-=-+u.-
Dt at '8xj

(4.1b)
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the individual terms are defined as:

Rate of production:

-au.
D --U'U'_I
ck - i j Ox.

J

(4.2)

Rate of turbulence transport:

r; = - _!_ ~ (u~u~u~)2 Ox. I I J
J

(4.3)

Rate of pressure diffusion:

TI I a (-, ')k=-- ::1... UiPi
P UAi

Rate of viscous diffusion:

(4.4)

a ak
Dk=-v-ax

j
t ax

j

Rate of dissipation:

(4.5)

au~au~
E=V_I_I

IOx
j
Ox

j

As Hinze (1975) pointed out, Eq. (4.6) only represents dissipation in homogeneous

turbulence. Mansour et al. (1987) produced a figure (see Figure 4.1) showing the magnitude

(4.6)

of the various terms based on the results of Kim et al. (1987). The viscous term D, becomes

significant in the buffer layer and laminar sub-layer. Very near the wall, the viscous diffusion

balances the dissipation E. In the fully turbulent region the only terms that matter are the

production and dissipation. However, in the buffer layer and viscous sub-layer all terms

except the pressure diffusion are required to be modelled correctly.

4.3.3 The modelled k-equation

The turbulent transport and pressure diffusion terms can be combined assuming that the

diffusion of k is isotropic, that is, that the diffusion occurs equally in all directions. Therefore,

a VI akTk+TIk=---ax. CJk Ox.
J J

(4.7)

where CJk is a model constant (see Section 4.3.6).
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Also, through consistency with Boussinesq's (1877) hypothesis (Eq. 2.21) which assumes

that the turbulent stresses are related to the mean strain, P, can be written as:-

(
au. auJ.) au.P=V_I+ __ I

k t Ox
j

Ox
i

Ox
j

(4.8)

Combining Eqs. (4.5), (4.6) and (4.8) gives:-

Dk = ~~ 8k +~VL 8k + v (QUi + QUj) 8Ui -E
Dt Oxj O'k Oxj Oxj Oxj t Oxj Oxi Oxj

(4.9)

Dk = ~[(v +~) 8k] +v (QUi +8UjJ 8Ui - E
Dt Ox. L O'k Ox. t Ox. Ox· Ox.

J J J I J

(4.10)

The resulting Eq. (4.10) becomes the modelled equation for k. Since deriving this equation

did not require any significant assumptions it is expected that the equation should be adequate

for modelling the kinetic energy distribution in both the fully turbulent and near wall regions.

4.3.4 The exact e-equation

The exact transport equation for the isotropic dissipation rate, E, is given by the following

expression (see Appendix B):

(4.11)

where the individual terms are defined as:

Rate of production by mean velocity gradient:

(4.12)

Rate of mixed production:

(4.13)

Rate of gradient production:

~., 82-
P3 _ 2 ' uUi u,

- - V u·-----'--
E t J Ox Ox.Ox

m J m
(4.14)
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Rate of turbulent production:

(4.15)

Rate of turbulent transport:

(4.16)

Rate of pressure transport:

n _ Zv, a ap: au:
£ - - p ax

j
ax

m
ax

m

Rate of viscous transport:

(4.17)

a BED =-v-
£ ax. tax.

J J

(4.18)

Rate of dissipation:

(4.19)

Kim et al. (1987) produced the magnitude of these terms from direct simulation.

In the fully turbulent region P: and y dominate and approximately balance each other (see

Figure 4.2). The terms IT£, T£and P; are all negligible throughout compared to the other

terms. The dissipation term y is significant in all regions and is non-zero at the wall. The

viscous diffusion term DE is significant very close to the wall and is the main term balancing

the dissipation y. Also, P: , p£2 and p&4 are significant in the near wall region (z+ < 30), where

z+ is defined as:-

(4.20a)

where vL is the kinematic viscosity and u., is the bed shear velocity and is defined as:

U -fibob - -
p

(4.20b)

where 'tb is the bed shear stress and p is the fluid density.

Modelling Random Wave Boundary Layers 57



Chapter 4 Theory

4.3.5 The modelled e-equation

The s-equation has many terms involving higher order correlations that require to be

modelled if the Two Equation Model is to achieve closure.

The terms Il, + TEare combined and modelled as

n +T =~ BE
E E ~.O'EU.I\.k

(4.21)

where O'Eis a model constant (see Section 4.3.6).

This is not altogether satisfactory as direct simulation results show (Figure 4.3 after Mansour

et al. 1987). The model does not agree well with the data below z+ < 40 and does not have the

correct asymptotic behaviour at the wall. However, the contribution of this term to the overall

balance is very small and the discrepancies are of little significance.

Through dimensional arguments, Mansour et al. (1987), P;, can be shown to be much

smaller than the other production terms and is therefore neglected. Again by dimensional

arguments the remaining terms can be represented as (see Mansour et al. 1987):-

(4.22)

Where CEIand CE2are turbulence model constants (see section 4.3.6).

The interpretation of this dimensional argument is somewhat divided amongst modellers.

Kim et al. (1987) interpret the first term on the right hand side as representing P: and P; and

the second term as the sum P: and y. However, their direct simulation, whilst showing

reasonable agreement in the fully turbulent region (z" > 30) is quite poor close to the wall.

Alternatively, it has been suggested that at high Reynolds numbers the dissipation scale

eddies are isotropic and hence the terms P: and p£2 are zero. Therefore the terms of the right

hand side of Eq. (4.21) represent the balance between s; and y. However, since either
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interpretation leads to the same model form the debate as to which approach is correct is

somewhat academic.

Therefore the modelled s-equation becomes

DE = ~[(VL +~) BE]+C£IVI e(~ +OujJ ~ -C£2~
Dt Oxj 0'£ Oxj k Oxj Oxj Oxj k

This is the high-Reynolds number form of the s-equation.

(4.23)

4.3.6 Turbulence model constants

The standard values of the constants used in the k and k-s models as recommended by

Launder and Spalding (1974) are given in Table 4.1.

cl' O'k 0'£ C£I C£2

0.09 1.0 1.3 1.44 1.92

Table 4.1: Values of standard constants in k and k-e models.

The empirical constants in the standard k-e model were determined as follows (see Rodi

1980);

In the decay of turbulence, k behind a fixed grid, C£2 is the only constant appearing in the k

and e transport equations (Eqs. 4.1 and 4.11). Therefore, C£2 can be determined directly from

the measured decay rate behind the grid and was found to be in the range 1.8 - 20.

The constant cl' appears in both the one- and two-equation models. For local equilibrium

shear layers, production = dissipation (Eq. 4.2 = Eq. 4.6). The turbulent eddy viscosity, VI is

described by the equation:-

k2
VI =cl'-

E
(4.24)

Combining Eq. (4.24) with Eq. (4.1) (see Rodi 1980) yields:-
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(4.25)

Measurements in these flows yielded uW/k ~ 0.3 thus c
ll
= 0.09.

In near-wall regions a logarithmic velocity profile exists, the production is approximately

equal to the dissipation and the convection of dissipation is negligible. Therefore the &-

transport equation reduces to:-

(4.26)

Once the values of the other constants have been determined, then the value of cEI can be

found.

The diffusion constants (J k and (J e were assumed to be close to unity and they, along with

CE2 , were tuned using computer optimization. For further details see Rodi (1980).

The above constants were established under steady flow conditions. However, there is no

reason to believe that the same set of constants should be applicable for all complex turbulent

flows.

Spalart and Baldwin (1987) applied a high-Reynolds number k-e model to oscillatory flow

case but with their first grid point at z ~ 2~2vL/ro . Using direct numerical simulation data

for u, k and e at z ~ 2~2vL/ro Spalart and Baldwin found that by adjusting c
ll

to 0.085

rather than the normally accepted value of 0.09 agreement was further improved. The results

also indicated that a lower value of (Jk (0.8 instead of 1.0) should be used.

Justesen (1988a) also carried out a sensitivity study for the constants used in the k-e model

although the method chosen was not intended to provide optimized values for the particular

problem of turbulent wave boundary layers.

Justesen used the following values of the constants in his study:
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Constant cll Gk Gs csl cs2

High value 0.10 1.1 1.5 1.50 2.05

Standard value 0.08 1.0 1.3 1.44 1.92

Low value 0.06 0.9 1.1 1.38 1.79

Table 4.2: Values of model constants used in Justesen's (1988) sensitivity study.

Justesen concluded that although a change in the model constants leads to a response in the

results, the standard values are a good choice for the wave boundary layer. (see Justesen

1988a for further details.

In the present work the values for the model constants have been taken as follows:

cll Gk Gs CEI CE2

0.085 0.8 1.3 1.44 1.92

Table 4.3: Values of model constants used in the present work.

4.3.7 Low-Reynolds number k-s model

The low-Reynolds number model of Lam and Bremhorst (1981) uses the standard k equation

but a modified expression for the dissipation rate.

DE _ a [( VI) OE] csllvl (OOi OOiJ OOi f E2--- V+--+ E-+---C22-Dt axi L Gs axi k axi axi axi s k

and the turbulent eddy viscosity, VI is given by the equation:

cllfllk
2

v t = ---'--'-
E

where cll is a model constant and fll is a function used as a multiplier in the turbulent eddy

(4.27)

(4.28)

viscosity relationship to mimic the direct effect of molecular viscosity on the shear stress.
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(4.29)

( )

3
ACI

fl=l+ T (4.30)

(4.31)

Where AI, ACh All are constants equal to 20.5, 0.05 and 0.0165 respectively; R, is the

turbulence Reynolds number defined as = JkZ/VL and RI is the turbulence Reynolds number

defined as = k2/( VLE) and vL is the kinematic (molecular) viscosity.

There are many different proposed forms for low-Reynolds number models, for example see

Patel et al. (1985), however, the Lam and Bremhorst model has been shown (see Patel et al.

1985) to be one of the better formulations for steady flow conditions and this form of low

Reynolds number model was adapted for wave boundary layer flows. Whilst such a

formulation is inappropriate for fully developed turbulent flow, in laminar and transitional

boundary layers such models may well be of use. Tanaka and Sana (1994) compared several

low-Reynolds number models to the experimental wave boundary layer data of Jensen et al.

(1989) for a smooth bed. Tanaka and Sana found that the original Jones and Launder (1972)

model gave the best results when compared with experimental data for transitional flow.

However, Rodi (1991) has shown that by using the standard k-e model in that part of the flow

away from the wall and using a one-equation model to simulate the viscosity-affected near-

wall region a more computationally efficient and robust model can be created. Further, such

hybrid models have in many instances either been as good as or have out-performed both

high- and low-Reynolds k-e models.

4.3.8 Two-layer model

The two-layer model employed in the present work uses a standard high-Reynolds number k-

E model to describe the flow away from the wall. The viscosity-affected near-wall region is
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modelled using a one-equation k-model with the turbulent eddy-viscosity and the dissipation

rate E determined by the following equations (see Rodi 1991):

v, = c",JkI", (4.32)

(4.33)

The length scales I", and 1r. behave in the same manner in the log-law region, where they vary

linearly. However, very close to the wall, they both deviate from the linear distribution and

this deviation is different for the two functions. The damping of the eddy viscosity very close

to the wall is brought about by the use of an exponential function (see Eq. 4.34).

1.= c,{t - exp( - ~: ~~)) (4.34)

Where C, and A", are constants and Cl is defined as:-

(4.35)

and c, is a constant defined as previously (see Section 4.3.6) and K is the von Karman

constant. A", is given a value of 50.5 (after Rodi 1991). However, other researchers have

employed different values: Chen and Patel (1988; 1989) use a value of 70.0 and Iacovides

and Launder (1990) a value of 62.5. R, is the turbulence Reynolds number and is defined as

= Jkz/ VL· A' is a parameter that is kept constant in the present model (A' = 25), but which

Fujisawa et al. (1990) allow to vary (see Rodi 1991).

Rodi (1991) points out that the damping of the turbulent eddy-viscosity caused by the

exponential function in Eq. (4.34) is not actually a viscous effect, but is due to the near-wall

reduction of the normal fluctuations W,2 caused by a pressure-strain mechanism.

The other length scale term is given by the equation:

I = C/z

· (1+~~)
Eq. (4.36) was proposed by Norris (1975).

(4.36)
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More recently Rodi et al. (1993) presented a new one-equation model based on the

(-)1/2suggestion by Durbin (1991) that in near-wall shear layers, the normal fluctuations W,2

may be a better velocity scale than k 1/2 and that no damping functions may be required using

this approach. However, this suggestion has not been developed further during the present

work.

4.4 The k model

In addition to the k-e model, a one-equation k model has also been used in the present work.

The transport equation employed is identical to Eq. (4.10) with the dissipation term being

described by the equation:-

c kl.S
£=_11_

1
(4.37)

The mixing length, 1, has been described by both a time-dependent expression (Vager and

Kagan 1969) and a simple time-independent expression.

Yager and Kagan (1969) suggested the following expression:

(4.38)

This equation can be integrated to give the following

(4.39)

where K is the von Karman constant; Zo is defined as the vertical level at which point the

velocity is assumed to be zero (see Eq. 2.35); and ko is the value of turbulent kinetic energy

at Zo. Eq. (4.39) is an expression which is more easily applied than Eq. (4.38).

The time-independent mixing-length expression used is a simple linear assumption

1= KZ (4.40)
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4.5 Boundary conditions

For monochromatic waves:

The boundary conditions for the k-equation are taken as:

(4.41a)

(4.41b)

where Zo and Ztop are defined as previously (see Chapter 2).

The bed condition for the k equation is derived from steady rough turbulent boundary layer

information. Unlike a smooth bed, the turbulent velocity fluctuations do not disappear at a

hydraulically rough bed. The upper boundary condition assumes that the gradient of the

turbulent kinetic energy is zero. In the case of the two-layer model, the lower boundary

condition for the turbulent kinetic energy transport equation is usually given as:

8k
k( Zo, t) = az (Zo, t) = 0 (4.41c)

The boundary conditions for the E equation follow from Rodi (1980).

(4.42a)

(4.42b)

In a two-layer model the lower boundary condition becomes:

(4.42c)

4.6 Random seas

In a real sea the elevation of the water surface (measured from mean-water-level, mwl) is a

random process with waves travelling in many different directions. However, whilst the

generation of upper boundary conditions is more complex the underlying principles are the
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same as for monochromatic waves. It is necessary to treat the problem statistically and it is

useful to review statistical wave theory before writing the equation for the upper boundary

condition. The following is based on Tickell (1985).

However, before reviewing the statistical approach it is important to outline all the methods

available for arriving at boundary conditions for the numerical models. The spectral approach

is based on using an actual measured spectrum or generating a spectrum using the techniques

described below. Alternatively, it is possible to drive the model using a Fourier

transformation of an actual velocity time-series. This enables the free stream velocity time-

series to be reproduced exactly and also permits the boundary layer models to be run for real

situations.

For a narrow-banded process it is possible to approximate ll, the surface elevation, as the sum

of a large number of linear regular waves all propagating in the x-direction such that:-

N

ll(X, t) = Lan cos(knx - Olnt+ ~\)
n+l

(4.43)

an = the amplitude of the nth component
Where:- Oln= the frequency of the nth component

k, = the wave number of the nth component

The angles Bn(with n = 1 to N) allow for arbitrary phase relationships between the various

components. If the random independent variables are drawn from a uniform distribution

between 0 and 27t , then the probability density function (pdt), pCB)is given by:-

1
p(B) = 27t (4.44)

Assuming that the process is Gaussian (an assumption which is valid for a large number of

components), then the probability density of n is given by the equation:-

(4.45)

where cr'1 is the standard deviation and cr~ is the variance of n, respectively. In addition, the

mean of n is zero (see Figure 4.4).
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Considering the nth component and taking on and x to be fixed, enables the variance of the

component to be calculated as:-

- 1 r, a2

0"2 = - fa 2
COS

2 (-ro t}dt = __!!_n T n n 2
n 0

(4.46)

Since the phase angles, on are independent of the various components then

N 2

O"~ =L an
n=1 2

(4.47)

The wave spectrum can now be defined as the distribution of surface-elevation variance with

frequency. If the total frequency range is divided into N intervals each of width ~ro, and

defining the spectral density, ST](o), such that the variance associated with the band centred

on the frequency ron is ST)(ron)~ro, then it follows that:-

(4.48)

For a real sea, the number of component waves is considerable, ensuring that N approaches

infinity. Further, combining equations (4.47) and (4.48) gives:-
co

O"~ = JSlJ(ron}dro
o

(4.49)

However, from Eq. (4.45) if 11(x,t) is a Gaussian process it can be shown that the wave

heights follow a Rayleigh distribution and:

H [H2]p(H}=-exp --
40"~ 8cr~

(4.50)

where H is the wave height.

From Eq. (4.50) it is possible to express the root-mean-square (rms) wave height by the

equation:-

I

H~. = [jH2p(H)dH]' = 2,[2cr, (4.51)

Therefore, the variance of 11,O"~ can be expressed as:-

2 H;"'s
0" =--
lJ 8 (4.52)
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Returning to Eq. (4.43) and substituting for a, enables the simulation of water elevations in a

random sea, provided the form of the spectrum can be defined.

(4.53)

At a point (x = 0) equation (3.75) reduces to:

N

ll(t) = L(2S'1(ron)~ro)o.s cos(-ront+Bn)
n=1

(4.54)

Eq. (4.54) can be further simplified as follows»

From the surface spectrum the co-cumulative spectrum can be calculated by integrating the

area under the former (see Figure 4.6). Dividing the vertical axis jS'1(ro)dro into elements of

equal energy leads to (see Figure 4.6):-

(On (On_.

Area ~ j S'1(ro)dro - jS'1(ro)dro

(4.55)

Where subscripts LC and VC are the lower and upper cut-off values of the spectrum and cr~

is the variance of n.

N a2 N cr2. ,,--'!.. _ "_'1
··LJ -LJ

n-1 2 n=1 N
(4.56)

However, to avoid periodicity in the simulated time-series cr~/N is made constant. The

periodicity will occur because if the range of ro is, say, 0 to roc' where roc is the upper limit

of the surface spectrum, then ~ro = roe/N will give ron values which will cause the

repetition of ll( t) within a finite period. However, if an is chosen to be a constant and equal

to 2cr~/N, the corresponding ron values will be spaced at non-linear intervals (see Figure

4.6) and thus the cyclic behaviour of ll( t) will be eliminated (Borgman 1969).

(4.57)
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To simulate a velocity time-series from the surface spectrum, the horizontal velocity

component of a water particle located a distance z below mean-sea-level in water of depth D

is given by linear wave theory as:-

(4.58)

However, assuming the boundary layer to be very small compared to the depth then z = -D,

therefore:

(4.59)

substituting for an as well.

Equation (4.59) therefore provides the random driver in the boundary layer model and forms

the upper velocity boundary condition. The other boundary conditions remain unchanged.

The final choice to be made is what type of spectrum to apply to drive the model.

4.7 Wave spectra

4.7.1 Introduction

The type of spectra used to describe random waves can take many forms (see Huang et al.

(1990)). Two of the most commonly applied methods are those proposed by Pierson and

Moskowitz (1964) and Hasselmann et al. (1973; 1976). The Pierson-Moskowitz (P-M)

spectrum is based on extensive field data and is designed to represent a fully developed sea

state. In reality, only a small percentage of observed spectra fulfil this proposed form (~10%)

indicating that fully developed sea states are perhaps not that easily achieved.

The work of Hasselmann et al. (1973; 1976) was based on an extensive field experiment, the

Joint North Sea Wave Project, and has commonly become known as the JONSW AP

spectrum. This spectrum is a general form of the P-M spectrum allowing for a developing sea

while the original form of the spectrum was dependent on the wind speed and fetch.
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However, whilst the above spectral formulations can be used to represent single peaked

spectra, they are unable to describe spectra that exhibit two peaks. The so-called double-

peaked spectrum arises when both swell and wind seas are present simultaneously or when a

changing wind direction creates a developing wave system. Guedes Soares (1984) proposed a

four-parameter representation of such spectra based on a JONSW AP approach. Guedes

Soares compared the theoretical formulation with data from the North Atlantic and North Sea,

showing a good fit.

Through the use of the above spectral formulations it is therefore possible to describe the

majority of sea states encountered on the continental shelf. In addition, by using the

techniques described below it is possible to provide appropriate upper boundary conditions

for the model. However, whilst the methods chosen appear to be able to adequately represent

developing and fully developed seas as well as seas of a double-peaked nature, they are not

the only methods available. A full review of spectral representation is outside the scope of the

present work but a good general review is provided by Huang et al. (1990).

4.7.2 The Pierson-Moskowitz (P-M) spectrum

The Pierson-Moskowitz spectrum is defined by the equation:-

Ag2 [-Bro~]S'l(ro}=-;sexp ~ (4.60)

Where A and B are constants and are equal to 0.0081 and 0.74 respectively; g is the

acceleration due to gravity and ro is the wave angular frequency. In addition, ro0 , is defined

by

roo= _g_
U19.5

(4.61)

where U19.5 is the wind speed at 19.5m above mean sea level.

If it is required to express the P-M spectrum in terms of significant wave height, Hs and zero

crossing period, Tz then paramaterized versions of the formulation exist. One such

formulation is the Det Norske Veritas (DNV) spectrum defined as:-
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S'l(ro) = H~Tz [TzroJ-S exp[ _ _!_(Tzffi)-4]
87t2 27t 7t 27t

(4.62)

A typical P-M spectrum as generated by the model formulation is shown in Figure 4.7.

4.7.3 The JONSW AP spectrum

The JONSW AP spectrum has the form:

S,(m) ~ 2r.i exp{-12s( :;)} (4.63)

Where

{ gFrO.22 (4.64)Cl = 0.07 -2UIO

q ~ ex{ Jro - m,)'] (4.65)
2cr2ro2p

and

c r= {om ro s rop (4.66)
0.09 ro > rop

"I = 3.3

where F is the wave generation fetch.

The value of 3.3 for the peak enhancement factor, "I, is an averaged value derived by

Hasselmann et al. (1973). However, Hasselmann et al. found a range of values for "I between

1 and 6. Figure 4.8 shows an example of a JONSW AP spectrum

4.7.4 Double-peaked spectra

Guedes Soares (1984) proposed a four parameter representation for a double-peaked spectrum

based on a two-parameter description of a JONSWAP spectrum. Guedes Soares chose to

model both the wind and swell seas using two JONSWAP spectra. The wind sea is in a

developing state which makes such a choice appropriate, however, the choice to use a
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JONSWAP spectrum for a swell sea was based on the narrowness of such sea spectra. Once

the shape of the two spectral components has been defined, a double-peaked spectrum is

totally described by knowing the ratios of the peak frequencies and spectral peaks. The

spectrum is therefore defined as:

(4.67)

Where Sl1S{ro)and Sl1W{ro)are the swell and wind sea components respectively.

Also, the moments of the sea spectrum must be equal to the sum of the moments of the

individual components. Hence,

M, = Mos +Mow

MI =MIs+Mlw

(4.68a)

(4.68b)

Where M, and M( are the zeroth and first moments of the wave spectrum; Mos and Mow

are the zeroth moments of the swell and wind components of the double peak spectrum; and

MIS and MIW are the first moments of the swell and wind components of the double peak

spectrum. Further, the moment of a spectrum is given by the equation:-

00

Mik = froiSk{ro)dO}
o

(4.69)

which defines the ith moment of spectrum k.

In turn, it is possible to relate these quantities to the significant wave height, H, , and the

zero-crossing period, Tz.

Hs=4JM;

1 MoTz=--
2n MI

normally Tz, is defined by the equation:-

Tz = 21tJMo
M2

However, in the present work Eq. (4.71a) is applied, as suggested by Guedes Soares (1984).

(4.70)

(4.71a)

(4.71b)
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Using these expressions and substituting into Eqs. (4.68a) and (4.68b) gives the following

equations:

Hsw=Hs ~( 12)~ (1+Hi)
(4.72)

HiHss = H, (1 + Hi)
(4.73)

(4.74)

T =(TR+Hi)T
zs 1+ Hi Z

(4.75)

where HR and TR are defined as:-

HR = Hss
Hsw

TR= Tzs
Tzw

Figure 4.9 shows a typical double-peaked spectrum as generated by the model.

(4.76)

(4.77)

4.7.5 Multi-directional seas

It is not sufficient to describe sea waves from their frequency spectra alone. To do so would

describe so-called long-crested waves, waves having straight parallel crest lines when viewed

from above. However, from the patterns of wave crests in most seas, it is clear that they

consist of many component waves propagating in various directions, so-called short-crested

seas.

Researchers have therefore introduced the concept of directional spectra allowing the

description of superimposed directional components. The directional spectrum enables not

just the representation of wave energy in the frequency domain, but also in direction and

generally takes the form:

S(0),9) = S(0))0(oo,9) (4.78)
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where S(m,e) is the directional wave spectrum; SCm)is the frequency spectrum; G(m,e) is a

directional spreading function and e is the wave direction.

The spreading function G(m,e) represents the directional distribution of wave energy and has

been shown to vary with frequency. It is a dimensionless function, normalized as :

"
IG(m,e)de = 1 (4.79)
-II

4.7.5.1 The directional spreading function

The difficulty in making reliable field measurements has hindered the understanding of how

the directional energy of sea waves is distributed. Various expressions to represent the

spreading function have been proposed and Huang et al. (1990) present a comprehensive

review of existing methods.

The earliest model of the form of the directional spectrum was suggested by Arthur (1949).

This idea was taken up by Pierson et al. (1955) who developed a cosine-squared directional

spreading function which is independent of frequency and takes the form:-

2
G(m,e) = -cos2 e

1t
(4.80)

The directional spectral analysis of sea surface contours obtained using

stereophotogrammetry in the SWOP project (Stereo Wave Observation Project) resulted in

Cote et al. (1960) proposing a spreading function of the following form:-

G(ro,a)= ~{I+( 0.50+0.82exp[-&(:J]coS2a

+O.32ex{-H:J]COS4a} for lals ~
(4.81)

G(m,e) = 0 1t
for lel>-

2
(4.82)

Where 00 = 21tf and f = 1fT; 000 = g/Us.o and Us.o is the wind speed at 5.0 m above the sea

surface.
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It has been suggested (see Huang et al. 1990) that the form of these two proposed

distributions for the directional spreading function are unrealistic since they give equal

directional divergence to all wave components. Huang et al. (1990) point out that the short

waves in a wind wave field have greater directional diversity than the main energy-containing

components.

Mitsuyasu et al. (1975) proposed the following expression based on detailed field

measurements with a cloverleaf buoy (see also Cartwright and Smith 1964) as well as with

other available field data.

(4.83)

The function, Go, was introduced to satisfy the condition given by Eq. (4.79). Go is given by

the equation:

(All about a = 0) (4.84)

where s is a parameter related to the frequency and represents the degree of directional energy

concentration and aminand amax represent the range of directional spread (typically 1t/2 to

-1t/2). The parameter, s , has a peak value close to the frequency of the spectral peak. In the

original paper Mitsuyasu et al. relate s to the wind speed.

(4.85)

where (J)p is the angular frequency at the spectral peak and smaxis defined by the equation:-

Smu = 1l~ O)P~" f'
Because of limited field data, the directional distribution function is not considered fully

(4.86)

validated. However, Goda et al. (1979) suggested the following values for smax'

{

IO (wind waves)

smax= 25 (swell with short decay distance)
75 (swell with long decay distance)

(4.87)
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It is the Mitsuyasu et al. (1975) approach for representing a directional spreading function

that has been used in the present study. However, whilst other similar expressions exist,

without better theoretical guidance for defining the angular spreading function use of any

more elaborate scheme is unwarranted (see Huang et al. 1990). Without more detailed field

data and a greater understanding of air-sea interaction processes, further advancement on

developing improved spectral forms for directional seas will be slow.

4.7.6 The effect of currents on wave spectra

In order to describe the effect of a current on random waves it is useful to consider briefly the

effects of a current on a regular wave train. However, the following is not intended to provide

a full description of those effects and the reader should consult more detailed texts such as

Hedges (1981; 1987), Hedges et al. (1985), Hedges et al. (1993) and Jonsson (1978b; 1990).

Consider a train of regular waves travelling on a current, U which is constant with depth. The

current is travelling at an angle, a, to the wave crests and is positive if the component along

the wave orthogonal is in the direction of wave propagation (see Figure 4.10).

To an observer who is stationary, the waves appear to be moving with celerity Ca and there

is a current velocity Usina in the direction of wave propagation (Figure 4.11). However, to an

observer who is moving with the wave orthogonal at velocity Usina apparently the waves

have celerity C, and there is no current. Therefore,

Cr = C, - Usina

The waves pass the stationary observer with period T,

(4.88)

LC=-
a I

a
(4.89)

and to the moving observer with period 1;.

LC=-
r T.

r
(4.90)

From Eq. (4.88) the following expression can be obtained by multiplying through by the

wave number, k (= 27t/L) where L is the wavelength.

ro, = roa - kU sino (4.91)
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Where COr = 27t/Tr is the angular frequency in the movmg frame of reference and

COa = 27t/Ta is the apparent wave angular frequency as seen by the stationary observer.

Substituting for C, and C, in Eq. (4.88) leads to the expression:

_!_ = _1 (1- TaUsina)
r; t; L

In deep water, the wavelengths become Lor and Loa for the moving frame of reference and

(4.92)

the stationary observer, respectively.

where

L = gTr2
or 27t (4.93)

and

L = gT;
oa 27t (4.94)

The interactions of currents with random waves are more complex than with regular waves.

Huang et al. (1972) were the first to describe the changes in wave spectra due to currents.

However, their formulation ignored the increased level of wave breaking observed when an

opposing current is met.

The wave energy density, E is given by.-

- 1 2E = -pgH
8

(4.95)

where H is the wave height and p and g are the fluid density and acceleration due to gravity,

respectively.

Bretherton and Garrett (1969) and Bretherton (1971) showed that the conservation of wave

action, defined as Elcor ' is governed by the equation:

(4.96)

where Cgr is the relative wave group velocity.

In steady state Eq. (4.96) reduces to:-
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(4.97)

Considering one wave component in both a zero current region and a region where a steady

current exists then:-

BoCgo _ B(V + Cgr)--_ (4.98)

where subscript '0' represents a quantity existing in the zero current area. Eq. (4.98) can be

arranged as:-

_ co 1 -
E = Cgo r ( ) Eo

coa V+Cgr

Considering the spectral density of the surface elevation in a fixed frame of reference in the

(4.99)

current area, 81] (co a' V) and noting that co a is the same in both regions then:-

Sq(ro.,U)dro. = C,. ro, ( 1 ) Sq(ro.)dro,
COa V+Cgr

(4.100)

(4.101)

where

(4.102)

and

C _ .!(1 2kD) cor
gr _ 2 + sinh2kD k (4.103)

Therefore the spectral density for the surface wave in the current region, 81] ( co a,V) , is related

to the value in the quiescent area, 81] ( co a) , through the expression (see Hedges et al. 1979):

(4.104)
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4.7.6.1 Equilibrium range constraint

Wave growth at a particular frequency and direction cannot continue indefinitely since wave

breaking must occur, regardless of whether the spectrum is propagating in a current

dominated area or not. There exists a range of frequencies, the equilibrium range, beyond

which the spectrum becomes saturated. Phillips (1958) suggested an approach for calculating

the equilibrium range spectrum for waves alone. Hedges et al. (1993) have suggested an

expression which is valid for both long- and short-crested seas encountering a current flowing

in or directly against the predominant wave direction. The expression can also be applied to

waves propagating on still water.

Hedges et al. (1993) proposed

B·k-3
S'l(coa,8,U) = -, GER(8)

Cga

Where, GER (8) is a spreading function which describes the angular distribution of wave

(4.105)

component energy within the equilibrium range; B' is a non-dimensional constant and C~a is

defined as:

C~a = U sino + Cgr (4.106)

and Cgr is the magnitude of the relative group velocity and is defined by the expression:

Cgr = ;~ [1+ Si!~kD]
For long-crested waves, GER(8) is omitted from Eq. (4.105). Kitaigordskii et al. (1975)

(4.107)

discuss possible forms for the function, GER(8), however, there is a scarcity of information.

Hedges et al. (1993) propose the following form for GER(8):-

(4.108)

where S'lwA(coa,8,U) is the spectral density based on the assumption that wave action is

conserved and O'~WA is the associated total variance of surface elevation. These results are

valid for a general water depth.
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4.8 Conclusions

The present chapter has described briefly the theory behind a number of different topics, the

combination of which are required in order that a random wave boundary layer can be

modelled. The turbulence transport equations employed in the hydrodynamic model have

been outlined along with the necessary boundary conditions and values for any empirical

constants used. Detailed discussion of many of the topics, in particular, the description of

directional seas is outside the scope of the present work.

The turbulence closure schemes described are of varying complexity and all contain a number

of simplifying assumptions. The simplest scheme described is the one-equation k closure.

The most complex scheme is the two-layer k-e closure, where the turbulence away from the

near-wall is modelled with a standard high-Reynolds number approach, whilst in the near-

wall region a one-equation model is used. To this author's knowledge, use of such models in

investigating wave boundary layers is unique, although Utnes and Eidsvik (1995) have

investigated oscillatory flow over ripples using a similar approach.

The description of most sea states encountered on the continental shelf has been enabled

using the methods described in Section 4.7. This includes allowance for the effects of currents

on wave spectra and representation of a directional sea.
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Figure 4.1: Terms in the exact equation of the turbulence kinetic energy, k for
dimensionlessheight. (After Mansour et al. 1987).
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Figure 4.2: Terms in the exact equation of the dissipation rate, e for dimensionless height
(After Mansour et al. 1987).
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Figure 4.3: Plot showing a comparison of the turbulent transport rate of e, for model of
Mansour et al. against laboratory data. (After Mansour et al. 1987).
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Figure 4.10: Sketch showing the wave and current directions. (After Hedges 1987) .
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Figure 4.11: Sketch showing: (a) waves in a stationary frame of reference containing wave
orthogonal; (b) waves in a moving frame of reference containing wave
orthogonal. (After Hedges 1987).

Modelling Random Wave Boundary Layers 85



Chapter 5 Numerical Scheme and Convergence

Chapter 5

Numerical Scheme and Convergence

5.1 Introduction

The equations described in the previous chapters (Chapters 2 and 4) cannot be solved

analytically and require numerical solution. There are two main methods for solving partial

differential equations; finite-difference and finite-element methods. The present work will

concentrate only on numerical solution using finite-differencemethods.

The problem statement cannot be considered complete until the boundary and initial

conditions have been specified. The boundary conditions for the equations of motion and

turbulence transport have already been described in Chapters 2 and 4. In addition, because of

the large velocity gradients present close to the seabed in wave and wave-current boundary

layers, a logarithmic straining of the vertical co-ordinate, z, has been introduced to enable the

near-bed velocities to be calculated without causing excessive numerical instability.

The accuracy of the numerical schemes introduced has been tested against the analytical

solution of laminar flow presented by Lamb (1932). The results of these tests are presented

and discussed.

5.2 Verticalgrid transformation

It is necessary, when using turbulence models to model boundary layer flows, to ensure that

there are a sufficient number of calculation points within the boundary layer. This requires

that the calculation volume is divided into a large number of points, or a split grid is applied

or a varying grid is applied. The first approach is all but impractical except for laboratory

scale and even this could involve hundreds of grid points. The second method will result in

numerical diffusion, the severity of which is dependent on the scale of the two grids applied.
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The final approach allows for a grid which will be of a fine scale within the boundary layer

and which will gradually become more coarse with distance from the bed.

The present work employs a logarithmic grid transform in the vertical such that real space, Z

is described by the equation:-

Z= (~)"Zo (5.1)

Where D is the water depth; Zo is the roughness height and 11is transformed space in the

vertical. A schematic showing the variable grid as represented in real space is given in Figure

5.1.

Within the numerical scheme the logarithmic grid transform is implemented through the

replacement of 8j 8z and 82/&2 such that:-

~=R~ where CR=-az BTl z

and

c= ~~)

and

(5.2)

(5.3)

(5.4)

For further details see Appendix c.

5.3 Numerical scheme

The solution of fluid flow problems through the use of numerical methods has become more

general as digital computers have developed. The present problem requires the solution of

non-linear partial differential equations for which the methodology is less well established. It

is usual that a comparison is made with its linear counterpart when attempting to solve a non-
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linear equation. In particular, the equations involved in the present work are of the parabolic

type with a corresponding linear expression of the form:

: = :z(VL :)
(5.5)

Various numerical methods exist for solving this equation. However, only finite difference

methods are considered here. Within finite difference methods exist two sub-groups, explicit

and implicit methods. For further details see Appendix C.

The numerical scheme used within the present work is the well known Crank-Nicolson semi-

implicit method (Crank and Nicolson 1947). The scheme has the advantage of being

unconditionally stable and offers higher-order accuracy (see also Abbott and Basco 1989).

The discretization of the equations is explained in Appendix C and will not be considered

further in this chapter. However, Figure 5.2 shows a schematic of the semi-implicit Crank-

Nicolson method as applied to the transformed space with an equal vertical grid spacing of

6'1.

5.4 Numerical stability and convergence

The non-linear equations used to describe the physics require numerical solution and this

requires the introduction of an 'approximation technique'. The finite difference method has

been chosen here for solving the partial differential equations and whilst such methods

generally provide solutions which are as accurate as required such methods do contain

truncation errors. Therefore, it is important to assess the performance of the numerical

scheme employed to ensure that it is efficient and also that it is as accurate as the problem

warrants.

Stokes (1851) presented a solution for an infinite flat bed oscillating in still water. Lamb

(1932) extended this work obtaining a first approximation for waves over a flat bed. The

equations for Lamb's solution are shown in Chapter 3 (Eqs. 3.5 - 3.7), see also Appendix D.
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In order to test the accuracy of the numerical scheme as well as the convergence of the k and

k-s models solution for varying densities of points in the vertical grid, a comparison between

Lamb's analytical equations was undertaken. Results for a phase angle of zero are shown in

Figures 5.3 - 5.4.

Figures 5.3a and 5.4a show a comparison of Lamb's analytical solution for velocity against

the k-e and k models, respectively. In both model solutions for grid densities of 40 and 60

points in the vertical excellent agreement with Lamb is seen. Appendix D shows tabulated

values of depth-averaged results for the 3 different grid densities along with Lamb's

analytical solution for both velocity and shear stress ('Cl p). The percentage errors for the

depth-averaged values as calculated by the models against Lamb's solution have the

following ranges:

Velocity:

k-e (60): 0.214% - 0.868% k (60): 0.214% - 0.868%
k-e (40): 0.586% - 1.479% k (40): 0.586% - 1.479%

k-e (20): 0.365% - 3.507% k (20): 0.365% - 3.507%

Shear stress, 'ClP :
k-e (60): 0.775% - 14.247% k (60): 0.580% - 10.335%
k-s (40): 1.775% - 31.154% k (40): 1.335% - 22.370%
k-e (20): 5.348% - 87.487% k (20): 3.580% - 52.460%

Figures 5.3b and 5.4b show the results of the comparison with the analytical shear wave

solution against those for the k and k-e models for the same phase angle. Overall, the model

results for grid densities of 40 and 60 points in the vertical show excellent agreement with

Lamb. However, for the phases of 1500 and 3300 the percentage error between the results

from k and k-e models and Lamb's solution increases significantly over the other phases

through the wave period (~ 5 - 6 times). This larger error occurs during flow reversal (see

Appendix D) and as such the depth-averaging does not provide a sufficiently accurate

assessment of the models performance during these phases and the use of such a method is
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questionable. In order that a better assessment can be made, the root-me an-square deviation

for all the results was calculated such that:

_~2.(x-x)'
O'rms-

N
(5.6)

This removed the bias created during flow reversal and provided the following error ranges»

Velocity:

k-e (60):

k-e (40):

k-e (20):

0.093% - 0.997%

0.088% - 2.076%

0.517% - 5.221%

k (60):

k (40):

k (20):

0.093% - 0.997%

0.088% - 2.076%

0.517% - 5.221%

Shear stress, 'tIp:

k-e (60): 0.099% - 1.378% k (60): 0.020% - 0.700%

k-s (40): 0.274% - 3.047% k (40): 0.003% - 1.523%

k-s (20): 1.373% - 9.589% k (20): 0.207% - 3.585%

For grid densities of 40 and 60 the maximum percentage error from both velocity and shear

stress results is of the order of only 3%. For the lowest grid density of 20, the maximum error

is less than 10%. Overall, the k model provides better results for the shear stress calculations

than does the k-e model, whilst the velocity results show a negligible difference.

Interestingly, for both the velocity and shear stress results, the lowest grid density of 20

points shows excellent agreement with the analytical solution of Lamb close to the bed

(approximately 2 mm). This is probably due to the varying space transform used in the

model. The transform ensures a sufficiently fine grid spacing close to the wall and only when

the space step increases at some point away from the bed does the vertical grid density

become important. Clearly, this will only be true up to a minimum number of vertical points.

Appendix D contains the detailed results of the comparison of the models with Lamb's

analytical solution.
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5.5 Conclusions

From the comparison of the model results against the analytical solution of Lamb (1932) it

can be concluded that the numerical finite difference schemes (including the vertical grid

transformation) are performing well. The accuracy of the numerical schemes and their

application to the non-linear equations used to model the wave boundary layer have been

verified.

The tests carried out using varying grid densities have shown that whilst, overall, the lowest

grid density of 20 points through the vertical fails to fully reproduce the analytical solution,

close to the wall the results are reasonable due to the vertical grid straining applied in the

numerical models. For grid densities of between 40 to 60 points the velocity results show a

maximum percentage error (calculated from root-mean-square deviations) of about 2% of the

analytical solution. Similar results from the shear stress solutions show a maximum error of

about 3%. Use of depth-averaging to provide an assessment of model performance IS

misleading due to flow reversal leading to unrepresentative percentages being generated.

The k model appears to out-perform the k-e model based on the results of the shear stress

calculations. However, the k-s model is computationally more efficient despite the extra

turbulence transport equation due to the summation required in calculating the time-

dependentmixing length term in the k model.

It has been demonstrated that for typical model runs where grid densities of between 40 and

60 points are applied, the computational scheme is sufficient to ensure numerical errors are

minimal. For further details, see Appendices C and D.
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Figure 5.1: Schematic showing the variable grid as represented in real space.
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Figure 5.2: Schematic showing the Crank-Nicolson semi-implicit scheme.
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Figure 5.3:
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Comparison of Lamb's analytical solution against results from the k-e model
for different numbers ofvertcial nodes: 0 Lamb; -k-E model (60 nodes); --
- k-e model (40 nodes); - - - -k-E model (20 nodes).
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Figure 5.4: Comparison of Lamb's analytical solution against results from the k model for
different numbers of vert cia I nodes: 0 Lamb; - k model (60 nodes); - - - k
model (40 nodes); - - - - k model (20 nodes).
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Chapter 6

Results: Part I

6.1 Introduction

This chapter presents the results from the first of the model tests against laboratory data for

monochromatic waves. All the tests were carried out at ISVA, Denmark in the large

oscillating tunnel. As such these tests are of prototype scale since the tunnel is able to

generate conditions similar to those experienced in the field though at small scale.

6.2 Monochromatic waveswithout current

6.2.1 Jonsson and Carlsen (1976)

The first detailed investigation of the turbulent wave boundary layer was performed by

Jonsson (1963), see Chapter 3. Jonsson (1963) presented results for a single test, Test No.1,

and later in Jonsson and Carlsen (1976) these same results were presented alongside the

results of a second test, Test No.2. Test No.2 is generally considered to be less reliable than

Test No.1, see Jonsson and Carlsen (1976), and the value of the roughness parameter in this

test was not determined correctly, see Jonsson (1980). Therefore, for these reasons Test No.2

has not been used for comparison purposes. The experimental parameters used in the first test

are shown in Table 6.1.

The measurements were performed in the oscillating water tunnel at ISVA (then the Coastal

Engineering Laboratory). The tunnel has been described in detail by Lundgren and Serensen

(1959), but briefly, it is a large U-shaped tube, consisting of two vertical risers at each end of

a horizontal tunnel. The working section is 10m in length, 0.3 m high and 0.4 m wide. The

top and sides of this section are made of piexi-glass and the natural resonance of the tunnel is

about 9.5 sees. The water is forced to oscillate by pneumatic machinery (see Figure 6.1a). The

velocities were measured using a 5 mm micro-propeller, Jonsson (1965). In the experiments
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Jonsson and Carlsen used two-dimensional triangular roughness elements to simulate ripples,

Figure 6.1b.

Wave period, T (s) 8.39
Free stream amplitude, a (mm) 2850
Mean free stream velocity amplitude, u; (mm/s) 2110
Nikuradse sand roughness, ks (mm) 23.0
Height of roughness above theoretical bed level (mm) 2.5

Amplitude Reynolds number, Re 6.01 x 106

Amplitude to roughness ratio, a/ks 124
vL = 1.00X 10-2 crrr' / s

Table 6.1: Jonsson and Carlsen (1976) main parameters for Test No.1.

The results of the tests show that the velocity signal in the wave tunnel was not perfectly

sinusoidal and this led to the velocity fields being unsymmetric for the two half periods. To

compensate for this the numerical model has been driven using the following scheme:

iio(z,rot) = O.5(u", sin{rot) - U'"sin(rot + 1t)) (6.1)

Differentiating Eq. (6.1) with respect to t provides an expression which enables the input

values for the pressure term in the horizontal momentum equation to be determined and

provides the upper boundary condition for the equation. All other boundary conditions are as

given in Chapters 2 and 4. The values of the model constants used in the present work are

also given in Chapter 4, Section 4.3.6.

Results from the one-equation k-model (time dependent mixing length) show good agreement

with the velocity measurements for Test No.1, see Figure 6.2. The k-model has been run with

two different turbulent eddy viscosity descriptions. The first uses the mixing length

description suggested by Yager and Kagan (1969) and is time dependent (see Eq. 4.39). The

second expression for mixing length is a simple time independent expression (see Eq. 4.40).

The time dependent description shows a better fit than that for the more simple expression.

Figure 6.2 shows a comparison of the two k-models against the velocity data of Jonsson and

Carlsen, test 1. Clearly using the time dependent expression for mixing length suggested by

Modelling Random Wave Boundary Layers 96



Chapter 6 Results: Part I

Vager and Kagan provides better agreement with the laboratory data. This implies that the

specification of the mixing length is of some importance when considering the performance

of a one-equation model. Therefore, the choice of mixing length specification will affect the

accuracy of such models and should be considered with care. However, it should also be

noted that the expression of Yager and Kagan (1969) requires more computational time than

the simple linear expression since it involves a summation.

Figure 6.3 shows a comparison of the high-Reynolds number k-e model with the velocity data

of Jonsson and Carlsen, test 1. The model clearly gives very good agreement with the

laboratory measurements. Figure 6.4 compares three different models against the same data.

The three model types shown are a zero-equation mixing length model (approach of Bakker

1975; Eq. 3.56), the k-model (time dependent mixing length; Eqs. 4.10, 4.37 and 4.39) and

the high Reynolds number k-e model, Eqs. (4.10), (4.23) and (4.24). Overall, the worst fit is

given by the zero-equation mixing length model. The k-e model shows a better fit to the

laboratory data in the 'overshoot' region over both the mixing length and k-equation models.

All models show a reasonable fit close to the wall, however, the k-model appears to provide

the best fit close to the wall. There is an obvious advantage of using the k and k-s models

over the basic mixing length model, however, it is more difficult to chose between the k and

k-e models.

Using root-mean-square deviations of the depth-average velocities obtained from the

numerical models and comparing them to those of the experimental data, a percentage error

was calculated. For the phases through the wave period shown in Figures 6.2 - 6.4 the

following range of errors was obtained (see also Table 6.4):-

I: 25.835% - 48.602%

k: 10.105% - 30.681 %

k-s: 6.666% - 35.733%

Whilst such methods enable error values to be assigned to the particular models, they are

determined on the basis that the experimental data are correct and ignore errors which occur

in the measurement process. Therefore, the percentage errors should be seen as a guide rather

than a true indicator of the models performance. The k and k-e models appear to provide a
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similar level of accuracy based on the root-mean-square deviation. See Table 6.4 for further

details.

Eliminating the zero-equation mixing length model from further discussion, the one- and two-

equation turbulence models have been studied further. To this end, the shear stress values

calculated by Jonsson and Carlsen provide an additional check.

Jonsson and Carlsen (1976) suggested two methods for calculating the shear stress

distribution. The first method involved integrating the equation of motion to obtain the shear

stress.

(6.2)

where z, = zo, the vertical level at which point the velocity is assumed to be zero; ~ IS a

level at which r = 0 and u, is the free stream velocity.

Jonsson and Carlsen (1976) integrated over the depth of the oscillating tunnel, but Sumer et

al. (1987) have pointed out that the limit could be at any depth where t = 0, that is where

iJu/az = o.

The second method suggested by Jonsson and Carlsen (1976), is to fit the velocities to a

logarithmic velocity distribution. However, both methods are quite sensitive and show quite

large deviations between values except at the maximum bed shear velocity (see Figure 6.7).

Regarding the sensitivity of such methods, the accuracy of the integral method is dependent

on the accuracy of the measured velocities. The logarithmic velocity distribution is affected

by the close links between the theoretical bed level, the bed roughness and the shear stress.

The difficulty is deciding the height which should be taken as the bed level for calculation

purposes, since the logarithmic velocity distribution could exist for a wide range of bed

levels.

The results from the numerical simulation tend to underpredict the values of shear stress

calculated by Jonsson and Carlsen (1976), Figures 6.5 - 6.7. Hagatun and Eidsvik (1986) and
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Justesen (1988a) also found the experimental values to be generally higher than those

predicted by theory. However, despite numerous studies into this effect, no explanation has

been found. Justesen (1988a) suggested that a possible cause is due to the flow structure in

the vicinity of the two-dimensional roughness elements used by Jonsson and Carlsen (1976)

not conforming to the idea of a Nikuradse equivalent roughness as would be valid for a three-

dimensional sand grain covered bed. This point is worth further consideration and will be

returned to later in the present Chapter.

A comparison between the present models and those of Hagatun and Eidsvik (1986) and

Justesen (1988a) has not been possible since none of the authors provide values for their

model results in their papers.

Figures 6.5 - 6.7 show a comparison of the shear stress data of Jonsson and Carlsen (test 1)

with the results for the k and k-s models. It is difficult to decide which gives a better a fit to

the laboratory data since neither model fit the data well. However, on the basis of the root-

mean-square deviations (Table 6.5) the k-model shows the best agreement with the

experimental values.

6.2.2 Jensen et al: (1989)

The most recent and, arguably, the most detailed published study of turbulence in oscillatory

boundary layers is that performed at ISVA, Denmark. The early results of this work were

published by Sumer et al. (1986; 1987). Jensen (1989) and Jensen et al. (1989) describe the

experiments in detail.

The experimental programme covered a wide range of a/k, values for both hydraulically

smooth and rough beds. The experiments compliment the earlier smooth wall tests of Hino et

al. (1983) performed in a wind tunnel, as well as the rough bed tests of Sleath (1987) carried

out in an oscillating water tunnel.

Jensen et al. (1989) describe 15 tests in total which were undertaken in the oscillating water

tunnel at ISVA. Tests 1 - 11 were all performed over a smooth bed, whilst tests 12 - 15 were
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carried out over a rough bed. All the tests were for monochromatic waves with no added

current. The rough-wall experiments were further divided into two sets; tests 12 and 13 were

performed with a roughness height ofk = 0.35 mm and tests 14 and 15, a roughness height of

k = 1.5 mm. The k and k-e models have been run against tests 12 and 13.

Te8tNo. Period, T uoo a Re- aIks
(8) (m/s) (m) auoolvL

12 9.72 1.02 1.58 1.6x 106 1880
13 9.72 2.00 3.10 6.0 x 106 3700

Table 6.2: Experimental parameters for Tests 12 and 13 Jensen et al. (1989).

For tests 12 and 13 the rough bed was achieved by gluing a sheet of sandpaper onto the bed.

As mentioned above the roughness height for these tests was k = 0.35 mm. Jensen et al.

(1989) calculated the density of the sand to be 80 grains I cm2 . The resulting Nikuradse

equivalent roughness was found to be k,= 0.84 mm. The velocity measurements were made

using both a one-component and two-component laser Doppler anemometer (LOA) system.

The basic test parameters for the two tests are shown in Table 6.2.

Jensen et al. (1989) found that in their rough bed experiments, the flow did not feel the effect

of the roughness until rot had reached a value of approximately 15° and for test 12, the flow

did not respond to the roughness until rot ~ 45°. This indicates that for a certain part of the

flow fully turbulent conditions do not apply. This raises the question as to the validity of

many turbulence models which assume fully turbulent conditions at all stages of the flow.

The implication is that in order to accurately model the hydrodynamics of such flows, it

requires a model which is valid all the way to the wall and is able to take account of such

laminar effects.
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6.2.3 Model results for test 12, Jensen et al; (1989)

Between the two tests of Jensen et al. presented here, test 12 has the lower amplitude

Reynolds number (1.6 x 106). The flow is still considered to be fully turbulent in nature.

Figures 6.8a and 6.8b show a comparison of the numerical models against the experimental

velocity data of Jensen et al .. Profiles are shown at 15° intervals, from 0° to 165°. Laboratory

data was not made available for the full wave cycle, however, the data enables the effect of

flow reversal to be seen. Both the k-e and the time-dependent k-model show excellent

agreement with the velocity data. The k-model tends to underpredict the overshoot as was

seen with the data of Jonsson and Carlsen (1976).

The percentage errors of the root-mean-square deviation of the depth-average velocities from

the experimental data were calculated for the 12 phases through the wave cycle shown in

Figure 6.8 (see Table 6.6). The results show an average error for all the phases of 4.24% and

3.42% for the k-s and k models, respectively. The smallest percentage error is 0.172%

calculated by the k-e model.

A visual comparison of the shear stress results from the two models would appear to show

reasonable agreement with the laboratory data (Figure 6.9). The k-e model has a tendency to

overpredict the overshoot, with the k-model showing better overall agreement. However,

results from the root-mean-square deviation calculations for the various phases are less

encouraging, with average errors of 79.37% and 52.27% for the k-e and k models,

respectively.

As mentioned previously, in Section 6.2.1, the percentage errors assume the measurements to

be correct. Clearly this is not possible, no matter how carefully the experiments are

undertaken. In addition, the Reynolds stress values are calculated on the basis of two

measured values u' and w' which are in themselves subject to errors. Jensen et al. (1989)

calculated the mean values of their measured quantities using ensemble averaging. The total

number of periods sampled was 80 in tests 12 and 13. Sleath (1987) found no significant

improvement in the reliability of the statistics for record lengths greater than about 50 cycles.

Jensen et al. observed similar findings. It is suggested that, whilst the percentage errors
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provide a guide to the relative performance of each model, they are not a true indicator of the

accuracy of the models.

Figure 6.10 shows a comparison of the bed shear stress measurements and those calculated by

the k-s model. The agreement is best between rot= 450 - 1500• Values for the bed shear stress

over the whole wave period were not provided so it is not possible to observe the total fit. The

free stream velocity profile is shown alongside that of the shear velocity. It is possible to

observe the phase lead of the shear velocity over the free stream velocity. For test 12 the

phase lead is 14° which is much lower than that for the laminar case (45°). This decrease in

the phase lead is to be expected, since in turbulent flow, the near-wall velocities are not

reduced as much as in the laminar case because of the vertical exchange of momentum by the

eddies.

Jensen et al. (1989) measured the turbulent components in the x and z directions but not in

the cross-stream direction (y). This means that some assumptions have to be made if the

turbulent kinetic energy is to be calculated. The kinetic energy is given by the equation:

1(-2 -2 -2)k = 2" u' + v' +w' (6.3a)

1(-2 -2)k' = 2" u' + v' (6.3b)

Flow Relative values of Reynolds stress k/k'
components

-2 -2 -2
u' v' w'

Boundary layer:
Inner layer 0.61 0.28 0.10 1.42
Outer layer 0.45 0.33 0.22 1.47

Plane jet 0.42 0.29 0.30 1.40

Plane wake 0.42 0.26 0.32 1.35

Homogenous 0.33 0.33 0.33 1.50
isotropic turbulence

Table 6.3: Relative values of Reynolds stress components for a range of flows. After

Townsend (1976).
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Jensen et al. only measured u' and w' therefore, it is necessary to try and relate these to Eq.

(6.3). Townsend (1976) quotes the relative values for the Reynolds stress components for

different types of shear flow (see Table 6.3). Based on these measurements it is possible to

estimate a value for k based on only the two stress components.

The range of values for k/k'shown in Table 6.3 indicate a factor of between 1.3 and 1.5 in

order to correct for the missing Reynolds stress component. Justesen (1988) assumes a value

of 1.5.

Figure 6.11 shows the comparison of the turbulent kinetic energy measurements of Jensen et

al. test 12 against the k and k-e model. The experimental data is shown for two k/k'ratios.

The first ratio assumes that there is no turbulent component in the y-direction (that is a factor

of 1) and the second is based on a factor of 1.3. Whilst, overall, both models provide a

reasonable fit to the data it could be argued from the profiles that the k-model fits the test data

best. This can be confirmed from the root-me an-square deviation calculations shown in Table

6.8. A better fit is observed for a factor of 1.3.

The laboratory data shows a decrease in the turbulent kinetic energy close to the bed and this

reduction is observed in the corresponding numerical results, though not perfectly. On a

visual inspection of the model results of Justesen (1988a) and Chapalain and Boczar-

Karakiewicz (1992) this reduction appears to be not so well reproduced suggesting that the

present model formulation provides a better description of the physics. Unfortunately, any

real qualitative comparison between the models of Justesen and Chapalain and Boczar-

Karakiewicz and those used in the current work is not possible since the former authors

provide no numerical output with which to compare. The reason for the improved fit is most

likely due to the logarithmic depth transform applied in the model allowing a finer grid to be

applied at the wall than in the models of Justesen and Chapalain and Boczar-Karakiewicz.

6.2.4 Model results for test 13, Jensen et aL (1989)

The results of a comparison of the experimental velocity profiles for test 13, against the

numerical models again show a reasonable fit (Figure 6.12). The performance of the k-s
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model over that of the k-model has been assessed as before using root-mean-square

deviations, see Table 6.9. The deviation from the experimental results is greater than for test

12. The mean error for the phases shown are 15.92% and 13.17% for the k-€ and k models,

respectively. Whilst the k-s model tends to predict the extent of the velocity overshoot better

than the k model, for some phases both models fail to predict the true extent of the velocity

overshoot. Whether this discrepancy in the velocity results is due to some experimental

failing, for example boundary layer development being curtailed by the oscillating tunnel's

cross-section, a feature seen in the experimental results of Jonsson and Carlsen (1976), is

unclear.

A comparison of results for the shear stress (Figure 6.13) show better agreement with the

models than was seen for test 12 of Jensen et al. The experimental results show the shear

stress to decrease close to the bed for many of the phases shown and this feature is well

reproduced in the models. The k-s model shows good agreement with the data for most

phases whilst the k-model tends to underpredict the extent of the overshoot in the profiles.

During part of the decelerating phase of the flow, rot = 1350 - 1650 , both of the models

underpredict the extent of the overshoot (see Figures 6.13j - 6.131). Results from the root-

mean-square deviation calculations confirm the visual inspection with mean errors of 11.32%

and 16.30% for the k-e and k models, respectively (see Table 6.10).

Figure 6.14 shows a comparison of the bed shear stress calculated by the k- and k-e models

against the measured values. Since a non-smoothed version of the laboratory data is used

there is much fluctuation (see Figure 6.14). However, during the first half of the wave period,

the measured bed shear stress appears to be significantly higher than that predicted by the

models. Whether this is due to experimental errors in the LOA measurements, such as signal

loss due to reflection from the bed is uncertain.

Figure 6.14 also shows the results from a modified turbulence k-model which has been run

with the inclusion of molecular viscosity. In theory, since the flow is fully developed it is

expected that the effect on the bed shear stress will be negligible. However, when the results

are plotted on the same graph a clear difference can be seen. Since Jonsson and Carlsen's test

1 is of a similar amplitude Reynolds number to test 13 of Jensen et al. (6.01 x 106 and 6.0 x
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106 respectively) it was decided to investigate whether the same effect would be observed by

including molecular viscosity in the k-model run for test 1 of Jonsson and Carlsen.

Interestingly, the inclusion of molecular viscosity in the model had no discernible effect on

the calculated shear velocity values, as theory would suggest for fully turbulent flow. Since

both experiments were performed in the oscillating water tunnel at ISVA the only significant

difference in the tests is the measurement technique and the bed roughness used. Jonsson and

Carlsen used triangular roughness elements whilst Jensen et al. used sandpaper glued to the

bed of the tunnel. Intuitively, it would seem most reasonable to assume that the difference in

shear velocity is due primarily to the difference in bed roughness rather than due to

experimental error. Obviously, the triangular roughness elements provide more turbulence

than the sandpaper due to vortex shedding. The underprediction of the shear stress in Jonsson

and Carlsen could, therefore, be as Justesen (1988a) suggested, that is, the triangular

roughness elements deform the flow structure such that the Nikuradse roughness assumption

is invalidated.

However, the other important point that should be made is that the flow structure in Jensen et

al. test 13 is fully developed turbulent and yet molecular viscosity appears to still be

significant. Does this indicate a failing in the theory surrounding fully developed turbulent

wave boundary layers? Jonsson and Carlsen calculated their shear stress from their velocity

measurements based on the integral momentum equation, Eq. (6.2). In Jensen et al. the shear

stress is calculated from the Reynolds stress components as measured by the laser system.

Whilst generally, laser measurements are seen as being more accurate than intrusive

measurement techniques, such as the use of a propeller meter, errors when measuring close to

the bed can be significant. Certainly, close to the bed reflection from the sand grains can

cause significant signal disruption when using a laser and the measurement volume of the

laser beams (typically 0.3 mm in diameter and 1.0 mm long) limits how close to the bed

measurements can be undertaken. Therefore, a possible source of error is in the measurement

technique. Jensen et al. (1989) report a high drop-out rate in the laser measurements in the

near-wall region (z = 1 - 2 mm) for their smooth bed experiments due to reflection from the

bed. Jensen et al. found that this was improved in the rough bed experiments, but they do not

discuss to what extent.
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Jensen et al. (1989) found that for smooth-turbulent flow the logarithmic layer comes into

existence some time after flow reversal and grows in size as the flow progresses. The larger

the Reynolds number the earlier the logarithmic layer is established. A similar effect was

observed for fully turbulent flow. Therefore, for part of the flow the logarithmic layer will not

exist because the boundary layer thickness is too small to support it. Hence, it could

reasonably be expected that even for high-Reynolds number flows, the effect of kinematic

viscosity should be included at some phases of the flow. Ultimately, there must be a Reynolds

number beyond which the flow is fully turbulent at all phases through the cycle and hence the

kinematic viscosity has a negligible effect as appears to happen in Jonsson and Carlsen's Test

1.

The problem with this explanation is that the solution including the effect of kinematic

viscosity could be expected to deviate little from the measured values for a significant part of

the cycle since the turbulent component should be considerably greater. Clearly, from Figure

6.14 this is not the case. Secondly the measured bed shear stress is not symmetric, with

greater shear being generated in the first half period than in the second. It is not clear why this

should be so, since the free stream velocity profile shows symmetry. It has, therefore, not

been possible to conclude why the inclusion of kinematic viscosity in the model solution has

such a significant effect in test 13 of Jensen et al. when for a similar test (Jonsson and Carlsen

test 1) shows the inclusion of the kinematic viscosity to be negligible.

The measured shear values from the laser only include the Reynolds stress component.

Maybe, the assumption of fully turbulent flow which would suggest that the total shear is

given wholly by the turbulent component is incorrect and the viscous component is still

significant. The total stress would then be given as:

't total = 't viscous + 't turbulent (6.4)

Comparison of the measured turbulent kinetic energy data against the results from the one-

and two-equation turbulence models is shown in Figure 6.15. As for test 12, results are shown

against experimental data for factors of 1 and 1.3. Results of root-me an-square deviation

calculations show the results to be reasonable for most phases of the flow (see Table 6.11)

though for the phases 15° to 75° the errors are much greater than for the other phases shown.
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Generally, the measurements show better agreement against the models with a factor of 1.3,

though at 75° both models show a lower error with a factor of 1 used as a multiplier. It is

conceivable that during the wave cycle, the factor varies between a small range of values, say

1 to 1.5, however, this has not been investigated further. The reduction of the kinetic energy

in the near-wall region is again reproduced.

6.3 Conclusions

The one-equation k model (time-variant version) and the high-Reynolds number k-e model

have been compared against the prototype scale oscillating water tunnel data of Jonsson and

Carlsen (1976) and Jensen et al. (1989). Both models show good agreement, overall, with the

data. In addition to testing the performance of these two models, a comparison has also been

made with a mixing length model and also a k model run using a time-invariant mixing

length description (see Eqs. 4.39 and 4.40). Both the k and k-e models out-performed the

mixing length model with differences of nearly 20% (see Table 6.4).

The results of using different descriptions for the mixing length in the k model revealed the

importance of choosing the mixing length expression carefully. The time-variant description

(Eq. 4.39) showed a better representation of the physics than did the simple time-invariant

description (Eq. 4.40). However, the mixing length expression of Yager and Kagan (1969)

(Eq. 4.39) leads to a computationally slower model due to the summations required for the

mixing length expression. The effect of the summation makes the one-equation k-model

computationally slower than the two-equation k-s model. Ultimately, this had an overriding

effect on which model was chosen to develop for random wave modelling. This does also

make the point of what criteria should be used when deciding on a model. Both the accuracy

and the efficiency are important but it might be necessary to compromise, particularly when

the difference in accuracy is not sufficient to warrant the greater computational cost.

Results of the model runs against the shear stress data of Jensen et al. (1989) suggest that

possibly even for flows considered to be fully turbulent (amplitude Reynolds number, Re =

6.0 x 106) kinematic (molecular) viscosity may still have some influence during certain

phases through the wave cycle. Unfortunately, whilst the model is able to work at the
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molecular level (smallest grid spacing at laboratory scale llz = 0.0071 mm) experimental

techniques are still not able to measure at this scale.

The use of root-mean-square deviations to test model performance provided a method by

which to quantify results. Such methods are only as reliable as the measurements against

which the models output is being compared. It is clear that despite every effort to limit errors

within an experiment, errors will be present. Such statistical techniques can only provide a

guide to the relative performance of the models. The accuracy of the models' output is much

harder to quantify and the errors shown in Tables 6.4 - 6.11 should not be seen as absolute.
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Chapter 6 Results: Part I

Figure 6.1a: ISVA's oscillating water tunnel. (After Lundgren and Sorensen 1956).

y Velocities measured
/ in this line

I. 1.7 em -I *

Concrete slab -l r-
0.5 cm

Figure 6.1b: Bed configuration for test 1, Jonsson and Carlsen (1976). Sketch shows
dimensions of the triangular roughness elements.
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~ (x 1.0) test 12, Jensen et al.; -- k-e model; - - k-model.
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Figure 6.11(Cont.): Comparison of k values from k-e model and time-dependent k-model

against laboratory data of Jensen et al. (1989): 0 (x 1.3) A (x 1.0) test
12, Jensen et al.; -- k-e model; - -k-model.
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Jensen et al.; -- k-s model; - - k-model.

Modelling Random Wave Boundary Layers 130



Chapter 6 Results: Part I

10000 r----,----~----_r----~----r_--~----~----_r----,_--__,

lit I-~-----~----~----~-----~----~-----
I I I

I

- - - - ~ - - - - -1- - -

I

I I-r----~-----r----y----~-----~----,-----
I I I I I I

I I I I I~----~-----~----+----~-----~----~-----
I

I I I
- - - .1 , L .J ~

I ....,..c7-" ..,..-_

I
I

I I I I I
- - - _ J , L -' I_

I I I I I
I I I

-sooo

I

I I I I I--1----------r----1-----~----
I

-lSOOO ~ __ ~~--~----~~~----~----~--~~--~--~~--~o 1 3 !I 6 7 10

Time (sec)

Figure 6.14: Comparison of bed shear stress values from k-s model and time-
dependent k-model against laboratory data of Jensen et al. (1989):
--0- test l3, Jensen et al.; -- k-e model; - - - k-model; -
k-model with kinematic (molecular) viscosity included in solution.

Modelling Random Wave Boundary Layers 131



Chapter 6 Results: Part I

*~--~--~--~--~----~--~--~--~---,,\

250 ,.\ L I L. l. ~.~.~: , .

i I • i
..... ·····:·~·········j············l············!··········..~ + + ~ .

. \

..........:····\,(~~·I·~······o~ ; i ~ ; .
-:--- ....... ~ .....•.•• ~ .

c0

O. 2000 4000 _ _ 10000 12000 1_ 1_ 1_

Turbulent kinetic enelllY. k (mm 2/.2)

(a)

*r-~~----~--~--~----~---;----;----,
i \ '
! I -·15·

250 l.._ ~ _..+ _ ~ j ••••..•••.••••...........:-1 .
, I

--l..L J ---- - j ..•.•.. - ...• __~.__..••....... L _ j j .•......•.....

• \; , :.,., _,,' !,,' , i", ,............: \'<;.<~ '...... _

6'~~tIM ~
== 50 .i. J=~).!~ ~ \ .

(b)

*rr----~------~----~------~----~------~
w .\TI,~:M:,

I
....... ~-_. - ~ -._ .. - ..,- ~ - ..~ ~ .

"., .. .\~..- ,.... .
~! 0

".~i 1M , , \ ..q J , + j ····'1·············..····
:f: \ !

50 -~ ).A·19o· i ·.·t , .
....-: 00:

ol_ '~~I'!~~~~~~==~==a..J _L _j
• -1_1_2_2 __

Turbulent kinetic enelllY. k (mm 2/.2)

(c)
Figure 6.15: Comparison of turbulent kinetic energy (k) values from k-e model and time-

dependent k-model against laboratory data of Jensen et al. (1989): 0 (x 1.3)
d (x 1.0) test 13, Jensen et al.; -- k-e model; - -k-model.

Modelling Random Wave Boundary Layers 132



Chapter 6 Results: Part 1

3OOn-~~----~----~--~----~----~--~----~
1
1
I

250 ~. --··7 , , , ············7·------ ,......••...... , .

I
1

~ l j l --.--~ ~ ·.·..····i···.···.···.··i················ .. ·\--·--------------i--------------··--·

__ __\.~ .. .. [ __._ 1... .
\f 0 1

~6 0

-- .... ·····--:r: \,.···:o···~:',··.. ·.. ····.. ·;······· .. ·····~ ···· ··f..····..·····i·· : .

; I 0' , 1 : ..50 ••....• ·····~l6·· ~ - .I. 0....
ol____ll~~·:::,~.:r.t~~~~~==~~~~__~=-__~
o 5000 10000 15000 _ 25000 _ 15000 40001

Turbulent kinetic: energy. k (mm 2/.2)

(d)

3OOn-~I--~--~--~----~--~--~----~---;---,
I
1

250 ····\·····i·······..···;..·····..···j..·--·······;··..·......·j·....····..·~·~·'_Or··· ..······+·..·········
I '
I
1

, , < > > ..···~··-·l-· --j ..•..... ---.j ----- .--.-.~ ~ -.-.-

\ ;

\ : .; : L 1.. l .l ...... ..~ ..
Ii.

i100 ~ 9. -··-···~·········-··l.···········-l.···········~.······..- ~ ······+············r············
~ ~ 0 !

50 ~~ ··~·······;········ .. ·T···..····..L...·· ·;..··..···..·;···..· l.
o
o 10000 15000 2_ 2SIeO _ )5000

Turbulent kinetic: energy. k (mm 2/.2)

(e)

3Hn-~~--~-- __--~--~--~----~--~--~--~
P~-75 •

2SO ... +......··--.......·......i..·....·..·;..··......·,......·..··r....

I200~t·.i! f -- , + i + ~ i.
N 1

i ISO \~ --~j
1100 --...4·r·-\.. ·· ·,· .. · · ··.. -!-· ·+..·..··..··; i..·· j .. · -!' 1= .,.

SO :~:'<l.< i ; ..

'~...._o~--.·--~·~·==c:~!:::j,~·~~..~·5~~~~~~~--_Jo 5000 10001 1_ 20001 25000 _ 1_ _ 45000 _

Turbulent kinetic: energy. k (mm 1/.2)

. ..

Modelling Random Wave Boundary Layers

(I)
Figure 6.15(Cont.): Comparison of k values from k-s model and time-dependent k-model

against laboratory data of Jensen et al. (1989): 0 (x l.3) A (x l.0)
test 13, Jensen et al.; -- k-s model; - -k-model.

133



Chapter 6 Results: Part I

1201
N

ij ISO ....

•
1110

=:

'O~--5OOG~--I""~--1-5OOG~--2""~--25OOG~~~~~J~5OIO~~"'~~4~5OOG~~"'=
Turbulent Idnetlc eDeIlIY. k (mm 2/.2)

(g)

-n-T-~--~--~--~----~--~--~---,---,
: Pbue-IOS·

250 ····~·····!············!············1············~-···········+···········-:············r············r·······.....
I, ; , ' ,

""' :. . .
J_.. 200 J. i __.i l.. : : j. ••••••••••• ~ •••••••••••• ~ •• _ •• __ •_ I' . . ·········t····_····t
N IIISO \ , ····, .. · ; ··T · ~ ;

•1101 Q.; : ...........• ; i ; l ~ l .

.... J... L L.. ~ , .

••L----5OOI~--I~....----15OIO~---2....~~2~5OOI~~JIIII~~~J5OOI~~~~-.~5OM
Turbulent Idnetlc energy. k (mm 2/.2)

(b)

JII~~ __ ~ ~ ~ ~ ~ ~ ~

250 \ , _ e- , ~~.~~2.~.~ 1 .

...... \ , , , , , ,.
I 1

......L·o·· L L.. : : .: .
I

I.
N

i~ u.
J• A 10 :1110 ~·:.t·..e.. ······.L···.. ··..·..··j·..······..···..;·····..·······..: j .

~- j ~.i j.' .,. ~ ~ ·~·····6~-

Turbulent Idnetlc energy. k (mm 2/.2)

(i)
Figure 6.15(Cont.): Comparison of k values from k-e model and time-dependent k-model

against laboratory data of Jensen et al. (1989): 0 (x 1.3) A (x 1.0)
test 13, Jensen et al.; -- k-e model; - - k-model.

Modelling Random Wave Boundary Layers 134



Chapter 6 Results: Part I

-rr-r--~--~----~----~----~----~---'
I
I
I P~... -IJ5·2,. J. ,............ ,. . •.......•.•......•.•......•.......

I .; , , , 1 .

r.ll\!!1
\ ., 0" ,.':\..l .. A .•.•• 9..••• L J. L L j .
~,~i :,_ ,
1 : ! 0

51 ---············~··-·············r···-······::::::i-.....:.:·..::.:~ ~ • . .

:<,h6
• 0

0
~__.;~ 0:oL- ~ ~~~~~~~~~~----~

• _I_I __ ~--

Turbulent klneUc enel'llY. k (mm 2/12)

(j)

-rr~--~------~----~----------~----~-----,
I

1 i :
250 + ; ;.. ················f···················;·················.j .

I' .
I

...... .l ..;._.._ _._._ ~_._ .i l L -_ .

\, ' ! ...·..··Y ....T·....·•........-;-·.. .
\ :
......'.~.".~ "! ~ l. ··f········..········1···················

,,_

Pllue-ISO •

! 0.~----~----~~~~~~~~~~--~• 5000 1_ 1_ _ 25000 -

Turbulent klneUc enel'llY. k (mm 2/12)

so _ ..

(k)

JOI~-- ~ ~ ~ ~ ~

o j 0

I
I, , , '

25t .. ·.. ···1.. ······.. ·;·· .. ·.. ···.. ········ .. ·,·· .. ·····.. ·.. ··...... ·,·· ..··~~·~·~·'~~·i···..·······..···..····
: I : ! i

.. - -1- ~...............•....... !..... . --.~ - ~ .
\
I
I ,

.... \ 1.................... .. , ..,,' .
-,

<, i

i' -::-.-;;::1 ~ -t e < .

o :
..........t .

i 0

i! 100 ...
N

Turbulent kinetic enel'llY. k (mm 2/12)

(I)
Figure 6.15(Cont.): Comparison of k values from k-e model and time-dependent k-model

against laboratory data of Jensen et al. (1989): 0 (x 1.3) II (x 1.0)
test 13, Jensen et al., -- k-s model; - - k-model.

Modelling Random Wave Boundary Layers 135



Chapter 7 Results: Part II

Chapter 7

Results: Part II

7.1 Manchester Experiments

7.1.1 Introduction

During the late 1970's and early 1980's a comprehensive experimental programme was

undertaken at the University of Manchester under the direction of Professors D.M. McDowell

and B.A O'Connor. The main objective of the laboratory work was to investigate the

interaction occurring in combined wave and current flows, with a view to providing a better

description for bed friction and sediment entrainment for use in computer models. Much of

the early work has been presented in various sources (see McDowell 1983; Wong 1984;

Savell 1986; O'Connor 1987; Taplin 1989).

Initial tests took place in a small scale flume 450 mm deep, 500 mm wide and 22 m in length

(see Figures 7.1 and 7.2). This flume was equipped with a wave-absorbing paddle capable of

reproducing both mono-frequency and random waves (Ellis et al. 1981). Later tests took

place in a larger glass-sided flume, 1.2 m deep 1.2 m wide and 30 m in length (O'Connor et

al. 1988).

Test Number
52 59

Nominal mean current (mm/s) 0.0 125.0
Mean velocity at 100 mm (mm/s) 0.0 119.4
Wave period 1.53 1.50
Wave height (mm) 74 72
Amplitude Reynolds No. 7523 7818
Displacement, a (mm) 44.1 43.0
Water temperature, e C) 18.0 21.0
Kinematic viscosity, VL (mmvs) 1.066 0.990

Table 7.1: Experimental conditions for tests 52 and 59.
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Some of the experimental data remains unpublished, however, two small flume tests have

been chosen for comparison with the numerical turbulence models developed during the

present research, test 52 , an experiment involving mono-frequency waves alone and test 59,

which is for combined waves and current conditions (see Savell 1986). All measurements

were undertaken using a two-channel Laser-Doppler anemometer (LDA).

Before embarking on the main experimental programme, a large number of preliminary

experiments was carried out. The principle aims were to test the equipment and to establish

the validity of the measurements by comparing the results against accepted published work

(see Savell 1986). The tests included comparison with results for steady undisturbed flow as

well as against Lamb's (1932) analytical solution for laminar flow. (see Chapter 3 and Figure

3.2). The results of these preliminary tests showed the experimental set-up to be performing

well.

7.2 Test 52:Waves alone

Test 52 was used to establish the characteristics of the hydrodynamics of the waves alone.

Savell (1986) suggests that the results were not totally satisfactory due to problems with the

data acquisition software and a possible drift in the LDA calibration resulting in the mean

horizontal and vertical velocities being out by up to 10 mmls. However, any error was

confined to the mean velocities only. Test 52 was carried out in the small scale facility and

the physical scale is such as to place the flow field into the transitional regime (Re = 7523).

The test was chosen to investigate the effect of transitional flows on model performance as

well as the applicability of model type. The models were run with the boundary conditions

given in Chapters 2 and 4 and the constants used were as stated in Chapter 4. Applying a

high-Reynolds-number model should lead to poor results since the assumption of a fully

turbulent regime has not been reached. In such instances, a low-Reynolds-number model or a

two-layer k-e model should be used. This is clearly demonstrated in Figure 7.3 where a

comparison between a two-layer k-e model and a high-Reynolds-number k-s model and

velocity data from test 52 show the latter model to predict too high a level of turbulence in the
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flow field. In contrast, the two-layer model shows reasonable agreement with the data.

Further, since the free stream velocity is not a pure sinusoid as the laboratory signal contains

harmonics, it is possible to improve the simulation by using Fourier analysis to represent the

free stream velocity, see Figure 7.4. The distortion of the wave shape is most likely due to

reflections from the beach at the end of the flume, additional wave harmonics due to

imperfect paddle motion and shallow water effects. Savell (1986) discusses these points in

some detail.

The Fourier series representation of the free stream velocity signal is given by the following

expression:-

uo(t) = ao + t[ak co_( 27tkx) + bk si-( 27tkx)]
2 k e l \2n + 1 1\2n + 1

where 30,~and bk are coefficients and are determined by the formulae:-

(7.1a)

2 20

a, = (2n+ 1)t;f(xJ (7.1b)

2 20 {27tkx.)ak = ( )Lf(Xj)co __ I ,k = 0, 1, 2, ,n
2n + 1 i=O 2n + 1

(7.1e)

2 20 .{27tkx.)b, = ( ) Lf(xJSl __ I ,k = 0, 1, 2, ,n
2n+ 1 i-O 2n+ 1

and f (x) is the function, that is, the free stream velocity, uo(t). For further details see

(7.1d)

Newland (1984).

Comparison of the two-layer model with the Reynolds stress measurements would appear to

be less satisfactory, generally showing significant scatter (Figure 7.5). Whilst, overall, the

model predicts the main trend, at first sight the agreement with the laboratory data is less

convincing. Savell (1986) suggests that a possible reason for this large scatter in the

laboratory data may be due, in part, to not taking a sufficiently long measurement period. In

addition, the Reynolds stress is a product of two inaccurate measurements (u', w'] and must,

therefore, be considered as being less reliable. However, it should be remembered that whilst

the two-layer model calculates the shear stress as a combination of turbulent eddy viscosity

and kinematic (molecular) viscosity, the measured values are only based on the turbulent
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fluctuations and not the total shear. This difference is clearly shown in Figure 7.6 where

model results are presented for the total shear (molecular viscosity and Reynolds stress) and

for the Reynolds stress alone, that is:-

au
'tTotal = 'tViscous + 'tTurbulent = PVL Oz +pu'w' (7.2)

Accounting for the measurement height in the data but calculating the total shear, the

maximum measured 'bed shear velocity' is seen to be approximately four times smaller than

that predicted by the model. However, once the influence of molecular viscosity is removed

from the model, the comparison between measured and modelled shear stress shows a much

more reasonable fit (Figure 7.6). Figure 7.6 also shows the calculated total shear stress at the

measurement height compared with the 'true' calculated bed shear velocity, this 'true' bed

value is calculated at Zo = 0.035 mm and the lowest measurement point is at 0.73 mm.

Comparison between the total stress values calculated by the model for the true bed value and

that corresponding to the lowest measurement point show a phase shift, whilst the actual

magnitudes are little altered. The phase lead between the maximum bed shear stress and the

maximum free stream velocity is approximately 36°.

A comparison of the two layer model with the measured turbulent kinetic energy profiles

shows significant scatter, Figure 7.7. It is difficult to assess whether the overall trend is well

predicted by the model since it is not that clear from the laboratory data what the actual trend

is. For some of the phases a higher level of turbulence is observed outside the boundary layer,

whilst the model shows a decrease. The reduction in the measured values close to the bed is

reflected in the model results indicating the effect of the laminar wall layer damping out the

turbulence.

7.3 Test 59: Combinedwavesand current

The general test conditions for test 59 are shown in Table 7.1. Figure 7.8 shows a comparison

between a two-layer k-e model, a high-Reynolds number k-e model and velocity data from

test 59. The two-layer model is unable to reproduce the increase in the wave boundary layer

thickness due to the addition of a current (compare with Figure 7.3 for test 52). It is the high-
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Reynolds number model which now provides a better description of the laboratory data.

Clearly, the interaction of the waves and current increases mixing within the wave boundary

layer. The addition of the current has clearly increased the turbulence production. Savell

(1986) argues that the adding of the current makes the boundary layer turbulent.

Figure 7.9 shows a comparison of the measured free stream velocity and that calculated by

the model. It is observed that the profile is not symmetrical with the wave crest being much

sharper than the trough.

Figure 7.10 shows a comparison of the shear stress values calculated by the high-Reynolds

number k-s model against the laboratory data. Whilst there is considerable scatter, the overall

agreement appears reasonable, although there appears to be a phase error with one of the data

sets (Figure 7.1Oc). The model predicts a much sharper decrease in the shear stress outside the

boundary layer than does the experimental data. Initially, it was thought that this was due to a

coding error in the model, but on further examination this was eliminated.

The model assumes that the flow is uniform in the direction of the flow. However, this is not

true and the near-bed velocity variation must be changed from Eq. (2.29):-

uo = u'" sin(rot) (2.29)

and represented now by the equation:-

u, = u'" sin(rot - kx) (7.3)

where k (= 21tIL) is the wave number and L is the wavelength.

The result of this change is to lead to the creation of a vertical flow velocity, which is small

compared to the orbital velocities. The additional vertical velocity outside the boundary layer,

w'" , decreases through the boundary layer to a value of zero at the bed. The creation of this

small vertical velocity leads to a time-average term, u""w"" which is not exactly ninety

degrees out of phase and hence, non-zero. This means that an additional shear stress will be

induced, giving rise to a weak circulatory current. It is suggested that it is this phenomenon

which is part of the reason why there is a difference in the measured shear velocity outside

the boundary layer to that predicted by the model.
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Comparison of the turbulent kinetic energy results from the k-e model and those from test 59

reveal a similar tendency as that shown by the shear stress (Figure 7.11). The model

underpredicts the values of the shear stress and turbulent kinetic energy in the upper part of

the water column, showing a more rapid reduction than is observed in the experimental data.

A zero gradient condition has been applied as the upper boundary condition in the turbulent

kinetic energy equation (Eq. 4.41b) which may not be appropriate when a current is applied.

Therefore, providing a different boundary condition might also result in an improved fit

between the model and measured data. However, initial results applying a non-zero gradient

condition proved unsuccessful. Further work is required into both the effect of streaming (as

discussed above), as well as the type of upper boundary condition applied in the turbulent

kinetic energy equation. The experimental data shows large scatter as in the shear velocity

measurements.

7.4 Conclusions

Comparison of a two-layer k-e model and a high-Reynolds number k-s model against

laboratory experiments conducted at the University Manchester (Savell 1986) show the

importance of applying the correct model to the physics. For low Reynolds number flows, it

is essential to include the effects of molecular viscosity (Test 52).

The addition of a current to waves has been demonstrated to increase mixing within the wave

boundary layer and increase the wave boundary layer thickness. In addition, such increased

mixing leads to an increase in turbulence in the boundary layer.

It is suggested that the observed difference in magnitude of the shear stress and turbulent

kinetic energy outside the boundary layer between the model and experimental data is partly

due to streaming. The present models make no attempt to reproduce this phenomenon and it

has not been investigated further. In addition, it is not clear whether the boundary conditions

applied for the turbulent kinetic energy equation are sufficient to incorporate the effects of the

current.
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Figure 7.1: Schematic diagram of the wave/current flume at Manchester University. (After
SavellJ986).
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Figure 7.2: Cross-sections of the Manchester flume showing the normal construction (a.)
and the construction of the measuring section (b.). Both sections are 500 mm
wide and 450 mm deep (internal dimensions). (After Save//J986).
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Figure 7.10: Comparison of shear stress values from k-e model against laboratory data of

Savell (1986): 0 test 59, Savell;- k-e model.
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Figure 7.10(Cont.): Comparison of shear stress values from k-e model against laboratory

data of Savell (1986): 0 test 59, Savell; - k-s model.
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Figure 7.11: Comparison of turbulent kinetic energy values (k) from k-e model against

laboratory data of Savell (1986): 0 test 59, Savell;- k-e model.
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Figure 7.11(Cont.): Comparison of turbulent kinetic energy values (k) from k-e model

against laboratory data of Savell (1986): 0 test 59, Savell; - k-e
model.
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Chapter 8

Results: Part III

8.1 Randomwaveswithout current:

8.1.1 Introduction

This chapter presents the results of the work involving testing the two-equation random wave

boundary layer model against the laboratory experiments of Ostrowski (1993). The chapter

provides a brief description of the wave flume experiments before going on to describe the

results of the comparison between laboratory data and model.

8.1.2 Gdansk flume experiments

Ostrowski (1993) describes in detail a series of experiments carried out in the wave flume at

lBW PAN, Poland, see also Kaczmarek and Ostrowski (1995). The wave flume has the

dimensions, 0.5m in width, and approximately 20m in length and is equipped with a piston

wave-maker. The wave generator is programmable enabling it to generate irregular waves

that have statistical target properties. Figure 8.1 shows a flow diagram outlining a typical

approach for the preparation of the input signal to the wave maker in order to obtain irregular

waves of prescribed characteristics (see also Goda 1985 and Takayama 1990).

The experimental set up involved a bed slope of mean inclination 1:20 with an underwater

bar, see Figure 8.2. Measurements of the bed shear stress were carried out with a shear plate

located in the bed. The plate is sensitive to small shear forces whilst being resistant to any

vertical loading. The plate is buoyant and returns to its equilibrium position once the shearing

force is removed. The device was placed in a steel casing with a square hole on top exposing

the plate surface to the flow and allowing the shear stresses to act on the plate. The acting

stresses cause a displacement in the shear plate which is proportional to the shearing force.
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The relationship between plate displacement and the shear stresses was determined using

static and dynamic calibration. The calibration allowed for inertia, damping and resonance

effects. Further details including a discussion can be found in Ostrowski (1993).

The shear plate was positioned in the bed at a depth of 38.5 cm, between the toe of the slope

and the offshore bar, Figure 8.2. Within this zone no wave breaking took place. The active

surface of the plate was level with the bed surface. The plate displacement was videoed

through the glass wall of the flume at a frequency of 50 frames per second. Processing of this

data provided the bed shear stress time series at 0.1 s intervals.

In addition, the free surface elevation was measured using a wave gauge and the horizontal

velocity component was measured at several vertical points above the bed. The lowest

velocity measurement point was 1.3 cm above the bed and this was assumed to represent the

free stream velocity at the top of the boundary layer.

Three tests were performed for three different experimental conditions. The main parameters

are given in Table 8.1.

Test Number HI (cm) Tp (8) k, (cm)

1 12.5 1.5 0.52

2 18.9 2.0 0.13

3 16.8 1.5 0.23

Table 8.1: Basic test parameters at the measurement section for the three irregular wave
tests.

8.1.3 The numerical model

The boundary layer models developed for the present work are capable of reproducing results

of a given set of data in two different ways. Firstly, it is possible to drive the model using a

Fourier transformation of an actual velocity time-series. Alternatively, if a surface wave

spectrum exists for the measured data, this can be decomposed as described in Chapter 4, to

give a velocity time-series. The most important difference between the two methods is that
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the former reproduces the measured free stream velocity time-series exactly since this is used

to drive the numerical model. The latter method, however, generates a velocity time-series

which has the same parameters as that measured but does not necessarily provide a signal in

the sequence recorded. The latter method has the advantage of allowing the model to be run

for an indefinite period and not just for the length of the data set.

Firstly, the high Reynolds number k-s model was run using a Fourier series of the measured

data for the three separate tests; test 1,2 and 3, respectively. Taking the measured free stream

velocity and carrying out harmonic analysis on each of the three signals enabled time-series

to be generated that allowed a sufficient number of time steps to be used in order that the

turbulence model remained numerically stable. The results of these model runs are shown in

Figures 8.3 - 8.16.

Next, the model was run using the measured surface wave height spectrum for test 1. The

velocity time-series was generated using the method described in Chapter 4. The results of

this analysis are shown in Figures 8.17 - 8.21. For all the model runs, the empirical model

constants remained the same and the values of these are given in Section 4.3.6.

8.2 Results

8.2.1 Test1

Figure 8.3 shows the computed free stream velocity for the first 30 seconds of test 1. The

time-series was determined using Fourier analysis and provides the upper boundary condition

for the velocity in the model. Deviation from the original signal is negligible with a mean

error of only 0.26% between measured and computed values.

Figure 8.4 shows a comparison of the computed bed shear velocity against the measured

values. Whilst, overall, the model reproduces the trend of the measured data, there are

discrepancies between the two time-series. The model results show a greater level of

turbulent fluctuation than do the measured values. This is to be expected since the time-step

used in the numerical scheme is 6t = 0.00077 whereas, the laboratory signal was recorded at

6t = 0.1. The small time-step in the model is required for numerical stability. It is possible to
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'smooth' the computed values by increasing the interval between the time-steps at which the

model stores data to the hard drive or, for example, only plotting every fifth value. The

experimental shear velocity values were determined using a video camera to record the

displacement of the shear plate. The camera operated at 50 frames per second. After the

recorded data is processed the bed shear velocity time-series was obtained at O.ls between

sampling intervals. It is evident that the low sampling rate has dampened out much of the

turbulent fluctuation in the measured signal. In addition, whilst the main peaks in the

measured bed shear stress are reproduced quite well by the model, some of the smaller peaks

and troughs are not. It is possible that the experimental free stream velocity signal used to

drive the model is not as reliable as assumed.

The discrepancies between the computed and measured shear velocity signals are probably

due, in part, to the photographic method used to determine the shear plate displacement. The

measured velocity signal certainly suggests that the signal is being 'clipped' at the crests and

troughs. Unfortunately Kaczmarek and Ostrowski (1995) provide little information on the

calibration of the shear plate and so it is only possible to speculate as to the possible cause of

the difference in measured and computed values.

Figures 8.5 and 8.6 show time-series for the turbulent kinetic energy and isotropic dissipation

rate at the bed, respectively. It is not possible to compare these results to any experimental

values since no such measurements were undertaken.

The plot of the time-series for the bed turbulent kinetic energy suggests that the underlying

turbulence level is not constant, implying that, perhaps turbulence is carried over from one

wave period to the next. This point will be explored in more detail later in the chapter and in

Chapter 11.

The isotropic dissipation rate follows the same pattern as the turbulent kinetic energy but with

a greater magnitude. This is to be expected since the isotropic dissipation rate is related to the

square of the turbulent kinetic energy through the equation (see Chapter 4):-

k2
VI =cl1-

E
(4.24)
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There is no phase difference between the turbulent kinetic energy and the dissipation rate and

this can be deduced from Eq, (4.24).

8.2.2 Test2

Figure 8.7 shows the computed free stream velocity for the first 30 seconds of test 2. As for

test 1, the time-series was determined using Fourier analysis and provides the upper boundary

condition for the velocity in the model. Deviation from the original signal shows a mean error

of 6.46% between measured and computed values.

A comparison of the measured and computed bed shear velocity results for test 2 are shown

in Figure 8.8. Deviation from the measured signal shows a greater discrepancy than was seen

for test 1. Whilst the occurrence of peaks and troughs is reflected in the computed data, the

magnitude of these values compared with the measured shear velocity values is poor.

As previously, for test 1, the measured values for the shear velocity were determined using a

video camera. It is expected that the discrepancies between the measured and computed

values should be of a similar order as test 1. However, from a visual inspection, the

differences in peak values can be up to the order of 3 times the measured value compared

with order 2 for test 1. Clearly, the shear plate dampens out the higher frequency

displacements, whilst the model results allow for higher frequency turbulent fluctuations.

This is not sufficient to account for all of the difference. Kaczmarek and Ostrowski (1995)

make no comment on possible reasons for the poorer fit between the measured results and a

time-invariant eddy viscosity model. Test 2 has the largest peak period and significant wave

height of the three runs (see Table 8.1) and correspondence between measured and computed

shear velocity values is the worst. It is possible that the shear plate damps out more of the

turbulence when the peak wave period and significant wave height are increased. No surface

wave breaking was present in any of the experiments. Without greater information it is only

possible to speculate on possible causes. It is unknown whether the plate surface was

artificially roughened or left smooth. Again, this might be a possible cause for disagreement.
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Figures 8.9 and 8.10 show the computed bed turbulent kinetic energy and isotropic

dissipation rate for test 2, respectively. The observed carry over of turbulence from one half

period to another seen in test 1 appears present in the results of test 2. This matter will be

discussed later in the chapter.

The isotropic dissipation rate (Figure 8.10) follows the same pattern as the turbulent kinetic

energy but with a greater magnitude as for test 1.

Any real quantitative comparison between the computed results for the turbulent kinetic

energy and the isotropic dissipation rate and those present during the experiments is not

possible since no such measurements were undertaken.

8.2.3 Test 3

Figure 8.11 shows the computed free stream velocity for the first 30 seconds of test 3. The

time-series was determined using Fourier analysis and provides the upper boundary condition

for the velocity in the model as for the two previous tests. Deviation from the original signal

is negligible with only a mean error of only 0.72% between measured and computed values.

Figure 8.12 shows a comparison between the measured bed shear velocity and that computed

by the random k-e boundary layer model. Overall, agreement between the data is reasonable.

As in previous tests, the model results show a greater level of turbulent fluctuation than do

the measured values due to the time-step used in the numerical scheme.

The discrepancies between the measured bed shear velocity and the computed values are of a

similar order to test 1. The model has a tendency to underpredict the measured trough values

more than the crest values. Certainly, the models overprediction of some peak values could be

due to damping in the shear plate, however, the reason for underprediction is less obvious.

Figures 8.13 and 8.14 show time-series for the turbulent kinetic energy and isotropic

dissipation rate at the bed, respectively. As in the other experimental runs, it is not possible to

Modelling Random Wave Boundary Layers 159



Chapter 8 Results: Part III

compare these results to any experimental values since no such measurements were

undertaken.

The plot of the time-series for the bed turbulent kinetic energy, again, suggests that the

underlying turbulence level in not constant, indicating that, perhaps turbulence is carried over

from one wave period to the next in a 'cascade' effect.

8.2.4 Comparison between the k-e model and a time-invariant eddy viscosity model

Figure 8.15 shows a comparison between the random k-g model used in the present study, the

random time invariant eddy viscosity model of Kaczmarek and Ostrowski (1995) and the

measured shear velocity for test 1. Clearly, from a visual inspection of the data, the two

models provide very similar results. Both models underpredict many of the observed peak

trough values.

Kaczmarek and Ostrowski (1995) use the method of O'Connor et al. (1993) to provide the

surface boundary condition for the velocity. The hydrodynamic model is based on the two-

layer time-invariant eddy viscosity approach of Brevik (1981) for regular waves (see Chapter

3). Values for the representative shear velocity and boundary layer thickness are determined

using the momentum integral approach of Fredsee (1984).

Compared to the high-Reynolds number k-s turbulence model employed in the present study,

the model of Kaczmarek and Ostrowski (1995) is conceptually quite simple although the

analytical calculations are less straight forward. The results indicate a similar order of

accuracy for the two approaches. The disadvantage of the time-invariant model is that it is

incapable of providing a description of the turbulence.

8.3 Turbulent kinetic energy under random waves

As Figures 8.5,8.9 and 8.13 suggest, the underlying turbulence level grows and decays under

random waves. The assumption that has often been made in the past, for example Smith

(1977), that the turbulence does not carry over from one half period to the next appears to be
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incorrect. To explore this point in more detail, regression analysis was performed on the

turbulent kinetic energy profiles of all three experimental runs, to obtain the underlying trend

in the data. The results of part of this analysis are shown in Figure 8.16.

Figure 8.16a shows the turbulent kinetic energy profile at the bed for the first 15 seconds of

data for test 2. Imposed on the figure, is the result of a 6th order polynomial regression

analysis. It is clear from the results, that the underlying turbulence grows and decays. This

indicates that the turbulent kinetic energy does in fact get carried over from one half period to

the next.

Figure 8.16b shows the bed turbulent kinetic energy for 15 seconds of data for test 3. Again,

imposed on the figure is a 6th order polynomial regression fit. Similarly, the underlying level

of turbulence is seen to grow and decay with time.

The cascade of turbulence from one half period to the next could have significant

implications for sediment transport. Williams (1996) found from the analysis of suspended

sediment concentration measurements that there was a correlation between increased

concentration values and wave groups. It is hypothesized that this increased concentration is

in part due to the carry over of turbulence.

8.4 Spectral approach to generating time-series

Figures 8.17 -8.21 show the results from the two-equation k-s model run for the conditions of

test 1. The velocity time series was derived from the measured surface wave height spectrum,

see Figures 8.17 and 8.18. Comparison of the measured and computed spectra for the free

stream velocity shows good agreement, see Figure 8.20a.

The shear velocity time-series generated by the model is shown in Figure 8.19. A comparison

of the measured and computed bed shear velocity squared, U~b spectra is shown in Figure

8.20b. The correlation is reasonable.
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To investigate further the assertion that turbulent kinetic energy is carried over from one

wave period to the next, the time-series for k has been plotted with the corresponding surface

wave height time-series, Figure 8.21a. Figure 8.21b shows a section of the turbulent kinetic

energy time-series displaying the underlying trend calculated using a 6th order polynomial

regression fit. As previously, the underlying trend shows a growth in turbulent kinetic energy.

To obtain a more detailed insight into how the turbulent kinetic energy varies with wave

period, a single wave from the calculated surface wave height is shown together with the

corresponding k profile (Figure 8.21c). It is evident from the figure that the underlying energy

level is changing. For a monochromatic wave the turbulent kinetic energy profile is

symmetric and there is no carry over of energy from one half period to the next, see Figure

8.21d. Under random waves this is no longer the case and it has been shown that kinetic

energy does get carried over from one half-period to the next. Failure to account for this

effect in modelling of sediment transport under random waves will result in underprediction

in the concentration values. Methods such as those proposed by Smith (1977), assuming each

wave can be treated separately for irregular series are, therefore, incorrect, particularly for

fine sediment.

8.5 Conclusions

The numerical model has been used to compare three different random wave laboratory tests.

Unfortunately, the tests are limited in that full depth profiles were not measured and this has

limited the comparison with the model. In addition, it is arguable that, since no turbulent

quantities were measured then is it really necessary to use a two-equation model when maybe

a more simple zero-equation mixing length model would provide similar answers. Kaczmarek

and Ostrowski (1995) applied a simple time-invariant eddy viscosity model to the problem

and obtained similar results, to those obtained with a k-e model. A comparison is shown in

Figure 8.15

However, the comparison has been useful in that it has allowed the model to be tested against

controlled data and has been shown to give similar results to those measured. Further, whilst

the model should not be seen as giving 'the total truth', the model results do enable a
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researcher to look at the measured data and perhaps be able to interpret some of the trends

more easily as well as highlight possible errors in measurement (as was done in the CSTAB

project) in the same way that comparison of a model with data enables the reliability of the

particular model to be assessed.

The results of the random k-e model indicate that turbulence can be carried over from one

half wave period to the next, in a cascade effect. The effect appears to be more noticeable

under groups of large waves. The implication of this effect is that the previously adopted

approach, assuming random waves can be treated individually as monochromatic waves, (see

Smith 1977) is flawed. Failure to allow for the persistence of turbulent kinetic energy from

one half period to the next will result in the underprediction of sediment suspension,

particularly for fine sediment.

The random numerical boundary layer model has been run using an actual time-series as well

as with a time-series derived from a surface wave height spectrum. Good agreement with the

experimental results of Ostrowski (1993) has been found using both approaches. The

numerical model has been shown to perform well, although further testing with more detailed

experimental data is recommended.
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Figure 8.11b: Free stream velocity as given by the k-e model for test No.3.
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Figure 8.13a: Profile of the turbulent kinetic energy at the bed for conditions matching test
No.3, Kaczmarek and Ostrowski (1995); (-) k-e model.

OOOOr---------T---------~--------~--------_r---------T--------~--------~--------~

3000

1000

1000

1
1 1 1

- - - - - -,- - - - - - , - - - - - - T - - - - - -

1

I

1 1-----,------,------r------

1 1 1
- - -,- - - - - .,- - - - - - r - - - - - -

1 1 I-----,------,------r--

I I I I I I---,-- ---,------r------, ------,------,------r
1

1
I I I I-----r-----'------,------r-

Figure 8.13b: Profile of the turbulent kinetic energy at the bed for conditions matching test
No.3, Kaczmarek and Ostrowski (1995); (-) k-e model.

Modelling Random Wave Boundary Layers 175



Chapter 8 Results: Part III

2E+006

1.8E+006

.:i' 1.6E+006
.!!!!
N

El 1.4E+006
El._.
w 1.1E+006
S•.. IE+OO61:1c:o.~• 800000a.:a~ 600000....
t

4000001:1
fo;l

200000

I I---~-----~-----r-----r- ---~-----~-----~-----
I I I I I I

I
I I I I I I- - - - - - - - - - - - - ,- - - - - - ,- - - - - - - - -,- - - - - -,- - - - - -

I

I
I I , I I I I_____ L L L L L L L _
I I I I I I

I

I I
- - - - - t- - - - - - I"'" - - - - - t- - - - - - I- - - - - -1- - - - - -1- - - - - -1- - - - - -

I I I I I I I
I

- - - - - :- - - - - - :- - - - - - :- - - - - -:- - - - - -:- - - - - - - - - - - -,- - - - - -
I I

I I I I I
- - - - - ~ - - - - - ~ - - - - - ~ - - - - - I- - - - - -1- - - - - - 1- - - - - -1- - - - - -

I I I t
I

I I I I I I I
- - - - - r - - - - - r - - - - - ,-- - - - - ,-- - - - -,-- - - - -,-- - - - -,-- - - - -

I I I

I I I I I I
_____ L L L 1_ _ - - - ,_ - - - - - 1- - - - - _1- - - - - -

I I
I

16

Figure 8.14a: Profile of the isotropic dissipation rate at the bed for conditions matching test
No.3, Kaczmarek and Ostrowski (1995); (-) k-s model.
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Figure 8.14b: Profile of the isotropic dissipation rate at the bed for conditions matching test
No.3, Kaczmarek and Ostrowski (1995); (-) k-s model.
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Chapter 9

Results: Part IV

9.1 Multi-directionalseas

9.1.1 Introduction

In Chapter 9 the two-equation k-e turbulence model is configured to enable the study of wave

boundary layers in multi-directional seas through the use of field data. The field data was

collected as part of a European Communities funded research project, CSTAB, (see

O'Connor 1996). Up until this point, the turbulence models developed as a part of this thesis

have only been tested against laboratory data, although the oscillating tunnel data of Jonsson

and Carlsen (1976) and Jensen et al. (1989) is of prototype scale. As with all field data, the

difficulties of collecting information in such a harsh and uncontrollable environment, require

the instrumentation to be robust and, thus, relatively bulky. This hinders measurement in the

wave boundary layer due to the small thickness of the layer (typically 0.1 - 0.5 m). The data

sets are, therefore, limited in providing information for the near-bed region, with the lowest

measurement point 40 em from the seabed.

9.1.2 Background

The Circulation and Sediment Iransport Around Banks (CSTAB) project was designed with

the aim of obtaining a greater understanding of coastal hydrodynamic and morphodynamic

processes around offshore sandbanks. In addition, the effect of the sandbanks on the adjacent

shore was included within the study.

The CSTAB project was partially funded by the European Union and was conducted over a

three year period. The project was a continuation and expansion of a previous project

'Circulation and Sediment Transport on Sandbanks in European Shelf Seas' (LSB), both of

Modelling Random Wave Boundary Layers 184



Chapter 9 Results: Part IV

which were co-ordinated by Professor B.A. O'Connor, see O'Connor (1992). The main

objectives of the CSTAB project were.-

• To measure and model sandbank drag partitioning.

• To measure and model residual circulation and vertical flow structure around sandbanks.

• To determine and model the influence of offshore sandbanks on regional surface and

near-bed currents.

• To determine bed shear stresses and directions over the sandbank.

• To study interactions between coherent turbulent structures in the benthic boundary layer

with bottom sediments and to determine the incipient threshold in situ.

• To measure sediment transport pathways and magnitudes on the sandbank.

• To examine wave interactions with the sandbank and beach.

• To study beach hydrodynamics and interactions with offshore sandbanks.

• To determine sediment transport pathways and magnitudes inshore of the sandbank.

• To study coastal protection afforded by sandbanks in a storm.

The field data used in the present chapter was obtained during part of the offshore fieldwork

using the benthic boundary layer rig STABLE II (Sediment Iransport And Boundary Layer

Equipment), see Humphrey (1987). STABLE II measured the near-bed benthic turbulence

using electromagnetic current meters (ECM's). Further, STABLE II measured the suspended

sediment concentration using acoustic backscatter (ABS) probes as well as the tides and wind

waves using pressures sensors. The STABLE II rig was deployed in approximately 21m of

water over coarse sand with mega-ripples at the Northern end of Middelkerke sandbank.

STABLE II was deployed for approximately 60 hours from 25 - 28 February, 1993. During

the deployment 58 burst measurements were obtained. Each burst record is of about 20

minutes duration and was recorded every hour.

9.2 Field data

The offshore field work was undertaken by the Proudman Oceanographic Laboratory. The

deployment of STABLE II coincided with a moderate storm which generated significant
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wave heights (Hs) of approximately 3 m, see Figure 9.1. The location of STABLE II in

relation to Middelkerke sandbank and the coastline is shown in Figure 9.2.

The STABLE II rig is a tripod frame capable of deploying a range of instruments, Figure 9.3

(see also Humphrey 1987). For the fieldwork campaign in the CSTAB project the boundary

layer rig was equipped with four ECM torroidal open-headed current meters (Valeport series

2000) mounted in two pairs at 80 cm and 40 cm above the seabed. The arrangement of the

ECM's was such as to allow each meter to measure two components of the instantaneous

near-bed flow in orthogonal vertical planes (x-z, y-z). In addition to these ECM's, were four

rotary current meters, located at 91 cm, 73 cm, 55 cm and 37 cm above the seabed on a

vertical support at the centre of the rig; two acoustic back-scatter (ABS) suspended sediment

probes (operating at I MHz and 2.5 MHz) covering the lower 1.2 m of the water column; two

pressure transducers at 1.69 m above the seabed (Digiquartze) to measure water levels and

wave heights; and a compass together with pitch and roll sensors to record the rig attitude.

The four rotary current meters measured average (1 minute) velocity profiles, eliminating

high frequency velocity components and allowing the study of tidal flows. The data was

measured at 8 Hz except in the case of the ABS sensors which measured at 4 Hz. The ECM's

ABS probes and the wave sensors sampled in burst mode recording for 20 minutes every hour

as described above.

9.3 Model results

In order to operate the IDV k-e boundary layer model, it is necessary to determine an

appropriate value for the bed roughness ( Zo) at the field site. The model uses the field data as

an input and, therefore, calculates the bed roughness by trial and error. STABLE II measured

the velocity at 80 cm and 40 cm above the seabed. The velocity at 80 cm is used to represent

the free stream velocity within the turbulence model. The calculated and observed velocities

at 40 cm are then compared and z, is adjusted until a reasonable match between the

velocities at 40 cm is found. The suitability of such a method will be discussed later in the

current chapter. The data used in Chapter 9 is for burst 37. Table 9.1 shows general values

calculated from the field data (Williams 1997).

Modelling Random Wave Boundary Layers 186



Chapter 9 Results: Part IV

Figures 9.4 and 9.6 show the computed velocity profiles at 80 cm above the seabed for the u

and v components, respectively. The model uses a Fourier series (800 components for the

length of series shown in the figures) to represent the field data at 80 cm. The method is

identical to that outlined in Chapter 7 and will not be discussed further. The mean differences

between the computed time-series and the measured time-series at 80 cm are 2.05% and

0.693% for the u and v components, respectively. The total record length for burst 37 is

approximately 1200 seconds, though in the present work only the first 200 seconds of data are

shown.

Burst 37

Depth, D (m) 20.61

Significant wave height, H, (m) 2.7913

Peak Period, T, (s) 7.9814

Mean velocity, u40(cm/s) 4.11

Mean velocity, v40(cm/s) 34.13

Current speed, S40 (cm/s) 39.54

Current direction at 40 cm (degrees) 208.67

Mean velocity, Uso (cm/s) 4.32

Mean velocity, VgO (cm/s) 42.4

Current speed, S80(cm/s) 46.61

Current direction at 80 cm (degrees) 211.72

Table 9.1: General parameters for burst 37.

Figures 9.5 and 9.7 show the comparison between the measured and computed velocity

components, u and v at 40 cm above the seabed, respectively. The time-series for the

horizontal velocity component, u, is well reproduced by the k-e model although, in places,

the model tends to underpredict the peak velocities whilst overpredicting the minimum values

(Figure 9.5). The horizontal velocity component, v, shows more variation between the

measured and calculated values. In Figure 9.7 the model is seen to overpredict peak velocities

whilst underpredicting the minimum velocities in the y-direction.
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Comparing both the measured and model velocities at 80 em and 40 em above the seabed

reveals relatively small variation between the time-series with height (z-direction). The

greatest variation is seen in the y-direction (Figures 9.6 and 9.7). This suggests that finding a

suitable Zo value by matching the calculated velocities at 40 cm with the measured values is

not that sensitive and ideally more than two measurement points in the vertical would ensure

greater accuracy, particularly if one of the points was within the wave boundary layer. The

value of za' the apparent bed roughness calculated in the present results is za :::::1.7cm. This

value is slightly larger than some values suggested for bursts 25, 35 and 39 in earlier work (8

- 14 mm, O'Connor et al. 1994). z. relates to the roughness height in the case of combined

waves and current whilst z, relates to the bed roughness in the absence of currents. The

method of fixing the bed roughness based on velocity profiles at two different points is

somewhat questionable. Not only is the method sensitive to the location, with depth, of the

two points, but the method of fit must also be doubtful due to the model formulations.

Chapter 6 showed a comparison of three different turbulence models against the data of

Jonsson and Carlsen (1976). The three models compared were a simple zero-equation, mixing

length model, a one-equation, k model and a two-equation, k-s model. From the results

shown in Figure 6.4 it is clear that the mixing length model fails to provide a good fit to the

data outside the near-bed region whilst the higher-order models provide good agreement,

overall. To use the output of a model at two different levels, adjusting the mean of the lower

level until a fit is obtained, when the model itself appears incapable of providing the correct

profile makes the use of such a method suspect. If a model produces a reasonable

representation of a measured time-series at one level, but produces a mean error of, say, 20%

at the second level, adjusting the model to fit a measured time-series at this second position is

clearly going to lead to further errors and, hence, an incorrect estimate of the bed roughness.

It is suggested that the differences between the za values calculated by O'Connor et al.

(1994) and the present work are possibly due to errors in the numerical techniques applied,

since the O'Connor et al. use a zero equation, mixing length model to obtain their results.

Figures 9.8 and 9.9 show the bed shear velocity for the x- and y-directions respectively.

Whilst a direct measurement of the bed shear velocity was not made, Williams (1996) has
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estimated a mean value of the bed shear velocity for burst 37 using two different methods.

Williams determined the shear velocity using the Reynolds stresses (RS) and turbulent kinetic

energy (TKE) methods.

Williams (1996) defines the RS method as:-

't (-2 -2 )OoS
ij~ = P = u'w' + v'w' (9.1)

and the TKE method by the equation:-

~ =.: =O.l9(E)
P

(9.2)

and

(9.3)

where E is the turbulent kinetic energy and er;!, er~ and er~ are turbulent variance values for

tidal flow in the absence of waves (see Williams 1996 for further details). The constant of

proportionality (0.19) is given by Soulsby (1983).

Burst 37 0. (emls) 0. (emls)

z=80 cm z=40 cm
TKE 4.19 2.85

RS 2.87 1.68

Table 9.2: Estimated shear velocity values for burst 37 using the TKE and RS methods.

(After Williams 1996).

From the model results, the mean bed shear velocity is approximately 4.14 cm/so Comparing

the computed value with the measured values gives differences for the TKE method of

between 1.2 - 44.3 % and between 45.3 - 146.4 % for the RS method. Williams (1996)

suggests that due to inter-wave period misalignment of the ECM sensors relative to the mean

flow streamline and to period asymmetrical near-bed wave-induced flow caused by tidal
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current interaction, the TKE method provides more reliable results. The computed mean bed

shear velocity would appear, therefore, to be reasonable estimate.

Using the logarithmic profile method provides a third, if less reliable, method for estimating

the bed shear velocity. The logarithmic velocity distribution is assumed to be given by the

equation:-

(9.4)

where K is the von Karman constant; U. is the bed shear velocity; and S is the turbulent mean

current speed at a given height z.

Using the logarithmic profile method gives a value for the measured mean bed shear velocity

of 4.08 cmls. The assumption of a logarithmic distribution of mean velocity with height has

been shown to be valid for combined wave-current flows by Kemp and Simons (1983).

However, changes in bed elevation occurring during the measurement period could not be

directly related to the relative sensor positions. Further, variations due to stratification, bed

roughness and waves will produce errors in estimates made using the logarithmic profile

approach. Nevertheless, the computed value for the mean bed shear velocity appears

reasonable, on the basis of the above, and suggests that model values can be viewed with

some confidence.

Figure 9.10 shows the calculated turbulent kinetic energy, k, at the seabed as a time-series for

the first 200 seconds of the burst record. No measurements of k at the bed exist, so

comparison is not possible.

Figure 9.11 shows the calculated turbulent kinetic energy at 40 cm and 80 cm above the

seabed. Surprisingly the time-series are quite 'linear'. The results show the turbulence to be

decaying quite rapidly from the bed. It is possible that the gradient condition at the upper

boundary, 8k/8z = 0, employed by the model is inadequate when currents are applied (that

is, 80 cm above the seabed) and thus forcing the turbulent kinetic energy profile to conform.

Modelling Random Wave Boundary Layers 190



Chapter 9 Results: Part IV

It would, perhaps, be more appropriate if the model could be run at full depth (~ 21m) which

would allow the turbulent kinetic energy profile to adjust more gradually.

Comparison of the monochromatic version of the k-s model and test 59, from the experiments

conducted at Manchester University (see Chapter 7) showed a failure of the model to

correctly predict the turbulent kinetic energy outside the boundary level. It has been

suggested that this might be due to streaming (mass transport effects) but further work is

required to study this. The model values outside the wave boundary layer must, at present, be

viewed with caution for conditions including waves and currents.

Figures 9.12 and 9.13 show the corresponding time-series for the isotropic dissipation rate, e.

The values follow a similar trend to those of the kinetic energy, although with greater

magnitude. This is to be expected since s is a function of k to the power of 2.

Figure 9.14 shows the turbulent kinetic energy at the bed together with the results of a

regression analysis of the signal, calculated using a 6th order polynomial fit. As was observed

in the model results for turbulent kinetic energy obtained for the Gdansk flume data, the

underlying turbulence structure grows and decays.

Figure 9.15 shows the velocity profile with depth as predicted by the model. The results show

a sequential record for three different instances in time. The results suggest veering in the

horizontal velocity from the current direction, as demonstrated by Davies et al. (1988).

Coriolis effects are not included in the model formulation (Soulsby and Humphrey 1990

observed some veering in their field measurements and attributed the effects to the tidal

dynamics). Veering is caused by the generation of very different levels of turbulent kinetic

energy in corresponding half wave periods. In the case of co-linear waves and currents, there

is a tendency for the mean flow to be retarded more in the half cycle in which the current and

the wave velocities are in the same direction than in the half-period in which they are

opposed. This results in a veering of the mean flow within the wave-current boundary layer

away from the direction in which the waves and current compliment each other. In addition,

the effect of the cascade of turbulence caused by the random nature of the waves could well

enhance this effect. This point requires further study.
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9.4 Conclusions

The model has been run using the horizontal time-series for the measured u and v velocity

signals at 80 cm above the seabed. Using a Fourier series, as in Chapter 7, it has been

possible to recreate the measured signal, enabling the numerical model to be used to compare

the field data and computed results. The results suggest that the random wave boundary layer

model is capable of providing a reasonable description of multi-directional sea states.

Results suggest that the method proposed by O'Connor et al. (1994) for finding the bed

roughness, by calculating the mean velocity at one level and adjusting the parameter, zo' in

the numerical model until the mean velocity corresponds to the mean measured velocity at

the same level, is questionable. The method has been found to be highly sensitive to the

location above the bed of the measured data, and it has been argued, to the numerical model

used.

The computed mean bed shear velocity was found to correspond favourably with those values

estimated from the measured data. The computed value of 4.14 cm/s showed good agreement

with the measured values obtained using the TKE method (4.19 cm/s) and the logarithmic

profile method (4.08 cm/s).

The carry over of turbulent kinetic energy obtained by the numerical model against the

random flume data of Ostrowski (1993) was observed in the model results for burst 37. In

addition, it is suggested that the cascade of turbulent energy from one half-period to the next

might enhance the veering effect observed in wave-current interaction, for example Davies et

al. (1988).
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Chapter 10

Moveable Bed Model

10.1 Moveablebed roughness

The seabed is generally never flat and is more likely than not to be covered by bedforms

which vary in shape and size. These sediment structures can be variations due to bioturbation,

ripples, sand waves, bars, or sandbanks. The large structures such as sandbanks, sand waves

and bars can have a significant effect on the flow pattern, causing refraction, diffraction or

wave breaking. The small scale features such as ripples can have a significant effect on the

boundary layer structure and the associated near-bed turbulence.

It is these small scale features that are of interest in the present work and the effect that a

changing boundary shape has on the bed boundary layer under regular and random waves.

In coastal shelf seas, wind generated waves are subject to the effects of the seabed. The main

effects are due to bed friction, shoaling and wave refraction. An assumption that the flow

field is inviscid throughout the depth accounts for the latter two effects. The bed friction is

due to the no-slip condition at the seabed. Close to the bed a thin boundary layer is formed

where energy dissipation can be significant.

The hydrodynamics of such flows have been discussed and investigated in the earlier chapters

of this thesis. The models developed within have enabled these processes to be estimated with

a certain amount of confidence. Using such models it is possible to relate the bed shear stress

to the near-bed velocity through the use of a friction factor. For fully rough turbulent flows

the friction factor is dependent on the relative roughness of the bed alone.

The relative bed roughness is defined as the ratio of the length scale of the near-bed wave

orbital velocity to the length scale of the bottom roughness. This assumes that the bed
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geometry can be represented by a single length scale. For a flat sediment bed the roughness is

assumed to be a function of the grain diameter.

Iwagaki and Kakinuma (1963; 1967) investigated transformation of waves as they

approached the shore at several sites off the Japanese coast. Using the measured field data

they estimated the bed friction factor and found it to be larger than those that could be

expected from a flat bed. Similar findings have been presented by Treloar and Abernethy

(1978) for field measurements taken at Botany Bay, Australia. These increased friction

factors are due to the presence of bedforms increasing the resistance to the wave motion.

By developing a model to attempt to reproduce the formation of such bedforms for a

cohesionless sediment it is intended to try to provide a better description of the bed roughness

primarily within the random boundary layer models.

10.2 Friction factor under oscillatory waves over a fixed horizontal bed

10.2.1 Introduction

Early experimental and theoretical work investigated the effect of oscillatory flow over flat

beds as well as ripples and artificial roughnesses. Some of these studies included

investigating the effect of energy dissipation caused by the bed, for example Bagnold (1946);

Jonsson (1963); Carstens et al. (1969); Kamphuis (1975) and Lofquist (1981). A brief review

of part of this work has been given in Chapter 3.

Over the last few decades the effect of wave height attenuation due to energy dissipation

taking place at the seabed has become researched in more detail and to place the present work

in context a brief overview will be given.
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10.2.2: Friction factor formulae

Lamb (1932) provided an analytical solution to the equations governing laminar oscillatory

flow. This has been presented elsewhere within this work (see Chapter 3 and Appendix D).

Jonsson (1967) has shown that for laminar boundary layers, the friction factor, fw' is only

dependant on the amplitude Reynolds number such that:-

2
f =-
w JRe (10.1)

where Re = uoa / v and where the friction factor, fw has been defined by the equation:-

(10.2)

and u.m is the maximum shear velocity at the bed and UOm is the maximum near-bed orbital

wave motion, Figure 10.1.

Jonsson (1963; 1967) suggested using the integrated momentum equation to obtain an

expression with which to evaluate the friction factor. Jonsson assumed a logarithmic velocity

profile to extend to the free stream velocity. For rough turbulent flow Jonsson obtained the

semi-empirical relationship:-

1 1 a
4 f£ + log., I? = -0.08 + log., -
" Iw 4" fw k,

a->157
ks

(10.3)

where a is the orbital wave amplitude and k, is defined as previously and is the Nikuradse

equivalent roughness.

Jonsson chose to ignore the phase differences between the maximum shear stress and

maximum free steam velocity in deducing this expression.

Similar expressions for wave friction factor were derived by Kajiura (1968) for both smooth

turbulent and rough turbulent flow. Kajiura used a drag coefficient, C, which was equal to

half that of Jonsson's friction factor, fw. For rough turbulent flow Kajiura proposed the

equation:-
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1 1 a
~ + log., ~ = -0.253 + loglo-

4.07...;Lw 4v fw k,

Swart (1974) proposed an approximation to Jonsson's expression (Eq. 10.3) that allowed fw

(10.4)

to be calculated directly and is given by the expression:

~ = ex{5.21{:.fl9< -5.977]
Kamphuis (1975) suggested a slightly different empirical relationship to that of Jonsson

(Eq. 1003)based on the results of experiments carried out in an oscillating water tunnel. The

(10.5)

expression was determined as a best fit through the data points and is given by the equation:

1 1 4 a
~ + log., ~ = -0.35 + -IOglo-

4...;fw 4...;fw 3 k,
a
->157
ks

(10.6)

For the range, a/ks :5; 100, Kamphuis proposed a simple empirical expression for the

friction factor.

(10.7)

In the original paper the power term, 0.75, is missing a minus sign.

Myrhaug (1989) proposed empirical expressions for the friction factor for rough, smooth and

transition from smooth to rough turbulent flow. The expressions were similar in form to that

of Jonsson (1963; 1967) and Kamphuis (1975). Myrhaug, like Jonsson, disregarded the phase

lead of the bed shear stress over the free stream velocity in deriving his expressions. For

rough turbulent flow Myrhaug proposed the equation:-

1 1 a
4.07 'f + log., re = 0.256 + log., -

vLw 4vfw k,
(10.8)

More recently, You et al. (1991) proposed a simplified expression for the wave friction factor

based on an approximation of an implicit formula which they also developed. Their

simplified formula is given as:-

fw = 0.108(~) -0.343 ~ ~ 35
ks ks

All these various expressions are plotted In Figure 10.2. Whilst Figure 10.2 shows

considerable agreement amongst many of the empirical expressions developed for the wave

(10.9)
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friction factor, the figure also shows significant variation. Alternately, it is possible to

calculate the wave friction factor using a theoretical approach. The models developed and

described within the present work allow the bed shear stress to be determined and hence the

wave friction factor (see Figure 10.3).

It should be noted that Jonsson (1963; 1967) proposed that the wave friction factor be

considered a constant when the relative roughness, a/ks is less than unity. Jonsson based his

derivation of Eq. (1003) on the assumption that the physical scale of the bed roughness, k, is

much smaller than the thickness of the wave boundary layer. This is one of the criteria for

horizontal uniformity in the boundary layer since any disturbances due to the individual bed

roughnesses should be confined to a layer considerably thinner than that of the boundary

layer itself.

Based on the experimental data of Bagnold (1946), Kajiura (1968) suggested that a constant

value for the wave friction factor of 0.25 should be used for the following relative roughness:-

_!_ < 1.67
ks

Jonsson (1976a; 1980) proposed that a constant value of 0.30 for the wave friction factor be

fw = 0.25 (10.10)

used when:-

a
-<157
ks

As Kajiura (1968), Jonsson based this value on the experimental work of Bagnold (1946).

t:v = 0.30 (10.11)

Grant and Madsen (1982) also suggested that the wave friction factor be considered a

constant when a/k, is less than unity. However, recent measurements by Sleath (1985) over

rippled sand beds have given values for the energy dissipation factor, fe in excess of 0.5 and

more recently, Simons et al. (1988) measured values of fe much greater than 1.0.

The assumption that the friction factor remains constant at low values of relative roughness,

a/k. has generally been based on measurements such as those of Bagnold (1946). Kyriacou

(1988) found that for 0.7 s waves the wave friction factor continued to increase with
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decreasing values of ajks(see Figure 10.4). Sleath (1984) suggested that as the relative

roughness approaches zero, the wave friction factor varies as:-

(10.12)

Sleath reasoned that Bagnold's experiments showed the friction factor to be constant at small

values of ajks because it was the energy dissipation that was measured and not the friction

force. Since the pressure force dominates the bed friction at low values of a/k, and does not

contribute to the energy dissipation, Sleath argued that such a deviation is not surprising from

the trend shown in Figure 10.4.

10.2.3: Energy dissipation factor

The energy dissipation factor, fe was defined by Jonsson (1967) through the equation:

DE = 3~ pfe(amf (10.13)

and

(10.14)

However, different researchers have all used different definitions and terminology and care

should be taken in relating them to the definition given above (e.g. see Nielsen 1992).

The wave friction factor and the energy dissipation factor, fe are related differently

depending on which definition is used. However, since experimentally, there is large scatter

in the measurements made of both factors over natural sand beds, it is generally assumed that

fw and fe are equal.

There is quite a large variation in the range of measured fe values. In the laboratory the

values found by Bagnold (1946), Carstens et al. (1969), Sleath (1985), Lofquist (1986) and

Kyriacou (1988) vary between 0.03 and 15.8 whilst field measurements by Iwagaki and

Kakinuma (1963; 1967) and Treloar and Abernethy (1977) have yielded values in the range

0.02 to 2.32.
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Finally, the above list of expressions for wave friction factor is not exhaustive. Other

expressions not shown are those of Grant and Madsen (1979), who derived an equation based

on a linear eddy viscosity model and Nielsen (1992), who proposed an adjustment to Swart's

formula (Eq. 10.5).

10.3 Energy dissipation over fixed ripples

Bagnold (1946) and Sleath (1985) measured energy dissipation over beds consisting of fixed

artificial ripples. Bagnold oscillated a tray covered with artificial ripples in a tank of still

water. Sleath (1985) also oscillated a tray covered in artificial roughness elements (fixed

ripples and fins, see Sleath 1985 for further details) in a tank of still water.

Sleath's ripple profiles were sinusoidal in shape with a wavelength of 7.3 cm and ripple

height (crest-to-trough) of 1.7 cm. In contrast, Bagnold used a series of circular arcs with a

sharp cusp at the crest. Sleath chose a different ripple profile to that of Bagnold because he

suggested that the sharp crests of Bagnold' s ripples caused vortex formation even at low

Reynolds numbers. Sleath wished to investigate a profile that would produce vortices at high

Reynolds numbers but which didn't force vortex formation at lower values of Reynolds

number.

The purpose of using the data of Sleath and Bagnold in the present work is that this data can

be used to attempt to establish a relationship between ripple geometry and the bed roughness

due to the bedform.

Various relationships have been suggested for the equivalent roughness due to bedforms.

Generally, it has been assumed that the roughness due to the bedforms takes the form:-

(10.15)

where k, is the Nikuradse equivalent roughness and IJ.is the ripple height.

Kajiura (1968) suggested that the Nikuradse equivalent roughness be given by the equation:-

ks = 4IJ. (10.16)
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Assuming that the energy dissipation factor is equal to the wave friction factor on the basis

that the experimental scatter of one or the other term is significantly large, then it is possible

to use an expression for wave friction factor and calculate a corresponding roughness value.

Figure 10.5 shows a plot of the ratio of equivalent roughness to the ripple height as a function

of the energy dissipation factor. The roughness value was calculated using the wave friction

factor expression of Swart (1974), Eq. (l0.5). 80% of the points lie between 1 and 4 ripple

heights. Using the wave friction factor expression of Jonsson (1963) gives just over 50% of

the points falling between 1 and 3 ripple heights with no points beyond 3 ripple heights.

Clearly, how the roughness is determined, that is, which expression is used, will affect what

constant of proportionality is chosen.

Alternately, Grant and Madsen (1982) suggested that the equivalent roughness due to

bedforms be represented by both their height, /!, and wavelength, A, and proposed the

relationship:-

112koc-
S A (10.17)

Figure 10.6 shows a plot of relative ripple roughness as a function of energy dissipation

factor. As previously, Swart's wave friction factor expression was used to calculate the

relative roughness. The data shows a range of values for the constant of proportionality in Eq.
(10.17).

In both Figures 10.5 and 10.6 a greater amount of scatter is observed with the data of Sleath

(1985). As mentioned earlier in Section 10.3, Sleath's ripples were sinusoidal and enabled

him to investigate a profile that would produce vortices at high Reynolds numbers but which

didn't force vortex formation at lower values of Reynolds number. Sleath found that the low

values of energy dissipation factor (and hence, of kJIl) occurred during the transitional

stage from laminar to turbulent flow, when vortex formation was just starting. Sleath (1985)

argued that this transitional stage was less apparent in the data of Bagnold because of his

sharp crested ripples causing flow separation even at low velocities.
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Equilibrium ripples formed under monochromatic waves are sharp crested with slopes of

approximately 30°. They therefore resemble more the profiles of Bagnold than of Sleath,

though they cannot possess the sharp edge of Bagnold's artificial ripples.

The high-Reynolds number k-s model was run for the laboratory conditions of Bagnold

(1946) and Sleath (1985) and the energy dissipation factor and wave friction factor calculated

for each fixed ripple test. The bedform drag was assumed as 4~ in the model. The results are

shown in Figures 10.7 and 10.8. The results are disappointing, with the results of Sleath lying

above and below the line x = y (Le. calculated energy dissipation factor = measured energy

dissipation factor) and Bagnold's results lying considerably below the x = y line.

The plot of calculated friction factor against measured energy dissipation factor (Figure 10.8)

indicates the relatively small difference between friction factor and energy dissipation factor

(compare with Figure 10.7).

The reason for the results ofSleath (1985) falling both above and below the x = y line is that

the model over predicts the energy dissipation factors for those measured values calculated

during the transitional stage from laminar to turbulent flow. This should be expected since the

flow conditions are outside the valid range of the high-Reynolds number k-e model. For such

flow conditions a low-Reynolds number k-e model or two-layer k-s model should be applied.

However, the reason why all the results of Bagnold and some of the results of Sleath are

underpredicted by the k-E model is less clear. This point will be returned to later in this

chapter.

10.4 Energy dissipation over a moveable bed

The fixed bed tests of Bagnold (1946) and Sleath (1985) were used in an attempt to assess the

most suitable expression for the form drag of ripples. These tests used a smooth surface for

the ripples unlike real sand ripples which have a rough surface. The advantage of the fixed

bed tests is that the specific gravity of the sand, s, the grain diameter, dso, and acceleration

due to gravity, g, are not present, reducing the problem to just the form drag.
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The simultaneous measurement of energy dissipation over moveable sand beds and ripple

geometry has only been undertaken by a limited number of researchers. The earliest

experiments were conducted by Carstens et al. (1969). Carstens et al. performed a series of

tests in an oscillating water tunnel measuring ripple geometry. In addition, in some of these

tests the energy dissipation was also calculated.

The oscillating water tunnel consisted of a test section approximately 3 m in length, 30 cm

high and 1.22 m wide. In the central section the floor was depressed to form a container for

the sediment. The dimensions of this container were 1.82 m long 1.22 m wide and 10 cm

deep (See Carstens et al. 1969 for further details).

Carstens et al. (1969) used three different sands, the properties of which are given in Table

10.1.

Sand Mean grain Specific gravity, s
diameter, dso (mm)

Ottawa (Banding) 0.190 2.66
Glass beads 0.297 2.47
Ottawa (Flint shot) 0.585 2.62

Table 10.1: Properties of the material used in the experiments of Carstens et al. (1969).

Carstens et al. (1969) performed a series of tests using the three sizes of bed material in what

were essentially duplicate tests. For all the experiments the period of oscillation was held

relatively constant at approximately 3.6 s, whilst the orbital amplitude of the water motion

was varied. A flat bed was an initial condition in all the runs. Carstens et al. split their study

into four main topics: incipient motion, evolution of a rippled bed, geometry of equilibrium

ripples and energy dissipation over rippled beds.

Carstens et al. measured the energy dissipation in the oscillating water tunnel by monitoring

the air pressure and the water level in the risers of the tunnel. They first calculated the energy

dissipation over a smooth bed, by covering over the sediment test section with an aluminium

sheet (see Carstens et al. 1969 for details). From the series of smooth bed experiments they
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fitted a calibration curve through the data giving energy dissipation and amplitude. The

calibration curve was then used to provide energy dissipation values to correspond to those

values obtained in the rippled bed experiments.

Wikramanayake and Madsen (1991) simplify the method used by Carstens et al. for

calculating the energy dissipation values. For the smooth bed experiments Wikramanayake

and Madsen denote the total energy dissipation in the tunnel by Eels' The total energy

dissipation consists of the dissipation due to the curvature of the tunnel and tunnel walls, Edt'

and the dissipation due to the smooth bed itself, Eelsb• Thus,

(10.18)

where a is the near-bed orbital amplitude.

Similarly the total dissipation for a rippled bed, Edr, is given by the equation:-

Edr{a)= Edt(a) +Edrb{a) (10.19)

where Edrbis the dissipation due to the rippled bed.

Subtracting Eq. (10.19) from Eq. (10.18) enables the dissipation due to the rippled bed to be

calculated:-

(10.20)

Taking the quantities on the right-hand-side of Eq. (10.20), the first term, Edr, is measured

during the rippled bed test, whilst the second term, Eds, is determined from the calibration

curve found from the smooth bed tests. The final term was neglected by Carstens et al. as

well as by other researchers (Nielsen 1983; Sleath 1985; Vongvisessomjai 1987).

Wikramanayake and Madsen (1991) argued that this term could be calculated by using the

friction factor for a smooth bed (Figure 10.1) and ignoring this term results in differences of

the order of 10%. Wikramanayake and Madsen use this approach to modify the measured
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values of Carstens et al. (1969) and it is these modified values that have been used in the

present work.

The other experimental data sets where simultaneous measurement of energy dissipation over

moveable sand beds and ripple geometry have been undertaken are those of Lofquist (1986),

Rosengaus (1987) and Mathisen (1989).

Lofquist (1986) measured the energy dissipation in a wave tunnel by means of pressure taps

at each end of the tunnel. Using the records obtained from the taps, Lofquist calculated the

instantaneous shear stress over the test section. Partitioning the tunnel longitudinally enabled

Lofquist to have a smooth bed and sand bed either side of the partition, respectively. This

allowed the sidewall effects to be taken into account.

In order that the pressure measurements could be taken, Lofquist found it necessary to limit

the number of ripple crests in the tunnel by fixing a rigid sand crest at each end of the tunnel.

This constraint affected the ripple wavelength and to avoid distorting the results, Lofquist

confined his flow conditions to those that gave ripple lengths identical to those observed with

no barriers present. Lofquist performed a few experiments with ripple profiles different to

those observed in an unrestrained test section to investigate the effect of distortion on the

energy dissipation.

Lofquist also investigated energy dissipation over growing ripples, recording ripple geometry

and energy dissipation at various stages of growth. Lofquist (1986) found that to increase the

ripple height by 1 cm required 30 to 100 wave periods. These results have not been used in

the present work.

Wikramanayake and Madsen (1991) describe, briefly, experiments performed by Rosengaus

(1987) and Mathisen (1989) in a wave flume to investigate energy dissipation, measured by

recording the change in wave height along the flume. Sidewall effects as well as effects of

non-linearity were taken into account by conducting a series of smooth flat bed tests. To this

author's knowledge, the experiments of Rosengaus and Mathisen are presently the only such

tests where the energy dissipation and bed geometry have been measured simultaneously
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under irregular waves. Wikramanayake and Madsen consider the two data sets as one since

both researchersused the same experimental equipment.

Figures 10.9and 10.10 show the calculated energy dissipation factor and wave friction factor

against the measured energy dissipation factor, respectively, for the data of Carstens et a/.

(1969), Lofquist (1986), Rosengaus (1987) and Mathisen (1989). As is clearly evident from

the figures, the model results underpredict the measured energy dissipation factors by a

considerable amount, over 80% in the worst case. A similar trend was observed when the

model results were compared with the fixed ripple tests ofBagnold (1946) and Sleath (1985).

It is necessary to ensure that, for the a flat bed, the turbulence models are performing

correctly. Friction factors for both the k and k-e models are plotted in Figure 10.3 alongside

the results of Jonsson and Carlsen (1976), Sleath (1987) and Dick and Sleath (1991). These

confirm that the models are producing reasonable values. The results of Dick and Sleath

(1991) were included since they represent a flat bed but under sheet flow conditions.

Figure 10.11 shows a plot of calculated wave friction factor against measured wave friction

factor for the data of Dick and Sleath. Whilst the results show the model to overpredict the

wave friction factor values in most cases, a linear fit through the points indicates that the

trend is predicted, though not the absolute values. Dick and Sleath (1991) calculated an

equivalent bed roughness on the basis of fitting logarithmic curves to their velocity

measurements. Their experimentally determined values of friction factor all lie below the

fixed bed curve of Jonsson (1963), see Figure 10.3. Dick and Sleath stated that the bed

roughness, and hence, the wave friction factor are increased when the bed is mobile. This

would seem to create a paradox, which they explain by reasoning that, although the wave

friction factor is increased, the value of the ratio of near-bed orbital amplitude to equivalent

roughness decreases at a greater rate. By compensating for the moving sediment in the

numerical model by representing the equivalent roughness in terms of an equivalent

roughness due to the grain as well as due to the moving sediment it is expected the model and

measured results should show reasonable correlation.
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Therefore, from the above it is argued that for flat beds, the numerical models can be used

with some confidence. It is now necessary to return to the problem of the poor model fit

against the measured energy dissipation factors over ripples. Based on the above and on the

fixed bed experiments of Sleath (1985) it is suggested that the important factor unaccounted

for in the k-e model is the production of vortices over the ripple. For those fixed bed tests of

Sleath (1985) where the flow was in transitional stage from laminar to turbulent the model

either underpredicted or predicted the measured values. The reason for underprediction has

already been discussed in Section 10.3. These experimental runs corresponded to negligible

or small vortex production. It is, therefore, hypothesized that to correctly predict the flow

over ripples using a 1DV turbulence model (Le. a point model through the vertical) such as

those described and used in the present work, it is necessary to account for vortex action. Use

of a modified equivalent roughness, such as 4 x the ripple height, is not sufficient to account

for the effect of vortex shedding.

In previous work to investigate sediment transport in steady flows using a two-equation k-s

model, Roisin (1985) showed that it is necessary to modify the dissipation term in the

turbulent kinetic energy transport equation. Roisin, following Hino (1963), argued that since

a part of the fluid is occupied by solid particles, the effective space available for energy

dissipation is reduced. Using the same approach, it is argued that because the vortices, caused

by flow separation off the ripples, occupy a proportion of the water column, so they too

reduce the effective space available for energy dissipation. Figure 10.12 shows the effect of

vortex action over equilibrium ripples. The description and figure are based on the work of

Nielsen (1979). Clearly, for a moveable bed, the vortices will contain sediment, but in the

fixed ripple experiments of Bagnold (1946) and Sleath (1985) the vortices will contain

trapped fluid and no sediment. However, in both cases, the vortices reduce the effective space

available for energy dissipation. Therefore, it is proposed that the dissipation term in the k

transport equation be modified and expressed as:-

(10.21)

where Cvor represents a coefficient for the vortex generation.
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It is necessary to derive an expression for Cvorso that values can be determined for any

possible experimental condition. Intuitively, the coefficient Cvorshould increase with ripple

growth and decrease as the ripple is washed out under increasing flow. It is expected that Cvor

asswnes something of a parabolic shape, though not necessarily that defined by a true

parabola.

The data of Carstens et al. (1969), Lofquist (1986), Rosengaus (1987) and Mathisen (1989)

have been used to investigate the possible form of Cvor' The data of Carstens et al.,

Rosengaus and Mathisen was mostly measured for constant wave periods. Figures IO.14aand

10.14b show the variation of C with Shields parameter, e for Carstens et al., Rosengausvor

and Mathisen. The figures indicate that the data follows a parabolic shape. However, the

figures also show that the parameter C varies with grain size. To assess how the datavor

responds to changes in period, some of the data of Lofquist (1986) was selected for analysis.

Lofquist performed measurements for a range of periods. Because of the limited nwnber of

tests for the same period it has been necessary to asswne mean periods for sets of data for

periods falling within a given range. The results are shown in Figure l0.14c. Again, the

results suggest that Cverfollows a parabolic form as well as showing that Cvervaries with

period.

Generally, the results of the analysis suggest that Cvorincreases with grain size, as can be

observed in Figures lO.l4a and lO.l4b. Further, Figure lO.l4c suggests that the larger the

wave period the greater the value of the coefficient Cver'The results show that the spread of

the parabolic curve is greater with increasing grain size, corresponding to the increasing

energy required to move larger sediment sizes. The effect of sediment mixtures on the value

of Cveris unknown.

Attempts made to try and collapse the results down to a single curve have failed. From this

analysis Cverwas found to be insensitive to the near-bed orbital amplitude. To obtain a better

correlation, the Shields parameter, e, was divided by the critical Shields parameter, ee' The
critical Shields parameter was determined by the expression:-
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e = 0.0666D. + 0.375
c 2.22D. + 0.938

(10.22)

where D. is a dimensionless grain size given by the equation:-

_ [(S_I)g]1/3
D. - 2 dsovL

(10.23)

The above expression is based on a comparison with measured data (see Soulsby 1994).

Dividing through by ec sets all the data to a common start point, 1. In addition, since Cvor

must be 0 at this point, since this corresponds to the initiation of sediment motion, and hence

a flat bed, it has been assumed that all data fits the point (1,0) in the x-y plane. Results are

shown in Figure 10.14d for the data of Carstens et al. (1969), Rosengaus (1987) and Mathisen

(1989). The figure clearly suggests that a parabolic relationship for Cvor exists at least for the

initial growth of the ripple. The larger grain sizes suggest perhaps a more linear decay exists

as the ripple is washed out. Lack of data and a failure to reduce the available data to a single

curve has prevented any definite relationship for Cvor being proposed. This has had

significant implications on the work described later in this chapter

10.5 Moveable bed models

Grant and Madsen (1982) proposed a moveable bed model based on the laboratory data of

Carstens et al. (1969) for monochromatic waves. The wave-induced roughness was

represented as a combination of form drag around the individual bedforms and a contribution

due to the near-bed sediment transport.

(10.24)

where e is the Shields parameter; ec is the critical Shields parameter for the initiation of

sediment motion; and Cm is an added mass coefficient. Grant and Madsen assumed s = 2.65

and Cm= 0.5 reducing Eq. (10.24) to:-
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(10.25)

Field studies have shown that the early model of Grant and Madsen (1982) is inappropriate

for predicting bed roughnesses under irregular waves since the model uses empirical

relationships based on monochromatic waves to relate ripple roughness to ripple geometry.

The studies have shown that irregular waves result in shorter and less steep ripples than those

formed by monochromatic waves (Dingler and Inman 1976; Nielsen 1981; Madsen et al.

1991; Ribberink and Al-Salem 1994).

Vongvisessomjai et al. (1987) proposed a theoretical model to represent the profile of a ripple

bed under monochromatic waves. The model was based on earlier work of Kennedy and

Falcon (1965) where the profile of a rippled bed was characterized by a moving sinusoid of

varying height L\(t) but constant ripple length. Vongvisessomjai et al. modified this approach

by allowing the wavelength of the ripple to vary with time. Vongvisessomjai et al. suggested

that the growth rates of ripple height, L\(t) and ripple wavelength, A(t) could be represented by

the equations:-

(10.26)

and

(10.27)

where L\max is the maximum ripple height; Amaxis the maximum wavelength of the ripple; B·

is the dimensionless growth of the ripple and T is the wave period.

Based on experimental results used to determine the growth rate of ripples, Vongvisessomjai

et al. (1987) suggested that B· could be represented by the expression:-

(10.28)

where a. is the relative bed smoothness and is given by:-
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a
a =-
• dso

(10.29)

a IS the near-bed orbital amplitude such that a = u;loo; u; is the near-bed velocity

amplitude; 00 is the angular frequency; and dso is the median grain diameter.

\jI is the mobility number and is defined as:-

'" = (am )2
(s-l)gdso

(10.30)

where s is the specific gravity of the sediment, given by s = Psi p, where p, is the density of

the sediment and P is the fluid density.

Both the above approaches are predictive relationships for ripple geometry under

monochromatic waves. Madsen et al. (l989a) proposed a moveable bed model for spectral

waves based on the linearized equation of motion and a simple time-invariant eddy viscosity

relationship. They obtained model closure by allowing the solution to reduce, in the limit, to a

simple harmonic wave.

Madsen et al. (1988a) let the wave motion be described by its directional spectrum which

leads to the solution being given by the equation:-

- (1 ker 2~ + ikei2~ J im tU - - u e n

run ker 2~ + ikei2~ brun
(10.31)

where ker and kei denote the zeroth order Kelvin functions; n and m represent summation

over frequency and direction; u, is the near-bed velocity and <;n is defined as:-

Zoon<;n =--
xu.,

(10.32)

where u., is the representative shear velocity; le is the von Karman constant; 00 n represents

the angular frequencies. <;nO denotes the value of <;n at z = Zo = kJ30.
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The near-bed velocity u, is related to the near-bed velocity spectrum Sub(W,e) by the

equation:-

(10.33)

Madsen et al. (1988a) simplify the solution by the introduction of representative values for

the wave height, HnnS' angular frequency, eo, and near-bed orbital velocity, ubr. Madsen et

al. eventually obtain a solution for the spectral wave energy dissipation in the form:-

(10.34)

where t:w is the representative wave friction factor and can be determined using any of the

empirical friction factor relationships.

Madsen et al. (1989b; 1991) present the results from a series of experiments conducted in a

wave flume. The results given in Madsen et al. (1989b) are limited by the range of the

experiments. Only a single grain size was used (0.2 mm diameter quartz sand) and the wave

settings in the flume were confined to conditions just above those that would cause initiation

of sediment movement. In Madsen et al. (1991) it was attempted to improve on the previous

tests by performing experiments with an additional grain size of 0.12 mm diameter and for a

wider range of wave conditions.

Madsen et al. (1991) concluded that the spectral wave friction factor can be represented by

the equation:-

for (10.35)

where ee is the critical Shields parameter for initiation of sediment motion and e~r is the

Shields parameter obtained with the maximum bed shear stress, t~m' predicted for the

representative monochromatic wave and is defined as:-

e' = t~m
mr (s-l)pgdso

(10.36)

Madsen et al. (1991) suggest that Eq. (10.36) is accurate to within 20%.
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The moveable bed roughness for spectral waves is defined by Madsen et al. (1991) by the

relationship:-

k ()-2.5_, = 15 9~r
Abr 9c

(10.37)

where Abr is the representative near-bed orbital amplitude. Madsen et al. suggest that this

relationship is accurate to within 30%.

Madsen et al.'s (1988a) approach for determining moveable bed friction factors for spectral

waves is quite laborious and the reader is referred to the original paper for further details.

Other approaches have been presented by Tolman (1994) and Kaczmarek et al. (1995) (see

Appendix G). Myrhaug (1995) presented a method to calculate the bed friction under random

waves. The approach is similar to Madsen et al. (1988a). Myrhaug assumes that for rough

turbulent flow the maximum bed shear stress follows the Weibull distribution.

Tolman (1994) developed a moveable bed model based on the hydrodynamic model of

Madsen et al. (1989) and a modified version of Grant and Madsen's (1982) moveable bed

model. Tolman makes a distinction between swell and wind seas in his analysis.

Kaczmarek et al. (1995) presented an approach based on the work of Kaczmarek and

Ostrowski (1995) and O'Connor et al. (1993). Details of the approach are given in Appendix

O.

Kaczmarek (1995), Madsen (1995) and You (1996) have investigated the effect of combined

waves and currents on moveable bed roughnesses under spectral waves. In the present work

currents have been neglected to simplify the analysis.

10.6: The proposed model

In the present approach the method of Vongvisessomjai et al. (1987) has been adapted,

following a suggestion by Professor B.A. O'Connor, to enable the prediction of field

generated ripples, that is ripple geometry under irregular waves.
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The proposed model is based on Eqs.(10.26) and (10.27). Replacing the period, T, by the

zero-upcrossing period, Tz' leads to the modified equations:-

(10.38)

and

(10.39)

where B: is defined as:-

BO = 177 x 10-6a1.68\,,-G.394o· 00 'Y 0
(10.408)

and a., is the relative bed smoothness and is given by:-

aa =_n
on d

SO

(10.40b)

an is the near-bed orbital amplitude such that an = ».Jv«: UOlJis the near-bed velocity

amplitude; ron is the angular frequency.

\jI n is the mobility number and is defined as:-

\jIn = (aorooY
(s-l)gdso

All other terms are defined as previously.

(10.40c)

The model allows Tz to vary, so for a given surface wave height time-series, n zero-

upcrossing periods can be calculated along with the corresponding wave heights, Hn' n

denotes the number of zero-upcrossing periods in the given wave height record. Knowing

Tmand H, allows the maximum near-bed orbital amplitude, an' and maximum near-bed

orbital velocity, uOlJn'to be calculated. From this, it is possible to calculate n values for the

maximum possible ripple geometry, ~maxn and Amaxn'Using these values and Eqs. (10.38)

and (10.39) enables a time-series for the ripple geometry to be generated. For each nth value,

the value of t within the exponential term is reset to zero, whilst leaving the actual time-series

to run continuously. A ripple will continue to grow in height until the value of the present
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Amaxnis reached. If for the n+l value, the value of Amax(n+l)issmaller than Amaxnthe ripple

height will start to decay. A similar process operates for the ripple length.

The maximum ripple geometry has been assumed to be given by the expressions of Nielsen

(1981: 1992). For monochromatic wave conditions, the maximum ripple height and length

may be determined using the equations:-

Amax= {0.27S - 0.022\11°·5
a 0

for \II < 156
for \II> 156

(10.41)

and

Amax= 2.2 _ 00345\110.34
a

for 2 < \II < 230 (10.42)

For irregular waves Nielsen suggests the formulae:-

!l
~ = 21\11-1.85 for \II> 10
a

(10.43)

and

Amax ( 693 - OJ71n8 \II )-- = exp -------::-..:...._
a 1000+0.751n'\II

Figures 10.15, 10.16 and 10.17 show the results of the monochromatic moveable bed model

(10.44)

compared against equilibrium ripple data from the experiments of Kennedy and Falcon

(1965), Carstens et al. (1969), Mogridge and Kamphuis (1973), Lofquist (1978), Nielsen

(1979), Du Toit (1980), Lambie (1984), Shibayama (1984), Rosengaus (1987), Mathisen

(1989) and Ribberink and AI-Salem (1994). Figure 10.15 shows a comparison of calculated

ripple height against measured ripple height, whilst Figure 10.16 shows a comparison of

calculated ripple length to measured ripple length. Figure 10.15 shows more scatter than for

the ripple length, Figure 10.16. This is to be expected since there is potentially greater error in

the measured ripple height since the scale is much smaller than the ripple length, which is

typically 5 to 10 times larger than the height.

Figure 10.17 shows a comparison of calculated ripple steepness to the measured values.

Figures 10.15 to 10.17 show good comparison with the measured data.
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Figure 10.18 shows a typical result of the moveable bed model for monochromatic waves.

Figure 10.18a shows the development of the ripple height with time, whilst Figure 10.18b

shows the ripple length growth with time. Since the wave conditions are constant the ripple

geometry develops until equilibrium is achieved. In the field, the wave conditions are

continually changing and it is expected that the bedforms reflect this.

Figures 10.19to 10.21 show a typical result from the moveable bed model for random waves.

The moveable bed model has been run using a JONSWAP spectrum for the parameters

shown in the figures. Figures 10.19 and 10.20 show the development of ripple height and

length with time. To properly assess the performance of the model requires time-series data of

both the surfacewave conditions as well as the corresponding bedform geometry. Such data

is currently not available. Figure 10.21 shows the variation of equivalent roughness with time

based on a bedform drag of 4~. Figures 10.19 and 10.20 show the model adjusting the

bedform geometry with time, allowing the ripples to grow and decay. The rate of growth of

the bedforms is governed by the parameter B*. The constant used in this relationship is based

on experiments performed under monochromatic waves. To test the validity of this parameter

is not possible until more detailed experimental data for ripple formation under random

waves is available. However, it would seem unlikely that such a constant should be

universally valid.

Figure 10.22 shows the development of the ripple height with time together with the

corresponding surface wave conditions. The figure suggests that a time lag exists between the

surface waves and the response of the bed, though to what extent is not totally clear. The

growth and decay of the ripples in response to the waves varies with the size of the waves.

The next stage of testing involved inputting the varying roughnesses into the random

boundary layer model and allowing the hydrodynamic model to run for the given time-series.

Results of the maximum bed shear stress and hence friction factor were then to be compared

with the approach of Madsen et al. (1998a). Such an analysis is not yet possible until a

satisfactory method for calculating Cvor can be found. To attempt to do so at this stage would

render any comparison meaningless, since the under prediction of the energy dissipation over
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ripples by the model leads to the under prediction in the bed shear stress and hence the

friction factor.

10.7 Conclusions

The presence of bedforms has been shown to lead to an increase in the value of the wave

friction factor (Iwagaki and Kakinuma 1963; 1967; Treloar and Abernethy 1978). The present

chapter has suggested a new approach to predict the moveable bed roughness for such

conditions and presented results from the proposed model.

The assumption that the wave friction factor is constant at small values of a/k, is

questionable. Results from the experimental work of Kyriacou (1988) as well as theoretical

reasoning ofSleath (1984) have been used to challenge this assumption.

The fixed ripple tests of Bagnold (1946) and Sleath (1985) have been used in an attempt to

establish a relationship between ripple geometry and the form drag of the ripple. Based on the

relationship given by Eq. (l0.15):-

(10.15)

results suggest a constant of proportionality of between 1 and 4. Alternatively, representing

the equivalent roughness in terms of the length and height of the ripple, Eq. (10.17):-

ll.2
koc-

5 A (10.17)

the constant of proportionality is between about 10 and 20.

Comparison of results from the hydrodynamic turbulence model with measured values for the

energy dissipation over both fixed and moveable bed ripples show the model to significantly

underpredict the energy dissipation. The assumption that allowing for the form drag using

approaches such as those given by Eqs. (10.15) and (l0.17) has been shown to be incorrect. It

has been hypothesized that the underprediction of the energy dissipation by the 1DV

turbulence model is due to a failure to compensate for the effect of vortex shedding off the
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ripples. In an attempt to correct for this failing, it has been proposed that a correction be

applied to the dissipation term in the turbulent kinetic energy transport equation leading to:-

(10.21)

where Cvor represents a coefficient for the vortex generation. It is further suggested that Cvor

follows a parabolic shape, increasing in value as the ripple develops and then decaying as the

ripple is washed out. Analysis of the data of Carstens et al. (1969), Lofquist (1986),

Rosengaus (1987) and Mathisen (1989) confirms this trend. Because of a lack of field and

laboratory data recording the development and decay of ripples, it has not yet been possible to

develop an equation for Cvor which is valid for all cases. Cvor was found to increase with

increasing grain diameter and wave period.

Results from the moveable bed model presented within appear promising. It has not been

possible to confirm whether the rate of growth of the ripples as predicted by the model is

correct due to a lack of appropriate experimental data for bedforms developed under random

waves. The moveable bed model for random waves uses a novel approach, enabling the

ripple geometry to be determined as a continual time-series. Such a method allows the bed

roughness to be prescribed as a time-series and thus used in a modified random wave

boundary layer model. This permits the boundary layer model to vary its roughness condition

and enable investigation of boundary layers over moveable beds.

The present work has been limited by a lack of adequate field and laboratory data. It has been

shown that it is possible to develop a model for a moveable bed under random waves that can

describe the variation in ripple geometry with time.
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Figure 10.1: Friction factor for laminar and smooth turbulent flow. (After Jonsson 1966).
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Figure 10.2: Friction factor equations for fully rough turbulent flow.
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Figure 10.5: The ratio of equivalent roughness to ripple height, ksf /1, plotted against the
measured energy dissipation factor for the data of Bagnold (1946) and Sleath
(1985).
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Figure 10.6: The ratio of relative ripple roughness, (ksA)j /12 , plotted against the measured
energy dissipation factor for the data of Bagnold (1946) and Sleath (1985).
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Figure 10.11: Calculated wave friction factor against measured wave friction factor for the
data of Dick and Sleath (1991). The linear regression line is given by the
equation y = 6.765 X 10-3 + 1.053x .

Figure 10.12: Figure 10.12 (shown over page) depicts the process of vortex action over
equilibrium ripples and is based on Nielsen (1979).

In Figure 10.12a, the vortices A and B move up into the flow as the flow
reverses. A previous vortex, C can be seen to be rotating anti-clockwise above
A. The wave phase is shown in the top left-hand comer.

Figure 10.12b shows vortex A moving to the right, whilst the previous vortex,
C is decaying and being absorbed into the main flow.

Figure 10.12c shows that as the free stream velocity approaches its maximum
value significant erosion occurs on the upstream side of the ripple. Flow
separation has yet to begin behind the ripple crest.

In Figure 10.l2d the free stream velocity is past its maximum and a new lee
side vortex is beginning to form. Erosion is still taking place on the upstream
side of the ripple and much of this material is trapped by the vortex.

At flow reversal the vortex is at its maximum intensity and is causing
significant erosion at the lower part of the slope. Further erosion is occurring
in the ripple trough, helping to maintain the ripple slope. (Figure 1O.l2e).

The next half wave period sees a the above process repeated symmetrically.
(After Nielsen 1979).
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Figure 10.lSb: Development of ripple length with time as predicted by moveable bed
model for a monochromatic wave.
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Chapter 11

Conclusions and Recommendations

11.1 Introduction

This chapter presents the main conclusions from the work contained within this thesis. Those

findings of most significance to modelling random wave boundary layers are highlighted. In

addition, recommendations are made for further study.

11.2 Overview of present work

Chapter 3 provided a state-of-the-art overview of wave boundary layer modelling. From the

review several key elements were established:

• There is a variety of models available with which to study turbulent wave

boundary layers, many of which are simplistic time-invariant eddy viscosity

models.

• Time dependence is necessary in order to reproduce fundamental flow

mechanisms, for example, the turbulent eddy viscosity varies with time.

• 1st order closure models have been shown to be adequate, whilst 2nd order

schemes eliminate the Boussinesq eddy viscosity assumption by providing the

ability to model the individual stress terms. However, the cost of such

schemes is prohibitive and the level of sophistication has not yet been

justified. In addition, the k-e model has been shown to provide a similar level

of accuracy as a 2nd order Reynolds stress approach (Br01's and Eidsvik

1994).
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• The choice of model formulation is important and will influence the

performance and accuracy of the chosen scheme.

• The one-equation k model has been shown to be the lowest order of closure

required to model environmental flows (Smith and Takhar 1977).

• The two-equation k-s model has been shown to accurately reproduce

oscillatory boundary layer flows (Spalart and Baldwin 1987), excluding the

near-wall region.

The present study has involved the development of both one- and two-equation turbulence

models of varying sophistication. The simplest approach used was a one-equation k model.

Several types of two-equation k-s models were developed, a high-Reynolds number model, a

low-Reynolds number model (not used in the present work) and a two-layer k-e model. The

application of a two-layer k-e model to the problem of studying turbulent wave boundary

layers is, to this author's knowledge, unique. The two-layer k-e scheme uses a standard high-

Reynolds number model away from the wall, whilst the near-wall region is modelled using a

one-equation k approach.

In addition to the turbulence models, sub-models have been developed enabling the

description of most sea-states encountered on the continental shelf, including allowance for

the effects of currents on wave spectra and the representation of a directional sea. These sub-

models provide boundary conditions for the turbulent wave boundary layer models.

The numerical solution of the partial differential equations was obtained by using finite

difference techniques. The numerical scheme applied was the Crank-Nicolson semi-implicit

method, Crank and Nicolson (1947). To ensure that there was a sufficient number of

calculation points within the boundary layer a logarithmic grid transform was applied to the

vertical space.

In order that the turbulence models could be applied to random wave boundary layers it was

first necessary to test the numerical schemes against experimental data for monochromatic
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waves and monochromatic waves plus current. The experimental data used was at both

laboratory and prototype scale, see Chapters 6 and 7. The random wave model was tested

against laboratory data and field data. In addition, a novel approach has been proposed,

allowing the bed roughness in the random wave model to be prescribed as a time-series,

through the development of a moveable bed model.

Prior to testing the proposed boundary layer models against laboratory and field data the

accuracy and convergence of the numerical schemes were tested by comparing model results

against the analytical solution for laminar flow presented by Lamb (1932). Tests were

performed using a range of grid densities, the lowest of which was 20 points through the

vertical. For grid densities of 40 and 60 points through the vertical, velocity results for the k

and k-s models show a maximum error of approximately 2%. Similarly, a comparison of

shear stress results for the same grid densities shows a maximum error of about 3% from the

analytical solution. This work is summarized in Chapter 5 and Appendix D.

The use of the logarithmic grid straining ensures that, even for a grid density of only 20

points through the vertical, the numerical models reproduce the near-wall analytical results

well.

The one-equation model (run with both a time-variant and time-invariant mixing length) and

k-s model have been compared with the prototype scale oscillating tunnel data of Jonsson and

Carlsen (1976) and Jensen et al. (1989). Both models show good agreement, overall, with the

experimental data. In addition, the performance of a zero-equation mixing length model has

been compared with the higher order models. Both the k and k-e models out-performed the

mixing length model with differences of nearly 20% in some instances.

The results of using both a time-invariant and time-variant description for the mixing length

in the k model revealed the importance of choosing the expression for the length scale

carefully. The time-variant expression showed a better description of the physics than did the

simple time-invariant form of the mixing length.
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Results of the model runs against the shear stress data of Jensen et al. (1989) suggest that,

possibly, even for flows considered to be fully turbulent (amplitude Reynolds number, Re =

6.0 x 106), kinematic (molecular) viscosity may still have some influence during certain

phases through the wave cycle. Unfortunately, this cannot be verified experimentally since

measurements are not able to be made, currently, at this scale (L\z = 0.0071 mm in the model).

Comparison of a two-layer k-e model and a high-Reynolds number k-e model against

laboratory experiments conducted at the University of Manchester shows the importance of

including the effects of molecular viscosity for low-Reynolds number flows.

The addition of a current to waves has been demonstrated to increase mixing within the wave

boundary layer and increase the wave boundary layer thickness. Further, such increased

mixing leads to an increase in turbulence in the boundary layer.

Observed differences in the magnitude of the measured and computed values of shear stress

and turbulent kinetic energy outside the boundary layer appear to be due to streaming caused

by the presence of second order effects.

The k model was found to be computationally slower than the two-equation k-e model due to

the summation required to obtain the time-varying mixing length. For this reason, the k-e

model was chosen to be adapted to enable the representation of random waves.

The random wave model was first tested against the laboratory experiments of Ostrowski

(1993). Ostrowski measured the bed shear stress under long-crested random waves using a

shear plate. The computed results compare favourably with those measured.

The random model has been run using an actual time-series as well as a time-series generated

from a wave height spectrum. In both cases, the model has been shown to perform well.

In addition to the laboratory data of Ostrowski (1993), the model has been run for a multi-

directional sea state using the field data of Williams (1996). The measured velocity time-

series at 80 cm above the seabed was used as the upper boundary for the velocity in the
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model. Adjusting the bed roughness in the model until the computed and measured mean

velocities at a second lower depth matched produced an estimate for the bed roughness, as

suggested by O'Connor et al. (1994). However, it has been argued that such a method is not

sound and is too sensitive to errors in model formulation and to the spatial displacement of

the second measurement point from the seabed.

The mean bed shear velocity has been compared with estimated values from the measured

data. The results suggest that the random wave model is providing reasonable predictions.

In comparisons of the model against both the random laboratory and field data the turbulent

kinetic energy has been shown to carry over energy from one half period to the next. This is

an important result, since it changes previously held views that for random waves each wave

can be treated individually as a monochromatic wave, for example Smith (1977). It has been

demonstrated that this is not true and has significant implications for sediment transport

modelling. Such an effect could account for the increase in sediment concentration under

wave groups observed in field measurements (Williams 1996).

The presence of bedforms has been shown to cause an increase in the value of the wave

friction factor, for example Iwagaki and Kakinuma (1963; 1967); Treloar and Abernethy

(1978). In order to provide a better description of the wave boundary layer by the addition of

a varying bed roughness, a new movable bed roughness model has been developed.

The development of the moveable bed roughness model was undertaken in a structured

manner. Using the fixed ripple experiments of Bagnold (1946) and Sleath (1985) the

relationship between ripple geometry and the form drag of the ripple has been investigated.

Based on the relationship given by Eq. (10.15):-

k, ~ /1 (10.15)

results suggest a constant of proportionality of between 1 and 4. Alternatively, representing

the equivalent roughness in terms of the length and height of the ripple, Eq. (10.17):-

/12

koc-
S A, (10.17)
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the constant of proportionality is between about 10 and 20.

Comparison of results from the hydrodynamic turbulence model with measured values for the

energy dissipation over both fixed and moveable bed ripples show the model to significantly

underpredict the energy dissipation. The assumption that the effect of ripples can be

represented in a point model using relationships for the form drag such as those given by Eqs.

(10.15) and (10.17) has been shown to be incorrect. It has been hypothesized that the

underprediction of the energy dissipation by the IDV turbulence model is due to a failure to

compensate for the effect of vortex shedding off the ripples. In an attempt to correct for this

failing, it has been proposed that a correction be applied to the dissipation term in the

turbulent kinetic energy transport equation so that the dissipation term becomes.-

(10.21)

where Cyor represents a coefficient for the vortex generation.

CYOI'has been shown to follow a parabolic shape, increasing in value as the ripple develops

and then decaying as the ripple is washed out. Analysis of the data of Carstens et al. (1969),

Lofquist (1986), Rosengaus (1987) and Mathisen (1989) confirms this trend, though it has

not been possible to develop an equation for CYorwhich is valid for all cases. CYorwas found

to increase with increasing grain diameter and wave period.

Results from the moveable bed model are promising. It has not been possible to confirm

whether the rate of growth of the ripples as predicted by the model is correct due to a lack of

appropriate experimental data for bedforms developed under random waves. The moveable

bed model for random waves uses a novel approach, enabling the ripple geometry to be

determined as a continuous time-series.

Using the calculated values for ripple geometry allows the bed roughness to be prescribed as

a time-series and thus used in a modified random wave boundary layer model. This permits
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the boundary layer model to vary its roughness condition and enable investigation of

boundary layers over moveable beds.

The present work has been limited by a lack of adequate field and laboratory data and,

therefore, it has not been possible to find a satisfactory representation of the proposed

coefficient Cvor' It has been shown that the moveable bed model is capable of describing the

variation of ripple geometry and, hence, bed roughness with time, for random waves.

11.3 Recommendations for future work

Results from the present work have highlighted several shortfalls in the aspects of the areas

covered.

• Experimental data is required to enable the coefficient Cvor' The experiments

include the measurement of dissipation rates over both developing and

equilibrium ripples as well as recording the corresponding ripple geometry.

The tests should cover a range of wave periods and sediment grain sizes. In

addition, the effect of sediment mixtures on the value of the coefficient Cvor

could be investigated.

• Second order effects should be investigated in the boundary layer model, in

particular, for combined wave and current conditions. Mass transport effects

can be included using a pseudo-spectral approach as suggested by Johns

(1977), a simplification based on the assumption of periodicity in space and

time together with the continuity equation as suggested by Trowbridge et al.

(1987) or by solving for two points in space and then using the continuity

equation to find the vertical velocity.

• The discrepancies observed in the computed turbulent kinetic energy profiles

for the combined wave and current case can be tested against oscillating wave

tunnel data since this eliminates any vertical oscillatory velocities. This should
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provide a relatively simple check to whether the difference IS due to a

boundary value problem.

• The random wave model should be adapted to include a sediment transport

sub-model thereby enabling the study of sediment transport under random

waves. The results should then be compared with experimental studies.

• The effect of bounded long waves could be included in the model to study the

effect on bed roughness and sediment transport rates.

• The wave boundary layer model should be adapted to enable the study of

turbulent wave boundary layers in the breaker zone. This will require

modification in the upper boundary conditions to take account of the turbulent

kinetic energy produced in the surface roller in the upper part of the water
column.

• Finally, having determined an expression for coefficient Cvor' the random

boundary layer model should be run with a varying bed roughness and the

results compared to the work of Madsen et al. (1991).
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Appendix A

Derivation of The Exact k - Equation

The exact k - equation can be easily derived from the Navier-Stokes and continuity equations,

equations (A.I) and (A.2), respectively. (see Harlow and Nakayama 1967; Rodi 1980)

Ouj au. 1 ap. a ( au.)-+u.-I = 1 +_ V _I +g.
at J ax. p ax. ax. I ax. 1

J 1 J J

(A.I)

(A.2)

Ifwe assume a Reynolds decompostion (Reynolds 1894) such that Ujis defined by:-

u, = U. + u'1 1 1 (A.3)

with Uj representing the mean velocity and u: the turbulent velocity fluctuation, equation

(A. I) becomes

a(Uj + u:) (_ ,) a(uj + uO 1 a(pj + pO a ( a(uj + un]+ u· +u· =-- +- VI +gjat J J axj P axj axj axj
Multiplying equation (A.4) through by the turbulent velocity fluctuation u: and expanding

(A.4)

gives:-

,~ au' ~ ~ au! au!U·_+U!_I +U!U._I +U!U~_I +u!u.-I +U!U~_I =
1 at 1 at 1 J ax. 1 J ax. 1 J ax. 1 J ax.

J J J J

,lap. 1 ap! a (au.] a ( au!]-u.--I -U!-_I +u!- V _I +u~- V_I
I~. I~. 1 I 1 IP U""j P U""j axj axj axj axj

However, the definition of the time average of u: is zero such that

(A.S)
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(A.6)

Where T is a turbulent averaging period, which is long compared to the frequency of the

oscillation of the turbulence.

Therefore, time averaging equation (A,5)

au. au~ au. au. au~ au;
u~-' +u~-' +u~ij.-' +u~u~-' +u~ij·-' +u~u~- ='at 'at 1 J Ox

j
'J Ox

j
'J Ox

j
'J Ox

j

(A.7)
IBp. I ap~ 0 (au.) 0 ( au:)-u!--' -u!--' +u!- v-' +u!- vl-, p Ox; , p Ox; , Ox j I Ox j 1 Ox j Ox j

gives

au~ - 00. au! au~ 1 ap~ 0 ( au:)u~_' +U!u~_' +u~ij.-' +U~u'_' =-U~ __ ' +u~- v-
'at 'J Ox. 'J Ox. 'J Ox. 'Ox. ' Ox. lOx.

J J J P, J J

(A.8)

The turbulent kinetic energy k, is defined as:-

1-
k = +u'u'2 1 1

(A.9)

Therefore equation (A,S) becomes:-

ok ok 1 ~~ - au. au~ 0 au! au~ au'- + ij. - = +u' __VP_, _ u'u' -' - u'u' -' + u' - V -' + V -' -' (A. to)at J ax. '!:I.... 'J !:I.... 1 J!:I.... 1 !:I.... lOx. I ax. ax.J PUA, U.II.J UAJ U.II.J J J J

Ifwe now apply the decomposition rule (equation (AJ)) to the continuity equation, equation
(A.2), then:-

au; 0 ( ) au. au~-=- ij;+u: =-' +-' =0
Ox; Ox; Ox; Ox;

(A.l1)

Time averaging equation (A, I I ) leads to
au.
-' =0
OX;

(A.12)

Therefore the mean flow is incompressible. This also means that the turbulent velocity

fluctuations are also incompressible (equation (A, I I) to equation (A,12».

au; =0
Ox; (A.13)

Through continuity the following equation can be derived.
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au' I 8u'u' _I = --(u~u~u~)
1 J ax. 2 ax. I I J

J J

(A.14)

and equation (A. I 0) becomes

(A.15)
8 8k au~au~+_V_+V_I_Iax
j

t ax
j

t Ox
j
axj

The exact k - equation can therefore be written as:-

8k _ 8k
- +uj - = Pk+Tk +TIk +D, - E
at axi

Where the various terms are defined as follows.

Rate of production:

n _ -u'u' OOi
I"k - i i ax.

J

(A.16)

(A.17)

Rate of turbulence transport:

(A.18)

Rate of pressure diffusion:

n 1 8 (-, ,)
k = -- ~. UiPi

P UAi

(A.19)

Rate of viscous diffusion:

8 8kD, =-v-ax
i

t ax
i

Rate of dissipation:

(A.20)

(A.21)
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Appendix B

Derivation of The Exact E - Equation

The exact E - equation can also be derived from the Navier-Stokes and continuity equations,

equations (B.I) and (B.2) respectively. (see Chou 1945; Davidov 1961; Harlow and

Nakayama 1967)

rej au. 1 Gp. a ( au.]-+u.-I = 1 +_ V _I +g.
at JOx

j
POxj Ox

j
tOx

j
1

(B.1)

(B.2)

Again, assuming a Reynolds decomposition (Reynolds 1894) such that u, is defined by:-

u. = 11.+ U'1 1 1 (B.3)

with 11jrepresenting the mean velocity and u] the turbulent velocity fluctuation, equation

(B. I) becomes

a(Uj + ui) [u ) a(u. + u~) 1 a(-p. + p~) a ( a(u. + u~)]-------'-'-+ u.+u~ 1 1 =__ 1 1 +_ V 1 1 +g.
at J I Ox. P Ox. Ox. t Ox. 1

J 1 J J

(8.4)

Differentiating equation (B.4) with respect to xm gives.
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a auj a au: a _auj _ a auj a _au;
----+----+--u.-+u.----+--uj-+
Bx

m
at Bx

m
at Bx

m
J Bxj J Bxm Bxj Bxm Bxj

_ a au; a , auj , a auj a , au; , a au: (B.5)u.----+--u.-+u.----+--u.-+u.----=
J Bx

m
Bxj ax

m
J Bx

j
J ax

m
Bxj ax

m
J axj J Bxm axj

1 a Bpj 1 a ap: a a (auj) a a ( au:)-P' Bx
m
ax

j
- P' Bx

m
Bx

j
+ Bx

m
Bxj VIaxj + ax

m
axj VIaxj

If we nowmultiply through by au:/axm and time-average them-

au; a au~ au~ a au~ au~ a au; au; a , auj
_____ 1 + __ 1 --uj_1 + __ 1 uj----+----uj-
Bxm axm at axm axm axj Oxm Oxm Ox j Oxm Oxm Ox j

au~ a au. au~ a au~ au~ a au~+__ 1 U~----I + __ 1--U~-I + __ 1 U~----I =
ax J ax~· ~.~. J ~. ax J ax 8x.m m UAj UAmUAm UAj m m J

(B.6)

1 au: a ap: au: a a ( au:)-P' axm8x
m
ax

j
+ 8x

m
8x

m
8xj VIaxj

Rearranging gives

a au~ au~ au~ au~ au. a au~ au~ au~ au~ au·___ I __ I + _I __ I __ J + U. I __ I + __ I __ J _I
at axmaxm Bx

j
ax

m
8xm J axj axmaxm axmOxm axj

au~ a2u. au~ au~ au~ 1 a au~ au~+uj 1 1 +_1 __ 1__ J +-U'_--I __ I =
BxmBxjBxm Bxj axmBxm 2 J Oxj axm Bxm

----2

_!~ ap: au; + _E_v _E_ au; au; + V ( a2u; )
p Bxj BxmOxm Bxj I Bx j axmaxm I ax j8xm

Taking the isotropic dissipation rate, E,as:-

(B.7)

(B.8)

and multiplying equation (B.7) by 2VIgives

BE au~ au~ auJ. BE au~ auj au.-+2v _I __ I --+u.-+2v __ I I +
at t Bxj axmBx

m
J Ox

j
t Ox

m
ax

m
Bxj

2 ' au; a2uj 2 au; au; auj , a au; au;vu· + V-----+v u·-----
t J Bxm 8xjaxm Iaxj axmBx

m
t J 8xj 8xm axm

----2

2VI a ap~ au~ a BE 2( &u~ )= 1__ I +-V -+2v 1
p Bxj BxmBxm Bxj I Bxj t Bxjaxm

Therefore the exact E- equation becomes:-

(B.9)
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BE - iJE I 2 3 p4 T. n D- + Uj - = PE + PE + PE + E + E + E + E + Yat axj
where the terms represent:-

(B.IO)

Rate of production by the mean velocity gradient.

(B.ll)

Rate of mixed production.

~., ~., au.p2 = -2v _vu_i _v_ui __ J
£ t ax

j
ax

m
Ox

m

(B.12)

Rate of gradient production.

~., ~2-
P3 2 ' VUi v ui=- vu·
£ t J ax ax.ax

m J m

(B.13)

Rate of turbulent production.

(B.14)

Rate of turbulent transport.

T = -v u'_j_ au; au;
£ t J ax. ax ax

J m m

(B.IS)

Rate of pressure transport.

n _ 2vt 0 Gp; au;£--------
p axi axm axm

Rate of viscous transport.

(B.16)

o iJED =-v-
£ Ox. t Ox.

J J

(B.t7)

Rate of dissipation.

(B.tS)
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Appendix C
Vertical Grid Transformation and Model Discretization

C.I Vertical grid transformation

C.I.I Introduction

When working with turbulence models it is necessary to ensure that there is an adequate

number of calculation points in space within the boundary layer. This requires that the

calculation volume is divided into a large number of points, or a split grid is applied or a

varying grid is applied. The first method would be impractical for all but laboratory scale, and

even then the number of grid points could be the order of several hundred. The second

method will result in numerical diffusion, the severity of which will depend on the scale

between the two grid sizes applied. Finally, varying the grid size enables the generation of a

fine grid within the boundary layer where the velocity gradients are greatest and gradually

increasing grid into the main flow where the flow quantities only vary very slightly.

Allowing the grid spacing to vary can be implemented in real or transformed space. However,

operating in transformed space can have certain numerical advantages. For example, in

transformed space the interval between each grid point becomes constant, whilst in real space

these intervals vary in size. Results are shown for the models run with a logarithmic

transform since this was found to be the easiest to adapt for the requirements of varying the

bed roughness.

In the model the upper boundary condition is taken as the water surface and not the top of the

boundary layer. A fictitious point has, therefore, been introduced above the surface grid point

to enable a space centred numerical scheme to be applied. For waves alone this is perhaps
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unnecessary but with waves and currents in shallow water the current induced boundary layer

will normally occupy the whole water depth, Soulsby (1983).

The following details given below describe the logarithmic transform apllied within the

model.

C.l.2 Vertical space transform

Let real space, z, be described by the equation:-

(Col)

where D is the water depth; Zo is the roughness height and 11is transformed space in the

vertical.

Therefore,

~=(~r
Taking logs gives:-

(Co2)

(Co3)

Hence 11is given by:-

(Co4)

Allowing C to be given by the following equation:-

C = 1

~~)
(CoS)

then

11= C(lnz-lnZo) (Co6)
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Differentiating with respect to z leads to:-

at] c c (D)-'1-=-- __
az z Zo Zo

(C.7)

Therefore,

Cwhere R=-
Z

(C.8)

This provides the first space transform, but it is also necessary to find the second order

transform. Hence,

~(~} ~(R~)
~(£J; ~(~)~ + ~ ~(~)

(C.9)

(C.IO)

But ~ = R ~ ,therefore, the second order transform may be written as:-

(C.ll)

C.2 Discretized model equations

C.2.1 Introduction

The development of digital computers has led to a more general use of numerical methods in

engineering disciplines, particularly for solving fluid flow problems. However, the solution of

non-linear partial differential equations has less well established methodology. Normally

when solving such equations, a comparison is made with its linear counterpart and then a

method is chosen which works for that particular expression. For instance, the equations for

the present work are of the parabolic type and their corresponding linear expression is the

diffusion equation of the form:

(C.ll)

Various numerical methods exist for solving this equation. However, only finite difference

methods are considered here. Within the finite difference method it is possible to introduce

two sub-groups, explicit and implicit methods.
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Explicit methods

Explicit methods require the solution at time step tn+1to be found from the previous time step.

The unknown values can be determined directly (explicitly) with little computational effort at

each time step. The main drawback with such methods is their stability, which often requires

the time step to be very small, which in turn increases the solution time and hence cost.

Implicit methods

In implicit methods, the solution at time step tn+1is represented by values at both tn+1 and a

previous time step, tn. The partial differential equations can be used to provide a difference

equation for each grid point which, in turn, goes to form a system of linear equations. These

equations can then be solved using matrix methods: Implicit methods are sometimes

considered to be less accurate than their explicit counterparts, however, such techniques allow

for much greater numerical stability allowing larger time steps to be used.

The numerical scheme used within the present models is the well known Crank-Nicolson

semi-implicit method (Crank and Nicolson 1947). The scheme has the advantage of being

unconditionally stable and offers higher-order accuracy (see also Abbott and Basco 1989).

C.2.2 The discretized momentum equation

The momentum equation at a point is given by the expression:

au 000 Ovl au 82ij-=-+--+v-at at 8z 8z I 8z2
~

(I)

Term (1) is often neglected as being negligible, however, it is included in the present

(C.13)

numerical scheme.

The following finite difference schemes have been used to represent the terms In the

momentum equation:
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A forward difference scheme:

(C.14)

A central difference scheme:

Remembering that the numerical scheme uses transformed space such that equation (C.8)

applies:

~=R~
OZ ar,

Cwhere R=-
z

(C.S)

Then au/az is represented by the equation:

au {-k+1_ -k-I } {-k+1 _ -k-I}-=8R Ui+1 Ui+1 +(1-8)R ui uj

& 2~ 2~
The non-linear terms are expressed explicitly, therefore:

(C.IS)

~ = R{v,:.~~;,:-I}
Second-order terms are expressed using equation (C. II )

a2
= R2(__!_~+~)

f}z} Cm, m,2

(C.16)

(C.II)

Therefore a2ii/ f}z? becomes:

(C.17)

The value of 8 determines how explicit or how implicit the numerical scheme is such that:-

8=0
8 = 1/2
8=1

- Fully explicit scheme

- Crank: -Nicolson semi - implicit scheme
- Fully implicit scheme

Therefore, the discretized momentum equation can now be written as:-
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(C.IS)

Removing common terms gives:-

CUI = ~tOuO
n Ot (C.19)

CU2n = ~t R2 (VI~+1 - VI~-IJ

2~" 2~"

CU3n = ( _ _!_) ~t R 2VI~

C 2~11

(C.20)

(C.21)

R2 k
CU4n = ~t VIi

~112
(C.22)

Equation (C. IS) is reduced into implicit and explicit terms in order to form a matrix solution.

The implicit terms can therefore be written as:

An = -(CU2n + CU3n + CU4n) 8 U~+~l

B, = (1+ 2CU4n8) Ui
k
+1

C, = -(CU4n - CU3n - CU2n) e Uik+~l

The explicit terms are expressed as:-

(C.23)

(C.24)

(C.2S)

On =(CU2n +CU3n +CU4n){1-8)Uik+l
-(2CU4n{1- 8)-l)uj

k

+(CU4n -CU3n -CU2n){1-8)uj
k-1 -cui,

This leads to a tri-diagonal matrix of the following form:

(C.26)
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BI Al 0 0 01 WI
C2 B2 A2 D2 W2
0 C3 B3 A3 D3 W3

C4 B4 A4 D4 W4=

0

C(n-I) B(n-I) A(n_l) D(n_l) \\'(n-I)
0 0 Cn Bn Dn v:

where Wn is the solution matrix.

This can be solved using the Thomas algorithm, which is a special case of the Gaussian

elimination procedure (see Roach 1977, Appendix A; Abbott and Basco 1990, p 117 - 124).

Boundary conditions are described in Chapter 2.

The discretized momentum equation in the y direction is given by:-

ffV Ovo Ovl ffV ilv
-=-+--+v -at at Bz Bz I BZ2

This is of similar form to Eq. (C.l3) and hence discretization follows the same format as

outlined above and will not be discussed further.

C.2.3 The discretized turbulent kinetic energy equation

The modelled turbulent kinetic energy transport equation can be written as:

(C.27)

Bk = ~[(~) Bk]+vI[oo]2 -E
at Bz O'k Bz Bz

If the model is used all the way to the wall without the use of wall functions then it is usual to

(C.2S)

include the molecular viscosity in addition to the turbulent eddy viscosity term. Therefore

equation (C.28) becomes:-

Bk = ~[(~+v ) Bk]+(v +v )[00]2 -Eat Bz O'k L Bz I L az
As with the momentum equation, non-linear terms are modelled explicitly.
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(C.30)

Removing common terms gives:

cxi, = L\tR2 _1_ {Vt~+J- Vt~-J}
O'k 2L\TJ 2L\TJ

CK2n = (_!) L\tVt~£
C O"k 2L\TJ

(C.31)

(C.32)

(C.33)

(C.34)

(C.35)

Equation (C.30) is reduced into implicit and explicit terms in order to form a matrix solution.

The implicit terms can therefore be written as:

An = -(CKln + CK2n + CK3n) e k~+~1

B, = Cl + 2CK3n e) k~+1

c. = -(CK3n -CK2n -CK1n) e k~..l1

(C.36)

(C.37)

(C.38)

The explicit terms are expressed as:-

On ={CKln +CK2n +CK3n)(l-e)k~+1

-(2CK3n{l- e) -l)k~

+{CK3n -CK2n -CKln)(l-e)k~-1 +CK4n -CK5n

This leads to a tri-diagonal matrix of the form shown above. Boundary conditions are given

in Chapter 4.

(C.39)
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C.2.4 The discretized isotropic dissipation rate equation

The modelled isotropic dissipation rate transport equation can be written as:

Removing common terms gives:

CE1n= L\tR2 _1_ {VI~+1- VI~-I}
er e 2~11 2~11

CE2n = ( _ _!_) ~tVI~~
C 0& 2~11

}

2
k ~k+l ~k-l ~k+l ~k-l

CK4 = ~tv ~C1&Ej {R[e(uj+1 - uj+1 ) + (1- e)(uj
- uj

)]

n II k~ 2~1'\ 2~1'\

However, Eq. (C.46) is normally modelled as:

k k
CKS = ~tc Ei • Ei+l

n 2& ( k ( ) k)9ki+1 + 1-9 k]

(C.40)

(C.4I)

(C.42)

(C.43)

(C.44)

(C.4S)

(C.46)

(C.46a)

Equation (C.41) is reduced into implicit and explicit terms in order to form a matrix solution.
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The implicit terms can therefore be written as:

(C.47)

(C.4S)

(C.49)Cn = -(Ce3n - Ce2n - Celn) e e~+tt

The explicit terms are expressed as:-

D, =(CE1n +CE2n +CE3n)(I-e)E~+t

-( 2CE3n(1- e) -l)Er

+(CE3n -CE2n -CEln)(I-e)er-t +Ce4n -Ce5n

This leads to a tri-diagonal matrix of the form shown previously. Boundary conditions are

(C. 50)

given in Chapter 4.
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Appendix D

Numerical Stability and Convergence

D.I Introduction

The numerical schemes used in the present study are described in detail in Appendix C. The

non-linear equations used to describe the physics require numerical solution and this requires

the introduction of an 'approximation technique'. The finite difference method has been

chosen here for solving the partial differential equations and whilst such methods generally

provide solutions which are as accurate as required such methods do contain truncation

errors. Therefore, it is important to assess the performance of the numerical scheme employed

to ensure that it is efficient and also that it is as accurate as the problem warrants.

The accuracy of numerical schemes of this type can usually be improved by either adjusting

the density of the numerical grid points or by the inclusion of 'correction terms' in the

approximations of the derivatives. The latter, method will not be discussed further (see e.g.

Smith (1985)). To enable the numerical scheme to be tested, the analytical solution of Lamb

(1932) has been used. However, it is worth noting that, whilst usually of little significance,

even analytical solutions only provide approximate answers since all arithmetical work

involves rounding errors.
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D.2 Numerical convergence

To test the convergence of the numerical scheme used, the k- and k-s models have been run

with a constant viscosity and the solutions compared with the analytical solution of Lamb

(1932). Lamb's analytical solution for waves over a flat bed is given by the following

equation:

u = u"'(sin( rot) - e-Pz sin(rot - J3z))

where J3is a height scale and is given by the equation:

(D.I)

J3= 1mV~
In addition, the shear stress can be obtained by differentiating Eq. (D. I) with respect to z. The

(D.2)

resulting equation is:

~ = .J2vLJ3u..,e-IlZ Si~ rot - J3z+ ;)

The numerical scheme operates in a transformed space (see Appendix C) but real time. The

(D.3)

transformed space uses a logarithmic straining which ensures a fine mesh spacing close to the

wall where the profile gradients are greatest. In addition, working in transformed space

enables a relatively small number of grid points to be used. The models generally operate

with between 40 and 60 vertical points. Working in transformed time would enable smaller

time steps to be used per wave period, however, working in non-dimensional time makes the

development of the random boundary layer model unnecessarily complicated and so real time

is used for all cases. The model boundary conditions are as given in Chapters 2 and 4 and the

grid system is of the form shown in Figure 5.1.

For the purpose of the tests, the numerical models have been run with three different space

grid sizes; with 60, 40 and 20 points through the vertical. The solutions have then been

compared with the analytical results from Lamb's equations. This has been done for both the

k- and k-s models and the results are shown in Figures Dl - D4.

Figures Dl and D2 show the results for the k-e model against the analytical solution for

velocity and shear stress respectively. The results for the calculated velocity show little
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variation with the analytical solution when using either the 60 and 40 grid densities. Even

though the lower grid density of 20 points in the vertical fails to fully reproduce the analytical

solution, near the wall ( s 2 mm ) the comparison is still good. This is due to the varying grid

applied in the model ensuring a sufficient number of points close to the wall. From the

comparison of the model solution for the lowest grid density with Lamb's solution there is a

clear variation of accuracy through time (see Figures Dla, f, g and I). Clearly the effect of

flow reversal has a significant effect on the performance of the numerical model, and which is

particularly noticeable for low grid densities.

To quantify the performance of both models, both depth mean values and root-mean-square

deviation values were calculated for both models, for each phase, and for each grid density.

The results of this analysis are shown in Tables D 1 - D4. The depth mean values are

considered to be unreliable since the effect of flow reversal requires averaging quantities

which are of varying sign. This is overcome by using root-mean-square deviation values. For

the comparison with Lamb's analytical solution for velocity, the root-mean-square deviation

suggests a worst error of less than 1 % for both k and k-s models with a grid density of 60

points in space. This worst error increases to approximately 2 % and 5.2 % for grid densities

of 40 and 20 points, respectively. The error is seen to vary with phase (see Tables DI and

D3).

Comparison of the calculated shear stress from the k-e model compared with the analytical

solution shows a similar performance as seen with the velocity profiles. However, the lowest

grid density of 20 points through the vertical shows a poorer agreement with the analytical

results through the wave cycle for the shear stress than was seen in the velocity solution.

From the root-mean-square deviation analysis, the greatest error in the k-s model results

appears to be approximately 1.4 % (0.7 %) for a grid density of 60 points and 3.0 % (1.5 %)

and 9.6 % (3.6 %) for grid densities of 40 and 20 points, respectively. The values in brackets

correspond to the errors for the k model. The k model appears to out perform the k-e model in

the prediction of shear stress. (see Tables D2 and D4).
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Results from the k model, shown in Figures D3 and D4 show similar results to those

observed with the k-e model, although the root-mean-square deviation analysis indicates that

the k model provides better agreement with the analytical solution for shear stress.

D.3 Conclusion

From the results of the comparison between Lamb's analytical solution and the k and k-e

models, the numerical finite difference schemes are performing well. The accuracy of the

numerical schemes and their application to the non-linear equations used to model the wave

boundary layer has been verified. In addition, whilst the lowest grid density tested fails to

fully reproduce the analytical solution, close to the wall the results show good agreement due

to the vertical grid straining applied in the numerical models (see Appendix C). However, for

the number of vertical points normally applied in model solutions (between 40 and 60 vertical

points) it has been demonstrated using root-mean-square deviations that the number of

vertical grid points are sufficient to ensure numerical errors are small (2.0 % for velocity

calculations and 3.0 % for shear stress results using a grid density of 40 points in space).
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Figure Dl: Comparison of Lamb's analytical solution against results from the k-e model
for different numbers ofvertcial nodes: 0 Lamb; - k-e model (60 nodes); - -
- k-s model (40 nodes); - - - - k-s model (20 nodes).
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Figure Dl(Cont.): Comparison of Lamb's analytical solution against results from the k-e
model for different numbers of vertcial nodes: 0 Lamb; - k-e model
(60 nodes); - - - k-s model (40 nodes); - - - -- k-e model (20
nodes).
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Figure Dl(Cont.): Comparison of Lamb's analytical solution against results from the k-e
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Figure D2: Comparison of Lamb's analytical solution against results from the k-e model
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Height above Horizontal velocity, u (mmls)
bed (mm) 30° 60° 270°

0.767 0.000 0.000 0.000
0.887 33.308 38.145 -35.301
1.026 69.351 79.554 -73.717
1.187 108.170 124.280 -115.304
1.373 149.776 172.345 -160.086
1.588 194.154 223.734 -208.052
1.837 241.256 278.397 -259.158
2.124 291.003 336.252 -313.330
2.457 343.286 397.183 -370.464
2.843 397.966 461.044 -430.433
3.288 454.876 527.665 -493.088
3.803 513.824 596.855 -558.268
4.400 574.591 668.405 -625.798
5.089 636.937 742.093 -695.500
5.887 700.599 817.688 -767.191
6.809 765.291 894.948 -840.688
7.876 830.698 973.629 -915.812
9.111 896.473 1053.480 -992.385
10.539 962.219 1134.239 -1070.232
12.191 1027.471 1215.638 -1149.182
14.101 1091.658 1297.389 -1229.062
16.311 1154.027 1379.182 -1309.695
18.868 1213.507 1460.670 -1390.898
21.825 1268.425 1541.447 -1472.470
25.246 1315.913 1621.022 -1554.186
29.202 1351.041 1698.763 -1635.782
33.779 1368.399 1773.810 -1716.938
39.073 1369.069 1844.884 -1797.246
45.197 1359.246 1909.908 -1876.165
52.281 1343.522 1965.117 -1952.937
60.475 1324.078 2003.364 -2026.434
69.953 1301.851 2017.112 -2094.834
80.916 1277.245 2011.333 -2154.896
93.598 1250.454 1995.903 -2200.239
108.268 1221.609 1975.991 -2220.802
125.237 1190.871 1953.654 -2218.277
144.865 1158.536 1929.935 -2205.282
167.569 1125.210 1905.827 -2189.428
193.832 1092.240 1882.908 -2174.276
224.212 1066.351 1866.230 -2163.930
300.000 1051.836 1857.596 -2158.856

Table Ela: Computed velocity values from the k-model (time-variant) for the data of
Jonsson and Carlsen (1976).
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Height above Horizontal velocity, u (mm/s)
bed (mm) 3000 3300 3600

0.767 0.000 0.000 0.000
0.887 -24.231 -2.505 22.269
1.026 -50.751 -5.866 46.122
1.187 -79.612 -10.221 71.569
1.373 -110.838 -15.690 98.603
1.588 -144.426 -22.369 127.193
1.837 -180.351 -30.326 157.282
2.124 -218.564 -39.608 188.780
2.457 -259.001 -50.245 221.563
2.843 -301.582 -62.261 255.460
3.288 -346.221 -75.682 290.246
3.803 -392.826 -90.535 325.622
4.400 -441.304 -106.854 361.186
5.089 -491.566 -124.680 396.379
5.887 -543.527 -144.062 430.392
6.809 -597.108 -165.053 462.002
7.876 -652.239 -187.712 489.380
9.111 -708.856 -212.102 510.142
10.539 -766.902 -238.288 522.376
12.191 -826.326 -266.336 526.135
14.101 -887.082 -296.311 523.118
16.311 -949.123 -328.277 515.167
18.868 -1012.403 -362.292 503.549
21.825 -1076.868 -398.409 489.000
25.246 -1142.452 -436.670 471.906
29.202 -1209.074 -477.107 452.450
33.779 -1276.625 -519.731 430.702
39.073 -1344.958 -564.531 406.664
45.197 -1413.869 -611.465 380.304
52.281 -1483.078 -660.448 351.575
60.475 -1552.187 -711.340 320.433
69.953 -1620.619 -763.918 286.854
80.916 -1687.507 -817.846 250.855
93.598 -1751.474 -872.616 212.516
108.268 -1810.153 -927.445 172.026
125.237 -1859.089 -981.073 129.740
144.865 -1889.666 -1031.337 86.296
167.569 -1897.172 -1074.224 42.830
193.832 -1892.836 -1102.698 1.384
224.212 -1887.743 -1112.036 -28.350
300.000 -1885.034 -1114.009 -42.740

Table Elb: Computed velocity values from the k-model (time-variant) for the data of
Jonsson and Carlsen (1976).
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Height above Shear stress, T./p (mm6'sl)
bed (mm) 30° 60° 270°

0.767 26368.713 35737.355 -31456.229
0.887 27078.213 36763.512 -32399.779
1.026 26885.018 36644.930 -32388.539
1.187 26664.553 36509.227 -32374.816
1.373 26413.258 36354.000 -32357.971
1.588 26127.102 36176.484 -32337.166
1.837 25801.594 35973.496 -32311.311
2.124 25431.701 35741.371 -32279.008
2.457 25011.809 35475.902 -32238.498
2.843 24535.650 35172.262 -32187.582
3.288 23996.268 34824.930 -32123.543
3.803 23385.951 34427.574 -32043.045
4.400 22696.199 33972.992 -31942.027
5.089 21917.689 33452.973 -31815.564
5.887 21040.268 32858.195 -31657.732
6.809 20052.990 32178.123 -31461.426
7.876 18944.201 31400.865 -31218.180
9.111 17701.736 30513.080 -30917.955

10.539 16313.258 29499.889 -30548.916
12.191 14766.874 28344.809 -30097.182
14.101 13052.229 27029.771 -29546.586
16.311 11162.503 25535.238 -28878.426
18.868 9098.506 23840.508 -28071.246
21.825 6878.849 21924.316 -27100.688
25.246 4574.946 19765.955 -25939.432
29.202 2432.685 17347.309 -24557.352
33.779 781.705 14656.623 -22922.018
39.073 -426.716 11696.118 -20999.781
45.197 -1358.687 8499.914 -18757.912
52.281 -2131.710 5190.302 -16168.690
60.475 -2820.350 2262.668 -13217.479
69.953 -3455.172 314.432 -9920.633
80.916 -4036.719 -899.310 -6369.630
93.598 -4545.492 -1690.053 -2962.198

108.268 -4945.625 -2242.285 -657.641
125.237 -5184.793 -2628.809 566.281
144.865 -5191.306 -2839.990 1153.953
167.569 -4868.219 -2813.624 1354.270
193.832 -3848.127 -2321.803 1187.934
224.212 -2755.907 -1707.691 898.420
300.000 -780.786 -496.337 263.141

Table E2a: Computed shear stress values from the k-model (time-variant) for the data of
Jonsson and Carlsen (1976).
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Height above Shear stress, 'tIp (mm~/s~)

bed (mm) 30° 60° 270°
0.767 -15842.716 -701.569 10678.547
0.887 -16362.664 -808.937 10903.168
1.026 -16461.984 -987.725 10686.693
1.187 -16573.584 -1186.097 10440.257
1.373 -16698.578 -1405.729 10160.170
1.588 -16838.037 -1648.395 9842.399
1.837 -16992.961 -1915.921 9482.552
2.124 -17164.225 -2210.153 9075.880
2.457 -17352.541 -2532.942 8617.306
2.843 -17558.393 -2886.133 8101.475
3.288 -17781.955 -3271.534 7522.871
3.803 -18023.021 -3690.857 6876.042
4.400 -18280.883 -4145.634 6156.035
5.089 -18554.203 -4637.118 5359.340
5.887 -18840.879 -5166.151 4486.158
6.809 -19137.854 -5733.016 3546.420
7.876 -19440.932 -6337.261 2573.954
9.111 -19744.533 -6977.489 1636.895

10.539 -20041.455 -7651.120 793.125
12.191 -20322.563 -8354.106 39.538
14.101 -20576.473 -9080.616 -653.493
16.311 -20789.197 -9822.656 -1314.638
18.868 -20943.762 -10569.667 -1968.642
21.825 -21019.801 -11308.058 -2633.409
25.246 -20993.164 -12020.705 -3319.268
29.202 -20835.545 -12686.417 -4029.817
33.779 -20514.184 -13279.392 -4762.608
39.073 -19991.750 -13768.686 -5509.191
45.197 -19226.514 -14117.760 -6254.612
52.281 -18173.053 -14284.207 -6976.517
60.475 -16783.945 -14219.798 -7644.0269
69.953 -15013.203 -13871.142 -8216.578
80.916 -12823.156 -13181.459 -8642.990
93.598 -10198.881 -12094.396 -8861.204
108.268 -7182.527 -10561.861 -8799.433
125.237 -3975.057 -8560.680 -8380.054
144.865 -1418.688 -6131.785 -7528.626
167.569 -106.164 -3507.861 -6199.560
193.832 334.776 -1388.576 -4075.418
224.212 369.927 -476.648 -2401.338
300.000 117.916 -73.580 -581.519

Table E2b: Computed shear stress values from the k-model (time-variant) for the data of
Jonsson and Carlsen (1976).
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Height above Horizontal velocity, u (mmls)
bed (mm) 30° 60° 270°

0.767 0.000 0.000 0.000
0.887 52.024 61.927 -59.718
1.026 107.555 127.940 -123.303
1.187 163.277 193.783 -186.445
1.373 219.338 259.614 -249.278
1.588 275.859 325.565 -311.924
1.837 332.939 391.749 -374.489
2.124 390.666 458.269 -437.074
2.457 449.116 525.221 -499.774
2.843 508.360 592.697 -562.685
3.288 568.459 660.785 -625.902
3.803 629.468 729.579 -689.525
4.400 691.431 799.169 -753.656
5.089 754.371 869.653 -818.407
5.887 818.284 941.129 -883.896
6.809 883.112 1013.698 -950.249
7.876 948.711 1087.465 -1017.605
9.111 1014.786 1162.530 -1086.110
10.539 1080.774 1238.989 -1155.922
12.191 1145.656 1316.920 -1227.210
14.101 1207.637 1396.370 -1300.148
16.311 1263.806 1477.324 -1374.917
18.868 1310.299 1559.653 -1451.693
21.825 1344.048 1643.022 -1530.638
25.246 1365.157 1726.694 -1611.879
29.202 1376.362 1809.158 -1695.468
33.779 1380.525 1887.371 -1781.313
39.073 1379.433 1955.572 -1869.051
45.197 1373.872 2005.533 -1957.768
52.281 1363.964 2033.174 -2045.424
60.475 1349.439 2043.347 -2127.555
69.953 1329.825 2042.436 -2195.070
80.916 1304.592 2033.772 -2236.079
93.598 1273.292 2018.432 -2250.380
108.268 1235.733 1996.579 -2247.893
125.237 1192.265 1968.263 -2235.012
144.865 1144.353 1933.956 -2214.199
167.569 1095.814 1895.207 -2186.992
193.832 1054.905 1855.874 -2155.960
224.212 1031.837 1823.815 -2126.529
300.000 1024.387 1807.487 -2107.950

Table E3a: Computed velocity results from the k-e model for the data of Jonsson and
Carlsen (1976).
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Appendix E Tables of Results For The Hydrodynamic Models

Height above Horizontal velocity, u (mmls)
bed (mm) 3000 3300 3600

0.767 0.000 0.000 0.000
0.887 -44.323 -13.199 33.979
1.026 -91.421 -27.195 70.135
1.187 -137.824 -40.489 106.593
1.373 -183.623 -53.200 143.376
1.588 -228.910 -65.483 180.428
1.837 -273.785 -77.495 217.606
2.124 -318.345 -89.388 254.655
2.457 -362.695 -101.306 291.177
2.843 -406.942 -113.382 326.602
3.288 -451.200 -125.748 360.173
3.803 -495.586 -138.534 391.004
4.400 -540.229 -151.872 418.222
5.089 -585.263 -165.896 441.197
5.887 -630.835 -180.753 459.730
6.809 -677.101 -196.594 474.059
7.876 -724.230 -213.586 484.694
9.111 -772.404 -231.911 492.208
10.539 -821.820 -251.765 497.092
12.191 -872.689 -273.365 499.697
14.101 -925.240 -296.945 500.226
16.311 -979.714 -322.763 498.740
18.868 -1036.370 -351.097 495.180
21.825 -1095.476 -382.245 489.369
25.246 -1157.309 -416.526 481.028
29.202 -1222.141 -454.276 469.782
33.779 -1290.227 -495.840 455.169
39.073 -1361.774 -541.561 436.662
45.197 -1436.888 -591.765 413.692
52.281 -1515.480 -646.724 385.685
60.475 -1597.073 -706.603 352.107
69.953 -1680.408 -771.347 312.531
80.916 -1762.537 -840.481 266.729
93.598 -1836.759 -912.662 214.832
108.268 -1890.041 -984.675 157.632
125.237 -1912.342 -1049.163 97.237
144.865 -1911.803 -1092.310 38.577
167.569 -1898.769 -1106.471 -8.001
193.832 -1878.766 -1102.286 -30.709
224.212 -1857.087 -1091.164 -34.615
300.000 -1841.908 -1081.836 -32.533

Table E3b: Computed velocity results from the k-s model for the data of Jonsson and
Carlsen (1976).
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Appendix E Tables of Results For The Hydrodynamic Models

Height above Shear stress, 'tIp (mm·'s·)
bed (mm) 30° 60° 270°

0.767 23818.414 35047.703 -33564.813
0.887 21285.043 31298.496 -29956.631
1.026 21857.920 32353.672 -31112.758
1.187 21702.582 32292.016 -31166.879
1.373 21510.684 32202.078 -31207.250
1.588 21279.629 32082.836 -31234.684
1.837 21005.988 31932.490 -31249.400
2.124 20685.498 31748.469 -31251.053
2.457 20313.021 31527.410 -31238.709
2.843 19882.492 31265.098 -31210.813
3.288 19386.838 30956.379 -31165.113
3.803 18817.891 30595.059 -31098.564
4.400 18166.295 30173.760 -31007.209
5.089 17421.438 29683.764 -30886.016
5.887 16571.430 29114.814 -30728.693
6.809 15603.202 28454.906 -30527.465
7.876 14502.892 27690.035 -30272.785
9.111 13256.830 26803.932 -29953.029

10.539 11853.966 25777.779 -29554.111
12.191 10291.825 24589.969 -29059.061
14.101 8591.221 23215.934 -28447.523
16.311 6825.939 21628.191 -27695.225
18.868 5140.578 19796.928 -26773.406
21.825 3667.105 17691.717 -25648.258
25.246 2411.918 15286.095 -24280.498
29.202 1307.444 12570.309 -22625.268
33.779 291.529 9592.494 -20632.861
39.073 -676.970 6578.290 -18251.330
45.197 -1617.901 3993.500 -15433.753
52.281 -2531.114 2053.787 -12159.898
60.475 -3398.171 566.063 -8519.451
69.953 -4183.110 -638.210 -4980.019
80.916 -4832.158 -1637.272 -2317.679
93.598 -5273.238 -2451.465 -524.400

108.268 -5416.847 -3057.057 726.547
125.237 -5161.777 -3398.766 1575.160
144.865 -4415.551 -3402.518 2071.546
167.569 -3170.717 -2996.380 2201.236
193.832 -1736.240 -2179.734 1924.886
224.212 -703.528 -1190.829 1271.549
300.000 -138.823 -304.227 366.274

Table E4a: Computed shear stress values from the k-s model for the data of Jonsson and
Carlsen (1976).
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Appendix E Tables of Results For The Hydrodynamic Models

Height above Shear stress, 'tIp (mm"is·)
bed (mm) 3000 3300 3600

0.767 -19656.244 -3321.431 9262.465
0.887 -17524.857 -2958.189 8263.898
1.026 -18365.738 -3323.686 8324.335
1.187 -18525.789 -3533.469 8118.658
1.373 -18688.615 -3756.483 7876.322
1.588 -18856.434 -3995.426 7594.589
1.837 -19031.137 -4252.998 7270.626
2.124 -19214.295 -4531.760 6902.024
2.457 -19407.133 -4834.118 6487.646
2.843 -19610.504 -5162.329 6028.925
3.288 -19824.836 -5518.491 5531.427
3.803 -20050.061 -5904.511 5005.628
4.400 -20285.514 -6322.041 4465.069
5.089 -20529.813 -6772.389 3921.389
5.887 -20780.699 -7256.396 3379.636
6.809 -21034.842 -7774.283 2837.686
7.876 -21287.602 -8325.450 2288.745
9.111 -21532.742 -8908.245 1723.797
10.539 -21762.078 -9519.674 1133.092
12.191 -21965.070 -10155.049 507.142
14.101 -22128.322 -10807.580 -162.471
16.311 -22235.016 -11467.881 -882.366
18.868 -22264.232 -12123.385 -1656.578
21.825 -22190.191 -12757.660 -2485.633
25.246 -21981.395 -13349.603 -3365.369
29.202 -21599.711 -13872.503 -4285.507
33.779 -20999.465 -14292.975 -5227.987
39.073 -20126.697 -14569.774 -6165.167
45.197 -18918.941 -14652.569 -7058.071
52.281 -17306.264 -14480.823 -7854.898
60.475 -15215.369 -13983.189 -8490.099
69.953 -12581.678 -13078.290 -8884.354
80.916 -9389.293 -11679.025 -8945.974
93.598 -5842.589 -9706.341 -8574.842
108.268 -2754.114 -7136.721 -7672.081
125.237 -746.910 -4200.170 -6167.040
144.865 478.096 -1746.479 -4119.046
167.569 1127.965 -281.461 -2029.289
193.832 1289.752 426.142 -662.929
224.212 1001.066 537.544 -44.035
300.000 313.020 192.250 41.058

Table E4b: Computed shear stress values from the k-s model for the data of Jonsson and
Carlsen (1976).
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Appendix E Tables of Results For The Hydrodynamic Models

Height above Horizontal velocity, u (mmls)
bed (mm) 0° 15° 30° 45°

0.028 0.000 0.000 0.000 0.000
0.035 7.451 13.170 18.210 22.113
0.044 16.535 29.144 40.221 48.785
0.055 27.280 47.794 65.724 79.556
0.069 39.813 69.235 94.814 114.500
0.087 54.198 93.481 127.453 153.544
0.109 70.428 120.437 163.483 196.481
0.137 88.417 149.925 202.651 243.012
0.171 108.020 181.707 244.654 292.782
0.215 129.050 215.521 289.167 345.422
0.269 151.303 251.105 335.877 400.577
0.338 174.567 288.210 384.487 457.913
0.423 198.631 326.603 434.727 517.129
0.531 223.272 366.067 486.349 577.949
0.666 248.240 406.392 539.122 640.123
0.835 273.226 447.369 592.828 703.420
1.047 297.806 488.782 647.255 767.622
1.313 321.320 530.397 702.195 832.524
1.646 342.648 571.945 757.431 897.925
2.064 359.862 613.100 812.735 963.625
2.588 370.603 653.438 867.851 1029.417
3.246 374.220 692.344 922.482 1095.076
4.070 372.209 728.825 976.258 1160.350
5.104 366.225 761.021 1028.687 1224.939
6.400 357.233 785.072 1079.058 1288.464

8.0251 345.668 796.063 1126.223 1350.422
10.063 331.669 795.284 1168.060 1410.085
12.619 315.215 787.459 1199.796 1466.306
15.824 296.207 775.348 1213.414 1517.041
19.844 274.508 760.040 1210.864 1557.957
24.884 249.979 741.894 1199.932 1578.579
31.204 222.513 720.982 1184.467 1577.383
39.129 192.078 697.279 1165.764 1565.409
49.067 158.780 670.773 1144.244 1548.470
61.529 122.961 641.563 1120.087 1528.364
77.156 85.381 609.998 1093.507 1505.715
96.753 47.595 576.939 1064.979 1480.956

121.326 12.832 544.317 1035.590 1454.788
152.141 -10.733 516.089 1007.419 1428.518
190.782 -13.263 506.796 993.033 1411.809
300.000 -11.184 506.208 989.217 1405.046

Table E5a: Computed horizontal velocity values from the k model for test 13 from the
experiments of Jensen et al. (1989).
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Appendix E Tables of Results For The Hydrodynamic Models

Height above Horizontal velocity, u (mmls)
bed (mm) 60° 75° 90° 105°

0.028 0.000 0.000 0.000 0.000
0.035 24.570 25.382 24.451 21.786
0.044 54.174 55.957 53.924 48.087
0.055 88.252 91.133 87.864 78.460
0.069 126.866 130.966 126.334 112.983
0.087 169.920 175.356 169.241 151.587
0.109 217.181 224.060 216.354 194.073
0.137 268.319 276.738 267.346 240.146
0.171 322.950 332.998 321.834 289.459
0.215 380.678 392.435 379.428 341.654
0.269 441.120 454.660 439.751 396.388
0.338 503.922 519.313 502.457 453.346
0.423 568.762 586.069 567.234 512.248
0.531 635.350 654.635 633.803 572.844
0.666 703.423 724.751 701.917 634.917
0.835 772.743 796.179 771.356 698.273
1.047 843.092 868.709 841.923 762.743
1.313 914.268 942.147 913.442 828.178
1.646 986.079 1016.316 985.755 894.447
2.064 1058.345 1091.051 1058.720 961.437
2.588 1130.883 1166.197 1132.207 1029.048
3.246 1203.512 1241.601 1206.094 1097.195
4.070 1276.035 1317.108 1280.265 1165.800
5.104 1348.232 1392.553 1354.602 1234.793
6.400 1419.846 1467.753 1428.978 1304.102

8.0251 1490.555 1542.486 1503.250 1373.650
10.063 1559.940 1616.477 1577.238 1443.341
12.619 1627.413 1689.359 1650.713 1513.048
15.824 1692.101 1760.621 1723.353 1582.587
19.844 1752.571 1829.505 1794.700 1651.685
24.884 1806.181 1894.797 1864.053 1719.918
31.204 1846.797 1954.333 1930.280 1786.611
39.129 1861.139 2003.851 1991.355 1850.626
49.067 1854.321 2030.424 2043.401 1909.879
61.529 1839.010 2028.745 2074.501 1960.328
77.156 1819.863 2014.659 2074.898 1989.142
96.753 1798.260 1996.120 2061.134 1987.628
121.326 1774.957 1975.369 2042.986 1973.365
152.141 1750.947 1953.560 2023.280 1955.849
190.782 1733.962 1937.349 2008.311 1942.330
300.000 1725.310 1928.019 1999.204 1933.953

Table E5b: Computed horizontal velocity values from the k model for test 13 from the
experiments of Jensen et al. (1989).
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Appendix E Tables of Results For The Hydrodynamic Models

Height above Horizontal velocity, u (mmls)
bed (mm) 1200 1350 1500 1650

0.028 0.000 0.000 0.000 0.000
0.035 17.495 11.803 5.118 -1.706
0.044 38.681 26.180 11.437 -3.765
0.055 63.283 43.054 19.032 -6.197
0.069 91.402 62.556 28.049 -9.020
0.087 123.014 84.723 38.594 -12.221
0.109 157.972 109.488 50.716 -15.743
0.137 196.037 136.699 64.399 -19.461
0.171 236.919 166.148 79.568 -23.173
0.215 280.315 197.606 96.109 -26.598
0.269 325.933 230.854 113.902 -29.407
0.338 373.509 265.693 132.836 -31.271
0.423 422.810 301.953 152.823 -31.929
0.531 473.633 339.495 173.806 -31.217
0.666 525.803 378.201 195.750 -29.062
0.835 579.168 417.978 218.644 -25.446
1.047 633.599 458.752 242.497 -20.367
1.313 688.984 500.464 267.335 -13.811
1.646 745.230 543.076 293.201 -5.745
2.064 802.264 586.565 320.151 3.889
2.588 860.024 630.927 348.256 15.170
3.246 918.468 676.174 377.600 28.198
4.070 977.565 722.331 408.275 43.087
5.104 1037.295 769.441 440.383 59.961
6.400 1097.646 817.554 474.033 78.953
8.0251 1158.605 866.725 509.330 100.196
10.063 1220.156 917.009 546.380 123.820
12.619 1282.259 968.445 585.272 149.943
15.824 1344.842 1021.050 626.076 178.667
19.844 1407.770 1074.790 668.823 210.062
24.884 1470.803 1129.559 713.487 244.152
31.204 1533.534 1185.126 759.948 280.889
39.129 1595.269 1241.058 807.940 320.112
49.067 1654.780 1296.577 856.950 361.486
61.529 1709.727 1350.244 906.037 404.363
77.156 1755.365 1399.224 953.392 447.542
96.753 1776.456 1436.903 995.376 488.625
121.326 1770.712 1447.000 1021.426 522.359
152.141 1756.112 1437.634 1021.608 535.301
190.782 1744.183 1427.560 1014.097 531.837
300.000 1736.756 1421.160 1008.802 527.881

Table E5c: Computed horizontal velocity values from the k model for test 13 from the
experiments of Jensen et al. (1989).
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Appendix E Tables a/Results For The Hydrodynamic Models

Height above Shear stress, 'tIp (mml/sl)
bed (mm) 0° 15° 30° 45°

0.028 2139.939 4776.186 7757.344 10487.705
0.035 2124.967 4729.227 7666.495 10353.118
0.044 2129.651 4765.878 7745.446 10474.383
0.055 2113.348 4746.211 7722.953 10450.316
0.069 2093.480 4723.047 7697.307 10423.616
0.087 2069.624 4696.193 7668.480 10394.402
0.109 2041.222 4665.149 7635.997 10362.263
0.137 2007.458 4628.997 7598.888 10326.271
0.171 1967.192 4586.427 7555.802 10285.155
0.215 1918.964 4535.832 7505.143 10237.445
0.269 1861.030 4475.368 7445.125 10181.550
0.338 1791.381 4402.947 7373.756 10115.709
0.423 1707.721 4316.176 7288.743 10037.905
0.531 1607.417 4212.266 7187.391 9945.745
0.666 1487.451 4087.944 7066.487 9836.344
0.835 1344.387 3939.363 6922.193 9706.204
1.047 1174.415 3762.029 6749.935 9551.092
1.313 973.777 3550.734 6544.289 9365.905
1.646 741.616 3299.527 6298.872 9144.523
2.064 492.296 3001.724 6006.236 8879.645
2.588 254.838 2650.015 5657.797 8562.620
3.246 32.022 2236.781 5243.815 8183.295
4.070 -187.835 1754.936 4753.503 7729.875
5.104 -414.346 1202.087 4175.365 7188.887
6.400 -657.371 641.385 3497.995 6545.306

8.0251 -924.860 188.586 2712.344 5783.034
10.063 -1221.608 -186.681 1812.054 4886.066
12.619 -1548.803 -522.490 884.388 3841.497
15.824 -1903.174 -846.140 203.908 2645.044
19.844 -2275.530 -1175.596 -289.289 1329.880
24.884 -2648.760 -1514.862 -682.519 349.930
31.204 -2995.468 -1855.620 -1028.008 -262.378
39.129 -3275.623 -2176.973 -1349.004 -688.107
49.067 -3434.867 -2443.251 -1638.770 -1015.439
61.529 -3404.698 -2601.296 -1868.200 -1280.104
77.156 -3106.803 -2579.576 -1987.954 -1468.263
96.753 -2469.949 -2294.140 -1930.212 -1536.062
121.326 -1454.618 -1689.019 -1631.582 -1426.922
152.141 -414.476 -694.720 -881.327 -930.946
190.782 -8.527 -194.676 -384.576 -529.523
300.000 31.622 -8.817 -57.407 -103.915

Table E6a: Computed shear stress values from the k model for test 13 from the
experiments of Jensen et al. (1989).
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Appendix E Tables of Results For The Hydrodynamic Models

Height above Shear stress, wj_mm1/s'1_
bed (mm) 60° 75° 90° 105°

0.028 12399.458 13073.532 12336.197 10306.342
0.035 12233.253 12896.727 12173.370 10179.199
0.044 12386.308 13063.063 12331.105 10308.691
0.055 12362.471 13041.576 12314.084 10297.877
0.069 12336.648 13018.848 12296.609 10287.380
0.087 12309.117 12995.319 12279.294 10277.967
0.109 12279.589 12970.881 12262.243 10269.990
0.137 12247.268 12944.939 12245.127 10263.423
0.171 12211.049 12916.637 12227.389 10258.043
0.215 12169.696 12885.038 12208.442 10253.637
0.269 12121.906 12849.206 12187.759 10250.091
0.338 12066.272 12808.169 12164.848 10247.402
0.423 12001.188 12760.831 12139.180 10245.614
0.531 11924.735 12705.872 12110.101 10244.746
0.666 11834.566 12641.637 12076.733 10244.716
0.835 11727.788 12566.028 12037.896 10245.271
1.047 11600.838 12476.395 11991.980 10245.902
1.313 11449.344 12369.396 11936.863 10245.742
1.646 11267.960 12240.831 11869.730 10243.437
2.064 11050.183 12085.468 11786.904 10236.971
2.588 10788.134 11896.791 11683.606 10223.451
3.246 10472.322 11666.730 11553.674 10198.821
4.070 10091.394 11385.346 11389.200 10157.503
5.104 9631.885 11040.466 11180.125 10091.946
6.400 9078.026 10617.310 10913.737 9992.094

8.0251 8411.683 10098.120 10574.138 9844.729
10.063 7612.573 9461.898 10141.672 9632.744
12.619 6659.092 8684.388 9592.433 9334.359
15.824 5530.343 7738.604 8897.981 8922.363
19.844 4212.580 6596.577 8025.634 8363.588
24.884 2700.279 5233.415 6939.985 7618.996
31.204 1121.499 3647.574 5606.779 6645.188
39.129 131.728 1816.690 4015.143 5398.667
49.067 -438.842 430.487 2121.703 3861.484
61.529 -796.151 -277.634 545.671 1980.111
77.156 -1037.802 -659.719 -218.591 454.830
96.753 -1178.456 -869.093 -583.160 -244.582
121.326 -1184.775 -951.099 -738.205 -535.084
152.141 -878.661 -775.740 -655.943 -535.080
190.782 -600.672 -602.349 -557.344 -488.934
300.000 -137.159 -152.344 -151.544 -140.095

Table E6b: Computed shear stress values from the k model for test 13 from the
experiments of Jensen et al. (1989).
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Appendix E Tables of Results For The Hydrodynamic Models

Height above Shear stress, 'tIp (mml/sl)
bed (mm) 1200 1350 1500 1650

0.028 7382.856 4175.661 1399.230 -367.546
0.035 7304.084 4144.386 1399.162 -363.012
0.044 7393.273 4192.657 1418.555 -353.274
0.055 7389.709 4196.466 1428.798 -339.410
0.069 7387.143 4201.825 1441.158 -322.333
0.087 7386.455 4209.624 1456.301 -301.458
0.109 7388.251 4220.680 1475.047 -276.163
0.137 7392.832 4235.633 1498.283 -245.826
0.171 7400.332 4254.987 1526.883 -209.861
0.215 7410.903 4279.244 1561.703 -167.738
0.269 7424.831 4309.034 1603.653 -118.945
0.338 7442.558 4345.167 1653.783 -62.867
0.423 7464.653 4388.633 1713.318 1.362
0.531 7491.756 4440.567 1783.658 74.916
0.666 7524.517 4502.205 1866.348 159.262
0.835 7563.547 4574.844 1963.044 256.152
1.047 7609.347 4659.790 2075.471 367.622
1.313 7662.228 4758.286 2205.368 495.957
1.646 7722.197 4871.420 2354.412 643.609
2.064 7788.807 4999.993 2524.119 813.085
2.588 7860.953 5144.337 2715.698 1006.790
3.246 7936.604 5304.072 2929.863 1226.833
4.070 8012.456 5477.790 3166.568 1474.762
5.104 8083.482 5662.642 3424.664 1751.223
6.400 8142.384 5853.817 3701.444 2055.524

8.0251 8178.908 6043.886 3992.053 2385.087
10.063 8179.033 6221.995 4288.739 2734.755
12.619 8124.039 6372.896 4579.920 3095.955
15.824 7989.490 6475.824 4849.045 3455.671
19.844 7744.244 6503.258 5073.265 3795.220
24.884 7349.702 6419.694 5221.963 4088.822
31.204 6759.793 6180.720 5255.318 4302.033
39.129 5922.733 5733.002 5123.277 4390.247
49.067 4786.555 5016.577 4765.818 4297.814
61.529 3329.070 3974.184 4116.367 3959.090
77.156 1514.342 2570.543 3120.376 3305.028
96.753 237.430 928.232 1718.977 2288.088
121.326 -301.825 10.494 427.756 957.408
152.141 -414.029 -277.357 -99.596 133.371
190.782 -412.577 -333.949 -248.186 -140.017
300.000 -123.210 -104.283 -84.293 -61.523

Table E6c: Computed shear stress values from the k model for test 13 from the
experiments of Jensen et al. (1989).
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Appendix E Tables of Results For The Hydrodynamic Models

Height above Turbulent kinetic ener2}", k (mm2/s2)
bed (mm) 0° 15° 30° 45°

0.028 0.000 0.000 0.000 0.000
0.035 9827.792 17578.586 24991.914 30322.330
0.044 9883.145 17674.477 25123.443 30478.664
0.055 10001.237 17873.205 25391.033 30793.645
0.069 10186.102 18177.568 25795.652 31267.055
0.087 10432.870 18576.475 26320.666 31878.803
0.109 10726.969 19045.404 26933.559 32591.520
0.137 11045.729 19550.215 27591.520 33357.297
0.171 11361.872 20052.852 28248.771 34125.988
0.215 11647.516 20516.850 28863.049 34852.301
0.269 11877.331 20911.043 29399.627 35499.988
0.338 12030.187 21211.041 29832.598 36043.020
0.423 12089.345 21398.818 30144.029 36464.484
0.531 12041.704 21461.232 30321.945 36754.242
0.666 11876.630 21388.117 30357.943 36906.281
0.835 11584.803 21170.451 30244.934 36916.207
1.047 11157.371 20798.840 29975.250 36779.145
1.313 10585.622 20262.422 29539.193 36488.090
1.646 9861.410 19548.219 28924.012 36032.695
2.064 8978.810 18641.000 28113.234 35398.313
2.588 7938.045 17523.727 27086.385 34565.371
3.246 6754.331 16178.913 25819.117 33508.945
4.070 5478.407 14591.446 24283.924 32198.635
5.104 4246.004 12754.324 22451.770 30598.871
6.400 3379.079 10680.666 20295.354 28669.947

8.0251 3262.898 8431.041 17795.471 26370.309
10.063 3790.101 6180.394 14953.858 23661.148
12.619 4625.741 4404.991 11821.219 20515.508
15.824 5580.363 3857.454 8564.347 16936.852
19.844 6566.250 4329.061 5649.559 13000.305
24.884 7523.288 5161.858 4220.709 8950.111
31.204 8386.895 6040.141 4369.946 5519.352
39.129 9074.842 6829.957 5048.038 4208.566
49.067 9481.713 7434.105 5728.497 4430.773
61.529 9479.411 7747.212 6219.048 4938.683
77.156 8927.949 7647.196 6397.579 5281.797
96.753 7708.672 7007.497 6147.379 5292.098
121.326 5812.074 5741.854 5365.041 4860.601
152.141 3522.932 3891.955 4013.704 3927.898
190.782 2506.297 2695.712 2889.083 3008.567
300.000 2248.312 2261.090 2323.399 2413.409

Table E7a: Computed turbulent kinetic energy values from the k model for test 13 from
the experiments of Jensen et al. (1989).
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Appendix E Tables of Results For The Hydrodynamic Models

Height above Turbulent kinetic energy, k (mml/sl)
bed (mm) 60° 75° 90° 105°

0.028 0.000 0.000 0.000 0.000
0.035 32268.807 3515.022 30296.213 24792.016
0.044 32435.291 3533.633 30456.459 24930.100
0.055 32770.195 3575.023 30780.957 25214.131
0.069 33273.418 3642.059 31271.234 25648.537
0.087 33924.219 3734.184 31908.967 26220.303
0.109 34684.129 3846.217 32658.545 26900.561
0.137 35504.086 3968.076 33473.867 27650.225

0.171 36333.117 4085.707 34306.750 28427.490

0.215 37125.676 4182.927 35114.156 29194.557

0.269 37845.938 4243.486 35862.527 29921.902

0.338 38468.949 4252.713 36529.031 30589.748

0.423 38979.457 4198.500 37100.543 31187.355
0.531 39369.520 4071.831 37571.359 31711.135
0.666 39635.738 3867.364 37940.605 32162.320

0.835 39776.688 3584.824 38209.723 32544.750
1.047 39790.777 3232.556 38380.395 32862.949
1.313 39674.508 2835.719 38452.859 33120.570
1.646 39421.160 2453.139 38424.563 33319.086
2.064 39019.715 2199.504 38289.043 33456.695
2.588 38454.008 2216.628 38034.938 33527.262
3.246 37701.961 2546.846 37645.047 33519.281
4.070 36735.000 3116.832 37095.418 33414.738
5.104 35517.605 3846.201 36354.426 33187.902
6.400 34007.230 4687.662 35381.973 32804.078

8.0251 32154.809 5614.866 34128.949 32218.365
10.063 29906.406 6607.527 32537.244 31374.682
12.619 27206.967 7642.147 30540.893 30205.346
15.824 24008.004 8686.009 28069.291 28631.850
19.844 20283.242 9692.544 25054.402 26567.871
24.884 16061.867 10597.412 21445.736 23926.598
31.204 11507.333 11315.438 17242.109 20636.504
39.129 7089.769 11739.279 12565.786 16675.291
49.067 4423.995 11741.581 7812.450 12149.499
61.529 4055.111 11184.080 4507.651 7452.601
77.156 4343.773 9941.006 3756.176 4205.821
96.753 4508.938 7955.582 3844.204 3428.941

121.326 4328.094 5378.235 3818.871 3373.000
152.141 3720.785 3042.278 3457.605 3179.681
190.782 3033.568 2404.966 2982.474 2882.015
300.000 2499.771 2284.741 2557.820 2576.405

Table E7b: Computed turbulent kinetic energy values from the k model for test 13 from
the experiments of Jensen et al. (1989).
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Appendix E Tables of Results For The Hydrodynamic Models

Height above Turbulent kinetic energy, k (mm2/s2)
bed (mm) 120° 135° 1500 1650

0.028 0.000 0.000 0.000 0.000
0.035 17025.520 8920.859 2704.104 458.051
0.044 17128.352 8981.017 2724.586 460.358
0.055 17345.605 9113.736 2773.303 466.216
0.069 17685.127 9329.143 2858.524 477.292
0.087 18141.391 9629.745 2987.384 495.734
0.109 18695.660 10009.117 3164.397 524.279
0.137 19319.684 10453.022 3390.412 566.405
0.171 19981.510 10942.706 3662.640 626.574
0.215 20651.275 11459.023 3975.888 710.497
0.269 21305.244 11985.924 4324.472 825.193
0.338 21927.549 12512.443 4703.987 978.510
0.423 22510.025 13033.180 5112.381 1178.058
0.531 23050.857 13547.698 5550.231 1430.140
0.666 23552.766 14059.372 6020.438 1739.378
0.835 24021.176 14574.078 6527.588 2109.165
1.047 24462.590 15098.935 7077.212 2542.374
1.313 24883.193 15641.155 7675.020 3041.854
1.646 25287.674 16207.017 8326.160 3610.518
2.064 25678.160 16800.873 9034.488 4251.074
2.588 26053.156 17424.166 9801.809 4965.514
3.246 26406.449 18074.355 10627.036 5754.383
4.070 26725.885 18743.748 11505.237 6615.878
5.104 26992.000 19418.156 12426.490 7544.754
6.400 27176.529 20075.402 13374.538 8531.009

8.0251 27240.813 20683.658 14325.179 9558.341
10.063 27134.236 21199.674 15244.429 10602.344
12.619 26792.906 21566.973 16086.468 11628.452
15.824 26138.947 21714.299 16791.508 12589.665
19.844 25081.086 21554.668 17283.852 13424.188
24.884 23517.764 20985.850 17470.627 14053.261
31.204 21345.145 19893.744 17242.205 14379.786
39.129 18474.979 18161.578 16476.145 14288.968
49.067 14874.064 15691.245 15048.487 13653.432
61.529 10658.871 12452.424 12860.971 12348.163
77.156 6296.457 8601.160 9906.538 10288.034
96.753 3642.033 4838.989 6419.261 7522.911
121.326 3065.761 3064.366 3568.210 4490.917
152.141 2917.379 2706.180 2604.521 2698.729
190.782 2754.812 2619.604 2496.189 2411.990
300.000 2556.002 2504.084 2431.749 2352.841

Table E7c: Computed turbulent kinetic energy values from the k model for test 13 from
the experiments of Jensen et al. (1989).
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Appendix E Tables of Results For The Hydrodynamic Models

Height above Horizontal velocity, u (mmls)
bed (mm) 0° 15° 30° 45°

0.028 0.000 0.000 0.000 0.000
0.035 12.069 24.929 40.014 54.069
0.044 26.884 54.847 86.688 115.556
0.055 44.380 87.944 135.127 176.472
0.069 64.109 122.189 182.332 233.863
0.087 85.310 156.292 227.558 287.873
0.109 107.269 189.871 271.155 339.472
0.137 129.535 223.029 313.702 389.575
0.171 151.895 256.020 355.723 438.876
0.215 174.253 289.112 397.628 487.882
0.269 196.521 322.538 439.735 536.956
0.338 218.550 356.494 482.282 586.364
0.423 240.079 391.138 525.456 636.304
0.531 260.710 426.595 569.406 686.926
0.666 279.921 462.961 614.257 738.354
0.835 297.156 500.289 660.119 790.693
1.047 311.969 538.575 707.093 844.044
1.313 324.167 577.704 755.278 898.506
1.646 333.834 617.348 804.764 954.187
2.064 341.236 656.783 855.629 1011.204
2.588 346.687 694.575 907.905 1069.684
3.246 350.452 728.359 961.518 1129.759
4.070 352.698 755.402 1016.131 1191.553
5.104 353.476 774.378 1070.773 1255.143
6.400 352.715 786.223 1123.033 1320.463
8.025 350.203 792.783 1167.917 1387.058
10.063 345.568 795.476 1199.314 1453.409
12.619 338.258 794.988 1216.423 1515.160
15.824 327.512 791.397 1223.558 1562.673
19.844 312.361 784.294 1224.278 1588.137
24.884 291.671 772.866 1219.975 1596.865
31.204 264.237 755.969 1210.584 1595.935
39.129 228.947 732.237 1195.209 1587.977
49.067 184.999 700.288 1172.533 1572.963
61.529 132.248 659.087 1141.232 1549.863
77.156 72.120 608.702 1100.600 1517.701
96.753 11.277 552.699 1052.080 1476.757
121.326 -22.505 507.454 1004.118 1431.779
152.141 -19.966 499.852 985.736 1404.820
190.782 -5.728 511.054 992.976 1407.199
300.000 0.692 517.976 999.957 1413.796

Table E8a: Computed horizontal velocity values from the k-e model for test 13 from the
experiments of Jensen et al. (1989).
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Appendix E Tables of Results For The Hydrodynamic Models

Height above Horizontal velocity, u (mmls)
bed (mm) 60° 75° 90° 105°

0.028 0.000 0.000 0.000 0.000
0.035 64.434 69.220 24.451 21.786
0.044 136.409 145.894 53.924 48.087
0.055 205.712 218.802 87.864 78.460
0.069 269.855 285.790 126.334 112.983
0.087 329.704 348.071 169.241 151.587
0.109 386.640 407.209 216.354 194.073
0.137 441.780 464.402 267.346 240.146
0.171 495.925 520.493 321.834 289.459
0.215 549.634 576.059 379.428 341.654
0.269 603.300 631.499 439.751 396.388
0.338 657.200 687.090 502.457 453.346
0.423 711.535 743.030 567.234 512.248
0.531 766.455 799.459 633.803 572.844
0.666 822.076 856.486 701.917 634.917
0.835 878.497 914.198 771.356 698.273
1.047 935.809 972.674 841.923 762.743
1.313 994.105 1031.998 913.442 828.178
1.646 1053.485 1092.259 985.755 894.447
2.064 1114.065 1153.565 1058.720 961.437
2.588 1175.977 1216.043 1132.207 1029.048
3.246 1239.375 1279.849 1206.094 1097.195
4.070 1304.432 1345.165 1280.265 1165.800
5.104 1371.339 1412.207 1354.602 1234.793
6.400 1440.286 1481.219 1428.978 1304.102
8.025 1511.424 1552.467 1503.250 1373.650

10.063 1584.763 1626.214 1577.238 1443.341
12.619 1659.896 1702.659 1650.713 1513.048
15.824 1735.181 1781.767 1723.353 1582.587
19.844 1805.180 1862.788 1794.700 1651.685
24.884 1856.024 1942.644 1864.053 1719.918
31.204 1878.055 2010.707 1930.280 1786.611
39.129 1881.424 2046.524 1991.355 1850.626
49.067 1874.339 2053.792 2043.401 1909.879
61.529 1858.662 2046.496 2074.501 1960.328
77.156 1833.988 2029.010 2074.898 1989.142
96.753 1800.190 2001.966 2061.134 1987.628
121.326 1760.220 1967.366 2042.986 1973.365
152.141 1728.521 1934.523 2023.280 1955.849
190.782 1725.512 1926.249 2008.311 1942.330
300.000 1731.289 1930.799 1999.204 1933.953

Table E8b: Computed horizontal velocity values from the k-s model for test 13 from the
experiments of Jensen et al. (1989).
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Appendix E Tables of Results For The Hydrodynamic Models

Height above Horizontal velocity, u (mmls)
bed (mm) 1200 1350 1500 1650

0.028 0.000 0.000 0.000 0.000
0.035 17.495 11.803 5.118 -1.706
0.044 38.681 26.180 11.437 -3.765
0.055 63.283 43.054 19.032 -6.197
0.069 91.402 62.556 28.049 -9.020
0.087 123.014 84.723 38.594 -12.221
0.109 157.972 109.488 50.716 -15.743
0.137 196.037 136.699 64.399 -19.461
0.171 236.919 166.148 79.568 -23.173
0.215 280.315 197.606 96.109 -26.598
0.269 325.933 230.854 113.902 -29.407
0.338 373.509 265.693 132.836 -31.271
0.423 422.810 301.953 152.823 -31.929
0.531 473.633 339.495 173.806 -31.217
0.666 525.803 378.201 195.750 -29.062
0.835 579.168 417.978 218.644 -25.446
1.047 633.599 458.752 242.497 -20.367
1.313 688.984 500.464 267.335 -13.811
1.646 745.230 543.076 293.201 -5.745
2.064 802.264 586.566 320.151 3.889
2.588 860.024 630.927 348.256 15.170
3.246 918.468 676.174 377.600 28.198
4.070 977.565 722.331 408.275 43.087
5.104 1037.295 769.441 440.383 59.961
6.400 1097.646 817.554 474.033 78.953
8.025 1158.605 866.725 509.330 100.196

10.063 1220.156 917.009 546.380 123.819
12.619 1282.259 968.445 585.272 149.943
15.824 1344.842 1021.050 626.076 178.667
19.844 1407.770 1074.790 668.823 210.062
24.884 1470.803 1129.559 713.487 244.152
31.204 1533.534 1185.126 759.948 280.889
39.129 1595.269 1241.058 807.939 320.112
49.067 1654.780 1296.577 856.950 361.485
61.529 1709.727 1350.244 906.037 404.363
77.156 1755.365 1399.224 953.392 447.542
96.753 1776.456 1436.903 995.376 488.625
121.326 1770.712 1447.000 1021.426 522.359
152.141 1756.112 1437.634 1021.608 535.301
190.782 1744.183 1427.560 1014.097 531.837
300.000 1736.756 1421.160 1008.802 527.881

Table ESc: Computed horizontal velocity values from the k-s model for test 13 from the
experiments of Jensen et al. (1989).
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Appendix E Tables of Results For The Hydrodynamic Models

Height above Shear stress, t] p (mml/sl)
bed (mm) 0° 15° 30° 45°

0.028 21.261 107.256 297.963 568.038
0.035 18.883 94.091 257.389 484.062
0.044 88.693 425.558 1105.765 1973.805
0.055 227.530 985.708 2301.585 3795.142
0.069 433.245 1620.387 3408.775 5285.478
0.087 671.448 2180.705 4255.571 6348.675
0.109 898.222 2617.226 4866.723 7093.490
0.137 1086.718 2940.017 5304.669 7622.628
0.171 1229.602 3172.794 5619.271 8004.035
0.215 1329.474 3336.103 5843.985 8280.206
0.269 1391.493 3444.526 6000.380 8477.884
0.338 1420.333 3507.567 6102.203 8614.150
0.423 1419.563 3530.919 6158.021 8699.956
0.531 1392.026 3517.416 6172.809 8742.131
0.666 1340.487 3467.623 6148.875 8744.533
0.835 1267.944 3380.166 6086.354 8708.686
1.047 1177.188 3251.884 5983.444 8634.102
1.313 1070.027 3077.965 5836.442 8518.393
1.646 946.906 2852.409 5639.644 8357.234
2.064 806.819 2569.980 5385.099 8144.189
2.588 647.172 2232.624 5062.260 7870.408
3.246 463.719 1861.430 4657.563 7524.202
4.070 250.756 1493.850 4154.314 7090.445
5.104 1.517 1148.788 3535.360 6549.792
6.400 -291.223 817.057 2802.197 5877.688

8.0251 -634.218 482.565 2034.911 5043.536
10.063 -1032.240 129.453 1370.982 4015.572
12.619 -1485.733 -255.898 819.062 2820.945
15.824 -1987.394 -681.836 320.154 1717.026
19.844 -2517.683 -1148.524 -164.900 902.068
24.884 -3039.792 -1644.357 -656.206 250.831
31.204 -3495.508 -2140.849 -1152.464 -323.322
39.129 -3803.942 -2585.821 -1628.662 -848.051
49.067 -3863.591 -2895.869 -2031.360 -1309.959
61.529 -3554.682 -2950.537 -2270.860 -1655.021
77.156 -2739.689 -2588.598 -2213.562 -1785.258
96.753 -1327.303 -1644.382 -1696.863 -1557.495
121.326 -266.937 -487.964 -692.054 -831.353
152.141 116.542 23.688 -71.7214 -161.898
190.782 103.467 89.424 68.606 42.268
300.000 18.248 19.753 19.974 18.878

Table E9a: Computed shear stress values from the k-e model for test 13 from the
experiments of Jensen et al. (1989),
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Appendix E Tables of Results For The Hydrodynamic Models

Height above Shear stress, 'tIp (mm~/s~)
bed (mm) 60° 75° 90° 105°

0.028 829.400 972.566 930.483 720.982
0.035 700.112 817.340 782.729 610.344
0.044 2745.997 3148.414 3032.237 2435.053
0.055 5028.943 5646.531 5466.379 4532.627
0.069 6774.110 7504.065 7288.083 6169.792
0.087 7978.901 8771.363 8535.643 7314.148
0.109 8813.110 9646.366 9399.846 8114.880
0.137 9404.963 10268.371 10016.850 8690.767
0.171 9833.685 10721.507 10469.360 9116.689
0.215 10147.593 11056.726 10807.692 9438.999
0.269 10376.919 11305.951 11063.559 9687.246
0.338 10541.121 11489.911 11257.751 9881.033
0.423 10652.946 11622.433 11404.364 10033.873
0.531 10720.710 11712.845 11513.180 10155.387
0.666 10749.602 11767.353 11591.030 10252.587
0.835 10742.409 11789.823 11642.591 10330.619
1.047 10699.913 11782.212 11670.820 10393.191
1.313 10621.046 11744.764 11677.183 10442.793
1.646 10502.896 11676.045 11661.702 10480.758
2.064 10340.575 11572.849 11622.890 10507.212
2.588 10126.959 11429.958 11557.543 10520.895
3.246 9852.303 11239.796 11460.414 10518.857
4.070 9503.698 10991.908 11323.730 10496.019
5.104 9064.364 10672.283 11136.534 10444.536
6.400 8512.713 10262.444 10883.798 10352.970

8.0251 7821.147 9738.295 10545.280 10205.166
10.063 6954.495 9068.642 10094.053 9978.814
12.619 5867.963 8213.321 9494.645 9643.595
15.824 4509.489 7120.648 8700.734 9158.855
19.844 2910.045 5723.726 7652.248 8470.758
24.884 1521.937 3960.150 6271.289 7508.796
31.204 596.824 2076.491 4464.981 6181.292
39.129 -103.807 817.961 2335.986 4376.806
49.067 -669.004 -0.638 847.693 2170.690
61.529 -1105.709 -585.852 -19.557 677.502
77.156 -1364.000 -962.183 -565.794 -131.176
96.753 -1334.177 -1083.481 -824.366 -557.243
121.326 -880.290 -848.104 -759.248 -636.122
152.141 -241.530 -304.667 -345.321 -360.149
190.782 12.794 -17.106 -45.177 -69.735
300.000 16.495 12.940 8.444 3.335

Table E9b: Computed shear stress values from the k-e model for test 13 from the
experiments of Jensen et al. (1989).
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Appendix E Tables of Results For The Hydrodynamic Models

Height above Shear stress, 'tIp (mm~/s~)
bed (mm) 1200 1350 1500 1650

0.028 437.861 194.707 59.522 -5.705
0.035 374.846 169.126 52.389 -3.353
0.044 1572.332 755.769 251.997 -3.902
0.055 3113.428 1644.261 614.462 3.748
0.069 4424.834 2518.321 1041.825 16.117
0.087 5383.698 3215.194 1427.505 32.479
0.109 6069.044 3735.372 1735.818 53.086
0.137 6568.206 4123.404 1975.013 78.568
0.171 6941.734 4419.273 2163.141 109.797
0.215 7228.670 4651.421 2316.005 147.853
0.269 7454.465 4839.322 2445.461 194.029
0.338 7636.300 4996.544 2560.242 249.839
0.423 7786.252 5132.908 2666.963 317.021
0.531 7913.164 5255.850 2770.864 397.536
0.666 8023.742 5371.255 2876.308 493.550
0.835 8123.211 5483.963 2987.089 607.379
1.047 8215.690 5598.058 3106.615 741.408
1.313 8304.385 5717.020 3238.011 897.955
1.646 8391.654 5843.764 3384.145 1079.078
2.064 8478.953 5980.596 3547.599 1286.351
2.588 8566.683 6129.083 3730.572 1520.611
3.246 8653.916 6289.822 3934.695 1781.761
4.070 8737.995 6462.096 4160.746 2068.685
5.104 8813.964 6643.379 4408.234 2379.322
6.400 8873.786 6828.649 4674.799 2710.865

8.0251 8905.309 7009.452 4955.378 3059.816
10.063 8890.892 7172.643 5241.079 3421.488
12.619 8805.620 7298.720 5517.657 3788.484
15.824 8615.024 7359.651 5763.499 4148.020
19.844 8272.221 7316.083 5946.987 4478.395
24.884 7714.401 7113.878 6023.100 4745.155
31.204 6858.492 6679.977 5929.186 4897.064
39.129 5594.990 5917.350 5580.053 4861.526
49.067 3799.043 4694.971 4863.164 4538.862
61.529 1657.131 2877.089 3635.103 3793.523
77.156 380.378 1008.277 1804.798 2476.796
96.753 -265.463 68.873 439.862 868.648
121.326 -492.667 -331.983 -149.035 53.956
152.141 -349.529 -316.670 -265.506 -198.360
190.782 -89.444 -103.220 -110.309 -110.370
300.000 -1.994 -7.145 -11.752 -15.517

Table E9c: Computed shear stress values from the k-e model for test 13 from the
experiments of Jensen et al. (1989).
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Height above Turbulent kinetic enerl}', k (mml/sl)
bed (mm) 0° 15° 30° 45°

0.028 0.000 0.000 0.000 0.000
0.035 1846.064 3854.125 6126.098 8028.566
0.044 3853.615 7820.594 12142.031 15662.020
0.055 5788.181 11267.305 16985.547 21522.818
0.069 7456.775 13961.721 20556.475 25708.869
0.087 8791.045 15979.028 23142.676 28692.148
0.109 9814.817 17473.248 25027.949 30852.539
0.137 10579.747 18575.195 26411.736 32437.949
0.171 11134.012 19378.445 27425.617 33606.664
0.215 11514.623 19947.250 28156.738 34462.121
0.269 11747.854 20325.398 28663.805 35073.863
0.338 11851.271 20542.457 28986.771 35489.590
0.423 11835.508 20617.727 29152.559 35742.145
0.531 11705.519 20562.652 29178.473 35853.609
0.666 11461.391 20382.236 29074.229 35837.770
0.835 11099.008 20075.807 28843.137 35701.598
1.047 10610.969 19637.344 28482.715 35446.082
1.313 9988.688 19055.465 27984.904 35066.574
1.646 9227.702 18313.186 27335.938 34552.832
2.064 8340.306 17387.564 26515.906 33888.695
2.588 7380.608 16249.702 25498.008 33051.465
3.246 6473.591 14866.406 24247.502 32010.908
4.070 5793.494 13207.747 22720.465 30727.854
5.104 5449.446 11273.197 20862.955 29152.354
6.400 5416.771 9166.836 18612.814 27221.414

8.0251 5609.801 7229.695 15912.613 24856.855
10.063 5960.143 5955.830 12765.476 21965.627
12.619 6432.527 5468.295 9430.047 18452.727
15.824 7012.988 5504.570 6743.356 14291.048
19.844 7693.030 5828.185 5454.562 9823.992
24.884 8451.812 6322.116 5202.662 6400.111
31.204 9232.876 6921.640 5429.747 5014.691
39.129 9914.117 7549.780 5860.458 4828.628
49.067 10275.692 8065.061 6333.605 5067.488
61.529 9980.000 8218.113 6653.052 5373.351
77.156 8597.841 7634.917 6515.622 5452.132
96.753 5828.438 5906.756 5519.690 4932.767
121.326 2680.214 3130.567 3421.326 3477.330
152.141 1364.868 1413.307 1515.821 1639.426
190.782 819.033 801.614 791.510 791.473
300.000 461.540 460.676 459.218 457.570

Table EIOa: Computed turbulent kinetic energy values from the k-e model for test 13 from
the experiments of Jensen et al. (1989).
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Height above Turbulent kinetic energy, k (mml/sl)

bed (mm) 60° 75° 90° 105°
0.028 0.000 0.000 0.000 0.000

0.035 8984.090 576.959 8682.512 7201.216

0.044 17402.295 1237.594 16854.604 14141.025

0.055 23735.623 1947.875 23038.871 19566.584

0.069 28204.734 2652.155 27423.848 23501.641

0.087 31374.197 3290.364 30547.910 26347.281

0.109 33668.840 3823.340 32822.203 28444.295

0.137 35358.824 4238.570 34510.035 30020.516

0.171 36614.871 4540.400 35778.688 31224.037

0.215 37548.277 4739.935 36737.898 32153.580

0.269 38234.133 4850.096 37462.340 32877.359

0.338 38724.461 4884.777 38004.430 33444.117

0.423 39055.754 4860.217 38401.664 33889.555

0.531 39253.402 4797.183 38680.992 34240.199

0.666 39334.398 4722.245 38861.434 34515.719

0.835 39308.930 4665.885 38955.699 34730.355

1.047 39181.332 4656.470 38971.125 34893.758

1.313 38950.543 4713.078 38910.152 35011.406
1.646 38610.195 4842.641 38770.453 35084.703
2.064 38148.414 5043.103 38544.750 35110.801

2.588 37547.230 5309.103 38220.309 35082.141

3.246 36781.715 5636.399 37778.121 34985.691

4.070 35818.656 6024.015 37191.676 34801.836
5.104 34614.762 6474.801 36425.266 34502.797
6.400 33114.289 6995.142 35431.695 34050.496

8.0251 31245.949 7594.007 34149.234 33393.688
10.063 28919.307 8280.934 32497.672 32464.094
12.619 26021.521 9061.932 30373.447 31171.412
15.824 22419.260 9931.822 27644.422 29397.006
19.844 17988.014 10861.506 24147.604 26986.848
24.884 12780.397 11779.905 19705.773 23746.906
31.204 7740.261 12553.593 14245.684 19456.789
39.129 5024.456 12971.428 8423.400 13985.324
49.067 4363.212 12743.000 4858.986 7949.927
61.529 4412.398 11517.366 3899.519 4317.084
77.156 4529.903 8952.927 3804.686 3380.317
96.753 4299.496 5094.126 3697.484 3181.425

121.326 3340.871 2270.166 3087.982 2784.346
152.141 1744.461 1381.138 1801.899 1801.067
190.782 801.432 838.922 818.614 838.354
300.000 456.178 461.574 455.410 455.463

Table EI0b: Computed turbulent kinetic energy values from the k-e model for test 13 from
the experiments of Jensen et al. (1989).
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Height above Turbulent kinetic energy, k (mml/sl)
bed (mm) 1200 1350 1500 1650

0.028 0.000 0.000 0.000 0.000
0.035 24950.174 15373.476 6998.667 2440.562
0.044 25249.211 15564.864 7093.100 2486.353
0.055 25711.391 15877.607 7261.370 2576.789
0.069 26269.723 16271.966 7489.546 2709.815
0.087 26870.357 16713.420 7763.636 2881.021
0.109 27473.822 17174.871 8071.274 3084.692
0.137 28054.154 17637.473 8403.095 3315.334
0.171 28596.691 18090.145 8753.336 3568.738
0.215 29095.398 18528.283 9119.664 3842.339
0.269 29550.346 18952.227 9502.526 4135.107
0.338 29965.607 19365.785 9904.351 4447.263
0.423 30347.633 19774.998 10328.783 4780.024
0.531 30704.023 20187.127 10780.078 5135.419
0.666 31042.592 20609.832 11262.649 5516.190
0.835 31370.656 21050.531 11780.773 5925.761
1.047 31694.438 21515.852 12338.405 6368.238
1.313 32018.504 22011.168 12939.059 6848.440
1.646 32345.236 22540.184 13585.698 7371.915
2.064 32674.215 23104.500 14280.603 7944.906
2.588 33001.508 23703.146 15025.123 8574.229
3.246 33318.801 24331.975 15819.273 9266.964
4.070 33612.227 24982.828 16661.080 10029.874
5.104 33860.871 25642.352 17545.557 10868.398
6.400 34034.695 26290.262 18463.172 11785.062

8.0251 34091.738 26896.895 19397.592 12777.117
10.063 33974.273 27419.689 20322.447 13833.245
12.619 33603.641 27798.338 21196.773 14929.108
15.824 32873.352 27948.123 21958.693 16021.521
19.844 31640.225 27751.063 22516.920 17040.854
24.884 29713.787 27044.588 22739.584 17881.139
31.204 26846.377 25608.307 22440.334 18387.240
39.129 22735.400 23152.768 21362.877 18339.176
49.067 17094.918 19329.754 19170.379 17436.439
61.529 10156.010 13867.957 15471.539 15297.270
77.156 4993.268 7387.656 10094.772 11544.547
96.753 3439.456 3687.747 4746.610 6362.447
121.326 3025.059 2738.824 2665.615 2913.162
152.141 2392.630 2204.327 2027.994 1901.724
190.782 1327.925 1325.613 1301.996 1263.096
300.000 718.251 723.170 727.252 729.407

Table EI0c: Computed turbulent kinetic energy values from the k-e model for test 13 from
the experiments of Jensen et al. (1989).
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Run Wave period, Amplitude, 2a Water Temperature MA. Il. A.
No. T (sec) (cm) eC) (cm) (cm)

85 3.611 18.0086 17.222 0.181 2.09 11.59
96A 3.584 23.7490 25.278 0.161 2.45 15.18
106A 3.542 36.3220 26.222 0.134 1.46 10.89
lIlA 3.533 47.3964 24.833 0.125 1.33 10.56
112B 3.533 62.6618 23.889 0.048 0.48 10.03
114A 3.551 16.3576 24.444 0.199 2.07 10.41

s = 2.66; grain diameter = 0.190 mm.

Table F1: Wave tunnel data for regular waves from Carstens et al. (1969) for smallest
grain diameter.

Run Wave period, Amplitude, 2a Water Temperature MA. Il A.
No. T (sec) (cm) eC) (cm) (cm)

21 3.557 17.831 26.11 0.171 1.82 10.63
22 3.555 23.978 24.44 0.175 2.22 12.71
23 3.549 27.330 23.89 0.176 2.55 14.52
24 3.551 30.734 25.00 0.179 2.59 14.46
25 3.552 41.707 22.78 0.170 3.29 19.39
26 3.551 46.787 22.78 0.162 3.58 22.13
27 3.528 52.222 22.78 0.132 3.23 24.50
29B 3.544 64.770 22.78 0.115 3.10 27.03
30B 3.522 71.196 22.22 0.106 2.14 20.11
31B 3.521 89.002 22.22 0.026 0.49 19.10
32B 3.534 78.105 21.94 0.065 1.43 21.98
36 3.553 56.159 22.78 0.131 3.21 24.50
51 3.579 16.002 23.89 0.183 1.90 10.37
52 3.434 17.272 23.89 0.157 1.71 10.90
53 3.309 14.707 23.33 0.176 1.55 8.82
54 3.681 19.050 22.78 0.175 2.07 11.82
55 3.790 15.519 24.17 0.170 1.78 10.45

s = 2.47; grain diameter = 0.297 mm.

Table F2: Wave tunnel data for regular waves from Carstens et al. (1969) for mid grain
diameter.
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Run Wave period, Amplitude, 2a Water Temperature M').. L\ x
No. T (sec) (cm) ee) (cm) (cm)
63 3.568 20.2184 25.833 0.191 2.78 14.63
64 3.552 24.0284 25.556 0.195 3.26 16.67
65A 3.543 27.5336 24.444 0.186 3.36 18.08
66 3.554 32.1310 24.722 0.193 3.94 20.36
67 3.540 37.0840 23.889 0.190 4.54 23.87
68 3.568 39.2938 25.000 0.206 5.19 25.16
69 3.556 44.7040 24.444 0.200 5.81 29.02
70 3.543 48.3870 25.000 0.185 4.76 25.74
71 3.530 49.5300 25.000 0.185 4.88 26.38
72 3.532 53.2892 25.000 0.187 5.60 29.95
73 3.547 58.1660 22.222 0.192 5.03 26.21
74 3.560 61.5950 22.778 0.197 5.97 30.36
75 3.554 65.3542 22.778 0.150 5.88 39.14
76 3.531 70.3580 22.778 0.181 6.83 37.79
77 3.545 74.8538 22.778 0.173 6.18 35.74
78 3.474 78.4352 22.778 0.148 6.87 46.33
79 3.555 84.7090 23.333 0.157 6.93 44.11
80A 3.540 24.8920 22.778 0.180 3.13 17.37

s = 2.62; grain diameter = 0.585 mm.

Table F3: Wave tunnel data for regular waves from Carstens et al. (1969) for largest
grain diameter.

Wave period, T Amplitude, a Water !lI').. L\ x
(sec) (cm) Temperature (OC) (cm) (cm)
1.07 2.08 18.3 0.170 0.51 3.0
1.95 3.88 18.3 0.171 0.82 4.8
1.95 5.39 18.3 0.196 1.1 5.6
2.34 5.78 18.3 0.182 1.0 5.5

s = 2.65; grain diameter = 0.095 mm.

Table F4: Wave flume data for regular waves from Kennedy and Falcon (1965).
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Wave period, T Amplitude, a Water AI')... Il x
(sec) (cm) Temperature eC) (cm) (cm)
1.39 4.99 23.9 0.159 1.0 6.3
1.57 5.33 23.9 0.167 1.2 7.2
1.57 6.47 23.9 0.186 1.6 8.6
1.39 4.79 23.9 0.194 1.2 6.2
1.57 4.26 23.9 0.220 1.3 5.9
1.39 3.24 23.9 0.152 0.7 4.6

s = 2.65; grain diameter = 0.32 mm.

Table F5: Wave flume data for regular waves from Kennedy and Falcon (1965).

Wave period, T Amplitude, a Water AI')... Il x
(sec) (cm) Temperature eC) (cm) (cm)
8.05 77.6 17.8 0.164 7.0 42.7
2.51 9.41 17.2 0.163 2.1 12.9
4.03 15.7 17.2 0.168 3.3 19.7
4.03 15.6 17.8 0.170 3.4 20.0
4.03 25.8 17.8 0.171 4.8 28.1
5.66 21.8 17.8 0.169 4.8 28.4
5.66 29.4 17.8 0.154 5.8 37.7
4.03 32.0 17.8 0.151 5.1 33.8
8.05 36.0 17.8 0.153 6.8 44.3
8.05 42.8 17.8 0.176 8.8 50.0
8.05 51.9 17.8 0.173 9.5 54.8
10.05 53.7 17.8 0.168 10.1 60.1
12.06 60.9 17.8 0.160 10.4 65.0
12.06 66.8 17.8 0.156 11.5 73.5
14.06 75.4 18.3 0.167 13.6 81.2
14.06 93.0 18.3 0.181 18.4 101.7
4.03 13.5 17.8 0.174 3.0 17.2
4.03 21.1 17.8 0.152 3.8 25.0
4.03 29.7 17.8 0.139 4.6 33.0
4.03 38.0 17.8 0.176 4.9 27.8
4.03 43.9 17.8 0.172 3.9 22.7

s = 2.65; grain diameter = 0.36 mm.

Table F6: Wave tunnel data for regular waves from Mogridge and Kamphuis (1972).
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Wave period, T Amplitude, a Water M')... !l x
(sec) (cm) Temperature eC) (cm) (cm)

1.09 2.50 13.6 0.173 0.57 3.3
1.08 2.69 13.3 0.139 0.50 3.6
1.08 3.00 14.4 0.143 0.53 3.7
1.08 3.22 14.4 0.160 0.64 4.0
1.08 3.40 13.3 0.155 0.65 4.2
1.08 3.66 13.3 0.138 0.66 4.8
1.09 3.13 13.8 0.139 0.61 4.4

1.08 2.91 7.5 0.142 0.51 3.6

1.09 3.27 5.8 0.142 0.61 4.3

1.08 2.93 7.2 0.139 0.53 3.8

1.08 2.74 4.7 0.129 0.44 3.4

1.08 3.30 4.4 0.144 0.62 4.3

1.08 3.00 5.6 0.150 0.54 3.6
1.06 3.98 8.1 0.141 0.69 4.9

1.09 4.03 5.8 0.142 0.75 5.3
1.09 4.17 7.8 0.138 0.69 5.0

1.08 3.51 5.3 0.136 0.61 4.5
1.09 4.28 5.8 0.134 0.67 5.0
1.09 3.90 16.7 0.130 0.65 5.0

1.00 2.62 18.1 0.150 0.48 3.2

1.00 2.25 18.9 0.147 0.44 3.0
1.00 2.83 19.2 0.135 0.54 4.0
1.00 3.61 19.4 0.138 0.62 4.5
1.01 3.14 17.8 0.140 0.56 4.0
1.00 3.30 18.6 0.137 0.56 4.1
1.01 2.89 18.9 0.146 0.54 3.7
1.00 3.24 19.2 0.136 0.57 4.2
1.00 3.66 19.2 0.135 0.62 4.6
1.26 3.07 18.9 0.149 0.67 4.5
1.25 4.00 19.2 0.135 0.70 5.2
1.26 3.57 18.6 0.144 0.69 4.8
1.26 3.81 18.3 0.157 0.80 5.1
1.26 2.92 18.6 0.151 0.53 3.5
1.26 3.05 18.6 0.140 0.59 4.2
1.26 2.97 18.6 0.144 0.59 4.1
2.51 5.57 19.2 0.174 1.15 6.6
2.51 8.78 19.2 0.147 1.13 7.7
2.51 5.88 19.2 0.187 1.31 7.0
2.51 5.55 17.8 0.152 1.00 6.6

s = 2.65; grain diameter = 0.36 mm.

Table F6(Cont): Wave tunnel data for regular waves from Mogridge and Kamphuis
(1972).
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Wave period, T Amplitude, a Water MA A A
(sec) (cm) Temperature ee) (cm) (cm)
2.03 5.47 19.2 0.148 0.95 6.4
2.02 4.91 21.9 0.139 0.85 6.1
1.09 3.19 21.9 0.153 0.58 3.8
1.09 2.80 21.7 0.153 0.52 3.4
1.09 3.76 21.9 0.152 0.70 4.6
1.09 3.88 22.2 0.150 0.75 5.0
1.09 3.48 22.5 0.151 0.65 4.3
1.08 4.04 21.7 0.147 0.72 4.9
1.09 3.11 21.7 0.157 0.58 3.7
1.09 2.69 21.7 0.140 0.49 3.5
1.09 3.89 21.7 0.140 0.67 4.8

s = 2.65; grain diameter = 0.36 mm.

Table F6(Cont): Wave tunnel data for regular waves from Mogridge and Kamphuis
(1972).

Test No. Wave period, T Amplitude, a MA A A.
(sec) (cm) (cm) (cm)

11 3.97 6.0 0.132 1.0 7.6
84 3.91 6.5 0.178 1.6 9.0
87 4.73 8.5 0.183 2.2 12.0
90 4.98 11.0 0.171 2.8 16.4

s = 2.65; grain diameter = 0.41 mm; D = 0.48 m.

Table F7: Oscillating tray tank data from Du Toit (1980).

Test No. Wave period, T Amplitude, a MA. A A.
(sec) (cm) (cm) (cm)

96 5.37 12.2 0.174 3.0 17.2
97 4.22 9.6 0.191 2.2 11.5
98 3.21 10.1 0.204 2.8 13.7
99 4.87 19.5 0.170 4.3 25.3
100 3.18 14.1 0.157 3.3 21.0
101 5.75 8.1 0.194 2.1 10.8
102 4.62 8.5 0.192 1.9 9.9
103 4.65 16.6 0.180 4.4 24.5
104 3.80 10.8 0.200 3.0 15.0

s = 2.65; grain diameter = 0.41 mm; D = 0.48 m.

Table F8: Wave tunnel data for regular waves from Du Toit (1980).
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Run No. Wave period, T Wave height, h MA II A
(sec) (cm) (cm) (cm)

1 0.84 5.8 0.117 0.35 3.0
2 1.05 6.5 0.140 0.60 4.3
3 1.20 8.3 0.148 0.80 5.4
4 1.00 6.0 0.158 0.60 3.8
5 1.20 7.6 0.180 0.90 5.0

6 1.30 6.0 0.158 0.90 5.7

7 1.10 6.5 0.150 0.60 4.0

s = 2. 7; grain diameter = 0.2 mm; D = 16.0 cm.

Table F9: Wave flume data for regular waves from Shibayama (1984).

Wave period, T Amplitude, a Water MA II A
(sec) (cm) Temperature ee) (cm) (cm)

5.76 11.0 65.2 0.125 1.45 11.6

5.76 39.0 60.2 0.064 3.50 55.0

5.98 14.5 64.0 0.145 1.80 12.4
2.30 8.0 62.2 0.184 1.40 7.6
5.51 20.25 69.0 0.085 1.80 21.2
5.51 21.0 65.0 0.135 2.10 15.6
4.49 13.0 65.0 0.143 2.00 14.0
3.14 10.5 64.4 0.143 1.50 10.5
2.90 8.5 59.6 0.191 2.10 11.0
2.90 10.5 59.6 0.123 1.30 10.6
2.90 19.5 67.2 0.308 2.00 6.5
2.30 7.75 52.3 0.182 1.20 6.6
2.30 11.25 54.0 0.150 1.20 8.0
2.30 9.0 52.4 0.160 1.20 7.5
4.49 17.5 65.0 0.150 2.7 18.0
3.14 14.5 60.0 0.277 2.3 8.3
5.76 59.5 57.0 fb fb fb
5.76 65.0 57.0 fb fb fb
7.48 80.5 48.4 fb fb fb

s = 2.65; grain diameter = 0.09 mm;.fb = flat bed

Table FlO: Wave tunnel data for regular waves from Lambie (1984).
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Wave period, T Amplitude, a Water !::J')... ~ A.
(sec) (cm) Temperature ee) (cm) (cm)
4.69 19.75 56.5 0.159 2.9 18.2
4.69 19.75 56.0 0.143 3.3 23.0
2.80 6.75 59.0 0.183 2.1 11.5
2.80 10.25 50.0 0.184 2.3 12.5
2.72 11.75 60.5 0.167 2.2 13.2
3.85 21.75 64.5 0.126 3.2 25.3
3.83 19.25 60.5 0.197 4.0 20.3
3.83 16.75 58.7 0.178 3.3 18.5
3.83 13.90 63.5 0.172 2.8 16.3
3.85 10.15 60.0 0.157 1.8 11.5
5.93 15.50 65.0 0.163 2.8 17.2
3.85 25.50 62.5 0.185 4.1 22.2
3.88 24.00 70.0 0.196 4.0 20.4
5.28 39.40 68.5 0.118 3.9 33.0
5.28 36.00 64.2 0.144 4.4 30.5
5.28 28.00 64.2 0.141 3.8 27.0
5.28 26.30 67.1 0.200 4.8 24.0
5.28 17.70 69.7 0.168 3.4 20.2
5.28 9.75 75.5 0.165 3.1 18.8
5.28 9.15 63.0 0.149 1.4 9.4
5.28 12.6 63.0 0.183 1.7 9.3
5.28 11.5 63.0 0.188 2.6 13.8
7.22 37.75 21.9 0.135 4.0 29.7
4.59 21.00 22.0 0.162 2.8 17.3
4.69 40.50 51.0 0.112 3.7 33.0
2.80 15.00 64.5 0.147 2.5 17.0
2.80 18.75 59.5 0.095 1.9 20.0

s = 2.65; grain diameter = 0.15 mm.

Table Fll: Wave tunnel data for regular waves from Lambie (1984).
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Appendix F Tables of Results For The Moveable Bed Model

Wave period, T Amplitude, a MA L\ A
(sec) (cm) (cm) (cm)
2.98 11.4 0.143 2.0 14.0
3.27 11.4 0.121 1.7 14.0
2.71 11.4 0.135 1.8 13.3
2.74 9.27 0.140 1.6 11.4
5.51 18.3 0.133 2.8 21.0
7.57 27.5 0.123 3.3 26.8

s = 2.65; grain diameter = 0.18 mm.

Table F12: Wave tunnel data for regular waves from Lofquist (1978).

Wave period, T Amplitude, a MA L\ A
(sec) (cm) (cm) (cm)
8.27 45.8 0.213 15.5 72.7
8.06 45.9 0.212 12.4 58.4
11.22 49.7 0.198 10.9 55.1
6.54 36.7 0.183 10.1 55.3
5.32 36.7 0.208 8.9 42.8
4.25 36.7 0.190 7.6 40.1
4.16 23.0 0.194 5.4 27.9
5.24 30.1 0.199 6.5 32.7
8.06 36.7 0.212 10.6 50.1
3.41 19.3 0.173 4.3 24.9
2.82 13.9 0.146 3.5 23.9
3.06 15.1 0.153 3.5 22.9
2.71 13.8 0.154 3.2 20.8
2.77 14.3 0.179 3.4 19.0
4.46 24.5 0.188 6.0 31.9
2.27 11.9 0.257 2.8 10.9
4.33 23.8 0.217 5.5 25.4
3.43 18.3 0.150 4.1 27.4
4.46 27.6 0.202 6.8 33.7
2.25 27.6 0.172 4.5 26.2
2.71 13.7 0.156 3.4 21.8
3.31 13.8 0.138 2.2 16.0
4.65 l3.7 0.125 2.0 16.0

s = 2.65; grain diameter = 0.55 mm.

Table F13: Wave tunnel data for regular waves from Lofquist (1978).
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Appendix F Tables of Results For The Moveable Bed Model

Wave period, T Amplitude, a MA. A A.
(sec) (cm) (cm) (cm)
2.63 4.61 0.185 1.2 6.5
2.63 6.44 0.160 1.3 8.1
2.63 8.00 0.136 1.2 8.8
2.63 9.39 0.141 1.3 9.2
2.63 10.30 0.133 1.2 9.0
2.63 7.16 0.146 1.3 8.9

s = 2.65; grain diameter = 0.12 mm.

Table F14: Wave flume data for regular waves from Rosengaus (1987) and Mathisen
(1989).

Wave period, T Amplitude, a MA. A A.
(sec) (cm) (cm) (cm)
2.63 9.08 0.162 1.6 9.9
2.63 5.55 0.176 1.3 7.4
2.63 7.23 0.169 1.5 8.9
2.63 12.05 0.151 1.6 10.6
2.17 6.07 0.151 1.3 8.6
3.10 9.16 0.157 1.6 10.2
2.40 6.43 0.161 1.4 8.7
2.63 9.27 0.156 1.7 10.9
2.63 9.01 0.158 1.6 10.1

s = 2.65; grain diameter = 0.2 mm.

Table F15: Wave flume data for regular waves from Rosengaus (1987) and Mathisen
(1989).
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Bed Boundary Layer.
B.A. O'Connorl, J.N. Harrisl, H. Ki.l,

Y. K. Wongl, H.U. Oebiusa, and J.J. Williamss•
ABSTRACT
The paper describes the development and application to
laboratory and North Sea field data of a series of random
wave and current computer models of bed boundary layer flows
and associated suspended sediment concentrations. The
EC-funded (MAST1) work is part of a larger project, which
also includes the laboratory testing of a new seabed shear
stress meter (SSM) and the field collection of nearbed data
using a special boundary layer rig (STABLE). Both
two-dimensional (2DV) and one-dimensional (lDV) hydrodynamic
models are described based on a mixing length closure but
including simulation techniques to enable the inclusion of
both long and short-crested random waves and steady currents.
A lDV suspended sediment model is also described with
realistic boundary conditions to enable the simulation of
vortex entrainment from seabed ripples. Application of the
various models to the SSMand STABLEdata shows realistic
results.

1. INTRODUCTION
The present paper is concerned with the computer simulation
of water and sediment movements over rippled seabeds in
random wave and current condi tions appropriate to the North
Sea. It reports on one element of a larger multi-discipli-
nary research programme involving engineers, oceanographers
and geologists, who are studying the formation of nearshore
sandbanks and their role in providing protection to adjacent
coastlines.

l. Department of Civil Engineering,
Liverpool, L69 3BX, England.

University of

2. Versuchsanstalt fur Wasserbau und Schiffbau, Berlin,
Germany.

3. Proudman Oceanographic Laboratory, Bidston Observato-
ry, L34 7RA, England.

1 O'CONNOR ET AL



The research involves the field and laboratory testing of
equipment to measure near-bed waves and currents and the
associated sediment transport rates. In particular, staff
from VWS,Berlin, have tested an improved seabed shear plate
(SSM) to enable the direct measurement of seabed shear stress
in waves and currents, Oebius (1992). Staff from the NERC's
Proudman Oceanographic Laboratory have used a large bed
boundary layer rig (STABLE)to provide field information on
near-bed turbulence, waves, currents and sediment movements
at the Brown Ridge Sandwave Site in the North Sea, Williams
(1991). In addition, staff from the Department of Civil
Engineering at Liverpool University have developed a series
of hydrodynamic and sediment transport computer models to
help with the interpretation of the data collected by both
the SSMand STABLErigs.

2. HODELWORK

Four models have been developed: a two-dimensional (x, z)
full-depth rough-turbulent hydrodynamic model (2DV) to study
advective (mass-transport) effects on vertical mixing; a
twO-dimensional (x, z) bed boundary layer hydrodynamic model
of wave-induced flow over bed ripples to assist with vortex
entrainment ideas (2DV); a one-dimensional, rough-turbulent
hydrodynamic model (lDV) to simulate wave-current interac-
tions at arbitrary intersection angles in directional random
waves; and an associated one-dimensional suspended sediment
model (lDV) to study vertical sediment distributions in
directional random waves and hence the effect of wave
groupiness.

2.1. 2DV Hydrodynaalc Hodel
The model solves simplified forms of the horizontal momentum
and mass continuity equations for multi-frequency waves using
a mixing length closure. The model equations are given as:-

p8u/8t + pu8u/8x + pw8u/8z + 8p/8x -8rz./8z

au/ax + aw/az - 0 (lb)

where u and ware the phase-point-average turbulent-mean flow
velocities in the horizontal (x) and vertical (z) cartesian
co-ordinate directions, respectively; p is pressure; p is the
fluid density; and f'u is the horizontal component of the
Reynolds stresses.

The wave-induced boundary layer is assumed to be thin and the
motion outside it is assumed to be irrotational so that the
pressure gradient in equation (la) can be approximated by the
equation: -
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-8p/8x - p8u~/8t + pu~ 8~/8x (2a)

with
m

u~ - u~ + ~ ui cos (iwt-ikx+~i)
i-1

(2b)

where u~ is the wave-induced orbital velocity at the sea
surface (mean water level); u~ is a wave-period-averaged
steady velocity component; ui are velocity amplitudes of the
,m Fourier frequency components making up the wave signal; w
is the wave frequency (- 2~/T, T is the wave period); and k
is the wave number (- 2~/L, L is the wave length).

The Reynolds stress (rxz) is approximated by a simple mixing
length expression (p,,8u/8z), where vt - ,,2z28u/az and " is
Von Karman's constant (0.40).

The set of equations is solved using an implicit
Crank-Nicolson finite difference technique on a
space-staggered grid using zero velocity at the seabed
(z-zo)' a zero velocity gradient at the water surface and
repeating conditions for lateral boundaries, Kim (1993).

2.2. lDV Hydrodynamic Mod.l
The lnV model also solves simplified flow equations using a
mixing length closure. The model works for arbitrary-angled
wave and current flows and uses simulation techniques
involving surface wave spectra to produce appropriate model
boundary conditions. The equations used in the model are
given in tensor form as:-

paui/at - ap/axi - arxzi/az

8p/8xi-pau6i/8t + pgaH/axi

rUi -pvtaui/az; Vt - 12aV/az; V - J(u2+ v2)

(3a)

(3b)

(3c)

Ui(-u,v) are the cartesian velocity components in the
horizontal (x) and lateral (y) co-ordinate directions
respectively; Xi are the co-ordinates x, y respectively; g is
the acceleration due to gravity; aH/axi is the mean water
surface slope; 1 is a mixing length (-"z) and u&i are the u,
v components at the top of the wave boundary layer, respec-
tively.

Equation 3 can be solved in terms of a shear velocity (p*,
rxz - pp*2) - see Bakker (1974), Wong (1984) for the case of
co-linear waves and currents. Alternatively, the vertical
co-ordinate (z) can be transformed by a power law and the
transformed equations solved directly for ui .
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Both approaches have been used in the MAST 1 work. However
the transformed co-ordinate approach is simpler to use for
directional wave simulations. In this lattermost case the
surface boundary conditions for the variation of velocity
(UT) with time is obtained from simulation techniques, see
for example, Ellis et a1 (1981).

(4a)

(4b)

where fm is the wave frequency (-l/Tm,
period); ~m are random phase angles in the
is the wave number; h is the water depth; t
is a wave amplitude obtained by integration
a1 wave energy spectrum. Thus:-

Tm is the wave
range 0 - 2ft';k.,
is time; and am,nof the direction-

Bm ,n - J (2 S(fm' 8m) ~fm'M n )

S(fm' 8m) - S( fm). G (fm'8n )

G(fm ,8n) - Go cos2• (8n/2)

Go - 22.-1.r2 (s + 1)/(ft'.r(2s+l»

(Sa)

(5b)

(5c)

(5d)
where Go is a constant dependent upon parameter s, which
varies with peak spectral frequency and has a typical value
of 20, Goda (1985); r is the Gamma function; en is a wave
direction in the range ± 900 of the dominant wave direction;
S(fm, 8n) is any directional surface wave energy spectrum;
S(f ) is a surface wave energy frequency spectrum' G(f 8)m , m' nis a spectral wave energy spreading function. ~e is the band
width of the n-th directional wave angle obtained by dividing
the range of wave angles (±90o) into n equal intervals and
~f is the bandwidth of the m-th frequency interval obtainedmfrom the co-cumulative energy spectrum by using equal energy
bands, see Ellis et al (1981).

A zero-velocity bed boundary condition is used (u-w-O) at
z-zo' The value of Zo can be adjusted in random wave
simulations using Madsen's (1990) approach, if desired.

2.3. lDV Sediment model
In order to study the vertical distribution of suspended
sediment over a rippled seabed, a one-dimensional sediment
model has been used. The model equations used are:-

(6)
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where c is the phase-point-averaged turbulent-mean suspended
sediment concentration; w is the vertical wave induced fluid
velocity; wf is the effective vertical sediment diffusion
coefficient.

Previous work has generally ignored the effect of W, and has
determined Ea during the wave cycle from the hydrodynamic
shear stress determined by a lDV-type model, see for example,
Davies (1990). Such an approach does not include all the
major processes contributing to vertical mixing, see for
example, O'Connor (1991). The inclusion of extra mixing has
usually been done in the past by taking a wave-period-average
view of vertical sediment distributions and then using the
sediment distribution itself to determine effective mixing
coefficients see for example, Van Rijn (1989), In the HAST 1
work, a different approach has been used. Sediment is
released into the water column at two discrete times during
the wave period (at t - T/16 and 9T/16 for a mono-wave) at a
height of between one and two ripple heights above the mean
bed level, as suggested by the 2DV model tests for a rippled
bed, see O'Connor et al (1992). Shear-induced entrainment is
also allowed during the wave period as dictated by the lDV
hydrodynamic bed shear stress, see Figure 1. Additional
mixing due to mass-transport is allowed by using the 2DV
"flat"-bed hydrodynamic model (see Section 2.1) to provide
the E a values.

Solution of equation (6) is achieved by a number of
intermediate steps. Firstly, a transformed vertical
co-ordinate is used in order to resolve the large near-bed
concentration gradients. The same approach was used for the
IDV hydrodynamic equations. Secondly, a split operator
finite difference approach is used to introduce the vortex
entrainment concentrations into the water column at a height
of 1.5'Ar above the mean bed level (z - 0). Thirdly, the new
equations are then solved sequentially using appropriate
boundary conditions between the water surface (mean see
level) and the sea bed z-zo; the co-ordinate origin being
located half a ripple height above a ripple trough.

The necessary equations are given below:-

8c/8t - wf 8c/8z - 8 (Ea 8c/8z)/8z

8c/8t + w8c/8z - S(t)

(7a)

(7b)

S(t)- ~/(ArTv)' for Ar ~ z ~ 2Ar, and
ST/16 ~ t ~ 3T/a, or l3T/16 ~ t ~ 7T/a

TIl.

(7c)

~ - I
o

(7d)
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(7e)

(7f)

Where Tb (t) is the bed (z - 0) shear stress from the 10V
model; p. is the sediment density; g is the acceleration due
to gravity; 050 is the 50% finer grain size of the bed
sediment; A, a are model constants determined by
field/laboratory tests.
Equation 7a is solved by an implicit finite difference method
while equation 7b is solved as a second step using the method
of characteristics. The model uses a zero flux condition (t.
8c/8z - -wrc) at the water surface and a surface entrainment
condition at the seabed (t. 8c/8z - aEt at z-zo)' Values of
t. are obtained from the 2DV hydrodynamic model.

3. MODEL APPLICATIONS
3.1. IDV Hydrodynamic Model Tests
The ability of the 10V model to reproduce conditions in
mono-frequency waves was demonstrated using the oscillating
tunnel data of Jonsson and Carlsen (1975), see Wong (1984).
In addition, data from the VWS flume tests, Oebius (1992)
were reproduced using a suitable plate roughness (2050) and
scale factor, see Figure 2.

The ability of the Bakker version of the lOV model to
reproduce velocities near the top of the wave boundary layer
(10 mm above the bed) with multi-frequency (3 components)
waves, and waves and currents was demonstrated by using the
small-scale flume data of Savell (1986), see Figures 3,4.
Good agreement is apparent for maximum amplitude and phase.
The velocity model's ability to reproduce long-crested random
waves was tested for conditions approximated to those at the
Brown Ridge Site (h - 30m; Zo - 0.01 m. Wave conditions we' :
assumed to be described by a Pierson-Moskowitz (PM) spectrum
with significant wave height of HI - 2.5m (wind speed - 11
m/s) and a peak energy period of Tm - 8.1 s. The PM spectrum
was simulated by 60 frequency components and the velocity
time series used to drive the model.

The accuracy of the simulation process can be judged by
Figure 5, which shows a compassion between the PM spectrum
and the model spectrum obtained by subjecting the model
surface elevation time series to a Fast Fourier Transform
(FFT) analysis.
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Typical bed shear stresses and orbital velocities from the
model at the top of the wave boundary layer are shown in
Figure 6 for a typical 64s time interval. The random nature
of the results is clearly seen as is also the phase shift
over the depth of the boundary layer.
Figure 7 shows the root-mean-square (rms) and significant
amplitudes of the wave-induced orbital velocities from a
direct analysis of model time series for conditions at the
Brown Ridge Site. These significant values can be directly
compared with the results from the lDV model operated with
representative mono-frequency wave heights and wave periods
-the 'design-wave' approach. Figure 8 shows the results for
the mono-wave simulations using H., TlDax and H., Tz• It is
clear that the best comparison with the random wave model is
obtained with H T and not with the more traditional H ,

.' max •Tz combination.
The lDV model was next used to investigate the effect of
short-crested seas. The Brown Ridge model with its PM
spectrum was re-run with a Goda spreading function, equation
5, s _ 20. Figure 9 shows the u, v velocity components for a
short length of record while Figure 10 shows the correspond-
ing instantaneous wave direction vectors. The groupy nature
of the wave signal is clearly seen as is also the lateral
scattering effect of the short-crested sea. Such lateral
movements will add significantly to the dispersal of both
sediment and pollutant within the water volume. Similar results
to the lDV model have also been found with the STABLE data,
see O'Connor et al (1992).
In order to examine the lOV model's ability to reproduce the
correct magnitude and phase of velocities within the boundary
layer, use was made of S4 current meter data collected during
the STABLE deployment at the Brown Ridge Site, see Williams
(1991) Field velocities for a 22 second period at 800mm above
the seabed were used as the upper boundary condition in the
model. Figure 11 shows the comparison of field result.s at
800mm and 400mm with model results at 70mm. It is clear that
the model reproduces the main features of the field results.

3.2. lDV SEDIMENT MODEL APPLICATIONS
The ability of the lOV model to reproduce suspended sediment
concentrations during a wave period was tested using
laboratory data of Bosman (1982). Figure 12 shows quite a
good comparison considering the difficulty in obtaining such
laboratory data.

The need for the inclusion of extra mixing in lOV models is
illustrated by the wave-period-average results of Figure 14.
Both the 2DV and 1DV hydrodynamic models were used for
conditions appropriate to Bosman's (1984) laboratory studies,
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and the wave-period-average mixing coefficient (E.)
determined by period-averaging. The lDV sediment model
then used with vortex and shear-induced entrainment
reproduce wave-period-average concentrations, Figure 13.
is clear that the extra mixing inherent in the 2DV model is
essential for correct simulation of sediment profiles.

was
to
It

Finally. the long-crested lDV random wave model was used to
simulate suspended sediment conditions at the Brown Ridge
Site, see Figure 14. The influence of groupiness in the wave
and shear records is clearly seen to influence suspended
sediment concentrations with the larger groups having the
greatest effects. Unfortunately, no comparable field data
was obtained from the STABLE deployment and consequently,
more field data is needed to test model ideas further.

4. CONCWSIONS
A range of lDV and 2DV bed boundary layer models have been
developed to assist with interpretation of field data
obtained from the Brown Ridge Sandwave Site in the Southern
North Sea. Comparison of model results with mono-and
multi-frequency laboratory data for both velocities and shear
stresses shows good results. Realistic model simulations were
also obtained for both long and short-crested random wave
conditions when compared with measured field data. Use of
the long-crested 1DV hydrodynamic model also demonstrates the
importance of using the correct wave period when using the
mono-frequency "design wave" approach to predict seabed
velocities and shear stresses.

An 1DV suspended sediment model was also developed with new
boundary conditions which attempted to reproduce the
influence of both vortex and shear-induced entrainment. Good
comparisons were obtained with laboratory data. The
importance of including enhanced mixing due to mass-transport
currents in 1DV model simulations was also demonstrated as
was the influence of wave groupiness on sediment concentra-
tions at the Brown Ridge Field Site.
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Modelling Moveable Bed Roughness and Friction for Spectral Waves

Kaczmarek, L.M.1, Harris, J.M.l, O'Connor, B.A.l

Abstract
The present paper is concerned with the simulation of turbulent boundary layer
dynamics over a moveable seabed in random waves. A new theoretical approach
for the evaluation of moveable bed roughness in spectral waves based on the
grain-grain interaction idea is presented and tested against data from the
laboratory and field. The new approach is combined with the methodology which
assumes that the spectral wave condition can be represented by a monochromatic
representative wave. Good results have been obtained, although further testing
against data gathered in the North Sea is required.

1. Introduction

For a moveable sandy bed, one may distinguish three general seabed conditions
due to the action of surface gravity waves: a flat bed, rippled bed and sheet flow.
If we consider the latter condition, the need to study sediment transport under
wave-induced sheet flow conditions is necessary in the understanding of beach
profile changes in the surf zone. The understanding of nearbed sediment dynamics
is also of great importance for the mathematical description of cross-shore
sediment transport.

To understand the effect of changing bed roughness by the hydrodynamic forces
requires knowledge of the dynamic behaviour of sand grains in the collision-
dominated, high concentration nearbed region. At high shear stresses and sediment
transport intensities, the nearbed sediment transport appears to take place in a
layer with a thickness that is large compared to the grain size. It is therefore not
possible to properly describe flow in this layer by conventional engineering models
which assume that bed load transport occurs in a layer that has a thickness of the
order of one or two grain diameters.

Polish Academy of Sciences, Institute of Hydro-Engineering, mw PAN, 7
Koscierska, 80-953, Gdansk, Poland.

2. Department of Civil Engineering, University of Liverpool, Brownlow St.,
P.O. Box 147, Liverpool L69 3BX. UK.
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The present paper is concerned with developing an iterative procedure for the
estimation of the effective bed roughness for a monochromatic wave, as
characterised by the roughness parameter k, , and extending this to the case of a
spectral sea. The nearbed sediment dynamics are modelled in two regions with
continuous profiles of stress and velocity. Namely (i) a granular fluid region and
(ii) a wall bounded turbulent fluid shear region.

In sheet flow conditions it is assumed that the external drag produced by the
boundary layer flow is related to the particle interactions within the sub-bed layer
and hence to the effective roughness at the boundary.

2. The sheet flow model
2.1 Formulation of the problem

A typical velocity distribution with depth of a rough bed is supposed to be
characterised (Kaczmarek & O'Connor I993a,b) by a sub-bottom flow and a main
or outer flow, as shown in Figure 1.

The velocity distribution is supposed to be continuous. Its intersection with the
nominal bottom is the apparent slip velocity u, . The downward extension of the
velocity distribution in the outer zone of the main flow yields a fictitious slip
velocity, uo at the nominal bed, which is necessarily larger than u, because of the
supposed asymptotic transition in the buffer layer between the sub-bed flow and
the fully turbulent flow in the turbulent-fluid shear region.

The velocity distribution in the roughness layer depends on the type of geometric
roughness pattern and the bed permeability. There must be some transition
between both parts of the velocity distribution bridged by the buffer zone.
However, for present purposes it is assumed that the velocity distribution in the
turbulent-fluid shear region can be determined by parameters dependent on the
geometric roughness properties of the bed and the outer flow parameters, such as
the free-stream orbital velocity. It is proposed to extend the sub-bed granular-fluid
flow region to the matching point with the velocity distribution in the turbulent-
fluid shear region. Thus, shear stress velocities in the two layers are set equal at
the theoretical bed level, as it is shown in Figure 1, point A.

The sub-bed flow region has a high sediment concentration. For sheet flow
conditions in this layer, chaotic collisions of grains are the predominant
mechanism. In this case water does not really transfer shear stresses at all. The
dynamic state of such a mixture is characterised by stresses ai) which are the sum
of dynamic a*u and plastic croi) stresses.

The first problem, therefore, is to determine the velocity profile distribution in the
upper turbulent layer, which means determining the effective roughness height of
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the bed k, as well as the lower grain-fluid flow. The intersection of these two
profiles will determine point A (See Figure 1).

2.2 Mathematical description of flow in the turbulent upper region

It is assumed that flow in the upper layer is governed by the simplified equation of
motion:

au au 1m
-=-+--at at p ()z

(2.1)

in which u(z,t) is, in general, a combined wave-period-averaged "steady" current
and wave velocity and V(t) is the free-stream wave velocity at the top of the wave
boundary layer.

The present work uses an eddy viscosity model, which is an extension ofKajiura's
(1968) and Brevik's (1981) model. Thus the eddy viscosity over the flow depth is
assumed to be given by the equations.

Vt(Z) = KUfmaxZ for k 6 k_$ ~ Z ~ -.!!!...+ _$ (2.2)30 4 30

vt(z) = KUfmax(6m +~) for 6 k k-.!!!...+-$ < Z s 26 +_$ (2.3)4 30 4 30 m 30

in which K is von Karmen's constant; Ufinax is the maximum value of bed shear
velocity (u~rot» during the wave period that is max [u~oot)]; Om is the maximum
value of 01 and 02 , that is, max (01 , O2 ) where 01 and O2 are the boundary layer
thickness at the moments corresponding to maximum and minimum velocity (of
the combined wave and current flow) at the top of the turbulent boundary layer

The quantities Ufinax , Om are determined from the solution of the integral equation
derived from equation (2.1) as used by Fredsee (1984):

(2.4)

Fredsee (1984) assumed a logarithmic velocity profile in the boundary layer

~ = ~In 30z (2.5)
u. K k,

The solution of equation (2.4) using Fredsee's (1984) approach enables the value
of Ufina., to be determined, if k, is specified. Equation (2.1) can then be solved to
provide the velocity distribution in the wave boundary layer.
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2.3 Mathematical description of the flow in the granular-fluid region

Particle interactions in the shear-grain-fluid flow are assumed to produce two
distinct types of behaviour. The Coulomb friction between particles gives rise to
rate-independent stresses (of the plastic type) and the particle collisions give rise
to stresses that are rate-dependent (of the viscous type). We assume the co-
existence of both types of behaviour and the stress tensor is divided into two parts.

o •
o ij = 0 iJ +0 u

Where o~ is the plastic stress and o~ is the viscous stress.

(2.6)

For two-dimensional deformation in the rectangular Cartesian co-ordinates x' and
z' the Coulomb yield criterion is satisfied by employing the following stress
relations:

o~'x' = -o'(1+sin<pcos2\j1) (2.7)
o~'z' = -0'(1- sin <pcos2\j1) (2.8)

o , .
o x'z' = -0 sm <pcos2 \jI (2.9)

Where <pis the quasi-static angle of internal friction, while \jI , denoting the angle
between the major principal stress and the x' -axis is equal to:

7t <p
\jI=---

4 2
For the average normal stress:

(2.10)

c' = -( cr:, ; cr:.,) (2. II)

we employ the following approximate expression (Sayed and Savage 1983).

I o(c-co)o=a
Cm -c

(2.12)

where aO is a constant and coand Cm are the solid concentrations corresponding to
fluidity and closest packing respectively.

The viscous part of the stress tensor according to Sayed and Savage (1983) is
assumed to have the following form:

(2.13)
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(2.14)

in which the viscous stress coefficients Ilo , III and Ilz are functions of the solids
concentration c:

III 0.03=----
Psd2 (Cm-«)"
Ilo + 112 0.02

(2.15)

= (2.16)

Considering steady fully developed two-dimensional shear-grain-flow, the balance
oflinear momentum according to Kaczmarek & O'Connor (1993a,b) yields:

[] [ J
2

o C - Co " au
a Cm_ c smq> SIn2'11 + III Oz' = pu; (2.17)

(2.18)

where p is the density of the fluid.

Eliminating (fJu/8z') from equations (2.16) and (2.17) allows the calculation of the
profiles of the sub-bed sediment concentration c and velocity u in relation to
known maximum shear stress (p u~max)at the theoretical bed level (z'=O).

In Kaczmarek & O'Connor (1993a,b) equation (2.18) was solved for c as a
function of depth (z') by using an iteration method in conjunction with numerical
integration. Integration started at the theoretical bed level (z'=O) with C=Co.
Proceeding downwards at each step the iteration method was used to evaluate c.
The integration was stopped when c was equal to Cms.For the calculations the
following numerical values were recommended for the various sand beds.

aD
-- = 1 ; Co = 0.32 ; cm = 0.53 ; Cms= 0.50 ; q> = 24.4°
p.gd

5 Kaczmarek et al.



3. Results for monochromatic waves
3.1 Plane bed

The above procedure was used to compare computations for the model with the
experimental results of Horikawa et al. (1982). The conditions for Horikawa et
al.'s test 1 were used for the model calculations: d = O.2mm, s = Ps /p = 2.66, <p
= 24.4°, T = 3.64s and U = 127 cm/so A value of k, = 7.3mm was found for the
roughness parameter.

Having obtained the roughness parameter it is then easy to obtain the
instantaneous profiles both in the turbulent layer and the sub-bottom flow zone
without reference to empirical formulas of any kind. Knowing u- and solving
equations 2.17 and 2.18 the velocity and concentration distributions at any time
inside the entire sub-bottom layer can be found.

The results are shown in Figure 2. A reasonable agreement is obtained between
the model and the laboratory data.

The model was then run for a range of conditions including those outside its range
of application. The results of these tests are shown in Figure 3. The calculations
were obtained using the simplified iteration procedure to determine k, by
introducing a simple logarithmic distribution (2.5) instead of the numerical
solution of equation (2.1). Such a simplification makes the calculations much more
efficient. It is seen that the roughness parameter, k, , decreases with increasing
dimensionless bed shear stress Smax and k, is seen to attain its greatest value for
small dimensionless shear stresses where 8 ~ 1 (the transition from plane bed to
ripples).

The trend shown in the present results, that is, that the roughness parameter
increases drastically with decreasing dimensionless maximum shear stress, is
similar to that shown by Nielsen (1992). Nielsen (1992) showed that the hydraulic
roughness for equilibrium ripple formations is of the order 100dso to 1000dso .

However, for artificial flat beds where measurements were taken before ripples
had time to form Nielsen (1992) found that the hydraulic roughness decreased
with decreasing grain roughness Shields parameter.

Next, calculations were carried out for a moveable sandy bed ( d = O.2mm, s =
2.66, <p = 24.40) with a variety of wave heights with a mean water depth of S.Om.
The wave period was kept constant at T = 3.6s. The maximum shear stresses were
calculated on the basis of equation (2.4) and using the simplified iteration
procedure to determine k, . The results of the analysis of friction for wave-induced
sheet flow, shown in Figure 4, suggest that the present approach restricted to the
sheet flow regime may be extended to lower flow regimes and on the basis of
analogy used to investigate lower flow conditions involving bed ripples.
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3.2 Rippled bed

Calculations for a rippled bed were performed for two different sediment sizes
(0.2mm and 0.12mm diameter quartz sands). The calculations were carried out in
two steps. Firstly, the values of the bed roughness k, were obtained using the
proposed iterative scheme. Then, the friction factors were calculated on the basis
of an adjusted version of the semi-empirical formula of Jonsson and Carlsen
(1976) in order to include the effects of the vortices formed in the lee of the
roughness element crest due to turbulent mixing.

The theoretical results are shown in Figure 5. Presented alongside these results are
the experimental results over a moveable bed reported by Madsen et al. (1990).
The values of wave friction factor fware plotted against the representative value
of a fluid-sediment interaction parameter, defined as:

9's, =9 (3.1)
c

in which the skin Shields parameter is defined for a monochromatic wave as:

,2
9'= Ufmax

(s -1)gd (3.2)

The agreement between theoretical and experimental results appears quite
reasonable. It therefore appears that the sheet flow model can be used to
investigate rippled bed conditions.

If the model can be used to investigate rippled bed conditions then it might also be
possible to extend the analogy to include spectral wave conditions.

4 Spectral sheet flow model
4.1 Introduction

In the real world the Sea's motion is a random process. To describe a real sea it is
usual to use spectral methods. However, it is possible to simplify the process by
using appropriate representative values for the spectral components (See
O'Connor et al. 1992).

The effect of random waves on bed roughness needs to be studied, since it is
known that the bed friction changes between mono-frequency and random wave
conditions. It is hypothesized by Madsen et at (1990) that the larger waves in a
spectral simulation shave off the sharp ripple crests thereby causing the observed
reduction in dissipation and friction factors for spectral waves. In an attempt to
explain this reduction of spectral wave friction factors a new theoretical approach
for predictive evaluation of moveable bed roughness for spectral waves is
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proposed. The new approach is based on the methodology which assumes that the
spectral wave condition can be represented by a monochromatic wave and is
combined with the theoretical grain-grain interaction ideas.

4.2 Modified iterative method

Following on from the iterative method used for monochromatic waves, a
modified iterative procedure to evaluate the moveable bed roughness under
spectral waves is proposed as shown in Figure 6.

Representative values are used in the calculation routine for the free stream
velocity and the angular frequency. Previously for monochromatic waves, the
maximum value of shear stress was the maximum value of shear stress during a
wave period. For spectral waves the maximum value of the random shear stress
time series is used:

3't
'tmax = Jf = 30'. (4.1)

The choice of this maximum value of the random shear stress time series was
checked using the simple Rayleigh Method as well as a through running a more
sophisticated one dimensional through depth (IDV) k-s boundary layer model.

4.3 Spectral shear stress

Using the Rayleigh method, it is possible to quickly determine a value for the shear
stress for a random time series. Assuming a Rayleigh distribution then:

't I

~ = [In(N}p = R
'trms

(4.2)

r. fsec 10 10 10
Time fmin 10 20 40

N 60 120 240
R 2.02 2.18 2.34

The assumed value ofR is:
3f~2 = 2.12

The IOV k-s boundary layer model provides a method to directly simulate a
random from shear stress from a known random velocity field. The method is
based on the previous work of O'Connor et al. (1992) where a zero equation
mixing length model was used to simulate a random sea.
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The two equation k-s model uses the standard equations to represent the
momentum, the turbulent energy, k and the dissipation rate, E.

Momentum:

(4.3)

Turbulent Energy, k:

(4.4)

Dissipation Rate, e:

OF:. = _£(_2 OF:.) + c ~v (Du) 2 _ c ~
at ()z rr E OZ IE k t OZ 2E k (4.5)

Turbulent Eddy Viscosity, W

k2
VI =cl-

E

The upper boundary condition for the k-s model is given by :-

(4.6)

(4.7)

Results from the model appear to indicate that the shear stress time series is not
necessarily Rayleigh in its distribution. A typical model value for R was 2.6.

5. Results
5.1 Spectral bed roughness

The ability of the present iteration procedure, shown in Figure 6 to evaluate
moveable bed roughness, k, under spectral waves was checked for a sandy bed: s
== Ps IP = 2.66 <j> == 24.40 with different grain size and various wave conditions.
The results of the computations plotted in Figure 7 are for both irregular and
regular waves.
In an attempt to explain the reduction of spectral wave friction factors the present
theoretical approach was compared with Madsen et al. (1990) laboratory data.
The results are shown in Figure 5 with the previous results for a monochromatic
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wave. The parameters are defined as before except that for spectral waves as the
skin Shields parameter is given by:

,2 I

e'= Ufr = trms

(s-l)gd p{s-l)gd
(5.1)

The calculation of the friction factors were carried out in two steps. First, the
values of the bed roughness k, were obtained using the modified iterative scheme
(Figure 6) with Fredsae's (1984) model used to determine the bed shear stress, 'tITn,

. Then the friction factors were calculated on the basis of adjusted the semi-
empirical formula of Jonsson & Carlsen (1976) , as for monochromatic waves, in
order to include the contribution of vortex formation in the lee of the roughness
crests on the shear stress. Here, Jonsson & Carlsen's (1976) formulae were
proposed for the calculations of both the friction factors and the dimensionless
skin shear stresses.

Similarly as for monochromatic waves, the calculations were performed for two
different sediments (O.2mm and O.12mm diameter quartz sands). Again the
agreement between theoretical and experimental results appears quite satisfactory.

6. Conclusions

The sheet flow model appears to produce reasonable results for the conditions
tested. However further testing is required.

The use of the model for a range of flow conditions and grain sizes produces a
trend of large bed roughnesses at low flow regimes. According to this trend it is
suggested that the sheet flow model provides a simple method, or rather an
analogy, for the investigation of rippled bed conditions.

Using tlTn, to represent mono-frequency waves and 'tmax to represent spectral waves
produces a reasonable agreement with laboratory data.

The simple model results for k, / d may be of use in preliminary engineering
estimates although further testing is required. The present findings can be
summarized for both the plane and rippled bed by the equation:

(6.1)

The subscripts 1 and 2 refer to the plane and rippled bed respectively.
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The function f is described by the proposed iterative procedure and may be
represented by the approximating formula:

10~~S] = -1.05 10g(Srms,]+4.00 (6.2)

where the Shields parameter is calculated using Fredsee's (1984) model.

The above approximation differs from that given for monochromatic waves due to
the largest waves causing a reduction in the roughness parameter.

To calculate the function F in the case ofa plane bed, Fredsae's (1984) model is
recommended (F, ~ trms). For the rippled bed case, the empirical formula of
Kamphuis (1975) or semi-empirical formula of Jonsson & Carlsen (1976) have
been used (F, -+ trms) in order to include the effects of the vortices formed in the
lee of the roughness crest on the turbulent mixing.

Based on experimental data, it was found that the representative period equals the
peak period. It appears as though the proposed method of predicting bed
roughness in spectral waves by using ideas derived for sheet-flow modelling and a
representative design wave is capable of providing realistic values for effective bed
roughness height. Further work is in progress on the application of the model to
additional North Sea data.

7. References

Brevik, I. (1981). 'Oscillatory rough turbulent boundary layers.' 1. Waterways,
Port, Coastal and Ocean Eng. Div., ASCE, Vol. 107, No.WW3, pp175-188.

Fredsee.J. (1984). 'The turbulent boundary layer in combined wave and
current motion.' 1. Hydraulic Eng., ASCE, Vol. 110, No. HY8, ppl103-1120

Horikawa, K., Watanabe, A. and Katori, S: (1982). 'Sediment transport under
sheet flow condition.' Proc. 18th Int. Conf on Coastal Eng., ASCE, Cape Town,
South Africa, pp1335-1352.

Jonsson, I.G. and Carlsen, N.A. (1976). 'Experimental and theoretical
investigations in an oscillating turbulent boundary layer.' 1. Hydr. Res., Vol. 14,
No. I, pp45-S9.

Kaczmarek, L.M. and O'Connor, B.A. (1993a). 'A new theoretical approach for
predictive evaluation of wavy roughness on a moveable-flat bed.' Part I, Report
No. CE/14/93, Department of Civil Engineering, University of Liverpool, 31pp.

11 Kaczmarek et al.



Kaczmarek, L.M. and O'Connor, B.A. (1993b). 'A new theoretical approach for
predictive evaluation of wavy roughness on a moveable-rippled bed.' Part II,
Report No. CE/15/93, Department of Civil Engineering, University of Liverpool,
29pp.

Karnphuis, l.W. (1975). 'Friction factor under oscillatory waves.' 1. Waterways,
Port, Coastal and Ocean Eng. Div., ASCE, Vol. 101, No. WW2, pp135-144.

Kajiura, K. (1968). 'A model of the bottom boundary layer in water waves.'
Bull. Earthq. Res. Inst., Univ. Tokyo, Vol. 46, pp75-123.

Madsen, O.S., Mathison, P.P. and Rosengaus, M.M. (1990). 'Moveable bed
friction factors for spectral waves.' Proc. 22nd Int. Conf on Coastal Eng., ASCE,
pp420-429.

Nielsen, P. (1992). 'Coastal bottom boundary layers and sediment transport'.
Advanced Series on Ocean Engineering, Vol. 4, World Scientific, Singapore,
324pp.

O'Connor, B.A., Harris, 1.M., Kim, H, Wong, Y.K., Oebius, H.U. and Williams,
1.1. (1992). 'Bed boundary layers.' Proc. 23rd Int. Conf on Coastal Eng.,
ASCE, pp2307-2320.

Savage, S.B. (1984). 'The mechanics of rapid granular flows.' Advances in
Applied Mechanics, Vol. 24, pp289-367.

Sayed, M. and Savage, S.B. (1983). 'Rapid gravity flow of cohesionless granular
materials down inclined chutes.' 1. Applied Mathematics and Physics (ZAMP),
Vo1.34, pp84-100.

12 Kaczmarek et al.



Figures

z
u(z)

Roughness
Boundary Layer

z

Figure I: Definition sketch of turbulent flow over a moveable bed.
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Figure 2: Theoretical and experimental distributions of velocity (a) and
concentration (b) below and above the bed.
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Figure 6: Modified iteration scheme for spectral waves.
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