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ABSTRACT

This thesis presents a number of essays on the linkages between macroeconomic
time series and stock price behaviour. Three general areas are examined: mean
reversion and predictability in stock prices, the stock return-inflation puzzle, and
the present value model of stock prices. A macro model with overlapping wage
contracts and a stock price determination equation motivates five empirical essays;
three are associated with mean reversion. Employing recent econometric
techniques, estimating a restricted multivariate VAR decomposition shows that
real stock prices exhibit significant temporary and permanent components that are
attributed to aggregate demand and supply innovations, respectively. The
temporary component is by definition mean-reverting. The first empirical essay
considers monthly US stock prices, pre- and post-war periods. This is extended
to a multi-country analysis in the second essay. The third empirical essay
investigates the dynamic relationship between real stock prices and interest rates.
The mean-reversion hypothesis is examined using a decomposition method to
estimate the temporary and permanent components of US and UK real stock
prices. The fourth empirical essay shows that the stock return-inflation puzzle can
be explained by decomposing inflation into two counterfactual series - one due to
aggregate demand innovations and the other due to aggregate supply innovations.
The results indicate that real stock returns are negatively correlated with inflation
due only to aggregate supply innovations and not correlated with inflation due to
aggregate demand innovations. This supports Fama’s proxy hypothesis
explanation of the puzzle. The final empirical essay examines the present value
model. The findings reveal that adjustment of stock prices to the long-run
equilibrium - identified by the present value model - is nonlinear and is
approximated well by an ESTAR-ARCH model. This finding is consistent with
microstructure features of the stock market, such as transaction costs and limits
to arbitrage, and is further supported by illustrative Monte Carlo evidence.



Chapter 1

INTRODUCTION

The importance of innovations in macroeconomic time series in financial
markets is addressed by investigating a number of key issues in stock price
behaviour. Three general areas are examined: mean reversion and predictability
in stock prices, the stock return-inflation puzzle, and the present value model of
stock prices. A central theme of the traditional literature on stock price behaviour
is that stock prices follow a random walk. Motivated by recent evidence in favour
of mean reversion in stock prices and econometric techniques, this view is
challenged by examining the dynamic behaviour of stock prices to macroeconomic
shocks. In contrast to previous studies that have examined mean reversion, this
thesis employs the interaction between macroeconomic time series and stock
prices to investigate the mean reversion hypothesis. Empirical evidence on mean

reversion is provided in Chapters 5-7.

There are a number of hypotheses put forward to explain the puzzle that
stock returns and inflation are negatively correlated. Motivated by the limitations
of the underlying theoretical and empirical explanations, we investigate the puzzle
using a macroeconomic model that incorporates a stock price determination
equation and, unlike previous studies, the model is Fisherian in structure. A

multivariate regression approach is employed to empirically analysis U.S. data.

The present value model of stock prices has proven to be very popular in
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finance, in particular in modelling market efficiency. Recently, however a number
of studies have shown that the present value model is rejected when strong tests
of the model are examined. Cointegration and Granger-causality tests support the
present value model. In contrast, cross-equation restrictions tests reject the
model. Motivated by this finding and market microstructure aspects of the stock
price literature, we explore the hypothesis that the equilibrium error is non-linear
and is approximated well by an exponential smooth transition autoregressive

model.

The layout of the thesis is as follows. The objective of Chapter 2 is to
present an extensive literature review on mean reversion in stock prices, in a
concise and consolidated manner. This literature also embodies the associated
literature on stock price predictability. The intuition of mean reversion is that
stock prices contain both a permanent and temporary component. The temporary
component is a mean-reverting component, that is, the market value of common
stocks deviate from their fundamental values but will revert to their mean. Since
the temporary component is stationary it implies that stock returns are to some
degree predictable. Alternative theories to the random walk hypothesis offer
insights into the reason why stock prices might contain a mean-reverting

component. These theories are explored in Chapter 2.

An implication of the mean-reversion hypothesis is that stock prices exhibit
negative serial correlation at long stock return horizons. The empirical literature

on mean reversion tends to rely on one of two related multi-period testing
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methodologies: the Fama and French (1988a) regression-based test and the
variance-ratio test (Cochrane, 1988). The reliability of these multi-period return
tests has recently being questioned and more recently, vector autoregressive
analysis has been used to identify the temporary component of stock prices. The
theoretical and empirical issues associated with these testing methodologies are
outlined in sections 2.2-2.4. Chapter 2 provides part of the background for the

empirical work presented in Chapters 5, 6 and 7.

The information contained in macroeconomic variables is used to
investigate whether stock prices contain a temporary component and are,
therefore, mean reverting. In order to illustrate and identify the relationship
between macroeconomic and financial time series, Chapter 3 outlines a simple log-
linear macro model with overlapping nominal wage contracts and a real stock
price determination equation. The model is essentially neoclassical and Fisherian

in structure and allows reasonably complex dynamics.

In Chapter 3 we have two objectives. First, using a simple macro model
with overlapping nominal wage contracts, we demonstrate that changes in log real
stock prices may be serially correlated even under the assumption of fully efficient
markets in the sense that there are no profitable arbitrage.opportunities between
current and expected stock price movements. Second, we show how the
temporary and permanent components of stock price movements may be related
to aggregate macroeconomic supply and demand disturbances. In particular, in

the context of the same macro model, we show that aggregate demand shocks
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have only temporary effects on real stock prices, while supply shocks may affect
the level of real stock prices permanently. The model is simulated to derive real
stock prices, consumer prices and real output series that are used to evaluate the
proportion of variation in real stock prices explained by aggregate demand shocks.
The simulated model is also used in Chapter 9 to examine the stock return-
inflation puzzle - the correlation between real stock returns, inflation, and real

output growth.

The empirical chapters 5-7 and 9 rely on a related econometric technique.
One of the objectives of Chapter 4 is to give a detailed exposition of this
technique. We consider a variant of the Blanchard and Quah (1989) multivariate
econometric technique of decomposing a series into its temporary and permanent
components. Since the empirical work in the later chapters requires an
examination of two shocks - the simple macro model, presented in Chapter 3,
identifies these two shocks as aggregate (macroeconomic) demand and supply
shocks - to real stock prices and macroeconomic time series, we require a two
variable vector autoregressive (VAR) system to decompose the series in question.
Thus, this chapter examines the decomposition of a 2x1 vector of time series. We
also compare the VAR decomposition to the derivation of a pure random walk

component in the vector.

A characteristic of most financial time series is that the disturbances are
non-Gaussian, and in the presence of errors that are not normally distributed (for

example, a leptokurtic distribution) can lead to estimates that are extremely
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fragile. For this reason, in Chapter 4 we give an overview of two robust
estimation procedures - the least absolute deviation (LAD) estimator and the
residual augmented least squares (RALS) estimator - that we employ in the
empirical work in examining the dynamic behaviour between interest rates and real
stock prices, Chapter 7. The RALS estimation procedure is very recent and a
detailed explanation is provided. Furthermore, as illustrated in Chapter 4, the
RALS procedure allows a more powerful test for unit roots, than the standard

Dickey-Fuller test, when the error sequence is driven by non-normal errors.

The empirical aspect of this study relies on a number of data sources,
including the International Monetary Fund’s International Financial Statistics data
base, the Chicago University Center for Research in Security Prices (CRSP)
Indices File, and Datastream. Emphasis is placed on US estimation as this allows
for a greater comparison with previous work and because of high quality non-

overlapping long time series for US stock prices.

Chapter 5 uses a restricted two-variable - real stock prices and consumer
prices - vector autoregressive system, a variant of the Blanchard-Quah technique,
to decompose real US prices into two components - a component that does not
have a long-run effect on stock prices (temporary component) and a component
that has a long-run effect on stock prices (permanent component). In the context
of the macro model, aggregate macroeconomic demand shocks have only
temporary effects on real stock prices, that is, stock prices are mean-reverting,

while aggregate supply shocks affect the level of real stock prices permanently.
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Thus, we interpret the temporary component as the respénse of stock prices due
to aggregate demand innovations and the permanent component as the response
of stock prices due to aggregate supply innovations. The interrelationship
between macroeconomic and financial time series allows us to estimate a
temporary component in real stock prices that is mean reverting. We then go on
to investigate the size and significance of this mean-reverting component in US
stock prices, for the 1925:1-1995:12 period, by placing appropriate structural
restrictions on a VAR of real stock prices and consumer prices corresponding to

the simple macro model in Chapter 3.

The empirical investigation of macroeconomic shocks to real US stock
prices and the estimation of the size and significance of a mean-reverting in stock
prices is extended in Chapter 6 to examine sixteen countries." This offers much
broader international evidence on macroeconomic shocks to stock prices and the
size of the mean-reverting component of stock prices than has been hitherto
available. In selecting the international data we chose quarterly data on stock
prices, since these were available for a number of countries on a continuous basis
from as early as 1957. As in Chapter 5 we employ a multivariate time series
technique based on the VAR of real stock prices and consumer prices - as outlined
in Chapter 4 - to decompose real stock prices. A comparison of the results yields

some interesting insights into the nature of the linkages between macroeconomic

The following countries were included in the study: Austria, Belgium, Canada,
Finland, France, Germany, India, Italy, Japan, Netherlands, Norway, South Africa,
Sweden, Switzerland, the UK, and the US.
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and financial time series.

In Chapter 7 we investigate the interaction between stock price and
interest rate movements in assessing the size, significance and persistence of the
mean-reverting component in UK and US real stock prices. We specify a VAR
of real stock prices and nominal interest rates and employ the econometric
technique as outlined in Chapter 4 to identify temporary and permanent
innovations in real stock price movements. In the context of the estimated VAR,
we exploit the dynamic relationship between interest rates and stock prices,
illustrated by the present value model, to identify the temporary and permanent
shocks to real stock prices. The temporary shock to real stock prices will cause
stock prices to rise initially and then to reduce so that it has a zero long-run effect.
On the other hand, a permanent shock increases the real stock price in both the
short run and long run. We also expect a permanent shock to decrease interest

rates, while a temporary shock will increase interest rates.

Given the evidence that innovations in financial asset prices exhibit non-
normal distribution properties we investigate the sensitivity of the size,
significance and persistence of the mean-reverting component to two robust
estimation procedures - the LAD and RALS methods - as identified in Chapter 4,
in order to allow for possible non-normality of the innovations to stock returns

and interest rates.

The influential work of Irving Fisher The Theory of Interest (1930) has
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generated a voluminous amount of research, especially in relation to the inflation-
interest rate puzzle. The hypothesis postulated by Fisher has taken many forms,
including generalizing the relationship to all assets. It is the inflation-stock return

puzzle that we consider in Chapters 8 and 9.

The basic premise of the generalized Fisher hypothesis is that nominal
stock returns move one-for-one with the rate of inflation so that real stock returns
are determined by real factors independently of the rate of inflation. In contrast
to the generalized Fisher hypothesis, the empirical evidence finds that common
stocks are not a good hedge against inflation. Moreover, real stock returns and
inflation are negatively correlated. There exist a number of alternative views as
to the explanation of this puzzle. In Chapter 8 we have two objectives. First, to
provide an overview of the Fisher hypothesis. Second, to present an extensive
literature review that links together the alternative explanations of the stock
return-inflation puzzle. This provides the motivation and direction to the

following empirical work.

In Chapter 9, we investigate the stock return-inflation puzzle in the context
of a simple macroeconomic model involving overlapping wage contracts, as
outlined in Chapter 3, which predicts that the negative covariation of real stock
returns and inflation is due primarily to aggregate supply side shocks. For
quarterly US data, using a multivariate innovation decomposition method we
purge the real output and consumer price series of, alternatively, movements over

the sample period due to aggregate supply (real productivity) innovations and
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movements due to aggregate demand (monetary) innovations. The statistical
significance of the empirical correlation between the counterfactual inflation series
and stock returns is then tested. In addition, we also test other predictions of our
simple model concerning the correlation of stock returns and movements in real
output due to aggregate demand and supply shocks, as well as the correlation

between inflation and real output movements.

Monte Carlo simulations are used to derive counterfactual series for
inflation (and real output growth) due to aggregate demand shocks and due to
aggregate supply shocks. The simulated counterfactual series are then used to test
the relationships between real stock returns and the counterfactual series and in

an attempt to explain the inflation-stock return puzzle.

The present value model of stock prices is possibly the most frequently
used model to characterize stock price behaviour, in particular in modelling
market efficiency. As shown in Chapter 10, the present value model can be
presented in either level or loglinear form. In both cases, the present value model
implies that real stock prices and dividends are cointegrated. We are interested

in the properties of this cointegrating relationship.

Two tests of the present value model are the nonlinear cross-equation
restrictions test and the Granger-causality test. The later test is a weak test of the
model, and tests whether the price-dividend spread Granger-causes the change in

dividends. In contrast, a strong test of the model is the cross-equation restrictions
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test. A test of the cross-equation restrictions of the present value model is
equivalent to a simple Wald test statistic for a regression of asset returns on a
lagged information set. Previous empirical work is mixed and is also limited to a
linear cointegrating relationship. Ifthe present value model is rejected then it may
be misspecified or the discount rate may be nonstationary time-varying. We argue
that, due to limits to arbitrage and transaction costs, the relationship between real
stock prices and dividends may be non-linear. A detailed discussion of theoretical
issues in non-linear testing and modelling the deviations from the long-run

equilibrium implied by the present value model is outlined in Chapter 10.

Using quarterly data on real stock prices and dividends for the US we first
test the present value model. The results from three tests are reported; these are
the cross-equation restrictions, the Granger-causality relationship, and the
cointegration between real stock prices and dividends. Second, we test for
evidence of non-linear error correction towards the present value model. Third,
we parsimoniously model the non-linearity in US real stock prices. The Granger-
causality and cointegration tests support the present value model of stock prices.
However, the cross-equation restrictions do not hold. The Wald test statistics
reject the present value model. Moreover, the evidence reveals that the error
correction term should be modelled as a non-linear process. Monte Carlo

evidence provides supporting evidence.
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Chapter 2

MEAN REVERSION IN STOCK PRICES

2.1 Introduction

The predictability of stock returns is probably the most well-researched
topic in the empirical literature on financial economics, dating back at least to
Cowles and Jones (1937). Numerous empirical studies have been unable to reject
the hypothesis that returns are unpredictable and that stock prices follow a
random-walk or martingale process (eg. Granger and Morgenstern, 1963; Fama,
1965, 1970; Le Roy, 1982). This finding supports the efficient market hypothesis.
In the last decade, however, various studies have challenged this conventional
view and re-examined the predictability of stock returns. Moreover, contrary to
the random-walk hypothesis, recent empirical evidence has lent strong support to
the hypothesis of mean reversion in stock prices. The influential work of Fama
and French (1988a) reports impressive findings that US stock prices are mean
reverting (i.e. contain a slowly decaying temporary component) and induce returns
characterised by a large negative autocorrelation process for long return horizons,
periods of several years. Moreover, Fama and French show that between 25 and
45 percent of the variation of 3 to 5 year US stock returns appears to be
predictable from past returns. The Fama and French study has been corroborated
by a number of other studies which report similar findings that stock returns
contain large predictable components (Poterba and Summers, 1988; Lo and

MacKinlay, 1988, 1989; Mills, 1991; Cochran, DeFina and Mills, 1993; Frennberg
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and Hansson, 1993; Cochrane, 1994; Fraser, 1995; Lee, 1995).2

The intuition of the mean-reversion hypothesis is that stock prices contain
a transitory component that is mean reverting. Thus, the market value of stocks
deviate from their fundamental values but will revert to their mean. The general
reason why stock prices deviate from their fundamental value is explained by
Keynes (1936) that “all sorts of considerations enter into the market valuation
which are in no way relevant to the prospective yield” (p. 152).> More
specifically, there exists a number of competing theories that explain the deviation
of the market and fundamental values, including noise traders (De Long, Shleifer,
Summers and Waldmann, 1990), fads (Shiller, 1984) and speculative bubbles

(Blanchard and Watson, 1982).

The ‘noise trader’ literature has received considerable attention as an
alternative to the efficient markets paradigm. The noise trader approach assumes
that “some investors are not fully rational and their demand for risky assets is
affected by their beliefs or sentiments that are not fully justified by fundamental

news.” Also, “arbitrage - defined as trading by fully rational investors not subject

2Jegadeesh (1991) finds evidence that the empirical evidence of mean reversion
in stock prices is due to the January effect. That is, stock prices exhibit seasonal
mean reversion in January.

3]t is interesting to note that John Maynard Keynes (1936), The General
Theory of Employment, Interest and Money, Chapter 12 (reprinted 1973 version)
‘The State of Long-Term Expectation’ identified many of the issues that are
currently being modelled in finance, for example, speculative bubbles, noise
traders, and fads.
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to such sentiment - is risky and therefore limited” (Shleifer and Summers, 1990,
pp. 19-20). The risk facing arbitrageurs is that equities do not have close
substitute portfolios, and therefore if they are priced away from their fundamental,
there is no riskless hedge for the arbitrageur. Therefore, the combined demand of
a finite number of risk-averse arbitrageurs is not perfectly elastic - that is, there are
limits to arbitrage (Shleifer and Vishny, 1997). Furthermore, since stock prices
which deviate from fundamentals in a highly persistent way look like they are
following a random walk, arbitrageurs would find it difficult to detect such a

deviation (Summers, 1986).

Investor sentiment is not irrelevant in causing stock prices to deviate from
their fundamentals, and possibly by large amounts. Given that arbitrageurs have
short horizons (or at least a finite horizon) they incur a risk in buying a share that
has deviated below its fundamental value, since irrational investors (these could
also include “trend chasers”, “chartists”, and “technical analysts”) may cause it to
fall further. It may pay arbitrageurs to jump on the bandwagon themselves.
Therefore, although stock prices may reflect fundamentals in the limit, they may
deviate substantially from their fundamentals for long periods of time (De Long
et al. 1990). “In other words, shifts in the demand for stocks that do not depend
on news or fundamental factors are likely to affect prices even in the long run”

(Shleifer and Summers, 1990, pp. 25). Therefore, investment success requires not
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only predicting future fundamentals but also other investors’ future trades.* The
net effect of limits to arbitrage and noise trading leads to a positive autocorrelation

of returns at short horizons and a negative autocorrelation of returns at longer

horizons - that is, stock prices are mean reverting.

If stock prices are mean reverting then returns must be negatively serially
correlated at some frequency. Fama and French (1988a) reports that the
frequency at which returns are negatively serially correlated is between 3 and 5
years.” The finding that returns are negatively serially correlated at long horizons
leaves it open to the criticism that the finding could have arisen from variation in
expected returns and variation in risk factors over time. However, expected
returns would need to vary a great deal to explain the observed findings.
Obviously, the longer the return horizon the higher the potential for expected
return and risk factors to change. Thus, evidence of negatively serially correlated

returns is only weak evidence against the efficient market hypothesis.®

We can investigate the mean-reversion hypothesis using Summers’ (1986)

simple model for stock prices. Let q, be the natural logarithm of a stock price at

*In a similar line of reasoning, Keynes (1936) in The General Theory of
Employment, Interest and Money, (reprinted 1973 version) Chapter 12, p. 156,
referred predicting stock prices as picking the winner of a ‘beauty contest’.

>This finding is supported by other studies (for example, Poterba and Summers,
1988).

®Cecchetti, Lam and Mark (1990) demonstrates that negative serial correlation
in long horizon stock returns is consistent with an equilibrium model of asset

pricing.
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time t, is modelled as the sum of a permanent (q",) and transitory (u,) component.
The permanent (or nonstantionary) component, q,, is a random walk and the
transitory (or stationary) component, u,, is any zero-mean stationary process, for
example, a first-order autoregression, i.e., a persistent non-random component.’

Since u, is stationary, it is mean reverting by definition and reverts to its mean of

zero in the long run.

(21) qt = qt* + ut

(2.2) Qt* = Qtfl t U+ €,
(2.3) u

: - PU_ Y

where p is the expected drift, p is close to but less than unity, and €, and v, are
white noise and independent errors. A test of the random-walk hypothesis is that
p is equal to unity. The further away is p from unity the greater the degree of
persistence of the transitory component. Thus, if p is significantly smaller than
unity, stock prices are mean reverting - there exists a persistent transitory
component and implies predictability (negative autocorrelations) of returns. The
above model is used as the theoretical basis for the testing methodologies

discussed in the remaining sections of this chapter.

The mean-reversion hypothesis implies that lagged information predicts

stock returns. Many recent studies find that stock returns can be predicted by

"That is, positive values of u tend to be followed by further positive values and
negative vales followed by negative values.
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lagged information, with the predictable component in stock returns related to the
business cycle (Fama and French, 1989; Balvers, Cosimano and McDonald, 1990;
Breen, Glosten and Jagannathan, 1990; Cochrane, 1991a; McQueen and Roley,
1993). Moreover, Pesaran and Timmermann (1995) show that stock returns are
predictable to a magnitude that is economically exploitable and the degree of
predictability is not only related to the business cycle but also to the magnitude of
the macroeconomic shocks. Thus, Pesaran and Timmermann (1995) reinforce
other multivariate studies that stock returns are predictable using a relatively small

number of independent variables.

It is noticeable that studies that have tested the mean-reversion hypothesis
have tended to concentrate on US stock prices, principally because of the
availability of high quality non-overlapping long time series for US stock prices
that previous testing techniques requires. With the exception of a few studies
(Poterba and Summers, 1988; Cochran, DeFina and Mills, 1993; Frennberg and
Hansson, 1993; Mills, 1991, 1995; Cochran and Defina, 1995) markets other than

the US have tended to be neglected.

The interest in worldwide investing warrants information on markets other
than the stock markets of US, UK and Japan. The results from a range of stock
markets provides evidence on the time series properties of stock returns and allow
more general inferences than do results on a single country. This is one of the

issues that is considered in Chpater 6.
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Studies of mean reversion and the associated predictable component of
stock prices tend to rely on one of two related testing methodologies: the test of
autoregression on multi-period returns - the regression-based test (Fama and
French, 1988a) - and the variance-ratio test (Cochrane, 1988; Cochrane and
Sbordone, 1988; Poterba and Summers, 1988; Lo and MacKinlay, 1988). More
recently, vector autoregressive analysis has also been used to identify the
permanent and temporary components of stock prices (eg. Cochrane, 1994; Lee,
1995). The remaining sections of this chapter will critically evaluate and

investigate empirical findings of each of these testing methodologies.
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2.2  Regression Based Tests

The regression-based test of mean reversion considers the pattern of the
autocorrelation function over increasing return horizons. The pattern consistent
with mean reversion is positive autocorrelation for low return horizons and
negative autocorrelation for longer horizons. Fama and French (1988a) report a
U-shaped pattern of the autocorrelation function, which is consistent with

evidence of mean reversion.

The negative autocorrelation at longer return horizons can be illustrated
using the simple stock price model as outlined in equations (2.1) - (2.3). We can
express stock returns, the first difference of the natural logarithm of stock prices,

as follows

(2.4) r, = Aq,

4 — 444
= qt* - Qtfl + [ut - ut—l]

H+e€ 4 [ut - ut—l]

it

The permanent component produces white noise (with drift) in returns. Whereas,
Fama and French (1988a) show that the transitory component causes negative
autocorrelation in returns. The autocorrelation function of [u,-u,_,] is bounded

between -0.5 and 0. Consider T-period non-overlapping returns generated by

(25) rt,t+T = qt+T B qt

_ * *
- qt+T B qt + [ut+T - ut]

For any zero-mean stationary process, including an AR(1) process (2.3), the first-
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order autocorrelation of T-period changes in u, is given by the slope coefficient
(pp) of [u,r— u,] on [u, - u,_;], and approaches -0.5 as T gets larger and 0.0 for
small T. Thus a slowly decaying mean-reverting component of stock prices will

not be found with short return horizons but are evident in long return horizons.

Although we do not directly observe the transitory component u,, it is not
difficult to show that the theoretical slope in the regression of the return r, . on
r.1,,18 0.0 if the price does not have a transitory component. If the price does not
have a random-walk component, for large T, the slope coefficient approaches
-0.5. Thus, for large T, the mean-reverting component pushes the first-order
autocorrelation of returns to -0.5 and the random-walk component pushes it to
0.0. Since the variance of the random-walk component (0.%) increases
proportionally with T, the first-order autocorrelation of returns (that includes
random-walk and mean-reverting components) is expected to be close to 0.0 for
short return horizons becoming negative for longer return horizon and then, as T
gets even larger, moves back towards 0.0 as the random walk component begins
to dominate. Thus, a U-shaped pattern of the autocorrelation function is

consistent with evidence of mean reversion.

Fama and French (1988a) estimate an autoregression

(2.6) Poor = @ * Brrip, + &

for different T-periods return horizons, from one to ten years. The data are 1-

month returns for all New York Stock Exchange (NYSE) stocks and are adjusted
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for inflation using the U.S. Consumer Price Index (CPI) for the 1926-85 period
from the Center for Research in Security Prices (CRSP database). Fama and
French find a U-shaped pattern across increasing return horizons. The
autocorrelations (as measured by the slope coefficient, B, in (2.6)) become
significantly negative for return horizons between 2 and 7 years - the strongest
evidence for 3-5-year returns. The autocorrelations are close to 0.0 for all other
years. This pattern is consistent with the hypothesis that stock prices have a
mean-reverting component, i.e, a slowly decaying stationary component. The size
of the autocorrelation (between ~0.30 and -0.45) indicates that, on average,
between 60 percent and 90 percent of the variances of 3~ 5-year returns are due
to the transitory component. Moreover, for the same return horizons, the

predictable variation due to mean reversion is about 35 percent.

The are a number of additional features of this seminal study. First, the
autocorrelations are close to 0.0 for periods after 1940 and the U-shaped pattern
for increasing return horizons is not evident (Fama and French, 1988a). Kim,
Nelson and Startz (1991) suggest that mean reversion is a feature of the pre-
second world war environment but not the post-war environment. Using the
regression-based test, Kim et al. are unablé to predict 3-year ahead returns. The
pre-war period incorporates the Great Depression from 1929 to 1939, a period of
stock returns unparalleled in the history of the stock market and this may be a

contributing factor in the Fama and French (1988a) results.® However, as Kim et

8See Schwert (1990a,b) for a discussion of the importance of the Great
Depression period in empirical research.
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al. point out, if stock returns are independent, then the serial-correlation patterns

in different samples should also be independent.

In an 18 country study, for the 1969:12-1990:10 period, Cochran and
DeFina (1995) report only weak support for the mean-reversion hypothesis. Only
2 of the 18 countries (Canada and Norway) exhibit negative serially autcorrelated
returns. However, given the small sample size, Cochran and DeFina only consider
3-month to 48-month return horizons. In a study on Swedish stock prices,
Frennberg and Hansson (1993) reject the random-walk hypothesis for the 1919-

1990 period and also for subperiods.

Second, there is evidence of poor small-sample performance of the test
statistics. The small sample arises because even though the sample period may be
very large, the number of non-overlapping return observations is necessarily small
and therefore there is not much independent information in the return series.
Thus, the reliability of inference drawn from individual point estimates of long-
horizon autocorrelations has recently been questioned (Richardson and Stock,
1989; Jegadeesh, 1990; Kim et al., 1991; Mankiw, Romer and Shapiro, 1991;
Richardson, 1993). The difficulty in drawing inferences from t-statistics based on
overlapping data arises because the approximating asymptotic distributions
perform poorly. The long-horizon t-statistics tend to overstate the degree of mean
reversion. Using an alternative asymptotic distribution theory for statistics
involving multi-year returns, Richardson and Stock (1989) and Richardson (1993)

show that empirical inference does not easily reject the hypothesis of no mean

-21 -



reversion - the number of significant negative autocorrelations at long return
horizons is reduced substantially. Mankiw et al. (1991) find only moderate
evidence against the random-walk hypothesis. In fact, Cecchetti ez al. (1990) and
Richardson (1993) show that the U-shaped pattern is consistent with stock prices

following a random-walk process.

Using randomization methods (as opposed to the Hansen and Hodrick’s
1980 method)’ to calculate bias-adjusted standard errors, Kim ez al. (1991) find
a lower significance of mean reversion in the full sample period. Fama and French
(1988a) use the Hansen and Hodrick method in calculating standard errors that
adjust for the biased induced by overlapping observations. The advantage of the
randomization method is that it does not assume the normality of the underlying

returns.

*Using Monte Carlo analysis Hodrick (1992) finds that the Hansen and
Hodrick (1980) procedure is biased at long horizons.
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2.3  Variance-Ratio Tests

The variance-ratio test, first employed by Cochrane (1988), compares the
relative variability of returns over different horizons. Under the null hypothesis
of a random walk in stock prices, the variance-ratio test tests whether the ratio of
the return variance for a T-period return horizon to a 1-period return horizon is
equal to T, as it should be if prices follow a random walk (Cochrane, 1988).

Defining, the variance-ratio statistic as

Var(r,")

2.7) VR(T) = 1
T'[Var(r,)]

where 1" is the T-period return. The null hypothesis of a random walk is rejected
if this is statistically different from 1.0. Moreover, if VR(T) is significantly below
1.0, the returns are negatively serially correlated, such as the mean-reversion

model. Cochrane (1988) showed that the variance-ratio statistic is approximated

by

T-1 .
28)  VRM) =1 +2). [%J_]p(/)

where p(j) denotes the j-th-order sample autocorrelation coefficient of the 1-

period stock return. For monthly returns, Poterba and Summers (1988) define

the variance-ratio statistic as
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Var(r))IT | _
(2.9)  VR(T) = r(rl‘z) , r =Zi0t
Var(r,”) /12

Q

s oS [T ] s N 12 |
ok e - X[

where T denotes years and r, is the return over one month and p(j) is the j-th-order

sample autocorrelation coefficient of monthly stock returns.

Frennberg and Hansson (1993) show that the variance ratio and the slope
coefficient in equation (2.6) are directly related. Therefore, it is not surprising that
the results from the variance-ratio test provide similar results to that of the
regression-based tests. However, the variance-ratio tests are also subject to the
same problems as the regression-based tests. First, the results are subject to the
problems of inference in small samples. Second, there is no analytically derived
distribution for finite samples of the variance ratio - the level of significance
depends on how the standard errors are estimated. Third, the empirical finding of

mean reversion in stock prices is influenced by the Great Depression period.

In order to estimate the standard errors of the variance ratio, Poterba and
Summers (1988) and Lo and MacKinlay (1988, 1989) use Monte-Carlo
simulations, assuming normal disturbances. Poterba and Summers (1988) find that
returns for the 18 countries in their study are mean reverting for 3-8-year return
horizons (i.e., the VR(T) is significantly below 1.0 for T between 3 and 8 years).

The findings are robust to the sample choice. However, the results are only
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significant at low significance levels (i.e., at the 0.15 level). The variance ratio
point estimates imply that the transitory component explains half of the variance

in monthly returns.

The relatively large standard errors, and thus the low power of the test, has
resulted in contrasting findings. This is especially the case once alternative
methods are employed to estimate the standard errors. More recent studies have
suggested that the approach taken by Poterba and Summers (1988) overstates the
significance of mean reversion in stock prices. Kim ez al. (1991) suggest that a
more robust approach is to use the randomization method in calculating the
standard errors. They find a much lower level of significance than that reported
by Poterba and Summers (1988). Richardson and Stock (1989) and Richardson
(1993) report a similar finding. A number of other recent studies have tended to
support the view that there is only weak evidence for the mean-reversion
hypothesis, especially studies that use pre-war data (Frennberg and Hansson,

1993; Cochran and DeFina, 1995).

A related drawback of the variance ratio (and regression-based) testing
procedures is that there exist only a relatively few non-overlapping long time
series of high quality data available with which to estimate the permanent
component of stock prices. Generalization of the results therefore becomes
dependent on these few series. Also, the size of the mean-reverting component
is sensitive to the choice of index considered. For the New York Stock Exchange

(Center for Research in Securities Prices, CRSP, database) the predictability of
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equally weighted portfolios is substantially higher than for value weighted
portfolios (Fama and French, 1988a; Poterba and Summers, 1988; Kim et al.,

1991; Mills, 1991, 1995; Cochran and DeFina, 1995).

As in the case of the regression approach, more recent studies using US
data suggest that there is only weak support for the mean-reversion hypothesis in
the post-war period, and moreover for the last few decades (Richardson and
Stock, 1989; Kim et al., 1991; Cochran and DeFina, 1995). Kim et al. (1991) find
that, for the US, the variance ratio is greater than one (i.e., evidence of mean
aversion - positively serially correlated returns) for the pre-war period. Detailed
evidence of mean reversion of other countries stock prices is limited, for example,
Mills (1991, 1995) report evidence of mean aversion in UK stock prices.
Frennberg and Hansson (1993) also find, for Sweden, that stock prices are mean
averting for 2-24-month return horizons and the variance ratio falls below one
(though never statistically significant) for return horizons greater than 120-

months.

In summary, the variance-ratio and the regression-based tests suggest that
stock prices are to some degree mean reverting. However, the significance of the
mean-reverting component is not certain because of small non-overlapping sample
size, the distribution property of the tests and the sensitivity to the pre-war period.
It is from this basis that we consider the alternative multivah'ate testing procedures

that have recently been employed.
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24  Decomposition of Stock Prices: Beveridge-Nelson and Vector
Autoregressive Approaches
More recent studies have tended to employ more sophisticated statistical
techniques in attempts to ascertain whether stock price movements are mean
reverting (e.g. Cochrane and Sbordone, 1988; Cochrane, 1994; Lee, 1995; Mills,
1995). These papers employ a variant of the Beveridge-Nelson (1981)
decomposition, with emphasis placed on a multivariate generalization of the

decomposition.

The multivariate Beveridge-Nelson (1981) decomposition of stock prices
can be expressed using equations (2.1) - (2.3) with an expression for dividends,

given by,

2.10) d =gq  +w

where d, is the natural logarithm of dividends that contains a common random
walk component q’, (described by equation (2.2)) and a distinct mean zero
stationary component, w,, for example a first-order autoregression. It is not
difficult to show that the present value model of stock prices implies a stationary
price-dividend ratio, i.e. stock prices and dividends are cointegrated (see Chapter
10). Therefore, taking stock prices and dividends to be cointegrated, there exists
a Stock and Watson (1988) common-trends representation in the two-variable
vector autoregressive system of stock prices and dividends (Cochrane and
Sbordone, 1988). The common-trends component, represented by q°, in

equations (2.1), (2.2) and (2.10) represents the permanent component in stock
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prices. The remaining variation in stock prices is due to the transitory (or mean-

reverting) component, u,.

It is in the multivariate context that Cochrane and Sbordone (1988) and
Mills (1995) estimate the variance-ratio tests for different return horizons.
Cochrane and Sbordone (1988) show that the variance of the permanent or
random walk component of stock prices is 1/T times the variance of T differences
of dividends.'® Therefore, the variance ratio test is caléulated by dividing 1/T
times the variance of T differences of dividends by the variance of the first
differences of stock prices. The empirical findings do not strongly support the
mean reversion hypothesis, because the standard errors of the pure random walk
are considerable larger then the transitory component. For example, Cochrane
and Sbordone (1988) findings cannot reject the random walk hypothesis at 5%
significance level. For UK stock prices, Mills (1995) finds that the null hypothesis
of a random walk cannot be rejected at conventional significance levels when the
standard errors are based on Richardson and Stock’s (1989) alternative
asymptotic theory. However, using the critical values, obtained by Monte Carlo
simulation (provided in Mills (1991)), monthly stock prices are mean averting for
large return horizons.!! Like their univariate counterpart, the variance ratios

calculated from the multivariate Beveridge-Nelson decomposition do not strongly

1%See Cochrane and Sbordone (1988) for a detailed account of decomposing
stock prices into transitory and permanent components using a multivariate
generalisation of the Beveridge and Nelson (1981) decomposition.

MMills (1995) does not provide a detailed account of the values of either the
variance ratios or their standard errors.
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reject the random walk hypothesis.

An alternative perspective on the mean-reversion literature is given by
Cochrane (1995) and Lee (1995). They argue that univariate estimation of stock
prices will not reject the random-walk hypothesis for short autoregressions (for
example, AR(1)) and mean reversion is evident in univariate analysis only from
long return horizons. However, evidence from mean reversion in stock prices

comes when one isolates a transitory multivariate shock.

Cochrane (1995) estimate a vector autoregression (VAR) of annual
changes in the natural logarithm of stock prices and changes in the natural
logarithm of dividends for the 1927-1988 period. Furthermore, since stock prices
and dividends are cointegrated the (one period lag of the) natural logarithm of the
dividend/price ratio is included in the VAR. Two shocks on stock prices (and
dividends)'? are isolated - a dividend (“permanent”) shock causes stock prices to
immediately move to their long-run values and a price (“temporary”) shock has
only a transitory effect on stock prices.”® Furthermore, the temporary shock is

persistent with a half-life of about 5 years. The size of the transitory component

2Dividends are very close to a pure random walk - a dividend (or
“permanent”) shock explains 99% of the variance in the changes in dividends.
This finding is consistent with the hypothesis that mangers smooth dividends by
setting dividends equal to the discounted value of earnings (discounted at the risk-
free rate).

BThe present value hypothesis (stationary dividend/price ratio) and the
hypothesis that managers smooth dividends (dividends are random walk) define
the price shock as completely transitory and the dividend shock as completely
permanent.
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is large and consistent with the long return horizon analysis - some 57 percent of

the variance of returns is explained by temporary shocks.

Employing a less restricted two-variable autoregression involving stock
price-dividend spreads and real stock prices, Lee (1995) reports similar results for
quarterly data for a slightly longer sample period, 1926:1-1991:4. The
distinguishing feature of Lee (1995) is that permanent and temporary shocks to
stock prices are identified using the present value hypothesis (i.e., a stationary
dividend/price ratio) and dividends to be some non-stationary, I(1) process.
Unlike Cochrane (1995), who assumes that the dividend series is a random walk,
Lee (1995) models dividends that include both a random walk and a stationary
component.* It is this definition of dividends that allow§ Lee (1995) to estimate
a variant of the decomposition technique proposed by Blanchard and Quah

(1989).

Lee (1995) also faces the cointegration problem identified by the present
value model (Campbell and Shiller, 1987). The stock price and dividend series are
both integrated of the order 1, I(1). However, a VAR of the first difference of
stock prices and dividends is not viable since the moving averagé representation

of the vector is noninvertible (Engle and Granger, 1987).

“Empirically, dividends may either be a random walk or also include a
stationary component. Annual data looks like a random walk whereas this is less
certain for quarterly data. Therefore, econometrically both authors are valid in
their approach.
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Defining the cointegration residual as the ‘spread’ between stock prices
and dividends," Lee (1995) estimates a restricted bivariate VAR of the price-
dividend spread and stock returns and identifies the temporary and permanent
shocks to stock prices by restricting the long-run response of the temporary shock
to stock prices to equal zero. The permanent and temporary shocks are attributed
to the dividend series - the random walk component g.enerates the permanent
innovations (shocks) and the stationary component generates the temporary
innovations. The two dividend innovations are related to stock prices through the

present value model.'

These recent studies strongly support the mean-reversion hypothesis and
suggest a large mean-reverting component, around 50-60 percent, in US (and
international) stock prices, at least for studies that include the pre-war period.
Cochrane (1995) finds that the dividend/price ratio forecasts stock returns more

strongly in the postwar than in the data series that includes prewar data.

The temporary component characterised by the vector autoregression
approach can be thought of as a long-horizon forecastability test. It is this feature
that makes it particularly appealing in identifying mean reversion in stock prices,

in that predictability requires a long investment horizon.

5When stock prices and dividends are expressed as natural logarithms, the
spread is defined as the log of stock prices minus the log of dividends.

16As identified by Cochrane (1995), the dividend/price ratio helps predict stock
returns (see also, Fama and French, 1988a; Campbell and Shiller, 1988, 1989,
Hodrick, 1992; Cochran, DeFina and Mills, 1993).
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Evidence of a large mean-reverting component implies that stock returns
are predictable for long investment horizons. The view that stock prices are
predictable has resulted in numerous recent studies supporting the predictability
of stock returns (eg. Fama and French, 1989; Mills, 1991, 1993a; Cochrane and
Mansur, 1993; Black and Fraser, 1995; Fraser, 1995; Pesaran and Timmermann,
1995).7 The majority of these studies have examined the dividend/price ratio as
a forecasting factor of stock returns, however, a small number of studies have
considered aggregate business factors (for example, Fama and French, 1989,

Cheung and Lai, 1995; Pesaran and Timmermann, 1995).

[ turn, this has important implications for the use of models that assume that
stock returns are unpredictable, such as the present value model of stock prices.
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Chapter 3

A SIMPLE MACRO MODEL

3.1 A Simple Macro Model with Overlapping Wage Contracts

In this section we have two objectives. First, using a simple macro model
with overlapping nominal wage contracts, we demonstrate that changes in real
stock prices may be serially correlated even under the assumption of fully efficient
markets in the sense that there are no profitable arbitrage opportunities between
current and expected stock price movements. Second, in the context of the same
macro model, we show that aggregate demand shocks have only temporary effects
on real stock prices, while supply shocks may affect the level of real stock prices

permanently.

In the traditional ADAS model with a long-run vertical supply curve,
aggregate demand innovations result in only a temporary rise in output, while
aggregate supply innovations permanently affect the level of aggregate output.
That is, in the long run, aggregate-demand innovations raise the price level but not

output. It is in this context that we outline the model below.

Consider a simple loglinear macro model with overlapping nominal wage
contracts which is essentially neoclassical and Fisherian in structure - and which

allows reasonably complex dynamics.'® In order to illustrate the relationship

8 A characteristic feature of the model is that wages are set in a two-period
overlapping contracts framework.
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between macroeconomic and financial time series the model includes a stock price
determination equation. The model incorporates the salient features of the models

of Fischer (1977), Blanchard (1981) and Blanchard and Quah (1989):

B1) y,=m -p, +ab, +am
(32) y,=n +86,

(33) p,=w -8,

(34) w,=wl{E_,n, = n)}

(3.5) w = ¢y,

(3.6) gq,=m, + 2; PEAT, ., +k
i

where the permissible range of the parameter space is governed by:

(3.7) a>0, 0<a<l1 0<¢d<l1 0<pc<l

The variables, y, m, p, w, n, and O denote, respectively, the log of output, the
money supply, the price level, the nominal wage, employment and productivity,
respectively. The log of dividends on equities is represented by 7; n represents

full employment; and q is the log of the real price of equities.

Equation (3.1) represents the aggregate demand side of the economy; with
aggregate demand a function of real balances, productivity and distributed profits.
For generality, we follow Blanchard and Quah (1989) in allowing productivity to
affect aggregate demand on the grounds that in is likely to affect investment, so
that we expect a>0, although setting a=0 does not qualitatively alter the results.

The production function, equation (3.2), relates output to the level of employment
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and productivity. Equation (3.3) states that the price level is a function of the
nominal wage and productivity. The nominal wage (equation (3.4)), chosen two
periods ahead, is set at the expected full employment level in a two-period
overlapping contracts framework (Fischer, 1977). Equation (3.5) expresses log

of real dividends (distributed profit) as a function of real output.

Equation (3.6) specifies the log of real stock prices as a linear function of
the log of real dividends. Following Campbell and Shiller (1988a,b), the log of
real stock prices is a log-linear approximation of the standard present value model
of stock prices.”” The equation says that the log real stock price at time t is
determined by the log real dividend at time t, expected real dividend growth into
the infinite future, and a constant. Future real dividend growth rates are
discounted at the rate p’, for j=0,..,, where p is close to but a little smaller than
(positive) unity. A detailed derivation of equation (3.6) is given at the end of this

chapter in Appendix 3.1.

To close the model, we follow Blanchard and Quah (1989) in assuming

that m and O are determined as follows:

(3.8) 6

I
+
Q

t t-1 5,1

(B9 m o =m_ +e,

where e, and e, are serially uncorrelated and pairwise orthogonal demand and

"We assume the dividend enter the log dividend-price ratio, d,=m,-q, in the
current period t, that is, the dividend in period t is also known in period t.

-35-



supply disturbances.

We solve the above model for the variables of interest (Ap,, Aq,, and Ay,)
in terms of the two disturbances (e, and e,,). The approach taken is first to
calculate an expression for real output growth. Second, given the role of real
output in the stock price formation equation we use the expression for real output
growth to find real stock returns in terms of supply and demand disturbances.

Finally, we calculate an expression for inflation in terms of two disturbances.

From (3.1) and (3.5):

(3.10) y, = A-ad) ' (m, - p, + ab,)

Substituting (3.3) into (3.10) and taking expectations in period t-2:

(3.11) E, ,y, = (1-ad)'(m_, - w, + 1+a)6,,)

Also, taking expectations of (3.2) in period t-2, gives:

(3.12) E, ,y, = n o+ 0.,

Equating (3.11) and (3.12), we derive an expression for full employment:

(3.13) 71 =(l-ad)'(m_, - w + 1+a)b,_,) - 6,,

From (3.2), (3.3) and (3.10):

(3.14) n, = (1-ad) (m, - w, + (1+a)6,) - 6,
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Subtracting (3.14) from (3.13) we calculate an expression for the gap between

actual and full employment:

B.15) n-n,=-0-adp)(m-m,_,) |
- (1-ad)'(1+a)6,-6,,) + (6,-6,_,)

We can rewrite (3.15) in terms of the supply and demand disturbances using (3.8)

and (3.9):
(3.16) n-n, = -(1-ad)'(e,;, +e,, )

- (-ad) (I+a)e,,ve,, ) + (e, e, )

Given that:

(3.17) An, = -A(n - n,)

we can calculate the change in employment by combining (3.16) and (3.17):

(3.18) An, = (1-ad)'(e;,~¢,,,)
+ (1-ad)'(1+a)e,, - ¢,,,) - Ae, - Ae

s, t-1

Taking the first difference of (3.2):

(3.19) Ay, = An, + A,

Substitute (3.8) into (3.19) and combine the resulting expression into (3.18) we

solve for real output growth in terms of the two disturbances:
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Ay, = (1- ocd))‘l(ed’t “ € s)
+ (1-ad)'(1+a)e,, - e, ,)
- Aes,t - Aes, 1 + es,

t- t

Collecting terms:

(3.20) Ay, = (1-ad) (e, - €;,,)
+ (1—06(!))-1(1 +a)(es,t - es,t—Z) + es,t—Z

Equation (3.20) expresses real output growth in terms of supply and demand
disturbances. Demand disturbances have short-run (temporary) effects on real
output and these effects disappear over time. In this overlapping wage contracts
model, a demand disturbance has no long-run (permanent) effects after two
periods. In contrast, supply disturbances have both short-run and long-run effects

on real output.

We interpret (3.20) using the parameter space (3.7). Demand disturbances
increases real output in the short run and, in the long run real output declines back
to its original level. A supply disturbance increases real output in the short run
and declines by a fraction of this increase in the long run. Thus, in the long run,

the net effect of a supply disturbance is that real output has increased.

We now turn our attention to real stock returns. Substituting (3.5) into

(3.6) gives
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(B21) g, =m, + Y, o’ E,bAy,,,, + kK

Jj=0

Since real output growth is given by

Ay, = (1-ad) (e, - €;,,)
+ (1—‘06(]))_1(1 +a)(es,t B es,t—Z) + es,t-2

Real output growth next period is therefore,

Ayt+1 = (1—05(1))—1(6‘1’”1 h ed,t—l)
+ (1—05(]))"1(1 +a)(es,t+l - es,t—l) T €

and for period t+2,

Ayt+2 = (I_ad))_l(ed,ﬁz R
+ (1—06(]))_1(1 +a)(es,t+2 - es,t) M es,t

Taking expectations

E, Ay, = (1-ad)'(-e;, )
+ (1-ad)l(1 va)(-e;, 1) * e,

E,Ay,, = (1-ad)'(-¢,,)
+ (1-ad) ' (1+a)(-e,,) * e,

EtAij =0, forj>2
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Rewrite (3.21) as:

(3.22) q, = T +k*+ (])EtAyt+1 + d)pEAyﬁz + (bszszt»a 4 oeeenes

Given E (Ay,,;, for alli, as above, we can rewrite (3.22) as

(323) g, =7, + d[(1-ad)y (e, )
F(1-ad) (1+a)( e, ) + €, ]
+ dpl(1- ) (- e,,)
c(1-ad)(1+a)(-e,,) + ¢,] + k°

Taking first difference of (3.23):

(3:23) Aqg, = dAy, + G[(A-ad) ' (~e,, 1+ e,,,)
+(l-ad)'(1+a)(-e,,  *e,, ,)
+(€g 17 ¢0)]

+opl(1-ad)'(-e;, e, )
+(1-ad) (1+a)(-e,, e, ;)

+ (es,t— es,t—l)]

Substitute equation (3.20) into (3.23) gives us an expression for real stock returns

(3:24) Ag, = ¢(1-p)1-ad)'[(e,,~e,,,)
+(1+a)(e, = ¢, .,)]
+ (bp(es,t B es,t—l) + (bes,t—l

Equation (3.24) expresses real stock returns in terms of supply and demand

disturbances. Demand disturbances have short-run effects on real stock prices and
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these effects disappear over time. In this overlapping wage contracts model, a
demand disturbance has no long-run effects after one periods. The long-run effect
of a demand disturbances has a zero long-run effect on stock prices and real
output, however, real stock prices adjust quicker than real output to this long-run
position. As in the case of real output, supply disturbances have both short-run

and long-run effects on real stock prices.

Given the parameter space (3.7), a demand disturbances increases real
stock prices in the short run and, in the long run, real stock prices decline back to
their original level. A supply disturbance increases real stock prices in the short
run and declines by a fraction of this increase in the long run. As in the case of
real output, the net long-run effect of a supply disturbance is an increase in real

stock prices.

Finally, we derive an expression for inflation. From (3.1) and (3.5):

(325) p,=m, - (1-ad)y, + ab,

Substituting (3.8) and (3.9) into (3.25) gives:

(326) Apt = ed,t - (1—06(1))Ayt + aes,t

Substituting the real output equation (3.20) into (3.26) gives us an expression for

inflation:
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(327) Apt ed,t - ed,t + ed,t-2 - (1 +a)(es,t— es,t—Z)

- (l—occl))es,t_2 + ae,,

Collecting terms:

(3.28) Apt = C€hr2 T 6y T (a+a¢)es,t-2

Equation (3.28) expresses inflation in terms of supply and demand disturbances.
Demand and supply disturbances have both short-run and long-run effects on
prices. We interpret (3.28) using the parameter space (3.7). A supply disturbance
decreases prices in the short run. However, in the long run, the net effect of a
supply disturbance depends on the value of (atad). If (atad)>1, a supply
disturbances will increase prices in the long run, whereas, with (a+ad)<1, prices
will decrease in the long run. This is because supply shocks through their effect
on investment, may raise aggregate demand (equation (3.1)). If this effect is weak
(a is small), the traditional supply-side effects will dominate and a supply shock

will depress prices in the long run.

In summary, demand and supply shocks have both short-run and long-run
effects on inflation. However, demand shocks have short-run effects on real stock
prices and these. effects disappear over time. In contrast, supply shocks have both
short-run and long-run effects on real stock prices. Equation (3.24) demonstrates
that changes in real stock prices may be serially correlated even under the
assumption that there are no profitable arbitrage opportunities between current

and expected stock price movements - that is, fully efficient markets.
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This simple model is consistent with the comparative statics of a standard
aggregate supply-aggregate demand framework with a long-run vertical supply
curve (ASAD-LRVS)®. Aggregate supply innovations increase real output - in
both the short and long run - and depress consumer prices, while demand
innovations raise prices but can only raise real output in the short run.
Furthermore, in our model stock returns are positively related to output, and it is
this relationship that explains the negative correlation between inflation and stock

returns to aggregate supply shocks.

2Gee e.g. Gordon, 1978, chapter 7, Branson, 1979, chapter 7; and Cuthbertson
and Taylor, 1987, chapter 3.
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3.2  Monte Carlo Simulations
This section considers the simple linear macro model with overlapping
nominal wage contracts outlined in the previous section. We modify the model

by allowing a drift term to enter into the money supply and productivity equations:

(329) 0,=0,, +py +e,

(3.30) m

1

e T My YU, ey,

where g and p, are the expected drift in the level of productivity and money

supply.

In order to run the Monte Carlo simulations we solve the model for the
variables of interest (Ap,, Aq, , and Ay, ) in terms of the two random serially
uncorrelated and pairwise orthogonal demand and supply disturbances (e, and
e,). The approach taken is first to calculate an expression for real output growth.
Replacing (2.8) and (3.9) by (3.29) and (3.30) in the model, as described by
equations (3.1)-(3.7), does not substantially change the expression for Ap,, Aqt,

and Ay,. We therefore only provide a brief version of the calculations.

First, solving for real output growth. Taking the first difference of

equation (3.2) and substituting (3.29) into the derived equation:

(331) Ay, =An, + g +e

s,t

Substituting (3.18) into (3.31) solves for real output growth in terms of the two

disturbances:
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(3:32) Ay, = (1-ad)(e,, - €;,,)

+ (l_o“b)-l(l +a)(es,t - es,t—2) t e 0t Uy

Equation (3.32) is analogous to (3.20). Introducing an expected drift term into
the money supply and productivity equations, causes only the expected drift in

productivity to enter into the real output growth equation.

Second, we solve for the stock return equation. Substituting (3.32) into

the first difference of equation (3.5) gives:

(3.33) Amw, = d(1-ad) (e, €, ;)
+ d(1-ad) ' (1+a)(e,, - ¢, , ;)
+ d)es,t—Z * (le-e

Substituting equation (3.33) into equation (3.6), the price of stocks is given by,

3.34) g, =m, + G[(1-ad)'(-¢,,)
+(1-ad) (1+a)( -, ) * e, ]
+ Gp[(1-ad)'(-¢,,)
+ (L-ad) ' (I+a)(-e,) + ¢ ]
+ G(l+p)pg + Kk

Taking first difference of (3.34), and substituting (3.33) into the resulting

expression, gives us an expression for real stock returns:
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(3-35) Aqt = (b(l - p)(l - a(]))‘l[(ed,t— ed,t—l)
+(1 +a)(es,t B s,t—l)]
+ (bp(és,t_ es,t—l) + d)es,t‘—l + ¢“e

Equation (3.35) is analogous to (3.24). Again, introducing an expected drift term
into the money supply and productivity equations, causes only the expected drift
in productivity to enter into the real stock return equation, with a coefficient value

of ¢, where 0<¢p<1.

Third, we solve for inflation. Substituting (3.5) into (3.1) and taking the

first difference:

(3.36) Ap, = Am, - (1-ad)Ay, + aAb,

Substituting (3.29) and (3.30) into (3.36) gives:
(3.37) Ap, = € ~ (1-ad)Ay, + ae . + W, + dig

Substituting the real output growth equation (3.32) into (3.37) gives us an

expression for inflation:

(338) Ap,=¢;,,-¢€, (a+adle , ,+u, + (a+ad-1)pg

Equation (3.38) is analogous to (3.28). Both the expected drift terms enter into
the price equation. The expected drift in productivity to enter into the price

equation, with a negative coefficient value, (atad-1)<0.
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We simulate the three equation model for real output growth, stock
returns and inflation, given by equations (3.32), (3.35) and (3.38), respectively.
To identify the model we assign values to the model’s parameters: ¢=0.1, a=0.4,
1g=3.0, p,=8.0, $=0.6, and p=0.96. Assigning different \-/alues to the parameters
(within the parameter space given by (3.7)) does not change the qualitative
findings. The value of p is taken from Campbell, Lo and MacKinlay (1997) to be

0.96 in annual data.

A sample of 100 is replicated 200 times. We exploit the generated
inflation, real stock return and real output growth series to examine the
importance of the demand and supply shocks in explaining movements in real

stock prices.

The R’s from the regression of real stock returns onto demand, supply and
deterministic (constant and trend) components are reported in Table 3.1. Real
stock price movements are primarily explained by supply (permanent) shocks, with
only 4 percent of the real stock returns explained by demand (temporary) shocks.
The 5%- and 95%-iles reveal that even though we are considering normally
distributed pure random shocks - that is, no asymmetries such as bubbles - demand
(temporary) shocks, at the 95%-ile, explained up to 17 percent of the variation in

real stock price movements.

The impulse response functions from demand and supply shocks to real

stock prices and to consumer prices are presented in Figure 3.1. The three

-47 -



response functions for each shock is for illustrative purposes. The median
response function corresponds to the seed that generates the median value of the
initial impulse response of a one unit (standard deviation) demand shock to real
stock prices, the low reponse function corresponds to the seed that generates the
5%-ile and the high to the 95%-ile value. A demand shock increases real stock
prices only in the short run - prices revert back to the original value in the long
run. Whereas, a supply shock increases real stock prices in the short run and long
run. In contrast, a supply shock decreases consumer prices in the short run and
long run, and a demand shock increases consumer prices. The effect of demand

and supply shocks are as predicted by the ASAD-LRVS model.

We also use the simulated model in Chapter 9, section 9.1 to examine the
inflation-stock return puzzle by examining the correlation between real stock
returns, inflation and real output growth. Briefly, the relationship between
inflation, real stock returns and real output growth are as expected: inflation due
to demand shocks is positively correlated with real output growth due to demand

shocks and inflation due to supply shocks is negatively correlated with real output

growth due to supply shocks.
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Table 3.1: The Percentage of Real Stock Price Moveinents
Explained by Each Component - The Distribution of R?

Median 5%-ile 95%-ile
Demand 0.04 0.00 0.17
Supply 0.95 0.82 0.99
Deterministic 0.01 0.00 0.04

Notes: The values are the R’ from the regression real stock returns onto demand, supply, and
deterministic components. The sample size is 100. The table reports both the median value and the 5%
upper and lower %-ile values from 200 simulations of the macro model.
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Figure 3.1: Cumulative Impulse Response Functions
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Appendix 3.1: Derivation of the Real Stock Price Equation (3.6) - A

Loglinear Approximation of the Present-Value Relationship.

The appendix draws on Campbell and Shiller (1988a,b) , Campbell (1991),
Chapter 7 of Campbell, Lo and MacKinlay (1997) and Cuthbertson Hayes and
Nitzsche (1997). We derive an equation for the log of real stock price using a
variant of the dividend-ratio model proposed by Campbell and Shiller (1988a,b).

The loglinear framework is tractable under the assumption that dividends and

returns follow loglinear processes.

The variables used are defined as follows:

h, ,;, = one-period log stock gross return, from time t to time t+1
Q, = real stock price level in period t

q = log real stock price in period t

IT, = real dividend level in period t

T, = log real dividend in period t

d, = log dividend-price ratio in period t

€11 = first-order Taylor approximation of by ;.

p = constant equal to 1/(1+exp(d))

o) = average log dividend-price ratio

k = constant equal to —log(p)-(1-p)log(1/p-1)

r = constant equal to the expected real one-period stock returns
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The realised one-period, from time t to time t+1, log real stock return,

h, .., is defined as?!

(A3.1) hl,t+l =4, "9 t log(l + eXp(nnl - qt+1))

Thus, the exact relationship between these variables is nonlinear - that is,
log(1+exp(m,,,~q,,,) is a nonlinear function of the log dividend-price ratio,
0,,1=Tu;~qu;- A first-order Taylor approximation around the mean of the log

dividend-price ratio, d=m~q, gives

(A32)  h

LPP(
pry
|
=
+
©
=
+
~~
[—
|
©
N’
=
T
|
=

where p and k are parameters of linearisation defined by p=1/(1+exp(0)), where
d=mn-q is the average log dividend-price ratio, and k=-log(p)-(1-p)log(1/p-1).
The parameter p is close to but a little smaller than unity. The variable &, |,
approximates h, ,, and is linear in the log dividend-price ratios 8, and J,,, and

ATty

(A3.3) gl,nl =k - pd,, +9,+Am,,

The higher-order terms in the Taylor expansion are not included, however,

Campbell and Shiller (1988b) show that in practice the approximation error is

*!In linear form, h, ,,, = log((Qy; + 1L, J/Qy).
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small and (more importantly) almost constant.??

From (A3.3), we define the discounted i-period return €, v as:

1

-1
(A34) gi,t+1 = Z pj§1,1+1+j

J=0
The variable , ,,; is the discounted sum of approximate returns from t+1 to t-+i.
From equations (A3.3) and (A3.4) we can rewrite (A3.4) as a linear function of
6(’ 6t+i N and Ant+j+1, j=0,..., i_ 1

1

(A3'5) gi,t+1 = 61 - pi61+i + piATct+l+j + k(l_px)/(l—p)

-1
j=0
Suppose that expected real one-period stock returns are constant:
EE, =EE, .,=r. Then taking conditional expectations of the left and right-hand

sides of (A3.5) and rearranging, gives an expression for the log dividend-price

ratio at time t

i-1

(A3.6) 5 =~ Y PEAT,,, + p'ES,, + (r-k)(1-p)/(1-p)

J=0

“When the dividend-price ratio is constant then p=1/(1+I1/Q), the reciprocal
of one plus the dividend-price ratio, and the approximation holds exactly. The
average dividend-price ratio has been about 4% annually, for US data, over the
1926-94 period, implying that p should be about 0.96 in annual data, or about
0.997 in monthly data (Campbell ef al., 1997).

BIn practice 1 is the real return on commercial paper.
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where EE; . =r(1-p')/(1-p). This equation®* says that the log dividend-price ratio
at time t is determined by expectations of future real dividend growth over i
periods, by the i-period-ahead expected dividend-price ratio, and by the constant
required return on stock. An increase in expected future real dividend growth
decreases the current log dividend-price ratio. To consider the log real price of
stocks we take the limit as i increases, and assuming that lim;_.p'E,d,,; =0, we have

(A3.7) o, = - ipiEtAnulij + (r-k)/(1-p)

J=0

This equation expresses the log dividend-price ratio as a linear function of
expected real dividend growth into the infinite future. Finally, we can expresses
(A3.7) as a real stock prices equation:

(A3.8) g =T, + ZPiE;A“;+1+j + k"

J=0

where, k’=(r-k)/(1-p) is a constant. The log real stock price at time t is
determined by the log real dividend at time t, expected real dividend growth into

the infinite future, and a constant k.

2Equation (A3.6) can be used to derive the so-called “dividend-ratio model”
or the dynamic Gordon model, after the original Gordon (1962) growth model.
The dynamic Gordon model specifies the loglinear relationship between dividend-
price ratio and expected future discount rates and dividends (Campbell and Shiller,
1988b).
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Chapter 4
ECONOMETRIC TECHNIQUES: DECOMPOSITION

AND ROBUST ESTIMATION

4.1 VAR Decomposition

Blanchard and Quah (1989) suggest an econometric technique to
decompose a series into its temporary and permanent components. One advantage
of the Blanchard-Quah decomposition is that it identifies permanent and

2 A number of recent

temporary shocks in a multivariate time series context.
studies have applied the Blanchard-Quah decomposition to macroeconomic and
financial variables (Gali, 1992; Gamber and Joutz, 1993; Bayoumi and
Eichengreen, 1994; Bayoumi and Taylor, 1995; Lee, 1995; Gamber, 1996).2 For
this reason only a brief outline of the theoretical underpinnings of the
decomposition is presented. The fundamental feature of the Blanchard-Quah

technique is that it imposes a long-run restriction (making use of economic theory)

on the VAR to identify the decomposition.

Consider a 2x1 vector of time series x, = [(1-L)x, , (1-L)x,,]’, where
L is the lag operator. Both (1-L)x, , and (1-L)x, , are assumed to be realizations

at time t from a stationary stochastic process with its deterministic components

»Beveridge and Nelson (1981) provide a univariate representation of
identifying permanent and temporary shocks.

2%The econometric method has also been discussed by Quah (1990, 1992,
1995), Blanchard and Quah (1993), Lippi and Reichlin (1993, 1994), Crowder
(1995), and Taylor (1996).
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removed. The variables x, , and x, , are thus assumed to be realizations of first-
difference stationary or I(1) processes. By the multi{/ariate form of Wold's
decomposition x, will have a moving average representation. However, Engle and
Granger (1987) demonstrates that if x, is cointegrated®” of order 1, 1, x,~CI(1,1)
then the vector of Ax, is not well behaved, in that the moving average
representation of that vector is noninvertible. Therefore, a necessary condition for
the Blanchard-Quah (1989) decomposition is that the vector x, is not cointegrated
- for example, this prohibits estimating a vector of first differenced stock prices
and dividends using the Blanchard-Quah technique. Ifx, is a cointegrating vector
then an alternative decomposition technique is the Stock and Watson (1988)
common trends representation. Cochrane (1994) examines the relationship
between the Sims (1980), Blanchard-Quah (1989), and Beveridge-Nelson (1981)
decompositions and cointegration and Crowder (1995) examines the relationship
between the Blanchard-Quah decomposition, the Stock and Watson (1988)

common trends representation and cointegration.

We will concern ourselves with non-cointegrating vectors. Consider a

transformation of the Wold representation given by:

?'That is, x,, and X,, are integrated of the order 1 (i.e., stationary in first
differences) and there exists a vector 3(#0) where (X, is integrated of order 0
(i.e., stationary).
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17 an() a,()er,
a4, () ay()|ep,

4.1) X

™

i LI A(j)e,

where e, is a 2x1 vector of innovations [e; , ép,t]’ occurring at time t and a_,(j)
(m,n=1,2) represents the impulse response of the m-th element of x, to the n-th

element of e, after j periods.

By imposing restrictions on the coefficients of (4.1) and on the covariance
matrix of the innovations, the elements of e, can be identified as temporary (e 1)
and permanent (e ) innovations to x;. By assumption, X, is affected by the same
two innovations, although a permanent or temporary innovation to x,; need not

necessarily affect x, in the same way.

For a temporary innovation to x,, the cumulative effect of the shock on

changes in x, are zero. This implies the restriction

(4.2) gau(j) =0

Suppose that we estimate an unrestricted, n-th order vector autoregressive
representation (VAR) for x,, with the lag depth n chosen on statistical grounds,

which yields a vector of innovations v ,:
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43) - Y L6y, = v
J=1

where ©(j) is the matrix of estimated coefficients at lag j. Since x, is stationary,

this can be inverted to obtain the estimated moving average representation:

(4.4) x, = [I - Z LIO()] v,
J=r
= Xw: LIC(j)v,
J=0

where C(0)=I. Equating (4.1) and (4.4), we can see that the VAR innovations will

be linear combinations of the underlying temporary and permanent shocks:

4.5) v, = A(O)e,

where A(0) is a 2x2 matrix. To recover the underlying temporary and permanent
shocks from the VAR innovations Blanchard and Quah (1989) thus suggest four
restrictions. Three restrictions can be obtained by normalizing the variance of e,
and ep , to unity and requiring them to be orfhogonal. Let Q be the variance-

covariance matrix of v, then, using (4.5), these restrictions can be written:

4.6)  A(0)A() = Q

From (4.1), (4.4) and (4.5) we can deduce the impulse response functions
in terms of C(j) and A(0):
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@47 AQ) = CHAO)
Using (4.2) and (4.7) we can then deduce a fourth restriction on A(0):

(4.8) K'fj C(HAO)k = 0
j=0

where k=(1 0)’.

Taylor (1996) shows that there is not one unique decomposition that
satisfies the Blanchard-Quah restrictions - in fact there are four distinct
decompositions. To identify the Blanchard-Quah decomposition, Taylor (1996)
demonstrates that some reasonably well specified underlying theoretical
framework may generate (informally) the additional qualitative restrictions to
achieve such identification. For example, one could use the standard underlying
aggregate supply-aggregate demand framework with a long-run vertical supply
curve to qualify the impulses of the temporary and permanent innovations to a

system of real output and prices.

There is a direct relationship between the Blanchard-Quah decomposition
and deriving the pure random walk component in x,. In the Blanchard-Quah
(1989) decomposition, the permanent component contains a random-walk and
mean-reverting component. To identify the pure random-walk component we

rewrite equation (4.1) as a common trends representation:
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1,t a; (1) a,(1) Tr, e;‘:t
+

@9 |-
21 |9u(D) a7, ep
where
eY"tt _ (1-) a;,(D)-ay, (1) a,(D)-a,(1) er,
ey, ay(L)=a,(1) ay(L)-ay(D)|es,
Tpt = Tps1 T €p,
Tre = T t g,
and

[=o]

a, (L) =Y, a, ()L’ for ik =172.

J=0

Clearly, [eT, - ep]'~1(0) while 1, and Tp, are pure random walks, so that both x, ,
and x, , are shown to be the sum of two common stochastic trends and a stationary
component. To recover the mean-reverting and random walk-components from
the VAR we impose the restrictions consistent with Blanchard and Quah (1989) -
equations (4.2), (4.6) and (4.8) - that e, has no long-run effect on x, ,, a,,(1)=0,
is thus equivalent to imposing the restriction that the stochastic trend (tr,) in
equation (4.9) is suppressed. Thus, the random-walk and mean-reverting

components can be obtained from the following time series representation for x;:
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(4.10) [:l”] =
2,t

0 012(1) TT,t e;,t
a,, (1) a,(1) Tps e}:,t |
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4.2  Robust Estimation: RALS and LAD

Least squares (L.S) estimation is inefficient when the disturbances are non-
Gaussian, a characteristic of most financial data series (Von Furstenberg and Jeon,
1989; Phillips, McFarland and McMahon, 1996). The difficulties that surround
LS estimation with financial and economic data has resulted in a number of
alternative robust estimation procedures, for example L-estimators, M-estimators,
R-estimators (see Judge, Hill, Griffiths, Liitkepohl and Lee, 1988, ch. 22, for an
accessible survey of robust estimation) and - more recently - the residuals
augmented least square (RALS) approach (Im, 1996). Because the least squares
procedure minimizes squared deviations, it places a relatively heavy weight on
outliers, and in the presence of errors that are not normally distributed (for
example, a more leptokurtic distribution) can lead to estimates that are extremely
fragile. Thus the robust estimation procedure can be substantially more efficient
in cases where - as in financial markets - innovations are known to have fat-tailed
and, perhaps, skewed distributions (Badrinath and Chatterjee, 1988; Von
Furstenberg and Jeon, 1989; Jansen and deVries, 1991; Phillips ef al., 1996). The
feature of the leptokurtic distribution of financial asset returns is a theme in recent
studies that use autoregressive conditional heteroscedasticity (ARCH) approaches
to model conditional returns data (for example, Engle, 1982; Bollerslev, 1986;
Bollerslev,‘ Chou and Kroner, 1992) and empirical work on the unconditional
distributions of returns (for example, Koedijk, Schafgans and deVries, 1990;

Koedijk and Kool, 1992; Loretan and Phillips, 1994)

We investigate in Chapter 7 the sensitivity of the vector autoregressive
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representation decomposition as estimated by LS to alternative robust estimation

procedures - the least absolute deviation (LAD) and the RALS (Im, 1996)

estimators.

The LAD estimator (also known as the L,-estimator) belongs to the class
of L-estimators and is sometimes used as an alternative to LS particularly when
the disturbances may be distributed as Cauchy or Student's t (i.e. fat-tailed).
Calculation of the L-estimator is based on the method of regression quantiles
described in Koenker and Bassett (1978) and Koenker and D'Orey (1987). The
LAD estimation method has good propoerties in time series regression models
(Bloomfield and Steiger, 1983), including models with an autoregressive unit root
(Phillips, 1991). Moreover, if the disturbances follow a double expotential then
the LAD estimator is equivalent to the maximum likelihood estimator (Judge ef
al., 1988, ch.22). Butler, McDonald, Nelson and White (1990) also show that

unlike LS estimators the LAD estimators are barely affected by an extreme outlier.

Consider the following simple regression,

411)  y, =Pz, +u, , =17

where z,= (1 x,')’, x,is a (k-1)x1 vector of time series observed at time t, B is
the k-parameter vector that includes the intercept, and the residuals u, are i.i.d.
with distribution function symmetric around zero. The regression quantile family

of estimators is based on minimizing the criterion function:

-63 -



(411) min |} 0|y, -pz] + Y (1-0)|y,-P'z,|

B |y, 2p'z,) |y, <p’z,)

where the Oth sample regression quantiles (0<0<1), and any linear function of
them, are the possible L-estimators. Since the solution is the weighted sum of the
absolute values of the residuals, outliers are given less importance than with
ordinary least squares estimation. The LAD estimator is one example of a linear
function of regression quantiles where all the weight is placed on 6=0.5.%® Thus,
for the LAD estimator, the minimization problem is equivalent to finding that f3
which minimizes X|y, - B’z |. We generate the LAD estimator B; using the

Barrodale-Roberts (1980) modified simplex algorithm.

The asymptotic distribution of the LAD estimator 3; is given by
4.13) YT, - B] - N(O,[2/(0)]* Q")

where Q is a positive definite matrix equal to plim .., T"'X'X, and X is the matrix
of regressors. The term [20)]2 is the asymptotic variance of the sample median
from samples with distribution function F and density function £, with its value at

the median given by f0).

28 Varying 0 between 0 and 1 yields a set of regression quantile estimators,
B(0). Therefore, alternative linear combinations of weighted regression quantiles
have been proposed, for example, the trimean scheme suggested by Tukey (1977),
the Gastwirth (1966) scheme, and the five- quantile estimator (Judge ef al., 1988,

ch 22).
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Cox and Hinkley (1974, p. 470) recommend that 0) be estimated by
SOY=2d/T(@ gy~ 0 (sn-q)) Where m and d are integers, (4, Gy, Gg), -....0) are
the ordered LAD residuals, and {i ,, = 0 (with m~T/2) is'a central LAD residual.
The parameter d tells us what differential to use when selecting ordered residuals
to use in computing the covariance matrix, equation (4.13) and the method of
Bofinger (1975) and Siddiqui (1960) can be used to estimate d:
d=TC[(4.5¢%D1(0.5)))/(2D1(0.5)*+1)*]"?, where ¢ and P represent the

normal density and cumulative normal density, respectively.

The RALS procedure identified by Im (1996) is very recent and thus
requires a more comprehensive discussion. Consider the following simple

regression

(414) yt = (b/zt + ut

where z,= (1 x,")’, X, is a (k- 1)x1 vector of time series observed at time t, ¢ =
(o B’)’ is the parameter vector where o is the intercept and f is the (k-1)x1

vector of parameters of interest.

The standard LS estimator applied to (4.14) can be interpreted as a

method of moments estimator based on the normal equations:

4.15)  E[zu] =0

When the distribution of u, is skewed and leptokurtic, however, there will be two

further moment conditions which can be exploited to yield a more efficient
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estimator, viz:

4.16)  E[z,(u’-p,)] = 0
and
@.17)  E[z,(u}-0*)] =0

where o7 is the variance and , is the third central moment of uy, . The RALS
estimator can be interpreted as a generalized method of moments (GMM)
estimator based on the moment conditions (4.15), (4.16) and (4.17). Im (1996)
shows that this GMM estimator of 3, B say, can in fact be simply computed from

ordinary least squares applied to (4.14) augmented by w, = [(03-36%0,) (0>-6%)]':
(4.18) y, = o+ Bz, + ¥y, + e

where 0, denotes the LS residual and 6 the standard residual variance estimate

obtained from LS applied to (4.14). The RALS estimator is thus given by
4.19) B = X'M; X)X’ MY

where the idempotent matrix Mg is

420) Mg =1I.- W' Wy'Ww

where I is the TxT identity matrix and N = (8, fi,.. fi¢)’, fi, =n,- T"'Z In,

for (N,n)=(X,x),(Y,y),(W,w) and t=1,....T.

The asymptotic distribution of the RALS estimator is given by
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421)  JT(B*-P) - N0, dVar(x)™)
where

2
o =g2- 13 (kg™ 61,07 +90%- 1) - 2p5(1y~ 30%) (s 450) + (- 3042 (p,- o)
A
(g~ 0*) (g~ 611,07 + 905~ p3) ~ (g~ 411,072

and ; denotes the i-th central moment of u,.

In practice, 0% can be consistently estimated by replacing each of the T8
with the corresponding sample moments, using the LS residuals, yielding 62, and

the covariance matrix for B* can be consistently estimated by

/\ * A2 >/ A1
(422)  VarB*) = GAF' M, D)

Note that, for normally distributed errors, the RALS estimator is asymptotically
identical to the LS estimator and there is no efficiency gain since 02 = 62. In
general, however, the asymptotic efficiency gain from employing RALS as
opposed to LS can be gauged from the statistic n>=02%/0> (which is small for large
efficiency gains) and Im (1996) shows that this gain can be substantial for a range

of alternative non-normal error distributions. In practice, the efficiency gain in any

particular application can be gauged from =6/,

Im (1966) suggests that the decision as to whether to employ the RALS
estimator might be based on the results of tests of normality of the error

distribution such as the Jarque and Bera (1987) test, which is in fact based on the

-67 -



estimated coefficients of skewness and excess kurtosis. -

Extending the results of Hansen (1995), Im (1966) also suggests a unit
root test based on RALS estimator which is a straightforward extension of the
standard Dickey-Fuller test. This simply involves estimating the auxiliary Dickey-
Fuller regression and the covariance matrix of the estimated parameters by RALS
and constructing the test statistic in the normal way. For example, to test for a
unit root in the stochastic process generating (,, set y, = A{, and x, = {,., and

construct the RALS Dickey-Fuller statistic (RALSDF) as t,= B"/V(p’)".

Applying the results of Hansen (1995), Im (1996) shows that the limiting
distribution of 1, is a convex mixture of the Dickey-Fuller and normal

distributions:

/) B,dB, .
(4.23) T~ N‘q—-:;—;; + (1-1%)"*N(0,1)
[,(B])

where B, and B, are standard independent Brownian motions, B, is the demeaned

B, and 1% is the efficiency gain statistic as before, n° = 03/0%.

Im (1996) conducts a number of Monte Carlo experiments with T, and
demonstrates that this statistic is dramatically more powerful than the standard
Dickey-Fuller statistic when the error sequences are driven by non-normal errors

and that, for a sample size of a hundred or more, there is little size distortion.
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Chapter 5
ESTIMATING THE TEMPORARY AND PERMANENT
COMPONENTS IN U.S. STOCK PRICE MOVEMENTS:

AGGREGATE DEMAND AND SUPPLY INNOVATIONS

5.1  Introduction

Studies that have tested the mean reversion hypothesis have tended to
concentrate on the US, principally because the size of the market and the
unavailability of high quality non-overlapping long time series of stock prices data
for other countries that traditional techniques requires. For comparison purposes
we take the US market as the starting point in the empirical evaluation of the

temporary and permanent components of stock prices.

This chapter uses a restricted two-variable vector autoregressive system,
a variant of the Blanchard and Quah (1989) technique, to decomposes real US
stock prices into two components - a component that does not have a long-run
effect on stock prices (temporary component) and a component that has a long-
run effect on stock prices (permanent component). Taking the two variables as
real stock prices and consumer prices, the macro model outlined in Chapter 3
allows us to relate the temporary and permanent components of stock price
movements to aggregate macroeconomic demand and supply disturbances. In
particular, in the context of the macro model, aggregate demand shocks have only

temporary effects on real stock prices, that is, stock prices are mean-reverting,

- 69 -



while supply shocks may affect the level of real stock prices permanently.® Thus
we interpret the temporary component as the response of stock prices due to
aggregate demand innovations and the permanent component as the response of
stock prices due to aggregate supply innovations. In this context, the
interrelationship between macroeconomic and financial variables allows us to
estimate a temporary component in real stock prices that is mean reverting. We
investigate the size and significance of this temporary (or mean-reverting)
component in US stock prices by placing the appropriate structural restrictions on
a VAR system, corresponding to a long-run vertical supply curve framework in
which, in line with the illustrative macro model, only supply shocks have a long-
run effect on real stock prices. Our model differs from the univariate models of
Fama and French (1988a) and Poterba and Summers (1988), in that our model
does not restrict the permanent and temporary components to being a pure
random walk process and an AR(1) process, respectively. We do not specify the
form of the permanent and temporary components, and the two components can

be identified by the simple macro model.

P Aggregate demand shocks have a only a short-run effect on real stock prices,
but a long-run effect on consumer prices. Whereas, aggregate supply shocks has
a long-run effect on both real stock prices and consumer prices.
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S.2  Data and Preliminary Tests
Monthly data for the United States were obtained from the Center for

Research in Securities Prices (CRSP). The sample period is 1925:12 to 1995:12.

The data series of interest are the real stock price index and the consumer price

index. The real stock price index is constructed’ by deﬂating the stock price index
by the consumer price index. The stock price index is the S&P500 index obtained

from the CRSP stock files indices and the consumer price index obtained from the
SBBI files. The logarithm of the real stock price index and the consumer price:
index is denoted by q, and p,, respectively. The logarithm of the real stock price
and consumer price series are presented in Figures 5.1 and 5.2 (the first difference
of each series are presented in panel b of the figures). The figures identify a
number of key periods in United States history. There is evidence that the

behaviour of stock return and inflation was unusual in the 1929-39 decade, the

period around the Great Depression. Therefore, empirical tests that include these
data for the 1929-39 period are suspect and findings may be heavily influenced by
that period’s data (see, for example, Fama and French, 1988a; Poterba and

Summers, 1988; Schwert, 1990a,b; Kim ef al., 1991). Other noticeable periods

are the 1945-48 period for inflation and the October 1987 stock market crash, for

stock returns.

Table 5.1 and Table 5.2 reports some summary statistics on the variable
series of interest. The first sub-period reveals a relatively low mean and high
variance of the stock return and inflation series - consistent with the discussion

above. The sample autocorrelations reveal some degree of persistence in both
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series as they tend to die off slowly, for the full period and the individual sub-
periods. The first-order autocorrelations values close to one suggest that the
series are non-stationary. This impression is borne out by Table 5.3 which reports
the unit root and cointegration tests for each series. The sequential procedure
employed in testing for unit roots follows Dickey and Pantula (1987) in order to
ensure that only one unit root is present in the series. The unit root tests are the
augmented Dickey-Fuller (ADF) and the Phillips-Perron Z, (PP) tests, for the null
hypothesis that the series in question is I(1) (see Dickey and Fuller, 1979,1981;
Perron, 1988). A lag length of six was chosen. Both tests cannot reject the

hypothesis that the series are first-difference stationary, ie. I(1). 33!

As a test for cointegration, the results of the ADF test for a unit root in the
least squares residual from a regression of p, onto q, and a constant are reported
in Table 5.3 (final row). As in the case of unit root tests, a lag length of six was
chosen. The null hypothesis of no cointegration cannot be rejected at the 5

32, 33

percent level of significance. Cointegration implies a common trends

approach (Stock and Watson, 1988; Cochrane, 1994) - this issue was discussed

3%Different lag depths used to calculate the ADF and PP test statistics (not
reported) could not reject, at standard significance levels, the hypothesis that the
consumer price and real stock price series are each realizations of I(1) processes.

3!Throughout this thesis, unless otherwise specified, we use a nominal
significance level of 5 percent in hypothesis testing.

32The null hypothesis of no cointegration could not be rejected for different lag
lengths.

3The unit root and cointegration findings are consistent with other studies
(see, for example, Lee, 1995).
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in Chapter 4, section 4.1.
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Table S.1: S

ummary Statistics, Full Period

q, Aq, o Ap,

Mean - 0.21 - 0.26

o - 572 - 0.56
p(k)

k=1 0.99* 0.08 1.00* 056

2 098 -0.02 099 040

3 097" -0.12 099" 038

4 0.96" 003 099" 038

5 0.96" 0.09 099" 031

6 095 -0.02 098 029

7 0.94" 002 098 0.34°

8 093" -0.04 098 034

9 0.92" 006 097" 030

10 0.91" 000 097" 029

11 090" -0.02 097" 031

12 0.89° 001 097" 032

Notes: The sample period is 1925:1-1995:12. The mean and standard deviation,
0, are expressed in percentage terms. p(k) = autocorrelation between x; and ..
pyis the natural logarithm of the consumer price index; q, is the natural logarithm
of real stock prices. A=(1-L) denotes the first difference. An asterisk denotes the
sample autocorrelation is at least two standard deviations to the left or to the
right of its expected value under the hypothesis that the true autocorrelation is

ZETO0.
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Table 5.2: Summary Statistics, Sub-Periods

1925:12 - 1948:12 1949:1 - 1995:12
Q. Aq, o Ap, G Aq, Pt Ap,
Mean - -0.03 - 0.11 - 0:33 - 0.33
o - 8.11 - 0.83 - 4.08 - 0.35
po '
k=1 0.96" 0.10 0.99° 0.51° 0.99° 0.05 1.00° 0.62°
2 091" -0.02 0.97° 0.31° 0.97" -0.03 0.99° 0.54°
3 0.86° -0.19° 0.96" 0.31° 0.95° 0.03 0.99° 0.48"
4 0.83" 0.02 0.94" 0.33° 0.94° 0.04 0.98° 0.44°
5 0.80° 0.08 0.92° 0.23° 0.92° 0.11 0.98" 0.45°
6 0.76" -0.01 0.90° 0.21° 0.91° -0.05 0.98" 0.41°
7 0.72° 0.04 0.88" 0.27° 0.89" -0.02 0.97* 0.42°
8 0.68" 0.08 0.86" 0.26 0.87° -0.03 0.97" 0.45"
9 0.63" 0.09 0.85" 0.21° 0.86" 0.00 0.96" 0.45°
10 0.57" -0.01 0.83° 0.20° 0.85° -0.00 0.96* 0.44°
11 0.52° -0.03 0.817 0.24" 0.83" 0.01 0.95° 0417

12 0477 -0.01 0.79" 0.26’ 0.82° 0.03 0.95° 0.39

Notes: The sample periods are 1925:12-1948:12 and 1949:1-1995:12. The mean and standard deviation, o, are
expressed in percentage terms. p(k) = autocorrelation between % and x,.. p is the natural logarithm of the consumer
price index; q, is the natural logarithm of real stock prices. A=(1-L) denotes the first difference. An asterisk denotes the
sample autocorrelation is at least two standard deviations to the left or to the right of its expected value under the
hypothesis that the true autocorrelation is zero.
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Table 5.3: Unit Root and Cointegration Tests:
Consumer Prices and Real Stock Prices

Full Period First Sub-Period Second Sub-Period
1925:12-1995:12 1925:12-1948:12 1949:1-1995:12

ADF PP ADF PP ADF PP

q -1.29 -1.28 -2.27 -2.39 -2.15 -2.02

Aq, -10.44 -26.51 -5.95 -14.84 -8.40 -22.60

Azqt -20.04 -74.77 -12.14 -42.18 -14.05 -61.83

D, 1.79 3.57 0.06 1.31 0.65 2.50

Ap, -581 -16.14 -357 -978  -412 -1237

A%p, -17.75 -55.23 -974 -30.60 -14.88 -48.89
Iy -1.55 - 0.06 - -0.46 -

Notes: p, is the natural logarithm of the consumer price index; g, is the natural logarithm of real stock prices. p is the
ordinary least squares regression of p, onto g, and a constant. The unit root tests are the Augmented Dickey-Fuller test
statistic (ADF) and the Phillips-Perron Z, test statistic (PP), without time trend and with constant, for the null hypothesis
that the series is unit root (see, Dickey and Fuller, 1979, 1981; Perron, 1988); the lag truncation was set at six. For
a 5%significance level the critical PP and ADF is -2.88. The cointegration test is the augmented Dickey-Fuller test;
for a 5% significance level the critical value is -3.17 (see, Fuller, 1976, pp. 371-3; and Engle and Granger, 1987).
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3.3  Decomposing Stock Price Movements: Aggregate Demand

and Supply Shocks

Estimating the Vector Autoregressive Process

A vector autoregressive representation of [(1-L)q, (1 -L)p, 1’ was
estimated prior to effecting the decomposition.* The lag length for the VAR was
chosen as follows. First, using the Bayes Information Criterion (BIC), the initial
lag length was determined.*>*® Second, using the Ljung-Box Q-statistic we tested
for the whiteness of the residuals and the lag depth increased (if necessary) until
they were approximately white noise. The chosen lag depth was seven. We
followed a similar procedure for the sub-periods, a lag depth of three was chosen
for the 1925:12-1948:12 period and for the 1949:1-1995:12 period a lag depth

of nine was chosen.

Permanent and Temporary Components
Given the estimates of the VAR parameters (presented in Table 5.4) and
the covariance matrix of VAR residuals (presented in Table 5.5), we then carried

out the decomposition as described in Chapter 4, section 4.1. The estimated A(0)

3*Seasonal dummies were included in the VAR.

35In a Monte Carlo analysis of alternative criteria to determine lag length of
VARSs, Liitkepohl (1985) favours the Schwarz-multivariate BIC. Liitkepohl finds
that the BIC criterion chooses the correct lag order most often, and the resulting
VAR models provide the best forecasts.

36For the full sample period, 1925:12-1995:12, the BIC chose a lag length of
four, the Akaike Information Criterion (AIC) chose nine; for the first sub-period,
1925:12-1948:12, BIC chose one and the AIC five; and for the second sub-period,
1949:1-1995:12, the BIC chose two and the AIC chose nine.
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matrix, presented in Table 5.6, is used to construct the structural impulse

responses described by equation (4.7).

The underlying model outlined in Chapter 3, section 3.1, used to impose
qualitative restrictions on the VAR decomposition generates the cumulative
impulse response functions presented in Figure 5.3 - 5.5. These illustrate the
effect of a one unit (standard deviation) shock to the level of real stock prices and

the level of consumer prices.

There are a number of interesting features that are worth noting. Real
stock prices increase as a result of both positive aggregate demand (temporary)
and aggregate supply (permanent) shocks. By construction, an aggregate demand
shock results in only a temporary rise in real stock prices. However, as is evident
in Figure 5.3, the temporary shock to real stock prices is quite persistent and
relatively large for around the first twelve months; slowly reverting to their
original value. The temporary shock has a half-life of 13 months. This finding is
consistent with a slowly decaying stationary component, similar to other studies,

for example, Fama and French (1988a).

A permanent shock causes real stock prices to rise, continuously for
around the first six months, followed by a large fall (or reversal), then rising
sharply for the next 12 months and thereafter slowly increasing towards steady
state. The behaviour of the impulse response function indicates that the

permanent component is unlikely to be a pure random walk but also contains a
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mean-reverting element. As predicted by the macro model, a permanent
(aggregate supply) shock to consumer prices is negative, whereas a temporary

(aggregate demand) shock is positive, with both disturbances having a long-run

effect on consumer prices.

The sub-periods reveal some contrasting findings. For the first sub-period,
1925:12-1948:12, an aggregate demand shock to stock prices is positive, with a
half-life of 4 months. The temporary shock to stock prices is smaller and less
persistent than for the full sample period. In contrast, the .aggregate supply shock
to real stock prices is larger and less persistent than the full sample period. More
importantly, the response of a permanent shock to stock prices is for prices to rise
and then decline to their stable path. This reversal feature in the response of stock
prices to a permanent shock could indicate a substantial mean-reverting

component in the permanent component of stock prices.

The second sub-period, 1949:1-1995:12, is not subject to the unusual
stock price and consumer price behaviour as evident of the 1925:12-1948:12
period. A temporary shock to stock prices increases stock prices with a half-life
of 18 months. A permanent shock to stock prices increases stock prices, with

only a very small reversal at the 12th month.

The response of consumer prices is as predicted by the macro model for
the second sub-period. Consumer prices fall in response to an aggregate supply

(permanent) disturbance and rise in response to an aggregate demand (temporary)
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disturbances. However, for the first sub-period consumer prices increase (in the
long run) in response to an aggregate supply (permanent) disturbances. Although
this is not inconsistent with the macro model (aggregate demand-aggregate
supply), it occurs during a period of unusual behaviour - the Great Depression
and World War II periods - and reflects various complex interactions and dynamic
effects which are not captured for this period in the normal comparative static
approach. In the context of the period in question there are a number of potential
reasons for these findings; for example, it céuld be difficult for the model to
distinguish between aggregate demand and aggregate supply disturbances, in that
aggregate supply disturbances could be interpreted as aggregate demand
disturbances. As noted by Blanchard and Quah (1989, p. 659) there is nothing in
the identifying restrictions which “eliminate for example the possibility that supply
disturbances directly affect aggregate demand”. Therefore, “the assumption that
the two disturbances are uncorrelated does not restrict the channels through which
demand and supply disturbances affect” stock prices and consumer prices (in our
case). More importantly for this study, as discussed above, including this time
period in the analysis is suspect and likely to influence the results. It is for this
reason that we will primarily concentrate on the second sub-period, 1949:1-

1995:12.

The decomposition generates three components of stock price movements
- temporary (aggregate demand), permanent (aggregate supply) and deterministic
(trend and seasonals). Therefore, by cumulating each shock over time and then

in turn adding each series together we can show the contribution of each
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component to real stock prices. The resulting series are presented in Figures 5.6-
5.8. The figures illustrates the three components of real stock prices - temporary,
permanent and deterministic. The plot line labelled deterministic component is the
trend and seasonal elements of real stock prices; the line labelled temporary
component adds the cumulated temporary shocks to the deterministic component
line.  Finally, the line labelled permaneﬁt component (by construction
corresponding to the natural logarithm of real stock prices) adds the cumulative
pemianent innovations to the temporary and deterministic components.>’ Thus,
the difference between the deterministic component line and the temporary
component line measures the temporary innovations in real stock prices.
Similarly, the difference between the temporary component line and the permanent

component line measures the permanent innovations in real stock prices.

The temporary component presented in Figures 5.6-5.8 indicates that the
temporary innovations are stationary around the deterministic component, with
substantial deviations in periods of large swings in real stock prices - this evidence
is consistent with the notion of noise traders (see, De Long ef al., 1990; Shleifer
and Summers, 1990). The size of the temporary innovations are small relative to
the permanent innovations, however, as shown below, the temporary component
explains a significant proportion of the total variation in real stock price

movements.

SNote, since the natural logarithm of real stock prices is the sum of the three
cumulated shocks, normalising the deterministic component to equal the first
(usable) stock price observation, the plot line labelled permanent component is
identical to the natural logarithm of real stock prices.
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Table 5.4: VAR Parameter Estimates

1925:12-95:12

1925:12-48:12 1949:1-95:12
(1-L) q, (1-L) q, 0.081790° 0.091146 0.025785
(0.035205) (0.061838) (0.044021)
(1-L)q., -0.000469 -0.007217 -0.046170
(0.035314) (0.062336) (0.043976)
(1-L) q.; -0.112517° -0.160925" 0.022116
(0.035415) (0.062956) (0.044011)
(1-L) q.4 0.049957 0.021070
(0.035582) (0.044064)
(1-L) q,s 0.096034" 0.117857°
(0.035390) (0.043817)
(1-L) q¢ -0.064974 -0.075472
(0.035542) (0.043601)
(1-L) q., 0.028339 -0.019568
(0.035424) (0.043665)
(1-L) q.¢ -0.067176
(0.043616)
(1-L) q.s -0.006167
(0.043793)
(1-L) p, -0.678508 -0.317856 -1.489383°
(0.453284) (0.724889) (0.733907)
(1-L)p., -0.117947 -0.227700 0.372705
(0.490590) (0.792098) (0.772816)
(1-L) p.5 -0.780243 -0.231950 -1.877680°
(0.490146) (0.718700) (0.780424)
(1-L) pos 0.624656 2.256308"
(0.484831) (0.776039)
(1-L) p.s 0.252274 -0.121722
(0.487382) (0.775917)
(1-L)p  -0.046656 -0.076319
(0.484837) (0.778005)
(1-L) p., -0.135768 -0.561751
(0.448811) (0.776411)
(1-L) p.s 0.354553
(0.766627)
(1-L) ps -1.965210
(0.706557)
Statistics:
Number of Usable obs. 833 273 554
R? 0.07 0.09 0.10
Sum of Squared Errors 2.56 1.64 0.84
Ljung-Box Q(36) 46.69 [0.11] 36.65 [0.44] 23.38 [0.95]
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P R

(1-L)p, (1-L) q., 0.004355

0.004094 -0.002098
(0.002700) (0.005206) (0.002616)
(1-L) q,, 0.009361" 0.015370° -0.000388
(0.002709) (0.005248) (0.002613)
(1-L) q,, 0.001364 0.000798 -0.004463
(0.002716) (0.005300) (0.002615)
(1-L) q,4 0.001648 -0.000174
(0.002729) (0.002619)
(1I-L)q,s  -0.003254 -0.003521
(0.002714) (0.002604)
(1-L) q¢ -0.001332 0.002080
(0.002726) (0.002591)
(1-L) q,, 0.000186 0.002763
(0.002717) (0.002595)
(1-L) q,¢ 0.006408"
(0.002592)
(1-L) q. -0.001839
(0.002602)
(1-L)p,,  0.408808" 0.454080" 0.373166°
(0.034766) (0.061026) (0.043613)
(1-L) p,, 0.029911 -0.015558 0.171666
(0.037627) (0.066684) (0.045925)
(1-L) p.5 0.091670" 0.217475° -0.006438
(0.037593) (0.060502) (0.046377)
(1-L) p.4 0.139255" 0.014831
(0.037186) (0.046117)
(1-L) p,s 0.008546 0.071210
(0.037381) (0.046109)
(I-L)ps  -0.019904 0.019437
(0.037186) (0.046234)
(1-L) p,, 0.148462° 0.086763
(0.034428) (0.046139)
(1-L) p.g 0.057910
(0.045557)
(1-L) p.o 0.082521"
(0.041988)
Statistics:
Number of Usable obs. 833 273 554
~R? 0.42 0.38 0.53
Sum of Squared Errors 0.02 0.01 0.00
Ljung-Box Q(36) 51.18 [0.05] 48.54 10.08] 48.09 [0.09]

Notes: The figures in parenthesis denote estimated standard errors. The deterministic parameters are not reported. An asterisk
denotes significantly different from zero at the 5 percent level. Square brackets associated with the Ljung-Box Q-statistics

for the residuals (for lags 1 through 36) denotes significance level. R? is the coefficient of determination.
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Table 5.5: Covariance Matrix of VAR Residuals

—

1925:12-1995:12 3.0697e-3 -9.7364e-6|
-9.7364e-6 1.8058e-5

1925:12-1948:12

5.9985e-3 -1.4062e-6
-1.4062e-6 4.2514e-5

1949:1-1995:12 1.5086e-3 -1.1859e-5
-1.185%-5 5.3276e-6
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Table 5.6: A(0) Matrix

1925:12-1995:12 {0-0181 0.0524 ]

3.9566e-3 -1.5503e-3

1925:12-1948:12 0.0145 0.0761
6.4020e-3 -1.2360e-3|

1949:1-1995:12 0.0252 0.0295
1.5420e-3 -1.7175e-3
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riyure 2.9: vuimurative Impulse Response Functions
United States, 1925:12 - 1995:12
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rigure 9.4: Lumuiative Impulse Response Functions
United States, 1925:12 - 1948:12
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Figure 5.5: Cumulative Impulse Response Functions
United States, 1949:1 - 1995:12
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20

Figure d.0: Lomponents of Real Stock Prices
United States, 1925:12-1995:12
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Figure 5./7: Lomponents of Real Stock Prices

195 United States, 1925:12-1948:12
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Figure 5.8. Components of Real Stock Prices

200 United States, 1949:1-1995:12
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S.4  Forecast Error Variance Decomposition

Table 5.7 reports the forecast error variance decompositions of real stock
prices and consumer prices to the contributions of permanent innovations and
temporary innovations. At the one-month horizon, over 43 percent of the forecast
error variance in real stock prices is due to temporary (aggregate demand)
innovations, for the period 1949:1-1995:12. The forecast error variance increases

to over 44 percent at the twelve-month horizon.

Since there are a number of studies that have examined the forecast error
variance in consumer prices (forlthe post-war period) it is worth considering
whether the results are consistent with previéus studies (Bayoumi and Taylor,
1995; Gamber, 1996). For example, Bayoumi and Taylor (1995) report that in the
1980s (1970s), for the US, 53 (38) percent of the variance in consumer prices is
explained by temporary (aggregate demand) shocks. We report broadly similar
findings that 46 percent of the variation in consumer price movements is due to

temporary shocks.

The size of this mean-reverting (temporary) component in real US stock
prices is similar to that of Fama and French (1988a) and afso consistent with other
recent studies that have examined permanent and temporary components of stock
prices (Poterba and Summers, 1988; Cochrane and Sbordone, 1988; Cochrane,
1994; Lee, 1995). Cochrane (1994), for example, using a variant of the
multivariate generalization of the Beveridge-Nelson decomposition applied to

annual US stock price data for the period 1927-88, finds that 57 percent of the
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stock price variance error is due to temporary shocks. Lee (1995) reports a

similar finding.

As indicated by the cumulative impulse response functions, if we include
the 1925:12-1948:12 period in the analysis the forecast error variance in stock
prices due to temporary shocks falls to 11 percent. Furthermore, for the first sub-

period the temporary component only explains less than 4 percent of the variation

in stock price movements.

It is important to bear in mihd that the mean-reverting component that we
have estimated is derived as the response of real stock prices to aggregate demand
disturbances. Moreover, the response of real stock prices to aggregate supply
disturbances may to some degree be mean reverting. Thus the above analysis

strongly supports the hypothesis that stock prices are mean reverting.

The estimated size of the mean-reverting component is not, however,
sufficient to determine its empirical importance. As with the variance-ratio test,
a more pertinent question is whether the mean-reverting component is statistically
significant. For example - as noted in Chapter 2, section 2.3 - variance-ratio tests
tend to indicate the presence of mean reversion wﬁile statistical testing based on
these methodologies tend to be unable to reject the hYpothesis of no mean
reversion because of the large (and biased) standard errors (Richardson and Stock,
1989). For this reason the presence or absence of mean reversion in stock prices

tends to be argued on the basis of the size of the variance-ratio test and the size
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of the temporary component.
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Table S.7: Forecast Error Variance Decomposition

Percentage of Variance Due to Temporary Shocks:

Full Period First Sub-Period Second Sub-Period
1925:12-1995:12 1925:12-1948:12 1949:1-1995:12

Horizon Consumer Stock Consumer Stock Consumer Stock

(months)  Prices Prices Prices Prices Prices Prices
1 86.69 10.63 96.41 349 4387 43.66
2 87.83 10.57 96.91 347 - 42.83 43.45
3 87.99 10.65 94.86 3.57 4237 43.49
4 88.31 11.64 9494 3.90 41.31 43.24
5 88.80 11.66 9511 - 396 40098 43 .45
6 88.71 11.75 95.16 3.97  40.01 43.49

12 89.54 11.90 95.25 3.99 42.69 44.17

24 89.92 11.94 9525 3.99 45.46 4420

36 89.99 11.95 95.25 3.99 46.12 4421

Percentage of Variance Due to Permanent Shocks:

Full Period First Sub-Period Second Sub-Period
1925:12-1995:12 1925:12-1948:12 1949:1-1995:12

Horizon Consumer Stock Consumer Stock Consumer Stock

(months)  Prices Prices Prices Prices Prices Prices
1 13.31 89.37 3.59 96.51 56.13 56.34
2 12.17 89.43 3.09 96.53 57.17 56.55
3 12.01 8935 5.14 96.43 57.63 56.51
4 11.69 88.36 5.06 - 96.10 58.69 56.76
5 11.20 88.34 4.89 96.04 59.02 56.55
6 11.29 88.25 4.84 96.03 59.99 56.51
12 10.46 88.10 4.75 96.01 57.31 55.83
24 10.08 88.06 4.75 96.01 54.54 55.80

36 10.01 88.05 4.75 96.01 53.88 55.79
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3.5  The Statistical Significance of the Temporary Component
In the VAR decomposition, by construction, x, = [(1-L)q, (1-L)p,]is
composed of three components: the permanent component, X p,, the temporary

component, Xr,, and the deterministic (trend and seasonal) component, Xp, 1

+ X

pt T X

6.1 x,=x Dt

t T,t

Since these three components are by construction orthogonal, the t-statistics of
the slope coefficient resulting a least squares projection of the change in real stock
prices onto each of these components in turn is a test of the significance of each
component in explaining the variability of real stock prices. Therefore, regressing
(1-1)q, onto qr, provides a test of the statistical significance of the temporary
component. The R’ associated with each least squares regression estimate the
proportion of total variation in real stock returns explained by each component.
Furthermore, given the orthogonality of the three components, the R%s from the

least squares regressions must add up to unity.

Table 5.8 reports that the temporary (or mean-reverting) component is in
fact statistically significant at standard significance levels for real stock prices.
Furthermore, the reported R%s are consistent with the forecast error variance

decomposition.

Estimating similar t-statistics and R’s for quarterly data produces t-
statistics that are significantly different from zero, and at similar levels of

significance as the monthly data reports. The R%s indicate a slightly higher
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temporary component of the magnitude of 49 percent for the 1949:1-1992:12
period, 8 percent for the full period and 2 percent for the first sub-period. The R%s
are consistent with the forecast error variance decomposition. A detailed account

of the quarterly data findings are provided in Chapter 6.

The above findings are conditional on the orthogonality of the shocks to
stock prices. This can easily be empirically tested by regressing one shock on the

other shock - for example, for the 1949:1-1995:12,

qr, = —0.0028 gy, R2=0.0000
(0.0367) SSE = 0.3832
[-0.0765] DW = 2.0501

The R?* of zero indicates that the temporary shock to real stock prices is
uncorrelated with the permanent shock to real stock prices. Similar results are

found for the full sample period and the first sub-periods.
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Table 5.8: t-Test of Permanent, Temporary and Deterministic Components

in Real Stock Prices

Full Period (@ (1-L)q=1.01q;, R%=0.12
1925:12-1995:12 (0.10) SSE=2.41
[10.61] DW=1.81

(®) (1-L)q,=1.00 gp, R?*=0.86
(0.01) SSE=0.39

[71.18] DW=1.99

(© (1-L)g,=1.01qp, R?=0.02
(0.22) SSE=2.67

[4.71] DW=1.84

First Sub-Period (@ (1-L)q,=1.00 gy, R*=0.04
1925:12-1948:12 | (0.30) SSE=1.73
[3.32] DW=1.80

®)  (1-L)g=1.00 g, R? =001
(0.02) SSE=0.16

[52.25] DW=1.78

©  (1-L)g=1.00 gp,, R?=0.05

(0.26) SSE=1.71

[3.90] DW=1.81

Second Sub-Period (a)  (1-L)q,=1.00 qp , R?=0.41
1949:1-1995:12 (0.05) SSE=0.55
[19.48] DW=1.77

®) (1-L)q=1.00 qp, R? =055
(0.04) SSE=0.42

[25.93] DW=1.97

© (1-L)q=1.01qp, R2 = 0.04
(0.20) SSE=0.89

[4.96] DW=1.92

Notes: q,, is the temporary component, g5 , is the permanent component, and gy, , the deterministic component. Estimation
is by ordinary least squares. Figures in parentheses denote estimated standard errors. Figures in brackets denote standard t-
statistics. DW denotes the standard Durbin-Watson statistic for serial correlation. R? is the coefficient of determination. SSE
denotes sum of squared errors.
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5.6 Conclusion

In this chapter we have sought to measure and test the significance of a
mean-reverting component in real stock prices in the US, using a variant of the
Blanchard-Quah (1989) decomposition to estimate the temporary and permanent
components in real stock prices. The temporary and permanent innovations to
real stock prices are related to aggregate macroeconomic demand and supply
innovations, respectively. Since the response of real stock prices to temporary
innovations is zero, the temporary component is mean-reverting. Thus the
procedure isolates a mean-reverting component in stock prices. If this mean-
reverting component is significant then we can reject the random walk hypothesis

in favour of mean-reversion hypothesis.

Our empirical results supports the mean-reversion hypothesis that stock
prices are not pure random walks. Thus real returns are to some extent
predictable. We estimate that the mean-reverting component accounts for 44
percent of the variation of monthly real stock returns, and is statistically
significant. We find that temporary innovations to real stock prices tend to be
quite persistent, with a half-life of 18 months. Previous studies that have isolated
the random walk component from the mean-reverting component (see for
example, Fama and French, .1988a; Poterba and Summers, 1988) also find that

stock prices have slowly decaying stationary components.

The results are also consistent with those of more recent studies who have

used vector autoregressive techniques to decompose stock prices into their
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temporary and permanent components (Cochrane, 1994; Lee, 1995). Moreover,
the results are not subject to the recent controversy associated with long return
horizon analysis (Richardson and Stock, 1989; Cecchetti ez al., 1990; Kim et al.,

1991; Mankiw et al., 1991; Richardson, 1993).

The association between a significant mean-reverting component and
predictability of stock returns has several potential implications for the practical
investor. First, the evidence of mean reversion implies thgt real stock returns are
to some degree predictable. It is worth noting that stock returns are more
strongly forecastable in the post-war period due to the high variability that
surrounds the Great Depression and WW II period (Campbell, 1990, 1991:
Cochrane, 1994). Second, in the presence of mean reversion, an investor with a
relative risk aversion coefficient of less (greater) than unity will invest less (more)
in equities as his investment horizon increases (Samuelson, 1991). Moreover, the
presence of a mean-reverting component suggests using a portfolio strategy of
going long in equities that have recently declined in value. The reason for the
significant mean-reverting component in stock prices is not obviously clear, a
plausible explanation is provided by noise traders in markets (De Long et al.,
1990). For a discussion on this issue see Chapter 2. However, it is market
microstructure analysis that is likely to provide further insights into the
explanation of mean reversion (O' Hara, 1995). Furthermore, this approach has
necessarily limited itself to the study of linear (or, more precisely, log-linear)
persistence in stock prices. Future research might profitably study the presence

of predictable non-linearities in stock price behaviour - this is an issue that we take
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up in Chapters 10 and 11.3

3Tong (1990) reports evidence of non-linearity in a number of stock price
series.
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Chapter 6 |
A MULTI-COUNTRY ANALYSIS OF TEMPORARY AND

PERMANENT COMPONENTS IN STOCK PRICES

6.1 Introduction

With the exception of a few studies that have tested the mean reversion
hypothesis (Poterba and Summers, 1988; Cochran, DeFina and Mills, 1993;
Frennberg and Hansson, 1993; Mills, 1991, 1995; Cochran and DeFina, 1995),
markets other than the US have been neglected, priﬁcipally because of the
unavailability of high quality non-overlapping long tixﬁe series for stock prices that
traditional techniques require. Moreover only Poterba and Summers (1988) and
Cochran ef al. (1993) and Cochran and DeFina (1995) provide international

evidence on stock price behaviour.

In this chapter we measure the size and significance of the temporary (or
mean-reverting) and permanent components of real stock prices for sixteen stock
markets. As in the last Chapter, we employ a multivariate time series technique
based on the vector autoregressive representation of real stock prices and
consumer prices - as outlined in Chapter 4, section 4.1 - to decompose the stock
prices.® In this context, the temporary and penﬁanent components of stock price
movements are related to aggregate macroeconomics demand and supply

disturbances. However, this section offers a much broader international evidence

3The technique employed can be viewed as a multivariate generalisation of the
Beveridge-Nelson (1981) decomposition.
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on the size of the mean-reverting component and predictability of stock prices
than has been hitherto available. Furthermore, the interest in worldwide investing
warrants information on markets other than the stock markets of US, UK and
Japan. The results from a range of stock markets provides evidence on the time

series properties of stock returns and allow more general inferences than do

results on a single country.
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6.2 Data and Summar_\;" Statistics

Quarterly data for sixteen countries were obtained from the International
Monetary Fund's International Financial Statisfcics data base. The sample period
is 1957i to 1995iv.* For the United States quarterly data were obtained from the
Center for Research in Securities Prices (CRSP) for the 1925v to 1995v period.
As is evident from studies by Shiller and Perron (1985) and others, in examining
the persistent, low frequency properties of time series data, the span of the time
series - in terms of years - is much more important than the number of

observations per se.”!

Hence, in selecting our international data set on stock
prices, we sought to satisfy two criteria: consistency, which required us to choose
data of the same frequency and more or less the same sample period for each
country; and overall time series span, which required us to seek out the longest

samples. On this basis, we chose quarterly data on stock prices, since these were

available for a number of countries on a continuous basis from as early as 1957.
The following countries were included in the study: Austria, Belgium,
Canada, Finland, France, Germany, India, Italy, Japan, Netherlands, Norway,

South Africa, Sweden, Switzerland, the UK and the US.

The data series of interest are the natural logarithm of the real stock price

40 Data was only available for the period 1957i - 1993iv for France; 195%i -
1995ii for Germany; and 1957ii - 1995iv for India. '

41 Ap intuitive discussion of this point is given in Davidson and MacKinnon
(1993, ch. 20).
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index, q,, and the natural logarithm of the consumer price index p ,. The real
stock price index is constructed using the consumer price index. The logarithm
of the real stock price indices, rebased so that the average price for 1990 is unity,

are presented in Figure 6.1.

Table 6.1 reports summary statistics on the series of interest. The sample
autocorrelations reveal some degree of persistence and suggest that the series are
nonstationary. The impression that the series in question are realizations of non-
stationary processes is confirmed by the standard unit root tests reported in Table
6.2. The sequential procedure employed in testing for unit roots follows Dickey
and Pantula (1987) in order to ensure that only one unit root is present in the
series. The unit root tests are the augmented Dickey-Fuller (ADF) test and the
Phillips-Perron Z, (PP) test for the null hypothesis that the series in question is I(1)
(Dickey and Fuller, 1979, 1981; Perron, 1988). Consistent with the relevant
literature, for each country, the real stock price series appear to be realizations of

first-difference stationary or I(1) processes.

As a test for cointegration, the results of the ADF (p,) test for a unit root
in the least squares residual from a regression of p, onto q, and a constant are
reported in Table 6.2b (final column). For all countries the null hypothesis of no

cointegration cannot be rejected.
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Table 6.1: Summary Statistics

(a) Real Stock Returns

Autocorrelation, p(k)
Mean  S.d. p(l) p2)  p(3) p(4) P(d) p(6)

Austria 0.35 9.53 0.22" 021" 0.1 007 -0.08 -0.07
Belgium -028 776 -0.01 0.05 0.04 0.15 -0.15 -0.01
Canada 0.21 7.91 0.16 -005 -008 -0.13 -0.05 -0.11
Finland 0.82 1000 0.18" 017" 029" 026" -0.07 -0.06
France 0.17 8.73 031" -0.03 003 - 001 -0.11 -0.16
Germany 0.43 9.25 0.12 -0.01 0.18 006 -0.16 -0.01
India 0.27 9.41 0.07 0.17° 003 -0.05 -023" -0.01
Italy -0.41 12.95 0.02 0.17  0.11 024> -0.22° 0.00
Japan 1.06 8.54 0.24" -0.01 0.12 002 -0.02 0.06
Netherlands 0.49 8.70 0.07 -0.07 0.17" 0.17° -0.13 -0.10
Norway 0.19 1446 -0.177 0.00 - 0.03 0.10 -0.14 -0.15
S. Africa 0.33 10.23 0.08 0.02 0.08 -0.01  -0.09 -0.05
Sweden 1.10 9.76 0.06 0.04 0.10 001 -0.14 -0.20"
Switzerland 0.29 9.68 -0.03 0.03 028" 006 -0.13 0.12
UK 0.60 10.13 0.11 -0.05 0.04 001 -0.10 -0.06

US(571-95iv) 0.60 8.04 0.11 -0.13 -005 -0.03 -0.02 -0.09

US(251v-95iv) 063 11.04 -0.05 0.00 0.16 -0.17 0.0l 0.01
US(251v-561v) 072 1397 -0.12 0.05 025" -023" 0.02 0.06

(b) Inflation -
Autocorrelation, p(k)

Mean  Sd. p(1) p(2) p(3) p(4) p(3) p(6)
Austria 098 146 028"  0.08 -021° 055 -007 -0.04
Belgium 1.04 091 0.49° 057" 057" 0517 039" 0547
Canada 1.16 0.91 0.68° 059" 064" 0677 058  051°
Finland 1.58 130 046" 049 037" 053" 031" 036
France 1.54 1.09 0.70° 049" 043" . 053" 043" 040°
Germany 082 072 023" -0.05 030" 063" 0.19 -0.09
India 1.84 252 028" -021" 017 043" -0.02 -048
Italy 1.89 1.52 0.78° 071" 071" 066 061" 061
Japan 1.12 132 0.46° 044" 042" 046" 027" 031°
Netherlands 1.03 121 0.09 0.15 021" 044" -0.01 0.14
Norway 140 122 022° 032" 015 0.44> 0.11 0.26
S. Africa 212 143 0.60° 072" 063" 074" 0.60° 065
Sweden 1.50 1.22 0.14 033" 0217 044 0.10 0.21°
Switzerland 087 0.83 0.29° 026" 030" 042" 0.5 0.18"
UK. 1.65 1.57 049" 052" 038 062° 032° 0.3%

US(571-951v) 1.10 0.85 0.69° 063" 066" 064" 052" 044"

US(251v-951v) 077 140 0.577 045 046" 047" 033" 0.2V
US(251v-561v) 035 179 0.50° 035" 035 037" 021" 007

Notes: The sample period is 1957i-1995iv; also see text for slight deviations from this sample period. The mean and standard
deviation (S.d.) are expressed in percentage terms. p(k) is the autocorrelation between Aq, and Ap,., and for inflation, between
Ap,and Ap,, Real stock retums are equal to Aq, where q, is the natural logarithm of the real stock price index and A denotes
the first difference. Inflation is equal to Ap, where p, is the natural logarithm of the consumer price index. An asterisk denotes
the sample autocorrelation is at least two standard deviations to the left or to the right of its expected value under the
hypothesis that the true autocorrelation is zero.
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Table 6.2: Unit Root and Cointegration Tests

(a) Phillips Perron Test

PP

P, g, Ap, Aq,
Austria -0.36 -1.80 -16.34 -9.93
Belgium 0.28 -1.67 -6.77 -12.46
Canada 0.99 -2.85 -4.95 -10.41
Finland -0.78 -0.49 -7.33 -10.20
France -0.61 -1.28 -5.29 -8.97
Germany -0.33 -2.58 -9.32 -10.86
India 1.18 -1.02 -9.22 -11.48
Italy 1.64 -1.38 -4.08 -12.20
Japan -2.07 -1.18 -7.30 -9.75
Netherlands -1.68 -0.93 -11.59 -11.60
Norway 0.36 -1.60 -10.02 -14.81
S. Africa 7.70 -2.07 -9.04 -11.40
Sweden 1.15 -0.47 -10.87 = -11.68
Switzerland -0.26 -1.47 -10.04 -12.83
UK. 0.43 -1.70 -7:10 -11.14
US(57i-95iv) 1.33 -1.36 -4.82 -11.02
US(25iv-95iv) 2.62 -1.43 - -8.77 -17.56
UJS(25iv-56iv) 0.45 -2.26 -649  -1237

(b) Augmented Dickey Fuller Tests
ADF Coint.
P q Ap, Aq, By

Austria -0.45 -2.08 -2.98 -6.45 -0.21
Belgium -0.03 -141 -3.80 -496 -0.32
Canada 0.21 -2.55 -3.68 -6.29 -0.15
Finland -0.67 -1.07 -3.49 -459 -2.19
France 0.32 -1.76 -2.91 -8.14 0.55
Germany -0.49 -1.70 -4.56 -524 -0.32
India 0.95 -1.07 -3.79 -6.94 -0.19
Italy 0.30 -1.57 -3.08 -554 -131
Japan -1.54 -1.44 -3.55 -8.04 -176
Netherlands -0.98 -0.98 -4.89 -9.02 -0.44
Norway -0.16 -1.38 -4.87 -9.69 0.63
S. Africa 4.55 -2.18 -4.21 -8.14 0.31
Sweden 0.53 -0.50 -4.30 -8.13 -1.68
Switzerland -0.76 -1.88 -322 = -431 -0.04
UK. -0.18 -1.79 -3.63 -8.74 -0.62
US(57i-951v) 0.50 -145 -3.49 -945 -0.22
US(25iv-95iv) 0.72 -1.30 -4.17 -7.65 -1.61
US(25iv-56iv) -0.44 -239 -3.12 -1237 -0.74

Notes: The sample period is 1957i-1995iv. See Table 6.1 for a definition of the variables. , is the OLS
regression of p, onto q and a constant. The unit root tests are the Phillips-Perron (PP),Z and the augmented
Dickey-Fuller (ADF) test statistic for the null hypothesis that the series is difference stationary (Dickey and Fuller,
1979, 1981; Perron, 1988). The lag truncation was chosen using the Ljung-Box Q-statistic to ensure whiteness
of the residuals. The unit root test of Ap, for S. Africa includes a time trend. For a 5% significance level the
critical ADF and PP is -2.89 and (see, Fuller, 1976, p.373). The cointegration test, p,, is the ADF test; fora 5%
significance level the critical value is -3.17 (see Fuller, 1976, pp. 371-3; Engle and Granger, 1987).
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iriguie ©.1b: Real Stock Prices
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s ywee w.1C: Real Stock Prices
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6.3  Decomposing Stock Price Movements: Estimating the Temporary

and Permanent Component by VAR Analysis

A vector autoregressive representationl of [.(1-L)qt (I-L)p]" was
estimated* preliminary to effecting the decomposition. The lag length for the
VAR was chosen as follows. First, using the Bayes Information Criterion (BIC),
an initial lag length was determined.*® Second, using the Ljung-Box Q-statistic we
tested for the whiteness of the residuals and the lag depth was increased (if
necessary) until they were approximately white noise - for each country, the lag
length used for the VAR is reported in the final column of Table 6.3. The Akaike

Information Criterion (AIC) is also reported for comparison purposes.

Using the A(0) matrix, estimated from the VAR parameters and the
covariance matrix of VAR residuals (not reported), we decomposed real stock
prices into a temporary component and permanent component. The generated
cumulative impulse response functions for stock prices and consumer prices, are
presented in Figure 6.2. These illustrate the dynamic effects of a one unit

(standard deviation) shock on the level of real stock prices and consumer prices.

The macro model imposes the qualitative restrictions - a permanent

disturbance to real stock prices increases (in the short run and long run) stock

2 GQeasonal dummies were included in the VAR.

43 In a Monte Carlo analysis of alternative criteria to determine lag length of
VARs, Litkepohl (1985) favours the Schwarz-multivariate BIC criterion.
Liitkepohl finds that the BIC criterion chooses the correct lag order most often
and the resulting VAR models provide the best forecasts.
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prices, whereas a temporary disturbance to stock prices increases real stock prices
only in the short run, with zero long-run effect. A positive temporary shock to
consumer prices increases consumer prices, whereas a positive permanent shock

to consumer prices decreases consumer prices.

The temporary shock to real stock prices is persistent for a number of
countries, most noticeably, Finland, Italy, Netheflands and South Africa (see Table
6.4 for measures of half-life of the temporary shock to real stock prices). Thus for
these countries, even though the mean-reverting component may explain a large
amount of the variation in stock price movements, it is difficult to detect it at high
frequency, as it looks very much like a random walk component. The two larger
markets, US and UK, reveal little persistence, as a temporary shock to real stock
prices dies fairly fast - with a half-life of only 2 quarters - éinﬁlar levels of

persistence is found for France, Germany and Norway.

For the majority of countries, the effect of a permanent shock to real stock
prices is for stock prices to rise continuously for around the first sixteen quarters
and then to a large degree remain at (or around) that higher value. The exception
is Norway, where real stock prices initially fall for the first three quarters and then
rise. Furthermore, for Canada and the Netherlands, a permanent shock to real

stock prices causes stock prices to continue to rise even after sixteen quarters.

Also for a number of countries (Finland, Japan, Netherlands and

Switzerland) the final response of a permanent shock to real stock price is over
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twice the initial (one standard deviation) effect. Whereas, for France, Germany,
India, Italy Norway, UK and US the final effect is that real stock prices are only

slightly higher than their initial effect.

The response of consumer prices to temporary and permanent shocks is
similar to what we found in the previous chapter - a positive temporary shock to
consumer prices causes prices to rise and a positive permanent shock causes prices
to fall. However, the dynamic effects of the temporary and permanent shocks
varies slightly across the different countries - that is , although the direction of
consumer prices is the same for all countries to a demand and supply disturbance,
the dynamic response of consumer prices to a disturbance is country specific. This
is consistent with other multi-country analysis (for example, Bayoumi and Taylor,
1995). For the majority of countries the dynamic effects of temporary (demand)

and permanent (supply) shocks are largely over by about five years.
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Table 6.3: Choice of Lag Length '

AIC BIC Preferred
Length
Austria 4 4 5
Belgium 4 3 4
Canada 4 1 6
Finland 6 2 5
France 4 1 5
Germany 4 1 5
India 4 1 4
Italy 6 2 5
Japan 4 1 4
Netherlands 4 4 4
Norway 2 1 3
S. Africa 4 2 5
Sweden 3 2 3
Switzerland 5 1 5
UK 2 2 5
US(57i-951v) 2 2 7
US(251v-95iv) 1 3
US(251v-56iv) 1 3 1

Notes: The Bayes Information Criterion (BIC) was initially used to determine the lag length. This lag
length was tested for serial correlation using the Ljung-Box Q-statistic and the lag depth was increased (if
necessary) until the residuals were approximately white noise. The lag depth resulting from the outcome
of this procedure is the preferred length and is the actual lag length used in the VAR analysis. The Akaike
Information Criterion (AIC) is given for comparison purposes. The sample period is 1957i-1995iv.
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Table 6.4: Half-Life of a Temporary Shock
_to Real Stock Prices: Number of Quarters ,

<

Austria
Belgium
Canada
Finland
France
Germany
India

Italy

Japan
Netherlands
Norway

S. Africa
Sweden
Switzerland
UK

US

[u—y

- [y

N
NN LN = = QDW= WX

Notes: The sample period is 1957i-1995iv. See Figure 6.2 for a graphical
illustration of the temporary shock to real stock prices for each of the 16
countries. '
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Figure 6.2b: Cumulative Impulse Response Functions
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0.12

Figure 6.2c: Cumulative Impulse Response Functions

France
Real Stock Prices

0.10 +

0.08 -

0.08

0.04 ~

0.02 +

0.00 -

\—

£.02

0.038

§ 10 15 20 25 30 35 40 45 50 55 60 85 70 75 80
I—TBPORARY——PERMNENTj

France
Consurner Frices

0.030 -1
0.024
0.018 -
0012 -
0.000 |

0.000

-0.008 |

-0.012

-~
T e e - - -

Germany
Res! Stock Prices
0.10 5
O U
1 , -
r s
0.08 — ! N
[
0.06 -
0.04 -
0.02
0.00 — T T ——— ey
5 10 15 20 25 30 35 40 45 50 55 80 85 70 75 &0
L— TEMPORARY = =  PERMANENT
Germany
caw. J'H“m
0.015
0.010
0.005 -
0.000
~
\
-0.005 - \
\
N\
£0.010 .
~
\~~
0.015 r
10 20 30 40 50 80 70 80
r— TEMPORARY =~ =~  PERMANENT

- 121 -




ative Impulse Response Functions

PR R E RN RV ot S Tt PO TR O AT
VOGS e s SR
India
Real Stock Frices

0.12

\
0.10 L ————————

'

[
008 -
0.08 -
0.04 -
0.02
0.00 ——
0.02 ———— , y — y——

5 10 15 20 25 30 36 40 45 50 55 60 70 75 8o

——  TEMPORARY — — PERMANENT
India
Consumer FPrices

0.030
0.030
0.024
0.018
0.012
0.006
0.000
-0.008 N J e e e -

\
0,012 v y , v —

10 20 30 40 50 60 70 8

0.200

italy
Ree! Stock Prices

0.175 ~

0.150

0.075 -

0.050

0.025 -

0.000

0.08

15 20 25 30 35 40 45 50 S5 60 85 70 75 80

0.04 +

0.02 —

0.00

0.02 A

-0.04

- 122 -




B

bl N R T LN L

zat
Isulﬁ' VekaG
Japan
Real Stock Prices
0.12
I"—‘
0.10 ’
Iy
[
1
0.08 J
1
1
0.06 - i
0.04
0.02
0.00 — T ——————————
§ 10 15 20 25 30 35 40 45 50 55 60 85 70 75 80
r— TEMPORARY — =—  PERMANENT
Japan
Consumer Prices
0.038
0.027
0.018
0.009 |
0.000
2000 4
\
\
- ~
-0.018 <
\\-_
0027 . , . —
10 20 30 40 50 €0 70 80
[ — rowommy — = perument

Luiniuiative Impulse Response Functions

Netheriands
Reel Stock Prices
0.14 ut__
ey
-
-
rd
0.12 ’
7/
/
qwﬂ
!
!
0.08 -
4
oos 4 !
0.04
0.02
0.00 T ————— e
5 10 15 20 25 30 35 40 45 50 55 60 65 70 75 80
[—w——m
Netherlands
Consumer Prices
0.021 e
0.014
0.007
-0.000
0.007 4 A
\
0.014 \
.
N
~
-0.021 - S o
0.028 y T
10 20 30 40 50 80 70 80
—— TEMPORARY — — PERMANENT

- 123 -




T : :x{?@:ﬁs

I N R S L ¥ P TN B VOO v YR

Siguie .4l wuiniuiative Impulse Response Functions

Norway
Roesl Stock Frices

0.04 -

0.02 -

0.00

$ 10 15 20 25 30 35 40 45 50 S5 80 €5 70 75 80
L—mow——m]

Norway
Consumer Prices

0.025

0.020 +

0.016

1

0.010 -

0.005 -

0.000

-0.010

-0.018

South Africa
Real
0125 Stock Prices S
’ ,—-"'__
n ="
0.100 - )\-\'f
!
[}
)
0.075 ~
0.050
0.025 <
0.000 T T T T T T 7 T T v T ¥ T
5§ 10 15 20 25 30 35 40 45 50 55 60 65 70 75 80
r—- TEMPORARY ~— —  PERMANENT
South Africa
Consumer Prices
0.08
0.06 —
O.MT
0.02 -
0.00
RN
~
-
002 - S..
-~
-
-0.04 - Te-a s
-0.06 T T T Y

124 -




1 IYUuIs v.ay. vumuidtive ImPUIse ReSponse Functions

Sweden
Real Siock Prices

0.14

012

0.10 -

0.08

0.06

0.02

———— ————— ———————— - —— - = -

0.00

0.030

0.025

0.020 -

0.015

0.010

0.005

0.000

-0.005

-0.010

1

-0.015

]
8
8
&
81
8
3
&

Switzerland
Reel Stock Prices
0.14 ——====
-
I\\‘
0.12 A
A
’l
o0 - X
1
0.08 1
1
0.08 -
0.04
0.02
0.00 T T T
5 10 15 20 25 30 35 40 45 50 55 60 65 70 75 80
l —— TEMPORARY — — Pmn_]
Switzerland
0.015 Consumer Prices
- 0.010
0.005 -
0.000
0005 -\
\
-0.010 \\
\
N
-0.015 - ~ N
S e e e e e e e e e e e e e e e
-0.020 Y —— T T T T
10 20 30 40 50 60 70 80
[— rowown =~ rowan |

- 125 -




0.125

0.100

0.075

0.050

0.025

0.000

0.04

0.03

0.02

0.01

0.00

0.0

-0.02

-0.03

-0.04

-0.05

e e A L R S R AW AR e A AR ]
babg 1 Oye e s VO i ) el b it

Vil w Walnils WWAIIIWS

United Kingdom
Reel Stock Prices
PR
”
/
e ——————— e
10 16 20 25 30 35 40 45 85 60 70 75 80
[1 TEMPORARY — —  PERMANENT ]
United Kingdom
Consumer Prices
A Y
~
~
~-_
S ————C et e fate Al
15 20 25 30 35 40 45 50 55 €0 70 75

0.07

United States
Real Stock Prices

ative Impulse Response Functions

0.06
0.05
0.04 —

0.03 -J

0.02 ~

0.01 1

0.00

-0.0t

0.020

T T T

[—w——mj

United States

-

| Sun S summn S .
10 15 20 25 30 235 40 45 5 S5 60 65

0.015 —l

0.010 -W

0.005 -

0.000

-0.005 -

-0.010

-0.015 -

-0.020 -

-0.025

- 126 -




6.4 Forecast Error Variance Decomposition

Table 6.5 reports the fraction of the unconditional variation in real stock
price movements (and in panel b, consumer price movements) due to temporary
(aggregate demand) innovations in real stock prices (and in panel b, consumer
prices) in short and long runs. The contribution of permanent (aggregate supply)
innovations (not directly reported) is given by 100 mihus the contribution of
temporary innovations. The forecast error vaﬁanée in real stock prices due to
temporary innovations varies across countries - a feature of country-specific
factors, such as monetary and fiscal policy. Eight of the sixteen countries exhibit
a forecast error variance in excess of 30 percent, and fourteen in excess of ten
percent in the long run (12-quarter horizon). Therefore, the size of the mean-
reverting component (represented by temporary shocks to real stock prices) is
large for the majority of countries. The size of the mean-reverting (temporary)
components in real stock prices are consistent with other recent studies (for
example, Cochrane and Sbordone, 1988; Fama and French, 1988; Poterba and
Summers, 1988; Frennberg and Hansson, 1993; Cochrane, 1994; Cochran and
DeFina, 1995; Lee, 1995). As discussed above, since the mean-reverting
(temporary) component in real stock prices is attributed to aggregate demand
shocks, then the size of this component is expected to be less than the mean-

reverting component reported in other studies. For example, Cochrane (1994)
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and Lee (1995) report a mean-reverting component in excess of 50 percent.*
Thus, the results presented support the findings of many previous studies.
Moreover, since the temporary and permanent shocks are orthogonal, we can test

the significance of temporary shocks to real stock prices.

We employ equation (5.1) to evaluate the proportion of real stock price
movements explained by each component and the significance of each component
in explaining that proportion of real stock price movements. As before, the t-
statistics obtained from regressing each of these components in turn on the change
in real stock prices, (1-L)q,, provides a test of the statistical significance of each
component. For example, regressing (1-L)q, onto qp, provides a test of the
statistical significance of the temporary component, where qy , is the temporary
disturbance to real stock prices. The R’s associated §vith each least squares
regression estimate the proportion of total variation in real stock returns explained

by each component.

Table 6.6 reports that for all countries the temporary (or mean-reverting
component) component in real stock prices is in fact statistically significant at

standard significance levels, explaining between 7 and 56 percent of the variation

“Earlier studies that employ long-horizon techniques, for example, Fama and
French (1988a) and Poterba and Summers (1988), report a similar sized mean-
reverting component. However, recent studies have criticised these findings as
exhibiting low power and dependent on the inclusion of the pre-world war II
period (see Richardson and Stock, 1989; Kim et al., 1991; Mankiw ef al., 1991;
Richardson, 1993; Mills, 1995). In fact, the variance ratio estimates of Kim ef al.
(1991) and Mills (1995) suggest that stock prices are mean averting for the post-

war period.
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in real stock prices. The results show that real stock prices exhibit a
(macroeconomic aggregate demand) component that is mean-reverting and

explains a significant proportion of stock price movements. Thus the results

strongly support the mean reversion hypothesis.
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Table 6.5: Forecast Error Variance Decomposition Due to Temporary

Shocks
(a) Real Stock Prices
Horizon
1-quarter 4-quarters 12-quarters

Austria 2790 - 28.16 31.18
Belgium 30.28 30.39 30.48
Canada 62.36 63.10 63.98
Finland 32.56 30.36 31.51
France 9.16 10.92 11.16
Germany 10.18 11.44 12.53
India 9.19 9.72 11.70
Italy 5.85 7.35 7.49
Japan 43.29 40.03 4134
Netherlands 34.67 34.99 34.86
Norway 11.47 14.72 14.93
S. Africa 35.90 34.71 35.24
Sweden 4.33 7.18 7.55
Switzerland 29.02 26.84 28.11
UK 13.27 14.67 15.94
US(57i-95iv) 52.82 57.97 57.79
US(25iv-951v) 7.59 8.40 8.71
US(25iv-561v) 1.80 2.43 2.44

(b) Consumer Prices

Horizon
1-quarter 4-quarters 12-quarters

Austria 62.94 65.39 64.66
Belgium 51.95 52.98 52.06
Canada 21.65 23.86 36.54
Finland 61.68 54.36 59.75
France 88.91 86.72 89.80
Germany 72.32 66.77 63.49
India 81.09 85.92 84.68
Italy 87.84 85.98 89.38
Japan 45.96 46.15 52.64
Netherlands 33.61 34.62 33.90
Norway 78.88 77.92 77.86
S. Africa 62.45 62.86 63.58
Sweden 86.12 82.03 81.82
Switzerland 55.32 48.98 47.52
UK. 82.95 61.11 52.28
US(57i-951v) 23.87 31.27 36.05
US(25iv-951v) 88.54 91.58 92.53
US(25iv-56iv) 98.68 98.04 98.04

Notes: Estimation is by ordinary least squares. The sample period is 1957i - 1995iv.
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Table 6.6: Size and Significance of Permanent, Temporary and

Deterministic Components in Stock Prices

Estimated Regression:  Aq,=aq;, +¢,, [=P,T,D
Size (R?) Significance(t-Statistic)
Temporary Permanent Deterministic Temporary Permanent Deterministic

Austria 0.31 0.67 0.02 8.19 17.31 1.71
Belgium 0.27 0.59 0.14 7.29 14.49 4.99
Canada 0.62 0.34 0.04 15.60 . 8.69 240
Finland 0.30 0.63 0.07 8.17 15.83 3.38
France 0.09 0.84 0.07 3.75 26.87 3.50
Germany 0.13 0.81 0.06 4.68 25.23 3.26
India 0.11 0.84 0.05 432  28.01 2.61
Italy 0.07 0.86 0.07 344 30.54 332
Japan 0.37 0.56 0.07 9.44 13.74 3.77
Netherlands 0.34 0.58 0.08 8.71 14.28 3.57
Norway 0.14 0.78 0.08 5.03 22.98 3.78
S. Africa 0.35 0.62 0.03 8.95 15.77 2.06
Sweden 0.07 0.88 0.05 3.55 32.32 291
Switzerland 0.27 0.69 0.04 7.47 18.07 2.66
UK 0.15 0.79 0.06 5.19 23.56 321
US(57i-951v) 0.56 041 0.03 13.81 10.12 2.20
US(25iv-95iv) 0.08 0.91 0.01 4.89 53.65 1.25
US(25iv-561v)  0.02 0.97 0.01 1.73 59.69 1.03

Notes: In the estimated regression, Aq, = @q;, + &, Gz, is the temporary component of real stock price movements, Qs , is
the permanent component, and gy, , is the deterministic component. Estimation is by ordinary least squares. The size of the
components is given by the R? from the estimated regressions and represents the proportion of total variation in real stock
returns explained by each component. The significance of the component is given by the t-statistic of the coefficient ¢ in
estimated regression. Estimation is by ordinary least squares. The sample period is 1957i - 1995iv.
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6.5 Conclusion

In this chapter, we have extended the work from the previous chapter.
Employing a similar multivariate innovation decomposition technique we have
investigated the components of real stock prices for sixteen countries. The
evidence supports the earlier findings (Chapter 5) that real stock prices contain a
statistically significant mean-reverting component, explaining between 7 and 64
percent of the variation in real returns and thus that real returns are to some extent
predictable (see, for example, Fama and French, 1988b; Campbell, 1990, 1991;
Cochran ef al., 1993; Cochrane, 1994). The impulse response functions of a
temporary shock on real stock prices show, however, that for some countries the
mean-reverting component can be quite persistent, with estimated half lives

varying between 1 and up to 25 quarters.

The multi-country analysis emphasises that the dynamic response of stock
prices to temporary and permanent shocks varies across markets.*” A number of
common features include: real stock prices rise in response to a permanent shock
to stock prices and continue to rise for a number of years after the shock; the

mean-reverting component is statistically significant at standard significance levels.

The results are consistent with those of previous researchers who have
used vector autoregressive techniques to decompose stock prices into their

temporary and permanent components (Cochrane, 1994; Lee, 1995). The

“The different dynamic response of real stock prices suggests that there exists
potential gains from international diversification.
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response of consumer prices to temporary and 'perma,nent shocks is as predicted

~bythe standard macroeconomic aggregate demand - aggregate supply model with

a vertical long-run aggregate supply curve.

The issue of whether mean reversion reflects market inefficiency is
debatable and - linked to the joint hypothesis problem - is unlikely to be easily
resolved. For related discussion of this issue see De Long e al. (1990) who show
that mean reversion is consistent with noise trader risk and Fama and French

(1988a) who argue that mean reversion may also result form the workings of

efficient markets.
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Chapter 7
THE DYNAMIC RELATIONSHIP BETWEEN INTEREST RATES

AND REAL STOCK PRICES

7.1  Introduction

There is a strong association between stock prices and interest rates, in
theory explained by a simple rational expectations present value, and this
relationship is empirically assessed by a number of studies (for example,
Campbell, 1987, 1990, 1991; Fama and French, 1989; Breen, Glosten and
Jagannathan, 1989; Fraser, 1995; Pesaran and Timmermann, 1995; Campbell et
al., 1997). In this section we investigate the interaction between stock price and
interest rate movements in assessing the size and significance of the mean-
reverting component in UK and ‘US real stock prices.. More specifically, we
specify a multivariate time series technique based on the vector autoregressive
representation, outlined in Chapter 4, section 4.1, of real stock returns and
nominal interest rates to identify temporary and permanent innovations in stock

price movements.

A plausible argument is that an increase in interest rates would make fixed
income assets (we use the 3-month Treasury Bills as an indicator) more attractive
investments, and so stock prices would have to fall to induce people to hold
stocks. However, if the increase in interest rates primarily reflects revised

inflationary expectations, then these changes should have little effect on stock
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prices (Shiller and Beltratti, 1992).% In the context of our estimated VAR, we use
the present value relationship to identify the temporary and permanent shocks to
stock prices. The temporary shock to real stock prices will cause stock prices to
rise initially and then to reduce so that it has a zero long-run effect, whereas, a
permanent shock increases the real stock price in the short and long run. We also
expect a permanent shock to decrease interest rates, while a temporary shock will

increase interest rates.

Given the evidence that innovations to financial asset returns exhibit non-
normal distribution properties¥’ we investigate the sensitivity of the size,
significance and persistence of the mean-reverting component to two robust
estimation procedures, notably the least absolute deviation (LAD) and the residual
augmented least squares (RALS), in order to allow for possible non-normality of
the innovations to stock returns and interest rates. The two robust estimation

procedures are outlined in Chapter 4, section 4.2.

“That is, there is little change in expected real dividends and therefore, by the
present value model, little change in real stock prices.

“"There is large volume of evidence that stock prices and interest rates have fat-
tailed and, perhaps, skewed distributions (Badrinath and Chatterjee, 1988; Von
Furstenberg and Jeon, 1989; Jansen and DeVries, 1991).
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7.2  Data Sources and Properties

Monthly data were obtained from the Infernational Monetary Fund's
International Financial Statistics data base and the stdck price index from
Datastream for the UK and from CRSP for the US. The sample period is 1957:1
to 1995:11 for the US and 1965:1 to 1995:6 for the UK. The shorter period of
analysis is chosen in order to avoid the unusual stock price behaviour in the pre-
war period and the fact that the behaviour of interest rates*® have changed over
time. For the UK, we use the widely reported FTA All Share price index,
available from 1965.* The IMF stock price index, for the 1957:1-1995:6 was also
considered and generated very similar findings (these are not reported to conserve

space).

The data series of interest are the natural logarithm of the real stock price
index™, q,, and the monthly rate of return on 3-month Treasury bills, r, The real
stock price index is constructed using the respective consumer price index. The

monthly rate of return on 3-month Treasury bills is calculated geometrically by

t

(5.2) r, = (r,* + 1)(1/12) -1

For the US, the period preceding the Federal Reserve Board-Treasury
Accord in 1951 the Federal Reserve Board held interest rates relatively constant.

49The UK stock price index, from the IMF’s IFS data base, for the 1957:1-
1995:6 was also considered and generated very similar findings (these are not
reported to conserve space).

°The US stock price index is the S&P500 stock price index and the UK stock
price index is the FTA All Share price index. The consumer price index for the
US is obtained from the SBBI files and for the UK is obtained from the IFS data

base.
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where r; is the annualized rate of return on 3-month t-bills in period t.! The

logarithm of the real stock price and the interest rates series (and their first

differences) are presented in Figures 7.1 and 7.2.

Table 7.1 reports summary statistics on the series of interest - both the US
and UK real stock prices and interest rates series reveal persistence and suggest
that the series are nonstationary. The unit root tests, reported in Table 7.2,
confirm this. The augmented Dickey-Fuller (ADF) and Phillips-Perron Z, (PP)
tests support the null hypothesis that real stock price and interest rates are first-

difference stationary.*

The results from the RALSDF test, reported in Table 7.2, indicate a
substantial gain in efficiency in employing the RALS adjusted DF rather than the
standard DF test. For the US, the efficiency gain statistic 1) is 0.89 and 0.64 for
real stock prices and interest rates, respectively. Real stock prices are strongly
I(1) whereas interest rates are I(1) at the one percent significance level. Similarly,
for the UK, 1jis 0.78 and 0.77 for real stock prices and interest rates, respectively,
and real stock prices and interest rates are strongly I(1) processes. From this

evidence we conclude that, for both countries, real stock prices and interest rates

SiCalculating r, arithmetically, i.e. r; /12, does not significantly change the
results.

52This finding is not sensitive to the choice of lag depth in the auxiliary ADF
regressions or in calculating the PP tests.
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are I(1).

As a test for cointegration, the results of the ADF test for a unit root in the
least squares residual from a regression of r, onto q, and a constant are reported
in Table 7.2 (final column). The null hypothesis of no cointegration cannot be

rejected at the 5% level of significance.

$3The residuals in the RALSDF for the US interest rates series is serially
correlated and for this reason it is more appropriate to use either the ADF or PP
that includes sufficient lags to ensure whiteness of residuals.
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Table 7.1: Summary Statistics

pt Apt I, Ar,
Mean - 0.19 0.48 0.00
o - 4.19 0.22 0.04
pk) Autocorrelation
k=1 0.98" 0.06 0.98" 0.29°
2 0.96" -0.01 0.95" -0.10
3 0.94" 0.02 0.93" -0.10
4 0.93" 0.02 0.91" -0.04
5 0.91° 0.10 0.89" 0.04
6 0.89" -0.05 0.87" -0.19"
7 0.87" -0.05 0.85" -0.19"
8 0.85" -0.05 0.84" 0.08
9 0.84" -0.01 0.83" -~ 0.19
10 0.82° 0.01 0.81° 0.06
11 0.80" -0.01 0.79" 0.00
12 0.79" 0.02 0.77" -0.09
(b) United Kingdom
qt Aqt rt AI',
Mean - 0.14 0.73 0.00
o - 6.08 0.23 0.07
p(k) Autocorrelation
k=1 0.98* 0.12° 0.98" 022"
2 0.96" -0.09 0.94" 0.06
3 0.95" 0.06 0.91" -0.05
4 0.93" 0.05 0.87" 0.02
5 0.91* -0.08 0.84" 0.05
6 0.89" -0.02 0.80" 0.04
7 0.88" 0.03 0.76° -0.01
8 0.86" -0.00 0.72" 0.07
9 0.84° 0.09 0.68" -0.06
10 0.82" 0.02 0.65" -0.03
11 0.80" -0.04 0.62" 0.03
12 0.78" 0.00 0.58" -0.01

Notes: The mean and standard deviation, o, are expressed in percentage terms. p(k) = autocorrelation
between X, and X,q. 1is the monthly rate of return on 3-month Treasury bills, estimated from equation
(5.2); g is the natural logarithm of real stock prices. A=(1-L) denotes the first difference. An astensk
denotes the sample autocorrelation is at least two standard deviations to the left or to the right of its
expected value under the hypothesis that the true autocorrelation is zero. The sample period is 1957:1-
1995:11 for the US and 1965:1-1995:6 for the UK.
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Table 7.2: Unit Root and Cointegration Tests:
Interest Rates and Real Stock Prices

(a) United States

Ar, Ar, Iy A%q, Aq, q; K,
ADF -15.60 -10.36 -1.92 -12.63 -7.97 -1.24 -2.33
PP -36.41 -15.57 -2.32 -55.23 -20.37 -1.20
RALSDF -40.80 -21.55 -3.30 -38.76 -20.29 0.15

(0.53) (0.64) (0.64) (0.87) (0.90) (0.89)

(b) United Kingdom

A’r,  Ar I, A%q, Aq, qQ B
ADF -19.93  -11.74 -2.55 -24.40 -14.02 -1.50 -2.67
PP -2921 -15.13 -2.21 -29.39  -1690 -1.38

RALSDF -28.79 -14.03 -196 -33.70 -18.70 -0.14
(0.78) (0.78) (0.77)  (0.77) (0.78) (0.78)

Notes: r, is the monthly rate of return on 3-month Treasury bills; q is the natural logarithm of real stock prices. p is the
ordinary least squares regression of r,onto q, and a constant. The unit root tests are the Augmented Dickey-Fuller test statistic
(ADF) and the Phillips-Perron Z, test statistic (PP), without time trend and with constant, for the null hypothesis that the series
is I(1) (see, Perron, 1988); the lag truncation was set at one. For a 5% significance level the critical ADF and Z, is -2.88.
RALSDF is the residual augmented least square Dickey-Fuller unit root test. The figures in parenthesis is the efficiency gain
statistic, 1), in using the RALSDF than the standard DF statistic. The cointegration test, p,, is the augmented Dickey-Fuller
test, for a 5% significance level the critical value is -3.17 (see, Fuller, 1976, pp. 371-3; and Engle and Granger, 1987). The
sample period is 1957:1-1995:11 for the US and 1965:1-1995:6 for the UK.
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Real Stock Price Index, S&P500 (in logs)

Figure 7.1: Interest Rates and Real Stock Prices
United States, 1957:1-1995:11
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275

Figure 7.2: Interest Rates and Real Stock Prices
United Kingdom, 1965:1-1995:6
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7.3  Decomposing US Stock Price Movements

Least Squares Results

A vector autoregressive representation of [(1-L)q, (1-L)r]’ was
estimated* preliminary to effecting the decomposition. The lag length for the
VAR was chosen as follows. First, using the Bayes Information Criterion (BIC),
an initial lag length was determined.” Second, using the Ljung-Box Q-statistic we
tested for the whiteness of the residuals and the lag depth was increased (if
necessary) until they were approximately white noise. The chosen lag depth was

fourteen.

Given the estimates of the VAR parameters (reported in Table 7.3) and the
covariance matrix of VAR residuals (Table 7.4), we then carried out the VAR
decomposition, as outlined in Chapter 4, section 4.1. Using the estimated A(0)
matrix (reported in Table 7.5) we generated the impulse response functions for
stock prices. The cumulative impulse response functions are reported in Figure
7.3. A one unit (standard deviation) temporary shock to real stock prices has a
half-life of seven months. A permanent shock to real stock prices increases stock
prices for the first eight months, then stock prices reduce (reversal in stock price
movement) up to the 20th month to a stabilizing level that is slightly higher than

the initial effect. A permanent shock to interest rates decreases interest rates,

*Seasonal dummies were included in the VAR,
55The BIC chose a lag length of one and AIC chose six.
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whereas a temporary shock increases interest rates.

Along with the natural logarithm of real stock prices, the innovations to
real stock prices are cumulated and presented in Figure 7.4. Similar to Figure 5.8,
Figure 7.4 illustrates the different components of (the natural logarithm of) real
stock prices; the deterministic components are the trend and seasonal elements,
the temporary component plot line adds the cumulated temporary innovations to
the deterministic component, and the permanent com_poneﬁt plot line then adds the
cumulated permanent innovations to the temporary component plot line. Thus,
the difference between the deterministic and temporary components measures the
temporary innovations in real stock prices over the period. The difference
between the termporary and permanent components measure the permanent.

innovations in real stock prices.

The temporary component reported in Figure 7.4 indicates that the
temporary innovations are stationary around the deterministic component, but take
long swings away from the deterministic trend - evidence of a slowly decaying
stationary component, i.e, stock prices take long temporary swings away from
fundamental values (Summers, 1986; Fama and French, 1988a, De Long et al,,
1990). The size of the temporary innovations are small reiative to the permanent
innovations, however, as we see below they still explain a significant (and

substantial) proportion of the variance in real stock prices.

In fact, as reported in Table 7.6, at the one-month horizon 24 percent of
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the forecast error variance in real stock prices is due to temporary innovations,
increasing slightly to 25 percent in the long run. The size of this mean-reverting
component in real stock prices is lower than reported in other recent studies (for
example, Fama and French, 1988; Cochrane, 1994; Lee, 1995). As discussed
above, one would expect the temporary component estimated by Cochrane (1994)
and Lee (1995) to be larger in magnitude because the permanent component is not
necessarily a pure random walk and thus contains a mean-reverting element.
Thus, the results presented in this paper are not inconsistent with those of

previous studies.

Since the shocks are orthogonal and, as in equation (5.1), must sum to x,
= [(1-L)q, (1-L)r,1’. The t-statistics obtained from regressing each of these
components in turn on the change in real stock prices, (1-L)q,, provides a test of
the statistical significance of each component.®® The R s associated with each
least squares regression estimate the proportion of total variation in real stock
returns explained by each componevnt.57 Table 7.7 reports that the mean-reverting

(temporary) component is in fact statistically significant at standard significance

56Therefore, regressing (1-L)q, onto ¢, provides a test of the statistical
significance of the temporary component.

S"The above findings are conditional on the orthogonality of the shocks to
stock prices. This can easily be tested by regressing one shock on the other shock:

qre = 0.0019 gp, R2=0.0000
(0.0274) SSE = 0.1606
[0.0709] DW = 2.1669

The R? of zero indicates that the temporary shock to real stock prices is
uncorrelated with the permanent shock to real stock prices.
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levels for real stock prices, explaining 25 percent of the variation. 72 percent of
the variation in real stock prices is explained by permanent innovations while 3

percent is explained by trend and seasonal components.
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Table 7.3: VAR Parameter Estimates: OLS, LAD and RALS

OLS LAD RALS
(1-L) q, (1-L) q, 0.02308 -0.02785° 0.0304
-(0.05000) (0.03430) (0.0477)
(1-L)q., -0.01734 0.00307 0.0082
(0.04993) (0.03402) (0.0467)
(1-L) g4 0.00782 0.00838 0.0499
(0.05000) (0.03413) (0.0466)
(1-L) g -0.03382 0.04712 0.0483
(0.05000) (0.03442) (0.0467)
(1-L) qs 0.10202° 0.11849° 0.1237
(0.04990) (0.03420) (0.0466)
(1-L) q -0.03634 0.01082 -0.0365
(0.05016) (0.03421) (0.0467)
(1-L)q, 0.01461 -0.07923° -0.0135
(0.05025) (0.03432) (0.0468)
(1-L) g, -0.09775" -0.05099 -0.0338
(0.05015) (0.03429) (0.0467)
(1-L)q, 0.03721 0.04234 0.0565
(0.05043) (0.03452) (0.0468)
(1-L) qup -0.02741 -0.08942° -0.0457
(0.05022) (0.03420) (0.0464)
(- g 0.04029 -0.02797 0.0317
(0.05009) (0.03401) (0.0465)
(1-L) gy -0.05324 0.01039 0.0276
(0.05002) (0.03387) (0.0461)
(1-L) g1 0.03114 0.03369 -0.0419
(0.05014) (0.03382) (0.0463)
(-Lqu -0.05081 -0.01478 -0.0383
(0.05011) (0.03504) (0.0463)
(1-L)r, -10,78792° -18.20320° -14.8889°
(5.12545) (3.31994) (5.2758)
(1D, . 4.04944 9.85203" 4.7043
(5.41819) (3.37026) (5.5822)
(1-L)r,, -7.32121 -18.8545° -9.1671
(5.44074) (3.37786) (5.5807)
(1-L)r, -4.12724 2.05356 -1.5425
(5.40851) (3.36966) (5.5462)
(1-Dr, -7.16911 -10.94846° -9.0359
(5.41957) (3.39443) (5.5508)
(A-Dyre -0.20305 4.53544 1.3439
(5.43585) (3.32924) (5.5696)
(A-L)r, -5.16702 -10.06469 -7.8729
(5.56870) (3.42942) (5.7044)
(1-L) g 0.28296 8.53932° 6.2590
(5.57523) (3.40585) (5.7164)
(1-L)ry, 0.72665 -4.17404 -2.1051
(5.39516) (3.38309) (5.5304)
(1-L) -8.47124 -12.7173° -7.7119
(5.39884) (3.39395) (5.5537)
(1-L)ry, -1.10946 -7.09256" 03012
(5.40521) (3.40124) (5.5637)
(1-L)r,,, -1.59620 6.44241 1.4100
(5.43257) (3.34710) (5.5712)
(1-L) s -6.98644 -16.9693° -13.8326°
(5.37998) (3.39844) (5.4988)
(1-L) 1, 5.94469 18.3713° 8.6543
(5.12096) (3.903%94) (5.2523)
Statistics:
Number of Usable Obs. 452 452 452
R? 0.09 0.06 0.39
Sum of Squared Errors - 0.60 0.74 0.47
Ljung-Box Q(36) 15.02 [0.99] 17.18 [0.99]
Jarque-Bera 154.24
Skewness -0.82
Kurtosis 3.46
Efficiency (1}) 0.88
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(1-Dr, (1-L) q. 0.0004936 0.0008332° 0.00081°

(0.0004817) 0.0002503) (0.0464)
(1-L) g, 0.0005587 0.0002773 0.00066°
(0.0004815) (0.0002482) (0.0465)
(1-L)q, 0.0005716 0.0003865 0.00081"
(0.0004822) (0.0002490) (0.0464)
(1-L) g -0.0003149 -0.0002100 -0.00021
(0.0004821) (0.0002511) (0.0465)
(1-L) q., 0.0001367 0.0001636 0.00022
(0.0004812) (0.0002495) (0.0464)
(I-L) q, 0.0006711 0.0003772 0.00087
(0.0004837) (0.0002496) (0.0465)
(1-L)q, 0.0001936 0.0000517 -0.00005
(0.0004846) (0.0002504) (0.0467)
(1-L) q4 0.0008094 0.0005461° 0.00087°
(0.0004836) (0.0002502) (0.0466)
(1-L)q, 0.0005909 0.0003480 0.00087"
(0.0004863) (0.0002519) (0.0466)
(1-L) quye 0.0002852 ~0.0001778 0.00010
(0.0004843) (0.0002495) (0.0463)
(1-L) g, -0.0001911 0.0000354 - -0.00010
(0.0004830) (0.0002481) (0.0463)
(1-L) g, -0.0000269 0.0000597 -0.00015
(0.0004823) (0.0002471) (0.04620
(1-L) g5 0.0000390 0.0001803 0.00008
(0.0004835) (0.0002468) (0.0462)
(1-L) qu,4 0.0002982 0.0001627 0.00044
(0.0004832) (0.0002557) (0.0460)
(1-L)r, 0.3577749" 0.385818" 0.2547
(0.0494236) (0.024223) (5.3301)
(1-L)r, -0.1641680° 0.039754 0.0195
(0.0522464) (0.024590) (5.7878)
(1-L)r, 0.0296377 -0.126415 -0.0214
(0.0524638) (0.024645) (5.5871)
(1-Dyr, -0.1013245° 0.075057 -0.0621
(0.0521531) (0.024585) (5.5504)
(1-L) 1, 0.1385411° 0.084086° 0.1033'
(0.0522596) (0.024766) (5.5553)
(I-L)r, -0.2547599° -0.116194° -0.2191°
(0.0524167) (0.024290) (5.6362)
(1-L)r,, -0.0156037 -0.048558" -0.0377
(0.0536977) (0.025021) (5.7714)
(1-L)r, 0.1166039° 0.113134° 0.1598°
(0.0537607) (0.024849) (5.7266)
(-D)r, 0.1261307" 0.091018" 0.1688"
(0.0520243) (0.024683) (5.5357)
(1-L) 1y -0.0671750 -0.053898" -0.0466
(0.0520598) (0.024762) (5.5476)
(1-L)ry 0.1282677" ’ 0.105857" 0.0811°
(0.0521212) (0.024816) (5.5585)
(1-L) .y, -0.1193321° -0.012281 -0.0820°
(0.0523850) (0.024421) (5.5599)
(A-L)r.p 0.0469021 -0.017220 0.0355
(0.0518779) (0.024795) (5.4941)
(1-L) 1, 0.1460722° 0.052166 0.1638"
(0.0493802) (0.028483) (5.2659)
Statistics:
Number of Usable Obs. 452 452 452
R? 0.27 0.18 0.57
Sum of Squared Errors 0.00 0.00 0.00
Ljung-Box Q(36) 40.96 [0.26] 51.41[0.04)
Jarque-Bera 2296.04
Skewness -1.16
Kurtosis 13.43
Efficiency (1}) _ _ 0.78 _

Notes: The figures in parenthesis denote estimated standard errors. The deterministic parameters are not reported. The Jarque-
Bera is asymptotically distributed as x’(2) and the critical value is 5.991 at the 5% level of signicance. The skewness and
Kurtosis statsitics are from Kendall and Stuart (1958) and the critical values are 0.22 and 0.45 at the 5% level of significance,
respectively. An asterisk denotes statistically significant at the 5% level. The statistic 1] measures efficiency gain from
employing RALS as opposed to OLS. The sample period is 1957:1-1995:11.
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Table 7.4: Covariance Matrix of YAR Residuals - US

—————————————————

[ 1.3173e-3 -2.2207e-6

OLS -2.2207e-6  1.2249e-7
1.6347¢-3 -2.9458e-6
LAD ~2.9458¢-6 1.3685e-7
1.5682¢-3 -2.9880e-6
RALS —-2.9880e-6  1.1986e-7
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Table 7.5: A(0) Matrix - US

e —————

0.0179 0.0316
OLS 2.6971e-4 -2.2303e-4

0.0263 0.0307
LAD 2.2832¢-4 -2.9108¢-4

0.0217 0.0331
RALS 2.4109¢-4 -2.4848¢-4
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Table 7.6: Forecast Error Variance Decomposition

Percentage of Variance Due to Temporary Shocks:

Horizon Interest Rates Stock Prices
(months)
1 59.39 24.28
2 60.88 : 24.45
3 60.41 24.45
4 59.88 24.54
5 60.01 24.90
6 59.94 24.51
12 59.45 25.15
24 5082 25.41
36 59.87 25.43

Percentage of Variance Due to Permanent Shocks:

Horizon Interest Rates Stock Prices
(months)
1 40.61 75.72
2 39.12 75.55
3 39.59 75.55
4 40.12 75.46
5 39.99 75.10
6 40.06 | 75.49
12 40.55 74 .85
24 40.18 74.59
36 40.13 74.57

Notes: Estimation is by ordinary least squares. The sample period is 1957:1 - 1995:11.
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Table 7.7: t-Statistic of Permanent and Temporary Components

in Real Stock Prices

et

Decomposition by (1-L)q,= aq;, + €, i=P,T,D
OLS (@ (1-L)q=1.0lqy, R?=0.25
(0.08) SSE=0.50
[12.18] DW=1.78
(b) (1-L)q,=1.00qp, R?>=0.72
(0.03) SSE=0.18
[34.41] DW=2.06
(c) (1-L)q,=1.02qp, R?>=0.03
(0.26) SSE=0.64
[3.88] DW=1.92

Notes: g, is the temporary component of real stock price movements, q,, is the permanent component, and q,, is
the deterministic component. L is the lag operator. Estimation is by ordinary least squares. Figures in parentheses

denote estimated standard errors. Figures in brackets denote standard t-statistics. The sample period is 1957:1-

1995:11.
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Figure 7.3: Cumuiative Impulse Response Functions
United States, 1957:1 - 1995:11
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Figure 7.4: Gomponents of Real Stock Prices
United States, 1957:1 - 1995:11
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Results of the Robust Estimation of the mean-reverting component

In estimating the VAR by least squares, we have ignored the fact that the
associated residuals exhibit significant non-normality. Table 7.3 reports the
estimated Jarque-Bera test statistics as 154.24 and 2296.04 for the real stock
returns and the change in interest rates regressions, respectively.”® The large value
of the Jarque-Bera statistic appears to be primarily due to the kurtosis of the
residuals and not skewness. We re-estimated the VAR system using the RALS
and LAD estimators.”® The VAR parameter estimates apd their standard errors,
employing the RALS and LAD estimation procedures (see Chapter 4, section 4.2),
are given in Table 7.3. Given these estimates and the covariance matrix of VAR
residuals (reported in Table 7.4), we then carried out the VAR decomposition.
We estimate the efficiency statistic 1) to be 0.88 and 0.78 in the VAR regressions
of real stock returns and changes in interest rates, respectively, indicating
efficiency gains of around twelve and twenty two percent respectively, in using the

RALS over the LS estimation procedure.

Asinthe LS case, the RALS and LAD estimated A(O) matrices (reported
in Table 7.5) are used to estimate the temporary and permanent innovations in real
stock prices and are presented in Figures 7.5 and 7.6. The figures are similar to

the LS case, in that the size of the temporary innovations are relatively small - this

58 Under the null hypothesis of Gaussian errors, the Jarque-Bera statistic is.
asymptotically distributed as x*(2) (see Cuthbertson et al., 1992).

*Before we estimated the VAR, (1-L)q, and (1-L)r, were deseasonalised by
regressing (1-L)q, (and similarly for interest rates) onto seasonal dummies and
taking the residuals as the deseasonalised series.
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is especially evident in the LAD case.

From the RALS and LAD estimationvof the VAR decomposition, the
temporary, permanent and deterministic components of the real stock return
series, are calculated as before. We estimate the sigrﬁﬁcance of the mean-
reverting component by regressing each component in turn on the change in real
stock prices using ordinary least squares.®® The results, reported in Table 7.8, are
in fact similar to those found when we used LS to estimate the decomposition and

the error variance in real stock prices (see Table 7.7).

From the RALS procedure, 30 percent of the variation in real stock price
movements can be explained by temporary shocks. The LAD procedure estimates
that 40 percent of the variation in real stock price movements can be explained by
the mean-reverting component. There are néticeable differences between the
LAD and RALS cumulative impulse response functions. First, the temporary
component of real stock prices is more persistent in the LAD case. Second, the
amount of price reversal of stock prices to a permanent shock is not as large in the
LAD case. These features provide an insight into the different sized estimated

mean-reverting component.

The mean-reverting component remains highly significant. The non-

normality in the least squares VAR residuals causes the size of the mean-reverting

$The orthogonality condition empirically holds for the shocks estimated by
either the RALS or LAD.
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component to be underestimated when estimated by LS. However, the earlier
qualitative findings appear to be robust to the outliers in the VAR residual

distributions.
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Table 7.8: Robust Estimation: t-Statistic of Permanént and Temporary
Components in Real Stock Prices

Decomposition by (1-L)q, = aq;, + &, i=P,T,D
RALS @ (1-L)q=0.99 qr, R?=0.30
(0.07) SSE=0.57
[13.67] DW=1.76
®) (1-L)g=0.99 gp, R’=0.66
(0.03) SSE=0.27
[29.45] DW=2.04
© (1-L)q=0.75 qp, R?=0.04
(0.19) SSE=0.78
[3.88] DW=1.88
LAD (a (1-L)q,=0.92 qr, R?=0.40
(0.06) SSE=0.50
[16.28] DW=1.81
(b) (1-L)q,=0.93 g5, R2=0.55
(0.04) SSE=0.38
[22.21] DW=2.08
(©) (1-L)q =0.87 qp, R?=0.05
(0.22) SSE=0.77
[3.95] DW=1.91

Notes: qq, is the temporary component of real stock price movements, g, is the permanent component, and g,,

is the deterministic component. L is the lag operator. Estimation is by ordinary least squares. Figures in

parentheses denote estimated standard errors. Figures in brackets denote standard t-statistics. The sample period

is 1957:1-1995:11.
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7.4  Decomposing UK Stock Price Movements

Estimating the Vector Autoregressive Process

We follow a similar procedure in decomposing UK stock prices into their
temporary, permanent and deterministic components. A VAR of [(1-L)q,
(1-L)r,]" was estimated preliminary to effecting the decomposition. We use the
BIC to determine the appropriate lag depth and test the whiteness of the VAR
residuals using the Ljung-Box portmanteau statistic. A lag depth of one was

chosen.®!

Given the estimates of the VAR parameters (Table 7.9) and the covariance
matrix of VAR residuals (Table 7.10), we then cérried out the VAR
decomposition. The estimated A(0) matrix (Table 7.11) is used to calculate the
impulse response functions and estimate the innovations to real stock prices (these
are presented in Figures 7.7 and 7.8). The cumulative impulse response functions
are reported in Figure 7.7. The temporary shock is not persistent with a half-life
of one month. A permanent shock to real stock prices increases stock prices for
the first two months and stabilises at that level. A permanent shock to interest

rates decreases interest rates, whereas a temporary shock increases interest rates.

Figure 7.8 illustrates the three components of real stock prices -

temporary, permanent and deterministic. The plot line labelled deterministic

1The AIC also chose a lag length of one.
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components are the trend and seasonal elements of real stock prices; the line
labelled temporary component adds the temporary innovations to the deterministic
component; and the line labelled permanent component adds the permanent
innovations to the temporary component. Thus, the difference between the
deterministic component and the temporary component lines measures the
temporary innovations in real stock prices over the period. Similarly, the
difference between the temporary component and the permanent component lines

measures the permanent innovations in real stock prices.

The temporary component reported in Figure 7.8 indicates that the
temporary innovations are small and stationary around the deterministic
component. Formally, at the one-month horizon 7 percent of the forecast error
variance in real stock prices is due to temporary innovations (see Table 7.12). The
forecast error variance increases to 10 percent in the long run. The size of this
temporary component is small when compared to US studies (Fama and French,
1988; Cochrane, 1994; Lee, 1995). International and UK studies on mean-
reverting stock prices offer a limited direct comparison. Poterba and Summers
(1988) and Cochran, ez al. (1993) suggest (without directly calculating) the mean-
reverting component for UK stock prices is quite similar in size to US stock
prices, at around 12 percent for 8-year horizon. -However, Mills (1991, 1995) and
Cochran and DeFina (1995) estimate the variance ratio for UK stock prices in
excess of unity and, thus, supports the hypothesis that UK stock prices are mean
averting. As mentioned above, the variance ratio and the regression-based

approaches have low power (see Richardson and Stock, 1989; Kim et al., 1991;
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Richardson, 1993; Mills, 1995).

Since in the VAR decomposition, by construction, x, = [(1-L)q, (1-Dr,)’

6263 the t-statistics obtained from

is composed of three orthogonal shocks,
regressing the change in real stock prices, (1-L)q,, onto each of these components
in turn provides a test of the statistical significance of each component.

Furthermore, the R’s associated with each least squares regression estimate the

proportion of total variation in real stock returns explained by each component.

Table 7.13 reports that the temporary component in real stock prices is
statistically significant at standard significance levels. The estimated t-statistic has
a value of 6.14. This significance of a mean-reverting component of UK stock
prices is consistent with the evidence repoﬁ:ed in Poterba and Summers (1988)
and Cochran, ef al. (1993). Although the size of the temporary component is
somewhat smaller than that reported in many of the US studies there are a number
of contributing factors; the power of alternative tests and, for example, Kim ez al.
(1991) suggest that mean reversion is a feature of the pre-war but not post-war

environment. Other factors that contribute to a smaller temporary component

S2The permanent component, X;,, the temporary component, X, , and the
deterministic (trend and seasonal) component, X, .

63 The orthogonality of the shocks to stock prices can be tested by regressing
one shock on the other shock, for the UK:

qr, = -0.0012 gy, | R%=0.0000
(0.0177) SSE = 0.1297
[-0.0687] DW =2.71
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found in UK stock prices include institutional factors and periodicity chosen to
estimate the temporary component. Moreover, recent studies that have examined

international stock markets have reported a smaller temporary component than US

counterpart studies (Cochran, et al., 1993; Mills, 1995).
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Table 7.9: VAR Parameter Estimates: OLS, LAD and RALS

OLS LAD RALS
(1-L)q, (1-L)g, 0.08333 0.09955° 0.10769"
(0.05273) (0.04050) (0.0462)
(1-L)r, -28.65800" -30.3500° -28.13956°
(6.66436) (4.69034) (5.8316)
Statistics:
Number of Usable Obs. 364 364 364
R? 0.12 0.07 0.39
Sum of Squared Errors 1.18 1.19 0.77
Ljung-Box Q(36) 45.30 [0.14] 31.48 [0.68]
Jarque-Bera ' 774.65
Skewness -0.11
Kurtosis 7.43
Efficiency (1]) 0.79
OLS LAD RALS
(1-L)r, (1-L)q 10.0005112 0.0003214 0.0006448
(0.0004211) (0.0002935) (0.0003693)
(1-L)r,, 0.2221706° 0.230463" 0.3439°
(0.0532157) (0.033988) (0.0476)
Statistics:
Number of Usable Obs. 364 364 364
R? 0.10 0.05 0.41
Sum of Squared Errors 0.00 0.00 0.00
Ljung-Box Q(36) 31.17 [0.70] 37.48 {0.40]
Jarque-Bera 809.74
Skewness 0.96
Kurtosis 7.35
Efficiency (1}) 0.79

Notes: The figures in parenthesis denote estimated standard errors. The deterministic parameters are not reported. The Jarque-
Bera is asymptotically distributed as x*(2) and the critical value is 5.991 at the 5% level of significance. The skewness and
Kurtosis statistics are from Kendall and Stuart (1958) and the critical values are 0.22 and 0.45 at the 5% level of significance,
respectively. An asterisk denotes significantly different from zero at the 5% level of significance. The statistic 1] measures
efficiency gain from employing RALS as opposed to OLS. The sample period is 1965:1-1995:6.
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Table 7.10: Covariance Matrix of VAR Residuals - UK

[ 3.2546¢-3 —4.0716e-6]

OLS -4.0716e-6 2.0752e-7
3.2649¢-3 -4.0936e-6
LAD -4.0936e-6 2.0818e-7
3.2631e-3 -4.0774e-6
RALS -4.0774e-6  2.0803e-7
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Table 7.11: A(0) Matrix - UK .

0.0153 0.0550
OLS 4.1440e-4 -1.8918e-4

0.0162 0.0548
LAD 4.1168e-4 -1.9673e-4

0.0175 0.0544
RALS 4.0710e-4 -2.0565e-4
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Table 7.12: Forecast Error Variance Decgposition '

Percentage of Variance Due to Temporary Shocks:

Horizon Interest Rates Stock Prices
(months)
1 82.75 7.16
2 83.47 9.97
3 83.49 10.33
4 83.49 10.34
5 83.49 10.34
6 83.49 10.34
12 83.49 10.34
24 83.49 10.34
36 83.49 10.34

Percentage of Variance Due to Permanent Shocks:

Horizon Interest Rates Stock Prices
(months)
1 20.97 92.84
2 20.70 90.03
3 21.18 89.67
4 21.34 89.66
5 21.33 89.66
6 21.45 89.66
12 21.74 89.66
24 22.65 89.66
36 22.66 89.66

Notes: Estimation is by ordinary least squares. The sample period is 1965:1-1995:6.
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Table 7.13: t-Statistic of Permanent and Temporary Components
in Real Stock Prices '

Decomposition by (1-L)q, = oq;, t &, i=P,T,D
OLS (@ (1-L)q,=0.99 qr, R%=0.09
' (0.16) SSE=1.22
[6.14] DW=1.65
(b) (1-L)q,=1.00 qp, R?=0.85
(0.02) SSE=0.21
[44.64] DW=2.43
(¢ (1-L)g, = 1.00 qp, R%*=0.06
(0.21) SSE=1.27
[4.72] DW=1.74

Notes: ¢, is the temporary component of real stock price movements, g, is the permanent component, and qp,,
is the deterministic component. L is the lag operator. Estimation is by ordinary least squares. Figures in
parentheses denote estimated standard errors. Figures in brackets denote standard t-statistics. The sample
period is 1965:1-1995:6. :
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Robust Estimation

The VAR decomposition requires the parameters of the VAR [(1-L)q,
(1-L)r,]’ and the covariance matrix of the VAR residuals.* As reported in Table
7.9, the residuals of the VAR estimated by LS are non-normal; the Jarque-Bera
non-normality statistic is 774.65 and 809.74 for the stock price and interest rate
regression, respectively. This suggests that there is a substantial gain in efficiency
in using robust estimation procedures to estimate the VAR to effecting the
decomposition. The RALS efficiency gain statistic 1] is estimated at 0.79,

indicating efficiency gains of around 21 percent, for both regressions.®®

The VAR parameter estimates from the three estimation procedures, LS,
RALS and LAD, are shown in Table 7.9. These estimates and the covariance
matrix of the residuals (see Table 7.10) are used to calculate the elements in the
A(0) matrix (see Table 7.11). Asin the LS case, the estimated A(0) matrix is used
to estimate the innovations in real stock prices and are presented in Figures 7.9
and 7.10. The RALS and LAD estimated temporary and permanent components
in real stock prices are similar to.the those estimated using LS (as presented in
Figure 7.7 and 7.8). The size of the temporary component is relatively small. The

robust estimation procedures tends to slightly increase the size of the temporary

$Before we estimated the VAR, (1-L)q, and (1-L)r, were deseasonalised by
regressing (1-L)q, (and similarly for interest rates) onto seasonal dummies and
taking the residuals as the deseasonalised series.

$The efficiency gain appears to be primarily due to the fourth moment.
Skewness statistics are -0.11 (insignificantly different from zero) and 0.96, and
kurtosis statistics 7.43 and 7.35, for stock price and interest rate regression,
respectively.
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component - the non-normal distribution properties of VAR residuals does not

account for the finding of a mean-reverting component in UK stock prices.

In testing the size and significance of the} mean-reverting component we
repeat the procedure employed in the LS case: each component of (1-L)q, as
generated by the LAD and RALS technique is regressed on the change in real
stock prices using ordinary least squareé. Tﬁe results, reported in Table 7.14,
show that the temporary component is around the same size and of similar
significant than the LS estimation. The two robust estimation procedures yields.
a slightly differing temporary component - the RALS estimates a temporary
component of 11 percent, whereas for the LAD procedure 10 percent of the error
variance in real stock prices due to temporary innovations - both are significant

at standard significance levels.

-173 -



Table 7.14: Robust Estimation: t-Statistic of Permanent and

Temporary Components in Real Stocl§_=Prices

Decomposition by (1-L)q,= aq;, + &, i=P,T,D
RALS (@ (1-L)q,=0.98 qr, R%*=0.11
(0.15) SSE=1.20
[6.67] DW=1.64
() (1-L)q,=099qp, - R*=0.83
(0.02) SSE=0.23
[41.88] DW=2.44
© (1-L)q,=0.93 gy, R?=0.06
(0.21) SSE=1.28
[4.46] DW=1.69
LAD (@ (1-L)q=0.98 qr, R’=0.10
(0.15) SSE=1.21
[6.45] DW=1.65
(b) (1-L)q,=0.99 qp, R?=0.83
(0.02) SSE=0.24
[41.11] DW=2.26
() (1-L)q,=0.85qp, R?=0.06
(0.19) SSE=1.28
[4.40] DW=1.73

Notes: g, is the temporary component of real stock price movements, q,, is the permanent component, and g, is
the deterministic component. L is the lag operator. Estimation is by ordinary least squares. Figures in parentheses
denote estimated standard errors. Figures in brackets denote standard t-statistics. The sample period is 1965:1-

1995:6.
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Figure 7.59: impuise Response Functions: LAD and RALS
United Kingdom, 1965:1 - 1995:6
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7.5  Conclusion

This chapter builds on the earlier two chapters in exploring the size and
signiﬁcance of the mean-reverting component in real stock prices in the post-war
period, for the US and UK. Using a multivariate innovation decomposition
method we have investigated the dynamic relationship between real stock returns
and changes in interest rates to estimate the temporary component of real stock
prices. The underlying VAR in the decomposition was estimated using three

estimation procedures: LS, RALS and LAD.

The evidence supports the hypothesis that US and UK stock prices contain
a statistically significant mean-reverting component, explaining around 25%, and
10%, of the variation in real stock price movements, for US and UK prices,
respectively. Therefore, returns are to some extent predictable (see, for example,
Pesaran and Timmermann, 1995). This evidence supports the earlier results from

the previous two chapters.

The smaller mean-reverting, albeit statistically sigrﬁﬁcant, component in
UK stock prices is consistent with international studies. There is strong evidence,
especially that of previous researchers who have used vector autoregressive
techniques to decompose stock prices, that US stock prices contain a large mean-
reverting component and our findings support this hypothesis. In contrast, the
previous results for UK stock prices which rely on variance ratio and the related
regression-based tests which generate contrasting findings dependent on the

sample period and the distribution properties of the variance ratio statistic. For
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example, Mills(1991, 1995) and Cochran and DeFina (1995) find that post-war
UK stock prices contain a mean-averting component, while Poterba and Summers
(1988) find a significant mean-réverting component that includes the WW II

period.

The VAR approach we use is not subject to the overlapping data problems
encountered in the long-horizon approaches and, in contrast to Mills (1991, 1995)
and Cochran and DeFina (1995), identifies a significant mean-reverting component
in UK stock prices that explains about 10 percent of stock price movements. It
is noticeable that temporary shocks to UK real stock prices have a half-life of only
one month - thus, the mean-reverting componenf is not persistent and is less likely
to be identified using either a regression-based or a variance-ratio approach.
Whereas, temporary shocks to US real stock prices tend to be quite persistent,

with a half-life of seven months.

The findings are robust to alternative estimation procedures designed to
allow for non-Gaussian disturbances. The RALS estimation procedure yields
substantial efficiency gains of over 20 percent. The non-normality in the least
squares VAR residuals causes the size of the mean-reverting component to be
underestimated. The RALS procedure estimates that, for the US, 30 percent of
the variation in real stock price movements can be explained by temporary shocks.
The LAD procedure estimates that 40 percent of the variation in real stock price
movements can be explained by the mean-reverting component. The RALS and

LAD procedures estimate only a slightly higher mean-reverting component that

- 178 -



the LS procedure. Thus, the LS qualitative findings appear to be robust to the

outliers in the VAR residual distributions.

Evidence of a significant mean-reverting component in stock prices could
be explained by the existence of speculative bubbles, fads or noise traders
(Blanchard and Watson, 1982; Shiller, 1984; De Long e al., 1990, Shleifer and
Vishny, 1997). A practical implication for investors is that returns must be
negatively serially correlated at some frequency. This suggests investors should
use a portfolio strategy that includes equities that have recently declined in value.
An extension to the present work ié to examine the degree of predictability implied

by the mean-reverting component.
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Chapter 8
LITERATURE ON THE STOCK RETURN-INFLATION PUZZLE

AND THE PROXY HYPOTHESIS

8.1  The Fisher Hypothesis

The influential work of Irving Fisher, The Theory of Interest (1930), is still
the object of much debate, centred around the inflation-interest rate puzzle.
“When the cost of living is not stable, the rate of interest takes the appreciation
and depreciation into account to some extent, but only slightly and, in general,
indirectly. That is, when prices are rising, the rate of interest tends to be high but
not so high as it should be to compensate for the rise; and when prices are falling,
the rate of interest tends to be low, but not so low as it should be to compensate
for the fall” (p. 43). The hypothesis postulated by Fisher has taken many forms,
including generalizing the relationship to all assets. It is the inflation-stock returns

puzzle that we will empirically examine in Chapter 9.

The most common version of the Fisher hypothesis is that ex ante real
rates of return are uncorrelated with expected inflation. “If men had perfect
foresight, they would adjust the money interest rate so as exactly to
counterbalance or offset the effect of changes in the price level, thus causing the
real interest rate to remain unchanged at the normal rate”. (Fisher, 1930, pp. 414-
5). Therefore, assets are a hedge against inflation in the sense that expected
nominal rates of return on assets move one-to-one with expected inflation. Fisher

(1930) acknowledges that lack of foresight (“money illusion”) would lead to a
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less-than-perfect positive correlation between nominal interest rates and the actual

rate of inflation.

The dynamic effects of the inflation-interest rate relation are described by
Fisher (1930) as price changes affecting interest rates via the volume of trade and
the demand for loanable funds. “If the price level falls in such a way that they may
expect for themselves a shrinking margin of profit, they will be cautious about
borrowing unless interest falls, and this very unvﬁllingness to borrow, lessening
the demand in the money market, will tend to bring interest down. On the other
hand, if inflation is going on, they will scent rising prices ahead and so rising
money profits, and will be stimulated to borrow unless fhe rate of interest rises
enough to discourage them, and their willingness to borrow will itself tend to raise
interest” (p. 400). “The indirectness of the effect of changed purchasing power
of money [on money rate of interest] comes largely through the intermediate steps
which affect business profits and volume of trade, which in turn affect the demand
for loans and the rate of interest. There is very little direct and conscious
adjustment through foresight. Where such foresight is conspicuous, as in the final

period of German inflation, there is less lag in the effects” (p. 494).

Fisher’s (1930) work on interest rates is based on the view that the
monetary and real sectors of the economy are independent. “Theoretically, the
rate of interest should be subject to both a nominal and a real variation, the
nominal variation being that connected with changes in the standard of value, and

the real variation being connected with the other and deeper economic causes”
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(p.493). It is the independence of the monetary and real sectors that results in
expected nominal interest rates (or rates of return on assets) moving one-for-one
with expected inflation. That is, the real interest rate is unrelated to the monetary
sector and is determined solely by real factors, e.g. productivity, time preference,
and risk aversion. The hypothesis that prices have no real effects - money is
neutral - does not exclude the fact that inflation and real output growth can be
correlated via, for example, the money supply process (Fama, 1981; Cox, Ingersoll

and Ross, 1985).

The Fisher hypothesis can be summarised in an equation: r" = r - 7°, where
r" = real rate of interest, r = nominal rate of interest, and ©° = expected rate of
inflation.® Ifr" is constant then r and 7 are perfectly positively correlated, and
the Fisher hypothesis is dr/dn® =1 or df /dn® = 0, where d is the differential
operator. In order to test directly the Fisher hypothesis, a measure of inflation
expectations is required. Previous studies assume either perfect foresight (the
observed inflation rate), adaptive expectations (lagged inflation rates), rational
expectations (instrumental variable estimation) or use survey data (for example,
the Livingston survey of expected inflation). In terms of the true expected
inflation, each of these approaches is subject to misspecification and therefore

measurement error.

Tobin (1965) and Feldstein (1976) modify the Fisher hypothesis to account

Fisher did not state that the expected real rate of interest must be constant.
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for an interest insensitive demand for real money balances and taxes. Tobin argues
that the nominal rate of interest rises by less than the rate of inflation because
inflation reduces the demand for feal money balances, increases capital intensity
and lowers the real rate of return. Feldstein extends Tobin’s argument by also
including corporate and personal income taxes in the analysis. For example, with
no change in capital intensity, a corporate tax cause the nominal rate of interest
rises by more than the rate of inflation. Furthermore, real interest rates may either
rise or fall depending on the difference between the corporate tax rate and the

personal income tax rate.
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8.2  Explaining the Stock Return-Inflation Puzzle

The traditional view that common stocks are a good hedge against
inflation is not empirically supported. Post-war data for the US and other
countries exhibits a significant negative correlation between inflation and real
stock returns and between inflation and nominal stock prices®”. Thus, real stock
returns are not independent of inflation. This contradicts the Fisher model in
which nominal asset returns move one-for-one with the rate of inflation so that
real stock returns are determined by real factors independently of the rate of

inflation.

In a pioneering paper, Fama (1981) sought to explain the stock return-
inflation puzzle by hypothesizing that the negative correlation is induced by
negative correlations between inflation and real activity together with a positive
relationship between stock returns and real fundamentals. Fama (1981) explains
the negative relation between stock returns and inflation using money demand
theory.® An increase in expected future real activity leads to an increased demand

for real money balances. The increased demand for real méney balances, given the

67 See, for example, Jaffe and Mandelker (1976); Bodie (1976); Nelson
(1976); Fama and Schwert (1977); Fama (1981); Geske and Roll (1983); Gultekin
(1983a,b); Solnik (1983); Mandelker and Tandon (1985); Wahlroos and Berglund
(1986); Lee (1989); Kaul (1987, 1990); Marshall (1992); Cochran and DeFina
(1993); Graham (1996); Groenewold, O’Rourke and Thomas (1997).

%In a similar study to that of stock returns, Fama and Gibbons (1982) argue
that the variation in expected real returns on Treasury bills “is more fundamentally
due to the capital investment process than due to variation in expected inflation”
(p. 298).
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level of nominal money, results in a fall in the price level.*” Furthermore, assuming
stock prices are determined by expected future dividends and therefore, stock
returns are related to expected real output growth in the economy (see, for
example, Fama, 1990; Schwert, 1990b; Canova and De Nicolo, 1995),” then
inflation will proxy for future real output growth, leading to the spurious finding
of a negative correlation between stock returns and inﬂati-on. In effect, therefore,
Fama's proxy hypothesis suggests that the apparent anomalous relationship
between stock returns and inflation is simply proxying the positive relationship one
would expect between stock prices and fundamentals. The negative relation
disappears when you include both inflation and future real output as explanatory

variables (Fama, 1981; Kaul, 1987).

A number of authors have concentrated on modelling the relationship
between stock returns, inflation, real activity and monetary growth in a general-
equilibrium or partial-equilibrium framework (see, for example, Danthine and
Donaldson, 1986; Stulz, 1986; Marshall, 1992; Balkshi and Chen, 1996). These
models follow from Fama's (1981) 'proxy hypothesis' according to which the

negative relationship between inflation and stock returns reflects the fact that real

®The reason why expected future output growth in the economy and inflation
are negatively correlated may also be due to counter-cyclical monetary policy
(Kaul, 1987).

*The relation between stock returns and expected future real output growth
can be explained by a number of possibilities, for example, real output growth
captures information about future cash flow to firms (Fama, 1981; Geske and
Roll, 1983; Kaul, 1987), stock prices and production can respond together to
other variables (Barro, 1990), and stock returns might cause changes in real
activity (ibid).
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activity is negatively related to inflation (through a quantity theoretic mechanism)
and positively related to stock returns. Although these models provide a more
formal treatment of the role of money (e.g., through cash-in-advance constraints
or treating money as an asset), they are not constructed within the Fisherian
framework - the models violate the hypothesis of independence of the real and
monetary sectors of the economy - and are, therefore, not strictly appropriate to

examine the Fisher hypothesis.

From Danthine and Donaldson (1986), Stulz (1986), Marshall (1992) and
Bakshi and Chen (1996) we can identify a number of cc;mmon findings that are
consistent with previous empirical studies: first, stocks do not offer a hedge
against that portion of inflation caused by fluctuations in real economic activity;
second, stocks offer a good hedge over the long run against purely monetary
inflations; and third, it is the interdependence of economic variables that provides
the explanation of the negative stock return-inflation relationship.”" A drawback
of these equilibrium models 1s that they tend to be highly stylized and the
correlations predicted by them bare little resemblance to actual data. This brings

into question their ability to explain the stock return-inflation phenomenon.

More recently, Boudoukh, Richardson and Whitelaw (1994) show that the

coefficient from regressing stock returns on expected inflation is not necessarily

"Balduzzi (1995) using a five variable VAR finds evidence that inflation and
stock returns exhibit the strongest negative correlation when there is an inflation
innovation.
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equal to one because expected inflation may be partly proxying for expectations
about future real rates. Furthermore, the sign and size of the coefficient is
determined by the covariance between expected inflation and expected future
values of real variables - which is expected to be negative. Thus, in a money-
neutral setting, the negative correlation coefficient is consistent with the Fisher
hypothesis. Boudoukh et al. (1994) use expectations about future dividend
growth rates and price-dividend ratios as a proxy for expected future real
variables. Since, through time, éxpected dividend growth rates differ across
industries, this forms the basis for their cross-sectional study of the Fisher
hypothesis applied to US industry-sorted stock returns and expected inflation.
Stock returns of noncyclical industries tend to covary positively with expected
inflation, while the reverse holds for cyclical industries. This finding is consistent

with Fama (1981) and Kaul (1987).

The hypothesis that expected future output growth in the economy and
inflation are negatively correlated is due to counter-cyclical monetary policy
(Kaul, 1987, 1990).” Periods when monetary policy Were counter-cyclical -
according to Kaul this is the post-World War II period - exhibit a stronger
negative relationship. There is a close link between the monetary policy of the
Federal Reserve and the relation between stock returns and inflation. Graham

(1996) offers additional support for this hypothesis.

?This is consistent with Fama (1981) proxy hypothesis.
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An alternative perspective to that of Fama’s (1981) explanation of the
negative relation between stock returns and inflation is 'provided by Geske and
Roll (1983) and centres on the finding that there is a causal relation between stock
returns and inflation.” Geske and Roll (1983) argue that stock returns Granger
cause expected inflation through a chain of macroeconomic events. The argument
is based on the response of money supply to changes in anticipated real activity
rather than the money demand theory used by Fama. Assuming that changes in
government revenue are negatively related to changes in real activity and
government expenditures are fixed, then changes in revenue lead to opposite
changes in the government’s deficit. If the deficit is monetized, the change in
money supply causes an increase in inflation. If the deficit is not monetized, then
real interest rates increases, which may increase nominal interest rates - a proxy
for expected inflation. As in the case of Fama (1981), agents anticipate this

process, and stock returns signal changes in expected inflation.

If stock returns Granger cause expected inflation, and there exists a
negative relation between stock returns and inflation, then the proxy hypothesis

is explained by the money supply theory offered by Geske and Roll. The absence

If the negative relation between real stock returns and inflation is non-
spurious, evidence of a causal relation from inflation to real stock returns could
imply non-neutrality of money. A number of studies suggest alternative theories
that could explain this finding, these include the riskiness of stocks (Malkiel, 1979;
Pindyck, 1984), money illusion (Modigliani and Cohn, 1979), the tax system
(Summers, 1981), and the Mundell-Tobin effect (Ram and Spencer, 1983).
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of the causal relation supports the Fama interpretation.” Empirical evidence is
mixed, for example, Solnik (1983) and Titman and Warga (1989) provide
consistent support for Geske and Roll’s hypothesis, Cozier and Rahman (1988)
find, for Canada, no Granger causal relation between inflation and real stock
returns, James, Koreisha and Partch (1985) strongly support the hypothesis that
stock returns Granger causes expected inflation and, in contrast, Lee (1992)
supports Fama (1981) and reports that, with interest rates included in the VAR,
stock returns explain little variation in inflation. Furthermore, Lee (1992)
highlights that the key feature that differentiates his results from James et al.
(1985) is the inclusion of interest rates in the VAR.” More recently, Graham
(1996) finds that the negative relation between stock returns and inflation is not
connected to the degree of debt monetization. Balduzzi (1995), using a five
variable VAR, finds evidence that the interest rate explains a large fraction of the

negative correlation

There are a number of alternative competing theories to Fama (1981) and

™In contrast, Ram and Spencer (1983) find evidence of unidirectional causality
from inflation to stock returns. This causal relation can be explained by the
Mundell-Tobin effect - the combination of the Phillips curve and a negative
output-stock return correlation. However, more recent studies do not support the
hypothesis that inflation (Granger) causes stock returns.

"Lee (1989) estimate a nonlinear stochastic equilibrium model to observe the
empirical relations between inflation and stock returns. The model generates
correlation signs consistent with Fama (1981) and similar to actual data. Forecast
error variances reveal a similar pattern to Lee (1992); stock returns appears to be
Granger-causally prior and explains substantial fraction of the variation in real
activity but does not explain variation in inflation. Furthermore, the model
highlights the importance of the interest rate variable in explaining variation in
inflation.
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Geske and Roll (1983) that explain the negative relation bgtween inflation and real
activity. For example, Feldstein (1980a,b) argues that the negative relation
between inflation and real activity can be explained by the tax burden theory, that
is inflation increases the effective tax rate and hence depresses real activity.
Malkiel (1979), Evans (1991b) and Evans and Wachtel (1993) argue that inflation
uncertainty is positively related to the level of inflation, and that inflation
uncertainty depresses future output because it discourages investment. In a
related study, Kaul and Seyhun (1990) shows that, together with the money
demand process suggested by Fama (1981), the negative relation between stock
returns and inflation can be explained by the supply side shocks reflected in
relative price variability particularly the OPEC oil crises of 1973-74. The relative
price variability adversely affect output and stock returns. Therefore, the negative
relation between stock returns and inflation proxy for the negative effects of

relative price variability on the stock market.

Boudoukh and Richardson (1993) have assessed the stock return-inflation

6 Using two centuries of

relationship in terms of a long-horizon perspective.
annual data, they find, for a 5-year horizon, that there is a significant positive

relationship between inflation and nominal stock returns.”” This finding is horizon

Evans and Lewis (1995) using a Markov switching model and cointegration
techniques examines the long-run relationship between nominal interest rates and
inflation. The findings support the Fisher hypothesis that (in the long run) nominal
interest rates reflect expected inflation one-for-one.

A one-for-one relationship between inflation and nominal stock returns is not
statistically supported. Although, the ex ante results tend to provide tentative
support for the Fisher hypothesis.
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specific since a short-horizons produces contrary results. Boudoukh ez al. (1994)
reports a similar finding. The 1802-1990 period covers a number of structural
changes in the series. Moreover, because Boudoukh and Richardson (1993) are
constrained in dealing with this issue as the long-horizon regression approach
requires a long period of data, they focus their analysis on the different empirical
implications over short and long horizons.” These results have to be considered,
however, in the context of the inclusion of the Great Depression period and

possible measurement errors due to the use of pre-war data (Schwert, 1990a).

Although the majority of studies that have investigated the Fisher
hypothesis are US based, there exists a large volume of international evidence, for
example, Gultekin (1983a), Mandelker and Tandon (1985), Wahlroos and
Berglund (1986) consider Finland, Kaul (1987, 1990), Cozier and Rahman (1988)
consider Canada, Peel and Pope (1988) consider the UK, Alkhazali and Pyun
(1997) provide evidence from the Pacific-Basin countries and Groenewold e al.

(1997) consider Australia.

In the next chapter, we investigate the stock return-inflation puzzle in the
context of a simple macroeconomic model involving overlapping wage contracts,
which predicts that the negative covariation of real stock returns and inflation is
due primarily to aggregate supply side (real productivity) shocks. We then

investigate the empirical validity of this prediction by decomposing inflation into

™The two sub-periods 1870-1990 (post-Civil War) and 1914-1990 (post-
Federal Reserve) report similar results to the full sample period.
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two counterfactual series, one due to monetary (aggregate demand) shocks and
the other due to real productivity (aggregate supply) shocks.” The statistical
significance of the empirical correlation between the counterfactual inflation series
and stock returns can then be tested. In addition, we also test other predictions
of our simple model concerning the correlation of stock returns and movements
in real output due to aggregate demand and supply shocks, as well as the

correlations between inflation and real output movements:

"In order to effect a decomposition of the output growth and inflation series

into the components due to aggregate supply and demand shocks respectively, we
employ a multivariate innovation decomposition method.
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Chapter 9
ASSESSING THE STOCK RETURN-INFLATION PUZZLE:

EVIDENCE FROM A MACRO MODEL AND EMPIRICAL FINDINGS

9.1 A Macro Model: Explaining the Relationship Between Stock Returns

and Inflation

“Theoretically, the rate of interest should be subject to both a
nominal and a real variation, the nominal variation being that
connected with changes in the standard of value, and the real
variation being that connected with the other and deeper economic

causes” (Fisher, 1930, p. 493).

In the traditional‘aggregate demand-aggregate supply (ADAS) model with
a long-run vertical supply curve, aggregate demand innovations result in only a
temporary rise in output, while aggregate supply innovations permanently affect
the level of aggregate output. That is, in the long run, aggregate demand

innovations raise the price level but not output.

The purpose of this section is to set up an illustrative model which is
essentially neoclassical and Fisherian in structure - and which allows reasonably
complex dynamics - in order to illustrate the pattern of covariances which one
would expect to find between macroeconomic and financial time series

alternatively stripped of their aggregate demand and aggregate supply
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components. The model captures the salient features of the relation between
stock returns and inflation. This can therefore serve as a motivating vehicle for

the empirical work which follows.

Consider the simple linear macro model that we outlined in Chapter 3,
section 3.1. The macro model includes a stock price determination equation and
a wage formation equation where wages are set in a two-period overlapping
contracts framework. For ease of reading a concised version of the model is
presented here. The model incorporates the salient features of the models of

Fischer (1977), Blanchard (1981) and Blanchard and Quah (1989):

O.1)
%2 y,=n +606

©3) p,=w -6
94) w =w{E_,n =n)
9.5) =, = ¢y,

m,- p, +af, +am

96) g, =T, + E% o EAT,, .+ kT

J

where the permissible range of the parameter space is governed by:

(9.7) a>0, 0<a<l1l 0<éd<l1l 0<pcl

The variables, y, m, p, w, n, and O denote, respectively, the log of output, the
money supply, the price level, the nominal wage, employment and productivity,
respectively. The log of dividends on equities is represented by m; n represents

full employment; and q is the log of the real price of equities.
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Equation (9.1) represents the aggregate demand side of the economy; with
aggregate demand a function of real balances, productivity and distributed profits.
For generality, we follow Blanchard and Quah (1989) in allowing productivity to
affect aggregate demand on the grounds that it is likely to affect investment, so
that we expect a>0, although setting a=0 does not qualitatively alter the results.
The production function, equation (9.2), relates output to the level of employment
and productivity. Equation (9.3) states that fhe price level is a function of the
nominal wage and productivity. The nominal wage (equation (9.4)), chosen two
periods ahead, is set at the expected full employment level in a two-period
overlapping contracts framework (Fischer, 1977). Equation (9.5) expresses log

of real dividends (distributed profit) as a function of real output.

Equation (9.6) specifies the log of real stock prices as a linear function of
the log of real dividends. Following Campbell and Shiller (1988a,b), the log of
real stock prices is a log-linear approximation of the standérd present value model
of stock prices.®® The equation says that the log real stock price at time t is
determined by the log real dividend at time t, expected real dividend growth into
the infinite future, and a constant. Future real dividend growth rates are
discounted at the rate p', for j=0,..,, where p is close to but a little smaller than
(positive) unity. A detailed derivation of equation (9.6) is given in Chapter 3,

Appendix 3.1.

®We assume the dividend enter the log dividend-price ratio, 8,=7,-q, in the
current period t - that is, the dividend in period t is also known in period t.
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To close the model, we assume that m and 0 are determined as follows:

%8 6,=6,_ +e
(9.9) m

s, t

¢ = My

t e

where ¢, and e, are serially uncorrelated and pairwise orthogonal demand and

supply disturbances.

Solving the model for inflation and real output growth, results in:

(9.10) Apt = €2 T 6 Tt (a+a¢)es,t—2

9.11) Ay,

(1-ad) (e, — €;,5)
+ (I—Q’,d))_l(l +a)(es,t B es,t—Z) M es,l—2

From (9.11), we see that aggregate demand disturbances have only short-run
effects on real output - cancelling out after two periods. Aggregate demand
shocks do, however, have both short- and long-run effects on prices (equation
(9.10)): a one-standard deviation demand shock raises inflation after two periods,
leaving prices permanently higher. Aggregate supply disturbances have both long-
run and short-run effects on both prices and output. A one standard-deviation
supply shock raises real output growth immediately and is only partially reversed
two periods later, leaving output permanently higher (equation (9.11)). A one-
standard deviation supply shock leads to an immediate fall in prices (equation
(9.10)) through the cost-plus-mark-up pricing rule. The aggregate supply shock

causes a shift along the aggregate demand curve, however, as investment demand
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and consumption out of distributed profits rise and has an effect on prices once
contracts are renegotiated two periods later - hence the positive third term on the
right-hand side of (9.10). Aggregate supply shocks have a net long-run depressant
effect on prices - the long-run aggregate demand curve is downward sloping - so
long as (a+ad)<1, which is plausible given the bounded permissible range of these

parameters - see (9.7).

To examine how these disturbances affect real stock returns we solve for

real stock prices in terms of aggregate supply and demand disturbances:

9.12) Ag, = ¢A-p)(1-ad)[(e;,~€;,,)
+ (1 +a)(es,t B es,t~l)]
+ (bp(es,t B es,t—l) * d)es,t—l

As in the case of real output, aggregate demand disturbances have only short-run
effects on real stock prices. A positive one unit aggregate demand disturbance
increases real stock prices in the same period and reduces real stock prices by an
equal amount in the following period. However, a similar aggregate demand
disturbances on real output takes an additional period to have a similar zero long-
run effect. In this model aggregate demand disturbances have a more persistent
effect on real output than real stock prices.®! Similar ro real output, aggreagte

supply disturbances have both short-run and long-run effects on real stock prices.

81'This feature is consistent with the hypothesis that stock returns Granger-
cause future real activity (see, for example, Fama, 1981; James ez a/., 1985; Lee,
1992).
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Given the parameter space (9.7), an aggregate demand disturbances
increases real stock prices in the short run and, in the long run, real stock prices
decline back to their original level. An aggregate supply disturbance increases real
stock prices in the short run and declines by a fraction of this increase in the long
run. The net long-run effect of an aggregate supply disturbance is an increase in

real stock prices.

The solution to the stock return, inﬂatioﬁ and real output growth equations
is consistent with Blanchard (1981). “The stock market is not the “cause” of the
increase in output, no more than the increase in output is the cause of the initial
stock market change. They are both the results of changes in policy. .....Although
... the change in the stock market and the resulting increase in output will precede

the change in policy, they are still caused by it” ( p. 141).

The covariance between real stock returns and inflation is obtained from
equations (9.10) and (9.12), where the aggregate supply and demand disturbances
are serially uncorrelated. The covariance between changes in stock prices and that

part of inflation due entirely to supply shocks is given by:

sy - - | PA+ra)(d+p) |
(9.13) Cov(Ag,,A’p,) (1-00) bp <0

where A%, denotes that part of the series Ax, due only to aggregate supply shocks,
for x=p,y. Inflation and real stock returns are expectd to be negatively correlated,

given reasonable parameter values for a, «, p, and ¢ as identified by (9.7).
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Therefore, a positive supply disturbance contemporaneously increases stock prices

and reduces inflation.

Also, from (9.10) and (9.12) we can see that, in the absence of aggregate
supply shocks to inflation, real stock returns are orthogonal to inflation - their

covariance is zero.%?

(9.14) Cov(Aq,,A%,) = 0

where A%, denotes that part of the series Ax due only to aggregate demand

shocks, for x=p,y.

Since previous results (Fama, 1981; Geske and Roll, 1983; Kaul, 1987,
Barro, 1990; Fama, 1990) indicate that real activity has a central role in any story
about the variation of returns, we examine the relations between returns and real
activity in detail. The covariance between real stock returns and real output
growth can then be calculated from (9.11) and (9.12). In the absent of aggregate

demand shocks, the covariance is given by:

l1+a

¢(+a)(1-p) ,
1-oad bp| >0

1-ad

(9.15) Cov(Ag,,A%,) = [

While in the absence of aggregate supply shocks the covariance becomes:

82This zero covariance property holds so long as wages are more than one
period in advance - an assumption which seems justified for quarterly data.
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1
(1-ad)

¢(-p)
1-ad

> 0

(9.16) Cov(Ag,,A%,) = [

Real stock returns and real output growth are positively correlated. Furthermore,
the covariance is greater in the case when only aggregate supply disturbances are

considered:

(9.17) Cov(Ag,,A%,) > Cov(Ag,, A%,)

From equations (9.10) and (9.11) we can also calculate the covariances

between inflation and real output growth. Inflation covaries negatively with real

output growth:
[ 1+a l1+a
9.18) Cov(A‘p,, A® = - + (a+ -1 < 0
©.18) Cov(Ap,, &%) =~ | 0 + @ ““’)(1-,&4) )
!
(9.19) Cov(A%, ,A% ) = - <0
co | (I-ad)

Furthermore, the covariance is larger (in absolute value) in the case when only

aggregate supply disturbances are considered:

(9.20) |Cov(A%p,,A%,)| > |Cov(A%p,, A%,)|

In this framework, aggregate supply disturbances reduce consumer prices
and increase real output and stock prices, leading to‘ the expected negative
relationship between inflation and real stock returns. Positive aggregate demand
disturbances increase consumer prices and real output (in the short run). Thus,

our simple model is consistent with the proxy hypothesis put forward by Fama
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(1981) and Fama and Gibbons (1982) to solve the inflation-stock return puzzle.*

From the covariances between inflation, output grqwth and stock returns
obtained from the simple model we expect to find real stock returns to be
negatively correlated with inflation movements that are due to aggregate supply
innovations. However, real stock returns will not be correlated with inflation due
to aggregate demand innovations. Real stock returns are positively correlated
with real output growth, and the size of the correlation is expected to be larger
when output growth is due to aggregate supply innovations. Inflation and real
output growth are negatively correlated whether considering aggregate demand

or aggregate supply innovations.

We simulate the above, with a drift term included in equations (9.8) and
(9.9) to effect the relations between inflation, real stock returns, and real output
growth. To identify the model we assign the following values to the model’s
parameters: ¢=0.1, a=0.4, ug=5.0, p,,=8.0, $=0.6, and p=0.96. The value of p

is taken from Campbell ef al. (1997) to be 0.96 in annual data.®*

83 The proxy hypothesis suggests that the observed negative correlation
between real stock returns and inflation may be due to the conjunction of a
positive relationship between aggregate real activity and real stock returns and a
negative relationship between real activity and inflation. While the first of these
correlations is intuitive, Fama (1981) argues that inflation may negatively covary
with real activity effectively to clear the money market. In effect, Fama is
assuming a quantity theory of money framework. While many economists might
wished to debate the applicability of such a framework in the short run, its long-
run applicability would probably achieve greater consensus.

%For monthly data, p is about 0.997.
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A sample of 100 is replicated 200 times. We éxploit the generated
inflation, real stock return and real output growth series to examine the
importance of the aggregate demand and aggregate supply shocks in explaining
movements in real stock prices. The correlation coefficients from the simulated
data are consistent with equations (9.13)-(9.20). Table 9.1 reports a large
negative correlation® between real stock returns and inflation. Consistent with the
story (and empirical evidence) of Fama (1981), real stock returns are strongly
positively correlated with real output growth and inflation is strongly negatively
correlated with real output growth. Therefore, the negative inflation-real output
growth relationship is proxying for the inflation-real stock return relationship.
Moreover, there is no relationship between real stock returns when inflation (or
real output growth) is due only to aggregate demand shocks. However, real stock
returns are stongly correlated when inflation (negatively correlated) and real

output growth (positively correlated) are due to aggregate supply shocks.

The slope coefficients reported in Table 9.2 support the findings from the
correlation coefficients. The negative relationship between inflation and real stock
returns reflects the fact that real activity is nega’pively related to inflation and
positively related to stock returns. The slope coefficient from regressing real
stock returns onto a constant and inflation is negative, and the median coefficient
reduces to 0.01 when inflation is due to aggregate demand shocks. Consistent

with Fama (1981) and Kaul (1987), the negative relation reduces to - 0.09 when

8The discussion in the text focuses on the contemporaraneous correlation
coefficient.
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real output is included as an explanatory variable.

The evidence precented in Chapter 8 indicates the lack of a rigorous
empirical investigation of the inflation-stock return puzzle. Previous empirical
studies have not been successful in directly considering a fundamental issue that
stock returns, inflation and output growth are caused by changes in (real
productivity and monetary) policy.®® This issue is outlined theoretically in the
above model. More importantly, we empirically estimate a restricted vector
autoregressive representation that is consistent with the above model to effect the
results of changes in real and monetary policy on stock returns, inflation and real
output growth. In taking this approach we incorporate (and are able to test) many
of the issues raise by previous studies (for example, Fiéher, 1930; Fama,1981;
Geske and Roll, 1983; Kaul, 1987, 1990; Marshall, 1992) in investigating the

inflation-stock return puzzle.

8“The stock market is not the “cause” of the increase in output, no more than
the increase in output is the cause of the initial stock market change. They are
both the results of changes in policy. .....Although .... the change in the stock
market and the resulting increase in output will precede the change in policy, they
are still caused by it” (Blanchard, 1981, p. 141).
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Table 9.1: Cross Correlations from Simulated Data

17
X, Zpy 5, ) 0 1 2
() Aq Ap,, 01 .01 35
2y Ag Ay, 01 -03 =07
) Ap, 4y, 54 =00 15
(4) Aq  A’p,, .00 -01I 06
(5) Aq  Ap.. 00 .01 42
() Aq A%y, 01 -03 -.04
(7y  Ag A, =01 -0l =30
(B) AT oly 6000 -.01
© A Ay, 39 -0l 28

Notes: x,= {p, ¥, @:}. Y1 is the log of real output; p, is the log of consumer prices; and q, is the log of
real stock prices. A=(1-L) denotes the first difference. The table shows the median (from the 200
simulations) cross correlations between the value of the variable x for period t and the value of the
variable z for period t+t. The sample size is 100.
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Table 9.2: The Slope Coefficient from the Regression of x,
onto a Constant and z, from Simulated Data

x,  z Median  S%-ile - 95%-ile
(1) Aq, Ap -0.27 -0.31 -0.23
(2) Aq, Ay, 0.20 0.16 0.23
(3) Ap, Ay, -0.58 -0.62 -0.54
(4) Aq, A%, 0.01 -0.09 0.12
(5) Aq  Ap, -0.49 -0.53 -0.47
6) Aq AY, 0.02 -0.05 0.08
(7) Aq Ay, 0.37 0.35 0.39
8) A%, Ay, -0.47 -0.48 -0.46

(9 Ap Ay, -0.70 -0.70 -0.68

Notes: See Table 9.1 for definition of variables. The estimated coefficients are the slope coefficients

from the regression of x, onto a constant and z,.
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9.2 Empirical Relationships: Real Stock Prices, Real Activity and

Inflation

Quarterly data for the United States were obtained from the International
Monetary Fund's International Financial Statistics data base for the period 1957i
through to 1995ii. The data series of interest are the consumer price index, real
gross domestic product (GDP), and the real stock price index (constructed by
deflating the stock price index by the consumer pﬁce iﬁdex). All variables are

expressed in logarithms.

The cross correlations reported in Table 9.3 show:
1. The change in the logarithm of real stock prices (Aq,) is negatively correlated
with the change in the logarithm of consumer prices (Ap,) for all leads and lags.
2. Aq,is positively correlated with the change in the logarithm of real output (Ay,)
for all leads and (weakly) negatively correlated for all lags.

3. Ap, is negatively correlated with Ay, for all leads and lags.

These observations are consistent with other studies (for example, Lee, 1989;
Marshall, 1992) and confirm the basic relationships between the variables of

interest.

The results from estimating basic regressions of stock returns, inflation and
real output growth by ordinary least squares are given in Table 9.4. The results

are consistent with those of Fama (1981). A strongly significant slope coefficient
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is found in each regression with the expected sign - real output growth is
positively related to real stock returns and negatively related to inflation, and real

stock returns is negatively related to inflation.
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Table 9.3: Cross Correlations

ke o e S TR R R S SR

() Bg Ap. ~08 =17 -15. -25 26 =19 -18 -14

@) Ag, Ay, =17 0=17 -13 03 36 25 .14 .18

-37 -35 -29 -32

3) Ap, Ay,.. .02 -11 -16 -16

Notes: X, = {Pt» Y1, Qi }- ¥: is the natural logarithm of real gross domestic product (GDP); p is the natural logarithm of
consumer price index; and q, is the natural logarithm of the real common stock price index. A=(1-L) denotes the first
difference. The table shows cross correlations between the value of the variable x for quarter t and the value of the variable
z for quarter t+t. Under the hypothesis that the true correlation coefficient is zero, the critical correlation coefficient value
is 0.16 at the 5% level of significance. The sample period is 1957i - 1995ii.
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Table 9.4: Basic Regressions

R? s.e
(1)  Aq=dum- 2.88" Ap, | 0.17  0.06
(0.60)
Aq,= dum + 1.48" Ay, 0.09 - 0.06
(0.52)
@)  Ap,=dum - 0.23" Ay, 0.09 0.01
(0.07)

Notes: Estimation is by OLS. The variables are defined as in Table 9.3. Figures in parentheses denote
estimated standard errors. R? denotes the coefficient of determination. s.e. is the standard error of the
regression. An asterisk denotes significantly different from zero at the 5% level in a two-tailed test. The
regressions included quarterly dummies, and are denoted by dum in the table. The sample period is 1957i -
1995ii.
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9.3 Isolating Aggregate Demand and Supply Innovations

To identify the aggregate demand and supply innovations to inflation and
real output growth we consider the decomposition outlined in Chapter 4, section
4.1. We follow Blanchard and Quah (1989), Bayoumi and Taylor (1995) and
Gamber (1996) in using an ADAS framework with a long-run vertical supply
curve, and associate aggregate supply shocks with permanent shocks to output
and aggregate demand shocks with temporary shocks to output. Interpreting the
temporary and permanent innovations as aggregate demand shocks and aggregate
supply shocks can be motivated by the simple linear macro model as outlined in

the previous section.

Having identified the supply and demand innovations, we can then
partition the moving average representation for real GDP growth and inflation to
construct counterfactual series, corresponding tb the path that would have
obtained in the absence of aggregate supply innovations and aggregate demand
innovations over the estimation period. By using these counterfactual series we
can test the relationship between real stock returns, inflation and real output

growth.

As reported in Table 9.5, the change in the logarithm of real GDP, and in
the logarithm of the consumer price index are stationary processes. The
augmented Dickey-Fuller (ADF) and the Phillips-Perron Z, unit root tests cannot

reject the hypothesis that the series is a realization of a first-difference stationary
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I(1) process (Dickey and Fuller, 1979, 1981; Perron, 1988).5 There is also no
evidence of cointegration between real GDP and prices at the 5 percent level of

significance. ®*

We follow the estimation procedure as outlined above. A VAR of
[(1-L)y, (1-L)p, 1’ was estima.ted89 and the residuals were transformed into
aggregate demand and aggregate supply disturbances using the transformation
matrix A(0) as defined above. The lag depth chosen for the VAR is three and the

regression estimates are presented in Table 9.6.%°

The cumulative impulse response functions illustrating the effect of a one
unit standard deviation (supply and demand) shock on the level of real GDP and
the price level are shown in Figure 9.1. The cumulative impulse response
functions are by assumption consistent with the standard ADAS framework with
a long-run vertical supply curve.” An aggregate demand shock to inflation is

positive, whereas an aggregate supply shock to inflation is negative. By

$"This finding is not sensitive to the choice of lag depth.

$*The augmented Dickey-Fuller test was employed in testing the residuals from
the ordinary least squares regression of p, onto y, and a constant. The estimated
ADF test statistic is ~2.01 (the critical value is ~3.17, for a 5% significance level).

$Seasonal dummies were included in the VAR,

*®The choice of lag length was tested as follows.. First using the Bayes
Information Criterion (BIC) the initial lag length was determined. Second using
the Ljung-Box Q-statistic we tested for the whiteness of the residuals and the lag
depth increased (if necessary) until the residuals were approximately white noise.

*'Taylor (1996) demonstrates the importance of qualitative restrictions in the
context of the Blanchard-Quah decomposition.
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assumption, an aggregate demand shock has a zero long-run effect on real output
growth. The cumulative impulse response functions are consistent with Bayoumi

and Taylor (1995) and Gamber (1996).
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Table 9.5: Unit Root Tests

PP ADF
Consumer A’p, -15.02 -14.91
Prices Ap, -3.62 -3.17
D, 1.59 0.33
Real GDP A%,  -19.01 ~12.34
Ay,  -9.03 ~6.65
v, ~1.12 -1.16
Real Stock A%lq, -16.42 -12.89
Prices Aq,  -9.08 ~8.09
q ~1.19 ~1.46

Notes: The variables are defined in Table 9.3. A? denotes the second difference. The
unit root tests are the Phillips-Perron Z, test statistic (PP) and the augmented Dickey-
Fuller test statistic (ADF). The ADF and the PP tests the null hypothesis that the series
is I(1) (see, Dickey and Fuller, 1979, 1981; Perron, 1988), the lag truncation was set
atone. For a 5% significance level the critical Z, and ADF is -2.89 (see, Fuller, 1976,

pp- 371-3). The sample period is 1957i-19951i.
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Table 9.6: Regression Coefficients from VAR

Dependent Variable
Independent Variable Ay, Ap,
Ay, 0.2146" 0.0978*
(0.0830) (0.0376)
Ay,, 0.0618 0.0122
(0.0859) (0.0389)
AV -0.0718 0.0615
(0.0805) (0.0365)
Ap,, -0.3533" 0.6518°
(0.1717) (0.0779)
Ap,, -0.1284 ~0.0687
(0.2110)  (0.0957)
Ap,, 0.1119 0.3938°
(0.1801) (0.0817)
Statistics: ,
Usable Obs. 150 150
R? 0.20 0.77
Sum of Squared Error 0.01 0.00
Q(36) 27.65 40.45
[0.84] [0.28]

Notes: The variables are defined in Table 9.3. Standard errors are in parentheses below
the coefficient estimates. An asterisk denotes significantly different from zero at the 5
percent level. Squared brackets associated with the Ljung-Box Q-statistics denotes
significance level for the residuals (for lags 1 through 36). The deterministic parameters
are not reported. The sample period is 1957i-1995ii.
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Figure 9.1: Cumuiative Impulse Response Functions
United States, 1957i - 1995ii

Aggregate Demand Shock to Real Output Aggregate Demand Shock to Consumer Prices
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9.4  Empirical Results

We use the estimated aggregate demand (temporary) innovations and the
aggregate supply (permanent) innovations to break down the series for real GDP
growth and inflation into counterfactual series, corresponding to the path that
would have obtained in the absence of aggregate demand innovations in the
moving average representation and the path that would have obtained in the
absence of aggregate supply innovations. Effectively, this involves using the
estimated VAR to recover the moving average'representation (given by equation
(4.1)), and then calculating a counterfactual series for y, and p by alternately
holding the identified aggregate sui)ply and demand shocks constant at zero over

the sample period.

The series due entirely to aggregate demand innovations over the sample
period (purged of the cumulative effects of aggregate supply innovations over the
period) is denoted by a superscript d (A, , A%, ) while the corresponding series
due entirely to aggregate supply innovations over the period is denoted by a
superscript s (A%, , A*p, ). The counterfac;tual series along with the actual

consumer price series are presented in Figures 9.2 and 9.3.

The results of the basic regressions of real stock returns on the
counterfactual series, reported in Table 9.7, are consistent with our simple macro
model as outlined in section 9.1 and supportive of the proxy hypothesis. The
negative relationship between inflation and real stock returns depends on the

source of inflation; i.e. whether it is due to aggregate demand or aggregate supply
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innovations. Real stock returns and inflation are significantly negatively related
in the case when inflation is due to aggregate supply innovations and not in the
case when inflation is due to aggregate demand innovations. Also, real stock
returns and real output growth are significantly positively related when output is
due to aggregate supply innovations and are not related when output is due to

aggregate demand innovations.

Consistent with the ADAS framework with a long-run vertical supply
curve, real output and inflation are significantly negatively related when both are
due to aggregate supply shocks and are not related when both are due to

aggregate demand shocks.

Table 9.7 also reports the cross correlations of the counterfactual series
and real stock returns. The contemporaneous correlation coefficient between real
stock returns and inflation is lower when inflation is due to aggregate demand
innovations.  Furthermore, the contemporaneous correlation coefficients

associated with the counterfactual series are consistent with the proxy hypothesis.

Using decomposed inflation and output series, the results support Fama's
proxy hypothesis as an explanation of the stock return-inflation puzzle. These
findings are consistent with other studies that use general-equilibrium and partial-
equilibrium models (for example, Marshall,<ns1:XMLFault xmlns:ns1="http://cxf.apache.org/bindings/xformat"><ns1:faultstring xmlns:ns1="http://cxf.apache.org/bindings/xformat">java.lang.OutOfMemoryError: Java heap space</ns1:faultstring></ns1:XMLFault>