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ABSTRACT. 

Heating, ventilating and air-conditioning (HVAC), system design 

optimisation problems can be solved through the application of direct 

search methods. This thesis develops two such optimisation methods for 

use with HVAC system design; the complex method and a penalty function 

method with pattern search. The search methods have different 

approaches to the problem, the complex method rejects infeasible points, 

whereas the penalty function attempts to prevent constraint violation. 

Both algorithms where developed to successfully solve small scale HVAC 

system design optimisation problems, which displayed the main 

characteristics of such problems. 

Limitations of the complex method around constraint functions, and its 

relatively slow search speed, prevented the further development of this 

type of search for large scale HVAC design problems. Conclusion of the 

development of the penalty function method with pattern search lead to 

significant improvements in the performance of the algorithm. 

The formulation of a unique algorithm for solving HVAC system design 

optimisation problems is described within this thesis, and it is 

recommended that an algorithm which treats problem variables and 

constraint functions more effectively to direct the search toward the 

solution be developed fully. The reduction in size of the optimisation, 

simplification of the system simulation and use of genetic algorithms to 

assist the search are all recommended future developments. 
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CHAPTER 1. 

COMPUTER AIDED DESIGN OF HVAC SYSTEMS. 

Traditionally the design process of heating, ventilation and air- 

conditioning (HVAC), systems has been carried out manually by the design 

engineer, all be it recently with the assistance of software packages to aid 

such areas as building design load calculations and to model the 

performance of the chosen system. The introduction of such software may 

allow the design engineer to evaluate the performance of several 

alternative schemes. However the process in essence remains manual and 

will produce a 'workable' design. This thesis investigates the use of 

computers in the 'optimum' design of HVAC systems. 

1.1 Current Trends in the Computer Design of HVAC Systems. 

In the past twenty years a multitude of software packages have been 

developed and marketed to assist the design process for the engineer. The 

level of complexity offered by these design tools varies greatly, from simple 

manual methods designed to assist in the calculation of maximum loads 

on the system, and the subsequent sizing of components within that 

system, to detailed component based methods which simulate the HVAC 

system, the equipment control system, the building shell and space and the 

dynamic interaction among these systems. 



Of the manual simulation tools available probably the best known is 

HEVACOMP (HEVACOMP, 1988), this allows the design engineer to 

interactively build a database of information with regard to the building 

fabric and space. From this database load calculations can be carried out and 

heat losses, heat gains, energy consumption and lighting design can be 

found for the building. Additionally the HEVASTAR Building Services 

Package (HEVASTAR, 1988), allows the design engineer to size pipes and 

ducts, and heating and cooling system components. Although this is not 

strictly a simulation software package, because it does not reproduce the 

performance of the system, the software greatly enhances the productivity 

of the design engineer, allowing more time to explore alternative 

component selections in the given system configuration and alternative 

system configurations. It is however unable to simulate the dynamic 

performance or to investigate part-load performance of the system. 

A second level of HVAC system simulation tools which are component 

based in their approach to the design problem emerged in the 1980's. These 

software tools allow greater flexibility in the modelling of systems and 

allow part-load performance to be evaluated. With this technique systems 

are represented by forming a network of component models based on the 

design engineers schematic diagrams. Flexibility to specify the components 

within a given design allows the engineer to move away from the rigidity 

of specific system configurations such as VAV, dual-duct, fan-coil etc. 

SPATS (Murray, 1984) is one such component based simulation software 

package. The software networks the component models by linking the 

input and output parameters of the components. A set of simultaneous 

equations formed from the component performance equations is then 

2 



solved for a given plant operating point. The SPATS simulation is steady- 

state and hence does not take into account warm-up time and temperature 

distribution delays for the system. These time constants for the system are 

however significantly less than the time constants associated with the 

actual building fabric model and analysis has been justified on this basis. 

Dynamic component based simulations are available (Clark et al, 1985). 

HVACSIM+, is one such simulation package. Broadly, HVACSIM+ is 

similar in concept to SPATS in that the component models are networked 

together to form a system. This simulation package, however, includes a 

nonlinear dynamic simulation that can model time delays and hysteresis 

effects on the system. Case studies using HVACSIM+ have taken place 

(Park et al, 1989) which has proven it's capability to deal with large system 

applications. HVACSIM+, however, remains primarily a research tool. 

The more commercially available simulation software packages such as 

TAS (Gough, 1986), and APACHE (Oscar Faber Partnership ), generally use 

component based simulation but have simpler models. The obvious 

advantage of these packages, however, is the enhanced user interfaces 

adopted. 

The use of current simulation software in the design of HVAC systems 

helps increase productivity and is a useful tool to check part-load 

performance of the system. They allow greater flexibility to the design 

engineer to explore more system configurations, but rarely lead to major 

improvements, i. e. they generally produce a 'workable' design as opposed 
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to a 'optimum' design solution. 

1.2 Workable Design. 

This manual design process can be generalised. At the initial stage of the 

manual design process, an appropriate system configuration is selected; the 

selection is usually based upon the design engineers experience. Drawings 

are produced, design loads calculated and the components are sized to meet 

the design loads of the system. Simulation of the system configuration 

with the sized components follows, this process provides information on 

the performance and operating point of the system. Provided the system 

meets the requirements of its' purpose, i. e. it provides adequate heating 

and cooling, is within the budgetary constraints imposed, and meets all 

safety and quality standards then the design engineer can justify the initial 

system selection with the production of a 'workable' design (Stoecker, 

1989). In summary, a 'workable' system performs the assigned tasks within 

any imposed constraints. 

Figure 1.1 illustrates the the manual design process that leads to a 

'workable' design solution. 

4 



SYSTEM SIMULATON 

i 
_J 

RQRMANCE, QUALITY, SAFETY AHD 
BUDCETOFY CO'STRANTS 

lOR/9BLf' DESIC; V 

1,11 ý' ; 1l« ýý /111 1)1 Sl*(/? t 
i 

r Le ,e .y 

5 



1.3. Optimum Design. 

The concept of optimum system design is best illustrated by example. 

Suppose that a pump and pipework is installed to pump water from a 

basement tank to a tank on the roof. The approach in producing a 

workable design might be: 

1) Allow a nominal water velocity of 1.5m/s. 

2) Size the pipe diameter from the required volume flow rate and the 

water velocity. 

3) Calculate the head loss in the system. 

4) Size the pump from the head loss and the volume flow rate. 

In an optimum system design, the system (pipe diameter and pipe size) is 

sized to meet a specified criterion, termed the objective function, in this 

case water velocity. A typical criterion that a design engineer might be 

interested in optimising could be life-cycle cost, which in turn is a function 

of first cost, maintenance cost and pumping cost. As the pipe diameter 

increases so to does the first cost, but due to lower head loss the running 

and first cost of the pump decreases. Assuming that the life-cycle cost is 

the sum of all individual costs it can be seen from Figure 1.2 that there is 

an optimum pipe diameter to give minimum life-cycle cost. 
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In summary, the optimum system is the 'best' of all workable systems 

when measured against a criterion. The advantages of optimum design are 

that it allows the engineer to explore all variations in component size and 

design conditions within any given system configuration. To manually 

perform an optimisation using a simulation package would be time 

prohibitive, the development of computer based software to assist in the 

search of the possible permutations for a given system configuration 

would greatly enhance this process. The formulation and solution of 

H VAC optimisation problems is based on numerical optimisation 

methods combined with system simulation techniques. 

1.4 The Formulation of HVAC System Optimum Design Problems. 

Any optimisation is specified by three elements. 

1) The problem variables. 

2) The objective function. 

3) The problem constraints. 

Large scale optimisation problems are solved by an algorithmic search for 

the optimum. The mathematical formulation of an optimisation problem 

can be described in terms of the problem variables, the problem constraints 

and the objective function. The constraint and objective functions are 

related to the performance of the system and therefore, in HV'AC system 

optimisation, a system performance simulation is included in the problem 

formulation. 
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1.4.1. The Problem Variables. 

Components within a HVAC system can be described by a set of quantities, 

some of which may be fixed at the outset of the design, but others which 

are variable and are called the problem variables. It is the values of these 

variables that an optimisation algorithm will assess and change until a 

combination is found which gives the optimum value of the objective 

function of the problem. Examples of problem variables are cooling coil 

dimensions such as width and height or condenser water flow 

temperature. The problem variables can be continuous or discrete in 

nature and are denoted in the formulation of an optimisation problem as 

follows: 

xi , where i=1,2,3,. 
........................ n. 

or in vector form: 

X= (x11x21x3, 
....................... xn ). 

where n is the number of problem variables. 

1.4.2. The Objective Function. 

Conventional design procedures may aim to find an acceptable or workable 

design which merely satisfies the functional and other requirements of the 
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design problem. In general there will be more than one possible design 

which is acceptable and it is the purpose of optimisation to find the best of 

these acceptable designs. This criterion when expressed as a function of the 

problem variables is termed the objective function. The objective function 

can be expressed mathematically as follows: 

f( ), where X denotes the problem variables in vector form. 

In HVAC design, optimising the objective function involves finding 

values of the problem variables so as to give a minimum or maximum 

value of the objective function. Normally a minimum value is the 

requirement because the objective function is cost related, for example 

minimum first cost or life-cycle cost. 

1.4.3. The Problem Constraints. 

In practical HVAC design problems constraints are usually present, for 

instance air flow across a cooling coil can range from zero and an upper 

limit after which carry-over of the condensing water on the coil surface 

occurs. Such constraints on design solutions need to be included within an 

optimisation problem. Constraints can range in their complexities (Rao, 

1987) but are generally summarised by two distinct types, linear constraints 

and non-linear constraints. 

Variables which have a restriction on their value are said to be 'simply 

bounded' this is a specific form of linear constraint but one which occurs 
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often in HVAC design optimisation, because component selection within a 

given system is restricted by limitations on physical dimensions. Generally 

a linear constraint can be defined as a function which remains linear in 

more than one variable and can take the form of equality, inequality or 

range constraints as follows: 

equality constraints: 

inequality constraints: 

range constraints: 

gi (X) = bi 

gi (X) < bi 

gi (X) bi 

1bß <_ g() <_ ubj 

i=1,2.............. m1 

m2+1,........, m3 

m3+1,........, m4 

j=1,2,. , m4- m3 

Each gi is a linear function and bi, lbi and ubi are scalar constants. 

A non-linear constraint is a function which is non-linear in one or more 

of the problem variables and again can take the form of equality, inequality 

or range constraints as follows: 

equality constants: 

inequality constraints: 

range constraints: 

ci (X) =0 

ci(X)<_0 

ci(X) _0 

1bi < ci (X) 
_< ub 

m4+1,........, m5 

i= m5+1,......... m6 

m6+1,........, mß 

j=1,2, ............., m8- m7 

Each ci is a non-linear function and lbj and ub" are scalar constants. 



1.4.4 The Statement and Characteristics of Optimisation Problems. 

Having reviewed the elements of an optimisation problem, it can be stated 

as follows: 

Find X which minimises f(X). 

subject to gi(X) _< 
0, where i=1,2,........, m. 

9 () = 0, where j=1,2........... n. 

where X are the problem variables denoted in vector form, f(X) is the 

objective function and gi(X) and cj (X) are examples of linear inequality and 

non-linear equality constraints respectively. 

An example two variable optimisation problem is illustrated in Figure 1.3. 

The contours denote positions of equal value for the objective function. 

The hatched side of the constraints g1, g2, g3 and g4 and cl denote the 

infeasible region. XL represents a local minimum which in this case is 

outside of the feasible region, Xg represents the global minimum and as 

such is the point which the optimisation algorithm will seek. 

Constraints can sometimes remove the global minimum X9 from the 

feasible region as illustrated by the additional constraint c2(X) <0 shown by 

a dotted line. In this case the optimisation would seek the position XL* 

which represents the minimum point within the feasible region, lying 

against the new non-linear constraint. 
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Optimisation problems are solved using algorithms which will search the 

objective function by accepting preferred movements ( lower values of the 

objective function for minimisation and higher values for maximisation) 

that the given algorithm produces. The search algorithm has built-in 

methods to deal with positions which fall outside of the feasible region. 

Iteration of the algorithm's methodology will lead the search to the feasible 

optimum solution. A review of the search methods available is 

documented in Chapter 4. of this thesis. 

1.4.5 The Problem Formulation and System Simulation. 

Evaluation of energy related objective functions and system performance 

constraints requires the simulation of the system performance. The most 

appropriate form of simulation is a component based simulation, not only 

because it gives flexibility in defining the system configuration, but also in 

that it is suited to the formulation of the optimisation problem. 

All of the problem variables are derived from the individual components 

in the system. The majority of the constraint functions are related to the 

design limits of the components. System cost of energy related objective 

functions can be formulated from the individual cost and energy use of the 

components. 

Hence, Hanby and Wright, (1989) identified that system optimisation 

problems can be formed from a component based procedure that has four 

sub models for each component, a performance model, a cost model, an 
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energy model and a constraint model. 

The performance model reproduces the performance of the component for 

use in the system simulation. It includes data for different sizes of 

components. The cost and energy models produce data for use by the 

objective function and the constraint model is used for the determination 

of validity for solution points. 

The formulation of HVAC system design problems is well established, but 

the solution methodology for solving such problems is not, this thesis 

concentrates on this aspect. 

1.5 The Solution of HVAC Optimisation Problems. 

The sequence of operation of any algorithm too optimise a HVAC design 

problem is first to find an initial start point which satisfies all problem 

constraints and therefore is within the feasible region, simulation of the 

initial system follows and values of the constraint and objective functions 

are found. The algorithm will employ rules to produce a new set of search 

point values, these rules are dependent on the type of optimisation 

algorithm used, but generally will assess the direction in which to move 

and the distance of that move. Repetition of this process coupled with a 

check for convergence complete the operation. Figure 1.4 illustrates this 

process. 
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Two classes of search method exist; direct search methods are heuristic in 

character and base the next set of search point values on the comparison of 

objective function value of the new position with that of the previous 

search position, whereas derivative methods are mathematical in character 

and employ the derivatives of the objective function to find a search 

direction. 

The use of a homogeneous optimisation algorithm to solve for all 

optimisation problems would prove inefficient because of the differences 

in the nature of individual problems. For maximum efficiency an 

algorithm must be tailored to the individual problem in question. The 

characteristics of the problem therefore need to be examined fully before 

deciding on the method of optimisation to be used. 

The formulation of HVAC optimisation problems has been developed 

(Wright, 1986), but to date there has been little work on the development of 

an optimisation algorithm. The optimisation methods implemented, 

although able to find solutions, are slow and lack robustness. This has 

impaired the integration of optimisation methods into the HVAC system 

design process. The objective of this thesis is therefore to investigate the 

development of an algorithm that is efficient in solving HVAC system 

optimisation problems. 
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CHAPTER 2. 

THE DEVELOPMENT OF AN OPTIMISATION ALGORITHM. 

Optimisation theory is a well documented subject, (Rao, 1987). Many 

optimisation methods have been developed ranging in sophistication. 

These methods have been developed to solve problems ranging from the 

simplest unconstrained deterministic continuous value problems to 

highly constrained discrete-value problems. In the development of many 

of these methods, however, the computer time required to evaluate the 

objective and constraint functions has not been considered important. The 

application of many optimisation methods to HVAC system design 

problems would prove prohibitive because the time required to evaluate 

objective and constraint functions is high in comparison to the time 

required by the optimisation algorithm. Each time that an objective or 

constraint function is evaluated, the current system performance must be 

simulated. This alone leads to the inefficient use of generalised 

optimisation methods in HVAC system design because the overall 

computer time required in performing the simulation function becomes 

prohibitive and some of the benefits of the optimisation process are lost in 

this expense. There is a need therefore, to develop of an algorithm that 

matches the characteristics of HVAC optimisation problems. 
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2.1 Previous Work in HVAC System Optimisation. 

A review of the literature available on work previously conducted in the 

field of HVAC system design optimisation is scarce. Only two significant 

studies have taken place to date. 

Leah (1983), conducted research into the optimised design of a chilled water 

system. A steady state simulation was employed and the objective was to 

minimise life cycle cost of the system. Leah used a direct search method of 

optimisation which seeks to find the principle axis of the objective 

function and then imposes a quadratic approximation to speed the search 

towards the minimum value. The basic univariate search ideology used 

searches along each variable in turn until a minimum value of that 

variable is straddled by the current search point, at this stage a quadratic 

approximation is made to the last three search points to produce a parabola 

the minimum of which approximates the minimum of the objective 

function. 

Two modifications were made to improve the speed and efficiency of the 

search. First, a linear trajectory modification was developed which employs 

two start points that are minimised for the given variables. By linking the 

two minimum values a principle linear search direction is developed. 

Figure 2.1, illustrates this method. This method was found to be useful for 

objective functions which exhibited a straight valley shape, however if the 

objective function deviated from that shape then it became less efficient. 

This method is known as the QID method. 
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A second modification was developed to overcome the inefficiency of the 

Q1D method where three start points are minimised for each variable. By 

linking these three minima a quadratic trajectory of the search w". 'as 

developed, as illustrated in Figure 2.2. This method is known as the QIQ 

method. In each of the modifications a quadratic approximation is used to 

find the minimum along the given trajectory. 

4 
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The quadratic approximation and the quadratic trajectory are related but 

different. The quadratic approximation is the process used to find the 

minimum along a given path, whereas the quadratic trajectory is merely a 

way of defining a curvilinear path of the search over the objective 

function. 

The optimisation routines developed by Leah were not fully automated. 

The design engineer needed to select the type of search required, either 

Q1D or Q1Q from previous knowledge obtained from the univariate 

minimisation of the selected starting points. Some further development to 

automate and control this selection process is required. 

Throughout the work Leah concentrated on the solution algorithm and 

did not investigative the characteristics of HVAC system design problems. 

The example problem in the research used only continuous variables and 

had very limited facility to deal with constraint functions. The work 

overall found that different methodologies are necessary for the varying 

complexities of the example problems objective function and suggested 

that further investigation be conducted to produce a fully automated 

algorithm which would assess the level of complexity of the objective 

function and switch the search methodology accordingly. 

It was suggested that a pattern search method be developed to run under 

conditions where the Q1D and QIQ methods failed to be efficient. This has 

been investigated in this thesis. Development of a penalty function was 

also considered worthy by Leah and again has been investigated in this 

thesis. 
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The second source of literature that exists is the work by Wright (1986). A 

different view point of the overall problem was considered within this 

work, where the formulation and characteristics of the problem are 

developed. The work formulates numerous objective functions which 

would be used in the appraisal of solutions and describes the use of 

constraint functions in restricting the solution to a practicable design. The 

definition of the characteristics of solutions to HVAC system design 

problems is documented so that a unique algorithm can be developed 

which complements these characteristics. 

Preliminary algorithm development of two optimisation methods was 

carried out, an exhaustive search method and a pattern search method. 

The system simulation used throughout the work, called SPATS, was 

steady state and component based, where models of manufactured 

components were developed incorporating operating parameters such as 

controller set points, flow rates and temperatures. The example models 

used in the development of the algorithms used mixed discrete and 

continuous variables and were fully constrained. 

The simple exhaustive search method was simple used as a 'bench mark' 

to evaluate the pattern search method against in terms of accuracy and 

number of objective function evaluations. The pattern search method 

employed was a modified Hooke Jeeves search ( Hooke and Jeeves, 1960), 

which by performing 'exploratory' and 'pattern' moves could evaluate the 

direction and distance, respectively, of the search position. The method was 

applied to a number of small models and was found to perform well over 
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most objective function surfaces. The search however was found to lack 

robustness near constraints and the work concluded that further 

development of the algorithm was required to cope fully with HVAC 

system design optimisation. 

It is concluded that the review of literature specifically focusing on HVAC 

design optimisation is scarce, both the work by Leah (1983), and Wright 

(1986), however have positive attributes. Leah concentrated on the 

solution algorithm alone, whereas Wright dealt more with the 

formulation and characteristics of the problem. A combination of the two 

approaches would seem to be an advantageous way to proceed where the 

characteristics of the problem are found and a robust direct search solution 

algorithm developed. Both authors suggest that a pattern search algorithm 

would be fruitful and also both recommend the use of penalty functions to 

constrain the optimisation problem. These factors are investigated within 

this thesis. 

2.2. Research Objectives. 

The most efficient algorithm is one that responds to or matches the 

characteristics of the optimisation problem being solved. The objective of 

the research is to develop an efficient algorithm for solving HVAC system 

optimisation problems. The method of achieving this aim is to : ,, .' 

I. Investigate the characteristics HVAC optimisation problems. 

2. Review the optimisation techniques available. 
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3. Implementation and test selected algorithms against specific 

assessment criteria. 

4. Formulate an ideal algorithm. 

2.2.1. Investigation of Problem Characteristics. 

In section 1.3 an optimisation problem was described as being formed by 

three elements, problem variables, the objective function, and problem 

constraints. Investigation of the characteristics of each of these elements of 

the optimisation problem is necessary to assess the type of problem 

involved. An optimisation problem will display the specific characteristics 

associated with the problem variables, objective function and problem 

constraints, which describe the problem in quantifiable terms, and are 

unique to the problem posed. Other characteristics, associated with the 

solution point and mode of operation of the algorithm being used, may 

also exist. In HVAC system design problems one such characteristic is that 

the solution point lies on or near a constraint function. With knowledge of 

all of the characteristics of the optimisation problem then an algorithm can 

be assessed against and matched too these characteristics. 

2.2.2. A Review of Available Optimisation Techniques. 

A review of available optimisation techniques coupled with knowledge of 

the characteristics of the optimisation problem, will enable the selection of 

methods that possess positive attributes which match the problem 

26 



characteristics. This selection procedure enables large areas of optimisation 

methodology to be eliminated, and condenses useful methods to a few, 

hence directing the research to promising areas. 

2.2.3. Implementation and Testing of Selected Algorithms against Specific 

Assessment Criteria. 

The selected algorithms will be tested on example models that possess the 

characteristics of HVAC design optimisation problems. The algorithms are 

assessed against specific criteria which remain the same throughout this 

experimental phase. The selected criteria are accuracy, speed of search, and 

numerical stability and robustness. Accuracy is an assessment of the 

algorithms ability to find objective function, constraint function, and 

variable values at each stage of the search. All of these factors can effect the 

ability of the algorithm to find the optimum solution. Search speed is 

measured by the number of system simulation calls as this is the dominant 

factor in the overall computer time. Robustness and numerical stability is a 

subjective measure of the algorithms ability to negotiate the characteristics 

of the optimisation problem. 

2.2.4. Final Formulation of an Ideal Algorithm. 

From the results of the algorithm testing and the results of any subsequent 

modifications to the algorithms, analysis of the advantages of each method 

of optimisation can be made. This analysis will lead too the methodology 
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required to proceed with an idealised algorithm. 
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CHAPTER 3. 

H VAC SYSTEM DESIGN OPTIMISATION CHARACTERISTICS. 

Every numerical optimisation problem can be broken down into the three 

elements of the problem, the problem variables, constraints and the 

objective function. Each of these elements possesses characteristics which 

can be used to assess the overall type of optimisation problem. Selection of 

an algorithm to solve the optimisation problem is simplified with 

knowledge of the characteristics. 

In addition to the general characteristics displayed by the elements of the 

problem, other characteristics evolve by analysis of the problem solution. 

These characteristics are specific to the problem type but are equally as 

important to the selection of an algorithm to solve the problem. 

In order to fully investigate optimisation algorithms to solve HVAC 

system design problems, all of the characteristics of the problem must be 

defined. Efficient matching of the algorithm to the problem type can then 

be performed. 

3.1. HVAC System Design Problem Variables. 

The problem variables are the parameters normally used to describe the 

selection of HVAC components. These represent the physical size or 

operating point of the component, or may be associated with the capacity 
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of the component. For example, the parameters used to specify the 

selection of a centrifugal fan are impeller diameter and running speed, the 

impeller diameter representing the physical size of the component and the 

running speed its operating point. Conversely a boiler is described by its 

maximum rating which relates to the capacity of the component. A 

problem variable such as maximum boiler rating forms an indication of 

both physical size and operating point of the component. A final group of 

problem variables are the fluid property variables which affect the choice 

of components and therefore the optimum solution. In practice these 

variables generally appear as the set points of the equipment controls, for 

example, the flow water temperature of a boiler is one such problem 

variable. 

3.1.1 The Characteristics of Problem Variables. 

The most important characteristic of problem variables in HVAC system 

design is that the majority are discrete in their nature. The discrete nature 

of the problem variables exists because of the way that most components 

are manufactured and marketed. A centrifugal fan for instance is 

manufactured and marketed having fixed impeller diameters. Similarly a 

steam boiler is manufactured in discrete maximum rating intervals of for 

instance 1000kg of steam/hour. Continuous problem variables are rare and 

those that do occur, such as boiler water flow temperature, can be 

approximated into discrete intervals. This would avoid the need to devise 

an algorithm for mixed discrete-continuous problem variables. 
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3.2 HVAC System Design Problem Constraints. 

The most important factor imposed upon a HVAC system design problem 

is that the end result, i. e. the optimum solution to the problem, operates 

within all of the design limitations, under all load conditions. Other 

design constraints arise from Codes of Practice, restrictions on the 

component configuration and the dimensional restrictions on the 

components and on the fluid variable values. Section 1.4.3. details the 

mathematical form of constraint functions possible in numerical 

optimisation. Table 3.1, gives further definition to constraint functions 

found in HVAC system design. 

MATHEMATICAL 
CHARACTERISTIC. 

MATHEMATICAL 
FORM. 

DESIGN 
FUNCTION. 

SIMULATION 
LINK. 

Simple bound. Equality constraint, Variable bound. Unlinked. 
G(x) = 0.0 

Smooth nonlinear Fluid limit- Linked. 
function. Inquality constraint, 

C(x) >_ 0.0 Component configuation. Weak linkage. 
Sparse nonlinear 
function. Range constraint, Component performance 

1.1 3: 5 C(x) <_ UB limit. 

System constraint. 

Constraint classification. Table 3.1 

The mathematical characteristic and form are self explanatory and have 

been covered in section 1.4.3 of this thesis, the most commonly occurring 

constraint function in HVAC system design problems are smooth 

nonlinear functions or simple bounds for the variable limits. 
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The design function of most constraints is again self explanatory. The 

variable bounds constrain the range of the problem variables, for example 

in the selection of a steam boiler, the problem variable upon which the 

selection takes place may be the maximum rating of the boiler, this is 

constrained by the manufacturers lower and upper bounds on the 

component range. Typically a 'wet-back' shell type boiler comes in a range 

of maximum ratings of 1000kg of steam/hour to 15000kg of steam/hour. 

The variable bound constraint is therefore : 

1000 kg of steam/hour <_ maximum rating <_ 15000 kg of steam/hour. 

Fluid limits can take the form of either a simple bound on the problem 

variables, such as the limiting value of chilled water temperature; or 

inequality constraint functions that limit fluid velocity. The face velocity, 

for example, of a cooling coil is often limited to a maximum value so as to 

remove the possibility of moisture carry-over into the conditioned air. 

Face velocity can be seen to be a function of two problem variables, coil 

width and coil height, as follows : 

Face velocity = Air volume flow rate 
Coil width x Coil height. 

= m/s. 

a typical performance constraint function therefore would be: 

0.0 m/s < Face velocity < 2.5 m/s. 

From this example it can be seen that the constraint function effects both 

the problem variables of coil width and coil height. It is non-linear in its 
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nature. 

Component configuration constraint functions occur, for instance, because 

the size and configuration is often limited by the availability of space in a 

plant room, in designing an air handling unit (AHU), sufficient space 

must be available to allow the installation and maintenance of the 

components in the unit. The size and number of fans therefore may be 

limited for a given size of AHU. 

A sparse configuration constraint appears occasionally in HVAC system 

design problems and is the result of a design configuration restriction. 

Continuing with the example of the selection of a steam boiler, if the flue 

of the boiler is specified to be at the rear of the boiler, then the boiler 

selected would have to have an odd number of smoke tube passes, giving 

rise to a sparse constraint as follows: 

Fractional part of (Passes/ (2 circuits)) = 1/2. 

This type of constraint must be considered when selecting and building an 

algorithm. 

The performance constraint function can occur because of a limit on the 

tested performance of a component. A series of fans, for instance, are tested 

and produce a family of performance curves the limits to this family of 

performance curves form an envelope outside of which data on the fans 

performance is not known. The limits of the performance can be formed 

into performance constraints. 
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System constraints arise from the global limits of the system design, a 

maximum capital expenditure, for example, may be imposed upon a given 

system design which forms such a constraint. 

The linkage to the simulation is an indication of the dependence of the 

constraint function on the system simulation. Some constraint functions 

cannot be evaluated without simulating the performance of the system, 

whilst others can. For instance, evaluation of a fluid velocity constraint is 

based on the simulated mass flow rate, whereas a limiting dimension of 

the component can be checked without reference to any simulated 

variable. 

3.2.1. The Characteristics of Problem Constraint Functions. 

The types of constraints encountered and described above have vastly 

different characteristics and as such must be approached in different ways 

by search algorithms. The variable bounds are linear inequality range 

constraints and are functions of only one problem variable and as such 

pose few problems because of their simple form. The fluid limit constraint 

functions are often non-linear inequality constraints and can be functions 

of more than one variable. Optimisation algorithms can have difficulty in 

traversing or negotiating these constraints, particularly when movement 

of the search is restricted by the discrete interval between variable values. 

Sparse configuration constraint functions produce characteristics which 

are particularly difficult to deal with. These constraints can produce bands 

or ridges of acceptable or feasible solutions surrounded by bands or ridge. 
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of unacceptable or infeasible solutions. The abnormalities which arise due 

to sparse configuration constraint functions make investigation of other 

aspects of the overall design optimisation problem difficult to interpret, 

because most search algorithms require continuous feasible areas to 

maintain stability. Sparse constraints, however, occur infrequently in 

H VAC system design problems and therefore the majority of problems 

could be solved by an algorithm tailored to the common characteristics of 

the problem, therefore for clarity these types of constraint function will be 

omitted in the example models used in this research. The formulation of 

an ideal algorithm, however, must eventually have capability to deal with 

such constraint function characteristics and the sparse constraint is 

considered during the final stages of development of the unique 

algorithm. 

3.3. HVAC System Design Objective Functions. 

The objective functions for HVAC system design is typically that which the 

end user of the system requires. It is the measure by which different system 

designs and system configurations can be assessed. Wright (1986), 

identified six such objective functions which HVAC system designers used 

as design comparators, these are as follows: 

1. Net energy consumption of the system. 

2. Primary energy consumption of the system. 

3. Capital cost of the system. 

4. Annual operating cost of the system. 

5. Net present value of the system. 
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6. Payback period of the system. 

Although this list is by no means exhaustive it is considered 

comprehensive enough to draw conclusions as to the characteristics of 

objective functions in HVAC system design problems. 

The objective function is considered to be the function which is most 

dominant to the design. Two objective functions can be imposed but one is 

usually dominant over the other, which subsequently acts similarly to a 

constraint function, for example, the end user may ask for the HVAC 

system design to be the cheapest with respect to capital cost and to have a 

net energy consumption of less than a certain value, in this case, capital 

cost is the objective function and net energy consumption acts as a 

constraint function. Conversely if the end users requirement was to have 

the lowest net energy consumption possible and to be within a certain 

capital cost limitation then the two functions would reverse there roles, 

with net energy consumption becoming the objective function and capital 

cost acting as a constraint function. This type of constraint function is in 

the form of a system constraint. 

3.3.1. The Characteristics of Objective Functions In HVAC System Design. 

The objective functions used in HVAC system design are predominantly 

cost or energy related, and as such the optimum solution is always a 

minimum value of the objective function. There are few objective 

functions which require maximisation, perhaps the only significant one in 

addition to those described by WVright (1986), is that of overall system 
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efficiency although this rarely used as the predominate consideration in 

the overall design of the system. 

All the objective functions implemented in the work by Wright (1986), 

with the exception of discounted payback period, had in general optimum 

solutions which tend towards the bounds of the problem variables. 

Solutions for energy systems consumption and operating cost tend 

towards the upper bounds of the problem variables because larger sized 

components are generally more efficient than smaller components which 

incur larger system losses through friction etc. Conversely, the solutions 

when capital cost is the objective function tend towards the lower bounds 

of the problem variables because the smaller the component size the 

cheaper the capital cost of that component. Although the net present value 

objective function is a combination of both capital cost and operating cost, 

solutions tend towards the largest component sizes because operating cost 

tends to be the dominant factor. Discounted payback period is the only 

objective function which may have solutions in the mid-range of the 

problem variables. 

Discontinuities in the objective function are common in HVAC system 

design problems, for example, with an objective function of capital cost, a 

change in manufacturing technique can cause a discontinuity. If, for 

instance a boiler is selected from a range of available boiler sizes, in the 

range 1000 kg of steam/hour to 20000 kg of steam/hour. The manufacturer 

may only be able to produce up to 15000 kg of steam/hour from a single 

furnace boiler, after which a twin furnace boiler must be employed. This 

change in manufacture will cause a discontinuity in the capital cost 

objective function. In general H\'ÄC system design objective functions can 
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be described as discontinuous, non-linear functions. 

3.4. Problem Characteristics of HVAC System Simulation. 

The system simulation is run in order to allow evaluation of the energy 

related objective functions and of the constraints. Numerical instability 

can occur for energy related objective functions when a change in the 

value of a variable produces only a small change in the value of the 

objective function, a small change is subject to any rounding error which 

the simulation may impose upon it, causing instability in the objective 

function. This instability must be avoided because false local minimums 

can occur in the objective function though an insensitive simulation. 

The system simulation should be conducted not just at peak load 

conditions, which is often the parameter by which the component is 

selected, but at the various loads that can be expected on the system 

throughout the year and throughout the day. In practice the extreme load 

conditions should be simulated. Constraint functions have to be 

formulated to ensure that a selected component not only can cope with the 

peak load but also the minimum expected load. For example, if a boiler 

plant had a peak load of 2000 KW, and a minimum load requirement of 

200 KW, then one single 2000 KW output boiler would not meet the full 

range of load conditions because the turndown ratio is to high. 2x 1000 

KW boilers would be required to meet the minimum load assuming a 

turndown ratio of 5: 1. 

Finally, it is important to remember that simulation of a system is a time 

38 



consuming operation, and it is the most influential factor when 

considering overall computing time in solving HVAC optimisation 

problems. Analysis of the problem variables, constraints and objective 

functions, against those required for simulation will show those which are 

independent of the simulation process. An algorithm should be able to 

recognise this characteristic so that an objective or constraint function that 

is independent of the variables involved in simulation is calculated 

without calling the simulation routine, hence saving computer time. 

3.5 Characteristics of Solutions of HVAC System Design Problems. 

In section 3.3.1 it was established that because objective functions are either 

energy or cost related that the optimum solution tended towards the upper 

or lower bounds of the problem variables. When looking for a global 

optimum solution for HVAC system design optimisation problems then 

the solution would be relatively easy to find, employing a solution 

algorithm which uses simplistic methodology. Introduction of 

performance constraint functions, discrete variables and discontinuities to 

the problem, however, adds to its complexity, and the solution algorithm 

employed equally needs to be more complex to cope with these 

characteristics. 

The main characteristic of solutions to HVAC system design problems is 

that they lie on one or more constraint functions, or in the case of discrete 

variables, close to one or more constraint functions. This characteristic 
I' 

becomes apparent it a simple two dimensional example is considered, as 

illustrated in Figure 3 . 2. 
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The problem is to minimise the objective function which is represented by 

the surface of the grid. The problem variables xl and x2 are discrete, the 

discrete intervals are represented by the grid lines. The objective function 

is linear and discontinuous in the x2 direction and has a global optimum 

solution Xg, which any numerical optimisation algorithm will initially try 

to reach. The problem is however, constrained by the non-linear, 

inequality constraint function c(x) >_ 0 thus removing the global optimum 

solution from the feasible region and producing a local optimum solution 

XL which for obvious reasons lies near the constraint that divides the 

feasible region from the global optimum. Depending on the initial starting 

position of the search the solution algorithm may encounter the 

constraint function c(x) >_ 0 at any position, for example as for the paths aal, 

bbl, cc,. On encountering the constraint the solution algorithm would 

have to have the ability to traverse the constraint function to the 

optimum solution XL. Particular methodology is required to perform this 

task and is particularly important in the selection of solution algorithms. 

3.6. The Choice of Search Method. 

There are two categories of search method available for numerical 

optimisation these are direct search methods and gradient search methods. 

The overall characteristics of the problem dictates the category that can be 

used. 

Direct search methods are heuristic in character basing their search on a 

comparison of objective function values. Gradient based methods arc 

mathematical in character basing their search strategy on the derivatives of 
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the objective functions. 

The most influential reason for adopting direct search methods to solve 

HVAC system design optimisation problems, is the behaviour of 

derivative techniques when used with discrete variables and 

discontinuous objective functions. As the partial derivatives of the 

objective functions are unavailable, the implementation of gradient 

methods would require calculation of the derivatives by numerical 

methods. These estimates are frequently upset by numerical difficulties, 

such as rounding errors, which will effect the values of variables, 

constraint and objective functions, and may hinder convergence of the 

algorithm, also the discrete interval between variables, limits the interval 

over which the gradients are calculated, and discontinuities in the 

objective function will cause further instability. With these problems in 

mind gradient methods are best avoided. A final point in favour of direct 

search methods is that because they tend to repeat identical arithmetic 

operations, it is easier to understand the characteristics of the problem and 

to assess the ability of solution algorithms to cope with them. 
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CHAPTER 4. 

OPTIMISATION TECHNIQUES. 

The two categories of search method, direct and gradient methods, have 

been discussed briefly in section 3.6. Gradient methods which select the 

direction of search by the use of partial derivatives of the objective 

function with respect to the problem variables. These methods, however, 

are unstable when used with discrete variable problems and discontinuous 

objective functions and are therefore not suitable for solving HVAC 

optimisation problems. Gradient based methods are therefore not 

considered further in this thesis but, a comprehensive assessment of these 

techniques can be found in such texts as Rao, (1987). 

Unlike gradient based methods, direct search methods are stable with 

discrete variables and are not affected by discontinuous objective 

functions, an assessment of these techniques with respect to the 

characteristics of the problem of HVAC system design follows. 

4.1 Unconstrained Direct Search Methods. 

Direct search methods are those which do not require the evaluation of 

the partial derivatives of the objective function, but instead rely solely on 

values of the objective function, and information gained from earlier 

iterations to obtain a search direction. Although HVAC , 'stem design 

problems are fully constrained a review of unconstrained methods 
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follows, because essentially the methodology of these techniques does not 

alter except for the fact that constraint violation handling rules are added 

to constrain the problem. The more applicable constrained methods are 

assessed further in section 4.2. 

Unconstrained direct search methods can be divided into three classes, 

tabulation methods, sequential methods and linear methods. 

4.1.1 Tabulation Methods. 

These methods make the assumption that the optimum solution, 

(xl, x2,........ xn) lies within a given region, 

Xi <_ xi <_ Xi+di, i=1,2,....., n. [4.11 

where the X. 1 and di are known. 

One basic method of approximately locating the minimum is to evaluate 

the function at the nodes of a grid covering the region given by the 

inequalities [4.1]. For example the range di of the nth variable xi can be 

divided into r; equal sub-intervals, where ri is chosen to give acceptable 

spacing d; /r; of the grid lines for this variable. The use of this strategy 

requires the objective function to be evaluated at the following points. 

(r1 +1) [4.2) 

The smallest function value found is taken as the minimum. 
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Often with HVAC system optimisation Xi and di are known, but a well 

defined feasible region is not known, constraint functions complicate the 

feasible region and without standard methodology for constraint 

violation, such as simple rejection of infeasible points, these methods are 

rendered useless for the needs of the problem. An exhaustive search is one 

form of tabulation method, it uses the whole range of each variable so that 

d; becomes the full range of the variables xi, it is useful to act as a gauge of 

efficiency for other search methods as it will explore all possible 

combinations of the problem variables and acts as a bench mark from 

which to assess other search methods. An example of other tabulation 

methods of direct search are random search methods which uses random 

numbers generated in the range 0 to 1 to find randomly selected solution 

points. After a sufficiently large number of such solution points have been 

found and their objective function values determined the solution point 

with the lowest objective function value is taken as the minimum 

solution. 

4.1.2 Sequential Methods. 

Sequential methods are those methods which investigate the objective 

function by performing objective function evaluations at the vertices of a 

geometric configuration in the space of the problem variables. 

Factorial designs are one such sequential method. The objective function 

is evaluated the the vertices of a geometric shape such as a cube. The 

search continues to move the shape in the direction of the lowest objective 
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function vertex. For a cube, eight objective function evaluations would be 

required, one at each vertex, for each movement of the cube. This is a 

major disadvantage because of the time involved in simulating the system 

performance at each evaluation. The number of objective function 

evaluations can be reduced with fractional factorial designs, but the 

number of evaluations still remains excessive. Both methods are described 

fully in (Davies 1954). 

A second and far more promising sequential method is the Simplex 

method devised by Spendley, Hext and Himsworth (1962). The objective 

function is evaluated at n+1 mutually equidistant points in the space of 

the n problem variables, these points forming the vertices of a regular 

shape called the simplex. Therefore a regular simplex in two dimensions 

consists of an equilateral triangle, whilst that in three dimensions consists 

of a tetrahedron. 

The method is initiated by setting up a regular simplex in the space of the 

problem variables, followed by the evaluation of the objective function at 

the vertices. The basic iteration then proceeds according to the following 

rules: 

1. Find the vertex with the worst objective function value and reflect this 

vertex in the centroid of the remaining vertices, thus forming a new 

simplex. 

2. Evaluate the new vertex and continue again with step I. 

If the new v, erte\ happens to be the vertex of the worst objective function 
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value in the new simplex, this search procedure would cease to progress, 

and oscillation between the last two simplexes would occur. To prevent 

such an occurrence, a further rule is introduced: 

3. If, at any stage, the vertex selected by step 1 is the most recently 

introduced vertex of the current simplex, reflect the vertex with the next 

worst objective function value instead. 

A typical performance of this basic simplex method is illustrated in Figure 

4.1. A two variable problem is shown, the task is to find the minimum 

value represented by the contour lines. With these simple rules and 

additional criteria for convergence the simplex method by Spendley, Hext 

and Himsworth operates. 

At any iteration of this method only one evaluation of the objective 

function is made, and hence only one system simulation would be 

necessary reducing computer time to a minimum. The characteristics of 

HVAC system design optimisation, however, are more complicated than 

the simple example shown in Figure 4.1 where a smooth concave 

objective function is encountered. The objective function can be 

discontinuous and not necessarily concave in shape. The simplex method 

is, however, worthy of further investigation because the methodology 

used can be converted successfully into a useful constrained method. 
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The simplex method by Spendley, Hext and Himsworth proceeds at a 

prescribed rate dependent upon the size of the regular simplex and as such 

is not sensitive to the changing environment of the objective function of 

H VAC system design problems. Modifications to this method were 

developed firstly by Campey and Nichols (1961) and to a greater extent by 

Neider and Mead (1965) allowing more flexibility in the simplex design, 

and forming the most efficient of all the current sequential techniques. In 

this variation there are three basic operations, namely reflection, 

expansion and contraction. The general iteration of this method by Neider 

and Mead can be described as follows. Let the vertices of the simplex be %'i 

and the corresponding objective function values be fi, where i=0,1,........ n. 

Let g, h, and s be respectively the subscripts of the vertices for the greatest, 

next largest and smallest objective function values, V is the centroid of all 

vertices excluding Vg. This initial set up in two dimensions is illustrated 

in Figure 4.2. 

Initially Vg is reflected in V to give a new vertex Vr, where, 

Vr = (1+A) V- AVg 

in which al is a positive constant called the reflection coefficient. Vr is 

therefore on the line joining Vg and V, on the side of V opposite to \' 

such that, 

I V- rVl'_ 
ä 

[VV 
91. YV 

v 

where for example [%'r%71 denotes the distance from %'r to V. 
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If fh > fr > fs, then Vr replaces Vg and the basic iteration continues. 

If the reflection produces a new minimum, that is fr<fs, then it seems 

worthwhile to investigate whether a further step in this direction will also 

be successful. Therefore a new point, Ve, on the extended line VgV Vr is 

calculated, where 

Ve = cVr + (1-c) V 

in which the expansion coefficient, c, is given by 

c= VeV >1 
[VrV] 

If the new objective function value fe is less than fs, then the expansion 

has been successful and Vg is replaced by Ve. Otherwise the expansion is 

considered to have failed, and Vg is simple replaced by Vr. 

If reflection gives a point for which fr<fg, then Vr replaces V 
g, 

but not 

otherwise. A new point Vc is calculated on the line joining V9 and V as 

follows: 

Vc = ßVg + (1-ß)V 

where the contraction coefficient ß is given by 

ß= VcV 0<ß<1. 
[V 9%I 
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If fc <fg, the contraction is considered successful, Vc replaces '\'g and the 

basic process is recommenced. If the contraction is not successful, a new 

configuration is set up by halving the distance from Vs of all the vertices 

of the simplex before the basic process is continued, hence this acts as a 

convergence rule. Additional convergence rules complete the process. The 

basic steps of reflection, expansion and contraction are illustrated in 

Figures 4.3,4.4, and 4.5. 

This method by Neider and Mead is considered of interest to HVAC 

system design problems because it is able to adapt to the changes of the 

objective function by the expansion and contraction steps and which also 

allows the search speed to vary. 
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4.1.3. Linear Methods. 

Linear method are those techniques in which a set of direction vectors are 

used throughout the search. Explorations are made along these directions, 

called axial probes, and the action taken in directing the search is governed 

by the outcome obtained. 

These methods range in there complexity from a simple alternating 

variable search method which evaluates each variable direction in turn, to 

more complex methods such as Rosenbrock's rotating coordinate method 

(1960) and Powell's method (1964) which is based upon conjugate 

directions. 

A method previously investigated (Wright, 1986) and implemented with a 

certain amount of success for HVAC system design problems, is the Hooke 

and Jeeves (1960) pattern search method. 

This method like many other linear methods attempts to align a search 

direction with the principal axis of the objective function. In this attempt 

two strategies, known as exploratory and pattern moves, are used 

alternately. 

The initial starting point within the feasible region forms the first base 

point bl, at which the objective function value is fl. In the exploratory 

move each variable is considered in turn, an axial probe of a given 

distance is made in the positive direction of the variable. If a smaller 

objective function results from this step then the point is accepted and 

becomes the current point from which the search considers the ne\t 
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variable. If a greater objective function value is obtained, however, then 

the point is rejected and an axial probe in the negative variable direction is 

made from the base point bl. Again only if a smaller objective function 

value is obtained will the point be accepted and become the current point, 

otherwise it is rejected, in either case the next variable is then considered 

in the same manner. The exploratory move is completed when all 

variables in turn have been considered. The final current point becomes 

the new base point b2, with the corresponding objective function value f2. 

The exploratory move results in the search moving from bl to b2. The 

pattern move is designed to assess whether there is advantage in 

continuing in the same direction. The pattern move is made to a point 2b2 

- b1, effectively doubling the exploratory move in the same direction. 

Assessment of the new current point is not compared with the previous 

base point but a set of exploratory moves are performed from this point 

firstly, to yield a new base point b3, at which the objective function value is 

f3. 

If f3> f2 the pattern move plus additional exploratory moves is deemed to 

be a failure and the whole procedure is recommenced from the base point 

b2. If, however, f3 <_ f2 then the direction from b2 to b3 is considered worthy 

of further investigation, and a new pattern move is made to the point 2b3 - 

b2, and the process continues with a set of exploratory moves starting from 

this point, as before. 

The above rules are applied until a set of exploratory moves about a base 

point (as opposed to a point obtained from a pattern move) all fail. At this 

point either a minimum has been reached or a reduction in the axial probe 
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lengths is necessary for the search to continue. Convergence is assumed 

when the step-length of the axial probes reach a preassigned value for each 

of the problem variables. 

The caution of repeated exploratory moves lends itself to the solution of 

H VAC system design problems as although the direction of the optimum 

can be well defined, too rapid a progress can result in difficulties when 

solutions are rejected though the violation of constraints. 

4.2. Constrained Optimisation using Direct Search Methods. 

The general review of direct search optimisation methods so far has not 

considered the constrained problem. The optimum solution of HVAC 

system design problems often lies on or near constraint functions and so 

careful consideration and handling of constraint violation by any of the 

previously documented direct search method is necessary. The search 

method also requires the ability to traverse along a constraint as an 

optimum solution may be some distance from the position where the 

search method first encounters the constraint. 

Two methods of constraint handling are considered in general 

optimisation theory, one method replaces the violated point back inside 

the feasible region and rejects the violation, the other method places a 

penalty upon the objective function discouraging the search from 

violating the constraints. Each constraining technique is considered, with 

the particular unconstrained direct search methods recommended from 

section 4.1. 
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4.2.1. Constrained Optimisation by Rejection of Infeasible Solutions. 

Simple rejection of infeasible points has proved to be an unreliable 

constraint handling technique when used on HVAC system design 

optimisation problems (Wright 1986), a more rigorous method of 

constraint handling is required. One such method can be applied to the 

sequential simplex method by Neider and Mead (1965), described in section 

4.1.2. The method was developed by Box (1965) and called the Complex 

method. 

The Complex method uses a geometric figure of k> n+1 trial points (called 

the simplex) where n is the number of problem variables. Given an initial 

feasible solution point, the remaining k-i points are generated to 

randomly lie within the bounds of the problem variables. If a variable 

bound is violated then the violated point is moved to just inside of that 

variable bound. If the remaining constraint functions, however, are 

violated then the trial point is successfully moved halfway back towards 

the centroid of the existing points in the simplex (of which there is at least 

one, the initial point), until the point becomes feasible. 

Once the simplex of the feasible solution points has been generated, the 

objective function is evaluated at each point and the worst solution point 

determined (that with the greatest value). Movement of the search is 

similar to that of the simplex method, however, extra rules are applied to 

each new trial point to constrain the problem. 

If the trial point violates a variable bound, the point is relocated just 

inside the violated bound. 
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2. If a constraint function is violated, a new point is constructed by 

successfully moving the point halfway back towards the centroid of the 

remaining points until it is feasible. 

3. When the new trial point satisfies all of the constraints, the objective 

function value is evaluated and process repeated unless the trial point is 

the worst point of the new simplex, in which case a move halfway back 

towards the centroid of the remaining points is made until it is no longer 

the worst point. 

The work by Wright (1986) concentrated on the Hooke and Jeeves method 

and used only simple rejection of infeasible points which subsequently 

proved to be unreliable. The Complex method is a different type of direct 

search method to that used by Wright and employs more sophisticated 

constraint handling. The method appears to be suited to the characteristics 

of HVAC system design problems and will be pursued during this 

research. 

4.2.2. Constrained Optimisation by Penalty Function Method. 

There are two penalty function methods commonly documented in 

standard texts (Rao, 1987), these being the method by Rosenbrock, (1960) 

and the method by Carroll, (1961). The Rosenbrock method uses the 

technique of implementing a boundary zone inside all variable bounds 

and constraint functions, and should trial points enter this boundary zone 

then a penalty is applied to the objective function making the trial point 

less desirable to the search. The method by Carroll, called the Created 
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Response Surface method can be used successfully with many linear direct 

search methods and may well assist in the use of such methods when 

applied to HVAC system design problems. The work by Wright indicates 

that the linear direct search Hooke and Jeeves method used v, -ould benefit 

from more robust handling of constraint functions and application of 

Carrolls method is thought to be more advantageous than the Rosenbrock 

method because it is less complicated in its set up and it avoids the 

problems involved with the pseudo constraints created by the boundary 

zones. 

The penalty function method developed by Carroll imposes a penalty on 

the objective function in the following form: 

f*(x) = f(x) + r2: , 
W; /C; 

where Wi is the individual weighting given to each of the i constraints, C, 

is the value of the constraint function when in the form, 

C; (x)>0.0 

and r is the weighting given to the penalty in relation to the objective 

function f(x), and f*(x) is the modified objective function value. 

As a constraint boundary is approached the value of the constraint tends to 

zero. The penalty, and therefore the modified objective function, is then 

increased making any trial point close to the constraint boundary 

undesirable. It is therefore hoped that the search will not cross the 
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constraint boundary and will remain in the feasible solution region. Each 

time the search finds an optimum solution for the given modified 

objective function f*(x), the penalty weighting r, is reduced, and the search 

re-run starting from the previous optimum solution point. Eventually the 

penalty weighting r, is reduced to zero and has no influence on the 

objective function, the search therefore will operate on the true objective 

function to find the optimum, constraint violation, however, has been 

avoided throughout the search. 

4.3. Selection of Direct Search Technique. 

Consideration of all the existing direct search methods has shown that few 

are suitable for HVAC system design problems, of the possible exceptions 

two methods appear to complement the characteristics of such problems. 

The Complex method, because its search procedure based upon the 

simplex method is robust in the feasible region and is adaptable to the 

different objective function environments. The additional rules that the 

method incorporates for constraint violation means that the method is 

reliable about constraint function boundaries. The penalty function 

method is purpose built for avoiding the difficulties of constraint 

violation and also regulates the speed at which the search can approach 

the constraint functions, which proved to be particularly critical for I IVAC 

system design problems when using a linear search method on its own 

(Wright, 1986). The use of a linear direct search method, such as the 1-locke 

and Jeeves pattern search is recommended to operate with the penalty 

function method applied to it. 
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CHAPTER 5. 

THE APPRAISAL OF HVAC SYSTEM DESIGN OPTIMISATION 

ALGORITHMS. 

The appraisal of algorithms is a well documented. (Amstral and Poirters, 

1989). There are two main reasons why analysis of algorithms should take 

place. Firstly, it allows the algorithm design to be improved where 

possible, and secondly appraisal allows the different algorithms which 

perform the same task to be compared. Traditional methods of algorithm 

appraisal (Sedgewick, 1991) concentrate on the size of the problem to be 

solved, from which accurate mathematical formulas are used to provide 

analysis of the 'average case', the amount of time an algorithm might be 

expected to take on 'typical' input data, and the 'worst case', the amount of 

time an algorithm would take on the worst possible input data 

configuration. This type of analysis, whilst possessing merit, would not 

give any indication of the behaviour of a HVAC system design 

optimisation algorithm. 

There is a need to develop other methods of appraisal that assess the 

behaviour and performance of the search algorithms. Monitoring of the 

algorithms performance throughout the search is required, not just an 

overall assessment of computer time taken which is the approach adopted 

by traditional methods. 
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5.1 Useful Criteria with which to Assess HVAC System Design 

Optimisation Algorithms. 

Much of the previous work in optimisation of HVAC system design use 

analysis which is based upon the speed of the search to the optimum 

solution. This indeed is a critical factor in the overall acceptability of the 

algorithm to the problem (Leah, 1983). However, this should not be the 

limit to the appraisal of a search algorithm. Many other factors are 

important when looking at the overall acceptability and applicability of an 

algorithm. The algorithm must show good speed of search but must also 

be able to deal with the rigours of the variable, constraint and objective 

function characteristics of the overall problem. A fast search algorithm is 

of no use alone if it cannot adequately negotiate all characteristics. Many 

algorithms are designed to cope with specific types of problem, for 

instance, the work by Leah (1983), dealt solely with concave shaped 

objective functions which were smooth and continuous in character, we 

know, however, that many other objective function characteristics can 

occur and algorithms such as the quadratic search method employed by 

Leah (1983), would fail given some of these alternative characteristics. 

Appraisal criteria of the algorithms performance for all problem 

characteristics must be developed. 

The chosen criteria developed for appraisal of HVAC system design 

problems are: 

Accuracy of the search. 

Speed of the search. 

Numerical stability of the search. 

Robustness of the search. 
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Accuracy and speed of search are both quantitative forms of algorithm 

appraisal, where as, numerical stability and robustness give a qualitative 

review of how the search algorithm is proceeding. 

5.2. Quantitative Appraisal Criteria. 

Accuracy and the speed of the search algorithm are both quantitative 

appraisal criteria which enable direct appraisal of different algorithms that 

perform the same task. 

5.2.1. Accuracy of the Search Algorithm. 

There are obvious reasons for the appraisal of any optimisation algorithm 

by accuracy of the search as it proceeds and accuracy at the optimum 

solution point. There is little reason for using an algorithm for 

optimisation which in effect does not reach the true optimum solution 

point because of its inaccuracy. 

Every solution point found by an optimisation algorithm for HVAC 

system design, results in constraint and objective functions being 

evaluated. The constraint function values give the algorithm information 

about the validity of that solution point and the objective function value 

provides information for the next iteration of the search algorithm. 

Accuracy of these function values is therefore critical for the search to 

proceed correctly. 
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It is critical that the variable values found by the algorithm throughout 

the search procedure are accurate. Should a variable have a large influence 

on the value of the objective function then inaccuracy in the variable 

value will cause an inaccurate objective function value. This inaccuracy 

subsequently may cause the objective function to distort away from the 

true function shape, and any incorrect information being fed back into the 

algorithm from this function value, at any stage of the search, may cause 

the next search iteration to proceed in a direction which is not actually 

defined by the true objective function value. This inaccurate search move 

could result in a false optimum solution point being found by the 

algorithm. This is obviously a worst case scenario, but at the very least the 

efficiency of the performance of the search algorithm would be impaired. 

HVAC system design optimisation problems can have discrete and 

continuous variables. The discrete variable values throughout the search 

are easily marshalled for accuracy, by rounding to the nearest discrete 

interval for each variable. This process of rounding to a discrete interval 

can be performed by additional subroutines incorporated into the main 

algorithm flow. Although an algorithm may essentially be built to run 

with continuous variables only, this transition for discrete variables has 

been performed successfully throughout this research. Integer formats are 

used in all algorithms for the discrete variable values to ensure that no 

computational inaccuracies occur. Double precision formats are used for 

all continuous variables to ensure the maximum computational accuracy 

for these variables. 

HVAC system components when installed into a system will not give the 

exact performance anticipated, there will be a difference between the 
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expected laboratory performance and the actual installed performance of a 

component. Two boilers of the same size (thermal rating), for example, 

may not have exactly the same performance characteristics due to practical 

tolerances on the quality of manufacturing of the boilers. A manufacturer 

will specify a guaranteed performance for a component, ensuring that the 

performance is greater than or equal to that specification. Simulation 

algorithms, however, generally produce ideal solutions, which in the case 

of HVAC system design is not entirely necessary, a tolerance associated 

with the manufacturers performance guarantees should be included 

within the simulation algorithm to give a range of acceptable solutions. 

Objective functions are another area where absolute accuracy may not be 

necessary. One objective function commonly associated with HVAC 

system design optimisation problems is that of annual energy 

consumption. Many factors influence energy consumption some of which 

are not associated with the system components themselves. The annual 

climatic conditions, for example, is one such factor which will change 

from year to year, and will directly effect the annual energy consumption 

of any HVAC system. As stated previously, component performance is not 

'ideal' and tolerance of this performance will effect an energy related 

objective function. 

HVAC system design optimisation algorithms should accommodate 

acceptable tolerances within the objective functions to cater for such 

installed system inaccuracies. It is the aim of such algorithms to produce a 

system which is practical, and therefore needs to have these inaccuracies 

built into it. 
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5.2.2. Speed of the Search Algorithm. 

The speed of an optimisation algorithm to find the optimum solution is a 

critical factor which dominates its efficiency. The essence of optimisation 

of HVAC system design problems is to reduce the time involved in 

finding the best possible solution point, it is therefore essential that the 

speed of the optimisation search algorithm is included as an appraisal 

criteria. 

Each time that an algorithm calls the objective function or checks a 

constraint function then simulation of the current system design is carried 

out to provide necessary information for the function values to be 

calculated. Simulation of the system is the most time consuming process 

involved in the evaluation of a new solution point and as such directly 

effects the overall speed of the search. 

As the system simulation routine remain standard for all optimisation 

algorithms used in the course of this research, a direct comparison of the 

search speed can be made by assessment of the number of objective and 

constraint function calls made by the optimisation algorithm. The 

algorithms used in this research all have counters attached to the objective 

and constraint function routines to provide information on the number 

of calls made to each during the course of the search. Direct comparison 

can be made between each algorithm using this information. 

The speed of the search algorithm for HVAC system design problems will 

be determined by the total number of calls made to the system simulation 

throughout the course of the search. The algorithm performance mußt be 
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such that the use of a automated optimisation design tool enhances the 

time spent within a design office. 

This research has looked at a small scale HVAC system model, and it is not 

anticipated that the speed of the search of the algorithms developed so far 

would be adequate for large HVAC systems yet. However, as a data base of 

different component models is developed, and rules in the form of an 

expert system are added, then it is anticipated that the speed of the system 

optimisation will increase to an acceptable practical design level. 

5.3. Qualitative Appraisal Criteria. 

Numerical stability and robustness are both qualitative measures of 

assessing the search algorithms. No mathematical or statistical measure 

can be placed upon these assessments of the algorithm, they measure the 

ability of the search algorithm to proceed in a stable and efficient manner 

to the optimum solution. They form an integral part of the assessment of 

H VAC system design optimisation problems at the initial stage of their 

development. 

5.3.1. Numerical Stability of the Search Algorithm. 

Numerical stability of the search algorithm has been chosen as an 

assessment criteria because of the rigorous nature of the search 

environment when considering HVAC system design optimisation 

problems. Constraint functions which form the boundaries of the 
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environment, discrete variables and objective function discontinuities 

collectively form a search environment which is imposing for any search 

algorithm to negotiate. Monitoring of the search algorithm as it proceeds 

though the optimisation function is necessary to ensure that correct and 

efficient progress is being made towards the optimum solution at all 

times. 

Numerical stability of the search algorithm is a qualitative assessment and 

ensures that the search continues in an orderly fashion throughout. By 

continuously recording the present search with the previous search 

positions it can be determined weather the search algorithm is behaving 

in a stable manner. Oscillation between search positions is an example of 

numerically unstable search. Similarly movement of the search in an 

erratic manner, such as, increasingly distant search positions in opposite 

directions is another indication that the search has lost stability. 

Numerical stability is often a function of the accuracy of the search 

positions found. This can readily be envisaged using the example where 

the objective function surface has a shallow gradient in relation to the 

problem variables, hence changes in the variable values produce a 

relatively small change in the objective function value. Instability occurs if 

the value of the change in the objective function is influenced to a greater 

extent by the accuracy of the computation than the actual change in the 

objective function value. Improvement in numerical stability can be 

made, given that the instability is a result of the computational inaccuracy. 

Scaling of the solution points may be one such improvement, where, the 

objective function value is multiplied by say an order of magnitude before 

computation hence reducing the effect of rounding errors. This would, 
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however, be detrimental to the speed of the search algorithm as additional 

subroutines would have to be incorporated to perform and manage such a 

task in a stable manner. Alternatively the increment by which a variable 

value is changed could be made dependent upon a set minimum objective 

function change. 

For the purposes of this research it is sufficient to monitor the numerical 

stability of the search and to improve the search algorithm, if necessary, as 

instabilities arise. 

5.3.2. Robustness of the Search Algorithm. 

The robustness of the search algorithm differs from the assessment of 

numerical stability in that it has no mathematical or numerical link, it is 

purely a qualitative assessment of the search algorithms progress around 

the characteristics of the optimisation problem. 

HVAC system design optimisation problems have particular 

characteristics which can cause a given search to fail before reaching the 

optimum solution. It is known that the optimum solution often lies on or 

near a constraint function and as such the search algorithm must be strong 

when assessing constraint violation and correcting the search position 

ruhen constraint violation occurs. This coupled with the fact that the 

optimum may not be aligned with the principle axis, or steepest gradient, 

of the objective function means that the direct search algorithm may have 

to, not only be able to cope with constraint violations sensibly, but also to 

traverse a constraint function until the optimum solution is found. The 
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process of traversing a constraint is one which often presents itself within 

H VAC system design optimisation problems. Wright (1986), found that 

failure of his pattern search algorithm was due to the inability of the 

search to traverse a constraint function, the failure in this instance was 

also linked to the optimisation problem having discrete variables, another 

common characteristic of HVAC system design problems. 

The robustness of a search algorithm is also linked with the repeatability 

of the search algorithm, giving a measure of the search algorithms ability 

to find the same optimum solution if started from the same initial point. 

Failure to reach the same optimum solution would quite obviously be 

detrimental to the optimisation process giving no confidence in the search 

procedure. 

The repeatability factor can also be extended to ensure that the same 

optimum solution is found regardless of the initial starting point. 

It is proposed that robustness and repeatability are monitored throughout 

the search algorithm testing and corrected when necessary. 
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CHAPTER 6. 

THE EXAMPLE OPTIMISATION PROBLEM. 

Development of a rigorous optimisation problem to test the direct search 

algorithms was undertaken. A standardised HVAC system problem was 

considered to be essential so that a direct comparison of the algorithm 

performance could be made. 

The characteristics of HVAC system design optimisation problems are well 

defined (Chapter 3). The dominant characteristics has been built into the 

example problem and therefore the merits of the search algorithms can be 

assessed against these specific characteristics. 

The example problem is the capital cost optimisation of a cooling coil. 

6.1 The Cooling Coil Problem. 

A cooling coil component model was chosen and developed as the 

example problem for algorithm testing. It was chosen because it is 

representative of a typical HVAC component that displays in simple form 

the characteristics of HVAC system design problems. The model includes 

the proportional control of the air temperature leaving the coil (tao). 

Figure 6.1 illustrates the cooling coil component model in schematic form. 
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A steady state simulation of the cooling coil problem was developed and 

linked to the optimisation algorithm routines. This simulation is based on 

British Standard test methods (BS 5141), and predicts the temperature of 

the air leaving the coil (tao), the control variable and the moisture content 

of the air leaving the coil (gao). The water mass flow rate (mw) though the 

coil and the water return temperature (two) are also calculated by the 

steady state simulation. 

The water inlet condition (twi) to the coil, the set point temperature (sp), 

and the proportional temperature band (pb) are input giving the desired 

operating point and controller setting in which the coil will operate. For 

simplicity the hydraulic performance of the system is excluded from the 

problem. The control valve is assumed to have a simple linear 

characteristic. 

For simplicity of testing the algorithms, the operating point of the cooling 

coil has been fixed in the simulation at peak conditions. The simulation of 

seasonality effects on the load of the cooling coil can be performed 

producing load conditions for the coil throughout the year, however for 

the purpose of optimisation algorithm testing it is not considered to be 

significant, since the underlying, dominant, characteristics of the 

optimisation problem will not change with cooling load. 

The optimisation problem expressed by the cooling coil problem can be 

defined in terms of the variables, constraints, objective function and 

system load. 
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6.2 The Example Problem Variables. 

The example problem variables are formed from the physical dimensions 

of the coil and from the coils operating variables. 

Five variables exist in the example problem are as follows : 

1) Cooling coil width. 

2) Cooling coil height. 

3) Number of rows in the coil. 

4) Number of water circuits in the coil. 

5) Maximum water mass flow rate (mwmax). 

The dimension variables are all discrete in nature. The cooling coil height, 

for instance, is manufactured in 50.0mm increments. Conversely the 

operating variable of maximum water mass flow rate is a continuous 

variable. By assigning a discrete interval for the maximum water mass 

flow rate and rounding the calculated value of this variable to the nearest 

discrete interval allowable by the constraint functions the variable iý 

converted to a discrete variable. The algorithm tested against the example 

problem have been set up to deal with discrete variables only. This is 

justified in that the majority of the problem variables are discrete. 

0.3 The Example Problem Constraints. 

The constraints on the example model optimisation are formed from the 

feasible range of each of the problem variables, by design limitations, and 
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from the desired operating point and controller settings of the coil. 

Chapter 3 of this thesis categorises the constraint functions as one of the 

following: variable bounds, performance constraints or sparse 

configuration constraints. Variable bounds and performance constraints 

are present in the example problem but the sparse configuration constraint 

is not present because of the overriding difficulties involved with this 

form of constraint. The handling of sparse constraint is considered in 

Chapter 9. 

6.3.1. Example Problem Variable Bounds. 

The variable bound constraints and discrete intervals of each variable are 

as follows: 

1) 0.05m<_ cooling coil width <_ 2.00m. 

2) 0.05m <_ cooling coil height <_ 2.00m. 

3) 2<_ number of coil rows <_ 10. 

4) 1 <_ number of coil circuits <_ 40. 

5) 0.0kg/s <_ maximum water mass flow rate<_ 10.0kg/s. 

Nvith the following discrete intervals respectively : 

1) 0.05m. 

2) 0.05m. 

ý) 1 coil row. 

ý) 1 coil circuit. 

5) 0.25 kg/s. 
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6.3.2 Example Problem Performance Constraints. 

The performance constraints present in the example problem are as 

follows: 

6) 0. Om /s< Air face velocity <_ 2.5m / s. 

7) O. Om/s S Water velocity <_ 1.8m/s. 

8) Set point (sp)+ (proportional band (pb)/2.0)-air outlet temperature (tao) 

>_ 0.0 C. 

Constraints 6 and 7 prevent excessive fluid velocities. The air face velocity 

constraint simulates the design limit after which carry over of moisture 

which forms on the cooling coil surface is transmitted into the exiting air. 

Constraint 8 is the design limit of the proportional controller this ensures 

that the controlled variable (tao) is within the given allowable margin 

determined by the proportional band (pb). 

6.4 The Example Problem Objective Function. 

The objective function chosen for the example problem is capital cost ()t 

the cooling coil. This is a typical objective used in any design function and 

H VAC design is no exception. 

In a competitive market manufacturers are reluctant to release cost data, 

particularly the mathematical form which governs the scheduling of their 

price ranges. It is also the authors experience, that the presentation of cost 
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data is very diverse from manufacturer to manufacturer. These two facts 

together make the formulation of generalised cost data impossible. For the 

purposes of this research cost data form a specific manufacturer of H%'AC 

components has been used. A least squares polynomial curvefit of the 

manufacturers price list was performed to formulate the cost function. 

In the example used, the manufacturers cost data, presented, was i 

function of the physical dimensions of cooling coil width and cooling coil 

height. A third variable, that of number of rows in the coil, mean that a 

family of cost curves were produced, one for each discrete interval of coil 

rows, thus complicating the overall cost function. Future software 

development may allow alternative and more efficient methods for 

formulating the cost function, such as, defining one data file for each range 

of components or price list. 

The algorithms to be tested are structured in such a way as to calculate the 

cost objective function after the simulation of the system thus ensuring the 

component is correctly sized before the costs are evaluated. 

The cost function values are defined in pounds sterling (£), and the full 

objective cost function is presented below: 

For cooling coil height <_ 1.4m, 

Capital cost (E), F= Al + (A2 x coil width) + (A3 x coil height) + 

(A4 x coil width x coil height) 

or for cooling coil height > 1.4m, 
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Capital cost (£), F=2 (Al + (A2 x coil width) + (A3 x coil height/2.0) + 

(A4 x coil width x coil height/2.0)) 

where, the values of Al, A2, A3, and A4 are tabulated of the discrete 

intervals of coil rows as follows: 

No of coil 
rows. 

Al A2 A3 A4 

2 92.45 2.74 143.38 83.66 

3 94.45 18.91 180.92 98.73 

4 99.89 21.23 220.71 121.94 

5 89.22 29.60 263.79 138.64 

6 78.56 37.97 306.86 155.34 

7 91.72 40.66 310.85 184.53 

8 104.87 43.34 314.84 213.72 

9 94.31 26.60 392.72 248.14 

10 83.75 9.87 470.61 282.57 

As can be observed by the objective function there is a break point at the 

cooling coil height of 1.4m. This break represents a manufacturing change 

or discontinuity. The manufacturer produces cooling coils up to 1.4m in 

height after which to obtain the desired size of coil two coils of equal size 

are used. 
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6.5 Example Problem System Loads and Simulation. 

As previously stated the system load on the cooling coil is defined by the 

condition of the air entering the coil and the desired operating point of the 

coil. An advantage of using a system simulation in design, is that the 

performance of the system and the design constraints can be evaluated for 

all load conditions. However, a single peak load condition has been taken 

to simplify the assessment of the optimisation algorithms. The peak load 

conditions are as follows: 

1) Air entering the coil temperature (tai) = 27C 

2) Air entering the coil moisture content (gai) = 0.00145 kg/kg 

3) Air mass flow rate (ma) = 6.5 kg/s 

4) Water inlet temperature (twi) = 8.0C0 

5) Controller set point (sp) = 12C 

0 6) Controller proportional band (pb) = 1C 

It can been observed from these conditions that this would represent a hot 

summer day when the cooling coil would be required to operate at a peak 

load. 

6.6 The Characteristics of the Example Problem. 

Chapter 3 of this thesis describes in detail the characteristics of FIVAC 

system design optimisation problems, and it is the purpose of the chosen 

cooling coil example problem to display these characteristics to assess the 

optimisation algorithms against them. 
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It is difficult to describe the characteristics of any optimisation problem in 

more than two variables. Figure 6.2 illustrates the example problem of the 

cooling coil with two variable dimensions of cooling coil width and 

cooling coil height. The remaining variables present in the problem have, 

for the purpose of this illustration, been fixed at their optimum values. 

The surface of the problem displayed in Figure 6.2 represents the objective 

function to be optimised, namely, capital cost of the cooling coil. 
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The region of feasible solutions is constrained by the upper bounds of the 

cooling coil width and height and by the upper limit of the performance 

constraint of face velocity. It can be seen that the optimum solution for the 

variables of coil width and height lies at a position close to the coil face 

velocity constraint and is close to the control constraint set by the 

proportional band. This is a common characteristic of HVAC system design 

optimisation problems, when capital cost is an objective function, as the 

solution is the system that is just large enough to be operational. The 

optimisation algorithms used to solve the example problem begin 

their search from an initial feasible solution and use a series of trial points 

to find the optimum. Since the unconstrained optimum would be for a 

coil width and height of 0.05m, giving the lowest possible capital cost, the 

search will move towards this solution until the face velocity constraint is 

encountered. The search must then traverse the face velocity constraint 

towards the optimum solution at a coil width of 1.95m and a coil height of 

1.00m. The example problem therefore presents what would be a typical 

environment for a HVAC system design optimisation problem. 

The optimum solution for the example problem is presented in Table 6.3, 

this was determined by inspection: 
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Problem Variable Optimum Solution 

Coil width 1.95m. 

Coil height 1.00m. 

Number of rows 5 rows. 

Number of 30 circuits. 
circuits 

Maximum water 9.75 kg/s 
mass 
flow rate. 

Optimum Solution. Table 6.3 

Figure 6.2 also presents the limit to which performance data of the 

simulation is available. Beyond this limit the reliability of the simulated 

coil is in doubt, (in fact no performance data is available since in this 

problem the simulation fails to find a solution). 

As already stated, there is a discontinuity in the objective function, and this 

can clearly be seen in Figure 6.2, at a coil height of 1.4m. It represents a 

limit in the manufacturers product range. The maximum height of a 

single coil block is 1.4m, coil heights above this value are manufactured 

form two or more coil blocks. The algorithms ensure that multi-coil block 

systems are produced with coil blocks of equal sizes, thus causing an 

increase in cost. For example, a required coil of 1.8rn in height is 

manufactured from two equal coils each of 0.9m in height. There maybe 

instances in practice where the splitting of components into equal sizes is 

not the most desirable arrangement. It could be argued that one large coil 
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and one small coil would give better performance over the full range of 

load conditions throughout a year than two of equal size, however, for the 

purpose of this research this has not been developed as an option, but is 

noted as a possible practical scenario and is one which could be 

accommodated within the structure of the future development of the 

optimisation algorithms. 

The predominant characteristic of HVAC system design problem variables 

is that they are discrete. The example problem chosen employs discrete 

variables for coil width, coil height, number of coil rows and number of 

coil circuits. The fifth variable of maximum water mass flow rate is strictly 

continuous in nature, but within the problem it has been allocated a 

discrete characteristic by approximating any value found to the nearest 

preset discrete interval, the discrete intervals chosen for maximum water 

mass flow rate is 0.25 kg/s. 

6.7 Algorithm Testing Against the Example Problem. 

The preceding sections of this chapter have set out the example problem 

used for the testing of optimisation algorithms. Chapter 4 of this thesis 

identified two optimisation search methods which possessed attributes 

which would suit HVAC system design optimisation problems. These 

methods where, the complex method which uses the rejection of infeasible 

solutions to constrain the optimisation problem, and a penalty function 

method which imposes a penalty upon the objective function to ensure 

that violation of the constraints is not possible. 
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Development of these methods into algorithms specifically for HVAC 

system design optimisation problems, and the testing against the cooling 

coil example problem is described in the following chapters 7 and 8. 

The testing of the algorithms will be conducted in two phases. A simplified 

two-dimensional model for the cooling coil was developed for the initial 

testing, using the variables of coil width and height. The remaining 

variables were fixed at there optimum values. The optimisation is made 

faster with fewer variables yet does not lose the dominant characteristics of 

the problem. The full example problem was then tested against the 

algorithm upon satisfactory conclusion of the two-dimensional model 

testing. 
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CHAPTER 7. 

THE DEVELOPMENT AND TESTING OF THE COMPLEX ALGORITHM. 

The complex method by Box (1965), is a direct search optimisation 

method. It has been selected for development within HVAC system 

design optimisation problems because the search procedure adopted by 

this method is robust within a feasible region of solutions, and is 

adaptable to different objective function environments, hence, lending 

itself to the rigours of HVAC system design optimisation. The additional 

rules incorporated in the complex method for constraint handling, gives 

it a degree of reliability around constraint functions. This is particularly 

important as one of the characteristics of HVAC optimisation is that the 

optimum solution lie near a constraint function. In summary the 

complex method is a direct search method which can be readily used with 

discrete variables, it complements the characteristics of HVAC system 

design optimisation problems and is strong within a constrained 

environment. 

7.1 The Complex Method. 

The simplex method for unconstrained optimisation, devised by 

Spendley, Hext and Himsworth (1962), and the modifications to this 

method by Neider and Mead (1965), are described fully in section 4.1.2 of 

this thesis and form the basis for the complex method. The complex 

method is an adaptation of the simplex method which effectively applies 
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additional rules to constrain the optimisation. 

The complex method searches for the maximum value of a function, f () 

subject to m constraints of the form lbk < Ck < ubk, (To find a minimum, 

-f is maximised). It is assumed that an initial point x1, satisfies all the m 

constraints is available. 

In this method, k> n+1 points are used, of which one is the initial feasible 

point, and where n, is the number of problem variables. The further (k-1) 

points required to set up the initial configuration of the simplex are 

obtained one at a time by the use of pseudo-random numbers and the 

bounds of the problem variables. i. e. xi = lb; + r; (ub; - lb) where r; is the 

pseudo-random number distributed over the interval (0,1). 

A point so selected will satisfy the problem variable bounds, but need not 

satisfy all the problem constraint functions. If a problem constraint is 

violated, the trial point is moved halfway towards the centroid of those 

points already selected ( where the given initial point is included). 

Ultimately a satisfactory point within the feasible region will be found. 

Proceeding in this way, (k-1) points are found which satisfy all constraints. 

The objective function f, is evaluated at each selected point, or vertex of 

the simplex configuration. The vertex with the worst objective function 

value is replaced by reflecting it about the centroid of the remaining 

points in the simplex. Although the reflected point is collinear with the 

rejected point and the centroid of the remaining vertices, the distance of 

the reflected point from the centroid is greater than that of the rejected 

point by a factor a(> 1). This encourages the search to move in the 
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direction of the optimum. If the reflected point becomes the worst point, 

it is moved halfway back towards the centroid of the remaining points to 

give a new trial point. The above procedure is repeated unless a problem 

constraint is violated. 

If a trial point does not satisfy a problem variable bound constraint, the 

variable is reset to a value just inside the appropriate violated bound. If a 

problem constraint is violated, the trial point is moved halfway towards 

the centroid of the remaining points. Ultimately an acceptable point is 

found. Thus as long as the complex method has not collapsed into the 

centroid, progress will continue. 

The advantage of over-reflection by a factor a>1 enables rapid progress to 

be made when the initial point is remote from the optimum solution. 

The contracting move halfway back towards the centroid will, however 

prevent the search method from becoming unstable. A value of a=1.5 

was chosen to keep the same ratio of search movement when the 

complex is expanding and contracting halfway back towards the centroid. 

Figure 7.1 shows a simplified logic diagram of the developed algorithm 

for the complex method in its basic form. 

90 



Basic Complex Algorlhilr 
Flow Diagram 

r ! qHrý 

91 



7.2 Modifications to the Complex Method for Use with HVAC System 

Design Optimisation Problems. 

The complex method of direct search optimisation by Box (1965), was 

developed for use with continuous variables. It is known that the 

characteristics of HVAC system design optimisation problems are such 

that discrete problem variables are predominant, and the basic complex 

method was therefore modified to incorporate discrete variables. 

An additional procedure was developed and incorporated into the 

complex algorithm to deal with discrete variables. This procedure moves 

the initial feasible point and all subsequent trial points to the nearest 

discrete value for each of the problem variables. For example, the height 

of a cooling coil can be manufactured to 0.05m. Hence a search point of 

1.357m would be truncated to 1.35m, whereas a point of 1.942m would be 

increased to 1.95m. With this modification incorporated, the vertices of 

the configuration are always maintained on discrete solution points. 

There are three instances where this will occur, when the initial search 

point is generated, when a new trial point is produced, and when a 

constraint function is violated and the trial point is re-sited within the 

feasible region. 

The second modification to the basic complex algorithm , was to 

incorporate stopping criteria. Stopping criteria for discrete variables must 

be different that used by continuous variables, where control of the 

algorithm can be governed by a preset distance between the centroid of the 

simplex and the problem variables; convergence is deemed to have 

occurred when the distance is satisfied by each variable. For discrete 
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variables, the stopping criteria was that the search would stop when for 

five consecutive solutions the variables were within one discrete interval 

of each other. 

7.3 The Two Dimensional Example Problem. 

The initial testing of the complex method was based on a simplified two 

dimensional capital cost optimisation of a cooling coil (Chapter 6). The 

search variables were taken as the coil width and height. Since the 

number of water circuits and the water mass flow rate have no direct 

effect on the capital cost objective function, they were eliminated from the 

problem. The number of coil rows was fixed at two. It was considered 

more advantageous to the research to perform the initial assessment of 

the algorithm against a simplified problem, and to extent the 

optimisation problem given the results of the initial testing. Although 

simple, the problem has the main characteristics of larger HVAC 

optimisation problems, namely discrete variables, non linear constraints 

and a discontinuous objective function. The variable bounds for coil 

width and coil height were extended by 0.5m to increase the feasible 

region and therefore allow the complex method algorithm to perform in 

a larger domain, this allowed a better assessment of the numerical 

stability of the algorithm. 
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7.3.1 Testing of the Basic Complex Algorithm with Discrete Problem 

Variables against the Two Dimensional Example Problem. 

A typical set of results for the basic complex algorithm with discrete with 

discrete problem variables tested against the two-dimensional example 

problem are presented in Table 7.2. 

Four trial points were used for the vertices of each complex configuration. 

The initial point (1.5,2.3) was selected manually and was known to be 

within the constrained feasible region. The remaining starting points for 

the 11t complex configuration were selected by the psuedo-random 

number generator. It can be seen that one of the generated starting points, 

(0.6,0.8), violated the coil face velocity constraint and was corrected by the 

algorithm back to within the feasible region at a position (1.2,1.4). The 

objective function values for the 1st complex configuration were 

calculated and the 'best' and 'worst' points found as the lowest and highest 

objective function values respectively. 

Correct progress of the complex algorithm was made to the 2' complex 

configuration by rejection of the worst point, and generation of a new trial 

point again with constraint violation correction. At the end of the 3rd 

complex configuration it became apparent that the search was not 

proceeding correctly since a new trial point was not found by the 

algorithm. 
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STARTING POINTS CORRECTED POINTS FUNCTION VALUE HIGHEST/LOWEST 
xi X2 xi X2 (£) 

1.5 2.3 811 

2.3 2.0 869 HIGH 

1.5 1.3 446 LOW 

0.6 0.8 1.2 1.4 532 

2nd COMPLEX 

1.5 2.3 881 HIGH 

0.2 1.2 0.8 1.4 

1.1 1.5 544 

1.5 1.3 446 LOW 

1.2 1.4 532 

3rd COMPLEX 

1.0 0.2 1.1 0.8 

1.2 1.1 

1.2 1.2 

1.2 1.3 

1.2 13 

ALGORITHM FAILS 

The Basic Complex Algorithm Results Table 72 

95 



ýý 

96 



Figure 7.3 gives an illustration of the search progress and it is clear from 

this why the algorithm fails. At position (6), the complex algorithm finds 

a position (1.2,1.3) this position is still in violation of the face velocity 

constraint yet the search cannot move to a position within the feasible 

region. Upon investigation it was clear why the algorithm failed at this 

point. The 2' complex configuration has vertices at the following 

positions with the respective objective function values : 

VERTEX X1 X2 
OBJECTIVE FUNCTION 
VALUE (£). 

VERTEX 1 1.5 2.3 881 

VERTEX 2 1.1 1.5 544 

VERTEX 3 1.5 1.3 446 

VERTEX 4 1.2 1.4 532 

The point with the worst objective function is at the vertex 1, the centroid 

of the remaining vertices is therefore at a position (1.2666,1.4). The over- 

reflection performed by the complex algorithm gives a new trial point at a 

position (1.0,0.2), well outside the feasible region. Movement halfway 

back towards the centroid starts at position (1.1,0.8), again this is in 

violation of the constraint function, and therefore a second move toward'. 

the centroid takes the trial point to the position (1.2,1.1). This process 

continues until the position (1.2,1.3), is reached. At this point the 

algorithm fails, since the discrete variable prevents a move back toward'. 
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the centroid ie a subsequent move halfway back towards the centroid is 

calculated by the algorithm. The calculated point is developed as follows : 

(((1.2666 - 1.2)/2) + 1.2), (((1.4 - 1.3)/2) + 1.3), 

giving a calculated position of (1.2333,1.35), because discrete problem 

variables are present the algorithm adjusts the position of the trial point 

to the nearest discrete point this being back at the position of (1.2,1.3). The 

result is clear, the algorithm is unable to move from this position and 

fails. 

There are some positive conclusions to be drawn from the initial testing 

of the basic algorithm. The numerical stability and the robustness of the 

algorithm over the objective function surface prior to encountering the 

face velocity constraint were both good. The algorithms search path 

passed over the discontinuity in the objective function without 

encountering a problem, and the problem variable bounds again 

presented no difficulty to the algorithm. 

The search path was such that the basic complex algorithm was moving 

towards the global unconstrained optimum solution at a coil width = 0.1 

m and a coil height = 0.1 m but was prevented from reaching this by 

encountering the face velocity constraint at a position some distance from 

the optimum solution, in this example at a position of coil width = 2.3 m 

and coil height = 0.7 m. The algorithm failed to cope with the directional 

change required to start the traverse of the face velocity constraint towards 

this optimum solution, this was largely due to the fact that discrete 

variables were present within the example problem. 
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7.4 The Modified Complex Algorithm. 

From the initial test of the basic complex algorithm incorporating discrete 

problem variables, it was concluded that a modified algorithm needed to 

be developed to deal with the specific problem of failure of the algorithm 

against constraint functions. A new type of search move was required to 

firstly move a trial point which is in violation of a constraint function 

back into the feasible region and secondly, if possible, to change the 

direction of the search path towards the constrained optimum solution, 

ie. forcing the search to start moving along the constraint function in the 

direction of the optimum. 

The nature of the failure of the basic complex algorithm suggested that a 

single discrete interval movement in one problem variable direction 

would be sufficient to overcome the failure, as the mid-point between the 

violated point and the centroid of the remaining points was less than half 

a discrete interval away from the violated point in any problem variable 

direction. Rounding of the mid-point back to the violated position would 

therefore be overcome. Additional routines were incorporated into 

complex algorithm to perform such a move. 

7.4.1. The Exploratory Search Move. 

An exploratory search move was chosen to deal with the failure of the 

basic complex algorithm. An exploratory search forms part of the Hooke 

and Jeeves (1960), pattern search which has already been used with some 

success by Wright (1986), with HVAC system design optimisation 
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problems. This type of search technique lends itself specifically to discrete 

variable problems, using a discrete variable interval as the unit of anv 

move. It was therefore considered to be an appropriate modifying move. 

The exploratory move evaluates each problem variable in turn, one 

discrete interval away from the violated point in both a positive and 

negative direction along the problem variable axis. Constraint functions 

are then checked against the exploratory trial points; violation of a 

constraint function results in the rejection of the trial point. The objective 

function of the optimisation problem is then evaluated at each of the 

feasible exploratory positions. The exploratory point which is within the 

feasible region and has the best objective function value is selected as the 

new search point. The algorithm at this stage then reverts back to the basic 

complex algorithm and the search continues. 

The new exploratory search move is explained using the example detailed 

in section 7.3.1. The failed point V, at a position X1 = 1.2, X2 = 1.3, where X, 

represents the coil width and X2 represents the coil height. At this point of 

failure the pattern search probes, firstly in the X1 direction, finding 

exploratory positions at E1 and E2 of X1 = 1.1, X2 = 1.3, and Xl = 1.3, X2 = 1.3. 

The X1 value is then re-set to the value at V, and exploratory positions are 

found in the X2 direction, at E3 and E4 of X1 = 1.2, X2 = 1.2 and X1 = 1.2, X-, = 

1.4. Figure 7.4 illustrates this procedure, where E1, E2, E3, F4 represent the 

exploratory trial points. 
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When a constraint function is checked against the four exploratory trial 

points it is found that E2 and E4 violate the constraint, and are therefore 

rejected. The objective function values for the remaining exploratory trial 

points E1 and E3 are calculated at £423 and £437 respectively,. E1 is 

therefore accepted as the new trial point. Reversion back to the basic 

complex algorithm completes the modification. The new logic diagram in 

Figure 7.5 incorporates the position of the modification within it, under 

the name of Exploratory, and Figure 7.6 shows the logic diagram of the 

exploratory modification. 

102 



Pick Starting Point (Feasible) 

Generate Other Points 

Check Variable Bound 

Okay 

Violation Check Functions 
. __-< Constraints 

Violation Move Point Inside the Violated 
Variable Bound 

Oko Initial Complex 
Generated 

No 

Ytýý, 

Evaluate Objective Function 

Make an Exploratory 
Check Convergence Move if value of 

Point is Repeated 

No 

Replace Point with the Lowest 
Function Value by a Point 

Reflected Through Centriod of 
Remaining Points 

No Is Worst Point 
Repeated 

Yes 
Stop 

Yes 

Move Point Halfway Towards 
the Centriod of the Remaining 

Points 

Con plc i' : -41gor l-Irn Flow I>lýr < ýýýr iii 
li 1: fb fi: po ralo ry Mo 'c Po.,,,, l'f /1)i . f'n. ( 

7.5 fJ 

103 



ý_ 

rýou Diagram of fhE 
/vpto ra t! o ry Mo z ee 

DI 

104 



7.4.2 Testing of the Modified Complex Algorithm with Discrete Problem 

Variables against the Two Dimensional Example Model. 

A typical set of results for the modified complex algorithm incorporating 

the exploratory search move and tested against the two dimensional 

example model ( Section 7.3) are presented in Table 7.7. 

Four trial points were used for the vertices of each complex configuration. 

The initial point at (1.5,2.3), and the generated other vertices for the 1t 

complex configuration were kept the same as those used for the basic 

complex algorithm test, so that a direct comparison could be made. 

The basic complex algorithm was seen to fail whilst producing the 3rd 

complex configuration, the results of the modified complex algorithm 

show that the cause of that failure has been successfully rectified by the 

inclusion of the exploratory move. The exploratory move produced a new 

trial point at a position (1.3,1.3), satisfying the previously violated 

constraint function. The modified algorithm reverted back to the basic 

complex method to produce the remaining trial points of the 3rd complex 

configuration and continued. 
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STARTING POINTS CORRECTED POINTS FUNCTION VALUE HIGHEST/LOWEST 
xi X2 xi X. 2 (£) 

1.5 
2.3 

2.3 
2.0 

811 
869 HIGH 

1.5 1.3 446 LOW 
0.6 0.8 1.2 1.4 532 

2nd COMPLEX 
1.5 2.3 811 HIGH 
0.2 1.2 0.8 1.4 

1.1 1.5 544 
1.5 1.3 446 LOW 
1.2 1.4 532 

3rd COMPLEX 
1.0 0.2 1.1 0.8 

1.2 1.1 
1.2 1.2 
1.2 1.3 

EXPLORAT ORY MOVE 
1.3 1.3 423 LOW 

1.1 1.5 544 HIGH 
1.5 1.3 446 
1.2 1.4 532 

4th COMPLEX 
1.3 1.3 423 
1.6 1.1 401 LOW 
1.5 1.3 446 
1.2 1.4 532 HIGH 

5th COMPL EX 
1.3 1.3 423 
1.6 1.1 401 
1.5 1.3 446 HIGH 
1.8 1.0 391 LOW 

6th COMPL EX 
1.3 0.8 423 HIGH 
1.6 1.1 401 
1.7 0.9 1.6 1.1 401 
1.8 1.0 391 LOW 

7th COMPLEX 
2.1 0.8 353 LOW 
1.6 1.1 401 HIGH 
1.6 1.1 401 
1.8 1.0 391 

8th COMPLEX 
2.1 0.8 353 LOW 
1.9 0.8 EXPLORATORY MOVE 

1.9 0.9 369 
1.6 1.1 401 HIGH 
1.8 1.0 391 

9th COMPLEX 
2.1 0.8 353 LOW 
1.9 0.9 369 
2.4 0.6 2.2 0.7 

2.1 0.8 353 
1.8 1.0 391 HIGH 

The Modfied Complex Algorithm Results Tate 77 
page 1 of 2 
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STARTING POINTS CORRECTED POINTS FUNCTION VALUE HIGHEST/LOWEST 
(£) 

2.1 0.8 353 LOW 
1.9 0.9 369 HIGH 
2.1 0.8 353 
2.3 0.6 2.2 0.7 

2.1 0.8 353 
11th COMPLEX 

2.1 0.8 353 HIGH 
2.4 0.7 339 LOW 
2.1 0.8 353 
2.1 0.8 353 

12th COMPLEX 
2.3 0.7 333 LOW 
2.4 0.7 339 
2.1 0.8 353 HIGH 
2.1 0.8 353 

13th COMPLEX 
2.3 0.7 333 LOW 
2.4 0.7 339 
2.5 0.6 2.4 0.7 339 
2.1 0.8 353 HIGH 

14th COMPLEX 
2.3 0.7 333 LOW 
2.4 0.7 339 HIGH 
2.4 0.7 339 
2.5 0.6 2.4 0.6 

EXPLORATORY MOVE 
2.4 0.7 339 

15th COMPLEX 
2.3 0.7 333 LOW 
2.3 0.7 333 
2.4 0.7 339 HIGH 
2.4 0.7 339 

16th COMPLEX 
2.3 0.7 333 LOW 
2.3 0.7 333 
2.2 0.7 2.3 0.7 333 
2.4 0.7 339 HIGH 

17th COMPLEX 
2.3 0.7 333 LOW 
2.3 0.7 333 
2.3 0.7 333 
2.2 0.7 EXPLORATORY MOVE 

2.3 0.7 333 HIGH 

OPTIMUM FOUND 

The Mocified Complex Algorithm Results Tabe 77 
page 2c'2 
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The results of the modified complex algorithm tested against the example 

problem were successful. The algorithm accurately found the optimum 

solution at a position (2.3,0.7), at the end of the 17th complex 

configuration. During the search, it can be seen that three more 

exploratory moves were made by the algorithm, in each case these 

exploratory moves successfully found a new trial point within the feasible 

region. These exploratory moves occurred during the 8th complex 

configuration, 14th complex configuration and the 17th complex 

configuration. 

The full search path that the modified complex algorithm took is 

illustrated in Figure 7.8 with the optimum solution being found after 20 

search moves. 

The modified complex algorithm was particularly successful in two ways. 

Firstly it provided a method by which a violated trial point could be 

moved back within the feasible region so that the optimisation could 

continue, and secondly it provided a method by which the search 

direction could change to direct the search along the constraint function 

and towards the optimum solution. 
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7.5 Accuracy of the Modified Complex Algorithm. 

From the results presented in Table 7.7 it can be seen that the modified 

complex algorithm was accurate throughout the search. 

The problem variable values found throughout the search were primarily 

controlled by the modifications made to the basic complex algorithm for 

the handling of discrete problem variables. The problem variable values 

were always at a discrete search position showing that the modification 

was accurately finding solution points. 

The constraint and objective function values found throughout the 

search were also accurate. There was no instance when an inaccuracy in 

either a constraint or an objective function caused the algorithm to 

become numerically unstable thus delaying the search in finding the 

optimum solution. 

The algorithm accurately found the optimum solution, giving the correct 

lowest objective function value. 

7.6 The Speed of the Modified Complex Algorithm. 

Chapter 5 of this thesis identifies that the most time consuming factor for 

a HVAC system design optimisation algorithm is the simulation of the 

system at a given new solution point. The simulation of the system is 

performed each time a constraint or objective function is evaluated by the 

algorithm, and therefore constraint or objective function evaluations are 
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used to measure the overall speed of the modified complex algorithm. 

The modified complex algorithm makes either a constraint function call 

or an objective function call for each trial point in each complex 

configuration. For newly generated trial points both the constraint and 

objective functions are evaluated, however, in this instance only one call 

to the system simulation is made. In the case where a new trail point 

violates a constant function and a corrective step is made by the algorithm 

one addition call is made for each corrective step. When the exploratory 

move is used by the algorithm then two function calls per variable are 

made. The path of the modified complex search algorithm shown in Table 

7.7 gives the following breakdown of function call evaluations shown in 

Table 7.9 overleaf. 

A comparison of the speed of the modified complex algorithm can be 

made against an exhaustive search which would evaluate the objective 

function at every solution point within the problem variable bounds. In 

the example problem 625 solution points are present, the modified 

complex algorithm made 14.5% of the possible objective function calls. 

From Figure 7.8 it can be seen that the majority of the search path was 

spent negotiating the face velocity constraint function and this is 

significant in the number of total function evaluations made. The 

influence of the face velocity constraint provides a barrier which directly 

effects the shape of the complex configuration. The natural movement of 

the search toward the global optimum has the effect of confining the 

search path to a narrow band of solution points along the constraint, thus 

slowing the search speed to the 'optimum' solution. 
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TYPE OF TRAIL MOVE CONSTRAINT/OBJECTIVE 
FUNCTION EVALUATIONS 

NORMAL COMPLEX 
CONFIGUATION TRAIL POINTS 68 

COMPLEX CONFIGUATION 
CORRECTIVE TRIAL POINTS 15 

PATTERN MOVE 
TRIAL POINTS 8 

TRIAL POINT 
TOTAL 91 

Breakdown of Function Evaluations for the Complex Algorithm Table 79 
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7.7 The Numerical Stability of the Modified Complex Algorithm. 

The modified complex algorithm was entirely numerically stable. The use 

of discrete problem variables greatly assisted the stability, ensuring that 

instability due to rounding errors in the objective function evaluation 

was eliminated. There were occasions when the search path, on initial 

inspection, appeared to move away from the 'optimum' solution, this can 

be seen in Figure 7.8. Between solution points 4 and 5,8 and 9,10 and 11, 

and 15 and 16 the search moves to a position further away from the 

optimum solution, however, upon investigation it was found that this 

was a correct function of the algorithm in each case eliminating the worst 

solution point of the previous complex configuration and replacing it 

with a new solution point conforming to the rules applied by the 

algorithm. A new solution point does not necessarily have to be the 'best' 

solution point of the new complex configuration, merely it has to be 

better than the replaced solution point. 

The numerical stability of the constraint and objective function 

evaluations again were entirely satisfactory. 

7.8 The Robustness of the Modified Complex Algorithm. 

The failure of the basic complex algorithm incorporating discrete problem 

variables (Section 7.3.1) was due to lack of robustness of the algorithm 

when encountering the face velocity constraint. The robustness of the 

modified complex algorithm was therefore monitored carefully. 
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The modified complex algorithm was found to be robust under all 

circumstances throughout the search. The failure of the basic complex 

algorithm being successfully corrected by the inclusion of the exploratory 

move into the algorithm. 

It was noted however that the modified complex algorithm progressed 

slower as it moved closer to the optimum solution. This was found not to 

be significant, and the algorithm can be concluded to be fully robust 

against the example problem. 

During the evaluation of the modified complex algorithm, a weakness in 

the algorithm was discovered. This occurred where the exploratory move 

modification was unable to find a feasible new solution point hence 

causing the failure of the algorithm. 

7.9 Failure of the Exploratory Move. 

The failure of the exploratory move within the modified complex 

algorithm can occur when a constraint function boundary is aligned or 

parallel with a variable axis. 

Figure 7.10 illustrates an example when this failure will occur. From the 

trial point A, at position (2.1,0.8) a new trial point B, is found at position 

(2.1,0.7). Assuming that a normal complex correction of the constraint 

violation is unsuccessful a exploratory move would take place from the 

trial point, B. A single discrete interval exploratory probe in each of the 

problem variables, in a positive and negative direction would yield 
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potential new trial points at C, D, E and also at the old trial point A. It can 

be seen that these exploratory trial point would not correct the search 

algorithm back into the feasible region, since positions C, D, and E are 

infeasible. Selection back to position A, would cause failure of the 

algorithm. A second exploratory move could be incorporated into the 

algorithm which makes exploratory probes of two discrete intervals in 

each problem variable direction, thus finding the feasible solution at 

position F, but again the same problem would occur if the constraint 

function gradient aligned itself further with a problem variable axis, in 

this example the coil width (X1) axis. The problem would merely be 

deferred and not rectified. 
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7.10 Conclusions of the Modified Complex Algorithm Development and 

Testing. 

The modified complex algorithm with the inclusion of the exploratory 

search move successfully found the 'optimum' solution of the two- 

dimension cooling coil example model. During the development and 

testing of the algorithm significant advances were made, improving the 

robustness of the algorithm to an extent where the discrete variable 

characteristic of HVAC system design optimisation problems was 

addressed fully. The algorithm was found to be accurate and numerically 

stable in all instances throughout the optimisation and again, particularly 

in relation to the specific characteristics of HVAC system design 

optimisation problems, ie. around constraint functions, and objective 

function discontinuities. 

Weaknesses of the modified complex algorithm were highlighted 

through the development and testing against the example model. It was 

determined that the speed of the algorithm was dependent on two factors. 

Firstly, the number of problem variables that are present; and secondly the 

interaction of discrete variables and problem constraint functions. 

As more problem variables are introduced to optimisation the search 

speed will be affected. In a full multi-component HVAC system the 

number of problem variables will significantly increase. It is considered 

that the objective of this research, that of reducing the time spent in a 

design office to produce a workable design would not be met using the 

modified complex algorithm in its existing form. 
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Constraints imposed upon a multi-component HVAC system will also be 

increased from the example model. The interaction of discrete problem 

variables with constraint functions have shown that this significantly 

reduces the speed of modified complex algorithm. 
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CHAPTER 8. 

THE DEVELOPMENT AND TESTING OF THE PENALTY FUNCTION 

ALGORITHM. 

The objective of any optimisation method is to find the values of the 

problem variables which optimise the objective function subject to the 

non-violation of constraints at the optimum solution. The Complex 

Method detailed in Chapter 7 allowed temporary violation of constraint 

functions, which in most instances were not critical to the optimum 

solution being found. The Complex Method, however, was found to have 

a risk of not finding the optimum solution under certain circumstances of 

constraint function violation, a risk which was heightened because 

constraint functions are normally operative on or near the optimum 

solution. 

If, however, the constraint functions are never allowed to be violated 

during an optimisation, then the resulting optimum solution is sure to be 

a feasible one. 

The Penalty Function Method by Carroll (1960), attempts to prevent 

constraint functions from being violated and was considered to be an 

appropriate method for addressing the weaknesses found in the Complex 

Method. 
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8.1 The Penalty Function Method. 

The created response surface penalty function method by Carroll (1960) 

converts a constrained optimisation problem into a series of unconstrained 

optimisation problems, but positively avoids violation of any given 

constraint functions by imposing a penalty on the objective function, 

which becomes increasingly severe as a constraint function is approached. 

The created response objective function can be written in the following 

form: 

F (X) = F(X) +rf; =1 
W; /C; 

where m, is the total number of constraints on the problem including the 

variable bounds. W1 is the individual penalty term or weighting given to 

each of ith constraints, Ci is the value of the ith constraint function when 

in the form, C; > 0.0, and r is the overall weighting given to the penalty in 

relation to the 'true' objective function F(X). 

This method of imposing a penalty to an objective function as a constraint 

is approached can be easily visualised by an example. As a constraint C1 is 

approached the value of that constraint tends to zero, therefore the value 

of the created response objective function F (X), increases making the 

solution point less attractive when minimising the optimisation problem. 

A constraint will tend not be violated because solution points near 

constraints are not attractive in terms of created response objective 

function. 
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The penalty function method by Carroll (1960), sets up the optimisation 

environment but does not employ a search method. A separate search 

method is required to operate within the created response surface 

environment. The search method finds the optimum for the modified 

objective function. This may not be the same as the global, non-penalty 

function optimum. This problem is overcome by successively reducing the 

overall weighting r, of the penalty function. When an optimum is found a 

reduction in the value of r, the overall penalty weighting, takes place 

hence reducing the severity of the penalty on the objective function. The 

optimum solution found from the previous search now becomes the new 

starting position for the current optimisation. The selected search will find 

the 2nd optimum solution within this new created response environment. 

Each optimum solution found becomes the new starting position for the 

next search. Successive reductions in the value of r, allows the created 

response objective function F (X), to tend towards the 'true' objective 

function, F(X). When r=0 the penalty on the optimisation problem is 

completely removed allowing the 'true' optimum solution to be found by 

the chosen search method. 

8.2 The Pattern Search Algorithm. 

A pattern search algorithm was developed for use with the Penalty 

Function Method as the driving optimisation method. The method is 

based upon the Hooke and Jeeves (1960), direct search method. It was 

chosen because of previous use of the method within HVAC system design 
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optimisation (Section 4.2.1) by Wright (1986), and also because it can be 

readily adapted to deal with discrete variable problems. 

The procedure of the pattern search algorithm is characterised by two 

operations, exploratory moves and pattern moves. Exploratory moves 

attempt to locate the direction of the optimum solution by examining the 

local behaviour of the objective function. Pattern moves utilise this 

information and make an accelerated step towards the optimum solution. 

Both types of moves are made relative to the set of problem variable 

coordinates, (X1, X2,.... Xn) termed base points, where there are n, problem 

variables. Exploratory moves are made relative to a temporary base point, 

Tb whilst pattern moves are made relative to a base point representing the 

current search solution point SP. Both types of move are made in units 

relating to the discrete intervals of the problem variables. 

Exploratory moves probe along each problem variable direction in turn. A 

coordinate is increased by a fixed step length, kl, and the value of the 

objective function compared with that at the temporary base, Tb. If the 

objective function value is lower, the position is retained to produce a new 

temporary base. Where the increased function coordinate produces a 

higher objective function value, the original coordinate is reduced by the 

same step-length ki, and the objective function value comparison is 

repeated. Failure to improve the objective function value in either the 

positive or negative variable direction leaves a temporary base unchanged. 

The next problem variable is selected and exploratory move procedure 

repeated. When each problem variable direction has been explored, the 

pattern search compares the objective function values at the temporary 

and solution base points. If the temporary base point has the lower 
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objective function value an accelerated pattern move is made from the 

solution base towards and beyond the temporary base. This is in two stages, 

firstly, a new temporary base Tb(j+l), is created at the distance equal to the 

increment between the two base points, and in the same direction as the 

existing temporary base Th(j) from the solution base: 

Tb()+l) =2x Th(j)_ SP(j) Equation 8.1. 

The second stage of a pattern move is to set the solution point to the 

original temporary base: 

SP = Th(>) Equation 8.2. 

The pattern search begins from a given initial solution point, which is 

known to be within the feasible region. This solution point is assigned as 

the initial temporary and solution base. Exploratory moves are made 

relative to this initial base and the point arrived at used to make a pattern 

move. The procedure continues to alternate between exploratory and 

pattern moves until the point reached from a set of exploratory moves has 

a higher or equal objective function value than the current solution base. 

When this occurs the temporary base is set to the solution base and the 

search restarted with a set of exploratory moves. Failure here to locate a 

new search direction results in a reduction in the probe step length and a 

repeat of the exploratory moves. The search continues in this manner 

until a new search direction is found or the step-length falls below a 

predefined minimum, at w-, which point the search is stopped. The 
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minimum interval for discrete variables is the discrete interval between 

values. 

This unconstrained version of the pattern search algorithm is illustrated in 

Figures 8.5 and 8.6. The notation is for single base points Tb and SP which 

are 'overwritten' in each pattern move. This changes the format of the 

equations (8.1) and (8.2) to that of equations (8.3) and (8.4) respectively : 

Tb=2. Th-SP 

SP = (Tb - SP)/2 + SP 

Equation 8.3. 

Equation 8.4. 
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8.3 The Pattern Search - Penalty Function Optimisation Method. 

In sections 8.1 and 8.2 of this thesis the penalty function method and the 

pattern search are fully explained. The two elements are placed together to 

give the pattern search - penalty function algorithm, with the pattern 

search driving the search procedure and the penalty function controlling 

the search within the feasible region. Figure 8.7 illustrates the logic of the 

two elements relative to each other. 

The basic pattern search algorithm was modified to accept discrete 

variables, and because constraints could be violated if a probe length of a 

pattern search is too large, simple rejection of infeasible points was 

introduced into the algorithm. The concluding algorithm was tested 

against the simplified two-dimensional problem for the cooling coil model 

detailed in section 7.3. 
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8.4 Testing of the Pattern Search Algorithm without Imposed Penalty. 

Because the penalty function optimisation algorithm requires an 

additional search algorithm to drive the search within the penalty 

controlled environment it is difficult to assess the advantages of the 

optimisation approach. To clarify the assessment the pattern search 

method was run against the two - dimensional cooling coil example 

problem without penalties imposed. Performance of the pattern search 

algorithm was assessed to give a good understanding of the algorithms 

behaviour and the potential problems that the algorithm may encounter. 

Table 8.8 traces the search progress and is illustrated in two - dimensions in 

Figure 8.9. 

From the chosen feasible initial starting position of X1 = 2.2, X2 = 1.5, the 

search path aligned itself with that of the steepest gradient of the objective 

function. In similarity to the complex algorithm the pattern search 

algorithm principally seeks to find the 'global' optimum solution at X1 = 

0.05, X2 = 0.05, and not the constrained optimum solution. The search 

progresses via pattern and exploratory moves, and accelerates until the 

constraint function is encountered. At this stage the search attempts to 

move away from the constraint by changing direction, however, this fails. 

Figure 8.10 illustrates the reason for the failure of the algorithm. At the 

point A, (1.6,1.0) an exploratory move is performed by the algorithm, all 

points in all variable directions are rejected. The points E and D are rejected 

because of constraint violation, and points B and C are rejected because 

they do not show an improvement in the objective function value. The 

point F(1.55,1.05), a feasible solution point with an improved objective 

function value, is unable to be reached by the algorithm. 
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X1 X2 
OBJECTIVE 
FUNCTION 
VALUE E 

ACCEPT/ 
REJECT MOVE MOVE TYPE 

2.20 1.50 786 ACCEPT STARTING POINT 

2.25 1.50 798 REJECT EXPLORATORY 

2.15 1.50 771 ACCEPT EXPLORATORY 

2.15 1.55 780 REJECT EXPLORATORY 

2.15 1.45 762 ACCEPT EXPLORATORY 

2.10 1.40 740 ACCEPT PATTERN 

2.05 1.40 727 ACCEPT EXPLORATORY 

2.05 1.35 718 ACCEPT EXPLORATORY 

1.95 1.25 675 ACCEPT PATTERN 

1.90 1.25 663 ACCEPT EXPLORATORY 

1.90 1.20 655 ACCEPT EXPLORATORY 

1.75 1.05 595 ACCEPT PATTERN 

1.70 1.05 584 ACCEPT EXPLORATORY 

1.70 1.00 576 ACCEPT EXPLORATORY 

1.50 1.80 505 REJECT PATTERN 

1.65 1.00 565 ACCEPT EXPLORATORY 

1.65 0.95 558 REJECT EXPLORATORY 

1.65 1.05 572 REJECT EXPLORATORY 

1.60 1.00 554 ACCEPT PATTERN 

1.55 1.00 542 REJECT EXPLORATORY 

1.65 1 
. 
00 565 REJECT EXPLORATORY 

1.60 0.95 547 1 REJECT EXPLORATORY 

1 60 1.05 561 REJECT EXPLORATORY 

1.55 1.00 542 REJECT PATTERN 

Pattern Search Algorithm Results. Table 88 
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The pattern search was found to be accurate throughout the progress of the 

search, it displayed numerical stability and the search speed was acceptable 

as the algorithm was able to accelerate through use of the pattern moves. 

The robustness of the search was good whilst the local objective function 

characteristics remained relatively uncomplicated, but failure was due to a 

lack of robustness around constraint functions. Clearly the penalty 

function algorithm will improve the robustness of the pattern search as it 

will effectively remove the constraint functions from the search 

environment by increasing the function value of search points close to 

constraint boundaries. 

The overall penalty multiplier r, is critical if the penalty function method 

is to be successful as this is the factor which will primarily dictate the extent 

to which the pattern search can approach the constraint functions and 

hence it is the controlling factor for the search. 

8.5. Testing of the Pattern Search - Penalty Function Algorithm against the 

Two - Dimensional Example Problem. 

The testing of the pattern search - penalty function algorithm was 

conducted against the same cooling coil example problem, as used for the 

testing and development of the complex algorithm described in Chapter 7. 
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8.5.1. The Penalty Function Environment. 

For the pattern search - penalty function algorithm testing an initial 

feasible point was chosen at a position Xl = coil width = 2.2m, X2 = coil 

height = 1.5m. To ensure that the penalties imposed on each constraint 

function and variable bounds did not distort the problem significantly the 

penalty weightings imposed were made equal to each other. The variable 

bounds and constraint functions are all treated in the same way. To find the 

values of the constraints at the starting position the constraint values are 

expressed in the form Ci (X) > 0, where C1 relates to the lower bound of X1, 

C2 relates to the upper bound of X1, C3 relates to the lower bound of X2, C4 

relates to the upper bound of X2, C5 relates to the lower bound of the 

constraint function of coil air face velocity and C6 relates to the upper 

bound of the constraint function of air face velocity. The variable bounds 

are lb, =0.0, lb2 = 0.0, ubl = 2.5, and ub2 = 2.5, and the bounds on the face 

velocity constraint are lb(face 
velocity) = 0.0, and ub(face velocity) = 2.5. The 

values of Ci for the starting position are therefore : 

Cl =X1 -lb, =2.2 

C., = ub1 - X1 = 0.3 

C3=X2-1bß=1.5 

C4=ub2-X2=1.0 

C5 = 4/(X1)(X2) - lb(face 
velocity) = 1.2121 

Ct, = ub(face velocity) - 
4/(X1)(X2) = 1.2879 

The individual weighting WI- for the constraints are set such that the 

penalty terms, W1 /C1 are equal. The W1 values are set as follows : 
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W1 2.2 

W2=0.3 

W3=1.5 

W4=1.0 

W5=1.2121 

W6=1.2879 

thus setting the individual penalty terms Wi /C1 = 1. 

Figure 8.11 illustrates the effect of the penalty weightings on the objective 

function surface. The overall penalty multiplier r, is set to a value r= 100 to 

give reasonable definition to the diagram. The edges of the penalty are 

'clipped' in the diagram as they tend to infinitely large values which distort 

the resolution of the diagram for the rest of the objective function surface. 
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8.5.2. An Investigation of the Penalty Multiplier. 

As previously stated in section 8.4, the the penalty multiplier r, is 

considered to be critical to the success of the penalty function algorithm 

when used with a pattern search, as this factor dictates the extent to which 

a constraint function can be approached, a known area of the feasible 

region which the pattern search shows weakness. 

Previous work by Fiacco and McCormick (1964), investigated the initial 

value of the penalty multiplier r, and the subsequent reduction in the 

value of r to zero. In respect to the research in this thesis the findings of 

this work where inconclusive, suggesting that the initial value of r was 

dependent on the starting position of the search and that the reduction in 

the value of r was not an influencing factor on the overall speed of the 

search. The optimum value of r is therefore specific to the given 

optimisation problem. 

To investigate of the selection of the penalty multiplier r, an exhaustive 

search of the value of r was carried out to establish it's optimum value. 

The criteria used to assess the effectiveness of r, was the position of the 

search finishing position relative to the 'true' optimum solution, and the 

number of objective function calls made. Tables 8.12,8.13, and 8.14 show 

the exhaustive search results for the optimum values of rl until r1 = 0. 
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STARTING POSITION X1 = 2.20, X2 = 1.50 

OBJECTIVE TOTAL 
r1 X1 X2 FUNCTION FUNCTION 

VALUE CALLS 

100 1.20 1.95 1070 42 

50 1.05 2.05 754 61 

25 0.95 2.10 583 48 

20 0.90 2.15 544 48 

14 0.85 2.20 496 56 

12.... ü.: 50 < .... ....... , .0 
48© 47 

11 0.85 2.20 470 48 

10 0.85 2.20 462 51 

The Optimum Value of the Penalty Multiplier, r1. Table 8.12 
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STARTING POSITION X1 = 0.80, X2 = 2.30 

OBJECTIVE TOTAL 
r2 X1 X2 FUNCTION FUNCTION 

VALUE i CALLS 

12 0.80 2.30 480 5 

10 0.80 2.30 461 5 

8 0.80 2.25 442 12 

6 0.80 2.25 423 10 

5 0.75 2.35 412 9 

.; 
>..:.:.; 

. 
i 'ýý.. 

...:: 
>: > 2.35 >, 

. 
400 9 

3 0.75 2.30 388 10 

2 0.75 2.30 376 10 

The Optimum Value of the Penalty Multiplier, r2. Table 8.13 
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STARTING POSITION Xl = 0.75, X2 = 2.35 

OBJECTIVE TOTAL 
r3 X1 X2 FUNCTION FUNCTION 

VALUE CALLS 

4 0.75 2.35 400 5 

3 0.75 2.30 388 10 

2 0.75 2.30 376 10 

1 0.70 2.40 358 9 

2 -3. 

N 

The Optimum Value of the Penalty Multiplier, r3. Table 8.14 
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Figure 8.15 shows the path that the search took for each successive value of 

the penalty multiplier. It can be seen that with correct selection of the value 

of r, for each successive search, allowed the optimum solution to be found 

in a stable and fast manner. The total number of function calls made 

throughout the course of the search was 71, representing a significant 

improvement in search speed in comparison to the performance of the 

complex algorithm against the same example problem. The selected 

penalty multiplier values ensured that at no stage throughout the search 

was a constraint function violated, hence removing the weakness 

experienced by the pattern search algorithm when operating in the 

uncontrolled environment detailed in section 8.4. 

It was found, however, that the tolerance on the selection of the penalty 

multiplier value was particularly low. Selection of the correct value for r 

was in fact critical to the continued success of the algorithm. Too small a 

reduction in the value of r, caused the search to move slowly, whereas too 

large a reduction caused instability of the search and effective failure of the 

algorithm without finding the optimum solution. The conclusion drawn 

from the assessment of the effectiveness of the penalty multiplier value 

was that unless an optimum value r, was used at each stage of the search 

then the overall effect of the penalty distorted the 'true' objective function 

surface to such an extent that the natural characteristics of the 'true' 

objective function were lost to the imposed penalty. 

Further development of the penalty weightings was therefore considered 

to be necessary. 
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8.6. Active and Inactive Penalty Weightings. 

The penalty function algorithm described and tested in the previous 

sections employed penalty weightings Wi for all of the constraints; namely 

the lower and upper bounds of both problem variables, and the upper and 

lower constraints of the face velocity. Hence, the shape of the objective 

function is significantly changed across the region of feasible solutions. 

Further development of the penalty function algorithm was performed to 

identify the constraint penalties that influenced the search direction and 

those that did not. Each constraint was selected in turn as the basis for the 

penalty function, whilst the remaining constraints were excluded from the 

penalty, . For example, the constraint C1, relating to the lower bound of 

cooling coil width had a penalty weighting WI imposed upon it, whilst the 

remaining constraints C2 to C6 were given no penalty, the created response 

objective function therefore becomes: 

F (X) = F(X) +r (W1 /C1) 

Similarly the second run considered the constraint C2 to have an active 

penalty weighting W2, and the constraints C 1, C3, C4, C5, C6 to have no 

penalty weightings attached. 

The results of imposing an active penalty by this method are shown in 

Table 8.16. 
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For each individual run the overall penalty multiplier r was equal to 10. 

The active penalty weightings WI to W5 all produced the same solution 

point of Xl = 1.6, X2 = 1.0, from the initial starting position of X1=2.2, X2 = 

1.5. This is the same solution found by the pattern search method without 

a penalty function attached. In each case the search failed against the face 

velocity constraint, giving no improvement to the basic pattern search 

method. 

When W6 was made the active penalty weighting, relating to the upper 

bound of the face velocity constraint, a different final solution was found. 

By making the approach towards the upper limit of the face velocity 

constraint less attractive, the problem of the algorithm failing against this 

constraint, as described in section 8.4, was eliminated. 

The solution found by applying a penalty weighting to the upper limit of 

the face velocity constraint is XI = 0.75, X2 = 2.50, this is not the 'true' 

optimum, but is close to the 'true' optimum. By setting the penalty 

multiplier r=0, and hence removing all penalties, the algorithm quickl`, 

finds the 'true' optimum using this position as the new starting point. 

8.7 Accuracy of the Penalty Function Algorithm with Active Penalty 

Weightings. 

The results of the penalty function algorithm with active penalty 

weightings were accurate throughout the testing. The development of the 

algorithm was such that discrete problem variable values were found at 

each trial point. 
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The constraint and objective function values found throughout the testing 

were also accurate, ensuring that the search remained numerically stable. 

The nature of the example problem and the monitoring of the search 

algorithm ensured that accuracy was an inherent feature throughout. 

8.8 Speed of the Penalty Function Algorithm with Active Penalty 

Weightings. 

Throughout the testing of the penalty function algorithm the speed of the 

search was monitored via the number of objective function or constraint 

function calls. The effective elimination of constraint functions from the 

example problem by implementation of the active penalty weightings 

meant that the search did not spend time correcting violated points. It was 

considered that this was a useful factor for increasing the overall speed of 

the search. It can be seen from Table 8.16 that the successful search made 

when W6 was the active penalty weighting found the Ist optimum 

solution in 48 function calls and took a further 17 function calls to find the 

'true' optimum once the penalty multiplier r, was reduced to zero, giving a 

total of 65 function calls. 

Two comparisons can be made to assess the speed of the penalty function 

algorithm, firstly against an exhaustive search evaluating each discrete 

solution position, and secondly against the speed of the complex method 

algorithm. Throughout the testing of the penalty function algorithm the 

discrete interval for the problem variables of coil width and coil height 
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were 0.05m, whereas during the complex algorithm testing these discrete 

intervals were 0.1m. The variable bounds remained the same with lower 

bounds = O. Om and upper bounds = 2.5m. The penalty function algorithm 

was therefore tested on an example problem with 4 times as many 

potential solution points. The comparison of search speed is presented in 

Table 8.17 with percentage figures attached to enable comparison. 

A significant improvement in the search speed can be seen between the 

complex algorithm and the penalty function algorithm, the total number 

of function calls has reduced from 91 to 65 whilst the number of solution 

points has increased, reflecting a superior lower percentage figure of 

function calls made to the total made by the exhaustive search. 
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8.9 The Numerical Stability of the Penalty Function Algorithm with 

Active Penalty Weightings. 

In similarity to the complex algorithm the penalty function algorithm was 

found to be entirely numerically stable. The use of discrete variables 

ensured that instability due to rounding errors in the objective function 

evaluation was eliminated, the discrete positions being far enough apart to 

make rounding errors insignificant in relation to the change in objective 

function value between two discrete points. 

The numerical stability of the objective and constraint function 

evaluations again were entirely satisfactory. 

The cause of the numerical instability encountered when all penalty 

weightings were active, had been found to be due to the selection of the 

value of r, the penalty multiplier. The pre-selection of active and inactive 

penalty weightings imposed upon the constraints successfully cured this 

instability. 

8.10. The Robustness of the Penalty Function Algorithm with Active 

Penalty Weightings. 

The failure of the pattern search without penalty weightings attached 

detailed in section 8.4 was found to be due to a lack of algorithm robustness 

around constraint functions. The introduction of a penalty function 

enhanced the algorithm robustness but limitations still exist. The pattern 

search was found to be sensitive to small changes in the penalty function 
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multiplier r, and hence the robustness of the algorithm was still 

considered to be inadequate. 

Introduction of active and inactive penalty weightings successfully 

improved the robustness of the algorithm to an acceptable level. The 

correct choice of the active penalty weighting was however found to be 

critical for a successful search to take place. From Table 8.16 it can readily be 

seen that an incorrect choice of active penalty weighting will result in the 

algorithm failing against the face velocity constraint. The penalty 

weightings W1, W2, W3, W4, and W5 when active all resulted in failure of 

the algorithm. Only the selection of W6 as the active penalty weighting 

resulted in a successful search which was able to negotiate the 

characteristics of the example problem, in particular the constraint 

functions. The robustness of the algorithm against the particular problem 

characteristics therefore still remains somewhat inadequate. 

8.11 The Full Cooling Coil Example Problem with Active and Inactive 

Penalty Weightings. 

The results of the testing of the penalty function algorithm against the two 

- dimensional cooling coil example problem, using active and inactive 

penalty weightings showed significant improvement to the complex and 

penalty function algorithm in its earlier form. In particular the speed of the 

search was improved greatly. Although there still exists the problem of 

correct selection of the active penalty weightings it is important to establish 

that this algorithm can be usefully applied to larger scale optimisation 

problems where the optimisation of the problem is run in conjunction 

with a component simulation. The full scale example problem described in 
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Chapter 6 of this thesis was therefore used and the penalty function 

algorithm using active and inactive penalty weightings tested against it. 

The penalty weighting W, attached to each constraint C, within the full 

scale example problem were as follows : 

W1- the weighting related to the upper bound of the coil rows. 

W2- the weighting related to the lower bound of the coil rows. 

W3- the weighting related to the upper bound of the coil width. 

W4- the weighting related to the lower bound of the coil width. 

W5- the weighting related to the upper bound of the coil height. 

W6- the weighting related to the lower bound of the coil height. 

W 7- the weighting related to the upper bound of the coil circuits. 

W8- the weighting related to the lower bound of the coil circuits. 

W9- the weighting related to the upper bound of the coil maximum water 

mass flow rate. 

W 10 - the weighting related to the lower bound of the coil maximum 

water mass flow rate. 

W 11 - the weighting related to the upper bound of the coil face velocity 

constraint. 

W 12 - the weighting related to the lower bound of the coil face velocity 

constraint. 

W 13 - the weighting related to the upper bound of the coil water velocity 

constraint. 

W 14 - the weighting related to the lower bound of the coil water velocity 

constraint. 

W1- the weighting related to the upper bound of the proportional control 

constraint. 
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With the added knowledge gained from the testing of the two-dimensional 

problem many of the penalty weightings when active are known to have 

no advantageous effect on the search. The penalty weighting which proved 

to be successful when active was that related to the upper bound of the face 

velocity constraint. In this problem the penalty weighting relating to this 

constraint is Wil. The effect of the water velocity constraint and the control 

constraint are unknown. The penalty function algorithm with active 

penalty weightings was therefore run against the full cooling coil example 

problem with the penalty weighting of W11, W13, and W15 active. 

8.12. The Results of the Penalty Function Algorithm with Active Penalty 

Weightings using the Full Scale Cooling Coil Optimisation Problem. 

The penalty weightings W11, W13, and W15 were made active in turn and 

the penalty function algorithm run against the example problem. 

Additional runs for the combination of the three penalty weighting being 

active were completed. The overall penalty multiplier r, was set at an 

initial value of 10, and subsequently reduced to a value of zero once a 

solution point was found. The second run of the algorithm therefore is 

against the 'true' objective function without penalty imposed. An initial 

starting point was chosen as follows: 

X1 = number of cooling coil rows = 6. 

X2 = cooling coil width = 1.6m. 

X3 = ccxoling coil height = 1.8m. 

X4 = number of cooling coil circuits = 34. 

X5 = maximum water mass flow rate = 9.0 m/s. 
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This starting position was used for all runs. Table 8.18 gives an account of 

the results obtained. 

Initial inspection of the results give rise to certain conclusions. \ti'hen 

assessed against the objective function value and the proximity the the 

final solution to the optimum solution, the algorithm performs best when 

W15, the control constraint weighting is active. Penalty weightings W11 

and W13 alone and in combination produce identical results which are less 

accurate in terms of the objective function value and the proximity of the 

final solution to the optimum. 
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The reason for the significance of the control constraint is not entirely 

clear, but appears to be due to a combination of effects. Firstly, this 

constraint is outside the face velocity constraint and as such wehen its 

weighting is made active the search can approach the face velocity 

constraint to a greater extent than when the face velocity constraint itself is 

active, hence a subtle change in the imposed shape of the objective 

function surface around the face velocity constraint produces a different 

search path. Full inspection of the search path upholds this theory, in that a 

comparison of the temporary bases reached by the algorithm when W11 is 

active against when W15 is active yield different search paths. The the 

active constraint influences the early part of the search and therefore the 

final solution point found. The second reason is that the algorithm 

examines each problem variable in turn and in the predefined order in 

which they are presented in the initial setting up of the problem. This 

limits the flexibility of the search path. It may be the case that the change in 

the value of one variable means that a more advantageous search position 

is not obtainable when a subsequent problem variable is examined. This 

can be visualised using an arbitrary example, say, at a temporary base 

solution of ( 5,1.6,1.8,34,9.0) the X2 variable is examined and a move from 

X2 = 1.6 to X2 = 1.8 is accepted, a better solution may have been where X2 

remains equal to 1.6 and X3 is moved from X3 = 1.8 to X3 = 2.0. With the X., 

variable always being examined ahead of the X3 variable the opportunity to 

find that better solution position is missed. The order of the problem 

variables therefore will have an effect on the progress of the search. As the 

number of problem variables increases the probability of this scenario 

happening is also increased. The control of the algorithm is seriously 

undermined by this effect. 
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Another weakness of the algorithm is also apparent from the use of the 

full scale cooling coil example problem. Variables such as maximum water 

mass flow rate have no direct influence on the value of the objective 

function, yet changes in the variable value have an indirect effect by 

allowing more attractive positions of the other problem variables to be 

found, that do influence the objective function. The results show that in 

all of the runs of the penalty function algorithm the value of the variable 

of maximum water mass flow rate did not change because a better objective 

function value was not resultant. Larger scale HVAC systems will have 

more problem variables of this kind and the algorithm as it stands would 

not have the flexibility to cope with such problems. 

8.13. Penalty Function Algorithm Conclusions. 

Clearly the penalty function algorithm with active constraints showed a 

significant improvement in performance when compared to the complex 

algorithm. The adoption of the algorithm when applied to the full scale 

cooling coil example problem showed its limitations, and areas where the 

algorithms approach needs strengthening. 

The use of active and inactive penalty weightings proved to be a successful 

method by which the penalty function algorithm could find the optimum 

solution for small scale problems. The choice of the active penalty 

weighting through knowledge of the problem could be determined for 

small scale problems, when used with the larger scale example problem 

this choice became less apparent. Exhaustive algorithm runs for large scale 

problems to find the influential penalty weightings would obviously 
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detract from the objective of the optimisation algorithm to find the 

optimum solution at an acceptable speed. 

The use of the pattern search as the driving direct search method with the 

penalty function algorithm proved to have a degree of success. The pattern 

search when used alone failed around constraint functions, introduction of 

a penalty function avoided such failure and enhanced the algorithms 

robustness. Limitations of the pattern search as the choice of direct search 

method became apparent when the penalty function algorithm was tested 

against the full scale cooling coil problem. The performance of the 

algorithm could be influenced by the initial definition of the problem. The 

choice of variable order and the methodology of the pattern search 

algorithm has an influence on the search path, making potential solution 

points outside of the scope of the algorithm. 

A final conclusion to be drawn from the testing of the penalty function 

algorithm against the full scale example problem, was that the algorithm 

was unable to have an influence on the selection of the value of problem 

variables which have no direct effect on the value of the objective 

function. A simple change in the value of the maximum water mass flow 

rate variable had no effect on the objective function. The algorithm rules 

are such that an improvement in objective function value is necessary for 

a new solution point to be accepted. Such problem variables that may have 

an indirect effect on the optimisation, by giving other problem variables 

scope to improve the objective function, are not sufficiently catered for by 

the algorithm. 
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CHAPTER 9. 

THE DEVELOPMENT OF A UNIQUE ALGORITHM FOR THE SOLUTION 

OF HVAC SYSTEM DESIGN OPTIMISATION PROBLEMS. 

Although the development and testing of direct search algorithms to solve 

H VAC system design optimisation problems described in this thesis has 

met with some success it can be concluded that the development is not 

sufficiently advanced to give full reliability when used against large scale 

optimisation problems. The characteristics of HVAC system design 

optimisation problems are complex and the approach for solving such 

problems, using the algorithms detailed in this thesis, is not considered to 

be sufficient for all HVAC system optimisation problems. 

Three areas for improved development of the algorithm are considered. 

Firstly, specific improvement in the ordering of problem variables should 

be explored, secondly an investigation into the merits of decomposing the 

optimisation problem into a series of smaller more manageable sub- 

optimisation problems should take place, and thirdly, investigation into 

the introduction of occasional random selection of solution points to act as 

a check that the algorithm is proceeding to the correct optimum solution 

should be embarked upon. Such random selections of solution points 

would enable problem variables which have no direct influence on the 

objective function and sparse configuration constraints to be addressed 

more fully. 
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Investigation, development and incorporation of these elements into an 

optimisation algorithm would be a major undertaking and as such is 

outside the scope if this research. This chapter preliminarily addresses 

these areas for further investigation and development. 

9.1 Problem Variable Sensitivity Analysis and Ordering of Variables. 

From the development and testing of the penalty function algorithm using 

a pattern search, limitations associated with the definition of the 

optimisation problem were discovered. Improvements in the definition to 

be more in line with the specific optimisation problem are needed. 

Separate routines were developed and incorporated into the definition of 

the problem. The routines investigated the extent of the influence of each 

problem variable on the objective function, and selection of the order in 

which the problem variables are presented to any given search algorithm. 

From the initial starting position each problem variable is assessed in turn. 

The variable bounds are established and a step-length movement equal to 

one tenth of the problem variable range is made. The gradient of the 

objective function in relation to problem variables is calculated. The extent 

of the gradient is used as an assessment of the influence of the problem 

variable. By ordering the objective function gradients the problem variable 

order presented within the definition of the optimisation problem is 

established. The problem variable producing the greatest change in 

objective function value being presented as the first variable to the search 

algorithm, with the other problem variables being presented in descending 
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order of change. 

The developed routines were incorporated into the penalty function 

algorithm employing the pattern search (Section 8.11). An active penalty 

weighting W11 relating to the upper bound of the face velocity constraint 

was included. 

9.1.1. Results of the Ordered Problem Variable Penalty Function 

Algorithm with Pattern Search. 

Two runs of the algorithm were made, the first was made using the 

algorithm in its previous form without ordered problem variables, the 

second was made after the problem variables had been ordered according to 

the change in objective function. Table 9.1 compares the results obtained 

from the two searches. 

The first search run maintained the order of the problem variables as X1 = 

number of coil rows, X2 = coil width, X3 = coil height, X4 = number of coil 

circuits, and X5 = maximum water mass flow rate. The second search run 

arranged the problem variables according to the influence on the objective 

function, as Xl = number of coil rows, X2 = coil height, X3 = coil width, X4 = 

number of coil circuits, and X5 = maximum water mass flow rate. Hence 

the second search promoted the problem variable of coil height to a 

position before the problem variable of coil width. The results show a 

significant improvement in the final solution and the performance of the 

algorithm in terms of the overall speed of the search when the problem 

variables are ordered. 
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OBJECTIVE TOTAL 
W11 ACTIVE STARTING SOLUTION FUNCTION FUNCTION 

POSITION FOUND VALUE (ý) CALLS 

VARIABLE ORDER 
RUN 1 

X1 6 5 

X2 1.60 1.85 

X3 1.80 1.05 690 162 

X4 30 30 

X5 9.5 9.5 

OBJECTIVE TOTAL 
VARIABLE ORDER STARTING SOLUTION FUNCTION FUNCTION 

RUN 2 POSITION FOUND VALUE (E) CALLS 

X1 6 5 

X3 1.80 0.95 

X2 1.60 2.00 662 108 

X4 30 30 

X5 9.5 9.5 

Ordered Problem Variable Results. Table 9.1 
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A full investigation of the mechanism of ordering the problem variables 

in terms of the effect that this has on the pattern search should be 

considered. The initial results suggest that some benefits may be 

established from this undertaking. 

Clearly other integral problems exist with the use of the pattern search 

with the penalty function algorithm. Problem variables which do not have 

a direct effect on the objective function are not dealt with satisfactorily by 

the pattern search which requires an improvement in the objective 

function for a new solution point to be accepted. The size of HVAC system 

design optimisation problems also cause the pattern search algorithm to 

perform poorly and ordering of the variables is probably only a partial 

solution. 

9.2. Optimisation Problem Reduction and Simplification. 

The weakness of the direct search algorithms developed during this 

research have been largely due to the robustness of the algorithm around 

the constraint function, in particular when discrete problem variables are 

present, and the inability of the algorithm to be successful when employed 

with large scale optimisation problems. A preliminary investigation into 

methods for reducing the size of the optimisation problem was therefore 

undertaken. Initially three methods have been considered: 

1) Decomposition of the problem into a sequence of sub-optimisation 

problems. 
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2) The use of a simplified system simulation model for intermediate search 

moves. 

3) The elimination of problem variables and constraint functions from the 

optimisation problem. 

9.2.1. Optimisation Problem Decomposition. 

Generally large scale optimisation problems such as those involved with 

H VAC system design consist of a series of smaller sub-optimisations as 

there exists a link between the components within the system, (Siddel, 

1982). It follows that the smaller the size of the optimisation problem the 

easier it is for an algorithm to solve, and as such there exists the potential 

to ease the problems experienced by the algorithm with large scale 

optimisation problems. For example, Figure 9.2 illustrates a constant mass 

flow fan-coil system. The inlet pressure to the coil and the outlet pressure 

from the fan are fixed. The link between components is represented by the 

connecting pressure of the air. The approach adopted by decomposing this 

system into sub-optimisations to minimise capital cost would be firstly to 

find the optimum size of the coil in terms of cost and to repeat this 

optimisation for a range of feasible connecting pressures. The fan would 

then be optimised with the connecting pressure values input as a problem 

variable, the associated coil cost for each given connecting pressure would 

be expressed as a function of that variable. The optimum capital cost found 

would be used to determine the component sizes. 
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This technique of decomposing an optimisation problem into a series of 

sub-optimisations is reliant on a positive linkage between the sub- 

optimisations, i. e. the sub-optimisations must follow each other 

sequentially with a solution or range of solutions from one forming an 

input variable to the next. HVAC systems often do not possess such 

straight forward linkage with feedback from one part of the system 

influencing a component previously dealt with. This can be visualised by 

consideration of a recirculating HVAC system where the recirculated air 

influences the condition of the supply air to the system, the sequential 

format necessary for decomposition is therefore broken. 

A second drawback to this technique is that often a series of values are 

necessary from one sub-optimisation to form the range for a subsequent 

input variable to the next sub-optimisation as is the case in the fan-coil 

example. This means that the sub-optimisations have to be repeated to 

produce the range of values and hence detracts from the speed of the 

overall system optimisation. It is not clear as to weather this would be 

prohibitive to the objectives of the optimisation and should form the basis 

for further research. 

9.2.2. Simplified System Simulation Models. 

The time that an HVAC system design optimisation problem takes to find 

each new solution point is dependent on the solution time of the 

simulation procedure, therefore considerations should be given to the 

development of a simplified simulation. Research has recently been 

completed into methods for reducing the simulation of HVAC systems 
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that function without adversely effecting the stability of the system or 

component models, (Hanby, 1988). Until this area of research is suitably 
developed it maybe possible to produce approximate solution points by 

means of a simplified simulation. 

The approach would be to predominantly produce solution points 

throughout an optimisation search using a simplified simulation of the 

system, a full simulation being used occasionally to check that the search is 

proceeding correctly towards the optimum solution, as it would be 

unlikely that the simplified simulation would correlate fully to the full 

simulation hence the need to check that the search was not being misled by 

the simplified simulation. 

During the early development of simulation techniques for HVAC 

systems, simplified models were produced, (Stoecker, 1975), and 

development of this approach, using such models, linked to a robust 

optimisation algorithm may prove to be advantageous. However, as this is 

primarily concerned with simulation methodology it is outside of the 

scope of this research. A further development more associated with 

optimisation development using simplification of the component and 

system models may result in effectively reducing the size of the 

optimisation and hence yield the same advantageous reduction in solution 

time. 
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9.2.3. Elimination of Problem Variables and Constraint Functions. 

One of the characteristics of the solution of HVAC system design 

optimisation problems is that it often lies on or near a constraint function. 

The successful implementation of optimisation algorithms developed 

throughout this research has been hampered by the difficulty of the 

algorithm to negotiate constraint functions towards the optimum solution. 

Elimination of constraint functions from the problem would therefore be 

advantageous. The reduction in the number of problem variables would 

also help the effectiveness of the optimisation algorithms, again this is 

well illustrated throughout this research. Fewer variables would make the 

optimisation algorithm easier, quicker and more robust in finding the 

optimum solution, (Wright and Lambert, 1991). 

On going research (Wright, 1989), has investigated an approach to 

elimination of constraint functions and problem variables in HVAC 

system design optimisation. Most HVAC system constraints can be 

represented as either equality or inequality constraints. Where an 

inequality constraint is active at the solution, it can be considered as an 

equality constraint. The general form of an inequality constraint is: 

C(X) > 0.0 

If the solution lies on or near the constraint then the constraint value can 

be approximated into an equality form: 

C(x) = 0.0 
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In this form problem reduction can take place, (Rao, 1979), by elimination 

of one problem variable and the constraint function itself. Taking the face 

velocity constraint from the cooling coil example problem as an example 

this problem reduction technique can be illustrated. 

The upper limit of the face velocity constraint can be expressed in the 

following form: 

2.5 - (constant/W x H) > 0.0 

relating to the maximum air face velocity of 2.5m/s. For optimisation of 

the coil capital cost the optimisation will reduce the dimensions W= coil 

width, and H= coil height until the constraint function upper limit is 

encountered, at which point the constraint function may be treated as an 

equality constraint: 

2.5 - (constant/ Wx H) = 0.0 

rearranging this equality constraint yields: 

W= (constant/2.5 x H) 

thus eliminating the constraint function and the problem variable W, coil 

width by expressing W in terms of the problem variable H, coil height. 

One of the considerations with constraint function and problem variable 

elimination is the determination of the specific problem variables that are 

associated with the constraint functions. This is a relatively simple 
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operation for some constraint functions where the problem variables 

appear explicitly, the face velocity constraint for the cooling coil is one such 

example where the problem variables of coil width and coil height appear 

within the constraint. A means of evaluating the relationship between the 

problem variables and the constraint function in this instance has been 

established easily through evaluating the change in constraint function 

value with a given change in problem variable value, the gradient of each 

constraint against each variable determines this. 

Development of constraint and variable elimination for HVAC system 

design optimisation problems appears to have merit in reducing the size of 

the optimisation problem and may also have benefit in reducing the 

optimisation to a series of sub-optimisations. It is considered worthy of 

further investigation and development. Particular consideration should be 

made to developing a similar approach to less manageable constraint 

functions in which the problem variables within the constraint bear no 

direct relationship to the value of the objective function. In this case 

constraint and variable elimination can take place but there would not be 

an in-built inference as to weather the upper or lower limit of the 

constraint should be eliminated and similarly the choice of variable 

elimination would not be readily determined. 

The elimination technique would not be applicable to sparse configuration 

constraints, it would allow identification of the variables associated with 

the constraint but elimination due to the characteristics of the constraint 

would not be possible. 
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9.3. Random Solution Optimisation. 

Throughout this research certain difficulties in the characteristics of the 

problem have been highlighted that have not been fully resolved. The 

existence of sparse constraint functions commonly associated with 

component configuration and problem variables that do not have a direct 

linkage to the objective function are two such difficulties. The direct search 

algorithms developed do not adequately deal with either of these 

characteristics, and although the sparse constraint is rare and usually bears 

no relationship to the system performance or capital cost it does have an 

influence in the final design of the system. 

The use of a randomised selection of solution points occasionally occurring 

within a search algorithm would allow the algorithm to assess sparse 

constraints to a limited degree, but would not maintain control of the 

search path. Another approach which has been developed and 

implemented for optimisation of HVAC component sizing (Chu Kai 

Hung, 1991), employs the use of genetic engineering to address the 

optimisation. Development of genetic algorithms (GA's), have proved to 

be useful for optimisation of problems with complex characteristics such as 

those displayed in HVAC system design. They use a structured yet 

randomised exchange of information from selected feasible solution points 

to develop new stronger or 'fitter' solution points. Each exchange of 

information is called a generation. (Wright, 1992), has preliminarily 

developed such GA's applying them to a model HVAC system, it was 

found that quickly a near-optimal solution was developed after five 

generations of the algorithm, however, further generations `'fielded no 

further favourable solutions. 
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Certain advantages of the GA's approach were determined: 

1) They are not concerned with the form of the problem. 

2) Constrained optimisation problems can be tackled by simple 

implementation of a penalty function. 

3) Random selection of the solution points ensure that false local 

optimums are not found by the algorithm and that sparse constraints are 

in some way catered for. 

4) The speed of the search is not dependent on the number of problem 

variables within the optimisation as the GA treats all variables together 

as a single string of binary coding. 

Further development of a optimisation algorithm should be considered 

which implements the use of GA's to quickly find the near optimum 

incorporated with a robust and more traditional optimisation method to 

develop the solution to the optimum. 

9.4. Summary of Future Developments. 

The most favourable next steps should be those which are most likely to 

successfully improve the performance of the optimisation. These are: 

1) The development of problem variable and constraint elimination to 

reduce the size of the optimisation problem. In conjunction with this, 

better use of the constraint function should be made, as the solution is 

known to lie on or near a constraint. Ordering of problem variables 
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should be adopted to enhance the performance of the search. 

2) The development of genetic algorithms to quickly find the near 

optimum, and to incorporate this with a robust direct search algorithm 

to find the optimum solution. 

3) Simplification of the system simulation to improve the overall speed of 

the search, a full simulation being performed occasionally to maintain 

stability. 
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CHAPTER 10. 

CONCLUSIONS AND FUTURE DEVELOPMENT. 

The conclusion of this research is that it is possible to develop an 

optimisation algorithm to solve HVAC system design problems. The 

application of a single direct search method to solve specific problems is 

possible, but it may not be robust in solving all problems. 

The characteristics of HVAC system design optimisation problems were 

established. The particular characteristics that proved to be of most 

significance to direct search optimisation algorithms, are that discrete 

problem variables are present, and that the solution lies on or near 

constraint functions. Two algorithms that address these characteristics 

have been evaluated, the complex algorithm and a pattern search with 

penalty function. 

10.1. The Complex Algorithm Conclusions. 

The complex algorithm relies on the rejection of infeasible solution points. 

Discrete problem variables caused the algorithm to lack robustness around 

constraint functions. Development and incorporation of a univariate 

search enhanced the complex algorithm robustness and allowed small 

scale HVAC system design problems to be solved. (Lambert and Wright, 

1991). 
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The slow speed of the complex algorithm and the continued lack of 

robustness around constraint functions when the number of problem 

variables are increased, leads to the conclusion that the algorithm is 

unlikely to be successful with full scale HVAC system designs. The future 

development of this type of algorithm, which uses rejection of infeasible 

solutions, is not recommended because of the strong linkage between the 

number of problem variables and constraint functions, and the overall 

speed of the search. 

10.2. The Penalty Function Algorithm Conclusions. 

The penalty function algorithm approach is to attempt to prevent 

constraint violation. This improved the speed of the search since the 

system performance must be simulated for each constraint violation. 

The Hooke and Jeeves pattern search used in parallel with the penalty 

function and was found to be effective in solving HVAC optimisation 

problems. This algorithm, however, was found to be sensitive to the value 

of the overall penalty multiplier r, and the extent to which the penalty 

multiplier was reduced for each search. It was concluded that there was no 

direct relationship between the successive values of r, and the stability of 

the pattern search, and that this was specific to the problem. The 

automation of the selection of the penalty multiplier r, was concluded to be 

impractical. 

The implementation of active and inactive penalty weightings, proved to 

be a successful tool to assist the solving of HVAC optimisation problenms. 
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The method was robust accurate and fast. The selection of the active 

penalty weighting was, however, reliant on knowledge of the design 

function of the constraint that it related too. 

The selection of active penalty weightings is difficult for large scale HVAC 

system design optimisation problems with a large numbers of problem 

variables and constraint functions. The ordering of problem variables, 

according to their influence on the objective function improves the 

performance of the pattern search within the penalty function algorithm. 

A similar method for considering which problem variables are effective in 

each constraint function allows selection of the active penalty weighting. 

It is doubtful that the pattern search - penalty function method will solve 

problems that include variables which have no effect on the objective 

function. Such variables only influence certain constraint function values 

and therefore it is difficult to assess their impact on the direction of the 

search. A further complication is the handling of the highly sparse equality 

constraints. These are not common in HVAC systems but can arise from 

limitations on component configuration. 

10.3. Future Development. 

It is clear that as the number of problem variables and constraint functions 

increase, the optimisation of HVAC system design problems becomes more 

difficult. The direct search algorithms developed within this research have 

been successful for small scale problems, but as the problem size increases 

the robustness of the algorithms reduce. 
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The recommendation of this research is that development of a form of 

problem reduction be undertaken. The use of constraint and variable 

elimination to reduce the problem size has had initial success, (Wright, 

1989). This approach has the ability to handle sparse constraints and 

incorporate variables unrelated to the objective function. It is known that 

one of the characteristics of the solution of HVAC system design 

optimisation is that it lies on or near a constraint, so development of the 

use, and handling of constraints would be advantageous. 

The use of a genetic algorithm to find the near optimum solution is 

recommended. It is known that the problem definition is not effected by 

the use of a genetic algorithm and that the number of variables within the 

problem does not adversely effect the speed of the search. 

The final recommendation for future development of this research is that 

a simplified system simulation be developed for use during the search, 

with a full simulation being undertaken occasionally to confirm that the 

search is stable. 

The idealised form of the algorithm would incorporate the use of 

constraint and variable elimination to reduce the problem size, a genetic 

algorithm to quickly find the near optimum, using a simplified 

simulation, and the use of a robust direct search algorithm such as the 

pattern search - penalty function method to find the 'true' optimum. 
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