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SUMMARY 

In this thesis the finite element method, as applied to the 

analysis of coupled shear walls and shear wall frame structures, 

is investigated. 

Various finite element models, which. have been employed for 

the static modelling of coupled shear walls, are compared by means 

of convergence tests. Lagrange multiplier schemes, which permit 

the combined use of the quadrilateral isoparametric element for 

the walls and the flexural line element for beams, are shown to be 

advantageous. These schemes connect the two types of element by 

means of constraint equations. A set of constraints are proposed 

and shown to be particularly advantageous in comparison with 

others previously used. 

The efficacy of the proposed Lagrange multiplier scheme is 

verified by means of small-scale static model tests. These 

include coupled shear walls and shear walls fixed and pinned to a 

frame. The proposed scheme is shown to be capable of providing 

accurate deflection and coupling moment predictions. 

The Lagrange multiplier method is developed to allow dynamic 

analysis. This includes both free vibration and forced response. 

The free vibration problem is solved by the bisection technique of 

eigenvalue extraction, the forced response problem by step-by-step 

numerical integration of the equations of motion using the Newmark 

beta method. 

The results from the dynamic analysis procedure are compared 

with those from model tests conducted on a shaking table. These 

employ the same models as used previously for the static 

experiments. The proposed scheme is shown to give accurate 
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predictions for the mode shapes and natural frequencies. 

The Lagrange multiplier method is developed to allow non- 

linear dynamic analysis. The non-linear behaviour is restricted 

to the constrainted joints between walls and beams. The method is 

therefore particularly suited to the analysis of structures 

subjected to earthquakes, where the walls are required to remian 

elastic to prevent structural instability and the beams are 

required to be ductile to dissipate the earthquake energy. It is 

shown to be particularly advantageous as it requires little 

additional computation above that required by the linear forced 

response analysis. 

The predictions of the non-linear analysis technique are 

compared with results from shaking table tests of coupled walls 

pin jointed to a frame. Friction in these joints provides damping 

which is shown to be poorly represented by the usual assumption of 

equivalent viscous damping. The non-linear Lagrange multiplier 

technique is shown to be capable of giving accurate results when 

used to model these joints. 
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NOTATION 

A= Cross-section area 

a= Overall response amplitude 

[B] = Strain matrix 

b= Base excitation amplitude 

[C] = Damping matrix 

[Co] = Nodal co-ordinate matrix 

c= Relative response amplitude 

D= Wall width 

[D] = Elasticity matrix 

db = Beam depth 

E= Elastic modulus (Young's modulus) 

EXM = Excess moment 

f= Displacements at point 

G= Constraint coefficients (Chapters 3,4,5) 

= Shear modulus (Chapter 7) 

g= Shear factor 

I= 2nd moment of area 

[J] = Jacobian matrix 

det[J] = Determinant of [J] 

[K] = Stiffness matrix 

k= Joint rotational stiffness 

L= Distributed load (Chapters 2,6) 

Length (Chapters 7,8) 

M= Moment (Chapters 6,7) 

[M] = Mass matrix (Chapters u, 8) 

MA = Yield moment 

MF = Final moment 

ix 



X 

MI = Moment at end of time interval 

MX = Excess moment 

N= Shape function 

P= Load 

Ps = Percentage stiffness after yield 

q= Nodal displacements 

[R] = Co-ordinate function 

{RHS} = Excess moment vector for yielding joints 

{r} = Mode shape 

S= Constrained displacement or acceleration (Chapters 3, 
4,5) 

= Shear force (Chapter 6) 

[SOL] = Moment reduction matrix for yielding joints 

[STS] = Moment reduction matrix 

t= Thickness (Chapters 2,6) 

= Time (Chapters, 4,8) 

U= Strain energy 

u= x-direction displacements 

v= y-direction displacements 

W= Potential energy 

Wi, Wj = Weighting factors 

x= Global co-ordinate direction 

y= Global co-ordinate direction 

Z= Magnification factor 

a= Polynomial constants (Chapter 2) 

= Integration parameter (Chapter 4) 

= Integration parameter (Chapters 4,5) 

= Form factor (Chapter 7) 

Y= Shear strain (Chapter 2) 

= Modal amplitude (Chapter 8) 



xi 

At = Time step 

Ao = Centre line tip deflection 

E= Direct strain 

n= Isoparametric element co-ordinate 

6= Rotation 

= Lagrange multiplier 

µ= Damping ratio 

v= Poisson's ratio 

E= Isoparametric element co-ordinate 

p= Density 

= Direct stress 

= Shear stress 

= Total potential energy (Chapters 2,3) 

= Phase angle (Chapter 8) 

4) = Eigenvalue 

WF= Forcing frequency 

Wi= Natural frequency in the ith mode 
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CHAPTER ONE - INTRODUCTION 

1.1 GENERAL 

Shear walls are a common feature among high-rise buildings. 

They are employed as an efficient means of providing stiffness and 

strength to resist lateral loadings and may often be used in 

conjunction with moment resisting frames. They may take many 

different forms. Usually they extend over the whole height of the 

building and are laid out as a series of walls connected by beams 

or slabs, or as a central core containing lifts and stairways. 

Whatever layout is used the walls will normally contain openings 

for services such as doors and windows. 

Winds and earthquakes which cause the lateral loading of 

such structures are both dynamic in nature. Wind loads are 

regularly encountered and buildings are designed to respond 

elastically to them, with equivalent static loads normally being 

employed for design. However, to design a building to respond 

elastically to a large earthquake would be prohibitively 

expensive. The objective therefore, is to design a structure to 

respond elastically to a small earthquake, and to survive a large 

earthquake without collapse and loss of lives. 

To this end it is necessary to be able to analyse the 

behaviour of both coupled shear walls and shear walls in 

combination with frames. The analysis must be able to deal with 

dynamic loadings and be able to take account of non-linear 

behaviour during large earthquakes. 
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1.2 REVIEW 

Three categories of methods for the analysis of coupled 

shear walls have been prominent. They are the continuous laminae 

method, the equivalent frame method and the plane stress finite 

element method. 

Of these, the laminae method introduced by Beck [1] and 

Rosman [2] requires the least calculation and may be used as a 

"hand" method. In this the coupling beams are replaced with a 

continuous lamina of equivalent properties which allows the 

problem to be formulated as a differential equation. 

For static analysis Coull and ChQudhury [3,4] and Coull and 

Irwin [5] used this method to present graphical charts as a 

convenient method for evaluating deflections and stresses for a 

variety of geometries and load types. Tso and Biswas [6] 

calculated equivalent static loads and used the method for 

approximate seismic analysis. Coull and Pari [7] extended the 

method to look at the effect of shearing deformations of the walls 

and flexibility of the wall-beam connections. 

Tso and Chan [S] and Coull and Mukherjee [9,10] used the 

method for the analysis of the natural vibration frequencies of 

coupled walls. Rosman [11] analysed the natural frequencies of 

buildings of which shear walls were a major component. 

The technique has also been employed for inelastic response 

by Winokur and Gluck [12] who assumed plastic hinges at the wall- 

beam joint and by Paulay [13] who used it to assess ductility 

requirements. 

The principal disadvantage with this method is its inability 

to deal with discontinuities and irregularities in either the 
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structure or its loading. Non-linear behaviour in particular is 

difficult to model in detail. 

The problem with irregularities may be overcome by the 

equivalent frame technique which is a computer method wherby the 

wall is replaced by equivalent wide column members. These, in 

combination with beam members may then be analysed by a "plane- 

frame" program. This method has been used by Schwaighofer and 

Microys [14] and MacLeod [15,16] for the analysis of coupled 

shear walls. Smith and Girgis [17] have developed this method by 

using diagonal bracing members to improve the accuracy. 

With the development of the finite element method from frame 

analysis methods, plane stress elements were used to analyse 

coupled shear walls. Girijavallabhan [18] used triangular and 

rectangular elements. Wee [19] used a rectangular element with 

bending characteristics improved by Wilson et. al. [20]. In these 

studies the same type of elements were used to model the 

connecting beams and the walls. 

To allow the use of beam elements for the coupling beams, 

MacLeod [21] and Agrawal and Mufti [22] used plane stress elements 

with rotational degrees of freedom for the walls. This permitted 

the direct connection of the two types of element. 

Al-Mahaidi and Nilson [23] proposed "imaginary" elements 

using the Lagrange multiplier technique to impose constraints. 

This linked plane stress elements for the walls to frame elements 

for the coupling beams. Antony and Geanesan [24] proposed 

alternative constraints using the same method. Both these studies 

covered elastic, static analysis only. 
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For the analysis of walls and frames together, the continous 

laminae method has been used. Basu and Dar [25] replaced the 

frame by an equivalent uniform shear beam for a simple regular 

structure. However, more widely employed is the equivalent frame 

technique as this readily permits the modelling of the combination. 

With the wall replaced by an equivalent frame, the addition of a 

frame becomes straightforward. Emori and Schnobrich [26,271 and 

Fintel and Ghosh [28-30] have conducted inelastic dynamic analysis 

for the evaluation of ductility demands in this manner. 

The finite element method has the advantage that it makes 

possible the modelling of complex non-linear behaviour, albeit 

with a large increase in the complexity of the solution. Many 

models for the inelastic behaviour of concrete have been 

developed. 

For beams they range from a single component model employed 

by Giberson [31] which has inelastic rotational hinges at member 

ends, to mulit-component [32] and layering [33] models. A very 

popular moment - rotation hysteretic model is that of Takeda 

et. al. [34]. 

For dynamic problems Agrawal et. al. [35] have developed a 

non-linear plane stress element which models cracking and crushing 

of the concrete in walls and yielding of the reinforcing steel. 

1.3 OBJECTIVE AND SCOPE 

The Lagrange multiplier technique proposed by Al-Mahaidi and 

Nilson had only been developed for the static analysis of coupled 

shear walls but could equally well be applied to walls coupled to 

frames. In this thesis the first objective is to compare 

different sets of constraint equations and other finite element 
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schemes when used for static analysis. This allowed the selection 

of the most appropriate. In chapter 6 the different finite 

element schemes are compared and a Lagrange multiplier scheme shown 

to give good results. In chapter 7 this scheme is compared with 

static laboratory experiments using both coupled walls and coupled 

walls in combination with a frame. 

However, for this scheme to be of significant use in 

analysing the resistence of structures to seismic loadings, it 

would also be necessary to be able to apply it to dynamic analysis. 

The theory for this is developed in chapter 4. This chapter 

shows how it may be employed for the analysis of free vibration 

using an eigenvalue technique and develops the theory for a forced 

response analysis. Chapter 5 extends this to include non-linear 

behaviour. 

Inelastic behaviour can be treated in the same manner as 

previous investigations by reforming the stiffness matrix for 

yielding elements. However, chapter 5 makes use of the Lagrange 

constraints to produce a much more economical method. This is 

restricted in that yielding may only take place at the wall-beam 

joints. 

In view of the desirability of absorbing energy by 

hysteretic damping due to inelastic behaviour, a favoured design 

philosophy is the use of strong walls and weak beams. The beams 

are designed to be ductile to absorb the earthquake energy whilst 

the walls deform elastically and prevent structural instability. 

Hence, a method which permits modelling of a yielding beam with an 

elastic wall is ideally suited to this analysis. 
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In chapter 8 the Lagrange multiplier scheme is compared with 

the results from dynamic laboratory tests on coupled walls and 

coupled walls with a frame. These include free vibration, forced 

response and non-linear behaviour of the wall frame joints. 
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CHAPTER TWO - FINITE ELEMENT ANALYSIS 

2.1 INTRODUCTION 

The finite element method can be used to model analytically 

a continuous problem by subdividing it into a number of portions 

or elements. The behaviour of each element is described in terms 

of a finite number of nodal degrees of freedom which are 

interconnected to those of other elements. In this way a 

continuous problem with infinite degrees of freedom can be 

approximated by a system with a finite number of degrees of 

freedom. This is then suitable for solution by a digital 

computer. 

In a structural context, the force-displacement (stiffness) 

relationships are calculated for the nodes of each element. The 

displacement degrees of freedom at the nodes of the elements are 

connected together at discrete joints. Equilibrium equations 

involving element and external forces are then used to solve for 

the unknown displacements. 

The behaviour of the elements can be derived by assuming 

functions to describe either the displacement or the stress 

pattern within the elements. Of these, displacement functions 

have been more widely employed. They are used with the principle 

of minimum potential energy to calculate the element stiffness 

properties. The methods involved have been documented in many 

publications (36-39]. 
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2.2 GENERAL PROCEDURE 

Displacement function: 

The displacement function represents the displacements 

within the element. It approximates the actual displacement field 

over the element. 

The displacement function can be expressed in terms of the 

shape functions of the nodal parameters by 

f= N1 (x, y)91 + N2(x, y)92 + ...... 2.1 

in which f is the displacement at any point (x, y) in the element, 

qi are the displacements at node i and Ni(x, y) the corresponding 

shape functions. 

Strains: 

The strains {c} at any point within the element can be 

obtained by differentiation of the displacement function with 

respect to the co-ordinate variables x and y. 

{E}'= [B]{q} 2.2 

[B] is termed the strain matrix. 

For a plane stress element 

{E}= EX au/ax 
Ey = aviar 
eXy ZU/ay + 3V/ax 

where u and v are the displacements in the x and 

this case 

f=u 
v V 

2.3 

Y directions. In 

2.4 
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Stresses: 

The stresses {a} are related to the strains by 

{Q} a ED]{E} = [D]EB] {q} 

The matrix [D] is referred to as the elasticity matrix. 

2.5 

Plane stress: 

A wall acted on by in-plane forces can be considered to be 

free from normal components of stress. The stress at any point 

may then be described in terms of three components, ax, Oy and 

rX }I " This is known as a state of plane stress. 

For a plane stress element with isotropic properties 

[D] =E1V0 
1-V2 V10 

00 1_V 
2 

where V is Poissons ratio. . 

2 

2.6 

2.7 

Substituting for {c} and (a} from equations 2.2 and 2.5 

produces 

-(q ) T(B)T[D)(B] (q} d(vol) 2.8 Uj 
2 

The potential energy due to the distributed loads {L} may be 

written as 

WJ {f}T{L} d(vol) 2.9 

f {q}lNJT{L} d(vol) 2.10 

Minimization of total potential energy: 

The strain of energy of a linear elastic body is given by 

U=1f(}T(} d(vol) 
2 ýJ 

2 
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For concentrated loads {P}, integration is not necessary and 

the expression reduces to the loads multiplied by the 

corresponding displacements 

W= -{9}T{P} 
2.11 

The total potential energy is given by 

U+W2.12 

1 r{q}T[B]T(D](B]{q} d(vol) 

2J 
- 

{q}T{p} 2a13 

The total potential energy of a system in equilibrium is a 

minimum value. The potential energy is minimum when 

am =0 
öq2.14 

Substituting equation 2.13 into this equation produces 

3ý _r (B]TCD]LB]{q} d(vol) -P=0 

3{q} J 

or 

2.15 

[K]{q} - {P} =02.16 

in which the stiffness matrix 

[K] =r [B]T[D][B] d(vol) 2.17 

For two dimensional problems this reduces to 

[K] =ti [B]T[D][B] d(area) 2.18 

2 

in which t is the element thickness. 
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2.3 Selection of Elements for Structural Idealisation 

Shear walls: 

The geometry of the regular rectangular shear wall suggests 

a division into rectangular elements. 

The shape functions chosen to describe the displacements 

within the elements will then govern the accuracy of the elements. 

Elements with quadratic or cubic (high order) rather than simple 

linear shape functions will give a more accurate approximation. 

Such elements have been developed and employed to model shear 

walls [21,22]. However, their use is at the expense of greater 

effort in calculating their stiffness relationships. A greater 

number of degrees of freedom for each element also results in an 

increased solution cost. It is, therefore, desireable to use the 

lowest order element which gives suitably accurate solutions. 

The quadrilateral isoparametric element with linear shape 

functions can be revised to improve bending behaviour. With the 

addition of non-conforming displacement modes it has been shown to 

give highly accurate results [19,20]. Thus, this element is 

preferred to model the walls. 

Beams and columns: 

The connecting beams of a coupled shear wall can be modelled 

using the same elements as for the wall. The accuracy of the 

approximations will improve with a larger number of elements to. 

each beam. However, to model a frame in this way would lead to 

the use of a very large number of elements. This would make the 

solution prohibitively costly to complete. 
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Individual frame members can be accurately modelled using a 

single line element producing a much smaller set of equations. 

Thus, this element is preferred to model beams and columns. 

Wall-frame structures: 

The two preferred types of element for the analysis of walls 

and frames can not be used together directly. The quadrilateral 

isoparametric element with linear shape functions has two degrees 

of freedom at each node. The line element has three. The next 

chapter describes the Lagrange multiplier technique which allows 

them to be connected. 

Agrawal and Mufti [22] report better results using a 

rectangular element with rotational, in addition to the 

translational, degrees of freedom. This element, which was 

developed by Sisodya et al. [40] for the analysis of box-girder 

bridges, allows a direct connection to be made between the wall 

and beam elements. The use of this element, therefore, is also 

investigated. 

2.4 THE QUADRILATERAL ISOPARAMETRIC ELEMENT 

A classical four noded quadrilateral element has two 

translational degrees at each of the four nodes (Fig 2.1). 

The shape functions used for the linear element are 

N1=4(1-ý)(1-n) 

N2 =4 (1 +) (1 -n) 

N3=4 (1 + ý) (1 +n) 

N4=4 (1 -E) (1 +n) 2.19 

in terms of the local (element) co-ordinates ý and n. 
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I 

Y 

X 

a) Global Co-ordinates 

k 

b) Local Co-ordinates 

FIG. 2.1 

Quadrilateral Isoparametric Element 
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These same functions are also used to transform from the 

local to the global co-ordinate system. The co-ordinate systems 

are related by 
4 

f XT tEl 
Ni( E, 11) IxiiT y 

2.20 

Elements such as this, where the functions defining the 

displacement field and the geometry are identical, are termed 

isoparametric. 

The shape functions of this element are defined in terms of 

the local co-ordinates and p. Thus, they cannot be 

differentiated with respect to the global co-ordinates x and y to 

give the strain matric [B]. It is, therefore, necessary to obtain 

a relationship between the two sets of co-ordinate derivatives 

using the chain rule of partial differentiation. 

aN 
g 
DN 
an 

_, .-ý ax Y aN 

K DE ax. 
x ny N 

an an 
äy 

ý_ 

ý, _ (J) ý 

2.21 

The matrix [J] is called the Jacobian matrix and its 

coefficients may be evaluated by differentiating equation 2.20 

with respect to E and ri. 

Now a N/a x and aN/ay may be expressed in terms of aN/ ö& and 

9N/3q through the inverse of [J]. 

__3- x 
DN 
aY 

[J]-1 
N 

-aN 
'fin. 2.22 

To complete the transformation between the two systems it is 

also necessary to express the elemental area of equation 2.18 in 

terms of C and n. This produces 

aN 
ax 
. IN 
ay 



[K] =tf [B]T[D]CBI det[J] dEdn 2.23 
-1-1 This may be written as 

[K] =tEE WjWk det[J][B( Ej, n k) ]T 
ýx 

for numerical integration by Guassian quadrature 1371.9j and n. k 

are the integration points, Wj and Wk the weighting factors. 

Addition of non-conforRing modes: 

The main source of inaccuracy with this element is its 

inability to represent a state of pure bending (Fig. 2.2). This 

may be overcome by the addition of non-conforming displacement 

modes i20]. 

level to remove the linear edge displacement constraints. These 

non-conforming modes give a more realistic displacement shape at 

the expense of the inter-element displacement compatibility. For 

the linear quadrilateral element, the shape functions to be added 

are 

N5 =1- &2 

N6 =1- n2 

The displacement field with non-conforming Modes added may 

+1+1 

[n][s( ýj, nOl2.24 

Internal degrees of freedom are added at element 

15 

2.25 

be expressed as 

UT 
V 

4 
=E Ni ui + N5al + N6a2 

i=1 LvjS N5a3 + N6a4 2.26 

This results in an element stiffness matrix of 12 x 12 

terms. However, if the internal strain energy of the element is 

minimized with respect to the internal degrees of freedom ai, then 

this may be reduced to 8x8 terms. 
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M 

a) Element under pure bending 

'b) Exact displacements 

d) Displacements of the linear element 

FIG. 2.2 

16 

Bending Behaviour of the Linear Element 
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This element has been shown to give highly accurate results 

when used in parallelogram or rectangular (which is a special case 

of the parallelogram) form [19,20]. However, when distorted to a 

general quadrilateral form, it does not yield a convergent 

solution [41,42]. 

A remedy for this has been shown by Taylor et al. [43]. 

When the derivatives for the Jacobian matirx [J] are evaluated at 

the centre of the element (E=0, n=0), irrespective of the actual 

co-ordinates of the integration points, then convergence is 

restored. For, the rectangular parallelogram elements, these 

derivatives are constant and hence the co-ordinates at which they 

are evaluated have no effect. The stiffness matrix for the 

modified element is identical to the original incompatible element 

for the rectangular and parallelogram cases and gives improved 

results for the general quadrilateral form. 

2.5 RECTANGULAR PLANE STRESS ELEMENT WITH ROTATIONAL DEGREES OF 
FREEDOM 

The element proposed by Agrawal and Mufti [221 assumes the 

following displacement functions 

u= al + a2x + a3Y + a4xy 2.27 

V= a5 + a6x + a7 x2 + a8x3 + agy 

+a 10xy +a 11 x2y + a12x2Y' 2.28 

6= 2v = a6 + 2a7x + 3C, 8x2 + a1 0y 
ax 

+ 2a 11 xY + 3a 12x2Y 2.29 

which are biased towards one axis. With the element in the 

orientation of Fig. 2.3 the bias direction will be referred to as 

horizontal. 
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ý 

Y 

4 

1 

Bias Horizontal: 

Local (element) x and y axes parallel to 
global (sttucture) x and y axes 

FIG. 2 .3 

Rectangular Plane Stress Element with 
Rotational Degress of Freedom 
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The displacement may functions be written as 

{f} = LR]{a} 2.30 

where [R7 is a function of the co-ordinates 

and {a} is a vector of polynomial-constants. 

To express the displacement function in terms of the nodal 

displacement parameters {q}, the 

substituted into equation 2.30 producing 

{q}= [Co] {a} 

nodal co-ordinates are 

where [Co] is a matrix of the nodal co-ordinates. 

This may be rearranged to 

{a} _ [Co]-1 {q } 

Substituting into equation 2.30 produces 

2.31 

2.32 

{f }= [RJ[CoJ-l{ q} 2.33 

or 

{f }= LN]{q } 

The displacements are now given in shape function form as in 

equation 2.1. The strain matrix [B] and hence the stiffness 

matrix [K] may now be calculated as described earlier in the 

chapter. 

2.6 THE LINE ELEMENT 

The line element idealises a beam or column in terms of the 

displacements at each of the two end nodes. The nodes have three 

degrees of freedom, two translational and one rotational. 
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The stiffness relationships for this element are derived 

from simple beam bending theory. They may be derived using 

displacement functions and the principle of minimum potential 

energy. Alternatively, Hooke's law and the slope-deflection 

equations may be used to relate the displacements to the moments 

shear and axial forces at the member ends. 

This type of element is used in the stiffness method for 

skeletal structures which have real discrete joints, from which 

the finite element method developed. The derivations of the 

stiffness matrix for this element are given in many publication 

[37,44,451 and need not be presented here. 
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CHAPTER THREE. - THE LAGARANGE MULTIPLIER TECHNIQUE 

3.1 INTRODUCTION 

The quadrilateral isoparametric element and the line element 

cannot be used directly together if a fixed joint is to modelled. 

The end rotation of the line element needs to be related to the 

rotation of the wall at the joint. However, the displacements of 

the wall elements are all in terms of translational degrees of 

freedom. A method whereby these translational displacements can 

be linked to the end rotations of the line elements must be 

introduced if these two element types are to be linked. 

This link may be accomplished by means of constraint 

equations incorporated into the finite element system of 

equations. The technique employed is that of Lagrange multipliers 

[38,46-48]. It involves an extra Lagrange multiplier degree of 

freedom being added for each constraint equation used. 

3.2 SELECTION OF CONSTRAINT EQUATIONS 

Several different sets of constraint equations have been 

suggested. 

Method 1: 

Al-Mahaidi and Nilson [23,49] proposed the following 

conditions. 

The rotation of the line element must be compatible with the 

x-direction displacements of the wall elements to which it is to 

be connected (Fig. 3.1). For small angles 

tan ej = e3 3.1 
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A1-Mahaidi's Constraint Scheme 
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Thus this conditon may be written 

-2-3.2 db 

To comply with the Bernoulli-Navier hypothesis of plane 

sections remaining plane during bending, the nodes i, j and k must 

lie on a straight line. This condition may be expressed as 

1 (ui + uk) - uj =03.3 
2 

Method 2: 

A single constraint equation similar to equation 3.2 was 

proposed by Antony and Ganesan [24]. They allow nodes i and k to 

take any convenient position. This they refer to as a "wall face 

oriented connection" (Fig. 3.2 (a), (b)). Thus 

1 (uk-ui)+6j =0 3.4 
dik 

Method 3: 

Also proposed by Antony and Ganesan [24] is a "frame member 

oriented connection". They assume the relative rotation of the 

beam and the tangent to the beam to be zero. (Fig. 3.2 (a), (c)). 

This leads to the following constraint equation 

1 (vj-v1)- 6j=0 
dj1 

3.5 

However, for a wall to the right of the beam, this equation 

must be rearranged to 

1 (vl - vj) - ej =03.6 dj1 

Proposed method: 

The scheme proposed here is a wall face oriented connection 

to a single isoparametric element. The line element is connected 
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to the centre of an edge of the isoparametric element (Fig. 3.3). 

As there is no node at this point on the rectangular element, to 

achieve this, three constraining equations must be used at each 

joint. These link the rotational and translational displacements 

of the line element to the translational displacements of the 

isoparametric element. 

The two translational displacements at the beam centre-line 

(node j) are assumed to be the average of those at the top and 

bottom (nodes i and k). 

1 (ui + uk) - uj =03.7 
2 

.I 
(vi + vk) - vj =0 2 3.8 

The end rotation of the beam element is made compatible with 

the x-direction displacements of the wall element such that 

? (ui - uk) - ej =03.9 
db 

These constraint equations may be written in matrix form as 

0}0 -1 00 
0}0}0 -1 0 

1/db 0 -1/db 000 -1 

ui 
vi 
Uk 
Vk 
uj 
vj 
t 

ýý 

3.10 

0 

3.3 THE LAGRANGE MULTIPLIER TECHNIQUE 

Constraint Equations: 

The constraint equation 3.10 may be written more compactly 

as 

Lcl{Q} = {s} 3.11 
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For a system with n degrees of freedom and m constraint 

conditions then 

[G] is an m by n coefficient matrix 

{S} is a vector of m constrained displacements 

Potential Energy: 

The total potential energy 0 of the finite element model 

given by equation 2.13 may be rewritten as 

ý=I {q}TLK]{q} - {q}T{P} 3.12 

Equilibrium: 

By differentiating the total potential energy with respect 

to the independant variables {q}, the equilibrium condition may be 

found. With a set of constraint equations linking the 

displacements {q}, they are no longer independant. 

To restore the independance, each constraint equation must 

be multiplied by a further variable Xi. 

{X} CG}{ q} - {X}I S} =03.13 

These new independant variables are termed Lagrange 

multipliers. 

The constraint equations may now be added whilst maintaining 

the independance of the variables. 

T= i{q}T[Kl{q} - {q}TfP} + IX}LcJfg} - f%}{S} 3.14 

is known as the augmented functional. 

By taking the partial derivatives of ý with respect to the 

independant variables {q} and {X} and setting them simultaneously 

to zero, the equilibrium condition may now be found. 
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»_ [K]{ q} - (P} + [G]T{X} =0 ý} 

a= [G]{q} - {s} =0 
aX 
These equations may be written more compactly as 

KG 
OT] '{ä}' S} C 

3.4 RELATIVE MERITS OF DESCRIBED METHODS 

3.15 

3.16 

The first method makes use of the Bernoulli-Navier 

hypothesis. This is an assumption made to simplify flexural 

bending theory and facilitate analysis. It would seem unnecessary 

to impose it upon the wall-beam joint. The other methods do not 

employ this constraint. 

The first method also concentrates the isoparametric 

elements at the level of the joint. Two elements must be used for 

the depth of the beam across the full width of the wall. This 

increases the size of the problem to be solved. 

Both of the first two methods link across a depth of two 

isoparametric elements. This leads to a large bandwidth with 

terms in the constraint equations widely spaced from the diagonal. 

With a larger set of equations to solve, computing costs are 

increased. 

The third method does not have the previous disadvantages. 

However, it has the added complication that different equations 

must be used for a joint to a wall on the left or the right. 

The proposed method suffers from none of these problems. 

Three Lagrange multiplier degrees of freedom are added at each 

joint which is more than for the other methods. This is useful 

when the forces in the line element are to be calculated, due to 

the physical identity of the mulipliers li. 
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3.5 PHYSICAL INTERPRETATION OF THE LAGRANGE MULTIPLIERS 

The augmented functional 4 of equation 3.14 has units of 

force multiplied by displacement. For dimensional consistency the 

multipliers {X}, which are multiplied by displacements {q}, must 

have units of force. 

For a single element, the nodal forces acting may be found 

by multiplying the stiffness [k] by the nodal displacement (q). 

In the case of the line element these nodal forces are the moment, 

and shear and axial forces at the member ends. 

Writing the augmented stiffness equations 3.16 for nodes i, 

j and k we have 

K11 K12 K17 
K21 

K51 etc. K57 

K71 K77 

-1 
ýý -1 

1/db 1/db -1 

i 

i 

-1 

i 

i 

-1 

1/db 

_/db 

-1 

0 

ui 
vi 
Uk 
Vk 
uj 
vi 
ei 

X1 
X2 
X3 

Pxi 
Pyi 
Pxk 
Pyk 
Pxj 
P ýj 

j 

ý 

0 

' 3.17 
Multiplying out equation 3.17 for the x-direction force at 

node j produces 

{K51, K52 ............ K571{q} + (-1)71 = Pxj 3.18 

where Pxj is the x direction load at node J. 

The stiffness coefficients in{K51 ........... K57} are all 

contributed by the line element at node J. If no external load is 

imposed on node j then 

{K51 ............. K57){q} = ý1 3.19 

l 
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Hence, when the system of equations 3.16 are solved for {q} 

and {j}, X1 takes the value of the x-direction end force on the 

line element at node J. 

Similarly it can be shown that X2 and A3 take the values of 

the y-direction force and the moment at node J. 

This feature is very- useful. The extra Lagrangian degrees 

of freedom, which must be solved for during analysis, take the 

values of the nodal forces at the joint. The moment, and shear 

and axial forces at the end of the beam are calculated 

automatically during the solution procedure. They need no longer 

be calculated subsequently. 

3.6 ASSEMBLY OF THE, CONSTRAINT EQUATION. INTO THE STIFFNESS 
MATRIX 

Al-Mahaidi and Nison [49] used a number of imaginary 

elements to represent the constraint equations for each joint. 

This was to allow different constraint equations to be used. Only 

connections to a vertical wall face are considered here and so 

this method is not employed. 

The three Lagrange multipler degrees of freedom for each 

joint are assigned to a single node. The coefficients of the 

constraint equations in the form of equation 4.17 (with all K=0) 

can be considered as the stiffness coefficients of an imaginary 

element. This element has four nodes, two on an isoparametric 

element, one on a line element and the other with the multiplier 

degrees of freedom. 

One subroutine is used to calculate the coefficients for 

this element. They are then assembled in the normal way. The 
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partitioning implied by equation 3.16 is not used as this would 

give a very large bandwidth. The equations are ordered by the 

node numbers. 

The zeros on the leading diagonal can cause problems with 

standard solution procedures. However, with careful ordering of 

the equations this may be overcome. The solution methods used in 

this study were Guasian elimination and back substitution [50] for 

static and forced vibration analysis, and the bisection method 

[51] for free vibration. With these, no problems were encountered 

when the node with the Lagrange multiplier degrees of freedom was 

given a higher node number than the other nodes associated with 

the joint. 
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CHAPTER FOUR - DYNAMIC ANALYSIS 

4.1 EQUATIONS OF MOTION 

The equations of dynamic equibilibrium at any time t may be 

written as 

[M] {q} + [C] {q} + [K] {q} = {P(t) } 

where 

{q} = nodal accelerations 

{q} = nodal velocities 

[M] = mass matrix 

[C] = damping matrix 

{P(t)} = nodal loads at time t 

4.1 

Mass matrix: 

The mass matrix for the analysis may be derived by two 

different methods to give either a consistent or a lumped matrix. 

When the shape functions used to describe the acceleration 

field over the element are the same as those used for the 

displacement field, then a consistent matrix results. This is 

populated in an identical manner to the stiffness matrix with many 

off-diagonal terms. 

A simpler approach is to lump tributary areas to each node. 

This involves less computation and results in a diagonal matrix. 

For the analysis of a complete structure, a significant proportion 

of the mass may come from non-structural components. These 

external masses are also lumped to the nodes, usually at the floor 

levels. 

Convergence studies [19,52] have shown that the lumped mass 

matrix is capable of producing accurate results. Particularly 
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when used with the non-conforming isoparametric element, a high 

degree of accuracy has been obtained (19). Typical results for 

the natural frequencies of a plain wall are shown in Fig. 4.1 for 

both lumped and consistent mass matrices with conforming and non- 

conforming elements. It can be seen that the results remain 

accurate even when a small number of elements are used. 

In view of the accuracy obtainable and the lesser 

computational effort required, the lumped mass matrix is used in 

this study. 

Damping matrix: 

The nature of damping present in a vibrating building is 

very difficult to characterize. To facilitate numerical analysis, 

equivalent viscous damping is usually assumed. 

Studies on full scale building repsonse have supplied values 

for modal damping coefficients for the lower modes [53]. It is 

therefore desirable to specify a damping matrix whose properties 

are related to the known modal damping ratios of the physical 

system. This may be accomplished by evaluating the damping matrix 

as a linear combination of the mass and stiffness matrices [54]. 

[C] = C1[M] + C2[K] 4.2 

The constants C1 and C2 are related to the damping ratio µi 

for any mode i by [55] 

}Pi = C1 + CM 

2Wi 2 4"3 

where Wi is the natural frequency in the ith mode. 
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Tests on existing structures [53] have shown that damping 

can range from 2% to 20% of critical in the first two modes. If 

suitable values are chosen for the anlysis then the constants C1 

and C2 can be evaluated from 

Cl = 2w1w2 (u2431 - u1w2) 
w1 - w2 

C2 = 2(U1W1 - 112W2) 
W1 - W2 

4.4 

4.5 

The damping in other modes may then be calculated from 

equation 4.3. 

4.2 FREE VIBRATION 

For the particular case of free vibration, no loads are 

applied and damping is not considered. Equation 4.1 reduces to 

[M] {q} + [K] {q} =0 

All the displacements are in phase and may be written as 

{q} o {r}eiw t 

where 

w= natural frequency 

{r} = nodal displacements (mode shape) 

t= time 

Differentiating twice with respect to time produces: 

{4} _ _w2{r}eut 
t 

Substituting into equation 4.6 produces 

[[K] -w2 [M]]{q} =0 

4.6 

4.7 

4.8 

4.9 
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This may be expressed as a standard eigenvalue problem. 

[[K] -j[M]]{q }= 0 4.10 

where the eigenvalue '_W2. 

A large number of solution techniques have been developed to 

solve this problem [56,57]. However, no single method has been 

found suitable for all applications. For large, banded matrices 

where only the first few eigenvalues are required, the bisection 

method [51] has proved effective when a reasonable estimate can be 

made for the eigenvalues. 

The required roots of equation 4.10 are solved for by 

calculating the eigenvalues `Y for which 

I[K] 
-T (M]I =04.11 

An initial estimate is made for the eigenvalue and an 

increment is assumed. The sign of the determinant (equation 4.11) 
.1 

is calculated for the initial estimate and successive increments. 

The required root will lie between the values of ' for which the 

sign of the determinant changes. It may then be found by repeated 

bisection of the interval within which it lies. 

Only the sign of the determinant is required with this 

method and thus the value is normalised as it is calculated to 

avoid possible numerical overflow problems. This has the 

disadvantage that when two roots lie close together, the sign may 

change twice during one increment, which will lead to the roots 

not being found. 

This may be overcome by using a small increment but an 

accurate initial estimate is then needed if a large number of 

steps are to be avoided. If the logarithm of the value of the 
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determinant is calculated, overflow problems are readily avoided, 

whilst the values may be used to monitor convergence to the 

required root (Appendix A). 

Constraint equations: 

In equation 4.6 the inertial forces [M]{q} are in 

equilibrium with the forces due to the deflections [K]{q}. With 

the inclusion of the constraint equations, the forces due to the 

deflections are given by equation 3.16. Equating these with the 

inertial forces produces 

rM Oq+ rK GT Iq tj 

00GGx4.12 

This equation may be solved for the natural frequencies and 

mode shapes in the same manner as equation 4.6. The subroutines 

presented by Raju et al. [51], modified to calculate the 

logarithm of the determinant, were used in this study. 

4.3 FORCED VIBRATION 

The equations of motion 4.1 may be solved by direct 

numerical integration. The response is evaluated for a series of 

short time increments At, at the beginning and end of which 

equilibrium is established. 

Many different assumptions may be made as to the. 

relationships between the acceleration, velocity and displacement 

for each interval [58]. Of these, one of the most popular is the 

Newmark- $ method [591 which employs two parameters Y and ß. These 

govern the proportions of the acceleration before and after the 

interval which enter into the equations for the velocity and 

displacement after the interval. 



{ý} t+ At = {g}t + (i - r)nt{q}t+ Yat {q}t+d t 
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4.13 

{q}t+ At = {q}t + At{q}t + (j. - 6)At2{ä}t 4.14 

+ ß0t2{4}t+ At 

As the equations must be solved for each time step, it is 

advantageous to use a large increment At. This can be done only 

when the equations are unconditionally stable. Otherwise highly 

inaccurate, high frequency modes may predominate in the solution. 

The equations have been shown to be stable [60-62] when y and 

are chosen such that 

YZ}+a4.15 

0= (1 -a)2/4 4.16 

where a is a parameter chosen between 0 and 1/3. Hilber et al. 

[63] have proposed a method which also employs the parameter cx 

directly in the equations of motion. This is to allow a greater 

degree of control over the numerical dissipation or damping in the 

higher modes. However, particularly widely employed is the 

assumption of constant acceleration during the interval. This has 

a=0 and hence Y' _i and ß=4. In this case no artificial 

damping is introduced and the method of Hilber et al. is identical 

to the Newmark- $ method, which is used in this study. 

Solution procedure: 

Substituting equations 4.13 and 4.14 into the equation of 

motion 4.1 at time t+ At 
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LMl {q}t+A t+ LCl {g}t+At + LKl {q}t+A t= iP(t+ At) } 4.17 

produces 

IM] {g }t+ ot+ [c] {{q}t + (1 -Y )ot{q}t + Ye t fq}t+pt} + 

[x]{{q}t + et{q}t + (} _ß )et2{Q}t + ßet2{1}t+ et} 

= {P(t + At) } 4.18 

substituting equation 4.12 for [C] into equation 4.18 

produces 

[a[M] + b(K]]{q}t+ At = {P(t+ At)} 

- C1[M] {A }- [K] {C2 {A} + {B 11 4.19 

where 

a=1 +C1YAt 

b= C2YLt + ßpt2 

{A} _ {q}t + (1 -Y )pt{cj}t 

{B} = {q}t + At{Q}t+ (} -ß )nt2{q}t 
This may be written more compactly as 

Off] {q} + &t = {F} 1 4.20 

where 

[K] = a[M] + b[K] 

{F} = {P(t + At)} - C1[M]{A} - [K]{C2{A} + {B}} 

Matrix [K] is a function of the mass and stiffness matrices. 

With conditions at the beginning of the interval known, 'tF} can be 

calculated. The accelerations at the end of the interval {Q}t+Qt 

may then be calculated using equations 4.20. The velocities and 

displacements are calculated from equations 4.13 
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and 4.14 and these then form the initial conditions for the start 

of the next interval. 

Constraint equations: 

The dynamic equilibrium equation 4.20 is of the same form as 

the static equilibrium equation 2.16 

[K]{q} o {P} 

The constraint equations 3.11 used for the static equation may be 

employed in the same manner to constrain the accelerations in 

equation 4.20. With the constraint equations added we have 

C`ý' GTJ {{ 

q }tX+, & t= ýJj 
4.21 

which is of the same form as equation 3.16. Hence, the 

accelerations of equation 4.21 are constrained in the same manner 

as the displacement in equation 3.16. Using equations 4.13 and 

4.14 for the velocities and displacements, it can, be shown that, 

if the initial conditions are constrained, then the velocities and 

displacements are also constrained. 

Using constraint equation 3.7, if at time t the initial 

conditons are 

uj(t) _ I(ui(t) + uk(t)) 4.22 

ýJ(t) _ i(üi(t) + uk(t)) 4.23 

uJ(t) c 16i(t) + Uk(t)) I 4.24 

then at the end of the interval the velocities can be calculated 

from equation 4.13 as 

üj(t + pt) = 
üj(t) + (1 -Y )Otuj(t) + YAtüj(t + At) 4.25 

ui(t + pt) = tii(t) + (1 -Y )Otui(t) + YAtui(t +Qt) 4.26 

ük(t + At) 
= 

Lk(t) 
+ (1 -Y )0 tuk(t) + YQtiak (t + At) 4.27 
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Substituting equations 4.23 and 4.24 into 4.25 produces 

uJ(t + At) = i(ui(t) + Uk(t)) 

+ (1 - YAt i Gi(t) + ük(t) 

+Yhtüj(t+A t) 

With the accelerations constrained 

4.28 

üj (t+ 60 _ i(ui(t+t t) + uk(t+Q t)) 4.29 

Substituting into equation 4.28 produces 

üj (t+ At) _ i(üi(t) + uk(t)) 

+ (1 - Y)pt i (üi(t) + ük(t)) 

+ Ytt i (Ui(t+ A t) + ük(t+t t)) 4.30 

Comparing with equations 4.26 and 4.27 it can be seen that 

ij(t+ At) = i(üi(t+ A t) + ük(t+ tt)) 4.31 

and hence the velocities are constrained in the same manner as the 

accelerations. Using similar substitutions into equation 4.14 for 

the displacements, it can be shown that the displacements are also 

constrained. 

The usual initial conditons before loads are applied are 

that all accelerations, velocities and displacements are zero. 

Thus equations 4.22 and 4.24 are simply satisfied. 

Physical Interpretation of the Lagrange Multipliers: 

Equation 4.14 can be written more compactly as 

{q}t +At ={B}+ßAt2{q}t+At 4.32 

By neglecting damping, equation 4.19 can be written as 

[K]*{Q'}t+A t= fP(t+ At)} - {[K]{B}} 4.33 

where [K]* _ [M] + ßAt2[K] 

With the addition of the constraint equations this becomes 
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[K]* GT qT= {PCt+p 
t) - [K]{B} 

G0xS 

Multiplying out this equation produces 

[K]*{9}t+Q t+ [G)T {a} = p(t+A t) - [K] {B} 

which for nodes with no mass simplifies to 

aAt2[K]{4}t+ At + (G]T{A} =- [K]{B} 

4"34 

4"35 

4.36 

For earthquake loads, P(t+pt) is proportional to the mass at 

a node and hence is equal to zero at a node with no mass. For 

other types of loading, no load must be applied to the constrained 

beam end for this equation to be valid. 

Expanding equation 4.36 in the same manner as equation 3.17 

for the forces at the constrained end of the beam member produces 

(-1){x} _- [K]{{B} + 0, &t2{4}t+ At 4.37 

or using equation 4.32 

[K]{q}t+ At 4.38 

Two assumptions were made to derive this result. Damping 

and mass were both set to zero. This is only necessary at the 

constrained end of a beam member, the rest of the structure being 

treated in the normal manner. The mass from the end of the beam 

member may be lumped to adjacent nodes in the wall. The removal 

of damping at the constrained joint has very little effect on the 

overall solution. 

With the imposition of these two restriction, the very 

useful equation 4.38 may be obtained. The variables {a} which are 

obtained during analysis, take the values of the nodal forces at 

the joint. This saves much subsequent calculation when these 

values are required for inelastic analysis, as will be 

demonstrated in the next chapter. 
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CHAPTER FIVE - NON-LINEAR DYNAMIC ANALYSIS 

5.1 INTRODUCTION 

The step by step numerical integration technique is a very 

powerful method for non-linear dynamic analysis. It is usually 

performed by assuming that the structural properties remain 

contant during each interval and then updating them using the 

deformation state at the end of the interval. 

The change in material properties at the end of an interval 

generates unsupported stresses in the structural model. The 

assumption of a constant value of stiffness for each time 

increment during which plastic deformation takes place can lead to 

equilibrium as expressed by equation 4.1 not being satisfied. The 

accumulation of these errors can cause the divergence of the 

solution. A variety of methods have been employed to compensate 

for this. 

The unsupported stresses can be converted into psuedo-loads 

[36,64]. These are then applied as corrective loads for the next 

time increment. 

An additional incremental displacement can be calculated 

from the unbalanced loads. This may be repeated until equilibrium 

is established to the required tolerence [65]. 

Whenever non-linear behaviour occurs the time step may be 

reduced [66]. The stiffness changes at the end of each interval 

will then be smaller and the errors introduced correspondingly 

reduced. 

All these methods of compensation involve considerable extra 

calculation. Also the stiffness matrix must be updated after any 

interval involving non-linear behaviour. 
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The equation of dynamic equilibrium 4.20 may be readily 

solved by Gaussian elimination and back substitution. With 

constant stiffness properties the elimination need only be 

performed once. However, when the stiffness changes and [K] is 

recalculated, then the elimination must also be performed again. 

The described non-linear analysis method is very powerful 

and can accommodate many types of material non-linearity. 

However, it can be seen that it leads to a great increase in 

solution cost over the equivalent elastic analysis. 

5.2 USE OF LAGRANGE MULTIPLIER 

When the non-linear behaviour may be restricted to the 

joints between beams and walls, the Lagrange multiplier technique 

of chapter 4 may be modified to produce a more economic form of 

analysis. All the constraint equations presented have had their 

constrained displacements {S} equated to zero, giving a rigid 

joint. If these displacements are assigned values, depending upon 

the deformation state, then non-linear analysis can be performed 

without any change to the stiffness matrix. The amount of extra 

computation needed is thus greatly reduced. 

The original constraint equation 3.9 makes the end rotation 

of the beam compatible with the x-direction displacement of the 

wall element. 

1 (ui - uk) - 9j -0 
db 

or 

[G] {q} = {S} 
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For static problems, {S } in this equation is the relative 

displacement between the beam and wall and is zero. If a non-zero 

relative displacement is specified then the solution will be 

modified and the forces in the structural model redistributed. 

Thus, by specifying the realtive displacements {S} 
, the end 

forces in the beam element may be controlled. 

As shown in chapter 4 for forced vibration, the {S } in 

equation 4.12 are relative accelerations at the end of the 

interval. From equation 4.14 it can be seen that for a joint with 

no relative acceleration or velocity at the beginning of the 

interval then the relative displacement during the interval is 

given by a At2{ S} . Thus, for a particular analysis where a 
and At are selected constants, the relative displacement produced 

is proportional to the relative acceleration specified. Equation 

4.21 is linear and thus applying the prinicple of superposition, a 

particular relative acceleration will always produce the same 

redistribution of forces. 

This technique may be employed to regulate the forces at a 

beam wall junction. If for a particular time step the equations 

are solved for {S} =0 and the forces in the beam calculated, a 

yield limit can be imposed upon them. This is done by calculating 

the relative acceleration at the joint to reduce the force to the 

required value. The equations are then re-solved using the 

calculated values for {S }. I 

5.3 IDEALISATION OF THE JOINT 

For an initial study a simple model for the joint has been 

used. Yielding due to end moments only has been considered. The 
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beam behaves elastically up to a yield limit and then yields at 

this constant moment. This may be used as a first approximation 

to the real behaviour of a joint (Fig. 5.1). 

5.4 SOLUTION PROCEDURE 

The first stage is to calculate the moment reduction at the 

joints caused by a relative acceleration. A matrix [STS] can be 

built up where STSi, j is the moment reduction at joint j due to 

unit relative acceleration at joint i. The values for the matrix 

[STS] are calculated using equation 4.21. For each constrained 

joint i, the relative acceleration Si is individually set to 

unity. Equation 4.21 is then solved for each of these cases. The 

forces due to the relative accelerations are immediatly available 

from the values of {X} as shown in the previous chapter. The 

matrix [STS] is symmetrical and thus for computational 

convenience, only terms on and above the leading diagonal need be 

used. 

Solution then proceeds in the normal manner with all IS } 

set to zero. At the end of each interval the forces at each 

constrained joint are given by the calculated values of {I, }. 
The moment MIi at joint i can then be compared with the yield 

value MAj. 

For a structure with n constrained joints the method 

employed is shown in Fig. 5.2. The excess moment EXMi at joint i 

is calculated. For any joint where the yield limit MAi is 

exceeded a logical variable SLIPi is set to TRUE. The absolute 

value of the moment MIi is used to calculate the excess moment by 

comparison with a positive yield limit. The correct sign is then 
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Fig 5. i 

Joint Hysteresis 



(ENTRY 

% 

I+ 

ý 

EXM(I) = ABS(MI(I)) - MA(I) 

SLIP(I) = TRUE 

I EXM(I) _ -EXM(I) 

EXIT 

Fig. 5.2 
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Calculation of EXM 
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restored to the excess moment depending upon the sign of the 

moment MIi. 

The logical variables SLIPi may then be used to assemble a 

set of simultaneous equations for the yielding joints (Fig. 5.3). 

The excess moment at each joint is equated with the moment 

reduction caused by relative accelerations at these joints. They 

may then be solved to give the relative accelerations necessary to 

limit the moments to the yield values. 

The coefficients from [STS] are assembled into a matrix 

[SOL] for the yielding joints only. The excess moments for these 

joints are assembled into an array {RHS} . The relative 

accelerations {S } may then be calculated from 

[SOL] {S} _ {RHS} 5.1 

by Guassian elimintation and back substitution. 

When all the joints are yielding this equation will be 

identical to 

[STS] {S }_ {MI} - {MA }`5.2 

Equation 5.1 is a reduced form of this equation for yielding 

joints only. 

At this stage two checks must be performed. The forces at 

non-yielding joints will have changed due to the redistribution of 

the stresses in the structure. The final moments MF at the non- 

yielding joints are calculated. These are then checked, to see if 

any other joints have reached the yield value. If so, SLIP must 

be set to TRUE. for these joints and the procedure repeated from 

the assembly and solution of equation 5.1. The flow chart for 

this is shown in Fig. 5.4 

The direction of yielding must be checked. Yielding at one 
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ENTRY 

SLIP(I) 

TRUE 

FALSE 

TRUE 

SOL(IC, JC) c STS(I, J 

FALSE 

RHS(IC) = EXM(I) 

EXIT 

FIG. 5.3 

TRUE 

TRUE 

Assembly of [SOL] matrix 
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ALSE 
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ALSE 
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Check for further yielding" 
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joint may reduce the moment at another. This occurs when there is 

a joint at both ends of a beam such as a coupling beam in a shear 

wall system. Occasionaly, the yielding at one end i may reduce 

the moment at the other end j from above to below the yield value. 

When this happens equation 5.1 will still force the joint j to 

yield. However, this will now be in the wrong direction as it is 

increasing the moment there to the yield value. The equation for 

joint j must be removed from equation 5.1 and the procedure 

repeated from the assembly and solution of this equation. The 

direction of yielding may be checked from the product of STSjj, Sj 

and MIj which must be positive. If it is not positive SLIPj is 

set to FALSE. 

The values of {S } which satisfy these two checks may then 

be used to re-solve equation 4.21 for the time step. The 

velocities and displacements are then calculated for the step. 

The joints which have yielded during the step will now have 

relative accelerations, velocities and displacements. The 

relative displacements are the desired results but the 

accelerations and velocities will cause the joints to continue 

yielding during the next time step. This is prevented by 

calculating the acceleration and velocity of the beam end from the 

constraint equation 3.9. This produces 

e3 =1 (üi - ük) 
ý 

6i =1 (ui - Uk) 
db 

when used for velocity and acceleration. 

5.3 

5.4 

The solution may then continue to the next time step. 
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5.5 BILINEAR JOINT MODEL 

Rather than yielding at a fixed moment, the joint may be 

modelled to yield at a reduced stiffness (Fig. 5.5). The moment 

at a yielding joint is given by MA plus an amount MX, proportional 

to the constrained relative displacement e. It can be seen 

(Fig. 5.6) that 

@l=MX 5.5 
Kl 

02 =MX 

Hence 

-7-2 

e. Mx_Mx 
kk 

12 
This may be rearranged to produce 

MX = ý 
1-1 

k2 kl 

5.6 

5.7 

5.8 

The constrained relative displacement 0 can be calculated 

from the relative acceleration S using equation 4.14 

ß. dt2 s 

Substituting into equation 5.9 produces 

MX =ß pt2 
1 

S 

k2 k1 

or more compactly 

MX - QS 

Adding MX to MA in equation 5.1 produces 

[STS] { S} _{ MI} -{ MA }- [Q] {S} 

in which [Q] is a diagonal matrix. 

This may be rearranged for solution to produce 

[[STS] + [Q]] {S} = {MI) 
- 

{MAI 

5.9 

5.10 

5.11 

5.12 

5.13 



kl = stiffness before yielding 
k2 = stiffness after yielding 

Fig 5.5 
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Bilinear Joint Model 
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which is identical to equation 5.2 except that the diagonal terms 

of [STS] are increased by the parameter Q. Exactly the same 

solution procedure may be used as previously for the constant 

moment yielding. 

If the yielding stiffness k2 is expressed as a percentage Ps 

of the initial stiffness k1 then 

k2 = Ps kl 
100 

Substituting into equation 5.10 and rearranging produces 

Q= At2 PS k1 
100 - PS 

5.14 

5.15 

Using this equation the value of Q may be calculated to give 

the required stiffness. 
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CHAPTER SIX - COMPARISON OF THE FINITE ELEMENT SCHEMES 

6.1 INTRODUCTION 

The various finite element schemes described in chapters 2 

and 3, for the analysis of coupled shear walls, are compared in 

this chapter. The method employed by Al-Mahaidi and Nilson [49] 

is discussed and used as a basis for this comparison. They 

compared the convergence of their Lagrange multiplier scheme to 

that of the quadrilateral isoparametric element, with increasing 

degrees of freedom. Their results, the behaviour of the 

rectangular element with rotational degrees of freedom and the 

Lagrange multiplier schemes are studied. 

Al-Mahaidi and Nilson examined the convergence of their 

scheme using an eight storey, symmetrical coupled shear wall. The 

dimensions of the wall are shown in Fig. 6.1. The wall was 

subjected to a concentrated load P at the top and the tip 

deflection io plotted against the degrees of freedom employed. 

The tip deflection was plotted in the dimensionless form of a 

flexibility parameter 

to Et 
P 

where 

Eo = tip deflection at centre-line 

E= modulus of elasticity 

t= thickness 

P= applied load 
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For consistency, rotations and moments are treated in a similar 

manner in this chapter. Rotations 9 are expressed as 

oEtdb 

P 

and the moments M as 

M 
Pdb 

where db= beam depth 

This obviates the need to specify values for E, t and P. 

6.2 METHOD OF LOAD APPLICATION 

Forces from the floor slabs transmit to the shear walls as 

line loads. The distribution of these loads was assumed to be 

parabolic (Fig. 6.2) by Al Mahaidi et al. They must be converted 

to equivalent nodal loads for the finite element anlysis. This 

may be accomplished in two different ways. 

Consistent loads: 

The equivalent nodal loads {P } are calculated from the 

distributed loads[ L} so that equality of work is established with 

the nodal forces and displacements. 

{p}=r [N]T{L} d(vol) 6.1 

The mesh shown in Fig. 6.2 is used to demonstrate this. The 

edge is subject to a parabolic shear load where the shear t at any 

point is given by 

3P (1-! k)? ) 6.2 
2D D2 
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i-_ T=3P (1 4x2) 
2D D2 
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ý 
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Wall mesh subject to parabolic distribution shear load. 
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At the top of the element Ti =1 (Fig. 2.1) and so the shape 

functions 2.19 become 

N1 =06.3 

N2=0 

N3 =1 (1 +) 

Nq=1(1- ) 

The shape function corresponding to the node n is N3 and thus 

D/2 
_ Pn =r1 (1 +E)3P (1 - 4x2 ) dx 6.4 

J22D D2 
3D/10 

where 
= 10x -46.5 

D 

which when evaluated produces 

Pn = 0-0367 

Similar integrations are performed to give the loads at the other 

nodes. 

Lumped loads: 

A much simpler approach is to lump the load to the nearest 

node. For node n this tributary area method gives 

D/2 
_ Pn = 

f4D/1-0 
3P (1 - 14x2 ) dx 
2D D7 

= 0.028 P 

6.6 

with similar integrations producing the remaining nodal loads. 

This differs from the result obtained by A1-Mahaidi et al. 

who based tributary area calculations on a rectangular load 

distribution instead of on the parabolic distribution used 

previously. The equivalent nodal loads for consistent and lumped 

formulations for the parabolic distribution and lumped formulation 



62 

for the rectangular distribution may be compared in table 6.1. 

Al-Mahaidi el al. compared the results from the consistent 

load formulation with a parabolic distribution against those from 

the lumped formulation with a rectangular distribution. From this 

they concluded that the difference between the consistent and 

lumped formulation is significant and that the consistent 

formulation should be used. However, examining the results from 

the lumped formulation with a parabolic distribution, it can be 

seen that most of the difference is due to the change of 

distribution. 

The mesh of Fig. 6.3 was used to compare the results of 

using the consistent and lumped formulations both with the 

parabolic distribution. With the consistent formulation, the tip 

deflection Ao Et /P was 104.0308. Using the lumped formulation 

the deflection was 104.0342. The difference, being less than 

0.004%, cannot be considered significant. It is therefore 

concluded that the simpler lumped formulation is to be prefered. 

However, for the purpose of comparison with Al-Mahaidi's results, 

the use of the consistent formulation is retained. 

6.3 COMPARISON OF CONVERGENCE 

The various schemes were compared using the shear wall shown 

in Fig 6.1. The following assumptions made by Al Mahaidi et al. 

are retained to enable comparison with their results. 

1. The top coupling beam has half the stiffness of the others. 

2. Each wall of the coupled system takes half the load, P 

P/2, distributed in a parabolic manner at the top. 
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Nodal loads as a proportion of F 

Consistent 
formulation 

Lumped 
formulation 

Parabolic 
Pi = Pn 0.036 0.028 

Distribution 
Pj = Pm 0.184 0.188 

Pk = Pl 0.280 0.284 

Rectangular 
Pi = Pn 0.1 

Distribution 
Pj = Pm 0.2 

Pk = Pl 0.2 

Table 6.1 

Nodal Load Distributions 
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Owing to the symmetry of the structure, and the loading, it 

is possible to use only half the structure for analysis. 

This is accomplished by assuming a roller support at the 

mid-span of each coupling beam. This cannot be done when 

plane stress elements are used to model the beams as a 

roller support can not be placed at the beam centre line. 

In this case the whole structure is analysed and the number 

of degrees of freedom used is halved for comparison with the 

others. 

Poisson's ratio: 

Al-Mahaidi et al. do not state the value of Poisson's ratio 

used in their study. However, the value assumed does not greatly 

affect the results obtained and does not alter the relative 

stiffness of the schemes. A value of 0.2 gave results in 

agreement with those obtained by Al-Mahaidi et al. for the scheme 

with quadrilateral isoparametric elements only and is used in this 

study. 

6.4 AL-MAHAIDI'S CONSTRAINT SCHEME 

Al-Mahaidi et al. compared their Lagrange. multiplier 

constrainted scheme against the use of quadrilateral isoparametric 

elements only. They found that their Lagrange multiplier scheme 

produced the more flexible results. The program written for this 

study produced stiffer results with Al-Mahaidi's Lagrange 

multiplier scheme as shown in Fig. 6.4. It is believed that the 

results of this study are correct. 
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Antony and Garesan [24] used Al-Mahaidi's Lagrange 

multiplier scheme to analyse a different coupled shear wall. This 

analysis was repeated and the results from the program were found 

to be in complete agreement with the results of Antony and 

Ganesan. 

6.5 RECTANGULAR PLANE STRESS ELEMENT WITH ROTATIONAL DEGREES OF 
FREEDOM 

Agrawal and Mufti [22] used a rectangluar plane stress 

element with a rotational degree of freedom at each node, and the 

flexural line element, to analyse the coupled shear wall. They 

found that they achieved the same tip deflection as Al-Mahaidi 

with a much lower number of degrees of freedom. From this they 

conclude that better accuracy can be obtained with their method. 

However, they used the corner deflection where Al-Mahaidi used the 

centre-line deflection to plot convergence curves. Their results 

are, therefore, not directly comparable. 

The deflections obtained by Agrawal and Mufti are plotted in 

Fig. 6.5. For comparison the corner deflections obtained using 

Al-Mahaidi's constraint scheme and using an element MEMO [67] in a 

commercial program are also shown. It can be seen that for 

Agrawal and Mufti's scheme thre is no significant convergence with 

increasing numbers of degrees of freedom. The results from the 

MEMO element, which also employs a rotational degree of freedom at 

each of its four nodes, are very similar. 

Two meshes, Fig. 6.6 and Fig. 6.7 were used to investigate 

further the behaviour of the element used by Agrawal and Mufti. 

Both meshes have the same number of degrees of freedom (400) but 

with different element layouts. Both horizontal and vertical bias 
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directions were used with each mesh. The centre-line tip 

deflections and coupling beam moments obtained are shown in Fig. 

6.8 and Fig. 6.9. All four analyses gave very large deflections, 

an explanation for which may be found in the modelling of the 

wall-beam junction. 

The results for a typical connecting beam are presented in 

table 6.2 where the end rotation of the beam is compared with the 

rotation of the wall calculated from the x-direction displacements 

of the wall nodes. The seventh storey connecting beam was 

selected for this purpose as the rotations are largest towards the 

top of the wall. The eighth storey beam was not used as it is not 

typical, being of half the stiffness of the other beams. 

The Lagrange multiplier technique makes the end rotation of 

the beam compatible with the rotation of the wall over the full 

depth of the beam. The use of the plane stress element with 

rotational degrees of freedom makes the beam rotation compatible 

with the wall rotation at a single point at the beam centre-line. 

This produces a connection which is much more flexible as the 

single node on the wall can rotate without significantly affecting 

the x-direction displacements of the wall nodes. This is 

illustrated in Fig. 6.10. 

By substituting the nodal displacements into equation 2.33, 

the deflected shape at the face of the wall may be calculated. 

This is plotted in Fig. 6.10 for the seventh storey connecting 

beam of mesh Fig. 6.7 with a vertical bias. The end face of the 

connecting beam is also shown. It can be seen that at the beam 

centre-line the deflections are compatible but that within a very 

small distance of the centre line the displacements are quite 
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Beam end Wall Beam end 
Finite element model rotation rotation moment 

Al-Mahaidi's -1.34 -1.34 -0.67 
constraints 

Wall face -1.34 -1.34 -0.67 
oriented 
connection 

Proposed -1.34 -1.34 -0.67 
constraints 

Rectangular Fig 6.6 0.78 -3.34 -0.57 
element bias 
with horizontal 
rotational 
degrees 
of Fig 6.6 1.28 -3.48 -0.58 
freedom bias 

vertical 

Fig 6.7 1.40 -3.22 -0.55 
bias 
horizontal 

Fig 6.7 5.30 -4.22 -0.47 bias 
vertical 

Table 6.2 

Beam End Rotations and Moments 
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incompatible and the rotations are in opposite directions. 

The same wall without the coupling beams was analysed using 

the two types of plane stress element to compare their 

flexibility. The same mesh (Fig. 6.11) was used for each analysis 

and the results were found to be in very close agreement (table 

6.3). However, the element scheme with rotational degrees of 

freedom used 50% more degrees of freedom to achieve this. 

The plane stress element with rotational degrees of freedom, 

when used to model a coupled shear wall, achieves its greater 

flexibility through unrealistic modelling of the wall-beam joint. 

This produces a false distribution of the forces in the structure. 

The forces in the coupling beams are underestimated and the two 

halves of the wall behave with greater independence and less as a 

coupled system. 

It can also be seen (Table 6.2 and Figs. 6.8,6.9) that the 

results are sensitive to the direction of bias and the element 

layout when the place stress element with rotational degrees of 

freedom is used. 

It is therefore concluded that this element is not suitable 

for use when modelling structures where beams are connected to 

shear walls as in a coupled shear wall or a shear wall-frame 

system. 

The MEMO element used with the flexural line element gave 

similar results. It can be concluded that the lack of 

displacement compatibility at the joint will always lead to an 

underestimate for joint stiffness. The wall will be able to 

deform locally instead of over the full depth of the beam. 
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Degrees of Dimensionless 
Freedom Deflection 

Quadrilateral 
Isoparametric 256 309.8 
Element 

Rectangular 
Element with Bias 384 305.5 
rotational Horizontal 
degrees of 
Freedom 

Bias 384 308.2 
Vertical 

Table 6.3 

Tip Deflection of Walls Without coupling beams 
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6.6 COMPARISON OF THE LAGRANGE MULTIPLIER CONSTRAINT SCHEMES 

Three different schemes are compared for convergence using 

three different element meshes for each (Appendix B). For Al- 

Mahaidi's constraints, the wall face oriented connection of 

Antony and Ganesan and the proposed constraint scheme, the tip 

deflection Do Et /P is plotted against the number of degrees of 

freedom used in Fig. 6.12. 

It can be seen that all three give very similar results. At 

no mesh refinement does the difference in tip deflection exceed 

2%. With so small a difference, the relative accuracy is not an 

important criterion for the selection of a scheme to model shear 

wall systems. 

Antony and Ganesan ignored Al-Mahaidi's second constraint 

(equation 3.3) to produce their wall face oriented connection. 

The flexural bending theory used to derive the line element 

assumes that plane sections remain plane. To give displacement 

compatibility between the end of the beam and the wall, the wall 

nodes are constrained to lie on a straight line. Non-conforming 

elements are in use for the wall and the further relaxation of 

displacement compatibility produced by ignoring this constraint 

would not be expected to have a great effect. 

Antony and Ganesan found that this relaxation had very 

little effect on the analysis of the wall they used for 

comparison. This result was also found with the wall chosen by 

Al-Mahaidi et al. and used in this study. It is therefore 

concluded that the use of this second constraint equation offers 

no advantage and the simpler wall face oriented connection is to 

be preferred. 
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The constraint equations proposed in this study use three 

Lagrange multiplier degrees of freedom at each joint compared with 

the one of the wall face oriented connection. The size of the 

problem to be solved depends upon the number of degrees of freedom 

with higher numbers producing a greater solution cost. It also 

depends upon the bandwidth of the equations. This is a function 

of the maximum node number difference for the elements [39]. A 

good measure of the size of the problem is given by the product of 

the degrees of freedom and the semiband width. This is given in 

table 6.4 for the meshes employed. Despite the greater degrees of 

freedom of the proposed constraint scheme, owing to its lower 

bandwidth it produces the smallest problem size. 

Also, as shown in chapter 3, the beam end forces are 

automatically calculated with the proposed constraints. They are 

therefore the preferred constraints for the analysis of coupled 

shear walls and combined shear walls and frames. 
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Scheme Mesh 

Coarse Mid Fine 

Degrees 
of 

Al-Mahaidi's 360 520 760 

Freedom 
Wall face 
oriented 352 512 752 

Proposed 320 448 640 

Semiband 
Width 

Al-Mahaidi's 24 29 41 

Wall face 
oriented 23 28 36 

Proposed 21 25 31 

Product Al-Mahaidi's 8640 15080 31160 

(Problem 
size) Wall face 

oriented 8096 14336 27072 

Proposed 6720 11200 19840 

Table 6.4 

Problem Size for the meshes employed 
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CHAPTER SEVEN - COMPARISON WITH STATIC EXPERIMENTS 

7.1 INTRODUCTION 

The proposed Lagrange multiplier scheme has been shown to 

compare favourably with other finite element methods for the 

analysis of coupled shear walls subject to static loading. In 

order to further validate its accuracy, experimental tests were 

carried out on model coupled shear walls both alone and connected 

to a frame. These provided data for comparison with the finite 

element analysis. 

7.2 EXPERIMENTAL INVESTIGATION 

Walls: 

Perspex was chosen as the material used to model the shear 

walls, the principal advantage being the ease with which the 

complex shape of a coupled shear wall could be machined from a 

single sheet. The low modulus of elasticity when compared with 

metals gives readily measurable deflections at moderate loads. 

This allows simple apparatus to be used in performing the 

experiments. 

The modulus of elasticity (Young's modulus) for the perspex 

used in the tests was determined from a cantilever bending test. 

A cantilever with a length to depth ratio of 10: 1 was used as 

deflection due to shear stresses can be shown to be negligible 

(approximatley 1% [68]). It was loaded at the free end via a 

proving ring and the deflections were measured with dial gauges. 

The modulus of elasticity was then calculated from flexural 

bending theory as 0.31 x 1010 N/m2. 
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Frames: 

As the modulus of elasticity of perspex is quite low, 

aluminium was chosen to model the frames. It has a much lower 

modulus than steel, 7.0 x 1010 N/m2 as opposed to 21.0 x 1010 

N/m2, and readily allowed the construction of frames of comparable 

stiffness with the walls. 

Individual rectangular section bars were used for each of 

the frame members. To provide a full moment connection at each 

joint, aluminium disc flanges were used. A pair of these were 

bolted outside the members at each joint. Two bolts were used for 

each member. A typical joint is shown in Figure 7.1. 

Effective length of members: 

Owing to the stiffening effect of the discs at each joint, 

the use of the centre-line to centre-line lengths of the frame 

members for the finite element analysis produces a frame model 

which is too flexible. It is possible to rederive the stiffness 

matrix for a line element with stiffer lengths at each end [69] to 

give a better model. However, by taking the effective length of 

each member as the length between the extremes of the bolted 

connections, accurate results were obtained. This simpler method 

is therefore used in the analysis of the combined walls and 

frames. In a full scale structure this type of joint is not 

employed and the problem would not arise. 

Experimental apparatus: 

A heavy steel base was used for the experiments. The 

perspex walls were fastened to this by bolting to a steel angle on 



FIG. 7.1 

Frame Joint 
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each side. The aluminium frame was also bolted down to a steel 

connecting plate. Both these were assumed to give fully fixed 

base conditions. 

At one edge of the wall a steel frame was used to support a 

screw jack and proving ring to provide and measure a point load. 

This was applied at the top of the wall. At the opposite edge a 

vertical steel bar was employed to support dial gauges. These 

were arranged to measure the horizontal deflections at storey 

levels. When a frame was connected to the wall, the dial gauges 

were moved back to measure the edge deflection of the frame at 

the storey levels. This test apparatus is shown in Figure 7.2. 

The top three connecting beams of each wall were strain- 

gauged to enable the calculation of the moments in them. 

Tests: 

Three walls with the same overall dimensions were used. The 

lengths of the coupling beams in each were different. The 

dimensions, and the finite element mesh employed for each are 

given in Appendix C. 

The walls were tested alone, pinned to the frame and fixed 

to the frame. For the pinned tests a single bolt was used to 

connect each frame member to the wall. For the fixed tests two 

bolts were used. The frame dimensions are given in Appendix C. 

7.3 RESULTS OF TESTS ON THE WALLS 

For the walls alone, the results plotted in Figures 7.3-7.5 

show the predicted and measured horizontal deflections and 

coupling beam end moments for an applied load of 100 N. The 
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theoretical result is labelled "NO SHEAR DEFORMATION" and is shown 

by a solid line. 

From the graphs it can be seen that the results are most 

accurate for WALL 1 and least accurate for WALL 3. The length to 

depth ratio for the coupling beams of WALL 3 is 4: 1. At this 

ratio, deflections due to shear strain can be shown to be 

approximately 6% [68]. 

Flexural bending theory was used to derive the stiffness 

matrix for the line elements employed to idealise these beams. 

This assumes that plane sections remain plane and hence no shear 

deflection takes place. For short deep beams the stiffness is 

overestimated, which is the result found from the experimental 

tests. It was therefore decided to modify the line element 

stiffness matrix to take account of shear deformation. 

7.4 DERIVATION OF THE LINE ELEMENT STIFFNESS MATRIX 

The stiffness coefficients may be derived from strain energy 

considerations using Castigliano's theorem [45]. The shear forces 

and moments at ends 1 and 2 of the beam are denoted by S1, M1, S2 

and M2 and the corresponding displacements by V1, e1, V2 and 02- 

The member is initially straight and given an end rotation 

02 (Figure 7.6). 

The bending moment at a distance x from end 1 is given by 

M--Ml +Sl x 7.1 

but 

M1+M2-SlL=O 7.2 
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then 

M=-S1 (L - x) +M2 

L 

FIG. 7.6 

7.3 

ýM 
2 

Including shear strain as well as bending strain, the strain 

energy in the beam is given by 

L2L2 
U= (ý M dx +ý ßs dx 7.4 

J 2EI 2GA 
00 

in which 

S= shear force 

G= shear modulus 

ß= form factor 

The form factor ß depends upon the distribution of shear stress 

over the beam cross-section. For a rectangular beam ß=1.2 

[68]. Substituting for M in equation 7.4 and integrating produces 
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U= 1 

From Castigliano's theorem 

äs v' 
, 

Thus 

2EI 3 

+ß (S12L) 
2GA 

1 (2L3S, 
- 

M2L2) +. _B__ 
(2S1L) =0 

2EI 3 2GA 

(S12 0+ Mý L- Sl M2 L2) 

and 

Sl M2 
21 + 2EI 
3 GAL 

From Catigliano's theorem 

SU 
= 02 

Ö M2 

then 

1 (2M2L - S1L2) = 02 
2EI 

Substituting S1 from equatioln 7.8 produces 

1 (2M2L - M2 L2 )= e2 
2EI (2L + 2EI 

3 GAL 

To simplify this equation we use 

6= 
6ß EI 
GALIý-- 

which, rearranging produces 

M2 = EI 4 (1 +_g) 02 
(1 + 2g) L2 

Substituting into equation 7.8 produces 

Si = EI 662 
(1 + 2g ) LLY 

7.5 

7.6 

7.7 

7.8 

7.9 

7.10 

7.11 

7.12 

7.13 

7.14 



94 

The remaining stiffness relationships may be derived similarly to 
produce 

Sl 

Ml EI [K] 
(1+ 2g) 

S2 

M2 

in which 

[K] 

vi 

e, 

V2 

02 

r 12 6_ 12 6 

L3 L2 L3 L2 

6 4(1+g/2) 
-62 

(1-g) 

L2 L L2 L 

_ 
12 _6 

12 6 

L3 L2 0 L2 

ý 
L2 L L2 L 

7.15 

16 2(1-g) 
-6 

4'(1 + g/2) 

7.16 

Axial deformations produce no shear stress and the stiffness 

coefficients (not shown here) remain unchanged by the inclusion of 

shear strain energy. When the beam is slender, g is approximately 

zero, and the stiffness matrix reduces to the usual matrix for an 

element in pure bending. 

7.5 EFFECT OF SHEAR DEFORMATION ON FINITE ELEMENT ANALYSIS 

To test the performance of the model, including the effects 

of shear deformation, further computer analyses were performed 
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using the same wall as was employed in chapter 6 (Figure 6.1). 

The depth of the coupling beams was varied and the dimensionless 

tip deflection parameter io Et /P was calculated for each depth. 

Three models were compared, the proposed scheme both with 

and without the effects of shear deformation and the quadrilateral 

isoparametric element alone. This latter model was included as it 

is known to give accurate results with very deep beams whereas the 

Lagrange schemes have only been shown to give accurate results for 

slender beams. 

The results are shown in Figure 7.7 as a plot of the 

dimensionless deflection parameter against coupling beam depth 

shown as a proportion of the storey height. It can be seen that 

the difference between the three schemes is very small. It was 

expected that the proposed scheme neglecting the effect of shear 

deformation would have given poor results for the very deep beams 

but this is not the case. The reason for this can also be seen 

from the graph. Once the beam depth is approximately one third of 

the storey height or more, there is very little change in the 

overall wall deflection. A large error in the coupling beam 

stiffness will produce a relatively small error in the wall 

deflection when the beams are deep. 

The proposed Lagrange multiplier scheme can be seen to give 

accurate results even when the beams are deep. The inclusion of 

shear deformation produces a correction which, whilst not of major 

effect, is worthwhile as the extra computation is minimal. All 

further analyses use the corrected element. 
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7.6 COMPARISON WITH EXPERIMENTAL RESULTS 

The results for the walls were recalculated. The new 

theoretical predictions are shown in Figures 7.3-7.5 labelled 

"WITH SHEAR DEFORMATION" and shown by a broken line. It can be 

seen that the results are noticeably improved. 

The results for the wall-frame combinations are shown in 

Figures 7.8-7.10. The theoretical results still become less 

accurate as the coupling beam becomes shorter. Also the end 

moment predictions are too high. This is the opposite of the 

result found using the rectangular element with rotational degrees 

of freedom in the previous chapter. There, the deflections were 

overestimated and the end moments were too low. This was found to 

be due to the wall elements twisting locally at the joint 

producing a very low rotational connection stiffness. This leads 

to the conclusion that, in the present scheme, the joint stiffness 

is too great. 

The same number of elements were used for WALL 1 and WALL 3, 

hence the elements for WALL 3 are larger (Figures C. 1, C. 3). Thus 

it would be expected that the connection stiffness would be 

greater for WALL 3. In this case a reduction in the connection 

stiffness would be more significant. A more flexible connection 

would improve the results, especially for the shorter coupling 

beams where the error is greatest. 

This may be accomplished by modifying the line element to 

produce an elastic connection [69], but this presents the 

difficulty of estimating the stiffness of this connection. It was 

seen in chapter 6, that as the number of degrees of freedom in the 

wall increased, the wall stiffness reduced. Hence the required 
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joint stiffness will vary with the finite element mesh employed. 

In view of this, and with the present method giving good results, 

it was decided not to employ an elastic rotational connection. 

Examining Figures 7.8-7.10 it can be seen that a pin joint 

between the wall and frame produces a marked reduction in 

stiffness with the finite element theory. This is matched by a 

reduction in the experimental results. To obtain accurate results 

for a fixed connection it is necessary to employ the constraint 

equations. The analysis assuming a pin joint, which may be 

accomplished without the use of these, would lead to large errors. 
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CHAPTER EIGHT - DYNAMIC EXPERIMENTS 

8.1 INTRODUCTION 

In this chapter the efficacy of the proposed finite element 

model when employed for dynamic analysis, is examined. The theory 

used for conducting small scale shaking table experiments is 

presented. The apparatus and methods employed for the experiments 

in this study are described. These experiments all employed 

steady-state harmonic excitation to evaluate natural frequencies 

mode shapes and damping. Finally, comparisons are made between 

experimental results and the theoretical predictions. 

8.2 PEAK AMPLITUDE (RESONANCE) METHOD 

Modal decoupling: 

The mode shapes obtained by solving for the eigenvectors of 

equation 4.10 can be shown to be orthogonal and hence the equation 

of motion 4.6 may be decoupled. This allows the response of a 

structure to be calculated as the sum of the responses of each 

mode. This method is presented in many publications (48,55,70) 

and only a summary is given here. 

The total displacement at any point may be obtained as the 

sum of all the modal components, 

{q} = {r} 1 Y1 + {r}2 

where {r} i is the mode shape 

and 1i the modal amplitude. 

{r In Yn 8.1 Y2 + ...... 

The response of each mode i may then be written as 

Mi Yi + Ci Yi + Ki Yi= Pi (t) 8.2 

or 
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"2 Yi + 2Pi WiYi +Wi Yi Pi(t) 
Mi 

where Mi ={ r} 
i 

[M] { r}i 

Ci = {r} 
i 

[c] { r}i =2 piw i Mi 
T 

Ki = {r} i [K]{ r}i =wi Mi 
T 

Pi(k) _{r}i P(t) 

8.3 

8.4 

8.5 

8.6 

8.7 

Equivalent Single degree of freedom system: 

Equation 8.2 is equivalent to the behaviour of a single 

degree of freedom system. The behaviour in response to steady- 

state harmonic loading may now be readily calculated from 

Mi Yi+ Ci Yi + Ki Yi= Pi cos (w Ft) 8.8 

where WF is the forcing frequency. The solution to this equation 

consists of two parts , the "Particular Integral" and the 

"Complementary Function". The response represented by the 

complementary function is damped out rapidly and after a few 

cycles only the particular integral 

Yi - Pi (cos W Ft -ýý_ 8.9 
[ (Ki - Mi W F2) 2+ Ci2 U3 F 2]1 

is significant. 0 represents the phase angle between the response 

and the forcing function and is given by 

ý= tan-1 Ci WE 
Ki -Mi Wg 

The amplitude of the response is therefore given by 

Pi 
L (Ki -Mi W F2)2 + Ci2 wF21' 

and the displacement under a static force Pi is given by 

Pi 
Ki 

8.10 

The ratio of these is known as the "dynamic magnifiction 

factor" Zi, which, using equations 8.4-8.7 may be expressed as 
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Zi _1 [(1- wF2)2 +4u i2 (W 0)2]1 
W12 wi 

8.11 

Hence, as the forcing frequency varies, the response 

amplitude varies with its maximum value when 

WF _Wi 1 -11 i2 8.12 

For most structures u is small having a value from 2% to 20% (u= 

0.02 to 0.2) [531 and the maximum response is when WF= Wi. 

This phenomenon is known as resonance. If a structure is 

subjected to harmonic loading over a range of frequencies, then 

the natural frequencies may be found from the resonances. 

This method relies upon the response of the mode under 

investigation being much larger near resonance than the 

contributions of the other modes. When this is not the case, then 

more than one mode must be considered at a time [71]. However, in 

the tests performed in this study, the natural frequencies were 

well separated and the damping coefficients low and no problem of 

this nature was encountered. 

8.3 EXPERIMENTAL INVESTIGATION 

Models: 

The same models were employed for the dynamic tests as were 

used for the static tests described in the previous chapter. The 

dynamic value of the elastic modulus (Youngs modulus) of the 

perspex was evaluated from a cantilever vibration test. Using 

flexural bending theory, the fundamental fequency for the 

vibration of a cantilever may be shown [70] to be given by 

Wi = 3.516 EI 8.13 
Lz PA 
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where E= Youngs modulus 

I= 2nd moment of area 

P= density 

A=x- section area 

L= length 

The fundamental frequency was found from a resonance test 

and using equation 8.13 the dynamic modulus was calculated as 0.45 

x 1010 N/m2. 

Apparatus: 

The experiments in this study were performed using an 

aluminium shaking table driven by an electric vibrator. 

The table was 1.2m by 1.2m and 0.025m thick. . Earlier 

experiments had been carried out on a perspex table. This proved 

to be too flexible as significant vertical accelerations could be 

measured at the base of models. The table was "floated" on a film 

of oil supplied under pressure to the centre of the flat bed on 

which it rested. The continous oil flow was provided by a tank at 

a head of approximately 14m and was recirculated to this by a small 

electric pump. 

The vibrator was driven by a power amplifier and a signal 

generator capable of operating at frequencies from 3Hz to 15kHz. 

The maximum possible acceleration of the unloaded table was 

approximately 10 m/sec2. 

The same base fastenings as were used for the static tests 

were again employed. These fastened the walls and frame to a 

steel base plate which was then bolted to the table. The 

intermediate steel base was used to minimize the number of holes 
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drilled into the shaking table for the mounting of models. 

The response of the table and the models was monitored using 

electronic accelerometers. The signals from these were fed to 

conditioning and measuring units. These were capable of providing 

a direct reading of acceleration, velocity and displacement and of 

giving outputs suitable for measurement by other equipment. The 

phase angle between any acceleration or displacement signals was 

measured using a digital storage oscilloscope in conjunction with 

an x-y plotter. 

The frequency of operation was measured using a digital 

frequency meter with a resolution of lHz. 

The table and vibrator with a model mounted are shown in 

Figure 8.1. 

Technique: 

The procedure used to measure the natural frequencies and 

damping coefficients of each model was as follows: 

a) The frequency of the forcing (table vibration) was set. 

b) The base acceleration was set at a level of 5m/sec2. 

c) The response amplitude at the top of the model was recorded. 

d) The phase angle between forcing and the response 
accelerations was measured. 

e) The forcing frequency was increased by lHz and the procedure 
repeated from (b) above. 

Using this method, response amplitudes were recorded either 

side of a resonance frequency. The base acceleration of 5m/sec2 

was selected as it was found to produce a convenient spread of 

readings for the response amplitude. 



FIG. 8.1 
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Having found the natural frequencies, the vibration mode 

shapes were also measured for the wall-frame models. The table 

was set to vibrate at the natural frequency of the model. The 

response amplitude at each of the top seven storey levels and the 

base acceleration were recorded and the phase angle between each 

response and the base measured. 

8.4 EVALUATION OF THE NATURAL FREQUENCIES AND DAMPING 

The response given by equation 8.11 is relative to the fixed 

base. In the experiments the accelerometers measure the overall 

response which includes the base acceleration. To allow for this, 

the response relative to the base is calculated using the measured 

phase angles. By plotting a phasor diagram (72] the relative 

response amplitude may be calculated from 

c2 = a2 + b2 - 2ab cos 8.14 

where a= overall amplitude 

b= base amplitude 

c= relative response amplitude 

= phase angle between a and b 

This has very little effect upon the evaluation of the 

natural frequencies. The base acceleration is small compared with 

the response near resonance. However, if the response amplitude 

is plotted against forcing frequency, it can be seen from equation 

8.11 that the shape of the curve is dependent upon the damping 

present (Figure 8.2). As it is desired to utilise this 

relationship to evaluate the damping, then for the greatest 

accuracy it is necessary to calculate the response relative to the 

base. 
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Various properties of the curve may be employed to evaluate 

the damping [551. These commonly involve plotting a curve through 

the data points and then using this to calculate the damping. 

This can lead to errors if the data points do not lie exactly on a 

smooth curve. 

To minimize the error involved a "least squares curve 

fitting technique" [731 was used in this study. This method 

regards the separation between a data point and the theoretical 

curve as a random error due to the nature of the experiment. 

Mistakes in the readings taken will be given undue weighting by 

this method and care was taken to avoid these. The total of the 

square of the error for each of the data points is minimized by 

selecting suitable values for the unknown parameters in the 

theoretical equation. By this means the theoretical curve which 

best fits the experimental data may be found. 

The unknown parameters in equation 8.11 are Wi and 11 i 
(the natural frequency and the damping coefficient). As the 

experiment measures the response amplitude as opposed to the 

dynamic magnification factor, a third parameter must be introduced 

to convert the amplitude to the magnification factor. 

A program using a grid search method [74] was used to find 

the values of these parameters. A reasonable range for each of 

the parameters could be found from a simple inspection of the 

data. Small increments were used for each of these ranges. For 

every combination of the values of the parameters within the 

ranges, the program calculates the sum of the squares of the 

errors, allowing the minimum to be found. This is not a 

particularly efficient technique. However, with the simple nature 
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of the problem and reasonable estimates for the parameters it was 

found to be very effective. The program can also plot the data 

points and the theoretical curve to give a visual check of the 

accuracy obtained. 

8.5 COMPARISONS WITH THE WALLS AND FRAME SEPARATELY 

Effect of varying beam depth: 

The first comparison carried out used results obtained by 

Tso and Chan [8] for the fundamental frequencies of their perspex 

models. They employed two coupled shear walls, one with equal 

piers and the second with unequal piers (Figs C. 5, C. 6). The beam 

depth of each was reduced in stages and the natural frequency 

evaluated at each. 

The fundamental frequency (1st mode) is shown plotted 

against the beam depth as a proportion of the storey height in 

Figure 8.3. The theoretical predictions of the proposed finite 

element scheme are also plotted. It can be seen that the 

theoretical predictions agree very closely with the experimental 

results obtained for both walls. 

It is also apparent that, once the coupling beams are deeper 

than approximately one third of the storey height, very little 

variation occurs in the fundamental frequency. This is in close 

agreement with the static analysis of the previous chapter (Figure 

7.8) and with dynamic analysis of Wee [19J. 

Tests performed: 

The walls and frame used for the static tests described in 

chapter 7 (Figs C. 1-C. 4) were tested to evaluate their natural 
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frequencies and damping. In the case of the walls the first two 

modes were found. Two accelerometers were used, one at the top 

and one at the 4th storey level. The lower one was used to 

determine which mode was being excited. When the frame was tested 

the top seven storey levels had accelerometers attached. The 

first three in-plane modes were found for the frame. 

With the frame, some interference was experienced from 

torsional vibration modes. This was minimized by accurately 

aligning the frame with the vibration axis of the table. 

When analysing the models by the finite element program, all 

the extra non-structural mass must be included. The masses of all 

the connections and of the accelerometers were lumped to the 

appropriate nodes. Details are given in Appendix C. 

The natural frequencies found from the tests and the 

analyses are compared in table 8.1. 

It can be seen that, for the frame, the theoretical and 

experimental natural frequencies are very similar. This is to be 

expected as the frame is made from aluminium which has very 

uniform properties and may be accurately modelled. 

The values for the walls are not as accurate but the error 

still never exceeds 10%. The dynamic modulus of elasticity for 

the perspex was evaluated as 0.45 x 1010 N/m2 as opposed to 0.31 x 

1010 N/m2 for the static value. It would be expected, therefore, 

that this value would be variable and would depend upon the 

frequency of loading. The experimental natural frequency was 

slightly low for all the walls in the first mode and slightly high 

in the second. This would be explained by a rise in modulus as 
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Natural Frequency Hz 

1st Mode 2nd Mode 3rd Mode 

Frame 
Theoretical 26.5 82.3 147 

Experimental 26.5 85.0 154 

Wall 1 
Theoretical 28.4 121 

Experimental 28.0 130 

Wall 2 
Theoretical 34.5 145 

Experimental 33.5 158 

Wall 3 
Theoretical 42.7 176 

Experimental 39.5 189 

Table 8.1 

Natural Frequencies of the Walls and Frame 
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the loading frequency increased. The cantilever which was tested 

to determine the modulus, had a natural frequency of 48Hz. This 

is between the natural frequencies obtained for the first and 

second modes of each of the walls and would tend to support this 

conclusion. 

It can be seen that, for the first mode, the theoretical 

natural frequency is greater than the experimental by a larger 

margin as we move from WALL 1 to WALL 3. Natural frequency 

increases with increasing stiffness, so this is in agreement with 

the results for the theoretical stiffness of the walls in chapter 

7" 

The damping was evaluated by fitting resonance curves. All 

three walls had the same values of 4% critical damping in the 

first mode and 2.5% in the second. The curves for WALL 1 are 

shown in Figs 8.4,8.5. 

The frame damping was much lower, being 1% in the first 

mode and less than 0.5% in the second. The damping for the third 

mode was lower still but was not accurately evaluated as the 

program employed worked to the nearest 0.5%. The resonance curves 

for the first two modes are shown in Figs 8.6,8.7. 

8.6 COMPARISONS WITH THE WALLS AND FRAME FIXED TOGETHER 

The walls were tested fixed to the frame. For each, the 

first two natural frequencies were found, the mode shapes measured 

and the damping evaluated. The results for the natural 

frequencies are compared to the theoretical values in table 8.2. 

It can be seen by comparing table 8.1 for the walls alone 

with table 8.2 for the walls fixed to the frames, that fixing a 
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Natural Frequency Hz 

1st Mode 2nd Mode 

Wall 1 Theoretical 35.5 121 
and 
Frame 

Experimental 38.5 133 

Wall 2 Theoretical 39.0 135 
and 
Frame 

Experimental 41.0 147 

Wall 3 Theoretical 44.4 155 
and 
Frame 

Experimental 45.0 168 

Table 8.2 

Natural Frequencies of the Walls and Frame Fixed Together 
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frame to the walls increased the natural frequency in each case. 

This is despite the fact that the frame natural frequencies were 

lower than those for the walls. However, this is to be expected 

as the interaction of the frame and the wall produces a greatly 

stiffened structure owing to their different natural deflected 

shapes. This stiffening effect can be seen in the static results 

of the previous chapter. 

Again, the theoretical predictions are accurate for the 

first two modes with the error never exceeding 10%. 

The theoretical and experimental mode shapes are shown in 

Figs 8.8-8.10. Examining these, the agreement can be seen to be 

very close for all three walls for both modes. The proposed 

theoretical scheme is capable of accurately representing the fixed 

joints between the wall and frame. 

Resonance curves for the first two modes of WALL 1 fixed to 

the frame are shown in Figs 8.11,8.12. The proportions of 

critical damping are 2.5% for the first mode and 1.5% for the 

second mode. These values are as expected, lying between the 

values found for the walls and frame individually. Similar 

results were found for the other two walls fixed to the frame. 

8.7 COMPARISON WITH THE WALLS AND FRAME PINNED TOGETHER 

As in the static analyses, a single bolt was used at the 

joint between the frame and the wall to give a pinned joint 

(Figure 8.13). The resonance tests were repeated to measure the 

natural frequencies, mode shapes and damping. 

The theoretical and experimental natural frequencies are 

shown in table 8.3. It can be seen that the theoretical values 
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Natural Frequency Hz 

1st Mode 2nd Mode 

Wall 1 Theoretical 30.9 109 
and 
Frame 

Experimental 37.0 127 

Wall 2 Theoretical 34.2 123 
and 
Frame 

Experimental 39.0 146 

Wall 3 Theoretical 39.3 144 
and 
Frame 

Experimental 42.0 165 

Table 8.3 

Natural Freqencies of the Walls and Frame Pinned Together 
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are rather low when compared to the experimental frequencies. 

The theory assumes that the wall-frame joint is perfectly 

pinned and produces no moments. In practice, friction in these 

joints was effectively fixing them at low moment values. This 

partial fixity produced natural frequencies only slighly lower 

than those for the fully fixed joint. 

The friction in these joints was measured by a simple 

technique. Most of the frame was removed leaving only the members 

pinned to the wall as cantilevers. The moment at which these 

started to slip and rotate was then measured. This was 

accomplished by hanging weights from the cantilever beams and 

gradually increasing the distance between the "pin" joint and the 

weight hanger. The distance at which the joint began to move 

enabled calculation of the moment. The moment measured varied 

from zero, with the joint unable to support the weight of the 

beam, to a value of approximately 0.3 Nm. This variation was 

attributed to small differences in the manufacture of the joints. 

To try to improve the consistency of the experiments, the 

bolts at the joints were tightened to produce a resisting moment 

of 0.5 Nm at each. This value was only obtained approximately as 

the surfaces were not very smooth and tended to slip and stick. 

All the results for a pinned joint presented here were obtained 

with the joints adjusted in this manner. 

The theoretical and experimental mode shapes are shwon in 

Figs 8.14-8.16. It can be seen that the agreement is not as close 

as for the fixed joint mode shapes shown in Figs 8.8-8.10. This 

may be attributed to the friction in the joints producing partial 

fixity. The theoretical predictions are, however, still close, 
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owing to the similarity between the mode shapes for the fixed 

and pin jointed connections. 

Damping: 

The damping for the first mode of WALL 1 pinned to the frame 

was evaluated from the resonance curve Figure 8.17. The value of 

4% was higher than for the wall and frame fixed together. This 

could again be attributed to the friction in the joints. However, 

it can be seen that the curve is not a good fit for the data 

points. The curve is based upon the assumption of viscous damping 

whilst the real mechanism is frictional damping. By plotting the 

points either side of resonance separately (Figs 8.18,8.19), it 

can be seen that below resonance the best fit gives a value of 

2.5% critical damping. Above resonance the best fit curve is 5% 

critical damping. Equivalent viscous damping does not provide a 

good model for the friction in the joints. 

To try to overcome this, the forced response analysis 

procedure was employed to model the wall and frame. The frame was 

modelled as fixed to the wall and 2.5% equivalent viscous damping 

was employed. The analysis was then performed for a range of 

sinusoidal forcing frequencies to obtain the steady-state response 

amplitude for each. This allowed the plotting of the response 

curve Figure 8.20. As would be expected, the natural frequency is 

35. lH3 which is almost identical to the value predicted by the 

free vibration analysis. Also, the data points are an excellent 

fit to the resonance curve. 

To model the behaviour of the pinned joints, the yield value 

was then set to 0.5 Nm for non-linear analysis. For this analysis 
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the mass and damping at the constrained joints must be zero as 

shown in chapter 5. To achieve this, the mass at the joint was 

lumped to adjacent wall nodes. Mass proportional damping was then 

used. In this case the amount of damping in only one mode may be 

controlled. As the response in only the first mode was being 

studied, this provided a convenient means of controlling the 

damping in this mode whilst removing it at the joints. Equation 

4.3, with C2 = 0, may be rearranged to produce 

Cl =2 Vi wi 

for the damping constant Cl. 

8.15 

The analyses were then performed again for a range of 

sinusoidal forcing frequencies. The steady state response at each 

was then plotted to produce the response curve of Figure 8.21. 

Again, by plotting the values below and above resonance (Figs 

8.22,8.23), it can be seen that the damping produced is of the 

same form as that obtained experimentally. A low value of 

equivalement viscous damping is obtained below resonance and a 

higher value above. The theoretical values obtained for the 

damping are higher than those found experimentally. This is 

probably due to the poor control obtained over the friction in the 

joints. These were not designed to provide friction damping and 

their adjustment was only approximate. 

However, it can be seen that the forced response analysis 

technique, using Lagrange multiplier constraints, gives accurate 

predictions when employed for both linear and non-linear analysis. 
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CHAPTER NINE - CONCLUSIONS 

9.1 CONCLUSIONS OF THIS STUDY 

The finite element method is the most versatile technique 

that has been used for the analysis of coupled shear walls or 

shear wall-frame combinations. It can readily deal with 

discontinuities and irregularities in the structure and can model 

non-linear behaviour in detail. 

From the studies made here of the various finite element 

schemes which have been proposed for static analysis, the 

following conclusions may be drawn. 

1. For coupled shear walls, the Lagrange multiplier schemes 

produce very similar results to the use of quadrilateral 

isoparametric elements only. This may be seen from the 

results presented in chapter 6.4 and 6.6. 

2. As discussed in chapter 2.3, the Lagrange multiplier 

3. 

technique is preferable to the use of quadrilateral 

isoparametric elements only, as it reduces the number of 

degrees of freedom required for beams and columns. 

From comparisons with the test results presented in chapter 

7, it can be seen that the Lagrange multiplier technique 

allows the accurate analysis of a wall and frame fixed 

together. 

4. The use of the plane stress element with rotational degrees 

of freedom produces highly inaccurate results owing to the 

low rotational connection stiffness at the wall-beam joint. 

The joint at a single point can rotate without significantly 
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affecting the x-direction displacements of the wall face. 

This may be seen from the results in chapter 6.5. 

5. From the results presented in chapter 6.6, it may be seen 

that the second constraint equation proposed by Al-Mahaidi 

et al. for the Lagrange multiplier technique does not 

improve the accuracy of the analysis. Its omission to 

produce the "wall face oriented connection" of Antony and 

Ganesan is to be preferred. 

6. Also from chapter 6.6 it may be seen that the Lagrange 

multiplier scheme proposed in this thesis, is advantageous 

in comparison with the others as it produces the lowest 

problem bandwidth and gives automatic calculation of the 

forces at a constrained joint. 

7. The results presented in chapter 7.5 show that the results 

from the proposed scheme are accurate even when the coupling 

beams are deep. 

8. More accurate results may be obtained when shear deformation 

effects are included for the line elements. The effect is 

not great but the amount of extra computation involved is 

very small. This may be seen from the results in chapter 

7.5 and 7.6. 

Having selected the most suitable finite element model for 

static analysis (the proposed Lagrange multiplier scheme), it was 

then developed to allow dynamic analysis. The Lagrange multiplier 

technique was also developed to model non-linear behaviour at the 

constrained joints. From the comparison between the finite 

element analysis and small scale dynamic model tests the following 

conclusions were drawn. 
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1. From the results presented in chapter 8, it can be seen that 

the proposed scheme gives accurate natural frequencies and 

mode shapes, when used for the free vibration analysis of 

coupled walls and wall-frame combinations. 

2. The linear forced response analysis, when used to evaluate 

3- 

steady state response amplitudes, gives results in close 

agreement with the free vibration analysis. This may be 

seen from chapter 8.7. 

As discussed in chapter 5.1, the non-linear Lagrange 

multiplier technique is very economical, as no changes have 

to be made to the stiffness matrix. Very little extra 

computation, above that required for linear forced response 

analysis, is required. 

4. From the results presented in chapter 8.7, it can be seen 

5" 

that the non-linear joint model produces accurate results 

when used to model friction in the wall-frame joints. 

Equivalent viscous damping does not give an accurate model 

of the damping produced by the friction in the wall-frame 

joints. This can also be seen from the results in chapter 

8.7. 

During the dynamic tests, two techniques were developed 

which proved to be of great use. 

1. The bisection method for eigenvalue evaluation was improved 

by the calculation of the logarithm of the value of the 

determinant. This permits less accurate initial estimates 

to be used for the eigenvalues. It also prevents 
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eigenvalues being missed when they lie close together. This 

is shown in chapter 4.2 and appendix A. 

2. The least squares curve fitting technique, used to fit 

resonance curves to experimental data, has several 

advantages when employed to calculate equivalent damping 

ratios. It uses all of the data points and not just those 

near resonance; it does not require accurate hand plotting 

of a curve through data points which may not lie on a smooth 

curve owing to experimental errors; and most useful of all, 

it allows a check to be made on whether equivalent viscous 

damping produces an accurate model of the actual damping 

mechanism present. This is shown in chapter 8.4. 

9.2 SCOPE FOR FURTHER WORK 

A finite element model has been developed which allows the 

accurate modelling of coupled shear walls and shear wall-frame 

combinations. A technique for modelling the joints between beams 

and walls, when they are non-linear, has been shown. This opens 

up the possibility of two lines of work. 

The analytical model could be developed further. Including 

conventional non-linear element methods would allow the analysis 

of more complex non-linear behaviour. Alternatively, the simple 

non-linear constrained joint could be developed to model more 

complex behaviour. This might be accomplished by calculating the 

constrained accelerations and displacements by linear programming 

methods 175]. In this technique the equations, for which a 

solution is required, are expressed as inequalities. Hence these 

would be suitable for expressing yield moment limits. 
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The second direction which work could take, would be to use 

the finite element model developed to investigate the 

possibilities of friction as a useful damping mechanism in 

resisting earthquakes. Friction has been employed as a base 

isolation technique [76], however, the model tests suggest that 

useful damping may be obtained from bolted joints. These have 

been employed as static load controld devices [77]. The non- 

linear Lagrange multiplier technique could be used to investigate 

their dynamic use at the connection between beams and walls in 

both coupled shear walls and wall frame combinations. This could 

be in conjunction with model component tests on a shaking table to 

accurately determine frictional joint behaviour. 
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APPENDIX A 

To illustrate the use of the logarithm of the value of the 

determinant I[K] 
-' [M]I in locating eigenvalues. 

A three storey, four bay frame was selected as an example as 

this type of structure can readily have vertical and horizontal 

vibration modes of similar frequency. 

As explained in chapter 4, the bisection method can miss 

roots which lie close together in frequency. With this example an 

initial estimate of 100 was made for the first eigenvalue and an 

increment of 50 chosen. The first eigenvalue found by a change of 

sign of the determinant occurs at '= 10195. However, examining 

the logarithm of the value of the determinant (Fig. A. 1) it can be 

seen that a pronounced dip in values occurs at approximately ' 

1850. 

Now by using an initial estimate of 1800 and a smaller 

increment of 10, two eigenvalues can be found at 1833 and 1842. 

Using the increment 10 from the initial estimate of 100 would have 

needed over 170 steps to reach the first eigenvalue. By using the 

values of the logarithm of the determinant to provide an initial 

estimate of 1800, this can be reduced to four steps. 

The values of log I[K] 
-' [M]I close to the two 

eigenvalues are shown in Fig. A. 2. 
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APPENDIX B 

The finite element meshes used for the comparison of 

convergence in chapter 6 are shown here. 

The elements for the first storey plus one level of elements 

for the second storey are shown in each case. All the higher 

storeys follow exactly the same pattern and node numbering 

sequence. 

The co-ordinates of the nodes with the Lagrange multiplier 

degrees of freedom have no physical significance for the proposed 

scheme (figs. B. 4-B. 6). They are drawn on the element mesh close 

to the beam - wall connection with which they are associated. 
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APPENDIX C 

This appendix gives details of the model walls and frame 

used as a basis for comparison with the finite element analysis. 

The finite element meshes used for walls 1 to 3 are shown in 

Figs C. 1-C. 3 and that for the frame in Fig. C. 4. The details of 

the walls tested by Tso and Chan [8] are given in Figs C. 5 and 

c. 6. 

Properties of the Perspex Walls (C. 1-C. 3) 

; Poisson's ratio 

Static modulus of elasticity 

Dynamic modulus of elasticity 

Density 

Overall height, 8 storeys of 0.146m 

Overall width 

Thickness 

Beam depth, db 

= 0.2 

= 0.31 x 1010 N/m2 

= 0.45 x 1010 N/m2 

= 1180 kg/m3 

= 1.168m 

= 0.254m 

= 0.010m 

= 0.0125m 

Wall 1 Wall 2 Wall 3 

peening width, m 0.102 0.076 0.050 
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Properties of the Aluminium Frame (C. 4) 

Modulus of elasticity 

Density 

Member cross-section 

width 

depth 

= 7.0 x 1010 N/m2 

= 2710 kg/m3 

= 0.0062m 

a 0.0125m 

member centre-line to effective 

nodes centre-line length 

length, mx 10-2 mx 10-2 

1-3 13.98 11.68 
2-4 

3-6 14.60 12.30 

4-7 

3-4 20.20 17.90 

6-7 

4-5 13.30 12.10 

7-8 
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Mass of joints and accelerometers, kg x 10-3 

node Frame alone Frame fixed Frame pinned 

to wall to wall 

3 98 98 98 

4 84 84 84 

5 - 39 35 
6 98 119 119 

7 84 84 84 

8 - 39 35 

9 98 119 119 

10 84 84 84 

11 - 39 35 

12 98 119 119 

13 84 84 84 

14 - 39 35 

15 98 124 124 

16 84 84 84 

17 - 39 35 
18 98 124 124 

19 84 84 84 

20 - 39 39 

21 98 124 124 

22 84 84 84 

23 - 39 35 
24 115 115 115 

25 75 75 75 

26 - 39 35 
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20 Storey Wall 

Overall height 
36" = 0.914m 

b 

1.8" 

1a 
DW ON*- 

it 

{ 
FIG. C. 5 

'fr Td 

3" 

Overall width 
7" = 0.1781 

Density 
1.12 x 10 4 lb sect/in4 

= 1200 kg/m3 

Modulus of elasticity 
605,000 psi 

= 4.17 x 10 9 N/m2 

1" 
1.8" 

3" 

= 0.025m 
= 0.045m 
= O. 076m 

Dimensions and Properties of Symmetric Wall 



171 

15 Storey Wall 

Overall height 

36" = 0.914m 

Overall width 
7" = 0.178m 

Density 

1.12 x 10-4 lb sect/in4 

= 1200 kg/m3 

Modulus of elasticity 
605,000 psi 

= 4.17 x 109 N/m2 

1.4" = 0.035m 

2.4" = 0.061m 

4.2" = 0.107m 

FIG. C. 6 

Dimensions and Properties of Asymmetric Wall 
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Finite Element Program 

Description of the data: 

Card 1 (I5,3X, 9,8) 

NPROB 

TITLE 

Card 2 (F) 

GACC 

Card 3 (31) 

IPRINT 

NDYNAN 

NDFORS 

APPENDIX D 

problem number, 0 to stop 

problem title 

acceleration due to gravity 

0= none 
1= print mass and stiffness matrices 

0= static problem 
1= free vibration 

0= none 
1= calculate line element forces 
2 line and isoparametric element 

forces and stresses 

Card 4 (31) 

NNP number of nodes 

NBOUN number of boundary nodes 

NBODY self weight, 0= no, 1= yes 

Card 5 (61) Number of elements of each type 

NEL1(1) Isoparametric 

NEL1(2) Line 

NEL1(3) Al-Mahaidi's constraints, to vertical 
face 

NEL1(4) A1-Mahaidi's constraints, to horizontal 
face 

NEL1(5) proposed constraints 

NEL1(6) rectangular with rotational freedoms 
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Card 6 (61) 

NMAT(1) number of material types for 

each of the above element types 
NMAT(6) 

Card 7 (I, 4F, I) One card for each node 

NODE node number 

Xx co-ordinate 

Yy co-ordinate 

ULX x direction load 

VLY y direction load 

NT node type 
1=2 degrees of freedom 
2=3 degrees of freedom 
3= wall-beam joint 
4= Lagrange multiplier degrees of 

freedom 

Card 8 (21) For isoparametric elements 

MODIF 0= conforming 
1= non-conforming 

NOPT 1= plane strain 
2= plane stress 

Card 9 (51) For each isoparametric element 

1E(M, 1) 1st node number 

1E(M, 2) 2nd 

1E(M, 3) 3rd 

1E(M, 4) 4th 

1E(M, 5) material property number 



174 

Card 10 (I, '1F) 

I 

E 

PR 

RO 

TH 

Card 11 (I) 

IGSH 

Card 12 (31) 

1E(M, 1) 

1E(M, 2) 

1E(M, 5) 

Card 13 (I, 5F) 

I 

E 

PR 

RO 

TH 

ALEN 

Card 14 (I) 

NBN 

Card 15 (31) 

1E(M, 1) 

1E(M, 2) 

1E(M, 3) 

For each material type 

material property number 

modulus of elasticity 

Poisson's ratio 

density 

thickness 

For line elements 

include shear deformations 
0= no, 1= yes 

For each line element 

1st node number 

2nd 

material property number 

For each material type 

material property number 

modulus of elasticity 

2nd moment of area 

density 

X-section area 

added length for stiffness 

For A1-Mahaidi's constraints 

use 2nd constraint 
0= no, 1= yes 

For each Al-Mahaidi's constraint joint 

1st node number 

2nd 

3rd 
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Card 16 (51) 

1E(M, 1) 

1E(M, 2) 

1E(M, 3) 

1E(M, 4) 

1E(M, 5) 

Card 17 (I, F, I, F) 

I 

E 

IP 

PR 

Card 18 (51) 

1E(M, 1) 

1E(M, 2) 

1E(M, 3) 

1E(M, 4) 

1E(M, 5) 

Card 19 (I, 11F) 

I 

E 

PR 

RO 

TH 

Card 20 (21) 

I 

KODE 

For each proposed constraints joint 

1st node number 

2nd 

3rd 

4th 

material property number 

For each material type 

material property number 

yield limit 

yielding allowed, 0= no, 1= yes 

percentage stiffness after yield 

For each rotational freedoms element 

1st node number 

2nd 

3rd 

4th 

material property number 

For each material type 

material property number 

modulus of elasticity 

Poisson's ratio 

density 

thickness 

For each boundary node 

node number 

fixity 
1= roller 
2= pinned 
3= fixed 
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Card 21 (21) For dynamic problems 

KMAS 0= lumped mass 
1= cosistent mass 

NSEC number of external mass groups 

Card 22 (2I, 2F) For ech external mass group 

LUM (I, 1) first node in group 

LUM (1,2) total number of nodes in group 

EXMAS mass 

RMAS rotational inertia 

Card 23 (21) For free vibration problems 

NEIG number of eigenvalues 

NSPUM response spectrum analysis 
0= no, 1= yes 

Card 24 (3F, I) For each eigenvalue 

W approximate eigenvalue 

DW step length 

EPS accuracy 

NDEG degree of freedom set equal to zero for 
mode shape 

The remaining data is for forced vibration analysis only. 

Card 25 (615) 

INT 0= initial conditions all zero 
1= displacements and velocity given 
2 acceleration also given 

NPRINT the number of time steps between 
printing of results 

NSTEP the total number of steps 

MAXSTP 

NTYP 

NP 

the step at which initial conditions 
are saved 

0=1 forcing function 
1= ground acceleration 

number of data points describing 
forcing function or acceleration 
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Card 26 (5F10.6, F10.7) 

C1 

C2 

DELT 

DT 

TIME 

SF 

Card 27 (515) 

NFIX 

NVEC 

MSPAC 

MSTRS 

NEED 

CARD 28 (6F10.4) 

TNED(I, 1) 

TNED(I, 2) 

CARD 29 (I5) 

NVC 

Card 30 (15,2F10.5) 

II 

CH 

cv 

damping coefficient 

damping coefficient 

integration parameter, usually =0 

time step 

initial time 

scale factor 

number of fixed nodes or = NNP to read 
force vector 

horizontal or vertical forcing 
10 = horizontal 
01 _ vertical 
11 = both 

nodal spacing of printed results 

0= no forces calculated 
1= line element forces 
2= and isoparametric element forces 

number of intervals for calculating 
forces 

For each NEED 

start of time interval 

end of time interval for calculation of 
forces 

If NFIX = NNP 

number of nodes on which force vector 
acts 

For each NVC 

node 

horizontal force 

vertical force 
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Card 31 (3F10.4) For each NP 

NTYP =1 

P(1, J) time 

P(2, J) horizontal 

P(3, J) 

acceleration 

vertical 
acceleration 

NTYP =0 NTYP = 0, NP =1 

time frequency 

horizontal horizontal 
force force 

vertical vertical 
force force 

The program then returns to the first data card. 

A listing of the program follows. 
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