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Abstract 

This thesis consists of two parts. The first part deals with the orthogonal 

projections of pairs of smooth surfaces and of triples of smooth surfaces onto planes. 
We take as a model of pairwise smooth surfaces the variety X= {(x, 0, z): x> 0} U 
{(0, y, z): y> 0} and classify germs of maps R3,3,0 -º R2,2,0 up to origin preserving 
diffeomorphisms in the source which preserve the variety X and any origin preserving 
diffeomorphisms in the target. This yields an action of a subgroup xA of the Mather 

group A on C3 2, the set of map-germs R3,0 -º R2,0. We list the orbits of low 

codimensions of such an action, and give a detailed description of the geometry of 

each orbit. We extend these results to triples of surfaces. 
In the second part of the thesis we analyse the shape of smooth embedded 

closed curves in the plane. A way of picking out the local reflexional symmetry 

of a given curve -y is to consider the centres of bitangent circles to the curve. ° The 

closure of the locus of these centres is called the Symmetry Set of y. We present 

an equivalent way of tracing the local reflexional symmetry of -r by considering 
the lines with respect to which a point on y and its tangent line are reflected to 

another point on the curve and to its tangent line. The locus of all these lines 

form the dual curve of the symmetry set of -y. We study the singularities occurring 

on duals of symmetry sets and their generic transitions in 1-parameter families of 

curves 7. 

A first attempt to define an analogous theory to study the local rotational sym- 

metry in the plane is given. The Rotational Symmetry Set of a curve y is defined 

to be the locus of centres of rotations taking a point -y(ti) together with its tangent 
line and its centre of curvature, to y(t2) together with its tangent line and its centre 

of curvature. We study the properties of the rotational symmetry set and list the 

generic transitions of its singularities in 1-parameter families of curves ry. 

In the final chapter we investigate the local structure of the midpoint locus of 

generic smooth surfaces. 
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Introduction 

This thesis consists of two parts. The first part deals with the orthogonal 
projections of piecewise smooth surfaces. For a generic smooth surface, the apparent 
contour of the surface associated with an orthogonal projection onto a plane is the 

set of the critical values of the projection. The singularities of apparent contours 
have been studied by several authors [A3], [B-G2], [Ga], [K], [P1], [P2], [R1]. 

In the paper "Projections of surfaces with boundary", J. W. Bruce and P. J. Giblin 
investigated the singularities of projections of surfaces with boundary [B-G4]. We 

extend the results in [B-G4] and consider projections of pairs of smooth surfaces in 

Chapter 1, and of triples of surfaces in Chapter 2. We take as a model of pairwise 

smooth surfaces the variety X= {(x, 0, z): x> 0} U {(0, y, z): y> 0} and classify 
germs of maps R3,0 -º R2,2,0 up to origin preserving diffeomorphisms in, the source 
which preserve the variety X and any origin preserving diffeomorphisms in the target, 

using the results on determinacy of germs in [B-dP-W]. We list the orbits of low 

codimensions of such an action, and give, a detailed description of the geometry of 

each orbit. It turns out (Theorem 1.4.2 in Chapter 1), that in some cases one can 
ignore one of the pieces of surface and consider only the projection of the remaining 
surface with boundary. In Chapter 2, we extend these results to triples of surfaces. 
The results of the two chapters are published in [T]. 

In the second part of the thesis we analyse the shape of smooth embedded closed 

curves in the plane. Given an object in the plane, Blum suggested to fit discs inside 

it and consider their centres, the locus of which he called "Sym-ax" [BI]. The Sym- 

ax plays the role of a skeleton in determining the shape of the object. In [G-B] 

a set is defined which contains the sym-ax and is easier to handle mathematically. 
For a smooth embedded curve 7, the closure of the locus of centres of bitangent 

circles to the curve is called the Symmetry Set of -y. The symmetry set picks out the 

local symmetry structure of the curve ry. Different attempts to study the symmetry 

set have been made but the most fruitful one is that in [B-G3] which defines it as 

part of the full bifurcation set of the distance squared function. It is then possible 
to use results in singularity theory to describe the generic transitions occurring on 
1-parameter families of symmetry sets [B-G3]. 

An equivalent way of dealing with the local reflexional symmetry in the plane is 

to consider the lines which reflect a point on the curve and its tangent line to another 

point on the curve and its tangent line. The set of all these lines is the dual curve 

of the symmetry set. Two methods of studing the duals of symmetry set of smooth 

embedded plane curves are given in Chapter 4. The first method, due to J. W. Bruce, 

expresses the dual of the symmetry set locally as a bifurcation set of a family of maps 
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R --i R2 
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The second method gives it as the discriminant of a map from the plane 
to the plane or of a symmetric map from the plane to the plane depending on the 

situation. 

In Chapter 5, we give a first attempt at defining an analogous theory to investigate 

rotational symmetry in the plane. We consider the centres of rotations taking 7(ti) 
together with its its tangent line and centre of curvature, to 7(t2) together with its 

tangent line and centre of curvature. The locus of these centres is called the rotational 
symmetry set of the curve -y. Technically, the rotational symmetry set is part of the 
discriminant of the centre map, a map from the plane to the plane. With the help 

of the criteria of recognition of maps from the plane to the plane in Chapter 3, we 

study the singularities of the rotational symmetry set and the transitions occurring on 
generic 1-parameter families of curves ^y. An astonishing remark is that the duals of 
symmetry sets and the rotational symmetry sets have similar behaviour. For instance, 

the lips in the lips transitions in both sets have four inflexions. The results of Chapter 

4 and 5 are published in [G-T]. 

A less easy set to study is the midpoint locus. The midpoint locus of a generic 

smooth curve (or surface) is the locus of centres of midpoints of chords of contact of 
bitangent circles (or spheres) [G-B]. This set does not appear as a discriminant or a 
bifurcation set of a map. In [G-B] the midpoint locus of a smooth curve is studied 

using a direct argument. That argument is hard to extend to the surface case. We 

present in Chapter 6a method for dealing with this problem, and study the local 

structure of the midpoint locus of generic smooth surfaces. 

r.. 
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Chapter 1 

Projections of pairs of surfaces 

§1. Introduction 

In this chapter we consider singularities of orthogonal projections of pairwise smooth 

surfaces on planes. For a generic smooth surface, the apparent contour (outline, 

profile) of the surface associated with a projection onto a plane is the set of critical 

values of the projection. The singularities of apparent contours of smooth surfaces 
have been studied by several authors [A3], [B-G2], [Ga], [K], [P1], [P2], [Rl]. 

J. W. Bruce and P. J. Giblin investigated in [B-G4] the singularities of projections of 

generic surfaces with boundary. A surface with boundary in R3 is an embedding of the 

half plane {(x, y), y> 0} , and an orthogonal projection of the surface is represented 
by a germ of a map from the plane to the plane in a neighbourhood of the x -axis. A 

classification of map germs R2,2,0 --> R2,0, up to smooth changes of coordinates in 

the source which preserve the x -axis and any smooth changes of coordinates in the 

target, is given in that paper. 

The geometry of projections of piecewise-smooth surfaces has been considered 

by J. Callahan in an unpublished note [C]. He described, in the case of two surfaces 

meeting transversally on a smooth curve (called the "crease"), how the apparent con- 

tours of the two surfaces and the projection of the crease change in a neighbourhood 

of a point on the crease when the piecewise-smooth surface is viewed from any direc- 

tion. In [R2] J. H. Rieger considered the crease as a space curve and combined the 

singularities of its projections with those of profiles of surfaces to describe some of 

the singularities of projections of piecewise-smooth surfaces. 

In what follows, we shall take as a local model of pairwise smooth surfaces the 

germ at the origin of the set X= Xl U X2 where `Xi = {(x, 0, z), x> 0} and 

X2 _ {(0, y, z), y> 0} (figure 1.1.1). Any pairwise smooth surface is the image of X 

by a smooth map-germ which maps Xl and X2 diffeomorphically onto their images. 

The orthogonal projection on a plane of such surface can be represented locally by 

a germ of a map f: R3,0 --i R2,0 . 
The map f is a germ of a submersion when 

the pieces of surface are transverse, and of rank 1 when the surfaces have a common 
tangent plane at the origin. 
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Figure 1.1.1. Projection of a piecewise smooth surface 

We classify germs of maps R3,3,0 -º R2,2,0 of rank at least 1 up to smooth origin 

preserving changes of coordinates in the source which preserve X and smooth origin 

preserving changes of coordinates in the target. This yields an action of a subgroup 

xA of the Mather group A on C3 2. The group xA preserves the variety X in the 

source, it is a special geometric subgroup of A in Damon's terminology [D3]. We 

give the list of the orbits of germs of rank at least 1 and codimension less than 2 of 
this action, allowing the codimension to be bigger in the presence of moduli. 

1.1.1. Theorem : The orbits of the action of xA on C3 2 with rank at least 1 

and codimension less than 2 are shown in Table 1. 

Table 1 (Ei = ±1) 

Normal Form Name xA-Codimension 
of the orbit 

I. (ex + y, z) Trivial crease 0 

II. (ex + y2 + yz, z) Semi-fold 0 

III. (es + y2 + elyzk, z) III. a k=2 Semi-lips/beaks k-1 

III. b k=3 Semi-goose 
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IV. (ex+yz+y3, z) 

V. (ex+yz+y4+eiy6, z) 

VI. (ex + yz2 + y2z + ay3 + el y4, z) 

VII. (x+eiz2 +z2k+i, y+62x2) 
k>1 

Semi-cusp 1 

Semi-swallowtail 2 

Lips/beaks on fold 3 

lying on crease 

VII. a k=1 Crease cusp k 

VII. b k=2 Crease rhamphoid 

cusp 

VIII. (x + yz + az3 + el z4 + bz5, y+ ¬2 z2) 

IX. (axe +bye +elxy+xz+e2yz+cx2Z+dxyz, z) 

X. (ax2 + Ely2 + E2X (+ Xz + E3yz2, z) 

XI. (ax2 + Elxy + E2yz + xz +¬ y3 + by4, Z) 

XII. (x + Ely + e2Z2, x2 + axy + E3 z2 + bx2y + Cz3) 

Double cusp 4 

Non-transverse semi-folds 5 

Non-transverse semi-lips/beaks 4 

Non-transverse semi-cusp 4 

Non-transverse crease cusp 5 

The parameters a, b, c, d appearing in the normal forms are moduli. The germs 

are finitely determined except for some special values of these moduli. These excep- 
tional values are: 

Case VI: a= 0. 

Case VIII: a=0, E2, -2E2, -«31C29 
3 E2, 

Z 
E2 . 

Case IV: a=0, b=0, c(2E2b-Ei)+d(a-b)=0,4ab-1=0. 

Case X: a=0,4e1. 

Case XI: a'=0, e1f2, zeiez. 
Case XII: a=O, ei; b=0; c=0. 

In section 1 we recall the results on determinacy in [B-dP-W], and in section 
2 we give the classification which is carried out inductively on the jet level until a 

sufficient jet is found. In section 3 we interpret geometrically the results of Theorem 1 

^nd r fly Damon's results on topological versality to some of the germs with moduli. 
The results of this chapter are published in [T]. 
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§2. Classification method 

Notation : We shall follow the notation in [W3]. We denote by Cn p the set of 

map-germs R", 0 --ý RR, 0, Cn and C, the rings of germs at the origin of smooth 
functions and Mn and mp their maximal ideals. Jk(n, p), the k-Jet space, denotes 

the vector space of germs at the origin of polynomials of degree < k, jkf denotes 

the Taylor expansion of f of degree k. The group xA introduced in §1 consists of 

pairs of germs of origin preserving diffeomorphisms (h, k) in Di ff (R3) x Di ff (R') 

with h preserving the piecewise-smooth surface X. We shall denote by XAe the 

pseudo group of pairs of germs of diffeomorphisms at the origin (not necessarily origin 

preserving) (h, k) with h preserving the piecewise-smooth surface X. 

If (h, k) E xA we can write h(x, y, z) = (hl(x, y, z), h2(x, y, z), h3(x, y, z)) 

as a representative of h with hl(0, y, z) = h2(x, 0)z) = 0. Using Hadamard's 

lemma h(x, y, z) _ (xhl(x, y, z), yh2(x, y, z), h3(x, y, z)) with hi , 
h2 , h3 in C3, and 

h1(0,0,0). h2(0,0,0). h3(0,0,0) 0 is the condition for h to be the germ of a diffeo- 

morphism at the origin. 

The group xA inherits the action of the group A on C3 2 

xAxC32--ºC32 

((h, k), f) ý--, kofo h-1 

Two germs f and g are equivalent if they lie in the same orbit, that is 

g=kof oh-1 for some (h, k) ExA. 

For a given germ f, we need to express the tangent space to the orbit xA. f of 
f at f. We recall some notation from [W3]. V(R") and V (RP) denote the C. and 
Cp-modules of germs of vector fields on R' and RP at the origin, and m,,. V(Rfz) 

and my. V(RP) their maximal ideals. V(f) is the C�-module of germs of vector field 

along f, that is germs. ý satisfying 7r o=f. (See diagram. ) 

TRp 
V 17rp 

Rn --, Ra 
f 

One can define homomorphisms of modules as follows: 

tf : V(Rn) -ý V(f) wf : V(RP) --' V(f) 
'-' Tfoe 77 '--1 r7of 

The tangent space to the orbit A. f of f at f is by, definition 

TA- f := tf (m,,. V (R")) +wf (mp. V (RP)) 

We also define the pseudo tangent space 

TAe"f := tf(V(R")) +w. f(V(RP)) 
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The A-codimension of f is the codimension of the orbit of f, that is the dimension 

of the real vector space V (f)/TAe. f. 

In our case (n = 3, p = 2) the group acting xA preserves the piecewise-smooth 

surface X in the source. We need to replace the set V (R3) by V (X) the C. -module 
of vector fields tangent to X. The tangent space to the xA-orbit of f at f is then 
by definition 

TXA. f := tf(V(X) fl m3. V(R3)) + wf (m, "V(R')) 
We also define the pseudo tangent space 

TXAe"f := tf(V(X)) + wf(V(R')) 
The XA-codimension of f is the dimension of the real vector space V(f)/TXAe. f. . 

The expression for TXA. f 

Let CE V (X) 
. We can write «(x, y, z) = e1(x, y, z)öt +Ci (x, y, z)öy + e3 (x, y, z)öz as 

a representative of Cat the origin. Since Cis tangent to X, X1(0, y, z) = e2 (x, 0, z) = 
0. It follows by Hadamard's lemma that C1(x, y, z) _ , xl(x, y, z) and e2(x, y) z) = 

yet(x, y, z) for some C1 and C2 in C3. The set V(X) is then the C3 -module generated 

by x5.,, yö,, ö, and tf (V (X )) is the C3 -module generated by x 
of 

,y 
of 

and 
of 

8x öy öz 
This yields 

tf(V(X) f1 m3. V(R3)) = C3. {xT-, y5y, xz, yýz, zz} 

The set wf (m2V(R')) is the pull back by f of the maximal ideal m2 in C2. It is 

generated by the components of f and is denoted by f *m2 {r-1)-e-2} 
, with el and e2 

the standard basis vectors in R2. Note that f *m2 {el, e2 } is not a C3 -module. We 

can now write explicitly the tangent space to the X, A-orbit of f at f: 

TxA. f = C3. {xý, yýy, xz, yýz, Z }+ f*m2{el', e2} 

and the pseudo tangent space 

TxA,. f = c3. {xaf 
, yaf , 

of 
}+ f*C2{el, e2} 

ax ay az 

We also need the expression for the tangent space to the xAi orbit of f, where, xAl 
is the subgroup of xA whose elements have 1 -jet the identity. 

TxA, "f = tf(V(X) fl m3. V(R3)) + wf(m, '"V(R')) 

Determinacy and complete transversal 

Let 9 be any subgroup of a Mather group. 
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1.2.1. Definition :A map germ f: R", 0 ---> RP, 0 is said to be k-C -determined 
if any germ g in Cn p with the same k jet of f (jkg =jk f) is C9 -equivalent to 

f 

The smallest integer k that satisfies this property is called the degree of C9 - 
determinacy of f. (If the group G is clear from the context, it is omitted from the 

notation. ) 

Clearly any k-determined germ is equivalent to its k-jet. If f is k-determined, 
(n, p) : we can consider the induced action of C on Cn P /mn+1. Cn '= .Ik 

Jkc X Jkn, P) ' Jk(n, P) 

where Jkg = c/ck+1. This is an action of a Lie group on a finite dimensional space. 
The orbit of jkf is a smooth submanifold in Jk(n, p) . It is possible to describe the 
behavior of nearby orbits of jkf (hence those of f ). 

J. Mather gave a condition for a germ to be finitely determined but his estimation 

of degree of the determinacy is astronomical [Ma]. There are refinements of his 

results, see [W3] for references. In [B-dP-W] the authors highlighted the role of 

unipotency and gave a powerful tool to estimate the exact degree of determinacy of 

map germs. We shall use essentially Theorem 1.9 and Corollary 2.5.2 in [B-dP-W]. 

Here is an adapted version for the action of xA on C3 2. The statement of the 

theorem and its proof follow the same lines of Theorem 1.2 in (B-G4]. 

1.2.2. Theorem : Let UC xA be a subgroup with xAi C U, and J'U 

unipotent. If a smooth germ f: R3,3,0 -i R2,0 satisfies m3+1. C3 2C TU. f, then 

it is r -x A-determined. 

Proof : Since m3+1. C3 2C TU. fC TxA. f, it follows from [D3] that f is finitely 

k- xA-determined for some k. To prove that jk f (hence f) is r- xA-determined 
it is enough to show that any germ g whose r-jet satisfies jrg = j'"f is in the 

J' U-orbit of jkf, that is in the of ne space jr f+ m3+1. C3 2 fl J' (3,2) C Jk U. j kf. 

Since j'g = jrf it follows from the approximation lemma [Ma] that TU. g C TU. f + 

m3+1. C3 2 which yields by hypothesis TU. g CTU. f and by passing to ' the kj et 

T(JkU). jkg C T(JkU). jkf . 
This is for every g with j'g = jrf 

. 
To conclude by applying Corollary 1.5 in [B-dP-W], we need to show that' JkU is 

a unipotent group. Since Jl U is unipotent, it is enough to show that U is a closed 

connected group (Theorem 1.8 [B-dP-W]). This is the case because xAl CU and 

JxA is closed. 11 
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1.2.3. Corollary : If f: R3,0 -º R2,0 satisfies 

m3. C32CC3. {xýf, yýy, 
ýf}-F-f*rn2"G'22-E-m3+1. 

c 2 and 

m3+1 c3 2C TXAI 
_f+ m3+1+1. C 2 

then f is k- XAl -determined. 

Proof : The set m3 . 
C3 Z is a C3 -module, hence by Nakayama Lemma applied to 

the first inclusion m3. C3 2C C3-{X 
ax ,y of , az 

}+f *m2. C2 2. Substituting this 
inclusion in the second one in the corollary we get 

m3+s C3 2C TxA1. f +m3+1(C3{xof , yo , 
of 

} -}- f*m2. C2 2) 
ax ay az 

C TxAI. f+ m3+i ( f*m2. C2 2+ m2 +1). C2 2 

This is because m3+1 C3 {x 
af, 

yaf, 
of 

}C TXA1. f. It follows by Lemma 2.6 öx äy az 
in [B-dP-W] that m3+1 C3 zC TXAI. f. Using Theorem 2.5.2 for U= XAl we 
conclude that f is k- XAl -determined. Q 

1.2.4. Remark : We can replace xAl in Corollary 1.2.3 by a subgroup UC xA 
satisfying xAi CU and PU unipotent. 

A useful tool to simplify calculations in finding the orbits in the space of k+ 1- 
jets whose k -jet is f is the following proposition ([B-dP]. See also Proposition 1.4 
[B-G4]). 

1.2.5. Proposition : Let f be ak -jet in Jk(3,2) and let T be a 'vector 

subspace of the space of germs of homogeneous mapping R3,0 --> R2,0 of degree 

k+1, Hk+1(3,2), with Jk+1(TxA,. f) n Hk+i"(3,2) +T= Hk+1(3,2) . Then any 
k+1 jet g with k jet f is xAi -equivalent to f+t for some t in T. 

T is called the complete (k + 1) -transversal. 

§3. The classification 

The classification is carried out inductively on the jet level. A sufficient jet is given 
its corresponding number in Table 1. We denote by_- the XA-equivalence relation 

on 1 k(3,2), (x, y, z) and (u, v) the coordinates in the source and target, and by e; 
the sign ±. We write f= (f1, f2). Some germs are considered to be equivalent by 

interchanging the two surfaces X1 and X2. 

The 1 -jets. 
If f has rank 2, then 
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if the restriction of f to the crease is an immersion, then using a later result 
(1.4.1) we have 

(ex + y, z) Case 1, or 
j1f= (ax+by, z)= 

(x, z) 

if not j' f= (x, y) . 
(0, z) 

If f has rank 1, then j' f ^ý (x + ey, 0) 
, or 

(x, 0) 
1f f has rank 0, j1f= (0,0). 

The 1-jets (x, 0) and (0,0) lead to germs of higher codimensions. 

1.3.1. Proposition : The germ (ex + y, z) is stable. 

Proof : It is easy to check that (x+Ey, z) is 1-x A-determined using Corollary 1.2.3. 

In this case I=k=1, and TxAe. f = V(f). Q 

The 1 -jet f=(, Ex, z) 

On can easily show that T(JXAj). f+ R{ (y2,0), (yz, 0)} = H2(3,2). It follows from 

Proposition 1.2.5 that any 2 -jet g with j lg = (¬x, z) is equivalent to (fx+ay2+byz, z) 
for some a and b in R. 

One can show by considering explicit changes of coordinates in the source and target, 

that the orbits in J2(3,2) with 1 -jet (ex, z) are : 

(ex+y2+yz, z) if a5A0, bgL0 See 1.3.2 
(EX + y2, z) if a 0, b=0 See 1.3.3 
(ex+yz, z) if a=0, brh 0 See 1.3.4 
(Ex, z) if a=b=0 See 1.3.5 

1.3.2. Proposition : The germ f= (ex + y2 + yz, z) is stable. 

Proof :f is 2-xA-determined by Corollary, 1.2.3. Indeed, 

m3 . 
C3 2C C3. {x 

Of 
, yO , 

Of 
} -} f *m2. C2 2+ rn3. C3 2 and äx öy öy 

m3 C3 2C TxAi. f -i- m3. C3 z 

It is easy to check that TXA,. f = V(f). Therefore f is stable. Q 
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1.3.3. Proposition : (i) Any k+1 jet with k jet (ex + y2, z) and k>2 is 

XA-equivalent to (ex + y2 + elyzk, z) or (ex + y2, Z). (ei = (±1)c+1 
.) 

(ii) The jet (ex -I- y2 +el yzk, x) is k+1 -determined and has codimension k-1. 

This is the case III on Table 1. 

Proof : (i) Let f denote the k-jet (ex + y2, z). We can see that 

T(JX 'A1). f+R. {(yzk, 0)} = Hk+' (3,2) 

It follows from Proposition 1.2.5 that any (k + 1)-jet with k-jet f is equiv- 

alent to (ex + y2 + ayzk, z) . 
Now linear changes of coordinates (x, y, z) i) 

(x, y, ((sign(a))k+1 a) k 
z) in the source and (u, v) i- .+ (u, ((sign(a))k+l a)kv) in the 

target give the orbits in Jk+1 (3,2) with k -jet f: 
(E2 + y2 + El yzk, z) if ah0 

(ex-i-y2, z) if a=0 

(ii) Let f denote the k+ 1-jet (ex +, y2 + el yzk, Z). We have: 

x 
Of 

_ (Ex, p) 

yL= (2y2 + Ei yzk, O) 

'of k 
öz = (El kyz-1' 1) 

It is easy to check that m3 . C3 2C C3{xaf 
, yaf , 

of 
}+ f*m2. C2 2 

-I- m3. C3 2. 
äx öy öz 

To prove that f is k+1 -determined using Corollary 1.2.3, we need to show that 

m3+2. C3 ZC TXAi. f+ m3 +4C3 2. For, it is enough to show that all monomials in 

C3 Z of degree k+3 and k+2 are in TxA1. f modulo m3+4. C3 Z. 

Degree k+3: Using x 
Of 

,yy 
Of 

and (0, f2), we can trivially show that all mono- 
X 

of degree k+3 in Hk+3(3,2) , except (yzk+2,0), are in TXAi. f+ m3+4 "C3 
Z. 

To get (yzk+2,0) 
, we use z3 

z- 
(0, fz) _ (el kyzk+z, 0). 

Degree k+2: Now we can work modulo mr3. C3 Z. As for degree k+3, all monomials 
of degree k+2, except (yzk+1,0), are trivially in TXA1. f + m3+3. C3 2. To get 

(yzk+l, 0), we use z2 
äz 

- (0, ff) = (El kyzk+i, 0). 

By Corollary 1.2.3, f is (k + 1) -x A-determined. It is not hard to show that 
TxAe. f ®R. {(y, 0), (yz, 0), ..., 

(yzk-2,0)} =V (f ), where ® denotes the direct sum. 
Hence f is of codimension k -1. Q 
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1.3.4. Proposition : 1. (i) The orbits in J3(3,2) with 2 -jet (ex + yz, z) are 
(ex + yz -1- y3, z) and (ex + yz, z) . 

(ii) The jet (ex + yz + y3, Z) is 3- x, 4 -determined and of codimension 1. It is 

the case IV in Tablel. 

2. The 6 -jet (ex + yz -}- y4 -I- elys, z) is 6- XA-determined and of codimension 2. 

It is the case V in Table 1. 

Proof : (1). The proof follows the same line that of Proposition 1.3.3. For 1(i), we 

show that the complete 3-transversal is R. {(y3,0)}. The result follows by considering 
linear changes of coordinates in the source and target. 

For (ii) we apply Remark 1.2.4. Here 1=k=3 and m3 . C3 2C TXA1. f -{- 
R. {(0, fl)} + m7 . 

C3 2. 

It is easy to check that TXAe. f®R. {(0, y)} =V (f) 
, therefore f is of 

codimension 1. 

(2). We consider the 3 -jet (Ex + yz, z). We find that the orbits in 4-Jet with 3-jet 

(ex+yz, z) are (ex+yz+y4, z) and (ex+yz, z) . There is one orbit in the 5-Jet with 4- 

jet (ex+yz+y4, z), it is (ex+yz+y4, z) itself. Now in the 6-Jet there are 2 orbits with 
5 -jet (ex+yz+y4, z): (ex-}-yz+y4+ely6, z) and (ex+yz+y4, z). Applying Corollary 

1.2.3 to the germ f= (ex + yz + y4 + el y6, z) with 1=4 and k=6 we find that it 

is 6-xA-determined: It is not hard to see that TXAe. f® R{(0, y2), (0, y3)} = V(f) . 
Therefore, f is of codimension 2. Q 

Note that the 4-jet (ex + yz, z) and the 6-jet (ex + yz + y4, z) yield germs of 
higher codimensions. 

1.3.5. Proposition : (i) Any 3 -jet with 2 -jet (ex, z) is xA equivalent to one 

of the following: (ex + yz2 + y2z + ay3, z), aER, (ex + elyz2 + y3, z), (ex + y2z + 

Zy3, z), (x + y2z, z), (ex + yz2, z), (ex + y3, z), (ex, z) . 
(ii) Any 4 jet with 3 -jet (ex + yz2 + y2Z + ay3, z) is equivalent to (ex + yz2 + 

y2z + ay3 + ely4, z) or (ex + yz2 -}- y2z +. ay3, z) provided a yL- 1. 

(iii) The germ (ex + yz2 + y2z + ay3 + e1y4, z) is 4 -x A-determined when 

a 54 0. This is the case VI in Table 1. The germ (ex + yz2 + y2z + ay3, z) is 

4 -x A -determined provided a 0,4' 
3' 

Proof : (i). It is easy to check that if f= (ex, z), then 

T(JXAi ). f + R. {(yz2,0), (y2Z) 0), (y3,0) }= H3 (3,2) 

By Proposition 1.2.5, any 3 -jet with 2 -jet (ex, z) is equivalent to (ex + ay3 + 

byz2 + cy2z, z) for some a, b, cER. The statement follows by considering changes of 
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coordinates in the source and target for the following cases: a 0, b 54 0, c 34 0; a= 
0, b0, c 0; a54 0, b54 0, c=0; a00, b=0, c54 0; a=b=0, c 0; a=c= 0, b 

0; a 0, b=c=0; a=b=c=0. 
The germ (ex+yz2+y2Z+ay3, z) is a continuous 1-parameter family of non- x A- 

equivalent germs. In Arnol'd terminology it is a non-simple germ. The parameter a 
is called a"modulus". 

The germs in Proposition 1.3.5 (i), except the first one, lead to germs of higher 

codimensions. We shall not deal with them. 

(ii) and (iii). Let f denote the 3 jet (ex + yz2 + y2z + ay3, z). Then 

xf= (ex, 0) 
o 

y 
Of 

= (yz2 + 2y2z + 3ay3,0) 

öz = (2yz + y2,1) 

We need to compute the complete 4-transversal of f. All the homogeneous 

monomials of the form (x P, 0), (z4,0), (0, P) are in T(JXA1). f. We have only to 

consider those of the form (y`z4-', 0). If we assume that (y4,0) is in the complete 

4-transversal, we show. using the vectors z2 
L, 

yz 
Of 

, y2 
of 

- (3ay4,0), that provided 
yy 

a51, all the monomials (y`z4-`, 0) are in T(Jj Ai). f + R. {(y4,0)} = H4(3,2). By 

Proposition 1.2.5, any 4-jet with 3-jet as f is equivalent to (ex+yz2+y2z+ay3+by4, z) 
for some bER, provided a#1. Linear changes of coordinates in the source and 
target yield the following orbits in the 4-Jet with 3-jet as f: 

(ex + yz2 +y2z+ ay3 + ely4, z) if b 0, (el = ±1) 
(ex + yz2 + y2z + ay3, z) if b0 

The claim now is, provided' a#0, the germ (ex + yz2 + y2z + ay3 + eiy4, z) is 

4 -x A-determined, and provided a00,4,3 the germ (ex + yz2 + y2z + ay3, z) is 

4 -x A-determined. 

let f= (ex + yz2 -I- y2z + ay3 -I- el y4, z). Then, 
if- 

x= (ex, 0) 

y ýy = (yz2 +2 Y2Z + 3ay3 + 4eiy4,0) 

Of 
= (2yz + y2,1) 

It is not hard to see that rn . C32 CC3. {xaf, yaf, 
af}-}- 

f*m2. C 2+m3. C32 for 
Ox ay Oz 

a 0. We need to show that m3. C3 2C TxAI. f+ m3. C3 2, that is all monomials of 
degree 7,6 and 5 are in TxAi. f modulo m3, C3 2. 
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For monomials of degree 7, any one which is of the form (xP, 0), (z7,0), (0, P) is 

trivially in TxAi. f + m3. C3 2. One notices that 3(fl. f, 0) - z3yCy - z4 

-(3E1 y4z3,0) . 
Hence (y4z3,0) E TxAi. f+ m3. CX2. 

The vectors yz4 
9f 

, y2z3 
Of 

, z5 
' 

are generated by the monomials (y3z4,0), 
yy 

(y2 z5,0), (yz6,0). The determinant of the matrix of their coordinates with respect to 
their generators is 3(a - 1). Hence for a yl- 1, (y3 z4,0), (y2 z5,0), (yzs, 0) E TxAI. f+ 

S x2 m3. ýi3 

Now provided a y-I 0 we can get the monomials (y5 z2,0), (ysz, 0)'and (y7,0) 

from y 
ýf 

. 
Therefore all monomials of degree 7 are in TxAi. f+ m3. C3 2. 

y 
We can prove, following the same method, that provided a 54 0,1, all monomials 

of degree 6 and 5 are in TxA1. f + m3. C3 2. 

We consider the following vectors with f=j3f. 

(1). (fi 
z- 

(0, fl)) = (ay5 + (2a + 1)y4z +3 Y3 Z2 + 2y2z3, O) a 

(2). y3 
of 

= (3ay5 + 2y4z + y3z2,0) 

(3). y2zfo = (3ay4z +2 V3Z2 + y2z3,0) 
y 

(4). yz2 
f= 

(3ay3z2 + 2y2z3 lyz410) 
y 

(5). yz3 Lz = 
(2yz4 + y2z3,0) 

The determinant of the matrix of the coordinates of these vectors in the basis 

{(y5,0), (y4z, 0), (y3z2,0), (y2z3,0), (yz4,0)} is non-zero if and only if a 0,4'3' 

Multiplying the above vectors by z2 we obtain all monomials of degree 7 mod- 

ulo rn3. C3 2, and multiplying them by z" we get all monomials of degree 6 modulo 

rz4. C3 2. Therefore 

T7t3. Ci3 ZC TXA1., f + R. {(O, fl)} + f7L3. ýi3 2 

provided a#0, 
!, 

3. The vectors used here depend only on the 3-jet of f. Thus 

(ex + yz2 + y2z + ay3, z) is 4-XA-determined provided a 74 0, 

Combining the two methods we conclude that f= (ex+yz2+y2z+ay3+e1y4, z) is 

4-xA-determined provided a 74 0. The value a=1 is exceptional for the calculation 
in the complete 4-transversal. When a=1 another normal form is needed. 

It is not difficult to show that TXAe,. f ®R. {(y, 0), (y2,0), (y3,0)} =V (f) . 
Hence, 

the codimension of f is 3. (The 3 -jet of f is of codimension 4. ) Q 
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The 1 -jet (x, y) 

The complete 2-transversal of (x, y) is R. {(yz, 0), (z2,0), (0, xz), (0, z2)}. Any 2 -jet 
with 1 -jet as f is equivalent to (x + ayz + bz2, cxz + dz2 + y) for some a, b, c, d in R. 

Using Mather's lemma in J2(3,2) for the curve V= {(x+ayz+bz2, y+cxz+dz2), cE 
R}, we deduce that if b00, (x + ayz + bz2, cxz + dz2 + y) - (x + ayz + bz2, y+ dz2) 

. 
We can show similarly that if d00, (x + ayz + bz2, y+ dz2) ^_- (x + bz2, y+ dz2). 

For our investigation, the relevant orbits in J2(3,2) with 1-jet (x, y) are: 

(x + elz2, y+ ¬2z2) See 1.3.6 

(x+yz, y+E2z2) See 1.3.7 

1.3.6. Proposition : (i) The orbits in the p -Jet whose (p - 1) -jet (x + eiz2, Y+ 
e2z2) are (x + eiz2, y + E2 z2) if p= 2k, and (x + eiz2 + z2k+l, y + e2z2) and 

(x + ei z2, y+ E2 z2) if p= 2k + 1. 

(ii) The germ (x + e1 z2 + z2k+1, y+ 62z2) is (2k + 1) -x A-determined. Its 

codimension is k. It is the case VII in Table 1. 

Proof : (i) follows by considering the p-complete transversal of (x + eiz2, y+ ¬2z2). 

(ii). If we write f= (x + eiz2 + z2k+1, y+ 62z2) then 

xx of = X10) 

y Of = 0, y) 

az = (2e1 z+ (2k + 1)z2k, 2e2z) 

We can easily show that m3 . 
C3 2C C3. {xaf 

, yf , 
of 

}+ f*m2. C2 2+ m3"C'3 Z 
ax ay '9Z 

and m3'ß+2. C3 2C TxAi .f+ m3'ß+4. C3 Z, and conclude that f is (2k + 1) -x A- 

determined. It is also not hard to show that TxAe. f ®R. {(z, 0), (z3) 0), ..., 
(z2k-1,0)}'= 

V (f) 
, so that codimension of f is k. 

The 2 -jet (x + yz, y+ e2Z2 ) 

0 

The calculations in this case are complicated to handle. We shall state the results 

omitting the calculations (but the method is-identical to that, used above). A jet 

in J3(3,2) with 2-jet as (x + yz, y + elz2) is equivalent (x + yz + az3, y + E2z2) 
for some a in R. The germ (x + yz + az3, y+ elz2) is a family of non-equivalent 

germs, a is a parameter modulus. Its complete 4-transversal is R. {(z4,0)} if a 34 
2 f2. The orbits in the 4-Jet with 3-jet (x + yz + az3, y+ 62x2) are, for a2 EZ 
(x+yz+az3 -I-eiz4, y+e2z2) and (x +yz+az3, y-I-e2z2). 
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Now, the 5-complete transversal of (x + yz + az3 + el z4, y +'61 z2) is R. {(z5, O) }. Any 

5-jet with 4j et (x + yz + az3 -}- ¬1 z4, y -1- e2z2 } is equivalent to (x + yz + ax3 -F e1 z4 + 
bz5, y+ e2z2) for some b. (b is also a modulus. ) 

1.3.7. Proposition : The germ (x + yz + az3 + elz4 + bz5, y+ e2z2) is 5- xA- 
determined if a 76 0, C27 -2e2, -3 e2,3 e2,2 e2 . 

The (orbit) codimension of f when 
5-determined is 4. This is the case XIII in Table 1. 

1.3.8. Remark : When f is 5-determined 

TxAe"f ® R. {(z, 0), (0, z), (z3,0), (z5,0)} =V (f ) 

The 1 -jet (0, z) 

The complete 2-transversal is R. {(x2,0), (y2,0), (xy, 0), (xz, 0), (yz, 0)} . 
Any 2 -jet 

with 1-jet (0, z) is equivalent to (axe + by2 + cxy + dxz + eyz, z) for some a, b, c, d, e 
in R. By explicit changes of coordinates in the source and target, one can compute 
the orbits in the 2-jet whose 1-jet (0, z). The relevant ones in our investigation are 

(axe +bye +Elxy+xz+e2yz, z) if a, b, c, d, e 00 See 1.3.9 
(axe +ely2+e2xy+xz, x) if a, b, c, dL0, e=0 See 1.3.10 
(axe +eixy+xz+f2yz, z) if a, c, d # 0, b =0 See 1.3.11 

1.3.9. Proposition : (i). Any 3 -jet with 2-jet (axe + bye + el xy + xz + e2yz) z) is 

equivalent to (axe + by2 + elxy + xz + e2yz + cx2z + dxyz, z) for some c and d 'in 
R. 

(ii). The 3 -jet (axe+bye+elxy+xz+e2yz+cx2z+dxyz, z) i. 3 3. xA -determined 
if a#0, b 54 0, c(2f2b - el) + d(a - b) 54 0,4ab -1 34 0. It is the case IX in Table 1. 

Its codimension is 5, a, b, c, d are moduli. 

Proof : (i). The complete 3-transversal is R. {(xyz, 0), (x2z, 0)}, so that any 3 -jet 
with 2 -jet 

(ax2 + by2 + fixt' + xz + e2 yz, z) is equivalent to (ax2 + by2 + el xy + XZ + 

f2yz + cx2z + dxyz, z). 

(ii). Let f= (ax2 +b y2 + Eixy + xz + e2yz + cx2z + dxyz, z). Then 

x 
ýx 

= (2ax2 -i- eixy + xz + 2cx2z + dxyz, 0) 

yOy' = (2by2 + eixy + e2yz + dxyz, 0) 

of 
= (x+e2y+cx2 

äz 
+dxy, 1) 
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One can easily show that 1= 3 in Corollary 1.2.3 provided a 54 0, b 54 0,4ab -1 54 0. 
We want to prove that m3 . C3 2C TXA1. f + m3. C3 2. We start by showing that all 

monomials of degree 6 are in T, A1. f modulo m3. C3 2. Using 
Lz 

on can see that 

all monomials of degree 6 of the form (0, P) are in TXAI. f modulo m3 . C3 2. The 

next step is to get all monomials of degree 6 of the form (zP, 0) . We notice that 

2(fi "fä , 0) - x4x 
of 

- x4y 
of 

- z5 
of 

= -(cx2z4 + dxyz4,0). We have fl f2 3. of 
- äx öy äz az 

(0, fif2) = (ax3z3 + bE2y3z3 + (aE2 + El)x2yz3 + (b + E1e2)xy2 + x2x4 + y2z4,0). 

A suitable combination of this vector with z x2 
of 

, z3 y2 
of 

, z3 yxof , z3xyof yield ax 8y Ox öy 
(x224 + y2x4 + 2E2xyz4,0). We also have (fif2,0) (ax2z4 +b Y2Z4 + Eixyz4,0). 
Therefore (x2z4,0), (y2z4,0) and (xyz4,0) are in TxAi. f modulo m3 . 

C3 2 provided 
c(2E2b - el) + d(a - b) 0 0. 

Now it is a matter of using combinations of the vectors x 
of 

and y 
of 

to get Ox ciy 
all monomials of degree 6. The exceptional values for a and b are a=0, b=0, 
4ab-1=0. 

The calculations for degree 5 and 4 follow the same steps those of degree 6. We 

conclude that f is 3-xA-determined provided a00, b00, c(2e2b - el) + d(a - b) 36 
0,4ab-1#0. 

One can show that 

TxA. f ®R. {(y, 0), (x2,0), (y2,0), (x2z, 0), (xyz, 0)} =V(f) 

The codimension of f is then 5. 0 

1.3.10. Proposition : (i) The orbits in the 3-Jet with 2 -jet as (ax2+Ely2+E2xy+ 
xz, z) are (ax2 + Ely2 + E2xy + xz + E3yz2, z), (ax2 + Ely2 + E2xy + xz + e3xyz, z) 

and (ax2 +Ely2 +E2xy+xz, z). 

(ii). The germ (ax2 + Ely2 + E2-Ty + xz + E3yz2, Z) is 3- XA -determined 
if and 

only if a#0,4 . This is the case X in Table 1. The codimension of the orbit is 3, 

a is modulus. 

Proof : (i) The complete 3-transversal of the germ (ax 2+ ely2 + e2xy + xz, z) is 
R. {(xyz, 0), (yz2,0)}, and the claim follows using Mather's lemma and explicit 
changes of coordinates in the source and target. The jets (ax2 + Ely2 + e2xy + 

xz -}- E3xyz, z) and (ax 2+ ely2 + e2xy + xz, z) lead to germs of higher codimensions. 

(ii). The calculations in this case are identical to those in Proposition 1.3.9. We 

show that I=3 and k ='3 provided a#0, U. 
. For the calculations determining k, 

we have to show that all monomials of degree 6,5,4 are in TXA1. f modulo m3. C3 X2, 

We have: 
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x'x = (2ax2 + e2xy + xz, 0) 

Y ay = (2Eiy2 + E2xy + E3yz2,0) 

Of 
= (x + 2E3yz, 1) 

az 

Using 
Of 

, we can work modulo C3. {(0,1)}. On can see that (xz5,0), (yz5,0) are 
ar 

in T A1. modulo m7. C <2 
.A combination of the followin vectors 3 "z Xf33ö flf2"az 

(0, f1 f2 ), z322 ýX and xyz3 
Of 

yield (x2z4,0) E TXA1. f modulo m3 . C3 2. We ob- 

tain the rest of the monomials of degree 6 by a suitable combination of the vectors 

x 
'f 

and y 
"f 

provided a#0,4 . 
We do the same for degree 5 and 4. 

y 
Calculations show that 

TxAe"f ®R. {(x 2,0), (x, 0), (j, 0)} = V(f) 

The codimension of the orbit of f is then 4. 11 

1.3.11. Proposition : (i). Any 3 -jet with 2 -jet (axe +, E1 Xy + xz + f2YZ, Z) is 

equivalent to one of the following: (ax2 + elxy + xz + e2yz + e3 y3, z) (ax2 + elxy + 

xz + e2yz + e3xyz, z) or (axe + El xy + xz + e2 yz, z) . 
(ii). The orbits in the 4-jet with 3 -jet (axe + elxy + xz + C2YZ -}-, (3y3, z) are 

(axe+Elxy+xz+e2yz+e3 y3+by4, z), bE R. 

(iii). The germ (ax2 + elxy + xz + e2yz + e3y3 + by4, Z) is 4- XA -determined 
if 

a 0, ele21 
e'2. This is the case XI in Table 1, it has codimension 5. 

Proof : The proofs of (i) and (ii) follow by looking at the complete transversal together 

with Mather's lemma and explicit changes of coordinates. The jets. (ax 2 +Eixy+xz+ 

e2yz+e3xyz, z) and (axe+e1 xy+xz+E2yz, z) lead to germs of higher codimensions. 

(iii) Let f= (ax2 + Elxy + xZ + E2yz + E3y3 + cy4, z). Then, 

X 
Of 

= (2ax2 + Eixy + xz, 0) 

y af _ (Elxy + E2yz +3C3 y3 +4 Cy4,0) 
y 

of 
öz -(x+E2y, 1) 

It is'a trivial exercise to show that m3. C3 2C C3-{x 
OX , yaf ' 

of 
}+ f*m2. C2 + 2 

-- 
x öy öz 

m3. C3 2 provided a }ý 0. To prove the statement using Corollary 1.2.3, we need to 

show that m3. C3 2C TxAi: f -I- m3. CX2. For the monomials of degree 7, all those of 
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the form (0, P) are in TxAI. f modulo m3 . 
C3 2 using 

Of 
. 

The calculations simplify 
as in Proposition 1.3.9 if one tries to get first all monomials of degree 7 of the form 
(zP, 0) . We notice that 2(fi f2 i 0)-z5x. 

L 
-z5 y 

ýy 
-zs 

Of 
= -E3 (y3z4,0) 

. 
Therefore 

(y3z4,0) E TxAj. f modulo m3. C3 2. A combination of fl f2 
. 

of 
- (0, fl f2 ), x 

of 

8z ax 

and y 
Ly 

yield (2E2xyz5 + x2z5 + y2z5,0). This vector together with (fl f2 
, 
0) 

(ax2z5+E2xyz5) and z5(xy 
f 

-2aElxy. 
y) 

((1-2ae1E2)xyz-E2y2z, 0) show that 

(xy, zg 0), 0), (y 2z5 0) E TxAl. f modulo m8 Cx2 provided aEE 
El E2 

e, 3" 31 2' 2 
Now we can get all monomials of degree 7 of the form (P, 0) with P divisible by x 
or z provided a00. 

Following the same steps we can show that, provided a#0,6162,2! 
162 

l E2, 
El2E2 

, all mono- 
mials of degree 7,6,5, except (y7,0), (ys, 0), (y5z, 0), (y5,0), (y4z, 0), are in TxAij 

modulo m3. C3 2. 

Using the following vectors: 

y6 
Of 

= (E2y7'yg) 

y5z of = (E2y5z, y4 Z) 

(0, fl) 
_ (0, ys + 2EeE3y4z) 

we deduce that (y7,0), (y5z, 0), (0, y6) E TXAI 
.f modulo m 3. C3 2. In order to show 

that (ys, 0) and (y4z, 0) are in TxA1. f modulo m3 . 
C3 2 we use the following vectors 

(modulo the monomials obtained above): y4 
of 

, y2z 
of 

, 
(fl 

, 0) , x3 
af, 

ay 8y öx 

xyzO xZ 
of 

' x2 xza x2Zaf (ax2z + eixyz + xz2 + E2yz2 
of 

ax y ay 'y ay 

of 

ay ax 
)- 

az -' 

(0, flf2), xz2of -+-yz2of -z3 
of 

TX FY TZ .- 
These vectors are linearly independent in ý the real vector space generated 

by {(x410) 
' 

(x2y2,0) 
' 

(x2z2,0) 
' 

(y2z2,0) 
'(X 

3 Y, 0) 
' 

(x3x, 0) ", (x2yz, 0) 
' 

(xy2z, 0), 

i (xyz2,0) 
, 
(y4 z' 0) , 

(y6,0)} if and only if aý0 E1 E2, 
E22; 

and therefore for a differ- 

ent from these values (ys, 0) and (y4z, 0) are in TxAI. f modulo m3. C3 2. 

We have the following: xz 
Of 

+ yz 
Of 

+ z2 
Of 

- (2 fl f 2,0) . (y3z, 0) . 
Hence, 

yy 

y3 
Of 

. (Elxy3 + 3E3y5,0) 
. We can show using xy2 

x 
that (xy3z, 0) is in TxAl. f 

y 
modulo m3 . C3 2 (since, from the (ys, 0) calculations, (x2 y2,0) and (xy2z, 0) are in 
TXAI. f modulo m3 . C3 2 ). Therefore (y, 0) E TxAI. f modulo m3. CX2. 

Calculations show that 

TXAe. f®R. {(x2,0), (y4,0), (X, 0), (y2,0)} = Vif ) 
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The codimension of f is 5; a, b, c are moduli. Q 

The 1 -jet (x + Ely, 0) 

Any 2 -jet with 1-jet (x + ely, 0) is equivalent to f= (x + eiy + az2, bx2 + cxy + 
dxz -I- eyz +f z2) for some a, b, c, d, e, f in R. If a, b, f are not zero, we can use linear 

changes of coordinates so that fN (x + ely + e2Z2, x2 + axy + bxz + cyz + E3 Z2). 
The change of coordinate (x, y) z) i-i (x, y, z+ e3(bx + cy)/2) in the source together 

with Mather's lemma and linear changes of coordinates in the target yield f= (x + 

eiy+e2z2, x2+axy+e3z2). One can easily show that any 3 -jet with 2 -jet (x+ely+ 

e2Z2, x2 -i- axy + e3z2) is equivalent to (x + fl Y+ e2z2, x2 + axy + e3z2 + bx2y + cz3) 
for some b and c in R provided a#0. 

1.3.12. Proposition : The germ (x + III Y+ e2z2, x2 + axy + e3z2 + bx2y + cx3) 
is 8- XA-determined provided a#0, el, b 54 0, c 0. It is of codimension 5; a, b, c 

are moduli. This is the case XII in Table 1.11 

The calculations for this Proposition are similar to those above. - In this case 
1=2 and k=3 for a#0, ej, b340, c7t0. 

§4. The Geometry of the projections 

The Table 1 given in Theorem 1 can be divided into three parts: I- VI, VII- VIII and 
IX- XII. The first part contains germs of submersions which map the crease smoothly 
into its image, the cases VII and VIII are germs of submersions and the image of the 

crease is singular. The remaining cases are germs of maps of rank 1 and their unfolding 

cannot be realized as a family of orthogonal projections of generic piecewise-smooth 

surfaces. 

For germs in the first part one can see that the surface Xl does not contribute to 

the geometry of the germs (since fjx1 is a submersion). These germs can be deduced 

from Table 1 in [B-G4] as follows. 

Let f: R3,0 -) R2,0 be a germ of a submersion. 

1.4.1. Lemma : If f is an immersion on the crease then it is XA-equivalent to 
(ex + 9(yß z), z) or (Ey + 9(x, z), z) with e= ±1 
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Proof : Since 
z 

(0,0,0) yl- 0, we can write locally f (x, y, z) _ (fl (x, y, z), az + 
f2 (X7 y, z)) with a 54 0. The change of coordinates (x, y, z) = (x, y, az + f2 (x, y, z)) 
in the source yields the following xA-equivalent germ to f (denoted also by f and 
dropping dashes): f (x, y, z) = (f (x, y, z), z). Since f is a germ of a submersion 
of(0,0,0) 0 or 

a-(0,0,0): 0. 
Suppose that 

2M 
(0,0,0) # 0, so that we can write f (x, y, z) = (bx + xh(x, y, z) + 

g(y, z), z) with h(0,0,0) = 0. By the explicit change of coordinates in the source 
x, y, z)=(sign(b)(bx+xh(x, y, z), y, z) f is XA-equivalent to (ex+g(y, z), z). And 

similarly if 
Of 

(0,0,0) #0 then f= (ey + g(x, z), z). Q 
y 

1.4.2. Theorem : The germ (Ex + g(y, z), z) is k -X Ai -determined if and only 
if the germ (g(y, z), z) is k- 81-determined. 

ß is the group of pairs of diffeomorphisms (h, k) acting on C2 2 with h preserv- 
ing the x-axis [B-G4]. 

Proof : Let F(x, y, z) = (ex + g(y, z), z) and f (y, z) = (g(y, z), z). It is clear 

that 
OF 

(x, y, z) _ 
Of 

(y, z) and aF 
(x, y, z) ax 

(y, z). Using the expression for 

the tangent space of the XA-orbit of F and of the B-orbit of f we get: 

az ,z 
OF 

ax ,y ay 
OF 

,x az 
OF 

,y 
OF 

Tx, A. F = C3(x, y, z). {x 
OF 

Oz 
}, -º- F *M2 {el, e2 }, 

=C3(x, y, z). {(ex, 0), x(z, 1)}+C3(x, y: z)"{yay, yaz, zäz}-} F*m? {el, e2} 

=C3(x, y, z)"{(x, 0), (0, a)}-{-Cs(y, z)"{ýJay, yaz, zT }+f*rn2{elie2} 

. =C3(x) y, x)"{(x) O), (0, X)}+T13. f 
Therefore, 

m3+1. C3 
2C TXA. F m2+1. C2 2C T13 f 

and 
m3+X C32 CTXAj. F 4=* mZ+1 C2Z CT81f 

We conclude using Theorem 2.5 in [B-dP-W]. 11 

1.4.3. Remark : It follows from the relation between the tangent spaces to the orbits 
of F and f given in the proof of Theorem 3.2, that V(F)/TxAe. F = V(f)/TxL3e"f 
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If ýi, ..., Op form a basis of the real vector space V(F)/TXAe. F, then F+ E4 l.; Ot 
is a versal unfolding of F and f+E1Aq; is a versal unfolding of f. 

Geometrically, when the two surfaces meet transversally and the projection of 
the crease is smooth, one of them can be ignored and one has to consider only the 

projection of the remaining surface with boundary. Although one of the pieces of 

surfaces has no effect on the geometry, the side in which it is positioned with respect 
to the other surface gives rise to two different orbits (this is reflected by the sign e 

attached to x in Table 1). This situation occurs in the cases I- VI. Their geometrical 
interpretation can be deduced from [B-G4]. 

We shall give a versal unfolding of each germ in Table 1, and a "realization" of it in 

terms of a family of parallel projections of immersed piecewise-smooth surfaces in R3 
(for cases I- VIII) or in terms of a family of projections of a family of piecewise-smooth 

surfaces (for cases IX- XII), explain geometrically how each case occurs, describe the 
"critical locus" of the germ and draw a picture of critical loci of nearby germs by 

varying the unfolding parameters. 

We denote by E1 and E2 the sets of critical points of the maps f ßx1 and f Ix, 
respectively, and write Al =f (E1), 02 =f (E2) 

. 
The set {(0,0, z)} is called the 

crease and is denoted by C. The critical set of f is E= E1 U E2 U C. The critical 
locus of f is the image of the critical set, that is f (E) = Al U AZ Uf (0). The image 

of the crease is drawn with a thick line. If we denote by X' the set {(0, y, z): y< 01 , 
and by E2 the critical set of fix; 

, then f (E2) which is referred to as the "invisible" 

part of the profile, is sometimes drawn with a `dashed line' and sometimes omitted. 
The profile Al is drawn with a dotted line. When changing the signs of ei, the 

pictures remain essentially identical apart from reflexions through the origin or with 

respect to the axis, or by interchanging the dashed and the undashed parts. We shall 
draw the pictures for ej = +1. 

1.4.4. Remarks : Locally at the origin: 

(1) The image of the crease f (C) and the profiles are tangential where they meet. 
(This follows from the fact that if fjX; is singular at the origin it maps all curves to 

tangential ones. ) 

(2) If f is a submersion and, f (C) is smooth, then at most one of the profiles 
is non-empty. (With the hypothesis it is a consequence of Lemma 1.4.1 that fix,, or 
fix, is a submersion. ) 

(3) If f (C) is singular then both profiles are non-empty. (f (C) singular implies 
fjxi and fix, are both singular. ) 
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1.4.5. Versal unfolding and realization 

As pointed out in remarks following Definition 1.2.1, for a k-determined jet we can 
consider the induced action of xA, hence that of XAe, on jk(3,2) 

. Let P be a plane 
transversal to the extended tangent space TXAe. f in jk(3,2) . If P is generated by 
(ul,..., up) and p ®Jk(TXAe. f) = Jk(3,2) then 

F: R3xRP--->R' 
(xi y, x, A,?... Ap) ~) f(x, y, z)+£'f 1Aiui 

is a versal unfolding of f. (Indeed, the condition P transverse to TXAe. f implies 
that jkF is transverse to the orbit of f and therefore F is versal. ) 

The family F contains all nearby germs to f in the sense that for any germ g near f 

there is a p-tuple of scalars (A1, 
..., 

A, ) for which F(-, A1, 
..., 

Ap) is xA-equivalent 
to g. This is also to say that the orbit of g hits the plane P at A1u1 -{-.... +. pup. 

For a given versal unfolding (with 2 parameters), it is interesting to find an 
immersed piecewise-smooth surface M for which the 2-parameter family of parallel 
projections on a fixed plane realizes this versal unfolding. If 

i: R3,0--+R3,0 

(x, y, z) '-' (X (x, y, z), Y(x, y)z), Z(x, y, z)) 

is an immersion, then the image of the model of piecewise-smooth surface X= XI UX2 
is denoted by M. We write M= Ml U M2 with M1 = i(XX), j=1,2. Suppose that 
M is viewed in the (0,0,1) direction, then all nearby directions can be parametrized 
by (-A, -p, 1) for A and u closed to 0. Projecting M onto the plane z=0 gives a 
family of maps G: R3 x R', 0 --i R', 0 with G(x, y, z, A, it) = (X + AZ, Y+ µZ) as 
follows: 

R3,0 

R3,0 x R2,0 R2,0 

Here 7r(_a, _µ) 
denotes the projection on z=0 in the direction (-A, -IL, 1) . Note 

that when A=p=0,7r(o, o) oi= (X, Y) =f is the initial germ. 

Any 1-parameter unfolding with unfolding monomials Z such that (X, Y, Z) is 

an immersion can be trivially realized by putting A=0 (or u= 0). 

The cases IX, X, XI, XII in Table 1 cannot be realized as a family of projections 
of a generic piecewise-smooth surfaces. We consider instead a 1-parameter family 

of projections 1r(o_,, ) of a 1-parameter family MA = i, \(X) of piecewise-smooth 
surfaces. The family of surfaces has the property that at A=0 the two pieces of 
surface have a common tangent plane at the origin. The versal unfoldings of the 

germs can be recovered by 7r(o; _µ) 0 ix " 

21 



1.4.6. The geometry of the normal forms in Table 1 

Case I. Trivial crease. 

The germ is stable. It is realized by (ex + y, z, y). The critical locus consists 
locally of the line {(0, z), zE R}. 

Case II. Semi-fold. 

The germ is stable. It can be realized by (ex + y2 + yz, z, y). 
(0,0,1) is tangent to the surface M2 and is transverse to E2 and C. 
(figure 1.4.1). 

EZ (C) II f(C) 

n 

Figure 1.4.1. Semi-fold 

Case III. a k=2. Semi-lips/beaks (C-lips/beaks in [C]) 

The direction 
El is empty 

A versal unfolding is (ex + y2 + el yz2 + Xy, Z). It is realized by i(x, y, z) _ 
(ex + y2 + ei yz2, z, y). The point (0,0,0) is a parabolic point on the surface M2 , 
(0,0,1) is tangent to M2 but is not an asymptotic direction. The crease C and EZ 

are tangential when A=0. Ei is empty. 

To get a parametrization of E2, we consider the map (y, z) '-º (y2 '+ el yz2 + 

ay, z) . It is singular when 2y + e1z2 +A=0, equivalently y=Z --1 + A) 
. 

So E2 ={ (0, -2 (el z2 + a), z), zE R} . The profile Ö2 is parametrized by z '-º 
(-4 (. 

, z2 + A)2, z). The critical locus undergoes semi-lips transition when el = +1 

and a semi-beaks transition when ei = -1 (figure 1.4.2). 
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ý. 
II /1I 

Semi-lips transition 

Figure 1.4.2. Semi-lips/beaks 

Case III. b. k=3 Semi-goose (c-goose in [C]) 

A vesal unfolding is (ex + y2 + yz3 + Ay + µyz, z). This germ cannot be realized 

as a family of orthogonal projections of an immersed piecewise-smooth surface. We 

consider instead the following equivalent germ (Ex + z2 + y2 + yz3, Z). Its xA versal 
unfolding is (ex + z2 + y2 + yz3 + \(y + yz), x+ µ(y + yz)) which can be realized by 

the immersion" i(x, y, z) = (Ex + z2 + y2 + yz3, z, y+ yz). 

The point (0,0,0) is not a parabolic point on the surface M2. (0,0,1) -is not an 

asymptotic direction, it is transverse to C. E1 is empty, E2 and ýC have 3 point- 

contact. In fact E2 has an inflexion at the origin when A- p=0. This case occurs 
at isolated point on the crease. 

If we" consider the first given unfolding, we can easily compute E2 for a fixed 
(A, µ). We find E2 = {(0, -Z (A + µz + z3); z), z E, R} and 
D2 = {(-4(i1+ atz+z3)2, z): z E R, -2(A+ az+z3) > 0}. 
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There is a special curve in the unfolding parameters where, for a fixed point on it, 

the germ has singularities of type III. a in Table 1. This occurs when the crease C and 
E2 have 2 point-contact. Algebraically this means A+ pz + z3 =0 and p -I- 3z2 =0. 
Thus, (a, µ) = (2z3, -3z2) . This curve has an ordinary cusp at the origin. On one 
branch of the cusp semi-lips occurs and on the other it is the occurrence of semi-beaks 
(figure 1.4.3). 

(C) 

a 

444 

µ} 

NýMýýýýýMýNýIý 

w.. ý..... rý^ýýI 

I, 

I 

(11) (i) 

(i). Semi-lips 

,, +ý (ii). Semi-beaks 

lie 

III..: 
Figure 1.4.3. Semi-goose 

Case IV Semi-cusp' (C-swallowtail in [C]) 

An xA-versal unfolding of the germ is given by (ex + yz + y3 + Ay, Z). It is 

realized by i(x, y, z) = (ex + yz. + y3, z, y). The image of the crease is smooth, Ei 
., 
is 

empty, (0,0,1) is an asymptotic direction at (0,0,0) on M2. E2 and C are transverse. 

Fora fixed )L, E2 = {(0, y, -A - 3y2), y> 0} and A2 = {(Ay2 -- 2y3,2Ay - 3y2)} 
The profile A2 has an ordinary, cusp which lies on the image of the crease when 
A=0. The cusp moves from one side of the image of the crease to the other when A 

change sign, (figure 1.4.4). Singularities of type II in Table 1 occur when A00 
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-Z 

f 

Case V- Semi-swallowtail 

4 

Figure 1.4.4. Semi-cusp 

E 

lt 

H A111,, 

(Swallowtail horizon in [C]) 

An xA-versal unfolding of the germ is (ex + yz + y4 + ei y6 + Aye + µy3, z). An 

unfolding with symmetrical monomials is (elx+yz+y4+el y6+A(y+y3), z+µ(y+y3)) 

and can be realized by (Ex + yz + y4 + ei y6, z, y+ y3). 

(0,0,1) has 3 point-contact with A12 at (0,0,0). E2 and C are transverse. Taking 

the first given unfolding, for a fixed (A, µ), E2 = {(0, y, -2Ay-3µy2 -4y3 -6elys), y> 
0} and 02 = {(-aye - 2µy3 -3 V4 - 561y6, -2Ay - 3py2 - 4y3 - 6e1y5), y> 0} . 

At A=p=0, the profile 02 has a (3,4) singularity (i. e. equivalent to (y3, y4 ) 

as a curves). There is a special curve in the unfolding parameters where, for (A, p) 
fixed, the germ has singularities of type IV in Table 1. At such points the direction 

of projection (-A, -p, 1) is an asymptotic direction to M2 at a point on the crease. 
The profile i2 has a cusp which lies on crease (figure 1.4.5). Calculations show that 

this occurs on the curve (A, p) = (3y2 + 1561 y3, -3y -10ei y3) . 
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Figure 1.4.5. Semi-swallowtail 

Case VI. Lips/beaks on crease (Lips/beaks horizon in [C]) 

21 

An x A-versal unfolding is (ex + yz2 + y2Z + ay3 + El y4 + Ay + µy2, z). This 

unfolding cannot be realized. We consider instead of the normal form given in Table 
1 the following equivalent germ to it: (ex + z2 + yz2 + yzz + ay3 + el y4, Z). It has the 
following symmetrical unfolding: (ex+z2+yz2+y2z+ay3+ely4+A(y+y2), z-}-ýU(y-}- 
y2 )) which can be realized by j (X, y, z) = (ex + z2 + yz2 + y2z + ay3 + el y4, z, y+ y2). 
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(0,0,0) is a parabolic point on the surface M2 and (0,0,1) is its asymptotic direc- 

tion. (0,0,1) is transverse to the crease C. Using the first given versal unfolding the 

critical set E2 consists of a node when 1-3a >0 and an isolated point when 1-3a < 
0. In fact E2 is the set of points (0, y, z) with A+2py+z2 +2yz+3ay2 +4e1y3 = 0. 
We shall write q5(y, z) =A+ 2µy + z2 + 2yz + 3ay2 + 4ely3. 

There is a curve in the (A, p) -parameter space where singularities of type III. a 

occur. This happens when E2 is tangent to the crease, that is y=0 and 
w=0 

which turns out to be A=0. (figure 1.4.6. ) 

There is another curve where singularities of type IV occur. It happens when the 

viewing direction is tangent to E2 and is transversal to the crease. The conditions for 

this are y=0 and L2 is singular, that is y=0 and 
LO 

= 0. This yields A+µ2 = 0. 
y 

(figure 1.4.6. ) 

There is also a special curve'in the (A, j) parameter where lips/beaks occur on OZ 
but the corresponding points on the surface do not lie on the crease. It happens when 
E2 is itself singular and the singularity is not on C. Algebraically these conditions 
are expressed as follow: 

ý= A+2µy+z2 +2yz+3ay2 +4e1y3 =0 

Solving these equations for -A and p we get 

00 ao 
ay= =o and y#0. äz 

3a)y2 + 8e1y3, (1 - 3a)y - 6eiy2) 

Notice that this curve has an ordinary cusp when y= (1 - 3a)/12. This cusp is 

at the origin when a= 1/3. 
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Figure 1.4.6. Lips/beaks on crease 
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Case VII. a Crease cusp (Edge-on in [C]) 

An XA-versal unfolding is (x + ¬1z2 + z3 + Az, y+ e2z2) and realized by (x + 

Eiz2 -I- z3)Y+ E2z2, z). 

(0,0,1) is tangent to the crease. The sets E1 and E2 are both transverse to the 

crease. We have El = {(z, 0,0), x> 0}, E2 = {(0, y, 0), y> 0}, Al = {(x, 0), x> 0} 

and A2 = {(O, ), y> 0}. The image of the crease is parametrazed by z i-º (El z2 + 

z3 + Az, E2 z2). When A=0, the image of the crease has an ordinary cusp (figure 

1.4.7 (i) when el = EZ = +1, and (ii) when el = -E2 

\Z 

M2 

M1 

Rý I 
00000 i 

(i) 

I' 
IIy 

Figure 1.4.7. Crease cusp 

Case VII. b Crease rhamphoid cusp (rhamphoid edge on (C]) 

An xA-versal unfolding is (x + eiz2 + z5 + Az -I- µz3)y + 62z2). An equivalent 

germ to that given in Table 1 can be realized by i(x, y, z) = (x + e, Z2 + z4 + z5, y+ 

e2 z2, z- z3) . 
(0,0,1) is tangent to the crease at a point of a zero torsion. (0,0,1) is not an asymp- 

totic direction to 1111 or A12 . 
Taking the first versal unfolding El = {(x, 0,0), x> 
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0}, E2 = {(0, y, zo), y>0, A -F- 3µz2 + 2ele2zo + 5zö = 0}, 01 = {(x, 0), x> 0} and 
p2 = {(eizö -I- z0 -I- . ýzo -I- µz0, y -k- ¬2zo), y> 0}. 

The crease is given by (el z2 ;- z5 Az + µz3, y +C2 z2) . When A=p=0 the 
image of the crease has a rhamphoid cusp. On the p -axis it has an ordinary cusp 
(singularity of type VII. a). On the curve S: p2 - 4A =0 for µ<0 the image of 
the crease has two tangential branches, in the area delemited by S and the negative 

p-axis it has 2 points of self intersection, in the negative A region there is one point of 
self intersection and no point of self intersection in the remaining area (figure 1.4.8). 

ý!. 
, ý/ 

(8) 
f. 

r" 

Figure 1.4.8. Crease rhamphoid cusp 

Case VIII Double cusp (C-ruffle in [C]) 

An XA-versal unfolding is (x + yz + az3 +- e1z4 + bzs + az, y+ E2 Z2 + pz). For 

fixed a, b different from the exceptional values given in Theorem 1.1.1, this versal 

unfolding can be realized by (x + yz + az3 + el z4 + bz5, y+ e2z2, Z). t 

At (0,0,0), (0,0,1) is tangent to the crease and is an asymptotic direction to the 

surface M2 ; both the profile 62 and the image of the crease have cusps. The image 

of the crease is parametrized by z i-i (az3 +elz4+bzs -}-Az, 14z+62z2). The profile Al 

is a line touching the image of the crease at (--1 af21.13 +I p4 - 
E2 bjj5 - 

E? Aµ, E2µ2) 
16 32 24 

The critical set E2 is the set of points (0, y, z) where the map (y, z) i-+ (yz -I- az3 -}- 

el z4 + bZ5 + Az, y+ 62z2 + UZ) is singular, that is the set of points (y, z) such that 
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y= -A -ý µz - (3a - 2e2)z2 - 4eiz3 - 5bz4 (*) 

The profile 02 is then parametrized by: 

z ý--º (µz2 - 2(a - e2)z3 - 3Eiz4 - 4bz5, -A + 2µz - 3(a - e2)z2 - 4e1z3 - 5bz4) 

At A=p=0, the profile A2 has an ordinary cusp if a e2 . It has a singularity of 
type (3,4) when a= e2 . 

There are special curves in the (A, p) -parameter space where singularities of type 
III, IV and VIIa occur. 

(i). Singularities of type III. Semi-lips/beaks occur when the critical set E2 and 
the crease C are tangential. In the equation (*) this is expressed by y=z=0. 
Solving these. equations yields 

(ý, µ) = ((3a - 2E2)z2 + 8eiz3 + 15bz4,2(3a - 2¬2)z + 12eiz2 + 20bz3) 

This curve has a cusp at zo satisfying (3a-262)-{-12elz0--3Obzö = 0. When, a 
3e2 

this cusp lies at the origin. 
(ii). Singularities of type IV. They occur when O2 has a cusp and the corre- 

sponding point on the surface 1112 lies on the crease. From the above parametrization 
02 

, we deduce that it has a cusp if 

µ=3(a-E2)z+6Elz2+lObz3 

This cusp lies on the image of the crease when y=0 in (*), that is 

µz - (3a - 2¬2)x2 - 4¬1x3 - 5bz4 

Combining these two equations, singularities of type IV occur when: 

(ý, µ) . (-e2z2 4- 2e1z3 '4- 5bz4,3(a - ¬2)z + 6e1z2 + lObz3) 

This curve has a cusp at the origin when a= e2. The cusp disappears as a moves 
from e2. 

(iii). Singularities of type VIIa. The crease has a cusp when 

4 
'ý--4au2-E2µ3- 

5b 
T6 'l 

This is a curve in the (A, p) -parameter space which has an inflexion at the origin 
when a=0. (Figure 1.4.9. ) 
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Figure 1.4.9. Double cusp, a=0.3 

The rest of the cases in Table 1 are special. They are realized as a family of 

projections of a family of piecewise-smooth surfaces. At the origin the surfaces have 

P co? --ion tangent plane. Note that generically two surfaces in R3 will intersect 

transversally. 
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Case IX Non-transverse semi-fold 
An xA-unfolding is (axe + by2 + el xy + xz + 62 yz + cx2z + dx yz + Ay, Z). It 

can be realized as an orthogonal projection of the following 1-parameter family of 

piecewise-smooth surfaces 

i(x, y, z, A) =(axe +bye +elxy+xz+ezyz+cx2z+dxyz+ay, z, x+2y) 

When A=0, the two surfaces All = i(Xi) and M2 = i(X2) have a common tangent 

plane at the origin. 
2 

The image of the crease is {(0, z)}, Ol = {(1 
+ 2cx 1-I- 2c 

)} and L12 = 
{(-bye, -2by - A)}. When A=0 the image of the crease and the profiles are 
tangential. As A moves from the origin, the surface M2 `moves' along the crease and 
the two surfaces Ml and M2 become transverse. The profile O2 is translated along 
the image of the crease (figure 1.4.10). 

M1 

t 
" 

. -0-, 

Hý 

''. 
_. ...., 

Figure 1.4.10. Non-transverse semi-fold 

Case X Non-transverse semi-lips/beaks 

An xA-unfolding is (ax 2+ CI y2 + e2xy + XZ + e3 yZ2 + Ax +py, z). This unfold- 
ing can be realized as a 1-parameter family of projections of 1-parameter. family of 

piecewise-smooth surfaces. ̀  The 1-parameter family of the piecewise-smooth surfaces 

E 1ý (C) E2 

2 
q 
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Figure 1.4.12. Non-transverse semi-beaks 

Case XI Non-transverse semi-cusp 

An X. A-unfolding is (ax2 + E1xy + xx + e2yz + e3y3 + cy4 + Ax + µy2, z). The 

following unfolding (ax2 + E1xy + xz + E2yz + E3y3 + Cy4 + 2. ßx + pp(y + y2), z) can 
be realized as a 1-parameter family of orthogonal projections of 1-parameter family 

of piecewise-smooth surfaces. The 1-parameter family of piecewise-smooth surfaces is 

given by 

(ax2 +Eixy+2x+E2YZ+E3Y3 +Cy4 +Ax, z, 2x + �'+' y2) 

When ,1=µ=0, the two surfaces have a common tangent plane. The direction 

of projection (0,0,1) is an asymptotic direction on M2 at the origin. The profile L2 

has an ordinary cusp. 

In the first given unfolding, the image of the crease is {(0, z)} , the profile A2 is 

parametrized by x º-º (-axe, -2a. x - A) and iz is parametrized by y '-º (-{lyz - 
2E3y3 - 3&y4, -E2(2py + 3Egy2 + 4by3)) 

Singularities of type IX occur on the µ -axis and on the A -axis singularities of 
type IV occur (figure 1.4.13). 
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Figure 1.4.14. Non-transverse crease cusp 

§5. The moduli and the topological versality 

The cases VI, VIII- XII in Table 1 appear as families of non- XA -equivalent germs. 
The bifurcation diagram of a germ in the family does not seem to vary when taking 

those of nearby germs in the family. We weaken the equivalence relation and consider 
homeomorphic changes of coordinates, and hope that each of the above families of 

germs will fall locally into a single topological orbit. We shall apply James Damon's 

results on topological triviality and versality [D 1], [D2], [D3], [D4] to prove that not 

only the germs are topologically trivial but their unfoldings are topologically versal. 
But first a summary of Damon's results. 

Let fo: R", 0 --º RP, 0 (or from C", 0 to C", 0) be a smooth map germ and 
f: Rn+y, 0 .. RP+Q, 0' an unfolding of fo. If x, y, u denote the coordinates in 

R", RP, R9 , then f (x, u) = (f (x, u), u). An unfolding is topologically trivial if there 

are germs of homeomorphisms ý: R"+4,0 -º Rn+9,0 and i: Rp+g, 0º RP+g, 0 

with ¢(x, u) = (¢(x, u), u) and '(y, u) _ (ii(y, u), u) such that the following dia- 

gram commutes: 
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Rn+q, 0f., Rn+v, 0 

Rn+q 0 f°" a RP +q 

An unfolding f is topologically versal if any unfolding of f is topologically trivial 
(Definition 9.3 in [D3]). 

Let f be a 1-parameter unfolding (q = 1) of fo. (For q>1 the equation 
is solved inductively. ) To find diffeomorphisms 0 and 0 which makes the above 
diagram commute, it is sufficient to solve the infinitesimal equation 

äü 
=Eof- C(f) (*) 

where ý and C are smooth vector fields on R" and RP respectively. For topological 
triviality, it is enough to solve the localize form of the equation (*), that is 

PöU =of- ((f) (**) 

where p: R"+1,0 1 R+, O is a smooth positive function which satisfies p_1(0) 
0xR [D1]. In this case ý and C need not to be smooth but only locally integrable 

vector fields. In fact in [D3] Damon considered stratified vector fields (tangent to the 

graph of f ). The integrability of such vector fields is ensured by Proposition 2.2 in 
[D3]. For geometric subgroups of A and 1C, the stratifications on Rn+g and RP+g 

are constructed using systems of DA-algebras. For example, for the action of A the 

system of DA-algebras on R"+Q is given by {Cy,,, f +Cz, u} . We consider the sets 
Vo = R"+q, Vi = V(mz. C1,,, ) =0xR, V2 = V(my. Cx,,, ) =f -1(0 x Re). The 

germ f is required to satisfy the stratification condition, that is f is a submersion 
on f -1(0 x R4) \0x R4 . 

The stratification on R"+q is then given by 

{0 x RQ, f -1(0 x R4) \0x R9, R"+9 \f -1(0 x R4)} 

On RP+4, the stratification is given by {0 x R9, Rp+9 \0x R9} . 
The control functions of the convex filtrations on the system of DA-algebras 

induce the control functions of the stratified vector fields and provide algebraic lemmas 
for solving the equation (**) (§7 in [D3]). 

When the germ fo is weighted homogeneous or semi-weighted homogeneous, 

weight filtration can be used on the system of DA-algebras. If an unfolding f of fo 

satisfies the stratification condition and is of finite codimension as an unfolding, the 

equation (**) can be solved. The unfolding f is then topologically versal (Theorem 

9.10 in [D3]). 

In practice, Theorem 4 in [D4] provides a sufficient condition for an unfolding to 
be topologically versal and a powerful tool to simplify the calculations. We introduce' 
the necessary notation to state the theorem. I 
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We assign weights wt(xi) = a; and wt(yi) = d, to the coordinates x and 

y in R" and RP respectively. The weight of a monomial is wt(xa) = Ea; a; with 

a= (al, 
..., an). A polynomial is said to be weighted homogeneous if all its monomials 

have the same weight. A polynomial map R" -+ RP is weighted homogeneous if its 

components are weighted homogeneous. 

If a function g: R" ---> R is not weighted homogeneous, we say that wt(g) >d 

if all monomials in the Taylor expansion of g have weight > d. If do is the smallest 
integer that satisfies this property, then the initial part of g is in(g) = Ecyxx with 

wt(xa) = do. A germ f: R" --1 R" is semi-weighted homogeneous if the germ 
(in(fl ), 

..., 
in(fp)) is of finite codimension (in our case of XA-finite codimension). 

We also assign weights to vector fields as follows: wt(a) = -wt(xi) and äxi 

wt(ayia) = -wt(y2). When fo is weighted homogeneous or semi -weighted homoge- 

neous, the differential of the orbit map da f. preserves weights. We can then define 

a weighting structure on the normal space N(fo) = V(fo)/TAe. fo . 
We denote by 

N(fo),,, the terms in N(fo) of weight m (that is the images of terms of weight m 
in V(fo) by the projection map V(fo) --> N(fo) ), and by N(fo)<,,, the terms of 

weight < m. An unfolding f= fo + Eu; ¢; is said to be versal in weight m if {¢; } 

is a basis for N(fo)<, n. If m=0, f is said to be negative versal. 

Let f= fo + Eu, 4i + Eutci be a versal unfolding of fo with wt(¢, ) < wt(fo) 
and wt(; ) > wt(fo). Denote by f+ = fo + Ei+u; qi the negative versal unfolding, 
and by u+ the unfolding parameters (ul,..., up+). The Euler vector field is 

e= Ewt(x; )x; 
a- 

Ewt(yj)yj 
a 

öx i ayi 

and the Euler relation for f+ is the vector 

e(f+) Ewt(x; )x; 
Ox+ 

- Ewt(y=)(y} o f+) a :j 

(The vector e(f+) is in the tangent space TXA«+, 
e. f+. ) Let gs be an element 

in Cx of weight Ii. Then there exist weighted homogeneous germs hti in C. + of 

weight I; - wt(J) such that 

g;. e(f+) = Eh; i¢; modulo C,, 
+. 

{0; } + TXAu+, 
e. 

f+ 

1.5.1. Theorem : (Theorem 4 in [D4]). Suppose f+ satisfies the stratification 
condition and there exists gl,... gr E Ro such that the rxr minors of (h; j) generate 
an ideal of finite codimension in C,, 

+ . 
Then f+ is C9 -topologically versal. 
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We first remark that the germs considered here are germs of submersions (for 

cases VI and VIII) or have an isolated singularity at the origin (for the case IX). 
Hence the stratification condition is trivially satisfied. 

At this point I am very much indebted to James Damon for pointing out that the 

germ VI is semi-weighted homogeneous, and for showing that its unfolding of negative 
weight is topologically versal. 

1.5.2. Proposition : (James Damon). The unfolding (ex + yz2 + y2Z + ay3 + Ay + 

µy2, z) is topologically versal provided a 0,3'4 
. 

Proof : The germ fo = (ex + yz2 + y2z + ay3, z) is weighted homogeneous for 

the weights wt(x) = 3, wt(y) = 1, wt(z) = 1. Calculations show that it is 4- XA- 
determined provided a#0, A versal unfolding of fo is f (x, y, z, a, b, A, p) _ 
(ex + yz2 + y2Z + ay3 + by3z + Ay + µy2, z), and negative versal unfolding is 

f+(x, y) z, A, µ) = (ex + yz2 + y2z + ay3 + Ay + µy2, z) . The Euler relation for f+ is 

e(f+) = (2. Xy + µy2,0) . 
We consider the vectors z. e(f+), z2 . e(f+), z3 . e(f+) modulo 

TA, uxA.. f+ + Ca, µ{(y, 0), (y2,0)} + mý,, V (f+) 
. We have 

z. e(f+) _ (-aµy3, O) 

z2. e(f+) = (aX y3 - apy3z, ß) 

The determinant of the coordinates of the above vectors with respect to the basis 

{(y3,0); (y3z, 0)} is -ape . 
It is null if and only if µ=0. Now we can work modulo 

mA. 

z2. e(f+) = (aAy3,0) 
z3. e(f+) = (-aay3z, 0) 

The determinant of the coordinates of the above vectors with respect to the basis 

{(y3,0), (y3z, 0)) is -aal . It 
is null if and only if p=0. Hence the matrix of the 

coordinates of the vectors z. e(f+), z2: e(f+), z3. e( f+) is of rank less than 2 if and only 
if A= it = 0. The unfolding f+ is then topologically versal by Theorem 1.5.1. Q 

1.5.3. Remark : The exceptional values 0,3,4 of the modulus a can be explained 
geometrically by looking at the critical set and the critical locus of the germ fo. 

When a=3, the critical set changes from a crossing (a < 
3) 

to an isolated 

point (a >3 and the critical locus changes from "beaks" to "lips". 

When a=4, the critical locus of the germ fo consists of a triple line, the 

two branches of the profile collapse on the image of the crease. (For the germ f 
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(ex + yz2 + y2z + ay3 +¬ y4, z) the two branches of the profile have higher contact 
with the crease. ) 

When a=0, the viewing direction (the kernel of fo) is tangent to one of the 
branches of E2. Its image has an ordinary cusp at the origin. In (figure 1.5.1) we 
draw the critical locus of fo for different values of a. 

f(C) f(C) f(C) 

2 

1/4 1/3 a 

Figure 1.5.1. 

1.5.4. Proposition : The unfolding (x+yz+az3+Az, y+e2z2+µz) is topologically 
1234 

versal if a 0, e2, -3Ez, 3 Es, 2Es1 3 Ez. 

Proof : The germ fo = (x+yz+aoz3, y+¬222) is weighted homogeneous for the weights 

wt(x) = 3, uwt(y) = 
i, 

wt(2) = 1. Calculations show that it is 7-X, A-determined 

provided a 0, e2 i- ¬2, e2. A versal unfolding is f (x, y, x, a, b, c, d, A, p) = (x + 

yz+az3+bZ4+cz5+dz7+AZ, y+E2z2+pz). The unfolding f+ = (x-{-yz+aoz3+Az, y+ 

62Z 2+ µz) is negative versal. The Euler relation for f+ is e(f+) = -(2Az, pz). If we 

consider the following vectors modulo TA, µXAC. f++ Ca, µ{(z, 0), (0, z)} + mä, µV(f+) 
1 

y. e(f+) = 
(-aoAz3 - 3ao 4e2 

µz4 0) 

y2. e(f+) = (ao 
(2ez - 3ao)14x510)9 
3- 2aoe2 

z3. e(f+) = (2\z4 + £'0 (41E2 - 3ao)pz510), 
3- 2aoe2 

the minors of the matrix of their coefficients with respect to the basis {(z3,0), 

(z4,0), (Z5,0)}, generate an ideal of finite codimension in Ca,., provided ao 
0,3 e2,2 e2,3 e2. Therefore, by Theorem 1.5.1, the unfolding f+ is topologically versal 
for a different from all the exceptional values mentioned above. Q 

1.5.5. Remark : In (figure 1.5.2) we draw the critical locus of the germ fo for some 
values of the modulus a. 
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Figure 1.5.2. 

1.5.6. Proposition : The unfolding (axe + by2 + elxy + xz + e2yz + Ay, z) is 

topologically versal if a 0, b 0, a-b#0,4ab -1 0 0. 

Proof : The germ fo = (ax2+by2+Eixy+xz+f2yz+Ay, z) is weighted homogeneous 

for the weights wt(x) = wt(y) = wt(z) = 1. Calculations show that it is 4-XA- 
determined provided a#0, b 0, a-b0,4ab -1 54 0. A versal unfolding is 

f(x, y, x, a, b, c, d, A) _ (axe-I-bye+E1xy+az+e2yz+cx2z+dxyz+Ay, z) . The 

unfolding f+ (x, y, x, A) = (axe + by2 + eixy + xz + e2 yz + Ay) 0) is negative versal. 
The Euler relation for f+ is e(f+) = -(Ay, 0). The coefficient of the vector (y2,0) 

in y. e(f+) = -(Ay2,0) generates an ideal of finite codimension in CA. Therefore, 

by Theorem 1.5.1, the unfolding f+ is topologically versal for aL0, b#0, a-b 
0,4ab-1 0. 11 

1.5.7. Remark : When a=0 (or b= 0), the profile 01 (or 02) is a single point. 
When a=b the profiles (of the germ fo) coincide. I do not know of an explanation 
of the case 4ab -1 = 0. 
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Chapter 2 

Projections of triples of surfaces 

§1. Introduction 

In Chapter 1 we classified projections of pairwise smooth surfaces. In this chapter we 
extend the classification to orthogonal projections of triples of surfaces onto planes. 
Three smooth surfaces in the Euclidean space meet in general transversally in a corner. 
Each pair of surfaces intersect on a smooth crease and the resulting three creases form 

the corner. For a given triple of surfaces and an orthogonal projection, one actually 
sees the projection of the corner together with the apparent contours of the three 

surfaces. We want to describe what we see when the direction of projection changes 
along a line or in a plane. 

We shall take for a local model of three surfaces meeting transversally in a corner 
the germ of Y= Y1 U Y2 U Y3 with Yl = {(x, y, 0), x>0, y> 0}, Y2 = {(0, y, z), y> 
0, z> 0}, and Y3 = {(x, 0, z), x>0, z> 0}. Any germ of a triple of surfaces is the 
image of Y by a germ of a diffeomorphism in R3. An orthogonal projection of such an 

object onto a plane can be represented by a germ of a submersion f: R3,0 -º R2,2,0 

(figure 2.1.1). 

M 

j. 

X 
ý0 

Figure 2.1.1. Projection of a triple of surfaces 

We classify germs of submersions R3,3,0 -º R2,2,0 up to smooth origin preserving 
changes of coordinates in the source which preserve Y, and smooth origin preserving 
changes of coordinates in the target. This yields an action of a subgroup yA of the 

. 43 



Mather group A on C3 2. The group yA preserves the variety Y in the source, it 
is a special geometric subgroup of A in Damon's terminology [D3]. The calculations 
are summarized in the following '-. eorem where we give the list of the orbits of codi- 

mension less than 2 of the action of yA, allowing the codimension to be bigger in 

the presence of moduli. 

2.1.1. Theorem : The orbits of germs of submersions of the action of yA on 
C3 2 of codimension less than 2 are shown in Table 2. 

Table 2 (e; = ±1) 

Normal forms 

I. (S +E1Z, ty+E2Z 

II. (2'+'E11�9 Z+E22Y+0122+E3x3 

III. (2+E1yfZ+E2Xy+E1E222 +E3X3 +ay4) 

Names YA-codimension 

Stable corner 0 

C- semi-fold 2 

C- semi-cusp 3 

IV. (2'I'E1y, z+E212+E3Yk) 

V. (x+elyx+62x2, y+E3xZ+az2 +bz3) 

k=3 C-semi-lips/beaks k-1 

C- crease cusp 4 

The classification is carried out inductively on the jet level. The method used 
here is identical to that in Chapter 1. We give in section 2a brief summary of the 

changes needed for the action, of. the group YA and . 
the expression for the, tangent 

space to the orbit of a germ. In section 3 we carry out the classification on the jet 

level until a sufficient jet is found. We omit some of the proofs of determinacy of 

germs since it is just a matter of messy calculations. The geometry of each normal 
form in Table 2 is given in the last section. 

§2. Classification method 

We use the same notation as in Chapter 1. The main changes here are those on the 

expression for the tangent space to an orbit and the adaptation of Theorem 1.9 and 
Corollary 2.5.2 in [B-dP-W] to the action of yA. 

The expression for TyA. f 

Let CE V(Y). We can write «(x, y, z) _ ei(x, y, z)at +C2(x, y, z)8y -{'Cs(z, y)z)a: 

as a representative of C at the origin. Since C is tangent to y, C1(0, y, z) = 

44 



e2 (x, 0, z) _ e3(x, y, 0) = 0. It follows by Hadamard's lemma that 61(x, y, z) _ 
x6i (x, y, z), e2 (x, y, z) = yC2(x, y, z) and i3 (x, y, z) = z63 (x, y, z) for some 61, ý2 and 

3 in C3. The set V(Y) is then the C3 -module generated by {xäx, yäy, zO } and 

tf (V (Y)) is the C3 -module generated by {x 
ax ,yý3y, z}. Thus, tf (V (Y) fl 

rn3. V(R3 )) = C3. {x 
of 

,y 
Oy 

, z'f }. The tangent space to the yA-orbit of f at f 

is then 

TyA. f =C3. {xOf, yýy, ZO1+ f*m2{ei, e2} 

The pseudo tangent space is 

, ZLfI + f*{el, e2} TyAe. f = C3. {x--, yaay az 
§3. The classification 

The classification is carried out inductively on the jet level. For the determinacy 

calculations, we use mainly the adapted version of Theorem 1.9 and Corollary 2.5.2 
in [B-dP-W]. We can replace in Theorem 1.2.2, Corollary 1.2.3 and Proposition 1.2.5 

in Chapter 1, xA by yA and the results still hold. We shall refer to these statements 

whenever needed. 
A sufficient jet is given its corresponding number in Table 2. The yA-equivalence 

relation on J'ß(3,2) is denoted by =. The coordinates in the source and target are 
denote by (x, y, z) and (u, v) respectively. 

The 1 -jet f= (ax + by + cz, dx + ey +f z) 

(1) If a#0 or d 3& 0. (We can assume that a 36 0 otherwise we make the change of 

coordinates (u, v) &i (v, u). ) Linear change of coordinates (u, v) º-+ (u, v- 
du) 

in 

the target yields 
(ax+by+cz, ae-bdy+af -cd z) aa 

(i). If ae - bd 0, then f- (ax + a(ce -b f) 
zý 

ae - bd 
y+af- 

cd 
z. ae - bd aa 

If af -- cd #0 and ce -bf00, then f= (x + el Z, Y+ e2 z) . 
If of -cd #0 and ce-bf = 0, then f (x, y+elz). 
If af- cd =0 and cc -bf i4 0, then f (x + ei z, y). 
If of -'cd-0 and ce - bf = 0, then f =(x, y). 

The case ae - bd = 0, af- cd #0 give germs that could be considered equivalent to 
those above by interchanging the pieces of surfaces Yi . The germs (x, y+ El z) and 
(x + el z, y) can also be considered equivalent by interchanging the surfaces Y; . 
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(ii). If ae - bd=of - cd=0, then 
f= (x+ely+E2z, 0) if b, c 0 
f =(a+fy, 0) if b36 0 and c=0 
f= (x + Ez, 0) if b=0 and c 54 0 
f =(x, 0) if b=c=O 

I (2) If a=d=0, then f= (by + cz, ey +f z). Using explicit linear changes of 
coordinates we obtain : 

fL. - 
(y, Z) ifbf - ce 0 

f (0, y+ ez) if bf- ce =0 and c and b#0 (ore and f#0) 

f (0, z) if b=e=0 and c or f #0 

f (0, y) if c=f=0 and b or e#0 
f =(0,0) if b=c=e= f =0 

We are classifying germs of submersions, so the relevant 1 -jets for our investigation 

are the following : 
(X+ElZ, y+E22) 

(X + Ely, z) 

(z, y) 

2.3.1. Proposition : The germ (x + Elz, y+ e2z) is yA-stable. 

Proof : It is easy to check that in this case 1=1 and k=1 in Corollary 1.2.3. 
Therefore f= (x -I- ei z, y+ f2 z) is 1- yA-determined. We also have T yAe .f=V 

(f) , 
hence f is stable. Q 

The 1 -jet (x + ely, z) 

A complete 2-transversal is R. {(0, xy), (0, x2)} . Any 2 -jet with 1 -jet (x + ely, z) is 

y. A-equivalent to (x+Ely, z+ax2+bxy). The orbits in the 2-jet with 1 -jet (x+ely, z) 

are 
(x +Eiy, z +Ezxy+az2) if b00 

(x+Ely, z+¬2x2) if a#0 and b=0 

(x+Eiy, z) if a=b=0 

2.3.2. Proposition : (1). The germ (x + Ely, Z+ E2xy + axe + E3x3) is 3- yA- 
determined if a 54 ¬12. Its codimension is 2; this is the case II in Table 2. 

(2). The germ 
(x + Ely, z+ e2xy + e1 e2x2 + E3 x3 + ay4) is 4- yA -determined 

if 

a 56 --$ElE2. Its codimension is 3; this is the case III in Table 2. 

1 
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(3). The germ (x + ely, x+ ¬2x2 + e3yk) is k -y A-determined. It is of codi- 
mension k-1; this is the case IV in Table 2. 

Proof : (1). The complete 3-transversal of f= (x+ely, z+e2xy+ax2) is R. {(0, x3)} , 
and the orbits in the 3-Jet with 2-jet as f are (x + ¬ly, z+ e2xy + axe + 63x3) and 
(x + Ely) Z+ E2xy + ax2) . 

The claim is that (x + C1 y, z+ e2xy + axe + 63x3) is 3-yA-determined provided 
a# f1 e2 i and (x+el y, z+e2xy+ax2) is 3- yA-determined provided a#0, 

e22, 
e1 e2 . 

Let f= (x + El y, z -}- E2xy + axe -}- 63x3) . Then, 

xOf = (x, E2xy + 2ax2 -i- 3E3x3) 

of 
= (ely, e2xy) 

z 
Of 

= (0, x) 

It is not hard to show that m3. C3 2C C3-{-C 
Ox 

,y 
Of 

,zz}+f *m2. C2 2+ m3. C3 2 

provided a# E12. Thus I=2 in Corollary 1.2.3. 

We need to prove that m3. C3 2C TyAi. f + m3. C3 2. It is clear from the 

expressions of x5-, y 
ýf 

and z 
Lz 

that it is enough to show that the monomials 

of degree 5 and 4 in C,,, y{(0,1)} are in TyA1. f + m3. C3 2. 

For the degree 5 calculations, we use the following vectors in TyA1. f modulo 
6 x2 m3. C3 

(1) x3y( 
f_ 

El 
aý) 

s (os E2 x3y2 + (2a 
- El E2)x4y) 

(2) x2y2(öx - El 8y) = (0, E2x2y3 + (2a 
- flf2)X3y2) 

(3) xy3(of- El 
ý) 

= (0, E2xy4-}- (2a 
- ElE2)xZy3) 

(4) x4of +(4x3y+6Elx2y2+4xy3-+ -Ely4)of (0,2ax5+5E2x4y-1-6Ele2x3y2-ý- 
aa y 

4E2X2y3 + ElE2Xy4 

(`5) (O, flf2) = 
(O, c2x5 + a(E2 + e1 a)x4y + (1 + 2e1 E2)x3y2 + el x2y3> . 

These vectors are generated by (0, x5), (0, x4y), (0, x3y2), (0, x2y3 ), (0, xy4) . 
For 

a00, 
E22, 

el E2 , they are linearly independent. Therefore their generators are in 

TyAI. f modulo m3 . 
C3 2. Using (O, f, 5) we show that (0, y5) E TyAi. f modulo 

6 r4C3X2. 

The above vectors depend only on j2 f. In fact, using other vectors which depend 

on the 3 -jet of f, we can show that the values 0, E2 2 for' a are not exceptional. 
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Similar calculations show that all monomials of degree 4 are in TyAI. f modulo 

M 6.2 
. Thus, f is 3-yA-determined provided a0 El C2 . We have also proved that 

j2f = (x + ei y, z+ E2xy + axe) is 3- yA -determined provided a#0, 
Ei Ez 

2, Ei E2. This 
is going to be useful for the topological versality calculations in Proposition 2.4.2. 

Calculations show that TyAe. f®R. {(0, x), (0, x2)} =V (f) 
. The codimension 

of f is 2. 

(2). When a= El¬2, the 3 jet f= (x+ Ely, z+E2xy+ax2-{-E3x3) is not 3-yA- 
determined. A complete 4-transversal is R. {(O, y4)}. There is 1-parameter family of 

orbits in the in the 4 -jet with 3 -jet as f, that is (x+E1y, z+E2xy+E1E2x2+E3x3+ay4). 

The germ (x + Ely, z + f2xy + El¬2x2 + E3x3 + ay4) is 4-yA-determined provided 

a-$ El E2 . The calculation here are quite messy, we shall omit them. In this case 
13 and k=4 in Corollary 1.2.3, and TyA,. f®R. {(0, y), (0, y2), (0, y4 )} =V (f) 

. 

(3). Let jk'1f = (z + eiy, z + e2x2). Then xýf _ (x, E2x2), y 
f= 

(el y, 0), zz= (0, z) . 
It is clear that a complete k -transversal is R. {(0, yk )} . 

Any k -jet with (k - 1) jet as f is y, 4-equivalent to (x + ely, z + e2x2 + e3yk) 

or (x+ely, z+62x2)" 

Let f denotes the k -jet (x + El y, z+ f2 x2 + e3y'F). Then 

x- = (x, e2x2) 

yay = (Ely, E3kyk) 

z 
Of 

= (0, z) 

It is not difficult to show that m3. C3 2C C3-{x 
L_, 

yaf ,z 
of }+ f*m2. C2 2--m3. C3 2. 

8y öz 
Hence 1=2 in Corollary 1.2.3. We need to prove that m3 +1. C3 2C TyA1. f + 

m3 +3, C3 Z, It is clear from the expressions of x 
ýf 

,y 
Of 

z 
Of 

and (0, fl) that it is 
y 

enough prove that (0, yk+2) and (0, yk+l) are in TyA1. f modulo m3 +3. C3 2. 

We have V= (x3 + 3xy2) 
X+ 

y3 
äy 

+ 
(fl 

, 0) = (0,2E2x4 -- 6f2xzy2 -I- eakyk+2) 
Now the vectors 

(1). V= (0,292X4-61E2 x2y2 + E3kyk+2) 

(2). (O, f1 f2) (O, E2 X4 + E122y2 + 2E1E2xyk+1 + E3yk+2) 

(3)" (0, fi +2) = (0, ei (k + 2)xyk+i + yk+2) 

(4). zy2(E1 
of 

ay) (0,2E192X2y2 - E3kxyk+1) 

are linearly independent. Hence, (0, yk+2) E TyAI. f+ m3+3. C3 2. 
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Now if we use the following vectors : (x2 + 2xy) 
Of 

+ y2 
ýy 

-- (fi 
, 0); (0, fl f2); 

(0, k+1 ); xy(¬1 ax - aý) , we show that (0, yk+i) E TyA1. f+ m3+3. CX2. 

Note that TyAe. f®R. {(0, y), (0, y2), ..., 
(0, yk-1)} = V(f), the codimension of 

f is k-1. 

The 1 -jet (x, y) 

11 

A complete 2-transversal is R. {(yz, 0), (z2,0), (0, xz), (0) z2)} . There is a family of 

orbits in the 3 -jet with 1 -jet (x, y) which is relevant for our investigation, that is 
(x + Eiyz + E2z2, y + E3xz + az2). The orbits in the 3-jet with 2 -jet 

(x + Elyz + 
E2z2, y+ E3XZ + az2) are (x + Elyz + E2z2, Y+ E3XZ + az2 + bz3) 

. 

2.3.3. Proposition : The germ (x + elyz + e2z2, y+ e3XZ + az2 + bz3) is S_ 
determined provided a i6 0, b#0. Its codimension is 4 with a and b 'moduli. This 

is the case V in Table 2. 

The proof of this proposition follows using Corollary 1.2.3. Here 1= 2 and k=3 

provided a#0 and b#0. We also have TyAe. f ®R. {(z, 0), (0, z), (0, z2), (0, z3)} _ 
V (f) . The codimension of f is 4. 

§4. The geometry of the normal forms in Table 2 

In this section we describe the geometry of the germs in Table 2. As in Chapter 1, 

we shall give a versal unfolding of the germ and a realization of it in terms of a family 

of parallel projections of a generic triple of surfaces. We draw the "critical sets" of 

nearby germs by varying the unfolding parameters in a neighbourhood of the origin. 

Comers occur at isolated points on generic triples of surfaces. For singularities of 

codimension less than two of orthogonal projections, one expects only singularities of 
codimension less than 1 in Table 1 to occur at the corner point on one of the creases. 
As in Chapter 1, we expect a case of codimension 2 (plus moduli) to occur when two 

of the surfaces forming the comer have a common tangent space at the origin. For 

lack of bravery to face the calculations, this case is not dealt with algebraically (it is 

excluded from the context by imposing on the three surfaces to meet transversally i). 

We shall sketch its geometry at the end of this section. 

The notation here is similar to that in §4 in Chapter 1. For a given germ in Table 
2, we want to realize its unfolding f in terms of a family of parallel projections of a 
generic triple of surfaces. That is finding i such that the following diagram commutes. 
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R3,0 
V1 7C(_a. _M) 

R3, Ox R2,0 f R2,0 

Here denotes the projection on the plane z=0 in the direction 

We denote by M the image by i of the model Y of triples of surfaces. We write 
M= Ml U A12 U M3 with M, = i(YY). The three creases are denoted by Ci for 
Ml n M2 , 

C2 for M2 n M3 and C3 for M3 n MI. The corner is C= Ci U C2 U C3. 

The critical sets, of f Ami are denoted by E; 
. 

The critical set of f is then E= 

CU E1 U E2 U E3 and its image is the critical locus of f. We draw the image of the 

corner with a thick line and the profiles with a thin line. The dashed lines refere to 
the invisible parts of the critical locus. 

. 

2.4.1. Remarks : In addition to Remarks 1.4.4 in Chapter 1, we have 
(1). If f (C; ) are smooth, then at most one of the E; is non-empty. 
(2). If f (C1) is singular, then E1 and E2 are not empty and E3 is empty. 

Proof : (1). Since f is a 'germ of a submersion, the tangents to the images of creases 
span the plane R2 . 

If f (C; ) are pairwise transverse, then f jy (i = 1,2,3) are of maximal rank. 
Thus E; (i = 1,2,3) are empty. 

If two of the f (C; ) are tangential, say f (CI) and f (C2), then fly, and fly,, are 

of maximal rank. That is El = E2 _ 0. The germ flY2 is of rank 1, therefore E3 is 

non-empty. 

(2). When f(C1) is singular, fly, and fly, are singular. Hence E1 and E2 are 
non-empty. The set E3 is empty because f is a submersion. Q 

Case I. Stable corner- I 
The germ (x+eiz, y+e2z) is yA stable. It is realized by i(x, y, z) = (x+fiz, y+ 

e2z, z) . The image of the corner is {(elz, e2z), z> 0}U {(0)y), y> O} U {(x, 0), x> 0} . 

Case II. C- semi-fold 
An yA-versal unfolding of the germ is f= (x+Ely, z+E2xy+ax2+E3x3 +Ax) 

This unfolding is realized by i(x, y, z) _ (x + El y, z+ e2xy + ax2 + C3 X3, X) . 
The image of the comer is {(0, z), z> 0} U {(Ely, 0); yy O} U {(x, axe + C3 X3 + 

Ax), x >_ 0}. The last two creases are tangential at the origin. The critical set of 
fly, is given by y= -E2(A + (2a, - f1 2)3 + 3¬3x2). Its image is parametrized by 

xH (2(1 
- ElE2a)x - 3E1E2E3x21 (El C2 - a)x2 - 2¬3x3) 

. 
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When a0 E1E21 (0,0,1) is not an asymptotic direction at the origin and the 

profile is smooth. 
At A=0, the profile f(E1) and the images of the creases Cl and C3 are 

tangential. When A moves away from the origin, f (C; ) become pairwise transverse 

and meet in a corner of type I (figure 2.4.1). On one of the creases lies the profile 
away from the corner (this is a singularity of type II in Table 1 in Chapter 1). 

771 
Figure 2.4.1. C- Semi-fold 

The geometry of the germ (x+EIy, Z+E2xy+ax2 -+3x3) does not vary when the 

modulus a changes locally. We use Damon's results on topological versality to show 
that the unfolding (x+Ely, z+E2xy+ax2+ax) is topologically versal. As pointed out 
in the proof of Proposition 2.3.2 (1), the germ fo = (x+Ely, z+E2xy+axe) is 4-yA- 
determined provided a#0, 

E22, 
El E2 . If we assign weights to the variables x, y, z 

such that wt(x) = wt(y) =1 and wt(z) = 2, then, fo is weighted homogeneous. 

Thus (x + Eiy, Z+ E2xy + ax2 + E3x3) is semi-weighted homogeneous. 

2.4.2. Proposition : The unfolding (x + el y, z -h e2xy + axe +, \x) is topologically 

versal provided a 0, I EI C2 
, 61E2 

Proof : The stratification condition is trivially satisfied here since fo is a germ of a 

submersion. The germ fo is 4- yA -determined provided a#0, 
E22, 

El E2. All that we 
have to prove is that the unfolding (x+El y, z+E2xy+ax2+Ax) is of finite codimension. 
Well, an unfolding of fo' is f (x, y, z, a, b, A) - (x + El y, z+ E2 xy + axe + bx3 + AX), 

and a negative versal unfolding is f+(x, y, z, A) = (X'+ el y, z+ E2 xy+ axe + Ax) . The 

Euler relation for, f+ is e(f+) = (0, Ax). The minor of the vector x. e(f+) _ (0, Ax 2) 

with respect to the basis (0, x2), is A. This generates an ideal of finite codimension 
in Ca. The proposition then follows by Theorem 1.5.1 in Chapter 1.0 

2.4.3. Remark : One can explain geometrically why the values 0, Ll2,61 
f2 of the 

modulus a are exceptional. 
P-, r a=0, the ima; c of the crease Cl has a higher contact with the image of 

the crease C3. 
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When a=6 
ja, the critical set El is tangent to the crease C1. This is the 

condition to have a C-semi-lips/beaks singularity. In fact when a= 
L2 E2 

, the 2-jet 
(x + ely, z+ e2xy + ax 2) is equivalent to (x + el y, z+ e2y2) or, by interchanging the 

surfaces Yl and Y2 
, to (x + el y, z+ e2x2) . We recognize on this the 2 -jet of the germ 

IV in Table 2. 

When a= C1 C2 , the direction of projection is an asymptotic direction. The 

profile has an ordinary cusp. 

For each of the above values of a, an extra condition is added to the germ f. 
That is why they are exceptional for the family fQ . 

Case III. C- semi-cusp ti 
. 'A 

An yA-versal unfolding of the germ is (x+Ely, z+E2xy+ElE2x2+E3x3+ay4+ 

Ay + µy2). An equivalent unfolding is realized by i(x, y) z) _ (x + Ely) Z+ E2xy + 
El E2x2 + ¬3x3 + ay4, y+ y2) 

Taking the first considered unfolding, the image of the corner is {(O, z), z> 
0)U{(El?!, ay4+)ºy+µy2), y!, 0}U{(x, E1E2X2+E3x3), X ý 0}. The restriction of f 
to Yl is singular and its singular points satisfy the equation 

3ele3x2 +2E2x - A, - (214 - el ¬2)y - 4ay3 =0 (*) 

At .\ _' p=0, (0,0,1) is an asymptotic direction to the `surface Ml . The 

profile has a cusp at the origin and the projection of the two creases Cl and C3 are 
tangential. On the 'p-axis the projection of the two creases and the profile remain 
tangential, this is a" singularity of type II in Table 2. There is another special curve 
in the (, \, p) -parameter space where the cusp on the fold lies on one of the creases. 
This is a singularity of type IV in Table 1 in Chapter 1. It happens when the profile 
is singular and the singular point is on the x -axis or y -axis in the source. Using the 

equation (*) we find that the curve is (1\7 µ) = (E1E2y + 8ay3, -6ay2) for the cusp to 

lie on {(Ely, ay4 +ay+ py2), y> 0}, and (i1, i) = (3E2E3x2 + E2x, 3E3x)}, for the cusp 
to lie on {(2, E1E222 + E323), X? 0} (figure 2.4.2). 
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C3 

C2 (1) 

(3) 

(2) 

ýý 

'ýI 
,, ý 

(1). Semi-cusp on C1 
(2). Semi-cusp on C3 
(3). C- semi-fold 

'Ic 

Figure 2.4.2. C- Semi-cusp 

Case IV. k=3 C- semi-lips/beaks 

An yA-versal unfolding of the germ is (x + Ei y, z+ E2 x2 + E3 y3 + Ay + pp y2) . The 

germ (x + E1 y, z+ E2 x2 + E3 y') 3) does not have a symmetrical unfolding. An equivalent 
germ is realized by i(x, y, z) = (x + Ely, z- 2E1 E2xy - 62Y2 + E3y3, x+ x2) . 

If we consider the first unfolding, the image of the corner is {(0, z)} U {(El y, E3y3+ 
Ay + py2)} U {(x, E2x2)}. The singular set of this unfolding when restricted to Y1 is 

defined by the equation 

x= -1 Eif2(A +2µy + 3E3y2) (*) 

At A=p=0, the critical set El and the crease {(0, y, 0)}' are tangential, 

semi-lips/beaks occur on the critical locus of fly, 
.( Semi-lips when El E2 E3 = +1 and 
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semi-beaks when El¬2E3 = -1. ) The projection of the creases forming the surface 
Ml and the profile are tangential at the origin. The projection of the creases remain 
tangential when A=0, this is a singularity of type II in Table 2. The critical set of 
fly,, is tangent to the crease C1 when 3E3 A- p2 =0. For (A, p) on this curve, semi- 
lips/beaks (singularity of type III in Table 1 in Chapter 1) occur on the projection of 
the surface Ml (figure 2.4.3). 

C2 µ- (1) (2) 

µ 
C3 

(1). Semi-lips 

,., (2). C- semi-fold 

LY 

'º ýI,, 

.1. 

Figure 2.4.3. 'C- Semi-lips' 

Case V. C- crease cusp 

An yA versal unfolding of the germ is (x+elxy+EZZ2+Az, y+ 3xz+äz2+bz3+ 
µz). This unfolding is realized by i(x, y, z) = (x + Eix y. }. e2z2, y+ E3xz +az2 +bz3, Z). 

The image of the corner is {(Az+E2z2, µz+az2-}-bz3)}U{(0, y)}U{(x, 0)}. The 

critical set of fly3 is given by the equation x= -E3A+(A-2ae3)z+(2e2-3be3)z2 , and 
the critical set of fly, is given by the equation 'y = -elA+(µ-2¬1e2)z+2az2+3bz3. 
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At A=p=0, (0,0,1) is tangent to the crease C2 at a point of-non-zero torsion. 
The projection of the crease has an ordinary cusp at the origin (provided b# 0). The 

crease remains singular on the curve (A, p) = (-2e2z, -2az - 3bz2) . On the A-axis 

and µ-axis, C- semi-fold singularities occur (figure 2.4.4). 

7c C2 

3 12 

C1 

C3 

ýr 
ýý 

. ",, "' ý, ý 
ýý, ý 

) k... " 

Figure 2.4.4. C- crease-cusp 

The missing case. Non-transverse C- semi-fold 

... . m.. a 

When two of the surfaces forming the corner have a common tangent space at the 

origin and f is singular on both of them, f is of rank 1. This case cannot be 

realized as a family of orthogonal projections of a generic triple of surfaces. One 

has to consider an orthogonal projection of 2-parameter family of triples of surfaces 
23 Ma,,, = Ma,, UM.,,,, UMä,, , with for example Möo and M0,0 having the same tangent 

plane at the corner point. We can think of the family M. \, µ as the combination of 

the slipping of the surface M0,0 along its common boundary with the surface M 
,0 

and the changing of "height" of the surface M01,0 with respect to this boundary. 

This case, that we call non-transverse C- semi fold, is of codimension 2 (plus 

ýýýpnw 

'111111/~ '///111 
ýll 

. ýýw: ýýý 

(1). Semi-fold on C3 
(2). Semi-fold on C2 
(3). Semi-cusp 

L, f!,... ý. "...,, ý 

111 1111111" 

IF 
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moduli). We expect a curve in the parameter space (A, i) where the first two surfaces 

still have a common tangent plane but away from the corner. These are the non- 

transverse semi-fold singularities in Table 1 in Chapter 1. We also expect two other 

special curves where C- semi-fold singularities occur on two different creases (figure 

2.4.5). 

C1 

91 

ýIý 
.. 

ýýýI 

i" 

U-1- 

(1). Non -transverse 
semi-fold 

(2). C- semi-fold on C3 
(3). C- semi-fold on Ci 

\ 
i 

ýý 

Figure 2.4.5. Non-transverse C- semi-fold 
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Chapter 3 

Recognition of smooth map germs from the plane to the plane 

§1. Introduction 

Map germs from the plane to the plane have been extensively studied for the last 

thirty years. Their investigation started with Whitney in 1955 [Wh]. He considered 

explicit smooth changes of coordinates in the source and target and found that there 

are three stable maps 
(x, y) Diffeomorphism map 
(x, y2) Fold map 
(x, xy - y3) Cusp map 
After Mather's work on determinacy and the improvement of his estimates, it 

was possible to carry out the classification further and obtain a list of orbits of germs 

of low codimensions. Extensive work was done in this direction (see §1 in Chapter 1 
for references), and recently J. H. Rieger obtained a table of germs of codimension 
less than 6 [RI]. 

For any germ F of rank greater than 1 and of low codimension, there are dif- 
feomorphisms h and k from the plane to the plane such that koFo h-1 is one of 
the germs in R. ieger's Table. In practice for a given germ f, it is very difficult to find 

explicitly the diffeomorphisms h and k and hence "recognize" the singularity type 

of the map F. 

In this chapter, we extend Yun-Chen Lu's criteria [Lu] for recognition of fold 

maps and cusp maps to germs of codimensions 1. When the critical set E of a germ 
F is smooth, the method consists of looking at the order of contact of E with the 

kernel of DF(0,0) at the origin. When the critical set is singular, i. e., consists of an 
isolated point or a node, an additional algebraic condition is needed to recognize the 

germ. For germs of codimension greater than 1 this criterion is not sufficient for their 

recognition. 

The criterion we present here is weak as it does not give a systematic way of 

recognizing map germs from the plane to the plane, but it is of a big help in Chapter 

5 when we study the transitions in 1-parameter families of Rotational Symmetry Sets. 

We denote by C2 the set of smooth map-germs F: R2,0 -º R2,0 and by A 

the Mather group of germs of diffeomorphisms at the origin in the source and target. 

When F is of rank > 1, we can change coordinates in the source and target and 

write F(x, y) = (x, f (x, y)) (see [Br-L]). The differential of F at a point (x, y) is 

then 
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0 

DF(x, y) =af 

(('Y) 

ay 
(x, y) 

The map F is singular at (x, y) if and only if 
(y 

(x, y) = 0. The critical set of F is 

E= {(x, y) : 
2f-(x, 

(x, y) = 0} 

By the Implicit Function Theorem, the critical set E is smooth if and only if 
ýyf 

(0,0) 54 0 or 
ýy 

(0,0) 54 0. We take :I> R2 as a local parametrization 

of E when it is smooth, where I denotes an open neighbourhood of 0 in R. The 

order of contact of E with the kernel line of DF(0,0), ker(DF(0,0)), is the order 
of vanishing of the derivatives of Foc at 0. 

3.1.1. Lemma : (i). The order of contact of E with ker(DF(O, 0)) is independent 

of the parametrization of E. 

(ii). When E is smooth its order of contact with ker(DF(0,0)) is an A- 
invariant. 

Proof (i). Let ý and 0 two local parametrization of E at the origin. Then Foo= 
Fo¢o (0-1 o i) with (071 o 0)(0) = 0, and (0-1 o b)'(0) 54 0. It is clear that 
(F o o)(0) = (F o o)'(0) =... = (F o t)(")(0) =0 and (F o b)(n+l)(0) #0 if and only 
if (F' o ý)(0) = (F o c)'(0) = ... = (F o 4)(n)(0) =0 and (F o 0)(n+1)(0) 0. 

(ii). Let G be an A-equivalent germ to F. We can write G=koFoh for some 
(h, k) in A. Let ý and t' be parametrizations of the critical sets EG of G and EF 

of F respectively. We have DG(x, y) = Dk(F(h(x, y)). DF(h(x, y)). Dh(x, y), and 

since h and k are germs of diffeomorphisms it follows that (x, y) E EG if and only if 

h(x, y) E EF. That is EF = h(EG). Let 0 be a parametrization of EG , then ho0 

is parametrization of EF. Now in the above expression of DG in terms of DF we 
deduce that, (G o 0)(0) = (G o 0)'(0) = ... = (G o 0)(n)(0) = 0, (G o 0)(n+1)(0) 0 

if and only if (F o (h o c))(0) = (F o (h o j))'(0) _ ... = (F o (h o 0))(')(0) _ 
0, (F o (h o c))(n+0(0) 36 0, which proves the assertion. O 

§2. Recognition of fold and cusp maps 

Let ý be a local parametrization of the critical set E. 
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3.2.1. Definition : (5.2 page 38 in [Lu]). 

(i) The map F is a fold map if 
dt 

(F o 0)(0) 0. 

(ii) The map F is a cusp map if 
dt(F 

o iß)(0) =0 and 
d 

2t 
(F o c) (0) 4 0. 

3.2.2. Remark : The conditions given in Definition 3.2.1 reflect the order of contact 
of E with the kernel of DF(O, 0), Ker(DF(0,0)). The map F is a fold map if and 
only if E and Ker(DF(0,0)) are transverse at the origin. It is a cusp map if and 
only if they have 2-point contact at the origin (figure 3.2.1). 

(s) 
(s) 

ýýp)) Ker(DF(0,0» 

(i) Fold map (ii) Cusp map 

Figure 3.2.1 

3.2.3. Proposition : Let F: RZ, 0+ R2,0 be a smooth map germ with 
F(x, y) = (x, f (x, y)). Then, 

z 
(i) F is a fold map if and only if 

Oy 
(0,0) =0 and 

ýy 
(010) 54 0 

aa 
(0,0) = 0, (0,0) 54 0 (ii) F is a cusp map if and only if 

2f 
(0,0) _ 

yZ y y 

and 
ä3 

(0,0) 54 0. 

Proof : Whitney (1955) [Wh]. 

3.2.4. Proposition : Definition 3.2.1 and Proposition 3.2.3 are equivalent. 

Proof : Let F(x, y) = (x, f (x, y)) with a critical set E= {(x, y) : (x, y) = 0} . ay- 

Let (- 
02-f 

x '02f (x, V)) be a vector field tangent to E, and q5 :I --ý R2 
aye 

( y)ý öxoy 

a local parametrization of E satisfying 
dý(t) 

= (- 
ý2yZ 

y 
( fi(t))). By 

definition 
ýy 

(¢(t)) = 0. ' We have 
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it (F o ¢)(t) = DF(q(t))" it «(t) 

i0 (-E«») äx (fi(t)) äy (fi(t)) ä äy (fi(t)) 

äy 
(fi(t)) 

Of (O(t))- ä2 2 (0(t)) + Of (O(t))" a 
92 ä (fi(t)) Oyyy 

$-(«t)). 
_ 8f : (*) 

5 (fi(t)) 

21 
(0,0). af At the origin, ý(0) = (0,0). Thus, 

dt 
(F o ý)(0) _-2f 

y 
ax(p, 

p) 

Hence T (F o 0)(0) #0 
ý2 

(0,0) #0. 

If we differentiate (*), we get 

1 
a 

ä (F 0 0)(t) =d (- ay (ý(t))" Of ) 

x 
(o(t)) 

1 

-{- exa (O(t))" äy (fi(t)) + 
ý(«t)). 

_021 (O(t))}" (of) 
yy äx (OW) 

0 
2 aye (ý(t))" d 8f 

t 
(**) 

dt 
(Ox ýýý ))) 

If 
d 

(F o q5)(0) = 0, that is 
ýy (0,0) = 0, then 
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03 02 d (F o 0)(0) = -7 
3 (°, 0) ay1 (°' °) at 

Z 
Hence, 

dt (F o 0)(0) =0 and ate Fo 0(0) }4 0 if and only if 
ßy2 

(0,0) = 0, 

02 
ay #0 and 

2y (0,0) # 0. Q 

3.2.5. Examples : (1) The fold (x, y2) and the cusp (x, xy - y3) satisfy the condi- 
tions in Definition 3.2.1. 

(2) The midpoint locus. 

We recall the notation in [G-B]. Let 7y be a parametrization of a smooth unit 
speed curve, and T its tangent vector. Take two points 7(t1) and 7(t2) and denote 

two neighbourhoods of these points on -y by 'yl and y2. The pieces of curves 'yi and 

72 are unit speed. Their unit tangent vectors are denoted by Ti and T2 respectively, 

and their curvatures icl and X2. The midpoint map is defined as follows, 

m: R2,0 --> R2 

(tl, t2) +-i 
2(Ill(tl) 

+ 72(t2)) 

The differential of m at (tl, t2) is Dm(ti, t2) -2 (T(ti ), T (t2)) 
. 

The critical set 

of m is then Em = {(tl, t2) : T2(t2) = ±T1(tl)}. 

The critical set E,,, is smooth if and only if rcl(0) 00 or r,. 2(0) 0. Let 

assume that ic2(0) # 0. We can parametrize E,,, locally by (ti, t2(t1)) with 
kl(tl) 

t2(tl) 
- N2(t2(tl)) . 

We have 

dt(m 
0 ý)(tl) = 

2{T1(tl)+ 
(t(tt)))T(t2(ti))} 

-1 {t£ 2(t2(tl))Ti(ti) + c1(ti)T2(t2(ti))} 
2N2(t2(tl)) 

=1 
{K2(t2(tl)) ± K1(tl))Tl(tl) 2 k2(t2(tl)) 

To simplify the notation we shall write for example rc2 for rc2 (t2 (ti )) 
. Differentiating 

once more we obtain 
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d 

Zt 
(m od 2ý2 

ýK2 k1)T1 

= 
1? ( 2Ký ýi)Ti -t- (K2 K1)dt(2 

ZT1) K 

Hence, 
dt 

(m o ¢)(0) 00 tC2 (0) F'i (0) 

and 
ä (m o ý)(0) =0 and 

ä2 
(m o 0)(0) 0 I2(0) = R, c1(0) and K21(0) 0 ic1'(0) 

By Proposition 3.2.4 the midpoint map m is a fold map at (0,0) if and only 
if T2(0) = ±T1(0) and 1c2(0) 0 Fi i(0), and is a cusp map at (0,0) if and only if 

T2(0) = ±T1(0), K2(0) = : Fii(0) and rc2(0) #'ci(0). 

These conditions are interpreted geometrically by looking at the order of contact 

of E, n and ker(Dm(0,0)) in (figure 3.2.2). 

.) 

x(0.0)) 

Figure 3.2.2 

§3. Recognition of a swallowtail map 

(ii) m is a cusp map 

0, o» 

A map germ from the plane to the plane is called a swallowtail map if it is A- 

equivalent to the germ (x, xy + y4) . Let F as before be of the form F(x, y) _ 
(x, f (x, y)). We have the following result. (See [R1] for proof. ) 

2 
3.3.1. Proposition : The map F is a swallowtail map if and only if 

2 
(0,0) 

4 ýy 
(0,0) = 0, 

oý y2 (0,0) 00 and 
ýy 

(0,0) 5k 0. 
y 

11 

(i) m is a fold map 
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Let c,, as in Proposition 3.2.4, be a local parametrization of E satisfying 
dt 

o(t) = (- 
jy 

(fi(t)), 
02 y 

(fi(t))). We shall show that the condition in Propo- 

sition 3.3.1 is equivalent to the following. 

3.3.2. Proposition : 
d 

2t 
(F o 0)(0) =0 and 

Proof Proposition 3.2., 

The map F is a swallowtail map if and only if 
dt 

(Focb)(0) _ 

3 
(F o 0)(0) 00. 

I shows that 

ä (F o q5)(0) =ä (F o c)(o) =o 
a2 2 (ö, o) = 

a3 
3 (o, o). ää (o, ö) =o yyy 

Differentiating (**) once more in the proof of Proposition 3.2.4, when 
dt(Fo)(0) 

= 
d 

2t 
(F o ý)(0) = 0, we deduce that 

1 

Hence 
a 

(F o ý)(0) = 
d2 (F o c)(0) = 0, 

d3 
(F o 0)(0) #0 if and only if 

a2 f= 
dt dt2 W aye 

a3f 

=0,021 #0, 
&4f 

#0. 

ay3 axay Oy 
We conclude using Proposition 3.3.1.0 

The conditions in. Proposition 3.3.2 express the order of contact of the. critical 
set. E with the line Ker(DF(O, 0)). Thus, 

3.3.3. Corollary :A map F: R2,2,0 --º R2,2,0 of rank 1 at the origin and having 

locally a smooth critical set is a swallowtail map if and only if its critical set E has 

8 point-contact with the kernel of DF(0,0) at the origin as in (figure 3.3.1). 0 

Figure 3.3.1 A swallowtail map 
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3.3.4. Example : The centre map (Chapter 5). 

Recall the notation in Example 3.2.5. Let R2 be the real plane identified with 
the complex numbers C. The central map C+ is defined as follows. 

C+: R2 -º C 

(tits) ý--º 
y(t, )T(t2) -'Y(t2)T(ti) 

T(t2) -T(tl) 
The critical set of the map C+ is 

Ec+ = {(t, t): tE R} U {(t,, t2): K(tl) = K(t2)} U {(t1, t2): C+(t1, t2) E SS} 

where SS denotes the symmetry set of the curve y. Calculations in Chapter 5 show 
the following. 

(1). When Ec+ is locally {(tl, t2): K(tl) = ic(t2)} at (ti, t2) , the map C+ is a 
swallowtail map if and only if ic(t°) = ic(t2), ic'(ti) = ic'(t2), rc"(ti) = rc"(t2) and 
rc"'(ti) 0 r. "'(t2) (Proposition 5.3.2 (iii) in Chapter 5). 

(2). When Ec+ is locally {(tl, t2): C+(ti, t2) E SS} at (01,02), it can be 

parametrized by :I -º R2, «(tl) = (tl, t2(tl)) with t2(tl) 
1- rK(tl) 

1- rrc(t2(tl )) 

provided that the bitangent circle is not osculating at -y(t2) . 
Here r denotes the 

radius of the bitangent circle to the curve y. We have 

d (C+ o c)(tý) = 
ac+ (tl , t2(t1 OC+ (tl, t2(tl)) dt atl 1- rtc(t2(4)) at2 

In the expression for the partial derivatives of the map C+ in Chapter 5 (in proof 

of Proposition 5.3.1), it is not hard to see that when C+(t1, t2) is the centre of a 

bitangent circle we have 
C 

at, 
(t1, t2) rl(tl))T(t) 

-T t) and aý2 
(tl, t2) _ 

- 
T(tl)T(t2) 

It follows that (1 
- r/£(t2))T(tl) 

- 
T(t2) 

d 
(C+ ° ý)(tl) = 2(1 - rn(tl))T(tl)T 

(t2(ti)) 
dt T(tl) - T(t2) 

Therefore 
dt 

(C+ o q)(ti) =0 if and only if r= 
ý(i) 

that is the bitangent circle is 

osculating at, -y(tl). Now, 

T (C+ o ý)(ti) =d zt 
(C+ ° O)(ti) =0r=k t° and rc'(ti) =0 

d3 
If at3 (C+ o ý)(ti) #0 the bitangent circle to the curve is an A1A3 circle, i. e., y 
has a -vertex at y(t? ), the map C+ is a swallowtail map at (ti, t2) and for generic 
1-parameter families of curves (y, ) the symmetry set undergoes the swallowtail tran- 

sition. But in [B-G3] the generic transition on the symmetry set is the one shown 
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in (figure 3.3.2). The symmetry set at an A1A3 consists of two branches. The first 

branch is the centres of circles bitangent to the curve at points in small neighbour- 
hoods of y(tj) and y(t2), and the second branch is the centres of bitangent circles 
to the curve in a neighbourhood of the vertex y(t? ). The map C+ does not pick 

up the points on the second branch on the symmetry set (figure 3.3.2). The method 
described in [B-G3] is more efficient for studying the symmetry set! 

(e) 

to 

02 Ker (DC+(t° ý, 
to )) 

The critical set of C has three components at an A1 Ag point 

Al A3 transition on Symmetry Set 
(The dotted curve is the evolute) 

Figure 3.3.2 

3.3.5. Remark : We are tempted to generalize the results in Corollary 3.3.3 and say 

that any finitely A-determined germ F from the plane to the plane of rank >1 and 

of smooth critical set is completely determined by the order of contact of its critical 

set with ker(DF(O, 0)) . 
One quickly realizes that this is not true by considering the 

germs (x, xy + y5) and (x, xy + y5 ± y7) . The critical sets of these two germs have 

order of contact 4 with the kernel line of their differential maps at the origin. They 

are both 7-A-determined but they are not A-equivalent. An algebraic condition can 
be added to the order of contact to distinguish between the two germs. 
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§4. Recognition of lips/beaks map 
The normal form of a lips/beaks map is (x, x2 y± y3) . The critical set is no longer 

smooth, it consists of an isolated point for (x, x2y + y3) and a node for (x, x2y - y3). 
Let F be as before of the form F(x, y) = (x, f (x, y)). In Rieger's classification 

[R1], the condition for F to be a "lips/beaks" maps is the following. 

2 
3.4.1. Proposition : The map IF is a lips/beaks map if and only if 

0y 
(0,0) _ 

i92 f 
xa 

(°, °), 
03ý 493f 

30 and (a2ay2)2(0, °) ax2äy(0,0). äyf 54 0. Q a yy 

We give an equivalent geometric condition to that above. 

3.4.2. Proposition : The germ 
Of 

: R2, (0,0) --> R is a germ of a 
y 

Morse function if and only if 
ýy 

(0,0) = 
ox y 

(0,0) =0 and (0x 
y2 

)2(0,0) - 
03 f 

2äy(0'0). a&3 
f 

y3 
560F* OX 

Proof : The proof follows immediately by looking to the Taylor expansion of 
Of 

in 
y 

a neighbourhood of the origin, 

Of )= a2ä (0,0). x + äyf (0,0). y+ yy 
3 1{a ny 

(0,0). x2 +2 ax 
y2 

(0,0). xy + 
ýy 

(0,0). y2 }+ 03 (x, y) 

D 

3.4.3. Lemma : Let F and G two A-equivalent germs. Then the critical set of 
F is the zero set of a Morse function if and only if the critical set of G is the zero 

set of a Morse function. 

Proof : Write G=koFoh. From the proof of Lemma 6.1.1 (ii) EG = h(EF) . 
If EF =f -1(0) with fa Morse function, then foh is a Morse function and 

EG = (f o h)-1(0) .Q 
3.4.4. Corollary : Let G be an equivalent germ to F(x, y) = (x, f (x, y)) . 

If 

03 
ayf -(0,0) 0, then G is a Lips/beaks map if and only if its critical set is the zero 

set of a Morse function. Q 
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3.4.5. Example : Corollary 3.4.4 is a big help in finding the generic transitions on 
1-parameter families of Rotational Symmetry Sets. 

Let (t?, t2) a point where the critical set of the central map C+ is locally 
the set E_ {(tl, t2) : a(tl) = rc(t2)}. The set E is the zero set of the function 
K(tl, t2) _ Ic(t2) - rc(tl). The Taylor expansion of K is K(ti, t2) = X'(t2)t2 - 
KI(tl )tl + (KII (t2)t2 

- Kýt(t1)tl)+0 3(tl, t2) 
" 

The function K is a germ of a Morse function if and only if 'c'(ti) = rc'(t2) =0 
" and ýc(tl)"sc"(t2) 0. 

If we change coordinates in the source and target and write the map C+ of 3 

the form (tl, f (tl, t2)), then the condition 
3 
(0,0) =0 is a condition on the third 
2 

derivative of C+ and depends on ic(ti ), K1(ti) and is"(ti). If we denote this condition 
by R(k(ti), rc'(ti), is"(ti)) =0 then at (ti, t2) we have the following. 

K(ti) _ K(t2) 

K'ltl) r'(42) =0 
R(K(ti), #'(ti), "(ti)) =0 

This is not generic for 1-parameter families of curves. Therefore for generic 
curves, the central map is a Lips/beaks map if and only if rc'(t°) = K'(t2) =0 and 
X"(0). n"(t°a) 54 0. 
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HAPTER 4 



Chapter 4 

Duals of Symmetry Sets of Plane Curves 

§1. Introduction 

The local reflectional symmetry of plane curves has been studied in a number of 
articles [Bra], [B-G3], [B-G-Gi], [G], [G-B], [G-T]. The basic idea is to consider 
a smooth parametrized curve -y :I --º R2 where I is an open interval of R or 
I= Si 

. 
We normally assume -y is an embedding. We look for pairs of parameter 

values (tl, t2) for which there is some line t with reflexion in 
.£ taking y(ti) and its 

tangent line to -y(t2) and its tangent line (figure 4.1.1). Thus .£ is an "infinitesimal 

axis of symmetry" for -y. 

Figure 4.1.1 

7s 

This is equivalent to looking for bitangent circles (or exceptionally, bitangent 

lines -see figure 4.1.1). We can capture information about this reflexional symmetry 
in several ways. Here are two: 

(1) Consider the locus of centres of bitangent circles. This gives the symmetry 

set (SS) of the curve -y. 
(2) Consider the locus of lines t as a set in the dual plane. This gives the dual of 

the symmetry set (for £ in fact is always tangent to the symmetry set at the centre 

of the circle). 

Some information on the symmetry set can be obtained by direct arguments [G- 

B] but by far the most fruitful approach is to regard it as part of the full bifurcation 

set of the family of the distance-squared functions on -y [B-G3]. That is, we consider 
the family F: Ix . '? 2 -1 R given by F(t, x) = 11y(t) - x112 , and define the full 

bifurcation set 
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B(F) = {x E RZ : F(-, x) has a degenerate singularity at some t 

or two singularities at tl, t2 with F(t1, x) = F(t2, x)} 

This is precisely the union of the evolute E and the symmetry set SS of ry 
B(F) =EU SS. 

This situation is ideal in the sense it enables us to apply the theory of versal 
unfoldings, normal forms etc to the structure of the symmetry set [B-G3]. 

Given a curve in the plane, at each point there is a tangent line (or several 
tangent lines). Each tangent line is represented by a point in the dual plane and the 

set of all these points is called the dual curve. An inflexion on the curve corresponds 
to a cusp on the dual curve and vice-versa. When the original curve is smooth and 
generic the dual has the same singularities as generic wave fronts. It also has the same 
transitions as the propagations of wave fronts when considering generic deformations 

of the curve. (See [A4] ch. 8 for an illustration of these. ) 

However, the duals of symmetry sets of generic plane curves and families of such 

curves cannot be deduced from these results; for example the symmetry set in the 

case of a "biosculating circle" (a circle osculating 'y at two points) is either an isolated 

point or two cusps with the same origin [B-G3, ex. 4.4]. 

In this chapter we explore the dual of the symmetry set of a plane curve and 

of 1-parameter families of such by two methods. The first, suggested by J. W. Bruce, 

identifies it as a bifurcation set and the second identifies it as a discriminant: the set 

of critical values of a map. In both cases we can again apply standard techniques of 

singularity theory. The second method brings out the connexion with maps R2 --> RZ 

symmetric under reflexion in a line, studied in [B-G4]. 

In section 2 we use the first method to produce the list of all generic transitions 

on 1-parameter families of duals of SS. In section 3 we describe the second method. 
In section 4 we give the A-classification of bi-germs of maps R -º R2 which is 

needed to compute the bifurcation sets in section 2. 

§2. The dual of the symmetry set as a bifurcation set 

For a smooth unit speed curve y with a unit tangent vector T, the circles whose 

centres give the symmetry set are tangent to the curve at two different places or have 

higher contact with the curve at a single point (figure 4.2.1). 
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T1 

To 

? (to) 

Figure 4.2.1 

The tangent to the symmetry set in the first case has the direction of T2 - Tl 

(figure 4.2.1, right). When the circle has exactly 4-point contact with the curve the 

symmetry set has an end point and the (one-sided) tangent line has the direction 

of the normal to the curve (figure 4.2.1, left). In both cases the tangent line to the 

symmetry set is an infinitesimal axis of symmetry to the curve (see §1). If the curve 

ry is locally folded up, i. e., taken by the map (x, y2) in the coordinate system with 
the x-axis the tangent line to the symmetry set and the y-axis the normal to it, the 

result is two tangential pieces of curve or a single singular curve (figure 4.2.2). These 

are unstable when considered as bi-germs or germs R -º R2. Thus each line 

in the plane can be chosen as an x-axis, and the map R2 --+ R2 corresponding to 

(x, y) '-º (x, y2) when Q=x-axis can be applied to 7. The dual of the symmetry set 

consists of those t giving unstable germs or bi-germs. 

Figure 4.2.2 

It is easy to'visualize the unstable lines in the following example. Let 7(y) = 
(y2+y3, y). The reflexion in the x-axis takes -r to (y2+y3, y2) which is a cusp. When 

we move the axis of reflexion parallel to the x-axis and reflect -y with respect to the 

line y=u, the resulting curve is (y2 + y3, (y - u)2). The germ (y2 + y3, (y - u)2) is 

a versal unfolding of the cusp. 
Let L be the set of all oriented lines in the plane. We can identify locally L- 

with Sl xR since each line is the set of points x satisfying x. u =A for some 
(u, A) E Sl x R. Suppose we are given a smooth curve y and a line t= (u, A) (figure 

4.2.3). Let p(«, a)(t) and d(n, a)(t) be the orthogonal projection of y(t) on t and the 

distance of 7(t) . to t respectively. It is easy to check that : 

7(t). u 
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P(a, A)(t) ='Y(t) + (A - -f(t)"u)u, 

where . 
denotes the scalar product in R. 

Consider the following map: 

F: RxS1xR--+R2 

(t, u, a) ý-4 pýu,;, ý(t) + du, aý(t). ý 
More explicitly : F(t, u, A) = 7(t) + (A - y(t). u)[1 + (ý - y(t). u)]u . For each (u, A), 

F(u, A) (where F(�,, \)(t) = F(t, u, A)) is the restriction of the fold map (x, y2) to the 

curve -y in the coordinate system with the x-axis the line Q and the y-axis a line 

parallel to u. 

Yet) 

d (,., ) (t t) 

p(u 
u(t) 

2= (u, A, ) 

Figure 4.2.3 

4.2.1. Definition : The bifurcation set of the map F, denoted by B(F), is the 

set of points (u, A) where F(u, a) is locally unstable as a map R -º R2, with respect 
to smooth changes of coordinates in source and target. 

Geometrically F(,,, a) has a non stable singularity if its vector derivative Filu, a)(to) 
is zero, that is F(,,, a) is a reflexion with respect to the line (u, )) passing through 

7(to), or there exist two points tl, t2 with neighbourhoods mapped by F(u, a) to two 

tangential pieces of curves, i. e., F(u, a)(tl) - F(LL, A)(t2) and Fýua) (ti), F'U,. X) (t2) are 
linearly dependent (figure 4.2.2). 

In all what follows we assume that the tangent vectors to the curve 7 at two 
different points are not parallel. The following assertion derives naturally from the 

above definition. 

4.2.2. Theorem : The bifurcation set of the map F is locally the union of the 

dual of the symmetry set and the dual of the evolute of the curve -y. 
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Proof From definition 4.2.1 

B(F) = {(u, A)/3t : F( (t) =0 or 
3tl, tz : F(,,, A)(tl) = F(,,, A)(t2) and F(n, a)(tl), F('u, ))(t2) linearly dependent} 

= {(u, A)/31 : F( ',, X) (t) = 0}U 

{(u, A)/3t,, t2: F(ti, A)(tl) = F(,,, A)(t2) and F(In, A)(ti)//F(a, A)(t2)} 
We seek a geometric interpretation for the components of B(F). We have F(u, A)(t) = 
7y(t) + (A -'7(t). u)(1 + (A - 7(t). u)Ju, so 

FFr, A)(t) =0 
ät (7(t) + (A - y(t). u)[i + (A - -r(t). u)]u) =0 

<=* T(t) - [T(t). u + 2T(t). u(A - -y(t). u)]u =0 

. #=:,. T(t) = [T(t). u + 2T(t). u(A - -y(t). u)Ju 
The vectors T(t) and u are unit vectors, so u= ±T(t) and T(t). u(A - 7(t). u) = 0, 

equivalently A- ry(t). u = 0. Replacing u by ±T(t) yields A= fy(t). T(t), and 

{(u� \)/3t : F(.,. x)(t) = Q} = {(±T(t), ±7(t). T(t))} 

The points (T(t), 'y(t). T(t)) and (-T(t), --r(t). T(t)) in L represent the normal 
line to the curve 7 at the point 7(t) . The set of all normal lines to the curve -y is 
the dual of the evolute of 7. 

For the second component of B(F) we have 

(i)" 

F(u, A)(t2) 
8 

'f(t1) + (A - 7(t1). u)[i + (A -'t(t, ). u)j'U _ . ß, (t2) + (A - y(t2). u)[i + (A - y(t2). u)Iu 
e 

7(t2) - 
[(7(ti) -'I(t2)). u + (2A 

- (7(ti) + 7(t2))"u)(7(tl) - 7(t2)). uju -o 

The vectors 7(tl) - 7(t3) and u are then parallel, and since u is unit, we can 
write 7(ti) - 7(t2) _ ((7(tl) - 7(t2)). u]u (with (7(tl) - 7(t2)). u #0). Substituting 
this equality in the above equation yields 

2A - (7(t1) + 7(t2)). u =0bA=2 ('Y(tl) + 7(t2 )). u 

Thus 

U-f 7(t') - 7(t2) 
and 

Fýý, aý(tý) = F(Y, a)(tz) 117(tß) - 7(12)11 
= 2(7(ti) + 7(t2)). u 
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(ii). The vectors F(K, A)(tl), F(,,,, a)(t2) are linearly dependent. We have 

F(Y, A)(tl) = T(ti) - [T(ti). u + 2T(tl). u(a - 7(tl). u)]u 
Fjfu, A)(t2) = T(22) - [T(t2). u + 2T(t2). u(A - 7(t2). u))u 

Replacing A by its value in (i) gives 

F , )(ti) = T(ti) - T(ti). u[1- (7(tl) -- ry(t2)). u]u 
F('r, a)(t2) = T(t2) - T(t2)"u[1 + (1(tl) - y(t2)). u]u 

Let v be a unit vector orthogonal to u, and write T(ti) and T(t2) in the coordinates 

system with respect to the basis {u, v}. We have T(tl) = (T(ti). u)u + (T(ti). v)v 

and T(t2) = (T(t2). u)u + (T(t2). v)v. The expressions for F(u,, )(tl) and F(u, A)(t2) 
become 

F('U, a)(tl) _ [T(tl)"u(ýr(tl) - 7(t2)). u]u + [T(ti). v]v 
F('s, 

�)(t2) _ -[T(t2). u(-r(t, ) 
- 7(t2)). u]u + [T(t2). v]v 

These vectors are linearly dependent if and only if the matrix 

T(tl). U(-Y(t, ) 
- -f(t2)). u T(ti). v 

-T(tz). u(' (tl) - 7(t2)). u T(t2). v 

has zero determinant, that is [T(tl). v][T(t2). u]+[T(tl). u][T(t2). v] = 0. Geometrically 

this amounts to saying that T(t2) and --IT(tl). uJu + [T(tl). v]v are parallel. Since 

they are both unit, T(t2) = ±(-[T(t1). u]u + [T(tl). v]v). This relation is equivalent 

to (T(tI) ± T(t2)). u =0 provided T(ti) # ±T(t2). But u=f 
7(t1) 7(t2) in 
7(ti) - 7(t2) II (i), hence 

F'ýý, aý(ti)IIFt,,, aý(tý) a (T(tl)±T(t2))"('Y(tl) - '(t2)) =0 

The equation (T(tl)±T(t2)). (7(tl)-7(t2)) =0 is the necessary and sufficient 

condition for the existence of a bitangent circle to the curve -y at 'y(ti) and 1(t2). 
The tangent to the symmetry set at the corresponding point is the line with direction 

the vector T(tl)±T(t2) and which passes through the point 
2(7(tl)--7(t2)) [G"B]. 

Such a line has a unit normal vector u=f '01) 7(t2) 
II 7(ti) -y(t2) II and is represented in L 

7(tß) by - ß(t2) by the point (t 
II 7(t1) -7(t2) II'± 

(7(t1) _ 7(t2)) II 
7(ti) 

-'Y(tz) II 
). Now 
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U=± 
7(t2) 7(t2) 

f F(u, A)(tl) = F(u, A)(t2), II 7(tl) -7(t2) II' 
A (t(tl) - 7(t2)) 

7(ti) 7(t2) 
and F(a,,, )(tl(t2) 2 II 7(tß) - 7(t2) II 

(T(ti) ±T(t2))"(7(tl) - 7(t2)) =0 

3a bitangent circle to y at y(t1) and y(t2) and 
(u, . 1) is the tangent line to the Symmetry Set 
at the corresponding point. 

Therefore the second component of B(F) is the dual of the symmetry set, and 

B(F) = Dual of the Evolute U Dual of the Symmetry Set 

11 
Following the notation in [B-G3] the cases of interest for the study of the duals 

of symmetry sets and their 1-parameter families are: inflexion and higher inflexion on 
the symmetry set, A2 , 

A3 and the A4 cases. (Here Ak is Arnold's notation for the 

singularity of the distance-squared function, and A refers to two A2 singularities at 
the same level (biosculating circle). Thus A3 stands for a vertex, and A4 for a higher 

vertex, on 7. ) 

In order to study the =singularities occurring in the duals of symmetry sets one 
has to consider the bi-germ (Fl, F2) associated to the two pieces of curves ryl and 72 
which locally give the symmetry set (figure 4.2.1, right) or the uni-germ F associated 
to a single piece of curve 7 with a vertex (figure 4.2.1, left). For generic 1-parameter 
families of curves (y') we consider the `big' family of germs (denoted also by F): 

F: RxS' xRxR-ºR2 
(t, u, A, s)'' F. (t, u�\) 

and the `big' bifurcation set B(F). We shall use the unfolding theory to describe the 

generic transitions on 1-parameter families of duals of SS. This problem requires us 
to deal with the three following points. 

(1). ' Firstly, we require the normal forms of singularities of bi-germs and single 
germs of functions R -+ R2 of codimensions less than 3 when allowing smooth 
changes of coordinates in the source and target, and the description of the bifurcation 

sets of their versal unfoldings. (This is done in §4. ) Secondly, we need to recognize 
the singularity type of Fo = l9Rxoxoxo as a bi-germ (for an AZ , inflexion or higher 

inflexion on SS) or a single germ (for the A3, A4 cases). 
(2). We need to show that, for generic families of curves 7' , the family. F is a 
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versal unfolding of the singularity of FO. Its bifurcation set is then diffeomorphic to 

that of the bifurcation set of the normal form of the singularity of Fo. 

(3). We need to consider generic functions on the big bifurcation set of the 

unfolding of the normal form of the singularity Fo, and recover the individual bifur- 

cation sets by taking the intersection of the (big) bifurcation set with the fibres of 

these functions [A2], [B1], [B-G3]. 

We shall deal with each case separately. But first, 

4.2.3. A word on genericity 

The notion of genericity and transversality for plane and space curves is beautifully 

explained in the book "Curves and singularities" by J. W. Bruce and P. J. Giblin 

[B-G1] chapters 8 and 9. We give a summary on how to check if a property holds 

generically and refer to [B-G1] for the details. 

Let y be a plane (smooth and embedded) curve. At each point 7(t) we write 

^7 locally in its Monge normal form, i. e., as a graph of a function ft (with ft(0) = 
f() = 0) and associate to f, its Taylor polynomial of degree k at the origin. If 

we write (a2(t), ..., ak(t)) for the coefficients of this polynomial, we obtain a map 

p7 :ICR -º Rk-1 with pp. r(t) = (a2(t), .... ak(t)). The polynomial (a2(t), .... ak (t)) 

carries the infinitesimal properties of the curve y, and any property of the curve can 

be interpreted through this polynomial. 

A property P is said to be generic if it is satisfied in an open and dense set 
in a finite' dimensional space of deformations of curves. (See [B-G1) for a rigorous 
definition. ) 

To prove that a property P is generic we consider a family p: IxU -ý Rk-1 

(where U is an open neighbourhood of the origin in the finite dimensional set of 
k-jets of diffeomorphisms from the plane to the plane) with µ(t, O) = µ, yo y(t) , and 

show that the map it is transverse to the manifold Y of points in Rk-1 which do 

not satisfy P. For example if k=4 and Y is defined by two equations in R3 , that 

is Y is of dimension 1, then generically the curve µ7(I) misses Y. If we consider 1- 

parameter families of curves i. and write ry(t, s) = y, (t), then generically the surface 

py(I x 1R) meets Y transversally on isolated points. If we add another equation to 

Y it becomes of dimension 0 and the surface pp. y(I X R) will generically miss Y. 

In what follows we shall not find the explicit genericity conditions, but adopt a 

more informal approach by "counting conditions". 
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The dual of an A2 

An A2 singularity occurs on the SS when the bitangent circle is biosculating. It 

can happen at isolated points on 1-parameter families of curves y. 

To handle the calculations, we choose a local coordinate system and suppose that 
the centre of the biosculating circle is on the x-axis and its points of contact with the 
curve are on the y-axis symmetric with respect to the origin. 

As we are dealing with local properties of the SS we denote by 71 and -y2 two 
neighbourhoods on the curve 7 at the biosculating points. We choose orientations 
on -yl and 72 that are shown on (figure 4.2.4), and suppose that the two curves are 
given as graphs of smooth functions yl(x) = ql + a, x + blx2 + C, X3 + 01 (X4) for '71 

and y2(x)=g2+a2x+b2x2+c2 x3+02(x4) for -Y2. 

We consider a 1-parameter family of curves -y; with -y° = y, i=1,2, and 

suppose that the coefficients q;, a;, b;, 
... etc, i=1,2 in the expressions of these curves 

as graphs of functions, are smooth functions of the parameter s. The hypotheses on 
the biosculating circle induce the following conditions on these coefficients. 

(i). q2(O) = -41(O) 

(ii). a2(O) _ =a1(0) 

(iii). ßc2(0) _ -Kl(0) /1 

2b2 (0) 

a2 (0)) (1 i- 
. ý.. 

baZ 
0))3 

b2(0) = -bl(0) 
l 2l 1( 

The normal vector to the curve y° at the point (0, g1(0)) is N- (- ai( 
, 1+a i(0) 

z 1) 
and the radius of curvature is r= 

(1 + a'(0))ß 
, The centre of the 

1-F al(0) 2b1(0) 
biosculating circle lies on the x -axis if and only if the point 
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z 
(0, ql (O)) + 

(1 

2bi (0))) 1 -F 

(a) 
'1 

lag 

0) 
has zero y-component. 

That is, 1(0) + 1( ) 

(iv). a2(0)+2Q1(0)bl(0)+ 1=0 

We can identify locally the set L of all lines in the plane with R2 as follows: 
L= {(9, A): u= (sing, cosO), 0, A E R}. We then have for each piece of curve y; a 
germ of the big family 

F,: RxR2xR-ºR2 

(t, u, X, s) '-' 7ý (t) + (A -'Y' (t). u)[1 + (X - 7i (t)"u)Ju 

If we replace y; by (x, y; (x, s)) and write u= (sing, cosO), the expression for F; is 

Fi(x, 0, A, s) =(x, yi(x, s))+ 
(A - xsin9 - y; (x, s)cos9)[1 +A- xsin9 - y; (x, s)cos9](sin9, cos9) 

At 0= .A=s=0 the germ F, °(x) = F; (x, 0,0,0) = (x, y, (x, 0)). Taking into account 
the conditions (iv) above, 

Fi (x) = (x, 9i (0) + 241(0)ai (O)x+ 
(2g1(O)bl(O) + al(O))x2 + 2(al(O)bl(o) + gi(O)C1(O))x3 + oi(x4) 

Fi (x) = (x, qi (0) + 2g1(0)aI (0)x+ 
(2g1(O)bl(0)'+'al(O))x2 + 2(a1(0)b1(0) + g1(0)c2(O))x3 + 02(x4) 

The bi-germ {Fl, Fz } is equivalent to {(x, 0), (x, 2g1(0)(c2(0) - cl(0))x3 +02 (X4) - 
01(x4))} by the change of coordinates (u, v) i -º (u, v- yl(u, 0)) in the target. 
For generic A2 on the curve -y, cl(0) - c2(0) 0 and {F1, F2 } is equivalent to 
{(x, 0), (x, x3 + 0(x4))} . 

But the bi-germ {(x, 0), (x, x3)} is 3-A-determined (§4), 

hence IF, ', F2} is equivalent to {(x, 0), (x, x3)} . 

4.2.4. Proposition : For generic 1-parameter families of curves 7' the family 

F= IF,, F2} is a versal unfolding of the bi-germ {Fi 
, F2 }. 

Proof. We showed above that the bi-germ FO = {Flo, F20} is equivalent to 
{(x, 0), (x, x3)} . It is therefore 3-A-determined. The family F= {Fl, F2} is a 
versal unfolding of Fo if and only if 

2J3TAe. F0 + R. {2j3 
ö9 

(x, 0,0,0), O 2j3 äs 
(x' 0' 0' 0)} = 2J3(1,2) 

where 2J3(1,2) is the set of 3 -jets of bi-germs of functions R -º R2, and TAe. Fo 

is the pseudo-tangent space of the A-orbit of FO. 

It is not difficult to show, using the components of Fo and 5x that all bi-germs 
J3 of monomials of degree >_ 2 are in 2TA. Fo, so we need to prove that 2PTA, "Fo+ 
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R. {231 To , 2J1 a 
ZIF 

2J1 aF} = 211(1,2). To simplify the notation we write q1(0) _ 
-q2(0) = q, al (0) _ -a1(0) = a, al (0) = ai and qi (0) = q'. We have, 

1 aF, (q2 -q+ a(2q - 1)x, (2q - 1)x) 

ae (q2 +q+ a(24 + 1)x, -(2q + 1)x) 

zjlaF 
(0,1-2q-2ax) 

aý 
(0,1 + 2q + 2ax) 

OF (0 2q, q+ 2(qi a+ qai )x 

2i 
, os (0,2qq + 2(4sa + qai )x 

We denote the components of Fl by fll and f12, and the components of F2 by 

121 and 
(1,0) 

fZZ 
. We consider the following vectors (modulo the constants a. (1,0) 

(O 1) 1 (ffi, 0) (0, fii) lOF lOF 1äF and Q{ (0' 1) 
} 

in 2J TA. Fo) :f1 U21 0) '{ (0, fei) 
Is 

2i ae , aj7A i s, 1 as , 

x2j 1 Oxl 
. These vectors are written out in matrix form below with respect to the 

basis indicated on the first row. 
1(x, 0) {(0z)} 

,0000 
00 (x, 0) 

} {(o)} {(1O)} 
(0,1) 

1 ,`01000 

010100 

0 qia + qai 0 q2a + qaz 0 q(gti - qi) 

(2q - 1)a 2q -1 (2q + 1)a -(2q + 1) 2q 0 

0, a0a0 2q 

1 2qa 0000 

The determinant of this matrix is 8g3(a, - a2). For ai - a2 yl- 0, the matrix is 
invertible and the generators of the basis are in 2J'TA. Fo. Thus 2J1TAe. Fo + 

R. 12j' 
OF12 

j' 
OF, 

2 j1 
OF 

}- 
2J'(1,2). The condition ai - a2 #0 is satisfied for 

ae as as 
generic 1-parameter family of curves y' when yo has an A2 point. 0 

4.2.5. Remark : It is necessary to use the vector 2j1 as 
in order to establish 

the versal unfolding property of the map F. (The germ F(x, 0, A, 0) is not a versal 
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unfolding of Fo. ) Therefore the sections of the big bifurcation set are not the trivial 

ones. 

The bifurcation set of the bi-germ {(x, 0), (x, x3)} is a cusp, and its big bifur- 

cation set is a cuspidal edge (§4). There are two non-trivial generic sections of the 

cuspidal edge: the lips section and the beaks section [A2] (figure 4.2.5). 

1 -0-1 " 

Lips transition 

0 s-+ 
0 

Beaks transition 
Figure 4.2.5 

4.2.6. Corollary : For generic 1-parameter families of curves -t' the dual of the 

symmetry set at an Az undergoes lips or beaks transitions. Q 

The dual of an ordinary inflexion 

We keep the same notation as in the A2 case. An inflexion occurs on the SS when the 

curvatures of the corresponding points on 7i and 72 have the same absolute value and 

are of opposite signs. (If yi and 72 have the same orientation, the condition is that the 

curvatures are equal. ) This can occur at isolated points on the curve -y, it is a stable 
feature on symmetry sets. We shall suppose as in the A2 case that the pieces of curves 

7i and 72 are given as graphs of functions, yi (x) = qi +a1x+ bi x2 + ci x3 + Ol (x4 ) 

79 



for yl and V2(x) = Q2 +a2x+b2x2+c2x3+02(x4) for y2, and the bitangent circle is 
as in (figure 4.2.4). The conditions for having an ordinary inflexion on the symmetry 
set are expressed by the coefficients q;, a;, b;, ... etc as follows. 

(i). q2 = -41 

(ii). a2 - -al 

(iii). 
-*C2 = -K1 

2b2 

(1-2 ai) j 4"* b2 _ -bi (inflexion) 
(1-2 a2)j 

2b1 

(iv). rsz # -K4 t=* c2 # cl (ordinary inflexion) 

(v). ai + 2Q1 bl +1#0 (the circle is not biosculating) 

We consider the bi-germ F= {Fi, F2 } as in the A2 case with the difference 

that the coefficients q;, a;, b;, ... etc are constants and not functions of a variable s. 
At 0=A=0 the expressions for F, ° = F; (x, 0,0) are 

F(z) = (x, qi + 2qi al x+ (2q1 bi + ai )x2 + 2(ai bi + qi ci )x3 + Ol (x4)) 

F20(s) _ (z, qi +2giaix+(2qibi +ai)x2+2(aibi +glc2)s3+02(x4)) 

For ordinary inflexions on the symmetry set c2-cl # 0, and the bi-germ {F1, F201 
is equivalent to {(x, 0), (x, x3)} (as in the AZ case). 

4.2.7. Proposition : The family F= {F1, F2} is a versal unfolding of the bi-germ 
{Ff 

1 1'20 }. 

Proof. In the Az case we considered a 1-parameter family of curves y and the big 
bifurcation set of the big family F. This is because an A2 occurs on isolated points 

on 1-parameter families of curves, and the family F(x, 0, A, 0) is not a versal unfolding 

of the germ {F, Fz } (Remark 4.2.5). 

The proof of this proposition differs from that of 4.2.4 only on the final step 
where we have to prove that 

2J1TAt. Fo+R. {2jl 
58(X'0'0)' 271 öý(x'0,0)} =2J1(1,2) 

l' 
We consider the following vectors modulo constants in 2 J'TA. Fo : 

U1110) { 
(f2i1 0) J 

(0, fi i) 10F' 1 OF 1 OFi äF1 { 
(0, f21) 

}' 
z ) ? 8' Zý öA' zJ x ax , ax Their coordinates with respect to 

their generators form the following matrix. 

so 



(x ) ) } { 0 }10 {(zoo)} 1j0, )} 1(1°0) } {(0°1)} 
10 1 00 0 

01 10 0 

(2q - 1)a 2q -1 (2q + 1)a -(2q + 1) 2q 0 

0a 0 a0 2q 

1 2qa 0 00 0 

0 2(2gb + a2) 0 0 -1 -2qa 

The determinant' of this matrix is 16g2(a2 + 2bq + 1). The bitangent circle 
is not biosculating, therefore a2 + 2bq +1#0 (condition (v) at the beginning of 
this section). The generators are in 2J'TA. Fo and 2J'TAe. F0+ R. {2j1 

ae 
(x, 0,0), 

s91 OA 
(x'0,0)} = 2J'(1,2). Q 

The bifurcation set of the bi-germ {(x, 0), (x, x3)} is a cusp, and 

4.2.8. Corollary.: The dual of an ordinary inflexion on the symmetry set is an 

ordinary cusp. 11 

The dual of a higher inflexion , 

A higher inflexion occurs on the symmetry set (figure 4.2.4) when ice = -ic, and 4= 

-xi. It can happen on generic 1-parameter families of curves y-. In this case the 

coefficients q;, a;, b;, 
... etc are functions of a variable s, and the conditions for having 

a higher inflexion on the symmetry set are : 

(i). q2(0) = -q1(O) 
(ii). a2(0) = -al(0) 

(iii). K2(0) = -K1(0) 
2b2(0) 2bi(O) 

-bl( 
/O) 

(1 + a2(O)) (1 + al(O)) 
b2(O) _ 

(v). K'2 = -Ki c2(0) = cl(0) (higher inflexion) 

(iv). a2f(0) + 2Q1(0)bl(0) + 196 0 (the circle is not biosculating) 

We consider the bi-germ F= {Fl, F2 }. At 0-A. s=0 the expressions for 
F° = F; (x, 0,0,0) are 
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Flo (x) = (X, 4i(O) + 2q, (O)ai(0)x + [2gi(0)bl(0) + ai(0)]x2-F' 
2[ai(O)bi(0) + gi(O)ci(0)]x3 + [2ai(O)ci(0) + 2gi(0)di(0) +b2 (0)]x4 + Ol(x5)) 

FC(X) 92«» �+ 
2g1(O)ai (a)x + [2q, (o)bl (o) + al (O)]x2+ 

2[ai(0)bi(0) + 9i(0)c2(0)]x3+ [2a1(0)cl(0) + 2g1(0)d2(0) + bl(0)1x4 + 02(x5)) 

For generic higher inflexions on the symmetry set d2(0) - dl(0) # 0. The bi- 

germ {F, } is then equivalent to {(x, 0), (x, x4 )} by the change of coordinates 
(u, v) i-* (u, v- yl (u, 0)) and the fact that {(x, 0), (x, x4)} is 4- A-determined (§4). 

4.2.9. Proposition : For generic 1-parameter families of curves -y', the family 

F= {Fl, F2} is a versal unfolding of the bi-germ {FO, F20}. 

Proof . The proof of this proposition is similar to that of Propositions 4.2.4 and 4.2.7. 
The germ Fo is 4-A-determined, so we need to show that 

2J4TA,. Fo +R. {zj4öF(x, 0,0,0), ,2 j4OF(x, 0,, 0), 2j48F(x, 0,0,0)} ^ 2J4(1,2) äe äa äs 
One can easily prove that all bi-monomial of degree >3 are in 2 J¢TAe. Fo . For 

(o' fll) 
bi-monomials of degree less than 2, we consider the vectors 

U1110) { 

(f1270)1' 

{ 

(0J12) 

('O'O'O)}' 
(f2 

1,0) 11 (0,. f Z1) 

2.. 
20F(X90,0, O)t 2ý2äF(ý, ýýýýý)ý z. i28F(X 

f 
1210) l (0, f? 

2)1 
a as aS 

Mo Mo 2 aFo F, 
xFx az , 

The determinant of the matrix of their coordinates with respect 
09X i9z 

to their generators is 

8g3((a2 + 2qb + 1)(b2'(O) - bi(0)) - 3(ab + cq)(a2(0) -'ai(0))} 

Here q= ql (0), a= al (0), b=b, (0) and c= cl (0). For generic 1-parameter families 

of curves -Y", this determinant is non-zero and the family F is a versal unfolding of 

Fo . 
0 

The bifurcation set of the bi-germ {(x, 0), (x, x4)} is a swallowtail. There is only 

one generic section of a swallowtail, hence 

4.2.10. Corollary : For generic 1-parameter family of curves ry' the dual of 

a higher inflexion on the symmetry set undergoes the swallowtail transitions (figure 

4.2.9). 11 
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The dual of an A3 

There are isolated points on the curve y where there exists a circle having 4-point 

contact with the curve. It occurs at points of maximal or minimal curvatures (i. e., 

r%. ' = 0). We know from [B-G-Gi] that in this case the symmetry set has an ending 

point. 

We suppose that the vertex on the curve is at the origin and the centre of cur- 
vature is on the y-axis (figure 4.2.6). 

The curve -y is given as the graph of y(x) = q+ax+bx2-}-cx3+dx4+ex5+O(x6) 

with the following conditions at the origin 

(i)" q=a=O 

0c=0 (the origin is a vertex ) 

(iii). rc" 54 0d- b3 36 0 (the origin is an ordinary vertex ) 

The circle of curvature has radius r 
b- 

and its centre is (0,2b) 

The difference between this case and the previous ones (A2 
, 

inflexion, higher 

inflexion) is that the points of contact of bitangent circles with the curve are in a 

neighbourhood of a single point. We consider instead of a bi-germ IF,, F2 }a single 

germ F. The normal line at the origin to the curve y is the y-axis. The vector uo 

at that point is (1,0). It is natural to write u= (cosO, sing) for nearby unit vectors, 

and identify again L to R2. The expression for F becomes 

F(x, 0�\) = (x, y(x)) + (X - xcos8 - y(x)sin8)[1- xcos8 - y(x)sin9](cos8, sin0) 

so that at 8= . 1= U, 

Fo(x) = F(x, 0,0) (x2, bx2 + dx4 + ex' + 0(x6)) 
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The change of coordinates (u, v) H (u, v- bu - due) in the target yields Fo(x) 

equivalent to (x2, exs + 0(x6)). For generic vertices on the curve e 0, and since 
(x2, xs) is 5- A determined, Fo is A-equivalent to the germ (x2, x5) . 

4.2.11. Proposition : The family F is a versal unfolding of the germ FO. 

Proof Since Fo is 5-A determined, the family F is a versal unfolding if and only if 

JSTAe. F° + R. {j5 
Oe 

(x, 0,0), j5 c (x, 0,0)} = J5(1,2) 

We have j5F°(x) = (x2, bx2 + dx4 + ex5). Using the components of Fo we 

show that (x2,0), (x;, 0), (0, x2), (0, x4), and (0, x5) are in JSTAc. F°. Now, 
ýx° 

. (2a, 2bx +4dx3) and considering x4 
ýý° 

yields (x5,0) E J5TAe. Fo. 

The vector 
OF 

(x, 0,0) - (x, 0). For the remaining monomials in J5(1,2) , we use 

the following vectors (modulo the monomials obtained above) : 
00 

(x, 0,0) 
, x2 

Oxo 
, 

OF° 
, and obtain a matrix A of their coordinates with respect to the generators 

(a3 0), (0, x), (0, x3). 
2b -1 0 

A= 10b 

0b 2d 

The determinant of this matrix is 2(d - V). We pointed out, in the statement 

of the conditions for an ordinary vertex on -y, that d- b3 0 0. The matrix A is 
OF OF 

invertible and the generators are in J5TAe. F0 + R. {j 5a (x, 0,0), j5 -5-AA (x'0'0)}'[] 

The bifurcation set of the family F is diffeomorphic to that of the versal unfolding 

of the germ (x2, x5). The latter consists of the union of a smooth curve which 

represents the dual of the evolute, and a curve with an endpoint which represents the 

dual of the symmetry set (See §4). The two curves are tangential where they meet 

(figure 4.2.7). 

Figure 4.2.7 
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4.2.12. Corollary : The dual of an A3 on the symmetry set is a curve with an 
endpoint. Q 

The dual of an A4 

An A4 singularity of the distance squared function on the curve ry occurs at higher 

vertices, that is when sc' = sc" = 0. This happens at isolated points on generic 
1-parameter families of curves. 

The notation here are as in the case of an ordinary vertex. In this case the 

coefficients q, a, b, c,..., etc in the expression of 'y as a graph of a function are functions 

of a variable s. The conditions to have a higher vertex at the origin are 

(i). 4(0)=a(0)=0 
(ii). n'(0) =0c=0 (the origin is a vertex ) 

(iii). c"(0) =0 d(0) - b(0)3 =0 (the origin is a higher vertex ) 

The expression for the big family F is 

F(x, e, a, 3) =(x, y(x, 3))+(A-xcose-y(x)sine)[1-nose-y(x, s)sin9](cose, sine) 
At O=. 1=s=0, 

Fo(z) = F(z, 0,0,0) = (x2, b(0)x2 + d(0)x4 + e(0)x5 + 0(z6)) 

For generic higher vertices on the curve e(0) # 0, and Fo is A-equivalent to the 
germ (x2,25)- 

4.2.13. Proposition : For generic 1-parameter families of curves -y', the family 

F is a versal unfolding of the germ Fo . 

Proof. The proof follows the same lines that of Proposition 4.2.10. The point of 
difference is that we can no longer use the matrix A since its determinant van- 
ishes at a higher vertex. But we have the extra vector to use : 

OF 
(x, 0,0) 

(0, a'(0)x+b'(0)x2+c'(0)x3). The matrix of the coordinates of the vectors 
OF 

(x, 0,0), 
OF 

(x, 0,0), x2 o (x, 0,0) (modulo the obtained monomials) with respect to the 

generators (x3,0), (0, x), (0, x3) is 

0 a'(O) c'(0) 
2b(0) -1 0 

10 b(0) 
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The determinant of this matrix is 2b2(0)a'(0) - c'(0). For generic 1-parameter 
families of curves -j", 2b2(0)a'(0) -c'(0) 34 0 and the generators (x3,0), (0, X), (0, x3 ) 

are in J5TAe. Fo +R. {j'aL(x, 0,0), j5- (x, 0,0), j5a -(x, 0,0)}. Q ae as as 
The bifurcation set of the family F is diffeomorphic to the big bifurcation set 

of (x2, x5), that is the product of the bifurcation set (x2, x5) by a line (§4) (figure 
4.2.8). 

Figure 4.2.8 

The family F(r, 6, A, 0) is not a versa! unfolding of the germ Fo, so the bifur- 

cation set of F is not a product of that of F(x, 0, A, 0) with a line. The generic 
transitions on the duals of SS and the evolutes are then recovered by taking non- 
trivial sections of the big bifurcation set of (x2, a5). We need to find these sections. 
This is done in §4 using J. W. Bruce's method described in [B1]. 

In [B-G3], in the generic transitions on the symmetry set at an A4 point we 

can see that the dual of the symmetry set should be a compact curve (finite length). 

So the second transition in (figure 4.4.4 (ii)) does not occur on the duals of SS. (In 

Proposition 4.3.6, we prove that this transition does not occur. ) 

4.2.14. Corollary : The generic transitions on the duals of symmetry set in the 

A4 case are those shown in (figure 4.4.4 (i)). 11 

We close this section by drawing all generic transitions in 1-parameter families 

of duals of SS (figure 4.2.9). 
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Symmetry Sets Düäls of Symmetry Set 

Inflexion I Cusp 

Higher 
inflexion yy(H 4-+ Swallowtail 

'y$yH1 H¢ 
Lips 

Moth 

pi Beaks 

Nib 

_ý.. 
Endpoint 

Endpoint ( .' 

Figure 4.2.9. Transitions on 1-parameter families of duals of symmetry sets 

4.2.15. Remarks : 

1. The information needed to draw these pictures comes by putting together the 

previously found transitions on symmetry sets [B-G3] and the new information on 
duals. Thus cusps correspond to inflexions and vice-versa. 

2. The lips in the lips-transition on the dual of the symmetry set have four 

inflexions'and a common tangent line at two different points. This contrasts with the 

generic lips in projections of surfaces [B2] which has two inflexions only. 
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§3. -The dual of the symmetry set as a discriminant 

Let y be a smooth embedded curve and G the following map 

G: RxR--ºL 
(ti 

e 
t2) 1"-1 t(ti, t2), 

where £(t1, t2) is the perpendicular bisector of the segment [y(tl), y(t2)) (figure 4.3.1 
(i)). Of course, if ti =-t2 then t is the normal at y(tl). For calculations we write a 
line £ in a chosen coordinate system as the set of points (x, y) with y= ax +b and 
identify with (a, b) so that L= R2 . 

(We shall avoid lines parallel to the y-axis in 

our calculations. ) 

2(I 

(iii) 

Figure 4.3.1 

As in the first method we distinguish two cases : 
Case 1. 

The symmetry set is locally obtained from two pieces of curve -y' and -f2. We 

can write 71(x) _ (fi(x); x) and -/2 (x) = (f2(x), x) (figure 4.3.1 (ii)). 

The line £(xl, x2) = (-a(xi, x2), b(xl, x2)) can be expressed in terms of fi, f2, xi 

and x2 

a(x1'x2) = 
fl (XI) 

- 
f2(X2) 

X1 -X2 
b(xi, x2) = 

21(x1 +x2)"ß" 
2a(x1, x2)(fi(x1)+ f2(r2)). 

The map germ 

is smooth. 

G: R2-+R2 
(x1, x2) H (-(a(xi, x2), b(xi, x2)) 

4.3.1. Proposition : The discriminant of the map G is locally the dual of the 

symmetry set of the curve 
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Proof We need to find the discriminant of the map G and interpret it geometrically 
as a subset of L. We have 

C7t1 2+ Öxl 
(fl(xl)+f2(x2)) + 

2a(xlvX2)f(X1) 

DG(zi, X2) _ 

-ý 
Z 

, -21 + 
(fl(xl)+f2(x2)) 

+ 
2a(x1)X2)f2(ý2) 

IOX2 

where 
as 

,i=1,2 is evaluated at (x1, X2)'. The map G is singular at (x1, x2) when 
s; the matrix DG(xl, x2) has rank-'< 2. The determinant of the matrix DG(xl, x2) is 

I DG(xi, x2)I -2 "a 
a- 

-La äs2 
+ (8x fz(x2) -2 fi(xi))a(xl, x2)] 

Differentiating the function a yields 
Oa 

_ 

fi(Z1)(xi 
- X2) - 

(fl (XI) 
- 

f2(x2)) 

8xl (x 
- x2)2 

Oa 
_ -fi(xi)(xi - x2) + (. fi(xe) - f2(x2)) 

8ZZ (x1 - x2)2 

So 

x IDG(xi, x2)I _ 2(xi - x2) 
2`F' f (z2))a(xi, z2) + 2(1- fi(xi)fz(x2))a(x1, x2) - (fi(xe) + fz(x2))] 

(As we are dealing with local properties of the curve 'y, we can suppose that 

the tangents to the curve, at xl and x2 are not parallel and none of these vectors is 
collinear with 7(x1)-1(x2). That is fi(xt)-a(xl, x2) #0 and f2(x2)-a(xi, x2) 54 

0. ) The determinant IDG(xl, x2)1 vanishes when 

z2)`F'2(1-fi(xl)f2(x2))a(xi, x2)-(fi(xi)-f-f2f(x2)) =0 (*) (fi(xi)-f'fs(xz))a2(xil 

equivalently 

a(xi, x2)fi(xi) + a(xi, x2)fi(x2) +1 
f (xl) - a(xl, xs) fi(x2) 

- a(xl, x2) 

and 

1 

-a(xi, x2) - fi (x1 e) -a(xl' x2) f2 (x2) 
_ (**) 

1- 
a(x1, x2) 

1_ a(xl, x2) 

fi(xi) f2(x2) 

11 
The scalars -a(xl, x2), fl(xl), f2(x2) are the slopes of the line t, the tangent 

line to the curve 71 at -I, (xi) and the tangent line to the curve 72 at 72(x2) respec-1 
tively. Let fang = -a(xl, x2), tan61 = and tan02 =1 (figure 4.3.2). fi(xi) f2(x2) 
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Then equation (**) becomes tan(6 - 61) - -tan(6 - 92). That is to say that the 
line t is the perpendicular bisector of the segment [72(x2), '1 (x1)]. This is exactly 
the necessary and sufficient condition for the existence of a bitangent circle at 71(x1) 
and 72(x2) . The tangent line to the SS at the corresponding point is the line P. Q 

4.3.2. Remark : The dual of the SS in this case is expressed as the discriminant 

of a map germ from the plane to the plane. Thus we expect in the codimension < 
1 cases the occurrence of stable cusps, swallowtails, lips and beaks transitions [Ri]. 
This is indeed the case, as can be seen in (figure 4.2.9). 

Case 

The symmetry set here is locally obtained from a neighbourhood of a point on 
a single curve 'y. The-point is generically a vertex but higher vertices can occur in 
1-parameter families of curves. If we write -y locally in the form -y(x) = (f (x), x) 
where f is a smooth function (figure 4.3.1 (iii)) then: 

a(x2 t xZ) =f 
(xl) -J (xs) 

XI - xs 
b(xlix2) = 

21(x1 +x2)+ 
Za(xi, x2)(f(xl)+f(x2)) 

are well defined smooth symmetric maps with a(x, x) = f'(x) and b(x, x) =x+ 
f'(x) f (x).. The line (-a(x, x), b(x, x)) is the normal to the curve -t at 7(x). The 

map 
G: R2 RZ 

(xI, x2) º-+ (-a(x,, x2), b(xi, z2)) 

is locally smooth, and 

4.3.3. Proposition : The discriminant of the map G is locally the union of the 
dual of the symmetry set and the dual of the evolute of the curve ry. 
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Proof. We have 
as 

-axl 
DG(xi, x2) _ 

as 
0X 2 

2+ äx 
(1 (xi) +f (x2)) +2 a(x1, x2)f'(x1) 

+ 
ý2a-(f(x1)+f(x2))+ 

1a(xi, 
X2)f'(X2) 

2 

A simple calculation of a limit shows that a (x, x) = f"(x) 
. The origin is not an 

inflexion on the curve y, so f"(0) rh 0 and the property holds in a neighbourhood of 
the origin. The matrix- DG(x, x) is of rank 1, the' diagonal is part of the singular set 
of the map G, and its image, which is the dual curve of the evolute, is a subset of 
the discriminant of G. 

The determinant of the matrix DG(xl, x2)is 

X IDG(xi, x2)J =1 2(xl - x2) 

[(f'(x1) + f'(Z2))a2(x1, x2) + 2(1 - f'(x1)f'(x2))a(x1, x2) - 
(f '(x1) + f'(x2))] 

When xl 54 X2 the determinant IDG(xl, x2)1 vanishes when 
1(-T1) + f'(x2))a2(x1, x2) + 2(1 - 

f'(x1)f'(x2))a(x1, X2) - 
(f'(xi) + f'(x2))) =0 

This equation is similar to (*) in the proof of Proposition 4.3.1, and the the subset 
of the discriminant of G which results from it is the dual of the symmetry set. Q 

The map G is a symmetric map with respect to reflexion in the diagonal A= 

{(x, x), xE R). 'The symmetric germs R2 -º R2 are the invariant germs of the 

action of Z2 on the source, where the group Z2 is generated by reflexion in the 

diagonal A. The equivariant change of coordinates in the source (x, y) ý-º (x+y, x-y) 
transforms symmetry with respect to 0 to symmetry with respect to the x-axis. 

A classification of invariant germs up to equivariant change of coordinates in the 

source (Z2 acting by reflexion in the x-axis), and any change of coordinates in the 

target, can be deduced from the classification of germs of projections of surfaces with 
boundary ([B-G4], remarks following Theorem 1.2). All that is needed is to replace 
in the list of normal forms obtained in ([B-G4], Table 5.1) y by y2. We shall give a 
proof of this statement as it was not proved in [B-G4]. In the following we introduce 

the notation needed. 

Notation 

In this chapter we deal with the action of the group Z2 in the source but there is an 

equivariant theory which deals with actions of compact Lie groups in the source and 
target [Ro], [W4]. We denote by C2 2 the set of germs R2,0 -º R2,0. The group 13 

in [B-G4] (see also Theorem 1.4.2 in Chapter 1) is the subgroup of diffeomorphisms 
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(h, k) EA with h preserving the surface with boundary {(x, y): y> 0} in the source. 
The group Z2 has two elements, the identity map in R2 and g the reflexion with 

respect to the x -axis, that is g(x, -y) = g(x, y). It acts on the source by reflexion 
and trivially on the target. This induces an action on C22 

Z2 X C2 2 
--I 

C2 2 

(9, f) -1 f9 

with f 9(x, y) = g-1. f. g(x, y) = f. g(x, y) =f (x, -y). The invariant germs of this 

action are those satisfying f9=f. The set of all invariant germs is denoted by 

(C2 2)Z2, and it is not hard to see that it is exactly the set of symmetric maps with 

respect to the x -axis. Any symmetric map with respect to the x -axis is written foa 

with fE C2 2 and a is the fold map (x, y) ý-+ (x, y2), so that (C2 2)Z2 = C2 2ov. 

Let RZ2, £z2, AZ' be the sets of equivariant diffeomorphisms, with R, C, A 

the standard Mather groups. We have hE 7ZZ2 if h9 = g-1. h. g = h. Let h= (u, v) 
then 

hE IZZ' 4 (u(x, y), v(x, y)) = (u(x, -y), -v(x, -y)) 

The action of Z2 on the target is trivial, so £Z2 =C and AZ' = JZZ2 X 'C. The 

action of A on C2 2 induces an action of AZ' on (C2 2) Z2 
. 

4.3.4. Theorem : The orbits of the action of 4Z2 on (CZ 2) Z2 are the images 
by the map o,. of the orbits of the action of 5 on C22 

The orbits of the action of 13 are the different types of orthogonal projections of 

surfaces with boundary [B-G4]. 

Proof Let O8(f) be the 8 orbit of f. We shall prove that 

O5(f)oa=d8z2(foa) 

We have Oß(f) = {k of oh: (h, k) E61. Let h(x, y) = (hl(x, y), h2(x, y)). Since h 

preserves the x-axis h2(x, 0) = 0, and by Hadamard's lemma h2(x, y) = yh2(x)y). 
The map h preserves the surface with boundary {(x, y) :y> 0}, so h2(0,0) > 0. 

The function v(x, y) = 
V7h2 

y) is then well defined and smooth in a neighbourhood 
of the origin. Let F= (k ofo h) o u. Then 

F(x, y) = k(f(hi(x,? JZ)�y2Ä2(X)y2))) 

= k(f(hi(x, y2), y2v2(x, y2))) 

= k(f(hi(x, y2), (yv( x, J2))2)) 

= ko(f o0)0H(x, y) 

92 



with H(x, y) = (hl (i, y2), yv(s, y2)) . The map H is a diffeomorphism since 
IDH(0,0) =h (0,0). v(0,0) # 0, and it is easy to see that H is in 7ZZ2 . So 
Oß(f) 0 Cr c 05: 3(100). 

Conversely, let F=ko (f o o) oH be in OBa (f o a). If H= (Hl, HZ) then 
Hl (z, -1! ) = Hi (x, y) and H2 (x, -y) = -H2 (x, y) . Thus Hl (x, y) =u (x, y2) and 
H2 (x, y) = yv(x, y2) with as (0,0). v(0,0) #0 is the condition for H to be a local 
diffeomorphiszn. We have 

F(x, y) = k(f(HI(x, y2), Hi(z, Y2))) 

= k(f(u(x, y2), y2v2(z, y2))) 
= (k ofo h)o(t, y) 

with h(z, y) = (u(z, y), yv2(x, y)). The claim is that (h, k) is in B. The fact that 
h is a diffeomorphism comes from lDh(0,0) = 

j(O, O). v2(O, O) 34 0 (H is a local 
diffeomorphism). It is clear that h preserves the x-axis and maps the surface with 
boundary {(x, y): y> 0} to itself. Thus OBa2 (f o a) C Of(f) o a. Q 

The above theorem yields the following table of normal forms of symmetric map 
germs of rank greater than 1 and of codimension less than 2, where we also give the 
codimension and the name of the corresponding boundary singularity. 

4.3.5. Table of normal forms (c = ±1) 

Normal form 

1. (2, y2) 
II. (z, zy2 + y4) 
III. (s, zy2 + y6) 
IV. (z, x2y2 + Eye; 

V. (y2 + _', _2) 

Name of the boundary Codimension 

singularity 
Submersion 0 
Semi-fold 0 
Semi-cusp 1 
Semi-lips (e = +1) 1 

Semi-beaks (E = -1) 
Boundary cusp 1 

4.3.6. Proposition : The germ G is equivalent in the equivariant sense to the 

germ (s, zy2 + y4) at an A3 on the curve and to (x, x2y2 + y4) at an A4 
. 

Proof: We can choose a local coordinate system with the origin the vertex on 
the curve and the y-axis the tangent line at the vertex (figure 4.2.6). We write 
7(x) = (f(x), x) with f (O) = f'(0) = 0. Calculations of the curvature function a 
and its successive derivatives show that 
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K(O) = 
(0) = _fº�(o) 

/tºº(0) " -f 
(4) (O) + 3(fººI (O))l 

The origin is an ordinary vertex when f "'(0) =0 and -f 
(4) (0) + 3(f"'(0))2 # 0. It 

is a higher vertex if f"'(0) = _f(4)(0) + 3(f"'(0))2 = 0. (Note that the origin is not 

an inflexion on y, that is f"(0) 0 0. ) 

We write locally at the origin f (x) = ax 2+ ßx4 + Sx5 + O(x6) with a= 
2 f"(0), ß= 4ý f (4)(0) and b= 5ý f (5) (0). The relation between a and ß is a3 -ß & 

0 if the origin is an ordinary vertex, and a3 -ß=0 if it is a higher vertex. For 

generic vertices on the curve we expect 6#0. With this expression for f we have 

aýx1 I z2) = 
f(X1) - 

f(X2) 
= a(XI + x2) + #(xl + x2)(xl 'i' x2) 'i- 

S 
Ji=Öx1 

'x2 + h. o. t 
Xi X2 

where h. o. t is an abbreviation for higher order terms. The equivariant change 

of coordinates xi =x-y and x2 =x+y transforms the symmetry with respect to 

the diagonal 0 to the symmetry with respect to the x-axis. The expression for a in 

this new coordinate system is 

a(x, y) = 2ax + 4ßx(x2 + y2) + 5(5x4 + 12x2y2 + y4) + h. o. t 

Let X= tax + 4ßx(x2 + y2) + 5(5x4 + 12x2y2 + y4) and Y=y. The map 

(x, y) F-º (X, Y) is an equivariant diffeomorphism and x= 
2a 

X- 
4XY2 

-6 Y4 - 
a2 

Ta 

4b X2Y2 + h. o. t. The map G is written in the new coordinate system (X, Y) in 

the source as follows: 

3 

G(X Y) = (-X a- QXY2 
- 

5ýX2Y2 
-L Y4) + h. o. t ' a2 a3 2a 

At an A3 point (ordinary vertex) Od -Q0 and the map G is equivalent, 

in the equivariant sense, to (X, X y2 + Y4) + h. o. t. The germ (X, X y2 + Y4) is 

4- AZ' -determined, therefore G is equivalent to (X, X y2 + y4). 

At an A4 point (higher vertex) a3 -ß-0 and it is not difficult to see that G 

is equivalent (X,. ß'Z Y 2 +Y4). 0 

The germ (x, XY2 + tt4) is stable and its discriminant is drawn in (figure 4.3.3 

(i)). The germ (x, x2y2+y4) is of codimension 1. Generic sections of the discriminant 

of its versal unfolding are as in (figure 4.3.3 (ii)). 
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Discriminant of (x, xy 2 +Y4) 

Generic sections on the discriminant of (x, x 2 y2 +y 4) 

Figure 4.3.3 

Taking into account the presence of inflexions on the duals, Proposition 4.3.6 

confirms the transitions on the dual of symmetry set and evolute at an A3 and 
A4 shown in (figure 4.2.9). In the A4 case the method of expressing the duals of 
symmetry sets and evolutes as discriminants gives a more precise account of what 
transition occurs on the dual of the symmetry set. 

§4. Appendix 

In this section we calculate the bifurcation sets of the bi-germs and germs in §2. 
We give a classification of bi-germs and germs of maps R, 0 -> R2,2,0 up to smooth 
changes of coordinates in the source and target. The method of classification and 
the machinery behind it is given in Chapter 1. We shall omit the calculation of 
determinacy. 

I. The bi-germs R, O --' R2,2,0 

The case of the bi-germs needs some clarification since the group acting is quite 
special. Let Ci 2 denote the ring of germs R, 0 --º R2,0. A bi-germ is an element 

of the ring C1 2x Cl 2. If F is a bi-germ we write F= (fl, f2). 

Two bi-germs F= (fl, f2) and G= (g1, g2) are A-equivalent if there exist 
diffeomorphisms hl, h2 preserving the origin in the source, and a diffeomorphism k 

preserving the origin in the target, such that the following diagram commutes. 

R, 0 f1, R2,0 (fi R, 0 
Thy 1k 1h2 

R, 0 -R90 +- R, 0 
Such an equivalence relation induces an action of the group A=RxRxG on 
CJ Y, 2 x CJ X2 defined by (hl, h2, k). (fl, f2) = (k o f1 o h, -' 

Iko 
f2 o h21) 

. 
The tangent 

space to the orbit of the bi-germ F= (fi, f2) is 

TA. F = {(dfi 0 ii dfs z): &1 02 E m. C1 2} + {(4 ° , 
fi, 0° f2): q5 E m. C2 2} 
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and the pseudo tangent space is 

T, le. F = {(dfi c, i, df2 0 Vz): tki, W2 E Cl x2} + {(c 0 fi, 00 f2): 0E C2)(2} 

The codimension of F is the dimension of the real vector space Ci 2x Cl 2/TAe. F. 

There are analogous theorems on determinacy, method of classification and ver- 
sality to those stated in Chapter 1. We shall classify bi-germs inductively on the 
jet level until a sufficient jet is reached. We denote by 2Jk(1,2) the set of bi-germs 

of polynomials of degree <k and by =k the A-equivalence relation induced on 
2Jk(1,2). 

The 1-jet F 
f 

(cs, ds) . 

Using explicit linear changes of coordinates in the source and target yields 

F=1 { 
(Z'0)} 

l 
Ifab-cd#0 

f (x'0)) 
1l1 (z, 0) Jf 

If ab -cd =0, a, c#0or b, d54 0 

-1 (0,0 )) JJ 
If only one of a, b, c, d is not zero 

=1 
(0,0)1 
(0,0) If a=b=c=d=0 

4.4.1. Proposition : (1). The bi-germ { 
ýO, 0ý j 

is stable. l 

(2) The orbits in 2Jk(1,2) with (k - 1) jet { 
(X, 0) 

are 
f (X, ý)) } and 

f 0k) llJ (ýý) 
} is k-A-determined with codimension k-1.11 ýx, 

) 
O) }. The bi-germ 

JJJ 

{ 

(x xk) 4.4.2. Remarks : (1). A versal unfolding of (x, 0) } is F(x, ui, ... Uk_1) _ 
(2, xk + ul zk-2 + u2xk-3 + 

... 
+ uk-1) 

JJJ 

(zt 0) 

(2). The bi-germs j 
(0,0) } 

and 
{ 

(0,0) 
} 

are not of interest in this chapter. 
l> 

They do not give rise to bi-germs which occur in the study of 1-parameter families of 
duals of symmetry sets. 
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4.4.3. The bifurcation sets of the unfoldings of 
(xI p k)) }, 

k=2,3,4 
f 

(X7 

The bifurcation set of a family of bi-germs F(x, u) = (f, (x, u), f2 (x, u)) is B(F) 
{u: 3x1, z2 such that f 

1(xi, u) = f2(x2, u) and 
f- 

I (xl, u)/ f2 (X2, u)} (see Defini- 

ax Ox tion 4.2.1). 
Case k= 2 

In this case f1(x, u1) = (x, x2 +ul) and f2(x, u1) _ (x, 0). We have 
XI = X2 

fi(xi, ui) = f2(x2, ut) (zi, x +ui) _ (x2,0) 
ui = -xi 

and 9f', 
(21 

f uj// a=2 
(Z2, u1) 4=* (1,2x1)//(1,0) <=* x1 =0 

Therefore B(F) is the single point 0,11(F) _ {0} 
. 

Case k-3 

Here fl(z, ul, u2) = (r, s3 +ult+u2) and f2(x, ul) = (x, 0). We have 

fl(=l9u,, u2) =f2(x2, uI9u2) (xl, Xi +ulXl +uz) = (x2,0) 
jXI = Xz 
tX +uiri+u2=0 

and 

üsi =tut, uz)%/ 8=2(=z9uiiu2) 
(1,3xi -I- u0) ui = -3x1 

The bifurcation case in this case is then 13(F) = {(-3xi, 2xi ): xi E R, 0}, which is a 
cusp. 

Case k=3 

In this case 
, /l(x, ul9ü2, u3) _ (x, X4+ulx2 +u2x+u3) and f2(x, ul) = (x, 0). 

Similar calculations to those above show that 

(ulru21u3) E 11(F) . 4=:: * Sx 
ulx1 + u2x1 + u3 =0 

l 4x1 + 2u1x1 + u2 =0 
The bifurcation set is then 13(F) = {(u, -4x3 - 2ux, 3x4 + ux): x, uER, 0). This is 

a swallowtail (figure 4.4.1). 

Figure 4.4.1 
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II. The germs R, 0 -º R2,0 

The A-classification of germs R, O -º R2,0 of low codimension is given in [R2]. 

In this chapter there is only one germ of interest, the germ (x2, x5) (see Propositions 

4.2.11 and 4.2.13). We shall calculate its bifurcation set. 

A versal unfolding of (x2, x5) is F(x, u, v) = (x2, xs + ux3 + vx) [R2]. The 
bifurcation set of F has two components, 

B(F) = {(u, v): 3x such that F(x, u, v) =T (x, u, v) = (0,0)}U 

{(u, v): 3xj, x2 such that F(xl, u, v) = F(x2, u, v) and 
'F (xl, u, v)// 

Ox (x2, u, v)} 

It is not hard to see that 

1 (u, v): 3x such that F(x, u, v) = 
ý- 

(x, u, v) = (0,0)} = {(0, v): vER, 0} 

For the second component of B(F) we have 

F(x1, u, v) = F(x2, u, v) (xi, xi + uxi + vlx) = (xz, x5 + ux2 + vx2) 
OF OF #=> 

äx 
(Xi, U, V)// ax (X2, u, V) (2x1,5xi + 3u1x2 + vi)//(2X2,5x2 + 3uxz + v) 

The first equation yields x2 = -XI and v+ uxi + xi = 0. This with the second 

equation give u= xi and v= -2x1. Thus B(F) = {(0, v): vE R} U {(v2, -2v): v 

0} (figure 4.4.2). 

Figure 4.4.2 

When considering a 3-parameter versal unfolding F(x, u, v, w) = (x2, x5 + ux3 + 

vx), the bifurcation set of F is locally the product of B(F) (above) by the line 

(0,0, w). We seek to find the generic section on B(P). To simplify the calculations, 

we take a diffeomorphic set B to B(F) with 

B={(u, v, 0): u, vER}U{(u, v, v2): u, vER, v>0} 

We use J. W. Bruce's method described in [B1] to find the stratified Morse functions 

on B up to topological equivalence. We recall some definitions and results in [B1]. 
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4.4.4. Definition : (1.5 in [B1]). Let S= (US) be a semialgebraic stratification. 
(a). A generalised tangent space at a point xES is any plane of the form 

T= lim T Sl where s; lies on the strarum S1 and il ýxi .-x. 
(b) A smooth function h: R" --+ R is said to be Morse on S if 

(i). h is proper on the closure of each stratum S and the critical values of h 

on all the strata are distinct. 

(ii). For each stratum S the restriction of h to S has only isolated non- 
degenerate critical points. 

(iii). For each critical point zES and each generalised tangent space T al 
x the restriction of the differential of dh(x) to T has maximal rank, except for the 

single case T= TS. 

For xES consider the set of forms in TZ R" which are zero on some generalised 
tangent plane T. Taking the corresponding projective space P, and assuming the 

stratification is semi-algebraic we obtain a semi-algebraic subset A of P of positive 

codimension. Let p: T=R" -+ TsR"IT,, S be the natural projection. It induces a 

map p' : (TsR"/Ts S)' --+ (T=R")'. Let D1 = (p*)-1(0) and T* _ (TxR"/TS)*. 

4.4.5. Proposition : (1.6 in [B1]). Let ho, hl : R" -i R be smooth Morse 

functions for S and suppose further at some point xES either 

(a). ho and hl are both submersions or 

(b). ho and hl have non-degenerate singularities of the same index and viewing 
dho(z), dhl(x) as elements of T* they both lie in the same component of P(T* - 

ol). Q 

Now back to our case. Let S be a Whitney stratification of R3 at the origin as 
follows, S= SU S1 U S2 U S3 U S4 with S= {(u, 0,0,0): uE R}, Si = {(u, v, 0): u, vE 
R, v <0}, S2 = {(u, v, 0): u, vER, V >0}9 S3 = {(u, V, V2 ): u, VER, v> 0} and 
S4 = R3 -SU Sl U S2 U S3. The only generalised tangent space at (0,0,0) ES is the 

plane w=0, and the Morse functions on B are of the form fug + av + bw, so that 

each function is represented in p(T*) by (a; b). The bad set A is the point (0; 1) 
in p(T*). Therefore p(T' - Di) has one component, and all Morse functions on B 

are topologically equivalent to ±u2 +v. 

The preimages of 0 by the functions hi (u, v, w) = +u2 +v and h2(u, v, w) _ 

-u2 +v are the product of the parabolae v= ßu2 by the w -axis (figure 4.4.3). 
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Figure 4.4.3 

The fibres of the functions hl and h2 are B fl hi-1(c), i= 112 with ca constant 
near the origin. We can realise hi 1(c) by moving the above big parabolae along 
the v-axis. We take their intersections with B and obtain the following transitions 
(figure 4.4.4), where the thick curves are the intersections of h, 1(c) with the set 
{(u, v, v2) : u, vER, v> 0} and the other curve is the intersection of hi-1 (c) with 
the plane w=0. 

(i) H ~.. " 

H~ 

Figure 4.4.4 
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CHAPTER 5 



Chapter 5 
Rotational Symmetry in the Plane 

§1. Introduction 

We have considered in the previous chapter the reflexional symmetry of plane curves. 
It is natural to look for a corresponding theory to investigate local rotational symmetry 
of plane curves, and we present one possible approach in this chapter. We consider a 
smooth unit speed curve ry: I -º R2 where I is a smooth interval of R or I= S'. 
For purpose of calculations, we sometimes identify the target R2 with the set of 
complex numbers. The basic idea is to look for centres of local rotational symmetry 
in the sense of centres C for which there is a rotation about C taking a point 7(ti), 
together with its tangent line and its centre of curvature, to y(t2) together with its 
tangent line and its centre of curvature. The locus of such centres C is called the 

rotational symmetry set (RSS). 

Two distinguishable cases arise naturally from the choice of an orientation on 
ry. The first case is when the rotation takes the tangent vector T(tl) to the tangent 

vector T(t2), and the second case is when T(tl) is rotated to -T(t2). In the first 

case the locus of the centres C is denoted by RSS+ and in the second RSS-. It 

turns out that RSS+ is locally a subset of the set of critical values of C+, a map 
from the plane to the plane. In some cases where it is the critical set of the map 
C+, it is possible to apply the results in Chapter 3 and describe rigorously the local 

structure of RSS+ and its generic transitions in 1-parameter families of curves ry. 
The set RSS- is locally described as part of the discriminant of C-, a symmetric 

map from the plane to the plane. It is a very striking fact that the local structure of 
the rotational symmetry sets, including that in 1-parameter families, closely resembles 
the local structure of the duals of the symmetry set. 

I am much indebted here to the inspirational computer pictures of Richard Morris 
[M], which constantly suggested new things to prove as well as illustrating those 

already proved. Here is a brief summary of the technique for drawing the rotational 
symmetry set RSS+ of a given curve detailed in [M]. This technique led to a fast 

algorithm for drawing the symmetry set. 
As detailed in §3 , we are essentially looking for pairs of points (tl, t2) on the 

curve 7 at which the curvatures are equal: K(tl) = c(t2). A simple construction gives 
the centre C+ for every such pair. Drawing the graph of curvature (figure 5.1.1) we 

are looking for all pairs of points at the same level on the graph. This is done by 

starting at a maximum or minimum (corresponding to a vertex of y) and working from 

there, keeping track of when one value, tl or t2, has to turn round because the other 
has reached another maximum or minimum (figure 5.1.1 (ii)). Eventually these pairs 
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(t1, t2) converge on another maximum or minimum and end with a pair of the form 
(tl, tl). There are also some closed paths in the set S= {(tl, t2) : N(ti) _ K(t2)1 . 
These have no natural starting point. Such a path is suggested in (figure 5.1.1 (iii)). 

(i) 

Figure 5.1.1 

t 1/ A- 
-( 

/t 
I- 

t2 
C 
b 

t24 

i 
h 
g 

- -"- (ll) 

ab tl 

-r1G ' 
/t 

1- 
t2 

1ý 
11 

1 

dof tl 

(iii) 

A somewhat similar idea works for the symmetry set: starting at a vertex of 7 
we calculate pairs of points of contact of bitangent circles which diverge from this 

vertex and keep track of them until they converge at another vertex. Again there are 
exceptional, closed pieces which do not arise this way. Both algorithms have been 
fully implemented in Fortran by Richard Morris [M]. 

This chapter is organized as follows. In section 2 we define the centre maps C± 

and give the formalised definition of the rotational symmetry set. We then explore 
in section 3 the local structure of RSS+ and its generic transitions in 1-parameter 
families of curves 7. The RSS- is dealt with in section 4. 

§2. The centre maps 

Let ry: I --º R2 be, as usual, an embedded smooth curve, where I is either an 

open interval of R or else the unit circle. Consider two points j(tj), ^j(t2) at which 
the (unit) tangent vectors are T(t1) 

, T(t2) and the unit normal vectors are N(ti), 

N(t2) respectively. We seek two points Cf = C}(tl, t2) which are the centres of 

rotation taking -y(ti) to 7(t2) and T(ti) to ±T(t2). Hence in each case the tangent 

line at 7(tl) is taken to that at 7(t2). Using the complex numbers C to parametrize 
R2 and wnting 6 for the angle of rotation, we have 

7(t2) - Cl = e. e(7(ti) 
- Cl) and T02) = ±T(tl)ete 
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It follows that the centre maps are given by 

CI(tl , t2) = y(t2)T(tj): F-r(tj)T(t2) E C, (1) T(ti): FT(t2) 

provided T(tl) 94 ±T(t2) (figure 5.2.1). 

T(t, ) 

TO 2) 

Figure 5.2.1 

An interesting limiting case occurs for C+ when tl and t2 both tend to the 

same value t. We assume that 7(t) is not an inflexion on the curve 7. 

5.2.1. Lemma : The limit of C+(tl, t2) when tl and t2 both tend to t is e(t), 

where e(t) is the centre of curvature of 7 at 1'(t) . 

Proof. We denote by T(t) the complex conjugate of T(t). If T(t2) = e`BT(tl) then 

T(t2) We have 
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C+(¬i, t2) - 
7(12)T(ti) 

- T(t2ýT 
(t2) 

[ Y(12)T(ti) + ? '(ti )T (t2 )] (T(tl) - T(t2 )J 
[T(ti) - T(t2))[T(t2) - T(ti)) 

_ 
7(t1) +'Y(t2) + e-iey(tl) - e- io 7(t2) 

cos9)(7(ti) + 7(i2)) + isin6(7(t2) - 7(ti )) 
2(1 - cos8) 

= 
2(7(t1) +7(t2)) +2 (i 

sýCO 
B) (7(t2) - 7(tß)) 

-sin 
2 

If we fix a line e in the plane, the angle of rotation 9 is the difference between 

the angles ti(t2) = angle[T(tz), e] and the angle 0(t1) = angle[T(ti), t] as shown in 
(figure 5.2.2). 

T(t2) T(t 1) 

\'V(t ) 

Figure 5.2.2 

We know that for unit speed curves 

Hence, 

\V(t1) 
- W(t 2) 

lim 
O(h) - 0(tß) 

_ º(tý = K(tý i1,92 t t2 - ti 

ýý 
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1 7(t2) - ry(tl t2 - tl 2i 
Ihn 

t(Y(ts) - 7ýti))sinz - illim e t2 - ti 0 ýsin! 
2 

7(t2) - 7(t1) t2 - ti 9 

=2 lim 
O(t2) 

2 
tl:, -.. t t2 - tl - 0(tl)'sin 

_ 
. Výt}T(t) 

It follows that 

=Ilim 
C+(tl, t2) = 7(t) + 

Kýt) 
T(t) = 7(t) + 

K(t) 
N(t) = e(t) Q 

We extend the map C+ on the diagonal and define 

C+(t, t) = e(t) (2) 

The resulting C+ is still smooth. On the other hand there is no point in extending 
C+ to parallel tangents, i. e., T(ti) = T(t2) and 7(tl) 76 7(t2), for that merely gives 
C+=00. 

There is no difficulty interpreting C-(t, t) : it is merely y(t). We do not extend 
C- to the case T(fl) = -T(t2) since again that gives C- = oo. We can now check 

the following. 

5.2.2. Lemma : Rotation about C±(tl, t2) through 8 takes e(ti) to e(t2) if 

and only if X(il) = ±K(tz) . 

Proof. Rotation about C±(tl, t2) through 9 takes e(tl) to e(t2) if and only if 

C(t2) - Cf _ eie(e(tl) - C±) 

N(t) yields Substituting e(t) by 7(t) + 
IC(t) 

That is 

7(t2) + ; (t1 z)N(fz) 
- Cl eýe(7(ti) + N(ti) - Cý) 

K(ý1)eýeN(ti) 
(*) 7(tz) - C} +K1 N(ts) = eie(7(ti) - 

&) + 

The point Ct is also the centre of rotation which takes -y(ti) to 7(t2) and N(ti) to 

±N(t2). Hence y(tz) - CI: = ei°(7(11) - C}) and N02) = ±e'8N(ti). Therefore 

the equation (*) holds if and only if K(t1) =f ic(t2) . 
11 
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5.2.3. Definition : The Rotational Symmetry Set (RSS) consists of two parts, 
RSS+ and RSS- : 

RSS} _ {C}(t11t2) : K(tl) = ±K(t2)l+ 

where we use C+ in the form extended by (2). (See figure 5.2.3 for an example of 
RSS+ ). 

7 

Figure 5.2.3. A rotational symmetry set (RSS+ ) 

5.2.4. Remarks : (1) If C+(t1, t2) E RSS+ for sequences of points tl -º t, t2 -º t 

then 7(t) is a vertex of 7: W(t) = 0. Thus RSS+ contains the centre of curvature 
at each vertex of 7. Note that the symmetry set also contains these points. 

(2) C-(t, t) E RSS- requires pc(t) = 0, i. e., 7 has an inflexion at -y(t), and 
then C-(t, t) = ry(t). Thus RSS- contains all the inflexion points of -y. 

(3) The angle of rotation 8 has been suppressed above. We have not so far 

attempted to include it in a coherent theory. 

§3. The RSS+ 

For the time being, let us consider RSS+ . Not only is RSS+ the image by C+ of 
{(tl, tz) : IC(ti) = rc(tz)}, but we have the following result. 

5.3.1. Proposition : The set of critical values of C+ is precisely RSS+USSUE, 

the union of RSS+, the symmetry set and the evolute of ry. Note that the last arises 

as the image of the diagonal {(t, t)} under C+. 
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Proof. We differentiate the map C+ and obtain 
oc+ ic(t, )N(ti)T(t2)iy(tl) -'Y(t2)) 

_ 
T(t, )T(t2) 

at, 
(ti, t2)_ (T(tl)-T(t2))2 T(tl)-T(tz) 

OC+ K(t2)N(t2)T(tj)(rr(tj) - 7(t2)) T(t, )T(t2) 
ütz 

(t''t2) 
(T(ti) - T(t2))2 + T(ti) - T(t2) 

OC+ 

l 
(fitz) =A+ iB and 

32 
(tl, t2) =C+ iD, then the differ- If we write 

ential map DC+ of C+ fails to be an isomorphism at (tl, tz) if and only if the 
AC 

matrix 11 has zero determinant. That is AD - BC = 0, and equivalently 
BD 

+ + C 
Im(1 (tl, tz). (tl, tz)) = 0. (Here Im(z) denotes the imaginary part of the Ot 06 
complex number z. ) Thus, the critical set of the map C+ is 

EC+ _ {(tl, f2): Im( 
U1(tl1 

t2). 
äý2 

(tl, t2)) = 0} 

Calculation show that 

Im(riC+(ti, tz)"aC+(ti, tz)) = Im{ =x 
z II(T(ti) - T(t2))211 

7(92))(T(ti) - T(t2)) - ß(t2)(- (i1) - 7(t2))(T(ti) - T(t2))l} 

Therefore, 

it = t2 or 
Im( 

ýCl 
(tl, tz). 

z 
(it, tz)) =0 K(ti) = N(h) or 

Real[(-'(ti) 7(t2))(T(ti) ß'(t2))] =0 
If we consider ry as a real plane curve, then the condition Real[(-y(ti) - y(t2)) 

(T(tl) -T(t2))] =0 says that the scalar product of the two vectors (y(tl) - ry(t2)) 

and (T(ti) - T(fz)) is zero. We write (7(t1) - ry(t2)). (T(tl) - T(t2)) = 0. This is 

exactly the necessary and sufficient condition for the existence of a bitangent circle 

to the curve 7 at 7(t1) and 7(t2) when y has a coherent orientation with respect to 

the circle at 7(fi) and 7y(f2). Thus 

C+(Ec+) = RSS+ U SS UE 

11 

The SS has been extensively studied and so has the evolute. In this section 

we are mainly interested in the structure of RSS+ and its generic transitions when 

considering 1-parameter families of curves ry. There are three cases to consider. The 

first case is when the critical locus is locally the RSS+ . The RSS+ is then the 

discriminant of a map from the plane to the plane. The results in Chapter 3 provide 
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a method of recognition of the singularities of R5S+. The second case is when it is 
locally the union of the RSS+ and the SS, and the last case is when it is locally the 

union of RSS+, S5 and E. The last zwo cases are difficult to deal with rigorously, 
for the centre map C+ is very degenerate and we lack of a recognition criterion for 
degenerate maps from the plane to the plane. We shall adopt a more descriptive 

approach when we deal with them. 

I. The simple case where RSS+ does not cross the symmetry set or the 

evolute 

Suppose that po = C+(ti, tz) E RSS+. The situation is considerably simplified 

when po V 5S and po ¢E (so to # t2) , 
for then RSS+ is locally the discriminant 

of C+: a map from the plane to the plane. In fact it is not hard to find the conditions 
for the map C+ to have a fold, cusp, swallowtail, lips and beaks singularity at po 

using the results in Chapter 3. For we need information on the critical set E+ = 
{(tl, t2): it(tl) = rc(t2)). A simple calculation on the function K(tl) - ? c(t2) shows 
that 

(i). The set E+ is locally smooth if and only if rc'(ti) #0 or k'(ti) y- 0. 

(ii). In the case ti'(ti) = ß: '(t2) =0 the set E+ is locally an isolated point if 

rc"(ti)rc"(tz) < 0, and a crossing if n, "(ti)x"(t2) > 0. 

When the set E is smooth, it is given locally as a graph of a function parametrized by 

either tl or tz . Without loss of generality, we assume that c(t2) #0 and E+ is locally 

the graph of a function ¢ with ci'(ti) = 1o . That is E+ = {(tl, c(tl)): ti E I, t1 }. 
X. (ti) 

The rotational symmetry set RSS+ is then parametrized by r(ti) = C+(tl, 0(tl)). 

The order of the vanishing of the successive derivatives of r at ti reflects the order 

of contact of the critical set E+ with the kernel line of the differential map of C+ at 

Po. This order of contact is expressed in terms of the successive derivatives of is at 
the two points to and to. Using Propositions 3.2.4 and 3.3.2 in Chapter 3 we deduce 

the following. 

5.3.2. Proposition : The map C+ is locally at po a 

(i). Fold map if and only if n (ti) # K'(t2). 
(ii) Cusp map if and only if K'(ti) = k'(tz) , 1%11(ti) 

# rcºr(t2). 

(iii) A swallowtail map if and only if KI(ti) = k'(tz), ýc'º(t? ) = Is"(ti), 'c"'(ti) 
KIºI (t0)ß 

2 

_ Proof The proof is a matter of calculating successive derivatives of the map r(ti) 
C'+(tl, ¢(tl)) at ti. We recall from the proof of Proposition 5.3.1 that 
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OC+ ic(ti)N(ti)T(ts)(7(ti) - 7(t2)) 
_ 

T(tl)T(t2) 
51 

(t1, tz) _ (T(tO - T(t2))2 T(ti) - ß'(t2) 

_ 
T(il)T(t2) [iK(tl)(7(ti) - 7(t2)) - T(ti) +T(t2)) - (T(tI) - T(t2))2 

If K(t1) 00 in a neighbourhood of t' j, then 

äC+ T(t, )T(t2) 
1-1(t I) +11 at, 

(ti, tz) = i,; (t, )(T(ti) 
-T(t2)) K(t, )N(tl) -'Y(t2) - , C(t, )N(tz)J 

At a point (tl, ¢(ti)) we have K(ti) = ic(¢(ti)) and 

8C+(ti. 
0(tl)) = iK(tl) T(tl)T(t2) 

[e(ti) - e(ý(tl))ý (*) 8t1 ? T(ti) - T(t2 ))2 

The vector 
C 

(to, to) is zero when e(to) = e(to). In this case there is a biosculating 

circle to the curve 7 at -)(to) and 1(tz), and the critical values of the map C+ is the 

union of RSS+ and SS. For the simple case when the critical values of C+ is the 

RSS+ the vector 
'Cl 

(to, to) is non-zero and the map C+ is of rank 1 at (to, to). 

+o0 
When ic(ti) =0 we have 

at, 
C(t1 o, to) _ ý, 

ýtiý )TT2t 
). 

This is a non-zero 

vector, and again the map C+ is of rank 1 at (ti, to). 

At (tl, «(tl)) we have 
ac+ 

(ti, O(ti)) _ -aa 
1 

(ti, O(ti)) and 0'(tl) 

Kýýti) Therefore 

K (c(tý)) atý 
The map C+ is locally a fold map if and only if r'(ti) #0 (Proposition 3.2.4), 

that is if and only if n'(ii) # K'(tz). 
Suppose that r'(ti) =0 then 

rn(ti) = _1 
K� (t; ý/_o �(t2) 

ac+ (ti, t2) 

The map C+ is locally a cusp map if and only if r'(ti) =0 and r"(ti) #0 

(Proposition 3.2.4). Equivalently r(ti) = W(t2O) and r. "(01) 9t W'(02). 

When r'(ti) = r"(ti) = 0, 

fit(ti)_ Kn, (to) aC+ 
t2 

X*02) 
1 

at, (tý, ) 
109 



The map C+ is locally a swallowtail map if and only if r'(ti) = r"(ti) =0 and 
r"'(t") 0 (Proposition 3.3.2). Equivalently W(to) = K'(t2), 'c"(ti) = K"(t2) and 
Kiiilt1 7~ Koa(t2ý Q 

5.3.3. Corollary : Locally at po = (to, to) the rotational symmetry set RSS+ 
(i) is a smooth curve if and only if K'(ti) # Ký(t2). 

(ii) has a stable cusp if and only if K'(ti) = W(to) and K"(ti) ýc"(t2). 
(iii) undergoes for generic 1-parameter families of curves 7, a swallowtail tran- 

sition if and only if W(to) = K'(tz), Kºrti) = K"(ti), 1%111(to) K"º(tz). 

Proof (i) and (ii) follow from Proposition 5.3.2. For the statement (iii), we proved 
in Proposition 5.3.2 that the centre map C+ is a swallowtail map. If we consider a 
1-parameter family of curves -r, (with 7o = 7) and the corresponding 1-parameter 
family of maps C, , then the family C+ with C+(tl, t2, s) = C, (tl, t2) is a versal 

unfolding of C0+ if and only if 
OCl 

(ti, 421 0) and 
aC + 

(ti, t2,0) are linearly indepen- 

dent. One can verify that this condition is satisfied by generic 1-parameter families of 
curves -y.. Therefore for generic 1-parameter families of curves y, the discriminant of 
the family & is a swallowtail and the RSS+ undergoes a swallowtail transition. Q 

When the RSS+ is smooth or has an ordinary cusp, it is not difficult to compute 
the direction of its tangent line at the point C+(ti, t2) when 7(t? ) and -j(t2) are not 
inflexion points on y. With the equations (*) and (**) in the proof of Proposition 

5.3.2, the tangent vector to the RSS+ is 

ýIýti)) 
&1 

(ti1t2) 

)K(ti) 
l/T 

(i )T tö )22 
[e(ti) - ettz)] l 02 )( 

1)T( 2)) 

If po is a smooth point on the RSS+, then (1 - 
K, (tý))t*? 

) 
T 
T( I)T(t2o) t°) 

(tz))Z 
is a 

non-zero real number and the vector r'(ti) has the direction of i [e(ti) - e(t2)] . The 

vector i[e(to) - 40A is perpendicular to the segment [e(to), e(t2)] . 
When po is an ordinary cusp on the RSS+, the limiting direction of the tangent 

to the RSS+ at po is the direction of r"(ti). We recall from the proof of Proposition 

5.3.2 that r"(ti) has the same direction as 
a-ýC-_(t1, 

to 2 ), that is that of i[e(ti)-e(t2)]. 

In both cases C+(i?, too) is the centre of rotation which takes e(tl) to e(t2). It 

follows that: 
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5.3.4. Corollary : The tangent line to the RSS+ at a smooth point and at 
an ordinary cwp is the perpendicular bisector to the segment [e(ti), e(tl)] (figure 
5.3.1). Q 

e(t1 ) 

RSS+ 

C+(t .. t 2) 

e(t 2) 

Figure 5.3.1 

E 

We still assume that the critical set of the map C+ is locally E+ = 
{(tl, tz): rc(ti) = K(tz)). An interesting feature on smooth points on the RSS+ is the 

inflexions. These occur when the curvature function of the RSS+ vanishes. If we 

write r(ti) = C#'(tl, ¢(tl )) = .Y+ il" with X and Y smooth real functions in tl, 

then the curvature of RSS+, denoted by p, is given by 

_ 
XIYºº_Xfly? 

Pýtt) = 
(1,12 + l. f2) A2 

(t1) 

The function p -vanishes at ti when (1'Y" - X"Y')(t) = 0. Equivalently 

)) 
1 

(tl, O(tl)}. Thus T'(t? )r"(tj) is real. We have r'(ti) = (1- ¢'(ti 

r�(=1 = 
�(t, 

ac+(iý, 
ý(tý))+(1-¢'(tl))(o 

+(ti, 
ý(tý))+ý'(t1) 

i 

2(ti, 

0(t1))) 

1 

oc+ 
Differentiating the map 

1 
at (4,0(4)) yields 

r3t2 T(ti) - T(t2) öti 

(T(ti) - T(t2)) 

and 
02c+ T(tl) + T(t2) OC+ 

at, at2 ýtý, ý(ti)) = : K(t, )T(tl) 
- T(t2) at, (ti, 001)) 
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It is not difficult to check that i 
T(T(ti) tl) 

)-+ T(t2) 
T(t2) 

d 
(T(ti 

T()tl-)T(T(t2t2) 
))Z are both real. 

We recall that 
äC+ T(tl)T(tz) 1 
cats 

(ti, 001)) = iIc(tl)(T(tl) 
- T(t2))217(ti) -7(t2) + 

r(tl) 
(N(tl) - N(ti))) 

Therefore 

(ti)rºº(t? ) is real tý i? c'(ti)(7(ti) -'Y(t2)) at, 
(to, to) is real 

Kýýti)(7(ti) -7(tz))(N(ti) - N(t$°)) is real 

K'(ti) = 0, or 

(7(i )- 7(t2'))(N(ti) -- N(t2)) is real 

= 0, or 

7(ti) - 7ýt°s) _ 
A(N(tl) 

- N(ts)), AER 

K'(ti) = 0, or 

C+(ti, tz) E SS 

The case C+(ti, tz) E SS is dealt with in more detail in the next section. We 

summarize the calculations in the following proposition. 

5.3.5. Proposition : The RSS+ has an inflexion at C+(ti, t2) if and only if 

one of 7(ti) and y(ti) is a vertex on the curve ry, or C+(ti, t2) is also the centre 

of a bitangent circle to the curve -r at -y(ti) and 7(t2). Q 

Suppose now that E+ is no longer smooth at po, i. e., rc'(ti) = ic'(t2) = 0. The 
function K(tl, t2) = ic'(tI) - rc'(tz) is Morse when 'c"(01 )X"(t2) # 0. The set E+ is 

the zero set of the function K. It is an isolated point when k"(t(j')c"(t2) <0 and 
a node when rc"(ti »c"(tz) > 0. Using Corollary 3.4.4 and Example 3.4.5 we deduce 

the following. 

5.3.6. Proposition : For generic curves in the plane, the map. C+ is a "lips" 

map if rc"(ti)gºº(tz) >0 and a "beaks" map if n"(ti)tcºº(tz) < 0. Q 
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5.3.7. Corollary : For generic I-parameter families of curves in the plane, 
the RSS+ undergoes the "lips" transitions when sc"(ti)c"(t2) >0 and the "beaks" 

transition when a"(ti )ti"(tz) < 0. Q 

It is easier to see what is going on geometrically in the case of a lips or beaks 
transition on RSS+ for a family of plane curves. Here, the set E+ _ {(tl, t2) : 
rc(tl) = K(t2)} is, at the moment of transition, itself singular, and it undergoes a 
Morse transition. 

x 

(i) Ii"- 

00 tl t2 

KU 
- ______ 

KK 

to t0 t 
2 t 

Figure 5.3.2. Changes in the K-curve which give lips/beaks transitions on RSS+ 

The conditions for lips and beaks are easy to visualize in terms of the curvature 

graph of y. Consider for example the first part of (figure 5.3.2 (i)), which gives rise 
to an open lips. (Clearly, in the second transitional part of (figure 5.3.2 (i)), we have 

K"(tl)'c"(tz) < 0. ) Each pair (t1112) at the same level on the graph contributes a 

point C+(ä, 12) to RSS+. For instance the points on the arc AB of the graph are 

paired with those on the arc EF. Looking at ic'(t) along AB (it goes from <0 to 0) 

and along EF (it goes from 0 to < 0), it is clear that there will be some pair of points 
(tI, tz) where n'(tl) _''(t2), and this gives a cusp on RSS+ (see the conditions in 

Corollary 5.3.3). Similarly DC and DE give a cusp somewhere; for sufficiently small 

perturbations from the transition state there will be just two cusps altogether. On 

the other hand pairs E, D; B, F; A, E; C, E all give inflexion on RSS+; the inflexion 

condition is K'(tl) or ß'(1z) = 0. Thus RSS+ has four inflexions and two cusps. The 

lips in the Ups transition has the unusual feature of having four inflexions. Notice that 
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this is similar to the situation for the dual of symmetry set at a "moth" in Chapter 
4. (Sec figure 5.3.3 and compare with figure 4.2.9. ) 

.ý 

Figure 5.3.3. Richard Morris's Computer picture of a lips on RSS+ 

Similarly in (figure 5.3.2 (ii)), there is an inflexion on each branch of the beaks 
before and after the moment of transition (figure 5.3.4). This is as well an unusual 
feature on the beaks transitions. The same phenomenon occurs on the dual of the 

symmetry set at a "nib". 

"ý 

Figure 5.3.4. Beaks transition on RSS+ 
(Richard Morris's picture) 

II. The case where RSS+ crosses the symmetry set 

When C+(ti, tz) belongs to RSS+ and also to SS (but not to the evolute, ti # t2 

the map C+ tends to be more degenerate than in the case for swallowtail, lips or beaks 

in the previous section. (For instance, the map C+ is of rank 0 at an A2 point. ) We 

denote by S the set of pairs of points (ti, t2) for which there exists a circle tangent 

to the curve at r(ft) and 'I(t2) and centred at C+(tl, t2). The critical set of the 

map C+ is locally the union of E+ and S. 

We suppose for the moment that -y is taking its values in R2 (not the complex 
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numbers). Then S= {(t,, 6)4-701) - y(t2)). (T(t, ) - T(t2)) = 0] [e-B]. The set S 
is a smooth curve when the bitangent circle is not osculating at 1(t? ) or at y(t2). It 

consists of an isolated point or a node when the point (ti, to) is an Az singularity 
of the distance squared function on 7 (i. e., the circle is biosculating at y(ti) and 
ry(tz) ). We deal with the two cases separately. 
Ca, qe 1. The point (tits) is not an Az 

The map C+ is of rani; I and the set S is a smooth curve. We can suppose that 
the bitangent circle is not osculating at )(tz) so that S is parametrized by (ti, &(ti)) 

with O(t; ) = !z and 0'(t, ) 
rn 

where r is the radius of the bitangent 
1- (w(ti)) 

circle [C-B]. At (ti, tz) it is clear that y5'(ti) _ -1 and the tangent to the curve S at 
that point is (1, -1). The set E+ is also genenically smooth in this case. Each time 
S intersects E+, the slope of its tangent at the point of intersection is -1 (figure 
5.3.5, left). 

The symmetry set, image of the curve S by the map C+, has an inflexion at 
C+(ti, tz) when K(101) = rc(tT) (G-B]. The RSS+ has also an inflexion at C+(to, t°z) 
(see Proposition 5.3.5). Thus, the RSS+ and the SS have inflexions at their point 
of intersection and the two curves are tangential (figure 5.3.5, right). 

RSS"' // SS S` 
ý+ 

+ C (tl0, t2) 

(1,1) 

Figure 5.3.5 

The condition for E+ and S to be tangential at (ti, t2) is that the slope of 
the tangent to E+ at (ti, tz) is -1. This happens when c'(ti) = 

ý*ýtöj 
= -1, 

2 

equivalently W(01) = -K'(tz). This condition is not satisfied for generic curves. 
Thus, generically the two curves E+ and S intersect transversally. 

When n'(t1) = -W(tz) one can show by computing the second derivative of the 
function 0 that the curve S has an inflexion at (ti, tz). The condition rc'(ti) = 

-K'(tz) is expected to hold generically at isolated points on 1-parameter families of 

curves ry. The union of the two curves E+ and S appears to have the transition 
drawn in (figure 5.3.6 (i)), and their images undergo the transition in (figure 5.3.6 
(ii)). In fact one can prove that the RSS+ and the SS have higher inflexions at 
C+(t;, tz) when '(t; ) = -4ti)" 
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S 

(tits) 
(i) r' 

SS RSS+ 

(ii) 
H 

Figure 5.3.6 

4-4 (', -1) 

H 

(1, -I) 

The condition a'(ti) = W(to) can occur generically at isolated points on 1- 

parameter families of curves y. The rotational symmetry set is singular as r'(ti) = 0. 
If fact in this case it is not hard to show that RSS+ has a rhamphoid cusp (for, the 

conditions on RSS+ to have a rhamphoid cusp at C+(ti, t2) are C+(ti, t2) E SS 

and ic'(ti) = rc'(t2)). Notice that the tangent vector at (ti, t2) to the curve E+ 

is (1,1) 
. 

The curves E+ and S meet transversally and their tangent vectors are 

perpendicular at the point of intersection. In (figure 5.3.7) we draw what should be 

the generic transition on RSS+ U SS at a rhampoid cusp on the RSS+. 

5 

Figure 5.3.7 

Case The point (to, to) is an A2 

1- 

An Az occurs on the SS when the bitangent circle to the curve y is osculating at 

-r(ti) and 7(t2) . 
The centres of curvatures e(ti) and e(t2) coincide. We saw in proof 

of Proposition 5.3.2 that in these conditions the vectors at, 
(ti, t2) and 

C 
(ti, t2 ) 

ati 

are both zero. The map C+ is of rank 0 at (ti, t2). This makes it harder to identify 

rigorously how RSS+ behaves in a 1-parameter family. However, we treat this case 
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by an informal genericity argument and putting together information found previously 
by studying the symmetry set and the rotational symmetry set. 

For example, we know that at an AZ point the SS undergoes generically "moth" 
transitions when rc'(t0I), c'(t2) >0 and "nib" transitions when ic'(t°)ic'(tZ) <0 [B- 
G3]. Our investigation on the duals of symmetry sets in Chapter 4 highlighted the 

existence of two inflexions on the moth in the moth transition, and one inflexion on 
each component of the nib on just one side on the nib transition. We know from the 

previous section that these inflexions points are also inflexion points on RSS+, and 
that the two sets RSS+ and SS are tangential. 

The set {(tl, t2): ic(tl) _ ic(t2)} is smooth at a generic A2 on the curve -y. The 

rotational symmetry set RSS+ is parametrized by r(tl) = C+(tl, «(ti)) as in the 
previous section. At (t?, t2) the vector r'(ti) =0 but r"(ti) and r"'(ti) are linearly 
independent. The rotational symmetry set has an ordinary cusp at C+(ti, tz). 

Combining the information on SS and RSS+, we draw in (figure 5.3.8) what 
appears to be the generic transition on RSS+ U SS at an A2 point on the curve ry . 

Moth 

Nib 

I 

/E 
C</ 

f/f/f/ 

//f/ 

//f/ 

Sc 
RSS+ 

H 

/\ 

/ 

/E 
/SS 

/ RSS+ 

i 

i 

Figure 5.3.8 

III. The case where RSS+ crosses the symmetry set and the evolute 

If C+(tl, t2) E RSS+ for sequences tl --+ to, t2 --> to then ic'(to) = 0. The curve -y 
has an ordinary vertex at 7(to) provided that is"(to) 0 0. The map C+ is symmetric 
with respect to the diagonal 0= {(t, t): tE R} and has rank zero at (to, to). The 

symmetry set has an endpoint at the centre of curvature e(to) and the evolute has 
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an ordinary cusp. The set {(tl, t2): k(tl) _ lc(t2)} is a smooth curve symmetric with 
respect to the diagonal A. Its image by C+, the RSS+, is a curve with an endpoint. 
The endpoint is the centre of curvature e(to) (figure 5.3.9). 

Ordinary vertices are generic features on smooth curves. The endpoints on SS 

and RSS+ are therefore stable. (This contrasts with the fact that the map C+ is 
degenerate at a vertex. ) 

SS 
R SS+ 
E 

Higher vertices occur generically at isolated points in 1-parameter families of 
curves y. The condition is W(to) = r. "(to) =0 and is"'(to) # 0. We suppose that 
to = 0. The Taylor development of the curvature function in a neighbourhood of 
the origin is given by k(t) = ßc(0) + ß"'(0)t3 + 0(t4) 

. The germ of the function is is 

equivalent, by smooth changes of coordinates in the source and target, to t3 . 
Any 

perturbation of is is contained in the family t3 + ut. For a generic 1-parameter family 

of curves -y, , the corresponding family of curvature functions K(t, s) = rc, (t) is a versal 
unfolding of the germ ico = rc, so that K(ci(t, s)� ß(s)) = t3 +st, with a(-, 0), 

,8 germs 
of diffeomorphisms. The set {(tl, t2, s): ic(tl, s) = K(t2, s)} is diffeomorphic to the set 
{(ti, t2i s): 1+ stl = t2 + st2} . 

It is enough to study the generic sections on the 

set {(t1 
, t2, s): t1 + st1 = t2 + st2 } in order to find the generic transitions on the 

sets E; and hence those on RSS+. Calculations show that the generic sections on 
{(tl, t2, s): ti + stl = t2 + st2 }, and therefore on E; 

, are the ones shown in (figure 

5.3.10). 

i 
/// 

/// 

4-4 1 
/// 

/ 
0"/ / 

./ 

Figure 5.3.10 

118 

Figure 5.3.9 



The closed curve E; is symmetric with respect to the diagonal 0 as the map 
C+ is symmetric with respect to A. Two symmetric points on E8 are mapped 
to the same point by C+. The rotational symmetry set is then a curve with two 
endpoints. The endpoints are the images of the intersection points of E; with A, 
that is the cusp points on the evolute. There is a point on Et where the tangent 
is parallel to the diagonal. The curvature satisfies the condition r., '(ti) = W(t2) at 
such points and the image by C+ is a cusp on RSS+. There is also a point on E; 

where the tangent is parallel to the tl -axis (i. e., KI(t2) = 0) and another point where 
the tangent is parallel to the t2 -axis (i. e., n'(tl) = 0). The corresponding points 
on RSS+ are inflexion points. We come to the conclusion that the RSS+ has the 
following transition at a higher vertex on the curve "y (figure 5.3.11). 

AM1 4-, 

Figure 5.3.11 

Note that the inflexions on RSS+ do not derive from the intersection of RSS+ 

and SS. Indeed, the dual of the symmetry set at an A4 -point (higher vertex) shows 
that there are no inflexions on SS at the A4 transition. We gather information on 
RSS+, SS and E and draw the generic transition on the critical locus of the map 
C+ at a higher vertex in (figure 5.3.12). 

RSS+ 

E 

P, I I1 
~I $1 

~ II 
II' 

Figure 5.3.12 

§4. The RSS- and the connexion with symmetric maps 

RSS- arises as part of the set of critical values of the map C- in much the same 

way that RSS+ arises from C+. If we consider tI -76 t2 where "<t, ) - -ß(t2) the 

point C-(tl, t2) is the same as C+(ti, t2) obtained by reversing the orientation of y 

near t2. Of course this cannot be done globally, but it means the local structure of 

the RSS- is the same as that of RSS+ except close to points (t, t). 
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So consider say t= to on y, and assume that C- (to, to) is on RSS- 
, which 

requires tc(to) = 0. If to is an ordinary inflexion on y (tc'(to) 0 0), then the set 
E- = {(tl, t2): rc(tl) = -rc(t2)} is a smooth curve close to po = (to, to), while if to is 

a higher inflexion (ic'(to) = 0, rc"(to) 36 0) then E- has an isolated point at po. The 
image RSS- = C-(S-) is a smooth curve with an endpoint at -y(to) in the first case 

and is merely {ry(to)} in the second (figure 5.4.1). 

RSS "7 

.. ý. 

:ý 

Figure 5.4.1. RSS- near an inflexion and higher inflexion on -y 

Note that the map C': RxR -º C= R2 is symmetric with respect to interchange 

of variables in the source: C-(tl, t2) = C'(t2) t1). Of course, the same goes for C+, 
but when we examine C+ close to a point (to, to) where C+(to, to) E RSS+ we 
find C+ is very degenerate (see §3). On the other hand with C-, the critical set 

near a point po = (to, to) with rc(to) =0 consists precisely of E- and the diagonal 

A= {(t, t)}. The image C- (E-) is RSS- and C-(0) is the curve y(I) itself. This 

means that we can study the pair (RSS-, ry(I)) using the classification of symmetric 

maps found in Chapter 4 Table 4.3.5. 

As in §3, we seek a method of recognition of symmetric map germs of rank greater 
than 1 and codimension less than 2. It is not difficult to see that the criteria in Chapter 
3 can be adapted to the situation of symmetric maps. Let F(x, y) = (x, f(x, y2)) be 

a symmetric map with ith respect to the x-axis. Then the critical set of F at (0,0) is 

the set {(x, y): y 5y (x, y2) = 0}. The x -axis, axis of symmetry, is part of the critical 

set. Let S= {(x, y): 
'Oy 

(x, y2) = 0}. When S is smooth, one can show following 

the same calculations as in Chapter 3, that the order of contact of S with the kernel 

line of DF(0,0)) determines the germs (x, y2), (x, xy2 + y4), (x, xy2 + y6). When S 

is singular but 
J(x, 

y2) is a germ of a Morse function, then F is equivalent in the 

equivariant sense to (x, x2y2 + ey4) . In the following equivalent means equivalent in 

the equivariant sense. 

5.4.1. Proposition : Let F be a germ of a symmetric map with respect to the 

x -axis. Then 

(i). F is equivalent to (x, y2) if and only if S=0. 
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(ii). F is equivalent to (x, xy2 + y4) if and only if S is smooth and has i-point 
contact with kerDF(0,0). 

(iii). F is equivalent to (x, xy2+ y6) if and only if S is smooth and has 3-point 
contact with kerDF(0,0). 

(iv). F is equivalent to (x, x2y2+ ey4) if and only if S is the zero set of a 
Morse function. 0 

For the map C-, the set S is E-, and the kernel of DC-(to, -to) is the line 

t2 - -ti . 
We have the following. 

5.4.2. Corollary : The map C- is equivalent to: 

(i). (x, y2) if and only if x(to) # 0. 

(ii). (x, xy2 + y4) if and only if rc'(to) 0, K(to) = 0, rc"(to) L0 (ordinary 

inflexion on the curve). The pair (RSS-, ry(I)) has locally the stable structure of 
(figure 5.4.2 (i)) 

(iii). (x, xy2 + ys) if and only rc'(to) 0, K(to) _ ri. "(to) =0, nº11(to) 54 0. 

The pair (RSS-, y(I)) undergoes a transition as in (figure 5.4.2 (ii)) on generic 
1-parameter families of curves y, with 70 = y. 

(iv). (x, x2y2 + y4) if and only if is(to) = rc'(to) = 0, /K"(to) 0. The pair 

(RSS-, -r(I)) undergoes a transition as in (figure 5.4.2 (ii)) on generic 1-parameter 

families of curves 7, with -yo = y. 13 

\_. 

.1 

(ii) 

(iii) 

cý 

c -. a 

. 

.. 
ý. 

H 

Figure 5.4.2. Transitions on 1-parameter families of RSS- 
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5.4.3. Remarks : (1). The germ (z, x2y2 - y4) does not occur in context. 

(2) The last transition of Corollary 5.4.2 (ii) does not occur as a transition on 
a generic family of duals of symiuetry sets. This is an exception to the general rule 
that duals of symmetry sets behave similarly to rotational symmetry sets. 
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Chapter 6 

Midpoint locus of smooth surfaces 

§1. Introduction 

In Chapter 4 we investigated the local reflexional symmetry of smooth embedded 
curves in the plane and pointed out the duality with the Symmetry Sets. We recall 
that the symmetry set of a plane curve is defined'in [G-B] to be the locus of centres of 
bitangent circles to the curve. This definition originated from the "3ym-ax" of H. Blum 
[B1]. He suggested, as a tool of studying the shape of a planar object, to fit disks 
inside it and consider the locus of their centres which he called "sym-ax". Different 

approaches to studying the symmetry set have been made [B-G-Gi], [B-G3], [G], 
[G-B], but the most fruitful is the one which describes it as part of a full bifurcation 

set of the family of distance squared functions [B-G3]. It is then possible to apply 
singularity theory to describe the deformations in 1-parameter families of symmetry 

sets. 
Although the symmetry set captures the infinitesimal symmetry of the curve it 

has been criticized for its sensitivity to noise and unintuitive relation with the shape 

of a curve [Bra]. M. Brady proposed instead of the centre of the circles to take the 

mid-point of the chord of contact [Bra]. In [G-B] the locus of all these mid-points is 

called the midpoint locus of the curve and a direct argument for studying the structure 

of the midpoint locus of smooth embedded curves is given. If 7 is a unit speed curve 

and T its tangent vector, the set of pairs of points of contact of bitangent circles 
to the curve y is S= {(tl, t2) : (y(tl) - y(t2)). (T(ti) ±T(t2)) = 0}. The set S 

is given as the zero set of the function g(tl, t2) = (y(tl) - ^((t2)). (T(tl) ±T(t2)). 

By the Implicit Function Theorem S is locally a smooth curve prametrized by tl 

provided the bitangent circle is not osculating at 7(t2). The midpoint locus of ry is 

the image of S by the map m defined by m(ti, t2) =2 (-y(tl) + 7(t2)). The map 

m is in general a diffeomorphism, so the midpoint locus inherits the structure of 
S. Unfortunately this method encounters some problems: it is not possible to study 

rigorously the transitions which occur in families of midpoint loci and it is hard to 

extend it to the surface case. But unlike the symmetry set, there is no apparent way 

of expressing the midpoint locus as a discriminant or a bifurcation set and applying 
standard techniques of singularity theory. 

In this chapter we overcome this problem by using information on the distance 

squared function. (We deal only with the surface case but the same method applies 
for curves. ) We obtain the set of pairs of points of contact of bitangent spheres 
to the surface from the distance squared function as follows. Let M be locally a 

123 



surface parametrized by s: RZ --º R3 and d: RZ x R3 --º R, the distance squared 
function on M. The set Sd of points (x1, x2i a) E R2 x R2 x R3 where the restriction 
of d to R2 x {a} has two singularities xi and x2 at the same level is invariant 

under isomorphisms of unfoldings in the sense that, if d' is an n -unfolding of an 
equivalent germ to dao , the restriction of d to R2 x {ao }, there is a diffeomorphism 
H: R2 x R2 x R' -º Rz x R2 x R3 taking Sd to Sd' (Lemma 6.2.1). It is 
then possible to compute Sd for normal forms of the singularities of dao following 
the approach used in [W2] and [B-G-Gi]. The set of pairs of points of contact of 
bitangent spheres is the projection of Sd to R2 x R2. (Note that the projection of 
Sd on R3 is the Symmetry Set of M. ) It is ideal if the following diagram commutes, 
when H is restricted to Sd, for some choice of bottom map. 

R2xR2xR3 -L R2xR2xR3 
pr pr 

R2 x R2 --º R2 x R2 

We do not know if this is true. But if we take d' to be the unfolding of the 

normal form of the singularity of dao we can use a geometrical argument to deduce 
the structure of pr(Sd) = pr o H(Sd, ) from that of Sd,. 

We are mainly interested in the cases when the distance squared function is an 
unfolding of an A3, A4, D4 and AZ singularities. For each of these singularities we 
compute Sf for the unfolding f of their normal forms. 

§2. Computation of Sf 

Let M be a generic smooth surface locally parametrized by s: R2 -º M in a 
neighbourhood of the origin. The distance squared function is defined as follows. 

d: R2xR3-º R 

(x, a)i---º IIs(x)-x112 
The scalar d(x, a) is the square of the distance between the point a in R3 and 

s(x) on the surface M. When da = dIR2x{a} is singular at the origin, the map d 

is an unfolding of this singularity. For generic surfaces, dao has singularities of type 
A3, A4, D4 at the origin. The distance squared function is a versal unfolding of these 

singularities [W1]. In [B-G3] the authors considered the full bifurcation set of d: 

B(d) = {a E R3: da has a degenerate singularity at some xE R2 

or two singularities xl, x2 where d(x1, a) = d(x2, a)} 

For the midpoint locus we shall look for the singularities (xl, x2) of d at the same 
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level. We first define the set 
Sd :_ {(xl, x2, a): da is singular at xl and x2 and da(xl, a) = da(x2 

i a) 

or xi = x2 and da has a degenerate singularity at xi} 

Geometrically, da is singular at xl when the sphere of centre a is tangent to 
the surface Ai at s(xl). The projection of Sd on R2 x R2, pr(Sd), can be seen as 
the set of points of contact of bitangent spheres with the surface M. The set pr(Sd) 
is symmetric with respect to the diagonal D= {(x, x): xE R2} . 

In the following we show that Sd is invariant under isomorphisms of unfoldings. 
Let f and g be two r-versal unfolding of the same singularity. Then f and g are 
isomorphic as unfoldings [Br-L], ie , 

Ax, a) = a. M(x, a), b(a)) + ß(a) (*) 

with i(-, a) and t5 being diffeomorphisms and a'(0) # 0. 

6.2.1. Lemma : Let f and g as above. Then Sf and S. are diffeomorphic. 

Proof. The proof follows trivially using the equation (*). If we denote by VF(x) the 

gradient of the map F at x, then 

(XIiXZ, a) E Sf 
f(xi, a) = f(x2, a), 
Of(xi, a) = Vf(x2, a) _0 

b 
{g((xj, a), eIa)) = 

V{g(c(xi, a), tp(a))} = V{g(O(xi, a), tP(a))} _0 

j 9(4(xi, a), b(a)) = 9(0(x2, a), i&(a)), 
109(ý(xi, a), 0(a))"DO = 09(«(x1, a), Tb(a))"D4 =0 

Since «(-, a) is locally a diffeomorphism then 

(Xi, xz, a) E Si 
{ 

Vg c(xj, aý ())) Vg(«()1 a), '(a)) =0 

b (c(xi, a), ß(x2, a), tb(a)) E S9 

Let H: R2 x112 x R3 -º R2 x R2 x R3 with H(x1, x2, a) = (c(x1, a), q5(x2, a), 0(a)). 

From the properties of the maps ý and 0, H is a germ of a diffeomorphism, and 
from the above calculations H(Sj) = S9. Q 

In the following section we shall compute Sj for the unfoldings of the normal 
forms of the singularities A3, A4, D4 and A2 . The calculations follow the same 
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patterns those in [W2] and [B-G-Gi] with the difference that here we are interested 

in the critical points of f at the same level rather than the discriminant of f or its 

full bifurcation set. (This amounts to working in the source. ) We shall carry out the 

calculations for each case. 

6.2.2. The D4 case 

The normal form of a D4 singularity is given by x3 + y3 [Al], and a versal unfolding 
is f= x3 + y3 + axy + bx + cy. The germ f has two real singularities at the same 
level if there exists a scalar d for which f-d has two real singularities, that is the 

plane cubic f=d has a real line component meeting the residual conic at two real 

points. The conditions for f=d to have a line component t: x+ ay +, 8 =0 are: 

b=c, a=1, ß=-3. Then f =(x+y-3)(x2-xy+y2+aX+ay- 
9 

-}-b) . If we 33 

write f -d = t. Q where Q is the irreducible conic x2 -xy+y2+ 3x+ 3y 
9 +b = 0, 

then f-d is singular if and only if t=Q=0. 

Q=Obx+y-3 0-4=#- x=-y+3 and (1) 

Q=0 x2-xy+y2-I-3x+3y- 
9 +b=0 (2) 

z 
Replacing in (2) x by its expression in (1) yields: 3y2 - ay +9+b=0 (*). The 

2 

discriminant of this equation is A= -(3 
a+ 12b). The line £ and the cone Q have 

two points of intersection when A>0. These points are the Al singularities of f. 

When A=0, the line £ is tangent to the cone Q at an A3 singularity of f. We can 
find these A2 and A3 singularities by solving (*) and (1) and we get: 

Sf -{(a-VE , 
a+y a+V' a-VA- b, b): a, bER}U 

6666 

, (a -F- VrA-- a- v*rA- a --%/A-- a+ /A- 

6'666 
R} 

a2 
If we write x=a and y2 = -(3 + 12b) then: 

x-y X+y X+Y x-y x2+3y2 x2+3y2 Sr={( 
6,6'6 36 36 

): x, yER} - 

Sf is a smooth surface in R2 x R2 x R3 . The projection of Sf on R2 x R2 is symmetric 

with respect to D= {(x, x): xE R2}. When y=0, equivalently i=3+ 12b = 0, 
z2 

f has an A3 singularity at (x 
6' x, 36' 36) . 

6.2.3. The D4 case 

The normal form of a D4 singularity of a function is given by x3 - 3xy2 and a versal 
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unfolding of this singularity is f= x3 - 3xy2 + a(x2 + y2) + bx + cy. The cubic f=d 

has a line component if c=0, c=i /3-b or c=-fb. 

(i). c=0. Then f-d= (x - 3)(x2 -3y2 + 
3a 

x+9 a2 +b). The singularities of 

f are the points of intersection of the line x-3=0 and the cone x2 - 3y2 + 
3a 

x+ 

z 4a2+b 
= 0. Solving these equations simultaneously yields x=3 and y=fa3b 5z 

with the condition that O1 =a3b>0. A subset of Sf is then 

Si=3a, R}U 

3, 
- O1,3 Di, a, b, 0): a, b E R} 

Ifwe write x=3 and y2 = A, =a3b 

Sl = {(x, y, x, -y, 3x, -9x2 +3y2,0): x, y E R} 

Sl is a smooth surface in R2 x R2 x R3. When y=0 (equivalently Al = a2 +b =0), 
the function f has an A3 singularity at points (x, 0,0,0,0). 

(ii). c-- 3b. Then fd=(x-i-ýy-I-3a)(x2xy-f-3x-i- 
3 

ay-9a2-I-b). 
We obtain the singularities of f by solving the system 

x+V3-y+L=0 

x2-fxy-I-3x-{- 
3 

ay-92 a2+b=0 

When O2 = a2 - 2b > 0, the system has real solutions and another subset of Sf is 

a+3V2 /(-a+y2) a-3/2 /(a+ Z2) 
$2 = {(- 66,6 ,-6 , a, b, b)}U 

a- 3V2 f(a + y2) a+ 3V%2 /(a 
- 

�02) 
ab vb)} {( 

6,6I6 ,-6,, 
If we write x=a and y2 =1 2= a2 - 2b, then 

S2 = {(- x+ 3y '(-x + y) -x + 3y J (x + y) x2 - y2 ý(x2 
- y2) )} 

6' 6'66 'x' 2'2 

S2 is a smooth surface. The function f has an A3 singularity when y=0, that is 
1 V3 123223 

on the curve (- 6 x, -6x, x, 2x, 2 x) in RXR 
. 

(iii). c= -V3-b. Similar calculations to those above lead to another subset of 
Sf 

-a+3VU3 Y3(a+VrA3) a+3VA3 V3(a-V/A-3) 
S3 = {( 

6666a, 
b, ýb)}U 

a+3V3 YJ(a- VA3) -a+3VA3 
V3-(a 

+ vrA--3 

6666 
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We write x=a and y2 = Os and obtain a simple expression for S3. 

x+ 3y /5(x 
- y) -x + 3y f (x + y) x2 - y2 / (x2 - y2) Ss={(- 

6666 'x' 22 xyER} 

S3 is a smooth surface. The function f has an A3 singularity when y=0. The set 

of the A3 singularities of f is the curve (-6 x, 6 x, x, 
2x2, 

-2 x2) . 
The set Sf is 

Sf = Sl U 
, 
S2 U 

, 
S3 

6.2.4. The case A4 

A normal form of an A4 singularity is x5 + y2 , and a versal unfolding of it is 

f= x5 + y2 + ax3 + bx2 + cx. The singular points of f occur on the x -axis. The 

function f has two real singularities at the same level if there exists a scalar d for 

which the polynomial x5 + y2 + ax3 + bx2 + cx +d has two repeated roots. Let xi, x2 
be these repeated roots and X3 the fifth root. Thus, x5 + y2 + ax3 + bx2 + cx +d= 
(x - xl)2(x - x2)2(5 - x3). By comparing the coefficients we find 

x3 = -2(x1 + x2) 

a= -3xi - 3x2 - 4x1x2 

b= 2x3 +2x3 + 8xix2 + 8xix2 

c= 4x3 x2 + 4xzxi + 9x2x2 

d= 2(x1 + x2)xix2 
Thus, Sf = {(xl, O, x2, O, -3xi - 3x2 - 4x1 x2 i 2x1+2x23 + 8x1 x2 + 8xix2, 

4xix2 -}- 4x2x1 -}- 9xix2) xl, x2 E R} 

Sj is a smooth surface in R2 x R2 x R3 . 

6.2.5. The A3 case 

A normal form of an A3 singularity is x4 + y2 , an a versal unfolding of it is 

f= x4 + y2 + ax 2+ bx 
. The singularities of f lie on the x -axis. The function 

f has two real singularities at the same level if for some dER the polynomial 

x4 + y2 + axe + bx +d has two real repeated roots, that is, x4 +y2 + axe + bx +d= 

(x - xl)2(x .. - x2)2'. This yields 

X2 = -xl 

a= -2xi 
b=O 

d=xi 

, 4. g we are dealing with the distance squared function in R3 , we shall consider a 

versal unfolding with three parameters. Such a versal unfolding is F(x, y, a, b, c) = 
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f (z, y, a, b) with f as above. From the above calculations, 

SF = {(xi, 0, -xi, 0, -2xi, 0, c) xl, cE R} 

SF is a smooth surface in R2 x R2 x R3. 

6.2.6. The AZ case 

The distance squared function has two A2 singularities at the same level. The 

normal form of an A2 singularity is given by a bi-germ of functions, and the standard 
unfolding is 

+ alxi +a3 f(XlvylvXzvt�2, a1, a2, a3) 
xI 3 +y2 

-3 
-}-2 -ý- x2 y2 aZxl -a3 

The bi-germ f has two singularities at the same level if and only if ai = 
223 -3x1, a2 = -3x and a3 = zi - A2. Thus, 

Sf _ {(xi, 0, x2,0, -3x2, -3x2, xi - x2 )} 

§3. The structure of the midpoint locus of Surfaces 

The midpoint locus of a generic smooth surface M is the set of midpoints of chords 
joining two points of contact of bitangent spheres to the surface. (Of course at an 
A3, A4 or D4 point on the surface, the chord joining two nearby point of contact of 
bitangent sphere reduces to a point as these pairs of points tend to the A3, A4 or D4 

point on the surface. ) Let s: R2 -º M be a local parametrization of the surface at a 
given point po. (In AZ case we shall take a local parametrization of the surface at each 
A2 point. ) The "midpoint map" which locates the midpoints of the chords joining 

two points on the surface is m: R2 x R2 -º R3 with m(x, y) =2 (s(x) + s(y)). The 

midpoint map is symmetric with respect to the diagonal {(x, x): xE R2 } in R2 x R2 
, 

i. e., m(x, y) = m(y, x) 

The points of contact of bitangent spheres with the surface are those points where 
the distance squared function d has two singularities at the same level. If f is a versal 

unfolding of a singularity of d, then the set of points of contact of bitangent spheres 

with the surface is pr o H(Sf) (diagram below). 

R2 x R2 x R3 N-º R2 x R2 x R3 
1 pr 

R2 x R2 
Here H is the diffeomorphism defined in the proof of Lemma 6.2.1. The midpoint 
locus of the surface M is then locally m(pr o H(Sf)). For each case dealt with in 

section 2, we shall show, using a geometric argument, that pr o H(Sf) is a smooth 
surface, symmetric with respect to the diagonal (for the cases D4 

7 
A4, A3) or a union 
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of three smooth surfaces each of which is symmetric with respect to the diagonal (for 

the case D4-). The midpoint map folds these surfaces to surfaces with boundary. 

6.3.1. Proposition : The midpoint locus of a surface at a D4 point is locally a 

surface with boundary. The boundary is the ridge line on the surface. 

Proof Recall from 6.2.2 that 

Sf x-y x+y x+y x-y x2+3y2 x2+3y2 
= (( 

6 '-6 '-6 36 36 

It follows from the expression of H in Lemma 6.2.1 that 

Pr o H(Sf) =j(« x-yx+y x2 + 3y2 x2 + 3y2 

6'6x, - 36 ' 36 )' 

x+, x-y x2 + 3y2 

_X2+3 
y2 

ýý 
6'6' x' 36 36 

»: x, yE 'R} 

Clearly pr o H(Sj) (= pr(Sd)) is symmetric with respect to the diagonal D= 
{(x, z): xE R2} . In order to prove that it is a smooth surface, it is enough to show 
that at the DA point there are two smooth curves in pro H(S1) meeting transversally 

and deduce that the restriction of pr oH to Sf is a submersion in a neighbourhood 

of this point. 
The natural curves to consider are the images of the x and y -axis. The image of 2222 

the curve y=0 is e1 = {(¢(x 
ýzý zý _x-x )10( x' x' 

x, -x'_x )) }. As pointed s6 36 36 66 36 36 
22 

out in 6.2.2 the curve {(6' 
6' x' 36' 36 

)} is the set of A3 singularities of f, hence 
22 

36): xE R} is the preimage of the ridge line of the surface M. We 
66 36 

know that this line is smooth close to the D4 point [Po]. Therefore . £1 is a smooth 

curve lying on the diagonal D. 
22 

The second curve e2 
, 
image of x=0, is parametrized by (q(- 6,6' 0,12 

12 
22 

Y 0, Y, 
-L)). Its tangent line at the origin is (- 

aý 
+ 

a_ aý 
ss 12' 12 19x1 19x2 ax, 19x2 

where (zi, x2, a, b, c) denotes the coordinates in R2 x R3 and 
20--, 

i=1,2 are ax; 

evaluated at the origin. Since 0(-, 0) is a diffeomorphism, - 19x1 
+O'00 

19ý x2 
i4 0. The 

curve Q2 is then a smooth curve and meets L1 transversally on the diagonal D. 

The image of the curve el by the midpoint map is the ridge line 
22 

a°(x) = s(0(6 , 6' X. 36' 36 
)) on the surface. This is a smooth curve on the 

surface M (but this does not imply aö(0) # 0). By counting the number of condi- 

tions, we deduce that generically at a D4 point c4(0) 0. The curve 
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ayo (x) = m((O(x - yo 
Ix+ 

yo 
1x7 

x2 + 3y2 o x2 + 3y0 
66 36 36 

O(X+Yo x -Yo 
_x2+3yö 

x2+3yo 
6'6 x' 36 ' 36 

is then smooth for yo near the origin. 
Let ßo be the image by m of the image of the curve x=0 in pr o H(Sf). That 

is 
Z222 

. 
80(0=2 I3(ý(- 6' 

6 
6l-12 -12 )) S(ß(6' 6 '0'- 12' 12 

m 

We can choose coordinates so that s(x, y) = (x, y, a(x2 + y2) + 03(x, y)) . 
It is clear 

that 8o(y) = ßo(-y) and /%(0) = 0. We have 

ßa20 1 020_1 a0_1 00 2S(0)( ßa0 1 ac2 ßo (0) = Ds(0)(36 äx2 + 36 axe 60a2 6,0a3) +D-6 axi +6 öX 
) 

ia2 
But 

10 

Ds(0) =01 

00 

and 
0000 

D2s(0) =0000 
2a 00 2a 

Therefore for generic D4 on the surface, ßo (0) #0 and its z-component is also 

non-zero. The curve ßo is then a smooth curve with an end point (at the origin) 
lying on the ridge line, and its limiting tangent direction there is not on the tangent 

plane to the surface at the origin. 

We can consider nearby curves ß0, image by the midpoint map of the image 

of the curve x= xo in pr o H(Sj), and show by continuity of ß" that ßz 
p(0) 

# 0. 

The curve ß=o is then smooth with an end point lying on the ridge line, and it is 

transverse to the curve abo , 
for xo, yo near the origin. The restriction of the map m 

to pro H(Sf) is of rank 1 on pr o H(S1) fl D and of rank 2 elsewhere. The midpoint 
locus is therefore locally a surface with boundary and the boundary is the ridge line 

on the surface. Q 

6.3.2. Proposition : The midpoint locus at a D4 is locally a union of three 

surfaces with boundary. The boundaries are the ridge lines on the surface. 
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Proof. From 6.2.3, Sf is the union of three smooth surfaces Si, S2 and S3. We 

shall show, following the same procedure in Proposition 6.3.1, that each of pr o H(S=) 

(i = 1,2,3) is a smooth surface. 

We have Si = {(s, y, z, -y, 3x, -9x2+3y2,0): x, yE R}, and using the expression 
for H in Lemma 6.2.1 we obtain 

pro H(S1) = {(¢(x, y, 3x, -9x2 + 3y2,0), «(x, -y, 3x, -9x2 +3y 2,0)): x, yE R2 } 

The function f in 6.2.3 has A3 singularities on the curve (x, 0,3x, -9x2,0). This 

curve is taken by ¢ to {c(x, 0,3x, -9x2,0): xE R}, the preimage of one of the ridge 
lines which we know is smooth [Po]. Hence {(c(x, 0,3x, -9x2,0), «(x, 0,3x, -9x2,0))} 
is a smooth curve in pr o H(Si). 

The second curve to consider is the image of the y-axis. It is parametrized by 

(g0, y>0>3yZ, 0)jq(0, -y, 0,3yZ, 0)) . 
Its tangent vector at the origin is (- 

axe ý ax2 
) 

Since ¢(-, 0) is locally a diffeomorphism, 
00#0. 

The curve 

(¢(0, y, 0,3y2,0), 4(0, -y, 0,3y2,0)) is smooth and it is clear that it meets the first 

considered curve transversally. 

We show, following the same approach, that pr o H(S2) and pr o H(S3) are 

smooth surfaces. These three surfaces are symmetric with respect to the diagonal 

D. We also show, as in Proposition 6.3.1, that for generic D4 points on the surface 
the midpoint map maps each of these surfaces to a surface with boundary. The 

boundaries are the ridge lines on the surface. It follows by considering the curve ßö 

as in Proposition 6.3.1, that generically at the origin, the limiting tangent planes to 

the midpoint locus are not tangent to the surface M. Again counting the number 
of conditions, these limiting tangent planes meet transversally in a corner at generic 
D4 points. (Figure 6.3.1. ) Q 
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Figure 6.3.1. The midpoint locus at a D4 point 

6.3.3. Proposition : The midpoint locus at an A4 is a smooth surface with 
boundary. The boundary is the ridge line on the surface. 

Proof. From 6.2.4 and the expression of H it follows that 

pr o H(Sf) = 
{(ý(xi, 0, -3x2 - 3x2 - 4xix2,2xi + 2x2 + 8xix2 + 8xix2,4xix2 +4x23 x1 +9x 1 x2), 
«(x2,0, -3X - 3x2 - 4xixz, 2x3 + 2x3 + 8xix2 + 8xlx2i 4xix2 + 4x23 X1 +9x 2x2))} 

The images of the curves xl = x2 and xl - -x2 are smooth and transverse, thus 
pr o H(S1) is locally a smooth surface in R2 x R2 

. Its image by the midlocus map is 
generically a surface with boundary. The boundary is the ridge line on the surface. 0 

6.3.4. Proposition : The midpoint locus at an A3 is a smooth eurface with 
boundary. The boundary is the ridge line on the surface. 

Proof. From 6.2.5 and the expression of H it follows that 

pr o H(Sf) = {(4(x, 0, -2x2,0, c), 0(-x, 0, -2x2,0, c)): x, cE R} 

The curve {¢(0,0,0,0, c) cE R} is the preimage of the ridge line. It is a smooth 

curve, hence {(c(0,0,0,0, c), 0(0,0,0,0, c)) cE R} is a smooth curve in pr o H(Sf) . 
The image of c=0, {(«(x, 0, -2x2,0,0), «(-x, 0, -2x2,0,0)) xE R} , is also a 

smooth curve which meets the above curve transversally. Thus proH(Sf) is a smooth 

surface. Its image by the midpoint map is generically a surface with boundary and 

the boundary is the ridge line on the surface (figure 6.3.2). 11 
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Figure 6.3.2. The midpoint locus at an A3 point 

6.3.5. Proposition : The midpoint locus at an A2 is locally a smooth surface. 

Proof : It follows from 6.2.6 and Lemma 6.2.1 that 

pro H(S f) = {(Ol (x1,0, -3x2, -3xä, xi - x23 )q q52(x2,0, -3xi, -3x2, xi - x2))} 

This is a smooth surface in R2 x R2 and for generic A2 points, the image of 

pr o H(Sf) by the midpoint map is a smooth surface. (See also 6.3.7. ) Q 

6.3.6. The tangent space to the midpoint locus at smooth points 

In this section we give an explicit formula for finding the tangent vectors to the 

midpoint locus. Suppose that there is a sphere of radius to tangent to the surface M 

at two points s(xo) and s(yo). We can construct locally the following map 

f, R2xR2xR-ºR3 

(x, y, t) a-º s(x) + tN(s(x)) - s(y) - tN(s(y)) 

The zero set of f, f -1(0), is the set of points in the parameter space which correspond 
to the points of contact of bitangent spheres to the surface. The projection of f -1(0) 

to R2 x R2 is a smooth surface (as in Proposition 6.2.6), and the tangent vectors are 
the projections of the kernel vectors of Df (0) to R2 x R2 

. 
Let (ý, (,, r) be in the 

kernel of Df (0) . Then, 

[Ds(x)+tDN(s(x))Ds(x)]e - [Ds(y) +tDN(s(y))Ds(y)}C + [N(x) - N(y)]r =0 (*) 

If we write = Ds(x)e and C= Ds(y)(, the equation (*) becomes 

[1 - tSh(s(x)))f - [1 - tSh(s(y))]ý _ -[S(x) - S(y)]r (**) 
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where Sh denotes the shape operator of the surface M and 1 the identity on R2. 
The map Sh(s(x)) is a map from the tangent plane T, (z)M = R2 to itself, and it is 

given by Sh(s(x)) = -DN(s(x))Ds(x). The equation (**) is equivalent to saying 
that [1 - tSh(s(x))]f - [1 - tSh(s(y))]( is parallel�to (S(x) - S(y)). 

Let u be a common unit tangent direction to the surface M at s(x) and s(y). 
We can think of u as being the unit vector director of the line of intersection of 
the tangent planes to the surface Al at s(x) and s(y). Let {u, v} and {u, w} 
be orthonormal bases for the tangent spaces to the surface M at s(x) and s(y) 

respectively. We write [1- tSh(s(x))] f= au + by and [1- tSh(s(y))]ý = cu + dw for 

some a, b, c, d in R. We then have 

[1- tSh(s(x))]f - [1 - tSh(s(y))J = (a - c)u + by - dw 

and the condition for the equation (**) to be satisfied is a=c and b= -d. So, 

[1- iSh(s(x))]( = au + by 

[1 - tSh(s(y))]( = au - bw 

By differentiating the midpoint map m(xl, x2) = 
2(s(x)+s(y)), 

one can see that the 

tangent vectors to the midpoint locus are of the form t -}- S. At an Al Al point on the 

surface, the sphere is not osculating, its radius t is not an eigenvalue of either of the 

matrices Sh(s(x)) and Sh(s(y)). The matrices [1 - tSh(s(x))] and [1 - tSh(s(y))] 

are invertible and the tangent vectors to the midpoint locus are given by 

[1- iSh(s(x))]-1(au + bv) + [1- tSh(s(y))]-1(au - bw) 

At an Az point, the bitangent sphere of radius to is bi-osculating at s(x) and 

s(y). The scalar to is an eigenvalue of the matrices Sh(s(x)) and Sh(s(y)), and 

each corresponding eigenvector is one of the principal directions of the surface M at 

s(x) and s(y). Let Vs and V. be these principal directions. The tangent space to 

the midpoint locus is spanned by Vt and V; 
. Indeed, [1 - tSh(s(x))]V1 = Ou + 0v, 

[1 - tSh(s(y))]Vy = Ou - Ow and for generic A2 points V. and Vy are linearly 

independent. Thus: 

6.3.7. The tangent plane to the midpoint locus at an A2 is spanned by the 

principal directions V. and V,. 
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