MICROPROCESSOR-BASED AGRICULTURAL

DIGGER CONTROL

Thesis submitted in accordance with the requirements of the University of Liverpool for the degree of Doctor in Philosophy
by

Edwin Richard Inigo Deane

August 1984

SUMMARY

This thesis describes the design, construction, and evaluation of a closed loop microprocessor based control system for a tractor mounted type PA6 agricultural digger as manufactured by F.W. McConnel, Ltd., Ludlow. After a description and analysis of the principal operations for which the digger is used a set of functional objectives is defined. As agricultural diggers are used intermittently and mainly for annual maintenance it was decided to develop a system to reduce the level of skill to be maintained or acquired to use the machine efficiently and effectively.

To reduce the degree of coordination required of the operator the microprocessor system was designed to make straight cuts at any specified pitch by the deflection of a single control lever. To facilitate repetitive difficult cuts a learn and repeat facility was included to repeat a learned path from any given starting point.

To minimise the cost of the system single stage proportional electrohydraulic valves were used and were evaluated in a simple proportional controller built to operate in a fashion similar to the conventional mechanical control system. Having demonstrated that satisfactory manual control may be achieved using these valves the microprocessor system was built, based on an Intel 8085 with an AMD 9511 Arithmetic Processor Unit.

For closed loop control mechanically robust and water
resistant transducers were designed to mount on the machine pivots and measure arm positions. The valves were interfaced to the computer by an eight bit pulse width modulator circuit and an eight bit multiplexed analogue to digital converter was used to input transducer signals and control inputs from the portable control unit. The computer is based on an Intel SDK-85 development kit and power for the system is derived from the tractor battery.

The system software was written in assembly language for speed of execution and stored in EPROM. The program reads the control inputs and machine outputs, inverts the machine geometry to calculate the required output positions and assigns the valve settings according to the positional errors. The sampling and execution frequency of the control software is 30 Hz .

Evaluation trials were carried out with both skilled and novice users. The principal results were that the system assisted with levelling and trench cutting, but overall did not provide any significant consistent increases in work rate for either group of users. Finally, further areas for research are discussed, with reference to both diggers and electrohydraulic hedge cutters.

I should like to express my gratitude to Dr. J.A. Harrison, my supervisor, for his sustained guidance and assistance with the work contained in this thesis. I am also grateful to Prof. J.H. Leck for use of the facilities of the Department of Electrical Engineering and Electronics, and to Prof. J.F. Norbury for providing laboratory space in the Department of Mechanical Engineering.

I wish to thank Mr. J.C. Jeffery, Design Director at F.W. McConnel, Ltd., for providing support, both financial and technical, throughout the project and for his expert advice. Finally, I should like to thank Mr. L.W. Eyles, Hydraulic Engineer, and all the members of the design and development team at F.W. McConnel, Ltd., who so kindly helped with the project.

CONTENTS

Chapter Page
I. INTRODUCTION 9
1.1 Microprocessors in Agriculture 10
1.2 Record Keeping 10
1.3 Modelling 12
1.4 Instrumentation 12
1.5 Control of Machinery \& Equipment 14
II. OBJECTIVES 17
2.1 Description of Conventional Machine 18
2.2 Machine Usage 22
2.3 Potential Functions \& Limitations of Computer Control 25
2.4 Objectives \& Functional Specification 26
2.5 Design Constraints 29
2.6 Method of Approach 31
III. DEVELOPMENT OF MANUAL PROPORTIONAL
CONTROLLER 33
3.1 Introduction 34
3.2 Selection of Electrohydraulic Valves 34
3.3 Hydraulic Circuit 37
3.4 Control Circuit 39
3.5 Performance Evaluation 45
3.6 Discussion 46
IV. CONTROL SCHEME 48
4.1 Introduction 49
4.2 Kinematics 52
4.3 Generation of Target Point 52
4.4 Bucket Kinematics 53
4.5 Learn \& Repeat 54
4.6 Transducer Resolution 56
4.7 Dynamics 57
4.8 Hydraulics 57
4.9 Mechanics 59
4.10 Control Algorithm 61
V. TRANSDUCERS 68
5.1 Design Constraints 69
5.2 Selection Possibilities 70
5.3 Construction 71
VI. HARDWARE I: SYSTEM STRUCTURE \& PROCESSOR BOARD• 76
6.1 System Structure 77
6.2 Processor Board 80
6.3 Memory Expansion 82
6.4 Arithmetic Processor Unit 85
6.5 Board Layout 88
6.6 Memory \& I/O Maps 89
VII. HARDWARE II: INTERFACE CARDS, POWER
SUPPLIES \& RACK CONNECTIONS 91
7.1 Analogue Interface Unit 92
7.2 Valve Driver Card 100
7.3 Power Supplies 104
7.4 Rack Layout \& Interconnection Tables 107
VIII. HARDWARE III: CONTROL UNIT, TRANSDUCER WIRING, \& POWER SWITCHING UNIT 113
8.1 Control Unit 114
8.2 Transducer Wiring 120
8.3 Power Switching Unit 120
IX. SOFTWARE I: GENERAL PURPOSE APU
SUBROUTINES \& MACROS 128
9.1 Arithmetic Processor Unit 129
9.2 Subroutines for APU Stack Data Transfer 130
9.3 Subroutines for APU Operations 133
9.4 Macros for Conditional Jumps 134
X. SOFTWARE II: PROGRAM MANCON 137
10.1 Introduction 138
10.2 Algorithm 138
10.3 Memory Utilisation 140
10.4 Code Documentation 141
XI. SOFTWARE III: PROGRAM DIG 149
11.1 Functional Description \& Algorithms 150
11.2 Memory Utilisation 156
11.3 Code Documentation 157
XII. FIELDWORK \& SYSTEM EVALUATION 181
12.1 Introduction 182
12.2 Tuning of Control Parameters 182
12.3 Kinematic Evaluation 183
12.4 System Reliability 185
12.5 Functional Evaluation 186
12.6 Learn \& Repeat Facility 190
12.7 Estimation of Cost 191
XIII. DISCUSSION 192
13.1 Hardware 193
13.2 Software 195
13.3 Safety 196
13.4 Hydraulics 197
13.5 Functional Aspects 198
13.6 Commercial Considerations 199
XIV. CONCLUSIONS \& FURTHER WORK 201
14.1 Conclusions 202
14.2 Further Work 203
REFERENCES 205
APPENDIX A: LISTING OF PROGRAM MANCON 209
APPENDIX B: LISTING OF PROGRAM DIG 228

CHAPTER ONE

INTRODUCTION

1.1 Microprocessors in Agriculture
1.2 Record Keeping
1.3 Modelling
1.4 Instrumentation
1.5 Control of Machinery \& Equipment
1.1 Microprocessors in Agriculture

Over the past few years microprocessors have been used in an increasing number of applications in agriculture to help make optimal use of the resources of energy, materials, money, and manpower. The first area in which they were applied is that of record keeping; subsequently they have been used in modelling, instrumentation, and the control of farm equipment and field machinery. The subject of this work is the application of microprocessors to the control of a tractor mounted hydraulic digger. It is useful, however, to start by putting the work in context and examining how the potential of microcomputers has so far been exploited by the agricultural industry, and what the future developments are likely to be.

1.2 Record Keeping

In 1982 it was estimated that about four hundred microcomputers were being used in farm offices is the UK for accounting, handling payrolls, livestock ration formulation and performance monitoring ${ }^{1}$. This number will have greatly increased with decreasing system cost and availability. One particular area for which a number of systems have been developed is that of dairy herd monitoring. In discussing this application Speicher ${ }^{2}$ states
"The ultimate goal is for the computerised data acquisition system to be fully informed on the production, nutrition, reproduction, health, and economic status of all animals at all times and to notify the manager of any appropriate action to be taken."

In some installations this goal is effectively attained, and in addition the monitoring system is used in conjunction with automatic feeding machinery. The data acquisition is automated by the use of cow identifiers, either implanted or worn around the neck, which allow detectors at the milking parlour and feeding points to recognise individual animals ${ }^{3}$.

The US Department of Agriculture (USDA) is developing a minicomputer system for maintaining record of feed consumption, milk production, temperature, and condition on individual animals to improve the performance of the livestock producer ${ }^{4}$. The computer system facilitates the management of larger herds and enables changes in performance and health problems to be more easily detected by giving data on both the herd and individual animals. It will be a short time before such systems are implemented on microcomputers and come into more widespread use. In a scheme run in Scotland a number of farms use microcomputers to monitor health and, by linking individual micros to a mainframe, large scale statistical studies may be carried out for disease control and studies on optimum herd management strategies ${ }^{5}$.

Abstract

Another area where microcomputers are used for record keeping is that of plant breeding where conventionally card index systems are used. The USDA have produced a program to be run on a desk microcomputer for use by plant breeders and horticulturalists for maintaining records on plant pedigrees ${ }^{6}$. The program stores, searches, lists, corrects, appends, and duplicates plant pedigree records using magnetic tape for backing store.

1.3 Modelling

A number of programs have been developed for modelling and evaluation of the efficacy of different farming strategies. With for example arable farming, given data on the cropping history of the fields involved, soil analysis, and fertiliser input, the gross profit margin and cash flow for different crops may be calculated. The Ministry of Agriculture, in conjunction with the National Institute for Agricultural Engineering have developed a program for glass house crops and field vegetables where soil analysis data is used to provide information on the fertiliser requirements of each crop. Work has also been done on the optimisation of grassland usage. A number of detailed modelling programs have been written to run on mainframes, not directly accessible to the farmer ${ }^{7}$. With the low cost and versatility of desk top machines such programs should become increasingly available for use on microcomputers.

1.4 Instrumentation

Certain diseases affecting fruit and vegetables may be accurately predicted, and preventive action taken, by close monitoring of such environmental factors as temperature and humidity. Microcomputer systems may be used to continuously monitor these variables and alert the grower when dangerous conditions arise. One such system is being developed for the prediction of apple scab fungus which affects orchards; the processor monitors temperature, leaf wetness, and relative humidity in the orchard, checking for dangerous conditions ${ }^{8}$. The system gives on the spot warning as well as keeping record of the variables monitored for later reference.

Another system for predicting potato blight (the fungus Phytophthora infestans) is now commercially available and collects data every ten minutes on temperature, relative humidity, and rainfall ${ }^{9}$. When "blight weather" is detected a display indicates that preventive spraying is required.

An ingenious system has been made for the weighing of poultry whereby a perch is fitted with a load cell and linked to a microcomputer ${ }^{10}$. The mean flock weight is thus monitored as random birds alight on the perch. This saves time otherwise spent weighing manually, enables future weight prediction to be made, allows feed conversion measurement, avoids stress to the birds, and facilitates diet control to maximise the number of fertile eggs for breeding flocks.

An automatic system for weighing the different defect categories of fruits and vegetables has been made to facilitate grading operations ${ }^{11}$. The micro controls the weighing of the contents of each compartment of a mechanical grading table and records the data for the batch on a grade certificate. Microcomputer technology is also used for measuring grain moisture ${ }^{12}$, which must be carefully monitored when drying and storing grain, and the quantity of grain harvested on a combine harvester ${ }^{13}$. On the combine harvester it is grain volume that is measured and the system must be first calibrated with the appropriate mass/volume setting. Acreage harvested, average yield, work rate, ground speed, and running yield are also measured and displayed.

1.5 Control of Machinery and Equipment

A major growth area in computerised farming equipment is that of automated animal feeding systems. As early as 1976 a microprocessor based system was developed for cattle recognition and feeding as well as for recording milk production ${ }^{3}$. It is also possible to mix rations automatically to suit individual animals. A pig feeding system described by Fuller ${ }^{14}$ weighs and mixes skim milk and meal and pumps a controlled amount to each pen. Feed can be programmed to be given several times a day using up to four solid and two liquid feed ingredients. In principle each animal may be identified, weighed at the feeding point, have high and low density feeds mixed, and be fed in relation to cost and appetite. The ventilation and heating may also be kept under computer control and an adaptive model used to increase feeding when temperature drops ${ }^{15}$.

In the Netherlands micros are used extensively for greenhouse climate control and sophisticated adaptive control schemes are employed using on-line identification ${ }^{16}$. Potato sorting has been automated using a microcomputer and a TV camera to sort the potatoes according to size ${ }^{17}$. Systems also exist for the control and monitoring of the drying and storage conditions of grain ${ }^{18}$.

In the area of field machinery the use of microprocessor for control and monitoring functions is now well established. On combine harvesters the grain loss varies with the harvesting speed. As the machine is driven faster the grain loss increases, however to reduce the loss almost to nil the speed is
prohibitively low so a compromise must be found. On a commercially available system produced by RDS Farm Electronics Ltd. an acceptable level of grain loss is selected and the grain loss monitor is used to control the forward speed of the machine, using another sensor at the front to give advance information about cropping levels ${ }^{19}$.

When spraying crops the amount of chemical applied per unit area must be very closely controlled; if too little is applied the spraying may be ineffective and the cost of the chemicals wasted, if too much is applied the crop may be damaged. On the sprayer produced by RDS the operator keys in data on the number of nozzles in use, target speed, flow rate, pressure limits, etc. and by measuring forward speed and nozzle pressure the flow is closely controlled. The system compensates for the square law relation between speed and pressure. The unit displays speed, application rate, pressure, area, trip area as well as the preprogrammed target values. Also, commercially available from Evrard, is a microcomputer based spray system using sonic sensors to measure boom height and keep it constant by controlling the tractor hydraulics ${ }^{20}$.

A tractor safety system has been developed using a microprocessor to sense p.t.o. engagement, throttle setting, brakes, hydraulics, operator's seat and brake. If, for example the driver leaves his seat with the p.t.o. engaged it will automatically be stopped. The equipment may also be connected up to equipment such as harvesters drawn by the tractor ${ }^{21}$.

These examples show that the use of microprocessors is well established in the agricultural industry and that there is a growing number of applications both in the farm office and in the harsher environment of equipment and field machinery. In view of the rapid growth in the use of these devices in agriculture generally, and their low cost and flexibility, it was decided to investigate their applicability to tractor mounted diggers.

Considerable skill is required to operate these machines efficiently and effectively and a computer assisted control system presents the possibility of facilitating their use. The availability of proportional solenoid valves makes it possible to interface a computer to the machine without the high cost of two stage servo valves. The scope of this work is the development and evaluation, both functional and economic, of a computer based control system for a tractor mounted hydraulic digger. To the knowledge of the author there is not any other computer assisted digger in operation.

CHAPTER TWO

OBJECTIVES

2.1 Description of Conventional Machine
2.2 Machine Usage
2.3 Potential Functions \& Limitations of

Computer Control
2.4 Objectives \& Functional Specification
2.5 Design Constraints
2.6 Method of Approach

2.1 Description of Conventional Machine

The machine used in this study was a "Power Arm 6" tractor mounted digger manufactured by F.W. McConnel Ltd., Ludlow. A side view of the machine is shown in Fig. 2-1; the main features are two arms and a bucket pivoted as shown and the machine may also slew about a vertical axis. The movement about each of the pivots is effected by double-acting hydraulic rams, shown shaded; for slewing there are two rams, one on each side of the machine.

Fig. 2-1: Side View of Machine

Dimensions and masses of the arms and the bucket are as follows:

Main Arm:	Pivot to pivot length	2.28 m
	Mass	68 kg
Dipper Arm:	Pivot to pivot length	1.57 m
	Mass	53 kg
Bucket:	Pivot to blade length	0.4 m
	Mass	60 kg

The operator's seat is situated on the slewing column on the machine and he operates the proportional valves by levers on the valve block. The layout of the control joysticks is shown in Fig. 2-2: the Lift or Main Arm moves Up and Down, the Reach or Dipper Arm moves In and Out. The Open and Close functions operate the Bucket, and Right and Left the Slew. Alternatively he may sit in the tractor cab with mechanical cables linking the control levers to the valve block. The digger is primarily intended for use as a farm maintenance tool and is attached to the three point linkage of an agricultural tractor and powered by the tractor engine.

Three links attach the digger to the tractor: two draught links and an adjustable top link. Associated with each draught link is an additional 'Instant Weight Transfer' (IWT) ram which, when activated by the operator, exerts a lifting force against the tractor via the draught links and presses the feet of the machine onto the ground and increasing the machine's rigidity. The slewing axis may be set vertically by adjusting the top link
and the feet at the side of the machine; on later models the top link is hydraulically adjustable as is the sideways tilt.

The power for the machine is derived from the tractor Power Take Off (PTO) shaft, which through a gearbox drives a

Fig. 2-3: Hydraulic Circuit
constant displacement pump. The basic hydraulic circuit is shown in Fig. $2-3^{22}$. The PTO shaft is set to rotate at approximately $540 \mathrm{rev} / \mathrm{min}$ which gives a pump flow rate of 0.25 l/s (4 g.p.m.). The safety valve connects the pump output back to the tank and opens in the event of a blockage in the output line. The relief valve is set to $1.7 \times 10^{7} \mathrm{~Pa}$ (2500 p.s.i.) and limits the supply pressure to the system. When none of the services (Slew, Lift, Reach, or Bucket) is selected, the spool valves are in the position shown and the output from the pump is fed straight back to the tank.

When any of the services is selected the tank return line is closed and oil passes through the check valve to one port of the corresponding ram. The other port of the ram is simultaneously connected to the tank via a one-way restrictor which restricts oil flow from the ram to prevent cavitation. The check valves between the pump and the spool valve prevent any back flow from the ram if the supply pressure should be reduced because of high demand from more than one service or if a high load is applied. The IWT is not shown in this diagram.

In normal operation the supply pressure is lower than the relief valve pressure and there is hydraulic interaction between the services. As more than one service is selected the supply flow will divide depending on the valve opening, restrictors and load forces on the rams.

2.2 Machine Usage

The digger is a versatile machine and for different operations a range of buckets and implements may be fitted in place of the bucket shown above. These include auto-eject trenching buckets, wide and narrow digging and ditch cleaning buckets, a grab, and pick tine. Also the machine configuration (i.e. pivot positions) may be changed to suit the task in hand.

Fig. 2-4: Principal Operations

The principal operations for which the digger is used are digging, ditching, trenching, levelling, and loading (see Fig. 2-4). However considerable practice is required to do work accurately and rapidly. There are five main aspects to the skill developed by an operator over a period of time:

> 1. Relating the control joystick axes to the corresponding rams.
> 2. Combining ram movements and valve settings to give the desired bucket blade movement given the mechanical and hydraulic interaction between the services.
> 3. Judging the inclination of planes to be cut.
> 4. Positioning the arms and bucket to bring maximum cutting force to bear against an obstruction.
> 5. Judging the behaviour of the material being handled

When an operator has acquired a "feel" for the machine and the task, these five aspects of the skill are developed and there is no need for him to stop and think to operate the machine once the task is defined. Whereas for an inexperienced operator considerable mental effort is required, and pauses and errors are made. The main users of the machines tend to be farmers who do not run the machines all the year round but only intermittently for maintenance tasks. Therefore they do not develop and maintain the level of proficiency of, for example, a full time operator employed on a larger machine. Let us now look in more detail at the tasks for which the machine is used.

For digging it is often required to cut holes with flat bottoms or sides and in rough, uneven ground it is not always easy to
judge vertical and horizontal planes by eye. Having filled the bucket in making a cut, care must be taken not to allow material to tip from the bucket by closing or opening it too far in moving it to the point where the spoil is to be dumped.

In ditching there are two cases to be considered: the cutting of new ditches and the cleaning out of existing ones. For new ditches it is desirable to keep the sides straight and smooth and to maintain a constant profile along the length of the ditch, moving the tractor along from one cut to the next. For clearing existing ditches the process is more one of piecemeal attention to local obstructions.

Trenching involves the cutting of a channel in line with the direction of travel of the tractor and at a constant pitch. This tends to be a very repetitive process and care must be taken to maintain a constant slope on the trench bottom.

The levelling of ground is effected in two stages: firstly using the bucket blade to shift peaks of ground into troughs, then a smoothing process using the bottom of the bucket to flatten the ground. For the inexperienced operator there are two main difficulties: the very precise combined control of the valves to obtain linear bucket movement and the judging of the location of the level plane to be achieved.

When loading the operator is often picking up material from level ground and the need then arises to move the blade in the plane of the floor. Having filled the bucket, it is necessary to
adjust the bucket angle as the machine moves so that material does not spill out through its being too far open or closed.

2.3 Potential Functions, Advantages \& Limitations of Computer

Control
The first question which must be asked is whether the operator could be replaced by a computer controlled system. There are strong technical, economic, and social arguments against trying to do so. The control system would have to have a visual sensing system and very sophisticated intelligent software to interpret and execute instructions for anything other than a repetitive task without obstructions or irregularities to accommodate. In addition an interface to the tractor would be required adding to the cost and introducing considerable safety problems. It is socially undesirable to increase unemployment, particularly if there are no economic benefits in automation.

Potential gains in learning time, accuracy, and speed of completion many tasks may be made if the process of combining control functions in order to effect linear movements of the bucket blade is automated. In addition similar gains may be made in automatic compensation for the hydraulic and mechanical coupling of the arms tending to deflect the blade of the bucket from the intended path. So rather than have control lever axis correspond to particular ram speeds they correspond to particular directions of bucket blade travel. For cutting the sides of ditches, sloping ground, and the bottoms of trenches a calibrated control of the inclination or pitch of bucket blade movement is desirable. The blade may then be set to cut at any desired angle relative to the machine.

For repetitive tasks, e.g. trenching, an automated digging cycle would allow the operator to concentrate on driving the tractor once the cutting cycle had been "taught" to the machine manually. The mechanical constraints of the machine are unaffected by the control system, for example the maximum cutting force i.e. the load which will stall the machine. In automated digging cycles the machine is unable to correct automatically for the problem of earth falling back into the cut ditch, or to respond to the particular form of obstructions encountered.

2.4 Objectives and Functional Specification

With the availability of cheap microprocessors and electrohydraulic valves the general objective of the study was defined to develop and evaluate a microprocessor-based digger controller to assist the operator with many of the difficulties mentioned above.

From the discussion of machine usage the main areas which emerge where computer assisted control may be of value are:

1. Simultaneously controlling ram speeds to produce linear bucket movement.
2. Accurately gauging the pitch of sloping cuts.
3. Automatic repetition of taught cutting profiles.

A general advantage of electronic controls is that they enable
the operator to work the machine remotely as the control panel need only be connected to the machine by an electric cable. Thus an electronic unit is easier to install in the cab than conventional cable controls and may be used off the machine for better visibility and comfort provided appropriate safety precautions are taken. Control lever loads may also be considerably reduced from those required on a cable operated system or a system with levers mounted on the valve block, making the machine easier to operate.

The objectives then are:

1. To develop and evaluate a control system to provide these functions using the lowest level of technology suitable for the task to minimise cost.
2. To evaluate the functional benefits to experienced and inexperienced operators in terms of learning time reduction and work throughput.
3. To determine the economic viability of the system as a product.

The specification for the system is to achieve linear bucket blade movement by using the computer to create lift and reach functions which move the bucket blade in nominally horizontal and vertical, H and V, directions. The conventional machine gives to operator control of a, β, and γ (see Fig. 2-5(a)) whereas the computer system gives control of x, y, and θ. The
slew control is the same on both systems. The bucket angle is kept constant relative to these axes as the blade moves. To cut slopes at defined pitches one may rotate the axes in Fig. 2-5(b) through a pitch angle variable from $+45^{\circ}$ to -45° using a calibrated dial on the control panel.

For the automation of repetitive tasks it was decided to implement a learn and repeat facility operating in such a way that in Learn Mode the movements of the bucket blade from its initial position are recorded. When one of the repeat modes, Repeat Fast or Repeat Slow, is selected the stored path is executed from the new starting point (see Fig. 2-6).

Fig. 2-6: Learn and Repeat Operations

2.5 Design Constraints

From a commercial viewpoint, manufacturing and components costs are major factors in considering the viability of a product. In order that the cost of any commercially produced electronic control system be minimised it is important that mechanical changes to the machine be kept as few and as minor as possible: the control system should be an optional fitting to an otherwise standard machine. It was decided to design the system keeping the cost of components to a minimum with the limits of the functional specification and the other design constraints with the overall view of having a working system which, with very little development or experimental work, could be put into production. Where possible in the design, standard, readily available parts should be used to minimise cost and availability problems in manufacture.

Typical agricultural working environments for electronic equipment are extremely harsh, and that of field machinery is the most demanding. As the system operates outside, protection must be given against water and damp to all parts of the system not mounted in the tractor cab. The entire machine is subject to continuous vibration from the tractor engine and the pump while the machine is in operation and there are additional shocks to the machine from the bucket when digging which must not affect the system operation.

All transducers must be weatherproof, damp-proof, unaffected by the vibration, protected from damage if they are
immersed as happens when cleaning ditches, and must be sufficiently mechanically robust to withstand contact with earth, stones, branches, and any other material encountered as the digger is used. The machine must be able to withstand wide range of operating temperature as the diggers may be used in all climates. The system must function in the range $-10^{\circ} \mathrm{C}$ to $+35^{\circ} \mathrm{C}$. The sealing and corrosion-proofing of the controller and transducers must be such that when the machine is stored for long periods no deterioration or corrosion occurs: it must work first time when switched on.

The power for the system is derived from the 12 V tractor supply and must be immune to drift in the supply voltage of ± 2 V according to the state of the battery. Spikes on the supply line from inductive loads must be filtered out and the system protected against the "load dump" phenomenon when the battery is accidentally disconnected from the alternator and a high current surge is applied to the 12 V line. The circuit must be able to withstand indefinite reverse polarity connection of the supply, have minimum current consumption, and be free from interference and electromagnetic noise.

The diggers are frequently attached to and detached from the tractor and the control system must be built to withstand rough handling and have reliable connectors. The control system must also be easy to service so that faults can easily be found and the construction such that system modules can be replaced when faulty by the operator. This necessitates some self-diagnostics to assist in detecting the faulty module. An important
ergonomic consideration is that the layout of the controls must be such as not to create difficulties for an operator already familiar with the conventional mechanical control system. This is achieved by having the x, y, bucket, and slew axes on the joysticks correspond to the reach, lift, bucket, and slew axes of the conventional machine.

As the system is experimental, the facility must be provided for altering the control software as well as having the facility for altering control parameters in the field without having to reprogram EPROM's for example. A production machine must be able to accommodate changes in the machine geometry arising from the use of different pivot positions, digging implements and rams. Also it should not be difficult to modify the system to accommodate future design changes in the mechanics of the digger.

As well as providing proportional control of the bucket blade cutting speed, the maximum speed available should correspond to zero relief valve oil flow so that machine power is not wasted. The dynamic characteristics of the machine should not be critically dependent upon the PTO speed which may not be well regulated by the tractor.

2.6 Method of Approach

As a first stage in the development of the microprocessor system it was decided to first construct a simple electric proportional control circuit functionally similar to the conventional mechanical control system. The construction of an electronic control unit for the machine involves the selection of
appropriate valves and a hydraulic circuit which can then be used as the basis of the microprocessor system interface. It was also considered to be of potential value by F.W. McConnel, Ltd. as such a system has advantages of reduced lever loads, ease of installation, and electronic simplicity. This preliminary system is the subject of the next chapter.

CHAPTER THREE

DEVELOPMENT OF MANUAL PROPORTIONAL CONTROLLER
3.1 Introduction
3.2 Selection of Electrohydraulic Valves
3.3 Hydraulic Circuit
3.4 Control Circuit
3.5 Performance Evaluation
3.6 Discussion

3.1 Introduction

The function of the manual or open loop controller is essentially to simulate conventional mechanical cable controls for the digger, but using electrohydraulic valves, giving a valve spool deflection and hence speed of arm movement varying with control joystick deflection. This forms a valuable basis for the microprocessor system as, having selected appropriate valves and developed a satisfactory hydraulic circuit for manual control, the valves may then be interfaced to the microprocessor in conjunction with appropriate feedback transducers to obtain the desired control functions described in Chapter Two.

3.2 Selection of Electrohydraulic Valves

There have recently been a number of developments in low cost electrohydraulic valves, particularly for use in computer based control systems. The standard valve to use for proportional flow control from a computer is a two stage electrohydraulic valve using a digital to analogue converter to drive the valve control input. The main spool position is controlled by a flapper valve, the position of the flapper being set by the actuating current. These valves are very fast, having a bandwidth over 100 Hz , and can pass high flow rates but they are also very expensive ${ }^{23}$.

The Japanese manufacture digital hydraulic flow control valves with pressure compensators; the position of the flapper is controlled by a stepper motor and the main spool follows the flapper ${ }^{24}$. The use of the stepper motor simplifies the interfacing of the valve to a computer. Another type of digital
valve which has been produced has a rotary spool positioned by a stepper motor. There are also being developed low cost spool valves with d.c. motor drives but these were not on the market at the time the work was carried out ${ }^{25}$.

The cost of two stage valves suitable for use on the digger, with a flow rating of $0.3 \mathrm{l} / \mathrm{s}$ ($4 \mathrm{~g} . \mathrm{p} . \mathrm{m}$.) and pressure rating of 17 MPa (2500 p.s.i.) is in the order of $£ 200$ each. As the basic machine sells for approximately $£ 3500$ is was decided that the total cost to manufacture the microcomputer control system should be around $£ 1000$ maximum. Two stage valves were thus ruled out on a cost basis.

Experimentation using bang-bang solenoid operated valves showed that they are not suitable, as variable speed control is required and when bang-bang valves are used high acceleration changes occur in starting and stopping which could only be overcome by reducing the maximum speed to a prohibitively low level. The possibility was also explored of pulsing bang-bang valves on and off with a view to getting proportional control by varying the mark-space ratio. This did not work however: at low frequencies the pulsing caused the machine to oscillate and at high frequencies the valve latched on or off.

In view of the high cost or lack of availability of the types of valve discussed above it was decided to initially use proportional solenoid valves as supplied by $A \& D$ Fluid Power Ltd. which cost $£ 50$ each. A section through the valve is shown in Fig. 3-1 ${ }^{26}$.

[^0]The valve comprises a valve block with a sliding spring centred spool which can be moved either way by a pair of solenoids. By controlling the mean solenoid current and hence the solenoid force, the spool position is continuously variable. In the past this type of valve, which has a bandwidth from 0 to between 10 and 20 Hz , has not been used a great deal. The reason being that flow reaction forces and stiction effects tend to give the device high hysteresis and poor repeatability. These can be overcome by the use of stronger springs and more powerful solenoids but this increases the power consumption and heating effects.

An alternative means of improving the valve performance, employed in the $A \& D$ valves, is to drive the solenoids from a pulse width modulator circuit which pulses the current through the coils and gives variable spool deflection by varying the mark-space ratio. The frequency of the pulse train is set to vibrate the spool about a mean position determined by the mark-space ratio so as to minimise stiction effects. The solenoids are rated at a nominal $8 \mathrm{~V}, 28 \mathrm{~W}$ and were run at a frequency of 50 Hz . Also the spool is machined so as to be balanced and to minimise flow reaction forces at the orifices.

3.3 Hydraulic Circuit

The hydraulic circuit ${ }^{27}$ for the digger employing the electric valves is given in Fig. 3-2. When none of the services is selected, the cut-off valve is open allowing oil from the pump to flow straight back to the tank. When any of the services is selected the cut-off valve is closed, the supply pressure rises

and fluid flows through the valve from the supply line and through the two check valves to one port of the selected ram. Simultaneously the output from the ram flows through the corresponding restrictor and the pilot operated check valve which is unseated by the supply pressure.

The valve metering occurs on the oil inlet side to the ram, i.e. the valve spool is of the "meter in" type. The bucket is operated using a bang-bang valve in conjunction with the one way restrictor which restricts flow into the gland end of the ram as the required maximum speed of bucket movement is relatively slow. The use of the bang-bang valve instead of a proportional valve introduces a cost saving and simplifies the control circuitry. On the lift service the one way relief valve which has an adjustable pressure setting, is connected to the base end of the ram to prevent cavitation as the arm moves down assisted by the strong gravitational force acting upon it. Without this relief valve, at low flows from the control valve, the arm was found to move down in a series of jerks as the pilot operated check valve between the base end of the ram and the return line opened and shut.

3.4 Control Circuit

A simplified schematic for the electronic circuit, just showing the control of the lift service and the cut-off is given in Fig. 3-3. The control voltage from the joystick potentiometer is subtracted from the output from the triangle wave oscillator by the summing amplifier. The output from the summing amplifier is fed to a pair of comparators, with threshold voltages $\mathrm{V}_{\mathrm{T} 1}$ and

Fig. 3-3: Schematic of control Circuit for Lift Service $\mathrm{V}_{\mathrm{T} 2}$, which switch the power transistors driving the proportional valve solenoids. As the joystick is deflected in one direction or the other from its central position the mark-space ratio of the

Fig. 3-4: Timing Diagram for Lift Service
current through the corresponding solenoid valve varies accordingly. When a solenoid is activated, this is sensed by the cut-off circuit which activates the cut-off solenoid closing the cut-off valve which is of the bang-bang type. The circuit operation is shown in Fig. 3-4; this shows the waveforms produced and the resulting solenoid switching for different joystick deflections.

The full circuit diagram is shown in Fig. 3-5 and the component values and specifications are given in Table 3-1. The power source for the circuit is the tractor battery, nominally 12 V , but which may vary between 10 V and 16 V . To provide a stable supply for the pulse width modulators and switching circuitry, a semiconductor regulator RG1 is used with feedback resistors R 1 and VR 1 to provide a stable supply ($\mathrm{V}+$) of 8.2 V . Capacitors C1 and C2 provide smoothing for the regulator. Resistor R 2 and Zener diode Z 1 provide a 4.2 V reference for the triangle wave oscillator.

The oscillator is of relaxation type and comprises operational amplifier A1, potentiometer VR2, variable resistor VR3 and capacitor C3. VR2 and VR3 set the amplitude and frequency of the output waveform, taken from capacitor C3. The output is not a perfect triangle wave, as the capacitor voltage rises and falls exponentially, but it is a satisfactory approximation. The single oscillator circuit is used to drive all three pulse width modulators for the slew, lift, and reach services. The oscillator is set to give an output of 0.25 V peak to peak at 50 Hz .

Table 3-1: Components for Proportional Control Circuit

The joystick potentiometers VR4 to VR7 are in fact inductive devices manufactured by Flight Link Controls Ltd., and have an equivalent circuit of a potentiometer, with a $1.8 \mathrm{k} \Omega$ resistor in series with the wiper. The devices have no sliding parts to wear out, they are linear, noise free, mechanically robust, and very low priced at $£ 15$ for each dual axis unit. The devices give a 3 V output for zero mechanical deflection and 0.8 V swing (10\% of supply) each way.

The three unity gain summing amplifiers using operational amplifiers A2, A3, and A4 have the oscillator output connected to their non-inverting input and the slew, lift and reach control voltages to their respective inverting inputs. The output from each amplifier is fed to a pair of comparators, which detect when the control voltage crosses the threshold voltages for opening
and closing. The threshold voltages are provided by VR10 and VR9.

Comparators CR1 to CR8 have open collector outputs. Devices Q1 to Q8 are PNP Darlington pairs, drawn here for simplicity as single PNP transistors. R15 to R22 limit the base currents and R23 to R30 ensure that their corresponding transistors turn off. Diodes D1 to D9 connected across the solenoid coils suppress the inductive transients occuring when the current through the coils is turned off. In series with each of the proportional solenoid coils is a 1Ω resistor, between each coil and ground (not shown) to limit the current through the coils operating from the 12 V supply.

The cut-off valve V9 requires a continuous current to activate it as it is operated by a simple bang-bang solenoid. When any of the valves V 1 to V 8 is turned on, capacitor C 4 charges through the base of $Q 9$ via R31, turning on the Darlington pair between successive pulses of current through any of the proportional valves. R32 ensures that Q9 and Q10 do not conduct due to any leakage currents. Switch S 1 is a safety switch mounted on the control box which prevents activation of the cut-off solenoid when thrown hence rendering the machine immobile.

The physical layout of the different sections of the circuit is shown in Fig. 3-6. The control cable, linking the control box to the junction box, only carries signal currents and the supply to the control circuit; the cable is also screened to
minimise electromagnetic pick-up. The heavy valve current switching takes place in the junction box to avoid interference with the control circuitry. The joystick axes and functions are aligned as on a conventional, mechanically controlled digger so that a direct comparison of performance could be made by experienced operators without their having to learn a new control configuration.

Fig. 3-6: Constructional Schematic of proportional Controller
3.5 Performance Evaluation

The proportional manual control system was tested by the author and two experienced digger operators who performed machine evaluation trials for F.W. McConnel Ltd. The system was found to give controllability equivalvent to that of a direct mechanical link from joystick to spool. Hysteresis effects in the
valve were not noticeable and the unloaded speed range of arm movement was the same as that on a conventional system ($\dot{a}: 0$ $-0.3 \mathrm{rad} \mathrm{s}^{-1}, \dot{\beta}: 0-0.4 \mathrm{rad} \mathrm{s}^{-1}$).

The operator lever loads were lighter which was an advantage and greater operator mobility was available as the control box is portable. A further advantage is that the control box may easily be installed in a tractor cab as it is only necessary to accommodate a single electric cable leading into the cab as against a set of heavy mechanical cables. The only disadvantage of the system was that the control box was difficult to support when used off the machine; a problem readily overcome by attaching a strap to each side of the box so that it may be worn around the neck.

3.6 Discussion

The proportional valves selected and hydraulic circuit, used in conjunction with the control circuitry described were found to give perfectly satisfactory control of the digger. This implies that, used in conjunction with appropriate feedback transducers and control algorithm the valves may be used satisfactorily for the microprocessor system to provide $X-Y$ movement and a learn/repeat facility. The cost of parts for making the prototype circuit was $£ 160$ which is quite acceptable from a potential production viewpoint.

There are improvements to be made to the circuit, however. The proportional valves should be supplied from regulators deriving a steady 8 V supply from the battery. Also the power
switching, effected in the above prototype by the battery connectors, should be done using a relay in the junction box switched from the control box; this would add to the safety of the system.

The circuit has been redesigned to incorporate these features as well as modifications for the control of a type PA8 digger, a later machine, the king post of which may also be tilted level under electrohydraulic control.

CHAPTER FOUR

CONTROL SCHEME

4.1 Introduction
4.2 Kinematics
4.3 Generation of Target Point
4.4 Bucket Kinematics
4.5 Learn \& Repeat
4.6 Transducer Resolution
4.7 Dynamics
4.8 Hydraulics
4.9 Mechanics
4.10 Control Algorithm

The development of a control algorithm for a manipulator system falls into two main parts: kinematics and dynamics. The first concerns the derivation of the joint coordinates, and their necessary derivatives, in real time to execute the motion of the tool as demanded by the operator. The second, a potentially much more difficult problem, is that of implementing a control system to apply the necessary torques at the pivots to make the linkage follow the desired trajectory. With the growth in the use of industrial robots, a great deal of work has been done on the development of both kinematic and dynamic algorithms for manipulators.

4.2 Kinematics

There are two ways in which the input velocity command from the joysticks (x_{i}, y_{i}) may be used to derive the path to define the machine coordinate trajectory. By the first method, at each sampling instant the input velocities x_{i} and y_{i} are read and the equations relating the joint velocities to the input velocities are solved to provide inputs to joint rate servos:

$$
\begin{aligned}
& \dot{a}=\frac{a}{x} \dot{x}_{i}+\frac{a}{y} \dot{y}_{i} \\
& \dot{\beta}=\frac{\beta}{x} \dot{x}_{i}+\frac{\beta}{y} \dot{y}_{i}
\end{aligned}
$$

This method, however, produces a trajectory subject to cumulative error as illustrated in Fig. 4-1. The machine starts at point S with the horizontal input vector shown. When the machine encounters an obstacle (shown shaded), a small positional error d arises which the system does not correct.

The desired trajectory is shown dashed with the maximum value of d as small as practicable so that the feedback system operates so as to maintain the machine on the original path.

> Fig. 4-1: Simple control scheme allowing cumulative error

The alternative method which overcomes the drift problem is to generate a 'Target Point' in software which follows the desired trajectory and to have a position control servo system to make the machine track the Target Point. This may be done, as here, by directly inverting the machine geometry (i.e. converting user coordinates to machine coordinates) or by Resolved Rate Motion control, particularly useful for reducing the computational load for complex linkages ${ }^{28}$.

Fig. 4-2: Machine and User Coordinate Systems

To implement the control of horizontal and vertical bucket blade movement it is necessary to be able to convert machine
coordinates (i.e. angles measured at the pivots) to Cartesian user coordinates and to convert user coordinates to machine coordinates. The machine coordinates are shown in Fig. 4-2(a); H and V designate the horizontal and vertical directions in relation to the machine body, V being parallel to the slewing axis. The user coordinates axes are shown in Fig. 4-2(b); the Out and Up directions x, and y, are rotated through the pitch angle θ relative to the machine horizontal and vertical. The machine configuration is described by the x and y coordinates of the bucket pivot P and the bucket angle ψ, measured from the user vertical.

Fig. 4-3: Conversion between coordinate systems

To convert from machine coordinates to user coordinates (see Fig. 4-3):

$$
\begin{aligned}
& \text { Let } a^{\prime}=a-\theta \text { and } x_{0}, y_{O} \text { be the coordinates of } \\
& \text { point } P \\
& \text { Where } \theta=\text { Operator selected pitch angle } \\
& \text { Then } \begin{aligned}
x_{0} & =L \sin a^{\prime}+R \sin \left(a^{\prime}+\beta-\pi\right) \\
y_{O} & =-L \cos a^{\prime}-R \cos \left(a^{\prime}+\beta-\pi\right) \\
\psi & =a^{\prime}+\beta+\gamma-\pi
\end{aligned}
\end{aligned}
$$

To convert from user coordinates to machine coordinates:

$$
\begin{aligned}
D & =\sqrt{x_{O}^{2}+y_{O}^{2}} \\
\text { Let } A_{1} & =\cos ^{-1}\left[\frac{L^{2}+D^{2}-R^{2}}{2 L D}\right] \\
\text { and } A_{2} & =\cos ^{-1}\left(-Y_{O} / D\right) \\
a & =A_{1}+A_{2}+\theta \\
\beta & =\cos ^{-1}\left[\frac{L^{2}+R^{2}-D^{2}}{2 L R}\right] \\
Y & =(\psi+\pi)-(a+\beta)
\end{aligned}
$$

4.3 Generation of Target Point

If the machine is static and the joysticks are deflected to select x and y velocities \dot{x}, and \dot{y}, then the Target Point onto which the bucket pivot is servoed should move from the current output position at the selected velocity. When the input velocity is changed by the operator the Target Point should begin a new trajectory from the position of the machine at the time of the input change. It is necessary therefore to threshold a 'significant' change of joystick input otherwise the target point may be reset by the slightest unsteadiness of the operator's hand or by signal noise.

An additional consideration in determining the movement of the Target Point is what should happen if the machine is stalled by an immovable obstacle. It is necessary to stop the movement of the Target Point when the positional error exceeds a critical value determined by the characteristics of the control scheme.

In moving the bucket pivot in the x and y directions the control system must act in such a way as to maintain a constant bucket angle ψ. To do this it is necessary to feedback the angle γ by means of an appropriate transducer. Rather than mount a transducer on the bucket pivot where it may be vulnerable to physical damage it was decided to mount it so as to measure the angle δ and from this to derive γ.

Fig. 4-4: Bucket Linkage and Geometry

The relationship between γ and δ may be derived as follows (See Fig. 4-4):

$$
\begin{aligned}
j^{2} & =\left(h^{2}+i^{2}-2 h i \cos \delta\right) \\
T & =\cos ^{-1}\left[\frac{k^{2}+1^{2}-j^{2}}{2 k l}\right] \\
Y & =2 \pi+\xi-(T+\mu)
\end{aligned}
$$

The dimensions of the bucket linkage are as follows:

$$
\begin{array}{ll}
\mathrm{i}=0.228 \mathrm{~m} & \xi=2.83^{\circ}=0.049 \mathrm{rad} \\
\mathrm{~h}=0.335 \mathrm{~m} & \mu=136^{\circ}=2.37 \mathrm{rad} \\
\mathrm{l}=0.164 \mathrm{~m} &
\end{array}
$$

Hence:

$$
\begin{aligned}
j^{2} & =0.164-0.153 \cos \delta \\
T & =\cos ^{-1}\left[\frac{0.104-j^{2}}{0.091}\right] \\
Y & =3.96-T \\
\therefore \quad Y & =3.96-\cos ^{-1}(-0.660-0.153 \cos \delta)
\end{aligned}
$$

4.5 Learn and Repeat

The function of the Learn facility is to record the movements of the bucket blade from the starting position when the Learn mode is selected to the moment it is deselected. In Repeat mode, the blade cuts the same path as executed in Learn mode relative to the x and y axes but offset to the new starting point, being the position of the machine when repeat mode is selected.

There are two basic ways in which the Learn process may be executed: one method is to record points of the path at regular intervals in time and the other is to record points at even spacing. The first method retains information on the velocity of the blade whilst the second does not. However to record the speed of movement as the path was taught is not particularly useful as an operator may deliberately slow down certain parts of the learned operation to perform them accurately whilst such speed reduction in Repeat mode may be undesirable.

The method of recording a path at regular spacing has other advantages. The method is more economic in terms of memory usage i.e. a longer path may be stored in a finite memory space. With a constant sampling frequency and finite memory space there would be a time constraint on the operator in executing the path in Learn mode which is obviated by regularly spaced sampling. Having equispaced points in memory facilitates speed control in Repeat mode as the repeat speed may be determined by the rate at which data is sequentially retrieved from the list of input points. It was decided to allow the operator a choice of two repeat speeds selected by switches on the control panel.

When Repeat mode is selected the offset to be added to the path points in memory is calculated by subtracting the x, y coordinates of the starting point on the path in memory from the current output position of the machine. The trajectory for the Target Point is then generated by accessing and offsetting the successive points in memory at a rate corresponding to the
selected repeat speed. The bucket angle at the successive points is unaffected by the change in starting point of the path and requires no offset.

Let successive points on the learned path be represented by vectors

$$
\underline{L}_{i}=\left(x_{L_{i}}, y_{L_{i}}, \Psi_{L_{i}}\right) \quad i=1, \ldots, n
$$

Let the starting point for the repeat be

$$
\underline{S}=\left(x_{S}, y_{S}, \Psi_{S}\right)
$$

Then Offset $\underline{O}=\left(x_{S}-x_{L_{1}}, Y_{S}-y_{L_{1}}, O\right)$
and repeat path points $\underline{R}_{i}=\underline{L}_{i}+\underline{0} \quad i=1, \ldots, n$
4.6 Transducer Resolution

A major factor in determining the minimum resolution required of the transducers for measuring a, β, and δ angles is the maximum acceptable positional error at the bucket blade. A worst case configuration for error in calculating the y coordinate of the bucket pivot arises when the machine is in the position shown in Fig. 4-5. The reach arm is fully extended, $\beta=142.0^{\circ}$, and $a=105.4^{\circ}$ then $\frac{\partial y}{\partial a}$ and $\frac{\partial y}{\partial \beta}$ are at maxima and $y=0$. For eight bit resolution of a and β the worst case error in y is 15 mm.

Fig. 4-5: Position for worst case error in determination of y coordinate

Thus positional resolution of eight bits is quite sufficient for digging purposes; the additional error introduced by quantisation of the bucket angle may be neglected as the bucket pivot to blade distance is relatively small.

4.7 Dynamics

Having established the kinematic requirements of the system and solved the machine geometry, a control scheme of minimum cost and complexity was sought which would give satisfactory performance. For the purpose of analysis the machine to be controlled may be divided into the sections of hydraulics and mechanics, including load.

4.8 Hydraulics

The complete hydraulic circuit for the control of digger using A \& D Hydraulics' proportional valves is given in Fig. 3-3. The sections for the supply and the Lift service are shown in Fig. 4-6. The accumulators C_{A} and C_{B} represent the compliances of the hoses supplying the ram. This example of the Lift service is taken as it is the most complex individual service in the circuit. Given the valve setting V_{L} and the ram velocity $\dot{\mathrm{X}}_{\mathrm{L}}$, the ram force F_{L} and the flow Q_{L} may be found computationally as follows. Consider the case where the valve deflection is negative:

$$
P_{R B}=P_{R B}^{n-1}+\frac{1}{C} Q_{C B}^{n-1}<t
$$

```
Where subscripts n-l, n denote successive
    samples at interval \Deltat
```

$$
\begin{aligned}
& Q_{L}=K_{V} V_{L} \sqrt{P_{S}-P_{R B}} \\
& Q_{C B}=Q_{L}-A_{A} \dot{x}_{L_{n}} \\
& P_{x_{n}}=\frac{1}{C} Q_{C A}{ }_{n-1} \Delta t+P_{x_{n-1}} \\
& Q_{C A}=-A_{A} \dot{x}-R_{A} \sqrt{P_{x_{n}}} \\
& P_{R A}=P_{R V}+R_{A} \sqrt{P_{x_{n}}} \\
& F_{L}=P_{R A} A_{A}-P_{R B} A_{B}
\end{aligned}
$$

Fig. 4-6: Hydraulic Circuit for Supply and Lift Service

Similar sets of equations may be drawn up for each of the other services. The supply, comprising the pump and the relief valve, is governed by the following equations:

$$
\begin{aligned}
& Q_{P}=Q_{S}+Q_{R V} \\
& Q_{R V}=0 \mid P_{S}<P_{R V I}
\end{aligned}
$$

The value of P_{S} may be found at each sampling instant by performing an interval bisection type iteration varying P_{S} from 0 to $P_{R V 1}$ until the flow continuity constraint is satisfied:

$$
\begin{gathered}
Q_{S}=Q_{S L E W}+Q_{L I F T}+Q_{\text {REACH }} \\
+Q_{\text {BUCKET }}+Q_{\text {IWT }}
\end{gathered}
$$

It may be seen from the above that the hydraulic circuit is highly non-linear with saturation effects and interaction between the services. In addition there is the offset, hysteresis, leakage and dynamics of the valves to accommodate. The pump rate is subject to variation due to mis-setting and tractor governor imperfections. The oil viscosity changes significantly with temperature (changing effective restrictor and valve constants) becoming lower as the oil heats up and making the machine move noticeably faster.

4.9 Mechanics

In modelling the mechanics of the digger, in general, the following forces and corresponding torques must be considered:

1. Accelerational
2. Gravitational
3. Centrifugal
4. Frictional
5. Stictional
6. Coriolis

For very complex robotic systems Lagrangian dynamics provides a systematic and efficient method for solving the equations of motion. For a digger with a relatively simple geometry, the equations may be written and solved applying Newton's Laws directly. For slow moving manipulators the inertial forces may be negligable and the device may be treated purely kinematically ${ }^{28}$. Slow moving in this context means about $1 \mathrm{~m} / \mathrm{s}$ or less and the maximum speed of motion of the bucket blade of the digger in a horizontal cut at mid reach is $0.5 \mathrm{~m} / \mathrm{s}$.

The overall structure of a complete model of the machine is shown in Fig. 4-7. The model operates by integrating the angular acceleration at each sampling instant to give velocities and positions; this data in conjunction with the load torques and valve settings enables the net acceleration torque to be calculated for the next sampling instant. Block P solves the geometry associated with each ram to convert the angular velocities at the pivots to ram velocities. This data is fed into the hydraulic model constructed as described above along with the valve setting to give the ram forces. Block Q converts the ram forces into angular torques at the corresponding pivots. The Mechanical Model M calculates the direct and induced torques listed above and hence the total non-accelerational torques using the basic laws of mechanics.

The derivation of the equations of motion is a lengthy but straightforward piece of mechanical analysis. The load forces acting on the bucket may change with position from that of a pure mass in the bucket to frictional forces as the blade cuts ground. To simulate a microprocessor controlled system care must be taken to include the effects of quantisation and finite word length arithmetic. It can readily be seen that the mechanics constitute a highly non-linear time-varying coupled system.

4.10 Control Algorithm

Two control schemes particularly suited to non-linear interacting robotic system are sliding mode ${ }^{29,30}$ control and invariant control ${ }^{28}$. Both of the schemes require minimal information of the system to be controlled in terms of modelling.

Sliding mode control operates by switching between two control schemes which may be individually unstable chosen so as to keep the system in the region of a chosen switching line in phase space. Invariant control uses measurement of acceleration to eliminate the disturbances caused by the mechanical interaction of the joints to be controlled. Both these systems require additional transducers for measurement of velocity or acceleration in addition to sensing position, or a sufficiently well resolved position measurement to permit sufficiently accurate differentiation.

In view of the complexity of modelling it was decided to initially adopt an empirical approach to the development of a suitable control scheme. The most important question about the control scheme so far as the hardware specification is concerned is the number and type of feedback transducers required. Position, velocity, acceleration, and ram pressure are all variables required by different robotic control systems.

Early crude experimental work was carried out using a valve driver supplied by $A \& D$ Fluid Power, realising the scheme shown in Fig. 4.8 (a) using the apparatus shown schematically in Fig. 4.8 (b). Experiments were done using the lift arm as the linkage for this service has the highest moment of inertia about the pivot. An SDK-85 microcomputer was used to run a program to give proportional feedback using 8-bit integer arithmetic. An 8-bit digital to analogue converter was used to drive the analogue voltage controlled pulse width modulator supplied by A \& D Fluid Power. This device was found to have
a varying frequency with control voltage.

$$
\begin{gathered}
\text { Fig. 4-8: Control Loop (a) and Hardware Schematic (b) } \\
\text { for experimental system }
\end{gathered}
$$

A carbon potentiometer mounted on the spindle of the pivot was used to measure the output angle giving a voltage fed through a gain and offset stage to an 8-bit analogue converter. The resulting step response, by adjusting the gain K was fast and without overshoot similar to that of a first order system but had a small erratic residual error due possibly to non-repeatability of the valves.

It was decided therefore to start by building a system with more precise hardware to implement proportional control, adjusting the gains to obtain the fastest possible response without overshoot. The main effect of the hydraulic interactions is to reduce the gain of the services individually so if a gain is selected which gives a stable response for a service in isolation it will remain stable in conjunction with the other services. The faster the step response of the system, the better tracking is obtained to a ramp input.

Fig 4-9 shows a simplified schematic for control of the lift and reach (a and β) pivots to give $x-y$ control of the bucket pivot. The control voltages V_{x} and V_{y} from the joysticks (J/S) are fed into the analogue to digital converter (ADC) to the computer. The corresponding velocities \dot{x}_{i} and \dot{y}_{i} are integrated to give x_{i} and y_{i}, the coordinates of the Target Point, onto which the bucket pivot is servoed. Code segment G calculates the corresponding coordinates a_{i} and β_{i}; the corresponding errors are multiplied by the gain constants A_{a} and A_{β} and the results output to the pulse width modulators which drive the valves. It is necessary to prevent excessive errors accumulating if the machine encounters an obstacle that stalls it i.e. causes the relief valve to blow. The is detected by thresholding the x and y errors (ε_{x} and ε_{y}) and disconnecting the x_{i} and y_{i} inputs to the integrators when a critical error magnitude arises.

The controller for the bucket angle is shown in Fig. 4-10 (a). The overall effect of the system is to maintain the bucket angle constant in the user coordinate system as the bucket pivot is moved, this function being over-ridden by control signals from the bucket control joystick. With zero joystick deflection the Sample and Hold outputs the angle to be maintained to summing point S_{1} which calculates the error signal which is used to switch the bucket valve. When the joystick is deflected the sample and hold is put in sample mode and becomes zero and the value of the joystick voltage is fed to the valve controller. When the joystick is released the sample and hold holds the value of the bucket angle at release which then becomes the new input to the regulator.

The slew controller (see Fig. 4.10 (b)) is functionally equivalent to that of the proportional electric control system but implemented through the computer. The control joystick voltage V_{S} is fed to the $A D C$, multiplied by a gain constant A_{Ω} and output to the PWM to drive the valve.

Fig. 4-10: Bucket Control Loop (a) and slew Control Schematic (b)

CHAPTER FIVE

TRANSDUCERS

5.1 Design Constraints
5.2 Selection Possibilities
5.3 Construction

5.1 Design Constraints

With the availability of cheap microprocessors, a major part of the total hardware cost of a computer-based control system can lie in the feedback transducers. As the cost of the diggers is relatively low, the cost of the output transducers must be kept as low as possible.

The transducers must be able to give eight bit resolution over the measured angle of travel and must be repeatable to less that half a least significant bit. The devices used must also be mechanically robust: vibration is transmitted to the transducers from the tractor engine and from the pump. They are also subject to mechanical shocks from the bucket when digging. The transducers must be made waterproof to withstand weathering and mud splashes; the bucket transducer may even be immersed if the machine is being used for clearing waterlogged ditches.

They must be easy to fit to a standard machine in the sense that no significant mechanical modifications have to be made. They must also be able to withstand the rough handling of the agricultural environment as well as any impact in use if the machine hits an obstacle. All electrical connections must be well screened to prevent electromagnetic interference from other circuits on the machine (e.g. solenoid valves) or from nearby.

Easy access to the workings of the transducers is desirable for ease of servicing. Also it should be possible to replace any one independently of the others if a fault should arise.
5.2 Selection Possibilities

There exists a number of types of transducer commercially available for angular position measurement. The most simple to interface to a computer is an absolute encoder which gives a bit parallel output in binary or Gray code corresponding to the measured angle. The objections to using this type of encoder are cost and the number of wires to be connected to the computer. Connectors capable of withstanding the working environment of field machinery are expensive and the cost increases with the number of ways that are connected.

Incremental encoders overcome the problem of a large number of connectors but they are still relatively expensive and they must be re-datumed if the machine is switched off. Hydraulic rams exist which have capacitive transducers built in; they are well protected but have the disadvantage again of cost. The possibility was considered of using an ultrasonic pulse-echo technique to measure ram extension with the transducers mounted inside the ram. This was not pursued however, owing to the difficulty in finding a suitable piezo-electric material, the complexity of the driving circuitry, and the necessity for temperature compensation.

In view of the drawbacks with various other measurement systems it was decided to design a transducer using a high quality plastic film potentiometer. These devices have 0.5% linearity and virtually infinite resolution giving a calculated total worst case positional error of $\pm 26 \mathrm{~mm}$.

5.3 Construction

The set of three transducers may then be interfaced to the computer using an analogue multiplexer and an analogue to digital converter. An exploded section through the device is shown in Fig. 5-1. The potentiometer is mounted on a steel ring attached by a brass strip to the transducer body; the strip is flexible to accommodate any mis-alignment of the potentiometer spindle relative to the spindle block.

\square Mind Steed

Brass
Scale 1:1

Fig. 5-1: Exploded section through Transducer

The pin at the top of, the diagram acts as the pivot for the two arms, the angle between which is being measured. The pin or pin plate is secured to one or other of the arms by a cotter pin or by a weld. The cover plate serves to protect the interior of the transducer if it is removed from the machine and there is a water-tight ' O ' ring seal between the plate and the transducer body. The plate is secured to the body using an allen screw fitted with a shakeproof washer to prevent it from loosening with vibration.

The screened cable to the transducer passes through a sleeved grommet sealed with plastic glue to make it water-tight and a strain relief clip is used to prevent the cable from pulling out or stressing the potentiometer connections.

The spindle block is secured to the body with a fixing ring, held in place by three screws at 120° around its front face. A seal is made using an ' O ' ring to prevent the ingress of water.

Fig. 5-2: Mounting of Bucket Angle Transducer

Fig. 5-2 shows a side view of the assembled transducer attached to the bucket linkage (see also Plate I). The pin plate is welded onto the radius arm of the bucket linkage to prevent the transducer body from rotating. The connecting arm engages in the slot in the locating block. The locating block is shown in detail in Fig. 5-3.

Fig. 5-3: Detail of Locating Block

The elongation of the slot serves to accommodate any movement of the transducer in the plane of the connecting arm due to pin wear. The space between the connecting arm and the slave link accommodates any movement axially along the pin. Plates II and III show the transducers fitted on the machine for measuring angles a and β respectively.

The locating pin shown in Plate II above the transducer prevents it from rotating; the junction box for the transducer connections can also be seen on the machine body. The pin for the transducer measuring angle β is fixed by a cotter pin to the lift arm.

Plate I: Bucket Transducer

Plate II: Lift Transducer showing Junction Box

Plate III: Reach Transducer

CHAPTER SIX

HARDWARE I:

SYSTEM STRUCTURE \& PROCESSOR BOARD

6.1 System Structure

6.2 Processor Board
6.3 Memory Expansion
6.4 Arithmetic Processor Unit
6.5 Board Layout
6.6 Memory \& I/O Maps

6.1 System Structure

A block diagram of the control system hardware is shown in Fig. 6-1. The system is based upon an Intel SDK-85 single board microcomputer. It uses an Intel 8085 A microprocessor and the unit includes a hexadecimal keyboard, display, a monitor, and in its most basic form 2 K of ROM and 256 bytes of RAM. The processor has as eight bit word length and is run on a 6 MHz crystal. The system is compatible with the Intel "Intellec" development system in the departmental microprocessor laboratory allowing the use of an in-circuit emulator for debugging hardware and for software development. The 8085 A is also a widely available industry standard device.

Fig. 6-1: Block Diagram of System Hardware

The memory was expanded to give a total of $4 \frac{1}{2} \mathrm{~K}$ of RAM and 8 K of EPROM.

The arithmetic processor unit (APU) is an Advanced Micro Devices AM9511 which will operate on 32 bit floating point data, as well as 32 bit and 16 bit integers. The device performs arithmetic and trigonometric operations and runs with a 3 MHz clock giving a maximum floating point multiply time of $56 \mu \mathrm{~s}$.

The Valve Drivers interface the CPU to the proportional and Bang-Bang solenoid valves. The current through the proportional valves is controlled to seven bit accuracy, with an eighth sign bit, from zero to full, and the frequency of the current pulsing is set at 50 Hz . The Bang-Bang valves are switched on and off by power transistors and the cut-off valve is operated by hard wired logic so as to close when any of the control valves is selected.

For analogue inputs to the system, an 8 -bit analogue to digital converter is used in conjunction with an 8-channel analogue multiplexer. The transducer outputs pass through conditioning amplifiers to the multiplexer, and the control joystick and pitch control voltages pass through buffer amplifiers. The digital inputs are from the mode selections switches on the control panel and the digital output are to the mode indicator LED's.

[^1]power source and employing smoothing circuits and regulators. DC to DC converters are used to provide the dual rail supplies to the amplifier circuitry and for the stable +12 V supply for the APU.

Fig. 6-2: Layout and interconnection of sub-units

The physical layout and interconnection of the different units of the controller are shown in Fig. 6-2. The transducers are connected by screened leads to a junction box mounted on the machine from which a single screened cable then runs to the processor unit. The control box, which houses the control joysticks, pitch control, mode selection and indication circuitry, is linked by a single screened cable to the processor unit.

The switching unit contains the main relay which switches the battery supply to the system on and off, activated by a switch on the control panel. It also supplies the regulators for the proportional valves and the power transistors for all the valves as well as the switching circuit for the cut-off valve. Two
cables link the switching unit to the processor unit: one is a screened signal cable for operating the valves and the other is the power cable for the processor unit.

6.2 Processor Board

The detailed schematic diagram of the main processor board is shown in Fig. 6-3. The main circuit board is that of an Intel SDK-85 microcomputer system design kit and a detailed description of this standard unit in not included here as the information is contained in the Intel "SDK-85 User's Manual" ${ }^{31}$. The custom built parts of the board are shown marked with a dot in Fig. 6-3.

The 8085 A crystal which is normally supplied at 6.144 MHz is replaced by one of 6 MHz so that the AM9511 arithmetic processor unit may derive its clock signal of 3 MHz from the CLK pin of the CPU which produces a signal at half the crystal frequency.

The 8205 Address Decoder decodes the bottom 4 K of memory into eight 2 K blocks. The utilisation of each of the decoder outputs is shown in the Memory Map given below. The 2 K Monitor ROM, to which control jumps on power on, may be replaced by an EPROM programmed to transfer control the the digger program stored in the 4 K EPROM thus making the computer transparent to the user. To facilitate swapping of these chips, as the monitor is often required in experimental work, the board is fitted with a zero insertion force socket. The monitor ROM, or its substitute, and the two 8155 RAM and

[^2]
Abstract

I/O chips have bit programmable I/O ports used for interface to the valves, the ADC , and the mode selection and indication circuitry. Details of the port usage are given in the I/O map below.

The keyboard has 24 keys and is used in conjunction with the display and monitor program for inspecting memory locations and register contents, entering data into memory, and initiating program execution. The display has six hexadecimal digits: a four digit address field and a two digit data field. A program was written for displaying 32 bit floating point variables stored in memory for checking the operation of the programs during development.

The custom built circuits are shown marked with a dot in Fig. 6-3 and are described in detail later.

6.3 Memory Expansion

The circuit for the $4 \mathrm{~K} \times 8$ bit RAM expansion for locations 3000 H to 3 FFFH is shown in Fig. 6-4 ${ }^{32}$. Lines $A D_{0}$ to $A D_{7}$ and A8, A9 are common to all the devices. The additional address decoding is effected by using A_{10}, CS6 and CS7 and control is effected using ALE, RD, and WR. The $4 \mathrm{~K} \times 8$ bit EPROM expansion schematic is shown in Fig. 6-5 and the circuit diagram in Fig. 6-6. The ROM is located at address 8000 H to 8 FFFH .

Fig. 6-5: $4 K$ EPROM Expansion Schematic

Fig. 6-6: $4 K$ EPROM Expansion Circuit

6.4 Arithmetic Processor Unit

The arithmetic processor unit interface schematic is shown in Fig. 6-7. The APU has an internal stack to which data bytes are pushed and pulled, and a command/status register both accessed by the eight bit bidirectional data bus ${ }^{33}$. The stack is located at address 1000 H and the command/status register at address 1100 H .

Fig. 6-7: AM9511 APU Interface Schematic

The device has a 3 MHz clock input derived from the CLK pin of the CPU which synchronises the two devices. At power on the device is reset from the RST OUT line of the CPU.

Fig. 6-8: APU Interface Timing Diagram

When reading data from the device with the PAUSE line of the APU connected directly to the CPU READY pin it was found that errors occured owing to delay in the PAUSE line going low when the APU was accessed by the CPU. The CPU was reading data from the bus before it had settled. The logic shown in Fig. 6-7 pulls the READY line low immediately the device is selected allowing it to return high when PAUSE goes high. The timing and wiring diagrams are shown in Figs. 6-8 and 6-9 respectively.

Fig. 6-10: Layout of Modifications to SDK-85 Board

6.5 Board Layout

The layout of the custom built circuits is shown in Fig. 6-10. The diagram also shows the power supply connection to the processor board and the ribbon cable connectors. Plate IV shown a plan of the complete main circuit board. The details of the complete ribbon cable connections are given later, in the chapter covering the rack wiring.

Plate IV: Modified Intel SDK-85 Board

6.6 Memory and I/O Maps

Tables $6-1$ and 6-2 respectively show the memory map (including the active 8205 chip select lines) and the I/O map with the usage of the different ports.

I/O Map					
Port Address	Chip	Port	Function	No. of bits used	
OOH	8355	A	Slew	8	
OIH	8355	B	Lift	8	
21 H	8155_{1}	A	Reach	8	
$22 H$	8155_{1}	B	Bucket	2 of 8	
$23 H$	8155_{1}	C	Mode Indicate	2 of 6	
$29 H$	8155_{2}	A	ADC Bus	8	
2 AH	8155_{2}	B	Mode Select	2 of 8	
2 BH	8155_{2}	C	ADC Control	5 of 6	

Table 6-2: System I/O Map

Memory Map		
Address	Function	Active 8205 chip select
$\begin{aligned} & \hline \mathrm{OOOOH} \\ & \mathrm{O} F \mathrm{FFH} \end{aligned}$	$\begin{aligned} & \text { Monitor ROM } \\ & (8355) \end{aligned}$	CSO
0800H OFFFH	$\begin{aligned} & \text { Expansion EPROM } \\ & (8755) \end{aligned}$	CSI
1000 H	$\begin{gathered} \text { APU Data } \\ \text { (AM9511) } \\ \hline \end{gathered}$	CS2
$\begin{aligned} & 1001 \mathrm{H} \\ & \text { 10FFH } \end{aligned}$		
1100 H	APU Command/ Status (AM9511)	
$\begin{aligned} & 1101 \mathrm{H} \\ & 17 \mathrm{FFH} \\ & \hline \end{aligned}$		
1800 H	1800H: Keybd./ Display Ctlr. Command Loc. 1900H: Keybd./ Display Ctlr. Data Loc. (8279)	CS3
$\begin{aligned} & 2000 \mathrm{H} \\ & 20 \mathrm{FFH} \end{aligned}$	$\begin{gathered} \text { Basic RAM } \\ \left(8155_{1}\right) \\ \hline \end{gathered}$	CS4
$\begin{aligned} & 2100 \mathrm{H} \\ & 27 \mathrm{FFH} \\ & \hline \end{aligned}$	Basic RAM fold back	
$\begin{aligned} & 2800 \mathrm{H} \\ & 28 \mathrm{FFH} \end{aligned}$	$\begin{aligned} & \text { Expansion RAM } \\ & \left(8155_{2}\right) \end{aligned}$	CS5
$\begin{aligned} & 2900 \mathrm{H} \\ & 2 \mathrm{FFFH} \\ & \hline \end{aligned}$	$\begin{aligned} & \text { Expansion RAM } \\ & \text { fold back } \end{aligned}$	
$\begin{aligned} & 3000 \mathrm{H} \\ & 33 \mathrm{FFH} \end{aligned}$	$\begin{aligned} & \text { Expansion RAM } \\ & \left(8185_{1}\right) \end{aligned}$	CS6
$\begin{aligned} & 3400 \mathrm{H} \\ & 37 \mathrm{FFH} \end{aligned}$	$\begin{aligned} & \text { Expansion RAM } \\ & \left(8185_{2}\right) \end{aligned}$	
$\begin{aligned} & 3800 \mathrm{H} \\ & 3 \mathrm{BFFH} \end{aligned}$	$\begin{aligned} & \text { Expansion RAM } \\ & \left(8185_{3}\right) \end{aligned}$	CS7
$\begin{aligned} & 3 \mathrm{COOH} \\ & 3 \mathrm{FFFH} \end{aligned}$	$\begin{aligned} & \text { Expansion RAM } \\ & (81854) \\ & \hline \end{aligned}$	
$\begin{aligned} & 4000 \mathrm{H} \\ & 7 \mathrm{FFFH} \\ & \hline \end{aligned}$		
$\begin{aligned} & 8 \mathrm{OOOH} \\ & 8 \mathrm{FFFH} \end{aligned}$	$\begin{aligned} & \text { Expansion EPROM } \\ & (2732) \end{aligned}$	

Table 6-1: System Memory Map

CHAPTER SEVEN

HARDWARE II:
INTERFACE CARDS, POWER SUPPLIES, \& RACK CONNECTIONS
7.1 Analogue Interface Unit
7.2 Valve Driver Card
7.3 Power Supplies
7.4 Rack Layout \& Interconnection Tables

7.1 Analogue Interface Card

The circuit schematic for the analogue interface card is shown in Fig. 7-1. The 5 V reference supply acts as the reference voltage source for the position transducers, the control joysticks, and the pitch control. The voltage reference is also connected to the Analogue to Digital Converter, the ADC0816 manufactured by National Semiconductor, as the reference supply across the divider chain. The ADC has eight bit resolution and the chip incorporates a sixteen channel multiplexer for analogue inputs of which only eight are used here.

The analogue inputs from the transducers pass through signal conditioning amplifiers with a variable gain and offset. The function of these is to map the full scale output swing of the transducers onto the full range of the converter. The joystick and pitch control voltages are fed into unity gain buffers. The range of joystick voltage variation does not require any amplification and the pitch control potentiometer is variable between 0 V and 5 V .

The analogue inputs to the multiplexer all pass through low pass filters to keep the overall noise at the input to the ADC below 10 mV ; the cut-off frequency of the filters is set at 1 kHz . The clock for the ADC runs at 640 kHz to give a maximum conversion time of $114 \mu \mathrm{~s}$. The control lines select the analogue input, initiate conversion, and signal the data to be output onto the 8 bit bus at the end of the conversion.

The circuit for the 5 V analogue reference is shown in Fig. 7-2; the two $10 \mu \mathrm{~F}$ capacitors C 1 and C 2 smooth the supply for the operational amplifier and the Zener $\mathrm{Z1}$. The voltage across the Zener is 8.2 V and from this is derived 5 V using the
potential divider of VR7 and R23. This voltage is buffered by the op-amp, and the BFX85 transistor is used to boost the buffer output current. The 10 k resistor provides a load for output stability if no other load is connected. Output smoothing is provided by C13 and C14.

The circuit used for the variable gain and offset amplifiers is shown in Fig. 7-3. Operational amplifier B acts as an input buffer for the transducer and amplifier A buffers the offset voltage into the unity gain summing amplifier C. Amplifier D provides the gain stage. The wiring diagram for the three transducer amplifiers is shown in Fig. 7-4. Operational amplifier 324_{4} is used to buffer the voltages from the joysticks.

Fig. 7-3: Transducer Signal Conditioning Amplifier

The circuit for the ADC is shown in Fig. 7-5; the ADC0816 has a built-in analogue multiplexer with sixteen inputs of which

Fig. 7-5: Analogue to Digital Converter
eight, IN0 to IN7, are used here. The chip runs off the 5 V logic supply and also has a 5 V reference input for the divider chain in the ADC. Control lines ADD A, ADD B, ADD C are used to select the input line address. ADD D is tied low as only eight of 16 inputs are used. The START and address latch enable (ALE) are connected to control line C4 which is pulsed high to initiate a conversion once the address for the input has been presented on ADD A-C (see timing diagram Fig 7-6). C5 goes high to activate the tri-stated 8 -bit output port at the end of the conversion. The ADC has a clock input of 640 kHz provided by the Schmitt Trigger inverter with the feedback resistor and capacitor to ground, the second gate acting as a buffer.

Fig. 7-6: ADC Timing Diagram

The wiring diagram for the ADC circuitry is shown in Fig. $7-7$, and the layout in Fig. 7-8 and Plate V.

7.2 Valve Driver Card

The valve driver card is essentially a 3 -channel digital pulse width modulator circuit for driving the SLEW, LIFT, and REACH valves. There are three 8 -bit digital inputs, seven bits for each channel are used to select the mean valve current and the eighth to select the direction of movement: Right or Left etc.

Fig. 7-9: Valve Driver Schematic

The circuit schematic is shown in Fig. 7-9. The three control inputs S0-S7, L0-L7, and R0-R7 are for the Slew, Lift, and Reach functions respectively, line 7 selecting the direction in each case.

For each channel there is a seven bit digital comparator: one input is from a cyclic counter generating a sawtooth output and the other is the control signal. The logic operates as shown in Fig. 7-10 so that the valve current is ON when the control input is greater than the counter value. So over an input range of 0 to 127 the mean valve current varies linearly from zero to maximum. The frequency of the valve switching pulse train is set to 50 Hz by adjusting the clock to run at 6.4 kHz .

The wiring diagram for the clock and counter circuit is shown in Fig. 7-11. A 555 timer is used for generating the clock signal, adjusted by potentiometer VR1. The counter employs two 74LS163 four bit counter chips, the output being taken from the

Fig. 7-11: Wiring Diagram of Clock \& Counter Circuit
seven least significant bits. Fig. $7-12$ shows the wiring of the comparator and logic circuitry. The outputs from the card to the valve switching circuits are active low. The circuit layout is shown in Fig. 7-13 and Plate VI.

Fig. 7-13: Valve Driver Circuit Layout

7.3 Power Supplies

The main 5 V power supply for the logic circuitry is shown in Fig. 7-14. The input comes from the tractor battery via the power switching relay situated in the switching unit. The 27 V Zener is to act as protection against any high voltage spikes or surges; the smoothing circuit comprising L1, L2, C1, C2 removes ripple and high frequency noise from the input to the regulator RG1. The feedback network of R1 and VR1 may be adjusted to give the desired output of 5 V and C 3 and C 4 provide output smoothing.

Fig. 7-14: 5 V Regulator Circuit

Fig. 7-15: 12 V APU Supply

The +12 V supply for the APU is shown in Fig. 7-15. CV1 is a DC to DC converter with a 100 mA output rating, L3 and C5, serve to eliminate high frequency noise from the output probably due to internal switched mode operation of the converter. The 240 dummy load on the negative output is necessary to preserve regulation of the positive output.

Fig. 7-16: ± 12 V Analogue Supply

A similar converter is used in the DC supply for the analogue board (Fig. 7-16) which additionally has $100 \mu \mathrm{~F}$ capacitors on each output line to eliminate ripple. The circuit board layout is shown in Fig. 7-17 and Plate VII.

Plate VII: Power Supply Circuitry

7.4 Rack Layout and Connection Tables

The front view of the main rack is shown in Fig. 7-18 and Plate VIII show the interior wiring at the rear. The blue ribbon cable connects the main board to the back plane; the connections to the power supply board are also visible. The rear of the rack is shown in Fig. 7-19 and Plate IX. The fuseholder is for the input from the battery via the power switching unit and the fuse is rated at $2 A$. Plate X shows the front of the rack with the processor board withdrawn to show the power supply.

Axerogure inturface bowno
Fig. 7-18: Front View of Main Rack

Fig. 7-19: Rear View of Main Rack

Tables 7-1 to 7-4 list the connections to the circuit boards and the sockets on the back panel of the rack.

Rack Connections				
SDK-85 Edge Connector	Rack Connector	Function	Analogue Card	Driver Card
1 2 3 4 5 6 7 8	$\begin{array}{ll} \text { c } & 1 \\ \text { a } & 1 \\ \text { c } & 2 \\ \text { a } & 2 \\ \text { c } & 3 \\ \text { a } & 3 \\ \text { c } & 4 \\ \text { a } & 4 \end{array}$	$\begin{aligned} & \text { SO } \\ & \text { S1 } \\ & \text { S2 } \\ & \text { S3 } \\ & \text { S4 } \\ & \text { S5 } \\ & \text { S6 } \\ & \text { S } \end{aligned}$		$\begin{array}{r} 3 \\ 4 \\ 5 \\ 6 \\ 7 \\ 8 \\ 9 \\ 10 \\ \hline \end{array}$
$\begin{array}{r} 9 \\ 10 \\ 11 \\ 12 \\ 13 \\ 14 \\ 15 \\ 16 \end{array}$	$\begin{array}{ll} \text { c } & 5 \\ \text { a } & 5 \\ \text { c } & 6 \\ \text { a } & 6 \\ \text { c } & 7 \\ \text { a } & 7 \\ \text { c } & 8 \\ \text { a } & 8 \end{array}$	$\begin{aligned} & \text { LO } \\ & \text { L1 } \\ & \text { L2 } \\ & \text { L3 } \\ & \text { L4 } \\ & \text { L5 } \\ & \text { L6 } \\ & \text { L } \end{aligned}$		$\begin{aligned} & 11 \\ & 12 \\ & 13 \\ & 14 \\ & 15 \\ & 16 \\ & 17 \\ & 18 \\ & \hline \end{aligned}$
$\begin{aligned} & 17 \\ & 18 \\ & 19 \\ & 20 \\ & 21 \\ & 22 \\ & 23 \\ & 24 \end{aligned}$	9 a 9 c 10 a 10 c 11 a 11 c 12 a 12	$\begin{aligned} & \text { RO } \\ & \text { R1 } \\ & \text { R2 } \\ & \text { R3 } \\ & \text { R4 } \\ & \text { R5 } \\ & \text { R6 } \\ & \text { R7 } \end{aligned}$		$\begin{aligned} & 19 \\ & 20 \\ & 21 \\ & 22 \\ & 23 \\ & 24 \\ & 25 \\ & 26 \\ & \hline \end{aligned}$
$\begin{aligned} & 25 \\ & 26 \\ & 27 \\ & 28 \\ & 29 \\ & 30 \\ & 31 \end{aligned}$	$\begin{array}{lll} \mathrm{c} & 13 \\ \mathrm{a} & 13 \\ \mathrm{c} & 14 \\ \mathrm{a} & 14 \\ \mathrm{c} & 15 \\ \mathrm{a} & 15 \\ \mathrm{c} & 16 \end{array}$	$\begin{aligned} & \text { OPEN } \\ & \text { CLOSE } \\ & \text { MIO } \\ & \text { MII } \\ & \text { MSO } \\ & \text { MS1 } \\ & \text { MS2 } \\ & \hline \end{aligned}$		
$\begin{aligned} & 32 \\ & 33 \\ & 34 \\ & 35 \\ & 36 \end{aligned}$	$\begin{array}{ll} \mathrm{a} & 16 \\ \mathrm{c} & 17 \\ \mathrm{a} & 17 \\ \mathrm{c} & 18 \\ \mathrm{a} & 18 \end{array}$	$\begin{aligned} & \mathrm{CO} \\ & \mathrm{C} 1 \\ & \mathrm{C} 2 \\ & \mathrm{C} 4 \\ & \mathrm{C} 5 \\ & \hline \end{aligned}$	$\begin{aligned} & 2 \\ & 3 \\ & 4 \\ & 5 \\ & 6 \\ & \hline \end{aligned}$	
$\begin{aligned} & 37 \\ & 38 \\ & 39 \\ & 40 \\ & 41 \\ & 42 \\ & 43 \\ & 44 \\ & \hline \end{aligned}$	$\begin{array}{ll} \mathrm{c} & 19 \\ \mathrm{a} & 19 \\ \mathrm{c} & 20 \\ \mathrm{a} & 20 \\ \mathrm{c} & 21 \\ \mathrm{a} & 21 \\ \mathrm{c} & 22 \\ \text { a } & 22 \\ \hline \end{array}$	$\begin{aligned} & \text { DO } \\ & \text { D1 } \\ & \text { D2 } \\ & \text { D3 } \\ & \text { D4 } \\ & \text { D5 } \\ & \text { D6 } \\ & \text { D7 } \end{aligned}$	$\begin{array}{r} 7 \\ 8 \\ 9 \\ 10 \\ 11 \\ 12 \\ 13 \\ 14 \\ \hline \end{array}$	

Table 7-1: Main Circuit Board (SDK-85) Rack Connections

Pin no.	Analogue Card	Driver Card
1	5 V	5 V
2	CO	RIGHT
3	Cl	So
4	C2	Sl
5	C4	S2
6	C5	S3
7	DO	S4
8	D1	S5
9	D2	56
10	D3	S7
11	D4	LO
12	D5	L1
13	D6	L2
14	D7	L3
15	n / c	L4
16	n / c	L5
17	VREF	L6
18	V	L7
19	V	RO
20	V	R1
21	VS	R2
22	VY	R3
23	VX	R4
24	VB	R5
25	VP	R6
26	A. Gnd.	R7
27	Screen	LEFT
28	n / c	UP
29	+12V	DOWN
30	-12V	IN
31	n / c	OUT
32	GND	GND

Table 7-2: Analogue and Driver Card Connections

Supply	
$V_{\text {input }}$ GND	Brown
	Blue

Regulator	
Input	Brown
Ref.	Black
Output	Blue

Position Transducers				
Function	Socket Pin	Colour	Cable No.	Rack Connection
V REF	1	Red	3	A 17
Lift	2	Blue	3	A 18
Reach	3	Yellow	3	A 19
Bucket	4	White	3	A 20
GND	5	Green	3	A 26
Screen	6	Screen	3	A 27
ON/OFF	$7 \& 8$	Black		Jystk. 8
		Black		Sw. Unit

Control Unit					
Function	Socket Pin	Colour	Cable No.	Rack	nnections Other
$\mathrm{V}_{\text {REF }}$	1	Red	1	A 17	
5 V Dig.	2	Black			Power supply board
Slew	3	Blue	1	A 21	
Lift	4	Yellow	1	A 22	
Reach	5	White	1	A 23	
Bucket	6	Brown	1	A 24	
Pitch	7	Purple	1	A 25	
On/	8	Black			Transducer Skt. 7
Off	9	Black			Switching Unit 11
IWT	10	Black			Switching Unit 9
MSO	11	White	2	c 15	
MS 1	12	Purple	2	a 15	
MS2	13	Blue	2	c 16	
MIO	14	Green	2	c 14	
MII	15	Red	2	a 14	
Dig. GND	16	Black			Power supply board
An. GND	17	Green	1	A 26	Power suply board
Screen	18	Screen	1	A 27	

Switching Unit					
Function	Socket Pin	Colour	Cable No.	Connections Rack Other	
UD	1	Green	4	D 28	
Down	2	Purple	4	D 29	
In	3	Yellow	4	D 30	
Out	4	Brown	4	D 31	
Right	5	Red	4	D 2	
Left	6	Blue	4	D 27	
Open	7	Black	4	C 13	
Close	8	White	4	a 13	
IWT	9	Black			Joystk. Unit 10
On/	10	Black			Transducer 8 Joystk. Unit 9
Off	11	Black			
$\left\{\begin{array}{l}\text { GND } \\ \text { Screen }\end{array}\right.$	12 13	Black			Power supply Board
$\begin{cases}\text { Screen } & 4 \\ \text { Screen } & 2\end{cases}$					

Table 7-4: Back Panel Connections (II)

Plate X : Front View of Main Rack

CHAPTER EIGHT

HARDWARE III:
CONTROL UNIT, TRANSDUCER WIRING, \&
POWER SWITCHING UNIT

8.1 Control Unit

8.2 Transducer Wiring
8.3 Power Switching Unit

8.1 Control Unit

The layout of the controls on the Control Unit is shown in Fig. 8-1. The joystick units are spring centred inductive devices which are very reliable as there are no potentiometer wipers to wear out. The orientation of the joystick axes and their corresponding functions is in a similar fashion to that of a conventional mechanically controlled digger. This is to minimise the re-learning necessary for operators already familiar with conventional controls. The carry strap supports project out from the case approximately 40 mm on each side to keep the strap, worn around the operator's neck, away from his hands while operating the unit.

Fig. 8-1: Layout of Controls

The pitch control is situated in the centre of the control panel and comprises a plastic film potentiometer calibrated to correspond to pitch angles of -45° to $+45^{\circ}$. The power and Instant Weight Transfer (IWT) switches are of the latching type with LED's mounted above them to indicate their status. The mode selection switches are of momentary type and have integral LED's; this arrangement allows mode selections and changes to be made in software e.g. to start up at power on in Manual Mode and to revert to Manual Mode at the end of a Repeat sequence. The large Emergency Stop button is mounted on the front of the control unit and latches when depressed, being released by a twist.

The circuit for the joysticks and the pitch control is shown in Fig. 8-2. The 5 V reference is from the analogue interface card; the output voltage swing of the joysticks is $\frac{1}{2} \mathrm{~V}$ from a central position with a standing output of $2 \frac{1}{2} \mathrm{~V}$ and they have an output resistance of $1.8 \mathrm{k} \Omega$.

The mode selection switch circuitry is shown in Fig. 8-3 along with the truth table for encoding the five possible switch settings to the three mode select lines MS0, MS1, and MS2. The

Fig. 8-4: Logic for Mode Indication
normally closed emergency stop switch is in series with the on/off switch and closes the path for operating the power switching relay. The mode indication circuit is shown in Fig. 8-4 and decodes the two mode indication lines MIO and MI1 to operate the four LED's according to the truth table. The four NAND gates in the 7403 have open collector outputs, turning the corresponding LED on when the output goes low. The layout of the circuit board for the mode selection and indication circuits is shown in Fig. 8-5, and Fig. 8-6 shows the layout of the connecting strip mounted at the bottom of the case and the colour coding of the connector cable. Colour coding for the analogue control leads is given in Table 8-1.

Joysticks	
$V_{\text {ref }}$	Red
Gnd.	Black
Slew	Blue
Lift	Blue
Reach	Yellow
Bucket	Yellow

Pitch	
Control	
Wiper	Grey
$V_{\text {ref }}$	Violet
A. Gnd.	White

Table 8-1: Colour Coding of Analogue Control Leads

A top view of the control unit is shown in Plate X, and front view with it placed on the processor unit in Plate XI.
Fig. 8-5: Layout of Logic Board
Fig. 8-5: Layout of Logic Board

Fig. 8-6: Connector Layout \& Control Cable colour coding

Plate XI: Top View of control unit

Plate XII: Control Unit \& Processor Unit

8.2 Transducer Wiring

Fig. $8-7$ and Plate XII show the wiring diagram and junction box mounted on the side of the digger. The cable to each transducer is screened to minimise any pick-up from electromagnetic fields. Linking each transducer to the junction box is an in-line connector so that each transducer may individually be disconnected and replaced. The use of a junction box also reduces the amount of cabling required to link the sed of three transducers to the processor unit.

> Fig. 8-7: Transducer Circuit

8.3 Power Switching Unit

Fig. 8-8(a) shows the three regulator circuits for driving the solenoid valves at 8 V from the nominal 12 V tractor supply.

(a) Valve Supply Regulators

(b) IWT Valve Switching Circuit

The IWT valve is driven using a TIP125 transistor (Fig. 8-8 (b)). Resistor R17 limits the base current and R18 ensures that the transistor turns hard off. The operation of the cut-off circuit (Fig. 8-8 (c)) is to switch the cut-off valve using darlington pair Q10, Q11 and delay the turn-off of the valve using C1 and R19 so that the valve is held on between consecutive pulses from one or more proportional valves.

The power switching for the input to the system from the battery is effected using the circuit of Fig. 8-8 (d). Fuse F1 is rated at 32 A to protect the battery and the circuitry against any major short circuit. Relay RLA1 is used to switch the power to the system when the on/off control loop is closed. Diode D12 prevents the relay from operating if the supply is reverse connected by mistake, thus indefinite reverse supply connection does not damage the system.

Fig. 8-9 shows the complete circuit for the switching of all the proportional and bang-bang valves for the different services. The control inputs are buffered by the 7407 gates and the open collector gate outputs sink the base currents from the switching transistors Q1-Q8 . Diodes D13 to D20 link each of the valve solenoids to the cut-off control circuit while isolating the services from each other.

The circuit board layout is shown in Fig. 8-10 and the layout of the internal connector in Fig. 8-11 with the wiring details in Fig. 8-12. The colour coding of the control cable is shown in Table 8-2. Figures 8-13 and 8-14 show external views of the box and the component mounting configuration and cable gland layout. Plate XIII shows the switching unit on the digger with the cover plate visible at the left hand end and the cable glands to the right. Sealing cable glands and a screw-on lid to the box were used to prevent the ingress of moisture to this particularly exposed part of the system.

Eig. 8-11: Layout of Power Switching Unit Internal Connecting Blocks

Fig. 8-12: Wiring Diagram of Power Switching unit Connecting Blocks

Core	Colour	Function
1	Red	Up
2	Blue	Down
3	Yellow	In
4	White	Out
5	Black	Right
6	Brown	Left
7	Violet	Open
8	Orange	Close
9	Pink	IWT
10	Turquoise	On/Off
11	Grey	GND.
12	Green	G/c
13	Screen	

Table 8-2: Colour coding of Power switching unit control Cable

Transistor mownting screws\qquad		Cable 8 fands \uparrow	
	${ }_{\text {IWr }}$ (θ	$\bigcirc \mathrm{CuF}$-oft	$\underline{\sim 2}$
$\theta_{\text {right }}$	Left θ	Ozight	Letio
θ up	Down θ	$\bigcirc u_{p}$	tamo
θI_{n}	out θ	O1n	out \bigcirc
θ opeen	Close θ	Oopex	Clase \bigcirc

Fig. 8-13: Side View of power Switching unit Showing Layout of Power Transistors \& Cable Glands

Fig. 8-14: End Views of Power Switching Unit Showing
Semiconductors \& Cable Glands

Plate XIV: Power Switching Unit

CHAPTER NINE

SOFTWARE I:
GENERAL PURPOSE APU SUBROUTINES \& MACROS
9.1 Arithmetic Processor Unit
9.2 Subroutines for APU Stack Data Transfer
9.3 Subroutine for APU operations
9.4 Macro for Conditional Jumps

9.1 Arithmetic Processor Unit

The principal advantages of using an Arithmetic Processor Unit (APU) are its speed of operation and the ease with which complex computations may be programmed. Two major programs were written for controlling the digger:

MANCON which mimics the operation of a conventional mechanically controlled digger
and DIG which provides the features described in Chapter Two of automatic straight line cutting, pitch control, and the learn/repeat facility.

Both programs make extensive use of the APU and a set of macros and subroutines common to both programs was written to simplify data transfers and APU commands so that any calculation could be coded as a Reverse Polish sequence of instructions. A macro was also written to effect conditional jumps depending upon the relative values of two 32 bit floating point variables. All the system software was written in assembly language for the 8085A processor using an Intel Intellec Development System.

The arithmetic processor has as internal stack 16 bits wide by 8 levels deep for single precision values or 32 bits wide and 4 levels deep for double precision or floating point values (Fig. 9-1).

Data is entered on the stack in the sequence B1, B2, B3, B4 and removed in the reverse sequence. The stack is located at address 1000 H . Commands are written to the APU as 8 bit words to the addresss 1100 H and commands operate on either the

Fig. 9-1: APU Internal Stack Structures for single and Double Precision Data

TOS or NOS or both. The device status (Busy, Sign, Zero, Error, etc.) may be read from the status register, also located at address 1100 H .

Address	Data
n	byte 0
$n+1$	byte 1
$n+2$	byte 2
$n+3$	byte 3

1.s. byte
m.s. byte

Fig. 9-2: Data Format for 32 Bit Floating Point Variable

Thirty-two bit floating point variables and constants used in the programs are stored in RAM or EPROM as a sequence of four consecutive bytes as shown in Fig. 9-2 with the least significant byte at the lowest address. The variable name or identifier acts as a label to the address of the least significant byte.

9.2 Subroutines for APU Stack Data Transfer

Subroutine PSHT pushes a 32 bit variable onto the APU stack. Register pair DE, used as a data pointer, controls the
address of the least significant byte on calling and of the most significant byte at return (see Fig. 9-3).

Fig. 9-3: Flowchart of subroutine PSHT

A more efficient coding for storing the A register would be PUSH PSW, and for recovering it POP PSW.

Subroutine PLLT pulls a 32 bit variable from the APU stack. Register pair DE, used as a data pointer, contains the address in memory of the least significant byte of the variable (see Fig. 9-4).

A more efficient coding for storing the A register would be PUSH PSW, and for recovering it Pop PSW.

Macro PSH generates the code for pushing a 32 bit variable onto the APU stack using subroutine PSHT.

Fig. 9-4: Flowchart of Subroutine PLLT

The call instruction is of the form
PSH var
Where var is the identifier of the variable to be pushed, and the corresponding code generated by the macro is

$$
\begin{array}{lll}
\text { LXI } & \text { D,var } & \text {; Load data pointer } \\
\text { CALL } & \text { PSHT } & \text {;Call APU stack push } \\
& & \text { subroutine }
\end{array}
$$

Macro PLL generates the code for pulling a 32 bit variable from the APU stack using subroutine PLLT.

The call instruction is of the form
PLL var

Where var is the identifier of the variable to be pulled, and the corresponding code generated by the macro is

LXI D,var	; Load data pointer	
CALL PLLT	;Call APU stack	
		pull subroutine

9.3 Subroutines for APU Operations

Macro MATHS generates subroutines which when called give commands to the APU to perform different arithmetic operations.

The calling instruction is of the form
MATHS function, code

Where function is the name of the operation carried out by the APU and the name of the subroutine generated by the macro and code is the 8 bit code wirtten to the APU command register to carry out the required operation.

The macro generates code of the form

Subroutine FIX is used to convert the 32 bit floating point
contents of the TOS to 8 bit integer format in the A register (see Fig. 9-5).

Fig. 9-5: Flowchart of Subroutine FIX

Subroutine FLOAT converts the 8 bit integer contents of the A register to 32 bit floating point format on top of the APU stack (see Fig. 9-6).

Fig. 9-6: Flowchart of Subroutine FLOAT

9.4 Macros for Conditional Jumps

Macro IFF generates code for conditional jumps depending upon the relative values of two floating point variables. It generates code to operate as follows:

$$
\begin{aligned}
& \text { IF var1 }\{>|\geqslant|=|\neq|\leqslant|<\} \text { var2 } \\
& \text { THEN GOTO label } \\
& \text { ELSE CONTINUE }
\end{aligned}
$$

IFF varl, $\{$ GTHAN|GEQUAL|EQUALS|NEQUAI_|LEQUAL|
LTHAN $\}$, var2, label
and the macro generates code as in the flowchart of Fig. 9-7.

Fig. 9-7: IFF Macro Obiect Code

Subroutine op tests the validity of the relational operator ($>$, \geqslant, etc.) on V1 and V2, returning the result as True (1) or False (0) in the A register. The different cases for subroutine op are flowcharted in Fig. 9-8.

(a) Subroutine EOUALS

(d) Subroutine LTHAN

(b) Subroutine NEQUAL

(e) Subroutine GEOUAL

Fig. 9-8: (a)-(f) Flowcharts of Relational operator subroutines called in obiect Code of IFF Macro

CHAPTER TEN:

SOFTWARE II:

```
PROGRAM MANCON
```

10.1 Introduction
10.2 Algorithm
10.3 Memory Utilisation
10.4 Code Documentation
10.1 Introduction

Program MANCON simulates the operation of a conventional mechanical control system, opening each hydraulic valve in relation to the corresponding joystick deflection. In addition to the routines for utilisation of the arithmetic processor described in the previous chapter there are a number of subroutines common to program MANCON and program DIG, which is described in the next chapter. These common subroutines are mainly for input and output.

10.2 Algorithm

The flow chart for the main program is shown in Fig. 10-1 indicating which code segment, the main program or a subroutine, executes each function.

The executable code begins at address 80 DOH in ROM with the system initialisation procedure. Default values of characteristic
constants for the valves are copied from ROM into RAM. This is so that the constants may be changed by the user when operating the system and program execution may be resumed from location 80 E 0 H to avoid corrupting the modified data. The interrupts and stack pointer are initialised to allow the program to be interrupted at a selected point when the Vectored Interrupt key on the keyboard is depressed. Subroutine INIT sets the I/O port data direction registers.

Location 20 CEH in RAM, to which control jumps when the Vectored Interrupt key is pressed, is loaded with the instruction code CFH (PST 1) to return control to the monitor.

The main control loop first calls subroutine CONV which reads in the joystick deflection JXDOT, JYDOT, JBKT, and JSLEW corresponding to Lift, Reach, Bucket, and Slew. These variables are assigned values in the range -1 to +1 according to the magnitude and sense of the corresponding joystick deflections.

The values of JXDOT, JYDOT, JBKT, and JSLEW are copied via the top of the APU stack to variables VVBETA, VVALFA, VVBKT, and VVSLEW which are the corresponding valve settings.

Subroutine OUTPUT is then called and sets the control signals for the valve drivers. The final part of the main control loop allows an interrupt from the 'Vectored Interrupt' key of the monitor; this allows the program to be halted at this specific
point so that the values of variables may be examined. Control then jumps back to the start of the main control loop.

Memory Utilisation

The basic memory utilisation for the program is shown in Fig. 10-2. Program variables are stored in RAM (block A); certain constants, those describing valve characteristics, are also stored in RAM (block B). Default values of user alterable constants are stored in EPROM in block C, and fixed constants in block D. The program code is stored in ROM in block E.

3000 H	A	Program variables
3043 H	B	User-alterable constants
3044 H		

EPROM

8000 H	C	Default constant values 800 BH
800 CH 803 BH	D	Constants
8 ODOH $8550 H$	E	Program code

> Fig. 10-2: Memory Map

The control structure for setting up default constants is shown in Fig. 10-3. Normally program execution begins at START A and the default constant values are copied from Block C to block B then control moves to the main routines. If the
program is halted by depression of the Vectored Interrupt button or Reset then the user alterable constants may be changed and program execution recommenced from START B to preserve the modified data values.

Fig. 10-3: Control Structure for setting Default Constants

10.4 Code Documentation

Line numbers refer to those on the listing included in Appendix A.

Subroutine INIT (lines 203-210)
This subroutine writes the appropriate bit patterns to the $1 / 0$ port data direction registers as given in Table 10-1.

Registers affected: A

Subroutine CONV (Lines 219-246)
This subroutine reads the output from each joystick axis

START

Fig. 10-4: Flowchart for Subroutine CONV
using subroutine $A D C O N$ and sends the result to subroutine JOYSTK which transfers the result to the range -1 to +1 in 32 bit floating point format. This process is effected four times to obtain values for the Slew, Lift, Reach, and Bucket joystick axes. The subroutine is flowcharted below in Fig. 10-4 and the table gives the channel number and result name for the different

$\begin{aligned} & \text { I/O Port } \\ & \text { Address } \end{aligned}$	Function	Data Direction	Data Direction Register	$\begin{aligned} & \text { Control } \\ & \text { Byte } \end{aligned}$
21H	Reach	Out		
22 H	Bucket	Out	20H	OFH
23H	Mode indicate	Out		
OOH	Slew	Out	O2H	FFH
O1H	Lift	Out	O3H	FFH
29 H	ADC Bus	In	\} 28 H	
2 AH	Mode select	In	$\} 28 \mathrm{H}$	OCH
2BH	ADC Control	Out		

Table 10-1: I/O Port Usage and Control Bytes

Registers affected: A,D,E,H,L, Status

Subroutine ADCON (lines 259-273)
This subroutine operates the analogue to digital converter. The channel number is passed to the routine in the A register and the A register contains the eight bit result at return. The flowchart for the routine is shown in Fig. 10-5.

Fig. 10-5: Flowchart for Subroutine ADCON

Registers affected: A, H, L, Status

Subroutine PAUSE (lines 284-288)
This subroutine effects a delay, the duration of which is determined by the contents of the HL register pair on calling and given by the formula

Delay $=(0.008 \mathrm{C}+0.013) \mathrm{ms}$
Where $C=$ value of counter in HL register pair on calling.

The subroutine flowchart is given in Fig. 10-6.

Fig. 10-6: Flowchart for subroutine PAUSE
Registers affected: H, L.

Subroutine JOYSTK (Lines 439 - 505)
This subroutine converts the eight bit joystick voltage to the range -1 to +1 , corresponding to the full mechanical travel of the lever. This is shown graphically in Fig. 10-7 and Fig. 10-8 gives the program flowchart.

Fig. 10-7: Transfer Characteristic of subroutine JOYSTK

Registers affected: A, D, E, Status.

Subroutine OUTPUT (lines 519-622)

This subroutine takes as input parameters the fractional valve openings VVSLEW, VVALFA, VVBETA, and VVBKT. They are offset and scaled in turn by subroutine VLIN to give the required valve control bytes which are then output to the valve drivers. The subroutine has the following input parameters.

Fractional valve opening	FVO
Positive Offset	POF
Positive Maximum	PMAX
Negative Offset	NOF
Negative Maximum	NMAX

The driver control byte is returned in the A register.

The input parameter names for the different valves are as follows:

	Slew	Lift	Reach
FVO	VVSLEW	VVALFA	VVBETA
POF	SPOF	APOF	BPOF
PMAX	SPMAX	APMAX	BPMAX
NOF	SNOF	ANOF	BNOF
NMAX	SNMAX	ANMAX	BNMAX
Control byte	VS	VL	VR

The bucket is contolled by a bang-bang valve and is operated by a separate piece of code which switches the bucket valve according to the sign of VVBKT.

Fig. 10-9: Flowchart for subroutine output

Subroutine VLIN (Lines 661-761)
This subroutine derives the control byte to be output to a proportional valve given the demanded fractional valve opening and a set of parameters describing the valve characteristics. The demanded fractional valve opening (FVO) is expressed as a 32 bit floating point quantity in the range -1 to +1 . The simplified characteristic of a valve is shown in Fig. 10-10.

Fig. 10-10: Simplified Valve Characteristic

The subroutine maps an input in the range 0 to -1 onto the negative linear region. The format of the control word is as shown below in Fig. 10-11.

Fig. 10-11: Valve Driver Control Word format

The most significant bit gives the sense of the movement as follows:

	1	0
Slew	Right	Left
Lift	Up	Down
Reach	In	Out

The seven least significant bits determine the magnitude of the mark to period ratio (duty cycle) of the valve current. The magnitude is calculated for positive inputs as

$$
\text { Magnitude }=\text { POF }+ \text { FVO (PMAX }- \text { POF) }
$$

and for negative inputs

$$
\text { Magnitude }=\text { POF }+ \text { FVO (NMAX }- \text { NOF) }
$$

The subroutine flowchart is shown in Fig. 10-12.

Registers affected: A, D, E, Status.

CHAPTER ELEVEN

SOFTWARE III:

PROGRAM DIG
11.1 Functional Description \& Algorithms
11.2 Memory Utilisation
11.3 Code Documentation

11.1 Functional Description and Algorithms

Program DIG is the main control program which implements the function specified in Chapter Two of automatic linear cutting of the blade, calibrated variable pitch, and a learn and repeat facility. The program effects four modes of machine operation:-

Manual: ' $\mathrm{X}-\mathrm{Y}$ ' control of bucket movement, Bucket Angle and Slew from joysticks. Calibrated Pitch control.

Learn: Control is as for Manual but path is recorded as a sequence of X, Y, ψ, coordinates. Any path previously recorded is overwritten.

Repeat Slow: Path is repeated at a slow speed from the machine position when the mode is selected. If this mode is selected when the machine is already in repeat fast mode, the path is not recommenced but continued at the slow speed.

Repeat Fast: Path is repeated at maximum speed from the machine position when the mode is selected. If this mode is selected when the machine is already in Repeat Slow mode, the path is not recommenced but continued at the higher speed.

Figure 11-1 illustrates the different possible mode transitions and the conditions causing them. The flowchart for mode control, which is the highest level of the machine software is shown in Fig. 11-2.

Manual Mode

The manual routine, flowcharted in Fig. 11-3 first sets the mode indicator on the control panel and then enters the main loop. Subroutine $X Y$ reads in the machine position and control

inputs and sets the control valves accordingly. If any mode select key has been depressed then control returns to the main mode control program. The Vectored Interrupt key is briefly enabled so that program operation may be checked, which completes the sequence of operations of the subroutine's main control loop.

Learn Mode

The learn routine allows the user to control the machine as in Manual mode but equi-spaced points in the current $X-Y$ coordinate framework are stored sequentially in memory as the

Fig. 11-2: Flowchart for Mode Control

Fig. 11-3: Flowchart for Manual Mode
machine moves. The first point stored is the initial position of the machine when the mode is selected. The routine starts (see Fig. 11-4) by indicating the mode by the appropriate LED on the control panel, then the data pointer and counter are initialised and the current output position stored.

Fig. 11-4: Flowchart for Learn Mode

In the main loop of the subroutine, subroutine $X Y$ is called to read the machine inputs, output position, and to set the valve outputs. The updated machine output position is compared with the latest stored value and if the separation is greater than a critical value then the new position is recorded. Thus
approximately equi-spaced points are stored as the trajectory is executed and there is no time constraint upon the operator as would be imposed by sampling at regular time intervals. Once the memory is full then control returns to the mode selection program which defaults the system to manual mode. Control may also leave Learn Mode if one of the mode selection keys is depressed.

Repeat Slow and Repeat Fast Modes
The essential operation of the routine is to feed the stored path points to the position control program as target points, offset to accommodate the new starting point. The stored points are approximately equi-spaced so the delay between each point controls the speed. The main program for Repeat Slow mode is flowcharted in Fig. 11-5.

The routine starts by checking that there is a path stored in memory and if there is not, control returns to the calling program. If there is a path in memory, the data counter which counts the successive path points is set to zero, and the data pointer to the base address for the stored path. If Repeat Slow mode is selected while the system is in Repeat Fast mode then the path being repeated at the mode change is continued at the new slow speed, so control enters at point RSCON. The Repeat Slow mode indicator on the control panel is then set. The value for the delay between successive path points is set and this determines the speed at which the path is repeated. Subroutine REPEAT is then called which has as calling parameters the number of path points, the data pointer, and the delay between points.

The operation of Repeat Fast mode (see Fig. 11-6) is very similar to that of Repeat Slow mode described above. Entry point RFCON is used when the mode is changed from Repeat Slow to Repeat Fast so that the path being repeated is continued but at a higher speed. No additional delay is introduced between path points so the path execution is as fast as the system will allow.

11.2 Memory Utilisation

In program DIG, as for program MANCON described in the previous chapter, certain program constants are made user alterable by storing them in RAM, allowing access through the SDK-85 monitor. Default values of the constants are stored in ROM and these are loaded into RAM by the first segment of the main program.

	ROM
OOOOH	JMP 80DOH
RAM	
$\begin{aligned} & 3000 \mathrm{H} \\ & 30 \mathrm{CCH} \end{aligned}$	Program variables
$\begin{aligned} & \hline 30 \mathrm{CDH} \\ & 3111 \mathrm{H} \end{aligned}$	Program constants
ROM	
$\begin{aligned} & 8 \mathrm{OOOH} \\ & 804 \mathrm{BH} \end{aligned}$	Default values for constants
$\begin{aligned} & 804 \mathrm{CH} \\ & 80 \mathrm{CCH} \end{aligned}$	Program data
$\begin{aligned} & 8 \mathrm{ODOH} \\ & 8 \mathrm{~F} 2 \mathrm{FH} \end{aligned}$	Main Program

Fig. 11-7: Memory Utilisation

At power on control goes to address 0000 H at which may be located the monitor program or an EPROM programmed so as to send control to the start of the main program at address 80 D 0 H (see Fig. 11-7). The latter arrangement makes the system transparent to the user.

11.3 Code Documentation

(Line numbers refer to those on the listing in appendix C).

Main Program (Lines 189-271)
The flowchart for the main program is shown in Fig. 11-8.

The program starts at address 80 D 0 H and the first segment copies the default values of user-alterable program constants from ROM, starting at address 8000 H , to RAM, starting at address 30 DCH . Register B is used as a data counter and ${ }^{68}{ }_{10}$ bytes are transferred.

The interrupt mask is set to allow the VECT. INT. key to operate and the interrupt mask is disabled, to be re-enabled at specific points within the program. The stack pointer is then set to 20 C 2 H , and subroutine INIT called to set up the $1 / \mathrm{O}$ port data direction registers. The byte MODFLG which acts as a mode flag for the previous mode is set to Manual and this completes the initialisation process.

The main control loop starts at label MLOOP and the first operation is to turn off the valves by outputting the appropriate bit patterns to the drivers (Lines 217 - 221). The system then

reads the status of the mode select switches, MODE, the switch status is debounced by a delay, and the processor waits for the switch to be released. By not proceeding to the selected mode until the switch is released, holding a mode select button down
for an extended period does not give rise to any undesired system response by repeatedly entering and immediately leaving the selected mode. According to the bit pattern input from the mode select switches, the appropriate mode subroutine is called (Lines 242 - 271). If two buttons are depressed simultaneously a priority system is effected. The bit patterns are arranged so that the depression of two buttons simultaneously does not generate the pattern of a third. When control returns from the selected mode it re-enters the mode selection segment.

Subroutine MANUAL (Lines 280-290)
MANUAL is the master subroutine called when Manual mode is selected (see Fig. 11-9). MODFLG is updated and the appropriate mode indicator is set on the control panel (lines 280 - 282). The main loop then begins: subroutine $X Y$ is called to implement $\mathrm{X}-\mathrm{Y}$ control of the machine from joystick inputs, the mode switches are checked and control returns if any of the switches is depressed (lines 284 - 286). An interrupt from the Vectored Interrupt key is allowed and then control jumps to the start of the main loop.

Fig. 11-9: Flowchart for Subroutine MANUAL

Subroutine XY (Lines 303-319)
Subroutine XY is the subroutine used in Manual and Learn modes to read the control settings and machine position and assign the valve settings accordingly. It simply calls a sequence of subroutines to effect the different operations (see Fig. 11-10).

Fig. 11-10: Flowchart for Subroutine $X Y$

Subroutine CONV reads in the joystick positions, pitch control setting, and the position of the machine arms. COORD then calculates the output position in the Cartesian user coordinate system. Subroutine IP1 compares the settings of the joysticks with previous values and if there is significant difference then updates the input velocities to the control system. This has the effect of filtering out any noise due to unsteadiness of the operator's hand. The positional error between the output positon and the latest value of the demanded position or Target Point is calculated by suboutine EPOS. A
critical value of position error is set by subroutine SETEC according to the input velocities such that if the system is saturated (i.e. valves fully open) then the target point is frozen.

Subroutine IP2 freezes the target position if the modulus of the positional error, ETA, exceeds ECRIT, otherwise a new position on the demanded trajectory is assigned to the target point. Subroutine FFD assigns the valve openings depending on the angular positional errors at the individual pivots. Subroutine OUTPUT then converts the demanded valve settings to control bytes which are output to the valve drivers.

Subroutine LEARN (Lines 463 - 552)
The first operation performed by the subroutine (Fig. 11-11) is to indicate Learn Mode by outputting the bit pattern 01 H to the LED control port at I/O address 23 H . PCOUNT which is a counter of the number of points in the stored trajectory is set to zero and the data pointer PPOINT is set to the base address of the path storage area. Subroutine XPXO is called to store the current output position defined by XO, YO, PSIO in the variables $X P, Y P$, PSIP respectively (initialising the so-called Previous Output Position). Subroutine TPUSH pushes the three variables comprising the Previous Output Position onto the stored path stack. This constitutes the first path point and control then enters the main loop at label L206.

The first operation in the main loop is to call subroutine $X Y$ which implements the control of the valves. The distance of the

Fig. 11-11: Flowchart for Subroutine LEARN
current $X Y$ coordinate from the last stored point $X P, Y P$ is calculated and if it exceeds the critical value DCRIT, set at 0.1 m , the new output position is stored on the stack. The bucket angle PSI is also compared with PSIP and if a change greater than DPCRIT, set to 5°, has occured then also is the new position recorded.

The sequence of operations for recording a path point (Lines $540-548$) is as follows: subroutine XPXO is called to update
the value of $X P, Y P, P S I P$ to the current output values. Subroutine TPUSH pushes the new point onto the path stack. The path point counter PCOUNT is incremented and compared with MAXPTS, the maximum number of points that can be stored, and if the memory is full control returns to the main program.

The final part to the main loop (Lines 541 - 551) is to check that none of the mode select switches is depressed and to jump to the start of the loop or else to return.

Subroutines RFAST and RFCON (Lines 729-744)
Figure 11-12 shows the flowchart for subroutine RFAST and when subroutine RFCON is called control enters at label RFCON. Subroutine RFAST is for repeating a stored path i.e. operating the system in repeat fast mode, and is called when changing from manual or learn mode to Repeat Fast mode. When changing from Repeat Slow mode to Repeat Fast mode RFCON is called to continue, at a faster rate, a path already being repeated.

The first operation when RFAST is called is to check that there is a path in memory by examining the value of PCOUNT, the counter of the number of points stored. If PCOUNT is zero then control returns to the calling program (lines 729 -733). Subroutine RSETUP is then called to initialise the data points and the offsets in the X and Y directions to compensate for the new starting point being different from the first stored point.

The Repeat Fast mode indicator LED on the control panel is then turned on and MODFLG byte is set to indicate repeat fast (Lines $735-738$). To control the speed of execution of the stored path, the rate at which the target points are presented to subroutine $X Y$ is varied. The number of calls of subroutine $X Y$ in between successive points is stored in FCOUNT and is assigned the value FFAST, here set to 1 . NCOUNT, the number of the path point reached is then initialised to zero. Subroutine REPEAT is then called to execute the repeat process using the above defined initial conditions and parameters.

Subroutines RSLOW and RSCON (Lines 762-775)
Subroutine RSLOW (see Fig. 11.13) is for operating the system in Repeat Slow mode and if this mode is selected from Repeat Fast mode then control enters at Label RSCON. The routine is similar to RFAST.

The path point counter is checked to determine if there is a path in memory: if it is zero then control returns. Subroutine RSETUP is called to initialise the data pointer and the position offsets to be added to each successive path point to compensate
to the new start point.
The mode indicator LED's are set to indicate RSLOW and MODFLG to the value 01 H . PCOUNT is assigned the value of FSLOW ($12{ }_{10}$) so that a new target point is assigned every 12 calls of routine XY. Subroutine REPEAT is then called to execute the path using the above assigned parameters.

Fig. 11-13: Flowchart for Subroutines RSLOW and RSCON

Subroutine REPEAT (Lines 617-713)
This subroutine is called in both Repeat Fast and Repeat Slow modes to pull points from the stored path stack, add the appropriate offset and call the control routines for operating the valves. The subroutine flowchart is shown in Figure 11-14.

The magnitude of the current output error, ETA, is compared with the value ECRIT and if ETA is greater control jumps to the segment for setting the output. This is to ensure that the machine gets close to one target point of the path before inputting the next.

Fig. 11-14: Flowchart for subroutine REPEAT

NCOUNT, which is a count of the number of calls to the set of position control routines, is incremented and compared with PCOUNT, the value of which determines the frequency at which target points are pulled from the stack. If NCOUNT has not yet reached the value FCOUNT then control moves to L301 to call the position control subroutines.

Otherwise, the path point counter RCOUNT is compared with the total number of points stored, PCOUNT, and if the final
point has been pulled from the stack MODFLG is set to zero and control returns to the calling program. At label L308 path point counter RCOUNT is incremented and NCOUNT reset to zero. Subroutine TPULL is called (Line 678) to pull the top of the path stack and assign the values to XI, YI, and PSII which are the inputs to the position control loop. The X and Y offsets are then added (lines 679 - 698). Starting at label L301 the sequence of position control subroutines is called: CONV inputs the machine position, COORD calculates the output X and Y coordinates, EPOS calculates the positional errors, FFD calculates the required valve settings, and OUTPUT sets the valve control bytes. The mode selection switches are checked and if any is depressed then control returns to the calling program (lines 704 - 706). An interrupt is then allowed from the keyboard so that program execution may be stopped at this point.

Subroutine CONV (Lines 808-845)
Subroutine CONV reads all the inputs from the control box and the positions of the arms from the transducers. The flowchart is given below in Fig. 11-15. For operating the analogue to digital converter subroutine ADCON (see Chapter 9) is used. The joystick input voltages are normalised to the range -1 to +1 by subroutine JOYSTK (see Chapter 9). Subroutine SLOPE converts the voltages read by the analogue to digital converter from the pitch control knob to the range $-\pi / 2$ to $+\pi / 2$. Subroutines ALFIP, BETIP, and DELTIP input angles a, β, and δ respectively.

Subroutine COORD (Lines 1209-1308)
This subroutine calculates the output coordinates XO, YO, and PSIO from the measured angles a, β, and δ. To increase the speed of calculation a second order polynomial is used to approximate the function $\gamma(\delta)$. In lines $1209-1240$ XO is calculated, then YO is calculated in lines 1241 - 1274. The polynomial approximation to $Y(\delta)$, calculated in lines $1278-1294$ gives a maximum error of 3% over the range of travel of the bucket, a level of accuracy found to be quite acceptable. The coefficients GC0, GC1, and GC2 were calculated in a separate program to give a least squares approximation to the analytical values of the function $\gamma(\delta)$. PSII is then calculated in lines 1295 - 1307.

START

RETURN
Fig. 11-16: Flowchart for subroutine COORD

Subroutine IP1 (Lines 1438-1584)
This subroutine is called in Manual and Learn modes and is shown flowcharted in Figure 11-17. When bucket movement is selected by the operator the current bucket output angle, PSIO, is assigned to the variable PSII which is then used as the input to the bucket position control loop to keep the bucket angle constant when bucket movement is deselected. This is effected by lines 1438 - 1459 .

Fig. 11-17: Flowchart for Subroutine IP1

The current X and Y direction joystick input velocities are compared to the current input velocities to the control loop
(lines $1460-1519$). If there is a significant difference in either ($>$ CONST10) then the target point defined by (XI, YI, PSII) is set to the current output position and assigned a new velocity given by JXDOT and JYDOT (Lines 1554-1584).

Also if either of the joystick input velocities is set to zero the target point and control loop input velocities are reset (lines 1520 - 1553). This ensures that small changes or noise on the joystick input do not continually reset the target point and that the machine stops abruptly if the joysticks are released.

Subroutine EPOS (Lines 1321-1373)
This subroutine, flowcharted in Figure 11-18 calculates the positional errors of the machine in x, y, and ψ (lines 1321 1365). As this subroutine is called in all modes an execution timing test segment has been included in it. Byte TFLAG is complemented and output to port 08 H so that by monitoring the status of any pin on the port the execution loop time may be measured as half the period of the observed rectangular wave.

Also a delay loop is included with a delay which may be set to zero to examine the effects of increased loop execution time. This enables a minimum specification of the hardware and software execution speed necessary for effective control to be achieved.

Subroutine SETEC (Lines 1399 - 1422)
When the position error ETA exceeds a critical value the position of the target point is frozen. Hence if the bucket motion is stalled by an immovable load the target point does not continue moving indefinitely. The maximum allowable error ECRIT is calculated in the routine such that ECRIT has a basic value of ECMIN (set to 0.1 m), increasing with the value of the demanded velocity.

Fig. 11-19: Flowchart for Subroutine SETEC

Subroutine IP2 (Lines 1649-1903)
This subroutine (see Figure 11.20) is for updating the target point coordinates in each cycle of the main control loop. If the positional error of the bucket pivot ETA exceeds ECRIT then the target point coordinate is left unchanged. Otherwise the X and

Y input coordinates XI an YI are incremented according to their corresponding input velocities.

Subroutine FFD (Lines 1649-1903)
Subroutine FFD is the code segment which sets the fractional valve openings. The slew valve setting VVSLEW is assigned the value of the slew joystick input JSLEW (Lines 1649-1654). MODFLG is then checked to determine if the system is in Manual mode and if not the JXDOT and JYDOT joystick inputs are disregarded (Lines 1656 - 2658). If in manual mode and both joystick inputs are zero then subroutine FREEZE is called to set the lift and reach valve settings to zero (Lines 1661 - 1695). This is to ensure that the machine stops when the joysticks are in their central positions.

If motion of the bucket pivot is not to be frozen then the geometry of the machine is solved to derive the β and a values, BI and AI , required to position the bucket pivot at the target position (lines 1713-1774).

The error in a, EALPHA, is calculated and if the error is smaller than the quantisation level of the ADC input then the

Fig. 11-21: Flowchart for Subroutine $F F D$
error is assigned the value zero. The value of the valve opening for the alpha valve is then the gain constant A 1 A x EALPHA. A similar operation is then carried out to set the beta valve opening VVBETA (Lines 1775 - 1810).

Subroutine CHKLMT is called to check if the machine position and the valve setting are such as to try and make a ram move beyond the limit of its travel; if so then subroutine FREEZE is called. The final part of the subroutine (Lines 1812 - 1903) is for determining the required bucket valve opening. If the system is in repeat mode then the joystick input is ignored (Lines $1812-1814$), if manual or learn mode the valve is set according to the joystick (Lines 1818-1849).

If the machine is in repeat mode or the joystick inputs are zero then the bucket valve setting is assigned a value according to the sign and magnitude of the angular positional error EPSI (Lines 1850 - 1903); threshold values PCRIT and NCRIT are set just larger than the quantisation value of the bucket position input.

Subroutine XPXO (Lines 391-400)
This subroutine is called in Learn mode to copy the set of output coordinates XO, Y, PSIO (memory locations 3064 H thro' 306 FH) to XP, YP, PSIP (memory locations 3020 H thro' 302 BH). Register pair DE acts as the source data pointer and HL as the destination data pointer. Register B acts as the data counter. The routine is flowcharted in Fig. 11-22.

Subroutine TPULL (Lines 414-426)
This subroutine, called in Repeat modes, pulls path coordinates from the stack and puts them in XI, YI, PSII. PPOINT contains the address of the top of the stack and register B acts as a byte counter.

Subroutine TPUSH (Lines 414-426)
This subroutine is used in Learn mode and pushes the output coordinates XO, YO, PSIO onto the path stack. PPOINT is the path stack pointer and the B register is a data counter to the 12 bytes transferred.

Fig. 11-24: Flowchart for subroutine TPUSH

Subroutine ALFIP (Lines 855-880)
This subroutine (see Fig. 11-25) is for inputting the machine coordinates MCALFA, and ALPHA, the user coordinate lift arm angle, the two being related by the pitch angle selected on the control panel. The appropriate channel of the ADC is read and the result put on the top of the APU stack and converted to 32 bit floating point format. MCALFA is found using the scale factor MA and offset CA.

Fig. 11-25: Flowchart for Subroutine ALFIP

Subroutine BETIP (Lines 890 - 907)
Subroutine BETIP (see Fig. 11-26) inputs angle BETA between the reach and lift arms. The appropriate channel of the ADC is read to give VBETA which is then scaled and offset by $M B$ and $C B$ to give BETA.

Fig. 11-26: Flowchart for Subroutine BETIP

Subroutine DELTIP (Lines 918 - 935)
Subroutine DELTIP (see Fig. 11-27) inputs the bucket linkage angle DELTA. The appropriate $A D C$ input is read and the result, VDELTA, scaled and offset by $M D$ and $C D$.

[^3]Subroutine SLOPE (Lines 1183 - 1198)
This subroutine, flowcharted in Figure 11-28 reads in the pitch angle from the knob on the control panel. The ADC input channel number is in the A register on calling and the result is put into the APU and scaled and offset by CNST13 and CNST14 to give the pitch angle in the range $-\pi / 4$ to $+\pi / 4$.

Subroutine RSETUP (Lines 569-604)
This routine is for setting up the necessary variables before repeating a stored path. NCOUNT, the counter for the number of control routine calls per point, is set to zero as is the repeat path point counter RCOUNT. The data pointer PPOINT is set to the base address of the FIFO path stack. Subroutine TPULL is called to pull the first path point and the X and Y offsets XOF and YOF, to be added to subsequent path points, are calculated.

The inputs to the position control loop are set equal to the outputs and subroutine EPOS is called, setting the positional errors in X and Y to zero.

Fig. 11-29: Flowchart for subroutine RSETUP

Subroutine CHKLMT (lines 1914-2048)
Subroutine CHKLMT (see Figure. 11-30) checks the machine position and valve setting to determine if an attempt is being made to move an arm beyond the limit of its travel. If so, subroutine FREEZE is called to set alpha and beta valve openings to zero.

Subroutine FREEZE (Lines 2058 - 2068)
Subroutine FREEZE (see figure 11-31) simply sets the alpha and beta valve openings VVALFA and VVBETA to zero.

Fig. 11-30: Flowchart for subroutine CHKLMT

Fig. 11-31: Flowchart for Subroutine FREEZE

CHAPTER TWELVE

FIELDWORK AND SYSTEM EVALUATION

12.1 Introduction

12.2 Tuning of Control Parameters
12.3 Kinematic Evaluation
12.4 System Reliability
12.5 Functional Evaluation
12.6 Learn \& Repeat Facility
12.7 Estimation of Cost
12.1 Introduction

This chapter deals with the experiments carried out and observations made to assess the technical and functional aspects of the system as built. Also considered are the economic factors influencing the viability of the system as a commercial product.

12.2 Tuning of Control Parameters

Havings established the basically correct operation of the software with the digger fixed to the floor in the Mechanical Engineering Laboratories at Liverpool University, the electronic hardware and the transducers were taken to the premises of F.W.McConnel Ltd., Ludlow for adjustment and evaluation when used on a tractor mounted digger.

For experimental work and development, the facility for varying control parameters via the SDK-85 keyboard and monitor was found to be effective and simple to use. It was readily posssible in the field to change parameters to determine their effect on system performance.

Valve Offsets

The code was originally written in such a way that diffeent values of offset and maximum valve currents could be stored for each valve so that individually they could be operated over their linear region. In practice however it was found that this was unnecessary and that common values could be used for all valves. By setting the offset current of the valves sufficiently low it was found unnecessary to threshold angular errors in alpha and beta to their quantisation levels as the dead band on
the valves provided an automatic threshold. Also the hysteresis of typically 4 bits, and drift of the valve characteristic of a measured maximum of 16 bits, were overcome in this way.

Gains for Angular Position Control

The values of A1A and A1B were varied to find maximum stable values so that the highest possible speed of response could be obtained without any instability or overshoot. On the reach service the value of $5.1 \mathrm{rad} / \mathrm{s} / \mathrm{rad}$ was $u s e d$ and on the lift service $2.6 \mathrm{rad} / \mathrm{sec} / \mathrm{rad}$ (both these figures are equivalent to a fractional valve opening of $10 / \mathrm{rad}$). It was found that values much higher than this gave overshoot, and lower values reduced the speed of movement, and so did not make the best use of available power.

Target Coordinate Increment Factor

Having set the gains for satisfactory control the Target Coordinate Increment Factor (CNST11 in the program code) was adjusted to give the maximum speed range over the full joystick travel. The parameter was set by increasing it until in general, at maximum joystick deflection, no oil would flow through the relief valve. Relief valve flow was detected by monitoring the supply line pressure and could also easily be heard.

12.3 Kinematic Evaluation

A series of experiments were carried out to test the accuracy of the straight line cutting of the bucket blade with the bucket moving in air and also when cutting ground.

The maximum deviation from a straight path when driven against an immovable obstacle was found to be $50 \mathrm{~mm} \pm 5 \mathrm{~mm}$ at the blade and was measured against a straight piece of wood laid alongside the path of the bucket. The angular accuracy of the machine was measured over the range of pitch settings and the mean error was found to be 3° with a maximum error of 6°.

The speed range with a pump flow rate of $0.28 \mathrm{l} / \mathrm{s}$ (4.5 g.p.m.) was from $0.14 \mathrm{~m} / \mathrm{s}$ to a maximum of $0.44 \mathrm{~m} / \mathrm{s}$ measured over 2 m horizontally in air above ground.

The system positional accuracy was measured by positioning the bucket at various places on its envelope of movement, measuring its position with a steel tape measure, and comparing it with the calculated values of XO and YO as displayed on the monitor display using a data inspection program. The pitch control was set to zero so the X and Y axes were horizontal and vertical respectively. The mean error was found to be 30 mm .

A summary of the kinematic evaluation results is give below: Correctness of Manual, Learn, and Repeat algorithms and code

Controllability of machine using single stage valves and eight bit ADC resolution of position

Sampling frequency 33 Hz
Minimum workable sampling frequency 26 Hz
Maximum deviation from straight path 50 mm
Angular accuracy 3°
Speed range at $1200 \mathrm{r} . \mathrm{p} . \mathrm{m}$. engine speed $0.14-0.44$

The evaluation phase of the project, carried out on the premises of F.W. McConnel Ltd., was conducted over a period of two months. The system construction was found to be such that very little time had to be spent finding and rectifying hardware faults arising, rather than fine tuning the software and conducting experiments. The problems which did arise however were as follows.

The weight of the transducers and the length of the screws used to secure the transducer bodies to the machine were such that vibration would tend to loosen the serews over a period of time despite the use of shake-proof washers. This is a design fault which could easily be recified by using larger screws or by moulding the transducer body out of plastic. Vibration again caused a problem in the wiring of the junction box housing the power switching transistors for the solenoid valves when a screw came loose. The use of double nuts, shakeproof washers, or nut locking compound should eliminate the problem. A spring loaded fuse holder on the back of the main rack also gave some trouble with a bad connection due to slight tension in the internal wiring.

The system was used in the field in conditions of frost and drizzle giving no other hardware problems. Use in heavy rain was not possible as a tractor with an enclosed cab was not available for housing the main rack.

A series of trials was carried out to determine the relative merits of the computerised system against a conventional control system. The evaluation objective was defined to determine the relative work rates and quality of work for both experienced and inexperienced users. A total of six subjects were used in the course of the evaluations, two of whom were expert users of diggers, evaluating systems for F.W. McConnel, Ltd., and three of whom had no experience of using a digger at all, the remaining subject having limited experience.

When the equipment was first constructed the layout of the controls did not conform to that of a standard machine and this made the system totally unaccepable to experienced operators running the system under program DIG. The system was modified and was then found to be quite comfortable and easy to use for extended periods but the lever loads, if anything, were too light to readily discriminate by feel between the two different axes, sometimes causing selection of the wrong service. To avoid any problem of different joystick handling characteristics it was possible to use the same joystick unit for both systems and just change the EPROM in the computer to change from one program to the other.

It was decided to assign simple, well-defined tasks to different users and measure the time taken to perform the tasks and the quality of finish achieved over a range of tasks. All the digging operations were carried out on the premises of F.W. McConnel, Ltd. on a piece of ground of uniform soil composition
and structure to eliminate any effects due to variation in terrain.

XY Control

With two of the novice users it was decided to attempt to reduce the effect of learning on performance evaluation of the two systems by having one subject run the system under program DIG then under MANCON, and the other subject in the reverse order. The actual digging process is a complex combination of vision, physical coordination, and judgement of how the material being dug behaves, as well as audible and visual cues from the machine. In view of this it was thought that whichever system a novice used first it may improve his performance on the second.

The experimental procedure taken was to explain the operation of the machine to the user, making sure that they fully understood the operation of the controls. For safety they were instructed to keep well out of reach of the machine but to stand wherever they wanted for visibility. The task to be performed was then explained and they were advised not to rush but to work steadily and get as good a finish as they reasonably could.

The first task was defined as to dig a rectangular hole the width of the bucket (1 m) and 2 m long and 60 cm deep, estimating the dimensions of the hole from the bucket. Two such holes were dug side by side to provide uniformity of
dimensions, one hole being dug under program DIG and the other under program MANCON, the times being noted for each. Without being given their times the operators were asked which system they would choose to use firstly to perform the task in minimum time, and secondly to perform the task as precisely as possible.

The second task was defined as filling up the original hole and levelling off the surface as flat as possible.

The times taken by the two novice users are given in the following table:

User	Task	Mode	Time (Min.)
A	Dig trench	XY	10
		Conventional	8
	Fill and	Conventional	7
	level	XY	10
	Dig trench	Conventional	22
		XY	22
	Fill and	XY	20
	level	Conventional	30

Different users vary dramatically in their ability to learn to control the machine when fitted with conventional mechanical controls. It was not surprising therefore to find a considerable difference between the two novice users in the time taken to perform nominally the same task under program MANCON.

Both operators expressed a marked preference for the machine operating under program DIG i.e. $\mathrm{X}-\mathrm{Y}$ control.

A timed trial was also carried out with one of the experienced operators in digging a similar trench and the times taken were 9 minutes for the conventional and 14 minutes for the $X Y$ control system.

The feature of $X Y$ control was found not in general to significantly increase the work rate, in fact the indications are to the contrary. However, for making the final precise cuts necessary for a straight bottom or side to a hole the $X Y$ mode was very effective and the operator could trim the pitch control to get exactly the desired angle of cut.

Ditching

The XY facility was found to be of little value for the digging part of the ditch construction but readily gave uniform slopes to the sides of the ditch once the bulk of the earth had been removed.

Trenching

As described above for digging, the cutting of flat bottomed trenches was greatly facilitated for novice users as the exact desired slope could be obtained from a single control lever by setting the pitch to the appropriate angle.

Leveling

Novice users were immediately able to achieve results similar
to those of experienced operators by setting the pitch to the horizontal and using the bottom of the bucket to spread the soil. The degree of coordination required to get a level surface with conventional controls takes a great deal of practice to acquire.

12.6 Learn \& Repeat Facility

The Learn and Repeat algorithms and code were tested and operated as designed. One problem which presented itself in repeat mode was that of the bucket encountering an immovable obstacle and stalling i.e. being brought to a halt and with the relief valve blowing. It was found however that if the machine was set then to Manual Mode the bucket could almost invaribaly be freed by just opening and closing it through a small angle. This operation could be built into the software so that when the machine is stalled automatic correcticve action is taken.

For digging and trenching the learn and repeat facility was not found to be particularly useful even allowing for the tendency of the machine to stall. In Repeat Mode the principal difficulty was to start the repeat trajectory at an appropriate point to make the machine do useful work as it has no sensitivity or response to how full or empty the bucket may be. The repeat slow mode was found to be of no value at all.

The learn and repeat facility was evaluated on the cutting of ditches by an experienced operator and by the author. A problem which arose was the large number of piecemeal preliminary cuts to form the basic ditch. A further problem was in estimating where to commence the repeat process. The actual
repeat cutting process itself was accurate and smooth, i.e. kinematically to specification.

12.7 Estimation of Cost

In order to asses any potential commercial viablilty of a microprocessor based system a specification of the hardware was given to the company Monolog for preliminary costing of a small batch of control units excluding the transducers. The price that they quoted was $£ 1100$ pounds per unit and the cost of the basic conventional digger is $£ 3500$ retail. Therefore very substantial performance gains have to be demonstrated to justify the extra cost on a functional basis.

The set of three transducers used in the experimental prototype were made by an apprentice and took one month. However, if the bodies and spindle block were cast out of a suitable plastic material or automatically machined, they could be made rapidly for a fraction of the cost.

CHAPTER THIRTEEN

13.1 Hardware
13.2 Software
13.3 Safety
13.4 Hydraulics
13.5 Functional Aspects
13.6 Commercial Considerations

The system hardware as constructed was found to meet quite adequately the functional and experimental requirements for evaluation purposes. Inevitably there were some short-comings in the design, a number of which have been mentioned in the hardware chapters and some of a more general nature are discussed below. If the system were to be manufactured there are a number of modifications and additions which would have to be made.

Transducers

The principal fault with the transducers as produced was that of the securing screws working undone with vibration. This can be rectified by lengthening the screws and increasing their diameter. Access to the screws with allen keys was difficult and could be eased by the use of hexagonal headed bolts. Plastic film potentiometers were employed as the sensing elements and they have and extremely long life but if these were subject to wear they could be replaced by inductive potentiometers of appropriate resolution. The ' O ' ring seal on the spindle block could also be replaced with a type better suited to rotation.

Computer

In terms of cost, speed, and I/O capabilities the combination of the SDK-85 and AM9511 Arithmetic Processor Unit were ideal, however as costs come down Intel 8086 and 8087 devices may become a viable alternative. The minimum satisfactory sampling frequency was found to be 26 Hz , corresponding to a loop cycle time of 38 ms . Throughout the program there is overkill in
precision of numerical computation which is almost exclusively carried out in 32-bit floating point format. However, even if the word length were halved, it is unlikely that the APU could be replaced with a sequence of software routines for mathematical operations and achieve a sufficiently short loop execution time. Relative times for APU computations and software computations on 32 bit floating point numbers given by AMD are:

AM9511 Software
(Times in microseconds)

Multiply	200	7,000
SQRT	400	77,000
Sin(x)	2,000	118,000

Thus for a 32 -bit word length, a single software square root takes over double the required minimum loop execution time. It is unlikely therefore that the software could be written to run effectively on a single 8 -bit processor. Sine and cosine calculations could be done at high speed with a look-up table to eight bit accuracy but there are still over 70 basic arithmetic operations to be carried out in the main loop in manual mode.

I/O Capability

The keyboard and display are only necessary for developmental purposes and could be dispensed with on a commercial machine. Additional valve control circuitry should be used to replace the bang-bang valve on the bucket with a proportional valve. The bang-bang valve used at present gives rise to sharp pressure transients in the supply. For use on a
machine with changeable geometry a set of rotary thumbwheel switches are required to input data on the machine configuration being employed. The number of analogue input channels should be increased by one to allow the slew function to be incorporated in the Learn and Repeat facility and a certain amount of memory expansion to contain the additional slew position data would be required.

Controls

Better waterproofing of the mode selector switches could be achieved by using customised tacitle pressure switches which are cheap and reliable. The joystick axis directional sense could also be improved by stronger springing to prevent accidental selection of the wrong service.

Circuitry

For a commercial machine the circuitry should be constructed on printed circuit boards and ideally built in a modular form so that whole assemblies may be replaced if a fault arises in the field. Self-diagnostics would be useful for this purpose provided that they did not add significantly to the cost. The packaging of the rack and control panel should also be made watertight. Waterproof connectors to the rack should also be used despite their price as they do provide weather-proofing.

13.2 Software

Very considerable simplifications could be made to the existing software to shorten it. The emphasis is the way it was written in the project has been on readability and convenience of coding
by extensive use of the APU. Also the data structure is such that program constants may be varied which is not necessary as optimal values are now obtained. A commercial system should have the control of the slew service incorporated into the learn and repeat facility which was omitted in the present system because there was not enough room to test this function in the laboratory. Also, different configurations of the machine, requiring different program constants, should be accommodated in any commercial system.

13.3 Safety

To be completely safe from any contact with the moving arms or the bucket the operator should at all times stand behind the machine, out of reach. However with a portable control panel the operator may walk forward to improve his visibility of the bucket. The potential dangers of slipping on wet ground and falling in the path ot the bucket or in the hole being dug are lethal. The dangers may be reduced by the use of an emergency stop button on the front of the control panel as included on the circuit built and the use of a mercury switch internally to disable the power supply if the box should be tilted as the operator falls or drops it.

Besides the danger of the operator straying or falling into the path of the machine there is the danger of a circuit malfunction causing some erratic or unexpected behaviour of the machine thereby also endangering the operator or any other person within range.

The Health and Safety Executive recommendations on operating procedures for microprocessor controlled manipulators ${ }^{34}$ state that safety should be ensured by either ensuring the operator cannot come with in the range of the machine or that a working procedure be adopted which guarantees against any dangers from machine malfunction. In an agricultural environment the only way to ensure this is to have the control panel mounted in the tractor cab or on the machine itself.

13.4 Hydraulics

The question may be asked as to whether the machine work rate may not be increased by raising the supply pressure and hence the system speed and cutting force. There is however a limit to the acceleration which can be tolerated without material spilling from the bucket and also, particularly in the case of the slewing service, the angular momentum which is imparted to the machine may cause overshoot under manual control.

The IWT and tilt functions necessary for the later model of machine should be incorporated into the electronic design so that all function may be operated from one control panel. Also a proportional valve for operating the bucket would improve the smoothness of response of the system by eliminating the sharp pressure transients imposed on the supply by the opening and closing of the bang-bang valve.

13.5 Functional Aspects

The trials carried out demonstrate that there is no consistent significant increase in work rate for new users. Despite the
effective rationalisation of the lever functions to bucket blade movements so that linear cuts may readily be obtained the overall digging process was not facilitated.

Part of the reason for this may lie in the fact that the movement produced by the deflection of a particular lever is not obvious from the geometry of the machine. On the conventional control system the effect of each control axis is to operate a particular ram so by viewing the geometry of the machine it is clear which rams need to be activated to move the bucket in particular directions. With the XY control system a single joystick axis in conjunction with the pitch control will give any straight cut but the path has to be visulaised and is not determined from the machine geometry.

In the levelling process however, and in cutting smooth planes, the XY control is extremely effective. To get a planar cut with conventional controls it is necessary to continuously vary the bucket, lift, and reach valve openings as against operating one lever with appropriate pitch setting.

Another problem for the novice user is that of selecting the appropriate joystick axis for the movement required: this still has to be learned even though the number of simultaneous selections is reduced.

The lack of workrate increase for experienced operators must be attributed to their optimal use of conventional control so that maximum power is used from the machine in all operation and no
wrong service selections are made. Having to unlearn the ingrained experience of conventional machine use may detract from their performance in the $X Y$ system.

More detailed trials on a larger number of subjects would yield more insight into the different factors of the complex man-machine interaction such as error rates and learning effects. However conditions and time constraints did not allow for more numerous and detailed investigations.

13.6 Commercial Considerations

To evaluate the microprocessor based system as a potential product it is necessary to weigh up the various pros and cons comparing it with the conventional mechanical system which is tried and tested. The functional advantages include the improved accuracy and control for novice users, the facility for cutting at defined inclinations, ease of installation in the cab, and reduced lever loads giving less fatigue. It also has a definite technological gimmick value for those susceptible to such things! The novice users preferred it both for speed and precision even though for speed there was no gain.

However, cost, reliability, based on the number of parts to fail, and also possible servicing, count heavily against the system. The technological and manpower investment necessary to launch commercially into the development and support of such a high technology device could only be justified on the grounds of very significant functional advantages, far greater than the marginal benefits shown by the experimental system produced in
this project. In addition there may be a certain amount of technologial resistance, which would have to be assessed, from those having to start dealing in a new technology be it from salesmen, dealers, or customers.

The mechanical control systems currently employed have evolved over a period of years to a high degree of reliability. Commercial experience with functionally relatively simple electric valve controllers for hedge cutters working bang-bang valves has shown that exceedingly high standards of design and manufacture are necessary to make the product a success. With a functionally much more complex system the task can be no easier.

The case for the commercial development of the simpler electronic controller described in its basic form in Chapter 3 is much stronger however, as the system is much simpler electronically and offers the advantages of ease of installation and light lever loads. Ease of installation is important as the digger may frequently be attached to and detached from the tractor, and mechanical cables can be difficult to accommodate and to feed into the cab; they also impose higher lever loads on the operator than levers mounted on the valve block.
14.1 Conclusions
14.2 Further Work

The work carried out shows that the solenoid operated proportional valves can be effectively used for both manual open loop control of the machine and computer closed loop control. The open loop controller is functionally advantageous over the conventional mechanical control system with cables for in-cab operation. It is both easier to install and reduces the lever loads resulting from spool return springs and the connecting cables, which can become tiring.

The algorithm developed for control of the machine effectively converts the control functions from individual rams to those of veclocity control in a Cartesian framework with an accuracy sufficient for all digging operations. The pitch control allows control of the angle of cut to an accuracy of $\pm 3^{\circ}$. The learn and repeat software functioned as designed allowing any profile once taught to the machine to be repeated from any new starting point at any angle selected on the pitch control.

The computer hardware and the transducers functioned reliably and as designed. With a few modifications given in the Discussion the hardware could be put into production if desired. The work demonstrates the technical feasibility of producing a closed loop microprocessor based control system at a cost commensurate with that of the machine.

Evaluation trials, carried out with both experienced and inexperienced digger operators, however showed that there was no consistent significant increase of work rate using the
computer control system in either its manual or learn and repeat modes of operation. The operations of making straight cuts and levelling were facilitated for both classes of user and novice operators were able to achieve results otherwise impossible without extensive practice.

In the light of these results it may be said that the benefits to the operator are not such as to justify development of the existing prototype computerised system for commercial production. However, the open loop electronic controller, provided a sufficiently reliable and robust design and construction are employed, is a far more viable product.

14.2 Further Work

It has been shown that the automation of the cutting of straight lines does not effectively increase work throughput, a necessary condition for a viable product. The decision making stage in lever selection is not eliminated. However this does suggest that a telechiric type of system with the control handle mounted on a miniature linkage similar to that of the digger may prove more successful. If the manually imposed troques at the pivots of the control linkage are sensed and used to operate the corresponding valves, while at the same time the position of the control inkage is sevoed by say d.c. motors to correspond to that of the machine then a sense of feel would also result. The digger would automatically mimic the movements of the control handle and the operator would not have to consciously control individual rams.

Tractor mounted hedge cutters are limited in their speed of operation be the rate at which the operator can adjust the inclination of the head to the hedge and tractor position. It may be possible to apply a control regime, as here developed for a digger, to obtain independent control of up-and-down and in-and-out movement from two levers. The hardware built for the digger could readily be re-programmed to operate a hedge cutter if appropriate transducers were fitted and either using a similar control regime or resolved rate motion.

If successful, simplification could then be made to the mechanical construction of the machine offsetting the cost of the electronics and transducers. Automation of control of the cutter to compensate for varying tractor-hedge distance as well as variations in tractor inclination would be extremely complex and expensive. The principal problem is to find a suitable reference line in the hedge being cut from which the cutter can be positioned. A further possibility would be to employ a telechiric system for hedge cutter control.

1. Hope, H. (1982) The logical growth of on-farm computers. Farmers Weekly 96(8), xxx.
2. Speicher, J.A. (1981) Computerised data acquisition systems for dairy herd management. J. Animal Science 53(2), 531-536.
3. Puckett, H.B., Olver, E.F., Harshbarger, K.E., Hinds, F.C. (1979) Programmable controllers for livestock feeding systems. Trans, of the ASAE 22, 170-173.
4. Puckett, H.B., Olver, E.F., Harshbarger, K.E., Spahr, S.L. (1981) Automating the eyes of the herdsman. J. Animal Sci. 53(2), 516-523.
5. Martin, B. (1982) VIRUS: A computer program for herd health and productivity. Vetinary Record 110 (19), 446-448.
6. McCreight, J.D., Favila, V. (1982) A BASIC computer program for pedigree records. Hort. Sci. 17(1), 37-38.
7. Fuller, G. (Ed.) (1981) Arable men turn to desk top computers. Farmers Weekly 94(21), 74.
8. Jones, A.L., Lillevik, S.L., Fisher, P.D., Stebbins, T.C. (1980) A microcomputer-based instrument to predict primary apple scab infection periods. Plant Disease 64(1), 69-72.
9. Mackenzie, D.R. (1979) Microcomputer forecasts potato blight. Farm Chemicals 142, 45.
10. Fuller, G. (Ed.) (1981) Where broiler chickens perch on their chips. Farmers Weekly 94(19), 68.
11. O'Brien, M., Floyd, S. (1978) A microcomputer controlled weighing and printout system for fruit and vegetable grading. Trans. of the ASAE 21, 446-50.
12. Fuller, G. (Ed.) (1981) Moisture meter assesses whole
grain. Farmers Weekly $95(5), 63$.
13. Bird, M. (1980) Flow meter tots up yield while the combine works. Farmers Weekly 93(6), 71.
14. Fuller, G. (Ed.) (1981) Computer brings home the bacon. Farmers Weekly 95(21), 69.
15. Sarl, J. (Ed.) (1982) Units are going on the computer. Farmers Weekly 96(13), 80.
16. Udink ten Cate, A.J., van de Vooren, J. (1981) Adaptive systems in greenhouse climate control. Proc. IFAC Control Science and Technology (8th. Triennial World Congress) Kyoto, Japan 3609-3616.
17. Fuller, G. (Ed.) (1981) Electronic Potato sizer speeds up seed marketing. Farmers Weekly 94(18), 66.
18. Fuller, G. (Ed.) (1981) Computer controversy in the farm store. Farmers Weekly 94(9), 77.
19. RDS Data Sheet (1983), RDS Farm Electronics Ltd., Nailsworth, Glos.
20. Fuller, G. (Ed.) (1982) French sonar levels boom bounce. Farmers Weekly 96(11), 75.
21. Fuller, G. (Ed.) (1980) Safety Cut-out can save lives. Farmers Weekly 93(2), 81.
22. Healey, M. (1979) Principles of Automatic Control, p.314, 3rd. Ed, Reprinted 1979, ISBN 034017671 7, Hodder and Stoughton.
23. Yeaple, F. (Ed.) (1982) Hydraulic valves and the micro. Design Engineering, May 1982, 29-33.
24. Ibiary, Y.E., (1978) Coming: smart hydraulic valves. Machine Design, Nov. 23, 99-103.
25. F.W. McConnel Ltd. (1979) Design Drawing (Unpublished).
F.W. McConnel Ltd., Temeside Works, Ludlow, Shropshire.
26. A \& D Fluid Power Ltd. (1980) Data sheet on 3603-DA-8DC proportional valve. A \& D Fluid Power, Havant, Hants.
27. Eyles, L.W. (1982) Personal communication.
28. Hewit, J.R. (1981) The Robot Control Problem. SERC Vacation School in Robot Technology, Univ. of Hull, 14th - 18th September 1981, 2-9 to 2-10.
29. Klein, C.A., Maney J.J. (1979) Real-Time Control of a Multiple-Element Mechanical Linkage with a Microcomputer. IEEE Transactions on Industrial Electronics and Control Instrumentation, Vol. IECI-26, No. 4, Nov. 1979, 227234.
30. Young, K-K.D. (1978) Controller Design for a Manipulator Using Theory of Variable Structure Systems. IEEE Transactions on Systems, Man, and Cybernetics, Vol. SMC-8, No.2, Feb. 1978, 101-109.
31. Intel (Publ.)(1978) SDK-85 User's Manual. Intel Corporation, 3065 Bowers Avenue, Santa Clara, California 95051.
32. Morris, E. (1980) Personal Communication. Design from University of Liverpool Dept. of Electrical Engineering and Electronics Microprocessor Laboratory.
33. Quarndon Micro Devices Ltd. (Publ.) (1980) The AM9511 Arithmetic Processing Unit. Quarndon Micro Devices Ltd., Slack Lane Derby.
34. HSE (1981) Microprocessors in Industry. Occasional Paper Series OP2, HMSO, London. ISBN 0118834290.

APPENDIX A

PROGRAM MANCON

Loc obJ	LINE	SOurce statement		
3000	1	smodss m	macrofile	3000 H
	2		ORG	
	3			
	4			
	5			
	s			
	7			
	8			
	9			
	10			
	11			
	12			
	13			
	14			
	15			
	16			
3000	17	JXDOT:	DS	4
3004	18	JYDOT:	DS	4
3008	19	JSLEW:	DS	4
3006	20	JBKT:	${ }^{\text {DS }}$	4
5010	21	11:	DS	4
3014	22	$12:$	DS	4
3018	23	Status:	DS	1
3019	24	S:	DS	4
3010	25	$V_{1}:$	DS	4
3021	26	Vこ:	DS	4
3025	27	VVSLEW:	DS	4
3029	28	VVALFA:	DS	${ }^{4}$
3020	29	VVBETA:	DS	4
3031	30	VUBKT:	DS	4
3035	31	vs:	DS	1
3036	32	VL:	DS	1
3037	33	VR:	DS	1
J038	34	vas	DS	1
3039	55	FVD:	DS	4
	3s			
503D	57	ASTR:	DS	1
303E	58	OFFSET	DS	1
303F	39	max:	DS	1
3040	40	POF:	DS	1
3041	41	NOF:	DS	1
3042	42	Pmax:	DS	1
3 O 4	4.5	Nmax:	DS	1
3045	44	APOF:	DS	1
3045	45	APMAX:	DS	1
3046	46	ANOF:	DS	1
3047	47	ANMAX:	DS	1
3048	48	BPOF:	DS	1
3049	49	BPMAX :	DS	1
304 A	50	bnof:	DS	1
3048	51	Bnmax	DS	1
304C	52	Spof:	DS	1
304D	5.3	Spmax:	DS	1
304E	54	SNOF:	DS	1

:SLEW -VE OFFSET

LOC	OBS	line	SOURCE	tatement	
80F2 110070 80F5 CD9481		129＊	LXI	D．jxdot	
		$130+$	CALL	PSHT	
		131	PLL	vubeta	＇Corresponding jovstick deflection
80Fs	112050	132＋	LxI	d．vvieta	
gofe CdaEz		135＋	call	PLLT	
		1 ± 9	PSH	JVDOT	
8OFE	110430	135＋	LXI	D．jYDOT	
B101 CD7481		1 13＊	call	PSht	
		137	PLL	vValfa	
8104	112930	1 ごメ	LxI	divvalfa	
8107	CDAEB1	$139+$	CALL	PLLT	
		14．）	PSH	Јвкт	
8104	110030	$142+$	LxI	D，JEKT	
8100	CD9431	142＋	CALL	PSHT	
		143	PLL	wuakt	
8110	113130	144＋	LXI	D．vubkt	
8113	CDAEE1	1as＋	CALL	PLLT	
		14 b	PSH	JSLEL	
9116	110830	147＋	LXI	D．JSLEW	
8119	CD9481	148＊	Call	PSHT	
		149	PLL	VUSLEW	
811c	112530	159＋	LxI	D．VUSLEW	
811F	CDAE81	152＋	CALL	PLLT	
		152			＇
8122	CDB782	15.3	call	Output	：OUTPUT data to valve contrdl
		154			－interface
		155			
$\begin{aligned} & 8125 \\ & 8126 \\ & 8127 \end{aligned}$	FB	158	EI		：allow interrupt from keyboard
	Oo	157	NOP		
	FJ	158	DI		
		159			＊
8128	csefso	160	JMP	LOOP	
		151			＊
		162			1
		163			1＊＊macro for conditional jumps＊＊
		164			；
		165			－this macro generates code for making
		168			ICONDITIGNAL JUMPS DEPENDING ON THE VALUES
		167			lof tho floating point variables idi and idz
		168			！${ }^{\text {a }}$
		169			［1F idi gThan：gequal：equals：nequalilequal：LTHAN idz
		170			－Then coto lagl
		171			－else continue
		172			
		175			fregisters affectedi A，die．status
		174			\％
		175			？DATA IS PASSED TO SUBROUTINE OP IN TEMPCRARY
		176			3 Variables vi and vi．the result is returned
		177			（ in the acc． 1 i true，omfalse．the resiat of
		175			：DP IS CHECKED AND CONTROL JUMPS OR CONTINUES
		179			：ACCORDINGLY．
		150			仡
		$181 \text { IFF }$	macro	101，OP，ID2．LABL	
		182	PSH	IDI	

LOC OBJ	LINE	SOURCE	statement	
-	154	PSH	102	
-	18.5	Plut	v 2	
-	186	CALL	OP	
-	187	ANI	O1H	
-	198	Jnz	LABL	
	169	ENDM		
	190			;
	191			!
	192			!
	193			1
	194			1
	195			1
	196			f** Subroutine init **
	197			- ${ }^{\text {- }}$
	198			- SETE UP I/O PORT DATA DIRECTION
	197			- registers
	200			1
	201			fREGISTERS AFFECTED: A
	202			
812 SEOF	205 INIT:	mus	A,OFH	ISET PORTS 21,22,23 FOR OUTPUT
9120 0320	204	Out	20 H	
B12F JEFF	205	MVI	A, OFFH	
8131 D302	206	Out	0:2\%	
81350303	207	our	03 H	
8135 SEOC	208	muI	A, DCH	
8137 D328	209	OUT	26\%	
8157 69	210	RET		
	211			1)
	212			[** Subroutine conv **
	213			1 '
	214			I READS in Control joystick settingss
	215			IJSLEW, JYDOT, JXDOT, JBKT
	216			1 '
	217			:REGISTERS AFFECTED: A,D,E,H,LiStatus
	218			1 l ${ }^{\text {l }}$
813A IEOJ	$\begin{aligned} & 219 \text { conv: } \\ & 2: 0 \end{aligned}$	mV1	A.OSH	iload a register with slen control f Jovstick channel number
813C CD7381	221	call	ADCON	iperform a to d conversidn
B1JF CDIEET	222	CALL	Jorstk	ITRANSFORMS JOYSTICK INPUT TO
	223			(Range -1 to +1 LEAVING THE RESult
	224			I On the top of the apu stack
	275	PLL	J5LEW	
8142110830	226*	LXI	D. JSLEW	
8145 CDAES1	227+	CALL	pllt	
8148 SEOS	228	mVI	A, $\mathrm{OLH}^{\text {a }}$	iread ydot input from joystick
$814 A$ CD73B1	229	CALL	ADCON	
614D CD2E82	230	CALL	jorstk	
	2 ± 1	PLL	JYDOT	
8150110430	2エ2+	LXI	D i judot	
B153 CDAEst	23.5+	CALL	PLLT	
8156 JEOS	234	mus	A.05H	: READ XDOT INPUT FRDM JOYSTICK
ع15s CD73E1	235	call	ADCON	
$8158 \mathrm{CD2EEz}$	238	CALL	jorstk	
	237	PLL	jxpot	
815E 110030	23E*	LXI	D, JxDOT	

Loc .obs	line	source statement		
	294			PPUSHES A J2-8IT FL. PT. VARIABLE
	295			- ONTO The apu stack
	29\%			- de contains the address
	297			; of the ls gyte of the
	298			- operand on calling
	299			(and of the ms byte at
	3010			- RETURN
	301			
	302			3REOISTERS AFFECTED; DiE
	305			N
8194 cs	ISS PSHT:	PUSH	8	IPUSH ACC ON STACK
818547	305	MOV	B.A	
8196 C5	30.5	PUSH	8	
8197 1A	307	LDAX	D	ILD ACC WITH LS BYTE
81985200110	उIOE	STA	10 OH	PPUSH ACE TO APU
819813	309	INX	D	increment data pointer
819 C 1A	310	LDAX	D	
8190 320010	311	STA	1000H	
81ad 13	312	INX	D	
81 A1 1A	313	LDAX	D	
61A2 320010	314	Sta	10004	
B1AS 13	315	INX	D	
81A6 1A	316	ldax	D	
81 A7 320010	317	Sta	1000 H	
eiam Ci	318	POP	8	
81 AB 78	519	MOV	A, ${ }^{\text {a }}$	
BIAC C1	520	POP	B	
8IAD C9	321	RET		
	322			\%
	323			
	324			1** Subroutine pllt **
	325			3
	328			IPULS A 32-bit fl. Pt. Variable
	327			1 FROM THE APU STACK
	328			: de contains address of ls
	329			B BYTE ON CALLING AND MS
	3519			BYte at return
	351			begisters affected: die
	332 353			sRegisters affected: die
81aE Cs	SIA PLLT:	PuSh	E	
814947	535	mov	B, A	
8180 CS	35e	PUSH	B	
818113	3.5	INX	D	
818215	358	INX	D	
818313	339	INX	D	
8184340010	± 41	LDA	12000 H	
81 197 12	34.	Stax	D	
818818	34.2	DCX	0	
8189 3A0010	343	LDA	1000 H	
818C 12	344	stax	D	
8180 18	34.5	DCX	-	
EIDE 3AOOIO	34s	LDA	10020 H	
815112	347	Stax	D	
815218	Jas	DCX	D	

Loc	08 J	line		SOURCE	statement	
8ics	Jadioid	349		LDA	1000H	
8ics	12	3519		stax	0	
8157	C_{1}	351		pop	-	
Bica	78	352		mov	A.b	
8109	c:	35.5		pop	B	
815A	c9	354		RET		
		555				'
		35b				1 1
		557				i** SET Of SUbroutines for evaluating
		35\%				- operators in conditional jumps **
		359				
		360				ieach subrautine returns oin in the
		361				1 accumulator if the condition it tests is valid.
		362				
		363				fregisters affected a.dieistatus
		364				
815	CDO8B2	$3 \mathrm{3S5}$	GTHAN:	call	EQUALS	scall eo to check for eouality and - SET SIGN BIT
81CE	EsO1	367		ANI	01H	1 OF The apu for the subtraction vi-v2
8100	CADS81	368		$J 2$	L2	iff variables are not equal then liz
6103	AF	369		XRA	A	- Else clear accumllator and return
8104	C9	570		RET		
8105	341830	371	LII	LDA	status	scheck sign of result vi-v2
8108	Esaso	372		ANI	$\mathrm{COH}^{\text {a }}$	
8104	cadfe 1	373		52	LJ	
61DD	AF	374		XRA	A	SNEGATIVE RESULT SIGN: CLR acc o return
81DE	c9	375		RET		
81 DF	3EOI	375	L3:	MVI	A.O1H	ipositive result signs set acc to oi a ret
8151	C9	377 378		RET		!
		379				1 '
21E2	CDO882	380	LTHAN:	CALL	EQUALS	'call eo to check for equality and set
B1ES	E6O1	381 382		ANI	OIH	SIGN BIT OF APU FOR THE SUBTRACTION
81 E7	CAECB1	363		$J 2$	L4	If variables are not equal then la else
O1EA	AF	354		xRA	A	- Clear acc a return
91E8	c9	385		RET		
81EC	3A1530	386	L4:	LDA	status	PCHECK SIIG OF RESULT OF SUETRACTION V1-Y2
81 EF	E6ab	387		ANI	$\stackrel{\text { aj }}{ }$	
81F1	CaFse:	385		JNZ $\times R$ A	${ }_{\text {a }}$	
B1FA	AF	35.7 390		XRA RET	A	ipositive signi clr acc and return
81F6	SEOL	391	L5:	mVI	A.OIH	inegative sicn: set acc to oi and ret
81F8	C9	392		RET		
		393				!
		394				PCALL LT AND INYERT RESULT
8179	CDE:E 1	395	Gequal:	: CALL	LTHAN	fcall lt and invert result
81FD	c9	397		RET		
		398				:
		397				4 '
61FE	CDCB31	400	LEQUAL:	: CALL	GTHAN	icall ot and invert result
82201	2F9	401 402		CMA		
8202		$\begin{aligned} & 402 \\ & 403 \end{aligned}$		RET		

LOC	08 J	line	SOURCE	tatement	
8256	cDCBe 1	459*	call	gtman	
8259	ESOL	450)+	ANI	OIH	
8258	C28582	abs +	JNZ	L50	
		462	IfF	$11 . L T H A N, H 79 . L S 1 ~$	iff joystick voltage 797 h then lsi
		483*	PSH	11	
$825 E$	111030	464*	LXI	D. 11	
8261	CDY481	$465+$	CALL	PSHT	
		468+	PLL	$v 2$	
8264	111050	$467+$	Lx:	D. ${ }^{\text {c }}$	
8267	CDAEE 1	466+	call	PLLT	
		469*	PSH	H79	
826A	111880	470+	LxI	D.H79	
8260	CD9481	$471+$	CALL	PSHT	
		472+	PLL	$v 2$	
8270	112130	473 +	LXI	D.v2	
8273	CDAEE1	474+	CALL	PLLT	
8276	CDE281	475	Call	LTHAN	
8279	E601	47s+	ANI	O1H	
8278	C29EB2	477*	JNZ	L51	
		475	PSH	2ERO	: Joystick in central dead band:
827 E	111c8o	479+	LxI	D. ZERO	
8281	CD9481	$480+$	call	PSHT	
8284	C9	481	RET		\% RETURN zero result
		4E2 L50:	PSH	11	foffset and scale joystick voltage
8285	111030	483+	LXI	D.11	
8288	CD9481	484+	CALL	PSHT	
		485	PSH	H87	- for positive deflection
8288	111480	ass+	LXI	D.H57	
823E	CD9481	4E7+	CALL	PSHT	
8291	CDB58a	4 EB	Call	FSUB	
		489	PSH	Di4	1 PUSH 14 EASE 10
8294	112 CBO	4904+	LXI	D. 014	
8297	CD9481	471+	CALL	PSHT	
829A	CDC184	492	call	FDIV	
8290	cq	493	RET		
		494 L51:	PSH	11	foffset and scale joystick voltage
82A1	111030	495+	LXI	Dili	
	CD9481	4764	CALL	PSHT	
		497	PSH	H79	(for negative deflection
92A4	111880	$498+$	Lxi	D. H79	
E2A7	CDP4B1	499+	call	PSHT	
E2AA	CDESB4	500	CALL	fsub	
		501	PSH	D14	
82AD	112 CBO	5152+	LXI	D.D14	
8380	CD9481	503+	call	PSHT	
82 B 3	CDCi8a	504	CALL	FDIV	
82B6	c8	505	RET		
		5096			;
		507			1
		508			!
		509			1
		511			1 it
		511			1** SUBROUTINE OUTPUT **
		512			SOPERATES CUT-OFF, OFFEETS
		513			'OPERATES CUT-OFF, OFFSETS

LOC	0日.	LINE S	source statement		
		514			- and outputs voltages to
		515			- valves
		516			: ${ }^{\text {a }}$
		517			iregisters affected: a,d.e.stafus
		518			
		519 OUTPUT:	PSH	vuslew	iset slew valve
8287	112530	$520+$	LXI	D.UUSLEW	
82BA	CD9a81	521+	CALL	PSHT	
		522			: SET UP PARAMETERS FOR SUbroutine
		522			1 VLin which converts 32 日it valve
		524			; setting vuslew to a bit control byte
		525			: to be output to the valve driver
		526			- circuit
		527			
		522	PLL	Fvo	ifVo=vVSLEW
8280	115950	529+	LXI	D.FVO	
E2co	CDAE31	$5.50+$	CALL	PLLT	
8̇c5	3AACJO	$5{ }_{51}$	LDA	Spof	
82 cs	52a030	532	Sta	POF	1POF=SPOF
82c9	3A4E30	5	LDA	SNOF	
82cc	324130	53.4	sta	NOF	inof=SNOF
B2CF	3asDio	5 ± 5	LDA	SPMAX	
8202	324230	536	STA	Pmax	: Pmax $=$ SPmax
82 DS	Jasf30	537	LDA	SNMAX	
8208	324330	538	STA	nmax	INMAX $=$ SNMAX
82DB	Cdab83	539	CALL	VLIN	:SUPROUTINE VLIN RETURNS RESULT
		540			' in a register
82E1	323530	541	STA	VS	
	D300	542	Out	OOH	goutput data to slew valve driver
		543 L52:	PSH	VVALFA	ISET LIFT VALVE
62E3	112930	544+	LXI	D.vVALFA	
82Es	CD9481	S45+	CALL	PSHT	
		548	PLL	Fuo	
82E9	113930	547+	LXI	D.FVO	
82EC	CDAEB1	E48+	Call	PLLT	
82EF	3A4430	549	LDA	APOF	
$82 F 2$	324030	550	STA	PDF	
82Fs	3A4630	551	LDA	andif	
$8: 278$	324150	552	STA	NOF	
62FB	3Aas50	553	LDA	APMAX	
82 FE	324230	554	STA	PMAX	
8301	344730	55.5	LDA	anmax	
8304	324330	556	STA	nmax	
8307	cdabe3	557	CALL	VLIN	
830A	323s50	555	STA	VL	
9300	D30:	559	out	OIH	
		E61) L53:	PSH	vVBETA	iset reach valve
E30F	112030	5b1+	LxI	D.vvbeta	
8312	CD9481	$562+$	CALL	PSHT	
		563	PLL	FVo	
8315	113930	Sta+	LXI	D.FVO	
8.318	CDAE81	$56.5+$	CALL	PLLT	
8318	JAAEIU	5¢6	LDA	bpof	
bJiE	324030	567	STA	POF	
8521	jakazo	5 Sis	LDA	bNOF	

Loc	Ob．J	LINE	SOURCE	statement	
8324	324150	Ss\％	Sta	NOF	
8327	उA4930	571	LDA	bpmax	
832 A	324ご0	571	Sta	pmax	
8.320	jalbio	572	LDA	bnmax	
9．30	324ご0	575	Sta	nmax	
8ここ	cdabey	574	call	VLIN	
8336	325750	575	Sta	vR	
8359	D321	576	Out	21H	
		577 L54：	IFF	VVBKT，EQUALS，ZERO，LSE	：SET Bucket Switch
		578＊	PSH	vVEKt	
E35b	115150	579＋	LxI	D．VUEKT	
b3se	CDYa81	$550+$	CALL	PSHT	
		SE1＋	PLL	$v 1$	
8541	111030	5e：2＋	LXI	D．vi	
6344	CDAEE1	5e．J＋	call	PLLT	
		$554+$	PSH	2ERO	
8547	111C80	Ses＋	LXI	D． 2 ERO	
EJAA	CD9481	5est	call	PSHT	
		5e7＋	PLL	$v 2$	
934D	112130	585＋	LXI	Div2	
8350	CDAEE1	589＋	CALL	PLLT	
9353	cdosa 2	590＋	CALL	equals	
8358	ESO1	$591+$	ANI	01H	
8358	C27Es3	592＋	JNZ	L55	
		59.3	IfF	VVBKT，GTHAN，2ERD．LS6	
		$594+$	PSH	VUBKT	
8358	113130	$595+$	LXI	divubit	
6JSE	CD9481	596＋	call	PSHT	
		$597+$	PLL	vi	
8381	111030	$598+$	LxI	D．vi	
8364	CDAE8 1	$599+$	Call	PLLT	
		$600+$	PSH	2ERO	
8367	711c80	601＋	LxI	D，2ERO	
838A	CD9481	$602+$	CALL	PSHT	
		$603+$	PLL	$v 2$	
8360	112130	$604+$	LXI	D．v2	
8370	CDAEE1	605＊	CALL	PLLT	
8373	CDCBB1	$6008+$	CALL	gitan	
8376	E601	$607+$	ANI	O2H	
8378	CxE6e3	$608+$	JNZ	L56	
8378	cjeebs	6109	JMP	157	
837E	E SECO	610 L55：	mvi	A， OCOH	：SEGMENT FOR Static eucket
8380	323630	611	STA	ve	
6355	D322	612	OUT	2：3	
8385	c9	613	RET		
8385	3EED	b14 L5s：	mvi	A．EID	：SEGMENT FOR OPENING bucket
8588	325830	615	STA	Ve	
8388	D322	615	Out	2：H	
8330	C8	617	RET		
ETBE	JEAO	618 L57：	MVI	A，${ }^{\text {OHPH}}$	isegment for closing bucket
8390	325830	619	STA	V8	
8393	D 322	620	OUT	2 ZH	
8395	［9	S21	RET		
		62.7			：
		623			1

LOC	O日J	LINE	SOURCE Statement		
83CB	113930	$679+$	LxI	D．fvo	
esce	CD9481	SEOt	call	PSHT	
		6E1＋	PLL	$v 1$	
E3D4	111030	CE゙2＋	LXI	D．vi	
	cdaes	6e3＋	call	PLLT	
		$684+$	PSt	2ERO	
EID7	111 CBO	6es－	LXI	D．zero	
E3DA	CDY481	6 ¢6＋	call	PSHT	
		687＋	PLL	$v 2$	
93DD	112150	$6 \mathrm{EE}+$	LXI	D． V_{2}	
83EO	cdamel	$689+$	CALL	PLLT	
E3E3	cdeas 1	6．90＋	call	LTHAN	
E3E6	E601	$691+$	ANI	OH	
8こE ${ }^{\text {c }}$	C22184	692＋	JNZ	L\＆2	
EJEb	AF	69.3	XRA	A	；SEGMENT FOR FVO＝0
ع3EC	c9	694	RET		
		695 L61：	IFF	FVO，LTHAN，ONE．LES	
		$676+$	PSH	FVo	
83ED	113930	$697+$	LXI	D．FUO	
83FO	CD9481	$698+$	CALL	PSHT	
		699＋	PLL	vi	
E3F3	1110	700＋	LXI	D，${ }^{\text {d }}$	
83Ft	cdaEel	701 ＋	CALL	PLLT	
		702＋	PSH	ONE	
8579	112080	703＋	LXI	D．ONE	
$83 F \mathrm{C}$	cD9481	704＊	CALL	PSHT	
		705＋	PLL	$v 2$	
E3FF	112150	706＋	LxI	D． V_{2}	
8402	2 CDAEE1	707＋	call	PLLT	
e40s	CDE28	700＋	CALL	LTHAN	
8406	E601	$709+$	ANI	O1H	
s40a	C21184	$710+$	JNZ	L63	
EAOD	3a4230	711	LDA	PMAX	ISEGMENT FOR FVO）PMAX
8410	C9	712	RET		
8411	Jasozo	713 L63：	LDA	POF	ISEGMENT FOR O SFVO＜1
6414	323E30	714	Sta	OFFSET	
6417	3A4230	715	LDA	Pmax	
E41A	323F30	716	STA	max	
E410	çs084	717	Jmp	L64	
8420	C9	715	RET		
		719 L62：	IFF	FVO，GTHAN，MINONE，LES	
		$720+$	PSH	FVo	
8421	113930	721＊	LXI	D．fvo	
E424	C09481	729＋	CALL	PSHT	
		723＊	PLL	$v 1$	
8427	111030	724＊	Lx：	D．V1	
842A	CDAEEI	725＊	CALL	PLLT	
		720＊	PSH	Minone	
E420	112880	737＋	LxI	d．minone	
8430	CD94E：	720＊	CALL	PSHT	
		72\％＊	PLL	$v 2$	
E435	1121こ0	730	LxI	Divz	
8436	cdaEe 1	751＊	call	PLLT	
8439	CDCBe 1	フエ2＊	CALL	GTHAN	
E43C	ESO1	735＊	ANI	014	

Loc	08 J	line	source sta	tatement	
64.3 E	C24584	734＋	JNZ	L6．5	
5441	JA4330	7.5	LDA	nmax	1SEGMENT FOR FVO¢＝－1
8444	C9	7ゴ	RET		
6445	Jalizo	757 L65：	LDA	NOF	sfegment for－1 cfudio
8448.	32JEJO	758	Sta	Offset	
S44日	jasjio	739	LDA	Nmax	
b4aE	こ2JF30	740	Sta	max	
		741	PSH	Fvo	
945 1	113930	742＋	LXI	D．fvo	
Easa	copael	745＋	call	PSHT	
8457	CD9DE4	744	CALL	CHSF	
		745	PLL	FVo	
B45A	113930	746＋	LxI	D．FVO	
8450	CDAE8 1	747＋	call	PLLT	
8460	Jazezo	74s L64：	LDA	OfFSET	：COMMON SEGMENT FOR Intermediate
8463	CD9b93	749	call	Float	（ valve opening
8466	CDEs8a	750	call	PTOE	
8469	3AFF30	751	LDA	max	
846 C	CD9683	752	Call	Float	
946F	CD3985	75.5	CALL	XCHF	
8472	CDB384	754	call	Fsub	
		755	PSH	FVo	
8475	115930	756＋	LXI	D．FVO	
8478	CD9481	757＋	CALL	PSHT	
8478	CD7184	758	CALL	FMUL	
847E	CDB58a	759	CALL	FADD	
8481	CDA183	780	CALL	Fix	
8484	C9	761	RET		
		785			1
		753			1 l
		76.4			1＊＊MATHS SUBRDUTINES macro＊＊
		765			1 ）
		$\begin{aligned} & 768 \\ & 767 \end{aligned}$			tREGISTERS AFFECTED：NONE
		763 MATHS	macro	FNCTN，CODE	
－		769 FNCTN：	STA	ASTR	
－		770	MVI	A，CODE	
－		771	STA	1100 H	
－		772	LDA	AStR	
－		773	RET		
		774	ENDM		
		775			\％
		776			3
		777			3maths macro calls
		778			
		779			；all operands are 32 git floating point
		780			1 UNLESS OTHERHISE SPECIFIED
		751			
		782	maths	FADD， 10 H	：TOS－TOS＋NOS
8485	323050	7ES＋FADD：	STA	astr	
84ss	JE10	7E4＋	mvi	A．10H	
E48A	320011	7ES＋	STA	119 DH	
EABD	3A3DJ0	786	LDA	AStR	
8490	c9	787＊	RET MATHS	FMUL，12H	＇TOS＝TOS＊NOS

LOC	OBJ	line	SOURCE S	tatement	
E491	こ25030	7E日＋FMLL：	STA	AStR	
8494	3E12	$790+$	MVI	A．12H	
8496	こ20011	791＊	STA	110 OH	
8499	3AJdJo	792＋	LDA	AStR	
849C	C8	793＋	RET		¢TOS＝－tos
		790	maths	CHSF，15H	
8490	こ23D30	795＋CHSF：	STA	AStr	
SAAO	3E：5	796＋	mui	A． 15 H	
84A2	320011	797＋	STA	1100 H	
B4AS	3A3DJO	798＊	LDA	AStR	
84AB	C9	797＋	RET		fCONUERT 16 EIT TOS TO 32 BIT FL．PT．
		800	MATHS	FLTS．1DH	
64A9	J23030	801＋FLTS：	Sta	AStR	
E4AC	3E10	E02＋	mvi	A， $1 \mathrm{DH}^{\text {d }}$	
eabe	320011	E03＋	Sta	1100 H	
84 BI	3A3DJO	SOA＋	LDA	ASTR	
64B4	C9	E05＋	RET		ITOS $=$ NOS－TOS
		EOt	maths	FSUB，11H	
Eabs	323050	807＋FSUE：	Sta	ASTR	
Eabe	3E11	80s＋	mVI	A，11H	
baba	320011	$809+$	STA	1100 H	
Gabd	3AJdJo	$810+$	LDA	ASTR	
8aCO	C9	8114	RET		\｛TOS＝NDS／TOS
		E12	maths	FDIV，ish	
BaC1	323050	E13＋FDIV：	STA	ASTR	
84C4	JE13	E14＋	MVI	$\mathrm{A}, 1 \mathrm{IH}$	
eacs	320011	815＋	STA	1100 H	
Eacc	3ASDJO	els＋	LDA	AStR	
		$817+$	RET		：CONVERT 3I bit fl．pt．tos to 16 bit
		E18	maths	Fixs．1FH	
SaCD	325Dコ0	E19＋FIX5：	STA	ASTR	
8ado	3E1F	820＋	MV1	A．IFH	
84D2	520011	ع21＋	STA	1100 H	
Eads	3AJDIO	822＋	LDA	AStR	
Eads	C9	E23＊	REt		ICOPY 16 EIT TOS ONTO STACK
		624	maths	PTOS，77H	
E4D9	325DJ0	8：25＋PTOS：	Sta	ASTR	
eadc	3E77	Eこと	mvi	A，77H	
eade	320011	E27＋	STA	1100 H	
E4E1	3AJDSO	ERE＋	LDA	AStr	
E4EA		E29＋	RET		：CDPY IZ BIt tos onto stack
		E30	maths	PTOF，17H	
BaEs	323030	831＋PTOF：	STA	AStR	
EaEs	JE17	ET2＊	mvi	A，17H	
eaea	320011	833＋	STA	1100 H	
CaED	zajdio	B3a＋	LDA	AStR	
Eafo	C9	83．5＋	RET		；ROtate tas to bottom of stack
		ع3s	maths	POPF，18H	
E4FI	323030	E37＋POPF：	STA	ASta	
E4F4	3E1E	EJE＊	mui	A，1EH	
eafb	520011	839＋	StA	1100 H	
E4F9	Jajdio	E．a）＋	LDA	ASTR	
EAFC	C9	E41＋	REt		
		Es：	maths	PUPI， 1 AH	PPUSH PI ONTO TOS
	323030	E．AJ＋PUPI：	STA	AStR	

puElic syhbols
EXTERNAL SYMBOLS

ACOS	A $85=0$	ADCON	A 8173	ANMAX	A 5047	ANOF	A 3046	APMAX	I045	Apof	A 3044	ASIN	2515
ASTR	A 3030	bnmax	A 5048	ENOF	A Jo4A	bpmax	A 3049	bpof	A 3048	CHSF	A 8490	Cnstzo	8030
CNST21	A E034	conv	A Elija	cos	A Es21	D24	A 602 c	DLIod	A EOdB	equals	A 8208	FADD	8485
FDIV	A 84Ci	Fix	A ezal	Fixs	A eacd	Float	A 8396	FLTS	A 84ay	FMEL	A 8491	FSU	A 84bs
FVo	A 3038	gedual.	A eifa	gthan	A E1Cb	H255	A 8058	H79	A EO1B	H87	A 8014	HALF	A 8024

11		50.10	12	A SOIA	IfF	- 0002	INIT	A 8128	Jbit	A 300c	jovstk	A 82:2e	JSLEN	A 3008
JXDOT	A	3000	jYdot	A 3004	L2	A 8105	Lis	A 810F	La	A B1EC	15	A sifo $^{\text {c }}$	450	A 8285
LS1	A	329E	L52	A E2E3	L53	A e3of	L54	А 8358	L55	A 837 E	L5t	A 83ab	L57	A 838E
L6	A	E217	L61	A esed	Le2	A 8421	L65	A 8411	L64	A 8460	L65	A 84.45	L7	A 822日
legual	A	bife	Loop	A bioff	LTHAN	A $81 \mathrm{E}^{2}$	Maths	+ 0003	max	A 303F	Mindene	A 8025	nequal	A 8203
nmax	A	3043	NOF	A 3041	OFFSET	A sose	ONE	A 8020	output	A 8287	pause	A 8180	PLL	+ 0001
PLLT	A	81aE	pmax	A joaz	pof	A 5040	POPF	A bafi	PSH	+ 0000	PSHT	A 8194	ptaf	A caes
ptos	A	8ad9	Pupi	A EAFD	5	A 3019	SIM.	A 6509	snmax	A 304F	SNOF	A 3048	spmax	A 304D
Spof		3DAC	SGRT	A 8545	status	A 3018	TEN	A 800c	Two	A 8010	V1	A 3010	$v 2$	A 3021
vi		3058	VL	A 30.36	VLIN	A ejab	VR	A 3037	vs	A 3035	vualfa	A 30:9	UVEETA	A 302 D
Vvakt	A	3051	VUSLEW	A 5025	xanmax	A 8003	Xanof	A 80:32	xapmax	A 8001	xapof	A 8000	xentax	A 8007
xbnof	A	B00s	xprmax	A 5005	XBPOF	A 8004	XChF	A 5559	XSNMAX	A 800b	XSNOF	A 800a	XSFriAX	A 8009
XSPDF	A	8008	2ERO	A 801C										

APPENDIX B

PROGRAM DIG

LOC ObJ	LINE		SOURCE	STATEMENT
3075	55	ETA:	DS	4
3030	56	mCALFA:	DS	4
J084	57	ALPHAI	DS	4
Јоев	58	EETA:	DS	4
30EC	59	DELTA:	DS	4
3090	60	Status:	DS	1
3071	61	Si	DS	4
3095	82	V1:	DS	4
3099	63	V2:	DS	a
3090	64	PITCH:	DS	a
JOA1	65	EALPHA:	: DS	4
3025	66	EBETA:	DS	4
30A9	67	VVSLEW:	2 IS	4
Joad	68	VVALFA:	2 DS	4
3031	69	UVBETA:	: DS	4
3055	70	VUBкт:	D5	4
3089	71	vs:	DS	1
3098	72	VL:	DS	1
3058	73	VR2	DS	1
JoEC	74	VB:	DS	1
30ED	75	FCOUNT:	: DS	1
3OEE	76	ECRIT:	DS	4
3022	77	FVO:	DS	a
30Cs	78	ASTR1	DS	1
3057	79	OFFSET	, DS	1
30С8	80	max:	DS	1
30こ9	81	POF:	ES	1
30CA	82	NDF:	DS	1
Joct	83	Pmax:	DS	1
JOCC	E4	Nmax:	DS	1
30CD	85	APDF:	DS	1
30CE	86	APmax:	DS	1
3OCF	67	ANDF:	DS	1
3000	E8	anmax:	DS	1
3001	89	BPOF:	DS	1
3002	80	bPMAX:	DS	1
3003	91	9NDF:	DS	1
30D4	92	Bnmax:	DS	1
3005	85	SPOF:	DS	1
3006	94	SPmax:	DS	1
3007	55	SNDF:	DS	1
30D8	96	SNmax:	DS	1
30D9	97	$A_{1} A^{2}$	Ds	4
30DD	98	A1B:	[s	a
JOE1	99	PCRIT	DS	4
JoEs	100	NCRIT:	DS	4
JoEq	101	ECMIN:	DS	4
SOED	102	CNST10:	- DS	4
J0F1	103	CNST11:	: DS	4
Sofs	104	DCRIt:	DS	4
30F9	105	DPCRIT:	: DS	4
30FD	106	FFAST:	Es	1
30FE	107	FSLOW:	25	1
SOFF	108	delay:	DS	2
3101	109	AMIN:	55	4

```
SGRT(EX**2+EY**?)
    ANGLE ALPHA
    |ANGLE ALPTA
    ANNGLE DETA
    ISTATUS DFF AOU
STATUS DF APU 
    INTERMEDIATE RESULT LOCATION
    ILOCATION FOR IFF DATA TRANSFER
    \PITCH ANGLE SELECTED BY OPERATOR
    : BETA ERROR
    :SLEW VALVE SETTING (SZ BIT FORMAT)
    :ALPHA VALVE SETTING ($2 BIT FORMAT,
    IBLCKET VALVE SETTING (32 BIT FDRMAT)
    ISLEW VALVE SETTING (B BIT FORMAT)
    ILIFT VALVE SETTING (8 BIT FORMAT)
    \LIFT VALVE SETTING (S BIT FORMAT)
    \BUCKET VALVE SETTING (S BIT FORMAT
    INO. OF CONTROL ROUTINE CALLS/POINT IN REPEAT MODE
    ICRITICAL X OR Y ERROR
    iFRACTIONAL VALVE OPENING
    ISTORAGE LOCATION FOR A REG
    :INPUT PARAMETERS FOR SUBROUTINE VLIN
    IALPHA +VE OFFSET
    IAlPHA +VE SATN.
    :ALPHA -VE OFFSET
    IALPHA -VE OFFSET
    IBETA +VE DFFSET
    \BETA +VE SATNET
    \BETA +VE SATN. 
    IBETA -VE SATN. D/P
    ISLEW +VE OFFSET
    ISLEW +VE SATN. D/P
    ISLEW -VE OFFSET
    ISLEW -VE SATN. O/P
    IALPHA FEEDFORWARD GAIN =20
    IPETA FEEDFORWARD GAIN = S
    INCRIT =-BUCKETT ERRIR MARGIN=-0.07 RAD
    IMIN. CRIT. X OR Y ERRDR = 0.1m
    MMIN. CRIT. X OR Y ERRDR = O.1m 
    ICRIT. CHANGE IN JOYSTK READING = 0.167
    ;BUCIKET ANGLE BETWEEN POINTS
    :CONTRDL CALLS PER POINT FOR
    FFAST AND SLOW REPEAT
    :VALUE OF DELAY IN CONTROL LOOP
    IMINIMUM ALPHA VALUE
```

LOC D日J	
3105	
± 109	
$\begin{aligned} & 2100 \\ & 3111 \end{aligned}$	
5000	
$\varepsilon 000$	-0
5001	1 FF
8002	240
8003	375
2004	40
E005	57
8006	co
E.007	7 FF
¢008	8 CO
8009	FF
EOOA	A 40
8008	7F
800 C	C00
EOOD	D0
SOOE	E AO
Soof	F 05
5010	O 00
8011	100
8012	2 AO
EO13	303
6014	4 4A
8015	5 F3
8016	6 EE
8017	7 70
2018	84 A
8019	9 F3
8014	A EE
EO18	P FD
EOIC	C CC
601D	D CC
EOIE	ECC
E01F	F70
8020	202
8021	142
5022	2 日2
8023	378
8024	$4 \mathrm{C2}$
8025	515
ع026	${ }^{6} 82$
E037	779
E028	800
8029	9 0
602A	A 80
8028	7F
sozc	c ob

80 20 D

LINE

112 Br 113 BA 114 115 116
 115 117 115 OR

110 AMAX
111 BMIN:
112 BMAX:
112
II BASE: 15 ORG SOOOH $\begin{array}{lll}18 \text { XAPCF: } \\ \text { SD XAPMAX: } & \text { DB } & \text { OCOH } \\ \text { OFFH }\end{array}$ 20 XAPMAX:
21 XANDF:
122 XANMAX: D 122 XANMAX:
123 XBPOF: 23 XBPOF: D 125 XBNOF: $12 E$ XENMAX: 25 XENMAX: D 27 XSPOF:
28 XSPMax: 128 XSPMAX:
129 XSNOF: ± 0 XSNMAX: I_{1} XA1A:

GOURCE STATEMENT
DS
4
4
4

DS \quad| a |
| :--- |
| |

I2 XA1B: DB
OOH,OOH,OAOH, OSH
$\triangle A H$, OFSH.EEH, TDH

AAH, OFSH.EEH. OFDH

OCCH. OCCH. OCCH, 7DH
$02 \mathrm{H}, 42 \mathrm{H}, 0 \mathrm{OB2H}, 75 \mathrm{H}$

OC2H, 1 SH.E2H. 79 H

OOH, OOH, 8OH,7FH

O\&H,OD7H.OASH, 7 EH

IMAXImuM ALPHA VALUE
IMINIMUM BETA VALUE
: MAXIMUM BETA VALUE
: Base location of ram for path storage
:** rom locations containing default values of program constants **
:ALPHA +VE OFFSET
:ALPHA +VE SATN. O/F
:ALPHA -VE OFFSET
;ALPHA -VE SATN. O/P
; BETA +VE DFFSET
YBETA +VE SATN. O/P
; beta -VE OFFSET
\&BETA -VE SATN. DIP
SLEW +VE OFFSET
ISLEW -VE OFFSET
ISLEW -VE SATN. O/P
CALPHA FEEDFORHARD GAIN $=20$
beta feedforward gain $=$ s

IPCRIT = BKT ERROR MARGIN = 0.07

SNCRIT $=-$ BKT ERROR MARGIN $=-0.07$

CRITICAL x OR Y ERROR $=0.1 \mathrm{~m}$

ICRIT. ALPHA ERRDR $=0.00372$

CRIT. BETA ERROR $=0.00397$
;GRIT. ChANGE IN JOYSTK READING $=0.25$

LOC OBJ	
802E A	A3
80257	78
6030	CC
8031 C	CC
8032	2 cc
80337	370
cosa 4	4 4
E035 F	5 F3
6036 E	6 EE
6037	7 7E
80380	01
8039 OC	
E03A	A 01
6038	00
cose	cio
EOID	DE
803E	E 98
E03F	- 01
8040	AB
E041	$1{ }^{\text {F }}$
8042	2 A2
8043	02
6044	C2
8045	5 FE
8046	92
8047	700
8008	8 F2
8049	9 FD
8044	A 9
8048	18
8045	FF
604D	D 00
EOAE	E 00
804F	A A
8050	O4
E051	100
8052	200
8053	380
8054	402
eoss	A?
E056	32
8057	7 B6
E058	879
8059	CC
605A	F7
EOSB	93
EOSC	C 01
E05D	S 40
eose	50
EOSF	F FC
8050	079
$8061{ }^{80} 2$	

LINE SOURCE STATEMENT

ivgeta offset $=0.528 \mathrm{rad}$

LOC O	OBJ		LINE S	source	tatement	
806387						
80640	00					
8005 3	32		15EMD:	DB	32H,15H,OA9H,79H	ivdELTA SCALE FACTOR $=0.00516$ rad/bit
80661	15					
8067 8069 909						
8069	EA		159 CD:	D8	OEAH,O51H,OFEH,7FH	IVDELTA OFFSET $=0.485 \mathrm{rad}$
806A	51					
8068 FB						
806C	7F					
O06D	84		160 LA	D8	84H, OEBH, 91H.O2H	ILENGTH DF LIFT ARM $=2.28 \mathrm{M}$
806E Eb						
80SF 91						
8070	02					
8073 ce						
8074	01					
8075	00		162 HET:	De	OOH. OOH.OETH.OEH	8ETH - 1250
807600						
807787						
8078	O8					
$\begin{array}{llll}807800 \\ 807 A & 00 & 163 ~ H 7 S 2 ~ D B ~ O O H, O O H, O F 2 H, O 7 H ~\end{array}$						
8078 F2						
807507						
8070	00		164 2ERO:	D8	OOH, OOH, OOH, OOH	100
807E 00						
807F 00						
6080	00					
6081	00		165 ONE:	DB	OOH, OOH, $50 \mathrm{H}, \mathrm{OLH}$	[10
808200						
808380						
e084	${ }_{\text {O }}^{\text {O }}$		1et half:	DB	OFEH.OFFH, OFFH, 7FH	10.50
8086	FF					10.
E087 FF						
8088	7F	-				
8089 boba	808A 00		167 MINONE:	DB	OOH.OOH.8OH.E1H	1-10
8088	80					
808581						
B0e:	14		16E MU:	DE	14H,OAEH,97H,OZH	: $=2.37 \mathrm{rad}$
coee am						
80ef 97						
8090	02 $C A$		169 EETA:	DB	OCAH. OCCH, OCCH, TCH	1 - 0.05 rad
8093 Cc						
8094	75					
8095	OE		170 GCO:	DB	OEH, 5EH, OE9H,O2H	iCOEFFICIENTS FOR GAmma (DELTA)
$\begin{aligned} & 8096 \\ & 8097 \end{aligned}$	E9					
8098	02					
8099	F2		171 GC1:	DB	OF 2H.OB9H.ODAH.OFFH	

LOC 08．	line	SOURCE STATEMENT		
	298			1 is used in manual and learn modes
	297			1 l
	300			i Registers affected：A，d，enhilistatus
	301			
	302			－
E190 CD1384	303 XYB	Call	CONV	：READS IN CONTROL SETTINGS AND －OUTPUT POSITIONS
E193 CDJFEs	305	CALL	COORD	icalculates outplit positions in
	308			1 USER COORDINATES
S196 CDOSE7	307	call	1 P 1	：CALCULATES Changes in control
	50%			－SETtings and defines control loop
	309			－input velocities
8199 CD2487	210	CALL	EPOS	：CALCULATES POSITIONAL ERRORS
	311			1 in x and Y ．and total error magnitude eta
E19C CDFEE7	312	call	SETEC	iset ecrit according to input velocities
E1gF CDO2E4	213	call	$1 \mathrm{P} \cdot 2$	ilf eta is greater than ecrit then
	314			：freeze target position else assion
	315			1 nel target position according to
	316			－input velocities
61A3 CDSF69	317	call	FFD	calculate valve settings
ELAS C9	± 18	RET		：OUtPut valve control bytes
	319			
	320			；
	521			－
	322			！
	525			\％＊APU STACK PUSH MACRO＊＊
	324			！${ }^{\text {chis }}$
	－25			；THIS MACRO GENERATES CODE FOR
	326			；PUSHINE A $\mathbf{3} 2$ bit operand from
	327			［ MEMORY ONTO THE APU STACK
	329			：REGISTERS AFFECTED：D．E
	ここの			；REGISTERS AFFECTED：D．E
	IE1 PSH	macra	XYZ	
－	532	L×	D，XYZ	
	5 ± 3	ENDM	PSHT	－
	354			
	さマ5			1 •
	336			1 l
	357			：＊＊APU STACK POP MACRO＊＊
	358			！macto for poppino
	± 38			IMACRO FOR POPPING A I2 EIT
	340			1 OPERAND FROM THE APU STACK
	341			－into memory
	342			
	\％ 243			；REGISTERS affected：die
	345 PLL	macro	POR	
－	344	LXI	D．PCR	
－	347	CALL	PLLT	
	348 349	ENDM		；
	349 -50			；
	351			1 Macro for conoitional jumes
	± 52			i＊＊MACRO FOR CONDITIONAL JUMPS

LOC OBJ	LINE	SOURCE STATEMENT	
	553		
	354		
	355		
	356		
	357		
	358		
	-59		
	Ј60		
	361		
	382		
	363		
	364		
	365		
	366		
	367		
	368		
	369		
	370		
	571		
	372		
	375175	macro	ID1,0P,ID2,LAEL
-	374	PSH	IDI
-	575	${ }_{\text {PLL }}$	$V 1$ 102
-	375 377	PSH	ID2
-	378	CALL	$\mathrm{OP}^{\text {P }}$
-	379	ANI	O1H
-	300	JNZ	LABL
	381	ENDM	
	382		
	383		
	384		
	385		
	3en		
	3 c 7		
	350		
	389		
	390		
E1A9 216430	$371 \times$ XP0:	L×I	H.xO
E1aC 112030	392	4×1	D. XP
EIAF OBOC	585	mis	E.OCH
81817 E	389 L201:	mov	A, M
	385	Stax inx	D H
$\begin{array}{ll}\text { E1B3 } & 23 \\ 8184 & 13\end{array}$	396	InX inX der	H D
E1ES 05	± 98	DCR	B
EIbS CIBIEI	399	jnz	4201
E199 ${ }^{\text {c9 }}$	400	RET	
	401 402		
	403		
	404		
	405		
	408		
	407		

```
:THIS mACRo generates code for making
    CONDITIONAL JUMPS DEPENDING ON THE
    VALUES DF TWO 32 GIT FLOATING POINT
    : VALUES DF TWD SI BIT F
iff idI GTHAN:GEQual:EQuals:NEqual:
    ; IDI GTHANigequali Equa
    : THEN GOTO LABL
:REGISTERS AFFECTED: A,D,E,STATUS
    DATA IS PASSED TO SUBROUTINE OP IN
    TEMPOKARY VARIABLES V1 AND V2. THE 
    RESULT IS RETURNED IN THE A REGISTER:
    ITRUE, O=FALSE. THE RESULT DF DP IS
    CHECKED AND CONTROL JUMPS OR CONTINUES
```

- Acṭordingly

```
!
** ROUTINES for learn and repeat functions **
*** Sugroutine xpxo **
:REGISTERS AFFECTED: A,B,D,E,H.L,STATUS
this routine copies the current output
I CODRDINATES XO, YO & PSID TO XP, YP
i
;** SUBROUTINE TPULL **
!THIS ROUTINE PLLLLS A CO-DRDINATE
; FROM THE PATH STACK USING PINNTER PPOINT.
: FROM THE PATH STACK USING POINTER PPOINT.
```


LOE	OBJ	LINE	SOURCE	statement	
5156	3EO1	A63 LEARN:	MVI	A.O1H	: indicate mode
61 EB	D323	464	out	23 H	
EIEA	AF	465	XRA	A	Izero path point counter pcount
Eleb	323430	acb	Sta	PCOUNT	
6IEE	211131	467	L×I	h.base	ifinitialise ppoint to base address
EIF1	221E30	468	Shld	PPOINT	- of path storage area
EIFa	CDA9E1	469	CALL	XPXD	[SET XP = XO ETC.
E1F7	CDDoes	470	call	TPUSH	:PUSM Current output position on stack
EIFA	CD9081	471 L206:	CALL	XY	ICALL XY RDUTINE
		472	PSH	vo	ilf Current xy coordinate)= dCrit
E1FD	116850	473+	LXI	D,YO	
E200	CDO185	474+	CALL	PSHT	
		475	PSH	yp	(FROM LASt xy COORDINATE JMP L202
8203	112430	$476+$	LxI	D.YP	
E206	CDO1ES	477+	CALL	PSHT	
E209	CD948E	478	CALL	FSUP	1DIST*SORT (YO (YP)**2+(XO-XP)**2)
820c	cdcaee	479	CALL	PTOF	
620F	CD70ee	480	CALL	FMLL	
		4 E 1	PSH	x0	
E212	116430	AE2+	LXI	D. XO	
E215	CDO1ES	483+	CALL	PSHT	
		AEA	PSH	XP	
2218	112030	4es+	LXI	D. XP	
E218	CD01E5	436+	CALL	PSHT	
E21E	cdasee	487	CALL	FSUB	
E221	CDCaEE	$4 \mathrm{E8}$	CALL	prof	
6224	CD708E	489	CALL	Fmil	
E227	CDb4EE	490	CALL	FADD	
823 A	CD2asf	491	CALL	SORT	
		492	PLL.	DIST	
E220	112530	493*	LXI	D.DIST	
6230	CD1785	494*	CALL	PLLT	
		495	IFF	DIST, GEDUAL, DCAIT.L202	
		496+	PSH	DIST	
E233	112030	497*	LXI	D. Dist	
E236	CDO1ES	$495-$	CALL	PSHT	
		$499+$	PLL	$v 1$	
8こ39	119550	$500+$	LXI	D, V_{1}	
E=3c	CDI785	$501+$	CALL	PLLT	
		$502+$	PSH	DCRIT	
Ezsf	11F530	50.5	LXI	D. DCRIt	
2242	CD01E5	504 +	CALL	PSHT	
		505+	PLL	$\stackrel{1}{ }$	
E245	119930	51) ${ }^{\text {+ }}$	LxI	D.v2	
8248	CDi7es	$507+$	CALL	PLLT	
E2as	CDSEES	soed	CALL	gequal	
E24E	E601	$5109+$	ANI	01\%	
E250	C29182	511)*	JNZ	Lこ02	
		511	PSH	PSIO	[IF CURRENT PSIO VALUE)= dPCRIT
E253	116CJO	$512+$	LXI	D, PSIO	
6256	CDOIES	$513+$	CALL	PSHT	
		514	PSH	PSIP	1 RECORd new path point else jmp leos
$\varepsilon \geq 59$	112530	515+	LxI	D, PSIP	
825c	CDO1ES	5164	CALL	PSHT	
625F	CD94EE	517	CALL	FSUB	

Loc	OBJ	LINE	SOurce statement			
8262	cdease	518		CALL	ptof	
8265	CD70eE	519		CALL	FMuL	
ع268	CD24EF	520		CALL	SGRT	
		$5: 1$		PLL	DPSI	
E263	113030	E22＊		Lxı	D．DPSI	
E2tE	CD1785	523＋		CALL	PLLT	
		524		1FF	DPSI，LTHAN，DPCRIT，L205	（ ${ }^{\text {（DPCRIT }}=5$ DEG．$=0.0873$ RAD）
		525＊		PSH	DPSI	
8271	113030	526＋		LXI	D．DPSI	
ع27	cDO1ES	5：37		CALL	PSHT	
		528＋		PLL	V1	
E277	119530	529＋		LXI	D． V_{1}	
E27A	CD1785	$5310+$		CALL	PLLT	
		531 ＋		PSH	DPCRIT	
8270	11 F930	532＋		LXI	D．DPCRIT	
E280	cD01ES	533＋		CALL	PSHT	
		534＋		PLLL	$v 2$	
8293	119930	E35＋		LXI	D．V2	
عこる	CD1785	S3t＊		CALL	PLLT	
ع2e9	EDA7ES	$537+$		CALL	LTHAN	
ezac	E601	5IE＋		ANI	01H	
と2aE	c2asez	E39＋		JNZ	1205	
E291	CDA981	540	L2023	CALL	$\times \mathrm{PXO}$	IXP＝XO ETC．
ع293	CDD081	541		call	TPush	IPUT CURRENT O／P POSN ON PATH STACK
8297	3A3430	54.2		LDA	PCOUNT	I INCREMENT PATH POINT COUNTER PCOUNT
8290	3 C	543		INR	A	1 \＆test for full memory
8298	323430	E44		STA	PCOUNT	
6295	a7	545		mov	B，A	
629F	3a4CBO	54\％		LDA	maxpts	
E2A2	E8	547		CMP	B	
8243		548		RZ		
E2As	DB2A	549	Le05：	in	こан	iff input fram mode select switches＊O
22A6	FEOO	550		CPI	OOH	（ then return else jump to lzob
83A3	cafael	551		J2	L206	
s2as	C9	552		RET		
		555				1
		554				1 ．
		55.5				：＊＊SEGMENTS FOR REPEATING A STORED
		556				PATH＊＊
		557				3 边
		559				；Suproutine reetup
		559				；＊＊SUBRDUTINE RSETUP＊＊
		560				1 l
		561				ithis routine initialises the
		562				（ COUNTERS，THE DATA POINTER，
		563				：AND DFFSETS．IT THEN READS THE
		56.4				；First path point for repeating
		56.5				－The Stored path and calculates
		566				：THE DFFSETS XOF AND YOF．IT ALSO
		567				－ASSIGNS Xi＝xO AND Yi＝YD
		563				；
E2AC	AF	54.9	RSETUP：	XRA	A	：2ERD NCOUNT AND RCOUNT
عこa	ここさeJ0	570		STA	ncount	－Which count control routine calls
E280	ב23530	571		STA	RCOUNT	（ AND PATH POINTS RESPECTIVELY
8293	211151	572		LXI	H．BASE	；initialise data pointer

Loc	OBJ	LINE S	SQurce	tatement	
E256	221E30	573	SHLD	ppoint	
8259	CDBAB1	574	CALL	TPULL	iread 1st path point，Calculate ：OFFSET，SET XI＝XO \＆YI＝YO
		575	PSH	$\times 0$	
s2mC	116430	57\％＊	L×I	D，$\times 0$	
E2EF	cdoses	577＋	call	psht	
\＆2c2	cdCase	578	call	prof	
		579	PSH	$x 1$	
82cs	115830	580＋	LXI	D，XI	
ع2C8	CDO185	5E1＋	call	PSht	
eacs	CD9aee	582	CALL	Fsus	
		983	PLL	XOF	
E2ce	111530	5ea	LXI	D，XOF	
E20：	CD1785	5e5＋	Call	PLLT	
		586	PLL	$\times 1$	
E2DA	115830	587＋	LXI	D，XI	
8207	CD1785	ことを＊	call	PLLT	
		58.	PSH	yo	
E3DA	116830	$590+$	Lxi	D．YO	
E20D	CDO185	$591+$	call	PSHT	
E2EO	CDCAEE	592	call	PTDF	
		593	PSt	YI	
E2EJ	$115 c 30$	594＊	LXI	D，YI	
E2E6	CDO185	$595+$	CALL	PSHT	
82E9	CD9ABE	598	CALL	fsup	
		597	PLL	Yof	
$825 C$	111930	598＋	LXI	D．yof	
82EF	cDites	599＊	call	PLLT	
		600	PLL	$y \mathrm{I}$	
$62 F 2$	$115 c 30$	$601+$	LxI	D．YI	
E2FS	CD1785	$802+$	CALL	PLLT	
8278	CD2487	603	call	EPOS	
E2Fb	C9	604	RET		
		605			1
		606			！
		407			；＊＊SUgroutine repeat＊＊
		t，08			
		609			ithis routine pulls successive
		610			1 PDINTS FROM ThE PATH STACK and
		611			－CALLS THE CONTROL ROUTINES TO
		612			I MAKE THE MACHINE FOLLOH THE
		613			I STORED PATH．
		$\begin{array}{r}614 \\ \hline 15\end{array}$			iregisters affected：A，b，d，e，h．l，status
		616			！
		617 REPEAT：	：IfF	ETA，GTHAN，ECRIT， 3301	（If ERROR）ECAIt or iepsiisperit
		61E＋	PSH	ETA	
E2FC	117030	619＋	L×I	D．ETA	
82FF	CDO185	6 $20+$	call	PSHT	
		E21＊	PLL	vi	
E302	119530	とこご	L×1	D．vi	
ع305	CD17ES	$623+$	CALL	PLLT	
		624＊	PSH	ECR：T	
عフOE	11 BE 30	C25＊	LXI	Diecrit	
8303	cdoles	626＋	CALL	PSHT	
		¢27＋	PLL	$v 2$	

LCC	OBJ	LINE	SOURCE	tatement	
E30E	119930	s2e＋	LxI	D．v2	
E311	CD17es	$628+$	call	PLLT	
EJI4	cosios	$650+$	call	cthan	
E317	E601	$651+$	ANI	O1H	
8319	ciase3	632＋	JNz	L301	（ OR（NCOUNT＋1）（FCOUNT THEN JMP L3O1（FIND ：EPSI：
		635			
		634	PSH	EPSI	
Eエ1C	117830	¢こ5 ${ }^{\text {＋}}$	LxI	D，EPSI	
E3iF	CDO1es	¢Jst	CALL	PSHT	
83こ2	cdCabe	657	CALL	PTOF	
E325	CD70EE	638	call	FMUL	
8こ23	CD24EF	637	CALL	SQRT	
		640	PLL	11	
E32B	114830	641＋	LxI	D．11	
53 ± 5	CD1785	6s2＋	CALL	PLLT	
		603	IFF	11．GTHAN，PCRIT，L301	
		$6.44+$	PSM	11	
EI31	114830	645＋	Lx 1	D．11	
1	CDO18S	$646+$	CALL	PSHT	
		647＊	PLI	\checkmark_{1}	
E337	119530	64e＋	L×I	D． V_{1}	．
E53A	CD1785	649＊	CALL	PLLT	
		$650+$	PSH	PCRIT	
ESJD	118130	651＋	LxI	dipcait	
E3s0	CD0185	$652+$	CALL	PSHT	
		$653+$	PLL	$v 2$	
9353	119930	654＋	L×	D．vz	
63.6	CD1785	C5S＋	call	Pllt	
5349	cD308s	6564	call	athan	
E3se	E601	$657+$	ANI	01 H	
836E	C2A583	$658+$	JNZ	4301	
ع 51	3A3630	659	LDA	NCOUNT	inncrement ncount a compare hith fcount
8J54	3c	660	INR	A	
EこES	323630	6¢ 1	STA	ncount	
EこE天	47	662	mov	E，A	－
8359	3abdzo	E63	LDA	FCOUNT	
\＆こE	B日	tet	CMP	B	
EJED	Ciasb3	665	JNZ	L． 301	
65s0	3A3430	665	LDA	PCOUNT	if end of path clear modflg
EJ63	47	$6 \in 7$	MOV	E，A	－And return
E3s4	JAS530	te8	LDA	rcount	
ع367	B3	EG9	CMP	8	
E． 65	c27083	670	JNZ	L308	
EJs 9	AF	671	XRA	A	
ETEC	こ20050	672	STA	modFl．	
E36F	c9	673	PET		
E 370	IC	674 LJOE：	INR	A	：Else increment rcount a reset
E371	323530	675	STA	RCOUNT	1 ncount
E375	AF	67s	XRA	A	
\＆ 575	323630	677	STA	ncount	
8378	CdBael	678	CALL	tpul	IREAD PATH PDINT AND
		679	PSH	$x 1$	IADD OFFSET
ع 378	115830	6804	LxI	D，XI	
$637 E$	CDO1E5	sel＊	CALL	PSHT	

LOC	OBJ	LINE	SOURCE	TATEMENt	
E 81	111530	se3＋	LXI	D．XOF	
5584	cD01es	ceat	call	PSHT	
6コ57	CDbaEE	ces	call	FADD	
		686	PLL	XI	
SコEA	115830	ce7＋	Lxi	D． XI	
ejed	CD1785	CEE＋	call	PLLT	
		689	PSH	$Y 1$	
E390	115 C 0	$690+$	LxI	D．YI	
8373	CDO1ES	691＋	CALL	PSHT	
		692	PSH	Yof	
6596	111930	693＋	LXI	D．YOF	
ยエプ	CDO1ES	$693+$	call	PSHT	
E39C	CDS4EE	695	call	FADD	
		696	PLL	YI	
EJ9F	$115 c 30$	$697+$	LxI	D．yI	
EJA2	CD1785	$698+$	Call	PLLT	
ejas	CD1384	6.99 L301：	call	CONV	：CALL CONTROL ROUTINES
EJAB	CDJF86	700	CALL	COORD	
83ab	CD2487	701	call	Epos	
EJaE	CDSFEA	702	CALL	FFD	
عご1	cD96EC	703	CALL	OUTPUT	
ع 384	DB2A	704	IN	2AH	\＆CHECK MODE SWITCH INPUTS
E396	FEOO	705	CPI	OOH	
EJE8	CO	706	RN2		
		707			1 ！
Eエ日9	FB	708	EI		；ALLOW INTERRUPT
83ba		709	NDP		
ยJE\％		710	DI		
		711			－
esgc	C3FCe2	712	JMP	REPEAT	
8JEF		715	RET		
		714			；
		715			；
		718			：
		717			in＊SUBRDUTINE RFAST＊＊
		718			1 l
		719			：SEGMENT FOR REPEAT FAST MODE．
		720			－CONTROL NORMALLY ENTERS AT LABEL
		721			－RFASt．however if the machine 15
		722			（ ALREADY IN REPEAT SLOW mode control
		723			－ENTERS AT RFCDN．This allows the
		724			－REPEAT Speed to be chanced without
		725			（ RESTARTINB THE TRAJECTORY．
		726			
		727			：REGISTERS AFFECTED：A．B．D．E．H．L，STATUS
		728			1 l
EJCo	3AJAJo	729 RFAST：	LDA	PCOUNT	；REturn if no path in memory
EJC3	47	730	nov	B，A	
83C4	AF	731	XRA	A	
83C5	8\％	732	CMP	B	
8ㄷ6	C8	733	RZ		
عこc7	cdacez	734	CALL	RSETUP	
EJCA	IEOS	735 RFCON：	MVI	A．OJH	；indicate mode
ejcc	D323	736	OUT	23 H	
SJCE	IEO2	737	mVI	A, OLH	

LOC	OBJ	LINE		SOURCE	tatement	
EJDO	320030	7 ± 8		Sta	modfle	
EED	jafdio	739		LDA	FFAST	iset up no. df control routine
E3DS	こ28030	740		STA	fcount	1 CALLS between points
8J09	AF	741		XRA	A	t clear ncount
E3DA	325¢30	742		STA	ncount	
EJCD	CDFCEz	74.3		call	repeat	
BJEO	[9	744		RET		
		735				1
		746				1
		747				[** SUBROUTINE RSLOW **
		748				
		749				isegment for repeat slow mode
		750				
		751				ICONTROL NORMALLY ENTERS The
		752				(ROUTINE AT LABEL RSLIOW. HOWEVER
		753				- if THE SYSTEM is already in
		754				- repeat fast mode then control
		755				- enters at label rscon. this
		75s				- ALLOWS THE REPEAT SPEED TO EE
		757				Changed hithout restarting the
		758				- TRAJECTORY.
		759				1
		760				IREGISTERS AFFECTED: A,Bid,E,H.L.STATUS
		761				
EJE1	3A3430	762	RSLOW:	LDA	PCOUNT	:return if no path in memory
6JEa	47	763		mov	B.A	
63ES	AF	764		XRA	A	
83E6	88	765		CMP	B	
63 E7	c8	766		RZ		
83E8	cDaC82	767		Call	RSETUP	
SIEB	SE02	768	RSCON:	MVI	A.O2H	IINDICATE MODE
ETED	D323	769		Out	2 IH	
EsEF	IEOI	770		MVI	A.01H	
EアF1	320030	771		STA	MODFLS	
6Jfa	Jafe30	772		LDA	FSLOW	
EIF7	328030	773		STA	fCOUNT	
s-fa	CDFCE2	774		CALL	REPEAT	
63FD	C9	775		RET		
		776				;
		777				3 .
		776				\%
		779				(** SUBROUTINE INIT **
		780				
		781				;THIS ROUTINE SETS UP THE 1/0
		782				4 PORT data direction recisters
		783				
		784				; REGIStERS AFFECTED: A
		785				P
EJFE	IEOF	786	INIT:	HVI	A,OFH	iSET PORTS $21,22,23$ FOR OUTPLT
Ea00	DJ20	787		OUT	2 OH	
¢002	3EFF	7 78		mvi	A,OFFH	
Ea0a	D302	789		OUT	12: ${ }^{\text {H }}$	
eats	D303	790		Out	O3H	
елов	DJOA	791		Out	OAH	
EAOA	JEOC	792		mus	A, OCH	

LOC OBJ	line	SOURCE	tatement	
EaOc D=28	79.3	out	SEH	izero path point counter
Eace af	794	XRA		
E4OF 323330	795	STA	PCOUNT	
E412 $\mathrm{CF}^{\text {c }}$	788	ret		
	797			1
	798			1
	799			1
	800			:** SUBROUTINE CONV **
	801			
	802			ITHIS SUBROUTINE READS IN THE JOYSTICK
	80.3			: AND PITCH CONTROL SEttings and the
	E09			- machine position
	805			
	806			:REGISTERS AFFECTED: A,D.E.H.L.STATUS
	807		A, O3H	
8413 3EO3	EOS CONV:	mvs		ilgad a with joystick slew contrdl :CHANNEL NUMEER
BA15 CDETEA	E10	CALL	ADCON	
8418 C09385	811	call	jovstk	itransforms jovstick voltage 1 to range -1 to +1 (result on tos)
	E12			
	E13	PLL	JSLEW	
E418 114030	814+	LxI	D.JSLEW	
841E CDITES	815+	call	PLLT	
8421 3E04	816	mVi	A.OAH	iread ydot input fram jovstick
8423 CDE784	817	CALL	ADCON	
co9ses	818	CALL	JOYSTK	
	819	PLL	JYDOT	
842911 Cc30	820+	LXI	D.jYDOT	
E43C CD1785	E21+	CALL	PLLT	- REAd xdot input from jovstick
E42F 3E05	$\varepsilon 22$	MVI	A. 05 H	
8431 CDE784	823	CALL	ADCON	
CD9385	E24	CALL	Jorstk	
	825	PLL	jxDOT	
8437113830	826*	L×I	D.jxdot	
E4JA CD17es	ع27+	call	PLLT	
843D 3E06	$8 \Sigma 8$	mivi	A, OSH	: READ BUCKET VELDCITY INPUT FROM
8442 CDijes	829	CALL	ADCON	' JoYstick
	830	CALL	Jorstk	
	831	PLL	ЈвKт	
8445114430	Eこ2+	LXI	D.JPKT	
8448 CD1785	EエJ+	CALL	PLLT	
844b ie07	854	mVI	A.07H	IPITCH
EAad CDE7E4	E35	CALL	ADCON	
E450 CDICES	E3s	call	SLOPE	ICALCULATE INPUT PITCH ANGLE
	E 37			1 from contrd knot voltage
	$\varepsilon ะ 8$			
	عİ			ifead in voltages from potentidmeters I ON MACHINE PIVOTS AND CALCULATE ARM
	E41			- ANGLES
8as3 CDSDEa	Eal	call	Alfip	IINPUT ALPma and subtract pitch
8456 CD97e4	8.4	call	EETIP	IINPUT EETA
EA59 CDBF84	E44	call	DELTIP	IINPUT DELTA
B45C C9	EA5	RET		
	E4t			i

Loc	OBS	LIne	source statement		
		8 ± 8			;** SUBROUTINE ALFIP **
		E49			1
		250			IINPUTS ALPHA VOLTAGE, scalles it,
		E51			: ADDS DFFSET, AND SUBTRACTS PITCH
		852			
		853			: REGISTERS AFFECTED: A,d,E.hiListatus
		ES4			
Eヒ50	IEDO	ESS ALfip:	MVI	A. OOH	ia=alpha channel number
ES5F	CDE7EA	E36	CALL	ADCON	
ect?	320010	E57	STA	1000 H	IPUSH VALPHA DNTO APU STACK
8455	AF	858	XRA	A	
E469	320010	8.59	3 TA	1000 H	
	CDesee	Sco	call	FLTS	fconvert result to si-bit fl. pt. format
		-6 1	PSH	MA	; PUSH SCALE FAC a MPY
8486	115580	863+	LXI	D.mA	
Eab	CDO1es	Et3+	call	PSHT	
8472	CD708E	S64	Call	Fmil	
		ecs	PSH	CA	IPUSH OFFSET AND ADD
8475	115980	866+	LXI	D.CA	
8478	CD0185	E67+	call	PSHT	
E478	CDbase	868	call	FADD	
E47E	CDCaEE	869	CALL	PTOF	¢PULL LIFT ARM ANGLE
		870	PLL	mealfa	
8481	118030	8714	LXI	D.mCalfa	
8484	CD17ES	E72+	CALL	PLLT	
		573	PSH	PITCH	:SUBTRACT PITCH
3437	119030	87a+	Lxi	D.PITCH	
8480	cooles	875+	CALL	PSHT	
	CD948E	876	CALL	FSUB	
		877	PLL	alpha	
8490	118430	878*	LXI	D. ALPHA	
8493	CD1785	579*	CALL	PLLT	
8496		880	RET		
		-81			;
		8E2			1
		es3			:** SUBRDUTINE BETIP **
		6E9			inputs ubeta. scales it and adds
		885			INPUTS UBETA, SCALES IT, AND ADDS
		887			-
		888			; Registers affected: A,d,E,H.LiStatus
		889			: ${ }^{\text {a }}$ - ${ }^{\text {ata }}$
8477	2EO1	890 EETIP:	MVI	A.O1H	: A=beta CHANNEL NUMBER
E494	CDETS4 320010	881	CALL	ADCON 10000 H	: CONVERT TO 33-BIT FL. PT. FDRMAT
Bacf	af	893	XRA	A	
eato	こ20010	894	STA	1000 H	
bats	CDEEEE	885	CALL	FLTS	
		996	PSH	MB	impy by scale fac
E4A6	115060	897*	LxI	D.MB	
elac	cDoies	890*	call	PSHT	
	CD706E	897	CFLL	FMLI	
	116180	700 $701+$	FEM	$\mathrm{CB}_{\mathrm{CB}} \mathrm{CB}$	SPUSH OFFSET AND ADd
E-82	cDotes	702+	call	PSHT	

Loc 08J	SOURCE STATEMENT			
Eabs CD\&AEE	903	call	FADD	
	804	PLL	beta	
عabs 118 EjO	905*	Lxi	D.beta	
EABP CDI7ES	708*	CALL	PLLT	
cabe c9	907	RET		
	708			
	909			!
	910			1 (
	911			1** Subroutine deltip **
	912			*
	91.3			ifnputs vdelta, scales it, and
	914			1 ADDS OFFSET
	915			
	916			iregisters affectedi A.die.hilistatus
	917			
E4BF SE02	918 DELTIP:	MVI	A. 02 H	
Esci CDE7B4	919	Call	ADCON	
84C4 320010	920	STA	1000 H	ICONVERT INPUT TO 32-bit FL. Pt.
eact AF	921	XRA	A	
Sace 320010	92	STA	1000 H	
eacs cdeeee	923	CALL	FLTS	
	8.24	FSH	MD	imultiply by scale factor
SaCE 116580	8254	LXI	D.MD	
8SD1 CDOIES	826*	CALL	PSMT	
EADA CDIDEE	927	CALL	FMLR	
	928	PSH	CD	;ADD OFFSET
84D7 116980	$929+$	LXI	D,CD	
Sida cdoies	9304	CALL	PSHT	
EAdD CDEase	931	CALL	FADD	
	932	PLL	delta	
EEEO 11EC30	953+	LxI	D. DELTA	
EEE3 CDI785	¢54*	CALL	PLLT	
8.5659	935	RET		
	956			'
	837			1
	838			:** SUPROUTINE ADCON **
	939			-
	940			ITHIS ROUTINE OPERATES THE
	941			- ANALOGUE to digital converter.
	932			\% The channel number is in the
	9.43			: A REGISTER ON CALLING AND
	744			: the result at return
	845			PREGISTERS AFFECTED: A, H.L. STATUS
	946			IREGISTERS AFFECTED: A.H.L.STATUS
	847			
24E7 DJIB	943 ACCON:	OUT	28H	soutput channel number
EAEP CGOB	849	ADI	OEH	
ELEB DJ2B	850	Out	こBH	ILATCH Channel number
ELED AF	451	XRA	A	ICLEAR CONTRDL WDRD
ELEE D328	952	OUT	254	
86FO 211100	953	Lxi	H.0011H	SET DELAY ROUTINE
84FI CDP787	954 955	CALL	PAUSE	CCALL delay ROUTINE iset tristate output
B6F8 DJ29	958	OUT	2 BH	
64FA OO	957	NOP		

LOE DBJ	LINE		source	statement	
eafb 00	959		NOP		
EAFC 0	859		NOP		
8．FD 00	780		NOP		
ESFE DB29	981		IN	274	：read result
8500 C9	962		RET		
	963				1
	764				；
	965				＊＊＊SUBROUTINE PSHT＊＊
	966				
	987				：PUSHES A 32－bit fl．PT，VARIABLE
	968				：onto the apu stack．
	869				－de contains the address
	970				1 OF The ls byte df the
	771				1 operand on calling
	972				－and of the ms byte at
	973				＇Return
	974				
	975				\｛REGISTERS AFFECTED：die
	976				
ESO1 F5	877	PSHT：	PUSH	PSW	
850214	978		Ldax	D	ILD ACC WITH LS BYTE
$\varepsilon 503320010$	979		STA	1000 H	TPUSH ACC TO APU
Esc6 13	980		ind	D	IINCREMENT DATA PDINTER
25071 A	781		Ldax	0	
2509 320010	982		STA	10004	
e508 13	983		INX	D	
ESOC 1A	764		LDAX	D	
ESOD 320010	785		STA	1000H	
E510 13	7eb		INX	D	
E511 1 A	987		LDAX	D	
E512 520010	983		STA	1000 H	
ESis Fi	989		POP	PSW	
Esis c9	990		RET		
	991				！
	792				1 ．
	993				1＊＊Subroutine pllt＊＊
	984				＇
	995				；Pulls a ji－bit fl．Pt．Variable
	996				1 FRDM THE APU STACK
	997				：DE CONTAINS ADDRESS OF LS
	998				PYTE ON CALLING AND MS
	997				：BYTE AT RETURN
	1000				；REGISTERS AFFECTED：d，e
E517 F5	1002	PLLT	Push	PSW	R⿴囗olsters arrected die
ES18 13	1003		INX	D	
2519 13	1004		INX	D	
ESiA 13	1005		InX	D	
ES1日 3A0010	1006		LDA	1000 H	
ESIE 12	1007		STEX	D	
ESIF 18	1005		DCX	D	
E320 3A0010	1009		LDA	1000 H	
E523 11	1010		stax	D	
عE24 18	1011		DCX	D	
Es＝5 300010	1012		LDA	10000 H	

LOC	OBJ	Line		source	statement
E528	12	1013		stax	D
8529	18	1014		DCX	D
Es5A	3A0010	1015		LDA	1000 H
E52D	12	1016		stax	D
EsiE	F1	1017		POP	PSW
6595	C8	1018		RET :	
		1019			
		1020			
		1021			
		1022			
		1023			
		1024			
		1025			
		102s			
		1027			
		$10 \geq 8$			
8530	CDSDES	1029	Gthan:	CALL	equals
		1030			
		1031			
SEx	E601	1032		ANI	01\%
E=5	Cajaes	1035		32	L2
E538	AF	1034		xRA	A
ES39	C9	1055		RET	
E53A	-3A9030	1035	L23	LDA	status
E5JD	E640	1057		ANI	SOH
ESJF	cayces	1058		52	13
8532	2 AF	1039		XRA	A
Esas	C9	1040		RET	
Esta	SEOI	1041	L3:	MVI	A,OIH
EST6	C9	1042		RET	
		1043			
		1044			
E547	7 CDSdes	10.5	LTHAN	CALL	EQuals
essa	ESOI	1046		ANI	O1H
Essa	Cas 185	1047		52	L4
E¢AF	AF	1048		XRA	A
EsEO	cy	1049		RET	
EES 1	3A9030	1050	La:	LDA	status
ESS4	Eta0	1051		ANI	AOH
E5E6	C25B85	1052		JNZ	45
E559	AF	1053		XRA	A
ES5A	C9	1054		RET	
عडSD	EEO1	1055	L5:	MVI	A,O1H
	c9	1056		RET	
		1057			
		1058			
Es5e	CD4783	1059	GEQUAL:	: CALL	LTHAN
E561	$2 F$	1080		CMA	
ES62	c9	1081		RET	
		$10 \% 2$			
		1063			
ESE3	CD3085	10¢4	Lequal:	1 CALL	GTHAN
E566	$2 F$	1065		CMA	
ES67	c9	108s		RET	
		1067			

LOC	085	LINE	source	tatement	
E588	CD17Es	1123+	call	plet	
E5b	cojoes	$1124+$	call	gthan	
csbe	E601	$1125+$	ANI	OIH	
esco	czeaes	$1128+$	JNZ	L. 50	
		1127	IfF	II.LTHAN.H79.LSi	[if Joystick voltage 797 H ThEN L5i
		$1128+$	PSH	11	
Esc3	1148 ± 0	$1129+$	LXI	D.11	
ESC6	cdotes	$1130+$	CALL	PSht	
		1131+	PLL	$v 1$	
ESC9	119530	1132+	LxI	D.vi	
esce	CD1783	11 こ3+	CALL	PLLT	
		$1134+$	PSH	H79	
EscF	117980	$1135+$	LxI	D. H 79	
E5D2	cDoies	$11.36+$	CALL	PSHT	
		1137*	PLL	$v 2$	
Esbs	119930	$1138+$	LxI	D.vz	
ESDB	CD17es	$1139+$	call	PLLT	
ESD	CDa7es	$1140+$	call	LTHAN	
ESDE	E601	1131*	ANI	O1H	
ESEO	croses	1142+	JNZ	L51	
		1143	PSH	2ERO	IJOYSTICK IN CENTRAL DEAD BAND:
ESE3	117080	1144*	L×I	D. 2 ERO	
EEES	CDO1E5	1145*	CALL	PSHT	
E5E9	C9	1146	RET		- RETURN 2ERO RESULT
		1147 L50:	PSH	11	IDFFSET AND SCALE JOYSTICK VOLTAGE
ESEA	A 114830	$1148+$	LXI	D. 11	
ESED	cdotes	1149*	CAIL	PSHT	
		11.50	PSH	HE7	(FOR POSitive deflection
85FO	117580	1151 +	LXI	D. HE 7	
EsF3	CD0185	$1152+$	CALL	PSHT	
65F6	6 cdamee	1153	CALL	FSUB	
		1154	PSH	D14	IPLSH 14 BASE 10
ESF9	11cseo	$1155+$	LXI	D.Dic	
ESFC	CDO1ES	1156*	CALL	PSHT	
esff	cdatee	1157	CALL	FDIV	
8602	C9	1158	RET		
		1159 L51:	PSH	11	doffser and scale joystick voltage
8603	114850	1160	LXI	D. 11	
EsO6	CDO1ES	116.4*	CALL	PSHT	
		1162	PSH	H79	: FOR NEGATIVE DEFLECTION
E¢09	117980	1163+	LxI	D. H 79	
ecoc	CDO185	1164*	CALL	PSHT	
860F	CDPAEE	1165	CALL	FSUP	
		1168	PSH	D14	
Et 12	$11 \mathrm{C5EO}$	$1167+$	LXI	D.D14	
Eet 15	CDO1E. 5	$1168+$	CALL	PSHT	
Etie	CDAOEE	1169	CALL	FDIV	
E61B	C9	1170	RET		
		1171			;
		1172			1
		1173			;** SUBRDUTINE SLOPE **
		1174			1
		1175			: This routine calculates the
		1176			: PITCH ANGLE FROM The PITCH
		1277			- control voltage. the voltage

LOC	OBS	line	SDurce	tatement	
8575	cD70eE	1233	CALL	fmul	
		1234	PSH	11	-
5678	114630	1235*	LXI	D. 11	
E\&78	CDO1ES	$1236+$	CALL	PSHT	
667E	CD\&46E	1237	call	FADD	
		1238	PLL	$\times 0$	
¢cea	116430	1239+	LxI	D, $\times 0$	
	CD17es	$1240+$	CALL	PLLT	
		1241	PSH	ALPHA	icalculate r coordinate
5687	118430	1242+	LXI	D.alpha	
86EA	cDoies	1243+	CALL	PSHT	
Etsd	CDOOEF	1244	call	cos	;YO=-L*COS (ALPHA)-R*COS (ALPHA+BETA-PI)
8690	ca7cbe	1245	CALL	ChSF	
		1245	PSH	LA	
8693	116080	1247*	LXI	D.LA	-
Et96	cDotes	1248+	call	PSHT	
8599	Cd70eE	1249	CALL	FMUL	
		1250	PLL	11	
8695	114830	1251+.	Lxi	D.11	
$869 F$	CD1785	1252+	CALL	PLLT	
		1253	PSH	ALPHA	
ECA2	118430	1254*	Lxı	D, ALPHA	
SGAS	CDO1E5	1255+	CALL	PSHT	
		1256	PSH	geta	
ESAE	118830	1257+	LXI	d.beta	
Stab	cdores	1256+	CALL	PSHT	
86AE	CDEAEE	1259	Call	FADD	
$\varepsilon \in B_{1}$	CDDCEE	1260	call	PUPI	
$\varepsilon \leq E 4$	CD9aEE	1261	CALL	fsub	
EEB7	CDOOEF	1262	CALL	Cos	
		1263	PSH	RA	
SCBA	117180	1264+	LxI	D, RA	
E6BD	CDO185	1265+	Call	PSHT	.
seco	CD708E	1286	CALL	FMUL	
		1267	PSH	11	
etcs	114830	1268*	LxI	D. It	
ごC6	cdoles	1269*	call	PSHT	
Eec9	CDieef	1270	call	XCHF	
secc	cDP4EE	1271	call	fsub	
		1272	PLL	Yo	
EGCF	116830	1273+	Lxi	D.ro	
EED2	CD1785	1274*	CALL	pllt	
		1275	FSH	delta	:CALCULATE PSI
Eeds	118530	1275+	LXI	D. DELTA	
EtDs	cD01Es	1277*	call	PSHT	
Eeds	cdiaee	1278	CALL	prof	tcalclulate gamma
esde	cidase	1279	CALL	PTDF	1 $\mathrm{X}=\mathrm{DEL}$ TA
BtE1	CD70EE	1280	CALL	FMLI	(GAMMA=CCO+(GCi*x)+(GC2*x*x)
		1281	PSH	GC2	
EtE4	119880	1282+	LxI	D. GC2	
EAE7	cDoies	1283+	call	PSHT	
EGEA	coloee	12 A	CALL	frict	
EGED	coreef	1285	CALL	XCHF	
		1288	PSH	GC1	
EbFo	119980	1287+	LXI	D. GC:	

LOC	OBJ	LINE	SOURCS	tatement	
Esf3	cDoses	12ゼ＊	call	PSHT	
B6Fb	CD70eE	1289	call	FMLL	
EGF9	CDtaEE	1290	call	FADD	
		1291	PSm	cco	
6SFC	118580	1292＊	LXI	D．Gco	
SbfF	CDO185	1293＋	CALL	PSHT	
E702	cDsaEE	1294	CALL	FADD	ileaves gamma on tos
		1295	PSH	beta	－CALCULATE PSI＝GAMMA＋BETA＋ALPHA－PI
8705	118830	1296＋	LXI	Dibeta	
8708	cD0185	1297＋	CALL	PSHT	
5708	CDSAEE	1278	CALL	FADD	
		1279	PSH	ALPHA	
ع70e	118430	$1300+$	LXI	D．ALPHA	
6711	CDO1E5	$1301+$	CALL	PSHT	
E714	cdeame	1302	call	FADD	
8717	cddcee	1303	CALL	PUPI	
ET1A	CDi48E	1304	CALL	FSub	
		1305	PLL	PSIO	
6710	116C30	$1306+$	LXI	DiPSIO	
E720	CD178s	$1307+$	CALL	PLLT	
8723	C9	1308	RET		
		1309			1
		1320			1
		1311			＊＊＊SUBroutine epos＊＊
		1312			1 ）
		1313			CALCULATES positional errors
		1314			：EX，EY，EPSI AND ETA．THE
		1315			：ROUTINE ALSO CONTAINS A delay
		1316			＇SEGMENT TO VARY THE LODP EXECUTION
		1317			：time for experimental purposes
		1518			
		$\begin{aligned} & 1319 \\ & 1320 \end{aligned}$			：REGISTERS AFFECTED：A，D，E，H，L，STATUS
		1321 EPOS：	PSH	XI	
8724	115830	1322＋	LXI	D， x	
8727	CD01E5	1323＊	CALL	PSHT	
		1324	PSH	x0	
672A	116430	1325＋	LxI	D，XO	
E7こD	cooles	1326＋	CALL	PSHT	
8730	CDasee	1327	CALL	fsub	
		1328	PLL	Ex	．
E733	117030	1 こご＊	LXI	D．EX	
6736	CD1785	1330＊	CALL	PLLT	
		1351	PSH	VI	
8739	$115 c 30$	1312＊	LXI	D，YI	
E73C	CDOIES	1353＊	Call	PSHT	
		13 J	PSH	yo	
ET3F	116830	1535＊	LXI	D．YO	
8742	CD01E5	135b＊	CALL	PSHT	
8745	CDiaeE	1537	CALL	FSUB	
		1338	PLL	EY	
5748	127430	$1339+$	LXI	D．EY	
E74B	CD1785	$1330+$	CALL	PLLT	
		1341	PSH	PSI：	
E7AE	118030	134こ4	LXI	D，PSII	

LOC	OBJ	line		SOURCE	Statement
6751	CDOses	$1303+$		call	PSHT
		1.344		PSH	Psio
$\begin{aligned} & 6754 \\ & 8757 \end{aligned}$	118630	1395+		Lxi	D.PSIO
	CDO1E5	1340 +		call	PSHT
$\begin{aligned} & 8757 \\ & 875 A \end{aligned}$	CDPAEE	1347		call	FSUB
		1398		PLL	EPSI
$\begin{aligned} & 5750 \\ & 8760 \end{aligned}$	117830	$1349+$		LXI	D.EPSI
	CD1785	$1350+$		CALL	PLLT
		1351		PSH	EX
8763	117030	1352+		LXI	D.EX
8766 8769	CD0183	1353*		call	PSHT
	cdCaEe	1354		CALL	prof
878C	ED70EE	1355		CALL	Fmul
		1356		PSH	EY
E76F	117430	1257*		LXI	D, EY
8772	cDoies	$1358+$		CALL	PSHT
8775	CDCAEE	1359		CALL	PTDF
$\begin{aligned} & 8778 \\ & 8778 \end{aligned}$	CD70eE	1360		call	FMuL
	CDGA8E	1361		CALL	FADD
877E	CD248F	15 E2		CALL	SRRT
		1363		PLL	ETA
$\begin{aligned} & 8781 \\ & \varepsilon 7 \varepsilon 4 \end{aligned}$	117c30	1364*		LXI	D.ETA
	ED1785	1365+		call	pllt
		1366			
8757	3 A 730	1367		LDA	tflag
8784	2F	1368		CMA	
87es	D308	1369		OUT	OBH
87ed	323730	1370		5 TA	tflag
$\begin{aligned} & 8790 \\ & 8793 \end{aligned}$	2aff30	1371		LHLD	delay
	CD9787	1372		CALL	Pause
8796	C9	1373		RET	
		1574			
		1575			
		1378			
		1377			
		1378			
		1378			
		1360			
		1351			
		13 E			
		1363			
E797	28	13 ¢	PAUSE:	DCX	H
8798	7 C	1385		mav	A.H
$\begin{aligned} & 8799 \\ & 879 A \end{aligned}$	B5	13 E ¢		ORA	
	C29787	1387		JNZ	PAUSE
8790	C9	13 E9		RET	
		13 ¢9			
		1390			
		1391			
		1592			
		1393			
		$1 こ 94$			
		1395			
		1396			
		1397			

:CALCULATE ETA=SQRT(EX**2+EY**2)

ITIMING SEGMENT
 COMPLEMENT AND OUTPUT TFLAG

i** subroutine pause **
SUBROUTINE FOR DELAY DECREMENTS - input in hl register until zero
: hegisters affected: A.h.l.status

1** Sugroutine setec **
icalculates ecrit .
-ECMIN*(1+SCRT(CXDDT**2+CYDOT**2))
iregisters affected: d.e

Loc	085	LINE	Source statement		
		1298			1
		1399 SETEC：	PSH	cxoat	
879 E	$1150 \geq 0$	1400＋	LxI	D． CxDOT	
87A1	CDO1E5	$1401+$	call	PSHT	
E7a4	cesaee	1402	CALL	ptof	
87 A7	CDTOEE	1403	Call	fmul	
		1404	PSH	cydot	
E7AA	1：5430	$1305+$	LXI	D．CYDOT	
E7AD	cioses	$1406+$	CALL	PSHT	
8780	CDこaEE	1407	call	PTDF	
8783	coloee	1408	call	FMUL	
¢786	Cosace	1.109	call	fadd	
8789	CここaEF	1410	call	SQRT	
		1411	PSH	ONE	
E7BC	118180	1412＊	Lxi	D．CNE	
878F	CDO1es	1413＋	CALL	PSHT	
8762	CDosee	1414	CALL	FADD	
		1415	PSH	ECMIN	
8755	115930	$1416+$	LXI	D．ECMIN	
87Cs	CDO185	$1917+$	CALL	PSHT	
87ce	CD70EE	1418	CALL	FMLL	
		1419	PLL	ECRIT	
ETCE	11 EE30	$14: 0+$	L×I	D，ECRIT	
8701	CD1785	14こ14	call	PLLT	
8704	c9	1422	RET		
		14.23			1
		1424			1
		1425			1
		14.8			；＊＊SUBROUTINE IPI＊＊
		1427			
		1428			iff input bucket velocity is non－zero
		1429			1. THEN PSII＝PSIO
		1430			＇IF JXDOT OR JYDOT HAS CHANGED SIGNIF－
		14 ± 1			－icantiy or both are equal to zero
		1432			1 THEN UPDATE CXDDT AND CYDOT AND SET －target position to current output
		1435 1434			－target position to current ouiput
		1435			
		1436			iregisters affectedi a，d．e，status
		1437			1
		143E 1P1：	IFF	JBKT，EQUALS．2ERO．L21	
		1439＋	PSH	Јвкт	
E7Ds	114330	$1440+$	Lxi	D，J日KT	
	CDO1E5	$1441+$	call	PSht	
		1442＋	PLL	v_{1}	
87D日	119550 CDI	1443＊	LxI	D．vi	
ETDE	CDITES	14．14＊	CALL	PLLT	
		1445 ＋	PSH	2ERO	
E7E1	1170 EO	1446 ＊	LxI	d，2ERO	
57 EA	CDO185	1447＊	CALL	PSHT	
		144E＊	PLL	$v 2$	
E7E7	119730	$144.7+$	Lxi	D．v2	
87EA	CDi7es	1450＋	CALL	PLLT	
E7ED	cocdes	1451 ＋	call	equals	
E7FO	E601	1452＊	ANI	01H	

LOC	OBJ	line	source	tatement	
E7F2	C20183	1453+	JNZ	121	:SET PSII=PSIO
		1454	PSH	PSIO	
67Fs	$116 C 30$	1155*	L×1	D.PSIO	
	CDO1ES	14.56*	CALL	PSHT	
		1457	PLL	Psil	
67FE	116030	1458+	LXI	D.PSII	
	CD1785	$1459+$	CALL	PLLT	icalculate difference between jxdot
		1460 L21:	PSH	jxDOT	
8809	113830	1461+	LXI	D. $3 \times$ DOT	
	CDOIES	1462+	CALL	PSHT	
		1463	PSH	ExDOT	- AND CXDOT
E807	115030	146.4+	LxI	D.exdot	
8807	cdoies	1465+	call	PSHT	
E80	CDPaeE	1466	CALL	FSUB	
Es10	cdcaee	1457	call	ptof	
E813	CDTOEE	1468	CALL	FMul	
5816	CD24EF	1469	CALL	SQRT	
		1470	PLL	14	
8819	114830	1471*	LXI	D.II	
seic	cDites	1475+	call	PLLT	((CNSTio=CRITICAL VALUE DF DIFFERENCE)
		1473	IFF	11,LEQUAL, CNST10.L22	
		1474*	PSH	11	
ยe22	cooles	1475+	LXI	Dill	
		1478*	call	PSHT	
		1477+	PLL	$v 1$	
EE25	119530	1478+	LxI	D.Vi	
$8 \mathrm{E23}$	CDi7e5	1479+	CALL	PLLT	
		$1480+$	PSH	CNSTiO	
8829	11 ED30	14E1+	LXI	D.ENSTIO	
¢E2E	coiles	$1482+$	call	PSHT	
		14E3+	PLL	v2	
8531	119930	14E4+	LXI	D.v2	
8934	CDI7es	1485*	CALL	PLLT	
8837	CDSJ85	148t.	CALL	lecual	
6237	E601	1487*	Ardi	O1H	
EsjF	C24288	$1488{ }^{\text {4 }}$	JNZ	122	
	czisse	1489	JMP	126	: Calculate difference between jydot
		1490 L22:	PSH	sYdot	
88.2	1113030	1491+	LXI	D. SYDOT	
S825	cooles	1493*	CALL	PSHTT	; AND CYDOT
		1493 $1984+$	PSH LXI	CYDOT D, eYdat	
веля	codes	14.75+	call	PSht	
EzsE	CDPaEE	1496	CALL	fsub	
EES 1	cdiaee	1497	CALL	PTOF	
8EES	CDT0eE	1498	call	FML	
8857	CD24EF	1499	call	SQRT	
		1500	PLL	11	
\&عED	114830	1501+	LXI	D. 11	
	CD17es	1502+	CALL	PLLT	
		1503	IFF	11,LEQUAL, CNST10,L23	
		151)4*	PSH	11	
$\varepsilon 360$ EEs3	114830	1505*	LXI	D.11	
	CDO185	1506	CALL	PSHT	
		1507*	PLL	vi	

Loc	08.5	line	SOurce statement	
Eesb	119530	1508＋	LxI	D．v1
8est	CD178S	$1509+$	CALL	PLLT
		$1510+$	PSH	CNSTIO
E8cc	11 EDJo	1511＋	LxI	D．CNSTio
8E¢F	CDOIES	1512＋	call	PSHT
		1513＋	PLL	v2
EE72	119950	1514＊	LxI	D．v2
EE75	CD1785	1315＊	call	PLLT
E873	CD63Es	151s＋	call	legual
8875	EsO1	1517＋	ANI	O1H
8E7D	cze3e8	$1518+$	JNZ	L23
Be80	c3cses	1519	JMP	126
		1520 Lこ3：	IFF	JYDOT，EQUALS，ZERO，L24
		1522＊	PSH	JYDOT
cees	113030	1522＊	LXI	D．JYDOT
6836	CDO185	1523＋	CALL	PSHT
		1524＋	PLL	v_{1}
E8E9	119530	1525＋	Lxı	D，V1
عвs¢	CD1785	1526＋	CALL	PLLT
		$1527+$	PSH	2ERO
888F	117 DeO	1528＋	LXI	D．2ERO
8892	CDO1es	1529＊	CALL	PSHT
		1530＋	PLL	$\checkmark 2$
8995	117830	1531＋	LXI	D．v2
8898	CD17es	1532＊	CALL	PLLT
8893	CDSDes	1533＊	CALL	Equals
ع89E	E601	$1534+$	ANI	01 H
عвaо	ciaseb	15354	JNZ	L24
88A3	c9	1536	RET	
		1537 L．24：	IFF	JXDOT ERUALS．2ERO，L26
		1538＋	PSH	JXDOT
beas	113930	$1539+$	LxI	D． $3 \times$ DOT
8Ba7	CDO185	$1580+$	CALL	PSHT
		1541＋	PLL	v_{1}
beat	119530	1532＊	LXI	D．V1
bead	CD1785	1543＋	Call	PLLT
		1534＊	P5H	2ERO
عego	117 DBO	1545＋	Lxı	D，ZERD
cebs	CDOIES	$1546+$	CALL	PSHT
		1547＋	PLL	02
8ebs	119930	$1538+$	LxI	D．v2
68B9	C01785	1549＊	call	PLLT
Eebc	EDEDE5	1550＋	call	ecuals
88EF	E601	1551＊	ANI	01H
Sect	cacses	1552＋	Jriz	L26
eeca	c9	1555	RET	
		1554 レさも：	PSH	x0
escs	116450	1555．	LxI	D．$\times 0$
esce	CDO1ES	1556＋	CALL	PSHT
		1557	PLL	$x 1$
eect	115830	155き＋	LXI	Dixi
8ece	CD1785	1559＋	CALL	PLLT
		1560	PSH	yo
E8D1	116530	1561＊	LXI	D．YO
EEDA	coores	1562＋	CALL	PSHT

LOC	083	LINE	SOURCE Statement		
		1583	PLL	$y \mathrm{I}$	
8 857	115030	156. ${ }^{\text {+ }}$	LXI	D.YI	
EEDA	CDi7es	1565*	call	PLLT	
		1566	PSM	PSIO	
$\begin{aligned} & 8900 \\ & 82 \equiv 0 \end{aligned}$	$116 C 30$	1567+	LXI	D.Psio	
	cooses	15tE+	Call	PSHT	
		15s9	PLL	PSII	
8EES	116030	1570+	LXI	D.psil	
	CD17E5	1571+	CAlL	PLLT	
		1572	PSH	JxDOt	
とėE	113830	1573*	LxI	D. XXDOT	
	CDO1E5	1574*	CALL	PSHT	
		1575	PLLL	cxdot	
SEEF EEF2	115030	1576	LXI	D.cxdot	
	CD17E5	1577+	CALL	PLLT	
		1578	PSH	JYDOT	
6EFS	113630	1579+	LXI	D. JYDOT	
sers	CDOIES	1580+	CALL	PSHT	
		1581	PLL	CYDOT	
عe:s sefe 8901	115450	1:82+	LXI	D.CYDOT	
	cosites	15E3*	CALL	PLLT	
	C9	1584	RET		
		1585			1
		15 eb			1)
		1587			*** SUBROUTINE IPZ **
		1588			1
		1589			IIF POSITION ERROR IS EELOW THRESHOLD
		1590			: VALUE ECRIT THEN UPDATE XI AND Yi
		1591			1 ELSE RETURN
		1592			1
		1593			: REGISTERS AFFECTED: A,DiEIS
		1594			1
		1595 IP23	IFF	ETA.GTHAN, ECRIT.LJ2	ilf etalecrit then continue else
		$1596+$	PSM	ETA	
$\begin{aligned} & 8902 \\ & 8905 \end{aligned}$	117030	1597*	LxI	d.ETA	
	CDO1E5	1585*	CALL	PSHT	
		1599+	PLL	$V_{1}{ }^{\text {d }}$	-
$\begin{aligned} & 8908 \\ & 8>08 \end{aligned}$	119530	$1600+$	LxI	D.vi	
	CDi7e5	$1601+$	CALL	PLLT	
		1602*	PSH	ECRIT	
890E	118E30	160 -	LXI	D.ECRIT	
8911	cDo1e5	$1603+$	call	PSHT	
		$1605+$	PLL	$v 2$	
8914	119930	$1608+$	LXI	Div2	
8917	CD17es	$1607+$	CALL	PLLT	
E914	cdisers	1 ¢08*	Call	GTHAN	-
8910	E601	$1809+$	ANI	014	
891F	CこSE89	1610*	JNZ	132	
		1611	PSH	ExDOt	; XI=XI+CNSTII*CXDOT
8922	115030	1612+	LXI	D. CXDOT	
8925	CDO1e5	1613+	CALL	PSHT	
		$1 \in 14$	PSH	CNSTII	(YI=YItCNSTiA*CYDOT
E928	11F130	1615*	LXI	D,CNSTil	
8929	cootes	1616*	CALL	PSht	
6925	cdioee	1617	CALL	frul	

Loc	OBJ	line	SOURCE	tatement	
		1615	PSH	$x 1$	
ع931	115850	$1619+$	LxI	D. $\times 1$	
ع93a	CDO1ES	$1420+$	Call	PSHT	
8937	CDeaEE	1621	call	FADD	
		1622	PLL	$\times 1$	
E93A	115830	162.3*	LxI	Dixi	
E93D	CD17es	$1624+$	call	PLLT	
		1625	PSH	crdat	
8940	115430	18.58	Lxi	D.CYDOT	
89.3	CDO183	1627+	Call	PSHT	
		1623	PSH	CNSTil	
8946	117130	$1629+$	LXI	D.CNST11	
E949	CDO1ES	$1630+$	CALL	PSHT	
894C	CD708E	1631	CALL	FMLL	
		1632	PSH	Y	
8945	115c30	$1653+$	LxI	diri	
ess	CDO183	$1634+$	CALL	PSHT	
8953	cdbaee	1635	call	FADD	
		1636	PLL	YI	
E958	$115 c 30$	1637+	LXI	D.YI	
esse	CD17e5	$1638+$	call	PLLT	
ع95E		1639 L32:	RET		
		1640			1
		1641			1
		1643			[** Subrdutine ffd **
		1643			1 l
		1644			icalculates valve openings.
		1645			1 mesults in range -1 to +1
		1646			1)
		18.17			iregisters affecteds A.d.E,Status
		1648			
		1649 FFD:	PSH	JSLEW	beet slew voltage
895	114030	$1650+$	LxI	D. JSLEW	
E962	CDO185	1651 +	CALL	PSHT	
		1652	PLL	VUSLEW	
8955	11 1930	$1653+$	LXI	d, vvilew	
6968	CD1785	$1654+$	CALL	PLLT	
		1655			;
8968	3A0030	1656	LDA	MODFLG	IDISREGARD JOYSTICK INPUTS IF IN
E9EE	FEOO	1657	CPI	OOH	- REPEAT MODE
E970	c2BFe9	1658	JNZ	L4. 3	
		1659			: IF jxdot and jydot Eath $=0$ THEN
		1660			; SET VVALFA AND UVEETA TO zERO
		$16 \in 1$	IFF	JXDDT, EQUALS, 2ERO,L44	
		16E2+	PSH	JxDOT	
6973	113830	166.3+	LXI	D.jxdot	
8976	cDotes	16E4*	CALL	PSht	
		$1665+$	PLL	$v 1$	
8979	119550	166¢+	LxI	D.vi	
8975	CD17es	186,7+	CALL	PLLT	
		$166.9+$	PSH	2ERO	
8975	117000	1669 +	LXI	D, ZERD	
8982	cooles	1670 +	CALL	PSHT	
		1671*	PLL	$v 2$	
8985	119930	1672*	LXI	Divz	

LOC	0日J	line	source	tatement	
عэев	CDices	1673＋	call	pllt	
Ever	CDED85	$1674+$	call	equals	
8965	EbO1	$1675+$	ANI	O1H	
ع970	C27689	1676＋	JNZ	L44	
8＊93	c38F89	1677	JMP	L43	
		167E La4：	IFF	JYDOT，EQUALS，ZERO，L4S	
		1679＊	PSH	JYDOT	
8776	113030	$1680+$	LXI	D．JYDOT	
8999	cDoies	$1681+$	CALL	PSHT	
		16E2＋	PLL	$v 1$	
ع9ッС	119530	16ES＋	Lx1	D． VI_{1}	
E9จF	CD1785	1684＋	CALL	PLLT	
		1685＋	PSM	zero	
89a2	117080	1686.	LxI	D，zero	
epas	CDOIES	1687＊	call	PSHT	
		16E8＋	PLL	$v 2$	
eqab	119930	1689＋	LxI	D．v2	
Eqab	CDi7es	$1690+$	CALL	PLLT	
ETAE	CDSdes	1691＋	call	EQuALS	
Eッ91	EbO1	1692－	ANI	01 H	
8935	C28989	1693＊	JNZ	L46	
8786	C3BF89	1694	JMP	L43	
8989	CDsoec	1695 La6．	CALL	freeze	
898C	CJBbBa	1896	JMP	L47	
		1697 L431	PSH	XI	
E95F	115830	1698＋	LXI	D，XI	
89.2	CDO185	$1699+$	CALL	PSHT	
8 －こ5	CDCAEE	1700	call	PTOF	
とャこを	CD708E	1701	call	FMLK	
		1702	PSH	YI	
8968	115030	1703＋	LxI	D．Yy	
89CE	cDoies	$1704+$	call	PSHT	
89D1	cdease	1705	call	ptof	
E9Da	ED70EE	1708	CALL	FMLL	
$8 \rightarrow 07$	cosaee	1707	call	FADD	
89DA	CD24EF	1708	call	SRRT	
		1709	PLL	DX	
890d	110130	1710＋	L×I	D．DX	
89 ± 0	CD1785	1711＋	call	PLLT	
		1712			！${ }^{\text {a }}$
		1713	PSH	CNSTI	； $\mathrm{BI}=\mathrm{ACOS}($（LA＊＊2＋RA＊＊2－DX＊＊2）／
89EJ	114180	1714＊	LXI	D．CNSTI	
8¢ES	C00185	1715＋	CALL	PSHT	
		1716	PSH	DX	（（2＊LA＊RA））
59E9	110150	1717＊	Lx	D．DX	
89EC	CDO185	1715＊	call	PSHT	
E9EF	CdCaee	1719	CALL	PTOF	
8972	CD70eE	1720	call	FMLI	
89F5	CDasee	1721	CALL	FSUB	
		1722	PSH	CNST2	
8978	11 ASBd	1723＋	LXI	D．CNST2	
ع9Fb	cDotes	1724＊	call	PSHT	
EGFE	CDAOEE	1725	call	FDIV	
SAO1	CDOCEF	1726	call	acos	
		1727	PLL	gi	

LOC	08 J	line	SOURCE STATEMENT		
EAO4	120930	1728+	Lxı	D.bi	
EAO7	CD1785	$1729+$	CALL	PLLT	
		1730			1
		1731	PSH	CNST3	: $A A=A C O S C(L A * * 2+D X * 2-R A * * 2)$,
EAUA	11 aveo	1752+	L×I	D.CNST3	
EAOD	CDO185	1733+	CALL	PSHT	((2*LA*DX)
		1734	PSH	DX	
EA10	110130	1735+	LxI	D.DX	
ER13	CDO1ES	17364	CALL	PSHT	
EA16	cDCase	1737	call	prof	
EAIP	CDTOsE	1738	CALL	Fmul	
EAIC CDSAEE		1739	call	FADD	
		1740	PSH	DX	
EAIF	110130	1741+	LXI	D.DX	
SA22	CDO185	1742+	Call	PSHT	
		1743	PSH	CNST4	
EA25	11 ADEO	1744+	Lxt	d.cnsta	
ER28	cD01Es	1745+	CALL	PSHT	
6A2B	CD708E	1746	CALL	fiml	
eaze	cdanee	1747	call	FDIV	
Eȧ:	CDOCsF	1748	call	acos	
		1749	PLL	AA	
8434	110030	$1750+$	Lxi	D, AA	
EA37	CD17Es	1751+	CALL	PLLT	!
		1752			
		1753	PSH	Y_{1}	(AB=ACOS (-YI/DX)
EAJA	$115 c 30$	1754*	Lxi	D.YI	
EAJD	cDoies	$1735+$	call	PSHT	
baso	CD7C8E	175s	CALL	CHSF	
		1757	PSH	DX	
8843	110130	1758*	LXI	D. DX	.
Sals	CDO185	1759*	CALL	PSHT	
EAC9	cdadee	1760	CALL	FDIV	
sasc	CDOCeF	1761	CALL	ACOS	
		1762	PLL	AB	
EAAF	111130	1763+	L×1	D.AB	
SAS 2	CD1785	176.4+	CALL	PLLT	
		176s	PSH	AB	IAImA $=A B$
EAES	111130	$1766+$	L×1	D.AB	
EASE	CDOIES	$1767+$	Call	PSHT	
		17tB	PSH	AA	
EASE	110 D 30	$1769+$	LXI	D.AA	
ease	CDO185	$1770+$	CALL	PSET	
EAb1	CDE4EE	1771	CALL	FADD	
		1772	PLL	AI	
EAb4	110530	1773*	LxI	D.AI	
EAG7	CD1785	1774+	CALL	Plit	
		1775	PSH	AI	: EALPHA=AI-ALPHA
SAEA	110530	177t+	LXI	D.AI	
EAED	cDoses	1777*	CALL	PSHT	
		1778	PSH	Alpha	
EA70	118430	1779+	LXI	D, ALPHA	
6A73	CDOIES	1780	CALL	PSHT	
EA7S	cD9aEE	1781	CALL	fsub	
EA79	cdCaee	1782	CALL	PTOF	

Loc	DBJ	LINE	source	tatement	
		1783	PLL	EALPHA	IVUALFA＝A1AmEALPHA
EATC	11A130	1784＋	LxI	D．EALPHA	
BATF	CDi7es	1785－	call	PLLT	
		1786	PSH	A1A	
EASE	110950	1787＋	LxI	D．A1A	
bass	CDO1E5	$1788+$	call	PSHT	
sacb	catoee	1789	CALL	FmLl	
		1790	PLL	vValfa	
BABB	11 AD30	1791＊	L×I	D．VVALFA	
babe	CD1785	1782＊	CALL	PLLT	
		1793	PSH	BI	IEBETA＝Bi－beta
SAP1	110930	1794＋	LXI	D，㫙	
BA94	c．0185	1755＋	CALL	PSHT	
		1796	PSH	beta	
EA97	118830	1797＋	LXI	d．beta	
baga	CDU185	$1798+$	call	PSHT	
EAPD	CDoaee	1799	CALL	FSUB	
BAAO	cdicase	1800	CALL	PTOF	
		1801	PLL	Ebeta	quVBETA＊A1B＊EBETA
eanj	11 A530	1802＋	LxI	D，EbETA	
EAAS	CD1783	1503＋	CALL	PLLT	
		1804	PSH	A18	
bAAP	11 DD30	$1805+$	LXI	D．A18	
EAAC	cootes	1E06＋	CALL	PSHT	
EAAF	CD708E	1807	CALL	FMuL	
		1 ¢08	PLLL	wbeta	
bab2	118130	$1509+$	LxI	d．VVEETA	
babs	CD1785	1310＋	CALL	PLLT	
babe	CDEDEs	1811	CALL	Chklmt	
eabs	Ja0030	1512 L47：	LDA	MODFLG	IDISREGARD JOYSTICK INPUTS IF IN
cabe	FE00	1813	CPI	OOH	：REPEAT MODE
baco	czojeb	1814	JNZ	L49	
		1815			：CALCULATE UVBKT
		1816			（ IF JBKT＝0 THEN UVBKT＝SGN（EPSI）
		1817			1 ELSE VVBKT $=$ SGN（JBKT）
		1818	IFF	JBKT，GTHAN，2ERD，L4	
		1819＊＊	PSH	Jвкт	
eacs	114430	$1820+$	LXI	D，Ј®кт	
EAC6	CDOIES	1821＊	CALL	PSHT	
		1822＋	PLL	v_{1}	
EACs	119530	1523＊	LXI	D． VI_{1}	
EACC	CD1785	1524＋	CALL	pllt	
		1825＋	PSM	zero	
bacF	117 DEO	15 264	LXI	D，zero	
EAD2	CDO1ES	1627＋	call	PSHT	
		1E28＋	PLL	v2	
SADS	119930	1829＋	LxI	D．v2	
EADE	CD1785	$1830+$	CALL	PLLT	
Eadb	CDIOes	18こ1＋	CALL	GTHAN	
EADE	Eto1	1852＋	ANI	OfH	
eamo	CこS0er	1Eエコ＋	JNZ	L41	
		1 183	IfF	JBKT，LTHAN，ZERO，L42	
		1835＊	PSH	JBKT	
EAE3	114aso	$183 \mathrm{~b}+$	LXI	D，JBKT	
¢AEb	couses	18さ7＋	CALL	PSHT	

Loc	OBJ	LINE	source statement		
		15さら＋	PLL	$v 1$	
EAE9	115530	$1858+$	LxI	D．V1	
BAEC	CD17ES	1830＋	call	PLLT	
		1811＋	F5H	2ERO	
bAEF	117080	1892＋	LXI	d．zerd	
baf 3	CDO185	1843＋	CALL	PSht	
		1844＋	PLL	$v 2$	
safs	119930	18．45＊	LxI	D．v2	
SAFs	CD1785	1east	call	PLLT	
bafb	CDa7es	1847＋	call	LTHAN	
EAFE	Esol	1898＋	ANI	O1H	
E800	c25deb	$1 \mathrm{Ea9}+$	INZ	Laz	
		1850 L492	IfF	EPSI，GTHAN，PCRIT，LAI	
		1851－	PSH	EPSI	
8803	117830	18：52＋	LxI	D．EPSI	
E80\％	cdoies	1853＋	CALL	FSHT	
		1ど54＊	PLL	$v 1$	
S809	119530	185．5＋	LXI	D． V_{1}	
eboc	CDI7ES	1 155t＋	CALL	PLLT	
		1857＋	PSH	PCRIT	
EBOF	11 1330	$1855+$	LxI	D．PCRIT	
8812	CDO185	1859＊	CALL	PSHT	
		$1660+$	PLL	$v 2$	
8815	119930	1861 ＋	LXI	D．vz	
ebis	CD1785	16．24＋	CAiLl	PLLT	
EB1B	C030es	$1203+$	CALL	gthan	
EBIE	Es01	$1564+$	ANI	O1H	
EB20	C2508日	1865＊	JnZ	L43	
		1866	IFF	EPSI LTHAN，NCRIT，LA2	
		18¢7＋	PSH	EPSI	
EE23	117830	$1868+$	LxI	D，EPSI	
E826	CDO185	1869＋	CALL	PSHT	
		1870＊	PLL	v_{1}	
EB29	119530	1871＊	LXI	D． V_{1}	
EB2C	CDi785	1872＋	CALL	PLLT	
		1873＋	PSH	NCRIT	
beif	$11 \mathrm{Es30}$	1274＊	LxI	dincrit	
E832	CDO183	$1878+$	CALL	PSHT	
		1876＊	PLL	$v 2$	
8835	119950	1 1877＊	Lx：	D．v2	
6838	CD17es	$1878+$	call	Pllt	
EBEB	CD47es	$1278+$	CALL	LTHAN	
Ebie	EbO1	18 EO＋	AN：	O1H	
8840	C25der	1891＋	JNZ	L42	
		$1 \mathrm{EE2}$	PSH	zero	：EPSI＝O：VVBKT $=0$
EB43	117 DEO	1803 ${ }^{\text {＋}}$	LXI	D．ZERO	
EBas	CDO1ES	18e4＊	CALL	PSHT	
		1885	PLL	vubkt	
E849	118530	1とこと＋	Lxi	D．UVBKT	
EBACEBAF	CD1785	1EE7＋	CALL	PLLT	
	c9	18 Es	RET		
		1EE9 Lat：	PEM	ONE	
EBSO	118180	18904	LXI	D．ONE	
8853	cDoles	1891＊	CALL	PSHT	
		$1 E 92$	PLL	UVBKT	

LOC	OBJ	LINE S	SOURCE	statement	
e8ss	118530	1893+	LXI	D, vuekt	
8859	CD1785	1893+	call	PLLT	
®BEニ	C9	1895	RET		
		1896 L42:	PSH	ONE	
EBSD	118180	1897+	LxI	D. One	
EBSO	cDO1e5	189E+	call	PSHT	
EB63	CD7CEE	1897	CALL	CHSF	
		1900	PLL	VVEKt	
EB66	118530	1901 +	L×I	D.VVBKT	
EB67	CD1785	1902+	call	PLLT	
eboc	C9	1903	RET		
		1704			;
		1805			3
		190's			:** SUBrdutine chiklmt **
		1907			
		1708			ffreezes lift and reach arm
		1709			: MOVEMENT IF ATTEMPT IS MADE TO
		1910			: Exceed the limit of ram travel
		1911			'
		1912			; Registers affected: A.d.e.status
		1713			
		1914 CHKLMT:	: IFF	MCALFA, GEQUAL AMAX, LBO	
		1915+	PSH	mCALFA	
EB60	118030	1916+	L×I	DimCALFA	
EB70	EDO1ES	1717+	CALL	PSHT	
		1918+	PLL	V1	
E873	118530	1919+	LXI	Divi	
8B76	CD1785	1920+	CALL	PLLT	
		1921*	PSH	Amax	
8B79	110531	19224	LxI	D. AmAX	
E87c	EDO1E5	1923+	CALL	PSHT	
		1924*	PLL	$v 2$	
EB7F	:19930	1925*	LXI	D.v2	
5862	CDI7Es	1926*	call	PLLT	
ebes	cosees	1927*	call	gegual	
epes	E601	19284	ANI	O1H	
ebsa	C2908日	1729*	JNZ	L8o	
Ebed	c3bosb	1930	JMP	LE1	
		1931 Le0:	IFF	vValFa,gequal, 2ERO,LE7	
		1932+	PSH	GUALFA	
E890	11 ADSO	19334	LXI	D.vVALFA	
E893	çores	1935*	CALL	PSHT	
		1955+	PLL	$v 1$	
$8 \mathrm{P96}$	119530	1936.	Lxi	Divi	
EB99	CD1785	19374	CALL	PLLT	
		1935+	PSH	2ERO	
8B9C	117080	$1939+$	L×I	D,2ERD	
EB9F	CDO185	1780+	call	PSHT	
		1941+	PLL	$v 2$	
EBA2	119930	1982*	LXI	D.v2	
eras	CD1785	1983+	CALL	PLLT	
ebas	CDSEES	1944+	CALL	genual	
ebag	Et01	1905*	ANI	01 H	
EBAD	c27cec	1946*	JNZ	L87	
		1947 Le1:	IFF	MCALFA,LEQUAL AMIN,LEZ	

LOC	OBJ	LINE SOURCE Statement			
		205e FREETE：	PSH	2ERa	
sceo	117 DeO	2059＋	LxI	D．IERD	
eces	CD0185	$2080+$	call	PSHT	
¢ここ6	CDCaEE	2081	call	PTDF	
		2082	PLL	VVALFA	
ECsc	11 AD30	$206.3+$	Lx 1	D．UVALFA	
	CD1783	2064＋	CALL	pllt	
		zoes	PLL	vVBETA	
ECGF	118130	20set	LXI	d．vUEETA	
EC：72	CD1785	2080 $7+$	CALL	PLLT	
8C95	c9	2088	RET		
		2069			！
		2070			；
		2071			；＊＊SUBROUTINE OUTPUT＊＊
		2072			
		2073			；dperates cut－off，dffsets
		2074			；AND OUTPUTS SIENAL TO
		2075			－Valve drivers
		2076			＇
		2077			iREGISTERS AFFECTED：A，D．E，S
		2078			
		2079 QUTPUT：	PSH	VUSLEW	；SET SLEW Valve
SC96	11 A930	$2080+$	LxI	D．VUSLEW	
6 C 99	CDO185	2081＋	CALL	PSht	
		20 22	PLL	FVO	
EC9C	11 C230	20E3＋	LXI	D，FVO	
ECPF	CD1785	2084 ${ }^{\text {＋}}$	CALL	PLLI	
8cal	3ad530	2085	LDA	SPOF	
ECAS	$3 \mathrm{SC930}$	2086	STA	PDF	
ECAB	3ADT30	2087	LDA	SNOF	
ECAz	32Ca30	20E8	STA	NDF	
ecae	3ad630	$20=9$	LDA	SPmax	
ECBI	32CB30	2090	STA	Pmax	
8cga	Jadezo	2091	LDA	Smmax	
ECB7	こ2CC30	2092	STA	ntiax	
ECbA	cdsabd	2093	CALL	VLIN	
ECbD	328930	2094	Sta	vs	
scco	D300	2095	OUT	OOH	
		2096 L521	PSH	VVALFA	iset lift valve
ECC2	11 AD30	2097＋	LXI	D．VWALFA	
eccs	cD0185	2098＋	CALL	PSHT	
		2099	PLL	FVO	
Eccs	110250	2100＋	LXI	D．fvo	
eccb	CD1785	$2101+$	Call	pllt	
ECCE	3acdso	2102	LDA	APOF	
ECD1	ここC930	2103	Sta	paf	
ECDA	JACF 30	2104	LDA	ANOF	
ECD7	उこCajo	2105	STA	NOF	
ECDA	jaceso	2108	LDA	apmax	
ECDD	32CBJO	2107	Sta	Pmax	
ECEO	3adozo	2108	LDA	anmax	
ECES	こ2cc30	2109	STA	nmax	
ECE ${ }^{\text {d }}$	CDEABD	2110	call	VLIN	
ECE9	こ28ajo	2111	STA	VL	
ECEC	D301	2112	OUT	O1H	

Loc	OBJ	LINE	SOURCE	tatement	
		2113 L53：	PSH	UVBETA	iset reach valve
عCEE	118150	2114＋	Lx：	D．vubeta	
ECFI	cdoses	2115＊	call	PSHT	
		2116	PLL	FVo	
ECFa	116230	$2117+$	LXI	D．FVO	
ECF7	CD17ES	$2110+$	CALL	PLLT	
ECFA	3AD130	2119	LDA	BPOF	
ECFD	32c930	2120	Sta	POF	
EDOO	3adz30	2121	LDA	BNOF	
8003	32cajo	2122	STA	NOF	
E00s	3adz30	2123	LDA	bPmax	
SDO9	ここCbIo	2124	STA	PMAX	
BDOC	3adajo	2125	LDA	Bnmax	
EDCF	32Ccso	2126	STA	nmax	
$8 \mathrm{SD}^{2}$	cdeaed	2127	CALL	VLIN	
GD15	I2bsio	2128	STA	VR	
8D13	D321	2129	out	21H	
		2150 L54：	IFF	VVBKT，ECUALS，2ERO．LS5	iset bucket switch
		2151＋	PSH	vVbkt	
8DIA	118530	2132＊	LXI	D．Wekt	
EDID	CDO1E5	2135＋	CALL	PSHT	
		$2134+$	PLL	$v 1$	
8220	119530	$2135+$	LXI	Divs	
8023	CD1785	2136＋	CALL	PLLT	
		2137＋	PSH	2ERO	
ED23	117 DEO	$2138+$	LXI	D． 2 ERD	
6029	CDO185	$2139+$	Call	PSHT	
		$2110+$	PLL	$v 2$	
ED2C	119930	2141＋	LXI	D．v2	
ED 3 F	CDi7es	2142＋	CALL	PLLT	
6032	CDsdes	$2143+$	CALL	EQuals	
عDコ7	ESO1	$2144+$	ANI	O1H	
	C25Ded	2145＋	JNZ	LES	
		2146	IFF	WVBKT．GTHAN，ZERO，LS6	
		$2147+$	PSt	VVBKT	
803A	118530	$2148+$	L×I	D．Wubkt	
ED3D	cDotes	$2148+$	CALL	PSHT	
		$2150+$	PLL	$v 1$	
8D40	119530	2151＋	LxI	D．vi	
80a3	CDITES	2152＊	CALL	PLLT	
		2153＋	PSH	zero	
ED36	117000	$2154+$	LxI	D．2ERO	
ED49	CDO185	21554	CALL	PSHT	
		2156＊	PLL	$v 2$	
6DCC	119930	2157＊	LXI	D．v2	
6DAF	CD17es	$2158+$	call	PLLT	
EDS2	CDJoes	$2159+$	CALL	GTHAN	
EDE5	E¢O1	21604	ANI	01 H	
ED57	C365ED	21614	JNZ	L5s	
EDEA	C36Ded	2182	Jmp	L57	
EDSD	3ECO	216．5 L．55：	mvi	A．OCOH	：SEGMENT FOR STATIC bucket
EDSF	こ28C30	2164	STA	ve	
8De？	D322	2165	OUT	22H	
SD64	c9	21st	RET		
EDES	3E60	2167 L5e：	mvi	A．80H	：SEGMENT FOR OPENING BUCKET

LOE	OBJ	LINE	SOURCE	tatement	
8067	328c30	2168	STA	$v \mathrm{v}$	
ELbA	D322	2169	םut	23\%	
EDS	C9	2170	RET		
SDSD	JEAO	2171 L57:	MVI	A,4OH	isegment for closing bucket
SDSF	jabcso	2172	STA	vB	
8072	D322	2173	OUT	22M	
EC74	C9	2174	RET		
		2175			;
		2178			!
		2177			i** Subroutine float **
		2178			1 1
		2179			: Puts contents of 'a register
		2180			: ON TOP OF APU Stack
		2181			-
		2182			fregisters affectedi A
		$21 E 3$,
8075	320010	2184 FLOAT:	Sta	1000	
EDT3	AF	2185	XRA	A	
EJ79	520010	2156	STA	1000H	
EDTE	cdesee	21 ¢7	CALL	FLTS	
5375	Cヶ	2128	RET		
		2189			!
		2190			
		2171			[** SUBroutine fix **
		2192			!
		2193			: PUTS 32-BIT TOS Of APU
		2194			: in the a register
		2195			
		2196			iregisters affected: A
		2197			
SD80	CDACBE	2198 Fix:	CALL	Fixs	
EDE3	3 SOO 10	2199	LDA	1000 H	
SDEs	3 A 0010	2200	LDA	1000 H	
80å		2201	RET		
		2202			!
		2203			-
		2204			;** SUBROUTINE VLIN **
		2205			-
		2206			IVALVE OPENING IN NOMINAL RANGE - 1 to
		2207 2208			: +1 IS PASSED IN FUO.
		2209			- be output to the driver circuit
		2210			: USING DATA POS. PmAX, NOS, \& NMAX.
		2211			? ${ }^{\text {a }}$
		2212			; Registers affectedi A,dieistatus
		2213			
		2214 VLIN:	IFF	FVO,GTHAN, 2ERO,L61	
		$2215+$	PSH	Fvo	
EDSA	110230	$2216+$	L×1	D, FVO	
EDED	CDO185	2217+	Call	PSHT	
		2218*	PLL	V1	
8090	119530	2219+	LXI	D. ${ }^{1}$	
8093	CD1785	2230+	CALL	PLLT	
		2321*	PSH	ZERO	

LOC	O日J	LINE	source statement		
8099	c00185	22：3＋	Call	PSHT	
		2224＋	PLL	$v 2$	
EDTC	119930	23こ5＊	LXI	D．v2	
EDYF	cDites	2こご +	call	PLLT	
BDA：	cosises	22：7＋	call	gthan	
edas	EtO1	22こE＋	ANI	01H	
EDA7	c2cced	2258＊	JNZ	LS 1	
		2230	IFF	FVO．LTHAN，ZERO，LG2	
		2231＋	PSH	FVo	
EDAA	110250	2235＋	LXI	D．fvo	
EDAD	CD0185	22354	CALL	PSHT	
		2234＋	PLL	$v 1$	
edbo	119530	2255＋	LxI	D．vi	
ED83	CD1785	2236＋	CALL	Plit	
		2237＊	PSH	2ERC	
8DB6	117080	2258＋	LXI	D，zero	
8089	cDO185	2239＋	CALL	PSHT	
		2200＋	PLL	$v 2$	
SDBC	119950	$2241+$	Lxi	D．ve	
EDBF	CD1785	2242＋	CALL	PLLT	
BDC2	CDA785	2243＋	call	LTHAN	
EDCs	EsO1	254at	ANI	014	
SDC7	C2008E	2205＋	JNZ	LS2	
EDCA	AF	22.46	XRA	A	isegment for fvo＝o
BDCB	c9	2247	RET		
		2246 Le1：	IFF	FVO，LTHAN，ONE，LES	
		2299＋	PSH	FVo	
EDCC	112230	2250＋	LXI	d．fvo	
SDCF	CDO183	2251＋	CALL	PSHT	
		2252＋	PLL	v_{1}	
8DD2	119530	2253＋	LXI	D．V1	
EDDS	CD1785	2254＋	Call	PLLT	
		2255＋	PSH	ONE	
EDDE	118160	225ct	LxI	D．ONE	
SDDE	CD0183	2257＋	CALL	PSHT	
		2258＊	PLL	$v 2$	．
bdde	119930	2259＊	LxI	D．v2	
EDE1	C01785	2250＋	CALL	PLLT	
8DE4	CDA7es	2561＋	CALL	LTHAN	
BDE7	E601	2262＋	ANI	01H	
EDE9	C3FOBD	226．3＋	JNZ	LE3	
BDEC	3aca30	2264	LDA	Pmax	：SEEMENT FOR FVOIPMAX
EDEF	C9	2265	RET		
SDFO	3ac930	2268 L65：	LDA	POFF	isegment for osfuoli
EDF3	322730	2267	STA	OfFSET	
EDF6	3ACb3o	2268	LDA	Pmax	
BDF9	33ce30	2269	STA	max	
EDFC	crifee	2270	JMP	Le4	
EDFF	c9	2271	RET		
		2272 L62：	IfF	FUD．GTHAN．MINONE，LES	
		2273＊	PSH	Fvo	
EEOO	112230	2374＊	LxI	D．FVO	
EEO3	CDOIES	2275＊	CALL	PSHT	
		2276＊	PLL	vi	
EE06	119530	2277＊	LXI	D．V1	

Loc	OBJ	LINE	source	tatement	
EE09	CD1785	22704	call	PLLT	
		2379＊	PSH	minone	
EEOC	118900	2280＋	L×I	D．minone	
EEOF	CDO185	2こと1＋	call	PSHT	
		2282－	PLL	v_{2}	
EE12	119930	22e3＊	LxI	D．vz	
EE15	CD1785	2：84＋	call	PLLT	
EEIB	cosoes	22e5＋	call	gthan	
EE18	E601	22864	ANI	O1H	
EEID	czale	2287＋	JNZ	Le5	
EE20	Jaccio	2208	LDA	nmax	fsegment for fvos＝－1
EE23	C9	2289	RET		
EE24	Jacaso	2290 L65：	LDA	NOF	isegment far－i ffuo 0
EEこ7	3ic730	2291	STA	OFFSET	
EE3A	Jaccio	2392	LDA	NmAX	
EE2D	3：CE30	2295	STA	Max	
		2294	PSH	Fvo	
8E30	110230	2205＋	LXI	D．fuo	
EESJ	CDO1es	2こ96＋	Call	PSHT	
EEJS	CD7CeE	2こ97	CALL	Chsf	
		2298	PLL	FVo	
EE39	110230	2299＋	LxI	D．fvo	
SE3C	coites	$23001+$	call	pllt	
EESF	JAC730	2301 L6a：	LDA	offset	icommon segment for intermediate
EEA2	CD758D	2502	call	float	；VALVE DPENING
SEAS	CDCA8E	2303	Call	Ptof	
EE48	jaceso	2304	LDA	max	
8E4B	CD7SED	2305	CALL	float	
SEAE	CDIEEF	2306	call	XCHF	
6ES 1	CDqaeE	2307	call	fsus	
		2305	PSH	FVo	
SES4	110230	2309＋	LXI	D．fyO	
6ES 7	cdoies	2310＋	CALL	PSHT	
EESA	CDTOEE	2311	CALL	fmill	
EESD	cDisae	2312	CALL	FADD	
EESO	CDEOED	2313	CAll	FIX	．
EE63	C9	2314	RET		
		2515			1
		2316			1 1
		2317			＊＊＊Maths subroutines macro＊＊
		2318			！
		2319			ithis macro generates the subroutines
		23こ0			－for operating the apu．the parameters
		25：1			－are the function name＇fnctn and the
		2522			；and the control byte＇code＇to be sent
		2323			：TO The apu command register．
		23.4			－
		2エこ5			：REGISTERS AFFECTED：NONE
		2326			；
		2327			；
		2.52 Maths	Macro	FNCTN，CODE	
－		$23: 29$ FNCTN：	STA	AStr	
－		2350	MVI	A，code	
－		23：1	STA	110 OH	
－		2352	LDA	ASta	

LOC	OBJ	LINE	source	tatement	
－		こここ	RET		
		23コ	ENDM		
		2ここち			！
		こごっ			1 l mathe macro cails
		2さこ7			［＊＊MAThS MACRO CALLS＊＊
		25こe			1 ＇mathe macro cals en mill
		ござ			
		2Jai）			1 POINT UNLESS OTHERWISE INDICATED
		2311			（
		2エ12	Maths	FADD：IOH	iadd tos to nos，result on tos
BE64	3acsso	2J13＋FADD：	STA	Astr	
8E67	IE10	2ご4＋	mut	$\mathrm{A}, 1 \mathrm{OH}$	
EES9	320011	2515＊	STA	1100 H	
BECC	jacesio	2こas＋	LDA	astr	
BEGF	C 9	2ご17＋	RET		
		2ご®	MATHS	FMUL， 12 H	imultiply tos and nos，result on tos
6E70	vacoso	2こ．19＋FMUL：	Sta	Astr	
eE73	こE12	2350＋	mVI	A，12H	
EETS	I20011	2351＊	STA	1100 H	
6E78	JACSID	2352＋	LEA	ASTR	
EE78	C9	2353＋	RET		
		2354	MATHS	ChSF， 15 H	ICHANGE SIGN OF tos
SETC	32csso	235．5＋CHSF	STA	AStr	
EETF	IE15	235c＋	mvi	A． 15 H	
8 EES	320011	2557＋	STA	1100 H	
ecea	JAC\＆こ0	2558＋	LDA	ASTR	
6EB7	C9	2359＋	RET		
		2360	maths	FLTS．1DH	SCONVERTS 16 bit tos to 32 BIT FL．PT．
8EEs	32Cs30	2SS1＋FLTS：	STA	Astr	
EEBE	3E10	25から＋	mui	A，1DH	
8ESD	320011	2ごさ＋	STA	1100 H	
EEPO	3ACs 30	23¢4＊	LDA	Astr	
eE93	C9	2355＋	RET		
		2366	Maths	FSUB．11H	PTOS＝NOS－TOS
EE94	32C030	2ごT＋FSU日：	STA	Astr	
6EP7	3E11	2ことご＋	mvi	A， 114	
EETP	320011	2359＋	STA	12 OOH	
eevc	jacejo	2370＋	LDA	AStR	
EEFF	C9	2371＋	RET		
		2372	maths	FDiv．13H	［TOSmNOS／TOS
EEAO	JICeso	2573＋FDIV：	STA	ASTR	
8EAS	JEİ	2374＋	MVI	A． 13 H	
EEAS	320011	2375＋	STA	1100 H	
SEAB	zace30	2376＋	LDA	AStR	
eeab	C ${ }^{\text {c }}$	2377＋	RET		
		2376	maths	FixS．1FH	ICONVERTS TOS TO 16 BIT FixED PT
EEAC	32Ce30	2379＋FixS：	STA	AStR	
bEAF	こE1F	2こEし＋	mVi	A，if	
EEB1	320011	2こe1＋	STA	$1100{ }^{\text {H }}$	
EEba	3ACS30	2ごさ＋	LDA	ASTR	
8EB7	c9	2JE3＋	RET		
		235a	MATHS	Pros．774	ICOPY 16 bit tos onto stack
EEBB	3208310	25es＋PTOS：	STA	ASTR	
EEBE	3 C 77	23Es＋	MVI	A．77H	

LOC	OBJ	LINE	source statement		
EECO	JaC630	23E0＊	LDA	Astr	
EECJ	c9	2389＋	RET		ICOPY 32 日It tos onto stack
		2370	maths	PTOF，17H	
عモС4	32c630	2391＋PTOF：	STA	ASTR	
EEC7	3E17	2392＋	mVI	A．17H	
EEC9	320011	2393＋	STA	11 DOH	
EECC	Jacejo	2394＊	LDA	ASTR	
EECF	C9	2395＊	RET		qrotate tos to bottom of stack
		2396	maths	POPF，16H	
EEDO	İC630	2397＋POPF：	STA	Astr	
EED3	3E18	2398＋	mbi	A． 1 EH	
EE05	320011	2398＋	STA	1100 H	
EEDS	3ACtJ0	2900＋	LDA	Astr	
EEDB	C\％	$2401+$	RET		：PUSH PI ONTO TOS
		2402	maths	PUPI， 1 AH	
EED	İC6Jo	$2003+$ PUPI：	STA	ASta	
gEDF	3E1A	2904＋	MVI	A，iAh	
$\varepsilon E \Xi 1$	320011	2905＋	STA	1100 H	
EEEA	zacs30	2906＋	LDA	AStR	
EEE7	C9	2307＋	RET		；TOS＝SIN（TOS）
		2408	MATHS	SIN，O2H	
EEES	32 Cc 30	$2409+$ SIN：	STA	ASTR	
EEES	$3 \mathrm{EO2}$	2410 ＋	mVI	A． 023 H	
EEED	320011	2411＋	StA	1 IOOH	
EEFO	3acs30	2412＋	LDA	ASTR	
GEFS	C9	2413＋	RET		：TOS＝ASIN（TOS）
		2414	maths	ASIN，OSH	
EEF	こ2c630	2A15＋ASIN：	STA	ASTR	
EEF7	3 E 05	2416＋	mvi	A， 05 H	
EEF9	320011	2417＋	Sta	1100 H	
6EFC	jacbio	2418＋	LDA	ASTR	
EEFF	c9	2419＋	RET		：TOS $=\cos ($ TOS $)$
		24.20	MATHS	COS．03H	
EFOO	32C630	2421＋COS	STA	ASTR	
EFOS	3E03	2423＋	Mvi	A．OTH	
EFOS	320011	2423＋	STA	1100 H	
EFOB	3aCb30	2434＋	LDA	ASTR	
EFOB	C9	2425＋	RET		；TOS＝acos（ros）
		2426	MATHS	ACOS，O6H	
EFOC	32C650	2427＋ACOS：	STA	ASTR	
EFOF	3E06	24こと＋	MVI	A，OSH	
EF11	320011	24こ9＋	STA	1200 H	
EFI4	JaC630	24．50＋	LDA	ASTR	
EFi7	c9	20：1＋	RET		：exchange tos and nos
		24.52	MATHS	XChF，19H	
EF18	ここCET0	2433＋XCHF：	STA	G5TR	
EF 18	こE19	2434＊	mVI	A．19H	
EFID	320011	2435＋	STA	11 ODH	
EF20	jaceso	24コ\＆＋	LDA	ASTR	
\＆F23	C9	2437＊	RET		：TOS＝SCRT TDS
		2451	maths	SCRT．OIH	
6F24	こ2C630	24Jy＋SRRT：	STA	Astr	
عF27	IE01	2440＋	mVI	A．O1H	
EF29	320011	2441＋	STA	120 OH	
EF2C	Jaceso	2442＊	LDA	AStR	

LOC OBJ	Line	SOURCE STATEMENT
EF2F C9	2aAJ+	RET

PUBLIC SYMBOLS
EXTERNAL SYMBOLS

[^0]: Fig. 3-1: Section through Proportional Solenoid Valve (Redrawn from data sheet with kind permission of $A \& D$ Fluid Power Ltd.)

[^1]: The power supply provides the 5 V digital supply for the computer and logic circuits using the tractor battery as the

[^2]: Fig. 6-3: Processor Board Schematic

[^3]: Fig. 11-27: Flowchart for subroutine DELTIP

