NONLINEAR ANALYSIS AND DESIGN OF R/C COUPLED WALL SYSTEMS
 SUBJECTED TO EARTHQUAKE

Thesis submitted in accordance with the requirements of the University of Liverpool for the Degree of Doctor in Philosophy
by

Omar CHAALLAL

A THOUGHT

Scientists believe they know why earthquakes happen. They believe they can estimate where and roughly when they will occur. There is however nothing anyone can do to prevent them.
In November 1980, more than 3000 people died (from whom I personally knew a few) and most of the city was destroyed as an earthquake struck AlAsnam (Algeria).
If nobody can prevent the occurence of earthquakes, it is my belief and conviction that something can and must be done to minimise and ultimately avoid the catastrophical loss of human life and property that we have witnessed so far. It is my profound wish that the present work represents a small contribution in this respect.
This thesis is dedicated to all those who died or lost their homes and roots following Al-Asnam Earthquake.

UNE PENSEE

Les hommes de science croient savoir pourquoi, oū, et approximativement quand un tremblement de terre aurait lieu. Il semble cependant qu'il n'y ait rien à faire pour le stopper.
En novembre 1980, plus de 3000 personnes ont disparu et la majeure partie de la ville detruite suite au tremblement de terre qui frappa Al-Asnam.
Si personne ne peut stopper un tremblement de terre d'avoir lieu, je suis convaincu quant ā moi que les ressources humaines sont immenses et je suis certain qu'elles peuvent, si réunies, orientées et surtout utilisées à bon escient, contribuer à minimiser, voire eviter, les pertes catastrophiques humaines et materielles dont nous avons été temoins \bar{a} maintes reprises. Je souhaite que cette thēse, que je dédis humblement aux victimes d'AlAsnam, represente une petite contribution dans ce sens.

SUMMARY

In this thesis the nonlinear analysis of coupled shear walls subjected to earthquake forces is investigated and nonlinear methods of design are suggested.

Inelastic spectrum analysis (ISA) as applied to coupled shear walls was first investigated. Using a finite element (F.E) method of analysis, coupled shear walls with a wide variety of geometries are investigated. The formulation and procedure of the method has been given in detail. A design method for coupled shear walls built in seismic areas is suggested and an example is carried out. The method is seen to be very practical as it gives a good approximate dimensioning of the coupled shear walls. Furthermore, it has a great potential future as it can easily be incorporated into a design code of practice.

A comprehensive nonlinear step-by-step dynamic analysis is then carried out. A dynamic finite element computer program which takes into account the nonlinearities that stem from the very nature of reinforced concrete, is developed. Allowances are made for phenomena such as cracking, yielding and crushing of concrete, yielding of steel, bond deterioration and stiffness degradation in the coupling beams and aggregate-interlock. To test the validity of the assumptions made concerning the material behaviour, the analytical results are compared with experimental results and existing data.

It is usually a human instinct to fight back with force even in case of defence against " Nature ". The consequent philosophy of stronger and stiffer buildings to counter earthquake forces has been with us for quite some time, but the experience of many catastrophical events has taught us to reconsider our way of thinking. Energy absorbing capacity and ductility have been the
emphasis and the key for structural survival for the last few years. While it is relatively easy to assess the available ductility or ductility supply of a member, ductility demand however, seems to depend on so many factors that it cannot be estimated without preliminary parametric studies. Energy absorbing philosophy and factors which might influence ductility demand are investigated in this study and an optimal nonlinear analysis which balances strength and ductility is suggested.

Even though only coupled shear walls are dealt with in this investigation, the computer program is capable of dealing with plane frame and plane frame - shear wall systems as well. Both the walls and the coupling beams can be either idealised as finite elements or as line elements. Nonlinearities in line elements are confined to preset hinges at the element's ends and monitored by a moment-rotation relationship. When using the FEM approach however, nonlinearities are confined to Gaussian integration points (4 in this study) over the element and monitored by the stress - strain curves of steel and concrete.

ACKNOWLEDGEMENTS

It has been a great privilege for the author to have had the opportunity to carry the research described in this thesis under Mr. C. Thomas, Msc., lecturer in civil engineeering, supervision. His active interest, valuable suggestions and stimulating questions are gratefully acknowledged.

The author wishes to express his gratitude to Professeur Sawko and Mr. Bungey, both from the Civil Engineering Departement, for indulging the inconvenience he might have caused at the beginning of this study.

The author wishes to thank all the staff members of the Civil Engineering Departement for their support, help and encouragement. Special thanks are due to Miss O'Brien, J., for her efficient help in typing and the staff of the computer laboratory for the facilities provided and the always present kindness. Thanks are also due to the Bibby Award for enabling me to cover the travel expenses to Italy.

The financial support from the Algerian Ministry of Higher Education and Scientific Research is gratefully acknowledged.

Finally the author is especially indebted to his family in general and his mother in particular for her forbearance and moral support despite all the difficulties.

CONTENTS

Chapter Page
SUMMARY i)
ACKOWLEDGEMENTS iii)
CONTENTS iv)
TERMINOLOGY viii)
NOTATIONS xi)
ONE INTRODUCTION 1
1.1 General 1
1.2 General Review 2
1.3 Objective \& Scope 8
1.4 Outline of the Thesis 10
TWO CURRENT SEISMIC APPROACHES 12
2.1 General 12
2.2 Elastic Dynamic Approach 12
2.2.1 Direct Integration Method 13
2.2.2 Mode Superposition Technique 13
2.3 Code of Practice Requirements 18
2.3.1 Recommended Lateral Forces 19
2.3.2 Distribution of Lateral Forces 20
2.4 Nonlinear Methods of Analysis 21
2.4.1 Approximate Ductility Factor Method 21
THREE THE FINITE ELEMENT THEORY 23
3.1 General 23
3.2 General Finite Element Procedure 24
3.2.1 Displacement Function 24
3.2.2 Strain-Displacement Relation 25
3.2.3 Strain-Stress Relationship 25
3.2.4 Minimization of potential energy 26
3.3 Coupled Shear Wall Discretisation 28
3.3.1 Isoparametric Elements 28
3.3.2 Line Elements 31
3.4 Overall Solution 34
FOUR INELASTIC SPECTRUM PROCEDURE 39
4.1 General 39
4.2 Approach and Limitations 40
4.3 Procedure of the Method 41
4.4 Application to Coupled shear Walls 47
4.4.1 Natural Frequencies \& Mode Shapes 48
4.4.2 Discussion 49
4.4.3 Modal Forces, Drifts and Combinations 50
4.4.4 Procedure 52
4.4.5 Results and Discussion 53
4.4.6 Adequacy of the Design 54
4.5 Conclusion 55
FIVE NONLINEAR BEHAVIOUR OF R/C 75
5.1 General 75
5.2 Behaviour of R/C 75
5.2.1 Concrete 76
5.2.2 Steel Reinforcement 76
5.2.3 Reinforced Concrete 77
5.3 Description of the Models 77
5.4 Nonlinearities: Plane Stress Consideration 78
5.4.1 Cracking Phenomenon 78
5.4.2 Yielding \& Crushing of Concrete in Compression. 85
5.4.3 Yielding of Steel 88
5.4.4 Composite Material 89
5.5 Beam Element Consideration 90
5.5.1 Spring Nonlinearities Contribution 92
5.5.2 Shear Deformation Contribution 92
5.5.3 Bond Slippage Contribution 93
SIX NONLINEAR DYNAMIC PROCEDURE 112
6.1 Introduction and Assumptions 112
6.2 The Equations of Motion 113
6.3 Mass Matrix 113
6.4 Damping Matrx 114
6.5 Numerical Solution 116
6.6 Pseudo - Loads 119
6.7 Dynamic Equillibrium and Iterations 119
6.8 Analysis Procedure and Summary 121
SEVEN NUMERICAL EXAMPLES 126
7.1 General 126
7.2 Single Wall (SWI) 127
7.2.1 Experimental Results 127
7.2.2 Predicted Responses 127
7.2.3 Discussion 128
7.3 Coupled Shear Walls (SW2A, SW2B) 129
7.3.1 Description of the Models 129
7.3.2 Experimental Response 130
7.3.3 Predicted Response 130
7.3.4 Discussion 131
7.4 Plastic Deformation and Ductility (SW3) 134
7.4.1 Description of the Structure - Modeling 135
7.4.2 Nonlinear Dynamic Procedure \& Results 135
7.4.3 Ductility Demand Variation 136
7.4.4 Effect of Coupling Beam Strength Variation 137
EIGHT OPTIMUM ANALYSIS OF COUPLED SHEARWALLS 174
8.1 Introduction 174
8.2 Nonlinear Dynamic Procedure 176
8.3 Effect of Various Parameters on Ductility Demand 177
8.3.1 Effect of Stiffness Degradation 177
8.3.2 Effect of Strain Hardening 178
8.3.3 Effect of the Depth of Coupling Beams 179
8.3.4 Effect of the Length of Coupling Beams 181
8.3.5 Effect of Damping 182
8.3.6 Effect of Initial Coupling Beam Stiffness 183
8.3.7 Summary 184
8.4 Optimal nonlinear Analysis 185
8.4.1 Influence of Yielding Moment on Ductility 186
8.4.2 Ductility Decay Curve 186
8.4.3 Applications 188
8.5 Conclusions 190
REFERENCES 219
APPENDIX A Design Example 231
APPENDIXB \quad Diagrams for $2^{\text {nd }} \& 3^{\text {rd }}$ Nat. Frequencies 234
APPENDIX C C-1 Computer Program Flow Chart 258
C-2 User's Instruction for Computer Program 259
C-3 Program Listing 261
APPENDIXD Publications 275

TERMINOLOGY

Certain terms are used in this thesis and are generally defined when first used, however it was thought useful to list them below for convenient reference.

Aseismic	= Earthquake resistant.
Critical Damping	$=$ Viscous damping that will cause a displaced system to return to its initial position without oscillation.
Damping	= dissipation of energy during vibration due to internal and external friction.
Design Earthquake	$=$ The ground motion that is taken as basis of design of a structure.
Ductility	$=$ The ability of a member or a structure to deform beyond its elastic limit without significant loss of strength.
Ductility Factor	= Ratio of maximum deformation response to yield deformation.
Dynamic	$=$ Varying with time .
Earthquake Input motion (Ground motion)	$=$ Time history of the ground acceleration due to earthquake excitation used as input loading for response history analysis.
Elastic	= Indicates a return to initial state on unloading without residual deformation.
Energy Dissipating = Specific phenomenon by which earthquake energy input is dissipated (e.g. inelastic deformations).	
Energy Dissipation	= Dissipation of the energy input by an earthquake into a structure by hysteresis, damping or other mechanisms.

First Mode	= Phase relationship in which three level signals oscillate in the same phase.
Flexural Strength	$=$ Ultimate bending moment that can be carried by a section.
Frequency	$=$ Number of cycles of a periodical oscillation occuring in a unit time.
Fundamental Mode	$=$ The mode of vibration with the largest period, i.e., the shortest frequency.
Higher Modes	$=$ Modes of vibration except first mode.
Hinging Region	$=$ The length of a member over which yielding accurs due to bending moment exceeding yield moment.
Hysteresis	$=$ Nonlinear force-displacement relationship of a member under reversal of loadings.
Inelastic	$=$ Indicates an incomplete return to initial state on unloading and hence residual deformations.
Linear	$=$ Indicates proportionality between force and displacement.
Lumped Mass	$=$ Idealisation of the distribution of mass in which concentrated masses are assigned to nodal points.
Nonlinear	$=$ Indicates lack of proportionality between force and displacement.
Response History Analysis	$=$ Response analysis based on direct numerical integration of the eqn. of motion by a step-by-step procedure.
Rigid Joint	$=$ Joint with infinite flexural rigidity.
RMS (root mean square)	$=$ Response value calculated as the square root of the sum of the squares of the maximum modal components.

Rotational Spring	= A spring at the ends of a beam element which simulates its nonlinearities.
Second Mode	$=$ Phase relationship in which only two adjacent level signals oscillate in the same phase.
Seismic	$=$ Caused by or subject to ground motion such as earthquake.
Sequence of Plastification	\doteq The sequence in which yielding spreads to the various structural members.
Spectra Based or Modal Analysis	$=$ Response analysis based on modal response spectra.
Spectral Acc. (disp. or Vel.)	$=$ The maximum absolute acceleration (displacement or velocity) response of a sdof system having a given period.
Spectrum Intensity	= Index defining the intensity of base motion. It is based on the area under a velocity response spectrum in a specified frequency range as defined by Housner [23].
Third Mode	= Phase relationship in which the first and the third level signals are in phase.
Viscous Damping	= A type of damping represented by a force that resists the motion and is proportional to velocity. It is often expressed as a fraction of critical damping.
Yielding	= A stage of response at which a section reaches its yield moment.

NOTATIONS

CHAPTER II

C	= Damping matrix of the structure.
$\mathrm{f}_{\mathbf{i}}$	= Eathquake force distribution at mode i.
Fmax	= Maximum earthquake force distribution for all modes.
I	= Structure importance factor used by the code.
K	= Stiffness matrix of the structure.
$K^{*}{ }_{i}$	$=$ Modal stiffness $=\phi_{j} \mathrm{~K} \phi_{\mathrm{i}}$ for $\mathrm{i}=\mathrm{j}$.
M	= Mass matrix of the structure.
$M^{*}{ }_{i}$	$=$ Modal mass $=\phi_{j} M \phi_{i}$ for $i=j$.
ϕ	= Mode shape vector
5	= Foundation condition factor as used by the code
Sai	$=i^{\text {th }}$ modal spectral acceleration
Ti	= Period at mode i
$U \max$	= Maximum displacement distribution for all modes
Vo_{i}	= Base shear for mode i
$\mathrm{Vo}_{\text {max }}$	= maximum base shear for all modes
W	$=$ Total weight of the structure
w_{i}	= Frequency at mode i
$y^{\prime \prime}$	= Ground acceleration vector
Z	= Seismic zoning factor (code)
zi_{1}	= Damping ratio for mode i

CHAPTER III

[B] = Strain-displacement matrix
[D] = Property or elasticity matrix
$\operatorname{Det}[J]=$ Determinant of the Jacobian matrix [J]
$\delta_{e}=$ Element displacement vector
f = Displacement function vector
[J] = Jacobian matrix
K = Global stiffness matrix of a structure
[Ke] = Element stiffness matrix
[N] = Shape function matrix
Qe = Element total potential energy
R = Overall load vector

Re	$=$ Nodal load vector
s, t	= Local coordinate for isoparametric elements
U	= Displacement vector in \times direction
Us	= Element strain energy
V	= Displacement vector in y direction
x, y	= Global coordinates of an element
W	= Element potential energy
W_{j}, W_{k}	$=$ Weight factors at Gaussian points j and k
	$=$ Strain vector $=[\text { Ex Ey Exy }]^{\top}$
θ	$=$ Principal stress direction with respect to the element axis
	$=$ Stress vector $=\left[\begin{array}{llll}\sigma_{x} & \sigma_{y} & \sigma_{x y}\end{array}\right]^{\top}$
$\sigma_{1,2}$	= Major and minor principal stresses
$\tau_{\text {max }}$	= Maximum shearing stress

CHAPTER IV

c	= Damping ratio of a sdof system
${ }^{\text {c }}$ c	= Critical damping
Dy	= Maximum yield drift indice
F	= Resistance
Fmax	= Maximum force distribution
K	= Stiffness matrix of a mdof structure
Kud	$=$ Neutral axis depth of a section
Ln	= Modal participation factor
1 p	= Hinging zone, i.e., zone where plasticity spreads
M	= Mass matrix of a mdof system
m	= Mass of a sdof system
My	= Yield moment of a section
Pn	= Maximum modal forces
Ry	= Yield resistance force
Sa	= Spectral acceleration
T	= Period
u u' u'	= Displacement response and derivatives
Umax	$=$ Maximum displacement
Uy	= Displacement at yield
Un	= Modal displacement
w	= Frequency
x'	= Base acceleration
z	$=$ Damping factor $=c / c_{c}$

$$
\begin{array}{ll}
\delta_{n} & =\text { Modal drift } \\
\delta_{y m a x} & =\text { Maximum yield drift } \\
\phi_{n} & =n^{\text {th }} \text { modal shape vector } \\
\varphi_{y} & =\text { Curvature at yield } \\
\theta_{\max } & =\text { Maximum rotation of a section or a member } \\
\theta_{p} & =\text { Plastic rotation of a section or a member } \\
\theta_{y} & =\text { Yield rotation of a section or a member } \\
\mu & =\text { Structural ductility factor } \\
\mu_{\mathrm{b}} & =\text { Rotational ductility of a beam }
\end{array}
$$

CHAPTER V

Cw	Qualitative "crack width"
$\mathrm{d}, \mathrm{d}^{\prime}$	= Depth of tensile and compressive reinforcement respectively
$\begin{aligned} & \text { Dc, Dcr } \\ & \text { D'cr } \\ & \text { Dep } \end{aligned}$	$\begin{aligned} r & =\begin{aligned} \text { Elastic \& cracked property matrices of concrete at } \\ \text { different stages } \end{aligned} \\ & =\text { Elasto-plastic property matrix } \end{aligned}$
DE_{i}	$=$ Incremental rotation at beam's end \mathbf{i}
$D M_{i}$	= Incremental moment at beam's end i
DL	$=$ Elongation of reinforcing steel due to bond slip
Ds	$=$ Property matrix of steel
Ec	= Elastic Young's modulus of concrete
Es	= Elastic Young's modulus of steel
EI_{a}	= Actual rigidity of a beam element
EI_{e}	= Elastic rigidity of a beam element
F	= Flexibility matrix of a beam element
Fs	= Stress in reinforcement due to bond slip
$\mathrm{f}_{\mathrm{s}}(\mathrm{M})$	= Flexibility due to bond slip
G	= Elastic shear modulus
$\mathrm{G}_{\text {eq }}$	= Shear modulus after cracking has occured
My	$=$ Yield moment of a section or a member
p	= Reinforcement ratio
R (M)	$=$ Rotation due to slippage of steel at applied moment M
α	$=$ Global shear reduction factor $=\alpha_{s}+\alpha_{d}$
${ }_{s}$	$=$ Shear reduction factor due to aggregate interlock
$Q_{\text {c }}$	= Shear reduction factor due to dowel action
E_{c}	$=$ Strain vector of concrete
E_{cr}	$=$ Strain when cracking first accurs
$\epsilon_{\text {max }}$	$=$ Maximum strain at which interlocking becomes ineffective

$\epsilon_{\text {min }}=$ Minimum strain at which concrete is assumed crushed
$\mu=$ Poisson's ratio of concrete
$\sigma_{c}=$ Stress vector in concrete

CHAPTER VI

$$
\begin{aligned}
& \text { C = Damping matrix of the structure. } \\
& \text { DPs = Pseudo-load vector } \\
& \text { Dv, Dv' } \\
& \text { Dv' = Incremental nodal displacement and derivatives } \\
& \text { Dy" }(\mathrm{t})=\text { Incremental ground acceleration } \\
& \text { Dt = Time step } \\
& K \quad=\text { Stiffness matrix of a mdof structure } \\
& K^{*} \quad=\text { Dynamic stiffness matrix } \\
& \text { M = Mass matrix of a mdof system } \\
& \mathrm{Me}=\text { Element mass matrix } \\
& \text { Mext = External mass matrix } \\
& R \quad=\text { Overall load vector } \\
& w_{n} \quad=\text { Frequency of the structure at mode } n \\
& z_{n} \quad=\text { Damping factor for mode } n \\
& \beta=\text { Newmark's constant indicating the variation of acceleration } \\
& \text { in a time interval } \\
& € \quad=\text { Convergence tolerance }
\end{aligned}
$$

CHAPTER VII \& VIII

$\Theta_{\text {max }}=$ Maximum rotation of a section or a member
$\Theta_{p} \quad=$ Plastic rotation of a section or a member
$\theta_{y} \quad=$ Yield rotation of a section or a member
$\mu \quad=$ Ductility demand
$\mu_{\Gamma} \quad=$ Rotational ductility
$\mathrm{dM}=$ Moment increment
Es = Young's modulus of steel
$\mathrm{f}_{\mathrm{c}} \mathrm{c}=$ Compressive strength of concrete
fy $\quad=$ Yield stress of steel
Lb = Length of the coupling beams
My = Yield moment of a section
$M y_{\text {min }}=$ Minimum yield miment capacity (as stipulated by code)

CHAPTER ONE

INTRODUCTION

1.1 General

The use of reinforced concrete as a structural building material has become more and more a standard feature of modern construction. This was possible mainly as a consequence of extensive experimental and analytical investigations on reinforced concrete models. The results of these investigations allowed a set of design guidelines and rules that survived the test of time successfully for quasi-static loading conditions. However experience has shown that these rules were not suitable when it came to dynamic loading conditions such as earthquakes.

Few of the buildings constructed in seismic areas are designed on the basis of the results of dynamic analysis. The code of practice allows for earthquake loads to be approximated by so called equivalent static loads. The magnitude of the latter depends on the seismic zone and the fundamental period of the structure in hand. An approximate formula is suggested for estimating the fundamental period. Furthermore, the code load requirements are very small compared with those experienced during a significant earthquake. As a result of these limitations, enormous property damage and loss of human life have been caused by destructive earthquakes during the last decades. The primary objective of a structural engineer should therefore be to design any structure rationally in such a way that it will resist moderate earthquakes without damage and not collapse and cause loss of lives, even in the case of severe ground motion. To achieve this,
the need to conduct a more comprehensive earthquake analysis and a better understanding of the behaviour of structures seems to be more than necessary.

Since the very rapid increase of high rise buildings all over the world, reinforced concrete wall systems have for many years been a very common means of resisting lateral forces due to wind and earthquake. Usually the so-called shear walls are built over the whole height of the building and are laid out either as a series of walls connected by beams and/or slabs, or as a central core structure with openings to accomodate doors, windows or corridors. A good approximation of the interaction between shear walls and connecting beams, as well as their proportioning and design under severe ground motions, would be a great help towards improving the behaviour and avoiding "the unexpected" in the case of a major eathquake.

1.2 General Review

It was Rosman [1] who, in 1964 , broke the tradition of treating coupled shear walls as deep columns acting as separate cantilever beams. He proposed a solution in which the coupling system is replaced by a continuous medium (laminae) of equivalent stiffness. Later Coull and Chou dhury [2 \& 3] and Coull and Irwin [4] extended the laminae method. They took into account shear deformation effects and presented very convenient graphical charts to determine the stresses and deflections of coupled shear walls of different geometric characteristics and subjected to various lateral static load cases. Tso and Chan [5] and Coull et al. [6 \& 7] used the method to determine approximate natural frequencies of coupled shear walls which can be used with the response spectrum approach.

Although these methods were a good improvement with respect to the unduly conservative approach by which no credit was given to the coupling
effect, they are still limited by various simplifications on loading and boundary conditions and fail to produce accurate results and details on the distribution of stresses over the entire structure if need be. The emergence of finite element method (FEM) [8] as applied to elastic continuum and the growing popularity of computer facilities bridged the gap. Indeed the FEM has been used succefully for static as well as dynamic problems [9]. Some of the advantages of FEM in solving shear wall problems are its ability to treat:
a) variation in thickness of the shear walls
b) irregularities of loading
c) irregularities in the geometry of the openings
d) variation in material properties.

The observed nonlinear behaviour of reinforced concrete structures also had to be simulated analytically. Shear walls were first idealised as deep columns based on the modified "EI " procedure. Nonlinearities in frames and walls were generally monitored by the nonlinear force -displacement relationship of preset hinges generally located at the element's ends [10]. The first basic moment - rotation relationship used to monitor nonlinear behaviour was the bilinear elastic perfectly plastic idealisation. Shepherd et al. [11] used the latter for nonlinear dynamic analysis and reported a good correlation between analytical and experimental predictions.

The need for an inelastic approach to earthquake response problems simple enough to be introduced into a code of practice and capable of taking nonlinearities into account gave rise to many investigations from which the ductility factor method [12] and the inelastic spectrum approach [14-16] emerged. The difference between the inelastic spectrum and the usual elastic modal analysis is that the former uses an inelastic spectra, that is derived from a nonlinear force - deformation relationship of a single degree of freedom (sdof) system, instead of the usual elastic spectra.

Shibata and Sozen [17] developed a design method for reinforced concrete frames in which a softer and more damped " substitute structure " is analysed by elastic modal analysis. This general category of methods which uses an elastic spectra as the loading has been applied by many investigators [18 -20] to sdof systems. Gerra \& Esteva [13] used the same procedure but accounted for the inelastic behaviour by using a frequency shift and an increased value of damping.

Newmark \& Hall [14] proposed a method in which elastic modal analysis was used along with a reduced design spectra. The reduction in the elastic design spectra was derived from observed sdof inelastic spectra for various damping and frequency combinations. Lai \& Biggs [16] assessed the method and applied it to inelastic response of plane frame for 2% and 5% damping respectively. They concluded that the method was unconservative for 2% damping and conservative for 5% damping but led to satisfactory design. Anagnotopoulos et al. [15] also used the method to examine the response of a multistorey building and concluded that the approach could be unconservative. He believed this was due to the variations in the input motions which can never match a smooth spectra exactly.

As far as nonlinear dynamic history response behaviour of structures subjected to ground motions is concerned several inelastic models were used extensively. They range from one component model [21] in which each member is represented by an elastic beam element with inelastic springs (hinges) at its two ends, to multicomponent model [$22 \& 23$], in which the idealised beam has an elastic member and several elasto - plastic members in parallel. Otani [24] modelled a beam element as two cantilever beams whose free ends coincide with the inflection point. He assumed the inflection point of a deformed member was at the middle and the member deformed in antisymmetric bending. This model was believed to match better the
hysteresis data based on test results. This was particularly true when the effects of vertical loads were negligeable or nonexistent. Based on the same general principle and in order to obtain a better prediction and accuracy, some researchers [25 to 27] attempted either a finer idealisation by subdividing a beam element into yet more beam elements or by introducing more rotational springs in the regions where non linearities are likely to occur. Fibre or layering model was also introduced [28]. Each section was subdivided into many layers and the moment-curvature relationship was derived from steel and concrete constitutive laws. Member stiffness was then determined by integrating along the member length. This model, though leading to a better insight, was very time consuming and tedious and hence unpopular.

Takeda et al. [29] developed their very popular hysteretic model which was modified to take stiffness degradation and strain hardening into account by Kannan \& Powell [30]. Because it was based on several experimental studies, this model was found to be successful in simulating both static and dynamic behaviour of reinforced concrete joints of cantilever beams. Later Takeda's model coupled with the assumptions made by Otani [24] concerning the inflection point and the antisymmetric bending deformation shape, has been used extensively by many investigators to simulate nonlinear response of frame structures (i.e., assembly of beam elements) subjected to earthquake forces.

Ngo and Scordelis [31] followed by Nilson [32] were the first to demonstrate the capability of the finite element method of analysis to cope with reinforced concrete nonlinearities. They analysed simple beams as two dimensional systems with predefined crack pattern and introduced the concept of link element in order to model the bond between concrete and steel. However their approach fell short because of the inconvenience and impracticality of their redefinition of the structure topology after cracking
had occured. Finite element method as applied to plane stress problems has been applied successfully to nonlinear analysis of reinforced concrete by Suidan \& Schnobrich [33], Agrawal et al. [34] and Schnobrich [35]. Such two dimensional analysis has been satisfactory for the response of isolated walls subjected mainly to monotonically increased loads.

Darwin and Pecknold [36], using the concept of equivalent uniaxial strain, analysed reinforced concrete shear panels under cyclic loading and reported a good correlation with experimental results. Rashid [37] was the first to introduce the most popular approach by which cracked concrete was treated as an orthotropic material. In his representation, the elastic modulus of concrete in the direction normal to the crack was reduced to zero, giving rise to a cracked element rather than a sharp crack and avoiding in this way the need for updating the topology of the structure after cracking had occured. This approach has been used successfully by many investigators [$40-41 \& 33$]. Cevenka and Gerslte [38-39] investigated panels under cyclic loading assuming an elastic-perfectly plastic behaviour for concrete in compression. Recently Agrawal et al. [42] claimed to present the first successful application of the plane stress finite element method in determining the nonlinear behaviour of an isolated reinforced concrete wall subjected to simulated earthquake motions. They used a biaxial constitutive law and orthotropic material properties for cracked elements.

In most of these applications coupled shear walls have been idealised either by the " equivalent EI " procedure or by a two - dimensionnal plane stress approach for both wall and beam members. In view of the energy absorbing philosophy, that is strong wall - weak beam, necessary for the design of concrete structures in seismic areas there is a need for a more realistic model of coupled shear walls. This can be achieved by idealising
the walls as plane stress elements and the coupling beams, much slender, as line elements.

It is well accepted that during earthquake excitation, part of the energy released [43] is absorbed by the structure elastically, the other part is either absorbed by purposedly designed damping devices or through structural damage beyond repair or even complete collapse. As far as coupled shear walls are concerned it is generally accepted that energy dissipation by hysteretic damping is the most viable. Paulay has investigated ways by which available ductility in a member, that is energy absorbing capacity without loss of strength, could be improved. He suggested diagonal reinforcement for deep beams where shear is predominant [44-45] and squat shear walls [46]. Allen et al. [47] tested the behaviour and investigated the design of ductile walls. They found that concentrating tension steel at each end of the wall, as recommended by most aseismic codes [48-51], improved its ductile behaviour. They concluded that available ductility remains almost constant with changes in main tension steel areas and generally decreases with increasing axial load. The use of barbell cross section walls has also been recommended by some investigators and most codes of practice. A good review of the state - of art of seismic resistant design of shear walls is given by Bertero [52].

Due to the instability problems that the yielding of the walls might cause, their use as the first line of defence against earthquakes has been discouraged in favour of ductile girders and coupling beams. To ensure this happens the coupling beams are intentionally made moderately strong to allow them to yield ahead of the walls. Coull and Choo [53] proposed an approximate inelastic method based on the continuum approach. They divided the structure into elastic and plastic zones and determined the positions of these zones by making assumptions and simplifications on the
form of shear distribution in the coupling beams as the load increases. Fintel and Ghosh [54] investigated the nonlinear dynamic response of a 31 storey coupled shear wall - frame system. Keeping columns and walls elastic, they attempted to balance the ductility enforced upon the beams, or ductility demand, and their available ductility or ductility supply. They used a trial and error process and repetitive nonlinear dynamic history analysis. Later Fintel and Ghosh [55] used the same technique, this time however they allowed the columns and the walls to yield ahead of the beams. They concluded that the walls, if ductile, can dissipate the majority of the energy input through inelastic deformations. Deretcho et al. [56] studied the effect of axial force -flexural interaction on the nonlinear response of coupled shear walls and concluded that substantial axial force in the walls may affect available ductility in individual members.

1.3 Objective and Scope

In case of severe earthquakes, structures will deform well beyond their elastic range. Some elements will be more overstressed than others giving rise to successive adjustments of load distribution and hence to a different behaviour than one might expect if no specific nonlinear analysis had been made to permit such prediction. When designing a structure one may wish to counter most of the energy demand upon the structure through inelastic deformations confined to desired members, or through a predetermined sequence of degradation or plastification. Therefore the need to perform a comprehensive nonlinear dynamic analysis appears to be desirable.

Although reinforced concrete is very complex to model, the emergence of computer facilities has made nonlinear dynamic analysis possible by allowing for phenomena such as cracking, yielding, bond deterioration, stiffness degradation and aggregate - interlock. Our first objective will therefore be to
develop a dynamic finite element computer program to take into account the nonlinearities that stem from the very nature of reinforced concrete. To test the validity of the assumptions made concerning material behaviour, the analytical results are compared with existing experimental tests and data.

Confining inelastic deformations to certain members of the structure requires nonlinear analysis to be performed repetitively and proportioning and design changed consequently until desired behaviour is achieved. This is a time consuming and tedious process, therefore an alternative needs to be found which yields, either a good approximate dimensioning of the coupled shear wall structures in the case where the computer facilities are not available, or an advantageous starting point if nonlinear dynamic analysis can be performed. The development of inelastic spectrum approach (ISA) as applied to coupled shear walls seems to be appropriate and is the subject of the second objective of this research.

It is usually a human instinct to fight back with force even in case of defence against " Nature ". The consequent philosophy of stronger and stiffer buildings to counter earthquake forces has been with us for quite some time, but the experience of many catastrophical events has taught us to reconsider our way of thinking. Energy absorbing capacity and ductility have been the emphasis and the key for structural survival for the last few years. While it is relatively easy to assess the available ductility or ductility supply of a member, ductility demand however, seems to depend on so many factors that it cannot be estimated without preliminary parametric studies. Energy absorbing philosophy and factors which might influence ductility demand constitute the final objective of this study.

Even though only coupled shear walls are dealt with in this investigation, the computer program is capable of dealing with plane frame and plane frame - shear wall systems as well. Both the walls and the coupling beams can be
either idealised as finite elements or as line elements. Nonlinearities in line elements are confined to preset hinges at the element's ends and monitored by a moment-rotation relationship. When using the FEM approach however, nonlinearities are confined to Gaussian integration points (4 in this study) over the element and monitored by the stress - strain curves of steel and concrete. The computer program is an extention of the program developed by Wee [57] for elastic dynamic analysis and is also capable of dealing with statically applied loads in the elastic range. The step-by-step procedure can be applicable to any dynamic force in addition to earthquake excitations for both elastic and inelastic systems.

1-4 Outline of the Thesis

Many approaches are currently available for the aseismic design of reinforced concrete structures. Similarities and limitations of these approaches are the subject of Chapter II of this thesis. Chapter III is dedicated to the description of the theory of finite element method.

As previously stated the first objective of this study is dedicated to the inelastic spectrum approach (ISA) as applied to coupled shear wall structures, and is covered in chapter IV. In this chapter the free vibration analysis of a wide variety of coupled shear walls with a range of geometries is carried out. The natural frequencies are computed for different typical floor weights and related to the corresponding stiffnesses. Then an inelastic design spectra is developed and applied to coupled shear walls.

The second major part of the thesis is devoted to the nonlinear step-by-step analysis. This is covered in three chapters. The first, Chapter V, deals with the nonlinear behaviour of reinforced concrete and the mathematical models assumed in this investigation to simulate nonlinearities. The step - by - step numerical solution of the equations of motion and the overall, analytical
procedure are described in chapter VI. To check the validity of the assumed models, analytical results are compared with either experimental data or other existing models. This is discussed in chapter VII and ends the second part of this investigation.

The capacity of coupled shear walls to absorb the energy input by earthquake ground motions is limited by the available ductilily of their coupling beams which should be greater than the ductility demand at any time interval. In chapter VIII the various factors which influence ductility demand are discussed and an optimal nonlinear procedure is proposed.

Finally a description of the computer program and its use are given in the appendices along with a Fortran IV listing.

CURRENT SEISMIC APPROACHES

2-1 General

This chapter gives a description of the different approaches which may be used for the analysis of a structure such as coupled shear wall when subjected to earthquake ground motions. There are three types of approaches when designing aseismic structures:
a) 'Code of practice requirements' approach in which the effect' of the earthquake loads are simulated by so-called equivalent lateral forces.
b) Elastic dynamic analysis approach which takes the dynamic aspect of the problem into account.
c) Nonlinear method of analysis approach which, in addition to the dynamic aspect of the problem, considers the changes in structure properties and the effects of the energy absorbing capacity of the structure.

The first part of this chapter is dedicated to the mathematical formulation of the elastic dynamic analysis. Most of the codes [48-51] being practically similar, the second part of this chapter is devoted to a brief presentation of the most advanced and widely used code of practice and the philosophy behind it. This is followed by a very brief presentation of the existing nonlinear approaches. These are presented more in detail in chapters 4,5 and 6.

2-2 Elastic Dynamic Approach

The equations of motion of a structure subjected to a ground motion can be written in terms of the relative displacements of the mass points as

$$
M U^{\prime \prime}+C U^{\prime}+K U=-M y^{\prime \prime}
$$

$$
\text { where } \begin{aligned}
& M=\text { mass matrix } \\
& C=\text { damping matrix } \\
& K=\text { stiffness matrix } \\
& U^{\prime \prime}, U^{\prime}, U=\text { relative acc., vel. and displ. vector respectively } \\
& y^{\prime \prime}=\text { base acceleration vector }
\end{aligned}
$$

The solution of these equations can be achieved using the direct integration method or the less computer time consuming mode superposition method.

2-2-1 Direct Integration Approach: In this technique, eqns. 2.1 is solved directly using numerical integration with respect to time, that is a finite difference technique. Several methods are commonly used, the most popular being the Newmark-beta [102] and the Wilson-theta [103] methods. In all these schemes the nodal displacements and their derivatives are evaluated at time interval Dt and various assumptions are made as to the variations of these quantities within this time interval. A major problem of such schemes is ensuring that they are stable with respect to time. The advantage of these methods is their capability to deal with nonlinearities. In this thesis, the well known Newmark-beta method is used for nonlinear analysis and is therefore developed and discussed in detail in chapter VI.

2-2-2 Mode Superposition Technique: An alternative approach to the direct integration is the modal analysis technique. In this method the nodal displacements U are transformed to new set of displacements x through the generalised coordinates as:

$$
U=[\phi] x
$$

where $[\phi]$ is the matrix of all the mode shapes and x is the vector of modal amplitudes.
i) Mode Shapes and Natural Frequencies The mode shapes are obtained by solving the undamped, unforced behaviour of a structural system, i.e.,

$$
M U^{\prime \prime}+K U=0
$$

by analogy to single degree of freedom (sdof) systems, the solution may be written as

$$
U=q \sin (w t+\theta)
$$

substituting eqn. 2.4 into 2.3 leads to

$$
\left(K-w^{2} M\right)[\phi]=0
$$

for a nonatrivial solution it follows

$$
\operatorname{det}\left(K-w^{2} M\right)=0
$$

which is an n-degree polynomial in terms of w^{2} which has n positive or zero roots called eigenvalues $w_{n}{ }^{2}$. These roots are called natural frequencies and have periods $T_{n}=2 \pi / w_{n}$. For each w_{n}, there exists a corresponding ϕ_{n} vector i.e., the mode shape or eigenvector. ϕ_{n} is obtained by back substitution of w_{n} in eqn. 2.5.
ii) Orthogonality: One of the most attractive and important properties of eigenvectors is their orthogonality with respect to the matrices M and K. It can be demonstrated [12] that

$$
\begin{array}{ll}
\phi_{j}^{\top} M \phi_{i}=0 & \text { for } i \neq j \\
\phi_{j}^{\top} K \phi_{i}=0 & \text { for } i \neq j
\end{array}
$$

and

$$
\begin{array}{ll}
\phi_{j}^{T} M \phi_{i}=M_{i}^{*} & \text { for } i=j \\
\phi_{j}^{\top} K \phi_{i}=K_{i}^{*} & \text { for } i=j
\end{array}
$$

where M_{i}^{*} and K_{i}^{*} are scalar quantities called modal mass and modal stiffness respectively.

When damping is present and the damping matrix is arbitrary, the mode shapes are not orthogonal with respect to it. If however the mode shapes are to be orthogonal with respect to the damping matrix, it can be shown [12] that the latter must be expressed as a linear combination of the mass and the stiffness matrices as

$$
C=a_{1} M+a_{2} K
$$

in which a_{1} and a_{2} are proportionality factors. Then,

$$
\begin{array}{ll}
\phi_{j}^{\top} C \phi_{i}=0 & \text { for } i \neq j \\
\phi_{j}^{\top} C \phi_{i}=C_{i}^{*} & \text { for } i=j
\end{array}
$$

where $C{ }^{*}$ is the modal danping coefficient for the $i^{\text {th }}$ mode.
iii) Maximum Modal Response: Substituting eqn. (2.2) and its derivatives into eqn. (2.1) yields

$$
M \phi x^{\prime \prime}+C \phi x^{\prime}+K \phi x=-M y^{\prime \prime}
$$

Premultiplying eqn. (2.14) by $\phi_{i}{ }^{\top}$ gives

$$
\phi_{i}^{\top} M \phi x^{\prime \prime}+\phi_{i}^{\top} C \phi x^{\prime}+\phi_{i}{ }^{\top} K \phi x=-\phi_{i}{ }^{T} M y^{\prime \prime}
$$

Applying the orthogonality properties expressed in eqns. (2.9), (2.10) and (2.11), eqn. (2.15) then becomes

$$
M^{*} x^{\prime \prime}+C^{*}{ }_{i} x^{\prime}+K^{*}{ }_{i} x=-\phi_{i}^{\top} M y^{\prime \prime}
$$

which is the sdof equation for the $\mathrm{i}^{\text {th }}$ mode. Dividing eqn. (2.16) by $\mathrm{M}^{*} \mathrm{i}$ yields

$$
\left.x^{\prime \prime}+\left(C^{*}{ }_{i} / M^{*}\right)_{i}\right) x^{\prime}+\left(K^{*}{ }_{i} / M^{*}{ }_{\mathfrak{i}}\right) x=-\left(P^{*}{ }_{i} / M^{*}\right) y^{\prime \prime}
$$

in which $\quad P^{*}{ }_{i}=\phi_{i}^{\top} M$
Eqn. (2.5) can be written as

$$
K \phi_{i}=w_{i}^{2} M \phi_{i}
$$

premultipying eqn. (2.19) by $\phi_{i}{ }^{\top}$ produces

$$
\phi_{i}^{\top} K \phi_{i}=w_{i}^{2} \phi_{i}^{\top} M o_{i}
$$

or

$$
K_{i}^{*}=M_{i}^{*} w_{i}^{2}
$$

and hence

$$
\frac{K_{i}^{*}}{M_{i}^{*}}=w_{i}^{2}
$$

It can be shown also [12] that

$$
\frac{C^{*}}{M_{i}^{*}}=2 z_{i} w_{i}
$$

where z_{i} is the damping ratio in the $i^{\text {th }}$ mode.

Substituting eqns. (2.22) and (2.23) into eqn. (2.17) one can obtain

$$
x_{i}^{\prime \prime}+2 z_{i} w_{i} x_{i}^{\prime}+w_{i}^{2} x_{i}=-\left(P^{*}{ }_{i} / M_{i}^{*}\right) y^{\prime \prime}
$$

Eqn. (2.24) is a sdof equation. Its solution yields the maximum modal amplitude $\mathrm{x}_{\mathrm{imax}}$ for specific ground motion, damping factor and frequency. If the frequency is varied then displacement, velocity or acceleration spectra can be plotted using the maximum values $x_{\text {max }}, w x_{\text {max }}, w^{2} x_{\text {max }}$: These are often designated as Sd , Sv , and Sa respectively. Using these curves, the maximum spectra based response can be evaluated. For instance the maximum displacement for mode i may be expressed as:

$$
x_{i \max }=\frac{P^{*}{ }_{i} \cdot S a_{i}}{M_{i}^{*} \cdot w_{i}^{2}}
$$

The relative displacements or the distribution of maximum displacement in mode i can then be computed using eqn. (2.2) as:

$$
U_{i}=\phi_{i} x_{\max }
$$

or using eqn. (2.25)

$$
U_{i}=\phi_{i} \cdot \frac{P^{*} i S a_{i}}{M_{i}^{*} w_{i}^{2}}
$$

Similarly the distribution of maximum accelerations in mode i is given by

$$
U_{i}^{\prime \prime}=\phi_{i} x_{\max }^{\prime \prime}=\phi_{i} w_{i}^{2} x_{\max }
$$

and hence the distribution of maximum earthquake forces

$$
\begin{align*}
& f_{i}=M U_{i} \\
& f_{i}=M \phi_{i} \cdot \frac{P^{*}{ }_{i} S a_{i}}{M^{*}}
\end{align*}
$$

from these elastic distributed forces, any desired force quantity can be obtained using any standard method of statics. For instance the maximum base shear V_{o} as

$$
V_{0}=\int_{0}^{H} f_{i}(x) d x
$$

where H is the total height of the structure. Eqn. 2.31 can be written as

$$
\begin{align*}
& V_{0}=\int_{0}^{H} \frac{P *_{i} S a_{i}}{M^{*}{ }_{i}} M \phi_{i} x d x \\
& V_{0}=\frac{P *_{i}^{2} S a_{i}}{M^{*}{ }_{i}}
\end{align*}
$$

It must be emphasized that the quantities derived so far have been for individual modes, however the total maximum quantities can be obtained using an approximate combination of the modal contributions. If the root-mean-square (RMS) procedure is used then,

$$
U_{\max }=\left(U_{1}^{2}+U_{2}^{2}+\ldots U_{n}^{2}\right)^{\frac{1}{2}}
$$

similarly,

$$
\begin{align*}
& F_{\max }=\left(\sum_{1}^{n} f_{i}^{2}\right)^{\frac{1}{2}} \\
& V_{o_{\max }}=\left(\sum_{a}^{n} V_{0}^{2}\right)^{\frac{1}{2}}
\end{align*}
$$

It is apparent from eqn. 2.34 that only some of the modes will make significant contribution to the total nodal displacements. A very good approximation of the exact response can be obtained by including only the first few terms of the RHS of eqn. 2.34. This fact is one of the major advantages of the mode superposition technique over the direct integration formulation. The other important advantage is that the equations are uncoupled and hence no simoultaneous equation solution need be performed.

2-3 Code of Practice Requirements

The seismic design code provisions are given by a set of equivalent lateral forces which simulate inertial loads generated by the earthquake motion. It must be borne in mind however that these prescribed forces are generally far too small to be similar to those induced in case of a real severe earthquake. The relatively low equivalent forces specified by the code are justified for two main reasons
i) It is economically unwarranted to design buildings to resist major earthquakes elastically.
ii) It is recognised that structures with adequate strength and ductility have
the capability to withstand earthquake through inelastic deformations.

2-3-1 Recommended Lateral Forces: In this section the Californian code of practice SEAOC [49] is chosen for the illustration. In this code, the principal seismic provisions defines the effective intensity of the design earthquake in terms of the maximum base shear $V_{\text {max }}$ as:

$$
V_{\max }=Z I K C S W
$$

in which $\quad Z=$ seismic zoning factor. The value of 1 corresponds to the areas of highest seismicity
$I=$ structure importance factor (e.g for hospitals $I=1.5$)
$K=$ factor depending on the structure framing system. It is intended to count for energy dissipation capacity of the structure $C=$ seismic response factor. It is expressed in terms of the fundamental period as $C=1 /\left(15 T^{\frac{1}{2}}\right)$

S = foundation conditions factor
$\mathrm{W}=$ total weight of the structure
if eqn. (2.37) is written in the form of

$$
V_{\max }=K^{*} C \text { W }
$$

an analytical expression corresponding to the code formula can be derived from eqn. 2.33 by considering only the fundamental mode as:

$$
V_{0}=\frac{P_{1}^{*}{ }^{2} S_{1}}{M_{1}^{*}}
$$

comparing eqn. 2.38 and eqn. 2.39 reveals the folowing correspondance

$$
C=\frac{5 a_{1}}{g} \quad W=\frac{P^{*}{ }_{1}}{M^{*}{ }_{1}} g
$$

Thus, C is the spectral acceleration expressed in g units and the total weight W is considered to be equivalent to the effective weight in the first mode.

2-3-2 Distribution of Recommended Lateral Forces: The other provision of the SEAOC code defines how the total base shear force is distributed over the height of thestructure ,i.e.,

$$
f_{i}=\frac{W_{i} x_{i}}{\sum_{i}^{n} W_{i} x_{i}} V_{\max }
$$

in which $\quad f_{i}=$ lateral force at floor level
$W_{i}=$ weight at level i
$x_{i}=$ height of level i above the base
V^{*} max $=V_{\text {max }}-F_{t p}$
$F_{t p}=$ force to be applied additionally at the top and accounts for higher modes if significant.
a corresponding analytical expression can be derived from eqn. 2.30 by considering the fundamental mode, i.e.,

$$
f_{i}=M \phi_{1} \frac{P^{*}{ }_{l} S a_{1}}{M_{1}^{*}}
$$

or by substituting eqn. 2.39 into eqn. 2.42,

$$
f_{i}=\frac{M \phi_{1}}{P^{*} 1} V_{o_{\max }}
$$

writing the excitation factor $P^{*}{ }_{l}$ in the form $\sum_{1}^{n} M_{i} \dot{1}_{1}$ yields

$$
f_{i}=\frac{M \phi_{l}}{\sum_{i}^{n} M_{i 0_{0}}} v_{\mathrm{o}_{\mathrm{i}}}
$$

It can be seen by comparing eqn. 2.41 and eqn. 2.44 that the code expression represents the response of a lumped mass system deflecting with a straight line shape, i.e., $\phi_{1 i}=x_{i} / H$. This assumption stems from observations that the first mode shape is generally close to a straight line.

2-4 Nonlinear Methods of Analysis

In section 2-2 of this chapter the description of elastic dynamic analysis has been attempted. It has been assumed then, that the structure is a linear system i.e., its properties do not change during the earthquake motion. It is accepted however that during ground motions of even moderate intensity, displacements well in excess of the yield displacement are induced. The inertial forces generated by earthquakes are so large that it is not economically feasible to design for them. Instead the designer relies on the energy absorbing capabilities of yielding structures to absorb a large portion of the energy input by the earthquake through inelastic deformations. Therefore allowance for nonlinearity in the analysis procedure to assess these inelastic deformations is a major design consideration. This gave rise to approximate methods such as the inelastic spectrum approach and ductility factor method approach in addition to the rigorous step-by-step nonlinear dynamic analysis.

The step-by-step procedure and the Inelastic Response Spectrum method of analysis, used in this dissertion, will be developed later in this study. Therefore this section is confined to describing the approximate ductility factor method of analysis.

2-4-1 Approximate Ductility Factor Method: The Ductility factor method [12] is the first approximate method developed to obtain a reasonable measure of the nonlinear behaviour without carrying out a complete nonlinear analysis. Its procedure stems directly from its basic assumption, that the deflection produced by any earthquake input is essentially the same whether the structure behaves
elastically or inelastically. Consequently the forces (moments, shear and axial forces) obtained from an elastic analysis are reduced by a factor μ, which accounts for the fact that the structure is ductile and will respond inelastically. The value of the ductility factor varies from case to case, however, the value of 4 has been popular because dynamic analyses of structures subjected to El Centro earthquake have shown that the elastic forces generated in typical structures are about 4 times as large as the yield level that the equivalent lateral static forces computed according to the SAEOC code [49] would prescribe.

CHAPTER THREE

THE FINITE ELEMENT THEORY

3.1 General

The finite element method (FEM) of analysis which started as an extention of the stiffness or displacement method is probably the most powerful tool for structural analysis. Since the growing development of computer facilities, the method has widely spread its application and is nowadays used to solve in addition to structural problems, different kinds of physical problems such as fluid mechanics, soil mechanics, thermodynamics, electrodynamics, ... etc. Detailed presentations and description of the method are widely published [58-61].

In the stiffness method for skeletal structure the elements are connected together at discrete joints and equations of equilibrium involving external loads and member end forces are established to solve for end joint displacements. Similarly, when dealing with a two or three - dimensional continuum, the structure is subdivided into "elements" of some geometrical shape (triangle, quadrilateral, cubic :...) connected at a finite number of points or "nodes" at their boundaries and stiffness relationships between nodal displacements and nodal forces are derived in the same manner as for skeletal structure using various energy theorems. In this way a continuum with an infinite number of degrees of freedom (dof) can be discretisized as an equivalent system with finite dof. As can be expected the number of finite elements considered, as well as the size of the elements given by their aspect ratio, play a big role in the accuracy and the converging properties of the analysis. These however are beyond the scope of this study.

The finite element method is based on assumed patterns or functions. These functions can define the variation for either the element displacements (displacement method) or the stress patterns (equilibrium method) or both (hybrid method). In this study, the displacement method is used and the derivation of the stiffness properties is based on the principle of minimum potential energy.

3.2 General Finite Element Procedure

3.2.1 Displacement Function: The basic philosophy of the FEM is piecewise approximation. That is, we approximate a solution of a complicated problem by representing the solution within each subdivision by a relatively simple function. Therefore the choice of suitable displacement functions is of paramount importance. For plane stress consideration the nodal displacement δ_{i} is represented by two translational displacements U_{i} and V_{i}. If the displacements of an element are represented by f, they may be expressed as:

$$
f=[\mathrm{N} 1, \mathrm{~N} 2, \ldots, \mathrm{Nn}] \quad\left[\begin{array}{c}
\delta_{1} \\
\delta_{2} \\
\ldots \\
\delta_{4}
\end{array}\right]
$$

3.1
$f=[N] . \delta_{e}$
where n is the number of element nodes and Ni are the interpolation polynomials or shape functions which should be chosen with care to satisfy the following convergence criteria
i) continuity of displacements at the interelement boundaries
ii) all rigid body diplacements should be included
iii) as the element area is reduced, a constant strain condition should result
3.2.2 Strain - Displacement Relationship: The strains are obtained through appropriate differentiation of the displacement function f with respect to the relevant coordinate x or y . For plane stress conditions, these can be written as:

$$
\begin{aligned}
\epsilon & =\left[\begin{array}{l}
\epsilon_{x} \\
\epsilon_{y} \\
\epsilon_{x y}
\end{array}\right]=\left\{\begin{array}{l}
\frac{\partial U}{\partial x} \\
\frac{\partial V}{\partial y} \\
\frac{\partial U}{} \\
\frac{\partial v}{\partial y}+\frac{\partial V}{\partial x}
\end{array}\right] \\
& =\left\{\begin{array}{ll}
\sum_{i=1}^{n} & \frac{\partial N_{i}}{\partial x} \cdot U_{i} \\
\sum_{i=1}^{n} & \frac{\partial N_{i}}{\partial y} \cdot v_{i} \\
\sum_{i=1}^{n} & \frac{\partial N_{i}}{\partial y} \cdot U_{i}+\frac{\partial N_{i}}{\partial x} \cdot v_{i}
\end{array}\right]
\end{aligned}
$$

i.e.,

$$
\epsilon=[B] \delta_{e}
$$

$$
3.5
$$

where $[B]$ is the strain - displacement matrix and is given in detail in the next section for isoparametric elements.
3.2.3 Strain-Stress Relationship: The element stresses σ are related to the corresponding strain $€$ using the generalised Hooke's law as:

$$
\sigma=[D] . €
$$

where the stress vector σ is defined as

$$
\sigma^{\top}=\left[\sigma_{x}, \sigma_{y}, \tau_{x y}\right]
$$

and the matrix [D] is referred to as elasticity or property matrix. For a plane stress element with isotropic property [D] is given by [62]

$$
[D]=E /\left(1-\mu^{2}\right)\left[\begin{array}{lll}
1 & \mu & 0 \\
\mu & 1 & 0 \\
0 & 0 & (1-\mu) / 2
\end{array}\right]
$$

where E is the elastic Young's modulus and μ is the Poisson's ratio. Substituting eqn. 3.5 into eqn. 3.6 yields

$$
\sigma=[D][B] \delta_{e}
$$

3.2.4 Minimization of Total Potential Energy: The element strain energy U_{s} is given by

$$
U_{s}=\frac{1}{2} \int_{\mathrm{vol}} \epsilon^{T} \cdot \sigma d(\text { vol })
$$

which after substituting for \in and σ from eqns. 3.5 and 3.6 becomes

$$
\mathrm{U}_{\mathrm{s}}=\frac{1}{2} \int_{\mathrm{vol}} \delta_{\mathrm{e}}{ }^{\top} \cdot B^{\top} \cdot D \cdot B \cdot \delta_{e} d(\text { vol })
$$

The potential energy due to nodal loads $R e$ is given by

$$
W=-\delta_{e}{ }^{\top} \cdot \operatorname{Re}
$$

and the total element potential energy is given by

$$
Q_{e}=U_{s}+W
$$

or, using eqn. 3.11 and eqn. 3.12

$$
Q_{e}=\frac{1}{2} \int_{\mathrm{vol}}^{\delta_{e}} \mathrm{~B}^{\top} D B \delta_{e} d(v o l)-\delta_{e}^{T} R e
$$

The minimization procedure [3.2-3.5] requires that

$$
\frac{\partial Q_{e}}{\partial \delta}=0
$$

which yields

$$
\int_{\text {vol }}^{B^{\top} D B} \delta_{e} d(\text { vol })=R e
$$

i.e.,

$$
\left[K_{e}\right] \delta_{e}=R e
$$

in which the stiffness matrix $\left[K_{e}\right]$ is given by

$$
\left[K_{e}\right]=\int_{\mathrm{vol}}^{\mathrm{B}^{\top} \mathrm{DB}} \mathrm{~d}(\text { vol })
$$

Once the displacement vector δ_{e} has been determined, it is possible to compute the stress distribution at any point within the element using eqn. 3.6. If however, the principal stresses and maximum shear stresses are desired, they can be calculated from the following expressions [62]:

$$
\begin{align*}
& \sigma_{1,2}=\frac{\sigma_{x}+\sigma_{y}}{2} \pm \sqrt{\frac{\left(\sigma_{x}-\sigma_{y}\right)^{2}}{(2)^{2}}+\tau x y^{2}} \\
& \tau_{\max }=\frac{\sigma_{1}-\sigma_{2}}{2} \\
& \tan 2 \Theta=-\frac{2 \tau_{x y}}{\sigma_{x}-\sigma_{y}}
\end{align*}
$$

where σ_{1} and σ_{2} are the major and minor principal stresses, $\tau_{\text {max }}$ is the maximum shearing stress and Θ defines the principal stresses direction with respect to the element axis.

3.3 Coupled Shear Wall Discretisation

A suitable representatiom of a structure such as coupled walls requires the use of two types of elements
i) quadrilateral plane stress elements for the walls
ii) line element for the coupling beams.
3.3.1 Isoparametric Quadrilateral Elements: The stiffness formulation of this family of elements is well documented and can be found in many references [58-61]. The formulation is carried out using localised coordinates (s, t). These coordinates are chosen to have values +1 and -1 along the sides of the element and hence vary from -1 to +1 . The element may have 4, 8, or 12 nodes depending on whether a linear, quadratic or cubic function is assumed respectively. As far as this study is concerned; linear four noded elements are assumed. Each node i has two degrees of freedom $U x_{i}$ and $V y_{i}$ (fig. 3.1). The local and global coordinates are related by

$$
x=\sum_{i=1}^{4} N_{i} x_{i}
$$

where the interpolation functions N_{i} are defined as

$$
\begin{align*}
& N_{1}=\frac{1}{4}(l-s)(1-t) \\
& N_{2}=\frac{1}{4}(1+s)(1-t) \\
& N_{3}=\frac{1}{4}(1+s)(1+t) \\
& N_{4}=\frac{1}{4}(1-s)(1+t)
\end{align*}
$$

From the basic definition of isoparametric elements, the same interpolation function relates displacements within the element to nodal displacements, i.e.,

$$
U x=\sum_{i=1}^{4} N_{i} U x_{i}
$$

$$
V y=\sum_{i=1}^{4} N_{i} V y_{i}
$$

In view of its poor behaviour under bending, the linear isoparametric quadrilateral element has been improved by the introduction of so-called incompatible modes (fig. 3.3) suggested by Wilson [63]. This involves the addition of corrective displacements to the displacement fields defined by eqn. 3.24. Following Wilson's procedure equation 3.24 becomes

$$
\begin{aligned}
& U x=\sum_{i=1}^{4} N_{i} U x_{i}+c_{1}\left(l-s^{2}\right)+c_{2}\left(l-t^{2}\right) \\
& V x \underset{i=1}{4} N_{i} V y_{i}+c_{3}\left(l-s^{2}\right)+c_{4}\left(l-t^{2}\right)
\end{aligned}
$$

$$
3.25
$$

The constants $c_{1}, \ldots . ., c_{4}$ are additional degrees of freedom and therefore increase the element stiffness matrix to (12×12). However these constants being relative to the corner nodal displacements, they can be condensed by minimisation of the strain energy at element level.

As the shape functions are given in local coordinates (s, t), the relationships between local coordinates and global derivatives must be found to determine the strain matrix [B] given by eqn. 3.3. Using the usual chain rules of partial differentiation, the general transformations for function N_{i} may be written as

$$
\left\{\begin{array}{l}
\frac{\partial N_{i}}{\delta s} \\
\frac{\partial N_{i}}{\partial t}
\end{array}\right\}=\left[\begin{array}{lll}
\frac{\partial N_{i}}{\partial x} \cdot & \frac{\partial x}{\partial s} & \frac{\partial N_{i}}{\partial y} \cdot \frac{\partial y}{\partial s} \\
\frac{\partial N_{i}}{\partial x} \cdot \frac{\partial x}{\partial x} & \frac{\partial N_{i}}{\partial y} \cdot \frac{\partial y}{\partial t}
\end{array}\right]
$$

or in matrix form as:

$$
\begin{align*}
& \left\{\begin{array}{l}
\frac{\partial N_{i}}{\partial s} \\
\frac{\partial N_{i}}{\partial t}
\end{array}\right\}=\left[\begin{array}{ll}
\frac{\partial x}{\partial s} & \frac{\partial y}{\partial s} \\
\frac{\partial x}{\partial t} & \frac{\partial y}{\partial t}
\end{array}\right] \cdot\left[\begin{array}{l}
\frac{\partial N_{i}}{\partial \bar{x}} \\
\frac{\partial N_{i}}{\partial y}
\end{array}\right] \\
& \left\{\begin{array}{l}
\frac{\partial N_{i}}{\partial s} \\
\frac{\partial N_{i}}{\partial t}
\end{array}\right\}=[J] \cdot\left\{\begin{array}{l}
\frac{\partial N_{i}}{\partial \bar{x}} \\
\frac{\partial N_{i}}{\partial y}
\end{array}\right\}
\end{align*}
$$

where [J] is known as the Jacobian matrix. It can be computed explicitly in terms of local coordinates as

$$
[J]=\left[\begin{array}{ll}
\partial N_{1} & \partial N_{4} \\
\partial \bar{s} & \partial \bar{s} \\
\partial N_{1} & \partial N_{4} \\
\partial \bar{t} & \partial \bar{t}
\end{array}\right] \cdot\left[\begin{array}{ll}
x_{1} & \overline{y_{1}} \\
\ddot{\square} & \ddot{\bullet} \\
\ddot{0} & \ddot{\ddot{ }} \\
\ddot{x_{4}} & \ddot{y_{4}}
\end{array}\right]
$$

and hence the required derivatives

$$
\left\{\begin{array}{l}
\frac{\partial N}{\partial x} \\
\frac{\partial N}{\partial y}
\end{array}\right\}=[J]^{-1} \cdot\left\{\begin{array}{l}
\frac{\partial N}{\partial s} \\
\frac{\partial N}{\partial t}
\end{array}\right\}
$$

The strain matrix (eqn. 3.3) can now be written as:

$$
\varepsilon=[B] \cdot\left\{\begin{array}{c}
u_{1} \\
v_{1} \\
. \cdot \\
u_{4} \\
v_{4}
\end{array}\right\}
$$

where

$$
[B]=\left[B_{1}, B_{2}, B_{3}, B_{4}\right]
$$

in which

$$
\left[B_{i}\right]=\left[\begin{array}{ll}
\frac{\partial N_{i}}{\partial x} & 0 \\
0 & \frac{\partial N_{i}}{\partial x} \\
\frac{\partial N_{i}}{\partial y} & \frac{\partial N_{i}}{\partial x}
\end{array}\right]
$$

The element stiffness matrix (eqn. 3.18) can now be written in local coordinates (s, t) as

$$
\left[K_{e}\right]=h \iint_{-1}^{t 1} B^{T} D B \operatorname{det}[J] d s d t
$$

where h is the element thickness and $\operatorname{det}[J]$ the determinant of matrix [J]. Using G aussian quadrature [59] for the numerical integration, the element stiffness matrix (eqn. 3.33) can be written as:

$$
\left[K_{e}\right]=h \sum_{j} \sum_{k} W_{j} W_{k} \operatorname{det}[J] B_{\left(s_{j}, t_{k}\right)}^{T} D B_{\left(s_{j}, t_{k}\right)}
$$

in which j and k are the Gaussian integration points and W_{j} and W_{k} their corresponding weight factors. Table 3.1 shows the local coordinates of the Gaussian points and their weight factors.
3.3.2 Line Element: The elastic stiffness matrix for this element is given in its general form with respect to the reference axis as

$$
[\mathrm{Ke}]=\left[\begin{array}{llllll}
\mathrm{Sl} & 0 & 0 & -\mathrm{Sl} & 0 & 0 \\
& \mathrm{S2} & \mathrm{S4} & 0 & -\mathrm{S2} & \mathrm{S4} \\
& & \mathrm{S3} & 0 & -\mathrm{S4} & \mathrm{S5} \\
\text { symmetric } & \mathrm{Sl} & 0 & 0 \\
& & & & \mathrm{S2} & -\mathrm{S4} \\
& & & & & \mathrm{S3}
\end{array}\right]
$$

in which

$$
\begin{array}{ll}
S 2=\frac{12 E I}{L^{3}(l+2 g)} & S 3=\frac{4 E I(l+g / 2)}{L(l+2 g)} \\
S 4=\frac{6 E I}{L^{2}(l+2 g)} & S 5=\frac{2 E I(l-g)}{L(l+2 g)}
\end{array}
$$

where
$\mathrm{g}=(6 \mathrm{fEI}) / \mathrm{GAL}^{2}$
$\mathrm{G}=$ Shear modulus
$\mathrm{f}=$ Shape form factor
$A=$ Area of cross section
$\mathrm{I}=$ Moment of inertia of the section
$L=$ Length of the beam element

If the element is inclined at an angle α with respect to the global coordinates (fig. 3.2), then the stiffness matrix (eqn. 3.38) must be transformed to the global coordinates system before the overall assembly. In the particular case where the element is vertical (e.g column), then [K] specialises as:

$$
[\mathrm{Ke}]=\left[\begin{array}{cccccc}
\mathrm{S} 2 & 0 & -\mathrm{S4} & -\mathrm{S} 2 & 0 & -\mathrm{S4} \\
& \mathrm{Sl} & 0 & 0 & -\mathrm{S} 1 & 0 \\
& & \mathrm{S3} & \mathrm{S4} & 0 & \mathrm{~S} 5 \\
& & & \mathrm{~S} 2 & 0 & \mathrm{~S} 4 \\
\text { symmetric } & & & \mathrm{Sl} & 0 \\
& & & & & \mathrm{S3}
\end{array}\right]
$$

Assuming that the displacements of the reference axis are related to the displacements of the corner of the element (fig. 3.2) by the following relation:

$$
U_{r}=\left[A_{r c}\right] . U_{c}
$$

where

$$
\begin{aligned}
{\left[A_{r c}\right] } & =\left[\begin{array}{llllllll}
0.5 & 0 & 0 & 0 & 0 & 0 & 0 & 0 \\
0 & 0.5 & 0 & 0 & 0 & 0 & 0 & 0.5 \\
1 / D & 0 & 0 & 0 & 0 & 0 & -1 / D & 0 \\
0 & 0 & 0.5 & 0 & 0.5 & 0 & 0 & 0 \\
0 & 0 & 0 & 0.5 & 0 & 0.5 & 0 & 0 \\
0 & 0 & 1 / D & 0 & -1 / D & 0 & 0 & 0
\end{array}\right] 3.39 \\
D & =\text { Depth of the beam element } \\
U c & =\text { Displacement vector of the corners of the beam element. } \\
U r & =\text { Displacement vector at the reference axis of the beam. }
\end{aligned}
$$ by the application of the principle of virtual work one can arrive at the stiffness matrix of a new line element with 8 degrees of freedom, i.e.,

$$
[\mathrm{Ke}, \mathrm{c}]=\left[\mathrm{A}_{\mathrm{rc}}\right]^{\top}[\mathrm{Ke}]\left[\mathrm{A}_{\mathrm{rc}}\right]
$$

In the computation of the 8×8 stiffness matrix of the beam element, it was assumed that the displacements $2,4,6$, and 8 are independent which implies a possible change in the cross-section depth. If the displacements in the directions 2 and 8 and similarly 4 and 6 (fig. 3.2b) can be made equal, the cross-section will remain unchanged across its depth. A very simple method of ensuring that is by adding large stiffness terms to the positions $\mathrm{K} 22, \mathrm{~K} 28, \mathrm{~K} 82$, K88. Physically this can be visualized as if a fictitious, very rigid bar exists between node i and l and j and k respectively. The moment, shear and axial forces acting at the reference axis can be computed using the following relation:

$$
F_{r}=\left[B_{r c}\right]^{\top} \cdot F_{c}
$$

where

$$
\begin{align*}
& F_{r}=\text { vector of forces acting at reference axis } \\
& F_{c}=\text { vector of forces acting at element corners } \\
& {\left[B_{r c}\right]=\left[A_{r c}\right]^{-1} \text {, i.e., }} \\
& {\left[B_{\Gamma c}\right]=\left[\begin{array}{llllll}
1 & 0 & D / 2 & 0 & 0 & 0 \\
0 & 1 & 0 & 0 & 0 & 0 \\
0 & 0 & 0 & 1 & 0 & D / 2 \\
0 & 0 & 0 & 0 & 1 & 0 \\
0 & 0 & 0 & 1 & 0 & -D / 2 \\
0 & 0 & 0 & 0 & 1 & 0 \\
1 & 0 & -D / 2 & 0 & 0 & 0 \\
0 & 1 & 0 & 0 & 0 & 0
\end{array}\right]}
\end{align*}
$$

3.4 Overall Solution

The stiffness matrix of the whole structure is constructed from the individual element matrices by using the direct stiffness matrix method [8], i.e., by summing up the individual element stiffnesses as

$$
[K]=\sum_{l}^{n}\left[K_{e}\right]
$$

where

$$
[K]=\text { overall stiffness matrix }
$$

$$
\left[K_{e}\right]=\text { element stiffness matrix }
$$

$$
n=\text { number of elements in structure }
$$

Similarly, the overall load vector R is given by

$$
R=\sum_{l}^{n} R_{e}
$$

and the potential energy of the structure Q is the sum of the element potentials as given by eqn. 3.14, i.e.,

$$
Q=\sum_{l}^{n} Q_{e}
$$

substituting eqns. (3.40) and (3.42) into eqn. 3.44 yields

$$
Q=\delta^{T} \underset{\left(\frac{1}{2} \sum_{l}^{n}\left[K_{e}\right] \delta-\sum_{l}^{n} R_{e}\right)}{ }
$$

i.e.,

$$
Q=\int_{0}^{T}([K] \delta-R)
$$

where δ is the overall displacement vector. Minimizing the potential energy requires

$$
\frac{\partial Q}{\partial \delta}=0
$$

i.e.,

$$
[K] \delta=R
$$

By introducing the structural forces R and the known boundary conditions, the unknown structural displacement vector δ is obtained by solving the system of simultaneous equations given by

$$
\stackrel{\varrho}{0}=[K]^{-1} R
$$

$$
3.50
$$

In this study, Gaussian elimination procedure [8] is employed for the solution of equation 3.50. Eqn. 3.50 is general and is applicable to static as well as dynamic problems. In a dynamic history analysis, the equation of motion is generally solved using step-by-step numerical integration method. In each time interval, the equations of motion can be transformed to the above general form (eqn. 3.50) as demonstrated in chapter five.
TABLE 3.1 GAUSSIAN QUADRATURE CONSTANTS

FIG. 3.1 TWO-DIMENSIONAL ISOPARAMETRIC ELEMENT

FIG. 3.2 LINE ELEMENT IDEALISATION

A) Flexural Element

B) Deformed Shape of the Flexural Element

C) Deformed Shape of the Quadrilateral Element

FIG. 3.3 BENDING BEHAVIOUR OF A QUADRILATERAL ELEMENT

CHAPTER FOUR

INELASTIC SPECTRUM PROCEDURE

4-1 General

In carrying out a dynamic analysis to obtain the response of a structure subjected to earthquake forces, one can use the response spectrum analysis or the more sophisticated and computer time consuming, time history analysis. Time history analysis involves step-by-step integration of the equations of motion for a ground motion accelerogram and is applicable to both linear and nonlinear systems. In recent years many researchers [$26,27,29,36,64-68$] have focused their work on improving the nonlinear mathematical models to be used along with the step-by-step method of analysis. Despite that, however, the corresponding improvements in the ability of structures to withstand earthquake is far behind. This is because, first analysis has far outstripped practical use of the results for design purpose and second, the step-by-step method of analysis is too expensive to be attractive for practical purposes and need be performed repeatedly to meet an acceptable behaviour and to take the randomness of ground motion [12] into account, i.e., because of the sensivity of the structural response to the details of ground motion input.

The response spectra-based analysis however, although limited so far to elastic systems, may be a potential practical method for inelastic structure design. Eventhough the inelastic spectrum analysis [$11,16,69,70$] is not strictly correct, the simplicity required by a code of practice on one hand, and the complexity and questionable reliability of the step-by-step integration procedure on the other, makes the method most attractive for the future. Therefore this chapter is intended to develop this method and to investigate its application for a practical design of coupled shear wall structures.

The general approach and its limitations are discussed first then the procedure of the method is presented and the different influencing parameters are investigated in section 4.3. The response spectrum analysis is based on a response spectra as loading data, therefore the development of an inelastic design spectra is also presented in section 4.3. Section 4.4 is devoted to the application of the inelastic spectrum analysis to coupled shear wall structures.

4-2 Approach and Limitations

Although the term response spectrum was originally used with reference to linear single degree of freedom (sdof) systems, its use has been extended to mdof systems by modeling each vibration mode by the response of a sdof system. For a particular linear sdof system defined by its frequency and damping, a point on a response spectrum curve is obtained by subjecting the system to a specific ground motion record. The maximum value of the response parameter of interest (acceleration, velocity or displacement) during the excitation and associated frequency or period for a specific damping ratio defines a point of the spectrum. Other points are obtained by varying the frequency (or period). Fig. (4.1) shows an example of such a spectrum for different damping ratios.

The response spectrum analysis consists of the superposition of the modal responses obtained from . specific spectra. In using such an elastic spectrum, the only source of inaccuracy in the method lies in the way the modal contributions are combined. When subjected to a ground motion, an inelastic single degree of freedom system may respond as shown in fig. (4.2). If a ductility factor defined as (fig. 4.2b)

$$
\mu=\frac{U_{\max }}{U_{y}}
$$

Umax and Uy being the maximum displacement and the displacement at yield respectively, is chosen and if the yield value Ry is selected by trial and error so that the computed ductility is equal to that preset; then an inelastic spectrum can be generated in the same way described above for elastic analysis. Fig. (4.3) shows an example of such spectrum for different ductilities.

If the structure to be designed is a sdof system, the use of an inelastic spectrum is theoretically correctly applicable. In the case of a mdof system however, the modal analysis used in the inelastic spectrum analysis is not rigorously valid because of its principle of superposition which does not hold beyond the elastic range [12, 71] unless all plastic hinges associated with the assumed failure mechanism form simultaneously [72].

4.3 Procedure of the Method

Apart from the development of the inelastic spectra which is an iterative process for a preset ductility factor, the rest of the procedure is very much the same as the elastic modal analysis and involves the following steps:
i) Design Earthquake Ground Motion: The choice of an earthquake input as a basis for design is one of the most difficult and uncertain features in the overall procedure of seismic analysis. This is because, first, the determination of any earthquake record depends to a large extent on the disciplines of geology and seismology [73] and therefore may differ from one site to another and second, the response of a structure depends not only on the intensity of the earthquake but also on such factors as frequency content, duration, etc... Therefore two different records of the same intensity are most likely to excite a given structure quite differently. Researchers [74, 75, 12] have dealt with the problem of selection of design earthquakes and most of them agreed that the use of a single record to define a design earthquake
leaves considerable uncertainty as to the significance of the response it produces.

While averaging the maximum responses of each of the record considered to produce _ design spectra to be used along with modal analysis is quite usual, the procedure seems to be impractical for the step-by-step integration method and one is confined to perform the analysis for each of the record seperately. This shows yet again the advantage and practicality of inelastic spectrum analysis over the time history analysis. In this dissertation four earthquake records of different characteristics have been considered. Their accelerogram time histories for the first 10 second duration are shown in fig. (4.5).
ii) Design Ductility: When subjected to a severe earthquake, the structure must have the capability of undergoing substantial inelastic deformation without collapse. These inelastic deformations are often referred to as ductility demand which is measured in terms of strains, displacements, curvatures or rotations, and is defined by the ratio of the ultimate to the yield value of the quantity considered, i.e.,

$$
\mu=\frac{D u}{D y}
$$

For mdof systems the term ductility factor has been used with different meanings [55] adding confusion and ambiguity. Keeping in mind that the presented approach is intended to be integrated into a code and as far as shear walls are concerned, the displacement ductility seems to be the most suitable. This is so because the rotational ductility ($\theta \mathrm{l} / \theta \mathrm{y}$) can be very misleading when dealing with members of different depth, indeed because of the relatively smaller curvature associated with first yielding in a deep member such as shear wall, a rotational ductility factor of say 4 , would represent a relatively lower lateral capacity than the same ratio would indicate when used for a
regular column. If one defines the storey drift as the relative displacement between two successive storeys, the ultimate drift Du would be the acceptable drift preset by the designer or the code of practice. It may be worth noting that the Applied Technology Council (ATC) [76] recommended a value of Du $=0.01 \mathrm{~h}$ and the UBC code [50$]$ a value of $\mathrm{Du}=0.015 \mathrm{~h}, \mathrm{~h}$ being the storey height.
iii) Developement of the Inelastic Response Spectrum: As explained in section 4.2, a spectrum is presented in terms of one of the parameters of interest. Throughout this dissertion spectral acceleration is considered. When subjected to a ground excitation $x^{\prime \prime}$, a single degree of freedom system (fig. 4.2) may be assumed to behave according to a preset hysteretic model. In this investigation, the Takeda hysteretic sdof model with degrading stiffness capability is assumed [29] (fig. 4.4). This experimentally based model is believed to comply better with the real behaviour of R / C structures and hence should lead to a better accuracy than elastic perfectly plastic model.

The model (fig. 4.2a) can be described by the sdof equation of motion as

$$
m u^{\prime \prime}+c u^{\prime}+R=-m x^{\prime \prime}
$$

where m, c and R are the mass, damping and resistance respectively, $u^{\prime \prime}$ and u^{\prime} are the derivatives of the displacement u. Note that the resistance R is equal to the product $k u$ in the elastic range, k being the nominal stiffness and is represented by the slope of the elastic range of the load-deformation hysteretic model (fig. 4.4). In the case of a damped free vibration, one can define the critical damping [12] as:

$$
c_{c}=2 m w
$$

in which w is the circular frequency and is given by [12]

$$
\mathrm{w}=(\mathrm{k} / \mathrm{m})^{\frac{1}{2}}
$$

The natural frequency can be determined as

$$
f=w / 2 \pi
$$

and the period T as

$$
T=1 / f=2 \pi / w=2 \pi(\mathrm{~m} / \mathrm{k})^{\frac{1}{2}}
$$

It is useful to define the damping ratio z as the ratio between damping c and its critical value c_{c}, i.e.,

$$
z=c / c_{c}=c / 2 m w=c T / 4 \pi m
$$

The equation of motion (4.3) may be solved using any available method. In this dissertion the solution is carried out using the step-by-step numerical integration because of the nature of the exciting force ($m x^{\prime \prime}$). In order to obtain an acceleration spectrum for a specified ground motion $x^{\prime \prime}$, one needs to solve equation (4.3) as many times as the number of fundamental periods to be considered and plot the curve relating the spectral acceleration to the fundamental periods (or natural frequencies).

The structural model described by equation 4.3 is excited by one of the chosen design ground acceleration time histories ($x^{\prime \prime}(t)$). The solution of equation (4.3) is carried out by numerical integration. The yield level of the structure (fig. 4.4) given by

$$
u_{y}=\frac{R_{y}}{k}
$$

is then varied iteratively until the specified design ductility factor is obtained. The spectral acceleration Sa is the value of the acceleration which when multiplied by the mass of the model m, yields the yield resistance force $R y$, i.e.,

$$
R_{y}=m S_{a}
$$

$$
4.10 a
$$

$$
\mathrm{S}_{\mathrm{a}}=\frac{\mathrm{R}_{\mathrm{y}}}{\mathrm{~m}}
$$

The different steps involved in the development of the inelastic spectra are summarized by the following computer orientated flow chart.

The procedure is repeated for each of the records considered and for the different ductility factors. Fig. (4.6) shows the plot of the spectral acceleration versus the natural frequency for the four earthquake design records and for ductility factors of 1,2 , and 4 respectively.
iv) Average Design Spectra: Before averaging the spectra shown in fig. (4.6) and to achieve a consitent set of data for strong earthquake conditions, the records have been normalised to a standard intensity. Housner [lll] proposed a measure of the intensity of ground motions. He defined the spectrum intensity as the area under a velocity response spectrum curve between periods of 0.1 and 2.5 seconds as

$$
\mathrm{SI}_{\mathrm{p}}=\int_{0.1}^{2.5} \mathrm{~S}_{\mathrm{V}}(\mathrm{p}, \mathrm{~T}) \mathrm{dT}
$$

in which $\quad \begin{array}{ll}\mathrm{SI}_{p}=\text { Spectrum intensity at damping } p \\ & \mathrm{~S}_{\mathrm{v}}=\text { Velocity response spectrum } \\ & \mathrm{T}=\text { Period }\end{array}$

The N/S component of 1940 El Centro earthquake, which had an approximate peak acceleration of 0.40 g , has long been considered as a typical strong motion, therefore a normalization corresponding to its intensity [lll] has been chosen as a basis of the design spectra. Fig. (4.7) shows the normalized and the average design spectra.

4.4 Application of the Method to Coupled Walls

It has been years now that nonlinear methods of analysis have been used to solve structural problems and yet as far as coupled shear walls are concerned, no available systematic method exists to meet the practical need of structural engineers as concerning optimal selection of stiffness and strength of the walls and the coupling beams of coupled shear walls.

It is well accepted that energy demand by an earthquake is better contained by horizontal members if provided with appropriate and realistic ductility. This is because of different reasons, the most important being:

1) Stability problem if major yielding in vertical supporting members.
2) Beams (flexible) develop more ductility than walls (rigid and hence brittle).
3) Horizontal members generally easier to repair.

This trend of philosophy is even encouraged by most codes of practice [71, 77] by giving none or very little credit of any kind of ductility to shear walls.

Recently however, it has been shown by Paulay and Santhakumar [110], Bertero [52], Fintel and Ghosh [78, 79] and others [47, 80, 81] that, in fact, shear walls if well designed may develop substantial ductility. More experimental work is certainly needed for this to be fully accepted and made part of the code recommendations by lifting the severe burden on shear wall systems.

Recognising that shear walls can develop ductile behaviour, it is attempted in the following sections to describe a practical method of design of coupled shear walls. First free vibration analysis is carried out and results discussed. This is followed by the inelastic spectrum analysis and its direct application to the design of coupled shear walls.
4.4.1 Evaluation of Natural Frequencies and Mode Shapes: The evaluation of natural frequencies and mode shapes is a standard eigenvalue problem. They are derived from the solution of the equation:

$$
\left(K-w_{n}{ }^{2} M\right) \phi_{n}=0
$$

where $K=$ stiffness matrix of the structure
$M=$ structural mass matrix
$w_{n}=$ circular frequency at mode n
$\phi_{n}=n^{\text {th }}$ modal shape vector
In this dissertation the bissection method [83] is used to solve equation 4.11. The stiffness matrix K is assembled using the direct method and the element stiffnes matrix was developed in chapter three.

As can be seen from equation 4.11 the natural frequency depends not only on the stiffness of the structure but also on its storey mass. In view of the substantial influence of the variation of storey mass upon the natural frequency (fig. 4.10) and hence storey drift, it has been decided to consider in addition to selfweight two typical extra storey masses namely 4 kips and 8 kips respectively. This is believed to cover a wide range of practical possibilities.

The first three natural frequencies where computed for a wide range of coupled shear walls ranging from 100 ft to 400 ft high (their general properties are shown in fig. (4.8)) and for 3 mass cases:

1) Selfweight only
2) Selfweight + extra storey mass $=4 \mathrm{kips}$
3) Selfweight + extra storey mass $=8 \mathrm{kips}$

These will be used later along with their related mode shapes for the modal response analysis. For convenience only the first natural frequencies are shown in fig. (4.9a), (4.9b), (4.9c), and (4.9d) for 100, 200, 300, and 400ft high structures respectively.

4.4.2 Discussion: At this point it may be worth noting the following points:

i) Generally as it can be expected, the natural frequency increases with the wall width Dw and the coupling beam depth and decreases with increasing beam length (L beam) or overall height.
ii) Contrary to what has been discussed in i), it was found sometimes that
from two structures having the same geometric characteristics, the one having the longest coupling beam length produces higher natural frequency. This somehow suprising result finds its explanation in the point iii) discussed below.
iii) As the ratio (beam depth/storey height) reaches a certain value which varies with the height of the structure and the beam length, the natural frequency tends very rapidly towards that of the solid wall without openings having the same overall dimensions.
iv) As the wall width (Dw) reaches a certain value, the fundamental period seems to depend no more on the beam depth. This is clearly shown by fig. (4.11).
v) The storey masses have a very big influence on the natural frequency (fig. 4.10) and therefore should be taken into account. For convenience the natural frequencies of structures with extra storey masses are shown in appendix B if needed. Their approximate values can also be derived as the product of the natural frequency of the structure with no extra storey pass $\ddagger \square$ coefficient c_{4} or c_{8} derived from table 4.1 for extra storey mass of 4 and 8 kips respectively. The variation of c_{i} with respect to the beam length (Lbeam) and the beam depth (Hb) were found to be negligible and only the influence of the wall depth (Dw) on c_{i} was considered.
4.4.3 Modal Forces, Modal Drifts and Combinations: Based upon the inelastic acceleration response spectrum, the design ductility factor and the first three natural frequencies (these are believed enough for a good approximation), the maximum member forces and displacements are computed by modal analysis.
4.4.3.1 Maximum Modal Forces and Displacements: If one defines the so called participation factor [12] for mode n as

$$
L_{n}=\frac{\phi_{n}^{\top} M}{\phi_{n}^{\top} M \phi_{n}}
$$

where $\quad M=$ structural mass matrix
$\phi_{n}=$ shape vector at mode n
then the maximum modal forces in the $\mathrm{n}^{\text {th }}$ normal mode can be computed as

$$
P_{n_{\max }}=s_{a_{n}} L_{n} M \phi_{n}
$$

in which $S_{a_{n}}$ is the spectral acceleration read from the inelastic design spectrum for mode n. Modal shears, modal moments....etc may be obtained from modal forces using standard procedure of structural analysis.

Defining the storey drift as the relative deflection between two consecutive stories, the storey drift indice, i.e., the storey drift over the storey height, is certainly one of the very important quantities of structural response. This is because it reflects directly the distortion induced in that storey. The maximum displacement modal response for mode n, may be expressed as:

$$
U_{n}=L_{n} s_{a_{n}} \phi_{n} / \omega_{n}^{2}
$$

hence the modal drifts between level y and $y-1$ is given by:

$$
\delta_{n}=U_{n, y}-U_{n, y-1}
$$

or

$$
\delta_{n}=\frac{L_{n} S_{a_{n}}}{w_{n}^{2}}\left(\phi_{n, y}-\Phi_{n, y-1}\right)
$$

4.4.3.2 Maximum Response - Combinations: The maximum modal forces and displacements previously described are the maximum values attained during the response in the particular mode considered. Because these maxima do not
occur at the same time there is no exact way to determine precisely the maximum response and it would be generally unduly conservative to compute the latter by simply adding the maxima together. Therefore different probability based formulae have been proposed in order to obtain a reasonable estimate of the maximum response. In this research the usual procedure of combining the modal contributions using the square root of the sum of the squares, that is root-mean-square (RMS) procedure is utilised.

The maximum force distribution is then given by:

$$
F_{\max }=\left(\Sigma P_{n_{\max }}\right)^{\frac{1}{2}}
$$

and the maximum yield drift by

$$
\delta_{y_{\max }}=\left(\Sigma \delta_{n, y}\right)^{\frac{1}{2}}
$$

As previously defined, the maximum yield drift indice can be computed as

$$
D y=\frac{\delta_{y_{\text {max }}}}{h}
$$

in which h is the storey height. The value of the maximum drift indice $\delta_{\text {ult }}$ is related to the maximum yield drift $\delta_{y_{\text {max }}}$ by

$$
\delta_{\text {ult }}=\mu \delta_{y_{\max }}
$$

4.4.4 Procedure: The direct relation between the dynamic characteristics (modal shape and natural frequency) of the structure and its interstorey drift has been demonstrated by Derecho et al [75], Machin and Bertero [82] and Fintel [77]. For any given coupled shear wall, one can attribute a natural frequency f_{1}. Plots of such a relation for different geometric characteristics of coupled shear walls are shown in figure (4.9). For the same coupled shear walls and for a chosen ductility factor and design spectra, one can compute
the maximum interstorey drift. The latter is then related to the natural frequency and plotted in figures (4.13), (4.14) and (4.15).

Having chosen the maximum acceptable drift, the designer may enter the charts of figures (4.13) to (4.15) which yield the required first natural frequency, which in turn is introduced in figure (4.9) to yield the required geometric parameter in terms of the known dimensions. Furthermore, the direct relation of storey drift and the plastic rotation in the storey coupling beam provides the necessary strength in the coupling beams. This and other features are discussed in the following sections of this chapter.
4.4.5 Results and Discussion: From the results the following observations can be made:
i) The maximum lateral displacement of three 20 storey coupled shear walls having different natural frequencies have been drawn in fig. (4.12). As can be seen clearly, the maximum lateral displacement increases almost in proportion to the fundamental period.
ii) The first fundamental periods of a variety of coupled shear walls have been related to the maximum yield storey drift indice. As can be expected the storey drift indice generally decreases almost in proportion to increasing fundamental period.
iii) Using the well known statistical least square method [84], the relationships of storey drift indice-period have been fitted into approximate curves for $\mu=1$ (fig. 4.13), $\mu=2$ (fig. 4.14), $\mu=4$ (fig. 4.15). These curves are to be used for design as stipulated previously. Having selected the maximum tolerable storey drift indice and hence the maximum yield storey indice, the designer enters one of the charts (figs. 4.13 - 4.15), which yield the fundamental period of the required coupled shear wall. It may be worth noting that for convenience the period is that of the structure with no extra storey
masses. The period is then used to enter one of the diagrams of fig. (4.9) which in turn, yields one of the geometric parameters required.
4.4.6 Adequacy of the Design and Coupling Beam Strength: In performing a design according to the procedure described previously, it was assumed that the coupling beams undergo inelastic deformations with acceptable practical limit. Because of its paramount importance the ductile behaviour of the beams i.e., their ability to deform plastically without loss of strength, appears to be more than necessary and must therefore be checked by providing it with appropriate strength. In this section an attempt is made to relate the maximum drift to the plastic rotation demand on coupling beams, which in turn is related to the required yield moment of the beam.

Eventhough there are several ways of expressing inelastic demands on beams [85], the plastic hinge rotation is probably the most expressive because it can be directly relatable to the moment - curvature curve ($m-\phi$) and the geometric properties of the beam cross-section. Figure (4.16) shows a beamwall subassemblage in its displaced position at maximum drift. The deflections are exaggerated in order to clearly illustrate the geometric relationships. From the figure:

$$
\Theta \max =\Theta p+\Theta y
$$

in which
$\Theta_{\text {max }}=$ maximum rotation
$\theta y=$ rotation at yield
$\Theta p=$ plastic rotation.

Assuming an acceptable rotational beam ductility factor μ_{b}, one may compute Өy as:

$$
\theta y=\frac{\theta_{\max }}{\mu_{\mathrm{b}}}
$$

For a plastic hinge length lp, i.e., the equivalent spread of plasticity [86], one may compute the yield curvature φ_{y} as:

$$
\varphi_{y}=\frac{\theta_{y}}{1 p}
$$

The plastic hinge spread lp has been given empirically by Paulay [86] as:

$$
1 p=0.5 d+0.05 s
$$

in which d is the effective depth of the section and s is the distance from the critical section to the inflection point.

Assuming a linear distribution of strain (fig. 4.17b) and if the yield steel strain Ey and the effective depth of the cross section d are known, then the neutral axis depth $K_{u d}$, and hence Ec and E^{\prime} s can be computed. The equilibrium equation of the resultant forces (fig. 4.17 c), i.e.,

$$
T s=C c+C s
$$

yields the compressive and tensile steel sections A's and As respectively and hence the yield moment My required. (see design example appendix A).

4.5 Conclusion

A design tool has been presented for coupled shear wall systems built in zones where there is a high risk of strong earthquakes occuring. To illustrate the method a design example is carried out in appendix A. The importance of the structure can be taken into consideration through design ductility factor. The charts do not cover absolutely all the possible geometric characteristics, however interpolations can be made, bearing in mind what follows:
i) For coupled shear wall structures having the same total height (H H) and the same beam length and depth (Lbeam, Hb), the fundamental period is almost inversely proportional to the wall depth (Dw) as shown by figure (4.11).
ii) For coupled shear wall structures having the same wall depth (Dw) and the same beam length and depth (Lbeam, Hb), the fundamental period can be assumed proportional to the square of the total height of the structure (Ht).
iii) The natural frequency of a structure having extra storey mass can be derived from fig. (4.9) struck by a factor c given in table 4.1 as explained in section 4.4.2.
iv) The yield drift is almost in proportion to the fundamental period. The error committed by assuming such a proportionality increases with increasing design ductility factor.

TABLE 4.1 COEFFICIENT c_{4} and c_{8} FOR MASS $=4 \mathrm{KIPS}$

 AND MASS $=8$ KIPS RESPECTIVELY| 10 storey | | 20 storey | 30 storey | 40 storey | | | | |
| :--- | :--- | :--- | :--- | :--- | :--- | :--- | :--- | :--- |
| Dw | $c 4$ | $c 8$ |
| 12 | 2.26 | 3.00 | 2.18 | 2.91 | 2.13 | 2.86 | 2.70 | 3.25 |
| 15 | 2.06 | 2.75 | 2.00 | 2.64 | 1.98 | 2.62 | 2.48 | 3.00 |
| 18 | 1.92 | 2.53 | 1.88 | 2.47 | 1.86 | 2.43 | 2.31 | 2.75 |
| 21 | 1.82 | 2.40 | 1.78 | 2.31 | 1.76 | 2.28 | 2.16 | 2.58 |

FIG. 4.1 TYPICALACCELERATION SPECTRUMFOR VARIOUS DAMPING RATIOS

(a)

(b)

FIG. 4.2 a) SDOF SYSTEM SUBJECTED TO GROUND MOTION
b) LOAD-DEFORMATION RELATIONSHIP FOR THE SPRING

FIG. 4.3 ELASTIC AND INELASTIC SPECTRA FOR VARIOUS DUCTILITY FACTORS

FIG. 4.4 HINGE MOMENT-ROTATION RELATIONSHIP FOR TAKEDA MODEL

FIG. 4.5 ACCELEROGRAMS OF FIRST IDS. OF FOLLOVING RECORDS

(A)	1940	El Centro	N-S
(B)	1940	El Centro	E-V
(C)	1952 Taft	SG E	
(D)	1971 Holiday Orlon	$E-V$	

PERIOD (S)

PERIOD (S)

PERIOD (S)

FIG. 4.6 ELASTIC AND INELASTIC SPECTRAS OF FOLLOUING RECORDS

(A)	1940	El Centro	N-S
(B)	1940	El Centro	E-V
(C)	1952 Taft	SG9E	
(D)	1971 Holiday Orion	$E-Y$	

FIG. 4.7

DERIVATION OF DESIGN SPECTRA FOR NORMALIZED O.4g MAX ACC.
(A) elastic spectra
(B) 1 nelastic spectra
(C) 1nelastic spectra
(D) design spectra

FIG. 4.8 MATERIAL PROPERTIES AND GEOMETRIC CHARACTERISTICS


```
    FIG.4.9a
Total helght
NB of storeys: 10
Selfwelght: yes
Extra story mass : none
```


Total height : 20 oft
Nb of storeys: 20
Selfweight : yes
Extrastory mass : none

FIG. 4.9c

Total helght	: 30 ft
Nb of storeys	$: 30$
Selfweight	yes
Extra story mass	: none

FIG. 4.9d
Variation of 1 st. natural freqency wlth beam depth and wallwtath (DV).

Totel nelght
Nb af storeys
Selfwelght
Extrastory mass : none

FIG. 4.10 INFLUENCE OF THE STOREY MASS ON THE NATURAL FREQUENCIES OF A 20 STOREY COUPLED SHEAR WALL

FIG. 4.11 VARIATION OF FUNDAMENTAL PERIOD IN TERMS OF WALL DEPTH DW

FIG. 4.12 VARIATION OF LATERAL DISPLACEMENT WITH NATURAL FREQUENCY OF A 20 STOREY COUPLED SHEAR WALL
 perido is)

FIG. 4.13 MAXIMUM YIELD DRIFT INDICE VERSUS FUNDAMENTAL PERIOD FOR DUCTILITY FACTOR U=1. AND STORY MASS M=0, $4, \quad 8$ RESPECTIVELY

FIG. 4.14 maximum yield drift indice versus fundamental period FOR DUCTILITY FACTOR $\mu=2$. AND STORY MASS M= $\quad . \quad 4 \quad . \quad 8$ RESPECTIVELY

FIG. 4.15 MAXIMUM YIELD DRIFT INDICE VERSUS FUNDAMENTAL PERIOD FOR DUCTILITY FACTOR $\mu=4$. ANO STORY. MASS M=0, $4 \quad . \quad 8$ RESPECTIVELY

FIG. 4.16 BEAM - WALL CONNECTION

FIG. 4.17 DISTRIBUTION OF STRAIN AND STRESS OF A TYPICAL CROSS SECTION AT YIELD

CHAPTER FIVE

NONLINEAR BEHAVIOUR OF REINFORCED CONCRETE

5-1 General

When performing a nonlinear analysis, techniques have to be used that recognize material nonlinearities such as cracking and crushing of the concrete and the yielding of the steel. Most material nonlinearities are due to overstress, therefore a way must be found to postulate the critical combinations of stresses or yield criterion beyond which the elastic constitutive relationship does not hold any more. Also, the success of nonlinear analysis to trace the structural behaviour with time on one hand, update the stiffness matrix whenever necessary and predict nonlinearities and failures with good accuracy on the other hand, lies within the choice of suitable experimentally based models or idealisations. Before considering these criteria and models and the resulting modifications in element stiffness which are discussed in some detail in section 4, it was thought useful to give a brief general background on the behaviour of reinforced concrete material and its main components .

5-2 Behaviour of Reinforced Concrete

The finite element method of analysis has advanced considerably in the last decades to meet different problems in various complex fields. However further progress in the understanding and prediction of structural reinforced concrete behaviour is still needed. Indeed the complexity, nonhomogeinity, and anisotropy of the material all contribute to make this progress even slower because of lack of reliable experimental evidence. While relatively reliable experimental data is available on plain concrete and the steel reinforcement acting separately, the derivation of a reliable constitutive law for reinforced concrete is still under
investigation. This is because many of the phenomena influencing the composite material such as bond slip, dowel actions, shear deformations etc., are not fully understood. Before discussing the behaviour of the composite material, the available information on its basic components are presented in the following sections.

5-2-1 Concrete: It is well established that concrete may be idealized as a linear, elastic and brittle material in uniaxial tension. Because of its low and uncertain tensile strength, it is normal practice to ignore it altogether. Therefore most of the effort has been focused on the understanding of the behaviour of concrete under compression. It has been found that uniaxial compressive stress - strain relationship is nonlinear fig. (5.1). Karsan \& Jirsa [88] investigated uniaxial concrete behaviour under reversal of loadings and a typical experimental stress-strain relationship is illustrated in fig. (5.3). A great deal of work has been done on uniaxial behaviour and a review of the existing data was given by Popovics [87].

Although an assumed uniaxial stress condition can be justified in many cases, it must be borne in mind that in most practical conditions, concrete is subjected to multiaxial stresses. One of the major experimental results on biaxial behaviour were produced by Kupfer et al. [89]. By conducting tests on plain concrete prisms subjected to different combinations of tension and compression, they defined a biaxial strength envelope as shown in fig. (5.2). They concluded that the strength of concrete under biaxial compression may be as much as 27% higher than under uniaxial compression. However the strength under biaxial tension was approximately equal to the uniaxial tensile strength.

5-2-2 Steel Reinforcement: The steel behaviour has been understood a long time before concrete. Steel behaves generally identically whether it is stressed in tension or in compression. A typical stress -strain curve relationship is illustrated by fig. (5.1b). Steel behaves elastically up to the yield point, after
that it can be idealised either as perfectly plastic or with strain hardening.

5-2-3 Reinforced Concrete: While the separate behaviour of the basic components of reinforced concrete are more or less understood, difficulties still remain in constructing a reliable analytical model for a reinforced concrete member. This stems from the difficulties in assessing phenomena such as dowel actions on steel reinforcement, bond between steel and concrete, aggregate interlock and bond slip inherent to the material. Many researchers, aware that perfect bond between steel and concrete may only exist at early stage of loading, started investigating the phenomenon. One of the first to introduce bond into a finite element approach were Ngo \& Scordelis [31] and Nilson [32]. The first modelled the bond as a linear relationship and used spring linkage elements between steel and concrete. The work was then extended by the second who considered a nonlinear relationship for bond - slip. The phenomenon of dowel action has also been investigated [64, 90, 91] but no reliable data has emerged to allow it to be taken into account with full confidence.

5-3 Description of the Models

5-3-1 Finite Element Idealisation: One of the most important and influencial steps of the overall analysis is certainly the choice of finite element idealisation. This depends on many features such as structural type, geometry, type of loading and general structural behaviour. As far as coupled shear walls are concerned the following idealisations have been adopted in this study :
i) Walls: The finite element idealisation of the walls used in this investigation is a four noded quadrilateral isoparametric plane stress element with two translational degrees of freedom (dof) at each node. However four extra dof corresponding to the nonconforming modes developed by Wilson et al. [63] are added to soften the element and to improve its behaviour in flexure. These extra dof have proven to be efficient in producing good agreements with various
elastic problems. The element stiffness matrix is calculated using the standard Gaussian numerical integration and its derivation is given in chapter III. It may be worth noting that the walls can also be idealised as vertical line elements if need be. Nonlinearities effect the element stiffness and are accounted for through the updating of the property matrix. These and other features are discussed in detail in section 5-4.
ii) Coupling Beams : Because of their likely behavioural response, the coupling beams are idealised as line elements in this study, although they can be idealised as plane stress elements if necessary. The depth of the element is taken into consideration by transforming the generalized displacements acting at the reference axis to eight degrees of freedom acting at the corners of the element. The line element stiffness matrix is also derived in chapter III. Nonlinearities are monitored by the moment - rotation relationship and are discussed in section 5-5.

5-4 Nonlinearities: Plane Stess Consideration

5-4-1 Cracking Phenomenon: In this study concrete is considered to behave elastically in tension. Concrete has very limited capacity to resist tension and is therefore allowed to crack when a principal stress exceeds the maximum permissible tensile stress $\sigma_{\text {ct• }}$. In view of the dynamic character of the loading a crack can open and close again, and at each event the property matrix has to be updated to preset models. Therefore the rest of this section is devoted to the description of these models and the possible stages which can be experienced by a plane stress element during its response.
i) Elastic Element: Prior to cracking the concrete is assumed homogeneous, isotropic and elastic. The property matrix is therefore given by Hooke's law for plane stress elasticity as [92]:

$$
\sigma c=D_{c} \epsilon_{c}
$$

Where σc are element stresses, ε_{c}, element strains and D_{c}, the element elastic property matrix. Concrete property matrix D_{c} can be written as

$$
D_{c}=E c /\left(1-\mu^{2}\right)\left[\begin{array}{lll}
1 & \mu & 0 \\
\mu & 1 & 0 \\
0 & 0 & (1-\mu) / 2
\end{array}\right]
$$

in which Ec = Young's modulus of elasticity of concrete

$$
\mu=\text { Poisson's ratio of concrete }
$$

ii) Cracked Element: If one of the principal stresses σ_{1} or σ_{2} reaches the admissible tensile concrete stress Oct, then concrete is assumed to have cracked perpendicularly to the considered principal stress direction and therefore can no longer carry any tensile stress perpendicular to the crack direction. However some shear resistance can still be transmitted through so called aggregate interlock and dowel action. These features can be expressed by updating the property matrix given in equation (5.2). For a section which was cracked due to 01 fig. (5.4) for instance the instantaneous property matrix is :

$$
D_{C r}^{\prime}=\left[\begin{array}{lll}
E_{c} & 0 & 0 \\
0 & 0 & 0 \\
0 & 0 & \alpha E c / 2(1+\mu)
\end{array}\right]
$$

in which the shear transfer factor α is discussed in the next sections. Note that the matrix D^{\prime} 'cr as expressed by equation 5.3 is given with respect to material coordinates (x^{\prime}, y^{\prime}) fig. (5.4) and can be transformed into element coordinates (x, y) by

$$
D_{c r}=T^{\top} D_{c r}^{\prime} T
$$

where T is the transformation matrix and is given by

$$
\begin{aligned}
& T=\left[\begin{array}{lll}
c^{2} & s^{2} & c s \\
s^{2} & c^{2} & -c s \\
-2 c s & 2 c s & c^{2}-s^{2}
\end{array}\right] \\
& \mathrm{s}=\sin \beta \\
& \mathrm{c}=\cos \beta \\
& \beta=\text { angle between } x \text { and } x^{1} \text { fig. (5.4) }
\end{aligned}
$$

If however two sets of cracks take place at the same time interval, then D'cr specializes as

$$
D_{c r}^{\prime}=\left[\begin{array}{lll}
0 & 0 & 0 \\
0 & 0 & 0 \\
0 & 0 & \alpha \in c / 2(1+\mu)
\end{array}\right]
$$

iii) Tension Stiffening Effect: It is well accepted that the bond between the concrete and the reinforcing bars gives some resistance to the concrete after cracking has occured. This resistance is often referred to as tension stiffening effect. Its maximum value is equal to the tensile strength of concrete σ ct just after cracking and deteriorates rapidly with increasing strain. A typical relationship between this resistance stress σ_{r} and the strain is shown in fig. (5.7). As σ_{r} is in the direction of steel reinforcement, it is easy matter to convert it into equivalent stress vector in the global coordinates through a transformation matrix T. However, in view of the uncertainties involved on one hand and the lack of knowledge of the phenomenon under cyclic strains conditions on the other hand, the effect of tension stiffening is not considered in this study.
iv) Agqregate Interlock \& Dowel Action: Shear can be transferred across cracks by interlocking of aggregate particles projecting from the cracked surfaces. In each region of contact across a crack, any tendency to relative movement of the two sides will introduce both direct and shear stresses. In order to evaluate the shear stresses induced, Paulay \& Fenwick [91] conducted tests on aggregate interlock by considering concrete strength and crack width and proposed a shear stress - relative displacement relationship. Their relationship revealed that the shear stiffness is affected by both the strength of concrete and the opening of the cracks. Generally the shear stress-strain relationship can be expressed in the form

$$
T=\text { Geq. } E_{x y}=(\mathrm{Geq} / \mathrm{G}) \cdot \mathrm{G} \cdot \Theta_{x y}=\alpha_{\mathrm{s}} \cdot \mathrm{G} \cdot \Theta_{x y}
$$

in which Geq= Shear modulus after cracking has occured
$G=$ Elastic shear modulus
Exy= Shear strain
$\alpha_{s}=$ Shear reduction factor ($=1$ prior to cracking)

Many investigators beside Paulay et al. [91] have used different values for α_{s}. Some $[33,34]$ attributed constant values for α_{s} ranging from 0.25 to 0.50 regardless of the attained strain, some others used a linear [94] or a hyperbolic [95] shear factor-crack opening relationship. The summary of these relationships is illustrated in fig. (5.5) for comparison. As can be seen from the figure the discrepancy between them is considerable. This shows clearly that a great deal of research is needed in this respect.

Dulacska [90] was one of the first to conduct tests on dowel actions as influenced by concrete strength and diameter and angle of reinforcing bars. She proposed a displacement-dowel action relationship and concluded that dowel action is almost elastoplastic and depends to a large extent on whether or not bars have reached their dowel strength. Using Dulacska's relationship, the
relation between the ratio of equivalent shear stiffness due to dowel action and the elastic shear modulus G and the angle of reinforcing bars β_{s} in the elastic dowel strength range, is plotted for different steel ratio (p) and diameters (ϕ) in fig. (5.6). This clearly shows that the influence of dowel action is very small in this range to compare with the effect of shear interlock. However this influence can be expected to be higher as plastic dowel strength is reached. Indeed Paulay et al. [91] conducted a number of tests and reported that dowel action could resist only 20 to 30% of the shear resisted by interlocking. He also introduced the notion of short dowel and long dowel by reporting that dowel action performance depended amongst other factors on the width of concrete at the level of the bars and suggested that the position of the reinforcing bars in the concrete had a marked influence on the capacity and performance of dowel action.

These factors make the modeling of dowel action very difficult to assess with reasonable confidence for simple cases yet alone to be introduced in a finite element procedure. It is clearly apparent that more research is highly desired and the consideration of the dynamic aspect of the problem of dowel action is certainly needed. However in view of what has previously been discussed, in this investigation the aggregate interlock and the dowel action are combined ie,

$$
\alpha=\alpha_{s}+\alpha_{d}
$$

in which $\alpha=$ combined shear reduction factor
$\alpha_{s}=$ Shear reduction factor due to aggragate interlock
$\alpha_{d}=$ Shear reduction factor due to dowel action

Furthermore, a variation of α decreasing with the crack width seems to be closer to the physical evidence, therefore in this study α^{α} is defined as follows

$$
\begin{array}{lll}
\alpha=0.4 & \text { if } & E<3 E c r \\
\alpha=0.2 & \text { if } & E>3 E c r
\end{array}
$$

where Ecr is the strain at first crack. It must be borne in mind that the aggregate interlock reduction factor α_{s} becomes zero when interlocking becomes ineffective, ie, as the crack opening reaches a maximum value which can be interpolated from Paulay \& Loeber's [93] experimental results as

$$
E_{\max }=0.005
$$

However this is assumed not to affect the value of factor α given by eqn. 5.10.
v) Crack Width: The crack width is a very useful qualitative measure as it monitors the closing of an open crack during load reversals. The 'crack width' $C w$ is defined as the difference between the strain normal to the cracks ($\in x^{\prime}$ referring to fig. (5.4)) and the strain arising from Poisson's ratio effect of stresses acting parallel to the cracks $€ \mu, x^{\prime}$, i.e.,

$$
c_{w}=\varepsilon_{x^{\prime}}-\varepsilon_{\mu, x^{\prime}}
$$

in which (referring to fig. (5.4))

$$
\begin{align*}
& \epsilon_{x^{\prime}}=\epsilon_{x} \cos ^{2} \theta_{c r}+\epsilon_{y} \sin ^{2} \theta_{c r}-\epsilon_{x y} \cos \theta_{c r} \sin \theta_{c r} \\
& \epsilon_{\mu, x^{\prime}}=-\mu \theta_{y^{\prime}} / E_{c}
\end{align*}
$$

where $\sigma_{y^{\prime}}$, in the case of fig.(5.4), is given by

$$
\sigma_{y 1}=\sigma_{y} \cos ^{2} \sigma_{c r}+\sigma_{x} \sin ^{2} \sigma_{c r}-2 \tau_{x y} \cos \sigma_{c r} \sin \sigma_{c r}
$$

Note that the ' crack width ' Cw expressed in eqn. 5.12 being in terms of strains, is to be seen rather as a descriptive quantity.
vi) Closing and Reopening Criteria: Obviously a crack closes as the 'crack width ' Cw defined by eqn. 5.12 for the situation described by fig. (5.4) is less or equal to zero. i.e.,

$$
\mathrm{C}_{\mathrm{w}} \leq 0
$$

In this case the instantaneous property matrix is updated and becomes that of the uncracked element defined by eqn. 5.2. A closed crack reopens again as the stresses acting normal to the crack becomes tensile. An element having cracked on one direction can crack again in the direction perpendicular to the existing crack for similar reasons as the formation of the first crack, that is for the case of fig. (5.4) when $\sigma_{2}>\sigma \mathrm{ct}$. In the case of closed cracks in both directions, normal procedure is then used to determine the new directions of the cracks if any. When open cracks occur at both directions, shear can still be transferred and the reduction factor α of eqn. 5.10 is reduced to $\alpha / 2$ for each set of cracks. Because the cracks are formed at different angles, The updated property matrices are transformed separately to the element coordinate system and then summed up to yield the updated element property matrix Dcr.
vii) Crack Modes and Flow Chart: When performing a dynamic analysis, cracking conditions are likely to change with time. To follow the instantaneous changes throughout the entire response, a computer code has been allocated to each gaussian point to monitor the changes in cracking conditions. This code was designated by KODE and can take any integer value from 0 to 8. The interpretation of each of these values are given in table 5.1. To initiate the analysis, KODE is set equal to 0 (no cracking) for all elements. A computer directed flow chart of the cracking process is given in fig. (5.9).
viii) Pseudo Stresses Due to Cracking: During an interval of time, an element may crack leading sometimes to a substantial changes in its property matrix as explained through the previous sections. Consequently an element can only support a value of stress computed in terms of its property matrix Dcr, i.e.,

$$
\sigma_{c \Gamma}=D_{c r} \epsilon
$$

in which $€$ is the element strain vector defined as

$$
\epsilon=\left\{\begin{array}{l}
\varepsilon_{x} \\
\epsilon_{y} \\
\epsilon_{x y}
\end{array}\right\}
$$

The difference between the stresses previously attained and used for the state determination at the interval t, that is σ and the stresses which can actually be supported $\sigma c r a r 2$ called pseudo or initial stresses and are computed as

$$
D \sigma=\sigma-\sigma_{c r}=\left(D-D_{c r}\right) E
$$

5-4-2 Yielding and Crushing of Concrete in Compression:

i) Yielding: As explained in section 5-2 and as far as shear walls are concerned, concrete is assumed to behave biaxially. A typical biaxial behaviour of concrete was developed experimentally by Kupfer et al. [89] and is shown in fig. (5.2). The curve can be used as criterion to monitor concrete yielding. However, in this study the approximate Von Mises Yield criterion is assumed for the plasticity of concrete under biaxial stresses. The curve presenting this creterion is also shown in fig. (5.2) for comparison. The yield surface $F(\sigma)$ is defined by:

$$
F(\sigma)=\sigma_{x}^{2}+\sigma_{y}^{2}-\sigma_{x} \sigma_{y}+3 T_{x y}^{2}-\sigma_{0}^{2}=0
$$

in which Jo_{0} is the uniaxial yield stress. The concrete is assumed to have started yielding if

$$
F(\sigma)>0
$$

Zienkiewich \& al. [96] developed the so called initial stress method in which no updating of initial property matrix is needed as plasticity occurs. The method uses the initial elastic matrix repeatedly and making adjustment in the stresses by successive corrections to reproduce the actual stresses which would be obtained using the elasto-plastic property matrix. The corrections in stresses
are called initial stresses and are converted into nodal forces and applied to the structure during the next increment. This method is used in this investigation and is given in detail later in this section.
ii) Crushing of Concrete: Although very strong in compression, concrete crushes when its maximum admissible strain is reached. For normal weight concrete, a typical value for the maximum strain would be :

$$
\epsilon_{\min }=-0.0035
$$

Note that this typical value is determined by uniaxial compression tests and therefore can only be used in biaxial state for compression if an equivalent strain is defined. If Von Mises criterion is used, then the equivalent strain fig. (5.8) can be computed as

$$
\epsilon_{e q}=\left(\epsilon_{x}^{2}+\epsilon_{y}^{2}-\epsilon_{x} \epsilon_{y}+1.5 \epsilon_{x y}\right)^{\frac{1}{2}}
$$

If

$$
\epsilon_{e q}<\epsilon_{\mathrm{min}}
$$

then the concrete is assumed to have crushed and consequently can no longer sustain any further loading. Its stiffness is therefore disregarded for the rest of the increments.
iii) Yielding Code: Similarly to cracking conditions, a computer directed yielding code designated by IPEL is attributed to each Gaussian point within the element. IPEL can have any integer value ranging from 1 to 3 standing for

IPEL $=1$	Elastic element
IPEL $=2$	Yielding element
IPEL $=3$	Crushed element

At initiation of analysis IPEL is set equal to unity for all elements.
iv) Pseudo - Stresses: The elasto-plastic property matrix developed in [96] and used for the computation of pseudo - stresses due to plasticity is of the general form:

$$
D_{\mathrm{ep}}=\mathrm{Dc}-\mathrm{DcF}^{\prime}(\sigma) F^{\mathrm{T}}(\sigma) \mathrm{Dc}\left[\mathrm{~F}^{\mathrm{T}}(\sigma) \mathrm{Dc} \mathrm{~F}^{\prime}(\sigma)\right]^{-1}
$$

in which Dc = Elastic property matrix given by eqn. 5.2

$$
F^{\prime}(\sigma)=d F(\sigma) / d \sigma
$$

Equation 5.25 can also be written as [96]

$$
D_{\mathrm{ep}}=\mathrm{Dc}-\left(\mathrm{Dc} \Phi \Phi^{\top} \mathrm{Dc} / \Phi^{\top} \mathrm{Dc} \Phi\right)
$$

in which Φ is given by

$$
\Phi^{\top}=\left[\left(\sigma_{x}-\sigma_{y} / 2\right)\left(\sigma_{y}-\sigma_{x} / 2\right) 3 \tau_{x y}\right] / \sigma_{0}
$$

Within a typical load increment, steps should be taken to compute the initial stresses due to plasticity. These are given in ref. [96], modified to accomodate our study and repeated here for convenience.

Step 1. Apply the load increment and determine the elastic stress and strain increments (DELSIG \& DELEPS) and hence the total stress and strain vectors (TAU \& STRAIN).

Step 2. With TAU as state of stress, determine the value of the yield function F.
a) If $F(\operatorname{tau})<0$, then elastic behaviour assumption holds and hence set STRESS=TAU and stop the process.
b) If $F(T A U) \geq 0$ and if the previous state of stress was plastic, set $R A T I O=0$ and go to d) otherwise, there is a transition from elastic to plastic state and RATIO, which is the portion of incremental strain taken elastically, has to be determined so that
$F(S I G+R A T I O * D E L S I G)=0$
where SIG is the previous stress vector.
c) Redefine TAU as the stress vector at start of yielding as

TAU $=$ SIG + RATIO * DELSIG
d) Compute the elasto-plastic strain increment as

DESIG $=$ Dep * DEPS
e) Evaluate the pseudo-stresses as
$D=$ DELSIG - DESIG

5-4-3 Yielding of Steel: The steel reinforcement is treated as one dimensional and is stressed only along its axis. The behaviour of steel is assumed to be identical in tension and compression. The stress strain curve is assumed linear up to the initial yielding point and from then on it can be idealised as either perfectly plastic or as linearly strain hardening. Aktan \& Sozen [25] investigated the behaviour of steel under reversal of strains. A typical stressstrain curve is shown in fig. (5.10). The assumed hysteresis is also indicated in the same figure. In this study the reinforcing bars are assumed uniformely laid over the element. Prior to yielding and for reinforcing bars inclined at an angle ψ to the element x-axis fig. (5.11), the property matrix of steel Dus can be written as

$$
D_{\psi s}=\left(T^{-1}\right)\left[\begin{array}{lll}
p E s & 0 & 0 \\
0 & 0 & 0 \\
0 & 0 & 0
\end{array}\right]\left(T^{-1}\right)^{\top}
$$

where Es = elasic Young's modulus of steel
$p=$ reinforcement ratio
$T=$ Transformation matrix from material to element axes.
i) Yielding of Steel Reinforcement: As can be seen from eqn. 5.23, D ψs is only in terms of Es and p. Through the response, p remains unchanged, however Es can take the value of Esh, that is the tangential modulus of steel in the strain hardening range as steel yields.
ii) Rupture of Steel: As steel bars reach their ultimate strain, they rupture and their property matrix Dψs is disregarded

$$
D \psi s=0
$$

iii) Hysteresis Modes and Flow Chart: A flag IBAR is chosen to monitor the changes in element reinforcement during the step-by-step analysis. To initiate analysis, IBAR is set equal to unity (elastic) for all elements. IBAR is allowed however to take any integer value from 1 to 6 . The significance of each value is illustrated by fig. (5.12) and a computer directed flowchart of the hysteresis is given in fig. (5.13).

5-4-4 Composite Material: The composite material property matrix D of a reinforced concrete plane stress element can be obtained at any stage by adding the instantaneous material property matrix Dc or Dcr depending on whether concrete is uncracked or cracked respectively to the material property matrix of steel Ds which can be in terms of Es or Esh or null as discussed in section 5.4.3. Then,

$$
D=D_{c}+D_{\psi s}
$$

Obviously if another set of reinforcing bars is placed at an angle p of the element axis, then

$$
D=D_{C}+D_{\psi S}+D_{Q S}
$$

Note that Dc may be equal to Dcr if concrete is cracked.

5-5 Beam Element Consideration

Because a relatively accurate prediction of plastic deformation and ductility demand is of paramount importance in the nonlinear response of coupled shear walls, the mechanical model simulating the coupling beams behaviour must be carefully chosen. The model should be experimentally tested and capable of taking into account the important features of reinforced concrete subjected to dynamic loading such as stiffness degradation or strain hardening if need be. The multicomponent model [22] is advantageous in two ways. First, the element stiffness matrix is easily formulated since the end rotations of all components are assumed the same, and secondly the yield condition at one end of the member depends on the conditions at both ends. However the incapability of this approach to simulate stiffness degradation [97] makes it unsuitable for this study. The advantages and drawbacks of the layering model [28] have already been discussed in chapter I.

In this investigation, the single component model developed by Giberson [21] is used. In this model each element is represented by an elastic beam element with inelastic rotational springs (hinges) at its two ends fig. (5.14a). These inelastic springs simulate the inelastic flexural deformations over the length of the member. The characteristics of the two hinges are derived from the assumptions made by Otani [24] that the beam deforms antisymmetrically in bending as shown in fig. (5.14b) and produces a point of contraflexure at the midpoint. These assumptions allow the beam behaviour to be approximated by two cantilever beams whose free ends coincide with the point of contraflexure. The moment-rotation hysteresis is assumed to follow an extended version of Takeda's model [29] and is shown in fig. (5.15). The numbers on the arms (fig. 5.15) stand for the rules which define the model and monitor each element at any stage of the response. The basic moment-rotation relationship assumed in this study is bilinear with an initial stiffness and subsequent strain hardening.

The degrading stiffness of the hinges is induced when reversal of loading is applied through the factors α and β (fig. 5.15).

The assessment of the actual initial stiffness is one of the most important steps of the analysis and special care should be exercised to ensure that a reasonable rigidity is used. The actual original stiffness of a reinforced concrete member is greatly influenced by the amount of cracking that has taken place. In the case of flexural stiffness, the cracking effect can be evaluated using the moment of inertia of the transformed cracked section ignoring tensile strength of concrete. The actual rigidity Ela can be written as

$$
\mathrm{EI}_{\mathrm{a}}=\left(\mathrm{EI}_{\mathrm{e}}\right) \theta_{\mathrm{cr}}
$$

in which Ela = actual rigidity
EIe $=$ elastic rigidity
Өcr $=$ factor representing the effect of cracking
The factor $\theta_{c r}$ varies with the amount of reinforcement. Its variation was conveniently given in reference [98]. A typical idealised moment - rotation relationship can be based on the elastic rigidity EIe or the cracked rigidity $\mathrm{EI}_{\mathrm{Cr}}$. It may be worth noting however that tests performed by Abrams and Sozen [101] have shown that the actual rigidity can even be smaller than Ela fig. (5.17). This is explained by the additional rotation that bond slip enforces upon the member. The influence of this effect is considered separately and is discussed later in this section.

Initially the incremental moments DMi and DMj at the two ends $\mathrm{i} \& \mathrm{j}$ of a beam element are related to the incremental rotations D 8 i and $\mathrm{D} \theta \mathrm{j}$ by

$$
\left\{\begin{array}{l}
D \Theta_{i} \\
D \Theta_{\mathbf{j}}
\end{array}\right\}=F \cdot\left\{\begin{array}{l}
D M_{i} \\
D M_{\mathbf{j}}
\end{array}\right\}
$$

where F is the flexibility matrix of the beam. For a uniform beam element:

$$
\begin{aligned}
& F=\left[\begin{array}{lr}
f 11 & f 12 \\
\text { symmetric } & f 22
\end{array}\right] \\
& \mathrm{fll}=\mathrm{f} 22=\mathrm{L} / 3 \mathrm{EI} \\
& \mathrm{f} 2 \mathrm{l}=\mathrm{f} 12=-\mathrm{L} / 6 \mathrm{EI} \\
& \mathrm{EI}=\text { actual initial beam rigidity } \\
& \mathrm{L}=\text { beam length }
\end{aligned}
$$

5-5-1 Spring Nonlinearities Contribution: Prior to yielding, the spring stiffness Ki at end i is given a very big value toensure it is essentially rigid. After the first yield, Ki takes its value according to the hysteresis rule. At any increment, the instantaneous hinge flexibility $l / K i$ is added to the flexibility matrix given in eqn. 5.34. Similar procedure is followed for end \mathbf{j}. Eqn. 5.34 can then be written as

$$
F=\left[\begin{array}{ll}
\text { fll }+l / K i & f l 2 \\
\text { symmetric } & f 22+l / K j
\end{array}\right]
$$

5-5-2 Shear Deformation Contribution: Little work has been done to assess the inelastic shear deformations of reinforced concrete. The existing experimental data are very scattered [$33,34,93-95$]. Therefore it is usual practice to simply reduce the elastic shear stiffness. Taking shear deformations into account, the instantaneous flexibility matrix (eqn. 5.35) becomes

$$
F=\left[\begin{array}{lr}
f l l+l / K i+l / k \alpha G A L & f l 2+l / k \alpha G A L \\
\text { symmetric } & f 22+l / K j+l / k \alpha G A L
\end{array}\right]
$$

in which $k=$ shape factor for shear deformation

$$
\begin{aligned}
& A G=\text { Shear rigidity } \\
& 1=\text { beam length } \\
& \alpha=\text { reduction factor (}=1 \text { in elastic range })
\end{aligned}
$$

The shear modulus G can be computed in terms of elastic Young's modulus Ec and Poisson's ratio μ as

$$
G=E c / 2(1+\mu)
$$

5-5-3 Bond Slippage Contribution: The existence of cracks with finite width, spaced at finite distances in the tension zone of a beam subjected to flexure corresponds physically to a slip between steel and concrete. This phenomenon is usually referred to as ' bond slip '. The rotation due to bond slip of the tensile reinforcement of a coupling beam along its embedded length yields an additional flexibility factor for the nonlinear spring to be added to eqn. 5.36. Bond stress is assumed to be constant along the embedded length of the reinforcing bar and the steel stress to decrease linearly with distance in from the wall face fig. (5.16). It is also assumed that the reinforcement length of embedment is sufficient to provide the maximum tensile stress that occurs in the response. The relationship between steel stress and bond stress is given by the axial equilibrium condition as

$$
\tau_{b}=\left(A s F_{s}\right) /(\pi \phi L)
$$

in which τ 'tb = average bond stress
As = cross sectional area of reinforcement
$F_{s}=$ stress of reinforcement at the face of wall
$L=$ development length
$\phi=$ diameter of reinforcing bar

Nilson [99] defined the slip as the relative longitudinal displacement between the concrete and the reinforcing steel, as indicated by DL in fig. (5.16). DL depends on the state of stress of reinforcement Fs. Therefore two cases need to be considered depending on whether or not $F s$ has exceeded the yield stress fy [100].

$$
D L=\frac{L F_{s}}{2 E_{s}} \quad ; \quad F_{s} \leq f_{y} \quad \text { 5.39a }
$$

$$
D L=f y^{2} L / 2 F s E_{s}+(1-f y / F s)(f y / E s+(f s-f y) / 2 E y) L ; \quad F s>f_{y} \quad 5.39 b
$$

where Es = Young's modulus of steel
$E y=$ modulus of steel at yield
$\mathrm{fy}=$ yield stress of steel reinforcement
Replacing As by its value ($\pi \phi^{2} / 4$) and substituting the value of L from eqn. 5.38 into eqns. 5.39, the latters become

$$
\begin{array}{lll}
\mathrm{DL}=\phi \mathrm{Fs}^{2} / 8 \mathrm{Es}_{\mathrm{s}} \tau \mathrm{~b} ; & F s \leq f y \\
\left.\mathrm{DL}=(\phi / 4 \mathrm{~Tb})\left[\left(\mathrm{Fs}_{\mathrm{s}-\mathrm{fy}} / 2\right)(\mathrm{fy} / \mathrm{Es})\right)+(\mathrm{fs}-\mathrm{fy})^{2} / 2 E y\right) ; & F_{s}>f_{y} & 5.40 \mathrm{~b}
\end{array}
$$

however, because the stress of reinforcement at yield does not differ substantially of that at yield, the elongation DL defined by eqn. 5-40a is assumed for both cases in this study. Assuming that the rotation axis due to slippage of tensile reinforcement is at the level of compressive reinforcing steel fig. (5.16), it follows

$$
R_{\text {slip }}(M)=\frac{D L}{\left(d-d^{\prime}\right)}
$$

in which $d=$ depth of tensile reinforcement

$$
d^{\prime}=\text { depth of compressive reinforcement }
$$

Assuming the tensile reinforcement proportional to the applied moment M, one can write

$$
\frac{F s}{M}=\frac{f_{y}}{M y}
$$

in which $M y=$ moment at yield
$M=$ applied moment
Substituting Fs from eqn. 5.42 and DL from eqn. 5.40a into eqn. 5.41 yields

$$
R_{\text {slip }}(M)=(\Theta / 8 E s T b)(f y / M y)^{2}\left(M^{2} /\left(d-d^{\prime}\right)\right)
$$

For a bilinear idealisation for the moment - rotation relationship, the instantaneous flexibility due to slip rotation is then computed as

$$
\begin{array}{ll}
\mathrm{fs}(M)=R_{\text {slip }}(M y) / M y & M \leq M y \\
\mathrm{fs}(M)=\left(R_{\text {slip }}(M u)-R_{\text {slip }}(M y)\right) /(M u-M y) & M>M y
\end{array}
$$

where
$f_{s}(M)=$ flexibility due to bond slippage
$M y, M u=$ moment at yield and ultimate moment respectively then the incremental rotation of the spring due to bond slippage can be axpressed as

$$
D \Theta_{s l i p}=f s(M) \cdot D M
$$

and hence the overall flexibility matrix (eqn. 5.36) becomes

$$
F=\left[\begin{array}{lr}
f l l+l / K i+l / k \alpha G A L+F(M i) & f 12+l / k \alpha G A L \\
\text { symmetric } & f 22+l / K j+l / k \alpha G A L+f(M j)
\end{array}\right]
$$

Uncracked concrete

Crack 1 due to σ_{1} opens

Crack 2 due to σ_{2} opens

2 sets of cracks $1 \& 2$

1 closes 2 still intact

1 closes 2 still open

1 intact 2 closes

1 opens 2 still closed

1 closed 2 closed

TABLE 5.1 CRACKMODESIN CONCRETEELEMENTS

(a)

(b)

FIG. 5.1 a) TYPICAL UNIA XIAL STRESS-STRAIN FOR COMCRETE b) TYPICAL STRESS-STRAIN FOR REINFORCEMENT

Experimental [89]
Assumed (Von Mises)
$F(\sigma)=\sigma x^{2}+\sigma y^{2}-\sigma x \sigma y+3 \tau x y-\sigma o^{2}$

FIG. 5.2 BIAXIAL STRENGTH OF CONCRETE

FIG. 5.3 TYPICAL CYCLIC UNIAXIAL STRESS-STRAIN FOR CONCRETE

FIG. 5.4 CRACKING PHENOMENON AND PRINCIPAL STRESSES

FIG. 5.5 SHEAR STIFFNESS REDUCTION IN CRACKED CONCRETE

FIG. 5.6 SHEAR STIFFNESS DUE TO DOWEL ACTION

FIG. 5.7 TYPICAL TENSION STIFFENING EFFECT

FIG. 5.8 ASSUMED BIAXIAL COMPRESSIVE STRAIN FOR CONCRETE

FIG. 5.9 FLOW CHART FOR OPENING AND CLOSING OF CRACKS IN CONCRETE
if $\mathrm{KODE}=0$

GO TO ($1,2,3,4,5,6,7,8$), KODE

FIG. 5.9 ($\mathrm{c}^{\prime} \mathrm{d}$) FLOW CHART FOR OPENING AND ĆLOSING OF CRACKS IN CONCRETE

KODE $=5$

FIG. 5.9 (c'd) FLOW CHART FOR OPENING AND CLOSING OF CRACKS IN CONCRETE

FIG. 5.10 TYPICAL HYSTERESIS STRAIN-STRESS FOR REINFORCEMENT

FIG. 5.11 DISTRIBUTION OF REINFORCING BARS

FIG. 5.12 HYSTERESIS OF REINFORCING BARS

NOTATIONS:
$€ y=$ strain at yield
$\epsilon_{t}=$ strain at previous step
$\epsilon(t+d t)=$ current strain
$E_{s}=$ elastic Young's modulus of steel
Esh= Young's modulus of steel after yield

GOTO (1, $2,3,4,5,6)$, KBAR

$K B A R=1$

$\mathrm{KBAR}=2$

$K B A R=3$

$K B A R=4$

$\mathrm{K} \boldsymbol{B A R}=5$

KBAR=6
$E_{s}=0$
RTRN

FIG. 5.15 MODIFIED TAKEDA MOMENT-ROTATION RELATIONSHIP

FIG. 5.16 ASSUMED BOND SLIP MECHANISM IN THE COUPLING BEAMS

FIG. 5.17 MOMENT-ROTATION RELATIONSHIP OF A ROTATIONAL HINGE

CHAPTER SIX

NONLINEAR DYNAMIC PROCEDURE

6.1 Introduction and Assumptions

Probably the most powerful technique for nonlinear analysis is the step-by-step integration procedure. In this approach the response is evaluated for a series of short time increments. These are generally taken of equal length for computational convenience. The condition of dynamic equilibrium is established at the beginning and end of each interval, the response is calculated during each time increment for a linear system having the properties determined at the beginning of the interval. At the end of the increment the properties are modified to conform to its state of deformations and stress at that time. Thus the nonlinear analysis is approxi-mated as a $?$ sequence of analyses of successively changing linear systems. The most popular of the direct integration procedures are certainly the Newmark-Beta Method [102] and the Wilson-Theta Method [103]. In this study the NewmarkBeta Method is used and is discussed in some detail later in this chapter.

In any structural problem many assumptions are generally made in order to simplify the solution. As far as this investigation is concerned the basic assumptions are:
a) Only material nonlinearities are considered, geometric nonlinearities are assumed insignificant and hence neglected.
b) Torsional effects are not taken into consideration and the analysis is limited to planar coupled wall and wall systems.
c) The structure is assumed to be rigidly fixed at its base.
d) The mass of the structure can either be lumped at floor levels or distributed throughout the structure (consistent)
e) The stiffness of each element of the structure is assumed constant within an increment of time. Unbalanced loads are applied to the next step.

6.2 The Equations of Motion

The equations of dynamic equilibrium at any time t can be written in an incremental form as follows:

$$
M D v^{\prime \prime}+C D v^{\prime}+K D v=D p(t)
$$

where

$$
\begin{aligned}
& M=\text { Structure mass matrix } \\
& C=\text { Damping matrix } \\
& K=\text { Instantaneous Structure Stiffness matrix } \\
& D v^{\prime \prime}, D v^{\prime}, D v=\text { Incremental nodal acc., vel. and disp. vector } \\
& D p(t)=\text { Incremental applied loading (=M Dy' }(t)) \\
& D y^{\prime \prime}(t)=\text { Incremental base acceleration. }
\end{aligned}
$$

Equation 6.1 expresses the equilibrium conditions of the inertia forces, damping forces and resisting forces respectively. To calculate all these forces the mass matrix, damping matrix and instantaneous stiffness matrix must be evaluated.

6.3 Mass Matrix

Although the computer program is capable of dealing with a consistent mass element, in this study the lumped mass concept is used for convenience and economy. For a quadrilateral element the mass matrix is diagonal in the form of

$$
M_{\mathrm{e}}=\left[\begin{array}{ccc}
1.0 & & \\
1.0 & 0 \\
1.0 & \\
& 1.0 \\
& 1.0 \\
& 1.0 \\
0 & & 1.0 \\
& & 1.0
\end{array}\right] \cdot \mathrm{phA} / 4
$$

in which

$$
\begin{aligned}
& p=\text { mass density of reinforced concrete } \\
& h=\text { depth of the element } \\
& A=\text { area of the element }
\end{aligned}
$$

the great advantage of the lumped mass approach is that the mass matrix for the entire structure is diagonal and hence leads to a greater economy while consistent mass matrix has many off diagonal terms and hence requires more computational effort. The structure mass matrix is merely obtained as:

$$
M=\Sigma M_{e}+M_{e x t}
$$

where M_{e} is the element mass matrix given in equation 6.2 and $M_{e x t}$ represents the external concentrated nodal masses. For nodes without concentrated masses, their position in $M_{\text {ext }}$ is filled with zero.

6.4 Damping Matrix

It is well recognised that according to their material components, structures may show substantial damping effects when subjected to dynamic loadings. However the evaluation of such a phenomenon has been and is still quite vague and empirical and cannot therefore be assessed with absolute confidence. It is usual practice to use the viscous type of damping [104] for
convenience in the solution of dynamic response problems and for its mathematical simplicity. The damping matrix is expressed as either proportional to the stiffness matrix or to the mass matrix of the system, or as a linear combination of both as

$$
C=a_{1} M+a_{2} K
$$

where C is the viscous damping matrix and a_{1} and a_{2} are constants. The constant multipliers a_{1} and a_{2} can be related to the damping ratio for any mode n [104] by

$$
z_{n}=\left(a_{1} / 2 w_{n}\right)+\left(a_{2} w_{n} / 2\right)
$$

where:

$$
\begin{aligned}
& w_{n}=\text { The circular frequency of the } n^{\text {th }} \text { mode } \\
& z_{n}=\text { Damping factor for the } n^{\text {th }} \text { mode }
\end{aligned}
$$

In a direct integration solution a_{1} and a_{2} may be chosen to provide damping ratio at two selected frequencies [12]. If for instance the two first modes are selected then,

$$
\begin{align*}
& a_{1}=\frac{2 w_{1} w_{2}\left(z_{2} w_{1}-z_{1} w_{2}\right)}{\left(w_{1}^{2}-w_{2}^{2}\right)} \\
& a_{2}=\frac{2 w_{1} w_{2}\left(z_{2} w_{1}-z_{1} w_{2}\right)}{\left(w_{1}^{2}-w_{2}^{2}\right)}
\end{align*}
$$

The damping factors are usually determined experimentally. However for concrete structures, it has been shown that they vary from 2% to 10% [105]. The circular frequency can be determined by free vibration analysis or can be extracted from the charts developed in chapter IV. If the damping matrix is considered to be proportional to only the stiffness matrix, the constant a_{2} is then calculated using eqn. 6.5 assuming a_{1} to be zero so that

$$
a_{2}=2 z_{1} / w_{1} \quad \text { and } \quad C=a_{2} K
$$

Similarly, the constant a_{1} is calculated by the following expression for the case where the damping matrix is assumed to be proportional to the mass matrix only

$$
a_{1}=2 z_{1} w_{1} \quad \text { and } \quad C=a_{1} M
$$

6-5 Numerical Solution

When solving the differential equations of motion (6.1) using step-by-step integration procedure, a way should be found to convert these equations to a set of simultaneous algebraic equations. This is accomplished by introducing simple relationships between displacement, velocity and acceleration which may be assumed to be valid for the increment of time chosen. On this basis, only one unknown vector (acc., vel. or displ.) remains in the equilibrium equations, the solution of which can be evaluated by any standard procedure. The most popular relationships between acceleration, velocity and displacement vectors are certainly those suggested by Newmark [102] and Wilson [103] as they have proven to be valid for elastic as well as for inelastic systems. In this study however, as said previously the Newmark's method is utilised.

The relationships between displacement, velocity and acceleration vectors are established by assuming the variation of the acceleration vector with time. Newmark associated two parameters α and β with this variation. Assuming $\alpha=1 / 2$, he expressed incremental velocity and the incremental acceleration vectors as

$$
\begin{align*}
& D v^{\prime}=(1 / 2 \beta D t) D v-(1 / 2 \beta) v^{\prime}-(1 / 4 \beta-1) D t V^{\prime \prime} \\
& D v^{\prime \prime}=\left(1 / \beta D t^{2}\right) D v-(1 / \beta D t) v^{\prime}-(1 / 2 B) v^{\prime \prime}
\end{align*}
$$

where
Dt $=$ Time increment
$\beta=$ Constant indicating the variation of acc. in a time interval $\mathrm{Dv} \mathrm{V}^{\prime \prime}, \mathrm{Dv} v^{\prime}, \mathrm{Dv}=$ Incremental nodal acc., vel. and disp. vector $\mathrm{V}^{\prime \prime}, \mathrm{V}^{\prime}, \mathrm{V}=$ Nodal acc., vel. and disp. vector

A linear acceleration assumption is known to be unstable in the presence of vibration modes with periods exceeding approxiamately one third of the time step regardless of whether the higher modes contribute significantly to the dynamic response or not [102]. Hence it is unsuitable as it requires a very short time increment. For this study the method based on constant acceleration within the time step was adopted ($\alpha=1 / 2, \beta=1 / 4$). The method is known to be unconditionally stable for linear systems.

There are two basic ways to solve the equations of motion with direct integration, the explicit approach and the implicit approach. Using the explicit method the accelerations are derived from the eqns of motion and then integrated to obtain the displacements and velocities. In case where implicit approach is used, the equations of motion along with approximate time integration operators yield the displacement vector directly. The advantages and drawbacks of both methods are discussed by Belytshko [108]. For this investigation however an implicit approach is assumed for convenience although the method is believed to be more sensitive to errors in case of big time increment. Table 6.1 illustrates the constant acceleration numerical method.

In any dynamic analysis greater accuracy can be expected as the integration time step is reduced. To minimise the computational effort, however, it is important to select as long a time step as possible. A great deal more research is required for the design of reliable time integration operators, including algorithms for the automatic selection of variable time step in order
to optimize the solution cost. Substituting equation 6.7 and equation 6.8 into the equations of motion (6.1) and replacing the damping matrix C by its assumed value (eqn. 6.4), yields the following resulting equation

$$
K^{*} D v_{(t+D t)}=R
$$

where

$$
\begin{align*}
& K^{*}=\left(1 / b D t^{2}\right) M+(1 / 2 b D t) C+K \\
& R=-D p_{(t+D t)}+A M+B C \\
& A=(1 / b D t) V^{\prime}-(1 / 2 b) V^{\prime \prime} \\
& B=(1 / 2 b) V^{\prime}-(1 / 4 b-1) D t V^{\prime \prime}
\end{align*}
$$

and

$$
\begin{aligned}
& t, t+D t=\text { previous and current time step } \\
& D v_{(t+D t)}=\text { incremental displacement vector at time } t+D t
\end{aligned}
$$

Since the dynamic stiffness matrix K^{*} and the load vector R can be avaluated at any time step $t+D t$, eqn. (6.11) can now be solved for the displacement increment vector $\mathrm{Dv}_{(\mathrm{t}+\mathrm{Dt})}$ using any standard structural procedure. In this investigation however, the Gaussian elimination and back substitution method is used. As K^{*} is banded, the method uses less computer time than the one in which K^{*} is inverted. The incremental velocity vector can then be calculated using eqn. 6-7. The incremental acceleration vector however, is computed using the following equation which is a modified form of eqn. 6-1 and based on the current structural properties $\mathrm{K}_{(\mathrm{t}+\mathrm{Dt})}$.

$$
D v^{\prime \prime}=-M^{-1}\left(C D v^{\prime}+K_{(t+D t)} D v+D p_{(t+D t)}\right)
$$

Eqn. 6.16 was prefered to eqn. 6.9 for the evaluation of $D v "$ because the acceleration response is very sensitive to changes in the stiffness properties of
the structure. Therefore more accurate results can be expected by taking into account the updated stiffness matrix rather than the previous one.

6.6 Pseudo-Loads

At each time step the element constitutive law may change giving rise to pseudo-stresses. The way these pseudo-stresses are computed has been considered in detail in chapter V. These unsupported stresses are then converted into corrective or pseudo-loads and applied to the structure as a set of static loads in the next time increment. The pseudo-loads can be computed in two ways:
a) using the pseudo-stresses as

$$
D P_{s}=B^{\top} D \sigma d(\text { area })
$$

in which $\quad D P_{s}=$ pseudo-loads

$$
\begin{aligned}
& \mathrm{B}=\text { matri } \times \text { relating nodal disp. to element strains (chapter III) } \\
& \mathrm{DO}=\text { pseudo-stresses }
\end{aligned}
$$

b) using the previous and the updated stiffness matrix as

$$
D P_{s}=\left(K_{(t+D t)}-K_{(t)}\right) D v_{(t+D t)}
$$

where

$$
K_{(t+D t)}, K_{(t)}=\text { stiffness matrix at time } t+D t \& t \text { respectively }
$$

In this study the second method (b) is used except when dealing with pseudostresses due to yielding of concrete in compression where the first method (a) is utilized for convenience.

6-7 Dynamic Equilibrium and Iterations

In nonlinear analysis, due to the approximations made with regard to acceleration velocity and displacement on one hand and the assumption of a
constant value of the stiffness in each time step on the other the dynamic equilibrium expressed by equation 6.1, may not necessarily be satisfied at the end of a time step and hence errors may be introduced. Depending on the nonlinearities in the system and the magnitude of the time interval Dt, the cumulation of these errors may lead the solution to diverge substantially from the exact solution. Obviously this phenomenon is much more serious in nonlinear dynamic analysis where the solution at any time is dependant on the previous history of solution, than in static analysis.

To prevent misleading errors occuring, after each time step or a preset number of steps, the portion of the total loading that is not balanced is calculated and used to compute an additional incremental diplacement. This process is repeated until equilibrium is approximated to within a certain tolerance. In this study the convergence tolerance used is the ratio of the Euclidean norms of incremental displacement and total displacement [106]. This ratio is defined as the square root of the sum of the squares (RSS) of the change in nodal displacements $d v^{(i)}$ over the RSS of the total nodal displacement V, i.e.,

$$
E=\operatorname{RSS}\left(d v^{n}\right) / \operatorname{RSS}(V)
$$

where

$$
\operatorname{RSS}(a)=\left(\Sigma a_{i}^{2}\right)^{\frac{1}{2}}
$$

If E is smaller than a prescribed tolerance value B, the solution is assumed to have converged and the process is terminated. Furthermore, if after a certain prescribed maximum number of iterations ITEMAX, convergence is not achieved, the process is also terminated and the analysis is performed all over again with a smaller time increment.

The need for equilibrium corrections could be avoided by subdividing time step whenever a change in stiffness properties occurs. The procedure was used by Porter \& Powell [107]. However the method is complex and no substantial
improvement has been reported to justify the effort.

6.8 Analysis Procedure and Summary

The nonlinear response is traced by numerically solving the equations of motion for incremental displacements. The nonlinearity in the solution is introduced by changing the material properties of the effected elements and by releasing and distributing the unsupported stresses to adjacent elements which can sustain them. Taking the steel reinforcement to be elastic and concrete to be uncracked and elastic, material property and stiffness matrices are generated for individual elements. Whenever the material constitutive relationships are violated, the element material property and hence the stiffness matrices are updated. This is followed by adjustments of the stresses in the effected elements and calculation of the unsupported stresses. These are then converted into release or corrective loads and are applied to the structure as a set of static loads in the next time increment. For each time interval incremental displacements are produced due to two effects
a) the increment of input acceleration
b) the released loads from the previous time interval.

Finally the structural stiffness is reassembled because of the updating and the analysis procedure is continued for the remaining part of the record. A computer orientated summary of the step-by-step procedure is given in table 6.2 and a flow chart in fig. (6.1).

TABLE 6.1 SUMMARY OF THE STEP-BY-STEP

NONLINEAR PROCEDURE

A. INITIAL CALCULATIONS

Al. Form linear stiffness matrix K, mass matrix M and damping matrix C

A2. Initialize acceleratien, velocity and displacement vectors ($V^{\prime \prime}, V^{\prime}, V$)

B. FOR EACH STEP

Bl. Form updated damping matrix if needed

$$
C=a_{1} M+a_{2} K
$$

B2. Form the effective dynamic stiffness K^{*} using the updated value of K

$$
K^{*}=\left(1 / B D t^{2}\right) M+(1 / 2 B D t) C+K
$$

B3. Compute the following vectors

$$
\begin{aligned}
& A=(1 / \beta D t) V^{\prime}-(1 / 2 \beta) V^{\prime \prime} \\
& B=(1 / 2 \beta) V^{\prime}-(1 / 4 \beta-1) D t V^{\prime \prime}
\end{aligned}
$$

B4. Form the dynamic load vector R

$$
R=-D p_{(t+D t)}+A M+B C
$$

B5. Solve for incremental deformation vector $D v_{(t+D t)}$

$$
K^{*} D v_{(t+D t)}=R
$$

B6. Compute incremental velocity vector $D v^{\prime}(t+D t)$ as

$$
D v^{\prime}=(1 / 2 \beta D t) D v-(1 / 2 \beta) V^{\prime}-(1 / 4 \beta-1) D t V^{\prime \prime}
$$

B7. If iteration for dynamic equilibrium required, then initialize
o) $\mathrm{i}=0 \quad \partial \mathrm{v}(0)=\operatorname{Dv}(\mathrm{t}+\mathrm{Dt})$
i) $\mathrm{i}=\mathrm{i}+1$
ii) calculate out-of-balance load vector as

$$
D R=D p(t+D t)-M V^{\prime \prime i}-1-C V^{i}-1-K V^{i}-1
$$

iii) solve for the $\mathrm{i}^{\text {th }}$ correction to displacement increment
iv) calculate new displacement increment

$$
D v^{i}=D v^{i-1}+\partial v^{i}
$$

v) if convergence, go to B8, otherwise go to i)

B8. Compute stresses, strains and element forces and check compliance with constitutive laws

B9. Update the structural stiffness matrix K if necessary and compute the pseudo-loads

B10. Compute the acceleration increment vector as

$$
D v^{\prime \prime}=-M^{-1}\left(C D v^{\prime}+K_{(t+D t)} D v+D p_{(t+D t)}\right)
$$

Bll. Compute new acceleration, velocity and displacement vector as

$$
\begin{aligned}
& V_{(t+D t)}^{\prime \prime}=V_{t}^{\prime \prime}+D v^{\prime \prime}(t+D t) \\
& V_{(t+D t)}^{\prime}=V_{t}^{\prime}+D v_{(t+D t)}^{\prime} \\
& v_{(t+D t)}=v_{t}+D v_{(t+D t)}
\end{aligned}
$$

FIG. 6-1 FLOW CHARTFOR NONLINEAR DYNAMIC ANALYSIS
Lnitialize \quad Flags for state monitoring

KOD $=0$
IPEL $=0$

KBAR $=0$

CHAPTER SEVEN

NUMERICAL EXAMPLES

7.1 General

The object of this chapter is to demonstrate the usefulness and applicability of the nonlinear step-by-step dynamic analysis presented in the previous chapters and to validate the FE idealisations and the hysteretic laws discussed in chapter V. Four numerical examples were investigated. In the first three examples, analytical results using the proposed model are compared with experimental test results [42,109]. In the last example, the model is compared with analytical results reached using existing models [30].

To widen the scope and the usefulness of the model, the tested samples were of different geometric characteristics. The model is first compared with a single wall (without openings) tested by Agrawal and Leslie [42] and then with a pair of coupled shear walls tested by Ariztizabal [109]. The need for good accuracy in predicting plastic deformations (or ductilities) of the coupling beams of the coupled shear walls is very important if they are to be used as a first line of paraseismic defence. Therefore a 20 storey coupled shear wall was analysed and the coupling beam ductilities compared with those computed using the model presented by Kannan and Powell [30].

For convenience the four structures under investigation in this chapter are disignated by SWl, SW2A, SW2B and SW3. Their material properties are presented as given by the investigators, however, estimations were made in cases where specific items of data were not available.

7.2 Single Wall (SWI)

One of the very few experimental models subjected to earthquake motion is the isolated wall model tested by Agrawal et al. [42]. The geometry and the cross sectional property are shown in fig. (7.1). A load of 2 kips is lumped at each floor level as shown in fig. (7.2). The material data of the model is given in table 7.1. The model was subjected to the simulated N-S component of El-Centro earthquake of May 1940. The time axis of the original record was compressed by a factor of five. The amplitudes of the earthquake were normalised for a maximum peak acceleration of 1.05 g and the duration of the experiment was set to 1.5 second.
7.2.1 Experimental Results [42] : The information provided by the experimental data is given in table 7.2 and the cracking pattern of the model, after test, is given in fig. (7.3). The cracking pattern prediction according to Agrawal's analysis is shown in fig. (7.4). The wall was idealised as an assembly of FE but with three degrees of freedom at each node. A shear factor $\alpha=0.1$ and a damping $z=1.5 \%$ of critical were assumed. The response acceleration and displacement at the three mass levels are shown in fig. (7.5a) and fig. (7.6) respectively and the base shear and base moment responses in fig. (7.7). Also shown in fig. (7.7) is the base acceleration. These responses were based on a computed natural frequency of 11.84 cps .
7.2.2 Predicted Responses: The FE discretisation of the model is shown in fig. (7.8a). The external masses were lumped at the floor levels. The material properties and the dynamic data used in the analysis were those given in table 7.1 and described in the previous section. In order to compare the responses of both analytical and experimental information given by Agrawal et al. [42], the same values of shear coefficient, damping, Poisson's ratio are used in this study. Two cases were considered as far as discretisation is concerned
a) the same number of elements as Agrawal's discretisation (i.e., 120 elements)
b) approximately the same number of degrees of freedom (DOF) as considered by Agrawal (i.e., 441 dof)

The damping matrix was assumed proportional to the stiffness matrix only. The predicted absolute maxima for the two cases are given in table 7.2. This shows that as the ndof increased, the maximum response results improved except for the first level acceleration which diverged yet more from the experimental maximum value.

The computed response history acceleration for case b) is shown in fig. (7.5b) and the response history displacement, base shear and base moment in figs. (7.6) and (7.7) along with those given by Agrawal [42] for comparison. Figure (7.8) shows the instantaneous "photography" of the structure at different time steps obtained analytically. From these figures and as far as cracking and yielding patterns are concerned the following observations can be made:
i) First cracks started at the base level in the outer elements and spread to the higher levels and the inner elements of the first level.
ii) The cracking started almost horizontally at the outer elements and while propagating towards the inner elements the direction of the cracks changed substantially.
iii) the yielding of steel occured mostly in the first floor and was confined to longitudinal wires.
7.2.3 Discussion: Generally, analytical results are in agreement with those presented by Agrawal et al. [42] for the same number of degrees of freedom. There are still some discrepancies with respect to the experimental results.

However, a preliminary study revealed that as time step decreases the maximum displacement response slightly increases and the maximum base moment and base shear decrease. This study was made just for the first 0.5 second duration. In view of this preliminary study good agreement with experimental results can be expected as time increment decreases.

As can be seen from fig. (7.8f), the predicted crack pattern agreed quite well with the experimental one although not quite with Agrawal's model at the top of the specimen. The predicted yielding of steel was also more widespread than Agrawal's model. This may explain the generally lower values of displacements found by Agrawal as compared with those obtained in this study. Also, the predicted patterns indicated that local crushing due to excessive compression occured at the two bottom outermost elements as clearly shown by fig. (7.8f). Whether or not this yielding of steel and crushing of concrete was present after the experimental tests could not be ascertained from the available reference [42].

7.3 Coupled Shear Wall (SW2A ; SW2B)

7.3.1 Description of the Experimental Models: The procedure described in this investigation was applied to two 10 storey coupled wall models tested at the University of Illinois earthquake simulator by Ariztizabal [109]. The two coupled walls are designated as SW2A and SW2B. The dimensions of the models are shown in fig. (7.9). The models are made up of two shear walls having a cross sectional area of $1^{\prime \prime}$ by 7 " each and a height of 901 . The walls are connected at each floor level by a connecting beam of 4 in . length and l by 1.5 in . cross section. A weight of 0.5 kip is placed at each floor level (fig. 7.9). Material properties for the models are listed in table 7.3.1 and the assumed stiffness and strength of the different members are given in table 7.3.2. The models were subjected to the base motion representing the signals
of the El Centro N-S component earthquake. The original time axis was compressed by a factor of 2.5 and the amplitudes of acceleration records were normalised to give a maximum peak value of 0.92 g .

The two coupled wall models (SW2A, SW2b) have essentially the same geometric properties. In order to demonstrate the importance of the coupling beam strength in the yield sequence, the coupling beam reinforcement areas in SW2B were twice as much as those in SW2A. The reinforcement cross sections for SW2A and SW2B are shown in fig. (7.10). The duration of the record used after time compression was 15 seconds. However it was recognised by Ariztizabal [109] that most of the structural failures occured within the first 3 seconds. Therefore in this study only the first 3 seconds (or $3 \times 2.5 \mathrm{sec}$. of the original record) is considered for convenience and economy.
7.3.2 Experimental Responses [109]: The maximum responses provided by the tests are listed in table 7.3 .3 for both SW2A and SW2B. The failure patterns after testing are shown in fig. (7.11). The experimental response history of acceleration and displacement are shown in fig. (7.12) and fig. (7.13). For convenience only the acceleration and the displacement history at level 10 , level 7, and level 4 are given. The base shear and base moment histories were also monitored by Ariztizabal. However these were difficult to trace from the report and therefore are not shown here.
7.3.3 Predicted Responses: In order to compare the experimental data given in the previous section and the predicted response using the computer program developed for this investigation, the information not readily available such as coupling beam strengths and stiffness properties needed as input were derived and are shown in table 7.3.2. The damping factor was assumed equal to 2% of critical and the damping matrix was assumed to be a linear combination of mass and stiffness matrix. The time interval used in the response calculation was chosen to be 0.00025 s . The Poisson's ratio and the shear reduction factor α
were assumed to be 0.2 and 0.5 respectively. For comparison, the computed history response acceleration and displacement are shown along with the corresponding experimental responses in figs. (7.12) and (7.13). The base shear and base moment histories are shown in fig. (7.14). The absolute maximum analytical responses were predicted as shown in table 7.3.3. The sequences of cracking and yielding of all constituent elements were recorded during the computer run and are shown in fig. (7.15) for various time steps over the duration of the excitation.
7.3.4 Discussion: Again, the analytical maximum response displacement and acceleration (fig. 7.12-7.13) are in good consistency with the experimental ones. In general, the predicted displacements were the lower bound to the experimental displacements and the predicted accelerations were the upper bound. However, as previously stated, if a smaller time interval and a finer discretisation are chosen and accurate material properties assessed then better compliance could be expected.

The displacement wave forms indicate clearly that the structure oscillated primarely in the first mode and that the peak acceleration at each level accured at the same time. The overall features of the response history are similar to those of the test. The times when the absolute maximum displacement at top floor and the maximum base moment occured are comparable to the corresponding times recorded in the test. The maximum positive and negative responses indicate that the structure was subjected to loads of the same order of magnitude in both directions. The base moment and base shear responses were dominated by the first mode as well, as can be seen from fig. (7.14).

The failure mechanisms at the end of the runs were also in good agreement with the test results. The analytical crack pattern however was found more widespread particularly at the lower levels than the tested model
seems to show. Furthermore, yielding of the coupling beams at levels 4,5 and 6 was predicted by the analysis but were not reported by test results. This might be due to shrinkage cracks before test, which can slightly change the stress distribution and hence failure mechanism. Ariztizabal [109] did not record the sequence of failures at intermediate time intervals and therefore no comparison could be made in this respect.

Although similar response histories and maxima were reached for both SW2A and SW2B, the crack pattern and the extent of yielding and the damage in the two structures were quite different as anticipated. The following failure sequences were predicted by the present analysis (fig. 7.15): $\mathrm{t}=0.00 \mathrm{~s}:$

Both structures SW2A and SW2B were assumed elastic and isotropic. No cracks due to shrinkage or otherwise were taken into consideration. $\mathrm{t}=0.75 \mathrm{~s}:$

Cracks began to form at the connecting beams of the $4^{\text {th }}, 5^{\text {th }}$, and $6^{\text {th }}$ floor ($t=0.32 \mathrm{~s}$) and spread rapidly towards top and bottom floors.
$\mathrm{t}=1.50 \mathrm{~s}:$

SW2A: The cracking is total at the coupling beams ends and yielding has already started at floors 4,5 and 9. Some scattered cracks were also predicted in the outer elements at the bottom of the wall.

SW2B: No yielding was shown in the coupling beams at this stage, however all the coupling beams were cracked at their ends and more frequent cracks were present at the bottom of the wall.
$\mathrm{t}=\mathbf{2 . 2 5} \mathrm{s}:$

SW2A: yielding at the coupling beam ends is almost complete except
in the first two floors. the cracks now spread towards inner elements of the wall particularly within the first two levels where 2 sets of cracks were frequent. In the outer elements and at levels 6 , and 7 one set of cracks took place.

SW2B: Again no substantial yielding occur in the coupling beams except at floor 4. However in the two outer most elements at the base level, crushing was detected.

$\mathrm{t}=3.00 \mathrm{~s}:$

SW2A: the second floor coupling beam yielded but the first floor coupling beam did not. Cracking spread towards the inner elements at the top levels and reached the $8^{\text {th }}$ and $9^{\text {th }}$ storey. Crushing also accured $(\mathrm{t}=2.47 \mathrm{~s})$ at the outer elements of the walls.

SW2B: Crushing of three more elements at the base level and yielding of the coupling beams at level 4, 5, and 6 were monitored.

As can be deducted from the previous discussions, the critical damage in structure SW2B started in the walls at the base level before any substantial formation of hinges at the coupling beam ends occured, whilst in structure SW2A, failure in the wall started after almost all coupling beams yielded. Moreover, the crushing of the walls at the outer elements in SW2B before yielding of the steel showed that the coupled shear wall acted as a single cantilever wall as the coupling was so strong. This demonstrates once again the importance of the relative stiffness and strength of the coupling beams with respect to those of the walls to control the mode and sequence of the failure pattern of aseismic structures.

7.4 Plastic Deformation Prediction (SW3)

The use of coupled shear walls in seismic resistant design has a great potential because of their tremendous capabilities for dissipating the energy input from an earthquake. Also it is well recognised that dissipation of energy should mainly be assured through inelastic deformation of the coupling beams without substantial loss of strength. A good prediction of these deformations by any model is therefore most important. Therefore the purpose of this section is twofold:
i) Test the validity of the model and its ability to predict plastic deformations accurately.
ii) Examine the results and use them as preliminary analysis to chapter VIII and deduct a strategy to be adopted for the chapter VIII.

A 20 storey coupled wall was considered for this purpose. Keeping the walls elastic, the plastic deformations enforced upon the coupling beams were recorded and the rotational ductilities computed as

$$
\begin{align*}
\mu_{r}= & \frac{\theta_{\max }}{\theta_{y}}=\frac{\theta_{p}+\theta_{y}}{\theta_{y}} \\
\mu_{r}= & 1+\frac{\theta_{p}}{\theta_{y}}
\end{align*}
$$

in which

$$
\mu_{r}=\text { rotational ductility }
$$

$$
\theta_{\max }=\text { maximum rotation of hinge }
$$

$$
\theta_{p}, \theta_{y}=\text { rotation at yield and plastic rotation respectively }
$$

The analysis was performed using the computer program developed in this study and results were compared with those given using DRAIN-2D. DRAIN2D is a dynamic computer program developed in The University of California, Berkeley, in which columns and walls can only be treated as line elements.
7.4.1 Description of the Structure and Modeling: As previously stated, a 20 storey coupled shear wall was considered in this investigation. The structure was assumed to be fixed at its base. Its geometric, dynamic and strength properties are given in table 7.4.1. Its discretisation is shown in fig. (7.16). Three runs using different discretisations and analytical models were made, these were:
i) SW3a: Both walls and beams were idealised as line elements. This run was performed using the computer program DRAIN-2D. Takeda's model was used to simulate the nonlinear hysteresis of coupling beams.
ii) SW3b: This run was made using the computer program developed in this investigation. Again both walls and beams were idealised as line elements, however, in addition to Takeda's model assumption for the simulation of the nonlinear deformations, bond slip effect was taken into consideration as described in chapter V.
iii) SW3c: The finite element (FE) approach developed in this investigation was used. Bond slip model was also considered in this run.

The yield moment of all coupling beams was assumed constant ($100 \mathrm{kip}-\mathrm{ft}$). The damping factor, Shear reduction factor and Poisson's ratio were chosen as 2% of critical, 0.5 , and 0.2 respectively. The damping matrix was assumed as a linear combination of mass and stiffness matrix.

7.4.2 Nonlinear Dynamic Procedure and Results: Assuming a mass

 representing a floor weight of 4 kips lumped at each floor level, the structure described above, was excited by the first 6 seconds of 1940 El Centro earthquake accelerogram with a peak acceleration amplitude of 0.33 g (fig. 7.17). The equations of motion were solved using the step-by-step numerical integration method with a time increment of 0.00025 sec. when using FE approach and 0.005 sec . when using line elements. The maximum plasticdeformations enforced upon the coupling beams were recorded and the corresponding maximum ductility demands on each coupling beam were computed using eqn. 7.2 and are shown in fig. (7.18).
7.4.3 Ductility Demand Variation: As can be seen from fig. (7.18), the ductility demands are slightly higher in SW3b than in SW3a. This increase reflects the direct influence of bond slip which normally increases the maximum rotations and hence the ductility demands. As far as this example is concerned bond slip effect seems to be minor, however this must not be taken as a generalisation. In a study made by the author, it was found that the effect of bond slip increased substantially for higher earthquake intensity and varied also with the frequency content of the design accelerogram. Comparison between the results of SW3a, SW3b and SW3c as illustrated by fig. (7.18) yields the following observations:
i) The maximum ductility distribution over the height of the structure were comparable for all the coupled walls.
ii) Ductility demands obtained in SW3c were lower in the first eight floors than those in SW3a and SW3b. The maximum variation was about 13%.
iii) Ductility demands in SW3c were higher from level 9 upwards than those of SW3a and SW3b. The maximum variation was about 14.5%.
iv) Ductility demands in SW3b were generally higher than those in SW3a.

Many factors can be at the source of these discrepancies but the most obvious one seems to be the inherent behaviour of the models assumed at the first place. Generally however, the maximum ductilities obtained by any model were comparable.
7.4.4 Effect of Coupling Beam Yieding Moment Variation: To examine the influence of the yield moment variation, the 20 storey coupled shear walls SW3a, SW3b and SW3c described above were subdivided in 4 zones of 5 storeys each from the base and only the absolute maximum ductility in each of these zones were considered for convenience. For a yield moment $M_{\text {min }}=100 \mathrm{kip}-\mathrm{ft}$, the following ductilities were recorded (see above section)

zone	μ_{0}		
	SW3a	SW3b	SW3c
1	13.51	13.98	11.20
2	17.43	18.20	14.24
3	22.24	23.09	24.48
4	22.78	23.93	26.50

The yield moment was then increased progressively by a value corresponding to a variation ($\mathrm{dM} / \mathrm{M}_{\mathrm{min}}$) equal to $0.50,1.00$ and 1.50 respectively and the corresponding ductility variation ($\mathrm{d} \mu / \mu_{0}$) at each zone was computed. The results were as follows:

$\mathrm{dM} /$ Mmin zone		$\mathrm{d} \mu / \mu_{0}$		
		SW 3 a	SW 3 b	SW 3 c
	1	0.370	0.375	0.390
0.50	2	0.370	0.390	0.400
	3	0.390	0.380	0.400
	4	0.420	0.410	0.420

	1	0.560	0.560	0.570
1.00	2	0.560	0.550	0.580
	3	0.580	0.570	0.600
	4	0.610	0.590	0.620
	1	0.660	0.665	0.680
	2	0.670	0.666	0.690
	3	0.690	0.680	0.695
	4	0.710	0.690	0.720

The results show clearly that although the ductility demands might be different using different models and for a given yielding moment as demonstrated in the previous section by comparing SW3a, SW3b and SW3c, the ductility variations ($\mathrm{d} \mu / \mu_{0}$) in terms of the yield moment variation ($\mathrm{dM} / \mathrm{M}_{\min }$) were very close. This shows that the ductility variations are almost invariant with respect to any model as the yield moment varied.

Properties

CONCRETE

Young's modulus of elasticity
$\mathrm{Ec}=3.810^{6} \mathrm{psi}$
Uniaxial compressive strength
$\mathrm{fc}=4720 \quad \mathrm{psi}$
Tensile strength
$f_{c t}=409 \quad$ psi
Poisson's ratio
$\mu=0.1$
Maximum compressive strain
$\epsilon_{\max }=.003$

STEEL REINFORCEMENT

Young's modulus of elasticity
Young's modulus at strain hardening
$E_{s}=2.910^{7} \mathrm{psi}$

Yield stress
Yield strain
Esh $=7.0310^{4} \mathrm{psi}$
$f_{y}=53500 \quad$ psi

Ultimate strain
$\epsilon_{y}=1.84510^{-3}$
$\epsilon_{u}=0.08$

TABLE 7.2 Experimental and Analytical Maxima

DESIGNATION	TEST	Proposed analysis	
		SWl(294 dof)	SWI(450 dof)
natural freq. (cps)	8.5	13.02	11.05
response acc.			
lst floor	1.00g	0.69g	0.61g
2nd floor	g 1.73	1.319	1.48 g
3 rd floor	2.03g	2.50 g	2.29g
response disp. (dble amplitude)			
lst floor	0.30in	0.17in	0.2lin
2nd floor	0.70in	0.48in	0.62 in
3 rd floor	1.15in	0.87in	0.99in
response base shear (kips)	4.00	6.21	5.88
response base moment (kip-in)	163	197	189

Properties

CONCRETE

Young's modulus of elasticity
Uniaxial compressive strength
Tensile strength
Poisson's ratio
Maximum compressive strain

STEEL REINFORCEMENT

Young's modulus of elasticity
Young's modulus at strain hardening
Yield stress
Yield strain
Ultimate strain

Ec= $3.110^{6} \mathrm{psi}$
$\mathrm{fc}=4500 \quad \mathrm{psi}$
$\mathrm{f}_{\mathrm{ct}}=403 \quad \mathrm{psi}$
$\mu=0.2$
$C_{\text {max }}=.003$
$E_{s}=2.910^{7} \mathrm{psi}$
Esh= $7.0310^{4} \mathrm{psi}$
$f_{y}=72000 \quad$ psi
$C_{y}=.00248$
$C_{u}=0.08$

TABLE 7.3.2 Stiffness and Strength Properties of Coupling Beams

Properties	SW2a	SW2b
moment-rotation relationship		
i) elastic slope, kip-in	622	810
ii) slope at yield, kip-in	20	25
iii) cracking momt,kip-in	0.15	0.15
iv) yielding momt,kip-in	1.56	2.90

DESIGNATION	TEST		PROPOSED ANALYSIS	
	SW2a	SW2b	SW2a	SW2b
	pos neg	pos neg	pos neg	pos neg
response acc.(g)				
4th floor	$1.11-0.95$	$1.11-1.19$	1.15 -1.25	$1.16-1.23$
7th floor	$1.07-0.98$	$1.10-1.00$	$1.21-1.27$	$1.26-1.13$
10th floor	2.00-1.58	$1.58-1.84$	$2.11-1.77$	$1.72-1.98$
response disp. (inch)				
4th floor	$0.70-0.60$	$0.71-0.55$	0.57-0.63	$0.69-0.53$
7th floor	$1.41-1.18$	$1.43-1.02$	$1.19-0.93$	$1.23-0.87$
10th floor	2.13 -1.74	2.05 -1.47	$1.93-1.63$	$1.78-1.26$
response base shear (kips)	$3.33-3.38$	$3.90-3.92$	$2.63-2.77$	$2.73-2.91$
response base moment (kip.in)	200-197	185-199	$182-177$	$190-187$
natural freq. (cps)				
i) before run	4.80	4.80	5.00	5.00
ii) after run	2.06	2.00	2.43	2.54

TABLE 7.4.1 Material Properties of SW3

Properties

CONCRETE

Young's modulus of elasticity
$E c=3.210^{6} \mathrm{psi}$
Poisson's ratio
$\mu=0.2$

ELEMT STIFFNESSES (EI)
Wall
9.610^{9} kip.in 2
coupling beams
4.4510^{7} kip.in ${ }^{2}$

ELEMENT STRENGTHS

Wall
coupling beams

FLOOR MASS

NATURAL FREQUENCY

DAMPING FACTOR

Reinforcement

Vertically: No. 8 wires 1" c/c

Horizontally: No. 8 wires 2" c/c

FIG. 7.1 GEOMETRY AND REINFORCEMENT OF SWI

FIG. 7.2 POSITION OF THE FLOOR WEIGHTS

FIG. 7.3 EXPERIMENTAL CRACK PATTERN FOR SW1 [42]

FIG. 7.4 CRACK PATTERN ACCORDING TO AGRAWAL'S ANALYTICAL MODEL [42]

FIG. 7.5a ACCELERATION RESPONSE OF SWI ACCORDING TO AGRAWAL

FIG. 7.5b PREDICTED ACCELERATION RESPONSE OF SWI

FIG. 7.7 BASE MOMENT \& BASE SHEAR RESPONSE IN SWI

- - AGRAWAL [42]
__ PRESENT MODEL

FIG. 7.8a ANALYTICAL FAILURE PREDICTION OF SW1 Time $=0.00 \mathrm{sec}$.

- Open crack
.- Closed crack
| Yielding of steel
Crushed element

FIG. 7.8b ANALYTICAL FAILURE PREDICTION OF SW1 Time $=0.30$ sec.

FIG. 7.8c ANALYTICAL FAILURE PREDICTION OF SW1 Time $=0.60$ sec.

Open crack
Closed crack
Yielding of steel
Crushed element

FIG. 7.8d ANALYTICAL FAILURE PREDICTION OF SWI Time $=0.90$ sec.

FIG. 7.8e ANALYTICAL FAILURE PREDICTION OF SWI $\underline{\text { Time }=1.20 \mathrm{sec} .}$

Open crack
Closed crack
Yielding of steel
Crushed element

FIG. 7.8f ANALYTICAL FAILURE PREDICTION OF SWI
Time $=1.50 \mathrm{sec}$.
Open crack
Closed crack
Yielding of steel
Crushed element

FIG. 7.9 GEOMETRICAL PROPERTIES OF SW2A AND SW2B
a) SW2A

Walls from base to level 6

Walls from level 6 to level 10

ALL REIFORCING BARS
No. 8 Wires
b) SW2B

Walls from base to level 10

FIG. 7.11 EXPERIMENTAL FAILURE PATTERN OF SW2A and SW2B

FIG. 7.12a ACCELERATION RESPONSE IN SW2A
_-- EXPERIMENTAL [109]

- PREDICTED

FIG. 7.12b ACCELERATION RESPONSE IN SW2B
$\cdots \quad \begin{aligned} & \text { EXPERIMENTAL [109] } \\ & -\cdots \text { PREDICTED }\end{aligned}$

FIG. 7.14a BASE SHEAR \& BASE MOMENT RESPONSE IN SW2A
$\begin{array}{ll}\text {---- } & \text { EXPERIMENTAL [109] } \\ \text { PREDICTED }\end{array}$

FIG. 7.14b BASE SHEAR \& BASE MOMENT RESPONSE IN SW2B
---- EXPERIMENTAL [109]
—— PREDICTED
a)
SW2A

b) SW2B

FIG. 7.15a ANALYTICAL FAILURE PREDICTION OF SW2A \& SW2B
Time $=0.00 \mathrm{sec}$.

- Open crack
-- Closed crack
| Yielding of steel
- Crushed element

FIG. 7.15b ANALYTICAL FAILURE PREDICTION OF SW2A \& SW2B Time $=0.75$ sec.

- Open crack
-- Closed crack
| Yielding of steel
- Crushed element

FIG. 7.15c ANALYTICAL FAILURE PREDICTION OF SW2A \& SW2B Time $=1.50 \mathrm{sec}$.

FIG. 7.15d ANALYTICAL FAILURE PREDICTION OF SW2A \& SW2B Time $=2.25 \mathrm{sec}$.

FIG. 7.15e ANALYTICAL FAILURE PREDICTION OF SW2A \& SW2B Time $=3.00 \mathrm{sec}$.

FIG. 7.16 DISCRETISATION OF THE 20 STOREY COU̇PLED SHEAR WALL SW3

FIG. 7.17 FIRST 6 SECONDS OF EL CENTRO ACCELEROGRAM (N-S)

FIG. 7.18 DUCTILITY DEMANDS FOR VARIOUS DISCRETISATIONS

CHAPTER EIGHT

OPTIMUM NONLINEAR ANALYSIS OF COUPLED SHEAR WALLS

8.1 Introduction

In locations of possible seismic activities coupled shear walls are a form of construction often used. This is due to their ability to dissipate the energy input whilst retaining a great deal of their structural stability. One way of dissipating this energy is to allow the connecting beams to deform plastically whilst confining the rest to remain elastic. This is the preferred form of deformation because
i) Failure in the walls may lead to the collapse of the entire structure
ii) Axial forces which might be high in the walls tend to reduce their capability to deform
iii) It is easier and more economical to repair horizontal members than vertical ones

To achieve such a philosophy, the practice to purposely moderate the strength of the coupling beams allowing them to yield ahead of the walls, has been the desired behaviour among many seismic experts for the last few years. By doing so however, there is a risk that the coupling beams will undergo plastic deformations beyond their real capacity and hence may lead to an undesired behaviour and sometimes to the collapse of the entire structure.

These plastic deformations of the connecting beams are defined and limited by the mathematical model assumed for the inelastic material behaviour. The model most used in connection with the dynamic response of reinforced concrete members is the experimentally based hysteretic Takeda's
moment - rotation relationship [29] (fig. 8.1). This limit is often expressed by the ductility demand, μ, which is expressed in terms of the maximum and the yield rotations ($\Theta \max , \Theta_{y}$) as

$$
\mu=\frac{\Theta_{\max }}{\theta_{y}}
$$

Paulay [86] and others [75-77] have shown that doubly reinforced concrete beams have a ductility demand capability of between 4 and 10. The actual value depends among other factors upon the amount of tension and shear reinforcement present in the beam.

In the past trial-and-error methods have been used to evaluate the moment capabilities of the connecting beams for specified ductility demands. Initial values were chosen and the coupled shear walls subjected to a nonlinear analysis for a given accelerogram. These initial values were then modified according to the calculated ductility demands and the procedure repeated until the ductility demands were within the required acceptable values.

The efficency of the above method is obviously limited and in this dissertation a method is proposed that will optimise the procedure. This is made possible by using a ductility decay curve. This curve has been obtained for a number of coupled shear walls with a range of geometrical dimensions.

The minimum moment capacities of the connecting beams, or groups of connecting beams, can be avaluated using the relevant code of practice. Using these minimum values the coupled shear wall is subjected to a nonlinear dynamic analysis for a specified accelerogram. The required ductility demand can then be expressed as a percentage of the initial ductility demand. Using the ductility decay curve, the increase in the moment capacity can be obtained. A further analysis can then be carried out to check the validity of the modified values.

8.2 Nonlinear Dynamic Procedure

Each coupled shear wall model was analysed using DRAIN-2D program [30] developed at the University of California, Berkeley. This program was preferred because it is less time consuming for comparable results (see section 7.4.4). The dynamic response of a coupled shear wall to an earthquake acceleration record is determined using a step-by-step numerical integration. The acceleration record used was the first six seconds of the N-S component of El Centro earthquake scaled to give a peak value of 0.33 g as shown in fig. (8.2). For convenience, the structures were subdivided over their height into zones of 5 storeys each from the base and only the absolute maximum values in each zone was considered. As the computer program assumes a constant acceleration scheme during a time step, it is important to optimise this time step to balance accuracy and economy. A time step of 0.01 second was found to be appropriate as no substantial improvement was noticed for smaller values.

The stiffness matrix of the coupled shear walls was formulated by the direct stiffness method. The matrix is then modified locally whenever a member goes plastic. This is done according to the nonlinear cyclic behaviour for reinforced concrete members defined by Takeda's model. The fundamental periods of the structures were computed using the F.E dynamic program developed in this research. DRAIN-2D does not have the capability to carry out a free vibration analysis. Finally the damping is assumed to be proportional to both the stiffness and the mass matrix.

8.3 Influence of Various Factors on Ductility Demand

The prediction of ductilities and hence plastic deformations is of paramount importance. The accuracy of these predictions depends on many assumptions related to the mathematical model chosen, the initial stiffness and the strain hardening parameter assumed etc... to name but a few. Therefore before developing the ductility decay curve in detail, the different factors which might influence the ductility demands are examined and their effects evaluated. A 20 and a 30 storey coupled walls (SWl and SW2) were chosen for this investigation. Their geometric and dynamic characteristics are given in fig. (8.3).
8.3.1 Effect of Stiffness Degradation on SW2: As previously stated Takeda's model with stiffness degradation capability was used. The stiffness degradation is simulated by reducing the unloading and reloading stiffnesses. The unloading stiffness, Ku , depends on the maximum hinge rotation and is controlled by the input parameter α as shown in fig. (8.1). α must be non negative and chosen such that the unloading slope is steeper than the reloading one in order to avoid a negative hysteresis loop, similarly the reloading stiffness is controlled by a parameter β.
i) Unloading Slope Variation: The influence of the unloading stiffness Ku is investigated. Setting $M y=100$ kip.ft for all the coupling beams and the walls elastic, the ductility demands in the coupling beams were computed for various values of α and a constant $\beta=0$. The results are shown in table 8.1. The relevant ductility demand variations $\mathrm{d} \mu(\%)$ with respect to the ductility demand μ_{0}, corresponding to $\alpha=0$ and $\beta=0$, are also shown in table 8.1 between brackets and are plotted against the variable α for zone 1 in fig. (8.4). Table 8.1 and fig. (8.4) show clearly that ductility demand increases with increasing α.

To examine the effects of the strength of the coupling beams on this variation, two more values of yield moments were considered $\mathrm{My}=150$ and My $=200$ kip.ft and similar procedure was followed. The results are also shown in table 8.1 and the variation $\mathrm{d} \mu(\%)$ for the first zone is also plotted in fig. (8.4) for comparison. As can be seen, as α varies from 0 to $0.40, \mathrm{~d} \mu(\%)$ varies from 0 to a maximum value of

2.77%	for $M y=100$	kip.ft
7.67%	for $M y=150$	kip.ft
9.92% for $M y=200$	kip.ft	

This shows that the variation of ductility demand is higher for stronger coupling beams.
ii) Reloading Slope Variation: Similarly, the ductility demand on the coupling beams were computed for a varying parameter β and a constant α of 0.40 . The results are shown in table 8.2 for values of yield moment of 100 , 150, and 200 kip.ft respectively. The ductility variation of $d \mu(\%)$ defined with respect to μ_{0}, corresponding to $\alpha=0.40$ and $\beta=0$, is now plotted against β for zone 1 in fig. (8.5). The results show that
a) The ductility variation was not substantial as β varied.
b) The ductility variation increases with increasing β.
c) The ductility variation is lesser for stronger coupling beams.

8.3.2 Effect of Strain Hardening on SW2: When subjected to a reversal of

 loading, the behaviour of a beam can be basically described by its momentrotation relationship. The latter can either be idealised as elastic perfectly plastic, i.e., no strain hardening is accounted for ($\mathrm{p}=0 \mathrm{in}$ fig. (8.1)) or as elasto-plastic with strain hardening ($p \neq 0$). As far as reinforced concrete is concerned, a more realistic model would be the one which takes into account strain hardening effect.Depending on the designer's judgement, various values of p can be chosen as an input to simulate strain hardening. Therefore, in the following section an attempt is made to examine the effect of the variation of the parameter p on the ductility demands of the coupling beams of the coupled shear wall SW2. The walls were kept elastic throughout the entire earthquake history and no stiffness degradation effect was considered. The value of the strain hardening parameter p was varied from 0.01 to 0.16 and the consequent changes in plastic deformations were recorded. Further more, to examine the possible influence of beam strength on the magnitude of these changes, three values of yield moment have been considered ($M y=100, M y=150$ and $M y=200$ kip.ft), the results are shown in table 8.3 and plotted against p in fig. (8.6) for zone 6.

The results show clearly that ductiliy demand decreases as the strain hardening parameter p increases. The variation of ductility demand depends also on the level of yielding of the coupling beams as it is greater for smaller yield moments My.

8.3.3 Effect of Beam Depth:

i) General Considerations: As a preliminary study an 8 storey coupled wall subjected to typical equivalent static loads was investigated. The depth of the coupling beams were varied keeping all the remaining geometry the same. The displacement pattern of this coupled wall depended very much on the size of the coupling beams as shown in fig. (8.7a). the depth of the coupling beams has therefore a considerable effect on the stress and deformation characteristics of the entire structure. When the depth was only one foot, both left and right walls deflected equally and the point of contraflexure was almost in the midspan of the coupling beam. This agreed remarquably well with the assumption made in the approximate methods of analysis. As the depth of the coupling beams was increased however, the behaviour of the coupled shear wall was noted to vary towards that of a single solid wall.

The interaction between the walls and the coupling beams was also investigated. Fig. (8.7b) shows the variation of the bending moments in the coupling beams with their depth. The interstorey variation of the bending moment is seen to increase substantially with the depth of the beam. This was found to be a very important phenomenon concerning the strength and the energy absorbing capability of the structure. The similarity of the inter storey bending moments of the coupling beams when they are slender yields the following consequences:
a) Yielding in the beams occur approximately at the same time thus improving their energy dissipation capability.
b) A straight forward design and construction of the coupling beams.
c) The approximate nonlinear method of analysis which assumes that all beams are hinged, and that the points of contraflexure are at midspan, becomes more acceptable.
ii) Effect of the Depth of Coupling Beams on their Ductility: Increasing the beam depth increases the initial stiffness (i.e. the first slope of the momentrotation curve) and hence, for the same yield moment, reduces the yield rotation. To examine the effect of the beam depth Hb on the ductility demand, the 30 storey coupled shear wall (SW2) was considered. Varying the beam depth and keeping all the remaining data and zoning the same and setting the yield moment $M y=100$ kip.ft, the following ductility demands were recorded:

ZONE	DUCTILITY DEMAND (μ)		
	$\mathrm{Hb}=1^{\prime}$	$\mathrm{Hb}=2^{\prime}$	$\mathrm{Hb}=3^{\prime}$
	1.00	6.48	22.08
2	1.13	8.32	27.60
3	1.50	12.79	35.26
4	1.81	14.67	39.33
5	1.81	14.06	35.97
6	2.18	16.47	41.23

The infuence of the beam depth is considerable as is confirmed by the above table. The results show yet again that the parameters which define the yield point, namely the initial stiffness and the yield strength, have a particular effect on the ductility demand.
8.3.4 Effect of Coupling Beam Length on Ductility Demand: It can be anticipated that an increase in the length of the coupling beams leads to a greater flexibility and hence to an increase in ductility demands. It is however desirable to evaluate the extent of this increase and the nature of its variation as affected by the coupling beam length. In order to examine the effect of this variable, three twenty storey coupled walls were considered in addition to SWl previously described. All four structures were the same except that the coupling beam length and hence the dynamic characteristics were varied. The maximum ductility demands were computed for each of the structures as follows:

	$\mu_{\text {max }}$			
Zone	4^{1}	71	10^{1}	14^{\prime}
1	9.71	13.51	15.11	15.40
2	10.33	17.43	20.37	21.60
3	8.81	22.24	26.17	28.08
4	9.57	22.77	27.32	29.63

The maximum ductility demands in the 4 zones are plotted against the beam length Lb , and also l / Lb in fig. (8.8). The figure shows, as expected, the increase of ductility demand with increasing length. Furthermore, the maximum ductility demand seems to be almost inversely proportional to the coupling beam length. Note however, that the rate of increase in ductility demand decreases after the beam length has reached approximately 10 ft .
8.3.5 Effect of Damping: To assess the effect of the energy absorbing mechanism, which is present in structures even before the onset of yielding due to damping effect, a viscous damping form was assumed. Three damping factors namely $5 \%, 10 \%$ and 15% of critical were considered. To appreciate the influence of structure flexibility, i.e., its frequency of vibration, on the extent of the effect of damping, a coupled shear wall of 10 storeys (SW3) in addition to the 20 storey coupled wall (SWI) was considered. SW3 has the same properties, except the number of storeys and hence the total height, as SWl. The coupling beams yield moments were set to 100 kip.ft for SWl and 80 kip.ft for SW3. The ductility demands in the coupling beams were then computed and the results are shown in table 8.4 and fig. (8.9). From these the following observations can be seen :
i) The effect of damping is substantial and therefore a great care should be exercised in its choice.
ii) The maximum reductions in ductility demands $D \mu(10 \%)$ and $\mathrm{D} \mu(15 \%)$ with respect to $\mu(5 \%)$, i.e.,

$$
D \mu_{(\mathrm{i} \%}=\frac{\mu(5 \%)-\mu(\mathrm{i} \%)}{\mu_{(\mathrm{i} \%)}} \cdot 100
$$

were as follows:

	$D \mu(5 \%)$	$D \mu(10 \%)$	$D \mu(15 \%)$
SW3 (10 storeys)	0.0	25%	35%
SW1 (20 storeys)	0.0	32%	50%

8.3.6 Effect of Actual Stiffness of Coupling Beams: The importance of the

 choice of the original stiffness to be used along with the assumed nonlinear moment-rotation relationship must be emphasised. Depending on the designer, different initial rigidities ($\mathrm{EI}_{\mathrm{initial}}$) for the same cross section can be assumed ranging from the rigidity of the gross section to the rigidity below that of the cracked section (fig. 8.10). The influence of such an assumption on the ductility demand on the coupling beams of the coupled shear walls is most important and in this section attempts are made to assess the extent af this influence.The 20 storey coupled shear wall (SWI) was chosen to illustrate this point. Its material, geometric and dynamic characteristics are given in fig. (8.3). Four typical values of $\mathrm{EI}_{\text {initial }}$ were assumed as follows

	Run S1	Run S2	Run S3	Run S4
$\mathrm{EI}_{\text {initial }}$	$\mathrm{EI}_{\text {gross }}$	$0.8 \mathrm{EI}_{\text {gross }}$	$0.6 \mathrm{EI}_{\text {gross }}$	$0.4 \mathrm{EI}_{\text {gross }}$

The ductility demands upon the coupling beams are shown in table 8.5 and plotted in fig. (8.11) for the four rigidity values considered. The figure shows clearly that the influence is very substantial and the maximum variation of the ductility demand reached 120% in this study. It is interesting to note that ductility demand varied almost in proportion with the initial rigidity $E \mathrm{I}_{\mathrm{initial}}$ -

8.3.7 Summary: The following conclusions can be drawn.

a) The ductility demand increases with increasing unloading parameter \& and its variation is greater for stronger coupling beams. A maximum variation of 10% was obtained in this investigation.
b) The ductility demand increases with increasing reloading parameter 8. Its variation however, is smaller for stronger coupling beams. The maximum variation obtained was 6.3%.
c) Generally the ductility demand decreases with increasing strain hardening parameter p. Its variation becomes smaller as the coupling beams become stronger.
d) The factors affecting the yield point in the moment - rotation relationship such as the depth of the coupling beams, the yield moments and the initial stiffness have a particular influence on ductility demand and should therefore be assessed with great care.
e) Damping effect on ductility demand is very substantial (up to 50% in this study) and is slightly higher for more flexible structures. Therefore its choice should taken with caution.

8.5 Optimal Nonlinear Analysis

8.5.1 Effect of Coupling Beam Strength on Ductility Demand: In coupled shear wall systems the strength of the coupling beams not only affects the degree of coupling between the walls but also controls the sequence of yielding and the magnitude of ductility demand of the different members of the structure. The direct influence of coupling beam strength variation is shown in fig. (8.12). the figure represents the response of a 20 storey coupled shear wall (SWl) for three levels of moment capacity namely 100, 200 and 300 kip.ft respectively. These curves show that ductility demands are in direct relation to the coupling beam moment capacity. They also show that as the moment capacity increases the ductility demand variation and the maximum ductility demand decreases.
8.5.2 Ductility Decay Curve: Obviously when a coupled shear wall is subjected to a dynamic loading, its coupling beams are stressed differently throughout the height of the structure and produce therefore different ductility demands according to their stiffness and yielding moments. Varying all the coupling beam yield moments equally produced the variation of ductility demands shown in fig. (8.12). However it is of interest to investigate the influence of the yield moment variation of one set of coupling beams on the others. To carry out such a study it was decided for practicality and economy to subdivide the structures into zones of five storeys each over their height. Instead of considering each individual beam separately, the absolute maximum response in each zone was considered. The degree of accuracy is therefore in direct relation with the number of zones.

The coupled shear walls SW1 and SW2 which are defined in fig. (8.13) were first considered. Initially all the zones are assumed to have the minimum moment capacity. This value will be dependent upon the minimum amount of reinforcement present in the beams. This is stipulated by most codes of
practice. A typical value is that recommended by the ACI code [48]. This is given by

$$
\mathrm{P}_{\min }=\mathrm{p}_{\min }^{\prime}=200 / \mathrm{f}_{\mathrm{y}}
$$

$$
\begin{array}{ll}
\text { in which } & P_{\min }=\text { minimum tensile reinforcement percentage } \\
& P_{\min }^{\prime}=\text { minimum compressive reinforcement percentage } \\
& f y=y i e l d i n g \text { steel stress in } p s i
\end{array}
$$

To allow the steel to yield before the concrete is crushed, an upper limit is also recommended for flexural steel ratio. The maximum value must not exceed half of that producing balanced failure [86]. Hence

$$
\underset{\left(p^{\prime}\right)}{ }<0.5 \cdot \frac{\left(.85 f^{\prime} c \beta_{1}\right)}{f_{y}} \cdot \frac{\left(.003 E_{s}\right)}{.003 E_{s}+f_{y}} \cdot \frac{p^{\prime} f_{s}^{\prime} \beta_{1}}{f_{y}}
$$

where $f^{\prime} \mathrm{c}=$ Compressive strength of concrete
$\beta_{1}=$ Constant (generally equal to 0.85)
$f_{y}=$ Steel yield stress
f's = Compressive steel stress
Es = Steel modulus of eleasticity

For the walls SWI and SW2 the minimum yield moment capacity was assumed to be equal to 100 kip.ft. Applying the nonlinear dynamic analysis to these walls, the ductility demand ($\mu_{\text {min }}$) was determined for each zone. These values are tabulated in table 8.6a. The yield moment of zone l was then increased keeping all the others equal to the minimum recommended ($\mathrm{My}_{\text {min }}$). The resulting ductility demands on all zones in terms of the yielding moment at zone 1 are shown in fig. (8.14a) and fig. (8.15a) for SW1 and SW2 respectively. Similarly, the infuence of the increase of yield moment in zone 2 keeping all the others equal to $\mathrm{My}_{\text {min }}$ are shown in fig. (8.14b) and fig. (8.15b). the same procedure for all zones follows and the results are shown in
fig. (8.14) for SWl and fig. (8.15) for SW2. These two sets of figures show quite clearly
i) the necessity to vary the moment capacity of the connecting beams along the height of the coupled shear walls.
ii) that the variation of the ductility demand of a particular zone is dependent, in the main, upon the variation of moment capacity within that zone. Therefore a good approximation can be expected by assuming the effects of the other zones negligible.

The variation in ductility demand of a particular zone can be represented as a percentage of the ductility demand at minimum moment capacity. These values are tabulated, for all zones, in table 8.7 for the walls SW1 and SW2. The average values of the coupled walls considered are shown in table 8.6b. These variations are shown in graphical form in fig. (8.16) as the ductility decay curves.
8.4.3 Applications: Three examples of the use of the ductility decay curve are shown in table 8.8. Table 8.8a shows the process for the wall SWl which is subdivided into four zones and a required ductility demand of 6 is assumed. Again it was assumed that the minimum moment Mymin was 100 kip.ft. The initial ductility demands for all zones at this capacity ($\mu_{\min }$) are shown in the first column. For each zone the ductility demand required (μ_{r}) can be represented as a fraction of the initial ductility demand ($\mu_{\min }$). This is shown in column 2 as ($\mu_{\mathrm{r}} / \mu_{\text {min }}$). Using the ductility decay curve the ratio ($d M / M_{\text {min }}$) can be read off and the moment capacity required can be calculated as

$$
M y=M y_{\min }+d M
$$

This is shown in column 6. A nonlinear dynamic analysis was again carried out
and the ductility demand values are shown in column 7. Similarly tables 8.8b and 8.8 c show the process for walls SW2 and SW3.

It can be seen from these tables that the required and computed ductility demands are within 10% of one another for walls SW1 and SW3. This is not the case for SW2 where the maximum difference in zone 5 is 29%. This show quite clearly that the ductility decay curve for SW2 does not describe its behaviour accurately enough and therefore the ductilities in SW2 need to be improved.

This improvement may be carried out using two different approaches:
i) By modifying the ductility decay curve
ii) By using the slope of the ductility decay curve.

The first procedure which can be seen from table 8.9 and fig. (8.17), uses the computed ductility demands $\left(\mu_{\mathrm{g}}\right)$ that are shown in table 8.8b. Using the ratios obtained in table 8.9a the modified SW2 decay curve is obtained in fig. (8.17). Using this curve with the original ductility ratios ($\mu_{\mathrm{r}} / \mu_{\mathrm{min}}$) the modified values of ($\mathrm{dM} / \mathrm{My}_{\min }$) and hence the required moment (My) are obtained. These values are again used in the nonlinear dynamic analysis and the computed values of ductility demands are shown in table 8.9 b .

This modification of the ductility decay curve for one particular coupled shear wall supports the possibility of using one curve for all the coupled shear walls. To test the validity of modifying a standard curve for any wall, the curve representing wall SW3 was utilized. This curve was used to determine the yield moments required for wall SW2. Using this curve the moments shown in table 8.10a were used producing the ductility demands (μ_{g}) shown. The ratios ($\mathrm{dM} / \mathrm{My}_{\text {min }}$) and ($\mu_{\mathrm{g}} / \mu_{\text {min }}$) were then used to modify the original curve. This shown in fig. (8.18).

This modified curve was then used along with the original ductility ratios to evaluate the required moment capacity My . The resulting ductility
demands are shown in table 8.10b. A second modification to the original curve can be made by considering the latest moment and ductility ratios. This second modification is shown in fig. (8.18). This curve was then used to obtain the values shown in table 8.10c and the nonlinear dynamic analysis produced the final ductility demands shown.

The second procedure uses a simplified trilinear curve derived from the ductility decay curve and whose three branches have a slope of 2.5, 5.0 and 10.0 respectively. The procedure can be seen from table 8.11 and fig. (8.19). Using the computed ductility (μ_{g}) and the original ductility (μ_{0}), the rate by which the computed ductility has been underestimated with respect to the required ductility $\left(\mu_{\mathrm{r}}\right)$ can be computed. This is given by the ratio
$\frac{\mu_{\Gamma}-\mu_{0}}{\mu_{0}}$

8.6

and is shown in column (7) of table 8.11.

Depending upon this ratio and the derived yield moment $M y$ shown in column (5), the slope which is to be used is set from fig. (8.19). This is given in column (8). If the ratio given in equation 8.6 ranges over two or three slopes as it is the case for zones 3 to 6 , then it must devided proportionally as shown in column (9). Multiplying the slope by the corresponding ratio, the ratio $d M_{g} / M_{\min }$ and hence the required reduction $d M_{g}$ of the yield moment is obtained (columns $10 \& 11$). The final yield moments are then deducted. These are shown in column (12) and the resulting ductilities in column (13).

As can be seen from column (13), the improved ductilities obtained are very close to the required ductility μ_{r}. This clearly shows that the procedure is simple, optimal and leads to a greater accuracy for a minimum effort.
8.5 Conclusion and summary: The method described is a major improvement on the existing trial - and -error process. For any particular wall it has been shown that the use of a ductility decay curve produces accurate values of the moment capacities to produce the required ductility demands. When the original curve for a wall does not produce an accurate set of results then the curve can be modified.

In generalising the method, one ductility decay curve only was used. In the particular case shown the most conservative curve was used. again by modifying the curve form accurate values of yield moments are achieved for a predetermined ductility demand.

Table 8.1 Effect of Unloading Stiffness Degradation

		μ_{1}	μ_{2}	μ_{3}	μ_{4}	μ_{5}	μ_{6}
$\begin{aligned} & 8 \\ & \underset{1}{1} \\ & \Sigma^{\lambda} \end{aligned}$	$\alpha=0$	$\begin{aligned} & 6.49 \\ & (0 \%) \end{aligned}$	8.32	12.80	14.69	14.08	16.49
	$\alpha=0.1$	$\begin{aligned} & 6.56 \\ & (1.08) \end{aligned}$	8.45	12.81	14.61	13.96	16.38
	$\alpha=0.2$	$\begin{aligned} & 6.62 \\ & (2.06) \end{aligned}$	8.50	12.86	14.61	13.96	16.34
	$\alpha=0.3$	$\begin{aligned} & 6.66 \\ & (2.62 \%) \end{aligned}$	8.51	12.86	14.56	13.98	16.34
	$\alpha=0.4$	$\begin{aligned} & 6.67 \\ & (2.77 \%) \end{aligned}$	$\begin{aligned} & 8.49 \\ & (2.04 \%) \end{aligned}$	$\begin{aligned} & 12.85 \\ & (-39 \%) \end{aligned}$	$\begin{aligned} & 14.52 \\ & (-1.16 \%) \end{aligned}$	$\begin{aligned} & 14.04 \\ & (-0.28 \%) \end{aligned}$	$\begin{aligned} & 16.39 \\ & (-0.69 \%) \end{aligned}$
	0.	$\begin{aligned} & 3.79 \\ & (0.0) \end{aligned}$	4.68	7.09	7.97	7.33	8.48
	0.1	$\begin{aligned} & 3.90 \\ & (2.90) \end{aligned}$	4.76	7.10	7.94	7.39	8.52
	0.2	$\begin{aligned} & 3.97 \\ & (4.75) \end{aligned}$	4.82	7.13	7.95	7.45	8.59
	0.3	$\begin{aligned} & 4.04 \\ & (6.60) \end{aligned}$	4.85	7.16	7.96	7.49	8.64
	0.4	$\begin{aligned} & 4.08 \\ & (7.67) \end{aligned}$	$\begin{aligned} & 4.87 \\ & (4.06) \end{aligned}$	$\begin{aligned} & 7.16 \\ & (.99) \end{aligned}$	$\begin{aligned} & 7.96 \\ & (-.13) \end{aligned}$	$\begin{aligned} & 7.53 \\ & (+2.73) \end{aligned}$	$\begin{aligned} & 8.70 \\ & (2.59) \end{aligned}$
$\begin{aligned} & \mathrm{O} \\ & \text { N } \\ & 11 \\ & \Sigma^{2} \end{aligned}$	0.	$\begin{aligned} & 2.62 \\ & (0) \end{aligned}$	3.03	4.48	4.95	4.32	4.95
	0.1	$\begin{aligned} & 2.70 \\ & (3.05) \end{aligned}$	3.09	4.50	4.95	4.35	4.99
	0.2	$\begin{aligned} & 2.76 \\ & (5.34) \end{aligned}$	3.14	4.50	4.95	4.39	5.05
	0.3	$\begin{aligned} & 2.82 \\ & (7.63) \end{aligned}$	3.19	4.52	4.96	4.43	5.09
	0.4	$\begin{aligned} & 2.88 \\ & (9.92 \%) \end{aligned}$	$\begin{aligned} & 3.22 \\ & (6.27 \%) \end{aligned}$	$\begin{aligned} & 4.53 \\ & (1.12 \%) \end{aligned}$	$\begin{aligned} & 4.97 \\ & (0.40 \%) \end{aligned}$	$\begin{aligned} & 4.46 \\ & (3.24) \end{aligned}$	$\begin{aligned} & 5.13 \\ & (3.64) \end{aligned}$

Table 8.2 Effect of Reloading Stiffness Degradation

	β	μ_{1}	μ_{2}	μ_{3}	μ_{4}	μ_{5}	μ_{6}
$\begin{aligned} & 8 \\ & 0 \\ & 11 \\ & \Sigma^{2} \end{aligned}$	0.	$\begin{aligned} & 6.64 \\ & (0) \end{aligned}$	8.45	12.80	14.41	14.09	16.44
	0.1	$\begin{aligned} & 6.68 \\ & (0.60) \end{aligned}$	8.58	12.78	14.41	14.07	16.42
	0.2	$\begin{aligned} & 6.73 \\ & (1.36) \end{aligned}$	8.71	12.77	14.41	14.06	16.40
	0.3	$\begin{aligned} & 6.77 \\ & (1.96) \end{aligned}$	8.83	12.78	14.42	14.04	16.38
	0.4	$\begin{aligned} & 6.80 \\ & (2.41 \%) \end{aligned}$	8.93	12.78	14.42	14.04	16.38
	0.5	$\begin{aligned} & 6.80 \\ & (2.41 \%) \end{aligned}$	$\begin{aligned} & 8.98 \\ & (6.27 \%) \end{aligned}$	$\begin{aligned} & 12.78 \\ & (-0.16) \end{aligned}$	$\begin{aligned} & 14.42 \\ & (0.0 母) \end{aligned}$	$\begin{aligned} & 14.04 \\ & (0.35) \end{aligned}$	$\begin{aligned} & 16.38 \\ & (0.36) \end{aligned}$
$\begin{aligned} & 0 \\ & \stackrel{n}{n} \\ & 1 \\ & \Sigma^{\lambda} \end{aligned}$	0.	4.12 (0)	4.86	7.15	7.94	7.57	8.75
	0.1	$\begin{aligned} & 4.15 \\ & (0.73) \end{aligned}$	4.94	7.13	7.93	7.57	8.74
	0.2	$\begin{aligned} & 4.16 \\ & (0.97) \end{aligned}$	5.00	7.14	7.94	7.56	8.73
	0.3	$\begin{aligned} & 4.16 \\ & (0.97) \end{aligned}$	5.01	7.14	7.94	7.56	8.73
	0.4	$\begin{aligned} & 4.17 \\ & 1.21 \%) \end{aligned}$	5.03	7.14	7.94	7.56	8.73
	0.5	$\begin{aligned} & 4.17 \\ & (1.21 \%) \end{aligned}$	$\begin{aligned} & 5.03 \\ & (3.50) \end{aligned}$	$\begin{aligned} & 7.14 \\ & (-0.14) \end{aligned}$	$\begin{aligned} & 7.94 \\ & (0.0) \end{aligned}$	$\begin{aligned} & 7.56 \\ & (-0.13) \end{aligned}$	$\begin{aligned} & 8.73 \\ & (-0.23) \end{aligned}$
$\left\lvert\, \begin{aligned} & \mathrm{O} \\ & \sim \\ & 11 \\ & \Sigma^{\lambda} \end{aligned}\right.$	0.	$\begin{aligned} & 2.92 \\ & (0) \end{aligned}$	3.24	4.54	4.97	4.49	5.17
	0.1	$\begin{aligned} & 2.93 \\ & (0.34) \end{aligned}$	3.25	4.55	4.98	4.48	5.17
	0.2	$\begin{aligned} & 2.93 \\ & (0.34) \end{aligned}$	3.26	4.55	4.98	4.48	5.17
	0.3	$\begin{aligned} & 2.93 \\ & (0.34) \end{aligned}$	3.26	4.54	4.97	4.48	5.17
	0.4	(0.34)	3.27	4.54	4.97	4.48	5.17
	0.5	(0.34)	$\begin{aligned} & 3.27 \\ & (.93 \%) \end{aligned}$	$\begin{aligned} & 4.54 \\ & (0.0) \end{aligned}$	$\begin{aligned} & 4.97 \\ & (0.0) \end{aligned}$	$\begin{aligned} & 4.48 \\ & (-0.22) \end{aligned}$	$\begin{aligned} & 5.17 \\ & (0.0) \end{aligned}$

Table 8.3 Effect of Strain Hardening

Str. Hard. parameter (P)	$\mu_{(1)}$	$\mu_{(2)}$	$\mu_{(3)}$	$\mu_{(4)}$	$\mu_{(5)}$	$\mu_{(6)}$
	.01	6.44	8.18	14.40	16.7	16.17

Table 8.4 Influence of Damping on Ductility Demand

Floor Leve1	20 STOREYS					
	Ductility 5\% Damp	$\begin{gathered} \text { Ductility } \\ 10 \% \end{gathered}$	$\begin{gathered} \text { Ductility } \\ 15 \% \end{gathered}$			
20	22.68	15.33	11.35			
19	22.74	15.40	11.40			
18	22.77	15.46	11.37			
17	22.68	15.44	11.19			
16	22.52	15.36	10.94			
15	22.24	15.19	10.79			
14	21.71	14.88	10.58			
13	20.92	14.39	10.33			
12	19.85	13.74	7.99		STOREY	
11	18.56	13.12	9.59	5\%	10\%	15\%
10	17.43	12.56	9.74	17.30	12.95	11.25
9	16.53	12.26	10.07	$\cdot 17.23$	12.94	11.25
8	15.74	12.29	10.58	16.80	12.74	11.06
7	15.44	12.27	10.72	15.82	12.24	10.57
6	14.70	11.87	10.42	14.29	11.57	9.88
5	13.51	10.96	9.67	12.96	11.16	9.47
4	11.82	9.53	8.46	12.39	10.43	8.75
3	9.64	7.66	6.85	11.01	9.09	7.54
2	6.99	5.48	4.85	8.57	6.97	5.72
1	3.76	2.91	2.51	4.89	3.92	3.19
Max. reduction with respect (to 5%)	0.0	32\%	50\%	0.0	25\%	35\%

Table 8.5 Effect of Initial Stiffness

Floor Level	$\begin{aligned} & \text { RUN Sl } \\ & \text { EI }=309.3 \\ & 10^{3} \mathrm{kip} . \mathrm{ft}^{2} \end{aligned}$	$\begin{gathered} \text { RUN S2 } \\ (0.8 \mathrm{EI}) \end{gathered}$	$\begin{gathered} \text { RUN S3 } \\ (0.6 \mathrm{EI}) \end{gathered}$	$\begin{gathered} \text { RUN S4 } \\ (0.4 \mathrm{EI}) \end{gathered}$
20	22.68	18.85	14.74	10.28
19	22.74	18.90	14.77	10.30
18	22.77	18.91	14.88	10.29
17	22.68	18.83	14.69	10.23
16	22.52	18.67	14.54	10.12
15	22.24	18.40	14.31	9.93
14	21.71	17.93	13.91	9.63
13	20.92	17.24	13.35	9.21
12	19.85	16.33	12.67	8.66
11	18.56	15.23	11.72	8.02
10	17.43	14.28	10.97	7.50
9	16.53	13.48	10.30	6.99
8	15.74	12.78	9.75	6.63
7	15.44	12.53	9.55	6.49
6	14.70	11.93	9.08	6.17
5	13.51	10.95	8.33	5.65
4	11.82	9.57	7.28	4.93
3	9.64	7.81	5.98	4.00
2	6.99	5.65	4.27	2.87
1	3.76	3.02	2.26	1.50

Table 8.6
a) DUCTILITY DEMAND AT $\mathrm{My}_{\min }$
b) DUCTILITY DECAY
a)

	DUCTILITY DEMAND AT $M_{\min }\left(\mu_{\text {min }}\right)$				
ZONE	SW1	SW2	SW3	SW4	SW5
1	13.51	6.48	9.95	9.36	8.02
2	17.43	8.32	12.51	12.14	10.54
3	22.24	12.79	13.64	11.93	13.46
4	22.77	14.67		14.73	13.38
5		14.06		17.69	16.94
6		16.07		18.03	18.16

b)

	DUCTILITY DECAY ($\mu_{\mathrm{r}} / \mu_{\text {min }}$)				
dM $M_{\text {min }}$	SWl	SW2	SW3	SW4	SW5
0.5	0.61	0.61	0.64	0.62	0.61
1.0	0.42	0.40	0.46	0.43	0.42
1.5	0.32	0.28		0.32	0.31
2.0	0.25		0.29	0.25	0.24
3.0	0.18	0.12	0.23	0.17	0.18

Table 8.7
a) Average Variation of Ductility Demand in SWI
b) Average Variation of Ductility Demand in SW1
a)

b)

$\frac{\mu}{\mu}_{\cdot \min }$	0.5	1.0	1.5	3.0
$\frac{\mu_{1}}{\mu_{1}}$	0.63	0.44	0.29	0.12
$\frac{\mu_{2}}{\mu_{\min }}$	0.61	0.41	0.30	0.12
$\frac{\mu_{3}}{\mu_{3} \min }$	0.62	0.42	0.31	0.13
$\frac{\mu_{4}}{\mu_{4}}$	0.61	0.41	0.29	0.12
$\frac{\mu_{5}}{\mu_{5} \min }$	0.59	0.39	0.27	0.11
$\frac{\mu_{6}}{\mu_{6}}$	0.57	0.36	0.23	0.11

AVERAGE $\frac{\mu}{\mu_{\min }}$	0.61	0.40	0.28	0.12

Table 8.8 DECAY CURVE BASED \& COMPUTED DUCTILITIES
a) SWI
b) SW 2
c) SW 3
a). $\quad \underline{S W I} \underline{\mu_{r}=6} \quad \underline{M_{\text {min }}}=100$ kip.ft $\quad 4$ zones

ZONE	$\mu_{\text {min }}$	$\frac{\mu_{\mathrm{r}}}{\mu_{\text {min }}}$	$\frac{\mathrm{dM}}{M_{\text {min }}}$	dM	M_{y}	μ_{g} computed
1	13.51	.444	0.98	98	198	5.88
2	17.43	.344	1.35	135	235	5.48
3	22.24	.270	1.72	172	272	5.65
4	22.77	.263	1.74	174	274	5.72

b) $\quad \underline{S W 2} \underline{\mu}_{r=4} \quad M_{y \text { min }}=100 \mathrm{kip} . \mathrm{ft} \quad 6$ zones

ZONE	$\mu_{\text {min }}$	$\frac{\mu_{\mathrm{r}}}{\mu_{\text {min }}}$	$\frac{\mathrm{dM}}{M_{\text {min }}}$	dM	M_{y}	μ_{g} computed
1	6.48	.617	0.50	50	150	3.95
2	8.32	.481	0.79	79	179	3.83
3	12.79	.313	1.34	134	234	3.17
4	14.67	.273	1.53	153	253	3.10
5	14.06	.284	1.48	148	248	2.86
6	16.47	.243	1.66	166	266	2.92

c) $\quad \underline{S W 3} \quad \underline{\mu}_{r}=6 \quad M_{Y \text { min }}=100$ kip.ft $\quad 3$ zones

ZONE	$\mu_{\text {min }}$	$\frac{\mu_{\Gamma}}{\mu_{\text {min }}}$	$\frac{\mathrm{dM}}{M_{\text {min }}}$	dM	M_{y}	μ_{g} computed
1	9.95	.600	0.60	60	160	5.88
2	12.51	.480	0.93	93	193	5.66
3	13.64	.440	1.08	108	208	5.55

Table 8.9 IMPROVEMENT IN ACCURACY OF DUCTILITY DEMAND IN SW2

ZONE	$\mu_{\text {min }}$	μ_{g}	$\frac{\mu_{q}}{\mu_{\min }}$	$\frac{d M}{M_{\min }}$	$\frac{\mu_{\mathrm{r}}}{\mu_{\min }}$	$\frac{d M}{M_{\min }}$	My	$\mu \mathrm{g}$
1	6.48	3.95	. 610	0.50	. 617	0.50	150	3.92
2	8.32	3.83	. 460	0.79	. 481	0.72	172	3.99
3	12.79	3.17	. 248	1.34	. 313	1.12	212	3.85
4	14.67	3.10	. 211	1.53	. 273	1.25	225	3.91
5	14.06	2.86	. 203	1.48	. 284	1.22	222	3.38
6	16.47	2.92	. 177	1.66	. 243	1.34	234	3.45

Table 8.10
STANDARD AND MODIFIED DUCTILITY DECAY AS APPLIED TO SW2

	ZONE		$\frac{d M}{M y_{\text {min }}}$	My	${ }^{\prime}$	$\frac{\mu_{\mathrm{q}}}{\mu_{\mathrm{o}}}$
	1	. 617	. 578	157.8	3.88	. 59
	2	. 481	. 921	192.1	3.52	. 423
	3	. 313	1.772	277.2	2.33	. 174
	4	. 273	2.210	321.0	1.99	. 136
	5	. 284	2.074	307.4	1.14	. 081
	6	. 243	2.652	365.2	1.02	. 062
	1	. 617	. 524	152.4	3.80	. 59
	2	. 481	. 790	179.0	3.78	. 454
	3	. 313	1.260	226.0	3.49	. 272
	4	. 273	1.40	240.0	3.48	. 237
	5	. 284	1.36	236.0	2.68	. 191
	6	. 243	1.520	252.0	2.85	. 173
	1	. 617	. 492	149.0	3.92	
	2	. 481	. 730	173.0	3.94	
	3	. 313	1.158	215.0	3.73	
	4	. 273	1.270	227.0	3.84	
	5	. 284	1.24	224.0	3.23	
	6	. 243	1.340	234.0	3.54	

TABLE 8.11 SLOPE APPROACH TO IMPROVE DUCTILITY ACCURACY

\begin{tabular}{|c|c|c|c|c|c|c|c|c|c|c|c|c|}
\hline ZONE
(1) \& \(\mu_{0}\)
(2) \& \begin{tabular}{l}
\[
\frac{\mu_{r}}{\mu_{0}}
\] \\
(3)
\end{tabular} \& \begin{tabular}{l}
\(\frac{d M}{M_{\text {min }}}\) \\
(4)
\end{tabular} \& \& \begin{tabular}{l}
\(\mu\) \\
\hline
\end{tabular} \& \begin{tabular}{l}
\[
\frac{\mu_{\mathrm{r}}-\mu_{\mathrm{g}}}{\mu_{\mathrm{o}}}
\] \\
(7)
\end{tabular} \& Slope
(8) \& \begin{tabular}{l}
\[
\frac{\mu}{\mu_{0}}-\frac{\mu_{r}}{\mu_{0}}
\] \\
(9)
\end{tabular} \& \begin{tabular}{l}
\(\frac{d M_{m}}{M_{\text {min }}}\) \\
(10)
\end{tabular} \& dM \({ }_{9}\)
(11) \& \begin{tabular}{l}
\(\mathrm{My}=\) \\
\(\mathrm{My}-\mathrm{dM} \mathrm{g}_{\mathbf{g}}\) \\
(12)
\end{tabular} \& \(\mu_{\text {final }}\)

(13)

\hline 1 \& 6.48 \& . 617 \& 0.578 \& 158. \& 3.88 \& 0.02 \& 2.5 \& 0.02 \& 0.05 \& 5 \& 153. \& 3.69

\hline 2 \& 8.32 \& . 481 \& 0.921 \& 192. \& 3.52 \& 0.06 \& 2.5 \& 0.06 \& 0.15 \& 15 \& 177. \& 3.75

\hline 3 \& 12.79 \& . 313 \& 1.772 \& 277. \& 2.23 \& 0.13 \& $$
\begin{array}{r}
10 . \\
-\quad 5.0
\end{array}
$$ \& \[

-. .037

\] \& \[

\frac{0.37}{0.46}
\] \& 83 \& 194. \& 4.01

\hline 4 \& 14.67 \& . 273 \& 2.210 \& 321. \& 1.99 \& 0.13 \& $\frac{10 .}{5.0}$ \& \[
.077

\] \& \[

-\frac{0.77}{0.26}
\] \& 103. \& 218. \& 4.28

\hline 5 \& 14.06 \& . 284 \& 2.074 \& 307. \& 1.14 \& 0.20 \& $$
\frac{10 .}{\frac{5}{2} .0}
$$ \& \[

$$
\begin{array}{r}
.066 \\
\hline .060 \\
\hline .034
\end{array}
$$

\] \& \[

\frac{0.66}{-\frac{.50}{0.08}}
\] \& 123. \& 184. \& 3.80

\hline 6 \& 16.47 \& . 243 \& 2.652 \& 365. \& 1.02 \& 0.17 \& $$
\frac{10}{5.0}
$$ \& \[

-. .063

\] \& \[

\frac{1.07}{0.31}
\] \& 138. \& 227. \& 3.89

\hline
\end{tabular}

FIG. 8.1 TAKEDA MODEL DF THE MOMENT-ROTATION RELATIONSHIP OF R/C BEAMS

FIG. 8.2 FIRST 10 sEc , OF EL CENTRO ACCELEROGRAM N/S COMPONENT, MAY 1940
FIG. 8.3 Geometric and Dynamic Characteristics of SW1 and SW2

	PROPERTIES	
	Beam Stiffness ($E I_{b}$) Wall Stiffness $\left(E I_{W}\right)$ Wall Width (D_{w}) Beam Length (L_{b}) Beam depth (H_{b}) Total Height (H) Thickness Beam Strength Wall Strength Fundamental Period Lumped Floor Mass	```30.93 104 kip ft }\mp@subsup{}{}{2 66.80 10 6 kip ft' 12 ft ft unless stated 2 ft 200 ft " " 1 ft Variable Elastic 1.8475 seconds 6.22 kips```
	Bam Stiffness Wall Stiffness Beam Length Beam Depth Total Height Thickness Beam Strength Wall Strength Fundamental Period Lumped Mass/F100r	$\begin{aligned} & 30.9310^{4} \text { kip } \mathrm{ft}^{2} \\ & 66.8010^{6} \mathrm{Kip} \mathrm{ft} \\ & 7 \mathrm{ft} \text { unless stated } \\ & 2 \mathrm{ft} " \\ & 300 \mathrm{ft} \\ & 1 \mathrm{ft} \\ & \text { Variable } \\ & \text { Elastic } \\ & 3.7846 \text { seconds } \\ & 6.22 \mathrm{kips} \end{aligned}$

FIG. 8.4 EFFECT OF UNLOADING
PARAMETER.

FIG. 8.5 EFFECT OF RELOADING
PARAMETER β.

FIG. $8.6 \frac{\text { EFFECT OF STRAIN HARDENING ON }}{\text { DUCTILITY.DEMAND: }}$

FIG. 8.8 DUCTILITY DEMAND - BEAM LENGTH RELATIONSHIP.

FIG. 8.9 EFFECT OF DAMPING ON DUCTILITY DEMAND OF 10 \& 20 STOREY COUPLED WALLS.

FIG. 8.10 THE DIFFERENT ALTERNATIVE FOR THE INITIAL ACTUAL STIFFNESS EIa.

FIG. 8.11 INFLUENCE OF INITIAL HINGE RIGIDITY ON DUCTILITY DEMAND OF A 20 STOREY QISHEAR WALL.

FIG. 8.12 INFLUENCE OF COUPLING BEAM YIELD MOMENT ON DUCTILITY DEMAND
FIG. 8.13 GEOMETRIC AND DYNAMIC PROPERTIES OF THE COUPLED SHEAR WALLS

	SWl	SW2	SW3	SW4	SWS
Dw (ft)	12	12	12	18	15
H (ft)	200	300	100	300	300
Lb (ft)	7	7	7	7	10
Hb (ft)	2	2	2	2	2
$H_{f}(\mathrm{ft})$	10	10	10	10	10
Fundamental Period (sec.)	1.85	3.78	0.55	2.50	2.88
$\begin{aligned} & \text { Wall Rigidity } \\ & \left(\mathrm{EI}_{\mathrm{w}} / \mathrm{H}_{\mathrm{f}}\right) \\ & (\mathrm{kip} . \mathrm{ft}) \end{aligned}$	6.6810^{6}	6.6810^{6}	6.6810^{6}	2.2510^{6}	2.8810^{6}
Beam Rigidity ($\mathrm{EI}_{\mathrm{b}} / \mathrm{Lb}$) (kip.ft)	4.4210^{4}	4.4210^{4}	4.4210^{4}	4.4210^{4}	3.0910^{4}
Lumped Mass (kips)	6.22	6.22	6.22	6.22	6.22

Zone	
1	-
2	---
3	$-\cdots-$
4	$-\cdots-$

FIG. 8.14 VARIATION OF DUCTILITY DEMAND IN THE VARIOUS ZONES DUE TO
(a) $M y_{1}$
(b) My_{2}
(c) My_{3}
(d) My_{4}

Zone	
1	-
2	---
3	$\cdots-$
4	$\cdots \cdots$
5	$-\cdots-$
6	-

FIG. 8.15 VARIATION OF DUCTLLITY DEMAND IN
 THE VARIOUS ZONES DUE TO

(a) My
(b) $M y$
(c) My_{3}
(d) My_{4}
(e) $M y_{5}$
(f) My_{6}

FIG. 8.16 DECAY CURVES FOR DUCTILITY DEMANDS

FIG. 8.17 MODIFICATION OF DECAY CURVE SW2

FIG. 8.18 SUCCESSIVE MODIFICATION OF THE STANDARD DECAY CURVE

FIG. 8.19 APPROXIMATE TRILINEAR CURVE AND ASSUMED SLOPES

REFERENCES

1. ROSMAN, R.,

Approximate Analysis of Shear Walls Subject to Lateral Loads, ACI Journal, American Concrete Institute, Proceedings, June 1964, Vol. 61, pp. 717-733
2. COULL, A., CHOUDHURY, J.R., Stresses and Deflections in Coupled Shear Walls, ACI Journal, American Concrete Institute, Proceedings, Feb. 1967, Vol. 64, pp. 65-72
3. COULL, A., CHOUDHURY, J.R.,

Analysis of Coupled Shear Walls,
ACI Journal, American Concrete Institute, Proceedings, Sept. 1967, Vol. 64, pp. 587-593
4. COULL, A., IRWIN, A.W., Design of Connecting Beams in Coupled Shear Walls, ACI Journal, American Concrete Institute, Proceedings, Mar. 1969, Vol. 66, pp. 205-209
5. TSO, W.K., CHAN, H.B., Dynamic Analysis of Plane Coupled Shear Walls, Journal of the Engineering Mechanics Division, ASCE, Vol. 97, No. EMl, Feb. 1971, pp. 33-48
6. COULL, A., MUKHERJEE, P.R., Free Vibrations of Coupled Shear Walls, Journal of Earthquake Engineering And Structural Dynamics, Vol. 2, 1973, pp. 171-183
7. COULL, A., MUKHERJEE, P.R., Approximate Analysis of Free Vibration of Planar Coupled Shear Walls, Journal of Earthquake Engineering And Structural Dynamics, Vol. 1, 1973, pp. 387-405
8. ZIENKIEWICZ, O.C., The Finite Element Method in Engineering Science, McGraw-Hill Book Co., London, 1971.
9. CLOUGH, W.R., Analysis of Structural Vibrations and Dynamic Response, Japan-U.S Seminar on Matrix Methods of Structural Analysis and Design, August 1969, Tokyo, Japan.
10. PAULAY, T.,

An Elasto-Plastic Analysis of Coupled Shear Walls,
ACI Journal, American Concrete Institute, Proceedings, Nov. 1970, Vol. 67, pp. 915-922
11. WALPOLE,W.R., SHEPHERD, R.,

Elasto-Plastic Seismic Response of Reinforced Concrete Frame, Journal of the Structural Division, ASCE, Vol. 106, No ST6, June 1980, pp. 1295-1310.
12. CLOUGH, R.W., PENZIEN, J.,

Structural Dynamics
McGraw-Hill, New York, 1975.
13. GUERRA, O.R., ESTEVA, L.E.,

Equivalent Properties and Ductility Requirements in Seismic Analysis of Nonlinear Systems,
Proceedings of the Sixth World Conference on Earthquake Engineering, Vol. 5, Jan. 1977, pp. 263-268.
14. NEWMARK, N.M., HALL, W.J.,

Procedures and Criteria for Earthquake Resistant Design, Building Practices for Disaster Mitigation, Building Science Series, No.46, national Bureau of Standards, Feb. 1973, pp. 209-236.
15. ANAGNOSTOPOULOS, S.A., HAVILAND,R.W., BIGGS, J.M., Use of Inelastic Response Spectra in Aseismic Design, Journal of the Structural Division, ASCE, Vol. 104, No STl, Jan. 1978, pp. 95-109.
16. LAI, S.P., BIGGS, J.M.,

Inelastic Response Spectra for Aseismic Building Design, Journal of the Structural Division, ASCE, Vol. 106, No ST6, June 1980, pp. 1295-1310.
17. SHIBATA, A., SOZEN, M.A., The Substitute Structure Method for Seismic Design in R/C Journal of the Structural Division, ASCE, Vol. 102, No STl, Jan. 1976, pp. 1-18.
18. HUDSON, D.E.,

Equivalent Viscous Friction for Hysteretic Systems With EarthquakeLike Excitations, Proceedings of the Third World Conference on Earthquake Engineering, Vol. 2, 1965, pp. 601-609.
19. IWAN, W.D.,

Response of Multi-Degree-of-Freedom Yielding Systems, Journal of the Engineering Mechanics Division, ASCE, Vol. 94, No. EM2, Apr. 1968, pp. 421-437.
20. JENNINGS, P.C.,

Equivalent Viscous Damping for Yielding Structures,
Journal of the Engineering Mechanics Division, ASCE, Vol. 94,
No. EMl, Feb. 1968, pp. 103-116.
21. GIBERSON, M.F.,

The Response of Nonlinear Multi-Storey structures Subjected to earthquake Excitations,
Earthquake Research Laboratory, California Institute of Technology, Pasadena, 1967.
22. CLOUGH, R.W., BENUSKA, K.L., WILSON, E.L., Inelastic Earthquake Response of Tall Buildings, Proceedings of the Third World Conference on Earthquake Engineering, Vol. 2, New Zealand 1965, pp. 68-84.
23. AOYAMA, H., Moment-Curvature Characteristics of Reinforced Concrete Members Subjected to Axial Load and Reversal of bending, Proceedings of International Symposium on the Flexural Mechanics of R/C, ASCE-ACI, Miami, Nov. 1964, pp. 183-212.
24. OTANI, S.,

Inelastic Analysis of R/C Frame Structures, Journal of the Structural Division, ASCE, Vol. 100, No. ST7, July 1974, pp. 1433-1449.
25. AKTAN, E., PECKNOLD, D.A.W., SOZEN, M.A., R/C Column Earthquake Response in Two Dimensions Journal of the Structural Division, ASCE, Vol. 100, No. ST10, Oct. 1974, pp. 1999-2015.
26. TAKAYANAGI, T., SCHNOBRICH, W.C., Computed Behaviour of R/C Coupled Shear Walls. Research No SRS 434, University of Illinois, Urbana-Champaign, Dec 1976.
27. EMORI, K., SCHNOBRICH, W.C., Inelastic Behaviour of Concrete Frame-Wall Structures, Journal of the Structural Division, ASCE, Vol. 107, No. STl, Jan. 1981, pp. 145-164.
28. KENT, D.C., PARK, R.,

Flexural Members With Confined Concrete
Journal of the Structural Division, ASCE, Vol. 97, No ST7, July 1971, pp. 1969-1990.
29. TAKEDA, T., SOZEN, M.A., NIELSEN, N., R/C Response To Simulated Earthquakes
Journal of the Structural Division, ASCE, Vol. 96, No ST12, Dec. 1970, pp. 2557-2573.
30. KANNAN, A.E., POWELL, G.H.,

A General Purpose Computer Program For Dynamic Analysis of Inelastic Plane Structures (DRAIN2-D),
Reports No EERC 73-6 and EERC 73-22, University of California, Berkeley, Apr. 1973 (Revised Aug. 1975).
31. NGO, D., SCORDELIS, A.C.,

Finite Element Analysis of R/C Beams
ACI Journal, American Concrete Institute, Proceedings, Vol. 64, No. 3, March 1967, pp. 152-163.
32. NILSON, A.H.,

Nonliner Analysis of R/C by Finite Element Method
ACI Journal, American Concrete Institute, Proceedings, Vol. 65, No. 9, sept. 1968, pp. 757-766.
33. SUIDAN, M., SCHNOBRICH, W.C.,

Finite Element Analysis of Reinforced Concrete
Journal of the Structural Division, ASCE, Vol. 99, No ST10,
Oct. 1973, pp. 2109-2122.
34. AGRAWAL, A.B.,JAEGER, L.G., MUFTI, A.A.,

Crack Propagation and Plasticity of R/C Shear Wall Under Monotonic
and Cyclic Loading,
Conference on FEM in Engineering, Adelaide, Australia, Dec. 1976.
35. SCHNOBRICH, W.C.,

Behaviour of R/C Structures Predicted by Finite Element Method, An International Journal, Computers and Structures, Vol. 7, No. 3, June 1977, pp. 365-376.
36. DARWIN, D., PECKNOLD, D.A.W., Analysis of R/C Shear Panels Under Cyclic Loading, Journal of the Structural Division, ASCE, Vol. 102, No ST2, Feb. 1976, pp. 355-369.
37. RASHID, U.R.,

Analysis of Prestressed Concrete Pressure Vessels, Nuclear Eng. and Design, Vol. 7, No. 4, Apr. 1968, pp. 334-344.
38. CERVENKA, V., GERSTLE, K.H.,

Inelastic Analysis of R/C Panels,
Part I: Theory, IABSE Publications, Vol. 31-II, 1971, pp. 31-45.
39. CERVENKA, V., GERSTLE, K.H.,

Inelastic Analysis of R/C Panels, Part II: Experimental Verification and Application, IABSE Publications, Vol. 32-II, 1972, pp. 25-39.
40. VALLIAPPAN, S., DOOLAN, T.F., Nonlinear Stress Analysis of Reinforced Concrete, Journal of the Structural Division, ASCE, Vol. 98, No ST4, Apr. 1972, pp. 885-898.
41. YUZUGULU, O., SHNOBRICH, W.C.,

A Numerical Procedure for the Determination of the Behaviour of a Shear Wall Frame System, ACI Journal, American Concrete Institute, Proceedings, Vol. 70, July 1973, pp. 474-479.
42. AGRAWAL, A.B., JAEGER, L.G., MUFTI, A.A., Response of R/C Shear Wall Under Ground Motions, Journal of the Structural Division, ASCE, Vol. 107, No ST2, Feb. 1981, pp. 395-4ll.
43. HOUSNER, G.W.,

Behaviour of Structures During Earthquakes, Journal of the Engineering Mechanics Division, ASCE, Vol. 85, No. EM4, Oct. 1959, pp. 109-129.
44. PAULAY, T.,

Coupling Beams of R/C Shear Walls,
Journal of the Structural Division, ASCE, Vol. 97, No ST3, Mar. 1971, pp. 843-862.
45. PAULAY, T.,

Simulated Seismic Loading of Spandrel Beams,
Journal of the Structural Division, ASCE, Vol. 97, No ST9,
Sept. 1971, pp. 2407-2419.
46. PAULAY, T., PRIESTLEY, M.J.N., SYNGE, A.J.,

Ductility in Earthquake Squat Shear Walls
ACI Journal, American Concrete Institute, Proceedings, Vol. 79-26, JulyAug. 1982, pp. 257-269.
47. ALLEN, C.M., JAEGER, L.G., FENTON, V.C., Ductility of Reinforced Concrete Shear Walls, Publication SP36-6, Committee 442, Response of Multistorey Concrete Structures to Lateral Forces, Detroit, 1973.
48. A C I COMMITTEE 318,

Building Code Requirements for Reinforced Concrete,
ACI 318-17, American Concrete Institute, Detroit, 1977.
49. SEAOC SEISMOLOGY COMMITTEE

Structural Engineers Association of California, Recommended Lateral Forces Requirements and Commentary, 171 Second Street, San Fransisco, California, 94105.
50. U B C Uniform Building Code, International Conference of Building Officials, 5260 South Workman Mill Road, Whittier, California, 90601.
51. NBC National Building Code, Associate Committee NBC, National Building Code of Canada, 1970, National Research Council, Ottawa, Canada.
52. BERTERO, V.V.,

Seismic Behaviour of R/C Wall Structure Systems, Proceedings of the 7th. World Conference on Earthquake Eng., Vol. 6, Turkey, 1980.
53. COULL, A., CHOO, B.S.,

Simplified Elasto-Plastic Analysis of Coupled Shear Walls,
The Institution of Civil Eng., Part II, Vol. 73, June 1982, pp. 365-381.
54. FINTEL, M., GHOSH, S.K.,

Inelastic Response History Analysis of the Aseismic Design of a 31 Storey Frame Wall Building,
Journal of Earthquake Engineering And Structural Dynamics, Vol. 9, 1981, pp. 543-556.
55. FINTEL, M., GHOSH, S.K.,

Case Study of Aseismic Design of a 16 Storey Coupled Shear Wall Using Inelastic Dynamic Analysis, ACI Journal, American Concrete Institute, Proceedings, Vol. 79, MayJune 1982, pp. 171-179.
56. DERETCHO, A.T.,

Dynamic Inelastic Response of Coupled Shear Walls as Affected by Axial Forces,
Study No. 14, Nonlinear design of Concrete Structures, Solid Mechanics
Div., University of Waterloo, Ontario, Canada, Aug. 7-9, 1979.
57. WEE, H.J.,

Free Vibration Analysis and Transient Response of Shear Wall Structures
by Finite Element Method,
M. Eng. Thesis, Civ. Eng. Dept, Univ. of Liverpool, 1976.
58. OWEN, D.R.J., HINTON, E.,

Finite Elements Method in Plasticity, Theory \& Practice, Pineridge Press Limited, Swansea, U.K., 1980.
59. DESAI, C.S., ABEL, J.F.,

Introduction to the FEM: A Numerical Method for Engineering Analysis, Van Norstrand Reisnhold Company, New York, 1972.
60. CHEUNG, Y.K., YEO, M.F.,

A Practical Introduction To Finite Element Analysis,
Pitman Int. Company, London, 1979.
61. COOK, R.D.,

Concepts and Applications of Finite Element Analysis, John Wiley \& Sons, New York, 1974.
62. TIMOSHENKO, S., GOODIER, J.N., Theory of Elasticity, McGraw-Hill, New York, 1951.
63. WILSON, E.L., TAYLOR, R.L., DOHERTY, W.P., GHABOUSSI, J., Incompatible Displacement Models, International Symposium on Numerical Computer Methods in Structural Mechanics, Univ. of Illinois, Urbana, Sept. 1971.
64. JIMINEZ, R., WHITE, R.N., GERGELY, P.,

Cyclic Shear and Dowel Action Models in R/C,
Journal of the Structural Division, ASCE, Vol. 108, No ST5, May 1982, pp. 1106-1123.
65. AGRAWAL, A.B., MUFTI, A.A., JAEGER, L.G., Discussion on Analysis of R/C Shear Panels Under Cyclic Loading, Journal of the Structural Division, ASCE, Vol. 103, No ST1, Jan. 1977, pp. 302-304.
66. SAIIDI, M., Hysteresis Model for Reinforced Concrete, Journal of the Structural Division, ASCE, Vol. 108, No ST5, May 1982, pp. 1077-1087.
67. SINHA, B.P., GERTLE, K., TULIN, L.G., Stress-Strain Relationships for Concrete Under Cyclic Loading, ACI Journal, American Concrete Institute, Proceedings, Vol. 61, Jan. 1964, pp. 195-211.
68. SOLEIMANI, D., POPOV, E.P., BERTERO, V.V., hysteretic Behaviour of R/C Beam-Column Subassemblages, ACI Journal, American Concrete Institute, Proceedings, Vol. 76, Nov. 1979, pp. 1179-1195.
69. IWAN, W.D.,

Estimating Inelastic Response Spectra from Elastic Spectra, Earthquake Eng. and Str. Dynamics, Vol. 8, No.4, July-Aug. 1980, pp. 375-388.
70. TANSIRIKONGKOL, V., PECKNOLD, D.A., Approximate Model Analysis of Bilinear Mdof Systems, Journal of the Eng. Mech. Division, ASCE, Vol. 106, No EM2, Apr. 1980, pp. 361-376.
71. WIEGEL, R.L., Editor, Earthquake Engineering, Prentice-Hall, 1970.
72. BERTERO, V.V., SAGAJESKI, S.W., Optimal Inelastic Design of Seismic Resistant R/C Framed Structures, Nonlinear Design of Concrete Structures, CSCE-ASCE-ACI-CEB International Symposium, University of Waterloo, Ontario, Canada, Aug. 7-9, 1979.
73. SEED, H.B., IDRISS, I.M., Influence of Soil Conditions on Ground Motions During Earthquake, Journal of Soil Mech. and Foundation Div., ASCE, Vol. 95, SM1, Jan. 1969, pp.99-137.
74. DERETCHO, A.T., FUGELSO, L.E., FINTEL, M. Structural Walls in Earthquake Resistant Buildings - Analytical Investigation, Dynamic Analysis of Isolated Walls, Input Motions, Final Report to the National Science Foundation, RANN, Under Grant No ENV74-14766, Portland Cement Association, Dec. 1977.
75. DERETCHO, A.T., GHOSH, S.K., IQBAL, M., FINTEL, M., Strength, Stiffness and Ductility required in R/C Structural Walls For Earthquake Resistance, ACI Journal, American Concrete Institute, Proceedings, Vol. 76, Aug. 1976, pp. 875-896.
76. A TC

Tentative Provisions For the Developement of Seismic Regulations For Buildings, Applied Technology Council ATC-3, San Fransisco, 1978.
77. FINTEL, M., Editor,

Handbook Concrete Engineering,
Van Nostran Reinhold Company, 1974.
78. FINTEL, M., GHOSH, S.K.,

Explicit Inelastic Dynamic Procedure For Aseismic Structures,
ACI Journal, American Concrete Institute, Proceedings, Vol. 79, MarchApr. 1982, pp. 110-118.
79. FINTEL, M., GHOSH, S.K.,

Design of Walled Structures of Earthquake Loading, Nonlinear Design of Concrete Structures,
CSCE, ASCE, ACI, CEB, International Symposium, University of
Waterloo, Ontario, Canada, Aug. 7-9, 1979.
80. CORLEY, W.G., SCANLON, A.,

Dynamic Modeling of Structural Walls,
Design for Dynamic Loading, The Use of Model Analysis,
Edited by G.S.T Armer \& F.K Garas, Construction Press, 1982.
81. GHOSHY, B.,

Modelling of Supporting Cores Subjected to Dynamic Loading,
Design for Dynamic Loading, The Use of Model Analysis,
Edited by G.S.T Armer \& F.K Garas, Construction Press, 1982.
82. MAHIN. S.A., BERTERO, V.V.,

An Evaluation of Inelastic Seismic Design Spectra, Journal of the Structural Division, ASCE, Vol. 107, No ST9, Sept. 1981, pp. 1777-1795.
83. RAJU, I.S., RAO, G.V., MURTHY, T.V.G.K.,

Eingenvalues and Eigenvectors of Large Order Banded Matrices, Journal of Computer and Structures, Vol. 4, 1974, pp. 549-558.
84. STOODLEY, K.D.C., LEWIS, T., STAINTON, G.L.S.,

Applied stastical Techniques,
University of Bradford, Ellis Horwood Limited, 1980.
85. ANDERSON, C.J., BERTERO, V.V.,

Effects of Gravity Load on Vertical Ground Acceleration on the Seismic Response of Multistorey Frames, 4th World Conference on Earthquake Eng., Rome, 1974.
86. PAULAY, T., PARK, R.,

Reinforced Concrete Structures,
John Wiley \& Sons, New York, 1975, 769 pp.
87. POPOVICS, S.,

A Numerical Approach to the Complete Stress-Strain Curve of Concrete, Cement \& Concrete Research, 3, 1973, pp. 583-599.
88. KARSAN, I.D., JIRSA, J.O.,

Behaviour of Concrete Under Biaxial Stresses, Journal of the Structural Division, ASCE, Vol. 95, No STI2, Dec. 1969, pp. 2543-2563.
89. KUPFER, H., HILSDORF, H.K., RUSH, H., Behaviour of Concrete Under Biaxial Stresses, ACI Journal, American Concrete Institute, Proceedings, Vol. 66, Aug. 1969, pp. 656-666.

90. DULASKA, H.,
 Dowel Action of Reinforcement Crossing Cracks in Concrete, ACI Journal, American Concrete Institute, Proceedings, Vol. 69-70, Dec.

91. PAULAY, T., FENWICK, R.C., Mechanism of Shear Resistance of Concrete beams, Journal of the Structural Division, ASCE, Vol. 94, No ST10, Oct. 1968, pp. 2325-2350.
92. PRZEMIENIEKI, J.S.,

Theory of Matrix Structural Analysis, McGraw-Hill Book Co., New York, 1968.
93. PAULAY, T., LOEBER, P.J., Shear Transfer by Aggregate Interlock, ACI, Special Publication, SP42, Vol. l, 1973.
94. CEDOLIN, L., DEIPOLI, S., Finite Element Studies of Shear Critical R/C Beams, Journal of the Eng. Mech. Division, ASCE, Vol. 103, No EM3, June 1977, PP. 395-410.
95. AL-MAHAIDI, R.H., NILSON, A.H., Nonlinear Finite Element Analysis of R/C Deep Members, Research Report No 79-1, Dept. of Str. Eng., Cornell University, Itheca, New york, Jan. 1979.
96. ZIENKIEWICZ. O.C., VALLIAPPAN, S., KING, I.P., Elasto-Plastic Solution of Engineering Problems, Initial Stress FE Approach, International Journal of Numerical Methods in Eng., Vol. 1, Jan. 1969, pp. 75-100.
97. BANON, H., BIGGS, J.M., IRVINE, H.M., Seismic Damage of Reinforced Concrete Frames, Journal of the Structural Division, ASCE, Vol. 107, No ST9, Sept. 1981, pp. 1713-1729.
98. FERGUSSON, P.M., Reinforced Concrete Fundamentals,
Third Edidion, John Wiley \& Sons, 1981.
99. NILSON, A.H.,

Internal Measurement of Bond Slip,
ACI Journal, American Concrete Institute, Proceedings, Vol. 69, July 1972, pp. 439-441.
100. OTANI, S., SOZEN, M.A.,

Behaviour of Multistorey R/C Frames During Earthquakes, Civ. Eng. Studies, Str. Research Series, No 392, Univ. of Illinois, Urbana, July 1974.
101. ABRAMS, D.P., SOZEN, M.A., Measured Hysteresis Relationships For Small Scale Beams, Civ. Eng. Studies, Str. Research Series, No 432, Univ. of Illinois, Urbana, Nov. 1976.
102. NEWMARK, N.M.,

A Method of Computation For Structural Dynamics, Journal of the Eng. Mech. Division, ASCE, Vol. 85, No EM3, March 1959, pp. 67-94.
103. WILSON, E.L.,

A Computer Program For the Dynamic Stress Analysis of Underground Structures, SESM, Report 68-1, Dept. of Civ. Eng., Univ. of California, Betkeley, 1968.
104. WILSON, E.L., PENZIEN, J., Evaluation of Orthogonal Damping Matrices, International Journal of Numerical Methods in Eng., Vol. 4, 1972, pp. 11-30.

[^0]106. BERGAN, P.G., CLOUGH, R.W.,

Technical Notes, Convergence Criteria For Iterative Processes, AIAA Journal, Vol. 10, No. 8, Aug. 1972, pp. 1107-1108.
107. PORTER, F.L., POWELL, G.H.,

Static and Dynamic Analysis of Inelastic Frame Structures, Report No EERC 71-3, Eatrhquake Eng. Meeting, baltimore, April 1971.
108. BELYTSCHKO, T.,

A Survey of Numerical Methods and Computer Programs For Dynamic, Structural Analysis, Nuclear Eng. \& Design, Vol. 1, Apr. 1976, pp. 23-34.
109. ARISTIZABAL-OCHOA, J.D.,

Dynamic Response of Coupled Shear Wall Systems, Journal of the Structural Division, ASCE, Vol. 108, No ST8, Aug. 1982, pp. 1846-1857.
110. PAULAY, T., SANTHKUMAR, A.R., Ductile Behaviour of Coupled Shear Walls, Journal of the Structural Division, ASCE, Vol. 102, No STl, Jan. 1976, pp. 93-108.
111. HOUSNER, G.W., Spectrum Intensities of Strong Motion Earthquakes, Proceedings of 1952 Symposium on Earthquakes and Blast Effect on Structures, Earthquake Eng. Research Inst., 1952.

APPENDIX A

DESIGN EXAMPLE

The following example is intented to illustrate the use of the Inelastric Spectrum Analysis to coupled shear walls as presented in chapter four (4) Consider the following data:

i) Selection of the design ductility:

The design ductility should reflect the importance of the building. If it is a hospital for instance, which should be preserved even after the event of a strong earthquake, the μ_{d} would be small, say $\mu_{d}=1$, while for less 'important' structures the design ductility may be greater. Let us assume a ductility factor $\mu_{d}=2$ for our case.

ii) Selection of Maximum Acceptable Drift:

According to the material of the components of the building and the extent of damage judged acceptable, the maximum admissible drift is set, say dnax $=.01 \mathrm{~h}$. This yields the maximum yield drift as:

$$
d_{y, \max }=\frac{d_{\max }}{\mu_{d}}=.005 \mathrm{~h}
$$

iii) Frequency of the Structure:

For $d_{y, \max }=.005 \mathrm{~h}$, figure (4.14) yields the maximum period, i.e.,

$$
T_{1, \max }=1.0 \mathrm{sec}
$$

and hence the minimum frequency

$$
f_{1, \min }=\frac{1}{T_{1, \max }}=1.0 \mathrm{cps}
$$

iv) Dimensioning:

It is very important to note that the minimum frequency $f_{1, \min }$ is that of the structure without extra mass m. For $f_{1, \min }=1.0$ (cps), figure (4.9) yields the following possibilities for $\mathrm{Dw}_{\text {min }}$ and $\mathrm{Hb}_{\text {min }}$:

$\mathrm{Dw}_{\text {min }}$	$\mathrm{Hb}_{\text {min }}$	
21	0.30	
18^{\prime}	0.501	
15^{\prime}	1.00	
12'	$1.40{ }^{1}$	chosen $\mathrm{Dw}=12^{\prime}$ \& $\mathrm{Hb}=2^{\prime}$

v) Beam Strength:

Assuming $\quad d=21$ in

$$
z=5.12=60 \mathrm{in}
$$

and applying equation (4.21), the hinge spread length lp can be approximated as:

$$
\mathrm{lp}=0.5 \times 21+.05 \times 60=13.5 \mathrm{in}
$$

From fig. (4.15), the maximum rotation can be approximated as:

$$
\theta_{\max }=\frac{d_{\max }}{h}=0.01 \mathrm{rd}
$$

Assuming a rotational ductility factor $\mu_{b}=5$, the yield rotation can be computed using equation 4.19, i.e.,

$$
\theta_{y}=\frac{\theta_{\max }}{\mu_{\mathrm{b}}}=0.002 \mathrm{rd}
$$

and hence the yield curve (eqn. 2.20)

$$
P_{y}=\frac{\theta_{y}}{\mathrm{lp}}=1.4810^{-4} \mathrm{in}^{-1}
$$

From fig. (4.16) the neutral axis depth at yield can be set:

$$
\mathrm{k}_{\mathrm{ud}}=\mathrm{d}-\frac{\epsilon_{y}}{\varphi_{y}}=6.83 \mathrm{in}
$$

and so can the strains Ec and E^{\prime} s

$$
\begin{aligned}
& E_{c}=\frac{k_{u d} E_{y}}{d-k_{u d}}=1.0110^{-3} \\
& E^{\prime} s=\frac{\left(k_{u d}-d^{\prime}\right) \epsilon_{y}}{d-k_{u d}}=1.0110^{-3}
\end{aligned}
$$

and hence the max stresses

$$
\begin{aligned}
& \mathrm{fc}=\mathrm{Ec} \mathrm{Ec}=3.25 \mathrm{ksi} \\
& \mathrm{fs}^{\prime}=\mathrm{Es}_{\mathrm{s}} \mathrm{E}_{\mathrm{s}}=13.50 \mathrm{ksi}
\end{aligned}
$$

Assuming a rectangular stress shape and $A s=A ' s$, the equilibrium equation 2.22 yields:

$$
\text { As } f y=0.4 f c k_{u d} b+f^{\prime} s A^{\prime} s
$$

and hence

$$
A s=A^{\prime} s=2.29 \mathrm{in}^{2}
$$

and

$M y=2430 k-i n$

DIAGRAMS FOR 2 ${ }^{\text {nd }}$ AND 3 rd
NATURAL FREQUENCIES

FIG. B.I
Yarlatlon of 2 nd. natural
freqency wlth beam depth
and wallwldth (DU).

Total height
NB of storeys
Selfwelght
Extrastory mass: none

FIG. B. 2
Variation of 2 nd. natural
freqency wlth beam depth and wallwidth (DW).

Total helght
Nb or storeys
Selfwelght
Extrastory mass 4.kips

FIG. B. 3
Variation of 2 nd. notural
freqency wlth beam depth and wall width (DV).

Total helght
Nb of storeys: 10
Selfwelght: yes
Extrastory mass:8.kips

FIG. B. 4
Variatlon of 3 rd. natural freqency with beam depth and wallwldth (DW) .

Total height : 100 ft
Nb of storeys: 10
Selfwelght: yes
Extrastory mess: none

FIG. B. 5
Variation of 3 rd. natural
freqency wluh beam depth
and wall wldth (DV).

Total helght : 100 ft
Nb of storeys: 10
Selfwelght : yes
Extira story mass: 4.kips

FIG. B. 6
Variatlon of 3 rd. natural
freqency with beam depth and wall width (DW).

Total helght
ND of storeys
Selfwelght: yes
Extra story mass: 8.kips

FIG. B. 7
Variation of 2 nd. natural
freqency wlth beam depth
and wallwadth (DW)

Total helght
Nb of storeys
Selfwelght
Extra story mass : none

FIG. B. 8
Total helght
Nb of storeys
Selfwelght
Extra story mas5: 4.kips

FIG. B. 9
Variation of 2 nd. natural freqency with beam depth and wall width (DV),

Tolal nelgnt
200 ft
Nb of storeys: 20
Selfwelght: yes
Extra story mass: 8.kips

FIG. B. 10
Variation of 3 rd. natural
freqency with beam depth and wallwish (DW)

Total nelght
Nb of storeys
Selfwelght
Extrastory mass: none

FIG. B. 11
Variatlon of 3 rd. natural freqency with beam depth and wall wldth (DV).

Total helght
Nb of storeys
Selfwelght
Extra story mass: 4.kips

FIG. B. 12
Variation of 3 rd. natural freqency with beam depth and wall wldth (DW)

Total helght
200 ft
Nb of storeys: 20
Selfwelght : yes
Extra story mass:8.kips

FIG. B. 13
Varlatlon of 2 nd. natural freqency with beam depth and wall width (DU).

Total helght
Nb of storeys: 3 :
Selfwelght: yes
Extra story mass: none

FIG. B. 14
Varlatıon of 2 nd. natural
freqency wlth beam depth
and waldwldth (DV).

Total height
$3 \varnothing \emptyset f 匕$
Nb of stareys
Selfwelght: yes
Extra story mass:4.kips

FIG. B. 15
Varlation of 2 nd. natural
freqency with beam depth and wall width (DW).

Total helght
Nb of storeys
Selfwelght
Extra story mass: 8.klps

FIG. B. 16
Variation of 3 rd. natural
freqency with beam depth
and wall w1dth (DW)

Total helght
300 ft
Nb of storeys
Selfwelght: yes
Extra story mass: none

beam depth/story height

FIG. B. 17
Variation of 3 rd. natural freqency with beam depth and wall width (DV)

Total helght
Nb of storeys: 30
Selfwelght : yes
Extrástory mass: 4.kips

beam depth/story height

beam depth/story height

FIG. B. 18
Variation of 3 rd. naturad
freqency with beam depth and wallwadth (DW).

Total hetght
Nb of storeys
Selfwelght: yes
Extra story mass : 8.kips

FIG. B. 19
Variation of 2 nd. natural freqency wlth beam depth and wall wldth (DW)

Total helght: 400 ft
Nb of storeys: $\quad 4 \varnothing$
Selfwelght: yes
Extra story mass: none

FIG. B. 20
Variation of 2 nd. natural
freqency with beam depth
and wall width (DW)

Total helght
Nb of storeys
Selfwelght
Extra story mass: 4.kips

FIG. B.21
Variation of 2 nod. naturad freqency wlth beam depth and wall width (DW)

Total height
: 400 ft
Nb of storeys: 40
Selfwelght : yes
Extrastory mass: 8.kips

beam depth/story height

FIG. B. 22
Variation of 3 rd. natural
freqency wlth beam depth and wallwldth (DW).

Totel helght : 400 ft
Nb of storeys: 40
Selfwelght : yes
Extrastory mass: none

Total height: 4 øø ft
Nb of storeys: 40
Selfwelght : yes
Extrastory mass: 4.kips

beam depth/story helght

FIG. B. 24
Variation of 3 rd. natural freqency with beam depth
and wallwldth (DV)

Total helght
Nb of storeys
Selfwelght
Extra story mass:8.kips
I४甘HO MOר』 WVYפO甘d YヨIndWOS T－כ

C-2 DESCRIPTION OF THE INPUT DATA

Card 1 ($15,3 \times, 9 \mathrm{AB}$) Nb. and Title of the problem

Card 2	(415)	Control information card
	IPRINT	$0=$ none, $1=$ print stiffness \& mass matrices
	MODIF	$0=$ none, $1=$ non conforming mode used
	NDYNAN	$0=$ static, $1=$ dynamic
	NDFORS	$0=$ none, 1 = print forces \& stresses

Card 3	(7I5)	Basic data
NNP	Number of nodal points	
NEL	Total number of elements	
	NEL2	number of beam elements
NBOUN	Number of restrained elements	
NBODY	$0=$ None, $1=$ Self weight included in y dir.	
NOPT	$1=$ plane strain, $2=$ plane stress	
NMAT	Number of different materials	

Card 4	(IIO, 4F10.5)	Coordinates
	KODE(I)	$1=$ restrained in x-direction $2=$ restrained in y-direction $3=$ restrained in both directions
	X(I)	Node abscissa
Y(I)	Node ordinate	
	ULX(I)	Static load in x-direction
	VLY(I)	Static load in y-direction

Card 5 (6I5)

$\mathrm{IE}(\mathrm{I}, \mathrm{l})$	First node of the element
$\mathrm{IE}(\mathrm{I}, 2)$	Second node of the element
$\mathrm{IE}(\mathrm{I}, 3)$	Third node of the element
$\mathrm{IE}(\mathrm{I}, 4)$	Fourth node of the element
$\mathrm{IE}(\mathrm{I}, 5)$	Material type
$\mathrm{IE}(\mathrm{I}, 6)$	$\mathrm{l}=$ quadrilateral elment, 2 = Beam element

Card 6	(2F10.4)	Reinforcement
	PXX	Reinforcement ratio in x-direction
	PYY	Reinforcement ratio in y-direction

Card 7
(4F12.2)
E
PR
RO
TH
Material properties (As many as NMAT)
Young's modulus of concrete
Poisson's ratio of concrete
Mass density of concrete
Thickness of the elements

Card 8 (3F12.5, F15.2, F12.5) Steel properties
EPSY Yield strain of steel
EPSUL Ultimate strain of steel
SIGY
ES
ESH

Yield stress of steel
Young's modulus of steel
Modulus of steel at strain hardening

Card 9 ($15,3 F 10.0,3 F 5.0,2 F 10.0) \quad$ Omit if NEL2=0, Beam elemt property

I

FTYP(1,1)
$\operatorname{FTYP}(1,2)$
FTYP(1,3)
FTYP($(1,4)$
FTYP(1,5)
FTYP(1,6)
FTYP(1,7)
FTYP(1,8)

Card 10 ($15,7 F 10.0$)
ITP
FTYP(1,9) Hinge stiffness at node i
$\operatorname{FTYP}(\mathrm{I}, 10) \quad$ Hinge stiffness at node j
FTYP(1,11) $\quad \alpha$, unloading parameter for end i
FTYP($\mathrm{I}, 12$) $\quad \alpha_{j}$, unloading parameter for end j
$\operatorname{FTYP}(1,13) \quad \beta_{i}$, loading parameter for end i
$\operatorname{FTYP}(\mathrm{I}, 14) \quad \bigotimes_{j}$, loading parameter for end j

Card 11 (15, 5X, 2F10.0)
K
BMMY(1)
BMMY(2) Yield moment at second end

Card 12

(215)

KMAS
NSEC

Stiffness pattern number beginning with 1
EI, Flexural stiffness of the member
EA, Axial stiffness of the member
GA, Shear stiffness of the member
Flexural stiffness factor k_{ii}
Flexural stiffness factor $\mathrm{k}_{\mathrm{j} j}$
Flexural stiffness factor $k_{i j}$
Strain hardening ratio at node i
Strain hardening ratio at node \mathbf{j}

Omit if NEL2=0, Hinge properties
Stiffness pattern number beginning with 1

Omit if NEL2=0, Yielding Moments
Yielding surface number
Yield moment at first end

Mass codes

0 lumped, 1 consistent mass assumed
Number of external mass patterns

Card 13 (4(215, F8.3)
LUM(1)
LUM(2)
EXMAS

Card 14 (615)
INT

NPRINT
NSTEP
MAXSTEP
NTYP

NP

Card 15 (5F8.5, F10.5)
Cl
C2
Damping constant for stiffness matrix
DELT
DT
TIME
GACC
(3F10.4)
EPSLIM
YIELD
SIGMII Tensile strength of concrete

Card 17 (315)

NFIX	Number of fixed points
NVEC	$10=x$-component only 01 $11=y$-component only
MSPAC	Nb. of steps after which results are printed

Card 18 (2F10.4)
$P(1, K)$
Acc. record (as many as NP)
$P(2, K)$
Acceleration in gunits

C-3

COMPUTER PROGRAM LISTING

```
O?
NOHAINEAR ANALYSIS OF COUPLED SHEAR VALLS SUBJECTED
c to earthouake forces by the finite element metmoo.
COMTON／DATA／NNP ，NEL，NHAT，NOPT．NEOOY，KMAS．MOOIF ．NEL 2
COMMON／THREE／R 20D），AK（290．40）
COMMON／DISP／X1 100）．Y（100），ULX（100）．VLY（ 100 ）．
＊roder 100 ）
COMMON／NODE／IE（60，6）
COMMON．STEEL／PX（ 80 ），PYIE ）
COMMON／PROTY／E（ 4 ），PR（ 4 1，ROC 4 ），THC 4 ）
COMMON／TVO／IBAND．NEO
DIMENSION TITLEC9）
DEFINE FILE 3 （200．64．L．151．71200．512．L．K6）
DEFINE FILE 8（200．1152．L．111）
c
DATA MAXEL．MAXNP ．MAXMAT．MAXBY／80．10פ．4．40／
10 READ 5．11）NPROB．（TITLE（1）．1：1．9）
it FORMATI（5．3x，9AB）
IF（PPRDB．LE．D）GOTO49
VRITE（6，12）NPROB．（TITLE（1）．I＝1，91
    IF(MOOIF.NE.6) LRITE(5.14
CALL DATAIN（MAXEL，MAXND ．MAXMAT．ISTOP）
MAXDOF \(=2 \times\) MAXNP
MAXDIF－0
\(00201 \cdot 1\). NEL
DO \(23 \mathrm{~J} \cdot 1.4\)
DO \(20 \mathrm{~K}=1.4\)
```



```
IF（LL．GT．MAXDIF）MAXDIF•LL
IBAND－2＊（MAXDIF＋i）
MEO 2 WNAR
IF（IBAND．GT．MAXBU）GOTO 39
IF ISTOP．GT．D）GOTO 49
IF ISTOP．GT．D）GOTO 49
\(\mathrm{Nl}=0\)
FORM STIFFNESS MATRIX
CALL ASEMBL（ISTOP．MAXEL，MAXN ，MAXDOF，MAXBV，NI ）
IFI ISTOP．GT．D）GOTO 49
IF IPRINT．EO．6）GOTO 76
URITE（6．82）
DO751－1，NEO
VRITE（6．78）I
VRITE 6．79）（AK（I．J），J．1．IBAND）
75 CONIIMUE
CALL ASEMAS ISTOP，R，AR，MAXDOF．MAXBV，X，Y，KOOE，MAXNP，MAXEL）
IF ISTOP．GT．©）VRITE 6.103 ）
IFI ISTOP．GT．© CO TO 49
IF IPRINT．EO．E）COTO 90
URITE（6．83）
DO8EI－1，NEO
VRITE（6．78） 1
VRITE（ 6.79 ）（AK（1，ふ），J＝1，1BAND）
80 CONTINUE
F
FORMATE 5X，10E10．3）
```



```
83 FORMATI／／10x．＇xXXXX MASS MATRIX＊＊＊H＊＇／／）
C
CALL RESPON AK，R，KMAS，MAXDOF，MAXEL，MAXNP ，NEO，IBAND，NEL，MAXBV ） VRITE 6,40 IIBAND，MAXBY
40 FORMATL／／／＇BANDUIOTH＝＇．15．＇EXCEEDS MAX＝＊．15／）
aSSEmble overall stiffness matrix and store in tape 7
SUBROUTINE ASEMEL（ISTOP ．MAXEL，MAXNP，MAXNEO，MAXBU．NI）
COMMON／DATA／NNP，NEL ，NMAT，NOPT，NBODY，XMAS，MODIF．NEL2
COHTON／THREE／R（200），AK（200．40）
COMHON／OISP／X（100），Y（100），ULX（100），VLY（ Te0），KOOE（100）
COMHON／NOOE／IE（ 80.6 ）
COMMON／STEEL／PX（ BO），PY（ED）
COMMON／PROTY／E（ 4 ），PR（ 4 ），RO（ 4 ），TH（ 4 ）
COMMON／TVO／IBAND．NEO
DIMENSION LP（ 8 ），CK（ 12.12 ）．O（ 8 ）．CKV 64 ）
ISIOP－D
DO 2 1．1．NEO
R（1）：0．0
DO \(2 \mathrm{~J} \cdot 1\) ．IBAND
2 AK（1．J）：©．
TAREA＊0．0
NELI \(\operatorname{NEL} 2\)
DO 10 M－1．NEL
IF（IE（M．5）GT．0）coto 11
ISTOP－ISTOP +1
VRITEC 6．1111 M
    TAREA-TAREA*AREA
        IF(M.EO.NEL ) VRITE(E.101) TAREA
101 FORMATI///IH .2IHTOTAL AREA OF VALL = .F12.3)
        co ro 105
```


GOTO 10
11 CONTINUE
MTYP2＝IE（M．6）
IFCNI．NE． 0 YGO TO 90
IF MTYP2．NE． 2 IGO TO 1620
NELI－NELI－1
MM－NEL2－NELI

CALL OBEAMK MM．AREA．OK ，O，MAXEL ．MAXAP ．NI ．M
$\stackrel{C}{c}$
C OUADRILATERAL ELEMENT STIFFNESS

90 READ フ＇MXOKU（K），K＊1．64）
IV＝
DO 1110 11－1．8
$001110 \mathrm{Ji=1.8}$
IV $=1 V+1$
llag OK（II．J！）＝OKV（IV）
105 LIM＝B
DO 60 I－2．LIM． 2
1J•1／2
LP（1）－2※1E（M，1J）－1
LP（1）－2HIE（M．IJ
1－LP（LL） 1 ．LIM
I－LP（LL）
IF（NI．NE． 0 ）O（LL ）＝0．0
$R(I)=R(I)+\infty(L)$
DO 50 MM•1．LIM
$J=L P(M)-1+1$
IF（J．LE．D）GOTO 50
AK（I．J）＝AK（I．J ）＋OK（LL，MM ）

10 CONTINUE
DO55N－I．NRP
IF（KODE（N）．EO． 3 ）GOTO 55
K•2＊N
IF（KODE（N）．EQ． 1 ）COTO 57
$R(K-1) \cdot R(X-1)+U L X(N)$
IF（KOOE（N）．NE． 0 ）GOTO 55
57 R（K）＝R（K）＋VLY（N）
55 CONTINUE
0076M＝1．MN
IF（KODE（M）．GE．D．AND．KODE M M）．LE． 3 ）GO TO 72
ISTOP－ISTOP＋ 1
coto 78
32 IF KOOE（H ）．EO．\quad ）GOTO7日
IF（KODE（M）．EO． 2 ）GOTO 7
MI1－2\＃M－1
CALL GEOME ULX（M），MII，R，AK，MAXNEO，MAXBY，1）
IF（ $\operatorname{KODE}(M) . E O .1$ ）GOTO 70
71 MII－2：M
CALL GEOME VLY（M），MII，R，AK，MAXNEO，MAXBU， 1 ）
CONTINUE
REVIND I
IF（ISTOP（（AK（I．J），J－1．JBANO），I－1，NEO ）
IF（ISTOP．EQ．6）GOTO 8
VRITE（6．100）ISTOP
100 FORMATI／／／／42H SOLUTION VILL NOT EE PERFORIED EECAUSE OF．15，15t
IDATA ERRORS／
81 RETURN
ENO
FORM BEAM ELEMENT STIFFNESS MATRIX 8 STORE IN TAPE 7
SUBROUTINE OBEAMKM，AREA，OK，O，MAXEL，MAXNP，NI，NM $)$
COMMON／IHFEL／EKHIP（20），EKHJP（20），EKH 20，2），KOOYX（ 20．2）．
1 ND 4 ），KCOY（ 20,2 ），BMY（ 20，2，6），RY（20，2，6）．
X 4 J．K
INO 20,2 ），EKEP（ $20,2,6$ ），REVPT 20,2 ），BMTOT 20,2 ）．
SFTOT 20,2 ），FTOT 20,2 ），RTOT（ 20,2 ），ROTPP（20，2）
ROTPN（ 20.2 ），ROTSP（ 20.2 ），ROTSAK 20．2），EK1（20．2）．
RYI（ 20．2．2）．RA（ 20，2．2），RB（ 20．2．2），BMA 20，2．2）．
 EEXP（20），AXIAL 20,2 ）
COMTON／DATA／NHP ，NEL，NMAT，NOPT ，NBOOY，KMAS，MOOIF，NELL
COHMON／PROTY／E（ 4 ），PR（ 4 ），ROC 4 ），THK 4 ）
COTHON／NOOE／IE（80．6）
COHTON／BEAM／50．51．52．53．54．A（ 12．12）
COTYON／DISP／X（ 100 ），Y（ 100 ），ULX（ 100 ）．VLY（ 100 ），KODE（ 100 ）
OIHENSION OK（ 12.12 ），OC 8 ），OK1（12，12），OKV（ 64），AT（12．12）
I＝IE（NM． 1 ）
$\mathrm{J}=\mathrm{IE}(\mathrm{MH}, 2$ ）
$K=1 E(N H, 3$ ）
L－JE（NH， 4 ）
MTYP－IE（ NM1．5）
BL－ABS $X(J)-x(1)$
B－ABSK（y）
AL－ABSK Y（L）
AREA－AL＊BL
CROS＝AL：THK MTYP ）
S．CROS＊AL＊AL／12．
SO－EIMTYP ）EROS／BL
ALFA＝0．5
$\mathrm{SF}=0.5$
G． 0.4 E E MTYP
12 DO $10 \mathrm{~K}=1.12$
DO 10 L． 1.12
OKI（K．L）： 0
$A 1-B L /{ }^{2}$
$B=-A 1 / 2$
C=1/(ALFAKSF*CROS*OBL)
D* 1 (EKHKM.1)
E1:1 /EKH(M.2)
$F \mid=A 1+C+D$
$\mathrm{F} 2 \cdot \mathrm{~B}+\mathrm{C}$
F3-F2
$\mathrm{F} 4=\mathrm{Al}+\mathrm{C}+\mathrm{Ei}$
GETT=F1*F4-F2*F3
OK(1.1)=50
OK(1.4) $=-50$
$\operatorname{OK}(4.1)=-50$
OK (3.3) =F:/DETT
OX $(3,5)=-\mathrm{F} 2 / \mathrm{DET}$
Ox(5, 3) 53 (0CT
OX(6.3)-F3TOET
(51 0.6)
$51=0 \mathrm{OK}(3,3)$
$52=\operatorname{ax}(3.6)$
53 :0K(6.3)
$54=0 \times(6.6)$
DO 11 1=1.12
$0011 \mathrm{~J}=1.12$
AT(I.J) $=0$
11 A(I.J) $=0$
$A(1,1)=5$
$A(1,7)=.5$
$A(2.2)=5$
$A(2.8)=5$
$A(3.1)=1,1 A L$
$A(3,7)=-1 / A L$
$A(4,3)=5$
$A(4,3)=.5$
$A(4,5)=5$
$A(5,4)=.5$
$A(5,6)=.5$
$\mathrm{A}(6.3)=1 / \mathrm{AL}$
A(6.5) $=-1 / A L$
call trans $12,12,12,12,12,12, A, A T)$
CALL MATMUL $12,12,12,12,12,12,12,12.12 . A T, G K$, OK1)
CALL MATMUL (12.12.12.12,12.12.12.12.12.OK1,A.OK)
$1 F(K O D Y(M .1)$ NE 0$)$ GO TO 2110
OK(2.2)=OK(2.2)+10**12.
OK(8,8) $\operatorname{OK}(8,8)+10 . * * 12$.
OK(2.8)-0K(2.8)+10 \#\#12
OK(8,2) OK (8,2$)+10$ FF12. 2111
2110 IF(KOOY(M, 2). NE O)
OK $(4,4)=0 K(4,4)+10 * * 12$
0K(4.6) $0 \times(4,6)+10.12$
OK(4.6) 0 ax $(4,6)+10 . \times \pi 12$
OK(6,4) $=\operatorname{OK}(6,4)+10 . * * 12$
2111 IV
$00111011=1.8$
$001110 \mathrm{Ji}=1.8$
IV=IV+1
OKV(IV)=OK(II.Ji)
110 continue
VRITE(7'NM X OKV K) ,K = 1,64)
IF(NI.GT 2) 60 TO 99
VRITEC 6.103 NN

101 FORMAT $1 \times .8 E 14.5$)
103 FORMATI $3 \times$, BOHBEAM STIF. INITIAL AT STEP. .I3//)
102 DO 20 I=1.8
20 O 11000
IF (NBOOY.EO.0)GO TO 99
TBODYF:RO(MTYP) FTH(MTYP) FAREA
BOOYF-TBOOYF/4
DO 60 [$=2,8$, 2
OX ()=-BOOYF
IF(NBOOY.EO 2) ($1-1$) $=800 \mathrm{YF}$

16 CONTINUE
DS 12 11:1.8
$120(11)=00$
D013 11:1.12
D013JJ-1. 12
CB(JJ.11)-0
13 OK(II,JJ) $=0.0$
NC. 2
DO2012:1. NC
ETA $=\operatorname{CORD}(12, N C)$
VEIGI-VEIGHT(I2.NC)
DO20J2:1,NC
$X_{I}=\operatorname{CORD}(\mathrm{J} 2, N C)$
VEIGZ.VEIGHT J2.NC)
CALL FURKK XE, XI, ETA, TOK , TCB, MTYP, M, NHAT, NOPT, NI, X,Y,C)
FACT-VEIGIKVEIG2
OO 15 1t-1.12
DO15J1 $=1,12$
15 OK($11 . J 1)=$ OK($11, J 1$) +TOK $11, J 1$) FFACT
28 CONTIMNE
D025II=1. 12
D025JJ=1.12
25 OX(II.JJ) $=$ OX($11 . J J) * T H K$ MTYP $)$
DO 33L1-1.4
IF(LI.EO.1.OR LI EO.2) ETA $=-1.0$
IFCLI.EO. 3 OR.LI EO. 4) ETA=1. 0
IF(LI EO 1 OR.LI EQ.4) XI $=-1$. 0
IFLLI EO 2.OR.LI EO. 3) XI=1.0
CALL FUNK XE, XI, ETA, TOK, TCB, MTYP, M, NMAT, NOPT, NI , X, Y, C)
DO301t=1.3
11-11+3*(LI-1)
D030.J1-1.12
37 CB(II.JI)=TCB(11.J1)
IF(MODIF.EO.D)GO TO 55
$0050 \quad 11=1,4$
LI $=12-11$
$K 1=L .1+1$
DO $50 \mathrm{~J}=1 . \mathrm{L}$

DO 48J2=1.12
$40 \operatorname{CB}(\mathrm{~J} 2 . \mathrm{J} 1)=\mathrm{CB}(\mathrm{J} 2 . \mathrm{J} 1)$-PIViCar J2.K1)
$0050 \mathrm{~J} 2=1 . \mathrm{L} 1$
50 OK(J1,J2)*CK(J1,J2)-PIV*CK(K1,J2)
55 Iv- 0
DO 1110 11-1.8
DO $1118 \mathrm{JI}=1.8$
$I V=I V+I$
aKv(iv)-ak(11.J1)
1110 CONTIMNE
IF(M NE. 1) 60 TO 259
VRITE(6.229)
VRITE(6.228) (OKV J).J-1.64)
229 FORMAT ($10 \mathrm{X} . \cdot$ STIF. IST ELEMT COMPUTED IN OUAD V. C MATRIX'//)
228 FORMAT($1 \times, 4 F 18.7$)
259 VRITE(7 'MX OKV(K), $K=1,64$)
IV:O
DO 111111=1.12
DO $1111 \mathrm{~J}=1.12$
IV-IV+1
CBV(IV)-CB(11.j1)
1111 CONTINUE
VRITE B'M X CBU(K),K=1,144)
IF(M.EO. 1 MRITE G.118 NI
IF(M.EO. 1)
IVRITE(6.119 X (CER I.J), J=1,12),1-1,12)
118 FORMATI $/ 3 \times .28$ HCB MATRIX INITIAL AT STEP= . $13 / /$)
119 FORMAT GE15.6)
IF (NBOOY.EQ. D) GOTO99
TBOOYF=AREA*RO(MTYP) * TH(MTYP)
BOOYF = TBODYF/4.D
D0601-2,8.2
OXI)-BODYF
IF (NBODY.EO.2) $(1-1)=$ BCOYF
60 CONTINHE
99 IFCM.NE. 1) 60 TO 199
VRITE(6.705)
VRITE(6.7e6) (C(1, J), J=1,3),1-1.3)
705 FORMAT //5X. 18 HC MATRIX FROM OUAD//)
706 FORMAT($5 \times, 3 F 15.5$)
199 RETURN
END
C
DIMENSION X(MAXNP), Y(MAXNP)
DIMENSION XE(4,2),O(8), CK(12.12), TOK (12,12), CB(12.12).TCB(3.12)
DIMENSION OKV (64),CBV 144), C(3.3)
I =IE(H.I)
J=IE(M,2)
$K=1 E(M .3)$
L=1E(M.4)
MTYP=IE(M.5)
AREA= $\varnothing \square$
$A=X(J)-X(1)$
F: X(K)-x(I)
$G=Y(J)-Y(1)$
$H=Y(K)-Y(1)$

$A=X(K)-X(I)$
A=X(K)-X(1)
G:Y(K)-Y(1$)$
G•Y(K)-Y(I)
$H=Y(L)-Y(1)$
AREA2 = (A)H-F:G)/2
AREA-AREA1 +AREAZ
DO1ON $=1.4$
NH:IE(M.N)
XE(N. 1) \times X(NN $)$
XE(N. 2) =Y(NN)
C
C
gausian constants

BLOCK DATA

COMTKON/GAUSS/ CORD 5.5),VEIGHT(5.5)
DATA CORD/0.0.0 0.0.0.0.0.0.0.
А- 0.5773502691 .0 .5773502691 .0.0.ø 0.0.0.
B- .7745965692 .0 .0 .0 .7745966592 .0 .0 .0
C-0.8611363115,-0 $3399816435,0.3399818435,0.8611363115,0.0$
D-0 9061798459,-0.5384693101.0.0.0.5384693101.0.9661798459/
DATA VEIGHT/0 0.0.0.0.0.0 0.0 0.
E1.0.1 0.00 .00 .0 .0 .
F0.5555555555.0.8888888888.0.5555555555.0 0.0.0.
G0 3478548451 .0.6521451548.0.6521451548.0.3478548451.0.0.
H10 236926885.0 4786286704,0.5688888888.0.4786286704.0.236926885, END

C FORM MATRIX BT.C B
SUBROUTINE FUNK(XE, XI, ETA, TOK, TCB, MTYP, M, NTAT, NOPT, NI, X,Y,C)
COMMON/PROTY/ E(4),PR(4),RO(4), THK 4)
COMMON/STEEL/PX(80$),$ PY(80$)$
COMMON/BARR/EPSY.EPSUL,SIGY,ES,ESH
DIMENSION B(3,12),C(3,3),DXY(2.6),BT(12.3)

OITENSION XE(4,2), TOK (12.12), TCB (3,12)
DIMENSION X(100), Y(1000)
Cl-ESHPX(H)
C2•ES*PY(M)
DO 20 1-1.3
$0020 \mathrm{~J}-1.12$
BI(J.1)-D.0
TCB (1, J):0.0
20 ((I.J).0.0
D 25 1-1.12
DO $25 \mathrm{~J}-1.12$
25 Tax(1.J)-0.0
IFINI.NE.OXO 1010
C(1,3).0.0
$c(2,3) \div 8.0$
(3.1). 0.0
C(3,2) 0.0 .0
IF(NHAT.EO.I.ANO.M.GT.I) COTO 10
IF (MOPT.EO.2) COTO2

C(1.1):CF\#(1.0-PR(MTYP))
C(1.2)-CFaPR(MTYP)
C(2.1)-C(1.2)
C(2.2).C(1.1)

cotos
2 CF-E(MTYP)/(1, O-PR(MTYP) W*2)
C(1.1) CF

C(2.1).C(1.2)
C 2,2) CF
C(3.3)-CFM($1.0-P R($ MTYP) $) / 2.0$
$5 C(1.1) \cdot C(1.1)+C 1$
C(2.2) C(2,2 3 +C 2
10 CONTIME
CALL EMATI XE,XI.ETA,B,BT.DET)
CALL MATHEL $3,3,3,12,3,12,3,3,12, \mathrm{C}, \mathrm{B}, \mathrm{TCB}$)
CALL HATHUL $12,3,3,12,12,12,12,3,12,8 T, T C B, T O K)$
D 30 1-1.12
Do 30 J .1 .12
30 TOK(I.J J-TOK(I.J) heDET
RETURN
END

SUBROUTINE EMAT(XE,XI,ETA,B,BT.DET)
DIIENSION E 3,12), $\operatorname{BT}(12,3), \mathrm{XE}(4,2)$, OXY(2,6)
CALL JACCOI XE,XI, ETA, DET, DXY)
0025 1-1.6
1I-2\#1-1
Ex 1.11)-DXY(1.1)
E (2.11+1)-DXY(2.1)
EX3.11)-0XY(2.1)
BX 3.11+1)=DXY(1.1)
25 CONTIMEE
CALL TRANE 3.12.12.3.3.12.B.BT
RETURN
END.
C
FORM JACOBIAN MATRIX AND ITS DETERMINANT
SUBROUTINE JACOBI(XE,XI, ETA, DET, OXT)
DIMENSION XE(4,2), DXY(2,6), AJ (2,23 , DXE (2,4), TXE (2,6)
DXE 1.1) $-(1.0-E T A) / 4.0$
OXE $(1,2)=(1.0$-ETA $) / 4,0$
DXE 2,2) $=(-1.0-\times 1) / 4.0$
DXE $(2,1)=-(1.0-x 1) / 4.0$
OXE 1,3) $(1.0+E T A) / 4.0$
DXE 2,3) $=(1,0+x \mid) / 4.0$
DXE (1.4) $+-(1$. $0+E T A$ 1/4.0
OXE 2,4) $+(1.8-\times 1) / 4.0$
CALL MATMUL $2,4,4,2,2,2,2,4,2,0 X E, X E, A J)$
DET-AJ(1.1):AJ(2.2)-AJ(1.2)\#AJ(2.1)
TEM-AJ (1,1)
AJ (1.1)-AJ (2.2)
AJ (2.2)-TEM
AJ 1.2) $=-A J(1,2)$
AJ (2.1) - -AJ (2.1)
DO101-1.2

10 AJ(1.J)=AJ , J $/$ DE
$00201-1.2$
D020J. 1.4
20 TXE (I.J).DXE 1.J

$\operatorname{TXE}(1,5) \cdot 0.0$
$\operatorname{TXE}(2,5) \cdot 0.01$
$\operatorname{TXE}(2,5)=0.0$
$\operatorname{TXE}(2,6)=-2.0 \approx E T$
CALL HATMAL $2,2,2.6,2.6,2,2,6$, AJ. TXE , DXY
RETURN
END

SUBROUTINE TRANSE II, JJ,KK,LL,K,L,AA,BB)
DIIENSION AA(II, JJ), BE(KK .LL)
DOIDI:1.K
DO10J=1.L
$(10 \mathrm{BB}(\mathrm{J} .1)=\mathrm{AA}(1 . J)$
RETURN
ENO

DOIEJ.I.M
CC(I, J) $=0$ ©
D010.1:1.L

RETURN
END

c

C FORM OVERALL MASS MATRIX
SUBROUTINE ASEMASC ISTOP ,R,AMS. MAXMEO, MAXEV, X,Y, KOOE, MAXMP , MAXEL)
COMTON/DATA/ NAP, NEL, NHAT, NOPT, NBOOY, KMKS. HOOIF. NEL2
COMMON/PROTY/E(4), PR(4),RO(4),THK 4)
COMHON/TVO/IBANO. NEO
COHKON/NODE/IE (80.6)
DIHENSION X(MAXNP), Y(MAXNP), KCOE MAXNP)
DIMENSION AMS MAXNEO, MAXEV).R(MAXAEO)
DIMENSION OK(8,8),LP(8),LUM 158,2$)$, EXMAS (158)
REAO 5.106) KHAS,NSEC
IF(NSEC.LE. ©) GOTO 5

VRITE $(6,120)$ KMAS.NSEC

5 CONTIMUE
DOIOI = 1 . NEO
DOIDJ-1.18AND
10 AMS $1, J)=0.0$
IFCKMAS.EO. 23 GO TO 235
DO $35 \mathrm{M}=1$. NEL
MTYP-IE(M.5)
IFYMTYP.GT.DI GOTO 15
ISTOP-ISTOP +1
VRITE(6.220)

coto 35
15 MTYPZ-IE(M, 6)
NOOE1-IE(M,1)
NOOE2-IE (M,2)
NODE3-IE(M,3)
NOOE3-IE(M, 3)
$A \cdot X($ NOOES $)-X($ NOOE: $)$
A.X(NOOE2)-X(NOOE 1)

F-X(NODE3)-X(NOOEI
G: Y(NOOE2)-Y(NOOE 1)
H-Y(NOCE3)-Y(NOCEI)
AREAI -ABSK (ARH-FEG)/2.0)
$A=X($ NODES 3 - $X($ NOOE 1$)$
$F \cdot X($ NOOE 4)-X(NOOE $I)$
G-Y(NODE3 $)$ - $\mathrm{Y}($ NOOE 1)
$\mathrm{H}=\mathrm{Y}($ NODES $)-\mathrm{Y}($ NOOE 1$)$
AREA2 - ABSC ($A * H-F \# G$)/2.6)
AREA-AREA1+AREA2
CALL OUAMASCOK.AREA.HTYP.RMAS
300 LIM-8
0026 I-2.LIM. 2
1J.1/2
LP(I-1)-2\#IE(M.1J)-1
26 LP(I)=2:IE(M.IJ)
125 DO3FLL $=1 . L$ IM
IP = LP(LL)
DO 30 MTHII,LIM
JP-LP(MM)-IP+1
IF (JP.LE.0) COTO 30
AMSS IP,JP)-AMSE IP.JP) + OK(LL .MH)
30 CONTIRVE
36 CONTIMUE
235 IF(NSEC.LE. 6) GOTO 39
DO 39 [1-1, NSEC
N1-LUTY 11.21
DO $36 \mathrm{JI}=1 . \mathrm{Ni}$
AP1-2\#(LUMK 11.1) + Ji-1)
NP2-NP1-1
AMS(NP 1,1$)=$ AHSS (NP 1,1$)+$ EDMAS 11)

38 CONTIMUE
39 CONTINUE
DOEOTP-1, NAP

ISTOP = ISTOP +1
VRITE(6.230)

coro 50
40 IF(KOOE (MP).EQ. 6) COTO 60
IF KCOE(TP).EQ. 2) COTO 50
M11-2AMP-1
CALL GEOME ©. D.MII.R.AMS.MAXNEO.MAXBV.2)
50 IF(KOOEC MP).EQ. I I GOTO 60
M11-2eMP
CALL GEOME © O. B. MII,R,AHS.MAXNEO.MAXEV,2)
60 CONTIMNE
REVIND 2
DOTDI-1. NEO
70 VRITE 2) (AHSC 1.J).J.1.18ANO)
100 FORMAT 215)
110 FORMAT $4(215, F 8.3)$

8 RETURN
END
FORM ELETENT MASS MATRIX
SUBROUTINE OUAMASI OK, AREA, MTYP, KMAS
COMMON/PROTY/E(4),PR(4),RO(4), THK 4)
DIMENSION OK(8.8)
DOID I-1.8
$0010 \mathrm{~J}=1.8$
10 OK(1.J).0.0
COHST•פ. 25*AREA*THKMTYP I*ROC MTYP;
IF (KMAS.EO.D) GOTO 20

SUBROUTINE MATMULC II.JJ.KK,LL, MMY, NH, K,L,M,AA, BG,CC ,
DIMENSION AA(II,JJ), BB(KK,LL), CC(IMT,NN) DOIOI=1.K

If(KMAS EO 0) GOTO 20
OK (1.1) 0 0 44444444 KCONST OK(1.3).0 22222222^CONS OK(1.5)= 01111111 *CONST OK $(1,7)=0$ 22222222*CONST OK $(2.2)=044444444 *$ CONST OK(2,4)=ø 222222222*CONST OK(2.6)-0 11111111*CONST OK(2.8$)=0.22222222 *$ CONST OK(3.1):0 22222222 kCONS OK(3.3):0 44444444 HCONS OK(3.5) $=0$ 22222222*CONS OK(3.7):0 11111111*CONS Ox(4.2)=0 22222222xCONST OK(4,4) $=0$ 2 44444444 *CONS OK(4,5):0 $22222222 \times C O N S$ Cx(4.8)=0 11111111 CONS
 OK(5.1)-0 22222222 CONS OK(5.3).0 22222222 CONS OK 5.5). 044444444 KONS OX(5.7):0 22222222*CONS OK(6.2) $=0.11111111$ 天CONS OK(6.4):0 22222222ःCONS OK(6.6)=0 44444444*CONS OK(6.8)=0 22222222*CONS OK(7.1)-6 22222222*CONS Ox(7.3)=0.11111111*CONS OK(7.5)=0 22222222kCONS OK(7.7)=0 44444444*CONS OK(8.2)=0 22222222*CONS $\operatorname{OK}(8.4)=0$ 11111111*CONS OK(8,6).0 $22222222 * C O N S$ OK(8,8) $=0.44444444 \times O N S$. 44444444 KCONS CO 1040
DO $30 \mathrm{~L}=1,8$
33 OK(L.L)=CONST
40 RETURN
END
rotate banded matrix to half eand
COHMON/TVO/IBAND NEO
DIMENSION RD NDIM), AKM(NDIM.MDIM
IF(IC EO.2) GOTO 200
$00100 \mathrm{M}=2.1$ IEAND
$K=N-M+1$
IF(K.LE.O) GOTO 50
RD(K) $=$ RD(K)-AKMK K, M) $\because($
AKMK K. M $=0.0$
$50 K=N+M-1$
IF(K. GT NEQ) GOTO100
$\operatorname{RD}(K)=R D(K)=A X M(N, M) \approx U$
AKMK N,M)=0 0
100 CONTINUE
AKIK N, 1) $=1 . \varnothing$
RD (N) $=\mathbf{U}$
COTO 460
200 CONTINUE
DO300MTM-2.1BAND
$J=N-M M+1$
IF(J.LE ©) GOTO 250
AKMX J.MM $=0.0$
$250 \mathrm{~J}=\mathrm{N}+\mathrm{MM}-1$
IF(J.GT.NEO) GOTO 300
AXMK N. TH $)=0.0$
360 CONTINUE
AKMK N. 1)=1.
400 RETURN
END
c
C 1) SOLVE AK.U=R FOR U IF KKK - 2
C II) TRIANGULARISE MATRIX AK IF KKK>< 2
SUBROUTINE BANSOL(KKK,AK.R.NEQ, IBAND,NDIM,MOIM
DIMENSION AK (NDIM,MDIM),R(NDIM)
NRS-NEQ-1
NR = NEO
IF(KKK.EO 2) GOTO 200
DO12RN=1, NRS
$\mathrm{M}=\mathrm{N}-\mathrm{I}$
NRM $=$ NR $-M$
MR-MINEX IBAND.NRM)
PIVOT-AK(N, 1)
DO12a-2.MR
$C P=0.0$
IF(PIVOT EQ.D.D) GOTO 180
CP:AK(N,L)/PIVOT
100 CONTIMUE
$I=M+L$
$J \cdot \sigma$
DO110K=L.MR
J-J+1
110 AK(I.J) $=$ AK(I.J)-CPMAK(N.K)
120 AK (N.L) $)$ CP
IF(KKK.EO. 1) GOTO $4 \varnothing 0$
2CD DO220N: 1 .NRS
$\mathrm{M}=\mathrm{N}-1$
$N R M=N R-M$
MR=MINBK IBAND.NRM)
CP:R(N)
$\mathrm{R}(\mathrm{N})=\boldsymbol{6} \mathrm{a}$
IF(AK(N,1).EO OO) COTO 210
R(N) CP/AK(N, 1
218 CONTINUE
DO $220 \mathrm{~L}=2 . \mathrm{MR}$
1-M+L
220 R(I)=R(I)-AK(N.L)*CP
IF(AK(NR,1) EO O) GOTO 230

IF(AKINR.1]EO G) GOTO 230
$R(N R)=R(N R) / A K(N R .1)$
GOTO 240
230 R(NR)=0 0
240 CONT INUE
DO 320 1-I.NRS
$\mathrm{N}=\mathrm{NRR}-$
$\mathrm{M}=\mathrm{N}-1$
$N R M=N R-M$
MR=MINOC IEAND , NFM)
$00320 \mathrm{~K}=2 . \mathrm{MR}$
$L=M+K$
320 R(N):R(N)-AK(N,K)*R(L)
400 RETURN
END
c compute beam element forces

SUBROUTINE BEAFORC CK IAA, NH, DISPI,X,Y,NI,MAXNP,DISP
1
COMMOH/INFEL/EKHIP (20) EKHJP (20), EKHK 20.2),KOOYX(20.2) $\operatorname{ND}(4), K C O Y(20.2), \operatorname{BMY}(20,2,6), R Y(20,2,5)$.
 SFTOT(20,2), FTOT(20,2), RTOT(20,2),ROTPP(20,2). ROTPN 20.2), ROTSP (20,2), ROTSN 20,2), EK $1(20,2)$, $\operatorname{RYI}(20,2,2), R A(20,2,2), R B(20,2,2), \operatorname{BMA}(20,2,2)$,
 EEXP (20), AXIAL(20.2)
COMMON/RESP /OVRI , DVRJ, BML 20.2 , DEMK 20.2), MIND 20.2) COMTON/DATA/NNP . NEL , NMAT, NOPT , NBOOY , KMAS, MOOIF , NEL 2 COMMON/NODE/IE (80.6)
COMMON/BEAM/SD.S1.52.53.S4.A(12.12)
 DIMENSION DISPI(200),X(106),Y(100), OKV(64),FT(8),OKE(8,8).
1 OX2(12.12)

KOOYX(NH, 1$)=K O D Y(N M, 1)$
KOOYX(NM, 2) $=$ KOOY(NM, 2)
KI=IE(M, 1)
K2=IE(M.2)
K3-IE(M.3)
$K 4=$ IE (M. 4)
$B L$-ABS (X(K2) $\left.-X\left(K_{1}\right)\right)$
AL=ABS Y(K4)-Y(K1))
DO 10 1-1.4
$N_{N}=1 E(M, 1)$
EDIS 2 (1-1.1)=DISP 1(2*NN-1)
10 EDIS $2 \times 1,1$).DISPI(2 NNN)
DO 21 1-1.8
$\infty 21 \mathrm{~J}-1.8$
A1(1.J)=A(I.J)
MATML B, B, 8,1,8.1,8.8.1.A1.EDIS.FDIS! -
VRITE 6,987) (EDISI(I), $1=1,8$)
987 FORMATI IX.'YEDISI ARRAY FROM BEAFOR- '. $8 F 8.5 / /$)
$001110 \quad 11=1.8$
$001110 \mathrm{~J} 1 \cdot 1.8$
OKE (11.J1)=OK(11.JI)
1110 CONTINE
VRITE(6.262) M
$\operatorname{VRITE}(6,281)((0 K(1, J), J=1,8), 1=1,8)$
201 FORTAT (X .8 BE 12.5)
202 FORMAT($4 \times$.' BEAM STIF FROM BEAFOR OF ELMT : '.13/1)
DBrk NH, t)-S1*EDISI(3)+S2*EDISI(6)
DBRX NM, 2)=53*EDISI(3) +S4*EDIS1(6)
IF(NI.NE. 1 XGO TO 20
DO $12 \quad 1=1.2$
RTOT(NM. 1) $=$ ©. \quad.
SFTOT(NM. I).0.D
ROTPP(NM,I) $=. D$
ROTPNKNM, I I-. 0
$\operatorname{ROTSP}(N M, 1)=. \sigma$
ROTSNK NM, 1 I $=0$.
KOOY(NM. 1)-0
AXIAL(NM,I)=0.0
12 BMTOT(NH, I)-E O
20 BMTOTI-BMTOT(NMT, 1)
BMTOT2•BMTOT(NM. 2)
BrL(MM, 1)-BMTOT(N+1, 1) +DBRK NM, 1)
BML(NM. 2) * BMTOT(NM, 2) + DBAK NM, 2)
AXIAL(NM, 1)-AXIAL(NM, 1)+SE*(EDISI(1)-EDISI(4))
AXIAL(N-1, 2) *AXIAL(NM, 2)-58*(EDISI(1)-EDISI(4))
FACAC•日. \quad.
30 FACTOR 1 . FFACAC
KFAC=0
DO 341 IEND. 1.2
KOOI = KOOY(NH. IEND)
IF (DERK NH, IEND).EO.D. XGO To 310
REMIND-1.
IF (INDX NM, IEND).EO 2 REMIND:-1.
RULE 1
IF KOOY(NH, IEND).NE.O XOO TO 50
IF (DEOK MM. IEND).GT.D. IGO TO 40
FAC-(BMY(NMF, IEND, 2)-BMTOT(NAT, IEND))/DBRK NAY. IEND)
IFIFAC GE.FACTOR XO TO 340
FACTOR=FAC
BM=BMY(MH, IEMD. 2)
ROT - RYI NM, IEND. 2)
KFAC-IEND
KODE: 2
EK-EKEP (NM, IEND. 2)
IDK -2
60 TO 340
40 FAC = (EMY(NM, IENO. 1)-BMTOT(NM, IEND))/OBTX NM, IENO)
IFIFAC GE.FACTOR JGO TO 34 (
FACTOR-FAC

FACTOR:FAC
BM=BMYY NM, IEND.I)
ROT•RY(NM, IEND.I)
KFAC=IEND
KODE $=1$
EK-EKEP(NM.IEND. 2)
ICK=1
GO TO 340
50 KOD: KODY(NH. IENO)
GO TOC $60.60 .100 .150 .170 .220 .240 .260 .280 .300,320$),KOO

62 IF (REMINOUOBM NM. IEND) LT D. © 6.0 TO 70
MINORNM, IEND) $=(\operatorname{IND}(N M$. IEND)
GO TO 340
70 KODY(NM. IENO) $=3$
100 = (ND(NM, IEND)
BMT = BMTOT(NM, IEND)
BMTEST = (BMB NM, IEND, IOC)-BMT) FREMIND
IFIBMTEST GE. g go TO 92
EKU $=$ BMT/(ALPHA(NM, IEND ixRTOT(NM, IEND) $+(1$-ALFHA (NM, IEND))*
IBMT/EK I(NM, IEND))
IDM = 3-IDD
EKUMIN=(BMT-EMA(NM, IEND, IDM3)/(RTOT(NM, IEND)-RA(NM, IEND, ICM))
IF(EKU LT EKUMIN IEKU=EKUMIN
IF(EXEP (NM, IEND,1) LE EKU IEKU.EKEP(NM, IEND. 1)
IF (ALPHA(NM, IEND) LE D EEKU-EKI(NM, IEND)
EKEPI NM, IENID, 1). EKU
BMBC NM. IEND. IDO $)=$ EMT
RBC NH, IEND, IDD). RTOT(NM, IEND

RYI(NM, IEND.IDD)
BMA(NM, IEND,IDD): BMT-((RTOT(NM, IEND) I-(RA(NM.IEND.IDD)))
EKEP(NM,IEND. 2)
IF(BETA(NH,IEND) GT.D.0) 60 TO 80
RA(NAT, IEND.IDD):RTOT(NT1, IEND)
BMAC NM, IEND, 100) $=\mathrm{BM}$
80 RREC($A M$, IEND, IDO $)=R T O T(N M, I E N D)-B M B I N M, I E N D, I D O) / E K E P(N M, I E N D, 1)$
IDE:3-100
RREC NM, IEND. IDB) $=$ RB(NM, IEND, IDB)-BMB(NM, IEND, IDB)/
1 EKEP(MM.IEND.1)
RCIEST.RREC(NM, IEND. IDB) \times REMIND
IF(RCTEST GT. 6.$)$ RREC(NM, IEND, IDB $)=00$
90 EKHKNM, IEND) : EKEP (NHM, IEAD, 1)
REVPT(NM. IEND) = RTOT(NH, IENO)-BMT/EKHK NM, IEND)
FACTOR:a.
KFAC=0
60 TO 340

100 IF(REMINDKDEMK NH, IEND) LT. © OGO TO 110
IDD : IND NNT, IEND)
FAC=(BMY(NH, IEND,IDO)-BMTOT(NAT, IEND))/DBM(NM, IEND)
IF(FAC.GE FACTOR IGO TO 346
FACTOR:FAC
BM= BMY(NM, IEND, IDD)
ROT:RY(NM, IEND, 100)
KFAC = IEND
KODE:IENO
KODE = IDO
IDK = IDO
EK=EKEP (NM, IEND.2)
GO TO $3+0$
110 FAC=-BMTOT(NM, IEND)/DBTK NM, IEND
IF(FAC.GE.FACTOR XGO TO $3+0$
FACTOR:FAC
BM・ロ.
ROT = REVPT(NM.IENO)
KFAC-IEND
KODE 4
IDK $=3-$ IND (NM , IEND)
IDD $=3-10 K$
CNEY LOADING SLOPE
RTL $T=($ RREC (NH. IEND. IDD)-ROT) REMIND
IFL, =ST.GT.D D)GO TO 120
BMY(A IEND, IDK)= EMA (NH1, IEND, IDK)
RY(NM, . ND, IDK) $=$ RA(NM, IEND, ICK)
co to 1:-
120 RBA $=$ RB(NH. END. IDK)-RA(NM. IEND.IDK)
RPR=ROT-RREC(NM, IENO. 100)
RRR = RREC (NM, IENO, ICK)-FREC NM, IEND, IDO
RXA-RBA* (RPR/RRR) \# *EEXP(N N)
RY(NM, IEND. IDK) RA(NTY, IERND, IDK 1+RXA
BMY(NM, IEND, IDK) $\operatorname{BMA}($ NM, IEND, IOK) + RXAEEKEP(NH1, IEN, 2)
133 EKL. BHY(NH, IEND. IDK)/($\mathrm{FY}(N \mathrm{NH}$. IEND. IDK)-ROT)
C CHECK MAX SLOPE
IF(EKL LT EKEP(NH.IEND, 1) $)$ GO To 140
EKL $=0$ 999MEKEP(NH, IEND. 1)
RYINM, IEND, IDK) $=($ ROT *EKL + BMAI NM, IEND, IDK)-RA(NM, IEND, IDK)*
*EKEP(NH,IEND. 2))
(EKKL-EKEP(NM, IEND.2))

140 EKEP (NH1. IEND, 3) EKL
EK=EKEP (NM, IEND, 3)
GO TO 34
C
c
c RULE
150 IF(REMIND.DBM NH,IEND) L^{+}■ 0)GO TO 160
IDD: IND PNM.IEND)
MIND NM, IEND) 3
FAC. (BMY($N M$, IEND, IDD)-EM:OT(NM. IEND))/OEM(NM, IENJ)
IFIFAC GE FACTOF IGO TO 340
FACTOR:FAC
EM. BMYI NM, IEND. IDO)
ROT = RYINM.IEMO.IDO I
KFAC=IEND

KFAC=IEND
KODE = 100
10K = IDO
EK = EKEP (NM, IEND. 2
GO TO 340
160 KODY(NM, IEND 1.5
EKH NH, IEND) : EKEP (NM, IEND. 1)
REVP T(NH, IENO) $=$ RY(NH, IEND, 3)-BMY(NM, IEND, 3) /EKHK NM, IEND)
FACTOR:D.
KFAC: O
GO TO 340
C
c RURE..... 5...
170 IF(REMIND:DBM NM, IEND).LT.D. XO TO 180
FAC = (BMY NHM, IEND. 3) -BMTOT(NM, IEND))/DERK NM, IEND
IF(FAC.GE. FACTOR)CO TO 340
FACTOR-FAC
BM-BMY(NMM, IEND. 3)
ROT = RYI NM. IEND. 3)
KFAC:IEND
KODE 4
1DK = IND(NM, IEND)
EK = EKEP (NH, IEND. 3)
GO TO 340
180 FAC : -BMTOT(NM, IEND)/DBM(NM, IEND)
IF(FAC CE.FACTOR)GO TO 340
FACTOR =FAC
BM•O.
ROT = REVP T(NM, IEND)
KFAC=IEND
KODE $=6$
IDK $=3-$ INDX NA. IEND)
$100=3-10 K$
C NEV LOAD SLOPE
RTEST-(RREC(NH, IEND, IDO)-ROT) REMIND
IF(RTEST.GT.D.)CO TO 190
EMY(NH, IEND, IDK) : BMA (NH, IEND, IDK
RY(NH1. IEND. IOK) $=$ RA (NH, IERD. IDK) GO TO 200
190 RBA=RBC NM, IEND, IDK)-RA(NM, IEND, IDK) RPR - ROT-RREC(NM. IEND. IDD)
RRR*RREC(NM, IEMO, IDK)-RREC(MM, IENO, IOO)
RXA-RBA*(RPR/RRR) \#FEEXP(NM)
RY(NM, IEMD, IDK) R RA (NH, IEND, IDK) + RXA
BMY NH, IEND, IDK) = BMA (NY, IEND, IDK) + RXA*EKEP (NM, IEND, 2)
200 EKL-BMY(NM, IEND. IOK)/(RY(NH, IEND. IDK)-ROT)
IFIEKL.LT EKEP(NH. IEND, 1) ${ }^{(1)} 210$
EKL-0.999*EKEP(NH, IEND,1)
RY(NH, IEND, IDK) $=($ ROT*EKL + BMA(NM, IEND, IDK)-RAC NM, IEND, IDK)*
IEXEP(NHY, IEMD.2))
2/(EKL-EKEP(NM.IEND. 2))
BMY(NH, IEND, IDK) EXLI(RY(NH, IEND. IDK)-ROT)
210 EKEP(NM. IEND. 4) EKL
EK EKEP(NH, IERD.4)
GO TO $3+6$
C. RULE...6.

228 IF(REMIND*DBMK NH, IENO).LT.D. XGO TO 230
IDD-IND NHT, IENO)
MIND NM, IEND) $=4$
FAC = (BMY (NH, IEND, IDO)-EMTOT(NM, IEND))/DERK NM, IEND)
IF(FAC GE.factor) GO TO 340
FACTOR.FAC
BM-BMY(NA, IEND, IDO)
ROT = RYY NM1. IEND. IDD
KFAC=IEMO
KOOE = IDO
$10 K=100$
EK•EKEP(NM, IEND,2)
GO TO 340
238 KOOY(NM, IEND) $=7$
EKH NH, IEND) $=\operatorname{EKEP}($ NM, IEND, 1)
REVPT(NM, IEND) $=$ RY(NH, IEND, 4)-BMY(NH, IEND. 4)/EKHK NM, IEND)
FACTOR-D.
KFAC= 0
GO TO $3+\emptyset$
C C ...RULE \ldots. 7
240 IF(REMINDFDEMKNH, IEND).LT.D.D 100 TO 250
FAC = (BMY(NM, IENO. 4)-BMTOT(NM, IEND))/DEBKX NM, IEND)
IF(FAC GE.FACTOR IGO TO $3+0$
FACTOR-FAC
BM-BMYC NM. IEND. 4
ROT-RY(NM. IEND.4)
KFAC=IEND
$K O D E=6$
IOK = IND (NH, IEND)
EK = EKEP(NH, IEND. 4)
GO TO 340
250 FAC=-BMTOT(NM, IEND)/DERK NM. IEND)
IF(FAC.GE FACTOR MGO TO 346
FACTOR:FAC
$B M=0$
ROT = REVPT(NM,IENO)
KFAC-IEND
KODE 8
IDK $=3$ - I NDA NMM, IEND)
EKEP(MM, IENO, 5) • BMY (NM, IEND, 3)/(RT(NM. IEND, 3)-REVFT(NM. IEND))
EK-EKEP(NM, IEND.5)
GO TO 340
C RULE.. 8

MIND(NM, IEND): 5
FAC=(BMY(PM, IEND, 3)-EMTOT(NM, IENO))/OERX NM, IEND)

FAC = (BMY NM, IEND, 3)-EMTOT(NM, IEND))/OBM NM, IEND)
IFIFAC GE FACTOR IGO TO 34 e
FACTOR FFAC
BM.EMYY NH. IEND. 3)
ROT * RYI NM, IENO. 3)
$K F A C=I E N D$
KCOE = 4
IOK = IND NH, IEND)
EK=EKEP(NM. IEND.3)
CO TO 340
270 KODY(NM, IEND):9
EKH(NM. IEND) = EKEP (NM, IEND. 1)
REVPT(NM, IEND $)=$ RY(NHM, IEAD. 5)-BMY(NM, IEND, 5)/EKH (NM, IEND)
FACTOR•®
$K F A C=0$
GO TO 340

283 IF(REMINO*DBM(NM, IEND) LT © © GOO TO 290 FAC=(BMY(NM, IEND.5)-EMTOT(NM, IEND I)/DEM NM, IEND)
IFLFAC GE FACTOR g.0 TO 348
FACTOR:FAC
BM: BMY(NM. IEND.5)
ROT = RY(NM. IEND,5)
KFAC:IEND
KODE: 8
IOK = I ND (NM, IEND)
EK.EKEP(NM. IEND.5)
GO TO 340
$290 \mathrm{FAC}=-\mathrm{BMTO}\left(\mathrm{N}^{M}\right.$. IEND)/OBM(NM, IENO)
If(FAC GE FACTOR 1GO TO $34 D$
FACTOR:FAC
BM딩
KFAC-IEND
KOT = REYP T(NM. IEND)
KODE $=10$
IDK = 3-IND (NM. IEND)

EK = EKEP (NM, IEND.6)
GO TO 340

300 IF (REMIND*DBM NMM. IEND).LT D O 0 OO TO 310
MINDE NH1. IEND $3=6$
$F A C=($ BMY(NM, IEND. 4)-GMTOT(NM. IEND))/CEMK NM. IEND)
IFIFAC GE FACTOR XGO TO $34 \square$
FACTOR.FAC
BM: BMY(NM. IEND.4)
ROT*RY(NM, IEND. 4)
KFAC=IEND
KODE: 6
IOK = ITMD NM, IEND)
EK = EKEP (NH, IEND.4)
GO TO 340
310 KODY(NM, IEND) $=11$
EKH NM, IEND) $=$ EKEP (NM, IEND. 1)

FACTOR=0. 0
$K F A C=0$
GO TO 340
c Rule 11
320 IF REMIND*OBM(NH1, IEND) LT D D 60 TO 330
FAC=(BMY(NH, IEND. 6)-EMTOT(NH, IEND))/DBMK NM, IEND)
IF(FAC GE FACTOR)GO TO 340
FACTOR FAAC
BM = BMY(NM. IEND. 6)
ROT = RYI NM IEND 6
FAC=RYNAD
KFAC = IEN
KODE = 10
OK = (NDK NM, IENO)
EK = EKEP (NM, IEND.6)
GO TO 340
333 FAC =-
IF(FAC. GE FACTOR ICO TO $3+8$
FACTOR FAAC
BM*O
ROT $=$ REVPT(NM. IEND)
KFAC=IEND
KDOE $=8$
IOK $=3-$ IND NM, IEND $)$
EKEP(NM. IEND. 5) = EMY (NM, IEND. 3)/(RY(NM, IEND. 3)-REVP T(NM, IEND) EK = EKEP(NM.IEND.5)
340 CONTINUE
3+1 continue
*** UFDATE MOMENTS \#\#********
DO 400 IEND: 1,2
IF IEND EO KFAC KO TO 3 ge
BMTOT (NM, IEND). BMTOT(NM. IEND) FACTORKDEH(NH, IEND)

IF (KOOY(NM, IEND I EO O) $G 0$ TO 4 OR
KCL $=$ KOOTK NM. IENA
GO TO ($350,350.400 .350 .420 .350 .420 .350 .470 .350 .400$). KOD
353 1OO:MINOC HM. IEND)
EMT(NM, IEND. 100) $=$ EMTOTI MM. IENO
RY(NM,IEND,IDD):RTOT(NM,:END)
OROT = DEMK NM, IEND IKFACTCR, EKHI NM, IEND)
IF(KOD GT 2)
IF(DROT.LT 160 TO 360

36 ROTPN TMM. IEND IF FOTPN NM. :END I. LROT
GO TO 420
370 IFCOROT LT O NEO TO 380

370 IFLDROT LT.D. 2 GO TO 380
ROTSP(NM, IEND) $)$ ROTSP(NM, IEND) + DROT
GO TO 400
380 ROTSN(NH, IEND) $\mathrm{ROTSN}(N H$, IEND) + DROT 00 To 400
392 BMTOT(NM. IEND) $=$ BM
RTOT(NM, IEND) $=$ ROT
KOOY(NM, IEND) =KODE
EKHKNH, IEND) E EK IND (NM, IEND) : IDK
403 COATIAUE
C . CHECK COMPLETION OF CTCLE facac-FACAC+FACTOR
IF FACAC.GT.0.999 JGO TO 410
CALL OBEAMC NM, AREA. OK2 , Q.MAXEL. MAXNP. NI M
Denk NM. 1)=S1*EDIS1(3)+52*EDIS1(6)
DBM(NH1.2)*53*EOISI(3)+S4*EDISI(6)
GO TO 3D
c .. SHEAR FORCES
410 DSF:(-BMTOT(NM, 1) + BMTOT 1 +BMTOT(NM, 2)-BMTOT2)/BL
SFTOT(NH, 1) =SFTOT(NM, 1) +DSF
SFTOT(NM, 2) $=$ SFTOT(NM, 2)-DSF
KST: O
IF KOOYX(NM, 1).NE .KODY(NM, 1). OR.KODYX(NW1,2) NE.KOOY(NM, 2)) :KST-1
VRITEC6, 147 JNI,KST
147 FORMATI/5X.6HSTEP. . $12.2 \times .5$ HKST* .12.1)
$005311-1,8$
53 FTM II). 1
IF(KST.Ne 1)GO TO 56
KBAL-KBAL+1
Call obeamenh.area, ok2, O, Maxel. Maxap.NI,M)
DO 58 II $=1.8$
DO 58 J1-1.8
58 OKO (11.J1)=0KO(11.J1)-0K2(11.J1)
CALL MATMAL (8,8,8,1,8,1,8,8,1,0K0,EDIS.FT)
56 VRITE(3'MXFT(II),11-1,8)
C NB il TOTAL DISP $=$ EDISI (6,1)
CALL MATMUL $8,8,8,1,8,1,8,8,1, A 1, D I S P, E D I S I)$
IF(NM1.EQ NEL2 ANO.ITV.EO ©) VRITE(6.11)
IF(NH EQ.NEL2.ANO.ITV.EQ O) VRITE 6.101)
IF(NM.EO NEL2.AND.ITV.EO.O) VRITE(6,111)
I (J.(AXIAL(J.I), SFTOT J.I), BMTOT(J.I), ROTPP (J.I), ROTPN J.I
21 (1.2),J=1, NEL2)
11 FORMAT (1HI.'***OUTPUT TABLE 2.1 END BEAM FORCES****'//)
101 FORMATI//8H NODE, $11 \times .5$ HAXIAL, $13 \times$, SHSHEAR, $12 X$, EHMOMENT. $112 x . \cdot x$-DISP.'. $12 x \cdot \cdot Y$-OISP.'. $12 x \cdot$ 'Y-ROTAT.' $/$)
111 FORMAT IM . IG. GE18.6/7X.GE18.6)
RETURN
END
C
C
C FORM NODAL FORCES
SUBROUTINE FORCEI R.MAXEL.MAXNEO, MAXNP, XFORCE,YFORCE,
*X,Y,NEO,DISPI.NI, KBAL, IT,TIME)
COMMON/DATA/ NNP. NEL, NHAT, NOPT.NBOOY, KMAS,MOOIF, NEL 2
COMTON/NODE/IE 80.6)
DIMENSION R(NEQ)
DIMENSION X(MAXND),Y(MAXNP)
DIMENSION XFORCE (MAXNP), YFORCE (MAXNP)

IF IT.EO.0; VRITE(6.11) TIME
INDEX-ळ
DO $5 \mathrm{~K}=1$, MAXNP
XFORCE K) $=0.0$
CONTINE
CONI I INE
DO $80 \mathrm{M}=1$. NEL
MTYP2 $=I E(M, 6)$
DO 20 I=1.4
EDIS $2 * 1-1,1)=R(2 * N N-1)$
$22 \operatorname{EDIS}(2 * 1.1)=R(2 * \mathbb{N})$
READ 7 'M $\operatorname{XCKY}(K), K=1.64)$
IV:g
$00111011=1.8$
DO $1110 \mathrm{~J} 1-1.8$
$1 v=1 v+1$
QK(II.JI)-OKV(IV)
1110 CONTINUE
IF(MTYP2.NE. 2) 60 TO 63
VRITE(6.61)
VRITE($6,62 \times(O K(11, J 1), J i=1,8), 11=1,8)$
GI FORMATI $8 \times$. BEAM STIF. FROM 7 CALLED IN RTINE FORCE $/ 1$)
62 FORMAT $1 \times$, BEI4.6)
63 CALL matmel (8.8.8.1.8.1.8.8,1, OX, EDIS. 0)
IF (INDEX.EO.1) VRITE(6.100) M
IF MTYP2. NE. 2) 60 TO 1520
MELI-NELI-1
MH1-NEL2-NEL1

YFORCE $N \mathbb{N})=$ YFORCE (NN $)+\alpha 2 \pm 11)$
IF(INDEX EO.1) VRITE(6.110) NN, O 2*1I-1), α 2*11)
60 CONTINUE
1 Ea FORMATI/25x.'ELEMENT MMBER='.15/.5X.'NOOE'. $12 x$.'X-STRESS'
1.12X.'Y-STRESS')

IID FORMATL I10.2E20 B)
IF IT NE D) GO TO 141
c VRITE(G.120)
DIS:G 0
FOR-0

FOR:B 3
AMOMT: 0
DOSOJJ. $1 . \operatorname{Nin}$
$J=A R P+1-j J$
DIS:DIS+R(2*J-1)
FOR:FOR + XFORCEI J

IF (Y) J) EO Q NRITE(6. 122 IAMOMT
122 FORMATL 5 X .'BASE MCMT : . F12 3/
IF(JJ EO NNP) GO TO 90
FOR: 10
CONTINUS
93 CONTINU
41 FOR = XFORCE (33) + XFORCE 53) + XFORCE 73)
AMOMT - XFORCE $(33) * Y(33)+X F O R C E(53) * Y(53)+X F O R C E(73) * Y(73)$
VRITE (13,123) TIME.FGR,AMOMT
VRITEL 6,123) TIME, FOF, ATOMT
123 FORMAT($3 F 154$)

1 FORmat 56 4//)
22 FORMAT($5 \times$.'**** TOTAL VALUE AT This SECTION ****'. Fi5.5.F40.5)

18x.'X-FORCE'. $8 x$. ' Y-FORCE'/)
130 FORMAT (18.2 F 63.4 F 15 6)

RETURN:
END
C COMPUTE STRESSES AND STRAINS
CHECK YIELDING OR CRUSHING OF CONCRETE BY CALL YIELDG CHECK CRACKING OF CONCRETE AND YIELDING OF STEEL BY CALL ELAST UPDATE STIFFNESS MATRIX CONSEOUENTLY
C FORM ELEMENT FSEUDO-LOADS AND STORE IN TAPE 3
SUBROUTINE STRESSKR,X,Y,SIGIA,SIG2A,EPSA, SICA, MAXNEO
*MAXEL, MAXIPP, NI , MEO. KEAL, IFLAG, TIME, IT .DISPI)
COHMON/DATA/ NITP.NEL.NMAT.NOPT.NBCOY, XMAS.MODIF.NEL2
COMMON/GAUSS/CORD 5.5).VEIGHT(5.5)
COMMON/NODE/IE (80.6)
COMMON/PROTY/E(4), PR(4),ROC 4), TH(4)
COMMON/STEEL/PX(BE),PY(ED)
COMMON/YLDI/EPSLIM, YIELD.SIGMII
COHMON/STATE/ NSIN 100), KOO (100), IPEL (ICD), KBAR (100), TITA(100),
1 EPSMAX(100).EPSMIN 10Q)
COMMON/BOUND/ NEOUN
DIMENSION R(NEO)
DIHENSION X(MAXXP), Y(MAXNP),NOC 100), ALFAI(120),
1 SIGI(108).SIG2(108)
OIMENSION SIGIA(MAXNP), SIG2a(maxNP), EPSA(MAXNEQ), SIGA(maxneo)
OIMENSION CB(3.12).TCB(12.12). OISP(12.1).SIGB(3)
DIMENSION B(3.12), EPSB(3), BT(12.3), EPSAA(3)

\# OK(12,12), $\operatorname{TOK}(12,12)$, OK 3 (12,12), SIGAA(3), C(3,3), CC(3,3), FT(12).
*TOK 3 (12.12). OKV(64).CBV 144)
DIMENSION XFORCE (ICO). YFORCE I IRO), SHEAR (100)
DIMENSION XDEF(100), YDEF(108).SDEF(100)
DIMENSION V(320). RR(320).SSI(100). SS2(100).OK1(8.8).OISP1(8.1). 1

DO 6 12.1. NNP
$\operatorname{ssi(12):0} 0$
SS2(12):0
SS3(12).0 0
XFORCE (12)=.
YFORCE (12)-.
Shear (12)=. 0
ALFAI(12): 0
$\bmod (2)=0$
$\operatorname{XDEF}(12)=0$
YOEF 12):0 0
SOEF(12)=
SIG1(12)=
$6 \operatorname{SIG}(12)=\varnothing$
DO $21=1.12$
DO $2 \mathrm{j}=112$ CR2(1.J):00
20K3(1, J)=0 0
$0003(1, J)=0$
SICB(1): 0
SICB(1)=0
$\operatorname{EPSB}(1)=0$
DO $5 \mathrm{~J}=1.3$
$\mathrm{CC}(1 . \mathrm{J})=0$
$C(1, J)=00$
$005 \mathrm{NL}=1.12$
B(1.512):00
CB(I.N2)=0 0
$\mathrm{BT}(\mathrm{N} 2.1)=00$
TCB2(I.N2):010
TCE3 1.N2 1.00
5 DISPCH2.1:0.0 DO 79 1.1. MAXNEO V(1):0
79 RR(I) 0.0
IAA $=1$
130060 NM-I.NEL
MTYP2=1E(M. M .5)
IFCMTYE2 PE IGO TO 60
C00 65 :121. -
MM=IE(im.:A)

XER H. 2 . MIMM
55 CONTINJE
Du) 20 i=1.4

DO 20 J.1.4
NN = IE (NM. J)
$\operatorname{DISP}(2 * J-1.1) \cdot R(2 * N N-1)$
$20 \operatorname{DISP}(2 * J, 1)=R(2 * N N)$
IF (INDX.EO 2) VRITE(6.220 NM
READ ($8 \cdot \operatorname{NH} X(\operatorname{CBV}(K), K=1.144)$
IV.0
00111011.1 .12
$001110 \mathrm{JI}=1.12$
$I W=I V+I$
TCB($11 . \mathrm{J}$) $=$ CBU(IV)
1110 CONTINUE
IF(NH1 EO. I AND. IFLAG.EO. O WRITE 6,17)
IF NM EO 1.AND. IFLAG.EQ O) VRITE G.19x(TCBC $1, J), J=1,12), 1=$
17 FORMATI $3 \mathrm{X}, 17 \mathrm{HCB}$ MATRIX FROM 8.1)
19 FORMAT GE15.5)
IBB: ${ }^{\text {D }}$
DO $30 \mathrm{LI}=1,4$
CIOD FORMAT (IOX. 15,3E20 8)
200 FORMATI /15X.'STRESSES IN THE ELEMENT NO = . $15, / / 11 \mathrm{X}$. NODE
$112 x . ' X$-STRESS', $12 x . \cdot y$-STRESS'. $8 x$,'SHEAR-STRESS')
IFCLI.EQ I.OR LI.EQ. 2)ETA=-1.
IFLLI.EQ. 3 OR LI EO 4 ETA. 1
IF(LI EO. 1 . OR.LI EO 4) XI-I
IFILI.EO 2 OR.LI EO. 3) $\times 1=1 . \sigma$
CALL BMAT(XE,XI.ETA.B.BT.DET)
CALL MATMUL (3.12,12,1,3,1,3,12,1.B,DISP EPSB)
\times XDEF (NN) = $\operatorname{XDEF}($ NN $)+E P S B(1)$
$\operatorname{YDEF}(N \mathbb{N})=Y D E F(N \mathbb{N})+E P S B(2)$
$\operatorname{SDEF}(N \mathbb{N}) \cdot \operatorname{SDEF}(\mathrm{NN})+E P S B(3)$
DO $25 \mathrm{KK} \cdot 1.3$
II $=K K+3 *(L 1-1)$
DO $25 \mathrm{LL}=1.12$
25 CBrKK.LL).TCB(11.LL
call matmul (3,12,12,1,3,1,3,12,1, CB, DISP, Sice)
XFORCE (NN) - XFORCE (NN) +SICB(1)
YFORCE (NAN) $=$ YFORCE (NN $)+5 I \operatorname{CB}(2)$
SHEAR (NN) = SHEAR (NN) +SICES 3)
NO (NN $)=\operatorname{NO}(N N)+1$
30 CONTINEE
ED CONTINUE
O $82 \mathrm{~K}=1$, MNP
XFORCE (K) = X FORCE K)/ND(K)
YFORCE (K) = YFORCE (K)/ND (K)
SHEAR (K) $\operatorname{SHEAR}(K$)/ROXK $)$
XDEF(K)=XDEF(K)/NDC K
YDEF(K)-YDEF (K)/NDK K)
$\operatorname{SDEF}(K)$ - $\operatorname{SDEF}(K) /$ ND $K)$
SP-(XFORCE(K)+YFORCE (K))/2.
SM- (XFORCE (K)-YFORCE (K))/2.
SO:SM**2+SHEAR(K)**2
DS.SORT(SO)
SIGI(K).SP +DS
IF(SM.EO 0.6)ALFAI(K)-3.141592/2.
IFISM.EO O , GO TO 92

92 ALFAI(K)=ALFAI(K)*189.131415926
82 CONTIME
IF IT.NE.D) GO TO 749
URITEC 6.300 WI
WRITE $6,1010 \times K, X(K), Y(K), X F O R C E(K), Y F O R C E(K), S H E A R(K)$,
${ }^{1}$ VRITE 6.460)
VRITE 6,301 NI
WRITE $6,1011 \times K, X(K), Y(K), X D E F(K), Y D E F(K), \operatorname{SDEF}(K), K=1, A W P$,
300 FORMAT $1 H 1 . / /$ *****STRESSES ON EACH NOOE AT STEP=..I5.
1 2x, 'x**'/2x,7H NODE $8 x, 1 H X, 9 x, 1 H Y, 6 x, 8 H S I G M A(x)$

3 5HANGLE
301 FORMATC IHI.//':E*:KSTRAINS ON EACH NOOE AT STEP. '. 15.
1 2X,'****' $2 X, 7 H$ NOOE , $8 X, 1 H X, 9 X, 1 H Y, 8 X, 8 H E P S I L(X)$
2 9X, EHEPSIL $(Y), 9 x$, BHEPS $(X, Y))$
409 FOPMAT $4 \times$, ,
1010 FORMAT I8,2F16.2.6E14.6)
1011 FORMATC 18,2F10.2,E14.5.2X,E14.5.2X,E14.5)
749 ICC=0
IFLAG=IFLAG+1
IF (IFLAG.CT.6) GO TO 3431
DO 431 NN=1. NNP
MTYP=1
EPSAA(1) = EPSA(3*NN-2)
EPSAA(2):EPSA($3 \times N \mathrm{~N}-1$)
EPSAA(3). EPSA(3 KNN)
SIGAa(1)=SIGA(3nNN-2)
SIGAA(2) Sig GA(3*NN-1)
SIGAA(3) - SIGA 3 KiNN)
SIGAA B):SIGA(3n)
SIGIAA-SIGIA(NN)
EPSB(1)=XDEF(NN)
EPSB(1)=XDEF(NN)
EPSB(2)-YDEF(NN)
EPSB(3)•SDEF(NN)
SIGBE 1)•XFORCE ($N N$)
SICBR 2)-YFORCE (NN)
SIGB(3) = SHEAR (NN)
SIGIB-SIGI(NN)
SIG2B=SIG2(NN)
PIB=EPSE(1)
P2B-EPSB(2
PPB=EPSB(3)
DO 292 13:1.3
292 DELTA(13).0.0.0
RR(3*NN-2)•SIGB(1)
$\operatorname{RR}(3 \times N N-1)=51 C B(2)$
RR($3 \times N H$) = SIGB(3)
IF (NTH LE.NBOUN) GO TC 1292
IF (IPEL(NN).EO.3) GC TO 1292
$\operatorname{IF}(\operatorname{SIGB}(1) \mathrm{GE} D \mathrm{DR} \operatorname{SICB}(2) . G E D$) GO TO 1432

Fi SICB (1) GE a O.CR SICB(2) GE 0 D) GO TO 1432
 KR=KBAR(NHT)

CALL YIELDGCEPSAA, EPSB, SIGAA, SIGB, SIGIAA, SIGIB, SIG2AA,SIG2B

GO TO 1292
1432 DELSII: 0
DELS12•0.0
If(SIGIB LT. . l.AND SIGIB GT. YIELD OR
ISIG2B LT. A AND SIG2B.GT YIELDI GO TO 1292
IF (SIGIB LT YIELD) DELSII=SIGIB-YIELD
IF(SIG2B LT. YIELD) DELSI2-SIG2B-YIELD
ALFA = ALFA:(NN)*3 1415926/180
$C 1=\cos (A L F A)$
SI = SIN(ALFA)
SN2 $=\operatorname{SIN}(2 * A L F A)$
DELTA(1) =DELSI!*C1**2*DELSI2*S1**2
DELTA 2) = DELSI $1 * S 1 * * 2+$ DELS $12 * C 1 * * 2$
DELTA 3)=DELSI $1 * S N 2 * 5-$ CELSI2*SN2* 5
1292 SSI(P (N) $)=$ DELTA 1
SS2(NN)=OELTA\& 2
SS3 (NN) = OELTAC 3
431 CONTINUE
C333 FORMAT $/ 10$ ' $^{\prime} * * *$ ERROR PAST YIELDG $* * * / /$
3431 DO $39 \mathrm{~J}=1 . \mathrm{NNP}^{2}$
39 ND (J) $=0$
DO 31 PH:1.NEL
DO 906 11:1.3
$00906 \mathrm{Ji}=1.3$
$906 \mathrm{cc}(11 . \mathrm{J})=00$
$0090711=1.12$
D0 $907 \mathrm{~J} 1-1.12$
$9070 \times 3(11 . J 1)=80$
MIYP2=IE(NM, 5)
MTYP=1E(NM.5)
IF MTYP2.EO 2)GO TO 31
DO 66 N=1.4
MTM $=\operatorname{IE}(N M, N)$
DISP $1(2 * N-1,1)=$ DISPI $(2 * M M-1)$
DISPI(2*N,) =OISPI(2*MM)
XE(N,1)=X(NH)
$X E(N, 2)=Y(M H)$
66 CONTINUE
DO 32 I=1.4
NN- IE NH. I)
EPSAA (1)-EPSA(3\#NN-2)
$\operatorname{EPSAA}(2)=E P S A(3 \times N N-1)$
EPSAA(3) : EPSA 3 KNN)
SIGAA (1) : SIGA (3 ANN-2)
$\operatorname{SIGAA}(2)=\operatorname{SIGA}(3 \times N N-1)$
SIGAA(3)=SIGA(3INN)
SIGIAA-SIGIA(NN)
SIG2AA=SIG2A(NN)
EPSB(1)=XDEF(NH 2)
$E P S B(2)=Y D E F(N N)$
EPSB(3)= $\operatorname{SDEF}(N N)$
SICEC 1): XFORCE (NN)
SIGB(2)=YFORCE (NN)
SIGB(3)=SHEAR(NN)
SIGIB.SIGI(NN)
SIG2B-SIG2(NN)
ALFA=ALFAI(NN)
CALL ELASTIEPSAA, EPSB, SIGAA, SIGB,SIGIAA.SIGZAA, SIGIB * SIG2B, ALFA, NI, NN, MM, MAXNEO, MAXNP, C. KBAL, IFLAG, MTYP c

DO 34 11-1.3
DO 34 JI=1.3
$\operatorname{CC}(11 . \mathrm{J} 1) * \operatorname{CC}(11, \mathrm{~J} 1)+\mathrm{C}(11 . \mathrm{J} 1)$
32 continue
DO $3611=1.3$
D0 $36 \mathrm{JI}=1.3$
36 CC(11.J1)*.25*CC(II.J1
IF (NH NE. 1) 60 TO 707
VRITE (6.705)
c $\operatorname{VRITE}(6,766)(\operatorname{cC(1,J)}, J=1,3), I=1,3)$
705 FORMATI /5X.' CC MATRIX FROH ELAST'//)
706 FORMAT($5 \mathrm{X}, 3 \mathrm{~F} 15.5$)
707 NC: 2
DO 57 12=1.NC
ETA=CORD 12.NC
VEIGI-VEIGHT(I2.NC)
DO 57 J2-1.NC
XI-CORD $J 2$,NC $)$
VEIG2-VEIGHT(J2 ,NC
VEIG2-VEIGHT(J2.NC)
FACT:VEIG1 WVEIG2
CaLL bmat Xe, XI, ETA, b, bT, DET)
CALL MATMUL $3,3,3,12,3,12,3,3,12, \mathrm{CC}, 8, \mathrm{TCB} 3$)
CALL MATMUL (12.3.3.12.12.12.12.3.12.8T.TCB3. TOK3)
DO 15 11.1.12
DO $15 \mathrm{~J}=1.12$

57 CONTIMUE
DO 33 1-1.4
DO 746 J .1 .12
FT(J)-の
745 FTI(J): © ©
NN=IE(NM. 1)
OELTA(1)=SSI(NN)
OELTA(2) =SS2 (NN)
OELTA(3) -SS3 (PIN)
IFII EQ.I OR I EO 2)ETA=-1
IFI EO 3 OR.I.EO 4 IETA.I.
IFII EQ.1.OR I.EO $4 \times 1 *-1$
IFII EQ. 2 OR I EO 3 IXI: 1
CALL GMAT XE.XI.ETA.B.BT. DET

Call bmat Xe. XI.ETA.B.ET.DET)
CALL MATMUL(3,3,3.12,3,12.3.3.12.CC,B.TCB2)
0095 11-1.3
11-11+3k(1-1)
$95 \operatorname{CB2} 11 . \mathrm{J} 1)=\mathrm{ICB} 2(11, \mathrm{Ji})$
call matmule 12,3,3,1,12,1,12,3,1, BT, DeLTA,FTI)
DO $747 \mathrm{JI}=1.8$
747 FT(J1) $\mathrm{FT}(\mathrm{Jl})+\mathrm{FTI}(\mathrm{Jl})$
33 CONTINUE
IF(MODIF.EO ©) GO TO 877
C INCOHP. MOOES
DO 50 11-1.4
LI $=12-11$
$\mathrm{KI}=\mathrm{L} I+1$
0050 Jt=1.L1

DO 40J2:1.12
$40 \operatorname{CB2}(\mathrm{~J} 2 . \mathrm{J} 1)=\operatorname{CB2}(\mathrm{J} 2, \mathrm{~J} 1)-\mathrm{P} I \mathrm{~V} \times \mathrm{CB} 2(\mathrm{~J} 2 . \mathrm{K} 1)$
$0050 \mathrm{~J} 2 \cdot 1 . \mathrm{L} 1$
50 OK3(J1.J2)=GK3(J1,J2)-PIV*OK $3(K 1, J 2)$
877 IV.g
001111 11.1.12
Do 1111 JI=1.12
I $V=I V+I$
$\operatorname{CBV}(\mathrm{IV})=\operatorname{CB} 2(11 . \mathrm{J} 1)$
1111 continue
C IF NMI.NE. I IGO TO 682 VRITE(6.1113)
[113 FORMAT(I0X.' CB FROM STRESS U. CC MATRIX'//) VRITE(6.1114 x(CB2(12.J2),J2=1.123,12-1,12)
1114 FORMAT(GE15.6)
602 URITE 8^{\prime} NM X CBV(K),K=1, 144
600 IV-0
READ 7 'NM) (OKV K) $, K=1,64$)
DO 1112 11.1.8
DO 1112 Ji=1.8
IV.IV+1
oker (11.J1)* Qxv(IV)

$\operatorname{OKv}(16)=\mathrm{OK} 3(11 . J 1)$
1112 CONT IMME
CALL MATMUL(8,8,8,1,8,1,8,8.1, OKD,DISP1,FT1)
DO $1723 \mathrm{KL}=1.8$
1723 FT(KL) $=$ FT(KL $)+F T I(K L)$
PSEUDO LOADS
VRITE $3^{\prime N M}$ NFT(K),K-1, B)
229 FORMAT ($10 x$.'STIF. IST ELEMT COMPUTED IN OUAD V. C MATRIX'/
228 FORMAT ($1 \times .4 F 18.7$)
259 VRITE (7 'NH X OKV(K),K=1,6̀
31 CONTIMUE
IF (IT.EO. 6)
WRITE (6.990 NI .TIME
DO $2482 K=1$. NN
GAMA = TITA(K)*180/3.1415925

EPSA ($3 \hbar K-2$) = XDEF (K)
EPSA($3 * K-1)=$ YDEF (K
EPSA($3 * K$) $-\operatorname{SDEF}(K)$
SIGA($3 * K-2)$-RR($3 * x-2$)
SIGA($3 * K-1$) $\operatorname{RRR}(3 * K-1)$
SIGA($3 * K$) $=$ RR($3 * K$)
SP-(SIGA $(3 \pi K-2)+\operatorname{SIGA}(3 \hbar K-1)) / 2$.
SM-(SIGA(3HK-2)-SIGA ($3 * K-1$))/2.
SO=SM**2+SICA(3*K)**2
DS-SORT(SO)
SIGIA(K)=SP +DS
2482 SIG2A(K):SP-DS

16X,5HPOINT, $10 x, 4$ HNSIN, $5 x, 4$ KKOCE, $5 X, 4$ HIPEL, $5 x, 4$ KKBAR, $10 X$. 'TITA
991 FORMAT ($7 \mathrm{X}, 13,10 \mathrm{X}, 13,5 \mathrm{x}, 13,5 \mathrm{x}, 13,5 \mathrm{x}, 13,8 \mathrm{X}, \mathrm{F} 10,4$)
RETUR
c
c read input data for beam elemwis
SUBROUTINE INELE (X,Y,N,MAT)
CCMMON/DATA/NMP , NEL , NMAT , NOPT , MBCOY , KMAS, MODIF, NEL 2
COMPON/ INFEL/EXHIP (20), EKHJP (20), EKHX20.2),KOOYX(20.2)
NDX 4), KOOY(20,2), $\operatorname{BMY}(20,2,6), \operatorname{RY}(20,2,6)$.
INO 20.2), EKEP (20,2.6),REVPT(20,2), EMTOT(20.2).
$\operatorname{SFTOT}(20,2)$, FTOT 20,2), RTOT(20.2), ROTPP $(20,2)$ ROTPN 20.2).ROTSP (20,2),ROTSAK 20,2), EK1(20,2)
$\operatorname{RYI}(20,2,2) . \operatorname{RA}(20,2,2), \operatorname{RE} 20,2,2), \operatorname{Braf}(28,2,2)$
BrEs 20,2,2), RREC($20,2,2$), ALPHAC 20,2), BETA 20,2) EEXP (20), AXIAL(20,2)
COHHON/ELEM/KSF(2),FTYP(60.14), BITYY 20.70.2), EEXPNK 60), ASTMK 68
COTHYN/NODE/IE BO.6)
DIMENSION IMT(60),AST(2)
DIMENSION X(100),Y(100)
DATA AST(1), AST(2)/2H , 2 H \%/
VRITE(E,20)
20 FORMKT ////1GH STIFFNESS TYPES// 18H BEAM PROPERTIES//
2X.5H TYPE.7X.28hREFERENCE SECTION PROPERTIES,5X. 2EHFLEXURAL STIFFNESS FACTORS. $4 \mathrm{X}, 15 \mathrm{H}$ HARDENING RATIO/
4 2X.5H NO. $8 \mathrm{BX}, 2 \mathrm{HE}, 18 \mathrm{X}, 2 \mathrm{HEA}, 10 \mathrm{X}, 2 \mathrm{HGA}, 8 \mathrm{X}, 2 \mathrm{HII}, 8 \mathrm{X}, 2 \mathrm{H}, \mathrm{HJ}, 8 \mathrm{X}$, 5 2HIJ.9x.1HI.7x.1HJ/)

IMI(N)=g
ASTN N)=AST(1
READ 5.30) $,($ FTYP(N, J $), J=1,8)$
READ 5.32)ITP.(FTYP(N,J),J=9,14), EEXPNK)
33 FORMAT($15,3 F 10$ 0.3F5.0.2F10 D)
32 FORMAT (15,7FID
IF FIYP(N.9) NE.O. GOTO 40
$\operatorname{IMT}(N)=1$

IMT(N).
IMBT = N
FTYP(IMBT.9)=FTYP(IMBT.1)*I E8
FTYP(1 MBT, $101=F T Y P(I M E T, 1) * 1$ E8
ASTMN)=AST(2)
40 VRITE G.501I.(FTYP(N.J).J-1.8)
53 FORMATI $2 \times .14 .2 \times, 3 E 12$ 4,F9 3.2F10 3.2X.2F8.5)
60 CONTIMUE
VRITE(6.70)
70 FORMAT/ /19H HINGE PRCPERTIES//
7H TYPE. $7 \mathrm{X}, 15 \mathrm{HMINGE}$ STIFFNESS. $5 \mathrm{X} .20 \mathrm{HN} L$ OADING FARAMETERS.

$8 \mathrm{x}, 2 \mathrm{MAJ}, 18 \mathrm{X}, 2 \mathrm{HEI} .8 \mathrm{X}, 2 \mathrm{HBJ}, 7 \mathrm{X}, 1 \mathrm{HN} /)$
VRITE(6,90)ASTN N), N. (FTYP(N,J) $, J=9,14$), EEXPN N)
80 CONTINUE
90 FORMATI IX.A2,I3,E14.4.E12 4.FIO 3.FIO 3.F12.3,F10 3.F9 2)
C
c
c
150 FORMATI////19H YIELD MOMENT TYFES//
15 5H TYPE.5X.8HPOSITIVE. $5 \times$. BHNEGATIVE/
25 H NO . $5 \mathrm{X}, 8 \mathrm{H}$ MOMENT .5 X .8 H MOMENT $/ 1$
DO 187 1.1.2

VRITE(6,170)N, BMMY(N,1,1), BMMY(N,1,2)
160 FORMATS $15,5 \times, 2 F 10$ ©)
170 FORMAT(14.2 F13 2)
BMMY(N. 1.2)=-ABS BMMY(N,1.2))
187 CONTINUE
$\operatorname{koorx}(N, 1)=0$
KOOYX(N. 2) $=0$
$\operatorname{KODY}(\mathrm{N}, 1)=0$
$\operatorname{KODY}(\mathrm{N}, 2)=0$
EKHKN,1)=0.
EKH N, 2): 0 .
DO 189 II:1.2
DO $189 \mathrm{~J}=1.2$
EKEP (N.II.JI $)=\varnothing$ ©
189 CONTINUE
181 CONTINUE
$K S T=\emptyset$
C .hingestrain hardening ratio
410 IMBT $=\mathrm{N}$
FTT FFTYP(IMBT,7)
FTB=FTYP(IMBT.8)
$11=1 E\left(\mathrm{NH}_{1} 1\right)$
$J 1=1 E(N H, 2)$
FL*ABS (X(JI)-X(11))
EIL-FTYP(IMBT. 1)/FL
IF (IMTY IMBT) EO O XCO TO 420
PSH-FTYP(IMBT 7)
SKH.FTYP(IMBT
SKH-FTYP(IMBT.9)
FT7.PSH/(SKH*(1.-PSH)/(3*EIL)+1.)
PSHPFTYP(IMBT. 8)
SKHFFTYP(IMBT. 10)
FT8.PSH/(SKHM(1.-PSH)/(3*EIL)+1.)
920 FORMAT ///4x.': . NODES. .'.5x, $15.5 x, 15 / 1)$
420 EKHK IMBT. 1)=FTYP(IMBT.9)
EKEP(IMBT.1.1)*EKHK IMET. 1)

EKHK IMBT, 2)=FTYP(IMET, 10)
EKEP(IMBT, 2,1)=EKHK IMBT, 2)
EKEP(IMBT, 2,2)-EKH IMBT, 2) $*$ FTB
EKHIP (IMBT) EXHK IMBT . 1)
EKHJP (IMBT):EKHK IMBT,2)
IND (MBT, 1).1
IND (MBT, 2) $=1$
ALPHA(IMBT, 1)=FTYP(IMBT, 11)
ALPHAC IMBT. 2) $=\mathrm{FTYP}(\mathrm{IMBT}, 12$)
BETA (IMBT. 1) $=$ FTYP(IMBT. 13)
BETAC IMBT, 2) =FTYP(IMBT. 14)
EEXP (IMBT)-EEXPN (IMBT)

KSFI=1 KSFJ 2

BMY(IMET, 1. 1)=BMMY(1MBT.KSFI.1)
RY(IMBT. 1.1)=BMY(IMBT.1.1)/EKHK IMBT. 1)
BMY(IMAT, 1, 2)=BMMY(IMBT,KSFI,2)
RY(IMBT, 1,2) *BMY(IMBT, 1,2)/EKHK IMBT, 1$)$
BMY(IMGT.2.1)= BMMY(IMBT.KSFJ.1)
RY(IMBT 2.1) = BMY(IMBT 2.1)/EKHK IMBT, 2)
BMY(IMBT.2.2) : BMMY(IMET.KSFJ.2)
RY(IMBT.2.2)=EMY(IMBT.2.2)/EKHK IMBT.2)
BMA(IMBT.1.1)=BMY(IMBT.1.1)
BMBC IMBT.1.1)=BMY(IMET.1.1
RA(IMET.1.1)*RY(IMBT.1.1)
RB(IMBT.1.1)=RY(IMBT.1.1
BMAC IMBT.1.2)=BMY(IMET.1.2)
BMB (IMBT, 1,2)= BMY(IMBT,1,2)
RA(IMBT, 1,2)*RY(IMBT,1,2
RB(IMBT, 1,2)=RY(IMET.1.2
BMAC (MBT,2.1)=BMY(IMBT.2.1)
BMBS (MBT.2.1)-BMY(IMBT.2.1)
RA(IMBT , 2, 1) $=$ RY(IMBT , 2,1)
RA (MBT 2.1) PRY(IMET 2,1$)$
BMAC IMBT 2,2) BMY IMBT 2,2)
BMAC IMBT. 2.2) * BMY(IMBT.2.2
BMER IMBT.2.2:-BMY IMBT.2.2
RA(IMBT.2.2)-RY(IMBT.2.2
RBC IMBT, 2.2) \cdot RY(IMBT. 2.2)
RREC IMET. 1.1)-0
RREC 1 MBT. 1.2) $=0$
RRECI IMBT. 2.1: : 0
RREC IMBT.2.2 $1=0$

RREC(IMBT . 2.2)=ø
EKI(IMBT.1)-EKEF (MBE .1 .1
EKIC IMBT.2)=EKEP(IMBT.2.1
RYI(IMBT.1,1)=RY(IMBT.1.1
RYI(IMBT, 1,2)=RY(IMBT, 1.2
RYI(IMBT.2.1):RY(IMBT.2.1
RYI (IMBT.2.2)=RY(IMBT,2.2)
82 CONTINUE
RETURN
END
C
read input general data
SUBROUTINE DATAINCMAXEL, MAXNP , MAXMAT. ISTOP)
COMMON/DATA/NF\&P NEL, NMAT, NOPT, NBODY, KMAS, MODIF, NEL2
COMHON/OISP/X(100),Y(100),ULX(100),VLY(100).

* KODE (100)

COMTON/NOOE/IE (80.6)
COMMON/STEEL/PX(80), PY(80$)$
COHTON/BARR/EPSY, EPSUL, SIGY,ES,ESH
COMTMON/PROTY/E (4), PR(4), ROX 4), THK 4)
COMMON/BOUNO/ NBOUN
ISTOP = ${ }^{\circ}$
READ 5.100) NRP . NEL . NEL2 . NBOUN, NBODY , NOPT , MMAT
IF(NANP.LE MAXNP) GOTO 206
ISTOP = ISTOP +1
200 VRITE(6.281) NNP
IF(NEL.LE. MAXEL) GOTO 262
ISTOP = ISTOP + 1
202 URITE 5 203) NEL
IF (NGMAT.LE.MAXMAT) GOTO 284
ISTOP = ISTOP +
204 VRITE 6.205) NMAT
VRITE 6.205) NBOOY
VRITE 6.207) NOPT
read in nodal point geometry and forces
WRITE(6.208)
VRITE(6.209)
IF(NEL2.NE.0) GO TO 2006
READ (5,101 X KOCE (J), X(J),Y(J),ULX(J),YLY(J),J-I,NN)

(IE(J.6),J=1.MEL)
GO TO 2007
2005 CALL GEN (NEL.NNP)
2907 VRITE($6,102 X J, X(J), Y(J), U L X(J), V L Y(J), J=1, N N P)$
c
read in element configuration and type
VRITE(6.229)
VRITE(6,210)
VRITE(6.211)
VRITE(6,164 X J, IE (J, 1), IE J, 2 3, IE(J, 3), IE(J, 4), IE J, 5),
IE(J,6),J-1 ,NEL)
READ 5.1109) PXX.PYY
1109 FORMAT (2F10.4)
15 DO $165 \mathrm{~N}=1$. NNP
PY(N)*PYY
105 PX(N)=PXX
106 CONTIMNE
C
c READ IN MATERIAL PROPERTIES
VRITE(6.214)
VRITE(6.215)
READ (5.109 XE(I), PR(I), RO(I), THKI),I-1, NHAT)

REACX 5.50) EPSY,EPSUL,SIGY.ES.ESH

- 50 FORMATI 3F12.5.F16.2.F12.5)

IF(NEL2.EO.0) GO TO 1620
NELI = NEL2
001629 NH-I NEL
MTYP2-IE(NH.6)
IFCMTYP2.NE. 2 YGO TO 1620
NELI =NELI-1
MTY: NEL 2-NEL 1
CALL INELG X, Y, MM, NM)
1620 CONTINUE
1000 FORMAT $15,3 \times, 15$)
100 FORMAT 715)
101 FORMAT 1 ID.4Fig.5)
103 FORMATC 615
113 FORMAT(415
107 FORMAT(15.3 F10.5)
201 FORMAT (1 H . $8 \times .25$ HNMBER OF NOOAL POINTS $=, 16 /$)
263 FORMAT($1 H$. $12 \times .2$ FMUMBER OF ELEMENTS - .16/)
265 FORMAT($1 H$. $7 \mathrm{X}, 26 \mathrm{H}$ NUMBER OF ELEMENT TYPES $-.16 /$)
206 FORMAT $1 H$. $2 X$. 3IHBCOY FORCES (1 -Y-DIR X 0 -NONE) - . $16 /$)
207 FORMATI $1 H, 1 X, 32 H K$ IPLANE STRAIN X 2PLANE STRESS $)=16 /$
208 FORMAT $/ / 1 H, 9 X, 5 H$ MODAL, $8 \mathrm{X}, 1 \mathrm{HX}, 10 \mathrm{X}, 1 \mathrm{HY}, 12 \mathrm{X}, 1 \mathrm{HX}, 12 \mathrm{X}, 1 \mathrm{HY}$)
209 FORMATS IH .9X,5HPOINT, $6 X, 5 H C O O R D, 6 X, 5 H C O O R D, 8 X, 5 H$ FORCE $8 X, 5+$ FORC ($/ / 1$
102 FORMATS 1 H . $10 \mathrm{X}, 13,6 \mathrm{X}$, F6.2,5X,FG.2,4X,F8.2.5X,FB. 2)
229 FORMATI IH . 20 HRECTANGULAR ELEMENTS/)
210 FORMAT $/ / / / 1 \mathrm{H}, 8 \mathrm{X}$, THELEMENT $.11 \mathrm{X}, 5 \mathrm{H}$ HOOES)

* $4 \mathrm{X}, 4 \mathrm{HTYP} 2 / / / /$

04 FORMATC (IH . 10X . $5(13,4 \times$) $13,3 \times, 13$)
114 FORMAT((IH , 10x, 4($13,4 \times$).13))
212 FORMAT ////IH, $9 \mathrm{X}, 5 \mathrm{HNODAL}, 7 \mathrm{X}, \mathrm{IHX}, 7 \mathrm{X}, 1 \mathrm{HY}, 7 \mathrm{X}, 1 \mathrm{HY}$)
213 FORMATI 1H . $9 \mathrm{X} .5 \mathrm{HPOINT} .5 \mathrm{X} .4 \mathrm{HOISP}, 4 \mathrm{X}, 4 \mathrm{HDISP}, 4 \mathrm{X} .4 \mathrm{HROTA}$)
108 FORMAT(1H . 10X.13.7X,F3 1.5X.F3 1.5X.F3.1)
214 FORMAT /////HH , 8X, BHMATERIAL. $2 \mathrm{X}, 7 \mathrm{HELASTIC,4X,9HPOISSON'S} \mathrm{)}$

* وHTHICKNESS//)

09 FORMAT(4F12.2)
110 FORMAT $10 X .12 .5 X, F 12.2,4 \times$, F6 2.6X.F6.2.7X.FG.2)
RETURN

RETURN

END

SUBROUTINE RESPONC AK,R,KMAS,MAXDOF ,MAXEL, MAXNP ,NEQ, IBAND, NEL

COMMON/NODE/IE (80.6)
COMMON/STEEL/PX(80),PY(80)
COMMON/DISP/X(1001,Y(100), ULX(100),VLY(100),KODE(100)
COMMON/DYCOF/AMS 2E0), AA(200), BB(200), UI(200), VI(200), A1(200)
COMMON/BARR/EPSY, EPSUL,SIGY,ES,ESH
COMMON/YLDI/EPSLIM,YIELD.SIGMII
COMMON/STATE/ NSIN 102), KOO (100), IPEL (I00), KBAR (100), TITAC 100).
1 EPSMAX(100).EPSMIN 100)
DIMENSION R(NEQ), AK (NEO, IBAND)
OIMENSION CH(100).CV (100).T(100)
DIMENSION BN (30).P(3.150),TNED 5.2)
DIMENSION SIGIA(100).SIG2A(1001,SIGA(200).EPSA(200)
DIMENSION DISPI(200).CK(200.36)
$\mathrm{NI} \cdot \mathrm{O}$
NTP = NEO/2
IFLAG:D
REVIND 1
READ (1)((AK (I, J $1, J=1$, IEANO), $1=1$, NEO)
REVIND 2
OO 5 I=1.NEO
READ (2) (BN(J),J=1, IBARD)
$\operatorname{AMS}(1)=\operatorname{BN}(1)$
DISPI(I):0 0
5 CONTINUE
DO 35 1=1, MAXNA
TITA(I) $=0$ Ø
SIGIAC I $=0.0$
35 SIG2A(1):g
DO 37 J .1 . MAXDOF
SIGA(J)*0.0
3) EPSA(J):0.0 INT. NPRINT, NSTEP, MAXSTP NTYP .NP

READ 5.50) C1, C2, DELT, OT, TIME, GACC
READ 5.52) EPSLIM.YIELD.SIGMII
READ (5.10) NFIX.NVEC.MSPAC.MSIRS, NEED. IT
IF(MSTRS EO O) COTO 15
READ (5.60) (TNED 1.1), TNED (1.21, I=1, NEED)
$15 \mathrm{DO} 116 \mathrm{~N}=1$. NTP
EPSMINKN)--EPSY
EPSMAX(N)=EPSY
NSIMN $=1$
IPEL(N)=i
$K O O(N)=0$
115 KBAR $(N)=1$
OO 20 I-I. NNP
CHK 1) $=0.0$
CV(1$)=0.8$
T(1) $=0$
IF (I.LE.NFIX) GOTO 20
IF (NVEC.EO.11.OR.NVEC.EO 10) CHK 1)=1. 0
IF(NVEC.EO. 11.OR.NVEC EO. ©) CV(I)=1.
20 CONTINUE
IF(NTYP) 22.24 .22
22 DO 23 1-2.NEO. 2
$\mathrm{N}=1 / 2$

$23 \mathrm{CV}(N)=-\mathrm{CV}(N) * \operatorname{GACC}$ *AMS 1)
24 CONTINUE
IF(NFIX.LT NNP $)$ GO TO 26
READ (5.10) NYC
D025I-1. NMC
25 READ (5.96) 11.CHK 11).CV(I1)
90 FORMAT($15.2 F 16.5$)
26 CONTINUE
READ 5,61) ((P(I,J).I=1,2), J*1,NP)
61 FORMAT 2F10.4)
DO 62 I-1.NP
$P(1,1)=P(1,1) / 5$.
$P(2,1)=P(2,1) * 1.05 / .3194$
$62 P(3,1)=0$ D
IF(INT.EO O) GO TO 1 ED
READ 5.30) (UI(1).I=1, NEO)
READ (5,30) (VIC I), I=1, NEO)
IF INT EO.1) GOTO 120
READ (5,30) (A1 (1).1=1. NEO)
coro 215
100 DO 118 I-I. NEO
UI(I) $=0$ D
110 VI(I) $=0.0$
120 CONTIMNE
DO $130 \quad I=1$, NEO
Al(1) $=0.0$
130 R(I)-U1(I)+C2*V1(I)
DO 200 I-1.NEO
$\mathrm{K}=\mathrm{NE} \mathrm{C}-\mathrm{I}+1$
IF K K-IBANO 1150.150 .140
$43 \mathrm{~K}=1 \mathrm{BAND}$
$15000160 \mathrm{~J}=1, \mathrm{~K}$
$\mathrm{I} \mathrm{J}=\mathrm{I}+\mathrm{J}-\mathrm{I}$
160 A1(I)=A1(I)+AK(1.J)*R(IJ)
IF (I-18AND) 180.170 .170
170 L-IbANO- 1
co to 190
$180 \mathrm{~L}=\mathrm{I}-1$
iFCL 1200.200 .190
190 11.I
$00195 \mathrm{~J}=1 . \mathrm{L}$
II-II-I
195 Al(I)*Al(I)+AK(II.J+1)*R(II)
200 continue
c call load for incremental forces
CALL LOADK AK, AMS,R,P,AA, BB, T.CH,CV, NEQ, IBAND, TIME, NI, NFIX, IFLAC
DO $210 \mathrm{M}=1$, NEO
IF(AMS(M) EO O) GO TO 210
$A 1(M)=(R(M)-A 1(M)) / A M S(M)-C 1 * V I(H)$
210 CONTINUE VRITE(6,300)
215 CONT INUE
BITA = 25*((1.+DELT)**2)
ALPHA $=5+$ DELT
DEAL-ALPHA/BITA
$A D=1 /(B I T A * D T * D T$
AII=DEAL/DT
A2 $=1 . /\left(\mathrm{BIT} \mathrm{TA}^{2} \mathrm{DT}\right)$
A3-(:5/BITA)-1
A4-DEAL-1
A5-DT*(5*DEAL-1.)
A6 = AD
$A 7=-A 2$
$A B=-12$
$A 9=(1 .-A L P H A) \times D T$
A1D=ALPHAKDT
CONI $=1 .+$ C2*AI
CON2 $=$ C 1 सA11 + AG
$\mathrm{B} 2=6.1 \mathrm{OT} * * 2 .+\mathrm{CI} * 3$. IDT
$B 1=3 * C 2 / D T+1$.
IF(KMAS.EQ.D) VRITE(6.3e5)
IF(KMAS.GT.0) VRITE 6.310)
IF (NTYP.EO.O) VRITE 6.317)
IF NTYP. GT. ©) VRITE(6,318)
VRITE(6.315) INT. NPRINT, NSTEP, NTYP, NP
VRITE(6.320) DT, ALPPHA.BITA, DELT, C1,C2, GACC
VRITE 6,335) (1, TNED 1,1).TNED 1,2),1:1, NEED)
VRITE(E.325) (I,T(I),CHK I),CV(I).I-1,NNP)
URITE(6.330) (J.P(1,J),P(2.J),P(3,J),J-1, MP)
WRITE 6.400) TIME
URITE(6.345) (I.UI(2*I-1),UI(2*I),V1(2*1-1),VI(2*I),A1(2*I-I). *A1(2*1).I:1.NAP)
300 FORMATC IHI.15X.'\#\#\#\# THE FORCED RESPONSE PROBLEM *****',//15X.
1 \#\#\#\#EkENEMMARK BETA METHOO ****** *'.//)
305 FORMATC //.15x.'EFFELUMPED MASS MATRIX VAS USED ****'.//)

315 FORMAT //.10X.'** INT ** NPRINT \#\# NSTEP ENNTYP NP EE**

* // 6x.5I10)

317 FORMATC//15X.'R\#\# FORCING FUNCTION RESPONSE ANALYSIS **\#\#\#'// 318 FORMATI //i5x.' IKFF EARTHOUAKE RESPONSE HISTORY ANALYSIS $* * * *$. 320 FORMATI//IEX.' TIME INTERVAL = ',F10.6.1/15X, 'ALPHA= '.FID.5.
*' BITA = 'F10.5.5x.' DELT - 'FID.5.//15X. ' CONSTI = 'FIO.5.
*' CONST2 = .F18.5.5X. GACC . .FID.5)
325 FORMAT ///I0X.' **\#\# FORCE VECTOR ****'.//(115.F10.4.2F15.6))
 335 FORMATI//10X, "**** FORCES AND STRESSES CALCULATED AT FOLOYING
(E INTERVAL'//5X.'STEP'.16X.'FROH'.18X.'TO'.//IB.4X,2F28.5)
400 FORMAT(///i5x.' INITIAL COMOITION AT TIME = '.F8.5//)
345 FORMAT $/ /(5 X, 15,6 F 15.53)$
$\mathrm{KK}=1$
100 -
1EOUIL. 20
KEOUIL=0
REVIND 1
READ $1 \times($ AX($1, J), J=1$, IBAND $), I=1$, NEO $)$
DO $101 \mathrm{M}=1$, NEO
DO 102 L.1. IBANO
102 CK(M,L)=AK(M,L)*C2

REVIND 10
VRITE 10) ((CK(I.J).J-t.IBAND).1-1, NEO)
DO 280 NI-i.NSTEP
KBAL- 0
TIME - TIME + DT
IFINI.NE. I. AND.IDO.EQ. 0 ICO TO 266
REVINO I
REACX $1 \times($ AK $1, J), J=1,1$ BAND $), 1=1$, NEO $)$
DO 250 M-I. NEO
DO 245 L-1. IBAND
245 AK(M,L)•AK(M,L)+A11\#CK(M.L)

CALL BANSOL I.AK.R.NEO.IBAND.NEQ. IBAND)
REVINO 4
VRITE $4 \times($ AK $1, J), J=1,18 A N O), 1=1$, NEO
265 DO 265 I=1.NEO

265 B8(1) $=-$ A $4 * V 1(1)-A 5 * A 1(1)$
CALL LOAD AK, AMS,R,P,AA,BB,T,CH,CY, NEO, IBANO, TIME, NI, NFIX, IFLA
REVIND 4
READX $4 \times($ AK $(1, J), J=1$, IBAND $), 1=1$, NEO $)$

```
SOLVE FOR DISPLACEMENT IMCREMENT
```

CALL BANSOL(2.AK.R.NEO.IBAMO, NEG, ibAND)
DO 270 I=1.NEO
270 DISPI(1)=R(1)
KEOUIL=KEOUIL+1
IT-1EOUIL-KEOUIL
IF(IT.EO.0) KEQUIL-O
C Iterate for convergence if needed
IF(TIME.LT O.10) GO TO 27
CALL ITERATIAD,A11.A2,A3,A4,A5,AK,A7,A8,A9,A10,C1.C2,OISPI, IBAND, NEQ,AK,R,AMS,AI,VI,UI,NI,AA J
2700271 1.1.NEO
R(I)=A7*VI(I)+A8*A1(I)+A6*DISPI(I)
VI(I)=VI(I)+A9*AI(I)+A10*R(I)
Al(1)=R(I)

A1（I）：R（I）
UI（I）$=$ DISPI（I）+ UI（ $I)$
271 R（I） $\mathrm{CUI}(\mathrm{I})$
CALL NEVOAV（UI，VI，AI ，NI，TIME）

1 TIME）
CALL STRESSIR，X，Y．SIGIA．SIG2A，EPSA，SIGA，MAXDOF ，MAXEL．
MAXNP．NI，MEO，KBAL．IFLAG．TIME．IT．DISPI）
279 CONTINUE
VRITECG．1022）NI ．KBAL

IFIKBAL．EO．© NOO TO 280
DO $299 \mathrm{~J}=1$ ．NNP
ULX（J）＝0 0
$299 \operatorname{VLY}(J)=0.0$
$100=100+1$
CALL ASEMBL ISTOP ，MAXEL，MAXAP，MAXDDF，MAXBU，NI）
280 CONTINUE
10 FORMAT（ 615 ）
33 FORMAT（5F15．5）
50 FORMAT（SFB 5．F10 5）
52 FORMAT 3 F10．4）
GO FORMAT GF10．4）
RETURN
END

＊IGANO．NEO，AK，R，AMS．AI，VI．UI．NI，RI）
DIMENSION AK（NEQ．IEAND I，R（NEO）
DIMENSION DI SPI（200），AMS（200），A1（200），VI（200），U1（200）
DIMENSION RI（200）
ITE日 B
RTO． 0 0010
1 TEMAX 20
503 DO 10 $1=1$ ，NEO
RI（I）$=0.0$
10 R（I）＝U1（I）＋DISPI（I）
ITE $=1 T E+1$
DO 20 1：1．NEO
$20 \mathrm{R}(\mathrm{I})=\mathrm{C} 2 \times(\mathrm{Al} \mid$ 天DISPI（I）－A4＊VI（I）－A5＊AI（I））＋R（I）
REVIND 1
READ（1）（（AK（1．J）．J：1，IBAND）， $1=1$ ，NEO ）
DO 700 I＝1，NEO
$x=$ NEO $-1+1$
IF（K－IBAND $) 650,650.640$
$640 \mathrm{~K}=18$ AND
650 DO 650 $J=1, K$
$1 J=1+J-1$
563 RI（I）$=$－$\times(I . J) * R(1 J)+R 1(1)$
IFI I－IEAND 1680.670 .670
670 L－IBAND－1
co to 690
68 L－1－1
IF（L）700．7e0．690
693 11－1
DO $695 \mathrm{~J}=1$ ，L
II＝II－I

760 CONTINUE
FACI－AD＋A11＊CI
FAC3：－A3－A5＊CI
DO 40 I－1．NEO

$R(1)=-A M S(1)$ RR（I）
4 （ R（I）$=R(1)-R I(I)$

REVIND 9
READ（9）（RI（1）．1－1．NEO）
DO 60 T－1．NEQ
$60 R(I)=R(I)+R I(I)$
61 REVIND 4
READ（ 4 ）（（AK（I，J），J＝1，IBAND ），I＝1，NEO）
CALL BANSOL（2．AK．R．NEO．IBANO，NEQ，IBAND） DNORM＝0
DINORM－0 0
DO 300 1－1．NEO
RI（I）＝UI（I）＋DISPI（I）＋R（I） DNORM＝DNORM＋RI（I）KRI（I）
320 DINORM＝DI NORM + R（ 1 ）＊R（I）
TOL＝DNORMKRTOL
IF（DINORM LT．TOL ）GO TO 400 DO 120 $1=1$ ，NEO
DISP（1）＊DISPI（I）＋R（I）
$120 \mathrm{R}(1)=\mathrm{RI}(\mathrm{I})$
IF（ITE LT ITEMAX）GO TO 500
URITEC 6.2010 WHI．ITE VRITE（6．2020）
420 ICOUNT $=2$ VRITE（6．2222）NI．ITE
 RETURÑ
2010 FORMATC／／／32HEOUILIERILM ITERATION IN STEP＊． $15 . /$
1 32HNUMBER OF ITERATIONS＊．15／／
2020 FORMATI／／／28HITERATION LIMIT REACHED STOP） ENO

C
C
C
COMPUTE UPDATED DISPL ．VEL．AND ACC．VECTORS
SUEROUTINE NEVDAV（DIEP．VEL．ACC，NI．TIME）
COMMON／DATA／MNP，NEL，MMAT，NOPT，NBOOY，KMAS，MODIF，NEL2 DIMENSION VEL（201），ACC（200）．DISP（200）
VRITE 6．70 INI．TITE
OD 103 11－1．M．NP
VRITET 6.34511 ．DISP（ $2 * 1-1$ ）．DISF（2＊1）
103 CONTINUE
VRITE（12．347）TIME．DISP（65）．DISP（105）．DISP（155） VRITE（6．347）TIME．DICF（65）．DISF（105）．DISP（155）

F2H＇NODE＇． $7 x$ ．＇XDISP＇． $9 x$. ＇Y－DISP＇
345 FORMAT $2 \mathrm{X}, 15,2 \mathrm{~F} 15$ 6）
47 FORMATIFI5 5．18X．3F15．5）
REIURN
END

ELASTICITY mATRIX c
SUBROUTINE ELASTIEPSAA，EPSB，SIGA，SIGB．SIGIAA，SIG2AA，SIGIB，
＊SIG2B，ALFA，NI，NN，NM，MAXNEQ．MAXNP，C，KBAL，IFLAG．MTYP ）
COMON／PROTY／E（4 ），PR（ 4 ），ROC 4 ），TH（ 4 ）
COMTON／YLDI／EPSLIM．YIELD．SIGMI 1
COMTSTEL／PX（80），PY（ 8 ©）
COMTON／STATE／NSIN（ 108 ），KOD（100），IPEL（ 100 ），KBAR（ 100 ），TITA（ 100 ）
EPSMAX（100），EPSMIN（ 100 ）
DIMENSION EPSAA（ 3 ），EPSE（ 3 ），SICB（ 3 ），SIGA（ 3 ），C（ 3,3 ），CSX 3,3 ），OELTAL
PIA－EPSAAC 1
PPA－EPSAA（2）
P1B＝EPSB（ 1 ）
P2日－EPSE（2）
$P 2 B=E P S B(2)$
$P P B=E P S B(3)$
ALFA＝ALFAK3．1415925／180．
BITAD－TITA（NN）
DO 5 I． 1.3
DO $5 \mathrm{~J}=1.3$
$5 \mathrm{C}(1, \mathrm{~J})=0.0$
IF（IPEL（NN ）．EO． 3 ） 60 TO 10
92 SBI＝SIGB（1）
SB2＝SICB（2）
SB3－SIGB（3）
SIA＝SIGIAA
SIB：SIGIB
S1B：SIG1B
S2A－SIG2AA
S2B－SIG2B
ST－SIGHII
IF（BITAO．EO．D ©）GO TO 141
PI＝3．1415926
CI $=\cos$ BITAQ）
SI－SINKBITAR）
SS2＝SIN 2＊BITAO）
$\mathrm{C} 2=\cos (\mathrm{BITAO}-\mathrm{PI} / 2$.
S2－SINBEITAD－PI／2．）
EPERI－P1B＊C1＊C1＋P2B＊S1＊S1－PPB＊C1＊S
EPER2－P2B＊C2＊C2＋P18＊S2＊S2－PPB＊C2＊S
SPERII＝SBI＊SI＊SI＋SB2＊C1＊CI－2．＊SB3＊C1\＃S
SPER12－SB1＊C2＊C2＋SE2＊S2＊S2－2．＊SB3＊S2＊C2
SPER1－－PR（MTYP ）\＃SPER11／E（MTYP）
SPER2 $=-P R\left(\right.$ MTYP ）${ }^{(S S P E R 22 / E(M T Y P)}$
$141 \mathrm{KD} \cdot \mathrm{KOO}(\mathrm{NN})$
CALL DCRACK C．KD，NN，NM，NI，SIB，S2B，ALFA，EPERI，EPER2．SPERI，SPER2．
SIA，S2A，ST，MTYP，KBAL ，SPER11 ，SPER22 ，BITAO）
TITA（NN）：BITAB
Call bar（nsin，
DO $35 \mathrm{I}=1.3$
DO $35 \mathrm{~J}=1.3$
$35 \mathrm{C}(1, \mathrm{~J}) \cdot \mathrm{C}(1, \mathrm{~J})+\operatorname{cs}(1, \mathrm{~J})$
20 RETURN
END
MONITOR OPENING OR CLOSING OF CRACKS
SUBROUTINE DCRACK C C．KD．NN，MM，NI，SIB，S2B，ALFA，EPER1，EPER2，SPERI．
SPER2，SIA，S2A，ST，MTYP，KBAL，SPER11．SPER22．BITAD
DIMENS
KDI－KD
IFCKD NE OMO TO
IFIKD．NE O SIB 105
IF SIB．GT ST KD－
IFL S2B．GT．ST．AND KD EO． 1 KD＝3
IFIS2B．GT ST AND．KD．EO． $\mathrm{K}_{\mathrm{KD}}=2$
co to 340
5 CO TO（ $110,120.130 .140,150,160,170.180$ ），KD
110 IFIEPER1 LT．SPERI KD＝4
IF（S2B．GT．ST．AND KD．EO．4）KD． 5
IF S S2B GT ST．AND．KD．EO． 1 ）KD＝ 3 GO TO $3+0$
12 IF（EPER2．LT．SPER2 KD－G IF（SIB GT ST．AND．KD．EQ．G）KD＊7 IF（SIB．CT．ST．AND KD EO． 2 ）KD． 3 GO TO 340
130 IF（EPERI．LT．SPERI）GO TO 13 IF（EPER2．LT．SPER2）KD．7
GO TO 348
131 KD＝5
IF（EPER2．LT．SPER2）KD＝8
Go TO 340
146 IF SSPERII．GT．．D AND．SPER12．GT．ST KD． 3
IF SPERII GT．D．AND SPERI2．LT．ST KD．
IF SPERII．GT． 0.0 ）$G 0$ TO 340
IF SPPERI2 GT．ST KD＝5
GO TO 340
150 IF（SPERII LT． 0.0160 TO 151 $\mathrm{KD}=3$
IF（EPER2．LT ．SPER2 ）KD＝7
CO TO 3H2
151 IF（EPER2．LT．SFER2）KD＝8 GO TO 342
160 IF（SPER12．LT © O OGO TO 161
$K D=2$
IF SP
IF（SPERII GT．ST）KO：3
1FIS
61 IF（SPERII GT ST KO． 7
GO TO 340
173 IF（SPER12 LT O © CO TO 171
KD． 3
IF（EPERI．LT．SPERI）KD． 5

IF(EPERI LT SPER1) KO=5
co $103+0$
171 IF(EPERI LT.SPER1) KO=8 Go to 340
180 IFC SPER11 LT \mathfrak{G} AGO TO 181 KD $=7$
IF SPER12 GT. K) KD=3
GO TO $34 a$
181 IFCSPERI2 GT D KO 5
34 IF (KD.EO O) BITAO:
IF(KD.EO ©) GO TO 98a
IF(KDI NE D) GO TO 9\&8
BITAO-ALFA
988 CALL CRAC(C.BITAO,KD,NN,NT1,NI.MTYP, KBAL IF KOI NE KD) KBAL=KBAL +1 RETURN
RETU
END
c
c
c

SUBROUTINE CRACCC.BITAQ.KD.NN.M,NI,MTYP.KBAL)
COMMOH/STEEL/PX(EA),PY(ED)
COHMON/PROTY/E (4),PR(4), ROK 4), THC 4)
COMMON/BOUND/ NBOUN
DIMENSION C(3.3).T(3.3),D(3.3).CT(3.3)
C Shear factor - Nu
IAA.D
$N U=5$
DO 10 I-1.3
D $10 \mathrm{~J}=1.3$
CT(1.J) 0 ©
$10 \mathrm{C}(1, J)=00$
Pl=3 1415926
A $=$ E (MTYP)/($\mid-P R(M T Y P)$ FRR(MTYP)
B1-A1*PR(MTYP
IF XD.EQ O OR NN LE. NBOUN)GO TO $11 \dot{1}$
GO TO (120.130.140.110.130.110.120.110),KD
$110 \mathrm{C}(1.1)=\mathrm{Al}$
$C(1,2) \cdot B 1$
C(2.1) * 81
$C(2,2)=11$
C(3,3) =A1*(1.-PR (MTYP) $1 / 2$
GO 10100
120 ANGLE=BITAOTPI/2
C(1.1) $\mathrm{E}(\mathrm{MTYP})$
C(3.3)=A1*(1 -PR(MTYP)) MNJ/2
60 TO 50
130 ANGLE=BITAD
C(2,2) E(MTYP)
$C(3.3)=A 1 *(1-P R(M T Y P)$) $\because N J / 2$
GO TO 50
$140 \mathrm{C}(3.3)=A 1 *(1-P R(M T Y P)) \approx N / 2$.
ancle-bitad
IFI IAA GT O)ANGLE-BITAC+PI/2.
50 Si -SIN ANGLE)
$\mathrm{Cl}=\cos (\operatorname{ang} \mathrm{L} E)$
$\mathrm{T}(1,1)=\mathrm{Cl}$ *Cl
$\mathrm{T}(1,2)=\mathrm{Si}$ \#S
$T(1,3)=C 1 * 51$
$T(2,1) \cdot 51 * 51$
$T(2,2)=C 1 * C I$
$\mathrm{T}(2,3)=-\mathrm{CinSl}$
$T(3,1)=-2 * C 1 * S$
T(3.2)-2 * $C 1 * 51$
T(3.3) Ci:Cl
T(3.3)*CI*Cl-SI*SI
DO GO IR=1.3
D IR.IC) $=6.0$
D IR.IC)=0.6
DO 7 I $I N=1.3$
70 D(IR,IC $=D(I R, I C)+T(I N, I R) * C(I N, I C)$
60 contimue
DO 90 IR=1.3
DO 90 IC=1.3
$C(I R, I C)=60$
0080 IN:I. 3
80 C(IR,IC $)=C(I R, I C)+D(I R, I N) \neq T(I N, I C)$
$90 \mathrm{C}(1 \mathrm{C}, \mathrm{IR}) \cdot \mathrm{C}(\mathrm{IR}, \mathrm{IC})$
IF(KD.NE.3) GO TO 120
IF(IAA.NE E) GO TO 96
D0 95 1-1.3
DO $95 \mathrm{~J}=1.3$
95 CT(I.J) $=\mathrm{C}(\mathrm{I} . \mathrm{J})$
IAA-IAA+I
GO to 142
$960097 \quad \mathrm{I}=1.3$
$0097 \mathrm{~J}=1.3$
$97 \mathrm{C}(1 . \mathrm{J}) \cdot \mathrm{C}(1 . \mathrm{J})+\mathrm{CT}(1 . \mathrm{J})$
100 RETURN
END
C
C
c

SUBROUTINE YIELOGEPSAA,EPSB.SIGAA.SIGB.SIGIA,SIGIB,SIG2A,

- SIG2B.NN.NI .MAXNEQ.MAXNP. IPEL.C.EPS.MTYP.KR.DELTS)

COMHON/YLDI/EPSLIM.YIELO.SIGMI
COMHON/STEEL/ PX(80),PY(80)
COMMON/BARR/EPSY.EPSUL,SIGY,ES.ESH
COHMON/PROTY/ E(4), PR(4),RO(4),TH(4)
DIMENSION EPSAA(3), EPSE(3). SIGB(3), SIGAA (3), C(3, 3). DELTA 3
DIMENSION CELSIG 3), DELEPS (3), TAU (3), DEPS (3), OELTM(3), DELTS(3)
OIMENSION IPEL(MAXNP)
IFELI = IFEL (NN)
CI = ES*PX(NN)
GO TO (5420.550 .540 .550 .540 .560), KR
540 EY -ES
GO TO 570
550 EY-ESH
GO TO 570
563 EY-0

560 EY:0 0
579 C2-EYEPY(NIN)
IF(EPS.LT EPSLIM) IPEL(NN)-3
IF (IPEL(NN).EO. 3) CO TO 106
YLD=YIELD
All*E(MTYP)/(1.-PR(MTYP)**2.)+C
A12*E(MTYP)/($1 .-P R(M T Y P) * * 2).+C 2$
BI-AI*PR(MTYP)
B2:E(MTYP)/(2.*(1 +PR(MTYP)))
DO $10 \quad 1=1.3$
TAU (I) $=0.0$
DELSIG(I)=SIGB(I)-SICAA: I)
10 DELET ; (1)-EPSB(1)-EPSAA()
DELSIG 1)-A11*DELEPS (1) +B1*DELEPSS 2)
DELSIG(2)=B1*DELEPS $(2)+A 12 *$ DELEPS 2)
DELSIGr 3): B2*DELEPS 3)
$00201=1.3$
20 TAU(I) : SIGAA(I) +DELSIC(I)
Sx-TAUK 1)
SY=TAUY 2)
SXY=TAU(3)
F-SORT($5 X * S X-S X * S Y+S Y * S Y+3 * S X Y * S X Y$) $+Y L D$
IF(F) 130.30 .40
3 I IPEL $N N$). 1
DO $50 \quad 1=1.3$
C
C
SICB I $1=1.3$
60 to $5 e 0$
40 IF (IPEL (NN).EQ. 1) 90 To 45
IPEL (NHI $=2$
RAT10.0 0
DO $421=1.3$
42 taU (I) =SIGAAC ()
GO TO 150
45 IPEL(NHV)=2
DO $300 \quad 11=1.3$
300 TaU((I)-SIGAa(II)
Sx=TAUK 1)
SY-TAUY 2)
SXY=TAU(3)
DX=DELSIG(1)
DY-DELSIG(2)
DY-DELSIG(2)
FI-SX*SX+SYESY-SX*SY+3*SXY*SXY-YLO*YLD
F1-SX*SX+SYESY-SX*SY+3 \#SXYESXY-YLO*YLD
F2=DX*DX+DY\#DY-DX*DY+3.*DXYKDXY
$F 3=D X * S X+D Y * S Y+3$ \#SXY*DXY
F4-F3*F3-F2*F1
IF (F4.LT.0.0) F4-0.0
RATIO: ($-\mathrm{F} 3+$ SORT(F4))/F2
VRITEC 5,99 FI,F2.F3,RATIO

910 FORMAT / 4 X . 'NODE. '. 13.3X.'YIELDG FUNCTION FI $=\cdot . \mathrm{F} 12.8 / /$) 0055 11-1.3
55 TAU(II)=SIGAA(II)+RATIO*DELSIG II
$150 \mathrm{IT}+20$. . $\operatorname{SORT}(F) /(-Y L D)+1$
IF(MT.GT.2б) $\mathrm{HY}=20$
XMO (1.-RATIO 3/FLOAT(MM)
DO 60 $11=1.3$
60 DEPS (1)) XM*DELEPS (11)
DO $83 \quad 11=1.3$
DELTA(II)-0.0
83 DELTMK (1):0.0
DO 80 IM=1, MM
CALL DELPAL TAU.DEPS.C.YLD.MTYP
$C \quad C(1,1)=C(1,1)+C$
$\mathrm{C}(2.2)=\mathrm{C}(2.2)+\mathrm{C}$
DO 70 11:1.3
DO $70 \mathrm{Ji}=1.3$
DELTHK 11)-C($11 . \mathrm{J} 1$) ${ }^{\text {DEPSS }} 11$
7 TAU(11)-TAU (II)+DELTME 11)
Sx-tauk 1)
SY-taut 2)
SXY=TAU(3)
FA=SX*SX-SX*SY+SY*SY+3.*SXY*SXY
FB:YLDEYLD
F-FA-FB
IF(F LE 1.E-®4) 10 TO 80
COEF = SORT (FB/FA)
DO 82 I1=1.3
DELTA(II)-DELTA(11)+DELTMK I!)
82 TAU (11)=TAUK 11) \% COEF
CONTINUE
DO 475 11-1.3
475 DELTS (11)=DELTA(11)
DO 75 1t-1.3
C 75 SICB(I1)-TAUC II
106 IF (IPEL(NN).NE. 3) 60 TO 500
IFC IPELI.EO. 3 YOO TO 500
DO 575 11=1.3
575 DELTS (1)-SIGB(11)
VRITE 6.599) NN, N I
699 FORMAT / $5 \times$, 6 HNOOE: . $13.5 \times, 17$ HCRUSHED AT STEP = . $13 /$)
500 RETUPN
END
C
C
C FORM C MATRIX OF YIELDED CONCRETE ELEMENT
C FORM C MATRIX OF YIELDED CONCRETE EL
C SUBROUTINE DELPAL (TAU.DEPS.C.YLD.MTYP)
SUBROUTINE OELPAL (TAU.DEPS.C.YLD, MTY
COMHON/PROTY/E 4), PR(4), RO(4), THK 4)
COMTON/PROTY/E 4), PR (4),RO 4),
DIMENSION TAU(3), C(3,3), DEPS 3)
DI =PR(MTYP)/(PR(MTYP)-1.)
SM=(TAUC (1) + TAUK 2) $2 / 3$
SX=TAUC (1)-SM
SY- TAU (2)-SM
SS-TAUT 3)
$\mathrm{H}=2 . \operatorname{W1/3}$
PeSS/(1.+PR(MTYP))

$0 * R+2 *(1$-PR(MTYP)) *
$C(1.1)=5 Y * S Y+2 . * P$

REVIND 1

READ (1) ((AK(I, J), J-1, IBAND), I=1, NE()
DO 1700 I-1.NEO
1700 Be(I)-UI(1)
188: $188+1$
GO TO 170
270 RETURN
END
SURROUTINE GENK MEL, NNP)
COHMON/DISP/X(100),Y(100),ULX(100),VLY(180),KODE(180)
COMMON/NODE/IE (80.6)
READ 5.100) NSP
DO 5 1SP $=1$, NSP
READ 5, $101,1, X(1), Y(1)$
READ (5,102) ISCALE, JSCALE, NX, NY, DRX, DRY
READ (5.103) DRBX, DREY
DO $10 \mathrm{~K} \cdot 1$. ISCALE
IAA- 0
LS: JSCALE-1
DO 10 1=1.LS
IAA $=1 A A+1$
DR-DRY
IF(IAR.EQ.3) DR-DREY
Y(K+NY\#I)=Y(K+NYK(I-1)) + DR
IFt IAA.EO.3)IAA-D
10 CONTINUE
DO 20 I:1.ISCALE
KS:JSCALE- 1
DO 2a J=1.KS
$x(1+N Y * J)=X(1+N Y *(J-1))$
20 continae
JMAX $=16$
JAA=ø
IAR=D
$5030 \mathrm{M}=1 . \mathrm{NEL}$
$J A A=J A A+1$
1AA=1AA+1
IMAX=4
IF(M.GT.16) JMAX=19
NNX: 1
IF(JMAX.EO. 19.AND.JAA.LE. 4) IMAX-IMAX 1
IF I IMA.EO. IMAX. ARD. JAR. ME. JMAX) MNX $=2$
IF JMAX.EO. 19.AND.JAA.LE. 4) IMAX = IMAX + 1
IF(M.NE. 1 YCO TO 35
IE(M.1)=1
IE(M. 2) $=1 E(M .1)+N X$
$I E(M, 3)=I E(M, 2)+N Y$
IE(M, 4) $=1 E(M, 1)+N Y$
CO 7032
350040 1-1.4
48 IE(M, I)=IE(M-1.1) + NASX
$32 \operatorname{IE}(\mathrm{H}, 5)=1$
IE (M.G) $=1$
IF JAA EO. JMAX) IE(M.6)=2
IF (IAA.EQ. IMAX)IAA-I
IF JAA.EO JMAX)JAA=0
30 CONTINUE
DO 60 N=1, NNP
ULX(N)・ロ.
VLY(N): 0.
IF(N.LE. ISCALE $\operatorname{KODE}(N)=3$
100 FORMAT(15)
101 FORMATI 15.2F10.3
101 FORMATI 15.2F10.3)
102 FORMAT($415.2 F 5.2$
103 FORMAT($2 F 10.2$)
RETURN
REND

APPENDIX D

PUBLICATIONS
associaignionime aovatcement
WOEL:IFGAMO SIMULATIJM PECHMICNES INEMTERPRISES

Dear Contributor,
Your proposal
Influence of stiffness degradation and strain hardening on the ductility demand of the coupling beams of coupled shear walls by O. Chaallal \& C. Thomas
for the International 83 AMSE Summer Conference "Modelling and Simulation" is accepted.

1 invite you for the presentation (Nice: September 12-14, 1983).
The full texts are accepted up to the Conference, but I invite you to send them as soon as possible from now to allow the edition of the Proceedings in the shorter delay after the Conference. The participants will receive at the Conference the Volume of Summaries of accepted Communications.

The publication in the Proceedings implies the enrolment for the Conference. Papers accepted but not presented at the Conference will be published in AMSE Reviews. Full texts must be typed (use good typewriter and ribbon) on standard sheets of paper of about $21 \times 29,7 \mathrm{~cm}$, with margins of 2 cm on the left and on the right. A short abstract precedes the text. We make a format reduction for the publication; so don't use too small characters.

All contributors will receive in due time the last Announcement of the Conference giving all informations. The Conference will be held at Nice University, Parc Valrose, Nice.

Sincerely yours,

G. MESNARD

President of the AMSE
Takeda's moment-rotation relationship (ref. 1). This simulates two
important reinforced concrete behavioural features namely stiffness
degradation and strain hardening.
The objective of this study is to examine the variation of the ductility
demands on the coupling beams of coupled walls as affected by

[^1]$$
\mu_{r}=\frac{\theta_{\max }}{\theta_{y}}
$$
Where $\theta_{\max }$ is the maximum absolute rotation and θ_{y}, the rotation
Where $\theta_{\max }$ is the maximum absolute rotation and θ_{y}, the rotation
corresponding to yield as shown in Fig. (2). The validity of such
corresponding to yield as shown in Fig. (2). The validity of such a ductility has been demonstrated by Fintel et al (ref. 4).

6. INFLUENCE OF YIELDING MOMENT ON DUCTILITY DEMAND

 representing the variation of ductility demand in terms of the variations in yielding moment has been presented (fig. 4). The curve was
 5) and to provide the desired ductility with a very good approximation. Thus simplicity, economy and efficiency were achieved. The following steps describe the procedure:

正
 corresponding ductilities $\mu_{\text {min }}$ in each members.
c) Compute the ratio ($\mu_{r} / \mu_{\min }$) in which μ_{r} is the desired ductility.
d) From the curve of fig. (4) derive $\left(\mathrm{dM} / \mathrm{M}_{\min }\right)$
e) Now compute the needed moment variation as
$d M=\frac{d M}{M_{\min }} \quad M_{y_{\text {min }}}$
wp
floor level. The computer program DRAIN2-D (ref. 2) developed at the
University of California, Berkeley, was used in this investigation.
Dynamic response was determined using step-by-step numerical integration based on a constant acceleration during each time interval. A damping coefficient of 5% of critical was assumed and the damping matrix was computed as a linear combination of the stiffness and the mass matrix.

4. HYSTERESIS RULE

As previously stated, the hysteretic Takeda's model with stiffness degradation capability was used. The stiffness degradation is simulated by reducing the unloading and reloading stiffnesses. The unloading stiffness, K_{u}, depends on the maximum hinge rotation and is controlled by the input parameter α as shown in fig. (2). α must be non negative and chosen such that the unloading slope is.steeper than the reloading one in order to avoid a negative hysteresis loop, similarly the reloading stiffness is controlled by a parameter β.

5. DUCTILITY DEMAND

When subjected to a severe earthquake, the structure must have the capability of undergoing inelastic deformation reversals without substantial loss of strength. These inelastic deformations are often defined as ductility demand. This can be measured in terms of strains, displacements, curvatures or rotations and is the ratio of the ultimate to yield value of the measure considered, i.e.,

$$
\begin{aligned}
& \quad \mu=\frac{u}{\Delta_{y}} \\
& \text { The ductility used in this study is the rotational one and is defined } \\
& \text { as: }
\end{aligned}
$$

7.2 Reloading Slope Variation. Similarly, the ductility demand on
the coupling beams were computed for a varying parameter β and a constant α of 0.4 . The results are shown in table 2 for values of yield moment (My) of 100,150 , and $200 \mathrm{kip} . \mathrm{ft}$ respectively. The ductility variation of ${ }^{d}{ }_{(}(\xi)$ defined with respect to μ_{0}, corresponding to $\alpha=0.40$ and $\beta=0$, is now plotted against β for zone (1) in fig. (6). The results show that
i) The ductility variation was not substantial as β varied.
ii) The ductility variation increases with increasing β.
iii) The ductility variation is lesser for stronger coupling劵
EFFECT OF STRAIN HARDENING ON SW2
When subjected to reversal of loading, the behaviour of a beam can be basically described by its moment-rotation relationship. The latter can be idealised either as elastic perfectly plastic, i.e., no strain hardening is accounted for ($\mathrm{p}=0$ in fig. 2) or as elasto-plastic with strain hardening ($p \neq 0$). As far as reinforced concrete is concerned, a more realistic model would be the one which takes into account strain hardening effect.

[^2] variation of p on the ductility demands of the coupling beams of the
f) Compute the yield moment required
7. Unloading Slope Variation. The influence of the variation of the unloading stiffness $K u$ is investigated. Setting My $=100 \mathrm{kip} . \mathrm{ft}$ for all the coupling beams and the walls elastic, the ductility demands were computed for various values of α and a constant $\beta=0$. The results are shown in table 1. The relevant ductility demand variations $d \mu(\%)$ with respect to the ductility demand $\mu 0$, corresponding to $\alpha=0$ and $\beta=0$, are also shown in table 1 between brackets and are plotted against the variable a for zone 1 in fig. (5). Table 1 and fig. (5) show clearly that ductility demand increases with increasing α. To examine the effects of the strength of the coupling beams on this variation, two more values of yield moments were considered $M y=150$ and $M y=200 \mathrm{kip}-\mathrm{ft}$ and similar procedure was followed. The results are also shown in table 1 and the variation $d \mu_{(\%)}$ for the first zone is also plotted in fig. (5) for comparison. As can be seen, as α
varies from 0 to $0.40, d \mu(\%)$ varies from 0 to a maximum value of
for $\quad \mathrm{My}=100 \mathrm{kip} \mathrm{ft}$

9.92 \% for $M y=200 \mathrm{kip} \mathrm{ft}$

This shows that the variation of ductility demand is higher for stronger coupling beams.
coupled shear wall SW2. The walls were kept elastic throughout the entire earthquake history and no stiffness degradation effect was considered. The value of strain hardening parameter p was varied from 0.01 to 0.16 and the consequent changes in plastic deformation were recorded. Furthermore, to examine the possible infıuence of beam strength, on the magnitude of these changes, three values of yield
 the results being shown in table 3. The variation of ductility demand ${ }^{\mathrm{d} \mu}{ }_{(\%)}$, defined with respect to μ_{0} which corresponds to $\mathrm{p}=0.01$, is also shown in table 3 and plotted against p in fig. (7) for zone 6. The results show clearly that ductility demand decreases as the strain hardening parameter p increases. The variation of ductility demand depends also on the level of yielding of the coupling beams as it is greater for smaller yield moments My.

EFFECT OF BEAM DEPTH

In a preliminary study (ref. 6) an 8
storey coupled wall subjected to typical equivalent static loads was
 the remaining geometry the same. The displacement pattern of this coupled wall depended very much on the size of the coupling beams as shown in fig. (8a). The depth of the coupling beams has therefore a considerable effect on the stress and deformation characteristics
 right walls deflected equally and the point of contraflexure was almost in the midspan of the coupling beam. This agreed remarkably well with the assumption made in the approximate methods of analysis. As the depth of the coupling beams was increased however, the behaviour of
the coupled wall was noted to vary towards the behaviour of a single solid wall. vestigated. Figure $8(b)$ shows the variation of the bending moments in the coupling beams with their depth. The inter storey variation of the bending moments is seen to increase substantially-with the depth of the beam. This was found to be a very important phenomenon concerning the strength of the energy absorbing capability of the structure. The similarity of the bending moments of the coupling beams when slender, yields the following consequences:
a) Yielding in the beams occur approximately at the same time thus improving the energy dissipation capability.
b) A straight forward design and construction of the coupling beams.
soumsse чכт̣M sțऽ that all beams are hinged and that the point of contraflexure is at midspan, becomes more acceptable.
9.2 Effect of the Depth of Coupling Beams on their Ductility. Increasing the beam depth increases the initial stiffness (i.e. the first slope of the moment-rotation curve) and hence, for the same yield moment, reduces the yield rotation. To examine the effect of the beam depth Hb on the ductility demand, the 30 storey coupled shear wall (SW2) was considered. Varying the beam depth and keeping all the remaining data and zoning the same and setting the yield mo-
convenience the structures were subdivided in 4 zones from base and the maximum ductility demands were computed for each of the structures as follows:

	$\mu \max$			
2	Beam Length	4^{\prime}	71	10^{\prime}

The maximum ductility demand in the 4 zones are plotted against the
beam length Lb , and also $1 / \mathrm{Lb}$ in Fig. (9). The figure shows, as
expected, the increase of ductility demand with increasing length. Furthermore, the maximum ductility demand seems to be almost inversely proportional to the coupling beam length. Note however, that the rate
 reached approximately 10 ft .

11. EFFECT OF DAMPING

To assess the effect of energy absorbing mechanism, which is present in structures even before the onset of yielding due to damping effect, a viscous damping form was assumed. Three different damping factors
namely $5 \%, 10 \%$ and 15% of critical were considered. To appreciate
ment $M y=100 \mathrm{kip} . f t$, the following ductility demands were recorded:

ZONE	DUCTILITY DEMAND (μ)		
	$\mathrm{Hb}=1^{\prime}$	$\mathrm{Hb}=2^{\prime}$	$\mathrm{Hb}=31$
1	1.00	6.48	22.08
2	1.13	8.32	27.60
3	1.50	12.79	35.26
4	1.81	14.67	39.33
5	1.81	14.06	35.97
6	2.18	16.47	41.23

above table. The results show yet again that the parameters which define the yield point, namely the initial stiffness and the yield strength, have a particular effect on ductility demand.

10. EFFECT OF COUPLING BEAM LENGTH ON DUCTILITY DEMAND

 beams leads to a greater flexibility and hence to an increase in ductility demands. It is however desirable to evaluate the extent of this increase and the nature of its variation as affected by the coupling beam length. In order to examine the effect of this variable, three twenty storey walls were considered in addition to SW1 previously described. All four structures were the same except that the coupling beam length and hence the dynamic characteristics were varied. For
the influence of structure flexibility, i.e. its frequency of vibration on the extent of the effect of damping, a coupled wall of 10 storeys (SW3) in addition to the 20 storey coupled wall (SW1) was considered. SW3 has the same properties, except the number of storeys and hence the total height, as SW1. The coupling beams yield moments were set to $100 \mathrm{kip} . \mathrm{ft}$ for SW 1 and $80 \mathrm{kip} . \mathrm{ft}$ for SW3. The ductility demands in the coupling beams were then computed and the results are shown in table 4 and Fig. (10). From these the following observations can be seen.
i) The effect of damping is substantial and therefore great care should be exercised in its choice.
i) The maximum reductions on ductility demands $\Delta \mu(10 \%)$ and $\Delta \mu_{(15 \%)}$ with respect of $\mu_{(5 \%)}$, i.e.,
$\Delta \mu_{(i \%)}=\frac{\left|\mu_{(5 \%)}-\mu_{(i \%)}\right|}{\mu_{(i \%)}} 100$

	$\Delta_{(5 \%)}$	$\Delta \mu(10 \%)$	$\Delta \mu{ }_{(15 \%)}$
SW3 $(10$ storeys)	0.0	25%	35%
SW1 $(20$ storeys)	0.0	32%	50%

12. EFFECT OF ACTUAL STIFFNESS OF COUPLING BEAMS

The importance of the choice of the original stiffness to be used along with the assumed nonlinear moment-rotation relationship must be emphasised. Depending on the designer, different initial rigidities (EI initial) for the same cross section can be assumed ranging from the rigidity of the gross section to a rigidity below that of the cracked section (fig. 11). The influence of such an assumption on the ductility demand of the coupling beams of the coupled shear walls is most important and in this section attempts are made to assess the extent of this influence.

The 20 storey coupled wall (SW1) was chosen to illustrate this point. Its material, geometric and dynamic characteristics are given in table 1. For typical values of $\mathrm{EI}_{\text {initial }}$ were assumed as follows

The ductility demands upon the coupling beams are shown in table 5 and plotted in Fig. (12) for the four rigidity values considered. The figure shows clearly that the influence is very substantial and the maximum variation of the ductility demand reached 120% in this study. It is interesting to note that ductility demand varied almost in proportion with the initial rigidity $\mathrm{EI}_{\text {initial }}$.

CONCLUSTON \& SUMMARY
The following conclusions can be drawn. parameters α and its variation is greater for stronger coupling beams A maximum variation of approximately 10% was obtained in this investi-
gation.
b) The ductility demand increases with increasing reloading
parameter B. Its variation however, is smaller for stronger coupling
beams. The maximum variation obtained was 6.3%.
 strain hardening parameter p. Its variation becomes smaller as the
coupling beams become stronger.
d) The factors affecting the yield point in the moment-rotation relationship such as the depth of the coupling beams, the yield moments and the initial stiffness have a particular influence on ductility
demand and should therefore be assessed with great care.
> to 50% in this study) and is slightly higher for more flexible struct- ures. Therefore its choice should be taken with caution.

		H	${ }_{2}$	${ }^{4}$	μ	${ }^{\prime}$	μ
$\begin{aligned} & 8 \\ & 2 \\ & x^{2} \end{aligned}$	$a=0$	$\begin{aligned} & 6.49 \\ & \text { (08) } \end{aligned}$	8.32	12.80	14.69	14.08	16.49
	$a=0.1$	$\begin{aligned} & 6.56 \\ & (1.08) \end{aligned}$	8.45	12.81	14.61	13.96	16.38
	$\alpha=0.2$	$\begin{aligned} & 6.62 \\ & (2.06) \end{aligned}$	8.50	12.86	14.61	13.96	16.34
	$\alpha=0.3$	$\begin{aligned} & 6.66 \\ & (2.628) \end{aligned}$	8.51	12.86	14.56	13.98	16.34
	$a=0.4$	$\begin{aligned} & 6.67 \\ & (2.773) \end{aligned}$	$\begin{aligned} & 8.49 \\ & (2.048) \end{aligned}$	$\begin{aligned} & 12.85 \\ & (-398) \end{aligned}$	$\begin{aligned} & 14.52 \\ & (-1.161) \end{aligned}$	$\begin{aligned} & 14.04 \\ & (-0.28 i) \end{aligned}$	$\begin{aligned} & 16.39 \\ & (-0.698) \end{aligned}$
$\begin{aligned} & n \\ & n \\ & x^{2} \end{aligned}$	0.	$\begin{aligned} & 3.79 \\ & (0.0) \end{aligned}$	4.68	7.09	7.97	7.33	8.48
	0.1	$\begin{aligned} & 3.90 \\ & (2.90) \end{aligned}$	4.76	7.10	7.94	7.39	8.52
	0.2	$\begin{aligned} & 3.97 \\ & (4.75) \end{aligned}$	4.82	7.13	7.95	7.45	8.59
	0.3	$\begin{aligned} & 4.04 \\ & (6.60) \end{aligned}$	4.85	7.16	7.96	7.49	8.64
	0.4	$\begin{aligned} & 4.08 \\ & (7.67) \end{aligned}$	$\begin{aligned} & 4.87 \\ & (4.06) \end{aligned}$	$\begin{aligned} & 7.16 \\ & (.99) \end{aligned}$	$\begin{aligned} & 7.96 \\ & (-.13) \end{aligned}$	$\begin{aligned} & 7.53 \\ & (+2.73) \end{aligned}$	$\begin{aligned} & 8.70 \\ & (2.59) \end{aligned}$
$\begin{aligned} & \underset{\sim}{0} \\ & 1 \\ & x_{2}^{2} \end{aligned}$	0.	$\begin{aligned} & 2.62 \\ & \text { (0) } \end{aligned}$	3.03	4.48	4.95	4.32	4.95
	0.1	$\begin{aligned} & 2.70 \\ & (3.05) \end{aligned}$	3.09	4.50	4.95	4.35	4.99
	0.2	$\begin{aligned} & 2.76 \\ & (5.34) \end{aligned}$	3.14	4.50	4.95	4.39	5.05
	0.3	$\begin{aligned} & 2.82 \\ & (7.63) \end{aligned}$	3.19	4.52	4.96	4.43	5.09
	0.4	$\begin{aligned} & 2.88 \\ & (9.928) \end{aligned}$	$\begin{aligned} & 3.22 \\ & (6.278) \end{aligned}$	$\begin{aligned} & 4.53 \\ & (1.121) \end{aligned}$	$\begin{aligned} & 4.97 \\ & (0.408) \end{aligned}$	$\begin{aligned} & 4.46 \\ & (3.24) \end{aligned}$	$\begin{aligned} & 5.13 \\ & (3.64) \end{aligned}$

	B	μ_{1}	μ_{2}	${ }^{\prime}$	μ	${ }^{\text {us }}$	$\underline{\nu}$
	0.	6.64 (0)	8.45	12.80	14.41	14.09	16.44
	0.1	$\begin{aligned} & 6.68 \\ & (0.60) \end{aligned}$	8.58	12.78	14.41	14.07	16.42
	0.2	$\begin{aligned} & 6.73 \\ & (1.36) \end{aligned}$	8.71	12.77	14.41	14.06	16,40
	0.3	$\begin{aligned} & 6.77 \\ & (1.96) \end{aligned}$	8.85	12.78	14.42	14.04	16.38
	0.4	$\begin{aligned} & 6.80 \\ & (2.118) \end{aligned}$	8.93	12.78	14.42	14.04	16.38
	0.5	$\begin{aligned} & 6.80 \\ & (2.418) \end{aligned}$	$\begin{aligned} & 8.98 \\ & (6.278) \end{aligned}$	$\begin{aligned} & 12.78 \\ & (-0.16) \end{aligned}$	$\begin{aligned} & 14.42 \\ & (0.08) \end{aligned}$	$\begin{aligned} & 14.04 \\ & (0.35) \end{aligned}$	$\begin{aligned} & 16.38 \\ & (0.36) \end{aligned}$
$\begin{aligned} & 0 \\ & \\ & 1 \\ & x^{2} \end{aligned}$	0.	$\begin{aligned} & 4.12 \\ & (0) \end{aligned}$	4.86	7.15	7.94	7.57	8.75
	0.1	$\begin{aligned} & 4.15 \\ & (0.73) \end{aligned}$	4.94	7.13	7.93	7.57	8.74
	0.2	$\begin{aligned} & 4.16 \\ & (0.97) \end{aligned}$	5.00	7.14	7.94	7.56	8.73
	0.3	$\begin{aligned} & 4.16 \\ & (0.97) \end{aligned}$	5.01	7.14	7.94	7.56	8.73
	0.4	$\begin{aligned} & 4.17 \\ & 1.218) \end{aligned}$	5.03	7.14	7.94	7.56	8.73
	0.5	$\begin{aligned} & 4.17 \\ & (1.21 i) \end{aligned}$	$\begin{aligned} & 5.03 \\ & (3.50) \end{aligned}$	$\begin{aligned} & 7.14 \\ & (-0.14) \end{aligned}$	$\begin{aligned} & 7.94 \\ & (0.0) \end{aligned}$	$\begin{aligned} & 7.56 \\ & (-0.13) \end{aligned}$	$\begin{aligned} & 8.73 \\ & (-0.23) \end{aligned}$
	0.	$\begin{aligned} & 2.92 \\ & (0) \end{aligned}$	3.24	4.54	4.97	4.49	5.17
	0.1	$\begin{aligned} & 2.93 \\ & (0.34) \end{aligned}$	3.25	4.55	4.98	4.48	5.17
	0.2	$\stackrel{-2.93}{(0.34)}$	3.26	4.55	4.98	4.48	5.17
	0.3	$\begin{aligned} & 2.93 \\ & (0.34) \end{aligned}$	3.26	4.54	4.97	4.48	5.17
	0.4	(0.34)	3.27	4.54	4.97	4.48	5.17
	0.5	(0.34)	$\begin{aligned} & 3.27 \\ & (.938) \end{aligned}$	$\begin{aligned} & 4.54 \\ & (0.0) \end{aligned}$	$\begin{aligned} & 4.97 \\ & (0.0) \end{aligned}$	$\begin{aligned} & 4.48 \\ & (-0.22) \end{aligned}$	$\begin{aligned} & 5.17 \\ & (0.0) \end{aligned}$

Table 3 Effect of Strain Hardening

	Str. Hard. parameter (P)	${ }^{\prime}(1)$	${ }^{\prime}(2)$	${ }^{\prime}(1)$	${ }^{4}(0)$	${ }^{4}(\mathrm{~s})$	${ }^{\prime \prime}(1)$
$\left\lvert\, \begin{aligned} & 8 \\ & 0 \\ & x \end{aligned}\right.$. 01	6.44	8.18	14.40	16.7	16.17	$\begin{aligned} & 18.95 \\ & (0.0) \end{aligned}$
	. 02	6.42	8.19	13.92	16.11	15.59	$\begin{aligned} & 18.26 \\ & (-3.64) \end{aligned}$
	. 04	6.47	8.30	13.16	15.14	14.55	$\begin{aligned} & 17.05 \\ & (-10.03) \end{aligned}$
	. 0	6.49	8.34	12.47	13.27	13.62	$\begin{aligned} & 15.95 \\ & (-15.83) \end{aligned}$
	. 08	6.30	8.32	11.81	13.47	12.80	$\begin{aligned} & 14.98 \\ & (-20.95) \end{aligned}$
	. 10	6.48	8.27	11.26	12.78	12.06	$\begin{aligned} & 84.09 \\ & (-25.65) \end{aligned}$
	. 12	6.44	8.19	10.75	12.13	11.39	$\begin{aligned} & 13.28 \\ & (-29.92) \end{aligned}$
	. 14	6.40	8.08	10.26	11.52	10.79	$\begin{aligned} & 12.56 \\ & (-33.72) \end{aligned}$
	. 16	$\begin{aligned} & 6.34 \\ & (1.55) \\ & \hline \end{aligned}$	$\begin{aligned} & 7.96 \\ & (+1.95) \end{aligned}$	$\begin{aligned} & 9.83 \\ & (-31.74) \\ & \hline \end{aligned}$	$\begin{aligned} & 10.97 \\ & (-34.31) \\ & \hline \end{aligned}$	$\begin{aligned} & 10.22 \\ & (-36.80) \end{aligned}$	$\begin{aligned} & 11.87 \\ & (.37 .36) \end{aligned}$
$\left\lvert\, \begin{aligned} & 0 \\ & \\ & 1 \\ & x^{n} \end{aligned}\right.$. 01	3.76	4.59	7.73	8.80	8.19	$\begin{aligned} & 9.49 \\ & (0.0) \end{aligned}$
	. 02	3.78	4.62	7.57	8.58	7.96	$\begin{aligned} & 9.17 \\ & (-3.4) \end{aligned}$
	. 04	3.79	4.67	7.25	8.17	7.53	$\begin{aligned} & 8.72 \\ & (-8.1) \\ & \hline \end{aligned}$
	. 06	3.79	4.68	6.96	7.79	7.13	$\begin{aligned} & 8.26 \\ & (-13.0) \end{aligned}$
	. 08	3.79	4.68	6.69	7.46	6.78	$\begin{aligned} & 7.85 \\ & (-17.3) \end{aligned}$
	. 10	3.76	4.66	6.43	7.16	6.45	$\begin{aligned} & 7.46 \\ & (-21.5) \end{aligned}$
	. 12	3.77	4.63	6.20	6.88	6.14	$\begin{aligned} & 6.88 \\ & (-27.5) \end{aligned}$
	. 14	3.75	4.58	6.00	6.63	5.85	$\begin{aligned} & 6.78 \\ & (-28.6) \end{aligned}$
	. 16	$\begin{aligned} & 3.73 \\ & (-.80) \end{aligned}$	$\begin{aligned} & 4.53 \\ & (-.13) \\ & \hline \end{aligned}$	$\begin{aligned} & 5.80 \\ & (-24.97) \\ & \hline \end{aligned}$	$\begin{aligned} & 6.38 \\ & (-27.50) \end{aligned}$	$\begin{aligned} & 5.59 \\ & (-31.75) \end{aligned}$	$\begin{aligned} & 6.46 \\ & (-31.93) \\ & \hline \end{aligned}$
$\begin{gathered} 8 \\ n \\ x^{x} \end{gathered}$. 01	2.63	3.03	4.75	5.29	4.69	$\begin{aligned} & 5.42 \\ & (0.0) \end{aligned}$
	. 02	2.63	5.03	4.68	5.20	4.60	$\begin{aligned} & 5.30 \\ & (-2.21) \end{aligned}$
	. 04	2.63	3.03	4.55	5.03	4.41	$\begin{aligned} & 5.06 \\ & (-6.64) \end{aligned}$
	. 06	2.62	3.02	4.41	4.86	4.23	$\begin{aligned} & 4.84 \\ & (-10.70) \end{aligned}$
	. 08	2.61	3.01	4.30	4.72	4.06	$\begin{aligned} & 4.63 \\ & (-14.58) \end{aligned}$
	. 10	2.59	2.98	4.17	4.56	3.90	$\begin{aligned} & 4.44 \\ & (-18.08) \end{aligned}$
	. 12	2.58	2.96	4.07	4.44	3.76	$\begin{aligned} & 4.27 \\ & (-21.22) \end{aligned}$
	. 14	2.56	2.93	3.96	4.31	3.62	$\begin{aligned} & 4.11 \\ & (-24.17) \end{aligned}$
	. 16	$\begin{aligned} & 2.54 \\ & (-3.42) \end{aligned}$	$\begin{aligned} & 2.90 \\ & (-4.29) \\ & \hline \end{aligned}$	$\begin{aligned} & 3.86 \\ & (-18.74) \end{aligned}$	$\begin{aligned} & 4.19 \\ & (-20.79) \\ & \hline \end{aligned}$	$\begin{aligned} & 3.50 \\ & (-25.37) \end{aligned}$	$\begin{aligned} & 3.95 \\ & (-27.12) \end{aligned}$

Table 4 Influence of Daping on Ductility Demand

F1007 Level	20 Storeys					
	$\begin{aligned} & \text { Ductility } \\ & 5 \AA \text { Damp } \end{aligned}$	$\begin{aligned} & \text { Ductility } \\ & 108 \end{aligned}$	$\begin{gathered} \text { Ductility } \\ 158 \end{gathered}$			
20	22.68	15.33	11.35			
19	22.74	15.40	11.40			
18	22.77	15.46	11.37			
17	22.68	15.44	11.19			
16	22.52	15.36	10.94			
15	22.24	15.19	10.79			
14	21.71	14.88	10.58			
13	20.92	14.39	10.33			
12	19.85	13.74	7.99		Store	
11	18.56	13.12	9.59	58	104	3
10	17.43	12.56	9.74	17.30	12.95	11
9	16.53	12.26	10.07	17.23	12.94	11
8	15.74	12.29	10.58	16.80	12.74	1)
7	15.44	12.27	10.72	15.82	12.24	U
6	14.70	11.87	10.42	14.29	11.57	$!$
5	13.51	10.96	9.67	12.96	11.16	5
4	11.82	9.53	8.46	12.39	10.43	1
3	9.64	7.66	6.85	11.01	9.09	:
2	6.99	5.48	4.85	8.57	6.97	5
1	3.76	2.91	2.51	4.89	3.92	:
Max. reduction with respect (to 5s)	0.0	321	508	0.0	258	:

Floor Level	$\begin{gathered} \text { RUN SI } \\ E I=309.3 \\ 10^{2} \mathrm{kin}^{2} \mathrm{ft}^{2} \end{gathered}$	RUN S? (0.8 E1)	$\begin{aligned} & \text { RUN S.3 } \\ & \text { (0.6 EI) } \end{aligned}$	$\begin{gathered} \text { RUN S4 } \\ (0.4 \mathrm{EI}) \end{gathered}$
20	22.68	18.85	14.74	10.28
19	22.74	18.90	14.77	10.30
18	22.71	18.91	14.88	10.29
17	22.68	18.83	14.69	10.23
16	22.52	18.67	14.54	10.12
15	22.24	18.40	14.31	9.93
14	21.71	17.93	13.91	9.63
13	20.92	17.24	13.35	9.21
12	19.85	16.33	12.67	8.66
11	18.56	15.23	11.72	8.02
10	17.43	14.28	10.97	7.50
9	16.53	13.48	10.30	6.99
8	15.74	12.78	9.75	6.63
7	15.44	12.53	9.55	6.49
6	14.70	11.93	9.08	6.17
5	13.51	10.95	8.33	5.65
4	11.82	9.57	7.28	4.93
3	9.64	7.81	5.98	4.00
2	6.99	5.65	4.27	2.87
1	3.76	3.02	2.26	1.50

FIG. 2 IAKEDA MODEL DF ThE MMENT-ROTATION RELATIONSHIP OF RCC BEAMS

FIG. 3 FIRST 10 SEC. OF EL CENTRO ACCELEROGRAM N/S COMPONENT, MAY 1940

FIG. 4 DECAY CURVE FOR DUCTILITY DEMAR

FIG. 7 EFFECT OF STRAIM HARDENING ON DUCTILITY DEMANO

a) Loteral displacement

b) Bending moment in coupling beams (kip- $\boldsymbol{\pi}$)

FIG. 8 EFFECT OF BEAM DEPTH ON
a) Overall behoviour of the structure
b) Bending Moments in coupling beoms

ROMPUTER-AIDED ANALYSIS AND DESIGN pF CONCRETE STRUCTURES

plaIT, YUGOSLAVIA

Dear Dr. Thomas,
Thank you for submitting your abstract for possible presentation at the International Conference on "Computer Aided Analysis and Design of Concrete Structures", to be held in Split, Yugoslavia, during September 1984.

This has been reviewed by the Programme Committee and I am pleased to inform you that it has been accepted for presentation. We shall be sending you instructions for suitable preparation of your manuscript in October of this year.

I look forward to meeting you in Split next year. Please write me if you have any queries regarding the Conference.

Yours sincerely,
Emest Hinton

Dr. Ernest Hinton
for Organising Committee

THE NON LINEAR ANALYSIS OF

COUPLED SHEAR WALLS

USING DUCTILITY-DECAY CURVE
by

O. Chaallal \& C. Thomas

(University of Liverpool, U.K.)

In recent years the philosophy behind the design of coupled shear walls in seismic zones has changed. Initially their inherent strength was used to resist lateral seismic loads. Over the last few years it is their ductility that has been used to absorb the energy input from an earthquake. This ductility has been introduced into the structure by allowing the connecting beams to deform plastically. The magnitude of these deformations is controlled by a concept, introduced by Paulay and others, called ductility demand (μ). With reference to Fig. 1 the definitions of ductility demand is

$$
\mu=\frac{\text { rotation at failure }}{\text { rotation at yield }}=\frac{\theta \text { max }}{\theta y}
$$

The limits of the ductility demand for doubly reinforced concrete connecting beams has been shown to be

$$
4 \leqslant \mu \leqslant 10
$$

Equ. 1.

The design procedure used has been to carry out a non linear analysis on a structure and to obtain ductility demand values at the connecting beams. Then by a process of trial, error and experience the yield moments at the connecting beams were modified and the process repeated. The values of the yield moments were modified until all the ductility demand values were within the limits specified by Equ. 1.

In this paper the authors show a different approach to the analysis. Depending upon the code of practice used the minimum yield amount ($M_{\min }$)
can be calculated for all connecting beams or zones of connecting beams. Using these values the ductility demands ($\mu 0$) can be calculated by carrying out a non linear analysis as before. If the moment of one zone is increased by (dM), in several increments, and the ductility demands ($\mu \mathrm{R}$) is obtained for all zones, the variations are as shown in Fig. 2 for a 4 zone structure. For all four zones this shows that the variation of the ductility demand in a particular zone is mainly dependent upon the increment of the moment applied to that zone only.

This variation can be shown graphically by producing a ductility decay curve. This is obtained by plotting the ratio ($\frac{d M}{M_{\text {min }}}$) against $\left(\frac{\mu \mathrm{R}}{\mu \mathrm{O}}\right)$, and is shown in Fig. 3. Thus for any coupled shear wall a ductility decay curve can be obtained for a specified earthquake input.

This curve can now be used in a non linear analysis of a coupled shear wall. The procedure is as follows
(a) using the minimum yield moments of the connecting beams a non linear analysis can be carried out to obtain the initial ductility demands ($\mu 0$).
(b) the required ductility demand is used as $\mu \mathrm{R}$ to calculate $\left(\frac{\mu R}{\mu 0}\right)$
(c) the ductility decay curve is then used to evaluate ($\frac{\mathrm{dM}}{\mathrm{M}_{\text {min }}}$) hence

$$
M_{y}=\left(M_{\min }+d M\right)
$$

(d) Using these modified yield moments a non linear analysis is carried out again and the ductility demands obtained.

The models tested by the authors obtained values of ductility demands within 10% of the required values.

The method can be extended so that one ductility-decay curve can be used for most coupled shear walls.

Using one curve, steps a, b, c and d are carried out as above producing ductility demands ($\mu \mathrm{g}$). If the values of ($\mu \mathrm{g}$) are dissimilar to ($\mu \mathrm{R}$) the following extra steps are carried out
(e) the ductility-decay is redrawn or recalculated by using the $\operatorname{ratios}\left(\frac{\mu \mathrm{g}}{\mu \mathrm{O}}\right)$ and $\left(\frac{\mathrm{dM}}{\mathrm{M}_{\text {min }}}\right)$
(f) with this new curve the ratio $\left(\frac{\mu \mathrm{R}}{\mu \mathrm{O}}\right)$ is used to calculate $\left(\frac{d M}{M_{\min }}\right)$.

Steps b, c and d are repeated to obtain new values of ($\mu \mathrm{g}$). If the values of μg are dissimilar to $\mu \mathrm{R}$ then step e and f are repeated. The whole process is repeated until the values of $\mu \mathrm{g}$ are acceptably close to μR. Again examples are shown.

FiG. 1 Ductility demand
FiG. 1 Ductility demand

Fif. 2
$\dot{\$}$

च $\AA \geq \simeq \infty$ 。
(11) 万pyone

[^0]: 105. HART, G.C., RAMASWAMI, V., Earthquake Design of Buildings and Damping, Journal of the Structural Division, ASCE, Vol. 101, No ST1, Jan.1975, pp. 11-30.
[^1]: * Civil Engineering Department, University of Liverpool, England.

[^2]: Depending on the designer's judgement, various values of p can be chosen as an input to simulate strain hardening. Therefore, in the following section an attempt is made to examine the effect of the

