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A THOUGHT 

Scientists believe they know why earthquakes happen. They believe they 
can estimate where and roughly when they will occur. There is however 
nothing anyone can do to prevent them. 
In November 1980, more than 3000 people died (from whom I personally 
knew a few) and most of the city was destroyed as an earthquake struck Al- 
Asnam (Algeria). 
If nobody can prevent the occurence of earthquakes, it is my belief and 
conviction that something can and must be done to minimise and ultimately 
avoid the catastrophical loss of human life and property that we have 
witnessed so far. It is my profound wish that the present work represents a 
small contribution in this respect. 
This thesis is dedicated to all those who died or lost their homes and roots 
following Al-Asnarn Earthquake. 

UNE PENSEE 

Les hommes de science croient savoir pourquoi, 61u, et approximativement 
quand un tremblement de terre aurait lieu. Il semble cependant quIiI nly ait 
rien ýf aire pour le stopper. 
En novembre 1980, plus de 3000 personnes ont disparu et la majeure partie 
de la ville detruite suite au tremblement de terre qui frappa Al-Asnam. 
Si personne ne peut stopper un tremblement de terre d'avoir lieu, je suis 
convaincu quant 5 moi que les ressources humaines sont immenses et je suis 
certain quIelles peuvent, si reunies, orientees et surtout utilisees 5 bon 
escient, contribuer 5 minimiser, voire eviter, les pertes catastrophiques 
humaines et materielles dont nous avons 6te ternoins 9 maintes reprises. 
Je souhaite que cette th-Eise, que je de'dis humblement aux victimes d'Al- 
Asnam, represente une petite contribution dans ce sens. 



Cl IKAKAAQV 

In this thesis the. nonlinear analysis of coupled shear walls subjected to 
I -ý 

earthquake forces lis investigated and nonlinear methods of design are 

suggested. 

Inelastic spectrum analysis (ISA) as applied to coupled shear walls was 

first investigated. Using a finite element (F. E) method of analysis, coupled 

shear walls with a wide variety of geometries are investigated. The 

formulation and procedure of the method has been given in detail. A design 

method for coupled shear walls built in seismic areas is suggested and an 

example is carried out. The method is seen to be very practical as it gives a 

good approximate dimensioning of the coupled shear walls. Furthermore, it 

has a great potential future as it can easily be incorporated into a design code 

of practice. 

A comprehensive nonlinear step-by-step dynamic analysis is then carried 

out. A dynamic finite element computer program which takes into account 

the nonlinearities that stem from the very nature of reinforced concrete, is 

developed. Allowances are made for phenomena such as cracking, yielding and 

crushing of concrete, yielding of steel, bond deterioration and stiffness 

degradation in the coupling beams and aggregate-interlock. To test the 

validity of the assumptions made concerning the material behaviour, the 

analytical results are compared with experimental results and existing data. 

It is usually a human instinct to fight back with force even in case of 

defence against 11 Nature ". The consequent philosophy of stronger and stiffer 

buildings to counter earthquake forces has been with us for quite some time, 

but the experience of many catastrophical events has taught us to reconsider 

our way of thinking. Energy absorbing capacity and ductility have been the 



emphasis and the key for structural survival for the last few years. While it is 

relatively easy to assess the available ductility or ductility supply of a 

member, ductility demand however, seems to depend on so many factors that 

it cannot be estimated without preliminary parametric studies. Energy 

absorbing philosophy and factors which might influence ductility demand are 

investigated in this study and an optimal nonlinear analysis which balances 

strength and ductility is suggested. 

Even though only coupled shear walls are dealt with in this investigation, 

the computer program is capable of dealing with plane frame and plane frame 

- shear wall systems as well. Both the walls and the coupling beams can be 

either idealised as finite elements or as line elements. Nonlinearities in line 

elements are confined to preset hinges at the element's ends and monitored by 

a moment-rotation relationship. When using the FEM approach however, 

nonlinearities are confined to Gaussian integration points (4 in this study) over 

the element and monitored by the stress - strain curves of steel and concrete. 
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TERMINOLOGY 

Certain terms are used in this thesis and are generally defined when first used, 
however it was thought useful to list them below for convenient reference. 

Aseismic = Earthquake resistant. 

Critical Damping = Viscous damping that will cause a displaced system 
to return to its initial position without oscillation. 

Damping = dissipation of energy during vibration due to internal and 
external friction. 

Design Earthquake The ground motion that is taken as basis of design of 
a structure. 

Ductility The ability of a member or a structure to deform beyond 

its elastic limit without significant loss of strength. 

Ductility Factor = Ratio of maximum deformation response to yield 
deformation. 

Dynamic = Varying with time. 

ýarthquake Input Time history of the ground acceleration due to 

motion ( Ground earthquake excitation used as input loading for response 
motion) history analysis. 

Elastic = Indicates a return to initial state on unloading without 
residual deformation. 

Energy Dissipating = Specific phenomenon by which earthquake energy input is 
dissipated (e. g. inelastic deformations). 

Energy Dissipation = Dissipation of the energy input by an earthquake into a 
structure by hysteresis, damping or other mechanisms. 

viii 



First Mode = Phase relationship in which three level signals oscillate in 

the same phase. 

Flexural Strength = Ultimate bending moment that can be carried by a 

section. 

Frequency = Number of cycles of a periodical oscillation occuring in a 

unit time. 

Fundamental Mode = The mode of vibration with the largest period, i. e., the 

shortest frequency. 

Higher Modes = Modes of vibration except first mode. 

Hinging Region The length of a member over which yielding accurs due 

to bending moment exceeding yield moment. 

Hysteresis Nonlinear f orce-dispia cement relationship of a member 

under reversal of loadings. 

Inelastic = Indicates an incomplete return to initial state on 

unloading and hence residual deformations. 

Linear Indicates proportionality between force and 
displacement. 

Lumped Mass = Idealisation of the distribution of mass in which 

concentrated masses are assigned to nodal points. 

Nonlinear = Indicates lack of proportionality between force and 
displacement. 

Response History = Response analysis based on direct numerical integration 

Analysis of the eqn. of motion by a step-by-step procedure. 

Rigid Joint = Joint with infinite flexural rigidity. 

RMý= Response value calculated as the square root of the sum 
(root mean square) of the squares of the maximum modal components. 



Rotational Spring =A spring at the ends of a beam element which simulates 
its nonlinearities. 

Second Mode 

Seismic 

Sequence of 
Plastification 

Spectra Based or 
Modal Analysis 

= Phase relationship in which only two adjacent level 

signals oscillate in the same phase. 

= Caused by or subject to ground motion such as 

earthquake. 

The sequence in which yielding spreads to the various 

structural members. 

= Response analysis based on modal response spectra. 

Spectral Acc. The maximum absolute acceleration (displacement or 
(disp. or Vel. ) velocity) response of a sdof system having a given period. 

Spectrum Intensity =Index defining the intensity of base motion. It is based on 
the area under a velocity response spectrum in a specified 
frequency range as defined by Housner [231. 

Third Mode = Phase relationship in which the first and the third level 

signals are in phase. 

Viscous Damping =A type of damping represented by a force that resists the 

motion and is proportional to velocity. It is often 

expressed as a fraction of critical damping. 

Yielding =A stage of response at which a section reaches its yield 

moment. 
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C= Damping matrix of the structure. 
fi = Eathquake force distribution at mode i. 

Fmax = Maximum earthquake force distribution for all modes. 
I= Structure importance factor used by the code. 
K =Stiffness matrix of the structure. 
K*i = Modal stif fness = $j K $i for i=j 
M= Mass matrix of the structure. 
M*i = Modal mass = ýj M ýi for i=j . 

= Mode shape vector 
5= Foundation condition factor as used ýy the code 
Sai = Ith modal spectral acceleration 
Ti = Period at mode i 
Umax = Maximum displacement distribution for all modes 
Voi = Base shear for mode i 

Vomax = maximum base shear for all modes 
W= Total weight of the structure 
wi = Frequency at mode i 

y it = Ground acceleration vector 
Z= Seismic zoning factor (code) 

zi = Damping ratio for mode 1 

CHAPTER III 

[B] Strain-displacement matrix 
[D] Property or elasticity matrix 
Det[J] Determinant of the Jacoblan matrix (J] 
Se Element displacement vector 
f Displacement function vector 
[J] Jacobian matrix 
K =Global stiffness matrix of a structure 
[Kel = Element stiffness matrix 
[N] = Shape function matrix 
Qe = Element total potential energy 
R= Overall load vector 

xi 



Re = Nodal load vector 

sý t= Local coordinate for isoparametric elements 
U= Displacement vector in x direction 
Us = Element strain energy 
V= Displacement vector in y direction 

X9 y= Global coordinates of an element 
W= Element potential energy 
Wji Wk = Weight factors at Gaussian points j and k 

_G: = Strain vector =[ Cx 42Y Cxy ]T 

9= Principal stress direction with respect to the element axis 
(T = Stress vector =[ CJx CTy CTxy IT 

0-122 = Major and minor principal stresses 
'tmax = Maximum shearing stress 

r'LJ A E3rC'D TV 

c= Damping ratio of a sdof system 

cc= Critical damping 
Dy = Maximum yield drift indice 
F= Resistance 

Fmax = Maximum force distribution 

K= Stiffness matrix of a mdof structure 
Kud = Neutral axis depth of a section 
Ln = Modal participation factor 

lp = Hinging zone, i. e., zone where plasticity spreads 
M= Mass matrix of a mdof system 
m= Mass of a sdof system 
My = Yield moment of a section 
Pn = Maximum modal forces 
Ry = Yield resistance force 

Sa = Spectral acceleration 
T= Period 

u ul ull = Displacement response and derivatives 

Umax = Maximum displacement 
Uy = Displacement at yield 
Un = Modal displacement 

w= Frequency 

X11 = Base acceleration 

z= Damping factor = c/c c 



ýn 
= Modal drift 

Symax 
= Maximum yield drift 

ýn = nth modal shape vector 

Ty = Curvature at yield 
E)max = Maximum rotation of a section or a member 
Gp= Plastic rotation of a section or a member 
9y= Yield rotation of a section or a member 

IL = Structural ductility factor 

11b = Rotational ductility of a beam 

CHAPTER V 

Cw = Qualitative "crack width" 
d, d' = Depth of tensile and compressive reinforcement respectively 
Dc, Dcr= Elastic & cracked property matrices of concrete at 
D1cr dif f erent stages 
Dep = Elasto-plastic property matrix 
D9i = Incremental rotation at beam's end i 
DMi = Incremental moment at beam's end i 
DL = Elongation of reinforcing steel due to bond slip 
Ds = Property matrix of steel 
Ec = Elastic Young's modulus of concrete 
Es = Elastic Young's modulus of steel 
EIa = Actual rigidity of a beam element 
EIe = Elastic rigidity of a beam element 
F= Flexibility matrix of a beam element 
Fs = Stress in reinforcement due to bond slip 
f S(M) = Flexibility due to bond slip 
G= Elastic shear modulus 
Geq = Shear modulus after cracking has occured 
My = Yield moment of a section or a member 
p= Reinforcement ratio 
R(M) = Rotation due to slippage of steel at applied moment M 

04 = Global shear reduction factor = oe + 01 Sd 
cz = Shear reduction factor due to aggregate interlock 

S 
Oed = Shear reduction factor due to dowel action 
IEC = Strain vector of concrete 
ý3cr = Strain when cracking first accurs 
Cmax = Maximum strain at which interlocking becomes ineffective 

I 



emin = Minimum strain at which concrete is assumed crushed 

11 = Poisson's ratio of concrete 
CTC = Stress vector in concrete 

CHAPTER VI 

C= Damping matrix of the structure. 
DPs = Pseudo-load vector 
Dv Dv1 

Dv" = Incremental nodal displacement and derivatives 

Dyll(t) = Incremental ground acceleration 
Dt = Time step 
K =Stiffness matrix of a mdof structure 
K* = Dynamic stiffness matrix 
M= Mass matrix of a mdof system 
Me = Element mass matrix 
Mext = External mass matrix 
R= Overall load vector 

wn= Frequency of the structure at mode n 

zn= Damping factor for mode n 

= Newmark's constant indicating the variation of acceleration 
in a time interval 

_G = Convergence tolerance 

CHAPTER VII & Vill 

Smax = Maximum rotation of a section or a member 
Op = Plastic rotation of a section or a member 
I@y = Yield rotation of a section or a member 

V= Ductility demand 

IIr = Rotational ductility 

dM = Moment increment 
Es = Young's modulus of steel 
ft c= Compressive strength of concrete 
fy = Yield stress of steel 
Lb = Length of the coupling beams 

My = Yield moment of a section 
MYmin = Minimum yield miment capacity ( as stipulated by code 



CHAPTER ONE 

INTRODUCTION 

1.1 General 

The use of reinforced concrete as a structural building material has 

become more and more a standard feature of modern construction. This was 

possible mainly as a consequence of extensive experimental and analytical 

investigations on reinforced concrete models. The results of these 

investigations allowed a set of design guidelines and rules that survived the 

test of time successfully for quasi-static loading conditions. However 

experience has shown that these rules were not suitable when it came to 

dynamic loading conditions such as earthquakes. 

Few of the buildings constructed in seismic areas are designed on the 

basis of the results of dynamic analysis. The code of practice allows for 

earthquake loads to be approximated by so called equivalent static loads. 

The magnitude of the latter depends on the seismic zone and the 

fundamental period of the structure in hand. An approximate formula is 

suggested for estimating the fundamental period. Furthermore, the code 

load requirements are very small compared with those experienced during a 

significant earthquake. As a result of these limitations, enormous property 

damage and loss of human life IlAve, been caused by destructive earthquakes 

during the last decades. The primary objective of a structural engineer 

should therefore be to design any structure rationally in such a way that it 

will resist moderate earthquakes without damage and not collapse and cause 

loss of lives , even in the case of severe ground motion. To achieve this, 

I 
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the need to conduct a more comprehensive earthquake analysis and a better 

understanding of the behaviour of structures seems to be more than 

necessary. 

Since the very rapid increase of high--rise buildings all over the world, 

reinforced concrete wall systems have for many years been a very common 

means of resisting lateral forces due to wind and earthquake. Usually the 

so-called shear walls are built over the whole height of the building and are 

laid out either as a series of walls connected by beams and/or slabs, or as a 

central core structure with openings to accomodate doors, windows or 

corridors. A good approximation of the interaction between shear walls and 

connecting beams, as well as their proportioning and design under severe 

ground motions, would be a great help towards improving the behaviour and 

avoiding "the unexpected" in the case of a major eathquake. 

1.2 General Review 

It was Rosman [II who, in 1964 , broke the tradition of treating coupled 

shear walls as deep columns acting as separate cantilever beams. He 

proposed a solution in which the coupling system is replaced by a continuous 

medium ( laminae ) of equivalent stiffness. Later Coull and Chou dhury [2 

&31 and Coull and Irwin [41 extended the laminae method. They took into 

account shear deformation effects and presented very convenient graphical 

charts to determine the stresses and deflections of coupled shear walls of 

different geometric characteristics and subjected to various lateral static 

load cases. Tso and Chan L51 and Coull et al. [6&7] used the method to 

determine approximate natural frequencies of coupled shear walls which can 

be used with the response spectrum approach. 

Although these methods were a good improvement with respect to the 

unduly conservative approach by which no credit was given to the coupling 
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effect, they are still limited by various simplifications on loading and boundary 

conditions and fail to produce accurate results and details on the distribution 

of stresses over the entire structure if need be. The emergence of finite 

element method (FEM) [8] as applied to elastic continuum and the growing 

popularity of computer facilities bridged the gap. Indeed the FEM has been 

used succefully for static as well as dynamic problems [91. Some of the 

advantages of FEM in solving shear wall problems are its ability to treat: 

a) variation in thickness of the shear walls 

b) irregularities of loading 

c) irregularities in the geometry of the openings 

d) variation in material properties. 

The observed nonlinear behaviour of reinforced concrete structures also 

had to be simulated analytically. Shear walls were first idealised as deep 

columns bbsed on the modified " El " procedure. Nonlinearities in frames and 

walls were generally monitored by the nonlinear force -displacement 

relationship of preset hinges generally located at the element's ends E 10 1. 

The first basic moment - rotation relationship used to monitor nonlinear 

behaviour was the bilinear elastic perfectly plastic idealisation. Shepherd et 

al. [ 111 used the latter for nonlinear dynamic analysis and reported a good 

correlation between analytical and experimental predictions. 

The need for an inelastic approach to earthquake response problems 

simple enough to be introduced into a code of practice and capable of taking 

nonlinearities into account gave rise to many investigations from which the 

ductility factor method [ 12 1 and the inelastic spectrum approach [ 14 - 16 1 

emerged. The difference between the inelastic spectrum and the usual elastic 

modal analysis is that the former uses an inelastic spectra, that is derived 

from a nonlinear force - deformation relationship of a single degree of 

freedom ( sdof ) system, instead of the usual elastic spectra. 
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Shibata and Sozen [ 17 1 developed a design method for reinforced 

concrete frames in which a softer and more damped " substitute structure 11 is 

analysed by elastic modal analysis. This general category of methods which 

uses an elastic spectra as the loading has been applied by many investigators [ 

18 -201 to sdof systems. Gerra & Esteva ( 13 1 used the same procedure but 

accounted for the inelastic behaviour by using a frequency shift and an 

increased value of damping. 

Newmark & Hall E 14 1 proposed a method in which elastic modal analysis 

was used along with a reduced design spectra. The reduction in the elastic 

design spectra was derived from observed sdof inelastic spectra for various 

damping and frequency combinations. Lai & Biggs [ 16 1 assessed the method 

and applied it to inelastic response of plane frame for 2% and 5% damping 

respectively. They concluded that the method was unconservative for 2% 

damping and conservative for 5% damping but led to satisfactory design. 

Anagnotopoulos et al. [ 15 1 also used the method to examine the response of a 

multistorey building and concluded that the approach could be unconservative. 

He believed this was due to the variations in the input motions which can 

never match a smooth spectra exactly. 

As far as nonlinear dynamic history response behaviour of structures 

subjected to ground motions is concerned several inelastic models were used 

extensively. They range from one component model E 21 1 in which each 

member is represented by an elastic beam element with inelastic springs 

(hinges) at its two ends, to multicomponent model [ 22 & 23 ], in which the 

idealised beam has an elastic member and several elasto - plastic members in 

parallel. Otani [ 24 1 modelled a beam element as two cantilever beams whose 

free ends coincide with the inflection point. He assumed the inflection point 

of a deformed member was at the middle and the member deformed in 

antisymmetric bending. This model was believed to match better the 
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hysteresis data based on test results. This was particularly true when the 

effects of vertical loads were negligeable or nonexistent. Based on the same 

general principle and in order to obtain a better prediction and accuracy, some 

researchers[ 25 to 27 1 attempted either a finer idealisation by subdividing a 

beam element into yet more beam elements or by introducing more rotational 

springs in the regions where non linearities are likely to occur. Fibre or 

layering model was also introduced [ 28 ]. Each section was subdivided into 

many layers and the moment-curvature relationship was derived from steel 

and concrete constitutive laws. Member stiffness was then determined by 

integrating along the member length. This model, though leading to a better 

insight, was very time consuming and tedious and hence unpopular. 

Takeda et al. E 29 1 developed their very popular hysteretic model which 

was modified to take stiffness degradation and strain hardening into account 

by Kannan & Powell [ 30 1. Because it was based on several experimental 

studies, this model was found to be successful in simulating both static and 

dynamic behaviour of reinforced concrete joints of cantilever beams. Later 

Takeda's model coupled with the assumptions made by Otani E 24 1 concerning 

the inflection point and the antisymmetric bending deformation shape, has 

been used extensively by many investigators to simulate nonlinear response of 

frame structures (i. e., assembly of beam elements) subjected to earthquake 

forces. 

Ngo and Scordelis E 31 1 followed by Nilson [ 32 1 were the first to 

demonstrate the capability of the finite element method of analysis to cope 

with reinforced'concrete nonlinearities. They analysed simple beams as two - 

dimensional systems with predefined crack pattern and introduced the concept 

of link element in order to model the bond between concrete and steel. 

However their approach fell short because of the inconvenience and 

impracticality of their redefinition of the structure topology after cracking 
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had occured. Finite element method as applied to plane stress problems has 

been applied successfully to nonlinear analysis of reinforced concrete by 

Suidan & Schnobrich [ 33 ], Agrawal et al. [ 34 1 and Schnobrich [ 35 1. Such 

two dimensional analysis has been satisfactory for the response of isolated 

walls subjected mainly to monotonically increased loads. 

Darwin and Pecknold [ 36 ], using the concept of equivalent uniaxial 

strain, analysed reinforced concrete shear panels under cyclic loading and 

reported a good correlation with experimental results. Rashid E 37 1 was the 

first to introduce the most popular approach by which cracked concrete was 

treated as an orthotropic material. In his representation, the elastic 

modulus of concrete in the direction normal to the crack was reduced to 

zero, giving rise to a cracked element rather than a sharp crack and 

avoiding in this way the need for updating the topology of the structure 

after cracking had occured. This approach has been used successfully by 

many investigators [ 40-41 & 33 1. Cevenka and Gersite [ 38-39 1 

investigated panels under cyclic loading assuming an elastic-perfectly 

plastic behaviour for concrete in compression. Recently Agrawal et al. E 42 

1 claimed to present the first successful application of the plane stress finite 

element method in determining the nonlinear behaviour of an isolated 

reinforced concrete wall subjected to simulated earthquake motions. They 

used a biaxial constitutive law and orthotropic material properties for 

cracked elements. 

In most of these applications coupled shear walls have been idealised 

either by the " equivalent EI " procedure or by a two - dimensionnal plane 

stress approach for both wall and beam members. In view of the energy 

absorbing philosophy, that is strong wall - weak beam, necessary for the 

design of concrete structures in seismic areas there is a need for a more 

realistic model of coupled shear walls. This can be achieved by idealising 
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the walls as plane stress elements and the coupling beams, much slender, as 

line elements. 

It is well accepted that during earthquake excitation, part of the energy 

released [ 43 1 is absorbed by the structure elastically, the other part is 

either absorbed by purposedly designed damping devices or through 

structural damage beyond repair or even complete collapse. As far as 

coupled shear walls are concerned it is generally accepted that energy 

dissipation by hysteretic damping is the most viable. Paulay has 

investigated ways by which available ductility in a member, that is energy 

absorbing capacity without loss of strength, could be improved. He 

suggested diagonal reinforcement for deep beams where shear is 

predominant [44-45] and squat shear walls [ 46 1. Allen et al. E 47 1 tested 

the behaviour and investigated the design of ductile walls. They found that 

concentrating tension steel at each end of the wall, as recommended by 

most aseismic codes E 48-51 1, improved its ductile behaviour. They 

concluded that available ductility remains almost constant with changes in 

main tension steel areas and generally decreases with increasing axial load. 

The use of barbell cross section walls has also been recommended by some 

investigators and most codes of practice. A good review of the state - of - 

art of seismic resistant design of shear walls is given by Bertero E 52 1. 

Due to the instability problems that the yielding of the walls might 

cause, their use as the first line of defence against earthquakes has been 

discouraged in favour of ductile girders and coupling beams. To ensure this 

happens the coupling beams are intentionally made moderately strong to 

allow them to yield ahead of the walls. Coull and Choo [ 53 1 proposed an 

approximate inelastic method based on the continuum approach. They 

divided the structure into elastic and plastic zones and determined the 

positions of these zones by making assumptions and simplifications on the 
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form of shear distribution in the coupling beams as the load increases. 

Fintel and Ghosh [ 54 ] investigated the nonlinear dynamic response of a 31 

storey coupled shear wall - frame system. Keeping columns and walls 

elastieg they attempted to balance the ductility enforced upon the beams, or 

ductility demand, and their available ductility or ductility supply. They used 

a trial and error process and repetitive nonlinear dynamic history analysis. 

Later Fintel and Ghosh E 55 1 used the same technique, this time however 

they allowed the columns and the walls to yield ahead of the beams. They 

concluded that the walls, if ductile, can dissipate the majority of the energy 

input through inelastic deformations. Deretcho et al. E 56 1 studied the 

effect of axial force -flexural interaction on the nonlinear response of 

coupled shear walls and concluded that substantial axial force in the walls 

may af f ect available ductility in individual members. 

1.3 Objective and Scope 

In case of severe earthquakes, structures will deform well beyond their 

elastic range. Some elements will be more overstressed than others giving 

rise to successive adjustments of load distribution and hence to a different 

behaviour than one might expect if no specific nonlinear analysis had been 

made to permit such prediction. When designing a structure one may wish 

to counter most of the energy demand upon the structure through inelastic 

deformations confined to desired members, or through a predetermined 

sequence of degradation or plastification. Therefore the need to perform a 

comprehensive nonlinear dynamic analysis appears to be desirable. 

Although reinforced concrete is very complex to model, the emergence of 

computer facilities has made nonlinear dynamic analysis possible by allowing 

for phenomena such as cracking, yielding, bond deterioration, stiffness 

degradation and aggregate - interlock. Our first objective will therefore be to 
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develop a dynamic finite element computer program to take into account the 

nonlinearities that stem from the very nature of reinforced concrete. To test 

the validity of the assumptions made concerning material behaviour, the 

analytical results are compared with existing experimental tests and data. 

Confining inelastic deformations to certain members of the structure 

requires nonlinear analysis to be performed repetitively and proportioning and 

design changed consequently until desired behaviour is achieved. This is a time 

consuming and tedious process, therefore an alternative needs to be found 

which yields, either a good approximate dimensioning of the coupled shear wall 

structures in the case where the computer facilities are not available, or an 

advantageous starting point if nonlinear dynamic analysis can be performed. 

The development of inelastic spectrum approach ( ISA ) as applied to coupled 

shear walls seems to be appropriate and is the subject of the second objective 

of this research. 

It is usually a human instinct to fight back with force even in case of 

defence against " Nature ". The consequent philosophy of stronger and stiffer 

buildings to counter earthquake forces has been with us for quite some time, 

but the experience of many catastrophical events has taught us to reconsider 

our way of thinking. Energy absorbing capacity and ductility have been the 

emphasis and the key for structural survival for the last few years. While it is 

relatively easy to assess the available ductility or ductility supply of a 

member, ductility demand however, seems to depend on so many factors that 

it cannot be estimated without preliminary parametric studies. Energy 

absorbing philosophy and factors which might influence ductility demand 

constitute the final objective of this study. 

Even though only coupled shear walls are dealt with in this investigation, 

the computer program is capable of dealing with plane frame and plane frame 

- shear wall systems as well. Both the walls and the coupling beams can be 
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either idealised as finite elements or as line elements. Nonlinearities in line 

elements are confined to preset hinges at the element's ends and monitored by 

a moment-rotation relationship. When using the FEM approach however, 

nonlinearities are confined to Gaussian integration points (4 in this study) over 

the element and monitored by the stress - strain curves of steel and concrete. 

The computer program is an extention of the program developed by Wee [ 57 

for elastic dynamic analysis and is also capable of dealing with statically 

applied loads in the elastic range. The step-by-step procedure can be 

applicable to any dynamic force in addition to earthquake excitations for both 

elastic and inelastic systems. 

1-4 Outline of the Thesis 

Many approaches are currently available for the aseismic design of 

reinforced concrete structures. Similarities and limitations of these 

approaches are the subject of Chapter 11 of this thesis. Chapter III is dedicated 

to the description of the theory of finite element method. 

As previously stated the first objective of this study is dedicated to th. e 

inelastic spectrum approach (ISA) as applied to coupled shear wall structures, 

and is covered in chapter IV. In this chapter the free vibration analysis of a 

wide variety of coupled shear walls with a range of geometries is carried out. 

The natural frequencies are computed for different typical floor weights and 

related to the corresponding stiffnesses. Then an inelastic design spectra is 

developed and applied to coupled shear walls. 

The second major part of the thesis is devoted to the nonlinear step-by-step 

analysis. This is covered in three chapters. The first, Chapter V, deals with 

the nonlinear behaviour of reinforced concrete and the mathematical models 

assumed in this investigation to simulate nonlinearities. The step - by - step 

numerical solution of the equations of motion and the overall. analytical 
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procedure are described in chapter VI. To check the validity of the assumed 

models, analytical results are compared with either experimental data or other 

existing models. This is discussed in chapter VII and ends the second part of 

this investigation. 

The capacity of coupled shear walls to absorb the energy input by 

earthquake ground motions is limited by the available ductilily of their 

coupling beams which should be greater than the ductility demand at any time 

interval. In chapter VIII the various factors which influence ductility demand 

are discussed and an optimal nonlinear procedure is proposed. 

Finally a description of the computer program and its use are given in the 

appendices along with aFartran IV listing. 
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CHAPTER TWO 

CURRENT SEISMIC APPROACHES 

General 

This chapter gives a description of the different approaches which may be 

used for the analysis of a structure such as coupled shear wall when subjected to 

earthquake ground motions. There are three types of approaches when designing 

aseismic structures: 

a) 'Code of practice requirements' approach in which the effect'of the 

earthquake loads are simulated by so-called equivalent lateral forces. 

b) Elastic dynamic analysis approach which takes the dynamic aspect of the 

problem into account. 

c) Nonlinear method of analysis approach which, in addition to the dynamic 

aspect of the problem, considers the changes in structure properties and the 

effects of the energy absorbing capacity of the structure. 

The first part of this chapter is dedicated to the mathematical formulation of the 

elastic dynamic analysis. Most of the codes E 48-511 being practically similar, the 

second part of this chapter is devoted to a brief presentation of the most 

advanced and widely used code of practice and the philosophy behind it. This is 

followed by a very brief presentation of the existing nonlinear approaches. These 

are presented more in detail in chapters 4,5 and 6. 

2-2 Elastic Dynamic Approach 

The equations of motion of a structure subjected to a ground motion can be 

written in terms of the relative displacements of the mass points as 
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IA U" +C U' +KU=-M yll 2.1 

where M= mass matrix 

C= damping matrix 

K= stiffness matrix 

Ulf Ul ,U= relative ace., vel. and displ. vector respectively 

yll base acceleration vector 

The solution of these equations can be achieved using the direct integration 

method or the less computer time consuming mode superposition method. 

2-2-1 Direct Integration Approach: In this technique, eqns. 2.1 is solved directly 

using numerical integration with respect to time, that is a finite difference 

technique. Several methods are commonly used, the most popular being the 

Newmark-beta E 102 1 and the Wilson-theta [ 103 1 methods. In all these schemes 

the nodal displacements and their derivatives are evaluated at time interval Dt 

and various assumptions are made as to the variations of these quantities within 

this time interval. A major problem of such schemes is ensuring that they are 

stable with respect to time. The advantage of these methods is their capability to 

deal with nonlinearities. In this thesis, the well known Newmark-beta method is 

used for nonlinear analysis and is therefore developed and discussed in detail in 

chapter VI. 

2-2-2 Mode Superposition Technique: An alternative approach to the direct 

integration is the modal analysis technique. In this method the nodal 

displacements U are transformed to new set of displacement$x through the 

generalised coordinates as: 

U =i: 4] 2.2 

where [ý] is the matrix of all the mode shapes and x is the vector of modal 

amplitudeS. 
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i) Mode Shapes and Natural Frequencies The mode shapes are obtained by 

solving the undamped, unforced behaviour of a structural system, i. e., 

M Ull +K U =0 2.3 

by analogy to single degree of freedom (sdof) systems, the solution may be 

written as 

U=i sin(wt + 8) 2.4 

substituting eqn. 2.4 into 2.3 leads to 

(K-w2M) Ltj =02.5 

for a non-trivial solution it follows 

det(K - w2lA) =02.6 

which is an n-degree polynomial in terms Of W2 which has n positive or zero roots 
2 

called eigenvalues wn . These roots are called natural frequencies and have 

periods Tn=2T% Iwn. For each wny there exists a corresponding ýn vector i. e., the 

made shape or eigenvector. in is obtained by back substitution Of wn in eqn. 2.5. 

ii) Orthoqonality: One of the most attractive and important properties of 

eigenvectors is their orthogonality with respect to the matrices M and K. It can 

be demonstrated E 12 j that 

bi Tm 41=a for itj2.7 

6i TK 6i=0 for i4j2.8 

and 

iTmIi=m*i for i=j2.9 

ýjT K Ji = K*i for i=j2.10 
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where M*i and K*1 are scalar quantities called modal mass and modal stiffness 

respectively. 

When damping is present and the damping matrix is arbitrary, the mode 

shapes are not orthogonal with respect to it. If however the mode shapes are to 

be orthogonal with respect to the damping matrix, it can be shown [ 12 1 that the 

latter rpust be expressed as a linear combination of the mass and the stiffness 

matrices as 

C= a, M+ a2 K 2.11 

in which a1 and a2 are proportionality factors. Then, 

TC $i=0 for i+j2.12 

Tc si = c*i for i =j 2.13 

where C*i is the modal danping coefficient for the i th 
made. 

iii) Maximum Modal Response: Substituting eqn. (2.2) and its derivatives 

into eqn. (2.1) yields 

MOO +Cýxl +Kýx =-My" 2.14 

Premultiplying eqn. (2.14) by ýi T 
gives 

ýj T MWO + Oi 
T COX, + ýj 

T Kýx = -pi 
T MY 11 2.15 

Applying the orthogonality properties expressed in eqns. (2.9), (2.10) and (2.11), 

eqn. (2.15) then becomes 

M*ix" + C*ix'+K*ix =- ýj Tmy it 2.16 

which is the sdof equation for the i th 
mode. Dividing eqn. (2.16) by M*i yields 

x" + (C*i/M*i) x' + (K*i/M*i) x= -(P*i/M*i) y" 2.17 
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in which P* i= $i Tm2.18 

Eqn. (2.5) can be written as 

2 
wi K ýj 

-m 
ýi 2.19 

premultipying eqn. (2.19) by ýj T 
produces 

TK ýi 
= Wi2oiTM 0i2.20 

or 

K*j = M*j wi 
2 

2.21 

and hence 

K*. 
----2 =i2.22 

It can be shown also [ 12 1 that 

C*. 
-L 

I= 2z. wi 2.23 

where zi is the damping ratio in the i th 
mode. 

Substituting eqns. (2.22) and (2.23) into eqn. (2.17) one can obtain 

xill + 2z i 
Wi Xi, + Wi2 Xi =_ 

(P*I/M*i) YI, 2.24 

Eqn. (2.24) is a sdof equation. Its solution yields the maximum modal amplitude 

ximax for specific ground motion, damping factor and frequency. If the frequency 

is varied then displacement, velocity or acceleration spectra can be plotted using 
2 

the maximum values xmax, wxmax, w xmax. These are often designated as Sd, 

Sv, and Sa respectively. Using these curves, the maximum spectra based response 

can be evaluated. For instance the maximum displacement for mode i may be 

expressed as: 
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P*l - Sai 
x imax M*i. Wi2 

2.25 

The relative displacements or the distribution of maximum displacement in mode i 

can then be computed using eqn. (2.2) as: 

ui` ýi Xmax 2.26 

or using eqn. (2.25) 

P*i Sai 
Ui 

M* i Wi 
2 2.27 

Similarly the distribution of maximum accelerations in mode 1 is given by 

ull 
ix "max wi 

2x 

max 
2.28 

and hence the distribution of maximum earthquake forces 

fi=M U"! 2.29 

fi =M 
P*i Sai 

2.30 
M* I 

from these elastic distributed forces, any desired force quantity can be obtained 

using any standard method of statics. For instance the maximum base shear V. as 

1ý Vo =j fi W dx 2.31 

where H is the total height of the structure. Eqn. 2.31 can be written as 

Fj 

VO 
P*i Sal 

Mx dx 2.32 
1, 

M* 0 

2 

P* i Sal 
vo = 2.33 

M*l 
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It must be emphasized that the quantities derived so far have been for 

individual modes, however the total maximum quantities can be obtained using an 

approximate combination of the modal contributions. If the root-mean-square 

(RMS) procedure is used then, 

222 
.1 Umax --: (Ul + U2 +"'Un )22.34 

similarly, 
in 2 

max'ý fi 2.35 

n21 
v Omax ý-- ( 7- vc) )2 2.36 

4 

It is apparent from eqn. 2.34 that only some of the modes will make significant 

contribution to the total nodal displacements. A very good approximation of the 

exact response can be obtained by including only the first few terms of the RHS 

of eqn. 2.34. This fact is one of the major advantages of the mode superposition 

technique over the direct integration formulation. The other important advantage 

is that the equations are uncoupled and hence no simoultaneous equation solution 

need be performed. 

2-3 Code of Practice Requirements 

The seismic design code provisions are given by a set of equivalent lateral 

forces which simulate inertial loads generated by the earthquake motion. It must 

be borne in mind however that these prescribed forces are generally far too small 

to be similar to those induced in case of a real severe earthquake. The 

relatively low equivalent forces specified by the code are justified for two main 

reasons 

1) It is economically unwarranted to design buildings to resist major 

earthquakes elastically. 

ii) It is recognised that structures with adequate strength and ductility have 
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the capability to withstand earthquake through inelastic deformations. 

2-3-1 Recommended Lateral Forces: In this section the Californian code of 

practice SEAOC E 49 1 is chosen for the illustration. In this code, the principal 

seismic provisions defines the effective intensity of the design earthquake in 

terms of the maximum base shear Vmax as: 

Vmax =ZIKC5W2.37 

in which Z= seismic zoning factor. The value of 1 corresponds to the 

areas of highest seismicity 

I= structure importance factor (e. g for hospitals 1=1.5) 

K= factor depending on the structure framing system. It is 

intended to count for energy dissipation capacity of the structure 

C= seismic response factor. It is expressed in terms of the 

fundamental period as C= 1/(15T2) 

5 foundation conditions factor 

W total weight of the structure 

if eqn. (2.37) is written in the form of 

Vrnax = K* CW 2.38 

an analytical expression corresponding to the code formula can be derived from 

eqn. 2.33 by considering only the fundamental mode as: 

2 

P*j Sal 
vo = 2.39 

M* 1 

comparing eqn. 2.38 and eqn. 2.39 reveals the folowing correspondance 

Sa P* 
2 

c=W-g2.40 

9 M* 1 
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Thusi C is the spectral acceleration expressed in g units and the total weight W is 

considered to be equivalent to the effective weight in the first mode. 

2-3-2 Distribution of Recommended Lateral Forces: The other provision of the 

SEAOC code defines how the total base shear force is distributed over the height 

of theAucture i. e., 

fi 
Win 

V* max 
n Y-Wix 
ii 

2.41 

in which fi = lateral force at floor level 

Wi weight at level i 

xi height of level i above the base 

V* max = Vmax-F'tp 

Ftp = force to be applied additionally at the top and accounts for 

higher modes if significant. 

a corresponding analytical expression can be derived from eqn. 2.30 by considering 

the fundamental mode, i. e., 

P*l Sal 
fi M ýl 2.42 

or by substituting eqn. 2.39 into eqn. 2.42, 

fi = 
P* 

VOmax 2.43 

writing the excitation factor P*1 in the form 7- Miý, 
_, 

yields 
I 

fi 
k 

VOmax 2.44 

mioli 
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It can be seen by comparing eqn. 2.41 and eqn. 2.44 that the code expression 

represents the response' of a lumped mass system deflecting with a straight line 

shapey i. e. y 
ý. 

ji = x, /H. This assumption stems from observations that the first 

mode shape is generally close to a straight line. 

2-4 Nonlinear Methods of Analysis 

In section 2-2 of this chapter the description of elastic dynamic analysis has 

been attempted. It has been assumed then, that the structure is a linear system 

i. e., its properties do not change during the earthquake motion. It is accepted 

however that during ground motions of even moderate intensity, displacements 

well in excess of the yield displacement are induced. The inertial forces 

generated by earthquakes are so large that it is not economically feasible to 

design for them. Instead the designer relies on the energy absorbing capabilities 

of yielding structures to absorb a large portion of the energy input by the 

earthquake through inelastic deformations. Therefore allowance for nonlinearity 

in the analysis procedure to assess these inelastic deformations is a major design 

consideration. This gave rise to approximate m ethods such as the inelastic 

spectrum approach and ductility factor method approach in addition to the 

rigorous step-by-step nonlinear dynamic analysis. 

The step-by-step procedure and the Inelastic Response Spectrum method of 

analysis, used in this dissertion, will be developed later in this study. Therefore 

this section is confined to describing the approximate ductility factor method of 

analysis. 

2-4-1 Approximate Ductility Factor Method: The Ductility factor method [121 is 

the first approximate method developed to obtain a reasonable measure of the 

nonlinear behaviour without carrying out a complete nonlinear analysis. Its 

procedure stems directly from its basic assumption, that the deflection produced 

by any earthquake input is essentially the same whether the structure behaves 
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elastically or inelastically. Consequently the forces (moments, shear and axial 

forces) obtained from an elastic analysis are reduced by a factor Ii, which 

accounts for the fact that the structure is ductile and will respond inelastically. 

The value of the ductility factor varies from case to case, however, the value of 4 

has been popular because dynamic analyses of structures subjected to El Centro 

earthquake have shown that the elastic forces generated in typical structures are 

about 4 times as large as the yield level that the equivalent lateral static forces 

computed according to the SAEOC code [ 49 ] would prescribe. 



CHAPTER THREE 

THE FINITE ELEMENT THEORY 

3.1 General 

The finite element method (FEM) of analysis which started as an 

extention of the stiffness or displacement method is probably the most 

powerful tool for structural analysis. Since the growing development of 

computer facilities, the method has widely spread its application and is 

nowadays used to solve in addition to structural proýlems) different kinds of 

physical problems such as fluid mechanics, soil mechanics) thermodynamics, 

electrodynamics) ... etc. Detailed presentations and description of the method 

are widely published[ 58 - 611. 

In the stiffness method for skeletal structure the elements are connected 

together at discrete joints and equations of equilibrium involving external 

loads and member end forces are established to solve for end joint 

displacements. Similarly, when dealing with a two or three - dimensional 

continuum, the structure is subdivided into "elements" of some geometrical 

shape ( triangle, quadrilateral, cubic, connected at a finite number of 

points or "nodes" at their boundaries and stiffness relationships between nodal 

displacements and nodal forces are derived in the same manner as for skeletal 

structure using various energy theorems. In this way a continuum with an 

infinite number of degrees of freedom (dof) can be discretisized as an 

equivalent system with finite dof. As can be expected the number of finite 

elements considered, as well as the size of the elements given by their aspect 

ratio, play a big role in the accuracy and the converging properties of the 

analysis. These however are beyond the scope of this study. 
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The finite element method is based on assumed patterns or functions. 

These functions can define the variation for either the element displacements 

( displacement method ) or the stress patterns ( equilibrium method ) or both 

(hybrid method). In this study, the displacement method is used and the 

derivation of the stiffness properties is based on the principle of minimum 

potential energy. 

3.2 General Finite Element Procedure 

3.2.1 Displacement Function: The basic philosophy of the FEM is piecewise 

approximation. That is, we approximate a solution of a complicated problem 

by representing the solution within each subdivision by a relatively simple 

function. Therefore the choice of suitable displacement functions is of 

paramount importance. For plane stress consideration the nodal displacement 

Si is represented by two translational displacements Ui and Vi. If the 

displacements of an element are represented by f, they may be expressed as: 

f =[Nl, N2, .... , NnI 2 3.1 

4 

i. e., 

f =[Nl -k3.2 

where n is the number of element nodes and NI are the interpolation 

polynomials or shape functions which should be chosen with care to satisfy the 

following convergence criteria 
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i) continuity of displacements at the interelement boundaries 

ii) all rigid body diplacements should be included 

iii) as the element area is reduced, a constant strain condition should result 

3.2.2 Strain - Displacement Relationship: The strains are obtained through 

appropriate differentiation of the displacement function f with respect to týjz 

relevant coordinate x or y. For plane stress conditions, these can be written 

as: 

i. e., 

ýu 
-ex äx 

bv 

-C y-3.3 

äu bv 
exy -+- äy äx 

äNi 
Ui 

äx 

äNi 
Vi 3.4 

äy 

ö'Ni äNi 
Ei ui+ --Vi äx 

3.5 

where [B] is the strain - displacement matrix and is given in detail in the next 

section for isoparametric elements. 

3.2.3 Strain - Stress Relationship: The element stresses CT are related to the 

corresponding strain G using the generalised Hooke's law as: 

CY =[DI. C 3.6 
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where the stress vector CY is defined as 

T cy = 
FOX 

; Gy ),, txyl 3.7 

and the matrix [D] is referred to as elasticity or property matrix. For a plane 

stress element with isotropic property ED] is given by E 62 1 

1V0 

ED] = E/(l-[L') 11 103.8 

00 (1-11)/2 

where E is the elastic Young's modulus and ji is the Poisson's ratio. 

Substituting eqn. 3.5 into eqn. 3.6 yields 

CY =EDHBI 
%e 3.9 

3.2.4 Minimization of Total Potential Enerqy: The element strain energy Us is 

given by 
I- 

S= 
T. u CF d(vol) Jvol 3.10 

which after substituting for G and CT from eqns. 3.5 and 3.6 becomes 

UTT s YIJ4 -B. 
D. B. Se d(vol) 3.11 

V1 ol 

The potential energy due to nodal loads Re is given by 

T. Re 3.12 

and the total element potential energy is given by 

Qe =Us+ W 3.13 

or, using eqn. 3.11 and eqn. 3.12 
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ýe TTT 'I d(vol) - Re 3.14 yB DB4 Se Qe= 1. 

Nvol 

The minimization procedure [ 3.2 - 3.5 1 requires that 

ýQe 

S :-03.15 

which yields 

I 
BTDB Se d(vol) = Re 3.16 

Vol 
i. e., 

[ Ke I Se 
= Re 3.17 

in which the stiffness matrix [ Ke I is given by 

[Kel BTDB d(vol) 3.18 

Vol 

Once the displacement vector 
k 

has been determined, it is possible to 

compute the stress distribution at any point within the element using eqn. 3.6. 

If however, the principal stresses and maximum shear stresses are desired, they 

can be calculated from the following expressions[ 62 1: 

CTX + O-y [CjX 
_ Cjy)2 

+ rr y2 x 3.19 
22 

max : -- 3.20 
2 

2 Txy 
tan28 =-3.21 

CFx - Gy 
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where CF1 and 0-2 are the major and minor principal stresses, Ymax is the 

maximum shearing stress and 8 defines the principal stresses direction with 

respect to the element axis. 

3.3 Coupled Shear Wall Discretisation 

A suitable representatiom of a structure such as coupled walls requires 

the use of two types of elements 

i) quadrilateral plane stress elements for the walls 

ii) line element for the coupling beams. 

3.3.1 Isoparametric Quadrilateral Elements: The stiffness formulation of this 

family of elements is well documented and can be found in many references 

[58-611. The formulation is carried out using localised coordinates (s , Q. 

These coordinates are chosen to have values +1 and -1 along the sides of the 

element and hence vary from -1 to +1. The element may have 4,8, or 12 

nodes depending on whether a linear , quadratic or cubic function is assumed 

respectively. As far as this study is concerned ) linear four noded elements 

are assumed. Each node 1 has two degrees of freedom Uxi and Vyi (fig. 3.1). 

The local and global coordinates are related by 

x =X Ni x, 
i=l 

4 
y =2 Ni yj 

i=l 

where the interpolation functions Ni are defined as 

3.22 

N, -z'; (l-s) (1-0 

N2 21; (1+s) (1-t) 3.23 
N3k (1+s) (1+0 

N4k (1-S) ('+t) 
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From the basic definition of isoparametric elements, the same interpolation 

function relates displacements within the element to nodal displacements, i. e., 

4 
Ux = Y. Ni Ux, 

i=l 

4 
Vy = 7- Ni Vyi 

i=l 

3.24 

In view of its poor behaviour under bending, the linear isoparametric 

quadrilateral element has been improved by the introduction of so-called 

incompatible modes (fig. 3.3) suggested by Wilson C 63 1. This involves the 

addition of corrective displacements to the displacement fields defined by eqn. 

3.24. Following Wilson's procedure equation 3.24 becomes 

4 
Ux = 7- Ni Ux i+c1 (1-s) +c2 

1=1 

4 
Vx => Ni Vyi +c 3(1-5') +c4 i=l 

3.25 

The constants c 11 ..... Yc4 are additional degrees of freedom and therefore 

increase the element stiffness matrix to (12 x 12). However these constants 

being relative to the corner nodal displacements) they can be condensed by 

minimisation of the strain energy at element level. 

As the shape functions are given in local coordinates (s , 0, the 

relationships between local coordinates and global derivatives must be found 

to determine the strain matrix [BI given by eqn. 3.3. Using the usual chain 

rules of partial differentiation, the general transformations for function Ni 

may be written as 
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äNi äNi äx äNi äy 
. %Z *- rs -- . d 7x d 7s Z -y os 

3.26 
äNi äNi äx olN- öy 
CM 

or in matrix form as: 

ýLN i 
-ä>( äy' 

- 
äNi- 

äs 6 s ös -ä-x 
3.27 

äNi äx öy dN- 
dt 

-ö 
tt dy 

ýNi äNi' 
as ä -x 

3.28 
äN- aNi 
öt 

where [J] is known as the Jacobian matrix. It can be computed explicitly in 

terms of local coordinates as 

oNj 6N4 x1 Yl 
6-s s- 

6N1 AN4 
x4 Y4 

L- -A 

and hence the required derivatives 

6N 6N 
6x as 

6N 6N 
cy at 

The strain matrix (eqn. 3.3) can now be written as: 

F- = [BI 

u4 

v4 

3.29 

3.30 

3.31 
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where 

[B ]=[Bl, B2, B31B 4) 

in which 

6Ni 

6x 

6NI 
0 

6x 

6Ni Ni 

ay 6x 

3.32 

The element stiffness matrix (eqn. 3.18) can now be written in local 

coordinates (s, t) as 

[Kel =hBTDB det[J] ds dt 3.33 
'I 

-1 
where h is the element thickness and det[J] the determinant of matrix [J]. 

Using G aussian quadrature [ 59 1 for the numerical integration, the element 

stiffness matrix (eqn. 3.33) can be written as: 

[Kel =h22 Wj Wk det[J] BT (sj; tk )D B(sj, tk) 3.33 
jk 

in which j and k are the Gaussian integration points and Wj and Wk their 

corresponding weight factors. Table 3.1 shows the local coordinates of the 

Gaussian points and their weight factors. 

3.3.2 Line Element: The elastic stiffness matrix for this element is given in 

its general form with respect to the reference axis as 

51 0a -Sl aa 

S2 S4 0 -S2 S4 

[Kel 53 0 -54 55 3.35 
symmetric Sl 00 

S2 -S4 
S3 
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in which 

12EI 
S2= - 

L'(1+2g) 

6EI 
S4 =- 

L'(1+2g) 

4EI(l+g/2) 
S3 = 

L(1+2g) 

2EI(I-g) 
S5 =- 

L(1+2g) 

where g (6fEl)/GAL 2 

G Shear modulus 

f Shape form factor 

A Area of cross section 

I Moment of inertia of the section 

L Length of the beam element 

If the element is inclined at an angle N with respect to the global 

coordinates (fig. 3.2), then the stiffness matrix (eqn. 3.38) must be 

transformed to the global coordinates system before the overall assembly. In 

the particular case where the element is vertical (e. g column), then [K] 

specialises as: 

52 0 -S4 -S2 0 -S4 

[Kel = 

sl 00 -sl 0 

53 S4 0 S5 

S2 0 S4 

symmetric sl 0 

S3 
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Assuming that the displacements of the reference axis are related to the 

displacements of the corner of the element (fig. 3.2) by the following relation: 

Ur =( Arc I- Uc 

where 

[Are]':: 

0.5 0 0 0 0 0 0 0 

0 0.5 0 0 0 0 0 0.5 

1/D 0 0 0 0 0 -1/D 0 

0 0 0.5 0 0.5 0 0 0 

0 0 0 0.5 0 0.5 0 0 

0 0 I/D 0 -I/D 0 0 0 

3.38 

3.39 

D= Depth of the beam element 

Uc Displacement vector of the corners of the beam element. 

Ur Displacement vector at the reference axis of the beam. 

by the application of the principle of virtual work one can arrive at the 

stiffness matrix of a new line element with 8 degrees of freedom, i. e., 

[Ke, cl = [Arc3T [Kel [Are] 3.40 

In the computation of the 8x8 stiffness matrix of the beam element, it 

was assumed that the displacements 2,41 6, and 8 are independent which 

implies a possible change in the cross-section depth. If the displacements in 

the directions 2 and 8 and -similarly 4 and 6 (fig. 3.2b) can be made equal, the 

cross-section will remain unchanged across its depth. A very simple method of 

rmsuring that is by adding large stiffness terms to the positions K22, K28, K822 

K88. Physically this can be visualized as if a fictitious, very rigid bar exists 

between node i and I and j and k respectively. The moment, shear and axial 

forces acting at the reference axis can be computed using the following 

relation: 
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Fr =[ Bre I T. Fc 

where 
Fr = vector of forces acting at reference axis 

Fc = vector of forces acting at element corners 

[Brcl = [Arcl-1 I i. e., 

[Brcl ---: 

3.4 Overall Solution 

0 D/2 0 0 0 

1 0 0 0 0 

0 0 1 0 D/2 

0 0 0 1 0 

0 0 0 1 0 -D/2 

3 0 0 0 1 0 

1 0 -D/2 0 0 0 

D 1 0 0 0 0 

3.41 

3.42 

The stiffness matrix of the wholesýructure is constructed from the 

individual element matrices by using the direct stiffness matrix method [8 

i. e., by summing up the individual element stiffnesses as 

n 
K Ke 3.43 

where [K] = overall stiffness matrix 

[Kel = element stiffness matrix 

n= number of elements in structure 

Similarly, the overall load vector R is given by 

n 
R Re 3.44 

34 



and the potential energy of the structure Q is the sum 'of the element 

potentials as given by eqn. 3.14, i. e., 

Qe 3.45 

substituting eqns. (3.40) and (3.42) into eqn. 3.44 yields 

Tnn (126 (Kel Re 3.46 

i. e., 
ýT 

6 3.47 

where 
S 

is the overall displacement vector. Minimizing the potential energy 

requires 

N 
OQ 
- =o 3.48 
äý 

i. e., 

R 3.49 

By introducing the structural forces R and the known boundary 

conditions, the unknown structural displacement vector o is obtained by 

solving the system of simultaneous equations given by 

k R 3.50 

In this study, Gaussian elimination procedure [81 is employed for the solution 

of equation 3.50. Eqn. 3.50 is general and is applicable to static as well as 

dynamic problems. In a dynamic history analysis, the equation of motion is 

generally solved using step-by-step numerical integration method. In each 

time interval, the equations of motion can be transformed to the above 

general form (eqn. 3.50) as demonstrated in chapter five. 
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A) Flexural Element 

cl D 

B) Deformed Shape of the Flexural Element 

Cl 

C) Deformed Shape of the Quadrilateral Element 

FIG. 3.3 BENDING BEHAVIOUR OF A QUADRILATERAL ELEMENT 
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CHAPTER FOUR 

INELASTIC SPECTRUM PROCEDURE 

4-1 General 

In carrying out a dynamic analysis to obtain the response of a structure 

subjected to earthquake forces, one can use the response spectrum analysis or 

the more sophisticated and computer time consuming, time history analysis. 

Time history analysis involves step-by-step integration of the equations of 

motion for a ground motion accelerogram and is applicable to both linear and 

nonlinear systems. In recent years many researchers [ 26,27,29,36,64-68 ] 

have focused their work on improving the nonlinear mathematical models to be 

used along with the step-by-step method of analysis. Despite that, however, 

the corresponding improvements in the ability of structures to withstand 

earthquake is far behind. This is because, first analysis has far outstripped 

practical use of the results for design purpose and second, the step-by-step 

method of analysis is too expensive to be attractive for practical purposes and 

need be performed repeatedly to meet an acceptable behaviour and to take the 

randomness of ground motion E 12 1 into account, i. e., because of the sensivity 

of the structural response to the details of ground motion input. 

The response spectra-based analysis howeverp although limited so far to 

elastic systems, may be a potential practical method for inelastic structure 

design. Eventhough the inelastic spectrum analysis[ 11, 16,69,70 1 is not 

strictly correct, the simplicity required by a code of practice on one hand, and 

the complexity and questionable reliability of the step-by-step integration 

procedure on the other, makes the method most attractive for the future. 

Therefore this chapter is intended to develop this method and to investigate 

its application for a practical design of coupled shear wall structures. 



The general approach and its limitations are discussed first then the 

procedure of the method is presented and the different influencing parameters 

are investigated in section 4.3. The response spectrum analysis is based on a 

response spectra as loading data, therefore the development of an inelastic 

design spectra is also presented in section 4.3. Section 4.4 is devoted to the 

application of the inelastic spectrum analysis to coupled shear wall structures. " 

4-2 Approach and Limitations 

Although the term response spectrum was originally used with reference to 

linear single degree of freedom (sdof) systems, its use has been extended to 

mdof systems by modeling each vibration mode by the response of a sdof 

system. For a particular linear sdof system defined by its frequency and 

damping, a point on a response spectrum curve is obtained by subjecting the 

system to a specific ground motion record. The maximum value of the 

response parameter of interest ( acceleration, velocity or displacement ) 

during the excitation and associated frequency or period for a specific 

damping ratio defines a point of the spectrum. Other points are obtained by 

varying the frequency (or period). Fig. (4.1) shows an example of such a 

spectrum for different damping ratios. 

The response spectrum analysis consists of the superposition of the modal 

responses obtained from . specific spectra. In using such an elastic spectrum, 

the only source of inaccuracy in the method lies in the way the modal 

contributions are combined. When subjected to a ground motion; an inelastic 

single degree of freedom system may respond as shown in fig. (4.2). If a 

ductility factor defined as (fig. 4.2b) 

Umax 
It= 

Uy 
4.1 
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Umax and Uy being the maximum displacement and the displacement at 
-yield 

respectively, is chosen and if the yield value Ry is selected by trial and error 

so that the computed ductility is equal to that preset, then an inelastic 

spectrum can be generated in the same way described above for elastic 

analysis. Fig. (4.3) shows an example of such spectrum for different 

ductilities. 

If the structure to be designed is a sdof system, the use of an inelastic 

spectrum is theoretically correctly applicable. In the case of a mdof system 

however, the modal analysis used in the inelastic spectrum analysis is not 

rigorously valid because of its principle of superposition which does not hold 

beyond the elastic range [ 12,71 ] unless all plastic hinges associated with the 

assumed failure mechanism form simultaneously E 72 1 

4.3 Procedure of the Method 

Apart from the development of the inelastic spectra which is an iterative 

process for a preset ductility factor, the rest of the procedure is very much 

the same as the elastic modal analysis and involves the following steps: 

i) Desiqn Earthquake Ground Motion: The choice of an earthquake input as a 

basis for design is one of the most difficult and uncertain features in the 

overall procedure of seismic analysis. This is because, first, the determination 

of any earthquake record depends to a large extent on the disciplines of 

geology and seismology [ 73 1 and therefore may differ from one site to 

another and second, the response of a structure depends not only on the 

intensity of the earthquake but also on such factors as frequency content, 

duration, etc... Therefore two different records of the same intensity are 

most likely to excite a given structure quite differently. Researchers L 74,75, 

12 1 have dealt with the problem of selection of design earthquakes and most 

of them agreed that the use of a single record to define a design earthquake 
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leaves considerable uncertainty as to the significance of the response it 

produces. 

While averaging the maximum responses of each of the record considered to 

produce design spectra to be used along with modal analysis is quite usual, 

the procedure seems to be impractical for the step-by-step integration method 

and one is confined to perform the analysis for each of the record seperately. 

This shows yet again the advantage and practicality of inelastic spectrum 

analysis over the time history analysis. In this dissertation four earthquake 

records of different characteristics have been considered. Their accelerogram 

time histories for the first 10 second duration are shown in fig. (4.5). 

ii) Design Ductility: When subjected to a severe earthquake, the structure 

must have the capability of undergoing substantial inelastic deformation 

without collapse. These inelastic deformations are often referred to as 

ductility demand which is measured in terms of strains, displacements, 

curvatures or rotations, and is defined by the ratio of the ultimate to the yield 

value of the quantity considered, i. e., 

Du 

Dy 
4.2 

For mdof systems the term ductility factor has been used with different 

meanings [ 55 1 adding confusion and ambiguity. Keeping in mind that the 

presented approach is intended to be integrated into a code and as far as shear 

walls are concerned, the displacement ductility seems to be the most suitable. 

This is so because the rotational ductility (Bu/Gy) can be very misleading when 

dealing with members of different depth) indeed because of the relatively 

smaller curvature associated With first yielding in a deep member such as 

shear wall, a rotational ductility factor of say 4, would represent a relatively 

lower lateral capacity than the same ratio would indicate when used for a 
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regular column. If one defines the storey drift as the relative displacement 

between two successive storeys, the ultimate drift DU would be the acceptable 

drift preset by the designer or the code of practice. It may be worth noting 

that the Applied Technology Council (ATC) E 76 1 recommended a value of Du 

= 0.01h and the UBC code L 50 1a value of Du = 0.015h, h being the storey 

height. 

iii) Developement of the Inelastic Response Spectrum: As explained in section 

4.2, a spectrum is presented in terms of one of the parameters of interest. 

Throughout this dissertion spectral acceleration is considered. When subjected 

to a ground excitation x", a single degree of freedom system (fig. 4.2 ) may be 

assumed to behave according to a preset hysteretic model. In this 

investigation , the Takeda hysteretic sdof model with degrading stiffness 

capability is assumed[ 29 1 (fig. 4.4). This experimentally based model is 

believed to comply better with the real behaviour of R/C structures and hence 

should lead to a better accuracy than elastic perfectly plastic model. 

The model (fig. 4.2a) can be described by the sdof equation of motion as 

mull + cut +R= -MXII 4.3 

where m, c and ?, are the mass, damping and resistance respectively. ull and u, 

are the derivatives of the displacement u. Note that the resistance 1ý. is equal 

to the product ku in the elastic range, k being the nominal stiffness and is 

represented by the slope of the elastic range of the load-deformation 

hysteretic model (fig. 4.4). In the case of a damped free vibration, one can 

define the critical damping [ 12 1 as: 

c = 2mw 4.4 

in which w is the circular frequency and is given by [ 12 1 

w= (k/m)12' - 4.5 
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The natural frequency can be determined as 

f= W/2-rk 4.6 

and the period T as 

I 
T= 1/f= -? n/w= 2-r\(m/k) 2 4.7 

It is useful to define the damping ratio z as the ratio between damping c and 

its critical value cc, i. e., 

z= c/cc = c/2mw = cT/4-i%rn 4.8 

The equation of motion (4.3) may be solved using any available method. 

In this dissertion the solution is carried out using the step-by-step numerical 

integration because of the nature of the exciting force (mx"). In order to 

obtain an acceleration spectrum for a specified ground motion x", one needs to 

solve equation (4.3) as many times as the number of fundamental periods to be 

considered and plot the curve relating the spectral acceleration to the 

fundamental periods (or natural frequencies). 

The structural model described by equation 4.3 is excited by one of the 

chosen design ground acceleration time histories ( x"(t) ). The solution of 

equation (4.3) is carried out by numerical integration. The yield level of the 

structure (fig. 4.4) given by 

Ry 

k 
4.9 

is then varied iteratively until the specified design ductility factor is obtained. 

The spectral acceleration Sa is the value of the acceleration which when 

multiplied by the mass of the model m, yields the yield resistance force Ry, 

m Sa 
4.10a 
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sa 4.10b 

The different steps involved in the development of the inelastic spectra are 

summarized by the following computer orientated flow chart. 
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Initialize 1=0 

I 
Select arbitrarily m 

Select period Ti 

I Compute stiffness ki (eqn. 4.7) 1 

Select Ryi 

Compute U Yi =Ryi/k i 

Solve eqn. of motion eqn. 4.3 

Compute u+ max 
&u- 

min 
Compute ductility ILd (eqn. 4.1) 

yes 

Saff Ryj/m 
---> PRINT Sai, Ti 

1-1 
(these define a pt of spectra) 

yes 

stop 
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The procedure is repeated for each of the records considered and for the 

different ductility factors. Fig. (4.6) shows the plot of the spectral 

acceleration versus the natural frequency for the four earthquake design 

records and for ductility factors of 1,2, and 4 respectively. 

iv) Aveýraqe Desiqn Spectra: Before averaging the spectra shown in fig. (4.6) 

and to achieve a conshent set of data for strong earthquake conditions, the 

records have been normalised to a standard intensity. Housner [1111 proposed a 

measure of the intensity of ground motions. He defined the spectrum intensity 

- as the area under a velocity response spectrum curve between periods of 0.1 

and 2.5 seconds as 

, 2.5 

SIp Sv(p, T) dT 
jo-I 

in which sip = Spectrum intensity at damping p 

Sv = Velocity response spectrum 

T= Period 

The N/S component of 1940 El Centro earthquake, which had an approximate 

peak acceleration of 0.40 g, has long been considered as a typical strong 

motion, therefore a normalization corresponding to its intensity [1111 has been 

chosen as a basis of the design spectra. Fig. (1ý. 7) shows the normalized and 

the average design spectra. 

4.4 Application of the Method to Coupled Walls 

It has been years now that nonlinear methods of analysis have been used to 

solve structural problems and yet as far as coupled shear walls are concerned, 

no available systematic method exists to meet the practical need of structural 

engineers as concerning optimal selection of stiffness and strength of the walls 

and the coupling beams of coupled shear walls. 
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It is well accepted that energy demand by an earthquake is better 

contained by horizontal members if provided with appropriate and realistic 

ductility. This is because of different reasons) the most important being: 

1) Stability problem if major yielding in vertical supporting members. 

2) Beams (flexible) develop more ductility than walls ( rigid and hence 

brittle). 

3) Horizontal members generally easier to repair. 

This trend of philosophy is even encouraged by most codes of practice [71,771 

by giving none or very little credit of any kind of ductility to shear walls. 

Recently however, it has been shown by Paulay and Santhakumar [1101, 

Bertero [ 52 1, Fintel and Ghosh [78,791 and others E 47,80,811 that, in fact, 

shear walls if well designed may develop substantial ductility. More 

experimental work is certainly needed for this to be fully accepted and made 

part of the code recommendations by lifting the severe burden on shear wall 

systems. 

Recognising that shear walls can develop ductile behaviour, it is attempted 

in the following sections to describe a practical method of design of coupled 

shear walls. First free vibration analysis is carried out and results discussed. 

This is followed by the inelastic spectrum analysis and its direct application to 

the design of coupled shear walls. 

4.4.1 Evaluation of Natural Frequencies and Mode Shapes: The evaluation of 

natural frequencies and made shapes is a standard eigenvalue problem. They 

are derived from the solution of the equation: 

(K-w 
n 

2m) k ý- 0 4.11 

where K =stiffness matrix of the structure 

M= structural mass matrix 

Wn = circular frequency at mode n 

48 



On 
=n 

th 
modal shape vector 

In this dissertation the bissection method [ 83 1 is used to solve equation 4.11. 

The stiffness matrix K is assembled using the direct method and the element 

stiff nes matrix was developed in chapter three. 

As can be seen from equation 4.11 the natural frequency depends not only 

on the stiffness of the structure but also on its storey mass. In view of the 

substantial influence of the variation of storey mass upon the natural 

frequency (fig. 4.10) and hence storey drift, it has been decided to consider in 

addition to selfweight two typical extra storey masses namely 4 kips and 8 kips 

respectively. This is believed to cover a wide range of practical possibilities. 

The first three natural frequencies where computed for a wide range of 

coupled shear walls ranging from 100ft to 400ft high ( their general properties 

are shown in fig. (4.8 )) and for 3 mass cases: 

1) Selfweight only 

2) Self weight + extra storey mass =4 kips 

3) Selfweight + extra storey mass =8 kips 

These will be used later along with their related mode shapes for the modal 

response analysis. For convenience only the first natural frequencies are 

shown in fig. (4.9a), (4.9b), (4.9c), and (4.9d) for 100,200,300, and 400ft high 

structures respectively. 

4.4.2 Discussion: At this point it may be worth noting the following points: 

i) Generally as it can be expected, the natural frequency increases with the 

wall width Dw and the coupling beam depth and decreases with increasing 

beam length (L beam) or overall height. 

ii) Contrary to what has been discussed in i), it was found sometimes that 
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from two structures having the same geometric characteristics, the one having 

the longest coupling beam length produces higher natural frequency. This 

somehow suprising result finds its explanation in the point iii) discussed below. 

iii) As the ratio ( beam depth/storey height ) reaches a certain value which 

varies with the height of the structure and the beam length, the natural 

frequency tends very rapidly towards that of the solid wall without openings 

having the same overall dimensions. 

iv) As the wall width (Dw) reaches a certain value, the fundamental period 

seems to depend no more on the beam depth. This is clearly shown by fig. 

(4.11). 

v) The storey masses have a very big influence on the natural frequency 

(fig. 4.10) and therefore should be taken into account. For convenience the 

natural frequencies of structures with extra storey masses are shown in 

appendix B if needed. Their approximate values can also be derived as the 

product of the natural frequency of the structure with no extra storey rusta 

coefficient c4 or ca derived from table 4.1 for extra storey mass of 4 and 8 

kips respectively. The variation of ci with respect to the beam length (Lbeam) 

and the beam depth (Hb) were found to be negligible and only the influence of 

the wall depth (Dw) on ci was considered. 

4.4.3 Modal Forces, Modal Drifts and Combinations: Based upon the inelastic 

acceleration response spectrum, the design ductility factor and the first three 

natural frequencies ( these are believed enough for a good approximation), the 

maximum member forces and displacements are computed by modal analysis. 

4.4.3.1 Maximum Modal Forces and Displacements: If one defines the so 

called participation factor E 12 1 for mode n as 
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Ln n 4.12 
On TM 

where M= structural mass matrix 

ýn : -- shape vector at mode n 

then the maximum modal forces in the nth normal mode can be computed as 

Pnmax --: San Ln M On 4.13 

in which San is the spectral acceleration read from the inelastic design 

spectrum for mode n. Modal shears, modal moments .... etc may be obtained 

from modal forces using standard procedure of structural analysis. 

Defining the storey drift as the relative deflection between two 

consecutive stories, the storey drift indicet i. e., the storey drift over the 

storey height, is certainly one of the very important quantities of structural 

response. This is because it reflects directly the distortion induced in that 

storey. The maximum displacement modal response for mode n, may be 

expressed as: 

IL 4.14 Un = Ln 5an On 163% 

hence the modal drifts between level y and y-I is given by: 

&n= Un, y - Un, y-1 4.15 

or 
Ln San 

4 -0 4.16 
w2n, y n, y-1 

n 

4.4.3.2 Maximum Response - Combinations: The maximum modal forces and 

displacements previously described are the maximum values attained during 

the response in the particular mode considered. Because these maxima do not 
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occur at the same time there is no exact way to determine precisely the 

maximum response and it would be generally unduly conservative to compute 

the latter by simply adding the maxima together. Therefore different 

probability based formulae have been proposed in order to obtain a reasonable 

estimate of the maximum response. In this research the usual procedure of 

combining the modal contributions using the square root of the sum of the 

squares, that is root-mean-square (RMS) procedure is utilised. 

The maximum force distribution is then given by: 

I Fmax: -- 
(2 Pnmax) 2 4.17 

and the maximum yield drift by 

1 
Ymax n, y 

)2 4.18 

As previously defined, the maximum yield drift indice can be computed as 

Dy Ymax 

h 
4.19 

in which h is the storey height. The value of the maximum drift indice 6 
ult 

is 

related to the maximum yield drift 6 
Ymax 

by 

6 
-It = 'L 6Ymax 4.20 

4.4.4 Procedure: The direct relation between the dynamic characteristics 

(modal shape and natural frequency ) of the structure and its interstorey drift 

has been demonstrated by Derecho et al [ 75 1, Machin and Bertero [ 82 1 and 

Fintel [ 77 1. For any given coupled shear wall, one can attribute a natural 

frequency f 1, Plots of such a relation for different geometric characteristics 

of coupled shear walls are shown in figure (4.9). For the same coupled shear 

walls and for a chosen ductility factor and design spectra, one can compute 
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the maximum interstorey drif t. The latter is then related to the natural 

frequency and plotted in figures (4.13), (4.14) and (4.15). 

Having chosen the maximum acceptable driftj the designer may enter the 

charts of figures (4.13) to (4.15) which yield the required first natural 

frequency, which in turn is introduced in figure (4.9) to yield the required 

geometric parameter in terms of the known dimensions. Furthermore, the 

direct relation of storey drift and the plastic rotation in the storey coupling 

beam provides the necessary strength in the coupling beams. This and other 

features are discussed in the following sections of this chapter. 

4.4.5 Results and Discussion: From the results the following observations can 

be made: 

i) The maximum lateral displacement of three 20 storey coupled shear walls 

having different natural frequencies have been drawn in fig. (4.12). As can be 

seen clearly, " the maximum lateral displacement increases almost in proportion 

to the fundamental period. 

ii) The f irst fundamental periods of a variety of coupled shear walls have 

been related to the maximum yield storey drift indice. As can be expected the 

storey drif t indice generally decreases almost in proportion to increasing 

fundamental period. 

iii) Using the well known statistical least square method L 84 1, the 

relationships of storey drift indice-period have been fitted into approximate 

curves f or ji = -1 
(f ig. 4.13), [L =2 (f ig. 4.14), ji =4 (f ig. 4.15). These curves are 

to be used for design as stipulated previously. Having selected the maximum 

tolerable storey drift indice and hence the maximum yield storey indice, the 

designer enters one of the charts (figs. 4.13 - 4.15), which yield the 

fundamental period of the required coupled shear wall. It may be worth noting 

that for convenience the period is thatý of the structure with no extra storey 
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masses. The period is then used to enter one of the diagrams of fig. (4.9) 

which in turn, yields one of the geometric parameters required. 

4.4.6 Adequacy of the Desiqn and Couplinq Beam Strenqth: In performing a 

design according to the procedure described previously, it was assumed that 

the coupling beams undergo inelastic deformations with acceptable practical 

limit. Because of its paramount importance the ductile behaviour of the 

beams i. e., their ability to deform plastically without loss of strength, appears 

to be more than necessary and must therefore be checked by providing it with 

appropriate strength. In this section an attempt is made to rel ate the 

maximum drift to the plastic rotation demand on coupling beams, which in 

turn is related to the required yield moment of the beam. 

Eventhough there are several ways of expressing inelastic demands on 

beams E 85 1, the plastic hinge rotation is probably the most expressive because 

it can be directly relatable to the moment - curvature curve (m-9) and the 

geometric properties of the beam cross-section. Figure (4.16) shows a beam- 

wall subassemblage in its displaced position at maximum drift. The 

deflections are exaggerated in order to clearly illustrate the geometric 

relationships. From the figure: 

Omax = Op + Oy 

in which 

Omax = maximum rotation 

E)y = rotation at yield 

ep = plastic rotation. 

4.21 

Assuming an acceptable rotational beam ductility factor 11by one may 

compute By as: 
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Omax 
Gy= - 4.22 

Ilb 

For a plastic hinge length lp) i. e., the equivalent spread of plasticity[ 86 1, one 

may compute the yield curvature 9y as: 

ay 
gy = 

lp 
4.23 

The plastic hinge spread lp has been given empirically by Paulay [ 86 1 as: 

lp = 0.5d + 0.05s 4.24 

in which d is the effective depth of the section and s is the distance from the 

critical section to the inflection point. 

Assuming a linear distribution of strain (fig. 4.17b) and if the yield steel 

strain Ey and the effective depth of the cross section d are known, then the 

neutral axis depth Kud) and hence Cc and 6's can be computed. The 

equilibrium equation of the resultant forces (fig. 4.17c), i. e., 

Ts = Cc + Cs 4.25 

yields the compressive and tensile steel sections A's and As respectively and 

hence the yield moment My required. (see design example appendix A). 

4.5 Conclusion 

A design tool has been presented for coupled shear wall systems built in 

zones where there is a high risk of strong earthquakes occuring. To illustrate 

the method a design example is carried out in appendix A. The importance of 

the structure can be taken into consideration through design ductility factor. 

The charts do not cover absolutely all the possible geometric characteristics, 

however interpolations can be made, bearing in mind what follows: 
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For coupled shear wall structures having the same total height (HO 

and the same beam length and depth (Lbeam, Hb), the fundamental period is 

almost inversely proportional to the wall depth (Dw) as shown by figure (4.11). 

ii) For coupled shear wall structures having the same wall depth (Dw) 

and the same beam length and depth (Lbeam, Hb), the fundamental period can 

be assumed proportional to the square of the total height of the structure (Ht). 

iii) The natural frequency of a structure having extra storey mass can 

be derived from fig. (4.9) struck by a factor c given in table 4.1 as explained 

in section 4.4.2. 

iv) The yield drift is almost in proportion to the fundamental period. 

The error committed by assuming such a proportionality increases with 

increasing design ductility factor. 
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TABLE 4.1 COEFFICII; NT c,. and c, FOR MASS, = 4 KIPS 

AND MASS =8 KIPS RESPECTIVELY 

10 stordy 20 storey 30 storey 40storey 

Dw C4 C8 C4 C8 c4 ca C4 C8 

12 2.26 3.00 2.18 2.91 2.13 2.86 2.70 3.25 

15 2.06 2.75 2.00 2.64 1.98 
1 
2.62 2.48 3.00 

1 
is 1.92 2.53 1.88 2.47 1.86, 2.43 2.31 2.75 

21 1.82 2.40 1.78 2.31 1.761 2.28 2.16 2.58 
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CHAPTER FIVE 

NONLINEAR BEHAVIOUR OF REINFORCED CONCRETE 

5-1 General 

When performing a nonlinear analysis, techniques have to be used that 

recognize material nonlinearities such as cracking and crushing of the concrete 

and the yielding of the steel. Most material nonlinearities are due to overstress, 

therefore a way must be found to postulate the critical combinatiorls of stresses 

or yield criterion beyond which the elastic constitutive relationship does not hold 

any more. Also, the success of nonlinear analysis to trace the structural 

behaviour with time on one hand, update the stiffness matrix whenever necessary 

and predict nonlinearities and failures with good accuracy on the other hand, lies 

within the choice of suitable experimentally based models or idealisations. 

Before considering these criteria and models and the resulting modifications in 

element stiffness which are discussed in some detail in section 4, it was thought 

useful to give a brief general background on the behaviour of reinforced concrete 

material and its main components . 

5-2 Behaviour of Reinforced Concrete 

The finite element method of analysis has advanced considerably in the last 

decades to meet different problems in various complex fields. However further 

progress in the understanding and prediction of structural reinforced concrete 

behaviour is still needed. Indeed the complexity, nonhomogeinity, and anisotropy 

of the material all contribute to make this progress even slower because of lack 

of reliable experimental evidence. While relatively reliable experimental data is 

available on plain concrete and the steel reinforcement a cting separately, the 

derivation of a reliable constitutive law for reinforced concrete is still under 
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investigation. This is because many of the phenomena influencing the composite 

material such as bond slip, dowel actions, shear deformations etc., are not fully 

understood. Before discussing the behaviour of the composite material, the 

available information on its basic components are presented in the following 

sections. 

5-2-1 Concrete: It is well established that concrete may be idealized as a 

linear, elastic and brittle material in uniaxial tension. Because of its low and 

uncertain tensile strength, it is normal practice to ignore it altogether. 

Therefore most of the effort has been focused on the understanding of the 

behaviour of concrete under compression. It has been found that uniaxial 

compressive stress - strain relationship is nonlinear fig. (5.1). Karsan & Jirsa 

[881 investigated uniaxial concrete behaviour under reversal of loadings and a 

typical experimental stress-strain relationship is illustrated in fig. ( 5.3 ). A 

great deal of work has been done on uniaxial behaviour and a review of the 

existing data was given by Popovics [ 87 1. 

Although an assumed unlaxial stress condition can be justified in many cases, 

it must be borne in mind that in most practical conditions, concrete is subjected 

to multiaxial stresses. One of the major experimental results on biaxial 

behaviour were produced by Kupfer et al. E 89 1. By conducting tests on plain 

concrete prisms subjected to different combinations of tension and compression, 

they defined a blaxial strength envelope as shown in fig. (5.2). They concluded 

that the strength of concrete under biaxial compression may be as much as 270/0 

higher than under uniaxial compression. However the strength under biaxial 

tension was approximately equal to the uniaxial tensile strength. 

5-2-2 Steel Reinforcement: The steel behaviour has been understood a long time 

before concrete. Steel behaves generally identically whether it is stressed in 

tension or in compression. A typical stress -strain curve relationship is 

illustrated by fig. (5.1b). Steel behaves elastically up to the yield point, after 
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that it can be idealised either as perfectly plastic or with strain hardening. 

5-2-3 Reinforced Concrete: While the separate behaviour of the basic 

components of reinforced concrete are more or less understood, difficulties still 

remain in constructing a reliable analytical model for a reinforced concrete 

member. This stems from the difficulties in assessing phenomena such as dowel 

actions on steel reinforcement, bond between steel and concrete, aggregate - 

interlock and bond slip inherent to the material. Many researchers, aware that 

perfect bond between steel and concrete may only exist at early stage of 

loading, started investigating the phenomenon. One of the first to introduce 

bond into a finite element approach were Ngo & Scordelis [ 311 and Nilson E 32 1. 

The first modelled the bond as a linear relationship and used spring linkage 

elements between steel and concrete. The work was then extended by the 

second who considered a nonlinear relationship for bond - slip. The phenomenon 

of dowel action has also been investigated E 64,90,911 but no reliable data has 

emerged to allow it to be taken into account with full confidence. 

5-3 Descriotion of the Models 

5-3-1 Finite Element Idealisation: One of the most important and influencinl 

steps of the overall analysis is certainly the choice of finite element idealisation. 

This depends on many features such as structural type, geometry, type of 

loading and general structural behaviour. As far as coupled shear walls are 

concerned the following idealisations have been adopted in this study :- 

0 Walls : The finite element idealisation of the walls used in this investigation 

is a four noded quadrilateral isoparametric plane stress element with two 

translational degrees of freedom (dof) at each node. However four extra dof 

corresponding to the nonconforming modes developed by Wilson et al. [ 63 1 are 

added to soften the element and to improve its behaviour in flexure. These extra 

dof have proven to be efficient in producing good agreements with various 
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elastic problems. The element stiffness matrix is calculated using the standard 

Gaussian numerical integration and its derivation is given in chapter III. It may 

be worth noting that the walls can also be idealised as vertical line elements if 

need be. Nonlinearities effect the element stiffness and are accounted for 

through the updating of the property matrix. These and other features are 

discussed in detail in section 5-4. 

ii) Coupling Beams : Because of their likely behavioural response, the coupling 

beams are idealised as line elements in this study, although they can be idealised 

as plane stress elements if necessary. The depth of the element is taken into 

consideration by transforming the generalized displacements acting at the 

reference axis to eight degrees of freedom acting at the corners of the element. 

The line element stiffness matrix is also derived in chapter III. Nonlinearities 

are monitored by the moment - rotation relationship and are discussed in section 

5-5. 

5-4 Nonlinearities: Plane Stess Consideration 

5-4-1 Crackinq Phenomenon: In this study concrete is considered to behave 

elastically in tension. Concrete has very limited capacity to resist tension and is 

therefore allowed to crack when a principal stress exceeds the maximum 

permissible tensile stress G 
ct, 

In view of the dynamic character of the loading 

a crack can open and close again, and at each event the property matrix has to 

be updated to preset models. Therefore the rest of this section is devoted to the 

description of these models and the possible stages which can be experienced by 

a plane stress element during its response. 

i) Elastic Element: Prior to cracking the concrete is assumed homogeneous, 

isotropic and elastic. The property matrix is therefore given by Hooke's law for 

plane stress elasticity as [ 92 1: 
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CF c= Dc 6c 5.1 

Where (T c are element stresses, e. , element strains and Dc, the element elastic 

property matrix. Concrete property matrix Dc can be written as 

IL 

Dc =Ec/(, _Ii 
2 

ýL 105.2 

in which Ec = Young's modulus of elasticity of concrete 

Ii = Poisson's ratio of concrete 

ii) Cracked Element: If one of the principal stresses 0-1 or IJ2 reaches the 

admissible tensile concrete stress Uct, then concrete is assumed to have cracked 

perpendicularly to the considered principal stress direction and therefore can no 

longer carry any tensile stress perpendicular to the crack direction. However 

some shear resistance can still be transmitted through so called aggregate 

interlock and dowel action. These features can be expressed by updating the 

property matrix given in equation (5.2). For a section which was cracked due to 

(11 fig. (5.4) for instance the instantaneous property matrix is 

Ec 00 

D'cr a005.3 

00 ot Ec/2(1+1 

in which the shear transfer factor oc is discussed in the next sections. Note 

that the matrix D'er as expressed by equation 5.3 is given with respect to 

material coordinates (xI, y') fig. (5.4) and can be transformed into element 

coordinates (x, y) by 

Der = TT D'er T 5.4 

where T is the transformation matrix and is given by 
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22 
cs cs 

T=s2c2 -cs 

22 

-2cs 2cs c -3 

s =sin 

c= Cos 

= angle between x and x' fig. (5.4) 

Similarly, if the cracking is due to G 2, then Der becomes 

000 

D'c r0 Ec 0 

00 (x Ec/2(1+tt)] 

5.5 

5.6 

If however two sets of cracks take place at the same time interval, then D'cr 

specializes as 

000 

D'er 0a05.7 

00 cx Ec/2(1+[t) 

iii) Tension Stiffeninq Effect: It is well accepted that the bond between the 

concrete and the reinforcing bars gives some resistance to the concrete after 

cracking has occured. This resistance is often referred to as tension stiffening 

ef f ect. Its maximum value is equal to the tensile strength of concrete Cr ct just 

after cracking and deteriorates rapidly with increasing strain. A typical 

relationship between this resistance stress (Tr and the strain is shown in fig. (5.7). 

As CFr is in the direction of steel reinforcement, it is easy matter to convert it 

into equivalent stress vector in the global coordinates through a transformation 

matrix T. However, in view of the uncertainties involved on one hand and the 

lack of knowledge of the phenomenon under cyclic strains conditions on the other 

hand, the effect of tension stiffening is not considered in this study. 

80 



iv) Aqqreqate Interlock & Dowel Action: Shear can be transferred across 

cracks by interlocking of aggregate particles projecting from the cracked 

surfaces. In each region of contact across a crack, any tendency to relative 

movement of the two sides will introduce both direct and shear stresses. In 

order to evaluate the shear stresses induced, Paulay & Fenwick [ 911 conducted 

tests on aggregate interlock by considering concrete strength and crack width 

and proposed a shear stress - relative displacement relationship. Their 

relationship revealed that the shear stiffness is affected by both the strength of 

concrete and the opening of the cracks. Generally the shear stress-strain 

relationship can be expressed in the form 

T= Geq. Gxy = (Geq/G). G. Exy = cxs. G. C-xy 5.8 

in which Geq= Shear modulus after Crdd<ing has occured 

G =Elastic shear modulus 

Exy= Shear strain 

C( s= 
Shear reduction factor (=1 prior to cracking) 

Many investigators beside Paulay et al. [ 911 have used different values for 

cx. Some [ 33,34 1 attributed constant values for oc ranging from 0.25 to 0.50 
ss 

regardless of the attained strain, some others used a linear [ 94 1 or a hyperbolic 

[951 shear factor-crack opening relationship. The summary of these relationships 

is illustrated in fig. (5.5) for comparison. As can be seen from the figure the 

discrepancy between them is considerable. This shows clearly that a great deal 

of research is needed in this respect. 

Dulacska [ 90 1 was one of the first to conduct tests on dowel actions as 

influenced by concrete strength and diameter and angle of reinforcing bars. She 

proposed a displacement-dowel action relationship and concluded that dowel 

action is almost elastoplastic and depends to a large extent on whether or not 

bars have reached their dowel strength. Using Dulacska's relationship, the 
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relation between the ratio of equivalent shear stiffness due to dowel action and 

the elastic shear modulus G and the angle of reinforcing bars 6s in the elastic 

dowel strength range, is plotted for different steel ratio (p) and diameters (0) in 

fig. (5.6). This clearly shows that the influence of dowel action is very small in 

this range to compare with the effect of shear interlock. However this influence 

can be expected to be higher as plastic dowel strength is reached. Indeed Paulay 

et al. E 911 conducted a number of tests and reported that dowel action could 

resist only 20 to 30% of the shear resisted by interlocking. He also introduced 

the notion of short dowel and long dowel by reporting that dowel action 

performance depended amongst other factors on the width of concrete at the 

level of the bars and suggested that the position of the reinforcing bars in the 

concrete had a marked influence on the capacity and performance of dowel 

action. 

These factors make the modeling of dowel action very difficult to assess 

with reasonable confidence for simple cases yet alone to be introduced in a finite 

element procedure. It is clearly apparent that more research is highly desired 

and the consideration of the dynamic aspect of the problem of dowel action is 

certainly needed. However in view of what has previously been discussed, in this 

investigation the aggregate interlock and the dowel action are combined ie, 

LN s+ L"' d 5.9 

in which w= combined shear reduction factor 

cys = Shear reduction factor due to aggragate interlock 

C'rd = Shear reduction factor due to dowel action 

Furthermore, a variation of o( decreasing with the crack width seems to be 

closer to the physical evidence, therefore in this study oý is defined as follows 

0.4 if 6< 3Scr 

c(= 0.2 if 6> 36cr 
5.10 
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where 6cr is the strain at f irst crack. It must be borne in mind that the 

aggregate interlock reduction factor cý, - . 
becomes zero when interlocking 

becomes ineffective, ie, as the crack opening reaches a maximum value which 

can be interpolated from Paulay & Loeber's [ 93 1 experimental results as 

6 
max : -- 0.005 5.11 

However this is assumed not to affect the value of factor cx given by eqn. 5.10. 

- v) Crack Width: The crack width is a very useful qualitative measure as it 

monitors the closing of an open crack during load reversals. The 'crack width' 

Cw is defined as the difference between the strain normal to the cracks (6 xI 

referring to fig. (5.4) ) and the strain arising from Poisson's ratio effect of 

stresses acting parallel to the cracks CIL, xl, i. e., 

CW = EXI -C [', x, 

in which (referring to fig. (5.4)) 

5.12 

22 
C-xt = C- xr 5.13 

-os 
Ocr + 6ysin 13cr - 

exycOsOcrsin0cr 

CtL, xi =-p E) yv/Ec 5.14 

where Clyl, in the case of fig. (5. tý), is given by 

22 
CTY CJ ycos (Jcr + CJxsln ETcr - 2TXycOsO*crs! nETcr 5.15 

Note that the ' crack width I Cw expressed in eqn. 5.12 being in terms of strains, 

is to be seen rather as a descriptive quantity. 

vi) Closing and Reopeninq Criteria: Obviously a crack closes as the 'crack 

width I Cw defined by eqn. 5.12 for the situation described by fig. (5.4) is less or 

equal to zero. I. e., 

Cw <0 5.16 
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In this case the instantaneous property matrix is updated and becomes that of 

the uncracked element defined by eqn. 5.2. A closed crack reopens again as the 

stresses acting normal to the crack becomes tensile. An element having cracked 

on one direction can crack again in the direction perpendicular to the existing 

crack for similar reasons as the formation of the first crack, that is for the case 

of fig. (5.4) when CF2 > CT ct. In the case of closed cracks in both directions, 

normal procedure is then used to determine the new directions of the cracks if 

any. When open cracks occur at both directions, shear can still be transferred 

and the reduction factor cx of eqn. 5.10 is reduced to oc/2 for each set of cracks. 

Because the cracks are formed at different angles, The updated property 

matrices are transformed separately to the element coordinate system and then 

summed up to yield the updated element property matrix Dcr. 

vii) Crack Modes and Flow Chart: When performing a dynamic analysis, 

cracking conditions are likely to change with time. To follow the instantaneous 

changes throughout the entire response, a computer code has been allocated to 

each gaussian point to monitor the changes in cracking conditions. This code 

was designated by KODE and can take any integer value from 0 to B. The 

interpretation of each of these values are given in table 5.1. To initiate the 

analysis, KODE is set equal to 0 (no cracking) for all elements. A computer 

directed flow chart of the cracking process is given in fig. ( 5.9 ). 

viii) Pseudo Stresses Due to Crackinq: During an interval of time, an element 

may crack leading sometimes to a substantial changes in its property matrix as 

explained through the previous sections. Consequently an element can only 

support a value of stress computed in terms of its property matrix Dcr, i. e., 

C'cr ": Dcr 6 5.17 

in which e is the element strain vector defined as 
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F- x, 

cy 5.18 

_EXY 
The difference between the stresses previously attained and used for the state 

determination at the interval tj that is CY and the stresses which can actually be 

supported CTcraTL called pseudo or initial stresses and are computed as 

DCr= (I-- CFcr = (D - Dcd 6 5.19 

5-4-2 Yieldinq and Crushinq of Concrete in Compression: 

0 Yielding: As explained in section 5-2 and as far as shear walls are 

concerned$ concrete is assumed to behave blaxially. A typical blaxial behaviour 

of concrete was developed experimentally by Kupfer et al. [ 89 1 and is shown in 

fig. (5.2). The curve can be used as criterion to monitor concrete yielding. 

However, in this study the approximate Von Mises Yield criterion is assumed for 

the plasticity of concrete under blaxial stresses. The curve presenting this 

creterion is also shown in fig. (5.2) for comparison. The yield surface F( U) is 

defined by: 

22 2- z 
F(G) = OX + CJy - CTxCJy + 3TXy - GO =05.20 

in which (To is the uniaxial yield stress. The concrete is assumed to have 

started yielding if 

F(CF) >0 5.21 

Zienkiewich & al. E 96 1 developed the so called initial stress method in which no 

updating of initial property matrix is needed as plasticity occurs. The method 

uses the initial elastic matrix repeatedly and making adjustment in the stresses 

by successive corrections to reproduce the actual stresses which would be 
I 

obtained using the elasto-plastic property matrix. The corrections in stresses 
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are called initial stresses and are converted into nodal forces and applied to the 

structure during the next increment. This method is used in this investigation and 

is given in detail later in this section. 

Crushing of Concrete: Although very strong in compression, concrete 

crushes when its maximum admissible strain is reached. For normal weight 

concrete, a typical value for the maximum strain would be : 

6 -ý: -0.0035 min' 
5.22 

Note that this typical value is determined by uniaxial compression tests and 

therefore can only be used in biaxial state for compression if an equivalent strain 

is defined. If Von Mises criterion is used, then the equivalent strain fig. (5.8) can 

be computed as 

P- 
eq = (G: X, + ey 2- F-XF-y + 1.56xy)12- 5.23 

if 

Ceq < Cmin 5.24 

then the concrete is assumed to have crushed and consequently can no longer 

sustain any further loading. Its stiffness is therefore disregarded for the rest of 

the increments. 

110 Yielding Code: Similarly to cracking conditions, a computer directed 

yielding code designated by IPEL is attributed to each Gaussian point within the 

element. IPEL can have any integer value ranging from 1 to 3 standing for 

IPEL =1 Elastic element 

IPEL =2 Yielding element 

IPEL =3 Crushed element 

At initiation of analysis IPEL is set equal to unity for all elements. 
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iv) Pseudo - Stresses: The elasto-plastic property matrix developed in [ 96 1 

and used for the computation of pseudo - stresses due to plasticity is of the 

general form: 

Dep = Dc - DcF'(CJ)F, T (CJ)Dc [FT (CJ)DcFI(G) 1-1 5.25 

in which Dc = Elastic property matrix given by eqn. 5.2 

FI(CJ)= dF(O)/d(T 

Equation 5.25 can also be written as [ 96 1 

Dep = Dc -( DcýbT Dc / OT Dcý ) 5.26 

in which P is given by 

ýT = [(Cix - (Jy/2) (Gy - CYX/2) 3Txy 1/ (3c) 5.27 

Within a typical load increment, steps should be taken to compute the initial 

stresses due to plasticity. These are given in ref. [ 96 1, modified to accomodate 

our study and repeated here for convenience. 

Step 1. Apply the load increment and determine the elastic stress and strain 

increments (DELSIG & DELEPS) and hence the total stress and strain vectors 

(TAU & STRAIN). 

Step 2. With TAU as state of stress, determine the value of the yield function 

F. 

a) If F(tau) < 0, then elastic behaviour assumption holds and hence set 

STRESS=TAU and stop the process. 

b) If F(TAU)ý: 0 and if the previous state of stress was plastic, 

set RATIO=0 and go to d) otherwise, there is a transition from elastic 

to plastic state and RATIO, which is the portion of incremental strain 

taken elastically, has to be determined so that 
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F(SIG + RATIO * DELSIG) =0 

where SIG is the previous stress vector. 

c) Redefine TAU as the stress vector at start of yielding as 

TAU = SIG + RATIO * DELSIG 

d) Compute the elasto-plastic strain increment as 

DESIG = Dep * DEPS 

e) Evaluate the pseudo-stresses as 

D= DELSIG - DESIG 

5-4-3 Yieldinq of Steel: The steel reinforcement is treated as one 

dimensional and is stressed only along its axis. The behaviour of steel is assumed 

to be identical in tension and compression. The stress strain curve is assumed 

linear up to the initial yielding point and from then an it can be idealised as 

either perfectly plastic or as linearly strain hardening. Aktan & Sozen [ 25 1 

investigated the behaviour of steel under reversal of strains. A typical stress- 

strain curve is shown in fig. (5.10). The assumed hysteresis is also indicated in 

the same figure. In this study the reinforcing bars are assumed uniformely laid 

over the element. Prior to yielding and for reinforcing bars inclined at an angle 

(P to the element x-axis fig. (5.11), the property matrix of steel DVs can be 

written as 

pEs 00 

Dys = (T-1) 000 (T-1) T 
5.28 

a00 

where Es = elasic Young's modulus of steel 

p= reinforcement ratio 

T= Transformation matrix from material to element axes. 
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j) Yielding of Steel Reinforcement: As can be seen from eqn. 5.23, Dys is 

only in terms of Es and p. Through the response, p remains unchanged, however 

Es can take the value of Esh, that is the tangential modulus of steel in the strain 

hardening range as steel yields. 

ii) Rupture of Steel: As steel bars reach their ultimate strain, they rupture 

and their property matrix Dys is disregarded 

Dys = 5.29 

iii) Hysteresis Modes and Flow Chart: A flag IBAR is chosen to monitor the 

changes in element reinforcement during the step-by-step analysis. To initiate 

analysis, MAR is set equal to unity (elastic) for all elements. MAR is allowed 

however to take any integer value from 1 to 6. The significance of each value is 

illustrated by fig. (5.12) and a computer directed flowchart of the hysteresis is 

given in fig. (5.13). 

5-4-4 Composite Material: The composite material property matrix D of a 

reinforced concrete plane stress element can be obtained at any stage by adding 

the instantaneous material property matrix Dc or Dcr depending on whether 

concrete is uncracked or cracked respectively to the material property matrix of 

steel Ds which can be in terms of Es or Esh or null as discussed in section 5.4.3. 

Then, 

De+ Dys 5.30 

Obviously if another set of reinforcing bars is placed at an angle 9 of the 

element axis , then 

D= Dc + Dtgs + Dýs 5.31 

Note that Dc may be equal to Dcr if concrete is cracked. 
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5-5 Beam Element Consideration 

Because a relatively accurate prediction of plastic deformation and ductility 

demand is of paramount importance in the nonlinear response of coupled shear 

walls, the mechanical model simulating the coupling beams behaviour must be 

carefully chosen. The model should be experimentally tested and capable of 

taking into account the important features of reinforced concrete subjected to 

dynamic loading such as stiffness degradation or strain hardening if need be. The 

multicomponent model [ 22 1 is advantageous in two ways. First, the element 

stiffness matrix is easily formulated since the end rotations of all components 

are assumed the same, and secondly the yield condition at one end of the 

member depends on the conditions at both ends. However the incapability of 

this approach to simulate stiffness degradation[ 97 1 makes it unsuitable for this 

study. The advantages and drawbacks of the layering model [ 28 1 have already 

been discussed in chapter I. 

In this investigation, the single component model developed by Giberson [211 

is used. In this model each element is represented by an elastic beam element 

with inelastic rotational springs (hinges) at its two ends fig. ( 5.14a). These 

inelastic springs simulate the inelastic flexural deformations over the length of 

the member. The characteristics of the two hinges are derived from the 

assumptions made by Otani [ 24 1 that the beam deforms antisymmetrically in 

bending as shown in fig. (5.14b) and produces a point of contraflexure at the 

midpoint. These assumptions allow the beam behaviour to be approximated by 

two cantilever beams whose free ends coincide with the point of contraflexure. 

The moment-rotation hysteresis is assumed to follow an extended version of 

Takeda's model E 29 1 and is shown in fig. (5.15). The numbers on the arms (fig. 

5.15) stand for the rules which define the model and monitor each element at any 

stage of the response. The basic moment-rotation relationship assumed in this 

study is bilinear with an initial stiffness and subsequent strain hardening. 
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The degrading stiffness of the hinges is induced when reversal of loading is 

applied through the factors c3c and ý (fig. 5.15). 

The assessment of the actual initial stiffness is one of the most important 

steps of the analysis and special care should be exercised to pnsure that a 

reasonable rigidity is used. The actual original stiffness of a reinforced concrete 

member is greatly influenced by the amount of cracking that has taken place. In 

the case of flexural stiffness, the cracking effect can be evaluated using the 

moment of inertia of the transformed cracked section ignoring tensile strength 

of concrete. The actual rigidity Ela can be written as 

Ela = (EIe) E) 
or 

5.32 

in which Ela = actual rigidity 

EIe = elastic rigidity 

ecr = factor representing the effect of cracking 

The f actor 0 varies with the amount of reinforcement. Its variation was cr 

conveniently given in reference [ 98 1. A typical idealised moment - rotation 

relationship can be based on the elastic rigidity Ele or the cracked rigidity Elcr- 

It may be worth noting however that tests performed by Abrams and Sozen [1011 

have shown that the actual rigidity can even be smaller than Da fig. (5.17). This 

is explained by the additional rotation that bond slip enforces upon the member. 

The influence of this effect is considered separately and is discussed later in this 

section. 

Initially the incremental moments DMi and DMj at the two ends i&j of a 

beam element are related to the incremental rotations DBi and DGj by 

D9i DM! 

D(Dj IM 
5.33 

where F is the flexibility matrix of the beam. For a uniform beam element 
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fli f12 
F=5.34 

symmetric f22 

f1l = f22 = L/ 3EI 

f2l = f12 = -L / 6EI 

El actual initial beam rigidity 

L beam length 

5-5-1 Sprinq Nonlinearities Contribution: Prior to yielding, the spring stiffness 

Ki at end 1 is given a very big value to-, nsure it is essentially rigid. After the 

first yield, Ki takes its value according to the hysteresis rule. At any increment, 

the instantaneous hinge flexibility I/Ki is added to the flexibility matrix given in 

eqn. 5.34. Similar procedure is followed for end j. Eqn. 5.34 can then be written 
I 

as 

f 11+11KI f12 
F= 5.35 

symmetric f22+1/Kj 

5-5-2 Shear Deformation Contribution: Little work has been done to assess the 

inelastic shear deformations of reinforced concrete. The existing experimental 

data are very scattered [ 33,34,93-95 1. Therefore it is usual practice to simply 

reduce the elastic shear stiffness. Taking shear deformations into account, the 

instantaneous flexibility matrix (eqn. 5.35) becomes 

f1l+l/Ki+l/kcýGAL fl2+1/kcxGAL 
F=5.36 

symmetric f22+1/Kj+l/kcxGAL 

in which k= shape factor for shear deformation 

AG = Shear rigidity 

I= beam length 

cx= reduction factor ( =1 in elastic range) 
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The shear modulus G can be computed in terms of elastic Young's modulus Ec 

and Poisson's ratio li as 

G= Ec/2(1+tt) 5.37 

5-5-3 Bond Slippaqe Contribution: The existence of cracks with finite width) 

spaced at finite distances in the tension zone of a beam subjected to flexure 

corresponds physically to a slip between steel and concrete. This phenomenon is 

usually referred to as ' bond slip '. The rotation due to bond slip of the tensile 

reinforcement of a coupling beam along its embedded length yields an additional 

flexibility factor for the nonlinear spring to be added to eqn. 5.36. Bond stress is 

assumed to be constant along the embedded length of the reinforcing bar and the 

steel stress to decrease linearly with distance in from the wall face fig. ( 5.16 ). 

It is also assumed that the reinforcement length of embedment is sufficient to 

provide the maximum tensile stress that occurs in the response. The relationship 

between steel stress and bond stress is given by the axial equilibrium condition as 

'Cb = (As Fs) / (-ýýL) 

in which Tb = average bond stress 

As = cross sectional area of reinforcement 

Fs = stress of reinforcement at the face of wall 

L= development length 

0= diameter of reinforcing bar 

5.38 

Nilson [ 99 1 def ined the slip as the relative longitudinal displacement 

between the concrete and the reinforcing steel, as indicated by DL in fig. (5.16). 

DL depends on the state of stress of reinforcement Fs. Therefore two cases 

need to be considered depending on whether or not Fs has exceeded the yield 

stress fyE 100 1. 
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L Fs 
DL =- Fs < fy 5.39a 

2 Es 

2 

DL =f y L/2FsEs + (1-f y/Fs) (f y/Es+(f s-f y)/2Ey) L; Fs >fy5.39b 

where Es = Young's modulus of steel 

Ey modulus of steel at yield 

fy yield stress of steel reinforcement 

. ýý2 Replacing As by its value (TI /4) and substituting the value of L from eqn. 5.38 

into eqns. 5.39, the latters become 

2 
DL = OFS /8 EsTb Fs < fy 5.40a 

DL =((D/4'[b)[(Fs-fy/2)(fy/Es)+(fS_fy)2 /2Ey); Fs > fy 5.40b 

however, because the stress of reinforcement at yield does not differ 

substantially of that at yield, the elongation DL defined by eqn. 5-40a is assumed 

for both cases in this study. Assuming that the rotation axis due to slippage of 

tensile reinforcement is at the level of compressive reinforcing steel fig. ( 5.16 

it follows 

DL 
R 

slip 
(M) 

(d-d') 
5.41 

in which d= depth of tensile reinforcement 

d'= depth of compressive reinforcement 

Assuming the tensile reinforcement proportional to the applied moment Mi 

one can write 

Fs fy 

M My 
5.42 
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in which My = moment at yield 

M =applied moment 

Substituting Fs from eqn. 5.42 and DL from eqn. 5.40a into eqn. 5.41 yields 

22 

R 
slip 

(M) = (8/8EsTb) (fy/my) (m /(d-d')) 5.43 

For a bilinear idealisation for the moment - rotation relationship, the 

instantaneous flexibility due to slip rotation is then computed as 

fs(M) = Rslip(My)/My M<My 5.44a 

fs(M) = (Rslip(Mu) - Rslip(My)) I (Mu-My) M> My 5.44b 

where fs (M) = flexibility due to bond slippage 

My , Mu = moment at yield and ultimate moment respectively 

then the incremental rotation of the spring due to bond slippage can be axpressed 

as 

De. lip: -- fs(M). DM 5.45 

and hence the overall flexibility matrix (eqn. 5.36) becomes 

F 
fll+l/Ki+. I/kotGAL+F(Mi) fl2+1/kckGAL 

5.46 
symmetric f 22+1/Ki +l/kck GAL+f (Mj) 
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DES C RIP TIO N KODE DESIGNATION 

0 Uncracked concrete 

Crack I due to (71 opens 

2 Crack 2 due to 02 opens 

32 sets of cracks I&2 

1 closes 2 stillintact 

51 closes 2 still open 

61 intact 2 closes 

71 opens 2 sW1 closed 

81 closed 2 closed 

TABLE 5.1 CRACK MODESIN CONCRETE ELEHENTS 
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FIG. 5.1 a) TYPICAL UNIAXIAL STRESS-STRAIN FOR CONCRETE 

b) TYPICAL STRESS-STRAIN FOR REINFORCEMENT 
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FIG. 5.3 TYPICAL CYCLIC UNIAXIAL STRESS-STRAIN FOR CONCRETE 
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FIG. 5.4 CRACKING PHENOMENON AND PRINCIPAL STRESSES 
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FIG. 5.5 SHEAR STIFFNESS REDUCTION IN CRACKED CONCRETE 
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FIG. 5.7 TYPICAL TENSION STIFFENING EFFECT 
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FIG. 5.8 ASSUMED BIAXIAL COMPRESSIVE STRAIN FOR CONCRETE 
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FIG. 5.9 FLOW CHART FOR OPENING AND CLOSING OF CRACKS IN CONCRETE 

<I> yes 2>G yes KODE=3 
?& RTRN 

if KODE=O no no KODE=ll 
& RTRN 

2> cr yes KODE=2 
?& RTRN 

RTN 

GO TO ( 1,2,3,415,6,7,8 ), KODE 

C. w< yes 02>0 yes 
7? 

KODE=l no no 

yes KODE=3 <? 
& RTR 

RTN 

w2< yes 1> yes KODE=7 
?? & RTRN , X.? 

dI 

KODE=2 0 no KODE=6 
I& RTRN 

> yes -TKZ-O-DE=3 
?&ýT 
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FIG. 5.9 (c'd) FLOW CHART FOR OPENING AND CLOSING OF CRACKS IN CONCRETE 
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FIG. 5.9 (c'd) FLOW CHART FOR OPENING AND CLOSING OF CRACKS IN CONCRETE 
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Stress, O-s 

FIG. 5.12 HYSTERESIS OF REINFORCING BARS 
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FIG. 5.13 FLOW CHART FOR STRESS-STRAIN HYSTERESIS OF STEEL BARS 
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FIG. 5.13 FLOW CHART FOR STRESS-STRAIN HYSTERESIS OF STEEL BARS_ 
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CHAPTER SIX 

NONLINEAR DYNAMIC PROCEDURE 

6.1 Introduction and Assumptions 

Probably the most powerful technique for nonlinear analysis is the 

step-by-step integration procedure. In this approach the response is evaluated 

for a series of short time increments. These are generally taken of equal 

length for computational convenience. The condition of dynamic equilibrium 

is established at the beginning and end of each interval, the response is 

calculated during each time increment for a linear system having the 

properties determined at the beginning of the interval. At the end of the 

increment the properties are modified to conform to its state of deformations 

and stress at that time. Thus the nonlinear analysis is approxi-mated as a 

sequence of analysQ s of successively changing linear systems. The most 

popular of the direct integration procedures are certainly the Newmark-Beta 

Method [1021 and the Wilson-Theta Method [1031. In this study the Newmark- 

Beta Method is used and is discussed in some detail later in this chapter. 

In any structural problem many assumptions are generally made in order to 

simplify the solution. As far as this investigation is concerned the basic 

assumptions are: 

a) Only material nonlinearities are considered, geometric nonlinearities are 

assumed insignificant and hence neglected. 

b) Torsional effects are not taken into consideration and the analysis is 

limited to planar coupled wall and wall systems. 

c) The structure is assumed to be rigidly fixed at its base. 

d) The mass of the structure can either be lumped at floor levels or 

distributed throughout the structure (consistent) 
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e) The stiffness of each element of the structure is assumed constant within 

an increment of time. Unbalanced loads are applied to the next step. 

6.2 The Equations of Motion 

The equations of dynamic equilibrium at any time t can be written in an 

incremental form as follows: 

M DO +C Dv' +K Dv = Dp(t) 6.1 

where 

M Structure mass matrix 

C Damping matrix 

K =Instantaneous Structure Stiffness matrix 

Dv", Dvl, Dv = Incremental nodal acc., vel. and disp. vector 

Dp(t) = Incremental applied loading (= M Dy"(0) 

DY11(t) = Incremental base acceleration. 

Equation 6.1 expresses the equilibrium conditions of the inertia forces, 

damping forces and resisting forces respectively. To calculate all these forces 

the mass matrix, damping matrix and instantaneous stiffness matrix must be 

evaluated. 

6.3 Mass Matrix 

Although the computer program is capable of dealing with a consistent 

mass element, in this study the lumped mass concept is used for convenience 

and economy. For a quadrilateral element the mass matrix is diagonal in the 

form of 
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1.0 

1.0 0 

1.0 

Me=l 1.0 

1.0 

1.0 

1.0 

1.0 

phA/4 6.2 

in which 

p =mass density of reinforced concrete 

h depth of the element 

A area of the element 

the great advantage of the lumped mass approach is that the mass matrix for 

the entire structure is diagonal and hence leads to a greater economy while 

consistent mass matrix has many off diagonal terms and hence requires more 

computational effort. The structure mass matrix is merely obtained as: 

M= XMe + Mext 6.3 

where Me is the element mass matrix given in equation 6.2 and Mext 

represents the external concentrated nodal masses. For nodes without 

concentrated masses2 their position in Mext is filled with zero. 

6.4 Dampinq Matrix 

It is well recognised that according to their material components, 

structures may show substantial damping effectSwhen subjected to dynamic 

loadings. However the evaluation of such a phenomenon has been and is still 

quite vague and empirical and cannot therefore be assessed with absolute 

confidence. It is usual practice to use the viscous type of damping [1043 for 
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convenience in the solution of dynamic response problems and for its 

mathematical simplicity. The damping matrix is expressed as either 

proportional to the stiffness matrix or to the mass matrix of the system, or as 

a linear combination of both as 

a, M +a 2K 6.4 

where C is the viscous damping matrix and a1 and a2 are constants. The 

constant multipliers a, and a2 can be related to the damping ratio for any 

mode n [1041 by 

zný (a 1 
/2wn )+ (a 2wn 

/2) 

where: 

6.5 

wn The circular frequency of the n 
th 

mode 

zn Damping factor for the n 
th 

mode 

In a direct integration solution a1 and a2 may be chosen to provide damping 

ratio at two selected frequencies [121. If for instance the two first modes are 

selected then, 

2w 1w2 
(Z 

2w i-z 1w 2) 
al =- (w 2 2) 

6.6a 

2w 1w2 (Z 2w i-z 1w 2) 
2=-6.6a 

The damping factors are usually determined experimentally. However for 

concrete structures, it has been shown that they vary from 2% to 10% [1051. 

The circular frequency can be determined by free vibration analysis or can be 

extracted from the charts developed in chapter IV. If the damping matrix is 

considered to be proportional to only the stiffness matrix, the constant a2 is 

then calculated using eqn. 6.5 assuming a1 to be zero so that 
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a2= 2z I/w, and C=a2K 6.7 

Similarly, the constant a, is calculated by the following expression for the 

case where the damping matrix is assumed to be proportional to the mass 

matrix only 

2z IWIL and C=a, M 6.8 

6-5 Numerical Solution 

When solving the differential equations of motion (6.1) using step-by-step 

integration procedure, a way should be found to convert these equations to a 

set of simultaneous algebraic equations. This is accomplished by introducing 

simple relationships between displacement, velocity and acceleration which 

may be assumed to be valid for the increment of time chosen. On this basis, 

only one unknown vector (acc., vel. or displ. ) remains in the equilibrium 

equations, the solution of which can be evaluated by any standard procedure. 

The most popular relationships between acceleration, velocity and 

displacement vectors are certainly those suggested by Newmark [1021 and 

Wilson [1031 as they have proven to be valid for elastic as well as for inelastic 

systems. In this study however, as said previously the Newmark's method is 

utilised. 

The relationships between displacement, velocity and acceleration vectors 

are established by assuming the variation of the acceleration vector with 

time. Newmark associated two parameters o< and @ with this variation. 

Assuming (x = 1/2, he expressed incremental velocity and the incremental 

acceleration vectors as 

Dv' = (1/4DO Dv - (1/2ý) V- (1/4ý - I)Dt V" 
. 

6.9 

DO = (1/ýDt 2) Dv - (1/ýDt) V'- (1/2ý) VII - 6.10 
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where 

Dt= Time increment 

ý= Constant indicating the variation of acc. in a time interval 

Dv", Dv', Dv = Incremental nodal acc., vel. and disp. vector 

V11 y V1yV = Nodal acc., vel. and disp. vector 

A linear acceleration assumption is known to be unstable in the presence of 

vibration modes with periods exceeding approxiamately one third of the time 

step regardless of whether the higher modes contribute significantly to the 

dynamic response or not [1021. Hence it is unsuitable as it requires a very 

short time increment. For this study the method based on constant 

acceleration within the time step was adopted (oc= 1/2,1/4). The method 

is known to be unconditionally stable for linear systems. 

There are two basic ways to solve the equations of motion with direct 

integration, the explicit approach and the implicit approach. Using the 

explicit method the accelerations are derived from the eqns of motion and 

then integrated to obtain the displacements and velocities. In case where 

implicit approach is used, the equations of motion along with approximate 

time integration operators yield the displacement vector directly. The 

advantages and drawbacks of both methods are discussed by Belytshko [1081. 

For this investigation however an implicit approach is assumed for 

convenience although the method is believed to be more sensitive to errors in 

case of big time increment. Table 6.1 illustrates the constant acceleration 

numerical method. 

In any dynamic analysis greater accuracy can be expected as the 

integration time step is reduced. To minimise the computational effort, 

however, it is important to select as long a time step as possible. A great deal 

more research is required for the design of reliable time integration operators, 

including algorithms for the automatic selection of variable time step in order 
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to optimize the solution cost. Substituting equation 6.7 and equation 6.8 into 

the equations of motion (6.1) and replacing the damping matrix C by its 

assumed value (eqn. 6.4), yields the following resulting equation 

K* Dv(t+Dt) =R 

where 

6.11 

K* = (1/b Dt2)M + (1/2bDt)C +K6.12 

R= -Dp(t+Dt) +AM+BC 

A= (1/bDt) V'- (1/2b) VII 

B= (1/2b) V'- (1/4b-l)Dt V" 

and 

t, t+Dt = previous and current time step 

Dv(t+Dt) = incremental displacement vector at time t+Dt 

6.13 

6.14 

6.15 

Since the dynamic stiffness matrix K* and the load vector R can be avaluated 

at any time step t+Dt, eqn. (6.11) can now be solved for the displacement 

increment vector Dv(t+Dt) using any standard structural procedure. In this 

investigation however, the Gaussian elimination and back substitution method 

is used. As K* is banded, the method uses less computer time than the one in 

which K* is inverted. The incremental velocity vector can then be calculate'd 

using eqn. 6-7. The incremental acceleration vector however, is computed 

using the following equation which is a modified form of eqn. 6-1 and based on 

the current structural properties K(t+Dt)* 

Dv" = -M-1 (C Dv' +K (t+Dt) Dv + Dp(t+Dt) ) 6.16 

Eqn. 6.16 was prefered to eqn. 6.9 for the evaluation of DO because the 

acceleration response is very sensitive to changes in the stiffness properties of 
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the structure. Therefore more accurate results can be expected by taking into 

account the updated stiffness matrix rather than the previous one. 

6.6 Pseudo-Loads 

At each time step the element constitutive law may change giving rise to 

pseudo-stresses. The way these pseudo-stresses are computed has been 

considered in detail in chapter V. These unsupported stresses are then 

converted into corrective or pseudo-loads and applied to the structure as a set 

of static loads in the next time increment. The pseudo-loads can be computed 

in two ways: 

a) using the pseudo-stresses as 

DPS =BT DCJ d(area) 

in which DPs = pseudo-loads 

6.16 

B= matrix relating nodal disp. to element strains (chapter III) 

DCJ :; pseudo-stresses 

b) using the previous and the updated stiffness matrix as 

DPs = (K(t+Dt) - K(t)) Dv(t+Dt) 6.17 

where K (t+Dt)l K(t) = stiffness matrix at time t+Dt &t respectively 

In this study the second method (b) is used except when dealing with pseudo- 

stresses due to yielding of concrete in compression where the first method (a) 

is utilized for convenience. 

6-7 Dynamic Equilibrium and Iterations 

In nonlinear analysis, due to the approximations made with regard to 

acceleration velocity and displacement on one hand and the assumption of a 
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constant value of the stiffness in each time step on the other the dynamic 

equilibrium expressed by equation 6.1) may not necessarily be satisfied at the 

end of a time step and hence errors may be introduced. Depending on the 

nonlinearities in the system and the magnitude of the time interval Dt, the 

cumulation of these errors may lead the solution to diverge substantially from 

the exact solution. Obviously this phenomenon is much more serious in 

nonlinear dynamic analysis where the solution at any time is dependant on the 

previous history of solution, than in static analysis. 

To prevent misleading errors occuring, after each time step or a preset 

number' of steps, the portion of the total loading that is not balanced is 

calculated and used to compute an additional incremental diplacement. This 

process is repeated until equilibrium is approximated to within a certain 

tolerance. In this study the convergence tolerance used is the ratio of the 

Euclidean norms of incremental displacement and total displacement [106]. 

This ratio is defined as the square root of the sum of the squares (RSS) of the 

change in nodal displacements dv() over the RSS of the total nodal 

displacement V, i. e., 

6= RSS(dvrl) / RSS(V) ' 6.17 

21 

where RSS(a) ai )y 6.18 

If 6 is smaller than a prescribed tolerance value B, the solution is assumed to 

have converged and the process is terminated. Furthermore, if after a certain 

prescribed maximum 'number of iterations ITEMAX, convergence is not 

achieved, the process is also terminated and the analysis is performed all over 

again with a smaller time increment. 

The need for equilibrium corrections could be avoided by subdividing time 

step whenever a change in stiffness properties occurs. The procedure was used 

by Porter & Powell [1071. However the method is complex and no substantial 
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improvement has been reported to justify the effort. 

6.8 Analysis Procedure and Summary 

The nonlinear response is traced by numerically solving the equations of 

motion for incremental displacements. The nonlinearity in the solution is 

introduced by changing the material properties of the effected elements and 

by releasing and distributing the unsupported stresses to adjacent elements 

which can sustain them. Taking the steel reinforcement to be elastic and 

concrete to be uncracked and elastic, material property and stiffness matrices 

are generated for individual elements. Whenever the material constitutive 

relationships are violated, the element material property and hence the 

stiffness matrices are updated. This is followed by adjustments of the stresses 

in the effected elements and calculation of the unsupported stresses. These 

are then converted into release or corrective loads and are applied to the 

structure as a set of static loads in the next time increment. For each time 

interval incremental displacements are produced due to two effects 

a) the increment of input acceleration 

b) the released loads from the previous time interval. 

Finally the structural stiffness is reassembled because of the updating and the 

analysis procedure is continued for the remaining part of the record. A 

computer orientated summary of the step-by-step procedure is given in table 

6.2 and a flow chart in fig. (6.1). 
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TABLE 6.1 SUMMARY OF THE STEP-BY-STEP 

NONLINEAR PROCEDURE 

A. INITIAL CALCULATIONS 

Al. Form linear stiffness matrix K, mass matrix M and damping matrix C 

A2. Initialize acceleration velocity and displacement vectors (V", V1, V) 

B. FOR EACH STEP 

Bl. Form updated damping matrix if needed 

C=a1M+ a2 K 

B2. Form the ef f ective dynamic stif f ness K* using the updated value of K 

Uftt 2 )M + (1/2ýDOC +K 

B3. Compute the following vectors 

A= (l/ýDO V' - (l/2ý) VII 

B= (1/2p) VI - (1/+1)Dt V" 

B4. Form the dynamic load vector R 

R= -Dp(t+Dt) +AM+BC 

B5. Solve for incremental deformation vector Dv(t+Dt) 

K* Dv -' R (t+Dt) ': 

B6. Compute incremental velocity vector Dv'(t+Dt) a5 

Dv' = (1/2ýDt) Dv - (1/2ý) VI - (1/4ý - I)Dt VII 
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B7. If iteration for dynamic equilibrium required, then initialize 

0) i=0 6v(O) = Dv(t+Dt) 

0i=i +I 

ii) calculate out-of-balance load vector as 

DR = DP(t+Dt) -M VIII-1 - CVII-I - KVi-1 

iii) solve for the ith correction to displacement increment 

iv) calculate new displacement increment 

DO = Dvi-1 + ývi 

v) if convergence , go to B8, otherwise go to 

B8. Compute stresses2 strains and element forces and check compliance 

with constitutive laws 

B9. Update the structural stiffness matrix K if necessary and compute the 

pseudo-loads 

BID. Compute the acceleration increment vector as 

DO = -M-1 (C Dv' +K (t+Dt) Dv + Dp(t+Dt) ) 

B11. Compute new acceleration, velocity and displacement vector as 

vif (t+Dt) : -- vif t+ Dv"(t+Dt) 

Vi (t+Dt) ý Vi t+ Dvl (t+Dt) 

v (t+Dt) vt+ Dv(t+Dt) 
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Fl G. 6-1 FLOW CHART FOR 
NONLINEAR DYNAMIC 
ANALYSTS 

L,. ý ýRT 

Initialize Flags for state monitoring 

KOD ý0 
IPEL =0 
KBAR ý 

initialize Acceleration vector V 
Velo. city vector VI 
Displacement vector V 

Form 1- Stiffness matrix [K] and 
'store it in tape I 

M ass m atrix [MI and store 
it in tape 2 

Cafculate nonlinear effective stiffness K* 
and effective nohlinear dynamic load R 

a. Tf no updating was performed last step 
then read effective stiffness K* directly 
from tape 4 and go to e) , otherwise 

b. Read linear stiffness matrix from tapel 

c. Read mass matrix from tape 2 

d. Form effective stiffness matrix K* and 
store it in tape 4 

e. Compute effective load vector R 
(pseudo-loads are called from tape 9 and 
added to R) 
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Find displacement increment vector Dv 

Iterate for dynamic equilibrium if needed 

onvergence WC) 

Compute New accleration vector 
New velocity vector 
New displacement vector 

and hence Elmt. stresses and elmt. 
strains 

Constitutive law violated 
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CHAPTER SEVEN 

NUMERICAL EXAMPLES 

7.1 General 

The object of this chapter is to demonstrate the usefulness and applicability 

of the nonlinear step-by-step dynamic analysis presented in the previous 

chapters and to validate the FE idealisations and the hysteretic laws discussed 

in chapter V. Four numerical examples were investigated. In the first three 

examples, analytical results using the proposed model are compared with 

experimental test results [ 42,109 ]. In the last example, the model is 

compared with analytical results reached using existing models L 30 1. 

To widen the scope and the usefulness of the model, the tested samples 

were of different geometric characteristics. The model is first compared with 

a single wall (without openings) tested by Agrawal and Leslie 42 1 and then 

with a pair of coupled shear walls tested by Ariztizabal [ 109 The need for 

good accuracy in predicting plastic deformations ( or ductilities ) of the 

coupling beams of the coupled shear walls is very important if they are to be 

used as a first line of paraseismic defence. Therefore a 20 storey coupled 

shear wall was analysed and the coupling beam ductilities compared with those 

computed using the model presented by Kannan and Powell [ 30 1. 

For convenience the four structures under investigation in this chapter are 

disignated by SWI, SW2A, SW2B and SW3. Their material properties are 

presented as given by the investigators, however, estimations were made in 

cases where specific items of data were not available. 

126 



7.2 Single Wall (SWIL) 

One of the very few experimental models subjected to earthquake motion 

is the isolated wall model tested by Agrawal et al. [ 42 1 The geometry and 

the cross sectional property are shown in fig. (7.1). A load of 2 kips is lumped 

at each floor level as shown in fig. (7.2). The material data of the model is 

given in table 7.1. The model was subjected to the simulated N-S component 

of EI-Centro earthquake of May 1940. The time axis of the original record 

was compressed by a factor of five. The amplitudes of the earthquake were 

normalised for a maximum peak acceleration of 1.05g and the duration of the 

experiment was set to 1.5 second. 

7.2.1 Experimental Results [ 42 1: The information provided by the 

experimental data is given in table 7.2 and the cracking pattern of the model, 

after test, is given in fig. (7.3). The cracking pattern prediction according to 

Agrawal's analysis is shown in fig. (7.4). The wall was idealised as an 

assembly of FE but with three degrees of freedom at each node. A shear 

factor w= 0.1 and a damping z=1.5% of critical were assumed. The response 

acceleration and displacement at the three mass levels are shown in fig. (7.5a) 

and fig. (7.6) respectively and the base shear and base moment responses in 

f ig. (7.7). Also shown in fig. (7.7) is the base acceleration. These responses 

were based on a computed natural frequency of 11.84 cps. 

7.2.2 Predicted Responses : The FE discretisation of the model is shown in fig. 

(7.8a). The external masses were lumped at the floor levels. The material 

properties and the dynamic data used in the analysis were those given in table 

7.1 and described in the previous section. In order to compare the responses of 

both analytical and experimental information given by Agrawal et al. [ 42 1, 

the same values of shear coefficient, damping, Poisson's ratio are used in this 

study. Two cases were considered as far as discretisation is concerned 
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a) the same number of elements as Agrawal's discretisation (i. e., 120 

elements) 

b) approximately the same number of degrees of freedom (DOF) as 

considered by Agrawal (i. e., 441 dof) 

The damping matrix was assumed proportional to the stiffness matrix only. 

The predicted absolute maxima for the two cases are given in table 7.2. This 

shows that as the ndof increased, the maximum response results improved 

except for the first level acceleration which diverged yet more from the 

experimental maximum value. 

The computed response history acceleration for case b) is shown in fig. 

(7.5b) and the response history displacement, base shear and base moment in 

figs. (7.6) and (7.7) along with those given by Agrawal [ 42 1 for comparison. 

Figure (7.8) shows the instantaneous "photography" of the structure at 

different time steps obtained analytically. From these figures and as far as 

cracking and yielding patterns are concerned the following observations can be 

made: 

i) First cracks started at the base level in the outer elements and 

spread to the higher levels and the inner elements of the first level. 

ii) The cracking started almost horizontally at the outer elements and 

while propagating towards the inner elements the direction of the 

cracks changed substantially. 

iii) the yielding of steel occured mostly in the first floor and was 

confined to longitudinal wires. 

7.2.3 Discussion: Generally, analytical results are in agreement with those 

presented by Agrawal et al. [ 42 1 for the same number of degrees of freedom. 

There are still some discrepancies with respect to the experimental results, " 
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However, a preliminary study revealed that as time step decreases the 

maximum displacement response slightly increases and the maximum base 

moment and base shear decrease. This study was made just for the first 0.5 

second duration. In view of this preliminary study good agreement with 

experimental results can be expected as time increment decreases. 

As can be seen from fig. (7.8f), the predicted crack pattern agreed quite 

well with the experimental one although not quite with Agrawal's model at the 

top of the specimen. The predicted yielding of steel was also more widespread 

than Agrawal's model. This may explain the generally lower values of 

displacements found by Agrawal as compared with those obtained in this study. 

Also, the predicted patterns indicated that local crushing due to excessive 

compression occured at the two bottom outermost elements as clearly shown 

by fig. (7. Bf). Whether or not this yielding of steel and crushing of concrete 

was present after the experimental tests could not be ascertained from the 

available reference E 42 1. 

7.3 Coupled Shear Wall (SW2A ; SW2B) 

7.3.1 Description of the Experimental Models: The procedure described in 

this investigation was applied to two 10 storey coupled wall models tested at 

the University of Illinois earthquake simulator by Ariztizabal [ 109 1. The two 

coupled walls are designated as SW2A and SW2B. The dimensions of the 

models are shown in fig. (7.9). The models are made up of two shear walls 

having a cross sectional area of 1" by 7" each and a height of 90". The walls 

are connected at each floor level by a connecting beam of 4 in. length and 1 

by 1.5 in. cross section. A weight of 0.5 kip is placed at each floor level (fig. 

7.9). Material properties for the models are listed in table 7.3.1 and the 

assumed stiffness and strength of the different members are given in table 

7.3.2. The models were subjected to the base motion representing the signals 
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of the El Centro N-S component earthquake. The original time axis was 

compressed by a factor of 2.5 and the amplitudes of acceleration records were 

normalised to give a maximum peak value of 0.92g. 

The two coupled wall models (SW2A, SW2b) have essentially the same 

geometric properties. In order to demonstrate the importance of the coupling 

beam strength in the yield sequence , the coupling beam reinforcement areas 

in SW2B were twice as much as those in SW2A. The reinforcement cross 

sections for SW2A and SW2B are shown in fig. (7.10). The duration of the 

record used after time compression was 15 seconds. " However it was 

recognised by Ariztizabal [ 109 1 that most of the structural failures occured 

within the first 3 seconds. Therefore in this study only the first 3 seconds (or 

3x2.5 sec. of the original record) is considered for convenience and economy. 

7.3.2 Experimental Responses [ 109 1: The maximum responses provided by the 

tests are listed in table 7.3.3 for both SW2A and SW2B. The failure patterns 

after testing are shown in fig. (7.11). The experimental response history of 

acceleration and displacement are shown in fig. (7.12) and fig. (7.13). For 

convenience only the acceleration and the displacement history at level 10, 

level 7, and level 4 are given. The base shear and base moment histories were 

also monitored by Ariztizabal. However these were difficult to trace from the 

report and therefore are not shown here. 

7.3.3 Predicted Responses: In order to compare the experimental data given 

in the previous section and the predicted response using the computer program 

developed for this investigation, the information not readily available such as 

coupling beam strengths and stiffness properties needed as input were derived 

and are shown in table 7.3.2. The damping factor was assumed equal to 2% of 

critical and the damping matrix was assumed to be a linear combination of 

mass and stiffness matrix. The time interval used in the response calculation 

was chosen to be 0.00025s. The Poisson's ratio and the shear reduction factor cK 
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were assumed to be 0.2 and 0.5 respectively. For comparison, the computed 

history response acceleration and displacement are shown along with the 

corresponding experimental responses in figs. (7.12) and (7.13). The base 

shear and base moment histories are shown in fig. (7.14). The absolute 

maximum analytical responses were predicted as shown in table 7.3.3. The 

sequences of cracking and yielding of all constituent elements were recorded 

during the computer run and are shown in fig. (7.15) for various time steps 

over the duration of the excitation. 

7.3.4 Discussion: Again, the analytical maximum response displacement and 

acceleration (fig. 7.12 - 7.13) are in good consistency with the experimental 

ones. In general, the predicted displacements were the lower bound to the 

experimental displacements and the predicted accelerations were the upper 

bound. However, as previously stated, if a smaller time interval and a finer 

discretisation are chosen and accurate material properties assessed then 

better compliance could be expected, 

The displacement wave forms indicate clearly that the structure oscillated 

primarely in the first mode and that the peak acceleration at each level 

accured at the same time. The overall features of the response history are 

similar to those of the test. The times when the absolute maximum 

displacement at top floor and the maximum base moment occured are 

comparable to the corresponding times recorded in the test. The maximum 

positive and negative responses indicate that the structure was subjected to 

loads of the same order of magnitude in both directions. The base moment 

and base shear responses were dominated by the first made as well, as can be 

seen from fig. (7.14). 

The failure mechanisms at the end of the runs were also in good 

agreement with the test results. The analytical crack pattern however was 

found more widespread particularly at the lower levels than the tested model 
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seems to show. Furthermore, yielding of the coupling beams at levels 4,5 and 

6 was predicted by the analysis but were not reported by test results. This 

might be due to shrinkage cracks before test, " which can slightly change the 

stress distribution and hence failure mechanism. Ariztizabal [ 
. 109 ] did not 

record the sequence of failures at intermediate time intervals and therefore 

no comparison could be made in this respect. 

Although similar response histories and maxima were reached for both 

SW2A and SW2B, the crack pattern and the extent of yielding and the damage 

in the two structures were quite different as anticipated. The following 

failure sequences were predicted by the present analysis (fig. 7. IS): 

t= 0.00s: 

Both structures SW2A and SW2B were assumed elastic and isotropic. 

No cracks due to shrinkage or otherwise were taken into consideration. 

t= 0.75s: 

Cracks began to form at the connecting beams of the 4 th 5 th 
, and 6 th 

floor (t=0.32s) and spread rapidly towards top and bottom floors. 

t= 1.50s: 

SW2A: The cracking is total at the coupling beams ends and yielding 

has already started at floors 4,5 and 9. Some scattered cracks were 

also predicted in the outer elements at the bottom of the wall. 

SW2B: No yielding was shown in the coupling beams at this stage, 

however all the coupling beams were cracked at their ends and more 

frequent cracks were present at the bottom of the wall. 

t= 2.25s: 

SW2A: yielding at the coupling beam ends is almost complete except 
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in the first two floors. the cracks now spread towards inner elements 

of the wall particularly within the first two levels where 2 sets of 

cracks were frequent. In the outer elements and at levels 6, and 7 one 

set of cracks took place. 

SW2B: Again no substantial yielding occur in the coupling beams 

except at floor 4. However in the two outer most elements at the 

base level, crushing was detected. 

3.00s: 

SW2A: the second floor coupling beam yielded but the first floor 

coupling beam did not. Cracking spread towards the inner elements at 

the top levels and reached the 8 th 
and 9 th 

storey. Crushing also 

accured (t=2.47s) at the outer elements of the walls. 

SW2B: Crushing of three more elements at the base level and yielding 

of the coupling beams at level 4,5, and 6 were monitored. 

As can be deducted from the previous discussions, the critical damage in 

structure SW2B started in the walls at the base level before any substantial 

formation of hinges at the coupling beam ends occured, whilst in structure 

SW2A, failure in the wall started after almost all coupling beams yielded. 

Moreover, the crushing of the walls at the outer elements in SW2B before 

yielding of the steel showed that the coupled shear wall acted as a single 

cantilever wall as the coupling was so strong. This demonstrates once again 

the importance of the relative stiffness and strength of the coupling beams 

with respect to those of the walls to control the mode and sequence of the 

failure pattern of aseismic structures. 
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7.4 Plastic Deformation Prediction (SW3) 

The use of coupled shear walls in seismic resistant design has a great 

potential because of their tremendous capabilities for dissipating the energy 

input from an earthquake. Also it is well recognised that dissipation of energy 

should mainly be assured through inelastic deformation of the coupling beams 

without substantial loss of strength. A good prediction of these deformations 

by any model is therefore most important. Therefore the purpose of this 

section is twofold: 

i) Test the validity of the model and its ability to predict plastic 

deformations accurately. 

ii) Examine the results and use them as preliminary analysis to chapter VIII 

and deduct a strategy to be adopted for the chapter VIII. 

A 20 storey coupled wall was considered for this purpose. Keeping the 

walls elastic, the plastic deformations enforced upon the coupling beams were 

recorded and the rotational ductilities computed as 

max 0pt9y 
1'r = 7.2 

ED 
y 

8 
p 7.3 

y 

in which Ij-r": rotational ductility 

a 
maxý: maximum rotation of hinge 

E) 
p, 

E)Y= rotation at yield and plastic rotation respectively 

The analysis was performed using the computer program developed in this 

study and results were compared with those given using DRAIN-2D. DRAIN- 

2D is a dynamic computer program developed in The University of California, 

Berkeley, in which columns and walls can only be treated as line elements. 
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7.4.1 Description of the Structure and Modelinq: As previously stated, a 20 

storey coupled shear wall was considered in this investigation. The structure 

was assumed to be fixed at its base. Its geometric, dynamic and strength 

properties are given in table 7.4.1. Its discretisation is shown in fig. (7.16). 

Three runs using different discretisations and analytical models were made, 

these were: 

SW3a: Both walls and beams were idealised as line elements. This run 

was performed using the computer program DRAIN-2D. Takeda's model 

was used to simulate the nonlinear hysteresis of coupling beams. 

ii) SW3b: This run was made using the computer program developed in this 

investigation. Again both walls and beams were idealised as line elements, 

however, in addition to Takeda's model assumption for the simulation of 

the nonlinear deformations, bond slip effect was taken into consideration 

as described in chapter V. 

iii) SW3c: The finite element (FE) approach developed in this investigation 

was used. Bond slip model was also considered in this run. 

The yield moment of all coupling beams was assumed constant (100 kip-ft). 

The damping factor, Shear reduction factor and Poisson's ratio were chosen as 

2% of critical, 0.5, and 0.2 respectively. The damping matrix was assumed as 

a linear combination of mass and stiffness matrix. 

7.4.2 Nonlinear Dy2arnlc Procedure and Results: Assuming a mass 

representing a floor weight of 4 kips lumped at each floor level, the structure 

described above, was excited by the first 6 seconds of 1940 El Centro 

earthquake accelerogram with a peak acceleration amplitude of 0.33g (fig. 

7.17). The equations of motion were solved using the step-by-step numerical 

integration method with a time increment of 0.00025 see. when using FE 

approach and 0.005 sec. when using line elements. The maximum plastic 
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deformations enforced upon the coupling beams were recorded and the 

corresponding maximum ductility demands on each coupling beam were 

computed using eqn. 7.2 and are shown in fig. (7.18). 

7.4.3 Ductility Demand Variation: As can be seen from fig. (7.18), the 

ductility demands are slightly higher in SW3b than in SW3a. This increase 

reflects the direct influence of bond slip which normally increases the 

maximum rotations and hence the ductility demands. As far as this example is 

concerned bond slip effect seems to be minor, however this must not be taken 

as a generalisation. In a study made by the author, it was found that the 

effect of bond slip increased substantially for higher earthquake intensity and 

varied also with the frequency content of the design accelerogram. 

Comparison between the results of SW3a, SW3b and SW3c as illustrated by fig. 

(7.18) yields the following observations: 

i) The maximum ductility distribution over the height of the structure were 

comparable for all the coupled walls. 

ii) Ductility demands obtained in SW3c were lower in the first eight floors 

than those in SW3a and SW3b. The maximum variation was about 13%. 

iii) Ductility demands in SW3c were higher from level 9 upwards than those 

of SW3a and SW3b. The maximum variation was about 14.5%. 

iv) Ductility demands in SW3b were generally higher than those in SW3a. 

Many factors can be at the source of these discrepancies but the most obvious 

one seems to be the inherent behaviour of the models assumed at the first 

place. Generally however, the maximum ductilities obtained by any model 

were comparable. 
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7.4.4 Effect of Coupling Beam Yiedinq Moment Variation: To examine the 

influence of the yield moment variation, the 20 storey coupled shear walls 

SW3a, SW3b and SW3c described above were subdivided in 4 zones of 5 storeys 

each from the base and only the absolute maximum ductility in each of these 

zones were considered for convenience. For a yield moment Mminý100 kip-ft, 

the following ductilities were recorded ( see above section) 

zone I, () 

SW3a SW3b SW3c 

1 13.51 13.98 11.20 

2 17.43 18.20 14.24 

3 22.24 23.09 24.48 

4 22.78 23.93 26.50 

The yield moment was then increased progressively by a value corresponding 

to a variation (dM/Mmin) equal to 0.50,1.00 and 1.50 respectively and the 

corresponding ductility variation (d[L/[L 
0) at each zone was computed. The 

results were as follows: 

dM/Mmin zone dIL/[to 

SW3a SW3b SW3c 

1 0.370 0.375 0.390 

2 0.370 0.390 0.400 
0.50 

3 0.390 0.380 0.400 

4 0.420 0.410 0.420 
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1 0.560 0.560 0.570 

2 0.560 0.550 0.580 
1.00 

3 0.580 0.570 0.600 

4 0.610 0.590 0.620 

1 0.660 0.665 0.680 

2 0.670 0.666 0.690 
1.50 

3 0.690 0.680 0.695 

4 0.710 0.690 0.720 

The results show clearly that although the ductility demands might be 

different using different models and for a given yielding moment as 

demonstrated in the previous section by comparing SW3a, SW3b and SW3c, the 

ductility variations (dg/g 
0) 

in terms of the yield moment variation (dM/Mmin) 

were very close. This shows that the ductility variations are almost invariant 

with respect to any model as the yield moment varied. 
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TABLE 7.1 Material Properties of SWI 

Properties 

CONCRETE 

Young's modulus of elasticity 

Uniaxial compressive strength 

Tensile strength 

Poisson's ratio 

Maximum compressive strain 

Ec= 3.8 106 psi 

fc= 4720 psi 

frt= 409 psi 

11 = 0.1 

-6max= . 003 

STEEL REINFORCEMENT 

Young's modulus of elasticity 

Young's modulus at strain hardening 

Yield stress 

Yield strain 

Ultimate strain 

Es= 2.9 10 7 
PS! 

Esh= 7.03 10 4 
Psi 

fy= 53500 psi 
3 

-ey = 1.845 10- 

-eu= 0.08 
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TABLE 7.2 Experimental and Analytical Maxima 

Proposed analysis 
DESIGNATION TEST 

SW1(294 dof) 
I SWI(450 dof) 

natural freq. 8.5 13.02 11.05 
(cps) 

response acc. 

Ist floor 1.0og 0.69g 0.61g 

2nd floor 1.73g 1.31g 1.48g 

3rd floor 2.03g 2.50g 2.29g 

response disp. 
(dble amplitude) 

1st floor 0.30in 0.17in 0.21in 

2nd floor 0.70in 0.48in 0.62in 

3rd floor 1.15in 0.87in 0.99in 

response base 
shear (kips) 4.00 6.21 5.8B 

response base 
moment (kip-in) 163 197 189 
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TABLE 7.3.1 Material Properties of SW2a and SW2b 

Properties 

CONCRETE 

Young's modulus of elasticity Ec= 3.1106 psi 

Uniaxial compressive strength fc= 4500 psi 

Tensile strength fct= 403 psi 

Poisson's ratio [L = 0.2 

Maximum compressive strain Cmax= . 003 

STEEL REINFORCEMENT 

Young's modulus of elasticity Es= 2.9 10 7 
psi 

Young's modulus at strain hardening Esh= 7.03 104 psi 

Yield stress fy = 72000 psi 

Yield strain Cy = . 00248 

Ultimate strain Cu= 0.08 

TABLE 7.3.2 Stiffness and Strenqth Properties of Couplinq Beams 

Properties SW2a SW2b 

moment-rotation 
relationship 

i) elastic slope, kip-in 622 810 

ii) slope at yield, kip-in 20 25 

iii) cracking momt, kip-in 0.15 0.15 

iv) yielding momt, kip-in 1.56 2.90 
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TABLE 7.3.3 Experimental and Analytical Maxima 

DESIGNATION 

response ace. 
V 

4th floor 

7th floor 

10th floor 

response disp. 
(inch) 

4th floor 

7th floor 

10th floor 

TEST 

SW2a SW2b 

pos neg pos neg 

1.11 -0.95 1.11 -1.19 

1.07 -0.98 1.10 -1.00 

2.00 -1.58 1.58 -1.84 

0.70 -0.60 0.71 -0.55 

1.41 -1.18 1.43 -1.02 

2.13 -1.7412.05 -1.47 

PROPOSED ANALYSIS 

SW2a S 2b 

pos neg pos neg 

1.15 -1.25 1.16 -1.23 

1.21 -1.27 1.26 -1.13 

2.11 -1.77 1.72 -1.98 

0.57 -0.63 0.69 -0.53 

1.19 -0.93 1.23 -0.87 

1.93 -1.6311.78 -1.26 

response base 
shear (kips) 

response base 
moment (kip. in) 

naturalfreq. 
(cps) 

0 before run 

ii) after run 

3.33 -3.3813.90 -3.92 

200 -197 1185 -199 

4.80 4.80 

2.06 

1 

2.00 

2.63 -2.7712.73 -2.91 

182 -177 1190 -187 

5.00 5.00 

2.43 2.54 
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TABLE 7.4.1 Material Properties of SW3 

Properties 

rInf, lrll: 3 C-rc, 

Young's modulus of elasticity Ec= 3.2 10 6 
psi 

Poisson's ratio tL = 0.2 

ELEMT STIFFNESSES (EI) 

Wall 

coupling beams 

9.610 9 kipan 2 

4.45 107 kip. in 2 

ELEMENTSTRENGTHS 

Wall Elastic 

coupling beams Variable 

FLOOR Mý%SS 4.00 kips. -9L/ iri 

NATURAL FREQUENCY 10.90 cps 

DAMPING FACTOR z= 2% of critical 
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Reinforcement 

Vertically: No. 8 wires 111 c/c 

Horizontally. No. 8 wires 211 c/c 

18" 

911 

Elevation Cross section 

FIG. 7.1 GEOMETRY AND REINFORCEMENT OF SW1 
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FIG. 7.2 POSITION OF THE FLOOR WEIGHTS 
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FIG. 7.3 EXPERIMENTAL CRACK PATTERN FOR SWI [421 
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FIG. 7.15a ANALYTICAL FAILURE PREDICTION OF SW2A & SW2B 
Time = 0.00 sec. 

Open crack 
Closed crack 
Yielding of steel 
Crushed element 

167 



FIG. 7.15b ANALYTICAL FAILURE PREDICTION OF SW2A & SW2B 
Time = 0.75 see. 
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Yielding of steel 
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CHAPTER EIGHT 

OPTIMUM NONLINEAR ANALYSIS OF COUPLED SHEAR WALLS 

8.1 Introduction 

In locations of possible seismic activities coupled shear walls are a form of 

construction often used. This is due to their ability to dissipate the energy 

input whilst retaining a great deal of their structural stability. One way of 

dissipating this energy is to allow the connecting beams to deform plastically 

whilst confining the rest to remain elastic. This is the preferred form of 

deformation because 

i) Failure in the walls may lead to the collapse of the entire structure 

ii) Axial forces which might be high in the walls tend to reduce their 

capability to deform 

iii) It is easier and more economical to repair horizontal members 

than vertical ones 

To achieve such a philosophy, the practice to purposely moderate'the 

strength of the coupling beams allowing them to yield ahead of the walls, has 

been the desired behaviour among many seismic experts for the last few years. 

By doing so however, there is a risk that the coupling beams will undergo 

plastic deformations beyond their real capacity and hence may lead to an 

undesired behaviour and sometimes to the collapse of the entire structure. 

These plastic deformations of the connecting beams are defined and 

limited by the mathematical model assumed for the inelastic material 

behaviour. The model most used in connection with the dynamic response of 

reinforced concrete members is the experimentally based hysteretic Takeda's 
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moment - rotation relationship [291 (fig. 8.1). This limit is often expressed by 

the ductility demand, ji, which is expressed in terms of the maximum and the 

yield rotations (emax, E)y) as 

IL = 
emax 

8.1 
GY 

Paulay [861 and others [75-771 have shown that doubly reinforced concrete 

beams have a ductility demand capability of between 4 and 10. The actual 

value depends among other factors upon the amount of tension and shear 

reinforcement present in the beam. 

In the past trial-and-error methods have been used to evaluate the 

moment capabilities of the connecting beams for specified ductility demands. 

Initial values were chosen and the coupled shear walls subjected to a nonlinear 

analysis for a given accelerogram. These initial values were then modified 

according to the calculated ductility demands and the procedure repeated until 

the ductility demands were within the required acceptable values" 

The efficency of the above method is obviously limited and in this 

dissertation a method is proposed that will optimise the procedure. This is 

made possible by using a ductility decay curve. This curve has been obtained 

for a number of coupled shear walls with a range of geometrical dimensions. 

The minimum moment capacities of the connecting beams, or groups of 

connecting beams, can be avaluated using the relevant code of practice. Using 

these minimum values the coupled shear wall is subjected to a nonlinear 

dynamic analysis for a specified accelerogram. The required ductility demand 

can then be expressed as a percentage of the initial ductility demand. Using 

the ductility decay curve, the increase in the moment capacity can be 

obtained. A further analysis can then be carried out to check the validity of 

the modified values. 
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8.2 Nonlinear Dynamic Procedure 

Each coupled shear wall model was analysed using DRAIN-2D program 

[301 developed at the University of California, Berkeley. This program was 

preferred because it is less time consuming for comparable results (see section 

7.4.4). The dynamic response of a coupled shear wall to an earthquake 

acceleration record is determined using a step-by-step numerical integration. 

The acceleration record used was the first six seconds of the N-S component 

of El Centro earthquake scaled to give a peak value of 0.33g as shown in fig. 

(8.2). For convenience, the structures were subdivided over their height into 

zones of 5 storeys each from the base and only the absolute maximum values 

in each zone was considered. As the computer program assumes a constant 

acceleration scheme during a time step, it is important to optimise this time 

step to balance accuracy and economy. A time step of 0.01 second was found 

to be appropriate as no substantial improvement was noticed for smaller 

values. 

The stiffness matrix of the coupled shear walls was formulated by the 

direct stiffness method. The matrix is then modified locally whenever a 

member goes plastic. This is done according to the nonlinear cyclic behaviour 

for reinforced concrete members defined by Takeda's model. The fundamental 

periods of the structures were computed using the F. E dynamic program 

developed in this research. DRAIN-2D does not have the capability to carry 

out a free vibration analysis. Finally the damping is assumed to be 

proportional to both the stiffness and the mass matrix. 
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8.3 Influence of Various Factors on Ductility Demand 

The prediction of ductilities and hence plastic deformations is of 

paramount importance. The accuracy of these predictions depends on many 

assumptions related to the mathematical model chosen, the initial stiffness 

and the strain hardening parameter assumed etc ... to name but a few. 

Therefore before developing the ductility decay curve in detail, the different 

factors which might influence the ductility demands are examined and their 

effects evaluated. A 20 and a 30 storey coupled walls (SWI and SW2) were 

chosen for this investigation. Their geometric and dynamic characteristics are 

given in fig. (8.3). 

8.3.1 Effect of Stiffness Deqradation on SW2: As previously stated Takeda's 

model with stiffness degradation capability was used. The stiffness 

degradation is simulated by reducing the unloading and reloading stiffnesses. 

The unloading stiffness, Ku, depends on the maximum hinge rotation and is 

controlled by the input parameter oc as shown in fig. (8.1). cc must be non 

negative and chosen such that the unloading slope is steeper than the reloading 

one in order to avoid a negative hysteresis loop, similarly the reloading 

stiffness is controlled by a parameter 

i) Unloading Slope Variation: The influence of the unloading stiffness Ku 

is investigated. Setting My = 100 kip-ft for all the coupling beams and the 

walls elastic, the ductility demands in the coupling beams were computed for 

various values of (x and a constant 6=0. The results are shown in table 8.1. 

The relevant ductility demand variations dii(%) with respect to the ductility 

demand Ito, corresponding to oc =0 and 0, are also shown in table 8.1 

between brackets and are plotted against the variable cxfor zone 1 in fig. (8.4). 

Table 8.1 and fig. (8.4) show clearly that ductility demand increases with 

increasing o<. 
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To examine the effects of the strength of the coupling beams on this 

variation, two more values of yield moments were considered My = 150 and My 

200 kip. ft and similar procedure was followed. The results are also shown in 

table 8.1 and the variation d[t(o/0) for the first zone is also plotted in fig. (8.4) 

for comparison. As can be seen, as w. varies from 0 to 0 40, dg(c/,. ) varies from 

0 to a maximum value of 

2.77 % for My = 100 kip. f t 

7.67 % for My = 150 kip. ft 

9.92 % for My = 200 kip. ft 

This shows that the variation of ductility demand is higher for stronger 

coupling beams. 

ii) Reloadinq Slope Variation: Similarly, the ductility demand on the 

coupling beams were computed for a varying parameter 0 and a constant M of 

0.40. The results are shown in table 8.2 for values of yield moment of 100, 

150, and 200 kip. ft respectively. The ductility variation of dlt(%) defined with 

respect to [to, corresponding to cK = 0.40 and 02 is now plotted against 6 for 

zone I in fig. (805). The results show that 

a) The ductility variation was not substantial as ý varied. 

b) The ductility variation increases with increasing ý. 

c) The ductility variation is lesser for stronger coupling beams. 

8.3.2 Effect of Strain Hardeninq on SW2: When subjected to a reversal of 

loading, the behaviour of a beam can be basically described by its moment- 

rotation relationship. The latter can either be idealised as elastic perfectly 

plastic, i. e., no strain hardening is accounted for (p =0 in fig. (8.1)) or as 

elasto-plastic with strain hardening (p 4 0). As far as reinforced concrete is 

concerned, a more realistic model would be the one which takes into account 

strain hardening effect. 
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Depending on the designer's judgement, various values of p can be chosen 

as an input to simulate strain hardening. Therefore, in the following section 

an attempt is made to examine the effect of the variation of the parameter p 

on the ductility demands of the coupling beams of the coupled shear wall SW2. 

The walls were kept elastic throughout the entire earthquake history and no 

stiffness degradation effect was considered. The value of the strain hardening 

parameter p was varied from 0.01 to 0.16 and the consequent changes in 

plastic deformations were recorded. Further more, to examine the possible 

influence of beam strength on the magnitude of these changes, three values of 

yield moment have been considered (My = 100, My = 150 and My = 200 kip. ft), 

the results are shown in table 8.3 and plotted against p in fig. (8.6) for zone 6. 

The results show clearly that ductiliy demand decreases as the strain 

hardening parameter p increases. The variation of ductility demand depends 

also on the level of yielding of the coupling beams as it is greater for smaller 

yield moments My. 

8.3.3 Effect of Beam Depth: 

0 General Considerations: As a preliminary study an 8 storey coupled wall 

subjected to typical equivalent static loads was investigated. The depth of the 

coupling beams were varied keeping all the remaining geometry the same. The 

displacement pattern of this coupled wall depended very much on the size of 

the coupling beams as shown in fig. (8.7a). the depth of the coupling beams 

has therefore a considerable effect on the stress and deformation 

characteristics of the entire structure. When the depth was only one foot, 

both left and right walls deflected equally and the point of contraflexure was 

almost in the midspan of the coupling beam. This agreed remarquably well 

with the assumption made in the approximate methods of analysis. As the 

depth of the coupling beams was increased however, the behaviour of the 

coupled shear wall was noted to vary towards that of a single solid wall. 
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The interaction between the walls and the coupling beams was also 

investigated. Fig. (8.7b) shows the variation of the bending moments in the 

coupling beams with their depth. The interstorey variation of the bending 

moment is seen to increase substantially with the depth of the beam. This was 

found to be a very important phenomenon concerning the strength and the 

energy absorbing capability of the structure. The similarity of the inter storey 

bending moments of the coupling beams when they are slender yields the 

following consequences: 

a) Yielding in the beams occur approximately at the same time thus 

improving their energy dissipation capability. 

b) A straight forward design and construction of the coupling beams. 

c) The approximate nonlinear method of analysis which assumes that all 

beams are hinged, and that the points of contraflexure are at midspan, 

becomes more acceptable. 

ii) Effect of the Depth of Couplinq Beams on their Ductility: Increasing the 

beam depth increases the initial stiffness (i. e. the first slope of the moment- 

rotation curve) and hence, for the same yield moment, reduces the yield 

rotation. To examine the effect of the beam depth Hb on the ductility 

demand, the 30 storey coupled shear wall (SW2) was considered. Varying the 

beam depth and keeping all the remaining data and zoning the same and 

setting the yield moment My = 100 kip. ft, the following doctility demands were 

recorded: 
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ZONE 
Hb = 1' 

DUCTILITY DEMAND 

Hb = 2' Hb = 3' 

1 1.00 6.48 22.08 

2 1.13 8.32 27.60 

3 1.50 12.79 35.26 

4 1.81 14.67 39.33 

5 1.81 14.06 35.97 

6 2.18 16.47 41.23 

The infuence of the beam depth is considerable as is confirmed by the above 

table. The results show yet again that the parameters which define the yield 

point, namely the initial stiffness and the yield strength, have a particular 

effect on the ductility demand. 

8.3.4 Effect Of COUDIinu Beam Lenath on Ductilitv Demand: It can be 

anticipated that an increase in the length of the coupling beams leads to a 

greater flexibility and hence to an increase in ductility demands. It is however 

desirable to evaluate the extent of this increase and the nature of its variation 

as affected by the coupling beam length. In order to examine the effect of 

this variable, three twenty storey coupled walls were considered in addition to 

SW1 previously described. All four structures were the same except that the 

coupling beam length and hence the dynamic characteristics were varied. The 

maximum ductility demands were computed for each of the structures as 

f ollows: 
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I'max 

Beam 
Length 

1 
41 71 10,141 

Zone 

1 9.71 13.51 15.11 15.40 

2 10.33 17.43 20.37 21.60 

3 8.81 22.24 26.17 28.08 

4 9.57 22.77 27.32 29.63 

The maximum ductility demands in the 4 zones are platted against the 

beam length Lb, and also 1/Lb in fig. (8.8). The figure shows, as expected, the 

increase of ductility demand with increasing length. Furthermore, the 

maximum ductility demand seems to be almost inversely proportional to the 

coupling beam length. Note however, that the rate of increase in ductility 

demand decreases after the beam length has reached approximately 10 ft. 

8.3.5 Effect of Dampinq: To assess the effect of the energy absorbing 

mechanism, which is present in structures even before the onset of yielding 

due to damping effect, a viscous damping form was assumed. Three damping 

factors namely 5%, 10% and 15% of critical were considered. To appreciate 

the influence of structure flexibility, i. e., its frequency of vibration, on the 

extent of the effect of damping, a coupled shear wall of 10 storeys (SW3) in 

addition to the 20 storey coupled wall (SWI) was considered. SW3 has the 

same properties, except the number of storeys and hence the total height, as 

SW1. The coupling beams yield moments were set to 100 kip. ft for SW1 and 80 

kip. ft for SW3. The ductility demands in the coupling beams were then 

computed and the results are shown in table 8.4 and fig. (8.9). From these the 

following observations can be seen : 

i) The effect of damping is substantial and therefore a great care 

should be exercised in its choice. 
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ii) The maximum reductions in ductility demands Dg(loo/0) and 

DII(15%) with respect to IL(5%)) i-e-P 

11(5%) - 110%) 
", (i% ý . 100 

were as follows: 

8.2 

Dji(5%) 

SW3 
(10 storeys) 0.0 25% 35% 

swi 
(20 storeys) 0.0 32% 50% 

8.3.6 Effect of Actual Stiffness of Couplinq Beams: The importance of the 

choice of the original stiffness to be used along with the assumed nonlinear 

moment-rotation relationship must be emphasised. Depending on the designer, 

different initial rigidities (EIInitial) for the same cross section can be assumed 

ranging from the rigidity of the gross section to the rigidity below that of the 

cracked section (fig. 8.10). The influence of such an assumption on the 

ductility demand on the coupling beams of the coupled shear walls is most 

important and in this section attempts are made to assess the extent af this 

influence. 

The 20 storey coupled shear wall (SWI) was chosen to illustrate this point. 

Its material, geometric and dynamic characteristics are given in fig. (8.3). 

Four typical values of EIinitial were assumed as follows 

Run Sl Run S2 Run S3 Run S4 

Elinitial I Elgross 0.80gross 0.6EIgross 0.4EIgross 
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The ductility demands upon the coupling beams are shown in table 8.5 and 

plotted in fig. (8.11) for the four rigidity values considered. The figure shows 

clearly that the influence is very substantial and the maximum variation of the 

ductility demand reached 120% in this study. It is interesting to note that 

ductility demand varied almost in proportion with the initial rigidity EIinitial- 

8.3.7 Summary: The following conclusions can be drawn. 

a) The ductility demand increases with increasing unloading parameter 

CV, and its variation is greater for stronger coupling beams. A 

maximum variation of 10% was obtained in this investigation. 

b) The ductility demand increases with increasing reloading parameter 

ý- Its variation however, is smaller for stronger coupling beams'. The 

maximum variation obtained was 6.3%. 

C) Generally the ductility demand decreases with increasing strain 

hardening parameter p. Its variation becomes smaller as the coupling 

beams become stronger. 

d) The factors affecting the yield point in the moment - rotation 

relationship such as the depth of the coupling beams, the yield 

moments and the initial stiffness have a particular influence on 

ductility demand and should therefore be assessed with great care. 

e) Damping effect on ductility demand is very substantial (up to 50% 

in this study) and is slightly higher for more flexible structures. 

Therefore its choice should taken with caution. 
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8.5 Optimal Nonlinear Analysis 

8.5.1 Effect of Coupling Beam Strenqth on Ductility Demand: In coupled 

shear wall systems the strength of the coupling beams not only affects the 

degree of coupling between the walls but also controls the sequence of yielding 

and the magnitude of ductility demand of the different members of the 

structure. The direct influence of coupling beam strength variation is shown 

in fig. (8.12). the figure represents the response of a 20 storey coupled shear 

wall ( SW1) for three levels of moment capacity namely 100,200 and 300 kip. ft 

respectively. These curves show that ductility demands are in direct relation 

to the coupling beam moment capacity. They also show that as the moment 

capacity increases the ductility demand variation and the maximum ductility 

demand decreases. 

8.5.2 Ductility Decay Curve: Obviously when a coupled shear wall is 

subjected to a dynamic loading, its coupling beams are stressed differently 

throughout the height of the structure and produce therefore different 

ductility demands according to their stiffness and yielding moments. Varying 

all the coupling beam yield moments equally produced the variation of 

ductility demands shown in fig. (8.12). However it is of interest to investigate 

the influence of the yield moment variation of one set of coupling beams on 

the others. To carry out such a study it was decided for practicality and 

economy to subdivide the structures into zones of five storeys each over their 

height. Instead of considering each individual beam separately, the absolute 

maximum response in each zone was considered. The degree of accuracy is 

therefore in direct relation with the number of zones. 

The coupled shear walls SW1 and SW2 which are defined in fig. (8.13) were 

first considered. Initially all the zones are assumed to have the minimum 

moment capacity. This value will be dependent upon the minimum amount of 

reinforcement present in the beams. This is stipulated by most codes of 
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practice. A typical value is that recommended by the ACI code [481. This is 

given by 

:1 200/fy Pmin ': Pomin , 8.3 

in which Pmin minimum tensile reinforcement percentage 

PI min minimum compressive reinforcement percentage 

fy = yielding steel stress in psi 

To allow the steel to yield before the concrete is crushed, an upper limit 

is also recommended for flexural steel ratio. The maximum value must not 

exceed half of that producing balanced failure [861. Hence 

(. 85f'cýj) (. 003Es) PIS' ýj 

p<0.5 8.4 
(PI) fy . 003Es+fy fy 

where f1c = Compressive strength of concrete 

k= Constant (generally equal to 0.85) 

fy = Steel yield stress 

f's = Compressive steel stress 

Es = Steel modulus of eleasticity 

For the walls SW1 and SW2 the minimum yield moment capacity was 

assumed to be equal to 100 kip. ft. Applying the nonlinear dynamic analysis to 

these walls, the ductility demand (I'min) was determined for each zone . These 

values are tabulated in table 8.6a. The yield moment of zone 1 was then 

increased keeping all the others equal to the minimum recommended (Mymin)' 

The resulting ductility demands on all zones in terms of the yielding moment 

at zone 1 are shown in fig. (8.14a) and fig. (8.15a) for SW1 and SW2 

respectively. Similarly, the infuence of the increase of yield moment in zone 

2 keeping all the others equal to My 
min are shown in fig. (8.14b) and fig. 

(8.15b). the same procedure for all zones follows and the results are shown in 
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fig. (ý. 14) for SW1 and fig. (8.15) for SW2. These two sets of figures show 

quite clearly 

i) the necessity to vary the moment capacity of the connecting beams 

along the height of the coupled shear walls. 

ii) that the variation of the ductility demand of a particular zone is 

dependent, in the main, upon the variation of moment capacity within 

that zone. Therefore a good approximation can be expected by 

assuming the effects of the other zones negligible. 

The variation in ductility demand of a particular zone can be represented 

as a percentage of the ductility demand at minimum moment capacity. These 

values are tabulated, for all zones, in table 8.7 for the walls SW1 and SW2. 

The average values of the coupled walls considered are shown in table 8.6b. 

These variations are shown in graphical form in fig. (8.16) as the ductility 

decay curves. 

8.4.3 Applications: Three examples of the use of the ductility decay curve 

are shown in table 8.8. Table 8.8a shows the process for the wall SW1 which is 

subdivided into four zones and a required ductility demand of 6 is assumed. 

Again it was assumed that the minimum moment MYmIn was 100 kip. ft. The 

initial ductility demands for all zones at this capacity (ILmin) are shown in the 

first column. For each zone the ductility demand required ([td can be 

represented as a fraction of the initial ductility demand ([L 
min 

). This is shown 

in column 2 as (11r/lImin)- Using the ductility decay curve the ratio 

(dM/MYmin) can be read off and the moment capacity required can be 

calculated as 

My = My 
min + dM 8.5 

This is shown in column 6. A nonlinear dynamic analysis was again carried out 
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and the ductility demand values are shown in column 7. Similarly tables 8.8b 

and 8.8c show the process for walls SW2 and SW3. 

It can be seen from these tables that the required and computed ductility 

demands are within 10% of one another for walls SW1 and SW3. This is not the 

case for SW2 where the maximum difference in zone 5 is 29%. This show quite 

clearly that the ductility decay curve for SW2 does not describe its behaviour 

accurately enough and therefore the ductilities in SW2 need to be improved. 

This improvement may be carried out using two different approaches: 

i) By modifying the ductility decay curve 

ii) By using the slope of the ductility decay curve. 

The first procedure which can be seen from table 8.9 and fig. (8.17), uses 

the computed ductility demands ([tg) that are shown in table 8.8b. Using the 

ratios obtained in table 8.9a the modified SW2 decay curve is obtained in fig. 

(8.17). Using this curve with the original ductility ratios (11rhimin) the 

modified values of (dM/MYmin) and hence the required moment (My) are 

obtained. These values are again used in the nonlinear dynamic analysis and 

the computed values of ductility demands are shown in table 8.9b. 

This modification of the ductility decay curve for one particular coupled 

shear wall supports the possibility of using one curve for all the coupled shear 

walls. To test the validity of modifying a standard curve for any wall, the 

curve representing wall SW3 was utilized. This curve was used to determine 

the yield moments required for wall SW2. Using this curve the moments shown 

in table 8.10a were used producing the ductility demands (jig) shown. The 

ratios (dM/MYmin) and (Pg/[Lmin) were then used to modify the original curve. 

This shown in fig. (8.18). 

This modified curve was then used along with the original ductility ratios 

to evaluate the required moment capacity My. The resulting ductility 
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demands are shown in table 8.10b. A second modification to the original curve 

can be made by considering the latest moment and ductility ratios. This 

second modification is shown in fig. (8.18). This curve was then used to obtain 

the values shown in table 8.10c and the nonlinear dynamic analysis produced 

the final ductility demands shown. 

The second procedure uses a simplified trilinear curve derived from the 

ductility decay curve and whose three branches have a slope of 2.5,5.0 and 

10.0 respectively. The procedure can be seen from table 8.11 and fig. (8.19). 

Using the computed ductility ([tg) and the original ductility (110), the rate by 

which the computed ductility has been underestimated with respect to the 

required ductility (I'd can be computed. This is given by the ratio 

Itr - It- 

I-L 
0 

and is shown in column (7) of table 8.11. 

8.6 

Depending upon this ratio and the derived yield moment My shown in 

column (5), the slope which is to be used is set from fig. (8.19). This is given in 

column (8). If the ratio given in equation 8.6 ranges over two or three slopes 

as it is the case for zones 3 to 6, then it must devided proportionally as shown 

in column (9). Multiplying the slope by the corresponding ratio, the ratio 

dMg/Mmin and hence the required reduction dMg of the yield moment is 

obtained (columns 10 & 11). The final yield moments are then deducted. 

These are shown in column (12) and the resulting ductilities in column (13). 

As can be seen from column (13), the improved ductilities obtained are 

very close to the required ductility [t r' 
This clearly shows that the procedure 

is simple, optimal and leads to a greater accuracy for a minimum ef fort. 

189 



8.5 Conclusion and summary: The method described is a major improvement 

on the existing trial - and -error process. For any particular wall it has been 

shown that the use of a ductility decay curve produces accurate values of the 

moment capacities to produce the required ductility demands. When the 

original curve for a wall does not produce an accurate set of results then the 

curve can be modified. 

In generalising the method, one ductility decay curve only was used. In 

the particular case shown the most conservative curve was used. again by 

modifying the curve form accurate values of yield moments are achieved for a 

predetermined ductility demand. 
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Table 8.1 Effect of Unloading Stiffness Degradation 

11 11 11 p 11 11 
i 2 3 4 5 6 

a=0 6.49 8.32 12.80 14.69 14.08 16.49 

0.1 6.56 8.45 12.81 14.61 13.96 16.38 
(1.08) 

0.2 6.62 8.50 12.86 14.61 13.96 16.34 
(2.06) 

a=0.3 6.66 8.51 12.86 14.56 13.98 16.34 
(2.62%) 

a=0.4 6.67 8.49 12.85 14.52 14.04 16.39 
(2.77%) (2.04%) (-39%) (-1.16%) (-0.28%) (-0.69%) 

0. 3.79 4.68 7.09 7.97 7.33 8.48 
(0.0) 

0.1 3.90 4.76 7.10 7.94 7.39 8.52 
(2.90) 

0 
Ln 0.2 3.97 4.82 7.13 7.95 7.45 8.59 

(4.75) 

0.3 4.04 4.85 7.16 7.96 7.49 8.64 
(6.60) 

0.4 4.08 4.87 7.16 7.96 7.53 8.70 
(7.67) (4.06) (. 99) (-. 13) (+2.73) (2.59) 

0. 2.62 3.03 4.48 4.95 4.32 4.95 
(0) 

0.1 2.70 3.09 4.50 4.95 4.35 4.99 
(3.05) 

0.2 2.76 3.14 4.50 4.95 4.39 5.05 
(5.34) 

0.3 2.82 3.19 4.52 4.96 4.43 5.09 
(7.63) 

0.4 2.88 3.22 4.53 4.97 4.46 5.13 
(9.92%) (6.27%) (1.12%) (0.40%) (3.24) (3.64) 
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Table 8.2 Effect of Reloading Stiffness Degradation 

11 11 11 11 11 p 
1 2 3 4 5 6 

0. 6.64 8.45 12.80 14.41 14.09 16.44 
(0) 

0.1 6.68 8.58 12.78 14.41 14.07 16.42 
(0.60) 

0 0.2 6.73 8.71 12.77 14.41 14.06 16.40 
0 (1.36) 

0.3 6.77 8.83 12.78 14.42 14.04 16.38 
(1.96) 

0.4 6.80 8.93 12.78 14.42 14.04 16.38 
(2.41%) 

0.5 6.80 8.98 12.78 14.42 14.04 16.38 
(2.41%) (6.27%) (-0.16) (0.04) (0.35) (0.36) 

0. 4.12 4.86 7.15 7.94 7.57 8.75 
(0) 

0.1 4.15 4.94 7.13 7.93 7.57 8.74 
(0.73) 

0 0.2 4.16 5.00 7.14 7.94 7.56 8.73 
Ln (0.97) 

0.3 4.16 5.01 7.14 7.94 7.56 8.73 
(0.97) 

0.4 4.17 5.03 7.14 7.94 7.56 8.73 
1.21%) 

0.5 4.17 5.03 7.14 7.94 7.56 8.73 
(1.21%) (3.50) (-0.14) (0.0) (-0.13) (-0.23) 

0. 2.92 3.24 4.54 4.97 4.49 5.17 
(0) 

0.1 2.93 3.25 4.55 4.98 4.48 5.17 
(0.34) 

0.2 2.93 3.26 4.55 4.98 4.48 5.17 
0 cq (0.34) 

It - 
0.3 

- 
2.93 3.26 4.54 4.97 4.48 5.17 

M: (0.34) 

o. 4 3.27 4.54 4.97 4.48 5.17 
(0.34) 

0.5 3.27 4.54 4.97 4.48 5.17 
(0.34) (. 93%) (0.0) (0.0) (-0.22) (0.0) 
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Table 8.3 Effect of Strain Hardening 

Str. Hard. 
parameter 11 (1) P (2) 11 (3) 11(4) 11 (5) 11(6) 

(P) 

. 01 6.44 8.18 14.40 16.7 16.17 18.95 
(0.0) 

. 02 6.42 8.19 13.92 16.11 15.59 18.26 
(-3.64) 

. 04 6.47 8.30 13.16 15.14 14.55 17.05 
(-10.03) 

. 06 6.49 8.34 12.47 13.27 13.62 15.95 
(-15.83) 

. 08 6.30 8.32 11.81 13.47 12.80 14.98 
(-20.95) 

. 10 6.48 8.27 11.26 12.78 12.06 14.09 
(-25.65) 

. 12 6.44 8.19 10.75 12.13 11.39 13.28 
(-29.92) 

. 14 6.40 8.08 10.26 11.52 10.79 12.56 
(-33.72) 

. 16 6.34 7.96 9.83 10.97 10.22 11.87 
(1.55) (+1.95) (-31.74) (-34.31) (-36.80) (-37.36) 

. 01 3.76 4.59 7.73 8.80 8.19 9.49 
(0.0) 

. 02 3.78 4.62 7.57 8.58 7.96 9.17 
(-3.4) 

. 04 3.79 4.67 7.25 8.17 7.53 8.72 
(-8.1) 

. 06 3.79 4.68 6.96 7.79 7.13 8.26 
(-13; 0) 

Lo 
. 08 3.79 4.68 6.69 7.46 6.78 7.85 

(-17.3) 

. 10 3.76 4.66 6.43 7.16 6.45 7.46 
(-21.5) 

. 12 3.77 4.63 6.20 6.88 6.14 6.88 
(-27.5) 

. 14 3.75 4.58 6.00 6.63 5.85 6.78 
(-28.6) 

. 16 3.73 4.53 5.80 6.38 5.59 6.46 
(-. 80) (-. 13) (-24.97) (-27.50) (-31.75) (-31.93) 

. 01 2.63 3.03 4.75 5.29 4.69 5.42 
(0.0) 

. 02 2.63 3.03 4.68 5.20 4.60 5.30 
(-2.21) 

. 04 2.63 3.03 4.55 5.03 4.41 5.06 
(-6.64) 

. 06 2.62 3.02 4.41 4.86 4.23 4.84 

0 (-10.70) 
0 

. 08 2.61 3.01 4.30 4.72 4.06 4.63 
(-14.58) 

. 10 2.59 2.98 4.17 4.56 3.90 4.44 
(-18.08) 

. 12 2.58 2.96 4.07 4.44 3.76 4.27 
(-21.22) 

. 14 2.56 2.93 3.96 4.31 3.62 4.11 
(-24.17) 

[-. 16 2.54 2.90 3.86 4.19 J S-50 
.5 ,5 3.95 

(-3.42) (-4.29) (-18.74) . (-20 79 - 25.37) 
L 

(-27.12) 
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Table 8.4 Influence of Damping on Ductility Demand 

20 STOREYS 

Floor Ductility Ductility Ductility 
Level 5% Damp 10% 15% 

20 22.68 1S. 33 11.3S 

19 22.74 1S. 40 11.40 

18 22.77 1S. 46 11.37 

17 22.68 1S. 44 11.19 

16 22.52 1S. 36 10.94 

15 22.24 1S. 19 10.79 

14 21.71 14.88 lO. S8 

13 20.92 14.39 10.33 

12 19.85 13.74 7.99 10 STOREYS 

11 18.56 13.12 9. S9 5% 10% 15% 

10 17.43 12.56 9.74 17.30 12.95 11.25 

9 16.53 12.26 10.07 17.23 12.94 11.25 

8 15.74 12.29 lO. S8 16.80 12.74 11.06 

7 15.44 12.27 10.72 15.82 12.24 10. S7 

6 14.70 11.87 10.42 14.29 11.57 9.88 

5 13.51 10.96 9.67 12.96 11.16 9.47 

4 11.82 9.53 8.46 12.39 "10.43 8.75 

3 9.64 7.66 6.8S 11.01 9.09 7. S4 

2 6.99 S. 48 4.85 8.57 6.97 5.72 

1 3.76 2.91 2.51 4.89 3.92 3.19 

Max. reduction 
with respect 0.0 32% SO% 0.0 25% 35% 
(to 5%) 1 1 1 11 
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Table 8.5 Effect of Initial Stiffness 

Floor 
Leve 1 

RUN Sl 
EI = 309.3 
103 kiD. ft t 

RUN S2 

(0.8 EI) 

RUN S3 

(0.6 EI) 

RUN S4 

(0.4 EI) 

20 22.68 18.85 14.74 10.28 

19 22.74 18.90 14.77 10.30 

18 22.77 18.91 14.88 10.29 

17 22.68 18.83 14.69 10.23 

16 22.52 18.67 14.54 10.12 

is 22.24 18.40 14.31 9.93 

14 21.71 17.93 13.91 9.63 

13 20.92 17.24 13.35 9.21 

12 19.85 16.33 12.67 8.66 

11 18.56 15.23 11.72 8.02 

10 17.43 14.28 10.97 7.50 

9 16.53 13.48 10.30 6.99 

8 15.74 12.78 9.75 6.63 

7 15.44 12.53 9.55 6.49 

6 14.70 11.93 9.08 6.17 

5 13.51 10.95 8.33 5.65 

4 11.82 9.57 7.28 4. ý3 

3 9.64 7.81 5.98 4.00 

2 6.99 5.65 4.27 2.87 

1 3.76 3.02 2.26 1.50 
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Table 8.6 

a) 

b) 

a) DUCTILITY DEMAND AT 1 
1 -ýýin 

b) DUCTILITY DECAY 

DUCTILITY DEMAND AT My 
min 

ýLrnin) 

ZONE swi SW2 SW3 SW4 SW5 

1 13.51 6.48 9.95 9.36 8.02 

2 17.43 8.32 12.51 12.14 10.54 

3 22.24 12.79 13.64 11.93 13.46 

4 22.77 14.67 14.73 13.38 

5 14.06 17.69 16.94 

6 16.07 18.03 18.16 

dM 
MYmin 

0.5 

1.0 

1.5 

2.0 

3.0 

DLJCTILITY DECAY ( tL r tLmin 

SWI SW2 SW3 SW4 SW5 

0.61 0.61 0.64 0.62 0.61 

0.42 0.40 0.46 0.43 0.42 

0.32 0.28 0.32 0.31 

0.25 0.29 0.25 0.24 

0.18 0.12 0.23 0.17 0.18 
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Table 8.7 

a) Average Variation of Ductility Demand in SW1 
b) Average Variation of Ductility Demand in SW1 

a) 

dM 
MYmin 0.5 1.0 1.5 2.0 3.0 

min 

±1 
tLlmin 0.63 0.44 0.34 0.28 0.19 

112 
112rnin 0.63 0.44 0.32 0.26 0.20 

93 
113min 0.61 0.42 0.31 0.23 0.17 

114 
114min 0.58 0.41 0.28 0.22 0.17 

AVERAGE ILmin EL61 0.42 0.32 0.25 0.18 

b) 

dM 
Wmin 0.5 1.0 1.5 3.0 

E- *'ý 
[t 

-min 
ILl 
Vlmin 0.63 0.44 0.29 0.12 

112 
IL2min 0.61 0.41 0.30 0.12 

IL3 
113min 0.62 0.42 0.31 0.13 

114 
114min 0.61 0.41 0.29 0.12 

115 
V5min 0.59 0.39 0.27 0.11 

P6 
I-L6min 0.57 0.36 0.23 0.11 

AVERAGE 0.40 ILmin 0.61 0.28 0.12 
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Table 8.8 DECAY CURVE BASED & CORPUTEý) QUCTILITIES 

a) SWI 
b) SW2 
c) SW3 

a) 

b) 

c) 

MAI P-r-al ! ýýnin = 100 kip. ft 4 zones 

ZONE Rmin 
1'r 
timin 

dM 
MMin dM My 

Vg 
computed 

1 13.51 . 444 0.98 98 198 5.88 

2 17.43 . 344 1.35 135 235 5.48 

3 22.24 . 270 1.72 172 272 5.65 

22.77 . 263 1.74 174 274 5.72 

*5W2 llr-! Lý MYmin---: 100 ki2. ft 6 zones 

ZONE I'min 
llr 
Itmin 

dM 
Mmin dM My 

lig 
computed] 

1 6.48 . 617 0.50 50 150 3.95 

2 8.32 . 481 0.79 79 179 3.83 

3 12.79 . 313 1.34 134 234 3.17 

4 14.67 . 273 1.53 153 253 3.10 

5 14.06 . 284 1.48 148 248 2.86 

6 16.47 . 243 1.66 166 266 2.92 

ýW3 Iýr_EA Y-Y-min ý 100 kie. ft 3 zones 

ZONE 
1 

l'min 
llr 
Ilmin 

A-m 
Mmin dM My 

lg ICOmputed 

1 9.95 . 600 0.60 60 160 5.88 

2 12.51 . 480 0.93 93 193 5.66 

3 13.64 . 440 1.08 108 208 5.55 
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Table 8.10 

STANDARD AND MODIFIED DUCTILITY DECAY 
AS APPLIED TO SW2 

ZONE dM My 
110 MYmin 

1 . 617 . 578 157.8 
Ld 
> 2 . 481 . 921 192.1 
ry, 
:D 
u 3 . 313 1.772 277.2 
0 

4 . 273 2.210 321.0 

Z 5 . 284 2.074 307.4 

6 . 243 2.652 365.2 

1 
. 617 . 524 152.4 

LLJ 
> 2 . 481 . 790 179.0 

D 
U 3 . 313 1.260 226.0 
r) 

4 . 273 1.40 240.0 

0 5 . 284 1.36 236.0 
2 

6 . 243 1.520 252.0 

1 . 617 . 492 149.0 C*4 
I 

LLI 
> 2 . 481 . 730 173.0 

U 3 . 313 1.158 215.0 
r7) 
w 4 . 273 1.270 227.0 LL- 
Q 
o 5 . 284 1.24 224.0 

6 

- 

. 243 
I 

1.340 
I 

234.0 
I 

liq_ 
tio 

3.88 . 59 

3.52 . 423 

2.33 . 174 

1.99 . 136 

1.14 . 081 

1.02 . 062 

3.80 

3.78 

3.49 

3.48 

2.68 

2.85 

3.92 

3.94 

3.73 

3.84 

3.23 

3.54 

. 59 

. 454 

. 272 

. 237 

. 191 

. 173 

(b) 

(c) 
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APPENDIX A 

DESIGN EXAMPLE 

The following example is intented to illustrate the use of the Inelastric 

Spectrum Analysis to coupled shear walls as presented in CýaO--t- -Cou-r (, +)-- 

Consider the following data: 

b 0 
cli 

C) 
-4 

cli 

The wall depth Dw ý3r the beam depth Hb are 

to be determined by the designer. The building 

is in a zone of strong motion earthquakes. The 

extra storey mass M=4 kips. 

Ec = 464.103 ksf = 3222 ksi 

Es = 23810 ksi 

6y = 0.0021 

fy = 50 ksi 

Selection of the desiqn ductility: 

The design ductility should reflect the importance of the building. If it is 

a hospital for instance, which should be preserved even after the event of a 

strong earthquake, the tLd would be small, say I'd : -- 1, while for less 'important, 

structures the design ductility may be greater. Let us assume a ductility 

f3ctOr I'd =2 for our case. 

ii) Selection of Maximum Acceptable Drift: 

According to the material of the components of the building and the 

extent of damage judged acceptable, the maximum admissible drift is set, say 

d. -nax = . 01h. This yields the maximum yield drift as: 

dmax 
d 
ymax =-= . 005h 

Ild 
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iii) Frequency of the Structure: 

For d 
y, max : -- . 005h, fig'ure (4.14) yields the maximum period i. e., 

Tl, 
max = 1.0 sec. 

and hence the minimum frequency 

1 
fl, 

min ": - -": 1-0 cPs 
T I, max 

iv) Dimensioninq: 

It is very important to note that the minimum frequency f 1, min 
is that of 

the structure without extra mass m. For f 1, min : -- 1.0 (cps), figure (4.9) yields 

the following possibilities for Dw 
min and Hb 

min : 

Dw 
min 

Hb 
min 

21 0.301 

is, 0.50' 

15' 1.00, 

12' 1.40' chosen Dw = 12' & Hb = 2' 

v) Beam Strenqth: 

Assuming d= 21 in 

z=5.12 = 60 in 

and applying equation (4.21), the hinge spread length lp can be approximated 
as: 

lp = 0.5x2l + . 05x6O = 13.5 in 

From fig. (4.15), the maximum rotation can be approximated as: 

dmax 
gmax `- : -- 0-01 rd, 

h 

Assuming a rotational ductility factor Vb = 5, the yield rotation can be 

computed using equation 4.19, i. e., 
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f3max 
Gy = -= 0.002 rd 

Ilb 

and hence the yield curve (eqn. 2.20) 

8 
-4 -1 ty - .,: 1.48 10 in 

lp 

From fig. (4.16) the neutral axis depth at yield can be set: 

EY 
kud =d--=6.83 in 

Ty 

and so can the strains 6c and C's 

kud 6y 
-3 = 1.0110 

d-kud 

p, s = 
(kud-d') Gy 

-3 _=1.01 10 
d-kud 

and hence the max stresses 

fc = Ec Cc = 3.25 ksi 

fs' = Es G's = 13.50 ksi 

Assuming a rectangular stress shape and As = A's, the equilibrium equation 

2.22 yields: 

As fy = 0.4fc kud b+ Vs A's 

and hence 

As = A's = 2.29 in' 

and 

My= 24311 k-in , 
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C-2 DESCRIPTION OF THE INPUT DATA 

Card 1 (15,3X,, 9AB) Nb. and Title of the problem 

Card 2 (415) 

IPRINT 

MODIF 

NDYNAN 

NDFORS 

Card 3 (715) 

NNP 

NEL 

NEL2 

NBOUN 

NBODY 

NOPT 

NMAT 

Control information card 

0= none, -1 = print stiffness & mass matrices 

0= none, .1= non conforming mode used 

0= static, 1= dynamic 

0= none, 1= print forces & stresses 

Basic data 

Number of nodal points 

Total number of elements 

number of beam elements 

Number of restrained elements 

0= None, I= Self weight included in y dir. 

I= plane strain, 2= plane stress 

Number of different materials 

Card 4 (110y W10.5) Coordinates 

KODEO) 1= restrained in x-direction 
2= restrained in y-direction 
3= restrained in both directions 

X(i) Node abscissa 

YO) Node ordinate 

ULX(l) Static load in x-direction 

VLY(l) Static load in y-direction 
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Card 5 (615) Element nodes, type and material 

IE(111) First node of the element 

IE(1,2) Second node of the element 

IE(I, 3) Third node of the element 

IE(I, 4) Fourth node of the element 

IE(11ý) Material type 

IE(1,6) 1= quadrilateral elment, 2= Beam element 

Card 6 (2FI0.4) Reinforcement 

PXX Reinforcement ratio in x-direction 

PYY Reinforcement ratio in y-direction 

Card 7 OF12.2) Material properties (As many as NMAT) 

E Young's modulus of concrete 

PR Poisson's ratio of concrete 

RO Mass density of concrete 

TH Thickness of the elements 

Card 8 (3F. 12.53, F15.2, F12.5) Steel properties 

EPSY Yield strain of steel 

EPSUL Ultimate strain of steel 

SIGY Yield stress of steel 

ES Young's modulus of steel 

ESH Modulus of steel at strain hardening 
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Card 9 (15,3FI0.0,3F5.0; 2FlO. O) Omit if NEL2=02 Beam elernt property 

I Stiffness pattern number beginning with 1 

FTYP(1,1) El, Flexural stiffness of the member 

FTYP(1,2) EA, Axial stiffness of the member 

FTYP(1,3) GA, Shear stiffness of the member 

FTYP(114) Flexural stiffness factor k ii 

FTYP(I, 5) Flexural stiffness factor k 
J) 

FTYP(1,6) Flexural stiffness factor k ij 

FTYP(1,7) Strain hardening ratio at node 1 

FTYP(1,8) Strain hardening ratio at node 

Card 10 45,7FID. 0) 

ITP 

FTYP(I, 9) 

FTYP(I, 10) 

FTYP(1,11) 

FTYP(1,12) 

FTYP(I, 13) 

FTYP(1,14) 

Omit if NEL2=0, Hinge properties 

Stiffness pattern number beginning with .1 

Hinge stiffness at node 1 

Hinge stiffness at node j 

(x, unloading parameter for end i 

cy, unloading parameter for end j 

loading parameter for end 1 

loading parameter for end j 

Card 11 (15,, 5X, 2FI0.0) Omit if NEL2=0, Yielding Moments 

K Yielding surface number 

BMMY(1) Yield moment at first end 

BMMY(2) Yield moment at second end 

Card 12 (215) Mass codes 

KMAS 0 lumped, 1 consistent mass assumed 

NSEC Number of external mass patterns 
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Card 13 W215, F8.3) Omit if NSEC = 0, (as many as NSEC) 

LUMW Starting node where the mass is to be applied 

LUM(2) Ending node where the mass is to be applied 

EXMAS Value of the external mass 

Card 14 (65) Basic dynamic data 

INT 0= initial disp. and derivatives all zero 
1= initial disp. and velocity are given. 
2= initial disp. and derivatives all given 

NPRINT Nb. of steps after which results to be printed 

NSTEP Total number of steps 

MAXSTEP Maximun number of steps 

NTYP 0= Force function, 
I= Earthquake accelerogram 

NP Number of loading pairs 

Card 15 (5F8.5,, F10.5) 

C1 Damping constant for mass matrix 

C2 Damping constant for stiffness matrix 

DELT Operator factor, usually 0 

DT Time increment 

TIME Initial time 

GACC Acceleration of gravity 

Card 16 (3F10.4) Concrete strength 

EPSLIM Minimum strain after which concrete crushes 

YIELD Compressive strength of concrete 

SIGMU TEýnqlle strenqth of concrete 
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Card 17 

Card 18 

(315) 

NFIX Number of fixed points 

NVEC 10 = x-component only 
01 = y-component only 
11 = x-component and y-component 

MSPAC Nb. of steps after which results are printed 

(2FI0.4) Acc. record (as many as NP) 

P(1, K) Time 

P(21K) Acceleration in g units 
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C-3 

COMPUTER PROGRAM LISTING 



C ............ ............................... +1 .......... 
C IT 
C NONLINEAR ANALYSIS OF COUPLED SHEAR VALLS SUBJECTED 
C TO EARTHOUAKE FORCES BY THE FINITE ELEMENT METHOD. 
C 

COMMON/DATA/ NNP, NEL. NMAT. N: )PT. NEICOY. KMAS. MWIF. NEL2 
COMrrjN/THREE/R(2O0 ). AK(200.40) 
COMMONIDISP/m 100 ). Y( 100 ). ULX( 100 ). VLY( TOO I. 

*KODE( 100 ) 
COMMON/NODE/IE(SO. 6) 
COMMON! STEEL/PX(80). PYIEO) 
COMMON/PROTY/E(4 I. PR(4 l. RO(4 ). TH(4 
COMMON/TWO/IBAND. NEO 
DIMENSION TITLE(g) 

DEFINE FILE 3(200,64. L. IS1,7I2OO, 5l2, L, K6) 
DEFINE FILE 8(200,1152, L. 111) 

C DATA STAR /IM*/ 
DATA MAXEL. hAxrP. MAXMAT. MAXBV / 80,100.4.40 

10 READ( S. II) NPROB. ( TITLE( 1 3.1 -1 . 9) 
It FORMATI IS. 3X. 9A8) 

IF(NPRO8. LE. O) GOT049 
VRITEC 6,12 ) NPROB. ( TITLE( I ). 1-1 9) 

12 FORMAT(/8MTPROBLEM. I5, "-%H _9AB) 
READ(S. 13) IPRINT, MOOIFjJDTNAN, NDFORS 

13 FORMAT(41S) 
IF(MCClIF. NE. 0) WRITE(6.14) 

14 FORtlATI/IOX. 'KKKNON-CONFCIRMING-*'/) 
c 
C INPUT ALL THE STRUCTURE INFORMATION 
C 

CALL DATAIN (MAXEL. tlAXNP. KA)(MAT. ISTOP 
MAXDOF-2*MAXNP 
MAXDIF-O 
DO 20 1-1, NEL 
00 20 J-1.4 
DO 20 K-1.4 
LL-IABS(IE( I. J)-IE( I. K 
IF(LL-OT. MAXDIF) MAXDIF-Ll- 

20 CONTINUE 
IBAND-2*(MAXDIF. 1) 
NEO-2*NNP 
IF(IBAND. GT. MAXBW) GOTO 39 
IF(ISTOP. GT. 0) GOTO 49 
NI-0 

c 
c FORM STIFFNE55 MATRIX 
C 

CALL ASEMBL(ISTOP. MAXEL. MAXNP. KAXDCF, MAXBV, NI) 

IF(ISTOP. GT. 0) COTO 49 
IF(IPRINT. EO. O) COTO 76 
VRITE(6.82) 
D0751-1, NEO 
VRITL(G. 78) I 
VRITE(6,79) (AK(I. J), J-l. IBAND) 

75 CONTINUE 
76 CONTINUE 

c 
C FORM MASS MATRIX 
C 

103 FORMAT(////ISX. '***IIOERROR******') 
CALL ASFMAS( IS TOP. R. AK. MAXDOF. MAXBV, X. Y. K ODE. MAXNP. MAXEL) 
IF(ISTOP. CT. O) VRITE(G. 103) 
IF(ISTOP. GT. 0) GO TO 49 
IF(IPRINT. EQ. o) COTO 90 
VRITE(6,83) 
DO801-1, NEO 
VRITECG. 78) I 
VRITE(G. 79) (AK(I. J). J-I. IBAND) 

80 CONTINUE 
78 FORMAT[ IS. 'XXXX NEW LINE 

79 FORMAT( 5X, IOEIO. 3) 
82 FORMAT( //10X. '*-K*lt STIFFNESS MATRIX 
83 FORMAT( //IOX. 'XXXXX MASS MATRIX 
90 CONTINUE 

c 
C COMPUTE NODAL RESPONSES 

CALL RFSPON(AK. R. KMAS. MAXDOF. MAXEL, KAXW NEQ, lSANO, NEL, MAX8V) 
39 VRITE(6,40)IBAND. MAXBV 
40 FORMATI///*BANDVIDTH-'. 15. 'EXCEEOS MAX-'. 15/) 
49 STOP 

EM 

ASSEM13LE OVERALL STIFFNESS MATRIX AND STORE IN TAPE 7 

SUBROUTINE ASEMBL(ISTOP. MAXEL. rýAXNP. MAXNEQ. MAXBV. Nl) 
COMMON/DATA/ NNP. NEL. NMAT. NC)PT, NBODY. XMAS, MWIF. NEL2 
COMMON/THREE/ R(200). AK(200.401 
COMMON/01SP/X( 100). Y( 100). ULX( 100 ). VLY( 100). KODE( 100) 
COMMON/NODE/ I E( 80.6 ) 
COMMON/STEEL/PX( 80), PYt EO) 
COMMON/PROTYIE(4 ), PRE 4 ), RD( 4 ), TH(4 ) 
COMMON/TVO/IBAND. NEO 
DIMENS ION LP(8). CK( 12.12 ). O(8). CK%i(64J 
ISTOP-0 
DO 2 I-I. NEC 
RE 1 )-0.0 
DO 2 J-1.1BAND 
AK(I. J)-O. O 
TAREA-0.0 
NELI-NEL2 
DO 10 M-I. NEL 
IFC IE(M. 5) GT-O) COTO It 
ISTOP-ISTOP. 1 
VRITECG, lllt, M 

1111 t(MMAT( IX. tgtjEýROR ISTOP ELEMT- 15) 
COTO io 

It CONTINUF 
MTYP2. [E(M. 6) 
IF(NI. NE. O)r, o TO go 
IF(hTYP2. NE. 2)GO TO 1620 
NELI-NELI-I 
Mrl*NCL2-NELI 

13EAM ELEMENT STIFFNESS 

CALL OBEAfl(MM. AREA. C)K. O, MAXEL, tiA)cw. N,. M) 
GO TO 104 

C C GUADRILATERAL ELEMENT STIFFNESS 
C 
1620 CALL CUAD(M, AREA. OK. O. MAXEL. MAXNP. X. Y. Nl) 

104 TARFA-TAREA. AREA 
IF(M. EO. NEL) VRITECS. 1011 TAREA 

101 FORMAT(///IH 
. 2tMTOTAL. AREA OF VALL - Ft2.3) 

CO TO 105 
90 READC 7'M X OKV(K ), K-1 64 

IV-0 
DO 1110 11-1.8 
DO 1110 JI-1.8 
IV-IV-I 

Itla QK( I l. J1 )-OKV( IV) 
105 LIM-8 

DO 60 1-2, LIM, 2 
IJ-112 
LP( 1-1 1-2m IE(ti. Ij)-I 

60 LP( I )-2*IEC M. li) 
DO 50 LL-I. Lltl 
I -LP( LL ) 
IF(N I. NE. 0 XX LL)-O. 0 
R( I )-R( I )+D(LL ) 
DO 50 MM-I. Lim 
J-LP( tlPt)-I+ I 
IF(J. LE. 0) GOTO 50 
AK( 1, J)-AK( I. J)-GKCLL, W) 

50 CONTINUE 

BOUNDARY CONDITIONS CONSIDERATION 

to CONTINUE 
DCY55N - I. NNP 
IF(KOOE(N). EQ. 3) COTO 55 
K-2*N 
IF(KODE(N). EQ. I) COTO 57 

R(K-1 )-RCK-3 ). UlLX(N) 
IF(KCCX(N). W. O) GOTO 55 

57 R(K)-P(K )-VLY(N) 
55 CONTINUE 

D070M-l, NNP 
IF(KODE(M). r, E. O. ANE). KODE(M). LE. 3) 00 TO 72 
ISTOP-ISTOPýl 

GOTO 70 
72 IF(KOOE(h). E0.0) GOT070 

IFIKOOECH). EG. 2) GOTO 71 
M11-2*11-1 
CALL GEOMECULXCM), MII. R. AIC. MAXNEO. MA)CSV. 1) 
IF(KOOCC M). EO. I) COTO 70 

71 MIJ-2*M 
CALL GECME( VLY(ti). Ml I Fl. AK. MAXNEO. KAXBV. I 

70 CONTINUE 
REVIND I 
VRITE(l) ((AK(I. J), J-l. IBAND). I-l. NEO) 
IF(ISTOP. EO. O) GOTO 81 
VRITE(6,100) ISTOP 

100 FORMAT(////42H SOLUTION VILL NOT BE PERFORMED BECAUSE CF. 15.15f 
IDATA ERRORS 

81 RETURN 
END 

FORM BEAM ELEMENT STIFFNESS MATRIX & STORE IN TAPE 7 

SUBRCUTINE QBEAX M. AREA, GK. O. MAXEL. MAXNP. NI NM 3 
COh'M/IWEL/EKMIPC 20). EKHJP(20). EKI-K 20.2 ). KODYX(20.2). 

1 MX 4). KODY(20.2). EMY(20.2.6). RY(20.2.6). 
2 IND(20,2 ), EKEP(20,2.6), REVPT(20.2). EMTOT(20,2). 
3 SFTOTC 20.2 ), FTOTC 20,2 ). RTOT(293,2 ), ROTPPC 20,2 ), 
4 ROTPM 20.2 ). ROTSP(20.2 ). ROTSW20.2 ), EKl(20.2 3. 
5 RYlt 20.2.2 ). RAZ20.2.2 ). Pa(20.2.2 3. SMA(20.2.2). 
6 BM3(20.2.2 ). RREC(20.2.2 ). At-PHA(20.2). I3ETA( 20.2). 
7 EEXP(20). AXIALC 20,2 ) 

COMMON/DATA/tJ4P. NE: L, NMAT. r4OPT. NBWY, KMAS. MOOIF. NE: 1 
COMMON/PROTY/E(4 ). PR(4), RO(4 ), TfK 43 
COMMON/NODE/tE(80.6) 
COMMM/BEAM/SO. 51.52. S3. S4. A(12.12) 
COMMON/DISPZXC 100 ). Y( 100). ULX( 100). VLY( 100). KODEC 100) 
DIMEWMIDN CKC 12.12). (X 8). OKII 12.12). OrV( 64). AT( 12.12) 
1- IEC NM. t) 
J-IE: (NM, 2) 
K-lE(NM. 3) 
L- IEI 141.4 ) 
MTYP-lE(Ntl. 5) 
BL-ABSC X J)-X( 1» 
AL-ABS(YCL)-Yl 1». 
AREA-AL*BL 
CROS-AL*ThKMTYP) 
S-CROS(ALKAL/12- 
SO-Ei MTYP )KCROS/I3L 
ALFA-0.5 
SF-0.5 
G-0.4%EC MTYP 1 

12 IDO 10 K-1.12 
DO 10 L-1.12 
OKI(K. L)--0 



10 QKtK. L)-V 00 
Al -f)Lft 3 Eý MTYP MS 
B--Al 12 
C-1 /(ALFAKSFmCROS*G. BL) 

D- I EKFKM. 1 ) 
El -1 /EKK M, 2 
FI-Al-C-D 
F2-B-C 
F3-F2 
F4-AI+C. El 
DETT-FlvF4-F2-F3 
OK( I. 1 )'50 
OK(I. 4)--SO 
OK(4.1)--50 
OK(4.4)-SO 
OK( 3,3)-F I /DETT 
OK( 3.6)--F2/()ETT 
OK( 6.3)--F3/[)ETT 
OK(6.6)-F4/DETT 
SI-OK(3.3) 
52-OK( 3.6 ) 
S3-OK( G. 3) 
S4-OK(G. 61 
DO 11 1-1.12 
00 It J-1.12 
AT(I, J)- 0 

II A( IJ )-0 0 
A( 1.1 )-. 5 
A( 17)-. 5 
A(2,2)- 5 
A(2.8)- 5 
A(3. i )-I . 1AL 
A(3,7)--l /AL 
A(4.3)-. 5 
A(4.5)- 5 
A(5.4 )-. 5 
A(5.6 )-. 5 
A(6.3)-I /AL 
A(6.5)--i /AL 
CALL TRANS(12.12.12.12,12.12, A, AT) 

CALL MATMUL(12,12.12.12.12.12.12,12.12. AT, GK, CKI) 

CALL MATMUL(12.12,12.12, t2.12,12,12.12. OKI, A. OK) 

IF(KoDy(M. 1) NE 0) GO TO 2110 

OK(2,2)-OK(2.2)-10 W2. 
OK(8.8)-CK(8.8)+IO. KK12. 
OK(2.8)-GK(2.8)+10 **12 
OK(S. 2)-QK(8,2)-10 **12. 

2110 IF(KODY[M. 2). NE 0) GO 10 2111 

OK(4,4)-OK(4.4)+10 0ý12 

OK(4.6)-QK(4.6)+10 **12. 
GK(6,4)-QK(G. 4)+10. **12. 

2111 IV-0 
DO 1110 11-1.8 
DO 1110 J1.1.8 
IV. IV-I 
OKV( IV)-QK( 11 JI 

1110 CONT I NUE 
VRITE(7'NliXOKV(K), K-1.64) 
IF(NI. GT 2)GO TO 99 
VRITE(6.103)NI 
VRITE(6, IOIY(CK(II. Jl), JI'1,8). 11-1.8) 

101 FORMAT(IX, CE14.5) 
103 FORMAT13X. 30HBEAM STIF. INITIAL AT STEP- 13//) 

102 DO 20 1-1.8 
20 OK I )-o 00 

IF (NBOOY. EO. 0)G0 TO 99 
TE30DYF-RO(MTYP)*THCMTYP)*AREA 
BODYF-TSCOYF/4. 
DO 60 1-2.8.2 
O(I)--8OOYF 
I F( NBODY. ED 2 XX I-I)- SODYF 

60 CONTINUE 
99 RETURN 

END 

FORM QUADRILATERAL ELEMENT STIFFNESS MATRIX & STORE IN TAPE 7 

SUBROUTINE OUffl M. AREA. CK. O. MAXEL. MAXP4P. X. Y. N1) 

COMMON/DATA/ NNP, NEL, NMAT, NOPT, NBODY, KMAS. MOOIF. NEL-2 
COMMON/PROTY/E(4 ), PR( 4 ). RO( 4 ). IMK4 ) 
COMMON/TVO/IBANO. NEQ 
COflMOU/NOOE/ IE( 60.6 ) 
CCrrlOr4/GAUSS/COF; D(S, 5), VEIGhlT(S. 5 
DIMENSION X(MAXNP ). y(MAXNP ) 
DIMENSION XE(4,2 ), 0( 8 ). CK( 12.12 ). TOK( 12.12 ). Cß( 12,12 ). TCB( 3,12 1 

DIMENSION CKV(64 ). COV( 144 ). C( 3.31 
1-lE(M. 1 
J- IE(M. 2 
K- IE(M. 3) 
L- IEI M. 4 ) 
MTYP-IE(M, 5 
AREA-0 0 
A. X( J )-X( 1 
F-X(K )-X( 1 
O. y( j )-Y( 1 
tl-Y( K )-Y( 1 
AREAI -t Afri-F. G)/2.0 
A-Xt K )-X( 1 
F-X(L )-X( 1 
G-Y(K )-Y( I 
H-Y(L )-Y( 1 
AREA2-(AwH-F. G)/2 0 
AREA-AREA1. AREA2 
DOION- 1 .4 
NN- IE(M. N 
XE( N. 1 ). X( NN 
XE(N. 2 )-Y(rN 

10 CONTINUE 
DO 12 11-1,8 

12 Q( 11 )-o 0 
0013 11-1,12 
D013JJ-1.12 
C8( JJ. II )-o 0 

13 OKI II JJ )-0.0 
NC-2 
D02012-I. NC 
ETA-COFZD( 12, NC) 
VEIGI-VEIGHT(12. NC) 
DO20J2-I, NC 
XI- CORD( J2, NC I 
VE102-VEIGHTCJ2. NC) 
CALL FUt4K(XE. XI, ETA, TOK. TCB, MTYP. M. NMAT. NOPT. NI. X. Y. C) 
FACT-VEIGI*VEIG2 
DO 15 11-1.12 
DOISJI-1.12 

15 OK(II. Ji)-OK(11, Jl)-TOK(11, JI)NFACT 
20 CONTINUE 

002511-1,12 
D025JJ-1.12 

25 OK (II, JJ )- OK( II. JJ I* Tt K MTYP 
DO 30LI-1,4 
IF(LI. EO. I. OR LI EQ. 2) ETA--I. 0 
IF(LI. EO. 3 OR. Ll EO. 4) ETA-1.0 
IRLI EQ I OR. Ll EQ. 4) XI'-1.0 
IF(LI. EO 2. OR. LI. EQ. 3) XI-1.0 
CALL FUNK(XE. XI. ETA. TQK. TCB, MTYP. M, NMAT. NOPT. N], X, Y. CI 
D03011-1.3 
II- 11.301-1 
D030JI-1,12 

30 CB( I I. J I )-TCB( II. JII 
IF(MOOIF. EG. 0)r, O TO 55 

ELIMINATE INCOVPATISLE MWES 

00 50 11-1.4 
Ll - 12-11 
KI-LI-I 
DO 50 JI-I. Ll 
PIY-QK(Jl Kl )/GK(Kt Al 
DO 40J2-1.12 

40 CB( J2, J I )-CB(J2. J I )-PIVECEK J2. K I) 
00 50 J2-I. Ll 

50 OK(JI. J2)-CK(JI, J2)-PIV*QKCKI, J2) 
55 IV-0 

DO 1110 11-1.6 
DO 1110 JI-1.8 
IV. lv. l 
QKV( IV)-QK( 11 Jl 

1110 CONTINUE 
IF(M NE. I )GO TO 259 
VRITE(6,229) 
VRITE(6.228) (OKV(J), J-1.64) 

229 FORMAT (IOX. -STIF. IST ELEMT COMPUTED IN QUAD V. C MATRIX'//) 
228 FORMAT( I X. 4F 18.7 ) 
259 VRI TEC 7'M X GKV(K ), K -1 64 

IV-0 
DO 1111 11-1.12 
DO 1111 JI-1,12 
IV-IV-% 
CBV( IV)-Co( II Jl 

, III CONTINUE 
VRI TEC 8'M X CSV(K ). K -1 . 144 
I F( M. EQ. I )VR I TE( 6,118 )N I 
IF( M. EQ. II 

I VR I TE(6,1 19 X (CB( I. J ). J-1 . 12), 1-1.12 ) 
118 FORMAT(/3X, 28MCS MATRIX INITIAL AT STEP- AW) 
119 FORMAT( 6E I S. 6) 

IF(NE300Y. EO. O) GOT099 
TBODYF-AREA*RO(MTYP)*TH(MTYP) 
BOOYF-TBODYF/4.0 
D0601-2,8.2 
O(l)--BODYF 
IF(NBODY. EQ. 2) 0(1-1)-BODYF 

60 CONTINUE 
99 IF(M. NE. I)GO TO 199 

VRITE(6.705) 
VR I TE(6.706 X (C( I J), J-1 . 3). 1-1.3) 

705 FORMAT(//SX. ISHC MATRIX FROM QUAD//) 
7OG FORMAT(SX. 3FI5.5) 
199 RETURN 

END 

GAUSIAN CONSTANTS 

DI-OCK DATA 
COMMON/GAUSS/ CORD(S, 5), VEIGHT(S, S) 
DATA CORD/0.0.0 0.0.0.0.0.0.0. 

A-0.5773502691.0.5773502691.0.0.0 0.0-0. 
B-0.7745%6692,0.0,0.7745966692.0.0.0.0, 
C-0.86113G3115, -o 3399810435.0.3399810435,0.8611363it5.0.0. 
D-0 9061798459, -0.5384693101,0.0,0.5384693101.0. ýM61798459/ 

DATA VEIGHT/O 0.0.0.0.0.0 0.0 0. 
E1.0.1 0.0 0.0 0.0.0. 

0,0.0. 
GO 3478548451.0.6521451548,0. GS21451548.0. ýý478548451.0.0. 
HO 23G926885.0 478r, 266704.0.5688888888.0.478F, 286704,0.236926885, 

END 

FORM MATRIX BT .CB 

SUBROUTINE FUNK(XE, X1, ETA, TOK, TCB, MTYP. M, NMAT, NOPT, NI, X. Y, C) 
COMMON. 'PROTY/ E(4 ), PR(4 ]. RO( 4 ). TM( 4 
COMMON/STEEL/PX(80 ). PY( eO) 
COtlMON/BARP/EPSY. EPSUL. SIGY. ES. ESH 
DIMENSION B( 3.12 ). C( 3.3). DXY(2.6 ), BT( 12,3) 



DIMENSION XEC 4.2 ). TDK( 12.12 I. TCEC 3.12 
DOloJ- t. m 
CC( IJ )-o 0 DIMENSION X1 100 1, Y( 100 1 DOIOJI-I. L CI-ES*PX(H) 10 CCC 1, J)-CCC 1.1 )-AA( I. JI ). BB(jl j C2-ES*PYtM) RETURN 

DO 20 1-1.3 END 
DO 20 J-1.12 c 
ST(J. 1)-0.0 C FORM oveRALL MASS MATRIX 
TCBC I, J)-0.0 C 

20 Ex 1.1). 0.0 SUBROUTINE ASEMASCISTOP. R. AMS. MA)CýIEO. MAXE3V. X. T. KOOF-. tiAXNP. MokXFL) 
DO 25 1-1.12 COMMON/DATAI NNP. NEL, NHAT. NOPT. NBODY. KMAS. tVCIF. NEL2 
DO 25 J-1.12 COMMON/PROTY/E(4 ). PR(4 ). RO(4 ). THC 4 

25 TOK(I. J)-0.0 COMHCN/TVO/IBAND. NEO 
IFCNI. NE. 0)00 TO 10 COMMION/NODE, IE(60,6) 
CC 1 . 3)-0.0 DIMENSION X(MAXNP ). Y( MAX11P I. KCDE(MAXW ) 
C(2.3)-O. O DI W_Ns I ON AMS(MAXNEO. MAXBV). R(MAXNEOl 
C(3.1 )-0.0 DIMENSION OK(8,8), LPC 8). LUM t5O, 2 ), EXHASC 150) 
C( 3.2 )-0.0 READC 5.100) KMAS. NSEC 
IF(WMAT. EO. I ANO. M. GT. I) GOTO 10 IF(NSEC. LE. 0) GOTO 5 
IF(NOPT_EO. 2) GOT02 READ(S. 110) (C LUMK 1, J). J- 1 .2). EXMAS( I I. I-I. NSFC) 
CF-E(IITYP )/(C I . 0-PR(MTYP ))*( :. 0-2. OWPR(MTYP 

VRITE: (6,120) KMAS. NSEC 
CC I, I )-CF*( 1.0-PR(MTYP VRITECG. 130) (CLUM I. J ). J-1 .2). EXMAS( I I-I. NSEC) 
C( 1 .2 )-CF*PRC MTYP 5 CCNTINUE 
C(2.1 )-CC 1.2 ) D0101-1, NEO, 
C(2.2 )-CC I, II DOIOJ-I. IBAND 
CC 3.3)-CF*( I . 0-2.0*PRC MTYP ) 112. C 10 AMS(I. J)-O. O 
GOTOS TF(KMAS. EO. 2 I GO TO 235 

2 CF-E(MTYP)/(I, O-PRCMTYP)9*2) DO 35 M-I. NEL 
CC I. I )-CF MTYP-IECM. S) 
C(I. 2)-PR(hTYP)*CF tF(MTYP. GT. 01 COTO 15 
C(2.1 )-CC 1 .2 ISTOP-ISTOP+l 
C(2,2)-CF VRITE(6.220) 
CC 3.3)-CFm( I . 0-PR(MTYP W2.0 220 FORKAT(SX. -*asv**ERRoR 

5 C( 11 )-C( IJ )-cl GOTO 35 
C(2.2 )-CC 2.2 )-r-2 15 hTYP2-IE(M. 6) 

Is CONYltm NODEI-[E(M, I) 
CALL BMAT(XE. XI. ETA. G. 8T. DET) NOOE2-IE(M. 2) 
CALL MATtIJL(3.3.3.12.3,12.3.3.12. C, B. TCB) NME3-IE(M. 3) 
CALL MATMUL(12.3.3.12.12.12.12.3.12. BT. TCB. TOK) NODE4 -I EC M. 4) 
DO 30 1-1.12 A-X(NOCC2)-X(HODEf ) 
DO 30 J- 1 . 12 F-X(NOM3)-X(NODeI J 

30 TOKC I. J I-TOK( I. J)*DET 0-Y(NOOF2)-Y( HOOEI ) 
RETURN HlY( NODC3)-Y( NODE II 
END ARZAI -ABSC (AM-FaG)/2.0) 

) X( NODF3 ]-X(NODE I A 
FORM a MATRIX , 

: 
, F Xt NOOE4 -XC NODE I) 

)-YI NODE I) YCt4M3 G 
SU19ROUTINE BMAT(XE. XI. ETA, B, BT, DET) ) 

: 
H Y(NODE4 -YCNOCle 3 

0111EMION 0(3.12). BTC 12.3). Xf(4.2). DXY(2.6) AREA2-AHSC A*"-F*G)/2.0) 
CALL JACO(3I()(E. XI. ETA. DET, DXY) AREA-ARFAI-AREA2 
DO 25 1-1.6 CALL QUAMAS(CK. AREA. MTYP. KMAS) 
11-2*1-1 300 LIM-8 
EK I. LI )-DXY( 1.1 ) D020 1-2. LIM. 2 
B(2.11-1)-DXT(2.1) IJ-1/2 EN 3.11 )-DXY(2.1 I LPC 1 -1 )-2*IECM. IJ)-I 
B(3.1141 )-DXYI 1.1 

20 LP(l)-2*IE(M. IJ) 
25 CONTINUE 125 D03OLL-1.1-IM 

CALL TRAWA3.12.12.3.3. t2. B. BT) IP-LPCLL) 
RETURN DO 30 MM-1, LIM 
END 

JP-LP(MM)-IP. 1 
IF(JP. LE. 0) GOTO 30 

FORM JACCIBIAN MATRIX AND ITS DETERMINANT AM! S( IP, JP)-AW. ( IP. JP )*OK(LL. Mm) 
30 CONTlNUF_ 

SUBROUTINE JACOBI(XE. XI. ETA, DFT, DXY) 35 CONT NUE 
DIMENSION XE(4.2), DXY(2.61, AJ(2.2). DXE(2.4). TXE(2.6) 236 IFCNSEC. LJE. 03 GOTO 39 
DXCC 1.1 )--( 1.0-ETA)/4.0 DO 3a 11-1, W-EC 
DxECI. 2)-(I. 0-ETA)/4.0 NJ-LUMC 11.2) 
DXE(2.2)-t -1.0-XI V4.0 DO 36 JI-I. NI 
DXE(2. J)--(I. 0-XI)/4.0 LUM 11.1 )-Jt-t NPI 2*( 
DXEC 1.3)-( 1.0-ETA)/4.0 : 

, W2 NP -1 DXZ(2.3 1-( 1.0+XI V4.0 AMSINPI. 1 )-AMS(WI. 1 )-EXMAS( 11 
DXEC 1.4)--1 I. O. ETA 1/4.0 36 AMSCNP2.1 )-AM5(NP2, I )#Exmt\SC 11 1 
DXE(2.4)-( 1.0-XI V4.0 38 CONTINUE 
CALL MATMUL(2.4.4.2.2.2.2.4.2. DXE. XE. AJ) 39 CONTINUE 
DET-AJ( 1.1 )NAJ(2.2)-AJ( 1.2)*AJ42.1 J 
TEM-AJ(1.1) 

DOGOMP -I. NNP 

AJC II )-AJ(2.2) 
JF(KOOE(MP ). GE. @. AN0. KOOE(MP ). LE. 3) 0010 40 

AJ(2.2)-TEti 
ISTOP-ISTOP+l 

A J( 1 .2)- -AJC 1 .2 
VRITEC6.230) 

230 FORMlATISX, '#vvNWFRROR 2 
AJ(2.1)--AJ(2.1) 

GOTO So 
D0101-1.2 

40 IF(KODE(MP ). EQ. O ) GOTO 60 
D010.1-1 2 : IF(KODE(HP). EG. 2) COTO 50 

AJ( JVDET 10 AJ(I. J) 
hll-2oMP-1 

D0201: 1.2 CALL GEOtIEEO. O. Mll. R. AMS. IiAXNCO. MX13V. 2) 
DQ2oj 1 .4 so I F( KODE1 MP ). EQ. II GOTO 60 

20 TXECI J). DX I 
hit-2*MP 

TXECI: 51. -2 I 
CALL GEOMECO. O. Mil. R. AMS. MAXNEU. MAXBV. 2) 

TXE(1.6)-o. 
TxE(2.5)-O, Ok 

60 CONTINUE 

TXE(2.6)--2.0*ETA 
REVIND 2 

CALL MATMUL(2.2.2.6.2.6.2.2.6. AJ. TXE, DXY) 
D0701-I. NEO 

70 VRITEC2) (AMSC I. J). J-I. I8AND) 
RETURN 

100 FORMAT(215) 
END 110 FORMATC 4( 23S. FS. 3) 

1 20 FORMAT(//. 15X, lm*** KMASS 1,15.10x,, jis-ti NSEC 
FORM TRANSPOSE OF A MATRIX A. I. E.. B- AT 130 FORMAT(ffI5X. 'f*Ns EXTRA LUMPED MASS 

80 RETURN 
SUBROUTINE TAANS(II. JJ, KK. LL. K. L. AA, BB) END 
DIMENSION AAC II JJ l. BB( KK. LL) c 
DOl0I-I. K C FORM ELEMENT MASS MATRIX 
DOIOJ-I. L C 

10 SM J. I)-AA(I, J) SU13ROUTINE QUAMAS(OK, AREA, MTYP. KMAS) 
RETURN COMMON/PROTY/E(4). PR(4 ). RO(4). THf4 3 
END DIMENSION OK(8.8) 

D010 1-1,8 
FORM PRODUCT OF TVO MATRICES A AND 9 AS C-AB DOW J-1.8 

10 OK(I 0.0 '* 
SUBROUTINE MATMULCII. JJ. KK. LL. 11M. ht4. K. L. M. AA. 09. CC) 

CONSýý,, 25 *AREA* TPK MTYP )*ROC MTYP 
DIMENSION AA(II. JJ). B8(KK. LL). CCCMM. NN) IF(KMAS. EO. 01 GOTO, 20 
D0101-t. K 



IF(KMAS ED 0) COTO 20 IF(AK(ljR. I) EQ, O 0 COTO 230 
OK(l, l)-O 44444444KCONST RE NR )-R(NR MAKE W. I 
OK(1,3)-O 22222222MCONST COTO 240 
OK(I. 5). 0 IIIIIIIINCONST 230 R(NR )-0 0 
OK(1,7)-O 22222222*CONST 240 CONTINUE 
OK(2.2)-O 44444444*CONST DO a2O I-I. NRS 
OK(2,4)-O 22222222ACONST N-NR- I 
OK(2.6)-O 11111111*CONST M-N-I 
OK(2,8)-0-22222222MCONST NRM-NR-M 

OK( 3.1 )-0 22222222KCONST MR-MINO( IBAND, NrM) 
OK(3.3)-O 44444444*CONST DO 320 K-2. MR 

OK(3.5)-O 22222222*CONST L-M-K 

OK(3.7)-O IIIIIIII*CONST 320 R(N)-Rt N)-AK(t4, K )xR(L ) 

OK(4.2)-O 22222222. CONST 400 RETURN 

OK(4.4)-O 44444444*CCNST END 

OK(4,6)-O 22222222KCONST C 

OK(4.8)-O IIIIIIIINCONST C COMPUTE 13EAM ELEMENT FORCES 

CK(5.1 )-0 1111111IWCONST C MONITOR 13EAM ELEMENT STATE FOLLOVING TAKEDA RULES 

OK(S. 3)-O 22222222. CONST C 

OK( 5,5)-0 44444444. CONST SUBROUTINE 13EAFOR(CK. IAA, NM, DISPI. X, Y, N1, MAXW DISP, 

OK(5,7)-O 222222229CONST I MAXEL. Kl3AL, M. ITV) 

OK(6.2)-O. ItllllllxCONST COMMOt4/INFEL/EKHIP(20). EKHJP(20). EKK 20.2), KOOYX(20,2). 

OK(G. 4)-O 222222229CONST I NEX 4 ). KOOI(20.2 ). BMY( 20.2.6 ), RY(20,2,6). 

OK(6.6)-O 44444444. CCNST 2 IND(20.2). EKEP(20.2.6). REVPT(20.2), BMTOT(20.2), 

CK(6.8)-0 222222229CONST 3 SFTOT(20.2 ). FTOT(20.2 ), RTOT(20,2 ). ROTPP(20,2 ). 

OK(7,1)-O 22222222KCONST 4 ROTPN(20.2 ). ROTSP(20.2 ), ROTSM 20,2 ), EK 1(20.2). 

OK(7.3)-0.11111111. CONST S RYI(20,2.2). RA(20,2.2). RB(20.2.2), BMA(20.2.2), 

OK(7,5)-O 22222222KCONST 6 BMB(20,2.2). RREC(20.2.2), ALPHA(20.2). BETA(20,2). 

CK(7.7)-0 44444444*CONST 7 EEXP(20 )., IXIAL(20.2 ) 

CK(8.2)-0 22222222*CONST COMMON/RESP/DVRI DVRJ. BM-( 20.2 1, DM 20,2 ). MIND(20.2 

OK(8,4)-O 11111111*CONST COMMON/DATA/NNP, NEL, NMAT. NOPT, NBOOY. KMAS. MWIF, NEL2 

OK(8.6)-O 22222222. CONST COMMONINOOE/IE(80,6) 

OK(8,8)-0.44444444RCONST COMMON/BEAM/SO. St. 52.53, S4. A(12.12) 

GO TO 40 DIMENSION EDIS(8.1 ). OK(8.8), O( 8). EDISIC 8 ). AI(8.8), DISP( 8.1 

20 DO 30 L-1.8 DIMENSION DISPI(200). X( 100). Y( I00), OKV(64), FT(8). OK0(8,8). 

30 OK(L. L)-CONST I OK2(12.12) 

R IF(NM. EO NEL. 2 ) VRITE(6,1113 X J. KODY(J, I ). KODY(J, 2 ). J-1 NEL2 
40 RETU N 

END 1113 FORMAT(IX. 'EL-'. 15. 'KODY(t)-'. 16. 'KODY(2)-'. 16/) 

c KODYXENM. I)-KOOY(NM. 1) 

C ROTATE BANDED MATRIX TO HALF BAND KOOYX(NM, 2 )-KOOY(NM. 2 

C KI-IE(M. 1) 

SUBROUTINE GEOME(U. N. RD. AKM, NDIM. MOIM. IC) K2-IE(M, 2) 

COMMGN/TVO/IBAND, NEO K3-IECM, 3) 

DIMENSION RD(N[)Itl), AKM(NDIM. MDltl) K4-IE(M. 4) 

IF( IC ED. 2) COTO 200 BL-ABS( X(K2 )-X(K I )) 

00100 M-2.16AND AL-ABS( YE K4 )-Y(KI 

K-N-M-i DO 10 1-1.4 

IF(K. LE. 0) COTO 50 NN-IE(M, I) 

RD(K )-RD(K )-AKM K, M)*U EDIS(2*1-1 A )-DISPI(2*NN-I 

AKM( K. M)-O, O 10 EDIS(291.1 )-DISPI(2KNN) 

50 K-N-M-1 DO 21 1-1.8 

IF(K. GT. NEO) GOTO100 DO 21 J-1.8 

RD(K )-RD(K )-AKH( N. M)*U 21 Al( IJ )-A( I J) 

AKM(N. M)-0 0 CALL MATMUL(B. 6,8.1.8.1.8.8.1. Al. EDIS. FnIS11 

100 CONTINUE VRITE(6,987) (ED151(l), 1-1,8) 

AKM(N. I )-1.0 987 FORMATIIX. 'WEDI51 ARRAY FROM BEAFOR- *. BF8.5//) 

RD(N)-U DO 1110 11-1.8 
COTO 400 00 1110 JI. 1,8 

200 CONTINUE OK0(II, JI)-OK(II. Jl) 
00300MM-2.113AM) 1110 CONTINUE 
J-N-MM+l VRITE(6.202) M 
IF(J. LE 0) COTO 250 VRITE(G. 201 ) ((OK( I. J). J-I. a). I-I. 8) 

AKI'K J. MM)-O. O 201 FORMAT(IX. SE12.5) 
250 J-N+MM-I 202 FORMAT(4X. ' 13EAM STIF FROM BEAFOR OF ELMT '. 13//) 

IF(J. GT. NEO) COTO 300 C(3rxNM, t )-St*EDISI(3). S2*EDI5I(6) 

AKM( N. MM)-O. O DBM( NM. 2)-53*EDISI(3)-S4*EDISI(6) 
300 CONTINUE IF(NI. NE. I)G0 TO 20 

AKI'KN, I )-1 .0 
DO 12 1-1.2 

400 RETURN RTOT(NM. I)-O. O 
END SFTOT(NM. I)-O. O 

c ROTPP(NM. I)-. 0 
C I) SOLVE AK. U-R FOR U IF KKK -2 ROTPN(NM, I )-. 0 
C 11) TRIANGULARISE MATRIX AK IF KKK)( 2 ROTSP(NM, I)-. 0 
c ROTSM NM. I)-O. 

SUBROUTINE CANSOL(KKK, AK. R. NEO, IBAND, NDIM. MDIM) KODY(NM. I)-0 
DIMENSION AK(NDIM, MDIM), R(NDIM) AXIAL(NM. I)-O. O 

NRS-NEQ-I 12 BMTOT(NM, I)-O 0 
NR-NEQ 20 BMTOTI-BMTOT(NM, I) 
IF(KKK. EO 2) COTO 200 BMTOT2-BMTOT(NM. 2) 
D0120N-1, NRS BML(NM. I )-BMTOT(NM. I )-DGM( W. I 

M-N-I 13ML( NM. 2 )-BMTOT( NM, 2 )-DBM( NM. 2 

NRM-NR-M AXIAL(NM. I)-AXIAL(NM. 1). SO*CEDISI(l)-EDISI(4)) 

MR-MINO(IBAND, NRM) AXIAL( NM, 2 )-AXIAL( NM, 2 )-50*(EDISI( I )-EDISIC 4)) 

PIVOT-AK(N, I) FACAC-0.0 
D0120L-2. MR 30 FACTOR-I. -FACAC 
CP. 0.0 KFAC-0 
IF(PIVOT EQ. 0.0) COTO loo DO 341 IEND-1.2 
CP-AK(N. L)/PIVOT KODI-KODY(NM. IEND) 

100 CONTINUE I F( DBM( NM. I END ED. 0. )GO TO 34 0 

I-M-L REMIND-1. 
J-0 I F( I NEX NM. I END ED 2 )REM I NO -I 
DOIIOK-L. MR C 
J. J. 1 c RULE I 

110 AKE IJ )-AK( I. J )-CPKAKC N. K C 
120 AK(N. L)-CP IF(KODY(NM, IEND). NE. O)GO TO 50 

IFCKKK. EQ. I) COTO 400 1 F( DBM( NM. I END I. GT. 0. )GO TO 40 
200 D0220N-I. NRS FAC-(BMY(NM. IENO. 2 3-13MTOT(NM. IEND))/DBt% NM. IEND) 

M-N-I IF(FAC GE. FACTOR)GO TO 340 

NAM-NR-M FACTOR-FAC 
MR-MINO( IBAND, NFZM BM-SMY(NM. IEND. 2) 
CP-R(N) ROT-RY(NM, IEND. 2) 
R(N)-O 0 KFAC-IEND 
IF(AK(N. 1). EQ 0 0) COTO 210 KOOE-2 
R(N)-CP/AK(N, I EK-EKEP(NM. IEND. 2) 

I 210 CONTINUE IDK-2 
DO 220 L-2. MR 00 TO 340 
I -M-L 40 FAC-(BMY(NM. IEND. I )-13MTOT(NM. IEND WOOM( NM, IENO) 

220 R(I)-R(I)-AK(N. L)%CP IF(FAC CE. FACTOR)G0 TO 340 

IF( AK(NR. I) ED 00) GOTO 230 FACTOR-FAC 



FACTOP-FAC 
BM-BNY(NM, IEND, IY 
ROT-RY(NM, IEND. 1) 
KFAC-IEND 
KODE- I 
EK-EKEPENM. IEND. 2) 
I DK -I 
00 TO 340 

50 KOD-KODYMM. IEý40) 
GO TO(GO. 60.100,150,17LI, 220,240,260.2PO, 300,320), KOD 

RULE 2 

Go IF(REMIND. DBM(NM. IEND) LT 0, O)CO TO 70 

MIND(NM, IENO)-IND(t4M. IEND) 
GO TO 340 

70 K ODY( NM. I END 3 
1 DD -I NIX NM, I ENE) 
BMT-BMTOT(NM, IEND) 
BMTEST-(BMB(NM. IEND, 100)-BMT)*REMIND 
IRDMTEST GE. 0 )GO TO 90 
EKU -BMTA ALPIIA(t4M. I END INRTOT( NM. I END)-( I -ALPtlA(NM, IEND))* 

IBMT/EKI(NM, IEND)) 
IDVI-3-IDD 
EKUMIN-(BMT-CMA(NM. IEND,! [)M))/(RTOT(NM. IEND)-RA(NM. IEND, IDM)) 

IREKU LT-EKUMlt4)EKU-EKUMIN 
IF(EKEP(NM, IEND. 1) LE EKUIEKU-EKEP(NM, IENO, I) 

IF(ALPHA(NM. IEND) LE 0 ; EKU-EKI(NM, IEND) 
EKEPtNM, IENO. I)-EKU 
SMB(t4M, IEND, IDD)-BMT 
RB(NM. IENO. IDD)-RTOT(NM, IEND) 
RA(NM. IEND. IDD)-(I. -BETA(NM. IENO))KRTOT(NM, IEND)-BETA(NM. IEND)* 

IRYI(NM. IEND. 100) 
SMA( NM. IEND. 100 )-GMT-(( RTOT( NM, IEND ) I-CRA(NM. IEND. IDO 

IEKEP(NM, IEND. 2) 
IF(SETACNM, IEND) GT. 0.0)GO TO 80 
RA(NM, IENO, IC)D)-RTOT(NM. TEND 
SMA(NM. IEND, 100)-BMT 

80 RREC(NM, IEND, [DO)-RTOT(NM, IEND )-BMB( NM. IEND. 101))/EKEP(NM. IEND. I 

IDB-3-IDD 
RREC(NM. IEND. IDS)'REANM. IENO- IDB )-6MI3(NM, IFND- 'E)B)/ 

I EKEP(NM. IEID, I) 
RCTEST-RREC(NM. IEND. IDB)NREMIND 
IF(RCTEST GT. 0. ) PREC(tN. IENO, IDB)-0 0 

go EKK NM. IEND)-EKEPC W, IENO. I) 
REYPT(NM. IENO)-RTOT(NM, IEND)-BMT/EKF*NM, IEND) 

FACTOR-0. 
KFAC-0 
GO TO '340 

RULE 

100 IF(REHINOwDE3M(NM, IEND) LT. 0 O)GO TO 110 
I DO -I N[X NM, I END ) 
FAC -( BMY( NM. I END. I DO BM T OT( NM, I END V CM NM. I ENE) 
IF(FAC. GE FACTOR)GO TO 340 
FACTOR-FAC 
BM - BMY( NM, I END, I DO 
ROT-RY(NM. IEND, 100) 
KFAC-IEND 
KOOE-IENO 
KOOE-IDO 
IDK-ID0 
EK-EKEP(NM, IENO. 2) 
GO TO 340 

110 FAC--BMTOT(NM. IEND)/L)BM NM, IEND) 
IF(FAC. GE. FACTOR)GO TO 340 
FACTOR-FAC 
ON-0. 
ROT-REVPT(NM. IEND) 
KFAC-TEND 
KOOE-4 
I OK - 3- 1 ND( NM, I END 
I DD - 3- 1 DK 

CNEV LOADING SLOPE 
RTL\T-(, RREC(t, M, IENO. IDD)-ROT)*REMIND 
IR 'T . GT. 0 O)GO TO 120 
6MY( N 

\ZjND. 
I OK )- BMA( NIM. I ENE), I DK 

RY(Nh,. 0. I DK RA NM, I END. I CK 
GO TO I ý-ý 

\ 

120 RGA - RB( NM. 'END. I OK -FZA( NM. I END. I DK 
RPR-ROT-RREC(NM, IEND. IDD) 
RRR-RREC(NM, IEKC, ICK)-FREC(NM, IEND. I[)O) 
RXA-RBA*(RPR/RRR)**EEXP(NM) 
RY( NM. I END, I OK )- RA( NN, I END, I DK ). RXA 
BMY(NM. IEND. IDK)-BMA(NM, IEND. IL)K)-RXA*EKEP(NM, IEN, 2) 

130 EKL-BMY(NM, IEND. I[)K)/(rY(NM. IEND. IDK)-POT) 
C CHECK MAX SLOPE 

IF(EKL LT EKEPENM, IEND, I))GO TO 140 
EKL-O 999MEKEP(MIEN0, I) 
R Y( NM, I END, I OK )-C ROT A E: KL - BHA( NM, I END, I I)K )- RA( N11. I END, I DK 

*EKEP(NM, IEND. 2))/ 
HEKL-EKEP(NM. IEND. 2)) 
EMY(NM. IEND. 10r)-EKLw(FY(NM. IEND. IDK)-ROT) 

140 EKEP(NM. TENI). 3)-EKL 
EK-EKEP(NM, IEND. 3) 
GO TO 3140 

. RULE .... 4. 

Isa IF(REMINO*D6M(NM, IEN'O) L' 0 O)GO TO 160 

IDD- IND( NM, IENO) 
MIND NM, IEND )-3 
FAC-( E3MYC NM, IENO, IDD)-E-OT( NM, JENO ))/DBM(NM. IEND) 

IF(FAC GE FACTOr)GO TO 340 
FACTOR-FAC 
BM - 13MY( NN. I E-. D. I DO I 
ROT - RY( N11. I E%D. I DO ) 
KFAC -I END 

KFAC-IEND 
KODE- I DO 
I DK- I DO 
EK-EKEP(NM. IEND, 2) 
GO TO 340 

160 KODY(NM, TEND )-5 
EK FX NM. I ENE) )- EK EP NM, I END. I 
REVP T( Ntl, I END RY NM, I END. 3 BtlY( NM. I END, 3 EK ýK NM ,I END 
FACTOR-0. 
KFAC-0 
00 TO 3ý40 

PULE 
..... 5... 

170 IF(REMIND*DBM NM. IEND). LT. 0. )GO TO 180 
FAC-(SMY(NM, I END, 3)-BMTOT( NM, I END ))/DBPK MI, IENO) 
IF(FAC. CE. FACTOR)GO TO 340 
FACTOR-FAC 
BM-BMY(NM, IENO, 3) 
ROT-RYINM. IEND. 3) 
KFAC-IEND 
KODE-4 
I OK -IND( NM. I END) 
EK-EKEP(Ntl. I END, 3) 
00 TO 340 

180 FAC--BMTOT(NM, IEND)/DBM(NM, IEND) 
IF(FAC GE. FACTDFZ)OO TO 340 
FACTOR-FAC 
13M - 0. 
ROT-REVPT(NM, IEND) 
KFAC-IEND 
KODE-6 
IDK-3-IND(NM. IEND) 
IDO-3-IDK 

C NEV LOAD SLOPE 
RTEST-CRREC(NM, IENE), IDD)-ROT)mREMIND 
IF(RTEST. GT. O. )GO TO 190 
BMY( NM. I END, I DK )- 8MA( Mi, I END, I OK 
RY(NM. IENO. IDK )-RA(NM. IEND. IDK 
GO TO 200 

190 RBA - RE3t NM. I END, I DK )-RA( N? l. I END, I OK 
RPR-ROT-RREC(NM. IEND. IDD) 
RRR-RRECCNM. IEND. lDr)-rREC(NM, IEND. IDD) 
RXA-RBA*( RPR/RRR )*REEYP(t4M ) 
RY(NM, IEND. I[)K)-RA(NM, IEND. IDK)-RXA 
BMY(NM, lEt4D, lDK)-BMA(NM. IEND. IDK)+RXA*EKEP(NM, IEND. 2) 

200 EKL-BMY(NM. IEND. IDK)/(RYCNM. IEND. I[)K)-ROT) 
IF(EKL. LT EKEP(NM, IEND. 1))rO TO 210 
EKL-0.999-EKEP(NM, IEND, 1) 
RY(NM. IEND. IDK)-(ROT*EKL-BKA(NM. IEND, IDK)-RA(NM. IEND. IDK)* 

IEKEP(NM, IEND. 2)) 
2/(EKL-EKEP(NM. IEMD, 2)) 

BM(NM. IEND. lDr)-EKLm(RY(NM. IEND. IDK)-ROT) 
210 EKEP(NM. IEND, 4)-EKL 

EK-EKEP(NM, IEND. 4) 
GO TO 3140 

c 
C_ . RULE 

... 6.. 
c 

220 IF(REMIND*(X3MNM. IEND). LT, O. )GO TO 230 
IDD-INO(NM, IEND) 
MIND(NM. IEND)-4 
FAC-(BMY(NM, JEND, IDD)-DMTOTC NM. IEND))/DBI-K Mi. JEND) 
IF(FAC GE. FACTOR) 00 TO 340 
FACTOR-FAC 
CM - 13MYC NM, I END, I DD 
ROT-RY(NM. IEND. IDD) 
KFAC-IEND 
KOOE-IDD 
IDK-IDD 
FK-EKEP(NM, IEND, 2) 
GO TO 340 

230 K ODyi NM. I END 7 
EKVK NM, IEND)-EKEP(NM. IEND, I 
FZEVPT(NM. IEND)'Ry(t4l, IEND. 4 )-13MYC NM. IFN0.4VEKýK NM. IFND) 
FACTOR-0. 
KFAC-0 
GO TO 340 

c 
C 

... RULE ... 7... 
c 

240 IF(REMIND*OOM NM. IENO). LT. 0. o)G0 TO 250 
FAC-(BMY(NM, IENO, 4 )-13MTOT( NM, IEND))/CeVX NM, IENO) 
IF(FAC GE. FACTOR)GO TO 340 
FACTOR-FAC 
BM - BMY( NM. I EýZ, 4 
ROT-RY(NM. IEND. 4) 
KFAC-IEND 
KODE-6 
IDK-IND(NM. IEND) 
EK-EKEP(NM, IEND, 4) 
GO TO 340 

ýSo fAC - -BMTOT( W. I END WDBW NM. I END 
IF(FAC. GE FACTOR)GO TO 340 
FACTOR-FAC 
EM-0 
ROT-REVPT(NM. IEND) 
KFAC-IEND 
KOOE-8 
I DK - 3- 1 ? qD( NM, I END 
EK EP ( NM, I END, 5)- 13MY( NM. I END, 3 VC RY( NM. I END. 3 )-REVP TC NM. I END 
EK-EKEP(NM, IEND. 5) 
GO TO 340 

RULE.. 8 

(NM. IEND). LT. 0 O)GO TO 270 260 
MIFI(NREMMINCIE-DeM)-5 
FAC-( 6MY(NN. IEND, 3)-EMTOT(NM. IENO)VOGM NM, IEND 



FAC-( BMY( NM, IEND. 3)-E. MTO-. ( Nl, IEND ))/DBMC NM, IEND) 

IF( FAC GE FACTOR )GO TO 340 
FACTOR-FAC 
SM-BHY( NM. IEND. 3 
ROT-RY(NM, IEND. 3) 
KFAC-IEND 
KODE-4 
IDK - IND(NN. IEND 
EK-EKEP(NM. IENO, 3) 
GO TO 340 

270 KODY( NM, IEND )-9 
EKH( NM. IEND )-EKEP(Nll, IEND. I 

REVPT(NM, IENO I-RY(NT1, IEND. 5 )-E3MY(NM. IEND. 5 VEKH( NM. IEND) 

FACTOR-0 
KFAC-0 
GO TO 340 

RULE 9 

280 IF(REMINONDBM(NM, IEND) LT 0 0)GO TO 290 

FAC-( BMY( NM. IEND, 5 )-EMTO-, ( NM. IENO 1)/E)BM( N". IENO 

IF( FAC GE FACTOR *0 TO 340 
FACTOR-FAC 
E3M-BMY( NN. IElJO. S 
ROT-RY(NM. IEND. 5) 
KFAC-IEND 
KODE-8 
IDK-IND(NM, IENO) 
EK-EKEP(NII. IEND. 5 
00 TO 340 

290 FAC--BMTOT(NM. IENO)/[)BM(NM, IENDI 

IF(FAC GE FACTOR)GO TO 340 

FACfOR-FAC 
EM-0 0 
KFAC-IENO 
F, OT-REVPT(NM. IEND) 
KODE-10 
IDK-3-IND(NM. IEND) 
EKEP(NM. IENO. 6 )-(6MY(Ntl. IEN0, t4 ))/(RY(NM. IEND. 4)-REVPT(NM. IENO)) 

EK-EKEP(NM. IENO. G) 
GO TO 340 

RULE. . 10 - 

300 IF(REMINDOOSM(NM. IEND). LT 0 0)Go TO 310 

MIND(NM. IENO)-6 
FAC-t DMY(Ntl, IEND. 4 )-BMTOT( N. M. JENOWLIBM NM. IEND) 

IF(FAC GE FACTOR)GO TO 340 
FACTOR-FAC 
SM-BMY(NM. IEND, 4) 
ROT-RY(NM, IEND. 4) 
KFAC-IENO 
KODE-6 
I OK -I ND( Nti, I END 
EK-EKEP(NM, IFND. 4) 
GO TO 340 

310 KODYtNM. IEND)*Il 
EKFX NM. IEND)-EKEP( NM, IEND. I 

REVPT(NM, JEND)-RY(NM. IE:, %0.6)-BMY(NM. IEND. 6)/EKFK NM. IEND) 

FACTOR-0.0 
KFAC-0 
00 TO 340 

RULE 11 

320 IF(REMIND*DBM(NM, IEND) LT 0 O)CO TO 330 

FAC-(BMY(NM. IEND. 6)-BMTOT(NM. IEND))/DBM(NM, IEND) 

IF(FAC GE FACTOR)GO TO 340 
FACTOR-FAC 
BM-BMY(NM, IEND. 6) 
ROT-RY(NM. IEND. 6) 
KFAC- I END 
KODE-10 
IDK-IND(NM. IEND) 
EK-EKEP( NM, I END. 6 
GO TO 340 

330 FAC--BMTOT(NM. IF-ND)/[)(3M(NM. IEND) 

IF(FAC. GE FACTOR)GO TO 340 

FACTOR-FAC 
SM-0 
ROY-REVPT(NM. IEND) 
KFAC-IEND 
KODE-8 
IDK-3-IND(NM. IEND) 
EKEP( NM. I END. S)-S'tY(Nl, I END. 3)/(RYC NM. I END, 3)-REVPT(NM, I END)) 

EK-EKEP(NM. IEND. 5) 

340 CONTINUE 
3-41 CONTINUE 

*K* UPDATE MOtENTS 

DO 400 IEND-1.2 
IF(IENO ED KFAC)GO TO 390 
BMTOT(NM, TEND )-SMTOT( NM. TEND ). FACTOR*OBr. ( Nrl. TEND I 

PTOT( NM, TEND )-RTOT( NM, JENO 1. FACTOR *DBtl( NM, IENOVEKýK NM. IEND) 

IF(KODY(NM, IEND) ED O)GO TO 40' 

KC-D-KODY(NM. IEND) 
GO TO (350,350.40,1.350,400,350.400,350.400,3,50,400). KOO 

350 100-MINDC NM. TEND ) 
6MY(NM. IEND. 100 )-BMTOT(NM. TEND 

RY(NN, IEND, [E)DI-RTOT(NM,; ENO) 

0ROT-OBM( N11, TEND I. FACTOR, EKH1 N11. TEND 

IF( KOD OT 2 )GO TO 370 

IF( DROT. LT 0 IGO TO 360 
rOTPP( Ntl, TEND )-F; OTPPC NN. ! ENC). OROT 

GO TO 400 
360 ROTPN( NM, TEND )-rOTPN( NM. END). [, FZOT 

GO TO 400 
370 IF( DROT LT 0 )00 TO 380 

370 IF(DPOT LT. O. )GO TO 380 
ROTSP(NM, IEND)-ROTSP(NM, IEND)-DROT 
GO TO 400 

380 ROTSr4(NM, IEND)-ROTSN(NM. IEND). [)ROT 
GO TO 400 

3133 IBMTOT( NM. I END I- OM 
RTOT(NM. IENOI-POT 
KODY(NM, IENO)-KODE 
EKK NM, IEND )-EK 
IND( NM, IEND )- IDK 

400 CONTINUE 
C CHECK COWLETION OF CYCLE 

FACAC-FACAC-FACTOR 
IF(FACAC. GT. 0.999)GO TO 410 
CALL OBEAM(NM, AREA. OK2,0, MAXEL. MAXNP. NI, M) 
MýKNM, I)-SIKEDISI(3)-S29EDISI(6I 
D8M(NM, 2 )-53*EDISI( 3)-S4*EDISI(6) 
GO TO 30 

C SMEAR FORCES 
410 DSF-(-BMTOT(NM, I). BMTOTI-BMTOT(NM, 2)-BMTOT2)/BL 

SFTOT(NM, I )-SFTOT(NM, I ). DSF 
SFTOT(NM, 2)-SFTOT(NM, 2)-DSF 
KST-0 
IF(KODYX( NM. I ). NE. KOOYC Nfl. I ). OR. KOOYX(NM, 2 NE. KOOY(NM. 2 

lKST-I 
VRITE(6.147)NI, KST 

147 FORMAT( /5X. 6HSTEP- 12,2X. 5HKST- . 12.1) 
00 53 li-1,8 

53 FT(II)-0 0 
IF(KST. NE I)GO TO 5G 
KBAL-KBAL-I 
CALL OBEAM(NM. AREA. OK2.0, MAYEL. MA)(W NI, M) 
DO 58 11-1,8 
DO 58 JI-1.8 

58 OKO( II JI )-GKO( II JI )-QK2( 11 JI 
CALL MATMUL(8.8.8.1.8.1.8.8.1. OKO. EDIS, FT) 

56 VRITE( 3'M X FT( It 1.11 -1 . 8) 
C NE3 -1 TOTAL DISP - EDISI (6,1 

CALL MATMUL(B. 8.8.1.8,1,8,8.1. Al. DISP. EDISI) 
I F( 14M. EQ NEL-2 Ajo. I TV. EQ 01 VR I TE( 6.11 ) 
IF(NM EO. NEL2. AND. ITV. EQ 0) VRITE(6,101) 
IF(NM. EQ NEL2. AND. ITV. EO. O) VRITE(6, ltl) 

I (J. (AXIAL( J, I ). SFTOT(J. I ), BMTOT(J. I ), ROTPP( J. I ), ROTPM J, 1 
2 I-1.2), J-1, NEL2) 

11 FORMAT(IHI, ****OUTPUT TABLE 2.1 END BEAM FORCES****'//) 
10t FORMAT(//8H NODE, IIX. 5HAXIAL. 13X, SHSHEAR, 12X. U-910MENT, 

112X. 'X-DISP. ', 12X. 'Y-DISP. '. 12X. 'Y-ROTAT. */) 
III FORMAT(IH 16,6EJ8.6/7X, 6EI8.6) 

RETURN 
END 

FORM NODAL FORCES 

SUBROUTINE FORCE(R. MAXEL. MAXNEQ, MAXNP, XFOFZCE. YFORCE. 
*X. Y. NEO, DISPI. Nl. K6AL, IT. TIME) 

COMMON/DATA/ NNP. NEL, NMAT. NOPT. NBODY. KMAS. MODIF, NEI 
COMMON/NODE/IE(80.6) 
DI MENS I ON RC NEO ) 
DIMENSION X(MAXNP ). Y(MAYIP 
DIMENSION XFORCECMAXNP ). YFORCE(MAXNP 
DIMENSION EDISC S. I ). OKC 8.8). 0(8 ), OKV(r-4 ). DISPIC 200) 
IF(IT. EO. 0) VRITE(6,11) TIME 
INDEX-0 
00 5 K-1, MAXNP 
XFORCE(K )-0.0 
YFORCE(KI-0.0 

5 CONTINUE 
NELI-NEL2 
DO 80 M-I. NEL 
MTYP2-IE(M, S) 
DO 20 1-1.4 
NN- IE(M, I) 
EDIS(2*1-1 I )-R(2*NN-1 

20 EDIS(2*1.1 )-R(2*NN) 
READ( 7'MXOKV(K ). K-1 . 64 
IV-0 
DO 1110 11-1,8 
DO 1110 JI-1.8 
IV-IV-l 
QK( II JI )-OKV( IV) 

1110 CONTINUE 
IF(MTYP2. NE. 2)GO TO 63 
VRITE(6.61) 
VRITE( 6,62 X (OK( II JI ). JI -1 .8 

61 FORMAT( 8X. ' BEAM ST I F. FROM 7 CALLED IN RT I NE FORCE 

62 FORMAT(IX, 8EI4.6) 
63 CALL MATMUL(8.8.8.1.8.1.8.8,1. GK. EDIS. 0) 

IF(INDEX. EQ. I) VRITE(6.100) M 
IF(MTYP2. NE. 2)GO TO 1620 
NELI-NELI-I 
MM-NEL2-NELI 

IF BEAM ELEMENT CALL BEAFOR 

CALL BEXFOR( OK. IAA. MM. DISP I X. 1, NI MAXW. EDIS. MAYZL. KBAL. 1' 

1&20 DO 60 11-1.4 
NN-IE(M, II ) 
XFOPCE(NN)-XFORCE(NN)-Q(2*II-1) 
YFORCE( NN)-YFORCE(NN)-0(2*I I) 
IR INDEX ED, II VR ITE(6,1 10) NN, O(2*1 I-t ). (X 2*11 

60 CONTINUE 
80 CONTINUE 

103 FORMAT(/25X. 'ELEMENT Ni-r'BER-', 15/. SX. 'NOI)E'. 12X. 'X-STRESS' 

1.12X. 'Y-STRESS') 
110 FORMAT(110,2E20 8) 

IRIT NE 0) GO TO 141 
VRITE(6.120) 
OIS-0 0 
FOR-0 0 



FOR-0 0 

AMOMT-0 

DOsOJJ -I, NNP 

J-NNP- 1 -jj 
DIS-DIS-P(2kJ-1 

FOR-FOR. XFORCE(J) 

VRITE(6.130) J. X(J), Y(J ). R(2*J-1 ). R(2*J). XFORCE(J), 

*YFORCE(l) 

IF( X1 J) NE 00 )GO TO 90 
%, 'RITE(6,22) DIS, FOR 
AMOMT-AMOMT+FORKY(J) 
VRITE(6.33) 
IF(Y(J) ED 0 IVRITE(6,122)AMOMT 

122 FORMATC 5X. 'BASE MOMT -F 12 3/ 
IF(JJ EQ NNPY GO TO 90 
FOR-0 0 
DIS-0 0 

93 CONTINUE 
141 FOR-XFORCE(33)+XFORCE(53). XFORCE(73) 

AMOMT-XFORCE( 33 )*Y( 33). XFORCE( 53)*Y( 53)+XFORCE( 73)*Y(73) 
VRITF(13,1231 TIME. FOR, AMOMT 
VRITECG, 123) TIhE, FOR,. -rOtlT 

123 FORMAT(3FI5 4) 
11 FORMATt IHT ,I*. ** OUTPUT TABLE 22 FORCE ON EACH NODE AT TIME 

F6 4//) 
22 FOFZMAT(SX, '**** TOTAL VALUE AT THIS SECTION *IN-'. FI5.5. F40.5) 
33 

120 FORMAT(3X, 'NODE', 5X, 'X'. 5X. 'Y'. IOK. 'U-DISP*, SX. 'V-DISP'. 
ISX, 'X-FORCE'. 8X. 'Y-FORCE'/) 

130 FORMAT(18.2F6 3,4FI5 6) 
140 FC)RMATI//15X. '*-** ELEMENT STIFFNESS CN TAPE NO 7 VAS VRONG', SX, 

15xllxxx M. -. 15.5x. lxxx fl. M. "IS//) 
RETURN 
END 

COMPUTE STRESSES AND STRAINS 
CHECK YIELDING OR CRUSHING OF CONCRETE: BY CALL YIELDG 
CHECK CRACKING OF CONCRETE AND YIELDING OF STEEL BY CALL ELAST 
UPDATE STIFFNESS MATRIX CONSEQUENTLY 
FORM ELEMENT PSEUDO-LOADS AND STORE IN TAPE 3 

SUBROUTINE STRESS(R, X. Y, SIGIA, SIG2A. EPSA, SICA. t*IAXNE: Q. 

*MAXEL, MAXtF, NI, NEQ, KBAL. IFLAG. TIME, IT. DISPI) 
COMMON/DAT. -/ NNP. NEL, NKAT. NOPT. NBCCY. KMAS, MODIF. NEL2 
COMMN/GAUSS/CORD(5.5), VElG4T(5.5) 
C0MrK)N/NC, DE/lE(80.6) 
COMrOON/PROTY/E( 4 ), PR( 4 j, ROC 4 ). TFff 4 
COMMON/STEEL/PX(80 ). PY( 80) 
COtUIC)N/YLDI/EPSLIM, YIELLI. SIGMII 
COMMON/STATE/ NSIM 100 ). KOO( 103 ), IPELC 100 ). KBAR( 100). TIT. I( WO). 

I EPSMAX(100), EPSMIM 100) 
COMMON/BOUND/ NBOUN 
DIMENSION R(NEQ) 
DIMENSION XCMAXNP ), Y(MAXNP). ND(100), ALFAI(l00), 

I SIGI( 100 ). SI02( 100) 
DIMENSION SIGIA(MAXNP ), SIG2A(MAXNP ), EPSA(MAXNEQ). SIGA(MAXNEQ) 

DIMENSION CB( 3.12 ). TCB( 12.12 ). DI SP( 12.1 ). S 108( 3 

DIMENSION 13( 3.12 ). EPSB( 3). BTE 12.3). EPSAA( 3) 
DIMENSION XEC 4.2 ). CI32( 12.12 ). TCB2( 3.12 ), TCB3( 3.12 ). FTI( 12 1, 

XOK( 12.12 ), TCK( 12.12 ), OK3( 12.12 ). SIGAA(3). C( 3.3). CC( 3.3). FT( 12 

*TOK3( 12.12 ). CKV(64 ). CBVC 144 ) 
DIMENSION XFORCE(100). YFORCE(100). SHEAR(100) 
DIMENSION XDEF(100), YDEF(l03). SDEF(100) 
DIMENSION Vt 300 ). RR( 300). SSI( 100). SS2( 100). CKI(8.8 ), DISPI(8.1 

I SSX 100). LPC 6). DELTA( 3). DISPI(200 ). OKO(8.8) 

DO 6 12-I. NNP 
SSI( 12)-0 0 
SS2(12)-O 0 
SS3( 12)-0 0 
XFORCE( 12 -0 
YFORCE(12)-. 0 
SHEAR(12)-. 0 
ALFAI(12)-O 
NEX 12 1-0 
XDEF(12)- 0 
YDEF(12)-O 0 
ýDEF( 12). 0 
SIGI( 12)- 0 

6 SIG2(12)- 0 
DO 2 1-1,12 
DO 2 J-1,12 
CB2([. J)-O 0 

2 OK3( I, J)-0 0 
DO 5 1-1,3 
SIC& I ). 0 
EPSB( 1 )-0 0 
DO 5 J- 1 .3 
CC( I. J )-o 0 
C( IJ )-o 0 
00 5 N2-1.12 
Bf I. N2 )-0 0 
CB(I, N2)-O 0 
ST(N2.1)-O 0 
TC62(l. N2)-O 0 
TCE33( I. N2 )-0 0 

5 DISP(N2.1 ý-O. o 
DO 79 I-I. M. AXNEO 
vc I )-o 0 

79 RRf 1 )-0 0 
IAA-0 

10 00 60 NM -I . NEL 
MTYP2-IE(Pi-,, 6 ) 
IF( MTTP2 NE 1 100 TO 60 
C. 0 65 fj -I . '- 
MM- I Ec rl"l, " 
XEC N, 11X. I! - I 
XE(N. 2 I. r. 

65 CQNTljj`- 
DO 20 i-i 

DO 20 J-f 
.4 

NN- I E( NM. J ) 
DISP(2*J- I. I )-R(2-NN- I 

20 DISP(2*J, I I-R(2KNN ) 
I F( I NOX. EQ 2) VR I TE( 6.200 KM 
READ( 8'NM XCBV(K ). K-1 . 144 
IV-0 
00 1110 11-1.12 
00 1110 JI-1,12 
IV-IV. l 
TCB( II J1 )-CE3V( IV) 

1110 CONTINUE 
IF(NM EO. l. ANO. IFLAG. EO. 0)VRITE(6,17) 
lF(NM EQ I AND. IFLAG. EQ 0) VRITE(6.19X( TCB( IJ). J-1 t2 ), I- 

17 FORMAT(3X, 17HCB MATRIX FROM 8. /) 
19 FORMAT(6EI5.5) 

189-0 
DO 30 LI-1.4 
NN-IE(NM. Ll) 

C100 FORMAT(IOX. 15.3E20 8) 
200 FORMAT(/ISX. 'STRESSES IN THE ELEMENT NO. - 

112X. 'X-STRESS'. 12X. 'Y-STRESS', BX, 'SHEAR-STRESS') 
IF(Ll. EQ I. OR Ll. EQ. 2)ETA--l. 
IF(LI. EO. 3 OR Ll EQ 4)ETA-1 
IF(Ll. E0. l. OR. Ll. EQ 4)XI--1. 
IF(Ll. E0 2 OR. Ll EQ. 3)XI-1.0 
CALL BMAT(XE. XI. ETA, B. BT. DET) 
CALL MATMUL(3.12,12.1.3,1,3.12,1. B. DISP. EPSB) 
XI)EF(NN)-XDEF(NN)-EPSB( I 
YDEF( t, 4N YDEF( NN EP SB( 2 
SOEF( NN SDEF( NN EP SS( 3 
00 25 KK-1.3 
ll. KK. 3*(LI-I 
DO 25 LL-1,12 

25 CB(KK. LL)-TCB(11, LL) 
CALL MATMUL( 3.12.12,1.3.1,3.12.1 CB, DISP, SIC13 I 
XFORCE(NN)-XFORCE(NN). SIGB(l) 
YF0RCEfNN)-YFORCE(NN)+SIG8(2) 
SHEAR( NN) -SHEAR(NN )+S I C-6( 3) 
Nl)(NN)-ND(NN)+l 

30 CONTINUE 
60 CONTINUE 

DO a2 K -I, NNP 
XFORCE(K )-XFORCE(K )/ND(K 
YFORCE(K )-YFORCE(K )/Nl: XK 
SHEAR( K)- SHEARC K )/Nl: X K 
XDEF(K )-XDEF(K )/")(K 
YDEF( K )-YDEF( K )/ND( K 
SDEF(K )-SDEF(K )/ND(K 
SP-( XFORCE(K )+YFORCEC K W2. 
SM-( XFORCE(K )-YFORCE(K W2. 
SO-SM**2+SHEAR(K)**2 
DS-SORT(SO) 

, IGI(K )-SP+E)S 
5102(K )-SP-DS 
IF(5M. EO O. O)ALFAI(K)-3.141592/2. 
IF(SM. EO-O. )GO TO 92 
ALFAI(K). S*ATAM SHEARCK)/SM) 

S2 ALFAl(K)-ALFAl(K)*180. /3 1415926 
a2 CONTINUE 

IF(IT. NE. 0) GO TO 749 
VR I TE( 6,300 )NI 
VRITE(6,1010 X K, X(K ). Y( K ). XFORCE(K ). YFORGE(K ), SHEAR( K 

IS 10 1(KSI G2 (K), ALFA tKI, K-I. NNP I 
VRITE(6.400) 
VRITE(G. 301)NI 
VR I TE( 6.10 11XK, X( K YC K ), XDEF( K ), YDEF( K ), SDEF( K ). K-I. NW 

300 FORMAT(lHl. //'fv***STRESSES ON EACH NODE AT STE: P-'. TS. 
I 2X, 'N***'/2X. 7H NODE . 8X. lHX. 9X. lKY. rbX. 8HSIrMA(X), 
* SMSIGMA(Y). GX, 8HTAU(X. Y). 6X, 8HSIGMA(l). 6X. 8HSICMA(2 
* 5HANGLE) 

301 FORMAT(IHl, //'m*KKKSTRAINS ON EACH NODE AT STEP- '. 15, 
I 2X, I*x**1/2X, 7H NOOE 8X, lHX. 9X. lHY. 8X. 8MEPSIL(X), 
2 9X, &HEP SI L( Y ), 9X, SHEP S( X. Y 

400 
1010 FORMAT(18,2FI0.2.6EI4.6) 
1011 FORMAT(lB, 2FI0.2. EI4.5.2X. EI4.5.2X, EI4.51 

749 ICC-0 
IFLAG-IFLAG. 1 
IF(IFLAG. GT. 0) GO TO 3431 
DO 431 NN-l. NNP 
MTYP-1 
EPSAA( I )-EPSA( 3*NN-2 
EPSAA(2)-EPSA(3*NN-1) 
EPSAAC 3)-EPSA( 3*NN) 
SIGAA(l)-SIGA(3xNN-2) 
SIOAA(2)-SIGAt3*NN-1) 
SIGAA( 3)-SIGA( 3*NN) 
SIGIAA-SIGIAC NN) 
S102AA-SIG2A(NN) 
EP SBC I)- XDEFt NN ) 
EPSB(2 )-YDEF(NN) 
EP SO( 3)- SDEFt NM ) 
SICOC I )-XFORCEENN) 
5 108( 2)- YFORCE( NN 
SIGB(3)-SMEAR(NN) 
SIGIB-SIGI(NN) 
S102B-SIG2(NN) 
PIO-EPSe(l) 
P2B-EPSB(2 
PPS-EPSB( 3 
DO 292 13-1.3 

292 DELTA( 13)-0.0 
RR( 3*NN-2 )-SIGB( I 
RR( 3*NN- 1 )-51013(2 
PR(3*Nt4)-SIGB( 31 
IF( NN LE. WOUN ) 00 W 1292 
IF( IPEL(NN). EQ. 3) GO TO 1292 
IF(SIGB( I) GE 00 OR SIGB(2 ). GE 0 0) GO TO 1432 



IR SI GER I) GE 0 O. CR SI CD( 2) GE 00 )GO TO 1432 

EPS-SQRTCPIBKPIB. P289PýB-PIE)ýP2B*I 5*PPOmPPB) 

KR-KBAR( Nfl ) 

CALL YIELDO(EPSAA. EPý-ýB. SIGAA. SIC. 8, SIGIAA. SIGIB. Slr, 2AA, SIG28. 

NN, NI, MAXNEO. MAXNP. IPEL, C, EPS. MTYP, KR, DELTA) 

GO TO 1292 
1432 OELSII'O 0 

DELS12-0.0 
IF(SIGIB LT.. O. AND SIGIB GT_YIELD OR 

ISIG2B LT. 0 AND SIG2B. GT YIELDI GO TO 1292 

IF(SIGIB LT YIELD) DELSII-SIGIB-YIELD 

IF(SI02B LT. YIELD) DELS12-SIG2B-YIELD 

ALFA- ALFA. (NN)*3 1415926/180 

Cl-COSEALFA) 
St-SIN(ALFA) 
SN2-SIN(29ALFA) 
DELTA(l)-DELSti. CI*02-DELS12*Sl**2 
CELTA(2)-DELSII*Sl**2+L)FLS12*Cl**2 
DELTA(3)-DELSII*SN21 5-CELS12-SN2* 5 

1292 SSI ( NN )-DELTA( I 
SS2( NN )-DELTAf 2 
SS3(NN)-DELTA( 3) 

431 CONTINUE 
c VRITE(6,3330) 
C3333 FORMAT(/IOX. *Xv* ERROP PAST YIELDG **N'//) 

3431 DO 3-3 J-I. NNP 
39 ND(J)-O 

DO 31 NM-I. NEL 
Do 906 11-1.3 
Do 906 JI-1.3 

906 CC(II, Jl)-O 0 
00 907 11-1.12 
Do 907 JI-1.12 

907 OK3(11.31)'O 0 

MTYP2-IE( NM. 6 

MTYP-lE(NM. 6) 
IF(MTYP2. EQ 2)GO TO 31 

DO 6G N-1.4 
MM-IE(NM. N) 
DISPI(2*N-1.1 )-01,, PI(2*"M-1 

DISPI(2*N. 1 )-DISPT(2*MM) 
XE( N, I) ')(( MM ) 
XE(N. 2 )'Y(MM 1 

66 CONTINUE 
DO a2 1-1.4 
NN-[E(NM. I) 
EPSAA(l)-EPSA(3*NN-2) 
EPSAA(2)-EPSA(3KNN-1) 
EPSAAC 3)-EPSA( 3*NN) 
SIGAAM-SIGA(30NN-2) 
SIGAA(2)-SIGA(3*NN-1) 
SIGAA(3)-SIGA( 3*NN) 
SIGIAA-SIGIA(NN) 
S102AA-SIG2A(NN) 
EPSB( I )-XDEF(W4) 
EPSB(2 )-YDEF(Nt4) 
EPSIN 3)-SOEF(NN) 
SIM I )-XFORCE(NN) 
SI GB( 2)- YFORCE( NN 

SIGG( 3)-SHEAR(NN) 
SIGIB-SIGI(NN) 
Slr, 2B-SIG2(NN) 
ALFA-ALFAI(NN) 

CALL ELAST(EPSAA. EPSB. SIGAA. SIC43. SIGIAA, SlC2AA. SIGIB, 

SIG2B. ALFA. NI. NN, NM. mA)cNE(l, tiAXNP, C, KSAL, IFLAG. MTYP) 

DO 34 11-1.3 
Do 3t+ JI -1 .3 

34 CC( 11 it )-CC( II it ). Cc 11 Jl 

32 CONTINUE 
DO 36 11-1-3 
Do 36 il-1.3 

3G CC( 11 it )-. 25*CC( 11 -J I) 

IF( NM NF. I )GO TO 707 

VRITE(6.705) 
VR I TE(6,706 X (CC( I. i ). J, 1 . 3). 1*1 *3) 

705 FORMAT(/SX. ' CC MATRIX FROM ELAST'//) 

706 FORMAT(5X. 3FIS-5) 

707 NC-2 
DO 57 12-I. NC 
ETA-CORD(12, NC) 
VEIGI-VEIGHT(12. NC) 

Do 57 J2-l. NC 

XI-CORD(J2, NC) 
VE 102 - VE I GMT( J2. NC 

FACT-VEIGI*VEIG2 
CALL BMAT(xE, X1, ETA. B. BT, DET) 

CALL MATMUL(3.3.3,12.3.12.3.3.12. CC, B, TC63) 

CALL tiATMUL(12.3.3.12,12.12.12.3,12.13T. TCB3. TQK3) 

Do IS 11-1.12 
Do 15 JI-1.12 

DET 
15 OK 3( 11 .JI CK 3( 11 ,iII- 

TOK 3( 11 J14 FACT TH MTYP 

57 CONTINUE 
DO 33 1,1.4 
DO 746 J-1.12 
FT(J)-O 0 

746 FTMJ)*0 0 
NN- IE(NM. I 
DELTA( I )-SSI(NN) 
DELTA(2 )-SS2(NN) 
DELTA(3)-SS3(NN) 
IF(I EQ. 1 On I. EO 2)ETA--l 

IF( I EQ 3 CIR. I. Eo 4 )ETA- I 

IF(I EQ. I. CR I. EO 4)XI-ml. 

IF(I EQ. 2 OR I EO 3)XI-l 

CALL 6MAT(XE. XI. ETA. o. 8T, DET) 

CALL BMAT(XE. XI. ETA, B. ET. DET) 
CALL tiATMUL(3.3.3.12.3,12.3.3,12. CC. B. TCE2) 
DO 95 11 -13 

00 95 JI-1,12 
95 CG2fII. JI)-TCB2(Il, Jl) 

CALL MATMUL(12.3,3,1.12.1.12,3,1, BT. E)ELTA. FTI) 
DO 747 JI-1,8 

747 FT(Jl )-FT(Ji )-FTI(Ji 
33 CONTINUE 

IF( MODIF. EO 0) GO TO 877 
C INCOMP. MODES 

... .. DO 50 11-f. 4 
LI-12-11 
KI-1-1.1 
DO 50 Jf-l, LI 
PIV-QK3(JI, Kl )/OK3(KI. Kf 
DO 40J2-1.12 

40 Ca2(J2. Ji)-CI32(J2, Jl)-PIV*CS2(J2. Kf) 
DO 50 J2-1.1-1 

50 OK3(JI J2 )-GK3(Ji J2)-PIV*OK3(K I J2 
877 IV-0 

00 fill 11-1.12 
DO 1111 JI-1.12 
IV-IV-l 
CBV( IV)-CB2( 11 Jf 

1111 CONTINUE 
c IF(NN. NE. T)rO TO 602 
C %, 'RITE(6,1113) 

1113 FORMAT(IOX. ' CB FROM STRESS V. CC MATRIX*//) 
c VRITE(6,1114 X (C132( 12, J2 ), J2-1.12 ). 12-1.12 

1114 FORMAT(6EI5.6) 
602 VRITE(BINM X C8V(K ), K-I 144 
600 IV-0 

READ(71NM) (OKVC K ). K-1 . 64 
DO 1112 11-1,8 
DO 1112 JI-1.8 
IV-IV-l 
OKO( II Jl )-QKV( IV) 
GKO( II JI )-QK0( II Jl )-QK3( It JI 
QKV( IV)-GK3( 11 Jl 

1112 CONTINUE 
CALL MATMUL(S. 8.8.1,8,1.8,8.1. OKO, DISPI. FTI) 
00 1723 KL-1.8 

1723 FT(KL)-FT(KL )+FTI(KL 
c 
C PSEUDO LOADS 
C 

VRITE(3'NM X FT(K ), K-1 S) 
229 FORMAT CIOX. 'STIF. IST FIF T COMPUTED IN GUAD V. C MATRIX'/ 
228 FORMAT(IX. 4FIB. 7) 
259 VRITE(7'NN X OKV( K ). K-1 

31 CONTINUE 
IF(IT. EO. o) 

WRITE (6.990)NI. TIME 
DO 2482 K-I. NNP 
CAMA-TITA(K)*180 /3.1415926 
IF( IT. EO. O)VRITE(6,991 ) K. NSIM K ). KOCK K ). IPEL(K ), KEME K ), GA1- 
EPSA( 3*K-2)-XDE: F(K 
EP SA( 3*K -I)- YDEFC K 
EPSA(3*K )-SDEF(K ) 
SIGA(3*K-2 )-RRC 3*K-2 
SICA(3*K-1 )-RR(3*K-1 
SIGAt 3*K )-RR(3*K ) 
SP-(SIGA( 3*K-2 ). SICA( 3*K-1 W2. 
SM-(SIGA( 3*K-2 )-SIGA( 3*K-1 W2. 
SC1-SM*w2+SIGA(3*K)**2 
DS-SORT(SQ) 
SIGIA(K )-SP. DS 

2482 SIG2A(K)-SP-DS 
9W FORMAT (8x, 28HN* STATE OF ELE11TS AT STEP- 13,2X. GMTIME- F6 

16X. 5HPOINT, IOX, 4HNSlN. 5X. 4fiKOC)E. BX. 4tilPEL. BX. 4HKBAR. 10X. 'TITA 
991 FORMAT (7X. 13, IOX, 13, SX. 13, GX. l3,5X. 13. BX, FIO. 4) 

RETURN 
ENE) 

READ IWUT DATA FOR BEAM ELEMNTS 

SUBROUTINE INE: L6(X. Y. N, W) 
CCtVM/DATA/NNP. NEL. NMAT. NOPT. NBOOY. KMAS. tiODIF, NEL2 
COMMON/ INFEL/EKHIP(20). EKHJP(20). EKtK 20.2 ). KODYX(20.2), 

ND(4). KODY(20.2). BMY(20.2.6). RY(21D. 2,6), 
2 IND(20.2). EKEP(20.2.6). REYPT(20.2). BMTOT(20.2). 
3 SFTOT(20.2 ), FTOTC 20,2 ). RTOT(20.2 ). ROTPP(20,2 ), 
4 ROTPM 20.2 ), ROTSP(20,2 ). ROTSW 210.2). EKIC 20,2). 
5 RYI(20.2.2 ). RA( 20,2,2 ), FZB(20.2.2 ). IBMA(20.2.2). 
6 BMB(20.2.2), RREC(20.2.2). ALPHA(20.2). BETA(20.2), 
7 EEXP(20). AXIAL(20,2) 

COtTiON/ELEM/KSF(2). FTYP(60,14). BMMY(20.70,2), EEXPIIK 60). ASTM 6e 
COMMON/NODE/ I E( 80.6 3 
DIMENSION IMT(60), AST(2) 
DIMENSION X(100), Y(100) 
DATA AST( I ). AST(2 )12H 2H 
VRITE(6,20) 

20 FORMAT(////16H STIFFNESS TYPES// 
I l8ri BEAM PROPERTIES// 
2 2X. 5H TYPE. 7X. 28HREFERENCE SECTION PROPFRTIES, SX. 
3 2&'IFLEXURAL STIFFNESS FACTORS. 4X, ISHMARDENING RATIO/ 
* 2X, S" NO.. BX, 2HEI. IOX, 2HEA, IOX. 2tlGA. 8X, 2Hil. 8X. 2HJJ. 8X. 
* 2NIJ. gx. INI. 7X. IHJI) 

1010 FORMAT(//6110) 
IMTC N)-O 
ASTM N)-AST( I 
PEAO(5.30 )I (FTYP(N. J), J-1 . 8) 
READ(S. 32 )ITP. (FTYP(N. J ). J-9.14 ), EEXPM N) 

30 FORMAT(I5.3FI0 0.3FS. O, 2FIO 0) 
32 FORMAT(IS. 7F]O 0) 

IF(FTYP(N. 9) NE. O. )GOTO 40 
IMT(N)-t 



IMT( N )- I 
IME3T-N 
FTYPIIMST. 9)-FTYP(IMBT. I)*i E8 
FTYP(IMBT, 10)-FTYP(IMBT. I)*l EB 
AST" N )-AST(2 I 

40 %/R I TE( 6,50 11 J FTYPC N. J ). J- 1 .8 
50 FORMAT( 2X, I4.2X. 3EI2 4, F9 3.2FIO 3,2X. 2F8.5) 
60 CONTINUE 

VRITE(6,70) 
70 FORMAT(/19H HINGE PROPERTIES// 

1 7H TYPE, 7X, 15-! H 1 NOE STIFFNESS. 5X. 20HUNLOAOING PARAMETERS 
2 7X, ISHLOADING PAPAMETERS/4X. 3HNO.,, 3X. IHI. IIX, IHJ. IOX, 2HAT. 
3 8X, 2HAJ, lOX. 2H. Ol. EX. 2HSJ. 7X. IHN/) 

VRITE(6,90)ASTMfl), N. (FTYP(N, J), J-9,14), EEXPN(N) 
80 CONTINUE 
90 FOFZMAT(IX. A2.13, EI4.4. EI2 4. FIO 3, F10 3, FI2.3, FIO 3, F9 2) 

YIELDING MOMENTS 

140 VRITE(6,1503 
150 FORMAT(////19H YIELD MOrENT TYPES// 

1 5H TYPE. 5X. 8HPOSITIVE. 5X. 8HNEGATIVE/ 
2 5H NO . 5X, 8H MOrENT . 5X. SH MOMENT 

00 187 1-1.2 
RrAD( S. 160 )K. E3MM. Y( N. I, I). BMY( N, 1 .2 
VR I TEC 6,170)N. BMNY( N, 1,1 ). 6MMY( N. 1,2 

160 FORMAT([S, SX. 2FIO 0) 
170 FORMAT(14.2FI3 2) 

8MMY( N. 1.2 -ABS( BrMY( N, 1 .2 
187 CONTINUE 
180 CONTINUE 

KODYX(N, I)-O 
KODYX(N. 2 )-0 
KODY(N. I )-0 
KOOY(N, 2)-0 
EK" N, 1 )-0. 
EKVK N, 2 )-0. 
00 189 11-1,2 
00 189 JI-1.2 
EKEP( N. II JI )-o 0 

189 CONTINUE 
181 CONTINUE 

KST-0 

C MINGESTRAIN HARDENING RATIO 

410 IMBT-N 
FT7-FTYP( IMBT, 7 
FTB-FTYP( IMDT, 8) 
ll-IE(NM. l ) 
JI-IE(NM. 21 
FL-ABS( X(J I )-X( Ii)) 
EIL-FTYPCIMBT. I)/FL 
IF( IMT( IMBT). EQ 0 )GO TO 420 
PSH-FTYP(IMST. 7) 
SKH-FTYPIIMBT. 9) 
FT7-PSH/(SKHN( I -PSH)/( 3 *EIL)-l 
PSM-FTYP( IME3T. 8 
SKH-FTYPCIMBT, 10) 
FT8-PSH/( SKNk( I . -PSH)/C 3 *EIL W 

920 FORMAT(///4X. *:. NODES. 
420 EKH( IMBT, I )-FTYP( IMST, g 

EKEP( IMBT. IJ )-EKFK IMBT. I 
EKEP( IMBT. 1 .2 )-EKK IM13T, I )*FT7 
EKK IMOT. 2 )-FTYPC IMBT. 10 ) 
EKEP( IMST. 2,1 )-EKt-K IMBT, 2 
EKEP( IMST. 2.2)-EKH( IM13T. 2 )*FT8 
EXHIP( IMST )-EKFK IMBT. II 
EKHJP( IM13T )-EKFK IMBT, 2 
IND( IMST. 1 )-I 
IND( IMBT. 2 )-I 
ALPHA( IMUT, I )-FTYP( IMST, II 
ALPHA(IMOT. 2)-FTYP(IMBT. 12) 
BETA(IMST. I)-FTYP(IMST. 13) 
BETA(IMBT. 2)-FTYP(IMST. 14) 
EEXP( IMBT )-EEXPN( IMBT 

c 
C... YIELD MOMENT AND ROTATIONS 
c 

KSFI-l 
KSFJ-2 
13MYC IMOT. I. I )-BMMY( IMBT, KSFI ,I 
RY( IMUT. I. I )-BMY( IMBT, I, I )/EKFK IMBT. I 
13MY( IMBT, 1 .2 )-BMY( IMBT. KSFI 2 
RY( IMBT, 1 .2 )-BMY( IMBT, 12 )/EKM( IMBT, I) 
15MY( IMBT. 2.1 )-BMtlY( IMST, KSFJ. I 
RYC IME3T, 2,1 )-BMY( IMBT, 2.1 )/EKVK IMST, 2 
BMY( IM13T. 2.2 )-EMYE IMOT. KSFJ. 2 
RT( IMST. 2.2 )-BMY( IMUT. 2.2 )/EKFK IMBT, 2 
DMA( IMBT. I, I )-BMY( IMST. I, I) 
BMB(IMBT. 1.1)-BMY(IMBT, 1,1) 
RA(IMBT, 1.11-RY(IN8T. l. 1) 
RB( IMBT, I. I )-RY( IMOT. I. I) 
BHA( IM13T. 1 .2 )-BMY( IMBT. 1 .2 
BMB( IMOT. 1 .2 )-EMY( IMBT. 1 .2 
RA(IMBT. l, 2)-RY(IMBT. I, 2) 
PB( IM13T. 1 .2 )-RY( IME3T. 1 .2) 
BHA( IM13T, 2,1 )-E3MY( IM13T. 2.1 
SMEN IMBT. 2.1 )-BMY( IMOT. 2.1 
RA( IM13T, 2.1 )-RY( IMBT. 2.1 
PS( IME3T, 2, I )-RY( IMBT. 2.1 
SMAE ImBT. 2.2 )-BMY( Ir. BT. 2.2 
DMEX IM13T. 2.2 ', -E3tlY( IMf3T. 2,2 
RA( IM13T. 2.2 )-FZY( IME3T, 2.2 ) 
RB(IM8T, 2,2)-RY(IM8T, 2.2) 
RREC(IMBT. 1,1)-0 
RREC( I MOT. 1 .2 )-0 
RREC( IMST. 2.1 )-0 
PrEC(IMBT. 2.21-0 

RREC(IMBT. 2.2)-O 
EKI( IMBT. I)-EKEP( IMBT. 1.1) 
Erl( IMBT. 2)-EKEPE Ir. BT. 2.1 
RYI( IMOT, IA )-Ry( I r-8T. IA 
RYl( IMBT. 1,21-RY( IrBT, 1.2) 
Ryl( IME3T. 2.1 )-RY( IMBT. 2,1) 
RYl( IMST. 2.2 )-RY( I? IBT. 2.2 

182 CONTINUE 
RETURN 
END 

READ INPUT GENERAL DATA 

SUBROUTINE DATA I N(MAXEL, MAXNP, MAXMAT. ISTOP ) 
COMMON/DATA/NNP . NEL, NMA T. NOP T, NOODY, KMAS, MOD IF. NCL2 
COMMON/DISP/X(100). Y(100). ULX(100). VLY(tOO), 

*KODE( 100) 
COMMON/NODE/IE(80.6) 
COMMON/STEEL/PX(80). PY(60) 
COnION/BARR/EPSY. EPSUL, SIGY, ES. ESH 
COMMON/PROTY/E(4 ), PR(4 ), RO(4 ), TtX'+) 
COMMON/BOUND/ NBOUN 
ISTOP-0 
READ(S. 100) NNP. NEL. NEL2. NE3OUt4, NBODY. NOPT. NMAT 
IF(NNP. LE KAXNP ) GOTO 2eO 
ISTOP-ISTOP-1 

200 VR I TE( 6,2 01 ) NNP 
IF(NEL. LE. MAXEL) GOTO 202 
ISTOP-ISTOP+l 

202 VRITE(6,203) NEL 
IF(NMAT. LE. MAXMAT) GOTO 204 
ISTOP-ISTOP+l 

204 VRITE(6,205) NMAT 
VRITE(6.206) NSOOY 
WR I TE( 6,207 ) NOP T 

READ IN NODAL POINT GFOMETRY AND FORCES 

WR I TE( 6.208) 
VRITE(6,209) 
IF(NEL2. NE. 01 GO TO 2006 
READ 15,101 X KODE(J), X( J ). Y(J ), ULX(J ), VLY(J). J- I NNP 
READ (5.103X I E(J. 1 ). IE(J. 2 ), I E(J. 3), I EEJ. 4). IE(J. 5), 

#IE(J, G), J- I NEL) 
GO TO 2007 

2006 CALL GEN (NEL. NNP) 
2007 VRITE(6.102 X J, X(J ). Y( J ). ULX(J ). VLYC J ). J- I NNP I 

C 
C READ IN ELEMENT CONFIGURATION AND TYPE 
C 

VRITE(6,229) 
VR I TE( 6,2 10 ) 
VRITE(6.211) 
VR I TV 6,104 X J. I E( J, I ). I E( J. 2 1.1 E( J. 3 1,1 B J. 4 ). I EC J. 5 

*I E( J. 6). J- I NEL ) 
READ(5.1109) PXX. Pyy 

1109 FORMAT (2FI0.4) 
115 DO 105 N-I. NNP 

PY(N)-Pyy 
105 PXCN)-PXX 
106 CONTINUE 

READ IN MATERIAL PROPERTIES 

VRITE(6,214) 
VRITE(6.215) 
READ(5.109XE( I ). PR( I ), RO( I ), Tt-K I ), I-I NHAT) 
VR I TE(6, I I OX I E( I ), PRC I ). RO( I ), Tt-K I ), I-I NMATJ 
READ(5.50) EPSY. EPSUL. SIGY. ES. ESH 

50 FORMAT(3Fl2.5, FlS. 2. FI2. S) 
IF(NEL2. EQ. 0) GO TO 1620 
NELI-NEL2 
D01620 NM-I. NEL 
MTYP2-IE(NM, 6) 
IF(MTYP2. NE. 2)GO TO 1620 
NELI-NELI-I 
MM-NEL. 2-NELI 
CALL INELGCX. Y. MM, NM) 

1620 CONTINUE 
1000 FORMAT(15.3X. 15) 

100 FORMAT(715) 
101 FORMAT(ItO. 4FI0.5) 
103 FORMAT(615) 
113 FORMAT(415) 
107 FORMAT(15,3FI0.5) 
201 FORMAT( IN . 8X, 2Stt4LJMBF-R OF NOCAL POINTS 16/) 
203 FORMAVIH . 12X. 23HNUI'UER OF ELEMENTS . 16/) 
205 FORMAT( IH . 7X. 2GtiNUMeER OF ELEMENT TYPES - IS/ 
206 FORMAT( IN . 2X. 31HBODY FORCES( 1-Y-DIRXO-NONE) - . 16f) 
207 FORMAT( IN IX. 32H( IPLANE STRArNX2PLANE STRESS) - . 16f) 
208 FORMAT(//IN c. IX. 5Vf4ODAL. 8X. IHX. IOX. IHY. 12X, IHX. 12X. IHY) 
209 FORMAT(IH . ')X. 6tlPOINT. GX. SNCOORD. 6X. 5tlCOORD. 8X. SWORCE. BX. SMF20RCf 

102 FORMAT(IH IOX. l3.6X, F6.2,5X. FG. 2.4X. F8.2.5X. FB. 2) 
229 FORMAT(IN 

. 20HRECTANGULAR ELEMENTS/) 
210 FORMAT(////f" 

. 8X, 7HELEMENT. IlX. 5HýES) 
211 FORMAVIH tOX. 3HNO.. 5X. IHI, GX, IH2.6X. IH3.6X. tH4.5X. 4HTTPE. 

R4X. 4HTYP2///) 
104 FORMAT((IH l0X. 5(13.4X). I3.3X, I3)) 
114 FORMAT((IH l0X, 4(I3,4X). I3)) 
212 FORMAT(////IH gX. 511NODAL, 7X. tHX, 7X. IHY. 7X. IHY) 
213 FORMAVIM gX. SWOINT. 5X. 4MDlSP, 4X, 4HDISP. 4X. 4MROTA/) 
108 FORMAT(IM 

. 10X. 13,7X, F3 1,5X, F3 1.5)C. F3.1) 
214 FORMAT(////IH 8X, SHMATERIAL. 2X, 7HELASTIC. 4X, gMPOISSON'S) 
215 FORMAT(IM IOX, 311NO., SX, 7HMOOULUS, 6X, SHRATIO. 4X, 7HDENSITY. 3x. 

* 9HTHICKNESS//) 
109 FORMAT(4F]2.2) 
1 10 FORMAT( 10X. 12, SX. Fl2.2.4X, F6 2. GX. F6.2,7X, F6.2 ) 

RETURN 



PETURN 
END 

NONLINEAR DYNAMIC rESPONSE FOLLOVING NEVMARK-0 METHOD 

SUBROUTINE RESPON(AK, R, KMAS, MA)CDOF. MAXEL. MAXW. NEQ, IBAND, NEL. 

I MAXBV 
COMNON/DAMP/CI, C2. DT, W 
COMMON/NODE/IE(80.6) 
COMMON/STEEL/PX(80 ), PY( eO) 
COMMON/DISP/X(1001, Y(100), ULX(100). VLY(IeO). KOOE(ICO) 
COMMOWDYCOF/AMS(200 ). AA(200 ). 68(200 ). UI(200 ). VI(200 ). AI(200) 

COr. MON/BARR/EPSY. EPSL; L. SIGY. ES, ESH 
COMMON/YLDI/EPSLIM, YIELD, SIGMII 
COMMON/STATE/ NSIN( IOO), KOD( 100), IPEL( 100), KBARC 100), TITA( 100) 

EPSMAX(100). EPSMIN(100) 
DIMENSION R( NEQ I. AK( NEO, 113AND ) 
DIMENSION CH(1OO), CV(I0O). T(IOO) 
DIMENSION BN( '30 ). P( 3, ISO ), TNED( 5,2 
DIMENSION SIGIA(100), SI02A(100), SICA(200). EPSA(200) 
DIMENSION DISPI(200), CK(200.301 
N1.0 
NNP-NEO/2 
IFLAG-O 
REVIND I 
READ( I) ((AK( I. JI, J-I. IeANO). I-I, NEQ) 
REVIND 2 
DO 5 I-I. NEO 
READ (2 ) (SN( J ), J- I. IBANW 
AMS( I )-BN( I) 
OISPICI). O 0 

5 CONTINUE 
DO 35 I-I. MAXNP 
TITA(l)-O 0 
SIGIA[I)-O. 0 

35 S102A(l)-O 0 
DO 37 J-I. MAXDOF 
SICA(J)-O. O 

37 EPSACJ)-O-O 
READ(5.10) INT. NPRINT. NSTEP. MAXSTP. NTYP. NP 
READ(S. 50) Cl. C2. DELT. DT. TIME. GACC 
READ(5.52) EPSLIM. YIELD. SIGMII 
READ(5,10) NFIX. NVEC. MSPAC. MSTRS, NEED. IT 
IF(MSTRS. EO 0) COTO 15 
READ(5.60) (TNED( 1.1 ). TNED( 1.2 1.1-1 NEED) 

15 DO 116 N-I, NNP 
EPSMIK N)--EPSY 
EPSMAX(N)-F-PSY 
NSIM N I- I 
IPEL( N)- I 
KOD(N)-O 

116 KBAR(N)-l 
DO 20 1-1, NNP 
CM I ). O. o 
CV( I ). O. o 
T( 1 )-0 0 
IF(I. LE. NFIX) GOTO 20 
IF(NVEC. EQ. 11. OR. NVEC. Ea 10) CH(l)-1.0 
IF(NVEC. EQ. 11. OR. NVEC EO. 01) CV(I)-I. 0 

20 CONTINUE 
IF(NTYP) 22,24,22 

22 DO 23 1-2. NEQ, 2 
N-1/2 
CK N)--Cl-K N). GACCVAMS( 1-1 

23 CV(N)--CV(N)*GACC*AMS( I 
24 CONTINUE 

IF(NFIX. LT NNP GO TO 26 
READ(5.10) NVC 
DO25I-I, NVC 

25 READ( S. 90 )II. CK II). CV( III 
W FORMAT(I5.2FIO. 5) 
26 CONTINUE 

READ( 5,61 1PII. JI. I-1 .21. JI, NP 
61 FORMAT(2FI0.4) 

DO 62 1-I NP 
PCI, I. PII. I vs. 
PC 2,1 3-P(2.1 )* 1 . 05/. 3194 

62 P(3,1)-O 0 
IF(INT. EO 0) 00 TO 100 
READ( S. 30 1UII13.1 -I NEO 
READC 5.30 )VI(II. I-I NEO 
IF(INT EO. I) COTO 120 
READ( 5,30) ( At( I ). I'l NEO) 
GOTO 215 

100 DO 110 I-I. NEO 
UI( 1 )-0 0 

110 VIC I ). O. o 
120 CONTINUE 

DO 130 1-1, NEO 
At( 1 )-0.0 

130 R( I )-Ul( 1 ). c2*vl( 1 
DO 200 I-I. NEO 
K-NEO-1.1 
IF(K-IBAND1150,150.140 

140 r-IOAND 
150 00 160 J-I. K 

IJ-I+J-l 
160 At( I )-At( I )-AK( IJ). R( IJ) 

IF(I-IBAND)ISO, 170.170 
170 L-IBAND-1 

GO TO 190 
180 L-1-1 

IF(L)200.200,190 
190 11-1 

00 195 J-I. L 
11-11-1 

195 At( I )-At( I )+AK( II J+l )NR( II 
200 CONTINUE 

CALL LOAD FOR INCPEMENTAL FORCES 

CALL LOAIXAK, AMS. IR. P. AA. E3E3, T. CH, CV. NEG, IBAND. TIMF. NI. NrIX. IFLAC 
Ul ) 

DO 210 M'I, NEO 
IF(AMS(M) ED 0 0) GO TO 210 
AI(M)-(R(M)-AI(M))/AMS(M)-CINVI(M) 

210 CONTINUE 
VRITE(G. 300) 

215 CONTINUE 
BITA- 25WI. -DELT)**2) 
ALPHA- S. DELT 
DEAL-ALPHA/BITA 
AO-I /(BITA*DTODT) 
All-DEAL/DT 
A2-I. /(BITA*DT) 
A3-(". 5/BITA)-I 
A4-DEAL-I 
AS-DT*( 5*DEAL-1. ) 
A6-AO 
A7--A2 
A8--A3 
Ag-(I. -ALPHA)*DT 
AI0-ALPHA*OT 
CONI-i.. C2*Alf 
CON2-CINAII. AO 
B2-6. /DTv*2. -CI*3. /DT 
81-3xC2/DT+I, 
IF(KMAS. EQ. O) VRITE(G. 305) 
IF(KMAS. GT. 0) VRITE(6,310) 
IF(NTYP. EQ. O) WRITE(6.317) 
IF(NTYP. GT. 0) VRITE(6,318) 
VRITE(6.315) INT. WRINT, NSTEP. NTYP. NP 
VRITE(6.320) DT, ALPMA. BITA, DELT. CI, C2. GACC 
VRITE(6,335) (I, TNED(I. 1). TNED(I. 2). I-I, NEFD) 
VR I TE( G. 325 (I, TC I I. CH( I ), CY( I ). I-I, NlWP ) 
VR I TE( 6.330 1 J. P(I. JI. P 12. J I. P( 3. J I. J-I. NP 
VRITE(6.400) TIME 
VRITE(6,345) ( l. UI(2*1-1 ), UI(2*1 ), VI(2*1-1 I, VI(2*I ). AI(2*1-1 

*AI(201 ), I-I NNP I 
300 FORMATt IMI THE FORCED RESPONSE PROBLEM //tSX. 

I wil*aK*NEVMARK BETA METHOD ****** *'. //) 
305 FORMAT(//. 15X. 'affff*LUMPED KASS MATRIX VAS USED 
310 FORMAT(//, 15X. '**** CONSISTENT MASS KATRIX USED 
315 FORMAT(//. IoX, '** INT ** NPRINT ** NSTEP **NTYP NP at** 

* // 6x. sllo) 
317 FORMAT(//ISX. '#*** FORCING FUNCTION RESPONSE ANALYSIS 
318 FORMAT(//15X. 1 mKa* EARTHQUAKE RESPONSE HISTORY ANALYSIS 00W 
320 FORMAT(//IOX. ' TIME INTERVAL ', FIO. 6. //15X. 'ALPHA- '. FI0.5. 

*1 BITA - 1, FIO. 5, SX. 1 DELT -I CONSTI -*. FIO. S, 
V CONST2 - '. FIO. 5.5X. * GACC '. FIZ. S) 

325 FORMAT(//IOX. 1 *a** FORCE VECTOR ****'. f/(II8. FI0.4.2FIS. r)) 
330 FORMAT(//I0X. l*a** FORCE FU14CTlOt4_g***'. /ICIIO, FIO. 4.2FIS. 6)) 
335 FORMAT(//10X, '**** FORCES AND STRESSES CALCULATED AT FOLLOVING 

KE INTERVAL'//5X. *STEP'. 16X. *FROM'. 18X. 'TO'. //18.4X. 2F20.5) 
400 FORMAT(///15X. ' INITIAL CONDITION AT TIME - '. F8.5//) 
345 FORMAT(//(5X. IS, 6FI5. S)) 

KK-I 
IDD-0 
IEOUIL-20 
KEOUIL-0 
PEVIND I 
READ(I X(AK(I. J). J-I. IBAND). I-I. NEO) 
DO 101 M-I, NEO 
DO 102 L-I, IBAND 

102 CK(M. L)-AK(M. L)*C2 
101 CKMI )-Cr(M. 1 )-AMS(M)*Ct 

REVIND 10 
VRITE(10) ((CK(I. J). J-I. IBAND). I-I. NE0) 
DO 280 NI-I. NSTEP 
KBAL-0 
TIME-TIME-DT 
IF(NI. NE. I. AND. IDD. EO. O)GO TO 266 
REVIND I 
READ( tX(AK(I. J), J-I. I8AND). I-I. NEQ) 
DO 250 M-I, NEQ 
DO 245 L-I. IBAND 

245 AK(M, L)-AKIM. L)-AII*CK(M. L) 
250 AK(M, I )-AK(M. I )-AMS(M)*A0 

CALL BANSOL(I. AK. R. NEQ. IBAND. NEQ. IBAND) 
REVIND 4 
VRITEt4X(AK( I, J). J-I. I8AND). I-I, NEO) 

266 DO 265 I-I. NEO 
AA( I )--Vl( I )*A2-Al( I )*A3 

265 BB( I )--A4*Vl( I )-A5*Al( I) 
CALL LOAD(AK, AMS. R, P. AA. 138, T. r-H. CV, NEO. IEýAND. TIME, NI. NFIX. IFLA 

Ul) 
REVIND 4 
READ( 4 X(AK( I. J ). J-1 IBANDI. 1-1 NEO) 

SOLVE FOR DISPLACEMENT INCREMENT 

CALL BANSOL(2, AK. R. NEO. IE3AND, IIEQ, 113AND) 
00 270 1-1, NEO 

270 DISPI( I )-R( I) 
KEOLJIL-KEOIJIL. 1 
IT-IEQUIL-KEOLJIL 
IF( IT. EQ. O) KEOUIL-0 

ITERATE FOR CONVERGENCE If NEEDED 

IF(TIME. LT 0.10) GO TO 27 
CALL ITERAT(AO. All. A2. A3. A4, AS. AG, A7. A8. Ag, AIO. Cl. C2. DISPI. 

IDAND, KEQ. AK. R, AMS. AI. VI, UI. NI. AA) 
27 00 271 I-I. NEG 

RC I )-A7*Vf( I ). A8*Al( I ). A6*DISPI( IJ 
Vl( I )-Vl( I )-AgNAI( I ). AIO*R( I 
Al( I )-R( I) 



Al( I )-R( II 
Ul( I )-DISPI( I )-Ui( I 

271 R( I )-Ul( II 
CALL NEVDAV(UI, VI, AI, NI, TIME) 

278 CALL FORCE(R, MAXEL. MAXDCF. MAXNP. ULX. VLY. X, Y. NEQ, DISPI. NI. KBAL. IT. 

TIME) 
CALL STRESS(P. X. Y. SlrlA. Sir2A, EPSA. SIGA. MAXDOF. MAXEL. 

I tlAXNP, NI. NEO, KBAL. IFLAG, TIME, IT. DISPI) 

279 CONTINUE 
VRITEEG. 1002) NI. KBAL 

1002 FOFZMATI/IOX. 'K* AT STEP KBAL 

IF(KBAL. EQ. O)(, O TO 260 
DO 299 J-I. NNP 
ULX( J )-0 0 

299 VLY(J)-O 0 
IDO-ID0+1 
CALL ASEMBL( I STOP. MAXEL. MAXNP, MAXDOF, MAXBV, NI 

280 CONTINUE 
10 FORMAT(615) 
30 FORMAT(5FI5.5) 
50 FORMAT(5F8 5, FIO 53 
52 FORMAT(3FI0.4) 
60 FORMAT(GFI0.4) 

RETURN 
END 
SUBROUTINE ITERAT(AO. All. A2. A3. A4. A5, A6. A7. A8. Ag. AIO, CI, C2.01--pl. 

- 

BAND, NEO. AK, FZ. AMS, AI, VI. UI, NI, Rl) 

DIMENSýON A (NEQ. IBAND), R(NEO) 
DIMENSION DISPI(200). AMS(200), AI(200), VI(200). UI(200) 

DIMENSION RI(200) 
ITE-0 
RTOL-0 0010 
ITEMAX-20 

500 DO 10 I-1, NEQ 
Rl( 1 )-0.0 

10 R( I )-Ul( I )-DISPI( I 
ITE-ITE-I 
DO 20 I-I, NEO 

20 R( I )-C2K(Al I*DISPI( I )-A4*Vl( I )-A5*Al( I ))+R( I 

REVIND I 
READ (I ) C(AK( I. J). J-I, IBAND). I-I, NEO) 

DO 700 1-1, NEO 
K-NEQ-I+l 
IF(K-IBAND)650,650,640 

640 K-IBAND 
650 DO 660 J-I, K 

IJ-I+J-I 
6GO Rl( I )-AK( IJ). R( IJ )+Rl( I 

IF([-IBAND)680.670.670 
670 L-IBAND-1 

GO TO 690 
6aO L-1-1 

IF(L)700.7eO. 69O 
690 11-1 

DO 695 J-I. L 
11-11-1 

695 Rl( I )-Rl( I )-AK( II. J-1 )*R( 11 
700 CONTINUE 

FACI-AO+AII*Cl 
FAC2--A2-A4*Cl 
FAC3--A3-A5*Cl 
DO 40 I-1, NEO 
R( I )-FACI*DISPI( I )-FAC2*Vl( I )+FAC3*Alt I 

R( I )--AMS( I )NR( II 
40 RC I )-Rf I )-Ri( I) 

c VRITE(6,900 XRC I 1,1-1 NEQ) 
C 900 FORMAT(3F24.8) 

REVIND 9 
READ (9) (Rl( I ), I-l NEO) 
DO 60 I-I. NEQ 

60 R( I )-R( I )+Rl( I 
61 REVIND 4 

READ (4 ) ((AK( I J), J-1 , IBAND), 1-1 NEO) 
CALL BANSOL (2. AK. R. N'EO. IBAND, NEQ, I13AND) 
DNORM-0 
DINORM-0 0 
DO 300 I-I. NEO 
Rl( I )-Ul( I )-DISPI( I )+R( I 
DNORM-DNORM+Rl(l)*Rl(l) 

300 DINORM-DINORl-R( I )-FZ( I 
TOL-DNORMKRTOL 
IF(DINCRM LT. TOL) GO TO 400 
DO 120 1-1, NEO 
DISP I( I )-DISP I( I )+R( I 

120 A( I )-Rl( I) 
IF(ITE LT ITEMAX) GO TO 500 
VRITE(6,2010241 ITE 
VRITE(6,2020) 

400 ICOUNT-2 
VRITE(6.2222) NI. ITE 

2222 FORMAT(/IOX. 'K* AT STEP - -. 13,3X. 'NBR OF ITERATIONS 1,121) 

RETURN 
2010 FORMAT(///32HEOUILIBRILM ITERATION IN STEP- . 15, / 

I a2HNUMBER OF ITERATIONS 
2020 FORMAT(//128HITERATION LIMIT REACHED STOP) 

END 

COMPUTE UPDATED DISPL . VEL. AND ACC. VECTORS 

SUBROUTINE NEVOAV(DIEP. VEL. ACC. NI, TIME) 

COMMON/DATA/NNP, NEL, N'IAT. NOPT, NBODY, KMAS, MODIF, NEL2 

DIMENSION VEL(200), ACC(200), DISP(200) 

VRITE(G. 70)NI. TlrE 
DO 103 11 -1 NNP 
VRITE(6.345)1. DISP(2*1-t ), DISP(241 

103 CONTINUE 
VRITE( 12,317 ) TIME. DIEP(65 ). DISP( 105 ). DISP( 155 

VRITE( 6,347 ) TIME. DlScf 65 ). 01SP( 105 ). DISP( 155 ) 

70 FORMAT(//l0X. 'o***3TEP KO- ', 15,5X. '***TIME- ', F? 2 8. // 

70 FGRMAT(I/IOX. '*K*wSTEP No- 
*211 . 'NODE'. 7X. 'XDISPI. 9". 'Y-DISP') 

345 FORMAT(2X. 15.2F 15 61 
347 FORMAT(F15 S. Iox. 3FI5.5) 

RETURN 
END 

FORM UPDATED ELASTICITY MATRIX C 

SUBROUTINE ELAST(EPSAA, EPSB, SIGA, SIGB. SIGIAA. SI02AA. SIGIB, 
F SIG26, AL A, Nl. tN. NM, MAXNEO. MAXW C. KBAL. IFLAG, MTYP) 

COMMON/PROTY/E(4 ). PR(4). RO(4 ), TH(4 
COMMON/YLDI/EPSLIM. YIELD. SIGMI I 
COMMON/STEEL/PX(S0). PT(E! 0) 
COMMON/STATE/ NSIM 100). KODCIOO). IPEL(IeO), KBAR(100), TITACIOO). 

I EPSMAX(ILIO), EPSMIN(100) 
DIMENSION EPSAA(3), EPSB(3), SICB(3). SIGA(3). C(3.3), CS(3.3). DELTAI 
PlA-EPSAA( I) 
P2A-EPSAA(2) 
PPA-EPSAA( 3) 
PIS-EPSBC I 
P2B-EPSB(2 
PPS-EPS8(3) 
ALFA-ALFAN3.1415926/180. 
131TAO-TITA(NN) 
DO 5 1-1.3 
DO 5 J-1.3 

5 C( IJ )-o 0 
IF(IPEL(NN). EQ. 3)GO TO 10 

92 SBI-SIGB( I 
SB2-SIGB( 2 
583-SIGB(3) 
SIA-SIGIAA 
SIB-SIGIB 
S, 2A-SIG2AA 
S2B-SIG2B 
ST-SIGMII 
IF(BITAO. EQ. O 0) GO TO 141 
PI-3.141592G 
Cl-COS(BITAO) 
SI-SIM BITAO) 
S52-SIM 2mBITAO) 
C2-COS(SITAO-PI/2. ) 
52-SIM BITAO-PI/2. ) 
EPE: RI-PIB*CI*Cl4P2B*SI*SI-PPB*CI*SI 
EPEP. 2-P28*C2*C2. PlB*S2*S2-PPSIC2NS2 
SPERII-SBI*SI*SI-SE32MCINCI-2. *SI33*CIKSI 
SPER12-SE31*C2#C2+SEi2*S2KS2-2. *SB3*S2KC2 
SPERI--PR(MTYP)*SPERII/E(MTYP) 
SPER2--PR(MTYP)NSPF-R22/ECMTYP) 

141 KD-KOD(NN) 
CALL DCRACK(C. KE). W. NM, NI. SIB. 62B, ALFA. EPERI. EPER2. SPERI. SPER2. 

I SIA. S2A. ST, tlTYP. KBAL. SPERII. SPER22. BITAO) 
TITA(NN)-SITAO 
KOD(NN)-KD 

10 CALL BAR(NSlN. Kl3AR, CS. P23, P2A. NN. NM. NI, EPSMAX. EPSMIN. IFLAG. MTYP. 
I KBAL) 
DO 35 1-1.3 
DO 35 J-1,3 

3s C( Ij )-C( I. J)+CS( I. J 
20 RETURN 

END 

MONITOR OPENING OR CLOSING OF CRACKS 

SUBROUTINE DCRACK(C. KD. NN. W, NI. SlB. S2B. ALFA. EPERI, EPER2. SPERI, 
I SPER2. S]A. 52A. ST. MTYP. KBAL. SPERit. SPER22. BITAO) 
DIMENSION C(3.3) 
KOI-KD 
IF(KD. NE O)GO, TO 5 
IF( SIB. GT ST )KD-I 
IF(S2B. GT. ST. AND KD EO. I)KD-3 
IF(S2B. GT ST AND. KD. EO. O)KD-2 
GO TO 340 

5 GO TO (110.120.130,140.150,160.170.180). KD 
110 IF(EPERI LT. SPERI)KD-4 

IF(S2B. GT. ST. AND KD. EO. 4) KO-5 
IF(S2B GT ST. AND. KD. EO. I) KD-3 
00 TO 3; +0 

120 IF(EPER2. LT. SPER2)KD-6 
IFCSIB GT ST. AND. KD. EO. 6) KD-7 
IF(SIB. GT. ST. AN[) KD EQ. 2) KD-3 
00 TO 3140 

130 IF(EPFRI. LT. SPERI) GO TO 131 
IF(EPER2. LT. SPER2) KD-7 
GO TO 340 

131 KD-S 
IF(EPER2. LT. SPER2) KD-8 
GO TO 340 

140 IF(SPF-RII. GT.. O AND. SPER12. GT. ST)KD-3 
IF(SPERIl GT. O. AND SPER12. LT. ST)KD-1 
IF(SPERII. GT. O. O)GO TO 340 
IF(SPERt2 GT. ST)KO-S 
GO TO 340 

150 IF(SPERII LT. O. 0 )GO TO 151 
KO-3 
IF(EPEP, 2. LT. SPER2) KD-7 
GO TO 340 

151 IFCEPER2. LT. SPER2) KO-8 
GO TO 340 

160 IF(SPER12. LT 0 O)GO TO 161 
KD-2 
IF(SPER11 GT. ST)KD-3 
GO TO 340 

161 IF(SPER11 OT STAD-7 
GO TO 340 

170 IF(SPER12 LT 0 0)GO TO 171 
KD-3 
IF(EPERI. LT. SPERI) KD-5 



IF( EPERI LT SPERI ) KO-5 
GO TO a4O 

171 IF(EPERI LT. SPERI) KO-8 
GO TO 340 

180 IF( SPER11 LT 00 )GO TO 181 
KO-7 
IF(SPER12 GT. 0) KD-3 
GO TO 340 

181 IF( SPER12 GT O)K[)-S 
3140 IF(KD. EQ 0) BITAO-0 0 

IF(KD. EO 0) GO TO 988 
IF(KDI NE 0) 00 TO 968 
SITAO-ALFA 

988 CALL CRAC(C. BITAO, KD, NN. NM, NI. MTYP, KBAL) 
IF(KOl NE KD) KBAL-KEAL-1 
RETURN 
END 

FOfZM C MATRIX OF CRACKED ELEMENTS 

SUBROUTINE CRAC(C. BITAO. KD, NN, M, NI. MTYP. KBAL) 
COMMON/STEEL/PX( 80 ), PY( ED ) 
COMMON/PROTY/E(4 ), PR( 4 ), RO( 4 ), Ttif 4) 
COMMON/BOUND/ NBOUN 
DIMENSION C(3,3). T(3.3), D(3.3). CT(3.3) 

C SHEAR FACTOR - NU 
IAA-0 
NU- 5 
00 10 1-1.3 
DO 10 J- 1 .3 
CT( IJ )-0 0 

10 C(I. J)-o 0 
PI-3 1415926 
Al -E( MTYP WI -PR(MTYP )KPR( MTYP 1) 
BI-AI*PR(MTYP) 
IF(KD. EO 0 OR NN LE. NBOUN)GO TO 116 
GO TO (120,130,140,110.130.110,120,110). KD 

110 C( II )-Al 
CC 1 .2 )-Bl 
C(2,1)-Bl 
C(2,2)-Al 
C( 3.3)-Al. ( I. -PP(MTYP 1)12. 
GO TO 100 

120 ANGLE-BITAO. PI/2 
C( I. I )-E( MTYP I 
C(3.3)-Al*(i -PR(MTYP))NNU/2. 
GO TO 50 

130 ANGLE-BITAO 
C(2.2 )-E(MTYP 
C( 3.3)-Al*( I -PR(MTYP ) '*NU/2. 
GO TO 50 

140 C( 3.3)-Al *( I -PR( MTYP ))*NU/2. 
ANGLE-BITAO 
IF(IAA GT O)ANGLE-BITAO-PI/2. 

50 ý5 'SIM ANGLE ) 
Cl-COS(ANGLE) 
T( II )-Cl *CI 
T( 1.2 )-SI *SI 
T(I. 3)-Cl*SI 
T(2.1)-SI*Sl 
T(2.2 )-CI*Ci 
T(2,3)--CINSI 
T(3.1)--2 *CI*Sl 
T(3.2)-2. *CI*51 
T(3.3)-CImCi-SI*Sl 
DO 60 IR-1,3 
DO 60 IC-1,3 
D( IR. IC)-o. o 
DO 70 IN-1,3 

70 D( IR, IC )-D( IR. IC ). T( IN. IR )*Cf IN, IC 
60 CONTINUE 

DO 90 IR-1.3 
DO 90 IC-1.3 
C(IR. IC)-O 0 
DO 80 IN-1.3 

80 C(IR, IC)-C(IR, IC)-D(IR. IN)*T(IN. IC) 
W CEIC, IR)-C(IR. IC) 

IF(KD. NE. 3) 00 TO 100 
IF(IAA-NE 0) 00 TO 96 
DO 95 1-1.3 
00 95 J-1.3 

95 CT( IJ )-C( IJ 
IAA-IAA+l 
GO TO 140 

96 DO 97 1-1,3 
DO 97 J-1.3 

97 C( IJ )-C( I. J )-CT( I J) 
100 RETURN 

END 

CHECK YIELDING OF CONCRETE (VON MISES FLOV) OR CRUSHING 

SUBROUTINE YIELDC, (EPSAA, EPSB. SIGAA. SIGB. SIGIA. SlGlB. SlG2A, 
*SI02B, NN. NI. MAXNEO. MAXW IPE: L. C. EPS. MTYP. KR. DELTS) 

COtlMOt4/YLOI/EPSLIM. YIELD. SIGMIT 
COMMOWSTEEL/ PX(80), PY(80) 
COMMON/E3A; ZR/EPSY. EPSUL. SIGY. ES. ESH 
COtlMOf4/PROTY/ E(4 ), PRC 4 ), RO(4 ). TK 4) 
DIMENSION EPSAA(3), EPS8( 3). SIGB( 3 ). SIGAA( 3), C( 3,3). DELTA(3) 
DIMENSION CELSICA 3), LIELEPS( 3), TAU( 3). DEPS(3), DELTM( 3). DELTS( 3) 
DIMENSION IPEL(MAXtP) 
IPELI - IPEL( NN) 
CI-ES. PX(NN) 
GO TO I 540,550.540,5iO. 540,560 ), KR 

540 EY-ES 
00 TO 570 

550 EY-ESH 
00 TO 570 

560 EY-0 0 

560 EY-0 0 
570 C2-EY. PY(NN) 

IREPS. LT EPSLIM) IPEL(NN)'3 
IF(IPEL(NN). EQ. 3) 00 TO 106 
YLD-YIELD 
All-E(MTYP)/(I. -PR(MTYP)4*2. )-CI 
A12-ECMTYP)/(I. -PP(MTYP)**2. )-C2 
I31-AI%PR(MTYP) 
B2-E(MTYP)/(2. x( I PR(MTYP))) 
DO 10 1-1,3 
TAU(I)-O. O 
DELSIG( I )-SIGB( I )-SICAA, I 

10 DELEr !(I )-EPSB( I )-EPSAA( I 
DELSIG( I )-At I *DELEPS( I )+Bl *DELEPS(2 
DELSIG(2)-BI*DELEPS(2)+AI2*DELEPS(2) 
DELSIG(3)-B2mDELEPS(3) 
00 20 1-1,3 

20 TAU( I )-SIGAA( I )-DELSIC( I 
SX-TAU( I 
SY-TAU(2 
SXY-TAU(3) 
F-SORT(SX*SX-SXKSY+SY*SY+3*SXY*SXY)-YLD 
IRF J30,30.4 0 

30 IPEL(NN)-l 
DO 50 1-1.3 

50 SICB( I )-TAU( I 
GO TO 500 

40 IF(IPEL(NN). EQ. 1)GO TO 45 
IPEL( NN 3-2 
RATIO-0 0 
00 42 1-1.3 

42 TAU( I )-SIGAA( I 
GO TO 150 

45 IPEL(NN)-2 
DO 300 11-1.3 

300 TAU(Il)-SICAACII) 
SX-TAU( I) 
SY-TAU(2) 
SXY-TAU(3) 
DX-DELSIG(l) 
DY-DELSIG(2) 
OXY-DELSIG( 3) 
FI-SX*SX+SYRSY-SX*SY. 3 *SXYKSXY-YLD*YLD 
F2-DX*DX. DY*DY-DX*DY+3. KDXYKDXY 
F3-DX*SX-DY*SY-3 NSXY*DXY 
F4-F34F3-F20FI 
IF (F4. LT. O. 0) F4-0.0 
RATIO-(-F3+SORT(F4))/F2 
VRITE(6,99)Fl, F2. F3, FZATIO 

99 FORMAT(IOX, 'Fl-'. F8.5. 'F2-'. F8.5. 'F3-'. F8.5. 'RATIO-', F8.5/) 
910 FORMAT(/4X. 'NODE- '. 13.3X. 'YIELDG FUNCTION Fl - '. F12.8//) 

DO SS 11-1.3 
55 TAU(tl)-SICAA(li)-RATIO*DELSIG(li) 

150 MM-20. *SORT(F)/(-YLD)+l 
IF(MM. GT. 20) MM-20 
XM-(I. -RATIO)/FLOAT(MM) 
DO 60 11-1.3 

60 DEPS( II )-XM*DELEPS( II 
DO 83 11-1.3 
DELTA(Il)-0.0 

83 DELTM M-0.0 
DO 80 Im. l. mm 
CALL DELPAL(TAU. DFPS. C. YLD. MTYP) 
C( II )-C( II )+CI 
C(2.2 )-C(2.2 )+C2 
DO 70 11-1.3 
DO 70 JI-1.3 
DELTM II )-C( II Jl MDEPS( II 

70 TAU( It )-TAU( 11 )4DELTtX 11 
SX-TAU(I) 
SY-TAU(2 ) 
SXY-TAU(3) 
FA-SX*SX-SXKSY+SY*SY-3. *SXYmSxy 
FB-YLD*YLD 
F-FA-FB 
IRF LE I. E-04)GO TO 80 
COEF-SORT(FB/FA) 
DO 112 11-1.3 
DELTA( II)- DELTA( II DELT11 II 

82 TAU(il)-TAU(11)*COEF 
80 CONTINUE 

DO 475 11-1.3 
475 DELTSC II )-DELTA( II 

DO 75 11-1,3 
75 SIM II )-TAU( II 

106 IF(IPEL(NN). NE. 3)GO TO 500 
IFCIPELI. EQ. 3)GO TO 500 
DO 575 11-1.3 

575 DELTS( II )-SIGB( It 
VRITE(6,699) NN. NI 

699 FORMAT(/5X, 6Ff4ODE- . 13.5X, 17tlCRUSHED AT 5TEP- . 13/) 
500 RETUPN 

END 

FORM C MATRIX OF TIELDED CONCRETE ELEMENT 

SUBROUTINE DELPAL(TAU. DEPS. C. YLD. MTYP) 
COMMON/PROTY/E( 4 ). PR( 4 ). RO( 4 ). TK 4) 
DIMENSION TAU( 3). C(3,3), DEPS(3) 
DI -PP(MTYP )/(PR(MTYP )-I 
SM-( TAU( I ). TAU(2 ))/3 
SX-TAUf I )-SM 
SY-TAU(2 )-SM 
SS -TAU( 3) 
H-2. *DI/3 
P -SS/( I. -PRC MTYP 
R-SX*SX+SY*SY-2 *PR(MTYP)*SYNSX 
O-R+2 X( I -PR( MTYP ) )mp 
C(l, t)-SYNSY+2. *P 



C(1.1)-SY*SY-2 NP 
C(I. 2)'-SX-GY-2 ýPR(MTYP)*P 
C( I. 3 )--( SX+PR( MTYP J*ST Y. SS/( I -PR( MTYP )) 
C( 2.1 )-C( 12) 
C(2.2)-SxKSx. 2. #P 
C( 2.3 )--( SY. PR( MTYP )A SX IKSS/( I -PR( MTYP )) 
C( 3.1 )-C( 1 3) 
C( 3.2 )-C(2,3) 
C( 3.3)-R/(2 *( I. -PR( MTYP ) )) 
DO 10 11-1.3 
DO 10 J1.1,3 

10 C(II. Jl)-(E(MTYP)/Q)KC(li, ji) 
RETURN 
END 

CHECK YIELDING OF STEEL REINFORCEMENT 

SUDROUTINE BAR(NSIN, KeAR, CS. P2B. P2A, NN, NM, NI. EPSMAX. EPSMIN. IFLAG. 
MTYP, KBAL) 

COMMON/P ROT Y/E(4 ), PR(4 ). RO(4 ), TH( 4 
COMMON/NODE/ IE(80.6) 
COMNON/STEEL/ PX( 80 1, PY( 80 
COMNON/BARR/EPSY. EPSL; L, SIGY. ES. ESH 
DIMENSION EPSMAX(100). EPSMIN(100), KBAR(100). NSIN(100). CS(3.3) 
EI-ES/E(MTYP) 
Cl -EC MTTP )*El XPX(NN ) 
DO 2 1-1.3 
00 2 J- 1 .3 

2 CS( IJ )-o 0 
CS( 1.1 )-Cl 
KR-KBAR(NN) 
KRI-KR 
IF(IFLAG GT. 1)GO TO 5 
IF(P2B LT 0 0) NSIN(NN)-2 

5 KKI-NSIN(NN) 
00 TO (110,120), KKI 

110 IF(P20 GE EPSUL) KR-6 
00 TO (10.20,30,40.50,340) KR 

10 IF(P28 LT EPSY) GO To 340 
KR-2 
EPSMIN(NN)-P28-2 *EPSY 
GO TO 340 

20 IF(P20. LT P2A) GO TO 21 
EPSMIM NN)-P2B-2. *EPSY 
GO TO 3040 

21 KR-3 
EPSMAX( NN )-P2B 
GO TO 3ý40 

30 IF(P2B. LT P2A) GO TO 31 
IF(P28 LT EPSMAX(NN))GO TO 340 
KR-2 
EPSMAX(NN)-P2B 
GO TO 340 

31 IF(PýR. GT. EPSMIM NN)) GO TO 340 
XR-4 
EPSMAX(NN)-P2B-2*EPSY 

40 IF(P2B CT P2A) 00 TO 41 
EPSMAX(NN)-P2B-2. *EPSY 
GO TO 340 

41 KR-S 
- EPSMIN(NN)-P2B 

GO TO 340 
50 IFCP28 LT P2A) 00 TO 51 

IF(P2B LT EPSMAX(NN))rO TO 340 
KR-2 
EPSMIN(NN)-P2B-2 *EPSY 
GO TO 340 

51 IF(P28 GT EPSMIM NN)) 00 TO 340 
KR-4 
EPSMAX(NN)-P20-2*EPSY 
GO TO 340 

120 IF(P2B LE (-EPSUL))KR-6 
GO TO (210,220.230.240.250,340) KR 

210 IF(P2B GT (-EPSY))GO TO 340 
KR-2 
EPSMAX(NN)-P2B+2 *EPSY 
GO TO 340 

220 IF(P23 GT P2A) 00 TO 221 

- EPSMAX(Nt4)-P2B-2 *EPSY 
GO TO 340 

221 KR-3 
EPSMIM NN)-P2B 
00 TO 340 

230 IF(P2B LT P2A) GO TO 231 
IF(P2B LT EPSMAX(NN))GO TO 340 
KR-4 
EPSMIN(NN)-P2B-2 -EPSY 
GO'TO 340 

231 IF(P28 GT EPSMIN(NN)) GO TO 340 
KR-2 
EPSMAX(NN)-P2[3-2*EPSY 

240 IF(P2B LT P2A) GO TO 241 
EPSMAX( NN)-P2B 
GO TO 340 

241 KR-5 
EPSMIM NN)-EFSMAX(NN)-2 #EP5Y 
GO TO 340 

250 IF(P2B GT P2A) GO TO 251 
IF(P2D GT EPSMIN( NN ))GO TO 340 
KR-2 
EPSMAX(NN)-P2B-2 -EPSY 
00 TO 340 

251 IF( P28 LE EPSMAXt NN GO TO 340 
KR-4 
EPSMAX(NN)-P2B 

340 KBARI NN )-KR 
00 TO ( 540,550,540,550,540,560 ), KR 

540 EY-ES 
GO TO 570 

00 TO 570 
550 EY-ESH 

GO TO 570 
560 EY-0.0 
570 IF(KR. NE. KRI) KBAL-KBAL-1 

C2-EY*PY(NM) 
CS(2.2 )-C2 
RETURN 
END 

INCREMENTAL LOAD VECTOR (- PSEUDO-LOADS IF NEED BE) 

SUBROUTINE LOAD(AK, AMS, R, P, AA, 03. T, CH, CV. NEO. IBANO. TIME. Nl NFIX, 
II FLAG. UI 
COMMON/DAMP/Cl. C2. DT, NP 
COMMON/DATA/NNP , NEL, NMAT. NAP T, NBODY. KMAS. MOD IF. NEL-2 
COMMON/NOOE/IE(60.6) 
DIMENSION AK(NEQ. IBAND). R(NEO) 
DIMENSION AMS(200), FT(8), LP(8) 
DIMENSION AA(200). eB(200), Cff 100), CV(l00), T(l00) 
DIMENSION P(3.150). UI(200) 
IF(NI. NE. 0) GO TO 121 
REVIND I 
READ( I) ((AK( I. J). J-I. I6AND). I-l NEO) 
GO TO 103 

121 REVIND 10 
READ( I OX(AK( I. J ), J- I ISAND). 1-1 NEO) 

103 N-1 
100 TAU-TIME-T(N) 

IF(TAU) 50.150.150 
150 K-1 

IF(NP LE. 1) COTO 155 
60 IF(TAU CE. P(I. K). AND TAU. LT. P(I. K-1)) COTO 200 

K-K. 1 
IF(K GT. NP ) COTO 270 
COTO 60 

200 D-P( I K. 1 )-P( tK 
DH-P(2. K+l )-P(2. K 
OV-P( 3, K+l 3-P(3. K 
TI -TAU-P( IK) 
FH-P(2. K )-TI *DM/0 
FV-P(3. K)+Tt*OY/D 
COTO 160 

155 CONTINUE 
FH-P(2.1 )*COS(2.013.1416*P( II )*TAU) 
FV-P(3.1 )*COS(2.0*3.141G*P( 1 .1 )*TAU ) 

160 IF(CtXN). EQ. 0.0. AND. CV(N). E0 0.0) COTO 50 
IF(CtKN)) 300.250,300 

250 R(2. N-I)-O. O 
350 R(2*N)-CV(N)*FV 

COTO 500 
300 R(2*N-1 )-CtXN)*FH 

IF(CV(N)) 350.400,360 
50 R(2*N-I)-O. O 

400 R(2*N)-O. O 
500 N-N. 1 

IF(NNP-N) 130,120,120 
120 IF(T(N)-T(N-1)) 100.140,100 
140 IF(TAU) 50.160.160 
130 IF(TIME) 230.270.230 
230 CONTINUE 
353 IF(Nl. EO. I. OR. IFLAG. EQ. o)G0 TO 530 

ZAA-0 
DO 340 N-I. NEL 
11TYP2-IE(N, 6) 
DO 338 1-1,8 

33B FT(l)-. 0 
LIM-8 
DO 339 1-2. LIM, 2 
IJ-112 
LP( 1-1 )-2*IECN. IJ)-t 

339 LP( I )-2*IE(N. IJ) 
341 READ(3'NXFT(K ). K-1.8) 

C IF(N. NE. l)G0 TO 3143 
c VAITE(6.1100) 
C 343 VRITE(6,1101 )N. (FT( 1), 1-1.8) 

1100 FORMAT(12X, 20WT ARRAY READ FROM 3//) 
1101 FORMAT(lX. I4.6X. 8(Fl0.5,3X)) 

DO 342 J-1, LIM 
I-LP(J) 
11-2*NFIX 
IF(I. LE. 11) FT(J)-o. 0 

342 R( I )-R( I )-FT(J) 
340 CONTINUE 
530 REVIND 9 

VRITE ( 9) (R( I ), 1-1 NEO) 
531 Do 330 M- I NEQ 
330 R(M)-R(M)-AMS(M)NAA(M) 

IBB-0 
1701 DO 700 I-I. NEQ 

K-NEO-1.1 
IF(K-113AND)650.650.640 

640 K-ISAND 
650 DO 660 J-1, K 

660 R( I ). R( I )-AK( 1, J)NBE9 ji) 
IF([-IBAND)680,670,670 

670 L-IDAND-I 
GO TO 690 

680 L-1-1 
IF(L)700,700.690 

690 11-1 
DO 695 J-1 L 
11-11-1 

695 RC I )-R( I )-AK( I 1, J. 1 )NBB( II 
700 CONTINUE 

IF (NI EQ o) Go rO 270 
IF (IBB. NE. 0) GO TO 270 



REVIND I 
READ( I) ((AK( I, J). J-I, IE3AND). I-l. NEQ) 
DO 1700 I-l. NEO 

1700 BEX I )-Ul( I 
I es. I B13.1 
GO TO 1701 

270 RETURN 
END 
SUBROUT I NE GEN( NEL , NNP 
COttM/DISP/X( 100). Y( 100). ULX( 100). VLY( 100), KODE( 100) 
COMMON/NODE/IE(SO. 6) 
REAEX 5,100 ) NSP 
DO 5 ISP-I. NSP 

5 REAMS. 101 ) I. X( I ). Y( I 
READ (5.102) MALE. JSCALE. NX. NY. DRX. CRY 
READ (5,103) DRSX. DRBY 
DO 10 K-I. ISCALE 
IAA-0 
LS-JSCALE-1 
DO 10 I-I. LS 
IAA-IAA. 1 
DR-DRY 
IF( IAA. EQ. 3) DR-DRSY 
Y(K-NY&I )-Y(K-NYAC 1-1 ))-DR 
IF(IAA. EO. 3)IAA-0 

10 CONTINUE 
DO 20 I-I. ISCALE 
KS-JSCALE-1 
DO 20 J-1, KS 
Xt I. NY*J)-Xt I -NY*( J- I)) 

20 CONTINUE 
JMAX-16 
JAA-0 
IAA-0 
DO '30 M-I. NEL 
JAA-JAA-1 
IAA-IAA-1 
IMAX-4 
IF(M. GT. 16) JMAX-19 
NNX-I 
IF(JMAX. EO. t9. AND. JAA. LF. 4) IMAX-IMAX-1 
IF( IAA. EO. IMAX. AWD. JAA. PZ. JMAX) NNX-2 
IFEJMAX. EQ. 19. AND. JAA. LE. 4) IttAX-IMAX-1 
IF(M. NE. I)GO TO SS 
IE(M. I )-I 
IE(M. 2)-IE(M. 1 )4NX 
IE(M, 3)-IE(M. 2 )-NY 
IEC M, 4)-IE(M. I ). NY 
00 TO 32 

35 DO 40 1-1.4 
40 IE1M, I)-IE(M-1. I)4NNX 
32 IE(tl. S)-l 

IE(ti. G)-l 
IF(JAA ED. JMAX) IE(M. 51-2 
IFCIAA. EQ. IMAX)IAA-1 
IF(JAA. EO JMA)0JAA-0 

30 CONTINUE 
DO 60 N-1, NNP 
ULX(N)-O. 
VLYM-0. 
KODE(N)-0 

60 IFCN. LE. ISCALE)KODE(N)-3 
100 FORMAT(IS) 
101 FORMAT(15.2FI0.3) 
102 FORMAT(415.2F5.2) 
103 FORMAT(2FI0.2) 

RETURN 
END 
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Table I Effect of unloading Stiffness Degradation Table 2 Effect of Reloading Stiffness Degradation 

Fý U, VI V. -- -- - V. U. 
*-0 

6.49 8.32 1 2.80 14.69 14.08 16.49 
(0i) 

*-0.1 6. S6 9.45 12.91 14.61 15.96 16.38 

- 
(1.08) 

. -0.2 6.62 S. So 12.96 14.61 13.96 16.34 
(2.06) 1 1 

0.3 6.66 8.51 12.86 14.56 13.98 16.34 
(2.62%) 

0.4 6.67 8.49 12.95 14.52 14.04 16.39 
(2.77%) (2.04%) (-39%) (-1.16%) (-0.281) (-0.69%) 

0. 3.79 4.68 7.09 7.97 7.33 8.48 
(0.0) 1 1 

0.1 3.90 4.76 7.10 7.94 7.39 8.52 
(2.903 

0.2 3.97 4.82 7.13 7.95 7.4S LS9 
(4.75) 

0.3 4.04 4.8S 7.16 7.96 7.49 9.64 
6.60) 

0.4 4.09 4.87 7.16 7.96 7. S3 8.70 
(7.67) (4.06) (. 99) (-. 13) (-2a73) (2.59) 

0. 2.62 3.03 4.49 4.95 4.32 4.95 
(0) 

0.1 2.70 3.09 CSO 4.9S 4.35 4.99 
(3.051 

0.2 2.76 3.14 4. SO 4.95 4.39 LOS 
(S. 34) 

I 

0.3 2.82 3.19 4. S2 4.96 4.43 S. 09 
(7.63) 

0.4 2.88 3.2z 4. S3 4.97 4.46 S. 13 

f1 1 
(9.921) (6.27%) (1.12%) (0.40%) (3.24) (3.64) 

0. 6 64 8.45 12.80 14.41 14.09 16.44 

0.1 6* 68 S. sa 12.78 14.41 14.07 16.42 
(0.60) 

0.2 6 73 8.71 12.77 14.41 14.06 16.40 

0.3 6.77 8.83 12.78 14.42 14.04 16.38 
(1.96) 

0.4 6.80 8.93 12.78 14.42 14.04 16.38 
(2.43) 

0. S 6.80 8.98 12.78 14.42 14.04 16.33 
(2.41%) (6.27%) (-0.16) (0.04) (0.35) (0.36) 

0. 4.12 4.86 7. IS 7.94 737 8.7s 
(0) 

1 1 1 

0.1 4 is 1 4.94 7.13 7.93 737 8.74 
(ýJ3) 

1 

0-2 4.16 S. 03 7.14 7.94 736 8.73 
(0.97) 

0.3 4.16 S. 01 7.14 7.94 736 8.73 
(0.97) 

0.4 4.17 5.03 7.14 7.94 736 8.73 
1.21%) 

1 1 

0. S 4.17 S. 03 7.14 7.94 736 8.73 
(1.21%) 

, 
(3. SO) (-0.14) (0.0) (-0.13) (-0.23) 

0. 2.92 3.24 4. S4 4.91 4.49 S. 17 
(0) 

0.1 2.93 3.2s 4. SS 4.98 4.49 S. 17 
(0.34) 

1 

0.2 -2.93 3.26 4.55 4.98 4.48 5.17 
(0.34) 

0.3 2.93 3.26 4. S4 4.97 4.48 5.17 

- 
(0.34) 

1 
0.4 3.27 434 4.97 4.43 S. 17 

(0.34) 
u 

03 3.27 4.54 1 4.97 4.48 5.17 
(0.34) (. 93%) (0.0) 

1 
(0.0) (-0.22 

Table 3 Effect of Strain Hardening 

Str. Hard. 
parawtor V 0) (, ) 1, ( ) N ) N ) (P) , . . 

. 01 6.44 8.18 14.40 16.7 16.17 18.95 
(0.0) 

. 02 6.42 8.19 13.92 16.11 ISM 18.26 
(-3.64) 

. 04 6.47 8.30 13.16 IS. 14 14. SS MOS 
(-10.03) 

. 06 6.49 8.34 12.47 13.27 13.62 ISM 
(-15.83) 

. 03 6.30 8.32 11.81 13.47 12.80 14.98 

. 10 6.48 8.27 11.26 12.78 12.06 14.09 
(-25.65) 

. IZ 6.44 8.19 10.75 12.13 11.3v- 13.28 
(-29.92) 

. 14 6.40 3.03 10.26 ILS2 io. Fg- 1256 
(-33.72) 

. 16 6.34 7.96 9-. 83 10.97 10.22 11.97 
(I. SS) (. 1.9s) (-31.74) (-34.31) (-36.80) (. 37.36) 

. 01 3.76 4. S9 7.73 8.80 S. 19 9.49 
1 (0.0) 

. 02 3.78 4.62 7. S7 8.58 7.96 9.17 
(-3.4) 

. 04 3.79 4.67 7.25 8.17 7. S3 8.72 
(-m) 

. 06 3.79 4.68 6.96 7.79 7.13 8.26 
-13.0) :2 

. 08 3.79 4.69 6.69 7.46 6.79 7.85 

zc . 10 3.76 4.66 6.43 7.16 6.45 7.46 
1 (-213) 

. 12 3.77 4.63 6.20 6.88 6.14 63 8 
(: 27. S) 

. 14 3.75 4. S8 6.00 6.63 5.85 6 78 
(: 28 , 6) 

. 16 3.73 4.53 S. 80 6.3$ S. 59 6 46 
(-. so) (-. 13) (-24.97) (-27. SO) (-31.7S) (: 31 . 93) 

. 01 Z. 63 3.03 4.7S 5.29 4.69 S. 42 
(0.0) 

. 02 2.63 3-03 4.65 S. 20 4.60 S. 30 
C-2.21) 

. 04 2.63 3.03 4.55 5.03 4.41 5.06 
(-6.64) 

. 06 2.62 3.02 4.41 4.86 4.23 4.84 
C-10.70) 

. 08 2.61 3.01 4.30 4.72 4.06 4 63 
(: 14 . ss) 

. 10 2. S9 2.98 4.17 4.56 3.90 4 44 I 
1 C: . 08) Is 

. 12 2. S$ 2.96 4.07 4.44 3.76 4*27 
. 21.22 

S6 2 93 3.96 4.31 3.62 4.11 

J 

1 
-24.1 7 

. 16 Z. 54 Z. 9Q 3.86 - 4.19 3.50 3.9S 
(-3.42) (-4-29) C-18.74) -20.79) 

1 
(-2S. 37) 2 -27.12 

Table 4 Influence of Damping on Ductility Demand 

20 STOREYS 

Floor Ductility Ductility Ductility 
Level S% D&W 10% ist 

20 22.68 IS. 33 11.35 

19 22.74 IS. 40 11.40 

is 22.77 IS. 46 11.37 

17 22.68 IS. 44 11.19 

16 22.52 IS. 36 10.94 

is 22.24 IS. 19 10.79 

14 21.71 14.88 10.59 

13 20.92 14.39 10.33 

12 19.85 13.74 7.99 10 STOMS 

11 IS. S6 13.12 9. S9 S% 10% 1 

10 17.43 12. S6 9.74 17.30 12.9S 11 

9 16. S3 12.26 10.07 17.23 12.94 13 

a 15.74 12.29 lO. S8 16.80 12.74 1) 

7 IS. 44 12.27 10.72 Is. 32 12.24 H 

6 14.70 11.97 10.42 14.29 1I. S7 1 

s 13. Sl 10.96 9.67 12.96 11.16 i 

4 11.32 9.53 8.46 12.39 10.43 1 

3 9.64 7.66 6.85 11.01 9.09 " 

2 6.99 SAS 4. $S 3.57 6.97 s 

1 3.76 2.91 2. SI 4.89 3.92 

Max. reduction 

I 

with respect 0.0 32% so% 0.0 zs% 
(to S%) 



Table 5 Effect of Initial Stiffness 

Floor 
Level 

S, 1.1%"&19 .3 
103 k1o. ft2 

RUN S2 

(0.9 El) 

RUN S3 

(0.6 El) 

RUN 
7-1. 

(0.4 El) 

20 22.69 18.8s 14.74 10.28 

19 22.74 19.90 14.77 10.30 

is 22.77 18.91 14.88 10.29 

17 22.68 18.83 14.69 10.23 

16 22.52 18.67 14.54 10.12 

15 22.24 18.40 14.31 9.93 

14 21.71 17.93 13.91 9.63 

13 20.92 17.24 13.35 9.21 

lz 19.8s 16.33 12.67 8.66 

11 18.56 15.23 11.7Z 8.02 

10 17.43 14.28 10.97 7. SO 

9 16. S3 13.48 10.30 6.99 

a 15.74 12.78 9.7s 6.63 

7 IS. 44 12. S3 9.55 6.49 

6 14.70 11.93 9.03 6.17 

s ISM 10.9s 8.33 S. 65 

4 11.82 9. S7 7.28 4.93 

3 9.64 7.81 S. 98 4.00 

2 6.99 S. 65 4.27 2.87 

1 3.76 3. OZ 2.26 1.50 

6. 

RG. 2 TAKEDA MODEL OF THE MOMENT-ROTATION 
RELATIONSHIP OF R/C BEAMS 
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ABSTRACT 

In recent years the philosophy behind the design of coupled shear walls 

in seismic zones has changed. Initially their inherent strength was 

used to resist lateral seismic loads. Over the last few years it is 

their ductility that has been used to absorb the energy input from an 

earthquake. This ductility has been introduced into the structure by 

allowing the connecting beam to deform plastically. The magnitude of 

these deformations is controlled by a concept, introduced by Paulay 

and others, called ductility demand (p). With reference to Fig. I 

the definitions of ductility demand is 

rotation at failure emax 
rotation at yield ay 

The limits of the ductility demand for doubly reinforced concrete 

connecting beams has been shown to be 

10 Equ. 1. 

The design procedure used has been to carry out a non linear analysis on 

a structure and to obtain ductility demand values at the connecting 

beams. Then by a process of trial, error and experience the yield 

moments at the connecting beams were modified and the process repeated. 

The values of the yield moments were modified until all the ductility 

demand values were within the limits specified by Equ. 1. 

In this paper the authors show a different approach to the analysis. 

Depending upon the code of practice used the minimum yield amount (M 
.) mJLn 



can be calculated for all connecting beams or zones of connecting beam 

Using these values the ductility demands (VO) can be calculated by 

carrying out a non linear analysis as before. If the moment of one 

zone is increased by (dM), in several increments, and the ductility 

demands (pR) is obtained for all zones, the -variations are as shown 

in Fig. 2 for a4 zone structure. For all four zones this shows that 

the variation of the ductility demand in a particular zone is mainly 

dependent upon the increment of the moment applied to that zone only. 

This variation can be shown graphically by producing a ductility decay 

curve. This is obtained by plotting the ratio ( dM 
against (I-R) 

.m min 110 

and is shown in Fig. 3. Thus for any coupled shear wall a ductility 

decay curve can be obtained for a specified earthquake input. 

This curve can now be used in a non linear analysis of a couple'a shear 

wall. The procedure is as follows 

(a) using the minimum yield moments of the connecting beams 

a non linear analysis can be carried out to obtain the 

initial ductility demands (po). 

(b) the required ductility demand is used as pR to calculate 

(HE 
, 0) 110 

dM (c) the ductility decay curve is then used to evaluate (ki. ) hence 
min 

my= (m 
min 

+ dM) 



-'3- 

(d) Using these modified yield moments a non linear analysis is 

carried out again and the ductility demands obtained. 

The models tested by the authors obtained values of ductility demands 

within 10% of the required values. 

The method can be extended so that one ductility-decay curve can be 

used for most coupled shear walls. 

Using one curve., steps a, b, c and d are carried out as above producing 

ductility demands (ug). If the values of (pg) are dissimilar to (pR) 

the following extra steps are carried out 

(e) the ductility-decay is redrawn or recalculated by using the 

ratios (Ug ) and ( dM 
40 m 

mn 

PR 
with this new curve the ratio is used to calculate po 

dM 

min 

Steps b, c and d are repeated to obtain new values of (pg). If the 

values of Pg are dissimilar to pR then step e and f are repeated. The 

whole process is repeated until the values of Pg are acceptably close 

to 11R. Again examples are shown. 
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