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ABSTRACT 

This study deals with some of the non-linear phenomena of the 

vortex-excited vibration of a cylinder in waves. Laboratory 

experiments have been performed to study comprehensively the dynamic 

transverse response of a vertical cylinder in regular waves. The test 

cylinder was pivoted at its base and supported by spring at the top. 

The movement of the test cylinder in the direction of the inline force 

was restricted in most of the experiments. 

The relationship between the vortex-excited vibration of the test 

cylinder and the following important parameters, have been observed; 

the lift coefficient, the ratio of wave frequency to natural frequency 

of test cylinder, the Keulegan-Carpenter number, the wave depth 

parameter, the damping factor, and the cylinder mass parameter. In 

some ways the characteristics of the vortex-excited vibration of the 

cylinder in waves are similar to those observed in steady flow. 

However, the following important differences have been obtained: 

(1) In the case of steady flow, perfect resonance appears in the 

range of lock-on, but in waves, it appears only near to Pw/Pnw - 

1/2,1/3,1/4 ... (multi appearance), elsewhere vortex-coupling 

may occur for right damping in which the oscillation frequency 

is not simply a multiple of the wave frequency. 
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(2) The existence of the amplification of the lift force acting on 

the vortex-excited cylinder in comparison with the stiffly 

mounted cylinder is a function of the frequency ratio of the 

wave frequency to natural frequency and Keulegan-Carpenter 

number. 

A wake oscillator model has been developed for the unsteady 

vortex-excited vibration of a vertical cylinder in waves. Although 

this cannot explain the general phenomena of the vortex-excited 

vibration in waves observed in the present work, it reproduces roughly 

the amplification of the lift force around perfect resonance. 
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CHAPTER 1 

1-1 Introduction 

The dynamic response of offshore structures to the wave forces acting 

on them is one of the most important factors in their design. There 

have been many instances reported where the failure of a structure is 

believed to have been caused by its response at frequencies of acting 

wave forces acting on it. The increasing demands of offshore 

development have led to the construction of platforms in deeper 

waters, such as part of the North Sea. In this case, much more 

attention has to be given to the dynamic response of the structure to 

wave forces, because its natural frequency decreases with increasing 

size and may approach those of the wave forces. 

Wave forces are usually resolved into two components, an inline force 

and a transverse force (a lift force). The inline force, acting along 

the direction of wave propagation, is usually expressed by using 
. 

Morison's equation, and acts predominantly at a frequency equal to the 

wave frequency. The lift force, acting normally to the direction of 

wave propagation, is caused by vortex shedding. The lift forces act 

predominantly at frequencies which are multiples of the wave frequency 

and mainly depend on the Keulegan-Carpenter number (KC). 

Some structural failures are considered to be caused by resonance of 

the natural frequency of the offshore structure with the frequency of 

the lift force, since offshore structures are designed so that their 

natural frequencies are higher than the frequency of the inline force. 
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Therefore, the structure's dynamic response to the lift forces must be 

considered most important, and this has received considerable 

attention in recent years. 

A great deal of research has been done to understand the process of 

vortex shedding oscillation in steady flow. In this case, if the 
' 

vortex shedding frequency approaches the natural frequency of a 

lightly damped cylinder, the vibration of the cylinder becomes larger 

and this large vibration can drive the eddies to be shed with a 

frequency ranging between the natural frequency of the cylinder and 

the Strouhal frequency. 

This phenomena is usually called "vortex-excited vibration", or 

"lock-on" between the frequency of vortex shedding and the frequency 

of the vibrating cylinder. Under "lock-on" conditions, large resonant 

vibrations usually occur, and the lift forces are amplified both by 

the increase of vortex strength and by the improved correlation in the 

phase of vortex shedding along the cylinder axis.. 

A similar phenomenon may occur, if an elastically mounted vertical 

cylinder is placed in waves. However, the incident flow acting on a 

vertical cylinder in waves is oscillatory, varies with depth, and 

possesses a vertical component, -because the water particle paths in 

waves are arbital and their displacements diminish with increasing 

depth. The vortices produced by an incident flow passing a cylinder, 

are subsequently swept back, passing the cylinder in the opposite 

direction; Therefore, the process of vortex shedding and the vortex 

excited vibration of the cylinder in waves may be different from the 

case of steady flow. 
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However, few people have studied the vortex excited vibrations of a 

cylinder in waves and in harmonic flow. This process is not 

understood as well as the case of steady current flow. A lot of 

experimental work remains to be done in this area. 

It is very difficult to solve the fluid dynamic problem of vortex 

excited vibration with an exact solution because of the complexity of 

the non-linear fluid and structure interaction. Therefore, several 

mathematical models have been proposed and developed to describe this 

interaction. ' 

One of the most interesting and useful of these models is "the wake 

oscillator model". This was first introduced by Hartlen and Currie 

(1970) and further developed to account for increased vortex strength. 

The idea of this model, which was based on the works of Birkhoff and 

Zarantonello (1957), and Bishop and Hassan (1964), is that the 

transverse vibration of the cylinder in, the lock-on condition might be 

modelled by using the equation of motion of a non-linear oscillator. 

In this model, the non-linear behaviour of the lift coefficient under 

lock-on conditions is assumed to satisfy a form of the Van der Pol 

equation, and is coupled to the equation of motion of the cylinder by 

means of a forcing term. Another model is the "correlation model" 

introduced by Blevins and Burton (1976). This model was created to 

account for the increased spanwise correlation of the wake under 

lock-on conditions. Its theoretical framework is based on a represen- 

tative spanwise correlation and cylinder amplitude determining the 

vortex forces. 
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These two models are only approximations of the fluid-structure 

interaction, and a large amount of experimental data is required to 

fix the model parameters. Nevertheless, it is important and useful 

for engineers that such models can explain the well-known lock-on 

effect of the cylinder in steady flow. 

The modelling of the vortex-excited vibration of a cylinder in 

harmonic flow or in waves is not so advanced as in the case of steady 

current flow, because these phenomena are still more complicated and 

are not understood as well as in the latter case. 

In addition, there are some ambiguities in the definition of the added 

mass and the damping coefficient which are used in the dynamic 

equations of motions in these models. The added mass is of importance 

when calculating the natural frequency of the cylinder. The damping 

factor is of crucial. importance when estimating the dynamic displace- 

ment of a cylinder. These values should be defined and measured in 

conditions where there is vortex-excited vibration. However, it is 

very difficult to define and measure them in these conditions. 

Therefore, the values presently used are those measured when a 

cylinder is set in air or in still water. More experimental and 

theoretical work should be undertaken to define properly the added 

mass and the damping factor in both conditions. 

1-2 Outline of Thesis 

The purpose of the present work is to study the vortex-excited 

vibration of a cylinder in waves. Laboratory experiments have been 

performed to study comprehensively the dynamic transverse response of 

a' vertical cylinder in regular waves. The test cylinder was pivoted 
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at its base and supported by springs at the top. The movement of the 

test cylinder in the direction of the inline force was restricted in 

most of the experiments. 

The relationships between the vortex-excited vibration of the test 

cylinder and the following quantities have been observed: the ratio of 

wave frequency to natural frequency, the Keulegan-Carpenter number, 

the wave depth parameter (wave number), damping coefficient, and a 

cylinder mass parameter (mass ratio). The damping coefficient was 

adjusted by using an electro-magnetic damper to increase the range of 

experimental conditions. The characteristics of the damping 

coefficient in still water were measured and for small amplitudes 

coupled with the theoretical results of Stokes (1901) and Wang (1968). 

The lift forces acting on a vortex-excited, vibrating cylinder were 

estimated from the transverse displacement of the cylinder measured at 

its top. The lift forces acting on a stiffly mounted cylinder were 

also estimated from the moments about its bottom measured in the same 

wave conditions, in order to find the amplification of lift forces 

acting on a vortex-excited, vibrating cylinder. 

Modelling work for the non-linear vortex-excited vibration of the test 

cylinder in waves was also carried out, by means of a development of 

the wake oscillator model. 
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CHAPTER 2 

LITERATURE REVIEW 

2-1 Introduction 

The aim of this chapter is to provide a description of previous 

research concerning the vortex-excited vibration of a cylinder in 

waves, as a background to the work to be described in later chapters. 

The subject of vortex-excited vibration in steady flow is introduced 

in the first section. The general characteristics of the lift forces 

acting on a stiffly mounted cylinder in steady flow will be outlined. 

Secondly, the characteristics of the vortex-excited vibration of the 

cylinder in steady flow will be described. Finally, modelling work 

will be described with emphasis on the wake oscillator model. The 

understanding of this work will be useful in the study of the 

vortex-excited vibration in waves. The origin of the vibration in 

both cases, steady flow and waves, is due to vortex-shedding from the 

surface of the cylinder. 

The second section is concerned with the characteristics of lift 

forces acting on a stiffly mounted cylinder in oscillating flow (two 

dimensional harmonic flow and waves). Secondly, previous work on the 

vortex-excited vibration in oscillating flow will be introduced. 

There will be many similarities between the characteristics of the 

vortex-excited vibrations of the cylinder in two dimensional harmonic 

Plow and in waves. 
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In the third section, the characteristics of the added mass and the 

damping are described. These two parameters take a very important 

role among the features of vortex-excited vibration. 

2-2 Vibration Induced by Steady Flow 

2-2-1 The lift force on a stiffly mounted cylinder in steady flow 

A great deal of research has been done to under'stand the phenomenon of 

vortex shedding from a stiffly mounted cylinder in steady flow. The 

relationship between the vortex shedding frequency, fv, and the 

velocity of the ambient flow, v, was first found by Strouhal (1878). 

This relationship is shown as follows 

rv =SD 

where S- the dimensionless Strouhal number 

D- the diameter of the cylinder. 

(2-1) 

The relationship between the Strouhal number, S and the Reynolds 

number (Re a vD/v, v- kinematic viscosity of the fluid) was revealed 

by Rayleigh (1896). The phenomenon of vortex shedding was also 

examined in a pioneering work by Karman (1912). The following 

behaviour has been confirmed by a number of researchers, (Morkovin 

(1964), Roshko (1954), Bishop and Hassan, (1964), after King et al. 

(1973), Leinhard (1966), after Blevins (1977) and Bearman (1969). 

(1) In the range of Subcritical Reynolds number (102 < Re < 105), 

the value of S is stable and is about 0.2 for smooth circular 

cylinders. 
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(2) In the range of Re between 105 and 106, the scatter in S is 

large and it has a maximum of about 0.4. 

(3) At high supercritical Re range (Re >2x 106), the scatter in S 

is small and it increases slightly with increasing Re. 

The effect of the aspect ratio L/D (L: length of a cylinder) and the 

effect of sizes of end plates on the vortex-shedding frequency were 

shown by Gouda (1975) (see King (1977)). 

The measurement of the lift force caused by the vortex shedding has 

been done by many researchers. However, a dominant feature of it is 

that it is much more sensitive to flow than the drag force. The 

relationship between the Reynolds number, Re, and the lift 

coefficient, CL, obtained by the several researchers has been 

summarised by Morkovin (1964) and Sarpkaya and Isaacson (1981). The 

fluctuation of the lift force is larger than that of the drag force, 

especially in the subcritical range. This shows the sensitivity of 

the lift force to the stream turbulence. The effect of the gaps has 

been pointed out experimentally by Humphreys (1960), see Sarpkaya and 

Isaacson (1981). The effect of small amplitude oscillations about 

0.05. D has been reported by Koopmann (1967), see Blevins (1977)'. The 

effect of the turbulence of the ambient flow has been reported by 

Surry (1969), see King et al. (1973). His results show that the lift 

force increases with increasing turbulent level. The effect of 

various disturbances is shown clearly in Fig. 3.4 of Sarpkaya and 

Isaacson (1981). 
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2-2-2 The vortex-excited vibration of cylinders in steady flow 

A great number of experiments have been done in order to study the 

phenomenon of vortex-excited vibration of cylinders in steady flow. 

Summaries have been made by Mair and Maull (1971), Parkinson (1974), 

Blevins (1977), King (1977) and Sarpkaya (1979). 

An important characteristic of this vortex-excited vibration is that 

of 'lock-on' or 'synchronization' between the vortex-shedding 

frequency and the vibration frequency of the cylinder. When 

vortex-excited vibration occurs; 

(1) the vortex strength is increased 

(2) the correlation in the phase of the vortex-shedding along the 

cylinder axis is increased 

(3) the cylinder oscillates at or near its natural frequency and 

the vortex-shedding is locked to this frequency, which may 

differ from the vortex-shedding frequency for stationary 

cylinders (Strouhal frequency). 

This lock-on effect was probably first recognised and documented by 

Meier-Windhorst (1939), (see King et al. (1973)) and Bishop and Hassan 

(1964). 

The characteristics of the vibration frequency, amplitude, phase 

angle, and fluctuating pressure on the surface of a circular cylinder 

at subcritical Reynolds numbers were measured in detail by Feng 

(1968), Ferguson and Parkinson (1967) and Bearman (1978) see (Griffin 

(1979)). 
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The relationship between the vortex-excited vibration and the reduced 

velocity, for several values of damping (sometimes expressed as a 

normalised (stability or reduced) damping parameter, 6r) has been 

measured by Feng (1968), Unemara (1971) (see King et al. (1973), and 

King (1977)). The range of reduced velocity in which the vortex- 

excited vibration occurs, becomes wider with decreasing dr. The value 

of the reduced velocity at which the peak amplitude occurs, increases 

with decreasing dr. The normalised damping dr and reduced velocity Vr 

are defined as follows 

2m. 2rt 
gr -p 

.y Vr fnD 

where m- the mass per unit length of cylinder 

C- the damping factor of the cylinder 

fn = the natural frequency of the cylinder 

p- the density of fluid. 

(2-2) 

From the stationary cylinder, vortices may be shed in cells. The 

length of each cell is related to the correlation length which is a 

characteristic length associated with the average size of the vortices 

being shed from the cylinder (see El Baroudi (1960)). Its values vary 

with Reynolds number, turbulence, aspect ratio (L/D), and surface 

roughness. Typical values are summarised as follows by King (1977). 
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Reynolds Number 

J40<Re<150 

Correlation Length 

15D-20D 

Source 

Gerlach and Dodge 

(1970) 

150<Re<10° 

1.1x10"<Re<4.5x10" 

105<Re 

Re - 2x105 

2D-3D 

3D-6D 

0.5D 

1.56D 

Gerlach and Dodge 

(1970) 

E1. Baroudi (1969) 

Gerlach and Dodge 

(1970) 

Humphreys (1960) 

When a cylinder is resonantly excited due to vortex-shedding, its 

vibration may be accompanied by increased correlation length of the 

vortices being shed along the cylinder. Therefore, the lift force 

acting on the vortex-excited cylinder may be increased. The visual 

observations of the spanwise organisation of the vortex wake have been 

made by Koopmann (1967). The increased correlation length has been 

measured by Toebes (1969) and Ramberg and Griffin (1976). 

The fluctuating lift forces on vibrating cylinders have been measured, 

among others, by Griffin and Koopmann (1977) using freely oscillating 

cylinders in air flow, and Mercier (1973) (see Griffin (1979)) and 

Sarpkaya (1978), using cylinders forced to oscillate in water. 

Bearman (1978) has measured the fluctuating pressures on a vibrating 

cylinder in water, and has found good agreement between measurements 

of the phase angle between the pressure and displacement on a cylinder 

forced to oscillate, and the comparable phase measurements on a freely 

oscillating cylinder at resonance (see Griffin (1979)). 



12 

2-2-3 Modelling of vortex-excited vibrations 

It is very difficult to solve the Navier-Stokes equations for flow 

about a vortex-excited vibrating cylinder, and no satisfactory 

solution to the non-linear fluid-structure interaction problem has yet 

been found. Therefore several mathematical models have been proposed 

to explain the experimental observations. A general review of the 

models in existence has been given by Parkinson (1974) and Sarpkaya 

and Isaacson (1981). 

The variation of the wake width as a consequence of the transverse 

vibration may be one of the most important features of the 

vortex-excited vibration related to Karman vortex-shedding (see Di 

Silvio (1969)). This phenomenon was taken account -of, in order to 

explain the lock-on phenomenon, in the models of Landweber (1942) (see 

Di Silvio (1969)), Di Silvio (1969) and Sawamoto et al. (1979). 

However, the phenomenon of the vortex-excited vibration is generally 

not well explained by their models. The assumptions used are not 

generally valid and, for the characteristics of vortex-shedding, 

should be considered in more detail. 

On the other hand, the idea that the nature of vortex-excited 

vibration might be modelled by a simple non-linear oscillator equation 

was suggested by Birkhoff and Zarantonello (1957) and reinforced by 

Bishop and Hassan (1964) through their observation of an oscillating 

cylinder in uniform flow. 
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This idea was pursued by Hartlen and Currie (1970). In their models, 

the vibration of the cylinder, which is mounted flexibly on springs 

with total stiffness K, the total linear damping coefficient C (see 

Fig. 2.1 after Hartlen and Currie (1970)), is expressed by the 

following equations. 

ºº º 
Xr + 2CXr + Xr - aLo2CLC (2-3) 

I, tyt9 
CLC - amo CLC + w(CLC)3 + mot CLC - bxr (2-4) 

WO 

where 

x 
xrffiD 

xr a dxr/dT 

xr = d2xr/dt2 

T" Writ 

C/(2. M. t,, ) 

a= pD2L/(87r2. S2. M) 

Wo ° fv/fn -S fv 
(2-5) 

CLC = the fluctuating lift coefficient 

Lift force acting on the cylinder 

(2. p. v2. DL) 
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K 
2 
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2K 
C FL =z PV2DLCLC. 

cl 
-2 

the life force acting 
on the cylinder 

Fig. 2.1 Model of Structure for Analysis (after Hartlen and Currie(1970)) 

Eq. (2-3) is the equation of dynamic equilibrium of the cylinder, 

Eq. (2-1) shows that the fluctuating lift coefficient, CLC, is made to 

satisfy is a Van der Pol equation. The dimensionless parameters a and 

Y are the Van der Pol coefficients and b is the interaction parameter. 

In Eq. (2-1), the first and fourth terms can express a generating 

harmonic oscillation of CLC in which the normalised frequency of CLC 

is wo. The third and fourth terms in Eq. (2-4) comprise the damping. 

A small value of CLC is amplified by the second term and when the 

amplitude of CLC arrives at a larger value, it is restricted by the 

third ; term. Therefore the amplitude of CLC is "self-limited". The 

fifth term, bxr, is the forcing term. This is introduced to couple 

the oscillation of CLC to the vibration of the cylinder. When the 

interaction parameter b is 0, the fluid and structure oscillations are 

decoupled. 
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Therefore, when the cylinder is mounted stiffly, CLC is determined by 

the solution of Eq. (2-4) with b-0. In this case, the amplitude of 

fluctuating lift coefficient is as follows 

CLC a 
4a)112 

3y (2-6) 

The lock-on phenomenon is qualitatively reproduced by the 

Hartlen-Currie model. In order to make this model more useful, the 

relationship between the constant values (a, Y, b), which probably 

vary in each experimental condition, and the physical constants of the 

flexibly supported cylinders has to be found from experimental 

measurements. However this relationship has not been obtained for the 

Hartlen-Currie model. 

In order to pursue the purpose described above, a modified Van der Pol 

equation was introduced as the governing equation for the fluctuating 

lift on the vortex-excited cylinder by Skop and Griffin (1973). They 

obtained good quantitative agreement with some of the experimental 

results of Koopmann (1967) and Parkinson et al. (1968). They also 

obtained a set of relations between the empirical parameter, used in 

their modified Van der Pol equation for the fluctuating lift, and the 

physical mass and damping parameters of the equation of the dynamic 

equilibrium of the cylinder. 

In these two wake oscillator models, no systematic attempt was made to 

base the model on known fluid dynamic properties. The model behaviour 

cannot generally be explained in terms of fluid phenomena. In order 

to -consider this point, Iwan and Blevins (1974) have proposed a 

non-linear oscillator formation in which a "hidden flow variable" was 
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introduced to describe the effect of the vortex-shedding; the force on 

the vortex-excited cylinder was evaluated from the momentum equation 

in the transverse direction. The resulting mathematical equation form 

of this model is non-linear and was very similar to that for Skop and 

Griffin model (see Iwan (1975)). 

It is implicitly assumed that the vortex-shedding is completely 

correlated along the length of the cylinder in the wake oscillator 

model described above. However, in a practical case as described in 

2-2-2, the variation of the correlation length with the amplitude of 

the vibration has a large effect on the lift force acting on the 

vortex-excited cylinder. 

In order to account for this, the correlation model has been 

introduced by Blevins and Burton (1976). The theoretical framework is 

based on a representative spanwise correlation and vortex force 

depending on the cylinder amplitude. The vibration is self-exciting 

and self-limiting. These phenomena show good agreement with 

independently obtained experimental evidence. 

2-3 Vibration Induced by Oscillating Flow 

2-3-1 The lift force on a stiffly mounted cylinder in oscillating 

flow 

The forces acting on a stiffly mounted cylinder in oscillating flow 

(harmonic oscillating flows or waves) are usually resolved into two 

components. One is called the inline force which acts in the 

direction of the oscillating flow and the other is called the 

transverse force (or lift force) which acts normal to the direction of 

the oscillating flow. The inline force is usually calculated by 

Morison's equation (Morison et al. (1950)) in which it is assumed to 

11 
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be the sum of an inertial force and a drag force. The predominant 

frequency of the inline force equals to the wave frequency. The lift 

force is caused by the vortex-shedding and its predominant frequency 

is a multiple of the wave frequency and mainly depends on the 

Keu1egan-Carpenter number (KC). Therefore, the structure's dynamic 

response to lift forces is probably more important than to inline 

force. The lift force is usually expressed in terms of a lift 

coefficient, CL. 

Many investigations have been done in order to understand the 

characteristics of the inline forces and the transverse forces. 

Summaries for these have been made by several researchers (for 

example, CIRIA Report UR 8 (1978), Sarpkaya and Isaacson (1981), 

Holmes (1981)). There have been few investigations in the field, or 

in the range of high Reynolds number, compared with the laboratory 

studies. 

Apart from inline forces on cylinders in oscillating flow, many 

studies of the lift forces have been done. Keulegan and Carpenter 

(1958) observed the vortex-shedding pattern from submerged horizontal 

cylinders placed in the node of a standing wave. They found a close 

relationship between the vortex-shedding frequency and a period 

parameter (called Keulegan-Carpenter number) defined as follows 

UT 
KC m 

D (2-7) 

in which Um - the maximum velocity in a cycle of oscillating flow 

T- the wave period 

D= the tube diameter 
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Bidde (1971) carried out measurements of both inline and lift forces 

on a vertical cylinder in waves. He found that the lift force was not 

negligible and that there was a close relationship, which was similar 

to that described above, between the characteristics of lift force Sand 

the flow pattern around the cylinder. 

Sarpkaya (1976) measured the lift force acting on smooth and rough 

cylinders for a wide range of Reynolds numbers, Keulegan-Carpenter 

numbers, and relative roughness. He obtained a clear relationship 

between the lift coefficient, CL, and KC as a function' of the 

dimensionless value ß defined as $- Re/KC. 

Isaacson and Maull (1976) have studied the total lift forces on a 

stiffly mounted vertical cylinder in waves. They obtained a 

relationship between CL and surface KC number as a function of the 

wave depth parameter, kd, defined as 

kd - 
2nd 
Lw 

where d- the mean water depth 

Lw - the wave length 

(2-8) 

Chakrabarti et al. (1976) have measured the lift forces acting on 

sectional parts of a stiffly mounted vertical cylinder in waves. They 

also obtained the relationship between CL and KC number. The 

influence of the sectional position was not clear in their results. 

The lift forces acting on an inclined cylinder have been measured by 

Shigemura (1980) and Cotter et al. (1984). 
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The dependence of the lift force on the KC number has been confirmed 

by these researchers described above and other researchers. However, 

the scatter of the lift coefficients is large. This may be due to the 

irregularity of the lift force with time acting on the cylinder in 

oscillating flow. The characteristics of this have been reported by 

Sawaragi and Nakamura (1975), Maull and Milliner (1978), Sawamoto and 

Kikuchi (1979), and Ikeda and Yamamoto (1981). 

2-3-2 Vortex excited vibration of cylinders in oscillating flow 

The characteristics of the dynamic response of flexible or flexibly 

mounted cylinders in oscillating flow are not-sufficiently understood. 

This is mainly due to the complexity of the phenomena, because the 

incident flow is oscillatory and in waves varies with depth and 

possesses a vertical velocity component. The number of investigations 

on the vortex-excited vibration of the cylinder in oscillating flow 

(both two dimensional flow and in waves) is small. 

Rajabi (1979) and Sarpkaya and Rajabi (1979) studied the 

vortex-excited vibration of the cylinder in two dimensional 

oscillating flow (harmonic flow) in a U-shaped water tunnel. Their 

results indicate the following interesting results: 

(1) A flexibly-mounted cylinder may undergo synchronized 

oscillations when the reduced velocity Vr, defined Vr = Um/fnD; 

Um - the maximum velocity in a cycle of oscillating flow, is in 

the range of 5 to 7.5. 
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(2) Perfect resonance, at which the dynamic response of the 

cylinder is maximum, occurs at Vr a 5.6. At perfect resonance, 

the ratio of lift force frequency to the natural frequency 

remains nearly equal to unity and the lift forces are amplified 

nearly two times compared to that of a stationary cylinder in 

the same flow. 

(3) The relative amplitude of oscillation is a unique function of 

Rp - mý/(pD2 CLO), m- the cylinder mass per unit length, CLO 

the representative value of the lift coefficient for a 

corresponding cylinder stiffly mounted in the same flow. 

It should be noted that their results are of limited value because 

their data were obtained in the range of high Keulegan-Carpenter 

number (about 30 < KC < 130) and relatively high damping (about 0.03 - 

0.06). 

Sawaragi et al. (1977) have investigated the inline and transverse 

dynamic response of a cantilevered circular cylinder in regular waves 

in the range of Reynolds number between 1500 to 6200, with 

Keulegan-Carpenter numbers between 2 and about 20. They have reported 

that the perfect resonance appears when fw - 1/2 fn and 1/3 fn, a 

multiple appearance of the resonant frequency, in the range of 

Keulegan-Carpenter number over 4. 

In an analytical model, they represented the time variation of the 

lift force by using the formulae which were proposed by Sawaragi et 

al. (1976) to express the time variation of the lift force for a 

stiffly mounted cylinder. The total lift force was then expressed as 
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the superposition of each of its harmonic frequency components. In 

their model, the effect of the fluid damping, in proportion to the 

moving velocity of the cylinder, was considered. 

Zedan et al. (1980) have investigated experimentally the dynamic 

response of a cantilevered cylinder in both the inline and transverse 

directions. The experiment were carried in regular waves in two 

cases, representing wave depth parameters of kd - 1.63 (intermediate 

water depth) and kd - 2.6 (deep water depth), in a Keulegan-Carpenter 

range of 10 to 14.5 and a Reynolds number range of 4x 10" to 7x 10". 

They obtained the following results: 

(1) The vortex shedding frequency is twice the wave frequency for 

most test cases. 

(2) Most pile response energy in the transverse direction occurs at 

the cylinder natural frequency fn, and twice the wave 

frequency 2fw. 

(3) When lock on appears, the response in both directions becomes 

mono-harmonic with a frequency of 2fw. 

(4) Vortex-excited vibration is shown to produce substantial 

dynamic amplification of deflection not only in the transverse 

direction but also in the inline direction. 
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(5) The transverse top deflection plotted against the reduced 

velocity, Vr, for kd - 2.6, shows two distinct peaks at Vr - 

5.75 and Vr - 7.3. In the case of kd - 1.63, a sharp peak 

appears at Vr - 5.5 and second less defined peak appears at Vr 

- 6.2. 

Zedan and Rajabi (1981) have evaluated the lift force acting on the 

vortex-excited cylinder by using the experimental data obtained by 

Zedan et al. (1980) described above. They obtained the effective lift 

coefficient as a function of time from transverse bottom and top 

acceleration measurements, and compared them with those evaluated in 

two dimensional harmonic flow obtained by Sarpkaya and Rajabi (1979). 

The following results were obtained: 

(1) The maximum response correlates reasonably well with the result 

of a flexibly mounted cylinder in two dimensional harmonic 

flow. 

(2) The correlation of the lift coefficient with Keulegan-Carpenter 

number alone is poor because it depends strongly on Vr. 

(3) At perfect resonance, the maximum effective lift coefficients 

are amplified between 1.6 and 1.93 times compared to those of a 

stiffly mounted cylinder in two dimensional harmonic flow at 

the same value of the Keulegan-Carpenter number. 

Isaacson and Maull (1981) have investigated the dynamic response of a 

vertical cylinder in regular waves. The cylinder was pin-jointed at 

its base and spring mounted above the water-surface to be left free to 

vibrate in any direction. The relationships between the dynamic 
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response of the cylinder and other important parameters, which were 

indicated by dimensional analysis, have been obtained. The important 

parameters of the problems consist of the ratio of cylinder natural 

frequency to wave frequency, fw/fn, the Keulegan-Carpenter number, KC, 

the wave depth parameter, kd, and a mass ratio. The experimental data 

have been obtained for the following ranges or approximate values of 

the main parameters. 

kd a 1,2,3,4 

fn/PW 1.0 - 4.0 

KCý5-20 

mass ratio = 3, u, 6,7,10.4,13.0 

The application of available data obtained from stiffly mounted 

cylinders to the prediction of vortex-excited vibration was 

considered in their study. 

Angrilli and Cossalter (1982) have investigated the vortex-excited 

vibration of a cantilevered pile, flexible only in the transverse 

direction, in regular waves. The main results obtained are as 

follows: 

(1) The range of substantial transverse oscillations of the 

cylinder was increased by the appearance of a lock-on effect in 

the range of fw between 0-9-fn and 1.1. fn. 

(2) Perfect resonance occurs at Vr = 17.5 for fw - fn and SKC - 

17.5, at Vr - 5.75 for fW = fn/2 and KC - 11.5, at Vr - 5.93 

for fW = fn/3 and KC = 17.8, and at Vr - 8.98 for fw - fn/4 and 

KC 35.92. 
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Those values of the reduced velocity Vr - 5.75 and 5.93 are very close 

to those obtained by Sarpkaya and Rajabi (1979) for two dimensional 

harmonic flows and Zedan et al. (1980) for waves. However, the 

appearance of perfect resonance at Vr - 8.98 and 35.92 should be 

considered more significantly. 

1 
2-4 The Added Mass and the Damping Factor 

2-1-1 The added mass 

When a structure is vibrating in still water or in the vortex-excited 

condition, a certain amount of water can be considered to become 

entrained and move with the vibration of the structure. 

(Milne-Thomson, 1968). This mass of water is called the added mass, 

Ma, and is given by 

Ma -. Ca. p. Vw (2-10) 

where Vw is the volume of water displaced by the structure, p is the 

density of water and Ca is the added mass coefficient. 

In inviscid flow, the value of the added mass is determined 

mathematically by potential flow theory and depends on the shape of 

the structure. The theoretical value of the added mass coefficient, 

Ca, for a circular cylinder in inviscid flow is 1.0 (Lamb, 1975). 

However, in real flow, the value of the added mass is influenced by 

the flow conditions around the structure, such as vortex-shedding and 

free surface effects. Therefore, it is difficult to estimate the 

added mass theoretically. 
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The added mass has a considerable influence on the natural frequency 

of the structure in a fluid. It must be taken account of properly in 

a study of the vortex-excited vibration of the structure. 

Sarpkaya (1976) obtained the experimental result that the added mass 

coefficient of a circular cylinder, vibrating in still fluid, was 

slightly less than unity. King (1971) reported that the added mass in 

still water and the added mass in the vortex-excited condition were 

nearly. equal. This result followed from the comparison of the natural 

frequency in still water and frequency of the inline vibrations 

excited by vortex shedding in steady flow. Sarpkaya (1978) measured 

the lift force acting on a rigid circular cylinder undergoing forced 

transverse oscillations in a uniform flow. From his results, he 

obtained a relationship between the added mass coefficient and the 

reduced velocity, Vr, that the added mass coefficient decreases 

rapidly with increasing Vr, becomes nearly equal to unity at perfect 

synchronization, and then becomes negative at Vr increases further. 

2-4-2 The damping 

Damping is defined as the energy dissipation due to the vibration of a 

structure. (Haberman, 1968). The dynamic response of the structure 

to the force acting on it is restricted by the damping. Therefore the 

damping must be considered significantly in the study of 

vortex-excited vibration of a structure in a fluid. When a structure 

is vibrating in a fluid, the damping may be composed of the structural 

material damping and the fluid damping. The structural material 

damping can be measured in the free vibration test of the structure in 

air. However, the definition and the measurement of the fluid damping 

are very difficult because the mechanism which generates it is very 

complex. The fluid damping may be considered to be composed of 
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viscous drag, which is produced by shearing between the free stream 

and the surface of the structure, and the pressure drag, which is 

produced by flow separating from the structure and forming a wake 

(Blevins, 1977). 

The fluid damping measured in the free vibration test of a structure 

in still water is often used in the design of the dynamic response of 

the structure in the vortex-excited condition. However, the 

relationship between the fluid damping in still water and the fluid 

damping in the vortex-excited condition of the structure is not clear. 

In order to overcome this ambiguity, Sarpkaya and Isaacson (1981) 

suggested that if we were able to express all the fluid forces 

resulting from the fluid-structure interaction in the forcing term of 

the structure, there would be no need for the fluid damping to be 

considered separately. 

Bramley (1969) tested a section of a rigid cylinder and concluded that 

the damping was composed of viscous at low amplitudes of the 

oscillation of the cylinder, and it became amplitude dependent at the 

large amplitudes (see King (1972)). 

King (1972) investigated the fluid damping of circular cylinders in 

various depths of still water. He obtained the result that the fluid 

damping coefficient is approximately constant and independent of 

amplitude effect for initial amplitudes of up to 0.5 diameters, and 

that the damping coefficient increases very rapidly for d/L Z 0.5. (d 

- water depth, L- length of the cylinder). 
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Verley (1978) measured the damping of oscillations in still water and 

various currents. His results show that for lower amplitude of 

oscillation the damping is a function of flow velocity, but for larger 

amplitude of oscillation it becomes independent of flow velocity. 

The fluid damping may be related to the drag force caused by the 

movement of the cylinder. The characteristics of the drag force in 

the range of small Keulegan-Carpenter number have been studied by 

several investigators (for example Bearman et al. (1984)). 

2-5 Conclusion 

The main conclusion, arising from this brief review of the literature 

concerning vortex-excited vibration of a cylinder in waves, is that 

there have been very few relevant investigations and that the 

understanding of it is very poor compared with that for the 

vortex-excited vibration of a cylinder in steady flow. The following 

points should be noted: 

(1) There is very little data on vortex-excited vibrations of a; 

cylinder in two dimensional harmonic flow in the range of low 

Keulegan-Carpenter number. 

(2) The lock-on phenomenon for the vortex-excited vibration of the 

cylinder in oscillating flow is not understood so well as in 

the case of steady flow. 

(3) The relationships between the dynamic response of the cylinder 

in waves and important parameters such as fw/fn, KC, kd, 

damping factor and a mass ratio are not understood well. In 

most studies on vortex-excited vibration of cylinders in waves, 
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the important parameters have been held constant or varied over 

restricted ranges in different combinations. Therefore, a 

study such as Isaacson and Maull (1981), in which the main 

parameters have covered wider ranges and have been changed in 

different combinations, is very important and valuable. 

(4) The influences of the damping and added mass on the 

vortex-excited vibration of cylinder both in steady flow and in 

waves have not been considered very fully. 

(5) There is no model able to explain or reproduce properly the 

vortex-excited vibration of a cylinder in oscillating flow. 

In view of the above, laboratory experiments have been performed, in 

the present work to study more closely the relationship between the 

dynamic response and the important parameter described above. The 

final purpose of the present study is to work towards establishing a 

model which can explain the phenomena of the vortex-excited vibration 

of a cylinder in oscillating flow. The application of the wake 

oscillator model developed for steady flow is also considered for 

oscillating flow. 
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CHAPTER 3 

LINEARISED MODEL OF THE VIBRATION OF THE TEST CYLINDER 

3-1 Introduction 

The vortex-excited vibration of the test cylinder which was used in 

the experimental work of the present study is described in detail in 

Chapter 4. Its response in waves is simulated by the linearised model 

described in this chapter. The purpose of this modelling work is to 

identify the important parameters of the vortex-excited vibration of 

the test cylinder in waves. The non-linear fluid structure 

interaction is not considered in this model. However, the simple 

solution of the linearised model is quite helpful in finding the 

important parameters which control the vortex-excited vibration of the 

test cylinder in waves. The relationship between the vortex-excited 

vibration and these parameters above was examined in the experimental 

work described in Chapter 4. The solution of the linearised model 

will be used in the analysis of these experimental data. 

The free vibration of the test cylinder in still water is also 

simulated by the linearised model. The purpose of this work is to 

understand the change of the damping factor with amplitude for its 

test cylinder vibrating in still water. In this model, the drag 

force, which is proportional to the square of the velocity of the 

cylinder, is considered as the fluid damping. The solution is used to 

analyse the experimental data which was obtained in the experiments 

described in Chapter 4. 
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3-2 Linearised Model for the Transverse Vibration of the Cylinder 

in Waves 

3-2-1 The equation of motion 

The definition sketch of the test cylinder is shown in Fig. 3-1. The, 

explanation of symbols used is also described in Fig. 3-1. The 

cylinder is pivoted on the bottom of the flume and supported laterally 

by springs at the top. The damping of the cylinder is adjusted by 

using an electro-magnetic eddy-current damper. 

The dynamic response of the test cylinder to the lift forces may be 

described by using the equation of motion as follows. 

Mmt"Yh + Cmt"Yh + Kmt"Yh - Fmj (3-1) 

where Yh - the transverse displacement of the cylinder at the still 

water level (d = 80cm) 

jth - dyh/dt 

Yh - d2yh/dt2 

Mmt - total mass matrix 

Cmt - total damping matrix 

Kmt - stiffness matrix 

Fmk, - total lift force moment matrix (3-2) 

The equation above shows the equivalence of the following moments 

taken about the pivot of the base. 

(1) The value of Nmt"Yh is the total moment of the inertia force of 

the cylinder including the added mass effect and is given as Eq. (3-3). 
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x3 

Zrk 
7 

Mmt"Yh °1 
OI 

m. (R). z. dz +0Im(). z. dz. + 
rI 

mc. ( ). z. dz 

L1 
z 

13 
z 

16 
+I mf. (f). z. dz + 

R4 
I mh. (T). z. dz + 

ks 
J m3. (z). z. dz 

2z ß 

d d+n 
+ 

of 
mi. (1). z. dz + 

of 
ma. ( ). z. dz]Yh (3-3) 

In which the added mass of water per unit length is given as Eq. (3-11). 

ma 
4 

Cg. p. n. D2. dz 

where D- the diameter of the test cylinder 

p- the fluid density 

Ca - added mass coefficient 

(3-4) 

The added-mass coefficient, Ca, is an unknown value as described in 

Chapter 2. Therefore, in the analysis of the experimental data 

described in Chapter u, the mass matrix of the test cylinder is 

estimated from the stiffness matrix defined Eq. (3-7), and the natural 

frequency of the test cylinder in still water. 

The water, surface displacement of wave is shown as Eq. (3-5) by linear 

wave theory. 

n 
H. 

sin( -) (3-5) 

(2) Cmt"yh is the total moment produced by the structural damping, 

the electro-magnetic damping and unknown fluid damping, and it is 

given by Eq. (3-6). 
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z ße2' d+n 
Cmt"Yh Cs +1 Ce +I Cw. (Z). z. dz}Yh (3-6) 

0 

where Cs s the damping coefficient of the springs 

Ce - the damping-coefficient of electro-magnetic damper 

Cw - the damping coefficient of the fluid 

The fluid damping is unknown. There are two ways of treating it in 

the analysis of the experimental data. 

(a) As suggested by Sarpkaya and Isaacson (1981), the fluid 

damping may be considered as a part of loading term. Then 

CW-0 

or (b) Fluid damping is considered to be equivalent to the fluid 

damping of the test cylinder in still water. 

(3) Kmt"Yh is the moment produced by the stiffness of the structure 

and it is given by 

Kmt"Yh - [Ks r2 

Z3 r Z7 

- {Of m. g. ( ). dz + 
oI 

mQ. g. ( ). dz + 
rI 

mc. g. ( ). dz 

il 13 16 

+I Mf. g. (f). dz +I mh. g-(-). dz +f ms. g. i1). dz 
1z La 2. s 

d 

oI 
MI. ( ). dz} + 

oI 

n 
Pw. g. ir. D Z. 

(z). dz]Yh (3-7) 



33 

where K. is the stiffness of the springs. 

The first term of the right hand side of Eq. (3-7) shows the moment due 

to the spring force. The second one shows the moment due to the 

distributed weight of the test cylinder when it is in a deflected 

position from the vertical. The third one shows the moment due to the 

buoyancy of the test cylinder when it is in a deflected position from 

the vertical. 

(u) Fmt is the moment produced by the lift force acting on the 

cylinder. The estimation of the lift force will be described in 

detail in the next section. 

3-2-2" The estimation of the lift force 

The lift force acting on the elemental length dz of the cylinder in 

waves, dFt, is commonly calculated by Eq. (3-8). 

dFt =2 CL pD u2 dz 

where CL = the lift coefficient 

u- the horizontal water particle velocity in waves. 

(3-8) 

Therefore, the total bending moment produced by the lift force, Fmj, 

can be expressed by Eq. (3-9) 

d+ Ti 
Fmk, -2p. D. / CL. U2. z. dz (3-9) 

0 
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However, as described in Chapter 2, the characteristics of CL with the 

position, z, in waves are not known well. In order to overcome this 

problem, the effective lift coefficient is defined by Eq. (3-10). This 

definition is proposed by Zedan and Rajabi (1981). 

d+ri d+H/2 
CLe =j CL. u2. z. dz/ j UM2. z. dz (3-10) 

00 

d+rj d 
CLe =f CL. U2. z. dz/ j Um2. z. dz d»H (3-11) 

'00 

where um is the maximum horizontal wave particle velocity at z. 

Taking Eq. (3-10) into account, Fmt is described as Eq., (3-12). 

Fmk, - 
2. 

p. D. CLe. Id um2. z. dz, (3-12) 
0 

and is given as follows by linear wave theory 

um - 
TH cosh(k. z)/sinh(kd) (3-13) 

where k- the wave number, 
22 
Lw 

kd - the wave depth parameter - k. d 

Lw - the wave length 

T- the period of wave 

H- the wave height 

By substituting Eq. (3-13) into Eq. (3-12), Fm is given as 
I 
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Fmk -2p. D. CLe. UMS2. d2. Fs(kd) (3-14) 

where ums is the maximum horizontal particle velocity at still water 

level and is given as 

ums m 
2TH 

coth(kd); (3-15) 

Fs(kd) is an index which describes the characteristics of the 

distribution of u2 with z. Fs(kd) is given as 

F3(kd) - 4(k. d)2 
(kd. sinh(2kd)-0.5. cosh(2kd) 

+ (kd)2+0.5}/cosh2(kd) (3-16) 

Now, the effective lift coefficient, CLe, may be expressed in a series 

form as follows 

N 
CLe I CLe(n)sin(n. aw. t+ý(n)) (3-17) 

n=1 

where CLe(n) - the lift coefficient for the n-th harmonic 

WW - circular wave frequency (- 21r. fw - 2-ff/T) 

fw - the wave frequency 

O(n) s phase lag between the n-th harmonic lift coefficient, 

CLe(n), and the surface elevation of wave. 

The above expression is commonly used to describe the time-variation 

of the lift coefficient (for example, Chakrabarti et al. (1976)). 
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3-2-3 The solution of the equation of motion 

The equation of motion, Eq. (3-1), is a non-linear equation since the 

values of Mit, Cmt and Kmt are the function of a water surface 

elevation, n. In order to obtain a simple solution, it is linearised 

as follows. Let Mmt, Cmt and Kmt be expressed 

Mmt MBm Mmo 

Cmt CBm Cmo 

Kmt KBm Kmo (3-18) 

where Mmo, Cmo and Kmo are the values of Mmt, Cmt_and Kmt at n- 0. 

Therefore, MBm, CBm and KBm show the variability of these values with 

t/T. Then Eq. (3-1) is written as follows. 

MBm Mmo Yh + BBm Cmo. Yh + KBm Kmo Yh - Fmt (3-19) 

If the wave height, H, is small, the values of MBrn, Cgm and KBm may be 

approximated as MBm - CBm - Kgm -1 and in this case Eq. (3-19) may be 

described by Eq. (3-20) 

Mmo Yh + Cmo Yh + Kmo Yh - Fmi 

Yh + 2; t Wn Yh + wn 2 Yh ° FmR/Mmo (3-20) 

where w is the circular natural frequency of the cylinder and 

defined as 

w 2n fn = �Kmo/Mmo 

fn = natural frequency of the cylinder (3-21) 
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And Zt is the total damping factor of the test cylinder, defined as 

C 
ýt 2wnMmo - ýs + ým + Lf (3-22) m 

where is the damping factor of the spring and is given as 

x 
dr Cs/(2Wn Mmo) (3-22-A) 

Cm is a damping factor of the electro-magnetic damper and is 

given as 

£ e2 
Cm -d Ce/(2wn Mmo) (3-22-B) 

Cf is the damping factor of the fluid and is given by 

d+n 
Zp -f Cw. ( ). z. dz/(2cn Mmo) (3-22-C) 

0 

In the present study of the vortex-excited vibration of the test 

cylinder in waves, the fluid damping factor, Cf, is shown as follows 

by the definition of the fluid damping described in 3-2-1. 

0 (a) C- O 

(b) Lf - Gw (3-22-D) 

where ýw is the fluid damping factor of the test cylinder in still 

water. 
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When the value of Fmj is expressed by Eq. (3-14) and CLe is expressed 

byýEq. (3-17), the equation of motion of the cylinder, described by 

Eq. (3-20), becomes a linear differential equation. 

Then, the solution of it is given as follows 

f 
3F3(kd). SKC2. (W)2d2 

Yh fn 

_a Dm 
81T2(PD2)1,2 

now i-d, it is given as 

f 
3F8(kd). SKC2. (fw)2 

yh n 
Dm 

8n2(P7) 

niN 
CCLe(n). 

sin(2irn Pnt+$A(n) 
J 

n=1 PP 
(1-(n Pw)z)z+(2ct, n PW)2 

nn 

(3-23) 

(3-23-A) 

where SKC is a surface Keulegan-Carpenter number defined as follows. 

SKC 
umo. T 

D (3-24) 

in which Umo is the maximum horizontal particle velocity at still 

nNCCLe(n). sin(2nn Pnt+ýA(n)) 

n-1 PP 
1(1-(n 

fw)2)2+(2ct. n PW2 
nn 

water level. It is given as follows by linear wave theory. 
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Umo = 
TH tanh(kd) (3-25) 

OA(n) is a phase angle between the vibration of the test cylinder, yho 

and lift force, and is given as 

f 
2Ct. n. f 

w 

OA(n) - tan-'{ f 
n} 

1_(n. fw)2 

n 

(3-26) 

where me is the effective mass per unit length of the test cylinder 

given by 

m= 
Mmo 

= 

3Mmo 3Mmo 
dß (3-27) e3dI 

(Q). z. dz (R ) d2 
0 

If fw nearly equals the value of fn/n (n - 1,2,3... ), yh/D is 

approximated as 

P 
yh 3Fs. (kd). SKC2. (ý, n)2 

Dm 
81r2(pD2) 

C (n) 
xC 

Le 
sin(21rn. fn. t+A(n)}7 

�{1-(n 
f2)2}2+(2ct. n. fw)2 

nn 

(3-28) 
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and when fw/fn - n, (n-1,2,3,... ), at resonance, the vibration, yhr, 

of the test cylinder is given as 

f 

Y 
3Fs(kd). SKC2. (rw)2 

hn 
Dm 

81r'(pez). 2Gt 

a 

where 

. CLe(n). sin{2n fwt++A(n)} 

f 
3F(kd). SKC2. (. )2 

g 
n 

2n Ct 
n 2me(--FD-i-) 

OA (n) -2 

. CLe(n)sin{2n fwt+4A(n)} (3-29) 

(3-30) 

Eq. (3-23) shows that the vortex-excited vibration of the test cylinder 

is related to the following parameters: 

kd, SKC, fW/fn, me/pD2, CLe, ýt 

In which me/pD2 is a mass ratio. 

Eq. (3-29) shows that the amplitude of the test cylinder at resonance 

is related to the following parameters. 

kd, SKC, CLe, 2me. (27 ; t)/pD2, fw/fn 

In which 2me(2w fit)/pD2 is_a normalised (reduced) damping. 
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On the other hand, the lift force acting on the observed 

vortex-excited cylinder can be estimated from Eq. (3-23) or (3-29). 

Eq. (3-26) shows that phase angle between the vibration of the cylinder 

and the lift force acting on it is related to the frequency ratio, 

n. fw/fn, and total damping coefficient, rt. 

The relationships between these parameters and the vortex-excited 

vibration of the test cylinder were examined experimentally in Chapter 

4, and the data was analysed by using these equations above. In this 

case, it should be noted that fluid damping, ýf, is defined in two 

ways as shown Eq. (3-22-D). When Cf is defined as 0, Ct only includes 

the damping factor of spring, Cg, and the damping factor of 

electro-magnetic damper, Cm. 

3-3 Damping in Still Water 

The free vibration of the test cylinder in still water is also 

described by the equation of motion described in Section 3-2. In this 

case, there is no exciting force to the cylinder, and its vibration 

decays due to the damping force in the springs, the damping force of 

electro-magnetic damper and the fluid damping force. 

If the fluid damping force is associated with a drag force which is 

proportional to the square of the velocity of the cylinder, the fluid 

damping factor, ; f, is described by Eq. (3-31), by the definition of 

the damping factor shown in Eq. (3-22-A). 

d 
pDIkhI f CD(j)2 z. dz 

0 
4w M 

n mo 
(3-31) 
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where CD = drag coefficient 

wn - circular natural frequency of cylinder in still water 

The energy, dissipated in one cycle of vibration by the fluid damping 

force, Edf, is given as 

ti+T 
Edf -I Fdf -I Fdf Yh dt (3-32) 

one cycle tj 

where Fdf is written as follows 

Fdf - 2Mmo wn Lf 

2 PDIj! hIYh fd CD(ý)dz (3-33) 
0 

The fluid damping coefficient defined by Eq. (3-31) is a function of 

IyhI. Therefore it changes with t. 

Now we assume that Zf defined by Eq. (3-31) is substituted by a 

constant value Cpi over one period (t - ti to t- ti + Tn, see Fig. 

3.2), 

d 
p. D. K. Yhi' I CD()2 z. dz 

0 
Cfi 4M 

mo 
(3-34) 

where K- numerical constant 



43 

The energy, Edfi, dissipated in one cycle of vibration by this fluid 

damping force, Edfi, is given as 

ti*Tn 
Edfi -f Fdfi"dy °f Fdfi"Yh"dt 

one cycle ti 

where Fdfi is given as 

Fdfi - 2Mo"wn. Ui"Yh 

d 
2 

p. DIYhilyhi-wn f CD. ( )dz 
0 

Putting Edti equal to Edt, 

tj+T 
f Fdf"Yh"dt 

ti 

ti+T 
f Fdfi"Yh dt 

ti 

(3-35) 

(3-36) 

(3-37) 

We assume that the drag coefficient CD is constant over one cycle of 

vibration, and that the displacement, yho is approximated by Eq. (3-38) 

over one cycle of vibration of cylinder, 

Yh ° Yhi" sin(wnt) ti <t< ti +T (3-38) 

where Yhi 0 the value of yh at t- ti (see Fig. 3.2) 

By substituting Eq. (3-38) into Eq. (3-37), K is defined as 

K-8 (3-39) 
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By substituting this a into Eq. (3-31), the fluid damping factor cfi is 

given as 

; Pi - 

d 
2pD Yhi. CD()2 z. dz 

0 (3-40) 37r Mmo 

Eq. (3-l0) shows that the fluid damping factor, ýfi, is a function of 

the amplitude of the free vibration of the test cylinder in still 

water, Yhi, and the drag coefficient. 

This equation is used in the analysis of the experimental data which 

was obtained in the experiment on the damping of the test cylinder in 

still water, described in Chapter 4. 

In this case, the unknown value of the drag force coefficient is 

estimated with several methods. 
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r 

rivvi 

me - conducting plate mass/unit length 

mq - core cylinder mass/unit length 

m- test cylinder mass/unit length 

mf - flange weight-mass/unit length 

mh - holder flange mass/unit length 

ms - support plate and holder flange of bottom mass/unit length 

mi - water mass inside of the test cylinder/unit length 

ma - added mass of water/unit length 

d- still water depth 

r- distance from pivot to spring 
Rl - distance from pivot to top of flange weight 

R2 - distance from pivot to bottom of flange weight 

L3 - distance from pivot to top of holder flange and test cylinder 

ß4 - distance from pivot to bottom of holder flange 

Is - distance from pivot to top of support plate 
I6 - distance from pivot to bottom of support plate 
R, - distance from pivot to top of conducting plate 
£e - distance from pivot to electro-magnetic damping 

ß- distance from pivot to surface of still water d- 80cm 

RQ - distance from pivot to bottom of frame. 

Fig. 3.1 Definition Sketch of the Test Cylinder 
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CHAPTER 4 

EXPERIMENTAL PROCEDURE 

4-1 Introduction 

This chapter aims to describe the experimental` work of the present 

study. The following experiments were carried out to study the 

vortex-excited vibration of cylinders in waves. 

(1) An experiment on the vortex-excited vibration of the test 

cylinder in regular waves. 

(2) An experiment on the lift force acting on the stable test 

cylinder in regular waves. 

(3) An 'experiment on the damping of the test cylinder in still 

water. 

A rigid cylinder, which was vertically pivoted on the bottom of the 

flume, was, used in the experiments listed above. The pivoted cylinder 

has an advantage in its simple mode shape of vibration which could be 

easily analysed. As described in Chapter 3 (Eq. (3-23) and Eq. (3-26)), 

the vortex-excited vibration of the test cylinder in regular waves may 

be controlled by the following parameters: the life force, the ratio 

of wave frequency to natural frequency, the Keulegan-Carpenter number, 

the wave depth parameter (wave number), damping coefficient, and a 

cylinder mass parameter (mass ratio). The relationship between the 

vortex-excited vibration of the test cylinder and these parameters: was 
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examined in the experiment (1). The damping factor of the test 

cylinder was adjusted by using the electro-magnetic damper in this 

experiment. 

The purpose of the experiment (2) was to obtain a reference value of 

the lift force which was used in the estimation of the amplification 

of the lift force acting on the vortex-excited vibrating cylinder. In 

order to obtain an estimate of the unknown damping force in waves, the 

fluid damping of the test cylinder vibrating in various depths of 

still water has been measured in experiment (3). 

4-2 The Wave Flume and Wave Gauge 

The experiments were carried out in a wave flume in the Department of 

Civil Engineering at Liverpool University. This flume is glass-sided, 

and is 18.0m long and 0.75m wide with a maximum working depth of 1.0m. 

The piston-type wave generator is fixed to one end of the flume and it 

is servo-controlled. A long beach with a slope of 1: 6.4 is installed 

at the other end to absorb the wave energy. The surface of the long 

beach is covered with porous matting. The general layout of the wave 

flume is shown in Fig. 4.1. 

The wave gauge was mounted just beside the test cylinder (see Fig. 4.1 

and Fig. 4.2) to record the water surface elevation, from which the 

wave height, H, and the wave period (T) were obtained. The wave gauge 

used was of the resistance type, and its output signal was amplified 

by using the wave gauge amplifier before recording. 
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4-3 The Arrangement of the Test Cylinder 

The test cylinder was positioned in the working section of the wave 

flume, 7.2m from the paddle, as shown in Figure 4.1. The general 

arrangement of the test cylinder is shown in Figure 4.2. A stainless 

steel hollow cylinder (outside diameter D- 17.05mm, wall thickness 

0.536mm and length = 985mm) was used. Both ends of the test cylinder 

were connected to the core cylinder (diameter DC - 10mm and length 

1105mm) by using a holder flange (see Fig. 4.3 and Fig. 4.4). The end 

flange of diameter - 120mm was attached to the bottom side of the test 

cylinder to eliminate end effects. The flange weights were attached 

to the core cylinder above the test cylinder to adjust its equivalent 

mass, me. The natural frequency of the test cylinder was adjusted 

independently of each equivalent mass,, me, by, changing the stiffness, 

ks, of the springs. 

The vibration of the cylinder was studied for two cases. In one case, 

the cylinder was left free- to vibrate only -in- the transverse 

direction. In the other case, the cylinder was left free to vibrate 

in any direction. The first arrangement was used for the majority of 

the experiments. In this case, the support plate was attached on the 

holder flange at the bottom end of the test cylinder, and it was 

pivoted on the bottom of the flume to restrict the vibration in the 

inline direction (see Fig. 4.2 and Fig. 4.3). Two flange weights were 

attached to the core cylinder. The top end of the core cylinder was 

mounted with springs only in the transverse direction. Each spring 

was connected to a support strip (see Fig. 14.14). Two strain gauges 

were fixed ön each support strip to measure its bending moment and 

thus the force acting on end of it.. These strain gauges were 
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connected into a wheatstone bridge circuit in the Bridge Conditioner 

to produce the output signal corresponding to the displacement of the 

top end of the core cylinder in the transverse direction. 

In the case of the second experiment, the test cylinder was arranged 

as follows. 

(1) Both the support plate and the conducting plate were removed, 

and the bottom of the core cylinder was pivoted on the support 

cylinder (see Fig. 11.3). 

(2) The top end of the core cylinder was mounted with springs in 

the inline direction and in the transverse direction. 

(3) Three flange weights were attached to the core cylinder. 

The displacements of the core cylinder in both directions were also 

measured by the gauges on the four support strips as described above. 

When the top end of the cylinder was mounted with strings replacing 

the springs in the transverse direction, the stiffness of the support 

strips was large enough to restrict the top end displacement of the 

core cylinder. Therefore, the output signals of the gauges 

corresponded to the bending moment on the cylinder (at the pivot) in 

the transverse direction. 

The general view of the test cylinder arrangement is shown in Plate 1. 

The views of the lower and upper parts of the test cylinder are shown 

in Plate 2. 
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Fig. 4.2 General Arrangement of the Cylinder 

61 -B Sprn B1- BL 4g Support DIMENSIONS IN mm B Strip UNLESS OTHERWISE 
STATED. 
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Fig. 4.3 Arrangement of the Top Part of the Test Cylinder 
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4-4 The Electro-Magnetic Damper 

In order to adjust the damping of the test cylinder, an 

electro-magnetic damper was used. The position and details of . 
this 

electro-magnetic damper are shown in Fig. 4.2 and Fig. 4.5. It is 

composed of an electro-magnet and a conducting plate. The 

electro-magnet is made of a coil and soft iron (see Fig. 4.5). Soft 

iron is used to minimise the residual magnetism (remanence). The 

conducting plate is made of aluminium (see Fig. 4.5). The principle 

of the electro-magnetic damper is as follows (Drysdale and Jolley, 

1952). 

Suppose the conducting plate is moving across a magnet pole with a 

velocity, Uc, then an electro-magnetic potential, Vemf, "is 
induced in 

the conducting plate.. Then, a belt of eddy current flowing in the 

direction of arrow, shown in Fig. 4.5, is produced in the conducting 

plate. Vemf is, calculated by Eq. (11-1). 

Vemf ° b1. B. Ue [V] iü-1) 

where B is the magnetic flux density (Wb/m2) in the area bl by b2. 

Magnetic flux density,. B, is calculated as follows. 

NI 
B ue 

e. e [Wb/m2] (4-2) 
e 

where µe = magnetic permeability [Henry/m] 

Ne - number of turns of the coil 

le = length of the coil [m] 

Ie = current [A] 
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If the resistance of the eddy current circuit in the conducting plate 

is given by, Rc, the eddy current, Ic, passing through the area b2 

over the thickness of the conducting plate is calculated as follows. 

Ic = 

Vemf 

- 

bl. B. Uc 
[A] 

RR 
CC 

(4-3) 

Then, a force, Fc, is produced on the conducting plate by the 

, reaction of this current and it is calculated as follows. 

. 
Fc = b1. Ic. B =b 

12 B 2. U 
c EN] (4-4) R 

c 

Eq. (4-1) shows that the force, Fc, is proportional to the velocity of 

the conducting plate, Uc. This force, Fc, is a viscous type damping 

force acting on the test cylinder. It will be referred to as the 

damping force of electro-magnetic damper. 

In the experiment, an alternating current, Ie, was used to prevent the 

generation of residual magnetism (remanence) in the conducting plate. 

The movement of the test cylinder was restricted to the transverse 

direction, when the electro-magnetic damper was used. The view of the 

electro-magnetic damper is shown in Plate 3. 

4-5 The Collection of Experimental Data 

The block diagram of the measuring system is shown in Fig. 4.6(a). 

When the test cylinder was mounted with four springs, both in the 

inline direction and in the transverse direction, the gauges on the 

four support strips were correspondingly used as the four resistances 

in two full bridge circuits to respond independently to the top end 
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displacements of the core cylinder in the inline direction and in the 

transverse direction. The location of the strain gauges and their 

bridge connections are shown in Fig. '1.6(b). The output signal of 

each bridge circuit was amplified through a D. C. amplifier (Universal 

Amplifier EE-351-UA, FYLDE), and recorded on an Ultra Violet Light 
4 

Oscillograph (U-V), (Oscillograph M10-120, ELCOMATIC) and on magnetic 

disk, using a mini computer (Eclipse 110, Data General) by using a 

standard data collecting program. The output signals of the 

amplifiers were also connected to low pass filters, [four pole 

(21PB/OCT) Low Pass, Butterworth, (EE-299-DF&SF Acting Filter, 

FYLDE)], to eliminate mechanical and electrical noise. These signals 

were also recorded using the computer. The output signal of the 

Wave-gauge Amplifier (Wave Monitor Module, CHURCHILL) was also 

recorded simultaneously with the signals from the strain gauges. 

These output signals were inspected by using a Monitor Oscilloscope 

(Digital Storage Oscilloscope OS 400, GOULD) during measurement. 

The experimental data stored on disk by the computer was later 

processed off line. The plotting of experimental data and 

computational results was done by using the computer plotter (Miplot, 

WATANABE). The general view of the electronic equipment described 

above is shown in Plate u. The general view of the Eclipse computer 

system is shown in Plate 5. 

4-6 Procedure 

4-6-1 Calibration of the strain gauges and the wave gauge 

In order to obtain meaningful output voltage signals, it was necessary 

to equate the physical values measured by the test equipment to the 

output voltage signals by suitable calibration factor. The following 

calibrations were carried out. 
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(1) Calibration of the strain gauges 

To obtain the relationship between the output voltage signals from 

each bridge circuit and the displacements of the top end of the core 

cylinder, known loads were applied horizontally to the top end of the 

core cylinder by weights hung over a pully. The top end displacement 

of the core cylinder was measured on a vernier scale. The bending 

moment at the pivot was equal to the product of the load and the 

distance from the pivot to the top end of the core cylinder. 

Therefore, the relationship between the output voltage signal and the 

bending moment at. the pivot was obtained. When the test cylinder was 

mounted with strings (and springs) in the inline and the transverse 

direction, the sensitivity to direction of these gauges was inspected 

by loading the weights in the inline and transverse direction 

independently. 

(2) Calibration of the wave gauge 

The relationship between the output voltage of the wave gauge and the 

water surface elevation was obtained by raising and lowering the probe 

in still water and recording the output voltages. The displacement of 

the probe was measured using a vernier scale. 

4-6-2 Determination of basic parameters 

In order to estimate the mass matrix, Mmt, damping matrix, Cmt, and 

stiffness matrix, Kmt, which control the vibration of the test 

cylinder, the following measurements were done in both arrangements of 

the test cylinder described in 1.3. 
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(1) The relationship between the displacement of the test cylinder 

and the bending moment at the pivot was determined by loading 

the top end of the core cylinder horizontally. 

(2) The damping factor of the test cylinder and the natural 

frequency of the test cylinder were measured by plucking its 

top end and recording amplitude decay of the transient 

vibration of the cylinder. 

The measurements above were done for the following two cases in one 

case the cylinder was mounted in air, and in the other case the 

cylinder was mounted in still water (water depth, d- 80cm). 

From the first measurement, the stiffness of the test cylinder both in 

air, Kmta, and in water, Kmtw, was determined as follows. 

Bending moment at pivot Kmta ° Displacement of the test cylinder at the position 
80cm from'the flume bottom (4-5) 

Bending moment at pivot Kmtw Displacement of the test cylinder at still 
water level (d - 80cm) (4-6) 

From the second measurement, the natural frequency of the test 

cylinder both in air, fna, and in water, fnw, and the total damping 

factor both in air, eta, and in water, Ctw, were evaluated. The mass 

matrix of both in air, Mmta, and in water, Mmtw, were determined as 

follows, using the above measurements. 

k 
mta Mmta ° (21r fna)2 

(4-7) 
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k 
mtw Mmtw ° (21r f 

nw 
(4-8) 

The damping matrix both in air, Cmta, and in water, Cmtw, were also 

determined from the above values by using Eq. (3-22). 

Cmta ° 2ýta /Mmta" kmta (1-9) 

Cmtw ` 2Ctw �Mmtw" kmtw (4-10) 

4-6-3 Calibration of the electro-magnetic damper 

In order to obtain the relationship between the A. C. currents used in 

the electro-magnetic damper and the damping factors, Cm, produced by 

those currents, (defined Eq. (3-22-A)), the total damping factor of the 

test cylinder was measured for the following two cases: in one case 

the cylinder was mounted in air, and in the other case the cylinder 

was mounted in still water (water depth d- 80cm). A. C. currents were 

changed as follows. 

Ic = 0,0.5,1.0,1.5,2.0,2.5,3,4,5,6,7A 

These measurements were done whilst allowing the test cylinder to move 

in the transverse direction only. 
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4-6-4 Measurement of the change of the damping coefficient with water 

depth 

In order to inspect the change in the fluid damping factor, ýf, of the 

test cylinder with water depth, the total damping factor of the test 

cylinder was measured for the following water depth, d, 

d-0,10,20,30,10,50,60,70,80,90cm. 

The initial displacement of the test cylinder at the still water 

surface was more than one diameter of the test cylinder. The 

digitising frequency of the signal of gauges corresponding to the 

vibration of the test cylinder was 100Hz. These measurements were 

also done whilst allowing the test cylinder to move in the transverse 

direction. 

4-6-5 The vortex-excited vibration of the-test cylinder in waves 

The experimental conditions used in the experiments on the 

vortex-excited vibration of the test cylinder are shown in Table 1. 

The water depth, d, was kept constant at 80cm and regular waves were 

used throughout the experiments. The effective mass, me, which is 

used in the calculation of the mass ratio, me/pD2, and normalised 

damping, 6r - 2me(2ýta)/pD2, is calculated as follows. 

Mmtw 3Mtw 
Q) me "d d2 (., d (4-11) 

). z. dz 
0 
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Where Mmtw is the mass matrix in water which was obtained in the 

measurement (4-6-2) above. It should be noted that Cta is the damping 

factor of the test cylinder in air and it includes only ;s and Cm. 

The natural frequency both in air, fna, and in water, fnw, and the 

damping factor both in air, Cta, and in water, Ctw, are the values 

which were obtained in the measurement (4-6-2) above. 

The depth parameter, kd, was calculated by using linear wave 

theory. 

Case A, Case AB and Case AC were run to study the vortex-excited 

vibration of the test cylinder,. which was left free to vibrate only in 

the transverse direction. The relationship between the vortex-excited 

vibration of the test cylinder and the frequency ratio, fw/fnw, was 

measured in the Case Al and Case A2. The surface KC number, SKC, was 

fixed at about 12 in Case Al, and it was fixed at about 20 in Case A2. 

In order to study the multi-appearance of the resonant frequency 

ratio, (fw/fnw - 1,1/2,1/3 ---) which was pointed out by Sawaragi, 

Nakamura and Miki (1977) and Isaacson and Maull (1981) as described in 

Chapter 2, the frequency ratio, fw/fnw, was changed widely from 0.237 

to 1.07 in the Case Al, and it was changed from 0.166 to 0.577 in the 

Case A2, by changing the wave frequency. 

The relationship between the vortex-excited vibration of the test 

cylinder and the surface KC value, SKC, was measured in Case A3-A11. 

In each of these cases, the frequency ratio, fw/fnw, was fixed at 

around one of the values of the resonance frequency ratios (fw/fna 

1,1/2,1/3 ---). 
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In order to study the influence of the damping factor on the 

vortex-excited vibration of the test cylinder, the same kind of 

measurements as for Case A were done for Case AB, but the damping 

factor in air, eta' was changed from 0.001 to 0.021 by using the 

electro-magnetic damper. 

The influence of the damping factor on the vortex-excited vibration of 

the test cylinder, in the particular wave conditions, in which 

perfect resonance nearly occurred, was measured in Case AC. In this 

case, the damping factor in air, ; tat was changed from 0.001 to 0.0267 

by using the electro-magnetic damper. 

Case AS was run to study the lift force acting on the test cylinder, 

which was mounted stiffly as described in (4-3-2). In order to 

estimate the amplification of the lift force acting on the test 

cylinder, which was vibrating in the vortex-excited condition, the 

same waves as those used in Case A were used here. 

Case B was run to study the vortex-excited vibration of the test 

cylinder, which was left free to vibrate in any direction. In order 

to study the difference between this case and the vortex-excited 

vibration of the test cylinder, when free to vibrate only in the 

transverse direction to the wave fronts, the waves were the same as 

those used in Case A. However, it may be difficult to carry out a 

strict comparison between the two cases, because the natural 

frequency, fnw, the damping factor, eta and etw, and mass ratio, 

me/pD2, are different for Case A and Case B. 
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The voltage signal corresponding to the vibration of the test cylinder 

and the lift force acting to the stable test cylinder was recorded 

simultaneously with the signals from the wave gauge to study the time 

lag between the two signals. The digitising frequency of these 

signals was 50Hz and 100/3Hz in the rest, depending on the period of 

the incident waves and the period of the vortex-excited vibration of 

the test cylinder. 

In order to study the irregularity of the vortex-excited vibration of 

the test cylinder (and the lift force acting on the stable test 

cylinder), the signals were stored on disk on the computer for 30-100 

wave periods and were recorded on the U-V recorder over 100-200 wave 

periods. 

A 20Hz low pass filter was used for the measurement of the 

vortex-excited vibration of the test cylinder, and a 5Hz low pass 

filter was used for the measurements of the lift force acting to the 

stable cylinder. 
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CHAPTER 5 
1 

RESULTS AND DISCUSSION 

5-1 Introduction 

This chapter aims to describe and discuss the experimental results*of 

the present study. It will be divided into the following three 

sections. 

In the first section, the characteristics of the damping of the test 

cylinder in air and in still water will be described. The-values of 

the damping at small amplitude in still water will be explained 

theoretically by using the equation which was introduced to explain 

the viscous effect of cylinders at low Keulegan-Carpenter number by 

Stokes (1901) and Wang (1968). The results obtained in this section 

will be used to estimate the unknown damping force of the 

vortex-excited cylinder in waves. 

In the second section, the characteristics of the lift force acting on 

the stiffly mounted test cylinder will be described. These results 

will be used as reference values of the lift force to be used in the 

estimation of the amplification of the lift force acting on the 

vortex-excited test cylinder. 

In the third section, the following main characteristics of the 

vortex-excited vibration of the test cylinder in waves will be 

described: 
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(1) The relationship between the vortex-excited vibrations of the 

test cylinder and the important parameters, which were 

identified in the linearised model for the vortex-excited 

vibration of the cylinder in waves described in Chapter 3. 

(2) The characteristics of the lift force acting on the 

vortex-excited test cylinder in waves. The lift force will be 

evaluated by substituting the values both of the amplitude of 

the vibration of the cylinder and the unknown damping factor of 

the cylinder in the vortex-excited condition into the 

Eq. (3-29). In this case, the unknown value of damping factor 

will be estimated from the measured value of the damping 

factors in air and in still water described above. 

5-2 The Damping of the Test Cylinder in Air and in Still Water 

5-2-1 Calibration of electro-magnetic damper 

The relationship between the damping factor, Ctai, and the non- 

dimensional test cylinder displacement, Yhi/D, as a function of the AC 

current, Ie, is shown in Fig. 5.2.1. The value of Yhi(i-1,2,3... ) is 

the amplitude at the i-th oscillation of the test cylinder at the 

still water level (80cm above the bed). tai is a total damping 

coefficient of the test cylinder in air calculated for each amplitude 

of the test cylinder Yhi/D by Eq. (5-2-1). 

Y 
Ctai a 2n. 5 to Yhi-2 (5-2-1) 

. hi+3 
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where Yhi-2 - the amplitude of the test cylinder at the (i-2)-th 

period 

Yhi+3 - the amplitude of the test cylinder at the (i+3)-th 

period 

Here the value of tai at Ie -0 shows the structural material damping 

factor of the test cylinder. It increases slightly with increased 

amplitude. This may be due to the non-linear characteristics of the 

structural (material) damping of the test cylinder. (The damping due 

to air can be expected to make a negligible contribution in this 

case). 

The relationship between Ctai and Ie for Yhi/D-0.2,0.6 and 1.0 is 

shown in Fig. 5.2.2. As shown by Eq. (4-2) and Eq. (1-1), the damping 

force produced by the electro-magnetic damper is proportional to the 

square of Ie. This relationship cannot be found in Fig. 5.2.2 because 

of the saturation of magnetization in soft ironore, Drysdale et al. 

(1952). 

The relationship between the total damping factor of the test cylinder 

in still water, Ltwi, and Yhi/D as a function of Ie is shown in Fig. 

5.2.3. Ltwi is calculated by Eq. (5-2-1) as before. This figure shows 

that Ctwi is independent of the amplitude effect only for low values 

of Yhi/D and it becomes amplitude dependent at higher values of Yhi/D. 

The result of Ctai at Ie = OA plotted in Fig. 5.2.1 is also shown in 

this figure. Subtracting ; tai at Ie OA from Ctwi at Ie = OA leaves 

the fluid damping factor 4fi. 
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The relationship between Ctwi and Ie for Yhi/D-0.1,0.2,0.4 and 0.6 

is shown in Fig. 5.2.4. The value of Ctai at Yhi/D-0.6 is also shown 

in this figure. 

In the case of Ctai, the influence of Yhi/D is very small as shown in 

Fig. 5.2.2. On the other hand, in the case of ; twi, the damping 

depends on the value of Yhi/D owing to the characteristics of the 

fluid damping. However, the increase in damping due to fluid damping 

at each value of Yhj/D is nearly independent of Ie. 

5.2.2 The change of damping with water depth 

The relationship between the total damping factor, Gtwi, in water and 

Yhi/D for different water depths, d, is shown in Fig. 5.2.5. The 

purpose of this experiment is to inspect the influence of the end 

flange (see Fig. '1.4) on the total damping of the test cylinder in 

water and to obtain the value of ýtwi at small SKC for comparison with 

theoretical results. This figure shows that as the water depth 

increases, ctwi increases and becomes amplitude dependent with the 

increase of Yhi/D. As shown in this figure, the difference between 

ýtwi at d-0 and ýtwi at d-20cm is very small. Therefore it can be 

concluded that the effect of the end flange on the total damping of 

the test cylinder at large water depths is negligible. The increase 

of Ctwi at each water depth from its value at water depth d-0 

equivalent to Ctai, depends on the appearance of the fluid damping. 

Therefore, the fluid damping factor at each water depth can be 

estimated by subtracting the value of ctwi at d-0 from the value of 

Ctwi at each water depth. 
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The relationship between the fluid damping, Cfi, and Yhj/D as a 

function of water depth, d, is shown in Fig. 5.2.6. This figure shows 

that Cfi has a constant value in the range of low values of Yhi/D and 

increases with Yhi/D. 

In order to understand the mechanism of fluid damping, it may be 

useful to express ýfi, in terms of a drag coefficient, CD. If the 

drag coefficient is constant over one cycle of vibration, and is 

constant along the axis of the test cylinder, Eq. (3-40), showing the 

relationship between Cfi and CD, can be written: 

d 
2p. D. Yhi. CD f (R)2 z. dz 

0 
Cf i 3n Mmo 

pD2. ( ö ). CD. d" 

6 k2 

pD2. SKC. d3 

ý 
(5-2-2) 

ý 
CD a 1211? MI 

rearranging Eq. (5-2-2) 

61r. Mmo. Z2 
CD 

y 
p. DZ. d". ( 

Di) 

12n2. M j 
mo (5-2-3) 

. D2. SKC. d3 "f' -2-3) 
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where SKC is the surface Keulegan-Carpenter number at each water depth 

d and is shown as 

SKC ýYhiý 27rd 
D 

and the mass matrix Mmo is shown as 

(5-2-4) 

1' 
zrz1, z Mmo - COI m. ( ). z. dz + 

of 
mq. (R). z. dz + 

rI 
mc. ( ). z. dz 

iIz 19 
z 

16 

tZ f mp. (Q). z. dz +f mn. (T). z. dz +f MS. (T). z. dz 
L2 Z4 '5 

" 

d d+ n 
+0J ml. (a). z. dz + 

oI 
ma. ( ). z. dz7 (5-2-5) 

By substituting the fluid damping factor, Lfi+ Yhj/D and the mass 

matrix Mmo into Eq. (5-2-3) and Eq. (5-2-4), the relationship between 

the drag coefficient. CD and SKC as a function of water depth, d, is 

obtained. The plot of this value of CD against SKC is shown in Fig. 

5.2.7. 

The theoretical variation of CD with KC is also shown in Fig. 5.2.7. 

This is calculated by Eq. (5-2-6), which is derived from Wang's (1968) 

theory for the forces on a fixed cylinder in oscillating flow (Bearman 

et al., 1984). The first term is identical to that given by Stokes 

(1901) for the case of spherical and cylindrical pendulum bobs 

oscillating at low Keulegan-Carpenter number. 
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5/Z 2 3jr3/2 -ir CD S 2. KC. ß+ 
(23KC. 

ß) 8. ß 
(5-2-6) 

where ß is defined as 

R D: f 
e nw 

KC v 

and v (--2) is the kinematic viscosity. 

(5-2-7) 

Measurements by Sarpkaya (1976) and by Bearman et al. (1981) are also 

plotted in Fig. 5.2.7. Their results were obtained by measuring the 

in-line force acting on a stiffly mounted circular cylinder in 

harmonic flow. 

This figure shows the following: 

(1) The relationship between CD and SKC is independent of water 

depth. 

(2) The value of CD decreases with increasing SKC, in the range of 

SKC < 2, and is approximated with the theoretical curve of 

Eq. (5-2-6). 

(3) Beyond SKC ä 2, the value of CD increases with increasing SKC. 

The present data of CD is larger than the theoretical value. This may 

be due to the fact that the variation of CD along the axis of the test 

cylinder is not considered in the estimation of the present data of CD 

as shown in Eq. (5-2-3) also that the flow is not truly 
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two-dimensional. The increase of CD of the present data beyond SKC - 

2 may be due to the appearance of boundary layer separation and 

vortex-shedding. The start of the boundary layer separation from a 

circular cylinder in harmonic flow or in waves, at about SKC - 2-3, 

has been observed by Bidde (1971), Isaacson et al. (1976), Sawaragi 

et al. (1979), and Sawamoto et al. (1980). 

Fig. 5.2.7 shows that when the test cylinder is vibrating with small 

amplitude in still water, the fluid damping is produced by a viscous 

shearing force between the surface of the cylinder and the water, 

expressed by Eq. (5-2-6). Therefore, when the test cylinder is 

vibrating with small amplitude, the fluid damping factor, ; fi, can be 

estimated by assuming 

(1) CD is constant over one cycle of vibration. 

(2) CD is constant along the axis of the cylinder. 

(3) CD is a function of surface Keulegan-Carpenter number, SKC, and 

is expressed in Eq. (5-2-6). 

The fluid damping factor, cfi, can be written as follows by 

substituting Eq. (5-2-6) into Eq. (3-40). 

p. DZ. SKC. d3 3. irs/2 ýfi 121j2. Mmo; i 2. SKC. ß 

_ 
p. D2. lr'/2. d3 
8. M 

m6R. 
ß 

(5-2-8) 
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where 

DZ f 
nw ßý 

V 
(5-2-9) 

In the case above, the variation of CD along the axis of the cylinder 

is not considered. In order to take account of this effect, it can be 

assumed alternatively: 

(1) CD is constant over one cycle of vibration. 

(2) CD is not constant along the axis of the cylinder, but is a 

function of the Keulegan-Carpenter number, KC, at each point 

and is expressed as Eq. (5-2-6). 

Then, the fluid damping factor, rfi, can be written as follows by 

substituting Eq. (5-2-6) into Eq. (3-J40). 

3 7r 
s/2 

2pD Yhi 
Df 2. KC. ß 

2z. dz 

Cf i'. air Mmo 

p. D2, r1'2. d3 
6: Mmo. ß. B 

(5-2-10) 

where 

B=D 

2vfnW 

(5-2-11) 

It should be noted that both fluid damping factor, Cfi, defined by 

Eq. (5-2-8) and Eq. (5-2-10) are independent of the amplitude of 

vibration of the cylinder. Theoretical values of CfI estimated by 
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Eq. (5-2-8) and Eq. (5-2-10) at each water depth are shown with the 

measured value of Cfj at Yhi/D - 0.1 in Table 5.1 and in Fig. 5.2.8. 

The measured value of Cfj corresponds well with the theoretical value 

defined by Eq. (5-2-10) rather than the theoretical value defined by 

Eq. (5-2-8). This shows that including the variation of CD along. the 

cylinder axis produces better agreements with observed values. 

5-3 The Lift Force Acting on a Stiffly Mounted Test Cylinder in 

Waves r 

5'3'1 Method of data analysis 

As described in Chapter 2, the time history of lift force acting on a 

cylinder stiffly mounted in waves, has irregular characteristics. 

Taking this point into consideration, the following three kinds of 

effective lift coefficient are defined in the analysis of the total 

bending moment, Fmt, over 30-100 wave periods. 

(1) The maximum effective lift coefficient, CLemax 

CLemax - (the maximum value of the half peak-to-peak amplitude 

d+H/2 
of Fmt)/ f2p. D. Um2. z. dz (5-3-1) 

0 

(2) The mean effective lift coefficient, CLe 

CLe - (the mean value of the amplitude of the half peak-to-peak 

d+H/2 
amplitude of Fmg/ j1p. D. Umz. z. dz (5-3-2) 

0 
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(3) The effective lift coefficient for the n-th harmonic, CLe(n) 

d+H/2 
CLe(n) - Fmk(n)/ !2p. D. UD2. z. dz (5-3-3) 

0 

where Fmj(n) is the total bending moment for the n-th harmonic 

and is calculated as follows 

N. T 
Fmi(n) - C{N1T ! Fmk(t). cos(2n. n. fw. t)}2 

0 

N. T 
+ (NAT f* FmL(t). sin(2n. n. fw. t)}271/2 (5-3-4) 

and fw - cycle of wave frequency 

N- number of waves 

This effective lift coefficient for the n-th harmonic, CLe(n), can be 

used to determine the dominant frequency of FmL. 

In order to evaluate quantitatively the variation of the amplitude of 

FmZ over many wave periods, the coefficient of variation, CVL, of Fm 

is obtained as follows 

CAL - (the standard deviation of the half peak-to-peak 

amplitude of Fmj)/(the mean value of the amplitude of 

Fmt) (5-3-5) 
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5-3-2 The frequency components CLe(n) 

The relationship between the effective lift coefficient for the first 

four harmonics (CLe(n), n-1,2,3,4) and the surface Keulegan-Carpenter 

number, SKC, for three values of kd, (i. e. 0.735 for CASE AS-3,1.03 

for CASE AS-4,1.79 for CASE AS-5, as shown in Table 1), are shown in 

Fig. 5.3.1 (a), (b) and (c) respectively. Also the second and third 

components obtained by Isaacson et al. (1976) for 0.755 < kd < 0.789 

are shown in Fig. 5.3.1(a) to compare with the present data. 

The following relationships 

lift coefficient and the KC 

lift forces acting on a s, 

harmonic flows by Isaacson 

Charkrabarti et al. (1976), 

(1984): 

between the n-th harmonic component of 

number have been reported in studies on 

tiffly mounted cylinder in waves and in 

et al. (1976), Sawaragi et al. (1977), 

Sawamoto et al (1980) and Cotter et al. 

(1) The first harmonic component of lift coefficient dominates for 

KC number less than about 7. 

(2) The second harmonic component dominates for the range of KC 

number between 7 to 20. 

(3) The third harmonic component dominates for the range of KC 

number between 16 to 25. 

The following results can be seen in Fig. 5.3.1: 
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(1) In the case of kd - 0.735, CLe(2) dominates for the range of 

SKC between 8 and 10, and it takes a maximum value at SKC 

between 10 to 15. However, even at higher SKC values it 

remains greater than CLe(3). 

(2) In the case of kd - 1.01, CLe(2) dominates for the range of SKC 

between 5 to 18 and it takes a peak value at about SKC - 10. 

The third harmonic component, CLe(3), dominates for the range 

of SKC between 18 to 28. 

(3) In the case of kd - 1.79, CLe(2) dominates for the range of SKC 

between 8 to 28 and it takes peak value at around SKC - 15. 

It is interesting to note as shown in Fig. 5.3.1 that the relative 

magnitudes of the frequency components of CLe(n) are influenced by"kd. 

The magnitude of the horizontal water particle velocity, u, decreases 

rapidly with increasing water depth in the case of large kd and 

decreases only slowly in the case of small kd. But in the latter 

case, the waves are more non-linear, having relatively large higher 

frequency components. 

5-3-3 The result of CLemax CLe and CVL 

The relationship between CLemax and CLe, and SKC for the three values 

of kd are shown in Fig. 5.3.2 and Fig. 5.3.3, respectively. The 

root-mean-square values of the lift coefficient, rms. CL, for several 

values of kd, which have been obtained by Isaacson et al. (1976), are 

also shown in Fig. 5.3.3. 
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In the case of harmonic flow, it has been reported by Sarpkaya (1975), 

Maull et al. (1978) and Sawamoto et al. (1980) that the lift 

coefficient plotted against KC number shows two remarkable peak values 

at KC number of about 10 and about 18. In addition to them, the 

appearance of two further peaks, at about KC - 26 and about KC - 32, 

have been reported by Ikeda et al. (1981) and Bearman et al. (1981). 

In the present data derived from tests in waves, there is no 

appearance of several peaks in CLemax and CLe. Only one peak of 

CLemax and of CLe appears at about SKC - 10-15 for kd - 0.735, at 

about SKC - 10-12 for kd - 1.01 and SKC - 12-16 for kd - 1.79. The 

magnitude of the peak values of CLemax and of CLe are also influenced 

by kd. 

The relationship between the coefficient of variation, CVL, and SKC 

for three values of kd are shown in Fig. 5.3.4 (a), (b) and (c) 

respectively. This figure shows that small value of CVL occur for kd 

0.735 and kd - 1.01 in the range of SKC between 10 to 16, whereas 

these small values of CVL do not occur for kd - 1.79. When"CVL is 

less than 0.1, the record of Fmk, on the U-V recorder shows that the 

time history of Fmk, is very stable and that the amplitude is not 

intermittent and does not modulate. 

It is interesting to note that CVL takes a minimum value of about 0.03 

at around SKC - 11, where the peaks of both CLemax and CLe occur, (see 

Fig. 5.3.2). 
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The relationship between CLemax. CLe and CVL, and the wave depth 

parameter, kd, are shown in Fig. 5.3.5 (a), (b) and (c) respectively, 

where the range of SKC is between 10.7 to 15. Several rms. CL values 

for SKC - 11, obtained by Isaacson et al. (1976), are also plotted in 

Fig. 5.3.5(b). 

These figures show. more clearly the dependence of the characteristics 

of lift forces to the kd value. Both CLemax and CLe plotted against 

kd have three peaks at about kd - 0.8,1.25, and 1.6. CVL plotted 

against kd shows that CVL is less than 0.15 in the range of kd < 1.1. 

The relationship between CVL, and both SKC and kd is shown in Fig. 

5.3.6, where CVL is divided into three ranges and the occurrence of 

values in each range is related to the corresponding kd and SKC 

values. As described previously, when CVL is less than 0.1, the 

variation of Fmk, with time is very ,. stable. The quantity , of present 

data is not sufficient to describe exactly the region where the stable 

lift force occurs. However, it may be possible to describe roughly 

that the stable lift force occurs in the range of SKC between about 10 

to 15, for values of kd less than about 1.1. 

In the case of harmonic flow, the appearance of stable lift forces 

have been reported by Maull et al. (1978) and Ikeda et al. (1981). 

The result of Ikeda et al. shows that the stable lift forces appeared 

in the range of KC between 10 to 14 and in this range of KC, the 

vortex shedding was stable and regular. 
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Therefore, the appearance of stable lift force may be also due to the 

appearance of the stable vortex shedding along the cylinder axis 

because the variation of horizontal water particle velocity in wave, 

u, with water depth is small in the range of kd : 1.1. 

The high value of CVL in the range of kd > 1.2 (see Fig. 5.3.5 and 

Fig. 5.3.6) shows that the stable lift force does not appear in this 

range. This result may be due to the fact that the stable vortex 

shedding is not formed along the axis of test cylinder because the 

variation of u along the cylinder axis increases with the increase of 

kd. 

5-4 The Vortex-Excited Vibration of the Test Cylinder in Waves 

5-4m1 A general description of amplitude and frequency of 

vortex-excited vibration as a function of frequency ratio 

fW/fnw 

The following statistical values are obtained in order to study the 

characteristics of the vortex-excited vibration of the test cylinder 

in waves because the envelope of its amplitude is irregular. 

(1) The mean value of the half peak-to-peak amplitude of the 

vortex-excited vibration at mean water level (80cm above the 

bed, see Fig. 3.1) - (Yhm)" 

(2) The mean value of the frequency of the vortex-excited vibration 

(gym). 
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(3) The coefficient of variation of the half peak-to-peak amplitude 

of the vortex-excited vibration defined as CVy . (the standard 

deviation of the half peak-to-peak amplitude of the 

vortex-excited vibration)/(2. Yhm). 

In order to show how the amplitude, Yhm, and the frequency, fym, vary 

with fw/fnwo 

(1) the relationship between the value of Yhm/D and the frequency 

ratio Pw/fnw for CASE A-1, CASE A-2, CASE AB-1, CASE AB-2, CASE 

B-1 and CASE B-2 are shown in Fig. 5.4.1 through Fig. 5.4.6 

respectively; and 

(2) the relationship between the frequency ratio fymlfnw, and 

fw'fnw, and Cvy and fwlfnw for the same cases as above are 

shown in Fig. 5.4.7 through Fig. 5.4.12. 

The experimental conditions of these test cases are shown in Table 1 

and are explained in section 4-6-5. The test cylinder was free to 

vibrate only in the transverse direction in the runs of CASE A and 

CASE AB, while in those of CASE B it was free to vibrate in any 

direction. 

In CASE A-1 and CASE A-2, the damping factor of the test cylinder in 

air, eta, was 0.001. However, in CASE AB-1 and CASE AB-2, ; ta was 

changed from 0.001 to 0.021 by using the electro-magnetic damper in 

order to study the influence of the damping factor on the 

vortex-excited vibration of the test cylinder in waves. The surface 

KC number was fixed at about 12 for CASE A-1, CASE AB-1 and CASE B-1, 

and it was fixed at about 20 for CASE A-2, CASE AB-2 and CASE B-2. 
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The frequency ratio fw/fnw was varied by varying the wave frequency, 

fw. The value of SKC, me/pD2, Cta,, and the reduced damping 2me(2n 

; ta)/pD2 are shown in these figures. 

The purpose of these figures is to show the character of the 

vortex-excited vibration of the test cylinder in waves for each of the 

test cases described above. The detailed features of 1-ha 

vortex-excited vibration of the test cylinder around fw/fnw - 1/3 and 

1/2 will be described later. The following main characteristics for 

each test case are shown in Fig. 5.4.1 through Fig. 5.4.12. 

(a) CASE A-1, (SKC a12, me/pD2 - 15.7, Cta - 0.001) 

When the frequency ratio approaches the values of fW/fnw ý 1/2, 

1/3 and 1/4,: 

(1) The value of Yhm/D has a peak value, 

(2) The value of fym is equal to fnw, and 

(3) The value of Cvy has a very small value as shown in Fig. 

5.4.1 and Fig. 5.4.7. 

When the value of CVy is less than 0.01, the time history of 

the vortex-excited vibration of the test cylinder, yh, recorded 

on the U-V recorder, is very regular. It also shows that the 

amplitude of the vibration is not intermittent and is not 

modulated. We refer to these phenomena perfect resonant 

vibration. The appearance of these peak values of Yhm/D may be 

due to the following. 
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(1) the resonance between the frequency of the harmonic 

component of the lift force and the natural frequency of 

the test cylinder, and 

(2) the amplification of each harmonic component of the lift 

force by means of the increased vortex strength and the 

correlation in the 'phase of vortex shedding along the 

cylinder's axis. 

The maximum peak value of Yhm/D occurs at fw/fnw a 1/2. This 

may be due to the domination of the second harmonic component 

of the effective lift coefficient, CLe(2), at around SKC - 12 

observed for the stiff cylinder (see Fig. 5.3.1). The peak 

value of Yhm/D at fw/fnw a 1/4 is small compared with that at 

fw/fnw = 1/2. This may be due to the lower value of CLe(4) and 

that the amplification of CLe(1t) was suppressed by the 

existence of the larger value of CLe(2). 

(b) CASE A-2 (SKC ä 20, me/pD2 m 15.7. Cta - 0.001) 

The perfect resonant vibration described above at fw/fnw = 1/2, 

1/3,1/4,1/5,1/6 are shown in Fig. 5.4.2 and Fig. 5.4.8. 

These phenomena may be also associated with the same factors as 

described above. In this case, the maximum peak value of Yhm/D 

occurs at fw/fnw s 1/3. However, the difference between this 

maximum peak value and the other peak values is small, compared 

with that in CASE A-1. This may be due to the small difference 

between each harmonic component of the lift forces observed for 

the stiff cylinder. 
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(c) CASE AB-1 (SKC a 12, me/pD2 - 15.7, eta - 0.021) 

The appearance of resonant vibration at fw/fnw 9 1/2,1/3 is 

shown in Fig. 5.4.3 and Fig. 5.4.8. In this case, the maximum 

peak values of Yhm/D are smaller, compared with those of CASE 

A-1, and the peak value of Yhm/D at fw/fnw = 1/3 is not so 

clear as that in CASE A-1. This is probably due to the 

increased damping. 

(d) CASE AB-2 (SKC a 20, me/PD2 ' 15.7. Cta - 0.021) 

The appearance of resonant vibration at fw/fnw = 1/2 and 1/3 is 

shown in Fig. 5.4.1 and Fig. 5.4.9. Both peak values of Yhm/D 

at fw/fnw 1/2 and 1/3 are smaller, compared with those of 

CASE A-2 because of the increased damping. 

(e) CASE B-1 (SKC = 12, me/pD2 - 19.6, ; ta - 0.008) 

The clear perfect resonant vibration appears at fw/fnw = 1/2. 

However, the appearance of perfect resonant vibration at fw/fnw 

1,1/3,1/4 and 1/5 are not clear as shown in Fig. 5.4.5 and 

Fig. 5.4.10. 

(P) CASE B-2 (SKC s 20, me/pD2 s 19.6, Cta - 0.008) 

The appearance of the perfect resonant vibration at fw/fnw a 1, 

1/2,1/3,1/4 and 1/5 is shown in Fig. 5.4.6 and Fig. 5.4.12. 

The phenomena of resonant vibrations at fw/fnw 2 1/2 and 1/3 

are nearly similar to those of CASE A-2. 
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As described above, the variation of the vortex-excited vibration of 

the test cylinder with fw/fnw depends on the value of SKC and the 

value of ; ta, The difference between the vortex-excited vibration of 

the test cylinder which was left free to vibrate in any direction and 

the vortex-excited vibration of the test cylinder which was left free 

to vibrate only in the transverse direction, is not clear in the 

present study. 

The appearances of the perfect resonant vibration at fw/fnw c 1/2 and 

1/3, in the range of rms KC value 10 to 15, were reported by Sawaragi 

et al. (1977) and Isaacson et al. (1981). However, the appearance of 

the resonant vibration at fw/fnw a 1/4,1/5 and 1/6 at SKC ä 20, have 

apparently never been previously reported. These multi-appearances of 

the resonant vibration should be noted as a significant feature of the 

response of a flexibly supported cylinder in waves. 

5.4.2 Detailed description of the vortex-excited vibration with 

r If w nw 

In order to study the details of the phenomena of the vortex-excited 

vibration of the test cylinder at fw/fnw a 1/2 (for SKC = 12) and 1/3 

(for SKC ä 20), the relationships between fw/fnw and Yhm/D, fym/fnw 

and Cyy, for CASE A-1, CASE A-2, CASE AB-1, CASE AB-2 and CASE B are 

shown respectively in Fig. 5.4.13 (a), (b) and (c) through Fig. 5.4.17 

(a), (b) and (c). 

In order to show the characteristics of the variation with time of the 

amplitude of the test cylinder, several examples of the record of Yh 

on the U-V recorder for CASE A-1, for fw/fnw in the range between 

0.485 to 0.543, are shown with those of CASE AS-1 in Fig. 5.4.18. The 
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experimental conditions and the resulting analysis are shown in Table 

5.2. As shown in Table 5.2, the experimental wave conditions of each 

run of CASE A-1 and CASE AS-1 were the same. Therefore, the results 

of CASE A-1 are classed with the notation (a) and those of CASE AS-1 

are classed with the notation (b) in Fig. 5.4.18. 

(a) CASE A-1 (SKC a 12, me/pDZ - 15.7, Lta - 0.001; see Fig. 

5.4.13) 

As the frequency ratio, fw/fnw, increases from 0.45 to 0.503, 

the value of Yhm/D increases smoothly except for some small 

scatter around fw/fnw = 0.193. It takes the peak value of 0.74 

at fw/fnw - 0.504. The frequency ratio fym/fnw in this range 

of fW/fnw is also plotted from the relationship 

ff 
1m 2w 
nw nw 

(5-4-2) 

The value of CVy has a small value in this range of fw/fnw 

except for the appearance of large values around fw/fnw 

0.493. The small value of CVy indicates the regularity of the 

time history of the vortex-excited vibration of the test 

cylinder as shown in Fig. 5.4.18. The large value of CVy shows 

the irregularity of the time history of the vortex-excited 

vibration of the test cylinder. In this case as shown in Fig. 

5.4.18 runs 622w3(a) and 622w3(1I), the amplitude is 

intermittent and modulated. 
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The peak value of Yhm/D appears at fw/fnw a 0.503 and not at 

fw/fnw - 0.500 as might be expected. The time-history of the 

vibration of the test cylinder, Yh, is very regular as shown in 

Fig. 5.4.18 (run No. 622w9(a)). The detail of this record is 

shown in Fig. 5.4.19 with the record of the displacement of the 

water surface elevation, n. The frequency of the vibration of 

the test cylinder, fym, is just two times the wave frequency, 

fw, as shown in this figure. The appearance of the peak value 

of Yhm/D at fw/fnw ä 0.503 (not at fw/fnw = 1/2) may be due to 

an increase in the natural frequency of the test cylinder in 

the vortex-excited condition from the natural frequency of the 

test cylinder in the condition of free vibrations in still 

water. This increase of the natural frequency may be caused by 

the variation of the water surface elevation in the waves and 

the variation of the added mass coefficient in the vortex- 

excited condition. If we assume, that it is 
. 
due only to the 

latter, the added mass coefficient at perfect resonance Car can 

be estimated by using Eq. (3-3), Eq. (3-1) and Eq. (1-8) as 

Car - 0.79 

The added mass coefficient in the condition of free vibration 

in still water, Cas, is also estimated from measurements by 

using the equations above as 

Cas - 1.04 

The theoretical value of Cas is 1.098 calculated by using 

Eq. (5-11-2) (Bearman et al. 1984) for B- 530. 
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Cas 1+-+ (Tß)_3/2 (5-4-2') 

This equation was defined from Wang's (1968). Its second term 

was given by Stokes (1901) for the case of spherical and 

cylindrical pendulum bobs oscillating at low KC number. (Note 

that, when a circular cylinder is fixed in oscillating flow, 

the first term of Eq. (5-lI-2') is 2, and when a circular 

cylinder is vibrating in still water the first term of this 

. equation is 1. ) The difference between the experimental value 

of Cas - 1.04 and theoretical value of Cas - 1.10 may be due to 

the appearnce of boundary layer separation and vortex-shedding 

at SKC value above 2, also the three-dimensional effect of the 

flow. It is worth noting that experimental results of Sarpkaya 

(1978) show the decrease of the added mass coefficient of a 

cylinder undergoing forced transverse oscillations in a uniform 

flow, for_the perfect resonant condition. However, King (1971) 

reported that the added mass coefficient of a cylinder 

vibrating in the in-line direction with vortex-excited 

condition in steady current flow is not affected by streaming 

flow and vortex-shedding. 

Returning to Fig. 5.4.13, in the range of fw/fnw between 0.503 

to 0.515, the value of Yhm/D decreases smoothly with increasing 

fw/fnw" The value of fym/fnw still agrees with Eq. (5-l-2) 

indicating that the oscillation is coupled to the wave 

frequency, referred to as "wave coupling". 

The value of CVy is small because the amplitude of yhm is 

regular as shown in Fig. 5.4.18 (622w10(a) through 622w13(a)). 
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In the range of fw/fnw between 0.515 to 0.519, the value of 

Yhm/D decreases with increasing fw/fnw and has a trough value 

of about 0.41 at fw/fnw ä 0.519. The value of fym/fnw deviates 

downwards from the calculated value of Eq. (5-14-2) as shown in 

this figure. The value of CVy becomes large because the 

amplitude of Yh is intermittent and modulates as shown in Fig. 

5.4.18 (622w16 and 622w15). 

In the range of fw/fnw between 0.519 to 0.523, the value of 

Yhm/D increases rapidly from the trough value of Yhm/D _ 0.41 

and reaches around Yhm/D - 0.55. The corresponding values of 

fym/fnw are around fym/fnw z 1.018. The value of CVy is small, 

but it is not so small as the value of Cvy in the range of 

fw/fnw between 0.49 to 0.514 because the amplitude of Yh 

modulates without intermittency in the amplitude of yh as shown 

in Fig. 5.4.18 (622w16(a)). 

The detail of the variation of Yh and n with time, t, for the 

data of run No. 622w16(a) are shown in Fig. 5.4.20. The 

variation of the phase angle between Yh and n can be found in 

this figure. This is due to the difference between the values 

of fym and 2fw (see Fig. 5.4.18). The appearance of modulation 

of the amplitude Yh may be due to the variation of the 

vortex-shedding strength which is caused by the variation of 

phase angle above. Now we call this phenomenon "vortex 

coupling" because Yhm/D increases, and the value of fym is 

restricted to a constant which is between the natural frequency 

of the test cylinder and the vortex-shedding frequency 

expressed by Eq. (5-1I-2) in this case. 
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At PW/fnJ greater than about 0.523, some points are grouped 

around a constant value of Yhn/D and the others decrease 

smoothly with increasing fw/fnw. When Yhm/D is around 0.55, 

the value of fym/fnw is around 1.018 and Cyy has a small value 

at about 0.05. When Yhm/D decreases with increasing fw/fnw, 

the value of fw/fnw is scattered between 1.018 and the 

calculated value from Eq. (5-4-2). In this case, the value of 

CVy is between 0.2 and 0.35 because the amplitude of yh is 

intermittent and modulates as shown in Fig. 5.4.18 (622w19(a) 

through 622w22). 

However, for the vortex-excited vibration of the test cylinder 

in the range of fw/fnw between 0.31 to 0.34, this "vortex 

coupling" does not appear. The peak value of Yhm/D appears 

around fw/fnw - 1/3 and the value of fym/fnw follows the 

calculated line from Eq. (5-4-3). 

ff 

py -3 fw (5-4-3) 
nw nw 

The value of Cvy becomes less than 0.01 just around fw/Pnw 

1/3. 
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(b) CASE A-2 (SKC a 20, me/pD2 - 15.7. Gta " 0.001; see Fig. 

5.4.14) 

In the range of fw/fnw between 0.32 and 0.336, the value of 

Yhm/D increases smoothly with increasing fw/fnw. The peak 

value of Yhm/D appears at fw/fnw a 0.336. In this range of 

fw/fnwo the value of fym/fnw follows the calculated line from 

Eq. (5-4-3). The value of Cvy is less than 0.05. 

In the range of fw/fnw between 0.336 and 0.34, Yhm/D decreases 

rapidly with increasing fw/fnw and it takes a trough value at 

fw/fnw a 0.31. The-value of fym/fnw follows Eq. (4-5-3), but it 

deviates downward at around fw/fnw - 0.34. The value of Cry is 

less than 0.05, but it takes a large value around fw/fnw 

0.34. 

In the range of fw/fnw between 0.34 to 0.364, the value of 

Yhm/D increases rapidly from the trough value and reaches 

approximately Yhm/D - 0.65. The value of fym/fnw is plotted 

around fym/fnw - 1.01 and Cvy is less than 0.05. These results 

suggest that vortex coupling is occurring. 

In the range of fw/fnw between 0.36 to 0.38, the value of Yhm/D 

decreases smoothly with increasing Pw/Pnw" 

The vortex-excited vibration described above is similar to that 

of CASE A-1 (the range of fw/Pnw between 0.45 to 0.55). There 

is clear evidence of vortex coupling found in this case and the 

range of fw/fnw over which it occurs is wider than that of CASE 

A-1. 
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The appearance of the two peak value of Yhm/D is also shown in 

the vortex-excited vibration for the range of fw/fnw between 

0.48 to 0.55. However, the deviation of fym/fnw from the 

calculation line of Eq. (5-4-2) does not appear, suggesting that 

the oscillations are mainly wave coupling in this range. 

(c) CASE AB-1 (SKC a 12, me/pD2 - 15.7, Cta - 0.021; see Fig. 

5.4.15) 

CASE AB-2 (SKC ä 20, me/pD2 - 15.7, Cta - 0.021; see Fig. 

5.4.16) 

The appearance of vortex coupling can not be found for these 

two cases. Therefore, the dynamic response curves of Yhm/D 

with fw/fnw are simpler compared with those of CASE A-1 and 

CASE A-2. The value of fym/fw around fw/fnw - 1/2 or 1/3 agree 

well with the calculated line from Eq. (5-k-2) or Eq. -(5-l1-3). 

Obviously the absence of vortex coupling for these two cases is 

due to the higher damping. The absence of lock-on for the 

dynamic response of a cylinder with high damping in steady flow 

has been reported by Unemara (1971). 

(d) CASE B-2 (SKC = 20, me/pD2 - 19.6, Cta e 0.008; see Fig. 

5.4.17) 

The features of the vortex-excited vibration are quite similar 

to those for CASE A-2. The appearance of vortex coupling is 

also found in the vortex-excited vibration for the range of 

fw/fnw between 0.23 to 0.28. 
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CASE A-1 me/pD2=15.7 SKC=12 eta=0.001 
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Fig. 5.4.13 The Plots of Yhm/D, fYM /fnw and CVY against fW/fnw for CASE A-1 
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(a)--CASE A-1 eta=0.001 fn = few= 1.461Hz. 

(b)--CASE AS-1 ýta=0.021 fn _ fnw= 1,461Hz 

(a) (b) 

622W1 fw/fn=0.485 

(a) (b) 

622W2 fw/fn=0.487 

_-. <a) = (b) 
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(a) (b) _ _.: 
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(a) (b> 

622W6 fw/fn=0.497 
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(a) (b) 
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The Variation of the Amplitude of the Cylinder with Time(t) for CASE A-1 
and CASE AS-1 for fw/fnw in the Range o between 0.485 to 0.43 
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(a) --CASE A-1 ýtd = 0.001 fn= fnw _ 1-461Hz 

(b) --CASE AS-1 ý tQ = 0-021 fn = fnw=1.461 Hz 
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Fig. 5.4.18 (continued) 
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The most remarkable result described above is the appearance of the 

two peaks of Yh/D, produced by the perfect resonance coupled with wave 

and vortex coupling. The perfect resonance appears in the range of 

lock-on in the case of steady flow, but in waves, it appears only near 

to fw/fnw - 1/2,1/3,1/4 ... as described above, elsewhere vertex 

coupling may occur as described above. 

The appearance of two peaks of response in waves has been reported by 

Zedan et al. (198,0). However, it is not clear whether their results 

were due to the same mechanism. 

5-4-3 The variation of Yhm/D With SKC 

In order to show how the value of Yhm/D varies with SKC, the 

relationships between Yhm/D and SKC for each CASE A-3, A-', A-5, A-6, 

A-7, A-8, A-9, A-11, CASE AB-4, AB-5, and CASE B-3, B-', B-5 are shown 

in Fig. 5.4.21 through Fig. 5.4.21. In each of these test cases, the 

frequency ratio fw/fnw was fixed at one value around the perfect 

resonant frequencies, fw/fnw - 1/2,1/3 or 1/4. Therefore, using a 

constant water depth, the value of fw/fnw is determined by kd in the 

present data. The value of kd corresponding to each value of fw/fnw 

is also shown in these figures. The experimental conditions of these 

test cases are shown in Table 1 and explained in section 4-6-5. In 

the runs of CASE A and CASE AB, the test cylinder was free to vibrate 

only in the transverse direction, while in those of CASE B it was free 

to vibrate in any direction. In the runs of CASE A, the damping 

factor of the test cylinder in air, Zta, was 0.001. On the other 

hand, in the runs of CASE AB, Cta was changed from 0.001 to 0.021 by 

using the electro-magnetic damper. 
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(a) The runs of CASE A (me/pD2 = 15.7, eta - 0.001) 

The relationship between Yhm/D and SKC for CASE A-11; fw/fnw = 

0.525, CASE A-9; fw/fnw 0.503, CASE A-8; fw/fnw = 0.500, and 

CASE A-7; fw/fnw - 0.495 are shown in Fig. 5.4.21. 

The similar relationship for CASE A-6 (fw/fnw - 0.35), CASE A-5 

(fw/fnw 0.335), CASE A-4 (fw/fnw - 0.26), and CASE A-3 

(fw/fnw 0.25) are shown in Fig. 5.4.22. 

The value of Yhm/D for CASE A-9 (fw/fnw - 0.503, kd - 1.83) 

probably shows the peak value of perfect resonance, which may 

occur around fw/fnw = 1/2 as shown in Fig. 5.4.13 for SKC a 12, 

and Fig. 5.4.14 for SKC a 20. This value is large in the range 

of SKC between 10 to 25. This may be due to the domination 

of the second harmonic component of the effective lift 

coefficient, CLe(2), in the range of SKC between 10 to 25, as 

shown in Fig. 5.3.1(c) for CASE AS-5, kd - 1.79, and the 

amplification of CLe(2) produced by vortex-excited vibration. 

This amplification of CLe(2) will be considered later. 

The values of Yhm/D for CASE A-7 (fw/fnw = 0.495, kd - 1.78) 

and for CASE A-11 (fw/fnw = 0.525, kd - 1.97) are plotted in 

order to show the appearance of vortex-coupling. As shown in 

Fig. 5.4.12 for CASE A-1; SKC - 12 and in Fig. 5.4.13 for CASE 

A-2; SKC 20, when vortex-coupling occurs in this case at 

rw/fnw - 0.525, the value of Yhm/D is probably larger than that 

of Yhm/D at fw/fnw = 0.495. 
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Although further from resonance, the value of Yhm/D for fw/fnw 

= 0.525 is similar to the value of Yhm/D for fw/fnw = 0.495 

over the whole range of SKC. This may be due to the appearance 

of vortex-coupling. In the range of SKC between 13 and 17, the 

value of Yhm/D for fw/fnw = 0.525 seems to be smaller than the 

value of Yhm/D for fw/fnw 0.495. This is probably due to the 

absence of vortex-coupling or the variation of the range of 

vortex-coupling for fw/fnw" 

The value of Yhm/D for fw/fnw " 0.335, kd - 1.01 (see Fig. 

5.4.22) probably shows the peak value of perfect resonance 

close to fw/fnw a', 1/3 as shown in Fig. 5.4.13 for SKC a 12 and 

Fig. 5.4.14 for SKC a 20. The appearance of a peak value at 

SKC = 22 may be due to the domination of the third harmonic 

component, " CLe(3), around SKC a 20 as shown in Fig. 5.3.1(b) 

for-CASE AS-4, kd - 1.01. The convergence of Yhm/D for fw/fnw 

0.35 to Yhm/D for fw/fnw - 0.335, in the range of SKC between 

15 and 25, may be due to the appearance of vortex-coupling as 

shown in Fig. 5.4.14 for SKC _ 20. It should be noted that 

although it is further, from the response frequency Yhm/D for 

fw/fnw ' 0.35 is larger than Yhm/D for fw/fnw - 0.335 for the 

range of SKC over 26. 

The value of Yhm/D for fw/fnw = 0.251, kd = 0.71 has a peak 

value around SKC = 32 and is large in the range of SKC between 

30 and 36. However, in' the range of SKC < 27, it is smaller 

than Yhm/D for fw/fnw - 0.26. This may be due to the 

appearance of a peak value of Yhm/D at fw/fnw a 0.26 as shown 

in Fig. 5.4.2. The value of Yhm/D for fW/fnw - 0.26 is large 

over a wider range of SKC, between 20 and 40. 
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{ 

(b) The runs of CASE AB (me/pD2 - 15.7, Cta m 0.021) 

The variation of Yhm/D with SKC for CASE AB-4; fw/fnw - 0.335, 

Cta ' 0.021 and CASE AB-5; fw/fnw = 0.503, Gta - 0.021 are 

shown in Fig. 5.11.23. In order to study the influence of the 

damping factor on the results, the data of Yhm/D for CASE A-5; 

fw/f'nw - 0.335, Lta - 0.001 and CASE A-9; fw/fnw - 0.503, Cta - 

0.001 are also plotted in this figure. 

In both cases, values of Yhm/D for CASE AB-4 and CASE AB-5 are 

smaller than those of CASE A-3 and CASE A-9, because of the 

increased damping. However, the variation of Yhm/D with SKC 

for CASE AB-3 is similar to that of CASE A-5 and the variation 

of Yhm/D with SKC for CASE AB-5 is also similar to that of CASE 

A-9. 

(c) Runs of CASE B(me/pD2 = 19.6, Cta = 0.008) 

The variation of Yhm/D with SKC for CASE B-3 (fw/fnw - 0.25, kd 

= 0.57), CASE B-1 (fw/fnw = 0.336, kd - 0.8) and CASE B-5 

(fw/fnw = 0.506, kd - 1.36), are shown in Fig. 5.4.24. The 

phenomena observed for CASE B-5 (fw/fnw = 0.506) and CASE B-4 

(fw/fnw = 0.336) are similar to those of CASE A-9 (fw/fnw - 

1.83) and CASE A-5 (fw/fnw - 0.335) respectively. However, the 

maximum value of Yhm/D of CASE B-3; fw/fnw - 0.25 appears at 

around SKC a 25 instead of SKC a 32, for CASE A-3; fw/fnw 

0.25. 
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An important and unexpected conclusion from the results described 

above, is that the variation of Yhm/D with SKC for several values of 

fw/fnw has a broad response over a wide range of SKC. - This may be 

also due to the non-linear dynamic amplification of each harmonic 

component of the lift force by means of the increased vortex strength 

and correlation in the phase of vortex-shedding along the cylinder 

axis. 

The results of the present study are similar to those of Isaacson et 

al. (1981) which was restricted to the range of SKC between 5 to 18. 

The results for SKC over 20 have apparently never been previously 

reported. The appearance of the large value of Yhm/D for fw/fnw 

0.25 over a broad range of SKC should be noted as a significant 

, 
"feature of the response of a flexibly supported cylinder. Although a 

large response was observed at fW/fnw a 1/5 and 1/6, not 

enough data at these frequencies was collected to plot the results as 

a function of SKC. 

5-4-4 The variation of Yhm/D at perfect resonance with normalised 

damping 

In order to study the influence of the damping on the value of Yhm/D 

at the perfect resonant condition, the relationship between Yhm/D and 

the normalised damping, 2me(2, ff Cta)/PD2, for CASE AC-2, CASE AC-3, 

CASE AC-4 and CASE AC-5, are shown in Fig. 5.4.25 and Fig. 5.4.26. 

The experimental conditions of these test cases are shown in Table 1. 

It should be noted that 2me(2ir Cta)/PD2 is a function of only Cta 

because the mass ration me/pD2 is fixed in these test cases. In this 

case, the test cylinder was free to vibrate only in the transverse 

direction. In the runs of CASE AC-2, CASE AC-3 and CASE AC-4, the 

frequency ratio fw/fnw was fixed at fw/fnw = 0.503 at which the 
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perfect resonance probably occurred as shown in Fig. 5.4.13 for SKC 

12 and Fig. 5.4.14 for SKC ä 20. Each value of SKC for these test 

cases was fixed as follows; CASE AC-2, SKC - 8.7, CASE AC-3, SKC - 12, 

CASE AC-4, SKC - 20. On the other hand, in the runs of CASE AC-5, the 

frequency ratio fw/fnw is fixed at fw/fnw - 0.336 at which the perfect 

resonance probably occurred as shown in Fig. 5.4.14 and SKC was fixed 

at 20. 

In the case of steady flow, good correlation between the normalised 

maximum amplitude, Ay/D, in the perfect resonant condition and the 

normalised damping has been reported by Griffin et al. (1975), and 

Iwan (1975). Therefore, the data of Ay/D of cylinders pivoted 

flexibly insteady flow, obtained by Vickery et al. (1962), and 

Hartlen et al. (1968), after Iwan (1975), are plotted in these figures 

for comparison with present data. 

The data of CASE AC-2; SKC - 8.7, CASE AC-3; SKC - 12 and CASE AC-4; 

SKC - 20 are shown in Fig. 5.4.25. Each Yhm/D for these test cases 

increases with decreasing normalised damping and approaches a limiting 

value. This phenomenon is similar to that of steady flows. However, 

the limiting values of the present data are smaller compared with that 

of steady flow. This may be due to the difference of the vortex 

shedding and vortex-excited vibration for these two cases. Yhm/D for 

CASE AC-3 and CASE AC-4 are nearly the same as those of steady flow 

around 2me(21r ; ta)/PD2 ä 5. (This may show the amplification of lift 

force). 

In order to show the influence of fw/fnw on the variation of Yhm/D 

with normalised damping, the results of CASE AC-H; (fw/fnw - 0.336, 

SKC - 20) and CASE AC-5 (fw/fnw m 0.336, SKC - 20) are shown together 
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in Fig. 5.4.26. The difference between them is negligible in the 

range of 2me(2ir tta)/PD2 <1 . 5. However, Yhm/D of CASE AC-5 is 

smaller compared with those of CASE AC-4 around 2me(2n Cta)/pD2 - 4. 

As shown in Eq. (3-29) on a linearised model, the value of Yhm/D may be 

expected to be inversely proportional to the normalised damping. 

However, this relationship is not apparent in Figures 5.4.25 and 

5.4.26. This may be due to the variations of the lift force or 

damping coefficient, probably produced by the vortex-excited 

vibration. 

The appearance of limiting values of Yhm/D for small values of the 

normalised damping suggests a state of stable equilibrium in which an 

increase in Yhm/D is associated with an increase in fluid damping (as 

observed in the case of free vibration in still water, see Fig. 

5.2.6). 

The number of previous measurements of the response amplitude at 

perfect response in waves or in harmonic flows is small, as described 

in Chapter 2. The comparison between Yhm/D for CASE AC-2, CASE AC-3 

and CASE AC-4, and Yhm/D or Yhmax/D obtained by Zedan et al. (1980), 

Isaacson et al. (1981), Angrili et al. (1982), Bullock et al. (1978) 

and Rajabi (1979) are shown in Fig. 5.4.27. The data of Rajabi (1979) 

was obtained in harmonic flow. The experimental conditions and 

symbols in Fig. 5.4.27 for these data are shown in Table 5.3. Yx 

is the maximum amplitude at still water level in waves, and in the 

case of harmonic flow the maximum amplitude. When cylinder vibrates 

at nearly perfect resonant condition, the difference between Yhm/D and 

Yhmax may be small as described previously. 
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The data for cylinders pivoted flexibly in steady flow are also 

plotted in this figure. 

The correlation between the normalised amplitudes Yhm/D or Yhmax/D for 

perfect -resonant conditions, in waves or in harmonic flows, with 

normalised damping is not as good as that for steady flows. 

The present data is consistent with the data obtained by Zedan et al. 

(1980), Bullock et al. (1978) and Rajabi (1979). The agreement with 

the results of Isaacson et al. (1981) and Angrili et al. (1982) are 

poor. 

5-4-5 Characteristics of the lift force acting on the vortex-excited 

test cylinder in waves 

As described in (3-2-4), the lift force acting on the observed 

vortex-excited cylinder can be calculated by using Eq. (3-23) or 

Eq. (3-29) on the basis of a linear model. Therefore, when the mean 

value of both Yhm/D and fym/fnw are measured, the mean value of the 

effective coefficient of the lift force acting on the observed 

vortex-excited cylinder, CLm, may be calculated as follows by 

modifying Eq. (3-29). 

mf 
81T2. (PD2). {1 

fß)2 + (2Ct. 
f 

fMY)2 Y 
CLm nfnD 

3Fs. (kd). SKC2. (f. )2 
n 

(5-4-4) 
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As described previously, the damping factor in the vortex-excited 

condition has an unknown value. Therefore, the following three kinds 

of damping factors, (measured in free vibration tests in air or in 

still water; see Fig. 5.2.1 through Fig. 5.2.4. ), are used to 

calculate CLm: 

Cta ° The damping factor in air at Yhi/D - 0.1 

etw - The damping factor in still water at Yhi a 0.1 

dtv - The damping factor in still water at Yhi/D - Yhm/D. 

(It should be noted that Ctv is a function of Yhi/D as shown in 

Fig. 5.2.3. ) 

Now, we define the lift coefficient calculated by using Cta as Coma, 

the lift coefficient calculated by using etw as CLmw, and the lift 

coefficient calculated by using Ctv as CLmv. 

5-1-5-1 The variation of lift coefficients CLma' C Lmw and CLv 

with fw/f 
nw 

In order to study the variation of the lift force acting on the 

vortex-excited cylinder with fw/fnw around fw/fnw m 1/2 (kd 1.8), 

the relationship between fw/fnw, and Yhm/D and CLma, CLmw and CLmv for 

CASE AB-1 (SKC ä 12, cta m 0.021) are shown in Fig. 5.4.28 (a) and 

(b). 

The lift force acting on the test cylinder when mounted stiffly in 

nearly the same wave conditions as those used in CASE AB-1 were 

obtained in CASE AS-1 (SKC ä 12). The relationships between kd and 
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CLemax, CLe and CVL for CASE AS-1 were shown previously in Fig. 5.3.5. 

As shown in this figure, CVL is large around kd a 1.8, indicating that 

the amplitude of the lift force is unstable. 

In order to evaluate the amplification of the lift coefficients, CLma, 

CLmw and CLmv for CASE AB-1, the second harmonic component of the lift 

coefficient, CLe(2), for CASE AS-1 is plotted in Fig. 5.4.28. The 

frequency of this CLe(2) corresponds to fym, because fym/fnw for CASE 

AB-1 follows Eq. (5-14-2) at around fw/fnw a 1/2 (kd a 1.8) as shown in 

Fig. 5.4.15. 

The values, CLmaº CLmw and CLmv are larger than CLe(2) over the whole 

range of fw/fnw in Fig. 5.4.28. This probably shows the amplification 

of lift force by means of vortex-excited vibration. It is interesting 

to note that the amplification of these lift coefficients has a 

minimum value around perfect resonance (fw/fnw = 1/2). In this range 

the vibration is a result of a state of equilibrium between vortex 

excitation and fluid damping. The minimum value in lift coefficient 

suggests that for large amplitudes the damping increases 

disproportionately. 

5-4-5-2 The variation of lift coefficient, CLma' CLmw and C Lmv 

with SKC 

In order to inspect the variation of the lift force acting on the 

vortex-excited cylinder with SKC, the relationships between SKC, and 

Yhm/D and CLm (CLma, CLmw, CLmv) for CASE A-5, A-9, AB-5 and AB-4 are 

shown respectively in Fig. 5.4.29 (a) and (b) through Fig. 5.4.32 (a) 

and (b). 
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In each of these test cases,, the frequency ratio fw/fnw was fixed at 

one value around the perfect resonant frequencies; fw/fnw a 1/2 for 

CASE A-9 and AB-5, fw/fnw = 1/3 for CASE A-5 CASE AB-4. In the runs 

of CASE A-9 and A-5, the damping factor in air, Cta, was 0.001. On 

the other hand, in the runs of CASE AB-5 and AB-4, Cta was changed 

from 0.001 to 0.021 by using the electro-magnetic damper. 

The lift forces acting on the test cylinder when mounted stiffly in 

the same wave conditions as those used in CASE A-9 and CASE AB-5 were 

obtained in the runs of CASE AS-5 (kd - 1.79). The second harmonic 

component of the lift coefficient, CLe(2) for CASE AS-5 is plotted in 

Fig. 5.4.29 and Fig. 5.4.30 in order to show the amplification of the 

lift coefficients CLma, CLmw and CLmv for CASE A-9 (fw/fnw - 0.503, kd 

1.83, Cta = 0.001) and CASE AB-5 (fw/fnw ' 0.503, kd - 1.83, Cta ' 

0.021). The lift force acting on the test cylinder which was mounted 

stiffly in similar waves as those used in CASE A-5 and CASE AB-4 were 

obtained in the runs of CASE AS-4 (kd - 1.01). The third harmonic 

component of lift coefficient, CLe(3) for CASE AS-4 is plotted in Fig. 

5.4.31 and Fig. 5.4.32 in order to show the amplification or 

attenuation of the lift coefficients CLmas CLmw and CLmv for CASE A-5 

(fw/fnw ' 0.335, kd - 1.01, eta - 0.001) and CASE AB-4 (fw/fnw 

0.335, kd - 1.01, Cta m 0.021). 

(1) Discussion of CASE A-9 (fW/fn, = 0.503, kd - 1.83, Cta ' 0.001, 

Ctw - 0.004) and CASE AB-5 (fwlfnw = 0.503, kd - 1.83, Cta ' 

0.021, etw - 0.023) 

The variation of each of the coefficients CLma, CLmw and CLmv 

with SKC for CASE A-9 are shown in Fig. 5.4.29(b). The 

difference between CLma and CLmv is the result of a large 
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difference between Cta and Ctv as shown in Fig. 5.2.23 (Ie 

OA). Each of CLma, CLmw and CLmv has a peak value at SKC c 8. 

CLma, CLmw and CLmv are larger than CLe(2) in the range of SKC 

between 5 and 12. This show the amplification of the lift 

force. On the other hand,, they are smaller than CLe(2) in the 

range of SKC over 15. This shows the attenuation of the lift 

force. 

The variations of each CLma. CLmw and CLmv with SKC for CASE 

AB-5 are shown in Fig. 5.4.30(b). In this case, the difference 

between CLma and CLmv is smaller than that for CASE A-9 because 

the difference' between eta and Ztw for CASE AB-5 Is small as 

shown in Fig. 5.2.23 (Ie - 14A). 

The lift coefficients'CLma, CLmw and CLmv are also larger than 

CLe(2) in the range SKC between 5 and 15, and each of them has 

a peak value around SKC a8 as before. In the range of SKC 

over 15, each of them is nearly the same as CLe(2). 

The values of Yhm/D for CASE AB-5 are smaller than those of 

CASE A-9 because of the increase in the damping coefficient 

(eta ° 0.021 for CASE AB-5, eta ° 0.001 for CASE A-9). 

However, all three lift coefficients, but particularly CLma, 

for CASE AB-5 are larger than those for CASE A-9. These 

results suggest that the increased structural damping has the 

effect of reducing the amplitude of oscillation but increasing 

the lift coefficient. This shows the result of the state of 

equilibrium between vortex excitation and fluid damping. 
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(2) Discussion of CASE A-5 (fw/fnw ' 0.335, kd - 1.01, Cta - 0.001, 

etw - 0.004) and, CASE AB-4 (fw/fnw - 0.335, kd -1 . 01 , Cta 

0.021, Ctw - 0.021) 

The variation of Coma, CLmw and CLmv with SKC for CASE A-5 and 

CASE AB-ZI are shown in Fig. 5.4.31 and Fig. 5.4.32 

respectively. The difference between CLma and CLmv for CASE 

A-5 is larger than that of CASE AB-4 because of the increase of 

damping as described above. 

In CASE AB-4, CLma, CLmw and CLmv are nearly equal to CLe(2) 

in the range of SKC lower than 18. On the other hand, in the 

range of SKC over 18, they are larger than CLe(3), and have 

peak values around SKC = 20. This shows the amplification of 
1 

lift force in the range of SKC over 18. 

In CASE A-5, only CLmv is larger than CLe(3) in the range of 

SKC over 18. 

The values of Yhm/D for CASE AB-14 are smaller than those for 

CASE A-5 because of the increased damping. However, the lift 

coefficients, CLma, CLmw and CLmv for CASE A-5 are larger than 

those of CASE A-5 in the range of SKC over 18. This 

phenomenon, strongest for CLma, again demonstrates the state of 

equilibrium between vortex excitation and fluid damping as 

described above (1). 
J 

When fw/fnw is fixed about 1/2, oscillations occur over a wide range 

of SKC, but the amplification of lift force occurs in the range of SKC 

between 6-12, as shown in Fig. 5.4.29 and Fig. 5. L$30. It is 
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interesting to note that this range of SKC nearly corresponds to the 

range of KC, where the vortex-shedding from a stiffly mounted cylinder 

in waves is induced at twice the frequency of the wave frequency, for 

example, Chakrabarti et al. (1976), and Rhodes (1980). 

Similarly, when fw/fnw is fixed about 1/3, the range of SKC, where 

amplification of lift force occurs, nearly corresponds to the range of 

KC, where the vortex-shedding from a stiffly mounted cylinder in waves 

is induced at three times the frequency of the wave frequency, 

Chakrabarti et al. (1976), Rhodes (1980). Therefore it may be 

estimated that the existence of the amplification of the lift force is 

a function of fw/fnw and SKC. 

The results for the amplification of the lift force around SKC a 10 

-11.5 for fw/fnw : 1/2 and around SKC c 18 for fw/fnw - 1/3 have been 

reported by Isaacson and Maull (1981), Zedan and Rajabi (1981) 

Angrilli and Cossalter (1982). The following magnifications factor of 

lift force, M, (M . the lift coefficient acting on a vortex-excited 

cylinder/the lift coefficient acting on a stiffly mounted cylinder), 

have been obtained in their reports: 

(1) Isaacson and Maull (1981) 

M"2.85 (SKC " 10, fw/fnw : 1/2, kd - 1.02, me/pD2 - 6.69,6r 

-3.54) 

M"3.25 (SKC " 10, fw/fnw : 1/2, kd - 2.08, me/pD2 - 6.69, Sr 

- 3.59) 

- H"2.7 (SKC " 10, fw/fnn 2 1/2, kd - 3.88, me/pD2 - 6.69. Sr 

3.54) 
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(2) Zedan and Rajabi (1981) 

M-3.9 (SKC - 11.2, fw/fnw a 1/2, kd - 1.63, me/pD2 - 22.9,6r 

0.832) 

(3) Anglilli and Cossalter (1982) 

M-1.7 (SKC - 11.5, f /f 1/2, kd - 1.7, me/pD2 - 5.97, dr 

0.975) 

M=1.6 (SKC - 17.8, fw/fnw 1/3, kd = 1.6, me/PD2 - 5.97,6r 

0.975) 

Here 6r is reduced damping (or - 2me(2n eta)/pD2)" 

5-4-5-3 The variation of the lift coefficients, CLmal CLmw and 

C Lmy with Yhm/D 

In order to inspect the variation of the lift force acting on the 

vortex-excited cylinder .. with amplitude of the vibration, the 

relationship between Yhm/D, and the damping coefficient (Cta, Ctwo 

dtv) and the lift coefficient (CLma, CLmw. CLmv) for CASE AC-1, CASE 

AC-2 and CASE AC-5 are shown in Fig. 5.4.33 (a) and (b) through Fig. 

5.4.35 (a) and (b) respectively. The experimental condition of these 

test cases are shown in Table 1. In each one, the frequency ratio 

fw/fnw and SKC were fixed, and the damping factor Cta was changed from 

0.001 to 0.0226 by using the electro-magnetic damper. 

In CASE AC-1 and CASE AC-2, the frequency ratio fw/fnw was fixed at 

fw/fnw = 1/2 at which the perfect resonance probably occurred and each 

value of SKC for these cases was fixed as follows: CASE AC-1, SKC - 

6.2 and CASE AC-2, SKC - 8.7. 
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In CASE AC-5, the frequency ratio fw/fnw was fixed at fw/fnw s 1/3 at 

which the perfect resonance probably occurred as shown in Fig. 5.4.14 

and SKC was fixed at 20. 

(1) CASE AC-1 (fw/fnw ® 0.503, kd - 1.85, SKC - 6.2) 

The data of CASE AC-1 are shown in Fig. 5.4.33. As Yhm/D 

increases from Yhm/D S 0.2 to Yhm/D : 0.8, each lift 

coefficient increases. In order to show the amplification of 

these lift coefficients, the values of CLe(2) obtained from the 

measurement of the lift force acting on the stiffly mounted 

test cylinder in similar conditions are shown in this figure. 

(2) CASE AC-2 (fw/fnw - 0.503, kd - 1.88, SKC - 12) 

The data of CASE AC-2 are shown in Fig. 5.4.34. As Yhm/D 

increases from Yhm/D - 0.4 to Yhm/D - 0.7, each lift coeffi- 

cient decreases. In order to show the amplification of these 

lift coefficients, the value of CLe(2) obtained from the 

measurement of the lift force acting on the stiffly mounted 

test cylinder in similar wave conditions for CASE AC-2, is also 

shown in this figure. When Yhm/D exceeds about Yhm/D = 0.6, 

CLma and CLmw are smaller than CLe(2) - 0.45 and approaches 

zero. 

(3) CASE AC-5 (fw/fnw = 0.336, kd = 1.01, SKC - 20) 

The data of CASE AC-5 are shown in Fig. 5.4.35. As Yhm/D 

increases from Yhm/D ä 0.3 to Yhm/D = 0.45, each lift 

coefficient increases. Each of these lift coefficients has a 

maximum value at about Yhm/D ä 0.45. Therefore each lift 

coefficient decreases with increasing Yhm/D. However, the 

decrease in CLmv is not so clear as those in CLma and CLmw" 
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In order to show the amplification of those lift coefficients, 

the value of CLe(3) obtained from the measurement of the lift 

force acting on the stiffly mounted test cylinder in similar 

wave conditions for CASE AC-5 is shown in this figure. 

These phenomena clearly show the result of a state of equilibrium 

existing between vortex excitation and fluid damping and suggest that 

the maximum limiting value of Yhm/D is independent of structural 

damping as shown in Fig. 5.4.35(a). 

From those figures, the following observations of the lift force 

acting on the vortex-excited test cylinder in waves may be indicated: 

(1) When Yhm/D is lower than about Yhm/D - 0.45, the lift force 

coefficient increases with increasing Yhm/D. 

(2) The maximum amplification of the lift coefficient occurs about 

Yhm/D - 0.45. 

(3) When Yhm/D rises above Yhm/D a 0.45, the lift coefficient 

begins to decrease. 

It is interesting to note that these phenomena are quite similar to 

those for steady flow. In the case of steady flow, the following 

phenomena have been reported by Vickery et al. (1962) and Hartlen et 

al. (1968) after Blevin (1976) and King (1977). 

(1) At low amplitudes the lift coefficient increases with 

increasing amplitude. 
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(2) The maximum amplification of the lift coefficient appears in 

the range of the amplitude between 0.3 diameter and 0.5 

diameter. 

(3) As the amplitude increases over about 0.5 diameter, the lift 

coefficient begins to decrease and approaches zero. 

5-4-6- The phase angle between the vibration of the cylinder and the 

water surface elevation 

In order to, estimate the unknown value of the total damping factor, 

Cte, in the vortex-excited condition, the phase angle Wn) between 

the displacement of the test cylinder, Yh, and the water surface 

elevation, n, was obtained. The values of $g(n) are calculated by 

obtaining the coefficients of the Fourier expansion for the time 

records of n and yh. 

The relationship between fw/fnw, and Ihm/D, fym/fnw and W2) for the 

typical runs of CASE A-1 and CASE AB-1 are shown in Fig. 5.4.36 (a) 

and (b) and Fig. 5.4.37 (a) and (b). The resulting value of OB(2) are 

shown in Table 5.2. As shown in Table 1 and Table 5.2, the 

experimental wave conditions for each run of CASE A-1 and CASE AB-1 

were nearly the same. In CASE A-1, the damping factor of the test 

cylinder in air, eta, was 0.001. On the other hand, in CASE AB-1, Cta 

was changed from 0.001 to 0.021 by using the electro-magnetic damper. 
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As described in section 5-4-2, around the perfect resonance, the time 

histories of Yh for the runs of CASE A-1 and CASE AB-1 were very 

regular and in each case the frequency of vibration is just two times 

the wave frequency. Therefore it is reasonable to expect that "B(2) 

for these cases will remain very constant. 

The theoretical values of the phase angle, "p(2), between the 

displacement of the cylinder Yh and the lift force for various values 

of the damping factor ýt are shown in Fig. 5.4.36 (b) and Fig. 

5.4.37 (b). The theoretical value of $A(2) is calculated by Eq. (3-26) 

on the basis of a linear model. 

The rate of change of t(2) with respect to fw/fnw for CASE A-1 is 

larger than that for CASE AB-1 because the damping for CASE A-1 is 

smaller than that for CASE AB-1. In CASE AB-1, the gradient, 

AOB(2)/Afw/fnw. is nearly equal of the gradient AOA(2)/Afw/fnw, for ýt 

= 0.03 around perfect resonance. The difference between "B(2) and 

$A(2) for Zta - 0.03 may be due to the appearance of the perfect 

resonance at fw/fnw - 0.504 and the fact that the experimental results 

is the phase angle between the wave elevation n and the cylinder's 

displacement yh. On the other hand, the theoretical phase angle 

refers to the lift force. It is reasonable to assume, however, that 

there is not a large change in the phase angle between the wave 

elevation and the fluid, since the incident flow velocity is in phase 

with the wave. 

The following equation is obtained by differentiating both sides of 

Eq. (3-26) with respect to fw/fnw, 
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f 

aý (n) nil + (n W)2} 
sin 2 (n) 

An 
aP If sf (5-4-6) 

wn 2ct(11 w )Z 

n 

Rearranging Eq. (5-14-6) gives 

f 
n{1 + (n 

f! 
)z}sin2OA(n) 

a (n) 

ýt of / (8e/f (5-4-7) 

2(n fw)2 
wn 

n 

At perfect resonance in the present case with n-2, "A(n) is n/2. 

Then Eq. (5-l-7) is expressed as follows 

2 
aýA(2) 

8f 1f 
wn 

(5-4-8) 

Eq. (5-4-8) shows that the total damping coefficient, Ct, at perfect 

resonance is related to the gradient 4A(n)/8Pw/fnw" 

By substituting each value of 84B(2)/afw/fnw around perfect resonance 

for CASE A-1 and CASE AB-1 into Eq. (5-1-8) 
, the following values are 

derived for the total damping factor, Cte, in the vortex-excited 

condition. 

Cte ° 0.01 - 0.015 -- -- CASE A-1 

Cte ° 0.031 - 0.038 -- -- CASE AB-1 
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The values of ; tat Ctw and ; tv for CASE A-1 and CASE AB-1 are as 

follows; 

Cta = 0.001 Ctw = 0.004 {tv = 0.012 ---- CASE A-1 

cta - 0.021 ctw ° 0.023 dtv ° 0.032 __-_ CASE AB-1 

Ctv is the damping factor in still water at Yhi/D - Yhm/D. It is 

interesting to note that cte is only slightly larger than Ctv for each 

CASE A-1 and CASE AB-1. This suggests that for large amplitudes at 

perfect resonance the damping is very similar to the damping at the 

same amplitude in still waters. It may be concluded that the rapid 

increase in damping, observed in still water test (Fig. 5.2.3), is 

responsible for the limiting amplitude at perfect response described in 

section 5-4-2. 
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CHAPTER 6 

THE WAKE OSCILLATOR MODEL FOR VORTEX-EXCITED VIBRATIONS IN WAVES 

6-1 Introduction 

The non-linear fluid structure interaction of vortex-excited 

vibrations of the test cylinder in waves have been described in 

Chapter 5. This non-linear phenomena can not be explained by the 

linearised model described in Chapter 3. Its characteristics are 

quite similar to those observed in steady flow in terms of the 

amplification of the lift force around perfect resonance. The wake 

oscillator model, Hartlen and Currie (1970), was formulated in order 

to explain the non-linear fluid structure interactions for steady 

flow. In this chapter, the application of the wake oscillator model 

for steady flow to non-linear vortex-excited vibration in waves is 

considered. 

However, there is the following important difference between the 

vortex-excited vibration in waves and that in steady current flow: 

(1)F In the case of waves, there are two peaks in the response 

vibration produced by perfect resonance coupled with waves and 

by vortex coupling. The maximum response of perfect resonance 

appears in the range of wave coupling and it appears only near 

to fw/fnn = 1/2,1/3,1/4 ... as described in 5-4-2. 
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(2) In the case of steady flow, perfect resonance appears in the 

range of lock-on between the vortex shedding frequency and the 

natural frequency of the cylinder. 

In the modelling work of the present research, this difference should 

be considered. 

Although several wake oscillator models have been reported, the 

application of the Hartlen and Currie model (1970) to the 

vortex-excited vibration in waves is considered in this chapter, 

because this is a fundamental and simple wake oscillator model for the 

vortex-excited vibration in steady flow. 

6.2 Formulation of the Wake Oscillator Model for the Vortex-Excited 

Vibration of the Test Cylinder in Waves 

We express the total lift force moment matrix of the test cylinder, 

Fmp, defined in 3-2-1(4) and expressed Eq. (3-14), as follows. 

Fmt -2p. D. d2. Fs(k. d) CLa{Ums. sin(2n. fw. t)}2 (6-1) 

Where CLa is a instantaneous effective lift coefficient and is assumed 

to satisfy the following Van der Pol equation which is based on the 

wake oscillator model proposed by Hartlen and Currie (1970). 

ºYºs n '0" 
CLa - a. wo. 

Isin(S. 
SKC T)L CLa + 

wo 
CLa 

wo t 
(6-2) + woe sin2(S. SKC T). CLa - bYr 
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In which 

t -2nfnt 

Yr ° yh/D 

Yr - dir/dt 

Yr - d2Yr/dt2 

I of 
CLa -d CLa/dT, CLa - d2CLa/dt2 

wo - Ps o/Pn 

S- Strouhal number (6-3) 

Where f30 is the maximum instantaneous vortex-shedding frequency 

experienced by the test cylinder when stiffly mounted in waves. fso 

may be expressed as follows 

U 
P$0 s( 

mss 
D (6-4) 

Here Ums is the maximum horizontal particle velocity at still water 

level, given Eq. (3-15), and fn is the natural frequency of the 

cylinder. 

The dimensionless parameters a and Y are the Van der Pol coefficients 

and b is the dimensionless interaction parameter. The implication of 

these parameters are discussed below and their values are to be found 

from experimental results. 

The expression wa. sin(wo. T/(S. SKC)) used in the second and fourth term 

in Eq. (6-2) can be re-written as follows 
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wo tso 
21rt 

wo. sin(S. SKC t) °f sin T 
n 

a 
S. Ums 

in 21rt 
fn. D sin 

S. U (6-5) 

This value shows the variation of the instantaneous vortex-shedding 

frequency ratio with t/T. 

Equation (6-2) is slightly different from that of the Hartlen and 

Currie model for steady current flow. However, the characteristics of 

the Van der Pol - type equation still may be contained in Eq. (6-2). 

In this equation, the first and fourth terms can generate a harmonic 

oscillation of CLa in which the frequency of CLa is a function of S 

and SKC and changes through the wave period in accordance with 

instantaneous vortex-shedding frequency. 

The third and fourth terms in Eq. (6-2) comprise the damping. It has 

the following characteristics: 

(1) When the amplitude of CLa is small, It may be amplified with 

time by the presence of the second term. This may be denoted 

"Self-excited". 

(2) When the amplitude of CLa arrives at a large value, this may be 

restricted by the presence of the third term. This amplitude 

is then "Self-limited". 
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i 
The fifth term, b. yr, in Eq. (6-2) is the forcing term. This term is 

introduced to relate the oscillation of CLa to the vibration of the 

test cylinder. When the interaction parameter b is 0, the fluid and 

structure oscillations are decoupled. The value of Yr is given from 

the equation of motion of the test cylinder, which is now shown as 

follows by using Eq. (6-1). 

it t 

MBm Yr + CBm"2Ct"Yr + KBm Yr - Fmk, /(Mmo"D"wn2) 

Fmk/(Mmo"D. n2) 

2 
p. D. d2. Fs(kd)CLa{Ums. sin(211. fw. t)}2/(Mmo"D. wn2) (6-6) 

n 
where Yr = d2yr/d12 

The non-linear fluid structure interaction, the interaction between 

the vibration of the test cylinder and the lift force, may be modelled 

by solving the simultaneous non-linear differential equations, 

Eq. (6-2) and Eq. (6-6). The strength of the interaction may be 

controlled by the value of b. 

On the other hand, when the test cylinder is mounted stiffly, the 

coefficient of the lift force acting on the cylinder may be expressed 

Eby the solution of the following equation, which is obtained by 

putting Yr =0 in Eq. (6-2). 

WO 
C- awolsin( T)I. CLa + 

wo C 
La S. SKC La3 

WO 

+ woe sin2(S. SCK T). CLa =0 (6-7) 
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In this case, although the amplitude of CLa is a function of the 

following: a, 6, wo, S, and SKC, it may be related mainly by the ratio 

of a/Y. 

6-3 The Solution of the Wake Oscillator Model in Waves 

6-3-1 Calculation method 

It is difficult to solve analytically the simultaneous common 

non-linear differential equations, Eq. (6-2) and Eq. (6-6). Therefore 

they were solved numerically by using a time-stepping linear 

acceleration method. 

As described in 6-2, the main parameters of the frequency of CLe are 

the Strouhal number and SKC. However, now, Eq. (6-2) is coupled to 

Eq. (6-6) by means of the forcing term, byr. Therefore, when the 

amplitude of Yr is large, in which case the frequency of Yr is 

probably nearly equal to the natural frequency of the test cylinder, 

fn, the frequency of CLa may be entrapped by this frequency. This 

phenomenon is similar to the lock-on, between vortex-shedding and 

vibration frequencies for steady flow. However, as described in 

5-4-2, ý the frequency of the vortex-excited test cylinder in waves was 

not in, general controlled by the natural frequency of the test 

cylinder. It was controlled rather by the wave frequency in condition 

of "wave coupling". Therefore, in order to consider this phenomenon 

in the present model, the Strouhal number S is adjusted to satisfy the 

following condition in the numerical calculation. 

(ý) The frequency of CLa must be equal to fw/2, fw/3, fw/R ..., 

corresponding to the range of SKC. 
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(2) The phase angle between CLa and n is zero. 

In a complete model, such relationships would be automatically 

determined. However these conditions nearly correspond to the 

observed characteristics of the lift force acting on a stiffly mounted 

cylinder in waves. 

6-3-2 Result of the wake oscillator model 

The results of the wake oscillator model in waves for the calculation 

conditions of CASE W-1 and CASE W-2 are shown in Fig. 6.1 (a) and (b). 

In these cases, the wave conditions and the physical parameters of the 

cylinder are the same. In order to show the effect of the interaction 

between the vibration of the cylinder and the lift force, the value 

of a, 7, and b in Eq. (6-2) are selected as follows. 

CASE W-1 aa0.2 

CASE W-2°--- aa0.2 

Y- 0.067 b- 0.4 

0.067 b-0.0 (6-7) 

Therefore, the fluid structure interaction is not considered in CASE 

W-2. 

The physical parameters of the cylinder are as follows: 

me/pD2 - 30 

2me(21T ct)/pD2 -3 

fn - 1.193 Hz (Tn a 0.838 sec. ) (6-8) 

Otherwise, those conditions roughly correspond to the experiments for 

CASE AB (me/pD2 a 15.7,2me(2i ; ta)/pD2 6 4.14, fw - 1.46 Hz). 
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The calculations were carried out in the range of fw/fn between 0.436 

and 0.55. The wave height H was kept 7cm. The water depth d was 

kept at 80cm. The wave particle velocity u was calculated by linear 

wave theory. Therefore, the values of SKC and kd vary as follows: 

fW/fn ä 0.45 SKC = 14 kd =- 1.14 

fw/fn a 0.5 SKC ä 13.2 kd ä 1.32 

fw/fn s 0.55 SKC a 12.5 kd a 1.53 (6-9) 

The relationship between fw/fnw and each amplitude of the dimension- 

less oscillation Yr' for CASE W-1 and CASE W-2 are shown in Fig. 

6.1(a). The relationship between fw/fnw and CLa, the amplitude-of CLa 

and S are shown in Fig. 6.1(b). 

In the range of fw/fn below about 1/2, the value of Yr for CASE W-1 is 

larger than that for CASE W-2. In the range of fw/fn above 1.2, Yr 

for CASE W-1 is smaller than that for CASE W-2. In the range of 

fw/fnw between 0.506 and 0.53, a reasonably stable solution was not 

obtained. In this area, the frequency of CLa is about 3fwn and the 

amplitude of CLa modulates without intermittency. The value of Yr is 

very small because the frequency of CLa is about 3fw. It is not clear 

whether this is due to the calculation method or not, but it is 

interesting to note that this range of fw/fnw nearly corresponds to 

the range of fw/fnw between 0.52 and 0.53 where the vortex-coupling 

appears as shown in Fig. 5.4.13. 
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The maximum value of Yr for CASE W-1 appears at fwlfnw ý 0.1199. 

However the experimental result for CASE A-1 (SKC a 12, me/pD2 

15.7), which roughly corresponds to CASE W-1, shows the appearance of 

the maximum amplitude at fw/fnw a 0.504. 

The value of CLa for CASE W-2 is clearly larger than that for CASE W-2 

in the range of fw/fn below 1/2. This shows the amplification of the 

lift force associated with the oscillation. On the other hand, in the 

range of fw/fnw above 1/2, CLa for CASE W-1 is smaller than CASE W-2. 

This shows the attenuation of the lift force. 

The experimental results for CASE A-1 showed the amplification the 

lift force around fw/fnw a 1/2 but the attenuation of At at slightly 

higher values of fw/fn, did not appear. 

The value of CLa for CASE W-2 slightly increases with increasing 

fW/fnw. This shows that CLa for CASE W-2 is a function not only 

of a and Y but also of SKC, because now SKC is a function of fw/fn as 

described in Eq. (6-9). 

The value of S for CASE W-1 is larger than that for CASE W-2 close to 

fwlfnw - 0.5. The difference between them shows the effect of the 

adjustment of S, introduced to satisfy the condition of the wave 

coupling in this model. The variation of S with fwlfnw for CASE W-2 

shows that S is mainly determined by SKC. 

This proposed wake oscillator model cannot explain perfectly the 

general phenomena of the vortex-excited vibration in waves observed in 

the present experimental work. However, it is interesting to note 
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that the amplification of the lift force around perfect resonance, 

which may be one of the most important phenomena of the vortex-excited 

vibration in waves, is roughly reproduced by the present model. 

As described previously, the wake oscillator model does not solve the 

fluid dynamic problem of the vortex-excited vibration, it is only an 

approximation of the fluid structure interaction. Therefore, in order 

to make the present model variable, a large amount of experimental 

data is required to obtain the relationship between the model 

parameter a, Y, b, and the physical parameters of both cylinders and 

waves. 

The study to find the relationships between the model parameter and 

the experimental data obtained in the present work will be done. 
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Fig. 6.1 The Results of Wake Oscillator Model in Waves for the Calculation 

Conditions of CASE W-1 and CASE W-2 
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CHAPTER 7 

CONCLUSION 

7-1 General Remarks 

The object of the present work was to study the vortex-excited 

vibration of a cylinder in waves. Laboratory and theoretical 

investigations have been performed in order to study comprehensively 

the dynamic transverse response of a vertical cylinder in regular 

waves. The test cylinder was pivoted at its base and supported 

flexibly by springs at its top. The movement of the test cylinder and 

the lift force acting on it when it was stiffly mounted have been 

measured for surface Keulegan-Carpenter numbers, SKC, in the range 5 

to about CIO, wave depth_ parameter, kd, in the range 0.7 to 7.5, and 

for Reynolds number of about 103. The structural damping coefficient 

of the test cylinder was changed from 0.001 to 0.026 by using an 

electro-magnetic damper. The purpose of the measurement made on a 

stiffly mounted cylinder was to obtain a reference value of the lift 

force to be used in estimating its amplification in conditions of 

vortex-excited vibrations of the cylinder. In order to obtain an 

estimate of the unknown damping force of the vortex-excited cylinder 

in waves, the damping of the test cylinder in free vibrations in 

various depths of still water was also measured. The major conclu- 

sions are as follows. 



7-2 Damping in Still Water 

The damping factor of the test cylinder in still water was independent 

of the amplitude of oscillation in the range of low amplitudes. In 

these conditions the drag coefficient, which is associated with the 

damping factor by Eq. (3-31), agrees well with the theoretical value of 

Eq. (5-2-6) which is derived from Wang's (1968) theory for the forces 

on a fixed cylinder in oscillating flow. 

At larger amplitudes the damping factor becomes amplitude dependent. 

when the surface Keulegan-Carpenter number, SKC, (related to the 

amplitude of cylinder by Eq. (5-2-4)), is about 2, the drag coefficient 

deviated from the theoretical value of Eq. (5-2-6) because of the 

appearance of boundary layer separation and vortex-shedding. Beyond 

SKC ä 2, the drag coefficient increases with increasing amplitude and 

corresponds well with the values obtained by Sarpkaya (1976) and 

Bearman et al. (1981). 

Plots of the damping factor against the amplitude of the cylinder's 

free oscillation in still water for different water depths show that 

the variation of the damping factor with water depth can be accounted 

for by the theory described above (Eq. (5-2-6)). 

7-3 The Lift Forces on a Stiffly Mounted Cylinder in Waves 

The time history of the lift force acting on a cylinder stiffly 

mounted in waves has irregular characteristics. Taking this point 

into consideration, the following statistical values were calculated 

in the analysis of lift force measurements over 30-100 periods. 

(1) The maximum effective lift coefficient (defined by 

Eq. (5-3-1)). 
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(2) The mean effective lift coefficient (defined by Eq. (5-3-2)). 

(3) The effective lift coefficient for the n-th harmonic (defined 

by Eq. (5-3-3), n-1,2,3,4). 

(4) The coefficient of variation of the amplitude of the lift force 

(defined by Eq. (5-3-4)). 

The purpose of (4) is to evaluate quantitatively %he variation in 

amplitude of the lift force, over many wave cycles. 

The lift for kd - 1.01 is dominated very clearly by the second 

harmonic CLe(2) in the range of SKC between 9 to 16. The second 

harmonic CLe(2) was predominant also for kd - 0.735 and 1.79 in the 

range of SKC between 9 to 18 as reported by other researchers, for 

example Isaacson and Maull (1976). However, the third harmonic 

CLe(3), rin the present results did not become as important as Isaacson 

and Maull (1976) reported in the range of SKC between 17 to 24. An 

increase in CLe(3) shown in the range of SKC between 18 and 25, for'kd 

- 1.01, but CLe(2) remains high, even at high values of SKC for kd - 

0.735 and 1.79. 

The lift coefficients, CLemax and CLe vary more rapidly with kd than 

with SKC. -Both of them have three peak values at kd - 0.9,1.25 and 

1.6, for the range of SKC between 11 and 15. The maximum value of 

CLemax is 2.5 at kd - 0.9 and its minimum value is 1.0 at kd - 1.2 for 

the range of SKC between 11 and 15. Generally, when lift coefficients 

are large, the coefficient of variation, CVL, is small indicating the 

appearance of a stable lift force oscillation. 
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The amplitude of the lift force has irregular characteristics in most 

ranges covered in the experiments. However, a stable lift force 

oscillation appears in the range of SKC between 10 and 15 for the 

range of kd below 1.1 (see Fig. 5.3.6). In the case of two 

dimensional harmonic flow, the appearance of stable lift amplitude in 

the range of 10 and 14 has been reported by Ikeda and Yamanoto (1981). 

7-4 The Vortex-Excited Vibration of the Cylinder 

The following statistical values were obtained in order to study the 

characteristics of the vortex-excited vibration of the test cylinder 

in waves because the envelope of its amplitude was irregular 

(described in 5-4-1): 

(1) The mean value of the amplitude of the vibration --- Yhm 

(2) The mean value of the frequency of the cylinder vibration --- 

fym 

(3) The coefficient of variation of the amplitude of the vibration 

--- CVY 

(1) The mean value of the effective coefficient of the lift force 

acting on the observed vortex-excited cylinder --- CLm (defined 

by Eq. (5-4-4)) 

(5) The phase angle between the displacement of the test cylinder 

and. the wave surface elevation --- ýB(n). 
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The solution of the linearised model of the vortex-excited vibration 

of the'cylinder in waves shows: 

(1) The dimensionless amplitude of the cylinder, Yhm/D, is 

controlled by the lift coefficient, the ratio of the wave 

frequency to the natural frequency, fw/fn, the surface 

Keulegan-Carpenter number, SKC the wave depth parameter, kd, 

damping coefficient, ; t, and mass ratio, me/pD2 (see 

Eq. (3-23)). In the case of perfect resonance, the damping 

coefficient and mass ratio are combined in the normalised 

damping, 2me(2r 4t)/pD2 (see Eq. (3-29)). 

(2) The phase angle between the vibration of the cylinder and the 

lift force acting on it is related to the frequency ratio, 

n. fwlfn(n - 1,2,3... ), and damping coefficient (see Eq. (3-26)). 

(a) The Variation of the Vortex-excited Vibration with Pw/Pnw 

The amplitude, Yhm/D, of the vortex-excited vibration of the 

test cylinder with frequency ratio fw/fnw (fnw - natural 

frequency of the test cylinder in still water) depends on the 

value of SKC and the value of damping coefficient. The most 

remarkable result is the appearance of two peaks in Yh/D, 

produced by perfect resonance coupled with the waves and by 

vortex-coupling (described in 5-4-2). In the case of steady 

flow, perfect resonance appears in the range of lock-on, but in 

waves, it appears only near to fw/fnw = 1/2,1/3,1/4 ... 

(multi appearance), elsewhere vortex coupling may occur for 

right damping, in which the oscillation frequency is not simply 

a multiple of the wave frequency. The multi appearnce of 
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perfect resonance 'is more clear in cases of higher values of 

SKC, and lower values of the damping coefficient in air, Cta" 

For SKC a 20 and ; ta a 0-001, the perfect resonance occurs at 

fw/fnw a 1/2,1/3,1 /4,1/5,1/6. At perfect resonance, the 

frequency of the cylinder, fym, is 2fw, 3fw, 4fw ... and the 

vibration of the cylinder is very regular. On the other hand, 

at vortex coupling, the value of fym deviates from the curve 

fym - n, fw (n - 2,3 ... ) and the amplitude of the vibration 

modulates without intermittency. 

The peak value of Yhm/D appears at fw/fnw - 0.503 and not at 

fw/fnw - 0.500 as might be expected. This may be due to an 

increase in the natural frequency of the test cylinder in the 

vortex-excited condition from the natural frequency of the test 

cylinder in still water. If we assume that it is due only to 

the variation of the added mass coefficient, Cast in the 

vortex-excited condition, then Cas is found to be 0.79. This 

value of Cas Is smaller than the added mass coefficient in 

conditions of free vibration in still water (Cas - 1.01) which 

agree well-with the theoretical value. 

There were no clear differences in the present study between 

the vortex-excited vibration of the test cylinder which was 

left free to vibrate in any direction, and the vortex-excited 

vibration of the test cylinder when free to vibrate only in the 

transverse direction. 
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(b) The Variation, of Yhm/D with SKC 

The variation of the dimensionless amplitude of the cylinder, 

Yhm/D, with SKC around fw/fnw a 1/2,1/3,1/4 has a broad 

response over a wide range of SKC (for example, the value of 

Yhm/D for CASE A-9 (fw/fnw - 0.503) is greater than 0.6 over 

the whole range of SKC between 10 and 25). This may be due to 

the non-linear amplification of each harmonic component of the 

lift force by means of the increased vortex strength and 

correlation in the phase of vortex-shedding along the cylinder 

axis. 

The results of the present study are similar to those of 

Isaacson and Maull (1981) which was restricted to the range of 

SKC between 5 to 18. (The results of effective lift 

coefficient for,, SKC over 20 have apparently never been 

previously reported). The appearance of the large value of 

Yhm/D for fw/fnw a 1/4 over a broad range of SKC between 20 to 

40 should be noted as a significant feature of the response of 

a flexibly supported cylinder. 

(c) The Variation of Yhm/D with the Normalised Damping 2me(2i 

Cta)/PD2 

The value of the normalised amplitude Yhm/D for the perfect 

resonant condition may be expected to be inversely proportional 

to the normalised damping 2me(2n Cta)/pD2 as shown in 

Eq. (3-29). However, this relationship is not apparent in the 
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present study. This may be due to the variations of the lift 

force or damping coefficient, probably produced by the 

vortex-excited vibration. 

The value of Yhm/D for the perfect resonant condition increases 

with decreasing normalised damping 2me. (2n. Cta)/PD2 and 

approaches a limiting value. This phenomenon is similar to 

that observed in steady flow. However the limiting value of 

the present data are smaller compared with those of steady flow 

(in the case of steady flow, the limiting value of the 

normalised maximum amplitude, Ay/D is about 1.5 - 1.9. In the 

case of waves, the limiting value of Yhm/D is about 0.8 for SKC 

= 20 and 0.5 for SKC = 8.7). 

The appearance of limiting values of Yhm/D for small values of 

. the normalised damping suggests a. state of, a"stable equilibrium 

in which an increase in Yhm/D is associated with an increase in 

fluid damping. 

The present data is consistent with the data obtained by Zedan 

et al. (1980), Bullock et al. (1978) and Rajabi (1979). 

7-5 The Characteristics of the Lift Force Acting on the 

Vortex-excited Cylinder in Waves 

After the mean value of both Yhm/D and fym/fnw had been measured, the 

mean value of the effective coefficient, CLm, of the lift force acting 

on the observed vortex-excited cylinder was calculated by using 

Eq. (5-Il-lI) on the basis of a linear model. 



199 

(a) The Variation of CLm with fw/fnw 

In CASE AS-1 (SKC ; 12), the values of CLm are larger than the 

second harmonic component of the lift coefficient, CLe(2), 

acting on the stiffly mounted test cylinder in the same wave 

conditions in the range of fw/fnw between 0.45 to 0.55 (see 

Fig. 5.4.15). This shows the amplification of lift force by 

means of vortex-excited vibration. The amplification of the 

lift coefficient has a minimum value around perfect resonance 

(fw/fnw = 1/2), because the vibration is a result of a state of 

equilibrium between vortex excitation and fluid damping in 

this range. 

(b) The Variation of CLm with SKC 

The existence of the. amplification of the lift force acting on 

the vortex-excited cylinder in comparison with the stiffly 

mounted cylinder is a function of fw/fnw and SKC. When fw/fnw 

is fixed at about 1/2, large amplitudes of oscillation occur 

over a wide range of SKC, but the amplification of lift force 

occurs in the range of SKC between 6 to 12 and it varies with 

SKC. The maximum amplification is about 12 and occurs at SKC 

8. It is interesting that this range of SKC nearly corresponds 

to the range of KC, where the vortex-shedding from a stiffly 

mounted cylinder in harmonic flow is induced at twice the 

fundamental frequency, (see Fig. 5.4.29 and Fig. 5.4.30). 

Similarly, when fw/fnw is fixed at about 1/3, the range of SKC 

between 16 to 26, where amplification of lift force occurs, 

nearly corresponds to the range of KC, where the 
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vortex-shedding from stiffly mounted cylinder in harmonic flow 

is induced at three times the fundamental frequency. The 

maximum amplification at fw/fnw = 1/3 is about 2 at SKC': 20. 

(c) The Variation of CLm with Yhm/D 

The plots of the coefficient CLm of the lift force acting on 

the vortex-excited cylinder against the amplitude of the test 

cylinder Yhm/D show the following: 

(1) When Yhm/D is lower than about Yhm/D - 0.45, the lift 

coefficient CLm increases with increasing Yhm/D. 

(2) The maximum amplification of the lift force occurs at 

about Yhm/D - 0.45. In the case of CASE AC-2 (SKC - 6.2, 

fw/fnw 1/2, kd = 1.85), the amplification of the lift 

coefficient is about 12 at Yhm/D = 0.115. 

(3) When Yhm/D rises above Yhm/D = 0.45, the lift coefficient 

begins to decrease. 

These phenomena are quite similar to those for steady flow, and 

clearly show the result of a state of equilibrium existing 

between vortex excitation and fluid damping, and suggest that 

the maximum limiting value of Yhm/D is independent of 

structural damping (see Fig. 5.4.3 - 5.14.35). 
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7-6 Phase Angle between the Displacement of the Cylinder and Water 

Surface Elevation 

The plots of the phase angle, ßg(2), between the displacement of the 

test cylinder and water surface elevation against tw/fnw (around 

rw/fnw ° 1/2) for two values of Cta 0.001 and 0.021, SKC a 12 show the 

following. 

(1) The rate of change of ßg(2) with respect to fw/fnw for lower 

damping is larger than that for higher damping. 

(2) The total damping coefficient, Cta, in the vortex-excited 

condition, which is obtained by substituting each value of 

+g(2)/A(fw/fnw) around perfect resonance for Cta - 0.001 and 

Cta - 0.021 into Eq. (5-4-8), is only slightly larger than the 

damping factor in still water with amplitude equal to that of 

the vortex-excited vibration of the cylinder. This suggests 

that for large amplitudes at perfect resonance the damping is 

very similar to the damping at the same amplitude in still 

water. 

7-7 The Wake Oscillator Model 

A wake oscillator model was developed for the unsteady vortex-excited 

vibration of a cylinder in waves. This has to be time stepped since 

its solution cannot be integrated analytically. It cannot explain the 

general phenomena of the vortex-excited vibration in waves observed in 

the present experimental work. However, the amplification of the lift 

force around perfect resonance, which is one of the most important 

phenomena of the vortex-excited vibration, is roughly reproduced by 
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the present model. It is reasonable to expect that with further 

development related to appropriate experimental measurements a better 

solution could be obtained. 
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