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ABSTRACT

In this work we investi'gate the possibility of applying a Fast Galerkin
scheme to linear singular integral equations of the first and second kind,
and also to linear Integro-differential equations '(singular or non-
singular),in order to obtain stable, economic and fast methods to solve
these problems numerically.

In Chapter 2, we give a generalization of the Fast Galerkin scheme of
Delves (1977a). In .Chapter 3 we apply the scheme on the lLaplace
transform inversion, while in Chapter 4 we give a reliable algorithm for the
numerical solution of Cauchy singular integral equations.

.We also extend, in Chapter 5, the Fast Galerkin scheme to solve
general linear Integro-differential equations (singular and non-singular) of
order one and two. Finally in Chapter 6 we apply the Fast Galerkin method
on the eigenvalue problem.

Numerical examples for both integral and Integro-differential

equations are included to illustrate the methods.
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CHAPTER 1

INTRODUCTION

‘This work is concerned with the numerical solution of integral
equations and integro-differential equations (of order one and two).
- We are not princfpa]ly concerned with the abstract theory of integral

equations, nor with applications where integral equations arise.

| We shall not give a general definition for integral equations.

In fact we 1imit consideration to some of the most important classes
of integral equations. They are summarized below. An integral equation
is called Tlinear if linear operations are performed in it upon the

unknown function, that is if it has the form

A(s) ¢(s) + B(s) + ’j k(s,t) ¢(t) dt =0
R

where ¢(s) is the unknown function, A(s), B(s) and k(s,t) are given

functions and the integration extends over some domain R of the variable t.

1.1 FREDHOLM EQUATIONS

These represent one of the most important classes of linear integral
equations. Let ¢ be the unknown function in the integral equation and
g, k will be the known functions where k s called the kernel.

The integral equation

b
'I k(s,t) ¢(t) dt = g(s) : agschb (1.1.7)
a



is'termed a Fredholm integral equation of the first kind, while the
integral équation

b _ .
¢(s) + & I k(s,t) ¢(t) dt = g(s) ; asscghb (1.1.2)

a

is termed as a second kind Fredholm integral equation, where 2 is a
(possibly) complex scalar parameter.
If in (1.1.2) g(s) = 0 we have
b | .
¢(s) + J k(s,t) ¢(t) dt =0 ; a

a

<b (1.1.3)

A
v

These kind of integraf equations are called homogenous equations of
the second kind referred as an'eigenva1ue equation or a Fredholm equation
of the third kind for a given value of A . We devote chapter (6) for
findiﬁg the numerical solution of a simple real eigenvalue for this kind

of problem.

1.2 VOLTERRA EQUATIONS

If k(s,t) =0, t >s then the kernel is said to be of Volterra-type.

The equations (1.1.1-3) may be written in the form

S
{ k(s,t) ¢(t) dt = g(s) ; ass (1.2.1)
a
S
¢(s) + A { k(s,t) ¢(t) dt = g(s) ass (1.2.2)
a



s
o(s) + A J k(s,t) ¢(t) dt = 0 - a

a

A
(%]

(1.2.3)

In general a Volterra integral equation of the first kind (1.2.1)
can be reduced to a Volterra integral equation of the second kind, (1.2.2)
(see,[77, p-8). If k(s,t) is square integrable and we need a
square integrable solution ¢(§), it can be shown (see t}g]) that equation
(1.2.3) has only the trivial eigenfunction ¢(s) = O for any finife eigen-

value X.

1.3 SINGULAR INTEGRAL EQUATIONS

Suppose that the function ¢(s) is defined in the interval a < s

A
o

and is integrable in each of the intervals a ¢ s < c-e and ¢c+te ¢ s

’A
o
-

~ however small the positive number e. The Cauchy principal value of the
integral of the function ¢(s) in the interval a < s < b is the name given

to the limit (if this exists):

C-¢ b
Limit J ¢(s) ds + [ ¢(s) ds (1.3.1)7
>0 Ct+e

We often speak of the singular integral instzadof "the Cauchy
principal value of an integral®.

We shall denote the principal value of an integral by the symbol

f ¢(s) ds

a



. Integral equations containing integral in the sense of the Cauchy
principal vé]ue, with ﬁntegrands having a sinqularity in the domain of
integration, will be called singular ihtegra] equations.

A function ¢ defined on [a, b] is said to satisfy a'LipscHitz

condition on [a, b] if there exists a constant C > 0 such that.
I¢(S]) - ¢(52)i < C IS] - 52' ‘ : (]-.3-2) '

For all s,, s, ¢ [a, b] , (this is often called a Hélder condition),
one can introduce an important class of singular integrals called Cauchy-

type integrals of the form

ki

—]—f%%ldt , seR ‘ (1.3.3)
i |

it is evident that the integral exists if ¢(t) satisfies a Holder condition.

(See [237]).

Lemma (1.1)

If ¢ and y are L,-functions with region R then (see [64] p.163)

)[w(t) }%i—ilds dt = { ds fi‘i(—s—g_—‘{(—t—) dt (1.3.4)
R R

Chapter (3,4)are devoted to consider the numerical solution of
singular integral equations where in chapter (3) we consider the numerical
solution for the inversion of Laplace Transform, while in chapter (4) we

give a reliable method for the numerical solution of Cauchy-type singular

integral equations.
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1.4 FREDHOLM INTEGRO-DIFFERENTIAL EQUATIONS

Chapter (5) of this work is devoted for a special class of integro-
differential equations (of order one and two)'with Tinear boundary
condition (s);'A linear Fredholm integro-differentialE.’® of order n 3 1

may be defined as

A

b
) £ J.k(s,t) o(t) dt =g(s) 3 asszb (1.4.1)
a

Where Bi(s) 30 < i < n, are known coefficient functions; k(s,t) the
known kernel; A a given parameter; and ¢(s) is the unknown function
(», a, b are finite and real).

To solve (1.4.1) we assume that the following linear boundary

condition (1 < nx 2)
Co(b) + Do’ (b) = e - | (1.4.2)
is given where b consists of m boundary points b1, b2’°"’bm belonging

to [é,E]; C, D are two given matrices each of size nxm; e a given nx1 vector;

and
4(b) = <¢<p]>,¢(b2>,......¢(bm»t ;
01 (b) = (¢*(b1),¢(by).-ve gl )t
it is also assumed that all the functions involved and the boundary

condition are such that there exists a unique solution to (1.4.1) conditioned

by (1.4.2).



Fredholm integro-differential equétions yié]d in general well-
~conditioned prob]ems, for they can be converted to Fredholm integrai
equatfonskof the second kind (see Linz (1974)).

In chapter (5) we appTy the'"Fast Galerkin scheme" for solving
linear Fredholm integro-differential equations (1.4.1).

In the fo]]owing‘sectidns we give a brief discdssion on the most widely
used numerical metﬁods to solve the integral equations. Where we restrict
our discgssion on equations of the.second kind (1.1.2), in which we require
that the parameter A is a regular value and that k(s,t), g(s) at least
piecewise-continuous. In this work we suppose (unless stated othérwise)
that g(s) is continuous %or as s g b, that k(s,t) is continuous for
ass ,tcs b; and that we-seek the solution ¢(s) for a < s < b.

The accuracy attainable with any method for the épprogimaée solution
of (1.1.2) may be-]imited by the equation itself. When small perturbation
in g(s) cause a‘]arge change in the so]utiqn,in this case the equation is
said to be i1l-conditioned, equations of the first kind are often known by
this, hence any numerical method must be applied w{th caution if accuracy
is required; a desirable feature of a method is that it can be applied in

a way which gives warning of ill-conditioning.

1.5 QUADRATURE METHODS

A Fredholm equation of the second kind can be approximated in a
straightforward way be means of quadrature formulae; more details, with
practical examples, may be'found in |:?, ]3] .

Suppose that we have made a choice of a quadrature rule to approximate

the integral

b
J ¢(t) dt

a



B ' , N : '
of the form q(¢) = £ W, ¢(t.) .+ (1.5.1)
j=0 J J ,
involving the N+1 points tj and the corresponding weights wj. Such an

ihtegration rule can be used to replace the integral equation (1.1.2)

by the equation .

A
wn

’m
o

. N
¢(S). = g(s) -Ajio ij(S,tj) &’(tJ) , a

(1.5.2)

in which the solution of this functional equation may be regarded as
an approximation to ¢(s) which may be found by setting S=ti; i=0(1)N

in (1.5.2) to obtain

~ ' N - -
) = ) - W.k(t. t.) ¢(t.) ; i = N .5.
o(t;) = g(t;) Ajio j (ty, J) ¢( J) i=o0(1) (j 5.3)
if $(t0), $(ty)s....8(t,) satisfy these equations, can be found then we
can obtain the solution of (1.5.2) on setting for all s efa, b] . However,
we may represent the approximate solution by the function values of the

vector solution of the linear algebraic system, -written in the matrix form:

(1 +2BD)§ =g (1.5.4)

where the solution $j is regarded as an approximation values of ¢(s) at

the points s = t;

39
I is the identity matrix
- t -
ﬂ - (g(to)’ g(t]), ----- sg(tN)) s B = E((t'l ’tJﬂ
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We haQe assumed that. A is a regular value in the equation (1.1.2)
so that there is é unique solution ¢(s). If may happeh that the matrix
'(I + ABD) is singular for an arbitrary quadrature rule. |

One can guaranfee (under mild restrictions) that fhe matrix in
(1.5.4) is non-singular, if the quadrature rule (1.5.1) is ' sufficiently
accurate.  The result of the computation is an approximation to the
solution of the integral equation, and we must now estimate the error of
the approximation, and study means by which the error may be reduced.
This problem is naturally linked with the original choice of quadrature
formulae. For the conditions to be made on the choice of the quadrature
rule and the error estimate one cansee (|13 |, p.67; |7 ], p.432) they
depend on the parameter X and the kernel k(s,t). However the choice
of tHe quadrature»ru]e should also.depend on the driving term g(s), since
tﬁe behaviour of this function has an influence on the solution ¢(s), and

hence on the accuracy obtainable.

1.6 EXPANSION METHODS

In the last section we obtained an approximation

T

B(s) = g(s) - Az W5 k(s,t5) 8(t,) (1.6.1)

J

j=o0

to the}integral equation (1.1.2) whichis described by the system (1.5.4)
where the approximation 5(5)_(determined by the weights and abscissae of

a quadrature rule) is a linear combination of g(s) and k(s,tj). Sometimes
it is convenient to choose a set of functions{hi(s)} (which may depend on

N) but independent of k(s,t) and to approximate ¢(s) by



0(s) -

™M=

a, h(s) o (62

as a linear combination of prescribed fqﬁctions hi(s); i = 0(1)H for
the choice of this functions (see, for example [137], p.87), then determine
unique1y its expansion coefficients a by'SUbstituting (1.6.2) into the
integral equation (1.1.2) will give the résiduai

b |
() = dy(s) + f k(s,t) ¢y(t) dt - g(s) (1.6.3)

a

We cannot choose a; 3 i = O(1)N to make nN(s) vanish identically
unless the true solution is a Tinear combination of the basis hi(s) ;
i = 0(1)N. waever, suitabfe constraints can be imposed on the choice .
of a; 5 1 = O(1)N which ensure nN(s) is in-gome sense émgll.

There is a number of methods which are basically rather similar,
employed to solve(1.6.3) for the unknownsa for éxamp]e, Ray1eigh-Ritz,

Galerkin, Collocation and Least-squares methods, but in general it is not

0. In the

Tt

possible to choose a, Aqseenesdy to ensure that n(s)
Collocation method for example the coefficients a; ; i = 0(1)N are
chosen so that
b
* * *
on(ss) + 2 | k(syst) oy (t) dt = g(s;)

a

* .
where Si ;s 1 = 0(1)N are selected points in [é, E]. The equations for a

in the matrix form are

(A+2B)a-=g9 (1.6.4)
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where
o d B, .= U.(s)
. an e T S
A-i,j_ hJ(51 ) 153 J 1
b .
with Us(s) = J k(s,t) hs(t) dt
a
* *
g = (q(so), ..... ,g(sN))t : a = (ao, ..... ,aN)t

The system of eduations (1.6.4) for some particular choice of the
points gi’ i = 0(1)W can be singular even if A 1is a regular value of
the kernel k(s,t). The conditiom’ng of the .s_yst‘em (1~.6.4) depends on-
the choice of the basis functions hj(s) and the choice of the Collocation
points 21. and the choice of one should be matched with the choice of the
other (see Baker [7] p.396).

In the weighted Galerkin scheme we obtain.a linear system of the

form (1.6.4) with

) , b
—_— f —_—
Ai,j = I W(s) hj(s) hi(s) ds 3 Bi,.]'= J W(s) Uj(s) h_i(s) ds
a a

b _ b
with Uj(S) = J k(s,t) hJ(t) dt, H 91‘ = J W(s) g(s) h,i(S) ds
a a

where W(s)is a positive function on [a, b].

The Galerkin method reduces to Rayleigh-Ritz method if k(s,t) = i‘(-{,}“)-,
and W(s) = 1. |
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~ In chapter (2) wé give a cémprehensive discussion on the Galerkin
approach showing how this method is computationally convenient for
“handling such integra]s in a Tower cost wifh a satisfactory accuracy.

Fina]Ty, we attempt to give a brief mention of the previous

numerical methods described in section (1.5-6). One can note that most
of the methods for'the numerical solution of integral equations can be
regarded as expansjon methods in some sense. Thus, whilst the quadrature
method described in section (1.5) yields a vector ¢ of function values,

these values are used in the Nystrom extension to yield the approximation:

i(s) = a(s) - T

b.k(s,t.) 3 b. = AW, .
RS (s.t5) 5 olty)

J

" which shows that #(s) is a linear combinatjon of g(s), k(s,tj). This
suggests that with some quadrature rules, the quadrature method is
particularly convenient if we like to generate an approximation of the

form

from the vector §_= (d(t ), é(t]), ..... ,¢(tN))t , where tr and the functions

0
hr(s) are specially matched. This idea is used by EL-Gendi T\¥7}'in an
application of a quadrature method with the assumption that ¢(s) is defined
and well-bchaved in [-1, T] then Clenshaw and Curtis [10] give the
following procedure for the numerical integration of ¢(s) based on the
approximation

N

o(s) = I 2, T(s)
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2 1 1]
jio' ¢(sj} T(s5)-

o
-

"
=

1}
(]
o
[72]

Cann
‘LJ
i

—

Ca

H

o

P
-—
S
=

and s.

Here Tr(s) is the r-th Chebyshev polynomial. - The double primeé denotes

a sum with first and last terms hé]ved.

Problems which contain weak or straong singu]érities in the kernel can
often be better or more simply treated by choosing the suitable expansion
set, or of inner product, within an expansion method, than by a quadrature
method, chapters (3,4) are devoted for éuch strong singular problems, which

will suggest that the more difficult the problem the more worthwhile it is

to look at expansion methods.

The stability of the methods depend on the error sources which comes
from (i) setting up the equatibns (i1) solving the defining equations, where
usually the first is the dominant one, especially if quadfature rule is used
to evaluate the matrix B. For a wide discussion of the theoreticé] basis of
stability and rate of convergence, the reader is referred to [?, 13, 14].

In chapter (2) we outline the basis of the Galerkin method followed by
the Fast Galerkin technique which is the method of [14].

We apply this scheme on the Laplace transform inversion in chapter (3),
while in chapter (4) we give a nice scheme using the technique of chapter (2)
for computing the numerical solution of Cauchy singular integral equations [30].

In chapter (5) we adopt the scheme of [2] for solving the linear integro-
differential equations of order one and two of Fredholm-type on the range
[F1,7]. At the end of chapler (5) we use this technique together with that of
chapter (4) for solving a singular integro-differential equation of Cauchy kernel.

Finally in chapter (6) we apply the scheme of chapter (2) to eigenvalue

problem for finding the simple (real) eigenvalue.
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CHAPTER 2

FAST GALERKIN METHOD

2.1 BASIS OF GALERKIN METHOD

Suppose that we are given an equation of the form:
Ke- G=0 - | | (2.1.1)
Where K is an operator defined in some Hilbert space H where no further
assumption ié made about K.
The Galerkin method reduires us to select a sequence of elementsyy e D(K)

and to attempt to find an approximate solution in the form

N ,
*n =iko 3% (2.1.2)

the coefficients a; "are determined from the condition that the inner:
product of the left hand side of equation (2.1.1) and the sequence vy
is zerd,in other words after we substitute ¢N for ¢ in equation (2.1.1)
must be orthogonal to the elements Yoo Ypseveres Yy which leads to the
system of equations (linear or non-linear) depends oﬁ the operator K
N - »
I (Kogs ¥5)ay = (8, wg) 5 3 = O(1)N i : (2.1.3)
1=0

The method can also be applied to the eigenvalue problem which require

to find the eigenvaluesof the equation. (see [34] ).

K¢ = xo - (2.1.48)
where the method approximates the eigenvaluesas the roots of the equation

N

. =
i=0 (K‘l’.i’ \Pj)ai = 2\1

(Wia¥j) a; | (2.1.5)

1R e =
o

j = O(1)N

** The unweighted inner product is defined as:
r
D
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2.2 FAST GALERKIN METHOD FOR THE ‘SOLUTION COF I.E'S

We consider here the solution of Fredholm integral equations of the
second kind
b
f(s) + AJ k(s, t) f(t) dt = g(s) ; ass <b o "(2.2.1)
. 3 A s real
although the method can be applied to first kind integral equation and'>
Volterra type equations and also the equations may be linear or non-linear.
We have to select a sequence of functions h.(s) (n =1, 2,..... ) in
| Lz(a, b) such that the functions hn(s)lare linearly independent and trying
to find an approximate solution to f(s) in L2(a, b) of the form

f(s) =

" r aihi(s) ' . (2.2.2)

0

nm=

where the coefficients a; make the residual of equation (2.2.1) be zero,
that is: \
b b
a. J [@.(s) + A J k(s, t) h.(t) dt:] hf(s) ds
Ola'l a 1 J

"t =

1

b

*

= J g(s) hy(s) ds i=0MmN  (2.2.3)
a

: *
We require the residual tobeorthogonal to the functions hj(s); if A s
not a characteristic value the system (2.2.3) has a unique solution when N
is sufficiently large; as N—— » , the approximate solution fN in
equation (2.2.2) approaches the exact solution f(s) of equation (2.2.1) in
the metric space of Lz(a, b). (see [44]).

And we have the estimate that is

£ =g Il s (0 +ey) [If - Pyfll (2.2.4)
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where»PN is the projection operator into the space spanned by the functions

ho, h'l- ...... s hN, and CN“" 0 as N————> -8

2.3 THE FAST GALERKIN ALGORITHM

There have been a number of methods proposed for Frédho1m,Vo]terra-
type equations baéed on expansions in terms of Chebyshev polynomials.

The solution of integral equations in Chebyshev series has been fhe
subject of fwo papers by [19, 20] His method essentially a Collocation
method and it is necessary to decide in advance how many terms in the
Chebyshev series are likely to be significant; the method by Scraton [56]
suggested a way to avoid this difficulty of Elliott.

He transformed the 1ntegr§] equation into an infinite set of algebraic
equations in which the unknowns are the coefficients of the Chebyshev
series and he solved the algebric system by a standard iterative procedure,
in which it is not necessary to determine beforehand how many coefficients
are significant as in Elliott. The method of E1-Gendi T\¥1 is also
essentially a modification of the Nystrom scheme.

We describe here an alternative method [14]| which isa variant
of the Galerkin scheme but has the advantage of being significantfy faster
than the standard Galerkin method.

For operations count and comparison of various methods using Chebyshev
expansions the reader is referred to [14| for more details.

We consider in this chapter the solution of linear Fredholm integral
equation of the second kind with smooth kernels and driving terms by
assuming that the variables of equation (2.2.1) have been suitably trans-
formed so as to reduce the range of integration to (-1, 1).

The method can be applied to first kind Fredholm equations and to

Volterra type linear or non-linear equations [see chapter (3,4}]
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We restrict our discussion here on the solution of Fredholm equation .

of the~second kind.

So that the equation to be solved has the form

1 ‘
f(x) + jk(x,_y) fy)dy = g(x) ;5 -1

-1 oA =]

A
x
A
—

(2.3.1)

the method is based on'expanding the defined functions numerically using
the Fast Fourier Transform. Kk(x, y) and g(x) are assumed in this chapter
to be smooth.

For the case when the defining equafions éontains a known singu]aiity
we expand the functions analytically using a set of recurrence relations
‘which we do in chapters (3), (4).

We choose here the basis functionsfhi(x) of equation (2.2.2) the
Chebyshev polynomials fi(x), i=o0,1,2,.... to retain the "natural"
suffix where we count from zero and make the following expansion for f(x)

assuming that f(x)eL,[-1, 1]

N
f(x) = fN(x) = E

I e T,(x) - (2.3.2)
J

The Chebyshev polynomials are orthogonal on (-1,1) with the weight function:

W(x) = (1 - x)"? (2.3.3)
! 1i5i=3=o0

j W(x) Ti(x) Tj(x) dx =743 i=3>0 (2.3.4)
-1 o 1#3J

And therefore we introduce this weight function into the inner product in
the equation (2.2.3) hence applying Galerkin technique on equation (2.3.1)
using (2.3.2) and the property (2.3.4) we have:
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1 1
N N | ' |
J {jio 3 T ][ K(x,y) T5(y) dy = g(x) W(x) Ty(x) dx = 0
-1 - - | -
I 1 1 |

X | |

T a. J W(x) T.(x) T.(x) dx + [ W(x) T J K(x, y) T.(y) dy dx
o 3| it J /|, J

1
= l W(x) T5(x) 9(x) dx  ; i=0(1)N
I :

We can write this in a matrix form as:

(D+B)a=g |  (2.3.5)

where D is the diagonal matrix (2.3.4) and

1 1
J W(x) T, (x) d J k(x,"y) Tj(_y) dy i, 3=0(1)N  (2.3.6)
2] 21
] - .

9; = {W(X) Ti(x) g(xy dx 5 i =0(1) N (2.3.7)
J
4

2.4 NUMERICAL IMPLEMENTATION

We need to perform the integrals in equations (2.3.6), (2.3.7)
numerically.
Adiscrete Galerkin calculation uses an appropriate quadrature rule to
approximate the integrals in (2.3.6), (2.3.7). A suitable rule for the
integration over x 1is clearly the Gauss-Chebyshev (P + 1) point quadrature

rule. With weights

M= 5, k#0,F
(2.4.1)
~ m
wo = »!P 'ZP'
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and points x, =.Cos (%?) s k = O(]) .....
hence we épproximate the integral in (2.3.7) as:

9(Cos (%)) T;(Cos (%))

9(Cos (7)) cOs(“;k) | | (2.4.2)

Where the symbol I dimplies that the first and last term are halved,

and we have used the relation

-1

T:(x) = Cos i (Cos™ 'x) (2.4.3)

An attempt to use a product form of this rule for the integral over
.y to approximate the integral in (2.3. 6) would lead to a large numerical
error; because of the "missing" weight funct1on M-y ) i

The d1ff1cu1ty is overcome ‘in practice (E111ott [20]; Scraton, [58])

by 1ntroduc1ng the matrix K with elements

1 1

JW(X) I (¥) T5(y) k(x, y) dy (2.4.4)
then K can be efficiently approximated by K :
k(Cos (), Cos(3])) cOs(‘“”) cOs(JS“) (2.4.5)

i, § = O(1)N

Now apart from a constant factor, we can identify kij as the (i, j)th

coefficient in the double Chebyshev expansion of the function k(x, y)
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that is .

K(x, y) = ! "kLT. T. 2.4.6)
(f y). 22 jzo Ki, 3 T3 (x) 5 : ( )

While apart from the factoyugz(2.3.6)identifies Bi . as tne (i,j)Lh coefficient

s

inaiexpansion of the function k(x, y) (1-y2)} . From (2.3.6) and (2.4.4)

we have: .
1 1
k'i ,j (1-_y2)% = 1] W(X) Ti(x) J] TJ.(_y) k(x,y) dy dx (2'4.7)

by multiplying both sides of (2.4.6) by the function (1 - yz)i we get:

4
™

=]
]
.

z

1~ 8

R0 - vy 1,00 T4() (2.4.8)

k(x, y) (1 -y =23,

1=0 J

therefore we can obtain the coefficients Bi . from Ri|jby using the

3

Chebyshev expansion of (1 - yz)i and multiplying the two series together

Using the identity
2T, (x) Ty(x) = Ty (x) + Typ_jy(x) | (2.4.9)

where the Chebyshev expansion of (1 - _y2)i is:

> To.(y)
2 4 2r
(1-y)t=2-2 1 (2.4.10)
T op=l 4r2q
hence we have the identity:
A L + K ) (2.4.11)
20,3 L a1 4p2- 0 Thdter o TiL15-2r e
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Thereforé we'evaluate an approximation K to K using a’product (P,+1)

point Gauss-Chebyshev rule, and an approximation B to B using the identity

v

(2.4.11) with the convention that K, RIS L
s ) :

The standard cost for performing the sum on (2.4.5) the process

suggesfs an N2P2 dependence but the simb]e two stages of (Scraton, UsGl).

P . -

-1 rm a, Jqn
Sr,j" F.qio k(Cos ( E)’ Cos( P))Cos( ) (2.4.12)
<L 3 _Cos (1K™ (2.4.13)
1,J koo Kol P |

reduces the cost to :
(a) NP(P+N) operations for eva]uatfng K
(b) N3 operations for producing B from (2.4.11)

(c) %N3 operation§ for solving the system'(2.3.5) by Gauss-Elimination

In the paper of Delves [14] he reduced the operation count to

0(N2LogN) operations overall, and we now show how this is done.

2.5 SETTING UP AND SOLVING THE SYSTEM

Evaluation of k from (2.4.12) and (2.4.13) can be achieved in about
NP(P+N) operations.
© If we set P=N we can identify (2.4.5) as representing a discrete
Fourier Cosine Transform of the function k(Cos¢, Cose). This transform
can be carried out using the FFT (Fast Fourier Transform) technique thch

produces K in O(N%Log N) operations. Also the FFT procedure can be used
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to evaluate (2.4.2) in‘O(NlogN) dperations, where this.count is a]mosf a
- factor of N better than the standard Galerkin order count. The choice
_P<N is not sensible, because it guarantees Very 1arge errors in the matrix
and- the so]ufﬁon.» |

If the kernel and the driving term g each have awkward featureé
which make them hard to integrate in that way, it is sensible to set P>N.
So fhe FFT procedure yields a (PXP) matrix for K (and then B) which can
be truncated and usihg only the leading (NXN) submatrix and this makes a
cancel in the solution vector‘_g which converges more rapidly than g

or K.

Evaluation of B:

The direct use of (2.4.11) takes 0(N3)'opefations, however, two one
dimensional chebyshevAseries each of O(N) term can be mu]tip]ieq together
'in O(N1ogN) operation using'the FFT procedure.

The algorithm is applicable to (2.4.11) which Eepresénts the explicit |
result of‘multip]ying the ChebyshevAexpansion of k(x, y) see (2.4.6), by
that of (1 - yz)% which is a function of one variable, so that (see(2.4.11))
we can multiply the double series for K a row at a time, taking success-
ively i = 0(1)N and yielding an overall operations count of O(N?1ogN) as
shown in [16] .

Hence'thg (N+1)X(N+1) Galerkin matrix equations can be set up in .
0(NZ1ogN) operations.

A complete error analysis and comparative timings can be found
in [74] which shows that first the method will converge very rapidly
provided that the kernel k(x, y) and the driving term g(x) are smooth, and
second that it is possible to provide cheaply computable error estimates

which take into account both truncation errors (those of N terms in the
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series) and quadrature érror due to (2.4.2), (2.4.5). This paper also shows
that there exists a simple iterative scheme for solving the equation (2.3.5)

with an overall O(N2) operations count.

2.6 ERROR ESTIMATES

The error in the numerical solution obtained by the Fast Galerkin method
has three components:
(1) The truncation error which stems from cutting off the exact éxpansion of

the exact solution

W™ 8

f(x) =

; by T;(x) 5 -Tsxs] | | (2.6.1)

0
at the Nth term. The truncated expansion is given by

fN(X) = aj Tj(X) s -1 < x 1

A

™M =
o

J

(2) The discretization or quadratuke error due to the numerical estimation of

the matrix B and vector g, equation (2.3.5).

(3) There are in principle errors arising from the solution of the linear

system (2.3.5). ‘ -

The computed solution fy(x) has error ey (x) that is

N N .
IeN(X)I = If(X) - fN(X)l g z! Ia. - b‘I + T b.
j0 - J J=N+1 B3]
N I - o . N
<tz |a,-b.] + b.l + ¢ la.-a.
=0 I j=N+1 1551 3=0 135731

= E; +Ep + Eg (2.6.2)
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“ where éj.; 3=0(1)N are the exact Chebyshev hoefficiehts which satisfy the

equation (2.3.5). =

I. Truncation error estimates

. Since g(x) and k(x,y) are bounded functions on [21,1] then (see [14])

Bi‘j’ 9; satisfy bounds of the form

g:.| « C i ;. iz 1 : : 2.6.3)
1 g :

where Cg, Cg are some positive constants and p, q, r are values which
depend on the differentiability of g(x) and k(x.,y).

Delves [j@] gavé the following estimétes for the truncation error E] + EZ:

A posteriori: Ey + E, - E, - E:%— N"(s=1) - Nay - (2.6.4a)
L % (s-1) L -
A priori: E] + EZ T N = NCy max {gy, kN;]} (2.6.4b)

where Cb is some known constant (independent of i, and all i > 0) and s =
min {q, p}. The bound (2.6.4a) is standard; the bound (2.6.4b) contains the

unknown Cd but gives a useful way of estimating the required value of N before

the bulk of the calculation need be performed.

II. Quadrature error estimates

We in fact solve not the system (2.3.5) but the perturbed system

(D+B+&B) (a+sa) = g + &g (2.6.5)

fau

where ga =a=-a; in any norm



 Heall = Q{'llé.g_ll-HGB[HAI,éII}', 1 (% q []sB]] ) ~ (2.6.6)

where Q = |](0+8)"|].

Delves [14] estimates the quantities||sg||, ||sB|| and Q as:
§g,. = T 4G
Iy 521 (QZpJ-r 92p3+r) >’ f P

1(p is the number of points in the quadrature rule).

Then we estimate ISgr| - lgpl , which can be used as the basis of a
numerical estimate of ||&g}|. Similarly ||sB|]| can be estimated as
4 P
§B - T K.
JEIR BTN

and a rough estimate for Q 1is given by

(1 |L§|| |lal|. Hence equation (2.6.6) gives an estimate for the
quadrature error Es. | | .

Thropghout this work we do not include the'error estimates in our results.
For a complete error analysis and details on how the method returns the estimate
error to the user, the reader-is referred to [14, 17].

Finally, the total cost for the Fast Galerkin method is O(NzlogN), and it
is this lower count, together with the rapid convergence and error estimate,

which makes the scheme gttractive.



CHAPTER 3

NUMERICAL INVERSION OF THE LAPLACE TRANSFORM

3.1 INTRODUCTION

Consider the following integral equation

[=]

} k(s,t) ¢(t) dt = u(s) 0

(0]

’”n
wn

<o _ : (3.1.1)

Where the kernel k depends only on the product of the variables s,t.
This general class of integral equation includes the Laplace transform,
the Fourier sine and cosine transforms and many other integrai equations
of importance in physics.

We-consider in this chapter the numerical solution of the Laplace
inversion where the main difficulty in applying Lap]ace-tfansform techhiques-
is the determination of the original function ¢(r) froh its transform.

f e P" o(r) dr = y(p) 0Ogp<o | | (3.1.2)

0

In many cases, analytical methods fail and numerical methods must be
used. The best known numerical methods for the inversion of the Laplace
transform are based on the expansion of the original function in a series
of orthogonal functions. A ‘special case of one of these methods is '
discussed in [52°]. The principal reason for the importance of orthogonal
exponential functions is that only real values of y(p) are required for
calculating the coefficients of the series expansion of ¢(r). However

the computation of ¢(r) from values of ¢(p) on the real axis is numerically

unstable, Bellman and Kalaba - [&]-
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’ Therefore, if a high dégree of accuracy is desired, the calcu]at{on
must be carried out in multiple precisioh or methods must be used which
determine- the original function from va]ﬁes of the transform in the:
complex-plane as described in [26_]in which one of his approaéﬁ is to
derive from an expansion of the transform y(p) in some region of the p-plane
a rétiona] approximant to ¢(p) which can then be inverted using rafioha]
functions; this approach has been used by Lgngman [39, 40] who generated
a rational function approximations to ¥(p) by means of a non-linear
sequence to sequence transformation from the Maclaurin expansion of the
transform $(p). These rational functions are then inverted analytically
to yield a sequence of approximations ¢n(r) to the inverse ¢(r) of ¢(p).
Where [52_] based his method on the approximation of the transform by
trunéated series of orthogonal functions, re]ated'to the Jacobi or Laguerre

polynomials, i.e.

©  (a,8)

RORERERA U (313
(cs8) . L
where Pr is the Jacobi polynomial of degree r and «, B, @ and b are

free parameters and the coefficient C, is given by:

(a

-1 a 8 :8) .
(1-x)7 (14x)7 P, (x) y(x) dx (3.1.4)

o
=~
H
=
o~
| e— -

where

a
y(x) = {T:;] w{T:;} , (3.1.5)



1
. 8 (158 ' .
h, = J (1-x)" (14x)7 | P (x) dx ' o (3.1.6)

-1

Inverting the series (3.1.3) term by term, we obtain

pa 1] = (a+])k BY‘ .
r) = G 4 U [ ] - 3.1.7
T) oo K KT k {27 ( )
where Uk(x) is a polynomial of degree k
-k, k+a+8+1 : :
) {- a_ -9 (=K)p(k+ta+B+l)y x"
U(x) =pFp [otls a5 x| (1) (a), v (3.1.8)
then with o = 8 = -}, the computation can be simplified. Indeed, the

truncated series formulas for the inversion of the Laplace transform is

N br -k, k :
o(r) = TT_‘Y k o Cy Uk (TT) where Uk(x) = ,HF, 3, a s x (3.1.9)

and the coefficients Ck can be calculated by Clenshaw's method for the -

computation of Chebyshev coefficients.

; t tk -
y(Cos =) Cos (5~ (3.1.10)

N
z
t=0

and the polynomials Uk(x) can be generated from the recurrence relation:

U,(x) = (A+Bx) Un_](x) + (C+Dx) Up_o(x) + EU . _5(x)
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. wheré‘~ _ A, B, C and D,E are rélétionsgiven in terms of the free
paraheters a, B, a and b [52] . | |
| The method requireé the values of the.Laplace transform for non-
ﬂequidistant real values of the argument.
Another approach [65 | based on.expaﬁd the original inverse as a
Fourier expansion of ¢(r). |
Let ¢N(t) denote the Fourier-expansion of ¢(t) interms of Qk(t),

so that

N .
¢, (t) = £ Q(t) C ' (3.1.11
w(t) = B Q8 & ( )
where
C, =J Qi (r) ¢y(r) W(r) dr | - (3.1.12)
0

and'Qk(t) is the orthonormal functions such that

oo

J Q,(r) Q (r) W(r) dr = &, : (3.1.13)
! f

Where & . is the kronecker delta, W(r) is the non-negative weight
function over [o, ). Equation (3.1.11) may be regarded as a formula for
numerical inversion of the Laplace transform, only if‘Ck can be conveniently
expressed in terms of y(t.), where t.are points in the p-Plane. Also
equation (3.1.11) is an inversion formulaif Qk(r) and W(r) are linear
combinations of exponential functions.

We describe in this chapter a new method of approximating the exact

inverse of the Laplace transform (3.1.2) as the solution of an integral
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'-equation‘of.the fifst kfnd. ' We based the~méthod on mappin§ the
variab1§$ onto thé finite space [0, I] and app1ying the.Galerkin techniques
on the resulting ihtegra] equation using a truncated Chebyshev expansion

. for the'éxacf mapped -inverse. Then using the Augmented Gaierkin method
[[1)for solving the linear system of Galerkin equations, where the matrix

elements of the system (Lap]ace—matrix) are calculated analytically.

3.2 ILL-CONDITIONING AND NATURE OF THE PROBLEM

The general Fredholm integral equation of the first kind is defined by

b

J k(x,y) f(y) dy = g(x) asxs b (3.2.1)
) .

which in operator form is

Kf=g ~ (3.2.2)

the solution of such equations has been studied by many authors (Phillips [EQ];
Tikonov [60]; Baker, Fox, Mayers and Wright [47]) Turchin, Kozlov and Malkevich
[67] ; Hanson, [28] and a useful review is given by Miller ([45]); and recently
B.A. Lewis ([36]) and a nice paper by Babolian and Delves ([1]).

Their i1l-conditioned nature may be illustrated in a rather simple
manner as follows: the problem has much in common with that of solving a
system of aigebraicequations
Ba=b
in which the matrix § is severely ill-conditioned (or even singular) the most

troublesone feature from a computational point of view is that the problem is

i11-posed that is the solution f of (3.2.2) does not depend continuously
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on the driving term g, that is,a very small perturbation on the driving..
term g can give rise to arbitrarily large perturbation in the solution f.
To show this according to the Riemann-Lebesgue theorem, that is for'any

integrable kernel, note that

b
R (x) = J K(x,y)Sin (ny) dy » O | (3.2.3)
) -
as n +» o

and so it is possible to make Rn(x) arbitrarily small by choosing a

sufficiently large value of n that is for given e however small,

IR ()], = maximum [R (x)] < « - (3.2.4)

asgxghb

Now suppose that equation (3.2.2) has a unique solution f,and let g be

given a small perturbation, say
59(x) = € Ry(x)

where C is an arbitrary constant.

The corresponding change in f is &f = C Sin (nx), it is clear by
assigning a value to C and choosing a sufficiently large n we can make

the ratio

1ef11_/1lssl I

as large as we like.
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In section (3.3)we shall apply the Fast Galerkin method for .the
solution of the integral equation of the first kind (3.1.2) and solve

" the obtained system of linear equations using the il1-posed solver of'[jf-]

3.3 - THE GALERKIN ALGORITHM

The transform function ¥(p) is infinite at p = o for many commonly
occurring problems (e.g. ¢(r) = constant),so in order to weaken the .
necessary condition for a finite transform let us multiply both sides of
the transform (3.1.2) by the parameter p which leads to
p } e P" ¢(r) dr = h(p) (3.3.1)

o |
We consider the exact inverse ¢(r) of the transform (3.3.1) Such

that the following conditions hold:

(a) The Laplace transform h(p) exists (and is known) in some region [0, m]
of the semi infinite space [0, =).
(b) The integral J [6(r)J)% dr exists.

o

Now let p = mg, then from (3f3.1) we have

[ -]

J mq e 1" ¢(r) dr = h(mq) 05qg] (3.3.2)
) 4



let z =™+  mdr = -2 ldz hence

2971£(2) dz = h(m) 05qx] . (3.3.3)

O —t— —
o) .

where .

£(2) = o(-Log, Iz|/m

let q =-§%l s 2= E%l 3 s,t e[=1,7]

then from (3.3.3) we have:
1 s+1

)] |
f &Y Y Fegs) s Tes e (3.3.4)
=1 '
where g(s mE%l

By weighted Galerkin technique using the truncated Chebyshev

expansion for f(t+]) :
(Bl = £ (5 - - T.(t) 1
i< i'j stel (3.3.5)

we end up with the linear system
Ba=g (3.3.6)

where



-33-
s+1

1 () 1 (=)-1
(S . ‘ .
B; ;- J(E;l>,—%;§z [ Bh 100 F ds . (3.3.7)
SRS I -1 | | |
| - f T:(s) .
9 T JQ(S)J‘TTEZ ds | | - (3.3.8)

The integrals appearing in equations (3.3.7), (3.3.8) must now be
evaluated. For the integral in equation (3.3.8) the technidue of chapter (2)
c§n be applied by relating 9; to the Chebyshev coefficients in expansion of
g(s), and then evaluating these coefficients numerically using Fast Fourier
Transform technique.

For the integral in equation (3.3.7) we evaluate it analytically as
follows.

Let us change the variables as:

X=."—2—"; .V=”2“‘ §.¥ay€[§’ﬂ then

1 1
_ x-1
Bi,j = 2 J xT;(x) W(x) } y Tg(y) dydx ogxg<l. (3.3.9)
0 : 0

where T* is the shifted Chebyshev polynomial on [6,1]

W(x) =27 (x-x2)72 (3.3.16)

Lemma (3.3.1)

1

_W(x) = L

jmx+r dx 2/mr+r? » >0
o

Proof:

1
j(]—xz)-% (mx +m + 2r)-] dx -1 tan' //:E: Tx
SR m+r T+x

-1 -1
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_ .

= 2mr+r?

Lemma (3.3.2)
1 1 r=0

xW(x) - I - T
J - dx Zm ! ymr+rZ . r>o

Proof: {see Appendix A)

Lemma (3.3.3)

1 1 1
X e 3 2 1 x-1. -

](y T5 1 (y) dy %[m 3 { xYTUTHY) dy + K5 }(yx "0

0 : ' ' 0

Proof: (see Appendix A)

— - * - * .
TH(y) = 2 (2y-1) T5_4(¥) T5,(¥) iz (3.3.11)
1 1
B. . = 2(4) | xT*(x) W(x X T4 dydx - )
i3 = 24 J ¥(x) W(x) )[y 5-1(y) dydx-2 B, | Bi -2
0 0]
Using Lemma (3.3.3) then
1
B. . = = 4_ x T*(x) W(x) dx - A B. _ ] B 1
3,5~ 3(2-3) i B 41,3 7725 Pi,5 T a5 B,
0
1 1 R

B. ..+ B, . , + -
* g2y Bivnice T Sag2 YAty Biage2 T 28y 5



Using Lemma (3.3.3) and (*) we have:

} 1;3'2 (1 >
‘since
1 - _ 13 1i=0
[ X Tﬁ(x) W(x) dx = = lé i=1 (*)
0 o iz2
L { :
we have:
=1
LN - |
Bi,3 3123 [o i> 1] 53 Pint,g T ATy BinLgee T 2 By ,50
+ L - 1) B, . dop, - B, - ‘B
2(3-2) 1,3-2 2) 1,3 43 Ci-1,3 T B(EA2Y Pie, -2
(121,37 23)
or (3 1= ' 25 4oy
, = . - (43 - 8j J -
Bis1,3 = 1273 {o i > 1] (43+2) By 5 = 83 By g% (3o = 49) By 507 Byy g
J J . . :
*37 85 52t 757 Biar,g-2 (121,35 23) (3.3.12)
1
X 1 4= o]
Bl,o =2 | W(x) Ti(x) dx =7 o i > OJ (3_3.]3).
0]
1 1
=8 W X 1% dydx - -
%0,5 7 ° J x M) {y TG0 VK2 By 5 g - By i
0 0
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m .
i

let

()= ooyt '
T*(y) = I -y then
r=o I
% C A
B . = . s
0,] r=0 Js' O,r
where

1 -/FEFZ; r>o0
Substituting (3.3.15) in (3.3.11) we have

Cior S 4G, 7200, Gy

r-o(1)i Tl reo(1)i-1 reo(1)j-2

1 1
-1
B. , =2 [ X Tg(x) W(x) { yx Tr(y) dy dx .
o )

= 2T (23 -8 B . L 4 (s - 2 j
1,5 Tz T B Bt By s (3 - 200 By 5o s By yg

(3.3.15)

(3.3.16)

(3.3.17)

(3.3.18)
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1
XT(x) W(x) ’
Bi,] = 4 X+] : dx - B’i,O R iz 2 o (**)
. ! :

o
1]

1
x2U(x) 1x ., .
i,0 =18 J(‘x;pTi-] () dx = 2By 4 1 -Bipq 5 8 =0 (i32)
J | 3 |

1
= * - -
31’] = 16 J x W(x) Ti_](x) dx - 6 Bi-],] Bi-2,]
5 .
1 i=2 _
. =2 : - 6 B, - B. 3 12 .
B1,1 "[o i > ZJ i-1,1 i-2,1 122 (3.3.19)
1 1
‘ xTE(x} W(x) € xT3(x) W(x)
B2 = 16 [z X8 - 28y 1 - By 5 622
0 0 '
From (**) then
S
xT?(x) W(x)
Bi,2 = 16 57 dx - 4 B{,] : ize2
0
Define 1
XT3} (x) W(x)
v, = 16 <37 dx
(o
Using (3.3.11) we have
] i=2
N N I B R I ;122 (3.3.20)



‘ 2, . e 5 |
Yo = 8"(] - /6) s V] = ]6"(/5 - 2) . .(3.3.203)
By o=Vt 4By, 2 | - o (3.3.21)

These'equations constitute a set of recurrence relations from
which the matrix B can be computed.
We can summarize the algorithm for evaluating the integral o%

equation (3.3.7) after scaling the matrix by a constant factor .32 as
™

follows:
" step (1)
_4 ) 1=0
Bi,o “Tlo 3 1i>0
Step (2)
4,6 4 _
B,y 7z B =7 (1-7/2);
¢ 1 1=2
Bs1 7 o i#2|° 6 Biq1 "By 3 122
Step (3)
_ 4 16 _4 ,80
Vo =7 8-yg) s V1 =73
4,80 24 _
By, =3 b5 vz 18
4 8 3 i1=2
Vi=3 o 5 i>2 mvi-]-v-i-z 7 122
B1’2 = V1 -4 Bi,] H 132
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‘Step (4)

CO,O =1, Cl,o = -1 3 C]’] = 2 }
A‘ 4 = _4_ ] ’ reoe
o,r n . _r .
V- gz roo
Cj,r = 4 Cj-],r-] -2 CJ_]’r - Cj-Z,r s j 2 2
J C A
B .= I . H J=z2
0,] r=o0 Jsr O,
Step (5) ‘
B. . :.& ( 2 ) - (2j+]) B .-438B |
1, 7 \2-] 0,J Y 00,3-1
NPy A .
AN A = A R
Step (6)

__ea |1 - :
Bin,g TEEGY [0 1>1) T (BB - B3 4,

3 - 2J g4
t32 Binri-2 T Biany Y G - 49D By 5

| i . .
+ j-2 Bi‘],j'z (1 2 ]: J 2 3)
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3.4 EFFECTIVENESS OF THE METHOD

The choice of any method should be made in terms of: acturacy, éost

and stability which we shall consider.

(I) COST: The cost of the ﬁethod.has three components: (a) The time taken
in evaluating the inﬁegré] in equation Qsing the described algorithm ana
the driving.term equation. (b) Thé'manipu]ations needed to set up the
relevant algebraic equations. (c).The solution of the system represented

by equation(3.3.6).

We would usually classify (a) as "useful" time, (b) and (c) as
"overhead operat{ons", the cost for evaluating the Laplace matrix using
a set of recurrence relations as described in the algorithm is of order
0(N2) and the driving term can be evaluated in O(NLog N) operation using "Fast
Fourier Transform" technique described in chapter iz) and 0(N2Log N)
operatidns for set up}equations, an explicit use is made of the structure
of the equations to yield an O(N?) iterative technique for their solution.
Hence, ﬁn terms of cost wise this looks an éttractive algorithm, but it

has instability problems in practice which we describe.

(11) STABILITY: The stability of the method depend on the stability of the
set of recurrence relations used in evaluating the Laplace matrix and also
on the stability of the ill-posed solver which we used for solving the
linear system (see next section). We would like to give a brief discussion
about forward and backward recurrence relations (RR) before we study the
stability of the recurrence relations used in the algorithm.

Considerable study has been made of relations with constant coefficients

of the general form:
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'any(i) +_an_]y(i+1) + an;zy(i+2)+ ..... +a0y(i+n)v= 0 (3,4,])'

which are tfaditiona]]y described as unstable when one or more of the

roots Ay, Aé,...., A, of the characteristic equation

a A" + ap" N era 20 | | (3.4.2)

be outside the unit circle. Thus if (3.4.1) is solved recursively in
the direction of increasing i, any propagated errof will be a linear
.combinatibn of the fundamental solution Ai],kiz, ..... Ain of the homogeneous
form of (3.4.1), provided the'roots of (3.4.2) are distinct. If one or
more of these roots exceeds unity in magnitude some or all of the
propagated error will eventually 1ncrease’unbound§d1y in absolute vaiue,
causing the number of Correct decimal p1acés in the solution to diminish
as n increases. Combutation of the solution of the homogeneous form of
(3.4.1) by forward recurrence is usually impract%ca] owing to strong
%nstability; on the other hand, backward application of fhe homogeneous
form of (3.4.1) provides a stable way of computing the solution, since
rounding error grow no faster than the wanted solution, as a rule [49 ].~

A considerable number of algorithms have been used extensively in
the computation of the solutions of difference equations by backward
recurrence when forward recurrence.is strong unstable [49], which we do
S0.

It proceeds as follows: for a suitably chosen large integer N, a
"trial" solution y&N) of the homogeneous form of (3.4.1) is generated
recursively for r = N, N-1,...... » 0 beginning with yéN)l= 0 and y(N&_] = g
then the solution say fr is found by multiplying yﬁN) bv a normalizing

factor uy. For example if the value f_ is given then yy = f_ /YéN) , more



~-42-

generally if f. satisfies a condition of. the form.

mofo + m]f] oo mN_] fN_] = ]
with given coefficients mf; then.

(N Ny L
My = /&ﬂb Yé ) +m y% ) toooatmy y&@%)

where the value of N can be ‘estimated by.testing with a higher value
and comparing results.

" Hence let us study the stability of the recurrence relations in
our algorithm starting with the recurrence relations of steps (2) and

(3), where the related homogeneous recurrence relations are:

B, 4 +6B5 7,9 *Bjp7°0 3 dis2

i,1
(3.4.3)
Vi + 10Vi_] f V1._2 =0 3 i>2

respectively. Since the relations are of one dimensional form then we

seek a solution of the form,

(3.4.4)

substituting from (3.4.4) in (3.4.3) and solving the resulting quadratic

equation we get

-3+ 272

2V/6

-5

<+
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which'sﬁows that both the recurrence relations are unstable in the
directfon of infreasing i. We achieved é good accufacy for computing
the_second and third columns of the Laplace matrix by running the |
recurrence relations in steps (2), (3) backward. (é = 0.0)

The recurrence relation in step (4) has two problems, the first
provided by the recurrence relafions‘of computing the Chebyshev

coefficients:

-2C,

c. . =4¢C 5-1,r

Jor j-]’r—] j{"Z,Y'

which is also unstable. It is possible in principle to avoid round-off
problems since all coefficients are integef, but instead overflow
problems result when we use an integer arithmetic. Secondlywe lose a

-~ large number of significant figures during the summation (3.3.16)

.

C
0

[ ]

oo o As,r

Since the sign of the Chebyshev Eoefficients alternate, it is possible
to overcome this<prob1em by using arbitrary precision arithmetic [55_].
We have ascertained experimentally the numerical instability of the
recurrence relations in steps (5), (6). For the recurrence relation of
step (5) we achieved a good accuracy by using the arbitrary precision (up
to 72 digit) arithmetic. However, for the recurrence re]atidn of step (6)
we could not achieve a good accuracy because the recurrence relation in
step (6) is very unstable.

Hence, we essentially abandoned this approach altogether, and
evaluated the Laplace matrix by using an alternative algorithm which we

now describe.
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An alternative algorithm for evaluating the integral:

1 | T
. -1

By 5 = 2 J X T;(g) W(x) dx { yx TH(y) dy
(0] o}

Using (3.3.15) we have:

j B .
B. . = zC. A, 3.4.5
i, ° g dsor THar ( )

where Cj as (3.3.18),

X T;(x) W(x) ~
X+r dx | (3.4.6)

I
a—d
-
-
1]
~N
O oty - %

Using (3.3.11) we have

1
— * -' -
A, =8 I X TEq(x) M(x) de = (4rs2) Ay = A,
) .

from (*) gives the Recurrence formula.

g |1 =2 :
Ai,r =-10 i»2 - (4r+2) Ai-],r - Ai-Z,r H iz?2 (3.4.7)
(
4 1 r=20
A == E
o ST | o o ; (3.4.8)
\ vr+r2
A, =3 (2r1) A '
1T o,r (3.4.9)
where B, o, B. 1 and the initial values as before.



-43-

"vSo‘we can summarize the algorithm as follows:

Sfep (1)

It

Si,o

Step (2)
Bi1

where Bo,l
Step (3)

1,J

jsr

where the initial

are given.

a |V 17
Tl0 i >
4 1 3 =
w0 1>
;B],]as
h|
r C. ,
r=0 J°
=405,
3
1
Y
'ﬂ'.-‘_
r]
-4
“wl 0

values

0
0
2
2| 8Bi,1 7 B2y
shown in step (2) page (38)
i,r ’ j 22
17 250,07 Cea,r
r=20
. _ 4
r r 0 ,A],Y—TN-
FTE
=2
s 2| - (4r+2) Ai-],r - A1-2
Bo,]’ B],'I ’ Co,o =1, C

i 2

- (2r+1) Ro,r

r ix?

1,0 G2

lle achieved a good accuracy for computing the matrix elements of the

Laplace matrix i.e. the integral in equation (3.3.7), where we displayed

the matrix elements in appendix (B) which shows that the integral of

equation (3.3.7) converges to zero as ‘i»» for fixed j while the previous algorithm

diverges because of the instability of its (RR) for large N.

e carried
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.out the ca]cu]aﬁion on ICL 19065 computer usihg.Arbitrary precgsion
arithmetic in Algol 68 [55_]; we used in factv72 decimé].digit of
precision.: The cost of such precisién is of course very high; but we
note that the matrix B is independent of the parameter ﬁ in (3.3.3) and

hence B need be computed only once and then stored for later use.

(111) ACCURACY: No-simple method for inverting Laplace transform has
been successful for all types of functions ¥(p); we therefore consider
first the class of funétions for which we might hope the current method -
could be successful.

First of course, we are applying this scheme withvthe assumption
that the equation undgr consideration has square integrable solution in
the mapped intgrva] of integration which-implies that the expanded |
so]ution‘(3.3.5) is convergent with respect to the weight function W(x) =

(1—x2)'§ in L,(W), hence we expect:

(a) A rapidly convergent (good results) with smooth square integrable

solution in the mapped range of integration.

(b) Bad results slow (even divergence) convergent with non-square -

integrable solution.

The condition that the solution be "smooth" in the mapped region
excludes, for example, transforms which have an infinite number bf
oscillations on [0, =), since these oscillations are all mapped into
[E],.j] yielding a decidedly non-smooth mapped solution. However;
transforms v(p) which have (at most) a simple pole at P = 0 are handled
by the algorithm, since this pole is suppressed by the factor p

introduced into (3.3.1).
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Hencé, generally the accuracy of the method depends on the
aséumption that the equatioh under conéideration_must have a square
integrable defining function (smooth) in the mapped regfon and algo on
the‘exact estimate of the parameters of the il11-posed soiver (see

next section).

3.5 SOLUTION OF THE LINEAR SYSTEM

Since our problem is an ill-posed problem, that is the matrix
involved in the linear system (3.3.6) is in general quite ill-conditioned,
any attempt to solve the system directly will Tead to numerical nonsense
for large value of N; the solution of the system (3.3.6) defines an
approgimate solution f, of the equation (3.3.4) WhiCh for Targe N .
oscillates wildly in the interval of the solution. We chose the il1-
posed solver described in [[1_] for solving the linear system (3.3.6),

. which exercises direct control on an expansion of the solution where the
Galerkin equations fpr the chosen expansion are augmented by a set of
regularity conditions onvthe solution, and the augmented (and overdetermined)
equétions solved in L, and L norms.

Since the Chebyshev polynomials are orthogonal with respect to the
weight function W(t) on [=1, 1] , then the assumption that (3.3.4) has

an LZ(W)}solution implies that the representation

W ™ 8

f(t) = T a;T,(t) (3.5.1)

0

js convergent in LZ(W) and that hence
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Hence there exist constants Cf >0, R >} such that

a. < C ‘.‘—R . s ' |
la;] s Cp N i=0,.... | (3.5.2)
where
:i = ] i > 0
=] 'i = 0

Babolian and Delves [ T]regularize the solution with given constants CesR by imposing
(3.5.2) as a constraint on the computed solution vector a, that is,

rather solving (3.3.6) [ 1] solve the problem:

minimize||Ba - g]|

subject to

i = O(1)N

Estimation of the parameters C¢ and R:-

With our experience with the i11-posed solver for the numerical
inversion of the Laplace transforms we found that the i11-posed solver
is sensitive to the values Cf’R. However we achieved a good result for
equations with smooth square integrable functions, We state here the

three methods suggested by the authors for estimating these parameters.

Method (1)

Choose R arbitrary and compute Cf from the relation

Ce = A([lgll/]IBI]) where A must set heuristically.
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Method (2

~ Since for a wide class of kernels matrix é in (3.3.6) is well-
conditioned for small values of N, hence we choose No small and solve
the system (3.3.6) directly to obtain a. Now takihg the logarithms of

the constraints equation (3.5.2) we obtain
logla;] ¢ Log C¢ - Rlogi i = O(1)N

We may estimate the parameters from a least-square solution to the over-

determined system:
Loglail = Log C; - RLogi » 1= TN

where the sequence{laﬂ} should be decreasing to ensure positive R,

and finally multip]y'the computed Cf by a safety factor (u).

Method (3)

Assign a value to R and calculate Cf from:

- iR
Ce = max (lai|1 )

<isgN
0 0

Finally with our experience with the ill-posed solver suggests it has
catisfactory stability properties. That is as N increases, the error reduces
initially and then finally stabilizes; increasing N further neither gains nor
loses accuracy. However, this commenf assumes that suitable values of Cf,R
have been chosen, for poor choice of those values, low accuracy results were
obtained, and we often had more difficulty in finding suitable values. In
our experience with the method, and additional numerical results (not included
in this chanter), "method (3)" above was most successful, but it would seem

that further work in this area might well be worthwhile.
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3.6 NUMERICAL EXAMPLES
| Finél]y we present some numerical examples to demonstrate how the method
works in general. The examples displayéd here ha&e been chosen to show how
~ essential are some of the restrictions made on the functions unaer consideration
. and to demonstrate the way in which changes in the exact inverse affect the
quality of the results. | ' n
The computed error shown in this work is in terms of MS-ERROR (Mean square

error) as:

en(s;) = ¢(s;) = ey(sy)

. Ny
= I ey (s;) 5 MS-ERROR

Problem (3.6.1)
The equation to be solved is

o

p‘f e P g(r) dr=h(p) 5 ospsm
5 .
where
¢(r) = Exp (-ar) 3 a>0 i re [0,=)

h(p) ‘a‘g—ﬁ s pe [0o,m]

Exact inverse = (E%l)a/m s te [3], I]

g(s)zfmﬁ%%ﬂa 3 SEE]SU

Example (3.6.1.1)

a=1 3 m=1

The computed results (MS-ERROR) of this example displayed in table (3.6.1)
with the methods described in section (3.5). Note that with a=m (>1) we

achieved the same results as in table (3.6.7)
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TABLE (3.6.1)

Computed MS-ERROR
for example (3.6.1;1)

) Method (1) . Method (3). N, =4
N R =3 R =11 R=25 R =11 -
A = 2 A= 6 Ce = 3 Ce = 3
=2 -3 3 33

3 |6.516 x10 2.657 x10|2.858 x10 3.165  x10
4 |9.758 -2 8.768 -5 |2.693 -3 4,579 -5

o
—

62 -1 1.902 -5 |1.212 -4 5.858 -5
1.333 -1 1.952 -6 |1.938 -4 2132 -6

6
7 1.459 -1 1.239 -6 [2.311 -4 3.801 -B
g |1.569 -1 8.000 -8 |4.175 -5 5.745 -8
o |1.632 -1 1214 -7 |5.395 -5 9.79% -8
10 - .~ 6.073 -8 |6.664 -5 5.293 -8
1 - 5.301 -8 [3.426 -5 3.835 -8
12 i 4.133 -8 |3.351 -5 4.084 -8
Example (3.6.1.2) ‘ P

The computed results (MS-ERROR) shown in table (3.6.2), also

a = 2m gives the same accuracy.

Example (3.6.1.3)
a=1.0,m=2.0 ; (a/m)# integer,

hence the mapped exact inverse is:

//iigi ; te[21,]]

which we expect a very slowconvergence because of the square-root behaviour of the

exact inverse (as shown in table (3.6.3)).
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Computed MS-ERROK
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. for example (3.6.1.2)

N, = 4
;_Method (1) | Method (2) Method (3)
NI R=m y = 24 R =5 R=8 R=
A =6 R=5 Co=3 | Co=2%73 c =23 ¢p=2R3
-2 -2 -2 ) )
3| 3.013 X10 | 4.244 X10 | 4.244 X10 4.244 XI0 4.248 X10
o| 3038 -2| 1.410 -2| 3.224 -4 3224 -2 3.226 -4
s| 3039 -2| 3948 -3|1.163 -3 1.3%6 -1 1.588 -5
6| 3.000 -2| 1.478 -3 4.615 -4 2.289 -4 3.048 -5
71 300 -2|-7.637 -4 2451 -2 787 -6 5.593 -6
3.041 -2 1.199 -3| 3.464 -4 1.563 -5 1.067 -5
ol 3.041 -2| 7.666 -4 | 2.588 -4 1.214 -1 1.214 - -1
10l 3.081 -2| 8235 -4 2785 -3 - .
nl s0e2 -2 8.160 -4 | 2.720 -4 - i
12| 3.338 -2 | s.0s1 -4 2683 -4 - i
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TABLE (3.

3-
5

6.3)

Computed MS-ERROR

for example (

3.6.1.3)

tethod (3) - N = 4 Method (1)
N R =4 R=5 R =6 R=5 R =11
c%=(0.43)(3)R (0.3 c=0.43)(3%| 240 a-60
o1 -1 = = =2
3| 1.998 x10 1,998 X10  1.998 X10 3.203 X10 3.770 X10
- 7.007 -2 7.007 -2 7.007 -2 | 2.596 -2 3.189 -2
5| 7.412 -2 8.115 -2 8.693 -2 2.607 -2 3.150 -2
6| 2.898 -2 3.637 -2 4.708 -2 2.657 -2 3.148 -2
71 2.888 -2 2.758 -2°  4.133 -2 2.699 -2 .3.149 -2
gl 3.478 -2 2.418 -2 3.923 -2 1.704 -2 3.150 -2
o| 3.954 -2 2.252 -2 3.827 -2 1.740 -2 3.150 -2
10] 4.317 -2 2.163 -2 3.776 -2 2.836 -2 3.151 -2
1| as83 -2 2.0 -2 3.747 -2 3.978 -2 3.151 -2
12l 4776 -2 2,077 -2 3.730 -2 5.053 -2 3.152 -2
Problem (3.6.2)
The problem to be sq]ved is:
D { e ™ ¢(r)dr=h(p) 5 Oosxpsm
0]
where
o(r) = '](e e-Br) H o £ B
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O e [(t—;lf/"' A
. el—z—'l
h(p)- b Log, [Bie] = 9(s) =7 (s+1) Log, T2
pefo.m ; sel[1.0]
TABLE (3.6.4)
Computed MS-ERROR
for problem 'example' (3.6.2)
v m=1 No = 4
=1, =2 “=2’B=5arbitrary
Method (2) Method (3) Method (3) choice
" L =6 R=5 | R=9 R =7 R =8
R=3, C,=1 |C =(0.02)(3)%| cp=(0.02)(3)R ¢¢=(0.1047)(3) c,=1000
3| 6.884 x1079 5.832 X107 | 6.884 x1072 | 7.2415 X102 |7.2415 1%
4| 3.583 -2 |7.982 -3 7.982 -3 4.6625 -3 7.4825 -3
5 ‘1.782 -2 |2.374 -3 1.251 - -3 8.8578 -3 9.0747 -3
6| 8.250 -3 [1.588 -3 1.561 -3 4.3318 -3 3.7489 -4
7] 5.921 -3 |1.297 -3 1.117 -3 4.4098 -3 1.9058 -4
g| 1.119 -2 |4.624 -4 1.517 -1 4.4100 -3 4.5218 -4
9| 5.882 -3 |4.448 -4 1.517 -1 4.4167 -3 2.2339 -1
10] 6.781 -3 |5.418 -4 - 4.4188 -3 -
1n| s.708 -3 |6.338 -4 . 4.4199 -3 -
121 7.642 -3 | 7.165 -4 - 2.2339 -1 -




problem (3.6.3)
p}e‘P‘“d,(r) dr=h(p) 3 ospsm (3.6.]).
[o}

where: h(p) = PEpiT

(p of the L.H.S. is that introduced in (3.3.1));

r

o(r) =5 e ° Sin () which belong to LZE, ),

Where the exact inverse in the mapped interval [—1, 1:[ is also square

integrable function

e < 2 Exola T0glE1) SinEE 1og 21
6(r) = f(t) =/3 Explzg '1?9| 1) sin(Syx Tog [521) 5 t e21, 1]

We expect a very slow convergence for this problem because of the
infinite'numberof oscillations in the solution on E), w), since thesé
oscillations are all mapped into [-1, 1] yielding a decidedly non-smooth

mapped solution, as shown in table (3.6.5) witha= 0.0, N = 10, where

o is a constant parameters \3< \aye®

oo

{a{ sP)o(r) ar = h(p) 8(r) = &"" ¢(r)

o

1etp-q=q‘3 -4 £ Q€M - o then we have

f ed" g(r) dr = h(q+a)(‘\,w)" (3.6.2)
0
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where

'h'(q+0‘) = ((q+°)2v + (g+o) +'l)'.I (g +e0)

Hehce»ipstead'of solving (3.6.1) we solve (3.6.2) where s(r) is a
square integrable function in the mapped interval, which is smoother
than ¢(r); we obtain the 6rigina1 solution from |

o(r) = e’ o(r), table (3.6.5) with a = 6.8, N =10 shows a

better approximation to the exact inverse.

Problem (3.6.4)
The problem to be solved is

[~ <]

P [ eP" ¢(r) dr = h(p) ogpgm

where

h(p) = Exp (-P) 5 &(r) = H(r-1).

_ H denoting the Heaviside unit function that is:

0 H < 1.0
H(r-1) = | } . r=10
-1 s r> 1.0 .

0 ; t<2 ™

Sf(t-1) =43 5 t=2" -] s te [,
M t>28-m"]

The function ¢(r) possesses a discontinuity at r=1.0, (and at t = 2™ -1
on [;],[] ). We expect a very slow convergence if we solve the problem
straightforward, but if we use the same technique as described in problem
(3.6.3) we gain a satisfactory accuracy as shown in table (3.6.6b) while
straightforward solution shows a very slow convergence as shown in table

(3.6.62).
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‘TABLE (3.6.5)

Computed results for problem (3.6.3)

Using Method (3) of Section (3.5).

5<0.0 we set R=3 3 C.=0.29538 but for a=0.8 we set R=6 3 C.=(0.53)(3

Ny = 4
a=08 " ;3 N=10 =0.0 ;N=10

r Exact'¢(r) Computed 6(r) ‘Computed ¢N(r) Computed ¢N(r)
1| 533507 X10| 2.40825 X10' 5.35066 X10' 2.52080 X10'
J| 419279 -1 8.38946 -2 4.13551 -1 1.75177 -1

3l 1.33243 -1 9,82855 -3  1.08341 -1  1.46816 -1
al-a.95008 -2 -8.71115 -4 -2.13706 -2  1.36373 -1
5|-g.79424 -2 . -1.02095 -3 -5.57422 -2  1.32530 -1
6|-5.08023 -2 -4.75068 -4 -5.77257 -2 1.31116 -1
764371 -3 -1.88329 -4 © -5.09292 -2  1.30596 -1

g| 1.271500 -2 -7.09858 -5 -4.27221 -2 1.30405 -1

o| 1.28047. -2 -2.62010 -5 -3.50944 -2  1.30334 -1
10| 5.38548 -3 -9.50630 -6 -2.83378 -2  1.30308 -1

)R
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TABLE (3.6.6a)

Computed results for problem (3.6.4).

Using Method (3) of Section (3.5) with R=5 ; C.=4.86
.= 0.0 N=9 3 Ny=4
r { Exact Computed ¢N(r) ~r Exact  Computed ¢N(r)
0.1] 0.0  -3.924515 K0 10 1.0 . 6.834168 K10
0.2| 0.0 . -8.250561 -2 1.2 1.0  8.047141 -1
0.3| 0.0 -6.448603 -2 1.3 1.0  8.918664 -1
0.4 0.0  -6.952970 -2 1.4 1.0  9.531676 -1
0.5| 0.0 -6.828635 -2 1.5 1.0  9.929666 -1
0.6| 0.0 -2.213843 -2 1.6 1.0  1.016223 +0
0.7| 0.0 7.977687 -2 1.7 1.0 .1.027617 +0
0.8 0.0  2.240937 -1 1.8 1.0  1.03109 +0 .
0.9| 0.0  3.874392 -1 - 1.9 1.0  1.029736 +0
1.01 0.5  5.476987 -1 2.0 1.0 . 1.025773 40
| TABLE (3.6.6b)
Computed results for problem (3.6.4)
Using Method (3) of Section (3.5) with R=4 ; C.=41.842012725
o =0.8 3 N=9 ;Ny=4
r |Exact Computed ¢py(r) r Exact Computed ¢N(ﬁl_

0.1 0.0  6.320459 X102 1.1 1.0  7.199864 X107
0.2 | 0.0 7.245875 -2 1.2 1.0  8.799887 -1
0.3 ] 0.0 -1.550782 -2 ° 1.3 1.0  1.003926 +0
0.4 0.0 -1.108226 -1 1.4 1.0  1.087749 +0
0.5 | 0.0 -1.492069 -1 1.5 1.0  1.132604 +0
0.6 | 0.0 -1.127365 -1 1.6 1.0  1.143496 +0
0.7 | 0.0 -7.466148 -3 1.7 1.0 1.127743 +0
0.8 | 0.0  1.494862 -1 1.8 1.0  1.093539 +0
0.9 0.0 3.371318 -1 1.9 1.0  1.048828 +0
1.0 ] 0.5  5.338595 -1 2.0 1.0  1.000543 +0
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" Comparison with other methods

We compare our method with ofher method§ which are described below.
(a) Problem (3.6.5): A prob1em in V1scoe1ast1c1ty
We consider here the numerical solution of the Laplace transform

inversion of the function

v(p) = P']eXP(-p/G%p‘,)%) 3 p e [0, m

which arises prominently in problems of pulse propagation in viscoelastic
media. Here & is a positive parameter; note thatsé - 0 gives the Heavi-
. side unit function (problem (3.6.4)). The exact inverse of this problem
is ¢(r) » 1 as r > = in which we expect a good accuracy because of the
smoothness of the exact inverse {n the mapped interva]?

We display our results with different va]ue§ of (r) in tables (3.6.7-9)
where we set the transformed interval to [0, T] that is (m=1), following in
the last row of each table the results obtained by (Ldngman [30]) "M", who
used the Maclaurin expansion of a function y(p) of the Laplace transfgrm
operator p, rational function approximations to y(p) are generated by means
of a new nonlinear sequence to sequence transformation. These rational -
functions are then inyerted ana]yticaljy to yield a sequence of approximations
¢N(r) to the inverse ¢(r). Longman's results, as he stated, are given to the
number of places of decimals (till eight) warranted by the degree of convergence.
The convergence in the results is good, yielding 2-3 figures of accuracy for our

method.

(b) Zakian and Littlewood [65] used a weighted least-squares approximation to
the exact inverse, using Legendre polynomials by inverting the transform y(p) =

-1 .
(p+1)”' (see example (3.6.1.1)), using 15-decimal floating point arithmetic.
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' The numer1ca1 results are presented in table (3.6. 10) : 0u1 resu]ts were .
obtained by using method (3) of section (3 5) with R =11, Cf = 0. 5 and N .  }
The results of table (3.6.10) shows that the computed error of Zakian et al |
is inﬁreased'as N increases while our Cohpuﬁéd.errdr is decreasedlés N increases,

but still our method is not éupefiof to that of Zakian et al.

(c) Simon et al [57] calculated the inversion ¢(r) over.soﬁe intérva] |
0 < r < r (max) given an explicit exprégsion‘fpr v(p). Then ¢(r) can be
approximately represented by

¢(r) = egpr ar) [RAE y(a) + 2 ji] (-])_j v(a + _J_%l)]

where the parameter 'a' is a number greater than the abscissa of any singularity
of y(p)- _ | | |

The numerical results presented in table (3.6.11) show the comparison of
this method with our method for the tranéform w(p) =A(p2+p+1)‘] (see préb]em
(3.6:3))." The column marked NN indicates the number of terms used for the
series transformation stated above. We solve.the problem using the modification
described in problem (3.5.3) using method (3) of section (3.5) with R = 6,

- (0.53) ()R and N = 4. '

The results in table (3.6.11) show that the technique of Simon et al

performed marginally better than our method.

Conclusion |

There is no simple method for inverting Laplace transform which has been
successful for all types of v(p); some methods are successful‘for a particular
function y(p) but fail for other functidns. We would like to mention here

some remarks on the results obtained by our method.
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(1) For square 1ntegrab]e (smooth) funct10ns in the mapped 1nterva] we
expect the method to work w1th a very rap1d1y convergent expans1on wh1ch
it d1d in example (3.6.1.]) with a=m. While we did not obta1n‘a good
;acturaéy when we set m=2, a=1 as in example (3.6.1.3)'in’which the exact
inverse (npnjsmdoth) in the mapped 1nterva] where we expect a slow

convergence and the results, as shown in tab]e (3.6.3), were indeed bad.

(2) fn problem (3.6.5) we tried the method on an important prop]em in visco-
e{asticity with different 6(0.1, 0.5, 1.0) where we expect to get a good
accuracy, but as shown in tables (3.6.7-9) the results for a particular
value of (r) wiih'different values of (N) it only settled down to about
2-3 significant'figures, a comparison with the results of (Longman [?Q])

shows that the method did not work particularly well for this problem.

Hence from the results.obtained and the compar1son w1th the other different
'methods, it seems that the method is unsuccessful, even for square 1ntegrab1e
functions (see for examp]e problems (3.6.1.3), (3.6.5)). The results in tables
(3.69-1]) showed that the method is not superior to the other methods considered.
!n general we can say it is a worthwhile attempt to construct a reliable
method for the inversion of the Laplace transform. The problem with our_methoc
is that our mapping from the semi-infinite space [0, ) to the Tinite space
[0, T] is not a wholly satisfactory mapping. Its most unsatisfactory feature
is the way in which the smoothness of the exact inverse in the mapped coordinates
(which affects the rate of convergence expected) depends initially on the
interval [0, m| over which the right hand side is assumed to be known (compare
example 3.6.1.1 with a¥1, m=1, and 3.6.1.3 with a=1, m=2). It would seem that
further work in this area might well be worthwhile. We like to mention that
also the difficulty we met for estimating the parameters C.,R of the ill-posed

solver; in [[1] it was claimed that the results obtained were insensitive to

these parameters, but this has been very far from our expericnce with the
Laplace transform.
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TABLE (3.6.7)

6.5) with = 0.1

Using Hethod (2) of Section (3.5) with R=3; cf=4.2

Ny = 4 -
§= 0.1
N|©  r=0.9 r=1.4 . r= 1.9 r=2.4 r=2.9
3| 0.2952303  0.5074115  0.6920145  0.8245496  0.9125024
4] 0.7280290  0.7980660 0.8466989  0.£928830  0.9302520
510.4126560 0.8216475 0.9541834  0.9977782  1.0090524
6| 0.4857554 0.8519203 0.9727749 1.0011713  1.0050095
7| 0.4672528 0.8625233  0.9844455  1.0047672  1.0036439
0.3615866 0.8703771  0.9848380 1.0026916 1.0023690

9 ]0.4402151  0.8751125° 0.9902401  1.0022430  1.0008755
10 | 0.4286342  0.8759346  0.9946708  1.0024023  0.9997975
11| 0.4256209  0.8772646  0.9947661  1.0020596  1.0000294
12 | 0.4282447  0.8760694  0.9939611  1.0026942  0.9999502
13 |0.4274081 0.8709588  1.0008845 1.0017003 ~ 0.9987199
14 {0.4363679  0.8655848 0.9992457  1.0037097 0.9997084
15 | 0.4454988  0.8575710  1.0056525 1.0029593 0.9974353
16 | 0.4256683  0.8655528  1.0143513  0.9970883  0.9939145
17 | 0.4238757 0.8678255  1.0028325 1.0034426 0.9960778
LM | 0.4175 0.890211  0.9902597  0.99945478 0.99997752
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TABLE (3.6.8)

The éomputed results of problem (3.6.5) with é= 0.5

Using Method (3) of Section4(3.5) with R=4; Cf:6'4
. ; N = '

0

5 = 0.5
N r=0.9 r=1.4 r=1.9 r=2.4 r=2.9

3| 0.2729017  0.4692297 0.6605347 0.8031376  0.8994054
4 | 0.6554698  0.7692293  0.8433814  0.8976704  0.9356796
5 | 0.5530341 0.7871973  0.8989787  0.9503800 0.9745003
6 | 0.5348616 0.7776247 0.8996438  0.9544070  0.9784827
7 10.5439892  0.7706502  0.8944892  0.9533385 (0.9793690
8 |0.5608906 0.7725605 0.8901168 0.9505740  0.9786495
o | 0.5482404 0.7818190 0.8925024. 0.9490444 0.9772838
10 | 0.5428246 0.7797423  0.8945157  0.9495910  0.9770642
11 | 0.5450661 0.7764917  0.8955542 . 0.9502802 0.9770298
12 |0.5493717 0.7727498  0.8961966 0.9511705 0.9770848
13 | 0.5497815 0.7723863 0.8962304 0.9512718  0.9770976
14 | 0.5503047 0.7718897 0.8965379  0.9512676 0.9770298
15 | 0.5506191 0.7714610  0.8966627 0.9513472  0.9769828
16 | 0.5509457 0.7708074 0.8968666 0.9515246  0.9769009
17 | 0.5511615  0.7704142  0.8969408 0.9517583  0.976818?
M | 0.5507 0.77599 - 0.908416  0.9507248 0.9777283
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TABLE (3.6.9)

" The computed results for problem (3.6.5) with 8§ = 1.0

Using Method (3) of Section (3.5) with R=4 ; C.=40.59

No = 4
5=1.0
N{ r=09 r=14 - r=1.9 =24, r=2.9
‘3| 0.2732438  0.4543898  0.6461753  0.7926339  0.8925516
4| 0.9633236° 0.7212630 0.6792743 0.7388341  0.8166059
5| 0.6919014 0.8572111 . 0.8774184  0.8955504  0.9212049
6 |0.5592892  0.7962174 0.8815688 0.9162214 = 0.9399729
7|0.5048298  0.7605095 0.8858068 0.9271177  0.9471401
8 [0.6241397  0.7405671 0.8575066 0.9176163  0.9472768
910.6528437  0.7436857 0.8503268 0.9160312  0.9480227
10 | 0.6579224 . 0.7601117  0.8437033  0.9125937  0.3480733
11|0.6388311  0.7779599  0.8393110 0.9088569  0.9480723
12 |0.6160995  0.7956143  0.8372533  0.9044086  0.9476416
13]0.6149969  0.7964441 0.8372797 0.9041422  0.9475913
14 {0.6108443  0.7997197  0.8358269  0.9039489  0.9479023
15 0.5647476  0.7873242 0.8637628 0.8999654  0.9422768
16 | 0.5691884  0.7799118  0.8705849  0.8993614  0.9403102
17| 0.5768589  0.7690135  0.8758376 0.9012632  0.9386946
LM | 0.6124 0.766354  0.856236 . 0.910691  0.944246




TABLE (3.6.10)
The Computed error = |¢(r) - ¢N(r)|
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N =5 | | N = 10 | N =15
o(r) - [65] Our method [65] -Our method [65] Our method
1.00 | 2x10713 6.3x10°% | 3x1071% | 9.1x077 | ex1077 | 1.2x1077
0.61 6 -14 6.0 -5 |5 -1 1.3 -7 | 9 -8 1.5 -8
0.37 7 -14 1.9 -4 |6 -n 8.0 -8 4 -8 9.1 -8
0.14 | 8 -14 1.1 -4 3 -1 6.2 -8 3 -8 9.9 -8
0.01 2 .-13 | 3.0 -5 5 -1 | 1.8 -8 2 -9 7.1 -0
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TABLE (3.6.11)

‘The compu'ted error = |¢(r) - ¢N(l”)|

N=8

r o(r) BT N Our 3&%&10«1
.0 | 0.533507 5x107° | 13 2.4x1073
0 | o.419280 2 -5 13 5.7 -3
0 | 0133283 | 4 6 13 | 2.4 -p
4.0 | -0.049530 0.0 . 13 2.8 -2
5.0 | -0.087942 2 -6 | 13 | 3.2 -2
6.0 | -0.050892 1 -6 14 6.8 -3
7.0 | -0.007644 5 -6 15 3 -2
‘8.0 | 0.012115 | 1 -6 15 5.5 -2
9.0 | 0.012805 | 1 -6 15 4.7 -2
10.0 | 0.005385 1 -6 16 3.3 -2
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" CHAPTER 4 |
"THE_NUMERICAL SOLUTION OF CAUCHY-TYPE SINGULAR

INTEGRAL EQUATIONS

4.1 iNTRODUCTION

| Cauchy—type:Singu]ar }ntegrél equations are often encountered in
problemé_of mathematical physics and their mathematical properties have
been well investigated (see [43]). For the numerical solution it is
possible to reduce them to an equivalent Fredholm integral equation of
the second kind, and solving the result by any numerical téchniqﬁe (see
for example [32] [33]). Considered direct methods for the solution of
singular integral equations, where,after separating the dominant parts,

" these equations may be expressed in the form:

b b
A o(s) + %.{ %égl dt + { k(s,t) ¢(F) dt = h(s) (4.1.1)
a ' a x |

where h(s) and k(s,t) are known H8lder-condition functions in the interval
[a,b], and A, B are real constants. Two methods have been devised [22, 23; -
34,v3§]; they both set [@, b] to the standard intérval [}1; 1] )
and approximate ¢(s) by the truncated series of the form:

N-1
6(s) = W(s) v(s) = w(s)iioaj P.(s) (4.1.2)
where W(s) = (1-5)% (Hs)6 ; -1 <a,8 <1 1is the weight function and
accordingly Pi(s) are the Jacobi polynomials denoted by Pga’s). The methods
are different in principle although they yield results of the same form.
One of the methods[34] is based on expanding y(s) as an infinite series of

the form
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v(s) = g by Pi(s) o T : - | o (4.1.3)

and using the orthogona]ity relation

1 (a,8) (a.B) . | |
I]PN(S) PM(s) W(s) ds = 6N,M RN : (4.1.4)

(ot 68 +1) .
_ 2 : T(N+a+1) T(N+8+1)
Ry = N7o+E+T N FN+tatb+T]

(4.1.5)

The coefficients by are determined by truncating the obtained infinite
system of linear equations and then an approximate system of equations is
obtained for the determination of the coefficients bi’ i=o(1)N-1. The

other method starts with an approximating polynomial of finite degree:

N-1 | (a4B)

v(s) 4L, G Pl A (4.1.6)

and by applying the quadrature formulae given in [22][35] using the points
s, determined by Péa’e) ($;) =035 = 1(1)N, fora= 8 = + } to approximate
values of ¥(s). In the paper of S. Krenk [34] he follows the second method
provided he gave a simple summation formulae for the.determination of the
coefficients Ci in (4.1.6) and special formulae are derived in terms of
Chebyshev polynomials for the cases (a,8) = (+3, *}) also he included special
formulas for (1) and y(-1).

These methods are clearly related both to each other, and to the

Fast Galerkin expansion method considered in this thesis. Note however the

weight factor W(s) which appears in the approximate solution (4.1.2). This
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weight factor is introduced for numerical convenience. ~Howevér;‘it forces
the approximaté solution to be zero at;the end point of the iﬁterva], and "’
_hence will in genera] lead to 6n1y_s]ow convergence of the numérica]
so]ytion to the exact solution ét interiorvpoints. | ‘

We seek to avoid this difficulty, and present a numericé] solution -
"for Cauchy-type singu1ar‘integral equation of the form:

b : | .

s(s) + J ﬁ(‘;) dt = h(s) a s.s. sb | (4.1.7)

a

Using an expansion method, which a genera]izétion of Fast Galerkin
method for second kind integral equatiéns,-we consider Fredholm, Volterra
and inverse-Volterra singular integral equations of Cauchy-type; thé
" extension of the method to equations of thé more general form-(4.1.1) is

trivial.

4.2 THE FINITE PART OF AN INFINITE INTEGRAL

The integral in (4.1.7) does not exist in the Riemann sense; for
Fredholm equation (a,b fixed) we interpret it here in the usual Cauchy
sense (see chapter (1), section (1.3)). However, the Fast Galerkin method
as extended in [14] implemented as described in [17], treats Greens-
function type operators (having kernels with a discontinuous derivative
along the line t=s) as the sum of "Volterra" and "inverse-Volterra"
operators. |

For Volterra and inverse-Volferra equations with Cauchy kernel, the
singularities appears at the end of the range of integration, and the

principal value integral does not exist. We give a meaning to these
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integral -equations in terms of the Hadamard finite part integral. We

state the definition given by Hadamard [277| for the integral

3 .
A(t
| } ‘TE:%) dt , ass<c<b
a : .

where he gave the sign "["" to denote the finite part of.an infinite

jntegral.

Hadamard definition

The finite part of an infinite integral:

)

At
} S_t).dt agsgh

a
is defined by adding a term

B(t) Log, |s-t] - and taking the limit as t » s.
That is:
s t
A(z _ 13 A(z)
{ S"Z) dZ - ]1m jl—étz) dZ + B(t) Logels_tl
a t*s | a

where the function A(z) is assumed to satisfy the Lipschitz condition
: ]

and B(t) is a function satisfying the conditions:

(a) the limit must exist

(b) B(t) has a continuous first derivative at least in the vicinity of
t=s.

Note that the finite part of the integral will in general depend on the

exact choice of the function B(t). Here we make the consistent choice:



AR
B(t) = constant. The.following results then hold:

Lemma (4.2.1)

(i) -Is
dz_ - _log |s-a] ; asszgb
@)
a
(i) 15
dz_ - log |s-b] ; ass b
(z-s) ’ s 7S
3

Proof: (i) from Hadamard definition with A(z) = 1

We have:
15 1
dz - dz |
f = limit I i B(t) log |s-t]
a t -+ L%

= lim [:- Log |s-t| + Log |s-a| + B(t) Log lS-tf—
t»s

We choose here to set B(t) = +1; then

IS

| a2 = - Log |s-a]
J-
a

A

with the same processes (ii) follows.

We shall require within the formalism to carry out a change of variab]eg'
the Hadamard integral (of integral order) is not invariant Qnder such a

transformation (see [27_] p.137-138).
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Carrying out a linear transformation explicitly we find:

~ Lemma (4.2.2)

(@) rx
b-a.
j y?i = - LOg‘I—?E (x+1)] -1 = x’s 1
1 ' '
(b) — |
}-y-‘-_’-{(—uog B2 e Texe
X

Proof: By mapping the variables in Lemma (4.2.1) onto the standard interval

[=1, 7] gives (a?, (b) respectively i.e. (set z =-E%§ y +-E%3 S =-E%3 X +-E%3).

Lemma (4.2.3)

1
(a) 2
I Tn(X) dx = 1777 , N even
2 0 » N odd
(b) 1 r
Tn(X) Tm(X) qx = | T-(nem)2 + T=(n=m)2 both (n,m) even or odd
-1 0 3 otherwise .
(e)
wremy 3 In-m|odd
I 1,00 Uy q () dx = { 7%
-1 0 ; otherwise
(d)1 '
{ Tn(y)L oy log2 5 n=o
- 09 |x-yjdy = -7
/T-y? L1 05 nso

Where Tn(x), Um(x) are the first and second kind of Chebyshev polynomials

respectively.
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4.3 THE FRAMEYWORK

We describe the numerical solution of the Cauchy type singular

integral equations over a finite interval [a, b] of the form:

(a) b .
o(s) + { o(t) dt.= h(s) ass

¢ .
t-s gb
» a
(b) 3
@(s)+§ HU at=n(s) 5+ assseb (4.3.1)
a
(c) b
p(s) + { %:%l dt =h(s) ;3 asscb
.

Where (a), (b) and (c) known as Fredholm, Volterra and inverse-Volterra
Cauchy type singular integral equations of second kind; these equations
have important application, for example in aerodynamics.

" In the next three sections, we shall consider the numerical solution
of the three types of singular integral equations above. To use Fast

calerkin scheme for second kind integral equations [14], [16] we map the

variables (t, s) onto the finite interval [-1, 1] by setting

xsy [, 1]

§
:

Substituting these in (4.3.1) we have:



1

.(‘al)'f(X).+u'J[ —;—S{()—dY=9(x)' ; ~lsxsd
-1
, X '
(bl) f(x) +u f —§§§)—-dy =g(x) 5 -lgxzgl (4.3.2)
' ~1
1 .
(ch) f(xiw{ R TORERN
X

v = (2 55

We approximate the assumed Lp- solution f by the truncated Chebyshev

expansion for f(x):

A
]

N
fefy= B a5 Ti(0) o Slsx (4.3.3)
1=

0 .
By applying the weighted Galerkin method on the equations in (4.3.2) as
described in chapter (2) we end up with the ‘linear system of equations

where the unknowns are the Chebyshev coefficients a;:

(D+B)a=g | (4.3.4)
where: 1 _ 1 i=j=o0
D; ;= J Moz T dx=ai3 i=3>0 } (4.3.5)
- 0 i#i]
1
T, (x)
g; = | ez 9(x) & (4.3.6)
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A1l the three equations in (4.3.2) have the same structure of the
right_hand side of the system (4.3.4) as in eqUation (4.3.6), hence
for evaluating fhe integral in equation (4.3.6) we use the technique
described i.n~chapter' (2). | .

Now for evaluating the matrix B in the system (4.3.4) thaf is the

integrals:
| | 1. 1
v o2 | Ti(x) T.(y)
B. . (Fredholm) = 1 J
i3 ) a/’T?iz dx j S Texed (4.3.7a)
- -1
. | X
B, . (Volterra) = | T.(X) f T.(y)
i, 1 .
j J/rTxe & -%;2 dy 3 -1sxsg1 (4.3.7b)
-1 -1 -
1 1
. 2| Tsi(x) T.(y)
B. . (inverse- = J i } J .
i Volterra) JvTwe &) Ty s thexsd (4.3.7¢)

-1 X

‘It is essential for accuracy to use analytic methods. For simplicity
let us call the integrals in equations (4.3.7a-c) as Fredholm matrix,
Volterra matrix and inverse-Volterra matrix respective]y. We shall
produce recurrence relations to eva]uaté the Volterra and inverse-Volté;ra
matrices.

We could calculate the Fredholm matrix as the sum of Volterra matrix

and inverse-Volterra matrix, i.e.

Fredholm matrix = Volterra matrix + inverse-Volterra matrix
but it proves possible (and more accurate) to compute the Fredholm matrix

directly.



4.4 FREDHOLM MATRIX

From equation (4.3.7a) we have

.

' ' . (x). T.(y)
- 4 B J
By s” ;Q-J Jiox2 dx } v

-1 -1

where -%7- is a scaling factor.
Using Lemma (1.1) we can write the above integral as:
1 1

T.(x) T.(y)
BLJ':—::—Zde} Y S M s e = (1)

, 1
: : T. T.
=_—£z J dy f dx ~lff;:;i£fl W(x)

]

]
=I'J o

—,
—
Cte

—
x
~—
.
>

: 1,1 :
A W(y)T,(y)
S I} IR

1
Wy)Ts (y)
{ ~—§:§l—~— dy = f Ui g (x) 3 i>o0
-1 ‘ Ix] <1
0 s i=o

Where Ui(x) is the second kind of Chebyshev polynomials.
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From Lemma (4.2.3c) we have:

r -

! , |3 -4 odd

B._=§{
™

1 P- 2

0 otherwise

4.5 VOLTERRA MATRIX
We describe in this section the way to evaluate the integral in equafion

(4.3.7b) as a set of recurrence relations that is from (4.3.7b). We have:

1 X
_4 ax 1 Ty . ovar-
Bi,j' —7 J W(x) Ti(x) dx } i( ) dy ;3 W(x) = (1-x2) X
-1 ' -1
from the identity -
T;(y) = 2yTj_](y) - Ti(¥) iz2 (4.5.1)
then
1 X
4 B
I W T. d .
B ; [ﬂz]z J (x) T,(x) dx j T dy + By 5 +B, 51
-1 -1



-78-

evaluating the integral value of

. . _ )
T.(y) T..5(y)

- -2
I Ay =3y - B (4.5.2)
B -1
then we have

] ]
B, = (A1 11w o) T dx - (21|
i (%) 3 ] 72|32 H(x) T, §(X) Ty () dx

- 2]

1 1

4 (-1)° (-1)32
i (x) T.(x) dx + — 32 W(x) T.(x) dx
-] . __'I
tBiyy, -1 P By, g1 7By, g2 (121092 3)
Using the identity
: :
T 1 =0
W(x) T.(x) dx =

I (x) T - (4.5.3)
-1
We end up with general recurrence relation
B.‘.=-].—D..——.-] D, ., +B. . ., +B -B 4.5.4
B,i 07 1.3 377 Ti,3-2 i+1,3-1 i-1,3-1 i,j-2 (4.5.4)

where Di,j and Di,

j-2 are diagonial matrices as in (4.3.5), that is
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| 1 ) 1 i=3=o0 o
;57 JW(X) AORACKEE I E IR ER (4.5.5)
-1 o i f'g :
] i - ] 1 = j—z =0 -
D'i,j-z = '_4‘2'1 w(x) T.i(x) TJ-_Z(X) dx = ——3-_. 1 -= j"2 >0 ~, ‘(4-5-5b)
-1 o i # j-2
1 X
4 y d j(Y)
Po,g ™ w7 | MO ]

-equations (4.5.1), (4.5.2) and (4.5.3) lead to the recurrence relation for

computing the first row of the matrix, that is

N DGO P - B 43 : '
Bo,g ™ 7 | 3(3-2 1,i-1 " B, j-2 (3 23) (4.5.€)

Now for computing the first column of Volterra matrix we have to use
Hadamérd definition for evaluating the finite part of the infinite integral.

1

_ 4

=1

y

y-X
1

——— ¢
Y

by applying Lemma (4.2.2) then we have:

1
By o =~z {(-Log 1252 (1)) M(x) Ty ()
-1 1 1

='*gz (-Log IE%EI)[ W(x) T.(x) dx - —%7 { W(x) T.(x) Log |x+1] dx.

-1 -1
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Using the iden@ity (4.5.3) and Lerma (4.2.3d) we have:

4 |- nLog2 i=o

4 -Lo ~—~ln 3 i=o0
B'ioz—TTz ng! . Y o
s 0o - 31 >0 -7 Ti(-l) i>0
. | _
= -Log | |+ Log 2 i=o0
i
_(.;'l)- i>0
j
\

(where a, b is the finite interval in equations (4.3.1))

[ log lEé%ﬂ i=o0 ]
‘ r : | (4.5.7)

-nt
i |

_ 4
Bio™ T

Now for calculating the second column of the Volterra matrix:

1

X
: 4 [y
By 1 =57 [ W(x) T.(x) dx j x v | )
-1 -1

by using equations (4.5.1),(4.5.3) we have:

' 1
1 2
vl (Bi+1,o )+ 3

tBige T 5

: |
- 1 S (4.5.8)°

Bi’] i 1J

the same with equations (4.5.1), (4.5.3) and the relation

K2 (x) = g (Tip(%) 42 Ti(x) + T, (x) (4.5.9)
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We can calculate the third column of Volterra matrix from the recurrence
relation:’

B

_ : o 1 ‘ .
Bi2 =B, 0 * B, "Bty o g2 iind © (4.5.10)

Hence we can summarize the'a]gorithm‘for computing the'elements of

Volterra matrix (4.3.7b).

1 X
s (T [T
81’J= —Z J/T:;Z‘ dx J V=X dy as follows
-1 -1
. Log_tgggl s i=o
Step (1) Bi,o ==

Step (2)

4
0,1 ~7 VB .
1 , 1 i=1
B: 1 =5 ) +
i, 1 2 i+l,0 i-1,0 710 i s 121
Step (3) ”
Bo,2 “ 2810 "800 7 s : -
] 3 1 i=
Bi2 85,1 * B, By oty , izl
0 is>2
j-2
8 |(-1)?
step () Bo5 7w [§ 5-2) ] P11 " Bog 3 323

_1p o]
step (5) By 5 =3 0,57 52y Disg-2 * Biw, g

+Biq, 51 B, 52 (121,323

where Di ; and Di, j-2 can be computed from (4.5.5a-b) respectively.



4.6 INVERSE-VOLTERRA MATRIX

We follow the samé procedures in the previous section for computing

the elements of the matrix:

1 0
T:(y)
Bj 5° -—?,—z J W(x) T,(x) dx‘f j_x dy 3 W) = (1-x2)74
-1 X '

From the equations (4.5.1), (4.5.2) and (4.5.3) we get the general

recurrence relation

. - -"' -l
i 7 P 5 TR 5 T B g2 T 0 3 O
(ix1 323 (4.6.1)
Where Di,j and Di, j-2 28 in (4.5.5a), (4.5.5b) respectively.

From equation (4.5;1) and the identity

‘I .
1 1T, T,
J T ) &y =3 [ 1§Y) - 3:2(y)]x (4.6.2)
X : »

We can compute the first row of inverse-Volterra matrix from the
recurrence relation:

8
m

Bo,j = 2By, -1 7 Bo,5-2 "

1 _ |
LTCT??)] Jz3 (4.6.3)

By applying Hadamard definition on the infinite integral for computing

the first colum of inverse-Volterra matrix



-£3-
1

| 1
'BLO={§qu)nu)mJ§%
0 "

Using Lemma (4.2.2) and the identity :(4.5.3) we end up with

mﬂéﬂi=6

% - | (4.6.4)

(Where a, b are the finite interval in equation (4.3.1)).

From equations (4.5.1), (4.5.3) and the relation (4.5.9) we compute
the second and the third columns of the inverse-Vo]ferra matrix from the
recurrence relations:

_1 _ . ‘
%J‘?‘%HJ+B+LJ Tl isqfs 121 . (4.6.5)

(o)
]
:]I_.a
-_—
—
n
N
-

(4.6.6)

We can summarize the algorithm for computing the inverse-Volterra matrix

(4.3.7c) as follows:

. Log lgég ;i =0
Step (]) B'i,0=-—1; 1 ]
_.|' s 1 >0
- Step (2 24
. P (2) %J“?+%p’ 1T 4=
=1 2
Bi1 "7 Bint,o * Bl o) T 7 R



step (3) B . -
P (') By,2

|
N
o]
-
—
1
oo

B2 = B P, T o

2B

Step (4) By 5 = 28y 5.1 7 Bo,5-2

VB . =B. . .4 4B. g .4~ ’ -1y,
step (5) By, 5 = Bia,g-1 * Bion,5o1 " Bii2 T 3 0s T 32 ige

where
Di,j and Di,j-Z

“can be computed from (4.5.5a-b) respectively.

4.7 NUMERICAL EXAMPLES

We present here a number of numerical examples to demonstrate how
the method works in general, the test examples were run on IBM 4341 |
computer. The examples displayed here have been cﬁosen'of two types: .

- Equations whose exact solution have a very rapidly convergent Chebyshev
expansion (smooth-so1ution);

- Equations whose exact solution have singularity near.the finite interval
of integration, where we expect the solution behaviour to be represented

badly near the singular point as in problem 2.

problem (4.7.1)

Exact solution : f(x) = x
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(1.a)»Vo1terra—type_
X
f(x) + { ) gy = g(x)
y-X
=] : :

X X
+de+X'f—y-_—x
a4

From Lemma (4.2.2) we have

1)

9(X).

x + (x#1) + x(-Tog|x+1])

g(x)

1

(2x+1) - x Log |x+1|

(1.b) Inverse—Vo]terra-type

1
f(x) + f ;L—l— dx = g(x)
4 g(x) =X + { dy + x f- §¥X
X X

Lemma (4.2.2) gives:
g(x) =1+ x Log |x-1]

(1.c) Fredholm-type
1
f(x) + {5(—{1 dy = g(x)
-1

a(x) = (x+2) + x Log |{2]

A

A

[

BN

A

A
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Problem (4.7.2)

“Exact solution f(x) = (x+a)™! 5 o §[51,T]

(2.a) Vo']teri'é-t_ype

X |
_‘Q(X)=f(x)+'j[ %ldy _ . -lsxs1
-1 '
X
- 1 + dy
(x+a) (y+a)(y-x)
-1
X X
1 " 1 dy _ 1 dy
T (x+a) 7 (x+a) y-X (x+a) Ty+a)

-1 -1
From Lemma (4.2.2) we have:

g(x) = g,(x) - g,(x) where
.1 a-1
‘ g](X) = Tx+a) (1 + Log [m]) :

1
gZ(X) =W LOQ !X'Hl

(2.b) Inverse-Volterra-type.

1
g(x) = f(x) + f ;é%) dy . 5 ~1sxsg1
' X



1

X

from Lemma (4.2.2) we have:
g(x) = g1(x) + g,(x) where

- 1 X+q,
g](x) = (X+a) Log lml

' -1
g,(x) = Log |1-x]| (x+a)

(2.c) Fredholm-type
d

S + ] { dy
(o) * Tx#a) ] yx.

1

X+a ‘

f(x) + f %) dy = g(x.)

-87-

] .
] dy
(x+a) | y+o
X

(x+a)

Log

-1 s x

1-x
IT:;|

A
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Problem (4.7.3)

3 :
F(x) + } W a-s0 0 2exs
-2 ‘ '

X+a

1 3 athi ]l o 1 jog 130X
9(x) = x5 {] Log !a-zl} * e Lo 1553

Problem (4.7.4)

—h
P
x
N”
+
O —t—oy —
]:2
<
g
o,
<
I
«©
——
>
-
o
A
x
A
—r

, 1+ 1 1-
a(x) =i{1-L°9 l—f}“m Log |2



Problem (4.7.5)

X
f(x) + f ;é%l dy = g(x)

-1

f(x) == 3 a i [,

X+a

].
g(x) ='§IE{] + log |

Problem (4.7.6)

a-1
at+X

3]

'}

2
fu)+f%¥dx=uﬂ‘
X

X

f(x)

g(x)

2 + xlog, | x-2]

-
xX+a

-89-

Log |x+1|'



TABLE (4.7.1)

Computed MS-ERROR
_for problem (4.7.1)

-90- -

Problem (4.7.1a) Problem (4.7.1b) Problem (4.7.1c)

N
3 | 3.852185  x10'7 3.349465 10"’ 2.223085 x15'0
1 | 8.046243 17 3.915261 -17 7.614716  -16
5 11.114849 -16  8.355797 =17  4.574660 -16

1.097062 -16 . 5.816721 -17  7.517792 -16
7 11.390668 -16  6.115154 -17  8.972813 -16
g | 1.350696 -16  1.026158 -16 1.462702 -15
9 1;546358 216 1.462325 16 1.132914  -15

10 | 1.648023 -16- 2.432101 -16  1.908959 -15

11 | 1.601857 -16  4.633822 -16  2.033869 -15§

12 | 1.684939 -16 6;422655 -16  1.986623 -15

13 | 1.813073 -16  7.213128 -16  1.408878 -15

14 | 1.896252 -16  7.816584 -16  1.582351 -15

is 1.977299 -16  6.450235 -16  2.263904 - -15

16 | 1.954503 -16  4.614272 -16  2.703725 -15

17 | 2.505227 -16  6.829688 -16  1.777726 -15

18 | 2.511134  -16  5.572537 -16  2.456309 -15
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TABLE (4.7.2)

Computed MS-ERROR
for problem (4.7.2a)

v.=]

.5

N |a=1.006 oc=l1 o o« = 4.0 a=9.0
3 | 1.9011 ¥10™ 5.9653 10" 4.4788 x15° 1.2382 X16° 1. 0869 .
4 11.1433 +1 2.8339 -1 1.5788 -2 1.5772 -4 5.8588 -6
5| 7.4126 0 1.5522 -1 6.1139 -3 2.0173 -5 3.2772 -7
6 | 4.9064 +0 9.2746 -2 2.3484 -3 2.5648 -6 1.8281 -8
7 | 3.4128 +0 5.7821 -2 9.0536 -4 3.2911 -7 1.0289 -9
g | 2.4587 +0 3.7042 -2 3.4872 -4 4.2064 -8 5.7632 -11
o | 2.0056 +0 2.4203 -2 1.3840 -4 5.3468 -9 3.2075 -12
10 | 1.8797 +0 1.6209 -2 5.1653 -5 6,7298 -10 1.7659 -13
1 | 1.8544 +0 1.0831 -2 1.9700 -5 8.3785 -11 9.6153 -15
12 | 1.7635 +0  7.1089 -3 7.4473 -6 1.0403 -11 5.1773 -16
13 | 1.5564 +0 4.4763 -3 2.7889 -6 1.3053 -12 4.9573 -17
18 | 1.2625 +0 2.6889 -3 1.0871 -6 1.682 -13 5.0032 -17
15 | 9.1481 -1 1.5775 -3 4.0016 -7 2.2305 -14 4.3709 <17
16 | 7.3667 -1 9.9127 -4 1.5747 -7 2.9373 -15 5.3985 -17
17 | 7.9853 -1 7.0585 -4 6.2628 -8 3.8659 -16 5.3017 -17
18 ] 9.0893 -1 5.1507 -4 2.4283 -8 1.1878 -16 5.3524 -17
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TABLE (4.7.3)

Computed MS-ERROR
for problem (4.7.2b)

= 1.5

= 4,0

N =1.005 a=1.1 a o @ = 9.0
3 | 5.a051 010" 1.2009 1100 9.7235 10° 18066 10 12362 X10.
4 | 2.7852 +1 5.0728 -1 2.6016 -2 2.0087 -4 7.2536 -g
5 | 1.7557 41 3.0037 -1 1.0056 -2 2.5024 -5 3.7859 -7
6 | 1.2001 +1 1.6880 -1 3.4699 -3 2.9771 -6 1.9611 -8
7 | 9.5852 +0 1.0889 -1 1.3256 -3 3.7411 -7 -1.0795 -9
8 | 7.6051 +0 6.6750 -2 4.9308 -4 4.6891 -8 5.9491 -1
o | 6.6837 +0 4.3014 -2 1.8644 -4 4.8034 -9 3.2849 -12
10 | 5.6448 +0 2.6899 -2 6.9542 -5 7.3457 -10 1.8008 -13
11 | 4.9124 40 1,7012 -2 2.5812 -5 9.0162 -11 9.7131 -15
12 | 4.0804 +0 1.0556 -2 9.5932 -6 1.1138 -11 5.2508 -16
13 | 3.3689 +0 6.5579 -3  3.6049 -6 1.3895 -12 8.1345 -17
14 | 2.7806 +0 4.1566 -3 1.4083 -6 1.8201 -13 1.0111 -1¢
15 | 2.4564 +0 2.7112 -3 5.5656 -7 2.4267 -14 9.995] -17
16 | 2.3813 +0 1.8258 -3 2.2050 -7 3.2286 -15 9.7127 -17
17 | 2.3056 +0 1.2006 -3 8.3037 -8 4.1537 -16 9.9488 -17
18 | 2.0994 40 7.5163 -4 2.9504 -8 1.4765 -16 1.0828 -1
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TABLE (4.7.4)
Computed MS-ERROR

for problem (4.7.2c) :

o= 4.0 o= 9.0

Y =1.005 a=11 a=15
3 | 1.9552 x10! 4.2454 x10' 5.2237 X10° 1.7567 y15° 1.5301 x15°
4 | 1.3394 +#1 8.6905 -1 5.5845 -2  4.3296 -4 1.4767 -5
s | 5.6801 +0 1.5007 -1 8.0337 -3 2.7522 -5 4.2583 -7
6 .6062 +0 2.6715 -1 5.7642 -3 5.1605 -6 3.3714 ‘-8
7 | 3.3229 +0 6.5764 -2 1.2489 -3 4.3013 -7 1.2597 -9
8 | 7.5776 +0 9.4669 -2 7.3707 -4 7.3622 -8 9.1997 -11
o | 2303 +0 2750 -2 1.8242 -4 6.7502 -9 3.7911 -12
jo | 5:7896 +0 3.3335 -2 9.6646 -5 1.0797 -9 2.5051 -13
11 | 15549 +0 1.0218 -2 2.4772 -5 1.0268 -10 1.1091 -14
12 | 3.9409 +0 11011 -2 1.215 -5 1.5411 -11 7.5054 -1
13 | 9.7688 -1 4.0572 -3 3.4358 -6 1.5622 -12 7.2732 -17
18 | 2.7514 40 4.3179 -3 1.7198 -6 -2.3189 -13 1.2561 -16
15 | 71688 -1 2.0899 -3 5.5695 -7 2.6405 -14 6.9327 -17
16 | 2.5496 +0 2.0085 -3 2.7276 -7 3.9824 -15 1.2638 -16
17 | 6.8466 -1 8.5512 -4 8.0070 -8 4.1191 -16 1.1924 -1¢
18 | 1.9232 +0 6.6982 -4 3.3766 -8 2.8412 -16 1.2675 -1¢
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TABLE (4.7.5)

Computed MS-ERROR_

for problems (4.7.3), (4.7.4)

Problem (4.7.3)

Problem (4.7.4)

wla= 2. a=9.0 a= 1.1 4=9.0
3 | a.3208 x10' 3.0979 x| 6.9938 4133 3.278 16>
4 | 9.2606 -1 4.219 -5|2.2973 -3 1.4320 -6
5 | 1.6922 -1 1.6536 -6 | 1.8003 -4 1.9748 -8
6 |3.1608 -1 1.8061 -7 | 4.3507 -5 7.2584 -0
7 |7.7263 -2 9.1731 -9 | 4.5280 -6 1.2017 ‘-1
g |1.2385 -1 9.2333 -10|9.9007 -7 4.405¢ -3
9 |3.4902 -2 5.1559 11| 1.1%7 “-7 86217 .15
10 |4.7574 -2 4.8700 -12|2.319 -8 3.396) -16
11| 1.4038 -2 2.8295 -13|.2.7411 -9 5.5485 .17
12 |1.7069 -2 2.5037 -14|5.2492 -10 8.0038 -17
13 | 6.1197 -3 1.4839  -15|6.6566 11 9.5895 -17
14 | 7.2625 -3 2.2365 -16|1.2784 -11 1.2167 -1
5 | 35256 -3 86017 17| 17300 <12 70339 -17
16 |3.7019 -3 1.1297 -16|3.4573 -13 1.2329 -16
17 [1.5956 -3 11207 -16|4.5651 14 1.2003 -1
18 [1.3569 -3 1.3438 -16|8.6908 -15 1.6655 -16
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TABLE (4.7.6)

Computed MS-ERROR

for problems (4.7.5), (4.7.6)

=1

Problem (4.7.

Problem (4:7.5) 6) ‘

3 1.45120932247 X10° 6.2103132180321  X10
4 7.8335416156 -6 3.8432043013509  -15
5 4.38670022829 -7 4.1334674924832  -15
2.44985453637 -8 3.0868807974163  -15
7 1.37855562044 -9 1.6646507502957  -15
§ 7.72058212519  -11 | 4.1277545249464 15
o 4.20567099030  -12 | 8.6872901773451 © -15
10 2.36441357113  -13 | 9.2017114443120  -15
11 1.28760665549  -14 | 6.2320777889542  -15
12 6.94124232209 <16 | 6.1652850877204  -15
13 6.30368238391 -17 | 9.5863403044256 15
14 5.78222654645 =17 | 7.7446629139675  -15
15 5.28951295178  -17 | 5.6771849963233  -15
16 6.24924351001  -17 | 9.6334816564371  -15
17 6.25694341867  -17 | 1.1423274023229  -14
18 649185351058  -17 | 1.1000375291897  -14
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| 4.8 CbNCLUSION
The a]goritﬁm described above yields a direct génera]ization.of
that given in [14]. l
The following points cén be extracted from the above tables: |
(a) Numerical resﬁ]ts for problem (1) shows that goéd accuracy have been

achieved as we expect from our choosing the exact solution (smooth).

(b) In problem (2) we chose the exact so]ution’(x+a)'] to be L2-so1ution
inside the range of integration but singu]ar outside. Since in the
beginning we assumed that the exact solution is square integrable in
the interval of integration, hence our expectation for a good agcuracy
depends on our choice of the constant "a". We expect fast convergence
‘with "a“ far outside the interval,and slow convergence with "a" near to
the interval. Figures (1-3) shows the cohvergence obtafned graphically
for prob]éms (4.7.2a-c) with various values of the coﬁstant "ot

On the Lo%61inear scale used, the results are well fftted (apart
from a possible odd-even effect in N) bya relationof fhe form

N
- =CA
IE=AT

That is, "exponentially rapid" convergence. We expect this form of
convergence, since the solution is in fact smooth everywhere inside the
range of integration. However, whether the convergence is in fact rapid
depends on the value of "a"; it is clear from the figures that the
singularity approaches the interval of integration, |a] approaches 1 and

convergence becomes very slow.
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“(c) The me thod works'wiph a good accuraﬁy wheh we take the interval of
integration different from the standard interval [=1, j].as in problems
(4.7.3-6). | |

The:method which we have described has not been compared Wfth 6ther
methods, at the time of preparing this work. The méthdds described at the
Beginning of this chapter are.used to solve equatidns of the first kind,
and.they ba]cu]ate the values of y(1) of equation (4.].2);theapproxﬂnateso]Ution
js forced to be zero at the end point of the interval, which in génera] 1e$ds
to only slow convergence to the exact solution at the interior points. The
Fast Galerkin method avoids this difficulty, and the accdracy achieved is
independent of the strength of the singularities in the equation, and depends’
only on the smoothness of the so]&fion.

We conclude from the results above, and from our experience with the
method that it allows the efficient solution of a wide class of Cauchy-
singu]ar'integral equations, the achievable accuracy is quite cléar from the
results which reflects the stab%]ity of the method.

An advantage of the Galerkin approach is that cheap and rather effecfive

estimates can be made available, see [14],[16].
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CHAPTER 5
THE FAST GALERKIN TECHNIQUE FOR

LINEAR INTEGRO-DIFFERENTIAL EQUATIONS

5.1 INTRODUCTION
We describe in this chapter the Fast Galerkin scheme for computing
the coefficients in the Chebyshev expansion of the solution of first and
second order linear integro-differential equations.
The method is valid under the "usual conditions" (the solution
required is bounded and possesses a finite number of maxima and minima
in the finite range of integration). The essence of the method is that
an expans1on in Chebyshev po]ynom1als is assumed for the highest derivative
occurring in the equation. Other methods which are based on expansion
éeéhniques include those of:
(a) E1-Gendi [18] who reduced a first order integro-differential equation
to an equivalent integral equation by a preliminary integration.
(b) Wolfe [63] who used a generalization of the Clenshaw and Norton [1T]
technique to solve the first derivative f'(x) recovering f(x) at the end
by final integration. -
The method described here is a generalization of the Fast Galerkin
scheme for second k{nd integral equations described in chapter (2) which
retains O(N2LogeN) operation§ count of that scheme. We remark that the
method shares that of Wolfe the feature that we solve first for the
highest occurring derivative of f(x), reéovering the function itself in
a subsidiary operation; however the approach is quite different in other
respects from that of Wolfe. The method described here has the following

advantages:
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(a) The rapid convergence and low operations (O(NZLOgN)) count of the

Fast Galerkin scheme are retained.

(b) Integro—differehtia] equations of Fredholm, Volterra and inverse-

Volterra type are handled.

(c)The method is capable to handle Singu]ar integro-differential

equations. -

(d) The defining equations for the method are well conditioned.

Throughout this chapter we consider only Fredholm integral
operators; however, the method app]ies equally well to equétions
. containing Volterra operators.

In the following two sections we expand the function (solution)
and the occurring derivatives in terms of Chebyshev polynomials, then
we apply Galerkin scheme to-obtain a Tinear system which contains the
coefficients of the derivatives expansion and the coefficients of the
function expansion. We then write the equations whicﬁ relates the function
(solution) coefficients and the dérivatives coefficients.

Finally, we apply the method to a system of singular integro-
differential equations containing a Cauchy kernel in which we use the
technique described in chapter (4), for computing the singular part.
The method aims to retain a very rapid convergence and also a stable
structure of the Fast Galerkin equations; numerical examples indicate

that these aims are met.
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5.2 LINEAR FIRST ORDER INTEGRO-DIFFERENTIAL EQUATIONS
‘We consider here the following linear first order integro-differential

equation with linear boundary condition.

1

_Q(x) f'(x) + R(x) f(x) + j k(x,y) f(y) dy =‘g(x)‘ -1 e x g1 (5.2.7a)

-1
ctrp) +db F(b) =e | - (5.2.1b)
where
b = (b], ,bm)t s -1 ¢ b1 <1 , mis the number of the boundary points,
: ' t ! ' '
F(b) = (F(by)srevenfBN® 5 F1(0) = (F1(0))senenf (B (5.2.1c)
E_ = (C],...-,Cm)t Y _d_ = (d]’ ..... ,dm)t

Let us introduce the Chebyshev polynomial expansion of

£(x) > 1) 5 Q(x) and R(x) ., g(x)

'ay Ti(x) ;o i) = 2t al Ti(x)

f(x) =
=0 j=o 3 J

J

I~ 8

(5.2.2)

2x) = S§; g, T(x) 3 R(x) = 55; re Ts(x) 5 g(x) = SE; 9¢ To(x)

Applying the Galerkin scheme to (5.2.1a) with the expansions in

(5.2.2) we end up with the infinite system of equations:



]' v
[ k(x,y).Tj(y5 Ti(x) W(x) dx dy = g, (5.2.3)
21 - . .

Since T,(0) T;(x) = MTy,3(x) + Ty_s3(x)) then

’

j:s:o

1 2 i
T (x) T.(x) T:(x) > ‘
s J 1 X = = 5. . i+j>0 and s =o0
. ¥ 1-x°2 2 ij °? -
=1

é(‘Ss,i+j + 6s,[i-jl) 3 S > ©

\

‘where éij is the Kronecker delta, whence'we may write (5.2.3) in the form:

Qa'+ (R+2B)a=g S (5.2.4)

where
05,5 = Hayyy * 94510 3 .
(5.2.4a)

2
u

1 |
B ; : I kOGY) T(0) T3 W(x) dy dx 5 3315 =0(1)....
121

|| ——

9 R ]
0o =7 5 R~ 7 ; (5.2.4b)
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() T;00 W0 dy o s
| |

et

. 1
-1
Bi,o Tw I.
. 5

= (1x2) !

=
- )
[ox
—
i

Now the solution of the,problem_requires the evaluation of tge

coefficients aj in the expansion:

f(x) = 3 a, *t T](x) S S ta, Tn(x)+..., ' (5.2.5a)
‘where f(x) satisfies a linear integro-differential equation in the variable
x with polynomial coefficients provided that the 'usual conditions' are
catisfied, the series converges uniformly to f(x) in the range but the

series for the derivatives of f(x) are not readily obtainable from (5.2.5a);

we express formally the first derivative of f(x) as:

f(x) =33, + a;  Ty(x) +'.i..+ ay Ty(x).... ‘ (5.2.5b)

(see for example [9])

then from the relation

T..1(x)  Ti4(x)
2 | To(x) dx = S0 - _J_lT_
J J+i J
Wwe deduce
23 ALY P B ¥ I (5.2.5¢)

~ Now to solve the system (5.2.4). For a' we have to find first a, to do
this we have to write a in terms of a'. For introducing the ideas involved

let us consider the solution of the first order ordinary differential equation
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£(x) = h(x) -1 ¢xgl . L ' (5.2.6a)
subject to the boundary condition (5.2.1b).

We introduce also the Chebyshev expansion of h(x) -

n ot g

h(x) =

VT, C ' '
J al T.(x) | | | , - (5.2.6b)

o 9 J”

W t . . | . V,
e can compute the coefficients aj using (FFT) technique described in

chapter (2); here w ; i |
pter (‘) e assume that_aj are known. Now we can write (from (5.2.5c)):

e -ty | | ' '
o5 = T, (af.g - 2f) | (5.2.7a)

jn the matrix form:

me - | | .
a = a
8 e - (5.2.7b)
where - .
(
1 J=4i20
_ - - s = >
A= (355 = | 2050 e
d
- s J=i+2
2(-1) (5.2.7¢)
. O otherwise
(1)
_ t
E = (a.l, a2, a3,...,aN,....)
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hence from (5.2.7), (5.2.6b) using the expansion of f(x) ih‘(S.é.Z) '

equation (5.2.6a) can be written in the form

(M
a=Aa
| e ; | , | 5 -
L"E Ta+d Ta' =e c y - (5.2.83)
where
1 , '
Tj,j - Tj(bi) s Ti,o =5 i =1(m , §=10).... (5.2.8b)

Now from (5.2.8a) we obtain

+(1
(cr)a, =¢ '(QF T + Ct(T)A) a' 3 - . (5.2.8c)

: (1)
t .
ro=(},....53) | H Ti’j = Ti(j+]) i =l1(1)m‘ i j=0M)...

hence we deduce that for equation (5.2.6a) to have a unique solution it

js necessary that
¢ m
Ay = = by .
p=cr=1 1Lc # 0 (5.2.9a)
therefore assuming (5.2.9a) is valid, then

- t '
a, =k a +u ‘ (5.2.9b)
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' I
on Lotrectta g

= - (5.2.9¢)
8, | ' |

Hence from (5.2.8),(5.2.9) we obtain

a=Aa ty SR | | (5.2.10)

Fquation (5.2.10) represents an infinite set of equat{ons for the
expansion coefficients a and it gives a canonical relation between the
expénsion of a function and of its first derivative, subject to the
boundary conditions, in praCtice we shall truncate é]] infinite.éxpansibns
uniformally afterthe(Nﬂftterm and solve (5.2.10)‘as (N+1) x (N+1)
system for the coefficients Bgseesesdys We shall use equation (5.2.10)
for the solution of first order and second order'integro—differentié1
equations to rewrite these in terms of defining equations for the highest
occurring derivative. These defining equations then already incorporate”
the boundary conditions, and can be solved directly.

Now for the solution of (5.2.1), if we substitute a from (5.2.10)

into (5.2.4) then we obtain

(Q + (R +2B)A") a"= g o (5.2.10)

where g; = g - (R +1B) u | (5.2.12)
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that is

B i o . :

(95 =9 ~*( 7 *7Byd - " (5.2.13)
D.79702 . _— (5.2.18)

where x s the first column of (R +AB)
So now the infinite system (5.2.11) is the representation of (5.2.1).

So having found a' from (5.2.11) we can compute a from (5.2.10) to proceed

numerically (5.2.11) must be truncated.

5.3 LINEAR SECOND ORDER INTEGRO-DIFFERENTIAL EQUATIONS

We consider the fo]]ow1ng linear 1ntegro differential system

1
P(x)£'{x) +Q(x) flx) +R(x) £(x) +2 I k(x,y) fy) dy = g(x) ~ (5.3.1)
| -1

cf(b) + DF'(b) = e dexgl
where b, f(b), f'(b) are as defined in (5.2.1c) and C, D are 2 x m
matrices; e is 2x1 vector.

To ensure that the system (5.3.1) has a unique solution, we assume
that:

8, = det[Cr,Cb + 20r “|# 0 ; (see (5.3.11C)) | (5.3.2)
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If we introduce the expansions -

oo [+=]

= 3 T (x) , f'(x) = ' a% T.(x) .5.3.3
P(X) SEO ps S X j=0 J J . ( )

and the same expansions introduced in (5.2.2); then by ‘applying the
weighted Galerkin techngive to (5.3.1) we end up with the infinite

system

pa" +Qa'+ (R+XB)a=g | (5.3.4)

where the matrices Q, R, B are as defined in (5.2.4), and

: = Lot Ppa_s
Pig = 2Pieg *Pp-g))

p=)
-

-

H
o
_—
-
~

Pio~Z o (5.3.5)

e}
-
o
[}
"
—
—~
—
~r

Now with the same idea as for the first order we have to write a,

a' in terms of a" . To dothis let us consider the solution of the

linear second order differential equation of the form

f{x) = ' a} T.(x) - -1 xs1 | (5.3.6a)

Cf(b) + Df'(b) =& (5.3.6b)

where C, D, f(b) and f'(b) as defined before.
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Equation (5.2.10) holds for (5.3.6) ( considering one of the
--equations in (5.3.6b))and ve now are looking for a similar equétion
relating to a'and a"  that is, similar to what we did for the first

order. We try to write aé in terms of a" .

Now from (5.2.5¢) and a similar form we have:

at = A3 4 (5.3.7)

if we drop the first row and column of A we obtain another matrix, say A
: , 1°

so we can write

a:A]—a_ =A]AE =A2_a_ . (5.3.8)

1
= - - J=1iz20
84,3 1 4(3+1)(5+2) -
-1 j='i+2 -
z(jz_]) (5.3.9)
1 .
— J=1+4
4(3-1)(3-2)
{ 0 otherwise

el
1
——
o3
nNo
-
o
w
-
-
[o7)
=
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4From,(5.2.7a) we have:

ay = 2ay +a, = 2a; + i(a] - ag)
C - pa s hb an

ay = 23, +h”a

where

h = (0, 3, 0, -}, 0, 0....)

Now to find a; in terms of a? we write (5.3.6b) as

CTa+DTa' = e

I 2)(2 (1) (1
el [ |+ 2@ oy P e
3
where
t -
_r_ - (%’ ’%) s T1,j = TJ(b1) 3 T1’o = %
(1) (2) |

, .= T.,. 3 T, .
T1,J i(j+1) 1.

Using (5.3.7), (5.3.8) and (5.3.10) from (5.3.11b) we have:

_ = — (2 1
Crcb+2Dr| [a ) &y

%

“Tiggeg) T 1M

=.e_-(CTA2+DTA+D£ht)§-u

(5.3.10)

(5.3.11a)

(5.3.11b)

(5.3.11¢)
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uhich has.a unique solution if (5.3.2) holds.

“Lemma (5.1)
" If a" is a solution to (5.3.6) then there exist a vector L and a

number n such that

. t .

al’=L"a +n = '

ce=Ltan . (5.3.12)
Proof (see [2_], and the references stated there).

Therefore from (5.3.7) and (5.3.12) we have:

a= A & +n 5 . | (5.3.13)
A" = (‘I___t A)t . n = (ﬂao,'O,....,O)t
hence equation (5.3.13) represents the relation between the coefficients

of the first and second derivatives.

Now from (5.3.4) using (5.2.10), (5.3.13) we obtain:

pa" + Q(A"a" +n) + (R +AB)[A"(A" a" +n) +y =g

Oor
[F+(Q+ (R+1B)A) AT 2" =g, (5.3.14)
where

g =9-nZ-uk
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|N

is the first column of [Q + (R + AB)A']  and

x js the first column of (R +1B)

“hence for the solution of (5.3.1) we solve (5.3.14) for a" and evaiuate a'

from (5.3.13) then a from (5.2.10)..

5.4 NUMERICAL PROCEDURES

We dgscribe in this section én economical procedure for solving
the system (513.14) numerically, and the same procedure can be applied
to the system (5.2.11) of the first order linear integro-differential
equation.

" The basic decision to be made here is the way fo truncate the
infinife system (5,3.14).- ' - |

-First let us definé

(N) .

Z-= (zo, Zyseerennenes ,zN) (5.0.1)
where we usually take Nz 3 B

then we write the infinite system

e TR (5.4.2)

where
H=P+ [0+ (R+AB)AT] A

" bearing in mind that A, A" are upper Hessenberg matrices
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th term

The simple way is to truncate every expansioﬁ after the N
then all the vectors replaced by their - (N+1) - vectors, and the infinite
square matrices by their (N+1) x (N+1) leading sub-matrices..

We can note that accordiﬁg to (5.2.5c) we need to know

: . - “(N)
Eﬁ<N+2) to evaluate 3¥N+]) from (5.3.13) and then a from (5.2.10)

L T O .
because if-we just evaluate @' then .a, , , a, will have an error of

order
(N+2 | (N+2)
AN+ ' laN+2|
AN(N-1) AN(N+1)

respectively, and also a,s 2 will have similar errors,.however these

errors are small for those values of N. Ue evaluate also
.E(N) , .L(N) from (5.2.9c).and Lemma (5.1).

without further approximation by evaluating elements of the m x(N+3),

leading sub-matrix of the matrix T defined in (5.2.8b).

First of all let us make the assumption that

then the system (5.3.14) reduces to the system

(NN (N)

Hoa' = g (5.4.3)
where ‘

) (0 e # (R #AB LWy

H o= Py,n T WN, N4 N, N+2 N, N4277N+2,N+1) "NeY N (5.4.4)
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Where we mean by Z'_’S the leading sub-matrices of order (F+]) X
(s+1) obtained from the corrésponding infinite matrix.
For a point of gain,in computational convenience, we could replace
H(N) by . . . . .

(N) - 3 |
6 =Pyt Oyt Ry 2By Ay ) Ay . (5.4.5)

From truncating all the vectors in (5.3.4), after the Nth term
and replacing the infinite matrices by their (N+1) x (N+1) leading

sub-matrices.

So instead we solve:

THORRG | ) -
63 =% | | (5.4.6)

(N) | " |
where G as in (5.4.5) which slightly differ from(H) only in their

last two columns, that is

(N) (N) Ry (ne1) * A B
i, (n-1) ~ Gin-1 T 4&(&+1) L)
(5.4.7)
(N) (N) 01’(N+]) R; N+2 + A B,
He v G4 T T200T) ¥ AZ&+T}%N+2) L. (42)
i = O(1)N

which as N » = the R.H.S. of (5.4.7) converges very slow.
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'(N) ?ﬁgce to speed up the convergence we have to.reduce the gap bétweén
. ' . : _ _ N) - .

H, G in order to find a better approximation to H and improve the

accuracy of the solution vector. ~To‘d'o this it is unwise and combutation-

11y inconvenient to 1 .
ally 1n eva uate 51’(”+]), Bi,(N+2)

for 1 = O0(I)N
but since alread{ evaluated r(®N) ang q(2N) we can define a bétter
N) (N) -7
approximation to H say U as: S :
- W )
the first (N-1) columns of U are the same as that of G but
I T R
i (N-1) = i, (N-1) BN(N+T) > 1= 0(1)N-]
N N .+ . 4
(U? = (G? + I+1-1 7 N + "N+2-i + Ne2+ i = 0(1)N=2
),N T,N 4(N+]) 8(N+])(N+2) _ ( )l -
(V) (N) r

Uy, (1) En,(n-1) T BRQWTY

(N) M) G2 * 9N "3
Un-1y,0 = Sv-nn © TEE) T sIw T (Ne2)

(N) (N) +
Uyn = On,N

Hence instead of solving (5.4.6) we may solve:

(NN (N) :
v a =% (5.4.8)
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Similarly for the first order integro-differential system in equation |

(5.2.11) we solve

My ) ) | S
£2 T o o (5.4.9)

where, with the convention 7y = ZN N

() .
E = QN + (RN +-ABN)AN

We could solve the system

(MN) N

Fa=9 | . (5.4.10)
N m Ny

instead (5.4.9) by replacing E by F for the same reason mentioned

N) . N
before in the second order system, where(E) and (F) have the same first

N columns and

NN Tt * T
Fan = EBin? +4(r1m) = ;1= 0(1)N-1
ny m r

Fun = Enon * 3w

Problems (5.6.3-6) of section (5.6) shows how this modification works

in practice for both first and second order problems.
_ (2N) (2N 2N
We evaluate the matrix BN and the vectors P, {9 ), SE ) and (SN)

(2N) )
9 in O(N2Log N) operations, using the technique described in Chapter (2)
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We follow the economical technique of [ 2_]for eva]uating'BN as:

(1) By < ABy
o (2N)
(2) BN <— (RN + BN) psing only (5.2.4a) and r
| m |
(3) By < ByA' using k |
. . o (2N)
(4) BN G Qy + By using (5.2.4a) and gq
: . (N)
- (5) By «—— B A" using only L
(2N)

(6) By < (PN + BN) using (5.2.4a) and P

The stages (1)-(6) requires only one matrix‘of order (N+1) x (N+1) which
is By and a matrix with size m x (N+3) which is T in (5.2.8a) and 6 vectors,
that is (P> 9s ¥s 9p» ks L) each of them containing at most 2N+2 e]emenfs.
'The operation count in stages (3) and (5) is O(NZ) because each column of A’
(or A") contains at most three non-zero elements. |

We consider the coefficient matrices H and E of equations (5.3.14) and

(5.2.11) respectively, that is:

H =P + (Q+(R+AB)A")A" ; E = Q + (R#AB)A’

Theorems (1,3) of Babolian and Delves [27] show ,,under ceftain smoothness
assumptions, that the non-diagonal elements of the coefficient matrix H (and E)
are uniform Yylxnmded away from zero, and the necessary condition for the

di -gonal elements H,; (and Ej;) to be uniform l§ - bounded away from zero is
that ?o#o (and qO#o), where d and P, are the first coefficients of the
Chebyshev expansion of Q(x) and P(x) respectively.

The above condition is in turn guaranteed if the following statement holds:
P(x) (or Q(x)) does not change sign on -1, 1] (a)

We now introduce a definition.
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. Definition (5.1)

let E=0Q+ (R+AB)A'A~; H=P+EA"

M= inflE | ; q,70 for first order problems
o S

M= i"fIHii‘ ; 'pO#o fpf second order problems
izo 3

Now if M > o, the coefficient matrix E (or H) is asymptotically diagdna] of

. type B (see Freeman and Delves [25]) and hence:

(i) The matrix problems (5.4.6) and (5.4.9) are well conditioned.
(ii) The convergence and analysis of [25] is directly applicable and leads

(N
to bounds for |la - a || and IIf-let.

We now note that a sufficient condit%on that the problem (S.Z.f) (or
(5.3.1)) has a unique solution is also given by (a).

If (a) does not hold, then qu%tion (5.2.11) (or (5.3.14)fmay be
singular or j11-conditioned. Consider the case where (a) does not hold,
but (5.3.1) (or (5.2.1)) has a unique solution. Thenp (or q,) méy be zero
(which implies M = 0); and even if p#o (or g _fo) we may have M = 0. In’ the
next section we discuss these two cases, with the aim of retaining the
satisfactory behaviour of the method without requiring P(x) (or Q(x)) to

be positive.
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© 5 THE CASE THAT P(x) (OR Q(x)) CHANGES SIGN ON [Z1, ]

Ndw before we proceed to a numérica] exémp]e let us consider the case
where the function Q(x) of eduation (5.2.1) or the function P(x) of the
system (5.3.1) changes their sign dn the interval [-1, 1].

Next we study two cases, first bo =0 (which.impiies"M = 0), second if'

pof0 we may have M = 0; and similar procedures can apply to first order.

- (a) The case that Po =0 (or qé =0 for first order):-

(N)

If p, = 0 in equation (5.3.4) then the corresponding matrix G may be
singular for some N and hence the vector solution is inaccurate, that is tﬁe
numerical calculation is unreliable.
Hence we need to modify the numerical method to allow for this eventuality.
Let us consider when p_ = 0 in (5.3.4), the same method applies when q, = 0

in (5.2.4).
Let r be the least positive integer for which
p; = 0ifi<r and p, #0 (5.5.1)

then suppose given r let us apply the Galerkin technique on the following

equation:
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. . . ' '.' ) ] ’
T (x) P(x) F(x) + To(x) Q(x) F(x) + Tp(x) R(x) (x) + » Jk(x,y) T (y) F(y) dy
| . . r

-1
= T_(x) g(x)

We end up with the system
p* '_ail, + Q*_a_'+ (R* 4 ;\B*)Va = g*

where

9*1 = 5(91'+r + gl-i_r.l) s - i=0(1)....

= * -
P*1,j‘ 3(o i+ + o*'1-3|) i =0(1)...
j=1(1)...
p*.
_ i
P*1,0 = 7 1=0(1)...
with

Pry = 2Py * Pliope]) o T =000
with a similar definition for Q* and R*

if we take j = 1 then
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. * *
Py g = 2ai ¥ Ry)

. ,
Now since Py = Pn # 0 and

A

.
Po; = 4(P2i4r ¥ Pl2ir|) ‘then

* . Pr -
Pii™ 27 P (Pojur * p]21_r|)

. * Pr .
that is P i,i—_é'ﬁ— as i —>

It is unlikely for small values of p. can be treated as zero for
choosing r, since p; =P, remains valid independently of (5.5.#) and
we require only pg # 0 and it is not necessary to require that Py = 0,
4§ < r exactly. Problem (5.6.8) of section (5.6) shows how well this

modification works in practice.

(b) The case that py # 0 (or g, # O for first order I-D equations) but

M of definition (5.1) is zero:

The solution of the systems (5.2.1) and (5.3.1) depends on the
accuracy of the solution to the systems (5.4.9) and (5.4.6) respectively.
In practice sometimes if A = 0, M = 0 and R(x) = O then according to an

naccidental® cancellation on the diagonal of P, . (Q for first order
3 N
I-D equations) lead to the corresponding coefficients matrices (G) of

(V)
(5.4.€) and E' of the system (5.4.9) be singular for some values of

N > 1, and that is what we met in practice when we applied the method to
: N

e prOb]em((?igig) ?g)SECtlon (5.6), when we computed the vector (a) from
N e

the system E 3 = g, using Gauss elimination (with complete pivoting)
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‘and back substitution, the results.(see table (5.6.5) for some values
of N are very bad. | ‘ '
N The iterative scheme of Delves [15] treats this difficulty as

follows:

If the coefficient ~matrix of the system proves ill-conditioned
the scheme simply uses Gauss e1iminatioﬁ, if in this case the matrix |
is found after Ny e]iminationsfages to be numerically singular,.the
remaining N-N0 unknowns are set to zero and a solution of tﬁe N, -term
approximation will be found. This solution is clearly also a valid
result to return for an N-term approximation. Problem (5.6.10)of

section (5.6) shows how this modification works in practice

‘5.6 NUMERICAL EXAMPLES

Finally, we present some ngmerica] examples to demonstrate how.
the method works in general. The examples displayed here have been
chosen to show how the modification described works in general and how
e;sentia] this modification required to obtain an accurate solution to

the problems under consideration. The numerical ca]cu]at{on were carried

out on 4341 computer with (64 bit-real).

Problem (5.6.1)
This problem was discussed by |9 ]

A
>

A
—t

(5+3x) ka) =-%f(x) -1

solution : f(x) = (5+3x)5

with boundary condition

£(-1) = /72
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Problem (5.6.2)

1
x2 f"(x) + A J k(x,y) fly) dy = g(x) a1 exel
-1 -
where: A =0 , f(x) = x2
g(x) =2x% . = 3 k{x,y) = xy
with boundarycondition
Cf(-1) =1 s () =2
Problem (5.6.3)
1
x2 fl(x) + exf(X) +>\” e(X+])y f(y) dy =.g(x) _.'l < x <1
-1
where
g(x) = (x2 + &%) e + ;}? (X2 . -x-2)

with boundary condition
£(-1) + f(1) = eV 4!
Problem (5.6.4)

As problem (5.6.3) but solved using the modification described in

section (5.4) using the system (5.4.10) instead of (5.4.9)
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Problem (5.6.5)
_ : 1

eX £ (x) + Cos(x) f'(x) + Sin(x) f(x) + A J o(X#1)y £ly) dy B} o(x) ;
-1 £ x g1 - =1 h .

with boundary conditions

£(1) + f(-1) = el 4o

£(1) + £(-1) - £'(-1) = e

" where

- g(x) = (ex + Cos(x) + Sin(x))ex‘+
Solution: f(x) = e

Problem (5.6.6)

As problem (5.6.5) but solved by the modification described in
section (5.4) using the system (5.4.8) instead of (5.4.6).

Problem (5.6.7)]

p
xf" (x) +*J k(x,y) f(y) dy = g(x) -1sxg1
-1 '

where : f(x) = e*

g(x) = xeX + ?éf (e

X+2 _ e-x~2

)

with boundary condition f(1) = e] 3 F'(-1) = e'] and » = 0
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Problem (5.6.8)

As problem (5.6.7) but solved by using the modification described |

in section (5.5-(a)).

problem (5.6.9)
o

Q(x) f'(x) + 2 J k(x,y) f(y) dy = g(x)
-1

where -z A =0 3 f(x) =e* 3 g9(x) = Q(x)e*

0x) - (8 - B+ 1) 5 k(xy) = eV

with boundary condition

f1) + f(-1) e +e’

problem (5.6.10)

As problem (5.6.9) solved by using the modification described in

section (5.5-(b))-.
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TABLE (5.6.1)
Computed MS-ERROR for problems

(5.6.1) and (5.6.2)

N Problem (5.6.1) Problem (5.6.2)
A =0.0
3 8.48193 10" 5.08216 X100
4 1.65783 -4 6.39256 -16
5 3.56508 -5 2.36276 -6
6 7.96143 -6 3.95140 16
7 2.08315 -6 2.39084 -16
8 5.29486 -7 6.69019 -16
9 1.48465 -7 6.44356 -16
10 4.15952 -8 3.77477 -15
n 1.19146 -8 1.93174 a5
12 3.56840 -9 1.14129 -15
13 1.02064 -9 1.45197  -15
14 2.95717  -10 4.14335 -15
15 8.43011  -11 1.26622 -16




TABLE (5.6.2)
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Computed MS-ERROR for problems

. (5.6.3) and (5.6.4)
Note that problem (5.6.3) solved using the system (5.4.9

(5.6.4) solved by the modified system (5.4.10)

) while prob]em4

N “Problem (5.6.3) Problem (5.6.4)
| A=1.0

3 4.63428 X107 4,08522 X102

4 1.08485 -2 9.75776 -3

5 2.24532 -3 2.04626 -3

6 3.32007 -4 3.05106 -4

7 3.95864 -5 3.67130 -5
8 4.1728 -6 3.89333 -6
9 410493 -7 3.84993 -7
10 3.71320 -8 3.49722 -8
1 3.09503 -9 2.92695 -9
12 2.37593  -10 2.25383 -10
13 1.73325 -1 1.6493] -1
14 1.18443  -12 1.13008 12
15 7.56255  -14 7.23562 -14




- -130-

TABLE (5.6.3)
Computed MS-ERROR for problems
(5.6.5) and (5.6.6)

Note that problem (5.6.5) solved using the system (5.4.6) while problem
(5.6.6) solved by the modified system (5.4.8)

f N Problem (5.6.5) Problem (5.6.6)
A =1.0 ‘ A =1.0
3 6.76339  X10° 6.50952  X10°
4 1.61016 -3 ©1.60301 -3
5 '7.85457 -5 | - 7.67872 -5
6 | 1.26783 -5 1.25160 -5
7 1.13351 -6 1.12424 -6
8 1.37719 © -7 ©1.36745 -7
9 9.49618 -9 9.42793 -9
10 8.39912  -10 8.34901 -10
11 | s5.24181 -1 5.21244 -1
12 4.02253  -12 4.00257 -12
13 2.30661 -13 2.29525 -13
14 1.59451 -14 1.58689 -14
15 6.56925 -16 6.55746 -16
L
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TABLE (5.6.4)
Computed MS-ERRGR for problems
(5.6.7) and (5.6.8)

" Note that problem (5.6.7) has P, = 0 and problem (5.6.8) solves the system
using the modified defining equations described in section (5.5-(a)).

K Problem (5.6.7) Problem (5.6.8)
A = 0.0 X =0.0
3 8.99724 X5 9.52138  Xj3
4 1.32824 -3 ©1.33444 -3
5 11.78214 a3 a2 -3
6 1.82754 -3 ~1.48953 -5
7 1.48432 -5 1.50347 -5
g 8.22795 -1 5.76225 -8
9 | 6.a3060 -8 6.54133 -8
10 5.56379 +5 : 1;77530 -10
1 1.80641  -10 1.81648 -0 | 0T
12 8.35789  +2 3.11934 -13
13 3.38320  -13 3.38112 -13
14 3.21572  -16 4.13243 -15
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TABLE (5.6.5)
- Computed MS-ERROR for problems
(5.6.9) and (5.6.10)

Note that problem (5.6.10) solved by using the modified scheme described

in section (5.5-(b)).

N . | Problem (5.6.9) Problem (5.6.10)
2= 0.0 | A = 0.0
3 4.51970 X7} i11-conditioned
4 5.72462  +14 1.22801 X!
5 - 2.14564  +12 8.24433 -2
6 2.25408 -2 | 2.25408 -2
p 4.12674 -3 4.12675 -3
8 4.29777 -4 ' 4.29777 -4
9 1.50838 +10 4.27986 -3
10 2.18103 +8 3.85975 -6
1 3.02061 -7 3.02961 -7
12 3.16472 -8 3.16472 -8
13 1.12495 -9 1.12495 -9
14 2.33148  +4 4.81124 -1
15 6.43673  +2 1.2249 -12
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5.7 THE APPROXIMATE SOLUTION OF SINGULAR INTEGRO-DIFFERENTIAL EQUATIONS

. IN ELASTIC CONTACT PROBLEMS .

.Application of Singular integro-differential equations in various
branches.of mechanics are we]1‘known. Among these are elastic contact
problems, stresses in composite materials, airfoil problems, etc. The
exact so]ﬁtion of these problems is usually not available and in such
.cases approximate methodszhave'been commonly used. As described in
chapter (4) for solving principal value problems which we use that
technique and the technique described in this chapter for solving the

following singular integro-differential equation:

1 1
Q(x) f'(i) + R(x) F(x) + A f —;4%1— dy + 1, f _§Q§Xl dy
-]. -
1 1
+ 23 J k(xsy) f(y) dy + 1, { k*(x,y) £ (¥) dy = g(x) C(5.7.7)
-1 -1
-1 sx ¢l

subject to the boundary condition
t t o _ .
cf(b) +d" f'(b) =e 3 -1 <b; g1

where Ai;(i=](1)4f are real values.
Introducing the expansions (5.2.2) described in section (5.2) and
‘applying the weighted Galerkin scheme to the system (5.7.1) we end up

with the infinite linear system:
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QA CHagBH) Atk (RN CHA B azg (5.7.2)
vhere .
11
: 2 : . Ti X
* = —
B*: 5 = 7 - KEGY) oz T5(y) dy dx 3
- -1 - S
10
T, (x) T.(y)
. 2 1 J
%7 I f,/]-xz S ;
1A
o o T
B* o = 7 9z & dy s
1A |
11 o
T.(x)
1 i dy
Cio = I ]( X y-x
-1 -1

while the matrices B, Q and R and the vector g are the same as
described in section (5.2). We use the technique of chapter (2) to
evaluate the matrices B, B* and the vectors g, q and r while we use
the scheme of chapter (4) to evéluate the matrix C.

We adopt the strategy of section (5.4) for truncating the infinite

system (5.7.2) to get the finite linear system:

N) (N N
4N e () _ (M) .
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which is the same as the finite system (5.4.9) .only Wiih e*tra matrices

C and B*.

Compa}ison with other méthod:-

We present here an examp]é given in Sanker et al [53] who uses a power
series formulation instead of orthogonal polynomials and subsequentiy the
collocation method for obtaining the %ystem of equations_ .We try to
compare our method with that method described in [53] for solving the

singular integro-differential equation (5.7.1) where:

f(x) = X + X 5

Q(x) = 1000 3

R(x) = 1.0 3 Ay = Apg = Ay = 1.0 and Ay = 0.0 -;

g(x) = %§,+ 2008.4Ax + 3003 x2 4 x3 + (2x + 4x2 + x3) Log 1-x
T+x

with the boundary condition:

£(-1) = 0.0 s (1) =2

The results of the problem with the results obtained by [53] are displayed
in table (5.7.1).
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TABLE (5.7.1)

" Comparison of the exact and the approximate solution

for both our method and the method deécribed in [537]

B X fa ' fe The éxact.so1ution Our method; N = 7
_0.951 0.0443 0.0843  4.4315648999  x10° :4315548994 x10
_0.809 0.125 0.125  1.2500587100 -1 .2500587100 -1
_0.588 0.142  0.142  1.4244642800 -1 .4244652800 -1
_0.309 0.066 0.066  6.5977371000 -2 .5977371004 -2
0.0 0.0 0.0 0.0 .0056253093  ~12

0.309 0.125  0.125  1.2498462900 -1 .2498462900 -1
0.588 0.549  0.549  5.4904147201 -1 .4904147201 -1,
0.809 1.18  1.18 1.1839561290  +0 1839561290 +0
0.951 1.76  1.76  1.7644863510 +0 7644863510 40

Note that we displayed the figures as shown in the paper [53 ], for f,

(approximate solution) and f_ (exact solution) which is most likely

rounded to three figures.

We carried out our computation on ICL 1906S

computer displayed in the last two columns of table (5.7.1).

-
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COMMENTS ON THE RESULTS

(I) If we use the system (5.4.8) insteadlof (5;4.6) tO'brOdUCe_g"(N),.and
consequently fy, then MS-ERROR is slightly better (MS-ERROR is smaller than fts
corresponding value)_when we solved prob]ems_(S.é.S), (5.6.6), and thé

same for problems (5.6.3) and (5.6.4) of first order equations (see

| tables (5.6.2-3)). This suggests that there is not much gain in using'

the modified systems (5.4.10), (5.5.8) to produce éﬁ(N),‘i-(N)

respectively.

(11) In problem (5.6.7) when A= 0 the maximum error is very larae for
even values of N. The reason is that for this problem B, = 0 (P(x) = x)
and in fact ulN) of the system (5.4.8) is singular for N even (10, 12
for this problem), thus, the condition p #0 (q  # O, for first order)
see [_2] is essential, and hence the modification of section (5.5(a)) -
is necess;ry'if this modification is to be relaxed. Problem (5.6.8) in
the case A= 0, shows that this modification works nicely. Comparing the

obtained results with that of problem (5.5.7) (see table (5.6.4)).

(111) In problem (5.6.9) the matrix F(") of the system (5.4.10) is
singular for some values of N, and this has been reflected in the
numerical results (see table (5.6.5)). Thus the modification described
in séction (5.5(b))is necessary in this situation; and the results for.

problem (5.6.10) (1 = 0) show that this modification works well in

practice.



‘(IV) In §ection (5.7) we applied the method on a éihgu]ar system of
integro-differential equation. The results fn table (5.7.1)'shows thgt
the method with that scheme described in chapter 4 works very well, Thé
reason i; that the coefficient functions Q(x), R(x) and the éxact

solution f(x) are smooth which gave a well-conditioned system (5.7.3)

 CONCLUSION

The above remarks on the numerical results suggest that the.Fast
Galerkin scheme of chapter 5 is, in general, a stable, fast and straiqht;
forward method for solving intégro-differentia] equations (singular o;
non-singular). Finally if P(x) (or Q(x) in first order egquations)

changes their sign in the range of the variable x we should use the method

with caution.
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CHAPTER 6
THE NUMERICAL SOLUTION OF THE EIGENVALUE

OF AN INTEGRAL EQUATION

6.1 INTRODUCTION |
In this chapter we discuss the abp]ication of the Fast Galerkin

method described in chapter (2) to the computation of the real simple

eigenvalues and their corresponding eigenfunctions of the integral

equation

b

J k(s,t) o(t) dt = Aé(s) 3 as<sc<hb 4 (6.1.1)

a

whe;e k(s,t) is a given.kerne] and a and b are finite parameters. We
suppose that k(s,t) is a smooth kernel or at worst has known s%ngu]arity
such as kerﬁe]s hgving logarithmic $ingu1arities; and kernels of Cauchy-
type.

In general we cannot guarantee the existence of any solution A # o
to (6.1.1); for example, a continuous Volterra kernel (for which k(s,t) <
if t > s) has no continuous eigenfunctions for A # o. Another example
(see [7_]) is the equation
2n |
J k(s,t) ¢(t) dt = 2¢(s) ;. (0 gs g 2n)

0

k(s,t) = Sin(s) Cos(t) i 0gS,ts2n
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has no non-zero eigenvalues. Any non-null function ¢(s) for which
2w
{ Cos(t)s(t) dt =0

- 0

is an eigenfunction corresponding to the eigenvalue zero.

The numefical method which we shall describe for solving (6.1.1)
will yield an approximate eigenvalue X to A nearest to some arbitrary
number u and their corresponding approximate eigenfﬁnctigns. Since
there may be a countably infinite number of solutions to the equation
(6.1.1). Hence we cannot claim to solve the problem (6.1.1) completely.
We can usually obtain an approximate value to the largest few eigenvalues
- in modulus, and their corresponding eigenfunctions since the eigen-
functions corresponding to the largest eigenvalues in modulus are usually
smoother than those corresponding to small eigenvalues and it is usually
easief to approximate the smoother function. But we may find difficulty
to approximate the eigenfunctions whose corresponding eiéenva]ues are
‘close to one another or if an eigenvé]ue is a multiple eigenvalue, but if
the kernel of the problem under consideration is Hermitian, this difficulty
does not arise. If X is an eigenvalue associated with the kernel in (6.1.1)
then (smithies [58, p.103) the adjoint kernel k*(s,t) possesses an eigen-

value 2A%*, we then have:

and

)
[74)
A
o
-

k(s,t) ¢(t) dt = 2e(s) ; R

Q) Sy, O
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b

A*v(s) ;0 a

N

wn
-
o

[ k t.,s)'v(t)Adt

a

'where'v(s) is an eigenfunction of k*(s,t), if we set U(s) = V(s) then

b .
'I k(t;s) u(t) dt = aU(s) i agsgchb
a

co that A is an eigenvalue of the transposed kernel kT(s,t) = k(t,s)
and U(s) is the corresponding éigenfuhction. Sometimes we say that U(é)
is a left eignfunction of k(s,t) corresponding to A, whilst the eigen-
function ¢(s) is then known as a right eigenfunction.

The accuracy obtainéb]e in approximating a simple éigenva]ue X by

a'numerical method is governed in part by the condition number
b

[ ¢(s) U(s) ds
) .

Tl v

6(1)

which isinvariantunder scaling of ¢(s), U(s). The eigenvalue A is bad]y“
conditioned if the condition number &§(A) is very small, for a simple

eigenvalue of a Hermitian kernel the condition number is unity, (see C6 ]).

The available numerical methods fall into two classes; those based
on integration formulae and those which are expansion methods, in
particular the Rayleigh-Ritz, Collocation and Galerkin schemes, where
the first class of methods are generally simpler to implement than the

cecond class methods. For a discussion of the numerical methods

and underlying theory (see [_7_]).



" -142-
N We consider in‘thiﬁ cbépter'the numerical computation of a real
- simple eigenVa]ue to the integral.equation (6.1.1). In order to treat
'hu1tip1e as'well‘as simple eigenvalues of (6.1.1) it could Be necessary
to employ projectﬁons of the approximate eigenfunﬁtions associ;ted with
 a particular eigenvalue of (6.1.1) onto the épace spanned by the true
| eigenfunctions of (6.1.1) associated with that same eigénvalue. [See 54].

This is done since a_sfng]e sequence of approximate eigenfunctions
associéted with a multiple eigenvalue of (6.1.1) may approach along
particular subspacesdifferentieigenfunctions associated with that same
eigenVa]ue.

However, the totality of approximate eigenfunctions associated with
" a multiple eigenvalue of (6.1.1) provides an approximate basis for the
-space of eigenfunctions associated with that eigenvalue, with an error
which decreases as the order of approximat{oﬁ increases.

In the next section we employ the Fast Galerkin scheme described in
chapter (2) to (6.1.1) by aésuming the eigenfunctioh in the mapped
“interval [=1, 1] is smooth, with a rapidly convergent Chebyshev expansion.

The aim in this chapter is to produce an accurate approximation to
the eigenvalue A of (6.1.1) by solving the (N+1) term Galerkin equations- as
cheaply as possible.

Where the solution of the (N+1)x(H+1) Galerkin equationswill yield an
accurate approximation to the N-term expansion if (and essentially only if)
this expansioﬁ is rapidly convergent. Some examples are given in section
(6.4) to show how well this aim has been met; other examples which occu}

in practice have singular kernel given by Green's function kernels.
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6. 2 THE BASIC ALGORITHM

Since the range of 1ntegrat1on of (6 1.1).4s assumed finite, we

can employ a»change of var1ab1es to rewrite equation (6.1.1) in the

form:
1 .

KD (xy) fly) dy =2f(x) 5 -Tsexsl | (6-é-1)
-] - ‘ | |
where

gy =52 kCRxe b2, Bauby

F(x) = o(%52 x * 259)

We approximate the eigenfunction f(x)e L2[El,j] by the truncated

Chebyshev expansion:

f(x) = fy(x) = a; T;(x) ; -1 gxs] (6.2.2)

-
Nt =
o .

By applying the weighted Galerkin method on the equatibn (6.2.1)

as described in chapter (2) we end up with the matrix eigenvalue problem

(B-2aD)a=0 _ (6.2.3)

which is a non-standard eigenvalue problem, where the elements of the
eigenvector a of (6.2.3) are the Chebyshev coefficients of the expansion
(6.2.2) which define the approximate eigenfunction of (6.2.1) and the

matrices B, D given by:



] _ mno3 i=3=0
' T'i(x). _ .
D‘I,J = /T_T)(‘Z— TJ(X) d_X : 7 ’ .'l =] > 0 (624) ’
-1 0 '3 i#J
1 1 }
T () o) |
B; 5 = | /T2 k" (xs¥) T;(y) dy dx . . (6.2.5)
-1 -1

The technique described in chapter (2) retains a total cost of
order O(NZLog(N)) operations for evaluating the integrals in equations
(6.2.4-5) and 0(N2) operations for golving the system (6.2.3) where N+1 is
the number of expansion functions used.
"Now the solution of the matrix eigenva]ue'prob]eﬁ (6.2.3) which we
set up, gives .the approximafe eigenvalue to the'problem (6.2.1) whicﬂ és
well are thereigenvalue of the integral equation (6.1.1) and the corresponding

eigenvector

of the matrix eigenvalue problem (6.2.3) are the Chebyshev coefficients
from which values of the eigenfunction of the integral equation (6.2.1)
may be computed (see Theorem (4) [5471]).
In the case k(])(st) = _TTYZ;:;)-the classical Galerkin method
reduces to the Rayleigh-Ritz method, preserving symmetry in D (which is already
syrmetric) and B giving one-sided bounas for the positive and for the
negative eigenvalues of the kernel, respectively (see [77]). But this
case gges not arise in our method because of the weight function |

1—x2) which we introduced by the weighted Galerkin scheme. For this
(



~145-

we cannot guarantee to preserve symmetry in the matrix B,even if the kernel
k(s t) is Symmetr1c
Hence our task now is to construct a suitable technique to find

the eigenva]ues of the matrix e1genva1ue problem (6.2.3).

- 6.3 . INVERSE ITERATION TECHNIQUE

This scheme can be used to find the eigenvalue nearest to some

arbitrary number u, since in general it is not possible to choose the

t .
vector a = (ao,....,aN) and A to make the residual n(x) of the Galerkin
scheme on (6.2.1) .

] .
k(1) f(y) dy = A*F(x) = n(x)
(x,y) fy(y) dy = A*fy(x) =nlx) : (6.3.1)
-1 ' '

vanish. We can write (6.2.3) as
] -1 o
(B-wD) " Da={r-w "2 S - (6.3.2)

thus the eigenvectors of (B - uD)']D are the same as those of (6.2.3)

but the eigenvalues are (A - u)-]. Hence the eigenvalue of the largest™

i
=1
modulus of (B - uD)D will be the eigenvalue of (6.2.3) nearest to the
number u.
Thus performing the power method on (B - uD)_]D rather than B of

(6.2.3) the scheme fis:

Step (1) - starting with arbitrary_i(o)

2) - t |
Step (2) - compute E(k”) - (- uD)-]D E(k)

t 3) - set
Step (3) - ¢ (k+]) (k+])/
%k+1
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' i k+ :
where oy, q 15 the element of P_( 1) with.largest modulus then

oy - a2 ke

where A is the eigenvalue of (6.2.3) nearest to w. It is unnecessary
to calculate (B - uD)”'D explicitly. Ye can obtain b1 by solving

the system

8 - vp) b1 = 2K
(Gauss- Elimination)

where at each iteration only the right hand side is different.
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6.4 NUMERICAL EXAMPLES

We illustrate this method on several prob]ehﬁ which are described
below, where the calculations made by different values 0% N, and the
results are presented in tables (1-4). The ca]cu]ations.were carried
out on the 1906S Computér,'using 12—significaht digits at.the University

of Liverpool.

Problem (1)
k(s,t) = exp((st)) i 0 < s,tgel

This problem is discussed by Crver [12_] who finds that A = 1.3530.

Linz [37]] finds that A= 1.35299, while Baker [_7_] who uses Trapezium

. 1 .
rule with h = 80" to obtain A = 1.353058, but he got A = 1.35303 using

N-point Gauss-Legendre rule for N 3 4. (u =1.3; 8 - iteration).
For this problem we expect to get very rapid convergence because of

" the smoothness of the kerne]! These results are displayed in table (1)

where the corrected value is A = 1.3530302 as stated in ([:7:], p;191);

(p = 1.3 ; 8-iteration). ‘

Problem (2)

k(s,t) = 3s(2-t) 3 0

A
(%]

A
+

A
-—

3t(2-s) ; ogtgs <]

This problem is discussed by a number of authors:
(1) Cryer [127] who finds A = 0.24285. As reported in his references,
Mikhlin [43 | found 0.2287 < X ¢ 0.2431, using Rayleigh-Ritz method, and

the trace of the kernel.
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0.24300.

(11) Linz [37] found A

(111) Baker [:j:l found A = 1 where he used three-point Trapezdida] rule
on [0,1] » in the quadrature method. The true eigenvalue of this prob1em
are the roots of the equation u+ tan(u) =0 ; A= 1/u% , with u the
smallest root of the transcendental eqyafion gives A = 0.2496; aithough
the kernel has discontinuous derivative across the line s = t, these are
handled exactly by the method we use (see chapter (4), section 4.2) and1'

hence should (and do) cause no problems. The results of this method are

_shown_in table (1). (v =20.2 3 IO¥iteration).

Problem (3)

The continuous kernel

A

k(s,t) = (st)? ; 0ss, tgl

s a degenerate kernel with one non-zero eigenvalue [7_]

1
gt =2
.0

This Kprnel is non-smooth so we expect a slow convergence to the exact .-

eigenvalue, as shown in table (2). (u = 0.66 ; 15-iteration).

problem (4)
k(s,t) = Is-tl 3 0gs, ts]

This problem is discussed by Linz [37_] who finds the largest eigenvalue
= 0.34725, i =
x = 0.347 where he gave the exact eigenvalue Ay = 0.34741; our results

are displayed in table (1). (w = 0.3 ; 10-iteration).
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Problem (5)
K(sat) = (s2+t)} 5 ocs, te

This problem is discussed by Cryer [12 Jwho finds A = 0.81084.' The
kernel is non-smooth kernel, so we expect to get a slow convergence to
6btain an accurate eigenvalue as shown in table (3) which shows the samé
accuracy he got with N = 11. _ |

While Baker et al [ 4| who uses Simpson's rule with h = %g-to obtain
A = 0.81085 (u = 0.8 ; 15-iteration).

Problem (6)

k(s,t) = %(1-t) 3 ossstgl
= (1-s) - 3 o0stsss 1

This problem is slightly artificial. This kernel is not Hermitian
and it has a discontinuity at t = s = 0, hence we expeet a very slow
convergence to the eigenvalue. Baker[ 7_|proves the eigenvalues of the
kernel are real. He used a quadrature method with step h = 7%? to get
A = 0.272117. Our results are shown in table (1); they show poor convergence,

and suggest A = 0.3. (=027 ; 15-iteration).

Problem (7)
k(s,t) = Sin (s#t) 3 0gs,tzs]

This problem is discussed by Mysovskih[46 | who used the method of
mechancial quadrature, using for the quadrature formula Gauss' formula with

two points to obtain the approximate eigenvalues A] = 0.7933585 ; A =-0.093287.

This kernel is degenerate kernel, and its eigenvalues Aj(j=],2) are
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A = 0.7993732, A, = -0.0912966.

_ Our'approximation to those eigenva]Ueskare shown in table (4).

(vy = 0.78; u, = 0.01 ; 15-iteration)

TABLE (1)

The computed eigenvalues of problems (1,2,4,€)

[ N[ “Problem (1) Problem (2) - Problem (4) Problem (6)
3| 1.3330380510  0.24211532258  0.34781999675  0.31285252058
o| 1.3527120680  0.24297264105  0.34781999406  0.32711026189
5| 1.3530127111  0.24296459387  0.34740999126  0.27987281276
6l 1.3530300050  0.24296250896  0.34740999125  0.29777802695
7| 1.3530301538  0.24296267877  0.34740827468  0.30670330511
o| 1.3530301647  0.24296268560  0.34740827467 0. 30898580230
o 1.3530301647  0.24296268511  0.34740826904  0.31082180071

10] 1.3530301648  0.24296268510  0.34740826905  0.31473889405
al o+ - 0.34740826904  0.31739736087
N i 0.34740826903  0.32089778407
i3l e - “ o 0.32379012941
al e . w o 0. 32714006460
gl e - wo 0. 33006827026
i - W 0.33286422577
7l e - “ oo 0.36206116477
N - W 0.33931326653
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TABLE (2)

"The Computed Eigenvalue for problem (3)

-~

-~

|

N Y N X N A N ‘X
3 0.7394346 14- 0.6668789 25 0.667251 36 0.6666833
4 Q.67177903 15 0.6669301 26 0.6667071 37 0.6666854
0.6758110 16 0.6668154 27  0.6667134 38 0.6666811
"6 | 0.6685818 17~ 0.6668480 28 0.6666997 39  0.6666812
7 | 0.6695270 18 0.6667753 29 0.6667046 40 0.6666792
8 | 0.6675869 19 0.6667972 30 0.6666941 41 0.6666807
9| 0.6679339 20 0.6667486 31 0.6666980 42 0.6666776
10 | 0.6671819 21  0.6667639 32  0.6666897 43  0.6666789
11 v0.6673431 22 0.6667301 33 0.6666928 44 0.6666763
12 | 0.6669858- 23 0.6667412 34 ° 0.6666862 45 0.6666774
13 | 0.6670723 24 0.6667168 35 0.6666887 46 0.6666752
- TABLE (3)
The Computed eigenvalue for problem (5)
N X N 3 N A
3| 0.78381715799 13  0.81084427795 31 0.81084441632
4 | 0.81155911925 14 0.81084438166 32 0.81084441649
5 0:81056534723 15 0.81084436520 33  0.81084441643
6 | 0.81084329808 16 0.81084440115 34 0.81084441654
7 | 0.81083142165 17 0.81084439477
g | 0.81084345244 18 0.81084440914
9 | 0.81084248187 19  0.81084440636
10 | 0.81084415128 20 0.81084441270
11 | 0.81084396500 21  0.81084441138
12 | 0.81084432751 30  0.81084441640
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TABLE (4)

The Computed eigenvalue for problem (7)

-~

-~

N X, 3,
3 0.64935544168 ~0.088439675656
0.79950241286 ~0.092460449157
s | 0.79934397729 ~0.091295826942
6 0.79937196226 ~0.091297916601
7 0.79937215751 -0.091298712181
8 0.79937212989 -0.091298712037
9 0.79937212974 -0.091298711477
10 0.79937212976 ~0.091298711475

1 0.79937212976 -0.09]29871]474‘
12 | 0.79937212978 ~0.091298711469
13 0.79937212976 ~0.091298711468
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"COMMENTS .ON THE RESULTS

~ The fo]]owing‘ppints can be extracted from the tables (1-4).

(I) Numerical results for problems (1,7) shows that for smooth kernels
we get a very rapid convergence to the.eXact eigenvalue, while for non-

smooth kernels we expect; and obtain, a’slow convergence as in problems

(3, 5)-

(I1) For kerne]s which have a discontinuous derivétive_across the line
't = s (problem 2).  The Fast Galerkin method (see Chapter (4),section
4.2 and the references stated) treats Greens-function type operators

as the sum of "Yolterra" and "inverse -Volterra" operators, and handles

this kind of problems efficiently as shown in table (1).

(111) The results of problem (6) are very bad. The reason for this

is the difficulty of the kernel,as we know the kernel has a discontinuity

at s=t=0.
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CHAPTER 7
GENERAL CONCLUSION

In this final chapter;'we fry tp summarise the overall effectiveness of
the Fast Galerkin méthod for solving integral and integro-differential
equations (singujar or non—singuiar),ndescribed in the previous chapters.
With regard to the method of chapter (3), it is well known‘thét there is
no such simple method for ihvefting the.Lap1ace.traﬁSform which has been
successful for all types of the transform y(p). Our aim was to develop a
reliable method which we might hope to be successful for square %ntegrab]e
defining functions. But from the results shown in chapter (3) and also from
~ further experience of the method it seems that this aim has not been met.
The problem with our method stems from the mapping used and also the extreme
difficulty which was gxperienced in estimating the parameters Cf,R; recall

the significance of these parameters which are constants such that

~

i

AR iji>o .
la;| s Cgi ; ;1= 0(1)N

T;1i=0"

where a; 3 i = 0(1)N are the Chebyshev coefficients of the exact solution.

Then we may regularize the solution by imposing the above condition as a

constraint on the computed solution vector a by solving the problem

minimize ||Ba - g}|

= -R
subject to Iails Cp i

This problem may be formulated in any norm.

We found from our numerical results in chapter (3) that the ill-posed
solver was highly sensitive to the parameters Cf,R. Although none of the
methods ((1), (2) and (3)), described in section (3.5) of chapter (3) were

particular1y successful for estimating these parameters, additional numerical
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.experiments (not reported-in chapter (3)) have 1ed us to conc1ude,£haf method
(3) is slightly better. |

Cléar]y more work is neeced in order that:
(i) A reliable method for estimating tﬁe parameters Cf,R-'is found .
(ii)-A reliable mapping from the,semi-infinife to the finite subspace, is found.
(5ii) It may also be worthwhile to consider an expansion of'thé'exact inverse

in terms of Laguerre po]ynomials,thatAis ¢(f) ¥L§ aj Lj (r); and uging
the property ’ e

J e Pl Ly(r) dr S e 5 Repso
0 | . .
where the tr@nsform y(p) is known on some finite interval [é, 5]

Second, for the numerical solution of the Cauchy principal value problem
described in chapter (4), it is'known that in physical problems, the ends %1
are points of geometric singularity. Usually the investigation of the béhaviour
of the unknown functions in the neighbourhood of these singular points is one
of the main objectives in solving the problem generally,'as we saw-at the start
of chdpter (4). The methods described there, force the approximate solution
to be zero at the end points (£1) of the interval, and as we have remarked
previously, this leads to only slow convergence to the exact solution atvfhe
interior points of the interval. The results obtained showed how easily the
Fast Galerkin method avoids this difficulty, and how the accuracy achieved is
independent of the strength of these singularities. We conclude from the
results obtained, and from our experience with the method, that the Fast
Galerkin framework handles even strongly singular problems and the achievable
accuracy is quite clear from the resu]tsjwhich reflect the stability of the
scheme. The Volterra and inverse-Volterra results are perhaps amusing rather
than of immediate practical significance, but kernels of Fredholm-type are of

common occurrence, and the technique used seems to be well suited to these.
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The method, as we mentioned in chapter-(4), has not been compafed with other

‘methods and the following points are worthy of further inyestigation.

- (1) Comparison with other methods.

A (2) Extension of the method for solving a system of singular integral

equations of the form

" ¢;(t) | |
3 Ei(S) + { 7 at +I is (558 94(t) dt]__ = q.(s)

o
.

J=1()n

(s) (i,3 = 1(1)n) are known functions.

where kij(s’t) and 93

fhe'Fast Galerkin scheme' of chapter (5) for solving linear integro- .
‘differential eugations, is a straightforward scHeme forvsolving such probiems.
Again the results obtained show how easily the scheme handles even strongly
singular problems; the achievable accuracy reflects the stabi]ity of the
method. v

The possible extension of the method is also considered by Linz [3§] to

solve the system

k(x,y) H(y) dy = g(x) ; -1 ¢ x ¢ 1
1

Hiy) = Up(y) fly) + Upty) £'(y) + Usty) £ (y)

[ —

P(x) f"(x) + Q(x) f'(x) + R(x) f(x) + 2

where U], v, and U3 are known functions. Also the functions P(x), Q(x), R(x)
and g(x) are as defiaed in chapter (5).
The corresponding system of linear equations is (with the boundary

condition (5.3.1))
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[@P'+ AB3) + ((Q + ABZ) +‘(R;¥AAB])A').AG] a" = v .

where-

v=9g-=-nZ-ux, énd Z ,y X are the first columns of

[EQ + ABZ) +'(R + AB])AK]. and"(R + AB])

;respectively. B], 82 ané 83 are the.corresponding matricés of the functions
"k(xy) U3 (¥)» k(xy) Uy(y) and k(X.y) Us(y) respectively. = Obviously having

" B (defined in (5.2.4a-b)) and Chebyshev expansions of Uy(y), U,(y) and Us(y)
we can easily éva]uate B], 32 anq B3 using the technique of Delves, Abd-Elal
‘and Hendry [16].- The system can be reduced to a system of first order integro-

differential equations by setting P(x) = Us(x) =

Finally the Fast Galefkin scheme of chapter.gﬁ)lﬁand1es exact]y two types
of kerne]s: those which are évefywhere smooth, and those which have discontin-
'uous der1vat1ves across the line t s of the kernel k(s,t). The method computes

;approx1mat1ons to a s1mp1e (real) e1genva1ue of the kerne] (nearest to a
number (n))and the corresponding eigenfunction. The achieved accuracy reflects
. the stability of the method. The method fails to compute an approximafion to
the eigenvalue of problem (6) of section (6.4); this is because of the dis-
continuity of the kernel at s=t=0.

Generally we conclude that from the results shown in the previous chapters,
apart from that of the Laplace Transform discussed in chapter (3), the Fast
Galerkin framework h§nd1es even strongly singular problems; the achievable
accuracy together with that reliable error estimate discussed in [14] reflects
the stability of the scheme. An additional advantage of the formalism, not
ghown here but discussed in [16] is that of handling problems whose kernel

contains a singular factor together with an additive or multiplicative smooth

term.
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An obvious extension of the scheme is that the use of a s{ngle expansion
over the whole'problem kegion is unlikely to be dptfma]; an obvious extengion,
which would retain the rgpid convergence of the basic method, is to pértitioﬁ
“the intervai under consideration and then use different expdnéion sets on |

different sub-regions.



Proof of Lemma (3.3.2)

] . : :
xW(x) R r
J mir X h I (1 - ) Wix)dx
0 o ‘
1 1
1 -LJ (x)
m W(x)dx nl, e dx
From‘Lemma (3.3.1) we have:
! 1 ' r=o
J xW(x) dx = 2 r
o MxEr 2m |1 - g2 T >0

Proof of Lemma (3.§.3)

1
X *
fo Ly Tj_]()')d.y

integrate by parts we have

1

X * 1] % IT;(
y T &y =gy l 3

£ —

T ,(y)
j-2VY

372 ] v
_] *

X Ti(y) dy +



First Row

First Col.

Last Row

Last Col.

+1]

+2

+2,
+2.
+2.

.273239544735153&+0
+2.
+2.
+2,
+2,
.438557982817158&-1

5946962936465504-1
626310484449970&~1
552287118757939&-~1
4891394784889254-~1

3973645226896498-1
363033836340987&-1
333826876181881&-1

The first element is % and

+0.
-4,
.8505764163527524-25

-1

-4,
-7.

-1

0000000000000004+0
6264418002282544-26

163795797906775&-25
4023008066541 388-25

.156608931827352&-24
.665515860306494&-24
.2669505327108664&-24
.9609125553661914-24

.3197491556415444-1
.2778683210767244-2
.5275785196293734-4
.0175450374444294-6
.16233903375401768-9
.066696110732713&-12
.3268787474205494-16

-8.091882411877184&-19
-7.0130746988938674-22

+2.
+7.
+2.
+4,
+8.
+1.
+1.
+2.
+3.

+2.
+1.
+1.
+1.
+2.
+1.
+1.
+1.
+71.

APPENDIX B

.273930875790495&-1
.906426259901472&~1
.687076830762715&=-1
.5729874936577824-1
.497518039083209&-1
.441950018233149&-1 -
.398414029400242&-1
.362881455617363&~1
.333025851575873&~1

zero the rest

891526273461010&-27
228815090383986&-26
342135640806077&-25
886676595170257&-25
3565027024558668&-25
2751611686801634-24

8072000667634548&-24

431766615988907&-24
148860407646181&-24

097109327239597&-1
697526888356895&-2
092651355757327&-4
945659644396796&-7
043767712937169&-10
837591113585373&~13
6011225150924684-16
388443403884579&-19
2032634935724754-22

+1.
+2
+2

+2.
.4624817262688198&~1
.4169667591227464~-1

+2
+2

+2.
+2.
.320755329756063&-1

+2

590041941661328&-1

.6520020872689108&-1
.5889007386947264-1

518962384023193%-1

379465497146313&-1
3478747968725448&=1

.156610497518806&-26
.040949333860819&-25
.8915252946347784%-25
.667387717450896&-25
.368534781034909&~25
.399496405824654&-24
.9546672517115978-24
.602365652212290&-24
.3425911835708234-24

.5330955949662338-1
.7559775123203424-3
.439552173075687&-5
.6064200725751934-8
.5632452853365324-11
.160676675322967&-14
.7479979692667344-17
.3822895561144468-20
.0644839914505318&-23

+2.
+1,
+3.
+6.
+1.
.5296146381392234-24

+1

+2.
+2.
+3.

+8., .
.707737861217588&-3
.1113019386242008&-6

+1
+5

+6.
+6,
.4311272892055488~-15

+5

+4,
+4,
+3.

.169081741321668&-1-
.7740022649909354-1
.623133643284891&-1
.532002431076750&-1
.467869948014292&+1
.4189847953222474-~1
.379818558462629&4~-1
.3473497962916484-1
.3197491556415444-1

602373574921646&-26
416847641439713&4-25
4987453553034444-25
505929132738019&-25
043839700091910&-24

1079174091170784%-24
778747634407418&~24
5421048752296094-24

9801368970624334-2
5301982957381448&-9
176847600296240&-12
7157449573223284-18

0874612885869494-21
5421048752296094-24
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