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ABSTRACT 

In this work we investigate the possibility of applying a Fast Galerkin 

scheme 1:0 linear singular integral equations of the first and second kind, 

and also \.0 linear Integra-differential equations (singular or non

singular),in order to obtain stable, economic and fast methods to solve 

these problems numerically. 

In Chapter 2, we give a generalization of the Fas~ Galerkin scheme of 

Delves (1977a). In .Chapter 3 we apply the scheme on the Laplace 

transform inversion, while in Chapte~ 4 we give a reliable algorithm fo~ the 

numerical solution of Cauchy· singular integral equations. 

We also extend, in Chapter 5, the Fast Galerkin scheme to solve 

general linear Integra-differential equations (singular and non-singular) of 

order one and two. Finally in Chapter 6 we apply the Fast Galerkin method 

on the eigenvalue problem. 

Numerical examples for both integral and Integro-differential 

equations are include~ to illustrate the methods. 
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CHAPTER 1 

INTRODUCTION 

This work is concerned with the numerical solution of integral 

equations and integro-differential equations (of order one and two). 

We are not principally concerned with the abstract theory of integral 

equations, nor with applications where integral equations arise. 

We shall not give a general definition for integral equations. 

In fact we limit consideration to some of the most important classes 

of integral equations. They are summarized below. An integral equation 

is called linear if linear operations are performed in it upon the 

unknown function, that is if it has the form 

A(s) .(s) + B(s) + J k(s,t) .(t) dt ; 0 

R 

where ~(s) is the unknown function, A(s), B(s) and k(s,t) are given 

functions and the integration extends over some domain R of the variable t. 

1.1 FREDHOLM EQUATIONS 

These represent one of the most important classes of linear integral 

equations. Let ~ be the unknown function in the integral equation and 

g, k will be the known functions where k is called the kernel. 

The integral equation 

b 

. J k(s,t) .(t) dt ; 9(S) 

a 

(1.1.1) 
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is termed a Fredholm integral equation of the first kind, while the 

integral equation 

b 

~(5) + A Jk(5,t) ~(t) dt = 9(5) 

a 

(1.1.2) 

is termed as a second kind Fredholm integral equation, where A is a 

(possibly) complex scalar parameter. 

If in (1.1.2) g{s) = 0 we have 

b 

~(5) + A J k(5,t) ~(t) dt = 0 

a 

a ~ s ~ b (1.1.3) 

These kind of integral equations are called homogenous equations of 

the second kind referred as an eigenvalue equation or a Fredholm equation 

of the third kind for a given value of A. We devote chapter (6) for 

finding the numerical solution of a simple real eigenvalue for this kind 

of problem. 

1.2 VOLTERRA EQUATIONS 

If k(s,t) = 0, t > S then the kernel is said to be of Volterra-type. 

The equations (1.1.1-3) may be written in the form 

s 

J k(5,t) ~(t) dt = 9(5) 

a 

S 

,(5) + A J k(5,t) ~(t) dt = 9(5) 

a 

a ~ s 

a ~ s 

(1.2.1) 

(1.2.2) 



s 

~(s) + A J k(s,t) ~(t) dt = 0 

a 
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a ~ s (1.2;3) 

In general a Vo1terra integral equation of the first kind (1.2.1) 

can be reduced to a Volterra integral equation of the second kind, (1.2.2) 

(see. [7J. p.8). If k(s,t) is square integrable and we need a 

square integrable solution Hs), it can be sho\'m (see [5[j) that equation 

(1.2.3) has only the trivial eigenfunction ~(s) = 0 for any finite eigen

value A. 

1.3 SINGULAR INTEGRAL EQUATIONS 

Suppose that the function ~(s} is defined in the interval a ~ s ~ b 

and is integrable in each of the intervals a ~ s"~ c-c and "c+c ~ s ~ b, 

however small the positive number E. The Cauchy principal value of the 

integral of the function ~(s) in the interval a ~ s ~ b "is the name given 

to the limit (if this exists): 

b 

Limit ds + J ~(s) (1.3.1) . 

C+c 

He often speak of the singular integral insteadof lithe Cauchy 

principal value of an integral ll
• 

We shall denote the principal value of an integral by the symbol 

b 

f Hs) ds 

a 
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. Integral equations containing integral in the sense of the .cauchy 

principal value, with integrands havinfJ a si(lt;ulnrity in the domain of 

integration, will be called singular integral equations. 

A function <> defined on @, ~ is said to satisfy a Lipschitz 

condition on lA, ~ if there exists a constant C > 0 such that. 

(1.3.2) 

For all sl' s2 £ I~, bl , (this is often called a Holder condition), 

one can introduce an important class of singular integrals called Cauchy-

type integrals of the form 

. 1 f till. dt 
1T t-s , S £ R (1.3.3) 

R 

it is evident that the integral exists if ~(t) satisfies a Holder condition. 

(See []3]). 

Lemma (1. 1) 

If ~ and 1jJ are L2-functions with region R then (see 1]4j p.163) 

f ~(t) 
R 

f ~ ds dt 
s-t 

R 

= f ds f ~(s) 1jJ(t) dt 
s-t 

R R 

(1.3.4) 

Chapter (3,4) are devoted to consider the numerical solution of 

singular integral equations where in chapter (3) we consider the numerical 

solution for the inversion of Laplace Transform, while in chapter (4) we 

give a reliable method for the numerical solution of Cauchy-type singular 

integral equations. 
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1.4 FREDHOLM INTEGRO-DIXFERENTIAL EQUATIONS 

Chapter (5) of this work is devoted for a special class of integro

differential equations (of order one and two) with linear boundary 

condition (s).A linear Fredholm integro-differential L's of order n ~ 1 

may be defined as 

b 
n 
L 8.(S) . 

. 1 
1 =0 

( i ) J . 9(S) + A . k(s,t) </>(t) dt = g(s) (1.4.1) 

a 

Where 8i (s) ; 0 ~ i ~ n, are known coefficient functions; k(s,t) the 

known kernel; A a given parameter; and ~(s) is the unknown function 

(A, ~, b are finite and real). 

To solve (1.4.1) we assume that the following linear boundary 

condition (l :;; n·~ 2) 

CHQ) + D<j> I (E.) = e (1.4.2) 

is given where Q consists of m boundary points bl , b2, ... ,bm b~longing 

to ~,~; C, D are two given matrices each of size nxm; ~ a given nxl ve~tor; 

and 

it is also assumed that all the functions involved and the boundary 

condition are such that there exists a unique solution to (1.4.1) conditioned 

by (1.4.2). 
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. Fredho1m integro~differentia1 equations yield in general wel1-

conditioned problems, for ~hey can be converted to Fredho1m integral 

equations of the second kind (see Linz (1974)). 

In chapter (5) we apply the "Fast Ga1erkin scheme" for solving 

linear Fredho1m integro-differential equations (1.4.1). 

In the following secticins we nive a brief discussion on the most widely 

used nUlnerical methods to solve t~e integral equations. !~here we restrict 

our discussion on equations of the second kind (1.1.2), in which we require 

that the parameter A is a regular value and that k(s,t), g(s) at least 

piecewise-continuous. In this work we suppose (unless stated otherwise) 

that g(s) is continuous for a ~ s ~ b, that k(s,t) is continuous for 

a ~ s , t ~ b, and that we·seek the solution 4(S) for a ~ s ~ b. 

The accuracy attainable with any method for the appro~imate solution 

of (1.1.2) may be limited by the equation itself. When small perturbation 

in g(s) cause a large change in the solution, in this case the equation is 
. . 

said to be ill-conditioned, equations of the first kind are often known by 

this, hence any numerical method must be applied with caution if accuracy 

is required; a desirable feature of a method is that it can be applied in 

a way which gives warning of ill-conditioning. 

1.5 QUADRATURE METHODS 

A Fredholm equation of the second kind can be approximated in a 

stra i ghtforwa rd way be means of quadrature formu1 ae; more d::tail s, with 

practical examples, may be found in Cl, 1~ . 

Suppose that we have made a choice of a quadrature rule to approximate 

the integral 

b 

J <)(t) dt 

a 



N 
of the form q(~) = E W ~(t) 

j=o j j 
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, (1.5.1) 

involving the N+l points tj and the corresponding weights Wj . Such an 

integration rule can be used to replace the integral equation (1.1.2) 

by the equation 

~(s) 
N 

= g(s) -A E W.k(s,t.) ~(t.) 
j=o J J J 

(1.5.2) 

in which the solution of this functional equation may be regarded as 

an approximation to ~(s) which maybe found by setting s=t i ; i=o(l)N 

in (1.5.2) to obtain 

~ N ~ 
~(t.) = g(t.) - A L W.k{t. t.) ~(t.) 

1 1 j =0 J .1, J J 
i=o{l)N (1.5.3) 

if ~(to)' Htl)' •.•. ~(tN) satisfy these equations, can be found then we 

can obtain the solution of (1.5.2) on setting for all s £~, ~ • However, 

we may represent the approximate solution by the function values of the 

vector solution of the linear algebraic system,·written in the matrix form: 

.' 

(I + ABDH =.9. (1.5.4) 

where the solution ~. is regarded as an approximation values of ~(s) at 
J 

the points s = t j , 

I is the identity matrix 

.9. = (g(to)~ g(tl), .... ·'g(tN))t , B = ~(t.,t·lJ 
1 J 
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We have assumed that ~ is a regular value in the equation (1.1.2) 

so that there is a unique solution ~(s). It may happen that the matrix 

(I + ABO) is singular for an arbitraryquadrature rule. 

One can guarantee (under mild restrictions) that the matri~ in 

(1.5.4) is non-singular, if the quadrature rule (1.5.1) is . sufficiently 

accurate. The result of the computation is an approximation to the 

solution of the integral equation, and we must now estimate the error of 

the approximation, and study means by which the error may be reduced. 

This problem is naturally linked with the original choice of quadrature 

formulae. For the conditions to be made ~n the choice of the quadrature 

rule and the error estimate one can see (113], p.67; [)] I p.432) they 

depend on the parameter A and the kernel k(s,t). However the choice 

of the quadrature rule should also depend on the driving term g(s), since 

the behaviour of this function has an influence on the solution ~(s), and 

hence on the accuracy obtainable. 

1.6 EXPANSION METHODS 

~(s) 

In the last section we obtained an approximation 

N 
= 9(S) - A L w. k(s,t

J
.) ~(tJ') 

j=o J 
(1.6.1) 

to the integral equation (1.1.2) which is described by the system (1.5.4) 

where the approximation ~(s) (determined by the weights and abscissae of 

a quadrature rule) is a linear combination of 9(S) and k(s,t.). Sometimes 
J 

it is convenient to choose a set of functio~{hi(s)} (which may depend on 

N) but independent of k(s,t) and to approximate ~(s) by 



~N(s) 
N 

= 1: a. h.(s) 
j =0' J J 
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(1.6.2) 

as a linear combination of prescribed functions h.(s); i = O(l)N for , 
the choice of this functions (see, for example D(I, p.87), then determine 

uniquely its expansion coefficients ~ by substituting (l~6.2) into the 

integral equation (1.1.2) will give the residual 

b 

0N(S) = ~N(s) + A J k(s,t) ~N(t) dt - 9(5) 

a 

(1.6.3) 

We cannot choose ai ; i = O(l)N to make nN(s) vanish identically 

unless the true solution is a linear co~bination of the basis h.(s) ; , 
i = 0(1 )N. However, suitable constraints can be imposed on the choice 

of ai ; i = O(l)N which ensure nN(s) is in' some sense small. 

There is a number of methods which are basically rather similar. 

employed to solve(1.6.3) for the unknoW1s~ for example, Rayleigh-Ritz, 

Ga1erkin, Collocation and Least-squaresmethods, but in general it is not 

possible to choose aa, al, .• ··,aN to ensure that n(s} - O. In the 

Collocation method for example the coefficients ai ; i = O(l)N are 

chosen so that 

* * k(si ,t) <PN(t) dt = g(si) 

a 

* where Si i = O(l)N are selected paints in @, :§J. The equations for a 

in the matrix form are 

(A + AB) a = g - - (1.6.4) 
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where 

* * A •• =h.(s.} 
, ,J J' 

and B. . = U. (si) , ,J J. 

b 

with U.(s) = J k(s,t) h.(~) dt 
J J 

a 

The system of equations (1.6.4) for some particular choice of the 

* points si' i = O(l)N can be singular even if 1 is a regular value of 

the kernel k(s,t). The conditioning of the system (1.6.4) depends on· 

the choice of the basis functions hj(s) and the choice of the Collo.cation 
* . . 

points si and the choice of one should be matched with the choice of the 

other (see Baker [7] p .396). 

In the weighted Galerkin scheme we obtain a linear system of the 

form (1.6.4) with 

b 

Ai,j = J W(s) hj(s) hiTS) ds 

a 

with U. (s) 
J 

b 

= f 
a 

k(s,t) h.(t) dt 
J 

b 
r 

; Bi,j = J W(s) Uj(s) hi(s) ds 

. , 
b 

9i = f 
a 

a 

W(s) g(s) hi{s) ds 

where H(s)is a positive function on la, [J. 

The Galerkin method reduces to Rayleigh-Ritz method if k(s,t) = k(t,s), 

and W(s) = 1. 



-11-

In chapter (2) we give a comprehensive discussion on the Galerkin 

approach showing how this method 'is computationally convenient for 

, handling such integrals in a lower cost with a satisfactory a~curacy. 

Finally, we attempt to give a brief mention of the previous 

numerical methods described in section (1.5-6). One can note that most 

of the methods for· the numerical solution of integral equations can be 

regarded as expansion methods in some sense. Thus, whilst the quadrature 

method described in section (1.5) yields a vector i of function values, 

these values are used in the Nystrom extension to yield the approximation: 

~(s) 
N 

= 9 ( s) - E b
J
. k ( s , to) ; b ° = A W

J
. ~ ( t

J
o ) 

j=O J J 

which shows that ~(s) is a linear combinat)on of g(s), k(s,t j ). This 

suggests that,with some quadrature rules, the quadrature method is 

particularly convenient if we like to generate an approx~mation of the 

form 

N -
Hs) = E IJ r h (s) 

r=o r 

from the vector i = (~(to)' ~(tl),····.,~(tN)t , where tr and the functions 

h (s) are specially matched. This idea is used by EL-Gendi t.\<'l1' in an r 

application Of a quadrature method with the assumption that ~(s) is defined 

and well-behaved in [:1, I1 then Clenshaw and Curtis OQJ give the 

following procedure for the numerical integration of ~(s) based on the 

approximation 

N 
~(s) = E" 

r=o 
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where 

L N 
a = Tf I; 11 4>(s.} T (s.). 

r I~ j =0· J r J 

and s. = Cos ( . .1!.) 
J . N . j = O(l)N 

Here Tr(s) is the r-th Chebyshev polynomial. . The double primes denotes 

a sum with first and last terms halved. 

Problems which contain weak or straong singularities in the kernel can 

often be better or more simply treated by choosing the suitable expansion 

set, or of inner product, within an expansion method, than by a quadrature 

method, chapters (3,4) are devoted for such strong singular problems, which 

will suggest that the more difficult the problem the more worthwhile it is 

to look at expansion methods .. 

The stabil ity of the methods depend on th·e error sources whi ch comes 

from (i) setting up the equations (ii) solving the defining equations, where 

usually the first is the dominant one, e~pecially if quadrature rule is used 

to evaluate the matrix B. For a wide discussion of the theoretical basis of 

s tabil ity and rate of convergence, the reader is referred to [?, 13, 14]. 

In chapter (2) we outline the basis of the Galerkin method followed by 

the Fast Ga1erkin technique which is the method of D4]. 

We apply this scheme on the Lap1ace transform inversion in chapter (3), 

while in chapter (4) we give a nice scheme using the technique of chapter (2) 

for computing the numerical solution of Cauchy singular integral equations QQ]. 

In chapter (5) we adopt the scheme of [2] for solving the linear integro

differential equations of order one and two of Fredholm-type on the range 

E1,1]. At the end of chapter (5) we use this technique together with that of 

chapter (4) for solving a singular integro-differential equation of Cauchy kernel. 

Finally in chapter (6) we apply the scheme of chapter (2) to eigenvalue 

problem for finding the simple (real) eigenva1ue. 
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CHAPTER 2 

FAST GALERKIN METHOD 

2.1 BASIS OF GALERKIN METHOD 

Suppose that we are given an equation of the form: 

K~- 9=0 (2.1.1) 

Where K is an operator defined in some Hilbert space H where no further 

assumption is made about K. 

The Galerkin method requires us to select a sequence of elements 1/JN € D(K) 

and to attempt to find an approximate solution in the form 

N 
~N =igO aiwi (2.1.2) 

the coefficients ai · are determined from the condition that the inner· 

product of the left hand side of equation (2.1.1) and the sequence 1/J; 

is zero, in other words after we substitute 9
N 

for·9 in equation (2.1.1) 

must be orthogonal to the elements wO' 1/J" ••••• , ·1/JN which leads to the 

system of equations (linear or non-linear) depends on the operator K 

** (2.1.3) 

The method can also be applied to the eigenva1ue problem which require 

to find the eigenva1uesof the equation. (see ~4J ). 

(2.1.4) 

where the method approximates the eigcnva1uesas the roots of the equation 

N 
L . (K'" ",) a = A L (1/Jl' , WJ') a. 

"
=0 '1'," 'l'J' i , 

j = O(l)N 

** The unweighted 
(fl' f 2) = 

;=0 

inner product is 
r 

J f,(s) f 2(s) 
o 

(2.1.5) 

-------------
def; ned as: 
ds s € 0 
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2.2 FAST GALERKIN METHOD FOR THE ~OLUTION OF I.E ls 

We consider here the solution of Fredholm integral equations of the 

second kind 
b 

f(s) + AJ k(s, t) f(t) dt = g(s) a ~ s E b 
a· 

A i s real 

(2.2.1) 

although the method can be applied to first kind integral equation and 

Volterra type equations and also the equations may be linear or non-linear. 

We have to select a sequence 'of functions hn(s) (n = 1,2, ....• ) in 

L2(a, b) such that the functions hn(s) are linearly independent and trying 

to find an approximate solution to f(s) in L2(a, b) of the form 

N 
fN{s) = I a.h.(s) 

i =0 1 1 
, (2.2.2) 

where the coefficients ai make the residual of equation (2.2.1) be zero, 

that is: 
b 

r~ a. f rh.(s) 
.01 ~ 1 
1= a 

b 

b 

+ A 1 k(s, 
a 

= J 9(S) h;(S) ds 
a 

j = O(l)N (2.2.3) 

* We require the residual tobeorthogonal to the functions hj(s); if A is 

not a characteristic value the system (2.2.3) has a unique solution when N 

is sufficiently large; as N-+- ex> ,the approximate solution fN in 

equation (2.2.2) approaches the exact solution f(s) of equation (2.2.1) in 

the metric space of L2(a, b). (sC'e 84]). 

And we have the estimate that is 

(2.2.4) 
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where PN is the projection operator into the space spanned by the functions 

hO' hp ..... , hN' and £N~ 0 as N I co 

2.3 THE FAST GALERKIN ALGORITHM 
, ' 

There have been a number of methods proposed for Fredholm,Volterra-

type equations based on expansions in terms of Chebyshev polynomials. 

The solution of integral equations in Chebyshev series has been the 

subject of two papers by [19, 2QJ His method essentially a Collocation 

method and it is necessary to decide in advance how many terms in the 

Chebyshev series are likely to be significant; the method by Scraton O?~ 

suggested a way to avoid this difficulty of Elliott. 

He transformed the integral equation into an infinite set of algebraic 

equations in which the unknowns are the coefficients of the Chebyshev 

series and he solved the algebric system by a standard iterative procedure, 

in which i.t is not necessary to determine beforehand how many coefficients 

are significant as in Elliott. The method of El-Gendi r'~] is also 

essentially a modification of the Nystrom scheme. 

We describe here an alternative method [lfl which is a variant 

of the Galerkin scheme but has the advantage of being significantly faster 

than the standard Galerkin method. 

For operations count and comparison of various methods using Chebyshev 

expans ions the reader is referred to 04] for more detail s. 

We consider in this,chapter the solution of linear Fredholm integral 

equation of the second kind with smooth kernels and driving terms by 

assuming that the variables of equation (2.2.1) have been suitably trans

fo~med so as to reduce the range of integration to (-1, 1). 

The method can be applied to first kind Fredholm equations and to 

Volterra type linear or non-linear equations ~ee chapter (3,4)] 
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We restrict our discus~ion here on the solution of Fredholm e~uation 

of the second kind. 

So that the equation to be solved has the form 

1 

f(x) + f k(x, y) f(y)dy ::: g(x) -1 ~ x ~ 1 (2.3.1) 

-1 A ::: 1 

the method is based on expanding the defined functions numerically using 

the Fast Fourier Transform. k(x, y) and g(x) are assumed in this chapter 

to be smooth. 

For the case when the defining equations contains a known singularity 

we expand the functions analytically using a set of recurreoce relations 

which we do in chapters (3), (4). 

We choose here the basis functions· hi(x) of equation (2.2.2) the 

Chebyshev ~olynomials Ti(x), i = 0, 1,2, ••.• to retain the "natural" 

suffix where we count from zero and make the following expansion for f(x) 

assumi n9 that f(x) e: L2 ~ 1, 1] 

N 
E a. T.(x) 

j=o J J 
(2.3.2) 

.' 
The Chebyshev polynomials are orthogonal on (-1,1) with the weight function: 

2 _1 
W(x) = (1 - x ) l! 

1 

J W(x) T.(x} T.(x) 
1 J 

-1 

1 

dx = 1T ~ 
0 

(2.3.3) 

; i = j = 0 

i ::: j > 0 (2.3.4) 
i f j 

And therefore we introduce this weight function into the inner product in 

the equation (2.2.3) hence applying Galerkin technique on equation (2.3.1) 

using (2.3.2) and the property (2.3.4) we have: 
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J
l {~ a. T.(x) + ~. a. 

j =0 J J j =0 J 

-ll 

1 .} J k(x,y} Tj(Y} dy - g(x) W(x} Ti(x) dx = 0 

N 
~ a. 

. j=o J 

1 

1 

J H(x) T.(x} T.(x} 
1 J 

-1 

· J W(x} Ti(x} g(x} dx 

-1 

1 

dx + J W(x} 
-1 

i=O(l}N 

We can write this in a matrix form as: 

(0 + B) ~ = .9. 

where o is the diagonal matrix (2.3.4) 

1 1 

8 .. == J W(x} Ti(X} dx J k (x , y) T j (y) 
1 ,J 

-1 -1 

1 

1 

T.(x} J k(x, y} T.(y} 
1 J 

-1 

and 

dy i , j = 0(1} N 

g. = 
1 

f W(x} Ti(x} g(x) dx 
£, 

i = O( l} N 

2.4 Nur~ERICAL It1PLEMENTATION 

dy dXJ 

(2.3.5) 

(2.3.6) 

(2.3.7) 

We need to perform the integrals in equations (2.3.6), (2.3.7) 

numeri ca lly. 

Adiscrete Galerkin calculation uses an appropriate quadrature rule to 

approximate the integrals in (2.3.6), (2.3.7). A suitable rule for the 

integration over x is clearly the Gauss-Chebyshev (P + 1) point quadrature 

rule. With weights 

~1 k = ;, k -f 0, ~ 

Wo = \11' = -2~ 
(2.4.1) 
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and points xk'=.Cos (TI~) " k = 0(1) ....• 

hence we approximate the integral in (2.3.7) as: 

PII 'k k 
g,. - g. = _p1T . ~ g(Cos(2l..p-)) T:(Cos(TIp)) 

" k =0 1 

1T p.. 1Tk 'k g. = - E g(Cos(--)) c"os(~-') 
1 P k=o P P 

(2.4.2) 

11 

Where the symbol ~ implies that the first and last term are halved, 

and we have used the relation 

T.(X) = Cos i (Cos-l~) 
1 

(2.4.3) 

An attempt to use a product form of this rule for the integral over 

,y to approximate the int~gra1 in (2.'3.6) would lead to a large numerical 

error; because of the IImissingll weight function (1 _ y2)-~. 

The di ffi culty i ~ overcome 'i n practi ce (Ell iott, I1QJ; Scraton, @~) 

by introducing the matrix R with elements 

1 1 

Ki,j = J W(x) Tj(x) dx J W(y) Tj(Y) k(x. y) dy 
-1 -1 

(2.4.4) 

then R can be efficiently approximated by K 

2 PII 
K •• = (.~) ~ 

1, J r=o 

P.. .. 
~ k(Cos (r;), COS(s;)) Cos(l1Tpr) Cos (I'pS1T) 

5=0 
(2.4.5) 

i, j = O(l)N 

Now apart from a constant factor, we can identify R .• as the (i, j)th 
1,J 

coefficient in the double Chebyshev expansion of the function k(x, y) 
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that is 

k( x, y) 4 :' = -2 L. 
1T • 

1 =0 

L' K .. T.(x) r.(y) 
j=O 'l,J 1 J 

(2.4.6) . 

\·Jhi12 apart frorntne factor·~(2.3.6)idei1tifies B .. as the (i ,j)th coefficient 
1T 1 ,J . 

in aricxrariSiO:1 of the function k(x, y) (1-y2)~. From (2.3.6) and (2.4.4) 

we have: 
. 1 1 

Ri,j (1_y2)~ = J W(x) Ti{x) J T .(y) k(x,y) dy dx 
-1 -1 J 

(2.4.7) 

. by multiplying both sides of (2.4.6) by the function (1 - y2)~ we get: 

co 

L' K .. (1 .. y2)~ T.(x) T.(y) 
j =0 1 J . 1 J 

(2.4.8) 

theiefore we can obtain the coefficients B .. from K. :by using the 
1,J 1,J 

Chebyshev expansion of (1 - y2)~ and mUltiplying the two series together 

Using the identity 

2T.(x) T.(x) = T .. (x) + Tl1·-J·1(x) 
1 J 1 +J (2.4.9) 

where the Chebyshev expansion of (1 - y2)i is: 

2 4 
= - - - L 

1T 1T r=l 
(2.4.10) 

hence we have the identity: 

co 

1T - 1 - -
- B. . = K. . - L -- (K. . 2 + K. l' 2 1) 2 1,J 1,J r=l 4r2-1 1,J+ r 1, J- r 

(2.4.11) 

i, j = 0(1) .•.•. 
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Therefore we evaluate an approximation K to R using a product (P ,+ 1) 

point Gauss-Chebyshev rule, and an approximation B toB using the identity 

(2.4.11) with the convention that'K .. = 0 , i, j > N 
~ 'j ,J 

The standard cost for performing the sum on (2.4.5) the process 

suggests an N2p2 dependence but the simple how stages of (Scratan, LSbl). 

P . 
IT·1I rlT qlT Jq1T S . = 15" r k(Cas(-p-), Cos (--p)) Cos (-p-) 

r,J q=o , 
(2.4.12) 

PII i klT 
K. '=_p1T.. r Sk,)'Cos(p) 

, ,J k=o 
(2.4.13) 

reduces the cost to 

(a) NP(P+N) operations for evaluating K 

(b) N3 operations for producing B from (2.4.11) 

(c) ~3 operations for. solving the system (2.3.5) by Gauss-Elimination 

In the paper of Delves D~ he reduced the operation count to 

O(N2LogN) operations overall, and we now show how this is done. 

2.5 SETTiNG UP AND SOLVING THE SYSTEM 

Evaluation of k from ~2.4.12) and (2.4.13) can be achieved in about 

NP(P+N) operations. 

If we set P=N we can identify(2.4.5) as representing a discrete 

Fourier Cosine Transform of the function k(Cos~, Cos~). This transform 

can be carried out using the FFT (Fast Fourier Transform) technique which 

produces K in 0(N2Log N) operations. Also the FFT procedure can be used 
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to evaluate (2.4.2) in O(NlogN) operations, where this count is almost a 

factor of N better than the standard Galerkin order count. The choice 

. P<N is not sensible, because it guarantees very large errors in the matrix 

and the solution. 

Evaluation of B: 

The direct use of (2.4.11) takes O(N3) operations, however, two one 

dimensional chebyshev series each of O(N) term can be multiplied together 

in O(NlogN) operation using the FFT procedure. 

The algorithm is applicable to (2.4.11) which represents the explicit 

result of multiplying the Chebyshev expansion of k(x, y) see (2.4.6), by 

that of (1 - y2)~ which is a function of one variable, so that.(see(2.4.ll) 

we can multiply the double series for K a row at a time, taking succ~ss

ively i = O(l)N and yielding an overall operations count of O(N2logN) as 

shown in [l6] 

Hence the (N+l)X(N+l) Galerkin matrix equations can be set up in 

O(N 2 logN) operations. 

A com~lete error analysis and comparative timings can be found 

which shows that first the method will converge very rapidly 

provided that the kernel k(x, y) and the driving term g(x) are smooth, and 

second that it is possible to provide cheaply computable error estimates 

which take into account both truncation errors (those of N terms in the 
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s~ries) and quadrature error due to (2.4.2), (2.4.5). This paper also shows 

that ther'e exists a simple iterative scheme for solving the equation (2.3.5) 

with an overall O(N2) operations count. 

2.6 ERROR ESTIMATES 

,The error in the numerical solution obtained by the Fast Galerkin method 

has three components: 

(1) The truncation error which stems from cutting off the exact expansion of 

the exact solution 
00 

f(x) = ~I 
j=O 

b. T .(x) 
J J 

-1 ~ x ~ 1 

at the Nth term. The truncated expansion is given by 

a· T.(x) 
J J 

(2.6.l) 

(2) The discretization or quadrature error due to the numerical estimation of 

the matrix B and vector ~, equation (2.3.5). 

(3) There are in principle errors arising from the solution of the linear 

sys tern (2. 3 . 5) . 

The computed solution fN(x) has error eN(x) that is 

N 
~ E 

j=O 
+ 

00 

N 
Ell a. - b.1 

j=O J J 

N 

+ 
00 

E 
j=N+ 1 

Ib ·1 J 

(2.6.2) 
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- where a. ; j=O(l)N are the, exact ChE?byshev coefficients \'/hich satisfy the 
J 

equation (2.3.5). 

I. Truncation error estimates 

-,Since g(x) and k(x~y) are bounded functions on [-1,U then (see 01]) 

8. -., g. satisfy bounds of the form 
1 ,J 1 

i ~ 1 (2.6.3) 

; i,j ~ 1 

where Cg, CB are some positive constants and p, q, r are values which 

depend on the differentiability-of g(x} and k(x,¥). 

Delves O!I gave the following estimates for the truncatio!,! error El + E2: 

Cb . -(s-l) 
A posteriori: El + E2 - E2 -~ N - NaN (2.6.4a) 

'A pri ori : (2.6.4b) 

where Cb is some known constant (independent of i, and all i > 0) and s :'_ 

min {q, p}. The bound (2.6.4a) is standard; the bound (2.6.4b) contains the 

unknown Cd but gives a useful way of estimating the required value of N before 

the bulk of the calculation need be performed. 

11. Quadrature error estimates 

We in fact solve not the system (2.3.5) but the perturbed system 

(O+B+oB) (~+o~) = ~ + c~ (2.6.5) 
-where o a = a - a i n any norm 
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(1 + Q 116B 11 ) (2.6.6) 

where Q = '\I(O+B)-l(l. 

Delves D4J estimates the 'quantities 110_9.11. IloB11 and Q as: 

00 

(p is the number of points in the quadrature rule). 

Then we estimate \ogr l ~ I!~pl ,which can be used as the basis of a 

numerical estimate ~f I 10~1 I. Similarly I loBI \ can be estimated as 

and a rough estimate for ,Q is given by 

Q ~ II~IIIII~II. Hence equation (2.6.6) gives an estimate for the 

quadrature error E3• , 

Throughout this work we do not include the error estimates in our results. 

For a complete error analysis and details on how the method returns the estimate 

error to the user, the reader'is referred to 04, lZJ. 

Finally, the total cost for the Fast Ga1erkin method is O(N21ogN), and it 

is this lower count, together with the rapid convergence and error estimate, 

which makes the scheme attractive. 



CHAPTER 3 

NUMERICAL INVERSION OF THE LAP LACE TRANSFORM 

3.1 INTRODUCTION 

Consider the following inte~ral equation 

00 

f k(5,tl ~(tl dt = W(5) 

o 

o ~ s < 00 (3.1.1) 

Hhere the kernel k depends only on the product of the variables s,t. 

This general class of integral equation includes the Laplace transform, 

the Fourier sine and cosine transforms and many other integral equations 

of importance in physics. 

We consider in this chapter the n'umerical solution of the Laplace 

inversion where the main difficulty in applying Laplace-transform techniques 

is the determination of the original function ~(r) from its transform. 

00 

fe-pr .(rl dr = w(p) 

o 

(3.1.2) 

In many cases, analytical methods fail and numerical methods must be 

used. The best known numerical methods for the inversion of the Laplace 

transfonm are based on the expansion of the original function in a series 

of orthogonal functions. A 'special case of one of these methods is 

discussed in [§2]. The principal reason for the importance of orthogonal 

exponential functions is that only real values of ~(p) are required for 

calculating the coefficients of the series expansion of ~(r). However 

the computation of ~(r) from values of ~(p) on the real axis is numerically 

unstable, Bellman and Kalaba [8J. 



· Therefore, if a high degree of accuracy is desired, the calc.~lation 

must be carried out in multiple precision or methods must be used which 

determine the original function from values of the transform in the 

complex-plane as described in ~6:Jin which one of his approach is to 

deri~e from an expansion of the transform ~(p) in some region of the p-plane 

a rational approximant to lji(p) \·Jhich can then be inverted using ratio·nal 

functi ons; this approach has been used by Longman Q9, 4QJ who generated 

a rational function approximations to ~(p) by means of a non-linear 

sequence to sequence transformation from the t1aclaurin expansion of the 

transform ~(p). These rational functions are then inverted ,analytically 

to yield a sequence of approximations ~ {r} to the inverse ~(r) of ~(p). n 
Where !]2] based his method on the approximation of' the transform by 

truncated series of orthogonal functions, related to the Jacobi or Laguerre 

polynomials, i.e. 

~(p) (3.1.3) 

(a,S) 
where Pr ;s the Jacobi polynomial of degree r and a, S, a and bare 

free parameters and the coefficient Ck is given by: 

1 

r 
(a,S) 

(l-x}a (l+x}S Pk (x) y(x) dx (3.1.4) 
J 
-1 

v/here 

y(x} = [~]" .[~l (3.1.5) 
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-1 

Inverting the series (3.1.3) term by term, we obtain 

~(r) = 
a-1 r 

f[a) [~) 

where Uk(x) is a polynomial of degree k 

I-k, k+ Cl +s+ll _ 00 

/a+1, a ; x· I-I: _ _ r=o 

** . 

(3.1.6) 

(3.1.7) 

(3.1.8) 

then with a ~ S = -~, the computation can be simplified. Indeed, the 

truncated series formulas for the inversion of the Lap1ace transform is 

Hr) r- k , k l 
~ , a ; ~ 

(3.1.9) 

and the coefficients Ck can be calculated by C1enshaw's method for the. 

computation of Chebyshev coefficients. 

N 
C ~ ~ E" y(Cos tn) Cos (tklT) 
k N t=o N N (3.1.10) 

and the polynomials Uk(x) can be generated from the recurrence relation: 

n = 3(1) ...• 

** (a) = r(a+r) r(a) r 

------- ---------- -------
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where A, B, C and D,E are rclationsgiven in terms of the free 

parameters a, B, a and b ~2J . 

The method requires the values of the laplace transform for non

equidistant real values of the argument. 

Another approach [§S] based on. expand the original inverse as a 

. Fourier expansion of ~(r). 

let ~N(t) denote the Fourier-expansion of ~(t) interms of Qk(t), 

so that 

where 

co 

Ck = J Qi«r) "N(r) W(r) dr 

o 

and Qk(t) is the orthonormal functions such that 
00 

J Qm(r) Qn(r) W(r) dr - ~mn 
o 

'(3.1.11) 

(3.1.12) 

(3.1.13) 

Hhere 0mn is the kronecker delta, W(r) is the non-negative wei~ht 

function over IQ, co). Equation (3.1.11) may be regarded as a formula for 

numerical inversion of the Lap1ace transform, only if Ck can be conveniently 

expressed in terms of ~(t;), where t;arc points ;n the p-Plane. Also 

equation (3.1.11) is an inversion formula if Qk(r) and W(r) are linear 

combinations of exponential functions. 

We describe in this chapter a new method of approximating the exact 

inverse of the Lap1ace transform (3.1.2) as the solution of an integral 
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~quation of. the first kind. We based the method on mapping the 

variables onto the finite space [2, 1] and applying the Galerkin techniques 

on the resulting integral equation using a truncated Chebyshev expansion 

for the" exact mapped inverse. Then using the Augmented Galerkin method 

[lJfor solving the linear system of Galerkin equa~;ons, where the matrix 

elements'of the system (Lap1ace-matrix) are calculated analytically. 

3.2 ILL-CONDITIONING AND NATURE OF THE PROBLEM 

The general Fredholm integral equation of the first kind is defined by 
b 

J k(x,y) f(y) dy = g(x) a ~ x ~ b (3.2.1 ) 

a 

which in operator form is 

K f = 9 (3.2.2) 

the solution of such equations has been studied by many authors (Phillips [§QJ; 

Tikonov [§QJ; Baker, Fox, Mayers and !4right [4J) Turchin, Kozlov and Malkevich 

I§~; Hanson, IJID and a useful review is given by Mi ller (IA~); and recentl~' 

B.A. Lewis (Q[J} and a nice paper by Babolian and Delves ([lJ). 

Their ill-conditioned nature may be illustrated in a rather simple 

manner as follows: the problem has much in common with that of solving a 

system of al0ebraicequations 

B a = b 

in which the matrix B is severely ill-conditioned (or even singular) the most 

troubleson1efeature from a computational point of view ;s that the problem is 

ill-posed that is the solution f of (3.2.2) does not depend continuously 
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on the driving term g,~hat is,a very small perturbation on the driving 

term'g can give rise to arbitrarily large perturbation in the sol~tion f. 

To show this according to the Riemann-Lebesgue theorem, that is for any 

integrable kernel, note that 

,b 

Rn(x) = J k(x,y) Sin (ny) dy ~ 
a 

as n -+ <Xl 

o 

and so it is possible to make Rn(x) arbitrarily small by choosing a 

sufficiently large value of n that is for given £ however small, 

1IRn(x)ll<Xl = maximum 1Rn(x)1 ~ e: 

a ~ x ~ b 

(3.2.3) 

(3'.2.4) 

Now suppose that equation (3.2.2) has a unique solution f,and let 9 be 

given a small perturbation, say 

where C is an arbitrary constant. 

The corresponding change in f is of = C Sin (nx), it is clear by 

assigning a value to C and choosing a sufficiently large n we can make 

the ratio 

as large as we like. 
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In section (3.3)we shall apply the Fast Galerkin method for the 

solution of the integral equation of the first kind (3.1.2) and solve· 

the obtained system of linear equations using the ill-posed solver of Cl] 

3.3 THE GALERKIN ALGORITHM 

The transform function w(p) is infinite at p = 0 for many commonly 

occurring problems (e.g. ~(r) = constant), so in order to weaken the 

necessary condition for a finite transform let us multiply both sides of 

the transform (3.1.2) by the parameter p' which leads to 

00 

[ e- pr ~(r) dr = h(p) 
P J. 

o 

(3.3.1) 

We consider the exact inverse ~(r) of the transform (3.3.1) such 

that the following conditions hold: 

(a) The Laplace transform h(p) exists (and is known) in some region [Q, ~ 

of the semi infinite space IQ, co). 

co 

(b) The integral J '-~(r)]2 dr exists. 

o 

Now let p = mq, then from (3.3.1) we have 

00 

I -mqr h( ) J mq e ~(r) dr = mq o ~ q ~ 

o 

(3.3.2) 



Let z = emr 
-+ 

. . -1 
mdr = -z dz hence 

1 .' 

f qzq-1 f (z) clz = h(mq) 

o 

where· 
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s+ 1 z _ t+ 1 
Let q = 2 ' - 2 ; s, t e: [:1 , 1 ] 

then from (3.3.3) we have: 

1 (~)~1 
f (S;1) (t;1.J. f(t;1) ~ = 9(s); -1 ~ S ~ 1 

-1 

where g(s) = h(mS~l) . 

By weighted Ga1erkin technique using the truncated Chebyshev 

expansion for f{~) 

N 
f{t+

2
,) ~ fN{t+21) = L a· T.{t) 

j=o J J 

we end up with the linear system 

where 

-1 :: t :: 1 

(3.3.3) 

(3.3.4) 

(3.3.5) 

(3.3.6) 



1 

J
'S+l Ti(s) 

Bi,j = (~)~SZ 
1 -1 
( T.(s) 

9i = J9(S), 1-S2 ds 

-1 
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1 (~; 1)_1 

f (~ ) Tj ( t) .<i} ds 

-1 

(3.3.7} 

. (3.3.8) 

The integrals appearing in equations (3.3.7), (3.3.8) must now be 

evaluated. For the integral in equation (3.3.8) the technique of chapter (2) 

can be applied by relating 9i to the Chebyshev coefficients in expansion of 

9(S), and then evaluating these coefficients numerically using Fast Fourier 

Transform technique. 

For the integral in equation (3.3.7) we evaluate it analytically as 

follows. 

Let us change the variables as: 
s+l . t+l 

x=-2~; y=-2-

1 

B. • = 2 I x T~. ( x) W ( x) , ,J , 

o 

. , then 

1 

f yX-1Tj(Y) dydx 

o 

where T* is the shifted Chebyshev polynomial on [Q,J] 

Lemma (3.3.1) 

1 

Jm~i~ dx 
o 
Proof: 

= 1T 

2lmr+rz , r > 0 

(mx +m + 2r) -1 dx = _-_1--..--
i mr+rz 

(3.3.9) 

(3.3.10) 

1 

li~~ lJ 
-1 
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::; 2lmr+rL 

Lemma (3.3.2) 

1 
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1 r=o 

J 
xW(xt dx ::; 1T 1 r 
mx+r. 2m - I"mr+rz- r>o 

o 

Proof: (see Appendi x A) 

Lemma (3.3.3) 

f
1 x . [ ·2 

Y Tj _ 1 (y) dy = a _ j (2 _ j ) 

o 

Proof: (see Appendix A) 

1 

B. . = 2 ( 4) J x Ti ( x ) t~ ( x ) 
1 , J 

o 

Using Lemma (3.3.3) then 

1 

1 1 

J. f x yX-1 T~(y) dy + . X i yx-1 
J J J. F2" J 

o 0 

j ~ 2 

1 

f yX Tj_l(y) dydx-2 Bi •j _1 - B
i

•
j

_
2 

o 

(3.3.11) 

B ,;. 4 .) J x T~ (x) W (x) dx - 4
1 

J' B. l' 1 B 1 B i,j J(2-J 1 1+ ,J - ~ i,j - ~J i-l,j 
o 

1 1 B 1 
+ 4 (j -2 J B i + 1 ,j - 2 + 2 ( j - 2) i ,j - 2 + --4 (T"Tj ___ 2""'"") B i - 1 ,j - 2 - 2 B i , j - 1 
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- B. '. 2 1,J-

1 
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(; ~, 1, j ~ 3) 

a i = 0 

. J x Ti(x) I~ (x) dx = 7T ~ ; = 1 , (*) 

0 0 ; ~ 2 

we have: 

47T 
[: 

; · 1] B •. = j(2-j) ; > 1 1 ,J 
1 1 

- 4j B;+1,j + 4(j-2) B;+1,j_2 -2 B; ,j-1 

1 1 1 1 
+ (2(j-2) - 1) B; ,j-2 - 2j B; ,j - TJ B;_l ,j + 4(j-2) ,B;_l ,j-2 

(i~1,j~3) 

167T 
B;+l,j = (2-j) 

'(1 ;=1] 
o ; > 1 (4j+2) B. . 

1 ,J 8j B. ; 1 + (.2J
2
· -: 4j)' B. . 2 - B. 1 . 

1,,.;- J- 1,J- 1- ,J 

j B + j B 
+ j-2 ;...;1 ,j-2 T-1 i+1,j-2 (i ~ 1, j ~ 3) 

1 [1 1 ; - 0 
B. = 2 f W (x) T~ (x) dx = 7T • >-

1,0 1 0 1 0J 

o 

1 

Bo,j = 8 J x W(x) 

o 

1 

I yx T7: 1(y)dydX-2 B . 1 J J- O,J-
o 

Using Lemma (3.3.3) and (*) we have: 

- B 
0,j-2 

(3.3.12) 

(3.3.13) 
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81 ,j = (~:j) - (2j+1) Bo,j - 4j Bo ,j-.1 +(j~2 - 2j) B6 ,j-2 + j~2 B1,j-2 

Let 
j r 

T~(y) = L C. Y 
Jr=o J, r 

j 

Ba,J' = L 
r=o 

where 

C. A J,r a,r ; 

then 

A = 2 1f x W(x) r 1'+r-' dy dx = 2 'J 
o,r . J 

° a ° 
From Lemma (3.3.2) then 

A = IT o,r 

1 ; r = a 

1 _ r . 
Ir+r2' r > ° 

x W(x) dx 
x+r 

substituting (3.3.15) in (3.3.11) we have 

C. J,r = 4 Cj -1,r-1 - 2 Cj _1,r - Cj - 2,r 

r=a(l)j r=l(l)j r=o(1)j-1 r=o(1)j-2 

1 1 

8i ,' = 2 J x Ti(x) W(x) f /-' T,.(y) dy dx . 
a a 

j ~ 3 (3.3.14) 

(3.3.15) 

(3.3.16) 

(3.3.17) 

",-

(3.3.18) 
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B. 1 , , (**) 
xT~(x) H(xf 

, dx - B. 
x+l . 1,0 i ~ 2 

o 

1 

Bi •1 = 16 J X:~\x} T1'-1 (x) dx - 2 Bi-1•1 - Bi -2•1 ; 6i •o = 0 (i 32) . 

o 

1 

Bi •1 = 16 J x W(x} Tt_1(x} dx - 6 Bi -1•1 - Bi -2•1 
o 

o 

From (**) then 

1 

o 

f 
x Tt ( x) W ( x) 

B - 16 dx - 4 B.. 1 i,2 - x+2 1, 

o 

Define 1 

J 
x T~ (x) W ( x) 

Vi = 16 'x+2 dx 

o 

Using (3.3.11) we have 

Vi = 64"[: :: ~l -10Vi _1 - Vi-2 

; i ~ 2 

; i ~ 2 

i ~ 2 

(3.3.19) 

i ~ 2 

(3.3.20) 



. where 

v :: 8n{1 o 
2 . 5 

/6) ; Vl :: l6n(16 ~ 2) 

B. 2 ::Vi -4Bi ,1 ; i~2 
.1 , 
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. (3.3.20a) 

(3.3.21) 

These equations constitute a set of recurrence relations from 

which the matrix B can be computed. 

We can summarize the algorithm for evaluating the integral of 

4 equation (3.3.7) after scaling the matrix by a constant factor ~2 as 

follows: 

step (1) . 
1 i : :] 4 ; 

B. =-
0 . i 1,0 n , 

Step (2) 

4 6 4 
B1,1 =-;(12- 4) . B = ~ (1 - 12) , 

0,1 

B. 1 1 , 
- 6 B. 1 1 - B. 2 1 1- , 1- , 

; ~ 2 

Step (3) 

V = 4 (8 _ 16) . V = i (§!2 - 32) 
o nib' 1 n Y b 

B = i (§Q - 24 - 16) 
1,2 1T Y b n 

= i [8 V. 
1 'IT 0 : : ~ 1 - 10V. 1 - V. 2 ; 1- 1-

i ~ 2 

B. 2 :: V. - 4 B. 1 
1 , 1 1 , 

; i ~ 2 
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Step (4) 

C = 1, C = -1 
0,0 1,0 ; 'Cl , 1 = 2 

4· 
A =o,r n 

; r = ° } 
r . 

k+r 2 .' r > ° 

Cj,r = 4 Cj-l,r-l - 2 Cj_l,r - Cj - 2,r 

. Step (5) 

j 
= Le. A 

r=o J, r 0, r 
; j ~ 2 

(2j+1)B .-4jB'
1 O,J • O,J-

. , j ~ 2 

; j ~ 3 . 

Step (6) 

64 
Bi +1,j = n(2-j) [

A ~ = 1] 
° 1 > 1 

- (4 j +2) B. . - 8 j B. . 1 
1,J 1,J-

+ ) 2 B. 1 . 2 - B. 1 . + (J' _2~ - 4 J') B. . 2 J- 1+ ,J- 1- ,J 1,J-

j 
+ '--2 8. 1 . 2 J- 1- ,J- (;~1, j~3) 
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3.4 EFFECTIVENESS OF THE METHOD 

The choice of any method should be made in terms of: accuracy, cost 

and stability which we shall consider. 

(1) COST: The cost of the method has three components: (a) The time taken 

in evaluating the in~egral in equation using the described algo~ithm and 

the driving term equation. (b) The manipulations needed to set up the 

relevant algebraic equations. (c) The solution of the system represented 

byequation(3.3.6}. 

We would usually classify (a) as "useful" time~ (b) and (c) as 

"overhead operations", the cost for evaluating the Laplace matrix using 

a set of recurrence relations as described in the algorithm is of order 

0(N2) a"nd the driving term can be evaluated in O(N~og N) operation using "Fast 

Fourier Transform" te~hnique described in chapter (2) and 0(N2Log N) 

operations for set up equations, an explicit use is made of the structure 
, " . 

of the equations ~o yield an 0(N2) iterative technique for their solution. 

Hence, in terms of cost wise this looks an attractive algorithm, but it 

has instability problems in practice which \'Je describe. 
. " 

(11) STABILITY: The stability of the method depend on the stability of the 

set of recurrence relations used in evaluating the Laplace matrix and also 

on the stability of the ill-posed solver which we used for solving the 

linear system (see next section). We would like to give a brief discussion 

about forward and bach.;ard recurrence relations (RR) before we study the 

stability of the recurrence relations used in the algorithm. 

Considerable study has been made of relations with constant coefficients 

of the general form: 



-t .. l-

(3.4.1) 

which are traditionally described as unstable when one or more of the 

roots xl' x2'····, Xn of the characteristic equation 

,n + a ,n-l + + a ao/\ 1/\ •. ••• .n == 0 (3.4.2) 

be outside the unit circle. Thus if (3.4.1) is solved recursive1y in 

the direction of increasing i, any propagated error will be a linear 

.combination of the fundamental solution Xil'xi2' .•... Xin of the homogeneous 

form of (3.4.1), provided the roots of (3.4.2) are distinct. If one or 

more of these roots exceeds unity in magnitude some or all of the 

propagated error will eventually increase unboundedly in abso1u~e value, 

causing the number of correct deci~a1 places in the solution to diminish 

as n increases. Computation of the solution of the homogeneou~ form of 

(3.4.1) by forward recurrence i~ usually impractical owing to strong 

instability; on the other hand, backward application of the homogeneous 

form of (3.4.1) provides a stable way of computing the solution, since 

rounding error grow no faster than the wanted solution, as a rule 1:19J.·' 

A considerable number of algorithms have been used extensively in 

the computation of the solutions of difference equations by backward 

recurrence when forward recurrence is strong unstable 149J, which we do 

so. 

It proceeds as follows: for a suitably chosen large integer N, a 

"trial" solution y~N) of the homogeneous form of (3.4.1) is generated 

recursively for r = N, N-l , ...... , 0 beginning with y(N) = 0 and y(NN~ 1 = E 
N -

then the solution say f is found by multiplying y(N) by a normalizing r r 
factor llW For example if the value fo is given then llN = fo /y~N) ,more 
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generally i ff r sati sfies a conditi on of, the form. 

with given coefficients mr , then 

where the value of N can be 'estimated by testing with a higher value 

and comparing results . 

. Hence let us study the stability of the recurrence relations in 

our algorithm starting with the recurrence relations of steps (2) and 

(3), where the related homogeneous recurrence relations are: 

Bi ,l + 6 Bi - 1,1 + Bi - 2,1 = 0 ; i > 2 

(3.4.3) 

V. + 10V. 1 + V. 2 = 0 
1 1- 1-

. , i > 2 

respectively. Since the relations are of one dimensional form then we 

seek a solution of the form, 

i 
B. ,= a 1, (3.4.4) 

substituting from (3.4.4) in (3.4.3) and solving the resulting quadratic 

equation we get 

± 212 

f3 = -5 1 ,2 
± 2/6 



which shows that both the recurrence relations are unstable in the 

direction of increasing i. We achieved a good accuracy for computing 

the second and third columns of the Laplace matrix by running the 

recurrence relations in steps (2), (3) backward. (c = 0.0) 

The recurrence relation in step (4) has two problems', the first 

provided by the recurrence relations of computing the Chebyshev 

coeffi ci ents: 

C = 4 C. 1 1 - 2 C. 1 - C. 2 j , r J - , r- J - ,r J ,- ,r 

which is also unstable. It is possible in principle to avoid round-off 

problems since all coefficients are integer, but instead overflow 

problems result when we use an integer arithmetic. Secondlywe lose a 

large number of significant figures during the summation (3.3.16) 

j 
Le. A . J,r o,r r=o 

Since the sign of the Chebyshev coefficients alternate, it is possible 

to overcome this problem by using arbitrary precision arithmetic ~5~. 

We have ascertained experimentally the numerical instability of the 

recurrence relations in steps (5), (6). For the recurrence relation of 

step (5) we achieved a good accuracy by using the arbitrary precision (up 

to 72 digit) arithmetic. However, for the recurrence relation of step (6) 

we could not achieve a good accuracy because the recurrence relation in 

step (6) is very unstable. 

Hence, we essentially abandoned this approach altogether, and 

evaluated the Laplace matrix by using an alternative algorithm which we 

now describe. 



An alternative algorithm for evaluating the integral: 
. . 1 l' 

B. . = 2 J. x T~(x) H(x) dx J yx-l T~(y) dy 
1,J 1 . : J 

o 

Using (3.3.15) we have: 

j 
B .. = E C. A. 

1 ,J r=O J, r 1 , r 

where C. as (3.3.18), J,r 
1 

_ f x Ti(x) W(x) 
Ai,r - 2 x+r dx 

o 

Using (3.3.11) 'we have 

1 

o 

A. = 8 J x T~ 1 ( x) H (x) dx - (4 r+2) A. 1 - A. 2 1,r 1- . 1- ,r 1- ,r. 
. . 

o 

from (*) gives the Recurrence formula. 

4 [ ~ i = 2] A. =- i > 2 (4r+2) A. 1 - A. 2 ; 1, r "If 1- ,r 1- ,r 

4 [ ~ r = 0 1 A =- . 
r , O,r "If 

- Ir+rz r > 0 

A = i - (2r+l) A l,r "If o,r 

where B. 0' B. 1 and the initial values as before. 
1 , 1 , 

(3.4.5) 

(3.4.6) 

i 3 2 (3.4.7) 

(3.4.8) 

(3.4.9) 
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So we can summarize the algorithm as follows: 

Step 

Step 

where 

Step 

( 1 ) 

= i [1 i : ~J B. 1,0 1T 0 i 

(2) 

[~ i = 2] 4 
B. 1 - - i > 2 -6 Bi - 1,1 - B;-2,1 i ~ 2 
·1 , 1T 

Bo,l ; B 1 ,1 as shown in step (2) page (38) 

(3) 
j 

B .. = 1: C. A. ; j ~ 2 
1,J r=o J,r 1,r 

.C =4C' 1 1- 2 .c· 1 -C' 2 J , r J - ,r- J - , r J - , r 

. { 1 4 A =-o,r 1T. 1 
r r = 0 }' 

- v'r2+r r > 0 

4 
A1,r = ~ - (2r+1) Ao,r 

4 A =-. i,r 1T 
(4r+2) A. 1 - A. 2 

1- ,r 1- ,r i ~ 2 

where the initial values Bo,l' B1,1 ; Co,o = 1, C1,0 = -1, C1,1 = 2 

are given. 

~Je achieved a good accuracy for computing the matrix elements of the' 

Lap1ace matrix i.e. the integral in equation (3.3.7), where we displayed 

the matrix e1errents in appendix (B) which shO\vs that the integral of 

equation (3.3.7) converges to zero as i-+<>o for fixed j while the previous algorithm 

diverges because of the instability of its (RR) for large N. \Je carried 
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.out the calculation on ICL 1906S computer using Arbitrary precision 

arith!TIetic in Algol 68 [~5J; we used in fact 72 decimal digit of 

precision .. The cost of such precision is of course very high; but we 

note that the matrix B is independent of the parameter m in (3.3.3) and 

hence B need be computed only once and then stored for later use. 

~II) ACCURACY: No·simp1e method for inverting Lap1ace transform has 

been successful for all types of functions ~(p); we therefore consider 

first the class of functions for which we might hope the current method 

could be successful. 

First of course, we are applying this scheme with the assumption 

that the equation under consideration has square integrable solution in 

the mapped interval of integration w~ich implies that the expanded 

solution (3.3.5) i~ convergent with respect to the weight function W(x) = 

(l-x2 )-i in L2(W), h~nce we expect: 

(a) ·A rapidly convergent (good results) with smooth square integrable 

solution in the mapped range of integration. 

(b) Bad results slow (even divergence) convergent with non-square 

integrable solution. 

The condition that the solution be "smooth" in the mapped region 

excludes, for example, transforms which have an infinite number of 

oscillations on [Q, 00), since these oscillations are all mapped i~to 

~1, IJ yielding a decidedly non-smooth mapped solution. However, 

transforms ~(p) which have (at most) a simple pole at P = 0 are handled 

by the algorithm, since this pole is suppressed by the factor p 

introduced into (3.3.1). 
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Hence, generally the accuracy of the method depends on the 

assumption that the equation under consideration must have a square 

integrable defining function (smooth) in the mapped region and also on 

the exact estimate of the parameters of the ill-posed solver (see 

next section). 

3.5 SOLUTION OF THE LINEAR SYSTEM 

Since our problem is an ill-posed problem, that is the matrix 

involved in the linear system (3.3.6) is in general quite ill-conditioned, 

any attempt to solve the system directly will lead to numerical nonsense 

for large value of N; the solu~ion of the system (3.3.6) defines an 

approximate solution fN of the equation (3.3.4) which for large N 

oscillates wildly in the interval of the solution. We chose the ill

posed solver described in [lJ for solving the linear system (3.3.6), 

which exercises direct control on an expansion of the solution where the 

Ga1erkin equations for the chosen expansion are augmented by a set of' 

regularity conditions on the solution, and the augmented (and overdetermined) 

equations solved in L1 and L= norms. 

Since the Chebyshev polynomials are orthogona1 with respect to the 

\'Jeight function W(t) on f::1, TI ,then the assumption that (3.3.4) has 

an L
2

(W) solution implies that the representation 

00 

f{t) = E a: T.(t) 
• 0 1 1 1= 

(3.5.1) 

is convergent in L2(W) and that hence 

= 
r a~ < 00 

• 1 

. , 
1=0 

.-
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Hence there exist constants Cf >,0, R > ~ such that 

I ai I ~ Cf ~-R i 0,1 .... (3.5.2) 1 ; = 

where 
A 

i = i i > ° 
= 1 i = 0 

Babo 1 i an and De 1 ves [lJ regu 1 a ri ze .the sol uti on wi th given coos tan ts er, R ty irrpos i ng 

(3.5.2) as a constraint on the computed solution vector ~, that is, 

rather solving (3.3.6) [lJ solve the problem: 

minimizel IBa - gl I - -

subject to 

i = O(l)N 

Estimation of th~ parameters Cf and R:-

With our experience with the ill-posed solver for the numerical 

inversion of the Laplace transforms we found that the ill-posed solver 

is sensitive to the valu~s Cf,R. However we achieved a good result for 

equations with smooth square integrable functions, We state here the 

three methods suggested by the authors for estimating these parameters. 

f·1ethod ill 

Choose R arbitrary and compute ef f.-om the relation 

Cf = A( Ilg101811) where A must set heuristically. 
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Method (2) 

Since for a wide class of kernels matrix B in (3;3.6) is well-

conditioned for small values of N, hence we choose No small and solve 

the system (3.3.6) directly to obtain~. Now taking the logarithms of 

the constraints equation (3.5.2) we obtain 

i=O{l)No 

He may estimate the parameters from a least-square solution to the over-

determined system: 

logla i I = log ef - RLogi i :: l(l)No 

where the sequence {Iail} should be decreasing to ensure positive R, 

and finally multiply the computed ef by a safety factor (~). 

Method (3} 

Assign a value to R and calculate ef from: 

ef = max (lailiR) 

Finally with our experience with the ill-posed solver suggests it has 

satisfactory stability properties. That is as N increases, the error reduces 

initially and then finally stabilizes; increasing N further neither gains nor 

loses accuracy. Hm<Jever, this comment assumes that suitable values of Cf,R 

have been chosen, for poor cho; ce of t~ose values, low accuracy results VJere 

obtained, and we often had more difficulty in finding suitable values. In 

our experience with the rr,ethod, and additional nUIT;erical results C~ot included 

in this chaitar), "r11e t:,od (3)" abov~ \.;as most successful, but it would seem 

that further work in this area might well be worthwhile. 
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3.6 NUME~ICAL EXAMPLES 

Finally we. present some numerical examples to demonstrate how the method 

works in general. The examples displayed here have been chosen to show how 

essential are some of the restrictions made on the functions under consideration 

and to demonstrate the way in which changes in the exact inverse affect the 

.quality of the results. 

The ~omputed error shown in this work is in terms of MS-ERROR (Mean square 

error) as: 

N 2 1 ~ 
~N = I eN (si) ; MS-ERROR = NleN 

i =1 

Problem (3.6.1) 

The equation to be solved is 

00 

p f e-pr ~(r) 

0 
where 

et> ( r) = Exp 

h(p) = L a+p 

dr = h{p) 

( -ar) a > 0 r E @,,,,,) 

P E [p, @ 

(!;,:l) a/m Exact inverse = L ; tEi::l,!] 

_ m(s+l) 
g(s) - m(s+1)+2a 

Example (3.6.1.1) 

a=l ; m=l 

, S EEl, 1] 

The computed results (MS-ERROR) of this example displayed in table {3.6.l} 

with the methods described in section (3.5). Note that with a=m (>l) we 

achieved the same results as in table (3.6.1) 



N 

3 

4 

5 

6 

7 

8 

9 

10 

11 

12 

t1ethod (1) 

R = 3 

), = 2 

-2 
6.516 X10 2.657 

9.758 -2 8.768 

1. 162 -1 1.902 

1.333 -1 . 1.952 

1. 459 -1 1.239 

1.569 -1 8.090 

1.632 -1 1. 214 

- 6.073 

- 5.301 

- 4.133 

Example (3.6.1.2) 

a == 2, m = 1 
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TABLE (3.6 .. 1) 

Computed MS-ERROR 

for example (3.6.1.1) . 

Method Pl N = 4 
0 

R = 11 R = 5 R =11 

),= 6 ef = ~ ef = ~ 
-3 -3 -3 

X10 2.858 X10 3.165 X10 

-5 2.693 -3 4.579 -5 

-5 1.212 -4 5.858 -5 

-6 1.938 -4 2.132 -6 

-6 2.311 -4 3.841 -'8 

-8 4.175 -5 5.745 -8 

-7 5.395 -5 9.796 -8 

-8 6.664 -5 5.293 -8 

-8 3.426 -5 3.835 -8 

-8 3.351 -5 4.084 -8 

The computed results (MS-ERROR) shown in table (3.6.2), also 

a = 2m gives the same accuracy. 

Example (3.6.1.3) 

a = 1.0, m = 2.0 ; {a/m)1 integer, 

hence the mapped exact inverse is: 

/fiT 
IT ; t e: 1::1 ,1] 

.. -

which we expect a very slO1oJconveraence because of the square-root bchaviourofthe 

exact inverse (as shown in table (3.6.3)). 



r,1ethod (1) 
. 

N R = 11 

A = 6 
-2 

3 3.013 Xl0 

4 3.038 -2 

5 3.039 -2 

6 3.040 -2 

7 3.040 -2 

8 3.041 -2 

9 3.041 -2 

10 3.041 -2 

11 3.082 -2 

12 3.338 -2 
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TARLE (3.6.2) 

Computed MS-ERROR 

. for example (3.6.1.2) 

N = 4 o 
-

Method (2) f·1ethod (3) 

1.1 = 24 R = 5 R = 8 
R=5 C =~ f 

C =2R-3 
f 

C =2 R- 3 
f 

-2 
.-

-2 
4.244 XlO 4.244 X10 4.244 

1.410 -2 3.224 -4 3.224 

3.948 -3 1. 163 -3 1.376 

1.478 -3 4.615 -4 2.289 

·7.637 -4 2.451 -4 7.187 

1.199 -3 3.464 -4 1.563 

7.666 -4 2.588 -4 1.214 

8.235 -4 2.745 -4 -
8.160 -4 2.720 -4 -
8.051 -4 2.683 -4 -

.-

R = 11 
Cf =2 R- 3 

-2 -2-
Xl0 4.244 XlO 

-2 3.224 -4 

-4 1.544 -5 

-4 3.044 -5 

-6 5.593 -6 

-5 1.067 -5 

-1 1.214 -1 

-
-
-



N R = 4 

C
f
=(O.43)(3)R 

-1 
3 1.998 X10 

4 . 7.007 -2 

5 7.412 -2 

6 2.898 -2 

7 2.888 -2 

8 3.478 -2 

9 3.954 -2 

10 4.317 -2 

11 4.583 -2 

12 4.776 -2 

Problem (3.6.2) 
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TAB LE (3. 6 • 3 ) 

Computed MS-ERKOR 

for examp1e,(3.6.1.3) 

nethod (3)' No = 4 

R = 5 R = 6 

C
f
=(0.43)(3)R C

f
=(0.43)(3)R 

-1 -1 
1.993 X10 1.998 Xl0 

7.007 -2 7 . .007 -2 

8.115 -2 8.693 -2 

3.637 -2 4.748 -2 

2.758 -2' 4.133 -2 

2.418 -2 3.923 -2 

2.252 -2 3.827 -2 

2.163 ~2 3.776 -2 

2. 110 -2 3.747 -2 

2.077 -2 3.730 -2 

The problem to be solved is: 

00 

p fe-pr Hr) dr ~ h(p) . 
" o ~ p ~ m 

o 

where 

r,1ethod (1) 
R = 5 R = 11 

A = 4.0 A = 6.0 

-2 -2 
3.203 Xl0 3.770 X10 

2.596 -2 3.189 -2 

2.607 -2 3.150 -2 

2.657 -2 3. 148 -2 

2.699 -2 .3. 149 -2 

1.704 -2 3.150 -2 

1. 740 -2 3.150 -2 

2.836 -2 3.151 -2 

3.978 -2 3.151 -2 

5.053 -2 3.152 -2 



N 

3 

4 

5 

6 

7 

8 

9 

10 

11 

12 

= f(t) 
m 

P £ lo,ijU 
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.[ t+ 1 elm t+ 1 ~/ml 
(-2) - (2) -

S £ G:l,D 

TABLE (3.6.4) 

Computed MS-ERROR 

for problem 'example ' (3.6.2) 
m=l No = 4 

; t £ El,I] 

a=1,S=2 a = 2 B = 5 , arbitrary 
r~ethod (2) Method (3) Method (3) choice 

II = 6 R = 5 R = 9 R = 7 R = 8 
R=3, Cf=~ Cf=(O. 02)( 3) R Cf =(0.02)(3)R Cf =(0.1047)(3)R Cf =1000 .-~ 

6.884 Xl0- 2 5.832 X10-2 6.884 X10-2 7.2415 Xl0- 2 7.2415 X10i:: 

3.583 -2 7.982 -3 7.982 -3 4.6625 -3 7.4825 -3 

1.782 -2 2.374 -3 1.251 . -3 8.8578 -3 9.0747 -3 

8.250 -3 1.584 -3 1.561 -3 4.3318 -3 3.7489 -4 

5.921 -3 1. 297 -3 1.117 :'3 4.4098 -3 1 .9058 -4 

1. 119 -2 4.624 -4 1.517 -1 4.4100 -3 4.5218 -4 

5.882 -3 4.448 -4 1.517 -1 4.4167 -3 2.2339 -1 

6.781 -3 5.418 -4 - 4.4188 -3 -
8.708 -3 6.384 -4 - 4.4199 -3 -
7.642 -3 7.165 -4 - 2.2339 -1 -

.-----------___ L-_ ---- -



. Problem (3.6.3) 

co 

p f e - pr. ( r) dr = h ( p) 

. 0 

where: h(p) = p 
pZ +p+ 1 
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; 

(p of the L.H.S. is that introduced in (3.3.1»); 

r 
- p) 

cf>(r) =/~ e."2 Sin (:r) which belong to L2[Q, co). 

(3.6.1) 

Where the exact inverse in the mapped interval [-1, iJ is also square 

integrable function 

. 2 11 It +11) (-l3 It
2
+l l) 9 ( r) = f (t) =13 E xp (2m og -2- Sin 2 m 1 og ; 

We expect a very slow convergence for this problem because of the 

infinite'nur:1berof oscillations in' the solution on [9, oo)~ since these 

oscillations are' all mapped into ~l, TI yielding a decidedly non-smooth 

mapped solution, as shown in table (3.6.5) .with a = 0.0, N = 10, where 

a is a constant parameter- \;S~ 'n~'J<." 

00 

~f .(p-a)r e (r) dr = h(p) 

o 

. , 

let p-a = q ; -a ~ q ~ m - a 

f eqr e(r) dr = h(q+a)~ '\, TOt}' 
o 

9(r) = ear 4>(r) . 

then we have 

(3.6.2) 
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.where 

Hence instead of solving (3.6.1) we solve (3.6.2) \'/here e(r) is a 

square integrable function in the mapped interval, which is smoother 

than ~(r)~ we obtain the original solution from 

t(r) = ear e(r),' table (3.6.5) with a = 0.8, N = 10 shows a 

better approximation to the exact inverse. 

Pro b 1 em (3. 6 • 4 ) 

The problem to be solved is 

IX) 

p f eP r Hr) d r • h ( P ) 

where 

h(p) = Exp (-p) ; Hr) = H (r-1 ) • 

H de~oting th~ Heaviside unit function that is: 

o 
H( r-l) = ~ 

1 

0 

= f(t-l) = ~ 
1 

r < 1.0 
r = 1.0 

r > 1.0 

, 
t < 2e-m -1 

t -m = 2e -1 ; te:Gl,j] 
t > 2e -m -1 

." 

The function t(r) possesses a discontinuity at r=l.O, (and at t = 2em -1 

on ~l,iJ). We expect a very slow convergence if we solve the problem 

straightfo~~ard, but if we use the same technique as described in problem 

(3.6.3) we gain a satisfactory accuracy as shOl'ln in table (3.6.6b) \'Ihile 

straightforward solution shows a very slow convergence as shO\~n in table 

(3.6.6a). 
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TAB LE (3.6. 5 ) 

Computed results for pr9b1em {3.6.3} 

Using Method (3) of Section (3.5). 

0=0.0 we set R=3 ;. cf=a.~9538 but for 0=0.8 we set R=G .; Cf=(0.53)(3~R 
No = 4 

Cl = 0.8 , N = 10 10=0.0 ;N=lO . 
.---

r Exact 4>( r) Computed 6(r) Computed 4>N(r} Computed 4>N(r} 

-1 
1 5.335071 X10 2.40825 X10

1 5.35966 
-1 

X10 2.52080 x16
1 

2 4.19279 -1 8.34946 -2 4.13551 -1 1.75177 -1 

3 1.33243 -1 9,82855 -3 1. 08341 -1 1. 46816 -1 

4 -4.95298 -2 -8.71115 -4 -2.13706 -2 1.36373 -1 

5 -8.79424 -2 . -1.02095 -3 -5.57422 -2 1.32530 -1 

6 -5.08923 -2 -4.75068 -4 -5.77257 -2 1.31116 -1 

7 -7.64371 -3 -1. ~88329 -4 -5.09292 -2 . 1.30596 -1 

8 1.271509 -2 -7.09858 -5 -4.27221 -2 1.30405 -1 

9 1. 28047. -2 -2.62010 -5 -3.50944 -2 1.30334 -1 

10 5.38548 -3 -9.50630 -6 -2.83378 -2 1.30308 -1 
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TAB LE p. 6 . 6 a f 
Computed results for problem (3.6.4)" 

Using Method (3) of Section (3.5) with R=5 ; Cf =4.86 

, ex = 0.0 ; N = 9 . ; N - 4 o -

r Exact Computed CP N (r) r Exact Computed ~ N (r) 
-2· . -1 

O. 1 0.0 -3.924515 X10 1.1 1.0 6.894168 Xl0 

0.2 0.0 . -8.250561 -2 1.2 loO' 8.047141 -1 

0.3 0.0 -6.448603 -2 1.3 1.0 8.918664 -1 

0.4 0.0 -6.952970 -2 1.4 1.0 9.531676 -1 

0.5 0.0 -6.828635 -2 1.5 1.0 9.929666 -1 

0.6 0.0 -2.213843 -2 1.6 1.0 1. 016223 +0 

0.7 0.0 7.977687 -2' 1.7 1.0 , 1. 027617 +0 

0.8 0.0 2.240937 -1 1.8 1.0 1.031096 +0 . 
0.9 0.0 3.874392 -1 1.9 1.0 1.029736 +0 

1.0 0.5 5.476987 -1 2.0 1.0 1.025773 +0 

TABLE (3.6.6b) 
Computed results for problem (3.6.4) 

Using Method (3) of Section (3.5) with R=4 ; Cf =41.842012725 

ex = 0.8 . N = 9 ; No = 4 , .-
r Exact Computed <PH{r) r Exact Computed <P~ (:.1.-

o. 1 0.0 6.320459 XlO- 2 1.1 1.0 7. 199864 X 10-1 

0.2 0.0 7.245875 -2 1.2 1.0 8.799887 -1 

0.3 0.0 -1. 550782 -2 1.3 1.0 1.003926 +0 

0.4 0.0 -1.104226 -1 1.4 1.0 1. 087749 +0 

0.5 0.0 -1. 492069 -1 1.5 1.0 1.132604 +0 

0.6 0.0 -1. 127365 -1 1.6 1.0 1.143496 +0 

0.7 0.0 -7.466148 -3 1.7 1.0 1.127743 +0 

0.8 0.0 1.494862 -1 1.8 1.0 1.093539 +0 

0.9 0.0 3.371318 -1 1.9 1.0 1. 048828 +0 

1.0 0.5 5.338595 -1 2.0 1.0 1.000543 +0 -
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Comparison with other' methods 

We compare our method with other methods which are described below. 

(a) Problem (3.6.5): A problem in Viscoelasticity: 

We consi.der here the numerical solution of the Laplace transform 

inversion of the function 

which arises prominently in problems of pulse propagation in viscoelastic 

media. Here 0 is a positive parameter; ~ote that 0 = 0 gives the Heavi

. side unit function (problem (3.6.4)). The exact inverse of this problem 

is ~(r) + 1 as r + ~ in which we expect a good accuracy because of the 

smoothness of the exact inverse in the mapped interval. 

We display our results with different values of (r) in tables (3.6.7-9) 

where we set the transformed interval to [9, !] that is (m=l), following in 

the last row .of each table the results obtained by (Longman G-Q]) IILM.II, who 

used the Maclaurin expansion of a function ~(p) of the Laplace transform 

operator p, rational function approximations to ~(p) are generated by means 

of a new nonlinear sequence to sequence transformation. These rational 

functions are then inverted analytically to yield a sequence of approximations 

~N(r) to the inverse ~(r). Longman's results, as he stated, are given to the 

number of places of decimals (ti 11 eight) warranted by the degree of convergence . 
. 

The convergence in the results is good, yielding 2-3 figures of accuracy for our 

method. 

(b) Zakian and Littlewood L§~ used a weighted least-squares approximation to 

the exact inverse, using Legendre polynomials by inverting the transform ~(p) = 

(p+l)-l (see example (3.6.1.1)), using l5-decima1 floating point arithmetic. 
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The numerical results are presented in table (3.6.,10). Du)" results' were 

obtained by using method (3) of section (3.5) with R = 11, ef = 0.5 and No = 4. 

The res~lts of table (3.6.10) shows that the c6mputed err~r of iakianet al 

is increased as N increases while our computed error is decrease~ as N ~ncreases, 

but ~till qur method is not superior to that of Zakian et al. 

. . 
(c) Simon et al ~?J calculated the inversion ~{r} over some inte·rval 

o < r < r (max) given an explicit expr~ssionl~~r ~(p). Then ~(r) can b~ 

approximately represented by 

ct>{r) = e~~)ar) [ Re ~ ( a) + 2 ~ ( - 11 j ~ (a + j; i ~ 
j=l ~ 

where the parameter la l is a number greater than the abscissa of any singularity 

of 1Ji{p). 

The numerical results presented in table (3.6.ll) show the comparison of 

this method with our method for the tran~form Jl1(p) = (p2+p+l fl (see problem 

(3.~.3».· The iolumn marked NN indicates the number of terms used for the 
~ . . 

series transformation stated above. We solve.the problem using the modification 

described in problem (3.6.3) using method (3) of section (3.5) with R = 6, 
R e

f 
= (0.53) (3) and No = 4. 

The results in table (3.6.11) show that the technique of Simon et al 

performed marginally better than our method. 

Conclusion 

There is no simple method for inverting Laplace transfonn \.,rhich has been 

successful for all types of ~(p); some methods are successful for a particular 

function 1Ji(p) but fail for other functions. We would like to mention here 

some remarks on the results obtained by our method. 



-bl-

(1) ror square integrable (smooth) 'functions in the mapped interval we 

expect the method to work with a very rapidly. convergent expansion which 

it did in example (3.6.1.1) with a=m. While we did not obtain a ~ood 

ac~ura~y when we set.m=2i a=l as in example (3.6.1.3) in which the ex~ct 

inverse (non~smooth) in the mapped.interv~l where we expect a slow 

convergcnte and the results, as shown in table (3.6.3), were i~deed .bad. . . 

(2) l~ problem (3.6.5) we tried. the method on an im~~rtant problem in visco

elasticity with different 0(0.1,0.5, 1.0) where we expect to get a good 

accuracy, but as shown in tables (3.6.7-9) the results for a particular 

value of er) with different va1'ues of (N) it only settled 'down to about . . . 
2-3 significant figures, a comparison with the results of (Longman ~QJ) 

shows that the method did not work particularly well f~r this problem .. 

Hence from the resu1ts·obtained and the comparison"with the other different 

. methods, it seems that the method is unsuccessful, even for square integrable 

. functions (see for example problems (3.·6.1.3), (3.6.5)). The results' in tables 

• (3.6.7-n) showed that the method is not superior to the other methods considered. 

In general we can say it is a worthwhile attempt to construct a reliable 

method for the inversion of the Laplace transform. The problem with our method 
. " 

is that our mapping from the semi-infinite space @,co ) to the finite space 

@, !J is not a wholly satisfactory mapping. Its most unsatisfactory feature 

is the way in which the smoothness of the exact inverse in the mapped coordinates 

(which affects the rate of convergence expected) depends initially on th'e 

interval @,-~ over which the right hand side is assumed to be known (compare 

example 3.6.1.1 with a=l, m=l, and 3.6.1.3 with a=l, m=2). It would seem that 

furth~r work in this area might well be worthwhile. We like to mention that 

also the difficulty we met for estimating the parameters CpR of the ill-posed. 

solver; in [lJ it was claimed that the results obtained were insensitive to 

these parameters, but this has been very far from our experience \oJith the 

laplace transform. 
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TABLE (3.6.7) 

The computed results forprob1em (3.6.5) with 0 = 0.1 

Us~ng r·1ethod (2) of Section (3.5) with R=3; Cf =4.2 
. No = 4 

6 = o. 1 

r=0.9 r= 1. 4, r"; 1. 9 r=2.4 ' r:::2.9 

0.2952303 0.5074115 0.6920145 0.8245496 0.9125024 

0.7280290 0.7980660 0.8466989 0.8928830 0.9302520 

0.4126560 0.8216475 0.9541834 0.9977782 1.0090524 

0.4857554 0.8519203 0.97,27749 1. 0011713 1.0050095 

0.4672528 0.8625233 0.9844455 1.0047672 1.0036439 

0.3615866 0.8703771 0.9848880 1.0026916 l. 0023690 

0.4402151 0.8751125' 0.9902401 1.0022430 1.0008755 

0.4286342 0.8759346 0.9946708 1.0024023 0.9997975 

0.4256299 0.8772646 0.9947661 1.0020596 1.0000294 

0.4282447 0.8760694 0.9939611 1.0026942 0.9999502 

0.4274081 0.8709588 1.0008845 1.0017003 0.9987199 

0.4363679 0.8655848 0.9992457 1.0037097 0.9991084 

0.4454988 0.857571 0 1.0056525 1.0029593 0.9974353 

0.4256683 0.8655528 1.0143513 0.9970883 0.9939145 

0.4238757 0.8678255 1.0028325 1.0034426 0.9960778 

0.4175 0.890211 0.9902597 0.99945478 0.99997752 
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TABLE (3.6.8) 

The computed results of problem (3.6.5) with 0 == 0.5 

Using Hethod (3) of Section (3.5) with R=4; C
f

==6.4 
. No == 4 . 

o == 0.5 

r=0.9 r==1.4 r==1.9 r=2.4 r=2.9 

0.2729017 0.4692297 0.6605347 0.8031376 0.8994054 

0.6554698 0.7692293 0.8433814 0.8976704 0.9356796 

0.5530341 0.7871973 0.8989787 0.9503800 0.9745003 

0.5348616 0.7776247 0.8996438 0.9544070 0.9784827 

0.5439892 0.7706502 0.8944892 0.9533385 0.9793690 

0.5608906 0.7725605 0.8901168 0.9505740 0.9786495 

0.5482404 0.7818190 0.8925024. 0.9490444 0.9772838 

0.5428246 0.7797423 0.8945157 0.9495910 0.9770642 

0.5450661 0.7764917 0.8955542 . 0.9502802 0.9770298 

0.5493717 0.7727498 0.8961966 0.9511705 0.9770848 

0.5497815 0.7723863 0.8962304 0.9512718 0.9770976 

0.5503047 0.7718897 0.8965379 0.9512676 0.9770298 

0.5506191 0.7714610 0.8966627 0.9513472 0.9769828 

0.5509457 0.7708074 0.8968666 0.9515246 0.9769009 

0.5511615 0.7704142 0.8969408 0.9517583 0.9768182 

0.5507 0.77599 0.908416 0.9507248 0.9777283 

.~ . 
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TABLE (3.6.9) 

The computed results for problem (3.6.5) with & = 1.0 

Using tlethod (3) of Section (3.5) with R=4 ; Cf =40.59 
No = 4 

cS = 1.0 

. r = 0.9 r = 1.4 . r = 1.9 r = 2.4 . r =2.9 

0.2732438 0.4543898 0.6461753 0.7926339 0.8925516 

0.9633236 . 0.7212630 0.6792743 0.7388341 0.8166059 

0.6919014 0.8572111 0.8774184 0.8955504 0.9212049 

0.5592892 0.7962174 0.8815688 0.9162214 0.9399729 

0.5048298 0.7605095 0.8858068 0.9271177 0.9471401 

0.6241397 0.7405671 0.8575066 0.9176163 0.9472768 

0.6528437 0.7436857 0.8503268 0.9160312 0.9480227 

0.6579224 .0.7601117 0.8437033 0.9125937 0.9480733 

0.6388311 0.7779599 0.8393110 0.9088569 0.9480723 

0.6160995 0.79561.43 Q.8372533 0.9044086 0.9476416 

0.6149969 0.7964441 0.8372797 0.9041422 0.9475913 

0.6108443 0.7997197 0.8358269 0.9039489 0.9479023 

0.5647476 0.7873242 0.8637628 0.8999654 0.9422768 

0.5691884 0.7799118 0.8705849 0.8993614 0.9403102 

0.5768589 0.7690135 0.8758376 0.9012632 0.9386946 

0.6124 0.766354 0.856236 0.910691 0.944246 



", 
LO 
~ 

I 
i r 

. 0.0 

0.5 

1.0 

2.0 .. 

. 5.0 

.. 

~ (r) 

1.00 

0.61 

0.37 

O. 14 

0.01 

N = 5 

@€I 

2x10- 13 

6 -14 

7 -14 

8 -14 

2 . -13 

TABLE (3.6.10) 

The Computed error = I~(r} - ~N(r)1 

N = 10 

Our method I2~ ·Our method 

6.3x10- 4 3xlO- 1O . 9.1x10 -7 

6.0 -5 5 -11 1.3 -7 

1.9 -4 6 -11 S.O -s 

1.1 -4 3 -11 6.2 -8 

3.0 -5 ·5 -11 . 1.8 -s 
----

\ • 

N = 15 

[§[] Our method 

6xlO- 7 -7 1.2x10_ 

9 -8 1.5 -8 

4 -8 9. 1 -8 

3 -8 9.9 -8 

2 -9 7. 1 -10 

, 

, 

I 
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TABLE (3.6. 11) 

The computed error = I~(r) - ~N(r)1 

! N = 8 
0(. = 0.8 

r ~ (r) [}Z] NN Our method 

1.0 0.533507 5x10- 5 . 13 2. 4x1 o-j-:-. 
2.0 0.419280 2 -5 13 5.7 -3 

3.0 0.133243· 4 -6 13 2.4 -2 

4.0 -0.049530 0.0 . 13 2.8 -2 

5.0 -0.087942 2 -6 13 3.2 -2 

6.0 ,-0.050892 1 -6 14 6.8 -3 

7.0 -0.007644 5 -6 15 4.3 -2 

8.0 0.012715 1 '-6 15 5.5 -2 

9.0 0.012805 1 -6 15 . 4.7 -2 
10.0 0.005385 1 -6 16 3.3 -2 

p' 
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. CHAPTER 4 

'THE NUMERICAL SOLUTION'OF CAUCHY-Ti~E SINGULAR 

INTEGRAL EQUATIONS 

4.1 INTRODUCTION 

Cauchy-typesingular integral equations are often encountered in 

problems. of mathematical physics and their mathematical properties have 

been well investigated (see @3]). For the numerical solution it is 

possible to reduce them to an equivalent Fredholm integral equation of 

the second kind, and solying the result by any numerical technique (see 

for example Q~ Q:D). Considered direct methods for the solution of 

singular integral equations, where, after separating the dominant parts, 

these equations may be expressed in the form: 

b b 

A ~(s) + ~ J t~~) dt + I k(s.t} Ht} dt =h(s} , (4.1..1) 

a a' 

where h{s) and k{s,t) are known HBlder-condition functions in the interval 

~,~, and A, B are real constants. Two methods have been devised [?2, 23; 

34, 3§]; they both set ~, ~ to the standard interval [:1, TI 
w' 

and approximate ~(s) by the truncated series of the form: 

N-1 
~(s) = W(s) w{s) ~ W{S).L aj Pi{s) 

1=0 
(4.1.2) 

where W{s) = (l-s)~ (l+s)B ; -1 < ~,B < 1 is the weight function and 

accordingly Pi{s) are the Jacobi polynomials denoted by pi~'B). The methods 

are different in principle although they yield results of the same form. 

One of the methods[}U is based on expanding w{s) as an infinite series of 

the form 



co (Cl,S) 
1jI(s) = L ·b. P.(s) 

• 1 1 
1=0 . 

and using the orthogonality relation 

J
' (Cl,S) (a,S) . 
PN(s) PM(s) W(s) ds = 

-1 . . 

(a+ b + 1 ) 
2 

2N + a + S + 1. 
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The coefficients b. are determined by truncating the obtained infinite 
1 

(4.1.3) 

(4.1.4) 

(4.1.5) 

system of linear equations and then ~n approximate system of equations is 

obtained for the determination of the coefficients bi , i=o(l)N-l. The 

other method starts with an approximating polynomial of finite degree: 

N-l (a,S) 
1jI(s) .1: C. P.(s) 

1 =0 1 1 
(4.1.6) 

and by app ly; ng the quadrature formul ae gi ven i n [?~ Il~ us i ng the poi nts 

Si dete'rmined by p~a,s) (S;) = 0'; i ~ l(l}N, fora= B = ± ~ to approximate 

values of 1jI(s). In the paper of S. Krenk C?1J he follows the second method 

provided he gave a simple summation formulae for the determination of the 

coefficients C. in (4.l.6) and special formulae are derived in terms of 
1 

Chebyshev polynomials for the cases (a,s) = (±~, ±!) also he included special 

formulas for 1jI(1} and 1jI(-1}. 

These methods are clearly related both to each other, and to the 

Fast Galerk;n expansion method considered in this thesis. Note however the 

weight factor W(s) which appears in th~ approximate solution (4.1.2). This 
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weight factor is introduced for numerical cOhvenience. flowever, it forces 

the approximate solution to be zero at, the end po;n~ of the interval, and" 

,hence will in general lead to only slow convergence of the numerical 

solution to the exact solution at interior pOints. 

We seek to avold this difficulty, and present a numerical solution 

for Cauchy-type singular integral equation of the form: 

Hs) + 

b 

f 
Ht) dt = h(s) 
t-s 

a 

(4.1.7) 

Using an expansion method, which a generalization of Fast Galerkin 

method for second kind integral equations,'we consider Fredholm, Volterra 

and inverse-Volterra singular integral equations of Cauchy-type; the 

extension of the method to equations of the more general form (4.1.1) is 

trivial. 

4.2 THE FINITE PART OF AN INFINITE INTEGRAL 
. ' 

The integral in (4.1.7) does not exist in the Riemann sense; for 

Fredholm equation (a,b fixed) we interpret it here in the usual Cauchy 

sense (see chapter (1), section (1.3». However, the Fast Galerkin method 

as extended in Du implemented as described in O[1,treats Greens---. 

function type operators (having kernels with a discontinuous derivative 

along the line t=s) as the sum of "Volterra" and "inverse-Volterra" 

ope ra tors. 

For Volterra and inverse-Volterra equations "Jith Cauchy kernel, the 

singularities appears at the end of the range of integration, and the 

principal value integral does not exist. 'We give a meaning to these 
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integral ·equations in terms of the Hadamard finite part integral. He 

state the definition given by Hadamard /17-' for the integral 

s 

f 
t(t) dt , a ~ s ~ b 
s-t) 

a 

where he gave the sign 11 r ll 

to denote the fin.ite part of an infinite 

integral. 

Hadamard"definition 

The finite part of an infinite integral: 

s 

f 
Aill dt --rs-: t). 

a 
is defined by adding a term 

B(t) Loge Is-tl " and taking the limit as t ~ s. 

That is: 
s t 

f Wzl dz = 1 im f*, dz + B{t) Log Is-tl s-z) e 

a t+s a 

where the function A{z) is assumed to satisfy the Lipschitz condition, 

and 8{t) is a function satisfying the conditions: 

(a) the limit must exist 

(b) 8(t) has a continuous first derivative at least in the vicinity of 

t=s. 

Note that the finite part of the integral will in general depend on the 

exact choice of the function B(t). Here we make the consistent choice: 
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B(t) = constant. The .fo1lowing results then hold: 

Lemma (4.2.1) 

(i) . s 

f dz TZ-:"s) = -Log ls-a I a ~ s ~ b 

a 

(ii) b 

f dz (z-s) = Log Is-bl 

s 

Proof: (i) from Hadamard definition with A(z) = 1 

We have: 

t Is 
f'~ = limit J s-z. J ~ + B(t) log ls-tl s-z 

a t -+ s a 

= lim [- Log Is-tl + Log Is-al + B(t) Log Is-tl 
t-+s 

We choose here to set B(t) = +1; then 

Is 
i ~ = - Log Is-al ). z-s . 
a 

with the same processes (ii) follows. 

We shall require within the formalism to carry out a change of variables; 

the Hadamard integral (of integral order) is not invariant under such a 

transformation (see 117J p.137-138). 
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Carrying out a linear transformation explicitly we find: 

Lemma (4.2. 2 ) 

(a) x 

f 
~ = - Log I~ (x+ 1) I -1 ~ x ~ 1 y-x . Co 

-1 

(b) rr:-
It !f- = Log 

Ib2
a (x-l) I -1 ~ x ~ 1 

x 

Proof: By mapping the variables in Lemma (4.2.1) onto the standard interval 

~l, TI gives (a), (b) respectively i.e. (set z = ~ y + b;a ; s = ~ x + ~). 

Lemma (4.2.3) 

(a) 1 

J Tn(x) dx = 

-1 

2 
. ,-:nz , n even 

o , n odd 

{ 

1 . 1 
2 + both (n,m) even or odd Tm{X) ~x = l-(n+m) 1-(n-m)2 

o ; otherwise 

(c)l 

J Tn(x) Urn_lex) dx = 

-1 

;In-mlodd 

o ; otherwise 

(d)l 

f 
Tn(Y) Log 2 , 
~ Log Ix-yldy = - n 1 
YI-y- -n-Tn(x); n > 0 

n = 0 

-1 

Where Tn(x), Um(x) are the first and second kind of Chebyshev polynomials 

respectively. 
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4.3 THE FRM1Et~ORK 

We describe the numerical solution of the Cauchy type singular 

integral equations over a finite interval ~, ~ of the form: 

(a) b 

·cp(s) + fl1!l dt == h(s) t-s 
a 

(b) s 

+ f 
.tl!l dt = h(s) 

~(s) t-s a ~ s ~ b (4.3.1) 

a 

(c) b 

Hs) + f .Pill dt = h(s) . 
t-s . , a ~ s ~ b 

s 

Where (a), (b) and (c) known as Fredholm, Volterra and inverse-Volterra 

Cauchy type singular inte"gral equations of second kind, these equations 

have important application, for example in aerodynamics. 

In the next three sections, we shall consider the numerical solution 

of the three types of singular integral equations above. To use Fast 

Galerkin scheme for second kind integral equations IT4J, IT~ we map the 

variables (t, s) onto the finite interval [:1, 1] by setting 

b-a + b+a 
t=2Y -2-

b-a + b+a 
s = --z-X --z-

substituting these in (4.3.l) we have: 



1 

(a 1 ) 0 f(x) + " of f(y) dy = g{x) y-x 
-·1 

X 

(b I ) f(x) Hf f(y) dy = g(x) y-x 
-1 

1 

(cl) f(x) 
+ " f ~l dy = g{x) y-x 

x 

b- a (2) 
II = (-y) D-a 
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-1 ::: x ::: 1 

-1 ::: x ~ 1 (4.3.2) 

-1 ::: x ~ 1 

We approximate the assume.d l2- solution f by the truncated Chebyshev 

expansion for f{x): 

N 
f ~ f. = Ea,. T,. (x) 

N '. '=0 
-1 ::: x ::: 1 (4 .. 3.3) 

By applying the weighted Ga1erkin method on the equations in (4.3.2) as 

described in chapter (2) we end up with the 'linear system of equations 

where the unknowns are the Chebyshev coefficients a.: 
1 

(D + B) ~ = ~ 

where: 1 1 i = j J To (x) 
= 0 

Di,j = ~~ T . (x) dx = 1T ~ i = j > 0 
J 

-1 0 ; f j 

1 

g. 
1 

- J T;(x) 
- II'-=-£L g(x) dx 

-1 

.' 

(4.3.4) 

(4.3.5) 

(4.3.6) 
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All the. three equaticins in (4.3.2) have the same structure of the 

right hand side of the system (4.3.4) as in equation (4.3.6), hence 

for evaluating the integral in equation (4.3.6) we use the technique 

described in·chapter (2). 

Now for evaluating the matrix B in the system (4.3.4) that is the 

integrals: 

B •. (Fredho1m) 
1,J 

B •. (Volterra) 
1, J 

B .. (i nverse-
1,J Vo1terra) 

1 . 1 

=JTi(X) f 
""'--::2 dx 

Y I-X 
-1 -1 

1 X 

=JTi(X) f rr:x2 dx 
-1 -1 

1 1 

.= J T i (x) dx r 
rr-x2 J 

-1 x 

Tj(y)dy; 
y-x 

.. 1 ~ x ~ 1 

-1 ~ x ~ 1 

-1 ~ x ~ 1 

(4.3.7a) 

(4.3.7b) 

(4.3.7c) 

. It is essential for accuracy to use analytic methods. For simplicity 

let us call the integrals in equations (4.3.7a-c) as Fredho1m matrix, 

Vo1terra matrix and inverse-Vo1terra matrix respectively. We shall 

produce recurrence relations to evaluate the Volterra and inverse-Vo1terra 

matrices. 

We could calculate the Fredho1m matrix as the sum of Volterra matrix 

and inverse-Vo1terra matrix, i.e . 

. Fredholm matrix = Volterra matrix + inverse-Volterra matrix 

but it proves possible (and more accurate) to compute the Fredholm matrix 

di rect1y. 
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4.4 FREDHOU1 r1ATRIX 

-From equation (4.3.7a) we have 

1 -
- 4 J T;(x) 

B .. = n2- 11-x2 dx 
1, J 

-1 

1 

J 
-Tj(Y) 
~-dy 
y-x 

-1 

4 where ~ is a scaling factor. 
'IT 

Using Lemma (1.1) we can write the above integral as: 

1 1 

B. . = -b- J dx 1 dy 1,J 'IT 

1. (x) 1. (y) 
1 J 

y-x W(x) 

-1 -1 

1 1 

= :2 I dy f dx 

-1 -1 

. 1 - 1 T. (y) 

= - ~.I Tj(x) dx f ~-x W{y) dy 

-1 - -1 

1 ( 1 

= - ~ I J 
-1 -1 

T. (x) dx 
J 

Since (see for example [61J p.180) 

1 

t W{y)Ti (y) 
dy J U. 1 (x) . i > 0 = 'IT , 

J y-x 

1 0
'
-

-1 

i = 0 

I x I < 1 

Where U;(x) is the second kind of Chebyshev polynomials. 
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Hence: 

1 . [ 4 . . Ui_1(x) i 
B •. = - - J 1. (x). . 

1, J 11 J- 0 i 
-1 . 

;. 0J 
=.0 .dX 

From Lemma (4.2.3c) we have: 

8 
B .. = 

i 
j2 - ;2 

I j - i I odd 
~J 11 

o otherwise 

4.5 VOLTERRA MATRIX 

We describe in this section fue way to evaluate the integral in equation 
. . 

(4.3.7b) as a set of recurrence relations that is from (4.3.7b). Ue have: 

4 
·B . . =-::z 

1, J 11 

1 x 

J W(x) T. (x) dX i Tj (y) dy 
1 J y-x 

-1 -1 

from the identity 

then 

1 x 

. , W(x) = (1-x2f~ 

j ~ 2 

Bi,j= [~212 J W(x) Ti(x) dx J'Tj - 1(Y) dy+ Bi+l ,j-l +Bj-], j-l 

-1 -1 

-B" 2 (i~l, j~2) 
1, J-

(4.5.1) 
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evaluating the integral value of 

= ~ J . 
. { 1.(y) 

J 
(4.5.2) 

then we have 

1 . 1. 

B .. = 
1,J [:2] + f W(x) 1. (x) T.(x) dx -

1 J r*2]Jh f W(x) T. (x) T. 2(x) dx 
1 J-

-1 

1 

J W(x) Tj(X) dx + 

-1 

-1 

+ B1+1, j-1 + B1- 1, j-1 - B;, j-2 (i ~ 1,'j ~ 3) 

Using the identity 

f W(x) Tj(x) dx • { : 
-1 

i = 0 } 

i > 0 

We end up with general recurrence relation 

1 1 B. . = ~ D. . - ... ..,., D. . 2 + B. +1 . 1 + B. 1 . 1 - B. . 2 1,J J 1,J J-t: 1,J- 1 ,J- 1- ,J- 1,J-

(i~1,j~3) 

(4.5.3) 

(4.5.4) 

where Di,j and Di ,j-2 are diagonia1 matrices as in (4.3.5), that is 



4 
D;. = 7 ,J 

1 

J W (x) T; (x) T j (x) 

-1 

1 
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dx = 4 
'If 

1 i = j = 0' 

~ i.=j>o 
o i r j 

1 i = j-2 

4 J D. . 2 = -:::z W{x) T.(x) T. 2(x) 4 dx =- ~ i = j-2 1,J- 'If 

-1 

1 

, 4 J B . = -:::z W{x) 
0, J . 'IT _ 1 

1 J-

x 

f
T. (y) 

dx -~y y-x 
-1 ' 

'IT 

0 ; f j-2 

(4.5.5a) 

= 0 

> 0 . (4.5. 5b) 

equations (4.5.1), (4.5.2) and (4.5.3) lead to the recurrence relation for 

,computing the first row of the matrix, that is 

'[ . 2] 8 {-1 J- '. 
B . = - -;-(~2 + 2B1 . 1 - B . 2 (J > 3) o,J 'If JT:F2T ,J- 0, J- , (4.5.6) 

Now for computing the first column of Vo1terra matrix we have to use 

Hadamard definition for evaluating the finite part of the infinite integral. 

1 x 

B. = -4-zJ W{x) T. (x) dx f ydY
x 1,0 'IT 1 -

-1 -1 

by applying Lemma (4.2.2) then we have: 

1 

B. = 4 f{-L09 Ib2-
a (x+1)1) W{x) T

1
.{x) dx 

1,0 7 
-1 

1 1 

4 = -.::'Z (- Log 
'If I

b
2'1) J W(x) T;(x) dx - ~ f W(x) T;(x) Log Ix+11 dx. 

-1 -1 
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Using the iden~ity (4.5.3) and Lemma (4.2.3d) we have: 

-Log 1!y-I'If 
o 

; i = 0 } _ 4 ,{- 'If LO~2 
7 'If ; i > 0 - T Ti (-1) 

i '= 0 }, 

'i > 0 

4 -Log I!y-I+ Log 2 i = 0 =-'If 

(-1) i 
--.- i > 0 

1 

(where a, b is the finite interval in equations (4.3.1) 

4 
B. =-

1,0 'If 

4 1 ~g 'b-a' i = 0 

l:Ui ' ,i > 0 
1 

Now for calculating the second column bf the Vo1terra matrix: 

1 

B;,1 = :2 J W(x) T;(x) dx 
-1 

x 
( 

t y:x dy 

-1 

by using equations (4.5.1),{4.5.3) we have: 

B. 1 = 1. (B. + B. ) + ~ { 1 
1, ~ 1+1,0 1-1,0 'If 0 

the same with equations (4.5.1), (4.5.3) and the relation 

(4.5.7) 

(4.5.3)" 

(4.5.9) 
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We" can calculate 'the third column of Volterra matrix from the recurrence 

re1 a tion:" 

(4.5.10) 

. . 
Hence we can summarize the algorithm for computing the elements of 

Volterra matrix (4.3.7b). 

1 x 
4 J T;(x) 

B dx , i,j = 7 11-x2 
{ T j (y) 

J 
dy y-x as follows 

step ( 1 ) 

Step (2) 

Step (3) 

-1 

B;,o 

Bo,l 

B. 1 1, 

-1 

Log 4 ; Ib-al , = 0 
4 

= -
1-1) ; 1T 

i ' ; i > 0 

4 
= - + B1 ' { 1T,0 . 1 
1· 2 = -2 (B'+1 + B. 1 ) + - 0 1 ,0 1-,0 1T 

Bo,2 = 2 B1,1 O 0 1T' , 1 -B -.?. {' 
B = B. 1 1 ;,2 1+, + B. 1 1 - B. + l 

1- , 1,0 1T 0 

= 8 [{,l);-2]+ 2B _ B 
S te p (4) B 0 , j 1T, J j - ) 1 ,j - 1 . 0, j - 2 

1 1 
Step (5) B;,j = j 0i,j- (j-2) D;,j_2 + B;+l, j-1 

B (1·> .. 1,J'> .. 3) + B;_l, j-l - ;, j-2 

; = 1 

; > 1 

, j ~ 3 

; ~ 1 

; ~ 1 

where O;,j and 0;, j-2 can be computed from (4.5.5a-b) respectively. 
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4.6 INVERSE-VOLTEr-RA MATRIX 

Ue follow the same procedures in the previous section for computing 

the elements of the matrix: 

, 1 

Bi,j" ;2 J W(x) Ti(x) dx f T;~~) dy ; W(x) " (1-x2)-1 

-1 x 

From the equations (4.5.1), (4.5.2) and (4.5.3) we get the general 

recurrence relation 

1 , 
8 -8.,'.,+8., .,-8. '2--:- D"'+-::-->r D .. i ,j - 1+, J- 1- , J- 1, J- J 1 ,J J-~ 1,J-2 

(i3', j~3) (4.6.1) 

Where D .. and D .. 2 as in (4.5.5a), '(4.5.5b) respectively. 1,J 1, J:-

From equation (4.5.1) and the identity 

1 1 

J T. (y) dy = 1 [Ti{Y) . - Tj _2{Y)] 
J -l 2". , 2 J J-

x x 
(4.6.2) 

We can compute the first row of inverse-Volterra matrix from the 

recurrence relation: 

- 2B - B - - -8 [1 1 B 0, j - 1, j - 1 0, j - 2 1T j (F2) j ~ 3 (4.6.3) 

By applying Hadamard definition on the infinite integral for computing 

the first column of inverse-Volterra matrix 



1 

Bi,o =.~ J W(x) Ti(x) 
.. -1 

1 

dx i·_~ 
J y-x 
x 
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Using Lemma (4.2.2) and the identity:(4.5.3) we end up with 

Log I b~a I i = 0 
4 

B.· 0 = - - 1 1 ~ 1f i > 0 
i 

(H~rea, b are the finite interval in equation (4.3.1». 

(4.6.4) 

From equations (4.5.1)~ (4.5.3) and the relation (4.5.9) we compute 

the second and the third columns of the inverse-Volterra matrix from the 

recurrence relations: 

2 {1 ~.= 1} 
Bi ,l = ~ (B i +1,0 + Bi - 1,o) - n 0 1 > 1 ; i ~ 1 (4.6.5) 

. 1j 1 i:
2

2 L ~i,2 = Bi +1,1 + Bi -1,1 - Bi,o - ~ l 0 i r J i ~ 1 (4.6.6) 

We can summarize the algorithm for computing the inverse-Vo1terra matrix 

(4.3.7c) as follows: 

Step (1) 1 
Log 

B. =_i 1 
1,0 1T _ 

- Step (2) B 
0,1 

i 

4 
= - + B1 ' 

1f ,0 

I·-~I· i b-a ' : :) ; ; 

B. 1 1 , 
= 1 (B + B ) 2 ;+1,0 ;-1,0 

_ ~ 11 ; = 1) 
'IT 0 ; > 1 

i ~ 1 
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Step (3) B' ;, 2B - B 2 - , 0,2 1,1 0,0 1T 

:} 1 f .i = 
. Bi ,2 = Bi+1~1 + Bi -1,1 - B. -- i > 1 1,0 1T O· .. 

i t-

(4) Bo,j = 2B1,j_l - B 8 ink)] Step 0,j-2 . (j ~ 3) 1T , 

= B. 1 . 1 + B. 1 . 1 - B •• 2 
1 1 

Step (5) B •• - ... D .. +1-2 D. '2 1,J 1+ ,J- 1- ,J- 1 ,J- J 1,J J - 1 ,J-

(i ~ 1, j ~ 3) 

where 

D. . and D. . 2 
1,J 1,J-

. can be computed trom (4.5.5a-b) respectively. 

4.7 NUMERICAL EXA['1PLES 

We present here a number of numerical examples to demonstrate how 

the method works in general, the test exampl es were run on IBt1 4341 

computer. The examples displayed here have been chosen of two types: ~ 

_ Equations whose exact solution have a very rapidly convergent Chebyshev 

expansion (smooth-solution); 

_ Equations whose exact solution have singularity near·the finite interval 

of integration, where we expect the solution behaviour to be represented 

badly near the singular point as in problem 2. 

Problem (4.7.1) 

Exact solution f{x) = x 



(l.a) Vo1terra-type. 

x 

f(x) + i. ;i~) dy = g(x) 
11 . 

x . x 

g(x) " x + J dy +x j ~:x 
. -1 -1 

From Lemma (4.2.2) we have 

g(x) = x + (x+1) + x(-loglx+11) 

= (2x+1) - x Log Ix+11 

(l.b) Inverse-Vo1terra-type 

1 . 

f(x) + f ;!~) dx = g(x) 

,X 1 

g(x) " x + f dy + x f ~:x 
x x 

Lemma (4.2.2) gives: 

g(x) = 1 + x Log Ix-11 

(l.c) Fredho1m-type 
1 

f(X) +·f f(y) dy = g(x) y-x 
-1 

1
1- xl g(x) = (x+2) + x Log l+x 
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-1 ~ x ~ 1 

-1 ~ x < 1 .. .. 
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Pr.oblem (4.7.2) 

Exact solution f(x) = (x+a)-l; a ~1~l,II·· 

(2.a) Vo1terra-type 

x 

·g(x) = f(x) + f ;!~l dy 

-1 

, . -1 :s X :s 1 

X 

= 1 + f dy (x+a) (y+a) (y-x) 
-1 

x X 

1 1 
= (x+a) + (x+a) f 

dy 
y-x (x!a) J 

-1 

From Lemma (4.2.2) we have: 

g(x) = 9 (x) - 9 (x) where 
1 . 2 

g1( x) = 1 (1 + log la-1 1) (x+a) a+x' 

1 = (x+a) Log Ix+1 I 

(2.b) Inverse-Vo1terra-type. 

1 

-1 

9 ( x) = f ( x) + f ;~ ~ ) dy. ; - 1 ~ x { 1 

x 

dy 
(y+a) 



1 

= (Xl.) + (xl.) f ~{x. 
x 

from Lemma (4.2.2) we have: 

1 I X+a I' 1 
g1{x) = (x+a) Log a+1 + X+a 

-1 
g2{X) = Log 11-xl (X:+a) 

(2.c) Fredho1m-type 

-1 

hence 

f(x) + f ;i~) dy = g(x) 

-1 

1 

g(X) = 1 + f dy ~(X-+~a""") (y-x) (y+a) 

-1 

1 

_ 1. + 1 
- (x+ay (x+a) f ~:x -

-1 
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1 

1 J dy 
(x+a) y+a 

-1 

X 

; -1 ~ x ~ 1 

dy 
y+a 
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Problem (4.7.3) 

~ 

f{x) + f f(y} dy = g(x) 
J y-x 

-2 

-f{x) 
, 

Cl ~ ~2, 11 = X+Cl 

g(x) = _1 {1 
X+Cl - Log 10+! I} + -'- L"o 'a-2' X+Cl g 

Problem (4.7.4) 

, 
. f(x) + f ~!~)dY = g(x) 

o , 
f(x) = X+Cl ' Cl ~ ~, 11 

-I~I 
2+x 

-g{x) = -'-- { , - Log 1'+ClI} + -'-- Log 1'-xl X+a Cl X+Cl X 

.' 



Problem (4.7.5) 

x 

f(x) + f ;!~) dy = g(x) 

-1 

f(x) 
1 

; Cl * C:l, IJ =-
x+a 

Problem (4.7.6) 

2 

f(x) + f fey) dy = g(x) . J y-x . 

x 

f(x) = x 

g(x) = 2 + xl0ge /x-2/ 
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Cl = 7.0 

-4 ~ x ~ 2 



. -90~ , 

TABLE (4.7.1) 

Computed MS-ERROR 

. for problem (4.7.1) 

--
N P rob 1 em (4 ~ 7. 1 a) Problem (4.7.1b) Problem (4.7. le) 

3 3.852185 X1017 3.349465 Xl0 17 2.223085 Xl016 

4 8.446443 -17 3.915261 -17 7.614716 -16' 

5 1. 114849 -16 8.355797 -17 4.574660 -16 

6 1.097062 -16 5.816721 -17 7.517792 -16 

7 1.390668 -16 6.115154 -17 8.972819 -16 

8 1.359696 -16 1.026158 -16 1.462702 -15 

9 1.546358 . -16 1.462325 -16 1. 132.914 -15 

10 1.648023 -16 ' 2.432101 -16 1.908959 -15 

11 1. 601857 -16 4.633822 -16 2.033869 -15 

12 1. 684939 -16 6.422655 -16 1.986623 -15 

13 1.813073 -16 7.213128 -16 1.408878 -15 

14 1.896252 -16 7.816584 -16 1.582351 -15 

15 1.977299 -16 6.450235 -16 2.263904 ' -15 

16 1.954503 -16 4.614272 -16 2.703725 -15 

17 2.505227 -16 6.829688 -16 1.777726 -15 

18 2.511134 -16 5.572537 -16 2.456309 -15 



N 

3 

4 

5 

6 

7 

8 

9 

10 

11 

12 

13 

14 

15 

16 

17 

18 

Cl= 1. 005 Cl =1.1 
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TABLE ,(4.7.2) 

computed MS-ERROR 

for problem (4.7.2a) 

Cl :: 1.5 

+1 -1 
1.9011 X10 5.9653 X10 4.4788 X10 2 

1. 1433 +1 2.8339 -1 1. 5788 -2 

7.4126 +0 1. 5522 -1 6.1139 -3 

4.9964 +0 9.2746 -2 2.3484 '-3 

Cl = 4.0 

1.2382 X10 3 

1 .5772 -4 

2.0173 -5 

2.5648 -6 

3.4128 +0 5.7821 -2 9.0536 -4 ,3.2911 -7 

2.4587 +0 3.7042 -2 3.4872 -4 4.2064 -8 

2.0056 +0 2.4293 -2 1.3440 -4 5.3468 -9 

1. 8797 +0 1.6209 -2 5.1653 -5 6.7298 -10 

1. 8544 +0 1.0831 -2 1.9700 -5 8.3786 -11 

1 . 7635 +0 7.1049 -3 .7.4473 -6 1.0403 -11 

1.5564 +0 4.4763 -3 2.7889 . -6 1.3053 -12 

1.2425 +0 ·2.6889 -3 1.0471 -6 1. 6862 -13 

9. 1481 -1 1.5775 -3 4.0016 -7 2.2305 -14 

7.3667 -1 9.9127 -4 1. 5747 -7 2.9373 -15 

7.9853 -1 7.0585 -4 6.2628 -8 3.8659 -16 

9.0893 -1 5.1507 -4 2.4283 -8 1. 1878 -16 

-----
Cl = 9.0 

-4 
1.0869 X10 

5.8588 -6 

3.2772 -7 

1.8281 -8 

1.0289 -9 

5.7632 -11 

3.2075' -12 

1.7659 -13 

9.6153 -15 

5. 1773 -16 

4.9573 -17 

5.0032 -17 

4.3709 -17 

5.3985 -17 

5.3017 -17 

5.3524 -17 



N (l = 1. 005 

+1 
3 5.4251 XlU 

4 2.7452 +1 

5 1. 7557 +1 

6 1. 2001 +1 

7 9.5852 +0 

8 7.6051 +0 

9 6.6437. +0 

10 5.6448 +0 

11 4.9124 +0 

12 4.0894 +0 

13 3.3689 +0 

14 2.7806 +0 

15 2.4564 +0 

16 2.3813 +0 

17 2.3056 +0 

18 2.0994 +0 
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TABLE (4.7.3) 

Computed MS-ERROR 
for problem (4.7.2b) 

(l = 1. 1 (l = 1.5 

+0 -2 
1.2049 XlO 9.7235 X10 

5.0728 -1 2.6016 -2 

3.0037 -1 1.0056 -2 

1.6880 -1 3.4699 -3 

1.0889 -1 1.3256 -3 

6.6750 -2 4.9308 -4 

4.3014 -2 1.8644 -4 

2.6899 -2 6.9542 -5 

1,.7012 -2 2.5812 -5 

1.0556 -2 9.5932 -6 

6.5579 -3 3.6049 -6 

4.1566 -3 . 1. 4043 -6 

2.7112 -3 5.5656 -7 

1.8258 -3 2.2050 -7 

1.2006 -3 8.3037 -8 

7.5163 -4 2.9594 -8 

(l = 4.0 ex = 9.0 
-3 -4-

1. 8466 XlO 1.2362 X10 

2.0987 -4 7.2536 -6 

2.5224 -5 3.7859 -7 

2.9771 -6 1. 9611 -8 

3.7411 -7 .1. 0795 -9 

4.6891 -8 5.9491 -11 

4.8934 -9 3.2849 -12 

7 .~3457 -10 1.8008 -13 

9.0162 -11 9.7131 -15 

1. 1138 -11 5.2504 -16 

1 .3895 -12 8.1345 -17 

1.8201 -13 1.0111 -16 

2.4267 -14 9.9951 -17 

3.2286 -15 9.7127 -17 

4.1537 -16 9.9488 -17 

1. 4765 -16 1.0828 -16 



·N Cl = 1.005 

'3 1-.9552 x16 l 

4 1. 3394 +1 

5 5.6894 +0 

6 9.6062 +0 

7 3.3229 +0 

8 7.5776 +0 

9 2.3036 +0 

10 5~7896 +0 

11 1.5549 +0 

12 3.9409 +0 

13 9.7684 -1 

14 2.7514 +0 

15 7.1684 -1 

16 2.5496 +0 

17 6.8466 -1 

18 1. 9232 +0 
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TABLE (4.7.4) 

Computed MS-ERROR 

for problem (4.7.2c) : 

Cl = 1.1 Cl = 1.5 a. = 4.0 

4.2454 X10 1 5.2237 x15~ 1.7567 

8.6905 -1 5.5445 -2 4.3296 

1.5407 -1 8.0337 -3 2.7522 

2.6715' -1 5.7642 -3 5.1605 

6.5764 -2 1 .2489 -3 4.3013 

9.4669 -2 7.3707 -4 . 7.3622 

2.7520 -2 1.8242 -4 6.7502 . 
3.3335 -2 9.6646 -5 1. 0797 

1 .0218 -2 2.4772 -5 1.0268 

1. 1011 -2 1 .2195 -5 1. 5411 

4.0572 -3 3.4358 -6 1.5622 

4.3179 -3 1. 7194 -6 ·2.3489 

2.0899 -3 5.5695 -7 2.6405 

2.0045 -3 2.7276 -7 3.9824 

8.5512 -4 8.0070 -8 4.1191 

6.6942 -4 3.3766 -8 2.8412 

--
Cl = 9.0 

X10
j 

1 .5301 Xl04 

-4 1.4767 -5 

-5 4.2583 -7 

-6 3.3714 '-8 

-7 1.2597 -9 

-8 9.1997 -11 

-9 3.7911 -12 

-9 2.5951 -13 

-10 1 .1091 -14 

-11 7.5054 -16 

-12 7.2732 -17 

-13 1. 2561 -16 

-14 6.9327 -17 

-15 1.2638 -16 

-16 1. 1924 -16 

-16 1. 2675 -16 
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TABLE (4.7.5)' 

Computed MS-ERROR 

for problems (4.7.3), (4.7.4) 

Problem (4.7.3) Problem (4.7.4) 

f.I ex= 2.1 ex= 9.0 ex = 1. 1 ex = 9.0 

-1 
3.0979 -4 

6.9934 -3 -5 3 4.3208 Xl0 X10 XlO 3.2784 X10 
4 9.2606 -1 4.2196 -5 2.2973 -3 1.4320 -6 

5 1.6922 -1 1. 6536 -6 1.8003 -4 1. 9748 -8 

6 3.1608 -1 . 1. 8061 -7 4.3507 -5 7.2544 -10 

7 7.7263 -2 9.1731 -9 4.5240 -6 1. 2917 . -11 

8 1.2345 -1 9.2333 -10 9.9007 -7 4.4056 -13 

9 3.4902 -2 5.1559 -11 1. 1327 . -7 8.6217 -15 

10 4.7574 -2 4.8700 -12 2.3119 -8 3.3961 -16 

11 1.4038 -2 2.8295 -13 .2.7411 -9 5.5485 -17 

12 1.7069 -2 2.5037 -14 5.2492 -10 8.0938 -17 

13 6.1197 -3 1.4839 -15 6.6564 -11 9.5895 -17 
I 

: 14 7.2625 -3 2.2365 , -16 1. 2784 -11 1. 2167 -16 
i 
i 15 3.5254 -3 8.6017 -17 1.7909 -12 7.1339 -17 

16 3. 7019 -3 1.1297 -16 3.4573 -13 1.2329 -16 

17 1. 5954 -3 1. 1207 -16 4.5651 -14 1.2993 -16 

18 1.3569 -3 1.3438 -16 8.6908 -15 1.6655 -16 



N· 

3 

4 

5 

6 

7 

8 

9 

10 

11 

12 

13 

14 

15 

16 

17 

18 
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TABLE (4.7.6) 

Computed MS-ERROR 

for problems (4.7.5), (4.7.6) 

Problem (4.7.5) Problem (4.7.6) 
-4 

1.45124932247 X10 6.2103132180321 

7.83435416156 -6 3.8432043013599 

4.38670022829 -7 4.1334674924832 

2.44985453637 ':'8 3.0868807974163 

1.37855562044 -9 1.6646507502957 

7.72058212519 -11 4.1277545249464 

4.29567099030 -12 8.6872901773451 

2.36441357113 -13 9.2017114443120 

1.28760665549 -14. 6.2320777889542 

6.94124232209 -16 6.1652850877294 

6.34368238391 -17 9.5863403044256 

5.78222654645 -17 7.7446629139675 

5.28951295178 -17 5.6771849963233 

6.24924351001 -17 9.6334816564371 

6.25694341867 -17 1.1423274023229 

6.49185351098 -17 1.1090375291897 

-16 . 
X10 

.. 

-15 

-15 

-15 

-15 

-15 

-15 

-15 

-15 

-15 

-15 

-15 

-15 

-15 

-14 

-14 
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4,8 CONCLUSION 

The algorithm described above yields a ~irect generalization of 

that given in, 04J. 

The following points can be extracted from the above tables: 

(a) Numerical results for problem' (1) shows that good accuracy have been 

achieved as we expect from our choosing the exact solution (smooth). 

(b) In problem (2) we chose the exact solution (x+a)-l to be L2-s01ution 

inside the range of integration but singular outside. Since in the . 

beginning we assumed that the exact solution is square integrable in 

the interval of integration, hence our expectation for a good accuracy 

depends on our choice of the constant 11 11 a. • We expect fast convergence 

with 110.11 far outside the interval, and 510w convergence with "a" near to 

the interval. Figures (1-3) shows the convergence obtained graphically 

for problems (4.7,.2a-c) with various values of the constant "0.11
• 

On the Log-linear scale used, the results are well fitted (~part 
10 

from a possible odd-even effect in N) bya relationof the form 

That is, "exponentia1ly rapid ll convergence. We expect this form of 

c~nvergence, since the solution is in fact smooth everywhere inside the 

range of integration. However, \'Jhether the convergence is in fact rapid 

depends on the value of "a."; it is clear from the figures that t~e 

singularity approaches the interval of integration, 10.\ approaches 1 and 

convergence becomes very slow. 
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(c) The method works with a good accuracy when we take the interval of 

integration different from the standard interval El, !] as in problems 

(4.7.3-6). 

The' method which we have described has not been compared with other 

methods, at the time of pr~paring this work. The methods describ~d at the 
, , 

beginning of this chapter are used to solve equations of the first kind, 

and they calculate the values of 1jI(l) of equation (4.1.2); the approximate solution 

is forced to be zero at the end point of the interval, which i~ general leads 

to only slow convergence to the exact solution at the interior points. The 

Fast Galerkin method avoids this difficulty, and the accuracy achieved is 

independent of the strength of the singularities in the equation, and depends' 

only on the smoothness of the solution. 

We conclude from the results above, and from our experience with the 

method that it allows the efficient solution of a wide class of Cauchy~ 

singular' integral equations, the achievable accuracy is quite clear from the 

results which reflects the stability of the method. 

An advantage of the Galerkin approach is that cheap and rather effective 

estimates can be made available, see D'!1,O~. 
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CHAPTER 5 

THE FAST GALERKIN TECHNIQUE FOR 

LINEAR INTEGRO-DIFFERENTIAL EQUATIONS 

5.1 INTRODUCTION 

We describe in this chapter the Fast Galerkin scheme for comp~ting 

the coefficients in the Chebyshev expansion of the solution of first arid 

second order linear integro-differential equations. 

The method is valid under the "usual conditions" (the solution 

required is bounded and possesses a finite number of maxima and minima 

in the finite range of integration). The essence of the method is that 

an expansion in Chebyshev polynomials is assumed for the highest derivative 

occurring in the equation .. Other methods which are based on expan~ion 

techni ques incil ude those of: 

(a) El-Gendi O~ who reduced a first order integro-differential equation 

to an equivalent integral equation by a preliminary integrati.on. 

(b) wolfe all who used a generalization of the Clenshaw and Norton on 
technique to solve the first derivative f'(x) recovering f(x) at the end 

by final integration. 

The method described here is a generalization of the Fast Galerkin 

scheme for second kind integral equations described in chapter {2} which 

retains O(N 2L0geN} operations count of that scheme. We remark that the 

method shares that of Wolfe the feature that we solve first for the 

highest occurring derivative of f(x), recovering the function itself in 

a subsidiary operation; however the approach is quite different in other 

respects from that of Wolfe. The method described here has the following 

advantages: 
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(a) The rapid convergence and low operations (O(N~LogN)) count of the 

Fast £a1erkin scheme are retained. 

(b) Integro-differential equations of Fredholm, Volterra and inverse

Vo1terra type are handled. 

(c)The method is capable to handle singular integro-differential 

equations. 

(d) The defining equations for the method are well conditioned. 

Throughout this chapter we consider only Fredholm integral 

operators; however, the method applies equally well to equations 

. containing Vo1terra operators. 

In the following two sections we expand the function (solution) 

and the occurring derivatives in terms of Chebyshev polynomials, then 

we apply Galerkin scheme to·obtain a linear system which contains the 

coefficients of the derivatives expansion and the coefficients of the 

function expansion. We then write the equations which relates the function 

(solution) coefficients and the derivatives coefficients. 

Finally, we apply the method to a system of singular integro

differential equations containing a Cauchy kernel in which we use the 

technique described in chapter (4), for computing the singular part. 

The method aims to retain a very rapid convergence and also a stable 

structure of the Fast Galerkin equations; numerical examples indicate 

that these aims are met. 
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.5.2 LINEAR FIRST ORDER INTEGRO-DIFFERENTIAL EQUATIONS 

We consider here the following linear first order integro-differential 

equation with linear boundary condition. 

1 

Q(x} f' (x) + R(x} f(x} + A J k(x,y} f(y} dy =g(x} -1 ~ x ~ l' (5.2. la) 

-1 

{5.2.1b} 

where 

m is the number of the boundary points, 

(5.2.1c) 

Let us introduce the Chebyshev polynomial expansion of 
, 

f(x) , f"{x) , Q(x) and R(x) , g(x) 

00 00 

f(x) = LI a. T.(x) f' (x) = L' a~ Tj (x) 
j=o J J j=o J 

(5.2.2) 

DO DO DO 

Q(x) E' q T (x) . R(x) = E' r Ts(x) . g{x) = El 9 T (x) = , , 
5=0 5 5 5=0 5 5=0 S S 

Applying the Galerkin scheme to (5.2. la) with the expansions in 

(5.2.2) we end up with the infinite system of equations: 



co 

E I a ~ 
j=O J 

+ A 
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co 

+ El a. 
j=o J { 

. 1 

;1 rs J T .T. T. 
5=0 5 J , 

-1 . 

1T 

'2" 9i 

2 ; = j = 5 = 0 

o .. 
1J i + j > 0 and s = 0 

H Os • +' + ° I' '1) ; 5 > 0 - ,1 J S,l-J . 

\~ (x) dx 

(5.2.3) 

where 0 .. ;s the Kronecker delta. whence"we may write (5.2.3) in the form: , J' . 

Q~I + (R+AB)~=.[ 

where 

Ri,j = Hri +j + rli_jl) ; 

1 1 

(5.2.4) 

(5.2.4a) 

B. . = ~ J. J k (x ,y) T i (x) T
J
. (y) W (x) dy dx , j ~ ; i = 0 ( 1 ) •••• 

1 ,J 1T 

-1 -1 

and for j = 0, i >, 0 

q. , 
Q. = '2-, ,0 

r. , 
R. ="""7) 

, ,0 L (5.2.4b) 
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1 1 

Si ,0 • ~. J r k(x,y) Ti(x) W(x) dy dx 
-1 -1 

W(x) = (1-x2 )-! 

. .' , 

Now the solution of the.problem requires the evaluation of the 

coefficients a. in the expansion: 
J . . 

(5.2.5a) 

where f(x) satisfies a linear integro-differential equation in the variable 

x \'lith polynomial co'efficients provided that the 'usual conditions' are 

satisfied, th.e series converges uniformly to f(x) in the range but the 

series for the derivatives of f(x) are not readily obtainable from (5.2.5a); 

we express formally the first derivative of f(x) as: 

f'(x) = i a~ + a' 1 

(see for example ~J ) 

then from the relation 

J 

Tj+l(x) Tj_l(x) 
2 Tj(x) dx = j+l - j-l 

We deduce 

2j a 
j 

(?2.5b) 

(S.2.5c) 

Now to solve the system (5.2.4). For a' we have to find first a, to do - -
this we have to write ~ in terms of ~'. For introducing the ideas involved 

let us consider the solution of the first order ordinary differential equation 
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f'(X} = h(x) -1 ~ x ~ ] 

subject to the boundary condition (5.2.1b). 

We introduce also the Chebyshev expansion of h(x} 

co 

h(x} = L aJ~ Tj(x) 
j=o 

(5.2.6a) 

(5.2.6b) 

We can compute the coefficients a~ using (FFT) technique described in 
J 

chapter (2); here we assume that,aj are known. Now we can ~rite (from (5.2.5c»): 

a. = 1 .. (a
J
'. -1 - a j + 1 ) . (5. 2.7 a) 

J J 

in the matrix form: 

, (1) . 
a = A ~I (5.2.7b) 

. 
where 

. 

1 j = ; 0 
(a .. ) 

> 
A = = .. 

1J 2{j+l) 

-1 j ; + 2 (5.?.7c) = 
2{j-1) 

0 otherwi se 

(1 ) 
(a 1 ' a 3 ' . . . , a;., , . . .• ) t a = a2, 

-
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hence from (5.2.7), (5.2,6b) using the expansion of f(x) in (5.2.2) 

equation (5.2.6a) can be written in the form 

(1 ) 
a = A a' 

(5.2.8a) 

where 
_ 1 

T .. T.(b.) ,T. --2 
1,J = J 1 1,0 

i=l(l)m j = 1(1) .••• (5.2.8b) 

Now from (5.2.8a) we obtain 

t (dt + ct (T
1

)A) a' (E. 1::) ao = e - _ T (5.2.8c) 

i = l(l)m ; j = 0(1) ..• 

hence we deduce that for equation (5.2.6a) to have a unique solution it 

is necessary that 

m 
~l = E.t~ = i L C. I 0 

i = 1 1 

therefore assuming (5.2.9a) is valid, then 

a = kt a' + 1..1 
o --

(5.2.9a) 

(5.2.9b) 
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t 1 t(l) e 
k = ,- (itT + £. T 1\) ; 11 = -. .(5.2.9c) 

III ll, 
hence from (5.2.8),(5.2.9) we obtain 

a = A I 'a I + 1: (5.2.10) 

where 

11 = ( ].l, O. '0, ....• , 0) t 

Equation (5.2.10) represents an infinite set of equations for the 

expansion coefficients ~ and it gives a canonical relation between the 

exp~nsion of a function and of its' first derivati've, subject to the 

boundary conditions, in practice we shall truncate all infinitp..expansions . 

uniforma11y after the (f'ttlrtterm and solve (5.2.10) as (N+l) x (N+l) 

system for the coefficients ~o,····,aN; we shall use equa~ion (5.2.10) 

for the solution of first order and second order integro-differential 

equations to rewrite these in terms of defining equations for the highest 

occurring derivative. These defining equations then already incorporate~' 

the boundary conditions, and can be solved directly. 

Now for the solution of (5.2.1), if we substitute a from (5.2.10) 

into (5.2.4) then we obtain 

{Q + (R + AB) A' ) a" = .9.1 

h e 9 =.9. - (R + AB) _~ w er -1 

(5.2.11 ) 

(5.2.12) 



that is 

r. 
t~l)i = 9i -11( r +ABi,J 

9 = g ... 11 X 
-1. - -

~I09-

where x is the first column of (R + AB) 

(5.2.13) . 

(5.2.14) 

So now the infinite system (5.2.11) is the representation of (5.2.1). 

So having found~' fro~ (5.2.11) we can compute ~ from (5.2.10) to proceed 

numerically (5.2.11) must be truncated. 

5.3 LINEAR SECOND ORDER INTEGRO-DIFFERENTIAL EQUATIONS 

We consider the following linear integro differential system 
. 1 

p(x)f1x) + Q(x) fIx) + R(x) f(x) + l J k(x,y) f(y) dy = 9(X). (5.3.1)· 

-1 

Cf (E.) + Df' (E.) = e -1 ~ x ~ 1 

where E., f(E.), f'(E.) are as defined in (5.2.1c) and C, Dare 2 x m 

matrices;~ is 2xl vector. 

To ensure that the system (5.3.1) has a unique solution, we assume 

that: 

!J.
2 

= det[C..!:.,C~ + 2D..!:.=I# 0 ; (see (5.3.l1C» (5.3.2) 
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If we introduce the expans ions' 

co co 

P(x) :: L' Ps ;Ts(X) , fit (x) = L'. a I! T j (x) (5.3.3) 
s=o j=o J 

and the.same expansions introduced in (5.2.2); then by applying the 

weighted Ga1erkin technqiue to (5.3.1) we end up with the infinite 

system 

pall + Q~'+ (R + AB) ~ =.9. (5.3.4) 

where the matrices Q, R, B are as defined in (5.2.4), and 

i=O(l) .. .. 

j = 1(1) ... . 
(5.3.5) 

Now with the same idea as for the first order we have to write ~I 

a' in terms of~" • To dothis let us consider the solution of the 

linear second order differential equation of the form 

co 

f'1{ x) = L' a'! 
j==o J 

-1 ~ x ~ 1 

Cf~} + Of' (~) == ~ 

where e, 0, f(~) and f' (b) as defined before. 

. 
i 

(5.3.6a) 

(5.3.6b) 
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Equation (5.2.10) holds for (5.3.6) (considering one of the 

equations in {5.3.6b))and we now are looking for a similar equation 

relating to ~'and i.." that is, similar to what.we did for the first 

order. We try to write a 1 in terms of a" . o _ 

r~ow from (5.2.5c) and a similar form we have: 

( 1 ) 
a = A a l 

( 1) 
al = A all (5.3.7) 

if we drop the first row and column of A we obtain another matrix, say A
l
, 

so we can wri te 

(2) (1)1 : 
= Al A all = A2 ~II (5.3.8) a = A a - 1 -

where A2 is a matrix wlth elements 

1 
j i = ~ 0 a. 'j = 4(j+1) (j+2) . 1 , 

-1 .,.. 
2(j2_1) 

j = ; + 2 (5.3.9) 

1 
j = i + 4 

4(j-1)(j-2) 

0 otherwise 

(1 ) 
(a 1,' 1 1 )t a l = a2, •••••• , aN· ••. 

(2) 
t a = (a2 ' a 3' ...... , aN" ••• ) -



From (5.2.7a) we have: 

I 2 + 4t(a '
1
1 

- a '3
1

) a~ = 2a1 + a2 = a1 

a l = 2a + ht a" 
o 1 

where 
t !!. = (0,1,0, -i,D, 0 .... ) 
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Now to, find a1 in terms 0: ai we write (5.3.6b) as 

C T'a + 0 T a l = e - -

, CL!:'~I 
(2)(2) ,'(1)(1) 

~ + C T a + 0 r a l + 0 T a l = e 
°0 - 0 -

where 

T. = ~ 
1 ,0 

(1) (2) 
Ti,j = Ti (j+1); Ti,j = Ti (j+2) i = l(l)m; j = 0(1) ..• 

using (5.3.7), (5.3.8) and (5.3.10) from (5.3.11b) we have: 

I C! C~ + 2 D .!:-I ao 

~t_ 

(2) (1) 
= e - (C T A2 + D T A + D r ht) ~I 

(5.3.10) 

(5.3.lla) 

(5.3.11b) 

(5.3.11c) 



-113-

which has·a unique solution if (5.3.2) holds. 

Lemma (5.1) 

If a'" is a solution to (5.3.6) then there exist a vector L and a 

number n such that 

a' ~.:: L t a" + n 
o --

(5.3.12) 

Proof (see [2J, and the references stated there). 

Therefore from (5.3.7) and (5.3.12) we have: 

(5.3.13) 

n:: ( n, 0, '0, .... ,0) t 

hence equation (5.3.13) represents the relation between the coefficients . 

of the first and second derivatives. 

Now from (5.3.4) using (5.2.10), (5.3.13) we obtain: 

Pa" + Q(A"~" + 2!) + (R + AB) [A' (A" a" + 2!) + H. ] = .9. 

Or 

11 + (Q + (R + AB) A') A:J a" =~ (5.3.14) 

where 

~2 = .9.. - n~ - ~ ~ 
. , 



z is the first column of I] + (R + AB)fl-1 and 

xis the fi rs t co 1 umn of (R + AB) 

hence for the solution of (5.3.1) we solve (5.3.14) for all and eVllluate a l 

from (5.3.13) then !.from (5.2.10) .. 

5.4 NUMERICAL PROCEDURES 

We describe in this section an economical procedure for solving 

the system (5.3.14) numerically, and the same procedure can be applied 

to the system (5.2.11) of the first order linear integro-differential 

equation . 

. The basic decision to be made here is the way to truncate the 

infinite system (5~3. 14). 

First let us define 

on '. )t 
Z ={~o' zl'··········,zN 

where we usually take N ~ 3 ; 

then we write the infinite system 

H all = g - -2 

where 

H = P + ill + {R' + A B )A~ A" 

bearing in mind that A~ A" are upper Hessenberg matrices. 

(5.4.1 ) 

(5.4.2) 
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The simple way is to truncate every expansion after the Nth term 

then all the vedors replaced. by the;r- (N+l) - vectors, and the infinite 

square matrices by the; r (N+ 1) x (N+ 1) 1 eadi ng sub-matri ces. 

We can note that according to (5.2.5c) we need to know 

(N) 
·a"(N+2) to evaluate ~(rHl) fro!11 (5:3.13) and then ~ from (5.2.10) 

. .. (N) (N) (N) 
because if·we just evaluate ~" then.aN_1 , aN will have an error of 

order 

(N+2 
11 

aN+1 

(N+2) 
laN+2 \ 

4N(N-l) 4N(N+1 ) 

respectively, and also aa' al wi~l have similar errors, however these 

errors are small for those v'l.ll1es of N. He evaluate also 

k(N) , .!:.(N) from (5 .. 2.9c) .and "Lemma (5.1)~ 

without further approximation by evaluating elements of the m x(N+3), 

leading sub-matrix of the matrix T defined in (5.2.Bb). 

First of all let us make the assumption that 

al~ = 0 i > N 
1 

then the system (5.3.14) reduces to the system 

(N){N) 
H a" 

where 

(N) 
= .9.2 (5.4.3) 

(5.4.4) 
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Where we mean. by Zr,s the leading sub-matrices of order (r+l) x 

(s+l) obtained. from the corresponding infi~ite matrix. 

For a point of gain in computational convenience, we could replace 

H{N) by 

(S.4.5) 

From truncating all the vectors in (5.3.4), after the Nth term 

and replacing the infinite matrices by their (N+l) x (N+l) leading 

sub-matri ces. 

So instead we solve: 

(N)(N) (N) 
. G all - n - .;z.2 (5.4.6) 

(N) '. (N) 
where G 'as in (5.4.5) which slightly differ from H only in their 

last two columns, that is 

(N) 

Hi,(N-l) -

(N) 

Gi,N-l = 

(N) (N) Qi,(N+l) 
Hi,N - G ;,N = ~N+l) 

; = O(l)N 

R;,(N+l) + A Bi,{N+l) 
4N(N+l) 

+ R;'(N+2~ + A B;,(N+2) 
4(N+l) N+2) 

which as N + 00 the R.H.S. of (S.4.7) converges very slow. 

(5.4.7) 



-117-

Hence to speed up' the convergence we have to.reduce the gap between 
(N) (N) (N) 
H, G in order to find a better approximation to H and improve the 

accuracy of the solution vector. To do this it is unwise and computation

ally inconvenient to evaluate Bi,UI+l)' B;'(N+2) 

for i = O( 1 )N 

(2N) (2N)' . 
but since already evaluated r and ~ we can define a better 

(N) (N) 
approximation to H say U as: 

(N) (N) 
the first (N-l) columns of U are the same as that of G but 

(N)' (N) . rN+1- i + rN+l+i 
Ui,(N-l) = Gi,(N-l) + 8N(N+l) ,i = O(l)N-l 

(N) 
U. N 

(N) qN+l-; + qN+l+i 
= G. N + + 

1, 4(N+l) 
rN+2-i + rN+2+i 
8(N+l) (N+2) ; = O(l)N-2 

1 , 

(N) (N) . r 1 
UN,{N-l)= GN,{N-l) + 8N(N+l) 

(N) (N) 

U{N-l),N = G{N-l)N + 

(N) (N) 
UN,N = GN,N 

ql 
+ 4(N+l) + 8(N+l) (N+2) 

Hence instead of solving (5.4.6) we may solve: 

(N){N) (N) 
U a" = ..9.2 (5.4.8) 
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Similarly for the first order integro-differential system in equati?n 

(5.2.11) we solve 

(N) (N) (N) 
Ea' ;;; .9.1 

where, with the convention ZN = ZN.N 

We could solve the system 

(N)(N) (N) 
F a' = 9.1 

(N) (N)' 
instead (5.4.9) by rep1 acing E by F for the 

(N) . 
before in the second order system, where E and 

N columns and 

(5.4.9) 

(5.4.10) 

same reason mentioned 
(N) . 
F have the same first 

(N) (N) rN+l-i + rN+l+i ; = O{l)N-l F. N E. N + 
. 

= 4(N+l) , , , ' , 

(N) (N) r1 
FN ,N = EN,N + 4(N+l) 

Problems (5.6.3-6) of section (5~6) shows how this modification wOrks 

in practice for both first and second order problems. 

(2N) (2N) (2N) (2N) 
We evaluate the matrix BN and the vectors £, g , r and ~ , 

(2N) 
.9., in 0(N2Log N) operations, using the technique described in Chapter (2). 
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We follow the economical technique of [2J for evaluating BN as: 

(1 ) BN ~ ABN 

(2N) 
(RN + BN) .using only (5.2.4a) (2) BN < and r -

(N) 
( 3) BN < BNA' using k -

(2N) 

(4) BN < QN +BN usi ng (5.2.4a) and ~ 

(N) 
(5) BN < BNAII using only L 

(2N) 
(6) BN < (PN + ,BN) using (5.2.4a) and P 

The stages (1)-(6) requires only one matrix of order (N+l) x (N+l) which 

is B and a matrix with size m x (N+3) which is T in (S.2.Ba) and 6 vectors, 
N . 

that is (f, g, ~, ~2' ~; l) each of them containing at most 2N+2 elements. 

The operation count in stages (3) and (5) is O(N2) because each column of AI 

(or All) c6ntains at most three non-zero elements . 

. We consider the coefficient matrices Hand E of equations (5.3.14) and 

(5.2.11) respectively, that is: 

H =.p + (Q+(RHB)A')AII , E = Q + (RHB)AI 

. 
Theorems (l,3) of Babolian and Delves .I1J show' "under certain smoothness 

assumptions, that the non-diagonal elements of the coefficient matrix H (and E) 

are uniform 'y bounded away from zero, and the necessary condition for the 

digona 1 elements Hii (and Ei i) to be uniform '.Y; bounded away from zero is 

that plo (and qofO), \'Vhere qo and Po are the first coefficienbof the 

Chebyshev expansion of Q(x) and P(x) respectively. 

The above condition is in turn guaranteed if the following statement holds: 

p(x) (or Q(x)} does not change sign on 1:::- 1, 11 (a) 

We now introduce a definition. 
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. De fi nit ion (5. 1 ) 

Let E = Q + (R+AB)A' "; H = P + EA~ 

i ~ 0 

11 = infIH··1 11 

i ~ 0 

for first order problems 

f,or second order prob1ems 

; 

Now if M ~ 0, the coefficient matrix E (or H) is asymptotically diagonal of 

typ~ B (see Freeman and Delves [?~) and he~ce: 

(i) The matrix problems (5.4.6) and (5.4.9) are well' conditioned. 

(ii) The convergence and analysis of I1~is directly applicable and leads 
(N) 

to boun'ds for II.~ - ~ 11 and Ilf-fN 1 t. " , 

We now note that a sufficfent condition that the prOblem (5.2.1) (or 

(5.3.1» has a u!1ique solution is also given by (a). 

If (a) does not hold, then eqJation (5.2.11) (or' (5.3.14»)may be 

singular or ill-conditioned. Consider the" case where (a) does not hold, 

but (5.3.1) (or (5.2.1» has a unique solution. Then Po (or qo) may be zero 
." 

(which implies M = 0); and even if PoFO (or qoFO) we may have ~1 = O. In the 

next section we discuss these bID cases. with the aim of retaining the 

satisfactory behaviour of the method without requiring P(x) (or Q(x» to 

be positive. 



-121 .. 

5.5 THE CASE THAT P(x) (OR Q(x)) CHANGES SIGN ON E:l, 1] 

Now before \'le proceed to a numerical example let us consider the case 

where the function Q(x) of equation (5.2.1) or the function P(x) of the 

system (5.3.1) changes their sign on the interval 1::1, 1]. 

·Next we study two cases·, first Po = 0 (whichimpliesM = 0), second if 

Po'O we may have M = 0; and similar procedures can apply to first order. 

(a) The case that Po = 0 (or qo = 0 for fi rst order):-

(N) 
If Po = 0 in equation (5.3.4) then the correspondinq matrix G may be 

singular for some N and hence the vector solution is inaccurate, that is the 

numerical calculation is unreliable. 

Hence we need to modify the numerical method to allow for this eventuality. 

Let us consider when p = 0 in (5.3.4), the same method applies when q = 0 o 0 

in (5.2.4). 

Let r be the least positive integer for which 

Pi = 0 if i < r and Pr f 0 (5.5.1) 
.'" 

then suppose given r let us apply the Galerkin technique on the following 

equation: 
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1 

Tr(x) P(x) I'(x) + Tr(x) Q(x) l(x) + T;'(x) R(xr f(x) + • Jk(X,y) \(y) f(y) dy 

-1 
= Tr(x) g(x) 

We end up with the system 

P* a"· + Q* ~ + (R* of ). B*) ~ = .9.* 

where 

B* .. = ~ (B. . + SI"~ r/ J') i,j = 0(1) ••••• , ,J , +r ,J -, 

P * = 1 (0 * ~ . + 0 * /. ./) i,j. 2 l+J '-J 

p*. 
1 

P* = 2 ;,0 

with 

; = 0(1) •••• 

; =·0(1).· •• 

j = 1(1) .•. 

i = 0(1) ••• 

P*i = Hp;+r + P/i-r ,) , i = 0(1) •.. 

vJith a similar definition for Q* and R* 

if we take j = ; then 
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* Now since ~o = Pr f 0 and 

p~ . '- ¥- + i (P2i+r + PI2i-rl) 
1 ,1 

that is 
* Pr 

Pi, i---+- 2 as i ---+ co 

It is unlikely for small values of Pi can be treated as zero for 
. * choosing r, since Po = Pr remains valid independently of (5.5.1) and 

we require only P; f 0 and it is not necessary to require that Pi = 0, 

i < r exactlY. Problem (5.6.3) of section (5.6) shows how well this 

modification works in practice. 

(b) The case that Po f 0 (or qo f 0 for first order 1-0 equations) but 

M of definition (5.1) is zero: 

The solution of the systems (5.2.1) and (5.3.1) depends on the 

accuracy of the solution to the systems (5.4.9) and (5.4.6) respectively. 

In practice sometimes if A = 0, M = 0 and R(x) = 0 then according to 'an 

"accidental" cancellation on the diagonal of P,. (Q for first order 
. (N) 

1-0 equations) lead to the corresponding coefficients matrices G of 
. (N) 

(5.4.£) and E of the system (5.4.9) be singular for some values of 

N > 1 , and that is what we met in practice when we applied the method to 
(N) 

the problem (5.6.9) of section (5.6), when we computed the vector at from 
(N)(N) (N) -

the system E ! = ~l using Gauss elimination (with complete pivoting) 
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and back substitution, the re~ults (see table (5.6.5) for some values 

of N are very bad. 

The iterative scheme of Delves O~ treats this difficulty as 

follows: 

If the coefficient· matrix of the system proves ill-conditioned 

the scheme simply uses Gauss elimination, if in this case the matrix . . 

is fo~nd after No elimination stages to be numerically singular, the 

remaining N-No unknowns are set to zero and a solution of the No-term 

approximation will be found. This solution is clearly also a Valid 

result to return for an N-term approximation. Problem (5.6.10) of 

section (5.6) .shows how this modification works in practice. 

5.6 NUMERICAL EXAMPLES 

Finally, we present some numerical examples to demonstrate how· 

the method works' in general. The examples displayed here have been 

chosen to show how the modification described works in general and how 

essential this modification required to obtain an accurate solution to 

the problems under consideration. The numerical calculation were carried 

out on 4341 computer with (64 bit-real). 

Problem (5.6.1) 

This problem was discussed by [)] 

I 3 
(5+3x) f(x) = 2f (x) -1 ~ x < 1 ... 

Solution f(x) = (5+3x)i 

with boundary condition 

f(-l) = 12 



Problem (5.6 .. 2) 
1 
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x2 foo (x) . + A I k(x,y) f(Y) dy = g(x) 

-1 

where: ). = 0 , f{x) = x2 

g(x) = 2X2 ; k{x,y) = xy 

with boundary condition 

f(-l) = 1 ; fl(l) = 2 

Problem (~.6.3) 
1 

+Af e(x+l)y f(y) dy;g(x) 

-1 

where 

with boundary condition 

-1 1 
f(-l) + fell = e + e 

Problem (5.6.4) 

-1 ~ x ~ 1 

-1 ~ x !: 1 

As problem (5.6.3) but solved using the modification described in 

section (5.4) using the system (5.4.10) instead of (5.4.9). 
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Problem (5.6.5) 

eX f"{x) + Cos(x) fl(x) + Sin(x). f(x) 

-1 ~ x ~ 1 

with boundary conditions 

f(l) + f(-l) = e1 
+ e-1 

f(l) + f{-l) - fl(-l) = e 

where 

1 

< l J elx<l)y fly) dy • g(x) 

. -1 

. g{x) = (ex + Cos(x) + Sin{x))ex 
+ x~2 (ex+2 _ e-x- 2) 

Solution: f{x) 

Problem (5.6.6) 

x· = e 

As problem (5.6.5) but solved by the modification described in 

section (5.4) using the system (5.4~8) instead of (5.4.6). 

Problem {5.6·7)1 
( 

xf" (x) +). J k(x,y) fey) dy = g(x) 

-1 

X 
where: f(x) = e 

x ). x+2 -x-2 
g{x) = xe + X+2 (e - e ) 

-1 ~ x ~ 1 

with boundary condition f(l) = e1 ; fl(-l) = e-1 and). = O. 
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Pro b 1 em (S. 6 . 8) 

As problem (S.6.7) but solved by using the modification described 

in section (S.S-(a». 

P rob lem (S. 6.9) 
1 

Q(x) f'(x) + A J k(x,y) f(y) dy = g(x)" 

-1 

-1 ~ x ~ J 

where - A = 0 . , f{x) = eX ; g(x) = Q{x)ex 

Q(x) = (8x4 - 8i +~) ; k(x,y) = e(x+1)y 

with boundary condition 

f(l) + f(-l) 
-1 = e + e 

Problem (S.6.10) 

As problem (S.6.9) solved by using the modification described in 

section (S.S-(b». 
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TABLE (5.6.1) 

Computed MS-ERROR for problen~ 

(5.6.1) and (5.6.2) 

N P rob 1 em (5.6. 1 ) Problem (5.6.2) 

A = 0.0 
, , 

3 8.48193 X104 
5.03216 X1016 

4 1. 65783 -4 6.39256 -16 

5 3.56508 ~5 2.36276 -16 

6 7.96143 -6 3.95140 -16 

7 2.08315 -6 2.39084 -16 

8 5.29486 -7 6.69019 -16 

9 1.48465 -7 6.44356 -16 

10 4.15952 -8 3.77477 -15 

11 1.19146 -8 1.93174 -15 

12 3.56840 -9 1. 14129 -15 

13 1.02064 -9 1. 45197 -15 

14 2.95717 -10 4.14335 -15 

15 8.43011 -11 1.26622 -16 
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T AB LE (5. 6. 2 ) 

Computed MS-ERROR for problems 

(5.6.3) and (5.6.4) 

Note that proble~ (5.6.3) solved using the system (5.4.9) while problem' 
(5.6.4) solved by the modified system (5.4.10) , 

N, Problem (5.6.3) Problem (5.6.4) 

).=1.0' 

3 4.63428 X10-2 
4.08522 X10- 2 

4 1.08485 -2 9.75776 -3 

5 2.24532 -3 2.04626 -3 

6 3.32007 -4 3.05106 -4 

7 3.95864 -5 3.67130 -5 

8 4. 17286 -6 3.89333 -6 

9 4. 10493 -7 3.84993 -7 

10 '3.71320 -8 3.49722 -8 

11 3.09503 -9 2.92695 -9 

12 2.37593 -10 2.25383 -10 

13 1.73325 -11 1. 64931 -11 

14 1. 18443 -12 1. 13008 -12 

15 7.56255 -14 7.23562 -14 
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TABLE (5.6.3) 

Computed MS-ERROR for problems 

(5:6.5) and (5.6.6) 

Note that problem (5.6.5) solved using the system (5.4.6) while problem 

(5.6.6) solved by the modified system (5.4.~) 

N Problem (5.6.5) Problem (5.6.6) 
A = 1.0 A = 1. 0 

3 6.76339 X10
j 

6.50952 X10 J 

4 1.61016 -3 1 .60301 -3 

5 ·7.85457 -5 7.67872 -5 

6 
. 

1. 26783 -5 1.25160 -5 

7 1. 13351 -6 1. 12424 -6 

8 1.37719 -7 1. 36745 -7 

9 9.49618 -9 9.42793 -9 

10 8.39912 -10 8.34901 -10 

11 5.24181 -11 5.21244 -11 

12 4.02253 -12 4.00257 -12 

13 2.30661 -13 2.29525 -13 

14 1. 59451 -14 1.58689 -14 

15 6.56925 -16 6.55746 -16 
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TABLE (5.6.4) 

Computed MS-ERROR for'problems 

(5.6.7) and (5.6.8) 

Note that problem (5.6.7) has Po = 0 and problem (5.6.8) solves the system 
using the modified defining equations described in section (5.5-(a)). 

N Problem (5.6.7) Problem (5.6.8) 

A = 0.0 A = 0.0 

3 8.99724 -2 
XlO 9.52138 -2 

XlO 

4 1.32824 -3 1.33444 -3 

5 1. 78214 -3 1. 81632 -3 . 
6 1.82754 -3 1.48953 -5 

7 1.48432 -5 1.50347 -5 

8 8.22795 -1 5.76225 -8 

9 6.49464 -8 6.54133 -8 

10 5.56379 +5 1. 77530 -10 

11 1. 80641 -10 1. 81648 -10 

12 8.35789 +2 3. 11934 -13 

13 3.38320 -13 3.38112 -13 

14 3.21572 -16 4. 13243 -15 
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TABLE (5.6.5) 

Computed MS-ERROR for problems 

(5.6.9) and (5.6.10) 

Note that problem (5.6. 10) solved by using the modified scheme described 

in section (5.5-(b». 

N P rob 1 em (5. 6.9) Problem (5.6.10) 

. A = 0.0 h = 0.0 

3 4.51970 X+14 
10 i ll-conditi oned 

4 5.72462 +14 4.22841 -4 X10 

5 2.14564 +12 8.24433 -2 

6 2.25408 -2 2.25408 -2 

7 4.12674 -3 4.12675 -3 

8 4.29777 -4 4.29777 -4 

9 1.50838 +10 4.27986 -3 

10 2.18103 +8 3.85975 -6 

11 3.02961 -7 3.02961 -7 

12 3. 16472 -8 3.16472 -8 

13 1. 12495 -9 1.12495 -9 

14 2.33148 +4 4.81124 -11 
. 
15 6.43673 +2 1.2249 -12 
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5.7 THE APPROXIMATE SOLUTION OF SINGULAR INTEGRO-DIFFERENTIAL EQUATIONS 

. IN [LAST! C CONTACT PROBLEr~S 

Application of singular integro-differential equations in various 

branches of mechanics are well known. Among these are elastic contact 

problems, stresses. in composite materials, airfoil problems, etc. The 

exact solution of these problems is usually not available and in such 

-cases approxlmate methods have been commonly used. As described in 

chapter (4) for solving principal value problems which we use that 

technique and the technique described in this chapter for solving the 

following singular integro-differential equation: 

1 

Q(x) f'(x) + R(x) f(x) + A1 f 
-1 

1 

f(y) 
y-x 

1 

dy + f' (y) dy 
y-x 

+ A3 .f k(x,y) f(y) 

-1 

dy + A4 J k*(x,y) f' (y) dy = g(x) 

-1 

-1 ~ x ~ 1 

subject to the boundary condition 

. , -1 ~ b. ~ 1 
1 

where ~i;{i=1(1)4) are real values. 

(5.7.1) 

Introducing"the expansions (5.2.2) described in section (5.2) and 

applying the weighted Ga1erkin scheme to the system (5.7.1) we end up 

with the infinite linear system: 



\lJhere 

B* .. 
·l,J 

c. . = 
1,J 

= 

1 1 

2 

J J 11" 

-1 -1 

1 1 

2 J r T i (x) 
1T J/1-x 2 

-1 -1 

1 1 
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dy dx 

B*;:o = ! J J 
Ti(x) 

k*(x,y), l-x2 dx dy 

-1 -1 

1 1 

c. 0 1 , = ! I f .T.(x) d 
1 _y_ dx 

I)_Xl y-x 

-1 -1 

(5.7.2) 

., 

; 

. , 

while the matrices B, Q and R and the vector ~ are the same as 

described in section (5.2). We use the technique of chapter (2) to 

evaluate the matrices B, B* and the vectors ~, ~ and ~ while we use 

the scheme of chapter (4) to evaluate the matrix C. 

We adopt the strategy of section (S.4) for truncating the infinite 

system (5.7.2) to get the finite linear system: 

H(N) ~' (N) = ~(N) (5.7.3) 
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which is the same as the finite system (5.4.9) .only with extra inatrices 

C and B*. 

Comparison with other method:-

We present .here an example given in Sanker et. al l}i~ who uses a power 

seri es formu1 ati on ins tead of orthogona 1 poiynomi al s and subsequently the 

collocation method for obtaining the ~ystem of equations. We try to 
. . 

compare our method wi th that method descri bed i n B~ for sol vi ng the 

singular integro-differential equation (5.7.1) where: 

f(x) ; 

Q(x) = 1000 

R(x) = 1.0 

g(x) = ~ + 2008.4 x + 3003 x
2 

+ x3 
+ (2x + 4x2 

+ x3) Log I~~~I 

with the boundary condition: 

f(-l) = 0.0 ; f(l) = 2 

The results of the problem with the results obtai ned by ~~ are di sp 1 ayed 

in table (5.7.1). 
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TABLE (5.7.1) 

. Comparison of the exact and the approximate solution 

for both our method and the'method described in 1}3] 

x f . f The exact solution Our method; N = 7 a e --
. -2 . 

xl0- 2 
-0.951 0.0443 0.0443 4.4315648999 x10 4.4315648994 

-0.809 O. 125 0.125 1.25005871 00 -1 1.2500587100 -1 

-0.588 O. 142 0.142 1.4244642800 -1 1.4244652800 -1 

-0.309 0.066 0.066 6.5977 371 000 -2 6.5977371004 -2 

0.0 0.0 0.0 0.0 1.0056253093 -12 

0.309 O. 125 O. 125 1.2498462900 -1 1.2498462900 -1 

0.588 0.549 0.549 5.4904147201 -1 5.4904147201 -1. 

0.809 1. 18 1.18 1 . 1839561290 +0 1. 1839561290 +0 

0.951 1. 76 1. 76 1.7644863510 +0 1.7644863510 +0 

Note that we displayed the figures as shown iOn the paper 1]3-',' for fa 

(approximate solution) and fe (exact solution) which is most likely 

rounded to three figures. We carried out our computation on ICL 19065 -' 

computer displayed in the last two columns of table (5.l.1). 
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conr.1ENTS ON THE RESULTS 

(I) If we use the system (S.4.8) instead of (5.4.6) to'produce ~II(N), and 

consequently fN, ·then I·f)-ERROR is slightly better· (t1S-ERROR is sma1ier than its 

corresponding value) when we solved problems (5.6.S), (5.6.6), and the 

same for pr~bleins (5.6.3) and (S.6.4) of. first order equations (see 

tables (5.6.2-3». This suggests that there is not much gain in using 

the modified systems (S.4.l0), (5.5.8) to produce ~II(N), a l (N) -. -
respectively. 

(11) In problem (S.6.7) when A= 0 the maximum error is very lar~e for 

even values of N. The ·reason is that for this problem Po = 0 (P(x) = x) 

and in fact U{N) of the system (5.4.8) is singular for N even (10, 12 

for this problem), thus, the condition Po i 0 (qo f 0, for first order) 

see [2 I is essential, and hence the modification of section (5.5(a» . 

is necessary if this.modification is to be relaxed. Problem (5.6.8) in 

the case A= 0, shows that this modification works nicely. Comparing the 

obtained results with that of problem (5.5.7) (see table (S.6.4». 

(N)· ~ 
(Ill) In problem (5.6.9) the matrix F of the system (5.4.10) is 

singular for some values of N, and this has been reflected in the 

numerical results (see table (S.6.S». Thus the modification described 

in section (S.S(b»is necessary in this situation; and the results for. 

problem (5.6.10) (A = 0) show that this nodification works well in 

practi ce. 
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(IV) In section (5.7) we applied the method on a singular system of 

integro-differential equation. The results in table (5.7.1) shows that 

the method with that scheme des cri bed in chapter 4 works very we 11. The 

reason is that the coefficient functions Q(x), R(x} and the exact 

solution f(x} are smooth whi~h gave a well-conditi~ned system (5.7.3) . 

. CONCLUSION 

The above remarks on the numerical results suggest that the Fast 

Galerkin scheme of chapter 5 is, in general, a stable, fast and straight

forward method for solving inte'gro-differential equations (singular or 

non-singular). Finally if P(x) (or Q(x) in first order equations) 

changes their sign in the range of the variable x we should use the method 

with cauti on. 

-' 
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CHAPTER 6 

THE NUMERICAL SOLUTION OF THE EIGENVALUE 

OF AN INTEGRAL EQUATION 

6.1 INTRODUCTION 

In this chapter we discuss the application of the Fast Galerkin 

method described in chapter (2) to the computation of the real simple 

eigenvalues and their corresponding eigenfunctions of the integral 

equation 

b 

J k(s,t) 9(t) dt = ~.(s) ; a ~ s ~ b (6.l.l) 

a 

where k(s,t) is a given kernel and a and b are finite parameters. We 

suppose that k(s,t) is a smooth kernel or at worst has known singularity 

such as kernels having logarithmic singularities; and kernels of Cauchy-

type. 

In general we cannot guarantee the existence of any solution A F 0 

to (6.l.l); for example, a continuous Volterra kernel (for which k(s,t) ;;0 

if t > s) has no continuous eigenfunctions for A f o. Another example 

(see [7J) is the equation 

2n 

J k(s,t) .(t) dt = ~.(s) ; (0 ~ s ~ 2n) 

o 

k(s,t) = Sin(s) Cos(t) , o ~ s, t ~ 2n 



. -140-

has no non-zero eigenvalues. Any non-null function ~(s) for which 

2n 

J Cos(t)~(t) dt = 0 

- 0 

is an eigenfunction corresponding to the eigenvalue zero. 

The numerical method which we shall describe for solving (6.1.1) 

will yield an approximate eigenvalue ~ to A nearest to some arbitrary 

number ~ and their corresponding approximate eigenfuncti~ns. Since 

there may be a countably infinite number of solutions to the equation 

(6.1.1). Hence we cannot claim to solve the problem (6.1.1) completely. 

We can usually obtai~ an app~ximate value to the largest few eigenvalues 

in modulus, and their corresponding eigenfunctions since the eigen

functions corresponding to the largest eigenvalues in modulus are usually 

smoother than those corresponding to small eigenva1ues and it is usually 

easier to-approximate the smoother function. But we may find difficulty 

to approximate the eigenfunctions whose corresponding eigenva1ues are 

-close to one another or if an eigenva1ue is a multiple eigenva1ue, but if 

the kernel of the problem under consideration is Hermitian,this difficulty 

does not arise. If A is an eigenva1ue associated with the kernel in (6.1.1) 

then (Smithies [?~, p.103) the adjoint kernel k*(s,t) possesses an eigen-

value A*' we then have: 

b 
( 
J k(s,t) ~(t) dt 

a 

= A~(S) . , a ~ s ~ b . , and 



b 

J k(t,s) v(t) dt • >..*v(s) 
. a 
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where 'v(s) is an eigenfunction of k*(s,t), if we set U(s) = ~ then 

b 

. J k(t;s) U(t) dt " >.U(s) . , 
a 

so that A is an eigenva1ue of the transposed kernel T k (s,t) = k(t,s) 

and U(s) is the corresponding eigenfunction. Sometimes we say that U(s) 

is a left eignfunction of k(s,t) corresponding to A, whilst the eigen

function ~(s) is then known as a right eigenfunction. 

The accuracy obtainable in approximating a simple eigenva1ue A by 

a numerical method is governed in part by the cond.ition number 
b 

J Hs) U(s) ds 

a 
o( A) = --=~----

114>(s) 11 zIIU(s)1I 2 

which isinvariantunder scaling of Hs), U(s). The eigenva1ue A is badly 

conditioned if the condition number O(A) is very small, for a simple 

eigenva1ue of a Hermitian kernel the condition number is unity, (see C=6~). 

The available numerical methods fall into two classes; those based 

on integration formulae and those which are expansion methods, in 

particular the Ray1eigh-Ritz, Collocation and Galerkin schemes, where 

the first class of methods are generally simpler to implement than the 

second class methods. For a discussion of the numerical methods 

and underlying theory (see [7J). 
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. We consider in this chapter' the numerical computation of a real 

simple eigenvalue to the integral.equation (6.1.1). In order to treat 

multiple as well as simple eigenvalues of (6.1.1) it could be necessary 

to .employ project'ions of the approximate eigenfunctions associated with 

a particular eigenvalue of (6.1..1) onto the space spanned by the true 

eigenfunctions of (6.1.1) associated with that same eigenvalue. !}ee 5'!1. 

This is done since a single sequence of approximate eigenfunctions 

associated with a multiple eigenvalue of (6.1.1) may approach along 

particular subspacesdifferent eigenfunctions associated with that same 

eigenvalue. 

However, the totality of approximate eigenfunctions associated with 

a multiple eigenva1ue of (6.1.1) provides an approximate basis for the 

'space of eigenfunctions associated with that eigenva1ue, with an error 

which decreases as the order of approximation increases. 

In the next section we employ the Fast Ga1erkin scheme described in 

chapter (2) to (6.1.1) by assuming the eigenfunction in the mapped 

'interva1 [:1, 1J is smooth, with a rapidly convergent Chebyshev expansion. 

The aim in this chapter is to produce an accurate approximation to 

the eigenva1ue ~ of (6.1.1) by solving the (Ntl) term Galerkin equations- as 

cheaply as possible. 

Where the solution of the (N+l)x(N+l) Ga1erkin equatioffiwil1 yield an 

accurate approximation to the N-term expansion if (and essentially only if) 

this expansion is rapidly convergent. Some examples are given in section 

(6.4) to show how well this aim has been met; other examples which occur 

in practice have singular kernel given by Green1s function kernels. 
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6.2 THE BASIC ALGORITHM 

Since the range of integration of (6.1.1).1s assumed finite, we 

can employ a change of variables to rewrite equation (6.'1.1) in the 

form: 

1 

J k (1) (x,y) fey) dy = H{x) 

-1 

where 

. . , -1 ~ x ~ 1 

(1)( ) _ b-a k(b-a x + b+a b-ay + b+a) 
k' x,y - 2 2- 2' 2' 2 

b-a . b+a) 
f (x) = H-2- x + 2 

(6.2.1) 

We approximate the eigenfunction f(x)c L2[:1,I] by the truncated 

Chebyshev expansion: 

N 
f(x) = fN(x) = r ai Ti(x) 

i =0 

. , -1 ~ x ~ 1 (6.2.2) 

By applying the weighted Ga1erkin method on the equation (6.2.l) 

as described in chapter (2) we end up with the matrix eigenvalue problem 

(B - AD) 2. = 0 (6.2.3) 

which is a non-standard eigenva1ue problem, where the elements of the 

eigenvector ~ of (6.2.3) are the Chebyshev coefficients of the expansion 

(6.2.2) which define the approximate eigenfunction of (6.2.1) and the 

matrices B, D given by: 
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1 .1T i =j = 0 

= J 
T. (x) 

1T 
D .• 11 ~ x 2 . T j ( X ) dx = 2" ; i = j > 0 (6.2.4) 

1 ,J 

-1 0 ; i f j 

1 1 

J 
T,(X)J (1) ... 

B .. = ff--xz k .. (x,y) Tj(Y). dy dx 
1 ,J 

(6.2.5) 

-1 -1 

The technique described in chapter (2) retains a total cost of 

order O(N2Log(N)) operations for evaluating the integrals in equations 

(6.2.4-5) and O(N2) operations for solving the system (6.2.3) where N+l is 

the number of expansion functions used . 

. Now the solution of the matrix eigenvalueproblem (6.2.3) which we 

set up, gives.the approximate eigenvalu~·to the problem (6.2.1) which as 

well are the eigenvalue of the integral equation (6.1.1) and the corresponding 

eigenvector 

of the matrix eigenvalue problem (6.2.3) are the Chebyshev coefficients 

from which values of the eigenfunction of the integral equation (6.2.1) 

may be computed (see Theorem (4) lJ'D)· 
In the case k(l)(x,y) = k(l)(y,x) "the classical Galerkin method 

... -

reduces to the Rayleigh-Ritz method, preserving symmetry in 0 (which is already 

synmetric) and B giving one-sided bounds for the positive and for the 

negative eigenvalues of the kernel, respectively (see C=7:J). But this 

case ~~es not arise in our method because of the weight function 

(1-x2) which we introduced by the weighted Galerkin scheme. For this 
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we cannot guarante"e to preserve symmetry in the matrix .B,even if the kernel 

k (s , t) is symmetri c. " 

Hence our task now is to construct a suitable technique to find 

the eigenvalues of th~ matrix eigenvalue problem (6;2.3). " 

6.3 INVERSE ITERATION TECHNIQUE 

This scheme can be used to "find the eige~value nearest to some 

arbitrary number ~, since in general it is not possible to choose the 
t vector a = (a , .... ,aN) and A to make the residual n(x) of the Galerkin 

- 0 

·scheme on (6.2.1) " 

1 

J k(l)(x,y) fN(y) dy - .*fN(x) = nIx) (6.3.1) 

-1 

vanish. We can write (6.2.3) as 

1 -1 
(8 - ~D)- D a = (A -~) ~ (6.3.2) 

thus the eigenvectors of (8 - ~D)-lD are the same as those of (6.2.3) 

but the eigenvalues are (Ai ~ ~)-l. Hence the eigenvalue of the largest~' 
-1 

modulus of (B - ~D)D will be the eigenva1ue of (6.2.3) nearest to the 

number lJ· 

-1 Thus performing the power method on (8 - ~D) D rather than 8 of 

(6.2.3) the scheme is: 

Step (1) - starting with arbitrary ~(o) 

step (2) - compute (k+l) 1 (k) 
~ = (8 - ~D)- D ~ 

step (3) - set 
(k+l) _ b(k+l)/ 

~ - - a k+ 1 
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where a
k
+

l 
is the element of b(k+l) with.largest modulus ·then 

-+ 

). =ll +-a
J
-· 

- k+l 

1 
).-ll 

as k -+ ex> 

where A is the eigenvalue of (6.2.3) nearest to ll. It is unnecessary 

to calculate (B - llO)-lO explicitly. t~e can obtain E..(1~+1) by solving 

the system 

(k+l) . (k) 
(B-llO)~ =O~ 

(Gauss- Elimination) 

where at each iteration only the right hand side is different. 
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6.4 NUr·1ERICAL EXAMPLES 

We illustrate this method on several problems which are described 

below, where the calculations made by different values of N, and the 

results are presented in tables (1- 4). The calculations were carried 
. . 

out o~ the 1906S Computer, ~sing 12-significant digits at the University 

of Liverpool. 

Problem (1) 

k{s,t) ::; exp({st) o~s,t~l 

This problem is discussed by Cryer IT2J who finds that A:: 1.3530. 

Linz DLI finds that).= 1.35299, while Baker [7J who uses Trapezium 

rule with h ::; 81 to obtain A :: 1.353058, but he got A = 1.35303 using 

N-point Gauss-Legendre rule for N ~ 4. (ll = 1.3; 8 - iteration) .. 

For this problem we expect to get very rapid convergence because of 

. the smoothness of the kernel. These results are displayed in table {l} 

where the corrected value;s A = l.3530302 as' stated in {[7], p.191}. 

(JJ ::; 1.3 ; 8-iteration). 

Problem (2) 

k(s,t) ::; ~s(2-t) ; o ~ s ~ t ~ 1 

::; ~t(2-s} . , 

This problem is discussed by a number of authors: 

(I) Cryer 112J who finds A ::; 0~24285. As reported in his references, 

Mikhlin [13_1 found 0.2287 ~ A ~ 0.2431, using Rayleigh-Ritz method, and 

the trace of the kernel. 



-148-

(II) Linz 1J1] found A = 0.24300. 

(Ill) Baker [7] found A = 1 where he used three-point Trapezoidal rule 

. on IQ,D , in the:quadrature method. The true eigenvalue of this problem' 

are the roots of the equation lJ+ tan(lJ) = 0 ; A = lhJ 2 • with'lJ the . . 

smallest root of the transcendental equation gives A = O.2496~ although 

the kernel has discontinuous derivative across the line s = t, these are 

handled exactly by the method we use (see chapter (4), section 4.2) and

hence should (and do) cause no problems. The results of this method are 

shown in table (1). (p = 0.2 ; 10-iteration). 

Problem (3) 

The continuous kernel 

k(s,t) = (st)! . , o'~ s, t ~ 1 

is a degenerate kernel with one non-zero e,igenvalue DJ 

1 

~ =J t! dt = j 
o 

This kernel is non-smooth so we expect a slow convergence to the exact 
• 

eigenvalue, as shown in table (2). (lJ = 0.66 ; l5-iteration). 

Problem (4) 

k(s,t) = Is-tl . , o ::: s, t ::: 1 

This problem is discussed by Linz U7J who finds the largest eigenvalue 

A ::: 0.34725, where he gave the exact eigenvalue Ao = 0.34741; our results 

are displayed in table (1). (lJ = 0.3 ; lO-iteration). 



;..149-

Problem (5) 

k(s,t) = (S2 + t2)~ ; 0 ~ s, t ~ 1 

This problem is discussed"by Cryer [!2Jwho finds" = 0.81084. The 

kernel is non-smooth kernel, so we expect to get a slow convergence to 

obtain an accurate eigerivalue as shown in table (3) which shows the same 

accuracy he got with N = 11. 

While Baker et a1 1=4:] who uses Simpson's rule with h = tr to obtain 

A ::: 0.81085 (ll = 0.8 ; l5-iteration). 

Problem (6) 

k ( s , t ) = %(1- t) . o ~ s ~ t ~ 1 , 

= (1-s) o ~ t ~ s ~ 1 

This problem is slightly artificial. This kernel is not Hermitian 

and it has a discontinuity at t = s = 0, hence we expect a very slow 

convergence to the eigenvalue. BakerC=7~ proves the eigenva1ues of the 

kernel are real. He used a quadrature method with step h = ~ to get 

A ::: 0.272117. Our results are shown in table (1); they show poor converg~nce, 

and suggest A = 0.3. (ll = 0~27 ; 15-iteration). 

Problem (7) 

k(s,t) = Sin (s+t) , o~s,t~l 

This problem is discussed by Mysovskih[g6 Jwho used the method of 

mechancial quadrature, using for the quadrature formula Gauss' formula with 
-

two points to obtain the approximate eigenva1ues "1 = 0.7933585 ; "2 =-0.093287. 

This kernel is degenerate kernel, and its eigenvalues "j(j=1,2) are 
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.Al = 0.7993732, A2 = -0.0912966. 

N 

3 

4 

5 

6 

7 

8 

9 

10 

11 

12 

13 

14 

15 

16 

17 

18 

Our approximation to those eigenva1ues are shown in table (4). 

( lJ 1 = 0.78; lJZ = 0.01 ; l5-iteration) 

TABLE (1) 

The computed eigenvalues 'of problems (1 ,2,4,f,).· 

Problem (1) Problem (2) Problem (4) Problem (6) 

1. 333038051 0 0.24211532258 0.34781999675 0.31285252058 

1 • 3527120680 0.24297264105 0.34781999406 0.32711026189 

1.3530127111 0.24296459387 0.34740999126 0.27987281276 

1.3530300050 0.24296250896 0.34740999125 0.29777802695 

1.3530301538 0.24296267877 0.34740827468 0.30670330511 

1.3530301647 0.24296268560 0.34740827467 0.30898580230 

1. 3530301647 0.24296268511 0.34740826904 0.31082180071 

1.3530301648 0.24296268510 0.34740826905 0.31473889405 

11 11 - 0.34740826904 0.31739736087 

11 11 - 0.34740826903 0.32089778407 

11 11 - 11 11 0.32379012941 

11 11 - 11 11 0.32714006460 

11 11 - 11 11 0.33006827026 

11 11 - 11 11 0.33286422577 

11 11 - 11 11 0.36206116477 

11 11 - 11 11 0'.33931326653 

_. 
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TABLE (2) 

"The Computed Eigenvalue for problem (3) 

N A N A N A N : ~ 

3 0.7394346 14 0.6668789 25 0.667251 36 0.6666833 

4 0.67177003 15 0.6669301 26 0.6667071 37 0.6666854 . 
5 0.6758110 16 0.6668154 27 0.6667134 38 0.6666811 

6 0.6685818 17 0.6668480 28 0.6666997 39 0.6666812 

7 0.6695270 18 0.6667753 29 0.6667046 40 0.6666792 

8 0.6675869 19 0.6667972 30 0.6666941 41 0.6666807 

9- 0.6679339 20 0.6667486 31 0.6666980 42 0.6666776 

10 0.6671819 21 0.6667639 32 0.6666897 43 0.6666789 

11 0.6673431 22 0.6667301 33 0.6666928 44 0.6666763 

12 0.6669858 - 23 0.6667412 34 . 0.6666862 45 0.6666774 

13 0.6670723 24 0.6667168 35 0.6666887 46 0.5666752 

"TABLE (3) 

The Computed eigenva1ue for problem (5) 

N A N A N X 

3 0.78381715799 13 0.81084427795 31 0.81084441632 

4 0.81155911925 14 0.81084438166 32 0.81084441949 

5 0.81056534723 15 0.81084436520 33 0.81084441643 . 

6 0.81084329808 16 0.81084440115 34 0.81084441654 

7 0.81083142165 17 0.81084439477 

8 0.81084345244 18 0.81084440914 

9 0.81084248187 19 0.81084440636 

10 0.81084415128 20 0.81084441270 

11 0.81084396500 21 0.81084441138 

12 0.81034432751 30 0.81084441640 
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TABLE {4} 

The. Computedeigenva1ue for problem {7} 

N Xl ~2 

3 0.64935544168 -0.088439675656 

4 0.79950241286 -0.092460449157 

5 0.79934397729 -0.091295826942 

6 0.79937196226 -0.091297916601 

7 0.79937215751 -0.091298712181 

8 0.79937212989 -0.091298712037 

9 0.79937212974 -0.091298711477 

10 0.79937212976 -0.091298711475 

11 0.79937212976 -0.091298711474 . 
12 0.79937212978 -0.091298711469 

13 0.79937212976 -0.091298711468 
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·COMMENTS .ON THE RESULTS . . 

The following points can be extracted from the tables (1-4). 

(I) Numerical results for problems {1,7} shows that for smooth kernels 

we get a very rapid convergence to the exact eigenva1ue, while for non

smooth kernels we expect~ and obt~in, a"slow conyergence as in problems 

(3, 5). 

(II) For kernels which have a discontinuous derivative across the line 

t = s (problem 2). The Fast Galerkin method (see Chapter (4),section 

4.2 and the references stated) treats Greens-function type operators 

as the sum of "Vo1terra" and "inverse - Volterra" operators, and handles 

this kind of problems· efficiently as shown in table (1). 

(Ill) The results of problem (6) are very bad. The reason for this 

is the difficulty of the kernel,as we know the kernel has a discontinuity 

at s=f=o. 
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CHAPTER 7 

GENERAL CONCLUSION 

In this final chapter, we try to surrrnarise the overall effectiveness of 

the Fast Galerkin method for solving integral and integro-differential 

equations (singular or non-singular), described in t~e previous chapters. 

With regard to the method of chapter (3), it is well known,that there is 

no such si mp le method for i nverti ng the Lap 1 ace transform whi ch has been 

successful for all types of the transform ~(p). Our aim was to develop a 

reliable method which we might hope to be successful for square integrable 

defining functions. But from the results shown in chapter (3) and also from 

further experience of the method it seems that this aim has not been met. 

The problem with o!Jr method s terns from the mappi ng used and a i so the extreme 

difficulty which was experienced in estimating the parameters CpR; recall 

the significance of these parameters which are constants such that 
.. 
i = i 

= 1 

i > 0 

i = 0 
i = O(l}N 

where a
i 

; i = O(l)N are the Chebyshev coefficients of the exact solution. 
~-

Then we may regularize the solution by imposing the above condition as a 

constraint on the computed solution vector ~ by solving the problem 

minimize 11 Ba - gll - -

subject to 

This problem may be formulated in any norm. 

We found from our numerical results in chapter (3) that the ill-posed 

solver was highly sensitive to the parameters Cf,R. Although none of the 

methods ((1), (2) and (3}), described in section (3.5) of chapter (3) were 

particularly successful for estimating these parameters, additional numerical 
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experiments (not reported ·in chapte.r (3)) have led us to concll;lde that method 

(3) is slightly better. 

~lcarly more work is needed in order that: 

(i) A reliable method for estimating the parameters Cf,R·· is found. 

(ii)·A reliable mapping from the. semi-infinite to the finite subspace,~ is found. 

(iii) It may also be worthwhile to consider an expansion of·theexact inverse 
N 

in terms of Laguerre polynomials, that is Hr) = I: a. L. (r); and using 
j=o J J 

th e p rope rty 

Re p > 0 

o 
where the transform 1jJ(p) is known on some finite interval ~,~ 

Second, for the numerical solution of the Ca·uchypri~cipal value problem 

described in chapter (4), it is known that in physical problems, the. ends ±l 

are points of geometric singularity. Usually the investigation of the behaviour 

of the unknown functions in the neighbourhood of these singular points is one 

of the main objectives in solving the problem gener~11y, ·as we saw at the start 

of chapter (4). The methods described there, force the approximate solution· 

to be zero at the end points (±1) of the interval, and as we have remarked 

previously, this leads to only slow convergence to the exact solution at the 

interior points of the interval. The results obtained showed how easily the 

Fast Galerkin method avoids this difficulty, and how the accuracy achieved is 

independent of the strength of these singularities. We conclude from the 

results obtained, and from our experience with the method, that the Fast 

Galerkin framework handles even strongly singular problems and the achievable 

accuracy is quite clear from the results which reflect the stability of the 

scheme. The Volterra and inverse-Volterra results are perhaps amusing rather 

than of immediate practical significance, but kernels of Fredholm-type are of 

common occurrence, and the technique used seems to be well suited to these. 
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The method, as ~e mentioned in chapter·(4), has not been compared with other 

methods and the following points are worthy of further in~estigation. 

(1) Comparison with other methods. 

(2) Extension of the method for solving a system of singular integral 

equations of the form 

1 
4>i(t) 

1 
n 

B;(S) + f + J dtJ E dt k •. (s,.\:) 4>i(t) - , gj(s) t-s lJ 
i =1 

-1 -1 

j = .1(1)n 

where k .. (s,t) and 9
J
.{sf (i,j = l(l)n) are known functions. 

lJ 

. , 

The Fast Ga1erkin scheme' of chapter (5) for solving linear integro

·differentia1 euqations, is a straightforward scheme for solving such probiems. 

Again the results obta{ned show how easily the scheme handles even strongly 

singular problems; the achievable accuracy reflects the stability of the 

method. 

The possible extension of the method is also considered by Linz [)~. to 

solve the system 
1 

P(x) f".(x) + Q(x) f' (x) + R(x) f(x) + A f k( x,y) H(y) dy = g(x) -1 ~ x ~ 1 
~l 

H(Y) = Ul (y) flY) + U2lY) f' (YJ + U3{y) fll(y) 

wnere U1, U2 and U3 are known functlons. Also the functions P(x), Q(x), R(x) 

and g(x) are as de-t-~"'cl in chapter (5). 

The corresponding system of linear equations is (with the boundary 

condition (5.3.1» 
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Gp' + A B 3 r + « Q + AB 2) + (R. +' AB, ") A ') .A'] a" = v 

where' 

~= .9. ':' n! - lJ~, and z " ~ are the first columns of 

8Q + AB2) + (R + ),B1)A]' and. (R + AB,) 

~.respectively. Bl , B2 and B3 are the corresponding matrices of t~e functions 

Ik{x,y) Ul(y),'k(x,y) U2(y), and k(x,y) U3(y) respectively. ' Obviously having 

, B (defined in (5.2.4a-b)) and Chebyshev expansions of Ul(y), U2(y) and U3(y) 
. ' 

we can easily evaluate Bl , B2 an~ 83 using the technique of Delves, Abd-Elal 

and Hendry 0 ~" The sys tern can be reduced to a system of fi rs t order i ntegro

differential equations by setting P{x} = U3(x) = O. 

Finally the Fast Galerkin scheme of chapter (6) handles exactly two' types 

of kernels: those which are everywhere smooth, and those which have discontin

uous derivatives across the line t=s of the kernel k(s,t). The method computes 

~approximations t~ a simple '(real) eigenvalue of the ~ernel {nearest to a 

_ number (p))and the corresponding eigenfunction. The achieved accuracy reflects 

. the stability of the method. The method fails to compute an approximation to 

the eigenvalue of problem (6) of section (6.4); this is because of the dis

continuity of the kernel at s=t=O. 

Generally we conclude that from the results shown in the previous chapters, 

apart from that 'of ~he Laplace Transform discussed in chapter (3), the Fast 

Galerkin framework handles even strongly singular problems; the achievable 

accuracy together. wi th that re 1 i ab le error estimate di scussed in 01] refl ects 

the stability of the scheme. An additional advantage of the formalism, not 

shor/n here but discussed in O~ is that of handling problems rlhose kernel 

contains a singular factor together with an additive or mUltiplicative smooth 

term. 
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An obviou~ ~xtension of the scheme is that the use of a single expansion 

over the whole problem ~egion is unlikely to be optimal; an obvious extension, 

which"would retain the rapid convergence of the basic method, is to partition 

"the interval under consideration and then use different expansion sets on 

different sub-regions. 



APPENDIX A 

Proof of Lemma (3.3.2) 

J
1 xW(x) dx = 1 

mx+r m 
o 

1 : 

f (1 - m~+r) W(x)dx 
o 

1 1 
= I J W{x)dx - ! J W(x) dx 

m 0 m 0 mx+r 

From Lemma (3.3.1) we have: 

J1 xW(x) dx = 'If [1 r r = 0 1 
mx+r ~ 1 r > 0 o I mr+r2 

. 
Proof of Lemma (3.3.3) 

1 
f yX T;_l{y)dY 

o . 

integrate by parts we have 

r 1 x * () d = I [.x [rT;(Y} _ T;_2(y)] J1 t y Tj _1 Y Y 4 ~ j j-2 
o 0 

x f1 x-1 [ T; (y) T;_2(Y) 1 
- 4 0 y j - j-2 dy 

1 [2 1 f1 x-1 * . 1 f1 1 * ] = 4 JT2-j) - J 0 x y Tj(Y) dy + ~ .0 x yx- Tj _2(y)dy 



APPENDIX ~ 

First RO\·/ +1.273239544735153&+0 -5.273930875790495&-1 +1.590041941661328&-1 -3.169081741321668&-1, 
+2.594696293646550&-1 -2.906426259901472&-1 +2.652002087268910&-1 -2.774002264990935&-1 
+2.626310484449970&-1 -2.687076830762715&~1 +2.588900738694726&-1 -2.623133643284891&-1 
+2.552287118757939&-1 -2.572987493657782&-1 +2.518962384023193&-1 -2.532002431076750&-1 
+2.489139478488925&-1 -2.497518039083209&-1 +2.462481726268819&-1 -2.467869948014292&-1 
+2.438557982817158&-1 -2.441950018233149&-1 . +2.416966759122746&-1 -2.418984795322247&-1 
+2.397364522689649&-1 -2.398414029400242&-1 +2.379465497146313&-1 -2.379818558462629&-1 
+2.363033836340987&-1 -2.362881455617363&-1 +2.347874796872544&-1 -2.347349796291648&-1 
+2.333826876181881&-1 -2.333025851575873&-1 +2.320755329756063&-1 -2.319749155641544&-1 

First Col. The first element is i and zero the rest 
'Il' 

Last Row +0.000000000000000&+0 +2.891526273461010&-27 -1.156610497518806&-26 +2.602373574921646&-26 
-4.626441800228254&-26 +7.228815090383986&-26 -1.040949333860819&-25 +1.416847641~39713&-25 
-1.850576416352752&-25 +2.342135640806077&-25 -2.891525294634778&-25 +3.498745355303444&-25 
-4.163795797906775&-25 +4.886676595170257&-25 -5.667387717450896&-25 +6.505929132738019&-25 
-7.402300806654138&-25 +8.356502702455866&-25 -9.368534781034909&-25 +1.043839700091910&-24 
-1.156608931827352&-24 +1.275161168680163&-24 -1.399496405824654&-24 +1.529614638139223&-24 
-1.665515860306494&-24 +1.807200066763454&-24 -1.954667251711597&-24 +2.107917409117078&-24 
-2.266950532710866&-24 +2.431766615988907&-24 -2.602365652212290&-24 +2.778747634407418&-24 
-2.960912555366191&-24 +3.148860407646181&-24 -3.342591183570823&-24 +3.542104875229609&-24 

Last Ccl. -2.319749155641544&-1 +2.097109327239597&-1 -1.533095594966233&-1 +8.980136897062433&-2 
-4.277868321076724&~2 +1.697526888356895&-2 -5.755977512320342&-3 +1.707737861217588&-3 
-4.527578519629373&-4 +1.092651355757327&-4 -2.439552173075687&-5 +5.111301938624200&-6 
-1.017545037444429&-6 +1.945659644396796&-7 -3.606420072575193&-8 +6.530198295738144&-9 
-1.162339033754016&-9 +2.043767712937169&-10 -3.563245285336532&-11 +6.176847600296240&-12 
~1.066696110732713&-12 +1.837591113585373&-13 -3.160678675322967&-14 +5.431127289205548&-15 
-9.326878747420549&-16 +1.601122515092468&-16 -2.747997969266734&-17 +4.715744957322328&-18 
-8.091882411877184&-19 +1.388443403884579&-19 -2.382289556114446&-20 +4.087461288586949&-21 
-7.013074698893867&-22 +1.203263493572475&-22 -2.064483991450531&-23 +3.542104875229609&-24 

\ 
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