A SITE SPACE APPROACH TO THE MANY ELECTRON PROBLEM

This thesis is submitted in accordance with the
requirements of the University of Liverpool for

the degree of Doctor iIn Philosophy

by

JOHN ROGAN

March 1984



ACKNOWLEDGEMENTS

I would like to record ray thanks to Professor T.B.
Grimley for teaching me solid state physics. I could not
have had a better supervisor; it has been a privilege to
to work with him. I would also like to thank Dr. J.E.
Inglesftield for many illuminating discussions, and

Professor C. Michael for allowing me to work in DAMTP.

A special vote of thanks goes to Mrs. J.E. Powell.
1 am very grateful for the work she has put iIn to preparing

a beautiful typescript.

The financial support of the S.E.R.C. is acknowledged.

I am indebted to my family and friends who have been

a constant source of help and encouragement.



ABSTRACT

The excitation spectrum and one electron transition
matrix elements of an inhomogeneous electron gas are deter-
mined by solving the RPAE equations 1iIn site space. There
are four advantages to this approach. Firstly, the
excitation energies and corresponding matrix elements are
obtained from the same calculation. Secondly, the pole
structure present iIn dielectric theory 1is missing, so that
the site approach is mathematically attractive. Thirdly,
because one electron and many electron terms are treated
on the same footing, exchange interactions are easily
accommodated. Finally, the key equation takes the form of
a simple eigenvalue problem and so black box subroutines
can be employed to deliver the excitation spectrum.

In Chapter 2 we investigate the many electron properties
of a tightly bound metal, comparing the site space calcu-
lation with the standard dielectric function method. The
comparison takes place on as many levels as possible. The
exchange correlation energy and interaction energy of the
tightly bound metal are computed. In Chapter 3 we explore
the physics of a model insulator and demonstrate that a
Frenkel exciton can coexist with a spectrum of Wannier

excitons. Chapter 1 is of an introductory nature.
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CHAPTER 1

COLLECTIVE EXCITATIONS OF THE INHOMOGENEOUS ELECTRON GAS



1.1 The Excitation Spectrum.

The Born-Oppenheimer, or adiabatic, approximation is the
starting point for most discussions of the collective electronic
properties of a metal. It is based on the observation that the
ion cores in a metal respond only slowly to changes in electron
density (because of the very different masses involved) so that
the lattice may be regarded as stationary.

The earliest work on the many electron problem took this
approximation a stage further by smearing out the lattice of ion
cores to form a uniform positive charge distribution (Pines, 1963) .
The lattice literally disappeared into the background so as to
highlight only the electronic properties. As a consequence of this
procedure, the metal could be viewed as an homogeneous electron
gas, with a one electron basis set comprising simply of plane
waves. A metal described in this fashion, came to be known as a
"jellium-.

It is thirty years since Bohm and Pines (1953) presented
a collective description of the homogeneous electron gas. Their
pioneering work centred on a linearisation rule i.e. the random
phase approximation, which to this day lies at the heart of most
approximate solutions to the many electron problem. We use such
a linearisation procedure in this thesis to study the collective
properties of two types of ¢nkomoga.ne.ous electron gas: a simple
metal and an insulator. The term i1nhomogeneous indicates that a
property of the system depending on two electron co-ordinates
may not simply be a function of their difference. Thus a lattice
of i1on cores, or the presence of a surface, causes an electron

system to be inhomogeneous.



Both forms of iInhomogeneity can be accommodated by working with
an arbitrary one electron basis set which, for example, might
comprise of Wannier functions or tight binding functions.

The many body problem posed by the inhomogeneous electron
gas is the calculation of the excitation energy (oN) from the
ground state (Jo) to an excited state (JN&) and the corresponding
one electron transition matrix element (<N N\F(x)Y(x) |0>) . As we
point out in this opening chapter, knowledge of these quantities
establishes a route to the collective electronic properties of
interest, e.g. the interaction energy per particle, the polaris-
ation energy due to an impurity charge, and the total electrical
potential at a surface or junction.

To determine the excitation energy and the one electron
transition matrix elements, we employ the equation of motion
method and a linearisation procedure which is commonly found 1iIn
nuclear physics (Brown, 1972) . [The equation of motion method
as applied to the electron gas by Sawada (1957), 1is discussed 1in
section 4 ].

Consider an interacting system of electrons described by a

Hamiltonian of the form

H = dx Qh ) px + J dx dx" XOPFrOVEELX™D) 6O 1 L1

where Yy , § are the electron creation and destruction operators,
h denotes the kinetic energy and ionic potential of an electron,
and v represents the Coulomb potential. In writing (1.1) we have
used x to denote both the electron space co-ordinate () and the
spin co-ordinate (£), thus dx = d3r df. Also, h and v are

independent of spin co-ordinate:



h & (r) v(X,x" = v(r-r9 1.2

Having defined the Hamiltonian, we can write down the equation
of motion of the density matrix operator, and form the matrix
element of this operator between the Heisenberg NUh excited

state, |N>, and the ground state, |o>.
+ <NIp(X,x";) |0> = <N I[p &, x ";t) ,H] ]O> 1.3

IT we express the Heisenberg density matrix operator in terms of

its Schrédinger picture counterpart 1i.e.

PX,x™) = y+ xXHE 1.4

then together with the definition of the stationary states:
H N> 1.5

we see that (1.3) becomes
wWN<N Ip (x,x™) JO> = <N I[H,p (x,x™) ] ]0> 1.6

where is the excitation energy En-Eq). Clearly, the left
hand side of equation (1.6) provides us with the two quantities
we are searching for, namely the excitation spectrum and the one
electron transition matrix elements. The difficulty ofcourse, 1is
the evaluation of the right hand side of (1.6). Let us focus our
attention on the commutator. The Fermion Tfield operators satisfy

the following anitcommutation relations

@I WD} = 6(x=x") = 0(r-r’)o(G-¢*) ; QPG N D} =0 * F+C) -~(X" )}
1.7



IT we make use of the fact that both *h " and °“v* are real, and

further that v is symmetric, then it is straightforward to show

that the commutator may be written (without approximation) in
the following form
[H.p(Xx )] = h&xDpG,x™) + P(X,x") dy v ,0)pE,y)

1.8

- h G px.xD dy v(x,y)p (v, y) p(x,x?)

We now come to the crucial step of linearising this equation.
To do this, a four Fermion operator 1is factorised iIn accordance

with the following prescription (Brown, 1972):

PCX,XMPCY,Y D = p(X,X"<pY,Y ")> + <p(X,x")>p(y.y")
1.9

- P(X,yN<py.xD> - <p(X,y")>p(y.x1)
where angular brackets denote expectation values taken in the
Hartree-Fock ground state. To justify this linearisation rule
which is valid in the high density limit, we need only comment
that it reproduces the time dependent Hartree-Fock equation
(Thouless, 1961). Note also that by dropping the terms with
negative sign in (1.9) we obtain the time dependent Hartree
equation. Because of this, the terms with positive sign are
known as direct terms, and those going with negative sign as
exchange terms. The exchange terms are required for a complete
description of semi-conductors and insulators. However, they
must be dropped from (1.9) if we wish to describe a metal
accurately. Such interactions in a metal produce an unstable
ground state and infinite Fermi velocity (Seitz, 1940). Thus,

since Chapters 1 and 11 are primarily concerned with metal



physics, we at this stage drop the exchange terms, and in

consequence equation (1.6) becomes

WN <N]p(x,x") 0> = (HO (x")-HO () )<N]p(x,x") [0>

1.10
+ <p(x,x")> dy (v&XTy)-v X Y)I<NI|Ipy.y) |0>
where HQ iIs the Hartree Hamiltonian 1i.e.
Ho &) = h(x) + dy v (X,y)<p(y.y)> 1.11

It is worth stating again that (1.10) is an approximate
result, and the reason why we have to resort to an approximation
is that the exact expression for w (namely 1.6) relates a two
Fermion matrix element to a four Fermion matrix element. If we
look at the equation of motion of the four Fermion term, we find
a sixXx Fermion term, and so on. An intractable situation. To make
progress we linearised the four Fermion term. The approximation
is commonly referred to as the random pkasa approximation (RPA).
See Ehrenreich and Cohen, 1959.

With the aid of the following identity we can derive an
integral equation for the one electron transition matrix element

of the charge density operator

<NIp(x,x™) Jo> = 1 {WN-(Ho (x')-HO (X))} <N]|p(x,x")]|0> 1.12

H - (Ho(x,)-Ho())}

This identity is verified by going to a momentum space
representation for the density matrix operator, and using the

fact that Hg i1s the Hartree Hamiltonian.



We are therefore able to deduce that:

<NIp(x,x1) |o> = <p(x,x7)> dy iv(x",y)-vOGY)IN[pCY,y) o>
- ")-H
@ -g & )-H, 6O} 113
and in particular
<NIp(X,X) 10> = dy A(x,y;uN)<NIp(y,y)]|o> 1.14
where the kernel, A, is given by
A(X,y;wN) = Tim <p(x,x,)>{v(Xx,,y)-v(X,y)}
X=X {an-(Ho & ")-Ha &))} 1.15

The linearised equation of motion (1.10) and the integral equation
(1.14) are the main results of this section. We will use (1.10)
expressed iIn a site representation, to calculate the excitation
spectrum and electron hole matrix elements of a simple metal-see
Chapter 11. Equation (1.14) however, establishes an important
connection with the charge density fluctuations of the system.

It 1s this connection which we go on to explore iIn Section 2.

<2 The Self-Sustaining Nature of Charge Density Fluctuations.

The self-sustaining modes of the system i1.e. the elementary
excitations, are formed from the charge density fluctuations (6p)
induced in the inhomogeneous electron gas by the presence of a

small external charge Q%Xt) oscillating with frequency uw say:

6p(X;W) dx* A(x,x",*co){0p(x";co) + Pext (x "ew)1 2.1
where the polarisation kernel @A) is given by

A(x,x";ti)) = yzv lt:a>-/(%—ev)j $V(x)$y(x) dx" v(x',x")$v(x")4y(x") 2.2



-
To obtain this result, we neglect product terms of the effective
potential with the charge density fluctuation, 1in the equation of
motion of the density matrix. The key reference here is Hedin and
Lundquist (1969). Let us investigate the relationship of this
approach to the equation of motion method adopted in Section 1.1.

The basis states in (2.2) are taken to satisfy the restricted
Hartree equation, so that the one electron wavefunction @& (X))
factorises into a space orbital & () ) and spin orbital (0Oa (¥)).-
Thus y is a composite index representing both momentum and spin
eigenvalues. The corresponding single particle energy is denoted
by e”, and the occupation number by n .

The self-sustaining modes are obtained from (2.1) by allowing
the external charge density to vanish, so producing an eigenvalue

problem (Inglesfield and Wikborg, 1974):

XN W) 6pN (x;w) dx " A x1;u)6  (X1;m 2.3
subject to the constraint

XNW = 1 2.4

This constraint determines the frequencies (WN) of the elementary

excitations of the system: SpN(x;mN)

OpN (x;wN) ax® A (X,x";wWwN)G6pN (X" ;wN) 2.5

We now show that the above polarisation kernel as in fact the same
as the kernel defined by (1.15) of the opening section and hence
deduce that

<N [+ GO () |0> 2.6

CN S5pNAX7WNN



where, for the moment, CN may be regarded as a proportionality

constant. Consider then equation (2.2)

AG o i) = iMoo £ (M -n S P> ¢ X VXXV (XDF)
y>x [u-H ) H C] pv v A vy
2.7
= Lim ~{v(x™,y)I nvsvGO$*(y) - v(X" ,X)En ’\)gyiof\x) }
wrx [ugy-CHy GP-H, GO 4 y
2.8

which is iIn perfect agreement with (1.15), thereby establishing the
validity of (2.6). Since the polarisation kernel is not Hermitian

it possesses left eigenfunctions (6Y ) defined by

XM @) 6V X;W) dx * 6VM (x1; A (X ",x; O 2.9

The left eigenfunctions can be expressed in terms of the right

eigenfunctions by realising that the polarisation kernel can be

written in the form (see 2.2):
AKX "; = dx" N, X" ;v X' ,x1) 2.10

where N is an Hermitian kernel (known as the susceptibility) . It
is then straightforward to show that

6VM (xyu) dx * v (X, x 1)6pM (x " ;D) 2.11

and further that the left and right eigenfunctions are orthogonal,

Feibelman et al, 1972.

dx 6Vm (x ;w)OpN (x;w) = SM(N 2.12

We can investigate the self-sustaining nature of the elementary



excitations by observing from (2.6) that:

6pN & ;ojm) “ y|I_V$u (69 $V OO<N iaJru-aV }O> 2.13

where 1a+ " and "a" are the momentum space Fermion creation and

destruction operators. The charge density fluctuation, 6pn(x;;wn),

is thus made up of a superposition of electron hole excitations
i.e. <N|a+av lo>. We now show how 6p,N(x:aj%,) in turn excites the

electron hole pairs so that a 6el”™-6attaining cycle is set up. To

do this, we write down the linearised equation of motion (1.10)

in momentum space

[wy— (ey-ev)]<Nha§r/av o> = (nv—ny) Ot-,rp VVa’§y<Nha5a§.o> 2.14
where

Vva, By dx dx $V (X?a$ DV x5, x ") ) x )$y (69 2.15

and express the above integral as a sum over self-sustaining

modes. This is facilitated by means of the decomposition:

MY )XY = | AV (W)OpM (8) 2.16

To determine the coefficients,AW(u>), we multiply this equation by

the left eigenfunction, (x;co), and integrate over all space.

A\)NN @ = dx ()OVN(cm) 2.17

Substituting (2.16) into (2.15) we readily obtain the desired sum

over modes
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N
Vva, By Ayy GDAQ Gy 2.18

Physically, 1t is useful to express the Coulomb integral as a
sum over modes because of the screening properties of the plasmon
excitations. Mathematically, this decomposition results iIn a
decoupling of the matrix elements giving an explicit solution. To
see this we substitute (2.18) into (2.14):

®,ny»

- M +
<NJa”aJO0>= : O 2.19
la”a - 1 *JVM I 5 <NId3030>
c“(r(v ev>] M a'B

and look for a solution satisfying

- - + —
al3£a8<*»<» 13aa 3 0> = CM 6N,M 2.20

This condition implies that

<N a;av 0> = AN @D Cy 2.21
[“N-(ep-evn
By reference to (2.17) and (2.6) we Tind that (2.20) 1is indeed
satisfied provided w = u . In consequence our solution for the
electron hole matrix element 1is:

n -n
<Njara,, Jo> iy—uz dx $y (X) 6Vn (x ;on)  (x) ¥ 2.22
Yy Vv N ’ '

which shows explicitly how 6pN (x;mN) excites the electron hole

pairs.
Finally in this section, we determine the constant of
proportionality C . Define a function F, such that

FOGX™u)) = A(xo,x "501) + 0 dx™ AKX, X" ;W) F (X" L,X ";wW) 2.23
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then (2.1) yields
5p(x;w) = dx * F X, x1;)pext (X ;w) 2.24

showing that the change iIn charge density is linearly related to
the external charge. The function () which accommodates this

relationship characterises properties of both the unperturbed and
perturbed system and is known as the sSHGon6e {junctZon. Since the
response function is defined solely in terms of the polarisation
kernel, it is clear that A and F have simultaneous eigenfunctions

6pn (x ;w). The eigenvalue equation for the response function is:

Sp (x;w) dx“ F X X ";w) N (x1;m) 2.25
[i-xNU)] N

from which we observe that the eigenvalues of F, subject to the
constraint (2.4), are infinite, i.e. plasmons (and all other
elementary excitations) occur at frequencies which correspond
to the poles of the response function. To proceed further we
note that there are two equivalent expressions for the response

function namely

F(x,x1;w) = <N (X;w) <SIN (x“ ., W) 2.26
N [I—AN(u) 1

and

FOGX™;w) = |{
N

where 227

V(X,x) = dx" v(x,x") px",x") 2.28
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Whilst the Tirst expression can be deduced from our discussion
of the eigenfunctions of the response function, the second one
cannot. It results from the Kubo formulation of the many body
problem (Kubo, 1957). Let us equate the residues at the pole:

=g , of these representations

XM
NIpCLX) DXONVX",x)h>= 1im @® )— -—(sz— 6pM (x;c0)6W (X" <0) 2.29
N [1-y-)1]
To first order in (@ we have that
I-XN(@W) = 1- UNMWN) + (u-uN) y~N | ) = - (w-mN)- N | 2.30

u)=o).\r 1@*%
This enables us to evaluate the limit in (2.29) to obtain

6pN (x;<V 6vn(X";wn>
<N p(X,X) |O><O0IV(X",x ") N> = - ax 2.31

N
g

3D
and by referring to (2.6) we conclude that:

cNI2 = -1/ 2.32
3o =G

As we shall soon discover (Sections 3 and 4), physically
meaningful quantities are related only to |CN|]2 and not to C®, so
that expression (2.32) 1is sufficient. In fact CN which started

out simply as a proportionality constant, provides a route to the

spectral strength of the response function.
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1.3 The Exchange-Correlation Energy and Interaction Energy.

A quantity of some interest in the study of the electron
gas iIs the exchange-correlation energy, EXC— Whilst this energy
has no physical significance iIn itself, 1t is nonetheless very
important. For example, the van der Waals interaction energy of

two metal films, a distance d apart, 1is defined by:

@) -

Exc @ - Exc (

Harris and Griffen have calculated this van der Waals energy by
expressing E”~c in terms of the zero point energy of the normal
modes. They adopted a semi-classical approach and represented the
metal surfaces by infinite plane barriers. The separation, d, was
chosen to be large enough so that electron tunnelling between the
films was effectively zero, an important consideration. This
guarenteed that the coupling came only from the electromagnetic
fluctuations occurring in each film.

The conclusion they reached was that the van der Waals
energy is dominated by the surface plasmons. The work of Harris
and Griffen (1975) gives an indication of the importance of the
exchange-correlation energy. This point is also exemplified by
the work of Wikborg and Inglesfield (1977). Historically, the
exchange-correlation energy was calculated from the interaction
energy i.e. the ground state expectation value of the term 1in
the Hamiltonian describing the electron electron interaction. In
a private communication to Weisskopf, Paulil demonstrated the now
ubiquitous technique of iIntegrating over the coupling constant,

thereby providing a route to the exchange-correlation energy from

the interaction energy EInt)e
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XC

This result can be established by switching on the electron
electron interaction adiabatically and requiring that the system
follow the ground state (Pines, 1963). It also forms the basis
of the Sawada method for calculating the exchange-correlation
energy of the jellium model (Sawada, 1957).

We too, will use the Pauli formula to verify the well known
result that the Sawada expression for the exchange-correlation
energy is valid for the inhomogeneous electron gas (Harris and
Griffen, 1975). However, the primary aim of this section is to
show how the iInteraction energy may be written as a sum (over all
modes) of the quantity: |CN]J2. This modal sum will enable us to
evaluate the relative contributions to E. and EXC of the single
particle and plasmon excitations in a simple tightly bound metal,
thereby gaining insight into the physical make-up of the exchange
correlation energy and interaction energy.

Our fTirst task is to determine the ground state expectation

value of the potential energy operator, P. By definition:

P=~ dx dx" B (X)) V&KX 6 Px 3.2

This operator may equivalently be expressed in the form

P=\ dx dx1vQeXDpEX)pXe=,x1) - dx p(x,x) 3.3

The potential energy of the ground state 1is therefore



15

<OIPI10> = J dx dx" v(X,x")<0]p(x,xX)p(x1,x") 0> - ~ v(0) 3.4

The fTinal term iIn (3.4) represents the self interaction of the
electrons, and since this iIs constant for fixed particle number
we drop it. Inserting a complete set of states between the charge

density operators we obtain:

<OIPJ0> =] 1 dx dx" v(x,xD<M]p(x,x)]o> <M]p(x",x") |O> 3.5
M

and so equation (2.6) gives

<olplo> =\ 1 |c dx dx1 v(x,x" )6pM xuM)<gM (x“aM) 3.6
M

Using the definition of the left eigenfunction 6Vm (x ;gn), and

the biorthogonality relation, yields the interaction energy per

particle
p. - 11 Vv iIr i2 3.7
int 2N § 1M1 -

In order to determine the exchange-correlation energy we

note that in the frequency domain of the elementary excitations

3A 3A 3w
—a +— a - = o0 3.8
3e?2 3w 3e?2

and since the eigenvalue AM is directly proportional to the

coupling constant, e2, we conclude that

3A. 3w )

- - e2 —- 0 , at U = (¢ 3.9
MO+ gu ges H
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Equation (3.9) together with (2.32) gives the value of |cM

|CJ2 = el — K 3.10
M 3e2
This is precisely the result we need in order to use the Pauli
formula. Performing the integration over the coupling constant,
we establish the generalised Sawada expression for the exchange

correlation energy:

Exc = 22 1 -V e2=0)) 3-U

with the understanding that the excitation energies wM (e2=0)

are to be assigned Hartree values. Thus, E is the change in
zero point energy of the system, in going from the Hartree self
consistent field approximation to the random phase approximation
(Schmit and Lucas, 1972 ; Wikborg and Inglesfield, 1977).

This derivation completes our present discussion of the
interaction energy and exchange-correlation energy of the
inhomogeneous electron gas. In Chapter Il we employ the modal
sums (3.7) and (3.11) to calculate the percentage contribution

of the Elasmon excitation in a simple metal, to E. and EX

int C

1.4 Polarisation Effects of an External Charge.

In 1957 a Japanese scientist, Katuro Sawada, searched for
a transformation which would redescribe the interacting homogen-
eous electron gas as a system of approximately non interacting
Bosons. Sawada found a clue to the nature of the transformation

in a paper written by Gell - Mann and Brueckner (1957), who had
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used a diagrammatic approach to determine the correlation
energy per particle for the electron gas. In this calculation a
particle and hole travelled (between interactions) as if they
were a single particle. The propogator for this system was thus
evaluated by summing an infinite set of ring diagrams.

Observing this fact, Sawada noticed a similarity to the
well known and exactly solved problem of the iInteraction of an
infinitely heavy particle with a neutral scalar meson TfTield
(Wentzel, 1942). Since the Hamiltonian for such a system is 1in
bilinear form, there exists a normal co-ordinate transformation
to non iInteracting modes. Sawada set out to replace the exact
Hamiltonian for the homogeneous electron gas by an approximate
Hamiltonian in bilinear form. The criterion for this procedure
was that the Hamiltonian should accommodate all the diagrams
retained by Gell-Mann and Brueckner. This was succesfully
accomplished by adopting Boson commutation relations for the
electron hole operator a*a”™ (Sawada et al, 1957).

In order to simplify our discussion of the polarisation
effects of impurity charges, we will Bosonise the inhomogeneous
electron gas, 1.e. we diagonalise the equation of motion of the
density matrix operator (2.14) thereby defining a transformation
to quasi Boson modes. The merit of this approach (in contrast to
the Sawada method) 1is that there is no need to simplify the
Hamiltonian from the outset. To be completely general, let us

reinstate the exchange term into (2.14):

@N<N!§5a¥49> = (ei—eu)<Nh§;a€ﬂQ> + (nu—nqp aMﬁ(VC“ABy4qva’8y)<Nh§5a3 o> 4.1
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The exchange interaction of the electron hole pairs (a,3) and
(y,v) 1is characterised by V n , whilst Vv 0 characterises

the direct interaction. It is unnecessary to define separate
operators for the creation of electrons and holes with respect

to the Fermi level. Such canonical transformations are fTavoured
in nuclear physics; for example the Tamm Dancoff approximation
utilises the concept of particles and holes to determine the
frequency of the giant dipole resonance (Fetter and Walecka,1971).

Let us look for an operator such that
* — *
[H’OM] = WM% 4.2

By expressing the operator in terms of the electron creation and

destruction operators

0] a a 4.3
Yy

and by equating coefficients of the electron hole operator in

the equation of motion of 0* (viz 4.2) we TfTind that

M

Qug-—Cey, y Joyv ,E5M8 nct V8y,va Vy3,van°a3

4.4
Comparing this equation with the linear equation for the one
electron transition matrix elements (4.1) we obtain the

coefficients O%V explicitly

t |IFf such an operator exists it is clear that it will act on the ground
state to give an eigenstate of the Hamiltonian going with energy EM . In
consequence OM is a raising operator providing a route to excited states

from the ground state.
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<M lauaylQ>* 4.5
Oyny)
It would appear that iIn writing (4.5) we are missing out a
constant of proportionality. However, without loss of generality
this may be taken as unity. To determine the lowering operator,

which we write as

+
! \VAY 4-6
Yy, Vv
we simply require that it is the Hermitian conjugate of the

raising operator, satisfying the appropriate Harmonic equation.
This gives

Mo <Mjg¢ay10>

0yv 4.7
(ny—nv)

In order to iInvestigate the commutation relations of the

raising and lowering (ladke.fi) operators, we first establish the

following identity

This is achieved by

+
@ multiplying (4.1) by O , surrming over y,Vv

(i) multiplying (4.4) by <N]Ja*avlc> , summng over y,v

and subtracting the resulting two equations:

0 4.9
“trV <nlI° I0> =
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so that with suitable normalisation @@4.8) holds. As a consequence

of this:
N aaaB[0><Mlagafiiosl . 4 10
<0U°rvio> =V n s TONM T
7 (nB-na>
It can similarly be shown that
<I[0*°M:MO> = 0 = <OIR/°M]I0> 4-11

We therefore conclude that the ladder operators have
Boson commutation relations under the ground state expectation
value. For this reason we refer to the operators as quail. Bosons.
It is clear that the Hamiltonian describing our iInhomogeneous
interacting Fermion system can be approximately constructed from
non interacting quasi Boson operators, which is obviously a

simplification.
o= Bt T gq,0) 41

This result is valid provided the linearisation rule holds
(i.e. iIn the high density limit) and has been obtained without
dropping the exchange term in the equation of motion of the density
matrix operator. We have therefore Bosonised the i1nhomogeneous
electron gas within the random phase approximation with exchange
(RPAE). This 1is put to good use iIn the following discussion of
the polarisation effects of impurity charges.

Consider the response of the inhomogeneous electron gas
to an external potential - iIn the form of a static impurity. The

interaction term to be added to the Hamiltonian 1is
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Hinte  dx Vext(op &™) 4.13
Let us express the charge density operator, p(x,x), 1in terms
of the ladder operators.
P(x-x) = I {Fm &)O™ + Gm x)Om } 4.14
M

Taking a scalar product between an excited state and the ground
state, and using the definition of the ladder operators, gives

the value of the coefficients FM,(X) and Gm x)-
p&x,x) = 1 { <M]p(x,x) |0>0* + <M |p (X, X) |0O>*0~ } 4.15
M M

The total Hamiltonian is therefore of the form

H E° + M + ,\* (YMOM +YmV » W dx V6XL(X) MIip (X ’X) 10> 4.16

We can diagonalise the Hamiltonian by use of the transformation
M n Oﬁl + om : OM v (’v1 + aM , whervre a., Is a scalar qJ_uant|t3a to
be determined. Under this transformation the Hamiltonian becomes

L W
H™L + IIA “M°M°M +'!‘ 1UmV MM * ¢V YIEX + Ynm *V M+ “mFnl2 1

Choosing aM to be ("YM/W ) removes the terms linear iIn the ladder

operators

— IvJ2
h= G Fpord) 1 AP 4.17

»

Epol is the polarisation energy. We note that < c .
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1.5 Synopsis.

The collective properties we have considered in this
opening chapter, are (within the random phase approximation)

modal sums of the form

I function (@M, |CM |2)
M

where IC, 12 i1s itself a function of o, . An efficient
determination of the excitation spectrum is therefore a crucial
factor in calculating such properties. Although the sums are
wave vector summations, the excitation energies can be determined
in any suitable representation.

The early papers on the many electron problem, treat a
metal as a plasma - a homogeneous system, so that momentum space
is a convenient form of representation. However, if a lattice
of 1on cores is introduced, the momentum representation might
not be the most appropriate choice, because although the system
is periodic, it is not translationally invariant. Thus iIn order
to obtain an accurate description of the response of a “real”
metal to an external perturbation, momentum transfers involving
Umklapp processes need to be included.

In the next chapter we show that the site representation
is ideally suited to the calculation of the excitation spectrum
of an inhomogeneous electron gas. The transformation of the real
space RPAE equations to site space, presents no difficulty since
the RPAE 1is an operator approximation.

Hanke (1978) has used the site representation to calculate

the dielectric function of covalent crystals, and in this way he
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has investigated the optical properties of semiconductors. The
difficulty with the response function approach is that exchange
interactions are not easily accommodated (Hubbard,1957). However
the equation of motion method developed in this chapter, allows
us to deal with exchange interactions in a straightforward way.
Because of this, charge transfer states, excitons, plasmons and
single particle modes, are all contained in the formalism.

The equation of motion technique, coupled with the site
representation, therefore provides a unified treatment of many

electron excitations.



CHAPTER 11

THE RPAE EQUATIONS IN SITE SPACE - THEORV ANV APPLICATION.
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I1.1 The Site Representation.

It is apparent from our discussion of charge density
fluctuations, that if a test charge weakly interacts with an
electron gas then (within the RPA) the resulting effective
potential i1s linearly related to the external potential:

(1-A) 1V 1.1

eff ext

This equation (which is strictly an integral equation) serves to

define the diulzctnic. function (e)

e=1-A 1.2

We see that for a homogeneous electron gas, the self sustaining

modes occur when the dielectric function vanishes

e(k,to)o =0 1.3

Equation (1.3) provides the traditional route to the excitation
spectrum of such a solid. For a periodic system, Saslow and
Reiter (1973) have shown that this equation is replaced by a

determinantal relation

det[£(k+G,K+G'g) ] = 0 1.4

where k is a 1st Brillouin zone wave vector and G is a reciprocal
lattice vector. We can therefore calculate the energy spectrum

by searching out the zeros of the dielectric function ( or the
associated determinant). In practise, scanning a frequency range
at a given wave vector is inconvenient and an iterative technique

is normally employed to deliver the excitation energies to a
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predetermined accuracy. However, as we will presently discover
this is by no means straightforward.

It 1s the purpose of this section to demonstrate how the
excitation spectrum of a solid can be determined (in the RPAE)

from a simple eigenvalue problem of the form:

d = 01 an ¢iXfi " & = lattice vector 1.5

i.e. without resort to (1.4). There are three distinct advantages

to this approach

O] There is no need to determine the dielectric function

(if) One electron terms and many body terms are treated on

one and the same footing

(111) Both the excitation energy and the corresponding matrix

element (X)) are obtained from the same calculation.

To derive (1.5) consider a solid in which both direct and
exchange interactions are present. For simplicity, let us deal
with a 6-ingle band. The derivation can be easily generalised to
accommodate many bands (Chapter I111). Our starting point is the

equation of motion of the density matrix operator

MIp(x,x") o> =

(™) + dy v(X",)<pCy .y)>IMIp(x,x")10> - dy v(X",y)<p(y,x")>M|p(x,y)|o>

- 1hCO +Jde V(x,y)<[p(y,y)>)<MIp(x,x') 1> + Idy V(XL Y)<p(X,y)><M]p(y,x") |o>
+ o dy v(X",{<p(X,x")><M]p(y .MI0> - <p(X,y)><M]|p(y,x")10>}

dy v, y)(<p(X,x")>M]p(y,y) |0> - <p(y,x")><M|p(x,y)|0>}

1.6
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Hidden in the first four terms of this expression are two
Hartree-Fock Hamiltonians, whilst the remaining terms describe
the many body effects. Note that integrals involving the charge
density operator: y+()y(Y)< represent direct Coulomb interactions.

Let us write equation (1.6) in site space. To do this, we

define site creation and destruction operators as fTollows

dx1 0aU Dw(r "-£) p (%)

£,a 1.7
£1.a1 dx 9a, (Ow(r-A" )p®
where w iIs a Wannier function. We also define site integrals
HE £ d3r w (r-£ )h (NDw(r-£)
1.8
d3r" w(r-£ )w(r "L )v({r-r-* ri-L)w (r-£
T (r=£ w(r "L v (r-r w (ri-Lw (r-£)

In general, a matrix element in site space looks like:
Mat+r a_, ,10>- However, we need only consider matrix elements
1£,a £ ,a
of the form <MlaJir 0 0.0 ,|Jo> because of the Bloch property of a
many body wavefunction, which implies that

+ -1K.E* +
<M Ia (£+£-) aaf",a" 0> e <M a£, aaO, o- 0> 1.9

The letter M which we have used to label the exact
eigenstates of the system is of course a composite symbol. It
denotes mode type (e.-g- single particle, plasmon, exciton) and
a wave vector. The wave vector going with the state jMWwill
always be denoted by k. It is with this understanding that we
have written (1.9). Having established the Bloch property of
the matrix elements, we return to equation (1.6), multiply thro

by e;\-C’\eo(E')wfr)w(r'—£) and integrate over x and x".
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V MK, aa0,c"10> -

| <vt*JL, val'L*l v A  y>KL"' e*K'(s"1'}Im] o
-iKL (B¢, ) w] +
+.v I L A" A Ae........ -K.yo.yA
- I ' a, ><M a, 0>
«M L" V 1'« L alL,y >Y 0>0

+ I'{ (L w~rH> L 6 1KLL <d,aa0a,>}<Mal t,yaQY D>

c LI L V(A"+L™)L,L™E e"1KL” | <aL.Ya0,0"><Mla£" ,aa0ivl°>

QKL
<d* >} 7 <Mla+, a 0>
" II{ La* V(£,+L,)O)L L - |,f|a1_,a Z «. Y Oyi

. LI s VERLOLL e KL I <ait,aal >Y><Mlai ,,Ya0,a, Jo>
0

1.10

This equation has precisely the same structure as (1.5),
with the matrix element <MIaf aa0 a*l0> Playins the role of X&,
and because of the presence of the exchange terms it can be used
to study the properties of semi-conductors and insulators.

The next part of this section deals with an application
of (1.10). Let us fTocus our attention on metal physics. We take
as our model of a simple metal, a cubic lattice of N atoms with
one electron per lattice site located in a Is. hydrogen like
orbital (x). The band structure of the metal will be described
with the aid of a well known approximation, the tight binding
approximation. The TBA has won much favour with theoreticians
in the realms of both solid state and surface physics because of
its mathematical simplicity. In contrast to the jellium model of

a metal, the TBA deals with the case in which the overlap of
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atomic orbitals is sufficiently small so that in the vicinity
of a lattice point, an atomic description is appropriate. 1In
consequence, the Bloch states may be constructed from atomic

orbitals instead of Wannier functions
V. n =A EX(I’—«eik—4 1.11

This approximation has been particularly successful 1in
describing transition metal d bands, and it was for this reason
that early chemisorption studies courted the TBA (Grimley, 1958).
Working within the TBA much simplifies equation (1.10) because

the Coulomb integrals VEIY, » ~ i1.e. 1iIntegrals of the form
d3r d3r " x\r-I )x*r 1-L 1)v (r-r ")x (r "-L )x (r-£)

are zero unless £ = £and L* =L. To see this we need only express
v(r-r°) as a Fourier series and neglect the overlap of atomic

orbitals on different lattice sites iIn the resulting integrals.

v01|L, , .., = 0 unless I' = U and L1=1L 1.12
/L

Under these circumstances, the excitation spectrum of the metal
is determined by solving the eigenvalue problem generated by

the following linear equation

i+ i r r, -TK.(E£") 5 wl+ i
V MK Itao,o"10> ~ V . J 1“6 1 <Mlai®,0a0 ,0"]o>
T g 0% axe (VEENE'E “ VE'0 0f) e I <M lao ,ya0 ,y10>

1.13

In writing (1.13) we have dropped exchange terms from (1.10).
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Discussion of the Eigenvalue Problem.

Let us consider the nature of the coefficients of the one
electron transition matrix elements iIn equation (1.13). Firstly,

there are one electron terms:
H, d3r x (r-A1){ §Vr2 Vion (D >x(r-A) 1.14

We can express these coefficients as a function of a 'hoppingl

parameter by defining a potential, Vv, as follows

Y (r-A) V.Ion (n - Va(r—A) 1.15

where V~ir-A) is the potential that an electron at position r
would experience if there were only a single atom present, namely
that at site A. Thus I/(r-A) is the potential energy of an electron
at r resulting from all the ion cores in the crystal except the

one at site A. Therefore

H A A d3r xtr-A"){ |Z—V|2F + Va(r—A)>x(r—A) + d3r X r-A")Gr-AX(r-A) 1.16
and so if ed is the energy of atomic orbital then
d3r x r~A D)V (@-A) x (r-A) 1.17

HA\A fa6A,A" +

At this point we can again invoke the TBA which implies that the
above overlap integral is only non zero for neighbouring lattice
sites A and A'. Thus

eac6A, A u <5A, A" 1.18
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where the tilde over the Kronecker delta function indicates that
£ and £° refer to neighbouring i1on cores. Note also that u, the
hopping parameter, is independent of our choice of neighbouring
sites. This is a consequence of the simple cubic structure of
the lattice and the spherical symmetry of the atomic orbital x-

The second type of coefficient appearing in (1.13) is a

many body term:

I ~ic £*
<af, 0a0, a 1> (VIV,Vl —VE'0O,0E£1) e

An important factor in this term iIs the expectation value of the

site operators.

+ ik. £

<af a5 o= > = <0 a£ 0a0,a* ©Har  6a,a” N A nk,a 1.19

Unfortunately, the wave vector summation cannot be carried out
analytically because of the presence of the occupation number.

However, recalling that for a jellium model

sinkfE - kFfEcoskfE
1.20

-

-

-
-
=~

one expects the expectation value to rapidly decrease as |£]
increases. It only remains to deal with the direct lattice
summation over the so called dipolar integrals:

(The dipolar terms are discussed in Chapter 111. They in fact
correspond to an electron being tightly bound to a hole). In
particular we require the functional dependence of this sum on

the lattice vector £. This can be obtained as follows
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LAWY e o w1 dSv dar™ Ix(r-E)|av(r-r*)|x(r--£7)|2 elK“€" 1.21

so that writing the Coulomb potential as a Fourier series

= 41 e2
v(r-r9 = £ v(kye K- (r-rb V(e = 1.22
k (vol of crystal) k2

we are able to separate the real space integration over r and r =,

leaving the summation over £° trivial

-iK.V
| . pep € 1 v@® IFE 2 e"ik,£ 1 1.23
- VEE® E°E K V
where F(k) 1is the Fourier transform of the atomic orbital density
2 1k.r
F = d3r [x(r) | e 1.24

The right hand side of (1.23) 1is therefore N £ v (kt0) |f k+0) |2 e"1K*E.
G

It 1s useful to have a symbol for the sum over reciprocal lattice
vectors, and so we define
i2K) = N 1 v &+G) I (k+6) |2 1.25
G
Thus
-iK. £1 OO e-iK-£
E£" ,E"E 1.26
which clearly displays the dependence of the sum on £. Also, since
VEE',E'E =V£,£,££_ , then we deduce from (1.26) that
-1IK.£°
K
| VEI0,0£1 e (k) 1.27

It iIs now apparent that the linear equation for the electron hole
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matrix element (1.13) can be written in the form:

_ ~iK. (E-£7)
> = _
V. Mly o0a0, o 0 UEE S € 16 <M a, oao,a 9~

* <afj q 0,8t HE Ce 1k’E - 1] £ <Mlag  ag .-10>

0
Y
1.28
x *
We observe from (1.19) that <ai}aao ,a’> 60,a’ , and so
only amplitudes with parallel spin eigenvalue need concern us
(amplitudes with a # 0" satisfy the equation for non interacting
particles). Also, since there are no spin operators 1iIn the
Hamiltonian, the excitations can be classified as singlet or
triplet states (Oddershede, 1978)
<M]a* +aQ +]0> = + <M]a*”aQ +]o> for a singlet state
1.29

<M]a+ +aQ + > - <M]an~+aQ”~ ] o> Tfor a triplet state

Because of this, the summation over y in (1.28) vanishes
for triplet states. These states are therefore physically unin-

teresting In a many body context. However, the singlet states

satisty
V MIaE/faoiifo> = u \I/ [1 - e 1K*(E £ >] 6£1>E <M|at,. 4p0 Alo>

+ 2 «(<) <al (tao,t> Ce“lk*£ - 1] <M|ﬁ3 AgQur Jo>
1.30
This is the key equation for our investigation of the excitation

spectrum of the simple metal detailed on page 27. By writing this

equation down for all possible values of £ (there are N of them)
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we generate an eigenvalue problem of order N x N. It takes the

form

X = axX 1.31

where X 1is the column vector: (<M]at +aQ +]o )
and the square matrix a has elements:

CIK.(E-£7) .
aE,f = Uci "6 B, =] + NV .o

onz zlzc-thon cozitlc. (& many body co>-Mc. K>

The eigenvalues wM are obtained by solving the characteristic

equation
det (ol - a) = o0

For ease of reference, let us agree to call the matrix:

1.32

1,33

(ool - a), the T"characteristic matrix®". The presence of nearest

neighbour interactions in (1.32) means that the rows of the

characteristic matrix are linearly independent, because of this

the elements of the eigenvector X (the electron hole amplitudes)

define a linearly dependent set in which all the amplitudes can

be expressed in terms of any given amplitude. Let us single out

the amplitude at the origin and write

Mlat,+a0,+10> - <Mao,*ao0,30> for all 1

The absolute value o0of <«l4 ,ta0,J0> 1is determined from the

following normalisation condition (see 1.2 .12).
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dx e6VM (x;WM)epM GcaM) = 1 1.35

This i1dentity can be written in the form (see 1.2.6 and 1.2.11)

dx dx* v((r-rH<M] &H*"EMD 10>*<M1(x) ") Jo> = |CM |2 1.36
or In site space (for singlet states) as

£I’£,,L,,IL VEQ *+L) L "(E+£" de M1 ta0,110> <MK ,+a0,+I0>  KMt2
1.37

Equation (1.37) 1is model independent. For our tightly bound metal

however, we only retain those terms which have £ =0 and L = 0.

In consequence, the normalisation condition becomes

= 4 |M |a§’iuo,f]o>|2 1 elK"1 (E.AQAOZA I,Qe“ilc' }

1.38
and reference to (1.26) shows that
Vi
CMr = 4N fi(K) I<Mla0 ,+ao,+"0> 1.39

The above relation determines the absolute value of the amplitude
at the origin (once the value of the eigenvalue » 1is known 1),
and therefore the absolute value of <M]a* +aQ "No>.
The eigenvalue problem (1.31) is now completely defined.

What type of solutions do we anticipate ? It is clear that the
one electron coefficients in (1.32) vanish as k 0 and that the
many body coefficients are small at large £ (since <a”k\j*0jT>
is a rapidly decreasing function of £). In view of this, let us

consider the long wavelength and asymptotic behaviour of the

electron hole matrix elements.

t (1.3.10)
3e2



35

The small k limit.

In the absence of the electron electron interaction, the
characteristic equation (1.33) takes the trivial form: det(iolJ=0
at small k, giving N zero values of W . The effect of the Coulomb
interaction between electrons is to give the possibility of non
zero frequencies at k =0 , for although the one electron terms in
(1.32) go to zero as 0 (k), the Coulomb interaction terms diverge
as o(@/k). IT non zero values of an do exist at long wavelengths,
they will be obtained from an iterative procedure - because the
many body coefficients in the characteristic matrix dominate in
this limit.

The appropriate iterative solution s shown below.

"m <MK, tao,tl0> =

2 »M ato««™* t«Qj+>Ce’'1™ - |]<M|a6_43(9_119>

¢ 2 (KOI u \'/ﬂ - *£" A8, +5 “ "V.il <Mlao,+ao,tl0>
1.40

By setting £-0 , the eigenvalue is obtained explicitly for small k.

1K.E" -iK.£E" <.
=2nK ™ "kul,bc “e de 1 elkil” 6, ,0 1.41

We can simplify this equation by introducing the tight binding

expression fTor the one electron energy (e

ey = e +u ¥ "Mhlb, | 1.42
a £ ?

For a simple cubic lattice,e is an even function of k:
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e ® = ea + 2u(coskxa + coskya + coskza) 1.43

and so (1.41) becomes
ofg = aft (k) ’n‘ ) | nr([e(k+K) - e(k)] 1.44

Is dh non zero as k =0 ? To answer this question we need
to look at the definition of the energy: Q(k). For convenience

we reproduce it again here

ft&x) = N 1 v (&+G) | +G) |2
G

where v and F are the Fourier transforms of the Coulomb potential
and atomic orbital density [x(r)]2, respectively. The reciprocal
lattice vector G =0 1is included in the summation so that for

small values of k

fiic) = N V&) JIF&)I2
and since F(o0)=1, then

ftkk) + N v (k) as k 0

We need also to look at the Brillouin zone summation in (1.44).
Let us Tix the Fermi level at the atomic orbital energy (ed). The
occupation numbers are therefore step functions

nk = o0 (cosk a + cosk a + coskza) ; 0o = if x o 1.45
0 otherwise

We see that the Fermi function () is an even function of each
of the components of the wave vector k, and further that it is
invariant under the interchange of the components. Because of

this, the Brillouin zone summation can be expressed as fTollows
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We conclude that

1.47

and substituting expression (@ .22) for v(<), we Tinally obtain the

eigenvalue iIn units of Hartree

(N.B. u<0) 1.48

The above equation shows that the long range nature of
the Coulomb iInteraction gives rise to a non zero eigenvalue at
k = 0. The corresponding eigenmode is the ptcu>mon excitation. The
existence of such an excitation can be understood qualitatively
by considering a more obvious manifestation of the electron
electron interaction in a metal; screening. Any imbalance in the
charge distribution of an electron gas will quickly be screened.
This is the short range effect of the Coulomb potential. The long
range effect is to sustain the polarisation wave accompanying such
screening processes thereby establishing a collective oscillation
of the electron density: the plasmon mode.

The electron hole amplitudes for the plasmon excitation are

determined (at small k) from (1.40)

The plasmon amplitude is therefore localised in site space, and
as such, only a relatively small portion of the lattice may be

required to give accurate values of the plasmon energy.
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The magnitude of the plasmon amplitude at the origin is easily

obtained with the aid of the normalisation relation (1.39)

34
- = 4N Q(k) |M Jan faQ< F|O> 12 1.50
3e-“
Since the eigenvalue is known at small k, the differentiation with
respect to the coupling constant e2 can be carried out explicitly.

The result is that the left hand side of (1.50) 1is equal to half

the plasmon energy, and so

I<M Ia;f tao . + % 1.51
’ ’ sN fiK)
Without loss of generality, we take <M]a* ~Jo> to be real. The

normalised plasmon amplitude at an arbitrary lattice site is thus

<« L0, °> LY <ar,+ao,t>Ce~1K"* - 13 for Mall * x-52

We have learned from studying the long wavelength limit that

©O) There exists a mode with non zero frequency at k =o0.

(i1) The mode 1is localised iIn site space.

The large & limit.
The many body interaction term in (1.30) is small at large
values of \I\ so that the electron hole amplitudes asymptotically

satisfy the following equation

K E-E) .
M Mlag 40,6 ©> Y 1o -e O a0\ 0
1.53

which admits a solution of the form
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Mlat,+aoi+Jo> € e I(k+K)"E provided N e(k+k) - ek 1.54

This solution set clearly contains the Hartree values of the
electron hole amplitudes and excitation energies.
11 ei(ktic).2,

<Mr=as,,1a0, 1 *0>Har /2 N 6
1.55

w = 2u [cos(kxtKx)a-coskxa + cos(ky+Ky)a-coskya + cos(kzt+Kz)a-coskza 7]

The first Brillouin zone wave vectors k and k in (1.55) satisty

nk (1- W = 156

This restriction on the occupation numbers ensures that the
frequency of an elementary excitation (" - Eq) does not take on
negative values. (Allowing k and k to be wave vectors outside the
1st B.Z. only produces values already in the Hartree solution set).

It is worth discussing the Hartree spectrum in some detail.
The lower bound of the spectrum for a given value of k is zero,
whilst the upper bound is determined in the usual way: we search
for those values of kx ,ky and kz which render - zero (O = X,Y,2).
By symmetry it is sufficient to consider i =x. We find that the

requirement on kx 1is

tanka = -—-——-——————- 1.57

It Is easy to see without resorting to higher derivatives, that

the maximum single particle excitation energy, Tfor fixed k, 1Is

W = -4u (]sinyKxa] + |sin™Kya] + |sin|<za] ) 1.58
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Figure 1: The Hartree Spectrum.

The shading indicates that the spectrum

is continuous to the order of

mm 0

Har

max .

Lar -4u sin rLK Xa

In addition to the Hartree solutions, there are exponentially
decaying solutions to (1.53). They correspond to complex values of

k in (1.54). Let k wmmk - ij, for real k and j. The amplitudes then

take the form

.+ ; i (k) U —jeA
<MK , + a0, +]0> *“ e
1.59
subject to the constraint - e(k+tij+K) - e(k+ij)
To explore this further, take k to be in the (@00 direction, so
that the constraint on k and j becomes
~ = [cosCkx+K™a - coskxa] coshjxa ; [sinkxa - sin(kx+<x)a] sinhjxa - O

We disregard the possibility of sinhjxa being zero, since this

reproduces the Hartree spectrum. In consequence kx must satisfy

sin Kxa

sink,,a - sin Os«*>a = ° => taalla =1 _~ A~ 1-60

and referring to (1.57) we find that
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wu coshj a 1.61

This solution always lies above the single particle spectrum
for jxa4 ?/ since the hyperbolic cosine is greater than unity for
non vanishing argument, 1i.e. the solution is a split off state.

We have met such a state before. In the long wavelength limit, k =0,
there is only one non zero frequency excitation - the plasmon mode.
This 1s our split off state.

The above analysis does not guarentee that a plasmon mode
exists for all values of the wave vector k. The prerequisite for
the existence of a plasmon is that the asymptotic solution is
compatible with the full eigenvalue problem i.e. that solutions
at large |£] can be joined smoothly to those at small |J£]. It 1is
this "matching®™ criterion which determines the values of jxa.

We conclude from our investigation of the long wavelength
and asymptotic limits, that in general there are both extended
and toc.alliXQ.d solutions to the RPA equations in site space. The
extended solutions (to the order of are simply the Hartree

excitations of the model, whilst the localised solution is the

plasmon mode. %

Figure 2 : The RPA Spectrum.

-4u
The broken line shows the plasmon mode
split off from the continuum for < <kc*
Above this cut off wave vector the
plasmon mode is no longer well defined.
0 I
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It is convenient at this stage to consider the number of
modes 1n the metal. We see from the spectral representation of the
response function, that if w is a solution to the characteristic
equation (1.33), then so too is -a . This can also be deduced from
the linear equation (1.30), and is a consequence of the electron
hole symmetry incorporated in the linearisation procedure. The
negative frequencies are disregarded, so that for each value of k,

takes only — values (nhot necessarily distinct). This is true
whether or not the electron electron interaction 1iIs taken into
account. Therefore, 1iIn order to accommodate the plasmon mode in
our metal, we must lose one excitation from the Hartree spectrum.
Which excitation is lost ?

Clearly, the plasmon mode returns to the single particle
continuum in the absence of the electron electron interaction. The
only way this can happen is for jxa 0 as e2 <0 (see 1.61) in which

case U i/

blasmon Z Mo Thus the effect of the electron electron

interaction is to lift the single particle excitation with maximum

frequency from the Hartree spectrum.

Summary.

Let us reflect on the contents of this section. The simple
model we have considered, makes no claim to describe accurately
a real physical system, rather, it is a testing ground for our
site space method. The focal point of the theory is an eigenvalue
equation, and as we have seen, it is particularly easy to define.
The site space approach therefore passes its fTirst test, in that
the key equations are readily formulated. Although this is not an

essential requirement, it is highly desireable if plasmon effects
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are to be calculated for more complicated tight binding systems
e.g. transition metal surfaces.

Another test of the method, is whether the key equation
can be solved for simple cases, or at appropriate limits. If this
is possible it can provide insight into the physics of a model at
an early stage. We found for example that the excitation spectrum
of a tightly bound metal consists of a plasmon and a continuum of
one electron transitions - without solving the eigenvalue problem
first (Pt 4 Rogan and Inglesfield, 1981). A study of simple cases
can also indicate whether the method in general, is likely to be
a good one. This consideration 1is especially relevant to the site
space approach. We showed that the plasmon is localised iIn site
space, so that solving the eigenvalue equation for the plasmon
mode is a sensible and direct way to proceed.

The final and important test, is the amount of computing

effort required by the method. This merits a section to itself.

11-2 Plasmon Frequencies of a Simple Metal.

The existence of organised electronic excitations iIn a metal
was Tirst demonstrated theoretically by Bohm and Pines (1953). They
showed that the collective co-ordinate of the homogeneous electron

las, exhibits oscillatory behaviour in the long wavelength limit.
pk + UZ pk "™ O ; Pk = le 1k,ri 2.1
]

To obtain this result, Pines had neglected terms of Aandantij
varying phases i1n the equation of motion of p», and iIn doing so
established the random phase approximation iIn its simplest form.

The frequency of the simple harmonic motion described by (@ .1) -
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the plasma frequency, is easily written in terms of the electron
density n, 02 = 4im. This can be deduced from equation (I11.1.44).

The plasma frequencies of the alkali metals are tabulated below.

Table 1 Classical Plasma Frequencies (Kunz, 1965).

Experiment Theory
Potassium 0.14 0.16
Sodium 0.21 0.22
Lithium 0.26 0.30

The values quoted are in Hartrees (1 a.u."v 27eV). We note that the

theoretical values of the plasma frequency are about 10% too high.

Table 1 helps us to assign the two parameters of our model
namely the lattice parameter and hopping parameter. We have seen
that the long wavelength plasmon frequency of the tightly bound
metal 1is given by (11.1.48). The Brillouin zone summation in this

formula is trivial to compute, the answer is 0.1671. Therefore

< (k=0) = - 8.344u (-0) 2.2

Take the crystal to be a cube of side La so that the total number
of electrons () is simply L3, and the volume per electron is a3
Thus the lattice parameter is a measure of electron density, and
in keeping with convention we iIntroduce the rg value: gﬁrsz g;?l
The range of metallic densities iIs 1.8 < rg < 5.5, and a
typical value 1is rs=4. For a simple cubic lattice this means that
a = 6 .5aQ (there is only one metal in the periodic table with a
simple cubic lattice- polonium, this has a = 6.33a0). If we now

set u= -0.01, -0.03, -0.05 then the plasmon frequencies at k*0

nne 0.11, 0.20, and 0.25 a.u. which are close to the experimental



values of the alkali metals. Choosing a = 6.5aQ (rs=4) 1is taking
the validity of the RPA beyond its limit, it is strictly valid
for rg < 1. Because of this, let us also take a = 2.5a0 (rs=0.9)

and an intermediate value of a = 2 .5a® (r =1 .5).

Table 2 Plasmon Frequencies at k = 0 of the T.B. Metal

a = 1.5a0 a = 2.5a0 a = 6.5a0
u = -0.01 0.2366 0.1833 0.1137
u = -0.03 0.4098 0.3175 0.1969
u = -0.05 0.5291 0.4098 0.2542

The trends in the plasmon frequency are readily interpreted. For a
given value of u, as we increase the lattice spacing the volume per
electron is increased, thus the electron density, and therefore the
plasmon frequency, decreases. As we iIncrease the hopping parameter,
"a" fixed, the electron system becomes more free electron like 1i.e.

increases.

more responsive to changes in electron density "mplasmon ________

The maximum values of the one electron transition frequencies

produced by this choice of parameters are shown below.

Table 3 Maximum One Electron Transition Frequencies

K=3@00) K=5110) K= _(111)

u = -0.01 0.04 0.08 0.12
u = -0.03 0.12 0.24 0.36
u = -0.05 0.20 0.40 0.60

This table demonstrates that the excitation energies of the single

particle modes can become comparable to plasmon energies.
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By selecting three values of the lattice parameter,
and three values of the hopping parameter, we are in effect
going to explore the many body properties of nine different
physical models. The reasons for choosing this number of
pairings of the parameters u and a (in addition to those
already given) are outlined below.
©O) The position of the plasmon mode with respect to the
single particle continuum, 1is parameter dependent. Certain
choices of u and a might give rise to a plasmon excitation
which lies well above the continuum over the entire
Brillouin zone. In this case the eigenvalue of maximum
modulus will be well separated from the others and one
expects that there would be little difficulty in calculating
it. For other choices of u and a, the plasmon mode will
merge with the single particle continuum along some
directions in the Brillouin zone - this is a more realistic
situation. How easily would the site space technique
deliver the eigenvalue of maximum modulus if it lay close
to the continuum? This question is particularly important
if the plasmon mode merges with the continuum at small |k |
By varying the parameters we can control the way in which
the plasmon mode merges with the continuum and look for any
situations where the site space technique would in
inapplicable.

(ii) Quantities of physical iInterest such as the inter-
action energy, can be expressed as Brillouin zone summations
over functions of the frequencies and spectral strengths

°f the elementary excitations of the many body system.
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It is of value therefore to ask during our investigations,
if the site space method is capable of delivering the
excitation spectrum (and the related spectral strengths)
at an arbitrary wave vector in an efficient manner, so
that modal sums such as the interaction energy can be
determined without further approximation (Baldereschi, 1978).
The answer to this question is parameter dependent, for
the computing effort required to obtain plasmon energies
well above the single particle continuum will be much less
than that required to obtain plasmon energies close to
the continuum. Furthermore, variation of the lattice
parameter allows us to examine the dependence of the inter-
action energy and exchange correlation energy on the
electron density of the metal.
(iti) In a later section we determine the spectral strength
°f a single particle mode. This involves the use of a
Lippman-Schwinger scattering theory approach coupled with
the plasmon pole approximation. As a test of the reliability
°f the resulting expression for the spectral strength, we
look to a sum rule. How well the sum rule iIs satisfied
depends on the status of the plasmon pole approximation -
this 1s parameter dependent since at high electron density
and small |k |, the plasmon excitation will screen the
single particle modes more efficiently (for a given value
of hopping parameter) than at lower densities.

It is for these reasons that we have chosen a wide

nange of parameters. Having set the range of parameters,



48

we compare the site space calculation of the excitation
spectrum and spectral strengths, with that of the dielectric
method. The comparison will take place on as many levels

as possible e.g. we will look at the work involved in
setting up the computer programs and the computer time
required by the methods. All computations in this thesis
were carried out on the IBM 4341 machine at Liverpool
University (this machine sets double precision by default).

>77 175

The range of the computer is approximately 10 to 10

A quantity common to both methods 1is the energy term
ft (9

lie.r

ft) = N 1 v &+G) |F(k+G) F(K) = a3r X(M| e
G

The Fourier transform, F, is easy to evaluate for the Is
hydrogen-like orbital.

- (z/a )r 16 22
0= (go) " - 3z % 2abK* Y
Although we have displayed explicitly the nuclear charge z,
we take z = 1 in the final calculations. We see that ft is
aneven fTunction of each of the components of k, and that it
is invariant under the iInterchange of the components. This
statement holds true for n and e, and consequently also
for the plasmon energy itself. Because of this, knowledge
of the plasmon energy 1in one sixth of the positive octant
°f the Tirst Brillouin zone enables us to write down the

Plasmon energy for any value of wave vector iIn the zone.
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We therefore only calculate plasmon energies iIn the wedge

shaped region of the positive octant, shown in Figure 3.
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FIGURE 3

Diagrams (2), (@), and (&) 1in this figure demonstrate
how the invariance of the plasmon energy under the inter-
change of k_ with k , « with k_, and finally k with k

X Yy X z y z

means that we need calculate plasmon frequencies in a

wedge shaped volume of the positive octant shown in

diagram ().

if/a k k
r> ryY .3
Volume of the wedge = d< die dKz = é_/(g)
cv x 0J

which is one fortyeighth of the volume of the Tirst Brillouin

zone.
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It is clear from Figure 3 that three important
directions in the Brillouin zone are the (100), (110) and
(@11) directions, and so we initially look at the behaviour
of various quantities (such as the plasmon energy) along
these directions and regard this exercise as producing the
salient characteristics of the quantities with respect to
wave vector. We emphasise that no use is made of the special
symmetries of these directions. Throughout our work on
metal physics, we set an accuracy of 10_4 Hartree on the
plasmon energy, and so the energy term 2 needs to be deter-
mined to at least this accuracy. iS a sum over recip-
rocal lattice vectors - how many vectors do we need to
guarantee an accuracy of 10_4 Hartree for over all the
Brillouin zone? By looking along the (100), (110) and

(111) directions we find that 729 vectors should be sufficient.

[The primitive vectors of the direct lattice are
(a,0,0), (0.a.0), (0,0,a)

and so the primitive vectors of the reciprocal lattice are
(277/a,0,0), (0,27i/a,0), (0,0,27T/a)

A wave vector in the first Brillouin zone has the form:

T. = 2n.iT/La where n. is an integer such that -L/2 < n. < L/2

and 1 s x, Y, zJ
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TABLE 4

"OH n1 is the value of ft obtained by summing over
the n shortest reciprocal lattice vectors. The table
refers only to the (@11) direction i.e. < = (K,K,K), and
K is incremented from 0.1 ir/a to r/a in steps of
0*1 ir/a. We observe from the table that although one
reciprocal lattice vector gives a reasonable approximation
at small K (namely the zero vector), 729 G vectors are
needed to obtain the desired accuracy at the edge of the
Brillouin zone for a = 6.5 atomic units. (ft is independent

of hopping parameter).
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The Momentum Space Calculation.

The standard dielectric function approach, requires us to
determine the excitation spectrum of the tightly bound metal by
use of the determinantal relation (11.1.4). We therefore need to

look at the equation:

detCs - A(k+G,k+G";w)] = O 2.3

/4

The Fourier transform of the kernel A, 1is by definition

A(k+g,k+g 1;c0) = d3r d3r1 A(r,r ";0) ei &+G) .r -1 (+G7).r
2.4
A(r,r*j) = 2 J  ——mm—o R fi>-(r)4>k,(r) d 34 vir'-A.)Aq(A)qck(q)
k. q tu)-(c(@)-e (k)1

The three real space integrals implicit in the Fourier transform

are separated by the translation r* —«+r" + K, as shown below.

A(k+g ,k+G";w) =

. -n ) i
2v (k+G') £ ——--— —1 d3r (Ne 1(+G) - Ry (" D<t>*U)e~i (1 (+G"

k.q [(o-(e(@-e()] “ K

IE is at this stage iIn the dielectric theory that we make the

tight binding approximation. Consider the following integral.

i r &SN ENT) ei(K+G)'r :é ¥ e_ir(%"Eleik'£ d3r xtr-f)x(r-1) ei(K+G)"r
N

£.E£'

By neglecting the overlap of atomic orbitals on different sites,

We conclude that

dir V. r> V r> eU<*0)qrE+de¥R$R)6thK+ 2.5



where F is the Fourier transform of the orbital density, [x()]?,
and the wave vector (g, belongs to the TfTirst Brillouin zone. The

reciprocal lattice vector: G(k+t<), ensures that this 1is so. For

convenience however, we never display G(k+ic) explicitly. The

Fourier transform of the polarisation kernel is thus

(k" nk+<)
€ k) < ®)

2 .6
AGHG, k+G1yW) = 2N v G+GIF (+OFt+G1) N ¥

Note that because A is a separable function of G and G", then

detfse ~ A (k+G, k+G130))] = 1 ~ 1race A(k+G,k+G Tto) 2.7
G;G

The frequency of an elementary excitation therefore satisfies

2.8
I A(k+G,k+G;w) - 1
G

Substituting our expression for %ﬁe Bolarlsatlon kernel into
this equation, and m§ﬁ¥%% H3& BI the definition of A(k), gives

the cU.4peA.Aton neto.tton

Mk nkHi L = 1 2.9

TN R [ - e () ¢ (9]

The omission of G(k+<) from this relation presents no

difficulty since it is clear that the domain of the functions

n and e (the occupation number and tight binding energy) is the

first Brillouin zone. Returning to the key equation in the site

space approach (11.1.30), we can establish a more general result

than (2.9), by means of Fourier lattice transforms.

(nk“nk « > e-i(ktk) .1 <M]|»oita0it]0O> 2.1
<M]a+

I,tao,,l°>= 2n(K)H
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The usefulness of this explicit expression for the
plasmon amplitude is rather limited - for it only provides
a means of attaching a number to the plasmon amplitude
(via a Brillouin zone summation) once the plasmon energy
is known, and whilst it is possible to employ the expression
to explore the symmetry properties of the plasmon ampli-
tudes, such properties can be established directly from
the eigenvalue equation. To proceed with the momentum
space calculation of the plasmon energy, we need to select
a frequency interval in which to look for the excitation.
We can obtain successive approximations to the plasmon
energy by casting the dispersion relation in the form:

n (e(k+K) - e(k))
k - 1 2.11

4d«(k)
[we - (e(k+<) - e(k))2]

We have made use of the fact that n and e are even
functions. The plasmon excitation is only well defined

above the single particle continuum, so that for the plasmon

mode
a) > e(k+K - e for all k, k 2.12

ft is clear from this inequality that the plasmon energy

satisfies

e {s. 2.13

where
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Sm = ﬁ [ nk:(t(k+K) -eik))a for m =1, 3, 5,... 2.14
k

The jth order approximation to the plasmon energy 1is obtained
by terminating the series on the RHS of (2.13) at the jth
term, and solving a jth degree polynomial in w . The
first, second, third and fourth order approximations to
the plasmon energy can be written down explicitly and since
the sums SN, S°, and can be evaluated by the same do
loop, it is worth looking at all four approximations - the
better the approximation to the plasmon energy at this

stage, the less computing effort will be required later.

For ease of writing we define:
a = 41251, 8 = 4ftS3, y = 4QS5, e = 47S§8?

The Tirst and second order approximations are trivially

determined.
N_
2 2 _ a * /(an-48) 5 15

The "+" sign gives the appropriate second order approximation
to the plasmon energy for this ensures that as 8 0
i.e. as k + 0 (N.B. a~0as <-0; 8, ¥, e %0 as k + 0) .
The square of the third order approximation satisfies a

2 1

cubic equation and by writing y = we put the

cubic equation in standard form
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+ )

y3+py+q n + 3 ak +Y)

The discriminant, D , is positive for < ~ 0 and so the

solution for the third order approximation is

%3 © :
3 3<D-¥)1/3

The square of the fTourth order approximation satisfies a

quartic equation. We solve the quartic by writing it in

biquadratic form

@°+8h+4R) (h°+e) = (yah) °

, 4 a2 .,2 e = + B + 2h
b2 = e + W
The fTour solutions of the original quartic are thus
ux + (-] - @o»d+ h - b =o0 2.17

04 + | +ao+ h +b

I
o
N
=
(00]

Equation (2.17) 1is thecorrect choice for the plasmon energy
since d coincides with o when ¥y = C = 0 (take the "+°*

f°r the discriminant when solving the biquadratic). Here
then, are the first four approximations to the plasmon energy

was very clear and straightforward as to how one would
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obtain them. However, if we try to compute the sums

(m = 1,3,5,7) and thence the four approximations, we Tfind
that for certain values of wave vector the program fails.
This is the Tfirst indication that the dielectric function
approach is not without computational difficulties. The
reason why the program fTails is due to underflow problems
i.e. the computer is attempting to evaluate a number

smaller than 10_77

Suppose we compute the Tirst four approximations to
the plasmon energy along the (@o00) direction with u = o0.01
and a = 1.5. We take (30)3 vectors in the Bnlloum zone
in order to evaluate the sums S*. At k = 0 .47r/a there 1is
a program interrupt - there are underflow problems, the
computer attempts a standard fTix up and eventually the
program fails. We trace the problem to lie with S, and S~
For (30)3 wave vectors in the Tirst Brillouin zone, the
smallest value of Je(k+t<) - e(k)] (zero excepted) is of the
order of 10-4 Hartree , so there should be no difficulty
in computing or S,. However, i1If we put a write state-
ment in the program for this energy difference, we find
values of the order of 10-16 present. Thus iIn evaluating
S,. and the computer generates numbers of the order of
lo“80 and 10-112. As we have indicated, the components
of k take the following values iIn units of ir/a

_14  -13 14
oeoe® , - 1
15° 15" 07 15
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The values of the energy difference e(k+<) - e(k) which

are assigned magnitudes of 10*‘16 correspond to k = 127r/15a
and kX = -3u/l15a, for all ky, kz. Recalling that

£ = (@© -4iT/a,0 ,0) we can show that such numbers should be
identically zero. The program will run if we assign the

energy difference 1its precise zero:
Ir e (k+K) - e(k)] < 10~10, ektsx) - e® =0

3
We have mentioned that (30) vectors were used in the

nitial evaluation of the sums S , In fact (18)3 vectors

ensure that the sums are sufficiently convergent. For this
number of vectors there are no underflow problems in the
(100) direction - they occur iIn the (111) direction. We
therefore note the existence iIn our model of a typical
computational difficulty associated with the dielectric
function approach, during the Ffirst stage of the calculation.
For the second stage of the calculation, we return
to the dispersion relation and continue the expansion of the
trace of the polarisation kernel to higher orders. The
resulting polynomial equation is solved numerically by
testing for the sign (-, o, +) of the product of the values
of the polynomial function at the ends of a frequency
interval determined by . The interval 1is appropriately
reduced by a factor of one half and the process repeated
until the zero of the polynomial Tfunction is delivered to
the required accuracy. The smallest value of |JE(k+ic) - e® |

(taking (8) k vectors in the Brillouin zone) TfTor the
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nine choices of u/a, is of the order of 10_5 Hartree
(zero excepted). Because of this, the trace of the polari-
sation kernel can only be expanded to ninth order without
incurring genuine underflow/overflow problems, and even
then the energy difference e(kt<) - e(k) needs to be
rescaled by a factor of 10+4. However, although we are
able to determine the ninth order approximation to the
plasmon energy, 1t is clear that this will be a poor approxi
mation for values near the single particle continuum. In
such circumstances we go on to a third stage of calculation
the evaluation of the complete dielectric function.

We can calculate the plasmon energy to any degree
of precision by looking for the zeros of the dielectric
function. Because the dielectric function is not a simple
polynomial the best way to proceed is to use Newton®s
method, this minimises the number of i1terations. We begin
with a trail value of the plasmon energy say, the
ninth order approximation) and evaluate the trace of the
polarisation kernel and its derivative with respect to
frequency, at u_ We thereby obtain a better approxi-

mation to the plasmon energy, Wg~/Tt

1 - Trace A
wShift slrail Derivative Trace A

The differentiation can be carried out explicitly and the
derivative evaluated by the same do loop as the trace. We

then set equal to wgnift an”™ repeat the process
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until the determinant of the dielectric function is smaller

than 10_4- (N.B. at points in the Brillouin zone where

the plasmon mode lies close to the continuum, it is possible

that w, might be smaller than tﬁ - In this situation
9 ar
Wi ak is initially assigned a value which is slightly

greater than the maximum single particle excitation energy).
The main features of the dielectric function method are

brought together in the form of a flow chart shown over

the page.



THE DIELECTRIC FUNCTION METHOD

Compute the sums (m=1,3,... ,17) and (STAGE D

Using to set a frequency range, compute ulg (STAGE 2)

Is 1quﬁ41 <JJJ_4 ? yes > plasmon energy =

4
no

(STAGE 3)

Is U > Maximum single particle excitation energy ?

1.01 oﬂz’;

Compute the trace (and the derivative of the trace) of A

at Irail®™ to °ktaz>h a better approximation : ~gMift

s . max _

- i i
ashift AHar - no single particle modes only

yes >
Is IDielectric Function wshift>l < o™ — > oTrail = ~shlft

yes

plasmon energy =
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At fTirst sight, the calculation of Wg seems unneces-
sary; however, there are good reasons for supposing that
this stage of the calculation might improve the overall
efficiency and effectiveness of the dielectric function
method. The calculation of Wg alters the efficiency of the
method in three ways. Firstly, on the debit side, we need
to determine the sums Sg, , - - . , (five in all) 1in
addition to the four required for stage one of the calcu-
lation, but since the sums Sm (m = 1,3,...,17) can all be
determined by the same do loop, this should not bring about
a significant increase 1In computer time. Secondly, it is
possible that for small and intermediate values of k,
stages one and two of the calculation would be sufficient
to guarantee an accuracy of 10_4 Hartree on the plasmon
energy, so that the computation of the dielectric function
is not required. This clearly represents a saving 1in
computer time, as does our third point. By definition,

Wg is a better approximation to the plasmon energy than )
and so fewer iterations are required in the third stage

of the calculation if uig is used as trail value iIn preference
to to4.

The way in which the calculation of og alters the
effectiveness of the dielectric function method is linked
to the pole structure of the trace of the polarisation
kernel, Tfor in order to pick up plasmon energies close to

the single particle continuum we need a very good initial

guess, and the best approximation is nig.
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One fTinal general point about the efficiency of
dielectric function method concerns the convergence of
Brillouin zone summations. It was eventually found that
(18)3 points in the Brillouin zone, coupled with an accuracy
of 10_4 on the dielectric function, guaranteed that plasmon
energies were correct to 10_4 Hartree (we looked along the
three directions discussed earlier i.e. (@o0), (@10) and
(111) directions, fTor our nine choices of u/a). If one
requires an appreciable number of plasmon energies (>100 say)

for use i1n Ffurther calculations, then there 1i1s one more
step we can take to reduce the computer time. Having
decided that a sufficient number of wave vectors 1iIn the
Brillouin zone is (18)3, then for each of these wave vectors
we test to see if the corresponding one electron state is
occupied. In this way, we generate a set of wave vectors
going with occupied states, so that Brillouin zone summa-
tions which incorporate a factor n™ (and they all do) are
carried out only over this predetermined set i.e. only
over occupied states.

We now present the results of the dielectric function
method in the form of a series of graphs and tables to-

gether with appropriate comments.
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Graphical Representation of the Excitation

Spectra of the Tightly Bound Metal

The next three pages show excitation spectra in the
(100), (110), and (111) directions. For each direction we
look at the plasmon mode and the electron hole continuum
associated with the nine tightly bound metals defined by
our nine choices of u / a. Rather than give nine separate
graphs per direction, we superimpose the three spectra
corresponding to a given value of u and three choices of a
onto one Tfigure.

The first page shows three fTigures labelled by
u=-0.01, u= -0.03, and u = -0.05. On each Tfigure there
are three plasmon modes and three electron hole continua
associated with a = 1.5, a = 2.5, and a = 6.5. However,
since the electron hole continua depend only on u, they are
coincident. The plasmon modes are distinguished by solid
and dashed lines as described below.
upper solid line represents a plasmon mode with a = 1.5
.......... - - represents a plasmon mode with a = 2.5
- - - - - = represents a plasmon mode with a = 6.5
lower solid line represents the continuum edge.

The ordinate axis (energy) is marked off in steps of
°.1 Hartree and the abscissa (K) iIs marked In steps of 0.2 ir/a.

k= (K,0,0) for the (1oo0)direction

(K,K,0) for the (@10)direction

;\'
I

and k k ,K,K) for the (@11)direction.
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Examination of the excitation spectra shows that our
choice of parameters has produced a full range of many

electron effects and we describe some of them below.

(100) Direction

For each of the nine values of u / a the plasmon mode
lies above the electron hole continuum at every point along
this direction. Indeed at small K the many electron excita-
tion is to be found high up in the energy scale so that it
is difficult to excite a plasmon mode for these values of
wave vector. Notice how changes in electron density gives
rise to a wide variation in the shape and extent of the
dispersion of a plasmon mode for a given value of hopping
parameter. It is interesting to look at the width of the
frequency intervals 1In which we can find the many electron
excitation for u = -0.05 (the electron hole continuum is
confined to an interval width of 0.2 Hartree). We show
below: the value of the lattice parameter, the frequency
interval in which we can find the plasmon mode, and the

width of the interval relative to that of the continuum.

a=1.5 [0.53,0.21] 1.60
a=2.5 [0.41,0.26] 0.75
a = 6.5 [0.25,0.31] 0. 30

The shape of the dispersion of the many electron excitation
(essentially 3m/9K) 1is also interesting
at a = 1.5 we find o(K=0) > w(K=-rr/a) and at

6.5 we have w(K=0) < m(K=ir/a).

a
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(110) Direction

We observe that for the six metals of high electron
density (a = 1.5 and a = 2.5), the plasmon mode either
merges with the continuum (decaying into electron hole
pairs) or 1s just above the continuum, for K > 0.5 n/a.
The absolute and relative extent of plasmon dispersion 1is
reduced for these metals (in going from the (@o00) direction
to the (@10) direction) as a consequence of the increase
in the magnitude of the maximum single particle excitation
energy. Figures for u = -0.05 corresponding to those given

above are as follows:

a= 1.5 [0.53,0.31] 0.55
a = 2.5 [0.41,0.35] 0.15
a= 6.5 [0.25,0.45] 0.50

We note that the extent of plasmon dispersion for the low
density metals (a = 6.5) has increased, signalling a signi-
ficant change in 9w/3K. In contrast to this, the shape

of the plasmon dispersion for the high density metals 1is

largely unaffected by the change in direction.

(111) Direction

Spectra for this direction further highlight the sen-
sitivity of the magnitude of the maximum single particle
excitation energy to changes in direction - making it diffi-
cult to predict the extent to which the plasmon mode contri-

butes to electronic properties such as the iInteraction energy
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and exchange correlation energy. It is also apparent that
when a plasmon excitation merges with the continuum, it
does so smoothly. This is compatible with the electron
electron interaction lifting the single particle excitation
with maximum frequency from the Hartree spectrum. Only

two of our choices of u / a (-0.01 /7 6.5 and -0.03 / 6.5)
yield plasmon modes which are above the electron hole

continuum over the entire Brillouin zone.



TABLE 5

This table displays the results of the first, second
and third stages of calculation of the dielectric function
method, for a selection of values of u /7 a and wave vector
(K is incremented in units of 0.1 ir/a starting at 0.1 Vv/a
and finishing at ir/a) .

“NIT™ refers to the number of iterations required

by the third stage of the calculation

"PE" is the plasmon energy correct to 10_4 Hartree

"EDMAX* is the maximum value of the energy difference

c(k+K)-c (k)

The meaning of the other symbols in the table should

be apparent.

Features to Notice
(100) Direction: We see that for metals of small hopping
Parameter, u = -0.01, the third stage of the calculation is
not required along this direction (look at NIT). In fact the
first stage alone (the determination of W4) gives very good
values of the plasmon energy for the majority of the points.

This is a direct result of a low continuum edge.

(110) Direction: This direction demonstrates the need for

the calculation of the full dielectric function for plasmon

energies near the continuum. Look at the values of W4,
W9, and PE for u = -0.03, a = 1.5, and K = 1.26.
w4 W9 NIT PE

0.1809 0.1954 6 0.2010



Although W9 1is relatively close to PE, i1t still takes
six iterations to obtain the desired accuracy (the accuracy
of PE is generally slightly better than 10_4 Hartree).

This i1ndicates that WTRAIL needs to be as good as we can

make it - iIn order to keep the number of iterations down.

(11) Direction: Examination of the data for this direction
shows just how poor the ninth order approximation can be.

For u = -0.05, a = 6.5 and K =0.29 the value of W9 is 1in

error by about 11%.
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KAPPA = (KtK?0) K wi w2 w3 w4 W9 WTRAIL MT PE EQMAX

= —dano A = 1.5
0.21 0.3903 0.3919 0.3919 0.3919 0.3919 0.0 0 0.3919 0.0375
0.42 0.3403 0.3455 0.3456 0.3456 0.3456 0.0 0 0.3456 0.0742
0.S3 C.2755 0.2871 0.2682 0.2883 0.2833 0.0 0 0.2883 0.1090
0.34 0.2105 0.2320 0.2363 0.2373 0.2377 0.2377 1 0.2377 0.1411
1.05 0.1550 0.1876 0.1930 0.2023 0.2065 0.2065 2 0.2068 0.1697
1.26 0.1 124 0.1541 0.1717 0.1809 0. 1954 0.1954 6 0.2010 0.1942
1.47 SI®GLE - PARTICLE MODES ONLY 0.2138
1.68 SINGLE - PA3TICLE KODES ONLY 0.2233
1.38 SINGLE - PARTICLE KODES ONLY 0.2370
2.09 S INGLE - PARTICLE KODES ONLY 0.2400

= -0.03 N w2,
0.13 0.3114 0.3127 0.3127 0.3127 0.3127 0.0 0 0.3127 0.0375
0.25 0.2940 0.2994 0.2997 0.2997 0.2997 0.0 0 0.2997 0.0742
0.38 0.2682 0.2800 0.2811 0.2813 0.2813 0.0 0 0.2813 0.1090
0.50 0.2377 0.2576 0. 2609 0.2616 0.2618 0.2618 1 0.2618 0.1411
0.63 0.2065 0.2351 0.2421 0.2444 0.2457 0.2457 2 0.2457 0.1697
0.75 0.1734 0.2149 0.2265 0.2313 0.2360 0.2360 2 0.2363 0.1942
0.38 0.1562 0.1990 0.2149 0.2225 0.2324 0.2324 3 0.2344 0.2133
1.01 0.1411 0.1882 0.2074 0.2172 0.2323 0.2323 5 0.2378 0.2233
1.13 0.1328 0.1323 0.2035 0.2147 0.2333 0.2394 4 0.2421 0.2370
1.26 0.1302 0. 1805 0.2023 0.2140 0.2338 0.2424 4 0.2443 0.2400

= —oe 03 A = 6«8
0.05 0.1980 0.2J01 0.2001 0.2001 0.2001 0.0 0 0.2001 0.0375
0.10 0.2012 0.2087 0.2093 0.2094 0.2094 0.0 0 0.2094 0.0742
0.14 0.2064 0.2208 0.72220Q 0.2233 0.2233 0.0 0 0.2233 0.1090
0.19 0.2134 0.2347 0.2386 0.2398 0.2402 0.2402 1 0.2402 0.1411
0.24 0.2216 C.2491 0.2554 0.2572 0.2582 0.2582 1 0.2532 0.1697
0.29 0.2305 0.2329 0.2711 0.2738 0.2755 0.2755 2 0.2755 0.1942
0.34 0.2389 0.2752 0.2848 0.2882 0.2905 0.2905 2 0.2906 0.2138
C .39 0.24060 0.2848 0.2955 0.2993 0.3021 0.3021 2 0.3022 C.2233
0.4 3 0.2507 0.2e10 0.3022 0.3063 0.3095 0.3095 2 0.3096 0.2370
0.48 0.2524 0.2932 0.3045 0.3087 0.3120 0.3120 2 0.3121 0.2400



KAPPA = K» KiK1 K wi W2 W3 WA w9 WTRAIL NIT PE EDMAX

= -0.05 A =1.5
0.21 0.A939 0.A979 O0.A979 O0-.A930 0.A980 0.0 0 0.A930 0.0939
0.42 0.A065 0.A23A 0.A251 0.A25A 0.A25A 0.0 0 0. A25A 0.185A
0.63 0.3038 0.3A22 0.3522 0.3556 0.3531 0.3581 2 0.3581 0.272A
0.3A SINGLE - PARTIELE MODES ONLY 0.3527
1.05 SINGLE - PARTICLE MODES ONLY 0.A2A3
1.26 SINGLE - PARTICLE MODES ONLY 0 .A85A
leA7 SINGLE - PARTICLE MODES ONLY 0+53A6
1.63 SINGLE - PARTICLE MODES ONLY 0.5706
1.88 SINGLE - PARTICLE MODES ONLY 0.5926
2.09 SINGLE - PARTICLE MODES ONLY 0.6000

m O Om A= 2.5
0.13 0.3989 0.A038 O0.A039 O0.A039 0.A039 0.0 0 0.A039 0.0939
0.25 0.3687 0.3369 0.3392 0.3895 0.3896 0.0 0 0.3896 0.185A
0.33 0.3260 0.3623 0.3717 O0.37A5 0.3763 0.3763 2 0.3763 0.272A
0.50 0.2791 0.3356 0.3552 0.36A3 0.3760 0.3760 3 0.378 A 0.3527
0.63 S INGLE - PARTICLE HOOFS ONLY 0.A2A3
0.75 SINGLE - PARTICLE MODES ONLY 0.A85A
0.88 SINGLE - PARTICLE MODES ONLY 0.53A6
1.01 S INGLE - PARTICLE MODES ONLY 0.5 706
1.13 SINGLE - PARTICLE MOOES ONLY 0.5926
1.26 SINGLE - PARTICLF MODES ONLY 0.6000

r “o.o0x A = 6.5
0.05 0.2563 0.26A0 0.26A5 O0-26A6 0.26A6 0.0 0] 0.26A6 0.0939
0.10 0.26A6 0.237? 0.292A 0.2936 0.29A1 O0.29A1 1 0.29A1 0.185A
0.1A 0.2773 0.3176 0.3291 0.3335 0.3372 0.3372 2 0.337A 0=272A
0.19 0.29A2 O0.3A9%A 0.3678 0.3761 0.3859 0.3859 3 0.3875 0.3527
0=2A 0.3136 O0.380A O0.AOA7 0.A165 O0.A335 0.A335 A 0.A392 0.A2A3
0.29 0.333A 0-AC87 O0.A375 0.A522 0.A335 O0.A903 3 0.A89A 0. A85A
0=3A SINGLE - PARTICLE MUDES ONLY 0=53A6
0.39 SINGLE - PARTICLE MODES ONLY 0.5706
0.A3 SINGLE - PARTICLE MODES ONLY 0.5926

0 .A8 SINGLE - PART ICLE «ODES ONLY 0.6000



Computer Times fTor the Dielectric Function Method

The computer unit processing times associated with the
dielectric fTunction method are listed on the following page.
The CPU time, shown iIn secs, relates to the time required to
execute the program outlined by the flow chart given earlier
in this section, for ten values of the wave vector k. We
put £ = (K,0,0), ([K,K,0) or (K,K,K) and allowed K to scan
through the set { mr/10a - m= 1,2,...,10 }.

The results are rather surprising, in that stage 2 of
the calculation is found to have only a minor effect on the
overall efficiency of the method. To understand why this is

so, let us return to the values of W4, W9, NIT and PE shown

on page 7A
w4 W9 WTRAIL NIT PE EDMAX
0.1809 0.1954 0.1954 6 0.2010 0.1942

We see that because the fourth order approximation

iIs such a poor guess (i.e. W4 < EDMAX) WTRAIL 1is set equal
to (1.0+0.01)EDMAX, which i1s a better approximation to PE
than W9 - so that there are fewer iterations with stage 2
of the calculation omitted. The above discussion relates
to the plasmon mode near the electron hole continuum. Away
from the continuum, stage 2 reduces NIT, The net effect of
stage 2 is to reduce the computer time by a smaller amount
than we might have expected. A bigger saving in computer
time is brought about by summing over occupied states only

(referred to as Method A), this reduces the CPU time by 50%.
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54 68
37 38
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We close this section on the dielectric function
method with a graphical study of the frequency dependence
of the trace of the polarisation kernel. Let us choose a
model fTor which the plasmon mode lies well above the electron
hole continuum at small k, but is close to the continuum at

large k. An appropriate choice is

u/a = -0.057 15 and Tt = (K,0,0)
K PE EDMAX

0.1 n/a 0.5163 0.0313
0. 7 n/a 0.2430 0.1782

1.0 7i/a 0.2149 0.2000

We begin by considering the frequency dependence of
the trace of the polarisation kernal at K = 0.7 n/a. The
kernel has asymptotes at frequencies equal to the energy
difference e(k+<)-e(k). Clearly, the number of asymptotes
is related to the number of k vectors in the Brillouin zone,
M3 say. On the next page we plot this energy difference

along the 100 direction in k space for three different

values of M:
M = 18 (upper histogram), 30, and 40 (lower histogram)

The histograms peak at 0.1769 Hartree (M = 18),
0.1780 Hartree (M = 30), and 0.1782 Hartree. The low
points of the histograms are at the negative of these

values.
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We see that the step lengths on the histograms are
not equal i1.e. the asymptotes of the trace of the polari-
sation kernel are not equally spaced. For M = 40, the four

asymptotes of highest frequency are
w= 0.1588 0) = 0.1695 w = 0.1760 w = 0.1782

Since 0.1782 1is the maximum value of the continuous
function e(k+K)-e(k), we take (40)3 k vectors in the Brillouin
zone in plotting the trace of the polarisation kernel at
k = 0.7r/a. The plot is given over two pages so as to
accommodate the higher energy single particle modes and the
plasmon excitation in a sensible manner (N.B. the dotted
lines on the Tirst page represent single particle branches
of the polarisation kernel, whilst the dotted lines on the
second page represent the second, third and fourth order
approximations to the plasmon branch).

The third and final graph shows two plasmon branches
of the trace of the polarisation kernel; one at k = O.lir/a.

(dotted line) and one at t& = it/a.
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The Site Space Calculation

One of the Tirst considerations in setting up the
site space calculation i1s the size of the lattice required
to give reasonable values of the plasmon energy. IT we Ilook
at the formula for the first approximation to the plasmon
energy, we Tfind that 2 can be written as a linear combi-
nation of six site expectation values <a$;Q>, namely those
neighbouring the origin. This implies that a lattice of
side fTive atoms is an appropriate size to begin the calcu-
lation. However, even fTor this relatively small lattice
the associated eigenvalue problem is of order 125 x 125,
for the order goes as L3 X L3 where L is the side of the
lattice. IT we increase the side of the lattice by only
two atoms, the eigenvalue problem requires the maximum
virtual storage available on the IBM machine at Liverpool
University (1500 K). Recalling that we aim to calculate
plasmon energies to an accuracy of 10_4 Hartree (and that
the computation of the full dielectric function was often
necessary to ensure that this was so - see previous section)
it appears that the corresponding eigenvalue problem may
not go on the computer.

Problems of storage and computer time meant that for
many years solving an eigenvalue problem on a lattice was
not an attractive proposition. Generally speaking, quantum

mechanics gives rise to eigenvalue problems associated with

matrices of high symmetry e.g. Hermitian matrices or block



diagonal matrices, and this can be used to ameliorate
storage problems and reduce computer time. Unfortunately,
the matrix associated with the site space formulation of
the many electron problem is neither Hermitian nor block
diagonal and any symmetry properties of the matrix are
model dependent. In spite of this, there are physical
systems well suited to the site space method, and these
are tight binding systems. The important feature of tight
binding systems is that they generate eigenvalue problems
based on sparse matrices.

It is to sparse matrices that we now turn our attention.
The plasmon energy (at wave vector k) of the tightly bound
metal 1i1s the eigenvalue of maximum modulus of the matrix a

e—ik.(t—e')jO - it 0

The number of atoms (NC) along a side of the cubic
lattice is taken to be odd, so that the origin of the system
£X.,£y,|Z can be located at the centre of the lattice. For
computational purposes it iIs inconvenient to work with the
direct lattice vectors 1, because for certain atoms the
components of £ are negative. We therefore set up a right
handed orthogonal set of axes 1, J, K at the edge of the
cube Tfor which Ia, Iy and £A are all negative, and take
this to be the point (1,1,1). The position vectors of the

lattice with respect to this co-ordinate system are the

members of the set R
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R=4{ @, 3, 1, Jand K = 1,2,...NC }

The centre atom has position vector (NO,NO,NO) where NO =
(NC+1)/2. The vectors r = (1,3,K) can be used to label the
rows and columns of a. However, it iIs better to have a
scalar index for this purpose, and so we introduce the

bijective mapping M

VR S I J— > 1 + (J-DNC + (K-1)(NC)2

By acting on the vectors r with the mapping M we generate
the natural numbers 1,2,...,N where N is the number of
lattice points, N = (NC)2. This is illustrated over the
page for a lattice of side five. The first grid shows each
lattice point labelled with its position vector (1,J,K)
whilst the second grid shows the lattice points labelled by

the scalar index M(1,J,K).
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Since the lattice i1s of finite extent, we need to
impose boundary conditions on the eigenvalue equation. In
principle, the nature of the boundary conditions for this
problem are unimportant because we are searching for the
frequency of a bulk plasmon mode. In practise, we impose
boundary conditions which are likely to be helpful from a
computation point of view. We know that in the absence of
the electron-electron interaction, the eigenvalue problem
can be solved analytically and we make use of this fact in
helping us to choose suitable boundary conditions. Consider

the following simple example:

Qan =a ( Xn—i + Xn+f ) n=2,3,..., ((\N-D)
cyclic kill off
boundary conditions boundary conditions
a X =a ( XQ + X2 ) u X = a Xj
o XN - a ( XN_1 + XN+1 )

=
>
=
I
Pa
=
1
=

X =X

n n+N
Solution Xn = A eino Xn = A sinnO
provided to = 2aco0s6 O = 2acoso
where 0 = 2iwit/N tanNO = -tanO

N.B. 0 c [0.,2a[



The above system of equations describes a linear chain
of atoms iIn which each atom is coupled only to its
neighbour(s) by the tight binding parameter a. It i1s
essentially the one dimensional form of our eigenvalue
problem with the Coulomb interaction between electrons
switched off. We see from this example that cyclic boundary
conditions are to be followed on the grounds of mathematical
convenience. Kill off boundary conditions produce a trans-
cendental equation for the variable 0. In three dimensions

the cyclic boundary conditions are

XUV.E £ ) XU _+NCa,A .4 )
ATy X y t

¢

XUXx® vy

X Uux,yt-NCa,£z)

x(V V V = xX(v y £z+H\3H

The non-interacting amplitudes, Xf(e2=0), for our
tightly bound metal are plane waves Aexp(ipf£). It is
clear that these amplitudes are easily determined by the
imposition of cyclic boundary conditions, Tfor p a = 2nvn/NC
where m = 0,1,. . .,(NC-1) likewise py,pz. This is useful
in carrying out checks on the computer program for the site
space method.

So far in this section, we have set up a co-ordinate
system 1,J,K and used this to assign a natural number to

each lattice site via the mapping M.
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11 IN

aN1 ANN

We then imposed cyclic boundary conditions on the eigenvalue
equation. The matrix a for the Ffinite lattice iIs now com-
pletely defined. In each row there are at most seven non-
zero elements: six one electron terms and one many electron
term. The matrix describing a lattice of 125 atoms appears

on the following pages. The elements of the matrix a

are shown in accordance with the prescription detailed below.

1 = ufd-costc™a) - isinK™a] 2 =u[(@-cosicMa) +isinicha]

3 = u[(@-cosk @ - isinK_a] 4 =u[(l-cosk @) + isinic_a]
y y y *

5 e u[(l-cosic Za) - isinicza] 6 =ul[(l-cosk Za) +isinicza]

7 20 (k )<a 1]
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Notice that the diagonal lines, which are typical of
a tight binding regime, are broken at the surfaces of the
lattice, and that the many electron terms are confined to
a single column, the 63rd column infact ({, = 0 is mapped
to 63) .

The most iImportant feature of the matrix is that it
is sparse, 90% of its elements are zero. To define a sparse
matrix we need only record the position and values of the
non-zero elements. There are a variety of T"address systems®
we could employ to do this and the one we shall use 1is the

simplest. It is based on the two matrices INDEX and VALS.

INDEX(1,J) is the number of the column of the non-
zero element with "name® J in row I of
matrix a

VALS(I1,3) is the value of the non-zero element with

name J in row | of matrix a.

As we have seen, there are seven different types of
elements so J = 1,7.

To show how easy it is to define the INDEX matrix
(taking account of cyclic boundary conditions) we reproduce
a section of the computer program for the site space method.
The centre element of the matrix is at (IC,IC) where

IC = (N+D/2.
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DO 6 K = 1,NC,1
D0 7J = 1,\C,1
DO 8 1 = I.NC.I
TA = 1+(J-1)*NC+(K-1)*NC*NC

INDEX(1A,1) 1A+

INDEX(1A,2) IA-1

INDEX(1A,3) IAHNC

INDEX(1A,4) IA-NC

INDEX(IA,5)  1A+(NC*NC)

INDEX(IA, 6) I1A-(NC*NC)

INDEX(1IA,7) IC

IF(1.EQ.NC) INDEX(IA,1) = INDEX(IA,1)-NC

IF(1.EQ.1) INDEX(1A,2) = INDEX(IA,2)+NC

IF(J.EQ.NC) INDEX(1A,3) = INDEX(IA,3)-(NC*NC)

IF(J.EQ.1) INDEX(IA,4) = INDEX(IA,4)+(NC*NC)

IF(K.EQ.NC) INDEX(1A,5) = INDEX(IA,5)-(NC*NC*NC)

IF(K.EQ.1) INDEX(IA,6) = INDEX(IA,B) +(NC*NC*NC)

8 CONTINUE
7 CONTINUE
6 CONTINUE
The VALS matrix similarly presents no difficulty.

Having looked at the way in which we can store matrix a,
we turn our attention to the methods available for the com-
putation of the plasmon energy. One method is to do no work
at all i1.e. use a black box subroutine to solve the eigen-
value problem. For a low order approximation (small lattice)
we can store the entire matrix and call a subroutine from
the NAGFLID. For better approximations we store only the
non-zero elements and use one of the subroutines produced
by the Harwell group for example. So i1If we want to use a
black box subroutine we can do, but there i1s a more efficient

route to the plasmon energy, for we can employ the POWER

METHOD .



We know that there are two eigenvalues of a which

are related to the plasmon energy namely:
X* = + plasmon energy X* = - plasmon energy

Thus |XJJ = |X21m BY applying a shift to the diagonal
elements of a we remove the degeneracy, and the plasmon
energy becomes the eigenvalue of maximum modulus. This
eigenvalue is obtained very efficiently by operating re-
peatedly with the matrix a on a given starting vector v;
normalising after each operation so that the element of
maximum modulus in the resulting vector is unity. When the
absolute value of the difference of two normalisation
factors from successive operations iIs less than a set
tolerance (10_4 Hartree), the final normalisation Tfactor
will be the eigenvalue of maximum modulus to that accuracy.
This is the power method.

Let ymax be the eigenvector going with the eigenvalue

Nnf mavimiim morinl ik nNnf a @mMnrfi nrpri gplv nf a \ flnpraHna

a Vv for some number n.
-max

The problem of the proportionality constant is over-
come by normalising after each matrix multiplication.
Also, the starting vector v is not entirely arbitrary since

the method requires v to be a component of v.

max
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It is clear that all we require for the calculation
of the eigenvalue of maximum modulus is a formula for the

matrix product a v in terms of INDEX and VALS. This is

easily established.

(av) = VALS(1,J) V(INDEX(I,J))

7
I
J=

1

In writing the above equation we have assumed that there
are seven non-zero elements iIn every row, if this is not
true then the appropriate terms are ignored.

The power method therefore provides a very simple
route to the plasmon energy.

The next comment about the site space method concerns
the computation of the expectation value of the operator
a”aQ - We have seen that this expectation value is the
Fourier lattice transform of the occupation number n”, thus
to compute the set {<a*a >} we must carry out N Brillouin
zone summations. For a large lattice, it i1s worth Ilooking
for symmetry properties of the expectation value with respect
to interchange of lattice vectors, so as to minimise CPU
time. In our model for example, the occupation number n»
is an even TfTunction of each of the components of the wave
vector k, and is invariant under the interchange of the
components. The Fourier lattice transform manifests this
symmetry in site space: <a*a > is an even function of each
of the components of the direct lattice vector I, and is
invariant under the interchange of the components. This

means that the expectation value need only be computed for



a selection of lattice sites and not the entire lattice.

Write £ =L a 1.e.

L, = -(NO-1),...,0,...,(NO-1) likewise L L,

(recall that the total number of lattice vectors () is
odd, and that NO = (NC+1)/72) . It is sufficient to compute

the expectation value for those values of L such that

0 < L. < (NO-1) 0 <L <L 0 <L <L
- "z - -y — "~z - X — Yy

There are NO(NO+1) (NO+2)s/6 values of L satisfying this

condition

NO NO(NO+1) (NO+2)/6 N
3 10 125
4 20 343
5 35 729
6 56 1331
7 84 2197
8 120 3375

So far, we have made use of the symmetry properties
of <a”aQ>, we now iInvestigate the possibility of deter-

mining the explicit functionality of the expectation value.
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Bv definiti .+ L 1 g . ik .£
y definition <ayagd B ng e

Changing the summation to an integration, and writing

I = La, we can express the expectation value as follows

ANV
<a’|*_a > dx dy dz O0(cosx+cosy+cosz)cos(xl. )cos(yL, )cos(zL_)
o] X Yy z
(2t) 3 T T T

This fTormula is simplified by employing the integral repre-

sentation of the step function

iwt
oui 0(Y) = 1im o e
n+o  J (w-in)
The result is
2T, =
@+ )
i x y Z{P dwAJL W WIL @ + ind 0O)Jj ©OJI © I}
-l X y F X y z

where J i1s a Bessel fTunction of the first kind

2ell J (w) = Jdx cosxL exp(iwcosx)
Note that
J¥0) =0 for all L except L =0 (Jg@© =1)

(-1)L JLW)



Our brief excursion i1into the realms of Bessel functions

has been profitable, for we see that

0 if L +L +L_ = even
X y z
for L = 0 ).

The computation of the set {<a”™aQ>} therefore presents
no difficulty for our model. But what about more compli-
cated systems? Let us suppose the analogous expectation
value (s) has no special symmetry properties and cannot be
integrated for any value of L, and further that we are
dealing with a large lattice N > 1000. There are two
courses of action open to us. Firstly, we could compute the
Fourier lattice transform by summing over occupied states
only. Secondly, we could look for an alternative formula
for the expectation value more amenable to computation e.g.
we were able to express the expectation value in terms of
a single integral over Bessel functions.

We underline that the computation of the set {<a*a >}
takes place once for the whole excitation spectrum.

At this point we present the results of the site
space method. For a small lattice, the value of the plasmon
energy depends on the type of boundary conditions we iImpose
on the problem. By taking a lattice of side 5 (125 atoms
in all) we fTind that cyclic boundary conditions give a
value of the plasmon energy which is roughly equivalent to

the third order approximation, whilst kill off boundary
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conditions produce slightly better values. However, to
work to an accuracy of 10_4 H we require a lattice of

side 13; this was confirmed by increasing the lattice side
to 15 (an addition of over 1000 atoms), and for large

lattices cyclic boundary conditions are preferred.
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TABLE 6

This table displays the real and imaginary parts
(EIGR and EIGI) of the eigenvalue of maximum modulus of
the excitation spectrum. For comparison purposes we have
selected the same values of u / a and wave vector that
appear iIn the table of plasmon energies as determined by
the dielectric function method. (The lattice size is (15)3)-

*"IT1 1s the number of operations required to
deliver the modulus of the eigenvalue to an accuracy of
"ACC".

An arrow pointing to a value of EIGR indicates that
EIGR < EDMAX i1.e. the plasmon mode is no longer well

defined.
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Two striking features of Table 6 are the columns
EIGI and IT. We see that at small k, It takes about 12
iterations to deliver ABS(EIG + iEIGI) to an accuracy of
10 Hartree, whereas for those values of k corresponding
to the plasmon mode lying close to the electron hole
continuum, it takes upwards of 70 iterations to obtain this
accuracy (and so the maximum number of iterations was set
at 70). Since each iteration involves the multiplication
of a column vector with complex elements, and in view of
the fact that the eirgenvalue of maximum modulus 1is real to
the order of 10_4 Hartree, it makes sense to investigate
the possibility of determining the plasmon energy from an

eigenvalue problem based on a real matrix.

Let us return to equation 11.1.30 and write

e—ltC-2,/2 Y

The equation for is
Twy 2u sinK a [Y ) - Y( n )
2u sinKia I Y(£X,iy+a,£z) YLJX,£y—a,£Z) 1
2u si"Kza 1 *( It t +a) - 1
X y z
42 (k) <a™,a0> sin (E- £/2) YQ

By equating real and imaginary parts of this equation we

establish an eigenvalue problem based on a real matrix.
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The eilgenvectors are the real part of Y, whilst the eigen-

values are of the form

@" = 8su2[sin2 (xX,a/2)+sin2 (xya/2)+sin2 (xza/2 )l - w2

ayyreal -
aulsin? & as2)¢ vreal I
X y z
+guzsin(*:xas2)sin(K a/2|{ )
J X y z
+8UI20) sin (XPas2 ){<a” +a £ £ aQ>sin (x.i/2+xxas2)} v el
X "y" z

real

+8uQ(x)sin (an/Z)Sin(X-£/2)<aX|?-)>{ Y. TIfDFL)/ }

The right hand side of the above equation isn"t iIn Tfact
complete, but since the terms to be added only correspond
to various permutations of X, y and z, it does indicate the
general structure of the real matrix. N.B. Curly brackets

are an instruction to take linear combinations e.g.

«fo\e_a_lit), } is shorthand for ?Y

real , ,real i
Wwrs /7 ; " Y’v~ 7 5

The reader is now invited to return to the grid shown
on page 91. Focus on site 57 say. The real eigenvalue

problem connects Y ~al to the following yrtalis

real N Yreal
59 60
.real real real real.
(Y51 ' B3 " %61 63 "
4 f rpnl

[ca58a0>sin X "iI"/2+xxa/2) ~ <ase6a0>sin(x.ld/2-Kxa/2)]Ycs3

+ .,,real ,,real .
<ab5?V (ve4 " Y62 >



Recalling that 1If £ = 0 is mapped to an odd(even) number

then

<a$a0> = 0 for m = odd/even

we see that lattice sites going with an odd number are
connected only to their fellow sites with odd numbers 1i.e
"odd is connected to odd® and “even iIs connected to even-
The eigenvalue problem has separated. (If the total
number of sites i1s even, the odd/even symmetry is broken,
but the eigenvalue problem still separates of course.
Note also that the presence of is a consequence of

cyclic boundary conditions, they are therefore dropped).
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Table 7

The results of the real matrix eigenvalue problem
are shown in this table for a lattice of side 13. Notice

the reduction in IT.
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Tables 5 and 7 represent only one third of the total
data analysed; we looked at results for 270 wave vectors
in all (O choices of u /7 a, 3 directions, 10 increments of
wave vector per direction). Examination of the larger data
set shows that to an accuracy of 10_4 Hartree, the value
of the plasmon energy determined by the site space method
(EIG) 1s in perfect agreement with that obtained by the
dielectric function approach (PE) for 91% of the wave vectors.
The accuracy of agreement at the exceptional wave

vectors is detailed below

at 14 wave vectors, EIG and PE agree to within 0.0004 H

and at 5 wave vectors, agreement is worse than 0.0005 H:

u~/ a KAPPA W9 PE EIG
-0.05 /7 1.5 © -6,0 .6,0) 0.3066 0.3258 0.3239
-0.01 / 1.5 © .8,0.8,0) 0.0722 0.0768 0.0761
-0.05 / 2.5 © -8,0 .8,0) 0.3498 0.3837 0. 3813
-0.03 /7 2.5 @.0,1.0,0) 0.2338 0.2443 0.2425
-0.05 / 6.5 © -6 ,0.6,0.6) 0.4894 0.4885

The components of < are iIn units of n/a.



Concerning the accuracy of EIG, we discuss the
comparison of CPU times for the site space method with those
for the dielectric function approach. Strictly speaking,
for each choice of u / a, we search for the minimum numbers
of atoms QO\IENn) required by the site space calculation to
ensure that PE and EIGR agree to a set accuracy (10_4
Hartree), and then quote computer times as determined by
Mnm (u,a). However, it is reasonable to work with onlﬁ
one size of lattice, some average value of “Nmn (u,a)}>
provided this does not significantly effect CPU times. A
consequence of working with an average value of
would be that for certain values of u and a, EIG and PE
would differ by more than 10_4 H at a small number of wave
vectors. A lattice of side 13 is therefore an appropriate
choice, because fTor 4 pairings of u and a agreement is
perfect for all wave vectors, whereas for 5 pairings of u
and a agreement at a small number of wave vectors 1is not
perfect but still of the order of 10_3 H.

We emphasise that for 22 of the 27 wave vectors in
our data set which are on or near the surface of the domain
of the plasmon excitation in the Brillouin zone, PE and EIG
agree to within 0.0001 H. Particular attention was paid

to this point. Accordingly, computer times are quoted for

a lattice of side 13.
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Computer Times for the Site Space Method

The CPU times shown over the page are the analogous
results to those given on page 80 for the dielectric

function approach. The times are iIn seconds.



u/ a K = (K,0,0) K = (K,K,0) K = (K.K,K)
~0.01 / 1.5 52 70 98
~0.01 / 2.5 54 53 94
~0.01 / 6.5 51 56 66
~0.03 / 1.5 67 107 125
~0.03 / 2.5 61 84 138
~0.03 / 6.5 61 66 91
~0.05 / 1.5 75 125 137
~0.05 / 2.5 67 122 156

-0.05 /7 6.5 63 75 154
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Comparing CPU times for the site space and momentum space
calculations, we find that the site space program runs more
slowly by a factor of between 1.4 and 3.9 depending on the
choice of parameters and directions. As we have mentioned,
solving an eigenvalue problem on a lattice was fTor many
years not an attractive proposition because of storage problems
or equivalently, high CPU times. In view of this, the CPU
times for the site space method are very encouraging, parti-

cularly when we recall that

() all reasonable steps were taken to optimise the effi-
ciency of the momentum space program: WTRAIL was set equal
to the best available approximation to the plasmon energy;
Brillouin zone summations were executed over occupied states
only

(ii) the results include the computation of plasmon energies
very close to the electron hole continuum to an accuracy of

1 part in 10,000.

Widening our discussion to overall computing effort
i.e. taking account of the work involved iIn writing and
debugging programs, there can be no doubt that it is more
convenient to solve the RPAE equations in site space than
to compute the dielectric function, for whereas the pole
structure of the dielectric function is a potential source
of underflow/overflow problems, the site space program runs

smoothly near and over the continuum.



Throughout this chapter we have paid particular
attention to the mathematical and computational features
of the site space method. It is appropriate at this stage,
whilst discussing the results of the method, to redress
the balance by looking at a physical reason for wanting to
solve the RPAE equations in site space.

The peak positions of surface plasmon modes 1in high
resolution electron energy loss spectra (HREELS) are des-

cribed quite accurately by means of a surface loss function
Im [1/(1+e)]

It is a more difficult proposition to account for
details of the lineshape of such spectra. In 1983 a paper
appeared in Surface Science (Egri et al) which looked
specifically at this point. Spectra were examined for
cleaved GaAs(110) surfaces prepared in situ in ultrahigh
vacuum by the double wedge technique. There is a surface
plasmon peak at 20 meV and a surface phonon peak at 40 meV.
The gross structure of the spectra can be explained by a
dispersionless phonon oscillator combined with a Drude term
representing the conduction electrons. However, the assumption
of a plasmon free surface layer produced a very good descrip-
tion of the lineshape of the spectra. The width of the
surface layer was a "fit®" parameter, the optimum Tfit
occurring at 150 R. The authors made firm contact between
theory and experiment by demonstrating theoretically that the

radius of the plasmon wavefunction is of the order of 150 R.
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The model they adopt is simply a Lindhard electron gas,
and their final formula for the plasmon wavefunction is
essentially that for the matrix element <M|a;wﬁ%’gn>,
namely (11.2.10), where fTor the direct lattice vector read
the position vector of the electron relative to the hole.
Since the authors are concerned with small momentum transfers
of the single particle excitations (the physically relevant
situation), it is possible to integrate the formula for
the Lindhard plasmon to obtain an explicit expression for

the spatial extent of the plasmon wavefunction ("ﬂﬂa& s fia>)
. o,

normal to the surface

(MR) ~ J1L(R)/R

The first zero of & is at 185 X which is approximately
the width of the plasmon free surface layer. The work of
Egri, Matz, Luth and Stahl indicates the usefulness of the
)-

The site space method delivers the plasmon wavefunction

matrix elements of the operator (a:fT.aofT
and the plasmon energy from the same calculation (the
dielectric theory approach requires usto compute a Fourier
lattice transform once the plasmon energy has been determined),
so that solving the RPAE equations in site space provides
physically useful information (the spatial extent of the
plasmon wavefunction) with an economy of effort.

The conventional way of displaying the variation and
localisation of the plasmon matrix element as a function

of lattice vector, 1is to plot the matrix element along a
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given direction in the lattice. An alternative approach 1is
to present a 3D view of the two dimensional array of spot
heights corresponding to the absolute values of the matrix
elements over a particular plane in the lattice. The
isometric projections shown over the next twelve pages
illustrate how the appreciation of more than 30,000 matrix
elements can be realised almost at a glance. In consequence,
such projections can be used to fingerprint elementary

excitations (see also Rogan and Inglesfield, 1981).



<M]a*

Isometric Projections

The absolute values of the matrix elements
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ao T|0> for a lattice of side 15, are presented in

the form of isometric projections on planes of TfTixed LZ

(in accordance with the convention given over the page) for

a comprehensive selection of parameters:

-0.05

-0.05

-0.05

-0.01

-0.01

-0.01

-0.01

-0.01

© o

The matrix element of maximum modulus

2.5

2.5

2.5

1.5

1.5

1.5

1.5

1.5

1.5

KAPPA

K.K,0)
K.K,0)

(K-K.0)

(0.0.8
(0.0.8

(K.K,0)

K.K,0)

(K-K.K)

(K-K.K)

K

in n/a EIGR

0.1

0.4

0.8

0.1

0.9

0.1

0.9

0.1

0.4049
0.3586

0.3819

0.2306

0.0632

0.2259

0.0788

0.2212

0.1158

is unity.

EDMAX

0.0626

0.2351

0.3804

0.0063

0.0395

0.0125

0.0790

0.0188

0.1185

Page
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131

132
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The symmetry properties of the isometric projections
reflect the direction of k, and the fact that n and e are
even functions of the components of wave vector e.g. for
k along the @o01) direction we find that the projections
on planes of |£Z| are identical because the real part of
the matrix element i1s an even function of £Z, and the
imaginary part is an odd function.

|o>

The dependence of the matrix element <M|a+x”TaOfT
on wave vector is most transparent. At small k, the
isometric projections are localised near the origin dis-
playing an abundance of fine structure; whereas for values
of k near the surface of the Brillouin zone or the electron
hole continuum, the fine structure is washed out as the
real part of the matrix element becomes large away from the
origin.

We note that the isometric projections depend sur-

prisingly little on the hopping parameter and electron

density.



1.3 A Sum Rule and Spectral Strengths

Our discussion of the single particle aspects of the
tightly bound métal has hitherto been limited. We have
mentioned that within the random phase approximation, one
electron transitions are elementary excitations of the
interacting system to the order of 1/N, so that modal sums
incorporate a term specific to quasi electrons. In this
section we investigate the role played by one electron
transitions in determining the exchange correlation energy
and interaction energy of the metal. To do this, we calcu-
late the spectral strengths (|%”I ) of the trace of the

response function

Tr F&+G,k+G";w)

jdx <MIp(x,x) o>e* r = F(«G)6QiK( 2N<H|a* ta0 it|0> } 3.2

The above result depends on the tight binding approximation and the

Bloch property.

The computation of the spectral strength of the plasmon

mode is based on the relation

For a site space calculation, the plasmon energy is computed
at two values of the coupling constant ((unity, and unity

plus one per cent say) and the spectral strength is then the
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difference in the two energies multiplied by a factor of
100. Within a dielectric theory framework, we recall that

the relation

2
1 - Tr A(e , @ =0 at w = qm

determines the frequency of an elementary excitation as an
implicit function of the coupling constant. By totally
differentiating this equation with respect to the coupling
constant, we arrive at an expression for the spectral

strength
ICv 12 = —-1/{ 9/3m TrA(e2,0)) } at u =u

The frequency derivative of the trace of the polarisation
kernel 1is a quantity which has already been computed, Tor
it was required by the Newton method, and so the spectral
strength of the plasmon mode is readily accessible in
momentum space. (Successive approximations to the spectral
strength can be obtained by expanding the trace of the
polarisation kernel as in Section I1.2. The second order
approximation for example is 3 2 2 )-

To determine the spectral strength of a single particle
mode, we use a scattering theory approach. Let us reserve
the symbols s and p to label the single particle and plasmon

modes respectively. The single particle matrix elements of

the charge density operator satisfy the following equation

<s|p(x,x*) o> = (Ho & ")-H (X)) <s|p(x,x") o>

+ <p(x,x")> dy (v(X",y)-(v(x,y))<sjo(y,y)|0>
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To simplify notation, we introduce matrices p, h and v
wp = hp + v

Switching off the electron-electron interaction, p p

where
Wpo « hpo

In writing this equation we have assumed that the single
particle excitation spectrum is continuous. The matrix p

can be expressed in terms of pQ in the standard way
p = PQ + (Wl-h)-1v

and by referring to the definition of the polarisation kernel

(1.1.15), we deduce that

<sIp(x,x)10> = <s|p(x,x)Jo> + [dy F (x , y)<s|pCy,y)|o>_

or equivalently

<slao,tao,-J0> = [1 + Tr F(k+G,k+G" ;ws)]<s|a”+ao"f |0>

The siabscript for the non-interacting system has been changed

from "o to ni. The normalisation condition (1.1.39)

establishes the link to the spectral strength of a single

particle mode

ICs 12 - Il 1 +TrF 12 1CglI”

ICsIni

ANI2(KI I<Slac,fao,tlo>ni|2
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There are three comments to make about this result. Firstly,
the spectral strength of the single particle mode is of

the order of 1/N, for:

)

<s(k,k)£aO % tJo>m. - - n_ (@-n

N ~2 k+K

Secondly, because the spectral strength is related to the
response Tfunction, it iIs better to compute this quantity
in momentum space. Thirdly, to evaluate the response

function we employ the plasmon pole approximation i1.e. we

sum over plasmon modes only

G1&) CJL(—K)

NMK)nk *1" nk+<) 11 + [e(k+ic)-e(k)-(jj (<)] [e(k+K)-c(k)+m (-<)]

IC(K.k)

To test the reliability of this expression we look to a
sum rule. This 1is easily established from the following

Kramers-Kronig relation

-P
lim Re £*(ku) = 1 - /ufn) dap Im e ~(kju)?) + 0(1/ci4)
are o

By expressing the real part of the inverse dielectric
function in terms of the polarisation kernel, and the
imaginary part in terms of the spectral resolution of the

response Tfunction, we arrive at the sum rule

[ 9, G)Ic. &) @/2) o
m

where m denotes mode type.
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Consider the left hand side of the sum rule, and iIn
particular look at the single particle contribution. The
factor of unity iIn our expression for |C(.Jc:,k)|2 gives an
overall contribution of 1/2 dz, whilst the remaining terms
cancel the plasmon contribution. The sum rule 1is therefore
satisfied exactly over all the Brillouin zone.

Before going on to use our expressions for the spectral
strengths to compute E~c and E~nfc, we investigate the
percentage plasmon contribution to the sum rule. On the
following page we find a table displaying the spectral
strength of the plasmon mode (abbreviated to Cp) and its
absolute and percentage contribution to the sum rule
(PE*CP and % respectively). We also display various suc-
cessive approximations to these quantities. The table
highlights the importance of an accurate determination of
the plasmon energy, for %9 1is iIn error by 34% near the
electron hole continuum. A graphical study of the percentage

plasmon contribution to the sum rule follows
% = ordinate ; K(C O=>1 In units of ir/a ) = abscissa

The plasmon contribution in the ((100) direction is
always over 70% (this is due to the plasmon mode being well
defined everywhere along this direction). In the (110)
and (11) directions, the plasmon mode is not well defined
everywhere for certain choices of u / a, and the plasmon
contribution fTalls accordingly. For the high density metals

the tail off is quite rapid.
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11.4 Results for E. and E
m XC

t

To compute the interaction energy and exchange
correlation energy, we need only sum over the wedge shaped
region of the positive octant of the Brillouin zone shown
in Figure 3. The weighting factors for the points, lines
and planes lying on the surface of this volume are shown

below (see diagram over the page).

Weight
A, C, L% 1
B, D, Lg, P~™, P2 3
L,-, PAF Interior of Wedge 6

We emphasise that this calculation was carried out in
momentum space because the trace of the polarisation kernel
is required iIn order to determine the spectral strengths
of the single particle excitations. However, the site space
method can be used to compute the plasmon contribution to
such modal sums, which is important since at metal surfaces
for example, the only mode to interact significantly with
an external charge is the surface plasmon (Wikborg and
Inglesfield, 1974) .

One fTinal comment relates to the exchange correlation
energy. The single particle contribution to EXC is -EDMAX
in the plasmon domain of the Brillouin zone, and zero other-

wise i.e. we assume that the single particle continua of
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the interacting and non-interacting systems overlap.

Tables of results for E. and E now follow. The
int XC

values quoted are iIn units of 10'2 Hartree. (The calculation

was carried out with (@8) points in the Brillouin zone.

To check convergence the calculation was repeated with

3
(30) points iIn the zone; see Section 2 of the Appendix).
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INTERACTION ENERGIES (EINT).

A= 15 A= 2.5 A =6
- -C.d 1«A37 2=A35 32748
= L.O,0 2. 16A A.1A8 5.cR8
- -C. 0s 2e5A3 A*9A7 8.010

PLASMON CONTRIBUTION TO EINT.

A = 1.5 A =25 A = far
-0.01 0.951 <fafc.2)  1-9A9 (30.05!') 3. 179 (97.05!)
-0.03 1-1fat (52.97?) 2-0A5 (49.3?) A.A98 (30.5%)
-C.C5 1.253 (A9.32) 1=9AA (39.3?) 3.874 (A«.A™

SINGLE PARTICLE CONTRIBUTIONS TO r||T.

A =15 A= 2.5 A ™
= -0.ClI C=A86 0-A87 0.097
= -C. 03 0.998 2.102 1.090

-C. 05 1.291 3.00A A. 137
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FXCHANGF CORRELATION ENFRGIFS (FXC).

A =15 A =25 A - G-
1.130 1.962 3.534
1.276 1.797 3.C42
1.320 1.647 2.142

PLASMUN CONTRIBUTION TO EXC.

A =15 A= 2.5 A = 6.5
2.727 C1.71X1 5.365 (1.58X) 7.272 (1.94X)
3.797 <1.51X1 7.150 (1.34X1 14.256 (1=?7X>
4.363 C1.43X) 7.877 (1.26X1 17.519 <1.14X1

SINGLE PARTICLE CONTRIBUTIONS TO EXC.
A - 1.5 A- 2.5 A=A
-1 597 -3.403 -3.736
-2.521 -5.353 -11.214
-3.C43 -6.229 -15.377
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The most interesting feature about the results for
Eint and Exc is that the sin<sle particle contribution to
these sums is always significant (there iIs one exception
to this: for u/ a = -0.01 / 6.5 the plasmon contribution
to Eint is 97%. The plasmon mode is well-defined over all
the Brillouin zone for this choice of parameters, but note
that this result corresponds to a low density metal and
the RPA 1is strictly valid for rg < D .

The plasmon contribution to Ei and EXC falls as

nt
u is increased for a given value of a, reflecting that
EDMAX 1is directly proportional to u. Even so, it is
surprising that for u /7 a = -0.05 /7 6.5 the single particle

contribution to E~Mnt i1s about 50%.



CHAPTER 111

A MOVEL INSULATOR - CHARGE TRANSFER STATES ANP EKC1TONS
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i1 Opening Remarks

Two types of elementary excitation to be found 1in
semi-conductors and insulators are charge transfer states
and excitons. An exciton is a stationary state of the many
electron system in which a single electron hole pair travels
through the crystal lattice. The degree of separation of
the electron and hole characterises the internal structure
of the exciton. A Frenkel exciton consists of an electron
hole pair excitation hopping from atom to atom, the mechanism
for the transfer of energy being dipolar interaction. In
contrast to this, a Mott-Wannier exciton corresponds to a
conduction band electron and a valence band hole moving
through the crystal with considerable separation.

The theory of exciton structure has developed along
two distinct lines; for iIn the Frenkel exciton the electron
sees both the hole and details of the lattice potential,
whereas in the Wannier exciton the electron moves around the
hole in an average lattice potential (Knox, 1963). It is
therefore standard to describe a Frenkel exciton by retaining

only dipolar terms in the Hamiltonian i.e. terms of the form

V|V , VI atlaf2 @E*LE 2N

and thence to perform a multipolar expansion of the Coulomb
interaction (by hypothesis, the wavefunctions of electrons

on neighbouring atoms do not overlap significantly)
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* _r-
veer gre NGl EET)

where x™ is the i1th component of the dipole moment matrix
of the levels 1 and 2, and (T\*) is the dipole tensor (we
adopt Einstein summation convention for repeated indices
Anderson, 1963). The Bogolyubov transformation then

diagonalises the Hamiltonian

2

(DC Egap + ZEgapXintff(k)
1 [ i< .£
e
K /N £ aflat2

tik iIs the Fourier lattice transform of the dipole tensor
and b*]o> is a many electron state describing a lattice in
which there i1s an electron hole pair excitation at site £.
By taking linear combinations of such states (so as to
satisfy translational invariance) we arrive at a stationary
state of the system: ¥ . Frenkel called these running
waves of excitation “excitons-®.

The large radius exciton is treated quite differently.
The excited electron and hole unit is regarded as a two
particle system in which the electron and hole have effective

* x

masses an”™ interact via a modified Coulomb potential

due to the remaining valence electrons and ion cores
(-v2/2m* -v2/2nf -e2/ereh)V

The solutions of this equation, Wannier excitons, are

modified hydrogenic functions.
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Theoretically, it is unsatisfactory to view the same
elementary excitations from two such differing standpoints;
indeed, as Knox has pointed out, the alkali halides cannot
be described accurately by either the Frenkel or Wannier
models. The Frenkel model 1is invalid since a bound state
of the negative halide ion does not exist. The Wannier
model is also inappropriate because the effective Bohr
radius of the exciton in alkali halides is relatively small
(for C 1s small) and so Bloch functions going with large k
are required to construct the exciton (the Wannier model
assumes that < is small). It is therefore essential to
establish a workable unified theory of elementary excitations
in semi-conductors and insulators so as to be able to des-
cribe excitons of intermediate radius. The difficulty with
a dielectric theory approach is that exchange interactions
are not easily accommodated (Hubbard, 1957; Hanke, 1978).

In this chapter, we demonstrate that by solving the
RPAE equations 1iIn site space, both Frenkel and Wannier
excitons can be obtained from the same set of equations in
a straightforward manner. Furthermore, by looking at
limiting cases we recover the results of the canonical
transformation technique of the Frenkel model, and the
effective mass theory of the Wannier model. Egri went some
way towards this unified approach in 1979, but his model
was one dimensional and he started with a simplified

Hamiltonian from the outset so as to effect a diagonalisation.
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Consider a model 1insulator in which each atom has an
occupied Is orbital and unoccupied 2pZ orbital. We take
the lattice to be simple cubic, and employ the tight
binding approximation. Since the valence band is full and

the conduction band is empty, then

nk,b = 6b,1 for all k

b is a band index; b is 1 for the s band and 2 for p band.
The electron hole amplitudes for this many electron system

satisfy the following set of coupled linear equations

< +W x* = u\, I11+e"iK"U "r>1V * " xr-pV Qvil
¢_egap)Yt = -un, 1l+e * M,1. ,YH"+PY2+QXL
where Xt = <«l<fo2l°> Y( = <Mlan ao J 0>

In writing this equation we have made the simplifying,
though unnecessary, assumption that the hopping parameter
for the overlap of valence orbitals on neighbouring atoms
(s-s) is equal to that for the overlap of conduction electron
orbitals (pa-pa, piIT—piT; s-p mixing has been ignored). We
stress that although the tight binding approximation does
not provide a good description of most semi-conductor valence
bands, the solid rare gases are iIn fTact relatively tight
binding in the ground state.

We have taken |M> to be a singlet state and defined

e as the difference i1In the atomic energy levels c.—eI,
gap z
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corrected by Hartree Fock terms. P and Q are many electron

coefficients

P = 27,0 »1 v«+G)|fl2k+G)]2 - J vkP11(-k)F22(k)eik-1
G k
(direct) (exchange)
1.1
Q = 26£,0 | v k+G)|F12®+G)12 - 1 vk |[F12(k)|2eik“E
G k
(direct) (exchange)
*
Fr2 the Fourier transform of the orbital density Xj™*

likewise F~ and F22* The derivation of the key system

of equations for the insulator model follows the same route
as that for the tightly bound metal of Chapter 11, and

since this was discussed iIn some detail we do not look at
the associated mathematics here (the full derivation appears
in a paper by the author and J.E. Inglesfield, 1981). In
this chapter we concern ourselves solely with the physical

aspects of the model.
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I11.2. The Extreme Tight Binding Approximation

Let us assume that the atoms in the model insulator
are sufficiently far apart, that we may neglect the hopping
integral () in the RPAE equations. This is the so-called
extreme tight binding approximation. The object of this
section iIs to investigate the nature of the elementary
excitations iIn such a model. Setting the hopping integral
to zero, the RPAE equations for the electron hole amplitudes

become

( u)regapw WX -QY 5

(toe P )y = QY

The dispersion relation of the elementary excitations 1iIn the

extreme tight binding insulator is therefore

2 -
o (k, - c2 + 2e P + P2
«.2 gap gap

where P and Q are of the form

Z,0 ni2«> - EaU >
Q = 26 Z,O ((12 (k) w Eb U)

We see that there are two types of many electron excitation
present; one type depending on wave vector alone, and the
other type depending on the direct lattice vector Z.
Consider first the dispersive modes; take Z to be the zero

vector, so that the electron and hole are confined to the
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same atom. Under such circumstances we anticipate that
the elementary excitation under consideration is the
Frenkel exciton. This 1s indeed the case, for i1if we set
the exchange terms equal to zero the dispersion relation

becomes

VR Cgap * 28 gap Ptys €3

which i1s the Anderson formula for the Frenkel exciton
*x*

( Ztif 5 Xxxjt1§ )- We reinstate the exchange terms into
the dispersion relation and comment that they are readily
evaluated by integrating over the appropriate Fourier

transforms

Pn (k/ao) = 16z4/[4z2+k2]2
XlIs = (a3/V/TTh)exp(-ar)

F12(k/ao) = 1384/225k3/[922+4k2]3
Xep = ($6/2//-m)r3exp(-3r)

F22(k/ao0) |FZ8+26(‘<2 -Gk%)]/fzz+k2]4

a = z/a 3 = z/2a
0 0

Ea(O) 59/243 z E~O) = 7(2/9) z
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Setting the value of the gap energy to unity (measured
in Hartree) and taking the G = 0 term only, in the sum over
reciprocal lattice vectors (@ very good approximation
in the 001 direction), the final result for the energy of
the Frenkel exciton 1is

2 n , In 1152(1-0.2267) k*

w () = 1-0.486Z ¢ 0.059z + @./3) iz ~——— — T,
0 Iv 95, +a§k210}<2

A plot of this function is to be found in the paper by the
author and J.E. Inglesfield (see Section 3 of Appendix).
Notice that the effective nuclear charge iIs an iImportant quan-
tity in determining the exciton energy e.g. w(0) for z = 2

is approximately half the value of w(0) for z = 1 (with

a = 4a0). To understand why this is so, we recall that

the mechanism for the transfer of energy associated with the
Frenkel exciton is dipolar interaction; the electron and hole
always sitting on the same atom. The “local®™ situation Iis
therefore iImportant. Now z defines the local situation 1in
that it is an expansion parameter characterising the atomic
orbitals and in consequence the magnitude of the atomic
dipole moment. In fact, (x )” 1is inversely proportional

to z. Thus, for small values of z, we have a correspondingly
large dipole moment and hence a large potential energy of
interaction and so it costs less energy to excite a Frenkel

exciton with z = 2 than with z = 1,
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In addition to the Frenkel exciton, it is possible
to excite charge transfer states in the model insulator.
These are dispersionless modes corresponding to non-zero
values of Z in the expressions for the many electron

coefficients P and Q

a2 = [1+€ _U) 12 - E2(® P 9gap - M

We see that the frequency of a charge transfer state is

determined by the exchange terms in the equation of motion

of a+a
E U o fi3 .30 X1(r)x1(r)x2(r')x2(r')
a’? T 4y jdr —————— 1 r+t-r* fp-———-—-
ij3 f.3. X*(r)x2(r)x*(r-)x2(r'")
Eb U) Jd r Jd r r~t-r* b—————

The standard method of evaluating two centre Coulomb integrals
is to expand the Coulomb potential as a Taylor series and
integrate successive terms. In the case of E”~U) only one
term survives; the quadrupole term, so that EN(E) represents
the mutual potential energy of two interacting dipoles

(Heller and Marcus, 1951)

15 a 3
Ep U TO “J @GF) ( 1-3cos ) 2-1

We can establish this result directly from dipole theory

with a potential of the form
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/ (g335)1/2 %_1 z"e’ (ate)rr-

d o

$()
An alternative approach is to Fourier transform the
Coulomb potential to obtain E”U). On performing the momentum
space integration we recover the right hand side of (2.1)
plus extra terms involving exp (-3zi./2aQ) and powers of A.
The Fourier transform method gives the precise value of the
two centre Coulomb integral; whereas the multipolar expansion
technique fails to pick up higher order terms because it

rests on the assumption that
£ 1 > [|Jr-r'-A |

However, within the context of the model (2.1) is sufficient.

A similar discussion holds for E¢KA), we TFind that
Ed(A) 1-3cos”™0E )

Thus Ea (E) i1s the dominant term and corresponds to the poten-
tial energy of interaction of an s type dipole at the origin,

and a p type dipole at site A

EaU > = (xss>i(V Jj Tiju)

Since the dipoles cannot de-excite, the electron hole unit
cannot hop from atom to atom. The modes are therefore
dispersionless.

IT the 2pX and 2py orbitals are included in the model,

the frequencies are obtained from a 6 x 6 determinant.
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By writing down the dipole tensor with respect to principal
axes (two axes parallel to l; one perpendicular to £) the
determinant becomes tri-diagonal, and factorises iInto
transverse and longitudinal modes.

The charge transfer states are important, for they
are an extreme form of Wannier exciton, and it is Wannier

excitons that we go on to consider in the next section.
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111.3 One Electron Hopping and Wannier Excitons

Let us return to the 2N x 2N system of couplied linear
equations (1-.1) which take into account one electron
hopping. It is possible to decouple the equations to obtain
only the positive frequency solutions (for if v iIs an
eigenvalue, then so is -w) by defining new variables
X" = X+Y and Y° = X-Y. The eigenvalue problem then
separates iInto two systems of equations, each of order
N x N. This transformation is of iInterest computationally,
but is unnecessary for the analytical work of this section.
With one electron hopping included, there exists a continuum
of single particle excitations (whereas only one electron
transitions of frequency equal to egap are possible in the
extreme tight binding limit). In the absence of the electron

electron interaction, we find that Y < exp(ik.A) provided

w(k,K) = egap - 2u[ coskxa+cos(kx+§ da et cyclic ]

At k = 0, the continuum limits are therefore

<Cgap + 12u) and (Egap ° 12u)

We now look for modes below the frequency of the con-
tinuum edge by taking & to be non-zero and ignoring the many

electron coefficient EN(E)

0 .
EaU) % 119, EbU) v 1/Si3
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The two equations for X and Y decouple, and it is sufficient

to consider the equation for Y

T otelL titeTiKTU LA, rYr o+

IT we regard the components of £ as continuous variables,

then to Tirst approximation we have

YE +a.E £+ Y(E -anf E) (2+a292/3£2) Yp
X y 7z X vy 7z

YE +a,£ ,£) "YU -a,£ ,£) 2a3/9 £
X y’z X yz

Likewise for the components £y,£z> The eigenvalue equation

for Y in the vicinity of small |k | becomes

2ua?2 (uV2+|K.V)Y£ - (aO/E)Y£ = (w—eg —12u)Y__£

ap
The k .V term is removed by writing
E = exp(-i<. £/2) YE
2ua2v2nr - (@0/0*t = <‘-egap-l2u-itua2K2)»
and so we deduce that

= egap + 12u ” Jua2<2 + (a@a2/8ua2n2)

where n is a natural number. This is the Rydberg-Wannier
series. Clearly, the n = 1 (or s type) Wannier exciton 1is

not expected to be described correctly by this result since
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the 1 = 0 contribution will be important and this has been

neglected. However, the energies of the 2pZ and 3d Wannier
excitons are in good agreement with the full computer cal-

culation .

Notice that by setting the hopping integral to zero
in the equation for p , we recover the charge transfer
states to fTirst approximation. As Inglesfield has pointed
out (Rogan and Inglesfield, 1981) the Frenkel exciton is
a resonance lying within the single particle continuum, and
coexists with the Wannier exciton spectrum at each wave
vector. To our knowledge this is a new conclusion. We
found no evidence for the existence of a plasmon mode in

this model.
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CONCLUSION

The basic many electron problem associated with an
inhomogeneous electron gas iIs how best to determine the
excitation spectrum in light of the nature of the i1nhomo-
geneity under consideration. The many electron problem is
not a formalistic problem, it is one of technique. We
have demonstrated iIn this thesis that by solving the RPAE
equations in site space, the excitation spectrum and one
electron transition matrix elements of a tightly bound
metal (or insulator) are obtained from a simple eigenvalue
problem. The method is therefore computationally convenient;
lending itself to black box subroutines, or the power method.
Also, since one electron and many electron terms are treated
on the same footing, the pole structure present In dielectric
theory 1is missing, making the site space approach mathemati-
cally attractive. In addition, there i1s much physical in-
sight to be gained from using the site space approach,
because exchange interactions are readily accommodated. In
consequence, plasmons, excitons and charge transfer states
are obtained from the same key equation (in a straight-
forward manner).

We temper our enthusiasm for the site space approach
with the realisation that it is i1nappropriate for the deter-
mination of the spectral strength of a single particle mode.
Such modes are extended solutions of the RPAE equations.
With this reservation, we highly recommend the site space

approach for future research iInto many electron theory.
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Abstract. The excitation energies in the random phase approximation with exchange can be
found from the linearised equations of motion of electron-hole pairs. This is expressed in a
real space representation in which many-body interactions and one-electron hopping are
treated on the same footing In the real space representation both the direct and exchange
interactions between electron-hole pairs are included, so excitons, plasmons and single-
particle excitations are all contained in the formalism. This is applied to a model insulator,
first without one-electron hopping: this shows a dispersive Frenkel exciton and charge
transfer excitations When one-electron hopping is included, the Frenkel exciton can lie
within the single-particle continuum; the charge transfer states become Wannier excitons.
Applied to metals, the real space technique gives exactly the same plasmon frequency as the
usual dielectric function method

1. Introduction

The random phase approximation (rpa )sthe startirgpoint formost many-body I henries
of the electron gas (Pines 1963, Singwi el al 19688, Arponen and Pajanne 19/5); k£ B
equivalent toa time-dependent llarlree approach (Hedin and Lundgvist 1989) inwhich
theelectron-hole and plasmon excitationsare seH~austainingcharge density fluctuations
(Wikhorg and Irngleslield 1977). These can be found from the frequency-dependent
dielectric response function, which can be calaullated quite essily in sinple inhomoge-
neous systens like a jelliun metal with a surface (Irgleslield and Wikborg 1974). The
dielectric function may also be used to fird the excitations in a tightly bound =olid, In
which localised orbitals are used as besis functions for the one-electron wavefunctions.
From the wavefunctions, a localisad real space representation of the dielectric function
can he found, and in thisway Hanke and Sham (1975, llanke 1978) have studied the
gotical properties of covalently bonded aystals.

An altermative approach to the rpa B 1o linsarise the equations of motion ol the
electron-hole pairs (Brown 1972), and in a previous paper (Rogan etal 1981, referred
toas Dwe related this to the dielectric function approach inageneral inhomogeneous
system: the matrix elements of electron-hole creation and amihi lation operators, ladder
operators, and an effective boson IlamilItonian can be written down elicitly in terms
of the charge density fluctuatios. However, if localised besis functions are used k& B
passible to solve the equations of motion directly, in real space, without any previous
calaulation of the dielectric response function. We dall now show that the direct solution
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of the equations of motion for electron-hole pairs, inwhich one-electron hopping and
many-body effects are treated on the same footing, can be used to study excitatios in
metals and inaulators.

We begin in 82 by deriving the linearisad equations of motion for electron-hole
creation and amihi lation operators ina local orbital representation. Inan infinitearystal
theexcitations have avell defined wavevector k ,and one classofexcitationscorresponds
o taking an electron with Bloch wavevector k and putting it into state k + k ; as the
electron and hole wavefunctions are extended, these modes cannot be found satisfec-
torily in real space. However, we gall see that a plasmon excitation ina metal aorsists
of a superposition of electron-hole pairs which are localised around one another, and
which can be found directly ih a real-space, local-orbital representation. Inaplasmon
the dipole moment of the electron-hole pairs self~arsistently excites other electron-
hole pairs- this Ethe dominant interaction inmetals, and Bgiven by the direct inter—
action term in the equations of motion (the only term included in time-dependent
Hartree-RPA). But in insulators, the Coulomb interaction between the electron and
hole can dominate, producing bound state excitons (Knox 1963). This igiven by the
exchange term in the equations of motion; including this i equivalent to the timne-
dependent Hartree-Foek method (Hedin and Lundgvist 1989), or the random phase
approximationwith exchange (kpai ),andean be carried out inour real-space approach.

In § 3we gall apply our method to an extreme tight-binding insulator with two
orbitals per atom, an occupied sand an unoccupied p orbrtal, but without any one-
electron hopping between atoms. This has been freguently used 1o study excitations in
insulators (Giaquintaetal 1976a, Lgri 1979),and inkpai two typesof excitations oocur:
the Frenkel exciton, corresponding toan electron excited into aconduction band orbital
on the same atom, which shows dispersion, and dispersionless charge trarsfer states n
which the electrons and holes are localised on separate atoms (Gunn and Inkson 1979).
It Bvery easy to include one-electron band structure effects, simply by adding one-
electron hopping terms to the equation ot motion. We dall see in 84 that this has
surprisingly little effect on the frequency of the Frenkel exciton. The charge trasfer
states become Wannier excitons for which the standard effective mass equation (Knox
1963) can be derived from the electron-hole equations, givingapproximate expressions
for the exciton energies and wavefunctions. An advantage of our equation ol motion
method sthat both the Frenkel and the Wannier excitonsdrop naturally out ol the same
equations.

Inour kpai results the Frenkel and Wannier excitons coexist. Moreover, foroartain
values of the parameters the Frenkel exciton lieswithin the particle-hole continuum.
There Bsome experimental evidence of a collective excitation above the band gap, as
well as excitons below (Schmidt 1971, Giaguintaei al 1976b), and this has usually been
described asa plasmon (Giaguintael al 1976a, b). Our results show that thisexcitation
in the tight-binding insullator ia Frenkel exciton, with the electronvwell localissdon the
same atom as the hole, rather than a plasmon.

Finally in S5 we gall tum to plasmons in tigtt-binding metals— out real space
method gives just the same dispersion as the usual dielectric function approach (@ lanke
1978) with much less computing effort. Moreover, thismethod gives the electron-hole
wavefunction from which the plasmon shuilt up. The screening of the Coulomb intel
actionm metals ( ledin and Lundgvist 1969) means that the bare exchange interaction
inthe equations of motion should be dropped, leaving just thedirect term (corresponding
10 kpa); we gall see In $5 that including the exchange term (kpai.) (Brener and Fry
1980) susatisfactory. As the real-space method works so well we hope to apply Kto
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calaulations of piasmons inmore complicated tight-binding systems, for example tran-
sition metal surfaces, avoiding all calaulations of surface dielectric fuctios.

2. rpak in a local orbital representation

The linearisad equation of motion of an electron-hole pair creation-amnihi lation oper-
ator sgiven by (Ix

it /1] — h fi"P~ ly) [I" jj 1 tl Ouil
[ni ] n\ i ’2).(*\/6(y)[ iy >7%} uilp
w« Q ’I‘D{[afitly) [V .ifiyu | Ziiyijd lanu t

* ' ((aaay) [1rryt  LTIPN  (IMt,)[Vya pi ) a ntiff. (1)
hafl i5the matrix element of the one—electron part of the Hami ltonian, evaluated with a
st of singlejarticle orbitals g\, (x) (x includes spin aswell as gatial coordinates)!:

hixt=V dxgf£(x) |-$V:+ I7,,(M) <Pft(x) ()
and the Cou l omb matrix elements are defined by

Voft rs = J dx f dritpa(x) g>*t(x) n(r = r*) cp”x’) ipdx) (©)

where tisthe Coulomb interaction. The terms (’éh)su: inequation (), which appear
as a result of linearising four—particle operators (Brown 1972) (this linearisation corre-
sponds 1o rpai ), are expectation values with respect to some calcullable ground state,
normal ly taken to be the Hartree-Fock ground state (Rowe 1968, Brown 1972, I). In
the previous paper (I) we showed how thisequation sinplifies ifthe <, are taken to be
the Hartree-Fock eigenfunctions, but we dall now take them tobe local besis fuctios,
so thatwe consider the one-electron and many-electron problem at the same time (Gunn
and Inkson 1979, Gunn 1980). In the lacal orbital represertation we dall replace the
sirgle orbital lacel (n) by (0, /). meaning orbital aon atom L

To fird the excitations of the system we take the matrix element of (1) between the
ground state j0) and excited state N), giving:

h dfi.fu 't afinttyji) | \Veanflti. ypfu i llnom. YPtu jb
-tl\ '[10’{ yii) | yp ]} ib)
)XH Kh tf jift tsm.fli 11 tdnif,[in}j> « f nnuj.wi/tn]/) tind[izt 0)
n A (tlpitif) |F)pani.Zinfii  1im )f=jinfu |
am.fin.yp
(tifullyp) [V I, ;A0 Dcbp ' P @

where <o\ Bthe excitation energy. We can immediately sinplify equation (4) because
the firt two pairs of Coulomb interaction terms, multiplying (AV]<Aw,,|0) and
(A, Jus/NMK), are really one—ellectron terms. Writing the It st of terms infull

t Atomic unitsarc used with® ti ni 1



B8 /Hogan andJ E Inglesfield

T Irafigd

= W%xcm LJd*‘Jdr' a*m(x) Q% (x") v(r - ') gryp(x) <fix)

- J | dr® <pfa(x) g*m (x*) u(r = r') g(x") cp”~x) (©)]

we see that this is simply the matrix element between orbitals (pam, ¢eu of the Hartree
and exchange potentials. All the one-electron terms can then be written in tight-
binding-LCAO form:

d < A . [l ixpnyiv - f/vmm,]  CAIb.f; ‘' 0ainta, (b)

the first term giving the unperturbed energy of orbital u on atom /, and the second term
the hopping integral between orbital p on /and orbital a onm. Our rpai equation then
becomes

@ £o1 Aral G0 JV e

oma (ST |2 gpam i ~ WD

am, lin, )7
~~ 7D i amijypftt ~~ N amif./ZiwjT™»}) \Uanfifin 1N)* (7)

With the two atomic indices labellingeach matrix element, thiscorresponds toavery
large sst of coupled linear equations even for asmall atomic cluster, ktalone an infinite
anystal. However, inaaystal the excitationscan be labelled by aBloch vector x(Ziman
1%0) such trat:

i*|0> = exp(-iK *K) (4 Jit..in),JO) 8)

whereRr isa latticevector. We now setrt - 0, the atom at the oriigin, inthe left-hand side
of equation (7) and use equation (8) to give a smaller st of equations with only ae-
varying atomic index:

[tO\ - (tft  r )] (/V]ailtiq.jijd)

Ao UAm . Ziexpf IK'jT, 'm]) (A

am (im

A qm ({ypMuii) N jse{m ), finfit A n)yp. finfti]

m . fin,yp
T geeftivyfiy (N a{m * ZDHL, ypfin N avm *«|iU./hty/> §)

x expf- k =) @a,mn/gp. @

By considering the asymptotic behaviour of Mt i, g0>at larger, we can show that
this local orbital representation of rpai-has both extended and localised solutions. The
localised nature of the besis orbitals means that a matrix element like v YijtHn, —a
direct Coulomb term inequation (9)- swerysmall exceptwhenin = (Q,/ /moreover
(a*, «drops offragpidly asp Bremoved from the origin 8 3), so thisterm onlly couples
WV 45,0 and Mu,,, K [o>when i « O, m 0. Similarly vMm, ssmall except
whenm +n /p n,and as/Amust be close 1o tre origin we see that this exchange
interaction term only couples (Wkag<HI|U>and when m close 1o / tre



Electronic excitations in tight-binding systems 3330

strength of the coupl ing drops offas WA Similar considerations apply to the second pair
of Coulomb matrix elements inequation (9)- sowe see trat at larget the ki ai equations
reduce to

kav- €, i) Gves i, o
m tp d p( ikml; D

am ftm

X <A"|«>,*{0> D

which are equations for non-interacting particles. Because of the periadicity of the
hopping integrals, equation (Id) has extended solutions ol the form

M| = eP(-IA er) A~ k) A,.(k - k) an

where A,,(® i the cefficiet of abital ¢, In a sirgleparticle wavefunction satisfyirg
the simgleparticle Schrodmger equation with Bloch wavevector k, energy t(®)- This B
the asymptotic form of the particle-hole excitatios (Pines 1%3) , with energy

<Vk) t(k) - rk - k) @

which are the extended solutions of the RPAI egquations. The many-body ecitatios,
pulled out of the particle-hole continuum by the Coulomb interaction, correspond to
complex k inequation (1I):

W, i1]d> - ep(-yr,) €9))

and being localised can be found by solvingequation (9) directly in real space.
Including electron spin egplicity, the excitations can be classifiad as sirglet or triplet
states. The matrix element (\Mv,; th|d)=atishies

NN - (- £O1MHAC, QL i

:%wl>an,."bl\(la\nM,'l1,|0>— £ CXp(~IK e]r, - r,,D) (N\a™ mJt(=

jim

+ £ ((U;'1,.U, tu) |Vyftaimfn)./inffu "~ atm +
am, fin, )I>

(dfi |iryt A vaim+  tyfin — Vaim f @0/i>r=]) CXp(“ilC t,)

X (NNTitx ] o + £ (W V FTl®MvV ypaim +ti)finfii ('t,i ti<Ctr)

am .fln.w

X Vam’ «ia.,,, /N exp(—K'r,) i mUfl 2ljo> (1%

and scoupled by the direct interaction to A in|d) aswell as(A,|<d ..k it@j0)- If
N) Basiglet excitation kcan be written in the form (Oddershede 1978)

)= a \2) £ +rni. D1 (€

and consequently
s - (As ity Uuo. ()
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The equation for the sirglet excitations then becomes:
[&\s ~ (t)i ~ (O] (AZi]ar* ,rt,,jo]0O>
~ ;,I/—“l Nn{hsS\®irll o
-7 exp(- ik =@ - 1,D{Ns\aj, T,,-ityjol0)

fim

+ amzii i )P(d: 1H/~ost)P nckn ), firfu ik -Hyp,fhipnt
[eYFA2Va@ ,ap)pfin  ~aimtrviytin)D
X exp(-iK ern) <XYy|"aT, jayolO) an

with a factor of 2 multiplying the direct Coulomb interaction. On the other hand, the
three triplet states have the form (Oddershede 1978):

b +i>=$0>; 1D

1AW - VDS 0¥a),Ta,t-a™amio

NI, -D) =X - @
Consequently
{NI, O jitialii [J®— —{NI, Qkath#(\dD @
and equation (19) gives for thes; = 0 triplet excitation
£1.-1) uo
= %n e, Auj0> - %invmjexp(-iK .- .D

* Nt OlirGip 14D -1 {0y HUVEQV afmt nvpfu ~

* 1 (IEtOAY) ep( - ik 16) {NI, 0\aa tnnji juiOm )

The direct interaction drops out, leaving just the exchange interaction. The matrix
elements{NI, + 1t ji7,d0]0),(M, -1 Klj;ti,o]0) forthe = +1 tripletecitatiosalso
satisfyequation ().

The simglet state, whose frequency and matrix elements are given by equation (17),
Ba charge density wave (Nobile and Tosatti 1980), whereas the triplet states are spin
density waves (Anderson 1963).

3 Excitations in an extreme tight-binding insulator

We first apply this kiwi orbital representation to an extreme tight-binding two-band
s0lid (Anderson 1963, ligri 1979) with valence orbitals Y, energy i\, and conduction
band orbitals ;, energy ty, inthismodel we drop the one—electron hopping terms v in
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equation (9. The expectation values of the form (a~a”) which appear inequation (9)
are given by

ar,, MO, r: . . . rn) tp~r - r,) <pdr‘- r,)
X %(/, r2...r) 21,

where *1X) s the Hartree-Fock ground state. The Hartree-Fock sirglefarticle states,
labelled by the Bloch wavevector k and band index |, can be expanded in terms of the
besis functions Q;

HKA) = % A,JK) (1/\/'A')i2 ep(i* =) tprr - 10 @

where N iBthe number of atoms, and inverting thisequation we can write git(r - r,) &
aBrilloauin zone summation (Ziman 195):

ir = r) = (VN 2 2 ALK Lvktr) ep(—ren). @
Substituting this into equation (201) we see that the expectation value sgiven by
<«,,) = (\IN) Ai%BZ 2,Ai.,Ak) Ad,, (-k)'*exp(-1* [, - ri\)nkj @
where tiu Bthe Fermi function, which Bunity if( ,/) sBoccupied inthe 1lartree-Fock
ground stale and zero ifit sunoccupied. Inthe two-band model this isextremely simple,

as the occupied valence band axsists entirely of @rorbitals, and the unoccupied con-
duction band corsists entirely of <A sowe obtain

(al,ar =0 if/rori"=c
- d, itp = i/=V. (€))

Substituting this into equation (17) we dotain the folloving coupled equations for the
singlet ecitations:

A+ @ - F.OI@VIa>H[0)
2 op( 1K *r,) {CRAHYOMT  Ff , ikd.a) (v \awnli i~ Rt
CFa Mt M) (Mo}
- € - NGk v

oP( ik “rm) {& Vvovmuni.cne  FMGHwocsic) By )jO!

m,

“f (2V/«.lo(mf«) .v7,c/ Ac(m +niyo.anct) <A(]Flav J V@lQ)}- (26)

But in the extreme tight-binding case there ino orbital overlap between neighbouring
atoms, -

v@gMmtb@m O mnless/=o0.,m — o, €. (¢2p)
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Hence, equations (26) simplify to
["A + (tc- V] <NkXo|(» = V'vKi.civiMaviaculO)
2veo\iexp(-1Ken)] (A 1 a 10) "F aNdA

X <Af|a5MOI0>- 6 ~ 2 VM n  exp(-iK =m)j (AkaiflvolO)

[W/V - (£c - fv)] (A'lk«vi)]0) = - V'v,v0,cta<A'k>ri)] 0>
A - KnadJCXP(—iK - 1;)j — Vko.voa
X (\RVIvolO) + O[S 2vWy»co exp(=iK =r,)J (Nkkvol0Y @)

These equations onlly couple excitationswith the same value of /, the separation of
the electron and hole. Fori = 0 the excitation frequency isgiven by

By (@ ) kg iT2/VvaMinep( k)
2 <fYkiop( IK’r)  W\ao\ao [.2))

This B the Frenkel exciton in which the electron and hole are on the same atom
(Anderson 1963, Knox 1963, Gunn and Inkson 19/9).

In the first set of terms, the summation over sitesn comes from the electron-hole
pair on atom O de-exciting and simultaneously exciting another electron-hole pair on
atom n via the direct dipole-dipole interaction. This summation also includes the term
Kdinaiwhich corresponds apparently to an unphysical process inwhich the electron-
hole pair de-excites and excites itself (Gunn and Ortuno 1980). Infactthisterm, together
with - k.o, ocorrects the Hartree-Fock intra—atomic excitation energy (- ®). In
thisextreme tigtt-binding case the atomic energy leelsare given by equation (6):

f\ 00  TRONKD)
= «©aiT 2NN, ~ Wt (€9))

rvisthe one-electron energy corrected by the Hartree interactionwith the other electron
on the atom, and the Hartree and exchange seH-interaction terms cancel; however, o
cortains non—-cancel ling seif-interactias. The true intra-atom excitation energy sgiven
by

(odl 'FKIO.AME) (wINI'F\RONOMD) (& K)  PAHOdOT II).\Sr @D

We see that thiscorresponds precisely to the correction terms included inthe krai -

We seethat theexcitationscome inpairs + N : thisarisesfrom the symmetry between
electrons and holes inthe «ra i :equations (Fetter and Walecka 1971). The symmetry B
also responsible for the second st of terms in (2), and as tcorresponds 1o a better
ground state containing excitonic zero-point fluctuations, itshould give amore accurate
exciton frequency than the usual approach (Anderson 1963). Another feature of equa-
tion () which Bmore accurate sthat both the direct and exchange interactions between
electron-hole pairs are included (figure 1), even though itisthe direct interactionwhich
dominates the Frenkel exciton.
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For // Owe adbtain from equation (2):
on  [(ec 1V) PIOaP  Vouia* (32

The frequency of these excitations does not depend on wavevector k but only on the
electron-hole separation r,. These are charge trasfer states (Gunn and Inkson 1979),
in which the electron-hole pair have treir energy lowered by their electrostatic inter—
action Kvke com coming from the exchange terms in the rpae equations (figure 1), As

(] 9 -

Kit-ure 1. (2) Direct interaction and (/>) exchange interaction between electron hole pairs,
summed («) in the ki%i

with the Frenkel exciton, the second squared tem in equation () sa resutt of the
electron-hole symmetry. The charge transfer excitatios are digpersionless in this
extreme tight-binding limit, because the electron and hole cannot hop or de-excite,
being stuck on separate atons.
We dall now evaluate these expressions foramodel insulatorwith atoms on asinple
cubic lattice having hydrogenic valence and conduction band arbitals:
(AN=(a-\&/'\6r)exp(-ar)
= (1ravn)z exp(-fir). [€5))

We only consider ecitatioswith« = (O, 0, a),and forthemoment negllect interactions
between the dipoles inthe : direction and those inthe* and y directios. The Coulomb
matrix elements inequations (29) and () are ail straightforward to evaluate:

3 3 1

Vvod.cuw @+ M\ 2F@©+AB ZiW/Hs @+ il)\
2HnVr

3( + li)1

1 3(1-3 cos’™s)

r, 2ff E

\IOND)

VS
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RV// (@ - 3020,

N R TR @)
and the lattice summation can be carried out by Fourier transform
Ao Yrromy T A T W (€

Q \K + ifl

where the sum sover reciprocal lattice vectorsg, Q isthe volume per atom and p Bthe
Fourier transform of the electron-hole dipole charge darsity:

(a+P)k
{@t+py+
As p Ba rapidly decreasing function of k, Kk soften agood approximation t lake the
g = 0 term inthe summation.

p(k) =321va/

Iésmo’\ (€9)

nla

a: CcL 06 08
K (au)

Figure 2. Excitation energies in extreme tight-binding insulator. Lattice parameter« 4 au.
Orbital parametersa  lau, - 0.5au, (t* - £) = = lau. The Frenkel exciton shows
dispersion, and the circles indicate g = 0 approximation for u)v. Dispersionless modes are
charge transfer excitations, of which only the lowest are shown.

Figure 2 shows the excitationswe obtain for a lattice spacingofa = 4 au, with aband
gap &-- v)= lau, and orbital parareters a = lau, p ~ 0.5au. Taking theg O
approximation for the dipole summation gives an eplicit expression for the dispersion
of the Frenkel exciton, which for these parameters &

43.8

iog =W0.573 + (2_25; g @- (€1))
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This i iIngood agreement with the full lattice summation, especially near the centre of
the Brillouinzone. With our choice of parameters, the Frenkel exciton always liesunder
the singlejarticleexcitationenergy (t\ - o/), but atsmaller latticeparameter ican have
ahigher energy— this isbecause the dipole-dipole interaction, contained in the second
term inequation (37), increases rapidly as« decreases.

Up tonow we have only considered one p : orbital; including the other twop orbitals
in the conductiion band gives a cubic equation intoi whiich has two transverse solutions
and one logitudinal (Anderson 1963, Knox 1963). The transverse modes only cormtain
thep orbitals perpendicular tok , and the logitudinal mode the orbital parallel tok (the
case we have considered); the frequencies of the modes depend onlyon k | 1hecharge
transfer states polarise in the same way into transverse and longitudinal modes when dl
threep orbitals are included.

4. Tight-binding insulator witth hopping

The effects of one-electron hopping on the excitatios in an insulator can be reedily
included inequations (2K):we consider the sinplest case inwhich the valence orbitals
on neighbouring atoms inteyact via the hopping integral £, and the conduction electron
orbitals via «, but there B no interaction between bands. The rpae equations then
become

v+ (fc ~ )] <Vjaruilo >3 'rg'2 {o- u ep(-In- |, - 1., D} [tH"0]0)
+ Uv,d,Wk>ai]0) - N(2 2Agiub, exp(-iK =) j <M|aoo|B>

+ Ui VIKICWVK™I64)0) - A.(S 2Vend).:)™ oxp(— be=r,)j (NJWd™\O[0) (€5))

and

- (It - N </V|«>v,i!0;: .S {u-uepCifcur,- mP(Nlarr0)

o>
- VAL EWEp+ X 2Katigdexp(-1K «rs)) @GN0

VTCMWNKXFIIQ) T 2fvikiivnal op(— k =) j Ajdmlb). ()

The resulting matrix eigenvalue problem can be solved inthe computer .

The results we dbtain for excitatios ina tight-binding aystal with (fc- )= lay,
orbrtal parareters a ~ lau, A= 0.5au, latticespacinga = 4 au, and hopping integrals
v = 0.02 au,w = -0.02 au are shown infigure 3. The one—-electron excitations (extended
solutions of equations (33) and (39)) are now spread out intoa bund by the one-electron
hopping, overlapping the Frenkel exciton. Nevertheless, this dill persists as a well
defined excitation of the system at small « , with a frequency quite close to the
extreme-tight-binding value shown in tigure 2. The structure of the Frenkel exciton B
shown in figwe 4, which gives the Bethe-Salpeter amplitudes {Yjs.irnoj0) and
A" kdi|Oover the anystal latticeat k = 0.02 au. As ioverlaps with the continuum, the
exciton sreally a resonance rather than a true localisad solution of equations (38) and
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(39, hut itdill has the classic Frenkel exciton structure: essentially an excited electron
well localised on the same atom as the hole. The rpae ground state already cormtains
some excited electrons (Fetter and Walecka 1971), so there & a component of
Hra0](), hut this Bvery srall . With smallervaluesofhopping parameter, theelectron
becomes even more localised on the atom wirth the hole; this isshown by figure 5 giving

nh

o? 04 ob 06
«lout

Figure 3. Excitation energies in tight-binding insulator. Lattice parametera ; 4au. Orbital

parameters « lau. A 0.5au, (i, <) Zlau. Hopping parameters & 0.07 au, »
(102 au Shaded area indicates one-electron excitation continuum: the heavy line shows

the Frenkel exciton the lowest NVannier excitons arc shown, below the continuum edge.

Vol |Q)for the Frenkel excitonatk = 0.02auwith®= 0.01 au,u - -0.01 au. llow
ever, as reincreases the excirton spreads out (figure6), and becomes lessdistinct fraott the
particle-hole continuum.

When one-electron hopping s included, the charge-transfer states which we found
in S3 In the extreme tigt—binding limit become Wannier excitons (Anderson 1963,
Knox 1963). The Wannier excitons, ofwhich figure 3 shows only the lonest, are pushed
down inenergy compared with the charge trasfer states (figure 2) by the broadening of
the singlejarticle states intoa band, and become weakly digpersive. Figure 7 shows the
Bethe-Salpeter anplitudes of the three lonest modes at srall « ,and we see that they
aosist of excited electrons in distorted s, p and d orbitals around the hole. I the
electron-hole interaction term V,,wu  (equation (34)) b approximated by W, we
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Figure 4. Frenkel exciton at * =0.(12au, re* = 1.021 au (parameters as in figure 3). The
lower figures give Ri@/IRSx§=and the upper figures (where shown) Re<N|uwad,|0) for
different atoms t in the x: plane. The shading indicates Re(/V]a™di|0), horizontal shading
corresponding to positive values and vertical shading negative values.

obtain the amplitudes shown infigure 8- an slike orbital (figure 8(a)) (Is though with
reduced amplitude at the origin) with excitation energy wN — 0.617 au, a 2p orbital
(figure 8(1>)) with excitation energy w,v= (1.654au and a 3d orbital (figure 8(c)) with
uh = 0.7@ a.

We can fird approximate amalytic solutions for the Wannier excitons by neglecting
the VVAo.ccAKHIadO) term inequation (30), inwhich the matrix element ssmall and
in any case smultiplied by the relatively srall dipole interaction. For r, t Il and with
only nearest-neighbour one-electron hopping, thisequation then becomes

Figure 5. Frenkel exciton at x - 0.0?. au withv - 0.01 au, u - —8.Ul au. ,B”\ 0.975 au



38 J Hogan andJ E Jnglesfield

Figure 6. Frenkel exciton ai x =0.5 uu, <v =0.986 au (parameters as in figure 3).
o - (tc- fv)] W]aev«|0)
= I» - v ABRD] {A" i aol0) + i/, -8,)20i0%
- IV sin(Ayr) {VJOfF,,a»0f0>- (N \ a ~ alaMm
+ similar terms inthey, z directios
” A0y far, M0 @

Hwe replace the discrete function (NJad7nai0) by a continuous function of position y«(),
and make aTaylor expansion of this function about r, thisgives:

[wn - @c~ Fyj(r) = {U- voos(X,QJ @2+ a2dddx2) — 2i av sin(kyj) dliix
+ similar terms in the >,z directions} W) — (W) ir>(r). ‘@

We approximate WOQWOMa by W, (equation (34))- This b essatially the standard
Schrodinger equation forexcitons inthe Wannier effective mass approximation (Knox
1963). However, inequation (41) the electron-hole interaction, which comes origirally
from theexchange term inthexrai  equations (9), Bsunscreened: abetter approximation
storeplace thisby Her, where ns themacroscopic dielectricconstant (Hanke and Sham
1975). In our particular case where u = -v, equation (40 becomes, in the limit of
x— O

Figure 7. Wannier excitons al x =0.02 au (parameters as in figure 3). (a) >\  0.520 au; (ft)
wxy =0.530 au, (c) o\ =0.679 au.
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- (ec- P Y(r) - 2u(6 + mv2ip®- /DD @
which has hydrogenic solutions with eigervalues

= (fc- )+ 12« + sleh . »B
We can see that equation (43) i inappropriate for the s states because of dropping the
r, = 0 term in equation (). However, forn = 2 itgives u)\ = 0.662 au, in excellent
agreement with the value we dbtain for the 2p exciton in the full calaulation when we
approximate Fenonaby W, and forn = 3io,, = 0.717 au, ingood agreement with the 3d
excrtation energy.

The most significat feature of our rpae results for the tight-binding insulator sthat
the Frenkel exciton (figure 4) and a whole spectrum of Wannier excitons (figure 7) can
coexist at each wavevector (figure 3). To our knowledge this isa new conclusion, as £B
usually claimed that the Frenkel exciton isthe limit of the Wannier Is state contracted
onto the hole site inthe strong-coupling limit (Anderson 1963, Rossler 1976). We suggest
that the high-energy collective excitation observed in rare gas solids, usually attributed
toaplasmon (Giaguinta et al 1976a, b, Gunn and Inkson 19/9), k in fact the Frenkel
excrton.

H mit Ifi
t jHurt- 8. Wannicr excitons al k - 0.02 au, with parameters asin figure 1 hut w,wi  approx-
imated by ur,. (u) rov =(1 617 au; (/S to* =0.664au; (c) =0.700 au.

5. Excitations in a tight-binding metal

Our localised orbital representation can be used tofind the excitations ina tight-binding
metal: we gall consider s orbital besis functions on a simple cubic lattice, cortaining
one electron per atom. Taking the one-electiron hopping integral tobe v, and as N 83
negllecting overlap in the Coulomb matrix elements, equation (17) for the sirglet exci-
tatios becomes

M= Ay O~ SPCIK T~ 1. D) MO
+ (aidO)Sm exp(-i1>C orm) 2(V,mil - F,,,,-/) /<0
+ 2m Fm,u,(1- exp(-iKe[r, - 1,,,])) (a-aj (N | a>u]0). (44)

This sthe Tull ri‘aizequation inwhich both ladder and bubble diagrams are summed
(figure D: however, inhametal the Coulomb interaction in the ladder diagrams should
be screened (Hanke and Sham 1975), and it sunphysical to include the full exchange
term, given by the firal summation inequation (49). It scartainly better t drop this
term, correspondingtrpa.
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From equation (24) the expectation values in equation (44) are given in thissingle-
band model by

S > = — 2 exp(-ik rr,). (G9))

kinside Fermisurface

This summation over occupied statesmust be done nurerical ly, but itisstraightfornard
and need only be done once for the whole excitation spectrum. The various Coulomb
matrix elements inequation (44) are easy toevaluate. The sum over sitescan be written
asasum over reciprocal lattice vectors:

m cxp( ik ~m)(Vvimnl  £mo.om)

=7?2(exp(-i»F r)- 1)2p(k + £]) 7|k + tHR (46)

where the Fourier transform of the hydrogenic Ischarge density isgiven by

ar
and the matrix elements in the exchange summation are:
T ijo.ikj = in
[ 1 — -(1 a, 3 >\
fom= Lopczmny th 2% e WY v @

Fi(jure9. Excitations in tight-binding metal. Lattice parameter« =2.5 au. Orbital parameter
n = lau. Itopping parameter = 0.05 au. Shaded area indicates one-electron excitation
continuum; the plasmon appears above the continuum The broken curve shows the exci-
tation energy when the exchange is included.
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The results which we obtain in thisway for the excitation spectrum are shown iIn
figare 9 for ametal with latticespacing = 2.5au, a - lau, and hopping parameter v =
-0.0U5 au. We see, by omitting the exchange term inequation (44), that there savell
defined plasmon mode above the sirgleparticle excitation spectrun. However if
exchange s included, corresponding 1o rpae, the plasmon mode spulled dl the way
down inenergy to just above the sirglearticle continuum (figure 9). This sobviously
uphysical, and itshows the importance of screening or altogether dropping exchange
in metals. Figure 10 shows the gmatial variation of the Bethe-Salpeter amplitude

Figure 10. Plasmon al v =0.1 au, w* =0.407 au. The shading indicates Re(iV]u;a,,]0), hor-
izontal shading corresponding to positive values and vertical shading to negative values.

H«ANJ0) for the plasmon, and we see that the excited electron shows an oscillatirng
probsbility anplitude about the hole. This wavefunction iscompletely different from
that of excitons in insulators (figres4-8).

The plasmon frequency can be found by themore usual dielectric function approach
(Horie 1959, Hanke 1978). To obtain thiswe drop the exchange term inequation (49)
and take the Fourier transform of (A,p@0):

/() = 2 exp(i* =) (KFflol0). “)

Then multiplying equation (44) by exp( ¥eer,)and summing over i we obtain

tondxk) = [IF) - t\k - K)\f(k)

where n Bthe Fermi function, and we have substituted the tight-binding expression for
the energy:

e(k) En+v 2j exp(i*erm). (51)

mneighbours
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From equation (80) we dotain

so that u)s satisfies

2 £ n(*-*)-n(*) 4tv pQ* +d)-
N *nBz _f*_K)QV k+gP S

The right-hand side ofequation (53) has the usual form of adielectric function, modified
by an electrostatic term depending on the charge dasity, it i less convenient 1o use
than the direct, real space equation (49), because we must scan through a range of
erergies to find o>v such that the right-hand side equals 1, but we fird nurerical ly thaet
itgives exactly the same reaults.
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