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ON THE GEOMETRY OF MECHANISMS
by D.MARSH

Abstract

THIS THESIS presents a philosophy for studying the kinematic
geometry of mechanisms. In particular, the aim is to bring
together relevant ideas and theorems from modern algebraic
geometry and to apply them to the special varieties which
encapsulate the motion of mechansims. :

The philosophy is to associate to each configuration of a
mechanism a point in a higher-configuration space. The
constraints on the motion of a mechanism may be expressed as
polynomial equations in that configuration space, thus defining a
linkage variety. The thesis describes the geometry of the linkage
varieties for the planar and spherical four-bar mechanisms, the
geared five-bar mechanism with gear ratio minus one and the
Watt six-bar mechanisms.

The linkage varieties are real affine varieties. But it is
natural to consider their complex projective closures. The
geometry of these complex projective varieties are discussed in
detail. The thesis computes the degree and genus of these varieties
for these examples and, moreover, a complete list of their
reductions into irreducible components is given in terms of the
design parameters of the mechanism. The geometric genus is
showed to be an invariant of the kinematic chain under inversion.

For the above examples the real affine linkage variety of
the generic mechanism is an irreducible, compact and non-singular
curve and therefore diffeomorphic to a disjoint union of circles.
The thesis presents a general method for calculating the number of
connected components by considering ‘submechanisms’ of the given
mechanism. This philosophy is performed for the above mentioned
examples and the number is determined in terms of the design
parameters.
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INTRODUCTION

THIS THESIS presents a philosophy for studying the kinematic
geometry of mechanisms. In particular, the aim is to bring
together relevant ideas and theorems from modern algebraic
geometry and to apply them to the special varieties which
encapsulate the motion of mechanisms. We begin with some basic

definitions from the mechanisms literature.

A kinematic chain is a system of finitely many rigid
bodies jointed together. The rigid bodies are called bars or links.
A link, which is connected to two, three, four etc. other links, is
called a binary, ternary, quaternary etc. link. If we fix some
of the bars of the kinematic chain, we obtain a mechanism or
linkage. The study of the relative motion of the moving links with
respect to the fixed ones is called the kinematics of the
mechanism. A mechanism, whose motion is wholly contained in
the plane, is called a planar mechanism and mechanisms, which do
not satisfy this property, are called spatial mechanisms. In
general, the term ‘'mechanism’ is used to describe any jointed,
system, whilst the term ‘linkage' is used when the joints are
hinges (‘turning joints) or when the joints are ‘simple’
Technically, a 'simple’ joint is one of the lower order pairs. Note
that for planar mechanisms the only 'simple’ joints are hinges. The
author hopes that the‘term ‘hinge’ is intuitively clear. The effect of
hinging two rigid bodies is like that of pressing a drawing pin
- through two strips of strong cafd, so that the strips are free to
turn about the pin. Indeed, the reader is urged to make models

from card and drawing pins! Finally, the reader is warned that
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there is no consistent definition of the terms ‘mechanism’' and
linkage' in the literature. A mechanism consisting of n bars is

called an n-bar or n-link mechanism.

If the mechanism has one degree of freedom, then the locus
of any point rigidly attached to one of the moving bars is a curve
called the coupler curve. The tracing point is called the coupler
point and the bar to which the coupler point is aftached is called

the coupler bar.

Throughout the thesis we shall need a diagramatic notation
for planar mechanisms. We shall denote a hinge by an open
circle o. To describe any kinematic chain it is sufficient to denote
which hinges are a fixed distance apart during the motion; we
shall do this by joining such hinges by a line: e——. For example,

the four-bar kinematic chain may be denoted in diagram form as

Let us restrict ourselves, for the time being, to linkages
when the bars are jointed together only by hinges. Then it can be
showed that planar linkages with one degree of freedom have an
even number of bars greater than or equal to four. Thus, the
simplest example is the four-bar which has just one kinematic
chain. However, there are 2 possible six-bar kinematic chains

(see Chapter 4 for details); 16 possible eight-bar kinematic chains
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[Klein]; whilst there are an incredible 230 ten-bar [Davies&Crossley]

and 6856 [Kiper &Schian + 1 case] twelve-bar kinematic chains.

The great explosion of interest in mechanisms came during
the industrial revolution and the steam engine era. The most
notable event was James Watt's (1736-1819) discovery in 1784
that a certain four-bar coupler curve could be used for an
approximate straight-line motion to drive the piston rod on one of
his steam engines. Approximate and exact straight-line motions
proved to be the driving force for many of the investigations into
coupler curves of mechanisms in the following years. Three other
straight-line approximations by four-bar coupler curves were later
discovered by R. Roberts (1789-1864), P. L. Chebyshev
(1821-1894) and O.Evans (1755-1819). The production of exact
straight-line motion by a planar linkage remained unsolved until
1864 when A.Peaucellier (1832-1913), an officer of the French
Army Engineers, published his solution of the problem [Peaucellier].
The reader might be interested to know that Peaucellier's
mechanism is used in the air conditioning machinery in the

basement of the Houses of Parliament, London.

Before the publication of Reuleaux's (1829-1905) work
[Reuleaux] in 1875, heralding a turning point in the study of
méchanisms, the approach to mechanism design was purely trial
and error. Reuleaux .suggested that, instead of investigating
individual mechanisms designed for specific purposes, one should
study systems of finitely many rigid bodies and how they are

connected. This led to the present concept of kinematic chain.
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The first mathematical analyses of the coupler curves of
mechanisms were made, as one might expect, on the four-bar
linkage. These appeared in [Chebyshev] 1854 and in [S. Roberts]
1875, the same year as the publication of Reuleaux's classic work.
Chebyshev gives an analytic description of how approximate
straight-line motion may be attained by four-bar coupler curves
and later in [Chebyshev 1899] he gives an analysis of the Watt
linkage (i.e. the four-bar which Watt used for apﬁroximate

straight-line motion).

On the other hand, S. Roberts (1827-1913) gives an analysis
of the coupler curve of the four-bar linkage from an algebraic point
of view and proves his Triple Generation Theorem (see Chapter 5):
a result which is invaluable in coupler curve synthesis. It is of a
historical interest to note that the equation of the four-bar coupler
curve was well-known in the early 1800's, although it is unclear
who first discovered it. Further results on the four-bar .were
achieved by [Johnson] and [Cayley] in 1876, [Bennett] in 1922 and
[Morley] in 1923. By far the most intriguing result on mechanisms
of this period is Kempe's Theorem [Kempe] which states: ‘any plane

t

curve of the nth order may be generated by linkwork' ie. any

plane curve is part of the coupler curve of some linkage.

More recent work on the geared five-bar and six-bar
mechanisms may be found in [Primrose et al] and [Freudenstein et
all. The general approach to the study of coupler curves taken by
these authors and others depends entirely on being able to write
down, quite explicitly, the defining equation of the coupler curve;

the same approach which Cayley and others were using at the
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turn of the century in their studies of the four-bar and
slider-crank linkages etc. These authors determined the degree
and genus of the coupler curves and the multiplicity of the circular
points at infinity (assuming that the curve is irreducible) for the
geared five-bar mechanisms and the six-bar linkages. They also
gave an upper bound for the number of circuits of these curves;

but, unfortunately, there are gaps in the proofs.

It is worth pointing out that, although the question of the
irreducibility of the general coupler curve of a given mechanism is
fundamental to the geometry, in all examples of engineering
interest this remains an unproved hypothesis. The mechanisms
literature has many of these well known “folklore" results for
which no proofs exist. For example, the reductions of the planar
four-bar have been known for over a century, but no proof has

been published until recently [Gibson&Newstead].

It becomes apparent that despite the tremendous growth in
techniques of mechanism synthesis (ie. ‘finding the best
mechanism to do the job) in the last hundred years, little or no
progress has been made in the study of coupler curves from an

algebraic-geometric point of view.

A new general philosophy for the study of the motion of
mechanisms, initiated in [Marsh;Gibson&Newstead], is to associate
to each configuration of a mechanism a point in a
higher-dimensional configuration space. The constraints on the
motion of a mechanism may be expressed as polynomial equations

in that configuration space, thus defining a linkage variety. A
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point on that variety corresponds to a configuration of the
mechanism. [t should be noted that the concept of a configuration
space has been exploited in many other areas of science, but it
seems to have been neglected in the field of Machine and

Mechanism Theory.

Understanding the geometry of these linkage varieties is a
fundamental and open problem of the subject. Coupler curves, or
surfaces for mechanisms with two degrees of freedom etc. are

obtained from these varieties by a birational linear projection.

For a natural study of these varieties we complexify and
homogenise their defining equations thus giving a complex linkage
variety in some complex projective space. We may then apply the
machinery of algebraic geometry to obtain substantial information
about the linkage varieties.” In particular, this provides a natural
approach to determining the degree and genus of the coupler
curves. The first step is to determine the degree and genus of the
linkage variety. Then we deduce the results for the coupler curves
via the Projection Formula which relates the degree of a variety
with that of its image under linear projection. Further, since the
coupler projection is a birational map, the coupler curve has the

same genus as the linkage variety.

For generic mechanisms of mobility one the real linkage
variety is a non-singular curve. Thus, it is a compact
one-dimensional real manifold and therefore diffeomorphic to a
disjoint union of circles called the connected components.

Determining the number of components is a central problem and is
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unlikely to be an easy matter so one seeks techniques which will at
least apply to examples of engineering interest. Such a technique is
provided in §1.4 and applied to the planar four-bar in §1.4, the
spherical four-bar in Chapter 2, the geared five-bar in §3.3 and

the Watt six-bar in §4.6.

The philosophy, which is emphasised throughout the thesis,
is based on the following observation. Let M be a mechanism
with linkage variety V and let M' be a submechanism of M
with linkage variety V'. We mean by submechanism, that M' is
obtained from M by removing a number of links. A configuration
of M will determine a unique configuration of M' and this is
realised, geometrically, as a natural linear projection of V onto
V'. Indeed, one expects such a mapping to be finite in the technical
sense of algebraic geometry on Zariski open subsets of V and V'
le. between quasi-projective varieties. There is a fixed integer
d2>1, such that for any generic configuration of M' there are d
configurations of M. Thus, for the four-bar we may take any
moving link and for the Watt I we may take an underlying
four-bar. In both of these cases d=2. For the real varieties V, V'
the topology of V is related to d-fold coverings of V'. Thus, by
choosing some or all possible submechanisms M', we hope to
deduce information about the topology of V. Further, the
préjections between the complex varieties provide a technique for
yielding information about the reductions of V from the lists of

possible reductions of V'.

In §4.6 we describe an important and very intuitive result:

that the (residual) linkage variety of kinematically inverted
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linkages, under a quite general. hypothesis, are (complex)
birationally isomorphic and that their real (residual) linkage
varieties are real isomorphic; this is explained in detail in §4.6. In
particular, this shows that the linkage variety encapsulates the
relative motion of the kinematic chain despite the fact that we
derive its defining equations by fixing a bar. Moreover, it shows
that the geometric genus of the (residual) linkage variety is an

invariant of the kinematic chain.

In Chapter 1 we describe the geometry of the planar
four-bar. The basic geometry of the linkage and Darboux varieties
was first obtained by [Marsh;Gibson&Newstead] and this work is
described in detail in the first section. In the following two sections
we present two methods of finding the list of possible reductions of
the four-bar linkage varieties, both different from the solution
given in [Gibson&Newstead]. This provides an illustration  of the
techniques which we will use for the more complicated geared
five-bar and Watt [ six-bar mechanisms. In §1.4 we describe,
more fully, the philosophy outlined above for determining the
topology of linkage varieties. This philosophy is carried out for the
planar four-bar; here the submechanisms are single links whose
linkage wvarieties are circles. Thus, we have natural 2-fold
coverings of circles and the topology is related to the number of
critical points of these coverings. The result is that the generic
four-bar mechanism has one or two components determined by a
simple condition on the design parameters. This provides an
alternative to the Morse Theoretic proof of the same result given in
[Gibson&Newstead]. Moreover, the critical points relate to a

concept familiar in the mechisms literature, namely, that of the
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limiting positions'. This leads to a natural way of classifying

coupler curves based on the eight Hain types [Hain 1964].

In the next section we describe the geometry of the Segre
quartic surface, a complete intersection of two quadric
hypersurfaces in PC% The geometry of this surface is important
in the discussion of the four-bar coupler curves in §1.6 and of the
coupler curves of the geared five-bar, when the coupler point is a
hinge, in §3.4. In both of these cases the linkage varieties are the
intersection of a net of quadric hypersurfaces in PC4 We recall
that the coupler curves are obtained from the linkage varieties by
linear projection. Then, in the cases at hand, the centre of
projection is a line and there is a unique pencil of quadrics in the
net containing that line. Provided that pencil is generic, a term
which we make precise in the text, the intersection of every
quadric in the pencil is a Segre quartic surface containing exactly
sixteen lines one of which is the centre. Thus, the coupler
projection is a projection from a line on the surface giviﬁg a
birational map between the projective plane and the ‘surface. We
deduce, therefore, that the coupler projection is a generically 1-1
mapping from which we can deduce a number of properties of the

coupler curves. These properties are discussed in §1.6.

Chapter 2 presents a non-planar mechanism namely the
spherical four-bar. The author realised that the technique
developed for determining the topology of the real linkage varieties
need not be restricted to planar mechanisms. The basic geometry
of the linkage variety was done in [Gibson&Selig] and we give a

summary of the results which we shall need. In the spherical
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four-bar case there are natural maps of the linkage variety onto
circles. Determining the critical points of these maps, yields the

topology of the linkage variety. This result is entirely new.

In Chapter 3 we return to planar mechanisms with that of
the geared five-bar mechanism with gear ratio -1. The linkage
variety is showed to be isomorphic to an‘ intersection of three
quadrics in PC% In §1.1 we describe the basic geometry of the
linkage varieties. In particular, we show that it meets the
hyperplane at infinity in two ordinary double points and four
simple points. Hence, we may deduce that the linkage variety is a‘
curve. Further, we discuss the condition for singularities to occur
off the hyperplane at infinity. Section 3.2 is devoted to the
reductions of the linkage variety. We give a complete list in terms
of the design parameters. We show that the possible reductions are
8, 6+2, 4+2+2 and 4+22, In particular, we show that the generic
linkage variety is an irreducible curve of degree 8 and geometric

genus 3. The list of reductions is an interesting new result.

In §3.3 we restrict our attention to the real linkage variety.
In the generic case the real linkage variety is an irreducible
non-singular curve thus diffeomorphic to a disjoint union of circles.
By Harnack's Theorem this number is <4. We shall show how to
determine this number in terms of the design parameters using
the general philosophy which we present in §1.4. Finally, in §34
we describe the geometry of the coupler curves. When the coupler
point is the hinge, we may apply the geometry of the Segre quartic
surface as mentioned earlier. The result is that the generic coupler

curve has degree 6, geometric genus 3 and ordinary double
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points at the circular points at infinity. This is the case described
by [Freudenstein&Primrose]. For the general coupler point we
show that the generic coupler curve has degree 8, geometric genus
3 and ordinary triple points at the circular points at infinity.

Furthermore, we deduce the reductions of the coupler curves.

The Watt mechanisms present us with a number of
problems which were not encountered in the previous examples.
The main problem is that the linkage varieties are not set-theoretic
complete intersections. In the previous examples we have relied on
Bezout's Theorem to give us the degree of the variety so that we
might deduce the degree of the residual linkage variety. Perhaps
we should explain the term ‘residual’ here. We recall that the
starting point is a set of polynomial constraints defining a real
affine curve, which we then complexify and projectivise by
introducing a complex variable w, so that we may apply the
general theory of complex projective varieties. However, the
projective set, which we produce, is not the smallest projective set
containing the original variety. Indeed, we may introduce
components in the hyperplane at infinity w=0. We define the
residual variety R' to be the variety obtained from the linkage
variety R by removing any irreducible components lying in
w=0. The residual variety is the projectivisation in the technical
sense which we require. In the first examples these ‘extra’
components were curves and therefore presented no problem since
we could subtract the sum of their degrees from the degree of R
to obtain the degree of R'. However, in the Watt case these
varieties are 2-planes and therefore we must argue very

differently.
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In §4.1 we set up the basic geometry of the Watt I and II
linkage varieties and in §4.2 we describe the common Darboux
variety of these mechanisms. We show that the Darboux variety
is isomorphic to an intersection of two cubic surfaces in PC3. The
variety consists of a line and a curve of degree 8 which we shall
call the residual Darboux variety D'. In §4.3 we show that these
two varieties are closely related thus giving the key tool for
calculating the degrees of the Watt [ and Il linkage varieties.
Moreover, we can deduce by careful reasoning the manner in

which these varieties meet the hyperplane at infinity.

The reductions of the linkage varieties present a similar
problem. However, we are able to deduce the reductions of the
linkage variety from the reductions of the residual Darboux
variety. Indeed, a component of D' corresponds to a component
of R' of twice the degree. This list is obtained in terms of the
design parameters in §44. In §45 we give a discussion of the

Watt I coupler curves.

In Chapter 5 we are interested in the real geometry of the
four-bar coupler curves. Here the emphasis lies on the natural
classification of coupler curves hinted at in the above discussion of
the critical points of the 2-fold coverings of circles in Chapter 1.
We begin with the easier task of giving a classification of the
complex coupler curves where there are fewer cases to consider.
This analysis forms §5.2. In this chapter the real topology of the
Segre quartic surface plays an important role. Therefore, we
devote a whole section, §5.5, to its description. Sections 5.3, 5.4 and

5.6 prepare the way for a graphical analysis of the coupler curves.
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In particular, we wish to determine exactly which types can occur
by graphical methods. This is by no means easy. Indeed, we need
sections 5.3-5.6 to give sufficient mathematical background before
we can even begin this analysis. A catalogue of four-bar curves
showing an example of each of the types found is presented in
§5.7." This programme of work is still in its early stages, but it is
clear that all the necessary techniques are available. This analysis

ties up very nicely with the work of Muller [Muller].

The author has provided an appendix outlining all the
results from algebraic geometry which will be used throughout the
thesis. This gives some indication of how the theorems may be
applied and references to where further discussion and proofs of

the theorems may be found. In the text these theorems and

ti i a d W

fixed witl A



- 14 -

CHAPTER 1. THE FOUR-BAR MECHANISM

Introduction

Despite the apparent simple structure of the four-bar
mechanism, the reader might find himself surprised by the wide
variety displayed by the (real) coupler curves. The simplest
non-degenerate examples look very much like circles, while more
complex ones may possess upto three real double points (which
may be acnodes, crunodes. tacnodes or cusps) and have as many as
eight real inflexions. Perhaps it is the simplicity, yet variety that
makes the mechanism so popular and useful to the mechanical

engineer.

One example with which the reader may be familiar, is the
four-bar used in the design of the jib-crane and found on many
building sites, scrapyards and docks. A typical example i§ showed
in Fig 1.1. Here the structure
of the crane is a
quadrilateral OABC with
bar OA fixed. The shape of
the coupler curve is used to
guide the gripper or pulley
through a set path

determined by the

dimensions of the crane. The

crane generally, has in
addition to the four-bar
motion, the freedom to

Fig. 1.1 revolve about its base.



- 15 -

On a much smaller scale four-bars, whose coupler curves
approximate straight-line motion, are indispensible to the engineer.
There are four famous classes of mechanisms which give
straight-line approximations each named after their discoverer.
These are the Chebyshev, Roberts, Evans and Watt mechanisms.
Figure 1.2 shows how an Evans mechanism can be used in a
measuring or recording apparatus. Finally, the reader is referred
to Hain [Hain,1961] who gives examples of applications of four-bar

coupler curves which have one, two or three cusps.

Fig. 1.2

This first chapter serves two purposes. Firstly, it is a study
of the geometry of the planar four-bar, illustrating the general
strategy and introducing much of the terminology used in later
chapters. Many of the results of this section are well known, but
the emphasis is on developing a sufficiently general framework and

methodology, so that similar results can be derived for any planar
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mechanism. Secondly, the four-bar provides a testing ground on

which we can try out new techniques.

In §1.1 we recall from [Marsh;Gibson&Newstead] the basic
geometry of the linkage curve R and the Darboux curve D. In
§1.2 and §1.3 we introduce two further approaches to determining
the reductions of R to the one given in [Gibson&Newstead]. These
illustrate the methods which we shall use for the more complicated
Geared five-bar mechanism in Chapter 3 and the Watt mechanism
in Chapter 4. In §1.4 we describe a new technique for determining
the topology of the linkage variety which provides the basis for
calculating the topology of the linkage variety of the spherical
four-bar, the geared five-bar and the Watt six-bar in the following
chapters. In §1.6 we view the coupler curves as a projection from
a line in 4-space of the residual curve R (as in
[Marsh;Gibson &Newstead)) and we recall from [Gibson&Newstead]
how we can explain the geometry of the projection in terms of the
geometry of the Segre quartic surface. Thus, as a necessary
preliminary we dedicate §1.5 to a description of this surface and

some of its properties.
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§1.1 Geometry of the Linkage and Darboux Curves.

Let the sides of the quadrilateral have
positive lengths dq, dp, d3, d4 and
directions given by the unit complex

numbers 21, 2, 23, 24 as showed in

Fig. 1.3. We fix the fourth link by setting
Fig. 1.3 zq4 = -1. The constraints of motion

are |zjl=1 for j=1, 2,3 and the single complex relation
dyzq +dozp+dzzz =dy
expressing the closure of the quadrilateral. Set 2z = xy+ iyy for

J=123 with xjv; real numbers. Then the constraints of

motion may be expressed by the real equations

i}
.
o

dyxq + dpxp + d3x3
dqyq + dgyz + d3y3z = O

2 2 2 2 2
x1+y1 =x2+y2 =x3+y3=1

Thus, we obtain five equations in six unknowns defining an
algebraic variety in R®. To study real affine varieties it is natural
to consider them as ‘real parts” (ie. the set of real points) of a
complex projective variety. Therefore, we shall complexify and
projectivise the equations by allowing the variables x1, y1, X2, y2,
X3, y3, to be complex and introducing a complex homogenising

co-ordinate w to give the following set of equations
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dyxq + doxo + dzxz = dgqw
diyq + doyp + dzyz = O (1.1)

2 2 2 2 2 2
X vYp = Xy tyy = Xg bys = wP

These equations define a projective variety R in the configuration
space PC® which we refer to as the linkage wvariety. For
convenience, we shall call the hyperplane w=0 the hyperplane at

infinity.

It is showed in [Marsh;Gibson&Newstead] that there is a
necessary and sufficient condition for equations (1.1) to have at
least one real solution. If we re-label dj, dj, dz, d4 in increasing
order of magnitude as e4, e, e3, 4, then that condition may be
expressed as eq4 s eq tey+e3  Whenever this condition is
satisfied, we shall say that we are in the constructible case.
Henceforth, we shall assume that we are in the constructible case,

so that equations (1.1) do possess a real solution.

By setting w=0 in equations (1.1) one obtains the
intersection of R with the hyperplane at infinity. We find that
yk=ztixy (k=1, 2, 3) thus giving eight possibilities. The two sign
combinations +++ and --- give two complex conjugate lines L, L.

These are given by the equations

L { dyxq +doxp+d3zx3=0 r { dqxq +doxp +dzx3=0

ye=ixx (k=1,2,3) ye=-ixx (k=1, 2, 3)

The remaining six sign combinations give three pairs of complex

conjugate points, namely Py, P2, Pz lyingon L, and Py , Py,
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53 lying on L. Their co-ordinates are :

-++: P4 = (0,0,d3,id3,~dp,-id2,0) +--: Py = (0,0,d3,~id3,-d2,id5,0)
+-+: Py = (d3,id3,0,0,-dq,-id4,0) -+-: P5 = (d3,-id3,0,0,-dy,id4,0)
++-: Pz = (dp,idp,~d4,-1d4,0,0,0) --+: 133 = (dp,-idp,~d4,id,0,0,0)

To determine the singularities of R, we note that, if P is a
point where the Jacobian matrix § of equations (1.1) has
non-maximal rank, then ether P 1s a singular point or a
component of R with dimension 22 passes through P. The

matrix is

(dy 0 dp 0 dz 0 -dg)
0 d 0 dp 0 dz O
}=1 2x42yy 0 0 0O 0 -2w
0 0 2x2y20 0 -2w
L0 0 0 0 2xz 2yz-2w]

When w=0, the singularities are easily seen to be the points Py,
Py, Pz, Py, Py, Ps. Thus, we may deduce that R is a curve.
Since, any component of dimension 22 would necessarily meet
w=0 in L or L and a simple contradiction follows by observing
that § would have to have non-maximal rank at every point on

the line: this is clearly impossible.

When w =0, singularities occur if and only if yq=yy=y3=0.

Substituting y4 = y2 =y3 =0 into equations (1.1), gives the condition

tdy tdptd3tdg=0 (1.2)
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We shall refer to condition (1.2) as the Grashof equality. Writing
dy, dg, d3, d4 in increasing order of magnitude as ey, ep, e3, ey,
(1.2) yields four distinct possibilities (using the notation of

[Gibson &Newstead)):

() eq +eq=ep+ ez but none of the cases below.
(I eg+ep+ez=ey
(I ef =ep=ez=ey
(IlI) eg = ex = e3 = ey

The four cases are called the circumscriptible, the collapse, the
kite/parallelogram, and the rhombus, respectively. Whenever
condition (1.2) does not hold, we say that we are in the generic
case: thus, in the generic case R has no singular points with w=0.
The numbering of cases indicates the number of singular points of
R with w=0: the singular points have the form (+1,0,11,0,11,0,1),
so that in cases (I) and (I') there is just one such singular point
and in cases (II) and (III) there are two and three singular points

respectively.

To obtain the degree of R one observes that equations
(1.1) express it as a set theoretic complete intersection of five
hypersurfaces in PC : two hyperplanes and three quadric
hypersurfaces. Thus, Bezout's Theorem (A3) yields that R has
degree 8. Therefore the residual curve X', obtained from R by
deleting the two lines at infinity, has degree 6. Moreover, the
points P4, Pp, P3, Py, Py, Pz are singular on R, but not on the

lines at infinity: thus they must lie on R'. Hence, R' intersects
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the hyperplane at infinity in precisely six points with intersection
multiplicity one. Therefore R meets the hyperplane
transversally at each of these points. Since the intersection
multiplicity is always larger than the multiplicity at a point (see
§A2 for details) it follows that all six points are ordinary double

points of R and simple points of K.

We may deduce further information about singular points
with w=0 (i.e. when the Grashof equality holds) by making a local
co-ordinate calculation. Make R affine by setting w=1 in
equations (1.1) and suppose that R has a singular point of the
form (g9,0,62,0,63,0,1) where ¢g;=11. Applying the affine
transformation x;—xj+¢; and leaving y; fixed (j=1, 2, 3), we
may assume that the singular point is at the origin. Using
equations (1.1) and the Implicit Function Theorem, we may
smoothly eliminate variables x3z, y3, x1, X to obtain a curve in

the (yq,y2)-plane with a singular point at the origin with equation
2 2 2
(dyyg + day2)” t didzyy t dadsy; +0(3) = 0

Details of this calculation are given in [Marsh). The discriminant of
the quadratic part is t4d4dpdzd4 which is always non-zero. We
conclude therefore that the singular points are always ordinary

double points.

In 812 and §13 we describe two approacheé to the
problem of determining the possible reductions of R' into its
components (i.e. its irreducible subvarieties). The list in

[Gibson&Newstead]' was obtained by argumerits involving the
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Genus Formula (Theorem A8). This approach suffers two
drawbacks. Firstly, it gives little illumination to the geometry of
R' and secondly, it does not provide a suitable method of working

out the reductions for more complicated mechanisms.

In preparation for the first approach we introduce a second
variety. The reader may recall that we began with the single

constraint of motion
dqzy +dozo+dzzz =dyg

To express it as two real relations one adds the complex conjugate
condition

dyzq+dpzp+d3zzz=dy4

However, the complex numbers 2z, zp, 2z are unit length so we

may express the second equation as

ds +dp + d3=d4
Z{ 23 Z3

Homogenising the two equations by introducing a new variable z4,

we obtain

dq2zq +dozp +d323 = dgzy
(1.3)

di+dp+d3=dq
29 22 23 24

Regarding 21, 22, 23, 24 as co-ordinates in PCS, then equations
(1.3) define the intersection of a hyperplane and a cubic surface,

giving a plane cubic curve D. It was Darboux [Darboux] who in
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1879 first studied this curve, connecting the motion of
quadrilaterals with the above cubic. Henceforth, we shall refer to
this cubic as the Darboux cubic. It is easy to show that the cubic
is singular if and only if the Grashof equation holds (see [Marsh] for
details). In particular, in the generic case the cubic is non-singular
and therefore irreducible. In cases (I) and (I') the cubic is nodal, in
case (II) the cubic is a conic and chord and in case (III) the cubic is
a triangle. Since equations (1.3) have real coefficients, we may ask
which real types of cubics occur. We find that we can make two
further distinctions. Firstly, we may show by looking more
carefully at the local co-ordinate calculation described above, that
cases (I) and (I') give crunodal and acnodal cubics respectively.
Secondly, when we are in the generic case, we can distinguish
between the two types of real non-singular cubics. One can
determine the type, for instance, by calculating the number of real
tangents to the cubic through the point (0,0,0,1): for in the one
component case there are two such tangents and in the two
component case there are four. The details of this may be found in
[Marsh]. The result is that when ej+eq¢ez+es we have two

components and when ej+e4>ez+e3 we have just one component.

§1.2 The Reductions of the Linkage Variety - Approach 1

We may now proceed to describe the first approach to the
problem of determining the reductions of R'. A similar approach
will be used in Chapter 5 for the Watt six-bar mechanism.

Consider the linear projection n:PCé - pC3 given by
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(%1, Y1, X2, Y2, X3, Y3, W) = (X1+iyyq, x2+iyp, x3+iy3, -w)

Then the restriction map ¢=mR' of 1 to the residual linkage
variety maps R' into the Darboux variety D. The centre of
projection is given by xq+iy1=x2+1y2=%x3+tiy3=w=0 ie. the line
at infinity L. We shall use the Projection Formula (Theorem A11)
to determine the degrees of the components of R/, given the
reduction of D. The first step is to show that the map ¢ is finite
(see §A7 for a formal definition) ie. that no component of R’
maps to a point on D. To do this it is sufficient to show that any

point P on D has only finitely many pre-images on R'.

Let P=(z1,22,23,24) be any point on D. If z4=0, then its
pre-images satisfy w=0 and is therefore a subset of the three
points on L : a finite number. Now suppose that 2j=0 for some
J=1,2,3 then P is one of the points Qq =(-d4,0,0,d), Qz =(0,~d4,0,d2)
or Qz=(0,0,-d4,d3). However, these points have no pre-image on
R': they are the points added to @(R') to make the image Zariski
closed. (The reader should note that the image of a projection is
Zariski closed, whenever the map is regular. However, in this
situation the centre of projection meets R' at the points Py, P
Pz and hence fails to be regular at these points. Thus we take the
closure of the image by adding finitely many points) We may now
suppose that z;=0 for j=1,234. Write zj=x;+iy; and z4=-w.
Then we may eliminate variables vy, y7, y3, w by writing them

as polynomials in x4, X2, X3, 21, 22, 23, 24. Equations (1.1) become
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dyxy + doxp + d3xz = -dsgz4
i(dgxq +dpxp + d3x3) - i(dgzg +dp2zp+d323) = 0
z1(21 - 2x1) =2p(29- 2x3) = 23(23~2x3) = z‘f

Finally, we may use the last three equations to write xi1, x3, X3 as
rational maps in the variables 2z1, 23, 23, 24. Therefore, we can
write _a__l_L the variables x1, X3, X3, ¥1, ¥2, ¥3, W as rational maps in
21, 22, 23, Z4. Thus we have showed that each point of D has a
unique pre-image on R'. Thus ¢ has degree one implying that
R' and D are birationally equivalent. This result was proved for

a more general case in [Gibson & Newstead].

Eliminate zz using the linear equation of (1.3) to obtain D
as a cubic in the (z1,zp,24)-plane. Then D meets 24=0 in the
three points P';=(0,1,0), P'2=(1,0,0) and P'3=(dp,-d1,0). These
points P'; have, as their pre-image on R', the points ﬁj lying
on L. It is easily seen that the points Q'i=1(d3,0,-dy),
Q2=(0,dp,-d3) and Q%3=(0,0,1) have no pre-image on R
Therefore these points are the closure points of the image ¢(R").
By the general theory of projections (Theorem A13) they are the
images of an osculating n-plane to ‘R' at points lying in the centre
of projection L. But the tangents to R'at points on L do not lie
in the hyperplane w=0 and it follows that the points Q' are the
images of these tangent lines; indeed, the tangent to P; maps to
Q'j Note that no line component of D is one of the lines 2z;=0.
Thus any line is necessarily one of the lines through the pairs of
points P';Q; whose pre-image on R' is a component of &'
passing through Pjﬁj and no other points of R' meeting w=0.

It follows that the pre-image is a real conic. The reductions are
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now easily determined. When D is three lines R' is three real
conics, when D is a line and conic R' is a real conic and real
quartic, and finally, when D is an irreducible cubic then R' is

an irreducible sextic.

Thus, in the generic case, R' is an irreducible sextic of
genus one: the genus of a non-singular planar cubic. In the
circumscriptible case, R' is irreducible with one ordinary double
point and has the genus of a nodal cubic, i.e. zero. When we are in
the kite/parallelogram case, the Darboux cubic reduces to a conic
and chord, thus R' reduces to a conic and quartic (both having
genus zero) intersecting in two points. Finally, in the rhombus case
we deduce that R' reduces to three conics, so that each meets the

other two transversally in one point.

It should be pointed out that in [Gibson&Newstead] the
construction of the Darboux variety is put in a more general
setting. The authors show that for any set of constraints of the

form
fi(z4,..2)=0, lzkl?=1  for 1sjss,and 1s<ksr

where 2iy,..,2, are complex numbers and f1,..fs are complex
polynomials in those variables, we may‘ associate two varieties
whose geometries are related. The first variety is obtained by
setting zg=xyx+iyx for 1<ks<r, and fgx=ux+ivg for 1<ksr,

where up and vy are real polynomials in the real variables xy,
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Yk. Then we may rewrite the constraints as ug=vix=0 and

xi+ yﬁ =1, defining a variety in R2T, Complexifying and
homogenising these equations by introducing the complex
homogenising variable w vyields a variety in pC2r given by the

homogeneous equations

U' (X1,Y1,0Xp, Y W)=0 v'k(xi,yl,.;.,xr,yr,w)= 0
and x§+yi=w2 for 1<skss.

This variety is the generalised form of the linkage variety which

we shall denote by R.

The second variety that we may derive from the set of
constraints is obtained by conjugating the polynomials
fi(21,..2,)=0 to give the polynomials fy(z1,.,2,). Then, since
the complex numbers are unit length, ) = -1z-k and we may
substitute for E-k and clear the denominators of the polynomials
fi, to give the set of polynomials Fi(z1,.,2,). Thus the set of
equations fi=F) =0 for 1<kss defines a variety in CF. We may
now homogenise these equations by introducing the homogenising
parameter w to give a variety in PCF given by the homogeneous

equations

f'y (21,,2p,W)=0 © F'x(29,..,2,,w) =0 for 1<kss

This variety is the generalised form of the Darboux variety which

we shall denote by D.

The main result of [Gibson&Newstead] is that, if we remove

from R all components lying in the hyperplane w=0 to give a



- 28 -

residual variety R' and if we remove from D all components
lying in any one of the hyperplanes 2z,=0 (1<ksr) leaving a
residual variety D', then the varieties R' ‘and D' are
birationally isomorphic. We shall give a slightly different proof to
that given in [Gibson&Newstead). Consider the projection
T: (X1,V1,0Xp,YrW) P (X1 +iyq,....Xp+iyy,W).  First we will show
that the image of R' is D' and that the projection is generically
one to one; thus by Lemma A3, m is birational. Note that it is
sufficient to consider the Zariski open subsets of R' of points with
w=0. Let P=(x{,¥1,.%r,¥r,1) be a point on R' with w=0.
Since w=0 we may write zy=xp+iyg=1/(x)-iyy) for all k.

Hence,

fr(x1+iyq e Xp*iyy, )= fr(xg+iyy o Xp+iyy) = UR(Xq,Y1,00%0Yy) +
in(Xl,Yi,...,xr,yr) = u'k (XIJY].I"-er:Yr‘:l) + iV'k(X]_,Y]_, ---:xr:Yrvl)

and since u'y(P) =v'x(P)=0 we have f'yx(n(P))=0. Further,

Fl(x+iyy mxerive,l) = f1/x1+iyy) a1/ (o+iyy)) =
fi(x1-iyq o Xpe-iyy).

Conjugating the right hand equation yields F'(mt(P)) =0, since
(X1 +1 Y1 o Xp+iYy) = UR(X1, Y1000 Xy, V) = ivi(X1, Y10 X Yy)
vanishes, whenever ug(X4,y1,..Xr,¥r) = Vk(X1,¥1,-.Xp,Yy) = 0. Thus
T(P) lies on D' To show that the restriction of nlR' s

generically one to one let P=(21,.,2,) be any point of D' with

21=0,..,2, =0 and suppose that (X1,¥1,0Xp Yr,1) and
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(x'1,Y'1,--%'p¥'r,1) are two distinct points on R' which map to
P. Then xj+y;=x'y+y’;, and (xj+iyj)(xj-iyj)=xi+yi = X'} 8 +
Ve = (x'ytiy')(x'j-iy’y).  Thus (x gy (xy-iyy)-(x'j-iy'))] = 0.
Hence, either (xj+iy;)=0 contradicting the fact that zx=0 or
xj-iyj=x';-iy’;. In the latter case the above condition together with
the condition xjtiy;=x'j+iy'y yields xx=xy, yk=y'kx. Thus, P has
a unique pre-image. Combining this with the fact that =© is

rational, yields that m is a birational map between R' and D'

§1.3 The Reductions of the Linkage Variety - Approach‘ 2

In this section we introduce a new technique which we
need to determine the reductions of the four-bar is this section and
to determine the reductions of the geared five-bar in Chapter 3.
An extension of this technique will then be used to determine the
topology of the real linkage varieties of the generic four-bar in the
next section and the generic spherical four-bar, the generic geared
five-bar and the generic Watt six-bar in Chapters 2, 3 and 4

~ respectively. We now describe the philosophy of this technique.

Suppose we have a mechanism M with linkage variety V,
and a submechanism M' with linkage variety V' : by this we
mean that M' is obtained from M by removing a number of
links. Any configuration of M  will determine a unique
configuration of M' (i.e. for any point P on V we may associate a
point P' on V' obtained from P by projecting onto some of the
co-ordinates), yielding a natural projection m:V —=V'. One expects

T to be a finite mapping. Indeed, there should be a fixed integer
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d 21 such that for almost all (ie. generic) configurations of M’
there are just d possible corresponding configurations of M. For
instance, when M is a four-bar we could take M' to be a single
link and when M is the Watt I mechanism we may take M' to
be the underlying planar four-bar mechanism: in both of these
cases d=2. Of course, for a given mechanism M there are a
number of possible choices of M' and by considéring some (or all) of
these choices one reasonably hopes to obtain positive information
about the geometry of V. The particular interest of this point of
view is that in a number of engineering examples one need only
consider 2-fold coverings of varieties V' whose geometry we know

sufficiently well to deduce properties of V.

For the example at hand we will take V' to be one of the
moving links of the four-bar. Consider then, the projection
™ J:R'—* Cy from the residual linkage variety to the circle Cy whose
equation is sz + sz= w? given by (x1,¥1,%2,¥2,%3,y3, W)= (x5,y5,w)

for j=1,2,3. Write equations (1.1) as

djx; + dgxg + dpx) - dgqw = 0, ‘
djy; + dgyx *+ deyn = O (1.4)
Kt yie et v Kt ype W
We shall now show

(i) that in the generic and circumscriptible case m; maps
R' onto C; with degree 2,

(ii) that in the kite/parallelogram case R' contains a cbnic
component, which is mapped by m; to a point, whilst the
remainder of the curve is mapped onto C; with degree 2 and

(iii) that in the rhombus case R' is the union of three
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conics: one of them being mapped by TrJ to a point and the other

two mapped with degree 1 to C;

Consider a fixed point P= (xJ,yJ,w) on Cj. We can find its

pre-image by eliminating x, yy from equations (1.4) to give

(dyxj + dyxg - d4w)2+ (djy; + dkyk )2= d!2 w?
~2dgwldjx; + dyx) + 2ddilyjyi + xgxi) + (2 + a2+ dZ- dB)w?= 0

These equations define a conic and line in the (x), yx) - plane, so
one expects two solutions in general implying that P has two
pre-images and exceptionally, when the line is tangent to the conic,
there is only one solution and P has just one pre-image. We
cannot exclude the possibility that the conic reduces and that the
line is contained in the conic: implying that the point has infinitely
many pre-images (a component of R'). This yields the conditions
djxy=dqw, ;=0 and ((dZ+ dZ+df - df )w - 2d4djx)=0. The first
two equations imply that the point must be  (-dg,0.d)).
Substituting the co-ordinates of the point into the third equation
gives the condition  dj=dg4, dg=dy on the design parameters.
Further, we may deduce that the pre-image is given by the

equations

djxj + dek + d!X! - d4W =0
djyy+ dgyk+ diyr = 0
2. 2 2
aZ(x? + y2) = dfw
~2dy(dqw + dixe) + 2diedgxy + (dZ+ P+ df- 4w = 0,

defining a conic component of R'. Thus in the generic and
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circumscriptible cases, all of the projections mj are finite and
have degree two. In the kite/parallelogram case exactly one
condition of the form dj=dy4, dx=d, holds simultaneously, so that
one of the projections w j maps a conic component to a point. In
the rhombus case all three conditions of the form dj=d4, dx=4d,
hold simultaneously, so that all three projections m jpd= 1,2,3 map

a conic to a point.

We are now in a position to list the reductions. First we
note that the only components, which are mapped to a point under
a Ty, are the conics described above. We may deduce therefore
that there are no line components of R': for a line would have to
map to either a line component of C j or to a point, giving a clear
contradiction. This also rules out the possibility of R' having a
quintic component, for R' would also have a line component.
Second, we should note that any component of R' of degree two is
gng_gf_&hg_g_qmgs_cj, described above, thus occuring only when we
are in the rhombus or kite/parallelogram cases. This fact follows
from the observation that the centre of projection = j Is a 3-space
meeting R' in the points P-,ﬁj. Applying the Projection Formula,
we find that any conic, which passes through Pj; but not through
I—DJ, would be mapped by mj to a line giving a contradiction; while
any conic, which passes through both Pj and P (for some j), is

mapped by m; to a point and is therefore one of the conics Cj.

The final step to the list of possible reductions is to eliminate
the possibility of R' reducing to two cubics. In this case both
cubics must be mapped onto C; with degree one: for otherwise one

of the cubics would be mapped to a point giving a contradiction.
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From the general theory of finite mappings (see §A7) we know that
for any map of degree d onto a non-singular curve the number of
pre-images of a given point is always =d. The required
contradiction now follows from the observation that one of the two
cubics passes through at least two of the points P4, Py, Pz, and
that all three points are mapped to the point [=(1,i,0) by 5,
implying that | has >1 pre-images. The above arguments yield

the following reductions:

(i) in the rhombus case the three conics Cq, C3, C3

(ii) in the kite/parallelogram case a conic Cj (for some ;)
and an irreducible quartic and

(iii) in the circumscriptible and generic cases an irreducible

sextic.

§1.4 The Topology of the Real Linkage Variety

In this section we restrict our attention to the real
 geometry of the linkage variety. The most irhportant feature of
the real linkage variety is its underlying topology and determining
this for specific examples appears to be a central problem of the
subject. For generic mechanisms of mobility one (i.e. mechanisms
whose linkage varieties are curves) the real linkage variety is a
compact non-singular curve (conjecture!) and the topology is
completely specified by the number of connected components.
Determining this number in terms of the design parameters is not
likely to be an easy matter, so one seeks techniques which will at

least apply to examples of engineering interest.
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We recall from the previous section that for any
mechanism M with linkage variety V, we have submechanisms
M' with linkage variety V' and a natural projection m:V—->V' of
degree d. The crucial extension of the outlined philosophy lies in
the fact that, if we are dealing with generic mechanisms M, M' of
mobility one, then both of the real linkage varieties are
non-singular compact curves (so diffeomorphic to a finite union of
circles) and the topology of V is related to d-fold coverings of
circles {(each a topological component of V') whose branching can
be described in terms of the design parameters. For a suitably
chosen M' for which one knows something of the topology of V',

one hopes to obtain positive information about the topology of V.

A motion of M is to be thought of as a connected
component of V (necessarily diffeomorphic to a circle) which
maps under m into a connected component of V' (likewise
diffeomorphic to a circle). We can then distinguish a crank, when
the image under m is the whole circle, from a rocker, when the
image under T is just a proper closed subarc of the circle. This
appears to be a useful generalisation of the concept long familiar to
engineers, when M' 1is chosen to be a single link of a planar
mechanism M and one is simply distinguishing the case when M'
rotates full circle during the motion from that when M' rocks
backwards and forwards. Thus given a motion of M, the question,
whether a given submechanism M' is moving as a crank or a
rocker, is intimately related to the branching of the projection
T : V- V' Indeed, in the case of 2-fold coverings it is decided by

the absence or presence of branching. Either way, one can
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reasonably hope, for a given example, to answer this important

question in terms of the design parameters.

We begin by recalling some facts on finite mappings. The
key objects in our discussion are surjective morphisms w:V -V’
between irreducible complex projective curves V, V'. In examples
7t is usually a projection from a projective subspace and V' is the
image of V under m. Such mappings satisfy the technical
condition of “finiteness” (or at least on Zariski open subsets of V
and V). The nomenclature derives from the following basic result.
There exists an integer d 2 1 (called the degree of the mapping)
such that every point on V' has =<d pre-images in V and for all
but finitely many points on V' (called branch points) there are
precisely d pre-images in V. It is a basic fact that for
non-singular varieties V and V' the number B of branch points
(counting multiplicities) is related to the genera g, g of V, V' by
the Hurwitz formula (A10)

2 (g-1) = 2d(g™-1) + B (15)

In the situations under discussion one should view (1.5) as
a device for computing g in terms of g and B. Generally we
shall know g' and we can compute B. Another basic fact, which
we shall use in the sequel, is that a critical value of n (ie. the
image under m of a point in V where the differential has rank
zero) is necessarily a branch point. The reader is referred to S§A7

- for details.

It is, however, the real geometry which interests us, when
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we have a morphism 7 :V = V' between irreducible non-singular
real projective curves V, V' for which the complexification has
the properties described above. More particularly, we are
concerned with the case when the morphism has degree 2. Note
that in this case the pre-image of a critical value necessarily
comprises a single point. This situation seems to arise naturally
when elucidating the geometry of a number of mechanisms and
has the virtue that one can give the following qualitative

description of the real mapping .

Let us consider one fixed component X' of V' whose
pre-image under m must comprise finitely many components
X1,..Xp of V. Any X, maps under m, either onto an arc Ay
of X', or onto X' itself. We assert that there are three essentially
distinct qualitative pictures which we shall state in the form of a

Proposition.

Proposition 1.1 |
Let m:V-V' be a map of degree two between two real curves.
Then there are three possibilities

(I) There is just one component X; mapped immersively
onto X' as a double cover (Fig. 1.4a)

(I) There are just two components Xj, Xp each mapped
diffeomorphically onto X' (Fig. 1.4b)

(III) There are n components Xi,.,X, mapping onto
disjoint arcs Aj,.,A, of X', with exactly 2n critical values,

namely the end-points of Ajy,.., A, (Fig. 1.4c).
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Fig. 1.4a Fig. 1.4b

Fig. 1.4c

Proof: Suppose first that at least one component X; maps onto
an arc A; of X'. By the Inverse Function Theorem the two

end-points of A; must be critical points each having a pre-image

of a single point. Thus X; is split into two arcs with common .. -

“end-points each necessarily mapping onto A;. In particular every -
interior point of A; has exactly two distinct pre-images in X; so
cannot be a critical value. Since no point on X'  has 23

pre-images in V we see that Xi,.,X; must all map to arcs
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A4,..,An which are necessarily disjoint and we have the situation
described under III. It remains to consider what happens when
every component X; maps onto X. In this situation it is evident
that n < 2. When there are two components X1, X each must
map injectively and hence homeomorphically onto X' : clearly,
there can be no branching, so in fact these mappings are
diffeomorphisms. That is case Il above. We are left with the case
when there is just one component X4. Choose a point on X' with
two distinct pre-images on Xjp : thus X; is split into two arcs
with these points as common end-points. One possibility is that
these arcs map to arcs of X', splitting X' in the same way : but
then we have at least one critical value on X' with two distinct
pre-images, a contradiction. The only remaining possibility is when
both arcs map onto X'. In that case every point on X' has
exactly two pre-images on Xi, so there is no branching and X4 is
mapped immersively to X' as a double cover. That completes the

proof.

4 Thus, in the case of mappings of degree 2 we can distinguish

a double crank, when one is in case I, from two single cranks, when
one is in case II. Note, however, that the absence of branching does
not tell us which case we are dealing with; in a given example one
has to look for some special feature which will distinguish these
cases. By contrast, in the case of rockers the number of real
branch points completely determines the number of real

components in the pre-image.

For the remainder of this section we shall assume that none
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of the Grashof equations e; t ep t ez t eq = 0 are satisfied, so

that R' is a non-singular irreducible complex curve.

For the planar four-bar mechanism M the philosophy of
the introduction is realised by taking M' to be any one of the
moving links. The configuration space for the jth link is the
complex projective plane PC2 with co-ordinates Xy, Yj. W, and
the linkage variety is the conic defined by x? + y? = w?, a
non-singular irreducible complex curve C;.  The natural
projections PC® —»PCZ given by (x4, y1, X2, Y2, X3, Y3, W) (x4,
Vi w) then restrict to the finite mappings Ty R' — Cj. Note that
the centre of mj is the 3-space defined by x; =0,y;=0,w = 0.
The intersection of the centre with the 4-space defined by the
linear equations in (1.1) is precisely the line joining Py, ﬁj. Note
also that the complex map mj: R' = C; is indeed surjective. We
showed in §1.3 that the degree dj of my is 2 for j=1,2,3.

We are now in a position to apply the above description to
the real mappings m;: R'—C;. We need to determine the number
of real branch points, i.e. the number of real critical points. Critical
points occur when the tangent line to R' meets the centre of = 3
i.e. when these projective subspaces fail to span a 5-space. In
computational terms that means that the 5 x 4 matrix, obtained
from the Jacobian matrix of the equations (1.1) by deleting the
columns corresponding to the co-ordinates xj, y; and w, should
have rank < 4. It is a minor exercise to check that this happens
precisely when the vectors (x;,y) and (%, yx) are linearly
dependent, where i, j, k is a permutation of 1, 2, 3. In the real

case the physical interpretation of this condition is that the two
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moving links i and k are parallel. Using the equations (1.1) we
see that our condition is equivalent to xp=¢ex; and yy=¢y;,
where ¢ = t1. Substituting for xy, yx in (1.1), we see that for
each choice of sign € there are exactly two (complex) critical
values corresponding to the finite intersections of the real circles

with equations

x5+ yi=1
2 2
(i - da)” + dlyF= (d + edy)” .

Note here that the circles can only be tangent when one of the
Grashof conditions is satisfied. Therefore we obtain four distinct
complex critical values. At this point it is worth remarking that,
since C; has genus zero, the Hurwitz Formula (A10) tells us that

the residual curve R' has genus 1 (ie. is elliptic) confirming a
fact proved by a different method in [Marsh;Gibson & Newstead].

In the real case it is an elementary matter to decide in
terms of the link lengths, whether the circles intersect in no or two
real points. Expanding the second equation and using the first

equation to substitute for x% + y%, we find that

2
xi= (d; + edy)*- 42~ df
-2d;dy

and it is now clear that we have a real solution if and only if
-1<x;<1. Thus for €=+1 we yield two real solutions if and orﬂy if
dj+dg <dj+d4 and for €=-1 we yield two real solutions if and only
if either dj+djz2dx+d4 and dj+dg2di+dy or dy+d; <dy+d4 and

dj+d4 <d;+dg. Combining these two cases of € =11, we may have
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0, 2 or 4 real critical points. To summarise the results set
E = e - ep - e3 + e4, where we continue to write dj,d,d3,d4 in

increasing order of magnitude as ej,ez,e3,e4. Then one finds that

ug) has four real e if E <0 and the shortest
critical points link length is dj or dy
uf has two real g E>0

critical points

uf has no real < E < 0 and the shortest

critical points link length is dy or dg4.

On this basis it is an easy matter to determine the real
topology of R' and answer the crank/rocker question. If E > 0,
we see that all three projections have exactly two critical points, so
that we can deduce from Proposition 1.1: firstly that R' has just
one connected component and secondly that all three moving links
are rockers. Suppose now that E < 0. Note first that only one link
can have the shortest length: indeed, if eq+e4q<ez+e3 and eg =ey,
then e4q<ez, giving a contradiction. If the shortest link length is
dj, then the two projections m; for j=i have four critical points
and m; has no critical points We then deduce from §1.1: firstly
that R' has two connected components, secondly that the link of
shortest length moves as a single crank for each component and
thirdly that the other two moving links are rockers for each
component. It remains to discuss the case when the fixed link has
the shortest length. In that case all three projections have no

critical points; certainly then all three moving links are cranks,
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but we do not know whether R' has one or two connected
components. (See the closing comments of §1.1.) In fact we claim
that, if m; has no critical points, then necessarily R' has two
topological components: in other words the theoretical possibility of
a double crank cannot arise. The key observation is that the curve
R' possesses a natural involution, namely, that given by reversing
the signs of y1, y2, y3. Physically, one ié Just reflecting the
mechanism in the line determined by the fixed link. Now consider
the smooth function %y - xxy; on R' with i, j, k as above a
permutation of 1, 2, 3. The effect of the involution is to reverse
the sign of this function, so that it assumes both positive and
negative values on R'. If R' has just one connected component,
the function would vanish somewhere on R' and hence Ty would
have a critical point, a contradiction, establishing our claim. Thus,
when E<0 and the fixed link has the shortest length, all three
moving links are single cranks. That completes our analysis for the
planar four-bar. Note in particular that we have confirmed the
result in [Gibson&Newstead], namely that R' has one/two

connected components according as E<0/E>0.

The above is easily related to the established engineering
literature. The branch points of the projections j for =13
are precisely the “limiting positions” described in [Hain, 1964).
Moreover, one recovers the eight basic types of planar four-bar
isolated in [Hain, 1964). When E < 0 we need a further distinction.
Recall that in that case all three links move as rockers and that
the condition for n j to have a critical point is that the vectors gz,
2y are equal, in which case we have an jnward rocker, or opposite,

in which case we have an outward rocker. Notice that once this
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distinction is made for two of the moving links, it is automatically
made for the third. Thus choosing, for example, links 1 and 3 we
can  distinguish  four cases, namely inward/outward,
outward/outward, outward/inward and inward/inward denoted
by Hain [Hain 1964] as Rj,, Ryo, Roi» Ryi, respectively. And it is an
easy matter to verify the somewhat classical result that these
cases correspond precisely to whether di, d3, d3 or d4 is the
longest link length. When E>0 Hain distinguishes four types
denoted by CR4, DR, CRy, DL depending on whether di, d3, d3 or
dg4 is the shortest. The notation may be explained in the following

way.

The letter C refers to a crank and the letter R stands for
a rocker. Hence, the first three types simply mean that the motion
of bars one and three are crank/rocker, double rocker and
rocker/crank. Whilst when d4 is the shortest, bars one and three

crank and such a mechanism is called a drag link.

§1.5 The Segre Quartic Surface

In §1.6 we will show how for any coupler point one can associate a
pencil of quadrics in PC4. The base variety, that is the intersection
of all the quadrics in the pencil, is in general a quartic surface,
whose geometry seems to be crucial to the study of four-bar (and
indeed geared five-bar) coupler curves. Such surfaces may be
given as the intersection of any two quadrics in the pencil. The
purpose of this section is to outline the results achieved by Segre on

the ‘generic’ intersection of two quadrics in PC? and named in his
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honour - the Segre quartic surface. These results are expressed
as Theorem 1.1 and closely follow the sketch of this result given in
[Jessop 1916).

We shall begin by making the term 'generic’ more precise.
Consider the pencil of quadrics AQq + p@Qy in pct generated by
two quadrics @Qq and Qp. Let @ be any quadric in the pencil.
Then @ is singular if and only if its Jacobian matrix, a 5x5
matrix with coefficients involving A and {, has non-maximal
rank. This is equivalent to saying that the matrix has zero
determinant: thus the condition is the vanishing of a homogeneous
binary quintic polynomial in A and u - the discriminant of the
pencil. Thus in general, the discriminant will have five solutions
(M,H1),-{A5,15) each one corresponding to a singular quadric in
the pencil. More precisely, ea}ch of the singular quadrics is a point
cone. Whenever the pencil has five distinct cones, we will say.that
the pencil is generic. Exceptionally, the polynomial may have less
than five solutions. In this case we have the concept of multiplicity
of a solution: we simply write the polynomial as a product of linear
factors (ajgA + by)*1e..o(a,h + b )*r over € and say that the
root (bg,-a;) has multiplicity o4 In this case the singular
quadrics corresponding to roots with multiplicity oy remain
cones, but the dimension of the vertex (i.e. the singular set of the
quadric) may be positive depending on the form of the pencil in
question. More exceptionally, the polynomial may be identically
2zero. In this case every member of the pencil is a cone and we

refer to the pencil as singular.

We may now prove the main result
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Theorem 1.1:Let ©; and @y be two quadrics in PC* and
suppose that the pencil generated by the two quadrics is generic.
Then

(1) the intersection of Qg and @y is a quartic surface 2
containing exactly sixteen lines

(2) the configuration of lines is such that any one of them meets
five other lines and

(3) projecting from any one of the lines, defines a birational map
between the surface and the projective plane. The five lines
meeting the line of projection map to points - which we call base
points. The other lines map to a line passing through two base
points and conversely, any line through two base points is the
image of a line on the surface. Finally, the line of projection
corresponds to the unique conic passing through the five base
points. Points on this conic are precisely those points for which the
projection has erther no pre-image or a line of pre-images on the

surface.

Proof: (1) The fact that the intersection of two quadrics in PC? is
a quartic surface follows from Bezout's Theorem (A3). The first
step to show that the surface has sixteen lines is to make a
complex projective change of co-ordinates putting the quadrics into
their Weierstrass normal form (see [Jessop 1903]). This leads us to
a number of different (complex) types denoted by their Segre

symbol, the principal ones of which are
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S 2 2 2
[11111]): @= Zf{i and Qp= Ziaixi
i= i=
[1112) : @ = x% + x% + xé + 2x4%5 and
Qp= ale + azx% + a3x§ + 2a4x4%5 + xi

(122] . Q= x12+ 2xox3 + 2X4%5 and
Qp= a1x12 + 2a7XpXx3 + 2azx4Xs + x22 + x&?

[113) : = x12+ xg + xi + 2x3%5 and
Q= a1x12+ azx% + a3(xi + 2x3%5) + 2X3%4

(23]  :  Qp= 2xqxp + 2x3%5 + xi and
Q= 2a1x4xp + x12 + ag(xi + 2x2X5) + 2X3%4

[14) : = x12+ 2x2Xg + 2Xx3x4 and
Qp = ale + 2a7(x2xg + X3X4) + 2X0%X4 + x%

(5] : Qq= 2x%qXg + 2X9x4 + xg and
- Qp= aq(2x1x5 + 2xpx4 + x%) + 2% X4 + 2x2%3

Note that in the real case any non-singular pencil can only be

reduced to the form
r - r S

Q4= 121*"12 + X %uivi and Qp= izlbixlz +Z 1{131(x12- viz) + 204u4vi}
= i= = i=

We may assume that a;=11 (see [Muth]). But in the real forms
we must distinguish those forms which differ only by the sign of an

aj. We shall not need the real type here.

In particular, for the generic pencil [11111] we may reduce
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the pair of matrices to diagonal form. 'In this manner the form of
the cones is easily obtained. Suppose that the quadrics are Q= x12
+ .+ xg and Qp = a1x12 + ..+ asxsz then the pencil AQq + pQy

has five cones of the form

(ay-29)%2 + (ag-ay)xZ + (ag-a)xz + (ag-a)xZ = 0 etc,

Thus, the cones are point cones over a non-singular 2-dimensional
quadric. A general 2-dimensional quadric contains two families of
generating lines. Any two lines in the same family do not meet,
whilst a line from one family meets any line from the other family
iIn a point. Thus each cone in the pencil has two families of
generating planes. Likewise, any two planes in the same family
meet only in the vertex of the cone, whilst any plane from one

family meets a plane from the other in a line.

Claim: Any generating plane ¥ of one of the five cones € meets
the quartic surface 3 in a conic.

Proof of claim: Since 3 is the intersection of all the quadrics in
the pencil it is the intersection of any two quadrics in the pencil
ie. we can generate the pencil by any two quadrics contained in it.
Let the pencil be generated by C and any other quadric Q'. But

T lies in €, thus the intersection of F and Q' liesin & ie. a

conic.

Conversely, any conic ¢ on 2 lies on a generating plane
of a cone in the pencil. For, consider any point on the plane
containing ¢, but not lying on ¢ Then there is a unique quadric

C in the pencil containing the point and the conic; but any quadric
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meeting a plane in a conic and a point must contain the plane. The
claim follows since any 2-dimensional quadric, which contains a

plane, is necessarily a cone.

Then let the pencil be generated by a cone and one other
quadric, say Z;iz(% -al)xi2 =0 and Zilxiz = 0. By a projective
change of co-ordinates we may write these equations as Xsx3=x4%5
and x12 + f(x9,%3,%4,%5) =0, where f is a quadratic polynomial.
Then the generators of the cone have either the form xg=axy,
Xg=oaxz or the form x3=ax4, x5=0x3. Any such plane meets
the second quadric in a conic lying on 3. The condition for the
conic to reduce to two lines is a quartic polynomial one in o. Note
that this quartic cannot be identically zero. For then every
generating plane meets 8 in two lines; in particular, every point
on the surface is contained in a line on the surface. We can then
derive a contradiction in the following manner. It is clear from the
Weierstrass normal form that there is a point P of the form
(p1,p2,0,p4,0) on 8. Let Lp be any line through P. Then L is
contained in the tangent plane to & at P. The tangent plane has
the form Axq + uxp + vx4 = 0 and Aagxq + pagxy + vagxq = 0
and therefore contains the line of points of the form (0, 0, pz, O,
ps). Thus .Cp must meet this line in some point (0,0,p,0,q). But it
is clear from the normal form that no such point can lie on 2.
Hence Lp cannot lie on 3 and we have a contradiction. It
follows, therefore, that there are four generating planes in each

family, which meet the quadric in two lines, implying that there
are in all at most sixteen lines lying on the quartic surface.

We must now show that these sixteen lines are distinct.
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From the above analysis it is clear that there exists at least one
line on 3. Let us assume that the pair of generating quadrics are
in  Welerstrass normal form and consider the natural
automorphisms of 3, taking lines to lines, defined by x;—¢;x; for
J=1,.5, where ¢;= t1. Note that the choice of signs (€1,£2,£3,£4,¢5)
and (-e1,-£2,~€3,-£4,~€5) give identical automorphisms leaving just
sixteen distinct automorphisms for the generic pencil. - There are
two possibilities for fixed points of the automorphisms: ether
points defined by the vanishing of four of the variables x; or lines
defined by the vanishing of any three variables x;. However, in
the latter case no such line can ever lie on the surface. Thus given
dne line on the surface we may obtain for each automorphism one
new line lying on the surface; implying that there are at least
sixteen lines in all. The result now follows.

(2) All sixteen lines lie on the five cones of the pencil. Therefore,
the plane through the vertex of a cone and any one of the lines I
Is a genérating plane; thus meeting & in one more line which

meets L in a point. Thus five of the sixteen lines on & meet L.

(3) Let Q1 and Qj be the generators of the pencil and let L be
one of the sixteen lines on 8. Further, suppose that X is any
plane disjoint from &L. Make a projective change of co-ordinates
taking the line £ onto the line x3=x4=x5=0; we may assume that
X has co-ordinates x3, X4, x5. Then we may write the quadrics in

the form

xqly + %0l +f =0, Xqymy + xomp + g = 0,
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where {4, mq, 03, my are homogeneous of degree 1 and f, g are
homogeneous of degree 2 in x3, X4, x5. Let P be any point on X
and denote by ¥ the plane through P and L. The equation of
X may be obtained explicitly by substituting for the x3, x4, x5
co-ordinates of P in 24, my, 83, mp. Thus ¥ meets Q; in L
and one other line L; (i=1,2). These two lines L1 and Ly meet
in a unique point, lying on the surface A, provided
81°my-03:my = 0: thus defining a 1-1 correspondence between 2
and X. Therefore, the correspondence only fails to be 1-1 when
{1-mp-02-myq = 0; this condition defines a conic on X. Points on this
conic have no pre-images in general, whilst exceptionally, when
the two lines coincide, they have a line of pre-images. Thus these
points are the images of the five lines meeting L. We will call
these five distinguished points on the conic the base points. Note
that the conic is necessarily irreducible; for otherwise three of the
base points would lie on a line implying that three of the lines on

3 lie on a 3-space, contrary to the configuration described above.

Suppose that L' is one of the ten lines of 8 which are
skew to L. Then the hyperplane # spanned by £ and L'
meets & in L, and in two transversals of L and L. Thus, ¥
meets X in a line passing through two of the five base points

which by definition is the image of L'
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§1.6 The Four-bar Coupler Curves.

In this section we consider the two

parameter family of coupler
curves, which are the loci of a point

P rigidly attached to the coupler

bar (that is, the bar opposite the
- .

Fig. 1.5 fixed bar), as showed in Fig 1.5.
Thus P=dyzq+k-z3, where k=kq+iky (kji=r-cos®, kp=r-sin9) is

a fixed complex number. (This analysis closely follows that given in
[Gibson &Newstead]) We may think of ® as having homogeneous
co-ordinates P1, P2, P3 with p1 =d1x1 -koyo+kqxa,
P2=d1yq1+koxo+kiy> and pz=w; thus defining a natural linear
projection nk:PC6-V —PC2 given by

(x4, y1, %2, y2, %3, y3, W)= (d1x1 -kay2 +kyxa, diys +koxa+kiya, w)

where vV is the centre of projection ie. the linear subspace
defined by pq=p2=p3=0. The images of the lines at infinity L
and L[ are the circular points at infinity [=(1,i,0) and
J=(1,-1,0). The image of the restriction map mylp: of the
Projection my to the residual linkage variety R' is a curve Ty

which we shall call the complex coupler curve.

Recall that the linkage variety is given by the three
quadratic and two linear equations of (1.1). Let W denote the
4-space defined by the two linear equations. Then W and V

span PC® and intersect in a line V' meeting L and L in the



- b2 -

points whose co-ordinates are

A = (kd3, -ikdz, -dqd3, id4d3, d4(dz-k), -id4(d2-k),0) and
A = (kds, ikd3, -d1dz, -idyd3, d1(dy-k), ids(dp-k),0).

Thus provided R' does not meet V' we may factor the projection
as the projection from V', followed by the . projection
Te:W-V'-PC? given by the same forms pq, pp, p3. We shall
refer to m, as the coupler projection. But R' meets V' only
in the uninteresting cases when k=0 or k=dj, ie. the coupler
point lies at one end of the coupler bar, when Cy is a circle. Thus
it is sufficient to consider the variety in PC4 obtained from R by
Projecting from V'. We shall denote the images of R, R',L, L by
the same symbol. Then R is projectively equivalent to the
Variety obtained by using the linear equations of (1.1) to eliminate
two of the variables say, x3 and y3 giving R as the intersection.
of three quadrics
eyl = wh o mevy = WP
(dgw - dyxq - d2x2)2 +(dqyq + dzyz)z = d%w2

and V' is given by the equations pq=pp=p3=0.

Write the three quadrics as Qq, Qp, Q3 and consider the
net X@Qp +YQy + ZQs. Choose a point P on V' not lying on L
or L. Then the condition for a quadric in the net to pass through
this point is a linear condition on X, Y, Z thus defining a pencil

in the net. Explicitly, it is easily checked to be given by
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kkX + d2Y + dX(k-d)(k-d,)Z = 0,

We shall call this pencil the associated pencil of the coupler point.
Any quadric in this pencil meets V' in three points (A, A and P)
and must therefore contain V' The pencil may be written as
XQ; +ZQ, where Q1'=[Q1-Q2kf<_/df] and  Q)=[Q3-Qa(k-dy)(k-d,)].
Then, using the identities py=dyx1-koys+kyxa, p2=d1y1+koxs +kyyo,
P3=w, Q and Q, may be written in the form

A+Bxp+Cyp=0
27 } (1.6)
D+Exp+Fyp =0

where

Aspi+p3+ (G + k3 - e}

B=-2(kqpy + kop2),

C=-2(kyp3 - kapy),

D= Pf + Pg +(-d§ + d‘Z} + k% + (dz-kl)z)pg -2d4p1p3,
E = 2p(dp-ky) - 2d4(dp-kq)p3 - 2k2p2,

F = 2kap1 - 2kod4p3 + 2pa(d2-ky).

We shall now apply the results of §1.5.

We recall that the intersection of a generic pencil of
Quadrics is a Segre Quartic Surface 3 containing sixteen lines. Let
Us assume for the moment that the pencil is indeed generic; we
shall consider this condition in more detail in Chapter 5 when we
discuss the geometry of the real four-bar coupler curves. Writing
the quadrics in the above manner, makes the projection more

transparent. Fixing a point in the image of the projection, fixes the
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values of pj, pp, p3. Observe that (1.6) may be considered as
linear equations in x» and y. Thus by applying Cramer’s Rule to
equations (1.6), we may write xo and y2 (and hence xy and y4)
uniquely in terms of pj, pp and p3, provided $=BF - CE = 0.
The condition ®=0 defines a conic C in the fixed plane consisting
of the points on which the coupler projection fails to be 1-1.

Explicitly, this is given by
g 2. 2 2,2 )
-daka(py + py) + dadgkopyp3 + dglky + k5 - doky)p2p3=0.

A point on C has erther no pre-image or is one of five base
points for which there is a line of pre-images. Since L and L
meet V', two of the base points are the circular points I and J.
Under our assumption that the pencil is generic T cannot be
reducible. Otherwise, three of the five base points would lie on a
line, implying that three lines on & lie in a 3-space, contradicting
the known configuration of lines. The conic is real, passes through
I and J and hence is a circle. This is the circle of singular foci

well known in the mechanisms literature (see for instance [Hunt
1978)).

We may now deduce some of the geometry of the coupler
curves. Since the residual curve R' does not meet the centre of
pr ojection and m, has degree 1, we may apply the Projection
Formula to deduce that the coupler curve has degree six. The
Projection is a generically 1-1 rational map and hence birational.
In particular, this implies that Cx has the same geometric genus

as R': thus for the generic mechanism Cj_has genus one and for

the non-generic mechanisms the components all have genus zero
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le. they are rational.

In the non-generic cases any singular point of R' s
mapped by m; to a point of Cy (off C) with the same
isomorphism type. Thus the singular points of Cy off C are
necessarily ordinary double points. The remaining possible singular
points of Cp are I, J and three other points lying on C. We
recall that R' meets L and L in three distinct points and
therefore Ty has three distinct branches at each of I, J. Thus I
and J are singular points of Cy. The remaining three points P,
have a line Ly as their pre-image on & meeting a third quadric
in the net, not already in the pencil, esther in two distinct points
or in one point at which it is tangent. In the former case, X'
meets L, in two distinct branches and maps to a point of T
with two branches. In the latter case, &L, 1is tangent to the
quadric at a critical point of the projection: hence its image is a
singular point on Cy. Let Cyx=Cqy..yCy be the decomposition of
the coupler curve into its irreducible components and apply the

Genus Formula (Theorem A8),
Pa(Cy) = 21:1 pg(Cy) + Z*8p - (r-1)

where the * implies that the sum is taken over the singular points
of C. For planar curves of degree d the arithmetic genus is
%(d-1)(d-2); thus for sextics the genus is 10. For the generic
Mechanism r=1, there are no singular points off € and the
geometric genus is 1. Hence, Z*8p=9 implying that the circular
points have 8p=3 and the remaining three points have 8,=1. In

the non-generic cases, ie. the circumscriptible, parallelogram/kite
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and rhombus cases, all componenté of Ck are rational, ie. the
geometric genera are all zero. Moreover, there are r ordinary
double points (with 8p = 1) off C. Hence, the sum of the &'s for
the singular points of €y lying on C is 9 and we may conclude

that the circular points have 8,=3 and that the remaining three

points have 8,=1. Thus Cy has two ordinary triple points at I
and J whilst the other three singular poi on C are erther
ordinar uble points or ordinary cusps.

Finally, we wish to point out that there is an interesting
open problem concerning the relation between the eight types of
planar four-bars mentioned in §1.4 and the geometry of the
associated coupler curves. Suppose we restrict ourselves to generic
choices of coupler points in the sense that the associated pencil of
quadrics discussed above is general, ie. contains exactly five
point-cones. We showed that the coupler curve has exactly three
finite singular points, each an ordinary double point or a (real)
Cusp: these singular points can be real or complex and in the real
Case one can make the further distinction between crunocdes and
acnodes. In this way one obtains thirteen basic multi-singularity
types, The problem is to determine for each of Hain's eight basic
types which of these thirteen multi-singularity types can occur.
This should yield a useful division of generic coupler curves into
finitely many types, for each of which one could pursue in greater
detail the real algebraic geometry and the differential geometry.
We shall leave further discussion of this until Chapter 5 where we

Mmake the first steps to a solution of this problem.
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CHAPTER 2. THE TOPOLOGY OF THE
SPHERICAL FOUR-BAR MECHANISM

It was clear to the author that the techniques for determining the
topology of the planar four-bar mechanism need not be restricted
to planar mechanisms, but could be just as well applied to spatial
mechanisms. We recall from §1.4 that for any mechanism M
with linkage variety V, we have submechanisms M' with linkage
variety V' and a natural projection m:V—-V' of degree d. The
philosophy is that for generic mechanisms M, M' of mobility one,
their real linkage varieties are non-singular compact curves and
hence diffeomorphic to a finite union of circles. Then the topology
of V is related to d-fold coverings of circles, each a topological
component of V', whose branching can be described in terms of the
design parameters. For a suitable choice of M', for which one
knows something of the topology of V', one hopes to obtain
information about the topology of V. Moreover, there is no reason
why one should restrict oneself even to mechanisms with mobility
one. For instance, for mechanisms of mobility two, i.e. their linkage
Varieties are surfaces, there may be natural projections onto
spheres which generalises the philosophy of calculating the topology
of real linkage curves via projections onto circles initiated in
Chapter 1.

Thus we shall determine the topology of the linkage variety
for the first non-trivial spatial mechanism, namely the spherical
four-bar. We will not be giving a full treatment of the algebraic
geometry of the spherical four-bar linkage variety in this chapter -

as this has been done in [Gibson&Selig] - we shall simply give a
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brief account of the results that we need. The result on the

topology that we shall prove here does not already exist in the

literature.

First we need to recall some of the basic facts established in
[Gibson&Seligl. Just as the planar four-bar consists of four rigid
bodies in 2-space jointed at points, the spherical four-bar consists
of four rigid bodies in 3-space jointed along lines called the joint

axes (as showed in fig 2.1).

Fig. 2.1

The joint axes are to be represented by a cyclic sequence of four
unit vectors a, b, ¢, d in RS subject to the constraints that the
angles A, B, C, D between adjacent pairs remain constant. Write
<,> for the standard scalar product on R3 and set o =cosA,
B=cosB, ¥=cosC, 8§=cosD and «'=sinA, p'=sinB, ¥ =sinC,

8 =sinD. Then the constraints are

{a,bd= « ¢b,ed=p le,d>=¥ {d,ad>=8
{a,ad=1 <b,bd=1 (c,c>=1 d,d>=1

Since we are only interested in the relative motion of the joint
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axes, we can choose a=(1,0,0), b= ‘(oc,oc',O). With these choices
three of the above constraints are automatic and we are left with
five equations defining a real affine variety which we can then
complexify and projectivise to obtain the linkage variety R in
PC®. Explicitly, if we set c= (%1,%2,%x3), d=(y1,y2,¥3) and take

W to be the homogenising parameter, then R is defined by

Y1=08w: axq+a'xp = pW: X1Y1+X2Y2+X3Y3=8W2
2,.2..2_.2 . 2.2 .2 2 (2.0)
X{+X2+X3=W" © yi+yo+y3 =w

The Jacobian matrix for this set of equations is

(0 0 0 1 0 0 -8§
« o 0 0 0 O -p

=1 y1 y2 ¥y3 X1 %2 X3 -2¥w
2x1 222 2x30 0 O -2w

L0 0 0 2y;2y;2yz-2w |

In discussing the spherical four-bar, it is necessary to distinguish
the antipodal case when one (or more) of the angles A,BC,D
equals 1. A very special case is the antipodal rhombus when
A=B=C=D=n and R comprises two complex conjugate
2-planes intersecting in a single real point. In [Gibson&Selig) it is

shown that, if we exclude this case, R is indeed a curve of degree
eight.

In the non-antipodal case R meets the hyperplane w=0

In two pairs of complex conjugate points

o, o, i,0,0,0,0)
0,0,0,0 1,1, 0)

P=(o«,a-1,0000 :
Q=(0,0,00,1,-i,0)

o~ N
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It is clear that the Jacobian matrix § evaluated at these points
has non-maximal rank. Hence all four points are singular on R.
Since R has degree eight, we may apply Bezout's Theorem to
deduce that the hyperplane w=0 meets R with intersection
multiplicity 2 at each point. Thus the multiplicity of P, P, Q, Q,
equals the intersection multiplicity i.e. they are double points and,

moreover, no tangent to R liesin w=0.

However, in the antipodal case the picture changes and R
intersects w=0 in skew complex conjugate lines L (through
P,Q and L (through P,Q). We will assume that we are in the
non-antipodal case. Indeed, in the antipodal case it follows from
the discussion in [Gibson&Selig] that the real linkage variety R is
the union of two real conics and the topology is thereby

determined.

Finite singular points occur when the Jacobian matrix with
W=0 has non-maximal rank. In the non-antipodal case the
condition is that the spherical quadrilateral “collapses”. In such a
configuration the singular points satisfy x3=0, y3=0. A little

further work yields a condition on the design parameters, namely
AtBtCtD =0 (mod 2m).

This condition is analogous to the one for the planar four-bar for a
finite singularity to occur and so it seems appropriate to call these

€quations the Grashof equalities.
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We shall assume hencefor'th, that we are iIn the
constructible case, ie. that the equations (2.1) have at least one
real solution and that none of the Grashof equalities are satisfied.

Thus R has no singular points off the hyperplane w=0 and in
view of the results of [Gibson&Selig] is irreducible.

For the spherical four-bar mechanism M we can realise
the philosophy of §1.4 by taking M' to be one of the moving
links. The configuration space for the first link is a complex
projective space PC3  with co-ordinates X1,X%2,%X3,w and the
linkage variety is the non-singular conic Xy' given by
X12 + xg‘ + x32 -w? and oxy+o'xp = p'w. The natural projection
PC®>PC3 given by (x1,X2,x3,¥1,¥2,¥3, W) = (x4, X2,x3, W) then
restricts to a finite mapping my:R —Xq'. Likewise, the
configuration space for the third link is PC3 with co-ordinates
Y1, ¥2,¥3, w and the linkage variety is the non-singular conic Xz'
given by y12+y§+ y§= w? and y1 = §w. Here again the natural
Projection PC® —»PC® defined by n3:(X1,%2,X3,¥1,Y2,Y3, W)+
(y1,¥2,y3,w) restricts to a finite mapping 73 : R—X3'. Note
that since R is irreducible, no component can map to a point.
The centres of 114, M3, intersected with the 4-space defined by the
linear equations in (2.1), are precisely the lines joining Q, Q and

P,P respectively. The degrees dy,ds of mq,m3 can be computed

Via the Projection Formula
deg R = dy-degX1'+vi+Vvy and degR = dz-degX3z'+vz+Vs3

wWhere wvy,Vy (respectively wvs,V3) are the intersection

multiplicities at P,P (respectively Q, Q) of R with a generic
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hyperplane containing the centre. Since P,P, Q,Q are all double
22,
values of 2 being attained for the hyperplane w = 0 (by Bezout's
Theorem (A3)). As R, X;' and Xz' have degrees 8, 2 and 2
respectively, we conclude that dj_= dz = 2.

points on R these multiplicities must be the minimum

§14 to the real
and mz: R —X3z' the first step being to

We can now apply the description of
mappings 1 : R =Xy’
determine the number of real critical points. As in the case of the
Planar four-bar, critical points occur when a tangent line to R
meets the centre of projection. Note that the centre of projection
for my (resp.
(resp. P,P). The
tangent line is given as the kernel of the Jacobian matrix § of
(2.1).

matrix, obtained by abutting § with the Jacobian matrix of the

(resp. m3) is given by x1=%x2=%3=0

Y1=y2=y3=0) and is the line joining Q,Q

equations Thus the condition for critical points is that the

centre of projection, has non-maximal rank. For projection 4

(resp. mz) this is equivalent to the matrix §; (resp. %),
obtained from § by deleting rows 1,2, 3 and 7 (resp. 4,5, 6

and 7), having non-maximal rank. These matrices are

! 0 0 ( 0 ]
0 0 0 o o' 0
M=l x x x3 B3=lyr vy2 V3
0 0 0 2x4 2x7 2x3
 2yy 2y2  2y3 L 0 0 0 |
For T4 the condition for critical points may be expressed

algebraically as x;y3-x3y2=0; and likewise for m3 the condition

s a(xpy3-x3y5) + o' (x3y1 - X1y3)=0. The condition may easily be
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described mechanically: for my (résp. 1t3) the condition is that
the vectors a,c,d (resp. b,c,d) should be co-planar. It is now a
matter of determining the number of real solutions of the
equations (2.1) which satisfy one of these conditions. This

provides another computation.

There are no real points at infinity so we are only
interested in solutions with w=0. We will do the calculation for
Projection mq and leave the calculation for m3 to the reader.
Firstly, we may use equation y1=8 to eliminate one of the

variables in equations (2.1). Thus two of the conditions are

X2y + X3y3 = ¥-8x1 }
X2y3-%x3y2 = 0

Using Cramer's Rule we get

y2 = (¥-8x1)x2 i yz = (¥-8xq)x3
X+ X3 X2* X3
Note that x% + x% = 0 if and only if a=c. Substituting for y»,y3

in y% + y% = 1-8%2 and using the identity xf + x% + x% =1, we get

(¥-6x1)2 = (1-89)(x5 + x2) = (1-62)(1-%2).

It immediately follows that xq=¥§+e4¥'6' (where ¢1=11), a real
number, and since o'#=0 in the non-antipodal case, we get
x2=(p-axq)/a’. To find the corresponding x3 value we substitute

for X2 in xz + x2 + x2 = 1, which gives
1 2 3

xg = o'?p'? - (x1-op)?

o'2
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We obtain real solutions for x3 if and only if the numerator is
positive ie. if and only if [x1-oap+a'plxi-op-a'p]<0. But,
X1=¥6+e1 ¥'6'=cos(C-¢4D) and  op+ega'p’ =cos(A-eoB), where

€2=%1. Hence, the condition is
[cos(A+B) - cos(C-g4D)] + [cos(A-B) - cos(C-¢5D)] <0.

Alternatively, we may use the additive formulae for sines and

write the condition as

S1=sin(A+B+C+g4D)-sin(A+B-C-¢4D)-sin(A-B+C+e,D)-sin(A-B-C-¢2D)
2 T2 T2 T2

Thus the result is that for the projection T4y we obtain two real
critical points for each choice of sign for which S1¢<0. For the
Projection mz the result is that we get two real critical points for

each choice of sign for which Sz < 0, where

S3=sin(A+g1B+C+D)+sin(A-£4B-C+D)+sin(A+e2B+C-D)+sin(A-goB-C-D)
2 T 2 T2 T

On this basis one obtains a finite set of inequalities involving
the expressions A+Bt+CtD which determine whether the

Projection in question has 0, 2 or 4 real critical points.

< Y
The neatest formulation of the result seems to be when A,
B, C, D all lie in the range [0,%mn] and cosine is a strictly

decreasing function (ie. >T = cos@<cosT). Write the angles in
decreasing order of magnitude as A', B, C, D' and set
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X =A'-B'-C'+D. Then, by compai’ing the angles, it is easily
checked that: my_(resp. mz) has four real critical points if and
only if X<0 and the smallest angle is C or D (respectively B or C);
has two real critical points if and only if X>0; and has no real
critical points if and only if X<0 and the smallest angle is A or B
(respectively A or D).

We can now determine the real topology of R and answer
the crank/rocker question, just as we did for the planar four-bar.
When X > 0 both projections mj, m3 have exactly two real
critical points, so that the first and third links are rockers and R
has just one connected component. Suppose X < 0. If the smallest
angle is one of B, C, D one of the projections 4, m3z has four
critical points and the results of §14 tell us that R has two
connected components. In fact, when the smallest angleis B or D
the corresponding link cranks and the other rocks. But when C is
the smallest angle the links corresponding to B and C both rock.
It remains to discuss the case when A is the smallest angle, so
that both projections Ty, m3 have no real critical points and the
links corresponding to B and D both crank. Asin the case of the
Planar four-bar, the theory of §1.4 does not determine the
topology of R in this situation and we have to argue further. The
key observation (again) is that the curve R possesses a natural
involution, given this time by reversing the signs of x3, y3. The
effect of this involution on the determinants Dj = det(a,c,d) and
Dz = det (b,c,d) is just to reverse their signs, so that Dy, D3
assume both positive and negative valueson R. If R had just
°ne connected component, both functions would vanish somewhere

°n R and hence both projections my, mz would have a critical
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point; thus giving a contradiction. We may conclude, therefore,
that in the case when A is the smallest angle R has two
connected components. These results show that, when the angles
A, B, C,D lie in the range [0,%m], one has a perfect analogy with
the planar four-bar, namely that the linkage curve R has

one/two connected components if and only if X > 0/X < 0.

It is worth remarking that this comparison with the
four-bar has been noted by Gilmartin and Duffy [Gilmartin&Duffy]
who calculated, not without some difficultly, the limiting positions
for the spherical four-bar for this case using trigonometry.
However they were unable to tie up this observation with the
topology of the motion of the mechanism. Following Hain's
classification for the four-bar, they labeled the four types according
to the crank/rocker analysis. We append their table of types with a
column, indicating the number of critical points for the projections

and a column showing the corresponding topology.

Hain Type criteria for * * critical points

determiningtype| comp| of my of mz
CRy, X < 0,Bshortest{ 2 0 4
CRo, X < 0,Dshortest| 2 4 0
DL, X < 0,Ashortest| 2 0 4
DR, X < 0,Cshortest] 2 4 0
Ry;, X » 0, A longest 1 2 2
Rio, X > 0, B longest 1 2 2
Rois X > 0,C longest 1 2 2
Roo, X > 0,D longest 1 2 2

< Y
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Case 2: %1 ¢ A,B.C.D < &

The authors of [Gilmartin&Duffy] fail to see that analogous
reasoning shows that, when A, B, C, D all lie in the range [%n,n],
on which cosine is strictly increasing, the linkage curve R has one
(resp. two) connected components if and only if X < 0 (resp.
X > 0). The above crank/rocker analysis applies, provided we
replace “shortest” by “longest” (and vice versa) and reverse the

inequalities. We summarise the result in the form of a table

Hain Type criteria for * » critical points
_ determining type| comp| of mq of m3
CRq, X > 0, B longest 2 0 4
CRy, X > 0,D longest 2 4 0
DL, X > 0, A longest 2 0 4
DR, X > 0,Clongest 2 4 0
Rii, X <0,Ashortest| 1 2 2
Rio» X <0,Bshortest{ 1 2 2
Roi, X <0,Cshortest | 1 2 2
Roos X <0,Dshortest | 1 2 2

Yam¢ <
Case 3. in general,

In the general case there is no neat formulation of the
condition, thus it is necessary to calculate the signs of S; and S3
directly from the formulae given above. For any numerical
eXample, this is totally straightforward and determines the
Number of topological components. The eight crank/rocker types

still provide a sensible classification of the linkage variety.
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CHAPTER 3. GEARED FIVE—BAR MOTION
WITH GEAR RATIO -1.

Introduction

A particularly attractive family of mechanisms-is provided
by the geared five-bar mechanisms with arbitrary gear ratio.
Here the basic structure of the mechanism is that of a pentagon.
In general, a pentagon has two degrees of freedom 1i.e. its linkage
variety is given by (n-2) equations in n-space and is therefore a
surface. To obtain a mechanism with just one degree of freedom
wWe must provide one extra constraint. Theoretically, we could
make a constraint from any polynomial condition expressing a
relation between the bars and the result would most likely be
interesting geometry; but in general such constraints would be
Mmechanically impossible to achieve. There is, however, one method
of providing a constraint which is often exploited in mechanisms:

that of the 'gearing’ two bars.

Consider then the kinematic chain consisting of five rigid
bodies smoothly jointed to form a pentagon. Label the bars from 1
to 5 and let bar 5 be fixed. Consider the fixed plane as the complex
numbers € and let bars 1 to 5 lie on vectors zy=el®1,. 24 =el%
and zg=-1 repectively (where i=4). Then we say that bars i
and j are 'geared' together when we have imposed the constraint
that, whenever bar i moves through an arc of length o, then
bar j moves through an arc of length tka where k is a fixed

real number called the gear ratio and the (fixed) choice of sign
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represents the direction in which bar i moves in relation to bar Je
Thus @y=tke;+ ¥ where ¥ is some (fixed) phase angle
determined by the initial positions of the bars. Hence, we get
2J=Azi‘ for the positive choice of sign and zJ=AE§‘ for the
hegative choice of sign, where A= el¥. Mechanically, rational gear
ratios k = § (where p and q are positive integers) are obtained, for
instance, when bar i is attached to a gear with p teeth and bar
J is attached to a gear with q teeth. This provides us with three
types of mechanisms as showed in Fig. 3.1, depending upon,
whether we

fix bar AE, bar AB or DE, or
bar BC or CD. Mechanically, the
case when we choose the sign +
presents an extra difficulty,
since we need to reverse the

direction of bar 4 with respect

to bar 1. This is overcome by

inserting an extra coupling
device (an ‘intermediate idler’)

Fig. 3.1 in between the two gears.

Non-trivial coupler curves are obtained by all three
Mechanisms when the coupler point is rigidly attached to either of
the coupler bars, ie those which are non-adjacent to the fixed
bar. The coupler point, which lies on both coupler bars (ie. the
hinge), js generally treated as a special case. It may come as a
Surprise to the reader that the coupler curve for the mechanism
With bar AE fixed and gear ratio o =+1, whose coupler point is the

hinge, ie bars 1 and 4 crank with the same speed at a fixed phase
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angle apart and in the same direction,’ is a four-bar coupler curve.
Observe that, if one constructs the parallelograms CDED' and
ABCB' as showed in fig 3.2, then we may form a new mechanism
AB'CD'E such that bars B'C
and CD' are 'geared together'.
Indeed, just as bars 1 and 4
lie on vectors a fixed phase
angle apart, bars B'C and CD'

lie on vectors which are a fixed

angle apart throughout the

motion.  Thus the mechanism

Fig. 3.2 is clearly seen to be a four-bar

ABDE with coupler triangle B'CD. Conversely, we may obtain

any four-bar in this manner. This result was observed in [Blokh].

It is a point of theoretical interest that, provided the gear
ratio is a rational number, the corresponding motion is governed
by polynomial equations defining a linkage variety which may be
studied using algebraic-geometric techniques. In particular, we will
be interested in the mechanism showed in figure 3.1 with bar AE

fixed and when the gear ratio is equal to -1.

We saw in Chapter 1 that in the case of the planar four-bar
the ]inkage curve lies in a 4-space and one is projecting from a line.
The key observation is that both the linkage curve and the line lie
on a Segre quartic surface, the line being one of precisely sixteen
lines on that surface and meeting just five others. Under the
Projection these five lines map to five points in the ambient plane,

determining a unique conic. In the generic case these five
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points are precisely the singular points of the coupler curve, the

conic being the familiar circle of singular foci.

Given the above context, the discussion in
[Freudenstein&Primrose] of geared five-bar motion assumes
particular interest, in view of the authors’ comment that here
again the coupler curve, when the coupler point is a hinge, has just
five singular points lying on a conic. The approach taken by the
authors in [Freudenstein&Primrose] is to write down the equation
for the coupler curve (for the hinge case) and to evaluate the
lowest order terms of the polynomial: this determines a conic on
which all singular points of the coupler must lie. The nett result of
our approach is that one is able to say rather more about the
geometry of coupler curves  than appeared In

[Freudenstein&Primrose). We may summarise these as follows:

(1) In Chapter 1 it was showed that the Grashof equalities
correspond precisely to the natural geometric condition that the
linkage curve has a singularity off the hyperplane at infinity. The
latter condition makes perfect sense for any planar mechanism
and so provides a sensible general definition of the term Grashof
equation. [n particular, we can adopt this point of view for the
geared five-bar and phrase the Grashof equations in terms of the
design parameters. With this definition we then prove that for
almost all design parameters (in a sense which we shall make

Precise) the Grashof equations do not hold.

(2) We are able to give a complete list of the possible

reductions of the linkage curve, and hence the coupler curve, into



- 72 -

irreducible algebraic components. In particular, in the generic case
the linkage curve is irreducible of degree 8 and genus 3, meeting
the hyperplane at infinity in two ordinary double points and four

other (non-singular) points.

(3) The geometry of the real linkage curve is of particular
interest. In the generic case, just described, we can determine the
number of topological components. The key idea here is to apply
the philosophy indicated in §1.4 of studying the natural
Projections from the linkage curve to the circles representing the
motions of the first and fourth links. That reduces the problem to
one of counting the number of real intersections of a given circle
with two explicitly given conics - an entirely practical procedure
which could be carried out, for instance, by graphical means. The
number in question is 1, 2, 3 or 4 and conforms with the bound
given by Harnack's Theorem (A9). In this connection it is well
worth pointing out that the Harnack bound is not always the best
Possible: indeed we shall see that for the Watt six-bar it fails to give

a useful restriction.

(4) We can obtain the coupler curves from the linkage
Curve by linear projection from a line and thereby deduce their
Properties. As a consequence we can take the coupler point to be
any point rigidly attached to a moving link, whereas the analysis
in [Freudenstein &Primrose] is valid only when the coupler point is
a hinge. An interesting facet of the present study is that we can
eXplain an intriguing analogy between the planar four-bar and the
geared five-bar with coupler point a hinge. Freudenstein and

Primrose observe that in both examples the (complex) coupler
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curves have, in general, just five singular points determining a
unique conic; a circle for the planar four-bar and a hyperbola for
the geared five-bar. This phenomenon is explained by the fact that
in both cases the singular points correspond in a natural way to

the five lines meeting a given line on a Segre quartic surface.

In §3.1 we set up the basic geometry of the linkage variety.
We show that the linkage variety R is isomorphic to an
intersection of three quadric hypersurfaces in Pt  and is
therefore of degree eight. The hyperplane at infinity meets R in
six points; four of these are always simple points of R, whilst the
other two are ordinary double points, provided a certain condition
does not hold. Further, we show that R has no finite singular
points in general. In §3.2 we give a complete list of the reductions
of R, a completely new result, and in §3.3 we determine the
number of connected components of the real linkage variety in
terms of the design parameters. Finally, in §3.4 we discuss the
coupler curves. As indicated above, we show that there is an
analogy between the geared five-bar with coupler point a hinge
and the planar four-bar. We describe the reductions of the coupler

Curves, in the general case, in detail.
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§3.1 The Complex Linkage Curve

We label the five bars of the
mechanism as 1, 2, 3, 4, 5
with the last one fixed (as
showed in Fig. 3.3). They have
positive lengths dj, dp, dz, dg4,
dg, and their directions are
given by unit complex numbers
21, 23, 23, 24, 25 It is no

restriction to suppose that

(0,0)

Zs 5 zg=-1: indeed, we can suppose
Fig. 3.3 that the ends of the fixed bar
are at the points (0,0) and (dg,0). We remind the reader that we
are going to consider the case when the fixed bar is AE as showed
in Fig. 3.1, and when the geaf ratio is -1. Therefore, the constraint
imposed by the gearing of bars 1 and 4 is z4=AZ;. The equations,

which govern the motion, have the form

dizq + dpzp+ dzzz+ d4z4=dsg
24=A2q 1. (B
|21 = |22 = |23 = |24 = 1

where A=Aq+iA; (with A1, Aj real) is a unit complex number.
The first equation expresses the closure of the pentagon and the
Second equation expresses the fact that links 1 and 4 are geared
together; with gear ratio -1 and phase angle ¥, where elf=A.
There is a point of theoretical interest here, hamely that the
€quations (3.1) are not in the shape required to associate naturally

a Darboux variety in the general setting of [Gibson&Newstead] as
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explained in §1.2. This can be remedied by writing them in the

shape

dqz4+dpzp +d3zz+dgz4=ds
2124 = A (3.1%
|21 = |2 = |23 = |24 = 1

where now the first two equations are polynomials in ‘zl, 22, 23,
24, 25. In either case we can write 2z =xy tiyx with xg, yj real
and equate real and imaginary parts to obtain an algebraic variety
in R® defined by eight equations: as for the planar and spherical
four-bars this can be complexified and projectivised (with w the

homogenising parameter) to obtain complex projective varieties in
PCs. we get

dixq+doxp+dzxz +dgxg =dsw
d1yq +day2 +dzyz +dqy4= 0

) (3.2)
Xq=Agxe+ Agy1t 4= Agxg-Aryy
2,.02_2. 2_ 2. 2 2 2
X{+Y1 =X +Ys = X3 +Y5=Xgtyg =W
corresponding to (3.1) and

dqxq +dpxp +dzxz +dgx4=dsw ‘
diyq+doyz+d3y3+dqy4=0

179252 » (3.2)

X1X4-y1ya=Aw? : X1y4+x4y1 = Apw?

2,.2..2..2_.2. .2 2 2
Xy =Xty = K5 s = Xgtyg=wl ]

Corresponding to (3.1").

The systems of equations; (3.2), (3.2) define linkage

Varieties R, 8 respectively. We need to be clear about the
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relation between these varieties. Certainly RcZ. For, if a point in

PC? satisfies (3.2), we have
x4+iya= Alxg-iyy) © xgq-iyq= Alxg+ iyq)

yielding
(xq +iy)(xg+iyg) = AlxE+y?) = Aw?
(xq -iyy)(xg-iyq) = A(xi+y]) = Aw?

and by adding and subtracting these relations we see that our
point satisfies (3.2"). Conversely, note that provided w=0 .(and
hence all of xjtiyy, x4tiy4 are =0) we can reverse these steps.
Thus R-W-=8-W, where W denotes the hyperplane at infinity
defined by w=0. Thus R, 8 have the same finite points, but
their intersections with W can, and do, differ. For our purposes it
is sufficient to observe that the residual varieties, obtained from

R, 8 by deleting irreducible components in W, are identical.

We need to study R in more detail. Note first thét the
four linear equations in (3.2) are linearly independent, so R is
isomorphic to a variety in Pc4, Moreover, the equation
X§+yi=w2 follows immediately from xf+yf =w? and two of the

linear equations. Thus R is defined by

dqxq +doxp+dzxz+dgxg = dgw
diyq+dayz +d3yz +dqys=0

e (3.3)
X4=A1xq+ Ay 1 Y4=A2xq-Agyq
2,.2_.2..2_.2. 2
X{+Y]=XptYy = K3 tys =W y

and is isomorphic to the intersection of a net of quadrics in pcé.
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The intersections of R with W are easily obtained. Setting
w=0 in (33), we get yp=tixy for k=1,2,3 vyielding eight

possibilities. Two pairs of these give complex conjugate points

/-4 Py =(0,0,d3,idz,-d>,-id>,0,0,0)
+--/---  Py=(0,0,d3,-id3,-dp,id,0,0,0)

The remaining four sign combinations give four distinct points

+-+ Q=(1, 1, -%3/\, i%gA, -%%, —i%%, A, -iA, 0)
4 Q= (1, -i, -%gﬂ, —i%gﬁ, —_g_% i%%, A, iA, 0)
e Qp=(1,1i, -%%, —i%%, -g_gA, i%gA, A, -iA, 0)
- Qz=(1, -i, —%%, i%%, -_g_gx, -iggz, A, iA, 0)

In particular, R intersects W in a finite set, so it has no
irreducible components of dimension 22 and must thereforé be a
curve. By Bezout's Theorem (A3) R has degree 8, thus it meets
W in eight points, counted with multiplicities. These multiplicities
are soon determined. The singular points of R are those points on
R where the Jacobian matrix of the equations (3.3) has rank ¢7.
The Jacobian § is

[ dg 0 d3 0 dz 0 dg4 0 ~-dg)
0 di 0 dp 0 dz 0 d4 O
At A 0O 0 0 O -1 0 O
= A -A10 0 O O O -1 0
21 2y¢ 0 0 0 0 O 0 -2w
0 0 2xp2y20 O O
L 0 0 0 0 2x32y30

o
|
)
3

o
)
<
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From this one sees immediately that P; and Py are singular
points of R since in each case the fifth row is zero and therefore
§ has non-maximal rank. Hence, Py and P; have multiplicity
22 on R. It follows immediately from the above that Py and Py
have multiplicity equal to 2 on R, ie. they are double points,
whilst Q,Qq,Q2,Q2 must have multiplicity equal to 1 on R, ie.
they are non-singular. Moreover, all the branches of R, centered

at points on W, meet W transversally.

A natural question arising at this juncture is to ask for the
analytic type of the singular points at Pl,ﬁi. (We shall need to
know this to compute the genus of the linkage curve) To do this
we render the equations (3.3) affine, translate the singularity to
the origin in €8 and then smoothly eliminate all but two of the
variables, via the Implicit Function Theorem, to obtain a plane
curve in €2 with a singular point at the origin. We shall do this
calculation explicitly for P; and deduce the result for Py by
complex conjugation. Make equations (3.3) affine by setting
xp=1. Then translate P4 to the origin by making the affine change
of co-ordinates yp = yg+i, X3HX3-%§, }'3HY3“i%§ and leaving

the other coordinates fixed. We obtain the equations

dqxq +dzxz+d4x4=dsw

d1yy +doyz +d3y3 +dqy4=0
X4=A1x1+ Aoy : y4=Agx1-Aryq
Xf +Yf - Y% + iy = Xg +y§-2%§(}(3 +iy3) = w2 |

Using the four linear equations, we may eliminate four of the

variables, for instance, x3, y3, X4, y4, to give the equations
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2. .2 .
Xl +y1 = y%+ 21y2 = w2
dsw (dsw (d1+dgAq)xq- d4A2Y1) +((d1'd4A1)Y1 +day? +d4A2X1)2
- 2do(dsw- (dq+dgA1)xq -dgAgyq) +i2do((d1-dgA1)y1 +doyo +dgArxy)

Since the derivative of the second equation with respect to y; is
non-zero at the origin, we may apply the Implicit Function
Theorem which allows us to approximate y» as a Taylor series in
W in a neighbourhood of the origin. Let yz=aw + bw? + cw® +
dw? + «..  Then substituting into the second equation and
evaluating the coefficients, we find that a=0, b=--12-i, c=0, d='i-
Thus we may eliminate y; in terms of w in the third equation.
The new form of the third equation has non-zero derivatives at the
origin with respect to w. Thus by the Implicit Function Theorem
we may approximate w by a Taylor Series in xq, yq, in a
neighbourhood of the origin. Let w=axqi+byy+0(2). Then
substitutiﬁg into the third equation and evaluating the coefficients
we find that a=(dy+d4A)/d5, b=ildy-d4A)/d5 and using this
series we may eliminate w. In this way we obtain a curve of the

form 0=axf+2bx1y1 +cyf+0(3) where
a=dZ-(dy+dsA)? : b=-ildFaZA)2 : c=dZ+(ds-dqA)?

We fail to obtain an ordinary double point if and only if the
discriminant of the quadratic part vanishes, i.e. if and only if A=1
QDSL_ds =4d1d4. We shall refer to this as the inverse condition,
since it is precisely the condition that there exists a position of the

Mmechanism for which the points dqz4, d4z4 in the complex plane
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are inverse with respect to the circle of radius '2dg centred at the
origin. Thus, provided the inverse condition does not hold, the

points Py, Py are ordinary double points on R.

The next step is to ask when R can possess finite
singularities, by which we mean singular points off W. Since R
has no irreducible components of dimension 22, the conditions for
this are that the Jacobian matrix § (with w=1), given earlier,
should have non-maximal rank. Clearly, these conditions are
polynomial, both in the variables xj, yx and the design
parameters dy, dp, d3, d4, ds, Ay, Az. Explicitly, we may make
row and column operations on § to derive necessary and
sufficient conditions for a finite point of R to be singular, namely

(3.3) and the following
X2y3=x3y2 : x1{(dg-dgAq)y3+daAzxa]-y4l(dg+d4A1)x3+daAny3]= 0.

The first of these two equations together with the quadratic
equations of (3.3) give xp=€x3, y2=£€y3 so0 in the real case we
may give the mechanical interpretation that bars 2 and 3 are
parallel. This gives nine equations in PC® and we now apply the

following theorem from Elimination Theory.

Theorem [Hartshornel

Let f1,..f be homogeneous polynomials in Xg,..X,, having
indeterminate coefficients ajj. Then there is a set gj,..8¢ of
polynomials in the ajj, Wwith integer coefficients, which are
homogeneous in the coefficients of each f; separately, with the

following property: for any field k, and for any set of special
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values of the ajj€k a necessary and sufficient condition for the fj
to have a common zero different from (0,..,0) is that the ajj are

a common zero of the polynomials g;.

The theorem applied to these nine equations yields that the
condition for the existence of a finite singularity is a polynomial
one on the design parameters. Moreover, this polynomial is not
identically zero; for there certainly exist choices of design
parameters for which R has no finite singularities. [ claim, for
example, that the linkage variety of the mechanism with design
parameters dq=dz=dz=d4=dg=1 and A=-1 has no finite

singular point.

Proof of claim: Any finite singular point satisfies
X2=¢€1x3 @ yp=€2y3 @ %4[2y3]=0

X1 +X0+Xz+Xq4=W : Y1+Yy?2 +y3 +y4=0

Xg=-Xy © yasyp © Koty = xotyd = xi+ys = wP

Thus by the third equation we have erther

1) y3=0. Then the second equation implies y7=0. Substitute
¥Y2=y3=0 into the fifth equation. Then the fifth and seventh
equations yield y1=y4=0. Thus the last three equations imply
tX1=txp=tx3=tx4=w and a contradiction follows by substituting

Xk =tw into first equation or

2) x1=0. Then x4=0 by the sixth equation. Hence yq=ys=ew
(e=11) by the seventh and eighth equation. Substituting for xq,

X4, Y1, Y4 in equations four and five gives (i) xp = w - x3 and (ii)
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y2 = -2¢ew - y3. Then, since w=0, the first equation together with
(i) yields xy=x3=%w and the second equation together with (ii)
yields yo=yz=¢w. Thus, substituting for x3,y3 in terms of w

into the last equation, gives a contradiction.

It follows immediately from the claim that generically, by
which we mean for almost all design parameters, in the sense of
Lebesgue measure, the linkage curve has no finite singularity.
Rather more intuitively, we can always avoid finite singularities on

R by arbitrarily small deformations of the design parameters.

The polynomial condition on the design parameters just
derived should be called the Grashof equality, since it is the exact
analogue of this concept for the planar four-bar in §1.1. One could
certainly write down this condition quite explicitly, but it does not
appear to adopt any particulariy neat form. In any case, from a
practical point of view it would hardly be worthwhile, since for
any numei‘ically given choice of design parameters one could
perform the eliminations by hand to decide whether the choice is

generic or not.

Let us finish this section by mentioning a point of
theoretical interest concerning R. In §1.2 we outlined a general
construction presented in [Gibson&Newstead], whereby to certain
rather special complex projective varieties, a birationally
isomorphic variety D, called the associated Darboux variety,
could be assigned. We recall that the particular interest of this
construction for the planar four-bar was, that the corresponding

variety D was precisely the Darboux curve studied originally in
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[Darboux]. The birational isomorphism turned out to be an
isomorphism, thus elucidating some remarkable connections
between the residual linkage variety and D. It is interesting to
point out here that this general construction applies equally well to
the curve R to produce a corresponding Darboux curve D for the
geared five-bar mechanism. To be perfectly explicit, D is the

curve in PC? defined by the equations -

dqzq+dpzp +dzzz +d4z4 = dgw
di+dp+d3+ds=ds  (34)

21 22 23 24 W

2124 = Aw? J

and the residual curve D' is obtained from D by deleting any
irreducible algebraic components which lie in the co-ordinate
hyperplanes 21=0, 22=0, 23=0, 24=0 or w=0. We bégin our
analysis by finding the components of XD in the hyperplanes

2x = 0.

Suppose that w=0. Then either 21=0 or z4=0. If 2z1=0
then we get the line Ly given by the equations
21 =w=dpzp+d3z3+d424=0 which meets the hyperplane z=0 in
the point Qp=(0,0,-d4,d3,0) and the hyperplane 23=0 in the
point Qp=(0,-d4,0,d2,0). If 24=0 then we get the line L4 given
by the equations z4=w=d1z1+dyzo+dz23=0 which meets the
hyperplane 2z3=0 in the point Q4=(-d3,0,d1,0,0) and the
hyperplane 2z3=0 in the point Qg=(-dp,-d4,0,0,0). The lines L
and L meet in the point Q3=(0,-d3,d2,0,0).

Now suppose that w=0 so that 2120 and 2z4=0. Then
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22=0 if and only if 2z3=0. Thus when 22=23=0 we get two
further points P; and Py whose co-ordinates we will not write

down.

Summarising, D meets 21=0, z4=0 in distinct
intersecting lines Lj, L4, meets each of z3=0, 23=0 in four points
and meets w=0 in the union of L4, L4. Note that D is always a
curve; since any component of dimension 22 would meet each
hyperplane 2z, =0 in infinitely many points, contradicting the

analysis above.

Applying Bezout's Theorem (A3) to equations (3.4), we find
that D is a curve of degree 8 in pCé. Removing the two
components Ly and L4 from D, we get the residual curve D'
which has degree six. To obtain the defining equations of D' we
multiply the second equation of (3.4) through by 2z1232324w to

remove the denominators giving the following set of equations

dqzq+dpzp +dzzz+dgz4 = dsw
[d4 202324+ dp 212724+ d3212024+ d4212223)W = d521222324 (3.4")
2124 = Aw?

Using the last equation of (3.4) to substitute for 2124 in the right
hand side of the second equation and eliminating w from both

sides, yields the defining equations of D'

dy2q+dpzp +d3zz+dgzq = dgw
[dy 202324+ dp 212724+ d3212024 + d4212023) = ds AzpzzW
2124 = Aw?
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Thus we have showed that D' is isomorphic to the set theoretic

complete intersection of a point-cone and a cubic surface in pC3.

We do not intend to study D any further in this chapter.
The fact is that R is actually easier to study directly via the
natural projections to be introduced in the next section (following
the technique of §1.3). However, we feel it is worth pointing out
that the Darboux construction can be applied to geared five-bar
motion. The reader should also note that, unlike the planar
four-bar, the varieties R and D' are birationally isomorphic but
not isomorphic. This follows from the fact that R always has one
more singular point than D': since R always has two singular
points P, P in w=0, whilst D' has only the singular point Qz -

we do not give the details here.

§3.2 Reductions of the Linkage Curve

An important mathematical question, which seems to have
been invariably neglected in the mechanisms literature, is that of
the irreducibility of the algebraic curves which arise naturally in
the subject. The general situation is that any algebraic curve R
(assumed to be in a complex projective space) is a union of finitely
many irreducible algebraic curves Ri,..,Rg called the irreducible
components of R: moreover, the degree of R is the sum of the
degrees of Ry,.,Rs. In the case of a linkage curve R the key’
Question is how this reduction into components depends on the

design parameters.
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For the planar four-bar the approach to this problem
adopted in [Gibson&Newstead] is via the Genus Formula (A11) for
an algebraic curve. However, in the present example this approach
suffers two drawbacks, namely that the analytic types of the finite
singularities of R are not easily determined and that it is not
clear, a priori, whether one may have the complication of repeated
components. What we intend to do instead is to adopt the
philosophy we initiated in §1.3 of studying the natural projections
from the linkage curve R down to the conics representing the
motion of the four links. In this section we shall use this technique
to understand the reductions of the complex curve R and in
§3.3 we shall use the main result of §1.4 to discuss the topology of

the real curve R, at least in the generic case.

Formally we proceed as follows. For J=1,2,3 let CJ' be
the conic in the complex projective plane with co-ordinates Xy, ¥is
w defined by x§+y? = w2, Since the four linear equations in (3.3)
are independent, R is isomorphic to a complete intersection of
three quadrics in PC%. If we eliminate variables X4,y4, then we
may take the equations to be

2 2 2 2 2 2
x1+y1=W2: x2+y2=W2:X3+y3=w2

(dg+dgAq)xq +doxp +dgAgyq +d3xz = dgw
(dg-dgA1)y +day2+dghoxy +d3yz = O

We then have natural projections nJ:PC4—+PC2 G=1, 2, 3)
defined by (%1,¥1,X2,Y2,%3,¥3,W)—=(x5,y;w) which restrict to
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projections my: R—Cj. For each j=1,20r 3 the centre of Ty is
the line L; given by xj=yj=w=0. Observe that L; is the only
one of these lines which meets X; indeed, it is precisely the line
Jjoining Pg, P;. Moreover, Ly, Ly and Ly, Lz are pairs of skew
lines, whilst Lj, Lz are skew lines if and only if dy=d4, as a

minor computation will verify.

Now let X be an irreducible component of the linkage
curve R. Then each Ty maps X erther to a single point or to
the whole of the conic C j- The first thing to be clear about is when
the former possibility can arise. We fix xj, yj, w and ask when
(3.3) admits infinitely many solutions. Since R has only finitely
many points on w=0, we can start by setting w=1. For each j
we obtain, after straightforward eliminations, two conics in Cz,
one representing the unit circle. Therefore we obtain infinitely
many solutions if and only if the two conics coincide. When -j=1
the conics are |

2 2
Xo+ys =1

dg(x§+y§) +2doyol(dg-dgAy)y1+dqAoxq] +

2doxol(d+dgAq)x1+dgA2y1-ds] + [(d1°d4A1)Y1+d4A2X1]2 +
[(d1+d4A1)x1+d4A2y1-d5]2-d§ = 0.

Both conics are circles, coinciding with the first, precisely when
dp=d3z and xo=¢x3, y2=€y3z where £=1t1 ie. there exists a
(complex) configuration of the mechanism for which links 2,3 are
opposite and equal. Explicitly, the condition on the design

pParameters for a (complex) configuration is
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Ay=-(d% - 422 + (& + d)d? (3.5)
2d1dde

and the configuration is real if and only if lAlls 1. The physical
situation is illustrated in Fig 3.4. We have also established that
11 : R—C4q has degree 2.

r 3

Fig. 3.4

When j=2,3 the two conics are
2 2
Xl + yl = W2

[0 + 2 + 2d;dgAgle? + 4djdgAgy? + [dZ +dZ - 2d1dgArlagyy
=2[(dq + dgA1)xq + dgAryqllds - djx;l + 2dy;l(d1-dgAq)yy + dgAgxq)

Y 2 2.2
-djwz-[d5-djle - djy]
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and the second conic is never a circle, thus no comporient X can
map to a point and therefore my:R—Cy and m3:R—-Cz have
degree 4.

The above considerations alone yield the useful fact that
any component X of R has even degree. Indeed, since for j=2,3
the centre LJ of My does not meet R, the Projection Formula
(Theorem A11) vyields deg X=djdeg Cy=2d; where dj is the
degree of Ty restricted to X. On this basis we see that the
possible reductions of R, given by the corresponding partitions of
the degree, are among 8, 6+2, 4+4, 4+2+2, 2+2+2+2; allowing

here the possibility of a repeated component.

The next step in our analysis is the proposition that any
conic component X of R must pass_through both of the singular
points Py, P; in W. As a preliminary, note that if m:X—Y isa
map of degree d between curves X, Y where Y is non-singular,
then any point on Y has at most d pre-images (see §A7). Thus
by the above analysis the restrictions of mp, m3 to X have
degree 1 and hence any point in either image has exactly one
pre-image in X. Now let [=(1,i0), J=(1,-1,0) be the circular
points at infinity in PC2 and note that under m, (resp. mz) the
points Py, Qq, Qy (resp. Py, Q1, Qz) map to I, whilst Py, Qq, @

(resp. Py, Q7, Q) map to J. It follows immediately that X
passes through Py, Py or Q1,Qy or @,Q;. We can exclude the
last two cases by observing that the témgent lines to R at the
non-singular points Qq, Q, and similarly at Qi, Q, are skew.

Indeed, a straightforward computation shows that the tangent
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lines are defined respectively by linear relations of the form

x1+iy1=0:xp-iy2=0: Zox;+Zpjy +¥w=0
x1-iy1=0:x2+iy2=0: Zojx;+ 2Ry +¥w=0

where the oy, By, ¥ are complex scalars with ¥=0. The
observation is immediate and establishes the proposition. Explicitly,
the coefficients in the above equations are oy =dq+d4A, ap=dy,
By =i(dq-dgA), pp=-idp, ¥=-ds for Qi, and oq=dq+dgA, ap=dy,
By =i(-dg+dgA), pp=-idy, ¥=-d5 for Qo.

A first consequence of the proposition is that the possible
reduction 2+2+2+2 cannot occur, since then R would fail to
meet W at Qq,Q1,Q2,Qp. A second consequence is that R has a
conic component if and only if that component is projected by mq
to a point (again by the Projection Formula), thus by the above R
has a conic component if and only if dp=d3 and xp=¢x3, yp=¢ey3
where £=11 ie. the mechanism has a (complex) configuration in
which links 2, 3 are equal and opposite. In particular, identities
dp=dz and (35) must be satisfied, thus such a reduction is
exceptional. The distinction between the reductions 6+2 and
4+2+2 1is easily described. For such a configuration the equations

(3.3) reduce to

dyxq+dgxq=ds : X4=A1x1 +A2yy
dqy1+dqy4=0 : y4=A2x1-Aqy _
1Y17G4Y4 4 251 i1 | (3.6)
X = £X3 : Y2=£€Y3

xf+y§=1 : x§+y§=1 : x§+y§=1 )

Provided dq=d4 the first four linear equations in (3.6) give a
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unique solution for xq, y1, X4, Y4 S0 we obtain a unique

configuration giving a reduction 6+2.

However, when dj=d4 we obtain two (possibly coincident)
solutions, leading to two possible configurations and a reduction
4+2+2. The condition for a configuration given by equation (3.5)
(necessarily real) becomes A=1. Of course in this case the
configurations are mirror images of each other in the fixed link;

the physical situation is illustrated in Fig 3.5.

Fig. 35

Thus equations (3.3) with dj=d4, dp=d3, A=1 may be seen to

give two subvarieties
2. .2 2. 2
2. .2
Xg"Y%“’z Xp+y5=w’

dgxq-2diw =0 dgw - 2d1x4-2dyx2=0



- 92 -

The first subvariety represents the two conics and the second
subvariety represents the quartic component. It follows that, in
general, the quartic component is isomorphic to a non-singular
intersection of two quadrics in 3-space, hence an elliptic curve.
Exceptionally, the quartic acquires a singular point and becomes
rational. To find the condition for this to occur we need to
determine when the Jacobian matrix has non-maximal rank. The

matrix is

2y 2yq1 O 0 -2w
0 0 2x7 2yp -2w
-2d4 O -2d> O dg

It is a straightforward exercise to show that the matrix has
non-maximal rank if and only if dg=2-|eqdq+e2dy| (where € =11,
€2 =11) for which there is a singular point of the form
(£1,0,£2,0,1). The quartic is irreducible, thus the singular point can
only be an ordinary double point or a cusp. To determine which of
these cases may occur, we shall make a local co-ordinate
calculation. Make the above equations affine by setting w=1 and
translate the singular point to the origin by making the affine
change of co-ordinates X1~ xX1+€1, Xp+xp+€2 and leaving the
remaining co-ordinates fixed. The resulting set of equations are

2 2,..2 .
x2+y% + 261%1 =0 : X5+y5 + 2e0%p =0 : dixg-dpxp=0

We may use the third equation to eliminate x; from the second
equation giving an equation in x; and Yy for which the

derivative with respect to xj is non-zero. Thus by the Implicit
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Function Theorem we may approximate x1 in a neighbourhood of
the origin by a Taylor Series in yp. Let xq= ay2+by§ +ese, Then
substituting for x4 in the second equation and evaluating
coefficients, yields that a=0 and b= 52%% Substituting for %1 in
the first equation, shows that the quartic is isomorphic, near the
origin, to a plane curve of the form yf + %%fy% + 0(3). In
particular, we see that the curve has a double point at the origin

with distinct tangents ie. an ordinary double point.

Note the very special case when the two solutions of x4, y1,
X4, Y4 in (3.6) coincide and we obtain a reduction 4+2+2 with a
repeated conic: under the above hypotheses this happens precisely
when A=1, dj=d4,dp=d3, d5=2dy (thus the inverse condition is
satisfied). The physical situation is illustrated in Fig3.6. In this

case the reader may readily check that the quartic is elliptic in
general, but exceptionally, when d> =ds, the quartic acquires a

singular point.

(@ o o)

Fig. 3.6

The reduction 4+4 will be discussed in more detail in §3.4.
Recall first that my maps Q, Q; to | and Qi Q to J:
further, m, (respectively m3) maps Py, Qi, Qo (respectively
P1,Q, @) to I and Py, Qp, @ (respectively Py, Q1, Qo) to J.
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It follows immediately that the two quartic components are real,
one passing through Py, Py, Q1, Q; and the other through Py, Py,
Q2, Q. By the Projection Formula the restriction of 1y to either
component has degree 1; thus both components are mapped by my
birationally onto a circle, implying that they are rational curves.
Further, since by the theory of projections (Theorem A12)
multiplicity can only increase under a projection of degree 1, we
see that both components have no finite singular points and must

therefore be non-singular curves.

We can elicit further useful information about the above
reductions via the Genus Formula (A8) for a (possibly reducible)

algebraic curve. That formula states that
pa(R) = kaa(Rk) + ZSp - (I"'i)

where Pa denotes the arithmetic genus, 8p is the §-invariant of
a singular point P of R and Ry,.,R, are the normalisations of
the irreducible components Ri,..R, of R. It follows from
Theorem A5 that p,(R)=5 for a complete intersection of three
quadrics in 4-space. Further, the §-invariants at Py,P; equal 1,
since these points have been shown to be ordinary double points of

R. Thus we can re-write the Genus Formula as
r+2=2p,(Ry) + Z*8p (3.7)

where the * indicates that we sum the 8-invariant over the finite

singular points of R. [ claim that in the generic case, ie. when
the Grashof equation is not satisfied, R _is an irreducible octic of
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geometric genus 3,

Proof of Claim: In the generic case Z*6p=0. To show that R is
irreducible we shall consider each possible reduction in turn and
derive a contradiction.

In the 4+4 case equations (3.7) yield 4=p,(Rq)+p,(R2)
with Ry, Ry rational non-singular quartics: that is impossible,
since the arithmetic genus of such a curve is zero. Inthe 2+ 2+
4 case, equations (3.7) yield 5=p,(Rq) +p.(Ro) +pa(Rz) where
R1, Ry are non-singular conics and Rz is a quartic. Since conics
~are rational, this reduces to  5=p,(Rz)<p,(Rz) giving a
contradiction, since the arithmetic genus of a quartic must be <3,

Finally, in the 2+6 case, (3.7) gives 4=p,(Rq1)+pa(Ro)
where R4 isa conic and Ry is a sextic. Hence, 4=p,(Ry). To
obtain a contradiction we argue in the following way. Recall first,
that the conic Ry must pass through Py, Py and hence Ro
must pass through all six points Pq, Py, Q1, Qq, @, Oy, else Py, Py
fail to be singular on R. It follows easily that Rp s
non-degenerate, i.e. not contained in any 3-space: indeed any such
3-space would have to contain the six points just listed and
therefore would coincide with the hyperplane w=0. This situation
is an impossibility since R only meets w=0 in finitely many
Points. The non-degeneracy of Ry allows us to apply the

Castelnuovo inequality

Castelnuovo Inequality [Griffiths]

The greatest possible genus of an irreducible non-degenerate curve
C of degree d in PC" is Y%m(m-1) + me, where m is the
integer part of (d-1)/(n-1) and ¢=(d-1)-m(n-1).
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In the situation at hand d=6, n=4, m=1, ¢=2 and we may
deduce from the inequality that p,(R2)<2. Finally, we observe
that by Bezout's Theorem (A3) R, must be non-singular at all of
the points Py, Py, Q, Qp, @, @ and, therefore, Ry is a
non-singular curve with Rp=Ry: that provides the requisite

contradiction and the claim is proved.

The above analysis leaves open the question, whether the
4+4 reduction actually occurs. An explicit example is obtained by
choosing dy=2,dp=4,d3=1,d4=2,d5=3, A=-1. Since dy=dz we
cannot be in either of the cases 2+6 or 2+2+4. The key point in
this example is that there are at least four finite singular points:
(¢1,0,1,0,-1,0,71,0,1) and (0, 15,3 74,3,%4,0,15,5) thus we
have necessarily %*§,24. However, when R is an irreducible
octic, the genus formula (3.7) yields E¥8,53 1 we must therefore

be in the 4 f4 case.
§3.3 The Real Linkage Curve

Throughout this section we shall assume that we are in the
generic constructible case, so that the complex projective curve R
I1s an irreducible octic of geometric genus 3 whose only singular
points are ordinary double points P4, Py and which possesses at
least one real finite point. In this situation the real affine curve
R is compact, non-singular and non-empty thus diffeomorphic to
a finite disjoint union of circles. By Harnack's Theorem (A9) the
number of topological components is <4. Our objective in this

section is to show how, in principle, one can determine this number
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in terms of the design parameters via a technique introduced in
§14.

In brief, the technique is as follows. We saw in §3.2 that
the projection mq:R—Cq has degree 2 and that R, Cq are
irreducible non-singular curves. Let us now consider the
corresponding real curves (without changing notation) and write
71,...Tn for the topological components of R. Then according to
the main result of §1.4 there are just three possible qualitative

pictures.

(I) There is just one component T4 mapped immersively

onto C4 as a double cover.

(II) There are just two components Tq, T2 each mapped

diffeomorphically onto Cj.

(I There are n components T74,.,T, mapping onto
disjoint arcs Aq,..An of Cq4 with exactly 2n critical values,

hamely the end-points of these arcs.

Case (I) is the double crank, whilst case (II) corresponds
to two single cranks. It is important to note that, although the
absence of branch points for T4 tells us that we must be in one of
these cases, it does not tell us which one. By contrast the presence
of branch points tells us that we must be in case (III) and their
Number completely determines the topology of R. Case (III)

Corresponds to the engineering concept of a rocker.
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Thus to apply the above reéult we must compute the
number of real critical points of . Critical points occur when the
tangent line to the (complex) curve R meets the centre of 1y, ie.
these projective subspaces fail to span a 7-space. Thus we have
critical points, whenever the 7x6 matrix §, obtained from the
Jacobian matrix of the equations (3.3) by deleting the columns

corresponding to the variables x4, y1, w, has rank <6. -

( dy 0 dg O dg 0 )
0 d 0 d5 0 dg
| o 0 o0 0 1 0
¥ o 0 0 0 o0 1
2% 299 0 0 0 0
| 0 0 2% 2y3 0 0

The reader will readily check that }' has non-maximal rank
Precisely when the vectors (x2,y2) and (x3,y3) are linearly
dependent. Using the equations (3.3) we see that this is exactly
the condition that x3=€xp, y3=¢€y2 with €=11: thus in the real
case the mechanical interpretation of a critical point is that links

2 and 3 are parallel. Substituting x3z=¢x2, y3=¢ys in (3.3), we
obtain

(dy +dgA1)xq +dgA2yy +(dp+ed3)xp = dgw

d4Agxq +(dg -dgA1)y1 +(da+edz)y=0 (3.8)
ENCA R WA

In the projective 4-space with homogeneous co-ordinates x1, v,
X2, y2, w the linear equations define a 2-plane in which the

quadratic equations define two distinct conics intersecting in <4
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(complex) points. Eliminating x2, y2, we have

2. .2
X1+yl=w

2
2d1dgAy(x2 - y3) + 4didaAoxiyy - 2dswildy + dgAp)xs + dgAzys)
+ [df + 4% + d2- (dy + d3e)2w? = 0 where ¢= t1.

Since there are two values of €, we obtain in all <8 critical
points and hence by the above theory <4 topological components
agreeing with the estimate given by Harnack's Theorem (A9). More
Precisely, we need to calculate the number of real critical points,
given by the number of real intersections of the conics. That is
easily determined. If we rationally parameterise one conic by a
pParameter t and substitute in the equation of the other, we

obtain a real quartic in t.  Explicitly, we may parameterise

and substitute into the

second equation to obtain a quartic at?+bt3 +ct2+dt+e =0 with

a = g%+ d2- 2dydsA; + 2d4dsAp + dF - (dg + dze)?
b = -4did4A; + 4dg(dg+ dgAy)

¢ = 2(d%+dd +12dydsAy + 2002 - (dg + dze)?d)

d = 4d;dqA; + 4ds(dg+ dgAq)

e = a2+ aZ-2djdgAq - 2dsdsAg + dZ - (dp + dse)?

Then the number of real roots of this quartic for each choice of sign

is the required number of real critical points.

Suppose we obtain 2n real critical points. If n21 then we
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are in case (III) and have precisely n topological components.
However, when there are no real critical points we must decide
between cases (I) and (II). To this end consider the smooth
function on R  defined by  @(P)=xpy3-x3y9, where
P=(x1,y1,%2,y2,%3,y3,X4,Y4,W). By the above the zeros of ¢ are
Precisely the critical points of 4. Assume that we are in case (I)
so that over every point of Cj lie exactly two distinct points P, P'
of R. Tacitly, we use the fact here that the image m((R) is
hon-singular so that the critical points of m4 coincide with the
branch points (see SA7).
P Geometrically, the point P' is

the ‘“reflection” of P, as

indicated in Fig 3.7. The key

p observation is that we have

Fig. 3.7 9(P) =-9@(P), so ¢ assumes both
Positive and negative values. However in case (I) the real linkage
curve R is connected, so ¢ would necessarily admit a zero and
T4 would have a critical point, contrary to the hypothesis. We
may conclude that, when there are no critical points, we must be

in case (II) when R has exactly two topological components.

§3.4 Projections to the Coupler Curve

In this section we shall apply the analyses of the preceding
Sections to understand the geometry of the family of coupler
Curves which are the loci of a point rigidly attached to link 2.
With the notation of §3.1 we can write P=djzq+k-zp where k

is a fixed complex number. If we write k=kjq+iky, with k1, ko



- 101-

real, then we can think of P as the ‘point in the projective plane
with  homogeneous  co-ordinates py, pp, p3  where
P1=d1x1-koyp+kyxp, pp=d1y1+kox2+k1y2, p3=w. These formulas
define a projection Ty : PC8—L—>PC2, where L is the centre of
the projection ie. the 5-dimensional projective subspace defined
by the vanishing of pq, p2, p3. We can restrict this projection to
the (complex projective) linkage curve R to obtain -a rational
mapping TklR, the closure of whose image is an algebraic curve

Ck in PC8 which we refer to as the complex coupler curve.

Now let M be the 4-dimensional projective subspace of
PC® defined by the linear equations in (3.3). Then RCM and L
intersects M in a line L. Thus it suffices to consider the
Projection Ty : M-L'-PCZ given by the same forms P1, P2, D3
and its restriction TxlR. It is an easy matter to check that L'
fails to meet R if and only if k=dp, so that in that case TylR is

a regular mapping.

We begin our analysis with the special case when k=dp, ie.
the coupler point P is the hinge joining links 2 and 3. It is this
case which was first studied in [Freudensteinl. = The centre L'
meets R in precisely the points Qo and Q. We are now in a
situation very similar to that studied in the case of the planar
four-bar so we shall proceed along the same lines. Write qi, qp,
q3 for the quadrics in M obtained by intersecting M with the
quadrics in PC8 given by xl +y1 w2 xz +y2 w2 x3+y3-w2 and
consider the net Aqqj+A2q2+A3g3. The condition for a quadric in
the net to pass through a given point is linear in Ay, Ap, A3,

defining a pencil in the net. If, in particular, we choose a point on
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L' distinct from Qo, 52 we see that any quadric in the pencil
meets L' in three distinct points and hence contains L'. There is,
therefore, a pencil of quadrics in the net containing L'. One can
easily check that in the projective plane with homogeneous

co-ordinates Aj, Ap, A3 the pencil is given by
2 2 2.2
dyAg+dyAp+dydyAz = 0.

The intersection of the pencil is a Segre quartic surface 3,

containing the line L'. We may write the pencil as
2 2,2 2
aldyqy - q3) + pldydyqz - diq3).

The projection of & from L' onto a plane is well understood.
Choosing the co-ordinate system xq, yi, Wo, Wi, W (where
Wo=dyxq +doxy, wy=diy1+day), so that the projection is onto
the last three co-ordinates, any two quadrics in the pencil can be

written iri the form
x1f,+y1f1+f2=0 : x1f'g+tyif'1+f'2=0

where f,, f1, f's, 'y are homogeneous of degree 1 and fp, f'p are
homogeneous of degree 2 in w,, w1, w. Thus xq, y1 may be
solved uniquely in terms of wg, w1, w off the conic F in the
coupler plane defined by fof'1-f1f',=0. Quite explicitly, we may

write the generating quadrics in the above form with
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fo = 2d4(dsAqw - Aqwg - Agwy)

f1 = 2d4(dsAgw - Aowg + Aqwq)

fo = - 2 _ 2 2 2 5 2

2 = ~W5 - Wz + 2dgwwyq + (dz -dy -dg)w

f'o 2d4(dfd5A1w - dqdgqwp - dele - dezwi

fq = 2d4(d%d5A2w - dqdgqwp - dezWo + delwl

' = (&5 - dD)(wi+ wd) + (-d2d?- d%aZ - d5 + dDw? + 2dZdswow.

Thus F has the equation
~Agwl+ Agw? +dsAgw,ow - dsAgwyw+ 21 wyw, = 0.

F is irreducible if and only if A=1, reducing to a real line-pair
(wg =0 and 2wg=dsw) when A=1. In the former case F meets
the line at infinity w=0 in the coupler plane in the two distinct
real points (t1+Aq,A2,0). Hence F is a hyperbola with centre
(*2d5,0,1) and asymptotes F2Apwg + 2(12Aq)wyq t dgAow = O:
indeed, precisely that discussed in [Freudenstein]. Points on F
have esther no pre-image or a line of pre-images in . Thus,
Provided there are only finitely many points on F of the latter
type, we obtain an isomorphism between & (with a finite union of

lines deleted) and the coupler plane (with F deleted).

At this stage it is interesting to determine precisely when
there are only finitely many points on F common to Cj, i.e when
F and €, have no common component. A sufficient condition for
this is that F and Gy have no point of intersection on the line at
infinity w=0 in the coupler plane. Now F meets this line in real
Points and T meets it in the images under Ty of Py, Py, which

are complex, and the images under Tk of Q1, Qi, which are real
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if and only if A=1 and dy=d4. When F is irreducible we have
A=1 and hence F, £ have no common component. It remains
to discuss the case when F reduces to a line-pair, in which case

the lines are easily checked to be wq=0and 2w,=dgw.

We claim first that the line w41 =0 cannot be a component
of the coupler curve. Its pre-image under Ty is the hyperplane
H with equation djyj+day2=0: of the six points at infinity Py,
131. Qq, 51, Qo, (—52 on the linkage curve, H generally meets only
Q2, Q, but exceptionally (when A=-1 and dy=d4) it also meets
Qq, Q;. Now suppose wiq =0 is a component of the coupler curve,
S0 H contains a component K of the linkage curve. Then
generally, K meets the hyperplane at infinity in <2 points, so K
would have to be a line or a conic: however we saw in §3.2 that R
has no line components and that conic components have to pass
through Py, Py, so either way we have a contradiction. On the
other hand, in the exceptional case, when it passes through all of
Q1, Qi, @y, @y, one can check directly that H meets the linkage
Curve in only finitely many points and thus cannot contain a
Component of K. That establishes the claim that the line wy =0 is

Never a component of the coupler curve.

We can discuss the line 2w,=dgw similarly, taking H to
be "the hyperplane defined by 2(dixq+doxp)=dgw. Again, the
general situation is that the only points at infinity on the linkage
curve, which lie on H, are Q,Qy vyielding a contradiction as
above. Exceptionally, when A=1 and dj=dy, it also meets Q1,Qy.
In this exceptional case one easily checks that provided dy=d3, H

Meets R in only finitely many points. When dp=dz, H meets R
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in a | quartic component. Going

back to §3.2, we see that this is

// N precisely the case when we have a
( ¢ ) reduction 2+2+4: what has
happened in this case, is that

................ although the two conic components

.

project birationally to circles in
the coupler plane, the quartic

component projects with degree 2

T to a line, namely the line
2wo=dsw. One can see this very

Fig. 3.8 clearly in Fig 3.8.

Henceforth, we shall suppose that we are not in the 2+2+4
case, so that under the birational isomorphism between & and the
coupler plane each componenf of R is projected birationally onto
a component of Cj, thus with degree 1. Since TKIR is not
defined af Q, @ the image is not closed. The algebraic closure is
obtained by adding the finite set of points which are images under
Tk of the tangents to R at Qo 62 As these points are
non-singular on R there are exactly two such points namely,
(ds, tids,2), lying as one would expect on F. Note that Py, Py
map respectively under Ty to the circular points at infinity 1, J;
and since Py, Py are singular on R it follows that I, J must be
singular on the coupler Cy. In fact we can be more precise. As I,
J do not lie on F the birational isomorphism between R and
the coupler plane will be an isomorphism close to Py, Py
Preserving the local analytic type of these singularities, so I, J will

likewise be ordinary double points on Cy.
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Principally, one is interestedk in the case when R is
irreducible, when Cj will be an irreducible circular sextic (by the
Projection Formula). It is, however, not without interest to look
at the reducible cases. In the 2+6 case the conic component
projects to a circle: the sextic component must pass through all six
points at infinity on R with multiplicity 1, thus by the
Projection Formula projects to a circular quartic. The reduction
4+4 is perhaps the most interesting case. Recall from §3.2 that
the components are real, rational and non-singular, one passing
through Py, Py, Qi, Qp; and the other through Py, Py, Qp, Qy: the
former projects to a rational circular quartic, whilst the latter
projects to a circle by the Projection Formula. Indeed, it is clear
from the work in §3.2 that we can characterise the 4+4
reduction by the conditions that dy=dz and that the coupler
point can trace a circle. The example of a 4+4 reduction given in

§3.2 has design parameters dq=dq=2,dp=4,dz=1,d5=3, A=-1.

Fig. 3.9

In Fig 3.9 the reader can see how circular motion is obtained by

adding links OE, OC of lengths 1, 2 respectively. Then the
contraparallelograms ABCO and EOCD are similar throughout the
motion (with a common angle 8) so that the coupler point C

traces a circle of radius 2 with centre O.
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Although the above discizssion‘yields the broad underlying
geometry of the coupler, it fails to reveal detailed information
~ about the singularities. To make progress on this front we shall
make an explicit and perfectly natural generality hypothesis,
namely that the pencil of quadrics containing the line of projection
L' is general ie. contains five distinct point cones. The first point
to make is that this condition holds for almost all design
parameters, so that is useful. The pencil is general when its
discriminant D, a binary quintic polynomial with coefficients
Polynomial in the design parameters, has five distinct roots. The
condition for D to have coincident roots is a polynomial one in its
coefficients. Thus the condition for the pencil to be non-general is a
polynomial one in the design parameters. Moreover, the condition
iIs a non-trivial one: for instance, one can check by explicit
computation that the pencil is general in the case when dj =42,
do=v2, dg=1, d4=2, ds=1, A1=.05, Ax=1/05. It follows
immediately that the pencil is general for almost all design
parametefs. In this context it is worth remarking that when A=1
one can easily check that the pencil fails to be general: certainly
then, in the general case one must have A=1 and hence F will

be a hyperbola.

From now on we shall assume that the pencil of quadrics
QQD‘Iél'ning L' is general Under that assumption we may apply

the results of §1.5 that the surface 8 contains exactly sixteen
lines, any one of which meets exactly five other mutually skew
lines. Let L4, L'y, L's, L'g, L's be the five lines on 8 meeting L'
and let Iy, Ip, I3, Ig, I5 be the five distinct points on F which are

their images under ‘. Each line L'y meets the quadric q
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esther in two distinct points or in Jl.ist one point at which it is
tangent. L'; cannot be contained in qj, for then it would be a line
component of R, a possibility excluded in §3.2. In the former case
L'J meets R in two distinct simple points and Cp has two
branches at 1| - and in the latter case L'y is tangent to R so Cy
still has a singular point at Lj Bezout's Theorem (A3) tells us
that F meets C) with total intersection multiplicity 12.
However, we know from the above that F meets Cj in the five
singular points Iy, Ip, I3, I4, Is and in the two closure points, so
that it follows immediately that Iy, I, Iz, I4, I must be double
Points on C, whose branches meet F transversally, and that the
closure points are simple on Ck. The only other singular points on
Cx arise from the ordinary double points at Py, 1_51, which map
under 1Ty to ordinary double points at I, J, and any finite
singular points of R. Thus the singular points at I, J have
8-invarijant 1, whilst the §-invariants of any finite singular points
of R will be left invariant by the projection. Applying the Genus
Formula to the curve Cf, we find that the 8-invariants of the
double points at Iy, I, I3, I4, Is all equal 1 and hence that each

of these singularities is erther an ordinary double point or a cusp.

One can say a little more about cusps. A cusp occurs if and
only if L'y is tangent to 3 (and therefore tangent to R), ie. if
and only if L'j is the tangent to R at a critical point of the
restriction tg. Thus, the condition for a point P on R to be a
Critical point is that the matrix obtained from the Jacobian matrix
of equations (3.3) by abutting the Jacobian matrix of the projection
has non-maximal rank ; since this is equivalent to determining the

Points of R where the tangent lies in the kernel of the projection.
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The matrix is

((dqy O d O dz O dg O -dg )
0 d O d, O dz O dq O
Ay Ay O 0 0 0 -1 0 0
A -A; O 0 0 0 0 -1 0
2x1 2y O 0 0 0 0 0 2w
0 0 2x3 2y, O 0 0 0 -2w
0 0 0 0 2x3 2yz O 0 -2w
dg O d 0 0 0 0 0 0
0 dg O dy 0 0 0 0 0

. 0 0 0 0 0 0 0 0 1

By elementary row and column operations one can show that the
condition for the above matrix to have non-maximal rank is
equivalent to the condition for the following matrix to ‘have

non-maximal rank

X1 Y1
X2 Y2
Aixz+Agyz Agx3-A1y3

Thus, the condition is x1y2=y1xp and  xq[Apxz-A1y3l=
Y1[A1X3+A2y3]. Using the quadratic equations of (3.3), it can easily
be showed that the conditions are equivalent to xq=¢x, y1=£y>,
X3=¢'%q, y3=¢'y4 where €= 11, ¢'= £1, Substituting for x1, y1, X3,
¥3 in equations (3.3), we observe first that such a configuration
must be real, second that it must be finite and third that there are

$4 such configurations. The mechanical interpretation of these
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conditions is that links 1,2 should be parallel and links 3,4 should be
parallel. Eliminating all the configuration variables from the
equations, one obtains four non-trivial polynomial conditions on the
design parameters which must be satisfied for a cusp to appear.

These conditions are

dg[(d1+81d2)2 + (€2d3+d4)2] - [(d1+€1d2)2 - (g9dz+dg)?)2
= 2A1d2(ds+eqdolleadz+dy]

where €1 = t1, ep=t1. In particular, therefore, cusps fail to appear
for almost all design parameters. A careful study of these
polynomial conditions (which may be found in [Freudenstein] who
derives this condition from purely mechanical reasoning) reveals
that in fact there are <3 cusp configurations: it would be
interesting to have a geometric argument for this fact. Thus in the
generic case the possible multi-singularity types of the coupler
curve Gy (with k=dp) are 7Ay, 6A1/A3, 5A1/2A5, 4A1/3A7
where we adopt the Arnold notation for simple singularities. In
[Freudenstein] it is explicitly verified that all four types can occur.
However, in the real case one can make the finer distinction in the
A4 case (ordinary double point) between an AI (acnode) and an
AI (crunode) giving rise to forty-one real multi-singularity types.
It appears to be an open problem, whether all these types can

oceur.

We shall conclude our discussion of coupler curves by taking
up the general case when k=d; so that TkIR is a regular

rational mapping. We claim that this mapping is birationa] (thus

of degree 1) except when R has a repeated conic component.
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Provided the inverse condition does not hold, the eight tangent lines
to R at the points Py, Py, Qi, Q;, @y, @ project to eight distinct
tangents to Ci at points on the line at infinity w=0 in the
coupler plane. Thus a component K of R with degree d has d
distinct branches meeting the hyperplane w=0 and its image Ky
under Tk has d distinct branches meeting the line at infinity
w=0 in the coupler plane. Thus the total multiplicity of points of
Kk on w=0 is 2d, hence Ky has degree 2d. It follows
immediately from the Projection Formula (Theorem A11) that Kj

has degree d and that TklK has degree 1.

One can now pursue the kind of analysis we gave when
k=dy. The results are as follows. When R is irreducible, Cy is
an irreducible octic, having the same geometric genus as R, with
ordinary triple points at 1 and J. In the 4+4 case Cy is the
union of two rational quartics, one circular and the other
bicircular. In the 2+6 case Ty is the union of a circle and a
bicircular sextic. And in the 2+2+4 case Cx is the union of two
circles and generally an elliptic circular quartic, provided the conic
components are distinct. Note that when the conic component is
repeated the inverse condition holds and the above analysis no

longer applies.

Provided we are careful we can still gain useful
information even when the inverse condition does hold. For
instance, when R is irreducible it has six (instead of eight) distinct
tangents at points in w=0 mapping to six distinct tangents to the
coupler C) as above. We can argue via Bezout's Theorem (A3)

and the Projection Formula (Theorem A11) that T, maps R to
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Cx with degree 1, and that Cj has degree 8 and the same
geometric genus as R. However, the triple points at 1, J are
necessarily non-ordinary. Likewise, in the 4+4 case, we find
that Cj is still the union of two quartics (one circular and the
other bicircular) touching at I, J. On the other hand the 2+6
case can no longer arise, nor can the general 2+2+4 case. One
can still have the 2+2+4 case with a repeated conic component:
the repeated conic projects to a circle, whilst generally the quartic

component projects to an elliptic circular quartic.

One could pursue the geometry of the complex coupler
curve Cp much further using little more than the techniques
expounded in this chapter. However, a more profitable (and
certainly more interesting) direction would be to elucidate the
geometry of the real couplers Cj, at least in the generic case. Note
incidentally, that our work in §3.3 has automatically solved the
problem of determining the number of real circuits for an
arbitrary choice of coupler point. In principle, it should be possible
to obtain a basic classification of real couplers in terms of the real
multi-singularity type and the number of real critical points of the

Projection m4y as discussed in §3.3.
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CHAPTER 4. THE GEOMETRY OF THE WATT
SIX-BAR MECHANISMS.

Introduction

- The six-bar mechanisms are the first planar examples of
linkages with more than one kinematic chain. Smoothly jointing
together six rigid bodies, displays two possible kinematic chains and
a total of five different mechanisms. The two six-bar chains are
named after two great men of the steam-engine era, namely Watt
and Stephenson. The Watt chain, as showed in Fig 4.1(a), consists
of two ternary links with a common hinge and may be visualised
as two four-bar chains rigidly connected. Indeed, this description
of the Watt mechanism proves to be a useful one in describing the
geometry of its motion. The Stephenson chain, see Fig 4.1(b), has
two ternary links but it is distinct from the Watt chain since they
have no common turning joint, and moreover, it only possesses one

four-bar chain.

(a) (b)
Fig. 4.1
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We may fix either a binary or a ternary link, thus we obtain two
distinct Watt and three distinct Stephenson mechanisms. These
are named the Watt [ and II, and the Stephenson I, II and III

mechanisms respectively, as showed in Fig 4.2.

Fig. 4.2

For each mechanism there is no unique choice of coupler bar. In
the Watt I, for instance, we may take either of the links CG and
FG as our coupler bar and obtain six-bar curves i.e. curves which
are not coupler curves of mechanisms with fewer links. Clearly,
any other choice of coupler bar would give rise to arcs of four-bar
Coupler curves or arcs of circles. For the Watt Il mechanism no
choice of coupler bar gives rise to six-bar curves. The Stephenson I
has two possible choices of coupler bar giving rise to six-bar curves
Namely, links CG and FG and likewise the Stephenson Il
(resp. III) has links BD and AE  (resp. FG). Note that it is
sufficient to consider bar CG for the Stephenson I and bar FG for

the Stephenson II.
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Applications of the coupler cufves of six-bar mechanisms,
despite their inherent complexity, are surprisingly diverse. Hunt
[Hunt] gives an interesting example of a Watt I in the design of a
wall-mounted desk-lamp which we reproduce here in Fig 4.3.
Another example, where a six-bar mechanism is used as the take

up lever on a sewing machine, may be found in [Ogawa].

Fig. 4.3

In §4.1, 42 and 4.3 we set up the basic geometry for the
Watt | and Il linkage and Darboux varieties in the complex
projective‘ framework. In §4.4 and §4.5 we present a complete
solution to the problem of determining the reductions of the linkage
variety in terms of the design parameters and deduce all the
possible reductions of associated coupler curves. Finally, in §4.6 we
take up the geometry of the linkage variety in the real case by
completely determining its topology. That enables us to deduce the
number of real circuits of associated real coupler curves. In the
very special case, when the coupler point is a hinge, we have
therefore a formal mathematical proof of a result sketched in

[Primrose].

In §4.1 we introduce formally the linkage varieties of the
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Watt [ and Watt Il mechanisms and verify that they intersect the
hyperplanes at infinity in the union of two skew planes and two
skew lines: that implies that the varieties fail to be complete
intersections. By this we mean that these varieties fail even to be
set-theoretic complete intersections: the linkage wvariety for the
planar four-bar is certainly a complete intersection in the
set-theoretic sense, but fails to be so in the ideal-theoretic sense.
Our interest centres around the residual linkage variety obtained
by deleting the four irreducible components at infinity. The
strategy for studying this latter variety is based on an observation
that the residual linkage variety is birationally isomorphic to the
residual Darboux variety and moreover the one can be obtained
from the other by a linear projection. An illustration of this
approach was given in §1.2 for the reduction of the four-bar
linkage curve. Thus the next step, which we undertake in §4.2, is
to study the Darboux wvarieties associated to the Watt six-bar
mechanisms. That brings us to the fundamental observation that
the Darboux varieties for the Watt [ and Il are the "same”, in the
sense that they can be described by the same set of equations.
Further, we deduce that the residual linkage varieties for the Watt
I and the Watt II are birationally isomorphic and we prove a more
general result which implies that the real linkage varieties of

Mmechanisms with the same kinematic chain are isomorphic.

It is well worth pointing out at this early stage that the
residual linkage variety of the Watt I and the residual Darboux
Variety fail to be (complex) isomorphic - indeed they have different
numbers of double points in the hyperplanes at infinity. But in

contrast, we shall see in §4.6 that these linkage varieties are
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Isomorphic in the real case by our general result providing the key

tool to studying their topology.

In §4.2 we show that the common Darboux variety of the
Watt six-bars is projectively equivalent to an algebraic curve of
degree 9 in projective 3-space which always reduces to a line and a
curve of degree 8 called the residual Darboux curve. The
underlying philosophy is now to utilise the birational isomorphism
between the residual linkage and Darboux varieties, which is given
by a perfectly explicit projection, to deduce the geometry of the
former from the latter. This is explained in §4.3. In particular this
enables us to show that the residual linkage variety is a curve of
degree 16. It is important to note that this result would be
difficult to obtain directly from the varieties, since they are not
complete intersections and, therefore, we cannot apply Bezout's
Theorem. Another consequence is that we can determine exactly
when the linkage varieties have finite singularities, ie. singular
points off the hyperplanes at infinity. This condition ought to be
called the Grashof equality, since it is the exact analogue for the
Watt six-bars of the corresponding condition for the planar

four-bar discussed in §1.1.

In §44 we give a full account of the reductions of the
Datrboux varieties from which we deduce the reductions of the
Watt [ linkage variety. A summary of this result may be found in
tabular form at the end of §44. In §4.5 we discuss the complex

geometry of the coupler curves.

Finally in §4.6, we determine the topology of the real
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linkage varieties. In particular, we show that there can be at most
four connected components, thus giving a better upper bound than

that which one can obtain from Harnack's Theorem.
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§4.1 Introduction to the Complex Linkage Variety

We label the bars of the Watt |
mechanism as 1,2,..,10 as
showed in Fig.44. The
quadrilateral formed by the
bars 1, 2, 3, 4 is the base
quadrilateral, whilst that
formed by bars 5, 6,7, 8 is the
upper quadrilateral. When

we speak of the triangles we

mean the two triangles formed
by bars 1,6,10 and bars

Fig. 44 2, 9,5. The bars have positive
lengths dy, d»,..,d1o and their directions are given by unit complex
numbers zq,27,..,210. Henceforth, we shall assume that bar 4 is
the fixed bar of the base quadrilateral, so that z4 will be constant:
it will be né restriction to suppose that z4 = -1. The constraints on

the motion can be written as

dyzq +dpzp +d3z23-dg =0 ]
dgzs + dg2g + d7z7 + dg2g = 0

;  (41)
Z5 = uzp : Zg = VZq

lzyl? = 1 for 1<k<8k=4

Where u,v are fixed unit complex numbers. We shall write
U=uj+iuy, v=vy+ivy, where wuy, up, vy, vo are all real it is
Natural to write zp= xi+iyx, with xi, yx real and equate real
and imaginary parts to obtain a real algebraic variety in Rrl4

defined by 15 equations, two of which are redundant. This variety
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cah be complexified and projectivised (with w the homogenising
parameter) to obtain a complex projective variety R in pcld

defined likewise by 13 equations. Explicitly

dyxq + dpxp + dzxz - dgw = 0
d1yq +d2yz +d3yz = 0

dsxg + dexe + dyx7 + dgxg = 0
dsys + deye + d7y7 + dgyg = 0 L (4.2)
X5 = U4X2 - U2y2 . Y5 = uxp + uqy?2
Xg = VIX{ T V2Y1 1 Y6 = V2X{ tV1yy
xi + yi =w? (k=1,2,3,7.8) J

We shall refer to R as the linkage variety of the Watt |
mechanism. The linear equations in (4.2) are linearly independent,
so define a 6-dimensional projective subspace of PCl% Thus R is

projectively equivalent to an intersection of 5 quadrics in pPCe.

One might reasonably expect R to be a curve intersecting
the hyperplane at infinity (i.e. the hyperplane defined by w=0)
in a finite number of points. However, the situation is by no means
so simple as we can verify by direct computation. Setting w=0
in (4.2), we see that the intersection is given by the linear
equations, augmented by the equations vy =¢gpixp (k=1,2,3,7,8)
where g = t1. For each choice of signs of €1,£7,63,64,65 we obtain
a projective subspace of w=0, thus thirty-two in all, appearing in
complex conjugate skew pairs. These are rather easily described.
The sign choice +++++ yields a 2-plane W. The defining' equations

are (with xs, ys, x4 and yg omitted for brevity)
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W: dyxq +doxp +dzxz = 0 : dguxp + dgvxy + d7xy + dgxg = 0

yy=ix; (for j=1,23,7and8) : w=0

Taking the successive sign choices =-++++, +-+++ etc, in which
exactly one minus sign is chosen, we obtain the respective distinct
lines Ly, Lp, Lz, Lg, Lg in W, forming the configuration given in

Fig.4.5 with L4, Lo, Lz concurrent.

Fig. 4.5
These are defined by the equations

Ly: doxp + dzxz = 0 : dguxp + d7xy + dgxg = 0
yy=ix; (for j=2,3,7and 8) : x1=y;=w=0

La: dixg + d3zx3 = 0 : deVxq + dyxy + dgxg = 0
yy=ix; (for j=13,7and 8) : xp=yp=w=0

Lz:  dyxq +doxp = 0 : dguxp + dgvxq + dyxy + dgxg = 0
yj=ix; (for j=1,27and 8) : x3=y3=w=0

Lg:  dgxq +doxo +d3x3 = 0 : dguxp + dgvxy + dgxg = 0
yy=ix; (for j=1,23and8) : x7=y7=w=0
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Lg: dixy + doxp +dzxz = 0 : dguxy + dgVxy +d7x7 = 0
yj=ix; (for j=1,237and8) : xg=yg=w=0

Write Jyi for the point of intersection of Ly, Lx and Jq23 for the
intersection of Ly, Ly and Lz. Then it is easily veritied that each
Jjk, Wwith the sole exception of Jg5, is one of the subspaces
obtained by choosing precisely two minus signs. Reversing the roles
of the plus and minus signs in the above discussion we obtain
analogously a complex conjugate 2-plane W containing complex
conjugate lines Ly, Lo, Lz, L4, Ls having the same configuration as
in Fig.4.5 and intersecting in the points J jk- The equations of these
subvarieties may be obtained from their complex conjugate
varieties by simply conjugating the equations given above. Signs
+--++ and +-+-- give identical points to -+-++ and -++--,
respectively. The only sign choices which have not been covered so
far are +++--, ---++ yielding complex conjugate skew lines M, M,
respectively. M meets W,W respectively in Jgs, J1o3, whilst M
meets W,W respectively in Jy23, Jss. The variety M is given

by the following set of equations

M: dguxp=dgVxy : dzdsuxsz + (didsu-~dpdgV)xg = 0
d7x7 + dgxg = 0
yy=ix; for j=1,2and 3 : yy=-ixy for j=7,8 : w=0

and we may obtain the defining equations of M by taking the
complex conjugate set of equations. In this way we arrive at
Fig.4.6 illustrating the intersection of the linkage variety R with
the hyperplane at infinity w=0.
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Fig. 4.6

To sum up: the desired intersection is the union of the 2-planes
W,W and the lines M,M, all of which must be irreducible
components of R. In particular, ails to be a_complet

intersection. It is a tedious exercise to calculate the co-ordinates of
the points J jk: (omitting the x5,y5,%4,ys co-ordinates for brevity)

they are as follows:

Jip3 = (0,0,0,0,0,0,1,i,-d7, -id7,0)
dg dsg

Jia = (0,0,1,i,-do,~id>,0,0,-uds,-iuds,0)

A i S-S

Jig = (0,0,1,i,-dp,-id2,~uds,-1uds,0,0,0)
dz dz3 d7 d7

J24 = (1,1,0,0,-d4,-1d1,0,0,-Vds,-1vds,0)
“ d;ji d% dg dg

JZ = (1;i:0’0)—g ,‘idl,_i-/dé,'i.\_/db,(),o,())
i A

J = 13‘1— n_. )OJO'O!Ol-u u- V :—.( u- Vv JO
‘34 (1,i %1 1%1 zdsg_admbx) ldzdslé-%ldbi) )

Jzg  =(1,i, gli, id4,0,0,-(dpdsu-d ccill deV) -1(_d2d52_Q1S161) 0,0,0)

dz d dady
Jag  =(1,i,-dg ¥, -uie,v (slﬂsg-_dz,by) ’l(dldSHMbM) 0,0,0,0,0)
dsu dsu dzdsu dzdsu

The union of the irreducible components of R distinct from W, W,

M, M will be called the residual linkage variety R'
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There is a similar set up for
the Watt [l mechanism. Label
the bars as 1,2,..,10 as showed
in Fig.4.7. We shall refer to
the quadrilateral formed by
bars 1, 2,3,4 as the base
Fig. 4.7 quadrilateral, whilst that

1 -4

formed by bars 5,6,7,8 will be referred to as the upper
quadrilateral. When we speak of the triangles, we mean the
two triangles formed by bars 1,6,10 and bars 2,9,5. The bars
have positive lengths dq,d»,...d1g and their directions are given by
unit complex numbers z'1,2',..,2'19- Without loss of generality we
may assume that 2z'{=-1. The constraints on the motion can be

written as

-dq + dpz'p +dz2'z + dgz'4 = 0 )
dgz's + dgz'g + d7z'7 + dgz'g = O
2's = uz'p : 2'g=-Vv

|2k]% = 1 (25k<8)

where u,v are fixed unit complex numbers. We shall write
u=ug+iuy, v=vy+ivy, where uy, uy, vy, vo are all real. It is
natural to write 2'}=x'y+iy'x , with X'y, ¥'x real and equate real
and imaginary parts to obtain a real algebraic variety in R14
defined by 15 equations, two of which are redundant. This
variety can be complexified and projectivised (with w' the
homogenising parameter) to obtain a complex projective variety

8 in PC4 defined by 13 equations. Explicitly
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-dqw + dpx'p + dzx'z + dgx'g = 0
doy'z + d3y'3 + dgy'q = 0

dgx's + dgx'g + d7x'y + dgx'g = O
dsy's + deY's + d7y'7 + dgy's = 0 b (4.4)
X's = ugX'2 - upy'2 1 ¥'5 = ugk'2 + U1y’

ViW' 1 Y = -vow

X'
x5 +yp=w? (k=23478) ‘

We shall refer to & as the linkage wvariety of the Watt Il
mechanism. The linear equations in (4.4) are linearly independent,
so define a 6-dimensional projective subspace of pcl4, Thus, & is

projectively equivalent to an intersection of 5 quadrics in PCo.

In a similar manner to the Watt I we may set w'=0 in
(4.4) to obtain the picture of the Watt II linkage variety at infinity.
We see that the intersection is given by the linear equations of (4.4)
augmented by the equations y'k=exix'x (k=2,3,4,7,8). As before
each choice of signs yields a projective subspace of w'=0,
thirty-two in all. Their description is as follows. The sign choice
+++++  vyields a 2-plane W' Taking the successive signh choices
~++++, +-+++, . in which exactly one minus sign is chosen we obtain
five distinct lines L'y, L', L'3, L'y, L's in W', forming a
configuration identical to Fig.45 with L', L', L'3 concurrent.
Write J'jk for the point of intersection of L';L'x and write J'123
for the intersection of L',L'p,L'z. Then it is easy to check that
each J'y;, with the exception of J'i4 and J'is, is one of the
Subspaces obtained by choosing precisely two minus signs. (Sign

choices -+-++ and --+++ both yield J'123, and -+++- and -++-+
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both yield J'45.) Reversing the roles of the plus and minus signs,
yields the following complex conjugate subspaces: a 2-plane W' and
lines L', L'5, L'z, L's, L's in an identical configuration to Fig.4.5.
The signs we still have to account for are +++--, -++-- which yield
a line M' and ---++, +--++ which yield the complex conjugate
line M'. The overall picture is similar to Fig.4.6: M' passes through

J'45 and J'123 and is skew to M' which passes through - J'45 and
J'123.

The complexity of the varieties R and & makes them
difficult to study directly. Our approach to this problem is based on
the fact, established in [Gibson&Newstead], that the residual linkage
varieties are birationally isomorphic to ] '

Darboux variety D', a statement which we shall amplify in the

hext two sections.

§4.2 The Associated Darboux Variety.

According to the general construction given in [Gibson&Newstead],
as explained in §1.2, the Darboux variety D associated to the
Watt [ mechanism is obtained as follows. We start with the linear
equations in (4.1). Then for each such equation we form a new
equation obtained by replacing each 2z, by 1/z; and conjugating
all the coefficients. We then homogenise the equations with 24
the homogenising parameter. In this way we obtain the following

system of equations
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dqzq +dpzp + dzzz +dgz4 = 0

dy+dp+d3+dg=0
21 22 23 24

dgzs + dg2zg + dyz7 + dgzg = 0 > (45)
dg +dg +dy +dg = 0

25 2¢ 27 28

25 = uzp 24 = VZq )

These equations define an algebraic variety in PC’ with
homogeneous co-ordinates zi,..,2zg which is the required Darboux

variety D.

We may obtain the Darboux variety associated to the Watt
Il mechanism from equations (4.3) in a similar manner. We form
two new equations by replacing each 2%k by 1/2Z% and
conjugating all the coefficients. If we then homogenise the

equations with 2'4 the homogenising parameter, then z;~z';

defines a projective equivalence between D and the Watt II

Darboux variety. Thus it makes sense to refer to zAe Darboux
variety D of the Watt kinematic chain: for no matter which bar

we fix, the corresponding Darboux variety is projectively

equivalent to D.

We begin the study of D by noting that the four linear
equations in (4.5) are linearly independent, so define a
3-dimensional projective subspace; the remaining two equations
define cubic surfaces in that 3-space whose intersection is D. The
residual Darboux variety XD'is by definition the union of the
irreducible components of D which do not lie in any of the
distinguished hyperplanes z, =0, for 1< k < 8. Clearly, the

first step in studying D' is to see how D intersects the
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hyperplanes 2z=0. This requires no more than a few
straightforward computations. Note first that, if we set 29=0,
22=0 in (45), we obtain a line L in D, namely, the line joining
the points Qq = (0,0,0,0,0,0,dg,~d7) and Qy = (0,0,d4,-d3,0,0,0,0)

given by

2Z1=29=25=24=0 : d3zz+d4z4=0 : dyzz+dgzg=0

In the hyperplane z; = 0 we obtain the line L and four points

Py = (0,1,0,-d2,v,0,~vds,0) : Py = (0,1,0,-d>,v,0,0,~vds)
d4 d7 dq dg

Pz = (0,1,-d7,0,v,0,-vds,0) : P4 = (0,1,-d5,0,v,0,0,-vds)
dz dy dz dg

whilst in the hyperplane 2z2=0 we obtain the line L and four

more points

Pg = (1,0,0,-%1,0,V,-Vg1_6,0) : Pg = (1,0,0,‘%1,0,V,0,'—V_c16)

4 dy 4 dg
P7 = (1,0,'_d_1,0,0,V,‘VQ6,0) . p8 = (1:0"Q1,0,0,V,0,‘VQ6)
d3 d7 d3 dg

Note that the points Py, P3,.., Pg are distinct and that none lie on
the line L. To obtain the remaining intersections of D with the
distinguished hyperplanes we can assume henceforth, that z4=0,
22=0. Under that condition 23=0 if and only if 2z4=0. Assuming
these conditions hold, (45) vyields a binary quadratic
azf + bzyz7 + czg =0 where a=dyp, b=pg+ dg - dg and
¢ = dyq with p=(dadgv-didsu)/dy and q=(didgu-drdgv)/dquv. It
is easily checked that this quadratic is identically zero if and only if

dy=dy, dg=dg, d7=dg and u=v; that is, therefore, the condition for
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D to intersect z3=0, z4=0 in a line component. In mechanical
terms this means that the upper quadrilateral should be a kite and
that the two triangles should be congruent. Generally this condition
fails and the binary quadratic has two roots yielding points Eq, Eo.
The two points coincide when the discriminant of the quadratic is

zero. The condition for this to occur is:
(C1)  (dpdgv-didsu)(dideu-dodsv) =(dy tdg)2 didouv

(which is also satisfied in the case of the line component). The
condition may be considered as a binary quadratic in u and v
thus the condition has the form u=Cv where C is a unit complex
number whose value is one of two roots of a quadratic (which is

easily determined). We shall assume from now on that condition

(C1) is not satisfied.

Let us now impose the further condition that 2z3=0, z4=0.
Under that hypothesis z7=0 if and only if zg=0. Assuming these
conditions hold, (4.5) vyields a binary quadratic azf + bzyzz + cz%,
where a = dzp, b=pq+ dg - di and c=dzq with
P=(dydgu-dpdgv)/dsu and q-=(djdev-dpdgu)/dgv. The quadratic
is identically zero if and only if dj=dp, dz=d4, dg=dg and u=v:
that is, therefore, the condition for D to intersect z7=0,2g=0 in
a line component. In mechanical terms this means that the lower
quadrilateral should be a kite and that the two triangles should be
congruent. Generally, this condition fails and the binary quadratic
has two roots yielding points Fq, Fp. The two points coincide when
the discriminant of the quadratic is zero. The condition for this to

occur is:
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(€2)  (dydgu-dodev)(didgv-dodsu) =(dz+dg)?2 dgdeuv

(which is also satisfied in the case of the line component). As for
condition (C1) the condition may be considered as a binary
quadratic in u and v thus, the condition has the form u=Cv,
where C is a unit complex number whose value is one of two

roots of a quadratic. We shall assume for the remainder of the

paper that condition (C2) is not satisfied.

On the above basis we can already gain useful information
about the geometry of D. Firstly, D has no irreducible component
of dimension 23; indeed, such a component would intersect every
hyperplane in a variety of dimension 22 which we now know not
to be the case. Secondly, a component of dimension 2 has to
intersect every hyperplane in a curve: in particular, it has to
intersect the hyperplanes z3=0 (24=0) and z7=0 (2g=0) in the line
components described above, so must coincide with the unique
plane con’taining these lines. Moreover, the condition for D to
have such a component implies that both quadrilaterals are kites
and that the triangles are congruent. In general this condition fails
and the intersections of D with the distinguished hyperplanes are

as follows.

29 = 0: Py, Py, Pz, P4,Q,Q and L
2p = 0: Psg, Pg, P7, Pg, Q, Qo and L
25 = 0: Py, Py, Ps, P, Qy, Eq, Ep
z4 = 0: Pz, P4, P7, Pg, Q1, Eq, E2

27 = 0: Py, Py4, Pg, Pg, Q, Fq, F

zg = 0: Py, P3, Pg, P7,Qg, Fq, Fp..
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It is of course conceivable that L is a repeated component:
that happens if and only if every point on L is singular on D. A
point (z4,..,2g) on L is singular precisely when the Jacobian
matrix of the equations (4.5) has non-maximal rank. The

Jacobian § is

An easy computation shows that for points on L the matrix }§

has non-maximal rank exactly when

2 2 2
dldS\’Zszh = dadeuzzz;

Now the points Qq, Qp are precisely the points on L for which

either zz3=0 or 2z7=0:thus both these points are singular on D.

And the condition for every point on L to be singular is
(C3) u=v, didg=dods.

In more mechanical terms, that is the condition that the triangles
are similar. We shall assume from now on that condition (C3) is

Although we know that Q1,Q; are singular on D it is not
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clear, whether they are singular on D'. A lengthy, but
straightforward local co-ordinate calculation, provides that answer.
We shall give the details for the point Qq and leave the calculation
for Qo to the reader. First make equations (4.5) affine by setting
Z7=1 and translate the point to the origin by making the affine
change of co-ordinates zj+—z; for i=1,.,6 and 23'—’28-%;. Then

the equations (4.5) become

dqzq + dyzp + dzzz +dgz4 = O

di +dp+dz+dg=0
Zy Zp Z3 24

dgzg + dgzg + dgzg = O .

ds +dg +dy + gze -0
25 2 dgzg-dy
25 = Uzp I 26 = VZq )

Eliminating variables zg4, z5, 2, 2§ and using the linear equations,

we obtain the two equations
~(dyzpz3 + dpzyzg + dszizpddizy + dyzp + dszz) + dizgzpzz = O

~dsdyvzy - dgdyuzy - (dgvzy + devzyp + dyuvzyzp)(dguzy + dgvzy)
- (dg - dg)uvzizz =0

Since the derivative of the second equation with respect to zp is
non-zero, we may use the Implicit Function Theorem to write 22
as a power series in 2y near the origin. Let 23= a21+bzf+m be
its Taylor Series, then substituting for 2z in this equation and
equating coefficients we find that a= -%2%
the series for 2z in the first equation to obtain the affine local

Finally, we substitute

Co-ordinates of the curve near the origin
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2 2 2 2
dzpzz + (pq + (d3 - dgldsv)zqzz + dzdsvqzy
d4dgu dgdeu

Z1 + 0(3) = 0

where p=(djdgv - dodgw) and q=(djdgu-dodgv).
dgdeu dgu

We may now deduce that Q4 is an ordinary triple point provided
conditions (C1), (C2) and (C3) do not hold. In particular,' D' has a
double point at Qi with distinct tangents ie. Qi and likewise Qo
is_an ordinary double point on D' provided conditions (C1), (C2)
and (C3) do not hold.

or_the remainder o is _paper we 1l a at the
mechanism is general by which we mean that conditions (C1),

(C2), (C3) are not satisfied,

Under that hypothesis D is a curve projectjvely
equivalent to a complete intersection of two cubic surfaces in
3-space. Thus, by Bezout's Theorem, D has degree 9. Applying
the well known formula for computing the arithmetic genus of an
intersection of hypersurfaces {Theorem AB), yields that D has
arithmetic genus 10. D has only one irreducible component in a
distinguished hyperplane, namely the line L. Further, D' is the
union of the irreducible components of D distinct from L. Since
under our assumption L will not be a repeated component the
residual Darboux curve D' will have degree 8. From these facts
Wwe can immediately deduce further useful information about the
points where D' meets the distinguished hyperplanes. Indeed,
applying Bezout's Theorem to each intersection in turn, we see
that, since Eq,E; and Fy,Fy are distinct pairs of points, all the

points Pj,..,Pg, E1,Ep, F1,F2 are simple points on D': moreover, at
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any of these points and at Q4,Qp, the intersections are transverse.

The next step is to determine when finite singular points
can occur, by which we mean singularities off the hyperplanes
2x=0 (k=1,..,8). Since under our assumptions D' has no
components of dimension 22, the conditions for this to occur are
that the Jacobian matrix § with z=0 for all k should have
non-maximal rank. By elementary row and column operations
and deleting linearly independent rows and columns (eg.
uxcolb+col2; wvxcolé+coll; delete independent rows 5 & 6 and
columns 1 & 2; coll+d3; col2+dy; col3+dy; col4+dy; colb+dy; col8+dg;
coll-col2; col3-col2; col4-col2; (note that 2g=0 $0...) zgxrow4+row3;
delete independent rows 1 & 3 and columns 2 & 6) we may reduce
the problem to determining when the following matrix has

non-maxinal rank.

r 2 _ 2

2 _ 2

2 _ .2

24~ 23 2425 247 0
5 g 2
0 d5u(z§ - zg) d6v(z§ - zg) zg - z;
| dzzé dizg zg )

It follows that the matrix has non-maximal rank if and
only if e/ther one of the two rows is zero, giving cases (i) and (ii)
below or neither row is zero implying that columns one and four
are zero and the determinant of the 2x2 minor, consisting of
columns two and three is zero thus giving case (iii) below. Hence a
boint P=(z4,.,28) is a finite singularity if and only if at least one
of the following three conditions is satisfied: |

(i) 2y=egzp=e323=€424 (=0), where gp=11,e3=11,e4=¢1,
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Substituting for 2zp,23,24 into the first equation of (4.5), we find

that this implies a condition of the form
dq+epdo+ezdz+eqdyg=0 (4.6)

The condition is precisely that the four-bar mechanism, obtained
by removing bars 5,6,7 and 8, satisfies a Grashof equality as
described in §1.1. Eliminating all but 2z4, z7 in equations (4.5), we

get a binary quadratic in 21, 27
d7Pz% + (PQ + d5 - d)zyzy + dyQz% = 0

where P=(gpdgv+dgu)/uv and Q=(epdgu+dgv), giving two values
of 27 (in terms of z1) and therefore two singular points in general.
Mechanically, the lower quadrilateral has flattened and the two
points correspond to the two positions of the mechanism as
indicated in Fig.4.8 which differ only by the position of bars 7 and
8. Thus generally, for each choice of sign (ep,e3,e4) for which a
condition of the form (4.6) is satisfi e obtain two disti init

singular points of the form (1,62,€3,64,%,%,%,%) on D.

Fig 4.8 Fig 4.9
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Exceptionally, the discriminant of the quadratic may vanish. But
this occurs if and only if PQ=(d7id8)2 in which case the two
singularities coincide. Rewriting the condition as a quadratic in u

and v, we have
€2d5d6u2 + [dé + dZ = (d7id8)2]uv + €2d5d6V2 =0

Thus we may write the condition as u=¢B,v; where B, are
the two complex conjugate roots (real if and only if B, =+1 since
u and v are unit complex numbers) of the quadratic in u
obtained from the above quadratic by setting €ep=1 and v=1. In
this case z7=tzg, so bars 7 and 8 are parallel and correspond

Mmechanically to the case showed in Fig.4.9.

More degenerately, the quadratic may be identically zero
giving a singular line. This can only occur if P=Q=0, d7=dg, that
is, dg=dg, dy=dg, u=-epv implying that condition (C2) holds:
indeed, the line meets z7=0 and 2zg=0 in a singular point (=Qy),
so that Fq and Fp must coincide. The mechanical interpretation
here is that bars 5 and 6 overlap, hinges C and F coincide and
bars 7 and 8 move with one degree of freedom as showed in

Fig. 4.10.




- 137 -

(i)  z5=egze=€727=€g25, where  gg=t1,7=+1,eg=11.
Substituting into the third equation of (4.5), we see that this

implies a condition of the form
dg+egdgte7dy+egdg=0  (4.7)
This condition is precisely the Grashof equality for the four-bar

obtained by removing bars 1,2,3 and 4 as described in §1.2. The

argument follows closely that of case (i). Generally, we have two

distinct singular points on D for each condition of the fo z
that is_satisfied. When P'Q'=(d3id4)2 (where P'=ggdqv+dou and
Q'=(egdqu+dov)/uv) the two singularities coincide. Rewriting this

condition as a binary quadraticin u and v, we have
eedydau? + [dZ + d3 - (d3tdg)2luv + egdydpv? = O

Thus we may write the condition for the coincidence of the
singular points as u=g€¢A,v ; where A; are the two complex
conjugate roots (real if and only if A;=1, since u and v are unit
length) of the quadratic in u obtained by setting e¢4=1 and v=1
in the given binary quadratic. More degenerately, when dq=d>,
dz=d4,u=-g¢v, we get a singular line. In the latter case condition
(C1)  necessarily holds. The corresponding mechanical
interpretations are easily deduced and are similar to those of

case (j).

(iii) z3=€424, 27=€828 With €4=11, eg=1t1 and

d6v(z§ - zg) (23 - zg) = d5u(z§ - zg)(zﬁ - zf)

(4.8)
d4 z%z% dzzgzg
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Using the linear equations above together with the linear equations
of (4.5), we may eliminate several of the variables. One can then
show the essential redundancy of the third equation and derive the
hecessary condition on the parameters for this type of finite
singular point to arise. The reasoning is as follows. Substitute
23 = €424, 27=€g2g in equations (4.5) and then eliminate z4 and
27 using the linear equations thus obtained. This leaves two

quadratic equations in the remaining variables

didgz? + (d2 + d5-(eqdz+dgDzgzp + didpzs = 0 (4.9)
dsdezz + (d2 + d2-(egdy+dg)D)z5z + dsdeze = 0 (4.10)

Then we may write 21 and 25 in terms of 2 and 2z
respectively in two ways, provided the design parameters do not
satisfy a condition of the form (4.6) or (4.7). Let z;=A,z> and
25=B,z¢, thus it follows from Zg=uzp and 2Zg=vzy that
u=A,B,v is a necessary condition for this type of finite singular
point. (Thé reader should note that the constants A, and B, are
identical to those labelled in cases (i) and (ii)) We will now show
the redundancy of the third equation of (4.8). Suppose P is a
point satisfying 23 =¢€424, 27 =¢g828. Then from the above analysis
we have z1=A,z> and 2z5=B,z¢ and u=A,B,v. But A,=0 so

we may use (4.9) to give the identity

(e3d3 + dg)? = (d2doAn)(dsA,dg)  (410)
+
Hence (4.5) gives z4=- (d1+doA,)z> . Thus, z4=(d1+d> Aiﬁzg and
(ezdz+dy) (€3d3+d4)2

it follows from (4.9) that zi = (d1As+dp)A,s 7—%-
(dq+daA,)
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Hence,
zg = zg = (glﬁlﬁf)zzg and zf- zi = -(dz;f_lef)Aizzg.
(d1+dpA,) (dq+dpA,)
Thus, .
(25 - 25) = =d1.(zf- 25).
d2A,

Similarly we have the identity

(25 - 22) = =ds (zE- z).

dgB.

It is now an easy matter to see that the third equation is satisfied:

for using zg=uzp and 2zg=vzq this reads
2 2v(.2 2 2 _2v.2_ _2
dadeu(zs - 23)(z¢ - 2zg)z12z2-d1dsv(z] - 2)(25 - 2g)z123 = O

Thus the condition is satisfied if and only if

[dpdgu - -dy__ - -dg - d1d5v][22 - 2222 - 22]2122 =0
° d kt —d?%.f : s

Since zj =0, zp=0, 21 = t24, 25 = t2g this is the case if and only if
u=A,;B,. But we know this to be the case and our result is proved.
Thus u=A,B, is a necessary and sufficient condition for this type
of finite singular point. The mechanical interpretation here is
simply that bars 3 and 4, and bars 7 and 8, are parallel as
indicated in Fig. 4.11.

Fig. 4.11
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Note that the first two equations of (4.8) are satisfied in the
exceptional cases of (i) and (i) above, when a pair of singular
points coincide, but that we can also have mechanisms giving rise
to points satisfying u=A,B, that do not satisfy the conditions of

cases (i) or (ii).

§4.3. Geometry of the Linkage Variety.

We shall now describe the geometry of the Watt I residual linkage
variety R' in more detail. Its relation with the residual Darboux
variety D' is as follows. Consider the projection n:Pcl4-pc’
which maps (x1,y1,.,%8,¥8,W) to (21,..,28) where zp=xp+iy) for
k=1,2,356,7,8 and z4=-w. The centre of T is the 6-dimensional
subspace of PC!% defined by xp =-iyx for k=4, and w=0, thus
contains the 2-plane W. As explained in §1.2, the projection
defines a 1-1 correspondence between the points of R with w=0
and the finite points of D' i.e. those with z,=0 for all k. Thus the
restriction mlg' is a generically 1-1 rational map and is
therefore a birational map between R' and D' failing to be
regular only where R meets W. Thus the open set nlp(R)
contains all finite points of D' but not all of the points with 2z,=0
for some k. It is clear then, that D' is the Zariski closure of the
set mlp(R). More precisely, the image of R' only fails to be
closed because points of R' meet the centre of projection ie. at
the points of R' where niR(R') is non-regular. Let us call the
points D'-mlp(R’) the closure points. From the general theory of
projections (Theorem A13) the pre-image of a point on Y under a

linear projection m:X—Y between two varieties X and Y is
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either a point on X or has as its pre-image the osculating n-plane
to X of some point where X meets the centre of m. Thus the set
of points, which makes up the closure points of nlR(R'), may be
obtained by taking the images of osculating n-planes. For well
behaved projections of curves (by which we mean, those
projections, whose centre does not contain any tangent of R') we
need only consider the images of tangent lines ie. osculating
1-planes. Thus, provided m is well behaved any point of D,
which does not have a pre-image on R' must be a closure point

and is the image of the tangent line to R' at a point where R

meets the centre of projection. We wish to show that no point of
D' with 2z4=0 is a closure point and hence has a pre-image on R'

We begin by noting that the equations defining R have
real coefficients and therefore any point P is either real ie. P=P,
or complex ie. P= P in which case the complex conjugate point P

also lies on R and has the same singularity type as P.

First we shall show that m is well behaved. Suppose P is a
point of R' whose tangent line T lies in the centre of projection.
Then in particular, T lies in w=0. But then this implies that the
point P on R' has a tangent T also lying in w=0. We now
obtain our required contradiction by noting that T does not meet
the centre of projection and hence P maps to a point of D'

whose tangent lies in z4=0: which we know is never the case.

A similar argument will yield that no closure point of D'
lies in the hyperplane 24=0. Let P' be a point on D' with 2z4=0

and suppose that it is a closure point. Then there is a tangent T
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to R' atapoint P lying on W (and so meeting the centre of
projection) which maps to P'. Since W does not meet its
complex conjugate plane W, the point P is complex and therefore
has a complex conjugate point P (lying on W) with tangent T to
R'. Thus, T maps to a point in the hyperplane 2z4=0, implying
that T lies in the pre-image of 2z4=0, ie. the hyperplane w=0.
But the tangent T to R' at P is complex conjugate to T and
therefore lies in w=0 too. The projection is regular at all points of
R' in W so T maps either to a point implying that P is
critical and that m(P) is cuspidal on D' or to a line contained in
24=0 implying that D' touches 2z4=0 at 1(P). In both cases we
contradict the way in which D' meets z4=0 described in §4.2.
We deduce then that every point of D' in z4=0 has a pre-image
on R

It is easily checked that the pre-images of P3,P4,P7,Pg are
the points Jig ,J14 ,J25 ,Jo4 and that the points Eq,E; have
unique pré-images E'y,E'5 lying on Lz (which, generically, are not
the points 334. 335) For example, the pre-image of the point
Pz=(0,1, —2 ,0,u,0,- u 0) satisfies w=0 thus xj+iy;=0 for
J=1,6 and 8, and xJ - iyy=0 (since xy + iy;=0) for j=2,3,5 and
7.  Thus xp+iyp=2x3=1, X3+1y3 2%3 = -gg X5 +iys = 2xg5 = u,
X7 +iy7 = 2%7 --dgu and hence K i' yo= —5, X3 = %—g%, y3 = %—g%,
X5= o >, y5=-‘§, X7=- 35 dy’ y7=‘%5%7. Applying equations (4.2),
yields x4=y1=%g=yg=0 and hence we have defined all the

co-ordinates uniquely giving the pre-image

J15=(0,0, 1, -i, ~§2,i%2 u, -iu, 0,0, -$u, if5u, 0,0, 0
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The pre-image of Qi under the mapping T is the line M (whose
equation we gave earlier) which we know must meet the curve R
in at least one point. We shall show that R' meets M in just one

point Jq3.

Suppose then that R' meets M at a point P=Jjy3. Since
M does not meet its complex conjugate line M, P must be
complex with a conjugate point P on R' lyingon M. But M is
contained in the hyperplanes x7+iy7=0 , xg+iyg=0, w=0 and
meets the centre of projection in a point as the reader may readily
check. Thus M maps to a point in the hyperplanes z4=0, z7=0
and zg=0. In particular, P maps to this point implying that D'
contains a point lying on all three hyperplanes; a clear
contradiction, since we know that no such point exists by the

results of §4.2.

We have showed, therefore, that R' meets the plane W
in the set A={J123,J15,J14,925,J24,E'1,E'2} and hence R' meets
the complex conjugate plane W in the set
A={J123,J15,J14.J25.J24,E'1 E'2}. In fact, we have established a
stronger result. The projection mig' o ails to be d
Points in A and is a 1-1 correspondence between the open sets
R\A_and R\nlp+(A) : implying that they are isomorphic sets.
Firstly, this implies that Pz, P4, P7, Pg, Eq, E5, and Qq are points
with the same singularity type as Jis, J14, Jos, Jog, E'1, E'2 and
J'123 respectively. Thus with our assumptions Qq is an ordinary
double point on R. Secondly, this implies that any finite point P
on R' has the same singularity type as the finite point migR«(P)

on D' so that the condition on the design parameters for R' to
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possess a finite singular point is identical to the condition derived in
§42 for D' to possess a finite singular point. This condition
should be called the Grashof equality, since it is the exact
analogue of this concept for the planar four-bar (in §1.2). We
recall that this condition, phrased in terms of the design
parameters, is a polynomial one (not identically zero), so it follows
that generically, by which we mean for almost all design
parameters in the sense of Lebesgue measure, the Darboux and
linkage varieties have no finite singularity; and in particular, we
can always avoid finite singularities by small deformations of the
design parameters. Henceforth, we shall refer to a Watt I
mechanism as generic when the Grashof equality does not hold.

We assert that the degree of the curv ixteen. For a
given hyperplane H, the degree of a curve is equal to the sum of
all intersection multiplicities i(P,HaR) for points P lying in the
intersection of H and R If we take H to be the hyperplane

given by w=0 then we have
deg R' = Zpe pilP.HAR) + E5 3i(P,HAR)

But under the involution of complex conjugation, intersection

multiplicity is preserved, thus i(P,HAR') = i(ﬁ,HnR'). Hence
deg R' = 2.Zp¢ ai(P,HL R

and now we need only calculate the intersection multiplicities
i(FHAR). To do this we use the fact from the theory of

Projections (Theorem A12) that under a degree one linear
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projection m, intersection multiplicity does not decrease
i(PHAR) < i(n(P),n(H) am(RY)

for any curve R', any point P on R and a given hyperplane H
containing the centre of projection. Now let R' and H be as
above and let P be any point in A, then
n(A)={Qq,P3,P4,P7,Pg,E1 E1}, m(H) is the hyperplane 2z4=0 and
n(R)=D". Denote by pyk.ex,dx, the intersection multiplicities of
D' with the hyperplane 24=0 at the points PyEx,Qx and
denote by jki, j123 the intersection multiplicity of R' with the
hyperplane w=0 at the points Jj), Jyp3. We recall that D'
has degree 8 so that the total intersection multiplicity of D' with
24=0 is 8 by Bezout's theorem. Further, we recall that Qq is a
double peint and that the remaining intersections Pz, P4, Py, Pg,
Eq, E of D' with 2z4=0 are all simple points (with our
assumptions). So px=1 for k=3,4,78, ej=ep=1 and qi=qp=2.
It follows that Jki=1 and that j123=2 since j123zmult(3123)=2.
The required result that the degree of R is 16 now follows.

For the Watt II mechanism we have a projection
n':PC14-PC7 which maps (x'2,¥'2,..x's,y's,w) to (z1,.,2g) where
2k =x'k+iy’xy for k=1, and z9=-w', so the restriction T=m' 3
defines a birational map between ' and D' failing to be regular
only where &' meets W'. In a similar manner to the Watt [ we
can show that points of D' with 21=0 are not closure points and
hence have a pre-image on 8. It is easily verified that P4, Pp, Pz,
P4 have pre-images J'os, J'24, J'35, J'34. The points Ps, Pg, Py,
Pg, E4, Ep, Fy, F2 have no pre-image so they must be closure
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points implying that there are eight distinct branches of &'
passing through the centre of projection and therefore meeting W.
These branches have complex conjugate branches meeting W
which will project to branches through points in z1=0. Then four
of these branches must pass through P4, Pp, Ps, Pg, two branches
pass through Q and the remaining two pass through Qp. But
the pre-image on R of Qi (resp. Q») is M' (resp. M) which
meets W in just one point J'123 (resp-. J'45). Therefore, the
pre-images of the two branches through Qq (resp. Q) must pass
through J'1p3 (resp. J'4s). Then it follows by similar arguments to
the Watt I case that Py, Py, Pz, P4, Q, Qp, are points with the
same singularity type as J'95, J'o4, J'z5, J'z4, J'123, J'g5,
respectively. In particular, J'423 and J'45 are ordinary double
points under the assumption that conditions (C1),(C2),(C3) do not
hold. Moreover, we find that the degree of the residual linkage
variety ' is16. It is worthwhile noting that, although R' and
&' have the same degree and are birationally isomorphic, they
are not projectively equivalent, since R' and &' have the same

number of finite singularities, but a different number of double

points in the hyperplane at infinity (ie. 2 and 4 respectively).



- 147 -

$4.4. The Reductions of the Watt Darboux Variety.

In the first three sections of this chapter we set up the
basic geometry of the linkage varieties for the Watt I and Watt II
mechanisms. These varieties are birationally isomorphic, each
comprising two skew lines, two skew planes and a curve of degree
16, called the residual linkage curve. In general, one expects this
curve to be irreducible, but there are certainly degenerate
situations when it can reduce. And correspondingly any associated
coupler curve, which is a projection of the residual linkage curve,
will also reduce. ldeally, one would like a complete list of the
possible reductions in terms of the design parameters. That
problem was effectively solved for the planar four-bar over a
century ago, but has never been discussed for more complex
mechanisms, despite the fact that one can gain considerable insight
into coupler curves by effecting small perturbations of reducible

cases (see, for example, [Fichter]).

This section is devoted to presenting a complete solution to
this problem. There are two key observations. The first is that
both the residual linkage curves for the Watt I and the Watt Il are
birationally equivalent to the same Darboux residual curve. The
details of this relation were set out in §1.2. Thus, in principle, it
suffices to determine the reductions of the residual Darboux curve
= an easier problem since that curve is only of degree 8 and lives
naturally in a 3-space. We remind the reader that this was done
for the four-bar in §1.2 and provides a simple example of the

approach that we shall adopt. The second key observation follows
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from the results of §1.4 that there is a natural projection from
the linkage wvariety of a mechanism onto that of any
sub-mechanism: one can paraphrase this in more mechanical
terms by saying that any configuration of the mechanism
determines uniquely a configuration of a given sub-mechanism.
For either Watt six-bar there are two natural sub-mechanisms,
namely, the two underlying planar four-bars, so that we have two
natural projections to consider. Moreover, both of these projections
have degree 2 in the sense of general algebraic geometry: in
mechanical terms that means that for a given general
configuration of one four-bar there are two distinct corresponding
configurations of the Watt six-bar. Phrased in terms of the
corresponding Darboux curves this means that there are two
natural projections from the Darboux curve for the six-bar onto
those for the two planar four-bars. The latter curves are plane
cubics whose geometry is very well understood; in particular, one
knows exactly how the Darboux cubic of a planar four-bar reduces
in terms of the design parameters (§1.1). From this point on it is a
technical exercise in algebraic geometry, using the Genus Formula
for a curve and the Projection Formula, to determine the
reductions of the residual Darboux curve corresponding to the
types of the underlying four-bars. The passage from the residual

Darboux curve. to the residual linkage curve proceeds via the

following proposition: each irreducible component of the residual
Darboux curve corresponds to a birationally equivalent component
of the residual linkage curve of twice the degree. Finally, one can

deduce the possible reductions of coupler curves.
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We begin by recalling that the four linear equations in (4.5)
are linearly independent defining a three dimensional subspace of
PC? so D' s isomorphic to the intersection of two cubic surfaces
Kp and Ky in pC3. Explicitly, we may eliminate 2z4,25,2¢,2g, SO
that Kg and Ky are given by equations (4.12) and (4.13)

respectively
2 2 2 2
didzzyzp + dpd3zy2; + dgdpzyz3 + dydpzpzs + } (419)
d1d3222§ + d2d3212§ + (df + d% + d% - di)212223 =0 .
d6d7uvzz§zz + d5d7u2vzlz§ + d5d6v22527 + d5d6u22327 + } (413)
2 .
dgdyuzpz? + dsdyvziza+ (d2 + d2 + d5 - d2)zy29z7= 0

For the remainder of this section we shall refer to the isomorphic
curve as the Darboux curve without change of notation. The
reader may easily check that Kg 1is a point cone with vertex
Q1=(0,0,0,1) over a plane cubic curve B and Kyj is a point cone
with vertex Q=(0,0,1,0) over a plane cubic curve U, where B
and U are given by an identical set of equations (4.12) and (4.13).
If we consider the two quadrilaterals in the Watt mechanism as
“submechanisms”, then we find that the Darboux cubics
corresponding to the base and upper quadrilaterals are projectively
isomorphic to the cubics B and U respectively. Again we shall
refer to the isomorphic curves as the Darboux varieties without
change of notation. The Darboux varieties of quadrilaterals are
well understood. In §1.1 we showed that the cubics could be
classified into four types namely: generic, circumscriptible,
parallelogram/kite, rhombus, depending on the design parameters.
However, we shall make two cases from the previous

kite/parallelogram case, so that we distinguish five types
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(1) dq+dp = d3 + dg, dy+ d3 = dp + dg and dg+ dg = dp + dg :

B is a non-singular cubic.

(2) dq+ dy =dz +dgqor dy+ dz = dp + dg or dy+ dg = dp + d3

(but no two hold simultaneously) : B is a nodal cubic.

(3) dq= dp = dz = dgq : B reduces to a conic and chord (with

two real double points).

(4) dq= dg = dp = d3z or d1= d3 = dy = dg : B reduces to a

conic and chord (with two real double points).

(5) dq= dy = dz = dgq : B is the union of three distinct lines

(with three real double points).

In cases (2)-(5) the singular boints are of the form (t1,11,1).

Remark: For each Grashof condition of the Darboux cubics which is
satisfied, there is a Grashof condition of the Watt linkage variety.
Indeed, for each singular point P=(%1,+#1,1) of B (resp. U), TR
(resp. my) maps two distinct singular points of R' onto P.
Indeed, the singular points of B have the form (t1,#1,1,%x) and
the singular points of U have the form (21,#1,#,1). The reader

may wish to refer to §4.2.

Let 1<i<5 denote the above type of base quadrilateral in the Watt
mechanism and let 1<j<5 denote the the analogous type for the
upper quadrilateral (replacing 1,2,3,4,B by 5,6,7,8,U respectively in

the above list) then we will write i/j to describe the Watt
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mechanism, whenever the appropriate conditions on the dy's
occur. The reader should note that it is necessary to split up the
parallelogram/kite case into two types (3) and (4) for the following
discussion: for it will soon become clear that the two types give rise

to distinct geometries of D'

For a given reduction of B (resp. U) into linear and
quadratic components we get a corresponding reducti§n of Kp
(resp. Ky) into linear and quadratic components by taking the
appropriate point cone over each component. Then for a given
mechanism of type i/j we know the components of Kg and Ky
from which we can immediately deduce a reduction by taking each
component of Kp and intersecting it with each component of Ky.
The reader should note that the resulting subvarieties will not, in
general, be the irreducible components of D', since each
intersection may reduce further. Thus, for instance, if Kg is a
plane and quadric and Ky is three planes the intersectioh will
yield three lines and three conics, where the conics may be
reducible. It would suffice then, to determine which of the conics
are irreducible in order to establish the reduction of D' in this

case.

It is natural to consider the projection
nR:(24,22,23,27) ~(24,22,23) on  the Darboux wvariety D

(remembering that we have eliminated variables z4,25,2¢,2). Let

us for the moment assume simply that D is a curve, je. that the
condition dj=d>,dz=d4,d5=dg,d7=dg,u=v__does not hold. Later in

this section we shall make further restrictions. Clearly the image

of the projected curve is precisely the Darboux curve for the lower
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quadrilateral B. The centre of the projection is the subspace
defined by 2z1=23=23=0 and it intersects QD in the point Q.
Thus, we are projecting D from one of its singular points Q1. The
picture one has in mind (see Fig. 4.12) is that the cone Kp
represents this projection. D lies on Kg and passes through the
vertex Qq. A point P on B has as its pre-image a line Lp on
the cone through Qi and P. Lp generally meets the curve D in

a finite number of points, but exceptionally it may be a component.

Fig. 4.12

The first step is to find the inverse image of a point
(21,22,23) on the Darboux curve of the base quadrilateral B. There
are six distinguished points, namely those which lie on one of the
hyperplanes 2z, =0 (k=1,2,3). We will consider these separately
later, but for the moment we may assume that z=0 (k=1,2,3).
Assume then, that the point satisfies equation (4.12), then we
require the z7 co-ordinate satisfying the equation (4.13). If we let
P=dguzpo+dgvzy and Q=(dsvzi+dguzp)/uv, then we obtain a

quadratic in z7

dgQz? + (PQ-dZ +d2)z, + dgP =0
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In general, we expect to get two points in the pre-image, indeed the
mechanics of the Watt strongly suggest that. For fixing 2zq,z3,23,
fixes a position of the lower quadrilateral. Then there are two

choices of z7, zg as indicated in Fig. 4.13.

Fig. 4.13

But exceptionally, we could get a line. This happens if and only if
P=0, Q=0 and dy=dg. It follows from P=0 and Q=0 that
dg=dg, and uzp+vz1=0 ie. the upper quadrilateral collapses (see
Fig.4.14). Conversely, the conditions dg=d¢ and dy=dg imply that

there is a point on B whose pre-image is a line.

Thus, provided the condition dg=dg, d7=dg does not hold,
we have just a finite number of points in the pre-image of a point
on the Darboux curve of the base quadrilateral. Indeed, we have

showed that in this case we have two points on a Zariski open

subset of B and therefore the projection mglp' has degree two.
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Fig. 4.14

If the condition dg=dg, d7=dg does hold, we hope that
there are only finitely many points on B for which the pre-image
is a line, so that we get a finite map. To this end, note that the
condition uzp+vzi=0 defines a line 2z1=Xzp (where A=-u/v) in
the plane of the Darboux cubic. We require the points of
intersection of this line with B: in general, there will be only three,
but there is the possibility that the line zq=Xz; is a component of
B.  Certainly that could only be the case when the base
quadrilateral is of the parallelogram/kite type by the analysis of
the four-bar. Substituting z1=A2» in equation (4.12), we find that

25(d1dz)? + dads)) + 2225(d1doA2 + [d2 + d2 + dZ - 4]\ + dydp)
+ 222§(d1d3 + dpdz) = 0.

Thus we get a line component if and only if all the coefficients are
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zero. Hence, we have djdza2 + dpdza=0 (A=0) giving )\=-%f,
and didz + dpdzr=0 giving A= -c% Thus dy=dy and A=-1.
Hence, dqdpA? + [df + d5 + d% - d5Ix + dydp =0, which implies that
dz=d4. But combining this with the conditions above yields dq=dy,
d3=dy4, dg=dg, d7=dg, u=v. This condition clearly implies conditions
(C1),(C2),(C3). Since we are assuming that these conditions do not
hold, we see that there are at most three points on B for which
the pre-image could be a line. The reader may readily check that
all three points have a line of pre-images on . One point is
(0,0,1) and has as its pre-image the line L. The other two points,
whose co-ordinates we shall not write down, have pre-imagés the
lines QqEq, Q1Ep, which are distinct, provided condition (C2) is

not satisfied.

It now remains to find the pre-images of the points with
zx=0 for some k. They are .(0,0,1), (0,1,0), (1,0,0), (0,-d3,d),
(~d3,0,dy), (-dp,d1,0) with pre-images L, Pj and Py, Pg and Py,
Pz and P4 P7and Pg, Ej and Ez respectively. Thus, even in the
case when dg=dg, d7=dg and we have line components, the
projection mpg defines a degree two mapping from the subvariety
of D obtained by removing the lines QEq, QqEy, L to the

Darboux variety B.

In an identical manner we may consider the effect of the
projection myj:(24,22,23,27)~(21,22,27) on D. We find that we are
Projecting D from the singular point Qp to the Darboux variety

U for the upper quadrilateral.

Proceeding as for the previous projection, we find that a
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point on U with no 2z co-ordinate zero has, in general two

distinct pre-images implying that my defines a degree two
mapping between D' and U. Exceptionally, we could get a line.
In this case we must have dq=dj, dz=d4: moreover, the identities
imply that uzp+vzy=0 and so the lower quadrilateral collapses.
Conversely, if the base quadrilateral does collapse in this manner,

then U does have points whose pre-images are lines.

If dy=dp, dz=d4, then we still hope that there are finitely
many points on U for which the pre-image is a line. The result is
that if there are infinitely many points whose pre-image is a line
then dg=dg, d7=dg, u=v but combining these with the above
condition we get dj=djp, d3=d4, d5=dg, d7=dg, u=v. As we pointed
out earlier this contradicts our assumptions. In the case when only
finitely many points have line pre-images we find that (0,0,1) has
the pre-image L and there are two other points with the' lines
QoF1, QoF2 as their pre-images. Thus even in this case my
defines a degree two mapping from the subvariety of D obtained

by removing the lines QpFq, Q2Fp, L to the Darboux variety U.

It is also worth noting that any component of D', lying in
a linear or quadratic component of Kpg (resp. Kyj), will map into
the linear or quadratic component of B (resp. U) under the
projection mp (resp. myy). So for example, a conic component of
D', which is the intersection of a linear component of Kp and a
quadratic component of Kyj, will map into the linear component
of B under mp and the quadratic component of U under my.

The significance of this fact will soon become clear.
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- For a curve C we will write the symbol fy+fo+.+f, to
represent its reduction into components C4,Cp,..,C, where fx is
the degree of the kth component Cy and the sum of the fy is
equal to the degree of C. In particular, we shall use this notation

for the reductions of the Watt I residual Darboux variety.

Before we continue we note that by the symmetry of our
situation the residual Darboux varieties of the mechanisms i/j
and j/i have the same symbol fi+fp+.+f, so we need only

consider those i/j with jsi.

At a number of points in the following calculation we will
apply the Genus Formula, but first we shall need to know the
arithmetic genus of D. The variety D is the intersection of two
cubic surfaces in PC3 thus we may apply Theorem (A5) which
gives a formula for determining the arithmetic genus of an

intersection of hypersurfaces.

Theorem Let Vi,.,V,-1 be hypersurfaces of degrees dj,..dp-1in
PC" intersecting in a curve, then the arithmetic genus p, of

that curve is given by the formula
2-2p,=din+1-%7,d} where d=TI%d;.

Then n=3, d;=dp=3 and it follows from the formula that D has
arithmetic genus 10.

To determine the genera of the irreducible components of a

connected curve we have the Genus Formula (Theorem AS8),
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which states that, if a connected curve C has r components
C1,..Cr, and Cy,..C, are their normalisations, then their genera

are related by the following formula
pa(C) = 2121 pa(éi) + Z*Sp - (l"‘l)

where the * denotes that the sum is taken over the singular points

of C and 8p is the delta invariant of the singular point P.

Under our assumptions Qi and Qp are ordinary triple
points on D, so the S&-invariant of these points is 3. Then
P,(D)=10 and if D has r components Ci,.,C, other that L

the genus formula yields
r=g(Cy) +.+glC+A-4

where g(C;) =p,(Cy) is the geometric genus of Cj and A is the
sum of the §-invariants of all finite singular points. We shall now
pbroceed with the reductions. The results are summarised in the

table which may be found at the end of the section.

We begin with the most degenerate situation 5/5, where B
and U are triangles. Since Kp and Ky are point cones over
these curves, they are unions of three planes. Thus their
intersection is nine lines, immediately giving the required
reduction. B and U each have three double points so R' has
twelve singular points (recall that D' has two singular points for
each one on B and U). Applying the Genus Formula, we find that

each of the twelve singular points on R' has 8§ = 1.
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For the cases 5/4 and 5/3 Kp is the union of three
planes and Ky is the union of a quadric cone and a plane. Thus
they intersect in three lines and three (possibly reducible) conics.
Under the projection my; the conic component of U must be
double covered so at least two of the conics must be irreducible.
Further, we have three singular points on B and two on U, so
that R' has ten finite singular points implying that A210.
Applying the Genus Formula, we find that r26 : so the remaining
conic reduces, giving the reduction 1+1+1+1+2+2 and implying
that each finite singular point has 6=1. But j=5 so d1=d2,.d3=d4
and therefore two of the lines are Q2Ej QEp. Also when i=3, we
have dg=dg,d7=dg : therefore, we have the lines @ Fq Q1F2. So in
the case 5/3 the four lines are QpEj QoEp,Q1F1,Q1F2 and the
conics do not meet Qq or Qp, whereas in the case 5/4 both conics
pass through Q1, two lines pass through Q2 and the remaining

lines do not meet Q or Qo.

In the cases 5/2,5/1 B is three lines and U is irreducible
so Kp is the union of three planes and Ky is an irreducible cubic
cone. Thus the intersection of Kp, Ky s t‘h'e union of three
(possibly reducible) plane cubics. But U must be double covered
by my so at least two of the cubics are irreducible. Further, we
know that D' contains the line L and the two lines Q2E1,Q2E2 .
(since dy=dp, dz=dg) : so these must be contained in the third
cubic. Hence the reduction is 1+1+3+3. The projection mg maps
the cubics to lines, since they lie in planes meeting the centre of
projection. Applying the Projection Formula, we find that the |

cubics must meet the centre of projection Qi and map onto the
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lines with degree 2. The projection | my can only map the cubics
birationally onto U. Thus the cubics have genus zero in case 5/2
and genus one in case 5/1. The reader may now verify, using the
genus formula, that in case 5/2 D' has eight finite singular points
with 6=1 and that in case 5/1 D' has six finite singular points
with §=1.

Next, we consider the case 4/4. Ky and Ky are both the
union of a plane and a quadric cone intersecting in a line Lj, two
conics and a quartic (possibly reducible). In particular, the conics
lie, firstly, on a plane which is mapped into a line under one
projection and secondly, on a quadric which is mapped into a conic
under the other projection. But the conics cannot map to points,
so they are irreducible and the projection ng (resp. nyy) maps one
onto the conic and the other onto the linear component of B (resp.
U). So the conics provide a single covering of the line and conic
components of B and U. But the line components of B and U
need ohe further covering, so there must be a component of D'
lying in the plane components of Kpg, Ky mapping to a line : the
only candidate is Li=L. But D' has eight singular points, so A28
and the Genus Formula implies that r>4. Since L must be a
component of the quartic, we may now deduce that the quartic
reduces. The quartic cannot reduce to 1+1+2 or 1+1+1+1, since the
li}les would map to lines (no components map to points in case
4/4) implying that the line components of B and U have at
least two further coverings thus giving a contradiction. The only
other reduction, which includes a line, is 1+3. The Projection
Formula implies that the cubic maps birationally onto the conic

components of B and U, thus has genus zero. The Genus Formula
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Implies that the eight finite singular points of D' have § = 1.

In the case 4/3, Kg and Ky are both the union of a
plane and a quadric cone intersecting in a line L4, two conics and
a quartic (possibly reducible). Since dg=dg,d7=dg we have two
line components QiF 1,Q1F2 which are mapped to points by mp
and mapped to Uy (the line component of U) by myj, giving a
double covering of Uj. Thus D' has no other lines, since they
would give a third covering of Uj. Suppose then that the quartic
reduces, then it is the union of two conics. Hence, D' is the union
of a line and four conics. But no conic passes through Qp for
otherwise mp would map it to a line thus giving a third covering
of Uy. Thus no component of D' passes through Qo giving a
contradiction. Therefore the quartic is jrreducible and passes
through Q). Applying the Projection Formula, we find that the
quartic must have a double point at Qy and maps birationally
onto Uy, the conic component of U. Thus the quartic has genus
zero. Hence, the required reduction is 1+2+2+4. We may now

apply the Genus Formula to show that the finite singular points
have §=1.

The next cases to consider are 4/2 and 4/1 where Kg is
the union of a plane and quadric cone and Ky is an irreducible
cubic surface. Their intersection is the union of a plane cubic and a
sextic, both of which are mapped onto the irreducible cubic U by
Ty. Thus, all components of D' have degree 2 3, since no
Components map to points. It follows that L must be contained in
the sextic and therefore the only possible reduction of D' is 3+5.

The cubic maps birationally onto U and the quintic must give a
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further covering. The Projection Formula shows that this can only
be the case if the quintic has a double point at Q> and maps
birationally onto U. Mapping this time with the projection TR,
we find that the only way a cubic and quintic can double cover the
line and conic components of B is when both map with degree
two. It follows that both components pass through the centre of
Projection Qi. We observe that the genus of the cubic, quintic and
U are identical (since they are birationally equivalent) and that
g(U)=0 for j=2 and g(U)=1 for j=1. Applying the Genus Formula,
we find that in the case 4/2 the six finite singular points of D'
(two for each singular point of U and B) have $§=1 and that in the
case 4/1 the four finite singular points of D' (two for each

singular point of B, U non-singular) have 8=1.

In the case 3/3, Kg and Ky are both the union of a plane
and a quadric cone intersecting in a line L4, two conics and a
qQuartic (possibly reducible). Since d4q=dp,dz=d4,dg5=dg,d7=dg, we
have the four line components, QF1,Q1F2,Q2E1,Q2E2. Under the
Projection myy (resp. mp), Q1F1,Q1Fo (resp. Q2Eq,Q2Ep) map to the
line component of U (resp. B) implying that they lie in the plane
component of Kyj (resp. Kg). Thus at least one of the two lines lies
in the plane component of Ky (resp. Kg) and the quadric
component of Kp (resp. Kyj), while one of the four lines might be
Li. Thus both conics reduce giving four lines and a (possibly
reducible) quartic. Thus the line components of B and U are
double covered implying that there are no more lines in D', since
they would necessarily map to lines giving a third covering. We
deduce that if the quartic reduces, it does so to two conics. We

shall obtain a contradiction to this by observing that the eight
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singular points on D' lie on the lines Q1F1,Q1F2,Q2E1,Q2E> (two on
each) as an easy computation shows. Then, since no two of the
lines meet in a finite point, the singular points must occur where
the conics meet the line. Thus, if the conics meet at all, they must
meet at one of these points giving a triple point on D'. Applying
the Genus Formula, we find A=10. So there could be a triple point
with 8=3 (ie. with distinct tangents) implying that the conics
would meet with distinct tangents. We now recall that the quartic
is given as the intersection of two quadrics in PC3 which is known
to have arithmetic genus 1. Applying the Genus Formula here, we
find that the quartic can only reduce to two conics, if there is a
singular point with 8=2 ie. the conics meet with non-distinct
tangents giving the required contradiction. Thus, the quartic is

irreducible and the reduction of D' is 1+1+1+1+4.

The next cases to consider are 3/2, 3/1. Then Kp is the
union of a plane and quadric intersecting the irreducible cubic
surface Ky in a plane cubic and sextic (both possibly reducible).
Since dq=dg, dz=d4, the lines Ej,QoE» are components of D.
The lines are mapped by mR to the line component of B, so they
lie in the plane component of Kg. Thus the cubic contains
Q2E1,Q2E2 and one other line : namely L, since any other line
would give a third covering of the line component of B. Therefore
the sextic double covers the irreducible cubic U and since any
component must have degree > 3, the sextic is erther irreducible
or it is the union of two cubics mapping birationally onto U. Let
Us suppose then, that the sextic reduces to two cubics. First note
that Q4 is simple on both cubics; since, if it was a double point on

one of them, then mpg would map that cubic to a line, which
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together with QzE;,QzE3, would give three coverings of the line
component of B, a clear contradiction. Thus, the cubics are
mapped birationally onto the conic component of B. But
multiplicity does not decrease under birational projection
(Theorem A12), thus we may deduce that the cubics have no
finite singular point and, moreover, that the cubics are
non-singular with genus zero (equal to that of a conic). Hence, for
the case 3/1 we have an immediate contradiction, since the cubics
are also birationally equivalent to U, a cubic with genus one. For
the case 3/2, we note that myy defines an isomorphism between
an open set of either cubic and an open set of U. Indeed, the node
on U has two pre-images on D which are singular points of D
by the remark made at the beginning of the section. Thus, even if
the pre-images lie on QpE4,QoE2 they also lie on one of the two
cubics. Hence the node is contained in the isomorphic sets and it
follows that one of the cubics has an ordinary double point. This

contradicts the fact showed above that the cubics are non-singular.

To complete the list of reductions we must consider the
cases 2/2, 2/1, 1/1. In any of these cases, no components map to
points hence any component of D' maps onto the irreducible
cubics B and U. This gives us three possible reductions: 8 or 3+5
or 4+4. If the reduction is 3+5, then the cubic maps birationally
onto B and U and the quintic has double points at Qq, Qz also
mapping birationally onto B and U. But then my(Qq)=(0,0,1)
must be singular on U contradicting the fact that all singular

points of U are of the form (+1,+1,1).

Consider now the reduction 4+4. Each quartic must meet
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both Q; and Q» and map birationally onto B and U. For the
case 2/1 we have an immediate contradiction, since this would
imply that B and U are birationally isomorphic, contrary to the
fact that they have different genera. In the case 2/2 we note
that for at least one of the quartics, the birational map my
defines an isomorphism between an open set of that quartic and an
open set of U containing its unique singular point. By the Remark
made at the beginning of the section, the pre-image of a node has
the form (#1,#1,p,1) and is one of the finite singular points of D'
Thus, the pre-image is an ordinary double point of the quartic and
is mapped by mpg onto a singular point of B. But the singular
point of B has the form (1,#1,+1) and the point (+1,#1,p,1) can
map to this point if and only if p=t1. However, under our
hypothesis such a point is never a singular point of D' giving the
required contradiction. Finally, in the 1/1 case, D has no finite
singular points. Applying the genus formula with r=4 and genera
equal to 1, yields that A24 contradicting the fact that there is no

finite singular point.

We now draw the reader's attention to the fact that the

generic mechanism is of type 1/1 and hence the residual Darboux
variety D' is irreducible with no finite singular peints.

e complete this sectio oving t e 0



- 166 -

Let us continue to denote the projection from the residual
linkage variety to the residual Darboux variety by m. Let Cy be
a component of degree d of D' Then C4q4 has d distinct
branches meeting the hyperplane 2z4=0 (under our assumptions
Ey and E; are distinct and Qq is an ordinary double point). Thus
its pre-image (also an irreducible variety since the projection m is
1-1 and Cqy is irreducible) meets the plane W in d distinct
branches and let us suppose that t branches meet W. But W
lies in the centre of projection, so each branch meeting W is
mapped by m to a branch through a closure point of C4q. But
points with 2z =0 for all k are not closure points as we showed
earlier, so these branches pass through points with 2z, =0 for some
k=4 je through points in &={Py,P7,Pg,P¢,Q2,F1,F2}). We now claim
that any component C4 has at least d branches through points
in & sothat txd. Therefore, since it is so for all components of

D', we have
822ti22di= 8

the last equality being true by the definition of degree. Thus t;=d;

and Cdi has a pre-image of degree 2d;.

ai \% e_claim. Suppose there are s
branches of Cq passing through the points Qq,Eq,Ep: so that
O<s<4, since two branches may pass through Qq. Then there are
d-s branches passing through the points Py, P2, Pg or Py and d-s
branches passing through P3,P4,P7,Pg so that Cq4 meets the
hyperplanes zz=0and 24=0 in d points (counting multiplicities):

thus satisfying Bezout's Theorem. Note that 0<d-ss4.
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If d-s<2, then Cq passes through at most two of
P3,P4,P7,Pg. If Cq passes through just Pz or P7, then Cyq meets
zg=0 in d branches through points in {P3,Pg,Qp,Fy,Fo} C3.
Similarly, if Cq passes through just P4 or Pg, then C4 meets
27=0 in d branches through points in {P1,P5,Qp,F1,Fo}C3. The
only other possibility is when d-s=2 and Cy4 passes through one
of Pz or P4 and through one of P4 or Pg. Cq will meet two of
P1,P2,P5,Py and has d-1 branches through points in
{P1,P5,Qp,F1,F2}c® and d-1 branches through points in
{P2,P¢,Q2,F1,F2}, sothat Cq has d branches meeting z7=0 and
2zg=0. Hence, Cq has branches through one of P4,Ps, one of
P2Pg and d-2 of Qp,F1,Fp ie. d branches through points in &

as required.

If d-s=3 then we must have one of the following

possibilities

(i) Cq passes through both P4 and Pg and one of P3Py,
Hence, Cq has d-2 branches through P2,Pg,Q2,F1,F; and has
d-2 branches through P1,P5,Q2,F1,F2 (so that Cq meets z7=0
and zg =0 in the correct number of branches). But C4 may only
meet three of Py,P3,Pg5,Pg, so Cq must pass through Py,Pg one
of PpP¢ and d-3 branches passing through Qp,Fy,F2. Thus Cg4

has d branches passing through & as required.

(ii) C4 passes through both Pz and P; and one of P4,Pg. A

similar argument to (i) gives the required result.
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Finally, if d-s=4, Cq then passes through all P; 1<j<8
and d-4 branches through Qp,F1,Fp (so that Cy meets 27=0

correctly) thus giving d branches through points in & as

required.
lower quadrilateral
(1) (2) (3) (4) (5)
u (18 8 1+1+6 3+5 1+143+3
g (2)8 8 1+1+6 345 1+1+3+3
: (3) 14146 1+1+6  1+1+1+1+44  1+1+2+4 1+1+1+41+42+2

(4) 3+5 3+5 1+1+2+4 142+2+3 1+1+1+1+2+2

(5) 1+1+3+3 1414343 1+1+1+1+4242 1+1+1+1+42+2 1+1+1+1+1+41+1+1

[>T~ N =

Table of reductions according to type i/

$4.5. The Watt I Coupler Curves.

It is easily seen that any coupler curve for the Watt II
Mechanism is either the arc of a circle or an arc of a four-bar
coupler curve and therefore of no interest to us here. Thus we
devote this section to the study of the coupler curves of the Watt I

Mmechanism.

Let us assume that X' 1is an irreducible curve - in
Particular this is the case when the mechanism is either generic or
one of the types 1/2, 2/1 or 2/2. For the Watt | mechanism there

are two families of coupler curves (which are not coupler curves of
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lower order mechanisms, for example four-bars or a single link):
one family comprises the loci of points S rigidly attached to link 7
and the other the loci of points T rigidly attached to link 8. Let us
first consider S. With the notation of §4.1 we can write
S=dyz1+dgze+s27 where s is a fixed complex number. As we
vary s we move through the first family of coupler curves. If we
write s=sy+isy with sq, sp real, then we can think of S as a
point in the projective plane with homogeneoﬁs co-ordinates Py, P>
and Pz given by Py =d1xq +dexe +51X7-52Y7

Py=dqy1+dgyg+sox7+s1y7 : Pz=w, thus defining a projection
Ts:PCI\V,>PCZ with Vg the centre of projection, that is, the
Projective subspace defined by the vanishing of P1, P2 and P3. The
restriction ¢g=TglR' to the residual linkage curve is a rational
mapping. The Zariski closure of @¢(R) is an algebraic curve Cq
in PC2 which we shall refer to as the complex coupler curve.

The centre V. meets R' in two points Ji4, J14 in general.

Exceptionally, we have the following cases giving additional points:
(1) J193, J123, Jis, Jis, if and only if s=0. Then S is
Positioned at the hinge C (see Fig.4.4) and the locus will be an arc

of a circle.

(ii) Jpg, Jpg if and only if dy=dg, v=-1. Then hinge C

coincides with hinge A and S traces an arc.

(iii) Jpg, Jo5 if and only if s=dy(1+Vdy/dg). Then triangles
SGC and ABC are similar.

(iv) Eq, Ey, (resp. Ep, Ep) if and only if s=-(dq+vdg)/E,
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(resp. s=-(dy +vdg)/E_) where E; are the roots of the quadratic
in X whose coefficients of X2,X!,X0 are d;Q, PQ+d72 -déz, d;P
respectively, where P = (dydgv-didgu)/d3,Q = (d1dgu-drdgv)diuv.

The reader may find it interesting to note that cases (iii)
and (iv) give rise to coupler curves whose degrees are smaller than
that of the general member of the family; but, unlike cases (i) and

(ii), are not coupler curves of lower order mechanisms.

Let us assume that we do not have the exceptional cases
()-(iv). We note that this does not exclude the case when S is the

hinge G. We may determine the degree of Cg by considering the
images in the coupler plane of tangents to R' at points meeting
w=0. We will not list the tangents to R' here as they are quite
lengthy. However, we will list their images. The reader may
readily check that points of R' lying in the two-planes W, W
map to the circular points at infinity 1=(1,i,0) and J=(1,-i,0)
respectively. Therefore I and J are the only points of C; with
P3=0. The tangents to C; at I are of the form Pq+iPy=0oyP3
with

() 64 =0,

(i) op=dy(1+vde/dy),

(iii) o5 = -usdsds/dpdy,

(iv) 04, o5 =-uds(dy +vde)/(dpdgv- didgu+dzdevF,) where Fi are
the roots of the quadratic polynomial in X whose coefficients of
X2, xt, X0 are dsQ, PQ+d§-d§, dzP respectively (where

P = (djdgu-dpdgv)/dsu, Q=(d1dgv-dadgu)/dgv). -
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Note that four of the five tangents remain fixed as s varies.
The tangents to C; at J are the complex conjugates of the above

lines.

Let d, e and f be the degrees of T, R' and Cq
respectively. Then they are related by the Projection Formula
(Theorem A11), which yields e-&=df, where & is the sum of
Intersection multiplicities of R' with a generic hyperplane
containing Vg, at points in Vg. In particular, the hyperplane w=0
contains Vg and intersects R' transversally at the points Jig,
314 implying ®=2. But the multiplicity of C; at | and J is at
least five, since there are five distinct tangents. Thus the total
intersection multiplicity of Cg with the line P3=0 is at least ten
and therefore, by Bezout's theorem, C; has degree >10; that is
£210. Hence, d=1 and the degree of C. is 14. Moreover, T isa
generically 1-1 rational map and therefore birational. Since the

geometric genus is a birational invariant, this implies that R' and

Cs have identical genera: thus for a generic mechanism C¢ has
genus five,

The real singular foci (see §A4 for definition) of Cg are
easily derived from the list of tangents at 1 and J. Three of them
have an easy description. One focus is the hinge A=(0,0). Now let
U be the point such that triangles EAT and DBF are similar.
Then the second focus is the point H such that triangles UAH and
GCS are similar. The third focus K is the point such that

triangles AEK and ABC are similar.
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The analysis for the locus of T is similar to that of S. We
may write T=dqzq+dgz¢+d72z7+t2g, where t is a fixed complex
number. If we write t =1tq+ity with tq, to real, then we can think
of T as a point in the projective plane with homogeneous
co-ordinates Py, Pp, Pz where Pq=dixq+dgxe+dyxy+tixg-toys,
Pp=d1yq+dgyg+dyy7+toxg+t1yg and Pz =w. Thus we have defined
a projection T¢ whose centre Vi generally does not meet &'

Exceptionally, however, V¢ may meet R' in the following ways

(i) Jy93, J123 if and only if t=dg. Thus T is the hinge F

and the locus is an arc of a four-bar coupler curve.

(ii) J14, J14 if and only if t=0. Then T is the hinge G the

locus of which we have considered in the family of loci of S.

(ili) Jpg, Jpg4 if and only if t=(1+Vdy/dg)dg. Then T is

positioned so that the triangles ABC and GFT are similar.

(iv) E;, Ei (resp. E;, Ez) if and only if
t=dydg(dy +dgv+dyE,)/(-dgdsu+dadgv +dadyE,) (resp.
t=dpdg(dy +dgv+d7E-)/(-dydsu+dadgv+dad7E])) where E; are the
roots of the quadratic in X whose coefficients of Xz, Xi, X0 are
d7Q, PQ+d72 -d82, d7P, where P =(dpd¢v-didgu)/d; and
Q= (dqdg v-dpdsT)/dy.

Let us assume that we do not have cases (i)-(iv). We shall
follow the line of argument for S. Tangents to C; at I have the

form Py+iP, = o} Pz with
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(i) o1=0,

(i) op=dy,

(i) o3 =-udsds/dy,

(iv) o4= —tud4d5/dzdg,

(v) o5 = dg(dy +devil +t/dg])/dy, and

(Vi) 04,07 =-(d1 +dgVv)dsu/(dpdgv-dydsu+ dzdevF4) where Fy are

as indicated above.

The tangents to Cy at J are the complex conjugates of these
lines. Thus the multiplicity of C; at 1 and J is 27, implying
that the degree of C; is 214. Applying the Projection Formula,
we find that T has degree 1 and that C; has degree 16.Then
Tt Is a generically 1-1 rational map and therefore biratijonal.
Since the geometric genus is a birational invariant, this implies
that R' and C; have identical genera: thus for a generic
mechanism C; has genus five.

The real singular foci are easily obtained from the above.
Five of them are easily described geometrically. Two real foci are
the hinges A=(0,0) and E=(d4,0). A third focus H is such that
triangles EAH and DBF are similar and a fourth K is such that
triangles HAK and FGT are similar. Let U be a point such that
triangles AEU and ABC are similar. Then a fifth focus is the
point V such that triangles EUV and FGT are similar.
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$4.6 The Topology of the Watt I Real Linkage Varieties

In the first four sections of this chapter we described the
basic geometry of the linkage varieties for the Watt six-bar
Mmechanisms and determined exactly how these varieties reduce in
terms of the design parameters. The next natural step in this
programme is to study in detail the real geometry in the general
case. [n this final section of the chapter we take up the study of
the real linkage variety, a compact real affine curve of genus 5 and
degree 16. In general, when the Grashof equality is not satisfied,
this curve has no real singularities: thus its topology is completely
determined by the number of connected components, each
diffeomorphic to a circle. Thus, one is faced with the problem of
determining this number in terms of the design parameters. Part
of the interest here is that Harnack's Theorem (A9), which gives an
upper bound of 6 for the number of connected components, is not
the best possible. In fact the number is 1,2,3 or 4. In particular,
this number determines the number of real circuits of associated
coupler curves, since these appear as projections (of degree 1) of

the real linkage curve.

It was in this latter context that the problem was first
investigated [Primrose] in 1967 by Primrose, Freudenstein and
Roth. These authors were concerned with the very special case
when the coupler point is a hinge and produced intuitive
arguments to show that the required upper bound is 4. The
arguments appear to contain gaps and in some measure this work
arose from trying to bridge these gaps. More to the point, the aim

was to develop a formal argument which laid bare the general
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principles and which might be extended to other mechanisms
where the answer to this problem is unknown. [t appears that the
Planar four-bar and the Watt six-bars are the only linkages for
which the topology has been studied: even for the Stephenson
six-bars the problem remains open. However, [Primrose] does
contain the germ of an interesting idea which dovetails the
technique expounded in §1.4: it is significant that one needs the
concept of the linkage variety to lend mathematical expression to
this idea. The mechanical expression is that kinematic inversion
gives rise to a one-to-one correspondence between the
configurations of the Watt | and the Watt Il mechanisms. One
therefore expects a natural bijection between the associated real
linkage curves. It is by no means clear, how one should set out
about writing down such a mapping. The key to this problem lies
in the fact that both (complex projective residual) linkage curves
are birationally isomorphic to the same residual Darboux curve,
hence birationally isomorphic to each other. One has to note here
that, although all three curves are real, the birational
isomorphisms with the Darboux curve are complex. However, the
composite birational isomorphism between the real linkage curves
is actually real: better still it is an isomorphism - a consequence of
the fact that the complex linkage varieties fail to meet the
hyperplanes at infinity in real points. That produces an explicit
polynomial diffeomorphism between the real linkage curves. The
importance of this step lies in the fact that it reduces the problem

for the Watt | mechanism to the more tractable Watt IL.

The remainder of the argument follows the philosophy

explained and exploited in §1.4. We project the real linkage curve
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for the Watt II onto the real linkage curves associated to the
underlying planar four-bars. These projections are of degree 2 and
fit into the general framework explained in §1.4. Effectively, the
results of that section reduce the problem of determining the
topology of the domain to that of counting the number of critical
points of the projection. That in turn reduces to a simple
geometric problem, which one can solve completely, ending the

sequence of ideas.

We noted in §4.3 that the residual curves R’ and &' for
glven dy's, u, v are birationally isomorphic. However, the
connection between the curves is much stronger: the real linkage
Curves are real isomorphic curves. We shall show a stronger

result.

Consider the following set of constraints

bi(z yoZe) = Toraiizi tAseqi= 0, 1sjsr
jlel s j=121j4i s+1j } (4.14)

|Zi|2 = 1, 15i$5, aijeﬂi

By the general construction (see §1.2) we may associate a Darboux
Variety from these constraints in the following manner. Denote by
Q_J the polynomial obtained from & by conjugation. Since the

vectors z; are unit length, we have Ej = %_, so we substitute for
J

Ej In 'Q-J to give an equation in z;. We make the polynomials
¢ j,Q—J homogeneous by introducing the wvariable 2zg44 giving

equations (4.15).



- 177 -

(21,025 41) = Zis;ll ajjzi = 0, 1sjsr
Ulzg,zset) = 53 By = 0, Lsjer (4.15)
Zj

Clearing denominators in the second equation gives two
homogeneous equations which define the Darboux variety. Write
ayy= ailj + iaizj, where ailj, al.zje[R. Then we may construct a
variety S in PR%% by setting zj=xj +iy; (x;,y; €R) in the set of
equations (4.14) and equating real and imaginary parts. Then S

is given by

1.2 1
Zizglay i - agyil + 2y = 0,

xi2 + Y12 = 1 for 1siss.

Complexifying the equations by allowing the variables tb take
complex values and homogenising by introducing the variable w,
gives a variety in PC%* which we continue to denote by S given

by

1

sl jW = 0,

1 2
2 1 2 :
Zizllauxi + aini] tagy w =0, lsgjsr.

xl2 +Y12 = w2 for 1isiss.

Now let us fix a t, 1<t<s, and let us consider the set of constraints

(21,02t -1,24 1,Zs) = Z1cicaet 25521 +apy= 0 1sjsr
j=t

l2if2 = 1, 1siss+l,i=t ajj€C
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where s,aj; are the same as in constraints (4.14). In a similar
manner to (4.14), we may construct a Darboux variety which is
easily seen to be projectively equivalent to D, since it may be
given by an identical set of equations. To construct the linkage
variety T of these equations we may set zj=x'; +1iy'; (x';,y'; €R)

in the equations to give a variety T in PR%® defined by

1., 2 . 1
Zi,t[aijxi - aijyi] tayy = 0,

2

T 0, for 1<jsr.

Zi:t[aizjxli * ailjy‘i] ta
52 ; 1
+ yi =1 for 1<isstl, i=t.

Complexifying the equations by allowing the variables to take
complex values and homogenising by introducing the variable w',
gives a variety in PC2% which we continue to denote by T whose

equations are

’ 1 ' 2 i 1 l_
Zi=tlay X'y - aini] tayw =0,

1=t[aij it ain,] + afj w'= 0, for 1sgjsr.
2 + y'l2 w'?  for 1gigstl, i=t.

Then we have the following theorem.

Theorem The two complex residual varieties S' and T', obtained
from Sand T by removing any subvarieties in the hyperplanes at
infinity, are birationally equivalent. The two real residual varieties

S'and T' are real isomorphic.
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Proof : By the result of [Gibson&Newstead] as explained in §1.2
both varieties S' and T are birationally equivalent to the
residual linkage variety D' (obtained from D by removing all
components lying in any hyperplane of the form z;=0). Thus §'
and T' are clearly birationally equivalent. Let ¢:5'—=D' and
¥:T'> D' be the equivalences. Then the second part of the theorem
follows from two further facts. Firstly, the compositions = 8'1°cp
and w's cp'iob’ only fail to be regular on S' and T' at points on
the hyperplane at infinity; in particular, only at complex points of
S'" and T'. Secondly, despite the fact that the maps ¢ and ¥ are
given by complex polynomials, the maps m and w' are easily
showed to be given by real polynomials. Thus m and w' define

real isomorphisms between S' and T'. Quite explicitly the maps

are

(X1, ¥1 0 Xs, Y W) = (X'1,Y 1, X t-1,Y 1 -1, X 14 1Y 14 Lo X 541, 's41,W ),

where x'y=xx; + V¥t Vi=ViXt - XYt X's+1=XtW, Y'se1 = -YiW,
w'=w?, and

T (K'Y X -1,V 11X L+ 1LY 1+ 1K g4 1,Y 50 1,W) =
(xer1""’x5sYS;w):

Where % =xXX's+1*YY's+1s Yi=Y'iXs+1-X1Y's+1, Xp=-X'ge1W)

Yi=y'ssqw' and w=-w'2,
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The consequence of the theorem for planar mechanisms is
as follows. Let K be a kinematic chain - by which we mean a
finite number of rigid bodies smoothly jointed together. Let M; be
the n-bar mechanism, obtained from K by fixing bar t, 1stsn;
then the mechanisms M,;, for 1stsn, are called the kinematic
inversions of the kinematic chain. Then writing down the set of
constraints of M;, we may form the Darboux variety D; in the
manner explained in §1.2. The first point to note is that the
Darboux varieties JD; are projectively equivalent. This follows
immediately from the fact that, if the set of constraints of M; has

the form

0i(21,..,25) = Zimpayjzi +ag; = 0,  1sjsr

2% = 1, 1siss, i=t, aj;€C

then the associated Darboux varieties D; have the form
Qj(Zl,...,Zs,W) = Zi,taijzi + agjw = 0, 1SJST

4(21,..,26,W) = Sixpay; + agj = 0,  lgjsr
41 w

Thus the Darboux varieties are projectively equivalent; indeed, for
the varieties ‘Dti and th we have the equivalence W 2t,,
2t,=w and zzp for i=ty, tp. We may now apply the above
theorem to their associated linkage varieties Vi. This yields that
the residual linkage varieties V' are birationally isomorphic and

the real linkage varieties are real isomorphic. We may deduce the
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following facts:

1) The number of irreducible components of the residual varieties is
invariant under kinematic inversion. However, the degrees of the
components are not necessarily the same, since degree is not a

birational invariant.

2) The number of connected components of the real residual linkage

variety js invariant under kinematic inversion. Further, that -

humber depends only upon the design parameters. Therefore, it is

sufficient to determine this number for just one inversion.

3) For coupler projections of degree one, all coupler curves have the
same number of circuits equal to the number of connected
components of the residual linkage varieties. Further, that number

depends only upon the design parameters.

4) The Zariski open sets consisting of the residual varieties, with all
Points lying in the hyperplanes at infinity removed, are isomorphic.
Hence, the finite singular points of the residual linkage varieties
have the same isomorphism type. It follows that the Grashof
Equality (ie. the condition for a finite singular point) is the same

for all inversions.

5) Since the Darboux varieties are birationally isomorphic, the
eometric genus of the Dar variety | i jant

ine ic in.
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Quite explicitly for the Watt kinematic chain we have two
distinct kinematic inversions namely the Watt [ and Il
Mmechanisms. The isomorphism between the linkage varieties ¢ is
given by x'j=x;x1+y;y1, Vi =yx1-%jy1 for j=2,3,5,6,78 and
X4 =-X1W, Y4=y1w, w =-w? and ¢' is given by Xj=X X4ty y's,
Yj=y'Jx'4- x'Jy'5 for j=2,35,6,7,8 and x1=-x'4w', y1=y'qw’,
w=-w2.  The composites fail to be defined at points in the
hyperplanes at infinity w=0, w'=0. So ¢, ¢ define mutually
inverse rational maps, thus a birational map which only fails to be
a biregular correspondence (ie. an isomorphism) at the (finite
number of) points in the hyperplanes at infinity. But, since there
are no real points at infinity, the map does define a real biregular
correspondence between the real parts of R' and 8. This fact
yields two useful corollaries. Firstly, the singularities of the two
residual curves are in 1-1 correspondence (real singularities on
R'  correspond to real singularities on &) and have identical
singularity types; a fact which can be deduced from the property
that the finite parts of R' and &' are isomorphic to the finite

parts of the Darboux variety. Secondly, ¢ is a real polynomial
isomorphism and thus a diffeomorphism. The two real curves

therefore have the same e c cte e o)
it suffices to indicate the number for just one of the two Watt

curves. We should point out, incidentally, that these remarks imply
the statement in [Primrose], namely, that the number of real
Circuits of the associated couplers are invariant under kinematic
inversion. fndeed, the number of real circuits of a coupler is, by
definition, the number of connected components of any real
normalisation and we only need to observe from our work in §4.1

that the real linkage curve is a normalisation of the coupler.
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e aim of inder of this section is to establi is nhumb

t sof t esi aramet

Let us assume from this point on that we have a generic
and general constructible mechanism, i.e. that the Grashof equality
and conditions (C1)-(C3) do not hold. Thus both complex projective
curves R', &' are irreducible, have at least one real point and the
only singular points are non-real ordinary double points in the
hyperplane at infinity. The real affine curves are non-empty,
smooth and compact, and thus diffeomorphic to a finite disjoint
union of circles. By Harnack's Theorem (see §A9) the number of
topological components is <6, but we shall show that the maximum
number obtained by a Watt mechanism is 4. By the above
remarks it suffices to determine this number for the Watt Il

linkage curve.

Consider the projections Tt (resp. ') :PC14—>PC® defined by
mapping' onto the X'9, y'2, X'3, ¥'3, X'4, Y'4, W (resp. x5, ¥'5, X'¢, V',
X'7,¥'7, X'g, ¥'s, W) co-ordinates. The restriction | 8 maps 3 into
acurve T and the restriction mig maps & into a curve Z. The
curve T is defined by those equations of (4.4) involving only x'p,
Y2, X'3, ¥'3, X'q, Y4, W and is the set of equations defining the
linkage curve for the four-bar obtained from the Watt mechanism
by 'removing bars 5,6,7 and 8. The defining equations of Z are
obtained by taking those equations of (4.4) involving only x', y's,
X's, V'¢, X7, Y7, X8, Y8, W and using the equations expressing X',
Y6 in terms of w' to eliminate X%, y'¢. We are left with five
equations in seven unknowns: these equations define a variety

Projectively equivalent to the linkage curve of the four-bar
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obtained from the Watt mechanism by removing bars 1, 2, 3 and

4. Our aim is to deduce properties of &' from properties of the

four-bars.

For a generic Watt mechanism the planar four-bars are
generic in the sense of §1.1 for, as we remarked in §4.2, if one of
the four-bars flattens, then the Grashof equality for the Watt

Mmechanism is immediately satisfied.

Before proceding we recall some facts about four-bars from
Chapter 1. The linkage varieties T, Z have degree 8 meeting
the hyperplane at infinity w'=0 in two skew complex conjugate
line components. The residual curves T, Z' are obtained by
removing these lines. Thus T, Z' have degree 6 and meet the
hyperplane w'=0 in six points (complex conjugate pairs), three on
each of the lines. For a generic four-bar T', Z' are irreducible and
hon-singular and the real curves may have one or two connected
components. Since T will map components of & with w'=0 into
components of T with w'=0, m maps & into T. Moreover,
Tl &' is a finite map, since 3 and T' are irreducible, and &'
doesn't map into a point. We recall that for finite maps there
exists an integer d21, called the degree of the mapping, such that
all but a finite number of points on T' have exactly d pre-images
on 8. Since T is non-singular, we know by a general result of
finite mappings (see SA7) that all points on T have =d
Pre-images. The points on T with <d pre-images are called

branch points. We claim that the degree of nlg: and m'lg is two.

The claim follows from the Projection Formula (Theorem



- 185 -

Al11), which states that the degrees s, t, d of &, T' and the
mapping T are related by the formula s - §=d.t, where § is the
total intersection multiplicity of 3' with a generic hyperplane H
containing the centre V of m. We showed in §4.3 that s=16 and
in §1.1 that t=6. We obtain 8§ by observing that V meets &'
in two points Jqo3, J123 and that the hyperplane w'=0 contains
V  and meets &' at both of these points with intersection
multiplicity two, implying that 6§=4. It now follows that d=2.

The proof of the result for mlg: follows analogously.

We now apply the technique developed in §1.4. Briefly, the
technique is as follows. Let us consider the real curve &' (without
changing notation) writing Cj,..,Cp; for its topological components.
Let V be a topological component of the real curve T' with at
least one point which has a real pre-image on &' and let n be a
degree two map from (the complex curves) R to T. Then,
according to Proposition 1.1 there are just three possible qualitative

Pictures for each V.

(I) There is just one component Cq in the pre-image of V
Mmapped by m immersively onto V as a double cover. m has no

real critical points.

(I) There are two components C4, C; in the pre-image of
V, each mapped by m diffeomorphically onto V. m has no real

Critical points.

(III) There are n components C1,-.Cp in the pre-image of

V, mapping onto disjoint arcs A1,..,.Ap of V with exactly 2n
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critical values, namely, the endpointé of Ay,.,An. ™ has 2n real

critical points.

To apply the above result, we must compute the number of
real critical points of . Critical points occur when the tangent
line to the (complex) curve meets the centre of m ie. these
Projective subspaces fail to span a 9-space. Thus we have critical
points whenever the 15x8 matrix, obtained from the Jacobian
matrix of equations (4.4) by deleting the columns corresponding to
the variables x'9, y'9, X'3, V'3, X3, Y'4,W', has rank <8. The

resulting matrix (with five zero rows removed) is

(ds 0 dg 0 d7 0 dg O
0 dg 0 dg¢ 0 d7 0 dg
-4 0 0 0 0 0 0 ©
o -1 0 0.0 0 0 O
o 0 -1 0 0 0 0 ©
o 0 0 -1 0 0 0 O
2 2ys 0O 0 0O 0 0 O
0 0 2% 2y 0 0 0 0O
0 0 0 0 2x7 2y7 0 O
L0 0 0 0 0 0 2x3 2yg)

It is a straightforward exercise to show that this matrix has
non-maximal rank if and only if the vectors (x'7, y'7) and (x'g, y's)
are linearly dependent. Using equations (4.4), we see that this is
Precisely the condition that x'g=¢x'7, y'g=¢y'7 where €= ti: thus
in the real case the mechanical interpretation of a critical point is

that links 7 and 8 are parallel (see Fig.4.15).
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Fig. 4.15.

Since there are no real points with w'=0, we may assume w'=0.
Then take the projective subspace defined by the two equations
X'g=¢x'7, y'g=¢y'7 together with equations (4.15). Then the reader
may check that the variety reduces to two subvarieties, one lying
in w=0 and another which is projectively equivalent to the
intersection of three quadrics in PC3.  Therefore, by Bezout's
Theorem (A3) we have at most eight critical points with w'=0 and,
in particular, we cannot have more than eight real critical points.

This corresponds to what we would expect mechanically.

Let V; be a real connected component of T and suppose
that there are 2ny real critical points of 1 which project into
Vi, Then if nyj21 we are in case (Ill). However, when there are
no critical points and Vj does contain a point with a real
Pre-image, we must decide between cases (I) and (II). Consider
then the smooth function F on &' defined by x7y'g-x'gy'7. By
the above, the zeros of F are precisely the critical points of .

Assume we are in case (I) so that over every point of Vy lie
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exactly two distinct points P, P' at Cq. (We use here the fact that
the critical points of m coincide with the branch points.)
Geometrically, P’ is the "reflection” of P, as indicated in Fig.4.13.
The key observation is that we must have F(P)=-F(P), so F
assumes both positive and negative values. However, in case (I) Cy
is connected, so F would necessarily admit a zero ie. m would
have a critical point on Cq contrary to our hypothesis. We
conclude, therefore, that when there are no real critical points
lying over a Vj (but there are real pre-images), then we must be
in case (II) when V; has exactly two components lying over it,

each mapping diffeomorphically.

We can now continue our analysis of the case in hand
working with the real varieties. First, recall from §1.4 that T' has
one or two (topological) components. Suppose first that all the
components of & map into just one component of T. In
particular, this applies when T has just one component. Then
either there are no critical points, so we are in case (II) and &'
has just two components or there are 2n critical points (n=1,2,3
or 4) and & has n components. The situation is more complex
when T' has two components and at least one component of &'
Mmaps into each. The simplest case is when there are 2m real
Critical points over one component and 2n real critical points over
the other, so 8 has m+n components. In all these cases it is
clear that &' has at most four components. That is, however,
rather less clear in the remaining case when there are no real
Critical points over one component and 2n  over the other
(n=1,2,3 or 4) yielding n+2 components for 8. We claim that

this last case cannot arise for n=3 or n=4, so that indeed &' has
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never more than four components.

To this end we need to recall more detail from Chapter 1
concerning the planar four-bar. Write ejq,ep,ez,e4 (resp. es,eq,e7,eg)
for dy,dp,ds,d4 (resp. ds,dg,d7,dg) in increasing order of magnitude
and set E=eq+eq-ep-e3, E'=eg+eg-eg-e7. Then T (resp. Z') has one
component if and only if E>0 (resp. E»0) and two components if
and only if E<O (resp. E<0). In fact we showed in §1.4 that the
natural projections my of T' (resp. Z) into the circles x'j2+y'j7‘=1
with j=1,2,3 (resp. j=5,7,8) have degree two and that we have the

following possibilities.

| (2) E<0  and neither d; nor dy is the shortest of
dy,dp,dz,dg (resp. E<O and neither dj nor dg is the shortest of
ds,dg,d7,dg). The two components of T (resp.Z) map onto disjoint
arcs Aq, Ay of the circle and there are exactly two critical points
on each component, mapped under my to the end-points of the

arcs.

(b) E<O and either djor dy is the shortest of dj,dp,d3,d4
(resp. E<0 and either djor dg is the shortest of ds,dg,d7,dg). The
two components of T' (resp.Z) map diffeomorphically onto the

circle and there are no critical points.
(c) E>O (resp. E20) and the one component of T' (resp. Z)
maps onto an arc A4, with exactly two critical points mapping to

the end-points of the arc.

In all the above cases the condition for a critical point of
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is that (x',y')=+(x'k,y'x) for i,k=jor 1 (resp.i,k=j or 6).

We are now in a position to complete the proof that &'
cannot have more than four topological components. In view of
our previous remarks we can assume that T has two topological
components T1',To" and that Z' has two topological components
Z1',Z5'. We can assume that there are at least three components of
4" mapping under  (resp. m’) into Ty (resp. Z3) with exactly
two critical points on each component. Moreover, we can assume
that over Ty' (resp. Zp) there are exactly two components of &',

each projecting diffeomorphically onto that component.

The first observation is that the condition for a point of &'
to be a real critical point of m' is precisely that its image under ©
is a real critical point of 5 ; indeed, in both cases the condition is
that bars 3 and 4 should have equal or opposite directions. An
immediate consequence is that my has at least one critical point.
In fact we must be in case (a) above; the two components of T
are ‘'mapped under T to two disjoint arcs of the circle with four
Critical points (two on each component) mapping to the end-points
of the arcs. Likewise, the condition for a point of 3' to be a real
Critical point of T is precisely that its image under ' is a real
Critical point of ms5; indeed, in both cases the condition is that bars
7 and 8 should have equal or opposite directions. Thus we deduce
that mg also has at least one real critical point, so that the two
components of Z' map under mg to two disjoint arcs of the circle
with four critical points (two on each component) mapping to the
end-points of the arcs. That brings us to the crux of the proof. The

critical points of m (of which there are at least six) must map to
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the critical points of 75 (of which there are exactly two on each
component of Z'). However, since m' is a degree 2 mapping, a
point in Z' has at the most two pre-images in R', so that at the
most, four critical points of m' can map to Z4. That means that
at the most two components of 3 can map under ' into Zj',

providing a contradiction and establishing the desired result.
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CHAPTER 5. THE REAL GEOMETRY OF THE
FOUR-BAR MECHANISM
AND THE CLASSIFICATION OF COUPLER CURVES.

Introduction

In this final chapter we shall restrict our attention to the
real geometry of the four-bar mechanism. Following a comment
made in §1.6, that there is a natural classification of the generic
coupler curves by the Hain/singularity types, we present an initial
investigation of this difficult problem. In [Hain 1964] Hain
distinguishes eight types of four-bar mechanisms. Firstly, we can
partition the mechanisms into two groups distinguished by the
number of circuits of the coupler curves which is one/two
depending on whether E>0/E<0 (where E=sum of the longest and
shortest lengths minus the sum of the remaining lengths).
Secondly; we can further subdivide each group into four distinct
types by the way in which the bars crank or rock during the
motion of the mechanism, for which there is a simple criterion,
namely, that in the one circuit case we have four cases depending
on whether dy, dp, dz, or dg is the longest link and in the two
component case depending on whether di, ds, d3, or dg is the
shortest link. This analysis has been given in §1.4. The further
partitioning by singularity types is based on the resuit (§1.6) that
generic coupler curves have three finite double points, at least one
of which is real, lying on the circle of singular foci. Provided the
Pencil in the associated net of quadrics determined by any given

coupler point (see §1.6) is generic, the singularities are either
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ordinary double points (Aq) or cusps (As). Thus, for each of the
Hain types, there are four distinct types of éomplex coupler curves
which could conceivably arise, depending upon the combination of
double points, namely, 3Ay, 2A1/A3, A1/2A3, 3A2. In the real
case, we can make the further distinction of a real A4 being an
acnode (AI) when its tangents are complex or a crunode (A;)
when its tangents are real. Of course, if the double point is
complex (which we shall denote by AI ) there is no further
distinction to be made. Note that cusps are always real whenever
they occur. This yields thirteen distinct possible types of real
coupler curves for each Hain type, namely, 3AI, 2AI/A2, AI/2A2,
3Ag, 2A1/A7, Aj/A/Ay, Aj/2g, A/2A, 2A1 /Ay, AT/247, 2A7 /A7,
34, Aj/2A7.

It might seemn an impossible task to determine theoretically
how many of the 8x13=104 Hain/singularity types actually occur.
For convenience we shall call these the A-types. However, we
shall show (see §2 of this chapter) that several of the Hain types
have identical geometries leaving just four Hain types with distinct

geometries: thus reducing the number of A-types to fifty-two.

This still leaves a considerable program of work (at least too
large for us to attempt here) the first step of which is to decide
which of the possible singularity types can occur for each Hain type
in the complex case. We shall give a complete answer to this
Problem in §5.2. The second step is to determine the underlying
geometry which distinguishes between a coupler curve having one
or three real singular points and which distinguishes between the

real double points being Af or Al- . We give one such account in
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§54 and §5.6. The third step is to determine, perhaps by
computer graphics, which of the A-types actually do occur. The
final step is to prove, mathematically, the existence of the cases
which we have showed to occur graphically. It is probably too
much to expect one coherent argument showing the existence for
all of the Hain types because their geometries differ considerably.
But it is likely that there are arguments covering clusters of cases
and with some luck we might just cover all of the cases in this
manner. This final step seems to be the most difficult and is a

considerable program of work.

It is unfortunate that the author was unable to complete
this program due to lack of time. However, it is clear from the
results that have been already obtained, that this is a profitable
direction of research and that the techniques necessary to
complete this work are available and comprise little more than is
indicated in this chapter. The author hopes to complete this work

at a later stage.

In §51 we will give a proof of Robert's Theorem and
indicate how this can be used to reduce the number of A-types
that need to be considered. Section 5.2 is dedicated to the complex
classification of the coupler curves. We shall determine which of
the possible A-types can occur in the complex case (ie. when we

do not distinguish Ay, AI, AI).
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§5.1. Roberts’ Triple Generation Theorem and the

Classification of Four-bar Mechanisms

Perhaps the most celebrated theorem on the planar
four-bar is Roberts' Triple Generation Theorem [Roberts]. Whilst
working on problems related to the motion of the planar four-bar,
Roberts discovered that the circle of singular foci was intimately
related to the singular points of coupler curves and, moreover, the
three singular foci held a special significance in the motion of any
given four-bar. Indeed, Roberts observed one very important
property of the three foci, namely, that they are the fixed hinges
of three four-bar mechanisms which possess coupler points
drawing identical coupler curves. The literature refers to the three
mechanisms as cognates. We shall now present a new proof
(although the underlining principle is the same as that given by

Roberts) in terms of the linkage variety R.

Roberts‘}'l'riple Generation Theorem : The coupler curve of any
planar four-bar mechanism may be obtained as the coupler curve

of two other four-bars.

Proof : Suppose that we have a mechanism Il whose linkage
Variety is given by the set of equations (1.1) and that we fix a
coupler point P, uniquely defining a coupler projection
Ti(x1,y1,%2,y2,%3,y3,w) — (d1x1-koya+kixp, diy1+koxa+k1y2, w).
Let 8z be the symmetric group on three elements and let it act
on the ambient space of the linkage variety by permuting the
indices 1, 2, 3 of the variables x4, y1, X2, Y2, X3, y3, w leaving

W unchanged. Then for any permutation o in &3 we may
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define a new variety RO which is the linkage variety for the
mechanism JC obtained from M by making the obvious
swapping of bars as prescribed by the permutation o. So, for
example, if o=(12) then we would swap bars 1 and 2 to give a
hew mechanism with the same set of lengths as the original but
with a new ordering. The new linkage variety RY is defined by

the equations

d1xg(1) + doxg(2) * d3Xg(3) -~ dgw = 0
d1ys(1) + days(2) + d3ye(3) = O

2 2 2 2 2. 2 >
¥ ryp=x tyzeXy tyy s oW

If we also allow the permutation to "act" on the projection (ie. we
Permute the indices in the formula for the projection) to define a
new projection PY: (x4, y1, X2, Y2, X3, ¥3, W) = (d124(1) ~koye(2)*
k1x5(2), d1yg(1)*k2Xg(2)*k1Ys(2), W), then it is clear that we have
P(R) = PO(RO). Thus, Roberts' Theorem is proved, if we can show
that three of the projections P9 defined in this way are indeed
Coupler projections for the mechanism MO, This is a
Straightforward exercise and the result is that those permutations
which are in the Alternating Group (i.e. the identity, (123) and
(132) describe coupler projections, and the remaining
Permutations describe projections of linkage varieties whose images
are reflections of coupler curves. We shall now describe how we
Mmust position the three mechanisms, so that they produce identical

Coupler curves.

Let M be the mechanism with the usual notation (i.e. bar

lengths d4, dp, d3, d4 and coupler triangle given by the complex
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number k=kj+iks) and let o©=(123). Then the corresponding
coupler projection is P (xq1,y1,%2,2,X3,y¥3,w) = (d1x2-koyz + k13,
d1yp+koxz+k1y3, w). Using the linear equations of (1.1), we may

rewrite the projection as

PO (x1,y1.%2,Y2,X3,Y3,W) =

(dgkqw - dskyxg + dskays + K1x2 - Koy,
d2 dz dz
dgkow - dzkoxg - dzkyyq + Koxp + Kgyz, w)
d2 d2 d2
where Kj= %%(dz-kﬂ and K2=-%%.k2. Write r=(k12+k22)1/2 and
= (k12+ k22-2d2k2-d22 )1”2. The reader should now observe that this is
the coupler projection for the mechanism with bars 1, 2, 3, 4 of
length r.gg, r%% , r, and r. 33 respectively; with the coupler
point given by the complex number K=K;+iK3; and for which the
fixed bar has the origin and the point (k1.r.%‘2*,k2.r.%‘21) ‘as its
endpoints. This is showed in Fig. 5.1. We note that the ratios
between the bar lengths of this mechanism are dxz:dj:d7:d4 and

that the new coupler triangle is similar to the original. In
particular, the invariant E (=longest + shortest - sum of
remaining lengths) for the cognate MY js identical to that of the
original mechanism T: since the set of bar lengths have remained
unchanged. Alternatively, one may observe that the number of
circuits of any coupler curve of a given mechanism is independent
of the choice of coupler point and, therefore, if two mechanisms
draw identical curves, then both mechanisms draw coupler.curves

with an identical number of circuits for any coupler point.

A similar calculation may be made for the permutation
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T=(132). The result is that we obtain a coupler projection of the

d

mechanism with bars 1, 2, 3, 4 of lengths s, s%g S. d% and s.g‘1

dn
repectively with (d4,0) and (kl.r.gg,kz.r.%g) as the endpoints if
its fixed bar. This is showed in Fig.5.1. Note that the ratios
between the bar lengths of this mechanism are dj:dz:dq:d4 and
that the new coupler triangle is similar to the original. But since
the set of bar lengths is unchanged, the invariant E for the

cognate 9 is identical to that of the origi echanism .

Fig. 5.1.

Before continuing, let us recall that Hain classifies the
generic four-bar mechanism into the following eight types:
(i) Ry :E>0, dq longest; bar 1 and 3 rock inwardly.
(i) Rgo:E>0, do longest; bars 1 and 3 rock outwardly
(i) Reyi: E>0, dz longest; bar 1 rocks outwardly and 3 rocks
inwardly.
(iv) Rjy: E>0, dy longest; bar 1 rocks inwardly and 3 rocks

outwardly.
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(v) CRj:E<O0, dq shortest; bar 1 cranks, bars 2 and 3 rock.
(vi) CRj: E<O, d3 shortest; bar 3 cranks, bars 1 and 2 rock.
(vii) DR: E<O, dj shortest; bar 2 cranks, bars 1 and 3 rock.
(viii) DL: E<0, d4 shortest; bars 1, 2 and 3 crank.

Then the connection between the Hain types of a mechanism and

its cognates is as follows

CR4 DR CR»
CR> CRy DR
DR CRp CR4
DL DL DL
Rﬁ Rii Rii
Roo Roi RIO
Rio Roo Roi

Thus, for any mechanism of Hain type DL or Ry the
corresponding cognates have identical Hain types. Whilst
mechanisms, which are of one of the types CR4, CRp, DR, have
cognate mechanisms of the remaining two types. Hence, the
geometfy of each of these types is identical: because any coupler
curve of one of these types can be drawn by a cognate mechanism
with either of the other types. Similarly, any mechanism of one of
the types Ry, Rois Rjg has cognate mechanisms of the remaining
two types; implying, as before, that any coupler curve of one of
these types can be drawn by a cognate mechanism with either of

the other types.

We may conclude, therefore, that in order to study the
geometry of the coupler curves it is sufficient to consider just four
types of mechanisms instead of the original eight. We shall relabel

these types as
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I': Roos Rops Rio; I': Ryg; II: CRy, CRy, DR; II': DL;
where | and Il indicate that the corresponding coupler curves

have one and two circuits, respectively; each of these types is

divided into two subtypes.

Finally, we shall say something about the cognates of the

degenerate mechanisms.
(1) The cognates of the rhombus are identical rhombuses.

(2) The (123)- and (132)- cognates of a parallelogram give
the two types of kite i.e.one with dy=d; and one with dq=dg4.

(3) The (123)- and (132)- cognates of a kite give the
parallelogram and a kite of the opposite type.

(4) The cognates of a circumscriptible are circumscriptibles.
Thus we may define the above analysis as the classification of the
degenerate cases. Note that in cases (2) and (3) the ratio between
the longest and shortest lengths is an invariant of the class.
§5.2.The Complex Classification of Four-bar Coupler Curves.
In §1.6 it was showed that a generic coupler curve has three finite

double points. The condition for a cusp is easily obtained. We shall

repeat the method used in [Marsh). The result follows from the
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observation that a point P on a curve C, which is the image
under linear projection m of a non-singular curve R, is a cusp if
and only if the pre-image of P is a critical point of the projection.
Thus, the problem of determining when the coupler curve has
cusps is equivalent to determining when the coupler projection my
has a finite critical point. The condition for this is that the matrix
§, obtained from the Jacobian matrix of equations (1.1) by
abutting the Jacobian matrix of the projection, has non-maximal

rank. The matrix §} is

(dy O d O dz O -dg
0 d O dp O dz O
2xqy 2yq O 0 0 0 -2w
0 0 2x3 2y O 0 -2w
0 0 0 0 2x3z 2yz 2w
d O ky ko O 0 0

By elementary row and column operations it is sufficient to
determine the condition for the following matrix to have

non-mazximal rank

-k1X1-k2Y1 kox1-k1y1 ]
dq dg dj
X2 y2

-(d2=kyx3+koys -koxz-(do-kilys
dz dz dz d3 )

The matrix has non-maximal rank if and only if



(x2,y2)
2:Y2 dl 3z

These conditions yield
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1

2(—k1X1'k2Y1%2X1'l§1Y1)

1

m(-(d2-ky)x3+koy3-kox3-(d2-k1y3
dz dz  d3 dz

-g4(koxo + k1yp)/ow )

X1 = -g4(kyxp - koyo)/«, Y1 =
x3 = -e((da-kq)xg + koy2)/B, y3 = (koxp - (d2-kily2)/B ¢ (5.1)
where o = ( k12+ k22 )% and p= (k22+ (dz-k1)2)1/2. )

Fig. 5.2

Mechanically, this means that
the coupler point gives rise to a
coupler curve with a cﬁsp, if
and only if it is the intersection
of two lines: one lying on bar 1
and the other on bar 3 as
showed in Fig. 5.2. Thus, for any
position of the mechanism such

that bars 1 and 3 are

non-parallel, there is a unique coupler point giving rise to a coupler

curve with a cusp. Furthermore, the locus of such points in the

coupler plane, that is, the (ki,ko)-plane, is a curve. We will

discuss this curve in more detail later in the chapter.

We may use equations (5.1) to express X1, Y1, X3, ¥3, W in

terms of X3, y2 and eliminate them in equations (1.1) giving two
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linear equations in X7, y7, w

Axp +Bys=C and -Bxp+Ayy=0
where
A = -gqdqkq/a - £2d3(do-kq)/p + do,
B = gqd1kp/ox - eodaky/p and C =dgw (e1=11, e9=11).

‘Notethat A and B are always real. Applying Cramer's Rule to
the two linear equations, we find that xg= AC/(A2+B?) and
y2=BC/(A2+B?). This implies that AZ+B2=d2 and substituting
for A and B it now follows that the condition for a coupler point

k=kq+iky to give rise to a coupler curve with a cusp has the form

dAf ¢ 2dydsky(daky) ' oZ (dgky)
kE4k? eq(kBKD 2 encdH(dy k)2 kS + (dyky)
-2d2[ dikq +  dz(dykq) R
e+ ep(ks H(dyky)) K2+ k?
© -2ddzk? + dAs = d }(5 )
e1(kE+kd) % ep(ki+(dyk ) D) % K2+ (dg-kq)2 |

But the given coupler triangle,
by which we mean the triangle
with wvertices the coupler point

and the two hinges on the

coupler bar, has sides of lengths

Fig. 5.3. dy, o, B asshowedin Fig. 5.3.

Therefore, cos((p)=-eiez(dzkl—kf-kg)/ocg, cos(¥) = ep(dy-k4)/p and
cos(n)=g1ky /o yielding
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df + a2 + a2 - 42 - 2d; dseqepc0s (9) - 2d1daescos (n) - 2dpdzeacos (@) = 0
(5.3)

le. there are four equations, one for each choice of signs (eq,e2).
This condition was obtained as the necessary condition for a cusp
~ by mechanical means [Cayleyl. The author of [Cayley] uses this
condition to show the existence of a three-cuspidal coupler curve.
Further, for any choice of coupler point k satisfying any one of
the equations (5.3), we can deduce that the coupler curve does
possess a cusp. For, whenever (5.3) is satisfied for some choice of
sign (eq,69), X3, y2 are uniquely defined as the solution of two
linear equations. The remaining variables are then determined
uniquely by equations (5.1). The cusp on the coupler curve is easily

checked to be (py,pz,w) where

dgpq = -€1d1(kgA-k3B)w, d4pp = -€1d(koA-kqB)w '
o-koB+kiA o - k4B + koA

It is perhaps surprising to find that, whenever a cusp does
occur, it is always real. However, since A and B are real, it
follows that the cusp is determined as the intersection of two real
lines and therefore giving a real point. The locus of all points in the
fixed plane, which are cusps for some coupler point, is a curve and
is called the fixed centrode. The locus of all coupler points in the
coupler plane, which give rise to a curve with a cusp, is called the

moving centrode.

It is conceivable that a coupler point satisfies more than one
equation of the form (5.3). The reader may check that at most

three of the four conditions can hold simultaneously for any
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coupler point. Thus the above analysis shows that there may be
coupler curves with one, two or three cusps depending on whether
one, two or three conditions of the form (5.3) hold simultaneously.
(Of course we knew this fact for the generic case from the fact,
proved in §1.6, that there are at most three finite singular points
lying on the circle of singular foci and the general case follows from
the fact that any singular point not on the circle of singular foci is
an ordinary double point.) It can then be showed, that only two of
the four Hain types have mechanisms such that there exist coupler
points which give rise to a coupler curve with three cusps. Yet, in
all but one of the Hain types, there exist mechanisms with coupler
points which draw coupler curves with two cusps. Coupler curves
with one cusp may be obtained by any mechanism: for we have
showed that for any position of the mechanism, for which bars 1
and 3 are non-parallel, there is a unique coupler point which gives

rise to a curve with a cusp.

Let us write the symbol ti, whenever we refer to the
equation (5.3) with the signs of €4, €2 given by the symbol. Then,
any pair of these conditions, which hold simultaneously, yield the

following set of conditions

+-and -+: dscos¥=dgcosn, dZ = d+dZ + dZ + 2dsdscosg
+-and -- : dzcos@ =dpcosn, df = d12 + dzz + dg + 2dodzcos ¥
-+ and --: dpcos¥=dqcosy, df = c112 + d22 + d:? + 2dqdocosn
++ and +-: dqcosy =-dycos¥, d42 = d.l2 + d22 + d§ - 2dqdpcosn
++ and -+ : dzcos¢=-docosn, d42 = d12 + dzg + d32 - 2dpdzcos ¥
~++and --: dzcos¥ =-djcosn, df = d12+ dzz +'d§ - 2d4dzcos ¢
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For simplicity we shall consider separately coupler triangles for
which the interior angles are acute (ie. an acute triangle) and

those for which there is an angle greater than a right angle.

Case 1: Acute Coupler Triangles,

Let us assume that C is a coupler point whose coupler
triangle is acute. Then C gives rise to a céupler curve with two
cusps if and only if C satisfies two conditions of the form (5.3).
For such a coupler triangle the angles ¢, ¥, n, (using the same
terminology as in Fig.5.3) are all less than a right angle, implying
that cos(¢), cos(¥), cos(n), have values in the interval [0,1). In
particular, the cosines of the angles are all positive, thus those
pairs of equations containing a minus sign cannot occur, leaving
the three possibilites +- & -+, +- & --, -+ & --. From the second
of each pair of equations we may easily deduce that d4 is the
longest of the bars. Thus, for the Hain types with one circuit, only
group I, with dg4 the longest, has an acute coupler triangle for
which the coupler curve has two cusps. Likewise, Hain types with
two circuits cannot have d4 as the shortest length, implying that
only type II, with dji, dp, or d3 the shortest, can produce two
cuspidal coupler curves. Conversely, we need to show that there do
exist two-cuspidal coupler curves for these types. These are easily
constructed: for type I', choose dy=dz=3, dp=1, d4=./28 with an
equilateral coupler triangle ie. kq=05, kp=./0.75 and for type II
choose dq=dz=2, d2=/a:’>, dy= J/85.

a t ou langles.
For obtuse coupler triangles we need to consider all pairs of

conditions. Only one angle in a triangle can be obtuse. Let us
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assume that angle ¢ is obtuse. Then, the only pairs of conditions
that can hold simultaneously are +- & -+, ++ & +- and ++ & -+,
Similarly, whenever angle ¥ (resp. 1) is obtuse the possible pairs
are +- & --, ++ & +-, and ++ & -- (resp. -+ & --, ++ & -+, and ++ &
--). By Roberts' Theorem it is sufficient to consider those coupler
triangles for which angle ¢ is obtuse, so that -1<cos¢<0. Then,

for the case +- & -+, the second condition yields
df 2 (d; - d3)2 + dz?

In particular, d42d> implying that for the two circuited coupler
curves dg is never the smallest length, ie. type II' mechanisms do
not satisfy these conditions. Similarly, in cases ++ & +- and ++ &
=~ the second of the pair of conditions yields d42dz and d42>dj.
Thus type II' mechanisms never satisfy a pair of conditions of the
form (5.3), and therefore can never give rise to two-cuspidal
coupler curves. We note that type | has two-cuspidal coupler

curves only when the coupler triangle is obtuse.

For a coupler curve to have three cusps, three pairs of
equations of the form (5.3) must be satisfied simultaneously.
Suppose then that the coupler triangle is acute. Then all three
conditions +-, -+ and -- hold simultaneously. This yields

d d d
O T

cos¥ cosQ cosn

Substituting for dj, dp, d3 in the second equation of +- and -+,

we find
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d‘f = ( cos%p + cos2¥ + cost + 2.c0s g.cos¥.cosn ) A2 = A2

Thus A=d4, yielding dj=dg.cos¥, da=dg.cos¢ and d3z=dg.cosn.

Further, the design parameters must satisfy the condition
(dZ+ d2 + df - dZ).dg + 2d1dpds = O.

But cosine takes 1 as its maximum value, so it is clear from these
equations that d4_is the longest length, thus excluding types [ and
II' as possible candidates for three-cuspidal coupler curves (with
coupler triangle acute). The remaining two types do occur;
examples are: dy=dp=dz=1, dgq=2, with an equilateral coupler
triangle for type I', and dq =dz=cos50° dy=co0s80°% dg=1, and a
coupler triangle with angles ¥ =1=50°, ¢ =80°,

Now suppose that the coupler triangle is obtuse. Then the
combination of three pairs of conditions of the form (5.3), which
may hold simultaneously, depends entirely on which of the angles
is obtuse. If ¢ (resp. ¥, n) then only the three conditions ++, +-
and -+ (resp. ++, +-, -- and ++,-+,--) may hold simultaneously.
Then, a condition of the following form is satisfied

€1d £od £zd
1dy  e2dp ezds )‘}(5'4),

cos¥ cosy cosn

where the triple of signs (g4, €2, €3), whenever the angle ¢ (resp.
¥ and n) is obtuse, is (+,-,4) (resp. (-,++) and (++:-)). The
reader may check that, as for the acute angle case, we have
A=dy. It follows, therefore, that d4_is the Jongest. Furthermore,

the design parameters must satisfy the conditon
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(a7 + d2 + df - d2).dy - 2d1dpds = 0.

But, whenever angle ¢ is obtuse, we have -cos@<cos¥ and
-cos@ < cosn. For, if 0>cos@+cosT (where T=¥ or n) then by the
addition formula for cosine we have 0>cos 2(¢+7).cosha(t-¢):
contradicting the fact that  Ym>%(¢+71), Ya(t-¢)>0. From
equations (5.4) we deduce that dp is the shortest length.
Similarly, when angle ¥ (resp. 1) is obtuse we may deduce that

dy (resp. dz) is the shortest length.

By Roberts’ Theorem we may assume without loss of
generality that angle ¢ 1is obtuse, so that d4q is the longest and
ds is the shortest. Then E=d4q+dy-dq-dz=d4.(1-cosp-cos¥-cosn).
But, ¢ =mt-¥-n. Thus, cosn=-cos(¥+n) and

E=d4.(Icos0+ cos(¥+n)] - [cos ¥ +cosn])
Using the addition formula for cosines, we find
E=2.dg.cos%a(¥+n)lcos¥(¥+n) - cos¥a(n-¥)]
and applying the addition formula once more, yields
E=-2.d4.cos2(¥+n)sinnsin¥.
We easily deduce, therefore, that E<0. Hence, only type Il

four-bars can give rise, by obtuse coupler triangles, to coupler

curves with three cusps. We may take, as an example of this, the
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mechanism with dj=dz=%4/3, dy= %, dg4=1 and coupler triangle
with angles ¥=1=30° and ¢=120°.

Thus the complex classification of four-bar coupler curves is
complete. For, we have showed that for each type the following

possibilities can occur:

Type I:  3Aq, 2A1/Ap, A1/2A5
Type I':  3Aq, 2A1/A3, A1/2A5, 3As
Type II:  3A4, 2A1/Ag, A1/2A9, 3As
Type II': 3A4, 2A4/Ap
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§5.3. The Problems of Surveying Four-bar Coupler

Curves by Graphical Means.

The aim of the remainder of this chapter, and indeed of the
thesis, is to survey the possible types of real coupler curves which
can occur for each A-type. This is not just a simple task in
computer graphics; the ultimate step must be to understand
mathematically how and why certain types of coupler curves
occur for one A-type and not for another. However, computer
drawings do give an incredible insight into the motions and coupler
curves of the four-bar. It should be noted that even before we
begin a computer analysis, there are obstructions to overcome.
Fortunately, these can be resolved using the geometry that we will
develop. There are two natural methods of drawing coupler curves

by a computer.

ng_hg_d_ﬁ)_; We may parameterise each circuit (since they are
diffeomorphic to a circle) of the coupler curve and then program a
computer to draw the locus via the explicit parameterisation. This
has the disadvantage that not all of the Zariski closure of the
coupler curve is drawn. We have worded this very carefully,
because the curve traced by the physical model (which we will
refer to henceforth as the physical coupler curve) may not be
an algebraic curve, but only a semi-algebraic curve failing to be
algebraic only by the omission of finitely many points.  This
pPhenomenon is perhaps more easily illustrated to the reader by a

Mmore familiar example.
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Consider the locus of a point P lying on a circle Cq rolling
on the outside of another fixed circle C;. The locus is well known
to be a limacon. Let Cy be a circle, centre the origin, with radius
a and let Cq4 have radius b. Then the locus may be
parameterised as x=bcos(t) + acos(2t), y=bcos(t) + asin(2t) and
the reader may easily check that the locus lies on a bicircular
quartic curve. For b<2a the locus has one real ordinary double
point as showed in Fig. 5.4(a). When b=2a the curve acquires a
cusp (Fig. 5.4(b)) and the locus in a cardioid and when b>2a the
locus has no real singular point (Fig. 5.4(c)). The singular points of
the quartic, however, are two ordinary double points at the
circular points at infinity and a (real) double point at the origin. It
follows then that in the case b>2a the quartic has an isolated
double point at the origin (ie. an acnode) which is not attained
by the point P during the motion of the circle. We conclude then
that in the same manner the coupler curve may have acnodes

which are not attained by the locus of the physical mechanism.

(a) (b) | (c)
Fig. b4
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Every real point P on R cdrresponds to a true position of
the mechanism, hence the image of P is a point on the physical
coupler curve. Conversely, each point of the physical coupler
curve is attained by a real position of the mechanism and
therefore must be the image of a real point on R'. Thus, the

ical coupler curve is ' und 0 le
of the set of real points on R' But, whilst the image of a complex
projective algebraic variety is a complex projective algebraic
variety by Elimination Theorem, the image of a real projective
algebraic variety is not necessarily a real projective algebraic
variety, but only semi-algebraic (i.e. subsets of PR®, which are
the union, intersection or complement of sets of the form
{(xq,..,.%n+1) €PR?| f(x1,..,Xxn+1) 20} where the f is a homogeneous
polynomial, so any algebraic set is clearly semi-algebraic but not
conversely). Thus, the image of the real residual linkage curve is a
semi-algebraic subset of the real coupler curve C (i.e. the real part
of the complex coupler curve). In the generic case we can deduce
that any isolated point of C cannot come from a real point on R’
Recall that the real residual curve is non-singular and hence
diffeomorphic to a disjoint union of circles. Since all coupler
projections are finite maps, no “circle’ can map to a point and
hence the image of the real linkage variety does not possess an
isolated point. In particular this provides a proof that no jsolated

oin the real couple e is ained ical

Method (2);: We may write down the defining equation of the
coupler curve and program a computer to calculate the solutions of
the equation and plot them. Drawing the coupler curve in this

manner often guarantees the inclusion of the isolated points. The
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drawback here is that such programs tend to be very slow,
inefficient, sometimes unreliable and often produce poor quality
hardcopy (ie. pictures on paper) depending on how well the
program is written (good drawing quality generally involves more
computer time and hence we lose out on speed of execution). This
method of analysing coupler curves, when one may wish to draw a
large number of curves, is impractical on a microcomputer (unless
you have plenty of time and patience) and generally little gain for
speed is attained on a mainframe or mini-computer In a
multi-user environment. For the survey we will need to produce a

large number of curves.

As the reader has most likely already guessed, the author
has used approach number one. To make any progress, however,
we have to overcome the problem that, if we have in front of us a
drawing of a (physical) coupler curve with no (resp. one) real
double point present, we will be unable to decide whether the
Zariski closed coupler curve has three real acnodes or one real
acnode and two complex conjugate double points (resp. one real
ordinary double point and two real acnodes, or one real ordinary
double point and two complex conjugate double points). The
answer is non-trivial and leads to an interesting answer in terms
of the real geometry of the Segre quartic surface which gives

considerable illumination to the motion of the four-bar.

Recall that for a given planar four-bar its linkage variety is
isomorphic to an intersection of a net of quadrics in PCY The key
idea is based on the geometry described in [Gibson&Newstead] and

explained in §1.6 that choosing a coupler point determines a unique



-215-

pencil in that net. In general, couplér points give rise to a general
pencil so that the intersection is a Segre quartic surface. The
coupler projection corresponds to projecting from a real line L on
that surface and thus defines a birational correspondence with the
Projective plane branched over a conic; the well known circle of
singular foci. The (complex) coupler curve is the image of the
residual linkage curve under this projection. The five lines L
(i=1,..,5) meeting L map to the five base points. Two of the five
lines are complex conjugates, meet the residual linkage curve in
three points and map to the circular points at infinity which lie on
the coupler curve. Each of the remaining three lines meets a third
quadric in the net, not already in the given pencil, in two points.
Thus, each such line meets the linkage variety in two points and
maps to a double point of the coupler curve, namely, one of the
base points. The key point is that the problem of determining the
number of real double points on a coupler curve is equivalent to
determining the number of real lines on the associated Segre

quartic surface.

We shall describe the real geometry of the Segre quartic
surface (§5.5) and then apply these results to the geometry of the
associated pencil of a coupler point (§5.6). This yields a method for
determining the number of real double points on the coupler curve.
Moreover, we will show that there is a curve T =0 which
partitions the coupler plane into two regions. The nett result is
that points P witﬁ T(P)<0/T(P)>0 give rise to coupler curves
with 1/3 real double points.
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Bufc first we pursue the georﬁetry of coupler curves with
cusps. The gain here is that there is a curve £ which partitions
the coupler plane. If we consider the coupler plane with this curve
removed, then we obtain finitely many connected regions. We will
say that two regions are neighbours, if there exists a continuous
path in the coupler plane between a point in one region and a point
in the other which meets C in only one pobint. Let us consider a
continuous path P between two points in neighbouring regions
close to C. Let this path meet C in the point Q. Then we may
observe the phenomenon that one of the double points of the
coupler curve of a coupler point P on TP as it approaches Q,
either transforms from a crunode into a cusp when P=Q and
then into an acnode when it has passed through Q, or vice versa.
Finally, we may consider the partition of the coupler plane
obtained by removing both € and T into connected components.
Then clearly, any two points in a component give coupler curves
whose double points have identical singularity types. This will form

the basis for our classification of four-bar curves.

In §54 we will study the curve T (described above)
followed in §5.5 by an analysis of the real Segre Quartic Surface
in preparation for §5.6, when we describe the geometry of T
(described above). In §5.7 we conduct the survey of four-bar

coupler curves.
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§5.4. The Geometry of the Cusp Curve (Moving Centrode).

In §5.2 we showed that the necessary and sufficient condition for

cusps to occur on four-bar coupler curves is:

dA?  +  2dydskq(dyky) : dZ (dyk,)?
K2 kD) % ep(kard, k) D) K2+ (dy-k,)?
~2dy[ dqky +  ds(dp-ky) v dE e ‘d12k12
Lﬂkfwé sz<k§+<dz-k1>2)] K+
-2d;dzk? + dxi - df
e1(k{rkD % £o(k2H(d,ky) D)2 K2+ (dg-kq)?

It can be easily showed that the points satisfying this condition lie
on the curve of degree eight (which henceforth we shall refer to as

the cusp curve CT) whose equation is:

(1d2 +a2 +a2 -di]d%[kf+k%][kf+k%-2d2k1+d§]+dfd§d§[2(kf+k§)-2dék1]22
- 443453 +kC]dp-ky 12-4d5d kA kE +kE-2d ok +d2))
2 2
-4d2a2a3C3 2Nk k-2 ok +d2)([dZ +dZ +d2 -di][2(kf+k§)-2d22k1]
+4d2k[dp-kql)” = 0

This curve is obtained by Miiller in [Muller] who shows, by
mechanical means, that this is the condition for a cusp to occur.
He gives an analysis of the curve for the degenerate cases, a

straightforward exercise.

Ci iptible Case:
1) We will not write down the equation of the curve but simply
note that kp=0 is a component of the curve twice repeated and

that the degree of the remaining curve is six and has cusps at the
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circular points at infinity and double points at (0,0) and (d4,0).

Kite Case:
1) dq=dyg, dp=ds

ko =0 repeated four times and the quartic curve
[43-d2lk2+k212 - 4d2dold2-d2lc+kElky + 4d2dTd2-d3lkE - 4d%d3ka = 0

The quartic is rational. Indeed, it is a limacon with the
parameterisation x=cos(t)-(2acos(t) + b) y=sin(t)-(2acos(t) + b)
where a-= dfdz/[df-dgl and b= -2d1d%/[df-d§] so that the origin is
an acnode (resp. crunode) if and only if dp>dq (resp. do<dy).

2) dq=dp, dz=d4. Similarly, we may show that the curve is the
line ky=0 repeated four times and a quartic curve which like the
previous case is a limacon. The parameterisation is given by
x=dy-cos(t)(2acos(t) + b) and y=sin(t)«(2acos(t) + b) where
a=d%dy/ld3-d) and b=-2d3d5/[d3-d3. The point (dg0) is an
acnode (resp. crunode) if and only if d2>dz (resp. dp<dsz).

Parallelogram Case: dj=d3, dp=d4
Then the curve is the line ky=0 repeated four times and the conic

whose equation is
4(d2-d9k3+ 4d3K3 - 4dp(d2-dDky + 4d2(d3-d2) = O,

which is an ellipse if and only if dq>d> and an parabola if and

only if dp>dj.
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Rhombus Case: The coupler curve can have no cusps.

Recall that for the four-bar mechanism the linkage variety
R is isomorphic to a net of quadrics U in PC? and that to any
coupler point we may associate a pencil in that net. Whenever the
pencil is generic the intersection of that net is a Segre quartic
.surface 2. The coupler projection given by such a coupler point is
from a line on that surface and thus defines a birational map
between & and the complex plane, branched over a circle. The
image of the restriction of the coupler projection to the residual
linkage curve R' is the (complex) coupler curve . The
pre-image on 3 of a double point P on Cy is a line Ly meeting
the centre of projection Ly. In general, the line meets a third
quadric q in the associated net, not already contained in the
associated pencil, in two points. Exceptionally, L{ may be tangent
to the quadric and therefore meets R' in just one point whose

image is a cusp on the coupler curve.

The cusp curve, which we will denote by £, plays a
Special role here. Observe that the intersection points of L1 and q,
Whose coefficients are in terms of the design parameters, may be
obtained by taking the resultant, a quadratic equation whose
coefficients are likewise in terms of the design parameters. If we
further suppose that Ly is real, then the resultant is a real
quadratic with coefficients in the design parameters. Let D be
the discriminant of the quadratic, again a polynomial in the design
Parameters, then D>0/D=0/D<0 if and only if the intersections
are real/coincident/complex. In the real (resp. complex) case L4

Meets R' in two real (resp. complex) branches and they map to
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real (resp. complex) branches of the coupler curve through P;
thus P is a crunode (resp. acnode). Finally, in the coincident case
we know that Lji is tangent to R' and P is a cusp. Thus, the
coupler point must lie on the cusp curve. Thus, the discriminant
vanishes if and only if the coupler point lies on C. It now follows
that, as a coupler point approaches the cusp curve and passes
through it, one of the real double points on the coupler curve must

make the transition acnode-cusp-crunode or vice versa.

We can study the geometry of the cusp curve in an
alternative manner to that of looking at its defining equation.
Recall that the condition for the coupler projection to have a

Critical point is

yal-kqxq-koyil-xolkoxg-kiys] = 0
x2(-kox3-(do-kq)y3l-yal-(da-kq)xz+koyzl = 0 (56.5)
[k1xq+koyy lkoxz+(do-kq)y3l-[koxg-kqyql-[-(dp-kq)x3+koy3]=0

Combining these equations together with the real affine linkage

Variety equations

dixg +dpxp +d3zxz -dg =0
diyy + d2y2 +d3y3 = 0

2, 2..2,.2_.2,.2
Xy +yy = Xptyp = X3+yz =l

gives a variety in the affine 8-space with co-ordinates x4, y1, X2,
Y2, X3, y3, kq, ko. Let us make this variety complex and projective
by introducing the complex homogenising variable w, defining the
(complex) centrode variety YV in PC8. Let the union of

Components of 1V, not lying entirely in the hyperplane w=0, be
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called the residual centrode variety and let it be denoted by V"
Then there are two linear projections from PCs, namely,
TR (X1, Y1, X2, Y2, X3, V3, K1, ko, W)~ (x4, ¥1, X2, V2, X3, ¥3, W)
and me: (X1, Y1, X2, ¥2, X3, y3, K1, ko, w)=(ky, kg, w) whose
restrictions to V' are, respectively, the linkage variety R (thus
V' is a curve) and a curve T in the (complex projective) coupler

plane which is clearly the cusp curve.

It is worth noting at this point that we are using a standard
technique in algebraic geometry. The cusp curve may be obtained
from the residual linkage variety as the image of a rational map,
defined by expressing the first two conditions of (55) as linear
identities in k4, ko and applying Cramer's rule to express ki, ko
as rational functions in X1, y1, X2, ¥2, X3, y3, Ww. Thus we define a
rational map wv: V'—=C given by w:(x1, v1, X2, Y2, X3, V3,

w)(kq,ko,w) where

kq = dolxpy3z-yoxzllxgxaty1y2] and kp= -dolxoyz-yoxsllxiyo-xoyyl .
77
[x% + y%][xlyg—ylx:r,] [x5 + yollx1y3-y1x3]

Note that any component satisfying [x1y3-y1x3)=0 has no image.
The reason for this is clear, since the condition is satisfied if and
only if the component is a conic. Then the image on the coupler
Curve is a circle and can never acquire a cusp. Thus we are only

interested in components of R' which are not conics.

We could now argue carefully and obtain a result for all the
degenerate cases (except the rhombus case when V' is empty).
However, we will only consider the generic case. Then, in the

above description we are factoring the rational map me as
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indicated in the following diagram |

V7' c pcd

TR / \Irc

v 2
R'cPC® — CcPC

Thus provided we can establish the geometry of V',. then C is
obtained by a linear projection of V' and then we can determine

the geometry of € more easily than with the rational map wv.

The restriction mplp' to the residual linkage variety is
easily checked to be generically 1-1 and so defines a birational
map. Hence V' and R' have the same geometric genus. Indeed,
we can see this mechanically. Any real point on the linkage
variety determines a unique configuration of the mechanism. We
then recall that the condition for a cusp is that the coupler point is
the unique point of intersection of the two lines passing through
bars 1 and 3 (see Fig .5.2). The inverse rational map u: R'=V" is
defined by u:(x4, y1, X2, ¥2, X3, ¥3, W) = (X1, Y1, X2, Y2, X3, Y3,

ky, ko, w) with kq and ky identical to the values given above.

The intersection of V with the hyperplane at infinity is
given by dyxq+dpxp+dzxz=w=0 and y;=ejix; for j=1,2,3, (where
€ J; +1) giving two complex conjugate 3-planes W, W, when
€1=€p=¢3=11 (necessarily components of V') and 2-planes lying
on these 3-planes for the other choices of sign. The two 3-planes
Mmeet in the real L line given by x1=y1=X2=y2=%3=y3=w=0.

It is clear that L is the centre of projection me.
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We note that any finite point with [x1yz-y1x3]=0 is
mapped by [ to a finite point of V' Now suppose that (x4, yi,
X2, Y2, X3, ¥3, w) is a point on R' with [x1y3-y1x3]=0. Then we
may recall, that this is the condition for the projection of R' onto
one of the circles xg + y% = w? to have a critical point. We found
in §1.4 that, in the generic case, there are just four finite points on
R' satisfying this condition and that in the real case they
correspond to the limiting positions so familiar to mechanism
theorists. These map to points on V' of the form
(0,0,0,0,0,0, kq, kg, 0) and hence lie on the line L. Explicitly,
we may rewrite the rational map by multiplying through by
[x1y3-y1%3]. Then, since all but the last two co-ordinates of the
image of one of the four points vanish, the rational map is defined
at these points and it is a simple exercise to show that
ky = £4(4d9dg +e2d312-(d2-d3-[d1 +e2d312) "% and kp = d5-d3-[dg+eods)?

where ¢4 =11, g7 = t1.

If (x4, Y1, X2, Y2, X3, Y3, W) is a point on R' with
[xg + ygl =0 then w=0 and this is only satisfied by the six points
of R'in the hyperplane at infinity listed in §1.1. However, in this
Case we cannot find a simple re-expression of the rational map,
which is defined at these points, although we know that such a
Mmap does exist. Thus, it is necessary to calculate their images

directly.

To calculate the images directly, we take a local
Parameterisation of the residual linkage variety at each point in
turn. Substituting for each variable in the rational map in terms

of the parameterisation, we obtain a parameterisation for the
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centrode variety at the image point. In particular, the constant
term determines the co-ordinates of the image point. The

calculations are laborious, but straightforward.

1) P=(0,0,d3,-id3,-dp,id2,0). Let us make the residual linkage
variety affine by setting xp=1 and then let us apply an affine
change of co-ordinates taking P to the origin. We then calculate
the local parameterisation at the origin and, finally, apply the
inverse affine transformation returning the origin to P to obtain

the following local parameterisation at P

X1 = (d% + di)w +{HOTinw} : yi= -i(-df + di) + {HOT in w}
2d4dyg 2d1d4

x3 = -dg + (-d% + d2)wHHOT in w} : y3 = idy - i(-dZ+dD)w+HOT in w)
dz  2dzdg dz  2dzdg

y2=-i+ iw? + (HOT in w}

Substituting for x1,y1,¥2,%3,y3 into the rational map, cancelling
out any common factors of w in the numerator and denominator
(this is allowable since w=0 in a neighbqurhood) and then setting
w=0 to get the constant term of the parameterisation of V' at
the image, we find that kq=kp=0. In particular, the linear term
has non-zero coefficient, thus the image is the simple point
P'=(0,0,d3,-id3,-d3,id2,0,0,0) on V"

2) Q=(-d3,id3,0,0,-d,id1,0). Let us make the residual linkage
variety affine by setting x1=1 and then let us apply an affine
change of co-ordinates taking Q to the origin. Then we calculate
the local parameterisation at the origin and, finally, we apply the

inverse affine transformation returning the origin to Q to obtain
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the following local parameterisation of R®' at Q

Xp= (dg + di)w +{HOTinw} : yp= -i(-dg + di)w + {HOT in w}
2dody 2dody4

X3 = -dy + (-d5 + d5)W+HOT in w} : y3 = idy -i(-d5 + d5)w+HOT in w}
s 2dsdg s 2dsdg

y1=-i +iw? + {HOT in w}

Rewrite the rational map by multiplying through by
[xg + y%][x1y3-y1)<3] to obtain an equivalent rational map to the
original. Then substitute for the variables y1,X2,y2,X3,y3, using the
parameterisation, into the rational map. Then set w=0 to get the
constant term of the parameterisation of V' at the image. This
yields that the co-ordinate of the image is Q'=(0,0,0,0,0,0,1,-1,0)
and that the linear term has non-zero coefficient. Thus Q' is
simple on V'. Furthermore, Q' lies on the centre of the mp
thus by general theory (Theorem A13) Q is the imagé of an
osculating n-plane X. Since Q lies on the hyperplane w=0, X
is contained in w= 0 (in the ambient space of the centrode variety);
in particular, its tangent liesin w=0 and thus V' touches w=0
at Q'

3) R=(dp,-idp,~d4,id1,0,0,0). Let us make the residual linkage
variety affine by setting x1=1 and then let us apply an affine
change of co-ordinates taking R to the origin. Then calculate the
local parameterisation at the origin and, finally, we apply the
inverse affine transformation returning the origin to R to obtain

the following local parameterisation of R' at R
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xp==-dy + (d5 + d2)w + (HOT in w} : y =idy - i(-d2 + d2)w+{HOT in w)
dy  2dody4 dy 2dody
x3 =(d3 + d3)w + {HOT in w} : y3=i(-d% + d2)w + (HOT in w}
2dzd4 2dzdy4

yq1=-i +iw? + {HOT in w)

Then we substitute for the variables y1,X2,y2,X3,y3 using the
above parameterisation into the rational map and wé cancel out
any common factors of w in the numerator and denominator
(allowable since w=0 in a neighbourhood). We set w=0 to get the
constant term. The linear term has non-zero coefficient, hence the

image is the simple point R'=(dp,-idp,-dy,id1,0,0,0,0,0).

4) The images P', Q and R' of the points P, @ and R are

obtained by taking the complex conjugates of the points above.

S “ , v. l W'—" 0 . . . ] . . L
and a further four points, twoon W and two on W, not lving on
L.

Note that the projection my defines an isomorphism
between the sets R'-{points such that w:[x1y3-y1x3]=0} and
V'-{points with w=0}. Thus, in the generic case, V' is a
non-singular curve; since there are no finite singular points and, as
we found above, there are no singular points of V' in w=0. But
any birational map between two non-singular curves is an
isomorphism (Theorem A7); moreover, mp and its inverse W
are given by real polynomials, thus the real residual linkage curve
and the real centrode curve are real isomorphic. It follows that
the residual centrode variety V' has one or two connected
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components precisely when the linkage variety has one or two
components.

To determine the degrees of V' and C we consider the
Projection myp. Its centre is the line L. Then considering the
higher order terms of the local parameterisation of V' at points
lying in w=0 (the details of which we spare the reader), we may
deduce that no tangent to V' coincides with L. Let H be a
generic hyperplane through L and suppose that H meets V' in
the points Pj, Jj=1,.m. Then, the sum ZJi(PJ,Hn‘V') of the
intersection multiplicities of H and V' equals the sum of the
multiplicities of P; on V' the sum is easily checked to be six.
Applying the Projection Formula, yields degree(V') - Z4i(P,HA V)
=degree(R'). Then the fact from §1.1 that R' has degree six,
vields that V' has degree twelve.

We may now apply the Projection Formula to me. The
Centre of projection M given by ki=ko=w=0 meets V' in the
four points P', P!, R', R' whose tangents to V' do not lie in w=0
(else the tangents to R' at P, B, R, R liein w=0). Thus, in
Particular, they do not lie on M. Let H be a generic hyperplane
through M. Suppose H meets V' in the points Py, j=1,.m.
Then the sum Zi(PHAV") of the intersection multiplicities of H
and 9" equals the sum of the multiplicities of Py on V' Itis
@asily checked that the images of the six points on L map to six
distinct points on the line at infinity, thus the degree of C is at
least six by Bezout's Theorem. ‘But the sum of the multiplicities is

four, thus the Projection Formula yields that the degree of the
Projection me isone and that C has degree eight.
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We should perhaps emphasise that, of the twelve ‘limiting
position' points, the four critical points of the projection my (resp.
T3) map to (0,0) (resp. (d4,0)), whilst the four critical points of 5
map to distinct points on the hyperplane at infinity. Hence, the
points (0,0) and (d4,0) have multiplicity 24 on C. But the line
kp=0 passes through both of these points and hence, by Bezout's
Theorem, both points must have exactly multiplicity four and C
does not touch the line. We may deduce that the Hain type will
determine how many real branches pass through (0,0), (d4,0) and
how many real branches meet w=0 (in other than [ and J); for
we have established a correspondence between the number of real

branches and the number of real critical points of 5

We recall that a circuit of a real planar curve is defined to
be the image of a connected component of any real
desingularisation. Then we may take the curve V' (or R) as a
desingularisation of the cusp curve C. Thus we find that the cusp
curve c has one or two circuits - the same number as its family

of coupler curves determined entirely by the design parameters.

Studying the centrode variety, rather than the cusp curve
Via its equation, has yielded several new results. Firstly, we have
showed that the curve is birationally isomorphic to the linkage
variety from which it follows that the geometric genus is one.
Secondly, we have been able to determine the number of circuits
of the cusp curve in the generic case. Thirdly, we have been able
to determine the multiplicity of (0,0) and (d4,0); moreover, we
showed that the number of real branches through these points is

determined by the Hain type.
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Perhaps the most important result about the cusp curve,
yet to be established, is that (in the generic case) double (resp.
tripl int the cu orre oupler curves wi
two (resp. three) cusps. This very intuitive result is another of the
‘folklore' results for which no proof exists in the literature. From
our point of view this is very easy to establish. If P is a double
(triple) point on the cusp curve, then, since V' has no singular
points, P has two (resp. three) pre-images P; on the centrode
variety. These points are mapped by mip' to points on the residual
linkage variety and, since R' is non-singular, these points are
necessarily distinct. Further, these points are critical points of the
coupler projection and hence their images on the coupler curve

traced by P are cusps.

I have not showed that the circular points at infinity are
cusps (a result established by Muller). However, assuming that
they are cusps, we may procede to show that there can be at most
six_finite singular points. The sum of the delta invariants of the

singular points on a plane curve of degree eight and genus one is
equal to %(8-1)(7-1)-1=20. But, whenever P = (0,0) or (d4,0), we
have 8p26 and whenever P=I or J, we have &p=1. Thus the
sum of the 8p 's of the remaining singular points is 6. Hence
there can be at most six other double points, each with 8&p=1.

Observe that the cusp curve is symmetrical about the line ky=0.

If the cusp curve of a mechanism has a triple point, then it
has two triple points symmetrically placed about the line k>=0
and no other finite singular points. In particular, by disturbing the

coupler point, one cannot obtain a coupler curve with two cusps.
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However, by disturbing the mechanism slightly, by which I mean a
small deformation of the design parameters, one hopes to get a
mechanism whose cusp curve has three double points. Indeed, we
showed in §5.2 that a mechanism possesses a coupler curve with
three cusps if and only if the point (dq,dp,dz,dg) lies on a
hypersurface H in the parameter space. We recall that H is the

hypersurface defined by
[(dir + d% + dg - di)d4 + 2d1d2d3][(df + d% + d% - di)d‘l - 2dqdpds] =0

Therefore, the necessary and sufficient condition for the cusp curve
to have a triple point is that the point (d4,d3,dz,d4) lies on H.
Thus for almost all small deformations  (dj,dydzdy)  of
(dy,d5,d3,d4) (or more precisely all points in an e-neighbourhood of
(d1,dp,dz,d4) not lying on H), it is reasonable to expect the triple
point on the cusp curve to "unfold” into three ordinary.double
points on the cusp curve of the mechanism with design parameters
(dy,d5,ds,d}.

§5.5. The Geometry of the Real Segre Quartic Surface.

In chapter one we described how the intersection of a
general pencil of quadrics in PC* is a Segre Quartic Surface 8
containing sixteen lines with the properties that any given line
meets exactly five other lines and that any pair of lines has two
transversals (i.e. lines meeting both of them). Projecting from one
of the lines L defines a birational map between & and the

projective plane whose branch locus (ie. the points of the
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Projective plane which do not have a unique pre-image on the
surface) is a conic passing through the five base points. The base
points are the images of the five lines on 8 meeting the centre of
projection L. Further, we showed that the image of any line,
other than L and the five lines meeting it, is a line passing
through two of the five base points; we recall that, if L{ is such
a line, then two of the five lines meeting L are transversals of L
and Lj and therefore the image of L1 meets the images of the

transversals namely, two of the base points.

We shall now make some further remarks in the form of
the following lemmas about the birational correspondence in the
case when L _and the surface are rea]l (ie. 3=.23), in preparation
for the case when the Segre quartic surface is the intersection of
the pencil of quadrics associated with a coupler projection of the
planar four-bar. Indeed, the geometry of the real Segre.quartic
surface gives considerable illumination to the real geometry of

four-bar coupler curves.

Lemma 5.1 Suppose that the surface & isreal and let L be
any real line on it. Then a line on the surface meeting L is real
if and only if the corresponding base point is real.

Proof : Trivial.

Lemma 5.2 Suppose that the surface 2 is real and let L be
any real line on it. Then any other line Li{ on 2 isrealif and
only if the transversals of L and Lj are either real or

complex conjugates.
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Proof : Clearly, if the two transversals Ty, Tp are either real lines
or a pair of complex conjugate lines, then the hyperplane H
spanning L, Ty and Ty is real. Thus H intersects & in a real
quartic curve consisting of L, T1, Tp and one other real line,
namely, Lj. Conversely, if Lj is real then the hyperplane
spanning L and Lj is real intersecting 3 in a real quartic
curve. Thus it follows from a reason given in §15 that the
quartic reduces to four lines L, Ly and their two transversals.
Since the quartic curve is real, it follows that the transversals are

either real or complex conjugates. The lemma is now proved.

Lemma 5.3 A real Segre quartic surface 8 can possess nho,

four, eight or sixteen real lines .

Proof : Certainly, real surfaces with no real lines exist, for we
may take as an example any empty intersection of two real
quadrics which generate a general pencil. Suppose that & has at
least one real line L, then it is sufficient to show that 8 has four,

eight or sixteen lines.

laim: If 2 is a real Segre quartic surface containing one real

line L, then there are at least four real lines on 3.

Proof: Note that, if L' is a complex line lying on 2, then its
conjugate L' also lies on 3. Thus of the five lines meeting L,
one must be real and the remaining four are either pairs of real

lines or pairs of complex conjugate lines. Thus, erther the lines
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meeting L are two pairs of complex conjugate lines and one real
line Ly or there are three or five real lines meeting L. In the
latter case the claim immediately follows. In the former case we
can prove the claim by observing that each pair of (skew)
conjugate lines span a real hyperplane containing L and meeting
d in their two transversals, namely, L and one other
(necessarily) real line Ly distinct from L and Lj. Similarly, the
other pair of conjugate lines have as their transversals L and a
real line Lz distinct from L and Lj. Thus, the result is proved if
we can show that L and Lz are distinct. But, if this were the
case, then the hyperplane spanning L and Ly contains two pairs
of conjugate lines, clearly contradicting the geometry of the

surface 8 as described in §1.5.

We may now complete the proof geometrically. Recall that
projecting the surface from L gives a birational correspondence
with a plane X branched over a (real) conic. The base points are
the images of the five lines meeting L. Further, we recall (from
§15) that the images of the remaining ten lines on & are
precisely the set of ten lines passing through any pair of base

points. Thus, there are three possibilities.

(1) Only one real line Li meets L. Then there is one real base
point P and two pairs Q,Q and R,R of complex conjugate base
points lying on the conic. The lines through Q,Q and R,R are
real and have real lines as their pre-images on 38 (see Fig. 5.5(a)).
The remaining lines through any other pairs of base points are

clearly complex. Thus, there are exactly four real lines on 3.
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(2) Three real lines Ly, Ly, Lz meet L. Then there are three real
base points P,Q,R and one pair of complex conjugate points S,S.
The lines through the pairs {P,Q}, {P,R}, {Q,R} and {S,S} are real
with real pre-images on & (see Fig. 5.5(b)). The remaining six
lines through pairs of points are complex. Thus, together with the

four real lines Ly, Ly, L3 and L and we have eight real lines in
all.

(3) Five real lines Ly, Ly, L3, L4, Ls meet L. Then all five base

points are real. Thus, the ten lines passing through any pair of .
them are real (see Fig. 5.5(c)) implying that all sixteen lines on
the surface are real.

The Lemma is now proved.

e = real point
% = complex point
/ = real line

Fig. 5.5.
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Finally, we need a method by which we can calculate the
number of real base points, so that we can count the number of
real double points of the four-bar coupler curves. This is provided

by the following Lemma.

Lemma 5.4 Suppose 8 is a real Segre quartic surface, i.e. given
as the complete intersection of two real quadrics qq and g2 in
PC% Then the (real binary quintic polynomial) discriminant of the
Pencil oqq + pgy has five distinct roots. Further, suppose that the

surface has a real line L. Then the following are equivalent

(1) Thg discriminant has n real roots and (5-n) complex roots,
occuring in conjugate pairs,

(2) There are n real, and (5-n) complex lines occuring in
conjugate pairs, on 3 meeting L,

(3) The projection from L ‘onto a plane X has n real, and

(5-n) complex base points occuring in conjugate pairs.

Proof : The equivalence of (2) and (3) follows from Lemma 5.3.
Thus, it is sufficient to show the equivalence of (1) and (2). Let
the quadrics qi and qu be written in their matrix forms x'Ax
and x!'Bx where A and B are real symmetric matrices. The
discriminant is the real binary quintic polynomial given as the
variishing of the determinant of the matrix oA +pB. For each
root (o,p;) i=1,..5 of the discriminant, the corresponding quadric
oA + BB in the pencil is a point cone whose vertex V; is real if
and only if the root is real. To complete the proof we will show
that each point cone with a real vertex gives rise to exactly one

real line meeting L.



-236 -

We recall some facts from §1.5. Let C; be the cone with
vertex V; and let X; be the plane which is the join of L and
Vi. Then X; is the join of a line on C; with the vertex and
hence X; lies on C;; indeed the reader may recall that X; lies in
one of the two families of 2-planes on C;. But & may be given as
the intersection of C; and any other quadric in the pencil q.
Thus, the intersection of X; with 8 is equal to the intersection
of X; with q ie. a conic consisting of L and one other line L.
Let us now suppose that Vj is real, then the plane X; is real and
meets & in a real conic. But as we have just showed, the conic is
made up of the real line L and one other line L;; thus L; is real.
Conversely, if L; is a real line meeting L, then the join of L
and L; is a real plane Xj. By the result of §1.5, X; contains the
vertex V; of a point cone in the pencil and, moreover, only one
such vertex lies on X;. But, if V; is complex, then the complex
conjugate point V; lies on AiKi and is the vertex of a point cone in
the pencil giving the required contradicton. Thus Vj is real and

the Lemma is proved.

We will now apply the above results to the geometry of the planar

four-bar.
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§5.6. The Geometry of the Tacnode Curve (Transition

Curve).

The aim of this section is to determine the number of real double
points on a given four-bar coupler curve. By the results of the
Previous section this is equivalent to counting the number of real
roots of the discriminant of the associated pencil for a fixed coupler
point. The first step we shall make in this direction follows the
approach used in [Gibson&Newstead] for determining when the
associated pencil is non-general. The authors of [Gibson&Newstead]
show that the set of coupler points (kq,k2), which give rise to a
non-general pencil, lie on an algebraic curve and describe this
curve completely in the more degenerate cases (when the Grashof
equality holds) and partly in the generic and circumscriptible cases.
We shall show that this curve is the union of two curves T' and
T", such that almost all points (kq,kp) on T' (resp. T") are
coupler points which trace curves with a tacnode (resp. triple
point). We shall refer to T'and T" as the tacnode curve and
the triple point curve, respectively. Finally, we shall show that
the tacnode curve T'(P)=0 partitions the coupler plane so that
points P for which T'(P)<0/T'(P)>0, correspond to coupler
curves with 1/3 real double points. The curve T is the so called
transition curve (Ubergangskurve) of Muller [Muller] who derives

(esséntially) the same conclusion by purely mechanical means.

In this section we will use the notation of chapter one. We
recall from [Gibson&Newstead], as explained in §1.6, that the
linkage variety of the four-bar is isomorphic to the intersection of

three quadrics in pcé, Explicitly, the quadrics are
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Qq: xf+yf=w2
Q- : 2 2_ .2
2. X2+y2—w

Qz:  (dgw - dqxq - doxp)? - (dyyy + dayp)? = dgw2

The linkage variety R is a curve consisting of two lines L and L
in the hyperplane at infinity w=0 and a sextic curve R' which
Mmeets w=0 in three pairs of complex conjugate points lying on L
and L. The curve R' is called the residual linkage variety. Let
Us fix a coupler point P=dyzq+k-zp where k=kq+iky is a
complex number. Then the coupler curve is the image of the
residual linkage variety under the linear projection given by
Tk : (X1,Y1,X2,¥2,w) = (P,P2,w), where Pjq = dix1-koyo+kixo,
Py = dyy1+koxo+k1y2 and Pz=w. The centre of projection is the
line £ given by Py=Py=P3=0. It is easily checked that L isa

transversal of L and L.

Let us denote by Jl the net of quadrics XQq + YQp + ZQ3
and let S be any point not lying on the intersection of the net ie.
the linkage variety. Then the subset of quadrics in . passing
through S is given by a linear condition in the variables X, Y, Z,
thus defining a pencil of quadrics in Jl. In particular, we may
choose a point S on L. Then any quadric in the pencil meets &
in S and two other points, one lying on L and one lying on L.
Hence, every quadric in the pencil contains L. Thus the

corresponding pencil P in Tl comprises those quadrics in the net
containing L. Quite explicitly, the pencil is given by

kKX + d3Y + di(k-dp)(k-d)Z = 0 (56)
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and the pencil may be written

X(Qq - kkQ) + Z(Qz - (k-dp)(k-d)Q4) = 0
2
dy

We may represent the generators of the net in matrix form xtAx,
x'Bx and x!Cx. The discriminant is the polynomial in" X, Y and Z
given by the vanishing of the determinant of the matrix

Tl = XA+YB+ZC. The matrix I is easily showed to be

[ X+dZ O dydyZ 0 ~dydgZ
0 X+dZ 0 dydpZ 0
M = | didpz 0 Y+d3Z 0 ~dydgZ
0 dydyZz 0 Y+d3Z 0
| -dydgZ © ~dpdgZ 0 -X-Y+(d2-d9)z |

The discriminant of the net determines a plane quintic curve. It is
easily seen from the matrix that the curve reduces into a conic

and cubic given by
XY + d2YZ+ d5XZ = 0 : (X +Y + d22)(XY + d2YZ + d2X2) = 0 (5.7)

It is showed in [Gibson&Newstead] that the conic and cubic touch
at the three points (1,0,0), (0,1,0) and (0,0,1). We may deduce the
condition for the pencil P to be general ie. to have five distinct
point cones or equivalently for its discriminant to have five distinct
roots. The pencil P defines a line in the (X,Y,2)-plane. Thus the
Condition is that the pencil is general if and only if that line meets
the discriminant curve of the net in five distinct points. The

conditions for the failure of the pencil to be general are given in
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(Gibson & Newstead] and we shall give the details here.

itions he associated pencil to -gene
Firstly, the pencil can fail to be general, whenever the line
passes through one of the points (1,0,0), (0,1,0) and (0,0,1). But
this is easily showed to be the case if and only if k=0 or k=d;

lLe. the coupler point is one of the hinges on the coupler bar.

Secondly, the pencil fails to be general, whenever the line is
tangent to the conic. Substituting for Y, using (5.6), into the
defining equation of the conic (5.7), gives a binary quadratic in X
and Z whose discriminant is -4dfd§k§. The line is tangent to the
conic if and only if the discriminant vanishes i.e. ko =0. Moreover,

the line me t onic_in _two co

boints.

Finally, the pencil fails to be general, whenever the line is
tangent to the cubic or (if the Grashof condition holds) the line
passes through a double point of the cubic. We shall now

summarise the results of [Gibson & Newstead] for this last case.

Generic Case:

The cubic is non-singular so that the condition is that the line is
tarfgent to the cubic. Thus the condition is equivalent to saying
that the point (kf + k%,df,df[kf + k% - 2dokq + d%]) lies on the dual
curve of the cubic. The dual of a cubic is a sextic curve, thus,
substituting for the co-ordinates of the point, we find that the
point (kq,kp) lies on an algebraic curve of degree less than or

equal to twelve. We shall need to be more precise than the authors
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of [Gibson&Newstead], but we shall leave the details until later in

this section.

Circumscriptible Case:

The condition for the line to pass through node on the cubic is that

the point (kq,k2) lies on one of the following circles

dy+dg = dp+ds : (dg-ds)(k? + k3) - 2d3doky + dyda(dy + d3)
dy+dz = dp+dg: (d1+d3)(kf + kg) - 2dqdgky + dqdao(dp - d3z)
dy+dy = dz+dy: (drd'j,)(kf + kg) - 2d4dgkq + dqda(dy - dz)

The line is tangent to the cubic if and only if the point (kq,ks) lies

on a curve of degree <8 (not given in [Gibson &Newstead)).

a it e:
1) dy=dp=d3z=d4: The condition for the line to pass through one
of the two nodes on the cubic (which in this case is a conic and

chord) is that (kq,kp) satisfies

(dg-ds)(k? + k2) - 2d%ky + ddy + d3) = 0 or
(dg+d3)(kZ + k2) - 2d%ky + dX(d; - d3) = O

The line is never a component of the cubic, thus the condition for
the line to be tangent to the cubic is equivalent to the line being
tangent to the conic component. The result is that (kq,kp) must lie
on the curve given by |

2,2 2 2y, 2

Thus, .when d3> dq, we obtain only the point k=0, whilst, when
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dz<dy, we get two lines through the origin; indeed, they are

tangent to the above circles.

2) dy=dg=dy=d3: The condition for the line to pass through one
of the two nodes on the cubic (which in this case is a conic and

chord) is that (kq,kp) satisfies

(d3-d2)(k? + k2) + 2dqdgky = 0 or
(dg+dp)(k2 + k3) - 2dgdpkq = O

The line is never a component of the cubic thus the condition for
the line to be tangent to the cubic is equivalent to the line being
tangent to the conic component. The result is that (kq,kp) must lie

on the curve given by
dZ(kg-dp)? + (d2 - dD)k3 = O

Thus, when dy>dj, we obtain only the point k=djp, whilst, when
dy<dy, we get two lines through the origin; the lines are tangent

to the above circles.

3) dy=dz=dp=d4: The condition for the line to pass through one
of the two nodes on the cubic (which in this case is a conic and
chord) is that

ky=3(dg+dg) or kg=3(dp-dy)

The line is never a component of the cubic thus the condition for
the line to be tangent to the cubic is equivalent to the line being

tangent to the conic component. The result is that (k4,k3) must
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satisfy
(k¥ + k2 - dokp)? + (d5 - d2)K3 = O

Whenever dy>d4, we get only the points k=0 and k=dj. When

dz<dq, we have two circles given by

K2+ k2 dgky + [ - dky =

2,.,2
ky +ky-dokg - fd5 - di k=0

I
o

Rhombus Case:

The condition for the line to pass through one of the three nodes on
the cubic (which in this case is a triangle) is

2
ky=dg, k1=0, or (k1‘%)2+k§=%

where d=di=dy=d3=d4. Note that, since the line is never a

component of the cubic, the line is never tangent to the cubic.

Note that in the above analysis we have been careful to separate
the two distinct conditions when the pencil passes through a node
of the cubic and when the line touches the cubic. The reason for

this will soon become clear.

In each of the above cases let us write T for the union of
the varieties defining the set of points (kq,kp), in the coupler
Plane, for which the associated pencil either touches the cubic or

Passes through a double point of the cubic.

So far we have only considered the geometry of the quartic
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surface given as the intersection of a pencil of quadrics in pct
when the pencil is general. However, even when the pencil is not
general, we can still describe the geometry of the surface (no longer
called a Segre surface). Of course, for a bad choice of quadrics the

corresponding surface of intersection can be very degenerate.

The first level of degenericity occurs when the discriminant
of the pencil no longer has distinct roots, but the singular quadrics
corresponding to each root continue to be point cones and not
worse. We could then repeat the analysis of the configuration of
the lines on the surface and deduce that some of them must
coincide. A complete description is given in [Jessop 1916]. We will
not give the details here, but simply quote the result that in this
case there can be twelve, nine, eight, six or four lines on the
surface (when the pencil has the Segre symbol 1112, 122, 113, 23
or 14, respectively). It should be clear to the reader that, if we
take a line L on the surface, there are no longer five distinct lines
on the surface meeting it. Recall that the five lines meeting a
given line L are constructed in the following manner. Let X be
the plane spanning L and one of the vertices of the cones. Then
X meets the surface in a conic, consisting of L and one other line.
Thus, in the general case, we can do this for each of the five
Vertices giving the desired five lines. However, in the non-general
case there are less than five distinct point vertices and hence there

are less than five lines meeting L.

More degenerately, we could have singular quadrics with
Vertices that are lines. The result here is that there are erther at

Mmost eight lines on the surface (whenever the Segre symbols of the
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pencil is one of (11)111, (11)21, (21)11, (21)2, (31)1, or (41)) or
there are infinitely many lines and the surface is ruled (whenever

the Segre symbols of the pencil is either (22)1 or (23)).

However, we can eliminate the possibility of infinitely many
lines on the surface in the situation at hand, because such surfaces
may only occur when the discriminant has one or two distinct
roots (this is a consequence of the results in [Jessop 1916], in fact
it follows from the Segre symbol). But this is never the case. The
pencil would necessarily be tangent to the conic component of the
discriminant of the net N, implying ko=0, and the pencil would
have to have 3-point contact with the cubic ie. be an inflexional
tangent. However, we will soon show that points (kq,kp) with
ko=0 have an associated pencil with two or three point contact
with the cubic when k1=0 or kq=dz: the coupler points we

have excluded from our discussion.

Thus, whenever the associated pencil is non-general, some

of the five lines meeting the centre of the coupler projection &L
coincide and this occurs if and only if some of the base points

coincide. Therefore, the coupler curve has a coincidence of double
Roints.

In the case of a generic mechanism the coupler curve C is
a sextic with geometric genus one. We showed in §1.6 that, no
matter which coupler point is chosen, C has ordinary triple points
at | and J (we are excluding from the discussion the cases when
the coupler point is one of the endpoints of the coupler bar). Thus,

if there is any coincidence of double points, then it occurs among
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the finite singular points. We also showed in §1.6 that the sum of
the delta invariants of the singular points on C is three for any
choice of coupler point. Thus, there can be esther just one singular
point P with 8§p=3 and hence a triple point or higher-order cusp
or one ordinary double point and a double point P with 6&p=2

le. a tacnode or ramphoid cusp. However, we can easily show

that finite triple points cannot occur on the coupler curve in the
generic case.

Suppose that P is a triple point of a coupler curve of any
Mmechanism. Then, since there are no finite singular points on the
residual linkage curve, P must lie on the circle of singular foci. Its
Pre-image, on the Segre quartic surface corresponding to the
coupler point, is a line M meeting the centre of projection. M
Mmeets any other quadric in the net Tl (and hence the residual
linkage variety which we continue to denote by R'), distinct from
the ones in the associated pencil, in one of the following three

ways:

1) M touches the quadric in one point P' lying on the residual
linkage variety. Clearly, if this is the case, then P' is a critical
point of the coupler projection. If P' is simple on R', then it
follows that P is a cusp. This is necessarily the case for a generic
mechanism. Whilst for a degenerate mechanism, P' could be an
ordinary double point implying that P is a singular point worse
than an ordinary double point or cusp. Indeed, P must have two
branches, one simple and one non-simple. Hence, P is a triple
point with non-distinct tangents. Thus 8p23, implying that

there are no other finite singular points on the coupler curve.
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Any coupler point giving rise to such a curve must lie on the cusp

curve and hence does not occur in general.

2) M meets the quadric in two distinct points P' and P". Then M
is non-critical at P' and P" and therefore each branch through
P'and P" maps as a local immersion onto the coupler curve.
Thus, if P' and P" are simple points on R', then P is an
ordinary double point on the coupler curve; in particular, this is
the case for the generic mechanism. If the mechanism is
degenerate, then one of the points can be an ordinary double point
implying that P is an ordinary triple point. The situation when
P' and P" are both singular (in which case the mechanism is either
a parallelogram/kite or rhombus) cannot arise, since the double
points lie on a conic component of R, indeed they are the
intersection of components namely, a conic and quartic in the
parallelogram/kite case and three conics in the rhombus case.
Thus this would imply that two points on the conic map to the

same point on the coupler curve giving an obvious contradiction.

3) M  meets the surface in more than two points. Thus M
necessarily lies on the surface implying that M is a component of
the linkage curve. The only line components are those in the
hyperplane at infinity, but we know that these map to I and J.

Thus this situation can never arise.

Thus we have showed that in the generic case no coupler
curve has a finite triple point. This leaves the possibilities of a
higher-order cusp with 8p=3, a ramphoid cusp with §p=2 or a

tacnode with 8p=2. However, we showed in §5.3 that cusps do
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not occur in general. Indeed, for a ramphoid cusp or higher-order
cusp to occur, it is necessary that the coupler point lies both on the
cusp curve and on the curve 7. But in the generic case the cusp
curve is an irreducible curve of degree twelve in the coupler plane.
Comparing this with the curve T, a curve of degree <12, we find
that no component of T can be a component of the cusp curve.
Thus, provided T is not identical to the cusp curve, we may apply
Bezout's Theorem to show that they meet in finitely many points.
We can easily exclude the possibility that T is the cusp curve;
we will show soon that, in fact, T has only degree ten. Thus
almost all points on T correspond to coupler curves with

tacnodes. Hence, we may call T the tacnode curve.

In the degenerate cases the curve T corresponds not only
to coupler points whose loci possess a tacnode, but also to coupler
curves whose loci possess a triple point. We recall that the cusp
curves for the circumscriptible, kite and parallelogram cases
consist of the line ky=0 and an irreducible curve of degree 8, 4
and 2 respectively. Note that the cusp curve for the rhombus case
is empty. On the other hand for the circumscriptible, kite and
parallelogram cases, the curve T is a circle and an octic; two
circles and two (possibly complex) lines; and two lines and (if
dy>dq) two circles, respectively. Comparing T and the cusp
curves, it is clear that no component of T can lie on the cusp
curve, except possibly in the parallelogram case, when one of the
two circles could coincide with the conic cusp curve; but in this
Case we recall that the cusp curve is an ellipse or parabola, so they
cannot coincide. Thus the occurence of a ramphoid or higher-order

Cusp on a coupler curve can only occur for coupler points lying on
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both the cusp curve and on T and, moreover, it follows from

Bezout's Theorem that there are only finitely many such points.

We will conclude our discussion of the degenerate four-bars
by noting that the curve T is the union of two subvarieties T’
and T", corresponding to the set of coupler points whose loci
possess a tacnode and triple point, respectively.. The two
subvarieties are distinguished by the fact that the tacnode curve
T' is the set of coupler points whose associated pencil touches the
cubic, whilst the triple point curve is the line ko=0 union the
set of coupler points whose associated pencil passes through a
double point of the cubic. We shall prove this quite explicitly. Let
P be an ordinary triple point (we may exclude non-ordinary triple
points, because we have showed that there are only finitely many
of them) on a (necessarily) degenerate four-bar coupler curve and
let M be its pre-image on the Segre quartic surface associated to
the fixed coupler point. Then, by the above analysis, M passes
through a double point on R' ie. one of the points
(e4,0,2,0,63,0,1), where (gq,62,63)=(4,1,-1), (1,-1,1) or (-1,1,1)
and, moreover, the image of such a point must lie on the circle of
singular foci. Thus, the singular point has the form
(Py,P2,P3) =(dgeq +ky€p, koep, 1) and must lie on the circle of
singular foci given in §1.6. We recall that the equation of the circle

is
2 2 2 ,.,2
-dpka(Py + P5) + dodgkpP1P3 + dg(ky + k5 - dokq)PoP3 = 0

Substituting the co-ordinates of the point into the equation, we find
that
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k=0 or [82d4-d2][kf + kg] - 2d4dpeoky + djdoleqdg - dq] = O

Thus, the line ky=0 always gives rise to triple points in the
degenerate cases. We can now take each degenerate case one by

one and apply the equality gqdq + €pdp + £3d3 -~ dg = O:

Circumscriptible Case: dq+d4=dz+dz then (eq,60,e3)=(-1,1,1).
Thus the two equalities (gpd4-dp) =(dz-dy), (e4d4-dy) = (dp+d3) and
the second equality above gives the condition, derived earlier, for
the pencil to pass through the node. The other two

circumscriptible cases follow similarly.

Kite Case: dy=dy=d3z=d4 then (eq,£2,63)= (1,-1,1) or (-1,1,1).

Thus the three equalities: (e9d4-dp) = -(dg+d3); (g1d4-d4) = (d3-dp)=
(d3-dq) or (epdg-dp)= (dz-dy); (e1d4-dj) =-(dp+d3) = -(d4+d3); and
the second equality above gives the two conditions, derived earlier,
for the pencil to pass through one of the two nodes on the cubic.

The other kite case follows similarly.

Rhombus Case: dy=dp=dz=d4q then (gq,69,e3)=(1,1,-1), (1,-1,1)
or (-1,1,1). Thus: (epd4-dp)=(eqd4-d1)=0 or (epd4-dp)= -2dy;
and (eqd4-d1)=0 or (epd4-dp)=-2dy; and (eqd4-dg)=-2dq. It is
easily checked that this gives the three conditions given earlier for
the associated pencil to pass through one of the three nodes on the

cubic.

We shall now discuss the geometry of the tacnode curve T in'the
generic case and determine a procedure for deciding, whether a
four-bar coupler curve has one or three double points.



-2561 -

We have described the geometry of the tacnode curve in
the parallelogram/kite and rhombus cases quite explicitly above.
We shall now procede to describe this curve in the generic case, as
this was not done in [Gibson&Newstead]. We recall that the
tacnode curve is the set of points (kq,kp), in the coupler plane, for
which the associated pencil touches the cubic component of the
discriminant of the net Il of quadrics whose intersection is the

linkage variety. The pencil is given by
KRX + 4% + ¢2k-d)(K-dp)Z = 0
and the cubic by
(X + Y d22)(XY + d2YZ + 42X2) - d2XYZ = 0

We wish to know when the pencil touches the cubic, or
equivalently, when the pencil meets the cubic in two points instead
of the general three points. We may eliminate the variable Y
from the cubic using the equation of the pencil. The resulting
equation is a binary cubic in X and Z. Then, the necessary and
sufficient condition for the tangency of the pencil to the cubic is
that the discriminant of the cubic is zero; for this is the criterion
for the cubic to possess less than three zeroes (X,Z) and hence the
pencil intersects the cubic in less than three points. Explicitly the

binary cubic is
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coeff. of X3: -kl:(df - kk)
coeff. of X2Z: d%(d? - kR)(d3 - kK - (k - dg)(k - dy))
- a%kk(d5 - (k - dp)(k - dp)) + d2d%kk
coeff. of XZ2: -df(d? - kK)(k - dp)(K - dy) + djda(k - dp)(k - dp)
+ d(d% - (k - dp)(k - d))(d5 - kk - (k - dp)(k - d))
coeff. of Z3:  -dS(k - d2)(k - dp)(d5 - (k - dp)(K - dp))

It is well known that the discriminant of a real binary cubic of the

form ax> + bx?z + cxz? + dz° = 0 (a,b,c,d € R) is
A = b2c? - 4acd - 4b3d - 27a%d? + 18abed
and that the cubic has

three distinct real roots & AW
one real, two complex conjugate roots & A>0

one real, two coincident roots & A=0

For a fixed coupler point let A be the discriminant of the
cubic expressed above. Then it is a straightforward matter to
compute the sign of A and hence determine precisely how many
of the roots (X;,Zy) i=1,2,3 are real. Each real root of the cubic
gives a real value of (X;,Y;,Z;) and corresponds, therefore, to a real
root of the discriminant of the associated pencil for the given
coupler point. Finally, we have the required condition for a
four-bar coupler curve to have one or three real double points.
The necessary numerical computations can easily be done on a
computer. Thus, together with a computer drawing of a coupler

curve and a knowledge of how many of the three double points are



-253 -

real, the A-type can easily be established. We are now able to
make progress with the survey of four-bar coupler curves which

will form the final section of this chapter.

The equation of the tacnode curve is obtained by
substituting the coefficients of the cubic into the formula for the
discriminant. The equation is extremely complicated and the
author (somewhat regretfully) includes it here for completeness
sake and to confirm that it is indeed the transition curve
(ubergangskurve) of [Muller] (substitute a2=[kf+k§-2d2k1+df],
b2=[kf+k%], r=dq, c=dp, s=d3, m2 = [df+d§+d§-di] in his equation).

27(k3+k3-2dkq +d212kS +KoI2 Ik F+kE-2dpky +d3-d2 2Lk +I5- dfz
+4[kf+k§-2d2k1+dfl[kf+k§-2d2k1+df—d§](2(kf+k2 2d2k1+d1][k1+k2]+
-GN 2 e DR
+ 4lkZ k22 k- dA([k2+kE-2d kg +d 2+ 21kE+kE-2d ok +d2 T4k
-d?f{kf+k§] [df+d§+d§ dﬁ][kf+k2 2d5ky +d2+da?)’
~18[k2+kZ-2d;k +d2 )k 2+ k2 kZ+ k- 2dpky +d2-a2k3+kE-d 2 x
(113 kZ-2dok g +d 212+ 2Kk 2d2k1+d11[k1+k§]—d§{kf+k§]
~[d2+d2+d2-d 2Nk k- 2d2k1+d1]+d3d2)
(20k2+kZ-2d kg +d20kE + G HKT+R 22~ d12[k1+k2 ~2dky +d?]
-[d1+d2+d3 -dkE+ ke afaZ)
([k1+k2 ~2dgky+d 3+ 2Kk 2d2k1+d1][k1+k2] d§{k1+k
{d2raZed2-a2lced- 2d kg +dd1ail) x
(20k2+kE-2d ks +a k2 4k 2K+ kAP~ d A K- 2d2k1+d1]
-[a2+a2raZ-a2c s k2 rala2)’
= 0

We may make the equation homogeneous using the coordinate w
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and consider the complexified projectivised curve given by the
obvious equation so formed. The highest order terms in this
equation have degree twelve, but it can easily be showed (see
Muller's paper for some detail) that the coefficients of the eleventh
and twelfth degree terms are zero. s t acnode curv

degree ten. Muller also shows that the curve has quadruple points
at the circular points at infinity. Further, the endpoints of the
coupler bar (0,0) and (d4,0) are ordinary double points. The origin
is an AI (acnode) if and only if - dy<d4, and an A; (crunode) if
and only if dy>d4. Similarly, the other endpoint (dg,0) is an Aj
(acnode) if and only if dz<dg, and an A, (crunode) if and only if
d3z>d4. The line at infinity meets the curve in I and J, and two
other points (by Bezout's Theorem, since the curve has degree ten
and the circular points each have multiplicity four). It can also be
showed that these points are distinct if and only if dy=d4, and
are real if and only if dy>d4 (whilst complex conjugates when

dg>dyp).

It now follows, that for the Hain group I', where d4 is the
longest, T has acnodes at the endpoints and meets the line at
infinity in imaginary points. In particular, the tacnode curve is
closed and finite. In the Hain group II', where d4 is the shortest,
T meets the endpoints in crunodes and meets the line at infinity
in two real points. Hence, the curve has two asymptotes. The
remaining two groups can have various combinations of acnodes

and crunodes at the endpoints.

Combining the tacnode/triple point curve T and the cusp

curve C, we obtain a curve TUC in the coupler plane. Indeed,
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the union stratifies the coupler plane where the zero-dimensional
strata are the points where T .meets C, the one-dimensional
strata are the connected components of TJUC with the
zero-dimensional strata removed and the two-dimensional strata
are the connected components of the coupler plane with TUC
removed. On each stratum it is clear that the number of
crunodes, acnodes, complex nodes, tacnodes, cusps and triple points
of the coupler curves corresponding to coupler points in the
stratum, remains constant. It is a fundamental problem of the
subject to determine precisely which stratifications may occcur.
Of course, we could choose other stratifications by introducing
further properties of the coupler curves; for instance, real Plucker
numbers or vertices. For a generic mechanism the A-types

correspond to the strata which do not lie on the tacnode curve.

§5.7. Survey Four-bar Coupler Curves.

This section needs little explanation. The aim is to show for
each Hain type which of the singularity types can occur by
computer graphics. This should not be viewed as a haphazard atlas
of pictures (as it may appear to the reader!) but as the result of an
extensive study of. coupler curves, the gains of which in terms of
intuition to the author, are more than can be described here in
words or pictures. We shall only survey the coupler curves of the
generic mechanism and coupler points for which the associated
pencil is general; thus by the results of the previous section our

curves will not possess tacnodes.
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[ will, however, try to give some indication of how the
survey took place. The wrong approach to the problem would be to
draw numerous curves and hope that all possible types turn up.
The nett gain may be to solve the problem, but the nett loss is an
enormous amount of intuition. More sensibly, one should search

for one of the following two transitions:

1) acnode-cusp-crunode, when the coupler point passes through

the cusp curve and

2) two real double points-tacnode-two complex conjugate double

points, when the cusp curve passes through the tacnode curve.

One doesn't need to know where the coupler point for these curves
lies in the coupler plane. One may simply start with any given
curve and deform the coupler point until it reaches the cusp or
tacnode curve; with some experience one knows how to deform
the coupler point in order to move towards these curves. The
circle of singular foci is invaluable here. If one starts, for instance,
with a crunode, then one should try to shrink the loop into a cusp
lying on the circle and then into an acnode. Conversely, if one
knows that there is an acnode, then one can deform the coupler
curve until it meets the circle of singular foci (in a cusp) and then
passes through it to give a crunode. In this way we may begin
with a curve with one singularity type and hope to find two

further types.

We tabulate the results of the survey (unfortunately at

present incomplete by a few cases). For each A-type we give the
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dimensions of the mechanism and the coupler point. This is
followed by drawings of the curve obtained, using a Pascal program
on an Apple Macintosh Plus and printed on an Imagewriter dot
matrix printer. The bold circles represent the circle of singular

foci; on which all real double points of the coupler curve lie.
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The first four dimensions are d4, dp, dz, d4 and the next two

dimensions are the modulus and argument of k.

34; 045 05089 071 0.3 057 1
057 050505052105 7
2A1/A; 045 05 0.89 0.71 0.29 057 2
2A7/A 045 0.5 0.89 0.71 0.27 057 3
04505 0.89 071 019 081 4
Aj/Aj/A;  0450508907101906 5
Ay/2A; 045 0.5 089 0.71 0.19 049 6
04505 1.27 071 019 049 13
247/A; 045 05 1.38 0.71 0.19 049 14
34] 045 05141 0.71 019 049 15
A /2A 057 05 05 05 0.3 1.05 9

0.21 0.5 0.27 0.19 0.25 093 10
0.83 0.3 0.63 04 0.39 0.98 16

2A1/A7 0.21 05 0.27 019 037 0.93 11
0.83 0.3 063 04035098 17
A7/2A7 0.21 05 0.27 0.19 043 0.93 12
0.83 0.3 063 04033098 18
A1/2A7 0.75 0.43 0.25 05 0.25 0.53 19
3A; impossible

+ -
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Hain Type I' dimensions drawing no.
347 0.3 033044 05903107 20
247/A; 0.30.33 044 05902507 21
2A7/A 0.3 0.33 044 059 018 0.7 22
0.2 0.4 0.24 05 05 0.52 23
Aj/Aj/A; 02040240506 052 24
AL/24] 0.204 02405064052 25
0.31 0.28 0.28 0630314 26
247/A; 0.31 0.28 0.28 0.63 0.3 1.22 27
34 0.31 028 0.28 0630315 28
AL/2A7 ?
2A7/A; ?
A/2A ?
A/2A; 0.31 0.28 0.28 0.63 042 1.25 29
347 0.5 0.5 0.5 1.0 0.5 1.05 30

Ay/2A; 0.3 0.1 0.3 0.53 0.1 1.05 31
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Hain Type Il dimensions drawing no.
347 0.23 0.37 0.5 057 0.46 0.51 32
2A1/A7 0.23 0.37 05 057 05051 33
2A7/A; 0.23 0.37 05 057 052 051 34
Aj/Aj/A; 02303705057 06051 35
Aj/2A 0.23 0.37 0.5 057 0.64 051 36
0.75 0.27 0.75 11 012 058 37
2A7/A; 0.75 0.27 0.75 1.1 012 052 38
34 0.75 0.27 0.75 1.1 012 045 39
Ay/287 0.6 0.23 0.37 050.24 054 40
2A7/Ag 0.6 023037 05019 054 41
A/2A] 0.6 0.23 037 05 0.16 054 42
Ai/247 0.22 0.41 045 0.55 0.6 053 43
34, 0.64 0.17 0.64 1.0 0.14 0.87 44

A/24; 0.6 0.32 04 04 042031 45
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Hain Type II' dimensions | drawing no.
34; 0.5 0.5 0.5 0.49 0.45 0.1 46
2A7/A7 0505 05049 0.35 0.1 47
2A1/A; 05 0.5 05 049 0.25 0.1 48

0.27 0.23 0.4 0.06 0.92 017 52
-t
AY/AT/Ay 7

Ay/2A] ?

200/8 7

3A; ?

A1/2AI 0.33 0.38 047 0.17 0.37 1.05 49

2AI/A2 0.33 0.38 0.47 0.17 0.48 1.05 50

AI/ZA;E 0.27 02304 0.06 0.7 017 54
0.33 0.38 047 0.17 0.48 0.92 51

WALy, impossible

3A; impossible

AI/ 2A7 impossible

Drawings 8 and 53 possess tacnodes and are included to show
the transition of two real points coalescing and becoming complex

conjugates.
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APPENDIX : Introduction to the Algebraic Geometry

In this appendix we shall give a summary of the results
which we need during the thesis. Primarily, we will be
familiarising the reader with the notation and language of the
geometric concepts. On the one hand, many of the results we shall
be wusing may be found in most standard - (final year
undergraduate/graduate) textbooks, whilst on the other hand we
will be using theorems which are simple to state yet hard to prove
and involve concepts far beyond the scope of this appendix (for
instance, the birational invariance of the arithmetic genus).
Although it is not important that we understand the proofs, it is
essential that we understand how such theorems can be applied in
practice. Thus, we confine ourselves to collecting the results and
theorems with references which we will often use, so that the
reader will get a taste of the type of geometry that we will be
using throughout the thesis. Some results, which are used only

once, are not described here, but are stated in full in the text.
§A1 Affine Geometry

Let K be any field. Denote by K% the set of n-tuples of
elements in K, ie. K%={(x1,.,%n)| x;€K}. Then K! is called the
affine line, K2 is called the affine plane and K® is called affine
n-space. Elements of K are called points. Let F be any set of
polynomials in the n variables xi,.,x;, then we denote by
V(F) = {(x4,..,xp) €KPlf(x1,...xn)=0 for all f in F} the set of common
zeroes of the polynomials in F. Sets of the form V(F), where F

is a finite set of polynomials, are called varieties and are the main



-274 -

objects which we shall study in affine space. Let X be a variety,
then any subset X' of X thatis a variety is called a subvariety
of X.

Let U be the ideal in the polynomial ring K[xq,..,Xm]
generated by the polynomials Fy,..,Fp,. Then it is clear that
V(U) = V(F). Indeed, by Hilbert's Basis Theorem [Fulton] we know
that, if R is a Noetherian ring, then thé ring of polynomials
Rlx4,...xy] is Noetherian; thus, any ideal U in Rxy,.,x,] is
finitely generated. Thus, if U=(F1,.,F ), then
V(U) = V(F{)N..NnV(Fy,). We have the following elementary lemma

Lemma A1 [Fulton]

1) If UCYV are ideals then V(V)cV(U).
2) V(Ug+.oUpg) = VUDU..UV(Upy)
3IV(See] Uoo) = Nexel VI(Ug)

4) V(0)=K", V(1)=¢&

Definition With the properties of Lemma A1l the sets of the form
V(F) satisfy the axioms of the closed sets of a topology. We shall
call this particular topology the Zariski topology. In general, we

shall use this topology in preference to any other.

If F is a non-constant polynomial, then we shall call V(F) a
hypersurface. If, in particular, F is linear, then we shall call
V(F) a hyperplane. Likewise, if F is a polynomial of degree two,
three etc, then we shall call V(F) a quadric, cubic, etc,
hypersurface. If n=2, the hypersurfaces are called (affine) plane

curves.
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Definition We say that a variety X is irreducible, whenever it
cannot be written as the union of two subvarieties X=XqUXj,

where X1=X and Xp=X

Lemma A2 [Fulton]

Any variety X may be written as the union of irreducible
subvarieties X=XjU..UXp,, such that X{¢X; for i=j. The X
are uniquely determined and are «called the irreducible

components of X.

Definitions
1) Let X=V(Fy,.,Fm) be an irreducible variety in K® and let
a=(ay,.,an) be a point on X. Then we define the tangent space

Ta(X) to X at a to be the linear subspace given by
ZioF (a)(x-a)) =0, 1< jsm.
axi

The dimension of the tangent space is equal to the corank of the

Jacobian matrix (m;;), where mij=§—gji(a) 1<icm, 1<j<n.

2) We define the dimension dim(X) of the variety X to be the

smallest dimension of the tangent spaces occuring at points of X.

3) We say that a point x on X is simple, if dim(X)= dim Ty (X)
and singular, if dm(X)>dmTy(X). If all points of X are simple,

then we say that X is a non-singular variety.

4) For reducible varieties the above definitions make sense on each

of its components. We define its dimension to be the maximum
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dimension of any of its components. Then the Jacobian matrix at a
point xeX' on a component X' of X has non-maximal rank if
and only if ether a component of X of dimension > dim(X)

passes through x or x issingular on X'\

We shall consider a number of maps between affine varieties X
and Y. ‘

(i) Polynomial maps: maps ¢:XCKR—=YCK™, such that at each
point x= (xq4,..xn) on X, @=(@1(x1,..Xp),..0m(Xq,..Xn))  for
some polynomial functions @;:K?—K.

(ii) Isomorphisms: A polynomial map ¢ is an isomorphism, if
there exists a polynomial map 1, such that @en and neg are
the identity mapson X and Y.

(iii) Affine change of co-ordinates : The polynomial map @:K2—K?
is called an affine change of co-ordinates, if it is bijective and given

by linear polynomials at each point.

SA2 Projective Geometry

Let K be any field. Then we will define projecfive n-space,
denoted by PK®, to be the set of equivalence classes of points in
Ko*1  ynder the equivalence relation (x4,..,.Xp+1)~(AX1,... AXp+1)
for all a=0. Geometrically, we may think of PK™*1 to be the set
of lines in K"*! through the origin. The equivalence classes are
Called points and a representative of the class (xq,..Xp+1) is
Called its homogeneous co-ordinates. The spaces PK!, PKZ are
Usually called the projective line and the projective plane,

respectively.
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We may now proceed in an analogous way to affine spaces. Let F
be any set of homogeneous polynomials in the n+1 variables
X1,.,%n+1. Denote by VI(F)={(xq,.,Xn+1)€PK®If(x1,..,.Xn+1)=0 for all
f in F} the set of common zeroes of the polynomials in F. Sets of
the form V(F), where F is a finite set of polynomials, are the
main objects that we shall study in projective space and we will
call them varieties. Let X be a variety, then any subset X' of
X that is a variety is called a subvariety of X. Note that we
need homogeneous polynomials (i.e. polynomials, whose monomials
all have the same degree or, equivalently, F(Ax{,..,AXp+1)=
AF (X4,...Xn+1) where d is the degree of F), for we need
F(xq,..,xn+1) =0 if and only if F(Ax4,..,AXpn+1) =0. This makes sense
for homogeneous polynomials, since FOA%{,.,AXp4q) =

XdF(Xl,...,an).

Let U be the homogeneous ideal (ie. an ideal U is
homogeneous, if every polynomial F=Fg+ ..+ F3 in U written as
a sum of forms of degree 1si<d, has the property that F; is a
member of U), in the polynomial ring Klxy,...xm+1], generated

by the homogeneous polynomials Fy,..F,. Then it is clear that
V(W) = V(F).

Note that homogeneous ideals are the correct set of
polynomials, for, if x=(X1,.,Xn+1) Is a zero of a polynomial F,
then F(x)=Fo(x1,mXpne1)**Fa(X1,.Xn+1) =0 and, moreover,
F(ax)= )\Fo(xl,...,xm1)+...+)\dFd(x1,...,xn+1) = 0. Hence, Fi(x1,.., Xn+1)=0
for all 0<isd.
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There is an analogous Basis Theorem for the projective case,
implying that any homogeneous ideal U is finitely generated.
Further, any homogeneous U can be generated by a set of forms.
Thus, if U=(F4,...Fy), then V(U)=V(F{)N.NV(Fy).

Lemma A1’

1) If UCY are homogeneous ideals then V(V)CV(U).
2) V(Uqe..Up) = V(UDU..UV(Up,)

BIWV(Zxel Uge) = Neel V(Ug)

4) V(0)=PK", V(1)=8

Definition With the properties of Lemma A1’ the sets of the form
V(F) satisfy the axioms of the closed sets of a topology. We shall
call this particular topology the Zariski topology.

As in the affine case, whenever F is a non-constant polynomial,
we shall call V(F) a hypersurface. If, in particular, F is linear
we shall call V(F) a hyperplane and if F is a polynomial of
degree two, three etc.,, we shall call V(F) a quadric, cubic, etc.,
hypersurface. For n=2 the hypersurfaces are called (projective)

Plane curves.

Definition We say that a variety X is irreducible, whenever it
cannot be written as the union of two subvarieties X =XqUX>,

Where Xy=X and Xp=X.
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Lemma A2’

Any variety X may be written as the union of irreducible
subvarieties X=XqU..UXy,, such that X¢X; foi=j. The X; are
uniquely determined and are called the irreducible components

of X.

Definitions

1) Let X=V(F4,..Fpy) be an irreducible variety in‘ PK® and let
a=(ag,.,an+1) be a point on X. Then we define the tangent
space T,(X) to X at a to be the linear subspace given by

ZJ_QEi(a)xJ = 0, 1<ism.
aXJ

The dimension of the tangent space is equal to the corank of the

Jacobian matrix (m;;), where mij=§‘gi(a) 1<igm, 1<jsn+l.
J

2) We define the dimension dim(X) of the variety X fo be the
smallest dimension of any tangent space at points of X. We say
that a point x on X is simple, when dim(X)=dimT,(X) and
singular, when dim(X)> dimT,(X). If all points of X are simple,
then we say that X is a non-singular variety. Varieties of
dimension one are called curves and varieties of dimension two are

called surfaces.

3) For reducible varieties the above definitions make sense on each
of its components. We define its dimension to be the maximum
dimension of its components. Then the Jacobian matrix at a point
xeX' on a component X' of X has non-maximal rank if and only

if ejther a component of X of dimension > dim(X") passes through
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X or xissingular on X

4) Let X=V(F) be a hypersurface and suppose that a is a point
of multiplicity k on X; by which we mean that the first k-1
partial derivatives, evaluated at a, are zero. Then we shall

define the tangent cone C,(X) to be the variety given by

k .
Z " ° F(:) cxELoxEnt o g
k1+..+ n+i =k d 1Xkla n+1an+1 1 nt+l

For a general variety X=V(U) and any point a on X, the
tangent cone C,(X) is obtained by taking the intersection of all

tangent cones at a to hypersurfaces V(F) (containing a) for all
Fel.

Affine and projective varieties are inter-related. For we
may cover projective n;space by n+l affine "pieces” via the
following correspondence. Let K;={(x1,.,2n+1)€PK"| %;=0}, then
each point (%1,..Xp+1) has a homogeneous co-ordinate of the form

(x'1,.,X'1-1,1,%"141,-X'n+1) thus the maps F;:K{—K®, defined by
Fii(x',0X'i-1,1,% 14 1o X ne 1) (X'1,00%'1-1,% 14 110X 4 1)

are bijections and the whole of PK" is covered by the n+1 sets K;
Conversely, given an affine n-space K%, we may "projectivise”
embedding K® in PK® by the map (x1,..,X5)—(x1,.,%5,1). We
call the hyperplane xn4+1=0 the hyperplane at infinity.

We shall be interested in the following maps on projective varieties
X and Y.



-281 -

(i) Polynomial maps: maps ¢:XCPK?—=YCPK™, such that at each
point x on X ¢ =(¢1(X1,.,Xn+1),Pm+1(X1,-,Xn+1)), where the @;
are polynomials.

(ii) Projective change of co-ordinates : The polynomial map
¢:PK?-PK? is called a projective change of co-ordinates if it is
bijective and given by linear polynomials at each point.

(iii) Rational maps: Let XCPK® and YCPK™ be two varieties.
Let ¢:U—>Y be a map from a Zariski open subset U of X into
Y, such that ¢ =(91(x1,..,2n+1),--Pm+1(X1,-+Xn+1)) is given by the
regular functions ¢; on U, 1ie at every point aeU, ¢;=1{/g,
where f,g are polynomial maps with g(a)=0. We say that two
forms ¢:U-Y, n:V-Y satisfying the above conditions are
equivalent, whenever ¢(a)=n(a) for all aeUNV. An equivalence
class & of such maps is called a rational map. Thus, a
representative of a rational map is not defined on the whole of X,
but only on a Zariski open subset; whereas the domain of a rational
map & is the union of all Zariski open subsets U of X, V;rhere i)
has a representative defined on U. If its domain covers the whole
of X, then we say that & is a regular map.

(iv) Birational maps: A rational map &:X—Y is birational, if
there exists a representative ¢:U—=Y of & which is an
isomorphism between U and an open set V of Y. Or,
equivalently, there is a map A:V—X, which is the representative
of a rational map ¥:Y—X, such that @eA and Xeg are the

identity maps where defined.

Lemma A3 [Harris)
A rational map 3:X—Y which is generically 1-1 (ie. there exists

a representative ¢:U—Y of &, which is bijective between the
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sets U and ¢(U)) is a birational map.

Theorem A1 [Shafarevich]

1) A rational map ¢: X—Y from a non-singular variety X to any
variety Y is regular.

2) A birational map ¢: X—Y between two non-singular varieties

is biregular (i.e. an isomorphism).

From this point on we shall only be considering the case when the
base field K is either the set of real numbers, denoted by R, or

the set of complex numbers, denoted by C.

Theorem A2 [p70,Mumford]
For all varieties X of dimension r in PC® there exists an integer
d21 such that: if L is an (n-r)-linear subspace satisfying
a) LNX = {x1,...xx}
b) for all i, x; is a simple point on X and the two
tangent spaces Txi(X) and Txi(L) (consider as a subspace
of Txi(PCn)) meet only in the origin,
then k=d.

Definition For a variety X in PC® we define the degree to be
the number of points in which almost all linear subspaces of
Complementary dimension meet it. This number is well defined by

Theorem A2.

We shall now define the multiplicity of a point of a curve

and the intersection multiplicity of a curve with a hypersurface.
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We shall need the following theorem.

Theorem [Milnor]

Let %, be an isolated point of a real (or complex) curve C. Then a
suitably chosen neighbourhood of %, in C is the union of finitely
many ‘branches’ which intersect only at x,. Each branch is
homeomorphic to an open interval of real numbers (or to an open
disc of complex numbers) under a homeomorphism x= P(t) which

is given by a power series
P(t)=x, + agt + agt? + ..

convergent for [tike.

Further, let k be the smallest index, so that C is not
contained in a co-ordinate hyperplane xi =constant. Then the
parameterisation P - can always be chosen, 0 that
Xk =constant+t™  (m21). P can also be chosen, so that the
collection {i | a;j=0} of exponents has greatest common divisor
equal to 1. Then the power series P is uniquely determined up
to the sign of the parameter t (or upto multiplication of T by
roots of unity in the complex case). |

Thus, each branch of C may be parameterised

X=P(t) =%, + (0 ,., 0, t™, Zjp0ax41 4t s Zir02n,1t)

Suppose a curve CCP" intersects a hypersurface HCP® in a point

P. By the theorem a neighbourhood of P in C is the union of
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finitely many branches pj parameterised as
(xg(t),...,)g:‘;(t)), where x!j = Eizntag'  th

If H is given by a polynomial H(xq,..,x5) =0, then we define
i(xO,HnaJ)=ordtH(xg(t),...,xr‘z(t)) and we define the intersection
multiplicity of C with H at P tobe i(P,HnC)=Z;i(P,Hnp)).

Intersection multiplicity satisfies the following properties:

1) i(P,HAC) 2 0.

2) i(P,HAC)=0 if and only if P does not lie on the intersection of
C and H.

3) when n=2,i(PHAC) = i(P,CHH).

4) i(P,HAC) is a projective invariant,

ie. 1(PHAC) =i(p(P),p(H)n9(C)) for any projective change of

co-ordinates ¢.

We define multiplicity of a point P on a curve C to be

min{i(P,HAC) | for any hyperplane H passing through P}.

Let VCP® be a variety. Then we define the codimension of V to
be cod(V)=n - dim(V). We say that a variety V has pure
dimension when every irreducible component of V has the same
dimension. We shall use the following theorem to calculate the
degrees of varieties which are defined as the intersections of other

varieties.
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Bezout's Theorem A3
Let Vy, .., Vi, be algebraic sets of pure dimension in PC?
intersecting properly, that is, cod(V1n..qVm) =cod(Vy)+... +cod(Vyy).
Then

degree(Vin..n Vi) = degree(Vy)- ... -degree(Vyy).

We shall also use the following variation of the theorem:

Let C be acurve and H any hypersurface in PC™ Let P4,.,Pm

be the set of points in the intersection of C and H. Then

| degree(C) = Z;i(P;,HAC).

SA3 Linear Systems

We will often wish to consider special families of
hypersurfaces and thus it will be an advantage to have a language
in which to describe certain objects common to these types of

families.

To any hypersurface X=V(F)CPC" of degree d, where the

form F is given by

"1
1

Y,
D argr, Koo Xnst,

n+l
rit.+rps1=d

we may associate a point (“"a"i---"m 1,...) in the projective space

N-1 _[n+d . .
PCY"*, where N-( d ) This makes sense, since (""a"l-'-"n+1"")
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corresponds to F for all A=0. Thus the family of all hypersurfaceé
of a given degree d in PC" forms an N-dimensional projective
space which we shall denote by H(n,d). The m-dimensional
subspaces of an H(n,d) are called linear systems of
hypersurfaces of degree d in PC™ Linear systems of dimension
one, two, and three are called pencils, nets and webs,

respectively.

We may describe a linear system &L, either by giving the
defining equations of the m-dimensional subspace in H(n,d) or by
giving a set of generators for the system, i.e. a set of (m+1) linearly
independent points in H(n,d) whose span is the subspace L. In
the latter case, if the points correspond to the forms Fjq,..Fm+1,

then the linear system is the set of forms MFi+.4+Anm+1Fm+1.

Example H(2,2)=set of conics in the plane. Then H(2,2) is a five
dimensional projective space. The general form of a conic in the
projective space with co-ordinates X,y,2 may be written C= a1x2
t ajxy + azxz + a4y2 + agyz + a6zz. Thus, each co-ordinate of
H(2,2) corresponds to a monomial in the general form. For
instance, the pencil A(xy + 22) + M\(x% + y2) corresponds to the

line in PC® through the points (0,1,0,0,0,1) and (1,0,0,0,1,0).

Definition The (possibly empty) intersection of all hypersurfaces

in a linear system is called the base variety.

I' [ ! .
Let  2\Qq+.#*Am+1Qm+1 be a linear system of quadrics in PC®,

Write the generating quadrics in matrix form Q;=xA;x', where
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X=(%q,..Xn+1) and A; is the (n+1)x(n+1) symmetric matrix (a;j),

aQ
whose elements are aj;= Y Y
)

for i=j and au=‘§82. Then the
determinant A of the matrix M =MA{+.#A\pn+1Am+1 IS an
invariant of the pencil called the discriminant. Then A=0 is a
homogeneous polynomial in  Aq,.,Am+1 and thus defines a
discriminant variety D in PC™. A point (A{,..,Am+1)€D if and

only if Q=X\Q1+.+3,Qm is a singular quadric.

For a pencil the discriminant is a binary polynomial of
degree (N-1)!, where N=2%(n+2)(n+l), and for a net the

discriminant is a plane curve of degree (N-1).

SA4 Foci

The significance of the foci of a plane curve is classical.
When we deal with plane curves we may mention the foci and
Perhaps it is worthwhile discussing them. In the proof of Roberts'
Triple Generation Theorem in Chapter 5 we shall see that the foci of
the coupler curve of the four-bar play a somewhat mysterious role

in the geometry:.

let C bea real' plane curve of class m, ie. the number
of lines tangent to C through a general point P. Denote the
circular points at infinity by 1 and J. Then there are m
(complex) lines through [ tangent to C and m conjugate lines -
“through J tangent to C. If T is one of them,rthen it meets its
conjugate in a real point P which we will call a focus of C. If

the curve is circular, ie. it passes through [ and J, then there
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are tangents to C at I. If T is a tangent to C at I, then it
meets its conjugate line T in a real point which we distinguish
from the above foci by calling it a singular foci. We need not say

anything more about foci.

§AS5 Desingularisations of a Curve, Definition of the Genus

and the Genus Formula

Following the excellent exposition given in [Mumford] leading to the
definition of the arithmetic genus, we summarise the results as

follows.

Theorem A4 [Mumford]

Let M be a finitely generated graded module over the ring
Clxq,..xn+1] ie. M=8p Mg, such that for all homogeneous
polynomials F of degree d, F:MygCMg+q. Then thére is a
polynomial Pp(t) of degree at most n with rational coefficients,

such that dimgMy = Pm(k) for all sufficiently large k.

Thus, if XCPC® is a variety and (X) is the homogeneous ideal of
polynomials vanishing on X, then we may apply the theorem to
the module C€[x1,.xpn+1])/3(X). Thus, the theorem tells us that there
is a polynomial Px(t), such that the dimension of the "degree kth
Piece” equals Px(k) for k sufficiently large. We shall call Px(k)
the Hilbert polynomial.

The constant term of the Hilbert polynomial is very

important. Classically, we do not use the constant Px(0) but the
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integer p,(X)=(-1)"(Pg(0)-1) (recall that r is the dimension). We
call p,(X) the arithmetic genus. For a plane curve X of
degree d the arithmetic genus is given by p,(X) = %(d-1)(d-2). In
general, we calculate the arithmetic genus via the formula of

Theorem Ab.

Theorem A5 [Gibson&Newstead]

Let C be a curve in PC® given as the intersecti'on of (n-1)
hypersurfaces of degrees dj,..dp-1 then the arithmetic genus of
C is given by

n

n
Zpa(C)-Z = ('Zdi - n - 1).”1di-
1=

i=1

Examples:

1) For the intersection C of three quadric hypersurfaces in pct
we have n=4 and dq=dy=d3=2 giving p,(C)=5.

2) For the intersection C of two cubics hypersurfaces in PC3 we

have n=3 and dy=dy=3 giving p,(C)=10.

When classifying curves up to birational equivalence, the following
theorem reduces the problem to one of studying non-singular
curves upto birational equivalence and hence by Theorem A1 upto

isomorphism.

Theorem A6
Every singular curve X is birationally isomorphic to a

non-singular curve X.
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Definition

1) The curve X of the theorem is called the desingularisation
(or normalisation) of X.

2) We define another genus, the geometric genus, for a curve X
denoted by pg(X) to be arithmetic genus of the desingularisation

of X. Thus for non-singular curves X we have p,(X)= pg(X).
Then we have the following very important results.

Theorem A7

1) The arithmetic genus (for any variety) is invariant under
isomorphism ie. if X and Y are isomorphic, then p,(X) =
P,(Y).

2) The geometric genus for curves is a birational invariant ie. if

Xand Y are birationally isomorphic, then pg(X) = p,(Y).

The second result follows from the first, for, if X and Y are
birationally isomorphic, then so are X and Y. But, since X and
¥ are non-singular curves, they are isomorphic by Theorem Al
and thus have the same arithmetic genus by result 1). The proof
of 1) is a very deep result. The theorem tells us that the
geometric genus is an invariant of the equivalence class under

birational isomorphisms.

To compute the genus of subvarieties of curves we shall find the

following theorem indispensible.
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Theorem A8 (The Genus Formula) [Gibson&Newstead]
Let X be a connected (but possibly reducible) complex projective

curve and ¢:X'—X a birational map. Then

™M~

pa(X) = pa(Xll) + ZSP = (t'l)

1 PeC

i

where  X',.,X't are the irreducible components of X. In
particular, suppose that X=X(U.UX; is connected. Denote by
X; the desingularisation of X; then, since pg(Xp) = pa(Xy), we
can take ¢@:X—X so that

t

i=1 PeC

We have yet to define 8p. The non-negative integer 6&p is
zero at a simple point P, whilst at a singular point P, provides us
with a useful invariant under isomorphism. Its formal definition
may be found in [Hartshorne], but we shall only need to know that
for an m-tuple point P we have §p2Y2m(m-1), with equality,
whenever the multiple point is ordinary, ie. it has distinct
tangents. Further, we may find the following values useful
1) If P is an ordinary double point then §p=1
2) If P is a cusp then 8p=1
3) If P is a tacnode then 8p=2
4) 1f P is a ramphoid cusp then §p=2
(Indeed appealing to the classification of double points on curves up
to isomorphism, which states that any double point may be put in
the form y2=x' (r22), then 8p may be showed to be the integer
part of Yar. See [Hartshorne]).
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§A6 Real Geometry, Circuits and Harnack’s Theorem

Let X be a variety of dimension r in PR Then, whenever X
Is non-singular, the underlying set of X may be given the
structure of a real r-manifold. In the case when X is a curve,
then X is a compact 1-manifold and hence isomorphic to a
disjoint union of circles [Milnor]. The only topological invariant
here is the number of connected components. The ‘number 1s
bound by the genus of the complex curve X' (ie. X=V(U), where
the elements of U are polynomials with real coefficients. Thus,
we can also consider the set X' of real and complex zeroes in PC?).

Indeed, the bound remains true even when X is singular.

Harnack's Theorem A9 [Shafarevich]
Let X=V(U) be a curve in PC® given as the intersection of
polynomials with real coefficients, then the number of connected

components of the real curve is less than or equal to pg(X) +1.

We showed earlier that any complex curve X has a
desingularisation X. If C is a real curve, then there is a real
birational isomorphism ¢:C—C between C and a non-singular
curve C ([Shafarevich]). If C is a plane curve, then we will call
the image of each connected component of C under themap ¢ a
circuit. If C is a non-singular plane curve, the circuits are
generally called ovals. (However, the plane curves which we shall
meet are singular, so we shall not meet any ovals) Thus it follows
from Harnack's Theorem that the number of circuits of a (possibly

singular) plane curve C is less than or equal to pg(C) + 1.
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§A7 Finite Mappings

A quasi-projective variety is an open subset of a projective
variety. Let ¢:X—Y be a regular map between two irreducible
quasi-projective varieties X, Y of the same dimension, such that
Y=¢(X). Then ¢ satisfies the condition of finiteness, ie. every
point of Y has at most finitely many pre—imqges on X
Moreover, there is an integer d such that for all points P in a
Zariski open subset of Y the number of pre-images of P on X is

equal to d. The number d is called the degree of the map .

Now suppose that ¢:X—Y is a rational map between two
irreducible curves X and Y. Then the set of points X', where ¢
is regular and the set Y'=¢(X') are quasi-projective varieties.
Thus ¢: X'>Y' is a finite map. Hence, it makes sense to say that
¢ is a map of degree d, because it is clear that we shall mean the

degree of ¢ restricted to Zariski open subset on which it is regular.

If 9:X->Y isregular and Y is non-singular, then it is a
fact ([Shafarevich]) that the number of pre-images of any point
P on Y is =d. Points on Y with fewer than d pre-images are
called branch points, whilst the pre-images of branch points are
called ramification points. One of the main theorems on rational

maps between non-singular curves is the Hurwitz Theorem.

Hurwitz's Theorem A10 [Hartshorne) |
Let 9:X—>Y be a rational (and hence regular) map of degree d
between two non-singular complex projective curves X and Y.

Then their genera are related by the following formula
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2pg(X) - 2 = d(2pg(Y) - 2) + Epexlep-1).

The positive integer ep=1 if and only if P is not a ramification
point, whereas; when P is a ramification point, ep is, intuitively,
a measure of the ramification. Furthermore, the ep's satisfy
2ep=d. We shall only use the theorem for mappings of degree two,
Thus, if P is a ramification point then ep=2 and a branch point

has just one pre-image. Hence the formula reads
2pg(X) - 2 = 4.(pg(Y) - 1) + {number of branch points}.

Let ¢:X—Y be a map of degree d between two varieties and
suppose that Y is non-singular. We say that a point P on X is
a critical point of ¢ , whenever dimTp(X)=dimTy(p)(Y) and we
say that ¢(P) is a critical value. Then a point P on X js a
ramification point of ¢ if and only if it is a critical point. - Thus,
whenever Y is non-singular we may reduce the problem of
determining the branch points of a map to that of determining the

dimension of a linear subspace, a task in linear algebra.

§A8 The ‘Projection Formula

Consider the polynomial map w:PC?-L—PC™ given by
(X1, Xn +1) P (Z1211X 212 (m +1)1X0)

These maps are called projections. The linear subspace &L of

PC" given by ZjayiXj= ..=Zja(m+1)i¥; =0 is called the centre of

projection; the map m is undefined at all points on L.
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Theorem A1l The Projection Formula

Let mp:PCP—-PC™M be the projection with centre L given by
(X1,%n+1) (212144, 21a(m+1)i%y) and let X be a curve in PC.
Denote by ¢=mply the restriction of the projection to X and let
Y=¢(X). Then ¢ is a rational map and by the results of the
previous section is a finite map. Let the degree of ¢ be d.
Suppose that the centre L meets X in the points xi,..Xx,. Then
we may relate the degree of X and the degree of Y, wvia the

degree of the restriction map, by the formula
degX - Z; i(x;,Xn L) = degg-degY

where Z;i(x;,XnL) is the sum of all intersection multiplicities of a

generic hyperplane through L, with X at the points xj, ls<jsm.

Proof (adaptation of [p76 Mumford] for our purposes)

For any hyperplane H we have by Bezout's Theorem, degX=
ZxexH 1&XnH),  where i(xXqH) is the usual intersection
multiplicity of the hyperplane H with X at the point x. Then, if
MCPEC™® is an (m-1)-dimensional linear subspace satisfying

(i) M meets Y transversally,

(i) M does not meet Y in a branch point of ¢, and

(iii) M does not meet Y in any point in the set Y-¢(X) (ie.in the
closure of the image of X under the projection),

then its pre-image M'= tp'i(M)UI. meets X transversally in
degY.degy points of X and non-transversally in xi,..,Xxm. Thus
degX - Zyex M i(x,XnM) = degY.deg¢ and the result follows
from the fact that almost all linear subspaces of dimension (m-1)

satisfy properties (i)-(iii). Moreover, it can be showed that the
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minimum possible value of the sum ZxexoM' i(x,XnM) is attained
by generic hyperplanes ie. the sum is larger for non-generic

hyperplanes.

Theorem A12

Let i(x,XNH) be the intersection multiplicity of a curve XcPCR
with a hyperplane H at a point x on X. Let m:PC%*—PC™ be a
projection, let Y =mlx(X) and suppose that the degree of ¢=mlyg is

one. Then, "intersection multiplicity does not decrease under the

projection” i.e. i(x,XNH) =i(e(x),YN@(H)). In particular,
multiplicity does not decrease under projection le.
mp(x) < mp(tp(x)).

Proof

Without loss of generality, we may assume that the projection is
onto the first m+l co-ordinates. Parameterise X at x. Let the
parameterisation be (xg(t),...,g(t)), where xiJ is a power series in
t. Then, since T is one to one, T is a birational map implying
that (xg(t),...,xr{l(t)) is a parameterisation of Y at m(x). Suppose
that H is any hyperplane in PC® containing L, given by the
homogeneous polynomial G, and suppose that H'=n(H) is given
by the polynomial G'. Then we can easily deduce that G=G} since,
if G wvanishes at a point P, then certainly G' vanishes at m(P)
implying that GIG and we obtain G=G', since G is linear. Thus
i(n(x),HaY)=2Z JordtG(xg(t),...,)g%(t)) + {sum of multiplicities at other
branches through m(x)}
Therefore,  i(n(x),H'nY) 2 i(x,HAC).
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Theorem A13 [Walker]

Let X be acurvein PC® andlet Y=m(X), where m is a linear
projection m:X—Y. Then any point P on X either is the
projection of a point of X or has as its pre-image a linear
subspace which is the join of the centre of projection L and an

osculating r-plane to some point of X on L.
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