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Abstract 

THIS THESIS presents a philosophy for studying the kinematic 
geometry of mechanisms. In particular, the aim is to bring 
together relevant ideas and theorems from modern algebraic 
geometry and to apply them to the special varieties which 
encapsulate the motion of mechansims. 

The philosophy is to associate to each configuration of a 
mechanism a point in a higher-configuration space. The 
constraints on the motion of a mechanism may be expressed as 
polynomial equations in that configuration space, thus defining a 
linkage variety. The thesis describes the geometry of the linkage 
varieties for the planar and spherical four-bar mechanisms, the 
geared five-bar mechanism with gear ratio minus one and the 
Watt six-bar mechanisms. 

The linkage varieties are real affine varieties. But it is 
natural to consider their complex projective closures. The 
geometry of these complex projective varieties are discussed in 
detail. The thesis computes the degree and genus of these varieties 
for these examples and, moreover, a complete list of their 
reductions into irreducible components is given in terms of the 
design parameters of the mechanism. The geometric genus is 
showed to be an invariant of the kinematic chain under inversion. 

For the above examples the real affine linkage variety of 
th~ generic mechanism is an irreducible, compact and non-singular 
curve and therefore diffeomorphic to a disjoint union of circles. 
The thesis presents a general method for calculating the number of 
connected components by considering 'submechanisms' of the given 
mechanism. This philosophy is performed for the above mentioned 
examples and the number is determined in terms of the design 
parameters. 
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INTRODUCTION 

THIS THESIS presents a philosophy for studying the kinematic 

geometry of mechanisms. In particular, the aim is to bring 

together relevant ideas and theorems from modern algebraic 

geometry and to apply them to the special varieties which 

encapsulate the motion of mechanisms. We begin with some basic 

definitions from the mechanisms literature. 

A kinematic chain is a system of finitely many rigid 

bodies jointed together. The rigid bodies are called bars or links. 

A link, which is connected to two, three, four etc. other links, is 

called a binary, ternary_ quaternary etc. link. If we fix some 

of the bars of the kinematic chain, we obtain a mechanism or 

linkage. The study of the relative motion of the moving links with 

respect to the fixed· ones is called the kinematics of the 

mechanism. A mechanism, whose motion is wholly contained in 

the plane, is called a planar mechanism and mechanisms, which do 

not satisfy this property, are called spatial mechanisms. In 

general, the term 'mechanism' is used to describe any jointed 

system, whilst the term 'linkage' is used when the joints are 

hinges ('turning joints') or when the joints are 'simple'. 

Technically, a 'simple' joint is one of the lower order pairs. Note 
. 

that for planar mechanisms the only 'simple' joints are hinges. The 

author hopes that the term 'hinge' is intuitively clear. The effect of 

hinging two rigid bodies is like that of pressing a drawing pin 

through two strips of strong card, so that the strips are free to 

turn about the pin. Indeed, the reader is urged to make models 

from card and drawing pins! Finally, the reader is warned that 
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there is no consistent definition of the terms 'mechanism' and 

'linkage' in the literature. A mechanism consisting of n bars is 

called an n-bar or n-link mechanism. 

If the mechanism has one degree of freedom, then the locus 

of any point rigidly attached to one of the moving bars is a curve 

called the coupler curve. The tracing point is called the coupler 

point and the bar to which the coupler point is attached is called 

the coupler bar. 

Throughout the thesis we shall need a diagramatic notation 

for planar mechanisms. We shall denote a hinge by an open 

circle o. To describe any kinematic chain it is sufficient to denote 

which hinges are a fixed distance apart during the motion; we 

shall do this by joining such hinges by a line: 0 o. For example, 

the four-bar kinematic chain may be denoted in diagram form as 

Let us restrict ourselves, for the time being, to linkages 

when the bars are jointed together only by hinges. Then it can be 

showed that planar linkages with one degree of freedom have an 

even number of bars greater than or equal to four. Thus, the 

simplest example is the four-bar which has just one kinematic 

chain. However, there are 2 possible six-bar kinematic chains 

(see Chapter 4 for details); 16 possible eight-bar kinematic chains 
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[Klein]; whilst there are an incredible 230 ten-bar [Davies&Crossley] 

and 6856 [Kiper&Schian + 1 case] twelve-bar kinematic chains. 

The great explosion of interest in mechanisms came during 

the industrial revolution and the steam engine era. The most 

notable event was James Watt's (1736-1819) discovery in 1784 

that a certain four-bar coupler curve could be used for an 

approximate straight-line motion to drive the piston rod on one of 

his steam engines. Approximate and exact straight-line motions 

proved to be the driving force for many of the investigations into 

coupler curves of mechanisms in the following years. Three other 

straight-line approximations by four-bar coupler curves were later 

discovered by R. Roberts (1789-1864), P. L. Chebyshev 

(1821-1894) and O. Evans (1755-1819). The production of exact 

straight-line motion by a planar linkage remained unsolved until 

1864 when A. Peaucellier (1832-1913), an officer of the French 

Army Engineers, published his solution of the problem [Peaucellierl. 

The reader might be interested to know that Peaucellier's 

mechanism is used In the air conditioning machinery in the 

basement of the Houses of Parliament, London. 

Before the publication of Reuleaux's (1829-1905) work 

[Reuleaux] in 1875, heralding a turning point in the study of 
. 

mechanisms, the approach to mechanism design was purely trial 

and error. Reuleaux. suggested that, instead of investigating 

individual mechanisms designed for specific purposes, one should 

study systems of finitely many rigid bodies and how they are 

connected. This led to the present concept of kinematic chain. 
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The first mathematical analyses of the coupler curves of 

mechanisms were made, as one might expect, on the four-bar 

linkage. These appeared in [Chebyshev] 1854 and in [So Roberts] 

1875, the same year as the publication of Reuleaux's classic work. 

Chebyshev gives an analytic description of how approximate 

straight-line motion may be attained by four-bar coupler curves 

and later in [Chebyshev 1899] he gives an analysis of the Watt 

linkage (i.e. the four-bar which Watt used for approximate 

straight-line motion). 

On the other hand, S. Roberts (1827-1913) gives an analysis 

of the coupler curve of the four-bar linkage from an algebraic point 

of view and proves his Triple Generation Theorem (see Chapter 5): 

a result which is invaluable in coupler curve synthesis. It is of a 

historical interest to note that the equation of the four-bar coupler 

curve was well-known in the early 1800's, although it is unclear 

who first discovered it. Further results on the four-bar were 

achieved by [Johnson] and [Cayley] in 1876, [Bennett] in 1922 and 

[Morley] in 1923. By far the most intriguing result on mechanisms 

of this period is Kempe's Theorem [Kempe] which states: 'any plane 

curve of the nth order may be generated by linkwork' Le. any 

plane curve is part of the coupler curve of some linkage. 

More recent work on the geared five-bar and six-bar 

mechanisms may be found in [Primrose et all and [Freudenstein et 

al]. The general approach to the study of coupler curves taken by 

these authors and others depends entirely on being able to write 

down, quite explicitly, the defining equation of the coupler curve; 

the same approach which Cayley and others were using at the 
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turn of the century in their studies of the four-bar and 

slider-crank linkages etc.. These authors determined the degree 

and genus of the coupler curves and the multiplicity of the circular 

points at infinity (assuming that the curve is irreducible) for the 

geared five-bar mechanisms and the six-bar linkages. They also 

gave an upper bound for the number of circuits of these curves; 

but, unfortunately, there are gaps in the proofs. 

It is worth pointing out that, although the question of the 

irreducibility of the general coupler curve of a given mechanism is 

fundamental to the geometry, in all examples of engineering 

interest this remains an unproved hypothesis. The mechanisms 

literature has many of these well known "folklore" results for 

which no proofs exist. For example, the reductions of the planar 

four-bar have been known for over a century, but no proof has 

been published until recently [Gibson& Newstead]. 

It becomes apparent that despite the tremendous growth in 

techniques of mechanism synthesis (i.e. 'finding the best 

mechanism to do the job') in the last hundred years, little or no 

progress has been made in the study of coupler curves from an 

algebraic-geometric point of view. 

A new general philosophy for the study of the motion of 

mechanisms, initiated in [Marsh;Gibson& Newstead], is to associate 

to each configuration of a mechanism a point. In a 

higher-dimensional configuration space. The constraints on the 

motion of a mechanism may be expressed as polynomial equations 

in that configuration space, thus defining a linkage variety. A 
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point on that variety corresponds to a configuration of the 

mechanism. It should be noted that the concept of a configuration 

space has been exploited in many other areas of science, but it 

seems to have been neglected in the field of Machine and 

Mechanism Theory. 

Understanding the geometry of these linkage ~arieties is a 

fundamental and open problem of the subject. Coupler curves, or 

surfaces for mechanisms with two degrees of freedom etc., are 

obtained from these varieties by a birationallinear projection. 

For a natural study of these varieties we complexify and 

homogenise their defining equations thus giving a complex linkage 

variety in some complex projective space. We may then apply the 

machinery of algebraic geometry to obtain substantial information 

about the linkage varieties.· In particular, this provides a .natural 

approach to determining the degree and genus of the coupler 

curves. The first step is to determine the degree and genus of the 

linkage variety. Then we deduce the results for the coupler curves 

via the Projection Formula which relates the degree of a variety 

with that of its image under linear projection. Further, since the 

coupler projection is a birational map, the coupler curve has the 

same genus as the linkage variety. 

For genenc mechanisms of mobility one the real linkage 

variety is a non-singular curve. Thus, it is a compact 

one-dimensional real manifold and therefore diffeomorphic to a 

disjoint union of circles called the connected components. 

Determining the number of components is a central problem and is 
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unlikely to be an easy matter so one seeks techniques which will at 

least apply to examples of engineering interest. Such a technique is 

provided in §1.4 and applied to the planar four-bar in §1.4, the 

spherical four-bar in Chapter 2, the geared five-bar in §3.3 and 

the Watt six-bar in §4.6. 

The philosophy, which is emphasised throughout the thesis, 

is based on the following observation. Let M be a mechanism 

with linkage variety V and let MI be a sub mechanism of M 

with linkage variety VI. We mean by sub mechanism, that MI IS 

obtained from M by removing a number of links. A configuration 

of M will determine a unique configuration of MI and this is 

realised, geometrically, as a natural linear projection of V onto 

VI. Indeed, one expects such a mapping to be finite in the technical 

sense of algebraic geometry on Zariski open subsets of V and VI 

i.e. between quasi-projective varieties. There is a fixed. integer 

d ~ 1, such that for any generic configuration of MI there are d 

configurations of M. Thus, for the four-bar we may take any 

moving link and for the Watt I we may take an underlying 

four-bar. In both of these cases d = 2. For the real varieties V, VI 

the topology of V is related to d-fold coverings of VI. Thus, by 

choosing some or all possible submechanisms 

deduce information about the topology of V. 

MI, we hope to 

Further, the 

projections between the complex varieties provide a technique for 

yielding information about the reductions of V from the lists of 

possible reductions of VI. 

In §4.6 we describe an important and very intuitive result: 

that the (residual) linkage variety of kinematically inverted 



- 8 -

linkages, under a quite general hypothesis, are (complex) 

birationally isomorphic and that their real (residual) linkage 

varieties are real isomorphic; this is explained in detail in §4.6. In 

particular, this shows that the linkage variety encapSUlates the 

relative motion of the kinematic chain despite the fact that we 

derive its defining equations by fixing a bar. Moreover, it shows 

that the geometric genus of the (residual) linkage variety is an 

invariant of the kinematic chain. 

In Chapter 1 we describe the geometry of the planar 

four-bar. The basic geometry of the linkage and Darboux varieties 

was first obtained by [Marsh;Gibson& Newsteadl and this work is 

described in detail in the first section. In the following two sections 

we present two methods of finding the list of possible reductions of 

the four-bar linkage varieties, both different from the solution 

given in [Gibson&Newsteadl This provides an illustration' of the 

techniques which we will use for the more complicated geared 

five-bar and Watt I six-bar mechanisms. In §1.4 we describe, 

more fully, the philosophy outlined above for determining the 

topology of linkage varieties. This philosophy is carried out for the 

planar four-bar; here the submechanisms are single links whose 

linkage varieties are circles. Thus, we have natural 2-fold 

coverings of circles and the topology is related to the number of 

critical points of these coverings. The result is that the generic 

four-bar mechanism has one or two components determined by a 

simple condition on the design parameters. This provides an 

alternative to the Morse Theoretic proof of the same result given in 

[Gibson&Newstead]. Moreover, the critical points relate to a 

concept familiar in the mechisms literature, namely, that of the 
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'limiting positions'. This leads to a natural way of classifying 

coupler curves based on the eight Hain types [Hain 1964]. 

In the next section we describe the geometry of the Segre 

quartic surface, a complete intersection of two quadric 

hypersurfaces in pa:4. The geometry of this surface is important 

in the discussion of the four-bar coupler curves in §1.6 and of the 

coupler curves of the geared five-bar, when the coupler point is a 

hinge, in §3.4. In both of these cases the linkage varieties are the 

intersection of a net of quadric hypersurfaces in pa:4. We recall 

that the coupler curves are obtained from the linkage varieties by 

linear projection. Then, in the cases at hand, the centre of 

projection is a line and there is a unique pencil of quadrics in the 

net containing that line. Provided that pencil is generic, a term 

which we make precise in the text, the intersection of every 

quadric in the pencil is a Segre quartic surface containing ,exactly 

sixteen lines one of which is the centre. Thus, the coupler 

projection is a projection from a line on the surface giving a 

birational map between the projective plane and the surface. We 

deduce, therefore, that the coupler projection is a generically 1-1 

mapping from which we can deduce a number of properties of the 

coupler curves. These properties are discussed in § 1.6. 

Chapter 2 presents a non-planar mechanism namely the 

spherical four-bar. The author realised that the technique 

developed for determining the topology of the real linkage varieties 

need not be restricted to planar mechanisms. The basic geometry 

of the linkage variety was done in [Gibson&.Selig] and we give a 

summary of the results which we shall need. In the spherical 
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four-bar case there are natural maps of the linkage variety onto 

circles. Determining the critical points of these maps, yields the 

topology of the linkage variety. This result is entirely new. 

In Chapter 3 we return to planar mechanisms with that of 

the geared five-bar mechanism with gear ratio -1. The linkage 

variety is showed to be isomorphic to an intersection of three 

quadrics in p[4. In § 1.1 we describe the basic geometry of the 

linkage varieties. In particular, we show that it meets the 

hyperplane at infinity in two ordinary double points and four 

simple points. Hence, we may deduce that the linkage variety is a 

curve. Further, we discuss the condition for singularities to occur 

off the hyperplane at infinity. Section 3.2 is devoted to the 

reductions of the linkage variety. We give a complete list in terms 

of the design parameters. We show that the possible reductions are 

8, 6+2, 4+2+2 and 4+22. In 'particular, we show that the generic 

linkage variety is an irreducible curve of degree 8 and geometric 

genus 3. The list of reductions is an interesting new result. 

In §3.3 we restrict our attention to the real linkage variety. 

In the generic case the real linkage variety is an irreducible 

non-singular curve thus diffeomorphic to a disjoint union of circles. 

By Harnack's Theorem this number is s4. We shall show how to 
. 

determine this number in terms of the design parameters using 

the general philosophy which we present in §1.4. Finally, in §3,4 

we describe the geometry of the coupler curves. When the coupler 

point is the hinge, we may apply the geometry of the Segre quartic 

surface as mentioned earlier. The result is that the generic coupler 

curve has degree 6, geometric genus 3 and ordinary double 
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points at the circular points at infinity. This is the case described 

by [Freudenstein&Primrose]. For the general coupler point we 

show that the generic coupler curve has degree 8, geometric genus 

3 and ordinary triple points at the circular points at infinity. 

Furthermore, we deduce the reductions of the coupler curves. 

The Watt mechanisms present us with a number of 

problems which were not encountered in the previous examples. 

The main problem is that the linkage varieties are not set-theoretic 

complete intersections. In the previous examples we have relied on 

Bezout's Theorem to give us the degree of the variety so that we 

might deduce the degree of the residual linkage variety. Perhaps 

we should explain the term 'residual' here. We recall that the 

starting point is a set of polynomial constraints defining a real 

affine curve, which we then complexify and projectivise by 

introducing a complex variable w, so that we may apply the 

general theory of complex projective varieties. However, the 

projective set, which we produce, is not the smallest projective set 

containing the original variety. Indeed, we may introduce 

components in the hyperplane at infinity w = O. We define the 

residual variety 1(,' to be the variety obtained from the linkage 

variety 1(, by removing any irreducible components lying in 

w = O. The residual variety is the projectivisation in the technical 

sense which we require. In the first examples these 'extra' 

components were curves and therefore presented no problem since 

we could subtract the sum of their degrees from the degree of 1(, 

to obtain the degree of 1(,'. However, in the Watt case these 

varieties are 2-planes and therefore we must argue very 

diff eren tly. 
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In §4.1 we set up the basic geometry of the Watt I and II 

linkage varieties and in §4.2 we describe the common Darboux 

variety of these mechanisms. We show that the Darboux variety 

is isomorphic to an intersection of two cubic surfaces in pa:;3. The 

variety consists of a line and a curve of degree 8 which we shall 

call the residual Darboux variety J),. In §4.3 we show that these 

two varieties are closely related thus giving the key tool for 

calculating the degrees of the Watt I and II linkage varieties. 

Moreover, we can deduce by careful reasoning the manner In 

which these varieties meet the hyperplane at infinity. 

The reductions of the linkage varieties present a similar 

problem. However, we are able to deduce the reductions of the 

linkage variety from the reductions of the residual Darboux 

variety. Indeed, a component of cD' corresponds to a component 

of ~' of twice the degree: This list is obtained in term~ of the 

design parameters in §4.4. In §4.5 we give a discussion of the 

Watt I coupler curves. 

In Chapter 5 we are interested in the real geometry of the 

four-bar coupler curves. Here the emphasis lies on the natural 

classification of coupler curves hinted at in the above discussion of 

the critical points of the 2-fold coverings of circles in Chapter 1. 

We' begin with the easier task of giving a classification of the 

complex coupler curves where there are fewer cases to consider. 

This analysis forms §5.2. In this chapter the real topology of the 

Segre quartic surface plays an important role. Therefore, we 

devote a whole section, §5.5, to its description. Sections 5.3, 5.4 and 

5.6 prepare the way for a graphical analysis of the coupler curves. 
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In particular, we wish to determine· exactly which types can occur 

by graphical methods. This is by no means easy. Indeed, we need 

sections 5.3-5.6 to give sufficient mathematical background before 

we can even begin this analysis. A catalogue of four-bar curves 

showing an example of each of the types found is presented in 

§5.7. This programme of work is still in its early stages, but it is 

clear that all the necessary techniques are available. This analysis 

ties up very nicely with the work of Muller [Muller]. 

The author has provided an appendix outlining all the 

results from algebraic geometry which will be used throughout the 

thesis. This gives some indication of how the theorems may be 

applied and references to where further discussion and proofs of 

the theorems may be found. In the text these theorems and 

sections in the appendix. to which the reader is referred. are 

prefixed with an 'A'. 
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CHAPTER 1. THE FOUR-BAR MECHANISM 

Introduction 

Despite the apparent simple structure of the four-bar 

mechanism, the reader might find himself surprised by the wide 

variety displayed by the (real) coupler curves. The simplest 

non-degenerate examples look very much like circles .. while more 

complex ones may possess upto three real double points (which 

may be acnodes, crunodes~ tacnodes or cusps) and have as many as 

eight real inflexions. Perhaps it is the simplicity, yet variety that 

makes the mechanism so popular and useful to the mechanical 

engineer. 

One example with which the reader may be familiar .. is the 

four-bar used in the design of the jib-crane and found on many 

building sites, scrapyards and docks. A typical example is showed 

in Fig 1.1. Here the structure 

of the crane IS a 
B 

Fig. 1.1 

quadrilateral OABe with 

bar OA fixed. The shape of 

the coupler curve is used to 

guide the gripper or pulley 

through a set path 

determined by the 

dimensions of the crane. The 

crane generally, has In 

addition to the four-bar 

motion~ the freedom to 

revolve about its base. 
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On a much smaller scale four:"bars~ whose coupler curves 

approximate straight-line motion, are indispensible to the engineer. 

There are four famous classes of mechanisms which give 

straight-line approximations each named after their discoverer. 

These are the Chebyshev, Roberts,. Evans and Watt mechanisms. 

Figure 1.2 shows how an Evans mechanism can be used in a 

measuring or recording apparatus. Finally, the reade~ is referred 

to Hain [Hain,19611 who gives examples of applications of four-bar 

coupler curves which have one .. two or three cusps. 

, . ., 
\ 

\ 

\ 

\ 

o 

Fig. 1.2 

This first chapter serves two purposes. Firstly, it is a study 

of the geometry of the planar four-bar, illustrating the general 

strategy and introducing much of the terminology used in later 

chapters. Many of the results of this section are well known, but 

the emphasis is on developing a sufficiently general framework and 

methodology, so that similar results can be derived for any planar 
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mechanism. Secondly, the four-bar provides a testing ground on 

which we can tryout new techniques. 

In §1.1 we recall from [Marsh;Gibson&Newsteadl the basic 

geometry of the linkage curve·:R, and the Darboux curve .D. In 

§1.2 and §1.3 we introduce two further approaches to determining 

the reductions of :R, to the one given in [Gibson&News~eadJ. These 

illustrate the methods which we shall use for the more complicated 

Geared five-bar mechanism in Chapter 3 and the Watt mechanism 

in Chapter 4. In §1,4 we describe a new technique for determining 

the topology of the linkage variety which provides the basis for 

calcula ting the topology of the linkage variety of the spherical 

four-bar, the geared five-bar and the Watt six-bar in the following 

chapters. In §1.6 we view the coupler curves as a projection from 

a line in 4-space of the residual curve :R,' (as in 

[Marsh;Gibson&Newstead)) and we recall from [Gibson& Neyvstead) 

how we can explain the geometry of the projection in terms of the 

geometry of the Segre quartic surface. Thus, as a necessary 

preliminary we dedicate §1.5 to a description of this surface and 

some of its properties. 
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S1.1 Geometry of the Linkage and Darboux Curves. 

Z4 

Fig. 1.3 

Let the sides of the quadrilateral have 

positive lengths dl, d2, d3, d4 and 

directions glven by the unit complex 

numbers zl, z2, z3, z4 as showed in 

Fig. 1.3. We fix the fourth link by setting 

z4 = -1. The constraints of motion 

are IZjl = 1 for j = 1, 2, 3 and the single complex relation 

expressing the closure of the quadrilateral. Set Zj = Xj + iYj for 

j = 1,2,3 with x} Yj real numbers. Then the constraints of 

motion may be expressed by the real equations 

dtxt + d2x2 + d3x3 = d4 

dtYt + d2Y2 + d3Y3 = 0 
2 2 2 2 2 2 1 xt + Yl = ~ +Y2 = x3 +Y3 = 

Thus, we obtain five equations in SlX unknowns defining an 

algebraic variety in 1R6. To study real affine varieties it is natural 

to 'consider them as "real parts" (i.e. the set of real points) of a 

complex projective variety. Therefore, we shall complexify and 

projectivise the equations by allowing the variables Xl, Yl, x2, Y2, 

x3, Y3, to be complex and introducing a complex homogenising 

co-ordinate w to give the following set of equations 
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dtXl + d2X2 + d3x3 = d4W 

dtYt + d2Y2 + d3Y3 = 0 
2 2 2 2 2 2 xt + Y1 = ~ + Y2 = x3 + Y3 = 

(1.1) 

These equations define a projective variety !R. in the configuration 

space PC6 which we refer to as the linkage variety. For 

convenience, we shall call the hyperplane w = 0 the hyperplane at 

infinity. 

It is showed in [Marsh,;Gibson&Newstead] that there is a 

necessary and sufficient condition for equations (1.1) to have at 

least one real solution. If we re-label d!, d2, d3, d4 in increasing 

order of magnitude as el, €2, €3, e4, then that condition may be 

expressed as e4 s e1 + e2 + e3· Whenever this condition is 

satisfied, we shall say that we are in the constructible case. 

Henceforth, we shall assume that we are in the constructible case, 

so that equations (1.1) do possess a real solution. 

By setting w = 0 in equations (1.1) one obtains the 

intersection of !R. with the hyperplane at infinity. We find that 

Yk = ± i xk (k = 1, 2, 3) thus giving eight possibilities. The two sign 

combinations +++ and --- give two complex conjugate lines L, L. 

These are given by the equations 

d1Xl +d2x2+d3x3 = 0 

Yk = -i Xk (k = 1, 2, 3) 

The remaining six sign combinations give three pairs of complex 

conjugate points, namely p!, P2 , P3 lying on L, and P1, P2, 
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P3 lying on L. Their co-ordinates are : 

-++: P1 = (O,O,d3,id3,-d2,-id2,O) +--: P1 = (O,O,d3,-id3,-d2,id2,O) 

+-+: P2 = (d3,id3,0,0,-d1,-idl,0) -+-: P2 = (d3,-id3,0,0,-d1,idl,0) 

++-: P3 = (d2,id2,-d1,-id1,O,0,0) --+: P3 = (d2,-id2,-dl,id1,0,0,0) 

To determine the singularities of ~, we note that, if P IS a 

point where the Jacobian matrix ~ of equations (1.1) has 

non-maximal rank, then either P IS a singular point or a 

component of ~ with dimension ~2 passes through P. The 

matrix is 

d1 0 d2 0 d3 0 -d4 

0 d1 0 d2 0 d3 0 

~ = 2x1 2Y1 0 0 0 0 -2w 

0 0 2x2 2Y2 0 0 -2w 

0 0 0 0 2x3 2Y3 -2w 

When w = 0, the singularities are easily seen to be the points P1, 

P2, P3, Pl, P2, P3. Thus, we may deduce that ~ is a curve. 

Since, any component of dimension ~2 would necessarily meet 

w = 0 in L or [ and a simple contradiction follows by observing 

that ~ would have to have non-maximal rank at every point on 

th~ line: this is clearly impossible. 

When w ~ 0, singularities occur if and only if Y1 = Y2 = Y3 = O. 

Substituting Yl = Y2 = Y3 = 0 into equations (1.1), gives the condition 
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We shall refer to condition (1.2) as the Grashof equality. Writing 

dl, d2, d3, d4 in increasing order of magnitude as el, ez, ~, e4, 

(1.2) yields four distinct possibilities (using the notation of 

[Gibson&Newstead]): 

(I) el + e4 = e2 + e3 but none of the cases below. 

(l') el + e2 + e3 = e4 

(II) el = e2 ~ e3 = e4 

(Ill) el = e2 = e3 = e4· 

The four cases are called the circumscriptible, the collapse, the 

kite/parallelogram, and the rhombus, respectively. Whenever 

condition (1.2) does not hold, we say that we are in the generic 

case: thus, in the generic case ~ has no singular points with w ~ O. 

The numbering of cases indicates the number of singular points of 

~ with w ~ 0: the singular points have the form (±i,O,±i,O,±i,O,i), 

so that in cases (I) and (I') there is just one such singular point 

and in cases (In and (Ill) there are two and three singular points 

respectively. 

To obtain the degree of ~ one observes that equations 

(1.i) express it as a set theoretic complete intersection of five 

hypersurfaces in pa:6 : two hyperplanes and three quadric 

hypersurfaces. Thus, Bezout's Theorem (A3) yields that ~ has 

degree 8. Therefore the residual curve ~', obtained from ~ by 

deleting the two lines at infinity, has degree 6. Moreover, the 

points Pl, P2, P3, Pl, P2, P3 are singular on ~, but not on the 

lines at infinity: thus they must lie on ~I. Hence, ~I intersects 
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the hyperplane at infinity in precisely six points with intersection 

multiplicity one. Therefore ~I meets the hyperplane 

transversally at each of these points. Since the intersection 

multiplicity is always larger than the multiplicity at a point (see 

§A2 for details) it follows that all six points are ordinary double 

points of ~ and simple points of ~I. 

We may deduce further information about singular points 

with w ~ 0 (Le. when the Grashof equality holds) by making a local 

co-ordinate calculation. Make ~ affine by setting w = 1 in 

equations (1.1) and suppose that ~ has a singular point of the 

form (£1,0,£2,0,£3,0,1) where £j = ±1. Applying the affine 

transformation Xj~Xj+£j and leaving Yj fixed (j=1, 2,3), we 

may assume that the singular point is at the origin. Using 

equations (1.1) and the Implicit Function Theorem, we may 

smoothly eliminate variables X3, Y3, Xl, x2 to obtain a cU,rve in 

the (Yl,Y2)-plane with a singular point at the origin with equation 

Details of this calculation are given in [Marsh]. The discriminant of 

the quadratic part is ±4dld2d3d4 which is always non-zero. We 

conclude therefore that the singular points are always ordinary 

doyble points. 

In §1.2 and §1.3 we describe two approaches to the 

problem of determining the possible reductions of 1(,1 into its 

components (Le. its irreducible subvarieties). The list in 

[Gibson& Newstead] was obtained by arguments involving the 
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Genus Formula (Theorem A8). This approach suffers two 

drawbacks. Firstly, it gives little illumination to the geometry of 

R' and secondly, it does not provide a suitable method of working 

out the reductions for more complicated mechanisms. 

In preparation for the first approach we introduce a second 

variety. The reader may recall that we began with the single 

constraint of motion 

To express it as two real relations one adds the complex conjugate 

condition 

However, the complex numbers z1, z2, z3 are unit length so we 

may express the second equation as 

Homogenising the two equations by introducing a new variable 2.1, 

we obtain 

1 
(1.3) 

Regarding z1, z2, 23, 2.1 as co-ordinates in p[3, then equations 

(1.3) define the intersection of a hyperplane and a cubic surface, 

giving a plane cubic curve .D. It was Darboux [Darbouxl who in 
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1879 first studied this curve, connecting the motion of 

quadrilaterals with the above cubic. Henceforth, we shall refer to 

this cubic as the Darboux cubic. It is easy to show that the cubic 

is singular if and only if the Grashof equation holds (see [Marsh] for 

details). In particular, in the generic case the cubic is non-singular 

and therefore irreducible. In cases (I) and (l') the cubic is nodal, in 

case (II) the cubic is a conic and chord and in case (I1I) the cubic is 

a triangle. Since equations (1.3) have real coefficients, we may ask 

which real types of cubics occur. We find that we can make two 

further distinctions. Firstly, we may show by looking more 

carefully at the local co-ordinate calculation described above, that 

cases (I) and (1') give crunodal and acnodal cubics respectively. 

Secondly, when we are in the generic case, we can distinguish 

between the two types of real non-singular cubics. One can 

determine the type, for instance, by calculating the number of real 

tangents to the cubic through the point (0,0,0,1): for in ~he one 

component case there are two such tangents and in the two 

component case there are four. The details of this may be found in 

[Marsh]. The result is that when el +e4 < e2 +e3 we have two 

components and when el +e4>e2+e3 we have just one component. 

§1.2 The Reductions of the Linkage Variety - Approach 1 

We may now proceed to describe the first approach to the 

problem of determining the reductions of ~'. A similar approach 

will be used in Chapter 5 for the Watt six-bar mechanism. 

Consider the linear projection re: pa:;6 ~ pa:;3 given by 
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Then the· restriction map ~ = itl:R,1 of it to the residual linkage 

variety maps :R,I into the Darboux variety .D. The centre of 

projection is given by xl +i Yl = x2+ i Y2 = X3+ i Y3 = w = ° i.e. the line 

at infinity L. We shall use the Projection Formula (Theorem All) 

to determine the degrees of the components of :R,I, given the 

reduction of .D. The first step is to show that the map ~ is finite 

(see §A7 for a formal definition) i.e. that no component of :R,' 

maps to a point on .D. To do this it is sufficient to show that any 

point P on .D has only finitely many pre-images on :R,I. 

Let P = (Zl,Z2,Z3,Z4) be any point on .D. If z4 = 0, then its 

pre-images satisfy w = ° and is therefore a subset of the three 

points on [: a finite number. Now suppose that Zj = ° for some 

j = 1,2,3 then P is one of the points 01 = (-d4,0,0,dl), 02 = (0'-~4,0,d2) 

or 03 = (0,0,-d4,d3)' However, these points have no pre-image on 

:R,I: they are the points added to ~(~I) to make the image Zariski 

closed. (The reader should note that the image of a projection is 

Zariski closed, whenever the map is regular. However, in this 

situation the centre of projection meets ~I at the points P1, P2 

P3 and hence fails to be regular at these points. Thus we take the 

closure of the image by adding finitely many points.) We may now 

suppose that Zj ~ ° for j = 1,2,3,4. Write Zj = Xj + i Yj and Z4 = -wo 

Then we may eliminate variables Yl, Y2, Y3, w by writing them 

as polynomials in xl, x2, x3, z1, z2, z3, z4. Equations (1.1) become 
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dlXl + d2x2 + d3x3 = -d424 I 
i(dlxl + d2x2 + d3X3) - i(dl2l +d222+d323) - ° 
zl (Zl- 2X1) =Z2(Z2- 2X2) = z3(z3- 2x3) = z~ -

Finally, we may use the last three equations to write xl, x2, x3 as 

rational maps in the variables 21, 22, 23, 24. Therefore, we can 

write all the variables Xl, x2, x3, Yh Y2, Y3, w as rational maps in 

21, 22, 23, z4· Thus we have showed that each point of J) has a 

unique pre-image on ~'. Thus cp has degree one implying that 

~' and .D are birationally eQuivalent. This result was proved for 

a more general case in [Gibson&Newstead]. 

Eliminate 23 using the linear equation of (1.3) to obtain J) 

as a cubic in the (21,22,24)-plane. Then J) meets 24=0 in the 

three points PI1 = (0,1,0), P'2 = (1,0,0) and P'3 = (d2,-dl,0). These 

points plj have, as their pre-image on ~', the points Pj lying 

on L. It is easily seen that the points Q'l = (d3,0,-dl), 

Q'2 = (O,d2,-d3) and Q'3 = (0,0,1) have no pre-image on ~:. 

Therefore these points are the closure points of the image cp(~'). 

By the general theory of projections (Theorem A13) they are the 

images of an osculating n-plane to ~' at points lying in the centre 

of projection L. But the tangents to ~' at points on L do not lie 

in ,the hyperplane w = ° and it follows that the points Q'j are the 

images of these tangent lines; indeed, the tangent to Pj maps to 

Q'j. Note that no line component of J) is one of the lines 2j = O. 

Thus any line is necessarily one of the lines through the pairs of 

points PljQ'j whose pre-image on ~I is a component of ~' 

passing through PjPj and no other points of ~' meeting w = O. 

It follows that the pre-image is a real conic. The reductions are 
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now easily determined. When .D is three lines !R' is three real 

conics, when .D is a line and conic !R' is a real conic and real 

quartic, and finally, when .D is an irreducible cubic then !R' is 

an irreducible sextic. 

Thus, in the generIC case, !R' is an irreducible sextic of 

genus one: the genus of a non-singular planar cubic. In the 

circumscriptible case, !R' is irreducible with one ordinary double 

point and has the genus of a nodal cubic, i.e. zero. When we are in 

the kite/parallelogram case, the Darboux cubic reduces to a conic 

and chord, thus !R' reduces to a conic and quartic (both having 

genus zero) intersecting in two points. Finally, in the rhombus case 

we deduce that !R' reduces to three conics,. so that each meets the 

other two transversally in one point. 

It should be pointed out that in [Gibson& Newstead] the 

construction of the Darboux variety is put in a more general 

setting. The authors show that for any set of constraints of the 

form 

for l!i j !i s, and l!i k!i r 

where zl, ... ,zr are complex numbers and fl, .. ',!s are complex 

polynomials in those variables, we may associate two varieties 

Whose geometries are related. The first variety is obtained by 

setting Zk=Xk+iYk for l!ik!ir, and fk=uk+ivk for l!ik!ir, 

where uk and Vk, are real polynomials in the real variables xk, 
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Yk. Then we may rewrite the constraints as uk = vk = 0 and 
2 2 2 xk + Yk = 1, defining a variety in IR r. Complexifying and 

homogenising these equations by introducing the complex 

homogenising variable w yields a variety in p[2r given by the 

homogeneous equations 

U'k (Xl,Yl, .. ·,Xr ,Ynw)= 0 : V'k(Xl,Yl, .. ·,Xn Ynw )= 0 

and 2 2 2 
xk + Yk = w for l~k~ s. 

This variety is the generalised form of the linkage variety which 

we shall denote by ~. 

The second variety that we may derive from the set of 

constraints IS obtained by conjugating the polynomials 

fk (Zl,. .. ,Zr) = 0 to give the polynomials I k(Zl,,,,,Zr). Then, since 
1 the complex numbers are unit length, Zk = Zk and we. may 

substitute for zk and clear the denominators of the polynomials 

fk to give the set of polynomials Fk(Zl,,,,,Zr)' Thus the set of 

equations fk = Fk = 0 for 1 ~ k ~ s defines a variety in [r. We may 

now homogenise these equations by introducing the homogenising 

parameter w to give a variety in p[r given by the homogeneous 

equations 

f'k (Zl,,,,,Zr,w) = 0 F'k (Zl,,,,,Zr,w) = 0 for 1 ~ k ~ s 

This variety is the generalised form of the Darboux variety which 

we shall denote by n. 

The main result of [Gibson&Newsteadl is that, if we remove 

from ~ all components lying in the hyperplane w = 0 to give a 
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residual variety :R' and if we remove from J) all components 

lying in anyone of the hyperplanes zk = 0 (l~k~r) leaving a 

residual variety J)', then the varieties :R' "and J)' are 

birationally isomorphic. We shall give a slightly different proof to 

that given in [Gibson&Newstead]. Consider the projection 

Tt: (Xl,Yl, ... ,Xn Yr,w) H (Xl + iYl"",xr + iYnw). First we will show 

that the image of :R' is J)' and that the projection is generically 

one to one; thus by Lemma A3, Tt is birational. Note that it is 

sufficient to consider the Zariski open subsets of :R' of points with 

w;.e O. Let P = (Xl,Yl, ... ,xr ,Yr,1) be a point on :R' with w;.e O. 

Since w;.e 0 we may write zk = xk + iYk = l/(Xk - iYk) for all k. 

Hence, 

f'k(Xl +iYl , ... ,xr +iYr,l)= fk(Xl +iYl , ... ,xr+iYr) = Uk(Xl,Yl, ... ,Xr ,Yr) + 

iVk(Xl,Yl,···,Xr,Yr) = U'k (Xl,Yl,···,Xr ,Yr,l) + i V'k (Xl,Yl, ... ,xr ,Yr,l) 

and since U'k(P) = V'k(P) = 0 we have f'k(Tt(P)) = O. Further, 

F'k(Xl+ iYl,.··,xr +iYr,1) = fk(l/{Xl+ iYl),. .. ,l/(xr +iYr)) = 

fk{Xl- iYl , ... , xr - iYr)' 

Conjugating the right hand equation yields F'( Tt(P» .. 0, SInce 

vanishes, whenever Uk(Xl,Yl, ... ,Xr ,Yr) = Vk(Xl,Yl, ... ,Xr ,Yr) = O. Thus 

Tt(P) lies on J)'. To show that the restriction of TtI:R' IS 

generically one to one let P = (Zl"",Zr) be any point of .u' with 

Zl ;.eO"",zr;.e 0 and suppose that and 
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(X'1,y'1, ... ,X'r,y'r,1) are two distinct points on ~' which map to 

P. Then xj+iYj = x'j+iy'j, and (xj+iYj)(xriYj)=x~ + Y~ = X'k2 + 

y'k2 = (x'j+iY'j)(x'riy'j). Thus (xj+iYj)[(xriYj)-(x'riy'j)]= O. 

Hence, either (xj+iYj) = 0 contradicting the fact that Zk ~ 0 or 

xriYj=x'riy'j. In the latter case the above condition together with 

the condition xj+iYj = x'j+iy'j yields xk = X'k, Yk = y'k. Thus, P has 

a unique pre-image. Combining this with the fact that 1t IS 

rational, yields that it is a birational map between ~' and oD'. 

§1.3 The Reductions of the Linkage Variety - Approach 2 

In this section we introduce a new technique which we 

need to determine the reductions of the four-bar is this section and 

to determine the reductions of the geared five-bar in Chapter 3. 

An extension of this technique will then be used to determine the 

topology of the real linkage varieties of the generic four-bar in the 

next section and the generic spherical four-bar, the generic geared 

five-bar and the generic Watt six-bar in Chapters 2, 3 and 4 

respectively. We now describe the philosophy of· this technique. 

Suppose we have a mechanism M with linkage variety V, 

and a submechanism M' with linkage variety V' : by this we 

mean that M' is obtained from M by removing a number of 

links. Any configuration of M will determine a unique 

configuration of M' (Le. for any point P on V we may associate a 

point P' on V' obtained from P by projecting onto some of the 

co-ordinates), yielding a natural projection it: V -+ V', One expects 

1t to be a finite mapping. Indeed, there should be a fixed integer 
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d ~ 1 such that for almost all (i.e. generic) configurations of M' 

there are just d possible corresponding configurations of M. For 

instance, when M is a four-bar we could take M' to be a single 

link and when M is the Watt I mechanism we may take M' to 

be the underlying planar four-bar mechanism: in both of these 

cases d = 2. Of course, for a given mechanism M there are a 

number of possible choices of M' and by considering some (or all) of 

these choices one reasonably hopes to obtain positive information 

about the geometry of V. The particular interest of this point of 

view is that in a number of engineering examples one need only 

consider 2-fold coverings of varieties VI whose geometry we know 

sufficiently well to deduce properties of V. 

For the example at hand we will take VI to be one of the 

moving links of the four-bar. Consider then, the projection 

Ttj:~I-+ Cj from the residual linkage variety to the circle Cj whose 

.. 222. b( ) ( ) equatIon IS Xj + Yj = w gIven y xl,Yl,x2,Y2,x3,Y3,W 1-+ Xj,Yj,W 

for j = 1,2,3. Write equations (1.1) as 

djXj + dkxk + dtxt - d4w = O. 

djYj + dkYk + dtYt = 0 
2222222 

Xj + Yj = xk + Yk = ~ + Yt .= w 

We ~hall now show 

l (1.4) 

(D that in the generic and circumscriptible case Tt j maps 

~I onto Cj with degree 2, 

(iD that in the kite/parallelogram case ~I contains a conic 

component, which is mapped by Tt j to a point, whilst the 

remainder of the curve is mapped onto Cj with degree 2 and 

(Hi) that in the rhombus case ~I is the union of three 
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conics: one of them being mapped by 1'tj to a point and the other 

two mapped with degree 1 to Cj-

Consider a fixed point P= (Xj'Yj'w) on Cj- We can find its 

pre-image by eliminating xr, Yr from equations (1.4) to give 

These equations define a conic and line in the (Xk, Yk) - plane, so 

one expects two solutions in general implying that P has two 

pre-images and exceptionally, when the line is tangent to the conic, 

there is only one solution and P has just one pre-image. We 

cannot exclude the possibility that the conic reduces and that the 

line is contained in the conic: implying that the point has infinitely 

many pre-images (a component of !RI). This yields the conditions 
2 2 2 2 . djxj = d4w, Yj = 0 and ((d4 + dj + dk - da )w - 2d4djXj) = O. The hrst 

two equations imply that the point must be (-d4,0,dj). 

Substituting the co-ordinates of the point into the third equation 

gives the condition 

Further, we may deduce that the pre-image is given by the 

equations 

djXj + dkxk + drxr - d4W = 0 

djYj + dkYk + drYr = 0 
2 2 2 2 2 

dk (xk + Yk) = d.w 
2 2 2 2 -2d4(d4W + dkXk) + 2dkd4Xk + (d4 + dj + dk - d. )w = 0, 

defining a conic component of !RI. Thus in the generic and 
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circumscriptible cases, all of the projections Tt j are finite and 

have degree two. In the kite/parallelogram case exactly one 

condition of the form dj = d4, dk = d. holds simultaneously, so that 

one of the projections Ttj maps a conic component to a point. In 

the rhombus case all three conditions of the form dj = d4, dk = d. 

hold simultaneously, so that all three projections Tt j, j = 1,2,3 map 

a conic to a point. 

We are now in a position to list the reductions. First we 

note that the only components, which are mapped to a point under 

a Tt j, are the conics described above. We may deduce therefore 

that there are no line components of &1: for a line would have to 

map to either a line component of Cj or to a point, giving a clear 

contradiction. This also rules out the possibility of :RI having a 

quintic component, for :RI would also have a line component. 

Second, we should note that any component of :RI of degree two is 

one of the conics Cj , described above, thus occuring only when we 

are in the· rhombus or kite/parallelogram cases. This fact follows 

from the observation that the centre of projection Ttj is a 3-space 

meeting :RI in the points Pj,Pj- Applying the Projection Formula, 

we find that any conic, which passes through Pj but not through 

Pj , would be mapped by Ttj to a line giving a contradiction; while 

any conic, which passes through both P j and P j (for some j), is 

mapped by Ttj to a point and is therefore one of the conics Cj-

The final step to the list of possible reductions is to eliminate 

the possibility of :RI reducing to two cubics. In this case both 

cubics must be mapped QniQ Cj with degree one: for otherwise one 

of the cubics would be mapped to a point giving a contradiction. 
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From the general theory of finite mappings (see §A7) we know that 

for any map of degree d onto a non-singular curve the number of 

pre-images of a given point is always sd. The required 

contradiction now follows from the observation that one of the two 

cubics passes through at least two of the points Pi, P2, P3, and 

that all three points are mapped to the point 1= (1,i,O) by Tt j, 

implying that I has >1 pre-lmages. The above argum12nts yield 

the following reductions: 

(i) in the rhombus case the three conics Cl, C2, C3 

(in in the kite/parallelogram case a conic Cj (for some j) 

and an irreducible quartic and 

(iH) in the circumscriptible and generic cases an irreducible 

sextic. 

S1.4 The Topology of the Real Linkage Variety 

In this section we restrict our attention to the real 

geometry of the linkage variety. The most important feature of 

the real linkage variety is its underlying topology and determining 

this for specific examples appears to be a central problem of the 

subject. For generic mechanisms of mobility one (Le. mechanisms 

wnose linkage varieties are curves) the real linkage variety is a 

compact non-singular curve (conjecture!) and the topology is 

completely specified by the number of connected components. 

Determining this number in terms of the design parameters is not 

likely to be an easy matter, so one seeks techniques which will at 

least apply to examples of engineering interest. 
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We recall from the preVIOUS section that for any 

mechanism M with linkage variety V, we have submechanisms 

MI with linkage variety VI and a natural projection Tt:V -+ VI of 

degree d. The crucial extension of the outlined philosophy lies in 

the fact that, if we are dealing with generic mechanisms M, MI of 

mobility one, then both of the real linkage varieties are 

non-singular compact curves (so diffeomorphic to a finite union of 

circles) and the topology of V is related to d-fold coverings of 

circles (each a topological component of VI) whose branching can 

be described in terms of the design parameters. For a suitably 

chosen MI for which one knows something of the topology of VI, 

one hopes to obtain positive information about the topology of V. 

A motion of M IS to be thought of as a connected 

component of V (necessarily diffeomorphic to a circle) which 

maps under Tt into a connected component of VI (likewise 

diffeomorphic to a circle). We can then distinguish a crank, when 

the image under Tt is the whole circle, from a rocker, when the 

image under 1t is just a proper closed subarc of the circle. This 

appears to be a useful generalisation of the concept long familiar to 

engineers, when MI is chosen to be a single link of a planar 

mechanism M and one is simply distinguishing the case when MI 

rotates full circle during the motion from that when MI rocks 

backwards and forwards. Thus given a motion of M, the question, 

whether a given sub mechanism M' is moving as a crank or a 

rocker, is intimately related to the branching of the projection 

Tt : V -+ VI. Indeed, in the case of 2-fold coverings it is decided by 

the absence or presence of branching. Either way, one can 
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reasonably hope, for a given example, to answer this important 

question in terms of the design parameters. 

We begin by recalling some facts on finite mappings. The 

key objects in our discussion are sur jective morphisms 'Tt : V -+ VI 

between irreducible complex projective curves V, VI. In examples 

'Tt is usually a projection from a projective subspace and . VI is the 

image of V under 'Tt. Such mappings satisfy the technical 

condition of "finiteness" (or at least on Zariski open subsets of V 

and V'). The nomenclature derives from the following basic result. 

There exists an integer d ~ 1 (called the degree of the mapping) 

such that every point on VI has ~d pre-images in V and for all 

but finitely many points on VI (called branch points) there are 

precisely d pre-images in V. It is a basic fact that for 

non-singular varieties V and VI the number B of branch points 

(counting multiplicities) is related to the genera g, gl of V, VI by 

the Hurwitz formula (Al0) 

2 (g-l) = 2d(gl-1) + B (1.5) 

In the situations under discussion one should view (1.5) as 

a device for computing g in terms of gl and B. Generally we 

shall know gl and we can compute B. Another basic fact, which 

we shall use in the sequel, is that a critical value of Tt (Le. the 

image under 'Tt of a point in V where the differential has rank 

zero) is necessarily a branch point. The reader is referred to §A7 

for details. 

It is, however, the real geometry which interests us, when 
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we have a morphism Tt : V -+ VI between irreducible non-singular 

real projective curves V, VI for which the complexification has 

the properties described above. More particularly, we are 

concerned with the case when the morph ism has degree 2. Note 

that in this case the pre-image of a critical value necessarily 

comprises a single point. This situation seems to arise naturally 

when elucidating the geometry of a number of mechanisms and 

has the virtue that one can give the following qualitative 

description of the real mapping Tt. 

Let us consider one fixed component XI of VI whose 

pre-image under Tt must comprise finitely many components 

Xl, ... ,Xn of V. Any Xk maps under Tt, either onto an arc Ak 

of XI, or onto XI itself. We assert that there are three essentially 

distinct qualitative pictures which we shall state in the form of a 

Proposition. 

Proposi tion 1.1 

Let Tt: V -+ VI be a map of degree two between two real curves. 

Then there are three possibilities 

(I) There is just one component Xl mapped immersively 

onto XI as a double cover (Fig. 1.4a) 

(I I) There are just two components Xl, X2 each mapped 

diffeomorphicallyonto XI (Fig. lAb) 

(Ill) There are n components Xl, ... ,Xn mapping onto 

disjoint arcs Al, ... ,An of XI, with exactly 2n critical values, 

namely the end-points of Al, ... ,An (Fig. lAc). 
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c ::> c ~ 

~U ~U 
XC ~ XC ::> 

Fig. 1.4 a Fig.1.4b 

c ~ c :~ • • • C ~ 

lu 
• • • 

Fig.1.4c 

Proof: Suppose first that at least one component Xi maps onto 

an arc Ai of XI. By the Inverse Function Theorem the two 

end-points of Ai must be critical points each having a pre-image 

of a single point. Thus Xi is split into two arcs with common 

end-points each nec'essarily mapping onto Ai' In particular every -

interior point of Ai has exactly two distinct pre-images in Xi so 

cannot be a critical value. Since no point on XI has ~3 

pre-images in V we see that X1, ... ,Xn must all map to arcs 
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Ai, ... ,An which are necessarily disjoint and we have the situation 

described under Ill. It remains to consider what happens when 

every component Xi maps onto X'. In this situation it is evident 

that n ~ 2. When there are two components Xi, X2 each must 

map injectively and hence homeomorphically onto XI: clearly, 

there can be no branching, so in fact these mappings are 

diffeomorphisms. That is case 11 above. We are left with, the case 

when there is just one component Xi. Choose a point on XI with 

two distinct pre-images on Xi: thus Xi is split into two arcs 

with these points as common end-points. One possibility is that 

these arcs map to arcs of XI, splitting XI in the same way: but 

then we have at least one critical value on XI with two distinct 

pre-images, a contradiction. The only remaining possibility is when 

both arcs map onto XI. In that case every point on XI has 

exactly two pre-images on Xl, so there is no branching and Xl is 

mapped immersively to XI as a double cover. That complete~ the 

proof. 

• 
Thus, in the case of mappings of degree 2 we can distinguish 

a double crank, when one is in case I, from two single cranks, when 

one is in case 11. Note, however, that the absence of branching does 

not tell us which case we are dealing with; in a given example one 

has to look for some special feature which will distinguish these 

cases. By contrast, in the case of rockers the number of real 

branch points completely determines the number of real 

components in the pre-image. 

For the remainder of this section we shall assume that none 
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of the Grashof equations el ± e2 ± e3 ± e4 = 0 are satisfied, so 

that ~' is a non-singular irreducible complex curve. 

For the planar four-bar mechanism M the philosophy of 

the introduction is realised by taking M' to be anyone of the 

moving links. The configuration space for the }h link is the 

complex projective plane pt2 with co-ordinates Xj' yj" w, and 

the linkage variety is the conic defined by x1 + Y1 = w2, a 

non-singular irreducible complex curve Cj- The natural 

projections pt6 -+Pt2 given by (Xl, Yl, x2, Y2, x3, Y3, w) t-+ (Xj' 

Yj' w) then restrict to the finite mappings 1tj:~' -+ Cj- Note that 

the centre of 1tj is the 3-space defined by Xj = 0, Yj = 0, w = O. 

The intersection of the centre with the 4-space defined by the 

linear equations in (1.1) is precisely the line joining Pj, Pj- Note 

also that the complex map 1tf~' -+ Cj is indeed sur jective. We 

showed in §1.3 that the degree' dj of 'Ttj is 2 for j = 1,2,3. 

We are now in a position to apply the above description to 

the rngl mappings 1tj:~' -+ Cj- We need to determine the number 

of real branch points, i.e. the number of real critical points. Critical 

points occur when the tangent line to ~' meets the centre of 1tj' 

i.e. when these projective subspaces fail to span a 5-space. In 

computational terms that means that the 5 x 4 matrix, obtained 

from the Jacobian matrix of the equations (1.1) by deleting the 

columns corresponding to the co-ordinates Xj, Yj and w, should 

have rank < 4. It is a minor exercise to check that this happens 

precisely when the vectors (Xi, Yi) and (Xk, Yk) are linearly 

dependent, where i, j, k is a permutation of 1, 2, 3. In the real 

case the physical interpretation of this condition is that the two 
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moving links i and k are parallel. Using the equations (1.1) we 

see that our condition is equivalent to xk = £xi and Yk = £Yi. 

where £ = ±1. Substituting for Xk. Yk in (1.1). we see that for 

each choice of sIgn £ there are exactly two (complex) critical 

values corresponding to the finite intersections of the real circles 

with equations 

Note here that the circles can only be tangent when one of the 

Grashof conditions is satisfied. Therefore we obtain four distinct 

complex critical values. At this point it is worth remarking that, 

since Cj has genus zero, the Hurwitz Formula (A1D) tells us that 

the residual curve ~I has ~enus 1 (Le. is elliptic) confirming a 

fact proved by a different method in [Marsh;Gibson& Newstead]. 

In the real case it is an elementary matter to decide in 

terms of the link lengths, whether the circles intersect in no or two 

real points. Expanding the second equation and using the first 

equation to substitute for xI + yI. we find that 

Xi-
2 2 2 (dj + £dk) - d! - d4 

-2did4 

and it is now clear that we have a real solution if and only if 

-1 ~ xi ~ 1. Thus for E = +1 we yield two real solutions if and only if 

dj + dk ~ di + d4 and for E = -1 we yield two real solutions if and only 

if either dj+di~ dk+d4 and dj +d4 ~ di +dk or dj+di ~ dk+d4 and 

dj +d4 ~ di +dk. Combining these two cases of E = ±1. we may have 
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0, 2 or 4 real critical points. To summanse the results set 

E = el - e2 - e3 + e4, where we continue to write dl,d2,d3,d4 in 

increasing order of magnitude as el,e2,e3,e4. Then one finds that 

Tt j has four real 

cri tical points 

Tt j has two real 

critical points 

Tt j has no real 

critical points 

if E < 0 and the shortest 

link length is di or dk 

E>O 

E < 0 and the shortest 

link length is d j or d4. 

On this basis it is an easy matter to determine the real 

topology of ~' and answer the crank/rocker question. If E > 0, 

we see that all three projections have exactly two critical points, so 

that we can deduce from Proposition 1.1: firstly that ~' has just 

one connected component and secondly that all three moving links 

are rockers. Suppose now that E < O. Note first that only one link 

can have the shortest length: indeed, if el + e4 < e2 + e3 and el = e2, 

then e4 < e3, giving a contradiction. If the shortest link length is 

d!, then the two projections Ttj for j<lli have four critical points 

and Tt! has no critical points We then deduce from §1.1: firstly 

tha't ~' has two connected components, secondly that the link of 

shortest length moves as a single crank for each component and 

thirdly that the other two moving links are rockers for each 

component. It remains to discuss the case when the fixed link has 

the shortest length. In that case all three projections have no 

critical points; certainly then all three moving links are cranks, 
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but we do not know whether :RI has one or two connected 

components. (See the closing comments of §1.1J In fact we claim 

that, if 1"[ j has no critical points, then necessarily :RI has two 

topological components: in other words the theoretical possibility of 

a double crank cannot arise. The key observation is that the curve 

:RI possesses a natural involution, namely, that given by reversing 

the signs of Yl, Y2, Y3. Physically, one is just reflecting the 

mechanism in the line determined by the fixed link. Now consider 

the smooth function xi Yk - xk Yi on :RI with i, j, k as above a 

permutation of 1, 2, 3. The effect of the involution is to reverse 

the sign of this function, so that it assumes both positive and 

negative values on :RI. If:R1 has just one connected component, 

the function would vanish somewhere on :RI and hence 1"[ j would 

have a critical point, a contradiction, establishing our claim. Thus, 

when E (0 and the fixed link has the shortest length, all three 

moving links are single cranks .. That completes our analysis for the 

planar four-bar. Note in particular that we have confirmed the 

result in [Gibson& Newsteadl, namely that :RI has one/two 

connected components according as E ( 0 / E > 0 . 

The above is easily related to the established engineering 

literature. The branch points of the projections Tt j for j = 1,3 

are precisely the "limiting positions" described in [Hain, 1964]. 

Moreover, one recovers the eight basic types of planar four-bar 

isolated in [Hain, 1964]. When E ( 0 we need a further distinction. 

Recall that in that case all three links move as rockers and that 

the condition for Ttj to have a critical point is that the vectors zi, 

zk are equal, in which case we have an inward rocker, or opposite, 

in which case we have an outward rocker. Notice that once this 
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distinction is made for two of the moving links, it is automatically 

made for the third. Thus choosing, for example, links 1 and 3 we 

can distinguish four cases, namely inward/outward, 

outward/outward, outward/inward and inward/inward denoted 

by Hain [Hain 1964] as Rio, Roo, Roi, RH, respectively. And it is an 

easy matter to verify the somewhat classical result that these 

cases correspond precisely to whether d1, d2, d3 or c4 is the 

longest link length. When E> 0 Hain distinguishes four types 

denoted by CR1, DR, CR2, DL depending on whether d1, d2, d3 or 

d4 is the shortest. The notation may be explained in the following 

way. 

The letter C refers to a crank and the letter R stands for 

a rocker. Hence, the first three types simply mean that the motion 

of bars one and three are crank/rocker, double rocker and 

rocker/crank. Whilst when d4 is the shortest, bars one and three 

crank and such a mechanism is called a drag link. 

§1.5 The Segre Quartic Surface 

In §1.6 we will show how for any coupler point one can associate a 

pencil of quadrics in pt4. The base variety, that is the intersection 

of all the quadrics in the pencil, is in general a quartic surface, 

whose geometry seems to be crucial to the study of four-bar (and 

indeed geared five-bar) coupler curves. Such surfaces may be 

given as the intersection of any two quadrics in the pencil. The 

purpose of this section is to outline the results achieved by Segre on 

the 'generic' intersection of two quadrics in pt4 and named in his 
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honour - the Segre quartic surface. These results are expressed 

as Theorem 1.1 and closely follow the sketch of this result given in 

[Jessop 1916]. 

We shall begin by making the term 'generic' more precise. 

Consider the pencil of quadrics AQl + IlQ2 in p[:4 generated by 

two quadrics Ql and Q2. Let Q be any quadric in the pencil. 

Then Q IS singular if and only if its Jacobianmatrix, a 5x5 

matrix with coefficients involving A and 11, has non-maximal 

rank. This is equivalent to saying that the matrix has zero 

determinant: thus the condition is the vanishing of a homogeneous 

binary quintic polynomial in A and 11 - the discriminant of the 

pencil. Thus in general, the discriminant will have five solutions 

(Al,llt), ... ,(AS,IlS) each one corresponding to a singular quadric in 

the pencil. More precisely, each of the singular quadrics is a point 

cone. Whenever the pencil has five distinct cones, we will say. that 

the pencil is generic. Exceptionally, the polynomial may have less 

than five solutions. In this case we have the concept of multiplicity 

of a solution: we simply write the polynomial as a product of linear 

factors (atA + blll)(Xl ... ,.(ar A + brll)(Xr over [: and say that the 

root (bs,-as) has multiplicity (Xs' In this case the singular 

quadrics corresponding to roots with multiplicity (xs remaIn 

cones, but the dimension of the vertex (i.e. the singular set of the 

qUiidric) may be positive depending on the form of the pencil in 

question. More exceptionally, the polynomial may be identically 

zero. In this case every member of the pencil is a cone and we 

refer to the pencil as singular. 

We may now prove the main result 
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Theorem 1.1: Let Ql and Q2 be two quadrics in PC4 and 

suppose that the pencil generated by the two quadrics is generic. 

Then 

(1) the intersection of Ql and Q2 IS a quartic surface .8 

containing exactly sixteen lines 

(2) the configuration of lines is such that anyone of them meets 

five other lines and 

(3) projecting from anyone of the lines, defines a birational map 

between the surface and the projective plane. The five lines 

meeting the line of projection map to points - which we call base 

points. The other lines map to a line passing through two base 

points and conversely, any line through two base points is the 

lmage of a line on the surface. Finally, the line of projection 

corresponds to the unique conic passing through the five base 

points. Points on this conic are precisely those points for which the 

projection has either no pre-image or a line of pre-images on the 

surface. 

Proof: (1) The fact that the intersection of two quadrics in PC4 is 

a quartic surface follows from Bezout's Theorem (A3). The first 

step to show that the surface has sixteen lines is to make a 

complex projective change of co-ordinates putting the quadrics into 

their Weierstrass normal form (see [Jessop 1903]). This leads us to 

a number of different (complex) types denoted by their Segre 

symbol, the principal ones of which are 
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[11111] : 

[1112] 

[122] 2 
Qt = xt + 2x2x3 + 2x4xS and 

2 2 2 
Q2 = ~xt + 2a2x2x3 + 2a3x4xS + ~ + x4 

[113] 2 2 2 
01 = xt + x2 + x4 + 2X3XS and 

2 2 2 
02 = a1xt + a2x2 + a3(x4 + 2X3XS) + 2x3X4 

[23] 2 at = 2x1x2 + 2x3xS + x4 and 
2 2 

02 = 2a1x1x2 + xt + a2(x4 + 2X3XS) + 2x3x4 

[14] 2 
01 = xt + 2x2xS + 2x3x4 and 

2 2 
02 = alxt + 2a2(X2xS + X3X4) + 2X2X4 + x3 

[5] 2 
01 = 2x1 xS + 2x2x4 + x3 and 

2 
02 = a1(2x1xS + 2x2x4 + x3) + 2x1x4 + 2x2x3 

Note that in the real case any non-singular pencil can only be 

reduced to the form 

We may assume that ai = ±1 (see [Muth]). But in the real forms 

We must distinguish those forms which differ only by the sign of an 

ai' We shall not need the real type here. 

In particular, for the generic pencil [11111] we may reduce 
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the pair of matrices to diagonal form. In this manner the form of 

the cones is easily obtained. Suppose that the quadrics are Ql = xf 
+ ... + xl and Q2 = ~xf + ... + asxl then the pencil XQl + ~'l2 
has five cones of the form 

Thus, the cones are point cones over a non-singular 2-dimensional 

quadric. A general 2-dimensional quadric contains two families of 

generating lines. Any two lines in the same family do not meet, 

whilst a line from one family meets any line from the other family 

in a point. Thus each cone in the pencil has two families of 

generating planes. Likewise, any two planes in the same family 

meet only in the vertex of the cone, whilst any plane from one 

family meets a plane from the other in a line. 

Claim: Any generating plane '.f of one of the five cones e meets 

the quartic surface 2> in a conic. 

Eroof of claim: Since 2> is the intersection of all the quadrics in 

the pencil it is the intersection of gny two quadrics in the pencil 

i.e. we can generate the pencil by any two quadrics contained in it. 

Let the pencil be generated by e and any other quadric 'l', But 

er lies in e, thus the intersection of '.f and Q' lies in 2> i.e. a 
• conIC. 

Conversely, any conic c on 2> lies on a generating plane 

of a cone in the pencil. For, consider any point on the plane 

containing c, but not lying on c. Then there is a unique quadric 

e in the pencil containing the point and the conic; but any quadric 
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meeting a plane in a conic and a point must contain the plane. The 

claim follows since any 2-dimensional quadric, which contains a 

plane, is necessarily a cone. 

Then let the pencil be generated by a cone and one other 

quadric, say l:~=2(~ -~)xi2 = ° and l:~=1~2 = 0. By a projective 

change of co-ordinates we may write these equations as x2x3=x4xS 

and xi + f (X2,X3,X4,XS) = 0, where f is a quadratic polynomial. 

Then the generators of the cone have either the form x2 = cxx4, 

Xs = cxx3 or the form x3 = cxx4, xs = cxx2. Any such plane meets 

the second quadric in a conic lying on ..8. The condition for the 

conic to reduce to two lines is a quartic polynomial one in cx. Note 

that this quartic cannot be identically zero. For then every 

generating plane meets ..8 in two lines; in particular, every point 

on the surface is contained in a line on the surface. We can then 

derive a contradiction in the following manner. It is clear from the 

Weierstrass normal form that there is a point P of the form 

(Pi, P2, 0,P4, 0) on ..8. Let Lp be any line through P. Then Lp is 

contained in the tangent plane to ..8 at P. The tangent plane has 

the form XXi + ~x2 + VX4 = ° and Xalxl + ~a2x2 + va4x4 = ° 
and therefore contains the line of points of the form (0, 0, P3, 0, 

PS). Thus Lp must meet this line in some point (O,O,p,O,q). But it 

is clear from the normal form that no such point can lie on ..8. 

Hence Lp cannot lie on ..8 and we have a contradiction. It 

follows, therefore, that there are four generating planes in each 

family, which meet the quadric in two lines, implying that there 

are in all at most sixteen lines lying on the quartic surface. 

We must now show that these sixteen lines are distinct. 



- 49-

From the above analysis it is clear that there exists at least one 

line on 2>. Let us assume that the pair of generating quadrics are 

In Weierstrass normal form and consider the natural 

automorphisms of 2>, taking lines to lines, defined by Xj~£jXj for 

j = 1, .. 5, where £j = ±1. Note that the choice of signs (£1,£2,£3,£4,£5) 

and (-£1,-£2,-£3,-£4,-£5) give identical automorphisms leaving just 

sixteen distinct automorphisms for the generic pencil. . There are 

two possibilities for fixed points of the automorphisms: either 

points defined by the vanishing of four of the variables Xj or lines 

defined by the vanishing of any three variables xj- However, in 

the latter case no such line can ever lie on the surface. Thus given 

one line on the surface we may obtain for each automorphism one 

new line lying on the surface; implying that there are at least 

sixteen lines in all. The result now follows. 

(2) All sixteen lines lie on the five cones of the pencil. Therefore, 

the plane through the vertex of a cone and anyone of the lines L 

is a generating plane; thus meeting 2> in one more line which 

meets L in a point. Thus ~ of the sixteen lines on 2> meet L. 

(3) Let Q1 and Q2 be the generators of the pencil and let L be 

one of the sixteen lines on 2>. Further, suppose that X is any 

plane disjoint from L. Make a projective change of co-ordinates 

taKing the line L onto the line X3=X4=x5=O; we may assume that 

X has co-ordinates x3, x4, X5. Then we may write the quadrics in 

the form 
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where tl, ml, t2, m2 are homogeneous of degree 1 and f, g are 

homogeneous of degree 2 in x3, x4, X5. Let P be any point on X 

and denote by '.f the plane through P and L. The equation of 

X may be obtained explicitly by substituting for the X3, X4, X5 

co-ordinates of P in tl, ml, t2, m2. Thus '.f meets Qi in L 

and one other line Li 0=1,2). These two lines Ll and L2 meet 

in a unique point, lying on the surface .8,. provided 

tlom2-t2oml ~ 0; thus defining a 1-1 correspondence between .8 

and X. Therefore, the correspondence only fails to be 1-1 when 

tlom2-t2oml = 0; this condition defines a conic on X. Points on this 

conic have no pre-images in general, whilst exceptionally, when 

the two lines coincide, they have a line of pre-images. Thus these 

points are the images of the five lines meeting L. We will call 

these five distinguished points on the conic the base points. Note 

that the conic is necessarily irreducible; for otherwise three of the 

base points would lie on a line implying that three of the lines on 

.8 lie on a 3-space, contrary to the configuration described above. 

Suppose that L' is one of the ten lines of .8 which are 

skew to L. Then the hyperplane l! spanned by Land L' 

meets .8 In L, and in two transversals of Land L'. Thus, It 

meets X in a line passing through ~ of the five base points 

which by definition is the image of L'. 

• 
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§1.6 The Four-bar Coupler Curves. 

p 

In this section we consider the two 

parameter family of coupler 

curves, which are the loci of a point 

'P rigidly attached to the coupler 

bar (that is, the bar opposite the 

Fig. 1.5 fixed bar), as showed in Fig 1.5. 

Thus 'P=diZi+koZ2, where k=ki+ik2 (ki=rocosa, k2=rosina) is 

a fixed complex number. (This analysis closely follows that given in 

[Gibson&Newstead].) We may think of 'P as having homogeneous 

co-ordinates Pi, P2, P3 with Pi = dixi - k2Y2 + klx2, 

P2 = diYi + k2x2 + klY2 and P3 = w; thus defining a natural linear 

projection 1tk: pa:6- V -+ pa:2 given by 

where V is the centre of projection i.e. the linear subs pace 

defined by Pi = P2 = P3 = 0. The images of the lines at infinity L 

and L are the circular points at infinity I = (l,i,O)· and 

J = (1,-i,O). The image of the restriction map Ttkl:R,' of the 

projection Ttk to the residual linkage variety :R,' 1S a curve ek 

whIch we shall call the complex coupler curve. 

Recall that the linkage variety is glven by the three 

quadratic and two linear equations of (1.1). Let 'UT denote the 

4-space defined by the two linear equations. Then 'UT and V 

span PC6 and intersect in a line V' meeting Land L in the 
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points whose co-ordinates are 

A = (kd3, -ikd3, -did3, idid3, di(d2-k), -idi(d2-k),O) and 

A = (kd3, ikd3, -dld3, -idid3, dl(d2-k), idl(d2-k),O). 

Thus provided ~' does not meet <tT' we may factor the projection 

as the projection from <tT', followed by the . projection 

Ttk:llT -<tT'-+ Plt4 given by the same forms Pi, P2, P3. We shall 

refer to Ttk as the coupler projection. But ~' meets <tT' only 

in the uninteresting cases when k=O or k=d2, i.e. the coupler 

point lies at one end of the coupler bar, when ek is a circle. Thus 

it is sufficient to consider the variety in Plt4 obtained from ~ by 

projecting from <tT'. We shall denote the images of ~, ~', L, L by 

the same symbol. Then ~ is projectively equivalent to the 

variety obtained by using the linear equations of (1.1) to eliminate 

two of the variables say, x3 and Y3 giving ~ as the intersection 

of three quadrics 

and <tT' is given by the equations Pi = P2 = P3 = O. 

Write the three quadrics as Ql, Q2, Q3 and consider the 

net XQi + YQ2 + ZQ3. Choose a point P on <tT' not lying on L 

or L. Then the condition for a quadric in the net to pass through 

this point is a linear condition on X, Y, Z thus defining a pencil 

in the net. Explicitly, it is easily checked to be given by 
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kkX + ~Y + ~(k-d2)(k-~)Z = o. 

We shall call this pencil the associated pencil of the coupler point. 

Any quadric in this pencil meets 'li' in three points (A, A and P) 

and must therefore contain 'li'. The pencil may be written as 

XCi + ZQ2 where Q1=[Q1-Q2kk/dfl and C2= [Q3-Q2(k-d2)(k-d2)]. 

Then, using the identities P1 = d1x1-k2Y2+ kl X2, P2=d1Y1+k2X2+k1Y2, 

P3 = w, Ql, and C2 may be written in the form 

where 

A + BX2 + CY2 = 0 

D + EX2 + FY2 = 0 

A = pf + P~ + (kf + k~ - df)p~, 
B = -2(k1P1 + k2P2), 

C = -2(k1P2 - k2P1), 

} (1.6) 

D = pi + P~ +(-d~ + d~ + k~ + (d2-k1)~P~ - 2d4P1P3, 

E = 2Pl (d2- k1) - 2d4(d2- k1)P3 - 2k2P2, 

F = 2k2Pl - 2k2d4P3 + 2P2(d2- k1), 

We shall now apply the results of §1.5. 

We recall that the intersection of a generic pencil of 

quadrics is a Segre Quartic Surface ,8 containing sixteen lines. Let 

us assume for the moment that the pencil is indeed generic; we 

shall consider this condition in more detail in Chapter 5 when we 

discuss the geometry of the real four-bar coupler curves. Writing 

the quadrics in the above manner, makes the projection more 

transparent. Fixing a point in the image of the projection, fixes the 
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values of P1, P2, P3. Observe that (1.6) may be considered as 

linear equations in x2 and Y2. Thus by applying Cramer's Rule to 

equations (1.6), we may write x2 and Y2 (and hence x1 and Y1) 

uniquely in terms of P1, P2 and P3, provided ~ = BF - CE ~ O. 

The condition ~ = 0 defines a conic e in the fixed plane consisting 

of the points on which the coupler projection fails to be 1-1. 

Explicitly, this is given by 

A point on e has either no pre-lmage or is one of five base 

points for which there is a line of pre-images. Since Land L 

meet ,,.., two of the base points are the circular points I and J. 

Under our assumption that the pencil is generic e cannot be 

reducible. Otherwise, three of the five base points would lie on a 

line, implying that three lines on ..8 lie in a 3-space, contradicting 

the known configuration of lines. The conic is real, passes through 

I and J and hence is a circle. This is the circle of singular foci 

'Well known in the mechanisms literature (see for instance [Hunt 

1978]). 

We may now deduce some of the geometry of the coupler 

curves. Since the residual curve :RI does not meet the centre of 

projection and Ttk has degree 1, we may apply the Projection 

Formula to deduce that the coupler curve has degree six. The 

projection is a generically 1-1 rational map and hence birational. 

In particular, this implies that l:k has the same geometric genus 

as :R': thus for the generic mechanism Ck has genus one and for 

the non-generic mechanisms the components all have genus zero 
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i.e. they are rational. 

In the non-genenc cases any singular point of :RI IS 

mapped by Ttk to a point of ek (off e) with the same 

isomorphism type. Thus the singular points of ek off e are 

necessarily ordinary double points. The remaining possible singular 

points of ek are I, J and three other points lying on e. We 

recall that :RI meets Land L in three distinct points and 

therefore ek has three distinct branches at each of I, J. Thus I 

and J are singular points of ek. The remaining three points Pa 

have a line La as their pre-image on ..8 meeting a third quadric 

in the net, not already in the pencil, either in two distinct points 

or in one point at which it is tangent. In the former case, :R' 

meets La in two distinct branches and maps to a point of ek 
with two branches. In the latter case, La is tangent to the 

quadric at a critical point of the projection: hence its image is a 

singular point on ek. Let ek = e1U"'Uer be the decomposition of 

the coupler curve into its irreducible components and apply the 

Genus Formula (Theorem AB), 

where the * implies that the sum is taken over the singular points 

of ek. For planar curves of degree d the arithmetic genus is 

~(d-1)(d-2); thus for sex tics the genus is 10. For the generic 

mechanism r = 1, there are no singular points off e and the 

geometric genus is 1. Hence, ~*Bp = 9 implying that the circular 

points have Bp = 3 and the remaining three points have Bp:: 1. In 

the non-generic cases, i.e. the circumscriptible, parallelogram/kite 
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and rhombus cases, all components of ek are rational, i.e. the 

geometric genera are all zero. Moreover, there are r ordinary 

double points (with Bp = 1) off e. Hence, the sum of the Bp's for 

the singular points of ek lying on e is 9 and we may conclude 

that the circular points have op = 3 and that the remaining three 

points have op = 1. ~ ek has two ordinary triple points at I 

and J whilst the other three singular points on e ru:g either 

ordinary double points or ordinary cusps. 

Finally, we wish to point out that there is an interesting 

open problem concerning the relation between the eight types of 

planar four-bars mentioned in §1.4 and the geometry of the 

associated coupler curves. Suppose we restrict ourselves to generic 

choices of coupler points in the sense that the associated pencil of 

quadrics discussed above is general, i.e. contains exactly five 

point-cones. We showed that the coupler curve has exactly three 

finite singular points, each an ordinary double point or a (real) 

cusp: these singular points can be real or complex and in the real 

case one can make the further distinction between crunodes and 

acnodes. In this way one obtains thirteen basic multi-singularity 

.type§.. The problem is to determine for each of Hain's eight basic 

types which of these thirteen multi-singularity types can occur. 

This should yield a useful division of generic coupler curves into 

finitely many types, for each of which one could pursue in greater 

detail the real algebraic geometry and the differential geometry. 

We shall leave further discussion of this until Chapter 5 where we 

make the first steps to a solution of this problem. 
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CHAPTER 2. THE TOPOLOGY OF THE 

SPHERICAL FOUR-BAR MECHANISM 

It was clear to the author that the techniques for determining the 

topology of the planar four-bar mechanism need not be restricted 

to planar mechanisms, but could be just as well applied to spatial 

mechanisms. We recall from §1.4 that for any mechanism M 

with linkage variety V, we have submechanisms M' with linkage 

variety V' and a natural projection 'Tt: V ~ V' of degree d. The 

philosophy is that for generic mechanisms M, M' of mobility one, 

their real linkage varieties are non-singular compact curves and 

hence diffeomorphic to a finite union of circles. Then the topology 

of V is related to d-fold coverings of circles, each a topological 

component of V', whose branching can be described in terms of the 

design parameters. For a suitable choice of M', for which one 

knows something of the topology of V', one hopes to obtain 

information about the topology of V. Moreover, there is no reason 

why one should restrict oneself even to mechanisms with mobility 

one. For instance, for mechanisms of mobility two, i.e. their linkage 

varieties are surfaces, there may be natural projections onto 

spheres which generalises the philosophy of calculating the topology 

of real linkage curves via projections onto circles initiated in 

Chapter 1. 

Thus we shall determine the topology of the linkage variety 

for the first non-trivial spatial mechanism, namely the spherical 

four-bar. We will not be giving a full treatment of the algebraic 

geometry of the spherical four-bar linkage variety in this chapter -

as this has been done in [Gibson&Selig] - we shall simply give a 
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brief account of the results that we need. The result on the 

topology that we shall prove here does not already exist in the 

literature. 

First we need to recall some of the basic facts established in 

[Gibson&Selig]. Just as the planar four-bar consists of four rigid 

bodies in 2-space jointed at points, the spherical four-bar consists 

of four rigid bodies in 3-space jointed along lines called the joint 

axes (as showed in fig 2.1). 

O~------------~r----

d 

Fig. 2.1 

The joint axes are to be represented by a cyclic sequence of four 

unit vectors a, b, c, d in 1R3 subject to the constraints that the 

angles A, B, C, D between adjacent pairs remain constant. Write 

< ,> for the standard scalar product on IR 3 and set ex = cos A, 

~ ~ cos B , ~ = cos C I 8 = cos D and ex' = sin A I ~. = sin B , t = sin C , 

S' = sin D. Then the constraints are 

<a ,b>= ex 

<a ,a)= 1 

<b ,c>= ~ 

<b ,b>= 1 

<c ,d)= ~ 

<c ,c>= 1 

<d ,a)= 8 

<d ,d >= 1 

Since we are only interested In the relative motion of the joint 
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axes, we can choose a = (1,0,0), b = (a,a',O) . With these choices 

three of the above constraints are automatic and we are left with 

five equations defining a real affine variety which we can then 

complexify and projectivise to obtain the linkage variety ~ in 

Pa:6. Explicitly, if we set c = (Xl, x2, X3), d = (Yl, Y2, Y3) and take 

w to be the homogenising parameter, then ~ is defined by 

Yl = 8w: aXl + cx'x2 = f?>w: xlYl + x2Y2 + x3Y3 = b'w2 
} (2.1) 2222 2222 

Xl +x2+x3=w Yl+Y2+Y3 =W 

The Jacobian matrix for this set of equations is 

° ° ° 1 ° ° -8 
, 

° ° ° ° -f?> a ex 

~ = Yl Y2 Y3 Xl x2 x3 -2b'w 

2Xl 2x2 2X3 ° 0 ° -2w 

° ° ° 2Yl 2Y2 2Y3 -2w 

In discussing the spherical four-bar, it is necessary to distinguish 

the antipodal case when one (or more) of the angles A,B,C,D 

equals Tt. A very special case is the antipodal rhombus when 

A = B = C = D = Tt and ~ comprises two complex conjugate 

2-planes intersecting in a single real point. In [Gibson&.Selig] it is 

shown that, if we exclude this case, & is indeed a curve of degree 

fight. 

In the non-antipodal caSe ~ meets the hyperplane w = 0 

in two pairs of complex conjugate points 

P = (-ex', ex, -i, 0, 0, 0, 0) 

Q = (0, 0, 0, 0, 1, -i, 0) 

p = (-ex', ex , i, 0, 0, 0, 0) 

Q = (0, 0, 0, 0, 1, i, 0) 
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It is clear that the Jacobian matrix ~ evaluated at these points 

has non-maximal rank. Hence all four points are singular on :R.. 

Since :R. has degree eight, we may apply Bezout's Theorem to 

deduce that the hyperplane w = 0 meets :R. with intersection 

multiplicity 2 at each point. Thus the multiplicity of P, P, 0, 0, 

equals the intersection multiplicity Le. they are double points and, 

moreover, no tangent to :R. lies in w = O. 

However, in the antipodal case the picture changes and :R. 

intersects w = 0 in skew complex conjugate lines L (through 

P,O) and L (through P, 0). We will assume that we are in the 

non-antipodal case. Indeed, in the antipodal case it follows from 

the discussion in [Gibson&Selig] that the real linkage variety :R. is 

the union of two real conics and the topology is thereby 

determined. 

Finite singular points occur when the Jacobian matrix with 

w ~ ° has non-maximal rank. In the non-antipodal case the 

condition is that the spherical quadrilateral "collapses". In such a 

configuration the singular points satisfy x3 = 0, Y3 = 0. A little 

further work yields a condition on the design parameters, namely 

A ± B ± C ± 0 ~ 0 (mod 21t). 

This condition is analogous to the one for the planar four-bar for a 

finite singularity to occur and so it seems appropriate to call these 

equa tions the Grashof equali ties. 
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We shall assume henceforth, that we are In the 

constructible case, i.e. that the equations (2.1) have at least one 

real solution and that none of the Grashof equalities are satisfied. 

Thus ~ has no singular points off the hyperplane w = 0 and in 

view of the results of [Gibson&Selig] is irreducible. 

For the spherical four-bar mechanism M we can realise 

the philosophy of §1.4 by taking M' to be one of the moving 

links. The configuration space for the first link is a complex 

projective space pa:3 with co-ordinates Xl, x2, x3, wand the 

linkage variety is the non-singular conic Xl' glven by 
2 2 2 2 Xi + ~ + x3 = wand cxxl + cx'X2 = ~'w. The natural projection 

pa:6 --. pa:3 given by (Xl, x2, x3, Yl, Y2, Y3. w) --. (Xl, x2, x3, w) then 

restricts to a finite mapping Ttl: ~ --. Xl" Likewise, the 

configuration space for the third link is pa:3 with co-ordinates 

Yl, Y2, Y3, wand the linkage variety is the non-singular conic X3' 

given by Yl+Y~+ Y;= w2 and Yl = Sw. Here again the natural 

projection pa:6 --. pa:3 defined by Tt3: (Xl, x2, x3, Yi, Y2, Y3, w) ..... 

(Yl, Y2, Y3, w) restricts to a finite mapping Tt3: ~ --. X3'. Note 

that since ~ is irreducible, no component can map to a point. 

The centres of Ttl, Tt3, intersected with the 4-space defined by the 

linear equations in (2.1), are precisely the lines joining a, a and 

P, P respectively. The degrees dl, d3 of Tti, Tt3 can be computed 

via the Projection Formula 

Where Vi, Vl (respectively v3, V3) are the intersection 

rnultiplicities at P, P (respectively a, a) of ~ with a generic 
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hyperplane containing the centre. Since P, P, a, a are all double 

points on ~ these multiplicities must be ~2, the minimum 

values of 2 being attained for the hyperplane w = 0 (by Bezout's 

Theorem (A3)). As ~, Xl' and X3' have degrees 8, 2 and 2 

respectively, we conclude that dl = d3-=--2... 

We can now apply the description of §1.4 to the rgM 

mappings TIl: ~ -+ Xi' and TI3: ~ -+ X3' the first step being to 

determine the number of real critical points. As in the case of the 

planar four-bar, critical points occur when a tangent line to ~ 

meets the centre of projection. Note that the centre of projection 

for TIl (resp. TI3) is given by Xl = x2 = x3 = 0 (resp. 

Yl = Y2 = Y3 = 0) and is the line joining a,a (resp. P,P). The 

tangent line is given as the kernel of the Jacobian matrix i of 

equations (2.1). Thus the condition for critical points is that the 

matrix, obtained by abutting· i with the Jacobian matrix of the 

centre of projection, has non-maximal rank. For projection TIl 

(resp. TI3) this is equivalent to the matrix h (resp. h), 
obtained from i by deleting rows 1, 2, 3 and 7 (resp. 4, 5, 6 

and 7), having non-maximal rank. These matrices are 

1 0 0 0 0 0 

0 0 0 ex ex 
, 

0 

h~ Xi x2 x3 ~3 = Yl Y2 Y3 

0 0 0 2Xl 2x2 2x3 

2Yl 2Y2 2Y3 0 0 0 

For TIl the condition for critical points may be expressed 

algebraically as x2Y3 - x3Y2 = 0; and likewise for TI3 the condition 

is cx(X2Y3- X3Y2)+ex'(X3Yl- X1Y3)=0. The condition may easily be 
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described mechanically: for 1'[1 (resp. 1"[3) the condition is that 

the vectors a, c, d (resp. b, c, d) should be co-planar. It is now a 

matter of determining the number of rggl solutions of the 

equations (2.1) which satisfy one of these conditions. This 

provides another computation. 

There are no real points at infinity so we are only 

interested in solutions with w ~ O. We will do the calculation for 

projection 1'[1 and leave the calculation for 1'[3 to the reader. 

Firstly, we may use equation Yl = 5 to eliminate one of the 

variables in equations (2.1). Thus two of the conditions are 

x2Y2 + x3Y3 = ~-5xl 

x2Y3 - x3Y2 = 0 

Using Cramer's Rule we get 

} 

Note that x~ + x~ = 0 if and only if a = c. Substituting for Y2,Y3 

In Y~ + Y~ = 1- 52 and using the identity x~ + x~ + x~ = 1, we get 

It' immediately follows that xl = ~5 +£1 t5' (where £1 = tl), a real 

number, and since cx'~ 0 in the non-antipodal case, we get 

x2 = (I3-CXX1)/CX'. To find the corresponding X3 value we substitute 

fo ' 2 2 2 1 h' h ' r X2 In Xl + x2 + x3 = ,w IC gIves 

X~ = cx'213'2 - (Xl - cx~)2 
cx'2 
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We obtain real solutions for X3 if and only if the numerator is 

positive i.e. if and only if [Xl - ex~ + ex'j3'].[Xl - exj3 - ex'~'] ~ O. But, 

and exj3+ £2ex'j3' = cos(A-£2B), where 

£2= ±1. Hence, the condition is 

[cos (A + B) - cos (C-£lD)] 0 [cos (A - B) - cos (C-£2D)] ~ O. 

Alternatively, we may use the additive formulae for Slnes and 

write the condition as 

Si = sin(A+B+C+e: 1 D)osin(A+B-C-£l D)'sin(A-B+C+£2D)'sin(A-B-C-£2D) 

2 2 2 2 

Thus the result is that for the projection 'IT 1 we obtain two real 

critical points for each choice of sign for which Si < O. For the 

projection n3 the result is that we get two real critical points for 

each choice of sign for which S3 < 0, where 

S3=sin(A+£lB+C+D) osin(A-£lB-C+D). sin(A+€2B+C-D)' sin(A-€2B-C- D) 

2 2 2 2 

On this basis one obtains a finite set of inequalities involving 

the expressions A ± B ± C ± D which determine whether the 

projection in question has 0, 2 or 4 real critical points . 

.case 1: 0 < A. B. C. D < Yan 

The neatest formulation of the result seems to be when A, 

B, C. D all lie in the range [O,Yan] and cosine is a strictly 

decreasing function (Le. e>-r ~ cose<cos-rL Write the angles in 

.decreasing order of magnitude as A' B' C' D' . . , and set 
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)( = AI- BI- Cl + DI. Then, by comparing the angles, it is easily 

checked that: Ttl (resp. Tt3) has four real critical points if and 

Qnly if )( < 0 and the smallest angle is C or D (respectively B or Cl; 

has two real critical points if and only if )( > 0; and has no real 

critical points if and only if )( < 0 and the smallest angle is A or B 

(respectively A or Dl. 

We can now determine the real topology of ~ and answer 

the crank/rocker question, just as we did for the planar four-bar. 

When )( > 0 both projections Ttl, Tt3 have exactly two real 

critical points, so that the first and third links are rockers and ~ 

has just one connected component. Suppose )( < o. If the smallest 

angle is one of B, C, D one of the projections Ttl, Tt3 has four 

critical points and the results of §1.4 tell us that ~ has two 

connected components. In fact, when the smallest angle is B or D 

the corresponding link cranks and the other rocks. But when C 1S 

the smallest angle the links corresponding to Band C both rock. 

It remains to discuss the case when A is the smallest angle, so 

that both projections Ttl, Tt3 have no real critical points and the 

links corresponding to Band D both crank. As in the case of the 

planar four-bar, the theory of §1.4 does not determine the 

topology of ~ in this situation and we have to argue further. The 

key observation (again) is that the curve ~ possesses a natural 

involution, given this time by reversing the signs of x3, Y3. The 

effect of this involution on the determinants .Dl = det (a,c,d) and 

.])3 = det Cb,c.d) is just to reverse their signs, so that .D1..D3 

assume both positive and negative values on ~. If ~ had just 

one connected component, both functions would vanish somewhere 

on ~ and hence both projections Ttl, 1t3 would have a critical 
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point; thus giving a contradiction. We may conclude, therefore, 

that in the case when A is the smallest angle ~ has two 

connected components. These results show that, when the angles 

A, B, C, D lie in the range [O,~l1], one has a perfect analogy with 

the planar four-bar, namely that the linkage curve ~ has 

one/two connected components if and only if X > O/X < O. 

It is worth remarking that this comparison with the 

four-bar has been noted by Gilmartin and Duffy [Gilmartin&Duffy] 

who calculated, not without some difficultly, the limiting positions 

for the spherical four-bar for this case using trigonometry. 

However they were unable to tie up this observation with the 

topology of the motion of the mechanism. Following Hain's 

classification for the four-bar, they labeled the four types according 

to the crank/rocker analysis. We append their table of types with a 

column, indicating the number of critical points for the projections 

and a column showing the corresponding topology. 

Hain Type criteria for # # critical points 
determining type comp of 111 of 113 

CR1, X < 0, B shortest 2 0 4 

CR2, X < 0, D shortest 2 4 0 . 
DL, X < 0, A shortest 2 0 4 

DR, X < 0, C shortest 2 4 0 

Ru, X > 0, A longest 1 2 2 

Rio, X > 0, B longest 1 2 2 

Roi, )( > 0, C longest 1 2 2 

Roo, X > 0, D longest 1 2 2 

Case 1 0 < A. B. C. D < ~11 
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Case 2: ~TI < A. B. C. D ( TI 

The authors of [Gilmartin&Duffy] fail to see that analogous 

reasoning shows that, when A, B, C, D all lie in the range [~TI,TI], 

on which cosine is strictly increasing, the linkage curve :R. has one 

(resp. two) connected components if and only if )( < 0 (resp. 

)( > 0). The above crank/rocker analysis applies, provided we 

replace "shortest" by "longest" (and vice versa) and reverse the 

inequalities. We summarise the result in the form of a table 

Hain Type criteria for # # critical points 
determining type comp of TIl of 1t3 

CRi, )( > 0, B longest 2 0 4 

CR2, )( > 0, D longest 2 4 0 

DL, )( > 0, A longest 2 0 4 

DR, )( > 0, C longest 2 4 0 

Rii, )( < 0, A shortest 1 2 2 

Rio, )( < 0, B shortest 1 2 2 

Roi, )( < 0, C shortest 1 2 2 

Roo, )( < 0, D shortest 1 2 2 

Case 2 ~TI< A. B, C, D< 1I 

.case 3: in general. 

In the general case there is no neat formulation of the 

condition, thus it is necessary to calculate the signs of Si and S3 

directly from the formulae given above. For any numerical 

example, this is totally straightforward and determines the 

number of topological components. The eight crank/rocker types 

still provide a sensible classification of the linkage variety. 
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CHAPTER 3. GEARED FIVE-BAR MOTION 

WITH GEAR RATIO -1. 

Introduction 

A particularly attractive family of mechanisms· is provided 

by the geared five-bar mechanisms with arbitrary gear ratio. 

Here the basic structure of the mechanism is that of a pentagon. 

In general, a pentagon has two degrees of freedom i.e. its linkage 

variety is given by (n-2) equations in n-space and is therefore a 

surface. To obtain a mechanism with just one degree of freedom 

We must provide one extra constraint. Theoretically, we could 

make a constraint from any polynomial condition expressing a 

relation between the bars and the result would most likely be 

interesting geometry; but in general such constraints would be 

mechanically impossible to achieve. There is, however, one method 

of providing a constraint which is often exploited in mechanisms: 

tha t of the 'gearing' two bars. 

Consider then the kinematic chain consisting of five rigid 

bodies smoothly jointed to form a pentagon. Label the bars from 1 

to 5 and let bar 5 be fixed. Consider the fixed plane as the complex 

numbers «: and let bars 1 to 5 lie on vectors z1 = et81 , ... ,z4 = et84 

and z5 = -1 repectively (where i = A'). Then we say that bars i 

and j are 'geared' together when we have imposed the constraint 

that, whenever bar i moves through an arc of length cx, then 

bar j moves through an arc of length ±kcx where k is a fixed 

real number called the gear ratio and the (fixed) choice of sign 
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represents the direction in which bar i moves in relation to bar j. 

Thus 9j = ±k91 + ~ where ~ is some (fixed) phase angle 

determined by the initial positions of the bars. Hence, we get 

Zj = Azf for the positive choice of sign and Zj = Azf for the 

negative choice of sign, where A = el~. Mechanically, rational gear 

ratios k = ~ (where p and q are positive integers) are obtained, for 

instance, when bar i is attached to a gear with p teeth and bar 

j is attached to a gear with q teeth. This provides us with three 

types of mechanisms as showed in Fig. 3.1, depending upon, 

whether we 

Fig. 3.1 

fix bar AE, bar AB or DE, or 

bar BC or CD. Mechanically, the 

case when we choose the sign + 

presents an extra difficulty, 

since we need to reverse the 

direction of bar 4 with respect 

to bar 1. This is overcome by 

inserting an extra coupling 

device (an 'intermediate idler') 

in between the two gears. 

Non-trivial coupler curves are obtained by all three 

mechanisms when the coupler point is rigidly attached to either of 

the coupler bars, Le those which are non-adjacent to the fixed 

bar. The coupler point, which lies on both coupler bars (Le. the 

hinge), is' generally treated as a special case. It may come as a 

surprise to the reader that the coupler curve for the mechanism 

with bar AE fixed and gear ratio ex = +1, whose coupler point is the 

hinge, i.e bars 1 and 4 crank with the same speed at a fixed phase 
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angle apart and in the same direction, is a four-bar coupler curve. 

Observe that, if one constructs the parallelograms CDED' and 

ABCB' as showed in fig 3.2, then we may form a new mechanism 

B 

D' 

A E 

AB'CD'E such that bars B'C 

and CD' are 'geared together'. 

Indeed, just as bars 1 and 4 

lie on vectors a fixed phase 

angle apart, bars B'C and CD' 

lie on vectors which are a fixed 

angle apart throughout the 

motion. Thus the mechanism 

Fig. 3.2 is clearly seen to be a four-bar 

AB'D'E with coupler triangle B'CD. Conversely, we may obtain 

any four-bar in this manner. This result was observed in [Blokhl. 

It is a point of theoretical interest that, provided the' gear 

ratio is a rational number, the corresponding motion is governed 

by polynomial equations defining a linkage variety which may be 

studied using algebraic-geometric techniques. In particular, we will 

be interested in the mechanism showed in figure 3.1 with bar AE 

fixed and when the gear ratio is equal to -1. 

We saw in Chapter 1 that in the case of the planar four-bar 

the 'linkage curve lies in a 4-space and one is projecting from a line. 

The key observation is that both the linkage curve and the line lie 

on a Segre quartic surface, the line being one of precisely sixteen 

lines on that surface and meeting just five others. Under the 

projection these five lines map to five points in the ambient plane, 

determining a unique conic. In the generic case these five 
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points are precisely the singular points of the coupler curve, the 

conic being the familiar circle of singular foci. 

Given the above context, the discussion In 

[Freudenstein & Primrose] of geared five-bar motion assumes 

particular interest, in view of the authors' comment that here 

again the coupler curve, when the coupler point is a hinge, has just 

five singular points lying on a conic. The approach taken by the 

authors in [Freudenstein&Primrose] is to write down the equation 

for the coupler curve (for the hinge case) and to evaluate the 

lowest order terms of the polynomial: this determines a conic on 

which all singular points of the coupler must lie. The nett result of 

Our approach is that one is able to say rather more about the 

geometry of coupler curves than appeared In 

[Freudenstein & Primrose]. We may summarise these as follows: 

(1) In Chapter 1 it was showed that the Grashof equalities 

correspond precisely to the natural geometric condition that the 

linkage curve has a singularity off the hyperplane at infinity. The 

latter condition makes perfect sense for any planar mechanism 

and so provides a sensible general definition of the term Grashof 

equation. In particular, we can adopt this point of view for the 

geared five-bar and phrase the Grashof equations in terms of the 

design parameters. With this definition we then prove that for 

almost all design parameters (in a sense which we shall make 

precise) the Grashof equations do not hold. 

(2) We are able to gIve a complete list of the possible 

reductions of the linkage curve, and hence the coupler curve, into 
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irreducible algebraic components. In particular, in the generic case 

the linkage curve is irreducible of degree 8 and genus 3, meeting 

the hyperplane at infinity in two ordinary double points and four 

other (non-singular) points. 

(3) The geometry of the real linkage curve is of particular 

interest. In the generic case, just described, we can determine the 

number of topological components. The key idea here is to apply 

the philosophy indicated in §1.4 of studying the natural 

projections from the linkage curve to the circles representing the 

motions of the first and fourth links. That reduces the problem to 

one of counting the number of real intersections of a given circle 

with two explicitly given conics - an entirely practical procedure 

which could be carried out, for instance, by graphical means. The 

number in question is 1, 2, 3 or 4 and conforms with the bound 

given by Harnack's Theorem (A9). In this connection it is well 

Worth pointing out that the Harnack bound is not always the best 

Possible: indeed we shall see that for the Watt six-bar it fails to give 

a useful restriction. 

(4) We can obtain the coupler curves from the linkage 

curve by linear projection from a line and thereby deduce their 

properties. As a consequence we can take the coupler point to be 

any point rigidly attached to a moving link, whereas the analysis 

in [Freudenstein&Primrose] is valid only when the coupler point is 

a hinge. An interesting facet of the present study is that we can 

explain an intriguing analogy between the planar four-bar and the 

geared five-bar with coupler point a hinge. Freudenstein and 

Primrose observe that in both examples the (complex) coupler 
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curves have, in general, just five singular points determining a 

unique conic; a circle for the planar four-bar and a hyperbola for 

the geared five-bar. This phenomenon is explained by the fact that 

in both cases the singular points correspond in a natural way to 

the five lines meeting a given line on a Segre quartic surface. 

In §3.1 we set up the basic geometry of the linkage variety. 

We show that the linkage variety ~ is isomorphic to an 

intersection of three quadric hypersurfaces in PC4 and IS 

therefore of degree eight. The hyperplane at infinity meets ~ In 

six points; four of these are always simple points of ~, whilst the 

other two are ordinary double points, provided a certain condition 

does not hold. Further, we show that ~ has no finite singular 

points in general. In §3.2 we give a complete list of the reductions 

of ~, a completely new result, and in §3.3 we determine the 

number of connected components of the real linkage variety in 

terms of the design parameters. Finally, in § 3.4 we discuss the 

coupler curves. As indicated above, we show that there IS an 

analogy between the geared five-bar with coupler point a hinge 

and the planar four-bar. We describe the reductions of the coupler 

curves, in the general case, in detail. 
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§3.1 The Complex Linkage Curve 

c -

A u--___ .... _____ Q E 

(0.0) Z'5 (d S' 0) 

Fig. 3.3 

We label the five bars of the 

mechanism as 1, 2, 3, 4, 5 

with the last one fixed (as 

showed in Fig. 3.3). They have 

positive lengths d1, ·d2, d3, d4, 

d5, and their directions are 

given by unit complex numbers 

z1, z2, z3, z4, Z5. It 1S no 

restriction to suppose that 

Z5=-1: indeed, we can suppose 

that the ends of the fixed bar 

are at the points (0,0) and (d5,0). We remind the reader that we 

are going to consider the case when the fixed bar is AE as showed 

in Fig. 3.1, and when the gear ratio is -1. Therefore, the constraint 

imposed by the gearing of bars 1 and 4 is z4 = AZ1. The equations, 

which govern the motion, have the form 

dlZl + d2z2+ d3z3+ d4z4= d5 

z4 =AZl 

IZl12 = IZ212 = IZ312 = IZ412 = 1 

) .. (3.1) 

where A = A1 + iA2 (with Al, A2 real) is a unit complex number. 

The first equation expresses the closure of the pentagon and the 

second equation expresses the fact that links 1 and 4 are geared 

together; with gear ratio -1 and phase angle ~, where el~ = A. 

There is a point of theoretical interest here, namely that the 

equations (3.1) are not in the shape required to associate naturally 

a Darboux variety in the general setting of [Gibson&Newstead] as 
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explained in §1.2. This can be remedied by writing them in the 

shape 

dlZl +d2Z2 +d3z3 +d4z4 = dS 

zlz4 = A 

IZl12 = IZ212 = IZ312 = IZ412 = 1 

1 (3.1') 

where now the first two equations are polynomials in zb z2, z3, 

z4, zS· In either case we can write Zk = xk +iYk with xk, Yk real 

and equate real and imaginary parts to obtain an algebraic variety 

in IRa defined by eight equations: as for the planar and spherical 

four-bars this can be complexified and projectivised (with w the 

homogenising parameter) to obtain complex projective varieties in 

PtS. We get 

dlX1 +d2X2+d3X3+d4x4 = dSw 

dlYl +d2Y2 +d3Y3 +d4Y4 = 0 

x4 = A1Xl + A2Yl : Y4 = A2xl - A1Yl 
222222222 

Xl +Yl = x2 +Y2 = x3 +Y3 = x4+Y 4 = w 

corresponding to (3.1) and 

dl Xl + d2x2 + d3x3 + d4x4 = dSw 

d1Y1 + d2Y2 + d3Y3 + d4Y 4 = 0 

x1x4 -Y1Y4 = A1W2 : xlY4 +x4Y1 = A2W2 
222222222 

Xl +Yl = x2+Y2 = x3 +Y3 = x4+Y 4 = w 

corresponding to (3.1l 

(3.2) 

(3.21) 

The systems of equations (3.2), (3.2') define linkage 

Varieties ~,..8 respectively. We need to be clear about the 
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relation between these varieties. Certainly :Rei>. For, if a point in 

po:a satisfies (3.2), we have 

yielding 

and by adding and subtracting these relations we see that our 

point satisfies (3.2'). Conversely, note that provided w~o (and 

hence all of Xl ± iYl, x4 ± iY4 are ~O) we can reverse these steps. 

Thus :R - W = i> -W, where W denotes the hyperplane at infinity 

defined by W= o. Thus :R, i> have the same finite points, but 

their intersections with W can, and do, differ. For our purposes it 

is sufficient to observe that the residual varieties, obtained from 

:R,.8 by deleting irreducible components in W, are identical. 

We need to study :R in more detail. Note first that the 

four linear equations in (3.2) are linearly independent, so :R is 

isomorphic to a variety in po:4. Moreover, the equation 

x~+y~=w2 follows immediately from xf+yf=w2 and two of the 

linear equations. Thus :R is defined by 

dl Xl + d2X2 + d3x3 + d4x4 = dSw 

dlYl +d2Y2 +d3Y3 +d4Y4 = 0 

x4 = Alxl + A2Yl: Y4 = A2xl - A1Yl 
2222222 

Xl + Y 1 = x2 + Y 2 = x3 + Y 3 = w 

(3.3) 

and is isomorphic to the intersection of a net of quadrics in po:4. 
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The intersections of :R with Ware easily obtained. Setting 

w= 0 in (3.3), we get Yk = ±iXk for k = 1,2,3 yielding eight 

possibilities. Two pairs of these give complex conjugate points 

+++/-++ 

+--/---

Pi = (O,O,d3,id3,-d2,-id2,O,O,0) 

Pi = (O,0,d3,-id3,-d2,id2,0,O,O) 

The remaining four sign combinations give four distinct points 

+-+ Ql = (1, i, -g4A, id4A, -gl, -igl, A, -iA , 
d2 d2 d3 d3 

- --+- Q1 = (1, -i, -g4A, -id4A, -d1, i~h, A, iA, 
d2 d2 d3 d3 

++- Q2 = (1, i, -gl, -i~h, -d4A, ig4A, A, -iA, 
d2 d2 d3 d3 

--+ 02 = (1, -i, -d1, id1' -d4A, -id4A, A, iA, 
d2 d2 d3 d3 

0) 

0) 

0) 

0) 

In particular, :R intersects W in a finite set, so it has no 

irreducible components of dimension ~ 2 and must therefore be a 

curve. By Bezout's Theorem (A3) :R has degree 8, thus it meets 

W in eight points, counted with multiplicities. These multiplicities 

are soon determined. The singular points of :R are those points on 

~ Where the Jacobian matrix of the equations (3.3) has rank < 7. 

The Jacobian ~ is 

d1 0 d2 0 d3 0 d4 0 -dS 

0 d1 0 d2 0 d3 0 d4 0 

A1 A2 0 0 0 0 -1 0 0 

i = A2 -A1 0 0 0 0 0 -1 0 

2Xl 2Yl 0 0 0 0 0 0 -2w 

0 0 2X2 2Y2 0 0 0 0 -2w 

0 0 0 0 2X3 2Y3 0 0 -2w 
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From this one sees immediately that P1 and P1 are singular 

points of ~ since in each case the fifth row is zero and therefore 

~ has non-maximal rank. Hence, P1 and F't have mUltiplicity 

~ 2 on ~. It follows immediately from the above that Pl and 151 

have multiplicity equal to 2 on ~, i.e. they are double points, 

whilst at, 01,02, 02 must have multiplicity equal to 1 on ~, i.e. 

they are non-singular. Moreover, all the branches of ~, centered 

at points on W, meet W transversally. 

A natural question arising at this juncture is to ask for the 

analytic type of the singular points at Pl, Pt. (We shall need to 

know this to compute the genus of the linkage curve.) To do this 

we render the equations (3.3) affine, translate the singularity to 

the origin in [8 and then smoothly eliminate all but two of the 

variables, via the Implicit Function Theorem, to obtain a plane 

curve in [2 with a singular point at the origin. We shall do ,this 

calculation explicitly for Pt and deduce the result for Pl by 

complex conjugation. Make equations (3.3) affine by setting 

x2 = 1. Then translate Pl to the origin by making the affine change 

f d ' . d2 . d2 d I ' o co-or mates Y2 H Y2+ 1, X3HX3-d3' Y3HY3-1d3 an eaVlng 

the other coordinates fixed. We obtain the equations 

dtxt +d3x3 +d4x4 = d5w 

dtYt +d2Y2 +d3Y3 +d4Y4 = 0 

x4 = Atxt + A2Yl: Y4 = A2Xt - A1Yt 
2 2 2 2' 2 2 2..:1 ( .) 2 Xl +Yt = Y2+ lY2 = x3+Y3- y2 x3+ 1Y3 = w 

d3 

Using the four linear equations, we may eliminate four of the 

variables, for instance, X3, Y3, x4, Y4, to give the equations 
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d~W2=(dsw- (dl+d4Al)Xl - d4A2Yl)2+( (dl-d4Al)Yl +d2Y2+d4A2Xl)2 

- 2d2(dSw- (dl +d4Al)Xl - d4A2Yl) + i2d2((dl-d4Al)Yl + d2Y2 + d4A2Xl) 

Since the derivative of the second equation with respect to Y2 is 

non-zero at the origin, we may apply the Implicit Function 

Theorem which allows us to approximate Y2 as a Taylor series in 

w in a neighbourhood of the origin. Let Y2 = aw + bw2 + cv.f3 + 

dw4 + ••• Then substituting into the second equation and 

evaluating the coefficients, we find that a = 0, b = -~i, c = 0, d =~. 
Thus we may eliminate Y2 in terms of w in the third equation. 

The new form of the third equation has non-zero derivatives at the 

origin with respect to w. Thus by the Implicit Function Theorem 

We may approximate w by a Taylor Series in xl, Yl, In a 

neighbourhood of the ongln. Let w = aXl + bYl + 0(2). Then 

substituting into the third equation and evaluating the coefficients 

We find that a = (dl + d4A)/dS, b = i{dl - d4A)/dS and using this 

series we may eliminate w. In this way·we obtain a curve of the 

form 0 = ax~ + 2bxlYl + cy~ + 0(3) where 

We fail to obtain an ordinary double point if and only if the 

discriminant of the quadratic part vanishes, i.e. if and only if A = 1 

.and d~.=..1dld4. We shall refer to this as the inverse condition, 

since it is precisely the condition that there exists a position of the 

mechanism for which the points d1Zl, d4z4 in the complex plane 
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are inverse with respect to the circle of radius ~d5 centred at the 

origin. Thus, provided the inverse condition does not hold, the 

points Pi, Pi are ordinary double points on 1(.. 

The next step is to ask when 1(. can possess finite 

singularities, by which we mean singular points off W. Since 1(. 

has no irreducible components of dimension ~ 2, the conditions for 

this are that the Jacobian matrix ~ (with w = 1), given earlier, 

should have non-maximal rank. Clearly, these conditions are 

polynomial, both in the variables Xk, Yk and the design 

parameters dl, d2, d3, d4, d5, Ai, A2. Explicitly, we may make 

row and column operations on ~ to derive necessary and 

sufficient conditions for a finite point of 1(. to be singular, namely 

(3.3) and the following 

The first of these two equations together with the quadratic , 

equations of (3.3) give x2 = e:x3, Y2 = e:Y3 so in the real case we 

may give the mechanical interpretation that bars 2 and 3 are 

parallel. This gives nine equations in pt8 and we now apply the 

follOwing theorem from Elimination Theory. 

Theorem [Hartshorne] 

Let fl, ... ,fr be homogeneous polynomials in XQ, ••. ,Xn, having 

indeterminate coefficients alj- Then there is a set gl, ... ,gt of 

polynomials in the a1j, with integer coefficients, which are 

homogeneous in the coefficients of each f1 separately, with the 

following property: for any field k, and for any set of special 
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values of the a1j€k a necessary and sufficient condition for the fi 

to have a common zero different from (0, ... ,0) is that the aij are 

a common zero of the polynomials gi' 

The theorem applied to these nine equations yields that the 

condition for the existence of a finite singularity is a polynomial 

one on the design parameters. Moreover, this polynomial is not 

identically zero; for there certainly exist choices of design 

parameters for which 1t has no finite singularities. I claim, for 

example, that the linkage variety of the mechanism with design 

parameters d1 = d2 = d3 = d4 = dS = 1 and A = -1 has no finite 

singular point. 

Eroof of claim: Any finite singular point satisfies 

x2 = e:1x3 : Y2 = e:2Y3 : X1[2Y3] = 0 

xl +x2 +x3 +x4 = w 

x4 = -x 1 : Y 4 = Y 1 

Thus by the third equation we have either 

1) Y3 = O. Then the second equation implies Y2 = O. Substitute 

Y2 = Y3 = ° into the fifth equation. Then the fifth and seventh 

equations yield YI = Y 4 = 0. Thus the last three equations imply 

±xi = ±x2 = ± X3 = ±x4 = wand a contradiction follows by substituting 

xk = ±w into first equation or 

2) xl = 0. Then X4 = ° by the sixth equation. Hence Yl = Y4=e:w 

(t= ±1) by the seventh and eighth equation. Substituting for xl, 

x4, YI, Y4 in equations four and five gives (D x2 :Ill w - x3 and (in 
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Y2 = -2EW - Y3. Then, since W;ll! 0, the first equation together with 

(i) yields x2 = x3 = Y2W and the second equation together with {in 
yields Y2 = Y3 = EW. Thus, substituting for x3,Y3 in terms of w 

into the last equation, gives a contradiction. 

It follows immediately from the claim that generically, by 

which we mean for almost all design parameters, in the sense of 

Lebesgue measure, the linkage curve has no finite singularity. 

Rather more intuitively, we can always avoid finite singularities on 

~ by arbitrarily small deformations of the design parameters. 

The polynomial condition on the design parameters just 

derived should be called the Grashof equality, since it is the exact 

analogue of this concept for the planar four-bar in §1.1. One could 

certainly write down this condition quite explicitly, but it does not 

appear to adopt any particularly neat form. In any case, from a 

practical point of view it would hardly be worthwhile, since for 

any numerically given choice of design parameters one could 

perform the eliminations by hand to decide whether the choice is 

generic or not. 

Let us finish this section by mentioning a point of 

theoretical interest concerning ~. In §1.2 we outlined a general 

construction presented in [Gibson&Newstead], whereby to certain 

rather special complex projective varieties, a birationally 

isomorphic variety .D, called the associated Darboux variety, 

could be assigned. We recall that the particular interest of this 

construction for the planar four-bar was, that the corresponding 

variety .D was precisely the Darboux curve studied originally in 
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[Darboux). The birational isomorphism turned out to be an 

isomorphism, thus elucidating some remarkable connections 

between the residual linkage variety and .D. It is interesting to 

point out here that this general construction applies equally well to 

the curve :R. to produce a corresponding Darboux curve .D for the 

geared five-bar mechanism. To be perfectly explicit, .D is the 

curve in p[4 defined by the equations· 

d1Z1 +d2Z2 +d3z3 +d4Z4 = dSw 

.d.1 +.d.2 +.d3 +.d.4 = !is (3.4) 
z1 Z2 Z3 z4 w 

z1z4 = Aw2 

and the residual curve .D' is obtained from .D by deleting any 

irreducible algebraic components which lie In the co-ordinate 

hyperplanes z1 = 0, Z2 = 0, Z3 = 0, 24 = 0 or w = O. We begin our 

analysis by finding the components of .D in the hyperplanes 

zk = O. 

Suppose that w = O. Then either 21 = 0 or 24= O. If 21 = 0 

then we get the line L1 gIven by the equations 

z1 = w = d222+d3Z3+d4Z4 = 0 which meets the hyperplane 22 = 0 in 

the point 01 = (O,O,-d4,d3,O) and the hyperplane 23 = 0 in the 

point ~ = (O,-d4,O,d2,O). If Z4 = 0 then we get the line L4 given 

by the equations Z4 = W= d1Z1 +d2Z2+d323 = 0 which meets the 

hyperplane 22 = 0 in the point 04= (-d3,O,dl'O,O) and the 

hyperplane z3 = 0 in the point Os = (-d2,-d1,O,O,O). The lines L1 

and L4 meet in the point 03 =(O,-d3,d2,O,O). 

Now suppose that w;e 0 so that 21;.e 0 and Z4;e O. Then 
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Z2 = 0 if and only if Z3 = o. Thus when z2 = z3 = 0 we get two 

further points P1 and P2 whose co-ordinates we will not write 

down. 

Summarising, J) meets z1 = 0, z4 = 0 In distinct 

intersecting lines L1, 4, meets each of z2 = 0, Z3 = 0 in four points 

and meets w = 0 in the union of L1, L4. Note that J) is always a 

curve; since any component of dimension ~2 would meet each 

hyperplane zk = 0 in infinitely many points, contradicting the 

analysis above. 

Applying Bezout's Theorem (A3) to equations (3.4), we find 

that .D is a curve of degree 8 in PC4. Removing the two 

components L1 and L4 from .D, we get the residual curve J)' 

which has degree six. To obtain the defining equations of J)' we 

multiply the second equation of (3.4) through by z1z2z3z4w· to 

remove the denominators giving the following set of equations 

dtzt +d2z2+d3Z3+d4Z4 = d5w 

[d1Z2Z3Z4+d2Z1Z3Z4+d3ZtZ2Z4 + d4Z1Z2Z3]W = d5Z1Z2Z3z4 

z1z4 = Aw2 

1 (3.4') 

Using the last equation of (3.4 ') to substitute for Z1Z4 in the right 

han.d side of the second equation and eliminating w from both 

sides, yields the defining equations of J)' 

dlZ1 +d2Z2+ d3Z3 +d4z4 = d5W 1 
[dlZ2Z3Z4+ d2Z1Z3Z4+d3Z1Z2Z4 +d4Z1Z2Z3] = d5Az2Z3W 

Z1Z4 = Aw2 
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Thus we have showed that .1)' is isomorphic to the set theoretic 

complete intersection of a point-cone and a cubic surface in PC3. 

We do not intend to study .1) any further in this chapter. 

The fact is that ~ is actually easier to study directly via the 

natural projections to be introduced in the next section (following 

the technique of §1.3). However, we feel it is worth pointing out 

that the Darboux construction can be applied to geared five-bar 

motion. The reader should also note that, unlike the planar 

four-bar, the varieties ~ and .1)' are birationally isomorphic but 

rull isomorphic. This follows from the fact that ~ always has one 

more singular point than .1)': since ~ always has two singular 

points P, P in w = 0, whilst .1)' has only the singular point 03-

We do not give the details here. 

S3.2 Reductions of the Linkage Curve 

An important mathematical question, which seems to have 

been invariably neglected in the mechanisms literature, is that of 

the irreducibility of the algebraic curves which arise naturally in 

the subject. The general si tua tion is that any algebraic curve ~ 

(assumed to be in a complex projective space) is a union of finitely 

many irreducible algebraic curves ~l""'~s called the irreducible 

components of ~: moreover, the degree of ~ is the sum of the 

degrees of ~l""'~s. In the case of a linkage curve ~ the key 

question is how this reduction into components depends on the 

design parameters. 
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For the planar four-bar the approach to this problem 

adopted in [Gibson&Newstead1 is via the Genus Formula (A11) for 

an algebraic curve. However, in the present example this approach 

suffers two drawbacks, namely that the analytic types of the finite 

singularities of ~ are not easily determined and that it is not 

clear, a priori, whether one may have the complication ot-repeated 

components. What we intend to do instead is to adopt the 

philosophy we initiated in §1.3 of studying the natural projections 

from the linkage curve ~ down to the conics representing the 

motion of the four links. In this section we shall use this technique 

to understand the reductions of the complex curve ~ and in 

§3.3 we shall use the main result of §1.4 to discuss the topology of 

the ffgl curve ~, at least in the generic case. 

Formally we proceed as follows. For j = 1,2,3 let !:j' be 

the conic in the complex projective plane with co-ordinates Xj, Yj, 

w defined by x~ + y~ = w'2. Since the four linear equations in (3.3) 

are independent, ~ is isomorphic to a complete intersection of 

three quadrics in pa:4. If we eliminate variables x4,Y4, then we 

may take the equations to be 

2 2 2 
xl + Yl = w 

(dl+d4Al)Xl + d2x2 + d4A2Yl +d3X3 = dSw 

(dl-d4Al)Yl +d2Y2+ d4A2Xl +d3Y3 = 0 

We then have natural projections 1t j : pa:4~ pa:2 (j = 1, 2, 3) 

defined by (Xl,Yl,X2,Y2,X3,Y3,W) ....... (Xj,Yj,w) which restrict to 
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projections 'Ttj::R-+ eJ For each j = 1, 2 or 3 the centre of 'Ttj is 

the line Lj given by Xj = Yj = W= O. Observe that Ll is the only 

one of these lines which meets :R; indeed, it is precisely the line 

joining Pl, Pl. Moreover, Ll, L2 and Ll, L3 are pairs of skew 

lines, whilst L2, L3 are skew lines if and only if dl ~ d4, as a 

minor computation will verify. 

Now let X be an irreducible component of the linkage 

curve :R. Then each 'Ttj maps X either to a single point or to 

the whole of the conic eJ The first thing to be clear about is when 

the former possibility can arise. We fix Xj' yj' wand ask when 

(3.3) admits infinitely many solutions. Since :R has only finitely 

many points on w = 0, we can start by setting w = 1. For each j 

we obtain, after straightforward eliminations, two conics in [2, 

one representing the unit circle. Therefore we obtain infinitely 

many solutions if and only if the two conics coincide. When . j = 1 

the conics are 

2 2 
x2 + Y2 = 1 

2 2 2 
d2(x2+Y2) +2d2Y2[(dl-d4Al)Yl +d4A2Xl1 + 

2d2X2[(dl +d4Al)Xl +d4A2Yl-d51 + [(dl-d4Al)Yl +d4A2X112 + 

[(dl +d4Al)Xl +d4A2Yl-d512-d~ = O. 

Both conics are circles, coinciding with the first, precisely when 

d~ and X2 = £x3, Y2 = £Y3 where £ = ±1 i.e. there exists a 

(complex) configuration of the mechanism for which links 2, 3 are 

opposite and equal. Explicitly, the condition on the design 

parameters for a (complex) configuration is 
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(3.5) 

and the configuration is real if and only if IA~ ~ 1. The physical 

situation is illustrated in Fig 3.4. We have also established that 

Tt 1 : ~ -+ e1 has degree 2. 

Fig. 3.4 

When j = 2. 3 the two conics are 

2 2 ? 
Xl + Yl = w-

2 2 
+ [d1 + d4 - 2dl d4Al]X1Y1 

+ 2djYj[(dl-d4Al)Yl + d4A2Xl] 
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and the second conic is never a circle, thus no component X can 

map to a point and therefore Tt2: 1(,-+ 1:2 and Tt3::R-+ 1:3 have 

degree 4. 

The above considerations alone yield the useful fact that 

any component X Qf 1(, has even degree. Indeed, since for j = 2,3 

the centre LJ of TtJ does not meet 1(" the Projection Formula 

(Theorem A11) yields deg X = drdeg I:j = 2dj where dj is the 

degree of Tt J restricted to X. On this basis we see that the 

possible reductions of :R, given by the corresponding partitions of 

the degree, are among 8,6+2,4+4,4+2+2,2+2+2+2; allowing 

here the possibility of a repeated component. 

The next step in our analysis is the proposition that ~ 

conic component X of 1(, must pass through both of the singular 

points Pl, Pl in W. As a preliminary, note that if 1t :X-+ Y is a 

map of degree d between curves X, Y where Y is non-singular, 

then any point on Y has at most d pre-images (see §A7). Thus 

by the above analysis the restrictions of 1t2, Tt3 to X have 

degree 1 and hence any point in either image has exactly one 

pre-image in X. Now let 1= (1,i,O), J = (1,-i,O) be the circular 

points at infinity in PC2 and note that under Tt2 (resp. Tt3) the 

points Pl, 01, 02 (resp. Pl, 01, 02) map to I, whilst Pl, 01, 02 

(resp. Pl, 01, 02) map to J. It follows immediately that X 
- -

passes through Pl, Pl or 01,01 or ~,02. We can exclude the 

last two cases by observing that the tangent lines to 1(, at the 
- -

non-singular points 01'~' and similarly at 01'~' are skew. 

Indeed, a straightforward computation shows that the tangent 
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lines are defined respectively by linear relations of the form 

Xl +iYl = 0 : x2-iY2 = 0 : l:<XjXj+l:l3jYj+~w= 0 

xl-iYl = 0 : x2+iY2= 0 : l:ajxj+l:~jYj+1w= 0 

where the <Xj, ~j' ~ are complex scalars with Is' ~ O. The 

observation is immediate and establishes the proposition. Explicitly, 

the coefficients in the above equations are <Xl = dl + d4A, <X2 = d2, 

~1 = i(dl-d4A), ~2= - id2, Is' = -dS for 01, and <Xl = dl+d4 A, <X2 = d2, 

~1 = j(-dl+d4A), ~2= - id2, ~ = -dS for 02· 

A first consequence of the proposition is that the possible 

reduction 2 + 2 + 2 + 2 cannot occur, since then ~ would fail to 

meet W at Ql,Ql,Q2,Q2. A second consequence is that ~ has a 

conic component if and only if that component is projected by Ttl 

to a point (again by the Projection Formula), thus by the above ~ 

has a conic component if and only if d2 = d3 and x2 = €X3, Y2 = €Y3 

where € = ±1 i.e. the mechanism has a (complex) configuration in 

which links 2, 3 are equal and opposite. In particular, identities 

d2 = d3 and (3.5) must be satisfied, thus such a reduction is 

exceptional. The distinction between the reductions 6 + 2 and 

4 + 2 + 2 is easily described. For such a configuration the equations 

(3.3) reduce to 

dl xl +d4x4 = dS 

dlYl +d4Y4 = 0 

x2 = €X3 
2 2 

xl +Yl = 1 

x4 = Alxl + A2Yl 

Y4 = A2x l - A1Yl 

Y2=£Y3 
2 2 2 2 

x2+ Y2 = 1 x3+ Y3= 1 

(3.6) 

Provided dl ~ d4 the first four linear equations in (3.6) give a 
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unique solution for xl, Yl, x4, Y4 so we obtain a unique 

configuration giving a reduction 6 + 2. 

However, when .~h.=...d4 we obtain two (possibly coincident) 

solutions, leading to two possible configurations and a reduction 

=1 + 2 + 2. The condition for a configuration given by equation (3.5) 

(necessarily real) becomes A = 1. Of course in this case the 

configurations are mirror images of each other in the fixed link; 

the physical situation is illustrated in Fig 3.5. 

d-------o .......... . 

Fig. 3.5 

Thus equations (3.3) with dl = d4, d2 = d3, A = 1 may be seen to 

give two subvarieties 

l 
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The first subvariety represents the two conics and the second 

subvariety represents the quartic component. It follows that, in 

general, the quartic component is isomorphic to a non-singular 

intersection of two quadrics in 3-space, hence an elliptic curve. 

Exceptionally, the quartic acquires a singular point and becomes 

rational. To find the condition for this to occur we need to 

determine when the Jacobian matrix has non-maximal rank. The 

matrix is 

[ 
2xl 2Yl 0 0 -2w 

I 0 0 2x2 2Y2 -2w 

- 2dl 0 - 2d2 0 dS 

It is a straightforward exerCIse to show that the matrix has 

non-maximal rank if and only if dS = 2·1 El dl +E2d21 (where El = ±l, 

E2 = ±l) for which there is a singular point of the form 

(El,O,E2,O,1). The quartic is irreducible, thus the singular point can 

only be an ordinary double point or a cusp. To determine which of 

these cases may occur, we shall make a local co-ordinate 

calculation. Make the above equations affine by setting w = 1 and 

translate the singular point to the origin by making the affine 

change of co-ordinates Xl H Xl + El, x2 H x2 + E2 and leaving the 

remaining co-ordinates fixed. The resulting set of equations are 

We may use the third equation to eliminate x2 from the second 

equation giving an equation in x1 and Y2 for which the 

derivative with respect to x1 is non-zero. Thus by the Implicit 
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Function Theorem we may approximate xl in a neighbourhood of 

the origin by a Taylor Series in Y2. Let Xl = aY2 + by~ + •••. Then 

substituting for xl in the second equation and evaluating 

coefficients, yields that a = 0 and b = ~2~i' Substituting for xl in 

the first equation, shows that the quartic is isomorphic, near the 

origin, to a plane curve of the form yi + ~~~i'y~ + 0(3). In 

particular, we see that the curve has a double point at "the origin 

with distinct tangents i.e. an ordinary double point. 

Note the very special case when the two solutions of xl, Yl, 

x4, Y4 in (3.6) coincide and we obtain a reduction 4 + 2 + 2 with a 

repeated conic: under the above hypotheses this happens precisely 

when A = 1,-1il = d4~ = d3~ = 2dl (thus the inverse condition is 

satisfied). The physical situation is illustrated in Fig 3.6. In this 

case the reader may readily check that the quartic is elliptic in 

general, but exceptionally, when d2 = d5, the quartic acquires a 

singular point. 

Fig. 3.6 

The reduction 4 + 4 will be discussed in more detail in §3.4. 

Recall first that TIl maps 01, 02 to I and 01, 02 to J: 

further, 'Tt2 (respectively TI3) maps Pl, 01, ~ (respectively 

Pl, 01, ~) to I and Pl, 01, ~ (respectively Pl, Ol'~) to J. 
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It follows immediately that the two quartic components are rnru, 
- -one passing through Pl, Pl, 01, 01 and the other through Pl, Pl, 

02, 0:2. By the Projection Formula the restriction of Ttl to either 

component has degree 1; thus both components are mapped by Ttl 

birationally onto a circle, implying that they are rational curves. 

Further, since by the theory of projections (Theorem A12) 

multiplicity can only increase under a projection of degree 1, we 

see that both components have no finite singular points and must 

therefore be non-singular curves. 

We can elicit further useful information about the above 

reductions via the Genus Formula (AS) for a (possibly reducible) 

algebraic curve. That formula states that 

where Pa denotes the arithmetic genus, Bp is the 6-invariant of 

a singular point P of ~ and ~l""'~r are the normalisations of 

the irreducible components ~l""'~r of ~. It follows from 

Theorem A5 that Pa(~) = 5 for a complete intersection of three 

quadrics in 4-space. Further, the 6-invariants at Pl,Pl equal 1, 

since these points have been shown to be ordinary double points of 

l?. Thus we can re-write the Genus Formula as 

(3.7) 

where the * indicates that we sum the 6-invariant over the finite 

singular points of ~. I claim that in the generic case, i.e. when 

the Grashof equation is not satisfied, ~ is an irreducible octic of 
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geometric genus 3. 

Proof of Claim: In the generic case l:*8p = O. To show that ~ is 

irreducible we shall consider each possible reduction in turn and 

derive a contradiction. 

In the 4 +4 case equations (3.7) yield 4 = Pa(~1) + Pa(~2) 

with ~1' ~2 rational non-singular quartics: that is impossible, 

since the arithmetic genus of such a curve is zero. In the 2 + 2 + 

4 case, equations (3.7) yield 5 = Pa(~1) + Pa(~2) +Pa(~3) where 

~1' ~2 are non-singular conics and ~3 is a quartic. Since conics 

are rational, this reduces to 5 = Pa (~3) ~ Pa (~3) giving a 

contradiction, since the arithmetic genus of a quartic must be $3. 

Finally, in the 2+6 case, (3.7) gives 4=Pa(~1)+Pa(~2) 

where ~1 is a conic and ~2 is a sextic. Hence, 4 = Pa (~2)' To 

obtain a contradiction we argue in the following way. Recall first, 

that the conic ~1 must pass through Pi, Pi and hence ~2 

must pass through all six points Pi, Pi, 01, 01, ~, ~, else Pi, Pi 

fail to be singular on~. It follows easily that ~2 IS 

non-degenerate, i.e. not contained in any 3-space: indeed any such 

3-space would have to contain the six points just listed and 

therefore would coincide with the hyperplane w=O. This situation 

is an impossibility since ~ only meets w=O in finitely many 

points. The non-degeneracy of ~2 allows us to apply the 

Castelnuovo inequality 

Castelnuovo Inequality [Griffiths] 

The greatest possible genus of an irreducible non-degenerate curve 

C of degree d in PCn is ~m(m-l) + m£, where m is the 

integer part of (d-l)/(n-l) and £ = (d-l)-m(n-l). 
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In the situation at hand d = 6, n = 4, m = 1, E = 2 and we may 

deduce from the inequality that Pa (~2) ~ 2. Finally, we observe 

that by Bezout's Theorem (A3) ~2 must be non-singular at all of 

the points Pl, Pl, 01, 01, ~,~ and, therefore, ~2 is a 

non-singular curve with ~2 = ~2: that provides the requisite 

contradiction and the claim is proved. 

The above analysis leaves open the question, whether the 

4 + 4 reduction actually occurs. An explicit example is obtained by 

choosing dl = 2, d2 = 4, d3 = 1, d4 = 2, d5 = 3, A = -1. Since d2;e d3 we 

cannot be in either of the cases 2 + 6 or 2 + 2 + 4. The key point in 

this example is that there are at least four finite singular points: 

(±1, 0, 1, 0, -1,0,+1,0,1) and (0, ±5,3 ,+4,3 ,+4,0, ±5, 5) thus we 

have necessarily l:*op ~ 4. However, when ~ is an irreducible 

octic, the genus formula (3.7) yields l:*op ~ 3: we must therefore 

be in the 4 + 4 case. 

§3.3 The Real Linkage Curve 

Throughout this section we shall assume that we are in the 

generic constructible case, so that the complex projective curve ~ 

is an irreducible octic of geometric genus 3 whose only singular 

points are ordinary double points Pi, P1 and which possesses at 

least one real finite point. In this situation the real affine curve 

~ is compact, non-singular and non-empty thus diffeomorphic to 

a finite disjoint union of circles. By Harnack's Theorem (A9) the 

number of topological components is ~ 4. Our objective in this 

section is to show how, in principle, one can determine this number 
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In terms of the design parameters via a technique introduced in 

§1.4. 

In brief, the technique is as follows. We saw in §3.2 that 

the projection Ttl: ~-+ (:1 has degree 2 and that ~, (:1 are 

irreducible non-singular curves. Let us now consider the 

corresponding real curves (without changing notation) and write 

'T 1, ... , 'T n for the topological components of ~. Then according to 

the main result of §1.4 there are just three possible qualitative 

pictures. 

(I) There is just one component 'T 1 mapped immersively 

onto (:1 as a double cover. 

(I I) There are just two components 'T 1, 'T 2 each mapped 

diffeomorphicallyonto (:1. 

(Ill) There are n components 'J l""''J n mapping onto 

disjoint arcs A1, ... ,An of (:1 with exactly 2n critical values, 

namely the end-points of these arcs. 

Case (I) is the double crank, whilst case (II) corresponds 

to two single cranks. It is important to note that, although the 

absence of branch points for Tt1 tells us that we must be in one of 

these cases, it does not tell us which one. By contrast the presence 

of branch points tells us that we must be in case (Ill) and their 

number completely determines the topology of ~. Case (Ill) 

corresponds to the engineering concept of a rocker. 
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Thus to apply the above result we must compute the 

number of real critical points of Ttl. Critical points occur when the 

tangent line to the (complex) curve :R. meets the centre of Ttl, i.e. 

these projective subspaces fail to span a 7-space. Thus we have 

critical points, whenever the 7 x 6 matrix r, obtained from the 

Jacobian matrix of the equations (3.3) by deleting the columns 

corresponding to the variables Xl, Yl, w, has rank < 6 .. 

d2 0 d3 0 d4 0 

0 d2 0 d3 0 d4 

0 0 0 0 1 0 
~' = 

0 0 0 0 0 1 

2X2 2Y2 0 0 0 0 

0 0 2X3 2Y3 0 0 

The reader will readily check that r has non-maximal rank 

precisely when the vectors (X2,Y2) and (X3,Y3) are linearly 

dependent. Using the equations (3.3) we see that this is exactly 

the condition that x3 = £x2, Y3 = £Y2 with £ = ±1: thus in the real 

case the mechanical interpretation of a critical point is that links 

2 and 3 are parallel. Substituting x3 = £x2, Y3 = £Y2 in (3.3), we 

obtain 

(dl +d4Al)Xl +d4A2Yl +(d2+e:d3)X2 = dSw ) 

d4A2x1 + (d1 - d4Al)Y1 + (d2 + e:d3)Y2 = 0 
22222 2 

Xl + Y 1 = w : x2 + Y 2 = w 

(3.8) 

In the projective 4-space with homogeneous co-ordinates Xl, Y1. 

x2, Y2, w the linear equations define a 2-plane in which the 

qUadratic equations define two distinct conics intersecting in :s 4 
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(complex) points. Eliminating X2, Y2, we have 

2 2 2 
Xl + Yl = w 

2dld4Al(xi - yi) + 4dld4A2xlYl - 2d5w[(dl + d4Al)Xl + d4A2Yl] 

+ [df + d~ + d~- (d2 + d38)2]w2 = 0 where 8 = ±1. 

Since there are two values of 8, we obtain in all ~ 8 critical 

points and hence by the above theory ~ 4 topological components 

agreeing with the estimate given by Harnack's Theorem (A9). More 

precisely, we need to calculate the number of real critical points, 

giVen by the number of real intersections of the conics. That is 

easily determined. If we rationally parameterise one conic by a 

parameter t and substitute in the equation of the other, we 

obtain a real quartic in t. Explicitly, we may parameterise 

2 2 2 -2tw (1-t2)w .. 
Xl + Y 1 = w by x = 1 +t2' y = 1 +t2 and substItute Into the 

second equation to obtain a quartic at4 + bt3 + ct2 + dt + e = 0 with 

a = 

b = 
c = 
d = 
e = 

dr + d~ - 2dld4Al + 2d4d5A2 + d~ - (d2 + d3£)2 

- 4dl d4A2 + 4d5(dl + d4Al) 

2(df + d~) + 12dld4Al + 2(d~ - (d2 + d3£)2) 

4dl d4A2 + 4d5(dl+ d4Al) 

dr + d~ - 2dld4Al - 2d4d5A2 + d~ - (d2 + d3£)2 

Then the number of real roots of this quartic for each choice of sign 

is the required number of real critical points. 

Suppose we obtain 2n real critical points. If n~l then we 
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are In case (Ill) and have precisely n topological components. 

However, when there are no real critical points we must decide 

between cases (I) and (II). To this end consider the smooth 

function on 1?, defined by 4l(P) = x2Y3 - X3Y2, where 

P = (Xi,Yi,X2,Y2,X3,Y3,X4,Y4,W). By the above the zeros of 4l are 

precisely the critical points of Tti. Assume that we are in case (I) 

so that over every point of ~1 lie exactly two distinct points P, pi 

of 1?,. Tacitly, we use the fact here that the image TIl (1?,) IS 

non-singular so that the critical points of Tt1 coincide with the 

p 

Fig. 3.7 

branch points (see §A7). 

Geometrically, the point pi is 

the "reflection" of P, as 

indicated in Fig 3.7. The key 

observation is that we have 

4l(P I
) = -4l(P), so 4l assumes both 

positive and negative values. However in case (I) the real linkage 

Curve 1?, is connected, so 4l would necessarily admit a zero and 

Tti would have a critical point, contrary to the hypothesis. We 

may conclude that, when there are no critical points, we must be 

in case (In when 1?, has exactly two topological components. 

§3.4 Projections to the Coupler Curve 

In this section we shall apply the analyses of the preceding 

sections to understand the geometry of the family of coupler 

curves which are the loci of a point rigidly attached to link 2. 

With the notation of §3.1 we can write P = dizi + koz2 where k 

is a fixed complex number. If we write k = ki + ik2, with ki, k2 
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real, then we can think of P as the point in the projective plane 

with homogeneous co-ordinates P3 where 

P1 = d1X1 - k2Y2 + k1x2, P2 = d1Y1 + k2x2 + k1Y2, P3 = w. These formulas 

define a projection 't"k: PIC8 - L-. PIC2, where L is the centre of 

the projection i.e. the 5-dimensional projective subs pace defined 

by the vanishing of P1, P2, P3. We can restrict this projection to 

the (complex projective) linkage curve ~ to obtain ·a rational 

mapping 't"kl~, the closure of whose image is an algebraic curve 

tk in PIC8 which we refer to as the complex coupler curve. 

Now let M be the 4-dimensional projective subs pace of 

PIC8 defined by the linear equations in (3.3). Then ~cM and L 

intersects M in a line Lt. Thus it suffices to consider the 

projection 't"k: M - Lt-. PIC2 given by the same forms P1, P2, P3 

and its restriction 't"kl~. It is an easy matter to check that Lt 

fails to meet ~ if and only if k;ae d2, so that in that case 't"kl~ 1S 

a regular mapping. 

We begin our analysis with the special case when k = d2, i.e. 

the coupler point P is the hinge joining links 2 and 3. It is this 

case which was first studied in [Freudenstein]. The centre Lt 

meets ~ in precisely the points ~ and ~. We are now in a 

situation very similar to that studied in the case of the planar 

four-bar so we shall proceed along the same lines. Write q1, Q2, 

q3 for the quadrics in M obtained by intersecting M with the 

q d · . p1r8 · b 2 2 ? 2 2 ? 2 2 ? d ua ncs 1n \L. g1ven y xl +Yl =w-, x2+ Y2 =w-, x3+ Y3=w- an 

consider the net A1 q1 + A2q2 + A3q3. The condition for a quadric in 

the net to pass through a given point is linear in Al, A2, A3, 

defining a pencil in the net. If, in particular, we choose a point on 
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L' distinct from Q2, ~ we see that any quadric in the pencil 

meets L' in three distinct points and hence contains L'. There is, 

therefore, a pencil of quadrics in the net containing L'. One can 

easily check that in the projective plane with homogeneous 

co-ordinates Al, A21 A3 the pencil is given by 

The intersection of the pencil is a Segre quartic surface .8, 

containing the line L'. We may write the pencil as 

The projection of .8 from L' onto a plane is well understood. 

Choosing the co-ordinate system Xl, Yl, wo, w1, w (where 

Wo = dlX1 +d2x2, Wl = dlYl +d2Y2), so that the projection is· onto 

the last three co-ordinates, any two quadrics in the pencil can be 

written in the form 

where fOI fl, fOI fl are homogeneous of degree 1 and f2, f'2 are 

homogeneous of degree 2 in wo, wl, w. Thus xl, Yl may be 

solved uniquely in terms of wo, wl, w off the conic F in the 

coupler plane defined by fofl- flfo = O. Quite explicitly, we may 

write the generating quadrics in the above form with 
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fo = 2d4(d5A1 w - Al Wo - A2Wl) 

f 1 = 2d4(d5A2W - A2wO + Al wl) 

f2 = -W~ - W~ + 2d5WWO + (d~ -d~ -d§)w2 

f t 2 (2 2 2 o = d4 d1d5A1W - dld4wO - d1A1WO - d1A2Wl 

f t 2 (2 2 2 1 = d4 d1d5A2W - dld4wO - d1A2WO + d1A1Wl 

f'2 = (d~ - d~)(W6 + W~) + {-d~d~ - d~d~ - d~ + d~)w2 + 2d~d5WOW. 

Thus F has the equation 

F is irreducible if and only if A;e 1, reducing to a real line-pair 

(wi = 0 and 2wO = d5W) when A = 1. In the former case F meets 

the line at infinity w = ° in the coupler plane in the two distinct 

real points (±1 +Ai,A2,O). Hence F is a hyperbola with centre 

(~d510,1) and asymptotes . +2A2wO + 2(1±Ai)Wl ± d5A2w .= 0: 

indeed, precisely that discussed in [Freudensteinl. Points on F 

have either no pre-image or a line of pre-images in .8. Thus, 

provided there are only finitely many points on F of the latter 

type, we obtain an isomorphism between .8 (with a finite union of 

lines deleted) and the coupler plane (with F deleted). 

At this stage it is interesting to determine precisely when 

there are only finitely many points on F common to ek, Le when 

F and ek have no common component. A sufficient condition for 

this is that F and ek have no point of intersection on the line at 

infinity w = ° in the coupler plane. Now F meets this line in real 

points and ek meets it in the images under 'rk of Pl, Pi, which 

are complex, and the images under 'rk of 01, 01, which are real 
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if and only if A = 1 and dl = d4. When F is irreducible we have 

A;e 1 and hence F, ek have no common component. It remains 

to discuss the case when F reduces to a line-pair, in which case 

the lines are easily checked to be wl = 0 and 2wo = dSw. 

We claim first that the line Wl = 0 cannot be a component 

of the coupler curve. Its pre-image under 'rk is the hyperplane 

H with equation dlYl +d2Y2 = 0: of the six points at infinity Pl, 

Pl, 01, 01, 02, 02 on the linkage curve, H generally meets only 

02, Q2, but exceptionally (when A = -1 and dl = d4) it also meets 

01, al. Now suppose Wl = 0 is a component of the coupler curve, 

so H contains a component K of the linkage curve. Then 

generally, K meets the hyperplane at infinity in ~ 2 points, so K 

would have to be a line or a conic: however we saw in §3.2 that :R 

has no line components and that conic components have to pass 

through Pl, Pl, so either way we have a contradiction. On the 

other hand. in the exceptional case, when it passes through all of 

01, 01, ~,~, one can check directly that H meets the linkage 

curve in only finitely many points and thus cannot contain a 

component of K. That establishes the claim that the line wl = 0 is 

never a component of the coupler curve. 

We can discuss the line 2wo = dSw similarly, taking H to 

be . the hyperplane defined by 2(dlXl +d2X2) = dSw. Again, the 

general situation is that the only points at infinity on the linkage 

curve, which lie on H, are ~,Q2 yielding a contradiction as 

above. Exceptionally, when A = 1 and dl = d41 it also meets 01,01. 

In this exceptional case one easily checks that provided d2;e d31 H 

meets :R in only finitely many points. When d2 = d31 H meets :R 
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o----+---~ .... -- .... 

Fig. 3.8 

In a quartic component. Going 

back to §3.2. we see that this is 

precisely the case when we have a 

reduction 2+2+4: what has 

happened in this case, is that 

although the two conic components 

project bira tionally to' circles in 

the coupler plane, the quartic 

component projects with degree 2 

to a line, namely the line 

2w 0 = d5w. One can see this very 

clearly in Fig 3.8. 

Henceforth, we shall suppose that we are not in the 2 + 2 + 4 

case, so that under the bira tional isomorphism between ,8 and the 

coupler plane each component of ~ is projected birationally onto 

a component of ek, thus with degree 1. Since 'Tkl:R, is not 

defined at ~,~ the image is not closed. The algebraic closure is 

obtained by adding the finite set of points which are images under 

'Tk of the tangents to ~ at ~,~. As these points are 

non-singular on ~ there are exactly two such points namely, 

(d5, ±id5, 2), lying as one would expect on F. Note that P1, P1 

rnap respectively under 'Tk to the circular points at infinity I, J; 

and since Pi, Pi are singular on ~ it follows that I, J must be 

singular on the coupler ek. In fact we can be more precise. As I, 

J do not lie on F the birational isomorphism between :R, and 

the coupler plane will be an isomorphism close to Pi, Pi 

preserving the local analytic type of these singularities, so I, J will 

likeWise be ordinary double points on ek. 



- 106-

Principally, one is interested In the case when :R, IS 

irreducible, when ek will be an irreducible circular sextic (by the 

Projection Formula). It is, however, not without interest to look 

at the reducible cases. In the 2 + 6 case the conic component 

projects to a circle: the sex tic component must pass through all six 

points at infinity on :R, with multiplicity 1, thus by the 

Projection Formula projects to a circular quartic. The reduction 

4 + 4 is perhaps the most interesting case. Recall from §3.2 that 

the components are real, rational and non-singUlar, one passing 

through Pi, Pi, 01, 01; and the other through Pi, Pi, 02, 02; the 

former projects to a rational circular quartic, whilst the latter 

projects to a circle by the Projection Formula. Indeed, it is clear 

from the work in §3.2 that we can characterise the 4 +4 

reduction by the conditions that d2 = d3 and that the coupler 

point can trace a circle. The example of a 4 + 4 reduction given in 

§3.2 has design parameters d1 = d4 = 2, d2 = 4, d3 = 1, d5 = 3, A =-1. 

B 

b-----~----~~-O 

Fig. 3.9 D 

In Fig 3.9 the reader can see how circular motion is obtained by 

adding links DE, DC of lengths 1, 2 respectively. Then the 

contra parallelograms ABCO and EOCD are similar throughout the 

motion (with a common angle e) so that the coupler point C 

traces a circle of radius 2 with centre O. 
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Although the above discussion yields the broad underlying 

geometry of the coupler, it fails to reveal detailed information 

about the singularities. To make progress on this front we shall 

make an explicit and perfectly natural generality hypothesis, 

namely that the pencil of quadrics containing the line of projection 

L' is general i.e. contains five distinct point cones. The first point 

to make is that this condition holds for almost all design 

parameters, so that is useful. The pencil is general when its 

discriminant D, a binary quintic polynomial with coefficients 

polynomial in the design parameters, has five distinct roots. The 

condition for D to have coincident roots is a polynomial one in its 

coefficients. Thus the condition for the pencil to be non-general is a 

polynomial one in the design parameters. Moreover, the condition 

is a non-trivial one: for instance, one can check by explicit 

computation that the pencil is general in the case when dl = 12, 

d2 =./2, d3 = 1, c4 = 2, d5 = 1, Al = jQ.5, A2 = ±jQ.5. It follows 

immediately that the pencil is general for almost all design 

parameters. In this context it is worth remarking that when A = 1 

one can easily check that the pencil fails to be general: certainly 

then, in the general case one must have A ~ 1 and hence F will 

be a hyperbola. 

From now on we shall assume that the pencil of Quadrics 

~ntaining L' is general. Under that assumption we may apply 

the results of §1.5 that the surface ,8 contains exactly sixteen 

lines, anyone of which meets exactly five other mutually skew 

lines. Let L'l, L'2, L'3, L'4, L'5 be the five lines on ,8 meeting L' 

and let 11, 12, 13, 14, 15 be the five distinct points on F which are 

their images under -r'k. Each line L'j meets the quadric ql 
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either in two distinct points or in just one point at which it is 

tangent. L'j cannot be contained in ql, for then it would be a line 

component of ~,a possibility excluded in §3.2. In the former case 

L'j meets ~ in two distinct simple points and ek has two 

branches at If and in the latter case L'j is tangent to ~ so ek 
still has a singular point at Lj. Bezout's Theorem (A3) tells us 

that F meets ek with total intersection multiplicity 12. 

However, we know from the above that F meets ek in the five 

singular points 11, 12, 13, 14, 15 and in the two closure points, so 

that it follows immediately that 11, 12, 13, 14, 15 must be double 

points on ek, whose branches meet F transversally, and that the 

closure points are simple on ek. The only other singular points on 

Ck arise from the ordinary double points at P1, Pl, which map 

under 'rk to ordinary double points at I, J, and any finite 

singular points of ~. Thus the singular points at I, J have 

8-invariant 1, whilst the 8-invariants of any finite singular points 

of ~ will be left invariant by the projection. Applying the Genus 

Formula to the curve ek, we find that the 8-invariants of the 

double points at 11, 12, 13, 14, 15 all equal 1 and hence that each 

of these singularities is either an ordinary double point or a cusp. 

One can say a little more about cusps. A cusp occurs if and 

only if L'j is tangent to ..8 (and therefore tangent to 3(,), i.e. if 

and only if L'j is the tangent to 3(, at a critical point of the 

restriction 'rk. Thus, the condition for a point P on 3(, to be a 

critical point is that the matrix obtained from the Jacobian matrix 

of equations (3.3) by abutting the Jacobian matrix of the projection 

has non-maximal rank; since this is equivalent to determining the 

Points of 3(, where the tangent lies in the kernel of the projection. 
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The matrix is 

d1 0 d2 0 d3 0 d4 0 -dS 

0 d1 0 d2 0 d3 0 d4 0 

A1 A2 0 0 0 0 -1 0 0 

A2 -A1 0 0 0 0 0 -1 0 

2xl 2Yl 0 0 0 0 0 0 -2w 

0 0 2x2 2Y2 0 0 0 0 -2w 

0 0 0 0 2x3 2Y3 0 0 -2w 

d1 0 d2 0 0 0 0 0 0 

0 d1 0 d2 0 0 0 0 0 

0 0 0 0 0 0 0 0 1 

By elementary row and column operations one can show that the 

condition for the above matrix to have non-maximal rank is 

equivalent to the condition· for the following matrix to have 

non-maximal rank 

xl Yl 

x2 Y2 

Alx3+A2Y3 A2x3-A1Y3 

Thus, the condition is x1Y2 = Y1x2 and X1[A2X3-A1Y3] = 

Yl[A1X3+A2Y3]. Using the quadratic equations of (3.3), it can easily 

be showed that the conditions are equivalent to xl = €X2, Yl = €Y2, 

x3 = €'X4, Y3 = €'Y4 where € = ±1, €I = ±1. Substituting for xl, Yl, x3, 

Y3 in equations (3.3), we observe first that such a configuration 

must be real, second that it must be finite and third that there are 

~ 4 such configurations. The mechanical interpretation of these 
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conditions is that links 1,2 should be parallel and links 3,4 should be 

parallel. Eliminating all the configuration variables from the 

equations, one obtains four non-trivial polynomial conditions on the 

design parameters which must be satisfied for a cusp to appear. 

These conditions are 

where £1 = ±1, £2 = ±1. In particular, therefore, cusps fail to appear 

for almost all design parameters. A careful study of these 

polynomial conditions (which may be found in [Freudenstein] who 

derives this condition from purely mechanical reasoning) reveals 

that in fact there are ~ 3 cusp configurations: it would be 

interesting to have a geometric argument for this fact. Thus in the 

generic case the possible multi-singularity types of the coupler 

curve ek (with k = d2) are 7 Ai, 6A1/ A2, 5A1/2A2, 4A1/3A2 

where we adopt the Arnold notation for simple singularities. In 

[Freudenstein] it is explicitly verified that all four types can occur. 

However, in the real case one can make the finer distinction in the 

Ai case (ordinary double point) between an Ai (acnode) and an 

Ai (crunode) giving rise to forty-one real multi-singularity types. 

It appears to be an open problem, whether all these types can 
. 

OCcur. 

We shall conclude our discussion of coupler curves by taking 

up the general case when k ~ d2 so that "'kl~ is a regular 

rational mapping. We claim that this mapping is birational (thus 

of degree 1) except when ~ has a repeated conic component. 
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Provided the inverse condition does not hold, the eight tangent lines 

to ~ at the points Pl, Pl, 01, 01, Oz, Oz project to eight distinct 

tangents to ek at points on the line at infinity w = 0 in the 

coupler plane. Thus a component K of ~ with degree d has d 

distinct branches meeting the hyperplane w = 0 and its image Kk 

under 'rk has d distinct branches meeting the line at infinity 

w = 0 in the coupler plane. Thus the total multiplicity of points of 

Kk on w = 0 is ~ d, hence Kk has degree ~ d. It follows 

immediately from the Projection Formula (Theorem All) that Kk 

has degree d and that 'rklK has degree 1. 

One can now pursue the kind of analysis we gave when 

k = d2. The results are as follows. When ~ is irreducible, ek is 

an irreducible octic, having the same geometric genus as ~,with 

ordinary triple points at I and J. In the 4 + 4 case ek is the 

union of two rational quartics, one circular and the other 

bicircular. In the 2 + 6 case ek is the union of a circle and a 

bicircular sextic. And in the 2 + 2 + 4 case ek is the union of two 

circles and generally an elliptic circular quartic, provided the conic 

components are distinct. Note that when the conic component is 

repeated the inverse condition holds and the above analysis no 

longer applies. 

Provided we are careful we can still galn useful 

information even when the inverse condition does hold. For 

instance, when ~ is irreducible it has six (instead of eight) distinct 

tangents at points in w = 0 mapping to six distinct tangents to the 

Coupler ek as above. We can argue via B.ezout's Theorem (A3) 

and the Projection Formula (Theorem All) that Tk maps ~ to 
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ek with degree 1, and that ek has degree 8 and the same 

geometric genus as ~. However, the triple points at I, J are 

necessarily non-ordinary. Likewise, in the 4 + 4 case, we find 

that ek is still the union of two quartics (one circular and the 

other bicircular) touching at I, J. On the other hand the 2 + 6 

case can no longer arise, nor can the general 2 + 2 + 4 case. One 

can still have the 2 + 2 + 4 case with a repeated conic component: 

the repeated conic projects to a circle, whilst generally the quartic 

component projects to an elliptic circular quartic. 

One could pursue the geometry of the complex coupler 

curve ek much further using little more than the techniques 

expounded in this chapter. However, a more profitable (and 

certainly more interesting) direction would be to elucidate the 

geometry of the real couplers ek, at least in the generic case. Note 

incidentally, that our work in §3.3 has automatically solved the 

problem of determining the number of real circuits for an 

arbitrary choice of coupler point. In principle, it should be possible 

to obtain a basic classification of real couplers in terms of the real 

multi-singularity type and the number of real critical points of the 

projection Ttl as discussed in §3.3. 
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CHAPTER 4. THE GEOMETRY OF THE WATT 

SIX - BAR MECHANISMS. 

Introduction 

The six-bar mechanisms are the first planar examples of 

linkages with more than one kinematic chain. Smoothly jointing 

together six rigid bodies, displays two possible kinematic chains and 

a total of five different mechanisms. The two six-bar chains are 

named after two great men of the steam-engine era, namely Watt 

and Stephenson. The Watt chain. as showed in Fig 4.1(a), consists 

of two ternary links with a common hinge and may be visualised 

as two four-bar chains rigidly connected. Indeed, this description 

of the Watt mechanism proves to be a useful one in describing the 

geometry of its motion. The Stephenson chain, see Fig 4.1(b), has 

two ternary links but it is distinct from the Watt chain since they 

have no common turning joint, and moreover, it only possesses one 

four-bar chain. 

(a) (b) 

Fig. 4.1 
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We may fix either a binary or a ternary link, thus we obtain two 

distinct Watt and three distinct Stephenson mechanisms. These 

are named the Watt I and le and the Stephenson I, 11 and III 

mechanisms respectively, as showed in Fig 4.2. 

G G 

A E 
Watt 11 

c F C F C 

A •••••••••••••• E 
Stephenson I 11 III 

Fig. 4.2 

For each mechanism there is no unique choice of coupler bar. In 

the Watt 1. for instance, we may take either of the links CG and 

FG as our coupler bar and obtain six-bar curves i.e. curves which 

are not coupler curves of mechanisms with fewer links. Clearly, 

any other choice of coupler bar would give rise to arcs of four-bar 

coupler curves or arcs of circles. For the Watt 11 mechanism no 

choice of coupler bar gives rise to six-bar curves. The Stephenson I 

has two possible choices of coupler bar giving rise to six-bar curves 

namely, links CG and FG and likewise the Stephenson 11 

(resp. Ill) has links BD and AE (resp. FG). Note that it 1S 

SUfficient to consider bar CG for the Stephenson I and bar FG for 

the Stephenson I I. 
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Applications of the coupler curves of six-bar mechanisms~ 

despite their inherent complexity~ are surprisingly diverse. Hunt 

[Hunt) gives an interesting example of a Watt I in the design of a 

wall-mounted desk-lamp which we reproduce here in Fig 4.3. 

Another example, where a six-bar mechanism is used as the take 

up lever on a sewing machine, may be found in [Ogawa). 

i---o40m I 
I-----I.oom~ 

Fig. 4.3 

In §4.1, 4.2 and 4.3 we set up the basic geometry for the 

Watt I and 11 linkage and Darboux varieties in the complex 

projective framework. In §4.4 and §4.5 we present a complete 

solution to the problem of determining the reductions of the linkage 

variety in terms of the design parameters and deduce all the 

possible reductions of associated coupler curves. Finally, in §4.6 we 

take up the geometry of the linkage variety in the real case by 

completely determining its topology. That enables us to deduce the 

nuinber of real circuits of associated real coupler curves. In the 

very special case, when the coupler point is a hinge, we have 

therefore a formal mathematical proof of a result sketched in 

[Primrose). 

In §4.1 we introduce formally the linkage varieties of the 
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Watt I and Watt 11 mechanisms and verify that they intersect the 

hyperplanes at infinity in the union of two skew planes and two 

skew lines: that implies that the varieties fail to be complete 

intersections. By this we mean that these varieties fail even to be 

set-theoretic complete intersections: the linkage variety for the 

planar four-bar is certainly a complete intersection In the 

set-theoretic sense, but fails to be so in the ideal-theoretic sense. 

Our interest centres around the residual linkage variety obtained 

by deleting the four irreducible components at infinity. The 

strategy for studying this latter variety is based on an observation 

that the residual linkage variety is birationally isomorphic to the 

residual Darboux variety and moreover the one can be obtained 

from the other by a linear projection. An illustration of this 

approach was given in §1.2 for the reduction of the four-bar 

linkage curve. Thus the next step, which we undertake in §4.2, is 

to study the Darboux varieties associated to the Watt six-bar 

mechanisms. That brings us to the fundamental observation that 

the Darboux varieties for the Watt I and II are the "same" .. in the 

sense that they can be described by the same set of equations. 

Further, we deduce that the residual linkage varieties for the Watt 

I and the Watt 11 are birationally isomorphic and we prove a more 

general result which implies that the real linkage varieties of 

mechanisms with the same kinematic chain are isomorphic. 

It is well worth pointing out at this early stage that the 

residual linkage variety of the Watt I and the residual Darboux 

variety fail to be (complex) isomorphic - indeed they have different 

numbers of double points in the hyperplanes at infinity_ But in 

contrast, we shall see in §4.6 that these linkage varieties ~ 
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isomorphic in the real case by our general result providing the key 

tool to studying their topology. 

In §4.2 we show that the common Darboux variety of the 

Watt six-bars is projectively equivalent to an algebraic curve of 

degree 9 in projective 3-space which always reduces to a line and a 

curve of degree 8 called the residual Darboux curve. The 

underlying philosophy is now to utilise the birational isomorphism 

between the residual linkage and Darboux varieties, which is given 

by a perfectly explicit projection, to deduce the geometry of the 

former from the latter. This is explained in §4.3. In particular this 

enables us to show that the residual linkage variety is a curve of 

degree 16. It is important to note that this result would be 

difficult to obtain directly from the varieties. since they are not 

complete intersections and, therefore, we cannot apply Bezout's 

Theorem. Another consequence is that we can determine exactiy 

when the linkage varieties have finite singularities, i.e. singular 

points off the hyperplanes at infinity. This condition ought to be 

called the Grashof equality, since it is the exact analogue for the 

Watt six-bars of the corresponding condition for the planar 

four-bar discussed in §1.1. 

In §4.4 we glve a full account of the reductions of the 

Darboux varieties from which we deduce the reductions of the 

Watt I linkage variety. A summary of this result may be found in 

tabular form at the end of §4.4. In §4.5 we discuss the complex 

geometry of the coupler curves. 

Finally in §4.6, we determine the topology of the real 
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linkage varieties, In particular, we show that there can be at most 

four connected components, thus giving a better upper bound than 

that which one can obtain from Harnack's Theorem, 
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§4.1 Introduction to the Complex Linkage Variety 

c 

G 

We label the bars of the Watt I 

mechanism as 1,2,. .. ,10 as 

showed In Fig. 4.4. The 

quadrilateral formed by the 

bars 1, 2, 3, 4 is the base 

quadrilateral, whilst that 

formed by bars 5, 6, 7, 8 is the 

upper quadrilateral. When 

we speak of the triangles we 

O---------b E mean the two triangles formed 

by bars 1, 6, 10 and bars 

Fig. 4.4 2, 9, 5. The bars have positive 

lengths dl, d2, ... ,dl0 and their directions are given by unit complex 

numbers zl,z2, ... ,z10. Henceforth, we shall assume that bar 4 is 

the fixed bar of the base quadrilateral, so that Z4 will be constant: 

it will be no restriction to suppose that Z4 = -1. The constraints on 

the motion can be written as 

dtzt + d2z2 + d3z3 - d4 = 0 

d5z5 + d6z6 + d7Z7 + d8Z8 = 0 

z5 = uZ2: z6 = vZ1 

Iz~2 = 1 for 1~k~8,k;e4 

(4.1) 

where u,v are fixed unit complex numbers. We shall write 

u=u1+iu2, V=vi+iv2, where ul, u2, vi, v2 are all real. It is 

natural to write zk = Xk+iYk, with xk, Yk real and equate real 

and imaginary parts to obtain a real algebraic variety in 1R14 

defined by 15 equations, two of which are redundant. This variety 
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can be complexified and projectivised (with w the homogenising 

parameter) to obtain a complex projective variety ~ in p[:14 

defined likewise by 13 equations. Explicitly 

dtxt + d2x2 + d3X3 - d4w = 0 

dtYt + d2Y2 + d3Y3 = 0 

d5x5 + d6x6 + d7X7 + daxa = 0 

d5Y5 + d6Y6 + d7Y7 + daY8 = 0 (4.2) 

We shall refer to ~ as the linkage variety of the Watt I 

mechanism. The linear equations in (4.2) are linearly independent, 

so define a 6-dimensional projective subspace of PC14. Thus ~ is 

projectively equivalent to an intersection of 5 quadrics in PC6. 

One might reasonably expect ~ to be a curve intersecting 

the hyperplane at infinity (Le. the hyperplane defined by w = 0) 

in a finite number of points. However, the situation is by no means 

so simple as we can verify by direct computation. Setting w = 0 

in (4.2), we see that the intersection is given by the linear 

equations, augmented by the equations Yk=Ekixk (k=1,2,3,7,8) 

w1'!ere Ek = ±1. For each choice of signs of Et,E2,E3,E4,ES we obtain 

a projective subspace of w= 0, thus thirty-two in all, appearing in 

complex conjugate skew pairs. These are rather easily described. 

The sign choice +++++ yields a 2-plane W. The defining equations 

are (with x5, Y5, x6 and Y6 omitted for brevity) 
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W: d1x1 + d2x2 + d3X3 = 0 : d5ux2 + d6VX1 + d7X7 + daxa = 0 

Yj = iXj (for j = 1,2,3,7 and 8) : w = 0 

Taking the successive slgn choices -++++, +-+++, etc., in which 

exactly one minus sign is chosen, we obtain the respective distinct 

lines L1., L2, L3, L4, L5 in W, forming the configuration given in 

Fig.4.5 with L1, L2, L3 concurrent. 

Fig. 4.5 

These are defined by the equations 

Ll: d2x2 + d3x3 = 0 : d5 UX2 + d7X7 + daxa = 0 

Yj = iXj (for j = 2,3,7 and 8) : xl = Yl = w = 0 

L2: dlxl + d3x3 = 0 : d6 Vxl + d7X7 + daxa = 0 

Yj = iXj (for j = 1,3,7 and 8) : x2 = Y2 = w = 0 

L3: dlXl + d2x2 = 0 : d5 UX2 + d6 Vxl + d7X7 + daxa = 0 

Yj=ixj (for j= 1,2,7 and 8) : x3=Y3=w=O 

L4: dlXl + d2X2 + d3X3 = 0 : d5UX2 + d6Vxl + daxa = 0 

Yj = iXj (for j = 1,2,3 and 8) : x7 = Y7 = w = 0 
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LS: dlXl + d2X2 + d3x3 = 0 : d5UX2 + d6VXl + d7X7 = 0 

Yj = iXj (for j = 1,2,3.7 and 8) : xe = Ye = w = 0 

Write Jjk for the point of intersection of Lj , Lk and J123 for the 

intersection of Ll, L2 and L3. Then it is easily verified that each 

Jjk, with the sole exception of J4S. is one of the subspaces 

obtained by choosing precisely two minus signs. Reversing the roles 

of the plus and minus signs in the above discussion we obtain 

analogously a complex conjugate 2-plane W containing complex 
- - - - -

conjugate lines Ll, L2, L3. L4, LS having the same configuration as 

in Fig.4.5 and intersecting in the points Jjk. The equations of these 

subvarieties may be obtained from their complex conjugate 

varieties by simply conjugating the equations given above. Signs 

+--++ and +-+-- give identical points to -+-++ and -++--, 

respectively. The only sign choices which have not been covered so 

far are +++--, ---++ yielding complex conjugate skew lines M, M, 

respectively. M meets W, W respectively in J45, J123, whilst M 

meets W,W respectively in J123, J45. The variety M is given 

by the following set of equations 

M: dSUX2=d6VX1: d3dSuX3 + (dldSu-d2d6V)Xl = 0 

d7x7 + dexe = 0 

Yj = iXj for j = 1,2 and 3 Yj = -ixj for j = 7,8 w= 0 

and we may obtain the defining equations of M by taking the 

complex conjugate set of equations. In this way we arrive at 

Fig.4.6 illustrating the intersection of the linkage variety ~ with 

the hyperplane at infinity w= O. 
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Fig. 4.6 

To sum up: the desired intersection is the union of the 2-planes 

W.W and the lines M,M. all of which must be irreducible 

components of R. In particular. & fails to be a complete 

intersection. It is a tedious exercise to calculate the co-ordinates of 

the points Jjk: (omitting the xS,YS.x6.Y6 co-ordinates for brevity) 

they are as follows: 

= (0,0,1.i.-d2,-id2,0,0,-u.%,-i u.%.O) 
. d3 d3 de de 

= (O,O,l,i, -.d2, - id2, -u.ds.-i u.ds,O,O,O) 
d3 d3 d7 d7 

= (l,i,O,O.-sil,-i.dl,O,O,-vQo.-i v46.0) 
d3 d3 da da 

= (l,i,O,O,-.dl,-if.il.-VQo.-i vQo.O,O,O) 
d3 d3 d7 d7 

= (l,i, -sil, -isil,O ,0,0,0, -W.2~Y::.dlfl6YJ, -it.d.2.dsY:..dlfl6YJ ,0) 
d2 d2 d2da d2de 

J35 = (1,i,-sil,-idl,0,0,-(.d2g5 u-dl.% v) ,-i(.d2dSY:silfl6Y> ,0,0,0) 
d2 d2 d2d7 d2d7 

The union of the irreducible components of R distinct from W, W, 

M, M will be called the residual linkage variety R'. 
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There is a similar set up for 

the Watt 11 mechanism. Label 

the bars as 1,2, ... ,10 as showed 

in Fig.4.7. We shall refer to 

the quadrilateral formed by 

bars 1, 2, 3,4 as the base 

Fig. 4.7 quadrilateral, whilst that 

formed by bars 5,6,7,8 will be referred to as the upper 

quadrilateral. When we speak of the triangles, we mean the 

two triangles formed by bars 1,6,10 and bars 2,9,5. The bars 

have positive lengths dl.d2, ... ,dl0 and their directions are given by 

unit complex numbers Z'1,Z'2, ... ,Z'10. Without loss of generality we 

may assume that Z'l = -1. The constraints on the motion can be 

written as 

-dl + d2Z'2 + d3z'3 + d4Z'4 = 0 

dSz'S + d6Z'6 + d7Z'7 + daz'a = 0 
, , , 

Z S = uz 2 ; Z 6 = -v 

IZ'kI 2 = 1 (2~k~8) 

where u,v are fixed unit complex numbers. We shall write 

u=Ul+iu2, v=vl+iv2, where ul, u2, vl, v2 are all real. It is 

natural to write Z'k = X'k +iY'k , with X'k, Y'k real and equate real 

and imaginary parts to obtain a real algebraic variety in 1R14 

defined by 15 equations, two of which are redundant. This 

variety can be complexified and projectivised (with w' the 

homogenising parameter) to obtain a complex projective variety 

-8 in PC14 defined by 13 equations. Explicitly 
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-d1 w + d2X'2 + d3X'3 + d4x'4 = 0 

d2Y'2 + d3Y'3 + d4y'4 = 0 

d5X'5 + d6X'6 + d7X'7 + dax'a = 0 

d5y'5 + d6y'6 + d7y'7 + day'a = 0 

I t I I 

X 6 = v1 w : Y 6 = -v2W 

x'~ + Y'~ = w2 (k = 2,3,4,7,8) 

(4.4) 

We shall refer to ,8 as the linkage variety of the Watt 11 

mechanism. The linear equation~ in (4.4) are linearly independent, 

so define a 6-dimensional projective subs pace of pa:14. Thus, -8 is 

projectively equivalent to an intersection of 5 quadrics in pa:6. 

In a similar manner to the Watt I we may set w' = 0 in 

(4.4) to obtain the picture of the Watt II linkage variety at infinity. 

We see that the intersection is given by the linear equations of (4.4) 

augmented by the equations y'k = Ekix'k (k = 2,3,4,7,8). As before 

each choice of signs yields a projective subspace of w'=O , 

thirty-two in all. Their description is as follows. The sign choice 

+++++ yields a 2-plane W'. Taking the successive sign choices 

-++++, +-+++, ... in which exactly one minus sign is chosen we obtain 

fiv~ distinct lines L'l, L'2, L'3, L'4, L'5 in W', forming a 

configuration identical to Fig.4.5 with L'l, L'2, L'3 concurrent. 

Write J'jk for the point of intersection of L'j,L'k and write J'123 

for the intersection of L'l,L'2,L'3. Then· it is easy to check that 

each J'jk, with the exception of J'14 and J'15, is one of the 

subspaces obtained by choosing precisely two minus signs. (Sign 

choices -+-++ and --+++ both yield J'123, and -+++- and -++-+ 
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both yield J'45J Reversing the roles of the plus and minus signs, 

yields the following complex conjugate subspaces: a 2-plane W' and 

lines L'1' L'2' L'3, ['4, L'5 in an identical configuration to FigA.5. 

The signs we still have to account for are +++--, -++-- which yield 

a line M' and ---+-t, +---t+ which yield the complex conjugate 

line ~'. The overall picture is similar to FigA.6: M' passes through 

J'45 and J'123 and is skew to M' which passes through. J'45 and 

J'123· 

The complexity of the varieties ~ and 2, makes them 

difficult to study directly. Our approach to this problem is based on 

the fact, established in [Gibson&Newstead], that the residual linkage 

varieties are birationally isomorphic to the associated residual 

Darboux variety .D'. a statement which we shall amplify in the 

next two sections. 

S4.2 The Associated Darboux Variety. 

According to the general construction given in [Gibson&Newstead], 

as explained in §1.2, the Darboux variety .D associated to the 

Watt I mechanism is obtained as follows. We start with the linear 

equations in (4.1). Then for each such equation we form a new 

equation obtained by replacing each Zk by l/Zk and conjugating 

all the coefficients. We then homogenise the equations with z4 

the homogenising parameter. In this way we obtain the following 

system of equations 
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d121 + d222 + d323 + d424 = 0 

dl + d2 + .d:3 + d4 = 0 
21 22 23 24 

d525 + d626 + d7Z7 + d8Z8 = 0 

~ + ~ + d7 + Qg = 0 
25 26 27 28 

Z5 = UZ2: 26 = V21 

(4.5) 

These equations define an algebraic variety in Pt 7 with 

homogeneous co-ordinates 21, ... ,z8 which is the required Darboux 

variety D. 

We may obtain the Darboux variety associated to the Watt 

11 mechanism from equations (4.3) in a similar manner. We form 

two new equations by replacing each 21k by 1/z'k and 

conjugating all the coefficients. If we then homogenise the 

equations with Z'4 the homogenising parameter, then Zj HZ1j 

defines a pro jective eg;uivalence between D and the Watt II 

Darboux variety. Thus it makes sense to refer to the Darboux 

~ariety D of the Watt kinematic chain: for no matter which bar 

we fix, the corresponding Darboux variety is projectively 

equivalent to D. 

We begin the study of D by noting that the four linear 

eqy.ations in (4.5) are linearly independent, so define a 

3-dimensional projective subs pace; the remaining two equations 

define cubic surfaces in that 3-space whose intersection is D. The 

residual Darboux variety cD ' is by definition the union of the 

irreducible components of D which do not lie in any of the 

distinguished hyperplanes zk = 0, for 1~ k ~ 8. Clearly, the 

first step in studying cD' is to see how J) intersects the 
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hyperplanes 2k = O. This requIres no more than a few 

straightforward computations. Note first that, if we set z1 = 0, 

z2 = ° in (4.5), we obtain a line L in .D, namely, the line joining 

the points Q1 = (0,0,0,0,0,0,ds,-d7) and Q2 = (0,0,d4,-d3,0,0,0,0) 

given by 

In the hyperplane 21 = ° we obtain the line L and four points 

PI = (0.1.0,-d2,V.O,-vQ.s,0) 
d4 d7 

P2 = (0,l,O,-d2'V,O,O,-v4.s) 
d4 dS 

P3 = (O,l,-42,O,v,O,-vQ.s,O) 
d3 d7 

P4 = (O,l,-d2,O,v,O,O,-v~) 
d3 dS 

whilst in the hyperplane Z2 = ° we obtain the line L and four 

more points 

P5 = (l,O,O,-.aI,O,V,-VQ.6,O) 
d4 d7 

P6 = (l,O,O,-.a1,O,V,O,-vQ.6) 
d4 dS 

P7 = (1.0,-~h,0.O,v,-vd6,0) 
d3 d7 

Ps = (l,O,-d1,O,O,V,O,-VSb) 
d3 da 

Note that the points Pi, P2,"" Ps are distinct and that none lie on 

the line L. To obtain the remaining intersections of .D with the 

distinguished hyperplanes we can assume henceforth, that z1;t: 0, 

z2';t:0. Under that condition Z3=0 if and only if z4=0. Assuming 

these conditions hold. (4.5) yields a binary quadratic 
2 2 2 2 

aZ1 + bZ1Z7 + cZ7 = ° where a = d7P, b = pq + d7 - da and 

c = d7q with P = (d2d6V-dl d5U)/d2 and q = (d1 d6U-d2d5V)/dl UV. It 

is easily checked that this quadratic is identically zero if and only if 

d1 = d2, d5 = d6, d7 = da and u = v; that is, therefore, the condition for 
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.D to intersect Z3 = 0, z4 = 0 in a line component. In mechanical 

terms this means that the upper quadrilateral should be a kite and 

that the two triangles should be congruent. Generally this condition 

fails and the binary quadratic has two roots yielding points El, E2' 

The two points coincide when the discriminant of the quadratic is 

zero. The condition for this to occur is: 

(which is also satisfied in the case of the line component). The 

condition may be considered as a binary quadratic in u and v 

thus the condition has the form u = Cv where C is a unit complex 

number whose value is one of two roots of a quadratic (which is 

easily determined). We shall assume from now on that condition 

{Cl) is not satisfied. 

Let us now impose the further condition that Z3;e 0, Z4;e O. 

Under that hypothesis z7 = 0 if and only if z8 = O. Assuming these 

conditions hold, (4.5) yields a binary quadratic azt + bZ1Z3 + cz~, 
where a = d3P, b = pq + d~ - d~ and c = d3q with 

P = (dl dSu-d2d6 v)/dSu and q = (dl d6 v-d2dSu)/d6 v. The quadratic 

is identically zero if and only if dl = d2,d3 = d4, dS = d6 and u = v: 

that is, therefore. the condition for .D to intersect z7 = 0, z8 = 0 in 

a line component. In mechanical terms this means that the lower 

quadrilateral should be a kite and that the two triangles should be 

Congruent. Generally, this condition fails and the binary quadratic 

has two roots yielding points Fl. F2. The two points coincide when 

the discriminant of the quadratic is zero. The condition for this to 

occur is: 
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(C2) (dl dSu-d2d6 v)(dl d6 V-d2dSu) = (d3 ±d4)2 dSd6uV 

(which is also satisfied in the case of the line component). As for 

condition (Cl) the condition may be considered as a binary 

quadratic in u and v thus, the condition has the form u = Cv, 

where C is a unit complex number whose value is one of two 

roots of a quadratic. We shall assume for the remainder of the 

paper that condition (C2) is not satisfied. 

On the above basis we can already gain useful information 

about the geometry of .D. Firstly,.D has no irreducible component 

of dimension ~3; indeed, such a component would intersect every 

hyperplane in a variety of dimension ~ 2 which we now know not 

to be the case. Secondly, a component of dimension 2 has to 

intersect every hyperplane in a curve: in particular, it has to 

intersect the hyperplanes 23 = 0 (24 = 0) and 27 = 0 (2a = 0) in the line 

components described above, so must coincide with the umque 

plane containing these lines. Moreover, the condition for .D to 

have such a component implies that both quadrilaterals are kites 

and that the triangles are congruent. In general this condition fails 

and the intersections of .D with the distinguished hyperplanes are 

as follows. 

21 = 0: Pl, P2, P3, P4, 01. 02 and L 

z2 = 0: PS, P6, P7, Pa, 01, 02 and L 

23 = 0: Pl. P2, PS, P6, Ql, El, E2 

24 = 0: P3, P4. P7, Pa, 01, El, E2 

27 = 0: P2, P4, P6. Pa, 02, Fl. F2 

2a = 0: Pl. P3, PS. P7, 02, Fl, F2 . 
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It is of course conceivable that L is a repeated component: 

that happens if and only if every point on L is singular on .D. A 

point (Zl, ... ,Za) on L IS singular precisely when the Jacobian 

matrix of the equations (4.5) has non-maximal rank. The 

Jacobian ~ IS 

dl d2 d3 
-.dl -d2 -43 

22 22 22 
1 2 3 
000 

000 

o -u 0 

-v 0 o 

d4 0 

-d4 0 
72 
-4 

o d5 

o -ds 
z2 
5 

o 1 

o o 

o 
o 

o 
o 

o 
o 

da 
-,da 

z2 
a 

o 
o 

An easy computation shows that for points on L the matrix ~ 

has non-maximal rank exactly when 

Now the points 01, 02 are precisely the points on L for which 

either 23 = 0 or 27 = 0 : thus both these points are singular on .D. 

And the condition for every point on L to be singular is 

In more mechanical terms, that is the condition that the triangles 

are similar. We shall assume from now on that condition (C3) is 

not satisfied. 

Although we know that 01,02 are singular on cD it is not 
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clear, whether they are singular on .D'. A lengthy, but 

straightforward local co-ordinate calculation, provides that answer. 

We shall give the details for the point Q1 and leave the calculation 

for Q2 to the reader. First make equations (4.5) affine by setting 

z7 = 1 and translate the point to the origin by making the affine 

change of co-ordinates Z11-+Zi for i = 1, .. ,6 and za H za - ~~. Then 

the equations (4.5) become 

d1Z1 + d2z2 + d3z3 + d4z4 = 0 

d1 + !i2 + !i3 + !i4 = 0 
z1 Z2 Z3 z4 

d5z5 + d6z6 + dg2a = 0 
2 !is + !i6 + d 7 + da = 0 

z5 z6 daza-d7 

z5 = uZ2: z6 = vZl 

Eliminating variables z4, ZS,Z6, za and using the linear equations, 

we obtain the two equations 

Since the derivative of the second equation with respect to z2 is 

nQn-zero, we may use the Implicit Function' Theorem to write z2 
2 as a power series in zl near the origin. Let z2 = aZ1 + bZ1 + ••• be 

its Taylor Series, then substituting for z2 in this equation and 

equating coefficients we find that a = -~~~. Finally, we substitute 

the series for z2 in the first equation to obtain the affine local 

co-ordinates of the curve near the origin 



We may now deduce that 01 is an ordinary triple point provided 

conditions (Cl), (C2) and (C3) do not hold. In particular, cD ' has a 

double point at 01 with distinct tangents i.e. Ql and likewise ~ 

is an ordinary double point on .DI provided conditions (Cl), (C2) 

gM (C3) do not hold. 

For the remainder of this paper we shall assume that the 

mechanism is general by which we mean that conditions (Cl), 

(C2), (C3) are not satisfied. 

Under that hypothesis cD is a curve projectively 

equivalent to a complete intersection of two cubic surfaces in 

3-space. Thus, by Bezout's Theorem, .D has degree 9. Applying 

the well known formula for computing the arithmetic genus of an 

intersection of hypersurfaces (Theorem A5), yields that cD has 

arithmetic genus 10. .D has only one irreducible component in a 

distinguished hyperplane, namely the line L. Further, l), is the 

union of the irreducible components of cD distinct from L. Since 

unger our assumption L will not be a repeated component the 

residual Darboux curve .DI will have degree 8. From these facts 

We can immediately deduce further useful information about the 

points where cD' meets the distinguished hyperplanes. Indeed, 

applying Bezout's Theorem to each intersection in turn, we see 

that, since £1,£2 and F1,F2 are distinct pairs of points, all the 

points P1, ... ,PS, £1,£2, F 1,F2 are simple points on cD ' : moreover, at 
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any of these points and at Q1,Q2, the intersections are transverse. 

The next step is to determine when finite singular points 

can occur, by which we mean singularities off the hyperplanes 

zk = 0 (k= 1, ... ,8). Since under our assumptions ,DI has no 

components of dimension ~2, the conditions for this to occur are 

that the Jacobian matrix ~ with zk ~ 0 for all k should have 

non-maximal rank. By elementary row and column operations 

and deleting linearly independent rows and columns (e.g. 

u xcoI5+coI2; v xcoI6+coll; delete independent rows 5 & 6 and 

columns 1 & 2; col1 +d3; coI2+d4; coI3+d2; coI4+d1; coI5+d7; coI8+da; 

coll-col2; col3-col2; col4-col2; (note that za~O so .. .) z~xrow4+row3; 

delete independent rows 1 & 3 and columns 2 & 6) we may reduce 

the problem to determining when the following matrix has 

non-maxinal rank. 

2 2 2 2 2 2 0 z4 - z3 z4 - z2 z4 - zl 
2 2 2 

z3 z2 zl 
2 2 2 2 2 2 0 dSu(za - zS) d6V (Za - z6) za - z7 

2 2 2 
d2Zs d1Z6 z7 

It follows that the matrix has non-maximal rank if and 

only if either one of the two rows is zero, giving cases (i) and (in 
belOW or neither row is zero implying that columns one and four 

are zero and the determinant of the 2 x 2 minor, consisting of 

columns two and three is zero thus giving case OH) below. Hence a 

tloint P = (Z1 ..... Z8) is a finite sinzularity if and only if at least one 

Qf the following three conditions is satisfied: 
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Substituting for Z2,Z3,Z4 into the first equation of (4.5), we find 

that this implies a condition of the form 

The condition is precisely that the four-bar mechanism, obtained 

by removing bars 5,6,7 and 8, satisfies a Grashof equality as 

described in §1.1. Eliminating all but z1, Z7 in equations (4.5), we 

get a binary quadratic in z1, Z7 

where p= (£2dSv+d6U)/UV and Q= (£2dSu+d6V), giving two values 

of z7 (in terms of Zl) and therefore two singular points in general. 

Mechanically, the lower quadrilateral has flattened and the two 

points correspond to the two positions of the mechanism as 

indicated in Fig.4.8 which differ only by the position of bars 7 and 

8. Thus generally. for each choice of sign (82,83,£4) for which a 

condition of the form (4.6) is satisfied we obtain two distinct finite 

singular points of the form (1,£2,£3,84,*,*,*,*) on .D. 

Fig 4.8 Fig 4.9 
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Exceptionally. the discriminant of the quadratic may vanish. But 

this occurs if and only if PQ = (d7 ±da)2 in which case the two 

singularities coincide. Rewriting the condition as a quadratic in u 

and v, we have 

Thus we may write the condition as u = €2B±v; where B± are 

the two complex conjugate roots (real if and only if B± = ±1 since 

u and v are unit complex numbers) of the quadratic in u 

obtained from the above quadratic by setting €2 = 1 and v = 1. In 

this case z7 = ±za, so bars 7 and 8 are parallel and correspond 

mechanically to the case showed in Fig.4.9. 

More degenerately, the quadratic may be identically zero 

giving a singular line. This can only occur if P = Q= 0, d7 = da, · that 

is, dS = d6, d7 = da, u = -€2V implying that condition (C2) holds: 

indeed, the line meets z7 = 0 and za = 0 in a singular point (~Q2), 

so that F1 and F2 must coincide. The mechanical interpretation 

here is that bars 5 and 6 overlap, hinges C and F coincide and 

bars 7 and 8 move with one degree of freedom as showed in 

F' Ig.4.10. 

Fig 4.10 
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(ii) z5= £6z6= £7z7= £aza, where £6= ±1,£7= ±l,£a= ±1. 

Substituting into the third equation of (4.5), we see that this 

implies a condition of the form 

This condition is precisely the Grashof equality for the four-bar 

obtained by removing bars 1,2,3 and 4 as described in §1.2. The 

argument follows closely that of case (D. Generally, we have two 

distinct singular points on .D for each condition of the form (4.7) 

that is satisfied. When P'Q'=(d3±d4)2 (where P'=£6dlV+d2U and 

Q'= (E6dlU+d2V)/UV) the two singularities coincide. Rewriting this 

condition as a binary quadratic in u and v, we have 

Thus we may write the condition for the coincidence of the 

singular points as u = £6A±v ; where A± are the two complex 

conjugate roots (real if and only if A± = 1, since u and v are unit 

length) of the quadratic in u obtained by setting £6 = 1 and v = 1 

in the given binary quadratic. More degenerately, when d1 = d2, 

d3=d4,U=-e:6V, we get a singular line. In the latter case condition 

(Cl) necessarily holds. The corresponding mechanical 

interpretations are easily deduced and are similar to those of 

case (D. 
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Using the linear equations above together with the linear equations 

of (4.5), we may eliminate several of the variables. One can then 

show the essential redundancy of the third equation and derive the 

necessary condition on the parameters for this type of finite 

singular point to arise. The reasoning is as follows. Substitute 

23 = £424, 27 = £828 in equations (4.5) and then eliminate 24 and 

27 using the linear equations thus obtained. This leaves two 

quadra tic equations in the remaining variables 

Then we may write 21 and ZS In terms of 22 and Z6 

respectively in two ways, provided the design parameters do not 

satisfy a condition of the form (4.6) or (4.7). Let 21 = At22 and 

25 = Bt26, thus it follows from zs = u22 and 26 = VZ1 ,that 

u = AtBt v is a necessary condition for this type of finite singular 

point. (The reader should note that the constants At and B± are 

identical to those labelled in cases (i) and GD') We will now show 

the redundancy of the third equation of (4.8). Suppose P is a 

point satisfying 23 = £424, 27 = £828. Then from the above analysis 

'We have 21 = A±22 and 25 = Bt26 and u = A±B± v. But A± ~ 0 so 

'We may use (4.9) to give the identity 

Hence (4.5) gives 24 = - lih±.d.2At122. Thus, 24 = ld1±d.2A:t~2~ and 
(£3d3+d4) (£3d3+d4)2 

. 2 2 
It follows from (4.9) that 24 = lihAt±d.2lA:t 22 . 

(d1 +d2At) 
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Hence, 

2 2 ( 2) 2 2 2 ( 2) 2 22 - 24 = d1-d1~ 2 2 and 21 - 24 = - ~i2-d2~ A±2 2· 
(d1 +d2A±) (d1 +d2A±) 

Thus, 2 2 2 2 
(z2 - 24) = -dl jz1 - z4)' 

d2A± 

Sirrlilarly we have the identity 

It is now an easy matter to see that the third equation is satisfied: 

for using 25 = u22 and 26 = v21 this reads 

Since 21 ~ 0, 22 ~ 0, 21 ~ ±24, 25 ~ ±28 this is the case if and only if 

u = A±B±. But we know this to be the case and our result is proved. 

Thus u = A±B± is a necessary and sufficient condition for this type 

of finite singular point. The mechanical interpretation here is 

simply that bars 3 and 4, and bars 7 and 8, are parallel as 

indicated in Fig. 4.11. 

Fig. 4.11 
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Note that the first two equations of (4.8) are satisfied in the 

exceptional cases of {i) and (in above, when a pair of singular 

points coincide, but that we can also have mechanisms giving rise 

to points satisfying u = A±B± that do not satisfy the conditions of 

cases (i) or (ii). 

S4.3. Geometry of the Linkage Variety. 

We shall now describe the geometry of the Watt I residual linkage 

variety ~' in more detail. Its relation with the residual Darboux 

variety J)' is as follows. Consider the projection Tt :pq:14-+pq:7 

which maps (Xl,Yl, ... ,XS,YS,w) to (Z1, ... ,ZS) where zk = Xk+iYk for 

k= 1,2,3,5,6,7,8 and Z4 = -wo The centre of Tt is the 6-dimensional 

subspace of pq:14 defined by xk = -iYk for k.c4, and W= 0, thus 

contains the 2-plane W. As explained in §1.2, the projection Tt 

defines a 1-1 correspondence between the points of ~ with w.cO 

and the finite points of J)' i.e. those with zk.cO for all k. Thus the 

restriction Ttl~' is a generically 1-1 rational map and is 

therefore a birational map between &' and cl)' failing to be 

regular only where ~ meets W. Thus the open set Ttl~'(~') 

contains all finite points of J)' but not all of the points with zk=O 

for some k. It is clear then, that J)' is the Zariski closure of the 

set' Ttl~'(~'). More precisely, the image of ~' only fails to be 

closed because points of ~' meet the centre of projection i.e. at 

the points of ~' where Ttl~'(~') is non-regular. Let us call the 

points .D'-TtI~I(~') the closure points. From the general theory of 

projections (Theorem A13) the pre-image of a point on Y under a 

linear projection Tt: X -+ Y between two varieties X and Y is 
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either a point on X or has as its pre-image the osculating n-plane 

to X of some point where X meets the centre of n. Thus the set 

of points, which makes up the closure points of nl:R,I(:R,I), may be 

obtained by taking the images of osculating n-planes. For well 

behaved projections of curves (by which we mean, those 

projections, whose centre does not contain any tangent of :R,') we 

need only consider the images of tangent lines i.e. osculating 

1-planes. Thus, provided Tt is well behaved any point of J)" 

which does not have a pre-image on :R,' must be a closure point 

and is the image of the tangent line to :R,' at a point where :R,' 

meets the centre of projection. We wish to show that no point of 

.l), with z4 = 0 is a closure point and hence has a pre-image on :&'. 

We begin by noting that the equations defining :R, have 

real coefficients and therefore any point P is either ~ i.e. P= P, 

or complex i.e. p;&! P in which case the complex conjugate point P 

also lies on :R, and has the same singularity type as P. 

First we shall show that Tt is well behaved. Suppose P is a 

point of :R,' whose tangent line T lies in the centre of projection. 

Then in particular, T lies in w = O. But then this implies that the 

point P on :R,' has a tangent f also lying in w = O. We now 

obtain our required contradiction by noting that T does not meet 

the centre of projection and hence P maps to a point of J)' 

whose tangent lies in z4 = 0: which we know is never the case. 

A similar argument will yield that no closure point of J)' 

lies in the hyperplane z4..=.Jl. Let pi be a point on J)' with z4 = 0 

and suppose that it is a closure point. Then there is a tangent T 
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to ~' at a point P lying on W (and so meeting the centre of 

projection) which maps to P'. Since W does not meet its 

complex conjugate pl~ne W, the point P is complex and therefore 

has a complex conjugate point P (lying on W) with tangent T to 

~'. Thus, T maps to a point in the hyperplane Z4=0, implying 

that T lies in the pre-image of z4 = 0, i.e. the hyperplane w= O. 

But the tangent T to ~' at P is complex conjugate to T and 

therefore lies in w=O too. The projection is regular at all points of 

~' in W so f maps either to a point implying that P is 

critical and that n(P) is cuspidal on J), or to a line contained in 

z4=0 implying that J)' touches z4=0 at l1(P). In both cases we 

contradict the way in which J)' meets z4=0 described in §4.2. 

We deduce .then that every point of J)' in z4=0 has a pre-image 

on ~'. 

It is easily checked that the pre-images of· P3,P4,P7,Pa are 

the points J15 ,J14 ,J25 ,J24 and that the points El,E2 have 

unique pre-images £\,E'2 lying on L3 (which, generically, are not 

the points J34. J35). For example, the pre-image of the point 

P3 = (0,1,-~~ ,0,u,0,-~~u ,0) satisfies w = 0 thus Xj + iYj = 0 for 

j = 1,6 and 8, and Xj - iYj = 0 (since Xj + iYj ~ 0) for j = 2,3,5 and 

7. Thus x2 +iY2 = 2x2 = 1, x3 + iY3 = 2X3 = -~~, x5 +iY5 = 2x5 = u, 
d5 1 i -d2 i d2 

X7+ iY7= 2x7=-d7u and hence x2=Z' Y2=-2' X3= 2d3' Y3= 2d3' 
·U fu d5u "d5U x5='2, Y5=-Z' x7=-Z d7' Y7=IZ d7' Applying equations (4.2), 

yields xl = Yl = xa = Ya = 0 and hence we have defined all the 

co-ordinates uniquely giving the pre-image 
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The pre-image of Q1 under the mapping it is the line M (whose 

equation we gave earlier) which we know must meet the curve ~' 

in at least one point. We shall show that ~' meets M in just one 

point J13. 

Suppose then that ~' meets M at a point P ~ J13. Since 

M does not meet its complex conjugate line M, P must be 

complex with a conjugate point P on ~' lying on M. But M is 

contained in the hyperplanes X7+iY7=0, xS+iyS=O, w=O and 

meets the centre of projection in a point as the reader may readily 

check. Thus M maps to a point in the hyperplanes Z4=0, Z7=0 

and zS=O. In particular, P maps to this point implying that .D' 

contains a point lying on all three hyperplanes; a clear 

contradiction, since we know that no such point exists by the 

results of §4.2. 

We have showed, therefore, that ~' meets the plane W 

in the set A={J123,J15,J14,J25,J24,E\,E'2} and hence ~' meets 

the complex conjugate plane W In the set 

A={J123,J15,J14,J25,J24,EI1,E'2}. In fact, we have established a 

stronger result. The pro jection itl~1 only fails to be defined at 

~Qints in A and is a 1-1 correspondence between the open sets 

E\A and &'\itl~llAL: implying that they are isomorphic sets. 

Firstly, this implies that P3, P4, P7, PS, E1, E2, and Q1 are points 

with the same singularity type as J15, J14, J25, J24, E'1. E'2 and 

J'123 respectively. Thus with our assumptions Q1 is an ordinary 

double point on &. Secondly, this implies that any finite point P 

on 1(,' has the same singularity type as the finite point itl~I(P) 

on .D' so that the condition on the design parameters for 1(,' to 
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possess a finite singular point is identical to the condition derived in 

§ 4.2 for .D' to possess a finite singular point. This condition 

should be called the Grashof equality, since it is the exact 

analogue of this concept for the planar four-bar (in §1.2). We 

recall that this condition, phrased in terms of the design 

parameters, is a polynomial one (not identically zero), so it follows 

that generically, by which we mean for almost all design 

parameters in the sense of Lebesgue measure, the Darboux and 

linkage varieties have no finite singularity; and in particular, we 

can always avoid finite singularities by small deformations of the 

design parameters. Henceforth, we shall refer to a Watt I 

mechanism as generic when the Grashof equality does not hold. 

We assert that the degree of the curve &' is sixteen. For a 

given hyperplane H, the degree of a curve is equal to the sum of 

all intersection multiplicities HP,Hn ~') for points P lying in the 

intersection of H and ~'. If we take H to be the hyperplane 

given by w= 0 then we have 

But under the involution of complex conjugation, intersection 

multiplicity is preserved, thus HP,Hn ~') = HP,Hn ~'). Hence 

and now we need only calculate the intersection multiplicities 

i(P,Hn~'). To do this we use the fact from the theory of 

projections (Theorem A12) that under a degree one linear 
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projection re, intersection multiplicity does not decrease 

for any curve ~I, any point 15 on ~I and a given hyperplane H 

containing the centre of projection. Now let ~I and H be as 

above and let P be any point In . A, then 

re(A)={01,P3,P4,P7,P8,El,E1}, re(H) is the hyperplane z4=O and 

re(~I) = .DI, Denote by Pk,ek,qk, the intersection multiplicities of 

.DI with the hyperplane z4 = 0 at the points Pk,Ek,Ok and 

denote by jkl, j123 the intersection multiplicity of ~I with the 

hyperplane w= 0 at the points Jkl, J123. We recall that .DI 

has degree 8 so that the total intersection multiplicity of .DI with 

z4=O is 8 by Bezout's theorem. Further, we recall that 01 is a 

double point and that the remaining intersections P3, P4, P7, P8, 

El, E2 of .D' with Z4=O are all simple points (with our 

assumptions). So Pk = 1 for k= 3,4,7,8, el = e2 = 1 and ql = q2 = 2. 

It follows that jkl = 1 and that j123 = 2 since j123 ~ mult(J123) = 2. 

The required result that the degree of ~ is 16 now follows. 

For the Watt 11 mechanism we have a projection 

re':PC14 -+ PC7 which maps (X'2,y'2,,,.,X'8,y'8,W') to (Zl,,,.,Z8) where 

Zk=X'k+iY'k for k~l, and Zl=-W', so the restriction 't'=re l
l,81 

defines a birational map between ,8' and .D' failing to be regular 

only where ,8' meets W'. In a similar manner to the Watt I we 

can show that points of .D' with zl = 0 are not closure points and 

hence have a pre-image on ,81. It is easily verified that Pl, P2, P3, 

P4 have pre-images J'2S, J'24, J'3S, J'34. The points PS, P6, P7, 

PS, El, E2, Fl, F2 have no pre-image so they must be closure 
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points implying that there are eight distinct branches of 2,' 

passing through the centre of projection and therefore meeting W. 

These branches have complex conjugate branches meeting W 

which will project to branches through points in z1 = O. Then four 

of these branches must pass through P1, P2, P5. P6. two branches 

pass through 01 and the remaining two pass through 02. But 

the pre-image on ~ of 01 (resp. 02) is M' (resp. M') which 

meets W in just one point J'123 (resp. J'45). Therefore, the 

pre-images of the two branches through 01 (resp. 02) must pass 

through J'123 (resp. J'45). Then it follows by similar arguments to 

the Watt I case that Pl, P2, P3, P4, 01, 02, are points with the 

same singularity type as J'25, J'24' J'35, J'34' J'123. J'45. 

respectively. In particular, J'123 and J'45 are ordinary double 

points under the assumption that conditions (Cl),(C2),(C3) do not 

hold. Moreover, we find that the degree of the residual linkage 

Yariety 2,'~. It is worthwhile noting that, although ~' and 

2,' have the same degree and are birationally isomorphic, they 

are not projectively equivalent, since ~' and 2,' have the same 

number of finite singularities, but a different number of double 

points in the hyperplane at infinity (Le. 2 and 4 respectively). 
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§4.4. The Reductions of the Watt Darboux Variety. 

In the first three sections of this chapter we set up the 

basic geometry of the linkage varieties for the Watt I and Watt 11 

mechanisms. These varieties are birationally isomorphic, each 

comprising two skew lines, two skew planes and a curve of degree 

16, called the residual linkage curve. In general, one expects this 

curve to be irreducible, but there are certainly degenerate 

situations when it can reduce. And correspondingly any associated 

coupler curve, which is a projection of the residual linkage curve, 

will also reduce. Ideally, one would like a complete list of the 

possible reductions in terms of the design parameters. That 

problem was effectively solved for the planar four-bar over a 

century ago, but has never been discussed for more complex 

mechanisms, despite the fact that one can gain considerable insight 

into coupler curves by effecting small perturbations of reducible 

cases (see, for example, [Fichter]). 

This section is devoted to presenting a complete solution to 

this problem. There are two key observations. The first is that 

both the residual linkage curves for the Watt I and the Watt 11 are 

birationally equivalent to the same Darboux residual curve. The 

details of this relation were set out in §1.2. Thus, in principle, it 

Suffices to determine the reductions of the residual Darboux curve 

- an easier problem since that curve is only of degree 8 and lives 

naturally in a 3-space. We remind the reader that this was done 

for the four-bar in §1.2 and provides a simple example of the 

approach that we shall adopt. The second key observation follows 
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from the results of §1.4 that there is a natural projection from 

the linkage variety of a mechanism onto that of any 

sub-mechanism: one can paraphrase this In more mechanical 

terms by saying that any configuration of the mechanism 

determines uniquely a configuration of a given sub-mechanism. 

For either Watt six-bar there are two natural sub-mechanisms, 

namely, the two underlying planar four-bars, so that we have two 

natural projections to consider. Moreover, both of these projections 

have degree 2 in the sense of general algebraic geometry: in 

mechanical terms that means that for a glven general 

configuration of one four-bar there are two distinct corresponding 

configurations of the Watt six-bar. Phrased in terms of the 

corresponding Darboux curves this means that there are two 

natural projections from the Darboux curve for the six-bar onto 

those for the two planar four-bars. The latter curves are plane 

cubics whose geometry is very well understood; in particular, one 

knows exactly how the Darboux cubic of a planar four-bar reduces 

in terms of the design parameters (§1.1). From this point on it is a 

technical exercise in algebraic geometry, using the Genus Formula 

for a curve and the Projection Formula, to determine the 

reductions of the residual Darboux curve corresponding to the 

types of the underlying four-bars. The passage from the residual 

Darboux curve. to the residual linkage curve proceeds via the 

following proposition: each irreducible component of the residual 

Darboux curve corresponds to a birationally equivalent component 

Qf the residual linkage curve of twice the degree. Finally, one can 

deduce the possible reductions of coupler curves. 
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We begin by recalling that the four linear equations in (4.5) 

are linearly independent defining a three dimensional subspace of 

p[7 so .D' is isomorphic to the intersection of two cubic surfaces 

KB and KU in p[3. Explicitly, we may eliminate z4,z5,z6,z8, so 

that KB and KU are given by equations (4.12) and (4.13) 

respectively 

} (4.12) 

For the remainder of this section we shall refer to the isomorphic 

curve as the Darboux curve without change of notation. The 

reader may easily check that KB is a point cone with vertex 

Q1 = (0,0,0,1) over a plane cubic curve Band KU is a point cone 

with vertex ~= (0,0,1,0) over a plane cubic curve U, where B 

and U are given by an identical set of equations (4.12) and (4.13). 

If we consider the two quadrilaterals in the Watt mechanism as 

"submechanisms", then we find that the Darboux cubics 

corresponding to the base and upper quadrilaterals are projectively 

isomorphic to the cubics Band U respectively. Again we shall 

refer to the isomorphic curves as the Darboux varieties without 

change of notation. The Darboux varieties of quadrilaterals are 

well understood. In § 1.1 we showed that the cubics could be 

classified into four types namely: generic, circumscriptible, 

parallelogram/kite, rhombus, depending on the design parameters. 

However, we shall make two cases from the previous 

kite/parallelogram case, so that we distinguish five types 
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(1) dl+d2;oe d3 + d4, dl+ d3;oe d2 + d4 and dl+ d4;oe d2 + d3: 

B is a non-singular cubic. 

(2) dl + d2 = d3 + ~ or dl + d3 = d2 + d4 or dl + d4 = d2 + d3 

(but no two hold simultaneously) : B is a nodal cubic. 

(3) d1 = d2 ;oe d3 = d4 : B reduces to a conic and chord (with 

two real double points). 

(4) dl = d4 ;oe d2 = d3 or d1 = d3 ;oe d2 = d4 : B reduces to a 

conic and chord (with two real double points). 

(5) d1 = d2 = d3 = d4 : B is the union of three distinct lines 

(with three real double points). 

In cases (2)-(5) the singular points are of the form (±1,±1,1l. 

Remark: For each Grashof condition of the Darboux cubics which is 

satisfied, there is a Grashof condition of the Watt linkage variety. 

Indeed, for each singular point P = (±1,±1,1) of B (resp. U), 'TtB 

(resp. 'TtU) maps two distinct singular points of :R' onto P. 

Indeed, the singular points of B have the form (±l,±l,1,w) and 

the singular points of U have the form (±l,±l.w,1). The reader 

may wish to refer to §4.2. 

Let 1~i~5 denote the above type of base quadrilateral in the Watt 

mechanism and let 1~js5 denote the the analogous type for the 

Upper quadrilateral (replacing 1,2,3,4,B by 5,6,7,8,U respectively in 

the above list) then we will write ilj to describe the Watt 
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mechanism, whenever the appropriate conditions on the dk's 

occur. The reader should note that it is necessary to split up the 

parallelogram/kite case into two types (3) and (4) for the following 

discussion: for it will soon become clear that the two types give rise 

to distinct geometries of J)'. 

For a gIven reduction of B (resp. U) into linear and 

quadratic components we get a corresponding reduction of KB 

(resp. KU) into linear and quadratic components by taking the 

appropriate point cone over each component. Then for a given 

mechanism of type if j we know the components of KB and KU 

from which we can immediately deduce a reduction by taking each 

component of KB and intersecting it with each component of KU' 

The reader should note that the resulting subvarieties will not, in 

general, be the irreducible components of J)', since each 

intersection may reduce further. Thus, for instance, if KB is a 

plane and quadric and KU is three planes the intersection will 

yield three lines and three conics, where the conics may be 

reducible. It would suffice then, to determine which of the conics 

are irreducible in order to establish the reduction of J)' in this 

case. 

I t IS na tural to consider the projection 

TtB':(Zl,Z2,Z3,Z7)--+(Zl,Z2,Z3) on the Darboux variety .D 

(remembering that we have eliminated variables Z4,Z5,Z6,Z8). Let 

us for the moment assume simply that J) is a curve. i.e. that the 

~Qndition dl.::.d2,~=d4,.ds..::.d6,d7..=.da,U=V does not hold. Later in 

this section we shall make further restrictions. Clearly the image 

of the projected curve is precisely the Darboux curve for the lower 
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quadrilateral B. The centre of the projection IS the subspace 

defined by 21 =22=23=0 and it intersects cD in the point 01. 

Thus, we are projecting cD from one of its singular points 01. The 

picture one has in mind (see Fig. 4.12) is that the cone KB 

represents this projection. cD lies on KB and passes through the 

vertex 01. A point P on B has as its pre-image a line Lp on 

the cone through Ql and P. Lp generally meets the curve cD in 

a finite number of points, but exceptionally it may be a component. 

Fig. 4.12 

The first step is to find the inverse image of a point 

(21,Z2,23) on the Darboux curve of the base quadrilateral B. There 

are six distinguished points, namely those which lie on one of the 

hyperplanes 2k = 0 (k = 1,2,3). We will consider these separately 

later, but for the moment we may assume that 2k;l:O (k= 1,2,3). 

Assume then, that the point satisfies equation (4.12), then we 

require the 27 co-ordinate satisfying the equation (4.13). If we let 

P=d5U22+d6V21 and 0= (d5V21+d6U22)/UV, then we obtain a 

quadratic in 27 

2 2 2 
dSO~ + (PO-d7 + d8)~ + dSP = 0 
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In general, we expect to get two points in the pre-image, indeed the 

mechanics of the Watt strongly suggest that. For fixing 21,22,23, 

fixes a position of the lower quadrilateral. Then there are two 

choices of 27, 2a as indicated in Fig. 4.13. 

p 

Fig. 4.13 

But exceptionally, we could get a line. This happens if and only if 

P=O, 0=0 and d7=da. It follows from P=O and Q=O that 

d5 = d6, and u22+vzl = 0 i.e. the upper quadrilateral collapses (see 

Fig.4.14L Conversely, the conditions d5 = d6 and d7 = da imply that 

there is a point on B whose pre-image is a line. 

Thus, provided the condition d5 = d6, d7 = da does not hold, 

we have just a finite number of points in the pre-image of a point 

on the Darboux curve of the base quadrilateral. Indeed, we have 

showed that in this case we have two points on a Zariski open 

subset of B and therefore the pro jection llBIJ)' has degree two. 
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Fig. 4.14 

If the condition d5 = d6, d7 = da does hold, we hope that 

there are only finitely many points on B for which the pre-image 

is a line, so that we get a finite map. To this end, note that the 

condition uz2+vz1 = 0 defines a line z1 = XZ2 (where X = -u/v) m 

the plane of the Darboux cubic. We require the points of 

intersection of this line with B: in general, there will be only three, 

but there is the possibility that the line z1 = AZ2 is a component of 

B. Certainly that could only be the case when the base 

quadrilateral is of the parallelogram/kite type by the analysis of 

the 'four-bar. Substituting z1 = XZ2 in equation (4.12), we find that 

Thus we get a line component if and only if all the coefficients are 
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zero. Hence, we have dl d3A2 + d2d3A = ° (A ~ 0) glvmg A = -~~, 
and dld3 + d2d3A = ° giving A = -~~. Thus dl = d2 and A =-1. 

Hence, dl d2A2 + [di + d~ + d~ - d~]A + dl d2 = 0, which implies that 

~ = d4. But combining this with the conditions above yields dl = d2, 

d3=d4, d5=d6, d7=da, U=V. This condition clearly implies conditions 

(Cl),(C2),(C3). Since we are assuming that these conditions do not 

hold, we see that there are at most three points on B. for which 

the pre-image could be a line. The reader may readily check that 

all three points have a line of pre-images on .D. One point is 

{0.0.1) and has as its pre-image the line L. The other two points, 

whose co-ordinates we shall not write down, have pre-images the 

lines 01 El, 01 E2, which are distinct. provided condition (C2) is 

not satisfied. 

It now remains to find the pre-images of the points with 

zk = ° for some k. They are . (0,0,1), (0,1,0), (1,0,0), (O,-d3,d2), 

(-d3,0,dl), (-d2,dl,0) with pre-images L, Pl and P2, P5 and P6, 

P3 and P4 P7 and Pa, El and E2 respectively. Thus, even in the , 
case when d5=d6, d7=da and we have line components, the 

projection TIB defines a degree two mapping from the subvariety 

of .D obtained by removing the lines 01 El, 01 E2' L to the 

Darboux variety B. 

In an identical manner we may consider the effect of the 

projection TIU:(Zl,Z2,Z3,Z7)~(Zl,Z2,Z7) on .D. We find that we are 

projecting .D from the singular point 02 to the Darboux variety 

U for the upper quadrilateral. 

Proceeding as for the preVlOUS projection, we find that a 
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point on U with no Zk co-ordinate zero has, in general two 

distinct pre-images implying that TIU defines a de~ree two 

mappin~ between .DI and U. Exceptionally, we could get a line. 

In this case we must have dl = d2, d3 = d4: moreover, the identities 

imply that uZ2+vzl = ° and so the lower quadrilateral collapses. 

Conversely, if the base quadrilateral does collapse in this manner, 

then U does have points whose pre-images are lines. 

If dl = d2, d3 = d4, then we still hope that there are finitely 

many points on U for which the pre-image is a line. The result is 

that if there are infinitely many points whose pre-image is a line 

then d5=d6, d7=de, U=V but combining these with the above 

condition we get dl =d2, d3=d4, d5=d6, d7=de, u=v. As we pointed 

out earlier this contradicts our assumptions. In the case when only 

finitely many points have line pre-images we find that (0,0,1) has 

the pre-image L and there are two other points with the lines 

Q2F 1, Q2F 2 as their pre-images. Thus even in this case TIU 

defines a degree two mapping from the subvariety of .D obtained 

by removing the lines Q2Fl, Q2F2, L to the Darboux variety U. 

It is also worth noting that any component of JY, lying in 

a linear or quadratic component of KB (resp. KU)' will map into 

the linear or quadratic component of B (resp. U) under the 

projection nB (resp. TIU). So for example, a conic component of 

.DI, which is the intersection of a linear component of KB and a 

quadratic component of KU, will map into the linear component 

of B under TIB and the quadratic component of U under TIU. 

The significance of this fact will soon become clear. 
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For a curve C we will write the symbol f1 +f2+ ... +fr to 

represent its reduction into components C1,C2, ... ,Cr where fk IS 

the degree of the kth component Ck and the sum of the fk IS 

equal to the degree of C. In particular, we shall use this notation 

for the reductions of the Watt I residual Darboux variety. 

Before we continue we note that by the symm~try of our 

situation the residual Darboux varieties of the mechanisms i/j 

and j/i have the same symbol f1 +f2+ ... +fr so we need only 

consider those i/ j with j~i. 

At a number of points in the following calculation we will 

apply the Genus Formula, but first we shall need to know the 

arithmetic genus of .D. The variety .D is the intersection of two 

cubic surfaces in PC3 thus we may apply Theorem (A5) which 

gives a formula for determining the arithmetic genus of an 

intersection of hypersurfaces. 

Theorem Let V l,. .. ,V n-1 be hypersurfaces of degrees d1, ... ,dn-1 in 

PCn intersecting in a curve, then the arithmetic genus Pa of 

that curve is given by the formula 

Then n = 3, d1 = d2 = 3 and it follows from the formula that .D has 

arithmetic genus 10. 

To determine the genera of the irreducible components of a 

connected curve we have the Genus Formula (Theorem AB), 
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which states that, if a connected curve C has r components 

Cl,··,Cr , and Cl,,,,Cr are their normalisations. then their genera 

are related by the following formula 

where the * denotes that the sum is taken over the singular points 

of C and Bp is the delta invariant of the singular point P. 

Under our assumptions 01 and O:z are ordinary triple 

points on J), so the B-invariant of these points is 3. Then 

Pa(J)) = 10 and if J) has r components Cl"",Cr other that L 

the genus formula yields 

where g(~) =Pa(Ci ) is the geometric genus of Ci and ~ is the 

sum of the B-invariants of all finite singular points. We shall now 

tlroceed with the reductions. The results are summarised in the 

table which may be found at the end of the section. 

We begin with the most degenerate situation 5/5, where B 

and U are triangles. Since KB and KU are point cones over 

these curves, they are unions of three planes. Thus their 

intersection is nine lines, immediately giving the required 

reduction. Band U each have three double points so 1?,' has 

twelve singular points (recall that J)' has two singular points for 

each one on Band U). Applying the Genus Formula, we find that 

each of the twelve singular points on 1?,' has B = 1. 
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For the cases 5/4 and 5/3 KB is the union of three 

planes and KU is the union of a quadric cone and a plane. Thus 

they intersect in three lines and three (possibly reducible) conics. 

Under the projection nU the conic component of U must be 

double covered so at least two of the conics must be irreducible. 

Further, we have three singular points on B and two on U, so 

that ~' has ten finite singular points implying that ~~ 10. 

Applying the Genus Formula, we find that r~ 6 : so the remaining 

conic reduces, giving the reduction 1 +1 +1 +1 +2+2 and implying 

that each finite singular point has 0= 1. But j=5 so dl =d2, d3=d4 

and therefore two of the lines are 02El02E2. Also when i=3, we , 
have d5=d6,d7=da: therefore, we have the lines 01Fl 0lF2. So in , 
the case 5/3 the four lines are ~El 02E2,OlFl,01F2 and the , 
conics do not meet 01 or ~, whereas in the case 5/4 both conics 

pass through 01, two lines pass through 02 and the remaining 

lines do not meet 01 or 02· 

In the cases 5/2, 5/1 B is three lines and U is irreducible 

so KB is the union of three planes and KU is an irreducible cubic 

cone. Thus the intersection of KB, KU is the union of three 

(possibly reducible) plane cubics. But U must be double covered 

by nU so at least two of the cubics are irreducible. Further, we 

know that ,D' contains the line L and the two lines 02El,02E2 

(since dl = d2, d3 = d4) : so these must be contained in the third 

cubic. Hence the reduction is 1 +1 +3+3. The projection -ITB maps 

the cubics to lines, since they lie in planes meeting the centre of 

projection. Applying the Projection Formula, we find that the 

cubics must meet the centre of projection 01 and map onto the 
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lines with degree 2. The projection itU can only map the cubics 

birationally onto U. Thus the cubics have genus zero in case 5/2 

and genus one in case 5/1. The reader may now verify, using the 

genus formula, that in case 5/2 cD' has eight finite singular points 

with 8= 1 and that in case 5/1 cD' has six finite singular points 

with 8=1. 

Next, we consider the case 4/4. KB and KU are both the 

union of a plane and a quadric cone intersecting in a line Li, two 

conics and a quartic (possibly reducible). In particular, the conics 

lie, firstly, on a plane which is mapped into a line under one 

projection and secondly, on a quadric which is mapped into a conic 

under the other projection. But the conics cannot map to points, 

so they are irreducible and the projection itB (resp. itU) maps one 

onto the conic and the other onto the linear component of B (resp. 

U). So the conics provide a single covering of the line and conic 

components of Band U. But the line components of Band U 

need one further covering, so there must be a component of .lY 

lying in the plane components of KB, KU mapping to a line: the 

only candidate is Li ~L. But .1)' has eight singular points, so ~~8 

and the Genus Formula implies that r ~ 4. Since L must be a 

component of the quartic, we may now deduce that the quartic 

reduces. The quartic cannot reduce to 1+1+2 or 1+1+1+1, since the . 
lines would map to lines (no components map to points in case 

4/4) implying that the line components of Band U have at 

least two further coverings thus giving a contradiction. The only 

other reduction, which includes a line, is 1 +3. The Projection 

Formula implies that the cubic maps birationally onto the conic 

components of Band U, thus has genus zero. The Genus Formula 
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implies that the eight finite singular points of .D' have 0 = 1. 

In the case 4/3, KB and KU are both the union of a 

plane and a quadric cone intersecting in a line Ll, two conics and 

a quartic (possibly reducible). Since d5=d6,d7=da we have two 

line components 01F l,OlF2 which are mapped to points by 'ltB 

and mapped to Ul (the line component of U) by 11U, giving a 

double covering of Ul. Thus .D' has no other lines, since they 

would give a third covering of Ul. Suppose then that the quartic 

reduces, then it is the union of two conics. Hence, .D' is the union 

of a line and four conics. But no conic passes through 02 for 

otherwise 11B would map it to a line thus giving a third covering 

of Ul. Thus no component of .D' passes through 02 giving a 

contradiction. Therefore the quartic is irreducible and passes 

through 02. Applying the Projection Formula, we find that the 

quartic must have a double point at ~ and maps birati(;:mally 

onto U2. the conic component of U. Thus the quartic has genus 

zero. Hence, the required reduction IS 1 +2+2+4. We may now 

apply the Genus Formula to show that the finite singular points 

have 0=1. 

The next cases to consider are 4/2 and 4/1 where KB is 

the union of a plane and quadric cone and KU is an irreducible 

cUbic surface. Their intersection is the union of a plane cubic and a 

sextic, both of which are mapped onto the irreducible cubic U by 

nU· Thus, all components of .D' have degree ~ 3, Since no 

components map to points. It follows that L must be contained in 

the sex tic and therefore the only possible reduction of J)' is 3+5. 

The cubic maps birationally onto U and the quintic must give a 
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further covering. The Projection Formula shows that this can only 

be the case if the quintic has a double point at ~ and maps 

birationally onto U. Mapping this time with the projection 11:B, 

We find that the only way a cubic and quintic can double cover the 

line and conic components of B is when both map with degree 

two. It follows that both components pass through the centre of 

projection Ql. We observe that the genus of the cubic, quintic and 

U are identical (since they are birationally equivalent) and that 

g(U)=Q for j=2 and g(U)=1 for j=1. Applying the Genus Formula, 

We find that in the case 4/2 the six finite singular points of .DI 

(two for each singular point of U and B) have 8=1 and that in the 

case 4/1 the four finite singular points of .DI (two for each 

singular point of B, U non-singular) have 8= 1. 

In the case 3/3, KB and KU are both the union of a plane 

and a quadric cone intersecting in a line Ll, two conics and a 

quartic (possibly reducible)' Since dl =d2,d3=d4,d5=d6,d7=da, we 

have the four line components, QIF1,Q1F2,Q2El,Q2E2. Under the 

projection TIU (resp. 11:B), QIF 1,Q1F2 (resp. Q2El,Q2E2) map to the 

line component of U (resp. B) implying that they lie in the plane 

component of KU (resp. KB). Thus at least one of the two lines lies 

in the plane component of KU (resp. KB) and the quadric 

component of KB (resp. KU), while one of the four lines might be 

L1: Thus both conics reduce giving four lines and a (possibly 

reducible) quartic. Thus the line components of Band U are 

double covered implying that there are no more lines in .1)', since 

they would necessarily map to lines giving a third covering. We 

deduce that if the quartic reduces, it does so to two conics. We 

shall obtain a contradiction to this by observing that the eight 
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singular points on .D' lie on the lines Q1F1,Q1F2.Q2E1,Q2E2 (two on 

each) as an easy computation shows. Then, since no two of the 

lines meet in a finite point, the singular points must occur where 

the conics meet the line. Thus, if the conics meet at all. they must 

meet at one of these points giving a triple point on .D'. Applying 

the Genus Formula, we find !J.= 10. So there could be a triple point 

with 8= 3 (Le. with distinct tangents) implying that the conics 

would meet with distinct tangents. We now recall that the quartic 

is given as the intersection of two quadrics in po:3 which is known 

to have arithmetic genus 1. Applying the Genus Formula here, we 

find that the quartic can only reduce to two conics. if there is a 

singular point with 8= 2 i.e. the conics meet with rum-distinct 

tangents giving the required contradiction. Thus, the quartic is 

irreducible and the reduction of .D' is 1+1+1+1+4. 

The next cases to consider are 3/2, 3/1. Then KB is the 

union of a plane and quadric intersecting the irreducible cubic 

surface KU in a plane cubic and sex tic (both possibly reducible). 

Since d1 =d2, d3=d4' the lines ~E1,Q2E2 are components of .D. 

The lines are mapped by 11B to the line component of B, so they 

lie in the plane component of KB' Thus the cubic contains 

Q2E1,Q2E2 and one other line: namely L, since any other line 

would give a third covering of the line component of B. Therefore 

the'sextic double covers the irreducible cubic U and since any 

component must have degree ~ 3. the sextic is either irreducible 

or it is the union of two cubics mapping birationally onto U. Let 

Us Suppose then, that the sextic reduces to two cubics. First note 

that Q1 is simple on both cubics; since, if it was a double point on 

one of them, then 11B would map that cubic to a line, which 
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together with 02El,02E2, would give three coverings of the line 

component of B, a clear contradiction. Thus, the cubics are 

mapped birationally onto the conic component of B. But 

multiplicity does not decrease under birational projection 

(Theorem A12), thus we may deduce that the cubics have no 

finite singular point and, moreover, that the cubics are 

non-singular with genus zero (equal to that of a conic). . Hence, for 

the case 3/1 we have an immediate contradiction, since the cubics 

are also birationally equivalent to U, a cubic with genus one. For 

the case 3/2, we note that TIU defines an isomorphism between 

an open set of either cubic and an open set of U. Indeed, the node 

on U has two pre-images on .D which are singular points of .D 

by the remark made at the beginning of the section. Thus, even if 

the pre-images lie on ~El,02E2 they also lie on one of the two 

cubics. Hence the node is contained in the isomorphic sets and it 

follows that one of the cubics has an ordinary double point: This 

contradicts the fact showed above that the cubics are non-singular. 

To complete the list of reductions we must consider the 

cases 2/2, 2/1, 1/1. In any of these cases, no components map to 

points hence any component of .D' maps onto the irreducible 

cubics Band U. This gives us three possible reductions: 8 or 3+5 

or 4+4. If the reduction is 3+5, then the cubic maps birationally 

onto Band U and the quintic has double points at 01, 02 also 

mapping birationally onto Band U. But then TIU(Ol) = (0,0,1) 

must be singular on U contradicting the fact that all singular 

points of U are of the form (±1,±1,1). 

Consider now the reduction 4+4. Each quartic must meet 
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both Q1 and Q2 and map birationally onto Band U. For the 

case 2/1 we have an immediate contradiction, since this would 

imply that Band U are birationally isomorphic, contrary to the 

fact that they have different genera. In the case 2/2 we note 

that for at least one of the quartics, the birational map 'ITU 

defines an isomorphism between an open set of that quartic and an 

open set of U containing its unique singular point. By the Remark 

made at the beginning of the section, the pre-image of a node has 

the form (±l,±l,p,l) and is one of the finite singular points of J)'. 

Thus, the pre-image is an ordinary double point of the quartic and 

is mapped by 'ITB onto a singular point of B. But the singular 

point of B has the form (1,±1,±1) and the point (±1,±1,p,1) can 

map to this point if and only if p = ±1. However, under our 

hypothesis such a point is never a singular point of J)' giving the 

required contradiction. Finally, in the 1/1 case, J) has no finite 

singular points. Applying the genus formula with r = 4 and genera 

equal to 1, yields that ~ ~ 4 contradicting the fact that there is no 

fini te singular point. 

We now draw the reader's attention to the fact that the 

generic mechanism is of type 1/1 and hence the residual Darboux 

y.ariety J)' is irreducible with no finite singular points. 

We complete this section by proving that each component 

QD the residual Darboux variety J), has as its pre-image on the 

Watt I residual linkage variety 1(,' a birationally isomorphic 

£Omponen t of twice the degree. 



- 166 -

Let us continue to denote the projection from the residual 

linkage variety to the residual Darboux variety by it. Let Cd be 

a component of degree d of .D I

• Then Cd has d distinct 

branches meeting the hyperplane Z4 = 0 (under our assumptions 

El and E2 are distinct and 01 is an ordinary double point). Thus 

its pre-image (also an irreducible variety since the projection it is 

1-1 and Cd is irreducible) meets the plane W in d distinct 

branches and let us suppose that t branches meet W. But W 

lies in the centre of projection, so each branch meeting W IS 

mapped by it to a branch through a closure point of Cd' But 

points with zk ~ 0 for all k are not closure points as we showed 

earlier, so these branches pass through points with zk = 0 for some 

ko.e4 i.e through points in ~={Pl,P2,P5,P6,02,Fl,F2}' We now claim 

that any component Cd has at least d branches through points 

in ~ 50 that t~d. Therefore, since it is so for all components of 

Jy, we have 

the last equality being true by the definition of degree. Thus ti = di 

and Cd. has a pre-image of degree 2di' 
1 

It remains to prove the claim. Suppose there are s 

branches of Cd passing through the points 01,El,E2: so that 

o ~ s ~ 4, since two branches may pass through 01. Then there are 

d-s branches passing through the points Pl, P2, P5 or P6 and d-s 

branches passing through P3,P4,P7,Pa so that Cd meets the 

hyperpianes Z3 = 0 and Z4 = 0 in d points (counting multiplicities): 

thus satisfying Bezout's Theorem. Note that 0 ~ d-s ~ 4. 
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If d-s ~ 2, then Cd passes through at most two of 

P3,P4,P7,Pa· If Cd passes through just P3 or P7, then Cd meets 

za = 0 in d branches through points in {P2,P6,Q2,F 1,F2} c~. 

Similarly, if Cd passes through just P 4 or Pa, then Cd meets 

z7 = 0 in d branches through points in {P1,P5,Q2,F 1,F 2} c~. The 

only other possibility is when d-s = 2 and Cd passes through one 

of P3 or P 4 and through one of P 4 or Pa. Cd will meet two of 

Pl,P2,P5,P6 and has d-l branches through points In 

{Pl,P5,Q2.Fl,F2} C ~ and d-l branches through points In 

{P2,P6,Q2,F 1,F2L so that Cd has d branches meeting z7 = 0 and 

za = O. Hence, Cd has branches through Qllg of Pl,P5, one of 

P2,P6 and d-2 of Q2,Fl.F2 i.e. d branches through points in ~ 

as required. 

If d-s = 3 then we must have one of the following 

possibili ties 

(i) Cd passes through both P 4 and Pa and one of P3 ,P7. 

Hence, Cd has d-2 branches through P2,P6,Q2.F 1,F2 and has 

d-2 branches through Pl,P5,Q2,F 1.F2 (so that Cd meets Z7 = 0 

and za = 0 in the correct number of branches). But Cd may only 

meet three of Pl,P2,P5,P6, so Cd must pass through Pl,P5 one 

ol' P2,P6 and d-3 branches passing through Q2,F 1.F2. Thus Cd 

has d branches passing through ~ as required. 

(in Cd passes through both P3 and P7 and one of P 4,Pa. A 

similar argument to (i) gives the required result. 
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Finally, if d-s = 4, Cd then passes through all Pj 1 ~ j ~ 8 

and d-4 branches through Q2,F1,F2 (so that Cd meets Z7 = 0 

correctly) thus giving d branches through points in ~ as 

required. 

lower quadrilateral 

(1) (2) (3) (4) (5) 

u (1) 8 8 1+1+6 3+5 1+1+3+3 
p 
p (2) 8 8 1+1+6 3+5 1+1+3+3 
e 
r (3)1+1+6 1+1+6 1+1+1+1+4 1+1+2+4 1+1+1+1+2+2 

q (4) 3+5 3+5 1+1+2+4 1+2+2+3 1+1+1+1+2+2 
u 
a (5)1+1+3+3 1+1+3+3 1+1+1+1+2+2 1+1+1+1+2+2 1+1+1+1+1+1+1+1 
d 

Table of reductions according to type i/ j 

S4.5. The Watt I Coupler Curves. 

It is easily seen that any coupler curve for the Watt II 

mechanism is either the arc of a circle or an arc of a four-bar 

coupler curve and therefore of no interest to us here. Thus we 

devote this section to the study of the coupler curves of the Watt I 

mechanism. 

Let us assume that :RI IS an irreducible curve - in 

particular this is the case when the mechanism is either generic or 

one of the types 1/2, 2/1 or 2/2. For the Watt I mechanism there 

are two families of coupler curves (which are not coupler curves of 
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lower order mechanisms, for example four-bars or a single link): 

one family comprises the loci of points S rigidly attached to link 7 

and the other the loci of points T rigidly attached to link 8. Let us 

first consider S. With the notation of §4.1 we can write 

S = dlZl +d6Z6 +s,z7 where s is a fixed complex number. As we 

vary s we move through the first family of coupler curves. If we 

write s = Si + iS2 with 51, 52 real, then we can think of S as a 

point in the projective plane with homogeneous co-ordinates Pi, P2 

and P3 glven by Pi=diXi+d6X6+siX7-S2Y7 

P2 = diYi + d6Y6 + s2x7 + slY7 : P3 = w, thus defining a projection 

'rs:PC14\Vs -+PC2 with Vs the centre of projection, that is, the 

projective subspace defined by the vanishing of Pi, P2 and P3. The 

restriction tfls = 'r sl~.. to the residual linkage curve is a rational 

mapping. The Zariski closure of tfls(:R') is an algebraic curve Cs 

in PC2 which we shall refer to as the complex coupler curve. 

Ihe centre Vs meets ~' in two points J14, J14 in general. 

Exceptionally, we have the following cases giving additional points: 

(i) J123, J123, J15, J15, if and only if s = O. Then S IS 

Positioned at the hinge C (see Fig.4.4) and the locus will be an arc 

of a circle. 

(in J24, J24 if and only if dl = d6, v = -1. Then hinge C 

coincides with hinge A and S traces an arc. 

Wi) J25, J25 if and only if s = d7(1 + vdi/d6)' Then triangles 

SGC and ABC are similar. 
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(resp. s = -(dl +vd6)/E_) where E± are the roots of the quadratic 

in X whose coefficients of X2,Xl,XO are d7Q, PQ+4-~, d7P 

respectively, where P = (d2d6 v- dl dSu)/d2,Q = (dl d6U - d2dSv)dl uv. 

The reader may find it interesting to note that cases (iiO 

and (iv) give rise to coupler curves whose degrees are smaller than 

that of the general member of the family; but, unlike cases (i) and 

(H), are not coupler curves of lower order mechanisms. 

Let us assume that we do not have the exceptional cases 

(i)-(iv). We note that this does not exclude the case when S is the 

hinge G. We may determine the degree of Cs by considering the 

images in the coupler plane of tangents to ~I at points meeting 

w= 0. We will not list the tangents to ~I here as they are quite 

lengthy. However, we will list their images. The reader may 

readily check that points of· ~I lying in the two-planes .W, W 

map to the circular points at infinity 1= (l,i,O) and J = (l,-i,O) 

respectively. Therefore I and J are the only points of Cs with 

P3 = 0. The tangents to Cs at I are of the form P1 + iP2 = 0kP3 

with 

(0 01 = 0, 

(ii) 02 = d4(1 +vd6/d1), 

(iii) 03 = -usd4dS/d2d7, 

(iv) 04, Os = -udS(d1 +vd6)/(d2d6V- dldSu +d3d6VF +) where F ± are 

the roots of the quadratic polynomial in X whose coefficients of 

X2, Xl, xC are d3Q, PQ+~-dt, d3P respectively (where 

P = (d1 dSu-d2d6 v)/dsu, Q = (dl d6 v-d2dSu)/d6 v) .. 
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Note that four of the five tangents remain fixed as s varies. 

The tangents to Cs at J are the complex conjugates of the above 

lines. 

Let d, e and f be the degrees of 't' s' ~'and Cs 

respectively. Then they are related by the Projection Formula 

(Theorem All), which yields e - m = d.f, where m is ,the sum of 

intersection multiplicities of ~' with a generic hyperplane 

containing Vs' at points in Vs' In particular, the hyperplane w= 0 

contains V s and intersects ~' transversally at the points J14, 

J14 implying m = 2. But the multiplicity of Cs at I and J is at 

least five, since there are five distinct tangents. Thus the total 

intersection multiplicity of Cs with the line P3 = 0 is at least ten 

and therefore, by Bezout's theorem, Cs has degree >10; that is 

f ~ 10. Hence. d = 1 and the degree of Cs is 14. Moreoyer. 1~ 

generically 1-1 rational map and therefore birational. Since the 

geometric genus is a birational invariant, this implies that ~' and 

Cs have identical genera: thus for a generic mechanism Cs has 

genus five. 

The real singular foci (see §A4 for definition) of Cs are 

easily derived from the list of tangents at I and J. Three of them 

have an easy description. One focus is the hinge A = (0,0). Now let 

U . be the point such that triangles EAT and DBF are similar. 

Then the second focus is the point H such that triangles UAH and 

GCS are similar. The third focus K is the point such that 

triangles AEK and ABC are similar. 
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The analysis for the locus of T is similar to that of S. We 

may write T = dlZl +d6Z6 +d7z7+t.za, where t is a fixed complex 

number. If we write t = tl + it2 with tl, t2 real, then we can think 

of T as a point in the projective plane with homogeneous 

co-ordinates Pl, P2, P3 where Pl = dlxl +d6X6+d7X7+tlxa-t2Ya, 

P2 = dlYl +d6Y6 +d7Y7+ t2xa+ t lYa and P3 = w. Thus we have defined 

a projection 't't whose centre V t generally does not meet & I. 

Exceptionally, however, Vt may meet 1?,' in the following ways 

(i) J123, J123 if and only if t = de. Thus T is the hinge F 

and the locus is an arc of a four-bar coupler curve. 

(ii) J14, J14 if and only if t = O. Then T is the hinge G the 

locus of which we have considered in the family of loci of S. 

(Hi) J24, J24 if and only if t = (1 + vdl/d6)da. Thel1 T IS 

posi tioned so that the triangles ABC and GFT are similar. 

(iv) El, El (resp. E2, E2) if and only if 

t = d2da(dl +d6V+d7E+)/(-dld5U+d2d6V+d2d7E+) (resp. 

t= d2da(dl +d6V+d7EJ/(-dld5U+d2d6V+d2d7EJ) where E± are the 

roots of the quadratic in X whose coefficients of X2, Xl, XO are 

d7Q, PQ+di-~, d7P, where P = (d2d6V-d1d5U)/d2 and 

Q =' (dl d6 v-d2d5 u)/dl· 

Let us assume that we do not have cases W-(jyl. We shall 

follow the line of argument for S. Tangents to Ct at I have the 

form P1 +iP2 = O"kP3 with 



(i) CTl = 0, 

(ii) 02 = d4, 

(iH) 03 = -ud4d5/d2, 

(iv) CT4 = -tud4d5/d2d8, 
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(v) 05 = d4(dl +d6v{1+t/d8])/dl, and 

(vi) CT6,CT7=-(dl+d6V)d5U/(d2d6V-dld5U+ d3d6VF±) where F± are 

as indicated above. 

The tangents to Ct at J are the complex conjugates of these 

lines. Thus the multiplicity of Ct at I and J is ~ 7, implying 

that the degree of Ct is ~ 14. Applying the Projection Formula, 

We find that 't't has degree 1 and that Ct has degree 16. Then 

't't is a generically 1-1 rational map and therefore birational. 

Since the geometric genus is a birational invariant, this implies 

that ~' and Ct have identical genera: thus for a generIC 

mechanism Ct has genus five. 

The real singular foci are easily obtained from the above. 

Five of them are easily described geometrically. Two real foci are 

the hinges A =(0,0) and E = (d4,0). A third focus H is such that 

triangles EAH and DBF are similar and a fourth K is such that 

triangles HAK and FGT are similar. Let U be a point such that 

triangles AEU and ABC are similar. Then a fifth focus is the 

point V such that triangles EUV and FGT are similar. 
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§4.6 The Topology of the Watt I Real Linkage Varieties 

In the first four sections of this chapter we described the 

basic geometry of the linkage varieties for the Watt six-bar 

mechanisms and determined exactly how these varieties reduce in 

terms of the design parameters. The next natural step in this 

programme is to study in detail the real geometry in .the general 

case. In this final section of the chapter we take up the study of 

the real linkage variety, a compact real affine curve of genus 5 and 

degree 16. In general, when the Grashof equality is not satisfied, 

this curve has no real singularities: thus its topology is completely 

determined by the number of connected components, each 

diffeomorphic to a circle. Thus, one is faced with the problem of 

determining this number in terms of the design parameters. Part 

of the interest here is that Harnack's Theorem (A9), which gives an 

Upper bound of 6 for the number of connected components,. is not 

the best possible. In fact the number is 1,2,3 or 4. In particular, 

this number determines the number of real circuits of associated 

coupler curves, since these appear as projections (of degree 1) of 

the real linkage curve. 

It was in this latter context that the problem was first 

investigated [Primrose] in 1967 by Primrose, Freudenstein and 

Roth. These authors were concerned with the very special case 

When the coupler point IS a hinge and produced intuitive 

arguments to show that the required upper bound is 4. The 

arguments appear to contain gaps and in some measure this work 

arose from trying to bridge these gaps. More to the point, the aim 

Was to develop a formal argument which laid bare the general 
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principles and which might be extended to other mechanisms 

where the answer to this problem is unknown. It appears that the 

planar four-bar and the Watt six-bars are the only linkages for 

which the topology has been studied: even for the Stephenson 

six-bars the problem remains open. However, [Primrose] does 

contain the germ of an interesting idea which dovetails the 

technique expounded in §1.4: it is significant that one needs the 

concept of the linkage variety to lend mathematical expression to 

this idea. The mechanical expression is that kinematic inversion 

gives nse to a one-to-one correspondence between the 

configurations of the Watt I and the Watt 11 mechanisms. One 

therefore expects a natural bijection between the associated real 

linkage curves. It is by no means clear, how one should set out 

about writing down such a mapping. The key to this problem lies 

in the fact that both (complex projective residual) linkage curves 

are birationally isomorphic to the same residual Darboux .curve, 

hence birationally isomorphic to each other. One has to note here 

that, although all three curves are real, the birational 

isomorphisms with the Darboux curve are complex. However, the 

composite birational isomorphism between the real linkage curves 

is actually real: better still it is an isomorphism - a consequence of 

the fact that the complex linkage varieties fail to meet the 

hyperplanes at infinity in real points. That produces an explicit 

polynomial diffeomorphism between the real linkage curves. The 

importance of this step lies in the fact that it reduces the problem 

for the Watt I mechanism to the more tractable Watt H. 

The remainder of the argument follows the philosophy 

explained and exploited in §1.4. We project the real linkage curve 
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for the Watt II onto the real linkage curves associated to the 

underlying planar four-bars. These projections are of degree 2 and 

fit into the general framework explained in §1.4. Effectively, the 

results of that section reduce the problem of determining the 

topology of the domain to that of counting the number of critical 

points of the projection. That in turn reduces to a simple 

geometric problem, which one can solve completely,. ending the 

sequence of ideas. 

We noted in §4.3 that the residual curves :R' and's' for 

given dk's, u, v are birationally isomorphic. However, the 

connection between the curves is much stronger: the real linkage 

curves are real isomorphic curves. 

result. 

We shall show a stronger 

Consider the following set of constraints 

elZl,,,.,Zs) = ~i!laijZi + a s+lj = 0, 1~j~r} 
IZil2 = 1, 1~i~s, aij E: 11: 

(4.14) 

By the general construction (see §1.2) we may associate a Darboux 

Variety from these constraints in the following manner. Denote by 
-e j the polynomial obtained from e j by conjugation. Since the 

Vectors zi are unit length. we have Zj = ~., so we substitute for 
J 

!j to give an equation in zj- We make the polynomials 

homogeneous by introducing the variable Zs+l glvlng 

equations (4.15). 
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( 5+1 
lj Zl"",Zs+l) = l:i=l aijZi = 0, 1~j~r 
- s+l-
l}Zl,,,,,Zs+l) = l:i=l aij = 0, 1~j~r 

Zi 

} (4.15) 

Clearing denominators In the second equation gives two 

homogeneous equations which define the Darboux variety. Write 
1 . 2 1 2 aij = aij + 1 aij , where aij , aij € IR. Then we may construct a 

variety S in PIR2s by setting Zj=Xj + iYj (Xj,Yj €IR) in the set of 

equations (4.14) and equating real and imaginary parts. Then S 

is given by 

l:i~l[a;jXi - at Yi] + as+t j = 0, 

~~l[a~jXi + aLYi] + as+fj = 0, l~j~r. 

for l~i~s. 

Complexifying the equations by allowing the variables to take 

complex values anq homogenising by introducing the variable w, 

giVes a variety in PC2s which we continue to denote by S gIven 

by 

l:i~l[a;jXi - a~jYi] + as+t j w = 0, 

l:i~l[a~jXi + a;jYi] + as+fjw = 0, l~j~r. 

x~ + Y~ = w2 for l~i~s. 
1 1 

Now let us fix a t, l~t~s, and let us consider the set of constraints 

l/Zl, ... ,Zt-1,Zt+1, .. ·,Zs) = l:lsiss+1 aijzi + atj = 0 
i;ltt 

1Sj Sr} 
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where s,aij are the same as in constraints (4.14). In a similar 

manner to (4.14), we may construct a Darboux variety which is 

easily seen to be projectively equivalent to .D, since it may be 

given by an identical set of equations. To construct the linkage 

variety T of these equations we may set Zj = X'j + iy'j (x'j,y'j € IR) 

in the equations to give a variety T in PIR2s defined by 

for l~i~s+l, i;.:t. 

Complexifying the equations by allowing the variables to take 

complex values and homogenising by introducing the variable w', 

gives a variety in p[2s which we continue to denote by T whose 

equations are 

for l~j~r . 

. 2 +.2 .2 
X Y = W i i 

Then we have the following theorem. 

Theorem The two complex residual varieties 8' and T', obtained 

from 8 and T by removing any subvarieties in the hyperplanes at 

infinity, are birationally equivalent. The two real residual varieties 

S' and T' are real isomorphic. 
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Proof: By the result of [Gibson&Newsteadl as explained in §1.2 

both varieties S' and T' are birationally equivalent to the 

residual linkage variety .1)' (obtained from .1) by removing all 

components lying in any hyperplane of the form Zj = 0). Thus S' 

and T' are clearly birationally equivalent. Let q> :S'-'.1)' and 

I(:T'-..1)' be the equivalences. Then the second part of the theorem 

follows from two further facts. Firstly, the compositions TI = 1(-10q> 

and TI' = q>-101( only fail to be regular on S' and T' at points on 

the hyperplane at infinity; in particular, only at complex points of 

S' and T'. Secondly, despite the fact that the maps q> and l( are 

given by complex polynomials, the maps TI and TI' are easily 

showed to be given by real polynomials. Thus TI and TI' define 

real isomorphisms between S' and T'. Quite explicitly the maps 

are 

where 

w'=w2 

, , , , 
Xi = XiXt + YiYt, Y i = YiXt - xiYb x s+l = XtW, y s+l = -YtW, 

, and 

, . (" , , , , , , ') 
Tt • x 1,y 1,···,X t-l,y t-l,X t+l'y t+l,X s+l'y s+l,W -. 

(X1,Y1,···,Xs,Ys,w), 

where " " Xi = XiX s+l +Y 1Y s+l, 
, , , 

Y1 = Y 1xs+1 - x 1Y s+l, 
, , 

Xt=-x s+1w , 

Yt = y's+lW' and W= -w'2. 

• 
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The consequence of the theorem for planar mechanisms is 

as follows. Let K be a kinematic chain - by which we mean a 

finite number of rigid bodies smoothly jointed together. Let Mt be 

the n-bar mechanism, obtained from K by fixing bar t, l~t~n; 

then the mechanisms Mb for l~tsn.. are called the kinematic 

inversions of the kinematic chain. Then writing down the set of 

constraints of Mb we may form the Darboux variety .Dt in the 

manner explained in §1.2. The first point to note is that the 

Darboux varieties .Di are projectively equivalent. This follows 

immediately from the fact that, if the set of constraints of Mt has 

the form 

l~jsr } 

then the associated Darboux varieties .Dt have the form 

!j(Zl,. .. ,Zs,w) = Li;l!taij + atj = 0, l~j~r 

zi w 

Thus the Darboux varieties are projectively equivalent; indeed, for 

the varieties .Dtl and .Dt2 we have the equivalence WHZtl' 

Zt2Hw and z1HZ1 for i;ttl, t2' We may now apply the above 

theorem to their associated linkage varieties V t. This yields that 

the residual linkage varieties V't are birationally isomorphic and 

the real linkage varieties are real isomorphic. We may deduce the 
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following facts: 

1) The number of irreducible components of the residual varieties is 

invariant under kinematic inversion. However, the degrees of the 

components are not necessarily the same, since degree is not a 

birational invariant. 

2) The number of connected components of the real residual linkage 

Yariety is invariant under kinematic inversion. Further, that· 

number depends only upon the design parameters. Therefore, it is 

sufficient to determine this number for just one inversion. 

3) For coupler projections of degree one, all coupler curves have the 

same number of circuits equal to the number of connected 

components of the residual linkage varieties. Further, that number 

depends only upon the design parameters. 

4) The Zariski open sets consisting of the residual varieties, with all 

points lying in the hyperplanes at infinity removed, are isomorphic. 

Hence, the finite singular points of the residual linkage varieties 

have the same isomorphism type. It follows that the Grashof 

Equality (Le. the condition for a finite singular point) is the same 

for all inversions. 

5) Since the Darboux varieties are birationally isomorphic, the 

aeometric genus of the Darboux variety is an invariant of the 

k.inematic chain. 
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Quite explicitly for the Watt kinematic chain we have two 

distinct kinematic inversions namely the Watt I and II 

mechanisms. The isomorphism between the linkage varieties q> IS 

given by X'j = XjXl +YjYl, yj' = YjXl - XjYl for j = 2,3,5,6,7,8 and 

x4' = -xlw, Y'4 = Ylw, w' = -w2 and q>' is given by Xj = X'jX'4 +y'jy'4, 

Yj = Y'jX'4- X'jY'5 for j = 2,3,5,6,7,8 and Xl = -x'4w', Yl = Y'4w', 

W= -w'2. The composites fail to be defined at points in the 

hyperplanes at infinity w = 0, w' = 0. So q>, q>' define mutually 

inverse rational maps, thus a birational map which only fails to be 

a biregular correspondence (i.e. an isomorphism) at the (finite 

number of) points in the hyperplanes at infinity. But, since there 

are no real points at infinity, the map does define a real biregular 

correspondence between the real parts of :R' and ,S'. This fact 

Yields two useful corollaries. Firstly, the singularities of the two 

residual curves are in 1-1 correspondence (real singularities on 

~' correspond to real singularities on ,S') and have identical 

singularity types; a fact which can be deduced from the property 

that the finite parts of :R' and ,S' are isomorphic to the finite 

parts of the Darboux variety. Secondly, q> is a real polynomial 

isomorphism and thus a diffeomorphism. The two real curves 

1herefore have the same number of connected components and so 

it suffices to indicate the number for just one of the two Watt 

curves. We should point out, incidentally, that these remarks imply 

the statement in [Primrose]' namely, that the number of real 

circuits of the associated couplers are invariant under kinematic 

inversion. Indeed, the number of real circuits of a coupler is, by 

definition, the number of connected components of any real 

normalisation and we only need to observe from our work in §4.1 

that the real linkage curve is a normalisation of the coupler. 
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Ihe aim of the remainder of this section is to establish this number 

in terms of the design parameters. 

Let us assume from this point on that we have a generic 

and general constructible mechanism, Le. that the Grashof equality 

and conditions (C1)-(C3) do not hold. Thus both complex projective 

curves R',,g' are irreducible, have at least one real point and the 

only singular points are non-real ordinary double points in the 

hyperplane at infinity. The real affine curves are non-empty, 

smooth and compact, and thus diffeomorphic to a finite disjoint 

union of circles. By Harnack's Theorem (see §A9) the number of 

topological components is ~6, but we shall show that the maximum 

number obtained by a Watt mechanism is 4. By the above 

remarks it suffices to determine this number for the Watt 11 

linkage curve. 

Consider the projections 1't (resp. n') :PC14 -+ PC6 defined by 

mapping- onto the x'2, y'2, x'3, Y'3, x'4' Y'4' w' (resp. X'5, y'5, x'6, y'6, 

x'7, Y'7, x'S, y'S, w') co-ordinates. The restriction nl,g maps,g into 

a curve T and the restriction n'l,8 maps ,8 into a curve Z. The 

curve T is defined by those equations of (4.4) involving only X'2, 

Y'2, x'3, Y'3, X'4' y'4, w' and is the set of equations defining the 

linkage curve for the four-bar obtained from the Watt mechanism 

by 'removing bars 5,6,7 and 8. The defining equations of Z are 

obtained by taking those equations of (4.4) involving only x'5, Y'5, 

x'6, y'6, x'7, Y'7' x'S, y'S, wand using the equations expressing x'6, 

Y'6 in terms of w' to eliminate x'6, Y'6. We are left with five 

equations in seven unknowns: these equations define a variety 

projectively equivalent to the linkage curve of the four-bar 



- 184 -

obtained from the Watt mechanism by removing bars 1, 2, 3 and 

4. Our aim is to deduce properties of .s' from properties of the 

four-bars. 

For a genenc Watt mechanism the planar four-bars are 

generic in the sense of §1.1 for, as we remarked in §4.2, if one of 

the four-bars flattens, then the Grashof equality for the Watt 

mechanism is immediately satisfied. 

Before proceding we recall some facts about four-bars from 

Chapter 1. The linkage varieties T, Z have degree 8 meeting 

the hyperplane at infinity w' = 0 in two skew complex conjugate 

line components. The residual curves T, Z' are obtained by 

removing these lines. Thus T, Z' have degree 6 and meet the 

hyperplane w' = 0 in six points (complex conjugate pairs), three on 

each of the lines. For a generic four-bar T, Z' are irreducible and 

non-singular and the real curves may have one or two connected 

components. Since TI will map components of .s with w' = 0 into 

components of T with w' = 0, TI maps ,8' into T. Moreover, 

nl.s' is a finite map, since ,8' and T are irreducible, and ,8' 

doesn't map into a point. We recall that for finite maps there 

exists an integer d ~ 1, called the degree of the mapping, such that 

all but a finite number of points on T have exactly d pre-images 
. 

on ,8'. Since T is non-singular, we know by a general result of 

finite mappings (see §A7) that all points on T have :$ d 

pre-images. The points on T' with < d pre-images are called 

branch points. We claim that the degree of TII,8' rul.d. rc'I,8' is two. 

The claim follows from the Projection Formula (Theorem 
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All), which states that the degrees s, t, d of ,8', T' and the 

mapping n: are related by the formula s - S = d.t, where S is the 

total intersection multiplicity of ,8' with a generic hyperplane H 

containing the centre V of n:. We showed in §4.3 that s= 16 and 

in §1.1 that t = 6. We obtain S by observing that V meets ,8' 

in two points J123, J123 and that the hyperplane w' = 0 contains 

V and meets ,8' at both of these points with intersection 

multiplicity two, implying that S = 4. It now follows that d = 2. 

The proof of the result for n:'I,8' follows analogously. 

We now apply the technique developed in §1.4. Briefly, the 

technique is as follows. Let us consider the real curve ,8' (without 

changing notation) writing Cl, ... ,Cn for its topological components. 

Let V be a topological component of the real curve T' with at 

least one point which has a real pre-image on ,8' and let n: be a 

degree two map from (the complex curves) ,8' to T'. Then, 

according to Proposition 1.1 there are just three possible qualitative 

pictures for each V. 

(I) There is just one component Cl in the pre-image of V 

mapped by n: immersively onto V as a double cover. n: has no 

real critical points. 

(II) There are two components Cl, C2 in the pre-image of 

V, each mapped by n: diffeomorphically onto V. 11: has no real 

critical points. 

(Ill) There are n components C1J ... JCn in the pre-image of 

VJ mapping onto disjoint arcs A1J ... ,An of V with exactly 2n 
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critical values, namely, the endpoints of Al, ... ,An. 'IT has 2n real 

critical points. 

To apply the above result, we must compute the number of 

real critical points of Tt. Critical points occur when the tangent 

line to the (complex) curve meets the centre of 'IT i.e. these 

projective subs paces fail to span a 9-space. Thus we have critical 

points whenever the 15 x8 matrix, obtained from the Jacobian 

matrix of equations (4.4) by deleting the columns corresponding to 

the variables x'2' Y'2' x'3, y'3, x'4, Y'4'w', has rank < 8. The 

resulting matrix (with five zero rows removed) is 

dS 0 d6 0 d7 0 d8 0 

0 dS 0 d6 0 d7 0 d8 

-1 0 0 0 0 0 0 0 

0 -1 0 0 0 0 0 0 

0 0 -1 0 0 0 0 0 

0 0 0 -1 0 0 0 0 

2xS 2yS 0 0 0 0 0 0 

0 0 2X6 2Y6 0 0 0 0 

0 0 0 0 2X7 2Y7 0 0 

0 0 0 0 0 0 2x8 2Y8 

It is a straightforward exerCIse to show that this matrix has 

non-maximal rank if and only if the vectors (X'7, Y'7) and (X'8, Y'8) 

are linearly dependent. Using equations (4.4), we see that this is 

precisely the condition that X'8 = €X'7, Y'8 = €Y'7 where € = ±1: thus 

in the real case the mechanical interpretation of a critical point is 

that links 7 and 8 are parallel (see Fig.4.15). 
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Fig. 4.15. 

Since there are no real points with w' = 0, we may assume w';oe O. 

Then take the projective subspace defined by the two equations 

x'a = e:X'7, ia = e:Y'7 together with equations (4.15). Then the reader 

may check that the variety reduces to two subvarieties, one lying 

In w' = 0 and another which is projectively equivalent to the 

intersection of three quadrics in p[3. Therefore, by Bezout's 

Theorem (A3) we have at most eight critical points with w' ;oe 0 and, 

in particular, we cannot have more than eight r.gg1 critical points. 

This corresponds to what we would expect mechanically. 

Let Vj be a real connected component of T' and suppose 

that there are 2nj real critical points of it which project into 

Vj-' Then if nj ~ 1 we are in case (III). However, when there are 

no critical points and Vj does contain a point with a real 

pre-image, we must decide between cases (I) and (II). Consider 

then the smooth function F on ,s' defined by x'7y'a - x'ay'7. By 

the above, the zeros of F are precisely the critical points of it. 

Assume we are in case (I) so that over every point of Vj lie 
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exactly two distinct points P, P' at C1. (We use here the fact that 

the critical points of it coincide with the branch points.) 

Geometrically, P' is the "reflection" of P, as indicated in Fig.4.13. 

The key observation is that we must have F(P) = -F(P'), so F 

assumes both positive and negative values. However, in case (I) C1 

is connected. so F would necessarily admit a zero i.e. it would 

have a critical point on C1 contrary to our hypothesis. We 

conclude, therefore, that when there are no real critical points 

lying over a VJ (but there are real pre-images), then we must be 

in case (ID when Vj has exactly two components lying over it, 

each mapping diffeomorphically. 

We can now continue our analysis of the case in hand 

working with the real varieties. First, recall from §1.4 that T' has 

one or two (topological) components. Suppose first that all the 

components of ,8' map into just one component of 1'. In 

particular, this applies when l' has just one component. Then 

either there are no critical points, so we are in case (ID and ,8' 

has just two components or there are 2n critical points (n= 1,2,3 

or 4) and ,8' has n components. The situation is more complex 

when l' has two components and at least one component of ,8' 

maps into each. The simplest case is when there are 2m real 

critical points over one component and 2n real critical points over 

the' other, so ,8' has m+n components. In all these cases it is 

clear that ,8' has at most four components. That is, however, 

ra ther less clear in the remaining case when there are no real 

critical points over one component and 2n over the other 

(n=1,2,3 or 4) yielding n+2 components for ,8'. We claim that 

this last case cannot arise for n=3 or n=4, so that indeed ,8' has 
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never more than four components. 

To this end we need to recall more detail from Chapter 1 

concerning the planar four-bar. Write el,e2,e3,e4 (resp. e5,e6,e7,eS) 

for dl,d2,d3,d4 (resp. d5,d6,d7,ds) in increasing order of magnitude 

and set E=el +e4-e2-e3, E'=es+eS-e6-e7. Then T' (resp. Z') has one 

component if and only if E>O (resp. E'>O) and two components if 

and only if E<O (resp. E'<O). In fact we showed in §1.4 that the 

n t 1 .. f T' ( Z')' h' 1 ,2 ,2 1 aura proJectlons 1t j 0 resp. mto t e Clrc es x j +y j = 

with j=1,2,3 (resp. j=5,7,8) have degree two and that we have the 

following possibilities. 

(a) E<O and neither dj nor dl IS the shortest of 

dl,d2,d3,d4 (resp. E'<O and neither dj nor d6 is the shortest of 

d5,d6,d7,dsL The two components of T' (resp.Z') map onto disjoint 

arcs Al, A2 of the circle and there are exactly two critical points 

on each component, mapped under 1tj to the end-points of the 

arcs. 

(b) E<O and either dj or dl is the shortest of dl,d2,d3,d4 

(resp. E'<O and either dj or d6 is the shortest of d5,d6,d7,dSL The 

two components of T' (resp.Z') map diffeomorphically onto the 

circle and there are no critical po in ts. 

(c) E>O (resp. E'>O) and the one component of T' (resp. Z') 

maps onto an arc Al, with exactly two critical points mapping to 

the end-points of the arc. 

In all the above cases the condition for a critical point of re j 
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We are now In a position to complete the proof that -8' 

cannot have more than four topological components. In view of 

our previous remarks we can assume that l' has two topological 

components Tl',T2' and that 2' has two topological components 

21',22'. We can assume that there are at least three components of 

-8' mapping under 'IT (resp. 'IT') into T l' (resp. 21') with exactly 

two critical points on each component. Moreover, we can assume 

that over T2' (resp. 22') there are exactly two components of -8', 

each projecting diffeomorphically onto that component. 

The first observation is that the condition for a point of -8' 

to be a real critical point of 'IT' is precisely that its image under 'IT 

is a real critical point of 'IT2; indeed, in both cases the condition is 

that bars 3 and 4 should have equal or opposite directions. An 

immediate consequence is that 'IT2 has at least one critical point. 

In fact we must be in case (a) above; the two components of l' 

are 'mapped under 'IT2 to two disjoint arcs of the circle with four 

critical points (two on each component) mapping to the end-points 

of the arcs, Likewise, the condition for a point of -8' to be a real 

critical point of 'IT is precisely that its image under 'IT' is a real 

critical point of 'IT5; indeed, in both cases the condition is that bars 

7 and 8 should have equal or opposite directions. Thus we deduce 

that 'IT 5 also has at least one real critical point, so that the two 

components of Z' map under 'IT5 to two disjoint arcs of the circle 

with four critical points (two on each component) mapping to the 

end-points of the arcs. That brings us to the crux of the proof. The 

critical points of 'IT (of which there are at least six) must map to 
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the critical points of it5 (of which there are exactly two on each 

component of Z'), However, since it' is a degree 2 mapping, a 

point in Z' has at the most two pre-images in ,3', so that at the 

most, four critical points of it' can map to Zl', That means that 

at the most two components of ,3' can map under it' into Zl', 

providing a contradiction and establishing the desired result, 
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CHAPTER 5. THE REAL GEOMETRY OF THE 

FOUR-BAR MECHANISM 

AND THE CLASSIFICATION OF COUPLER CURVES. 

In trod uction 

In this final chapter we shall restrict our attention to the 

real geometry of the four-bar mechanism. Following a comment 

made in §1.6,. that there is a natural classification of the generic 

coupler curves by the Hainisingularity types, we present an initial 

investigation of this difficult problem. In [Hain 1964] Hain 

distinguishes eight types of four-bar mechanisms. Firstly, we can 

partition the mechanisms into two groups distinguished by the 

number of circuits of the coupler curves which is one/two 

depending on whether E>O/E<O (where E=sum of the longest and 

shortest lengths minus the sum of the remaining lengths), 

Secondly, we can further subdivide each group into four distinct 

types by the way in which the bars crank or rock during the 

motion of the mechanism, for which there is a simple criterion, 

namely, that in the one circuit case we have four cases depending 

on whether d1, d2, d3, or d4 is the longest link and in the two 

component case depending on whether d1, d2, d3, or d4 is the 

shortest link. This analysis has been given in §1.4. The further 

partitioning by singularity types is based on the result (§1.6) that 

generic coupler curves have three finite double points, at least one 

of which is real, lying on the circle of singular foci. Provided the 

pencil in the associated net of quadrics determined by any given 

coupler point (see §1.6) is generic, the singularities are either 
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ordinary double points (Ai) or cusps (A2). Thus, for each of the 

Hain types, there are four distinct types of complex coupler curves 

which could conceivably arise, depending upon the combination of 

double points, namely, 3Ai, 2Ai1 A2, A1/2A2, 3A2. In the real 

case, we can make the further distinction of a real Ai being an 

acnode (A;) when its tangents are complex or a crunode (Ai) 

when its tangents are real. Of course, if the double point is 

complex (which we shall denote by A;) there is no further 

distinction to be made. Note that cusps are always real whenever 

they occur. This yields thirteen distinct possible types of real 

Coupler curves for each Hain type. namely. 3AiJ 2Ai/A2, Ai/2A2, 

3A2, 2Ai/A~J A~/Ai/A21 A~/2A21 Ai/2A~, 2A;/A2' Ai/2A~, 2A~/A21 
3 * + * All Al /2Al · 

It might seem an impossible task to determine theoretically 

how many of the 8x13=104 Hain/singularity types actually occur. 

For convenience we shall call these the A-types. However, we 

shall show (see §2 of this chapter) that several of the Hain types 

have identical geometries leaving just four Hain types with distinct 

geometries: thus reducing the number of A-types to fifty-two. 

This still leaves a considerable program of work (at least too 

large for us to attempt here) the first step of which is to decide 

Which of the possible singularity types can occur for each Hain type 

in the complex case. We shall give a complete answer to this 

problem in §5.2. The second step is to determine the underlying 

geometry which distinguishes between a coupler curve having one 

or three real singular points and which distinguishes between the 

real double points being ~ or Ai. We give one such account in 
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§5.4 and §5.6. The third step is to determine, perhaps by 

computer graphics, which of the A-types actually do occur. The 

final step is to prove, mathematically, the existence of the cases 

which we have showed to occur graphically. It is probably too 

much to expect one coherent argument showing the existence for 

all of the Hain types because their geometries differ considerably. 

But it is likely that there are arguments covering clusters of cases 

and with some luck we might just cover all of the cases in this 

manner. This final step seems to be the most difficult and is a 

considerable program of work. 

It is unfortunate that the author was unable to complete 

this program due to lack of time. However, it is clear from the 

results that have been already obtained, that this is a profitable 

direction of research and that the techniques necessary to 

complete this work are available and comprise little more than is 

indicated in this chapter. The author hopes to complete this work 

at a later stage. 

In § 5.1 we will gIve a proof of Robert's Theorem and 

indicate how this can be used to reduce the number of A-types 

that need to be considered. Section 5.2 is dedicated to the complex 

classification of the coupler curves. We shall determine which of 

the possible A-types can occur in the complex case (Le. when we 

do not distinguish Ai. A~, A~. 
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SS.!. Roberts' Triple Generation Theorem and the 

Classification of Four-bar Mechanisms 

Perhaps the most celebrated theorem on the planar 

four-bar is Roberts' Triple Generation Theorem [Robertsl. Whilst 

working on problems related to the motion of the planar four-bar, 

Roberts discovered that the circle of singular foci was intimately 

related to the singular points of coupler curves and, moreover, the 

three singular foci held a special significance in the motion of any 

given four-bar. Indeed, Roberts observed one very important 

property of the three foci, namely, that they are the fixed hinges 

of three four-bar mechanisms which possess coupler points 

drawing identical coupler curves. The literature refers to the three 

mechanisms as cognates. We shall now present a new proof 

(although the underlining principle is the same as that given by 

Roberts) in terms of the linkage variety ~. 

Roberts' Triple Generation Theorem: The coupler curve of any 

planar four-bar mechanism may be obtained as the coupler curve 

of two other four-bars. 

Proof: Suppose that we have a mechanism m whose linkage 

variety is given by the set of equations (1.1) and that we fix a 

coupler point P, uniquely defining a coupler projection 

n:(xl.Yl.X2.Y2.X3,Y3.W) H (dlXl - k2Y2 + klx2. dlYl + k2x2 + klY2, w). 

Let .83 be the symmetric group on three elements and let it act 

on the ambient space of the linkage variety by permuting the 

indices 1, 2, 3 of the variables Xl, Yl, x2, Y2. x3, Y3, w leaving 

w unchanged. Then for any permutation cr in .83 we may 
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define a new variety :Ra which is the linkage variety for the 

mechanism m eJ obtained from m by making the obvious 

swapping of bars as prescribed by the permutation 0'. So, for 

example, if eJ = (1 2) then we would swap bars 1 and 2 to give a 

new mechanism with the same set of lengths as the original but 

with a new ordering. The new linkage variety :ReJ is defined by 

the equations 

dlXcr(1) + d2Xcr(2) + d3Xcr(3) - d4w = 0 

dlYcr(l) + d2Ycr(2) + d3Ycr(3) = 0 
22222 2 

xl + Yl = x2 + Y2 = x3 + Y3 = 

If we also allow the permutation to "act" on the projection (i.e. we 

permute the indices in the formula for the projection) to define a 

new projection 'PeJ : (Xl, Yl, x2, Y2, x3, Y3, w) H (dlXcr(l) - k2Ycr(2) + 

klX<T(2), dlY<T(l) + k2X<T(2) + klY<T(2), w), then it is clear that w,e have 

'P(:R) = 'PeJ(:RO'). Thus, Roberts' Theorem is proved, if we can show 

that three of the projections 'PeJ defined in this way are indeed 

coupler projections for the mechanism m 0'. This is a 

straightforward exercise and the result is that those permutations 

which are in the Alternating Group (Le. the identity, (123) and 

(132)) describe coupler projections, and the remammg 

permutations describe projections of linkage varieties whose images 

are" reflections of coupler curves. We shall now describe how we 

must position the three mechanisms, so that they produce identical 

coupler curves. 

Let m be the mechanism with the usual notation (i.e. bar 

lengths d1, d2, d3, d4 and coupler triangle given by the complex 
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number k = kl +ik2) and let cr = (123). Then the corresponding 

coupler projection is 'Pcr : (Xl,Yl,X2,Y2,X3,Y3,W) H (dlX2 - k2Y3 + klX3, 

dlY2 + k2X3 + klY3, w). Using the linear equations of (1.1), we may 

rewri te the projection as 

(d4kl W - d3klXl + d3k2Yl + Klx2 - K2Y2. 

cl; d2 d2 
d4k2w - d3k2xl - d3klYl + K2x2 + K1Y2, w) 
- - -
d2 d2 d2 

Where Kl = ~1(d2 - kl) and K2 = -~~.k2' Write r = (~+ k~ )Yi and 

s = (~+ k~-2d2;2-d~)~2. The reader should now observe that this is 

the coupler projection for the mechanism with bars 1, 2, 3, 4 of 

length r.~~, r.~~, r, and r.~~ respectively; with the coupler 

point given by the complex number K = Kl +iK2; and for which the 

fixed bar has the origin and the point (kl.r.~~,k2.r.~~) as its 

endpoints. This is showed in Fig. 5.1. We note that the ratios 

between the bar lengths of this mechanism are ~1~,;.d4 and 

that the new coupler triangle is similar to the original. In 

particular, the invariant E ( = longest + shortest - sym of 

remaining lengths) for the cognate m cr is identical to that of the 

Qriginal mechanism m: since the set of bar lengths have remained 

unc;hanged. Alternatively, one may observe that the number of 

circuits of any coupler curve of a given mechanism is independent 

of the choice of coupler point and, therefore, if two mechanisms 

draw identical curves, then both mechanisms draw coupler curves 

With an identical number of circuits for any coupler point. 

A similar calculation may be made for the permutation 
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1" = (132). The result is that we obtain a coupler projection of the 

mechanism with bars 1, 2, 3, 4 of lengths s, s.~3, s.~l and s.~4, 
d d 2 2 2 

repectively with (<:4,0) and (kl.r'd~' k2.r.d~) as the endpoints of 

its fixed bar. This is showed in Fig.5.1. Note that the ratios 

between the bar lengths of this mechanism are d2~1.;J.i4 and 

that the new coupler triangle is similar to the original. But since 

the set of bar lengths is unchanged, the invariant .E for the 

cognate m (J is identical to that of the original mechanism m. 

• 

F 

Fig. 5.1. 

Before continuing, let us recall that Hain classifies the 

generic four-bar mechanism into the following eight types: 

(i) RH : E> 0, d4 longest; bar 1 and 3 rock inwardly. 

(ii) Roo: E> 0, d2 longest; bars 1 and 3 rock outwardly 

(Hi) Roi : E> 0, d3 longest; bar 1 rocks outwardly and 3 rocks 

inwardly. 

(iv) Rio: E> 0, d1 longest; bar 1 rocks inwardly and 3 rocks 

outwardly. 
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(v) CRi: E< 0, di shortest; bar 1 cranks, bars 2 and 3 rock. 

(vi) CR2: E< 0, d3 shortest; bar 3 cranks, bars 1 and 2 rock. 

(vii) DR: E < 0, d2 shortest; bar 2 cranks, bars 1 and 3 rock. 

(viii) DL: E < 0, d4 shortest; bars 1, 2 and 3 crank. 

Then the connection between the Hain types of a mechanism and 

its cognates is as follows 

Hain Type 
of Mechanism 

CR1 
CR2 
DR 
DL 
Ru 
Roo 
Roi 
Rio 

Hain 1!ope 
of (132)-gnate 

CR2 
OR 
CR1 
DL 
R .. 
R~l 
Rlo 
ROO 

01 

Thus, for any mechanism of Hain type DL or Ru the 

corresponding cognates have identical Hain types. Whilst 

mechanisms, which are of one of the types CRi, CR2, DR,> have 

cognate mechanisms of the remaining two types. Hence, the 

geometry of each of these types is identical: because any coupler 

curve of one of these types can be drawn by a cognate mechanism 

with either of the other types. Similarly, any mechanism of one of 

the types Roo, Rai, Rio has cognate mechanisms of the remaining 

two types; implying, as before, that any coupler curve of one of 

these types can be drawn by a cognate mechanism with either of 

the other types. 

We may conclude, therefore. that in order to study the 

geometry of the coupler curves it is sufficient to consider just fQ.ur. 

types of mechanisms instead of the original eight. We shall relabel 

these types as 
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11': DL; 

where I and 11 indicate that the corresponding coupler curves 

have one and two circuits, respectively; each of these types is 

divided into two subtypes. 

Finally, we shall say something about the cognates of the 

degenera te mechanisms. 

(1) The cognates of the rhombus are identical rhombuses. 

(2) The (123)- and (132)- cognates of a parallelogram give 

the two types of kite Le. one with d1 = d2 and one with d1:& d4. 

(3) The (123)- and (132)- cognates of a kite gIve the 

parallelogram and a kite of the opposite type. 

(4) The cognates of a circumscriptible are circumscriptibles. 

Thus we may define the above analysis as the classification of the 

degenerate cases. Note that in cases (2) and (3) the ratio between 

the longest and shortest lengths is an invariant of the class. 

SS.2.The Complex Classification of Four-bar Coupler Curves. 

In §1.6 it was showed that a generic coupler curve has three finite 

double points. The condition for a cusp is easily obtained. We shall 

repeat the method used in [Marsh]. The result follows from the 
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observation that a point P on a curve e .. which is the image 

under linear projection 'IT of a non-singular curve :R, is a cusp if 

and only if the pre-image of P is a critical point of the projection. 

Thus, the problem of determining when the coupler curve has 

cusps is equivalent to determining when the coupler projection irk 

has a finite critical point. The condition for this is that the matrix 

~, obtained from the Jacobian matrix of equations (1.1) by 

abutting the Jacobian matrix of the projection, has non-maximal 

rank. The matrix ~ IS 

d1 0 d2 0 d3 0 -d4 

0 d1 0 d2 0 d3 0 

2X1 2Y1 0 0 0 0 -2w 

0 0 2X2 2Y2 0 0 -2w 
~ = 

0 0 0 0 2x3 2Y3 -2w 

d1 0 k1 -k2 0 0 0 

0 d1 k2 k1 0 0 0 

0 0 0 0 0 0 1 

By elementary row and column operations it is sufficient to 

determine the condition for the following matrix to have 

non-maximal rank 

x2 Y2 

-(d2-kl)X3+k2Y3 -k2X3-(d2-kl)Y3 
d3 d3 d3 d3 

The matrix has non-maximal rank if and only if 
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Fig. 5.2 
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Mechanically. this means that 

the coupler point gives rise to a 

coupler curve with a cusP. if 

and only if it is the intersection 

of two lines: one lying on bar 1 

and the other on bar 3 as 

showed in Fig. 5.2. Thus, for any 

position of the mechanism such 

that bars 1 and 3 are 

non-parallel, there is a unique coupler point giving rise to a coupler 

curve with a cusp. Furthermore, the locus of such points in the 

Coupler plane, that is, the (kl,k2)-plane, is a curve. We will 

discuss this curve in more detail later in the chapter. 

We may use equations (5.1) to express Xl, Yl, x3, Y3, w in 

terms of X2, Y2 and eliminate them in equations (1.1) giving two 
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linear equations in x2, Y2, w 

where 

A = -€ldlkl/<X - €2d3(d2-kl)/~ + d2, 

B = €1 dlk2/<X - €2d3k2/~ and C = d4w (€1 = ±1, €2 = ±1). 

Note that A and B are always real. Applying Cramer's Rule to 

the two linear equations, we find that x2 = AC/(A 2 + B2) and 

Y2= BC/(A2 +B2). This implies that A2+B2=d~ and substituting 

for A and B it now follows that the condition for a coupler point 

k = kl +ik2 to give rise to a coupler curve with a cusp has the form 

+ 2dl d3kl (d2-kl) 

£1 (kf+k~) Y2 '£2(~+(~-kt)2) Y2 

+ d;(~kt)2 
~+ (~_kt)2 

- 2d2 [ dlkl + d3(d2-kl) 1 
€l(kf+k~ €2(k~+(d2-kt)2) 

+ + ~~ 
i<f+ k~ 

-2dld3k~ + = d~ } (5.2) 
£1 (i<f+k~) 12 '€2(k~+(d2-kt)2) 12 

d4 
Fig. 5.3. 

But the given coupler triangle, 

by which we mean the triangle 

with vertices the coupler point 

and the two hinges on the 

coupler bar, has sides of lengths 

d2, <x, ~ as showed in Fig. 5.3. 

2 2 
Therefore, cos('P)=-€1€2(d2k1-ki-k2)/<X~' cos(~) = e:2(d2-k1)/~ and 

cos(n) = €1k1/<X yielding 
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2 2 2 2 d1 + d2 + d3 - d4 - 2d1 d3€1 €2COS (<p) - 2d1 d2€1 cos (n) - 2d2d3€2COS (<p) = 0 

--(5.3) 

i.e. there are four equations, one for each choice of signs (€1,€2). 

This condition was obtained as the necessary condition for a cusp 

by mechanical means [Cayley]. The author of [Cayley) uses this 

condition to show the existence of a three-cuspidal coupler curve. 

Further, for any choice of coupler point k satisfying anyone of 

the equations (5.3), we can deduce that the coupler curve does 

possess a cusp. For, whenever (5.3) is satisfied for some choice of 

sign (€1,€2), x2, Y2 are uniquely defined as the solution of two 

linear equations. The remaining variables are then determined 

uniquely by equations (5.1). The cusp on the coupler curve is easily 

checked to be (P1,P2,W) where 

d4P1 = -€1 dl (klA- k2B)w. 

ex-k2B+k1A 

d4P2 = -£ldl(k2A-kl B)W 

ex - k1B + k2A 

It is perhaps surprising to find that, whenever a cusp does 

occur, it is always~. However, since A and B are real, it 

follows that the cusp is determined as the intersection of two real 

lines and therefore giving a real point. The locus of all points in the 

fixed plane, which are cusps for some coupler point, is a curve and 

is called the fixed centrode. The locus of all coupler points in the 

Coupler plane, which give rise to a curve with a cusp, is called the 

moving centrode. 

It is conceivable that a coupler point satisfies more than one 

equation of the form (5.3). The reader may check that at most 

three of the four conditions can hold simultaneously for any 
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coupler point. Thus the above analysis shows that there may be 

coupler curves with one, two or three cusps depending on whether 

one, two or three conditions of the form (5.3) hold simultaneously. 

(Of course we knew this fact for the generic case from the fact, 

proved in §1.6, that there are at most three finite singular points 

lying on the circle of singular foci and the general case follows from 

the fact that any singular point not on the circle of singular foci is 

an ordinary double point.) It can then be showed, that only two of 

the four Hain types have mechanisms such that there exist coupler 

points which give rise to a coupler curve with three cusps. Yet, in 

all but one of the Hain types, there exist mechanisms with coupler 

points which draw coupler curves with two cusps. Coupler curves 

with one cusp may be obtained by any mechanism: for we have 

showed that for any position of the mechanism, for which bars 1 

and 3 are non-parallel, there is a unique coupler point which gives 

rise to a curve with a cusp. 

Let us write the symbol ±±, whenever we refer to the 

equation (5.3) with the signs of El, E2 given by the symbol. Then, 

any pair of these condi~ions, which hold simultaneously, yield the 

following set of conditions 

+- and -+ : d3cOS ~ = dl cos n, 2 2 2 2 
d4 = cii + d2 + d3 + 2dl d3cOS <p 

+- and -- : d3COS <p = d2cOS n, 2 2 2 2 d4 = cii + d2 + d3 + 2d2d3COS ~ 

-+ and -- : d2cOS ~ = dl cos <p, 
2 2 2 2 

d4 = cii + d2 + d3 + 2dld2cOSn 

++ and +- : dl cos <p = -d2cos~, 2 2 2 2 
d4 = cii + d2 + d3 - 2dld2cosn 

++ and -+ : d3cOS <p = -d2cOS n, 2 2 2 2 
d4 = cii + d2 + d3 - 2d2d3COS ~ 

++ and -- : d3cOS ~ = -dl cos n, 2 2 2 2 
d4 = cii + d2 + d3 - 2dl d3cOS <p 
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For simplicity we shall consider separately coupler triangles for 

which the interior angles are acute (Le. an acute triangle) and 

those for which there is an angle greater than a right angle. 

Case 1: Acute Coupler Triangles. 

Let us assume that C is a coupler point whose coupler 

triangle is acute. Then C gives rise to a coupler curve with two 

cusps if and only if C satisfies two conditions of the form (5.3). 

For such a coupler triangle the angles tp,~, n, (using the same 

terminology as in Fig.5.3) are all less than a right angle, implying 

that cos (tp), cos(~), cos(n), have values in the interval [0,1]. In 

particular, the cosines of the angles are all positive, thus those 

pairs of equations containing a minus sign cannot occur, leaving 

the three possibilites +- & -+, +- & --, -+ & --. From the second 

of each pair of equations we may easily deduce that d4 is the 

longest of the bars. Thus, for the Hain types with one circuit, only 

group 1', with d4 the longest, has an acute coupler triangle for 

which the coupler curve has two cusps. Likewise, Hain types with 

two circuits cannot have d4 as the shortest length, implying that 

only type 11, with dl, d2, or d3 the shortest, can produce two 

cuspidal coupler curves. Conversely, we need to show that there do 

exist two-cuspidal coupler curves for these types. These are easily 

constructed: for type 1', choose dl =d3=3, d2=1, d4=/28 with an 

eqUIlateral coupler triangle i.e. kl =0.5, k2=.(0:75 and for type 11 

choose dl =d3= 2, d2= j[5, d4=./8.5· 

Case 2. Obtuse Coupler Triangles. 

For obtuse coupler triangles we need to consider all pairs of 

conditions. Only one angle in a triangle can be obtuse. Let us 
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assume that angle ~ is obtuse. Then, the only pairs of conditions 

that can hold simultaneously are +- & -+, ++ & +- and ++ & -+. 

Similarly, whenever angle ~ (resp. n) is obtuse the possible pairs 

are +- & --, ++ & +-, and ++ & -- (resp. -+ & --, ++ & -+, and ++ & 

--). By Roberts' Theorem it is sufficient to consider those coupler 

triangles for which angle ~ is obtuse, so that -1 ~ cos ~ ~ O. Then, 

for the case +- & -+, the second condition yields 

In particular, d4 ~ d2 implying that for the two circuited coupler 

curves d4 is never the smallest length, i.e. type 11' mechanisms do 

not satisfy these conditions. Similarly, in cases ++ & +- and ++ & 

-- the second of the pair of conditions yields d4U:3 and d4 ~ dl. 

Thus type 11' mechanisms never satisfy a pair of conditions of the 

form (5.3), and therefore can never glve rise to two-cuspidal 

coupler curves. We note that type I has two-cuspidal coupler 

curves only when the coupler triangle is obtuse. 

For a coupler curve to have three cusps, three palrs of 

equations of the form (5.3) must be satisfied simultaneously. 

Suppose then that the coupler triangle is acute. Then all three 

conditions +-, -+ and -- hold simultaneously. This yields 

= = = 
cos~ cos~ COST) 

Substituting for dl, d2, d3 in the second equation of +- and -+, 

We find 
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dl = ( cos~ + COS2~ + cos~ + 2.cos <p.cos ~.cos T) ).}..2 = }..2 

Thus }.. = d4, yielding dl = d4'cos~, d2 = d4·cOS <p and d3 = d4'cOS T). 

Further, the design parameters must satisfy the condition 

But cosine takes 1 as its maximum value, so it is clear from these 

equations that d4 is the loniest lenith, thus excluding types I and 

11' as possible candidates for three-cuspidal coupler curves (with 

coupler triangle acute). The remaining two types do occur; 

examples are: d1 = d2 = d3 = 1, d4 = 2, with an equilateral coupler 

triangle for type 1', and d1 = d3 = cos 50°, d2 = cos80°, d4 = 1, and a 

coupler triangle with angles ~ = T) = 50°, <p = 80°. 

Now suppose that the coupler triangle is obtuse. Then the 

combination of three pairs of conditions of the form (5.3), which 

may hold simultaneously, depends entirely on which of the angles 

is obtuse. If <p (resp. ~, T)) then only the three conditions ++, +­

and -+ (resp. ++, +-, -- and ++,-+,--) may hold simultaneously. 

Then, a condition of the following form is satisfied 

= = = A } (5.4), 
COS~ cos<p COST) 

'Where the triple of signs (€1, €2, €3), whenever the angle <p (resp. 

~ and T) is obtuse, is (+,-,+) (resp. (-,+,+) and (+,+,-». The 

reader may check that, as for the acute angle case, we have 

A = d4. It follows, therefore, that sl4 is the loniest. Furthermore, 

the design parameters must satisfy the conditon 
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But, whenever angle q> is obtuse, we have -cos q> < cos ~ and 

-cos q> < cos n . For, if 0 > cos q> + cos -r (where -r = ~ or n) then by the 

addition formula for cosine we have O>cos Y2(q>+-r).COSY2(-r-q»: 

contradicting the fact that Y2Tt>Y2(q>+-r), Y2(-r-q>)>0. From 

equations (5.4) we deduce that d2 is the shortest length. 

Similarly, when angle ~ (resp. 1)) is obtuse we may deduce that 

d1 (resp. d3) is the shortest length. 

By Roberts' Theorem we may assume without loss of 

generality that angle q> is obtuse, so that d4 is the longest and 

d2 is the shortest. Then E = d4 + d2 - d1 - d3 = d4.(1- cos q> - cos ~ - cos T}). 

But, q> = Tt- ~-1). Thus, cOST} = -cos(~+T}) and 

E = d4.([ cos 0 + cos (~+ T})] - [cos ~ + cos T}]) 

Using the addition formula for cosines, we find 

E = 2.d4.cOS Y2(~ + T}).[ cos Y2(~ + n) - cos Y2(T} - ~)] 

and applying the addition formula once more, yields 

E = -2.d4'COS Y2(~ + T}).sin T}.sin~. 

We easily deduce, therefore, that E< O. Hence, only type 11 

four-bars can give rise, by obtuse coupler triangles, to coupler 

curves with three cusps. We may take, as an example of this, the 
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mechanism with dl = d3 = Y2./3, d2 = Y2, d4 = 1 and coupler triangle 

with angles ~ = 1) = 300 and q> = 1200
• 

Thus the complex classification of four-bar coupler curves is 

complete. For, we have showed that for each type the following 

possibilities can occur: 

Type I: 

Type 1': 

Type 11: 

3Al, 2Al1 A2, A1/2A2 

3Al, 2Al1 A2, A1/2A2, 3A2 

3Al, 2Al/A2,A1/2A2, 3A2 
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§5.3. The Problems of Surveying Four-bar Coupler 

Curves by Graphical Means. 

The aim of the remainder of this chapter, and indeed of the 

thesis, is to survey the possible types of real coupler curves which 

can occur for each A-type. This is not just a simple task in 

computer graphics; the ultimate step must be to understand 

mathematically how and why certain types of coupler curves 

occur for one A-type and not for another. However, computer 

drawings do give an incredible insight into the motions and coupler 

curves of the four-bar. It should be noted that even before we 

begin a computer analysis, there are obstructions to overcome. 

Fortunately, these can be resolved using the geometry that we will 

develop. There are two natural methods of drawing coupler curves 

by a computer. 

Method (1); We may parameterise each circuit (since they are 

diffeomorphic to a circle) of the coupler curve and then program a 

computer to draw the locus via the explicit parameterisation. This 

has the disadvantage that not all of the Zariski closure of the 

coupler curve is drawn. We have worded this very carefully, 

because the curve traced by the physical model (which we will 

refer to henceforth as the physical coupler curve) may not be 

an algebraic curve, but only a semi-algebraic curve failing to be 

algebraic only by the omission of finitely many points. This 

phenomenon is perhaps more easily illustrated to the reader by a 

more familiar example. 
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Consider the locus of a point P lying on a circle C1 rolling 

on the outside of another fixed circle C2. The locus is well known 

to be a limacon. Let C2 be a circle, centre the origin, with radius 

a and let C1 have radius b. Then the locus may be 

parameterised as x = bcos (t) + acos (2t), y = bcos (t) + asin (2t) and 

the reader may easily check that the locus lies on a bicircular 

quartic curve. For b<2a the locus has one real ordinary double 

point as showed in Fig. 5.4(a). When b = 2a the curve acquires a 

cusp (Fig. 5.4(b» and the locus in a cardioid and when b > 2a the 

locus has no real singular point (Fig. 5.4(c)). The singular points of 

the quartic, however, are two ordinary double points at the 

circular points at infinity and a (real) double point at the origin. It 

follows then that in the case b >2a the quartic has an isolated 

double point at the origin (Le. an acnode) which is not attained 

by the point P during the motion of the circle. We conclude then 

that in the same manner the coupler curve may have acnodes 

which are not attained by the locus of the physical mechanism. 

(a) (b) 

Fig. 5.4 

(c) 
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Every real point P on ~I corresponds to a true position of 

the mechanism, hence the image of P is a point on the physical 

coupler curve. Conversely, each point of the physical coupler 

curve is attained by a real position of the mechanism and 

therefore must be the image of a real point on ~I. Thus, W 

l:!hysical coupler curve is the image (under the coupler pro jection) 

of the set of real points on ~I. But, whilst the image of a complex 

projective algebraic variety is a complex projective algebraic 

Variety by Elimination Theorem, the image of a real projective 

algebraic variety is not necessarily a real projective algebraic 

variety, but only semi-algebraic (i.e. subsets of PlRn, which are 

the union, intersection or complement of sets of the form 

{(X1, ... ,Xn +1) €PlRn I f(x1, ... ,Xn +1) ~ Dl where the f is a homogeneous 

polynomial, so any algebraic set is clearly semi-algebraic but not 

conversely). Thus, the image of the real residual linkage curve is a 

semi-algebraic subset of the real coupler curve C (i.e. the real part 

of the complex coupler curve). In the generic case we can deduce 

that any isolated point of C cannot come from a real point on ~I. 

Recall that the real residual curve is non-singular and hence 

diffeomorphic to a disjoint union of circles. Since all coupler 

projections are finite maps, no "circle" can map to a point and 

hence the image of the real linkage variety does not possess an 

isolated point. In particular this provides a proof that no isolated 

l:!oint of the real coupler curve is attained physically. 

Method (2); We may write down the defining equation of the 

coupler curve and program a computer to calculate the solutions of 

the equation and plot them. Drawing the coupler curve in this 

manner often guarantees the inclusion of the isolated points. The 
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drawback here is that such programs tend to be very slow, 

inefficient, sometimes unreliable and often produce poor quality 

hardcopy (Le. pictures on paper) depending on how well the 

program is written (good drawing quality generally involves more 

computer time and hence we lose out on speed of execution). This 

method of analysing coupler curves, when one may wish to draw a 

large number of curves, is impractical on a microcomputer (unless 

you have plenty of time and patience) and generally little gain for 

speed is attained on a mainframe or mini-computer in a 

multi-user environment. For the survey we will need to produce a 

large number of curves. 

As the reader has most likely already guessed, the author 

has used approach number one. To make any progress, however, 

we have to overcome the problem that, if we have in front of us a 

drawing of a (physical) coupler curve with no (resp. one) real 

double point present, we will be unable to decide whether the 

Zariski closed coupler curve has three real acnodes or one real 

acnode and two complex conjugate double points (resp. one real 

ordinary double point and two real acnodes, or one real ordinary 

double point and two complex conjugate double points). The 

answer is non-trivial and leads to an interesting answer in terms 

of the real geometry of the Segre quartic surface which gives 

considerable illumination to the motion of the four-bar. 

Recall that for a given planar four-bar its linkage variety is 

isomorphic to an intersection of a net of quadrics in PC4. The key 

idea is based on the geometry described in [Gibson&Newstead] and 

explained in §1.6 that choosing a coupler point determines a unique 
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pencil in that net. In general, coupler points give rise to a general 

pencil so that the intersection is a Segre quartic surface. The 

coupler projection corresponds to projecting from a real line L on 

that surface and thus defines a birational correspondence with the 

projective plane branched over a conic; the well known circle of 

singular foci. The (complex) coupler curve is the image of the 

residual linkage curve under this projection. The five lines Li 

(i = 1, ... ,5) meeting L map to the five base points. Two of the five 

lines are complex conjugates, meet the residual linkage curve in 

three points and map to the circular points at infinity which lie on 

the coupler curve. Each of the remaining three lines meets a third 

quadric in the net, not already in the given pencil, in two points. 

Thus, each such line meets the linkage variety in two points and 

maps to a double point of the coupler curve, namely, one of the 

base points. The key point is that the problem of determining the 

number of real double points on a coupler curve is equivalent to 

determining the number of real lines on the associated Segre 

quartic surface. 

We shall describe the real geometry of the Segre quartic 

surface (§5.5) and then apply these results to the geometry of the 

associated pencil of a coupler point (§5.6). This yields a method for 

determining the number of real double points on the coupler curve. 

Moreover, we will show that there is a curve T = 0 which 

partitions the coupler plane into two regions. The nett result is 

that points P with T(P) < OIT(P) > 0 give rise to coupler curves 

with 1/3 real double points. 
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But first we pursue the geometry of coupler curves with 

cusps. The gain here is that there is a curve e which partitions 

the coupler plane. If we consider the coupler plane with this curve 

removed, then we obtain finitely many connected regions. We will 

say that two regions are neighbours, if there exists a continuous 

path in the coupler plane between a point in one region and a point 

in the other which meets e in only one point. Let us consider a 

continuous path P between two points in neighbouring regions 

close to e. Let this path meet e in the point Q. Then we may 

observe the phenomenon that one of the double points of the 

coupler curve of a coupler point P on P as it approaches Q, 

either transforms from a crunode into a cusp when P = Q and 

then into an acnode when it has passed through Q, or Vice versa. 

Finally, we may consider the partition of the coupler plane 

obtained by removing QQili e and 'J into connected components. 

Then clearly, any two points in a component give coupler curves 

whose double points have identical singularity types. This will form 

the basis for our classification of four-bar curves. 

In §5.4 we will study the curve e (described above) 

followed in §5.5 by an analysis of the real Segre Quartic Surface 

in preparation for §5.6, when we describe the geometry of 'J 

(described above). In §5.7 we conduct the survey of four-bar 
, 

Coupler curves. 
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§5.4. The Geometry of the Cusp Curve (Moving Centrode). 

In §5.2 we showed that the necessary and sufficient condition for 

cusps to occur on four-bar coupler curves is: 

+ 2d1 d3k1 (d2-k1) 

£1 (kf+k~)~ '£2(kl+(d2-~)2)~ 

+ d3(d2-kl) 1 
£2(~ +(~_~)2) 

+ 

+ 

+ 

+ 

d~(d2~)2 
~+ (~_kt)2 

~~ 
~+t4 

= d
2 
4 

It can be easily showed that the points satisfying this condition lie 

on the curve of degree eight (which henceforth we shall refer to as 

the cusp curve e) whose equation is: 

This curve is obtained by M tiller in [M uller] who shows, by 

mechanical means, that this is the condition for a cusp to occur. 

He ,gives an analysis of the curve for the degenerate cases, a 

straightforward exercise . 

.circumscriptible Case: 

1) We will not write down the equation of the curve but simply 

note that k2 = 0 is a component of the curve twice repeated and 

that the degree of the remaining curve is six and has cusps at the 
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circular points at infinity and double points at (0,0) and (d4,0). 

Kite Case: 

1) dl = d4, d2 = d3 

k2 = 0 repeated four times and the quartic curve 

The quartic is rational. Indeed, it is a limacon with the 

parameterisation x=cos(t)·(2acos(t) + b) y=sin(t)·(2acos(t) + b) 

where a = did2/[di-d~] and b = -2dld~/[di-d~] so that the origin is 

an acnode (resp. crunode) if and only if d2 > dl (resp. d2 < dl). 

2) dl = d2, d3 = d4. Similarly, we may show that the curve is the 

line k2 = 0 repeated four times and a quartic curve which like the 

previous case is a limacon. The parameterisation is given by 

x = d2-COS(t).(2acos(t) + b) and y= sin (t)·(2acos(t) + b) where 

a = d~d2/[d~-d~] and b = -2d3d~/[d~-d~J. The point (d4,0) 1S an 

acnode (resp. crunode) if and only if d2 > d3 (resp. d2 < d3). 

Earallelogram Case: dl = d3, d2 = d4 

Then the curve is the line k2 = 0 repeated four times and the conic 

whose equation is 

which is an ellipse if and only if dl > d2 and an parabola if and 

only if d2>dl. 
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Rhombus Case: The coupler curve can have no cusps. 

Recall that for the four-bar mechanism the linkage variety 

~ is isomorphic to a net of quadrics tl in pa:4 and that to any 

coupler point we may associate a pencil in that net. Whenever the 

pencil is generic the intersection of that net is a Segre quartic 

surface .8. The coupler projection given by such a coupler point is 

from a line on that surface and thus defines a birational map 

between .8 and the complex plane, branched over a circle. The 

image of the restriction of the coupler projection to the residual 

linkage curve ~I is the (complex) coupler curve ~k' The 

pre-image on .8 of a double point P on ~k is a line Ll meeting 

the centre of projection Lk. In general, the line meets a third 

quadric q in the associated net, not already contained in the 

associated pencil, in two points. Exceptionally, Ll may be tangent 

to the quadric and therefore meets :RI in just one point- whose 

image is a cusp on the coupler curve. 

The cusp curve, which we will denote by ~, plays a 

Special role here. Observe that the intersection points of Ll and q, 

whose coefficients are in terms of the design parameters, may be 

obtained by taking the resultant, a quadratic equation whose 

coefficients are likewise in terms of the design parameters. If we 

further suppose that Ll is real, then the resultant is a real 

quadratic with coefficients in the design parameters. Let .D be 

the discriminant of the quadratic, again a polynomial in the design 

parameters, then .D > O/l) = O/l) < 0 if and only if the intersections 

are real/coincident/complex. In the real (resp. complex) case L1 

meets :RI in two real (resp. complex) branches and they map to 
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real (resp. complex) branches of the coupler curve through p. , 

thus P is a crunode (resp. acnode). Finally, in the coincident case 

we know that Ll is tangent to !R' and P is a cusp. Thus, the 

coupler point must lie on the cusp curve. Thus, the discriminant 

vanishes if and only if the coupler point lies on e. It now follows 

that, as a coupler point approaches the cusp curve and passes 

through it, one of the real double points on the coupler curve must 

make the transition acnode-cusp-crunode or vice versa. 

We can study the geometry of the cusp curve in an 

alternative manner to that of looking at its defining equation. 

Recall that the condition for the coupler projection to have a 

critical point is 

Y2[-klXl-k2Yl]-X2[k2Xl-klYl] = 0 1 
X2[-k2X3-(d2-kl)Y3]-Y2[-(d2-kl)X3+k2Y3] = 0 (5.5) 

[k1Xl +k2Yl]·[k2X3+(d2-kl)Y3]-[k2Xl-klYl]·[ -(d2-kl)X3+k2Y3]= 0 

Combining these equations together with the real affine linkage 

variety equations 

dlXl + d2X2 + d3X3 - d4 = 0 

d1Y1 + d2Y2 + d3Y3 = 0 
2 2 22 2 2 

xl + Yl = x2 + Y2 = x3 + Y3 = 1, 

gives a variety in the affine 8-space with co-ordinates Xl, Yl, x2, 

Y2, x3, Y3, kl' k2· Let us make this variety complex and projective 

by introducing the complex homogenising variable w, defining the 

(complex) centrode variety V In po:8, Let the union of 

components of V, not lying entirely in the hyperplane w = 0, be 
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called the residual centrode variety and let it be denoted by"". 

Then there are two linear projections from pe8, namely, 

Tt:R: (Xl, Yl, x2, Y2, x3, Y3, kl, k2, W)H(Xl, Yl, X2, Y2, X3, Y3, w) 

and ne: (Xl, Yl, x2, Y2, x3, Y3, k1' k2, w)H(kl, k2, w) whose 

restrictions to ".' are, respectively, the linkage variety ~ (thus 

".' is a curve) and a curve e in the (complex projective) coupler 

plane which is clearly the cusp curve. 

It is worth noting at this point that we are using a standard 

technique in algebraic geometry. The cusp curve may be obtained 

from the residual linkage variety as the image of a rational map, 

defined by expressing the first two conditions of (5.5) as linear 

identities in kl, k2 and applying Cramer's rule to express k1' k2 

as rational functions in xl, Y1, x2, Y2, x3, Y3, w. Thus we define a 

rational map 1): ".'-. e given by 1): (Xl, Yl, x2, Y2, x3, Y3, 

w)H(kl,k2,W) where 

Note that any component satisfying [XlY3-Y1X3] = 0 has no image. 

The reason for this is clear, since the condition is satisfied if and 

only if the component is a conic. Then the image on the coupler 

Curve is a circle and can never acquire a cusp. Thus we are only 

interested in components of ~'which are not conics. 

We could now argue carefully and obtain a result for all the 

degenerate cases (except the rhombus case when ".' is empty). 

However, we will only consider the generic case. Then, in the 

above description we are factoring the rational map ne as 
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indicated in the following diagram 

Thus provided we can establish the geometry of V' I,. then e is 

obtained by a linear projection of V" and then we can determine 

the geometry of e more easily than with the rational map 1.1. 

The restriction 'IT:R.I~I to the residual linkage variety is 

easily checked to be generically 1-1 and so defines a birational 

map. Hence V" and &' have the same geometric genus. Indeed, 

We can see this mechanically. Any real point on the linkage 

variety determines a unique configuration of the mechanism. We 

then recall that the condition for a cusp is that the coupler· point is 

the unique point of intersection of the two lines passing through 

bars 1 and 3 (see Fig .5.2). The inverse rational map Il: ~'-+ V" is 

defined by Il: (Xl, Yl, x2, Y2, x3, Y3, w) H (Xl, Yl, x2, Y2, x3, Y3, 

kl' k2' w) with kl and k2 identical to the values given above. 

The intersection of V' with the hyperplane at infinity is 

given by dlxl+d2X2+d3X3=W=O and Yj=£jixj for j = 1,2,3, (where 

£ j'= ±1) giving two complex conjugate 3-planes W, W, when 

£1 = £2 = £3 = ±1 (necessarily components of V") and 2-planes lying 

on these 3-planes for the other choices of sign. The two 3-planes 

meet in the real L" line given by xl = Yl = X2 = Y2 = X3 = Y3 = W= O. 

It is clear that L is the centre of projection 'ITe. 
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We note that any finite point with [X1Y3-Y1X3] ~ 0 is 

mapped by 1.1 to a finite point of 11'. Now suppose that (Xl, Yl, 

x2, Y2, x3, Y3, w) is a point on ~' with [X1Y3-Y1X3] = O. Then we 

may recall, that this is the condition for the projection of ~I onto 

one of the circles x~ + Y~ = w2 to have a critical point. We found 

in §1.4 that, in the generic case, there are just four finite points on 

~I satisfying this condition and that in the real case they 

correspond to the limiting positions so familiar to mechanism 

theorists. These map to points on 17' of the form 

(0, 0, 0, 0, 0, 0, kl, k2, 0) and hence lie on the line L. Explicitly, 

We may rewrite the rational map by multiplying through by 

[X1Y3-Y1X3]. Then, since all but the last two co-ordinates of the 

image of one of the four points vanish, the rational map is defined 

at these points and it is a simple exercise to show that 

kl = £1 (4d~dl +£2d3]2_(d~-d~-[dl +£2d3]2»~ and k2 = d~-d~-[dl +£2d3]2 

where £1 = ±l, £2 = ±1. 

If (Xl, Yl, x2, Y2, x3, Y3, w) is a point on ~I with 

[x~ + Y~] = 0 then w = 0 and this is only satisfied by the six points 

of ~'in the hyperplane at infinity listed in §1.1. However, in this 

case we cannot find a simple re-expression of the rational map, 

which is defined at these points, although we know that such a 

map does exist. Thus, it is necessary to calculate their images 

directly. 

To calculate the images directly, we take a local 

parameterisation of the residual linkage variety at each point in 

turn. Substituting for each variable in the rational map in terms 

of the parameterisation, we obtain a parameterisation for the 
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centrode variety at the image point. In particular, the constant 

term determines the co-ordinates of the image point. The 

calculations are laborious, but straightforward. 

1) p = (O,O,d3,-id3,-d2,id2,O). Let us make the residual linkage 

variety affine by setting x2 = 1 and then let us apply an affine 

change of co-ordinates taking P to the origin. We then calculate 

the local parameterisation at the origin and, finally, apply the 

inverse affine transformation returning the origin to P to obtain 

the following local parameterisation at P 

Xl = (dr + d~)w + (HOT in w) : Yl = -i( -dr + d~) + (HOT in w) 

2dld4 2dld4 

x3 = -d2 + (-dr + d~)w+{HOT in w) : Y3 = id2 - i(-dr+d~)w+{HOT in w) - -
d3 2d3d4 d3 2d3d4 

Y2 = -i + iw2 + (HOT in w) 

Substituting for xl,Yl,Y2,x3,Y3 into the rational map, cancelling 

out any common factors of w in the numerator and denominator 

(this is allowable since w;e ° in a neighbourhood) and then setting 

W= ° to get the constant term of the parameterisation of VI at 

the image, we find that kl = k2 = 0. In particular, the linear term 

has non-zero coefficient, thus the image is the simple point 

pi =.(O,O,d3,-id3,-d2,id2,O,O,O) on VI. 

2) Q = (-d3,id3,O,O,-dl,idl,O). Let us make the residual linkage 

Variety affine by setting Xl = 1 and then let us apply an affine 

change of co-ordinates taking Q to the origin. Then we calculate 

the local parameterisation at the origin and, finally, we apply the 

inverse affine transformation returning the origin to Q to obtain 



- 225-

the following local parameterisation of ~I at Q 

X2 = (d~ + d~)w + {HOT in w} : Y2 = -i(-d~ + d~)w + {HOT in w} 

2d2d4 2d2d4 

x3 = -dl + (-d~ + d~)w+{HOT in w) : Y3 = idl -i( -d~ + d~)w+{HOT in w} - -
d3 2d3d4 d3 2d3d4 

Yl = -i + iw2 + {HOT in w} 

Rewrite the rational map by multiplying through by 

[X~ + y~][X1Y3-Y1X3] to obtain an equivalent rational map to the 

original. Then substitute for the variables Yl,x2,Y2,x3,Y3, using the 

parameterisation, into the rational map. Then set w= ° to get the 

constant term of the parameterisation of VI at the image. This 

Yields that the co-ordinate of the image is QI = (0,0,0,0,0,0,1,-i,0) 

and that the linear term has non-zero coefficient. Thus QI is 

simple on VI. Furthermore, QI lies on the centre of the TI:R 

thus by general theory (Theorem A13) Q is the image of an 

osculating n-plane X. Since Q lies on the hyperplane w = 0, X 

is contained in w = ° (in the ambient space of the centrode variety); 

in particular, its tangent lies in w = ° and thus VI touches w = ° 
at QI. 

3) R = (d2,-id2,-dl,idl,0,0,0). Let us make the residual linkage 

vatiety affine by setting xl = 1 and then let us apply an affine 

change of co-ordinates taking R to the origin. Then calculate the 

local parameterisation at the origin and, finally, we apply the 

inverse affine transformation returning the origin to R to obtain 

the following local parameterisation of ~I at R 
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x2 = -dl + (d~ + d~)w + {HOT in w} : Y2 =idl - i(-d~ + d~)w+{HOT in w} 

d2 2d2d4 d2 2d2d4 

x3 =(d~ + d~)w + {HOT in w} : Y3 = i(-d~ + d~)w + {HOT in w} 

2d3d4 2d3d4 

Y 1 = -i + iw2 + {HOT in w} 

Then we substitute for the variables Yl,x2,Y2,x3,Y3 using the 

above parameterisation into the rational map and we cancel out 

any common factors of w in the numerator and denominator 

(allowable since w ~ a in a neighbourhood). We set W= a to get the 

constant term. The linear term has non-zero coefficient, hence the 

image is the simple point R' = (d2,-id2,-dl,idl,a,a,a,a,a). 

4) The images pi, Q' and R' of the points P, Q and Rare 

obtained by taking the complex conjugates of the points above. 

Summarising, V" meets w = a in six simple points on L 

gnd a further four points, two on W and two on W, not lying on 

L. 

Note that the projection 'Tt:R defines an isomorphism 

between the sets ~'-{points such that W'[X1Y3-Y1X3]= a} and 

11 '-{points with W= a}. Thus, in the generic case, V" ~ 

non-singular curve: since there are no finite singular points and, as 

We found above, there are no singular points of V" in w = a. But 

any birational map between two non-singular curves is an 

isomorphism (Theorem A7); moreover, 'Tt:R and its inverse 1.1 

are given by real polynomials, thus the real residual linkage curve 

and the real centrode curve are real isomorphic. It follows that 

.the residual cent rode variety V" has one or two connected 
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components precisely when the linkage variety has one or two 

components. 

To determine the degrees of 11' and e we consider the 

projection nR'. Its centre is the line L. Then considering the 

higher order terms of the local parameterisation of 11' at points 

lying in w = 0 (the details of which we spare the read~r), we may 

deduce that no tangent to 11' coincides with L. Let H be a 

generic hyperplane through L and suppose that H meets 11' in 

the points Pj, j = 1, .. ,m. Then, the sum ~ji(Pj,H() 11') of the 

intersection multiplicities of Hand 11' equals the sum of the 

multiplicities of Pj on 11'; the sum is easily checked to be six. 

Applying the Projection Formula, yields degree(11') - ~ji(Pj,H() 11') 

= degree(:R,'). Then the fact from §1.1 that :R,' has degree six, 

Yields that 11' has degree twelve. 

We may now apply the Projection Formula to '!le. The 

centre of projection M given by kl = k2 = w = 0 meets 11' in the 

four points pi, pi, R', R' whose tangents to 11' do not lie in w = 0 

(else the tangents to :R,' at P, P, R, R lie in w = 0). Thus, in 

particular, they do not lie on M. Let H be a generic hyperplane 

through M. Suppose H meets 11' in the points Pj, j = 1, .. ,m. 

Then the sum ~ji(Pj,H() 11') of the intersection multiplicities of H 
. . 

and 11' equals the sum of the mUltiplicities of Pj on 11'. It is 

easily checked that the images of the six points on L map to six 

distinct points on the line at infinity, thus the degree of e is at 

least six by Bezout's Theorem. But the sum of the multiplicities is 

four, thus the Projection Formula yields that the degree of the 

~o jection '!le is one and that e has degree eight. 
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We should perhaps emphasise that, of the twelve 'limiting 

position' points, the four critical points of the projection 'IT 1 (resp. 

1t3) map to (0,0) (resp. (d4,0)), whilst the four critical points of 'IT2 

map to distinct points on the hyperplane at infinity. Hence, the 

points (0,0) and (d4,0) have mUltiplicity ~4 on e. But the line 

k2 = ° passes through both of these points and hence, by Bezout's 

Theorem, both points must have exactly multiplicity four and e 
does not touch the line. We may deduce that the Hain type will 

determine how many real branches pass through (0,0), (d4,O) and 

how many real branches meet w = ° (in other than I and J); for 

We have established a correspondence between the number of real 

branches and the number of real critical points of 'IT j-

We recall that a circuit of a real planar curve is defined to 

be the image of a connected component of any real 

desingularisation. Then we may take the curve 111 (or ~I) as a 

desingularisation of the cusp curve e. Thus we find that the cusp 

.curve e has one or two circuits - the same number as its family 

of coupler curves determined entirely by the design parameters. 

Studying the centrode variety, rather than the cusp curve 

via its equation, has yielded several new results. Firstly, we have 

showed that the curve is birationally isomorphic to the linkage 

variety from which it follows that the geometric genus is one. 

Secondly, we have been able to determine the number of circuits 

cif the cusp curve in the generic case. Thirdly, we have been able 

to determine the multiplicity of (0,0) and (d4,0); moreover, we 

showed that the number of real branches through these points is 

determined by the Hain type. 
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Perhaps the most important result about the cusp curve, 

yet to be established, is that (in the generic case) double (resp. 

triple) points on the cusp curve correspond to coupler curves with 

two (resp. three) cusps. This very intuitive result is another of the 

'folklore' results for which no proof exists in the literature. From 

our point of view this is very easy to establish. If P is a double 

(triple) point on the cusp curve, then, since V' has no singular 

points, P has two (resp. three) pre-images Pj on the centrode 

variety. These points are mapped by n:R,' to points on the residual 

linkage variety and, since ~' is non-singular, these points are 

necessarily distinct. Further, these points are critical points of the 

coupler projection and hence their images on the coupler curve 

traced by P are cusps. 

! have not showed that the circular points at infinity are 

cusps (a result established by Muller)' However, assuming that 

they are cusps, we may procede to show that there can be at most 

~ix finite singular points. The sum of the delta invariants of the 

singular points on a plane curve of degree eight and genus one is 

equal to ~(8-1)(7-1)-1=20. But, whenever P = (0,0) or (<4,0), we 

have Bp~6 and whenever P=! or J, we have Bp=1. Thus the 

sum of the Bp's of the remaining singular points is 6. Hence 

there can be at most six other double points, each with Bp = 1. 

Observe that the cusp curve is symmetrical about the line k2 = O. 

If the cusp curve of a mechanism has a triple point, then it 

has ~ triple points symmetrically placed about the line k2 = 0 

and no other finite singular points. In particular, by disturbing the 

coupler point, one cannot obtain a coupler curve with two cusps. 
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However, by disturbing the mechanism slightly, by which I mean a 

small deformation of the design parameters, one hopes to get a 

mechanism whose cusp curve has three double points. Indeed, we 

showed in §5.2 that a mechanism possesses a coupler curve with 

three cusps if and only if the point (dl,d2,d3,d4) lies on a 

hypersurface H in the parameter space. We recall that H is the 

hypersurface defined by 

Therefore, the necessary and sufficient condition for the cusp curve 

to have a triple point is that the point (dl,d2,d3,d4) lies on H. 

Thus for almost all small deformations (d1,d2,d3,d4) of 

(dbd2,d3,d4) (or more precisely all points in an €-neighbourhood of 

(dl,d2,d3,d4) not lying on H), it is reasonable to expect the triple 

point on the cusp curve to "unfold" into three ordinary. double 

points on the cusp curve of the mechanism with design parameters 

(d1 ,d2,d3,d4)· 

S5.5. The Geometry of the Real Segre Quartic Surface. 

In chapter one we described how the intersection of a 

general pencil of quadrics in p[4 is a Segre Quartic Surface .8 

containing sixteen lines with the properties that any given line 

meets exactly five other lines and that any pair of lines has two 

transversals (Le. lines meeting both of them). Projecting from one 

of the lines L defines a birational map between .8 and the 

projective plane whose branch locus (Le. the points of the 
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projective plane which do not have a unIque pre-Image on the 

surface) is a conic passing through the five base points. The base 

points are the images of the five lines on ,s meeting the centre of 

projection L. Further, we showed that the image of any line, 

other than L and the five lines meeting it, is a line passing 

through two of the five base points; we recall that, if L1 is such 

a line, then two of the five lines meeting L are transversals of L 

and L1 and therefore the image of L1 meets the images of the 

transversals namely, two of the base points. 

We shall now make some further remarks in the form of 

the following lemmas about the birational correspondence in the 

case when L and the surface are real (Le. ,s = ,s), in preparation 

for the case when the Segre quartic surface is the intersection of 

the pencil of quadrics associated with a coupler projection of the 

planar four-bar. Indeed, the geometry of the real Segre .quartic 

surface gives considerable illumination to the real geometry of 

four-bar coupler curves. 

Lemma 5.1 Suppose that the surface ,s is real and let L be 

any real line on it. Then a line on the surface meeting L is real 

if and only if the corresponding base point is real. 

Proof: Trivial. 

Lemma 5.2 Suppose that the surface 

any real line on it. Then any other line 

only if the transversals of Land 

complex conjugates. 

a 

,s is real and let L be 

L1 on ,s is real if and 

L1 are either real or 
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Proof: Clearly, if the two transversals T 1, T2 are either real lines 

or a pair of complex conjugate lines, then the hyperplane H 

spanning L, T 1 and T 2 is real. Thus H intersects ,8 in a real 

quartic curve consisting of L, T 1, T2 and one other r.W line, 

namely, L1. Conversely, if L1 IS real then the hyperplane 

spanning Land L1 is real intersecting ,8 in a· real quartic 

curve. Thus it follows from a reason given in §1.5 that the 

quartic reduces to four lines L, L1 and their two transversals. 

Since the quartic curve is real, it follows that the transversals are 

either real or complex conjugates. The lemma is now proved. 

Lemma 5.3 A real Segre quartic surface ,8 can possess no, 

four, eight or sixteen real lines. 

11 

Proof: Certainly, real surfaces with no real lines exist, for we 

may take as an example any empty intersection of two real 

quadrics which generate a general pencil. Suppose that ,8 has at 

least one real line L, then it is sufficient to show that ,8 has four, 

eight or sixteen lines . 

.claim: If .8 is a real Segre quartic surface containing one real 

line L, then there are at least four real lines on .8. 

Eroof: Note that, if L' is a complex line lying on .8, then its 

conjugate [, also lies on ,8. Thus of the five lines meeting L, 

one must be real and the remaining four are either pairs of real 

lines or pairs of complex conjugate lines. Thus, either the lines 
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meeting L are two pairs of complex conjugate lines and one real 

line L1 or there are three or five real lines meeting L. In the 

latter case the claim immediately follows. In the former case we 

can prove the claim by observing that each pair of (skew) 

conjugate lines span a real hyperplane containing L and meeting 

.8 in their two transversals, namely, L and one other 

(necessarily) real line L2 distinct from Land L1. Similarly, the 

other pair of conjugate lines have as their transversals L and a 

real line L3 distinct from Land L1' Thus, the result is proved if 

We can show that L2 and L3 are distinct. But, if this were the 

case, then the hyperplane spanning Land L2 contains two pairs 

of conjugate lines, clearly contradicting the geometry of the 

surface .8 as described in §1.5. 

We may now complete the proof geometrically. Recall that 

projecting the surface from L gives a birational correspondence 

with a plane J( branched over a (real) conic. The base points are 

the images of the five lines meeting L. Further, we recall (from 

§1.5) that the images of the remaining ten lines on .8 are 

precisely the set of ten lines passing through any pair of base 

points. Thus, there are three possibilities. 

(1) Only one real line L1 meets L. Then there is one real base 

point P and two pairs a,a and R,R of complex conjugate base 

points lying on the conic. The lines through a,a and R,R are 

real and have real lines as their pre-images on .8 (see Fig. 5.5(a)). 

The remaining lines through any other pairs of base points are 

clearly complex. Thus, there are exactly I2Yr: real lines on .8. 
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(2) Three real lines L1, L2, L3 meet L. Then there are three real 

base points P,Q,R and one pair of complex conjugate points S,8. 

The lines through the pairs {P,Q}, {P,R}, {Q,R} and {S,S} are real 

with real pre-images on ,8 (see Fig. 5.5(b)). The remaining six 

lines through pairs of points are complex. Thus, together with the 

four real lines L1, L2, L3 and L and we have .cigb! real lines in 

all. 

(3) Five real lines L1, L2, L3, L4, L5 meet L. Then all five base 

points are real. Thus, the ten lines passing through any pair of 

them are real (see Fig. 5.5(c)) implying that all sixteen lines on 

the surface are real. 

The Lemma is now proved. 

a, 2 

3 

----~-----~----4 

c) 

• 
b) 

-~~---~~-6 

7 
----~------~----8 

14 

Fig. 5.5. 

• - real point 
)( - complex point 
/ - real line 
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Finally, we need a method by which we can calculate the 

number of real base points, so that we can count the number of 

real double points of the four-bar coupler curves. This is provided 

by the following Lemma. 

Lemma 5.4 Suppose ..8 is a real Segre quartic surface, i.e. given 

as the complete intersection of two real quadrics ql' and q2 in 

p[4. Then the (real binary quintic polynomial) discriminant of the 

pencil ocql + ~q2 has five distinct roots. Further, suppose that the 

surface has a real line L. Then the following are equivalent 

(1) The discriminant has n real roots and (5-n) complex roots, 

occuring in conjugate pairs, 

(2) There are n real, and (5-n) complex lines occunng in 

conjugate pairs, on ..8 meeting L, 

(3) The projection from L· onto a plane X has n real, and 

(5-n) complex base points occuring in conjugate pairs. 

Proof: The equivalence of (2) and (3) follows from Lemma 5.3. 

Thus, it is sufficient to show the equivalence of (1) and (2). Let 

the quadrics ql and q2 be written in their matrix forms xtAx 

and xtBx where A and B are real symmetric matrices. The 

discriminant is the real binary quintic polynomial given as the 
. 

vanishing of the determinant of the matrix ocA + ~B. For each 

root (OCb~i) i = 1, ... ,5 of the discriminant, the corresponding quadric 

ociA + ~iB in the pencil is a point cone whose vertex Vi is real if 

and only if the root is real. To complete the proof we will show 

that each point cone with a real vertex gives rise to exactly one 

real line meeting L. 
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We recall some facts from §1.5. Let Ct be the cone with 

vertex V i and let Xi be the plane which is the join of Land 

Vi' Then Xi is the join of a line on Ci with the vertex and 

hence Xi lies on Ci ; indeed the reader may recall that Xi lies in 

one of the two families of 2-planes on Ci. But 2> may be given as 

the intersection of Ci and any other quadric in the pencil q. 

Thus, the intersection of Xi with 2> is equal to the intersection 

of Xi with q Le. a conic consisting of L and one other line 4. 

Let us now suppose that Vi is real, then the plane Xi is real and 

meets 2> in a rfgl conic. But as we have just showed, the conic is 

made up of the real line L and one other line Li; thus Lt is real. 

Conversely, if Lt is a real line meeting L, then the join of L 

and Li is a real plane Xi' By the result of §1.5, Xi contains the 

vertex Vi of a point cone in the pencil and, moreover, only QM 

such vertex lies on Xi' But, if Vi is complex, then the complex 

conjugate point Vi lies on Xi and is the vertex of a point 'cone in 

the pencil giving the required contradicton. Thus Vi is real and 

the Lemma is proved. 

a 

We will now apply the above results to the geometry of the planar 

four-bar. 
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§5.6. The Geometry of the Tacnode Curve (Transition 

Curve). 

The aim of this section is to determine the number of real double 

points on a given four-bar coupler curve. By the results of the 

previous section this is equivalent to counting the number of real 

roots of the discriminant of the associated pencil for a fixed coupler 

point. The first step we shall make in this direction follows the 

approach used in [Gibson&Newstead1 for determining when the 

associated pencil is non-general. The authors of [Gibson&Newstead1 

show that the set of coupler points (kl,k2), which give rise to a 

non-general pencil, lie on an algebraic curve and describe this 

Curve completely in the more degenerate cases (when the Grashof 

equality holds) and partly in the generic and circumscriptible cases. 

We shall show that this curve is the union of two curves 'I' and 

7", such that almost all points (kl,k2) on 'I' (resp. 'T") are 

coupler points which trace curves with a tacnode (resp. triple 

point). We shall refer toT' and 'I" as the tacnode curve and 

the triple point curve, respectively. Finally, we shall show that 

the tacnode curve T'(P) = 0 partitions the coupler plane so that 

points P for which T'(P) < OIT'(P) > 0, correspond to coupler 

curves with 1/3 real double points. The curve 'I is the so called 

transition curve (Ubergangskurve) of Muller [Muller] who derives 

(ess~ntially) the same conclusion by purely mechanical means. 

In this section we will use the notation of chapter one. We 

recall from [Gibson&Newstead], as explained in §1.6, that the 

linkage variety of the four-bar is isomorphic to the intersection of 

three quadrics in p[4. Explicitly, the quadrics are 
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(d4w - dlxl - d2X2)2 - (dlYl + d2Y2)2 = d~W2 

The linkage variety ~ is a curve consisting of two lines Land L 

in the hyperplane at infinity w = 0 and a sextic curve ~' which 

rneets w = 0 in three pairs of complex conjugate points lying on L 

and L. The curve ~' is called the residual linkage variety. Let 

us fix a coupler point P = dlzl + kOZ2, where k = kl + ik2 IS a 

cornplex number. Then the coupler curve is the image of the 

residual linkage variety under the linear projection given by 

Ttk : (Xl,Yl,X2,Y2,W) H (P1,P2,W), where P1 = d1X1-k2Y2+k1x2, 

P2 = d1Y1 + k2x2 + k1Y2 and P3 = w. The centre of projection is the 

line r. given by P1 = P2 = P3 = O. It is easily checked that r. is a 

transversal of Land L. 

Let us denote by 11. the net of quadrics XQ1 + YQ2 + ZQ3 

and let S be any point not lying on the intersection of the net i.e. 

the linkage variety. Then the subset of quadrics in 11. passmg 

through S is given by a linear condition in the variables X, Y, Z, 

thus defining a pencil of quadrics in 11.. In particular, we may 

choose a pointS on r.. Then any quadric in the pencil meets r. 
in S and two other points, one lying on L and one lying on L. 

Hen'ce, every quadric In the pencil contains· t. Thus the 

corresponding pencil 'P In 11. comprises those quadrics in the net 

~ontainins r.. Quite explicitly, the pencil is given by 
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and the pencil may be written 

We may represent the generators of the net in matrix form xtAx, 

xtBx and xtCx. The discriminant is the polynomial in . X, Y and Z 

given by the vanishing of the determinant of the matrix 

m = XA+YB+ZC. The matrix m is easily showed to be 

X+diz 0 dld2Z 0 -dld4Z 

0 X+diz 0 dld2Z 0 

TIt = dld2Z 0 Y+d~Z 0 -d2d4Z 

0 dld2Z 0 Y+d~Z 0 

-dld4Z 0 -d2d4Z 0 2 2 -X-Y+(d4-d3)Z 

The discriminant of the net determines a plane quintic curve. It is 

easily seen from the matrix that the curve reduces into a conic 

and cubic given by 

XY + diyZ + d~Z = 0 : (X + Y + d~Z)(XY + diyZ + d~XZ) = 0 (5.7) 

It is showed in [Gibson&Newstead] that the conic and cubic touch 

at the three points (1,0,0), (0,1,0) and (0,0,1). We may deduce the 

condition for the pencil 'P to be general i.e. to have five distinct 

point cones or equivalently for its discriminant to have five distinct 

roots. The pencil 'P defines a line in the (X,Y,Z)-plane. Thus the 

condition is that the pencil is general if and only if that line meets 

the discriminant curve of the net in five distinct points. The 

conditions for the failure of the pencil to be general are given in 
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[Gibson&Newstead] and we shall give the details here. 

Conditions for the associated pencil to be non-general. 

Firstly, the pencil can fail to be general, whenever the line 

passes through one of the points (1,0,0), (0,1,0) and (0,0,1). But 

this is easily showed to be the case if and only if k = ° or k = d2 

i.e. the coupler point is one of the hinges on the coupler bar. 

Secondly, the pencil fails to be general, whenever the line is 

tangent to the conic. Substituting for V, using (5.6), into the 

defining equation of the conic (5.7), gives a binary quadratic in X 

and Z whose discriminant is -4did~k~. The line is tangent to the 

conic if and only if the discriminant vanishes i.e. k2 = 0. Moreover, 

in general the line meets the conic in two complex conjugate 

~oints. 

Finally, the pencil fails to be general, whenever the line is 

tangent to the cubic or (if the Grashof condition holds) the line 

passes through a double point of the cubic. We shall now 

summarise the results of [Gibson&Newsteadl for this last case. 

Generic Case: 

The cubic is non-singular so that the condition is that the line is 

tangent to the cubic. Thus the condition is equivalent to saying 

that the point (kf + k~,df,df[kf + k~ - 2d2k1 + d~]) lies on the dual 

curve of the cubic. The dual of a cubic is a sextic curve, thus, 

substituting for the co-ordinates of the point, we find that the 

point (k1,k2) lies on an algebraic curve of degree less than or 

equal to twelve. We shall need to be more precise than the authors 
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of [Gibson&Newstead], but we shall leave the details until later in 

this section. 

Circumscriptible Case: 

The condition for the line to pass through node on the cubic is that 

the point (k1,k2) lies on one of the following circles 

The line is tangent to the cubic if and only if the point (k1,k2) lies 

on a curve of degree ~8 (not given in [Gibson&Newstead]). 

Parallelogram/Ki te Case: 

1) d1 = d2;.e d3 = d4: The condition for the line to pass through one 

of the two nodes on the cubic (which in this case is a conic and 

chord) is that (k1,k2) satisfies 

(d1-d3)(kr + k~) - 2drk1 + dr(d1 + d3) = 0 or 

(d1 +d3)(kr + k~) - 2drk1 + dr(d1 - d3) = 0 

The line is never a component of the cubic, thus the condition for 

the line to be tangent to the cubic is equivalent to the line being 

tangent to the conic component. The result is that (k1,k2) must lie 

on the curve given by 

d~kr + (d~ - dr)k~ = 0 

Thus, when d3> d1, we obtain only the point k = 0, whilst, when 
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d3 < d1, we get two lines through the origin; indeed, they are 

tangent to the above circles. 

2) d1 = d4;e d2 = d3: The condition for the line to pass through one 

of the two nodes on the cubic (which in this case is a conic and 

chord) is that (k1,k2) satisfies 

(d1-d2)(ki + k~) + 2d1 d2k1 = 0 or 

(d1+d2Hki + k~) - 2d1d2kl = 0 

The line is never a component of the cubic thus the condition for 

the line to be tangent to the cubic is equivalent to the line being 

tangent to the conic component. The result is that (kl,k2) must lie 

on the curve given by 

Thus, when d1> d2, we obtain only the point k = d2, whilst, when 

d1 < d2, we get two lines through the origin; the lines are tangent 

to the above circles. 

3) d1 = d3;e d2 = d4: The condition for the line to pass through one 

of the two nodes on the cubic (which in this case is a conic and 

chord) is that 

The line is never a component of the cubic thus the condition for 

the line to be tangent to the cubic is equivalent to the line being 

tangent to the conic component. The result is that (k1,k2) must 
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satisfy 

Whenever d2 > dl, we get only the points k = 0 and k = d2. When 

d2 < dl, we have two circles given by 

Rhombus Case: 

The condition for the line to pass through one of the three nodes on 

the cubic (which in this case is a triangle) is 

where d = dl = d2 = d3 = d4. Note that, Since the line is never a 

component of the cubic, the line is never tangent to the cubic. 

~ that in the above analysis we have been careful to separate 

the two distinct conditions when the pencil passes through a node 

of the cubic and when the line touches the cubic. The reason for 

this will soon become clear. 

In each of the above cases let us write T for the union of 

The varieties defining the set of points (kl,k2), in the coupler 

plane, for which the associated pencil either touches the cubic or 

passes through a double point of the cubic. 

So far we have only considered the geometry of the quartic 
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surface given as the intersection of a pencil of quadrics in PC4 

when the pencil is general. However, even when the pencil is not 

general, we can still describe the geometry of the surface (no longer 

called a Segre surface). Of course, for a bad choice of quadrics the 

corresponding surface of intersection can be very degenerate. 

The first level of degenericity occurs when the discriminant 

of the pencil no longer has distinct roots, but the singular quadrics 

corresponding to each root continue to be point cones and not 

Worse. We could then repeat the analysis of the configuration of 

the lines on the surface and deduce that some of them must 

coincide. A complete description is given in [Jessop 1916]. We will 

not give the details here, but simply quote the result that in this 

case there can be twelve, nine, eight, six or four lines on the 

surface (when the pencil has the Segre symbol 1112, 122, 113, 23 

or 14, respectively). It should be clear to the reader that, if we 

take a line L on the surface, there are no longer five distinct lines 

on the surface meeting it. Recall that the five lines meeting a 

given line L are constructed in the following manner. Let X be 

the plane spanning L and one of the vertices of the cones. Then 

X meets the surface in a conic, consisting of L and one other line. 

Thus, in the general case, we can do this for each of the five 

vertices giving the desired five lines. However, in the non-general 
. 

case there are less than five distinct point vertices and hence there 

are less than five lines meeting L. 

More degenerately, we could have singular quadrics with 

vertices that are lines. The result here is that there are either at 

most eight lines on the surface (whenever the Segre symbols of the 
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pencil is one of (11)111, (11)21, (21)11, (21)2, (31)1, or (41)) or 

there are infinitely many lines and the surface is ruled {whenever 

the Segre symbols of the pencil is either (22)1 or (23». 

However, we can eliminate the possibility of infinitely many 

lines on the surface in the situation at hand, because such surfaces 

may only occur when the discriminant has one or two distinct 

roots (this is a consequence of the results in [Jessop 1916], in fact 

it follows from the Segre symbol). But this is never the case. The 

pencil would necessarily be tangent to the conic component of the 

discriminant of the net n, implying k2 = 0, and the pencil would 

have to have 3-point contact with the cubic i.e. be an inflexional 

tangent. However, we will soon show that points (k1,k2) with 

k2 = 0 have an associated pencil with two or three point contact 

with the cubic when k1 = 0 or k1 = d2: the coupler points we 

have excluded from our discussion. 

Thus, whenever the associated pencil is non-general, some 

of the five lines meeting the centre of the coupler projection r. 
coincide and this occurs if and only if some of the base points 

coincide. Therefore, the coupler curve has a coincidence of double 

points. 

In the case of a generic mechanism the coupler curve C is 

a sex tic with geometric genus one. We showed in §1.6 that, no 

matter which coupler point is chosen, C has ordinary triple points 

at I and J (we are excluding from the discussion the cases when 

the coupler point is one of the endpoints of the coupler bar). Thus, 

if there is any coincidence of double points, then it occurs among 
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the finite singular points. We also showed in §1.6 that the sum of 

the delta invariants of the singular points on C is three for any 

choice of coupler point. Thus, there can be either just one singular 

point P with 8p = 3 and hence a triple point or higher-order cusp 

or one ordinary double point and a double point P with Bp = 2 

i.e. a tacnode or ramphoid cusp. However, we can easily show 

that finite triple points cannot occur on the coupler curve in the 

generic case. 

Suppose that P is a triple point of a coupler curve of ~ 

mechanism. Then, since there are no finite singular points on the 

residual linkage curve, P must lie on the circle of singular foci. Its 

pre-image, on the Segre quartic surface corresponding to the 

Coupler point, is a line M meeting the centre of projection. M 

meets any other quadric in the net :n. (and hence the residual 

linkage variety which we continue to denote by ~I), distinct from 

the ones in the associated pencil, in one of the following three 

ways: 

1) M touches the quadric in one point pi lying on the residual 

linkage variety. Clearly, if this is the case, then pi is a critical 

point of the coupler projection. If pi is simple on ~I, then it 

follows that P is a cusp. This is necessarily the case for a generic 
. 

mechanism. Whilst for a degenerate mechanism, pi could be an 

ordinary double point implying that P is a singular point worse 

than an ordinary double point or cusp. Indeed, P must have two 

branches, one simple and one non-simple. Hence, P is a triple 

point with non-distinct tangents. Thus Bp ~ 3, implying that 

there are no other finite singular points on the coupler curve. 
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Any coupler 'point giving rise to such a curve must lie on the cusp 

curve and hence does not occur in general. 

2) M meets the quadric in two distinct points pi and P". Then M 

is non-critical at pi and p" and therefore each branch through 

pi and p" maps as a local immersion onto the coupler curve. 

Thus, if pi and p" are simple points on 1(,1, then P IS an 

ordinary double point on the coupler curve; in particular, this is 

the case for the generic mechanism. If the mechanism is 

degenerate, then one of the points can be an ordinary double point 

implying that P is an ordinary triple point. The situation when 

pi and pIt are both singular (in which case the mechanism is either 

a parallelogram/kite or rhombus) cannot arise, since the double 

points lie on a conic component of 1(,1; indeed they are the 

intersection of components namely, a conic and quartic in the 

parallelogram/kite case and three conics in the rhombus case. 

Thus this would imply that two points on the conic map to the 

same point on the coupler curve giving an obvious contradiction. 

3) M meets the surface in more than two points. Thus M 

necessarily lies on the surface implying that M is a component of 

the linkage curve. The only line components are those in the 

hyperplane at infinity, but we know that these map to I and J. 

Thus this situation can never arise. 

Thus we have showed that in the generic case no coupler 

curve has a finite triple point. This leaves the possibilities of a 

higher-order cusp with 8p = 3, a ramphoid cusp with 8p = 2 or a 

tacnode with op = 2. However, we showed in §5.3 that cusps do 
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not occur in general. Indeed, for a ramphoid cusp or higher-order 

cusp to occur, it is necessary that the coupler point lies both on the 

cusp curve and on the curve er. But in the generic case the cusp 

curve is an irreducible curve of degree twelve in the coupler plane. 

Comparing this with the curve er, a curve of degree ~12, we find 

that no component of er can be a component of the cusp curve. 

Thus, provided er is not identical to the cusp curve, we may apply 

Bezout's Theorem to show that they meet in finitely many points. 

We can easily exclude the possibility that er is the cusp curve; 

We will show soon that, in fact, 'J' has only degree ten. Thus 

almost all points on er correspond to coupler curves with 

tacnodes. Hence, we may call er the tacnode curve. 

In the degenerate cases the curve er corresponds not only 

to coupler points whose loci possess a tacnode, but also to coupler 

curves whose loci possess a tri pIe poin t. We recall that the cusp 

curves for the circumscriptible, kite and parallelogram cases 

consist of the line k2 = 0 and an irreducible curve of degree 8, 4 

and 2 respectively. Note that the cusp curve for the rhombus case 

is empty. On the other hand for the circumscriptible, kite and 

parallelogram cases, the curve er is a circle and an octic; two 

circles and two (possibly complex) lines; and two lines and (if 

d2> d1) two circles, respectively. Comparing er and the cusp 
. 

curves, it is clear that no component of er can lie on the cusp 

curve, except possibly in the parallelogram case, when one of the 

two circles could coincide with the conic cusp curve; but in this 

case we recall that the cusp curve is an ellipse or parabola, so they 

cannot coincide. Thus the occurence of a ramphoid or higher-order 

cusp on a coupler curve can only occur for coupler points lying on 
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both the cusp curve and on ~ and, moreover, it follows from 

Bezout's Theorem that there are only finitely many such points. 

We will conclude our discussion of the degenerate four-bars 

by noting that the curve ~ is the union of two subvarieties ~' 

and 'J", corresponding to the set of coupler points whose loci 

possess a tacnode and triple point, respectively.- The two 

subvarieties are distinguished by the fact that the tacnode curve 

'J' is the set of coupler points whose associated pencil touches the 

cubic, whilst the triple point curve is the line k2 = 0 union the 

set of coupler points whose associated pencil passes through a 

double point of the cubic. We shall prove this quite explicitly. Let 

P be an ordinary triple point (we may exclude non-ordinary triple 

points, because we have showed that there are only finitely many 

of them) on a (necessarily) degenerate four-bar coupler curve and 

let M be its pre-image on -the Segre quartic surface associated to 

the fixed coupler point. Then, by the above analysis, M passes 

through a double point on 1t' I.e. one of the points 

(£1,0,£2,0,£3,0,1), where (£1,£2,£3) = (1,1,-1), (1,-1,1) or (-1,1,1) 

and, moreover, the image of such a point must lie on the circle of 

singular foci. Thus, the singular point has the form 

(P1,P2,P3) = (d1 £1 + kl £2, k2£2, 1) and must lie on the circle of 

singular foci given in §1.6. We recall that the equation of the circle 

IS 

Substituting the co-ordinates of the point into the equation, we find 

that 
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k2 = 0 or [£2d4-d2][kf + k~] - 2dl d2£2kl + dl d2[£1 d4 - dl] = 0 

Thus, the line k2 = 0 always glves nse to triple points in the 

degenerate cases. We can now take each degenerate case one by 

one and apply the equality £1 dl + £2d2 + £3d3 - d4 = 0: 

Circumscriptible Case: dl +d4 = d2+d3 then (£1,£2,£3) = (-1,1,1). 

Thus the two equalities (£2d4-d2) = (d3-dl), (£ld4-dl) = (d2+d3) and 

the second equality above gives the condition, derived earlier, for 

the pencil to pass through the node. The other two 

circumscriptible cases follow similarly. 

Kite Case: dl = d2;e d3 = d4 . then (£1,£2,£3) = (1,-1,1) Q.[ (-1,1,1). 

Thus the three equalities: (£2d4-d2) = -(dl +d3); (£1 d4-dl) = (d3-d2) = 

(d3-dl) or (£2d4-d2) = (d3-dl); (£1 d4-dl) = -(d2+d3) = -(dl +d3); and 

the second equality above gives the two conditions, derived 'earlier, 

for the pencil to pass through one of the two nodes on the cubic. 

The other kite case follows similarly. 

Rhombus Case: dl = d2 = d3 = d4 then (£1,£2,£3) = (1,1,-1), (1,-1,1) 

Qr. (-1,1,1)' Thus: (£2d4-d2) = (£ld4-dl) = 0 Ql: (£2d4-d2) = -2dl; 

and (£1 d4-dl) = 0 Ql: (£2d4-d2) = -2dl; and (El d4-dl) = -2dl. It is 

easily checked that this gives the three conditions given earlier for 

the' associa ted pencil to pass through one of the three nodes on the 

cubic. 

We shall now discuss the geometry of the tacnode curve er in' the 

generic case and determine a procedure for deciding, whether a 

Lour-bar coupler curve has one or three double points. 
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We have described the geometry of the tacnode curve in 

the parallelogram/kite and rhombus cases quite explicitly above. 

We shall now procede to describe this curve in the generic case, as 

this was not done in [Gibson&Newsteadl. We recall that the 

tacnode curve is the set of points (kl,k2), in the coupler plane, for 

which the associated pencil touches the cubic component of the 

discriminant of the net Tt of quadrics whose intersection is the 

linkage variety. The pencil is given by 

- 2 2 -kkX + d1 y + d1(k-d2)(k-d2)Z = 0 

and the cubic by 

(X + y d~)(XY + diyZ + d~XZ) - d~XYZ = 0 

We wish to know when· the pencil touches the cubic, or 

equivalently, when the pencil meets the cubic in two points instead 

of the g"eneral three points. We may eliminate the variable Y 

from the cubic using the equation of the pencil. The resulting 

equation is a binary cubic in X and Z. Then, the necessary and 

sufficient condition for the tangency of the pencil to the cubic is 

that the discriminant of the cubic is zero; for this is the criterion 

for the cubic to possess less than three zeroes (X,Z) and hence the 

pencil intersects the cubic in less than three points. Explicitly the 

binary cubic is 
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It is well known that the discriminant of a real binary cubic of the 

form ax3 + bx2z + cxz2 + dz3 = 0 (a,b,c,d € IR) is 

and that the cubic has 

three distinct real roots ~ I:!l < 0 

one real, two complex conjugate roots ~ I:!l) 0 

one real, two coincident roots ~ I:!l = 0 

For a fixed coupler point let I:!l be the discriminant of the 

cUbic expressed above. Then it is a straightforward matter to 

compute the sign of I:!l and hence determine precisely how many 

of the roots (Xi,Zi) i = 1,2,3 are real. Each real root of the cubic 

gives a real value of (Xf,Yi,Zi) and corresponds, therefore, to a real 
. 

root of the discriminant of the associated pencil for the given 

coupler point. Finally, we have the required condition for a 

four-bar coupler curve to have one or three real double points. 

The necessary numerical computations can easily be done on a 

computer. Thus, together with a computer drawing of a coupler 

Curve and a knowledge of how many of the three double points are 
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real, the A-type can easily be established. We are now able to 

make progress with the survey of four-bar coupler curves which 

will form the final section of this chapter. 

The equation of the tacnode curve IS obtained by 

substituting the coefficients of the cubic into the formula for the 

discriminant. The equation is extremely complicated and the 

author (somewhat regretfully) includes it here for completeness 

sake and to confirm that it is indeed the transition curve 
., " 222 2 

(ubergangskurve) of [Mullerl (substitute a = [k1 +k2- 2d2k1 +d11, 

b2=[ki+k~1, r = d1, c = d2, s = d3, m2 = [di+d~+d~-d~] in his equation). 

= 0 

We may make the equation homogeneous using the coordinate w 
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and consider the complexified projectivised curve glven by the 

obvious equation so formed. The highest order terms In this 

equation have degree twelve, but it can easily be showed (see 

Muller's paper for some detail) that the coefficients of the eleventh 

and twelfth degree terms are zero. Thus the tacnode curve has 

degree ten. Muller also shows that the curve has quadruple points 

at the circular points at infinity. Further, the endpoints of the 

coupler bar (O,O) and (d4,O) are ordinary double points. The origin 

is an A~ (acnode) if and only if . d1 < d4, and an Ai (crunode) if 

and only if d1) d4. Similarly, the other endpoint (~,O) is an A~ 

(acnode) if and only if d3 < d4, and an Ai (crunode) if and only if 

d3) d4. The line at infinity meets the curve in I and J, and two 

other points (by Bezout's Theorem, since the curve has degree ten 

and the circular points each have multiplicity four). It can also be 

showed that these points are distinct if and only if d2;we d4, and 

are real if and only if d2> d4 (whilst complex conjugates when 

d4>d2)· 

It now follows, that for the Hain group 1', where d4 is the 

longest, er has acnodes at the endpoints and meets the line at 

infinity in imaginary points. In particular, the tacnode curve is 

closed and finite. In the Hain group II', where d4 is the shortest, 

er meets the endpoints in crunodes and meets the line at infinity 

in two real points. Hence, the curve has two asymptotes. The 

remaining two groups can have various combinations of acnodes 

and crunodes at the endpoints. 

Combining the tacnode/triple point curve er and the cusp 

curve e, we obtain a curve Tue in the coupler plane. Indeed, 
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the union stratifies the coupler plane where the zero-dimensional 

strata are the points where 'T, meets C, the one-dimensional 

strata are the connected components of 'TU C with the 

zero-dimensional strata removed and the two-dimensional strata 

are the connected components of the coupler plane with 'TU C 

removed. On each stratum it is clear that the number of 

crunodes, acnodes, complex nodes, tacnodes, cusps and, triple points 

of the coupler curves corresponding to coupler points in the 

stratum, remains constant. It is a fundamental problem of the 

subject to determine precisely which stratifications may occcur. 

Of course, we could choose other stratifications by introducing 

further properties of the coupler curves; for instance, real Plucker 

numbers or vertices. For a generic mechanism the A-types 

correspond to the strata which do not lie on the tacnode curve. 

§5.7. Survey Four-bar Coupler Curves. 

This section needs little explanation. The aim is to show for 

each Hain type which of the singularity types can occur by 

computer graphics. This should not be viewed as a haphazard atlas 

of pictures (as it may appear to the reader!) but as the result of an 

extensive study of coupler curves, the gains of which in terms of 

intuition to the author, are more than can be described here in 

words or pictures. We shall only survey the coupler curves of the 

generic mechanism and coupler points for which the associated 

pencil is general; thus by the results of the previous section our 

curves will not possess tacnodes. 



-256 -

I will, however, try to give some indication of how the 

survey took place. The wrong approach to the problem would be to 

draw numerous curves and hope that all possible types turn up. 

The nett gain may be to solve the problem, but the nett loss is an 

enormous amount of intuition. More sensibly, one should search 

for one of the following two transitions: 

1) acnode-cusp-crunode, when the coupler point passes through 

the cusp curve and 

2) two real double points-tacnode-two complex conjugate double 

points, when the cusp curve passes through the tacnode curve. 

One doesn't need to know where the coupler point for these curves 

lies in the coupler plane. One may simply start with any given 

curve and deform the coupler point until it reaches the cusp or 

tacnode curve; with some experience one knows how to deform 

the coupler point in order to move towards these curves. The 

circle of singular foci is invaluable here. If one starts, for instance, 

with a crunode, then one should try to shrink the loop into a cusp 

lying on the circle and then into an acnode. Conversely, if one 

knows that there is an acnode, then one can deform the coupler 

curve until it meets the circle of singular foci (in a cusp) and then 

passes through it to give a crunode. In this way we may begin 

with a curve with one singularity type and hope to find two 

further types. 

We tabulate the results of the survey (unfortunately at 

present incomplete by a few cases). For each A-type we give the 
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dimensions of the mechanism and the coupler point. This is 

followed by drawings of the curve obtained, using a Pascal program 

on an Apple Macintosh Plus and printed on an Imagewriter dot 

matrix printer. The bold circles represent the circle of singular 

foci; on which all real double points of the coupler curve lie. 
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The first four dimensions are dl, d2, d3, d4 and the next two 

dimensions are the modulus and argument of k. 

H~in I~~~ I dimensions d[~wing DQ. 

3A1 0.45 0.5 0.89 0.71 0.3 0.57 1 

0.57 0.5 0.5 0.5 0.52 1.05 7 

2Aj/A2 0.45 0.5 0.89 0.71 0.29 0.57 2 
- + 

2Al/Al 0.45 0.5 0.89 0.71 0.27 0.57 3 

0.45 0.5 0.89 0.71 0.19 0.81 4 
- + 

Al/Al/A2 0.45 0.5 0.89 0.71 0.19 0.6 5 
- + 

A1/2Al 0.45 0.5 0.89 0.71 0.19 0.49 6 

0.45 0.5 1.27 0.71 0.19 0.49 13 
+ 

2Al/A2 0.45 0.5 1.38 0.71 0.19 0.49 14 

3A+ 
1 0.45 0.5 1.41 0.71 0.19 0.49 15 

- * A1/2Al 0.57 0.5 0.5 0.5 0.3 1.05 9 

0.21 0.5 0.27 0.19 0.25 0.93 10 

0.83 0.3 0.63 0.4 0.39 0.98 16 

* 2Al/A2 0.21 0.5 0.27 0.19 0.37 0.93 11 

0.83 0.3 0.63 0.4 0.35 0.98 17 

A+/2A* 
1 1 0.21 0.5 0.27 0.19 0.43 0.93 12 

0.83 0.3 0.63 0.4 0.33 0.98 18 

Aj/2A2 0.75 0.43 0.25 0.5 0.25 0.53 19 

3A2 impossible 
+ -

A1/2A2 ? 
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Hain I~e r dimensions drawing nQ. 

3A1 0.3 0.33 0.44 0.59 0.31 0.7 20 

2Ai/A2 0.3 0.33 0.44 0.59 0.25 0.7 21 
- + 

2Al/Al 0.3 0.33 0.44 0.59 0.18 0.7 22 

0.2 0.4 0.24 0.5 0.5 0.52 23 
- + 

Al/Al/A2 0.2 0.4 0.24 0.5 0.6 0.52 24 
- + 

A1/2Al 0.2 0.4 0.24 0.5 0.64 0.52 25 

0.31 0.28 0.28 0.63 0.3 1.4 26 
+ 

2Al/A2 0.31 0.28 0.28 0.63 0.3 1.22 27 

3A+ 
1 0.31 0.28 0.28 0.63 0.3 1.5 28 

- * A1/2Al ? 

* 2Al/A2 ? 

A+ 12A * 
1 1 ? 

Ai/2A2 0.31 0.28 0.28 0.63 0.42 1.25 29 

3A2 0.5 0.5 0.5 1.0 0.5 1.05 30 
+ 

A1/2A2 0.3 0.1 0.3 0.53 0.1 1.05 31 
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Hain I~~e 11 dimensions drawing nQ. 

3Ai 0.23 0.37 0.5 0.57 0.46 0.51 32 

2Al/A2 0.23 0.37 0.5 0.57 0.5 0.51 33 
- + 

2Al/Al 0.23 0.37 0.5 0.57 0.52 0.51 34 
- + 

Al/Al/A2 0.23 0.37 0.5 0.57 0.6 0.51 35 
- + 

A1/2Al 0.23 0.37 0.5 0.57 0.64 0.51 36 

0.75 0.27 0.75 1.1 0.12 0.58 37 
+ 

2Al/A2 0.75 0.27 0.75 1.1 0.12 0.52 38 

3A+ 
1 0.75 0.27 0.75 1.1 0.12 0.45 39 

- * A1/2Al 0.6 0.23 0.37 0.5 0.24 0.54 40 

* 2Al/A2 0.6 0.23 0.37 0.5 0.19 0.54 41 

A+/2A* 
1 1 0.6 0.23 0.37 0.5 0.16 0.54 42 

Ai/2A2 0.22 0.41 0.45 0.55 0.6 0.53 43 

3A2 0.64 0.17 0.64 1.0 0.14 0.87 44 
+ 

A1/2A2 0.16 0.32 0.4 0.4 0.42 0.31 45 
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Hain I~~e 11' dimensions drawing no. 

3Ai 0.5 0.5 0.5 0.49 0.45 0.1 46 

2Ai/A2 0.5 0.5 0.5 0.49 0.35 0.1 47 
- + 

2AI/Al 0.5 0.5 0.5 0.49 0.25 0.1 48 

0.27 0.23 0.4 0.06 0.92 0.17 52 
- + 

AI/AI/A2 ? 
- + 

A1/2Al ? 
+ 

2AI/A2 ? 

3A+ 
1 ? 

- * A1/2Al 0.33 0.38 0.47 0.17 0.37 1.05 49 

* 2AI/A2 0.33 0.38 0.47 0.17 0.48 1.05 50 

A+/2A* 
1 1 0.27 0.23 0.4 0.06 0.7 0.17 54 

0.33 0.38 0.47 0.17 0.48 0.92 51 

Ai/2A2 impossible 

3A2 impossible 
+ 

A1/2A2 impossible 

Drawings 8 and 53 possess tacnodes and are included to show 

the transition of two real points coalescing and becoming complex 

conjugates. 
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APPENDIX: Introduction to the Algebraic Geometry 

In this appendix we shall give a summary of the results 

which we need during the thesis. Primarily, we will be 

familiarising the reader with the notation and language of the 

geometric concepts. On the one hand, many of the results we shall 

be usmg may be found m most standard" (final year 

undergraduate/graduate) textbooks, whilst on the other hand we 

will be using theorems which are simple to state yet hard to prove 

and involve concepts far beyond the scope of this appendix (for 

instance, the birational invarianc~ of the arithmetic genus). 

Although it is not important that we understand the proofs, it is 

essential that we understand how such theorems can be applied in 

practice. Thus, we confine ourselves to collecting the results and 

theorems with references which we will often use, so that the 

reader will get a taste of the type of geometry that we" will be 

using throughout the thesis. Some results, which are used only 

once, are not described here, but are stated in full in the text. 

SA1 Affine Geometry 

Let K be any field. Denote by Kn the set of n-tuples of 

elements in K, i.e. Kn = {(xl, ... ,xn)1 xt€K}. Then Kl is called the 

affine line, K2 is called the affine plane and Kn is called affine 

n-space. Elements of Kn are called points. Let F be any set of 

polynomials in the n variables xl,""xn, then we denote by 

V(F) = {(Xl, ... ,xn)€Knlf(xl, ... ,Xn)=O for all f in F} the set of common 

zeroes of the polynomials in F. Sets of the form V(F), where F 

is a finite set of polynomials, are called varieties and are the main 
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objects which we shall study in affine space. Let X be a variety, 

then any subset XI of X that is a variety is called a subvariety 

of X. 

Let U be the ideal in the polynomial ring K[Xl, ... ,Xm] 

generated by the polynomials Fl, ... ,Fm . Then it is clear that 

V(U) = V(F). Indeed, by Hilbert's Basis Theorem [Fulton] we know 

that, if R is a Noetherian ring, then the ring of polynomials 

R[Xl, ... ,Xn] is Noetherian; thus, any ideal U in R[Xl, ... ,Xn] is 

finitely generated. Thus, if U = (Fll ... ,Fm), then 

V(U) = V(Fl)n .. nV(Fm). We have the following elementary lemma 

Lemma Ai [Fulton] 

1) If UcV are ideals then V(V)cV(U). 

2) V(Ul· ... ·Um) = V(Ul)U ... UV(Um) 

3)V(l:cx:eI Ucx:) = n cx:d V(Ucx;) 

4) V(O) = Kn, V(1) = ,0 

Definition With the properties of Lemma A1 the sets of the form 

V(F) satisfy the axioms of the closed sets of a topology. We shall 

call this particular topology the Zariski topology. In general, we 

shall use this topology in preference to any other. 

If F is a non-constant polynomial, then we shall call V(F) a 

hypersurface. If, in particular, F is linear, then we shall call 

V(F) a hyperplane. Likewise, if F is a polynomial of degree two, 

three etc., then we shall call V(F) a quadric, cubic, etc., 

hypersurface. If n = 2, the hypersurfaces are called (affine) plane 

curves. 
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Definition We say that a variety X is irreducible, whenever it 

cannot be written as the union of two subvarieties X = Xl UX2, 

where Xl;c X and X2;c X. 

Lemma A2 [Fulton] 

Any variety X may be written as the unIOn of irreducible 

subvarieties X = Xl U ... UXrn, such that Xi <,lXj for i.;c j. The Xi 

are uniquely determined and are called the irreducible 

components of X. 

Definitions 

1) Let X = V(F l,. .. ,F rn) be an irreducible variety in Kn and let 

a = (al,. .. ,an) be a point on X. Then we define the tangent space 

Ta(X) to X at a to be the linear subspace given by 

1 s j s m. 

The dimension of the tangent space is equal to the co rank of the 

Jacobian matrix (mij), where mlj = : ~i(a) lsism, lsjsn. 
j 

2) We define the dimension d1m (X) of the variety X to be the 

smallest dimension of the tangent spaces occuring at points of X. 

3) 'We say that a point x on X is simple, if d1m(X) = d1mTx{X) 

and singular, if d1m(X) > d1mTx(X). If all points of X are simple, 

then we say that X is a non-singular variety. 

4) For reducible varieties the above definitions make sense on each 

of its components. We define its dimension to be the maximum 
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dimension of any of its components. Then the Jacobian matrix at a 

point X€X' on a component X' of X has non-maximal rank if 

and only if either a component of X of dimension> dlm(X') 

passes through x or x is singular on X'. 

We shall consider a number of maps between affine varieties X 

and Y. 

(i) Polynomial maps: maps (j):XcKn-+YcKm, such that at each 

point x = (Xl, ... ,Xn) on X, (j) = ((j)1 (Xl, ... ,Xn), ... ,(j)m(Xl, ... ,Xn)) for 

some polynomial functions (j)i: Kn-+ K. 

(iD Isomorphisms: A polynomial map (j) is an isomorphism, if 

there exists a polynomial map n, such that (j)on and nO(j) are 

the identity maps on X and Y. 

(Hi) Affine change of co-ordinates: The polynomial map (j): Kn-+ Kn 

is called an affine change of co-ordinates, if it is bijective and given 

by linear polynomials at each point. 

§ A2 Projective Geometry 

Let K be any field. Then we will define projective n-space, 

denoted by PKn, to be the set of equivalence classes of points in 

l(n+l under the equivalence relation (Xl, ... ,Xn+l)-(AX1, ... ,AXn+l) 

for all A ~ O. Geometrically, we may think of PKn+l to be the set 

of lines in Kn + 1 through the origin. The equivalence classes are 

called points and a representative of the class (Xl, ... ,Xn+l) IS 

called its homogeneous co-ordinates. The spaces PK1, PK2 are 

Usually called the projective line and the projective plane, 

respectively. 
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We may now proceed in an analogous way to affine spaces. Let F 

be any set of homogeneous polynomials in the n+1 variables 

xl,,,,,xn+l. Denote by V(F) = {(Xl, ... ,Xn+l)EPKn/f(xl, ... ,Xn+l)=O for all 

f in F} the set of common zeroes of the polynomials in F. Sets of 

the form V(F), where F is a finite set of polynomials, are the 

main objects that we shall study in projective space and we will 

call them varieties. Let X be a variety, then any subset XI of 

X that is a variety is called a subvariety of X. Note that we 

need homogeneous polynomials (Le. polynomials, whose monomials 

all have the same degree or, equivalently, F(AX1, ... ,AXn+1) = 

A dF(X1,,,,,Xn +1) where d is the degree of F), for we need 

F(X1, ... ,Xn +1) = 0 if and only if F(AX1, ... ,AXn+1) = O. This makes sense 

for homogeneous polynomials, Since F(AX1, ... ,AXn+1) = 

A dF(X1"",Xn + 1). 

Let ~ be the homogeneous ideal (i.e. an ideal ~ is 

homogeneous, if every polynomial F = F 0 + ... + F d in ~ written as 

a sum of forms of degree 1~i~d, has the property that Fi is a 

member of ~), in the polynomial ring K[X1, ... ,Xm +11, generated 

by the homogeneous polynomials F1, ... ,Fm . Then it is clear that 

V(~) = V(F). 

Note that homogeneous ideals are the correct set of 

polYnomials, for, if x = (X1,,,,,Xn +1) is a zero of a polynomial F, 

then F(x) = FO(X1, ... ,Xn+1)+ ... +Fd(X1, ... ,Xn +1) = 0 and, moreover, 

F(AX) = AFO(X1, ... ,Xn+1)+ ... +AdFd(X1,,,,,Xn+l) = O. Hence, Fi(X1, ... , Xn+1)=O 

for all O~i~d. 
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There is an analogous Basis Theorem for the projective case, 

implying that any homogeneous ideal U is finitely generated. 

Further, any homogeneous U can be generated by a set of forms. 

Thus, if U=(Fl, ... ,Fm), then V(U)=V(Fl)fl .. flV(Fm). 

Lemma Atl 

i) If UcV are homogeneous ideals then V(V)cV(U). 

2) V(Ul· ... ·CUm) = V(CU1)U",UV(CUm) 

3)V(l:exd CUex) = flexd V(CUcx) 

4) V(a) = PKn, V(i) = f3 

Definition With the properties of Lemma Ai' the sets of the form 

V(F) satisfy the axioms of the closed sets of a topology. We shall 

call this particular topology the Zariski topology. 

As in the affine case, whenever F is a non-constant polynomial, 

We shall call V(F) a hypersurface. If, in particular, F is linear 

We shall call V(F) a hyperplane and if F is a polynomial of 

degree two, three etc., we shall call V(F) a quadric, cubic, etc., 

hypersurface. For n = 2 the hypersurfaces are called (projective) 

plane curves. 

Definition We say that a variety X is irreducible, whenever it 

cannot be written as the union of two subvarieties X = Xl UX2, 

where Xl ~ X and X2 ~ X. 
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Lemma A21 

Any variety X may be written as the UnIon of irreducible 

subvarieties X = Xl U ... UXm, such that Xi ~Xj fo i:.e j. The Xi are 

uniquely determined and are called the irreducible components 

of X. 

Definitions 

1) Let X= V(Fl, ... ,Fm) be an irreducible variety in PKn and let 

a = (al, ... ,an +l) be a point on X. Then we define the tangent 

space Ta(X) to X at a to be the linear subspace given by 

1 ~ i ~ m. 

The dimension of the tangent space is equal to the corank of the 

J ( ) a F· ( ) acobian matrix mij, where mij = a Fl a lsism, l~jsn+1. 
j 

2) We define the dimension d1rn (X) of the variety X to be the 

smallest dimension of any tangent space at points of X. We say 

that a point x on X is simple, when d1rn(X) = d1rnTx(X) and 

singular, when d1rn(X) > d1rnTx(X). If all points of X are simple, 

then we say that X is a non-singular variety. Varieties of 

dimension one are called curves and varieties of dimension two are 

called surfaces. 

3) For reducible varieties the above definitions make sense on each 

of its components. We define its dimension to be the maximum 

dimension of its components. Then the Jacobian matrix at a point 

XEX
I 

on a component XI of X has non-maximal rank if and only 

if either a component of X of dimension> d1rn(XI) passes through 
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x or x is singular on X'. 

4) Let X = V(F) be a hypersurface and suppose that a is a point 

of multiplicity k on X; by which we mean that the first k-1 

partial derivatives, evaluated at a, are zero. Then we shall 

define the tangent cone Ca (X) to be the variety given by 

akF(a) 

~ • Xkl. • X~+l 
k k ak1Xk1,··akn+1Xkn+1 1 ... n+1 1+,,+ n+1 = 

= 0 

For a general variety X = V(l1) and any point a on X, the 

tangent cone Ca(X) is obtained by taking the intersection of all 

tangent cones at a to hypersurfaces V(F) (containing a) for all 

FE: 11. 

Affine and projective varieties are inter-related. For we 

may cover projective n-space by n+1 affine "pieces'" via the 

follOwing correspondence. Let Ki = {(X1, ... ,Xn+l)E:PKnl xi = a}, then 

each point (Xl, ... ,Xn+l) has a homogeneous co-ordinate of the form 

(X'l, ... ,X'i-1,1,x'l+1, ... ,X'n+1) thus the maps Fl:Kr-+Kn, defined by 

F( ' '1' ') (' , , ') i: x1,,,,,xi-1, 'Xi+1""'Xn+l H xl, .. ·,xi-1,xi+1, ... ,x n+l 

are, bijections and the whole of PKn is covered by the n+1 sets Kt. 

Conversely, given an affine n-space Kn, we may "projectivise" 

embedding Kn in PKn by the map (Xl, ... ,Xn)H(Xl, ... ,xn,1). We 

call the hyperplane xn+1 = 0 the hyperplane at infinity. 

We shall be interested in the following maps on projective varieties 

X and Y. 
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(i) Polynomial maps: maps cp:XCPKn-+YcPKm , such that at each 

point x on X cP = (CP1(Xl, ... ,Xn+l),···,CPm+l(Xl,··.,Xn+l)), where the CPi 

are polynomials. 

(ii) Projective change of co-ordinates: The polynomial map 

cp: PKn-+ PKn is called a projective change of co-ordinates if it IS 

bijective and given by linear polynomials at each point. 

(iH) Rational maps: Let XcPKn and YcPKm be two varieties. 

Let cP : V -+ Y be a map from a Zariski open subset V of X into 

Y, such that CP=(CP1(Xl, ... ,Xn+l), ... ,CPm+l(Xl, ... ,Xn+l» is given by the 

regular functions CP1 on V, Le. at every point a€V, CPl = fig, 

where f,g are polynomial maps with g(a);.e O. We say that two 

forms cP : V -+ Y, n: V -+ Y satisfying the above conditions are 

equivalent, whenever cp(a) = n(a) for all a€VnV. An equivalence 

class ~ of such maps is called a rational map. Thus, a 

representative of a rational map is not defined on the whole of X, 

but only on a Zariski open subset; whereas the domain of a rational 

map ~ is the union of all Zariski open subsets V of X, where m 

has a representative defined on V. If its domain covers the whole 

of X, then we say that ~ is a regular map. 

(iv) Birational maps: A rational map ~ :X-+ Y is birational, if 

there exists a representative cP: V -+ Y of ~ which is an 

isomorphism between V and an open set V of Y. Or, 

equivalently, there is a map A:V-+X, which is the representative 

of a rational map ~:Y-+X, such that cpoA and AOcp are the 

identity maps where defined. 

Lemma A3 [Harris] 

A rational map ~:X-+Y which is generically 1-1 (Le. there exists 

a represen ta tive cP : V -+ Y of ~, which is bijective between the 
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sets U and qJ(U)) is a birational map. 

Theorem A1 [Shafarevich] 

1) A rational map qJ: X -+ Y from a non-singular variety X to any 

variety Y is regular. 

2) A birational map qJ: X-+ Y between two non-singular varieties 

is biregular (i.e. an isomorphism). 

From this point on we shall only be considering the case when the 

base field K is either the set of real numbers, denoted by IR, or 

the set of complex numbers, denoted by t. 

Theorem A2 [p70,Mumford] 

For all varieties X of dimension r in Ptn there exists an integer 

d~l such that: if L is an (n-r)-linear subspace satisfying 

a) LnX = {Xl, ... ,Xk} 

b) for all 1, xi is a simple point on X and the two 

tangent spaces Tx.(X) and Tx.(L) (consider as a subspace 
1 1 

of Tx.(Ptn)) meet only in the origin, 
1 

then k=d. 

Definition For a variety X in Ptn we define the degree to be 

the ~umber of points in which almost all linear subspaces of 

complementary dimension meet it. This number is well defined by 

Theorem A2. 

We shall now define the multiplicity of a point of a curve 

and the intersection multiplicity of a curve with a hypersurface. 
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We shall need the following theorem. 

Theorem [Milnor] 

Let Xo be an isolated point of a real (or complex) curve C. Then a 

suitably chosen neighbourhood of Xo in C is the union of finitely 

many 'branches' which intersect only at Xo' Each branch is 

homeomorphic to an open interval of real numbers (or to an open 

disc of complex numbers) under a homeomorphism x = P(t) which 

is given by a power series 

convergent for Itl<£. 

Further, let k be the smallest index, so that C is not 

contained in a co-ordinate hyperplane Xk = constant. Then the 

parameterisation P can always be chosen, so that 

xk = constant ± tm (m~l). P can also be chosen, so that the 

collection {i I at ~ O} of exponents has greatest common divisor 

equal to 1. Then the power series P is uniquely determined up 

to the sign of the parameter t (or upto multiplication of T by 

roots of unity in the complex case). 

Thus, each branch of C may be parameterised 

• 

Suppose a curve Ccpn intersects a hypersurface Hcpn in a point 

P. By the theorem a neighbourhood of P in C is the union of 
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finitely many branches 13 j parameterised as 

If H IS gIven by a polynomial H(xo,".,xn) = 0, then we define 

Hxo,Hn 13j) = ordtH(x;(t), ... ,~(t)) and we define the intersection 

multiplicity of C with H at P to be HP,HnC) = Lj HP,Hn 13j). 

Intersection multiplicity satisfies the following properties: 

1) iCP,HnC) ~ o. 
2) iCP,HnC) = 0 if and only if P does not lie on the intersection of 

C and H. 

3) when n = 2, i(P,HnC) = i(P,CnH). 

4) i(P,HnC) is a projective invariant, 

l.e. HP,HnC) = Hcp(P),cp(H)nCP(C)) for any projective change of 

co-ordinates cp. 

We define multiplicity of a point P on a curve C to be 

min{i(P,HnC) I for any hyperplane H passing through P}. 

Let Vcpn be a variety. Then we define the codimension of V to 

be cod (V) = n - dim(V). We say that a variety V has pure 

dimension when every irreducible component of V has the same 

dimension. We shall use the following theorem to calculate the 

degrees of varieties which are defined as the intersections of other 

varieties. 
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B ezout's Theorem A3 

Let V 1, ... , V m be algebraic sets of pure dimension in po::n 

intersecting properly, that is, cod(V1n ... nVm) =cod(V1)+ ... +cod(Vm). 

Then 

degree(V 1 n ···n V m) = degree(V 1)· ... ·degree(V m)· 

We shall also use the following variation of the theorem: 

Let C be a curve and H any hypersurface in po::n. Let P1, ... ,Pm 

be the set of points in the intersection of C and H. Then 

S A3 Linear Systems 

We will often wish to consider special families of 

hypersurfaces and thus it will be an advantage to have a language 

in which to describe certain objects common to these types of 

families. 

To any hypersurface X = V(F)cpo::n of degree d, where the 

form F is given by 

F = 

we may associate a point L .• ar1 ... rn+1' . .J in the projective space 

po::N-1, where N=(n~d). This makes sense, since L .• ar1 ... rn+1' . .J 
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corresponds to F for all A ~ 0. Thus the family of all hypersurfaces 

of a given degree d in PCn forms an N-dimensional projective 

space which we shall denote by H(n,d). The m-dimensional 

subs paces of an H(n,d) are called linear systems of 

hypersurfaces of degree d in pen. Linear systems of dimension 

one, two, and three are called pencils, nets and webs, 

respectively. 

We may describe a linear system L, either by giving the 

defining equations of the m-dimensional subs pace in H(n,d) or by 

giving a set of generators for the system, i.e. a set of (m+1) linearly 

independent points in H(n,d) whose span is the subspace t. In 

the latter case, if the points correspond to the forms F1, ... ,Fm+1, 

then the linear system is the set of forms A1F1+ ... +Am+1Fm+1' 

Example H(2,2) =set of conics in the plane. Then H(2,2) is a five 

dimensional projective space. The general form of a conic in the 

projective space with co-ordinates x,y,z may be written C = alx2 

+ a2XY + a3xz + a4y2 + a5YZ + a6z2. Thus, each co-ordinate of 

H(2,2) corresponds to a monomial in the general form. For 

instance, the pencil A1 (xy + z2) + A2(X2 + yz) corresponds to the 

line in pe5 through the points (0,1,0,0,0,1) and (1,0,0,0,1,0). 

Definition The (possibly empty) intersection of all hypersurfaces 

in a linear system is called the base variety. 

Linear systems of guadrics 

Let A1Ql+ ... +Am+1Qm+l be a linear system of quadrics in PCn, 

Write the generating quadrics in matrix form Q1 = xA1xt, where 
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x= (Xl, ... ,Xn+l) and Ai is the (n+l)x(n+l) symmetric matrix (aij), 

whose elements are aij =}2 ;x~x. for i;ll!j and au= ~~2. Then the 
1 J 

determinant Do of the matrix m =A1Al+ ... +Am+1Am+l is an 

invarian t of the pencil called the discriminant. Then Do = 0 is a 

homogeneous polynomial in Al, ... ,Am+l and thus defines a 

discriminant variety J) in PCm. A point (Al, ... ,Am +1)E: J) if and 

only if Q =A1Ql+ ... +AmQm is a singular quadric. 

For a pencil the discriminant is a binary polynomial of 

degree (N-l)!, where N = }2(n+2)(n+l), and for a net the 

discriminant is a plane curve of degree (N-l)!. 

§A4 Foci 

The significance of the foci of a plane curve is. classical. 

When we deal with plane curves we may mention the foci and 

perhaps it is worthwhile discussing them. In the proof of Roberts' 

Triple Generation Theorem in Chapter 5 we shall see that the foci of 

the coupler curve of the four-bar play a somewhat mysterious role 

in the geometry. 

Let C be a real plane curve of class m, l.e. the number 
, 

of lines tangent to C through a general point P. Denote the 

circular points at infinity by I and J. Then there are m 

(complex) lines through I tangent to C and m conjugate lines 

. through J tangent to C. If T is one of them, then it meets its 

Conjugate in a real point P which we will call a focus of C. If 

the curve is circular, i.e. it passes through I and J, then there 
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are tangents to C at 1. If T is a tangent to C at I, then it 

meets its conjugate line T in a real point which we distinguish 

from the above foci by calling it a singular foci. We need not say 

anything more about foci. 

SA5 Desingularisations of a Curve. Definition of the Genus 

and the Genus Formula 

Following the excellent exposition given in [Mumford) leading to the 

definition of the arithmetic genus, we summarise the results as 

follows. 

Theorem A4 [Mumfordl 

Let M be a finitely generated graded module over the ring 

C[Xl, ... Xn+l1 Le. M =EBk=lMk, such that for all homogeneous 

polynomials F of degree d, F.MkcMk+d. Then there is a 

polynomial PM(t) of degree at most n with rational coefficients, 

such that dimCMk = PM(k) for all sufficiently large k. 

Thus, if XcPCn is a variety and j(X) is the homogeneous ideal of 

polynomials vanishing on X, then we may apply the theorem to 

the module C[Xl, ... Xn+l]1j(X). Thus, the theorem tells us that there 

is a' polynomial PX(t), such that the dimension of the "degree kth 

piece" equals PX(k) for k sufficiently large. We shall call PX(k) 

the Hilbert polynomial. 

The constant term of the Hilbert polynomial IS very 

lmportant. Classically, we do not use the constant PX(O) but the 
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integer Pa(X) = (-1)r(PX(O)-1) (recall that r is the dimension). We 

call Pa(X) the arithmetic genus. For a plane curve X of 

degree d the arithmetic genus is given by Pa(X) = }2(d-1)(d-2). In 

general, we calculate the arithmetic genus via the formula of 

Theorem A5. 

Theorem A5 [Gibson&Newsteadl 

Let C be a curve in PCn given as the intersection of (n-1) 

hypersurfaces of degrees dl, ... ,dn-l then the arithmetic genus of 

C is given by 

Examples: 

n 
= (2:: d· -. 11 

1= 

1) For the intersection C of three quadric hypersurfaces in PC4 

we have n = 4 and dl = d2 = d3 = 2 giving Pa(C) = 5. 

2) For the intersection C of two cubics hypersurfaces in PC3 we 

have n = 3 and dl = d2 = 3 giving Pa(C) = 10. 

When classifying curves up to birational equivalence, the following 

theorem reduces the problem to one of studying non-singular 

curves upto birational equivalence and hence by Theorem A1 upto 

isomorphism. 

Theorem A6 

Every singular curve 

non-singular curve X. 
X IS bira tionally isomorphic to a 
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Definition 

1) The curve X of the theorem is called the desingularisation 

(or normalisation) of X. 

2) We define another genus, the geometric genus, for a curve X 

denoted by Pg(X) to be arithmetic genus of the desingularisation 

of X. Thus for non-singular curves X we have Pa(X) = Pg(X). 

Then we have the following very important results. 

Theorem A7 

1) The arithmetic genus (for any variety) is invariant under 

isomorphism l.e. if X and Y are isomorphic, then Pa(X) = 

Pa(Y). 

2) The geometric genus for curves is a birational invariant i.e. if 

X and Y are birationally isomorphic, then Pg(X) = Pg(Y). 

The second result follows from the first, for, if X and Y are 

birationally isomorphic, then so are X and Y. But, since X and 

Y are non-singular curves, they are isomorphic by Theorem A1 

and thus have the same arithmetic genus by result 1). The proof 

of 1) is a very deep result. The theorem tells us that the 

geometric genus is an invariant of the equivalence class under 

bira tional isomorphisms. 

To compute the genus of subvarieties of curves we shall find the 

following theorem indispensible. 
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Theorem A8 (The Genus Formula) [Gibson& Newsteadl 

Let X be a connected (but possibly reducible) complex projective 

curve and <p: X' ~ X a birational map. Then 

t 
Pa(X) = L Pa(X'i) + LBp - (t-1) 

i=l p€c 

where X'l'''''X't are the irreducible components of X'. In 

particular, suppose that X = Xl U .. UXt is connected. Denote by 

Xi the desingularisation of Xi then, since Pg(Xi) = Pa(Xi), we 

can take <p : X ~ X so that 

t 
Pa(X) = L Pg(Xi) + L Bp - (t-1) 

i = 1 P€C 

We have yet to define Bp. The non-negative integer Bp is 

zero at a simple point P, whilst at a singular point P, provides us 

with a useful invariant under isomorphism. Its formal definition 

may be found in [Hartshorne], but we shall only need to know that 

for an m-tuple point P we have Bp ~ Y2m(m-1), with equality, 

whenever the mUltiple point is ordinary, i.e. it has distinct 

tangents. Further, we may find the following values useful 

1) HP is an ordinary double point then Bp = 1 

2) HP is a cusp then Bp = 1 . 
3) HP is a tacnode then Bp = 2 

4) HP is a ramphoid cusp then Bp = 2 

{Indeed appealing to the classification of double points on curves up 

to isomorphism, which states that any double point may be put in 

the form y2 = xr (r~ 2), then Bp may be showed to be the integer 

part of Y2r. See [Hartshorne]). 
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§A6 Real Geometry, Circuits and Harnack's Theorem 

Let X be a variety of dimension r in PlRn. Then, whenever X 

is non-singular, the underlying set of X may be given the 

structure of a real r-manifold. In the case when X is a curve, 

then X is a compact 1-manifold and hence isomorphic to a 

disjoint union of circles [Milnor]. The only topological invariant 

here is the number of connected components. The number is 

bound by the genus of the complex curve XI (Le. X = V(U), where 

the elements of U are polynomials with real coefficients. Thus, 

we can also consider the set XI of real and complex zeroes in PCn). 

Indeed, the bound remains true even when X is singular. 

Harnack's Theorem A9 [Shafarevich] 

Let X = V(U) be a curve in PCn given as the intersection of 

polynomials with real coefficients, then the number of connected 

components of the real curve is less than or equal to Pg(X) + 1. 

We showed earlier that any complex curve X has a 

desingularisa tion X. If C is a real curve, then there is a real 

birational isomorphism <p: C--'C between C and a non-singular 

curve C ([ShafarevichD. If C is a plane curve, then we will call 

the image of each connected component of C under the map cp a 
. 

circuit. If C is a non-singular plane curve, the circuits are 

generally called ovals. (However, the plane curves which we shall 

meet are singular, so we shall not meet any ovals.) Thus it follows 

from Harnack's Theorem that the number of circuits of a (possibly 

singular) plane curve C is less than or equal to Pg( C) + 1. 
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§A7 Finite Mappings 

A quasi-projective variety is an open subset of a projective 

variety. Let 4l :X-+ Y be a regular map between two irreducible 

quasi-projective varieties X, Y of the same dimension, such that 

Y = 4l(X). Then 4l satisfies the condition of finiteness, i.e. every 

point of Y has at most finitely many pre-images on X. 

Moreover, there is an integer d such that for all points P In a 

Zariski open subset of Y the number of pre-images of P on X IS 

equal to d. The number d is called the degree of the map <po 

Now suppose that 4l : X -+ Y is a rational map between two 

irreducible curves X and Y. Then the set of points X', where 4l 

is regular and the set Y' = 4l(X') are quasi-projective varieties. 

Thus 4l: X'-+ Y' is a finite map. Hence, it makes sense to say that 

4l is a map of degree d, because it is clear that we shall mean the 

degree of <p restricted to Zariski open subset on which it is regular. 

If 4l : X -+ Y is regular and Y is non-singular, then it is a 

fact ([Shafarevich]) that the number of pre-images of ~ point 

P on Y is ~d. Points on Y with fewer than d pre-images are 

called branch points, whilst the pre-images of branch points are 

called ramification points. One of the main theorems on rational 
. 

maps between non-singular curves is the Hurwitz Theorem. 

Hurwitz's Theorem A10 [Hartshornel 

Let 4l:X-+Y be a rational (and hence regular) map of degree d 

between two non-singular complex projective curves X and Y. 

Then their genera are related by the following formula 
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The positive integer ep=1 if and only if P is not a ramification 

point, whereasJ when P is a ramification point, ep is, intuitively, 

a measure of the ramification. Furthermore, the ep's satisfy 

Lep = d. We shall only use the theorem for mappings of degree two . 
. 

Thus, if P is a ramification point then ep = 2 and a branch point 

has just one pre-image. Hence the formula reads 

2Pg(X) - 2 = 4.(pg(Y) - 1) + {number of branch points}. 

Let ql : X -+ Y be a map of degree d between two varieties and 

suppose that Y is non-singular. We say that a point P on X is 

a critical point of ql, whenever dimTp(X)~dimT'P(p)(Y) and we 

say that ql(P) is a critical value. Then a point P ill X ~ 

ramification point of q> if and only if it is a critical point .. Thus, 

whenever Y is non-singular we may reduce the problem of 

determining the branch points of a map to that of determining the 

dimension of a linear subspace, a task in linear algebra. 

§A8 The Projection Formula 

Consider the polynomial map Tt :PCn_,t:-+PCm given by 

These maps are called projections. The linear subspace r, of 

PCn given by Lialixl = "'= Lia(m +l)iXi = O· is called the centre of 

projection; the map Tt is undefined at all points on r,. 
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TheoremA11 The Projection Formula 

Let n!:PCn~PCm be the projection with centre r. given by 

(X1""Xn+1)H(~ia1iXi'''''~ia(m+1)iX1) and let X be a curve in PCn. 

Denote by <p = n!IX the restriction of the projection to X and let 

Y = <p(X). Then <p is a rational map and by the results of the 

prevIOUS section 1S a finite map. Let the degree of <p be d. 

Suppose that the centre r. meets X in the points x1"",xr' Then 

we may relate the degree of X and the degree of Y, via the 

degree of the restriction map, by the formula 

where ~j i(Xj,Xnr.) is the sum of all intersection multiplicities of a 

generic hyperplane through r., with X at the points Xj' 1sjsm. 

Proof (adaptation of [p76,Mumford] for our purposes) 

For any hyperplane H we have by Bezout's Theorem, degX = 

~x€X()H i(x,XnH), where i(x,XnH) is the usual intersection 

mUltiplicity of the hyperplane H with X at the point x. Then, if 

McPCm is an (m-1)-dimensionallinear subspace satisfying 

0) M meets Y transversally, 

(ii) M does not meet Y in a branch point of <p, and 

(Hi) M does not meet Y in any point in the set Y-<p(X) (Le. in the 

closure of the image of X under the projection), 

then its pre-image M'= <p-1(M)Ur. meets X transversally in 

degY.deg<p points of X and non-transversally in x1, ... ,xm. Thus 

degX - ~X€X()M' i(x,XnM') = degY.deg<p and the result follows 

from the fact that almost all linear subspaces of dimension (m-1) 

satisfy properties (i)-OH). Moreover, it can be showed that the 
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minimum possible value of the sum l:x€X()M' i(x,XnM') is attained 

by generic hyperplanes I.e. the sum is larger for non-generic 

hyperplanes. 

a 
Theorem A12 

Let i(x,XnH) be the intersection multiplicity of a curve Xcpa::n 

with a hyperplane H at a point x on X. Let n:pa::n~pa::m be a 

projection, let Y = nlx(X) and suppose that the degree of q> = nix is 

one. Then, "intersection multiplicity does not decrease under the 

projection" l.e. i(x,XnH) s Hq>(x),Ynq>(H)). In particular, 

mUltiplicity does not decrease under projection l.e. 

mp(x) ~ mp(q>(x)). 

Proof 

Without loss of generality, we may assume that the projection is 

onto the first m+1 co-ordinates. Parameterise X at x. Let the 

parameterisation be (x;(t), ... ,xy!(t)), where ~j is a power series in 

t. Then, since n is one to one, n is a birational map implying 

that (x~(tL ... ,~(t)) is a parameterisation of Y at n(x). Suppose 

that H is any hyperplane in pa::n containing :c., given by the 

homogeneous polynomial G, and suppose that H' = n(H) is given 

by the polynomial G'. Then we can easily deduce that G= G'; since, 

if G vanishes at a point P, then certainly G' vanishes at n(P) 

implying that G'IG and we obtain G = G', since G is linear. Thus 

i(n(x),H'n Y) = l:jordtG(x~(tL ... ,~(t)) + {sum of multiplicities at other 

branches through n(x)} 

Therefore, i(n(x),H'n Y) ~ i(x,HnC). 

a 
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Theorem A13 [Walker] 

Let X be a curve in pen and let Y = Tt (X) I where Tt is a linear 

projection Tt: X -.. Y. Then any point P on X either is the 

projection of a point of X or has as its pre-image a linear 

subspace which is the join of the centre of projection L and an 

osculating r-plane to some point of X on r.. 
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