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Bayesian Survival Analysis

Keith Rowland Abrams

In cancer research the efficacy of a new treatment is often assessed by means of
a clinical trial. In such trials the outcome measure of interest is usually time
to death from entry into the study. The time to intermediate events may also
be of interest, for example time to the spread of the disease to other organs
(metastases). Thus, cancer clinical trials can be seen to generate multi-state
data, in which patients may be in anyone of a finite number of states at a
particular time.

The classical analysis of data from cancer clinical trials uses a survival re-
gression model. This type of model allows for the fact that patients in the
trial will have been observed for different lengths of time and for some patients
the time to the event of interest will not be observed (censored). The regres-
sion structure means that a measure of treatment effect can be obtained after
allowing for other important factors.

Clinical trials are not conducted in isolation, but are part of an on-going
learning process. In order to assess the current weight of evidence for the use
of a particular treatment a Bayesian approach is necessary. Such an approach
allows for the formal inclusion of prior information, either in the form of clinical
expertise or the results from previous studies, into the statistical analysis.

An initial Bayesian analysis, for a single non-recurrent event, can be per-
formed using non-temporal models that consider the occurrence of events up to a
specific time from entry into the study. Although these models are conceptually
simple, they do not explicitly allow for censoring or covariates.

In order to address both of these deficiencies a Bayesian fully parametric
multiplicative intensity regression model is developed. The extra complexity of
this model means that approximate integration techniques are required. Asymp-
totic Laplace approximations and the more computer intensive Gauss-Hermite
quadrature are shown to perform well and yield virtually identical results.

By adopting counting process notation the multiplicative intensity model is
extended to the multi-state scenario quite easily.

These models are used in the analysis of a cancer clinical trial to assess the
efficacy of neutron therapy compared to standard photon therapy for patients
with cancer of the pelvic region. In this trial there is prior information both
in the form of clinical prior beliefs and results from previous studies. The
usefulness of multi-state models is also demonstrated in the analysis of a pilot
quality of life study.

Bayesian multi-state models are shown to provide a coherent framework for
the analysis of clinical studies, both interventionist and observational, yielding
clinically meaningful summaries about the current state of knowledge concerning
the disease/treatment process.
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To my husband
or

77 not out.

Blitzed by bomb and cancer,
Paralysed with fear;
Eyesight not very good,
Needs an aid to hear;
Not highly recommended,
Well past the sell-by date
That's my trade description
- Hard cheddar, myoId mate.

So you're handy with the wheelchair?
But your cooking! Oh my dear!
And damn you for ignoring
My curses in your ear.

Lucky horses, so they say,
Are disposed of by a vet;
But give us a kiss, you great big twit
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1.1 Aim
The aim of this thesis is to develop Bayesian parametric survival models that
can be used to analyse phase III cancer clinical trials. Such models are required
to be flexible to accommodate different types of events and multiple events.
These models have a wide application in cancer clinical trials and observational
studies.

1.2 Background
Cancer clinical trials are conducted to assess the efficacy of a new treatment
compared to a standard one, with respect to a stated outcome measure. How-
ever, there are usually secondary outcome measures which are also of interest.
In order that an overall picture is achieved of a new treatment's effect, statis-
tical analysis needs to consider all outcome measures. For example, primary
interest often focuses on survival, but secondary interest on treatment toxicity,
tumour regression, metastatic disease and quality of life. Clinical cancer re-
search is such that seldom are major advances made in terms of survival, and a
new treatment may be expected to reduce toxicity, whilst maintaining survival.
Thus statistical models are required that can be used not only for survival but
also for the analysis of intermediate events, which may be recurrent.

Traditionally cancer clinical trials have been analysed in isolation, rather
than as the current stage in the process of information accrual about a par-
ticular treatment. Before a cancer clinical trial is conducted there will have
been evidence to suggest possible benefits of a new treatment. This process
will have started with pharmacological or radiobiological theory, progressed to
laboratory experiments and then to small phase II trials, (Pocock, 1983). Only
if these studies have shown benefits will a larger phase III trial be conducted. In
chemotherapy especially, 'new' treatments will be developed that are extensions
of existing treatments, and there will be considerable information about the
minimum likely benefit of a 'new' treatment from previous studies. Information
will also be available in terms of clinical opinion, which to some extent will be
influenced -by previous work. Such clinical opinion about the possible direction
and magnitude of treatment differences and clinically worthwhile differences are
traditionally used in planning a clinical trial, but not in the subsequent analysis.

The existence of relevant prior information and the sequential nature of can-
cer clinical research make it an area to benefit from the use of Bayesian infer-
ence. Bayesian statistical models that could be used in a two-treatment cancer
clinical trial are not new, Lindley (1965) and Box and Tiao (1973). Recent ap-
plications to clinical trials include Spiegelhalter and Freedman (1988), Pocock
and Hughes (1990), Berry, Wolff and Sack (1992), Freedman and Spiegelhalter
(1992), Dixon and Simon (1992), Greenhouse (1992) and Abrams, Ashby and
Errington (Submitted). However, many of these methods do not address (i) ex-
plicit consideration of survival/censoring times, (ii) the inclusion of covariates,
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and (iii) multiple events.
In the classical analysis of cancer clinical trials the main methods used have

been the Kaplan-Meier survival curve proposed by Kaplan and Meier (1958) and
the semi-parametric proportional hazards proposed by Cox (1972). The earli-
est Bayesian methods mirrored the development of the Kaplan-Meier survival
curve in that they were non-parametric in nature, and considered patients to be
homogeneous. It was not until the mid 1970s that regression methods similar to
those of Cox (1972) were developed, in which the baseline hazard was considered
to be non-parametric, Cornfield and Detre (1977) and Kalbfleisch (1978). More
recently fully parametric models have been developed by Sweeting (1984, 1987)
and Gamerman (1991).

Far from the Bayesian arena, interest in event history analysis in medical
settings was spurred on by Aalen (1978) who proposed considering survival
models, proportional and non-proportional hazards, both parametric and semi-
parametric, as special cases of more general multiplicative or additive intensity
models for multivariate counting processes. This meant that there was a gen-
eral framework for event history data. Medical applications of such multi-state
models have been described by Kay (1982, 1986). and Andersen (1988).

Therefore by adopting a counting process approach, Bayesian parametric
multiplicative intensity models could be developed which could allow for the
analysis of the multi-state data generated by cancer clinical trials, whilst also
using the prior information which is often available.

1.3 Outline of Thesis
The outline of the thesis is as follows.

Chapter 2 describes two data sets which will be used throughout the thesis to
illustrate various models that will be developed. The neutron therapy data, came
from a cancer clinical trial to assess the efficacy of neutron therapy compared to
conventional radiotherapy for the treatment of pelvic tumours. Details of the
trial design and results are described. A pilot quality of life study was conducted
at Clatterbridge hospital, Wirral. Details of the study are described and the
data that was collected is displayed.

In Chapter 3 we consider the elicitation and quantification of prior informa-
tion. We first consider the elicitation of clinical beliefs, and describe how this
was performed in the neutron therapy trial described in Chapter 2. We also
consider data based sources of prior information. Particular attention is paid to
the use of the results from previous studies that are thought to be relevant to
the current study. We describe the use of the results from six previous studies
in neutron therapy. Finally we briefly consider Bayesian meta analyses.

Chapter 4 considers non-temporal models that may be used for analysis of
survival data found in clinical trials. The first model is an odds model in which
there is prior information about the twelve month mortality rates separately
in two patient groups. Inferences about the ratio of odds of death in the two
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groups can then be made. This model does not explicitly allow for differential
follow-up or covariates. The odds model is special case of a logistic regression
model, in which the response is death within twelve months. Finally, general
methods based on assuming Normality are reviewed. These models still suffer
from the deficiency that covariates cannot be allowed for.

Chapter 5 describes counting process notation and how this may be of use
in describing and modelling event history type data. In particular the multi-
plicative intensity model is outlined.

Chapter 6 describes the development and application of fully parametric
multiplicative intensity models when there are two states, the second of which
is absorbing. This corresponds to failure-time data from cancer clinical trials.
We consider the case in which the baseline intensity is constant, piecewise con-
stant or has a Weibull parametric form. In the case when the baseline intensity
is assumed to be constant over time, and there are only two patient groups,
analytical results can be obtained. For other models we investigate the use of
asymptotic approximation techniques and numerical integration methods in or-
der to obtain parameter estimates. These models are compared with previously
developed Bayesian survival models, and applied to the survival data in the
neutron therapy study.

Chapter 7 considers situations where there are more than two states. After
extending the the two state models of Chapter 6, two applications of multi-state
models are described. For the neutron therapy data, we look at the development
of metastases and their affect on subsequent survival. For the quality of life
study, we consider patients moving between a finite number of quality of life
states, with death as an absorbing state.

Finally, Chapter 8 summarises the techniques that have been developed
and a.pplied in the thesis, and outlines further work, including applications in
epidemiology.
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2.1 Introduction
In this chapter we consider two motivating examples from clinical oncology.
The first is a cancer clinical trial in which we require the comparison of two
treatments in terms of morbidity as well as mortality, and the second is a pilot
quality of life study in which a number of cancer patients have been followed
up over a period of time and asked questions about their state of health, and
other aspects of their lifestyle. In the quality of life study there is information
on both survival and quality of life.

2.2 Cancer clinical trial for Neutron Therapy

2.2.1 Introduction

The objective of the trial was to compare high energy fast neutrons with con-
ventional megavoltage x-rays (photons) for the treatment of pelvic carcinomas
(cervix, bladder, rectum and prostate) in terms of death (without local con-
trol of symptoms), recurrence (after local control), radiation morbidity, and
metastatic disease.

2.2.2 Background

Many tumours can be described as being radio-resistant. These are tumours
that would require doses in excess of local tissue tolerances in order to produce
any significant response. In this group of radio-resistant tumours are adenocar-
cinomas of the large bowel and carcinoma of the bladder. In these large tumour
masses the central areas may be necrotic because of the absence of blood ves-
sels and cells die. Towards the periphery of tumours the blood supply is usually
good. In a zone between these two the degree of oxygenation may be just ade-
quate for cells to survive, but low enough to reduce their sensitivity to standard
radiotherapy. This concept has been used to explain the limited response of
larger tumour masses, and the relatively high incidence of residual or recurrent
tumour in- them after radiation therapy.

However, the damaging effects of high energy (fast) neutrons are much less
influenced by the degree of oxygenation of the tissues. This low dependence on
oxygenation of cellular damage by neutrons is related to the mode of interaction
with the atoms of the cells. Another factor favouring neutrons is the increased
cellular damage at each exposure, and therefore the reduced possibility for cel-
lular recovery.

To be of use in the treatment of tumours, neutron beams must be sufficiently
penetrating and sufficiently dense to deliver the required dose in an acceptably
short time. One method of producing such neutrons is via a cyclotron, in which
positive ions are accelerated at a target of a low atomic number, which yields
neutrons. The Medical Research Council neutron therapy study conducted at
Clatterbridge hospital used a cyclotron to generate the neutron therapy beam.
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The four sites were considered together principally because separately none
of the trials would have developed sufficient statistical power due to lack of re-
cruitment. Previous registry based evidence, (Griffin et al., 1986), had shown
that the potential benefits of fast energy neutrons over photons was in terms of
morbidity, and therefore it was felt that although the tissue affected by treat-
ment was different for the four sites the pooled data might give a clearer indi-
cation of whether morbidity was a serious problem.

2.2.3 Methods
For a detailed review of the methods used see Errington et al (1991) (Ap-
pendix C). As of 21st December 1990, 154 patients had been randomised to
receive either neutron therapy or photon therapy. Randomisation took place
in two phases. The first phase was from February 1986 to January 1988 when
patients were randomised using a ratio of 3 to 1 in favour of neutrons, this was
not stratified by site. It was performed using a block length of eight and sealed
envelopes. The uneven randomisation ratio in favour of neutrons was designed
to overcome the predicted problems in recruitment of patients into the trial. In
the second phase of randomisation from January 1988 to February 1990 when
the trial was stopped patients were randomised 1 to 1, but this was stratified
by site, again using sealed envelopes and a permuted block length of four or six,
determined by simple randomisation.

To be eligible for the study patients had to have histologically confirmed
adenocarcinoma of the rectum or prostate, squamous cell carcinoma of the cervix
or transitional cell carcinoma of the bladder and not to have been previously
treated using either radiotherapy or chemotherapy. Patients who were over
80 years of age or had a Karnofsky index (Karnofsky and Burchenall, 1949)
of less than 40 were also excluded, as were those having a previous history of
a malignancy at another site or distant metastases. After randomisation all
patients were staged using the TNM staging system (Harmer, 1978), and were
T3a, T3b or T4 and No, NI, N2 or s..

During the treatment period patients were followed-up weekly to assess their
reactions to treatment. For the first year after treatment patients were recalled
monthly, and in the following years they were recalled once every two to three
months. In the statistical analysis reported in Errington et al (1991) the main
outcome measures were mortality from all causes, and a secondary outcome
measures were severe treatment toxicity, metastatic disease and tumour pro-
gression/regression. This analysis used Cox's proportional hazards model to
allow for differential follow-up and to assess the effect of covariates on survival.

The detection of metastases at follow-up visits relied on clinical examination,
CT scan, Magnetic resonance imaging, cystoscopy, sigmoidoscopy and biopsy.
For this thesis a positive result using anyone of the above detection methods
was treated as metastatic disease.

In order to establish the ethicality of the trial, in terms of the individual
clinicians involved, their prior beliefs about the possible benefits of high energy
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neutrons were elicited using a 'trial roulette'. This aspect of the trial is reported
in Errington et al (1991) and is also discussed in detail in Chapter 3.

A statistical overview of 5 previously published trials and one set of unpub-
lished results was conducted. Errington et al (1991) report the results of this
overview in detail, and these results are also presented and critiqued in Chap-
ter 3, where we consider the use of such overviews as prior information that can
be formally incorporated into a statistical analysis.

2.2.4 Results

Since the publication of the statistical analysis a further statistical analysis has
been performed using a censoring date of 21st December 1990 rather than 26th
January 1990 as in Errington et al (1991). Table 2.1 shows patient status at
21st December 1990.

Photons Neutrons Total
Alive
Dead

37
25

46
46

83
71

Total 62 92 154
Table 2.1: Patient status at 12 month follow-up, as of 21st December 1990.

Figure 2.1 shows estimated Kaplan-Meier survival curves for neutrons and
photons for all sites combined.

As reported in Errington et al using classical methods of inference, there is a
statistically significant difference, P = 0.02, between the two treatment groups,
not allowing for any covariates. This yields a hazard ratio of death for neutrons
to photons of 1.71 with associated 95% confidence interval (1.10,2.92). This
difference reduces slightly when other important covariates are included in the
model. Preliminary cross-tabulations did not show the existence of patient im-
balances with respect to covariates that were a priori thought to affect survival.
Analysis using a censoring date of 21st December 1990 yields a still statisti-
cally significant difference, P = 0.04, but the hazard ratio of death for neutrons
to photons reduces to 1.49 with associated 95% confidence interval (1.00,2.21).
As before this difference reduces slightly when other important covariates are
included in the model, Table 2.2.

Using Cox's proportional hazard model the hazard ratio for early severe
reaction, within 3 months of treatment, of neutrons compared to photons is 1.30
with associated 95% confidence interval 0.49 to 3.45. For late severe reactions
the hazard ratio is 1.18 with associated 95% confidence interval 0.53 to 2.56,
(Errington et al., 1991).

Of interest to clinicians is whether the two treatment groups develop metas-
tases at different rates, and also whether having developed metastases the prog-
nosis is different for the two treatment groups. One method for assessing the
effect of developing metastases is to consider them as a time-dependent covari-
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Figure 2.1: Kaplan-Meier estimated survival curves for neutron and photon
patients in cancer clinical trial, with a censoring date of 21st December 1990.
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Covariates Hazard ratio
(Neutrons to Photons)

None
Site
Phase
T stage + N stage + Karnofsky
Phase + T stage + N stage + Karnofsky

1.49
1.42
1.46
1.44
1.44

(1.00,2.21)
(0.95,2.12)
(0.97,2.18)
(0.95,2.17)
(0.95,2.20)

aCI denotes confidence interval for hazard ratio.

Table 2.2: Hazard ratios of death (neutrons to photons) allowing for various
covariates using Cox's proportional hazards regression models, with censoring
date 21st December 1990.

ate. This was done using the 21program in BMDPI. Out of the original 154
patients 143were at risk of developing a metastases before death. Of the eleven
patients who were omitted for this purpose, 1 had a missing value, and 10 had
not had sufficient follow-up to develop a metastases. Table 2.3 shows the results
of fitting models involving metastases whilst Figure 2.2 and Figure 2.3 shows
the dynamic evolution of metastatic disease for the 143 patients at risk of it
for photon patients and neutron patients separately. These diagrams are a type
of Lexis diagram (Lexis, 1875) and have been popularised by Keiding (1990).
From Figure 2.2 and Figure 2.3 we can see that neutron patients would appear
to develop metastases more often than photon patients, but also at an earlier
point in the trial.

From Table 2.3 we can see that the hazard ratio of death for neutrons com-
pared to photons is 1.73with approximate 95% confidence interval not including
one, indicating evidence for a detrimental effect compared to photons. Includ-
ing an indicator variable for metastases as a time-independent variable slightly
reduces the treatment effect. As we might expect the effect of metastases retro-
spectively on survival is to indicate that those patients who were known to have
developed metastases had increased risk of dying. This analysis does not allow
for the fact that those patients who did develop metastases did so at different
points in their disease history, and in order to allow for this we could fit metas-
tases as a time-dependent covariate. This has the effect of slightly reducing the
treatment effect, but the main point to notice is that once a patient has devel-
oped metastases they have over four times the risk of dying than those patients
who have not at that time point, regardless of treatment. There appears to be
little evidence for the existence of a treatment-metastases interaction.

2.2.5 Clinically relevant questions
There are a number of clinical questions that need to be answered, which though
posed with respect to this particular trial are common to cancer clinical trials

1BMDP is a registered trade mark of BMDP Statistical Software Inc.
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Covariate f3a SE~ Hazard ratio 95% er-
Treatment 0.549 0.218 1.732 (1.120,2.678)

Treatment 0.481 0.221 1.618 (1.040,2.517)
Metastases 0.472 0.216 1.603 (1.041,2.469)
(Not time-dependent)

Treatment 0.341 0.224 1.406 (0.899,2.201 )
Metastases 1.430 0.221 4.177 (2.686,6.501 )
(Time-dependent)

Treatment 004.51 0.261 1.569 (0.931,2.646)
Metastases 10485 0.225 4.413 (2.815,6.924)
(Time-dependent)
Treatment x Metastases -0.411 0.487 0.663 (0.250,1. 756)

a {3 denotes log hazard ratio.
bSE denotes standard error for {3.
eCI denotes confidenceinterval for the hazard ratio.

Table 2.3: Model results for hazard ratio of death (neutrons to photons) for 143
patients at risk of developing metastases, using censoring date of 21st December
1990.

generally.
The questions are;

• What is the current strength of evidence for the use of neutron therapy
for tumours of the pelvic region?

• Is the rate of development of metastases different in the two treatment
groups?

• How does the development of metastases affect subsequent survival? Is
this the same for both treatment groups?

• How does the time at which metastases develop affect subsequent survival?

• What is the current strength of evidence of metastases being a major
contributory factor to the differences in. survival?

• How do covariates, other than treatment, affect survival?

We hope to show that all these questions may be answered within a coherent
framework by adopting the Bayesian methods developed in subsequent chapters.
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2.3 Quality of Life Study

2.3.1 Introduction

A pilot quality of life study was conducted at Clatterbridge hospital, Wirral,
between early 1988 and mid 1989. A total of 35 patients were recruited to the
study. These patients were the first 35 patients presenting for the first time at
the Mersey Regional Radiotherapy Centre over the study period, and who were
being treated for cancer of the testis, ovary, lung or skin (melanoma). All 35
patients were interviewed by the same research sister when they presented in
clinic for follow-up visits.

The questionnaire used had two sections, a general quality of life section
and a site/treatment specific section, being based around the European Organ-
isation ior Treatment of Cancer (EORTC) modular quality of life questionnaire
(Aaronson et al., 1988). Due to the relatively small number of patients recruited
to the study only the general section is used in this analysis. This section of
the questionnaire is replicated in Appendix B. The data was recorded using
COMputer PAckage for Cancer Trials (COMPACT) (Chilvers et al., 1988).

Apart from assessing the reliability and ease of collecting such data, there
was clinical interest in whether different groups of patients could be identified
as having different qualities of life at different times in their disease/treatment
process. To assess this latter point the 12 lung cancer patients were compared
with the remaining 23 patients whose tumours were of ovary, testis or skin.

In order to compare these two groups a global score was formed. The global
score is the sum of the ordered responses to the 15 questions on the question-
naire. For each question a patient contributes a 0, 1, 2 or 3 to their overall
score, the lower the number the better their quality of life on that particular
question. Therefore the maximum score attainable was 45 and the minimum
was O.

2.3.2 Results

Figure 2-4 shows Kaplan-Meier survival curves for lung and non-lung cancer
patients, using time to death, if it occurred within 30 days of last follow-up.
Using Cox's proportional hazards model the hazard ratio for death of lung
cancer patients compared to non-lung cancer patients is 1.56 with approximate
95% confidence interval (0.42,5.81). The wide confidence interval is because
there are only 9 deaths, 4 lung cancer patients and 5 non-lung. If we just
consider survival, and use all available data, i.e including times of death that
are beyond the period of time when quality of life is measured, the hazard ratio
of death increases to 6.83 with approximate 95% confidence interval (2.47,18.9).

Figure 2.5 shows the distribution of the quality of life scores for lung and
non-lung cancer patients in the study. We can see that lung cancer patients
distribution is more skew towards a higher score indicating lower quality of life.

From Table 2.4 we can see the numbers of transitions between states defined
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'good' 'medium' 'poor' death
'good' non-lung 8 5 0 0

lung 1 4 0 0
'medium' non-lung 2 8 3 2

lung 3 5 4 3
'poor' non-lung 0 0 1 2

lung 0 1 3 0

Table 2.4: Transitional status for lung and non-lung cancer patients in pilot
quality of life study.

using the quality of life score. These were defined as 'good' for scores less
than 20, 'medium' for 20 to 30, and 'poor' for above 30. We can see from
Table 2.4 that for some of the possible transitions there are very few or even
zero transitions. This limits the level of sophistication of the models that we
are able to fit to the data. Figure 2.6 shows the dynamic evolution of patients
through the various quality of life states separately for the lung and non-lung
cancer patients. From Figure 2.6 we can see that it would appear that lung
cancer patients spend more time in 'medium' and 'poor' quality of life states
than non-lung cancer patients.

2.3.3 Clinically relevant questions
As with the neutron therapy trial there are a number of clinically relevant
questions that need to be answered.

• Is the difference between lung and non-lung cancer patients in terms of
survival also there in terms of quality of life?

• Are any differences between the two groups in the risk of deterioration/improvemen
in quality of life constant?

• Is there changing risks of death with varying quality of life?

• Is there a different risk of death for the two groups at different levels of
quality of life?

In this situation the questions of interest surround the comparison of the
quality of life of the two patient groups over time. In order to do this multi-
state models are used, which using a Bayesian approach to estimation, lead to
clearly interpretable graphical summaries of the comparative risks of transitions
between various quality of life states, including death.

2.4 Summary
In both examples there are aspects other than survival that need to be analysed.
In the clinical trial we have morbidity events that may occur during the course
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of a patient's treatment and subsequent recovery. In the quality of life study
patients may be seen to move between a finite number of quality of life states.
In both examples, the use of multi-state models is advocated as being desirable.

For"the clinical trial there is substantial prior information both in the form of
a statistical overview of six previous trials, and in the form of quantified clinical
prior beliefs of ten clinicians. This aspect of clinical trials and observational
studies is dealt with in more detail in Chapter 3, and in particular the existence
of prior information for the neutron therapy study. In order to make use of
this prior information, regardless of statistical models used we need to adopt
Bayesian methodology.

Hence these examples between them strongly suggest the use of Bayesian
survival models, or models that may be used for survival situations, and that
may also allow for movement between disease states.



Chapter 3

Quantifying Prior Information
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3.1 Introduction
In this chapter we consider the possible sources of prior information and the
ways in which it may be quantified so that it can be included formally in a
statistical analysis. This will be illustrated with prior information available for
the Medical Research Council neutron therapy trial described in Chapter 2.

The general process is evident in clinical trials (Pocock, 1983). Initially a
drug may be developed based on pharmacological grounds, and tested using
animals. Afterwards the drug is tested on healthy volunteers to assess allergic
reactions, a small pilot study is then conducted, and only after this is a 'large'
Phase III trial conducted. At each step in this process information about the
possible benefits of the drug are accrued. This argument that clinical trials, es-
pecially Phase III trials, should be seen as just another piece of evidence about
the possible benefits has been advocated by both Peto (1987) and Spiegelhalter
et al. Peto has also argued, as have others including Bulpitt (1988) and Thomp-
son and Pocock (1991), that as many Phase III trials are relatively small, the
true picture of the possible benefits of a drug or treatment can only be achieved
by considering all relevant phase III trials that have been conducted in a formal
statistical overview, or what is also termed a meta analysis. We shall return to
the idea of meta analyses in more detail later in this chapter.

Two of the possible sources of prior information, are clinical beliefs about the
current study, and the results of previous studies that are considered relevant to
the current one. We may expect these two sources of prior information to yield
similar results since clinicians should be aware of the previous studies that have
been conducted in their area of research. However, their prior beliefs about the
current study will not only be based on the results of the previous studies but
also on their personal experience.

Section 3.2 reviews the elicitation and modelling of clinical prior beliefs, with
particular attention to the MRC neutron therapy trial, in which clinical prior
beliefs were obtained.

Section 3.3 first considers the possible sources of data that may be used
to construct prior densities. There are essentially two sources; previous trial
results, and routine data. We consider the use of previous study results, how
they can be combined and how these combined results may be used to obtain
a density for a quantity of interest. This process is described in detail for the
MRC neutron therapy trial for which previous trial results were available. A
number of authors have developed Bayesian methods for meta analyses, and we
review some of these approaches. Section 3.3 also reviews the use of historical
controls in clinical trials. Finally, Section 3.4 summarises the chapter.
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3.2 Clinical Prior Beliefs

3.2.1 General
Several authors including Savage (1971), Smith (1985) and O'Hagan (1988)
have considered various methods of eliciting prior information from individuals.
However, there are few examples detailed in medical statistics literature. Three
exceptions are, are Freedman and Spiegelhalter (1983), the results of a collabo-
rative multi centre study on the use of artificial surfactant for premature babies
(Lloyd et al., 1987) and Chaloner et al (1992).

Freedman and Spiegelhalter (1983) consider 18 clinicians involved in a Med-
ical Research Council Study for the treatment of superficial bladder cancer.
They were comparing surgery, the standard treatment, to a new drug treat-
ment, thiotepa. The prior beliefs were elicited by 'face to face' interviews. In
order to elicit beliefs about clinical demands each clinician was asked 'If the real
benefit was x% would you use thiotepa as your routine treatment?', with real
benefit taken to mean the results of a very large impeccably conducted trial.
By varying x they were able to establish upper and lower limits for routine use
of thiotepa for each clinician. Between these limits the clinician would consider
the two treatments equivalent, and outside this range would use one or other of
the treatments routinely.

Clinical beliefs were elicited in a similar manner, with each clinician being
asked first for the most likely improvement to be gained from thiotepa. They
were then asked for upper and lower limits outside which they thought the
difference was very unlikely to lie. They were then asked for the chance of
the difference exceeding a selection of intermediate points between these lim-
its. Pooling all this information prior distributions for the individual clinician's
beliefs about the treatment difference were drawn. Freedman and Spiegelhalter
comment on the diversity of not only the location of the prior distributions but
also their shape, raising doubts on the validity of combining them to form a
consensus prior.

Chaloner et al (1992) describe the use of graphical elicitation of prior in-
formation in a trial of prophylactics for tomoplasmosis in a population of HIV
positive people. This is based on the XLISP-STAT environment (Tierney, 1990).

Savage (1971), Smith (1985) Chapter 4 and O'Hagan (1988) Chapter 2.
have commented on the elicitation of prior beliefs, often though from a more
mathematical point of view. Smith (1985) suggests that in a medical context
the most promising method of eliciting subjective probabilities is via a relative
frequency approach, which has the advantage of being easier to identify with,
and also avoids the hypothetical betting structure, e.g 'If 100 patients were
given treatment A how many do you think would react in x hours?'. 0' Hagan
(1988) considers elicitation from a betting odds point of view, e.g 'Would you
use treatment A rather than treatment B if the reduction in mortality was x%,
but that there was only y% chance of this occurring?'.

In clinical trials the question of interest is often straight forward and elicita-
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tion via question and answer sessions appears to be the most appropriate. An
important consideration though is whether in a two treatment comparative trial
to elicit beliefs about the 'failure' rates in the two groups separately or whether
to elicit beliefs about a relative measure of efficacy.

3.2.2 MRC Neutron Therapy Trial
In March 1988 it was decided to elicit the beliefs clinicians involved in the
Medical Research Council Neutron Therapy Study. This was done primarily to
establish the ethical nature of the randomisation of further patients into what
was considered by some to be a controversial trial.

In order to elicit these beliefs a 'trial roulette' was conducted by Dr Sheila
Gore. This method had been previously used in a number of clinical trials,
Gore (1987) and Lloyd et al (1987). Ten clinicians were willing to participate
in the present exercise. The trial roulette was conducted by post, and used the
form in Figure 3.1. The clinicians were asked to express their beliefs about the
effectiveness of neutron therapy compared to a failure rate of 50% for photon
therapy. Failure was defined to be

• death without having achieved local control of symptoms

• recurrence after local control

• grade 4 or 5 radiation morbidity (using EORTC grading system)

• death due to metastatic disease

The clinicians were allowed twenty counters for use with the betting streets
on the form. They first had to place one counter at the lower end of their
beliefs, and another one at the upper end of their beliefs. The remaining 18
counters were then place so as represent their belief distribution between these
two points.

The form asked the clinicians for their beliefs about the failure rate on
neutrons compared to a 50% failure rate on photons, and they were also asked
what the failure rate on neutrons would have to be before they would use them in
routine clinical practice. The average failure rate demanded by the ten clinicians
for neutrons was 38.5% compared to a 50% failure rate on photons.

Figure 3.2 shows the individual beliefs for the ten clinicians. All but one
of the clinicians placed the majority of their counters below a failure rate of
50%, indicating that they thought that neutrons would have a beneficial effect
on failure. One clinician, (f), acted quite differently, and placed the bulk of his
counters above 50% indicating that he thought in terms of failure, that photons
would be more beneficial that neutrons. He did however place one counter below
50%, indicating that he believed that there was a 5% chance that there would
be a small improvement for neutrons.

In order for us to be able to use these elicited clinical beliefs' in any type of
statistical model, we need to determine a prior distribution or density function.
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We also need to consider whether to combine them in some way, or to treat
them individually. If we decide to combine them, then we could combine the
raw data, and then estimate a density. Alternatively we can estimate a prior
density for each clinician, and then combine the prior densities.

Genest and Zidek (1986) consider the combination of prior densities for a
number of individuals, according to both a linear opinion pool and a logarithmic
opinion pool. Under a linear opinion pool a weighted linear combination of the
individual prior densities is taken as a consensus prior density. Problems arise
in assigning the weights to the individual densities and also in the fact that if
there are diverse prior beliefs then the consensus prior density can be multi-
modal and quite dispersed. A possible solution to both of these problems is
to use logarithmic pooling in which the consensus prior density is a weighted
product of the individual densities. Although more likely to be uni-modal and
less dispersed than under linear pooling, the choice of weights still remains.

Note that under linear pooling if we assume fixed weights, the posterior
mixture distribution is the same as if we updated each individual's prior sepa-
rately and then combined the posterior densities. Another important point is
the validity of pooling when there are serious discrepancies between individu-
als. Unless a consensus prior density is reached by an iterative process such the
delphi technique, then there appears to be more weight to the argument that
the prior densities should be considered separately, and the resulting posterior
densities compared.

Apart from clinician (f) there is considerable agreement that neutrons should
be beneficial. One simple way would be to aggregate all the data to form a
consensus distribution of beliefs. This is in fact what was done for the purposes
of analyses in subsequent chapters. Figure 3.3 shows the aggregated beliefs.
We see that the clinician who had different beliefs to the majority has been
swamped, and that the consensus belief is that there is a beneficial effect of
neutrons. Another option would have been to combine the individual beliefs
according to a weighting scheme. However, as in the case of combining prior
densities this would introduce the problem of choosing the weights.

Assume that we wish to work with the histogram of aggregate beliefs in Fig-
ure 3.3. In.estimating densities for quantities of interest there are two possible
approaches; to estimate the failure rates for the two treatment groups separately
or to estimate a density for some measure of relative efficacy, e.g relative risk of
failure. We shall see in subsequent chapters that depending on which statistical
model we use, we may require the prior information in either of these forms.

First consider the case when we wish to estimate densities separately. For
the neutron therapy patients we wish to summarise the histogram in Figure 3.3.
Simply taking the average of the histogram yields 0.464, and a variance of
0.018. These are relative to a mean failure rate of 0.5 for photons. In the
odds model that is developed in Chapter 4 and also reported in Abrams, Ashby
and Errington (Submitted) we require the prior density for the failure rate
in each treatment group to have a Beta density as a prior density. We can
use the 'Method of Moments' described in Maritz and Lwin (1989) to do this.
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Assume that we are interested in the failure rate of neutrons, On, and this has
a Beta distribution with parameters an and f3n. For this to be a proper density
an > 0 and f3n > O. The expectation of On depends on the ratio ani f3n. If
this ratio remains constant but an and f3n increase, the variance decreases and
the distribution tends to the Normal distribution, (Rothschild and Logothetis,
1985). Thus the mean of On, denoted by E(On), is given by

E(On) = an + 1
an + f3n + 2

and the variance of On, denoted V(On), is given by

Since we can elicit beliefs about the mean and variance of On, we can find the
corresponding estimates of an and f3n from

-E(On)3 + E(On)2 - E(On)V(On) - V(On)
V(On)

(3.1)

Exactly analogous expressions yield ap and f3p parameters of a Beta prior dis-
tribution for Op, the failure rate for photon therapy.

Thus, using E(On) = 0.464 and V(On) = 0.018, we can obtain estimates
for an and f3n. These are an = 4.78 and f3n = 5.68. Figure 3.4 shows the
histogram of aggregate beliefs superimposed this Beta density. Although the
mode of the density reflects the location of the consensus prior beliefs accurately,
clinician (f) has caused the density to give more weight to higher neutron failure
rates. For the purposes of analysis we assume that for the photon treatment,
the mean of the density is 0.5, and the variance is assumed to be 0.005. The
variance is assumed to be 0.005, as photons are the standard treatment and their
effect is known more accurately. The choice of a variance of 0.005, a quarter of
that for neutrons, serves to place emphasis on the effect of the new treatment.
Analogously ap and f3p are both found to be 23.5.

For the purposes of the statistical survival models developed in Chapter 6 we
require a prior density for the log-relative risk of failure, for neutrons compared
to photons. The histogram in Figure 3.3 can be thought as relating to relative
risk as in specifying the failure rate on neutrons the clinicians have been asked
to assume that the failure rate on photons is 50%. Therefore we may calculate
the mean relative risk as 0.928, and the variance as 0.0735.

If we think of a survival model in which e(3,the hazard ratio, is assumed
to be an instantaneous relative risk, then we may be interested in specifying
a prior for f3, the log relative risk. Since f3 is a regression coefficient and can
therefore take both negative and positive values, a Normal distribution would
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seem a sensible choice as a prior distribution. Therefore, if we assume a Normal
distribution for {3, ef3 has a Log-Normal distribution. The relationship between
the Normal and Log-Normal means that if {3 has a Normal distribution with
mean 11 and variance (}"2, then the mean of ef3 is e~+o.su2 , and the variance of ef3

is e2~ (e2u2 - eu2), see Johnson and Kotz (1970) pages 115-117. Solving

e~+o.SU2

e2~ (e2u2 _ eu2)

0.928

0.0735

yields a mean of {3 of -0.116 and a variance of 0.082. In Chapter 6 we shall
use this prior distribution in a survival model. The corresponding Log-Normal
density for the relative risk is superimposed on the histogram of aggregate prior
beliefs in Figure 3.4 (b).

An alternative method for specifying a prior for {3 would have been to work
with the hazard ratio directly. Assuming that the hazards in each of the two
treatment groups were constant, we can obtain an expression for the hazard
ratio in terms of the 12 month failure rates. The effect of using such a method
for the neutron therapy study, would have been to obtain a prior density that
had 'heavier tails' than that shown in Figure 3.4 (b). We will return to deriving
a prior density for the hazard ratio directly in Section 6.5.3.

As with estimating the Beta prior density for the failure rate on neutron
therapy, the prior density seems an adequate approximation to the histogram.
Part of the 'lack of fit' is due to clinician (f) who believed a priori that neutrons
were not likely to be beneficial, and therefore considerably affected the mean and
variance. This problem could be overcome if we used a mixture distribution or a
kernal based density estimator (Silverman, 1986). However, there is a trade-off
between gaining a 'good' representation of the histogram and having a density
that is more mathematically convenient.

An important point to notice is that by combining the individual beliefs is
that we may obtain a distribution of consensus beliefs that underestimates the
variability amongst the individuals.

Both the Beta prior densities and the Normal prior densities derived above
will be referred to as clinical prior densities in subsequent chapters.

3.3 Data Based Priors

3.3.1 Sources of Data

There are essentially two sources of data which may be used to construct prior
densities; previously published trials and routine sources of data such as cancer
registries and specialist databases.

In recent years there has been a growing interest in the collection and possible
combination of previous trial results, in what are termed meta analyses or statis-
tical overviews, (Peto, 1987, Thompson and Pocock, 1991). In many ways this
reflects the belief that clinical trials should not be seen in isolation, but rather
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Neutron Therapy Pelvic Irradiation: Trial Roulette

Prepared by Dr Sheila Gore

Tumour locally advanced viz. T3,T4j N1-NXj MO
Sites: rectum, cervix, prostate, bladder

The diagram shows betting 'streets' (as on a gaming table) and identifies the 'street'
(centred on 50% treatment failure rate by 12 months) which represents 'photon
therapy failures.

By treatment failure, we mean :-

death without having achieved local control of symptoms
recurrence after local control
grade 4 or 5 radiation morbidity
death due to metastatic disease

How effective do YOU think neutron therapy might be in terms of reducing the
12-month failure rate of patients with pelvic cancer?

Please, place your 20 gaming tokens (X) in some or all of the 'streets' to represent
your current belief and uncertainty (i.e bets) about treatment failure by 12 months
of patients randomised to neutron therapy for pelvic cancer.

Betting 'Streets' for NEUTRON FAILURE RATE at 12 months

25% 30% 35% 40% 45% 50% 55% 60% 65% 70% 75%

For reference: photon failure rate at 12 months = 50%

What would the 12-month failure rate need to be with neutrons before you would
advise neutron therapy routinely (rather than photons) for pelvic cancer?

Signature

Figure 3.1: 'Trial Roulette' Form, Gore, (1988).
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Figure 3.2: Individual elicited prior beliefs of ten clinicians for neutron therapy
compared to a 50% failure rate on photon therapy.
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Figure 3.3: Elicited aggregate prior beliefs of ten clinicians for neutron therapy
compared to a 50% failure rate on photon therapy.
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Figure 3.4: Elicited aggregate prior beliefs of ten clinicians for neutron ther-
apy compared to a 50% failure rate on photon therapy, (a) Beta density, (b)
Log-Normal density.
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as adding to, or updating, our current beliefs about a particular treatment,
(Spiegelhalter et al., In press). Several authors have differentiated between what
have been termed 'qualitative overviews' and 'quantitative overviews', (Bulpitt,
1988, Thompson and Pocock, 1991). The former relates to studies that look
at the differences between trials, their protocols, patients accrual etc, as well
as treatment differences, and on the basis of these makes statements about the
effectiveness or otherwise of the treatment in question. 'Quantitative overviews'
on the other hand aim at a statistical amalgamation of the results of studies
that are deemed sufficiently alike, and on the basis of this make a quantitative
assessment of treatment effect. Clearly, a 'qualitative overview' may precede a
quantitative one, so as to assess which previous studies to include in a 'quanti-
tative overview'.

One possible source of routine prior information, for cancer clinical trials,
is from cancer registries. Cancer registries record details of the new cases of
various cancers together with various patient characteristics, (Office of Popula-
tion Censuses and Surveys (OPCS), 1990). They are also notified of patients
that have died, via the Office of Population and Censuses (OPCS). The main
problems with using this source of information are that the quality of the data
that is recorded is variable, even within registries, and there is also variability
in what data is actually collected between registries. There are other compli-
cations such as no information of clinical staging, using systems such as TNM
(Harmer, 1978), which has severe implications for prognosis.

3.3.2 MRC Neutron Therapy '!rial
In the previous section we outlined the rationale for conducting meta analyses.
Here we consider the mechanics of quantitative overviews, and describe the meta
analysis that was performed in the neutron therapy trial of Chapter 2, which
was reported in Errington et al (1991).

There are essentially two methods that have been advocated for statistical
overviews (meta analyses). The first suggested by Mantel and Haenszel (1959)
assumes that there are no differences in the underlying true treatment effects
for the individual trials. This assumption is sometimes known as the fixed ef-
fects assumption. Prior to combining a group of trials in such a manner there
are a number of significance tests that may be used to assess the strength of
trial heterogeneity. Two such tests are Cochran's Test and Woolf's Test. See
Armitage and Berry (1987) for further details. If either a test for heterogeneity
fails or graphical methods indicate that the true effects in the individual trials
are different then a second approach that allows for such eventualities is appli-
cable, this approach is known as a random effects model. We allow for such
heterogeneity by considering the trials to have different true treatment effects.
One such random effects model has been proposed by DerSimonian and Laird
(1986).

Errington et al (1991) describe a classical meta analysis of trials for low
energy neutrons. The results of this meta analysis are summarised in Table 3.2



Chapter 3. Quantifying Prior Information 32

and are displayed graphically in Figure 3.5 for the odds ratio and Figure 3.6 for
the relative risk. Figures 3.5 and 3.6 indicate that, with the exception of the
unpublished study, there is little evidence for heterogeneity between the studies.
Applying Woolf's Test for homogeneity yields a test statistic of 6.7, which under
the null hypothesis of homogeneity has a chi squared distribution with 5 degrees
of freedom, also indicating virtually no evidence for heterogeneity. Hence using
a fixed effects model based on the Mantel-Haenszel estimate of the overall odds
ratio is appropriate.

Dead Alive Total
Neutrons ai bi ai + b,
Photons Ci di Ci + di
Total ai + Ci i.+ di n',

Table 3.1: A 2 x 2 table for an ith hypothetical clinical trial.

Consider a sequence of m 2x 2 tables, each one of the same form as Table 3.1.
The Mantel-Haenzel estimate of the odds ratio, ORM-H, is defined,

L:m a·d·
OR = i=l ~

M-H "m b·c·
w' 1~1= ni

Using theinformationin Table 3.2 we·can calcula~ethe Mantel- Haenzel estimate
of the pooled odds ratio, which is 2.13. A method fof calculating the variance
of the Mantel-Haenszel estimate of the odds ratio is described in Armitage and
Berry (1987). Define the quantities Pi, Qi, R; and Si as follows

P. - aj+dj Q. _ bj+cj
I - ni ,- ni

R a.d.• - !!1!!1
I - ni S b·c·.-~

I - ni

The variance of the logarithm of the Mantel-Haenszel estimate is then given by

L: Pi~ + L:(PiSi + QiRi) 2 QiSi
2(L: ~)2 2L:n.L:Si + 2(L: Si)2

where summation is over the m trials. This method has the advantage over
other methods which have been proposed in that it is suitable when there are a
large number of strata and when some of these strata contain small frequencies.
Applying this method to the data in Table 3.2 yields 0.044 for the variance of the
log odds ratio, and therefore we can calculate an approximate 95% confidence
interval for the odds ratio, which is (1.36,3.31).

We may wish to have an overall estimate of the relative risk rather than the
odds ratio. Fleiss (1981) (page 69) describes how an estimate of the relative
risk can be derived from the Mantel-Haenzel estimate of the odds ratio. If we
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Outcome at one year
Trial Site of tumour Treatment Alive Dead Total
Batterman Bladder, rectum Neutrons 23'0 34 '" 57
(1982) Photons 16 c. 18 J 34

Point on Bladder Neutrons 39 16 55
(1985) Photons 42 11 53

Duncan Bladder Neutrons 27 26 53
(1987) Photons 43 17 60

Duncan (inoperable) Rectum Neutrons 3 17 20
(1987) Photons 10 6 16

Duncan (recurrent) Rectum Neutrons 5 10 15
(1987) Photons 11 5 16

Duncan Bladder Neutrons 2 4 6
(Unpublished, 1987) Photons 1 3 4

Total 222 167 389

Table 3.2: Meta analysis summary, Errington et al (1991).

assume that the marginal totals are fixed, and the Mantel-Haenzel estimate of
the odds ratio is w, then the expected frequencies of the main body of the table
can be calculated. If Ai, Bi, C, and D, are the expected frequencies, then

x-vAi=---2(w - 1)

where

X w(2ai + bi+ Ci) + (di - ai)

y JX2 - 4w(1 - w)(ai + bi)(ai + Cj)

having found Ai the other expected frequencies can be found by subtraction.
Applying this method to the meta analysis, the table of expected frequencies,
and fixed marginal totals is as in Table 3.3. and the relative risk is
16O:x><i::e,3 = 1.54. Using the approximate 95% confidence interval that we have
calculated for the odds ratio, we can apply the same technique that we have
used on the point estimate on the upper and lower bounds of this interval to
transform it to the relative risk scale. An approximate 95% confidence interval
on the relative risk scale is (1.19,2.0). It may be that we require a prior density
on the log relative risk scale. A relative risk of 1.54 corresponds to a log relative
risk of 0.43 . An approximate 95% confidence interval for the log relative risk
is loge{1.19) to loge{2.0), i.e 0.17 to 0.69. Using a Normal prior distribution
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Total 167

100
122

206
183

Dead Alive Total
Neutrons 106
Photons ·61

222 389

Table 3.3: Expected cell frequencies, assuming fixed marginals and WM-H = 2.13
for neutron therapy meta analysis.

for the log relative risk assumes that this interval is symmetric about the mean,
0.43. Under this assumption we can calculate the standard deviation for the log
relative risk, i.e 2 x standard deviation = 0.43 - 0.17. Therefore an estimate
for the standard deviation is 0.13. The derivation of this Normal distribution
of the log relative risk can be justified along Fiducial lines (Cox and Hinkley,
1974), i.e that beliefs about the relative risk can be translated into beliefs about
the log relative risk, as the transformation is one-to-one.

I~ deriving a prior density for either the odds ratio or the relative risk based
on the six studies, we have worked with the individual measures in each trial.
The advantage of doing this is that we can incorporate variation within each trial
into the overall estimate. This is not the case if we were to simply use the raw
data in order to obtain an overall estimate of a quantity of interest. However, it
might be the case that we require a prior density on the two treatment failure
rates separately, and with the proviso that this ignores trial heterogeneity, we
can calculate such a prior. From Table 3.2 we see that 61 out of 183 photon
patients were dead at 12 months, i.e 32.8%, and 106 out of 206 neutron patients
were dead at 12 months, i.e 51.9%. Ifwe assume that the failure rate on "photons
is Op and that on neutrons is On, then E(Op) = 0.328 and Var(Op) = 0.328(1 -
0.328)/183 = 0.0012, and E(On) = 0.519 and Var(On) = 0.519(1-0.519)/206 =
0.0012. Therefore, if as in the case of the clinical prior we wish to specify
the prior distribution on each of the treatments for 12 month failure as Beta
distributions we can use the 'Method of Moments' as in Section 3.2.2. The Beta
distribution for photon patients has parameters 58.9 and 121.8, whilst the Beta
distribution for neutron patients has parameters 106.4 and 98.6. Note that as
both parameters of the two Beta distributions are relatively large this indicates
that the two prior distributions are approximately symmetric.

Whilst we feel able to apply the results of trials for bladder and rectum
patients to trials of other pelvic sites, when we use a relative comparison, we
do not feel that we are justified in doing this when we consider the rates in the
two treatment groups separately.

Both the Normal prior distribution and the two Beta prior distributions will
be referred to as the meta prior in subsequent chapters.

An alternative method for deriving the hazard ratio directly from the results
of a number studies is described by Peto, Pike, Armitage et al (1976). This
method treats each study as a separate stratum, and then compares the ratio
of the overall observed and expected number of deaths in the two treatment
groups.
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Batterman (1982) • •
Painton (1985) ·1 •
Duncan (1985) • •
Duncan (1987) • •
Duncan (1987)

·······• •
Duncan ••~------~--------.
(Unpublished)

Meta Analysis

0.01 0.1. 0.5 2 5 10 40

Odds Ratio (log scale)

Figure 3.5: Statistical overview of six studies for low energy neutrons compared
to photon therapy using odds ratio scale.
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Batterman (1982) • •
Pointon (1985) • •
Duncan (1985) • •
Duncan (1987) • •
Duncan (1987) • •
Duncan ••~-------tr.----~ ••
(Unpublished)

Meta Analysis

0.1 0.5 1 2 5 10 20
Relative Risk (log scale)

Figure 3.6: Statistical overview of six studies for low energy neutrons compared
to photon therapy using relative risk scale.
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In contrast to the method for meta analyses suggested by Mantel and Haen-
szel (1959), we describe briefly the random effects approach of DerSimonian and
Laird (1986).

Assume that for the ith trial, the observed treatment effect is Vi, and that
this observed quantity is made up of two components, OJ the true treatment
effect in the ith trial, and fi the sampling error in the ith trial. We assume that
fi has zero mean, and variance 0-[.Thus,

fi "'J [0, 0-;1
The true treatment effect in the ith trial, Oi, is made up of two components,
Il, the population treatment effect, and bi, the ith study's deviation from the
population treatment effect. bi has zero mean and variance u2• If u2 is zero then
the random effects model reduces to that of the fixed effects model described
above. Thus,

DerSimonian and Laird (1986) consider four different methods for estimation
of the parameters of this model after replacing ut by s?, the observed variance
in the ith study. Two of these methods yield a non-iterative procedure for esti-
mation of the parameters, whilst the other two methods rely on the assumption
of Normality for the distributions for fj and h Making this distributional as-
sumption allows the use of either Maximum Likelihood or Restricted Maximum
Likelihood. The latter method makes allowance for the fact that u2 is also often
replaced with an estimate of the between study variance. Both of these methods
can be implemented by using the EM algorithm.

3.3.3 Bayesian Meta Analyses
In this section we briefly review various approaches that have been suggested
for the application of Bayesian methods in meta analyses. A number of these
approaches develop the random effects model suggested by DerSimonian and
Laird (1986) and are applications of Bayesian hierarchical models advocated by
Raiffa and Schlaifer (1961). Other approaches to meta analysis consider the
trials to generate binomial data.

None of the methods reviewed are applied to data, but it is felt that they are
an extension of Bayesian methodology in clinical trials and should be included
for completeness.

Consider a general Normal hierarchical model. Let 1!.. to be a vector of
observed responses for k trials. These could be risk differences, relative risks or
odds risks. Thus,

(3.2)

and we assume that ut is known or are prepared to put a fully specified distri-
bution on it. At the second stage of the model

(3.3)
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here J-L and 0'2 are unknown hyper-parameters, and the third stage of the model
is to specify a prior distribution for J-L and 0'2. Supposing for the moment that a
Uniform prior density is assumed for J-L and we know 0'2, closed form solutions
exist for the posterior densities of all the quantities of interest, conditional on
0'2.

Carlin (1992) considers two possibilities for inference. One method requires
substitution of an estimate for 0'2 into the closed form solutions for the required
posterior densities. This is essentially an empirical Bayes procedure, (Maritz
and Lwin, 1989). The alternative would be to take a fully Bayesian approach,
and after specifying a prior density for 0'2, integrate the posterior densities
for J-L and the Bis with respect to this density in order to obtain the posterior
marginal densities for J-L and the Bis. This results in integrals that are not always
analytically tractable, and Carlin adopts a Monte Carlo approach to obtain
the resulting marginal posterior densities for J-L and Bi. Other methods such as
asymptotic approximation (Tierney and Kadane, 1986) or Markov Chain Monte
Carlo (Smith and Roberts, 1993) could also be used. Lindley (1971) and Box
and Tiao (1967) show that with careful choice of distributions for 0'[ and 0'2

posterior distributions can be tractable.
Morris (1992) also considers a Normal hierarchical model for a meta analysis,

and cites a deficiency in the method proposed by DerSimonian and Laird (1986).
This is that they do not consider the variability of the population variance
parameter, 0'2. The only way in which this can be rectified is if we adopt a
fully Bayesian approach and obtain the marginal posterior density for 0'2. This
density is of interest since if it is near zero nothing is gained by adopting a
random effects model.'

DuMouchel (1990) considers a more complicated model, of which those con-
sidered by Carlin (1992) and Morris (1992) are special cases. DuMouchel as-
sumes 1L= (Yb·· . ,Yi,···, Yk) represents the responses from k studies, and that
Y has a multivariate normal distribution with mean vector B and covariance
matrix 72C. Algebraically, -

(3.4)

where 7-2/PT has a chi-square distribution with PT degrees of freedom. Com-
paring (3.4) with (3.2) above we can see that (3.2) is a special case of (3.4)
with C diagonal and having elements 0'[72• It is assumed that !l also has a
multivariate Normal distribution, independently of 7, with mean vector X ~ +!l.
and covariance matrix 0'2V. Algebraically,

(3.5)

where X and !l. are specified inaccordance with prior knowledge. Comparing
(3.5) with (3.3) above we see that (3.3) is a special case of (3.5) with X and V
identity matrices and !l. zero. Also assuming that J-L has a diffuse prior distribu-
tion such that, -

[~IO'] ,...,N[Q, D] (3.6)
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where D tends to infinity, and (7-2/pu has a chi-squared distribution with P«
degrees of freedom. As a result of the structure of this model, the posterior
densities, or at least the first and second moments, can be evaluated without
too much difficulty, i.e one dimensional integrals. The complexity of the model
will determine the exact difficulty of the integrals. Further details can be found
in DuMouchel (1990).

Both Skene and Wakefield (1990) and Rogatko (1991) consider the case
when the responses in the individual trials are assumed not to be Normally
distributed, but Binomial. Skene and Wakefield (1990) consider a hierarchical
model for the combination of a series of trials when the trials can be considered
to have binary outcomes on each of two treatment arms. Therefore if there
are k trials the likelihood is the product of 2k Binomial distributions. Their
parameterisation of the model differs in that for each trial they have two param-
eters, the log odds of 'failure' on the the standard treatment and the log-odds
ratio of the new treatment compared to the standard treatment. Assuming ex-
changeability of the k trials, the second stage density may be also considered as
a product over the k trials each one being conditional on hyper-parameters J!:.
and E. J!:. represents the population means in the standard and new treatment
groups, and E is the corresponding population covariance matrix. Skene and
Wakefield (1990) assume that second stage density for each trial is bivariate
Normal conditional on J!:. and E. At the third stage they assume that J!:. also has
a Uniform prior density, but that the prior for E has an Inverted-Wishart prior
density. Such a parameterisation leads to a reduction in the dimensionality of
the problem. Eventually the marginal posterior densities are estimated using
Gauss-Hermite quadrature. Unlike the method proposed by Carlin (1992) al-
lows us to specify prior densities separately for the population mean parameters
for the standard treatment and the new one.

Rogatko (1991) also considers parameterising his model in terms of the con-
trol 'failure' rate and the difference in the control and treatment 'failure' rates.
He considers the case when we wish to work with the Binomial distribution,
pointing out that the conditions for the Normal distribution to be a 'good'
approximation to the Binomial distribution are that the individual trials have
'large' sample sizes. This is obviously not always true, and in many cases a
meta analysis is attempted mainly because individually each trial has a small
sample. Assuming Uniform prior densities for all the parameters Rogatko notes
that there are two possible asymptotic approximations for the marginal poste-
rior density for O. The first approximation yields a Behrens-Fisher distribution
for the marginal posterior density of 0 and the second method yields a scaled t
distribution.

3.3.4 Historical Controls
Finally, we consider an area of clinical trials that has been contentious, that
of using historical controls. By historical we mean patients who are not part
of the current study. Historical controls may either be patients in a previous
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randomised trial or they may be in a specialist database, or of course both.
Pocock (1976) considered the use of historical controls as part of clinical

trial, while Raghunathan (1991) considered the the analysis of a stratified case-
control study when there are historical controls. Both use the controls to specify
a prior density for the quantity of interest for the current control group. Before
considering the use of historical controls in current studies we need to consider
the validity of using historical controls at all. Pocock lists six criteria that need
to be met in order to avoid the bias that may result from such an exercise. Such
historical controls must;

1. have received the same precisely defined standard treatment as the con-
trols in the current study.

2. have been part of a recent clinical study with the same patient eligibility
criteria as the current one.

3. have methods of treatment evaluation which are the same as the current
study.

4. have the same distribution of patient characteristics as the controls in the
current trial.

5. have been in studies conducted at the same organisation with largely the
same clinical investigators.

6. have no other indications that different results should be expected from
the two sets of controls.

Assuming that these criteria are met Pocock considers using a Normal theory
hierarchical model in the clinical trial setting. Assume that for each of the
three groups of patients, the treatment group, the current control group and
the historical control group there is a random variable, the quantity of interest,
and that these are Normally distributed. Pocock assumes that the historical
control group can be used as a prior for the randomised control group, and
that the posterior density for the treatment effect can be obtained. He assumes
that all mean hyperparameters have Uniform prior densities and all variance
hyperparameters are replaced with sample variances. Analytic solutions are
therefore possible. This modelling approach can also be used when the outcome
is binary, and when the sample observations follow an exponential distribution.

Raghunathan (1991) uses a logistic regression model for the analysis of a
stratified case-control study, and uses a multivariate Normal prior density for
the regression parameters. The components of the prior density for the control
group are the obtained from the historical control group. Parameter estimation
can either be carried out using numerical integration techniques or by approxi-
mating the joint posterior density with a multivariate Normal density.
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3.4 Summary
In this chapter we have seen how prior information may be elicited from clin-
icians, and show this information may be transformed into densities that can
be used in a subsequent model. We have also seen that when there are previ-
ous studies, which are thought to be relevant to the current one, they can be
formally in corporated into a meta analysis, and this can be used to derive a
density for quantities of interest. Both of these methods for the formulation
of prior densities have been applied to the neutron therapy study described in
Chapter 2.

We have also reviewed the application of Bayesian methods to meta analyses.
Whilst the application of such methods naturally leads to a density (posterior
for the meta analysis, and prior for the current study), unless we are prepared
to adopt an empirical Bayes formulation the resulting densities are not always
mathematically convenient.

With reference to the elicitation and use of personal prior information an
important point to make is the difference between clinical demands and clinical
beliefs. Clinical demands relate to the treatment difference that would have to
be present before a particular clinician would routinely use the treatment under
test in clinical practice. In Chapter 2 we saw that in the neutron therapy study
the average clinical belief was 46% failure on neutrons compared to 50% on pho-
tons, but that the clinical demand was 38.5% failure on neutrons compared to
50% failure on photons. Together with the point representing no treatment dif-
ference, clinicaldemands form an equipoise interval (Freedman, 1987} in which
the treatments are deemed to be equivalent.

In any clinical study there is always prior information available, it is only
the amount and the precision that vary. Before any major study is undertaken,
whether it be a clinical trial or a prospective cohort study, there must be suf-
ficient evidence of a desired effect to warrant the time and expense of such a
study. In a clinical trial there is also an ethical consideration, since by letting a
patient possibly receive a new treatment, the clinician must be 'confident' that
it is no worse than the existing treatment.

Table 3.4 shows the prior densities that have been constructed for the neu-
tron therapy trial described in Chapter 2.
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Clinical Beliefs Meta Analysis

12 month failure rates
Neutrons Photons

Beta[4. 7S, 5.6S] Beta[23.5, 23.5]

12 month failure rates
Neutrons Photons

Beta[106,4,9S.6] Beta[5S.9, 121.S]

Log relative risk
N ormal[-0.116, O.OS]

Log relative risk
N ormal[0,43, 0.02]

Table 3,4: Summary of Constructed Prior Densities for Neutron Therapy Study.
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4.1 Introduction
In this chapter we consider models for binary outcomes, which do not allow for
survival times. There are a variety of studies where such models are applicable.
For example, in survival studies the outcome is whether the patient is alive or
dead at 1,2 or 5 years. In cancer clinical research the advances in anti-emetic
drugs is supposed to reduce sickness, and this can be considered as a binary
outcome.

In all of these types of studies, there may be prior information about ei.ther
the rates of the outcome in each group separately, or about the comparison of the
rates in the two groups. We have seen in Chapter 3 how such prior information,
whether elicited from individuals or obtained from previous studies, may be
used to construct prior probability densities for quantities of interest. In this
chapter we consider the development of models in which such prior densities
may be used when the outcome measure in each group is binary.

In the simplest case when there is a homogeneous group of pa.tients and the
event of interest is binary, the likelihood is proportional to a Bernoulli process.
If the prior density that we use is a Beta density then as this is conjugate for
a binomial likelihood, the posterior density is also a Beta density, such a model
has been described by Raiffa and Schlaifer (1961).

In the more common case when there are two groups of patients to be com-
pared, and the event of interest is again binary then it is possible to extend the
above 'Beta-Binomial Model'. A number of methods of extension have been
advocated, among them Zelen and Parker (1986), Marshall (1988) and Abrams,
Ashby and Errington (Submitted). They apply a 'Beta-Binomial' model for
each group and inferences about the odds ratio rely on a Normal approximation
originally suggested by Lindley (1964, 1965). In Section 4.2.2 the model devel-
oped by Abrams, Ashby and Errington (Submitted) is described in detail and
applied to the neutron therapy study described in Chapter 2. Section 4.2.3 re-
views a number of other approaches to odds models, including Altham (1969),
Leonard (1972, 1975), Aitchison and Bacon-Shone (1981) and Nurminen and
Mutanen (1987).

Though these models are analytically tractable, and the approximations
seem accurate, they do suffer from the deficiency that they cannot easily be
extend to th~ case when there are covariates.

This particular deficiency can be addressed by adopting a logistic model
formulation as suggested by Hughes (1991), and also used in medical context
by O'Hagan (1990). West and Harrison (1989) have also considered the case of
a Bayesian logistic regression model. This model develops the ideas of binary
time series models in that it assumes a binary outcome is recorded at a number
of time points, and we wish to relate the probability of the event occurring to
a number of covariates.

A number of authors have applied the Normal theory models originally sug-
gested by Raifa and Schlaifer (1961), including Spiegelhalter, Freedman and
Parmar (In press) and Pocock and Hughes (1990) to clinical trials in which
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there are only two groups of patients.

4.2 Odds Models

4.2.1 One group case
Ifwe have a binomial likelihood then a conjugate prior density for the probability
of success is the Beta distribution. This model, termed a 'Beta-Binomial' model,
was described by Raiffa and Shlaifer (1961), Box and Tiao (1973), Berger (1985)
and Smith (1985).

Consider a homogeneous group of n independent patients, and that after
a period of time r of these patients experience an event of interest. If we as-
sume that the probability for each patient of the event occurring is 0, then the
likelihood for 0 is Binomial in form, and is proportional to

Assume that there is prior information about 0, and that this can be rep-
resented by a Beta distribution with parameters Cl. and f3, see Chapter 3, Sec-
tion 3.2.2 for interpretation. The prior density for 0 is therefore proportional
to

Using Bayes' theorem we can obtain the posterior density for 0, which is
proportional to

or+O(1 _ 0t-r+1l

and this is a Beta density, with parameters r + Cl. and n - r + (J.
We may be interested in inferences about the odds of the event in ques-

tion occurring, i.e 0/(1 - 0). Lindley (1965) suggests that if 0 has a Beta
distribution then the logarithm of the odds of 0 has an approximate Normal
distribution. In turn the odds of 0 has an approximate Log-Normal distribu-
tion. More specifically if 0 has a Beta distribution with parameters Cl. and f3
then (f3 + 1)0/( Cl. + 1)( 1 - (J) has an F distribution with 2(Cl. + 1) and 2(f3 + 1)
degrees of freedom. Fisher (1958) first suggested that the logarithm of the odds
of 0 has an approximate Normal distribution with mean 10ge(CI.+ 0.5/ f3 + 0.5)
and variance 1/ (Cl. + 1) + 1/ (f3 + 1). This approximation is valid for large and
moderate values of Cl. and f3, say Cl. > 5 and f3 > 5, (Lindley, 1964).

4.2.2 Two group case
In the neutron therapy trial, described in Section 2.2, interest focused on com-
parison of the 12 month survival rates for the two treatments. Assume that the
failure rates are (Jn for neutrons and (Jp for photons. If we assume a Beta prior
density for both failure rates, then we can obtain the posterior densities for the
two treatment groups separately. As we used conjugate Beta prior densities, the
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posterior densities also have Beta densities. Thus we can use the method sug-
gested by Lindley (1965) and described above in Section 4.2.1 to approximate
the prior and posterior logarithm of the odds for both treatment groups. Since
the logarithm of the odds of failure for both groups is approximately Normally
distributed, the logarithm of the ratio of the odds is also approximately Nor-
mally distributed. Therefore we can obtain an approximate Log-Normal density
for the posterior ratio of the odds of failure in one group compared to that in
the other.

More formally, the likelihood for Op is proportional to

Oprp(1 - Op )Np-rp

where rp is the number of photon patients dead at 12 months and N, is the total
number of photon patients in the trial. Similarly the likelihood for On can be
written in terms of rn, the number of neutron patients dead at 12 months, and
N; the total number of neutron patients in the trial, and is proportional to

If we assume a priori that Op has a Beta distribution with parameters ap
and {Jp then the prior density is proportional to

O;p (1 - °p )!3p
where ap > -1 and f3p > -1. Assuming that On has a Beta distribution,
independently of On, with parameters an and f3n gives a similar expression,

The parameters ap, f3p, an and f3n can be estimated by using the 'Method of
Moments' (Maritz and Lwin, 1989). We saw in Section 3.2.2 how this could be
done in the neutron therapy example.

The prior information summarised by the prior densities can be combined
with the information contained in the likelihood by using Bayes' Theorem. This
states that the posterior density is proportional to the product of the likelihood
and the prior density. Thus the posterior density for Op is proportional to

O;p+rp (1 - Op)!3p+Np-rp

Similarly the posterior density of On is proportional to

Applying the Normal approximation of the previous section and described
briefly above in Section 4.2.1, to each of the posterior densities separately, yields
the posterior density of loge(Op/1- Op) as Normal with mean
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and variance
1 1----+------ap + rp + 1 f3p + Np - rp + 1

Similarly, applying the same Normal approximation for the posterior density to
loge(On/1 - On) yields a Normal density with mean

I ( an + rn + 0.5 )
oge f3n + Nn - rn + 0.5

and variance
1 1----+-=------=-:-----an + rn + 1 f3n + Nn - rn + 1

Therefore the logarithm of the ratio of the odds, loge(On(1- Op)/Op(1 - On))
is also Normally distributed with mean

loge ((an + rn + 0.5)(f3p + Np - rp + 0.5))
(ap + rp + 0.5)(f3n + N; - rn + 0.5)

(4.1)

and variance

1 1 1 1---+ + + (4.2)
~+~+1 ~+~-~+1 ~+~+1 ~+~-~+1

Often in a Bayesian analysis we wish to consider the case when there is rela-
tively little prior knowledge about the parameters of interest. This is sometimes
called a reference analysis. In the above analysis, Lindley (1965) suggests that
vague prior information can be included by setting the hyper-parameters such
that ap = an = f3p = f3n = -1. Although this yields an improper prior density,
it does have the property of setting the prior distribution for loge(Op/(1 - Op))
and the prior distribution for loge(On/(1- On)) to be Uniform distributions over
the real line. Geisser (1984) also considers the case when we wish to represent
relative ignorance about the rate parameter of the binomial distribution. One
non-informative prior that Geisser considers is a Uniform prior density on both
Op and On, also suggested by Bayes (1783). Geisser also reports a vague prior for
Op as 1/0p(1 - Op), and similarly 1/0n(1- On) as a prior for On. This is the same
as that suggested by Lindley. Jeffreys (1961) suggests using 1/[Op(1 - Op)P/2as
a non-informative prior for Op and correspondingly 1/[On(1 - On)p/2 for On.

In practice there is little difference between the various vague prior densities
that have been suggested, especially when rn, rp, N; and N, are large.

Using the vague prior density suggested by Lindley the logarithm of the
posterior ratio of the odds has a Normal distribution with mean

loge ((rn - 0.5)(Np - rp - 0.5))
(r, - 0.5)(Nn - rn - 0.5)

(4.3)

and variance
1 1 1 1-+ +-+---rp N, - rp rn N; - rn

(4.4)
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Lindley (1964) suggests ignoring the continuity corrections, '0.5' in (4.3). In this
case a reference analysis yields the standard observed logarithm of the ratio of
the odds, which will have a Normal distribution with mean

and variance the same as (4.2).
We may be interested in inference about the odds ratio instead of the log-

arithm of the odds ratio. As both the logarithm of the odds ratio and the
odds for each treatment separately, are approximately Normally distributed the
odds ratio and the odds for each treatment have approximate Log-Normal dis-
tributions. More formally if logee has a Normal distribution with mean J-l and
variance u2, then e has a Log-Normal distribution with mean exp(J-l+0.5u2

) and
variance exp(2J-l+ (2)(exp(u2) -1), Johnson and Kotz (1970), page 115-117.

4.2.3 Example
Consider the MRC neutron therapy trial described in Section 2.2. We can
consider comparing the outcome in the two treatment groups after 12 months
follow-up. In order to adjust for the fact there is differential follow-up we can
impute the numbers of patients who were alive and dead at 12 months using
the actuarial survival proportions.

Clinical prior, using ALL patients.

Table 4.1 shows the imputed numbers of patients using the 12 month actuarial
survival proportions 0.617 for photon patients and 0.486 for neutron patients.
The frequencies in the body of Table 4.1 are obtained by assuming the marginal
totals to be fixed, and using the actuarial survival proportions to obtain the
corresponding cell frequencies.

Photons Neutrons Total
Alive 38 45 83
Dead 24 47 71
Total 62 92 154

Table 4.1: Imputed patient status at 12 months based on actuarial survival
probabilities for all patients using a censoring date of 21st December 1990.

Table 4.2 shows the results of fitting the 'Beta-Binomial' model described
Section 4.2.2, using the prior densities obtained in Section 3.2.2 and shown in
Table 3.4. Figure 4.1 shows the corresponding Log-Normal distributions. We
can see from Table 4.2 that a priori the clinicians believed that the mean odds
ratio was near one, i.e indicating no difference between the two treatments.
The mean is slightly misleading as a measure of location as the Log-Normal
density is skew to the left. We can see from Figure 4.1 that majority of the
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density is less than one, and we can calculate this numerically as 59.7%. We
can similarly calculate the clinicians' belief that the odds ratio is less than 0.63,
their consensus point of clinical demand, is 31.6%.

We can also see from Table 4.2 and Figure 4.1 that if we use the vague prior
suggested by Lindley (1965) and Geisser (1984) the corresponding reference
posterior density has a mean of 1.749 for the odds ratio, and that very little of
this density, i.e 6.6%, is less than one. Therefore, in the light of substantial prior
information there appears to be little evidence to support the use of neutrons
for pelvic tumours. We can also see that in the light of the data, the clinicians
would revise their prior beliefs so that their posterior density had a mean of
1.359, a substantial shift towards the reference posterior density. The clinicians'
posterior density also has a reduced standard deviation, compared to both the
reference posterior and the clinicians' prior density, as the (amount of) evidence
begins to accrue. Figure 4.1 shows this shift in the clinicians' belief well, and we
can see that a posteriori the clinicians believe that the probability of neutrons
being beneficial is 12.7%, i.e an odds ratio less than one, compared to 59.7% a
priori.

Reference Posterior
Clinical Prior
Clinical Posterior

1.749
1.046
1.359

0.601
0.739
0.335

0.066
0.597
0.127

0.002
0.316
0.001

Mean SD P(OR < 1) P(OR < 0.63)

Table 4.2: Odds Ratio (OR) summary using clinical prior for ALL patients, i.e
n = 154.

Clinical and Meta priors for bladder and rectum patients.

As mentioned in Section 3.2.3 in the derivation of a meta analysis prior for the
two treatment groups separately, whilst it may be reasonable to generalise the
results of previous studies on bladder and rectum patients to other areas of the
pelvic region when we use a comparative measure such as the odds ratio or
relative risk, this may not be so when we consider the effects of neutrons and
photons separately. Therefore, in using the meta analysis prior densities for the
two treatment groups in Table 3.4, we restrict our attention to the bladder and
rectum patients in the neutron study. Thus, there are now 119 patients in the
dataset rather than 154.

Table 4.3 shows the imputed numbers of patients using the 12 month actuar-
ial survival proportions 0.53 for photon patients and 0.448 for neutron patients
based on just the 119 bladder and rectum patients.

Table 4.4 gives summary statistics for the prior and posterior densities when
a vague prior, a clinical prior or a meta prior density is used. Figure 4.2 shows
the corresponding densities graphically. The most striking point from both
Table 4.4 and Figure 4.2 is the discrepancy between the clinical prior density
and that based on the previous study results. As above the mean clinicians'
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Photons Neutrons Total
Alive 24 33 57
Dead 21 41 62
Total 45 74 119

Table 4.3: Imputed patient status at 12 months based on actuarial survival
probabilities for bladder and rectum patients using a censoring date of 21st
December 1990.

prior density for the odds ratio was 1.046, whilst based on 119 patients the
mean of the reference posterior density, using the vague prior suggested by
Lindley and Geisser, is 1.526, but the mean of the prior density based on the
previous studies is 2.271, suggesting strong evidence against the use of neutrons
for tumours of the pelvic region. In the light of the data both the clinicians'
and the meta based prior densities are 'pulled' towards the reference posterior
density.

Mean SD P(OR < 1) P(OR < 0.63)
Reference Posterior 1.526 0.600 0.177 0.016
Clinical Prior 1.046 0.739 0.597 0.316
Clinical Posterior 1.304 0.348 0.189 0.004
Meta Prior 2.271 0.482 0.000 0.000
Meta Posterior 2.065 0.339 0.000 0.000

Table 4.4: Odds Ratio (OR) summary using meta analysis & clinical prior for
rectum & bladder patients only, i.e n = 119.

Interpreting Table 4.4 and Figure 4.2, we see that for the ten clinicians,
who had a prior consensus belief that neutrons were likely to be beneficial a
posteriori they should no longer hold these beliefs. Instead they should believe
that neutrons were likely to not be of benefit in treating these patients, but that
they would still retain some belief in the benefit of neutrons. Individuals who
prior to the trial being conducted expressed relative ignorance about the benefit
of neutrons, would a posteriori believe that neutrons were not likely to beneficial
but they would not totally rule out there being a possible benefit of neutrons.
Individuals who a priori were prepared to accept the results of previous studies
as the basis for the current beliefs about neutrons, in the light of the MRC trial,
would have only revised their view that neutrons were definitely not beneficial
slightly, and would give no credence to the possibility that neutrons may have
some benefit.

4.2.4 Other Approaches to Odds Models
As mentioned in the introduction to this chapter a number of authors have
developed and used an odds type models similar to that developed in the Sec-
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tions 4.2.1 and 4.2.2. In this section we shall give a brief review of these ap-
proaches and contrast them with the method described above.

There are not only differences in the development of these models but also
in the area of application. Abrams, Ashby and Errington (Submitted) applied
a Bayesian odds model approach to clinical trial, but Marshall (1988) and Zelen
and Parker (1986) both apply a similar model to case-control studies.

The key difference between these approaches is at what stage the Log-Normal
approximation is used, with Abrams et al using it separately for each of the two
groups, which then means that the distribution of the ratio of the odds has a
closed form. Marshall on the other hand only uses it at the final stage when
the posterior density of the odds ratio has been obtained which does not have
a closed form. However, Marshall does show that the Normal approximation
is good even for small values in the 2 x 2 table by comparing the approximate
posterior density with that obtained by numerical integration. Zelen and Parker
(1986) also arrive at a Normal approximation for the posterior density for the
odds ratio, but like Marshall (1988) they do so only after they have obtained the
joint posterior for the odds ratio and a nuisance parameter. As with Marshall
the approximate Normal posterior density for the odds ratio is the same as that
derived by Abrams, Ashby and Errington (Submitted) apart from continuity
corrections, with mean and variance the same as (4.1) and (4.2). Zelen and
Parker also verify the fact that this approximation to the posterior density
for the odds ratio is good, by comparing it with that obtained via numerical
integration.

A different approach to the three described above has been suggested by
Leonard (1972, 1975) in which he considered inference when there are m bino-
mial distributions, and there was a two stage prior for each of the distributions.
Obviously in the case m = 2, this model could be applied in a similar setting
as those above. We describe this method briefly. Let 01 and O2 be the proba-
bility of an event occurring in the two groups, and parameterise the model as
(1 = loge(01/1 - Ot} and (2 = loge(O2/1 - (2). The first stage prior for (1 and
(2 are Normal distributions with mean JL and variance (72. The second stage
priors are that JL has a Uniform distribution over the real line and All / (72 has
a chi-squared distribution with II degrees of freedom. A and II are assumed
specified, and A can be thought of as a 'best' guess at (72 and II is an expression
of the confidence in the 'best' guess. Leonard considers two distinct cases, the
first when we assume that (72 is in fact known, and the second when (72 has a
chi- squared distribution. In the former case the joint posterior density for £ is
proportional to the product of the likelihood for £ and a multivariate Normal
density. Leonard goes on to suggest that the marginal posterior density for £
can itself be approximated by a multivariate Normal density in the cases when
the number of observed events are not small. In the case when we assume that
(72 has a chi-squared distribution the posterior density for ( is proportional to
the product of the likelihood for {. and a multivariate t density, The resulting
posterior density can be approximated by a multivariate density but Leonard
suggests that this approximation is only very rough and that ideally numerical
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techniques should be employed to obtain the density and summary statistics.
A number of other authors have also considered Bayesian inference in a 2 x 2

table. The most notable are Altham (1969), Aitchison and Bacon-Shone (1981)
and Nurminen and Mutanen (1987).

Altham (1969) considers the posterior density of the odds ratio, assuming
a Dirichlet prior density for the joint probability of being in a specific cell of a
2 x 2 table. Altham notes that the exact posterior density of the odds ratio has
an unpleasant form. However, she notes that the probability of the odds ratio
being less than 1, may be written as a hyper-geometric summation. This fact
leads to two Normal approximations for this probability.

Nurminen and Mutanen (1987) consider Bayesian inference in the 2 x 2 table
for all three commonly used measures of association, the risk difference, the risk
ratio and the odds ratio. They show that using a general Beta prior distribution
the posterior distribution functions of each of measures of association are ex-
pressible as finite sums of Beta type quantities. These distribution functions are
easily calculated by numerical methods, but Nurminen and Mutanen note that
in the case of a Uniform prior density, the posterior density logarithm of the
odds ratio may be approximated by a Normal density using the approximation
suggested by Lindley (1964) and used by other authors above.

Aitchison and Bacon-Shone (1981) consider specifying separate Beta prior
densities for the risk of an event in two groups, in the same way that Abrams,
Ashby and Errington (Submitted) have done above. However, Aitchison and
Bacon-Shone focus on the risk ratio rather than the odds ratio, i.e if 81 and 82 are
the two risks, then the risk ratio is 8t!82• They note that re-parameterising in
terms of /, the transformed risk ratio, 8d 81+82, the resulting posterior density
for / can be expressed in terms of hypergeometric integrals. This density can be
easily programmed and has good convergence properties. The posterior density
for the original risk ratio can then be obtained via transformation. They also
consider the case when the Beta prior densities for the individual risks are set
to be Uniform densities.

These methods are straightforward to implement, and the approximations
that they rely on have been shown to be good. However, although these methods
are valid as an initial analysis, they suffer from the fact that censoring cannot
be properly accommodated, and nor can covariates.

4.3 Logistic Regression Models
In this section we consider an extension of the odds type models described in
the previous section. Here the odds of an event are not only modelled by the
treatment group but also by other covariates that are thought to affect outcome.
We first consider static models in which the number of events in a specific time
period is known. Second, we consider dynamic models in which the number of
events that have occurred up to a number of time points is known.
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4.3.1 Static Regression Models
Hughes (1991) describes the use of a logistic model in a clinical trial for the use
of primary prophylaxis to reduce bleeding from the oesophageal varices, and the
associated risk of mortality. Despite the four previous trials Hughes describes,
there is no clear evidence of a reduction in mortality. He considers the use of a
logistic model for the risk of dying.

Let Yi be a binomial random variable with index mi and parameter Oi, and
Yi be the observed values of Yi. In Hughes' application Yi is the number that
died in the ith group, and Oi is the risk of dying in the ith group. Then the
log-likelihood for fl., described in McCullagh and Nelder (1989) page 114 (and
Cox (1970)) is

(4.5)

Assume that the link is the logit, therefore,

(4.6)

where Zij is the jth covariate for the ith patient, (3j is the corresponding model
parameter and p is the number of covariates. Therefore substituting (4.6) into
(4.5) yields

n p n p

f(~lll) = L L YiZij{3j - L L mi log [1+ eZii13i]
i=lj=1 i=lj=1

(4.7)

Similarly the likelihood may be obtained as

L(~lll) = ft {el:;=1 YiZii13iel:;=1 mi}O&[I+eZii,8i]}
1=1

(4.8)

Hughes (1991) considers the case when there are only two groups, i.e p = 2,
so that Zil is one for all patients and Zi2 is one if the ith patient is in the second
group. Therefore (4.6) reduces to

log. (1 ~ 6;) = z;tfh + z;,(3,

and the log odds for group 1 is {31, and the log odds for group 2 is {31 + {32.
Therefore (32 is the logarithm of the odds ratio. The likelihood, (4.8), for the
two group case simplifies to

_ Yl 131+Y2 (131+132) 1 1
L({31, (32IYl,Y2,nI,n2) - e (1 + e131)nl (1 + e131+P2)n2

all that is needed are the total number of patients in each group and the number
of patients in each group who died.
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In the case when there is relatively little prior information about either
of the parameters, the joint prior density can be assumed to have a Uniform
distribution over the real plane, and therefore the joint posterior is proportional
to the likelihood. Therefore,

(a a I ) Yl{31+Y2({31+{32) 1 1 (49)
P JJl, JJ2 Y}, Y2, n}, n2 ex: e (1+ e{31)nl (1+ e{31+{32 )n2 .

For the purposes of inference, interest focuses on the marginal distribution of f32,
the logarithm of the odds ratio, and this can be obtained by integrating out f31
from the joint posterior (4.9). In many situations there will be prior information
available about the log-odds ratio (or about the actual odds ratio), and this can
be represented by a density, P(f32). Retaining a Uniform prior for f31, the
joint posterior will be proportional to the product of L(f3}, f321Yb Y2, nil n2) and
P(f32)' As in the case when there was vague prior knowledge about both of
the parameters real interest focuses on the log-odds ratio, f32, and we therefore
obtain the marginal posterior density for f32 by integrating out f31.

Hughes (1991) considers three cases in a hypothetical trial for beta-blockers,
vague prior information for f32, informative prior information for f32 based on
previous trial results, and finally an informative prior based on clinical opinion.

The easiest distribution to use for the informative prior case is the Normal
distribution, at least from the case of specifying the prior information. However,
using a Normal distribution does mean that the integration needed to obtain
the marginal posterior density for f32 is not analytically tractable, and either
numerical integration techniques or asymptotic approximation methods need to
be used. Remembering that this is the case when there are only two groups of
patients, and that there have been no other covariates in the model, in the case
when there are covariates we will require to evaluate higher onder integrals. We
shall see later in this thesis that for more complicated models we will have to
resort to either one of these integration methods.

O'Hagan et al (1990) also considered the use of Bayesian logistic models in
predicting whether patients with keratoconus will require a corneal transplant.
They considered the case when the initial corneal radius was known, and wanted
to assess the value of this in predicting a future corneal transplant. For the case
when there was no informative prior knowledge they considered the use of a grid
of values over which the joint posterior was evaluated, and then the marginal
densities and moments were obtained by the relevant summation of the grid
elements. These calculations were performed on a PC, and for relatively simple
models, i.e involving only one or two covariates, the time taken to perform these
calculations was acceptable. However, O'Hagan et al (1990) note that for more
sophisticated problems more powerful numerical integration techniques need to
be used, such as Gauss-Hermite quadrature (Naylor and Smith, 1982).

4.3.2 Dynamic Regression Models

West and Mortera (1987) and West and Harrison (1989) develop and apply
a Bayesian model for binary time series. These models are part of a more
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general class of models for exponential family distributions, termed Dynamic
Generalised Linear Models (DGLM), which are themselves extensions of the
Dynamic Linear Model (DLM) proposed by Harrison (1989).

Consider the number of patients that have died in a clinical trial by time
t, denote this by Yt, and denote by n, the number of patients at risk immedi-
ately prior to time t. Obviously several observations may be made, and these
will form a binary time series. D, = Yi,}2,"', Yt-t, Yt which represents the
information about the time series up to time t. West and Harrison define a
Dynamic Generalised Linear Model (DGLM) by an observation equation and
an evolution equation. The evolution equation relates the observed quantities
to the linear regression function. Thus the observation equation is

Yt = 0,1"", nt (4.1O)

where J-lt is the probability of a death, and there is a link function g(.) such that
g(J-lt) = FT g_t where Ft are covariates and g_t are the corresponding parameters.
The evolution equation is

(4.11)

where G, is an evolution matrix determining how the parameters vary over time
and Wt is a covariance matrix determining how the parameters vary with one
another.

Suppose we know the value of g_t-l at time t - 1, up to the first moments
thus

It follows from (4.11) that

where !!t = Gtmt_l and Rt = GtCt-1 G{ + Wt. Now what is required is the
posterior density for g_t. By assuming a conjugate Beta prior distribution for J-lt
, the posterior distribution for J-lt may be obtained. The posterior distribution
for g_t can then be obtained using Linear Bayes Methods (West and Harrison,
1989).

Further details are given in Chapter 14 of West and Harrison (1989) and
West, Harrison and Migon (1985) also consider the development and application
of DGLMs. In particular they a consider the comparison between GLIM (1978)
and static DGLMs, by specification of G, and Wt. Although these models,
like the static regression models considered above, allow for the inclusion of
covariates, there is no explicit consideration of the actual survival times of the
patients. The extension of Dynamic Linear Models to accommodate survival
times will be described briefly in Chapter 6.
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4.4 Normal Theory Models

4.4.1 General Background
Bayesian inference when the quantity of interest can be assumed to be Normally
distributed were described by Raiffa and Schlaifer (1961). They have also been
described by Box and Tiao (1973) and Berger (1985).

Consider the case when XI,"', Xn form a random sample from a Normal
distribution with mean I-" and variance 0"2. The sample mean X, has a Normal
distribution with mean I-" and variance 0"2In.

The two key assumptions of such a model are; first that the quantity of
interest is assumed to be Normally distributed, and second that the variance of
this distribution is assumed to be known.

Jeffreys (1961) described the use of a Normal prior density for 1-", with mean
v and variance 0"2/m, where v and m are assumed known. Using Bayes' theo-
rem the posterior distribution for I-" is Normal with mean /-I

n++vm, and variance• n m
O"/-./n +m, DeGroot (1986), page 324.

4.4.2 BART
Spiegelhalter, Freedman and Parmar (In press) considers the case when there are
two patient groups, and that we have a comparative measure of interest for the
two groups. For example in the case of a binary outcome this may the relative
risk, or the odds ratio, or in the case when we are considering survival situations
it may be the hazard ratio. The underlying statistical model is that described
above. We give brief details of the methods involved and the application of
such a model to the neutron therapy data outlined in Chapter 2, using both the
clinical and meta analysis prior densities developed in Chapter 3.

A software package BARTl written in Splus (Statistical Sciences Inc., 1990)
has been developed for implementing these models.

BART allows there to be a mixture of two prior densities, providing that
a weighting factor is also specified. For each prior density the corresponding
posterior density is obtained as above. Posterior weights are obtained by updat-
ing the likelihood and the corresponding posterior mixture density is obtained.
BART also allows the specification of either a single truncated Normal prior
distribution or a mixture of two such distributions.

The graphical model outputs are the prior density, the standardised likeli-
hood, the posterior density, and the predictive density based on the prior density.
The relevant probabilities of being in certain intervals are calculated for being
below the equipoise interval, in the equipoise interval (defined in Section 3.4)
and above it.

1Available from Dr. D. J. Spiegelhalter, MRC Biostatistics Unit, Institute of Public Health,
University Forvie Site, Robinson Way, Cambridge, CB2 2SR.
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Example

Applying this model to the neutron therapy example, for both the case when
there is prior clinical opinion, and when there is meta prior, the following results
were obtained.

Model Inputs

Data a = 2.04, Xm = 0.399, m = 109, n = 109
hI = -0.26, hs = 0.0

Clinical Prior mean=-0.116, precision=51

Meta Prior mean=0.43, precision=209

Mixture Prior mean1=-0.116, precision1=51, mixture weight=0.5
mean2=0.43, precision2=209, mixture weight=0.5

where a is the standard deviation of an observation, Xm is the observed sample
mean, whilst m is the number of observed deaths and n is the number of antic-
ipated future deaths. hI, hs are upper and lower limits for the interval in which
clinical opinion considers the two treatments equivalent. Precision is defined in
BART as 'the number of subjects in a imaginary trial that would have yielded
these results, assuming that the variation was the same as in the actual trial'.

If the two treatment groups have equal numbers in them, then o the standard
deviation for an observation can be shown to be equal to 2, Tsiatis (1981).
However, in the case of the neutron therapy trial, because of the initial bias in
randomisation towards neutrons, the two treatment groups did not have equal
patient numbers. In order to allow for such an imbalance it can be shown (Ashby,
personal communication) that the standard deviation should be changed to 2.04.

Thus, for the clinical prior, assuming a standard deviation of 0.286, to-
gether with an imputed trial standard deviation of 2.04, will yield a precision
of (2.04/0.286)2 = 51, and similarly for the meta prior the precision will be
(2.04/0.141)2 = 209.

Mean SD P(logHR < 0) P(logH R < -0.26)
Reference Posterior 0.399 0.195 0.000 0.020
Clinical Prior -0.116 0.286 0.307 0.658
Clinical Posterior 0.235 0.161 0.001 0.073
Meta Prior 0.430 0.141 0.000 0.001
Meta Posterior 0.419 0.114 0.000 0.000
Mixture Prior 0.157 0.385 0.154 0.330
Mixture Posterior 0.385 0.144 0.000 0.014

Table 4.5: Estimates for the log Hazard Ratio (HR) from BART for the neutron
therapy example.
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Neutron therapy: clinical prior
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Figure 4.3: Output from BART using a clinical prior for the hazard ratio.



61 Chapter 4. Non-Temporal Models

Neutron therapy: meta prior
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Figure 4.4: Output from BART using a meta prior for the hazard ratio.
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Neutron therapy: mixture prior
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Figure 4.5: Output from BART using a mixture clinical and meta prior for the
hazard ratio, with a mixing coefficient of 0.5.
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Results I

Table 4.5 and Figures 4.3 to 4.5 show the results of using Spiegelhalter's method
in the neutron therapy example. The clinical and meta prior densities obtained
in Chapter 3 are used, together with a mixture prior, which incorporates both
the clinical and meta analysis prior information.

From Figures 4.3 and 4.4 and Table 4.5 we can see that the results for both
the clinical and meta based prior are similar to those obtained using the odds
ratio method developed by Abrams, Ashby and Errington (Submitted), and
shown in Figures 4.1 and 4.2 and Tables 4.2 and 4.4. The main difference being
that in BART we use the logarithm of the hazard ratio as the quantity of interest
rather than the odds ratio or logarithm of the odds ratio. The clinicians' belief
is shifted by evidence from the trial, so that a posteriori they have substantially
less belief in the efficacy of neutrons for tumours of the pelvic region. Beliefs'
based on the meta analysis described in Chapter 3, are merely reinforced by
the trial data, as they a priori indicated that neutrons were not beneficial in
treating cancer of the pelvic region.

Using both models when there is informative prior information there is re-
duction in the standard deviation of the parameter estimate compared to that
in a reference analysis.

4.4.3 Another example
Pocock and Hughes (1990) also use a 'Normal-Normal' model approach in
analysing a primary prevention trial into the effect of diet and smoking on
coronary heart disease. They specify that a median reduction of 20% in the
number of coronary events is expected. Using this figure they specify a prior
Normal density for the mean log relative risk, and thus assuming that the ob-
served log relative risk is also Normally distributed, applying Bayes' theorem,
as Section 4., yields a Normal posterior density for the mean log relative risk.

4.5 Summary
In this chapter we have shown that there are a number of simple Bayesian
models that can be applied to clinical trials. These methods are relatively
straight forward to implement and serve as useful initial analysis of clinical trial
data.

Parameter estimation in both the odds model approach and the Normal
theory models do not require the use of sophisticated estimation techniques,
though neither model explicitly allows for differential follow-up nor the inclusion
of covariates. The latter deficiency may be addressed by the use of a logistic
regression model. Parameter estimation in a logistic model requires the use of
either numerical integration or asymptotic approximation techniques, and the
problem of censored data remains unresolved.
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In the following chapters we address the problems of allowing for survival
times, censoring and the inclusion covariates by considering models in which
the time to death or censoring is modelled explicitly. Such models will though
require the routine use of sophisticated estimation techniques .

•



Chapter 5

Counting Processes
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5.1 Introduction
The aim of this chapter is to introduce counting process notation, and to de-
scribe some of the models for event history data that make use of it. Such
notation is necessary for the development of models in subsequent chapters.

We start the chapter by introducing a univariate counting process. which
is a stochastic process that counts the number of events that have occurred
as time progresses. Associated with a counting process is an observational or
at-risk process, which counts the number of possible events as time progresses.
The behaviour of a counting process is governed by its random intensity process.
These concepts are extended to the case when there may be more than one type
of event. Such a situation can be described by a multivariate counting processes
, together with its associated at-risk process and intensity process.

The theory of counting processes has proved useful in applied problems for
two reasons;

1. Aalen (1978) and Johansen (1983) have both pioneered the use of counting
process notation in survival analysis, because of the powerful mathemat-
ical tools that may be used as a result. Such mathematical tools have
enabled the derivation of a number of estimators, and the rigorous proof
of their properties.

2. Gill (1984), Andersen (1985,1988) and Clayton (1988) have advocated the
use of counting process notation in describing complicated event-histories,
of which survival data is a special case.

In traditional survival models interest often focuses on the hazard rate. Anal-
ogously in models for counting processes interest focuses on the intensity pro-
cess. Thus the main type of model to have been suggested is the multiplicative
intensity model. This was originally advocated by Aalen (1978), and includes
as special cases many of the more familiar models in survival analysis, such as
the Cox proportional hazards model. We describe parameter estimation in the
multiplicative intensity model when the model has various parametric forms.
Voelkel and Crowley (1984), Keiding and Andersen (1987) and Frydman (1991)
all consider the case when the intensity process is estimated non-parametrically.
A number of authors including Andersen and Gill (1982) and Jacobsen (1984)
have considered the case when the intensity process comprises two separate
components, one of which is estimated non-parametrically and the other para-
metrically, analogous to Cox's proportional hazards model (Cox, 1972). Finally
Borgan (1984), Hjort (1986) and Aven (1986) have considered the case when
the intensity process is assumed to have a particular parametric form, the latter
two considering estimation from a Bayesian perspective. We shall see that the
relationship between counting processes and Martingales plays a key role, not
only in the motivation of estimators, but also in the derivation of their proper-
ties. Finally we comment on the link between parametric survival models and
Poisson regression models, as mentioned by Holford (1980), Laird and Oliver
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(1981), Lawless (1987) and Clayton (1988). This link is highlighted by adopting
a counting process approach.

The chapter concludes with a summary of the key issues that have been
addressed.

5.2 Univariate and Multivariate Counting Pro-
cesses

The following definitions and derivations follow closely those of Andersen and
Borgan (1985), Fleming and Harrington (1991) and Andersen, Borgan, Gill and
Keiding (1992).

5.2.1 Univariate Counting Processes
Consider that for a homogeneous group of patients, i.e they share a common
intensity, we have a stochastic process that counts the number of occurrences
of specific event up to time t, assuming time to continuous. Denote this count-
ing process by N(t). N(t) will be a right continuous step function and will
have 'jumps' of size 1 if a single patient has an event at the same time. N(t)
is termed a Univariate counting process. As well as there being a counting
process, N(t), there is also an observable at-risk process, denoted Y(t), which
counts the number of patients at risk of the specific event just prior to time t.
Figures 5.1 and 5.2 shows hypothetical examples of N(t) and Y(t), when there
are no tied failure times.

N(t)

L

-4_

3_ -
2_

o ~~--r-I--r-Ir-I~ Time
o tt t2 t3 t4

Figure 5.1: A simple counting process, N(t).

A univariate counting process is determined by its intensity process, which
we shall denote by a(t). Assuming no tied failure times a(t)St can be defined as
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Y(t)
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Figure 5.2: A simple risk process Y(t).

the conditional probability that N(t) 'jumps' in a small interval, St after time
t, given everything that had happened until just before t. A short-hand way of
describing the information up to a certain time point is Ft-, this represents the
information just prior to time t, and is called a filtration. Thus we talk about a
counting process N(t) being adapted to a filtration Ft_.

a(t)St = P{[N(t + St) - N(t)] = 1IFt-} (5.1)

or
a(t)St = E(dN(t)IFt_)

The intensity process, a(t), is a random quantity since it is conditional on the
filtration Ft-, which is itself composed of random quantities. The compensator
of a counting process or the cumulative intensity function, denoted A(t), is
defined by

A(t) = lot a(u)du (5.2)

S.2.2M ultivariate Counting Processes
We defined above a univariate counting process for a homogeneous group of
patients. We now consider the patients individually and define a multivariate
counting process N(t) = {Ni(t), i E I, t > O}to be a stochastic process that can
be thought of as counting the number of events for patient iup to and including
time t, and where 1= {1,"', n}. We will assume that each component of N(t)
has 'jumps' of size 1, and that no two processes can 'jump' simultaneously.

In the situations that we will consider some of the patients will not be 'at
risk' all the time. Therefore we extend the notion of an observational or at-
risk process to allow for this. This process indicates at all time points whether
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a particular individual is at risk. Thus Y(t) = {l'i(t), i E I, t > O}, and as
in the univariate case this is a predictable process, given the filtration Ft-.

Algebraically,

Yo t = {I patient i is at risk at time t
I ( ) 0 patient i is not at risk at time t

As in the univariate case N(t) is determined by its random intensity process a(t),
which comprises components ai(t) for each individual. Thus, a(t) = {ai(t), i E
1, t > O}. Figures 5.3 and 5.4 shows a simple example for survival data, in which
patient i dies at time tll and therefore l'i(t) is one until tt and zero after tll
and correspondingly, Ni(t) is zero until time tt and one after tll indicating that
an event has occurred. As in the univariate case each ai(t)6t can be thought of
as the conditional probability that Ni(t) 'jumps' in a small interval Bt about t,
given the filtration Ft-. Therefore,

Wemay extend the idea of a counting process to the case when there are more
than one type of event that can occur. In this case the multivariate counting
process N(t) = {Nik(t), i E I, k E K, t > O}can be thought of as counting the
number of occurrences of event type k for patient i up to and including time
t, and where K = {l,···, h}. In some examples we may also restrict the
components, Nik(t), to be counting non-recurrent events. In this case the value
of Nik(t) will either be 1 or 0 depending whether patient ihas experienced event
k. Similarly the at-risk process, Y(t) can be defined Y(t) = {l'ik(t), i E I, k E
K, t > O}. This process indicates when individuals are at risk of a specific type
of event. Thus,

{
I patient i is at risk of transition k at time t

l'ik(t) = 0 patient i is not at risk of transition k at time t

As with the multivariate counting process when there was only one type of
event, N(t) is governed by its random intensity process a(t), which comprises
components for each individual and each type of event. Thus, a(t) = {aik(t), i E
I, k E K, t > O},where aik(t)St is the conditional probability that individual i
will have an event of type k in a small time interval St about t.

Analogous to the univariate case the progress, as time unfolds, of a multi-
variate counting process, N(t), is determined by its random intensity process,
a(t). For an nh-variate counting process there is an nh-variate intensity process
a( t) such that

a(t) = {aik(t), i E I, k E K, t > O}

where each component, aik(t), can be defined,

(5.3)
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Figure 5.3: A counting process, N(t), for survival data.

}i(t)

1+- -.
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Figure 5.4: A simple risk process, Y(t), for survival data.
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where :Ft- represents all the available information on the disease history before
and just up to time t. Assume

if Nik(t + 6t) - Nik(t) = 1
otherwise

Then we can re-write (5.3) as

The multivariate counting process, N(t), can be extended to accommodate
the case when there are a number of time intervals or epochs. This is desirable
when there are age cohorts or clearly defined time intervals. In this case the
multivariate counting process N(t) = {Nijk(t), i E I,j E J, k E K, t > O} can
be thought of as counting the occurrences of event type k for patient i in epoch
j at time t, and where J = {1,···, m}. Similarly Y(t) comprises components
which indicate whether an individual is at risk of a specific type of event in a
particular epoch. Thus,

Y;. (t) _ {I patient i is at risk of transition k at time t in epoch j
13
k - 0 patient i is not at risk of transition k at time t in epoch j

As in the previous cases N(t) is determined by an nmh-variate intensity process,
a(t) comprising components for each individual, each type of event and for each
epoch. Thus, a(t) = {aijk(t), i E I,j E J, k E K, t > O}. Each aijk(t)St can be
thought of as the conditional probability that individual i has an event of type
k in epoch j in a small time interval St about t.

5.3 The Multiplicative Intensity Model
In this section we consider the statistical models that may be applied to count-
ing processes. In Section 5.2 we saw how a counting process, N(t), is governed
by its random intensity process, a(t). Therefore we consider modelling the in-
tensity, which is analogous to modelling the hazard rate in standard survival
analysis. We may consider non-parametric, parametric or semi-parametric es-
timation of the intensity process, a(t). The intensity may vary between groups
of individuals or it may vary over time according to some parametric family of
functions. As we have suggested in earlier sections of this chapter, a class of
models that incorporates many of the applied settings discussed above is called
the multiplicative intensity model. Below we give a more precise definition of
the model and consider estimation of the model parameters.

Aalen (1978) developed and advocated the use of the multiplicative intensity
model. This model assumes that, conditional upon various criteria, the intensity
function, a(t), is a product of the at-risk stochastic process, Y(t), and an un-
known function A(t). Following Aalen (1978), Andersen and Borgan (1985) and
Fleming and Harrington (1991), we define the multiplicative intensity model as
follows.
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Definition

Assume that the data can be represented by n triples (Ni(t), }i(t), Zi(t)), i =
1,··· ,n. Ni(t) are counting processes, Yi(t) are at-risk processes, defined in
Section 5.2.2, and Zi(t) are covariate processes. The only condition is that
Zi(t) is fixed given the right-continuous filtration {Ft-, t 2:: O}representing the
statistical information accruing over time. The n intensity processes ai(t) are
products of an unknown function Ai(t) and the stochastic process Yi(t). We have
seen that A(t), the compensator of N(t), is adapted to the filtration {Ft-}, and
therefore Yi(t) are also required to be adapted to {Ft-}, i.e given information
up to, but not including, time t, the process Yi(t) is predictable. Algebraically,

(5.4)

where Ai[t,Zi(t)] is an unknown function.

o
Similarly, if we extend the multiplicative intensity model in (5.4) to the case

in which there is more than one type of event, indexed by k, (5.4) becomes

(5.5)

Note that the dimension of Zik(t) may also vary with k, i.e some covariates
may be thought to affect the intensity of some events and not others. If we
also consider the case when there are a number of epochs, indexed by i, (5.4)
becomes

(5.6)
In the following sections we shall show how by defining both A(t) and Y(t),

the multiplicative intensity models in (5.4)-(5.6) can accommodate a broad
range of different models used in event history analysis. Different censoring
mechanisms may be accommodated via the at-risk process Y(t), whilst the
functional form of the model can be specified via A(t). Whilst the fully para-
metric case is discussed in detail, the two cases in which A(t) is non-parametric
or semi-parametric are considered only briefly.

5.3.1 Non-Parametric Intensity Model
A number of authors including Voelkel and Crowley (1984), Keiding and Ander-
sen (1987), Fleming and Harrington (1991) and Frydman (1991) have consid-
ered the case when we assume that a(t) varies freely over all the possible values
thata(t) can take. Fleming and Harrington (1991) show that N(t) - A(t)
being a Martingale, yields the Nelson-Aalen estimator as a natural estimator
of the compensator A(t), defined in (5.2). This estimate is analogous to the
Nelson-Altschuler estimate of the cumulative hazard in standard survival anal-
ysis. As a consequence of Martingale calculus proof of many desirable properties
of Nelson-Aalen estimator is possible. See Fleming and Harrington (1991) for
further details.
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5.3.2 Semi-Parametric Intensity Model
One possible functional form for A(t) that has been widely used is the pro-
portion;l hazards or Cox regression model (Cox, 1972). In this model A(t) =
Ao(t)e~ .£i(t) where Ao(t), the baseline hazard, is left completely unspecified, and
f3 is a vector of regression parameters. Thus, (5.4) becomes

Inference is then made via what was termed a partial likelihood, (Cox, 1975).
The probability, conditional on surviving up to time t, that an individual dies at
time t is the ratio of the intensity for the individual to the sum of the intensities
of all individuals at risk at time t. Algebraically,

P{patient i dies at time tli survives up to t} = L ai(t) ()
geR(t) ag t

where R(t) is the set of patients at risk immediately prior to time t. This yields
a partial likelihood for f}_,

n { .(t) }dNi(t)L(f3) = II _a__;_,.:......:._,.....,..
- i=1 LgeR(t) ag(t)

in the case when a(t) = Ao(t)e~T.£i(t)l'i(t) the baseline intensities cancel in (5.7)
and the resulting partial likelihood is

(5.7)

(5.8)

Detailed derivation of the partial likelihood for the Cox regression model can be
found in Cox (1972, 1975, 1984). The properties of the estimator f}_ calculated
from (5.8) can be derived from the fact that the model is a special case of the
multiplicative intensity model, see Andersen and Gill (1982) for further details.
In this model the baseline hazard is left unspecified, one possible estimate of the
baseline hazard suggested by Breslow (1974) is a generalisation of the Nelson-
Aalen estimator. When there are no covariates in the model, this estimate of
the cumulative baseline hazard is, Ao(t) , is ..

When there are covariates in the model the estimate becomes
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where 11 is derived from (5.8). As with the estimates for f3 Martingale calculus
can be-used to obtain first and second moments for the-estimates of the cu-
mulative baseline hazards. See Fleming and Harrington (1991) and Andersen,
Borgan, Gill and Keiding (1992) for further details.

We may wish to consider the case when there is more than one type of event.
In this case the intensity under a Cox proportional hazards model becomes

(5.9)

and the partial likelihood (5.8) becomes

(5.10)

The key point to notice is that the partial likelihood factorises into a number
. of components, one for each type of event. This factorisation of the partial
likelihood when there is more than one type of event is equivalent defining time
dependent strata by occurrences of typesof events in standard survival analysis.
See Prentice, Williams and Peterson (1981) for further details.

5.3.3 Parametric Intensity Model
When the times at which events occur followa particular distribution the inten-
sity will have a known parametric form. For example, if times to an event can
be assumed to follow an exponential distribution, then the intensity function
is constant over time. In this case Y{t) is as before, a censoring indicator, but
this time '\(t) is also dependent on a vector of parameters fl. Therefore (5.4)
becomes

ai{t) == '\[tlfl, Zi(t)]}'i(t) (5.11)
It may be that the covariates act multiplicatively, but rather than leaving the
intensity unspecified it is of some parametric form, i.e

(5.12)

Kalbfleisch and Prentice (1980) and Cox (1984} derive the log-likelihood in the
case when the intensity is fully parametric. This is as follows; if we consider
patient i and whether or not they experience an event at time t. If the event
does occur then patient icontributes fi{t) to the likelihood, i.e the probability
of an event occurring at time t. If however the event does not occur and patient
i is censored at time t then they contribute Si{t), i.e the probability that the
event occurred for patient i at a time greater than t. If dNi(t) is an indicator
of whether the event occurs for patient i at time t the contribution for the ith
patient to the likelihood is

fi(t)dN;(t) Si{t)l-dN;(t)
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Using the relationship between both the density, fi(t), and the survivor function,
Si(t) and the intensity, Q'i(t) that

fi(t) - Q'i(t) Si(t)
Si(t) _ e" fot Q;(U) du

the contribution for the ith patient to the likelihood is, in terms of the intensity
for the particular event

Q'i(t)dN;(t) «: fot Q;(U) du

Therefore the likelihood for all n patients is

n { } t.L(fl.,fj) = II IIQ'i(t)dN;(t) «: fo Q;(u)du
i=l t;::O

where t* = sup {t : dNi(t) = 1,i = 1,··· ,n}. The corresponding log-likelihood
IS

(5.13)

where t* is as above. Substituting (5.12) into (5.13) yields

Therefore the likelihood corresponding to (5.14) is

n [Ao(t 1fl.)e~T£;(t)}'i( t) tN;(t)
L(fl., (3) = II II t f3TZ (u)- i=l t;::Ofo Ao(ulfl.)e- -; }'i(u)du

(5.15) .

In the rest of this thesis, we shall assume in likelihoods that the product
over all time points is assumed, without stating it. We shall write J~for the
integral over all observed event times, rather than f~·as in (5.14) above.

In the fully parametric intensity case described above there are parallels
with regression methods for categorical data. The simplest form of counting
process is the Poisson process, in which the intensity is constant over time.
Similarly, a piecewise constant intensity gives rise to a time inhomogeneous
Poisson process. Lawless (1987) and Clayton (1988) have reviewed the link
between survival models that consider time to each event (or between events),
and models for counts, such as the Poisson model. Counting process notation
highlights this close link between the two approaches.

As with the semi-parametric model above wemay wish to allow for more than
one type of event. If we consider patient i and whether or not they experience
event k at time t. If event k does occur then patient i contributes fik(t) to the
likelihood, i.e the probability of event k occurring at time t. If however event k
does not occur and patient i is censored at time t then they contribute Sik(t),
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i.e the probability that event k occurred for patient i at a time greater than t.
If dNik(t) is an indicator of whether event k occurs for patient i at time t the
contribution for the ith patient to the likelihood for the kth type of event

Using the relationship between both the density, fik(t), and the survivor func-
tion, Sik(t) and the intensity, lYik(t) that

fik(t) lYik(t) Sik(t)
Sik(t) e- Jot ai"(U) du

the contribution for the ith patient to the likelihood for the kth transition is

The overall likelihood now requires the product to be taken over both patients
and events, and is

where 1!.k represents the model parameters for the kth type of event.
The log-likelihood (5.13) becomes

n h

[(fl.,!!_) = L L loge[lYik(t)]dNik(t)
i=1 k=1

n h

- LLAik(t)
i=1 k=1

(5.16)

where the intensity, lYik(t) is

lYik( t) = AOk( tl~)ef!r~i,,(t)Yik( t)

Substituting (5.17) into (5.16) yields a log-likelihood of the form

(5.17)

n h
[(fl.,!!_) = L L loge[AOk(tlfl.k)egL,,(t)Yik(t)]dNik(t)

i=1 k=1
n h t

- L L 10 AOk(ulfl.k)eg~i,,(U)Yik(U)du (5.18)
i=1 k=1 0

and the corresponding likelihood is
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In both (5.12) and (5.17) there are various parametric forms that Ao(tlg_)
and AOk(tlflA:) may take. The simplest form is to let the function AO(t) be a
constant, analogous to a constant hazard in survival analysis. An extension
to this model is to let AO(t) be constant within intervals, with intervals either
defined by the user or a function of the data. Breslow (1972) suggests that
they should be the distinct death times, whilst Kalbfleisch and Prentice (1973)
suggest that the time grid should be chosen independently from the data. Both
of these parametric forms for the baseline hazard will be developed in much
greater detail in subsequent chapters. An alternative parametric form that is
frequently advocated for survival type data is the Weibull distribution, see Cox
& Oakes (1984). Others have suggested various parametric forms such as the
log-Normal or Gamma, see Cox & Oakes (1984) and Kalbfleisch & Prentice
(1980) for further details.

Another approach which has also been advocated is the use of a suitably
flexible function, such as a spline, to characterise the baseline hazard. The use
of splines in statistics as a means of modelling data has been described at length
by deBoor (1978) and Wegman & Wright (1983). The use of splines in survival
models has been considered by Wahba (1978), Shaw (1988) and Durrleman and
Simon (1989). Shaw (1988) has also consider them from a Bayesian perspective.
Spline based models will be given brief consideration in Chapter 8.

5.4 Summary
In this chapter we have introduced counting process notation for describing
event history data. For survival data we have seen how counting process no-
tation is exactly analogous to traditional notation. However, counting process
notation allows rigorous proof of many of the desirable properties of traditional
survival models. It also provides a general framework within which models may
be extended to the case in which a number of different types of events may each
occur more than once.

In Chapter 6 we will consider Bayesian inference in the fully parametric mul-
tiplicative intensity model (5.12) when there is only one type of non-recurrent
event. In Chapter 7 we will consider more complicated situations when there
are a number of different events, some of which may occur more than once.
Such situations can be accommodated by models such as (5.17).
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6.1 Introduction
In this chapter we develop a simple Bayesian model for the situation in which
there are only two possible states that a patient can be in, with non-reversible
transitions between these states. The simplest example is a survival model,
where the second state is death. During the last twenty years considerable work
has been done in Bayesian survival analysis, and Abrams (1989) reviews much
of this work.

In developing the models in this chapter we have borne in mind potential
extensions to the multi-state case. As a result of this the models developed in
this chapter are different in a number of respects to those models that have
been developed by other workers in the area. The exclusive use of counting
process notation described in Chapter 5 will also be another important part of
our development as it is through this that we will see the most obvious ways in
which the models may be extended to cope with more complicated scenarios.

The outline of this chapter is as follows; in Section 6.2 we consider the
description of two state problems using counting process notation outlined in
Chapter 5. In Section 6.3 we consider the general modelling approach when
considering fully parametric multiplicative intensity models from a Bayesian
perspective. Having considered the development of a model up to a joint pos-
terior, we consider parameter estimation in Section 6.4. Two techniques are
described in detail, Laplace approximations (Tierney and Kadane, 1986) and
Gauss-Hermite quadrature (Naylor and Smith, 1982). The use of Gibbs sam-
pling (Gelfand and Smith, 1990) is outlined although not required for these
models. We also consider how credibility intervals and contours can be ob-
tained. Section 6.5 describes in detail the case when the baseline intensity is
constant over time. In this situation an exact solution exists when there are
only two patient groups, and this simple model is applied to the neutron therapy
data described in Chapter 2. We then consider extending the model to the case
when there are several covariates, and have to use one of the parameter estima-
tion procedures mentioned above. This model is applied to the neutron therapy
data where there is both clinical prior information and results from previous
studies. Sections 6.6 and 6.7 consider the case when the baseline intensity is
either piecewise constant or has a Weibull parametric form. In both situations
exact solutions do not exist even for two patient groups. Both models are again
applied to the neutron therapy data of Chapter 2. Finally in Section 6.8 we
consider further extensions of these fully parametric survival models.

6.2 Counting Processes Applied to Survival
Data

A standard survival analysis problem is one of the simplest form of counting
process. Assuming a homogeneous group of patients for whom we count the
number that fail up to time t and the number at risk at time t, those patients
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o(t)

Alive Dead

Figure 6.1: 2-State model for survival data.

who are right censored contribute only to the number at-risk process. A problem
that may also arise is that termed delayed-entry. In this situation patients enter
the study at some time point other than zero. This may occur when the time
scale being used is other than trial time, e.g calendar time or age. In this case
the at risk process would not decrease monotonically, but instead may increase
at certain time points. Figure 6.1 shows this process diagrammatically, whilst
Figures 5.3 and 5.4 show N(t) and Y(t) corresponding to o(t). In the case of
death this is an absorbing state, as once a patient has entered they do not leave.

In the case of a simple two-state model for survival, each component of a
multivariate counting process, Ni(t), is a 0/1 indicator function; 0 if patient i
was still alive at time t, and 1 otherwise. Similarly, the at-risk process, }i(t),
would also be a 0/1 indicator function; 0 if patient i was not at risk just prior
to time t, and 1 otherwise. N(t) and Y(t) for survival data are shown in
Figures 5.3 and 5.4 respectively. The intensity process, Oi(t), can be defined
such that Oi(t) t5t is the probability that patient i will die in a small interval t5t
after time t, conditional on everything that has happened up until time t. In this
case we can see that the intensity Oi(t), assuming non-informative censoring,
will either be the hazard function at time t if patient i has not failed before
time t, or if patient i has died prior to time t then the intensity will be zero,
therefore,

Oi(t) = ~i(t) }i(t)
where ~(t) is the hazard function at time t.
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Many different censoring mechanisms may be allowed for via the definition
of Y(t), but for the rest of this chapter we will assume that censoring is non-
informative, i.e the intensity that we have observed is the same as that which
would have observed whether or not we had observed the censoring distribution.
Any relationship between the intensity and patient covariates can be modelled
through "\(t).

6.3 General Modelling Approach
In this section we consider a Bayesian version of the multiplicative intensity
model in (5.12), in which the baseline intensity has a parametric form and
there may be prior information about both the baseline parameters, g_, and the
regression parameters, 13.

Suppose that each patient's survival history can be described by the triple
(Nj(t), }'i(t), Zj(t)) defined in Section 5.2.2, with Nj(t) and }'i(t) defined as in
Section 6.2 above for survival data. Following Aalen (1978) a parametric mul-
tiplicative model may be assumed such that

aj(t) = "\o(tlg_) e~Te;(t) }'i(t) i = 1,·.. , n (6.1)

where g_ is a vector of baseline intensity parameters and Zj(t) is a vector of
possible time-dependent covariates for the ith patient. Assume that prior infor-
mation about g_ and 13 may be expressed independently in terms of probability
density functions p(g_) and p(f3). Thus following the construction of the likeli-
hood found in Cox and Oake;-(1984), and described briefly in Section 5.3.3,

L(p_) = ft [aj(t)]dN;(t) [e- J: Ot;(U)dU]
1=1

(6.2)

where ¢J = (g_, (3). Therefore the joint posterior, p(p_IH) is proportional to the
product of the likelihood, (6.2), and the prior density functions p(g_) and p(f3).
The posterior, p(¢JIH), is written conditional on H, where H is used to denote
all the inforrnation available about the parameters in question, both from the
data, via the likelihood, and from any other prior information that may be
available. Therefore, algebraically,

p(!p_IH) cc ft [aj( t )]dN;(t) [e - J: Ot;(U)dU] p(g_)p(~)
1=1

(6.3)

The joint posterior density is

p(¢JIH) = re ]- J~JQ.ili=l [aj(t)]dN;(t) «: Jo Ot;(u)du p(g_)p(§.) dg_df3

ili=l [aj(t)]dN;(t) [e- J: Ot;(U)dU] p(g_)p(f3)
(6.4)

where e and B denote the parameter spaces of g_ and 13 respectively.
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Interest often focuses on one particular parameter. In clinical trials this
may be a treatment effect. Therefore, we need to obtain the marginal posterior
density for that particular parameter from the joint posterior density (6.4). For
example suppose interest focuses on a regression parameter, f3I, then we need
to integrate the joint posterior (6.4) with respect to all the parameters other
than f31 in order to obtain the marginal posterior density of f31, i.e

p(f3IIH) ex lak p(£IH) dfl.df3_1
- --1

(6.5)

where e represents the whole parameter space for fl., and B_1 represents the
parameter space for the elements of (!_ other than f3I.

We may also be interested in the relationship between two particular param-
eters, and therefore the bivariate posterior density, say P(f3I' f32IH). As with the
marginal posterior density, we need to integrate (6.4) with respect to remaining
parameters in £, i.e

P(f3b f32IH) ex lak p(£IH) dfl.df3-1,2
- --1,2

(6.6)

where B-I,2 denotes the parameter space for f33, ... ,f3p, P being the number of
regression parameters in the model. As with the marginal densities, (6.6) may
be standardised, by dividing by the corresponding integrating factor.

We may be interested in not only the parameters themselves but in some
function of one or more of them, h({!_). We can calculate the posterior mean of
h(f3) as

E[h(f3)IH] = { h(f3)p(£IH) d£ (6.7)

We will often be interested in the posterior mean of a particular parameter, say
f31, in which case h({!_) = f3I. If we are interested in the posterior variance of f31
we require the mean of f3i and therefore h(f3) = f3i. If we require the posterior
correlation of two parameters f3t and f32 then h(f3) = f31f32.

Much of the technical side of Bayesian statistks is concerned with evaluating
integrals of the form. (6.5) to (6.7). There are essentially three possible ways to
evaluate or approximate such integrals. The first method is to approximate the
joint posterior asymptotically, the second is to use numerical methods (quadra-
ture) and the third method is to use simulation techniques. In the next section
we will consider the use of all three of these techniques in evaluating integrals
such as (6.5) to (6.7).

6.4 Parameter Estimation and Inference
Advances in computing technology over the last decade now mean that a wider
range of methods is available for summarising posterior densities. In cases
where analytic solutions do not exist there are three avenues open. The first
method relies on asymptotic approximations to integrals. These often involve
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assumptions of Normality or at least some of the properties of Normality such as
unimodality. One particular method of asymptotic approximation to integrals
is due to Laplace (Stigler, 1986), and termed Laplace approximations. This
method is described in detail by De Bruijn (1958), and has been popularised
in Bayesian integration problems by Tierney and Kadane (1986, 1989). The
second method of integral evaluation is quadrature. Here integrals are approx-
imated numerically. Thisted (1988) gives a review of quadrature generally, and
more specifically the application of quadrature to Bayesian computations. One
quadrature method, Gauss-Hermite quadrature, has been shown by Naylor and
Smith (1982) to be a particularly efficient quadrature method for evaluating
integrals that arise in Bayesian methodology. The third method of integral
evaluation is simulation. Many of the methods that have found recent favour
amongst applied statisticians, can be viewed as special case of Markov Chain
Monte Carlo simulation. The most prolific, in terms of its usage, is Gibbs Sam-
pling. This method was originally developed for use in image reconstruction, see
Geman and Geman (1984), but has more recently been popularised by Gelfand
and Smith (1990) and Gelfand, Hills, Racine-Poon and Smith (1990) in more
general applied settings.

The structure of the rest of this section will be to outline each of the estima-
tion methods mentioned above, and show how they can be applied to estimate
marginal or bivariate densities for parameters of interest or posterior expecta-
tions of functions of these parameters. In subsequent sections of this chapter
Laplace approximations and Gauss-Hermite quadrature will be used to estimate
the parameters of a Bayesian two state multiplicative intensity model.

6.4.1 Laplace Approximations
Tierney & Kadane (1986) describe the use of Laplace's method of approximating
integrals of the form Jooo enG(,p)d() in the limiting case when n -+ 00. Such
approximations have been used widely in applied mathematics (Erdelyi, 1956,
de Bruijn, 1958, Jeffreys, 1961, Stigler, 1986). This approximation relies upon
the assumption that the integrand is peaked near its maximum. For a more
detailed consideration of this technique see de Bruijn (1958).

By expanding G( </» about J, the mode of G( </» and approximating e-nG(,p) in
the integrand by a function proportional to a Normal density determined by the
second order Taylor series approximation to G( </», the following approximation
can be obtained

f enG(') d4> '" J exp [nG(~) - n(4)2~,~)'l d4> (6.8)

J2";' enG(~)[l +O(n-1)1

If the integrals that need to be evaluated, in order to obtain either the marginal
densities or general posterior moments, can be written in the necessary form
then Laplace's method can be applied.
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In order to use this method in the evaluation of integrals like (6.5) we need to
consider the multivariate case, i.e replacing </> by p_. In the case of the parametric
multiplicative intensity model (6.1) p_ = (fl., (3). Let p_ have dimension q, and
fl. have dimension s, with f3 therefore having dimension q - s. Consider the
marginal posterior densityfor a particular element of P_, "f, and denote the
other q - 1 elements by {. The marginal posterior density for "f is of the form

(6.9)

where :=: and et> represent the parameter spaces for { and P_ respectively. If the
numerator and denominator of (6.9) can be considered separately, and each can
be written in the appropriate form, each may be approximated using Laplace's
method (6.9). The result of (6.9) then needs to be extended to the multivariate
case, and the marginal posterior density can then be approximated.

The multivariate equivalent of approximation (6.9) is given by de Bruijn as

[ enG(~) d</>= (211" )1/2q (J2G(</» -1/2 enG(~)

141 - n a</>2.
- - ~~

where as in the univariate case ~ is the value of </> which maximises G( </», and
I . I represents the determinant ~f a matrix. We-are now able to evalu-;:te the
integrals separately in the numerator and denominator of (6.9). Considering
the integrand in the numerator, ph, {)elb.{), this can be written as

(6.10)

and is denoted enG·(£). Similarly, the denominator, p(p_)el(~), can bewritten as

en~oSe(P(~)l/n+l(~)/nl

and denoted enG(~). Note that the G*(0 is a function of only q - 1 parame-
ters, whilst G(p_) is a function of q parameters, as we consider evaluating the
marginal density for specific values of e. We can now apply the multivariate
approximation (6.10) to both integrals. Therefore

(211')1/2(q-l) 182G·WI-I/2 enG·(~)
n ae.- {=eI=. p( "f, {)lb&) d{

I~p(p_)l(~) dp_
(211')1/2q 182G(t/J)I-l/2 enG@
n ar.

- ~=~

(6.11)
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Tierney and Kadane (1986) investigate the accuracy of the approximation
in (6.11), and show that

p(-YIH) = fi(-yIH)(1 + O(n-l)) (6.12)

where fi(,IH) is the marginal posterior density obtained using approximation
(6.11). The main reason for the error in (6.12) being as large as O(n-l) is
that the dimensionalities of the two integrals in the numerator and denomina-
tor of (6.9) are different. The main consequence is that the estimate for p(,IH)
obtained from (6.11), fi(,IH), needs to be re-normalised using numerical integra-
tion. This can be done simply using a Trapezoidal Rule. This rule approximates
the area under a function between successive points as a trapezium. For a linear
function this method is exact, but when the function is not linear an error is
introduced. This error is determined not only by the curvature of the function
between successive points, but also by the number of points that are used. See
Thisted (1988) page 264 for further details.

Similarly if the posterior expectation of a function g(1!) were required the
resulting ratio of integrals would be;

E [g( ¢»] = II) g( ¢>)p( ¢>)l(~) BP'
- ]; p( ¢>)el(~) B¢>

~ - -
(6.13)

which can be re-expressed in a suitable form, i.e

Thus, g( ¢» is required to be wholly positive as the logarithm of g( ¢» is used.
Tiern~y and Kadane (1986) only describe the case when g(p') is either a

wholly positive or a wholly negative function. In many regression situations a
parameter may be near zero. In this case the above method would not be valid,
and Tierney et al (1989) suggest two possible solutions to this problem;

1. The first method requires us to work with the moment generating func-
tions rather than the required functions directly. This method has the
disadvantage that it introduces an unknown constant, the moment gener-
ating constant, into the problem, and maximisation then needs to be done
analytically.

2. The second method simply requires that a suitably large constant is added
to, or subtracted from, the parameters, and estimation proceeds as above,
with the additive property of expectation utilised to obtain estimates of
the original function.

It is the second approach that is taken in this thesis. This may still be
unstable, and even yield negative estimates for the variance of the parameter
of interest. In this case there is another possible way to estimate the mean
and variance of a parameter of interest, though regularity conditions need to
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checked. We may be interested in the mean and variance of " having obtained
the posterior marginal density of" p(rIR), using (6.11) above. We can then
estimate the posterior mean of , by using the approximation,

E( ,IR) ~E ,p( ,IR)
r

where r is the parameter space for ,. Tierney et al (1989) have shown that this
approximation has an error O(n-1/2). In order that we may be able to obtain an
estimate of the posterior variance of " we require an estimate of the posterior
expectation of ,2. Thus,

E(r2IR) ~ E,2p(rIR)
r

If we are to use this estimate then we need to check that the posterior density
p(rIR) decreases at a faster rate than does 1/;2. If the functional form of
p(rIR) is not known then one way of checking this assumption is to plot p(rIR)
against lib - ..y)2, where j is the posterior mode.

Hills and Smith (1992) have noted that the Laplace approximations of Tier-
ney and Kadane outlined in this section are not invariant to non-linear transfor-
mations of the model parameters. They also note that the method will perform
better when the joint posterior density is close to being a multivariate Normal
density. In the case when this is not true, a re-parameterisation of the model
should be considered. The aspect of parameterisation with Laplace approxima-
tions has also been considered by Achcar and Smith (1990).

6.4.2 Gauss-Hermite Quadrature
Gauss-Hermite quadrature is a form of numerical integration considered for
parameter estimation in a Bayesian setting by Naylor and Smith (1982), Smith,
Skene, Shaw, Naylor and Dransfield (1985), Smith, Skene, Shaw and Naylor
(1987) and Dellaportas and Wright (1991b). Ifwe are interested in the indefinite
integral of a function g( 4», and there exist J1. and 0' such that,

where h(4)) is a suitably regular function, e.g a polynomial. Naylor and Smith
(1982) show that

(6.14)

n

Emi g(Zi)
i=l
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where

mi wiex~V2u
2n-1n!Ji

Wi
- n2 (Hn-1 (Xd)2

Zi I-' + V2UXi

and Xi is the ith solution of the Hermite polynomial equation Hn(4)) = O. Hn(4))
is the coefficient of t~ in exp(t4>-O.5t2). Naylor and Smith (1982) state that ther.
error term in the approximation in (6.14) will be small if h(·) is approximately
a polynomial.

If we consider the multivariate case then the simplest extension of (6.14) is,
using the Cartesian product rule,

hg(!£) 8!£ = ~ m~:)... ~ m~:)g( 4>~:), ... ,4>~:»)
'I< 11

(6.15)

where mW and zW are found using (6.15), and I-' and (J are replaced with the
current mean and variance of 4>i.

Naylor and Smith (1982) note that the product form of (6.15) can only be
justified if there is no posterior correlation between the elements of 4>,which in
most situations would appear to be unrealistic. To overcome this pr~blem they
propose to introduce a transformation of !£ to an orthogonal set of parameters
and work with these.

Convergence of this iterative procedure can be monitored in a number of
ways. Naylor and Shaw (1985) suggest using the following measures. Let p(!£IH)
to be the normalising constant defined by

p(!£1 H) = k. L(!£) p(!£) 8!£

Let pl( 4>IH) and pO( 4>IH) be the current and immediately previous estimates of
the normalising con~ant. Then the observed relative change in these estimates
(shown as a percentage) is ~p(!£IH) is defined

Consider the jth component of 1!. and let I-'} and I-'J be current and immediately
previous estimates of

Let uJ and uJ be estimates of
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We can then define the measures t:lpj and t:lUj as

1 0p.-p.t:lu.- 3 3
r3 - u9

3

and
U~ - u9

t:lu' = 3 3
3 u9

3

respectively. As with the means and standard deviations we can define a mea-
sure for the correlations, Pij. Let P~j and p?j be the current and immediately
previous estimates of the correlation. The measure /).Pij is defined by

Naylor and Shaw (1985) suggest that a simple overall measure of convergence
on the current iteration, t:l, can be defined as follows

. 1 k 1 k 1 k i-I

t:l = It:lp{~IH)1+ - E It:lpjl + - E It:lUjl+ -2 EE It:lPijl
m j=1 m j=1 m i=2 j=1

(6.16)

where m is the number of elements of ~ for which moments were calculated
and k is the total number of parameters in the problem. Often m and k will
coincide.

A software package, called BAYES4, has been developed at Nottingham
University, Naylor & Shaw (1985), that will perform Gauss-Hermite quadrature.
It is written in FORTRAN and was run on a SUN 4 Spare station. It only
requires the functional form of the log-likelihood and the joint prior density,
together with parameter starting values.

Orthogonalising transformation of the original model parameters is often
desirable since the performance of Gauss-Hermite quadrature is enhanced if the
joint posterior density is approximately a multivariate Normal density. This
aspect of the method has been noted by Hills and Smith (1992). Such reparam-
eterisation is a standard feature of the BAYES4 package.

6.4.3 Simulation Techniques

As an alternative to the two methods outlined above, when the joint posterior
cannot be well approximated by the product of a Normal distribution and a
polynomial, or when it is not uni-modal, a number of simulation techniques
have been proposed. The first idea of simulation is to simulate from the joint
posterior distribution. In some circumstances this may be difficult, especially
if the joint distribution is of a high dimension. A solution to this problem is to
decompose the joint distribution into a number of conditional distributions each
of which will have a lower dimension and be easier to simulate from than the joint
posterior distribution. Two such methods are stochastic substitution sampling
(Tanner and Wong, 1987) and Gibbs sampling, both of which are iterative Monte
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Carlo procedures. The latter is a special case of Metropolis-Hastings algorithm
(Besag and Green, 1993). Both methods are applicable when the joint posterior
density can be expressed in terms of the full set of conditional densities, and
random samples from the conditional densities may be generated. When the
functional form of the joint posterior density is known and at least one of the
conditional densities is available a non-iterative importance sampling algorithm
has been proposed by Rubin (1987).

Gibbs sampling requires that each of the conditional distributions is sam-
pled from, with the current values of the parameters being updated at each
iteration. Eventually the algorithm will converge to the marginal distributions.
Gibbs sampling was first suggested by Geman and Geman (1984) for use in
image reconstruction, but more recently Gelfand and Smith (1990) have advo-
cated the use of the Gibbs sampler for other statistical problems and Gelfand,
Hills, Racine-Poon and Smith (1990) have consider the case of Normal models.
Clayton (1991) has considered the case of inference in frailty models using the
Gibbs sampler. Gilks, Clayton, Spiegelhalter, Best, McNeil, Sharples and Kirby
(1993) describe the use of Gibbs sampling in a range of medical applications.

In some situations random samples have to be generated from distribu-
tions for which only the functional form is known. Ripley (1987) suggests an
acceptance-rejection criterion based on sampling from a ratio of Uniform dis-
tributions. The acceptance criterion can sometimes be very strict resulting in
a computationally inefficient method. Gilks and Wild (1992) have proposed a
more efficient method for the case when the log-Iikelihcodor' t.he posterior is
log-concave. This can be shown to be true for a number of .mo«Ells;:

Simulation techniques appear to be appealing, especiaUyin cases when the
joint posterior distribution is not well behaved. However, a number of problems
remain. The ease with which the random samples may be obtained. The ability
of simulation techniques to cope with multi modality is not clear. Related to this
in the case of the sampling algorithms is the question of convergence. As with
Laplace approximations and Gauss-Hermite quadrature Hills and Smith (1992)
have shown that 'good' parameterisation of models is necessary for simulation
methods to work efficiently.

In this thesis we only use the first two integration techniques, Laplace ap-
proximations and Gauss-Hermite quadrature. Initial work on implementing
both of these methods showed that they were computationally efficient for rel-
atively well behaved problems. At the same time Gibbs sampling proved to be
computationally inefficient due to the nature of the posterior conditional den-
sities, caused by the presense of censoring. It was not until the papers of Kuo
and Smith (1992) and Smith and Roberts (1993) that a method for over-coming
these difficulties was available. Using these methods the censored observations
are treated as additional unknown parameters, and a new set of conditional dis-
tributions are derived. Sampling from this new set of conditional distributions
is then usually straight forward and does not require sophisticated sampling
algorithms. Gibbs sampling is unecessarily complex for the parametric models
considered in this thesis, though it does have a role to play in the parameter
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estimation in semi-parametric models (Clayton, 1991).

6.4.4 Maximum Relative Likelihood
Before considering models in detail wemention non-Bayesian methods of estima-
tion and in particular maximum relative likelihood (or log-likelihood) (MRL),
as we will compare parameter estimates using Bayesian methodology with those
using MRL. Assuming that we have a likelihood for the data L( 4» and a corre-
sponding log-likelihood, f(1!.), then the maximum relative likelihood, R(-y), for
a particular parameter, " is defined by

where ~ is the value of 4> which maximises L( ¢», and e is the value of e, the
q - 1 p~rameters other than" that maximises-L( ¢» when, is assumed fixed.
Similarly the maximum relative log-likelihood, R*(7), is defined by

The set of values of, for which R(-y) ~ p is called the 100p% likelihood region
for ,. Similarly, we can use the maximum relative log-likelihood to obtain
intervals for " i.e R*(-y) ~ logep. Kalbfleisch (1985) describes its use in detail
for a number of applied settings.

The ideas of maximum relative likelihood and log-likelihood can be extended
to the bivariate case. Suppose that the two parameters of interest are, and S,
with e now representing the q - ~ remaining parameters. The maximum relative
likelihood is defined by R(,,~) = L(,,~, {) / L(~). Similarly the maximum rela-
tive log-likelihood is defined by R*(-y,~) = f(-y,~, e) - f( ~). As in the univariate
case if we are interested in obtaining contours, a~alogo~s to intervals, for a set
of parameter values then we can use the fact that this function will have a X2

distribution on 2 degrees of freedom, and we can calculate the height at which
specific contours will need to be drawn, say a 95% or 90% contour.

6.4.5 Approximate Clinical Inference
In the univariate case inference can proceed once either the posterior marginal
densities or the posterior moments have been calculated. We may particularly
want to obtain the probability of a parameter being either in an interval or being
less than a specific value. Both of these cases are relevant to clinical trials.
We saw in Section 3.2 that clinicians can be asked to specify both a clinical
belief and a clinical demand. Combined with the actual parameter value that
indicates no treatment difference, say 1 in the case of the odds ratio, the clinical
demand forms an interval in which the treatments are deemed to be equivalent.
This concept has been termed equipoise in Section 3.4 and by Freedman (1987).



91 Chapter 6. Two-State Models

Obviously we are interested in the probability of the treatment difference lying
inside or outside this interval. Having obtained the marginal posterior density
this probability may be calculated via numerical integration. The simplest
method to use is the Trapezoidal Rule, described briefly in Section 6.4.1.

Inference in the bivariate case is not as straight forward as in the univariate
case. We can calculate quantities such as the posterior correlation, using Laplace
approximations or Gauss-Hermite quadrature. Often we are interested in either
the probability that the parameters take values in a certain region, e.g that
/31 < 1 and /32 < 1, or we would like to know the region in which there is 100p%
probability of the parameters lying.

As with the univariate case, each of these problems may be addressed using
numerical integration, i.e a bivariate version of the Trapezoidal Rule. How-
ever, in the first case when we are calculating the probability of a parameter
lying in such a region this method would require considerable computation in
order to achieve sufficient accuracy. For the second problem, calculating the
region in which there is 100p% probability of the parameters lying, considerable
computation is again required, using a 'search type' algorithm.

A solution to' the second type of problem is to use some form of approxima-
tion method. One method that could be employed in order to obtain contour
regions is to calculate the height that a specific percentage contour is from the
maximum of a standard bivariate Normal density, assuming the same correla-
tion as the estimated bivariate density. An approximate contour can then be
obtained by either dropping down this height from the maximum of the es-
timated bivariate posterior density or by using the ratio of the height of the
contour to the height at the maximum.

For example, if we are interested in the estimated bivariate posterior density
for <p, denoted !t/>(if). If we assume that !t/>(if) is centred at the origin for
convenience, and that the covariance matrix for the density is E. If !t/>(if) was
a bivariate Normal density it would have the form -

In the case of the bivariate Normal we know that ifTE-I if has a X2 distribution
on 2 degrees of freedom. Therefore for a 95% region

I" ~e-1J/2du _ 0.95
10 2
_e-a/2 + 1

a
0.95
-210ge(0.05)

In this case a = ifTE-lif. In order that we may obtain a point on the ellipse,
we need to obtain the corresponding co-ordinates. For this we need to expand
ifTE-lif, which in the case when i= (<PI, <P2) and

E = ( 0": P~10"2 )
PO"I0"2 0"2
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becomes ¢~(1'i - 2P¢1¢2(1'1(1'2+ ¢~(1':. Therefore, if we required the 95% contour

(6.17)

Since we have assumed that the density is centred at the origin, we could find
the co-ordinates of the point (¢b ¢2) on the 95% ellipse, by setting ¢1 equal to
zero in the above expression (6.17), and noticing that if ¢1 = 0 this reduces to

¢~(1': = -2Ioge(0.05). We now know that the point (0, v'-21:~(O.05») lies on
the ellipse, and we can obtain the value of the bivariate Normal density at this
point, and in turn calculate the difference between the density at this point and
the value of the density at the maximum value. Having found this difference,
we can then use this difference to obtain the height of the approximate 95%
posterior region for f",(!f), by finding the maximum value of f",(!f) and dropping
down the same height. -
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6.5 Constant intensity model
In this section we consider the case when the baseline intensity, AO(t) is constant
over time. In the situation when there is only one homogeneous group of patients
a conjugate analysis is possible. This 'exact' analysis can be extended to the
case when there are two groups, but it is not practical to consider the case when
the group of patients is stratified any further. In this situation a more general
regression framework is required.

6.5.1 Inference for a single univariate counting process

Abrams (1989), Chapter 3, reviews a number of approaches that have been
taken when there is only one group of patients. Both Cox and Oakes (1984)
and Martz and Waller (1982) consider the case when the hazard rate is assumed
to be constant over time, and a conjugate Gamma prior distribution is used to
represent prior information. Martz and Waller (1982) also consider the case
when a Uniform distribution is used to represent vague prior information.

Consider a group of n patients indexed by i, for whom we observe either the
actual survival time, if they die, or a censoring time if they do not. Therefore
the groups survival history may be described by a multivariate counting process
N(t) = {Ni(t), i E I, t > O}, which records whether patient i has died or
not by time t. Associated with N(t) is an at-risk process Y(t) = {Yi(t), i E
I, t > O} whose components are one if patient i is at risk of death at time
t and zero otherwise. Now N(t) is governed by its random intensity process
o(t) = {Oi(t), E I, t > O}. In Section 6.2 we saw that if we assume non-
informative censoring and the patients are considered to be independent, then
Oi(t) = Ai(t)Y;(t), where Ai(t) can be interpreted as the hazard for death.

If we now assume that the group of patients can be considered to be ho-
mogeneous, and therefore all n patients have the same hazard rate A, we can
construct a univariate counting process. Thus,

n

N(t) =ENi(t)
i=l

and
n

o(t) =EOi(t) = AY(t)
i=l

where n

Y(t) =EY;(t)
i=l

Therefore from Section 5.3.3 we obtain the log-likelihood as

£(A) = 10ge(o)dN(t) - A lot Y(u)du (6.18)

and the likelihood as
(6.19)
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Maximum likelihood estimation can proceed using (6.18) or (6.19). Differenti-
ating (6.18) and setting the derivative to zero,

df(>.) = !dN(t) _ r Y(u)du = 0o. >. io
thus ~ = dN(t)1 J~Y(u)du, i.e the number of deaths per total time spent at
risk.

Given the form of the likelihood in (6.19) we can consider putting a conjugate
prior on>. as Cox and Oakes (1984) and Martz and Waller (1982) have suggested.
Such a conjugate prior has a Gamma distribution, (Cox and Oakes, 1984). Aven
(1986) and Clayton (1991) have also noted that the conjugate prior density for
the intensity process of a counting process is the Gamma density. Consider the
density function for a Gamma distribution, with parameters TJand (.

(6.20)

and where the prior mean of >., E(>.), is (ITJ, and the prior variance, V(>'), is
(ITJ2.

Appling Bayes' theorem to the above likelihood (6.19) and prior (6.20) we
obtain the posterior for >.,p(>'IH), as

p(>'IH) ex: >.(+dN(t)-le->'(1I+Jo
1

Y(u)du) (6.21)

where the posterior mean and variance for>. are (( + dN(t))/{TJ + J~Y(u)du)
and (( + dN(t))/(TJ + J~Y(u)dU)2 respectively. (* and TJ*are the parameters of
the posterior Gamma distribution, i.e (* = (+ dN(t) and TJ*= TJ+ J~Y(u)du.
Notice that if TJ= ( = 0 then the posterior estimates for the intensity reduce
to the maximum likelihood estimates of dN (t) I J~Y (u )du for the! mean and
dN(t)I(J~ Y(U)dU)2 for the variance.

In this limiting case when TJ= ( = 0, limiting because the Gamma distribu-
tion is only defined when both TJand ( are greater than zero, the prior density
is the same as the one we would have obtained had we adopted Jeffreys' prior,
see Jeffreys (1961). Jeffreys suggested using minus the expected information
matrix as a vague prior density. Using (6.19) we have that

-E!I' [d':;;) 1 = - ;, E!I,[dN(t)]

1
>.2
1

- x
which is the prior distribution using TJ= ( = 0, and places infinite mass at zero.
This exposition assumes that EYI>.[dN(t)] is the intensity if the time interval
we are considering is an interval of length 1, but any time interval can be
transformed to a [0,1] interval. Tiao and Box (1967) suggested a method for
forming a non-informative prior which is also proportional to 11>'.
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6.5.2 Exact and approximate inference for two univari-
ate counting processes

Now consider the case when each of the n patients can be thought of as falling
into one of two groups. The occurrences of death in the two groups can be
described by two separate counting processes. The model derivation is in terms
of the neutron therapy example described in Section 2.2, where there are two
treatment groups, neutrons and photons.

Suppose that we assume the intensity in each of these two groups to be
constant but different from one another. Let the intensity for neutron pa-
tients be an and that for photon patients be a". The quantity of interest is
the ratio of the two intensities, t/J, i.e t/J = an/a". Under the assumption of
non-informative censoring is equivalent to the ratio of the hazard rates in both
groups, i.e t/J = )..n/ )..". As in the case of a single univariate counting process
described in Section 6.5.1, using a conjugate Gamma prior for each of the in-
tensities separately yields corresponding Gamma posterior densities. We can
obtain the posterior distribution of t/J as the ratio of two Gamma distributions.
This distribution, may either be obtained exactly or it may be approximated
using a Normal approximation.

Consider just the photon group,

"oJ Gamma(7J;, (;)
"oJ Gamma(O.5, (;)

2
"oJ X2(;

Similarly,

Therefore we have

(6.22)

We are interested in the distribution of the hazard ratio, and there are two
possible methods. We can directly obtain the distribution for the ratio or we
could use an approximation. First consider the direct method.

If a random variable, X, has a density function, f(x), and we require the
density function of a new random variable, Y, defined by the transformation,
Y = r(X), then defining X = s(Y), the density for Y, g(y), is given by Cox
and Hinkley (1974) as

ds(y)
g(y) = f(s(y)) T

In this case the transformation from X to Y is only a multiplication by a
constant, 7J;(~/7J:(;,and therefore
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So if TJ:(;An/TJ;(~Ap has an F distribution, with density f(.) and the relevant
degrees of freedom, the posterior density of An/ Ap, g(.), is

which can be evaluated for various x.
Lindley (1964, 1965) suggests that in the case when 2(~ and 2(; are large,

i.e greater than 20, then an approximation may be used for the F distribution.
If such an approximation is valid then this yields a computationally simple
procedure for inference. If a random variable, X has an F distribution with v and
w degrees of freedom, then O.51og(X) is approximately Normally distributed
with mean O.5(I/w-l/v) and variance O.5(I/w+l/v). Using this approximation
we can obtain an approximate distribution for the log of the hazard ratio. Thus,

11 (TJ: An/2(~) . N [ 1 1 1 1 12 og, TJ;Ap/2(; '" 4(; - 4(~' 4(; + 4(~

Therefore after re-arranging we obtain an approximate Normal distribution for
the log-hazard ratio,

(6.23)

log,C:).:N [2~; - 2~"-log (~~~D,~;+~"l
Therefore the ratio of the intensities, Ani Ap, has an approximate Log-Normal
distribution.

We can again consider the case when we assume vague prior information
for Ap and An, i.e TJp= (p = TJn = (n = O. From Section 6.5.1'TJ; = dNp(t),
(; = J~Yp(u)du, TJ: = dNn(t) and (~ = J~Yn(u)du. Substituting these values
for TJ;, (;, TJ: and (~ into (6.24) 1jJhas a posterior Log-Normal density with
approximate mean

(6.24)

(6.25)

and approximate variance

(6.26)

We can see that the mean (6.25) reduces to the ratio of the maximum likelihood
estimates in the single group case when dNp(t) is large, i.e the number of deaths
per person days of follow-up.

We may also estimate the hazard ratio, 1jJ,using maximum likelihood meth-
ods. If we assume that Ap = 6 and therefore that An = 61jJ,the log-likelihood is
given by,

n

£(6,1jJ)= L: [di loge(61jJzi)- 61jJZiti]
i=l
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where d; is an indicator of death, ti are survivalj censoring times and z, is an
indicator variable representing treatment, i.e O=photons, l=neutrons. Partially
differentiating once we obtain,

af
as
af
a1/J

and twice

a2f Ei=l di
aS2 S2
a2f Ei=t dizi=a1/J2 1/J2

a2f n

a1/Jas - - L:Ziti
i=l

Setting both the above partial first derivatives to zero yields a turning point,
which can be shown to be a maximum provided that all the deaths do not Occur
in only one patient group. Therefore the maximum likelihood estimate, ~, of
the the hazard ratio, 1/J, is

~ = Ei=l dizi X Ei:l (1 - Zi)ti
Ei=t ziti x Ei=t (1 - zi)di

which is simply the ratio of the maximum likelihood estimates for the two
hazards. We can obtain the asymptotic covariance matrix for the parameter
estimates, and an estimated variance for ~ is

6.5.3 Example
Construction and use of a clinical prior

In Section 3.2 the elicited beliefs of a non-random sample of clinicians about
the efficacy of neutron therapy compared to photon therapy were described.
Those beliefs were about the 12 month failure rates, but here we are interested
in their beliefs about the hazard rate generally in the two groups. Given the 12
month failure rate it is possible to transform those beliefs into beliefs about the
corresponding hazard rate, assuming that it is constant over the trial period.

The density, f(x), of the exponential distribution is Ae-.xx, where A is the
hazard rate. If ()is the 12 month hazard rate then f;65 f.x(x)dx = (). Therefore
[_e-.xX]~5 = (), which on re-arranging yields an expression for A of -loge(1 -
())/365. From Section 3.2 we found that the mean 12 month failure rate for
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neutrons, On, was 0.46 and assumed that for photons, Op, was 0.5. Applying this
method yields point estimates of 0.00171 for An and 0.00190 for Ap.

We would also like to transform the elicited beliefs about that variability
of the 12 month failure rates. One possible solution to this problem is to con-
struct an interval of beliefs for 0 and transform the lower and upper limits of
this interval onto a hazard scale using the method described in the previous
paragraph. This interval for the hazard rate could then be used in conjunction
with the point estimate to obtain an estimate of the variability in the beliefs
about the hazard rate. This solution relies on the assumption that these beliefs
are symmetric about the mean. Applying this technique yields variances for An
of 9.04E - 07 and for .Ap of 2.07E - 07. Alternatively we could have used the
method given by Cox and Hinkley (1974) (page 302) for the asymptotic variance
of a one-to-one and differentiable function of a maximum likelihood estimate.

Having obtained the prior estimates for the two intensities and their re-
spective variances we now assume Gamma distributions for these, and use
the relationships mentioned in Section 6.5.1 between the mean and variance
of a Gamma distribution and its parameters, "I and (. For the photon group,
E(.Ap) = 0.0019 = (p/"'p and V(Ap) = 2.07E - 7 = (p/"'~' Solving these two
equations for." and ( subject to the constraint that both." and ( are greater
than zero, yields ."p = 9179 and (p = 17.44. Similarly the prior estimates for "In
and (n are 1890 and 3.23 respectively.

From the neutron therapy data of Section 2.2, using a censoring date of 21st
December 1990, we find that the total number of deaths on the photon arm
is 38, and on the neutron arm 71, whilst the total survival time for photon
patients is 31453 days, and for neutron patients is 38806 days. Using this data,
and applying the methods described in Section 6.5.1 to each group separately
we can obtain the. posterior estimates for the parameters of the two Gamma
distributions, i.e "I;, (;, .,,~and (:. These are 40632, 55.44, 40696 and 74.23
respectively.

Using these prior and posterior estimates for the parameters of the Gamma
distributions, the respective densities for t/J, the ratio of the intensities, could
be calculated, using either the exact method or a Normal approximation of
Section 6.5.2. Table 6.1 shows various summary statistics for these distributions
and they are displayed in Figure 6.2 together with the maximum relative log-
likelihood.

We can see from Figure 6.2 that the posterior densities are almost exactly
the same for the two methods, but there is a slight difference in the prior
densities due to their skew nature. Prior to the trial the group of clinicians had
approximately 63-65%belief that neutrons were beneficial, i.e that t/J < 1. In the
light of the trial results they would believe that there was only approximately a
7% chance that neutrons were beneficial if they were being coherent. Similarly,
there was a reduction in the degree of belief that the clinicians had that neutron
therapy should be routinely used, i.e t/J < 0.715, from approximately 34-35%
a priori to zero a posteriori. From Table 6.1 we can see that the prior mean
is shifted from approximately 0.93 to 1.3, towards the maximum likelihood
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estimate for the hazard ratio of 1.515, i.e to the other side of 1.

Exact Normal approx.
Mean SD P(1)4 P(O.72) Mean SD P(1) P(O.72)

Clinical Prior 0.927 0.544 0.626 0.414 0.953 0.801 0.649 0.432
Clinical Posterior 1.361 0.245 0.049 0.000 1.361 0.248 0.050 0.000
MLE 1.515 0.180 - - - - - -
Reference Posterior 1.536 0.311 0.023 0.000 1.524 0.257 0.181 0.000

a P(l) and P(O.72) refer to the probability that t/J is less than 1 and 0.72 respectively.

Table 6.1: Maximum likelihood, prior and posterior summary statistics of
tP = >"n/ >"v, for all patients and using a clinical prior.

Construction and use of a meta prior

Errington et al (1991) report a meta analysis of trials that compared neutron
therapy with standard photon therapy for patients with tumours of the pelvic
region (rectum and bladder). Table 3.2 shows the numbers of neutron and
photon patients who were alive/dead at 12 months in each of the six trials.
Figure 3.5 shows the odds ratio and approximate 95% confidence interval for
each trial, and the Mantel-Haenszel estimate of the overall odds ratio. As
opposed to using a prior based on the information elicited from the ten clinicians
as we have done above, we could use the information contained in the meta
analysis.

We saw in Section 3.3.2 that overall, out of 6 trials reported, 60 out of 183
(32.8%) photon patients were dead at 12 months, and 107 out of 206 (51.9%)
of neutron patients were dead at 12 months. The variances associated with
these proportions are 0.0012 for photons and 0.0012 for neutrons. Therefore,
E(()v) = 0.328, V(()v) = 0.0012, E(()n) = 0.519 and V(()n) = 0.0012.

Using the methods of Section 6.5.2, these 12month probabilities of death can
be transformed into estimates of the hazard, again assuming that the hazard re-
mains constant and that it equals the value at 12months. Therefore for photons,
E(>"v) = 0.00109 and V(>"v) = 2.222E - 8 while for neutrons E(>"n) = 0.00201
and V(>"n) = 4.437E - 8. Assuming conjugate Gamma prior distributions again
we can obtain the prior estimates for TJand (. As before we can use the rela-
tionship TJ= E(>..)/V(>..) and ( = E(>..)2/V(>..) to obtain estimates for TJv, (v, TJn
and c; These are 49010, 53.37, 45301 and 91.05 respectively.

As the meta analysis only considered rectum and bladder patients we will
restrict the data to just these types of patients, n = 119. Using a censoring
date of 21st December 1990, there are 32 photon deaths and 58 neutron deaths,
whilst the total survival times for 19564 days for photon patients and 28900
days for neutron patients. Using the methods of Section 6.5.2 we can obtain
the posterior estimates of two Gamma distribution parameters, i.e TJ;, c; TJ:
and (~. These are 68574, 85.37, 74201 and 149.05 respectively.
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Figure 6.2: Maximum relative log-likelihood, together with exact and approx-
imate prior and posterior densities for hazard ratio (neutrons to photons) for
neutron therapy survival data using all patients, n = 154.
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Exact Normal approx.
Mean SD PO) a P(O.72) Mean SD P(I) P(O.72)

MLE 1.227 0.161 - - - - - -
Clinical Prior 0.927 0.544 0.626 0.414 0.953 0.801 0.649 0.432
Clinical Posterior 1.180 0.229 0.222 0.006 1.180 0.228 0.221 0.006
Meta Prior 1.877 0.322 0.000 0.000 1.881 0.327 0.000 0.000
Meta Posterior 1.633 0.224 0.000 0.000 1.633 0.223 0.000 0.000
Reference Posterior 1.248 0.278 0.185 0.009 1.266 0.282 0.168 0.006

a P(1) and P(O.72) refer to the probability that t/J is less than 1 and 0.72 respectively.

Table 6.2: Maximum likelihood, prior and posterior summary statistics of tP for
rectum and bladder patients, using a clinical prior and an overall meta prior

Table 6.2 shows various summary statistics for the prior to posterior analysis
using just the rectum and bladder patients, when both the clinical prior and
a prior based on the results of the previous trials described in Errington et
al (1991) were used. The densities together with the maximum relative log-
likelihood are shown in Figure 6.3. We can see that the clinical prior was
optimistic about the relative efficacy of neutron therapy, while the prior based
on previous trial was not, and in fact suggested that for rectum and bladder
patients photon therapy was more effective. When we compare the effects of the
data on these priors we see that the clinical prior is shifted quite considerably
by the evidence of the trial results, while the meta prior is hardly affected.
Not only was there a difference between the prior means, but also between the
prior standard deviations. The clinical prior had a standard deviation for tP
of approximately 0.4, whilst the one based on the previous trial results had
a standard deviation of 0.29. Note that both the exact solution and the one
using a Normal approximation give consistent answers, with the densities in
Figure 6.3 being almost indistinguishable.

6.5.4 Regression Model
The problem with the methods of Section 6.5.2 is that they cannot be easily
extended to the case when there are more than two patient groups. Therefore
in this section we will consider developing a regression model that allows us to
include a number of possible covariates. Any model should be flexible and able
to accommodate a number of different events, each of which may be recurrent.
To achieve this we will make use of the counting process notation introduced
in Section 5.2, and utilised in a fully parametric multiplicative intensity model
in Section 5.3.3. In Chapter 3 we saw that there is often prior information
available about the relative efficacy of treatments, and the regression models
that we develop need to be able to use such prior information.

For each patient, indexed by i, there is a counting process, Ni(t), which is
either 0 or 1 depending whether the event of interest has occurred. Note that
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this is a simplification of the multivariate counting process, where subscript j
has been dropped because we only have one time epoch, and subscript k has
been dropped because there is only one type of event. Similarly associated with
each counting process there is an intensity process ai(t), and an observational
process, }i(t), which in this case will be either 0 or 1 depending whether the
event has not or has occurred. Both Ni(t) and }i(t) in this situation are shown
in Figures 5.3 and 5.4.

The simplest form of a multiplicative intensity model is considered when
there is one baseline intensity parameter, e. The multiplicative intensity model
of Aalen (1978) that was described in Section 5.3 is of the form

(6.27)

and in this particular case then Ao is constant and we will parameterise the
model such that Ao = eO. The reason for doing this is so that e is a parameter
over the real line, but Ao remains positive, as it must by the definition of the
intensity, a(t). Thus substituting Ao = eO into (6.27) yields

(6.28)

Initially we will consider the case when there is only one binary covariate
in the model. This could indicate treatment regime in the neutron therapy
example. Therefore e~Tei is of the form e/3zi, where z, is an observed time-
independent treatment indicator for the ith patient.

Likelihood

Using an argument analogous to that in Section 5.3.3 we can, under the assump-
tion of non-informative censoring, obtain a likelihood for the two parameters in
the model. As we saw in Section 5.3.3, in general the likelihood function is of
the form n

L(1:.) = IIf(tl1:.)dNi(t)S(tl1:.)l-dNi(t)
i=l

where f(tl1:.) and S(tl1:.) are the density and survivor function respectively. Usu-
ally we would like to work with the log-likelihood function, and express this in
terms of transition intensities,

(6.29)

Given the definition of ai(tl1:.) above in (6.28) we can substitute this into (6.29)
to obtain an expression for the log-likelihood, for the case when 1:. = (e, (3).

f(e,{3) = t. [log(ao(t)epzi}i(t))dNi(t) - aoePZi lot }i(u)du]

- t. [log(eOe/3zi}i(t))dNi(t) - eOe/3zi fat }i(u)du]



Chapter 6. Two-State Models 104

n n

lJL:[li(t)dNi(t)] + ,8L:[zili(t)dNi(t)]
i=1 i=1

-e' [eP t. z, 1.'Y;(u)du + t.(1- Zi) /.' Y;(u)du1 (6.30)

Similarly the likelihood is,

L(lJ,,8) = e8E7=1[Yi(t)dNi(t)]ePE7=1[ZiYi(t)dNi(t)]

ee9 [ell E7=1 ZiJ: Yi(u)du+ E7=1 (l-z;) J: Y;(U)dU] (6.31)

Note that Ei=1 [li(t)dNi(t)] represents the total number of events in all n pa-
tients, in a survival problem this would be the total number of deaths, while
Ei=1 [Zili(t )dNi (t)] represents the number of events in the patient group in-
dexed by zi, Ei=1 Zi J~ li(u)du represents the total time at risk for patients for
whom z; = 1 and Ei=l(l - zi)J~li(u)du represents the total time at risk for
patients for whom z; = o.

Prior Distributions

In this section we describe the use of informative and non-informative prior evi-
dence and beliefs. In Chapter 3 we saw that some knowledge is usually available
about the treatment parameter, or some function of it. For the baseline param-
eters we have in some cases assumed arbitrary values for them in eliciting beliefs
about the treatment parameter, and so have decided to use a non-informative
prior density for the baseline parameter.

Non-Informative Prior Distributions

Jeffreys (1961) suggested that minus the expectation of the information matrix
could be used as a vague prior. Let </> = ((),,8), and £( </» be the log-likelihood
for a two parameter model (6.30). Also let !&. represent all the data i.e Xi =
(Ni(t), li(t)'~i)' where Ni(t) is a counting process which is zero if patient i has
not died by time t, and one they if they have, li(t) is an at-risk process that is
one whilst patient i- is alive at time t, but zero when they are dead and ~i is a
vector of observed time-independent covariates for patient i. The Information
Matrix, I(p_) is

-E [f)2£(</»]
=I!t f)p_2

Consider the partial derivatives of £(p_), the hessian is

[

_e8 [ePEi=lziJ~li(u)du+Ei=l(l-Zi)J~li(u)du] _e8 [ePEi::lZiJ~li(u)du] 1
_e8 [ePEi=l z, J~ li(u)du] _e8 [ePEi=l z, J~ li(u)du]
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Consider now taking the expectation of each element of the hessian with respect
to ~I~.E~Ip. [_e8+.B 2:i=l z, J~}i( u )du] using the additive properties of expecta-
tion reduces to _e8+.B 2:i=l E~Ip. [Zj J~ }i(u)du], but as z; are observed quantities,
E~Ip. [J~ }i(u)du] is simply the reciprocal of the intensity rate i.e l/e8+.B if Zj = 1
and zero otherwise. Therefore

E I~[_e8+.B ~ t.z.] = _e8+.B _1_ ~ z·
~:!:. L...J I I e8+.B L...J I

and so the expectation is a constant i.e 2: zi.
Similarly the expectation of 2:i=l(1 - Zj) J~ }i(u)du with respect to ~I¢> can'

also be shown to be a constant, 2:i=l (1 - Zj). -
Therefore using Jeffreys' vague prior is the same as using a Uniform prior

regardless of whether we assume that the parameters are a priori independent.
This result for the exponential model has also be noted by Kass and Slate
(1992).

Informative Prior Distributions

In the case of a regression model, we could use a Gamma prior density for (),
but because of the form of the model this does not yield closed form marginal
posterior densities or even a closed form joint posterior density, nor would it
be applicable for /3. Therefore, a more suitable density is the Normal density.
From an estimation point of view it has several important features one of which
is unimodality. It also has the property that its parameters have clear meaning.

Posteriors

The Bayesian paradigm states that the posterior density is proportional to the
likelihood multiplyed by the prior density, i.e

P(~IH) ex: L(~) x P(~)

The exact posterior density can be obtained by dividing the product of the
likelihood and the prior density, by the integral of this product over the whole
of the parameter space of~. Thus,

L(~) p(~)
p(~IH) = J~L(p_) p(p_) dp_

Depending upon which prior is used we will obtain different posterior den-
sity functions. The 'most' complicated will result when there is a multivariate
Normal prior for () and /3. The 'simplest' will be obtained when there are un-
informative priors for both () and /3, in this case a 'standardised' likelihood will
result.
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Using Uniform prior densities for both 0 and f3 yields a joint posterior of the
form

p(O, f3IH) cc eOE~=1[Y;(t)dN,(t)] eIlE~=1[z,Y,(t)dN.(t)]

ee9 [ell E~=1z, fot Y;(u)du+ E~=1(l-z,) Iot y,(U)du]
(6.32)

Using a Uniform density for 0, but an informative Normal prior density for f3
with mean TI and variance w2, both of which are assumed to be known, yields a
joint posterior of the form

p(O, f3IH) cc eoE~=l[y,(t)dN,(t)] eIlE~=1[z,Y,(t)dN.(t)]

ee9 [ell E::'1 z, I: Y,(u)du+ E~=1(l-z,) I:Y;(U)du]
e-l/2~ (6.33)

Finally considering the case when we wish to put an informative prior on both
o and f3 independently, i.e both Normal densities, yields a posterior density of
the form

p(O,f3IH) cc eoE~=1[Y;(t)dN,(t)] eIlE::'1[z,Y,(t)dN,(t)]

ee9 [ell E~=1z, Iot Y;(u)du+ E~=1(l-z;) I: Y,(U)du]

_1/2(Il-YJ)2 _1/2(9-;)2e ---;;;r- e , (6.34)

where the parameters of the two prior distributions, TI, w2, v and (2 are all
assumed to be known.

Parameter Estimation

Letting 1!. be equal to (0, (3), then we are interested in obtaining the marginal
posterior densities for both 0 and f3, and posterior estimates for the mean vector
and the covariance matrix for 1!_. We could use any of the three estimation
methods described in Section6.4, but we will concentrate on applying Laplace
approximations (Section 6.4.1) and Gauss-Hermite quadrature (Section 6.4.2).

First consider the application of Laplace approximations to the joint poste-
rior in (6.32). In this case G(1!.) = loge(P(O, .8IH)Jln. Thus we need to be able to
maximise the logarithm of (6.32) both when 0 and f3 are unknown, and also in
the case when one of the parameters is assumed fixed and we wish to maximise
with respect to the other parameter. We also require the second derivatives
of the logarithm of (6.32). In this simple two parameter example these can be
obtained analytically.

nG(p_)
n n

o L[Yi(t)dNi(t)] + f3 L [ziYi(t)dNi(t)] -
i=1 i=1

[
n t n r 1eO ell{;:Zifo Yi(u)du+tt(I-Zi)}o Yi(u)du
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In order to maximise G(!l.) with respect to !l. consider the first derivatives

ac( </»

ao

ac( </»

af3

(6.35)

(6.36)

We can see from (6.35) and (6.36) that an explicit solution to the maximisation
problem does not exist. Therefore an iterative procedure is required. For this
simple two parameter example the necessary calculations were performed in
Splus (1990)1 using the nlmin function that is based on a quasi-Newton method.
For further details see Dennis and Mei (1979). We shall see in later sections
in this chapter, that as the regression model becomes more complicated with
many parameters other methods of optimisation need to be employed. This is
due partly to the algorithm used in nlmin and partly to the time that Splus
takes to perform such optimisations.

In order to use the Laplace approximation in (6.11) we also require the hes-
sian of G. In this two parameter problem we can write down the hessian matrix
without too much difficulty. This can then be evaluated at the necessary pa-
rameter values. In more complicated regression models we may need to consider
the use of numerical estimates of the hessian matrix, as differentiation would
be time consuming. The second derivatives for the two parameter model are

a2G( </»

a02
a2G( </»

aoaf3
a2G(!l.)
af32

-e' [eP~ z; J.\( u)du+ ~(1 - Zi) J.\( u)duj
-e' [eP~z' J.\(U)duj

- -e' [eP~z, J.\(U)duj (6.37)

The application of Gauss-Hermite quadrature to (6.32), (6.33) and (6.34) is
more straight forward. Using BAYES4 which requires only that the functional
form of both the log-likelihood and prior density are given, the parameter esti-
mates, their standard deviations and posterior densities were calculated. Con-
vergence was defined as ~ being less than 10-3 on two consecutive iterations.
Further iterations were are in order to obtain parameter estimates and posterior
densities. These were all calculated on a 19x 19 grid of points.

Example

Applying model (6.28) to the neutron therapy data in Chapter 2, together with
both the clinical and meta priors derived in Sections 3.2 and 3.3 and shown in

lSplus is marketed by Statistical Sciences U.K, 52 Sandfield Road, Oxford, OX3 7RJ
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Table 3.4, yields the summary statistics in Table 6.3. There are two main points
to notice. The first is that Laplace approximations and Gauss-Hermite quadra-
ture give very similar results. This is also borne out by Figures 6.5 and 6.6
which show the marginal posterior densities together with the maximum rela-
tive log-likelihood. The second point is that these results reinforce the results
obtained from using the non-temporal models of Chapter 4 and the exact anal-
ysis of Section 6.5.3. That is, the clinical prior beliefs, that neutrons are likely
to be beneficial, should be revised in the light of the data, so that a posteriori
there would be only slight belief in the beneficial effect of neutrons for pelvic
tumours. In contrast to the elicited clinical beliefs, the prior density based on
previous trial results would be changed little in the light of the data, and if any-
thing should be revised so that a posteriori there was slightly more belief in the
relative efficacy of neutron therapy for pelvic tumours, but the vast majority of
the mass of the density is to the right of zero indicating that neutrons are not
beneficial, compared to photons.

We can also see from Table 6.3 that using either a clinical or meta prior
for f3 leads to a reduction in the standard deviation of the parameter estimate
compared to the standard deviation of the maximum likelihood estimate. This
is also true for the standard deviation of 0 even though we have used a prior
Uniform density for this parameter. The covariance estimates appear to change
little from those obtained under maximum likelihood. This reflects the fact that
we have assumed an independent prior structure, and not hierarchical one. This
will be discussed further in the discussion section.

A sensitivity analysis in which the informative prior for the treatment pa-
rameter f3 is varied, whilst a Uniform prior density is assumed for 0, yields the
summary statistics in Table 6.4 and the marginal densities for f3 are shown in
Figure 6.7. As would be expected a near doubling of the prior standard devi-
ation results not only in a slightly increased posterior standard deviation, but
also in the posterior mean being shifted nearer to the maximum likelihood esti-
mate, Figure 6.7 (a). A doubling of the prior clinical mean, but with the prior
standard deviation remaining approximately constant, results in the posterior
mean being only just positive, i.e indicating that neutrons are not beneficial,
with the posterior 'standard deviation remaining approximately equal to the
case when the clinical prior density is used, Figure 6.7 (b). Figures 6.7 (c), (d)
and (e) show the case when the prior mean is fixed at an extreme value, -1.2,
indicating a belief in the beneficial effect of neutrons, and the prior standard
deviation is varied. In the case when a very small standard deviation is assumed
the posterior density is only shifted slightly away from the prior density. In-
creasing the prior standard deviation from 0.1 to 0.173 results in the posterior
density being shifted to the right, as it is influenced to a greater degree by the
likelihood. When the prior standard deviation is increased to 0.361 the poste-
rior density is influenced by the likelihood to an even greater extent. There is
now a substantial weight of evidence a posteriori that neutrons are in fact not
beneficial. From Table 6.4 we can see that the posterior probability of neutrons
being beneficial fall from 1 when the standard deviation is either 0.1 or 0.173,
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to 0.4 when a prior standard deviation of 0.361 is used. Finally we consider the
case when a prior with a mean greater than the meta prior mean is used. This
indicates that a priori there is strong belief in photons being more beneficial
for patients with tumours of the pelvic region than neutrons. As we can see
from Figure 6.7 (f) the corresponding posterior is only slightly shifted by the
weight of evidence in the current trial, with even more sceptical posterior beliefs
about the efficacy of neutron therapy for these patients than the actual trial re-
sults. The usefulness of a sensitivity analysis is that it is a means by which the
strength of evidence for the use of neutron therapy given by the current trial
results can be assessed. In the sensitivity analysis described here we 'can see
that only when a very informative prior density that conflicted with the current
trial results was used is there a major discrepancy between the posterior density
and the likelihood.

In all of the above analyses we have assumed that there is little prior infor-
mation about the baseline intensity. However, it should be possible at least to
use the results of the meta analysis described in Section 3.3.2 to put some prior
distribution on e, and to use the clinical prior for (3. In Section 6.5.3 above we
saw that using the results of the meta analysis we could obtain prior estimates
for the hazard rate for both neutron and photon patients. For photon patients
these were E(Ap) = 0.00109 and V(Ap) = 2.222E-S. These can be transformed
into a prior for e, i.e 10ge(Ap).If we assume a Normal distribution for this prior
distribution of e it will have a mean of -6.S97 and a variance of 0.02. As the
meta analysis considered only bladder and rectum patients, we will analyse only'
data for these patients. Thus the data set is reduced from 154 patients to 119.

Using independent Normal priors yields the estimates in Table 6.5. Fig-
ure 6.S shows the marginal densities for e and {3, whilst Figure 6.9 shows the
bivariate densities for e and {3. We can see from Figure 6.S that the meta prior
for e indicated that photon patients had a smaller hazard than the actual data
suggested. Thus the posterior density for e was approximately half way between
the meta prior and the maximum relative log-likelihood. As in the previous ex-
ample the clinical prior for {3 indicated that neutrons patients did better than
photon patients. Similarly these beliefs should be updated so that a posteriori
it is believed that neutron patients do not actually fair better than photon pa-
tients. A difference in the revision of the prior beliefs about the log hazard ratio
in this case compared to when e was assumed to have a Uniform prior density is
that the mean and mode for {3 is to the right of the maximum likelihood value.
At first this appears unusual but we can see from Table 6.5 that the posterior
covariance of e and {3 is approximately -0.01, which corresponds to a posterior
correlation of -0.6. Thus a posterior density for e with a mode less than that
of the maximum 'relative log-likelihood, will cause the posterior density for {3
to increased more than it would otherwise have been. This example highlights
the fact that careful examination of both the marginal and bivariate posterior
densities is required in order that mis-leading inferences are not made.

Figure 6.9 shows that the joint log-likelihood is uni-modal and appears well
behaved. Thus both Laplace approximations and Gauss-Hermite quadrature
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would be expected to perform reasonably well, (Hills and Smith, 1992).

(J (3
(Baseline) (Neutrons)

Mean SD Mean SD p(O)a P(-O.26) Cov((J,(3)
MLE -6.719 0.162 0.415 0.201 - - -0.026
Prior - 00 - 00 - - 0.0
Posterior (L)b -6.732 0.166 0.421 0.201 0.015 0.000 -0.026
Posterior (G- H)C -6.732 0.163 0.421 0.202 0.017 0.000 -0.026
Prior - 00 -0.116 0.286 0.654 0.305 0.0
Posterior (L) -6.619 0.138 0.245 0.162 0.060 0.000 -0.016
Posterior (G-H) -6.619 0.138 0.245 0.162 0.064 0.001 -0.016

Prior - 00 0.430 0.130 0.000 0.000 0.0
Posterior (L) -6.732 0.123 0.426 0.116 0.000 0.000 -0.009
Posterior (G- H) -6.732 0.122 0.426 0.116 0.000 0.000 -0.009

a p(O) and p( -0.26) denote the probability that fJ is less than 0 and -0.26 respectively.
iL denotes estimation using Laplace approximations.
CG-H denotes estimation using Gauss-Hermite quadrature.

Table 6.3: Parameter estimates for constant intensity model using clinical and
meta priors, and using 21st December 1990 as censoring date.
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fJ (3
(Baseline) (Neutrons)

Mean SD Mean SD p(O)a PC-O.26) Cov(fJ,(3)
MLE -6.719 0.162 0.415 0.201 - - -0.026
Prior - 00 -0.116 0.405 0.613 0.361 0.0
Posterior (L)b -6.663 0.146 0.315 0.178 0.034 0.000 -0.020
Posterior (G-H)C -6.663 0.147 0.315 0.178 0.037 0.000 -0.020
Prior - 00 -0.260 0.202 0.901 0.500 0.0
Posterior (L) -6.526 0.076 0.088 0.140 0.254 0.006 -0.011
Posterior (G-H) -6.525 0.125 0.088 0.140 0.264 0.006 -0.011
Prior - 00 -1.2 0.100 1.0 1.0 0.0
Posterior (L) -6.089 0.100 -0.863 0.090 1.0 1.0 -0.003
Posterior (G-H) -6.089 0.101 -0.863 0.090 1.0 1.0 -0.003
Prior - 00 -1.2 0.173 1.0 1.0 0.0
Posterior (L) -6.237 0.107 -0.484 0.129 0.999 0.956 -0.007
Posterior (G-H) -6.237 0.111 -0.484 0.129 0.999 0.958 -0.007
Prior - 00 -1.2 0.361 0.999 0.995 0.0
Posterior (L) -6.503 0.133 0.047 0.171 0.376 0.032 -0.015
Posterior (G-H) -6.503 0.136 0.047 0.170 0.392 0.035 -0.016

Prior - 00 1.5 0.173 0.000 0.000 0.0
Posterior (L) -7.196 0.246 1.073 0.139 0.000 0.000 -0.018
Posterior (G-H) -7.199 0.145 1.073 0.139 0.000 0.000 -0.015

IIp(O) and p( -0.26) denote the probability that (3 is less than 0 and -0.26 respectively.
bL denotes estimation using Laplace approximations.
cG-H denotes estimation using Gauss-Hermite quadrature.

Table 6.4: Parameter estimates for various priors for survival data, using 21st
December 1990 as censoring date.

fJ (3
(Baseline) (Neutrons)

Mean SD Mean SD p(O)a p( 0.26) Cov( fJ, (3)
MLE -6.416 0.177 0.205 0.220 - - -0.031

Prior -6.897 0.141 -0.116 0.286 0.654 0.305 0.0
Posterior (L)b -6.654 0.108 0.335 0.152 0.013 0.000 -0.009
Posterior (G-HY -6.654 0.108 0.335 0.152 0.014 0.000 -0.010

<I p(O) and p( -0.26) denote the probability that (3 is less than 0 and -0.26 respectively.
bL denotes Laplace approximation.
cG-H denotes Gauss-Hermite quadrature.

Table 6.5: Rectum & Bladder patients, meta prior for () and clinical prior for f3
_ using 21st December 1990 as a censoring date, i.e n = 119.
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6.6 Piecewise Constant Intensity
In this section we extend the model (6.1) to the case when the baseline intensity
is allowed to vary, in a constrained manner, with time. The simplest way that
this can be achieved is to split the time scale into a finite number of epochs,

. and to allow the baseline intensity to be constant within each epoch.

6.6.1 General Model
One possible extension of the parametric form for the baseline intensity in (6.1)
is to consider it to be piecewise constant. This means that we specify a set
of time points, 1:, for which the baseline intensity remains constant between
consecutive points. We can therefore consider a multivariate counting process,
N(t) = {Njj(t), i E I,j E J, t > O}, each component of which counts the
number of events, in the case of death zero or one, that have occurred up
to time t in the jth epoch. N(t) is governed by a random intensity process
a(t) = {ajj(t),i E I,j E J,t > O}. Associated with N(t) is an at-risk process
Y(t) = {}ij(t), i E I,j E J, t > O}. Therefore (6.39) becomes

ajj(t) = A(tIOj) eQJ3:ij(t) }ij(t) Tj < t ~ Tj+I j = 1"", m (6.38)

and parameterising as in the constant case (6.38) becomes

aij(t) = e8j eQJ&:ij(t) }ij(t) Tj < t ~ Tj+I j = 1"", m (6.39)

where typically T} = O.
The log-likelihood can be written in the general case

(6.40)

Substituting (6.39) into (6.29) yields a log-likelihood of the form

l{fl,~) = t.t.{log.le" e~T~(,) Yi;{t))dN;;{t) - f.' e" e~T~(.) Yi;{ u) dU}

(6.41)

6.6.2 Simple Model
We can consider the case when there are only two time intervals, and one re-
gression parameter. As in the constant intensity model above in Section 6.5 this
could be thought of as the treatment effect in the neutron therapy example.

Model (6.39) reduces to the simpler form

(6.42)
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and similarly the log-likelihood (6.41) reduces to

£(Ot,O2,(3) = i: t: {loge[ellj e{3zil'ij(t)]dNiAt) - lot ellj e{3zil'ij{ u)du}
'=13=1

~OjdNiAt) + P~zidNij{t) - ~ lot ellj e{3zil'ij(u) du
'3 '3 '3

As in the two parameter case the term Eij loge [l'ij(t)] dNij(t) disappears in the
log-likelihood since when l'iAt) = 1, loge[l'iAt)] is zero, and when l'i/(t) = 0,
dNij(t) is by definition zero. Similarly the likelihood is of the form

L(f1 f1 P) E·· lIjdNij(t) (3E··ZidNij(t) E·· f: e(JjefJziY;j(U)du111, 112, = e IJ e IJ e IJ (6.43)

In the case when we assume Uniform prior densities for all three parameters,
Ot, O2 and P the joint posterior will be proportional to the likelihood (6.43).
However, we may wish to use an informative prior density, especially for the
regression parameter, p. As we discussed earlier, a convenient distributional
form for such a prior density would be the Normal distribution. Therefore in
this case the posterior joint density, p(fIH) would take the form

(,I,.IH) "' .. lI}dNiJ(t) (3"'.zidNij(t) "'.foteBjefJZiY;j(u)du -..!.,..({3-J.£)2P ~ ex eL-IJ eL-I} eL-,}J( e 2.,.~ (6.44)

where J.t and 0'2 are the prior mean and variance respectively, and are both
assumed to be known.

As in Section 6.5, estimation of f could proceed using either Laplace ap-
proximations of Section 6.4.1 or Gauss-Hermite quadrature of Section 6.4.2. As
with the two parameter model in Section 6.5, in this simple case we can write
down the second derivatives. Optimisation requires an iterative search method,
and as with the model in Section 6.5 we found that using nlmin in Splus (1990)
was sufficient.

In order to use the Laplace approximations described in Section 6.4.1 and
used above in the two parameter model of Section 6.5 we require the first and
second derivatives of G(f), the log posterior. In this three parameter problem
the derivatives are straight forward to write down, and programming them is
also straight forward. The first derivatives for a model in which all the prior
densities are Uniform distributions are

aG(<fJ)
».

aG(<fJ)
a02

aG(<fJ)
ap

~ dNi1(t) - ~ lot elll e{3Zil'il(U) du
, ,

~ dNi2(t) - ~ lot ell2 e{3zil'i2(U) du
, ,

_ ~zidNij(t) - ~ lot z; ellj (J3zj l'ij(u) du
13 '3
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and the second derivatives of G(1!.) are

82G( </J)
80~

82G( </J)
afh02

82G(1!.)
80d3

82G( </J)
80~

82G( </J)
802f3

82G( </J)
8f32

6.6.3 Example

o

-L r z; e01 ef3zi Yit(u) du
i lo

_ -L r e02 ef3zi Yi2(U) du
i lo

-L t' z; e02 e(JZi Yi2( u) du
i lo

- ~ lot z; eOj ef3Z
j Yij( u) du

tJ

We consider applying the three parameter model described above to the neutron
therapy data described in Section 2.2. In this case we assume I.= (0,365,00),
the time grid, which from Figure 6.4 would seem reasonable as there is a slight
reduction in the gradient of the cumulative hazards for both groups above 365
days.

Tables 6.6 and 6.7 show the parameter estimates, while Figures 6.10 and 6.11
show the marginal densities for this model using the clinical and meta prior
densities for f3. Table 6.8 shows the parameter estimates obtained using the
model of Gamerman and West described briefly later in this chapter. In this
case the evolution matrix Hj was set to be the identity matrix, so that there
was no auto-regressive structure.

We can see from Tables 6.6 and 6.8 and Figures 6.10 and 6.11 that assuming a
piecewise constantbaseline hazard makes little difference to the overall results
of the analysis. Using the clinical prior, the data, via the likelihood shifts
the prior to the right, indicating that a posteriori there is little evidence that
neutrons are beneficial for patients with pelvic tumours. Similarly using a meta
prior, there is little difference between the prior and posterior densities for
the treatment effect, as the prior density is located at the same point as the
likelihood. Assuming the parameter estimates to be approximately Normally
distributed, 95% credibility intervals for the difference ()t - ()2 all include zero
indicating that there is little evidence of a difference in baseline intensities below
and above 365 days. The results obtained using SURVIVAL, Table 6.8, are in
broad agreement with the model developed in Section 6.6.2, in that there is
evidence that the baseline intensity is constant between the two intervals, and
the clinical beliefs of Section 3.2.2 should be revised substantially in the light
of the current data.
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Table 6.7 shows covariances for the three parameter model. We can see that
when vague prior densities are used for all three parameters posterior covari-
ances are almost identical to those obtained using maximum likelihood, for both
Laplace approximations and Gauss-Hermite quadrature. When either a clinical
prior density or a meta prior density for the treatment effect was used there
was a slight reduction, in absolute terms, in the posterior covariance compared
to that under maximum likelihood, as would be expected.
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81 82 {3
(Baseline) (Baseline) (Neutrons)

Mean SD Mean SD Mean SD p(O)a P(-O.26)

MLE -6.687 0.181 -6.764 0.202 00409 0.202 - -
Prior - 00 - 00 - 00 - -
Posterior (L)b -6.702 0.182 -6.786 0.204 00415 0.202 0.019 0.000
Posterior (G-HY -6.703 0.182 -6.786 0.203 00415 0.202 0.019 0.000
Prior - 00 - 00 -0.116 0.286 0.654 0.305
Posterior (L) -6.585 0.158 -6.683 0.190 0.240 0.162 0.068 0.001
Posterior (G-H) -6.585 0.158 -6.683 0.186 0.240 0.162 0.069 0.001
Prior - 00 - 00 00430 0.141 0.001 0.000
Posterior (L) -6.706 0.141 -6.788 0.177 00424 0.116 0.000 0.000
Posterior (G-H) -6.706 0.143 -6.788 0.177 00424 0.116 0.000 0.000

a p(O) and p( -0.26) denote the probability that f3 is less than 0 and -0.26 respectively.
bL denotes estimation using Laplace approximations.
cG-H denotes estimation using Gauss-Hermite quadrature.

Table 6.6:Parameter estimates for piecewise 2-state model with I.= (0,365,00)
days, vague prior for Ot, O2 and various priors for /3, using survival data with
21st December 1990 as censoring date.
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Cov( Ob (2) Cov( Ot ,!J) COV(02,{J)
MLE 0.017 -0.028 -0.024
Vague Prior
Posterior (L)a 0.017 -0.027 -0.024
Posterior (G-H)b 0.017 -0.028 -0.025
Clinical Prior
Posterior (L) 0.010 -0.017 -0.014
Posterior (G-H) 0.009 -0.017 -0.015
Meta Prior
Posterior (L) 0.005 -0.009 -0.008
Posterior (G-H) 0.006 -0.009 -0.008

aL denotes estimation using Laplace approximations.
bG-H denotes estimation using Gauss-Hermite quadrature.

Table 6.7: Covariances for piecewise 2-state model with I. = (0,365,00) days
for neutron data with censoring date 21st December 1990

O· (31j3
(Baseline) (Neutrons)

Mean SD Mean SD
Prior (t = 0) 0 10 0 10
j = 1 (0 < t ~ 365) -6.594 - 0.269 -
j = 2 (t > 365) -6.718 0.162 0.415 0.201
Prior (t = 0) 0 10 -0.116 0.286
j = 1 (0 < t ~ 365) -6.513 - 0.135 -
j = 2 (t > 365) -6.637 0.144 0.277 0.164
Prior (t = 0) 0 10 0.43 0.141
j = 1 (0 < t ~ 365) -6.594 - 0.266 -
j = 2 (t > 365) -6.660 0.122 0.322 0.115

Table 6.8: Parameter estimates for piecewise 2-state model with I.= (0,365,00)
days, vague prior for baseline intensity and various priors for /3, using SUR-
VIVAL.



Chapter 6. Two-State Models 124

6.6.4 More Sophisticated Models
We wish now to consider a more complicated model, so that we may allow
for more than two time periods and more than one covariate factor. Such a
model is not only of interest in its own right, but also as a means of testing the
assumptions of simpler models of Sections 6.5.1 and 6.6.2. The model that we
will use in this section has three baseline parameters, separating the time scale
into three intervals, and we consider the case when there are three explanatory
factors. For the neutron therapy data set, this model would allow us to consider
not only treatment but also the three sites cervix, bladder and rectum.

We first consider the likelihood for such a model, and then the estimation
of the parameters by use of Laplace approximations (Section 6.4.1) and Gauss-
Hermite quadrature (Section 6.4.2). For both the maximum likelihood estima-
tion and that using Laplace approximations the first and second derivatives are
required. In this more complicated setting we also make use of Numerical Al-
gorithms Group (NAG) routines for the maximisation of the log-likelihood and
posterior densities.

Model

Assuming proportional intensities, and maintaining the notation of the rest of
the chapter, the baseline parameters are Ob O2 and 03, whilst the explanatory
factors are (3b (32 and (33. As before we let 1:. = (Ob O2, 03, (3b (32, (33). Therefore,

(6.45)

Re-parameterising so that the baseline intensity in each time epoch is incremen-
tal, i.e O~ = 01, 0; = 01 + O2 and 0; = 01 + O2 + 03, yields

(6.46)

where ~i = (Zli' Z2i, Z3if representing a vector of covariates. This parameteri-
sation allows us to consider the assumption of a time varying baseline intensity
by looking at the marginal densities for O2 and 03•

Log-Likelihood

The log-likelihood is given by substituting (6.46) into (6.40) which yields

t:{loge[eO; e!t~i }'ij(t)] dNij(t) - ft l; e(!_T~i }'ij(u) dU}
,=1 10

- LO; dNij(t) + Lf}_T~i dNij(t) - L lot eO; ef!..T~i }'ij(u) du(6.47)
ij ij ij 0

l(i!.)

and the corresponding likelihood has the form

(6.48)
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Figure 6.10: Maximum relative log-likelihood and marginal densities for survival
model assuming piecewise constant intensity, vague priors for 01, O2 and clinical
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Posterior Distributions

The joint posterior in the case when each of the models parameters has a Uni-
form prior density is proportional to (6.48). In the case when one of the regres-
sion parameters is a treatment effect there will often be prior information, and
this can be expressed in terms of a Normal distribution as has been discussed
above. In this case the joint posterior, p(1!.IH) is of the form

where /31 is the treatment effect parameter and the Normal distribution has
mean and variance J-t and q2 respectively, and are assumed known.

Estimation of Model Parameters

As in the case of the three parameter piecewise constant intensity model de-
scribed above in Section 6.6.1 we can use both Laplace approximations and
Gauss-Hermite quadrature to estimate <p. Using Laplace approximations we are
required not only to maximise the log-posterior, which in this case is a function
of six parameters, but also to evaluate the hessian at this point. For this model
the nlmin function in Splus (1990) proved to be too slow. An alternative max-
imisation routine such as routine E04LBF in the Numerical Algorithms Group
(NAG) library which performs both constrained and unconstrained optimisa-
tion of a function of several variables was used instead. This routine uses a
modified Newton algorithm and requires the the first and second derivatives of
the function to optimised, see NAG manual volume 4 for further details and ref-
erences. The analytic form of the hessian was found using the MAPLE (1989)
computer algebra package to do the differentiation of the log-posterior. This
routine proved particularly useful since it allowed constrained optimisation of
the log-posterior, which was useful in the case of obtaining the marginal poste-
rior densities, since it meant that the problem did not have to be re-programmed
for each model parameter separately.

Few problems were encountered in applying Gauss-Hermite quadrature to
this particular model using BAYES4. The convergence criterion was the same
as that used in the previous models. Time taken for convergence was greater
than in the three parameter model, but was still acceptable, i.e less than 5
minutes.

6.6.5 Example
As in Section 6.5.3 we will consider the neutron therapy data described in Sec-
tion 2.2. In this example we will restrict attention to only those patients in the
neutron therapy study who had tumours of the rectum, bladder or cervix. In
this case n = 147. We will assume that:r. = (0,182,365,00), and Z}i, Z2i and
Z3i represent neutron treatment, cervix and rectum respectively. Using NAG
routine E04LBF to maximise the log-likelihood and posterior densities in order
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to apply Laplace approximations, and using the same convergence criteria as
with the previous model for Gauss-Hermite quadrature, the following results
where obtained.

Table 6.9 shows parameter estimates for model (6.46) using Uniform, clin-
ical and meta priors for (31 and Uniform priors for all the other parameters.
Figures 6.12 and 6.13 show the marginal densities using either a clinical prior
density for the treatment effect or a meta prior density.

We can see from Table 6.9 and Figures 6.12 and 6.13 that as with the three
parameter model applied to the neutron therapy data the elicited clinical prior
beliefs should be updated so that a posteriori they suggest that neutrons are
not in fact beneficial for pelvic tumours. The meta prior density is modified
only slightly in the light of the trial results.

Table 6.10 shows the results of using SURVIVAL2 the computer package
that implements the models of Gamerman and West (1987b), briefly mentioned
in Section 4.3.2. We can see that the same trend is apparent using these models
as it was using our models. That is clinical beliefs should be updated in the
light of the trial results so to be much more in agreement with the data. Prior
beliefs based on the results of previous studies would change little in the light
of the current results.

We can also consider testing whether 01 = O2 = 03, i.e whether there
appears to be any evidence for a time varying baseline intensity. From Fig-
ures 6.12 and 6.13 we can see that the marginal posterior densities for both
O2 and 03 are centred at points other than zero indicating evidence for varying
baseline intensities. However, we can also see that the effect of the posterior
densities for ()2 and ()3 is to cancel one another out. So, the baseline intensity
increases between T2 and T3, but then reverts to its level of e'h for times greater
than T3.

2SURVIVAL can be obtained from Professor Mike West, Institute of Statistics and Decision
Sciences, Duke University, North Carolina, USA.
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flt I. (}2 J (}3 I {JI {J2 {J3
(Baseline) (Neutrons) (Cervix) (Rectum)

MLE -6.712 0.469 -0.323 0.336 -0.661 0.045
(0.098) (0.209) (0.237) (0.204) (0.284) (0.212)

Prior - - - - - -
(00) (00) (00) (00) (00) (00)

Posterior (L)a -6.740 0.470 -0.323 0.342 -0.683 0.043
(0.244) (0.240) (0.238) (0.207) (0.299) (0.212)

Posterior (G-H)b -6.740 0.470 -0.323 0.342 -0.683 0.043
(0.244) (0.240) (0.239) (0.207) (0.301) (0.213)

Prior - - - -0.116 - -
(00) (00) (00) (0.286) (00) (00)

Posterior (L) -6.635 0.465 -0.330 0.184 -0.714 0.054
(0.226) (0.239) (0.238) (0.166) (0.298) (0.212)

Posterior (G-H) -6.635 0.465 -0.330 0.184 -0.714 0.054
(0.225) (0.240) (0.239) (0.166) (0.301) (0.213)

Prior - - - 0.430 - -
(00) (00) (00) (0.141) (00) (00)

Posterior (L) -6.778 0.472 -0.320 0.401 -0.671 0.039
(0.215) (0.240) (0.238) (0.117) (0.296) (0.212)

Posterior (G-H) -6.778 0.472 -0.320 0.401 -0.671 0.039
(0.214) (0.240) (0.239) (0.117) (0.300) (0.212)

"L denotes estimation using Laplace approximations.
bG-H denotes estimation using Gauss-Hermite quadrature.

Table 6.9: Parameter estimates, means (standard deviations) for piecewise
2-state model with I. = (0,182,365,00) days, and various priors for 4>, using
survival data with 21st December 1990 as censoring date. -

(}. {Jlj {J2j {J3j:J
(Baseline) (neutrons) (cervix) (rectum)

Mean SD Mean SD Mean SD Mean SD
Prior (t = 0) 0 10 0 10 0 10 0 10
j = 1 (0 < t $ 182) -6.558 - 0.190 - -1.980 - 0.107 -
j = 2 (182 < t $ 365) -6.307 - 0.246 - -0.836 - -0.259 -
j = 3 (t > 365) -6.526 0.190 0.334 0.204 -0.625 0.295 0.053 0.212
Prior (t = 0) 0 10 -0.116 0.286 0 10 0 10
j = 1 (0 < t $ 182) -6.445 - 0.010 - -2.048 - 0.114 -
j = 2 (182 < t $ 365) -6.210 - 0.084 - -0.884 - -0.247 -
j = 3 (t > 365) -6.438 0.175 0.188 0.166 -0.673 0.295 0.061 0.212
Prior (t = 0) 0 10 0.43 0.141 0 10 0 10
j = 1 (0 < t $ 182) -6.608 - 0.283 - -2.052 - 0.085 -
j = 2 (182 < t $ 365) -6.325 - 0.284 - -0.878 - -0.271 -
j = 3 (t > 365) -6.508 0.159 0.312 0.116 -0.655 0.295 0.047 0.212

Table 6.10: Parameter estimates for piecewise 2-state model with
I.= (0,182,365,00) days, and various priors for !E_, using SURVIVAL.
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6.6.6 Other Approaches
A number of authors have considered Bayesian inference for models in which
the baseline hazard is piecewise constant. Abrams (1989, Chapters 5 and 6)
reviews many of these.

Cornfield and Detre (1977) considered the case when failure was a time-
dependent Poisson process, such that the probability of failure in an interval
of width h was Y(t)A(t)h + O(h), where Y(t) denotes the number of patients
at risk at time t and A(t) is the hazard function. They consider the case when
there are m intervals, indexed by j, and the hazard function be constant within
each interval, i.e Aj, and that the number at risk in the jth interval is Yj,
and that the number of failures in the j th interval is x i: The likelihood for
\ - ('1 ... A' •.. A ) can be written as,!l-A, 'J' ,m

(6.50)

Cornfield and Detre suggest independent Gamma prior distribution for ~.
Thus Ajh has a gamma distribution with parameters v and (. Therefore the
joint prior is of the form

m ("h
p(~hlv; () = II ,(Vht1 e-(>'jh

j=1 (vh -1).
(6.51)

Using Bayes' Theorem to combine (6.50) and (6.51) yields a joint posterior
density that is of the form

m
p(~IH) ex: IIAji+llh-1 e->.jh(Yj+() + O(h)

j=1
(6.52)

Kalbfleisch and MacKay (1978) point out that the approximation in (6.50)
will not necessarily remain true throughout the prior to posterior analysis, and
that the joint posterior (6.52) does not have an error of O(h). Kalbfleisch and
MacKay suggest a correction term for (6.52).

Cornfield and Detre also consider the case when there are two groups of
patients, and that the hazard rates in the two groups are related so that A2(t) =
<pA1(t). Assuming that the hazard A1(t) is of the same form as before and that
we also have a prior density of the same form, and independently we assume
that we can specify a prior density, g(p_), for <p,the joint posterior is of the form

m
p(~, <p) ex: g( <p)II<pX2jA~jj+X2j+llh-1 e->'ljh(Y2jt/>+Y1j +()

j=1
(6.53)

Integrating ~ out of (6.53) yields a marginal posterior density for <pof the form

(6.54)
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Kalbfleisch (1978) has also proposed a Bayesian survival model in which the
baseline hazard is considered to comprise a finite number of intervals in which
the hazard is constant. A similar model has also been proposed by Burridge
(1980). In this model the cumulative hazard is assumed to have an indepen-
dent increments Gamma process prior distribution. The mean of Ao(t), the
cumulative hazard, is A*(t) a known function, and the variance is A*(t)/c. The
increments, dAo(t), have a Gamma distribution with shape and scale parameters
cdA*(t) and c respectively. This prior form has the advantage that, conditional
on j3, it is conjugate for censored survival data, as we saw in Section 6.4.1, and
also more generally for counting processes, (Aven, 1986). Therefore, conditional
on j3, the posterior gamma distribution for dAo(t) has shape and scale parame-
ter;cdA*(t) +dN(t) and c+ Ei=l }i(t) e~Tei(t) respectively, where dN(t) denotes
the total number of events.

Kalbfleisch (1978) mentions that often A*(t) is really a nuisance parameter,
and interest focuses on the regression parameters, j3. Integrating the joint pos-
terior distribution with respect to Ao(t) yields a marginal posterior for §.. that
is proportional to

II[ ()(3TZ.(t)]CdA.(t)+dN(t)c-o c + ~. Y; t e;;..-'
- i..J"

(6.55)

With the improper vague prior for Ao(t) corresponding to c = 0, the posterior
distribution for j3, (6.55), is then proportional to Cox's partial likelihood. Clay-
ton (1991) note; when Ao(t) is considered parametric difficulties arise and no
simple solution exists. However, throughout this analysis a Uniform prior on j3
is assumed, which seems unrealistic, since there is very often information about
the relative effects of treatment or other patient characteristics, as we saw in
Sections 3.2 and 3.3.

Gamerman and West (1987a, 1987b, 1991) have also considered the case
when the time scale is made up of a finite number of intervals. The main differ-
ence between their approach and that of Cornfield and Detre (1977), Kalbfleisch
(1978) and the one outlined above, is that they assume the regression param-
eters to vary over time, i.e be dynamic, and that there is an auto-regressive
structure for the priors. This model is an extension of the Dynamic Generalised
Linear Model (DGLM) introduced in Section 4.3.2 in which survival times were
ignored. The model has the form

Ai( t)
(3TZ.

T' < t < T"+le-j-' 3 - 3

j3. - Hj{bj)§..j_l + Wj (6.56)
-3

w· fV [0, Wj] (6.57)3

where f3 are unknown parameters that need to be estimated. Hj is the system
evolution matrix and is typically dependent on bj, the length of the jth interval.
Wj are errors with zero mean and covariance matrix Wj. In many situations Hj



Chapter 6. Two-State Models 134

can be the identity matrix resulting in the parameters following a simple random
walk. Wj describes the degree of uncertainty with which the parameters evolve
from time tj-l to tj. Wj is often a function of the interval length, bj, and in the
limit as Uj tends to zero the static model is obtained, whereas a larger value
of Wj allows greater freedom for the ~s to change over time.

At the (j-1)th time point the posterior distribution for {3j-1can be partially
specified in terms of a mean mj-l and a covariance matrix Cj-l. Thus

(6.58)

where Dj-l is the information set containing all the information up to time
Tj-l. The prior distribution for {3jis

(6.59)

where

aj - Hj(bj)mj_l

Pj - Hj(bj)Cj-IHJ(bj) +Wj

The likelihood factorises into a term for each interval and Gamerman (1991)
obtains the jth component. of the overall likelihood as

Tj

I1[Aij]6"ij e->'ij(tij-tj-t}

i=l
(6.60)

where rj is the number of patients alive at the beginning of the jth interval,
hij is an indicator of death for the ith patient in the jth interval, and tij is the
survival time of the ith patient in the jth interval.

Estimation of the model parameters, i.e the {3s,can proceed once an initial
input is given, i.e [{3IIDo] and the errors, Wj, have been specified, by cycling
through equations (6.56), (6.58), (6.59) and (6.60). This estimation procedure
will involve a high dimensional integration. Gamerman (1991) suggests using
linear Bayes methods. This relies on the fact that, for the likelihood (6.60),
a Gamma distribution is a conjugate prior for Aj. Linear Bayesian methods
can then be used to obtain the corresponding means and variances for the
{3js. Further details can found in West, Harrison and Migon (1985), West and
Harrison (1989) and Gamerman (1991).

A number of authors have described the link between parametric survival
models and log-linear models, most notably Lawless (1987) and Clayton (1988).
In the case of a piecewise constant intensity model this corresponds to a multi-
way table defined by the time grid, I., and regression factors e_. The methods
that we have outlined for piecewise constant intensity model are equivalent to
putting independent Normal or Uniform prior densities on each of the margins
of this table defined by ~.



135 Chapter 6. Two-State Models

6.7 Weibull Intensity Model
In this section we consider the multiplicative intensity model suggested by Aalen
(1978) (5.12) but with -'(tift) having a parametric form which is a power trans-
formation of the time scale. In survival analysis such a parametric form corre-
sponds to the survival times following a Weibull distribution. Therefore we say
that the intensity has a Weibull parametric form.

The Weibull distribution has been used extensively in reliability and indus-
trial life-testing, see Davidson (1988) and Crowder et al (1991) for reviews, but
has not been used extensively in medical applications with the exception of
Peto and Lee (1973), Prentice (1975) and Aitkin and Clayton (1980). Other
authors have considered it to be too restrictive and unrealistic. However, as it
generalises the constant intensity model (6.28) of Section 6.5 it adds an extra
level of sophistication to the models so far considered.

A number of authors have considered a Bayesian approach to survival data
when the survival times can be assumed to followa Weibull distribution, Abrams
(1989) Chapter 4 reviews many of these. These approaches can be classified into
two groups. The first approach is to work directly with the Weibull distribution.
Unlike the exponential distribution there is no conjugate prior, although if we
assume that one of the distribution's parameters is fixed, the index parameter,
then the problem reduces to that of a constant intensity discussed in Section 6.5.
However, if we are prepared to use either asymptotic approximation methods
or numerical methods to estimate parameters, the Weibull distribution poses
no particular problems. This approach has been considered by Bhattacharya
(1967), Canavos and Tsokos (1973), Martz and Waller (1982), Singpurwalla
and Song (1987) and Dellaportas and Wright (1991a). The other approach is
to transform the survival times by taking the logarithms of them, and treating
these transformed times as the dependent variable in a linear regression model.
The errors in such a model have extreme value distributions. This approach has
been considered by Achcar et al (1985, 1987) and Sweeting (1981, 1982, 1987).

6.7.1 General Model
The Weibull distribution is a generalisation of the exponential distribution and
allows a power dependence of the hazard on time. The two parameter version
of the distribution leads to a hazard function of the form

-'(i) = p a (p t)a-l (6.61)

where p is a scale parameter and a is an index parameter, such that p > 0 and
a> o. The hazard, -'(t), is monotone decreasing for a < 1, increasing for a> 1
and reduces to the exponential for a = 1. As p is required to be non-negative we
may re-parameterise the model by replacing pa by e(J2. We now need to estimate
(}2 rather than p, and e(J2 satisfies the condition that it is always greater than
zero. The hazard function now becomes

-'(i) = a r:' e(J2
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As a is also required to be greater than zero we need to replace a by a term
such as eel, and estimate ()1 instead. Thus, the hazard now is of the form

A(t) = eel te9l-1 ee2

One feature of the Weibull distribution is that if we assume that the failure
times of a group of patients are distributed with a Weibull distribution then
the accelerated life model and the proportional hazards model coincide. Here
we will develop a model from the proportional hazards view. The model is
A(t) = AO(t)ef!.'.e, where Ao(t) has the form of a Weibull distribution, and under
our parameterisation is eel te9l -1ee2. Therefore,

(6.62)

If we consider a counting process, N(t), such that each patient can have
at most one event, for example death, and that associated with N(t) is an
observational process, Y(t), which indicates whether a particular patient is at
risk at a specific time, t, then the model becomes

ai(t) = eel r'':' ee2ef!.T~;Y;(t) (6.63)

Substituting (6.63) into (5.14) yields a log-likelihood of the following form
n n n n

£(fl,f!_) = ()1L dNi(t) + (eel - 1)L dNi(t) log(t) + ()2L dNi(t) +L rF eidNi(t)
i=1 i=1

(6.64)

Notice now that a value of zero for ()1 indicates that the exponential distribu-
tion would be adequate for the specific problem. The corresponding likelihood
function is

L(fl, (3) = eel E~=ldN;(t) e(e9l-1) E~=ldN;(t)log(t;) ee2E:':l dN;(t)

(6.65)

In the case when we consider vague prior information about all the param-
eters, the joint posterior density, p(~IH) is proportional to (6.65). In the case
when there is prior information about one or more of the model parameters the
joint posterior will be proportional to the product of the prior densities and
(6.65). We can see that in the case when we assume that both ()1 and ()2 are
unknown, no conjugate analysis is possible, and parameter estimation requires
one of the estimation methods described in Section 6.3.

6.7.2 A Simple Model
As an example consider the case when there is only one regression parameter in
the model. This could represent a treatment effect, such as that in the neutron
therapy trial. Model (6.63) becomes

(6.66)
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The log-likelihood, (6.64) simplifies to

n n n

f(ft, (3) = 01 L: dNi(t) + (eOl - 1) L: dNi(t) log(ti) + O2L: dNi(t)
i=1 i=1 i=1

(6.67)

and the likelihood (6.65) similarly simplifies to

L(ft, (3) = eOlE::'l dNi(t) e(e9l-1) E7=1 dNi(t)log(ti) e02 E7=1 dNi(t)

e.BE~=l zidNi(t) e" E~=l Jot e9l 1£,,91-1ePziYi(1£)d1£ (6.68)

As above when we assume Uniform prior densities for if> the joint posterior is
proportional to (6.65). In the case when there is prior information about the
treatment effect, this is most conveniently summarised by a Normal distribution
and the joint posterior is of the form

p(.p_IH) ex: il E~=l dNdt) e(e9l-1) E~=l dNi(t)log(ti) e02 E::'l dNi(t) e.BE~=l zidNi(t)

(6.69)

where J.i and (12 are the prior mean and variance of (3.
In order that we may make use of both Laplace approximations described

above we require the first and second derivatives of the log-posterior, and func-
tions of it. In the case when we assume that all the parameters have Uniform
prior densities the first order partial derivatives are

n n n

- L:dNi(t) + eOlL:dNi(t)loge(t) - e02 L:tf9leOllog(ti)(e.Bzi + (1- Zi))l'i(ti)
i=1 i=1 i=1
n n

L:dNi(ti)l'i(ti) - e02 L:tf9l(e.Bzi + (1 - Zi))l'i(ti)
i=1 i=1
n n

L: dNi(ti)Zil'i(ti) - e02 L: ti9l e.Bzil'i(ti)
i=1 i=1
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The second order partial derivatives are
n n

eel EdNi(ti)l-'i(ti) + eel EdNi(ti) log(ti)l-'i(ti) -
~1 ~1

n
e02 Eti9IeOllog(ti)(ei3zi + (1- Zi))l-'i(ti)

i=l
n

e02Eti9leO~ log(ti?(ei3zi + (1- Zi))l-'i(ti)
i=l

82f
8()18()2
82f

8()18(3

82f
8()~

82f
8()28(3

82f
8(32

n
-e02 Eti9IeOllog(ti)(ei3zi + (1- Zi))l-'i(ti)

i=l
n

-e02 Eti9IeOllog(ti)ei3zil-'i(ti)
i=l
n

-e02 Eti91(ei3zi + (1 - Zi))l-'i(ti)
i=l
n

-e02 E ti91ei3zil-'i (ti)
i=l
n

_e02 '" t~91ei3z.Y;(t.)L..J, "~I
i=l

We found that the nlmin function in Splus (1990) did optimise (6.69), and
(6.65) in the case of maximum likelihood estimates. This model converged
quickly using BAYES4 (1985) using the same convergence criteria as with the
simple constant intensity model (6.28) of Section 6.5.

The model in (6.63) and the log-likelihood in (6.64) have been parameterised
in a way that is convenient for parameter estimation using the nlmin function
in Splus (1990), which can perform only unconstrained optimisation. Such a
parameterisation, though practical, may not necessarily be the most efficient.
Hills and Smith (1992) have shown how 'good' parameterisation is helpful for
Bayesian estimation in a number of models.

Cox and Reid (1987) discuss the implications of parameter orthogonality in
detail. They show ·that when parameters are orthogonal, maximum likelihood
estimates change only slightly when other parameters change. Though they
discussed this from a classical point of view it has implications for Bayesian
estimation methods. Using both Laplace approximations and Gauss-Hermite
quadrature the nearer to multivariate Normality the likelihood is the more likely
our estimates are to remain 'stable', regardless of nuisance parameters.

Cox and Reid (1987) also suggest a method for inducing parameter orthog-
onality, much in the vein of Jeffreys (1961). In particular they consider the case
of the Weibull distribution when the index of the distribution is the parameter
of interest. Unfortunately the re-parameterisation that they suggest would re-
quire a constrained optimisation in order to maximise the log-posterior. More
importantly a key assumption made by Cox and Reid (1987) was that the like-
lihood was proportional to the density function, and whilst this is true when
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we observe all the times of death, when there are censored observations the
likelihood no is longer proportional to the density, instead it becomes a mixture
of the density and the survivor function as we have seen above.

6.7.3 Example
As an illustration of this two-state model, we will apply it to the neutron ther-
apy data described in detail in Section 2.2. As a comparison for the results
obtained using the Bayesian model described above in Section 6.6.2, the maxi-
mum likelihood estimates for the model parameters were also calculated. These
were obtained using the nlmin function in Splus (1990) to maximise the log-
likelihood (6.67).

We consider the case when there is vague prior information about the shape
parameter, 01, and the other baseline parameter O2, and we therefore assume
that they each have a Uniform prior density. In the case of /3 we consider
three different situations; when there is relatively little prior information about
the hazard ratio, when clinical opinion about the relative treatment merits has
been elicited, and finally when there is information available from previous
studies. In the latter two cases we assume that the prior density for /3 is Nor-
mally distributed and that all the parameters are a priori independent. Sec-
tions 3.2 and 3.3 give more details about the elicitation of the clinical prior and
the use of previous trial results. The clinical prior has a mean of -0.116 and a
variance of 0.082, while the prior based on the previous trial results has a mean
of 0.43 and a variance of 0.02.

Applying this model with the priors outlined above to the Neutron study
data we obtain the parameter estimates in Table 6.11. A value for 01 of zero
would indicate that the exponential distribution is adequate. From Table 6.11
we can see that in the case when we use independent Uniform priors for all
three parameters the posterior estimates of the mean and standard deviation
are very similar to those obtained via maximum likelihood as we would expect.
For the clinical prior the estimates of the parameter means for 01 and O2 change
slightly but the standard deviations remain approximately the same. Since we
used Uniform priors for both of these parameters we would not expect them
to change greatly, as this would only be through their correlation with /3, the
treatment parameter, on which a relatively strong prior was placed. When we
consider what has happened to the posterior estimate for (3 we see that the
mean has been moved closer to zero, and that there has been a considerable
reduction in the standard deviation. There was also a considerable reduction
in the probability that /3 was less than 0, and similarly less than -0.26, the
clinically relevant difference. Finally, in the case of the prior obtained from
previous trial results, there has been a slight shift in the /3 point estimate towards
the maximum likelihood estimate, and again a considerable reduction in the
standard deviation. This is to be expected in the case of this prior even more
so than with the clinical prior as the standard deviation was much smaller, i.e
0.141 compared to 0.286. As with both the other priors the point estimates



Chapter 6. Two-State Models 140

and the estimates of the standard deviations of (h and (}2 are approximately the
same as the maximum likelihood, as expected.

Table 6.12 shows the covariances for the three different prior formulations.
The posterior covariances, especially for {(}1, (}2) and {(}b (3) are approximately
the same as those obtained using maximum likelihood. This is to be expected
since we have assumed that the priors for each of the parameters are indepen-
dent, and therefore any correlation is due to the effect of the likelihood. We
can see from the maximum likelihood covariances that there is little evidence
of strong relationship between either (}1 or (}2 with {3. The only noticeable dif-
ference occurs when the prior for {3 is informative. In this case the posterior
covariances are smaller in absolute terms that those obtained via maximum
likelihood.

Figures 6.15 and 6.17 show individual marginal prior and posterior densities
for each of the parameters. We can see from Table 6.12 and Figures 6.15 and 6.17
that there is very close agreement between the results obtained using Laplace
approximations and those obtained via Gauss-Hermite quadrature. Both esti-
mation methods worked well reflecting the fact that the model was relatively
well behaved. Figure 6.16 displays the bivariate densities for the case when
we assume Uniform prior densities for (}1 and (}2 and a prior density based on
elicited clinical beliefs for {3, the treatment effect. From Figure 6.16 we can see
that although there is evidence of strong correlation between (}1 and (}2, the joint
posterior densities for (}1 and {3, and (}2 and {3 appear to be approximately bi-
variate Normal densities. This indicates that parameter estimates for {3 should
be 'stable', since poor estimation of (}l and (}2 would have little influence on {3,
(Cox and Reid, 1987, Hills and Smith, 1992).

Table 6.11 and Figures 6.15 and 6.17 show that there is considerable evidence
to suggest that (}1 is not zero. This indicates that an intensity model in which
the baseline intensity has a Weibull parametric form is preferable to one in
which it is constant. This can also be seen in Figure 6.14 which shows the log-
log survivor functions for the two treatment groups plotted against log time.
These lines can be seen to have approximately constant gradients indicating the
appropriateness of the Weibull assumption (Kalbfleisch and Prentice, 1980).

6.7.4 Other Approaches

In this section we consider briefly a number of other approaches that have been
taken to the problem of survival models when the survival times are assumed to
come from a Weibull distribution. We first consider those models that like the
one we have described above in which the data are not transformed to a linear
model.

A simple case is when (}1 = 0 and a constant hazard is obtained and the
methods of the above section on constant intensity models can be applied. In
the case when both p and a in (6.61) are considered unknown Martz and Waller
(1982) addressed the case when a was assumed to have a Uniform prior density
and p had either a Uniform density or an Inverted Gamma density. In both situ-
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at ions numerical integration techniques or approximation methods are required
to obtain the corresponding posterior densities.

Singpurwalla and Song (1987) have considered estimation of the survivor
function (or reliability function in industrial terminology) when an expert ex-
presses their belief about the median life to an analyst who then specifies the
prior distributions based on the expert's beliefs. They did not consider the
case when covariate measurements may be available. They do however use the
Laplace approximations suggested and described by Tierney and Kadane (1986)
and note that these perform particularly well for the Weibull distribution.

Sweeting (1981,1982, 1987) considers the case of a 'location-scale' regression
model in which the response is the logarithm of the survival times, and the
corresponding errors have an Extreme Value distribution. Algebraically,

i=I, .. ·,n (6.70)

where ti are the survival times, ~i is the covariate vector, and fi are error terms
with an extreme value distribution and a is a scale parameter, such that a > O.
Sweeting (1987) generalises the results for a general location-scale regression
model described in Sweeting (1984) to the case when there are censored ob-
servations. These approximations mean that the scale parameter, a, has an
approximate X2 distribution, and the regression parameters, f!_, have approxi-
mate multivariate t distributions.

Achcar, Brookmeyer and Hunter (1985) andAcbcar.andBolfarine and Per-
icchi (1987) also consider the case when survival timesf()119W~h,W~bulldistribu-
tion, but can be transformed so that they follow an extreIIle"'a.t~~distribution.
Laplace approximations (Tierney and Kadane, 1986) are then used to estimate
the the distribution.parameters. They do not consider a regression structure as
Sweeting (1981) does.

An important point to notice about all the other Bayesian approaches util-
ising the Weibull distribution is that none can easily be extended to the case
when there are time-dependent covariates or strata.
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81 82 (3
(Shape) (Baseline) (Neutrons)

Mean SD Mean SD Mean SD PlO) II P(-O.26)

MLE 0.140 0.077 -7.695 0.603 0.443 0.202 - -
Prior - 00 - 00 - 00 - -
Posterior (L)b 0.135 0.077 -7.698 0.601 0.449 0.202 0.011 0.000
Posterior (G- H)C 0.135 0.077 -7.698 0.601 0.449 0.202 0.011 0.000
Prior - 00 - 00 -0.116 0.286 0.657 0.307
Posterior (L) 0.129 0.078 -7.536 0.590 0.263 0.162 0.052 0.001
Posterior (G-H) 0.129 0.077 -7.536 0.589 0.263 0.162 0.052 0.001
Prior - 00 - 00 0.430 0.141 0.001 0.000
Posterior (L) 0.134 0.075 -7.683 0.585 0.435 0.116 0.000 0.000
Posterior (G- H) 0.134 0.076 -7.683 0.585 0.435 0.117 0.000 0.000

IIp(O) and P(-O.26) represent the probability that f3 < 0 and f3 < -0.26 respectively
6L denotes estimation using Laplace approximations.
cG-H denotes estimation using Gauss-Hermite quadrature.

Table 6.11: Survival model, with Weibull baseline hazard and various priors

Cov(81, (2) Cov( 8t, (3) Cov(82,(3)
MLE -0.045 0.001 -0.036
Prior
Posterior (L)3 -0.045 0.001 -0.034
Posterior (G- H)4 -0.044 0.001 -0.036
Prior
Posterior (L) -0.044 0.001 -0.022
Posterior (G- H) -0.044 0.001 -0.022
Prior
Posterior (L) -0.048 0.000 -0.013
Posterior (G- H) -0.048 0.000 -0.013

Table 6.12: Covariances for survival model using neutron data assuming Weibull
baseline intensity and with various priors
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6.8 Discussion
In this chapter we have considered making inferences about both the baseline
intensity and the regression parameters in a fully parametric multiplicative in-
tensity model when there is only one type of non-recurrent event. In particular
we have considered the case when there may be prior information about one or
more of the model parameters.

In the simplest case, when the baseline intensity is constant over time, there
are at most two groups it is possible to obtain exact forms for the marginal
posterior densities for the parameters. For more complicated situations when
there may be several patient groups, defined by a number of covariates, a regres-
sion model was developed. Parameter estimation in this model required either
asymptotic approximations such as those suggested by Tierney and Kadane
(1986) or numerical integration techniques such as those advocated by Naylor
and Smith (1982).

As an extension to the often unrealistic assumption that the baseline inten-
sity is constant over time we extended the regression model so as to allow it to
vary over a finite number of intervals, but to remain constant within each one.
Though such a model necessarily was more complicated and had more parame-
ters, by careful choice of the time intervals and use of more efficient optimisation
routines parameter estimation was kept reasonably straightforward.

Finally, a regression model was considered in which the baseline intensity
had a Weibull parametric form. This meant that the baseline intensity was
a power transform of the time scale, the power parameters being considered
as baseline parameters. Again asymptotic or numerical integration techniques
were required for the estimation of model parameters.

All the three parametric models (constant intensity, piecewise constant in-.
tensity and Weibull intensity) were applied to the neutron therapy data de-
scribed in Section 2.2 and the prior information and densities described in Sec-
tions 3.2 and 3.3 were used as prior inputs into the models. The results of these
parametric models were compared to those of the much simpler non-temporal
models described in Chapter 4 in which no account was explicitly taken of the
time between the events, i.e treatment to death.

The results of all the models were in broad agreement. The common outcome
is that the elicited prior beliefs of the clinicians used in the neutron therapy
example should be updated in the light of the trial's results so that a posteriori
they believe that neutrons are unlikely to be beneficial for patients with tumours
of the pelvic region compared to photons. Beliefs based on the results of the
meta analysis performed for the neutron study should change little in the light
of the current study results. Overall a consensus was forming; that there was
little belief in neutrons being more beneficial than photons for patients with
cancer of the pelvic region. Similarly there was a consensus of belief forming
that there was also negligible chance of a clinically significant difference in favour
of neutrons.

There is considerable evidence to suggest that the baseline intensity is not
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constant over time. The piecewise constant model with three time intervals; less
than 6 months, 6 months to 12 months and greater than 12 months, indicates
that the baseline intensity is greater in the second 6 months of follow-up than
in either of the other two intervals. The Weibull intensity model also indicates
evidence for a non-constant baseline intensity.

The Laplace approximations and Gauss-Hermite quadrature gave almost
identical results for all three parametric models. Neither method proved dif-
ficult to implement for the models used in this chapter. However, Gauss-
Hermite quadrature does require specialist software (Naylor and Shaw, 1985)
whilst Laplace approximations only require the optimisation of the log-posterior
density which can be implemented in a number of programming or statistical
environments.

One of the main criticisms of the parametric models that we have described
concerns the simplistic nature of the baseline intensity function. The baseline
intensity could instead be modelled using a continuous smooth curve, such as a
spline. This extension will be discussed further in Chapter 8.

Another criticism of the models considered in this chapter concerns the struc-
ture of the priors used. Rather than specifying, or eliciting prior information,
about the model parameters directly, a hierarchical prior could have been used.
In practice elicitation of prior information is often difficult, and a well elicited
prior density for the main parameter of interest, a treatment effect say, is per-
haps more useful than elicited estimates of hyper-parameters.

In summary, we have shown that Bayesian parametric multiplicative inten-
sity models provide a coherent framework for the analysis of survival data. In
the next chapter we will see how these simple two-state parametric models may
be extended to the multi-state situation in which there is more than one type
of event, and in which some of these events may be recurrent.
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7.1 Introduction
In this chapter we extend the two-state models of Chapter 6 to the case in
which a patient may be in anyone of a finite number of states at any point
on the relevant time scale, and in which transitions from state to state may be
reversible. A key assumption that we will make is that the transition times are
known exactly, i.e transitions are assumed to take place at follow-up visits.

Several authors have considered the application of such models to medical
settings, most notably Kay (1982, 1986) and Andersen (1986, 1988). More
recently Longini et al (1989) and Van Druten et al (1990), have considered the
use of such models in modelling the progression AIDS where a number of health
states are possible. Hougaard and Madsen (1985) have also considered the
application of multi-state models in the prognosis after myocardial infarction.
All of this work has been from a classical perspective. Kirby (1991) though
has considered the screening of women for cervical smear tests from a Bayesian
perspective.

In the social sciences multi-state models have been used to study such phe-
nomena as marital status, labour market dynamics and social unrest. Tuma,
Hannan and Groeneveld (1979) describe the use of multi-state models to de-
scribe such social situations. De Stavola (1986) considered multi-state models
for unemployment studies, in which individuals moved between employment
states. As with medical applications of such model this work has been from a
classical.viewpoint. .Lee, Judge and Zellner (1976).h~v~c9Ilsidered the applica-
tion of Bayesian multi-state models to macroarid.micr<>'~bhomic data.

The outline of this chapter is as follows; in Section 7.2 we consider the back-
ground to multi-state models, and their underlying assumptions. In Section 7.3
we extend the Bayesian two-state model of Chapter 6 for use with multi-state
data. Section 7.4 describes the use of a Bayesian multi-state model in analysing
the neutron therapy study, when we are interested in the modelling the develop-
ment of metastases. Section 7.5 describes the application of multi-state models
to the analysis of the quality of life data described in Chapter 2. Finally, we
summarise and discuss the use of multi-state models in the two examples from
cancer research in Section 7.6.

7.2 Classical Multi-State Models
Many authors have considered the use of time-homogeneous Markov processes
in medical science, see Chiang (1968) for an overview. Though the approxima-
tions required for such models may seem strict, notably that the future is only
dependent on the present and not on the past, and that the transition intensities
between states are constant over time, estimation of the quantities of interest is
relatively straight forward using the Chapman- Kolmogorov equations, see Cox
and Miller (1965) and Chiang (1968) for details.

The assumption in such models that the intensities are constant over time is
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equivalent to assuming that times between events are exponentially distributed,
and the estimates obtained via maximum likelihood are equivalent to those
obtained for the time-homogeneous Markov model. In the case of the intensities
the maximum likelihood estimates are the number of events divided by the
number of potential events. This highlights the link generally between stochastic
processes and parametric survival models, i.e we can count the number of events
in a specified time interval or we can consider the times between successive
events.

The assumption of constant intensities may be relaxed by allowing them
to be time varying, leading to a time-inhomogeneous Markov process. In the
simplest case the time axis may be considered to be made up of a finite number
of intervals and the intensity in each interval assumed to be constant.

Andersen (1986) amongst others, has noted that the assumption that the
intensity of future events only depend on the state occupied at the current time
is often an unrealistic one, and that wemay also wish to allow for dependence on
the time spent in the current state, i.e the sojourn time. For example in the case
of the neutron therapy study considering the transition intensity from metastatic
disease to death, a time-homogeneous or time-inhomogeneous Markov model
assumes that the length of time a patient has had metastatic disease does not
affect this intensity. We therefore require models that also allow for the inclusion
of sojourn times. Such semi-Markov models may either use the sojourn times
as covariates, or they may realign the time scale to be the onset of a particular
event, e.g in the neutron therapy study this may be the onset of metastatic
disease. As in the case of Markov models we may assume that the transition
intensities are either time-homogeneous or time-inhomogeneous. When they are
time-homogeneous the semi-Markov and Markov models coincide.

Figure 7.1 shows the implications of making Markov and semi-Markov as-
sumptions. Consider a patient who say develops metastases at time tt and
subsequently dies at time t2, where time is measured from entry into the study,
i.e t = o. If we assume that the intensity is constant over time, say a, (Fig-
ure 7.1 (a)), then whether we assume a Markov or semi-Markov model the result
is the same, i.e at time t*, tt < t* < t2, the probability of dying in a short time
interval t* + St is o. Consider the case when we assume either a piecewise con-
stant intensity with time grid (0, Tt, T2) (Figure 7.1 (b)) or a Weibull parametric
form of the intensity (Figure 7.1 (c)). Under a Markov assumption the proba-
bility of dying in an interval t* + 6t is O'(t*), which in the case of a piecewise
constant intensity is 0'3. Under a semi-Markov time-homogeneous assumption
the probability of dying in the interval t* + 6t is 0'( t* - tt).

The above rationale for modelling has been developed from a stochastic pro-
cess point of view. A number of authors have considered the case when there are
multivariate failures, see Kalbfleisch and Prentice (1980), Cox and Oakes (1984)
and Clayton and Cuzick (1985). These authors have considered the case when
the survival model is of a multiplicative intensity form, but with the baseline
intensity left unspecified, thus yielding a multivariate version of a Cox propor-
tional hazards model. Clayton (1991) has considered 'frailty models; in which
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Figure 7.1: Models assuming (a) constant, (b) piecewise constant and (c)
Weibull intensities.
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the times to an event of interest for patients are not necessarily independent.
The degree of dependence is governed by the frailty parameter.

Crowder, Kimber, Smith and Sweeting (1991) have reviewed work that has
been done when the underlying intensity is not left unspecified. Beck (1979) has
considered the case when the transition intensities are considered either to be
constant or to have a Weibull parametric form. Lagakos (1976) also considered
the special case when the transition intensities are assumed to be constant.

In we assume that the times at which transitions in a multi-state model
take place are observed then we can consider the multiplicative intensity model
described in Section 5.3, and its extension to the case when h types of transitions
are possible. The intensity function becomes

Qik(t) = AOk(t) e£!.;!i1c Yik(t) i = 1,···, n k = 1,···, h (7.1)

where AOk( t) is the baseline intensity function for the kth transition, ~ik are the
covariates in the model for the ith patient and the kth transition, and Yik(t) is
the 'at-risk' process for the ith patient and the kth transition. Andersen and
Borgan (1985) and Fleming and Harrington (1991) have shown for both the case
when AOk(t) is left unspecified or when a particular parametric form is assumed,
that the likelihood factorises into terms for each individual type of transition.
This has also briefly been described in Section 5.3.3 Thus, we can consider each
transition separately.

The overall likelihood corresponding to (6.2) is of the form

(7.2)

where !P.k represents the model parameters for the kth type of event.
likelihood is a product over both patients and events.

The log-likelihood is of the form

This

(7.3)

where !P.k represents the model parameters for the kth type of transition.

7.3 Bayesian Multi-State Models
In this section we develop a Bayesian multi-state model based on the fully
parametric multiplicative intensity models of Chapter 6. We also consider other
Bayesian approaches to multi-state models.

7.3.1 A Multiplicative Intensity Model
In this section we consider the case when AOk( t) in (7.1) is assumed to have a
particular parametric form, and that there is possibly prior information in the
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form of a density function for a treatment parameter. The model takes the form

l:tik(t) = '\O(tl!!.k) ef!.Z!i1e l'ik(t) i= 1"" ,n k = 1" .. ,h (7.4)

where !!.k are the baseline parameters for the kth transition. As in Chapter 6
we consider three possible forms for '\o(tl~). These correspond to constant
baseline intensity, piecewise constant or Weibull form baseline intensity. We
will adopt the same parameterisation as in Chapter 6. This means that '\o(tl~)
is of the form e°le, eOjle or e°llc te9lk-1 e021e depending on whether the baseline
intensity is constant, piecewise constant or has a Weibull form respectively.
This parameterisation assumes that only the values of the baseline parameters
change with each different transition. It may be that the actual form of the
baseline intensity needs to change. In this case '\o(tl~) needs to be replaced
by '\ok(tl~). Since the likelihood has been shown to factorise with respect to
the different transitions (Section 5.3.3), such an extension of (7.1) is relatively
straightforward. We only consider the case when the parameters change, but
consider assessing the fit of the different baseline intensities in the examples
below.

In the case of there being little prior information about either the baseline pa-
rameters of any possible regression parameters, the joint posterior, P(1!.l'·· . ,1!.hIH),
is proportional to the overall likelihood (7.2).

Considering the kth transition, and that there is prior information in the
form of a density about the pth regression parameter, p(!3pk), then as the like-
lihood factorises the joint posterior for the kth transition is of the form

p(.t.IH) QC g [(Ao(tl~) ee:..• Y;.(t))dN;.(')
e- J: .1,(u~) ~rA;, y;.(.) d.] p(fl •• )

As in the case of the two state model if we assume that p(!3pk) is a Normal
density, with mean P,k and variance ul then (7.5) becomes

(7.5)

p<.t.IH) QC g[(Ao(tl~) ee:", Y;.(t))dN;,(.)

e- J: ',(u~) ~r,,,y;.(.) du1 e- ,!,(P,,-",)' (7.6)

We can see from the form of (7.6) that no closed form solution exists for the
posterior marginal densities, in particular our parameter of interest, !3pk. As in
the two state case we need to resort to some form of approximation methodology.
Both the Laplace approximations suggested by Tierney and Kadane (1986) and
Gauss-Hermite quadrature advocated by Naylor and Smith (1982) described in
detail in Chapter 6 and successfully applied to the two state models, could be
used in order to obtain posterior marginal densities and posterior moments.
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7.3.2 Other Approaches

With the exception of Kirby (1991) little work has been published on Bayesian
inference in multi-state models for medical applications. Lee, Judge and Zell-
ner (1976) have considered Bayesian inference in multi-state models applied to
economic data. The main aim of the work was to derive links between macro
and micro economic models, and how the former could help to predict the
performance in the latter. The case of micro economic data corresponds to
the case when information about individual patients is available. Lee, Judge
and Zellner's work is a generalisation of the 'Beta-Binomial' model considered
in Chapter 4, and has also been described by Lindley (1965). Assuming a
time-homogeneous Markov process, a multinomial likelihood is formed for the
transition probabilities, and a multivariate Beta prior density is assumed for
the probabilities. Analogous to the univariate case the corresponding posterior
density is that of a multivariate Beta distribution. Inference may then be made
about individual transitions.

Kirby (1991) considered modelling the screening histories of women in a cer-
vical screening programme in the Grampian region of Scotland. She considered
the data as a series of imperfect observations from a discrete state Markov pro-
cess in continuous time, for which the extact transition times are not known.
Graphical models were used to describe the inter-relationships between all of
the relevant variables, both observed and unobserved. Estimation of the pa-
rameters of these graphical models used Gibbs sampling, briefly described in
Section 6.4.3.

Aven (1986) has considered Bayesian inference for a parametric counting
process. In particular he considered the case when the intensity associated
with each component of a multivariate counting process was constant. In this
situation assuming a conjugate Gamma prior density for the intensity yields a
posterior Gamma density for the intensity. Though such a model can be used
when there are a number of events and individuals, difficulty arises when a
regression structure is assumed.

The Bayesian survival model advocated by Gamerman and West (1987a,
1987b), described in Chapter 6 relies on the factorisation of the likelihood at
distinct failure times, and extension to the multi-state scenario is feasible.

Hjort (1986) has considered both Bayesian parametric and semi-parametric
model for counting process models. Kalbfleisch (1978) has considered the case
when the baseline hazard is assumed to be non-parametric and assumed a
Gamma process prior for it, that setting this prior to be vague, yields 'par-
tial likelihood'. If the model assumptions are valid we have a Bayesian semi-
parametric model. We have seen from Section 5.3.2 that the (partial) likelihood
for such a model factorises when there are a number of different types of event
possible. Therefore, Kalbfleisch's method could be applied to a multi-state
semi-parametric model.
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7.4 Neutron Therapy Example
In this section a 3-state model shown in Figure 7.2 is used to study the effect
of treatment on the risk of developing metastases, and for death.

7.4.1 Description of the data
Table 7.1 shows the number of transitions for each treatment group, and Figure
7.5 shows this diagrammatically. Figure 7.5 shows the dynamic evolution of
metastatic disease with different types of line representing the different states.
Of the 154 patients in the trial at this stage only 143 are in this subset, as only
those patients who had one or more follow-up visits were considered at risk of
any of the transitions. One patient was excluded because data was missing. It
should be noted that metastases refers to clinically diagnosed metastases. Some
patients were found to have developed metastases only at autopsy. However,
there was a bias in autopsies towards neutron patients, and therefore metastases
at death were not included.

Treatment Metastaseso ",(I) (41)0
"1~ ~I)(J;JD(~)

Death

Figure 7.2: 3-state model for development of metastatic disease, (.) denotes the
number of patients that made a particular transition, and ak( t) is the transition
intensity for the kth transition at time t.

We can represent this aspect of the neutron therapy data using counting
process notation. Corresponding to the transition intensity al(t) in Figure 7.2
there is a counting process Nil (t) which is a 0/1 indicator function, zero until
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a patient dies, and one after a patient has died, without having metastases,
and similarly l'il (t) is an at risk process that is one while a patient is at risk of
dying (without metastases), and zero when they are not at risk. A patient may
no longer be at risk of dying (without metastases) at a particular time because
either they have already died or they have developed metastases. A similar
situation is true for Ct2(t), in that Ni2(t) and l'i2(t) are both 0/1 indicator
functions. l'i2(t) is one while patient i is at risk of developing metastases and
zero when they are no longer at risk, either because they have died or they
have already developed metastases. Similarly, Ni2(t) is zero until patient i
develops metastases, after which time it is one. The counting process and
at-risk process corresponding to Ct3(t) are again 0/1 indicator functions, but
unlike the other processes they have to accommodate the case when there is
delayed entry. At time zero l'i3(t) is zero, but if patient i develops metastases
at some time after entry then l'i3(t) becomes one, and if patient i eventually
dies l'i3(t) becomes zero again. The processes corresponding to l'i3(t) and Ni3(t)
for patient i who develops metastases at time tl and then dies at time t2 are
shown in Figures 7.3 and 7.4 respectively.

1_

Time
o

o

Figure 7.3: A simple risk process, l'i3(t), for metastases to death transition.

Transition Neutrons Photons Total
Treatment to Death (without Mets)
Treatment to Metastases
Metastases to Death

41
30
26

23
11
8

64
41
34

Table 7.1: Transitional status of neutron and photon patients at 21st December
1990.
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1

o Timeo

Figure 7.4: A simple counting process, Ni3(t), for metastases to death transition.

7.4.2 Methods

In all the models that we shall consider Uniform densities were used for the
baseline intensity parameters, fl.1lfl.2,fb, for all transitions. For the treatment
effect, /3, the prior distributions based on clinical beliefs described in Chapter 3
were used for transitions 1 and 2, i.e treatment to death and treatment to
metastases respectively. The rationale for this was that in eliciting clinical
beliefs the clinicians were asked for their beliefs about treatment failure, which
included the development of metastases. For transition 3, from metastases to
death, a Uniform density was used for all model parameters, as there was no
prior information of relative treatment differences once a 'failure' had occurred.

For transitions 1 and 2, treatment to death and treatment to metastases
respectively, we considered time-homogeneous and time-inhomogeneous Markov
models. These were equivalent to semi-Markov processes since entry into the
treatment state is by definition time of entry into the study. Baseline intensities
were assumed to be constant, piecewise constant or to have a Weibull parametric
form. For transition 3, metastases to death, we again fitted Markov models,
both time-homogeneous and time-inhomogeneous, but we also considered semi-
Markov models since the sojourn times, i.e the time that a patient spent in
the metastatic state before making the transition to death, were also available.
Therefore we considered time-homogeneous, but sojourn-inhomogeneous semi-
Markov models, which in the case of a constant baseline intensity are equivalent
to time-homogeneous Markov models.

As mentioned in Section 7.3 estimation of the posterior densities, means and
variances, can be performed using either the Laplace approximations advocated
by Tierney and Kadane (1986) or Gauss-Hermite quadrature described by Nay-
lor and Smith (1982). Both methods were described in detail in Chapter 6.
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Maximum likelihood estimates were also obtained directly by maximising the
likelihood using nlmin in Splus (1990), and asymptotic estimates of the stan-
dard deviations were obtained using minus the inverse of the hessian matrix
evaluated at the maximum likelihood value.

7.4.3 Results
Table 7.1 shows the transitional status of patients on the 21st December 1990.
We can see that initial inspection of this table would lead us to believe that
not only are neutron patients more likely to die, but they are more likely to
have metastatic spread, and subsequently to die. However, this table makes
allowance for neither the times taken for these events to occur or for the effect
of censoring.

Table 7.2 shows parameter estimates in the case when the baseline intensity
function is constant and clinical priors were used for the treatment effect, f3,
for transitions 1 and 2, and Uniform prior densities were used for all other
parameters. Table 7.3 shows the parameter estimates assuming a piecewise
constant baseline intensity function, with two intervals, less than or equal to
365 days, and greater than 365 days. Finally Table 7.4 gives the estimates
assuming a Weibull parametric form for the baseline intensity. Figures 7.7 to 7.9
show the maximum relative log-likelihood, prior density and marginal posterior
densities for f3 the treatment effect parameter. f3 is the logarithm of the ratio
of the intensities for the two groups, so that f3 = 0 indicates a relative intensity
ratio of one, i.e no treatment difference. Whilst a value of f3 less than zero
indicates that neutrons have less risk than photons of a particular transition,
correspondingly a value of f3 greater than zero indicates that photons have less
risk than neutrons of the transition in question.
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Transition (J (Baseline) f3 (Treatment)
Mean SD Mean SD p(O}B P(-O.26}

Survival
Prior 00 -0.116 0.286 0.657 0.307
Posterior (L)b -6.753 0.147 0.313 0.169 0.032 0.000
Posterior (G-H)C -6.753 0.147 0.313 0.169 0.032 0.000
MLE -6.898 0.178 0.546 0.216

Treatment to Death (k = 1)

Prior 00 -0.116 0.286 0.657 0.307
Posterior (L) -6.904 0.167 0.192 0.190 0.080 0.009
Posterior (G- H) -6.904 0.168 0.192 0.190 0.080 0.009
MLE -7.041 0.209 0.437 0.261

Treatment to Metastases (k = 2)

Prior 00 -0.116 0.286 0.657 0.307
Posterior (L) -7.419 0.204 0.301 0.213 0.053 0.004
Posterior (G-H) -7.419 0.204 0.301 0.214 0.053 0.004
MLE -7.779 0.301 0.862 0.352

Metastases to Death (k = 3)

Prior 00 00

Posterior (L) -5.305 0.355 0.084 0.402 0.340 0.196
Posterior (G- H) -5.306 0.365 0.085 0.416 0.341 0.203
MLE -5.242 0.353 0.041 0.404

a p(O) and p( -0.26) denotethe probabilitythat {3 is lessthan 0 and -0.26 respectively.
6LdenotesLaplaceapproximation.
cG-HdenotesGauss-Hermitequadrature.

. .
Table 7.2: Parameter estimates for models with constant baseline intensities
using various prior densities for f3 and Uniform prior densities for ().

Survival

We can see from Tables 7.2 to 7.4 that for survival all three parametric models,
that is constant, piecewise constant and Weibull form intensities, yield approx-
imately the same results. These are such that the group of clinicians who prior
to the trial being conducted strongly believed in the efficacy of neutrons, should
revise their beliefs so that neutrons are unlikely to be beneficial compared to
photons. All three models yield a posterior probability of neutrons being ben-
eficial of 2-3%. These results are in broad agreement with those presented in
Chapter 6 for the full data set, i.e n = 154.

Treatment to Death

For transition 1, treatment to death without developing metastases, there is
considerable evidence to suggest that neutron patients do worse than photon
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patients. This is in spite of the fact that an informative prior in favour of
neutron therapy was used. All three models yielded a posterior relative risk
(neutrons to photons) of 1.2 compared to the clinicians' prior relative risk of
0.89. The clinicians' have a posterior probability that neutrons were beneficial
of 9-11% compared to a prior probability of 66%.

Treatment to Metastases

Considering transition 2, treatment to metastases, again there is broad agree-
ment between the three parametric models. In the light of the trials results the
clinicians should revise their beliefs so that a posteriori they believe that the
relative risk (neutrons to photons) is approximately 1.3, and that the posterior
probability of neutrons being beneficial, compared to photons, is 5-8%.

Metastases to Death

Using a time-homogeneous but sojourn-inhomogeneous Markov model for tran-
sition 3, metastases to death, we find there is again broad agreement between
the models. The clinicians' posterior belief about the relative risk indicate an
approximate estimate of 1.1, 95% credibility interval (0.49,2.50), using Laplace
approximations. This estimate ignores the time at which patients developed
metastases and only considers the length of time from onset of metastases to
death. The clinicians' posterior probability that neutrons were better than
photons in terms of death after metastases is 40%. So therefore once patients
have developed metastases there is a slightly increased risk of dying if a pa-
tient originally received neutron therapy rather than photon therapy. If instead
we consider a time-inhomogeneous Markov model for transition 3 the clinicians'
posterior belief about the relative risk of death is centred on 0.9, 95% credibility
interval (0.38,2.00), with a posterior probability that neutrons are beneficial of
40-45%. These results indicate that there is little evidence of difference between
the two treatments in terms of death followingmetastatic spread even when the
time at which metastases developed is taken into account.

Comparison with classical semi-parametric models

The results, for the metastases to death transition, obtained using the fully para-
metric models can be compared with those obtained using a semi-parametric
multi-state model with the baseline intensity left unspecified, as have been
applied by Andersen (1988) and Kay (1982). In the case of a semi-Markov
model a relative risk of 1.02 was obtained together with a 95% confidence in-
terval of (0.46,2.26). A Markov model, fitted by using time-dependent strata
in the 21 program in BMDpl , yielded a relative risk of 0.83 with an approx-
imate 95% confidence interval of (0.37,2.03). Comparing these results with
Tables 7.3 and 7.4 we can see that they correspond closely to the maximum

1BMDP is a trademark of BMDP Statistical Software Inc.
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Transition ()1 (t ::;T2) ()2 (t> T2) f3 (Treatment)
Mean SD Mean SD Mean SD p(O)a P(-O.26)

Survival

Prior 00 00 -0.116 0.286 0.657 0.307
Posterior (Ll -6.780 0.172 -6.727 0.190 0.316 0.169 0.031 0.000
Posterior (G- HY -6.780 0.171 -6.727 0.190 0.316 0.169 0.031 0.000
MLE -6.932 0.202 -6.853 0.213 0.553 0.218

Treatment to Death (k = 1)

Prior 00 00 -0.116 0.286 0.657 0.307
Posterior (L) -6.863 0.191 -7.001 0.246 0.186 0.190 0.164 0.009
Posterior (G-H) -6.863 0.191 -7.001 0.245 0.186 0.190 0.164 0.009
MLE -7.003 0.231 -7.103 0.269 0.427 0.262

Treatment to Metastases (k = 2)

Prior 00 00 -0.116 0.286 0.657 0.307
Posterior (L) -7.211 0.223 -8.002 0.383 0.274 0.214 0.100 0.006
Posterior (G-H) -7.211 0.222 -8.003 0.376 0.274 0.214 0.100 0.006
MLE -7.559 0.318 -8.252 0.424 0.805 0.354

Metastases to Death (Semi-Markov) (k = 3)

Prior 00 00 00

Posterior (L) -5.334 0.381 -5.300 0.642 0.102 0.408 0.401 0.187
Posterior (G- H) -5.335 0.372 -5.302 0.642 0.102 0.413 ,0.402 0.190
MLE -5.271 0.368 -5.088 0.620 0.059 0.409

Metastases to Death (Markov) (k = 3)

Prior 00 00 00

Posterior (L) -4.794 0.407 -5.661 0.406 -0.132 0.413 0.625 0.378
Posterior (G- H) -4.795 0.407 -5.662 0.408 -0.131 0.420 0.622 0.379
MLE -4.726 0.402 -5.569 0.399 -0.174 0.415

a p(O) and p( -0.26) denote the probability that {3 is less than 0 and -0.26 respectively.
bL denotes Laplace approximation.
~G-Hdenotes Gauss-Hermite quadrature.

Table 7.3: Parameter estimates for time-inhomogeneous Markov and
semi-Markov models with piecewise constant intensities, using various prior
densities for f3 and Uniform prior densities for !l. with I.= (0,365,00) days.
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likelihood estimates (MLE) obtained using the piecewise constant and Weibull
form intensity models.

Clinical Interpretation

General interpretation of these results is that a posteriori the group of clinicians
who a priori believed that neutrons were beneficial for treating tumours of the
pelvic region, now should believe them not to be as effective as photons. Neu-
tron patients both die at, and develop metastases at, a faster rate than photon
patients, but that those who do develop metastases show no substantial differ-
ence in terms of subsequent survival even when the time at which metastases
developed was taken into account.

Model Testing

In the above analysis we have assumed a constant, piecewise constant or Weibull
baseline intensity for each of the possible transitions. It may be the case that
a particular parametric form of the baseline intensity is more appropriate for a
specific transition. We can assess the strength of evidence for each of the para-
metric intensity functions by looking at the posterior estimates of the baseline
intensity parameters. In the case of the piecewise constant intensity assessing
whether Ot = O2 and for the Weibull baseline intensity whether Ot is close to
zero, indicating that a constant intensity is more appropriate.

Tables 7.2 to 7.4 indicate that for survival there appears to be little evidence
to support the use of a piecewise constant intensity model, with 1:= (0,365,00)
days, whilst there does appear to be support for the use of a model with a
Weibull form intensity over one with a constant intensity. The same situation
holds in the case of the treatment to death transition, with little evidence for the
piecewise constant intensity model, but more for the Weibull intensity model
over the constant intensity model.

However for treatment to metastases the case is reversed with the shape
parameter, Ot, in the Weibull intensity model being very close to zero, indicat-
ing little difference from the constant intensity model. The piecewise constant
intensity model shows some reduction in the baseline intensity in the second
epoch, i.e after one year, suggesting that the baseline intensity is not constant
over time.

Considering the semi-Markov models for the metastases to "death transition
there appears to be little evidence to suggest that the intensity is anything other
than constant, with the baseline intensities in the piecewise constant model
approximately equal and the shape parameter in the Weibull model being near
zero.

The Markov models suggests that for the metastases to death transition the
baseline intensity is not constant over time. The intensities in the piecewise
constant model are different, and the shape parameter in the Weibull model is
not near zero. Both models indicate that the baseline intensity for this transition
is reducing with time, measured from entry into the study.
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Transition (It (Shape) (J2 (Baseline) f3 (Treatment)
Mean SD Mean SD Mean SD p(O} a P(-O.26}

Survival

Prior 00 00 -0.116 0.082 0.657 0.307
Posterior (L)b 0.229 0.080 -8.468 0.272 0.347 0.169 0.019 0.000
Posterior (G-HY 0.229 0.080 -8.460 0.679 0.347 0.169 0.019 0.000
MLE 0.243 0.080 -8.705 0.697 0.602 0.218

Treatment to Death (k = 1)

Prior 00 00 -0.116 0.082 0.657 0.307
Posterior (L) 0.260 0.096 -8.974 0.838 0.231 0.190 0.110 0.005
Posterior (G-H) 0.105 0.098 -7.650 0.720 0.208 0.190 0.137 0.007
MLE 0.278 0.096 -9.250 0.862 0.511 0.262

Treatment to Metastases (k = 2)

Prior 00 00 -0.116 0.082 0.657 0.307
Posterior (L) -0.046 0.114 -7.206 0.807 0.297 0.214 0.082 0.004
Posterior (G-H) -0.043 0.128 -7.206 0.799 0.297 0.213 0.083 0.004
MLE -0.010 0.126 -7.716 0.858 0.859 0.354

Metastases to Death (Semi-Markov) (k = 3)

Prior 00 00 00

Posterior (L) -0.077 0.138 -4.956 0.797 0.084 0.402 0.428 0.201
Posterior (G-H) -0.077 0.138 -4.956, . 0.784 0.084 0.407 0.418 0.199
MLE -0.063 0.138 -4.905 0.788 0.037 0.404

Metastases to Death (Markov) (k = 3)

Prior 00 00 00

Posterior (L) -0.736 0.326 -1.653 1.682 -0.020 0.412 0.612 0.324
Posterior (G-H) -0.758 0.667 -1.928 2.202 -0.034 0.451 0.530 0.308
MLE -0,501 0.397 -2.385 1.855 -0.067 0.412

a p(O) and P(-O.26) denote the probability that f3 < 0 and f3 < -0.26 respectively.
bL denotes Laplace approximation.
cG-H denotes Gauss-Hermite quadrature.

Table 7.4: Parameter estimates for time-inhomogeneous Markov and
semi-Markov models with Weibull parametric intensities, using clinical prior
density for f3 and Uniform prior densities for fl..
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7.4.4 Discussion of Neutron Therapy Example
In this example we have been able to assess the role that metastatic disease
spread played in subsequent death. Using these models we have been able to
show how prior beliefs about treatment failure held by the clinicians in the study
should be revised in the light of the trial results. We saw how even though a
priori the clinicians believed that patients treated with neutrons would fare
better in terms of treatment failure, a posteriori they should revise their beliefs
so that patients treated with photons had a better prognosis both in terms
of death without metastatic spread and the development of metastases itself.
Though there was no prior information on events after metastatic spread a
posteriori there was considerable evidence to suggest little difference between
the two treatment groups in terms of subsequent risk of death regardless of
either sojourn time with metastases or time of development in trial time. These
findings concur with the simple classical analysis presented in Chapter 2, in
which the development of metastases was treated as a time-dependent covariate.
In that analysis although metastases on there own seemed to influence future
survival there was little evidence to suggest a treatment-metastases interaction.

We can see from Tables 7.2 to 7.4 and Figures 7.7 to 7.9 that both the Laplace
approximations suggested by Tierney and Kadane (1986) and the method of
Gauss-Hermite quadrature advocated by Naylor and Smith (1982) yield ap-
proximately the same results.

As has already been stated although the neutron therapy trial was stopped
because of the mortality results initial interest in the study surrounded mor-
bidity. In this chapter we have only considered one aspect of morbidity, that
is the development of metastases. There are two other aspects of morbidity
left to investigate, treatment toxicity and tumour. progression and regression.
Unfortunately at the time data of sufficient quality is not available on either of
these outcomes, but it is hoped that such analyses will be carried out in the
future. Figure 7.10 shows the modelling of tumour progression and regression
diagrammatically.

7.5 Quality of Life Example
In this section we consider the use of multi-state models in analysing event
history data that arises in quality of life studies. Over recent years there has
been increased interest in quality of life studies, especially in cancer clinical
trials, (Fayers and Jones, 1983, Olschewski and Schumacher, 1990, Fayers et
al., 1991, Pocock, 1991). Traditionally analysis of cancer clinical trials has
focused on survival or disease-free survival, but with treatments only marginally
increasing survival interest has focused on other issues such as treatment side-
effects. Palliative treatment has also focused attention on other measures.

Having justified the need for measures other than survival much work has
been done to develop measuring instruments that can measure a patient's qual-
ity of life, Bowling (1991) reviews many measuring instruments, whilst Fayers
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Figure 7.10: Multi-state model for tumour response, Q'k(t) is the transition
intensity for event k at time t.

and Jones (1983) review many of the scales that are used in cancer. The type of
data that is generated by using such measuring instruments is not exclusively
found in quality of life studies, but also in many sociological settings such as
panel studies (Kalbfleisch and Lawless, 1985, DeStavola, 1986). Such data is
often in the form of several items i.e question responses, on each of a number
of dimensions e.g physical, sexual, social etc, and possibly recorded on a large
number of occassions. There are two problems; the dimensionality of the data
and the fact that there may be many observations over time.

Good graphical presentation of the data is fundamental, as has been advo-
cated by Fayers (1991). Simple analysis within dimensions can be carried out
using paired t-tests, as advocated by Cox et al (1992). As a simple analysis
concentrates on the dimensionality of the data, so the types of more complex
analysis that have been suggested rely on a reduction in the dimensionality of
the data, but concentrate on the dynamic nature. There are essentially two
methods that have been advocated; quality adjusted survival and multi-state
models. We shall only briefly outline the former method, but will discuss in
detail the latter.

Galsziou, Simes and Gelber (1990) advocate the use of quality adjusted sur-
vival analysis in which a patient's total survival time is split into a finite number
of intervals. Each interval is then weighted according to the patient's quality of
life in that interval. A quality adjusted survival time is then obtained by taking
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the sum of the weighted interval lengths. The advantage of this method is that
once the quality adjusted survival times have been formed, traditional survival
analysis techniques may then be used. The disadvantage of such a method is
that the parameter estimates that are eventually obtained are difficult to inter-
pret. In common with multi-state models this method also relies upon there
being a single measure of quality of life. This is a contentious issue. A number
of authors have argued in favour of a global measure, including Tandon (1990)
and Schumacher, Olschewski and Schulgen (1991), but more recently Cox et al
(1992) have argued against the use of such a measure, especially across dimen-
sions.

Multi-state methods have been advocated by Olschewski and Schumacher
(1990) and Abrams (1992). They too have the disadvantage that they require
there to be a single measure. This measure may either be a global quality of
life measure or it may be a measure within a dimension, but across items in
that dimension. The longitudinal nature of the data is then reflected in patients
moving between different quality of life states. Though these assumptions have
been critised they do enable easily interpretable quantities to be obtained, e.g
the probability of deterioration/improvement in quality of life or mean time
spent in a specific quality of life state, both conditional on covariates. Another
disadvantage that has been noted is the quality and quantity of the data required
for such models. This is becoming less of an issue as interest in quality of life
increases and such data is routinely collected as part of cancer clinical trials. As
an illustration of the use of such multi-state models we will consider the pilot
quality of life study described in Chapter 2.

7.5.1 Methods

In Chapter 2 the formation of a global index was described, so that patients
could be in either a 'good', 'medium' or 'poor' quality of life state at any ob-
served time. In this pilot study we are interested in comparing the quality of
life experienced by lung cancer patients with that of other cancer patients, i.e
those with cancer of the testis, ovary and skin (melanoma). Table 7.5 shows
the number of transitions between states that were observed for the two patient
groups. We can see that for two of the transitions, 'good' to death and 'poor'
to 'medium' (for at least one of the patient groups) there were no transitions.
We shall therefore ignore these two transitions. Figure 7.11 shows the possible
transitions diagrammatically, with Qk(t) denoting the transitions intensity for
the kth transition. Figure 7.12 shows the dynamic evolution of the patients'
quality of life with different line types representing the different quality of life
states. As we will consider the case of a time-homogeneous Markov model,
Qk(t) will be constant. Qk(t) is parameterised as in the case of the metastases
example in Section 7.3, so that for non-lung cancer patients the intensity for
the kth transition is e(Jk and for lung cancer patients it is e(Jk+f3k. Therefore ef3k

represents the relative risk of the transition for lung cancer patients compared
to non-lung cancer patients. Accordingly 13k is the logarithm of the relative risk
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for the kth transition with a value of zero indicating no patient group difference.
Using this parameterisation of Oik(t) (7.1), and the likelihood (7.2) described

in Section 7.2 and assuming uniform prior probability density functions for
all parameters we can obtain the joint posterior density function. Parameter
estimates and marginal posterior densities can be obtained using either the
Laplace approximations suggested by Tierney and Kadane (1986) or Gauss-
Hermite quadrature advocated by Naylor and Smith (1982) both methods were
described in detail in Chapter 6.

7.5.2 Results
Table 7.6 shows the posterior parameter estimates obtained using both Laplace
approximations and Gauss-Hermite quadrature, and as a comparison those ob-
tained using maximum likelihood. Figures 7.13 and 7.14 show the maximum
relative log-likelihood and posterior marginal probability density functions for
the f3 parameters.

We can see from Table 7.6 that considering overall survival, lung cancer
patients are at increased risk of dying, relative to non-lung cancer patients,
with virtually no posterior probability that the relative risk is less than one,
i.e a relative risk greater than one indicating that lung cancer patients are at
increased risk compared to non-lung cancer patients. Considering patients who
are in the 'good' quality of life state, we can see that lung cancer patients have
increased risk of deteriorating and entering the 'medium' quality of life state.
Again there is virtually no posterior probability that the relative risk is less than
one. As may be expected considering patients who are in a 'medium' quality of
life state the relative risk of improving, favours non-lung cancer patients with a
posterior probability of approximately 66%. Still considering patients who are
in a 'medium' quality of life state, there is an increased risk of deterioration
to a 'poor' quality of life state for lung cancer patients compared to non-lung
cancer patients, with a posterior probability of approximately 80%. Lung cancer
patients are also at an increased relative risk of dying from a 'medium' quality of
life state with a posterior probability of approximately 65%. Finally, considering
those patients who are in a 'poor' quality of life state there is an increased
relative risk of dying for non-lung cancer patients with a posterior probability
of approximately 77%.

7.5.3 Clinical Interpretation
Thus, overall lung cancer patients not only have an increased relative risk of
dying, but they also have an increased relative risk of their quality of life dete-
riorating regardless of their present quality.
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7.5.4 Discussion of Quality of Life Example
This analysis was intended as an illustration of the use of multi-state models
in quality of life studies. The interpretation of the parameter estimates needs
care, as they are based on relatively small numbers of transitions. This explains
the relatively large standard deviations seen in Table 7.6. Although both the
Laplace approximations and Gauss-Hermite quadrature gave results which were
the same for all practical purposes, there were larger discrepancies than had
been seen in previous applications in this thesis. Convergence of both nlmin
and BAYES4 were noticably slower and more difficult to achieve than in other
examples, especially considering that for each transition only two parameters
were estimated. Laplace approximations require that n in (6.11) be 'moderate';
both large and small n can seriously affect parameter and density estimation,
(Tierney and Kadane, 1986, Tierney et al., 1989). In the case of this study n is
small, being at most 18.

'good' 'medium'
G:4(t) (1)

'poor'

Death

Figure 7.11: Multi-state model for pilot quality of life study, (.) denotes the
number of patients who made a particular transition. and G:k(t) is the transition
intensity for event k.
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'good' 'medium' 'poor' death
'good' non-lung 8 5 0 0

lung 1 4 0 0
'medium' non-lung 2 8 3 2

lung 3 5 4 3
'poor' non-lung 0 0 1 2

lung 0 1 3 0

Table 7.5: Transitional status for lung and non-lung cancer patients in pilot
quality of life study.

7.6 General Discussion of Multi-State Models
In this chapter we have seen how the two-state models of Chapter 6 can be
extended to the case when there are more than two states, if we are prepared
to assume that the times of transitions are known. In clinical trials such an
assumption would seem reasonable as patients are followed-up more closely than
in obervational studies. We have been able to consider both time-homogeneous
and time-inhomogenous Markov models in which the risk of particular transition
is dependent only on the current state that a patient is in, and does not depend
on the length of time that has been spent in that state. We have also considered
the case when we do allow for the sojourn times in a time-homogeneous, but
sojourn inhomogeneous semi-Markov model. A key aspect of these models has
been the incorporation of prior information about specific transitions into the
formal statistical analysis by adopting Bayesian methodology.

The advantage of the models developed in this chapter is that transition
specific covariates may be included in the model so that their influence on
intermediate events may be evaluated.. This is the key concept of multi-state
models; that the overall survival process is decomposed into its constituent
components, and a clearer picture of the disease/treatment process is obtained.

We have applied Bayesian multi-state models to the development of metas-
tases in the neutron therapy study. Using such models we have been able to
address the clinically important issue ofwhat role the development of metastases
plays in helping to explain the treatment differences.

A further extension of the models presented in this chapter would be to
allow for a semi-Markov model in continuous time which is inhomogeneous with
respect to both trial time and sojourn time. Thus for the general multiplicative
model (7.1) the intensity would be of the form

aik(t) = AOk(t) e"YkXik(6,t) eE!.r!..ik(t) Yik(t)

where s is the time of event k in overall trial time, Xik(S, t) is the sojourn time
for patient i at time t for event k, and ~ik(t) are other possibly time-dependent
covariates specific to event k for patient i. In the metastases example above,
given that a patient had already developed a metastases, the probability that
they would die within a short space of time would be a function of both the
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Transition o (Baseline) j3 (Lung)
Mean SD Mean SD p(O)a

Survival

Prior 00 00

Posterior (L)b -7.344 0.318 1.801 0.428 0.000
Posterior (G- H)C -7.345 0.324 1.801 0.438 0.000
MLE -7.294 0.316 1.792 0.428

'good' to 'medium' (k = 1)

Prior 00 00

Posterior (L) -5.932 0.437 2.502 0.670 0.000
Posterior (G-H) -5.935 0.470 2.500 0.711 0.001
MLE -5.831 0.446 2.526 0.670

'medium' to 'good' (k = 2)

Prior 00 00

Posterior (L) -6.057 0.412 -0.314 0.728 0.667
Posterior (G-H) -6.196 0.455 7 -0.316 0.748 0.664
MLE -6.094 ·0.445 -0.247 0.728

'medium' to 'poor' (k = 3)

Prior 00 00

Posterior (L) -6.627 0.563 0.617 0.763 0.169
Posterior (G- H) -6.636 0.628 0.621 0.823 0.220
MLE -6.460 0.575 0.575 0.762

'medium' to death (k = 6)

Prior 00 00

Posterior (L) -7.279 0.684 0.343 1.001 0.366
Posterior (G-H) -7.286 0.738 0.343 1.044 0.371
MLE -7.029 0.700 0.342 0.993

'poor' to death (k = 7)

Prior 00 00

Posterior (L) -4.581 0.560 -0.692 0.910 0.778
Posterior (G- H) -4.584 0.594 -0.696 0.947 0.769
MLE -4.415 0.577 -0.609 0.912

a p(O) denotes the probability that f3 is less than O.
bL denotes Laplace approximation.
cG-H denotes Gauss-Hermite quadrature.

Table 7.6: Parameter estimates for time-homogeneous Markov model for pilot
quality of life study.
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Figure 7.13: Maximum relative log-likelihood and marginal posterior densities
for f3 in quality of life study; (a) 'good' to 'medium', (b) 'medium' to 'good',
(c) 'medium' to 'poor'.



179 Chapter 7. Multi-State Models

(a) (b)
0 0
M M

0 0
~

.
~

.
C\I C\I.(j) .(j)

c: c:
Q)

0
Q)

0Cl . Cl
~ ~

0 0.
0 0

-2 0 1 2 3 -3 -1 1 2

Beta (Lung) Beta (Lung)

Key: - maximum relative log-likelihood, - . - . - . - posterior (Laplace), --
posterior (Gauss-Hermite).
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current position in trial time and the length of time for which they had had a
metastases, i.e

{
t - s if t > s

Xik(S,t)= 0 ift:5s

We have also considered the application of multi-state models to data from
a pilot quality of life study. This is an important and expanding area in can-
cer clinical trials, in which survival is not always the most appropriate end-
point. Multi-state models allow more clinically meaningful quantities to be
estimated than -those using traditional quality-adjusted survival analysis tech-
niques. Multi-state models can be applied either globally or within particular
dimensions, e.g to estimate the relative risk of a patient's physical ability im-
proving, given their current status, on one treatment compared to another. This
example also demonstrates the need for 'good' quality data if the modelling as-
sumptions we have had to make can be justified.



Chapter 8

Summary and Conclusions
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In this chapter we summarise the results of this thesis, both statistical and clin-
ical, discuss the possible application of the methods developed to epidemiology,
and outline areas for further work.

8.1 Statistical summary
We saw in Chapter 3 that in cancer clinical trials there is often prior information
in the form of both clinical beliefs and results from previous studies. Careful
consideration has to be given to the combination of clinical beliefs, especially
when there are major discrepancies between individuals. The combination of
the results from previous studies is helped by the methodology that has been
developed for conducting meta analyses, though Bayesian methods are poten-
tially useful. The elicitation of the clinical beliefs in the neutron therapy study
was done primarily to establish whether continued randomisation of patients
into the study was ethical. Such an elicitation process serves not only to quan-
tify beliefs about possible treatment difference but also the size of a difference
required to change clinical practice.

In a wider context, in the pharamceutical industry, elicitation and uses of
prior information have a role to play. Within individual companies there is a
very real role for Bayesian methods in terms of drug development, i.e identifying
which drug is worth pursuing, when the evidence may come from a number of
dispirit sources. In the area drug regulation acceptance of Bayesian methods
is largely governed by the regulatory authorities, i.e Committee on Saftey of
Medicines in the U.K, and the Food and Drug Administration in the United
States, and in principle there is now acceptance of them. However, use is cur-
rently limited by the lack of suitable well understood models and software.

Having obtained and quantified prior information, the non-temporal mod-
els described in Chapter 4 can be used in an initial analysis. In particular an
odds model approach, based on assuming Beta conjugate prior distributions for
the failure rates in each of the two treatment groups separately, and a Normal
theory approach, assuming the hazard ratio to be Normally distributed with
unknown mean, but known variance, and a Normal prior distribution for the
mean, are straight forward to implement and do not necessarily require sophis-
ticated software. The major disadvantages with such models is that they can
only accommodate two patient groups, and that they cannot explicitly allow
for differential follow-up or censoring. The first disadvantage may be addressed
by using a logistic regression model, but the complexity of implementation is
greatly increased, whilst still not addressing the second problem of differential
follow-up. Non-temporal models also suffer from the disadvantage that they are
not able to consider more than one end-point per patient.

In order to address both the problem of the inclusion of covariates and that
of differential follow-up a fully parametric multiplicative intensity model was
developed. A fully parametric model was d-veloped for two reasons; firstly,
there are many situations where there is evidence to suggest that a particular
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parametric form may be appropriate, and secondly, as a set of alternative models
to the now almost de facto semi-parametric proportional hazards model. We
considered three different parametric models. The first, and simplest, was a
model in which the baseline intensity was constant over time. This model
corresponds to assuming the times to death, in a survival analysis problem, are
exponentially distributed, or in generalised model terms a Poisson regression
model. As an extension of this model, we considered the case when there are a
number of time intervals, which are chosen arbitarily, and the baseline intensity
was constant within each one. Finally, a model in which the baseline intensity
is a power transform of the time scale was developed. This model corresponds
to assuming that the times to death, in a survival analysis problem, follow a
Weibull distribution.

In the case when there were two states, the second of which was absorb-
ing, the model was applied to the survival data in the neutron therapy trial.
The model parameters were estimated using both Laplace approximations and
Gauss-Hermite quadrature. The two methods gave virtually identical results in
terms of both moment estimates and marginal posterior densities. It was also
shown that parameter estimation in this class of models does not require the
use of computationally intensive simulation methods such as Gibbs sampling.
Though Gauss-Hermite quadrature requires sophisticated software the Laplace
approximations only require the ability to maximise a function of several vari-
ables, and therefore could be implemented easily using standard software. The
conclusions about the efficacy of neutron therapy compared to photon therapy
for tumours of the pelvic region were not different to those obtained using the
non-temporal models of Chapter 4. This can be explained by the fact that
we found little evidence for the baseline intensity varying with time. For data
sets in which this is not the case then a difference between the temporal and
non-temporal models could be expected.

The two state model, developed in Chapter 6, was extended to the multi
state case where there are a number of states a patient may be in at a specific
time point. Such models allow for the survival process to be decomposed into
constituent components, and enable a greater depth of understanding. By de-
veloping the two-state models in Chapter 6 using exclusively counting process
notation the extension to the multi-state scenario was straight forward. The
multi-state models of Chapter 7 were applied to two examples. The first was a
three state illness-death/disability model, to assess the effect of -metastatic dis-
ease spread on survival in the neutron therapy study. The three different para-
metric forms for the baseline intensity allowed both Markov and semi-Markov
model assumptions to be tested. The second example was a multi state model
applied to a pilot quality of life study. Due to the size of the study only a
time-homogeneous Markov model was possible. In both examples parameter
estimation was performed using Laplace approximations and Gauss-Hermite
quadrature. As in the two state model the results using these methods were for
practical purposes the same.

We have shown that Bayesian multi-state models provide a coherent frame-
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work for the analysis of clinical trials, yielding clinically meaningful summaries
of current state of knowledge about the disease/treatment process.

8.2 Clinical interpretation

Neutron therapy example
The clinical beliefs that were elicited indicated that nine out of the ten clinicians
thought that, for the treatment of pelvic tumours, high energy neutron therapy
was going to be more beneficial than photon therapy. Only one clinician thought
that photon therapy was likely to be more beneficial than neutron therapy.
A meta analysis of five published and one unpublished studies indicated that
low energy neutron therapy were unlikely to be more beneficial, than photon
therapy, for these patients.

In the light of the trial, aggregated clinical beliefs should change considerably
so that a posteriori the clinicians, as a group, would only consider there to be a
small chance of neutrons being more beneficial that photons in terms of overall
survival. Beliefs based on the results of the six previous studies would only
change slightly in the light of the current study.

Further analysis shows that neutron patients are at increased risk of devel-
oping clinically detected metastases or dying without having developed them.
Once they have developed there appears little evidence of a treatment differ-
ence even after allowing for time of development. Though information about
metastatic disease found at autopsy was available, patients who received neu-
tron therapy were more likely to have an autopsy. Therefore, use of this data
could introduce serious bias into any analysis.

In using a Bayesian approach in the analysis of this study we have assessed
the current weight of evidence for the use of neutron therapy for tumours of
the pelvic region based not only on the current study, but also on previous trial
results and clinical opinion. At an individual, or group, level such an approach
formalises what often happens in practice, i.e that the results from the current
study are interpreted in the light of previous findings. The Bayesian approach
also has the advantage"that we are formally able to synthesize information from
dispirit sources about the role neutron therapy has to play in treating pelvic
tumours in a coherent manner.

Quality of life example
Analysis of the pilot quality of life study showed that lung cancer patients were
not only at increased risk of death relative to other patients, but also of a
deteriorating quality of life, regardless of their present quality.

Though these results are not surprising, the quantities that were obtained
from the multi-state models are easily interpretable. Such models allow an
analysis either globally, i.e ignoring dimensions, or within specific dimensions.
Thus, for a complex analysis of quality of life studies, multi-state models have
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an advantage over quality-adjusted survival techniques. A fundamental need for
good graphical presentation of the results was also highlighted. As an example
the use of Lexis type diagrams can clearly show patients' changing quality of
life status, though further work in this area is required.

8.3 Limitations of the Bayesian approach
We have shown that. the Bayesian approach aids the clinical understanding
of complex survival data. However there are a number of limitations of such
an approach. The first major limitation of the Bayesian approach over the
classical approach is that there is no clear modelling strategy to adopt, either
in terms of model selection or model comparison. Whilst in classical survival
analysis 'goodness of fit' of models has been addressed by some authors, see
Kay (1984) for a review, in Bayesian survival analysis, with the exception of
Chaloner (1991), little work has been done.

In the analysis of the neutron therapy study a number of different paramet-
ric models were considered. Whilst none of the different models gave radically
different results, assessing which is the 'best' model is difficult. For this par-
ticular study, of the models considered, the most appropriate is one in which
there are three time intervals; less than six months, six months to a year and
greater than a year. However, further analysis may show that there is evidence
of a time-treatment interaction, thus violating the multiplicative intensity as-
sumption.

Another limitation of the Bayesian approach is that it requires careful in-
terpretation. \Ve saw in Section 6.5.4 that arbitary use of only the marginal
posterior densities can lead to unusual results and can be misleading. A full
analysis requires that both the marginal densities and the bivariate densities
are examined.

8.4 Links with epidemiology
Good medical practice develops by the accumulation of information over time.
In particular, the process of sequential accumulation of information about a
particular hypothesis occurs in epidemiology. An initial hypothesis may be gen-
erated by laboratory experiments or biological theory, a case-control study may
be performed to initially test this hypothesis, and subsequently a large prospec-
tive cohort study may be conducted. After each study the belief about the
hypothesis should be updated. Therefore Bayesian methodology has a poten-
tial role to play in epidemiology.

The non-temporal models of Chapter 4 may be applied to any type of study
in which there are two patient groups and the response is dichotomous. In
particular models that use the odds ratio will be invariant to the sampling
scheme used and are particularly appealing. The odds models and the Normal
theory models are both convenient tools for an initial analysis. When either
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there are a number of explanatory factors or when patients are matched, the
logistic regression models outlined in Chapter 4 would be suitable, though these
would typically involve the use of approximate integration techniques.

In prospective cohort studies the multiplicative intensity models developed
here would be appropriate in modelling the risk of an event using time from
exposure. In particular, the piecewise constant intensity model would allow an
analysis by age cohort. The multi-state multiplicative models would be useful
when there is information on changing exposure patterns in an occupational
cohort, and individuals can be thought to move between a finite number of
exposure states.

8.5 Further work
There are a number of areas for future work.

A fruitful area for future work is the use of Bayesian methodology for sum-
marising previous trial results. One way in which such an approach may help is
in highlighting the sequential nature of meta analyses. This is an area that is
not accommodated in either the fixed effects model or the random effects model.
Lau, Antman, Jimenez-Silva, Kupelnick, Mosteller, and Chalmers (1992) have
demonstrated the clinical significance of using such sequential methods in trials
to the assess the efficacy of streptokinase for acute myocardial infarction.

The two-state multiplicative intensity models of Chapter 6 were extended
to the case when there were at most three explanatory factors. In theory there
is no difficulty extending them further to accommodate a larger number of co-
variates. As we have seen when the number of model parameters increases,
use of optimisation routines such as those in NAG is required in order to im-
plement the Laplace approximations discussed In this thesis. Therefore further
work is required to produce a general Splus function, which makes use of NAG,
for optimisation and numerical estimates of the hessian matrix, but allows a
general model to be specified as a Splus object. However, as we have seen for
models with many parameters, careful parameterisation is necessary together
with careful interpretation,

Although the potential use of Markov Chain Monte Carlo, and in particular
Gibbs sampling, was mentioned, it was not used as the presense of censoring
meant that sampling from the conditional distributions was not straightforward.
Recently Kuo and Smith (1992) and Smith and Roberts (1993) have shown that
this particular problem can be overcome by treating the censored observations
as further unknown model parameters that need to be estimated. Further work
is required to compare the results using Gibbs sampling with those obtained
using Laplace approximations and Gauss-Hermite quadrature. Experience of
the use of Gibbs sampling in the relatively well behaved problems studied in
this thesis may give insight into its potential use in more complex and less
tractable problems.

The baseline intensity in all the models developed in this thesis can be con-
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sidered restrictive. One possible way of relaxing this assumption is to assume
that the baseline intensity can be approximated by a continuous smooth curve,
such as a spline (Wegman and Wright, 1983). Taulbee (1979), Gilks (1986),
Durrleman and Simon (1989) and Sleeper and Harrington (1990) have all con-
sidered the use of splines in regression models for survival data from a classical
perspective. Only Shaw (1988) has considered taking a Bayesian approach to
the use of splines in survival models. This area would appear to be a fruitful
one for further work.

The models considered here all assume that the effect of model covariates
remains constant over time clearly this may not be the case. In the piecewise
constant intensity model this can be allowed for in theory by assuming coeffi-
cients to vary between epochs but to be constant within each epoch. This is
similar to the approach of Gamerman (1987a) though without necessarily as-
suming an auto-regressive structure. Further work is also required to determine
the 'best' method for defining the time intervals in peicewise constant intensity
models, i.e whether the should be pre-specified or whether they should be data
dependent.

The multi-state models developed here use one of two time scales; either the
length of time a patient has been in a particular state (sojourn time) or the
trial time. Ideally we would like to be able to accommodate both scales within
the same model. The most obvious way of doing this is to allow the baseline
intensity to be on the trial time scale, and for the sojourn times to enter the
model as time-dependent covariates.

As we have already mentioned one of the key assumptions of the models
developed here is that baseline intensity can be adequately approximated by a
parametric form, such as a piecewise constant function or a power transform.
An alternative approach is to allow the baseline intensity to be non-parametric,
resulting in a semi-parametric model similar Cox's proportional hazards model.
A number of authors have discussed such a model from a Bayesian perspective,
including Hjort (1986), Clayton (1991) and Carlin, Chaloner, Church, Louis
and Matts (1992). However, one of the contributions of this thesis has been to
provide a number of alternative parametric survival models to the now almost
de facto semi-parametric proportional hazards model.
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A.I Column Descriptions
Column 1 Patient Number

Column 2 Survival Time (days), using 21st December 1990 as censoring date.

Column 3 Death, 0 = Alive, 1 = Dead

Column 4 Treatment, 0 = Neutrons, 1 = Photons

Column 5 Site, 1 =:: Cervix, 2 = Rectum, 3 = Bladder, 4 = Prostate

Column 6 Phase, 0 = randomised before 10th January 1988, 1 = randomised
after 10th January 1988.

Column 7 Metastases diagnosed before death, 0 = No Metastases, 1 = Metas-
tases

Column 8 Time to Metastases (days) or death whichever is the sooner

Note

One patient has a missing value for time to metastases, denoted 'NA', and ten
patients did not have sufficient follow-up for the detection of metastases, i.e
time to metastases of zero.
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A.2 Data
1 139 1 0 2 0 1 71
2 325 1 0 2 0 1 147
3 111 1 020 1 87
4 309 1 0 3 0 0 287
5 549 1 0 2 0 1 129
6 219 1 130 1 137
7 451 1 o 2 0 0 386
8 320 1 010 1 288
9 1241 1 0 2 0 1 1021

10 316 1 0 2 0 0 213
11 477 1 1 1 0 0 449
12 734 1 0 2 0 0 534
13 1490 1 1 2 0 0 1058
14 209 1 0 3 0 1 202
15 1597 0 1 1 0 0 1581
16 825 1 0 2 0 0 757
17 301 1 0 3 0 1 274
18 1115 1 0 4 0 1 671
19 177 1 0 2 0 0 0
20 1036 1 1 3 0 1 1031
21 1533 0 0 1 0 0 1489
22 493 1 o 200 456
23 99 1 0 3 0 0 80
24 465 1 1 2 0 1 377
25 574 1 0 3 0 0 496
26 127 1 030 1 122
27 145 1 020 0 115
28 222 1 020 1 38
29 152 1 0 200 49
30 43 1 0 2 0 0 0
31 1375 0 1 1 0 -0 1331
32 310 1 1 3 0 0 274
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33 325 1 0 3 0 0 284
34 215 1 0 3 0 0 170
35 1366 0 1 1 0 0 1363
36 165 1 1 1 0 1 157
37 224 1 0 3 0 0 179
38 1348 0 0 3 0 0 1312
39 247 1 0 3 0 0 171
40 1340 0 0 2 0 0 1238
41 269 1 1 3 1 0 240
42 587 1 030 0 495
43 11 1 130 0 0
44 125 1 120 0 101
45 291 1 0 2 0 0 250
46 176 1 0 3 0 1 104
47 228 1 o 3 0 0 176
48 769 1 0 3 0 0 715
49 154 1 0 2 0 0 138
50 474 1 0 4 0 1 272
51 814 1 1 2 0 0 612
52 126 1 0 3 0 1 76
53 79 1 0 3 0 0 77
54 1114 0 0 4 0 1 648
55 172 1 0 2 1 1 76
56 1110 0 1 1 0 0 1078
57 430 1 o 100 415
58 486 1 020 1 129
59 577 1 o 3 1 0 570
60 161 1 o 3 1 0 79
61 37 1 1 3 1 0 NA
62 1037 0 0 3 1 0 1021
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63 224 1 0 4 1 1 142
64 173 1 0 3 1 0 158
65 364 1 0 1 1 1 283
66 199 1 0 2 1 0 136
67 959 0 1 2 1 1 377
68 229 1 0 3 1 1 113
69 995 0 1 3 1 0 990
70 299 1 1 3 1 0 280
71 773 1 1 3 1 0 743
72 133 1 121 1 97
73 968 0 1 1 1 0 854
74 472 1 0 2 1 0 384
75 969 0 0 3 1 0 964
76 232 1 1 3 1 1 167
77 535 1 1 1 1 0 451
78 186 1 1 2 1 0 139
79 246 1 1 3 1 0 186
80 44 1 1 2 1 0 0
81 417 1 0 1 1 0 329
82 744 1 0 2 1 0 399
83 149 1 1 2 1 0 100
84 239 1 0 3 1 1 29
85 141 1 0 3 1 0 37
86 886 0 1 3 1 0 865
87 92 1 0 3 1 0 89
88 332 1 1 1 1 0 255
69 897 0 0 3 1 0 886 1·

90 118 1 1 3 1 0 93
91 515 1 0 2 1 0 425
92 335 1 1 3 1 0 306
93 145 1 0 3 1 0 122
94 843 0 0 1 1 0 764
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95 528 1 0 2 1 0 333
96 823 0 1 2 1 0 819
97 753 0 1 4 1 0 681
98 545 1 1 2 1 0 459
99 759 0 0 3 1 0 754

100 757 0 1 3 1 0 678
101 110 1 o 3 1 1 85
102 764 0 1 3 1 0 753
103 427 1 1 3 1 0 286
104 690 0 1 1 10 658
105 683 0 1 1 1 0 637
106 499 1 0 2 1 1 372
107 395 1 0 4 1 0 371
108 556 1 0 1 1 1 400
109 336 1 0 1 1 0 244
110 30 1 0 3 1 0 0
111 347 1 1 3 1 0 238
112 596 1 0 3 1 1 212
113 638 0 1 3 1 0 629
114 249 1 0 3 1 0 146
115 619 0 1 3 1 1 337
116 605 0 0 4 1 0 568
117 250 1 1 2 10 0
118 153 1 1 2 1 0 0
119 366 1 1 3 1 0 291
120 563 0 0 3 1 0 552
121 212 1 1 1 1 0 0
122 477 1 1 1 1 1 246
123 568 0 1 3 1 0 482
124 316 1 0 2 1 0 174
125 270 0 0 2 1 0 212
126 434 1 1 2 1 0 153
127 533 0 0 2 1 0 530
128 213 1 0 1 1 1 128
129 134 1 0 2 1 0 0
130 89 1 0 3 1 0 86
131 468 1 0 3 1 0 417
132 393 1 1 2 1 0 240
133 473 0 1 3 1 0 429
134 472 0 1 1 1 0 426
135 465 0 0 3 1 1 168
136 237 1 1 3 1 1 139
137 442 0 0 2 1 0 393
138 421 0 1 3 1 0 385
139 395 0 1 2 1 1 359
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140 403 0 1 2 1 0 394
141 388 0 0 3 1 0 321
142 388 0 0 3 1 0 350
143 372 1 0 1 1 0 316
144 248 1 0 1 1 1 94
145 279 1 1 3 1 0 216
146 56 1 1 3 1 0 0
147 366 0 1 1 1 0 355
148 85 1 1 3 1 0 62
149 347 0 0 1 1 1 331
150 344 0 0 3 1 0 319
151 346 0 0 3 1 0 321
152 319 0 0 2 1 1 184
153 165 1 0 2 1 0 122
154 311 0 1 1 1 0 232
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B.l General Questionnaire

Miscellaneous

Chemotherapy toxicity score 0
1-3
4-6
7-10

1.

2. Weight loss (Kg)

3. Visits to G.P.

4. Fitness for self-care

5. Elimination

o
1
2
3

None
1-3
4-6
>6

o
1
2
3

Every 4 weeks or more
Every 2-4 weeks
Every 1-2 weeks
G.P. calls

o
1
2
3

Self-caring
Minimum assistance needed

o
1

Some assistance needed 2
Unable, needs maximum assistance 3

No problem 0
Some constipation (diet controlled) 1
Constipation (requires aperients) 2
Constipation (requires enema) 3
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Physical

6. Pain No pain 0
Well controlled 1
Some control 2
Uncontrolled 3

7. Ambulatory status Mobile 0
In bed/chair :550% of day 1
In bed/chair >50% of day 2
Confined to bed/chair 3

8. Leisure As before 0
Goes out occasionally, lots of friends 1
Friends visit, does not go out 2
Does not go out, no visitors 3

9. Sexual function No change 0
Decreased 1
Impaired 2
Impotent 3

10. Diet Normal 0
Fair, solids 1
Poor, supplements 2
No appetite, fluids only 3
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Stress

II. Relationship with partner Open 0
Some talk 1
Limited talk 2
Unable to talk 3

12. Family relationships Good 0
Coping fairly well 1
Some friction 2
Very strained 3

13. Sleep at night > 6 hours 0
4-6 hours 1
2-4 hours 2
< 2 hours 3

14. Employment Full 0
Moderately heavy work 1
Light work only 2
Unable to work 3

15. Finances No problem 0
Managing (no savings) 1
Some difficaulty (using savings) 2
Depleted, DSS assistance 3
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PAPERS
High energy neutron treatment for pelvic cancers: study stopped
because of increased mortality ••

R DErrington, D Ashby, SM Gore, K R Abrams, SMyint, D E Bonnen, SW Blake, T E Saxton

Abstract
Objecnw- To compare high energy fast neutron

treatment with conventional megavoltage x ray treat:
ment in the management of locally advanced pelvic
carcinomas (of the cervix, bladder, prostate, and
rectum).

Design-Randomised study from February 1986;
randomisation to neutron treatment or photon treat-
ment was unstrati&ed and in the ratio of 3 to 1until
January 1988,when randomisation was in the ratio 1
to 1and stratified by site of tumour.
Setting-Mersey rqional radiotherapy centre at

C1atterbridp Hospital, Wirral.
PatWnts-151 patients with locally advanced, non-

metastatic pelvic cancer (27 cervical, 69 of the
bladder, seven prostatic, and 48 of the rectum).

Interwntion-Randomisation to neutron treat-
ment was stopped in February 1990.
Main outcome measures-Patient survival and

causes of death in relation to the development of
metastatic disease and treatment related morbidity.
Results- In the first phase of the trial 42 patients

were randomised to neutron treatment and 14 to
photon treatment, and in the second phase 48 to
neutron treatment and 47 to photon treatment. The
relative risk of mortality for photons compared with
neutrons was 0·66 (95% confidence interval 0·40 to
1·10) after adjustment for site of tumour and other
important prognostic factors. Short term and long
term complications were similar in both groups.
COJIClusimu- The trial was stopped because of

the increased mortalitj in patients with cancer of the
cervix, bladder, or rectum treated with neutrons.

Introduction
Compared with conventional megavoltage radio-

therapy (with photons) high linear energy transfer
radiation such as neutron beams has potential biological
advantages that may lead to improved overall results
when used to treat locally advanced tumours. I These
advantages were not shown, however, in randomised
studies on the treatment of rectal cancer and cancer of
the bladder with low energy neutron beams'" and
carcinoma of the cervix with mixed photon and
neutron treatment schedules.' Of the studies of mixed
photon and neutron treatment only the one in patients
with cancer of the prostate showed an advantage
when neutrons were used as part of the radiation
treatment,' 9 but the validity of this observation has
been questioned. I.

Mixed photon and neutron treatment schedules
were evolved to overcome the logistic problems posed
by limited access to non-hospital based cyclotrons and
were not based on any radiobiological rationale. II Low
energy neutrons are associated with excess morbidity
when used alone to treat pelvic tumours, which may
obscure any benefit to be derived from neutrons if they

could be used to irradiate pelvic tumours with dose
distributions similar to those obtained with mega-
voltage x rays. U II

More recently, hospital based cyclotrons capable of
producing high energy neutrons have been developed,
and there is registry based evidence that these are
associated with greatly reduced morbidity when used
to treat patients with pelvic tumours." In view of this,
further phase three randomised studies of treatment
with high energy neutrons versus treatment with
photons were initiated in patients with locally advanced
pelvic tumours (of the cervix, bladder, prostate, and
rectum) to define the role of neutron treatment at these
sites and determine whether or not the potential
biological advantages are real in terms of clinical
outcomes.

The research programme at Clatterbridge Hospital
had the following positive features: high energy neutron
treatment was compared with modem megavoltage
photon treatment; patient follow up on site and by
research clinicians; randomisation from the outset,
with a ratio of patients allocated to neutron treatment
compared those allocated to photon treatment of 3 to 1
from 6 February 1986 until II January 1988, when the
ratio was changed to 1 to 1 randomisation by permuted
blocks of variable length and stratified by site of
tumour; dual planning of eligible patients to avoid
"non-evaluable" bias-patients were randomised
only if the plans for both neutron and photon treat-
ment were acceptable; a careful informed consent
procedure.

Poor patientaccrua1 was one argument for combining
patients with cancer at different sites (cervix, bladder,
rectum, and prostate) within a single randomised trial;
site specific trials would have been entirely lacking in
statistical power. A second reason was that although
the specific tissues affected by morbidity due to
radiation might differ among patients with cancer at
different sites, the pooled data would give a clearer
indication of whether morbidity was becoming the
serious problem it had been shown to be when low
energy neutrons were used. Collaboration with the
American College of Radiology Radiation Therapy
Oncology Group was not possible as in March 1988
poor patient recruitment led to their trials in patients
with cervical and rectal cancer being abandoned. The
group's trial of high energy neutrons versus photons in
patients with cancer of the prostate, was closed in
October 1990 with 178 patients entered.

In preparation for a mid-term review of the Clatter-
bridge cyclotron'S research programme in December
1989 by a Medical Research Council subcommittee an
ad hoc analysis of mortality and morbidity results was
prepared. Randomisation in the council's trial of
patients with pelvic tumours to high energy neutron
treatment or photon treatment was suspended on 12
February 1990. The decision was ratified by the cancer
therapy committee ofthe council on 8 March 1990. In
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this paper we describe the sequence of events leading to
that decision and the results on which it was based.

Methods
ELIGIBILITY

To be eligible for randomisation patients had to have
histologically confirmed adenocarcinoma of the rectum
or prostate, squamous cell carcinoma of the cervix, or
transitional cell carcinoma of the bladder not previously
treated by radiotherapy or chemotherapy. Patients
who were 80 years old or over had a Karnofsky
performance score of 40 or less, or were otherwise unfit
for radical pelvic radiotherapy were not eligible; nor
were those with a history of malignancy at another site
or evidence of distant metastases. Patients entering the
study all had locally advanced disease as determined
by appropriate clinical (including examination under
anaesthesia, cystoscopy, and sigmoidoscopy) and
radiological investigations (including computed
tomography). By TNM staging randomised patients
therefore had T3a, T3b, or T4 and No, NI or Nz, N",
stage cancer in all sites studied.

RADIATION TECHNIQUES AND DOSAGE

Treatment in all patients was planned with a treat-
ment simulator that incorporated information from
diagnostic and planning computed tomograms. In all
patients an initial Iarxe volume of the pelvis was treated
to cover the primary tumour and pelvic lymph nodes.
This was followed by a second phase, entailing treat-
ment of a small volume of the pelvis, replanned on the
basis of computed tomograms, to treat the primary
tumour site with a 2 cm margin around the area of
known macroscopic disease. In patients with cervical
cancer intracavity treatment was given whenever
possible after the first phase of pelvic radiotherapy and
was followed, where appropriate, with a boost treat-
ment to a small volume of the parametrium. Table I
gives the dose schedules for each site.

For both neutron and photon treatment comparable
dose distributions were achieved as confirmed by dual
planning in the early phase of the study (see below).
Three and four field techniques were used and plans
accepted only when the variation of dose within the
target volume did not deviate by more than 7·5% of the
target absorbed dose (as specified in section 33 of
International Commission on Radiation Units and
Measurements report No 29). Isocentric treatment
techniques were used with 8MV x rays (source to uis
distance l00crii) from a linear accelerator or with a
neutron beam generated by bombarding a beryllium
target with 62 MeV protons. IS

RANDOMISATION AND DUAL PLANNING

During the initial phase (phase 1: from 6 February
1986 to 10 January 1988) 56 patients were randomised
in the ratio of 3 to 1-42 to neutron treatment and 14 to
photon treatment - but without stratification by site of
tumour. Block length (eight) was not disclosed to
clinicians, and randomisation was performed at the

hospital by using sealed envelopes prepared by one 01
us (SMG).

Dual planning (for neutron and photon treatment)
for eligible patients was practised for the first 50
patients; all were in fact randomised because they had
adequate radiotherapy plans for both modalities. Dual
planning was then suspended. Analysis by intention to
treat was adhered to strictly with no patient excluded
from the analysis retrospectively on grounds of
inadequacy of radiotherapy plan, thus avoiding non-
evaluable bias.

Frdln II January 1988, 1 to 1 randomisation (again
by using sealed envelopes) by permuted blocks of
length four or six (determined by simple randomis-
ation) and stratified by site of tumour was adopted for
patients with tumours of the cervix, bladder, rectum,
or prostate.

PATIENT FOLLOW UP

During treatment all patients were seen weekly to
record reactions to treatment. During the first year
after treatment patients were seen monthly and
computed tomography, and cystoscopy in those with
bladder tumours, repeated every three months. For
subsequent years patients were seen at intervals of two
to three months. At each follow up visit tumour
response was assessed; any morbidity due to radiation
was scored by the European Organisation for Research
on Treatment of Cancer/Radiation Therapy Oncology
Group scoring criteria.

OUTCOMES

For the interim analysis the primary outcome was
monality from all causes. The secondary end point was
severe toxicity caused by treatment as defined by the
recurrence of a reaction scoring grade 3 or higher
by the European Organisation for Research on Treat-
ment of CancerlRadiation Therapy Oncology Group
scoring criteria.

TRlALSIZE

During the first phase of unstratified randomisation
accrual was 29 patients per annum. Referrals for
cancers of the bladder and cervix doubled in the second
phase of randomisation, when accrual increased to 46
patients per annum. Even SOl a minimum target (to
give a 50% power to detect a ielative· risk of 1·30; see
below) of 300 randomised patients was not likely to be
reached until 1993; the Medical Research Council mid-
term review of the programme was scheduled for
December 1989. In the absence ofa formal plan for
interim analysis ad hoc analysis (of 134 patients
randomised up to 12 September 1989) was undertaken
before the council's visit to the hospital and intended
mainly as a check on data quality.

Trial size was assessed in 1988 soon after the start of
1 to 1 randomisation stratified by site of tumour. Five
randomised trials of treatment with low energy
neutrons for carcinoma of the bladder or rectum had
been published by the end of 1987.2' ,. In March 1988
a non-random sample of 10 clinicians and physicists

Type of radiation
Radiation 10 Jarae pelvic

voIume(pbase I) Total dose 10 tumour
Radiation 10 sma1I pelvic volume (pbase 2)

Paticats with cuccr of the lUddcr.
rectUJII. 01' ~tc:
Neuuoos 1404Gy (9 fnctioas over

21 days: 3 fractionsIwcek)
44 Gy (22 fractions over
30 days: 5 fractiooslweek)

Patialls with c:aDCU of the cervix:
NeutrollS 1404Gy (9 fnctioas over

21 days)
SOGy (25 frxtioasover

35 days)

Photons

4-8 Gy (3 fnctioos over
7days)

20 Gy (10 fractions over
14days)

19·2 Gy (l2fnctioos over
28days)

64 Gy (32fl'llCtioas over
44days)

Inll'llCavity caesium 1
(by. selcctroa) 16 Gy
(poinl A) if possible or

4·8 Gy (3 fractioDs over
7days)

16Gy (8 fl'llCtioasover
10days)
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TABLE II-No of patients rtmdomised to trearmeruwitlr IItIlIrOIIs or plwrons by phase ofrtmdomisation (lor Z) and siteofllDlUJUr, with (aclllariaJ)
death rates at one year

TOial
Phase 1 Phase 2 (death rate al oee year)

Site of IWDOUr Neutrons Photons Neutrons PboIOOS Neutrons l'hoIoos

Cervix 3 6 9 9 12(32%) 15 (22%)
Rectum 19 4 12 13 31 (52%) 17(44%)
B1addc, 17 4 24 24 41 (71%) 28(44%)
Prostate 3 0 3 1 6(17%) 1 (0%)

Total (death rate at one year) 42(60%) 14(32%) 48(48%)- 47(41%) 90(55%) 61 (38%)

with an interest or involvement in neutron treatment
were asked to quantify their current belief about the
failure rate of treatment with high energy neutrons in
patients with pelvic cancer. The consensus belief was a
modest advantage with neutron treatment (median
relative risk was 1·14 for failure of photon treatment
compared with high energy neutron treatment).
Respondents were also asked what relative risk they
would accept for high energy neutrons to be recom-
mended routinely for treating cancer of the pelvis. The
consensus was a relative riskof50/38'S= l·3Q-that is,
a 30% greater failure rate with photons than with high
energy neutrons. Randomisation of 600 patients was
indicated for 80% power to detect such a moderate
difference in failure rates as SO% v 38'S% and ran-
domisation of 300 patients for 50% power.

Respondents' belief about the failure rate of treat-
ment with high energy neutrons also established that
randomisation of patients was ethical: in March 1988
respondents put 26% of their belief that neutron
treatment bad a failure rate of 38' 5% or less, but 28% of
their belief that there were as many or more failures
with high energy neutrons as with photons (a reference
failure rate of SO%). Disparity between repondents'
belief in treatment with high energy neutrons and
the posterior distribution derived from subsequent
statistical overview (see appendix) of the five random-
ised trials of low energy neutrons in treating cancer of
the bladder and rectum'? was considerable.

DATA MONITORING COMMITl'EE

Acting on the interim analysis reports (analysis date
12 September 1989) prepared for the M~cal Research
Council subcommittee's site visit on 4 December 1989,
the neutron subgroup met in January 1990 to suggest
establishing an independent data monitoring commit-
tee to advise on stopping randomisation in the pelvic
cancer trial. The data monitoring committee was
presented with fortna1 analysis of mortality and
morbidity for all patients randomised up to 26 January
1990; interim analysis reports up to 12 September
1989; statistical overviews of published randomised
trials of treatment with low energy neutrons versus
photons for pelvic cancer and for cancers of the head
and neck; and a summary of beliefs (in March 1988)
about the failure rate of high energy neutron treatment
for pelvic tumours.

Randomisation was suspended in February 1990 by
one of us (RDE); this decision was ratified by the data
monitoring committee and approved by the cancer
therapy committee on 8 March 1990.

STATISTICAL ANALYSIS
Comparison of mortality by using life tables was

used throughout, which makes proper allowance for
differential follow up times induced by initial 3 to 1
randomisation. Randomisation was not stratified in the
initial phase and was stratified only by site of tumour in
the second phase, when the randomisation ratio was 1
to 1, and so retrospective covariate adjustment was
performed by Cox's proportional hazards model." 17

Covariate adjustment allowed us to check that im-
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balances (especially in the first phase, when randomis-
ation was not stratified) between patients randomised
to treatment with neutrons and those randomised to
treatment with photons did not cause bias in the
estimation of the relative risks of death for the two
treatments. Covariates were firstly design variables
(site of tumour and phase of randomisation) and
secondly those variables specified in advance by one of
us (RDE) as being important prognostic indicators
(T stage, N stage, and Karnofsky index). Although T 4a

stage bas a different definition for tumours of the
bladder and rectum, our anlaysis makes the reasonable
assumption of similarity of relative risk (for example,
for T 3b V T la) across all sites of tumour. Observations
on mortality were censored on 26 January 1990, when
the vital status of every patient was ascertained. For
analyses of morbidity due to radiation observations
were censored at the last recorded follow up visit. All
analyses were by intention to treat. Protocol violations
occurred in 11 patients (six treated with neutrons and
five treated with protons) oflS 1patients-namely, two
patients with cervical cancer (incorrect histology), six
with rectal cancer (five failed to receive protocol
treatment and one with incorrect results on histological
examination), and three with cancer of the bladder
(two failed to receive protocol treatment and one with
incorrect staging).

Results
By 26 January 1990, 151 patients had been random-

ised. Table IIshows how they were distributed by site
of tumour, phase of randomisation, and treatment.
Accrual was 70% higher in the second phase compared
with the first, with recruitment doubled for patients
with cancer of the cervix or bladder. Figure 1shows the
estimated survivor function by treatment for cancers at
all sites combined. Table IIgives the (actuarial) death
rate at one year by treatment group and phase of
randomisation, and also by site of tumour and treat-
ment group. Only one patient with cancer of the
prostate was randomised to treatment with photons.
The relative risk of mortality for treatment with
photons compared with treatment with neutrons was
estimated by using Cox's proportional hazards model.
Comparing the two treatment regimens without
adjusting for any covariates yielded a relative risk of
0·59 (p<O'025)-that is, patients treated with photons
had an estimated time specific risk of dying 0'S9 times
that of patients treated with neutrons (95% confidence
interval O'36 to 0'95).

Allowance for site of tumour changes the relative
risk to 0'62, and allowance for phase of randomisation
changes it to 0'65. However, once the other important
prognostic factors (T stage, N stage, and Karnofsky
index) are included, the effect of phase of treatment is
negligible (p=O'88), indicating that differences in
survival by phase in table IIare due to small imbalances
in the randomised groups (table III) rather than to real
changes in survival. The relative risk adjusted for site
of tumour and other important prognostic factors was
0'66 (0'40 to 1'10).
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Table IV shows important prognostic characteristics
by site of tumour and treatment. Using Cox's propor-
tional hazards model a combined risk score predicting
survival can be calculated for each patient. Table V
shows the risk score summation for site of tumour, T
and N stage, and Karnofsky index. Table VI shows the
distribution of this risk score for both treatment
groups. On average the patients treated with neutrons
had a worse prognosis than those treated with photons
in the first phase, when randomisation wasnot stratified
by site of tumour, and patients with cancers of the
rectum and bladder were overrepresented in the
neutron group. This explains why the adjusted relative
risk is slightly nearer to unity than the unadjusted
relative risk.
Table VII summarises cause of death according to

treatment and subdivided into deaths within a year of
treatment and later deaths. The distribution by cause
of all deaths was similar for the two treatment groups
(,,'=4·74, df=B); a relative excess of patients with
rectal cancer had metastases (with or without local
progression) compared with patients with cancer of the
bladder (,,'=7·93, df=3).
Table VIII summarises the morbidity due to

radiation by site of tumour for early and late severe
reactions (Radiation Therapy Oncology Groupl
European Organisation for Research on Treatment of
Cancer score 3, 4, or 5). There was very little difference
between the treatments for early reactions and none for
late reactions: by Cox's proportional hazards model
(unadjusted for covariates) the relative risk of early
severe reactions for photon treatment compared with
neutron treatment was 0·77 (950/0 confidence interval

TABLE III-Mean (SD) risk score(_her of patimls] by trealJfIeIIl
and pluJse of randomisation

Pbasc of treallllellt Neutrons Photons Total

1* -1·79(0·59)[421 -2-l8(0·53)[141 -1·89(0·60) [561
2 -2·15 (0·63)[481 -2-1)6 (0·58)[471 -2-l0(0·60) [951
Iand 2 -1·98(0·64)[901 -2-119(0·57)[611 -2-02 (0·61)[1511

*Randomisation was not stratified by site of tumour-a major progoostic
factor. Patients rarulomiscd to DeUtron treallllellt had a signiliantly worse
prognosis than those randomiscd to photoo treatment (z=2· 32, p=0·02),
which can be adjusted for by Cox regression analysis.

TABLE lv-Major prognostic fQCtors by site oftlmUnlr arul treatmefll (neuIrOfI.S or plrottmJ) ill patimls willi
pelvic cancer. Figures are ,,_ben (perceJllQges) of patimls

Cervix Bladder Rectum

Neutrons Photons Neutrons Photons Neutrons Photons Prostate

TSIIF:
9(22) 8(29) 4(13)3a 2 (17)

3b 6(SO) 13(88) 23(56) 14(50) I (3)
-I 4(33) 2(12) 9(22) 6(21) 26(84) 17(100)

NSIIF:
10(67) 34(83) 26(93) 27(87) 16 (94)0 II (92)

I I (8) 5 (33) 5(12) 2 (7) 3(10) I (6)
2 or missiotI 2t (4) I (3)

Kamohky index:
I (2) I (4) 2 (6) I (6)SO

60 I (8) 2(14) 9(22) 3 (II) 6(19) I (6)
70 4(33) I (6) 5(12) 2 (7) 7(23) 12 (71)
80 2 (17) 5 (33) 19(46) 14(SO) 13(42) 3 (17)
90 4(33) 5 (33) 4(10) 8(29) 2 (6) 0
lOO I (8) 2(14) 3 (7)

6*

6*

•I'ropostic facton of the one patient with cancer of the prostate rarulomiscd to photon treatment.
tN state ... missiotI for one of these patients.

tABLE v-Risk score SIIIIftfIlJlion for site oftlmUnlr, Slage, and Karnofsky irulex

Kamofsky index

Site of tumour Risk score TSllF Risk score N stage Risk score Risk score

Cervix -H2 3. 0 0 0

Q1ad.kr 0 3b 0·27 I 0·73 -0·026 x Kamofsky

lI.ectwn 0·04 4a 0·09 2 0·83

Prostate -0·81 4b 0·01

Example: risk score for patient with cancer of the bladder, stage T 'B, No and Karnolsky index ot
80=0+0·27+0-0·026= -1·SI. .
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TABLE VI-Number (percentage) of patimls in eadt category of risk
score for trealJfIeIIl willi plrottms " _ witll_

Category of risk score Neutrons Photons

-3-99· -3·SO I (I) 0 (0)
-3-49- -3·00 6 (7) 5 (8)
-2·99· -2·50 10 (11) 5 (8)
-2-49· -2·00 29 (32) 20 (33)
-1·99- -I·SO 25 (28) 24 (39)
-l-49· -1·00 16 (18) 6 (IO)XP%
-0·99· -0·50 2 (2) I (2)
-0·49· -0·00 I (I) 0 (0)

Total 90(100%) 61(100%)

0·29 to 2·04) and of late severe reactions 0·85 (0·39
to }·89).
Patients with cancer of the prostate showed no early

or late severe reactions, and for the others only three
sites were involved for early reactions: the upper
gastrointestinal tract, the lower gastrointestinal tract,
and the bladder. For severe late reactions the sites most
frequently involved were lower gastrointestinal tract
and bladder.

I"
4
2

Discussion
When designing a clinical trial to compare two

treatments the first priority is unbiased comparison,
and the second is a powerful comparison. The trial of
neutron treatment versus photon treatment achieved
the first of these, but given the anticipated effects,
combined with patient accrual, the second was always
likely to be a problem.
Clinical opinion waselicited formally and indicated a

median expectation of results for neutron treatment
being favourable compared with photon treatment,
but there was sufficient uncenainty to justify random-
isation. Nevertheless, the conflict between clinical
opinion and the results of the studies on treatment with
lowenergy neutrons (see appendix) should have meant
that formal stopping rules were incorporated to
guard against the possibility of adverse mortality or
morbidity .
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TABLEVII-Cause of death by treatment (neutrons or photons) and survit·altime. and by site of tumour for patients 'I.l·ithcancer of the bladder or
rectum

Cause of death

Deaths within one vear
after randomisation Deaths after one year Total No of deaths Patients with Patients with

cancer of the cancer of (he
Neutrons Photons Neutrons Photons Neutrons Photons bladder rectum

Met.s~
Metastases and local tumour

progression
Local progression
Morbidity due to treatment
New primary cancer
Intcrcurrent disease

21
13

5
12

Total 41 19

7 28 7 12 20
4 .17 13 16 8
3 3 I 2 I
2 • 22

16 57 24 38 31

TABLE VIII- Early (within 90 days) and late morbidity due to radiation by Radiation Therapy O1u:o/ogy Group! European Organisalian for
Research on Treatment of Cancer scoring by (neutrons or photons) and site of tumour. Figures are numben of patients unless sraud otherwise

Cervix Bladder

Prostate" Neutrons Photons

Rectum Allsitcs

Neutrons Photons Neutrons Photons Neutrons Photons

Early morbidity:
No randomised
No with ;;.1 severe early

reaction
Actuarial % .with ;;.1 severe

reaction within three
months after
randomisation

Late morbidity:
No of survivors 8t90 days
No with .. Isevere late

reaction
Actuarial % with ;;.1 severe

reaction within one year
after randomisation

12 IS 41

9

II

9

8 27

3514

21 IS 40

"Only one of seven patients was raodomised to photon treatment.

Because the trial was randomised the main results
were presented for the comparison between neutron
treatment and photon treatment, unadjusted for
any other factor. However, because the trial was
randomised in two phases and only in the second phase
was stratified by site of tumour the relative risk of
photon treatment compared with neutron treatment
was re-estimated taking these and other important
covariates into account. This modified the relative risk
but did not substantially alter the conclusions of the
unadjusted analysis. Covariate adjustment for other
important prognostic factors had a similar effect. The
95% confidence interval-extends to 1'10 but clearly
excludes a relative risk of I·30, at which neutrons
would be recommended for treatment, and isconsistent
with a relative risk of 0·65 from the statistical overview
of randomised trials of low energy neutron treatment
for tumours of the rectum and bladder.
Another consideration is whether the estimate of the

relative risk should be adjusted for early stopping of
the trial. This was not done formally in this study
because the informal analysis was undertaken for a
scheduled visit to the hospital and was not motivated
by any knowledge of the results. Pocock and Hughes
have shown that clinical trials that stop early are prone
to exaggerate the difference between treatments. 1M

Continuing the trial just to obtain unbiased estimates
of the treatment effect would, however, have been
unethical given that the test treatment (neutrons) was
proving inferior.
Because of the trial's design-we studied patients

with cancer at four separate sites but with similar
protocols and initial joint randomisation-it is debat-
able whether the data should be analysed as one trial or
four. Had the trials continued to completion interest
would undoubtedly have been focused on the relative
risk or benefits of neutrons at each site. However, the
power to look at each site separately is weak; indeed, it
had been questioned whether there were enough data
for a combined analysis. Because of the magnitude of
effect, combined with internal consistency across
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patients with tumours at different sites and external
consistency with results for treatment with low energy
neutrons, the data monitoring committee concluded
that there was sufficient evidence of adverse mortality
in patients treated with neutrons to stop the trials,
although there were insufficient data to quantify the
excess risk with any accuracy.

Another issue is clinical significanceversus statistical
significance. In this trial the difference in mortality was
large, but the primary difference between the results of
the first informal analysis and those presented formally
for the data monitoring committee was that the stat-
istical significance of the relative risk for mortality
changed from p=0'07 to p=0'025, which gavestronger
evidence against the null hypothesis of no treatment
difference. The important yardstick, however, is not
equality of effect but the difference that would be
required to change clinical practice. This wasestimated
in March 1988 to be a 300/0greater failure rate for
photon treatment by the respondents to the inquiry
made by one of us (SMG). This difference was well
outside the 95% confidence interval, even at the first
informal analysis, and it could be argued that the trials
should have been suspended on those grounds alone.
There was an intrinsic asymmetry between the two

treatments, with one being an established treatment
readily available to patients not in the trial and the
other being an experimental treatment available at only
one site in the United Kingdom. Had the difference
been in the reverse direction, in favour of neutron
treatment, the trial would be continuing in order to get
a better estimate of the superiority of the new treat-
ment. Ethically this would have been justified by
considerations of limited resources-that is, that
neutron treatment could not currently be offered to all
patients. This is in contrast with drugs trials, where it
is often feasible quickly to make a new treatment
widely available. However, in this trial, with the new
treatment showing an adverse effect, to have continued
with the trial to gain a better estimate of the difference
between neutron and photon treatments would have



entailed continuing to randomise some patients to a
treatment with an almost cenainly worse prognosis
than the treatment they would have received if they did
not enter the trial. Randomisation was suspended by
one of us (RDE) in February 1990 because it was
thought to be unethical to continue to randomise
patients. Monitoring of patients continues, and to that
extent more information on neutron treatment versus
photon treatment will become available, especially as
regards morbidity in the survivors.
A lesson learnt from this trial is that all trials of this

kind, with mortality as an outcome and potentially
causing severe toxicity, should have a data monitoring
committee in place from the start of the trial. Its role is
to decide how and when to monitor results and to share
responsibility for decisions to stop or continue trials.
This avoids the difficult situation where individual
clinicians are forced to make these decisions with little
external support or guidance.

In the low energy neutron studies in patients with
cancer of the bladder the increased mortality associated
with neutrons was related to increased morbidity
compared with that caused by photons rather than
differences in local tumour control or metastatic
relapse." This contrasts with the present study,
in which the morbidity data showed no significant
difference between neutron treatment and photon
treatment. This observation, however, needs to be
interpreted with caution as follow up times were short
and the poor survival of patients treated with neutrons
depleted the number available for the full assessment
of more serious late complications. Despite this
reservation the assumption that high energy neutrons,
with improved physical dosimetry, would be associated
with less normal tissue morbidity may be correct. This
does not, however, lead to any benefit from high

energy neutron treatment in terms of survival (
freedom from metastatic disease.
We emphasise that these conclusions are not applic

able at this stage to patients with locally advance,
prostatic adenocarcinoma in view of the small numbe
of such patients recruited to this study, only one 0

whom was randomised to treatment with photons
There is evidence supporting the use of mixed bean
therapy in patients with carcinoma of the prostate, a anc
accrual to a phase three Radiation Therapy Oncology
Group study of treatment with neutrons alone versu.
treaUhetlt with photons was closed in October 199(
with 178 patients entered, though it will be severa
years before the results of this trial are available. In
conclusion, the results of this study do not support the
continued use of the stated schedules (table I) of high
energy neutrons in the treatment of locally advanced
carcinomas of the cervix, bladder, or rectum.

We thank Sister Rose Dixon, cyclotron nurse; Mrs J Neale,
cyclotron superintendent radiographer; Miss S Minnis, trials
secretary; and Mrs E Batty for their contributions. We also
thank Professor G R H Sealy, clinical director of the Mersey
regional centre for radiotherapy and oncology for advice; the
Medical Research Council data monitoring committee
(chairman Mr R R Hall with Dr J A Lewis, chief statistician;
the medical affairs department, Imperial Chemical Industries;
and Dr T J Priestman, consultant in radiotherapy and
oncology, Wolverhampton); the neutron therapy steering
committee (chairman Professor C A F Joslin); and Dr
F Spencer (Medical Research Council head office). The
Qatterbridge cyclotron facility was established as a jointly
funded initiative between the Medical Research Council,
Imperial Cancer Research Fund, Cancer Research Campaign,
C1atterbridge Cancer Research Trust, and the Cancer
and Polio Research Fund in collaboration with Mersey
Regional and Wirral Health Authorities and the University of
Liverpool. Professor H M Warenius was Medical Research

APPENDIX

Suuistic4l overviftD of randomistd trials of /ow energy rreulrIm
lTealllltlU vmtU pluntm trealllltlU for cancer of the bladder or rectum

(l) Batterman': 34 patients with advanced tumours of the
bladder or rectum were randomised to treatment with photons, 31
to treatment with neutrons at 17 Gy, and 26 to treatment with
neutrons at 19Gy. Results were given as an artist's impression of
Kaplan-Meier survival curves, from which we read one year
survival rates as 39% for neutrons at 17Gy, 44% for neutrons at 19
Gy, and 47% for photoas. Analysis was without exclusion of
patients after randomisation.
(2) Pointon et al': 53 patients with stage T2 or T 3 cancer of the
bladder were randomised (by telephone) to treatment with
photons, 28 to low dose neutrons, and 27 to high dose neutrons.
Analysis was without exclusion of patients after randomisation; 16

Matl161-Haeruul" I1IItrIIW of six trials of _ f} plwtlm lTeatmellt

Outcome at one year
Survivors of neutron treatment

at on. year

Trial Siteofrumour Alive Dead Observed Expected Variance:

Batterman' Bladder, rectum Neutrons 23 34 23 24-429 5·273
Photons 16 18

Pointon' Bladder Neutrons 39 16 39 41'250 5'108
Photons 42 II

DuocuI' Bladder Neutrons 27 26 27 32-832 6'693
Photons 43 17

DuocuI' (lDopaabk) Rectum Neutrons 3 17 N22 H09
Photons 10 6

DuocuI' (R£curraIt) Rectum Neutrons 5 10 7-742 1'998
Photons II 5

DuocuII981 B~(unpub~) Neutrons 2 4 1·800 0·560
Photons I 3

Total 99 115·275 21·741

~'=[(m'215 - 99) -0'5J' = 11-45(z=3-38).
21-741

Ocidsratio = 14·490 = 0·41 (95%confid ... ce intorvalO·30toO·73).
30·765

Oaived !dative risk- = 0·65 (O'SOtoO·84).
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patients did not, however, complete the treatment to which they
were randomised. From life tables, shown as a step function for all
patients randomised to neutron treatment we read one year
survival rates as 70% for neutron treatment and 80% for photon
treatment.
(3) Duncan et aP: 60 patients with transitional cell carcinoma of
the bladder stratified by T stage and histological grade into four
groups were randomised (by using sealed envelopes) to treatment
with photons and 53 to treatment with neutrons. Treatment had
to be started within 14 days of randomisation; no patient was
excluded from analysis. From life tables we readone year survival
rates as SO% for the neutron group and 72% for the photon group.
(4,5, and 6) Duncan et al': 10out ofn patients were excluded
after randomisation (patients were stratified, and sealed envelopes
were used), of whom four had drawn photon treatment and six
neutron treatment. Of the excluded patients, one out of four had
survived photon treatment at one year after randomisation and
rwoout of six had survived neutron treatment (G R Kerr, personal
communication). Actuarial survival rates at one year were
tabulated separately for patients analysed in the trial of patients
with inoperable cancer and for patients analysed in the tria1 of
patients with recurrent cancer. One year survival rates were 15%
(neutron group), 62% (photon group) and 33% (neutron group),
69% (photon group) respectively.

Patients with inoperable cancer were stratified according to
whether the inoperability was due to the extent of the tumour (15
were assigned to photon treatment, 16 to neutron treatment) or
age or general condition (one in the photon group, four in the
neutron group). In the tria1of patients with recurrent cancer 16of
those randomised to photon treatment and 15of those randomised
to neutron treatment were analysed. Both trials closed in May
1984 because it was feared that simi1ar radiation morbidity or
mortality, or both, might be experienced by patients in these tria1s
as had been seen in a concurrent trial of neutron treatment for
bladder cancer (tria16).
Trials 3, 4, and 5 were terminated because of concerns about

radiation morbidity or mortality, or both, in patients randomised
to low energy neutron treatment. A figure of 99 survivors of low
enei'y neutron treatment at one year after randomisation is more
than 3'3 standard errors fewer than expected (that is 115'3) if
death rates were identical with photon treatment and l~wenergy
neutron treatment. The pooled relative risk (95% confidence
interval) of death within one year after randomisation (photon v
low energy neutrons) was 0'65 (0'50 to 0'84). OJ
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