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AB S TRACT

Put Out the Fire Before it Spreads

Tolstoy

Tolstoy's short story concerns a feud between neighbours which grows

out of all proportion to the initiating event. His chosen title is

indeed apposite, for even the most destructive of fires have

generally begun as small, readily extinguishable flames. The research

described in this thesis is, however, concerned not with methods of

extinguishing a fire, but with methods of modelling the spread of a

fire through a multi-compartment structure. Interest is centred

exclusively on structures having one or more volumes which are

critical in the sense that the consequences of a fire in those

volumes are so calamitous as to render negligible any fire damage to

other volumes in the structure. Several models are developed, and the

relevance of models from related fields of application is discussed.

The First Chapter serves to provide both a general introduction

to the research problem and a summary of pre-requisite information.

Chapter Two offers a discussion of the relationship between this

modelling problem and those that have arisen in other fields.

Chapters Three and Four contain various models derived as pertinent

to this application, whilst the Fifth and Sixth Chapters are both

concerned with models relevant to the problem of fitting fire

barriers to an otherwise complete structure. The aim is to elucidate

how the available resources may best be used to fit barriers so as to

minimize the likelihood of fire damage to any critical volume.

Chapter Seven provides a summary of the whole work.
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CHAPTER 1

INTRODUCTION

Nam tua res agitur, panes cum proximus ardet.

1.1 General Introduction

'For it is your concern when your neighbour's wall is aflame'. Thus

wrote Horace (65-08 BC) in Volume 1 of his Epistles. That maxim has

lost none of its truth over the intervening years, for even if we are

rather less concerned with our neighbour than were the first century

BC Romans, we are certainly no less concerned for ourselves.

This thesis details the research carried out under an SERC

(CASE) award for which the co-operating industrial sponsor has been

the United Kingdom Atomic Energy Authority (UKAEA) Safety and

Reliability Directorate (SRD). The SRD has reflected the general

concern of the Atomic Energy Authority that nuclear installations be

constructed and maintained to a very high safety standard so that the

probability of critical events such as those at Three Mile Island and

Chernobyl be made as small as possible.

1.2.1 The Genesis of the Research

The fire-safety section of the Safety and Reliability Directorate of

the AEA is concerned with minimizing the damage, to both materials

and lives, which can result from a serious fire at one of its

establishments. It is recognized that simply taking precautions which

seek to ensure that no fire ever occurs is not sufficient, for

however unlikely the , event may be considered, it would be erroneous
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to assign its occurrence a zero probability. Thus steps are taken to

understand the nature of fire as a physical and chemical phenomenon,

and psychological and mathematical techniques are used to model the

behaviour which may be observed in humans and buildings in response

to a fire.

1.2.2 Models f Eir Growth ii Single Volume

There is a substantial amount of published research into the nature

of a fire's development within one room or 'volume', - examples

include Quintiere (1981), Williamson (1981) and Thomas (1984). This

is also clear from a glance through current textbooks about fire such

as the now well-established texts by Lie (1972) and Read and

Morris (1983) and a more recent, very thorough text by Shields and

Silcock (1987), each of which, like others, have sections on the

growth of 'enclosure' fires, but do not so much discuss the spread of

a fire through a multi-compartment building. The knowledge about the

behaviour of enclosure fires is grounded in an understanding of the

complex chemistry and physics of the combustion process.

This process is now fairly well understood and may be summarized

briefly as follows:

1) One item in the volume is ignited and flames spread over its

surface.
2) Heat radiates to other items in the room which also ignite.

3) Provided that there is sufficient oxygen and combustible

material, the heat build-up increases more and more rapidly.

4) Flashover occurs and the whole volume is involved in the fire.
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The word 'flashover' is used to describe the transition from the

'growth stage' of a fire to the 'fully developed stage' and tends to

be regarded as a turning point in the severity of a fire. It can be

assumed that a pre-flashover fire in one volume does not present a

significant threat of immediate spread to a neighbouring volume,

whilst a fire which has reached flashover intensity does present such

a threat as long as it continues to burn vigorously.

1.2.3 Th Research Problem

The particular collaboration between the SERC and the AEA which has

given rise to this thesis is rooted in a well-established association

between the SRD and the University of Liverpool's Department of

Statistics and Computational Mathematics and the Department of

Computer Science. The emphasis of the joint research has been on the

development of stochastic models for the spread of flames through a

burning, multi-compartment, or 'segregated', structure (see, for

example, Veevers et al. (1988)).

The SRD has expressed a special interest in the case in which a

structure consisting of a number of volumes has a small number of

particularly sensitive volumes for which protection from the effects

of flames is especially critical. In this case any damage caused by a

fire which does not affect these 'critical' volumes is unimportant in

the context of a probabilistic risk assessment, PRA, involving these

critical volumes. An example of such a situation is provided by a

nuclear power-station having a control room which contains equipment

vital to the normal functioning of the reactor. At the plant-design

stage, a PRA of the reactor should include the risk arising from the

threat of fire to the vital components.
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It should be noted that since the work in this thesis is

concerned with spread of flames rather than smoke or other combustion

products, the word 'fire' will be used as a synonym for flames unless

otherwise indicated. In addition, the word 'target' is used

throughout to refer to a critical volume.

The research underpinning the thesis is allied to the

collaborative work mentioned above, and as such it is concerned with

the class of problems whose features are described as follows:

1) A piece of critical equipment located in one or more 'target'
volumes of a given segregated structure is at risk from damage
by flame (but not from smoke alone).

2) Initial ignition occurs in only one volume of the structure.

3) Following ignition the fire can spread to other volumes in the

structure by breaching common barriers.

4) Each volume contains sufficient combustible material for a fire

of flashover intensity to develop.

5) No significant fire-fighting action takes place.

The 'fire-fighting action' of specification (5) refers to safety

mechanisms within the structure, such as water-sprinkler systems, and

to the contribution from fire-fighting teams arriving at the scene of

a fire from elsewhere. It is reasonable to analyze separately the

contribution from these 'active' measures and that from the 'passive'

fire-resisting measures integral to the structure since they are

effectively functionally independent. Their combined effects may be

considered subsequently, depending on the methodology of the PRA.
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The specific advance which this work represents is the

development of time-dependent stochastic modelling of fire spread.

1.2.4 Existing Models f Ej Spread Through Segregated Structure

The collaboration between the University of Liverpool and the SRD has

resulted in the production of a time-independent probabilistic fire

spread model which uses graph-theoretical network techniques in its

evaluation of the probabilities associated with fire reaching

particular volumes in a given structure. The model, written in

Fortran code and named ARSSUN, predicts fire spread simultaneously in

all directions from the volume in which the fire starts and is able

to highlight any routes through the structure along which the

probability of spread is particularly large.

Details of one of the most comprehensive models of the spread of

fire through a segregated structure are given by Elms and Buchanan

(1981). The authors describe the development of a computer-based

method for the fire safety assessment of a multi-volume structure.

The computer program, FIRESPREAD, is, like ARSSUN, intended for use

as a comparative fire-safety analytical tool. The introduction to

Elms and Buchanan states explicitly that, because of the model's

limitations, it is not intended for precise predictive analysis of a

structure's behaviour in a severe fire, but rather its application is

to quantify the relative effects of a variety of possible fire

control strategies for a particular building. The use of all such

models to compare different passive fire control measures provides a

good reason for modelling separately the effects of the active and

passive strategies.
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ARSSUN relies on the ascription by expert assessors of a

constant breach probability to every barrier in the structure under

scrutiny, whereas for FIRESPREAD any door is considered to have a

known probability of being open (thus offering no resistance to a

fire's progress), this being specified in addition to the nominal

fire resistance (qv § 1.3.2) of the barrier. Furthermore, the fire

resistance afforded in practice is regarded as a Gaussian distributed

random variable with mean equal to the nominal fire resistance, and a

constant coefficient of variation (aIu =0.15). Similarly, ARSSUN

requires that for each volume the probabifity of growth to flashover

intensity be specified, whilst for FIRESPREAD a mean value of

severity in each volume is given, and the true severity is again

considered a Gaussian random variable with constant coefficient of

variation =O.l5.

Other published time-independent models of fire spread include

most recently Colbourn et a!. (1991), whilst there is work by Ling

(1982), Ling and Williamson (1985) and Ramachandran (1985) on the

time-dependent aspects of fire-spread modeffing. Their respective

contributions are discussed in later chapters of the thesis.

1.2.5 Th Importance !f Time-Dependent Modelling f	 Spread

The features outlined in subsection 1.2.3 as being relevant to both

ARSSUN and this work are very specific and are confmed to

fire-spread models formulated within, or in co-operation with, 	 the

nuclear industry. The particular feature which sets the modelling

problem somewhat apart from those which encouraged the work of Elms

and Buchanan and Ling and Williamson being the existence of a few

critical volumes whose being damaged by fire could have such serious
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consequences as to render negligible any damage to the rest of the

structure.

There is a sense in which this feature makes a time-dependent

model even more important in this case than in the more general

problem addressed by other authors. Whilst for them there must be a

general awareness that as time since ignition elapses, the damage

becomes worse, the modeffing assumptions suggested by the SRD tend

towards implying a situation in which there is at one moment

negligible damage (ie, the fire has not reached a target volume) and

the next moment the consequences are catastrophic. In either case, it

is generally unrealistic to consider as a numerical constant the

probability of a barrier being breached upon exposure to a severe

fire, since the greater is the length of exposure to a flashover

intensity fire, the less likely is a barrier to maintain its

integrity. Furthermore, the inclusion of even crude measures of the

time scale involved allows some consideration to be given to the

likelihood of fire-fighting equipment being utilized effectively, and

can provide a different perspective on ways to improve structure

design. Some comparisons between time-dependent and time-independent

models are given in Chapter 3.

1.2.6 Coupling Eii growth	 Volume with fj Spread

There has been no attempt formally to incorporate the extensive

knowledge about the development of fires within one volume into

stochastic models of fire spread through several volumes. The two

main reasons for this are likely to be

7



1) the models of fire spread are intended to be as flexible as

possible, and are constructed as models of a stochastic process

whose coupling with complex deterministic models of fire growth

would severely limit their flexibility; and

2) the models of fire spread are intended primarily to provide a

comparative tool, and an understanding of the relative merits of

a variety of barrier-fitting strategies is possible without

reference to the specifics of fire-growth modelling.

The methods used in FIRESPREAD and ARSSUN were described in

sub-section 1.2.4., and the other models similarly use single values

to represent the probabilities of a fire developing to flashover

intensity in each volume. The probabilities are derived with the aid

of information on the number of serious fires per annum for different

types of structure. An example of such information is given in

Baldwin (1974). The emphasis in this thesis is on modelling the

breach characteristics of fire barriers and consequently reference is

made throughout to barrier-breach times or probabilities. There is,

nevertheless, nothing to prevent the time-dependent models presented

being regarded and used as models incorporating the time taken for a

fire in a volume to develop to flashover intensity.
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1.3 British Standards on Fire Safety

In this section an introduction to some aspects of the British

Standards on fire safety is given.

1.3,1 Overview f Fire-related Properties Tested

The British Standards on Fire safety are described to some extent in

BS 6336 (1982) which offers some simple theory of fire behaviour and

gives fairly general practical guidance on the development and use of

fire tests. The individual Standards provide details of the

fire-related properties which need to be examined for the different

materials with which they are concerned. The main properties or

functions which come under examination are given in Table 1.1.
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Flame
penetration

Smoke (gas)

penetration

Property
	 Interpretation

Ignitability
	 A measure of the ease with which a material (or

product or component) may be ignited.

Flammability The property that determines the rate at which fire

develops in a material.

Surface flame The spread of flame across the surface of a material

spread	 - this may occur without flames engulfing the whole of

the material.

Heat release

Smoke (gas)

release

Fire
resistance

A measure of the contribution made by a burning

material to the fire in progress.

A measure of smoke and/or gas release from a material

subject to a source of heat or ignition.

An assessment of the time-to-failure of a material

under standardized fire-test conditions.

Penetration by flame of a covering material or a

protective structure.

Penetration by smoke and/or gas of a material not

necessarily aflame.

Table 1.1 Measures of a material's response to fire, from BS 6336.

1.3.2 Details Pertinent	 the Content f	 Thesis

The most relevant British Standards specifications as far as this

research is concerned are those contained in BS 476 parts 20-23

(1987). BS 476 part 20 gives the general test conditions for

determining the fire resistance of 'elements of building

construction', whilst parts 20-23 give respectively the detailed test

10



requirements for loadbearing elements, non-loadbearing elements and

components of construction. The 'elements of building construction'

include walls and partitions, floors, flat roofs, columns, beams,

door and shutter assemblies, glazing and ceiling membranes, whilst

'components' include, for example, suspended ceilings designed to

protect beams and intumescent seals used to increase the fire

resistance of doorsets.

The Standard indicates that any specimen which is tested should

be of full size whenever possible, and should be representative of

the particular element of construction as it would be in practice.

Furthermore, the specimen should have approximately the strength and

moisture content which the element is expected to have when in

service in a building and the specimen should, prior to undergoing

the fire test, be subjected to a load which would be equivalent to

the maximum that may be borne by the corresponding element in a real

structure.

The specimen is heated in a furnace whose temperature must be

controlled to vary with time according to the standard

time/temperature relationship

T = 3451og 10(8t+1) + 20

where:

T = mean furnace temperature in °C at time t, and
t = duration of the test in minutes, up to a maximum of 360 minutes.

Some small deviations from the standard time/temperature curve

are allowed. The measure of deviation at time t, p(t), is taken to be

the ratio of the difference between the area under the mean furnace

11



temperature/time curve and the area under the standard curve, to the

area under the standard curve, expressed as a percentage.

Thus

J T dt - 345J{20 + 1og 10(8t+1 }dt

p(t) =	 xl00%.

345J{20 + 1og10(8t+1)}dt

BS 476 part 20 states that p(t) must conform to the following:

p(t) <15	 for t^1O

p(t) <10	 for lO<t^30

p(t) <5	 for t>30.

and recommends that the integrals be evaluated using Simpson's rule!

The specimen is assessed according to a number of specific failure

criteria. These and their interpretations are given in Table 1.2.
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Criteria	 Failure shall be deemed to occur when

Stability	 collapse of the specimen, under any appropriate load,

takes place.

Integrity	 flaming exists on the unexposed surface of the

specimen for a continuous period of ^ 10 seconds, or

cracks exist through which flames pass.

Insulation the difference between the mean temperature on the
unexposed surface and the initial temperature exceeds

140°C, or the difference between the maximum
temperature on the unexposed surface and the initial

temperature exceeds 180°C.

Table 1.2 Failure criteria for elements of building construction,
from BS 476 part 20.

The test results are given as times in minutes from the start of

the test until failure has occurred under one or all of the criteria

in Table 1.1, or, if no failure has occurred, the time is given as

the duration of the test. The fire resistance of an element of

building construction is defined to be the time in minutes from the

start of the test on the specimen until failure first occurs under

any of the criteria given, or until the test is terminated, whichever

is the smaller.

For each newly designed and constructed fire-resistant building

element, one or two elements or models thereof are subjected to the

fire tests, and the test results deemed to apply to that new element.

Two tests are carried out when it is considered possible that the

response of an element to fire will be different depending upon which

surface is exposed to the flames and heat of the fire. It is worth

noting that the American Standards are similar (ASTM 1982).

13



From a statistical sampling-theory point of view, it is

inadequate to test only one specimen, and on the basis of the results

of that test to assign the same fire resistance to all elements of

which that one specimen is considered representative. That, however,

is what is done and it has led to an exiguity of data and a paucity

of knowledge on the times-to-failure of elements of building

construction.
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1.4 Introduction to Mathematical Concepts and Definitions

This section serves to bring together all those concepts and

defmitions which are used in the rest of the thesis and which

require explicit explanation or clarification.

1.4.1 Th Network Representation f a Structure

In the consideration of the spread of fire through a structure, the

use of a network representation of that structure, rather than the

traditional ifiustration, enables speedy identification of salient

points without the distraction of too much information.

For example, the single storey structure shown in Figure 1.1 may

be represented by the network (Figure 1.2) in which the nodes

symbolize the volumes whilst the arcs, or links, represent the

barriers between the volumes.

Figure 1.1 Plan of a single-storey, ten volume structure.

Large t

Figure 1.2 Network representation of Figure 2.1.
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Double-headed arrows are used to emphasize that fire may breach a

barrier in either direction, and that the breach-time characteristics

of a given barrier may vary according to which face of the barrier is

initially exposed to the fire.

Associated with the target and each of the other volumes is a

number of routes, or paths, each of which defines a unique course

which the fire may take from the ignition volume to the target

volume, or from the source to the sink in network terminology. The

number of links in a path from an ignition volume to the target is

here referred to as the 'length' of the path, whilst the time taken

for a fire to reach the target along a particular path is referred to

as the 'travel time'. In general, the travel time of each path from a

given source to the target may be calculated by summing the breach

times associated with each arc in the path.

Thus for the structure depicted in Figure 1.3 which, for

simplicity, is symmetrical in the sense that each barrier has a fixed

failure time regardless of the face which is initially threatened by

fire, the shortest-distance path from volume 1 to the target is of

length 4.

2	 3	 3	 2	 2

1
IIiI1	 >1	 N	 > 4

>1 6 I(	
3)

___ 4
	 ________2

targo I

Figure 1.3 An example structure with constant barrier breach times
displayed.
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There are two such shortest-distance paths,

1)1-2-6-9 and

2)1-5-6-9.

The shortest-time path, however, is coincident with neither of these,

but is 1-2-3-6-8-9 which is travelled in 10 units of time.

In the case of a stochastic network, in which the arc lengths

are not constants but random variables, it becomes particularly

important to emphasize the distinction between a shortest-length path

(one with the smallest number of links), and a shortest-time path,

since the identity and travel-time of the shortest-time path will

vary with the values taken by the random variable.

1.4.2 Adjacency Matrix Representation

The network representation of a structure is not the only device

which is used to assist in the safety assessment of a structure. One

other often-used description is provided by an adjacency matrix, an

example of which is given in Figure 1.4. The presence of a '1' in the

matrix indicates that two volumes are adjacent, whilst a '0'

indicates that they are not.

1

Volume

4
5
6
7
8
9

10

Volume

1 2 3 4 5 6 7 8 9 10

100 100000
\ 10010000

1010000
001000

10000
1110

001
10

1
'

Figure 1.4 Adjacency Matrix for the structure of Figure 1.1
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Clearly any adjacency matrix can be made more informative by

replacing the simple 0/1 disjoint/connected classification with some

more detail; - an example of this being the inclusion of barrier

breach probabilities or fire-resistances.

1.5 Example Structure

The purpose of this research has been to tackle a practical problem

arising from a specific need. It is therefore appropriate to take as

a point of reference a realistic structure which encompasses all of

the essential features of the structures on whose fire properties

this work is intended to shed light. Figure 1.5 shows the plan of a

structure which is similar to one for which the AEA made use of

ARSSUN to carry out a fire safety assessment.

2	 3	 4	 5	 6	 7	 8
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9	 10	 11	 12	 13	 15	 17

16	 __________

18	 19	 20	 21	 22	 23	 24	 25

1	 36

______	 I _________ __________

	

26	 L;jJ 28	 29	

30	

34	 35
38	 131 32	 __________________________________

	

40	 41	 42	 43	 44	 45	 46	 47	 48

Figure 1.5 The floor-plan of a forty-eight volume structure.
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CHAPTER 2

Some Related Stochastic Modelling Problems

Two roads diverged in a wood, and I -

I took the one less traveled by,

Robert Frost

2.1 Introduction

During the course of this research, especially in the earlier stages,

the fire-spread modelling problem appeared to have much in common

with other statistical modelling problems arising in a variety of

research fields. These include, for example, problems in the analysis

of spatial pattern or in the study of the spread of disease through a

population or through an individual's cells. This Chapter provides a

brief discussion of some models from these apparently related fields

and explores their suitability as useful tools for the problem

specified in Chapter 1.

2.2 Lattice Structures

Much use has been made of the concept of a lattice, - a regular set

of points each equidistant from some number of its neighbours. A

great deal of theoretical research has been published, upon which

foundation rests a wide range of applications. Besag in particular,

in papers published in the early 1970s (Besag (1972), Besag (1974)),

and Bartlett (1971, 1974) contributed a great deal to the development

of the theory underlying lattice modeffing.

In the fire-spread application, if the volumes of a structure
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may be represented as the points on a square lattice, there is much

to be gained by way of path identification and route-length

determination. This is especially the case for shortest-length paths

from an ignition volume to a target. Theorem 2.1 and its corollary

below may not be original but I have not found the result stated

elsewhere.

Theorem 2.1:

The length, n, of the shortest-length path between an ignition volume

and a target is calculated as a function of their k-dimensional

(1 ^ks3) cartesian co-ordinates {(x 11, x21 , x31) and (xlT, X2T x3)}

on the lattice representation of the structure to be

n = IIXjIXjTI.

Proof:

The proof is obvious from the two-dimensional case, - since

'diagonal' movement is not allowed, the total distance which the fire

must travel to reach the target is the sum of the 'x' distance and

the 'y' distance - ie Xj XT I + I Y1-Y I.

Corollary:

The number of shortest paths from an ignition volume to a target is

similarly a function of their cartesian co-ordinates. In the

two-dimensional case, the number of shortest routes may be determined

from reference to a symmetrical rectangular version of Pascal's

triangle. This is well illustrated by reference to Figure 2.1.
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Figure 2.1 A rectangular version of Pascal's triangle used to
illustrate the number of shortest-length paths from
one point to another on a 2-D square lattice.

Since the distance between any two volumes is dependent only on their

relative positions and not on their absolute positions, the target

volume may be considered to be at the point (0, 0). For any ignition

volume in the same row (or column) as the target, there is only one

shortest-length path - the one passing through all volumes which lie

on that row (column) between the ignition volume and the target. The

calculation of the number of shortest-length paths from other

ignition volumes to the target is thereafter done recursively, since

the number of shortest paths from any given point (x, y) to the point

(0, 0) is simply the sum of the numbers of shortest paths from the

two adjacent points (x-1, y) and (x, y-l).

In the three-dimensional case the distances may be calculated in

the same way and a cuboid table of shortest path lengths may be

constructed. Once again the target volume is considered to be at the

origin. The method of illustration used here consists of the display

of a series of tables, each successive table representing a unit

increase in distance from the origin in the third (z) dimension. The

tabulated values are the number of shortest-length paths to the

origin from a point with the given co-ordinates. The value at the
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point (x, y, z) is calculated as the sum of the values at

(x-1, y, z), (x, y-1, z) and (x, y, z-1). The first table in the

series corresponds to z=0 and it contains values identical to those

in the table in Figure 2.1.

1)	 z=0:

	

0	 1	 2	 3

o	 o	 1	 1	 1
1	 1	 2	 3	 4
2	 1	 3	 6	 10
3	 1	 4	 10	 20

2)	 z=1:

	

0	 1	 2	 3

0	 1	 2	 3	 4
1	 2	 6	 12	 20
2	 3	 12	 30	 60
3	 4	 20	 60	 140

3)	 z2:

	

0	 1	 2	 3

0	 1	 3	 6	 10
1	 3	 12	 30	 60
2	 6	 30	 90	 210
3	 10	 60	 210	 560

4) z=3:	
X	 0	 1	 2	 3

0	 1	 4	 10	 20
1	 4	 20	 60	 140
2	 10	 60	 210	 560
3	 20	 140	 560	 1680

Figure 2.2 Tables of the numbers of shortest-length paths from
the origin to various points on a 3-D square lattice.

Were the matter to be pursued, more concise tables could be produced

by noting that the number of shortest-length routes from (x, y, z) is

the same as the number from (x, z, y), (y, x, z), etc.
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No such simple formulation arises, even in the two-dimensional

case, when consideration is given to paths of length n+k (k^ 1). The

reason for this is that whilst no shortest length path will stray

outside the rectangle defined by the set of four corner points

{(x1, y 1 ), (x1, T' (XT, y 1 ), and (xT, 
T}' 

many paths of length

n+k will involve lattice points lying outside that rectangle.

The main objection to the use of a lattice arises when one

reflects upon the feasibility of representing as a lattice the

volumes of a segregated structure. It is self-evident that any such

structure may, with the possible addition of some dummy volumes or

partitions, be represented as a square lattice. The function of such

a model is limited, since any of the usual 'rules' which may be

applied to a complete lattice would not necessarily apply to a

lattice which consisted of dummy nodes or points with missing

neighbours. The gains made by transforming the structure into a neat,

regular model are thus likely to be outweighed by the necessity of

checking any of the assumptions which could normally be applied to

that model.

2.3 Markovian Models

Markov processes, such as the simple random walk (see, for example,

Feller (1968)), have found favour in a number of fields. The

requisite feature is that at each 'step' of the process, knowledge

only of the present state of the process (and not of any past states)

is relevant in the prediction of the future behaviour of the process.

The conjecture that the application of Markovian ideas may offer some

assistance in the solution of the fire-spread modeffing problem of
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this thesis is an attractive one. It is especially so if it is

considered that a fire may, at each 'step' - in this case a discrete

time interval - spread only from its current volume to an adjacent

one. The initial complications arise first because the fire may in

fact spread to more than one adjacent volume, and second because the

fire may not spread to (ie revisit) a volume which it has once

occupied. This second factor holds regardless of whether the fire is

still burning in the volume, has burnt itself out or been otherwise

extinguished, and that alone is sufficient to render inappropriate

the 'memoryless' quality specified in a Markov process.

A related process is a branching process, application of which

would allow a fire to spread from one volume to one or more adjacent

volumes. Working with a discrete-time framework, branching process

ideas could certainly be used as a basis for modeffing the number of

volumes aflame at any one time, but the fire-spread problem requires

the additional information concerning the relative locations of each

volume. Furthermore, the branching probabilities, describing the

probabilities of fire breaching barriers to spread to adjacent

volumes, would not in general be constant either over all volumes or

over all discrete time periods.

2.4.1 Models f	 Spread f Epidemics

Bailey (1975) states that the first published work on mathematical

models of the spread of an infectious disease may be attributed to

Daniel Bernoulli. It seems that in the time from the reading of that

paper, 1760, until the mid-1950s, not a great deal had been published

on the subject, but thereafter interest in the field began to grow

and this application now receives quite some attention.
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The apparent relationship with the modelling of fire spread is

at once appealing and obvious. In each model attention is focused on

a number of objects which, initially, are in a disease-free or

fire-free condition, and which may subsequently become infected by

disease or consumed by fire. Furthermore, it is often the case in a

disease process that once an individual has been infected, and

undergone a period of being infectious, that individual may not be

infected again - either because immunity has been conferred by having

had the disease, or because the individual has died. That situation

finds echoes in the fire-spread modeffing problem, for in this case

once a fire is established in any volume it will continue to burn

until it is extinguished or until there is nothing left to provide

its fuel.

The fundamental difference between the two applications rests in

the mobility, or otherwise, of the susceptible (never been on fire)

and the infected/infectious (currently on fire) individuals. In the

infectious disease application, the individuals generally form a

unit, or group, (often closed) with infectious and susceptible

individuals encountering one another according to some mixing rule

(Bailey (1975)). The mixing rule is generally constant for a

particular group of individuals over time, and the probability of a

susceptible individual becoming infected is a function of the numbers

of each class in the group, and the mixing rule to which they are

subject, and it is the numbers in the two classes which change over

time. For a segregated structure, the probability of fire reaching a

volume in which it did not start is a function of the current

location of the fire and the types of barrier in the structure. The

volumes do not move with respect to one another, so there is no
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mixing rule and once ignition has first occurred, each volume may

only catch fire if the fire breaches a barrier held in common with an

adjacent volume which is already aflame.

2.4.2 Contact processes

Affied to the models of disease spread are contact processes.

Moffison (1977) discusses a 'simple birth process' in which each

individual is assigned, at 'birth', a location some distance from its

'parent'; the distance being a random variable following a particular

probability distribution. Once again the emphasis in the model is not

appropriate to the fire-spread case for similar reasons to those

given in the previous subsection. The 'birth' event in fire spread

represents the breaching of a barrier and the spread of flames to a

previously un-visited volume. The distance of each new-born

individual from its parent must, under the assumptions stated in the

Chapter 1, be unity so that the variation arises not in the distance

from parent component, but from the uncertainty first about whether

the fire will breach a barrier at all, and second about which of the

(several) barriers bounding a volume wifi be breached.

Moffison (1978) discusses the related Markovian Contact Processes and

cites their disease-spread applications, and similar models found in

Bartholomew (1982) are applied to social and labour mobility.
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2.5 Summary

Whilst there are aspects of these models, and others, which suggest a

useful application to the fire-spread modeffing problem, the fact

that they are ill-adapted results in all cases primarily from an

emphasis inappropriate in the fire-spread case. This emphasis

generally takes one of two forms. The first concerns the stochastic

modeffing - in these models the variation arises in the distance

between individuals, or the numbers of progeny, and so on and not as

factors readily comparable with barrier breach probabilities or

times. The second is perhaps more subtle and concerns that which may

be referred to as 'direction of inference'. In the fire-spread

problem, the position is such that at any time, t, the status (ie

aflame, etc) of each volume in the structure is known, and the

quantity of interest is the status of any target volumes at time

t. > t.. The probability of a status change from 'never-been-aflame' to

'burning' for any particular volume, i, varies over time. Before the

fire has started, the probability for each volume is simply the

probability of ignition in that volume. Since the chances of

spontaneous ignition in more than volume are considered negligible,

once the fire has started, the probability wifi increase from zero

for each volume adjacent to one in which there is a fire. In many

other applications, for example Ord (1975) and also Besag's

lattice-based work (Besag (1972), (1974)) the intention is either to

model the status of an individual at time t, knowing the status of

neighbouring individuals at time t, or to model the spread process

when the status of all volumes is known at times t 0, ..., t.......

It is almost inevitable that simplifying assumptions are found

to be necessary in the early stages of a mathematical modelling
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process. The construction of a new model allows greater freedom over

the sorts of assumption that are made than does attempting to fit an

existing model to a new modelling problem. The assumptions underlying

the work developed in the next chapters are considered to be those

which have the least impact on the integrity of the practical problem

to which solutions are sought.
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CHAPTER 3

Discrete-time Modelling of Fire Spread Through a Structure

A little fire is quickly trodden out,

Which being suffered, rivers cannot quench.
Shakespeare

3.1 Introduction

In this Chapter, attention is focused on modeffing the spread of fire

through structures whose barrier breach times are considered to be

discrete random variables. A number of time-dependent models are

developed and some comparison is made with the work of other authors.

Since the structures' barrier breach times are random variables,

these structures may be considered as stochastic networks. Proposed

solutions to stochastic network problems have been given by, for

example, Mirchandani (1976), Frank (1969) and Kulkarni (1986). Their

work will be discussed later in the thesis.

3.2 Multinomial Models

The model considered here is based upon the allocation to each

barrier of a discrete, multinomial breach-time probability

distribution. In its simplest case, this model reduces to a

deterministic one as demonstrated in sub-section 3.2.1 below.

Wherever necessary, reference will be made to the simple structure

whose network representation is shown in Figure 3.1.
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target

Figure 3.1	 A simple example structure with four volumes.

3.2.1 Case 1.

All barriers are identical and each barrier is bound to fail in

exactly 1 unit of time. Thus

Pr{flre breaches a given barrier in time t = 1} = 1,

and the shortest-time path from any source to the target is simply

that path (or those paths) having the fewest links, and is therefore

also the shortest-length path. In the example of Figure 3.1, the

shortest path is readily seen to be 1-2-4, with two arcs, so that the

time to travel from ignition volume to target is t=2. In general, if

there were n arcs in the shortest route from ignition volume to

target, the traversal time would be t=n. Then, in the analysis of the

routes to the target from each possible ignition volume, i, no paths

other than the shortest ones of length n need be considered since

the fire is bound to arrive at the target in exactly n • units of

time.

If the ignition volume is known to be volume i, the probability

of arrival at the target within a time t may be seen to depend solely

upon whether the value of t exceeds the number of barriers in the

shortest path from i to the target. More specifically,

Pr{fire arrives at target in time T^ t starts in volume 1) =

= {1 if n^t

0 if n1>t.
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For the structure as a whole, if N is the total number of volumes,

and

P1 = Pr{ignition in vol i ignition somewhere in the structure}

(i.e. P is a conditional ignition probability and 	 = 1),

it follows that

Pr{fire reaches target in time Tt ignition in the structure} =

'o1pi.

Example

For the illustrative structure shown in Figure 3.1, with conditional

ignition probabilities P 1 =0.6, P2=0.3, P3=O.08 and P4=0.02. the

distribution of arrival times both following ignition in a specific

volume, and following ignition in an unspecified volume, are as given

in Table 3.1.

Ignition
Volume	 Time
	 Probability
	

Comment

1
	

<2
	

0
1

2
	

<1
	

0

=1
	

1
3
	

<1
	

0
1

4
	

1
Unspecified

0
	

0.02
	

Ign. in target volume.

1
	

0.38
	

Ign. in volume 2 or 3.

3
	

0.6
	

Ign. in volume 1.

Table 3.1 Distribution of times to arrival at the target following
ignition anywhere in the structure - case 1.
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3.2.2 Case Z

All barriers are identical and each barrier is bound to fail in at

most 2 units of time. Thus

Pr{fire breaches a given barrier in time t= 1) = p1

Pr{fire breaches a given barrier in time t=2} = p2 = i-p1.

For the given target and any other ignition volume i, there will be

one or more shortest paths of length n from the source to the

target, so that the minimum possible travel time is n, and the

maximum possible travel time is 2n.. The distribution of time to

arrival at the target along a shortest path from any given ignition

volume i may then be constructed as shown in Table 3.2.

No. time
units

Di

n.+1
1

n1+2

D i +j

2n1

Probability

[ 1]PI'1

[ 
fij;

[ 

"i]p"1pJ

Comment

travel all arcs in time t= 1

travel any 1 arc in time t=2
& remainder in time t= 1

travelany2arcs in time t=2
& remainder in time t=i

travel any j arcs in t ime t=2
& remainder in time t=l

all arcs travelled in time t=2.

[ The notation [ . 
J 

is used to denote (n-j)!j!

Table 3.2 Probabilities of times to arrival at the target along
a shortest path from the ignition volume - case 2.
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Thus the distribution of travel time along a shortest path may be

written as n+ ^Z, where has a binomial, B(n., p 1), distribution.

It is, however, not necessarily the case that the fire will

reach the target by breaching as few barriers as possible (ie along a

shortest path); indeed it is possible for the fire first to reach the

target by traveffing along any of the paths whose length is less than

twice that of the shortest.

If consideration be given to all the possible routes from a

given ignition volume to the target, and if P 1 (t) be defined as

Pr{reach target in time t from vol i along a path of length i), the

expressions for the probabilities of fire first reaching the target

in times n 1 + m (0 ^ m ^ n ) may be seen to be as given in Table 3.3.

By way of example, it can be seen that in order for the fire to

first reach the target in the shortest possible time, n 1 , it must

travel along the shortest route as quickly as possible and each of

the n barriers must be breached in one unit of time. Similarly, if

the fire is to first reach the target in time n 1 +1, it must either

travel the shortest path in time n. +1, so that one of the n 1 barriers

is breached in time t=2, and the rest in time t= 1; or it must travel

a path of length n • + 1 breaching each barrier in time t = 1 having not

first arrived by travelling a path of length n.. For the general

arrival time, n. + m (m ^ n 1 ), all routes of length 1 ^ n 1 + m must be

considered, and in each case allowance must be made for the

possibility of fire having previously arrived by a shorter route in

time r, fl.r^n1+m.
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No. time
units	 Probability of 18 t arrival at target in specified time

n	 P	 (ii)in 1	 I

+1	 P1(n +1)+P. (1) (fl . + 1){1-P	 (n.)-P 1 (n. +1))

n 1 +2	 P (n +2){1_P (	 1) (n 1 +l)} +m i 	 i
[{1-P (n 1 )-P (n +1)-P (n +2) }P 1	(n +2)1 +in

	

I	 1	
(n.+1)

[ {1-P . (n.)-P (n +1)-P (n +2)} xin 1 	 1	 in	 i	 in	 Ii	 i
{1-P	 (n +1)-P	 (n +2))P. (	 2) (n.+2) ]

i(u 1 +1)	 i	 i(n.+i)	 I
1

+m	 See below

n-i	 nO-i

2n 1	P(2fl) 
ji1 { -	 r 

[P	
(fl+k)] }

Table 3.3 Probabifities of times to arrival at the target
from a specified ignition volume - case 2.

The probability P(n 1 +m) corresponding to the general arrival time

+m may be derived as follows:

P(n +m) =
1

rn-i	 rn-i

P (n +m)	 {i - : [Pi(n+r)(fli+k)) } +

	

in.	 I

	

1	 k=r

rn	 rn-i	 rn-i

{i -	 (n + k) 1 P	 (n + m)	 {i -	 1p	 (n + k)] } +in	 I	 Jt	 i(n +1)	 1

kO	 .	 ( i(n.+r)
1r=2	 k=r
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(3.1)

m	 m

J1S1p (n +k)]} I1-[P i( +)l(ni^)}PI(	 ) (n--m) x
I LI in	 I
L k-O	 L k—i

	

rn-i	 rn-i

I J { (n+r)	
+1-	 P 1	(n +k)

	

-	 k—r

m rn-i	 mm

p	 (n +m) I	 I i- IP	 (n +k)J }__ r

i(n1+i)	 I	 I	 (n1+r)
r — O	 k—O
r^s

where mm = 
f rn-i if r	

and P.(t)=O if t<j.
m ifr < S

Care must be taken to ensure appropriate interpretation of sums and

products at the extreme values of m.

If F.. (t) is defined to be the distribution function of time

taken to reach the target from volume i along a path of length j,

equation (3.1) may be expressed as

m rn-i

P	 (n +m)f {1F	 (n +mm)}.
i(n.+)	 I	 i(n+r)

1	 r—O
r*s

Note that:-

1) The p1 
+	

+ m) terms may be calculated with reference to the

contents of Table 3.2 - even though Table 3.2 was constructed

specifically to demonstrate the shortest-length path probabilities,

(3.2)
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it also guides the calculation of the probabilities associated with

longer routes.

2) The distribution function for a particular ignition volume is

Pr{fire arrives at target from vol. i in time T^ n. +u} =

U	 m
rn-i	 mm

I :i i(n+s) i	 1	 1i[Pi(nj+r)(fli+k) i}.
r-O	 kO

m0 s0
r*s

3) For the structure as a whole, when the ignition volume is not

specified in advance,

Pr{fire arrives at target from vol. i in time T^t} =

I
vois U	 m

rn-i mm

(a +m) I	 {i	 1p	 (n +k)]}}P.	 (3.3){.ii	 1	
r = 0	 k = 0

/ I i(n.+r)(n • +s)	 j	
I 1

r^s

where all terms are as defined previously, and u = t-n..

Example

For the illustrative structure shown in Figure 3.1, with conditional

ignition probabilities P1 =O.6, P2 =O.3, P3 =O.08 and P4 =O.02; and with

all barriers having identical breach-time distributions so that

p 1 = O.3 and p2 =O.7, the distributions of arrival times following

ignition both in a specified and an unspecified volume are given in

Table 3.4.
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Time

<2
2
3
4

0
1
2
0
1
2
0

Ignition
Volume

1

2

3

4

Unspecified

Probabifity

0
0.09
0.43323
0.47677
0
0.3
0.7
0
0.3
0.7
1

Cumulative Probability

0.09
0.52323
1

0.3
1

0.3
1
1

0
1
2
3
4

0.02
0.114
0.32
0.259938
0. 28 6062

0.02
0.134
0.454

0.713938
1

Table 3.4 Distributions of times to arrival at the target following
ignition anywhere in the structure - case 2.

3.2.3 Case

All barriers are identical and each barrier is bound to fail in at

most 3 units of time. Thus

Pr{fire breaches a given barrier in time t=1} = p1

Pr{fire breaches a given barrier in time t=2} = p2

Pr{fire breaches a given barrier in time t=3} = p3 l-p1-p2.

Once again for the given target and any other ignition volume,

there will be one or more shortest paths of length n 1 from the source
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ni

ni+1

(Ui) fl":

[i)pi p

travel all arcs in time t =1

travel anylarcintimet=2
remainder in t=1

travel any 2 arcs in time
t=2, remainder in t=1	 OR
t r avel any 1 arc in tim e
t=3, remainder in t=1

(j-2k)	 k

p2	 .p3

to the target, with minimum travel time t=n.; and as each barrier may

take up to three time units until failure, the fire is bound to

arrive at the target in time t no greater then 3n.. The distribution

of time to arrival at the target along a shortest path from any given

ignition volume i may then be specified as in Table 3.5.

No. time
units	 Probability	 Comment

n i +j

n+2
[ 

U.] ii2	
+ [ fi]ii

Ii'
Li

I	 n	 (n-j+k)
p1'

(n -j+k)!(j-2k)!k!
k-O

iii	 14:	 ifj even

N	 ifjodd

Table 3.5 Probabilities of times to arrival at the target along
a shortest path from the ignition volume - case 3.

If consideration be paid to all the possible routes from a given

ignition volume to the target, and if P. (t) be defined as before,

the probabifity distribution has precisely the form of that given in

Table 3.3 of the previous sub-section. Furthermore, it is once again

a straightforward matter to write down the distribution function for
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the structure as a whole as it is identical to the corresponding

expression given as equation 3.3 above.

Example

In the example structure, suppose that the ignition probabilities are

as given before, and that for each of the four identical barriers

p1 =O.2, p2 =O.5 and p3 =0.3. Table 3.6 shows the distributions of

arrival times following ignition both in a specified and an

unspecified volume.

Ignition
Volume

1

2

3

4
Unspecified

Time

<2
2
3
4
5
6
0
1
2
3
0
1
2
3
0
0
1
2
3
4
5
6

Probability

0
0.04
0.20608
0.39044
0.29634
0.06714
0
0.2
0.512
0.288
0
0.2
0.512
0.288
1
0.02
0.076
0.21856
0.233088
0.234264
0.177804
0.040284

Cumulative Probability

0.04
0.24608
0.63652
0.93286
1

0.2
0.712
1

0.2
0.712
1
1
0.02
0.09 6
0.31456
0. 547648
0.78 192
0.959716
1

Table 3.6 Distributions of times to arrival at target following
ignition somewhere in the structure - case 3.
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3.2.4 :jj General Case, Case

These models may be developed by allowing a greater number of failure

periods for each barrier, so that in general Case r may be discussed,

where,

Pr{fire spreads to neighbouring vol in time t=j} = p, j = 1, 2, ... r,

and	 = 1.

It is, however, unlikely to be necessary to have r larger than

perhaps five or six since the model would become cumbersome and

the problem would be more naturally handled using continuous

breach-time distributions.

The derivation of the arrival-time distribution from a specified

ignition volume to the target is perhaps best done in two parts. The

first stage consists of the identification of, and the calculation of

probabifities pertaining to, distinct routes to the target. The

complexity of the probability calculations increases with the value

of r, and whilst a general formula is not included here, the general

method of computation for a particular value of r is as given in

Algorithm 3.1.
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Algorithm

Having identified all the paths from ignition volume i to the target;

for each path of length j, and for each value of t of interest,

1) Enumerate all possible combinations of barrier breach times

which result in the path travel-time being t.
2) Calculate the probability of each combination in (1) using

the probability function of the Multinomial distribution:-

fT(tl, ..., t) = n!JJ

3) Sum	 the	 probabilities	 calculated	 in	 (2),	 to	 give
expressions for the P(t).

The enumeration problem posed as (1) in the above algorithm may be

expressed as follows:-

How may r non-negative integers, aT, be selected (with

replacement) so that

j)	 IaT = j	 and

ii)	 T.aT	 t ?

T1
Here aT denotes the number of barriers in the selected path which are

breached in exactly time t=T. Thus the first constraint represents

the requirement that there be j barriers in the path whilst the

second ensures that the path travel time, evaluated as

{ [ # barriers breached in time t=T ] . [ T] }

is equal to t as required.
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A solution to the enumeration problem may therefore be found as

the solution to the pair of simultaneous equations (i) and (ii)

above, with the additional constraint that any aT which satisfy the

equations must be integers.

The second stage comprises the combination of the probabilities

calculated in stage one, for which the method is the same whatever

the value of r, being that as given in equation 3.1.

3.2.5 Extension	 allow Non-breaching f Threatened Barriers

A further generalization of practical significance may be obtained by

considering a modified Case r in which the probability p, is defined

to represent the probability of a fire failing to breach the barrier

at all. Such a modification results in this model more closely

resembling a development of ARSSUN for which 'small' (typically of

the order of 1O 2 - 1O' ) time-independent barrier breach

probabilities are generally supplied.

The most complex part of the model stems from its reliance on

the identification of independent routes from ignition volume to

target. In practice the way forward is as expressed in general terms

in Algorithm 3.2.
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Route	 number
number	 of arcs

	

1.1
	

2

	

1.2
	

3

	

2.1
	

1
	2.2

	
2

	

3.1
	

1

	

3.2
	

2

	

4.1
	

0

Volumes
on route

124
1234

24
234
34
324

4

Ign
Vol

1

2

3

4

Algorithm

For each potential ignition volume,

1) Identify all (feasible) routes to the target.

2) Partition	 the	 structure	 into	 a	 number	 of	 connected
sub-structures	 so that each route through any given
sub-structure has no	 barriers in common with any other route
through that sub-structure.

3) Identify a new set of 'routes' from ignition volume to target -
this time as routes through sub-structures rather than
individual volumes.

4) Work backwards through the structure - from target to ignition
volume - along each of the new routes, identifying as entry and
exit volumes in each sub-structure those volumes which are
common to that sub-structure and its neighbours on that new
route.

5) Derive for each sub-structure the distribution of time to
travel from entry to exit volumes.

6) Combine the distributions obtained in (5).

The algorithm is illustrated by the following example.

Example

For the example structure, let the conditional ignition probabilities

be as before, and let r=2, p 1 = 0.01, p2 = 0.03 and p = 0.96.

The potential ignition volumes and associated routes are given in

Table 3.7.

Table 3.7 Summary of basic information for the example.
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If fire breaks out in volume 4, it reaches the target in

time 0 with probability 1, and the contribution to the arrival time

distribution from volume 4 is clearly

Pr{reach target in time 0) =

1 x Pr{ignition in volume 4) = 0.02,

whilst Pr{reach target in time> O ignition in volume 4) = 0.

From volume 3 there are two independent routes, to the target, the

first of these is of length 1 and the distribution of time to arrival

along that route, conditional on ignition in that volume, is

Pr{reach target in time t=1} = P31 (1) = 0.01

Pr{reach target in time t=2) = P 3 (2) = 0.03

whilst for the second

P32(l) = 0

P32 (2) = 0.0001

P32 (3) = 0.0006

P32 (4) = 0.0009

Similarly, for volume 2 as ignition volume,

P21 (1) = 0.01
	

P21(2) = 0.03
	

P22(1) = 0

P22 (2) = 0.0001
	

P22 (3) = 0.0006
	

P22 (4) = 0.0009

There are two routes from volume 1 to the target, and they share a

common arc, so it is necessary to partition the structure unto two

sub-structures. The first of these is a sub-structure containing only

volume 1, whilst the other contains the remaining volumes. The only

link between the sub-structures is provided by the barrier separating
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volume 1 from volume 2, so that the entry and exit volumes for the

first sub-structure are each volume 1, and for the second are

volume 2 and volume 4 respectively. The calculations concerning fire

reaching the target from volume 2 have been made above, so all that

is needed is some adjustment for the link between the two

sub-structures.

The distribution appropriate to fire starting in volume 1 may be seen

to be:

P 12(l) = 0

P 12 (2) = 0.01 x P 21 (1) = 0.0001

P 12 (3) = 0.01 x P21 (2) + 0.03 x P21 (1) = 0.0006

P 12(4) = 0.03 x P21 (2) = 0.0009

P 13 (l) = 0

P 13 (2) = 0

P 13 (3) = 0.01 x P22 (2) = 0.000001

P 13 (4) = 0.01 x P22 (3) + 0.03 x P22 (2) = 0.000009

P 13 (5) = 0.01 x P22 (4) + 0.03 x P22 (3) = 0.000027

P 13 (6) = 0.03 x P22 (4) = 0.000027

Before the final probability distribution is calculated, the

probabilities enumerated above must be aggregated as described

earlier. The results of that process are shown in Table 3.8.

a
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Ignition

Volume

1

2

3

4

Time, t, after ignition,

to first reach the target

2
3
4
5
6
00

1
2
3
4
00

1
2
3
4
00

0
00

Probability -
Pr{T=tign in vol i}

0.0001
0.000609993
0.000908947
0.0000269568
0.0000269568
0.9983271087
0.01
0. 03 009 6
0.000576
0.000864
0.958464

0.01
0.030096
0.000576
0.000864
0.958464

1
0

Table 3.8 Aggregated travel time probabilities for the example.

The probabilities calculated above may then be multiplied by the

corresponding conditional probabilities of ignition in each volume to

yield the complete probability distribution as shown in Table 3.9.

Time, t, after ignition,
to first reach the target

0
1
2
3
4
5
6

fails to reach

Probability -
Pr{T=t}

0.02
0.003 8
0.011496860
0.0005848758
0.0008737104
0.00001617408
0.00001617408
0.96321220564

Pr{T^t}

0.02
0.0238
0.035296860
0.03588173580
0.03675544620
0.036771620280
0.036787794360
1

Table 3.9 Probability distributions for the example structure.
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Appreciation of numerical results such as these is simplified by

graphical illustration. Figure 3.2 overleaf shows the probability

function as given in Table 3.9, with 'F' being used to indicate the

event of fire not reaching the target. On the same axes is shown a

similar graphical representation of the results which are obtained

when the ARSSUN program is run on the same structure with the same

ignition probabilities and the requisite Bernouffi B(l, l-p) breach

distribution for each barrier. The ARSSUN results are classified in

Figure 3.2 as 'R', for 'reaches the target' and 'N', for 'does not

reach the target' and the probability axis is given on a logarithmic

scale so as to facilitate the depiction of the small probabilities.

The output from ARSSUN is reproduced in Appendix A.

There is a discrepancy in the results in that the probability of

fire never reaching the target (and thus the probabifity of fire

reaching the target) are not found to be the same by the two methods

(0.03678... for the multinomial and 0.03681 for ARSSUN). This is

accounted for by ARSSUN's neglecting of all second- and higher- order

effects.

a
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Once a reliability assessor has access to results such as these,

he or she will generally wish to re-run the model with different

parameter values representing different barriers in order to

establish whether it is possible (usually within cost constraints) to

further reduce the risk of fire damage to the contents of the

critical target volume. It is here that the importance of a

time-based model can be seen very clearly, for it is not just the

reach target/fail to reach target probability masses as calculated by

ARSSUN which are important, but the shape of the probability

function, such as shown on the left hand side of Figure 3.2, which

can offer much guidance to the engineers conducting the probabilistic

risk assessment.

3.3 Structures with non-identical barriers

The single most restrictive element of these models is the

requirement that all the barriers in a structure be considered

identical. It is upon this premise that the notion of the application

of the multinomial model is built, since this probability

distribution arises from the situation in which a number of

independent trials are carried out under the condition that at each

trial the probability of a particular outcome (for example, burning

through a barrier in 1 unit of time) remains the same throughout all

trials.

If there are only two or three different types of barrier, which

may be characterized as

type A : Pr{fire spreads to neighbouring volume in time t=i} = p

type B : Pr{fire spreads to neighbouring volume in time t=i} =

type C	 Pr{fire spreads to neighbouring volume in time t=i} = p,
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the model is still tractable. The way forward for each ignition

volume, and for each route is to group together the barriers of each

type and to consider repeated multinomial trials for the identical

barriers in each group. For each route there will then be a number of

multinomial expressions such as those shown earlier in the preceding

section - for example in Table 3.3; and that number will not exceed

the number of different barrier types. The resulting expressions may

then be combined to provide an assessment of the structure as a

whole, as illustrated by the following example. The chosen structure,

shown in Figure 3.3, is slightly different from that used in earlier

sections of this chapter as it facilitates a clearer illustration of

the techniques.

Example

volume	 vol 2	 volume
1	 4

vol 3
target

Figure 3.3	 A simple four-volume structure.

Using the case r=2, suppose that barriers 1 (vol.1 <— vol.2) and 2

(vol.1 —* vol.3) are of type A whilst barriers 3 (vol.2 — vol.3), 4

(vol.2 —* vol.4) and 5 (vol.3 —* vol.4) are of type B,

where,

for type A, Pr{breach in t=1} 
= A1' 

Pr{breach in t=2} =	 and

for type B, Pr{breach in t=1} 
= Bl' 

Pr{breach in t=2} =

The routes to the target, with possible travel times and

corresponding conditional S probabilities are as shown in Table 3.10.
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1,4

2,5

1,3,5

2,3,4

4

3,5

1,2,5

5

3,4

2,1,4

1.1

1.2

1.3

1.4

2 2.1

2.2

2.3

3 3.1

3.2

3.3

Parentheses, {}, are used to indicate theoretically possible travel

times which would not arise in practice since any fire starting in

the volume indicated would first have reached the target via a

different route.

From Route Via	 Possible travel times
Vol no.	 barriers	 [and corr. probabilities I ignition in vol]

2A1B 31IUB1 +pA1pB2], 4A2B)

2 AlBl' 3A2B1 +pAIpB2], {4[pP2]}

{4[2(pAlpBlpB2) + (pp1)]}

{5 [2(,p p p ) + (p p22)] },	 {6[pp2] }A2B1B2	 A1B

3[p p2 ],Al BI

{5[2(p p PB2) + (PAlP 2)] } {6[pp2]}A2 B!

1 'Bl' 2EB21

{2[p 1]}, {3[2(p1p2)]},

{ 3[P lPBl1 )' {4 [2 (pAlppBl) +

(5 [2(p p p )+(p2 1'Bl'' {6[ppB2]}A1A2B2	 A2

1 Bl" 2B21

{2[p 1]}, {3 [2 (pBlpB2)]}, (4[p2
B2

{3[p2 p ]},	 {4[2(pA1ppB1)+(plpB2]}Al Bi

{ 5 [2(p p p )+(p2 
Bl' {6[ppB2]}AIA2B2	 A2

4	 4.1
	

0[1]

Table 3.10 Algebraic summary of information for the example.

Pr{fire reaches target in time T^3 starts in vol. 1) =

[2pA1pB1 + 2AlB2 + PPBl + PA1PB1 U - A1B1 AlB2 - A2B1] =

Al + PPB! + PA1PB1U -	 - A2B1
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Also, Pr{fire reaches target in time T^4 starts in vol. 1) =

Pr{fire reaches target in time T^3 I starts in vol. 1) +

Pr{fire reaches target in time T=4 J starts in vol. 1) =

A1 
+ A2B1 + pA1p1(1 - A1 - A2B1 +

A2B2 1 - 'A1Bd =

A1 + 
A2B1 

+ "A1B1 - A1Bl - PA1r'A2PB1 + 
'A2B2 - A1A2B1B2 =

+ B1'A1 - 'A1 - A1A2 =

1 + PB11'Al(l - A1 - A2) =

1.

For a numerical example, let the conditional ignition probabilities

in volumes 1 to 4 be 0.8, 0.09, 0.07 and 0.04 respectively, and also

let	 0.3 and B1=°•4' so that p=O.7 and B2 0.6. Then the

distribution of arrival times is as given in Table 3.11.

Ignition	 Time, t, after ignition,
Volume	 to first reach the target

1	 2
3
4

2
	

1
2

3
	

1
2

4
	

0

Unspecified
	

0
1
2
3
4

Probabifity -
Pr{T=tign in vol i}

0.12
0.48016
0.39984

0.4
0.6

0.4
0.6

1

0.04
0.064
0.192
0.384128
0.319872

Table 3.11 Aggregated travel time probabilities for the example.
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3.4 Existing Approaches to the Solution of Stochastic Networks

Mirchandani (1976) proposed a method of calculating the expected

shortest response time for a stochastic network. He describes his

method as being composed of three steps as follows:-

1) transform the network to its 'emergency equivalent network'
in which each link has an independent Bernoulli probability
of operating and a deterministic operating time when the
link is operative;

2) determine all possible routes from ignition volume to

target;

3) make use of a recursive algorithm to compute both the
expected response time and the reliability.

Mirchandani's language is based on that appropriate to communication

networks, - thus in the present context the construction 'operative

link' should be understood as indicating a barrier which is breached

by fire whilst and the reliability of a path is the probability that

all the barriers in the path are breached.

The principle is fairly straightforward as the simplified

three-step algorithm suggests, but this belies some complexity in

practice.

1

A barrier (s, t) which has a discrete breach-time distribution which

may be written as

for t = tk	 k= 1, 2, ..., r ; t(t2< ••
Pr{T=t} =

p00	 l-p.	 for t=oo
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is represented in the 'emergency equivalent network' by r parallel

links	 (s, k, t), k=l, ..., r;	 each link having	 an independent

probabifity	
k 

of being 'travelled' and an associated travel (ie

breach) time, so that

p l = Pl

= "k 
[1p1	k=2, 3, ... , r.

illustration

If consideration be given to a structure fitted with the barriers

described in sub-section 3.2.3, with a slight modification so that

Pr{T=1} = p1

Pr{T=2) = p2

Pr{T=3) = p3

Pr{T=oo} = l = 1p

the 'emergency equivalent network' representation of the structure

would consist of a number of nodes, of which each pair representing

adjacent volumes would be joined by three arcs with breach-times and

Bernouffi breach probabilities,

for t=i, p 1 = p1

pt=2,p=	 2
2	

i-p1

p3
t=3,p=

3	
1-p1-p2
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Thus the number of links in the network representation of a structure

whose barriers are all of the type described above will in general

increase from m to 3m, whilst the number of routes from any

particular ignition volume to target in that structure will increase

from M to

ML
,	 where ML is the number of barriers in route M.

i-i

Identification of all feasible routes from all possible ignition

volumes to the target is generally far from simple. It does of course

become much more complex when the number of routes increases in the

manner indicated above.

The recursive algorithm is based upon the 'equivalent network', each

of whose arcs has a deterministic travel time and a Bernouffi

probability of being travelled. Thus when mention is made of routes,

it should be remembered that a number of 'distinct' routes will be

distinct as far as the 'equivalent network' is concerned, but will

not appear to be distinct upon examination of the original structure.

The algorithm is established as follows.

For a given ignition volume, i, and target, suppose that there

are K distinct routes from i to the target and let these be denoted

by R, where j =1, 2, ... , K. Define E. to be the event that path R.

is connected - in other words that all the barriers in the path have

been breached.	 m is used to represent the expression for the
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probability that one or more of the paths R , ••• R is connected.

Furthermore, P 1 is used to denote the conditional probability that

any of paths R 1 , ..., R 1 is connected given that path R is

connected. Thus

= Pr{E1 UE2 U ...UE}

Uirn 
Pr{E1 UE2 U ...UE IE }.

rn-i' rn

If P 1 , P,1, & Q0 are all defined to be	 0, it follows that

may be derived from Q 1 by setting equal to unity all arc travel

probabilities for those links which are common to both path R. (for

j=i, ..., rn-i) and R. The relationship may be written as

E U/rn	 1•
	 (3.4)

If Pr{R is connected) is written as P
m	 rn

Q = Pr{E1 UE2 U ...UE}
rn

= Pr{[E1 UE2 U ...UE 1] U [E]}

= Pr{E1 UE2 U ...UE 1}+Pr{E} - Pr{[EUE2 U ••• UEmi1 fl FE])

= Q + P - (Pr{[E 1 UE2 U ... UE ] I [E ]}.Pr{E ))
rn-i	 rn	 mrn-i	 m

= Qrni+	 (3.5)

It is equations 3.4 and 3.5 which may be used recursively in the

derivation of expressions for the i=2, 3.....The paths R.

should be arranged in order of increasing travel times, r. The

probabifity of fire reaching the target conditional upon its starting

in a given volume is then
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R =

	

P[l-Pj,];

whilst the expected shortest path response time, conditional upon the

fire reaching the target, is

K

IrjPj[iPU,1
-	 i-i

R

Ling and Williamson (1985), and prior to that in Castino and

Harmathy (1982), made some use of this algorithm in their models of

fire spread. Their particular application featured a fairly simple

structure including self-closing doors, which, in the event of a

fire, may close successfully with a probability p. Thus in the event

of a fire, there is a probability p that a door has a fire

resistance, R, and a probability i-p that the door remains open and

offers no fire resistance. The solution to that problem is

well-addressed by Mirchandani's algorithm since each 'real' link (ie

each barrier) is represented by only two in the emergency equivalent

network, and the analysis does not become excessively complex.

One way of further investigating Mirchandani's algorithm

algebraically is to use a Computer Algebra package. I chose REDUCE

(Hearn (1985)) on the IBM mainframe at Liverpool University as a

convenient package to use. A simple example structure is shown in

Figure 3.4, with the corresponding network and 'equivalent network'

in Figure 3.5 and Figure 3.6 respectively. The barriers are

identical, each one failing in one, two or three units of time with

probabilities p 1 . p2 . and p 3 respectively. The probability that a

barrier is not breached by fire at all is l-ppp3.
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volume 1	 volume 3

volume 2	 volume 4
target

Figure 3.4 A single storey four-volume structure.

Figure 3.5 The network representation of Figure 3.3.

Figure 3.6 The 'emergency network' representation of Figure 3.3.

Corresponding to each link in Figure 3.6 is a Bernouffi distribution

and an associated breach-time as given above. Writing these number

pairs as L(t, p.), it can be seen that joining each pair of adjacent

volumes is a trio of links;

L(1, p1),
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L(2, ), and
1-p1

L(3, ).
l-p1-p2

The number of non-zero length routes from the possible ignition

volumes (1, 2, 3 & 4) to the target is eighteen, thirty, thirty and

nought respectively. Each volume was assigned a conditional ignition

probability (their sum being unity so that the condition 'given that

fire has started somewhere in the structure' is fulfilled).

REDUCE was used to verify that appropriate probabilities summed to

unity, as well as to derive algebraic forms for the intermediate

results. Some sample input and output is included in Appendix B. The

selected output shows results evaluated for the event of fire

starting in volume 1. REDUCE may be used both interactively and in

batch mode, so in this case a file containing the input code was

written and submitted. The printed results are provided as an

ifiustration of the output which REDUCE can produce. The whole output

file for this example is about 5000 lines long.

3.5 Conclusion

The new methodology introduced in this Chapter allows the application

of a time-dependent model of fire spread in a fairly straightforward

and flexible way. The principle results are those summarized in

equation 3.3, the contents of Tables 3.2, 3.3, and 3.5, and the

Algorithms in sub-sections 3.2.4 and 3.2.5. Sub-section 3.2.5 is

especially important in that the particular model presented there is

shown to provide an improvement on the ARSSUN method, as is
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illustrated in Figure 3.2. Whilst the restriction that the barrier

breach-times have a discrete probability distribution is certainly a

limitation to the models' realism, it is seen to be less so when it

is remembered that a barrier's breach characteristics are generally

given as a single nominal breach time. The particular values (in

minutes) given to each time unit should be selected as those

appropriate to the type of barrier under consideration, guidance

being available from the relevant Standard Fire-test result. Other

discrete probability distributions, such as the Poisson or the

Negative Binomial, could also be used as models of barrier

breach-time distributions, but this is not pursued further here.

In the next Chapter, consideration is given to a number of

continuous distributions, each as possible models for barrier

breach-time, which leads to an intuitively appealing solution to the

time dependent fire-spread problem.
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CHAPTER 4

Continuous-time Modelling of Fire Spread Through a Structure

There are three things that are never satisfied,
yea, four things say not, It is enough:

The grave; and the barren womb; and the earth that

is not filled with water; and the fire that saith

not, It is enough.

Proverbs 30:15.

4.1 Introduction

Despite the appeal of some straightforward mathematical argument and

the ensuing algorithms, the depiction of time-since-ignition as a

discrete rather than a continuous variable is a somewhat

unsatisfactory simplification. Although it is certainly more

satisfactory than modeffing fire spread without reference to time at

all, it cannot represent accurately the real-life spread of a fire

through a building. This Chapter is concerned with the development of

continuous-time models.

4.2 Distributional Models of Barrier Failure Time

The fundamental difference between the models discussed in this

chapter and those presented in Chapter 3 is that the breach-time

distributions associated with each barrier are continuous rather than

discrete. The fire resistance of a barrier bounding a volume in which

there is a fire obviously has an extremely important influence on the

time taken for a fire to spread from the burning volume to an

adjacent one, and thus from the volume in which the fire starts to
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any target volume. It is apodictic that any stochastic models of

barrier failure must characterize as accurately as possible the

real-life response of a barrier to fire, especially as any small

inaccuracies in modelling an individual barrier's performance may

well be compounded when consideration is given to fire spread through

a succession of barriers.

The role of the British Standards on fire resistance ratings of

different types of barrier has been discussed in Chapter 1, in which

it was mentioned that, for each particular type of element of

interest, only one or two representative samples' undergo a

fire-resistance test. Each fire test is sponsored by the company

which manufactured the element and the test results become the

property of that company, and are rarely available to the public.

Despite the inadequacy of the B.S.L test results from a

modeffing perspective, it is often the case that those results are

the most influential when a model of a barrier's breach

characteristics is being prepared. Any decision concerning the

acceptability of a particular breach-time distribution must be made

by a qualified risk assessor who is able correctly to interpret the

specifications of that particular model. Reasonable distributions for

a barrier rated at a minutes include those in Figure 4.1, for which

appropriate additional information may be found in Hastings and

Peacock (1975) or Johnson and Kotz (1970).

a

62



b) Gamma A" t". exp (-At)
1(t) =______________

r (v)

a) Two-parameter Exponential
	 f(t)=A.exp(-A[t-aI)

Dens ty

0	 a

T me

Dens ty

0	 a

T me

c) Weibull
	

1(t) =DE [4Jexp(-[$])

Dens ty

0	 a

T me

Figure 4.la Some candidate Breach-time probability distributions
for a barrier rated at a minutes.
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Figure 4.lb Some candidate Breach-time probability distributions
fora barrier rated at a minutes.



It should be noted that the one parameter Exponential

distribution is both a special case of the Gamma distribution

(Exp(A) = y(A, 1)) and a special case of the Weibull distribution

(Exp(A)=W(, 1)). The Erlang(A, c) distribution is the name given to

the Gamma, v) when v=c is an integer.

Model (a) represents the situation in which the barrier is

secure up to the rating value and then burn-through may take place

soon afterwards. Models (b), (c), (d) and (e) can all represent the

cases in which there is a small, but non-zero, probability of a

barrier being breached before the nominal rating value. Note that in

(c) there can be a rapid drop in probability density to the right of

the mode. There is some empirical support for the use of the Weibull

distribution from data given by Ling and Wffliamson (1985) whilst the

Lognormal distribution provides a good fit to data quoted in a

confidential report from the Fire Research Station (Ramachandran

(1972)). In (e) the variation in breach-time is symmetrically

distributed about a nominal value which may, in some cases, be the

rating value. Its applicability is supported in AEA funded work

currently underway at Edinburgh University [Beard (1989)], and

similarly finds support in the work of Buchanan and Elms (1981)

described in Chapter 1. Further support for these models is provided

by some unpublished data obtained from tests done in Australia

[Veevers (1990)].

The data given in Ramachandran (1972) are scanty - the

observations were measures of fire-resistance on sixteen doors, each

door being assembled from a combination of one of four types of wood

and one of four types of glue. It is fortunate that an analysis of

variance performed on the logarithms of the fire-resistance values
a
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Type8

78.00
80.08
80.42
80.50
81.42
82.42

Type9

61.75
62.25
62.83
69.42
70.75
71.33
71.83
72.17
72.17
73.75
78.42
81.25

e

indicates nothing to suggest that the different woods or glues lead

to significantly different fire resistances, for then both

Ramachandran and his readers are able to treat the observations on

the different doors as effectively being a random sample of sixteen

'identical' doors. That allows the construction of a distribution of

fire resistances from which inferences may be made. Ramachandran

states that the logarithms of the times follow a Gaussian

distribution, and thus the actual fire resistance is Lognormally

distributed, but the data support a Weibull distribution equally

well.

The unpublished Australian data are reproduced in Table 4.1.

Typel Type2 Type3 Type4 Type5 Type6 Type7

	

35.42 39.17 42.50
	

55.00 57.75
	

60.33
	

70.00

	

35.83
	

39.17
	

42.58
	

55.50
	

60.00
	

62.50 71.00

	

35.83
	

39.25
	

43.08
	

56.00
	

60.75
	

62.50 71.50

	

35.83
	

39.33
	

43.58
	

56.08
	

61.00
	

63.08
	

72.00

	

37.08
	

39.58
	

43.83
	

57.33
	

61.75
	

65.25 72.00

	

37.25 40.67 45.08
	

58.50
	

62.95
	

65.33 74.08

TypelO Typell Typel2 Typel3 Typel4 Typel5 Typel6

	

85.25	 14.67	 29.50 48.67	 14.16	 35.75	 52.67

	

86.17	 15.92	 32.67	 49.92	 14.58	 36.50 52.67

	

86.17	 15.92	 33.00	 50.84	 15.33	 37.25	 53.17

	

87.00	 16.17	 33.25	 50.92	 15.33	 37.33	 53.33

	

87.25	 16.83	 33.42	 51.84	 15.42	 37.84	 53.33

	

87.41	 17.33	 34.33	 52.08	 15.84	 38.50	 54.42

Table 4.1 Fire resistances (in minutes) for sixteen different types
of door.

The door types all appear to be distinct in that their mean and

median fire resistances differ, but the small number of observations

on each type does not uniquely indicate any particular breach-time

distribution. Probability plots of the data show support for the

Gaussian and Lognormal distributions - see Figures 4.2a and 4.2b.

66



(

Cl)

0
Cl)
ci	 o

4-	 1
I

a 49	 50	 51	 52

Cd

Times for door type 13 (mins)

Figure 4.2a Fitting a Gaussian distribution to the data

3.58	 3.60	 3.62	 3.64

Log(Times) for door type 15 (Iog(mins))

Figure 4.2b Fitting a Log-Normal distribution to the data



It is unfortunate that there is a lack of data from which to

draw clear conclusions about the appropriateness of the various

suggested breach-time distributions, and it is to be hoped that the

need for representative modelling will one day overwhelm the limited

testing and the trade secrecy which are currently features of the

processes of manufacture and testing of fire-resistant materials.

4.3 Stochastic Networks

Once the breach-time distributions appropriate to each barrier in the

structure have been decided upon, it is possible to construct a

stochastic network representation of the structure and apply standard

techniques to the solution of the 'shortest path' problem for that

structure. The algorithm developed by Mirchandani (1976) for solving

a stochastic network whose link travel times are discrete random

variables may be applied to the continuous case if one is prepared to

construct discrete approximations to the continuous link travel-time

distributions.

4.3.1 Proposed Solutions	 Stochastic Network Problems

Frank (1969) proposed an exact method of finding shortest-path

probability distributions in networks whose link lengths are random

variables. The basic principles of Frank's approach are presented

below, and for the purposes of this exposition his ideas are couched

in the language of the fire-spread modelling problem. Throughout the

discussion, the assumption is made that each barrier is symmetrical

in that its breach-time probability distribution is the same

regardless of which face is first exposed to fire. This restriction

on the link lengths is not imposed by the methodology, but its
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introduction does facilitate a simpler exposition of Frank's work.

Let G be the graph representation of a segregated structure

comprising a total of n volumes and m barriers, b 1 , b2, ... b.

Assigned to each barrier, j, is a breach time, - a continuous random

variable, T.

Let the joint probability density function of the random vector of

breach times T=(T 1 , T2 , ... Tm) be fT(tl, t2, ••• t).

For any two volumes u, V of the structure, there is a set

{R1(u,v), R2(u,v), ..., R(u,v)) of paths connecting those two

volumes.

For each potential ignition volume, i, let Z be the random variable

Z I =mink[ I Rk(u ,v)J] = mink[	 T. ],

b.E R
j	 k

so that Z corresponds to the travel-time of the shortest path from

ignition volume to target. The idea is to calculate the probabifity

distribution F(z).

If R = (J R ' R2 ' •• I Rq I) the vector of travel-times along each

of the paths, and the pdf of R is fR(xl, x2 , ... x); then

Pr{Z^z} =

1-Pr{Z>'z} =

1-Pr{fire doesn't reach target in time z by any of the q poss. paths)

F (z) = 1 - f	 JRl' 
x2 , ... X)dX 1 , ••• dXq •

	 (4.1)
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Thus it is necessary to compute fR(xl, X2 , ... Xq) before F(z) can

be found.

Frank shows that manipulation of the characteristic function of

the vector of breach times, T, yields an expression for the

characteristic function, cb(s), of R, the vector of travel times along

the different paths. The pdf of R may then be derived from (s) using

the result (see for example Cramer (1974)) which states that in

general for	 a	 distribution	 f(x)	 with	 characteristic	 function

00	 00
=	 1	

f	 J'c(s)exp(-isTx)ds1...ds.f(x)	
(2ir)"

A further multiple integration of the pdf of R yields the required

distribution function F(z).

The methodology is, by Frank's own admission, very complex and, I

would suggest, virtually intractable as a means of solution to a

realistic fire-spread modelling problem. A similarly complex

multiple-integral solution is presented by Sigal et a! (1980).

Kulkarni (1986) develops methods for the evaluation of the

distribution of the length of the shortest path between two nodes in

a stochastic network whose arc lengths are independently

exponentially distributed.
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4.4 Distributions of Time to reach the Target Volume

The method presented in this section relies first on the allocation

to each barrier of a continuous breach-time distribution and second

on the identification of all routes from each possible volume of

ignition to the target. Reference to sub-section 1.2.5 (of Chapter 1)

indicates that the time taken to reach the target along any path may

be considered to be the sum of the times taken to breach the barriers

in that path.

In the general case, the barrier breach times are independently,

but not necessarily identically, distributed random variables T

with distribution functions F (t), where m and n are adjacent

volumes.

Thus the time taken for fire to travel a particular route, k,

from an ignition volume, i, is itself a random variable, T. k' which

is the sum of the values of Tmn corresponding to the barriers

defining that path. For each ignition volume, i, there will be K.

random variables, T k each with distribution function F. k(t).

The primary value of interest is, of course, the time to first

arrival at the target, a time which may be achieved by fire

travelling any of the routes from the specified ignition volume. It

may, for example, be that the shortest travel time is consistently

associated with one particular path, a situation which would indicate

either that steps ought to be taken to increase the quality of

barriers in that path, or that extra barriers be added to impede to a

greater degree the progress of the fire.
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4.5 Extreme Value Theory

The fire spread model introduced in the previous section may be

re-expressed as follows:-

What is the distribution of the smallest order statistic drawn from a

number of not necessarily independent distributions, each of which is

in turn the sum of independent (breach-time) random variables?

4.5.1 Introduction f Standard Theory

Were all the paths from a particular ignition volume to the target

independent, so that no two paths had any barriers in common,

standard theoretical results, - see for example David (1982), would

be applicable. Those results are presented here and the theory is

applied to some of the cases which may arise from the breach-time

distributions suggested in Table 4.1. It should be noted that the

discussions here concern themselves with the distribution of the

smallest order statistic arising from a small number of

distributions, whose derivation and tange of appYication Oilier from

those pertinent to the asymptotic theory of extremes.

Let T	 be the smallest order statistic associated with K.

distributions, Fjk(t). The distribution of T. is given by

Pr{Tt} = 1 - f[ [1 - F.k(t)].
k-i

For a structure with V volumes, there will be V such statistics, each

associated with one ignition volume.

(4.5)

e
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The time, T, from ignition to fire first reaching the target,

conditional on fire breaking out somewhere in the structure, is

distributed as:-

V

Pr{T^t} 
= :: { 

[i 
k=i[ - 

Flk(t)]] x
i-i

where P is the conditional probability of ignition in each volume,

so that	 P=1.

4.5.2 Application	 Suggested Barrier Breach-time Distributions

Since the complexity of the mathematics increases with the diversity

of the individual independent barrier breach-time distributions, it

seems reasonable to separate the possible relationships between the

individual independent barrier breach distributions according to the

following:-

Category	 the breach-time distributions are
1
	

identically distributed (lid)
2	 same distribution, different parameters
3
	

different distributions.

The first category comprises all cases in which each of the

barriers in the structure, and thus all the barriers in any

particular path, have the same breach-time distribution, FT(t). In

this case, the travel time, T. k' for a path of length n is

distributed as the sum of n iid random variables. When FT(t) is the

Gamma (Exponential) distribution, or the Normal distribution,

(4.6)
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equation (4.5) has a simple, closed form as the distribution of the

sum of the breach times is of the same family as the common barrier

breach-time distribution. This also holds for the three-parameter

Gamma distribution, of which the two-parameter Exponential is a

special case. If the barrier breach-time distributions are all lid

Weibull(ft, 0), or lid Lognormal(u, a), an expression for their sums,

corresponding to the path travel times, may be found by making use of

the characteristic function of the distribution. For the Weibull

distribution this is:

= - J f(t)e dt

p	 p
1t	 { [t	 1

= J	 L j exp -	
J	 J 

e t dt.

-00

The characteristic function of the sum of n iid such random variables

is

fl-i
(s) = fl'0	

[ ,J' 
t	 ex{ ist -[
	 J	 } 

dt ]

-00

and the corresponding density function is

00	 00	
p1 I 1$-i

f(t)=-
T	 2	 J 

e	 prg4	

[ 
j t	 exi[ ist - [ - ]	

} dt ] ds.

-00	 -00

e
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The characteristic function of a Lognormal(u, a) is

00

1.rin(t)_-

J	
[ov'25 t]exp [ - 2:	 a	

}2]

-00

and the density function of the sum of n iid Lognormal(u, a) random

variables may be written as

	

00	 00
1	 1____	 1.Iln(t)_-

	

f (t) 
= - J	 [ai	

] e - t{ 

J 
t'exp [ e1St -
	 }2] 

dt} ds.aT

	

-00	 -00

In the case of a Lognormal distribution, it is usually easier to

transform the random variable to a Gaussian variate.

Table 4.2 shows the distribution of the smallest order statistic

of path travel times along any path, k, from ignition volume i to the

target, when the common barrier breach-time distribution is as

specified. In each case, n=c. k is the number of barriers in path k

from volume i.
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y(A., v)

or

Breach -
times	 Distribution function of smallest order statistic

C	 -1

exp(, a) 1 -
	 : 

[exP[-A(t.ccI 
IC'	 (t-ac 

k ].

tK1 [ 

1

	

1-U	 - I	 du 
I

	

k-i	 J	 f'(J)
0

(where J = vc.k)

if v not an integer.

K 1	1_j

1 -	 [ exp(-At)	 (t)

I
k-I .'•__J J

J 0

if v is an integer.

00

	

K11	
1	

00	
fi

iP-'W(ft, 0) 1ff 11J - ie st8°0	
[ 

j t exr{ist_ [ - ] }cit] ds dtj.

	

k - I L	 2iVj
0	 _o	 00

00K1	 1	 1
L(, a) 1-11 Ii- 1_ I E-_1 

e - istj f -1
k-iL 2irJ VTi	 j exp[eist4 (t) - 

P}l dt}ds dtl.
0	 00	 -00

K
ir

N(4u,a2)
kiL

i,k

Table 4.2 Distributions of the smallest order statistic of travel
time along any of the K. paths from ignition volume i to
the Target for cases falling into category 1.
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The second category comprises the slightly less restrictive

cases in which the barrier breach times in each path are all

independently, but not necessarily identically, distributed random

variables from the same family. Once again, closed forms of the

expressions for the smallest order statistic, T 1, do not exist when

the barrier breach times are Weibull or Lognormally distributed.

If a path contains c k barriers, each of whose breach-time

distribution is two-parameter ExponentialO., a.), the sum wifi only

be distributed as a Gamma random variable if the )are identical. In

other cases, an expression for the distribution of the sum must be

derived by other means.

The characteristic function ç'. (s) of an Exp.) random variable

is

=j
w(s)

and the characteristic function 	 (s) of the sum of n exponentially

distributed random variables is

	

U	 n

(s) =	 .(s) =

	

j-1	 j=t

which it is sometimes useful to write as

	

n	 .	 .k k
-q 15

	

j-1	 "

e
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The density function of the sum of the random variables is given by

00

1
fT(t) = - J 4(s)etds

-Co

00

1	 1 2' ris

2	

lo []k}eistds.

Thus the distribution function of the sum may be seen to be

	

T	 CO

is1	 1 
00	 •	 k

	

FT(t) = J	 I fl	 E Er-] ] e St dsdt.
J j-i kO	 j

	

-00	 -CO

If the breach-time random variables corresponding to the barriers in

a path are all Gamma	 .., v.) distributed, the same methodology as

used above for the Exponential case can be used to show that the

density of the sum is

CO
__	 I)

f (t) 
=	

I	 i 1	 et ds
T	 LA _j5J

-	 i-I

A°
since the characteristic function of a y(A, v) is [

	 ]A-is
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The density function of the sum of n independent,

non-identically distributed Weibull random variables, W(ft., 0.), is

	

00	 ii	 00

1	
.	

rfl-i	 11
f (t) =- e	 $ 0T	 2 J	 [ii [ Jt	 exp ist -[ .] } dtj 

J 
ds.

-00

The density function of the sum of n independent,

non-identically distributed Lognormal random variables, L(u., a.), is

00	 00

_____	 ist 1 Iln(t) - p.
fT(t) =-	

- 1st	

[a	 ] { J texp [e -	
}2J 

dt}] ds.I	 o.j2irJ
-00 -00

The distribution of the smallest order stafistic in each case is

readily derived from the densities as given.

As the sum of a number of independent Normally distributed

random variables is itself Normally distributed, the distribution of

the sum of n N(u, a2) random variables is simply

N[E,

In respect of category 2, Table 4.3 has been constructed. Unless

otherwise indicated, I is used to denote c, the number of barriers

in path k from volume i to the target.
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Exponential(A.):

	

T	 00

	

K r	

j	

r	 00	
is k 

-St ds dt1-n i Ii-	 [r-] ]e

	

k-i L	 j	 1 L k=O	 ,j

	

-00	 -00

Gamma(A.., u):

	

T	 00

	

K r r	
1 r j	 00 itm ( V + ini)!	 -its in	 dt	1ni [ l_J 	 Jrr[	 .s ds

	

-00	 -00

WeibullCô., 8.):
.1

r T	 CO	 J

X l	 1
inuIiI_Je13tJ	

00

	

k_iL J2ir	 L	
LIt exP{ist -[i] 

i}] 

IdsH.

Lognormal(u., o'.):

T	 00	 1	 00

XI	 1 1	 -i
i-H i ll-f - e -	

[	 ] { J 
t exp [e15t 1 Ilfl (t)

	

k-il J2i	 I I }1 
dt}] dsdr].

2l aj

	

oo	
j-i[ i	

- 00

N(u 1., a.):

K

1 -	 Ii - 
[ tPL

k—i L J]	
where

and r2

over all barriers mu
in path k

Table 4.3 Distributions of the smallest order statistic of travel
time along any of the K. paths from ignition volume i to
the Target for cases falling into category 2.
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When a structure contains barriers whose breach-time

distributions belong to a number of different families, the

mathematics becomes rather more complex. Consideration is given to

pairs of different distributions, from which results may be seen the

germane methodology for the combination of more than two families of

distributions.

1) Normal N(jc, a 2) and Gamma y(A, v)

The characteristic functions being

a2
WN(S) = exp(uis - 2	 and

= [L5 I°
respectively, the characteristic function of the sum is

s2o.2	 _____(s) = exp(uis - 2 [
	 ]

The density of this sum of the two random variables is

00
1

fT(t) = - J 4(s)eds

-00

00

s2a2 -
	 U= __i_ J 

et.{exp [uis - 2	 ] J L	 ] 
ds

-00
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00 00 . kr - ' ( u+k_1)!skl= J 
J 

{et.{exp [is - 2 

1 Ii	 k! (ul)!AkJ } ds
-00

00
00

( - iv+k-1)!

k!(vl)Uk J
k-O -00

s2a2 iie.{ex [is	 2	 jJ } 
ds

00
001 -' (v+k-1)!

= 2ir	 ( u -1) !A.lc 

J(is)k exp[_ [ _- )s - is(t_)]ds. (4.7)

00

Clearly ReI -s--	 >0 , and Re(k) > -1. Furthermore, since

arg(is) = 0

where 0 is defined such that rcosO = 0 and rsin0 = s, so that

if r=s, sin0= 1 and O=L , whilst

if r=-s, sin0=-1 and

it follows that arg(is) = • sign(s).

Thus, from Gradshteyn et al (1972) page 338, equation (4.7) may be

written in terms of a parabolic cylinder function as

00	 -k
1	 . (u+k-1)!	 -k-i	 -(t-p)2	 (t-p) 

2

2rd0k!(u1)!f	
1---1 exp[	

2 ] Dk[	
]

8-

-(t-p)2
expl	 2L

2v'F'

(u+k-1)!	 k
-k-i	 (t-p)2

3 .V -1)!f 

22 [J	 Dk[
VT	 0•i;-

Yh
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Other representations in terms of degenerate hypergeometric functions

or Hermite polynomials are also possible.

2) Normal N(M, a2 ) and Exponential',)

The derivation of an expression for a combination of a Gaussian and

an Exponential distribution is similar to that detailed above.

The characteristic function of the sum is

52g2 A
4(s) = exp(uis - 2

The corresponding density is

2 2
1	

et
[	

] ds.-	 e
27rJ	 A

2 2

-	
I _i S

2ir J{eis	

OO.kk

LiJ}	
ds.

k =0

00	 2 2
00 .k	 sO

} 
ds.

1 rr	 1	

I f 
k	 1st fliS 2=f[ S

k -0 -00

00
100

=	 i [1 jk 

J 
(is)k exp[_ [ __
	

- is(t_P)]ds.	 (4.8)

-0 -00

Clearly Re[ --- ] >0 , Re(k) > -1. and arg(is) = . sign(s).

As before, this may be written in terms of a parabolic cylinder
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function as

r (t-p)2
expl	 2L 4c

21w'

00	 -k -k-i	 (t-p)2
DIk	 1i2J	 kL	 f2' I

k-O

and again once it is possible to express this density in terms of

degenerate hypergeometric functions or Hermite polynomials.

3) Normal NCu, a 2) and LognormalCu, a)

The characteristic functions being

s2a2= exp(uis - 2

and
00

l.Iln(t)_-
WL(S) 

= J 
e1 [av'2 t]exp [ - 2: 'i.	 a	

}2] 
dt

-00

respectively, the characteristic function of the sum is

00

___	 1.fln(t)_-sa	

J 
eASt [aV2 t]exp [ - 2:	 a	

}2] 
dt.(s) = exp(uis - 2 )

-00

The density of this sum is

?T(t) =

	

00	 00
__i_ 1 e 15t{exp(uis_522) Je1st[aVT t]exp [	 n(t) - }2J} 

ds.
2ir J

	

-00	 -00
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4) Gamma	 v) and Lognormal(u, a)

The characteristic function of the sum is

00

dt___	 1 fln(t) -(s) = 
[ L5 I	 J 

e [aV2 t]exp [ -
	 a

-00

and the corresponding density function is

	

00	 00

fT(t) = - 1e_thI
2,r i	 U.	 I 

Je t[aVI t]exp[4[1)}] dt}ds

	

-00	 -00

These results are collated in Table 4.4.
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N(u, a2) and y(A., v) (or Exponential u)):

T	 00

s2a2	 1 r

J .__ J et.{exp [uis - 2	 ]	 [	 ] ds
-00	 -00

N(u, a2) and Lognormal(u, a):

	

T	 00	 00

	

I_ Ie	 is- 2

	

t'	 1 '•	

{expcti s

2a2 Je t[aV2 t]exp[4{11t. -
J2ir J

	

-00	 -00	 -00

y(A, v) and Lognormal(u, a)

T	 00	 00
1	 r	 ri ,	 u

j	 j
isti_____	 _________e	

1L 1.-is ] 

Jeist[aV2 t]exp[	 ii}] dt}dsdr

.00	 -00	 .03

Table 4.4 Distribution functions of the sums of distributions
pertinent to category 3.

It is likely that any particular route through a structure wifi

contain a number of barriers with identical or similar breach-time

distributions.	 Furthermore,	 since,	 in	 terms	 of	 deriving	 a

distribution for the time taken to reach the target along a given

path, the order in which the barriers are considered is irrelevant,

it ought to be possible to group a path's barriers into sets so that

each set contains barriers whose breach distributions are identical
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or at least of the same family. The breach-time distribution for each

set of barriers could then be derived fairly readily, and the number

of 'different-family' combinations would be restricted to the number

of 'same family' sets, and would perhaps be relatively small.

Example

Consideration is given to the structure depicted in Figure 4.3.

Volume 5 is the target volume and the barrier breach-time

distributions are coded by letters.

Figure 4.3 Network representation of a five-volume structure.

The barriers with only one breach-time distribution are coded thus

since only one direction of burn-through is of interest in those

cases. The time units are minutes, and the breach-time distributions

and their abbreviations are:

Barrier:
A
B
C
D
E
F
G

Distribution:

Exponential (0.1, 10)
Lognormal (3.22, 0.15)
Gamma (0.1, 5)
Lognormal (3.0, 0.12)
Normal (20, 36)
Gamma (0.1, 8)
Normal (30, 49)

Abbreviation:

El
Li
Gi
L2
Ni
02
N2.

A summary of the information about the routes is given in Table 4.5.

e
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1.1

1.2

2.1

2.2

3.1
3.2
4.1
4.2

Ign. vol. (prob)

1	 (0.35)

2	 (0.25)

3	 (0.15)

4	 (0.2)

Route

1.1
1.2
2.1
2.2

3.1

3.2
4.1

4.2

Barriers

AEG
ACF
CF
EG
F
BEG
G
DCF

Time distributed as

El +N1 +N2
El +G1 +G2
Gi +G2
Ni +N2
G2
Li +N2+N2
N2
L2+G2+G2

5	 (0.05)	 5	 none

Table 4.5 Summary of path and travel-time information.

More specifically, using the results derived above, the path travel

times are seen to be as given in Table 4.6.

Route	 Distribution of travel time

V 0O
00

	

ir	 rI	 2	 --

	

- I	 I .e1st.exp[ 5Ois - !! ]
	

(l0is)k ds dt+10

	

2irJ	 J00 L. 	 k=O

y(O.l, i4)+iO
y(O.l, 13)
N(50, 85)
y(O.l, 8)
See below

N(30, 49)
See below

Table 4.6 Probability distributions of path travel times.
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3.2 is

	

tOO	 00

	

ir r 	 ___
___	 I IIln(t)-3.2- I	 I e - ist{exp [50is- 9 s2] . 

J 
e t[tV48 irf exp [-21.. 1.55 

}2J 
dt}dsdt

2,rJ	 J

	

-00 -00	 -00

4.2 is

00	 00

	

r	 r	 ro.1	
13

lath _________ I_______	 lIln(t)-3.2

- j	 j e - 1 Lo. 1-is]	 J' 
e[tV4. 8 ir]lexp [- 2-1 	 1.55 

}2J 
dtds.dt

	

-00	 -00	 -00

Some simulations using the Minitab statistical computer package

suggest that the distributions given in Table 4.7 serve as good

approximations to the corresponding distributions in Table 4.6.

Route
	

Approximate distribution of travel time

	

1.1
	

N(70, 175)

	1.2
	

y(O.1, 14)+1O

	

2.1
	

y(O.l, 13)

	

2.2
	

N(50, 85)

	

3.1
	

y(O.1, 8)

	

3.2
	

N(76, 98)

	

4.1
	

N(30, 49)

	

4.2
	

N(151, 1265)

Table 4.7 Approximate distributions of path travel times.

The final results for the distributions of the smallest order

statistics given in Table 4.8 overleaf are straightforwardly derived

from the application of equation 4.5.
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Ign vol.(prob) and Required distribution

Ignition in volume 1 (p-0.35):

13

i - [exp(O.1(t+l0))	
(O.1(t+ 10))1	 t70

)][1-cy175)]
1=0

Ignition in volume 2 (p=0.25):

12 (0.lt)'	 t-50
[exp(O.lt) (
	 ) if i	 _

ii %f_8 51-0

Ignition in volume 3 (j) = 0. 15):

' 0.lt) 1	t-76
1 - [exp(0.lt)	

i!	
] ][i -
	 ___

1=0

Ignition in volume 4 (p=0.20):

t-30
1- C-C	 ) ] [ i	

C35.57)]

Ignition in volume 5 (p =0.05):

0.

Table 4.8 Distributions of smallest order statistics of arrival times
for each volume..
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Suppose a fire breaks out in volume 4. The distribution of the

smallest order statistic of time to reach the target is readily

calculated from the formula in Table 4.8. The distribution function

is plotted as Figure 4.4 overleaf. From the graph it can be seen, for

example, that the chances of fire reaching the target within nine

minutes of the ignition in volume 4 are very small, whilst the target

will almost inevitably be ablaze forty-five minutes after ignition.
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4.5.,3 Extreme Value Theory Applied	 Non-independent Distributions

The work presented in the previous section was based on the

assumption that, for a specified ignition volume and target, the path

travel-time distributions are independent. This is equivalent to the

assumption that no two routes from the ignition volume have a barrier

in common. That restriction is clearly unrealistic as most buildings

are not constructed in such a limited way.

Standard extreme value theory is derived on the basis that the

contributing distributions are independent. Since Gumbel (1958), the

interest in the distribution of extremes has greatly increased, other

texts being written by Galambos (1978) and Leadbetter et al. (1983)

amongst others. Leadbetter seeks to bring together existing material

as well as to introduce new theory, particularly that pertinent to

the consideration of extreme values arising from combinations of

non-independent distributions. Much of the work is concerned with

identifying the situations in which a distribution of extremes

arising from non-independent distributions may be well-approximated

by that which would be obtained were the contributing distributions

actually independent.

4.5.4 Dependence Assumptions

Whilst the concept of independence is simple to grasp and may be

quite straightforwardly defined, the quantification of dependence is

more difficult. There are various levels of dependence, at one

extreme are Markov processes (in which only the present state and no

previous one is relevant in the prediction of a future state) and at

the other are processes for which the dependence structure can be

extremely involved.
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The term rn-dependent (Watson (1954)) is used to describe a

sequence of random variables, {t}, which has the property that if

li-k j > m, t and tk are independent. A slightly less rigid dependence

structure is that described by strong mLcing, which allows that any

event A, "based on the past up to time t o " is "nearly independent" of

any event B "based on the future from time t 0 +k+1 onwards" when k is

large (Leadbetter et a!. (1983)). More formally, for the two events A

and B, and a function g(k), strong mixing requires that

Pr(AflB) - Pr(A)Pr(B) I < g(k).

An even more general model of the dependence structure of a

stationary sequence of random variables is provided by considering

the behaviour of

rlog(n) as n

where r is the covariance of a pair of random variables . and

Much of the classical theory of extremes is concerned with the

asymptotic behaviour of a process, and this emphasis is reflected and

magnified in the literature about the behaviour of extremes under

less rigid distributional and independence assumptions. The

particular interest in asymptotic results is understandable since it

serves to shed light on some practical modelling problems, - such as

those arising from our still largely unpredictable weather, whilst

also restricting the complexity of the mathematics.

S
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4.6 Conclusion

The application to the modelling of fire-spread is not best

characterized by recourse to asymptotic results derived for sequences

with clearly definable dependence and distributional features. The

dependence in the fire-modelling problem arises because, in general,

a number of paths from an ignition volume to the target will have

some barriers in common, and whilst there may, in some cases, be a

relationship between, for example, path length and the number of

common barriers, there is little to suggest precisely what form that

relationship takes. During the course of the research, several

computer programs were written to investigate, using simulation

techniques, whether rn-dependence or other restricted-dependence

constructs were appropriate to the fire-spread modeffing problem

discussed here, but these provided no clear indication that the

relationship demonstrates any fixed dependence structure. The best

that can be done, short of developing a non-asymptotic theory of the

extremes of non-independent and not identically distributed random

variables, is to apply the standard theory and to be aware of its

limitations. In probabilistic risk assessments it is common

engineering practice to regard numerical calculations as providing a

good estimation rather than a precise figure. This is often

interpreted as meaning 'within an order of magnitude'. With the

current fire-resistance classification system, there can be little

doubt that any small inaccuracies arising from the statistical

modelling are negligible compared with the inaccuracies implicit in

fire-resistance specifications. Thus, from the fire-safety

engineering point of view, the method proposed here is entirely

satisfactory.
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CHAPTER 5

Optimization of Segregated Structure Design

- Time-independent Models

But to us, probability is the very guide of life.

Bishop Joseph Butler

5.1 Introduction

In this chapter consideration is given to a somewhat different

problem, - that of fitting fire barriers to an otherwise complete

structure. For the purposes of this discussion, each fire barrier is

considered to have been assigned a single-value breach probabifity

rather than a breach-time distribution.

Suppose that the layout of a proposed building has been decided

upon, and that the likely contents of each volume are known. Then,

each volume may be assigned a realistic (conditional) ignition

probability, any 'target' volumes may be identified, and questions

only remain as to the types of barrier to be used. Specifically, this

may be thought of as a question concerning the type of door to be

fitted to each doorway since, in the absence of a glazing forming a

partition between two volumes, a door is likely to constitute the

most readily penetrable part of a barrier. The question may then be

posed: how may a door be selected for each doorway so that the

probability of any fire in the building reaching the target is

minimized, and so that the budget available for expenditure on doors

is not exceeded?

a
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5.2 Simple Linear Structures

Initially, the special case of a straightforward linear structure is

considered as this provides an understanding of the building blocks

of some larger, non-linear structures. A simple example as given in

Figure 5.1 serves as an illustration.

Tar get	 Volume	 Volume	 Vo lume	 Vo lume
Volume	 4	 3	 2	 1

P4	 P3	 P2	 P1

Figure 5.1 A five-volume linear chain structure with a target at
one end.

The conditional ignition probability, P, for each volume, i, is

known, as is the budget which limits the total spending on doors.

The optimization problem is expressed as:

For each pair of adjacent volumes fit a door so that:

Pr{a fire which has started in the building reaches the target)

is minimized subject to the cost constraint:

Total cost of doors	 Budget.

In practice a limited range of doors will be available, the

doors being classified initially according to cost and breach

probability, but in the event of a cost/probability relationship

being available only one parameter need be specified.

S
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5.2.1 Models f Barrier's cost/breach probability Relationship

It seems that a reasonable relationship between the cost, c. and

breach probability, p of any fire door, j, ought to satisfy the

criteria outlined below:-

1) p. may be expressed as a function of C • : that is p=f(c);

2) f is monotonically decreasing;

3) p.- 0 as c-*	 ;
4) c=0	 p=l.

From the infinite number of parametric functions which satisfy these

criteria, two one-parameter functions are selected as being

appropriate to the present application.

Model 1: Exponential Function:	 p= exp(-kc.),	 k>0

Model 2: Inverse Function: 	 p . -
	a	 a>0

c.+a
J

These Models can be justified on the following grounds.

Supposing that for a particular material, a solid door of

thickness d has P.=Pd' and C=Cd what values of cost and breach

probability (c2 d and r'2 d 
might be expected for a door of thickness

2d? Neglecting accessories and fitting costs, it seems reasonable to

expect that c2d :2Cd (or perhaps C2d is slightly less than 2c4to allow

for 'bulk order' reductions!) since twice as much material will be

required. If the new, thick door be regarded as two independent,

immediately adjacent thin doors, 2d = PdxPd. Thus in general. for a

door of thickness nd, 
d =' and, letting p.= e k> 0, Model 1

arises.
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It is, however, rather simplistic to treat one door of thickness

2d as equivalent to two independent doors each of thickness d. It is

clear that once a fire has burned a depth d through the door it wifi

already have impinged on the remaining half of the door, thus

violating any independence assumption. This suggests that perhaps

2d > p , so that p provides a lower bound for p24 . and as the

following argument indicates, an upper bound for p24 is perhaps
p

provided by -

Writing p24 as	
b' 

where p is the probability that fire

breaches the 'first half' of the door - in other words that it

penetrates to a depth d, and considering the suggested upper bound

for p, it follows that

p
p p ^	 , but p = p, so this expression simplifies to
ab	 2	 a	 d

which does support the hypothesis that 	 does indeed provide

a (conservative) upper bound for p24.

Since it is usual in practice for values of p 4 to lie in the range
10.2	

Pd	 10', it is not unreasonable to impose the constraint

and then p24 may be said to lie in the range

2
pp ^—.

p
Taking P = — suggests that for any particular door, j,

pi 
=

This may be modified slightly to:
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= a ,a>O
'	 c+a

so that condition (4) is satisfied and Model 2 arises.

Both the exponential function and the inverse function will be

considered, and it is expected that in practice a function which

assigns p. somewhere between the values provided by these methods

might be applicable. Maskell and Baldwin (1972) considers the

relationship between the fire resistance of a steel or concrete

column and the cost of its construction. A relationship of the form:

Cost = A + BR

where A, B are positive constants and R is fire resistance,

is found for columns whose fire resistance exceeds 30 minutes.

5.2.2 Application f Model .1	 Simple Structures

Throughout Section 5.2, the simplifying assumption is made that an

infinite variety of doors is available. Figure 5.2 shows a linear

structure with a target volume at one end and conditional ignition

probabilities P1 , P2 and The problem is to fit two doors, one

between volumes 1 and 2, and the other between volume 2 and the

target, so that the probability of any fire reaching the target is

minimized. The breach probabilities and costs of the two doors are

denoted by p 1 , p2 and c 1 , c2 respectively. The total budget available

isC.

Target	 volume	 volume

Volume	 2	 1

P2	 P1

Figure 5.2 A linear structure with a target at one end.
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Model .1

Exponential Function: 	 p = exp(-kc).

For the simple structure of Figure 5.2,

let	 =

Pr{fire reaches the target I ignition somewhere in the structure}, so

= PT+P2p2+P1p1p2

= PT+P2e2 + P1e12,

and, since an infinite variety of doors is available and there is

nothing to be gained by not spending all the available budget,

= PT+P2e2 + P1e

and

= -kP2e2

Thus	 <0 so that	 is minimized by setting c2 to be as large as

possible. Thus c2 = C = total budget available, and c1=O.

In the light of the knowledge that the derivation of the Model 1

follows from the premise that it is total door thickness which is

important, the result obtained above is not surprising.

The structure shown in Figure 5.3 is similar to that of Figure

5.2, but has n+ 1 volumes.

barrier	 barrier
	

barrier	 barrier
n	 n-i
	 2	 1

I Ta r g e t Vo 1 ume	 Vu 1 ume I Vu 1 ume I Vu 1
Volume I	 a	 I	 .............I	 3	 I	 2	 I	 1

I	
P3	

1

Figure 5.3 A general linear structure with a target at one end.
e
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For the larger structure in Figure 5.3, it is clear that if fire

starts in volume 1, it does not matter whether material be devoted to

barrier I or 2 or 3 or ... , since it will be equally effective as a

barrier to fire starting in volume 1 regardless of its location.

Similarly, for a fire starting in volume i it does not matter whether

cost be devoted to door i or i +1 or ... . Following this reasoning,

it is clear that it is optimal to put all available resources towards

a very solid door adjacent to the target.

Thus Model 1 represents one 'extreme' model in that the optimal

solution is dependent on no information other than the total budget

available and the costs of individual doors.

5.2.3 Application f Model	 Simple Structures

Inverse Function:	 p. = a	 , a >0
c.+a

3

With this relationship established it is possible to solve the

minimization problem defined in section 5.2 above.

Let g. = Pr{fire reaches volume i} so that

= Pr{flre reaches target)

= Pr{ignition in target or ign. in vol 4 and barrier 4 breached)

and

g4 = Pr{flre reaches volume 4) =

= Pr{ignition in vol 4 or ign. in vol 3 and bather 3 breached)

etc.

The probability of fire reaching the target is then

= P+g4p4
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= P+p4(P4+g3p3)

= PT+p4(P4 +p 3 (P3 +g2p2))

= P+p4(P4+p3(P3+p2(P2+g1P1)))
	

(5.1)

and the problem is

	

MIN	 = PT+p4(P4+p3(P3+p2(P2+Plpl)))	 (5.2)

	subject to	 c 1 +c2 +c3 +c4 ^ Budget

The above formulation implicitly assigns a probability of zero

to the event of fire spontaneously breaking out in more than one

volume during the course of an event involving the spread of fire. If

the assumption were not made, the nlinimi7ation problem would be as

follows:-

MIN4i=g

= P+g4p4 Pg4p4 - P+g4p4(l-P)

= PT+(lPT)p4(P4 +g3p3(1-P4))

=	 +	 + (1-P4)p3 (P3 + (g2p2(1-P3))))

=	 +	 (P4 + (1-P4)p 3 (P3 + (1-P3)p2 (P2 +g 1p 1 (1-P2))))

= PT+	 +(1-P4)p3(P3 +(1-P 3)p2 (P2 +P1p1(1-P2))))	 (5.3)

subject to the constraint c 1 +c2 +c3 +c4 Budget.

The objective function is of the same form as in (5.2) but with

modified coefficients of p.. Consequently, the following development

for the solution of (5.2) is also applicable in this case. The reason

that (5.2) is preferred to (5.3), apart from its relative simplicity,

is that in practice the ignition frequencies are so smafl (of the

order of 1O) that the probability of ignition in more than one

volume may be considered negligible.	
e
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Returning to consideration of equation (5.2), application of

Lagrange's method of undetermined multipliers (see for example Walsh

(1975)) leads to the Lagrangian function, where p is the multiplier

and K1=c1+c2+c3+c4.

L = T +p4 (P4 +p3 (P 3 +p2 (P2 +P 1 p 1 ))) - p(K1-c1-c2-c3-c4)

= P+p4 (P4 +p3 (P3 +p2 (P2 +P 1 p 1 ))) - iu[K 1_(- a)-(- a)-(- a)-(- a)]

a a a= P+p4(P4 +p3(P3 +p2(P2 +P1p1))) - p K2- 
1 - 2 p3 p4]

where K2 = K1 + 4a

and finally,

L = P +p (P +p3(P3 +p2(P2 +P 1p1))) - A IK - A - .1 - A - 1 1

L	 P 1 p2 p3 p4 JT 44

K
where K = a and A = pa.

Taking partial derivatives and setting them equal to zero yields

= P 1 p2p 3 p4 -	 = 0
p

= P 1 p 1 p 3p4 + P2p3p4
p2

= P 1 p 1 p2p4 + P2p2p4 + P3p4- 2 = 0
p3

= P 1 p 1p2p3 + P2p2p + P p + P -	 = 0,

	

3	 33	 4	 2
p4

and solving each of the above for A,

A = P1pp2p3p4

A = P 1 p 1pp3 p4 + P2pp3p4

A = P 1 p 1 p2pp4 + P2p2pp4 + P3pp4

A = P 1 p 1 p2p 3p + P2p2p3p+ P 3 p3p + P4p.

aL

ÔL

ÔL
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From these it follows that for optimality

1 2 3 4A	 P 1pp2p3p4 = P 1 p p2p p + P

P 1p = P 1 p 1p2 + P2p2

P 1 p	 p2(P1p1+ F2)

P1p
p2 =

	

	 (5.4)
P 1 p 1 + P2

Similarly,

Pp

- Pp+ P 1 P 2p+ P 1 P3p 1 + P2P3

Pp

D

where D = Pp+ PP2p+ PP3p+ (PP2+ P2P P )p4+ 2P2P P p3123 1	 1241

+ (PP3P4 + P1PP4)p+ 2P 1 P2P3P4p + P2P P1	 234

The corresponding results for p 2 and p3 in terms of C1 are

a2 p

2 = a2(P 1 +P2) + ac1(P1+2P2)+cP2

a 4 P

= d

where d =a4(P1P 3 +P 1 P2 +P 3P2 +P) + a3 c1(3P1P 3 +2P 1 P2+4P2P3+P) +

a2c(3P1P3 +P 1 P2+6P2P3+P) + ac(P 1P3 +4P2P3) + cP2P3.

The expression for p4 is • similar to those given for p2 and p3, but

(5.5)

S
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involves considerably more terms (53 in the denominator) and in

consequence is informative as an indicator of the rapid increase in

analytic complexity which follows an increase in the size of a linear

structure.

For structures with a large number of volumes, the evaluation of

expressions like those above will clearly be time consuming and

computationally inefficient. More efficient, recursive forms of these

expressions are derived below, and it is these which are used in the

computer program to be introduced in sub-section 5.2.5.

From equation (5.4) it can be seen that, for any two adjacent

volumes i, j+ 1 (with volume i+ 1 nearer to the target),

gp
pi+1 =

	

	 (5.6)
gp+Pii	 1+1

where, as before,	 Pr{there is a fire in vol.k}.

Thus, When i= 1, i+ 1=2, and g 1 = P 1 equation (5.6) simplifies to

equation (5.4).

When i2,

- g2p
p3 -

g2p2 + l

Pp2
11where g2 = p11 P2 and 

p2 = P 1 p 1 + P2

so that,
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(P1P1+P2)[

	

	 1L12
1 1 + p2j

p3=
I Pp	

] + P 3(P1p1+	 2)I	
1

LP 1 p 1 + P2

Pp

=	 P1p1+ P2

P 1 p + P3

Pp41
= (P 1p + P3 )(P 1 p + P)1	 2

and finally, -

Pp

= Pp+ P 1 P 2 p+ P1P3p1+	
as in equation (5.5).

p4 may be treated similarly.

Thus the optimal quality of door required for each doorway may be

identified once the quality of door for the doorway next furthest

from the target has been identified.

S
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5.2.4 Two Important Theorems

Theorem 5.1 introduces a swapping rule applicable to structures of

the type presented in this section.

Theorem 5.1:

For a given linear structure with doors already in place, if i <k (so

that door I is further from the target than door k) and p1 <pk; the

configuration of doors is sub-optimal and an improvement may be made

by swapping the two doors, one for the other.

Proof:

Equation (5.6) states that for two adjacent doors i, i+ 1, with door

i+ 1 nearer the target,

I	 g1p1
p1+1 = Pi[ g.p

1 + P1^1

where	 p. is the breach probability associated with door j
P. is the ignition probability associated with volume j

and g. = Pr{there is a fire in volume j}.

As gp1	 g.p.+P11 , it is clear that

This demonstrates the monotonicity property of these particular

linear structures as stated in the theorem, in that at optimality

each door breach probability is less than (or equal to) that of any

door further from the target.
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It is essential to establish that the local stationary solution

found using the above method is also a global optimum. A sufficient

condition, provided that the solution is at an interior point of the

feasible region, is that the function P is a convex function of

c 1 , c2, ..., C over the convex region c ^ 0, C2 ^ 0, ..., C ^ 0; C 1 + c2 +

+c^ C. The proof of Theorem 5.2 establishes this condition.

Theorem 5.2:

Consider again the general linear structure of Figure 5.3, reproduced

as Figure 5.4 below, and let

= Pr{fire reaches the target volume}

=Pp+P pp +P pp p2+...+P1p1p2...p
nn	 n-i nn-1	 n-2nn-i

=P+P v/i	 +P v/i	 +...+P
n n	 n-i n-i	 n-2 2	 i I

where 
= P 1 P 1 + 1 • PD	 li^n,

then P is a convex function of the costs, C..

barrier	 barrier
	 barrier	 barrier

n	 n-i
	

2	 1

Ta r g e t Vu 1 ume	 Vu 1 ume Va 1 umo Vo 1 ume

Volume	 n	 3	 2

i'D	 l'3	 P2

Figure 5.4
	

A general linear structure with n+ 1 volumes.

Proof:

As the sum of a set of convex functions is itself a convex function,

and as a positive multiple of a convex function is a convex

function, the convexity of	 may be established by proving that the

general term	 is convex.
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Substituting p =	 a	 into	 gives
a

rail	 a.l r 	a	 1	 Ia	 1

	

= [c^a' 1 c + a I c + a I	 Ic + a I 
li^n

J L'	 J	 J	 L	 J

= a' +1)

ll 1 (c. +a)

The convexity of each çS may be proven by demonstrating that all the

principal determinants of the Hessian H. of , are non-negative.

(See for example Walsh (1975).)

The Hessian of is

ô2

ôc

.a2

8c	 ac1+1

ôc ôcn

a2 j

ôc ôci	 i+1

a2i

ac2
i +1

a2i

ôc ôc
U	 i+1

a2i
• .

	 öc.ôc
1	 fl

a2
• • •

	 ac	 ôc
i+1 n

8c2

2a" - i+1)

Where	 =
8c 2	Ij-1	

a)J11 (c +	 (c +a ) I	 (c +a)}
k	 j	 [k—j+1 k
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a2
and	 =

ôc	

- (c1 + 
a)I	

r m- 1	 1	 1	 1
IT	 (c+a)2I	 (C +a) I (c +a)2 	' (c +a)I

i	 L-i1 k	 J m	 Lkm+l k	 j

(with the condition that all products whose ranges are empty evaluate

to unity).

____ - 2
Alternatively,

ac 2 - (c. +a)2

o2i- 
____________and	 - ____________

ôc ôc	 (c +a)(c +a)
in	 j	 in

where j=i, i+1,..., n.

Thus the rth principal determinant of the Hessian of . may be

written as

(c 1 +a)2 (c+a)(c.1 +a) (c+a)(c	 +a)
i+r-1

PD(i) =
(c +a)(c +a)

i+1 (c ^1+a)2 (c^ 1 +a)(c	 +a)
i+r-1

2.

(c1^1 +a)(c.+a) (c11 +a)(c.+1 +a)
	

(c+1 + a)2

r=l, 2,..., n-i+1.

Extracting the factor	 I(c.	 a) from each row p. 1 ^ p ^ r and the

factor (c1+ ..i+ a) from each column q, 1 ^ q ^ r gives
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PD(i) = i+r-1

11 1(c +a)2

2111... 1
1211...1
1121...1

1111.. .2

=	 Di+r-1	 r
1l(c.+a)2

Subtracting row 1 from each of rows 2, 3, ..., r of D:

2111...1
-1 1 0 0 . . . 0

	

D	 = -101O...0

	

r	 . .
-i Ô Ô 6 . . i 6
-1 000 . . . 1

and expanding by the bottom (rth) row:

-1	 111...1
100.. .0

Dr	 = (-1 -1	 0 1 0 . . . 0	 + (1)r1

666.106
000.010

2111... 1
-11 0 0 . . . 0
-191 0 . . . 0

-i 6 6 6 . . 1 Ô
-1000. .01

For each minor subtract each of rows 2, 3, ..., r-1 in turn from row

1 to get

1

+ (_1)r1Dr = (1)r1 -1

0000.. .1
1100.. .0
0010.. .0

0000. ioo
0000.010

r000...0
-1100.. .0
-iOiO...O

-i000. .16
-1000. .01

and writing the mni identity matrix as I:

	

D	 = (1)r1 [ (1)r -1	 + (- 1) -' r I	

]

	

r	 r-1I
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= ()T4 [ (1)r ' [1 +r]]

= 1+r.

So, PD(i) =
(r+1)

i+r-1

• fl (c .+a)2
i- i	J

a(n_i+l	
r

n	 (r+1)

ji 
( c1 +a)

i+r-1

.11(c .

[a ( ni+1)] (r+1)

-	 r

• 11 1 (c. +a)

Finally,

PDr() =
[ 
a'1

I (c +a) 2	(c +a)r]
1i+r-1	

I 

I n

LJ- i	 Lj-i+r	 j

This is always non-negative as a> 0 and c. ^ 0 for all i.

e
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Thus every principal determinant of the Hessian of each qS is

non-negative, implying that each function . is convex and the

desired result

4) =	 is a convex function
i-i

is proven.

Figure 5.5 overleaf illustrates the relationship between the

theoretical optimum breach probabilities of the five adjacent doors

in a six-volume linear structure for the Inverse Model (Model 2) with

a= I and identical ignition probabilities. The values on the

horizontal axis denote possible values for p 1 , the failure

probability of the door fitted furthest from the target volume,

whilst the plotted curves depict the corresponding failure

probabifities for the four doors fitted nearer to the target. These

probabilities were calculated using equation 5.6 in sub-section

5.2.3. The curve lying closest to the horizontal axis shows the

optimal values for p5 , the breach probability of the door bounding

the target volume. The graph demonstrates clearly the dramatic

increase in quality from one door to the next demanded by the

theoretical solution.
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It should be noted that the monotonicity property holds even

when the ignition frequencies are chosen so that the relative

frequencies for volumes furthest from the target are considerably

larger than those nearer the target. This result is apparent from the

algebra, but the numerical results are interesting in that they

illustrate how the available funds are drawn away from the critical

door and distributed slightly more evenly.

This decrease in probability, or increase in cost, is

demonstrated numerically in the results of the Basic program which

are summarized in Table 5.1 below. The results are derived from

analysis of a six-volume structure with a target volume at one end,

such as that depicted in Figure 5.4. Three cases are cited, Case A in

which the ignition probabilities are equal, Case B in which the

ignition probabilities increase with increasing distance from the

target in the ratio 1:2:3:4:5:6 and Case C in which they increase

similarly in the ratio 1:5:25:125:625:3125. In each case the

parameter a= 1 and the total budget available is 1000 units. They

immediately show that however large the budget, most of it should be

spent on the provision of a relatively excellent critical door

between the target and its adjacent volume, and that a weighting of

the ignition probabilities does not lead to a completely different

pattern in the results.
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Barrier no.	 Cost

Case A 1	 0.2206
2	 1.7104
3	 5.7482
4	 32.9965
5

	

	 959.3457
Total cost:l000.0214

Case
	

1
	

0.5063
2
	

2.3971
3
	

7.5358
4
	

40.4332
5

	

	
949.1264

Total cost: 999.9988

Case
	

1
	

4.2468
2
	

9.7525
3
	

21.5924
4
	

75 .0913
5

	

	
889.2496

Total cost: 999.9326

	

Fail prob	 Pr{reaches volume)

	

0.8193	 0.1667

	

0.3690	 0.3032

	

0. 1482	 0.2785

	

0.0294	 0.2079

	

0.0010	 0. 1727

	

Pr{reach target):	 0.1668

	

0.6639	 0.2857

	

0.2944	 0.4270

	

0.1172	 0.3164

	

0.0241	 0. 1799

	

0.0011	 0.0996
Pr{reach target): 0.0477

	

0.1906	 0.8001

	

0.0930	 0.3 125

	

0.0443	 0.0611

	

0.0131	 0.0091

	

0.0011	 0.0014

	

Pr{reach target}:	 0.0003

Table 5.1 Optimal door breach probabilities and costs.

5.3 Linear Structures with a Limited Range of Doors

In reality, of course, only a few different types of door will be

available, and there is certainly a limit on the best door which is

available at any time. The theoretical solution discussed above is

useful in that it provides a lower bound on the probability of fire

reaching the target, but it does not in general provide a very tight

bound because the solution allows an infinite variety of doors,

including unrealistically fire-resistant ones. A much improved bound

is provided by evaluating the theoretical optimum with the additional

constraint that the 'best' door which may be fitted is restricted to

a realistic value. This is done by the addition to the program of a

simple loop feature which causes any door whose optimal cost is

greater than the maximum allowed to be replaced by a 'best' door, and

the solution to the whole optimization problem is re-evaluated in the
	 a
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light of that allocation. The theoretical optimal solution then still

allows an infinite variety of doors, but within a reasonable price

limitation. A discrepancy between the theoretical optimum and that

obtainable in practice still exists, and arises from the tremendous

flexibility provided by the infinite selection of doors from which

the theoretical solution may make its choice.

5.3.1 Methods jf Solution with Limited Range if Doors

The optimal solution in a real-life situation is dependent upon the

kinds of door which are available. The optimization problem is as

detailed in section 5.1, with the additional constraint that only

certain specific door types may be fitted to each doorway. Thus the

optimization is now over a finite set of discrete values. It is well

known that an optimal solution to the discrete problem may not simply

be derived from a solution to a corresponding continuous optimization

problem (see for example Taha (1987)) by perhaps choosing for each

doorway that door whose characteristics most closely resembled those

of the door required by the optimal solution in the continuous case.

In general, the discrete optimization problem may be solved

using either the Branch and Bound technique (see, for example,

Boffey(1982)), or complete enumeration, and it is the latter which is

used in the computer programs developed for this work. Thus the

discrete optimization in the examples that follow was carried out by

evaluating all possible combinations of different doors in doorways,

subject to the budget constraint, and selecting that permutation

which yielded the smallest probability of fire reaching the target.

It seems sensible always to allow for the possibility that no

door be fitted, - this is equivalent to fitting a door with unit

118



breach probability and zero cost. Other realistic failure

probabilities are available from various sources including the Safety

and Reliability Directorate of the U.K. Atomic Energy Authority.

5.3.2 Application of the two models

Model .1

Under the assumptions of the Exponential model, the addition of the

'best available door' constraint, and indeed the limited range of

doors constraint, simply lead to the modification of the original

solution so that the probability of fire reaching the target is

minimized by carrying out the following given in Algorithm 5.1.

Algorithm 5.21

1) Start at barrier n (adjacent to target)

2) Fit the best door which available resources allow

3) Move on to consideration of the next barrier

4) Repeat steps (2) & (3) until either

a) total expenditure = budget constraint

or	 b) all barriers have been considered

5) Stop.

Model Z

Solutions to the optimization problem were explored using Basic

computer code on a BBC computer. The results from running the Basic

program show the theoretical solution both with and without the 'best

door' constraint, and also display optimal policy when the types of

available door are known and specified. The first few runs of the

program were used to determine which of the variables (number of
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doors to fit, number and types of available door, budget, and

relative ignition frequencies) have a significant bearing on the

result of the minimization problem, and at which values of the

remaining variables these effects are important. It is clear from the

analytic work earlier in the chapter that a substantial portion of

the budget is best devoted to the door immediately adjacent to the

target volume, and that very little is available to those doors which

are some four or five volumes distant from the target. This result is

well illustrated by numerical example. When the 'best door'

constraint is active, there is a value of the budget for which no

improvement may be made regardless of any extra resources made

available. This situation arises since, if there are n doors to be

fitted, and the best door available costs x units, a budget in excess

of nx units will confer no advantage over a budget of exactly nx

units as this amount is sufficient to furnish the structure with the

best available doors. Thus the best measure of available budget is

not the absolute amount available, but the proportion of the amount

which would be required to fit top-price doors in all possible

locations in the structure.

Figure 5.6 below shows graphically the results of fitting five

doors to a six-volume linear structure such as that of Figure 5.4.

The value of the parameter a is again taken to be unity, and the

ignition probability is identical for each volume. The graph shows

the effect, on the probability of fire reaching the target, of

varying the budget available from 10% to 100% of that necessary to

fit all best doors to the structure (the 'limiting budget'). The

bottom curve shows the case where there is no restriction at all on

the types of door available whilst the middle curve represents the
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case in which the best-available door constraint is active and the

top curve represents the case in which the types of available door

are specified. For this example, it was considered that six different

types of door were available, with costs 0, 1, 3, 6, 10 and 15 units.

These Costs correspond respectively to the following breach

probabilities: 1, 0.5, 0.25 ,0.1429, 0.0909 and 0.0625.

The results illustrated are typical of those realized when other

parameters are chosen. The two particular features to note are

perhaps first, spending more than about 40% of the limiting budget is

not justifiable in terms of reduced risk; and second, imposition of

the best-door constraint has a negligible effect wbet the

allocation is a small percentage of the limiting budget.
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The effects of varying the ignition probabilities (so that there

is an increased relative risk of ignition in volumes further from the

target) in the two constrained door-types cases are similar to those

shown in Table 5.1 above for the unconstrained case. The pattern of

resources being drawn away from the doors nearer to the target volume

to those further away is repeated, but is less marked. If there are

but few different types of door available, it is likely that, except

in cases of extreme difference in ignition probability, no

differences will be observed. It should be noted that if the ignition

probabilities tend to be larger in volumes nearer the target, the

optimal solution requires that even greater resources be devoted to

the doors nearer the target volume.

The choice of door costs/breach probabilities for these examples

has been subjective, but the selection chosen does facilitate an

understanding of the relationships involved and the patterns which

emerge from this model.

5.4 More Complex Linear Structures

In the previous sections, a very simple linear structure with a

target volume at one end was considered. A natural extension of this

basic work is the study of a similar linear chain, but with the

target volume in such a position that fire may approach from both

left and right. Such a structure is shown in Figure 5.7. The

assumption that a door has a constant breach probability, regardless

of the side from which it is threatened, is made throughout this

section.
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P	 P	 P	 P1	 r	 a	 2

Figure 5.7 A linear chain with a single interior target volume.

5.4.1 Application f Model 1

p= exp(-kc 1 )	 c- 4 In(p1)

It follows from the symmetry of the structure that each side, left

and right, may be treated individually as a structure having a target

volume at • one end. The implication of the results from above - is that

the optimal solution is to allocate all the resources available to

the left hand side to the door between volume r and the target, and

all the resources available to the right hand side to the door

between volume s and the target.

This may be verified using the Lagrangian function in the usual way.

= P 1	+ P3	+	 + P P+ ... + P4 p1 + P2 flp.

	

i — i	 i-3	 1-4	 i=2

	

I odd	 i odd	 I even	 i even

r	 a

L =	 P. P1 +	 +	 k111i —	 +

j 1	 i—i	 k-2
j odd I odd.
	

k even 1 even

where n=total number of non-target volumes.

124



Differentiating gives the following set of equations;

= Pp3 
••• r kp1

= P2p4 ...	
kp

= Pp 1 p5 •.. P+ P3p5 
"• r

= P2p2p6 ... p+ P4p6 ... p -

P2

Setting these derivatives equal to zero and solving for 	 gives, for

the general odd number, u, (1 ^u^r),

U

[

PjjjPi] 
Pu

j-1	 I odd
j odd	 i*u

U

=	 :ii
	

(5.7)

J-i	 I odd
j odd

and for the general even number, v, (2sv^ s),

=	
PjijPi	 (5.8)

j-2	 I even
j even

The results for each side are equivalent to those derived in the

single-sided case, with the additional equation which is formed by
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letting u and v in equations (5.7) and (5.8) take the values r and s

respectively.

Thus

t

Pjijpi

j-i	 I odd
j odd

I

Pjijpi.

j-2	 I even
j even

(5.9)

The optimal solution requires that p =1 for all doors i; i * r, I * s, so

that p1 =p3 =... p 2 = p2 =p4 =... p 2 = 1 may be substituted into

equation (5.9) which then simplifies to

j-1	 j-2
j odd	 j even

rP2 +P4 + ... + PI1
and 'r = 1 

[p1+ 3 + ••• + Pi
(5.10)

and the ratio of p to PS depends upon the total ignition probability

on each side.

This relationship may be expressed in terms of the costs, Cr and

c, and the budget. As p.= exp(-kc), it follows from equation (5.10)

that

[
Pj ]P(kC) = [
	

Pi

i_i	 j-2
j odd	 j
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kc =kc{1n[	
-[	 ]}	

(5.11)

j-2	 j-1
j even	 j odd

and from equation (5.11) and the budget constraint c+c=Budget;

2c - { in[	 p.] - ln[	 pj] } = Budget
j-2	 j-1

j even	 I odd

I	 r

c=	 +— In
Budget	

1 { [	 ] -	 [	 ] }Li2	 2k
j-2	 j-1

j even	 j odd

3	 r

C = _____ --
Budget	

1 { [	 ] -	 [ : i 	 I }•	
(5.12)

2	 2k

j even	 j odd

The above solution is based on the assumption that an infinite

variety of doors is available. In practice, when a limited set of

doors is available, this problem may be solved using either complete

enumeration or branch and bound techniques. Use could also be made of

Algorithm 5.2 given at the end of the following sub-section. The

difficulty arises because the precise relative allocation of the

budget to each side of the structure may not be feasible with a

particular set of doors.
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5.4.2 Application f Model

Initially consider a smaller structure as ifiustrated in Figure 5.8.

barrier	 barrier	 barrier	 barrier
1	 3	 4	 2

Volume Volume Target Volume Volumel
1	 3	 Volume	 4	 2
P 1	 P3	

'T	 P4	 P2

Figure 5.8 A five-volume structure with a centrally located target.

In this case the Lagrangian function is

AK 1	 1 1 1 1
L = PT+P1P1P3+P3P3+P2P2P4+P4P4 - [ -

	 - p2 p3 p4j•

Notice that the Lagrangian is separable, and so the results on each

side of the target are equivalent to those of the single-sided case.

Taking partial derivatives and setting them equal to zero yields

= Pp -2O
1	

13	 p1

= Pp
2	

24 p2

= P 1 p 1 + P3 -	 = 0

= P2p2 + P4- 2 = 0,

and solving each of the above for A

A = P1pp3

A = P2pp4

A = P 1p 1 p + P3p

A = P2p2p + P p244
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and, as for the single-sided problem

P1p
p3=

P 1 p 1 + P3

and

P2 p
p4=

P2p + P2	 4

(5.13)

(5.14)

There is of course a third identity, namely

P 1pp3 = P2pp4

(since A = P 1pp3 = P2pp4)

and so

P1p

	

[P1p	

]
P 1 p 1 + P3

2

P2p2+ P4]•
= P21)2[ P2p2

(5.15)

In the event of the ignition frequencies being identical, equation

(5.15) simplifies to

p= ____

p+1	 p+1
1	 2

(5.16)

Solving for p1 yields two complex roots and two identical real roots

which are p1 = p2.

A solution to the more general problem may be found using

Algorithm 5.2.
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Algorithm 5i

1) Allocate a proportion, CL of the total budget to the left hand

side of the structure, and the remaining CCL to the right hand

side,

2) Solve each single-sided problem,

3) Repeat for a range of values of CL,

4) Plot the final values of 4) and interpolate as necessary to find

the minimum.

5.5 A Constrained Linear Structure with Two Target Volumes

A logical development of the previous work is the consideration of a

linear structure which has two target volumes, an example of which is

shown in Figure 5.9.

barrier	 barrier	 barrier	 barrier	 barrier
1	 3	 5	 4	 2

target Volume volume	 Volume Volumo target
vo 1 ume	 1	 3	 . . .	 4	 2	 vo 1 ume

T 1	 P1	 P3	 P4	 P2	 T2

Figure 5.9 A general two-target, n-volume structure.

It is now important to restate explicitly an assumption implied

by the concept of a relationship between a door's cost and its breach

probability. The existence of such a relationship means that each

door can have only one breach probability, as mentioned at the

beginning of this Chapter. The single breach probability does not

allow a door to display different characteristics when threatened by

a fire on one side from those displayed when threatened by a fire on

the other. This feature has been of no conseciuence in the

single-target structures considered heretofore, but now that there

are two target volumes, this restriction does have an effect.
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5I54 Application f Model 1

-1
p1 = exp(-kc)	 c 1 - - ln(p)

Using the same reasoning as employed previously, it follows that for

a fire starting in volume 1, any resources devoted to door 3 may be

equally well devoted to door 2; for a fire starting in volume 3,

resources devoted to door 3 may be equally well devoted to door 1,

and resources devoted to door 5 may equally be devoted to door 2; and

so on for the whole structure. Thus the probability of fire reaching

either of the two targets, given that it starts somewhere in the

structure, is minimized by setting p=l for all 1*1, i*2, and

allocating all the available resources to the provision of doors 1

and 2.

In this case, the probability of fire threatening door 1, given

that it breaks out in any of the volumes 1, 2, 3, ... , n is equal to

the probability of fire threatening door 2, given that it breaks out

in any of the volumes 1, 2, 3, ... , n.

This probability is

n

F =VP.
m	 i

i-i

Thus the question of the relative allocation of resources to doors

1 and 2 is settled as

Fp 1 = Fp2

so that the result

p1 = p2
	 (5.17)
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is obtained and resources are divided equally between the two

doors which bound the target volumes.

This result may be confirmed by the setting-up and solving of

the Lagrangian in the usual way. As an example, classical methodology

is used to find a solution in the case of the structure of

Figure 5.10.

barrier	 barrier	 barrier	 barrier

	

1	 3	 4	 2

target Volume volume Volume target

	

volume	 1	 3	 2	 volume

T 1	P1	 P3	 P2	 T2

Figure 5.10 A two-target, five-volume structure.

Minimize = P, 1 + P+ P 1 p 1 + P 1 p3p4p2 + P2p2 + P2pp3p 1 + P3p3p 1 + P3p4p2

subject to c 1 + C 2 + c3 + C4 BudgetK, and p. = exp(-kc.).

L = P + P ^ P e + P 1 e.e.e4Ti	 T2	 1

+ P2e+ P2ekcl.ekc3.ekc4

+ P 3e'.e4 + P3e2.e

	

-	 - c 1- c2- c3 - c4).

Partial differentiation with respect to each of the c, setting equal

to zero and solving for A results in the following equalities:

kP 1e + kP2e 1 .e	 + kP3ekd1.Ckc3

= kP 1ee 4 + kP2e' + kP3e2.ek

= kP 1 e 4 + k 2e .e3.e' .1- kP3 e	 e3

= kP 1ee e4 + kP2e Ct e kC3 e C4 kP3
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The solution of these is straightforward and it is readily seen that

= e 1 = 1

and e 1 . =

so that p 3 = p4 = I and c3 = C4 = 0
Ksothat	 C1 =C2 =2

Thus the application of standard methodology confirms the results

obtained using the ad-hoc argument above.

5.5.2 Application if Model Z

Pjca =*c=---a

Consideration is again given to the structure depicted in

Figure 5.10.

The algebraic solution for a structure as simple as that of

Figure 5.10 proves to be rather complex. The Lagrangian may be solved

in the usual way, and quadratic or higher order equatiotl& lna'j be

derived for the various p, but beyond that stage numerical methods

of solution must be employed.

L =	 + 
T2 

+ 
'1 [ 1 + 3r 4r 2] + p2 [2 ^p4p3p1} + p3 [ 3 +p p 11	 42j

[Kt]

After partial differentiation, setting equal to zero and solving for

A, the following set of equations is found

A = p[P1 ^ P3p3 + P2p3p4J A
 = EP + P p + P

2	 34

A = p[P3p 1 + P2p 1 p4 + P1p2p4] A = p[P3p2 + P2p 1 p3 + P1p2p3].
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Such a set of equations may be solved in practice using

multi-dimensional search techniques (see for example Walsh (1975)).

It is worth noting that a 'symmetrical' solution, - in other

words one in which p1 =p2, p3 =p4 , etc. only occurs when the ignition

probabilities are similarly symmetrical.

5.6 A Non-linear Structure with Exponential Cost Function

In the introduction to this Chapter, Model 1 was derived from the

following assumption:

Given that a door costing c units has breach probability p,

a door costing mc units wifi have breach probabifity ptm.

It was shown that the number of spaces, in excess of one (or two),

into which to fit doors is irrelevant since all the available

resources should be devoted to the one (or two) doors bounding the

target volume(s).

It is this property which allows the theory to be extended

readily to the consideration of non-linear structures as long as

those non-linear structures may be decomposed into separate linear

components.

The following structure, shown in Figure 5.11, is fairly common

in practice, the volumes being arranged in a rectangle enclosing an

open space such as a lawn or gardens.

Target
volume

Figure 5.11 A number of volumes arranged in a quadrangle.
e
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This structure is exactly equivalent to a fifteen volume linear chain

which has a target at each end. Furthermore, from the results

obtained above, that chain may be represented as the one in

Figure 5.12 below whose solution is known to be C 1 = C2 = , where K is

the limiting budget.

barrio r	 barrier
1	 2

target	 target
I volume P + P + P + ... + P	 volume
LTi	

1	 2	 3	 13	 T2

Figure 5.12 An equivalent representation of Figure 5.11.

Similarly, a structure such as that in Figure 5.13 is

essentially constructed from two linear chains, the quadrangle

(Chain A) and the spur (Chain B); and is identically equivalent to

the structure shown in Figure 5.14.

	

P5 P6	 P7	 P8	 P9	 ___________________

P4 P10 ______________

P3___________________ P11

	

P	 P	 Targot	 P	 P

	

2	 1	 volume	 13	 12

Figure 5.13 A quadrangle+spur arrangement of volumes, which may
connect via the spur with other similar structures.

e
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barrio r	 barrier
2

barrier 3
I target 

I	
I target

Ivolume P 1 + P2 + P3 +	 . . . + P 13	 P	 volume
T 1	 1T2

Figure 5.14 An equivalent representation of Figure 5.13.

With the non-degenerate doors being those numbered 1, 2 and 3, the

solution to the optimization problem is obtained from consideration

of the Lagrangian.

The relative magnitudes of	 and	 are important and three cases

must be considered, leading to:-

= c2 =	 [K_c3]

Case 1)	 -	

= P [ P1
exp( kc3)	 so that c = -	

-	 .1
3

c 1 =c2 = 	 [K_c3]

Case 2)	
{ exp (-kc3 ) = 1	 so that c3	0

C1 = c =

Case 3) P>Q

exp(-kc3) =

[Kc3]

3	
ln[ Pi

- sothatc =-
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Case 3 is an infeasible solution since if > the logarithm will

be strictly positive which in turn implies that c3 <0. Thus the door 3

above will only be fitted when the sum of the ignition probabilities

in Chain B (the spur) exceeds that of the ignition probabilities in

Chain A (the quadrangle).

5.7 Conclusion

Whilst none of the structures considered in this Chapter is

particularly complex, each has served to illustrate the nature of a

solution to a real problem with unfortunately ill-defined parameters.

It was stated earlier in the Chapter that it is perhaps likely that

any 'true' relationship between a door's cost and its nominal breach

probabifity may lie somewhere between those described by the two

models discussed here. Recommendations based on the work described

here must emphasize the importance of bounding any target volumes

with extremely good doors, generally at the expense of doors further

from the target, since this was shown to be an appropriate course of

action under both models. Such extreme results suggest that for the

consideration of this aspect of the fire-spread modelling problem, it

may be appropriate to revise the assumptions which indicate that any

damage to non-target volumes may be considered negligible. Some

further applications of this work are discussed in Chapter 7.

a
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CHAPTER 6

Optimization of Segregated Structure Design

- Time-dependent Models

Sed fugit interea, fugit inreparabile tempus. 	
Virgil

6.1 IntrOduction

A natural extension of the discussion in the last Chapter is the

formulation of an optimal design strategy which is based not just

upon minimizing the probability of fire reaching a target, but upon

minimizing the probability that the time to arrival at a target is

less than some value, t. In this case breach-time probability

distributions are once again assigned to each of the available

barriers.

The optimization problem is formulated as follows,

For a given value of time-since-ignition, t, fit a barrier to each

pair of adjacent volumes so as to minimize

= Pr{Time to arrival at target <t fire has started)

subject to

Total cost of doors ^ Budget.

6.2 Simple Linear Structures

The now familiar linear structure with a target at one end and

ignition probabilities P., is considered, a five-volume example being

shown in Figure 6.1.
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barrier	 barrier	 barrier	 barrier
4	 3	 2	 1

Ta r g e I Va 1 ume Vo 1 ume Va 1 ume Vo 1 ume
Volume	 4	 3	 2	 1

P4	 P3	 P2	 P1

Figure 6.1 A five-volume linear structure.

It is clearly not sufficient to attempt to specify a relationship

between cost and breach probability, as was done in the last chapter,

because each barrier's breach characteristics are expressed not in

terms of a single probability but in terms of a breach-time

probability distribution. What can be done instead is to establish a

relationship between a barrier's cost, its mean failure time and the

variance of that failure time.

6.2.1 A First Approach

The work presented in earlier chapters of this thesis indicates that

of all candidate continuous breach-time distributions, the Gaussian

distribution is the most convenient. Thus, for the following

discussion, the assumption is made that each door's breach time is

Normally distributed as N(u., 1), and that the p. may take any

positive value. Furthermore, let the relationship between cost and

mean breach time be p.= kC., where k is a positive constant. This

relationship finds support in Maskell and Baldwin (1972).

If the further simplifying assumption of homoscedacity is made,

so that 7S2, for all j, the optimization for the five-volume

structure illustrated above may be expressed as:
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Miii 4(t) =

Pr{Time for a fire to reach target <t it does not start in target} =

t-p2- iu 3/i41[t-p 
1	 -	 _________

P1[2 
+S 2 +s2+s2)0J

it- 4u 3 -P1	 It-u'
+P3I___________I+P4I	 I

L1s2 ^s2) • -i	 L s j

subject to the constraints	 kC., C 1 +C2 +C3 +C4 Budget.	 (6.1)

z

[	

[z] 
= - J	

exp [ - 
2 ] 

dt is the cumulative

distribution function of the N(O, 1) distribution.

The general optimization problem is not easily solved using standard

methodology, so a more ad-hoe approach is first adopted.

Assuming an infinite variety of doors to be available, it

follows that it is possible to select four doors for the structure

shown in Figure 6.1 so that the total cost of the doors is

identically equal to the budget. Any choice of doors which did not

make full use of the available budget would be sub-optimal because

the particular relationship between cost and mean breach-time

necessarily implies that spending more money yields a greater

resistance to the spread of fire.

Thus the budget constraint:

Total cost of doors ^ Budget

may be replaced by:

C 1 +C2 +C3 +C4 = Budget.
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Now, let /4 3 +114= 0, so that (6.1) may be written as

t-p 1 -u 2 - (0)1	 It-p2- (0)1	 It- (0)1	
41	 (6.2)+pI	 I +4	 2S	

j +P[ 
vs j	 [vs .1	 sj

From (6.2) is is clear that, with respect to all the terms save the

last, the partitioning of 0 between	 and	 is arbitrary as far as

the minimization is concerned. It is an examination of the fourth

term which reveals that as 	 is a cdf, and therefore continuous and

strictly monotonically increasing,	 must take as large a value as

possible for optimality to be attained. Thus p4 =O, p= 0-114 =0, and

equation (6.1) simplifies to

	

1t-/s i.4u 2	 1	 /44 
1	 1	

rtp 1
1 

1.	 2S	 ]	 L V3S	 J	 [vs .j 	 L-i1	 (6.3)

Applying a similar argument to that used in the last paragraph,

(/12 +114) is set equal to 0, so that the optimal partitioning of 0

between 2 and	 is dictated by consideration of the last two terms

of (6.3). Reasoning as above leads to the conclusion that, to

minimize (t), 114 = 0 and 2=°• Finally equation (6.1) reduces to

t-/4 -/4	 t-/4	 t-/1	 t-/4

	

p	 1	
+	 + p	 +	 ,	 (6.4)

	

1	 2S	 '2S	 S

from which, proceeding as before yields the result that, at

optimality, p.=O for i= 1, 2, 3 and all available resources are
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devoted to the barrier immediately adjacent to the target volume. As

in Model 1 (the Exponential case) discussed in the last Chapter, this

result holds regardless of the values of the ignition

probabilities. Furthermore, it is clear that, as long as the outlined

assumptions are not violated, the above argument generalizes to a

linear chain of any length.

6.2.2 A Model with More Realistic Assumptions

It should be noted that whilst the homoscedacity premise is

attractive in that it admits a fairly simple introduction to a

complex problem, it is unfortunately of not much use in practice! The

theory which maintains that all doors of a particular design and

material, but of different thickness, have a common variance is

perhaps tenable when the mean burn through times are (i) fairly

similar, and (ii) not close to zero; but under other circumstances

there can be little justification for such a hypothesis.

A less-restrictive and more realistic constraint is provided by

the specification that the coefficient of variation be constant over

all doors. Such a constraint requires that the larger a door's

expected breach time, the larger the variance of that time. It finds

support in the work of Elms and Buchanan (1981). The optimization

problem for the example structure then becomes

Minimize

Pr{Time for a fire to reach target <t it does not start in target) =

(t) =
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1t-P 1 P 2 P 3 P 4 1	 1tP2/43P41

	

P1[2 + 
+a+a)° s]	 +o+a)° .sj+

It- /4 3P4 1+p4It/44P[2	 205]

subject to the constraints	 = K, p. =kC., C. ^ Budget.	 (6.5)

Substituting o=Ku into the objective function gives

It-p	 2 /43 - /4 4 1	 rt_p2_ /43 - /4 4 1
(t) 

=	 +/1)j	 [K(p+p +p) 0.5]

It- /43 - /4 4 1	 p1/L4l .	 (6.6)+pI
KCu 

+p)05]	 Kpj

Let p3 +p4=0, so that all numerators save the last are unaffected by

the partitioning of 0 between /43 and P4• Then p+4u=02-2p3p4.

This in turn implies that the maximum value of p+p occurs at

both of { 
/13 =0, /44=0;

P3 =0 P40•

Thus whilst the denominators do not remain constant regardless of the

partitioning of 0, there is no conflict as the partitioning which

minimizes the critical numerator (t-p4) also maximizes each of the

denominators. Clearly it is P4 rather than P3 which must be set

equal to 0, and the argument then proceeds as before. The conclusion,

as in the homoscedastic case, is that
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(t) = Pr{time for fire to arrive at target ^ t}

is minimized by allocating all available resources to fitting the

best possible barrier immediately adjacent to the target, so that no

barriers are fitted elsewhere.

6.2.3 Application f Standard Methodology

The standard method of solution of an optimization problem of this

type is provided by consideration of an extended Lagrangian function

and the application of the Kuhn-Tucker conditions (see for example

Walsh (1975)). The methodology is here demonstrated for the

homoscedastic case of the example structure illustrated at the start

of the chapter.

Mm qS(t) =

Pr{Time for a fire to reach target <t f it does not start in target} =

It/s 
1'2	

/1 3 /1 4 1	 Itp2	 /13/141
+pI

	

1[(S2 + s 2 + s2 + S2)° .5]	 [(S2 + S2 + S2)° .5] 
+

It- /4	 /141 +p4[t/441

I s

subject to the constraints p. =kC 1 , C ^ Budget = K.	 (6.7)

The extended Lagrangian is

L=

P 
[t-p1-u2-4u3-M41 +P 1t-iu 2 -/1 3-P 41 p31t 341	 ___

1 [
	 2S	 j 2 [

	 ]	 I vs ] 
+p4t4]

/13 - /14 - 
(0p+ 02/12+ 0 3/1 3 + 04/14)	 (6.8)- irr
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Noting that

____ -	 1	 z2
___ - - exp(- ),
ôz	 V2i

the Lagrangian may be differentiated with respect to each of the

parameters to yield this set of equations (6.9):

aL - -P 1 	 1	 1_i It-p 1 -4U 2 -/4 3 -4u 41 2.1
- exp

1_	 V21	 2S

= -P 1A +-O =0

-P	 1	 [11t-4U2-,43-P412'l
= -PA+--.—exp

2	 1	
v'S	

JJ+O2=0

= -P 1A - P2B + - 02 = 0

-P	 1
= -P A - P B +	 .	

exp {i ft-p 3/1412.1
1	 2	 Ls 

]J+O3=0

= -P1A-P2B-P3C+#-03=0

1	 11Ft-p42i
= -PA-PB-PC +—.—exp1	 2	 3	

S	 v'21

= -P1A-P2B-P3C-P4D+-O4=0.

Also

aL
	 /1	 /1	 /13/1	

(6.10)
k k k k

8L0 - 0
ffi i-- = 0 1/1 1 = °22= 0 3/1 3 = 04/14 = 0. (6.11)

a
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Solving equations (6.9) for gives

= P 1 A+01 = P 1 A+P2B+02 = P 1 A+P2B+P3 C+03 = P1A+P2B+P3C+P4D+04

= P2B+02

and 02 = P3 C+03 = P3C+P4D+04

and 03 = P4D+04

(6.12)

Since P 1 A, P2B, P3C and P4D must be non-zero (unless the

corresponding ignition probabilities are zero in which case the

problem is trivial), and as 0. ^ 0 for all j; 01 , 02 and 03 must also

be non-zero.

Then, from (6.11)

= '2	 3 0.

Finally, from (6.10) and (6.12)

p	 p
K----4 = O=* ± =K

k	 k

and, as p=kC1 this implies that

C4 = K, which is the total budget available.

The result is identical to that achieved using the ad-hoc approach.
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6.3 More Complex Linear Structures

The development of this chapter is similar to that of the last.

Again, progressively more complex linear structures are introduced

with the intention of demonstrating their flexibility as 'building

blocks' of larger, less straightforward structures. Throughout this

section results are derived under the assumption of a constant

coefficient of variation, the results for the homoscedastic

supposition being less useful in practice and in any case

sufficiently similar to render unnecessary any separate treatment.

6.3.1 Structures with p, Interior Target Volume

Consideration is first given to the case in which the target is in an

interior volume, as illustrated in Figure 6.2.

barrier	 barrier	 barrier	 barrier

1	 3	 4	 2

Vo 1 ume Vu 1 ume Ta r g e I Vo 1 ume Vo 1 ume

1	 3	 Volume	 4	 2

P 1	P3	
T	 '4	

P2

Figure 6.2 A five-volume structure with a centrally-located target
volume.

Mm 4(t) =

Pr{Time for a fire to reach target <t it does not start in target} =

It- p 13 1 	 It
3I+P

1 [( 2 + 2) 0.5] + PL22OS]	 [	 ]
a

subject to the constraints 	 = K, p =kC 1 , C. ^ Budget.	 (6.14)

The objective function clearly consists of two independent
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sub-expressions - one for fire starting to the left of the target

rt/4 1 u 3 1 	It-ph
+ p3 I 	 l

[(a + o) 0.5]	
L o

and one for fire starting to the right of the target

P[

It- /42/441	 P41t_p41.
220 

.5] 
+	 [	 j

Each of these is similar to equation (6.5) in section 6.2. The

argument applied there may be repeated here so that

= p2 0, C3 + C4 = Budget

and, as was the case in Chapter 5, the resources are allocated for

the provision of two doors bounding the target; the relative

allocation being dependent upon the ratio of the sums of the ignition

frequencies on each side.

6.3.2 Structures with T Target Volumes

Suppose now that there are two target volumes, one at each end of the

structure, as shown in Figure 6.3.

barrier	 barrier	 barrier	 barrier

	

1	 3	 4	 2
target Volume volume Volume target

	

volume	 1	 3	 2	 volume
P 1	 P3	 P2	 T2

Figure 6.3 A five-volume linear structure with two target volumes.
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It -P1/I31
+	 +

Ft - /1 _ -/13/141

'4K +/ +p)° sj

Mm i(t) =

Pr{Tizne for a fire to reach target <t it does not start in target)

	

It/il	 It 
'2 /13/141 

+P 1 I	 'I +

	

a 1 j	
1 

L(a + a + a)° 5]	 [(o + a) 0 .5] +

	

It-	 /43/141

	

L

rt-	
2 14 4 1	 1t-21 

+	 [2220j
(a+a 05] +	 La2]

a
subject to the constraints 	 = K, 4u = kC	 C ^ Budget. (6.15)

Substituting a=Ku. gives

Miii (t) =

	It-p 1	 - U 2 4U3 /441

	

PI	 'I	 + pi	
20.51

	

1[ Kp1]	 1 
[K(u+p+p4) j

It- 14 2 /1 4 1	 It-/I
+p2 I	 2+

L Kp2]
(6.16)

The extended Lagrangian is

It - 2 P 3 /I 41	 It -/Sj/131
^ p IL = P1ItP!1 

+	 LK+p)°] +LKP]

-M2P41	 Itpl	 [ t -/1 _ -P3/441
P [22o5j +P2	 2 1 +i

4	
[Kp2j	 2[K2+P2+/I2)0.5j

1	 P	 /43	 /44
MK- F -	 -	 -	 - (0 1/1 1 + 02/I2+ 0 3/13 + 04/14).

Define: -

1	 Ii[t -/4

tLKP, 

2}

A=—exp
1	 1i1tP2l2}

B=—exp1-
VLKPZJ
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1	

{-1[t - 

141 14 3 1 	 1	 L i lt - 1421441

14 3 ) J	 J	 ILK+)°i },
C=—exp	 20.51	 D=—exp

1	 1_11t - '	 I'	 11	 1	 1_11t -	 2	 143 14411F=—expE=—exp
121	 J'	 121	 tz[K(p+p+p)0.5j I

Then, differentiation of the Lagrangian gives

P t	 P2(u1(t-p1-p3-p4)+p+p+p)
ÔL - ...L.A

- - Kp	 -	 K(p+p+p) 312

- P3 (p 1 (t- 1u 1 -p 3)+P+/43)
.c +-e =0.2 3/2K(p+p3)

ÔL - 
P 1 (u2 (t-p 2 -p 3 -p4)+p+p+p)	 P t

.F- 2 .B- -
	 K(u +p +p) / 2	 Kp

- P3 (p 2 (t- 4u 2 -p4)+4u+p)
.D+-O2=0.

K(u+p)3' 2

- P1(p3(t-p2-p3-p4)+p+p+p)
.F

K(J4+p+p)312

- P2(js3(t-1u 1 -p3
.E23/2K(4u +p +144)

P3 (p 3 (t-p -p3)+4u+4u)
.c+-o3=0.

-	 K(p+p)3'2
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ÔL - P1(fl4(t/42p3-p4)+p+/4+p)

-	 K(p+p+p2)324

- P2 (u 4 (t- 4u -p 3 -p4)+p1+p3+p4)

23/2K(fl +p +p4)

P3 (p 4 (t-p 2 p4)+p2+p4) 

D+-04=O.
-	 K(fl+p)312

(6.17)

/4	 4U2 /43 /44
(6.18)

.0. = 0	 0p= 02p 2 = 03p 3 = 04/4 4 = 0.	 (6.19)

In view of the complexity of these equations the following discussion

is heuristic. From the work in Chapter 5 it seemed sensible to try

setting p 3 = p 4 = 0, so that all the budget be devoted to the two

barriers adjacent to the target volumes, and from there to derive the

corresponding values of p and

Setting /43= /44 = 0, yields

C = A, D = B, E = A, and F = B; so that

t	 Pt	 Pt-	 1 .A - 2 .A -	 .A + - O = 0.
- - Kp	 Kp	 Kp

	

t	 Pt	 PtÔL _ 	 .B-----.B-	 .B+-02=0.
Kp	 Kp

ÔL_ P 1	P	 P

	

__	 2 .A-	 .A+-03=O.
- - Kp	 Kp1	 K4u1
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8L_ P 1	P	 P
.B------.A---Li4 - -	 Kp2	 K1u2

.B+-04=0.

Solving each of the above for gives

tA	 tB
+0

= Kp [i P
2 + P3]	

1	 Kp L 1

PB	 A	 B
1	 +	

. [P2+ P
3] + 0 =	 .[ 1 + 	 + 

P2A + 
04.

Kp 2	K4u1	 K4u

	

2	
Kp1

For	 and p2 to be non-zero, 01 = 02= 0, and the results of

Chapter 5 suggest the investigation of the behaviour of (t) when

4u 1	 p2.

Lemma 6.1

k. Budget
p1/12	 2
	 /13	 /140

is one solution of the minimization problem.

It is straightforward to demonstrate that this solution is not, in

practical cases, a maximum (so that it is a saddle point or a

minimum) - it need only be shown that the value of (t) is increases

when the p. take values other than those derived above.

k Budget
For example, with p = 2 = ________ /13/140;

2

	

__	

2] { 1t../I]

}qt)=[P+P+P	 Kp	 IKpI1	 2	 3•

	

1	 L	 2i

e
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(p J)2 2K2(p 5)2	
-

(p5)2 2K2(p+S)2	
- iJ]}.

e

I 1t_/4	 1t-u1
+I	 Ii.	 p1

= tLK I	 [K, ii
(6.20)

whereas, were the resources not equally divided between barrier 1 and

barrier 2 (but still devoted to those two, to the exclusion of

barriers 3 and 4), so that p 1 = p + ö, p = ji-J, p3 = p4 = 03 = 0 4 = 0,

then

____	 r	 t
1 (t) = [p 1 +	 3] .{4	 - +I— -

and

1	 -
(P 1 +P2 +P3) ôö

K	 +J)2 [2K2 p +ö Jj	 -ô)2	 2K 2 p-J 11}
-t	

{	

1	 r _i r 	t	 1	 [ _1[ t
expi	

L	

-ii I -	 exp	 - -1

so that one solution of —i = 0 is ô = 0.
ao

Taking the second derivative,

2
1	 -

(P 1 +P2 +P3) 852

Jexp l 	-i	 +
-t	 r	 r -1 [t
	

]1 

[_2

V2 K [ [2K 2 +5	 (p+Sf

+	 Jexp	 - - 1	 +
t	 I.	 [_1[t	 2

12K[	 2K2	 (p-S)3
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Set J=0, then

2

expi	 I - - 1	 - -1 - -	 (6.21)
-2t	 r-lrt	 ]1{t [

	 ] 

2}

V25K	 L2K 2 L	 K2p'	 /43

1 (t) is minimized when (6.21)> 0, and thus when

It	 (t	 2)

K2p 4 1; iJ	 3f >0.

This inequality leads to the constraint

0.5/4
2 [1 + (1+8K2)t- (6.22)

Since K2 is always non-negative (as is K since K 
=	 ), even in

the most restrictive case (Kc 0) 4(t) is likely to be minimized by

k. Budget
setting = p = p and /43 = /44 = 0 as long as t ^	

2

As K increases, the critical value of t increases and the constraint

(6.22) becomes less restrictive.

Thus, in general, for an n-volume linear structure with two targets,

one at each end,

/1	 20.5
when t	 - 1 + (1 + 8K)

2

4(t) =

Probability that {Time to. arrival at target <t, given that fire has
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broken out in one of the non-target volumes of the structure}

is likely to be minimized as

t -p	 k.Budget
(t) = 2	 . P	 where p =	 , K	 2: ,	 (6.23)

Ku	 i_li	 2

r2t - k.Budgetl
= 2[	

2a
(6.24)

It should be noted that the constraint on the parameter t is not

as restrictive as may first be thought, in practical terms it simply

ensures that its value is specified in a manner which is consistent

with the nature of the particular problem. In other words, there is

not much point in trying to minimize 4(50) when the budget is

sufficient only to provide up to two doors each having a mean failure

time of 10 minutes. Furthermore, it is in general the smaller values

of t, relative to the budget, which will be of interest to building

designers and engineers.

6.4 Linear Structures with a Limited Range of Doors

The results obtained in the previous sections have been based upon

the premise that an infinite range of doors is available, subject to

the mean breach times being non-negative, and there being some

constraint on the variances of those breach times. How is progress

made in the light of the knowledge that an infinite variety of doors

is not available? In the case of a structure with a single target

volume at one end, the principle of allocating all available

resources to the barrier adjacent to the target is not changed; and

Algorithm 5.1, presented in. sub-section 5.3.2 of Chapter 5, may again
S
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be employed. The same is true for a structure such as that shown in

Figure 6.4.

barrier	 barrier	 barrier	 barrier	 barrier
1	 3	 5	 4	 2

target Volume volume	 Volume Volume target
vo 1 ume	 1	 3	 . . .	 4	 2	 vo 1 ume

T 1	P1	 P3	 P4	 P2	 T2

Figure 6.4 A general two-target volume linear structure.

For a structure such as this, subject to inequality (6.22), it is

desirable that the available budget be divided equally between

barrier 1 and barrier 2, and failing that, it be divided as evenly as

possible between the 'odds' and the 'evens', with as much weight as

possible to the lower-numbered barriers on each side.

When a linear structure is such that access to a single target

is from both sides, Algorithm 5.2, presented in sub-section 5.4.2 of

Chapter 5, is again found to be appropriate.

The solutions of optimization problems for which the types of

available door are known and specified may be found using branch and

bound techniques or complete enumeration, each of which in turn

requires the solution of a number of sub-problems using methodology

such as the above.

6.5 Conclusion

An optimization problem, concerning how doors may be best fitted to a

structure so as to minimize the probability of fire reaching a target

volume in time T <t, has been introduced. Several methods of solution

have been discussed for the case when each of the doors has a

Gaussian breach-time distribution. The general result that it is the

barriers adjacent to the target volumes to which the bulk of the
S

156



financial resources must be allocated is undoubtedly intuitive and is

complementary to the results discovered in Chapter 5. Were the

problem to be structured in such a way that fire damage to non-target

volumes were not disregarded, different conclusions would be drawn.

The principles of the solution germane to linear structures are

also applicable to non-linear structures which may be decomposed into

linear components. A general discussion of the applicability of these

models is given in Chapter 7.
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CHAPTER 7

Summary and General Discussion

To put one brick upon another,
Add a third, and then a fourth,
Leaves no time to wonder whether
What you do has any worth.

But to sit with bricks around you
While the winds of heaven bawl
Weighing what you should or can do
Leaves no doubt of it at all.

Philip Larkin

7.1 Conclusions

This thesis represents the first attempt to model the spread of

flames through a segregated structure whose barriers are not

constrained to have either constant breach probabilities or constant

coefficient-of-variation Gaussian breach-time distributions.

It has sought to explore the relationship between the modelling

of fire-spread and other related modelling problems, and to identify

those aspects which render this fire-spread modelling problem

distinct. The thesis suggests some new approaches which offer a

contribution to the development of an understanding of the problems

involved, and which facilitate the development of some solutions.

There is more work to be done. On the theoretical side, the

value of further exploration of non-asymptotic extreme value theory

as applied to random variables that are not independent and

identically distributed has been identified. The development of such

theory could enhance the work contained here, and would undoubtedly

S
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be found pertinent to other fields of applied research. The relative

simplicity of the discrete-time models discussed in Chapter 3 lends

them a certain attraction despite the shortcomings imposed by the

assumptions, and it may be that in practice a discrete-time model is

preferred, and perhaps consideration should be given to models other

than the Multinomial discussed here, with preference accorded to the

Poisson distribution or the Negative-binomial distribution.

The application of the models presented in Chapter 3 would be

eased by the methodology being incorporated into some suitable

software. Many of the necessary features, such as route

identification, are aiready to be found in the ARSSUN code, and the

recursive calculations described in Algorithm 3.1 and Algorithm 3.2

should present no difficulty to the experienced programmer. The main

advantage which the Multinomial model has over ARSSUN is that instead

of providing a single-value 'fire reaches target' probabifity, it

yields a 'time-to-reach-target' probability distribution, as is

illustrated in sub-section 3.2.5. This, I believe, is sufficient to

justify the SRD devoting resources to the writing of some software so

that the model's advantages be readily accessible.

The fundamental aspects of the continuous-time models developed

in Chapter 4 were presented, by this author, at a conference on

reliability technology (Veevers and Manasse (1990)) and the subject

matter was well-received. The main reason for the enthusiasm probably

arose from the barriers' continuous breach-time probability

distributions giving the models an intuitive appeal not shared by

time-independent models. It is worth re-iterating that whilst the

candidate distributions were framed in terms of barrier breach times,

there is no evidence to suggest that suitable parameter selection

e
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would not allow the distributions to model accurately the time for a

fire's development to flashover intensity plus the time required to

breach a barrier. The application of Extreme Value Theory, as

detailed in section 4.5, is an important aspect of this fire-spread

model whose consideration is only made possible as a result of the

time-dependency which has been introduced. Once again, there can be

no doubt that the utility of the models would be enhanced by their

being coded up, a task which is unfortunately not straightforward,

but one whose successful undertaking would be of great benefit to a

fire-safety engineer wishing to utilize the methodology.

The work contained in Chapters Five and Six represents the

results of an initial exploration of a previously un-explored

problem. Once again, the absence of any substantial information about

accurate quantification of fire-resistance, whether as a single

probability (or time-value), or as a breach-time probability

distribution, is to be lamented since there is much to be said for

not constructing a model until there is sufficient data to support

it. On the other hand, the two models of Chapter 5 provide some

reasonable measure of the real-life situation, and both Chapter 5 and

Chapter 6 demonstrate that even in the absence of reliable data, some

headway may be made. It has been demonstrated that the focusing on

linear structures is justifiable in the light of their usefulness as

the building blocks of larger structures. It should also be noted

that they have an applicability in their own right. Both the

Manchester Airport fire and the King's Cross London Underground fire

of November 1987 have demonstrated the devastating effects of fire

growth in a single volume, and each raises the question: what would

have happened had there been some sort of fire barriers partitioning
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the volumes into compartments? In the case of an aircraft, it is

self-evident that fitting high-resilience fire-resisting foam seating

is not sufficient if a fire starting in the body of the aircraft has

ready access to the fuel in pipes or tanks. On a driverless train,

especially one transporting non-flammable freight, the controlling

computer is certainly critical, and the work establishes that

resources should be devoted to fitting a very good fire-resisting

barrier between the control room and the rest of the train, rather

than to the fitting of a number of lower quality fire barriers at

intervals along the train's length. Another linear structure which is

the focus of current attention is the Channel Tunnel, in which the

signal and communications systems are of prime importance.

Whilst the REDUCE computer algebra package was discussed only in

the context of Chapter 3, it has also been put to good use in the

exploration of some of the topics in other Chapters. It provides a

useful tool for the simplification of algebraic constructs, and for

the evaluation of numerical results derived from substitutions into

those algebraic equations.

7.2 Final Example

Perhaps all that remains is to return to the structure presented in

Chapter 1, and to examine whether the techniques of Chapter 4 may

fructiferously be brought to bear. The structure is reproduced as

Figure 7.1 below.
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Figure 1.5 The floor-plan of a forty-eight volume structure.

The target volume is the room numbered 37, as was the case in the

original structure. For the sake of simplicity in the absence of

computer code for the methods of Chapter 4, attention is restricted

to the possibility of a fire starting in the volume numbered 13, and

all the barriers are considered to be symmetrical with identical

Gaussian N(20, 22) breach-time distributions. The time unit is the

minute.

The shortest path is described as 13-23-36 and is of length 2.

In order to eliminate the need to identify routes whose associated

travel-to-target times are likely to be large relative to that

expected if the fire first reaches the target along the shortest

path, the following approach is adopted.

The probability of any one barrier being breached in time T ^ t is

given by

[t-20 
J = 

a.

Let a=O.999968, then 1(a)4O and the probability of a barrier

being breached in time T^28 is a= O.999968, and the probability of a

barrier being breached in time T^ 12 is 1-a=O.000032.
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Then, since the shortest path is of length 2, it is extremely likely

that a fire starting in volume 13 will have reached the target in

time T56. (Probability is 0.999936).

Since each barrier is very unlikely to be breached in time T ^ 12, an

idea of the length of the longest route which need be considered is

provided by

= 4.6675.

Thus no paths from volume 13 to volume 36 whose traversal requires

the breaching of more than 5 barriers are considered.

The details of the paths are not reproduced here; that information is

summarized as:

	

There are ... 	 paths	 of length

	

1
	

2

	

6
	

3

	

20
	

4

	

57
	

5.

Reference to Table 4.2 indicates that the distribution of the

smallest order statistic of time to reach the target is given by

K

lff[l[ 
t/4Ck	

]a.V'J

where Ck is the number of barriers in each path k from volume 13, and

K is the total number of paths being considered.

From the information above, equation 7.1 is evaluated as

(7.1)
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The cumulative distribution function is illustrated in Figure 7.2.

Figure 7.2 illustrates the important features extremely clearly.

Once a fire is established in volume 13, the probability of the

target being reached within 30 minutes is negligible, whilst it has a

50% chance of being reached in 40 minutes and is almost bound to have

been reached within 45 minutes.

A risk assessment of the whole structure which facilitated the

derivation of results such as these would enhance the fire risk

assessment methodology, and for that reason their incorporation into

appropriate software is again recommended.
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APPENDIX A

Output From running the ARSSUN Code

on the

Example Structure in Chapter 3

** ** ** * * ***** * **

* FIRE PROPAGATION *
** * *** * ** ** * **

THE SYSTEM HAS 4 VOLUMES WITH PROBABILITIES

OF FIRE INITIATION AND OF FIRE SPREAD AS FOLLOWS:-

VOLUME
NO. DECRIPTION

1. VOLUME 1
2. VOLUME 2
3. VOLUME 3
4. VOLUME 4

PROBABILITY OF
FIRE SPREAD

.6000 1.0000

.3000 1.0000

.0800 1.0000

.0200 1.0000

THE VOLUMES ARE CONNECTED BY THE FOLLOWING FIRE PATHS
WITH THE GIVEN PROBABILITIES OF FIRE
SPREAD IN THE DIRECTION STATED

FIRE PATH
	

PROBABILITY
(a- > b)
	

(a-> b)

1->2	 .0400
2->!	 .0400
2->3	 .0400
2->4	 .0400
3->2	 .0400
3->4	 .0400
4->2	 .0400
4->3	 .0400

THERE ARE 1 SAFETY SYSTEMS WHICH
COVER THE VOLUMES AS SHOWN

SAFETY
SYSTEM	 VOLUMES

A
	

4
	

{ie vol4 is target)

WEAK--------------------> .200000E-01 4

WEAK--------------------> .320000E-02 3 4
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WEAK-> .480000E-03 2 3 4

WEAK--------------------> .384000E-04 1 2 3 4

WEAK--------------------> .120000E-01 2 4

WEAK--------------------> .128000E-03 3 2 4

WEAK-------------------> .960000E-03 1 2 4

CUTOFF PROB IS	 • 1000E-12

WARNING PROB IS .0000E+OO

TOTAL PROB IS	 .368 1E-Ol

ESTIMATE PROB IS •1554E-03
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APPENDIX B

Computer Code and selected Output

for the

REDUCE Computer Algebra Application of Chapter 3

OUT RESULTS;
LET U1=O;
Ui;
LET Q1=P1*P13;
Qi;
LET U2=SUB(P4=l,P16=1,Q1);
U2;
LET Q2=Q1 +P4*Pi6*(1U2);
Q2;
LET U3=SUB(Pi=1,P14=1,Q2);
U3;
LET Q3=Q2+P1*P14*(1U3);
Q3;
LET U4=SUB(P1=1,P7=1,P16=1,Q3);
U4;
LET Q4=Q3+Pi*P7*P16*(1U4);
Q4;
LET U5=SUB(P2=1,P13=1,Q4);
U5;
LET Q5=Q4+P2*P13*(1U5);
Q5;
LET U6=SUB(P4=1,P17=i,Q5);
U6;
LET Q6=Q5+P4*Pl7*(iU6);
Q6;
LET U7=SUB(P4=l,P1O=i,P13=1,Q6);
U7;
LET Q7=Q6+P4*PiO*P13*(lU7);
Q7;
LET U8=SUB(P5=1,P16=1,Q7);
U8;
LET Q8=Q7+P5*P16*(1U8);
Q8;
LET U9=SUB(Pi=i,Q8);
U9;
LET Q9=Q8+P1*(iU9);
Q9;
LET UlO=SUB(P1=1,P7=i,P17=i,Q9);
UlO;
LET Q1O=Q9+Pl*P7*P17*(lUiO);
QiO;
LET Ui! =SUB(P1 = 1,P8= i,P16= i,Q1O);
Ull;
LET Q1l=Q1O+P1*P8*Pl6*(JU11);
Qil;
LET U12=SUB(P2=i,P14=l,Q11);
U12;
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LET Q12Q11 +P2*P14*(1U12);
Q12;
LET U13 =SUB(P2= 1,P7= 1,P16= 1,Q12);
U13;
LET Q13=Q12+P2*P7*P16*(1U13);
Q13;
LET U14=SUB(P13=1,Q13);
U14;
LET Q14=Q13+P13*(1U14);
Q14;
LET U15=SUB(P4= 1,Q14);
U15;
LET Q15=Q14+P4*(1U15);
Q15;
LET U16=SUB(P4=1,P1O=1,P14=1,Q15);
U16;
LET Q16=Q15+P4*P1O*P14*(1U16);
Q16;
LET U17=SUB(P4=1,P11=1,P13=1,Q16);
U17;
LET Q17=Q16+P4*P11*P13*(1U17);
Q17;
LET U18=SUB(P5=1,P17=1,Q17);
U18;
LET Q18=Q17+P5*P17*(1U18);
Q18;
LET U19=SUB(P5=1,P1O=1,P13=1,Q18);
U19;
LET Q19 =Q18 +P5*P1O*P13*(1U19);
Q19;
LET U20=SIJB(P16=1,Q19);
U20;
LET Q2O=Q19+P16*(1U2O);
Q20;
LET U21=SUB(P1=1,P7=1,Q20);
U2 1;
LET Q21 =Q2O+P1*P7*(1U21);
Q21;
LET U22=SUB(P11,P8=4,P17=1,Q21);
U22;
LET Q22=Q21 +P1*P8*P17*(1U22);
Q22;
LET U23=SUB(P1=1,P16=1,Q22);
U23;
LET Q23=Q22+P1*P16*(1U23);
Q23;
LET U24=SUB(P2= 1,Q23);
U24;
LET Q24=Q23+P2*(1U24);
Q24;
LET U25SUB(P21,P71,P17=1,Q24);
U25;
LET Q25 =Q24+P2*P7*P17*(1U25);
Q25;
LET U26=SUB(P2=1,P8=1,P16=1,Q25); 	 e
U26;
LET Q26=Q25+P2*P8*P16*(1U26);
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Q26;
LET U27=SUB(P14 1,Q26);
U27;
LET Q27=Q26+P14*(1U27);
Q27;
LET U28=SUB(P7=1,P16=1,Q27);
U28;
LET Q28=Q27+P7*P16*(1U28);
Q28;
LET U29=SUB(P4 1,P1O= 1,Q28);
U29;
LET Q29=Q28 +P4*P1O*(1U29);
Q29;
LET U30=SUB(P4=1,P11=1,P14=1,Q29);
U30;
LET Q30Q29 +P4*P1 1*P14*(1U3O);
Q30;
LET U31=SUB(P4=1,P13=1,Q30);
U3 1;
LET Q31=Q3O+P4*P13*(1U31);
Q31;
LET U32=SUB(P5=1,Q31);
U32;
LET Q32=Q31 +P5*(1U32);
Q32;
LET U33 =SUB(P5 = 1,P10 1,P14= 1,Q32);
U33;
LET Q33=Q32+P5*P1O*P14*(1U33);
Q33;
LET U34=SUB(P5=1,P11=1,P13=1,Q33);
U34;
LET Q34=Q33+P5*P11*P13*(1U34);
Q34;
LET U35 =SUB(P17 I ,Q34);
U35;
LET Q35=Q34+P17*(1U35);
Q35;
LET U36=SUB(P10 l,P13=1,Q35);
U36;
LET Q36=Q35+P1O*P13*(lU36);
Q36;
LET U37=SUB(P1=1,P8=l,Q36);
U37;
LET Q37=Q36+Pl*P8*(1U37);
Q37;
LET U38=SUE(Pl=1,P17=1,Q37);
U38;
LET Q38=Q37+P1*P17*(1U38);
Q38;
LET U39=SUB(P2=1,P7=l,Q38);
U39;
LET Q39 =Q38 +P2*P17*(1U39);
Q39;
LET U40=SUB(P2=1,P8=1,P17=1,Q39);
U40;
LET Q4O=Q39+P2*P8*Pl7*(1U4O);
Q40;
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LET U41=SUB(P2=1,P16=1,Q40);
U4 1;
LET Q41=Q4O+P2*P16*(1U41);
Q41;
LET U42=Q41;
U42;
LET Q42=Q41+(1-U42);
Q42;
LET U43 =SUB(P7 = 1 ,P17 = 1 ,Q42);
U43;
LET Q43=Q42+P7*P17*(1U43);
Q43;
LET U44=SUB(P8=1,P16=1,Q43);
U44;
LET Q44=Q43+P8*P16*(1U44);
Q44;
LET U45=SUB(P4=1,P11=1,Q44);
!J45;
LET Q45=Q44+P4*P11*(1U45);
Q45;
LET U46=SUB(P4=1,P14=1,Q45);
U46;
LET Q46=Q45 +P4*P14*(1U46);
Q46;
LET U47=SUB(P5=1,P1O=1,Q46);
U47;
LET Q47=Q46+P5*P1O*(1U47);
Q47;
LET U48=SUB(P5=1,P11=1,P14=1,Q47);
U48;
LET Q48=Q47+P5*P11*P14*(1U48);
Q48;
LET U49=SUB(P5=1,P13=1,Q48);
U49;
LET Q49=Q48+P5*P13*(1U49);
Q49;
LET U50=Q49;
U50;
LET Q50=Q49+(1-U50);
Q50;
LET U51=SUB(P1O=1,P14=1,Q50);
U5 1;
LET Q51 =Q5O+P1O*P14*(1U51);
Q5 1;
LET U52=SUB(P11=1,P13=1,Q51);
U52;

ARRAY X(53);
X(1):=U1;
X(2):=U2;
X(3):=U3;
X(4):=U4;
X(5):=U5;
X(6):=U6;
X(7):=U7;
X(8):=U8;
X(9):=U9;
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X(1O): =U1O;
X(11):=U11;
X(12):=U12;
X(13):=U13;
X(14):=U14;
X(15):=U15;
X(16):=U16;
X(17):=U17;
X(18):=U18;
X(19):=U19;
X(20):=U20;
X(21):=U21;
X(22):=U22;
X(23):=U23;
X(24):=U24;
X(25):=U25;
X(26):=U26;
X(27):=U27;
X(28):=U28;
X(29):=U29;
X(30):=U30;
X(31):=U31;
X(32):==U32;
X(33):=U33;
X(34):=U34;
X(35):=U35;
X(36):=U36;
X(37):=U37;
X(38):=U38;
X(39):=U39;
X(40):=U40;
X(41):=U41;
X(42):=U42;
X(43):=U43;
X(44):=U44;
X(45):=U45;
X(46):=U46;
X(47):=U47;
X(48):=U48;
X(49):=U49;
X(50):=U50;
X(51):=U51;
X(52):=U52;
ARRAY W(53);

FOR I: = 1:52 DO < <W(I): =SUB(P1 =R1,P2=R2,P4R1,P5R2,P7R1,P8R2,P1O
=R2,P13=R1,P14,P16=R1,P17=R2,X(I))>>;

ARRAY V(53);

FOR I:=1:52 DO< <V(I):=1-W(I)>>;

ARRAY PR(53);
PR(1):=R1*R1*V(1);
PR(2):=R1*R1*V(2);
PR(3):=R1 *p*V(3);
PR(4):=R1*R1*R1*V(4);
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PR(S): =R1*R2*V(5);
PR(6):=R1*R2*V(6);
PR(7):=R1*R1 *R1 *V(7);
PR(8):=R1*R2*V(8);
PR(9):= R 1 *V(9);
PR(1O): =R1*R1*R2*V(1O);
PR(1 1): =R1 *R1**V(1 1);
PR(12): ?*^j*V(12);
PR(13):=R1*R1*R2*V(13);
PR(14):=R1*V(14);
PR(15):=R1*V(15);
PR(16):=R1*R1*R2*V(16);
PR(17):=R1*R1*R2*V(17);
PR(18):=R2*R2*V(18);
PR(19):=R1*R1*R2*V(19);
PR(20):= Ri *V(20);
PR(21):=R1*R1*V(21);
PR(22):= Ri ***V(22);
PR(23):=R1*R1*V(23);
PR(24):=R2*V(24);
PR(25):=R1 *pj*pj*y(25);
PR(26):=R1 *pj*pj*V(26);
PR(27): J^j*y(27);
PR(28):=R1*R1*V(28);
PR(29):=R1*R1*V(29);
PR(30):=R1 *pj*pj*y(3O);
PR(31):=R1*R1*V(31);
PR(32):=R2V(32);
PR(33):=R1*R2*R2*V(33);
PR(34):=R1 ***V(34);
PR(35): 1^j*y(35);
PR(36):=R1*R1*V(36);
PR(37):=R1*R2*V(37);
PR(38):=R1*R2*V(38);
PR(39):=Ri*R2*V(39);
PR(40): pj*pj*pj*y(4);

PR(41):=R1*R1*V(41);
PR(42):=1 *V(42);
PR(43):= Ri **V(43);
PR(44):=R1*R2*V(44);
PR(45):=R1 *R2*V(45);
PR(46):= Ri *R2*V(46);
PR(47):=R1 *pj*V(47);
PR(48): j*I^j*Rj*V(48);
PR(49):=R1 **V(49);
PR(50):= 1*V(50);
PR(51):=R1*R2*V(51);
PR(52):=R1 *JU*V(52);

ARRAY TOTPR(7);
TOTPR(1):=FOR J:=1:2 SUM PR(J);
TOTPR(2):=FOR J:=3:8 SUM PR(J);
TOTPR(3):=FOR J:=9:20 SUM PR(J);
TOTPR(4): = FOR J: = 21:36 SUM PR(J);
TOTPR(5):=FOR J:=37:52 SUM PR(J);
TOTPR(6): =TOTPR(5)+TOTPR(4)+TOTPR(3)+TOTPR(2)+TOTPR(i);
FACTORIZE TOTPR(6);
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ARRAY TOTPP(7);
FOR J: = 1:6 DO < <TOTPP(J): =SUB(R1 =op1,R2=0P2/(1-OP1),TOTPR(J))>>;
TOTPP(1);
TOTPP(2);
TOTPP(3);
TOTPP(4);
TOTPP(5);
TOTPP(6);
FACTORIZE TOTPP(6);

ARRAY ET(53);
FOR I: = 1:2 DO <<ET(I): =2*PR(I)>>;
FOR I:=3:8 DO <<ET(I):=3*PR(I)>>;
FOR I:=9:20 DO <<ET(I):=4*PR(I)>>;
FOR I:=21:36 DO <<ET(I):=5*PR(1)>>;
FOR I: = 37:52 DO <<ET(I): =6*PR(I)>>;

ARRAY TOTET(7);
TOTET(1):=FOR J:=1:2 SUM ET(J);
TOTET(2): = FOR J: = 3:8 SUM ET(J);
TOTET(3):=FOR J:=9:20 SUM ET(J);
TOTET(4):=FOR J:=21:36 SUM ET(J);
TOTET(5): =FOR J: =37:52 SUM ET(J);
TOTET(6): = TOTET(5) + TOTET(4) + TOTET(3) + TOTET(2 4- TOTET(l;

ARRAY TOTF(7);
FOR I:=1:6 DO <<TOrF(I):=SUB(R1=OP1,R2=OP2/(1-OP1),TOTET(I))>>;
TO1T(1);
TOTr(2);
TOTT(3);
TOTT(4);
TOTT(5);
TOTT(6);
SHUT;
BYE;
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TOTPR(1):=FOR J: =1:2 SUN PR(J);

22

TOTPR(1) := -	 *(	 - 2)

TOTPR(2):FOR J: =3:8 SUM PR(J);

24	 23	 22	 2

TOTPR(2) := 2*R1*(R2 *R1 - 4* *R1 + 5* *R1 - 2*R2 *pj - 2*R2*

4	 3	 2	 4

Ri + 6*R2*R]. - 4**p] - 2*R2*Ri + 2*R2 + Ri - 2*

3	 2

Ri +Ri)

TOTPR(3):=FOR J:=9:20 SUN PR(J);

44	 43	 42	 4	 4

TOTPR(3)	 - (P.2 *pj - 4*	 *pi + 6*R2 *RJ. - 4*	 *]. + P2 + 2*

25	 24	 23	 22	 2
*	 - 1O*R2 *Ri + 18*R2 *Ri - 16*R2 *pj + 8*R2

2	 5	 4	 3

- 2*R2 - 4*P2*Pj + 12*R2*R]. - 8*R2*R1 - 4*P2*

2	 5	 4	 3	 2

Ri. + 4*p*) + 2*R]. - 4*p] - 2*Ri + 8*Ri - 4*Pj)

TOTPR(4):FOR J: =2i:36 SUM PR(J);

24	 23	 22	 2	 2

IVTPR(4) :=4*R2*(R2 *1fl] - 4* *	 + 6*R2 *	 - 4*P2 *Ri + P2 - 2

4	 3	 2	 4

*P2*Ri + 8*R2*Ri - 12*R2*R]. + 8R2*R]. - 2*R2 1- Ri -

3	 2

4*p] + 6*R1 - 4*Ri + 1)

TOTPR(5):FOP J:=37:52 SUM PR(J);

44	 43	 42	 4	 4	 3

TOTPR(5) : P2 *	 - 4*P2 *] + 6*R2 *pj - 4*p *pj + P.2 - 4*R2 *

4	 33	 32	 3	 3	 2

Ri + i6R2 *pj - 24*R2 *pj + i6*R2 *p] - 4*R2 + 6*R2 *

4	 23	 22	 2	 2

RI. - 24*R2 *pj + 36*R2 *1 - 24*R2 *i + 6*R2 - 4*P2*

4	 3	 2	 4

Ri + i6R2Ri - 24*R2*Ri + 16*R2*Ri - 4*P2 + Ri - 4*

3	 2

Ri + 6*Ri - 4*Ri + 1

TOTPR(6) :=TOTPR(5)+TOTPR(4)+TOTPR(3)+TOTPR(2)+TOTPR(i);

TOTPR(6) := 1


	DX174002_1_0001.tif
	DX174002_1_0003.tif
	DX174002_1_0005.tif
	DX174002_1_0007.tif
	DX174002_1_0009.tif
	DX174002_1_0011.tif
	DX174002_1_0013.tif
	DX174002_1_0015.tif
	DX174002_1_0017.tif
	DX174002_1_0019.tif
	DX174002_1_0021.tif
	DX174002_1_0023.tif
	DX174002_1_0025.tif
	DX174002_1_0027.tif
	DX174002_1_0029.tif
	DX174002_1_0031.tif
	DX174002_1_0033.tif
	DX174002_1_0035.tif
	DX174002_1_0037.tif
	DX174002_1_0039.tif
	DX174002_1_0041.tif
	DX174002_1_0043.tif
	DX174002_1_0045.tif
	DX174002_1_0047.tif
	DX174002_1_0049.tif
	DX174002_1_0051.tif
	DX174002_1_0053.tif
	DX174002_1_0055.tif
	DX174002_1_0057.tif
	DX174002_1_0059.tif
	DX174002_1_0061.tif
	DX174002_1_0063.tif
	DX174002_1_0065.tif
	DX174002_1_0067.tif
	DX174002_1_0069.tif
	DX174002_1_0071.tif
	DX174002_1_0073.tif
	DX174002_1_0075.tif
	DX174002_1_0077.tif
	DX174002_1_0079.tif
	DX174002_1_0081.tif
	DX174002_1_0083.tif
	DX174002_1_0085.tif
	DX174002_1_0087.tif
	DX174002_1_0089.tif
	DX174002_1_0091.tif
	DX174002_1_0093.tif
	DX174002_1_0095.tif
	DX174002_1_0097.tif
	DX174002_1_0099.tif
	DX174002_1_0101.tif
	DX174002_1_0103.tif
	DX174002_1_0105.tif
	DX174002_1_0107.tif
	DX174002_1_0109.tif
	DX174002_1_0111.tif
	DX174002_1_0113.tif
	DX174002_1_0115.tif
	DX174002_1_0117.tif
	DX174002_1_0119.tif
	DX174002_1_0121.tif
	DX174002_1_0123.tif
	DX174002_1_0125.tif
	DX174002_1_0127.tif
	DX174002_1_0129.tif
	DX174002_1_0131.tif
	DX174002_1_0133.tif
	DX174002_1_0135.tif
	DX174002_1_0137.tif
	DX174002_1_0139.tif
	DX174002_1_0141.tif
	DX174002_1_0143.tif
	DX174002_1_0145.tif
	DX174002_1_0147.tif
	DX174002_1_0149.tif
	DX174002_1_0151.tif
	DX174002_1_0153.tif
	DX174002_1_0155.tif
	DX174002_1_0157.tif
	DX174002_1_0159.tif
	DX174002_1_0161.tif
	DX174002_1_0163.tif
	DX174002_1_0165.tif
	DX174002_1_0167.tif
	DX174002_1_0169.tif
	DX174002_1_0171.tif
	DX174002_1_0173.tif
	DX174002_1_0175.tif
	DX174002_1_0177.tif
	DX174002_1_0179.tif
	DX174002_1_0181.tif
	DX174002_1_0183.tif
	DX174002_1_0185.tif
	DX174002_1_0187.tif
	DX174002_1_0189.tif
	DX174002_1_0191.tif
	DX174002_1_0193.tif
	DX174002_1_0195.tif
	DX174002_1_0197.tif
	DX174002_1_0199.tif
	DX174002_1_0201.tif
	DX174002_1_0203.tif
	DX174002_1_0205.tif
	DX174002_1_0207.tif
	DX174002_1_0209.tif
	DX174002_1_0211.tif
	DX174002_1_0213.tif
	DX174002_1_0215.tif
	DX174002_1_0217.tif
	DX174002_1_0219.tif
	DX174002_1_0221.tif
	DX174002_1_0223.tif
	DX174002_1_0225.tif
	DX174002_1_0227.tif
	DX174002_1_0229.tif
	DX174002_1_0231.tif
	DX174002_1_0233.tif
	DX174002_1_0235.tif
	DX174002_1_0237.tif
	DX174002_1_0239.tif
	DX174002_1_0241.tif
	DX174002_1_0243.tif
	DX174002_1_0245.tif
	DX174002_1_0247.tif
	DX174002_1_0249.tif
	DX174002_1_0251.tif
	DX174002_1_0253.tif
	DX174002_1_0255.tif
	DX174002_1_0257.tif
	DX174002_1_0259.tif
	DX174002_1_0261.tif
	DX174002_1_0263.tif
	DX174002_1_0265.tif
	DX174002_1_0267.tif
	DX174002_1_0269.tif
	DX174002_1_0271.tif
	DX174002_1_0273.tif
	DX174002_1_0275.tif
	DX174002_1_0277.tif
	DX174002_1_0279.tif
	DX174002_1_0281.tif
	DX174002_1_0283.tif
	DX174002_1_0285.tif
	DX174002_1_0287.tif
	DX174002_1_0289.tif
	DX174002_1_0291.tif
	DX174002_1_0293.tif
	DX174002_1_0295.tif
	DX174002_1_0297.tif
	DX174002_1_0299.tif
	DX174002_1_0301.tif
	DX174002_1_0303.tif
	DX174002_1_0305.tif
	DX174002_1_0307.tif
	DX174002_1_0309.tif
	DX174002_1_0311.tif
	DX174002_1_0313.tif
	DX174002_1_0315.tif
	DX174002_1_0317.tif
	DX174002_1_0319.tif
	DX174002_1_0321.tif
	DX174002_1_0323.tif
	DX174002_1_0325.tif
	DX174002_1_0327.tif
	DX174002_1_0329.tif
	DX174002_1_0331.tif
	DX174002_1_0333.tif
	DX174002_1_0335.tif
	DX174002_1_0337.tif
	DX174002_1_0339.tif
	DX174002_1_0341.tif
	DX174002_1_0343.tif
	DX174002_1_0345.tif
	DX174002_1_0347.tif
	DX174002_1_0349.tif
	DX174002_1_0351.tif
	DX174002_1_0353.tif
	DX174002_1_0355.tif
	DX174002_1_0357.tif
	DX174002_1_0359.tif
	DX174002_1_0361.tif
	DX174002_1_0363.tif
	DX174002_1_0365.tif
	DX174002_1_0367.tif
	DX174002_1_0369.tif
	DX174002_1_0371.tif
	DX174002_1_0373.tif
	DX174002_1_0375.tif

