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SUMMARY 

The objective of the work presented here is to develop a description of 
the structural response of offshore structures, of the steel lattice 

type, to the loading induced by the random waves experienced during a 
lifetime of exposure in the ocean. 

Application is restricted to structures which do not respond dynamically 

to the induced fluid loading. The main emphasis of the approach is the 

necessity for retention of the non-linearity of the loading in the 

analysis for these structures where the effects of fluid drag are 

significant. Probability theory is adopted as the most appropriate 

approach to the problem and the description of loading is developed from 

the known statistics of the short-term wave field (representing a 

stationary sea state) using Morison's Equation. The long-term description 

of loading is then obtained by convolution of this model with the wave 

climate, representing the complete population of sea states at the site 

of interest. 

The behaviour of the probabilistic model, which does not account for the 

presence of uni-directional currents or the intermittency of loading in 

the splash zone, is investigated in terms of the probability distributions 

of load, which is non-Gaussian in form, and its narrow-band peak and 

extreme peak variates. Various member and spa state conditions are 

considered and the significance of full retention of the non-linear drag 

component of loading is demonstrated by comparison with a model employing 

a linearised loading mechanism, yielding results equivalent to those 

produced by spectral analysis, which is shown to considerably under- 

estimate extreme wave loads. The significance of the spectral model 

chosen for description of the surface elevation and the form of treatment 

of the wave climate description are also demonstrated and the problem of 

computational requirements is discussed. 

The probabilistic description of structural response, based on linear 

behaviour of the structure, is developed from that of individual member 

loading in terms of the'statistics of the wave field for short-term 

conditions. Convolution with the wave climate again, produces the long- 

term properties. It is the probabilistic properties of response, either 
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displacements Or internal stresses, rather than individual member loading 

which are of most direct value in the design against fatigue and first 

excursion failure. 
I 

In the model it is necessary to idealise the distributed fluid loading on 

the structure by lumped load components at a finite number of locations. 

These elemental random loads are distributed in space but are correlated 

with each other and the probabilistic procedure fully accounts for the 

varying degrees of correlation. The computational requirements of this 

model are considerable and it has proved practicable to investigate simple 

systems of only two load components due to runýtime limitationsv 

However, from this study it is shown that the probability distribution of 

response is of the same non-Gaussian form as that of the underlying 
loading., This distribution is fully defined by its second and fourth 

order statistical moments and expressions for these statistics for the 

response variate are developed, again in terms of the statistics of the 

short-term wave field. 

There is still a computational problem with this approach imposing a 

ceiling on system complexity dependent upon the run-time limitations 

imposed. Using 30-minute run times on the ICL 1906S computer at 

Liverpool, systems of up to 35 load components can be analysed. However, 

an important refinement to the model has yet to be realised and as a 

consequence the accuracy of the present model for systems exceeding ý12 
load components is uncertain. 

Finally, application of the model is demonstrated for a number of simple 

test structures under the action of short-term sea state conditions and 

the results are compared with those obtained using time-series simulation. 
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NOTATION 

The following notation is comprehensive for the main text only. Where 

notation differs in the Appendices (notably Appendices I and II) 

parameters are defined where they first appear and the text may be read 
in isolation from the main report. 

aij, a2 coefficients of conditional expectations, Eq. (5.4.23) 

a abscissa coefficients in Gaussian Quadrature, Eq. (5.6.1) 

A constant coefficient in Pierson-Moskowitz spectrum, 
Eq. (2.3.23) 

or constant in Weibull distribution, Chapter Four and 
Appendix Two only 

A' 

[A] 

Ak 

A 
r 

B 

B 
Je 

C. ii 
{c 

cdf 
cD 

cm 

d 

D 

D 

Det 

exp 
Ef I 

E{N+ (0) 

E{n+(O) IH1/3il 

E[N+IHI/3il 
0 

El -)- E23 

standardised wave amplitude, Eq. (2.3.13) 

transformation matrix, Eq. (5.2.7) 

coefficients of Chebyshev-Hermite quadrature, Eq. (3-5-1) 

member area projected perpendicular to flow, Eq. (2-1-1) 

coefficients of conditional expectations, Eq. (5.4.37) 

constant coefficient in Pierson-Moskowitz spectrum, 
Eq. (2.3.23) 

coefficients of Chebyshev-Laguerre quadrature 

co-factors of [M], Eq. (5.3.2) 

vector of coefficients of conditional expectations, 
Eq. (5.4.42) 

cumulative distribution function 

'Morisons' drag coefficient 
'Morisons' inertia coefficient 

water depth 

diameter of cylindrical member 

structural damage, Eq. (2.3.62) 

determinant 

exponential 
expected value operator, see Appendix One 

long-term mean rate of zero-up crossings of force, type 1 
peak model, Section 3.3 

mean rate of zero-upcrossing§ of swl. under sea state HI/3j 

abbreviations for expectations, Section 5.4 
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f linearised 'Morison' wave force, Eq. (3.1.2) 

f( Y function 

F wave force 

FD drag component of force 

F DN drag component of force normal to member axis, 
Eq. (2.1.3) 

F Dx FD F Dz components of F DN in co-ordinate directions 
y 

{F vector of nodal forces, Eq. (5.2.7) 
e 

F force components i 
F inertia component of force 

F IN 
inertia component of force normal to member axis, 
Eq. (2.1.7) 

Fx, Fyj Fz components of F in co-ordinate directions 

9 gravitational acceleration 

g( function 

G functions of d, L and H in Stokes Wave Theories 

H wave height 
Hi/3 Hs ; -; 'significant' wave height - average height of 

largest (1/3) of waves 
H 'root mean square' value of wave height = YffH--21 rms 
H weighting coefficients, Gaussian Quadrature, Eq. (5.6.1) 

j 
Hn Chebyshev-Hermite polynomial 
i variable 
I annual maximum sea state intensity 
max 

IT sea state intensity of Tr year return period r 
i variable 
k wave number, 27r/L or variable, Section SA 

kD drag coefficient, Eq. (2.3.46) 

kj inertia coefficient, Eq. (2.3.46) 

[K] structural stiffness matrix, Eq. (5.2.8) 

Z variable 
kn; log natural logarithm 

e 
L wave length 

LD time duration (years) 

Lo 2 deep water wave length = gT /27r 

m integer constant 

m i-th moment of spectrum of surface elevation i 
00 . 

w1S (w) dw 
TITI 

-patrJLx of crost-covariances , (cross- correlations). 
Eq. (3.3.6) 
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M n-th order statistical moment n 
M(t) bending moment, Section 5.6.1 

MPPV most probable peak (extreme)value, Section 3.4.1 

n integer constant 
N, number of waves per year 
N+ (Y) rate of up-crossing of level y with positive slope, 

Eq. (2.3.58) 

N(HI/3i, Tzj) total number of peaks in sea state (i, j) during period 
of exposure, te, Eq. (3.4.12) 

P( probability density function 

pdf. probability density function 

PH( Pierson-Holmes pdf, Eq. (2.3.47) 

P( cumulative distribution function, c df, see Appendix One 

P H( Pierson-Holmes cdf. 
P 
Pi cdf. of positive peak values, type 1, Eq. (2.3.58) 

P cdf. of positive peak values, type 2, Eq. (2.3.60) 
P2 

P EP( cdf. of extreme values, Eq. (2.3.70) 

P/H 'Pierson-Holmes' 

P-M(HI/3) Pierson-Moskowitz spectrum defined through HI/3 

P-M(T ) Pierson-Moskowitz spectrum defined through T 
Z z 

P-M(DNV) Det Norske Veritas modification to Pierson-Moskowitz 
spectrum 

Q (a) CO Z (X) dX 

Q(t) shear force, Section 5.6.1 

r; r XIX2 correlation coefficient, see Appendix One 

r. v. random variable 
RXiXj (T) cross-correlation function between random variables xi 

and xj with time lag T 
Rx ; Rij cross-correlation between xi and xj (T = 0), Section 2.3.5 

S 
ixjl 1j 

wave steepness parameter, Eq. (3.2.2) 

swl. still water level 

S( spectral density function 

IS] 'influence' or flexibility matrix, Eq. (5.2.9) 

S 
1P 

S 
ij 

influence or flexibility coefficients 

t time 

te period of exposure 
T wave period or time duration, Appendix One 

T mean zero-upcrossing wave period, Eq. (2.3.22) 
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Tz-1 'long-term mean period factor', Eq. (2.3.32) 

Tr 'return period' 

u horizontal component of water particle velocity in 
direction of wave advance 
du/dt, water particle acceleration 

Uw wind speed 

v vertical component of water particle velocity 

,ý= dv/dt vertical component of water particle acceleration 
VN instantaneous resultant velocity vector normal to axis 

of inclined member 
V_ member volume 0 
VR instantaneous resultant velocity vector = /U-2 _+V2 

w number of occurrences in scatter diagram class (i, j) 
Ij 

w EEW.. 
all ij 1] 

all TZ 
W(HI/si) E wij, Eq. (4.6) 

x horizontal cartesian co-ordinate 

or variable, Section 3.4 

or random variable Appendix One 

X(t) random variable 

Xf fetch length in Jonswap Spectrum, Eq. (3.2.1S) 

X1 mean-zero Gaussian random variables, functions of u, fi, 
Eq. (5.2.2) 

y horizontal cartesian co-ordinate 

or random variable, Appendix One 
{yj vector of nodal responses, Eq. (S. 2.9) 

z vertical cartesian co-ordinate measured +ve upwards from 
sea bed 

1 {_ L 
(y2l ': XP 2, 

coefficient in Jonswap Spectrum, Eq. (3.2.12) 

kurtosis, Eq. (2.3.53) 

random variable 

yp coefficient in Jonswap Spectrum, Eq. (3.2.12) 

Z(. ) dirac delta function 

C spectral band width, Appendix One, Section 1.2.2-3 

water surface elevation relative to still water level 
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x 

0 direction of advance of wave component in 3-D random sea 
0 angle of inclination of instantaneous velocity vector v in x-z plane, Section 2.1. 

11 skewness 

P fluid density 

a standard deviation 

a2 variance 

a ab coefficients in Jonswap Spectrum, Eq. (3.2.12) 
a 

T time-lag 

random phase, Eq. (2.3.1) 

ýP veld6ity potential, Section 2.2 

0 angle of inclination, Fig. 2.1.2 

X2 chi-square distribution, Appendix Four 

angle of inclination, Fig. 2.1.2 
ýlj ý2 mean-zero 'Gaussian' random variables, Eq. (2.3.54) 

x2 mean square value of r. v. x 

W wave frequency, 27r/T 

WO , Eq. (2.3.23) g/U w 
W frequency at peak of Jonswap Spectrum, Eq. (3.2.12) 

P 

Symbols 

mean value 
C) time derivative 
C) second time derivative 
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CHAPTER0N E- 

INTRODUCTION 

Current emphasis on offshore development is aimed primarily at the 
exploitation of oil and gas reserves in coastal and offshore locations 
within the continental shelves throughout the world. The North Sea not 
only represents one of the most intense areas of activity in this 
respect at the present time, but is also subject to some of the most 
hostile environmental conditions encountered for such exploitation. As 
a result, the available technology associated with the extraction of oil 
and gas has been found to be lacking in many areas including the 
structural design of production platforms. 

I The existing generation of fixed production structures are founded on 
the sea bed in water depths notionally up to 200m. with legs supporting 
a deck, located above the level of storm waves, which houses all 
mechanical and electrical plant. Structures installed in the North Sea 

at present are either of the 'jacket' or 'gravity' types. The former 

are steel lattice structures, consisting of vertical legs and cross- 
bracing members of tubular section, supported by piles driven into the 
sea bed. The gravity structures are usually of reinforced concrete, with 
large diameter legs and a base designed to spread the loading over 
large areas of the sea bed, relying on bearing pressures for stability. 

It is likely that even after the development of the 'new generation' of 
production structures, including tethered buoyant platforms and sub-sea 
facilities which will inevitably be required as'exploration ventures 
into water depths in excess of 200m, the present generation of fixed 

structures will still be employed as new fields are discovered and 
exploited in relatively shallower waters. 

The major loads exerted upon these fixed structures result from the 

particle motions associated with the passage of wind generated waves 
over the sea surface, these being far in excess of potential wind or 
'live' (working) loadings. The mechanism giving rise to this random 
oscillatory wave loading is not fully understood and must be expressed" 
by semi-empirical formulae. These differ'in form between t, he two types, -ý 
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of structure, for the generally small diameter members associated with 
steel platforms both viscous drag and inertia effects are significant 
whilst on the larger diameter legs of concrete gravity structures, the 
drag effects are negligible. 

Structures installed offshore must resist these loads for periods of 
exposure of possibly 30 or more years depending on the design life of 
the facility. They must not only be sufficiently strong to resist the 
loading exerted by the passage of the largest wave likely to be 

encountered but must also retain their integrity against fatigue 

resulting from the stress reversals associated with the passage of each 
wave, when there may be of the order of five million waves per year. 

Platforms have been installed for many years in the oilfields in the 
Gulf of Mexico and the majority have endured the wave loading over 
their design lifetimes without significant signs of structural distress. 

However, these structures are located at generally shallower water 
depths than the typical 1SOm. of the Northern North Sea and are subject 
to wind generated seas of only moderate intensity, the most potentially 
dangerous loading conditions resulting from the chance occurrence of 
tropical hurricanes which tend to recur in the area about once every 
five or six years. Consequently, the success of the structural design 

of platforms in this area offers limited assurance to the adequacy of 

current design methods for structures at Northern North Sea locations 

where sea states are of a much increased severity, with the possibility 

of waves in excess of 30m. in height. 

In the Northern North Sea fixed structures have only been installed for 

a small-part of their design lives and no evidence of damage resulting 
from either the loading of individual waves or from fatigue has been 

reported to date. In contrast, a number of'structures installed in the 

gas fields of the Southern North Sea for longer periods, but still short 

of*their design lives, in relatively calmer and shallower waters have 

already shown signs of damage from fatigue. 

The methods of structural design employed to date are largely deterministic 

relying on subjective procedures for the estimation of wave loading.. The 

typical'procedure is, to check the structure for strength and stability, 

against a single design wave chosen to-reprqsent the most severe loading 

I 
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condition anticipated. The form of this wave, being approximately 

sinusoidal, bears little resemblance to the form of real large waves in 

random seas. Furthermore, such a technique permits no reliable 

assessment to be made of the risks of this loading being exceeded during 

the structure's lifetime even if the risk of exceedence of the associated 

wave height is known. 

Fatigue problems were not fully envisaged until fairly recently and 

current techniques for the estimation of fatigue damage make similar 

assumptions to those applied to extreme load prediction. Typically, the 

relationship between the required stress range and wave height is based 

on space frame analysis of the structure under several idealised regular 

waves of different height with associated frequency of occurrence 

assumed to represent the entire frequency distribution of wave heights 

in the real sea. 

Even if it is proved to be the case that structures based on the current 

design methods and installed in the hostile waters of the Northern North 

Sea fulfill their functions without any sign of damage no quantifiable 

indication of possible structural overdesign will be feasible until 

more thorough and physically realistic techniques of wave load 

prediction are developed. This must be of some concern since the 

financial penalties of such overdesign are likely to be severe with 

single production platforms costing in excess of E100m. 

The information essential for the realistic estimation of extreme wave 

loading, and its associated risks of exceedence, required for first 

excursion failure analys-es and the number of cycles associated with each 

stress range, resulting from the wave loading, necessary in fatigue 

analyses may be provided by the long-term probability distribution of 

wave loading. However, this cannot be reliably ascertained from idealisa- 

tions of the random sea surface in terms of a discrete number of 

approximately sinusoidal regular waves. A thorough analysis must 

preserve the randomness associated with the waves throughout the 

transformations from the description of the wave field to the description 

of wave load and the resulting structural responses, such as internal 

stresses or displacements. Both probabilistic and spectral analyses 

would satisfy these requirements. The former method is the most, 

favourable since it can fully account for the non-linearities inherent 

in the above transformations, due to the presence of viscous drag,, 
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yielding the complete probability structure of loading or response. 
Spectral methods can only yield a limited statistical description of the 
loading thus requiring an approximation for the probability structure 

which cannot retain the full effects of the non-linearities. 

The behaviour of the random wave field has been investigated for many 

years, primarily by oceanographers, and there exists today a 

considerable depth of understanding of its statistical properties and 

probability structure, although there still remain some significant 
limitations in the mathematical descriptions of the phenomenon. The 

most notable contributions in this field are summarised by Draperl. 

Significant advances in the description of random wave loading have been 

made over the last fifteen years. The probability structure of loading 

on individual members submerged beneath ocean waves has been developed 

using various techniques by Pierson and Holmes 2, Borgman 3 and 
4 Bretschneider . The allied effects of the superimposition of 

unidirectional currents onto the wave motion and the intermittency of 
loading experienced by members located near the water surface within 

the splash zone have been investigated more recently by Tung 506 
. However, 

all these applications have been limited to the prediction of loading in 

the short-term, over a period of several hours, when the random variation 

of the water surface may be assumed to be statistically stationary. 

An extension of the above procedures was proposed by Holmes and Tickell 

at the University of Liverpool to account for the variations in the sea 

state intensity present in typical long-term wave climates at offshore 
locations. This technique follows an analogous application in the wave 
height domain proposed by Battje S7 and also in the prediction of wave 
loading on marine vessels by S6dinge. 

Even incorporating the above extension, the long-term probability 
distributions of loading on single members are of limited practical 

value. The probability distributions of wave loading or structural 

response at critical locations on complete structures is required by the 

designe 
' 
r. Penzien9 hasýgone some way towards solving the problem using 

spectral methods which yield the frequency spectra of total load or 

response for structures idealised into a number of load components, a 

procedure which may also account for the presence, of dynamic response. 
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However, as discussed previously, spectral methods cannot fully account 
for the non-linearity of the loading mechanism, when transformed to the 

required descriptions in the probability domain, which may be of 

considerable importance for structures where the non-linear effects of 
viscous drag are significant. In these situations, which apply to most 
structures of the steel lattice type, it can be inferred from the 
description of loading on single members 2 that failure to retain the 

non-linearities may result in considerable underestimation of the loading 

or response. 

In view of the above comments the major pre-requisites for the 
improvement of current methods of structural design are: 

i) the combination of the short-term probability distributions of 
loading with descriptions of the long-term wave climate to 

yield the long-term wave load distributions; and 
ii) the extension of these probabilistic techniques from applications 

on single members to complete structures. 

The need for further research along these lines, and into wave loading 

in general, was identified by the British Government and the Offshore 

Structures Fluid Loading Advisory Group (OSFLAG) was formed by the 
Department of Industry (later transferred to the Department of Energy). 

The group identified ten research topics and the National Maritime 

Institute (formerly the National Physical Laboratory) were appointed as 
the main contractor although many of the projects were undertaken by 

other organisations. 

In October 1974 the author was appointed as a Research Assistant on the 
OSFLAG 5 project awarded to Professor Holmes at the University of 
Liverpool, the research undertaken by the author under this contract 
forming the bulk of the contents of this Thesis. The objective of the 

OSFLAG 5 research programme was to provide a method of calculating a 

statistical or probabilistic description of long-term wave loading on 

members of offshore structures based on short-term and long-term 

probabilistic descriptions of wave conditions. The background to the 

problem was stated in the original OSFLAG 5 proposal, as follows: 
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'Regulations concerning the long-term integrity of offshore 
structures which will be subjected to wave action over several 
tens of years are of 

, 
obvious importance. For such regulations 

and in corresponding design computations a unified method is 
required to estimate the lifetime loading conditions imposed 
by waves. 

For particular wave conditions the load on a member can be 
estimated by computations based on a single wave - said to 
represent a given sea state - or by calculations based on the 
probabilistic properties of that sea state, using known 
relationships between wave kinematics and load and accepting 
the limitations thereof. 

The former method leads to a deterministic description of the 
load, the latter to a probability distribution of the load 
which has been shown to give good agreement with measurements 
in the Gulf of Mexico and the North Sea. 

It is then possible to accumulate 'short-term' descriptions 
based on the second method given above according to 'long-term' 
wave behaviour. Although this behaviour is in need of further 
research, it is considered that the Weibull probability 
distribution for wave heights forms a viable basis on which 
predictions of long-term wave loading can be based. 

There is an urgent need to formalise this computational 
process giving loading on a single member in terms of magnitude 
and number of cycles per annum. 

This computation then needs to be extended to entire structures. 
This is a significantly-more-complex problem because of the 
spatial relationships between wave lengths and structural 
geometry. Techniques are available for dealing with such 
correlations and the problem of cyclic loading of complex 
structures is of such importance as to warrant an investigation 
of their use, leading to viable design procedures. ' 

This theoretical, computer based project aimed primarily at loading 

in the drag/inertia regime on steel lattice structures was split into 

two parts; the first involving estimation of the long-term loading on 

single structural elements and the second part involving an extension of 

the methods to include complete structures. 

This Thesis describes the results of work undertaken by the author on 

the above topic. Some of the material included here has been presented 
10-20 

within the OSFLAG report and associated reports and publications 
The study has involved no physical experimentation, although some 
reference is made to both model scale and full-scale wave load and 
response measurements taken by others. The remainder of this Chapter 

summarises the contents of the Thesis. 

I 
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Chapter Two develops the background theory relevant to the probabilistic 
description of long-term random wave loading. It proceeds with an 
outline of the, generally accepted, semi-empirical, 'Morison' wave load 

mode 121 which is applicable to short sections of submerged, objects with 
dimensions such that viscous drag and inertial effects are significant. 
This is followed by a brief outline of the most commonly employed wave 
theories for relatively deep water conditions, which are typical of the 

sites for offshore installations in the North Sea. The linear (or 

Airy or first order) wave theory and Stokes' finite amplitude theories 
for the description of the particle motions beneath regular waves are 

summarised, the particle kinematics of which define the wave loading 

through the 'Morison' model. The significance of the orientation of 

cylindrical members in relation to the direction of the waves is 

reviewed and modifications to the Morison loading model are presented. 

Both short and long-term statistical descriptions of the wave field are 

summarised and the use of such information for deterministic wave load 

estimation is discussed. Limitations in these design methods are 
identified and the case is made for more rigorous non-deterministic 
techniques. Spectral and probabilistic methods are considered in this 

respect and the latter is shown to be favourable for the purposes of load 

prediction in first excursion and fatigue analyses. Models yielding the 
long-term probability distributions of wave load and its peak and extreme 

values are then developed from the probability structure of the wave 
field through transformations involving the Morison loading model and 
first order wave theory. 

The theoretical, procedures described in Chapter Two form the basis of 

the work described herein and are almost entirely the results of 

previous work by others, as may be inferred from the references made 

within the text. 

Chapter Three describes the results of work carried out by the author , 
in-the application of the techniques for long-term wave load prediction. 
Long-term probability distributions of loading and its peak and extreme 

values are presented and discussed and it is demonstrated that linearisa- 

tion of. the loading mechanism, inherent in existing speqtral techniques, 

and as proposed in some probabilistic, approaches'to simplify analysis' 
leads to a considerable underestimation-of extreme loading for small 
diameter members, typiqal of steel structures,, where the, effects of 



-8- 

viscous drag are predominant. The significance of various. theoretical 

spectral models, used to describe the short-term wave field, on the wave 
load prediction is also investigated. Computing requirements for the 

implementation of the probabilistic techniques are considered and since 

these are likel*Y to exceed the facilities available in most design offices 

a useful hand-computation procedure is outlined. 

Chapter Four examines the significance of the wave climate data used as 
input to the probabilistic analyses. The basic requirement that the data 

should cover a complete number of years, preferably greater than one' 

year, is identified. The need for extrapolation of the measured climate, 
to account for severe sea states not experienced, before incorporation 
in the long-term wave load computations is discussed. A method of 

extrapolation is proposed, based on the fitting of the significant wave 
height recordings from the data to a theoretical probability distribution. 

Chapter Five extends the probability theory from application on single 

members to entire structures where the total loading or associated 

structural responses are idealised to result from the combination of a 
large number of individual, correlated, random load components. This 

extension, applied to-short-term conditions-where the wave climate is 

statistically stationary, is shown to be impractical, due to computer 
limitations, for systems of greater than two load components and is, 

therefore, inadequate for modelling all but the simplest of structural 

members. However, by assuming that total load or structural response 

possess the same probability structure as the elemental loading, a 

postulation supported from analysis of model and prototype data, only 
the second and fourth statistical moments are required for definition of 

this probability structure. Mathematical expressions for these moments 

are developed in terms of the known statistics of the wave field and the 

resulting short-term probability distributions of load may be convoluted 

with the long-term wave climate to yield long-term probability distribu- 

tions, in the same way as applied to loading on single elemental members., 

The results of these procedures are applied to idealised systems of load 

components to demonstrate the use of the techniques and are compared 

with those obtained from mathematical time-series simulation techniques. 

The computing requirements for the estimation of the short-term statistical 

moments are still considerable although using this approach the probability 

structure for, systems-up to 35 load components may be determined. 
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Chapter Six contains a summary of the conclusions drawn from the research 

and Chapter Seven presents recommendations for future work. 

Finally, a comment should be made on the form of computation used in this 

study. In the course of the research reported herein a large nuýber of 

computer programs were developed by the author and it would be impractical 

to include listings of the programs here. Consequently, no details 

other than program names (see Appendix Six) are given in the Thesis. 
A document 22 containing the listings of all programs has been compiled 

separately. Multiple comment statements are included to obviate the 
' Fortran IV programming language was need for detailed flow charting. 

used throughout for operation on the ICL 1906S computer at the 
University of Liverpool and the ICL CDC 7600 computer at the University 

of Manchester Regional Computer Centre. 
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CHAPTERTW0 

MEORY DESCRIBING WAVE LOADING AND ITS PREDICTION 

2.1 WAVE INDUCED LOADING ON SUBMERGED RIGID CYLINDRICAL MEMBERS 

Application of the work described herein is intended primarily for the 

structural analysis of the steel lattice, or jacket, type of offshore 
structures against wave loading, for which the diameters of the majority 

of the cylindrical members are less than 20% of the largest wavelengths 

to be encountered. Under these circumstances the loading is in the drag/ 

inertia regime as demonstrated in Fig. 2.1.1 taken from Hogben2S. 

The most generally accepted method for the estimation of loading in the 

drag/inertia regime has developed from an investigation into ocean wave 

loading on vertical cylindrical members by Morison et af 1. The method 

is semi-empirical and is based on the assumption that the total force 

exerted by the fluid is equal to the sum of a drag component due to the 

water particle velocity and an inertia component due to the water 

particle acceleration, the two forces being assumed to develop without 

interaction. 

The horizontal force may thus be expressed by 'Morison's Equation' as: 

F-F+F= -L CpA ulul + CM PV fl D12Dr0 

where FD and FI are the drag and inertia components, respectively; 

u is the horizontal component of the water particle velocity; 

A= iu- is the horizontal component of the water particle dt 
acceleration; 

V0 is the volume of the member; 
Ar is the area projected perpendicular to u; 

p is the fluid density; and 
CD and CM are empirical drag and inertia coefficients. 

The water, particle kinematics u and 6 are the values that would be present 

in the flow field at the location of the centroid of the member in its 

absence. -It is assumed in Eq. (2.1.1) that spatial variations in these, 

kinematics are negligible over the space taken up by-the member. The 
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modulus sign is included to preserve. the direction of the drag component 
of loading which is a function of velocity squared. 

The absolute validity of the linear combination of the two force 

components in Eq. (2.1.1) is open to question since, as discussed by 

Wiege 124, the underlying assumptions for the derivation of the inertia 

component are-violated by the presence-of the effects of drag, inter- 

action effects, therefore, being significant. However, from an 

engineering point of view the model may be deemed to be satisfactory, in 

the absence of a more precise model, in applications to wave loading 

since it has been shown to yield reasonable results. 

In their original work Morison et al were concerned only with the loading 

on vertical cylindrical members for which the total horizontal load per 

unit length is: 

CpDu jul +p 
7rD 2C6 

D4m (2.1.2) 

Little attention has been given to the loading mechanism resulting from 

wave-induced fluid motion around non-vertical members, Eq. (2.1.1) being 

strictly applicable only to a short section of a vertical member, although 

some writers have assumed that the load in any particular direction may 
be derived using only the components of the water particle motions in 

that direction 25,26 
, as may be implied from Eq. (2.1.1). 

A more thorough representation of the loading mechanism for inclined 

members lying in a plane parallel to the wave 
18 

author in association with his colleagues for 

oil production platform. This representation 

principle, recommended by Ilogben et a 127, and 

work by Borgman2e on members of arbitrary orii 

waves. 

crests was developed by the 

application to a North Sea 

follows the cross-flow 
is in agreement with previous 

entation with respect to the 

Consider a unit length section of cylindrical member submerged beneath 

the water surface at location (xO, yo, zo), as shown in Fig. 2.1.2. The' 

.; ý-y plane is horizontal and the member is inclined at an angle ý to the y 

axis 
, 

in the y-z plane. Regular long-crested waves are assumed to advance', 
in the positive x-direction. 
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At a particular iýstant of time the resultant velocity vector at location 

(xo, yo, zo) will be inclined at an angle 0v to the horiz. ontal, as 
indicated in Fig. 2.1.2, where E) varies between 0 and 27T during the v 
passage of each wave. Furthermore, the resultant velocity vector, giving 

rise to the drag component of loading, is out of phase with the resultant 

acceleration vector, giving rise to the inertial component of loading, 

and thus the total force at any instant must be evaluated using vector 

addition of these two components. 

in the super and post-critical flow regimes 27 the contribution of skin 
friction to the total drag will be negligible and the total force may,, 

then be assumed to be determined essentially by the pressure difference 

across the cylinder. Consequently, it acts normal to the member axis in 

the direction of VN (the normal component of the resultant water-particle 

velocity VR) and may be written: 

F= -1 pCD [U2 + (V Cos (2.1.3) 
DN 2D 

The drag components in the co-ordinate directions are: 

F Dx =F DN Cos ýpCDD ulv"u2 + (v cosfl (2.1.4) 

F=F sin ý cos pCD vlv(u2 + (U COS ý)21C6S2* (2.1.5) 
Dy DN 2D 

F Dz 'ý -F DN sin ý sin ý=-F Dy tan ý (2.1.6) 

The inertia loading may be estimated in a similar way if it is assumed 

that only accelerations in a plane normal to the member axis are 

significant 29 
, yielding: 

2 
Fp 7TD c 

M[ 
(CI) 2+(, ý COS ý) 2] 1/2 

IN 4 (2.1.7) 

Reducing this force to its components in the co-ordinate directions and 

adding the appropriate drag force gives the components of the total force 

as: 
Fx pC Du I V(U2 + (V COS +p 

7TD 2C 
CL 

2D4m 

(V COS. ý)21 7rD 2 
2ý F bvl 1/42 + *] Cos P- P4- CM v 

Fy =-F Z" tan ý 

(2.1.8) 

(2.3.9) 

(2,140) 
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For a vertical member ý= 900 and Fx simplifies to Eq. (2.1.2) with 
FY = Fz = 0. Note that in this special case of the general condition the 

vertical member is still subject to the application of the cross-flow 

principle since the resultant water-particle velocity-vector is rotating 
in a vertical plane normal to the wave fronts and, therefore, is 

perpendicular to the member axis under wave crests and troughs only. 

In contrast, a horizontal member with its axis parallel to the wave 

crests represents a condition in which the resultant rotating velocity 
vector is always perpendicular to the member axis, obviating the need to 

apply the cross-flow principle. For such a member 0 and Fx 

simplifies to: 

1: - -1 C Du IV u- 2--+--v-y I+p 7rD 2C 

x2D4m 

A similar expression exists for the vertical loading but with the roles 

of u and v reversed. Obviously, in this situation Fy is zero. 

Whilst the values of CM may be the same for a horizontal member using 

Eqs. (2.1.1) and (2.1.11) a larger value of CD is required in the former 

equation if the same forces are to be predicted. 

Although the above procedure is supported by Borgman 28 and Hogben 27 
, the 

U. S. Army Coastal Engineering Research Centre 30 indicate that from 

experimental work the expressions associated with application of the cross- 
flow principle may not be conservative. They suggest instead the use of 

the actual resultant velocity and acceleration magnitudes in the direction 

of the normal to the member axis in applications using the cross-flow 

principle. As a result of these uncertainties it is recommended in the 

Shore Protection Manual30 that the force per unit length on an inclined 

cylindrical member be taken as the horizontal force per unit length on an 

equivalent vertical pile at the same location. 

It is probably justifiable to say that any of the methods of load estima- 

tion outlined so far would prove acceptable for engineering applications 

by appropriate choice of CM and C D* At this stage it should be 

re-emphasised that the basic loading model and the modified forms 

developed above, as combinations of drag and inertia components without 
interaction, are essentially semi-empirical approximations to the actual 

loading mechanism relying on the choice of CM and CD values to yield a. 
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reasonably close approximation to the actual loading behaviour. In view 

of this uncertainty and the flexibility available in any of the models 

considered, by virtue of the presence of the empirical coefficients, the 

approximations made by assuming the loading in any direction to be of the 

Morison form, developed from Eq. (2.1.1), may well be acceptable for 

engýneering purposes. 

Much effort has been directed towards the evaluation of CM and CD values 
in recent years 27231 

. However, most investigations have suffered from 

considerable scatter, typical values for the coefficients are in the 

range 0.5-1. S for CD and 1.0-2. S for CM, possibly reflecting, the 

II nadequacies and inaccuracies of the wave and loading models. 

However, in order to use the methods of load prediction correctly, and 

thereby reduce the uncertainties, the coefficients chosen in any 

application should be compatible with the form of computation adopted. 
For example, if Morisori's equation together with Stokes, Sth order wave 

theory is to be used to estimate the vertical loading on a horizontal 

member, then the coefficients CM and CD should ideally correspond to 

values obtained from vertical load analysis on horizontal members using 

the same wave and load models. Similarly in non-deterministic investiga- 

tions the coefficients chosen should be the result of statistical analyses 
not values selected for use with deterministic waves. 

In the work described herein only loading of -the Morison form is considered 
in detail, the interpretation being that Morison's equation is applicable 
for loading in any direction on members of any member orientation 

conditional on the appropriate choice of empirical coefficients CM and C D* 

2.2 THEORIES OF PERIODIC WAVES 

There exist a large number of wave theories which describe the form and 

motion of periodic gravity waves, some being more suited than others to 

particular water depth regions. 

Waves may be classified by the depth of water in which they travel, d,, 

relative to their wavelength, L, as follows: 

Deepwater d/L > O. S 

Intermediate water 0.5 > d/L > 0.04 

Shallow water d/L <0.04 
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Since, in the work, described here, attention will be centred on conditionsý 
tending towards, and into, deep water the most applicable wave theories 32 

and the only ones considered here, are the linear wave theory (Lamb", 
34 194S) and the Stokes finite amplitude theories (Stokes , 1880). 

Consider the co-ordinate system shown in Fig. 2.2.1 describing the 
irrotational motion of oscillatory non-viscous water waves of constant 
height and of infinite extent perpendicular to the direction of propaga- 
tion ('long-crested' waves). 

Linear wave theory and some finite amplitude wave theories can be 
developed by the introduction of a velocity potential, 0p such that the 

water particle velocity components at location (x. z) are given by: 

U 
ý, 
Pand v 

4p 
Fx az 

with the requirement'that: 

(2.2.1) 

i) the continuity (Laplace) equation; and 
ii) the energy (dynamical, 'Bernoulli') equation, are satisfied for the 

body of the fluid. 

In addition, the boundary conditions to be satisfied are: 

i) particles on the bed remain on the bed; and 
ii) particles in the free surface remain in the free surface, where 

the pressure must be atmospheric. 

In practice it does not prove possible to satisfy the free surface 
boundary conditions exactly, the 'goodness of fit' has been used to 

measure the accuracy of the theory by Dean 32 and others. 

2.2.1 Linear Wave Theory 

Linear (first order or Airy) wave theory makes the linearising assumption 

that the surface boundary condition applies at z=d rather than zd+ 

the method only strictly being applicable to waves of infinitesimal 

height and of-small steepness. For this theory the water surface 

elevation at'location x and time t is giVen by24: 
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n (X, t) cos (kx - wt) 2 

where H- wave height 

= wave number = 2ff/L 
L= wave length 

W= wave frequency = 2n/T 
T= wave period 

and 
w2= gk tanh kd 

d= water depth 

g= gravitational acceleration. 

(2.2.2) 

(2.2.3) 

The water particle kinematics are expressed as follows. The component 

velocities are: 

U(x, Z" t) =w 
!i cosh kz 

cos(kx - wt) (2.2.4) Z: -- - 2 sEiýU 

v (x 0z t) .w!! [ sinh kz in (kx - wt) (2.2.5) 2 sinh kd s 

and the component accelerations are: 

ü(x, Z, t) = 
Zu 

=w2 
11 cosh kz 

-i -t -! sinK kdl sin(kx - wt) (2.2.6) 

, ý(X, Z, t) = 
LV 

=_W2 
H sinh kz 

cos(kx - wt) (2.2.7) at I sinh 
0 

which are 90* out of phase with their respective velocity components. 

I 
In deep water (d/L > 0.5) the wave characteristics become independent of 

the depth. For first order wave theory the surface motion is sinusoidal 

and symmetrical about still water level. Furthermore, it can be easily 

shown that the water particles move in closed elliptical orbits, 
becoming circular in deep water, as indicated in Fig-2.2.2, returning to 

their original position at the end of each wave cycle. 

2.2.2 Stokes! Finite Amplitude Wave Theories 

In the finite amplitude wave theories the velocit Iy potential is expanded; 

as described by Wiegel 24 
. which yields a symmetrical wave form with 

larger and more peaky crests than troughs conforming more closely to the 
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observed form of steep periodic gravity waves. Particle orbits resulting 
from the passage of each wave are no longer closed, but the particles 

exhibit a gradual forward motion or 'mass transport' effect. 

The solution of the 3rd order approximation 35 results in the following 

expressions for surface elevation and horizontal velocity: 

n(x, t) = Gi cos(kx - wt) + G2 cos 2(kx - wt) + G3 cos 3(kx - wt) 
(2.2.8) 

u(x. z, t) -- G4 cosh(kz) cos(kx - wt) + G5 cosh(2kz), 

cos 2(kx - wt)*G6 cosh(3kz) cos 3(kx - wt) (2,2.9) 
, 

where G are functions of d, L and H. 

Expressions of a similar form involving 5 terms are developed for 

Stokes' Sth order approximation 36 
. 

2.2.3 Utility of Linear Wave Theory 

The 3rd and Sth order solutions are used extensively to describe 

particle motions for deterministic estimation of wave loading on members 

of offshore structures. With precise values of wave amplitude and 

period the higher order (non-linear) theories provide more accurate 

estimates of the wave profile, and the velocity, acceleration and 

pressure fields, than can the linear theory. However, it is suggested 30 

that when estimates of wave height and period are obtained from empirical 
data the uncertainties about the choice of parameters leads to greater 

uncertainty about the final answer than does neglecting the non-linearities, 
hence questioning the justification for the extra effort involved in the 
higher order theories. 

Linear wave theory has been compared with Stokes' Sth order theory by 

the British Ship Research Association 31 for elevations up to the 

surface of large steep waves, although the linear theory should 

strictly only be applied for waves of low steepness and at elevations up 
to still-water-level. It was found that the deviation between the 

particle kinematics and total wave induced force on a typical member, 

estimated_by the two theories differed by at most 10%, the values 
derived from the linear theory being larger. 

A 
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Milgram 26 has stated that most ocean waves are of relatively low steep- 
ness, for which the relative differences between the surface profiles, and 
presumably particle motions, derived by the linear and higher order 
theories are small. As a result of its reasonable approximation to the 
behaviour of regular waves of realistic steepnesses the first order theory 
has become the basis for much of the wave loading work in ocean engineer- 
ing. The major advantage of linear theory is that it is wholly linear 

so that any number of waves, of any height, period or direction, can be 

simply added together to form a realistic sea condition. Also, any 
wave forces which are expressible as linear operations on the sea 
surface are given by the sum of the component forces. These properties 
form the basis of the non-deterministic methods of wave load prediction 
discussed later. 

2.3 PREDICTION OF LOADING INDUCED BY RANDOM WAVES 

The theory outlined so far enables the estimation of loading exerted on 

structural members by particle motions beneath regular waves of constant 
height and period. However, the actual form of the ocean surface is 

confused. Waves are short-crested of differing height and period and 
travel in various directions, the variation of the surface elevation in 

both space and time being of a random nature. 

Under these conditions, it is no longer possible to predict accurately the 

value of the surface elevation, or associated particle motions, at any 

point in space at a particular instant of time, as is the case for 

regular waves, and the most complete description of the phenomenon is 

provided in terms of its statistical properties. 

2.3.11 Description of the Random Wave Field 

The usual method of describing the random behaviour of the ocean surface 
is to consider the sea state to consist of an infinite sum of infinitesimal 

linear waves, each having a random height, period, direction of advance 

and phase. With reference to Eq. (2.2.2) the surface elevation may be 
37. 

expressed as 

H 
n(x, y, t), = En cos(k x cos 0+ky sin. 0 -wtt (2.3.. l 2nnnnnn 

n1 

where x, y are orthogonal co-ordinate axes*in the. horizontal plane-,, -, -j', Iý 
is a-random phase-uniformly distributed between 0 and 27r; and 

0 is the direction of advance measured relative to the x-axis. n- 
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The wave height' components, Hn, are distributed such that in each small 

rectangular element (Aw AO) of the frequency, w, and direction, 0, space: 

(AW 
E 
AG) 

s nil (W, 0) Aw AG (2.3.2) 

where the summation is over the whole of the infinitesimal rectangle. 
Snn (w, 0) is the bivariate spectral density of the sea surface 

at frequency w(> 0) and direction 0. The summation may be interpreted as 

the variance of the sea surface elevations for a confused sea obtained by 

addition of all wave components with frequency and direction of travel 

in the rectangle (Aw AG) centred at point (w, 0). The spectral density, 

therefore, describes, the distribution of the total variance of the 

surface elevation over the (w, 0) space. Also as the wave energy per 

unit area is proportional to the variance of the sea surface then 

S 
TiTi 

(w, 0) can also be considered to represent the distribution of wave 

energy. 

If the spectral density function is known for a particular sea state, 

and noting that kn and wn are related through Eq. (2.2.3), the time 

variation in surface elevation at location (x, y) can be described using 

Eq. (2.3.1) as: 

W 21T 
n (X, Y, t) EE vf2S (w, O)AwAO cos(kx cos 0+ ky sin 0- wt + 

W=o 0=0 TITI 
(2.3.3) 

In a similar manner expressions for the particle motions can be developed 

with reference to Eqs. (2.2.4) to (2.2.7). 

Although the directional distribution of the waves is a significant 
feature of the description of ocean waves, the directional spectrum has 

not been widely used in design computations, partly as a result of the 
37 

lack of reliable measurements. Theoretical models have been developed 

and the subject is receiving much attention at the present time. 

However, since most measurements of wave climate do not include informa- 

tion in the 0 domain, it is common practice to consider the uni-directional 

spectrum S 
nTI 

(w) in engineering applications, where: 

21r 
Snn (W) =ES TITI 

(w, 0) AO (2,3,4. ) 

0=0 
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This approximation'assumes all waves to be long-crested in the predominant 

wave direction yielding, in that direction, a more severe condition as a 

result of the concentration of energy at each frequency component from 

Eq. (2.3.4). Only the long-crested situation is considered herein. 

Using this model the motion of the random wave field may be expressed as 
follows, using Eqs. (2.2.3)-(2.2.7): 

and 

co 
n(x, t) =E V2S 

Tin 
(w) Aw cos(kx - wt 

W=o 
(2.3.5) 

00 
U(XO Z, t) Ew cash kz 

i(2S (w) Aw cos(kx - wt + 
W=O sinh U nn 

(2.3.6) E- v12S uu 
(W) cos(kx wt + 

and W=U 

S (W) cosh kz 2 
(W) (2.3.7) 

uu I sinh kdl Sylyl 

is the horizontal particle velocity spectral density. 

Similarly: 

00 
2 cosh kz ý'(Xlzit) 63 'ýIln-hkd V2S (uj) Aw sin(kx - wt + (2.3.8) 

W=0 
TITI 

00 

=E vý2S66(w) AW sin(kx - wt + 
W=0 

where S (w) = .2 cosh kz 
12 

(W) = W2 S (W) (2.3.9) 61a sinh kdl 
STITI 

uu 

Expressions for particle kinematics in the vertical direction follow in 

the same way with (cosh kz) replaced by (sinh kz). 

2.3.2 Statistical and Probabilistic Properties of the Random Sea Surface 

2.3.2.1 Short-term 

In the short-term, over a period of several hours, the sea state intensity 

can be assumed to be constant. Under these conditions the surface 

elevation spectrum is of constant form and it can be shown that in the 

limit as Aw -ý-O, by the central limit theorem, the randomly varying 

surface elevation is statistically stationary following a mean-zero 
Gaussian probability distribution 38. (A summary of statistical and* 

probabilistic concepts is given in Appendix One). 
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The probability density function (pdf. ) Of rl is,, (see Eq. (I. 32), 
Appendix One) : 

P (TO =1 -xp 
f- 11 

(" -7A 
2 

(2.3.10) 

Yr2-Tr crT, 
2 cin 

where Ebil -0= mean value of Ti (2.3,11) 

GO 

2= EQTJ -S (W) dw 
ti 

- variance of 
Tlyl 

and 
is the expected value operator 

Furthermore, with reference to Eqs. (2.3.6) - (2.3.9), it is clear that 

the water particle kinematics are also mean-zero Gaussian distributed 

random variables with variances obtained as the area beneath their 

respective spectral density functions., This follows both by analogy to 

the above comments and also as a result of the linear transformations 
between n and the particle kinematics given that Gaussian input to linear 

systems produces Gaussian output, a property which can be easily proved. 

The pdf. of wave amplitude, i. e., the heights of the crests above still- 
water level and troughs below, may be expressed as 39 : 

x2 

X(, 
_C2)1/2 

- X(1_C2)1/2 
exp(- 'K2 exp(- 

a2 
P(X) = r2T - --P(- 2ý _C Y) + ý-) da 

(2.3.13) 

where 9= nmax/an or nmin/aTI 
and c= spectral bandwidth (see Section 1.2.2.3, Appendix One). 

For a narrow band spectrum, c=0 and: 

exp (- 
X2 

which is a Rayleigh pdf. (see Section 1.3.1.6, Appendix One). 

For a wideband spectrum, c=1 and: 

p(X) =1 exp(- 
X2 

1 /27 

which is a Gaussian pdf. 
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Spectra can be considered to be of narrow band if the frequency width 
over which the ordinates of S 

nTI 
(w) are significant is substantially less 

than the central frequency within the band. Although most ocean wave 
spectra are not narrow band in this sense, results for a narrow band 

spectrum are still applicable for engineering purposes when primarily 
concerned with extremal stat i5tiCS26. This proposition follows from the 

work of Ochi4O , who investigated the statistics of extreme wave amplitudes, 
which showed that there was little dependence on c in the range 0<c<0.8., 
This range includes nearly all sea spectra 26 as demonstrated for the 
'Famital wave environment in the North Sea by Draper and Driver 41 and 
Saetre 42 

Employing the narrow band model, the pdf. of wave height, H, defined as 
11 between two successive upcrossings of the mean-water-level, Nax 
mid 

is a Rayleigh pdf. given by 

H H. (H) exp[- (2.3.14) -8 4a 
Ti 

and the mean wave height is: 

Iff = 42-Tr cr TI 

also the root-mean-square wave height may be shown to be: 

H= VE-THT' =2 ZI a (2.3.16) 
rms TI 

and the average height of the highest (1/n)-th of the waves, H 1/n' is 39 : 

HH [41--nn + 11 r7, -(l - erf rx-nn)] (2.3.17) 
i/n ý rms 2 

where Yn is the natural logarithm; and 

erf is the error function 

The significant wave height corresponds to a value n 3, hence: 

HH 1/3 
4a 

TI 
(2.3.18). 

)t42 
p(H) 

4H (2.3.19), 
HI/ 37 
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f 
and the cumulative distribution function, cdf. (see Section 1.3.1.2, 

Appendix One) is: 

P(H) =1- exp[- 
2H 2 

Rýj ý31 

Substituting Eq. (2.3.12) into (2.3.18): 

Hl'/s = rmo 

(2.3.20) 

(2.3.21) 

where mo is the zeroth moment of the surface elevation spectrum (see 

Section 1.2.2.2, Appendix One). 

The significant wave height is one parameter used to characterise the 

short-term behaviour of the ocean surface and is obtained from analysis 

of surface elevation records. The other commonly used parameter defining 

the wave intensity is the mean zero-upcrossing period, TZ, the reciprocal 

of the mean number of still-water-level crossings per unit time with 

positive slope, given by (see Section 1.3.4.2, Appendix One): 

m Tz = 21r 
a 

(2.3.22) 12 
A2 

where m2 is the second moment of S 
nn 

(W). 

The probabilistic properties of wave period, T, are more complex than 

those for wave height, the pdf. of T2 being found to be Rayleigh, and 

are little used in practice. 

The parameters HI/3 and Tz are sufficient to define both the probabilistic 

and spectral descriptions of short-term sea states using the most 

commonly employed existing models. The probabilistic description of TI 

obtained through Eqs. (2.3.10)-(2.3.12) is the one parameter mean-zero 

Gaussian process defined by an using (2.3.18). The spectral density 

functions of the wind driven sea surface may usually be defined in terms 

of HI/3 or Tz or both parameters. For example, the much used Pierson- 

Moskowitz spe CtrUM43, obtained from analysis by curve fitting of a 

large number of measured spectra for-fullydeveloped sea states over a 

particular range of wind speeds, may be expressed as a function of wind 

speed, Uw. 9 as,. '' 
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A24 S (w) = -, 
A-f! 

expl- B[(40) 1 (2.3.23) TITI 

where A=0.0081 

B=0.74 

WO = g/u w 

and applying Eqs. (2.3.21) and (2.3.22) the link between wind speed and 

sea state parameters is formed. 

2U 
w2A 

1/2 
(2.3.24) 

and 27rU 
w 1/4 

- (k-d (2.3.25) 
z9 

2.3.2.2 Long-term 

The long-term description of the wave climate describes the distribution 

of wave intensities over periods of typically six months or 'one-year' 

durations. Recordings of surface elevation are often taken for approxi- 

mately 15 minute durations every three hours. Each record can thereby be 

considered to represent a sample from a short-term stationary sea state, 

analysis yielding values of 111/3 and Tz, together with other significant 

statistical parameters. 

Long-term data is often represented in the form of a scatter diagram, 

or bivariate histogram, giving the proportion of the time for which the 

values of HI/3 and Tz fell within certain classes, as shown in Fig. 2.3.1. 

This figure shows results obtained from wave recordings, taken in the 

above manner, from one winter's operation, between October, 1969 and 
March, 1970, by shipborne wave recorder placed on m. v. 'Famital, a 
Norwegian rescue and meteorological vessel stationed. as shown in Fig. 

2.3.2,, in the Northern North Sea in 73m. of water. Also included in 

Fig. 2.3.1 is a prediction of a corresponding scatter diagram for a six- 

month summer period and a summation yielding a predicted one-year scatter 
diagram. The need for extension of the wave climate description is 

expounded in Chapter Four, the one-year Famita scatter diagram-being 

used as input in all long-term computations described herein. 
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2.3.2.3 The long-term distribution of significant wave height 

The marginal distribution (see Appendix One) of HI/3 is obtained from 

the bivariate pdf. of HI/3 and Tz as: 

co 
p(HI/3) p(HI/3, Tz) dT 

z 
(2.3.26) 

and HI/3 
P(HI/3) f p(HI/3) d1lip (2.3.27) 

0 

In the di. screte form of the scatter diagram, we have: 

ýI/si = mid-point of the i-th class interval, in 
AHI/3 = class width of HI/3 
T 

zj - mid-point of the j-th class interval, j=1, ..., m 
AT 

z= class width of Tz 

w ij = number of occurrences in the scatter diagram class (i, j) 

Eq. (2.3.27) may now be approximated as: 

AHI/3 Imnm 

2=ZZw.. / ZSw.. (2.3.28) 
i=l j=i 13 i=l j=i 13 

However, since this expression assigns an incorrect probability of 1.0 to 

the upper limit of HI/3 in the wave data, preventing the upper-most data class 
from being plotted on probability paper, a standard modification is 

applied, as described in Appendix Two, where: 

Ali 1/31mnm 
P(Hl/ wij /( EZ ýw ij + (2.3.29) 

j=i i=l j=j 

This enables all data points to be plotted and has an insignificant 

effect on the cumulative probabilities associated with the other data 

points when the total number of occurrences in the scatter diagram is 

large. 

2.3.2.4 The long-term distribution of individual wave height 

The short-term distribution of individual wave height, H, is given by 

Eq. (2.3.20) but since this is conditional on the sea state intensityl 

defined through Hi/3 and T it is more correct to re-write the equation z 
as a conditional cdf. (See Appendix One); 

H2 
P(HIHI/3, Tz) 1 exp[- 2- (2.3. -ýO) 3 



- 26 - 

The long-term distribution may be obtained, as derived by Battjes 7 as a 
weighted sum, or convolution, of the above short-term Rayleigh distributions: 

- p(III/3, Tz) 
11 2 

P (H) -1 ff 
.. expýf: - 2 -_ } dIIi/3 dTz (2.3.31) 

_7T Tz Hi,, / ay T 

p(HI'/3. TZ) 
where Tz- 

' __ T d1ij/3 dT 
z 

(2.3.32) 
0z 

The division by Tz for each short-term condition Of 111/3, Tz reflects 
the transformation necessary in converting time, given by the scatter 
diagram, into number of waves. 

In discrete form, Eq. (2.31) becomes: 

nH2MW 
P (H) 2 ----i ! (2.3.33) 

[exp{ ; ýl 
HI/311 Tzj 

nmW. . 
where TZ-1 ET 13 (2.3.34) 

i=1 zj 

This cdf. is plotted for the Famita wave climate in Fig. 2.3.3. The 

plot is made on Weibull paper and it is clear that the tail of the 
distribution is reasonably straight indicating that the cdf. of H may be 

approximated quite well by the theoretical Weibull distribution, which 
follows with reference to Appendix Two. 

2.3.3 Deterministic Methods of Wave Load Prediction and their Limitations 

The 'design wave' approach is the most commonly used method for the 
design of structures and structural members submerged beneath ocean 

waves. The objective of the method is to design against first excursion 
failure, to ensure that structural members can resist the greatest load 

likely to occur during a period of exposure in the wave environment. 

In deterministic methods the random behaviour of the loading induced by 

waves is ignored and the greatest load is assumed to result from the 

passage of the largest wave. This wave is then assumed to take the form 

of a single 'regular' wave, having the characteristics developed for the 

motion of regular waves of the same height and period. Wave kinematics' 

are, therefore, developed using an appropriate wave theory', as outlined" 
in Section 2.2, yield 

, 
ing wave loading on structural elements using 

Morison's equation. If the structure is modelled as comprising of. a 
large number of loaded elements a quasistatic structural analysis may'be 
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performed to estimate total imposed loads and moments, internal stresses 

and structural deformations, etc. 

The height of the design wave is often chosen to correspond to a certain 
'design' return period, Tr, typically 50 or 100 years. This represents 

the height of a wave which is equalled or exceeded on average only once 
in Tr years. *Since wave data covering such periods is not available, the 

magnitude of the wave height must be extrapolated from measurements 

covering much shorter periods, possibly using the long-term distribution 

of individual wave heights as introduced in the previous section. 

For example, from the 'one-year' Famita wave climate data the 50 year 

wave height could be estimated using Fig. 2.3.3 as follows: 

Long-term mean number of waves per second T 
Z_ 

lSll 

Number of waves per year, Nj= 4.76S x 106 

Number of waves in 50 years 23.8 x 106 

Prob (H 4 Hso) = P(Hso) =1 23.8 
1x 

105' 0*9999999958 

and extrapolating from the figure, H50 = 26m. 

It must be appreciated in the design wave method that there is always a 

risk associated with the adoption of any design wave height (or design 

return period, Tr) as there is a possibility that a wave larger than the 

design wave will occur during the period of exposure of the structure. 

It can be shown that if all waves are assumed to be independent and if N 

represents the number of waves in one year then for a structure of design 

life L years, the probability that the largest wave will exceed the 

design'wave, H Tr , is: 

Prob(H >H)=1- (1 -1 
LXNI 

(2.3.35) 
max Tr (Tr- -xNi)) 

and since (Tr x Ni) will be large: 

Prob (H H1- [expi- 1 11 
LxNi 

max Tr (Tr- -xNI) 

1- expf- (2.3.36) Tr 

For example, if the design return period Tr was' chosen to be equal to, 

the structure Is design lifetime there would be greater than a 63% chance 

of the design wave height being exceeded. I� 



- 28 - 

Design should generally proceed, therefore, from an assessment of the 

maximum tolerable risk of failure, substitution of which in Eq. (2.3.36) 

would yield the return period to be used as a basis for design. 

Having determined the height of the design wave it remains to estimate a 

wave period to be associated with it. The usual approach appears to be 

to choose a wave profile of near maximum steepness, as measured by the 

ratio of wave height to wave length, the 
, 
latter being expressible in 

terms of wave period for regular waves, for example through Eq. (2.2.3) 

for linear wave theory. Theoretically, the maximum wave steepness is 

approximately 1/7 although analysis of wave data by Howard 44 indicates a 
limit of 1/12. 

As a general rule in design it is often assumed that, for a given wave 
height, reduction in wave period increases the induced loading. However, 

this is only strictly true for members located close to the water surface 

as a result of the hyperbolic decay of the water particle kinematics with 

depth. This effect is demonstrated by the author in reference 20, for 

deep water conditions and using linear wave theory. Hence, although the 

design wave may result in the maximum induced loading on some members of 

a structure, it would not have the optimum period to maximise the loading 

on all other members. 

In view of the above comments, the inherent idealisation of the form of 

the design wave and the non-linearity of the loading mechanism there must 
be some doubt regarding the transformation from a 'risk of wave height 

exceedencel criterion to a 'risk of failure' or 'wave load exceedencel. 

It does not follow that the 100-year design wave will necessarily yield 

the 1100-yearl design load or stress. To obtain a more acceptable method 

of assessing risks of failure the long-term probabilistic behaviour of 

the wave loading and structural response is required. This must be 

developed from the probability structure of the random wave environment 

taking into account all non-linearities in the transformations. 

From experience gained with existing offshore installations, it would 

appear that the current design methods yield structures which are 

sufficiently. strong to resist the extreme loads imposed. Unfortunately,, 

in the absence of the more rigorous probabilistic analyses, the 

efficiency of the designs, as measured by the departure between the" 

r 
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z 
accepted design risk of failure and the risk associated with the 

deterministic loading assessment, is unknown. 

Fatigue failure, of structural members, following periods of exposure to 

the oscillating loads induced by the passage of millions of waves, is of 

great concern to the designers of steel lattice structures. A thorough 

probabilistic description of the peak loading distribution, for transforma- 

tion into the stress range distribution, is essential for fatigue analysis, 

as described by Lin 45 and outlined later. In the absence of probabilistic 
descriptions of load or stress, deterministic design rules, and more 

recently more thorough spectral methodS46 , have been developed, the 

performance of which need to be investigated by the development of 

probabilistic analyses for the non-linear loading situation. 

2.3.4 Non-deterministic Methods of Wave Load Prediction 

From the discussion in the previous Section it is clear that deterministic 

methods cannot be used to adequately describe random wave loading for 

structural design. Random phenomena may be most thoroughly described 

using their statistical properties in association with either time history 

simulation analyses (in the time domain), spectral analyses (in the 

frequency domain) or probabilistic analyses (in the amplitude domain) as 

summarised in Appendix One and dealt with in detail by Bendat and Pierso 147. 

Simulation techniques, considered briefly in Chapter Five, are extremely 
demanding in computer run times and consequently are only really feasible 

for application to short-term conditions. Spectral techniques have the 

advantage over probabilistic methods in that they can be applied to 

analysis of structures which respond dynamically to the wave loading 9P48 

although it would appear that many marine structures are relatively 

rigid for which such effects are thought to be negligible. 

The advantage of the probabilistic approach is that first excursion and 
fatigue damage analyses for structural design involve the use of 

probabilistic descriptions of load or response. Consequently, the 

results of spectral analyses must be transposed to yield the statistical 

parameters necessary to define the relevant probability distributions. 

However, existing (linear) spectral techniques can only develop the 

second order statistical moment, or variance of mean zero processes', 

while the probabilistic. description of non-linear loading of the Morison 
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form' requires knowledge of up to the fourth order moment, as described 

later. 

Statistical moments higher than the second order may only be obtained 
using spectral techniques by extension of the concepts to include higher 

order spectra 492 50. For example, the bispectrum would be related to the 
third order statistical moment and the trispectrum to the fourth moment. 
However, although higher order spectra have received some attention in 

applications to ship behaviours', 52 
, they are far from being 

sufficiently well understood for inclusion in design procedures. 

Consequently, with the limitations imposed by analysis based on first 

order spectra, the usual design procedure is to derive the spectrum of 
load or response and compute the corresponding variances. The 

probability structure of load or response are then assumed to be 

Gaussian distributed and hence may be fully defined by their variance 

when the behaviour is mean-zero. This assumption indirectly implies 

that the loading mechanism can be linearised which will be shown in the 
following Chapter to considerably underestimate the loading, or response, 

under conditions where the effects of drag are significant. 

For these reasons probabilistic analysis forms the most complete and 
direct approach for the structural design of offshore installations for 

which dynamic response is insignificant and loading is within the drag/ 

inertia regime. 

2.3.5 Statistical and Probabilistic Properties of the Water Particle 

Kinematics Beneath Random Waves 

The short-term properties of water particle kinematics at particular 

locations are required as an intermediate step in the transformation 

from a description of the ocean surface to the description of wave 

loading, developed as explained earlier using linear wave theory and 

Morison's equation. 

In Section 2.3.2.1 it was demonstrated that the particle kinematics, u, 

v and -ý, at a particular location are all mean-zero Gaussian 

distributed iandom variables, defined by their variances which are 

obtained as the areas beneath their respective spectral density functions. 
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The relationship between certain pairs of the kinematics are required 
for the development of the probability structure of wave load, for 

example between u and fj or v and ir, as demonstrated in the following 

Section. More generally, the relationship describing the behaviour of 

p4irs of the kinematics at different space locations is required when 

considering the multi-variate loading domain, covered in Chapter Five, 

where the probabilistic properties of the sum of a number of single 
'Morison' load components is under investigation. 

The cross-covariance expressions are of prime importance in this respect 

although these degenerate to the cross-correlation expressions for mean- 

zero variables (see Appendix One). The correlation functions relating 
the value of particle kinematics at location (xi, zj) to those at 
location (X2j Z2) measured T. time units later have been derived by 

Foster 53 
, from expressions of the form of Eqs. (2.3.6) and (2.3.8), as 

follows: 

R 
UIU2 

(T) =R u2ul 
(- T) = E{ul(t) U2(t 

Also: 

and 

Co 
2 cosh kz, cosh kZ2 

=fwS (w) dw. COS(k(XI - X2) + WT) 
0 

Co 

liT1 sinh? kd 
(2.3.37) 

R (T) f w2 S (w) dw. cosh kzi sinh kz2 
sin(k(xl WT) 

U1V2 sinh2 kd X2) + 

(2.3.38) 

R (T) f W2 S (w) dw. s inh kz, cosh kZ2 

sin(k(xl - X2) + WT) 
V1U2 0 

1111 sinh2 kd 

Co 
(Z. 3.39) 

R (T) f W2 S (w) dw. sinh kz, sinh kz2 
cos(k(xi - X2) + WT) 

V1V2 0 1111 sinh2 kd 
(2.3.40) 

a 
R (T) R. (T) = 5-T [ Ru (T) (2.3.41) 

U114 UIV2 IV2 

R. 
a2 

[R 
UIý12 

(T) =3T u IV2 
(2.3.42) 

etc. 

The cross-correlation, or values of the cross-correlation function at 

T=0, are required in probability analysis. 

For kinematics at a single point (i. e., xi ' X2v ýI ' Z2) the cross- 

correlations degenerate as follows, omitting the subscripts: 

t 
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R2; Rv= cf R a. 2; R2 (2.3.43) 
uu uvvu, u 

and 
RR. -R. = uv w uu vv 

(2.3.44) 

which shows that the two velocity components at a point are uncorrelated 

and hence statistically independent (see Appendix One) as are the 

velocity and acceleration kinematics in either co-ordinate direction. 

2.3.6 Probabilistic Methods for the Prediction of Wave Load and 
Associated Structural Response 

The prediction of wave loading considered herein is restricted, as 

mentioned in Section 2.1, to loading mechanisms of the 'Morison' form on 

members which do not respond dynamically and will be limited for 

convenienceto a treatment of loading, in the horizontal direction only, 
from long-crested waves. 

Thus, restating Eq. (2.1.2), the horizontal load per unit length of 

member is: 

kI ii +kD ulul (2.3.45) 

where k CM P 7TD 2 
and kICpD (2.3.46) 4D ý- 2D 

The effects of uni-directional currents and the intermittency of loading 

in the splash zone are not included here, but are discussed in the 

OSFLAG reportslop". 

2.3.6.1 Short-term 

In the short-term the statistical properties of the wave field remain 

constant, conditional on the values of H1/3 and Tz as discussed in 

Section 2.3.2.1, and the random variations in the surface elevation and 

particle kinematics all follow mean-zero Gaussian probability distributions. 

Probability distribution of the basic force variate 

With reference to Eq. (2.3.4S) it is seen that the loading is a zero- 

memory non-linear transformation of the mean-zero bivariate Gau3sian 

process involving the statistically stationary and independent random 

variables u and 6. The probability structure of F may be*obtained from 

V 
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the biVariate pdf. of (u. A) by applying the method of transformation of 

random variables (see Sections 1.3.2.9 and 1.3.3.1, Appendix One), 

yielding: 

00 2 .2 1uu 
exp[- 2- [--T +I du (2.3.47) PH (F) - 21T K CT c. Iuu -CO uu 

where 6= (F -kD ulul)/k, from Eq. (2.3.45). 

The above expr 
, 
ession was developed by Holmes and Tickel 154, the pdf. 

having been derived previously in a different form by Pierson and 
'HolmeS2 

, both expressions requiring numerical integration for solution. 
An alternative expression was developed by Borgman 3 which involves 

tabulated 'parabolic cylinder functions'. 

The pdf. given by Eq. (2.3.47) will hereafter be referred to as the 

Pierson/Holmes, or P/H, distribution. It forms the basis of much of the 

work reported herein and is a mean-zero symmetrical function with all odd 

statistical moments being zero: 

Mn = E{F"I I=0 n= odd integer (2.3.48) 

and, as will be shown later, is fully defined by its second and fourth 

order statistical moments: 

M2 =k12 lie, 2+ 3k D2au4 (2.3.49) 

M4 = 3k 44+ l8k 2k2a. 2a4+ 105k 4a8 (2.3.50) I %. IDuuDu 

Solving the Above equations: 

2 /4 M4 
- 

3M2 1 
(2.3.51) D. 78CFU8 

1 

M2 - 3k 
D2 CrU4] 1/2 

k2 (2.3.52) 

These expressions can be used for the, statistical evaluation of the drag 

and inertia coefficients in Morison's equation, CM-and C DI from analysis 

of records of surface elevation and force, as described by Pierson and 
2. Holmes 

II 

ýa 
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The ratio Of M4 to M2 2 is referred to as the kurtosis, 0, and measures 

the peakiness of the pdf. 

0' M4/M2 2 (2.3.53) 

This parameter may be used to measure-the departure of p,, (F) from the 

Gaussian form, which t4es the value 0=3.0. 

Standardised notation for the Pierson/Holmes pdf. 

There is evidence that the distributions of structural response show a 

similar probabilistic behaviour to that of the wave load5s, a proposition 

to be investigated further in Chapter Five. It is, therefore, appropriate 

to represent the P/H pdf. in a general form directly applicable to either 

loading or response variables. Also, since the pdf. applies to short-term 

stationary sea state conditions it should be considered to be conditional 

on the values Of H1/3 and TZ. 

In standardised form Eq. (2.3.47) for random variable y becomes 14117 : 

co 22 
P (yIHI/3, T)---1[1 2- + 

ý, Iýj 1 dýj (2.3.54) 
Hz 27T cr., 67 f exp{ 2 cy a ý2 -00 

where ý2 '2 Y- ý11ý1 (2.3.55) 

2= 
E{y4 I'l/s, Tz} - 3(E (Y2 }HI/3, Tz J)2 1/4 

(2.3.56) llý 
1 78 

1 

cr ý2 
2= E{y 2 JHI/3, Tz}- 3crý 

14 
(2.3. S7) 

Eq. (2.3.54) describes the mechanism giving rise to y where 1P, and ý2 are 

statistically independent mean-zero Gaussian random variables. Clearly, 

when considering wave load y=F, ýj AE_ u and ý2 =k0. It is also DI 

apparent that the pdf. of y is defined by its second and fourth moments, 

E{y2lHi/3, TzI and E {y4 1"1/3, TzI, respectively. 

The P/H'distiibution is plotted in the standardised form in Fig. 2.3.4, 

taken from Reference 17, prepared by the author on Gaussian paper such 

that the Gaussian pdf. 3.0) plots as a straight line (note that 

a2 E E{y 2 Ifil/3, 
, 

Tz'). This graph clearly demonstrates how the probability 

of occurrence of, high, levels of y can be underestimated by Gaussian 

assumptions. 
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Probability distribution of peak values of random variables following the 
P/H 2df. 

In design applications it is the probabilistic descriptions of the peak 
and extreme values of either load or response, rather than the basic 

variite, that are of most importance. Pistributions of peak values may 
be transformed into the pdf. s of stress range required in fatigue analyses 
to check the long-term integrity of structures and they also form the 
input to the distribution of extreme values necessary for the assessment 
of risk of first excursion failure. 

The peak and extreme distributions of Gaussian distributed linear wave 
loading, generally applicable to members of large cross-sectional area 

where the loading is inertial, see Fig. 2.1.1, have been investigated for 

short-term conditions by Ochi4 0 and for long-term conditions by S6dinge. 

In the past wave loading of the non-linear Morison form, where drag 

effects are significant, has been linearised to an equivalent Gaussian 

process to facilitate investigations into the distribution of peak and 

extreme loading. However, these assumptions may lead to considerable 

under-estimationIz, as will be demonstrated in Chapter Three. 

The theory covering the probability structure of the peaks of random 

variables is given by Lin 45 and Bendat 56 and is summarised in Section 1.3.4 

Appendix One, the important results being presented below for variables 
y having a narrow band spectrum. 

The narrow band assumption for wave loading or response would appear to 
be reasonably well founded since the sea surface acting as the input to 

the system generating y is often considered to be narrow banded, as 
discussed in Section 2.3.2.1. This proposition is supported by Ticke 115 5 

from analysis of prototype data. 

For the narrow band (type-1) process, (see Section 1.3.4, Appendix One) 

the cdf. of positive peak values (maxima) is: 

E[N+(Y)IHI/3,, T 
z Ppl(YIHI/3, Tz)=, I - (2.3.58) 

E{N+(O)IHI/3, Tz 
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co 
E{N+'(Y)IHI/3, TZI -fý p(y, ýJH1/3, T) dý (2.3.59) 

0z 

and E{N+(O) JHI/3, TzI is the expected rate of up-crossing of the mean 
level, y=0, with positive slope. V 

If y and 1( are assumed to be statistically independent a simplified 

expression results, termed the type-2 peak cdf: 

p 
p2 

(YIHI/s, TZ) =1- 
PH(YIHI/3, T 

Z) (2.3.60) 
PH(o IHI/3, TZ) 

and, from Eq. (1.82), Appendix one: 

Co 
E{N+(*)1H1/s, T IHI/3, Tz) fý P(ýIHip, Tz) dý (2.3.61) y PH ('y 

0 

The great advantage of the type 2 approximation is that it represents a 

considerable reducti6 in computational effort over the type 1 approach, 

requiring only the P/H probability densities for its evaluation. The 

performance and relative merits of these two approaches are discussed in 

Chapter Three and have been reported in Reference 12. 

A standardised plot of the type-2 peak distributions of y is made in 

Fig. 2.3.5 which show similar characteristics to Fig. 2.3.4. In the case 

of Fig. 2.3.5 the plots are made on Rayleigh paper since the narrow-band 
Gaussian process (0 = 3.0) has peak values following the Rayleigh pdf. 

Expected fatigue damage 

The expected value of damage per unit time, D', associated with y may be 

expressed, for the type 2 peak distribution, as 6P45 : 

CO 
E{OIHI/3, Tz c-1 E[N + (0) Ifil/3, TzIfYb Pp2 (-Y1111/3, Tz) dy 

-00 (2.3.62) 

where c-1 and b are constants representing the characteristics of the 

fatigue properties of the structural material according to the Palmgrem- 

Miner criterion 57 
.A value of unity for the expected damage represents 

the failure condition. 

i 
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2.3.6.2 Long-term 

Basic variate 

The long-term cdf. of y is obtained by convolution of the short-tirm 
distributions with the long-term wave climate data, in the form of a 
bivariate pdf. of (H 1/3' Tz): 

(» 00 

p (y) =ffPH (ylill/3, TZ) P(Iil/j, Tz) d111/3 dT 
Z 

(2.3.63) 
00 

For the discrete scatter diagram representation of wave climatethis 

equation becomes, with reference to Section 2.3.2.3: 

nmw 
P(Y) -EE [PH(YIH1/3i, Tzj) 

w 
(2.3.64) 

i=l j=i 

nm 
where w=EEW ij i=l j=l 

Peak variate 

Convolution of short-term peak cdf. s with the wave climate proceeds in 

the same manner as previously described for individual wave height in 

Section 2.3.2.4. In this case the transformation from the time domain 

into the number of cycle domains is provided by E{N+(O)IHI/3, Tz) as 
follows, for the type 2 process: 

00 00 E{N+(0)1H1/3, TZ1 
p 
p2(Y) '2 ff Pp2 (y1H1/3, Tz) - p(H1/3. TZ) dHI/3 dT 

Z 00 E(N+(0)1 (2.3.65) 
Co Co 

where E(N+(0)1 =ff E{N+(0)IHI/3, T1 p(H1/3, T )-dH, /3 dT (2.3.66) 
00ZZZ 

An approximation, supported by S6dinge, reduces the computational effort 
by assuming that the mean zero-crossing rate of y is the same as that for 

surface elevation given by the reciprocal of Tz, thus: 

E[N+(O)IHI/3, TZ) = 1/Tz 

and 
E{N+(O)} =Tz -1 

(2.3.67) 

The wave climate weightings are, therefore, assumed to be identical to 

those applied'in the convolution of wave heights and. for discrete wave- 

climate data: ' 

Ii 

II 

4 

$ $1.4 

$ $. $ 
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nmW. 
P (yIHI/3i, T ].: a (2.3.69) 
p2(y) 

E El IPp2 
zj T j= zj 

The implications of this approximation are discussed in Chapter Three. 

Extreme variate 

The distribution of extreme values may be derived from the distribution 

of the peaks by applying the theory of Gumbe 158. If all peaks of y are 

assumed to be independent, the cdf. of the greatest or extreme value In 

N peaks is given by: 

p EP(Y) = [pp (Y) ]N (2.3.70) 

This distribution may be used to assess the risk of exceedence of a 

particular level of y during a period of exposure equivalent to the 

passage of N cycles for application in first excursion failure analyses. 

Expected Fatigue Damage 

The expected short-term fatigue damage per unit time given by Eq. (2.3.62) 

may be convoluted with the wave climate to produce the estimate of mean 

long-term damage in time t: 

CO 00 
E{D'I= tff E{DjIII/3, TzI p(HI/3, TZ) dIII/3 dT 

z 
(2.3.71) 

00 

A less justifiable but more convenient representation may be obtained 

using the long-term peak pdf. in the basic damage formula5s, which is not 

strictly applicable to the non-stationary long-term behaviour: 

00 
EJD'J= t E[N+(O)l c-1 YbP p2(y) 

dy (2.3.72) 

: 

i 
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FIG. 2.2.1. DEFINITION OF TERMS - ELEMENTARY, 
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CHAPT E'R THREE 

PROBABILISTIC WAVE LOADING ON SINGLE MEMBERS 

In the following investigation into wave loading on unit length sections 
of cylindrical members application is restricted to locations beneath the 
'splash-zone', or region of surface wave activity. Within the splash 
zone members are only submerged for a proportion of the time and the 
loading is, therefore, of an intermittent nature. This effect has been 

examined by the author and is reported in Reference 11. A further 

restriction imposed is that the wave field is considered to act on still 
water. The effects of uni-directionýl currents on, the random wave 
characteristics and the resulting fluid loading have also been considered 
by the author and are also reported in Reference 11. In this latter 

study a number of inadequacies were found in existing theory which have 

now been resolved by the author and his colleagues at Liverpool. 59 

Before proceeding it should be emphasised that the long-term wave load 

predictions made in this Chapter are for comparison purposes only. The reason 
for this restriction is that, in all the computations performed herein, 

the long-, term wave climate is assumed to be represented by the Famita 

scatter diagrams of Fig. 2.3.1. In Chapter Four it will be shown that 
for the prediction of extreme events it is necessary to extrapolate the 

wave climate prior to convolution into long-term descriptions of wave 
height and wave load. For this reason most of the long-term distributions 

of wave load presented in the following sections will be truncated at 
the 'one-yeariprobability level (the probability associated with a wave 
load which recurs, or is exceeded, on average once per year). 

3.1 THE EFFECT OF NON-LINEARITY IN THE WAVE LOADING ON ITS PROBABILISTIC 
DDnDPDTTPC 

The objective of this Section is to investigate the departures between 

the long, term. probability distributions of the non-linear 'Morison' wave. 
loading, given by the P/H pdf.., Eq. (2.3-47), and a linearisation of the 
loading mechanism, which yields a Gaussian pdf. of wave loading, for 

typical. Member and sea state conditions. 
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Linearised methods of analysis have been applied satisfactorily in the 

past by Naval Architects for the response of ships to ocean waves 0 They 

are also applied, as indicated in Section 2.3.4, in linear spectral 

analysis techniques9 925. Procedures for the prediction of the extreme 

values of Gaussian random variables are well established and are 

attractive for use in'load prediction by virtue of their relative 

simplicity 83.40. It is, therefore, desirable to demonstrate the necessity 

or otherwise of including the non-linearities in the procedures under 

certain conditions. 

3.1.1 The Linearised Wave Loading Mechanism 

The basic 'Morison' wave load expression, Eq. (2.3.45), may be linearised 

as shown by Borgmanr2o by the supposition that: 

i u 7) uJul = U(al 
/58 

which results from minimisation of the 'mean-square' error in a statis- 

tical sense. 

The force may now be expressed as: 

/8 
kIA+kD au u (3.1.2) 

Clearly, this approximation over-estimates the loading when u is small 

and underestimates it when u is large. 

In the short-term, f follows the Gaussian pdf. since it is now a linear 

combination of the Gaussian variables u and 6. Also, since u and d are 

both mean-zero and are statistically independent, for a sea state 

defined by H1/3 and Tz, we obtain: 

a2=8 kb 2 (T 4+k 
12 

CrCL2 (3.1.3) f 7r u 

and the pdf. is: 

P( f) 
f2 

Z2 -7r a 
xp{- ý, ýfl 
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The long-term distributions of this linearised loading follow in the same 
manner as described for the non-linear loading in Section 2.3.6.2 where 
Eqs. (3.1.3) and (3.1.4) are strictly conditional on the values of HI/3 

and Tz. 

3.1.2 Methods of Computation and Range of Conditions Considered 

Computer program OSF2 (see Appendix Six for a list of computer programs) 

was developed-for the computation of both short and long-term probability 
distributions of non-linear wave loading using a scatter diagram representa- 
tion of the wave climate. In all applications considered herein the 

'one-year' scatter diagram for Famita given in Fig. 2.3.1 has been used. 
The program is essentially-a refinement of an existing program developed 

by others based on the original Pierson/Holmes expression for the wave 
load pdf. 2 referred to in Section 2.3.6.1 and, it has been presented in 

documented form in Reference 10. 

Computer program OSF3 was developed for the linearised loading, it being 

similar in form to OSF2 but with the algorithm for estimation of the short- 

term *P/H pdf. replaced by the Gaussian pdf, Eq. (3.1.4). This program 
has also been documented in Reference 10. 

In both procedures the surface elevation spectrum describing the sea 

state intensity is of the Pierson-Moskowitz form given in Eq. (2.3.23) 

defined in terms of Hi/3 through Eq. (2.3.24). This is the model most 

often adopted in current practice. The effects of the use of different 

spectral forms on the long-term distributions of loading are investigated 

in the following section. 

Computations have been carried out for four typical member diameters 

(0.5,1.0,2.0,5.0m. ) at various depths of immersion below the water 

surface in 150m. of water. This water depth is comparable with that at 

the locations of existing offshore structures although the effects of an 
increase in water depth have been briefly considered. 

To avoid the effects of intermittency of member submergence in the 

lsplash-ýzonel, a minimum depth of immersion of 7.5m. has been considered 

here. This represents greater than 3 standard deviations of, the water 

surface variation under the most intense condition present in, the famita, 

data and hence, the, member will be submerged for greater than 99.7% of the. ý 
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time,, under this sea state and for practically all the time under the less 

severe sea conditions which predominate in the wave climate. 

The majority of the loading computations have been performed with Morison 

coefficients of CM - 2.0 and CD ý "0. these values being within the 

acceptable range referred to in Section 2.1. The effect of change in the 

coefficients has also been investigated. 

3.1.3 Short-term, Conditions 

The departures between load predictions from the non-linear and linearised 

methods 6r sea states present in the Famita data are demonstrated in 

Figs. 3.1.1 and 3.1.2. 

With reference to Eqs. (2.3.49) and (3.1.3) it is appare . nt that the 

linearised, procedure underestimates the variance of loading by: 

[a F2_af 
2] 

= (37T - 8) KD2 clu 4 /7T (3.1.5) 

where aF2 M2 is ihe variance of the non-linear loading. 

The magnitude of this underestimation is shown in Fig. 3.1.1. The 

effect increases as the sea state intensity, defined by HI/3 here, 

increases and as member diameters and depths of immersion decreases. 

This results from the increased weighting attached to the drag component 
in the loading equations under these circumstances. For the most drag 

dependent loading considered the underestimation is seen to be in excess 

of 10%. However, variation in the long-term standard deviation of load 

is only marginal as may be inferred from Fig. 3.1.1. 

For the linearised method the Gaussian loading is represented in Fig. 3.1.2 

by a value of kurtosis of 3.0. The non-linear loading following the P/H 

pdf. has a kurtosis given by Eqs. (2.3.53), (2.3.49) and'(2.3.50) as: 

3k J4 Cr 4+ l8k J2 k22 (1 4+ 105k 48 

a-z2 CY 4)2 (k 2 cr ý+ 3k D 

k2 Cy. 2 
U 3+ {78/(3 + )21 

-D u 
(3.1.6) 
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Hence, for inertia dominated loadin. & k2 cr .2 >> k2 cr 4 
IuDu 

and 0 -+ 3.0 

For drag dominated loadinj kD2au4 >> k12a62 

and a -o-, 11.67 

From Fig. 3.1.2 it can be seen that for the sea state and member conditions 

considered here values of kurtosis in excess of eight are obtained. The 

kurtosis measures the importance of the drag component of loading and 
increases under the same conditions which were shown above to increase the 

underestimation of load variance in the linearised model. 

The significance of the differences in variance and kurtosis obtained 
from the two procedures on predictions of wave loading may be appreciated 

with reference to Fig. 2.3.4 which shows the standardised P/H cdf. for 

various values of kurtosis. On this figure the cdf. of non-linear wave 
loading may be represented by the curve with the appropriate value of 
kurtosis from Fig. 3.1.2. The linearised loading distribution is 

represented on this figure by the straight line with ordinates reduced 
below the line corresponding to 0=3.0 by an amount given by the square 

root of the values from Fig. 3.1.1, representing the underestimation of 

the standard deviation of load. 

For example, for a 0.5m. diameter member at a depth of immersion of 7.5m. 

under a sea state with HI/3 = 9.3m. the linearisation underestimates 
loading at a probability of exceedence of 10-3 by approximately 41% and 

at a probability of 10-4 by 50%, the underestimate increasing rapidly at 
lower probabilities of exceedence. For a 2.0m. diameter member under the 

same conditions the underestimate is 13% at the 10-4 probability level. 

The departures between the distributions of peak loading from the non- 
linear and linearised procedures show similar characteristics to the 

basic loading at low probabilities of exceedence with reference to 

Fig. L3.5. 

However, at probabilities of exceedence greater than about 0.02 the 

linearised procedures predict loads in excess of those from the non-linear 
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method, the effect increasing as the kurtosis increases. This behaviour 
implies that linearisation of the loading overestimates fatigue damage 

associated with the small waves. 

3.1.4 Long-term Conditions 

The long-term cdf-s of non-linear loading are obtained from Eq. (2.3.64) 

for the basic variate and Eq. (2.3.69) for the narrow-band 'type 21 peak 

variate. The distribution of peak values is of-most practical value in 

design, forming-the input in both fatigue and extreme. value analysesý-an4 

-attention is, therefore, concentrated on this variate. 

For the situation where the short-term conditions are defined by HI/3 

only, as considered here, Eqs. (2.3.64) and (L. 3.69) reduce to: 

m W.. nm 
P(F) S [P (F1H1/3i) Z -ýLIP *WZW. - (3.1.7) 

n PH (FI111/3j) m 
P 

p2 
(F) =E1 (OIHI/3i) E (3.1.8) 

i=l 

I 

PH 

IT 

Z- 
I j=l 

For the linearised method the P/H probability densities are replaced by 

the Gaussian values in Eqs. (3.1.7) and (3.1.8). 

In Fig. 3.1.3 short-term cdf. s of peak non-linear loading are plotted for 

a typical member for the conditions present in the Famita wave climate. 
Superimposed on the figure is the long-term cdf. resulting from convolu- 

tion of the short-term values by the wave climate according to Eq. (3.1.8). 

I 

Figs. 3.1.4 to 3.1.6 show the long-term cdf. s of both non-linear and 
linearised peak loading for different member conditions, a more 
detailed presentation being given in Reference 10. These plots demonstrate 

that the characteristics observed in the short-term properties of loading 

are retained in the long-term properties. In Fig. 3.1.4 for the smallest 
diameter member where drag effects are most pronounced, there is only a 

marginal difference between the peak loads predicted at low levels of 

load (or high probabilities of exceedence). For members of larger 

diameter the differences tend to zero as apparent from Figs. 3.1.5 to 3.1.6 

s 'ince the drag effects are less significant. At low probabilities of 

exceedence the linearised method considerably underestimates the loading.. 

For example, at a probability of 2.2 x 10-7, corresponding to the lone-,, 
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year, condition, - the underestimation is approximately 48%, 40% and 15% 

for the O. S, 1.0 and 2.0m. diameter members, there being negligible 
differences in the case of the S. 0m. diameter member. 

Linearisation of the loading results in considerable saving in computing 

costs by virtue of run-time requirements of approximately 10% of those 

required for the non-linear loading computations. This follows because 

the basic loading pdf. is Gaussian in the short-term and hence its values 

can be obtained directly, from Eq. (3.1.4), whereas for non-linear load- 

ing the P/H pdf., Eq. (2.3.47), requires numerical integration for its 

solution. 

3.1.5 Variation in Morison Coefficients 

Fig. 3.1.7 shows the effect of changes in the Morison coefficients for a 

1.0m. diameter, member at an immersion of 15.0m. The pairs of coefficients 

considered for CM and C D' respectively, are (2.0,1.0), (2.0, O. S), (1.5, 

1.0) and (1.5,0.5), these values being representative of a range of 

design values. From the distributions of the non-linear method it is 

clear that at extreme values the drag coefficient is critical, changes in 

the inertia coefficient being significant in the lower range. In the 

linearised method, the changes in drag coefficient are less critical, as 

expected, due to the suppression of the drag term under the large waves 

which produce high particle velocities. 

3.1.6 Variation in Water Depth 

An increase in water depth from 150m. to-250m. has been considered for 

the 0.5 and S. 0m. diameter members. At the 'one-year' probability level 

this change causes only a slight reduction in the non-linear load 

predictions of approximately (1.1,1.5,1.9%) and (0.3,0.4,0.7%), 

respectively, at depths of immersion of (7.5,1S. 0,22.5m. ). This 

indicates that the majority of sea conditions considered were in 'deep- 

water' and suggests also that the results presented here, and those 

presented in subsequent sections for the 150m. water depth, are applicable 

to depths of water in excess of 150m. 
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1 
3.2 , 

EFFECr OF THE CHOICE OF WAVE SPECTRA ON LOAD PREDICTION 

The objective of this Section is to demonstrate how the choice of 

spectral form describing the variation of surface elevation affects the 

prediction of long-term wave loading. 

3.2.1 Spectral Models Considered 

The wave spectra investigated here are all based on the Pierson-Moskowitz 

(P-M) spectrum defined in Eq. (2.3.23), the general shape of which is 

shown in Fig. 3.2.1. This spectrum was developed as an 'average' curve 
fitting measured spectra from fully developed wind generated sea states 

over a limited range of wind speeds. In existing practise the basic P-M 

spectrum is the most widely accepted model for the description of short- 

term sea conditions in non-deterministic analyses. Although other 

spectral forms exist, for example those given by Neumann", Darbyshire 62 

and Bretschneider 63 
, they are little used in engineering applications and 

have, therefore, been omitted here. 

3.2.1.1 Basic Pierson-Moskowitz spectra 

The spectrum, in its basic form, is a function of wind speed Uw as shown 

in Fig. 3.2.1. However, from the properties of the spectral moments, Uw 

is related to the statistical parameters used to describe the short-term 

sea state, Hi/3 and Tz, through Eqs. (2.3.24) and (2.3.25). With 

reference to these equations it is evident that Uw may be derived from 

either Hi/3 or Tz. Consequently, with wave climate data in the form of 

a scatter diagram, for any particular short-term sea state condition, 

representing a single class in this diagram, there will in general be two 

distinct PM spectra developed from the characterising parameters unless 

the values of Hi/3 and Tz yield the same wind speed in Eqs. (2.3.24) and 

(2.3.25). For this condition, 111/3 and Tz are related as follows: 

2 
21T2 HI/3 

zg (A7r) 1/2 

Tz 3-55 A113 in S. I. units (3.2.1) 

This relationship, superimposed on Fig. 2.3.1, 'should be satisfied for all 

sea states if the actual surface elevation spectrum is of the P-M form., 

In practice, sea states deviate from this theoretical form yielding the 

characteristic, scatter in the bi-variate relationship between HI/3 and Tj. " 
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Definink the 'characteristic' wave steepness, s, to be the ratio of lil/3 

to a deep water wave length, -Lo = gT 2 /27r, we obtain: z 

HI/3/1.56T 
z2 

(3.2.2) 

Eq. (3.2.1), therefore, represents a wave steepness of 1/19.67 whilst 
the maximum value present in the Famita scatter diagram is 1/11.6. 

From analysis of seven stations around the British Isles, Battjes 7 found 

the steepness limit to lie between 1/16 and 1/20, with only infrequent 

recordings exceeding these limits. These constants would appear to also 
be satisfied for the Famita location with reference to Fig. 2.3.1. 

The significance of the above discussion is the observation that the vast 

majority of the data points in scatter diagrams from any offshore location 

will represent steepnesses much lower than those required to satisfy 
Eq. (3.2.1). Consequently, wind speed predictions for short-term scatter 

diagram classes based on Tz will on average exceed the values predicted 

by HI/3* 

For practical purposes it is essential to obtain a unique spectrum for 

each class of the scatter diagram to enable the generation of long-term 
descriptions of surface elevation or the resulting wave load variations. 

One approach to this problem is to consider only one of the parameters 
HI/3 or Tz for the definition of each sea state condition yielding spectra 

referred to as P-M (HI/3) or P-M (TZ). Such an approach was applied in 

the previous section, using the former, and is considered to be the most 

appropriate choice, although, from the comments made above it is likely 

to underestimate sea state severity relative to the latter procedure, as 
discussed below. 

An alternative to the above procedures, which retains the basic P-M model, 

uses Eqs. (2.3.24) and (2.3.25) to yield the wind speed as a function of 

the ratio of Hi/3 and Tz 

IT 3B 1/4 Hi/a HI/3 
U=-= 24.32 

w IA TTz (3.2.3) , 

The surface spectrum now becomes a two parameter function of HI/s and Tz 

which permits a more complete description of the wave climate to be 
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developed from the scatter diagram. This approach, would appear to have 

lit tle physical justificat 
' 
ion since the same spectrum is predicted from, 

for example, a sea state with HI/3 = 4.0m. and Tz = S. Osecs. as from 

HI/a = 8.0m, TZ = 10secs. Consequently, it is not pursued further here. 

The implication of the adoption of any of the above P-M models in 

preference to the others is illustrated in Fig. 3.2.2 showing the cdf. of 

wind speed devel9ped from the Famita scatter diagrams from Eq. (Z. 3.34) 

for the P-M (HI/3) approach and Eq. (2.3.25) for the P-M (T 
z) approach. 

From the figure it is clear that the use of Tz for wave climate descrip- 

tion predicts wind speeds in excess of those predicted by the other 

methods. Furthermore, sea state intensity may be measured by the 

variances of surface elevation given by the area under S (w), which for 

the P-M spectrum is obtained from Eqs. (2.3.12) and (2.3.23) as: 

cr 2= Ag 2Z=0.00274 uW 
(3.2.4) 

fill 4B wo ir- 

Consequently, departures in wind speed predictions from the above 

procedures are considerably magnified in the resulting statistical 

descriptions of sea state intensity which form the input into wave loading 

computations. 

3.2.1.2 DNV modification to the Pierson-Moskowitz spectrum 

Det Norske VeritaS64 in their design rules for offshore structures 

utilise the complete wave climate information for the description of wave 

conditions by recommending a modification to the P-M spectrum', referred 

to here as P-M (DNV), given by: 
2 

-5 [. T? f. Tzw. 1 HI/3 TZ 
& exp{- 

1 (3.2.5) Snn (to) ---87rl- L 27-T -] IT L2 iT j 

It is instructive to compare this function with the basic P-M expression 

by expressing both spectra in the form: 

ab 
11TI 

(w) = 7, - expl- -,,, 41 
(3.2.6) 

where'a and b are constants thus demonstrating that, both spectra are-of 

the same shape. 
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Concentrating firstly on the argument of the exponent, for the P-M 

expression: 

4 
B wo 4=B 

-UFL--r (3.2.7) 
w 

and substituting from Eq. (2.3.25): 

B, l E27f 
41 2jr 4 

(3.2.8) B7r 
ýP] :F UP] 

zz 

This expression is identical to the value given in P-M (DNV). 

Constant coefficient, a, in P-M (DNV) is: 
2 

a=[1.4Tr 
3 (3.2.9) T4 z 

Substituting again from Eq. (2.3.25) for Tz: 
2 HI/3 

B4 
U-, g (3.2.10) 

w 

and substituting for HI/3 from Eq. (2.3.24) yields: 

Ag 2 (3.2.11) 

which is the coefficient in the P-M spectrum. 

It may, therefore, be inferred that P-M (DNV) is identical to the basic 

P-M spectrum when the values of H1/3 and Tz satisfy Eq. (3.2.1). It can 

also be easily shown that the spectral densities, and hence the values 

of a,, ', from P-M (DNV) will be less than those derived from P-M (Tz) for 

classes within the scatter diagram for which the significant wave height 

is less than that satisfying Eq. (3.2.1). Since this condition on the 

value of H1/3 is satisfied for the majority of the classes, as discussed 

earlier, it follows that the P-M (DNV) approach will on average predict 

sea state intensities less severe than P-M (T ) but greater than P-M (lil/3)- 
z 

3.2.1.3, JONSWAP spectrum 

The JONSWAP program of research 65,66 demonstrated the existance of a 

significan 
,t 

departure in the spectral shape from the P-M form for fetch 

limited sea states. This conditi. on results from situations where the 

generating wind has not blown over. a sufficýent distance for the'fully 
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developed state to be reached. In fully developed seas the energy 

contained in each frequency band possesses a maximum 'equilibrium' value, 
further energy input increases wave steepnesses causing wave breaking and 

return to the equilibrium condition. 

To account for fetch dependence a modification to the P-M spectrum was 
developed, the main characteristic of which is an enhanced spectral peak, 

as shown in Fig. 3.2.1. The JONSWAP spectrum is a five parameter function,, 

expressible as: 

2 -4 exp [- 
(w-wD) 

S (W) = ag exp I]y 2a26)p (3.2.12) 
TIT1 WS p 

p 

where a= aa if W4 wp 

7 ab 'fW ý" bjp 

and Wp is the frequency at the spectral peak 

In Eq. (3.2.12) the term in square brackets is the P-M spectrum modified 

by the inclusion of a variable parameter a replacing A 0.0081 to 

describe the 'constant' in Phillips equilibrium range 67 The argument 

of the exponential function is unchanged since by differentiation of the 

P-M spectral density: 

4B 1/4 

wp=W0 (t=) [= 0.88wo) (3.2.13) 

Parameters y, cr and Cr describe the shape of the spectral peak as shown 
pab 

in Fig. 3.2.1. These were found to show no definite trend with variation 
in fetch and, constant values are recommended 65: 

3.3; cr = 0.07; Crb «'3 ()'09 (3.2.14) 

The remaining parameters defining the JONSWAP spectrum are fetch 

dependent, the best estimates being 65 

gXf -0*33 
w (2iTg -21 (3.2.1S) 

U 
.pWw 

and' 
Xf -0.22 

9.076{g 1117, U -1 (3.2.116) 
w 

. where x f, = fetcý, 'distance of open sea in the direction of the wind 

available for wave generation. 
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In the engineering applications of interest here wave climate description 

includes the variation of Hi/3 and Tz only, no information covering wind 

speeds and corresponding fetches being available. However, the JONSW, AP 

spectral form can be included in the procedures using a relationship 
obtained as ,., a,, regression fit to data 68 : 

W, 22.036 
5.78(HI/3[ 

IPT-1 
(1.0 - 0.2981n (yp)) 2ff (3.2.17) 

Using this expression the JONSWAP spectrum can be generated for each short- 

term sea state through the value of HI/3 as explained below. 

The procedure, 
'referred 

to hereafter as JONSWAP (HI/3), is iterative since 
for,, a given value of HI/3 values of a and wp must be obtained which 

satisfy Eq. (3.2.17) and which specify theý spectrum, producing an 

estimate of HI/s (from the area beneath S 
TITI 

(w), using Eqs. (2.3.12) and 

(2.3.18)) which is in agreement with the original value. The algorithm 

developed in this study for specification of the spectrum for a given 

value of HI/3 is as follows: 

i) initial estimate of peak frequency, 
0Wp=1. 

llpp_M. here , pp_M is 

obtained from Eqs. (3.2.13) and (2.3.24); 

ii) calculate et from Eq. (3.2.17); 

iii) calculate s ctrum and integrate to obtain Cr 2. 
4cYTIT, nn I 

iv) if 
11- 

HI/31 4 0.01, spectrum satisfactory since it yields an 

estimate of Hi/3 within 1% of the true value; 

V) if (iv) not satisfied obtain a second estimate of peak frequency 

from Eq. (3.2.17) (assuming a to remain un-changed): 

ww[ 
4cr TITI 

4.072 

p2 P1 

vi) repeat (i) to (v) until convergence is achieved. 

With reference to Fig. 3.2.1 the JONSWAP spectrum derived in this way 

will result from the P-M spectrum corresponding to a wind speed less 

than that developed directly from the P-M (H1/3) approach, by virtue of 

the additional area contained beneath the spectral peak, unless the value 

of a departs considerably from A =, 0.0081'when the reverse may be true. 

The purpose of the above comment is, to show that, the JONSWAP spectral,,, 

densities may be, shifted bodily in the frequency domain relative to, the 

significant frequency, range in the equivalent P-M (HI/3) spectra. 
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By analogy to the comments made with respect to the P-M spectrum a similar 

procedure could be formulated for the JONSWAP spectrum based on Tz 

rather than Hip. However, in the absence of an equivalent expression of 
the form of Eq. (3.2-17) relating Tz to a and wP based on data analysis 

such an approach is impractical and is not considered further. 

3.2.2 Transformatibns from Surface Elevation to Particle Kinematics 

Wave' field input to the probabilistic description of loading takes the 

form of short-term estimates of %2 and a,, 2, the variances of water 

particle, velocity and acceleration, as described in Eq. (2.3.47) and 

discussed in the Section 3.1. These variances are obtained as the area 

beneath the respective spectra, developed from S 
nn 

(w) by the transforma- 

tions of Eqs. (2.3.7) and (2.3.9). Examples of the transfer functions for 

'deep-water' conditions are sketched in Fig. 3.2.3. 

For the 150m. water depth considered herein the 'deep-water' limit of 

d/L = 0.5 is represented in the figure by a frequency of w=0.45 

radians/sec, values of w greater than this representing 'deep-water, 

conditions. With reference to Fig. 3.2.1, for wind speeds up to about 

15m/s. for P-M spectra there is little energy (or a negligible portion of 

the total variance of n) contained outside the 'deep-water, frequency 

range. Furthermore, since from Fig. 3.2.2 between 80 and 95% of sea 

states are likely to satisfy this constraint on wind speed, most 

conditions considered here are 'deep-water' as suggested in Section 3.1.6. 

Although wave properties for the most severe conditions will correspond 

to intermediate water depths, the 'deep-water' transfer functions. sketched 

in Fig. 3.2.3 are sufficient for demonstration purposes and their use in 

conjunction with Fig. 3.2.1 provides an appreciation of the process of 

transformation between S 
nn 

(w) and S 
uu 

(w) and S,,, (w). 

Excluding from consideration here the transfer functions for elevations 

within the splash zone, inýline with the comments made 'at the beginning 

of this Chapter, all functions are convergent. Those for acceleration are 

shifted to a higher frequency range than'those for velocity. The 

functions decay in magnitude approximately exponentially, with depth and 

since most peak frequencies are below'w'= 1.0 the magnitude of the peaks 

for velocity are greater than for acceleration due to the W2 multiplie-A 
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This departure in magnitudes combined with the significant frequency 

shift gives rise to a varying relationship between a2 and (;. 2 with uu 
change in depth of immersion and also wind speed as the significant 
frequency range of S 

TITi 
(w) varies with Uw as demonstrated by the plot of 

the P-M peak frequencies, wp, on Fi g. 3.2.3. 

From thecomments made in Section 3.1, and with reference to Eq. (3.1.6), 

variation in the variances of u and fj cause changes in the relative 

magnitudes of the drag and inertia loading components thereby modifying 

the form of the loading distribution through change in kurtosis. A 

, 
detailed investigation into the significance of changes in wind speed and 

member elevation on the relationship between drag and inertia loading 

components is not pursued here. However, these effects are illustrated 

in the following account of the consequences of the use of the different 

spectral forms on long-term wave load prediction. 

3.2.3 Wave Load Predictions from Different Spectral Models 

The results described here were obtained from computer programs OSF2 for 

P-M (HI/3), OSF4 for P-M (Tz), OSF8 for P-M (DNV), OS10 for P-M (Hi/3, Tz) 

and OS22 for JONSWAP (111/3)- 

All programs are based on OSF2 which was used in Section 3.1 and is 

documented in Reference 10, the only differences being in the algorithms 
defining S 

nn 
(w) for each short-term condition considered and the weight- 

ings applied to these conditions in the wave climate convolution for long- 

term predictions. 

Program OSF2 in its documented form conforms to the P-M (HI/3) approach, 

short-term conditions being defined by HI/3 only and long-term convolution 

for wave loading taking the form of Eqs. (3.1.7, ) and (3.1.8). An 

identical procedure is followed for the JONSWAP Oil/3) approach. The 

convol ution for P-M (T 
z) 

follows by analogy as: 

mnw.. 
P (F), 

. -a E [P (FIT )E 11 (3.2.18) 
H zj i=l w 

and 
m (FIT 'n W'. 

p, (F) ýE , [{l 
PH Z3 11E. 11] (3.2.19) 

p2 p701T Tzj 'w j=j H zj 
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where the short-term distribution of loading is defined by, and hence 

conditional on, only the value of T 
z 

In the P-M (DNV) approach short-term conditions are defined in terms of 
both H, and TZ and consequently each class of the scatter diagram 

represents a unique sea state and the 'long-term cdf. s'of wave loading are 
obtained from the general expressions, Eqs. (2.3.64) and (2.3.69). ' 

The variances of velocity and acceleration at a 7.5m. depth of immersion 

were studied for each short-term sea state according to the PrM (HI/3)', 

P-M (T 
z 
'), P-M (DNV) and JONSWAP (H1/3) approaches. The first observation 

from the study was that the JONSWAP (HI/s) approach yields variances in 

close agreement with P-M (HI/3) for'all but the lower intensity sea states. 

This is not unexpected since the value of a from Eq. (3.2.17) correspond- 
ing to Y=3.3, takes a value of approximately 0.005 showing little 

variation with HI/3. Therefore, following the comments made in Section 

3.2.1.3, the area of the P-M spectral shape generating the JONSWAP 

spectrum is reduced by the ratio of A=0.0081 to 0.005 from the 

equivalent P-M spectrum. However, if this reduction in area is of a 

similar magnitude to the area contained in the peak enhancement, 

Fig. 3.2.1, the value of wp for JONSWAP (111/3) will be close to that for 

P-M (HI/3) and both spectra will cover the same range of frequencies. 

This implies that both approaches will cover the same range of 
frequencies in the transfer functions, Fig. 3.2.3, and the departures in 

the resulting variances of u and CL will be small unless the peak 
frequency of the transfer functions falls within the region of significant 

spectral density close to the peak of S 
nTI 

(w). This latter condition 

exists for the iower intensity sea states, with reference to Fig s. 3.2.1 

and 3.2.3. The transformations are, therefore, more sensitive to - 

variations in S 
Mi 

(W) due to the rapid variation the magnitude of the 

transfer functions'in this vicinity and consequently more significant 

departures in a2 and C1.2 result from the two approaches. uu 

The measure of agreement, in the estimates Of (J U2 and' a CI 
2 from P-M (HI/3) 

and JONSWAP'(HI/3)-was also'reflected in the 
, 
values of variance and 

kurtosis of shortý-term wave loading on both O. Sm. and S. 0m. 'diameter 

members. 'The long-term cdf. s of peak loading plotted in Figs. 3.2.4 and 

3.2.5 also retain the agreement with load predictions differing by less 

than St., ' JONSWAP (HI/3) -resulting in the higher'values. - 
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Having compared -JONSWAP., (HI/3) with P-M (HI/3) it is convenient and 

appropriate to compare the remaining-approach with the results from 

. 
P-M (HI/a). Concentrating firstly on P-M (T ) an impression of the z 
effects of its, adoption in wave load prediction in place of P-M (HI/3) 

may be obtained from the distribution of the wind, speed predictions In 

Fig. 3.2.3. The plots in this figure show that more severe conditions 
for the long-term wave climate result from P-M (T ). This leads to a z 
prediction of generally larger waves yielding greater and more drag 

dependent loading since members are correspondingly smaller with respect 
to the waves. -This is illustrated, in the corresponding long-term wave 
load cdf. s as shown in Figs. 3.2.4 and 3.2.5. The departure between 

predictions is less'significant for large diameter members as a result of 

the rI elative insignificancq Of drag effects. For the 0.5m. member 
P-M-(T ) predicts peak forces at the 'one-year' probability level in 

z 
excess of those from P-M (Hi/1) by more than 77% whilst for the S. 0m. 

member this figure is reduced to 24%. 

Use of P-M (DNV) in place of P-M (111/3) is found to produce lower mean 

values of force variance and higher values of kurtosis for most classes of 

HI/3 in the scatter diagram. This results in the long-term standard 

deviation of force, included in Figs. 3.2.4 and 3.2.5, from P-M (DNV) 

underestimating the estimate from P-M (HI/3) by about 9% in both cases of 

member diameter. 

From the long-term distribution of peak loading on the O. Sm. diameter 

member in'Fig., 3.2.4 the slight increase in kurtosis combined with the 

slight reduction in variance from P-M (DNV) produces a cdf. showing only 

marginal departure' from that for P-M (HI/3). However, for the 5.0m. 

diameter member, Fig. 3.2. S, the departure. is more significant with 

P-M (DNV) predicting loading approximately 12% greater than P-M (HI/3) at 

the 'one-year' probability level. This difference in behaviour between 

drag dominated and inertia dominated conditions is probably caused 

primarily by the changes brought about in the kurtosis of the short-term 

loading conditions. Small increases in kurtosis in the. region of the. 

Gaussian limit, where the, kurtosis takes the value 3.0, represented' 
here by all shortrterm sea states for the 5.0m. diameter member, -cause-a,, 

significant change in the shape of the cdf.. iesulting in an increas; ed' 

skewness of-the tail of the'distribution., Tor, conditions of initially 

high kurtosis, on the other hand, reprýA, ente, d by pany of the sea states 
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for the O.. 5m. di 
. 
a. meter member, 

' 
changes in kurtosis 

' 
of a-similar magnitude 

hav6 only a marginal effýct on the, cd. f. as illustrated in Fig. 2.3.4. 

3. '2.4 Critical Assessment of the Spectral Models 

Of the'models considered ýhose, based on short-term sea state description 

in terms Of HI/3 only are favoured since they are considered to be the 

most reliable, and acceptable for use in wave load prediction in engineering 
design. This statement is justified by the following comments. 

Models of this. form are in general, use for the prediction of the 
long-term distributions of individual wave height as demonstrated 

in Section 2.3.2.4 by Eq. (2.3,30), representing the Rayleigh cdf. 

of short-term wave height defined. by HI/3 only. This short-term 

cdf., could equally well be expressed in terms of cr Ti 
2 using 

Eq. (2.3.14) developed from the surface spectrum defined by TZ, Jn 

the manner of that applied in the P-M (Tz) approach. Furthermore, 

with reference to the results of the wave load prediction it may. 
be presumed that such a technique would considerably increase the 

predicted wave heights. However, wave climate description in the 

marginal Tz domain has received little attention and from the 

apparently satisfactory performance of the existing techniques for 

wave height-prediction based on the marginal HI/3 description of 

wave climate it may be surmised that the predictions of wave loading 

based on P-M (Tz) are probably over-conservative. 

2. In many applications the wave climate data, in the form of the 

scatter diagram, may be considered t9 be inadequate for reliable 
long-term predictions to be made, necessitating an extrapolation of 

the data. Such an extrapolation in the bivariate HI/3, Tz domain, 

required for the P-M (DNV) procedure, is too complex to be attempted 

with any degree of confidence using the present state of knowledge. 

Much effort has, however, been directed to the long-term distribu- 

tion of HI/3 with attempts to mathematically model its behaviour 

from extensive data analysis. As a result, acceptable procedures 

for wave climate extrapolation in the HI/3 domain have been 

developed, As discussed in detail in Chapter Four. No such 

emphasis has been placed. on the long-term description of Tz and 

thus little reliability could be placed on data extrapolationsin 

the absence of, an extensive program of wave climate analysis in the 

Tz domain.. 
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Additional 
I 
computational effort is required for the P-M (DNV) 

procedures over that required for P-M (HI/3) or JONSWAP'(til/3) as 
a result'of the greater number of short-term sea state conditions 
considered in the long-term convolutions, as may be deduced from 

the 
' 
form of Eqs. (2.3.64) and (2.3.69) in comparison with Eqs. (3.1.7) 

and (3.1.8). The computer run-times required are directly propor- 
tional to the number of short-term conditions and thus if P-M M1/3) 

and JONSWAP (HI/3) represent 16 units then P-M (DNV) requires 72 

units while P-M (Tz) requires only 10,, units. This considerable 
increase in computing costs and the reasonable measure of agreement 
between P-M (DNV) and P-M (HI/3) for drag dependent members cast 
doubts on the practicality of the use of P-M (DNV) for such 

circumstances. 

From the results presented it would appear that the differences in wave 
load predictions resulting from the P-M (HI/3) and JONSWAP (HI/3) are 

sufficiently small for both approaches to be considered as being equally 

acceptable. However, since the P-M form is the most commonly applied in 

engineering practice at present, this is used as the basis of all 

remaining computations. 

3.3 COMPARISON OF NARROW-BAND MODELS TYPES 1 AND 2 FOR LONG-TERM PEAK 

WAVE LOAD PREDICTION 

The 'type 11 and 'type 21 models for narrow-band peak wave load prediction 

were introduced in Section 2.3.6.1 and are derived in Appendix One, 

Section 1.3.4. The 'type 11 model accounts for the correlation that may 

exist between load, F, and its first time derivative, t, whilst the 

ftype 21 model assumes statistical independence between these two random 

variables. 

The great disadvantage of the more rigorous 'type 11 model is that it 

makes demands on computational effort far in excess of the 'type 21 model 

yielding itself impractical for extensive usage in engineering applica- 

tions. However, it is instructive to investigate the deviations between 

results predicted from the two models. Tickel 15 5 has recently compared 

the distributions'of the above models with a wide-band model (see 

Section 1.3.4.3, Appendix One) for the short-term peak wave loadingý 

covering a practical range of loading non-linearity, described by kurtosis, ' 

in the range 3.34-Z- From these results it was found that the simple 

, type 21 model predicts lower forces than the 'type 11 model, which in 
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turn was in close agreement with the wide-band model. The level of 

underestimation increases with kurtosis, being negligible in the lower 

range but representing values of up to approximately 30% at some 

probability levels for the most non-linear situations. Nevertheless, 

Tickell shows that the 'type 21 model for structural response resulting 
from wave loading compares favourably with observed values, as will be 

further demonstrated in Chapter Five. 

The purpose of this section is to extend the comparison of the narrow 
band models from the short-term wave environment to long-term conditions. 
All the foregoing applications have been made with the 'type 21 model and 
it is intended here to illustrate the implications of the inherent 

simplifications in this preferred model on the long-term peak wave load 

distributions. 

3.3.1 Derivation of the Short-term Type 1 cdf. of Peak Loading 

Iheshort-term cdf. of narrow-band peak load may be expressed, from 

Eq. (2.3.58) as: 

and 

E{N+(F)IHI/3, TZ 
p 
pl 

(FIHI/3, TZ)1 
E{N+(0)1H1/39 T 

zi 1 

(3.3.1) 

Co 
E{N+(F)jH1/3, Tzl, =f fp(F, PIHI/3, TZ) dP (3.3.2) 

0 

is the mean rate of upcrossing of the force level, F. 

The bi-variate pdf. of F and ý may be derived as follows: 

From Morison's equation, Eq. (2.3.45): 

it +kD ulul 

hence: 
4-F k+ 2k (3.3.3) 
dt I Dlullý 

where U= dti/dt. 

Using the method of Appendix One, Section. 1,3.2.9 (with yj E F; Y2 

and defining arbitrary variable ys = u), to enable transformation from the 

known probqbility, domain of u, 6'and u (equivalent to xj, X2. X3 in 

Appendix One) , we obtain: 
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p(F. U) = P(U'p A, u)/k I 

and integrating out u: 

(3.3.4) 

00 

p (F, t) = -C 
1 

j- fp (u, Ct, U) du (3.3.5) 
1 -00 

Substituting for the trivariate Gaussian pdf. of particle kinematics 

from Appendix One, Section 1.3.3.1: 

00 11T 
p (F, t) -- fexp[- -f ful [M]-l (U) ] du (3.3.6) 

(21T) 3/2 k12 Vt-e-tTM] _go 
where M= (u. Q. a) 

[M] is the matrix of cross-covariances 

R 0 -R.. uu uu 
0 R. 0 

uu 
0 R.... 

uu uu 

00 
with R 2 

= cr =fS (w) dw 
uu u uu 0 

00 co 
R.. a. 

2 1S (w) dw fW2. s (w) dw 
uu u 0 a6 0 uu 

R 2 
= cy 

co , 
S (w) dw 

00 
W4 S (w) dw 

uu u ijil 
0 uu 0 

and 
S (W) is obtained from Eq. (2.3.7). 
uu 

Det [M] = cl. 
2 ((1 2 Cr 2 4) 

uuu 

is the determinant of [M]. 

(3.3.7) 

Expanding the argument of the exponential function in Eq. (3.3.6) and 

substituting in Eq. (3.3.2): 

EW(F) IHI/3, T 
zi 3/2 

1 
2VbetTMI 1 (21T) kI 

Co 00 
fFf exp[- 2. (kl, U2 + 2£13 UÜ + k22 ü2 + k33 ü2) 1 du 
0 -co 

where it = (F -kD ulul)/k, 

u=- 2kD[ulfi)/k, 
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jtl, . Cr.. 2/(Cr 2 CT.. l _ Cr. 4, ). 
uuIuu 

y 4) 
13= Cj. 2/(a 2 Cr.. 2 

_ Cf. 
14 uuu 

P-22 ' 1/CTjt 2 

Cy 2/(CrU2 %2 4) cr 
t 33ua 

and the above variances are strictly conditional on the values of Hip 

and T which define S (w). 
z TITI 

1 
3.3.2 Long-term IType 11 cdf. of Peak Loading 

For the dis, crete scatter diagram description of wave climate the long- 

term cdf. of peak loading may be obtained, according to the procedure of 
Section 2.3.6.2, as: 

nmW. .1 P (F) =EE [P (FIHI/3i, T ). E{N+(O)IHI/3i, TII 
P1 i=l j=l P1 zj zj IW E{N+(O)ll 

+ 
(3.3.9) 

and the mean rate of zero-upcrossings of force, E[N (0)11, is given. by: 

nm+ 
E(N (0», =ZZ [E{N (0)IHI/3i, T) lj] (3.3.10) 

i=l j=l zj w 

Consequently, the departures between the 'type 11 and 'type 21 models 
for long-term peak wave load cdf. s given by Eqs. (3'. 3.9) and (2.3.69) 

are two-fold. There is firstly the difference between the short-term 

peak distributions, as investigated by Tickell, and secondly, of more 

concern here, the difference resulting from changes in the weighting 

attached to the short-term conditions in the long-term convolution. The 

latter arises from the departure between the estimates of zero-upcrossing 

rates for force applied in the procedures, namely E{N+(O)lHi/3, T 
Z) 

given by Eq. (3.3.8) for the 'type 11 model and the approximation, 

applied herein for the 'type 21 model, that E{N+(O)IH1/3, Tz ))is equal to 

the rate for surface elevation upcrossings, from Eq. (2.3.67), referýed 

to here as E{n+(O)IHI/3, TZ). It is, therefore, important to investigate. 

the relationship between these two estimates as well as the force 

upcrossing_. -rate for the 'type 21 distribution'from. Eq. (2.3.61). 

referred to as E{N + tO) Hip, TI 
Z 
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3.3.3 Method of Computation 

Computer program OSF6 was developed for the prediction of short and long- 

term distributions of narrow band 'type 11 peak wave loading according 
to the above'procedures. The program follows the same general form and 
notation as program OSF2, referenced earlier. In view of the findings 

of the previous section, the P-M (HI/3) approach has been used and, 
therefore, short-term conditions are considered as a function of Hip 

only. 

Eq. (3.3.8) is solved in the computer routine by constant step numerical 
integration. In line with the procedure used for OSF2, a range of force 

from zero to 8 standard deviations of the most severe short-term condition 

was considered with 10 steps per standard deviation. To ensure stability 

of the numerical integrations in the u and P domains it was found 

necessary to integrate the former between limits of : tSau with steps of 

O. lau and the latter from zero to Sap with O. lap step width, where: 

CIP 
22+ 4k 2 Cf 2 cr. 2 

Duu 

since P is mean zero and random variables u, 0 and fi, U are statistically 
independent. 

In consistency with Sections 3.1 and 3.2 only member elevations beneath 

the splash zone have been considered here, with the minimum depth of 

immersion taken as 7.5m. However, at this location under the most intense 

short-term conditions the estimate of aU2 is sensitive to variation in 

the upper frequency truncation applied on S,,,, (w) due to the w6 multiplier 

in the transformation as demonstrated in Fig. 3.3.1. This arises - 
because moments of S 

TITI 
(w) greater than the fourth are diverg 

, 
ent and at 

locations near the free surface the depth transforms in the transposition 

to the spectra of particle kinematics do not restrict this behaviour. 

Under the most severe sea state with HI/3 = 9.3m, it is found that using 

a frequency truncation of 8wo yields estimates of cr u2 approximately 14% 

greater than for a truncation at 2.75wo. At greater depths of immersion 

the rapid convergence of the depth transformations, which may be deduced, 

from Fig. 3.2-3, reduces the effect of the spectral tails and there is' 

negligible difference in the computed variances. 
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Fig. 3.3.1 also shows that the spectral truncation has a marginal effect 

on the estimate of 0.2 at the 7. Sm. depth of immersion, represented by a u 
3% variation from the above truncation points for 111/3 = 9.3m. Similarly, 

the corresponding departure in aU2 was found to be less than 0.5%. 

However, these departures in au 2P 002 have no discernible effect on the 

results given in the preceding Sections and spectral truncation are not. 
therefore, significant for those situations, the 8. Owo upper truncation 
being used throughout. 

There seems to be no rational basis on which to truncate S 
nn 

(w) when 
divergence occurs and in this Section an upper frequency cut-off at 
2.75wa is adopted. This value was chosen following a trial and error 

procedure to retain a consistent trend in kurtosis for variation in depth 

of immersion up to still-water-level, indicated on Fig. 3.1.2. This 

value has no theoretical justification but is considered to be appropriate 

since it retains the significant spectral mass of S 
nn 

(w) but prevents 
'distortion' of the variances of particle kinematics which would result 
from the transformed spectra due to the probable inadequacies in both tile 

theoretical models for S 
nn 

(w) and the first order wave theory transforma- 

tions in tile high frequency range. 

3.3.4 Results of Computations 

Fig. 3.3.2 shows the cdf. s of short-term peak loading produced from the 

'type 11 and 'type 21 models for the most severe conditions of wave load 

non-linearity, represented by a O. Sm. diameter member at a depth of 
immersion of7.5m, where,, the wave load kurtosis is 7.936. From the plots 
it is seen that a high levels of load the two distributions become 

parallel and the most extreme departure between load predictions, in 

percentage terms, occurs for probabilities in the region of 0.9 to 0.95 

andis of the order of 30%. This behaviour is identical to that shown by 

Tickell's results". 

The long-term peak distributions are plotted on Fig. 3.3.3 for both 0.5m. 

and 2.0m. diameter members at a 7.5m. depth of immersion. For the small 

member the departures between the short-term 'type 11 and 'type 21 cdf. s 

for the high intensity sea states are retained in the long-term descrip- 

tions. The departures decrease with reduction in the non-linearity of 

loading, there being only small differences for the 2.0m. diameter member 

indicated and negligible difference for a 5.0m. member. Increase in the 

depth of immersion reduces the departures. 
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The absence of any apparent departures between the two distributions for 

the inertia dominated loading implies that F and P are statistically 
independent which is to be expected since in the limit F is a function 

of 6 only, t is a function of U, and 6 and ii are statistically independent. 

Furthermore, the agreement also implies that the variations in the short- 
term mean zero-upcrossing rates, E[N+(O)IH1/3) 

I and E(n+(O)IIII/3), have 

negligible effect on the cdf. s. 

Short-term mean zero-upcrossing rates for the entire range of conditions 

considered here are plotted on Fig. 3.3.4. The values for surface eleva- 

tion used in the 'type 21 procedures are represented by E{n+(O)II11/3) FAMITA 
whilst the values obtained from the moments of the P-M spectra for given 

values of HI/3 are represented by Efn+(O)IHI/3)p_M. The differences 

between these values arise from the departure of the real sea states from 

the theoretical P-M form as discussed in more detail in Section 3.2. 

The short-term values of EIN+(O)IHI/3) 
I are seen to decrease with increase 

in sea state intensity (or H1/3) and decrease in both member diameter and 

depth of immersion. This behaviour can be understood by considering the 

frequency spectrum of force since the estimates of zero-upcrossing rate 

can be obtained from Eq. (1.71), Appendix One, as: 

+1 F22 
E{N (O)IHI/31 ý-- TV mo Tr mn 

where mo and m2 are the zeroth and second moments of the force spectrum 

(Section 1.2.2.2, Appendix One). It is not necessary to develop the 

force spectrum, as it is sufficient to appreciate that a shift in the 

significant frequency range covered by the spectrum affects E{N+(O)IHI/3). 

a positive shift (to higher frequencies) increasing the ratio M2/mO and 

thereby increasing the zero-upcrossing rate. The relevant frequency 

range can be deduced from that of the spectra of u, fj and ii, which in 

turn can be inferred from Figs. 3.2.1 and 3.2.3. 

The zero-upcrossing rates for force based on the 'type 21 approach have 

not been investigated directly. An estimate has been made based on the 

assumption of linearity of the loading since for such a Gaussian process 

we obtain, from Section 1.3.4.2, Appendix One: 

E[N+(O)IHI/3) (3.3.12) 
22 7r cr F 
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This expression has been evaluated for the most non-linear loading 

condition and is compared with the 'type 1, estimates in Table 3.3.1. 
From the table it is seen that the difference between the estimates is 

only marginal. It may, therefore, be inferred that statistical dependence 
between F and has negligible effect on the zero-upcrossing rates since 
it might be expected that the correct value of E{N+(O)j111/3) 

2, 
from 

Eq. (2.3.61), which retains the non-linearity in the loading, would lie 
between the two estimates considered above. 

Returning to Fig. 3.3-4, it is evident that the Famita estimate of 

surface elevation zero-upcrossings lies within the 'band' of the force 

zero 
, -upcrossing for almost the entire range of short-term conditions 

demonstrating the acceptability of the simplifying assumption in the 
'type 21 approach. The only significant departures are in the lowest 
intensity. conditions which have negligible effect on the long-term load 
distributions. As mentioned previously, from the apparent coincidence 
between the 'type 11 and 'type 21 models for inertia dominated loading 
it can be concluded that the long-term peak load distributions are 
insensitive to moderate changes in the short-term zero-upcrossing rates 

and, therefore, the most appropriate model for practical application is 

that requiring the minimum amount of computation effort, namely 
EfTl+(O) IHI/31- 

It should be appreciated that interpretation of the peak cdf. s does 

vary slightly with the model adopted for the upcrossing rates as may be 

deduced from the probabilities assigned to the 'one exceedence per year' 

condition indicated in Fig. 3.3.4. However, variation in load predictions 
due to this effect is unlikely to be of significance. 

3.4 PREDICTION OF EXTREME WAVE LOADS 

Design against first excursion failure requires the consideration bf 

probability distributions of the extreme value of wave loading to be 

experienced during the period of exposure of the structure. The cdf. of 

extreme positive peak wave loading may be obtained directly from that of 

the positive peak loading from Eq. (2.3-70) under the assumption that 

the peak loads are independent: 

p EP (F) [P 
p 

(F) 1 (3.4.1) 



- 74 - 

where N is the number of force peaks expected during the period of 

exposure. 

For a period of exposure, te, we haVe, for a narrow-band 'type 11 process: 

Nte E{N+(O)li (3.4.2) 

where the long-term mean rate of zero-upcrossings of force, E[N + (0)), is 

obtained from Eq. (3.3.10). 

For the 'type 21 processes applied herein, the zero-upcrossing rates of 

surface elevation have been used, as discussed in Section 3.3, and thus: 

N=te Eiii + (0) 1=te Tz- 1 

where Tz -1 is defined in Eq. (2.3.34). 

(3.4.3) 

Since the underlying distributions of wave loading are symmetrical the 

probability distributions of negative peak and extreme values will be 

identical to those of the positive values considered herein. In many 

applications of first excursion analysis it is the absolute value of 
force which is required and thus, if the positive and negative peaks are 

assumed to be independent, Eq. (3.4.1) becomes: 

p EP 
(IFI) = [P 

p 
(F) 12N (3.4.4) 

where 2N now represents the total number of extrema. 

In this Section the extreme values of positive loading are developed 

from the distributions of peak loading derived from some of the models 
investigated in the previous Sections of this Chapter. 

Before proceeding it should again be emphasised that the results of this 

study are for comparison purposes only. Wave climate description used 
here is in the form of the Famita scatter diagrams of Fig. 2.3.1. In any 

real application'the wave climate should be extrapolated to cover a 

period in excess of the period of exposure under investigation, as 
discussed in detail in Chapter Four. In this study it is assumed that 

the long-term distributions of peak force derived previously represent 
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the complete long-term behaviour in the absence of the arbitrary 
truncation at, the 'one-year' level applied in the foregoing graphical 

presentations. 

3.4.1 Behaviour of the Wave Loading Models of Sections 3.1 to 3.3 in 

the Prediction of Extremes 

The probability distributions of extreme wave load have been investigated 

for a range of member diameters and depths of immersions. A summary of 

the results for the O. Sm. and 5.0m. diameter members at a 7. Sm. depth of 
immersion is presented in Tables 3.4.1 and 3.4.2 and the pdf. s for the 

drag dominated condition are plotted on Figs. 3.4.1. Variation in the 

properties of extreme loading due to change in depth of immersion or 

member diameter reflect the behaviour observed in the high load regions 

of the distributions of the peak variate discussed previously and are, 

therefore, omitted here. 

In the tables three levels of extreme force are included for description 

of the properties of its probability distribution. Each estimate of 

force is associated with a different probability of being exceeded in a 

partigular period of exposure. The estimates are as follows: 

(a) The Most Probable Peak Value (MPPV) representing the force at the 

mode (or maxima) of the pdf. From Eq. (3.4.1) the pdf. of extreme 
force is given by: 

dP EP (F) 
N-1 

PEP (F) 
dF = N[P 

p 
(F) 1pp (F) 

and the mode is obtained as the solution to: 

d PEP (F) 
= 0, yielding 

d {p (F) 1= (N-1) [pp (F) 12/pp (F) 
dF dF P 

This expression cannot be solved analytically since the mathematical form 

of pp (F) and Pp (F) are not known explicitly. However, it is found that 

the moýt probable peak force is, not surprisingly, in agreement with the 

load prediction abstracted from the cdf. of peak loading at the relevant, 

probability level. This follows since for F- MPPV. the peak probability 

is given by'P (F - MPPV) -- 1 where N is the number of waves. 
PN 

Substitution into Eq. (3.4.1) yields P EP (F = MPPV) = exp(- 1) = 0.3679 
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and this is satisfied from the discrete cdf. s computed herein for both 

0.5 and 5.0m. diameter members at depths of immersion of 7.5,1S. 0 and 
22.5m. With reference to Eq. (TI. 4), Appendix Two, it may, therefore, be 

implied that the cdf. s of_extreme values follow the Gumbel distribution 

as demonstrated later. 

(b) The expected extreme force, t{F is obtained as: MAX 
Co 

E{F MAX 
f Fp. p(F) 

dF (3.4.5) 

I 
and, therefore, represents the centroid of the pdf, ýcorresponding to a 

force in excess of the MPPV value due to the positive skewness of the 

pdf. demonstrated in Fig. 3.4.1. 

(c) With reference to Fig. (3.4.1) it is apparent I that there is a high 
iIi 

probability that the MPPV and E{F estimates willýbe exceeded. It is, 
MAX i 

therefore, desirable to predict an extreme value with only a small 

probability, a, of being exceeded. In Table's 3.4.1 'and 3.4.2 a level of 

a=0.01 is taken which may be described asithe probability that one 

member in 100 members, all exposed to statistically 'identical environments, 

will sustain a load greater than the value quoted. 

The periods of exposure considered here, and previously reported in 

Reference 12, are 'one-yearl, lsix months summerland'six months winter', 

each of which was applied in conjunction with the relevant scatter 

diagrams1in Fig. 2.3.1. As a further1consideration a period of 

exposure of 50 years has been investigated 
ýased 

on 
i 
the 'one-year' data 

set. 

I 
The distributions of 'extreme force-for the 'one-year' data set are 

identical to those for the six winter monthýperiod b ecause summer 

conditions I (HI/3 < 5.4m. ) never reach sea s ate intensities sufficient 

to cause peak forces of a magnitude comparable with those in the winter 

distributions. 

In Tables 3.4.1 and 3.4.2 it is seen that týe'departures between the 

'type 11 and 'type 21 narrow band models fo low the behaviour at high 

force. levels in the peak cdf. s. This is as expectedlin view of the 

correlation between MPPV and the Ire! turn-period' estimates from the I peak 
I 

cdf. s as -mentioned above. 
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Instability was experienced in the extreme pdf. s derived from the 

'type 11 model in the upper force range considered. The force range 

covered in the computations extended from zero to 15 standard deviations 

of force for the most intense short-term condition as opposed to only 

eight standard deviations employed for the basic and peak cdf. s. The 

inaccuracy in the computations results from the errors inherent in the 

numerical integrations required for the removal of P and u, as explained 
in Section 3.3. Unfortunately the errors could not be suppressed by 

increase in the precision of the integration (through reduction in step 
lengths and expansion of the range of the variables covered) due to 

computer run-time limitations thus further emphasising the impracticality 

of. the 'type 11 model. 

The comments relating to the spectral forms in Sections 3.2 are also 

reflected in the extreme value statistics as demonstrated here by 

results for the P-M (DNV) approach. in tables 3.4.1 and 3.4.2. 

The linearised method of Section 3.1 underestimates extreme values with 

respect to the non-linear procedure at the MPPV and E{F MAX 
I levels by 

amounts in close agreement with the values quoted in Section 3.1.4. 

These values were measured from the peak cdf. s and correspond to 

approximately 48% for the 0.5m. member under the 'one-year' wave climate. 

However, it is seen in Fig. 3.4.1 that the linearised method gives 
density functions which are much narrower than the non-linear method for 

the conditions where drag is important. The change in shape of the pdf. 

is important in the consideration of force estimates at the a=0.01 

level. From Table 3.4.1 the under-estimation is 58%, a further 21% on 

that at the MPPV level due to the extended tail in the non-linear 
distributions. 

3.4.2 Long-term Extreme Force Distributions From the Short-term Extremes 

The agreement between extreme load estimates from the winter and 'one- 

year' data sets implies that lower intensity sea states have negligible 

effect in the prediction of extreme values. 

The significance of particular short-term conditions on the extremes may 

be assessed by expansion of Eq. (3.4.1) as follows: 

For the general narrow band condition, substituting from Eqs. (3.3.9) and 

(3.3.1) into (3.4.1): 
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nm E{N+(')IHI/3i, Tzjl E{N+(0)1"1/3i»Tzj_I w.. IIN 
p EP 

(F) E 
E{N+(0)IHI/3i, T }) E{N+(0)} 

zj 71 
1nmW. 

N 
1.0 -EE E[N+(F) 1111/3i, T I _a (3.4.6) 

E[N+(O)l i=l j=l zj w 

In the study of extremes high levels of force are of primary importance, 

where the mean upcrossing rate of threshold level F, E{N + (F)1111/3, Tz1. 

for the highest intensity sea state is much less than the long-term mean 

zero-upcrossing rate, EIN + (0)1, and is, therefore, even smaller for the 

lower intensity conditions. Consequently, it follows that the summation 
in Eq. (3.4.6) will be much less than the denominator for the significant 

range of forces in the pdf. of extremes and hence Eq. (3.4.6) is of the 

form: 

p EP 
(F) [1.0 X] 

which may be approximated by: 

[1.0 - X] 
N- [expf- xl] 

N. 
expf- Nxl 

Using Eq. (3.4.2): 

nm 
p EP 

(F) = exp tei: E 
1- 

i=l j=I 

W. 
[E{N+(F)IH1/3i, T 

zj 

(3.4.7) 

(3.4.8) 

(3.4.9) 

all i, jw i* H [exp t E{N+(F)IHI/3i, TIw (3.4.10) -ý e zj 
PW* 

all ij 
where JI[ I represents the product of all short-term values of the 

argument. 

Rearranging this equation using Eq. (3.4.8): 

all ij E{N+(F)IHI/3i N(lil/3i, Tzj) 

p EP 
(F) = 11 1.0 -- (3.4.11) 

I 

E{N+(O)IHI/3i, T 
zj 

I-I 

where N(HI/3j, Tt E{N+(O)IHI/3i, T} 
w'j 

(3.4.12) 
zi e zj w 

total number of peaks occurring in sea state given 
by (HI/3i, T 

zj 
) during period oUexposure. 
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Hence: 

and 

, all ij 

.p EP (F) 11 p EP 
(FIHI/si. T 

Z] 
) 

p EP 
(FIHI/si, T 

zj) = [p 
p 

(FIlli/3j, T 
zj) 

I N(Hj/sj, Tzj) 

(3.4.13) 

(3.4.14) 

The probability distribution of the extreme value of force may thus be 

expressed as the product of the short-term extreme distributions. 

Furthermore, as only high levels of force are of interest (large compared 

with the standard deviation of force for the highest intensity sea state) 

the value of P EP 
(FIHI/3, Tz) will be unity for many of the lower intensity 

sea states since for these conditions all the short-term peaks will be 

lower than the thresholds of force considered. For example, suppose in 

the investigation of extremes, F>F EMIN then for a particular sea state 

denoted by (Hi/3j, Tzj): 

pp (F 
EMIN' 

Fli/3j. 9 T 
zj 

)=1.0 

as observed from Fig. 2.3.5 and similarly for sea states of lesser 

intensity, hence Eq. (3.4.13) becomes: 

p 
EP 

(F) = 11 p 
EP 

(FIHI/3i, T 
zj) 

(3.4.1S) 

For the 'type 21 process considered here and considering the P-M (HI/3) 

approach, the short-term extreme distribution, Eq. (3.4.14), simplifies 

to: 

P, H 
(F 111/3i) 

N(HI/3i) 

p 
EP 

(FIHI/3i) 1-0 - -(OIHI/3i) (3.4.16) 
PH 

I 

where N(HI/3i) t Efn+(O)IHI/3i IE 13 (3.4.17) 
m W** 

e j=l W 

and from Fig. 3.3.4. the mean zero-upcrossing rate associated with HI/3i 

for the Famita data is: 

m W.. m 
E[Tl+(O)IHI/3i) =E (yý)/ Ew 

ij j=l zj i=l 
(3.4.18) 

Values. of N(HI/3) for the 'one-year' Famita, data are derived in 

Table 3.4.3 according to Eqs. (3.4-17) and (3.4.18) witha, one-year 

period of exposure. The resulting short-term pdf, s of extreme peak force 
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on a 0.5m. diameter member from Eq. (3.4.16) are plotted in Fig. 3.4.2 

for HI/3 in the range 4.5 to 9.3m. Also included in the figuie, is the 

long-term pdf. of extreme peak force for a one-year period based on the 

'one-year' wave climate. 

The cumulative probability for these distributions at any level of 
force is represented by the area contained beneath the pdf. up to that 
force level and the cdf. s are plotted for the short-term conditions in 

Fig. -3.4.3 . For long-term distributions the cumulative probability is 

the product of the short-term values at each force level considered, 

also plotted on Fig. 3.4.3. From inspection of Figs. 3.4.2 and 3.4.3 it 

is seen that the significant force range of the long-term distribution 

represents cumulative probabilities of effectively unity for sea states 

of Hi/a = 4.5m. and below. 

Fig. 3.4.3 is plotted on Gumbel paper and the straightness of the cdf. s 
implies that the extreme forces for both long and short-term conditions 
follow the Gumbel distribution (see Appendix Two). However, this does 

not permit a simplification in the procedure for derivation of the 

extreme cdf. s since an estimate of the variance of extreme values in 

addition to the mode (given by the MPPV obtained from the peak cdf. ) is 

required for specification of the Gumbel distribution. ' 

An important observation to be made from Figs. 3.4.2 and 3.4.3 is the 

fact that it is inadequate to estimate extreme values from the 

properties of only the highest intensity short-term condition, a concept 

which is not always fully appreciated. 

3.5 COMPUTATIONAL CONSIDERATIONS: USE OF QUADRATURE METHODS FOR RUN- 

TIME MINIMISATION AND A TECHNIQUE OF HAND CALCULATION 

3.5.1 Approximate Integration Using Quadrature Methods 

In the preceding Sections of this Chapter it has been shown that 

retention of the non-linearity of the Morison wave load equation implies 

considerable increase in computation effort due to the numerical 
integration required for solution of the probability densities of short- 

term wave loading (Eq. (2.3.47)), Furthermore, if the 'type 11 model 
for narrow band peak load is considered a further level of numerical 
integration is required (Eqs. (3.3.1) and (3.3.8)). For this latter 

method numerical instability in the solutions are experienced in the 
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prediction of extreme values due to errors inherent in the constant step 
integration procedures employed, the sensitivity of the discretisation 

being limited by computer run-time limitations. 

As an attempt to reduce the computer run-time requirements for the non- 
linear probabilistic methods and to improve the accuracy of computation 
for the 'type 11 peak cdf. s, the viability of using quadrature techniques 

of approximate integration of Eqs. (2.3.47) and (3.3.8) was investigated. 

The relevant quadrature formulae are of the 'Gaussian-liermitel and 
'Gaussian-Laguerrel, type S69. 

For Gaussian-liermite Quadrature 

00 2n (n) (n) f e- f (x) dx =ZAkf (X k 
_Co k=l 

(3.5.1) 

the integral is approximated by a summation of terms where (x k' Ak) are 

the function point and coefficient respectively of the Chebyshev-liermite 

polynomial of degree n. The quadrature yields an exact solution whenever 
f(x) is expressible as a polynomial of degree 4(2n - 1). 

Similarly for Gaussian-Laguerre Quadrature 

Co 
fx e- f (x) dx =ZBZf (X x 0 £w- 1 

(3.5.2) 

where (x,, B. ) are the function point and coefficient, respectively, of 

Chebyshev-Laguerre polynomials of degree n. 

3.5.1.1 - Application for solution of Pierson-Holmes probability densities 

of wave load, Eq. (2.3.47) - 

Eq. (2.3.47) can be expressed in the form of Eq. (3.5.1), yielding: 

1 
PH (F) =EAkf (X 

k) 
(3.5.3) 

ýfir k ci. k=l 
1u 

where x= ulr2a u 
and 

(x) - exp f- 1 (F - 2k (3.5.4) 2k 2 (r. 2D %2 xllxl)21 
Iu 

For the computations performed herein, using the constant step procedure 
developed by Pierson and Holmes and'summarised in Reference 2, a total of 
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201 points were considered in the numerical integration and hence if 

values of n in Eq. (3.5.3) less than this are satisfactory the quadrature 

should produce savings in computer costs (run-times). 

The values of (x k' Ak) are tabulated for polynomials of degree up to 

n= 20 and some examples are given in Table 3. S. 1. However, for the 

purposes of this study values were computed for polynomials up to n= 42 

using the, following relationships. 

Chebyshev-Hermite polynomials of degree n, "n(x)l are derived by 

induction from: 

and 

Ho (x) =1 

2xH (x) -d {H 
_ n-1 dx n1 

(3.5.5) 

The function points xk 
(n) 

correspond to the roots of Hn (x) =0 and the 

coefficients are given by: 

(n) 
_2 

n+l nIrTr 
k [ý- {H (x (n) M2 

dx nk 

(3.5.6) 

The cdf. s of peak loading resulting from inclusion of the quadrature, 

computed using program OSF7,.. are shown in Fig. 3. S. 1 for the most drag- 

dependent short-term conditions investigated. The oscillations present 

in the plots illustrate the numerical instability inherent in the 

approximate integration. Although this behaviour decays with increase in 

n it is evident that f(x) cannot be, accurately approximated by a polynomial 

of degree 83 corresponding to n= 42. As drag effects, and hence wave 

load kurtosis, are reduced by increase in member diameter and depth of 

immersion or by reduction in sea state intensity through decrease in 

H1/3, these effects diminish. This is not surprising since these 

conditions lead to, reduced significance attached to the second term in 

the argument of the exponent in Eq. (3.5.4). In the limit this term is 

negligible, the loading being wholly inertial, and f(x) becomes invariant 

in which case it may be exactly fitted by a polynomial of degree 1. 

The above comments may be illustrated by considering various force levels 

FjaF where j is, for convenience, taken as an integer constant. 

From Eq. (3.1.6): 
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Du (3.5.7) k cr,, z =8 

and substituting in Eq. (3. S. 4): 

:S] 1/4 
XJX 1) 211 f (x) = expl- yl 

['l 
(j -2 [ý ý8 (3. S. 8) 2 /X-3 

v/ -ý 8-1 

For inertial, Gaussian distributed, loading the kurtosis 0=3.0 and f(x) 

is constant for each level of force (j) considered. The quadrature is, 

therefore, unnecessary since the integration from Eq. (3. S. 1) may be 

performed analytically, as represented by the procedure applied in the. 
linearised probabilistic method discussed in Section 3.1. 

The functions f(x) are plotted on Fig. 3.5.2 for 0=5.0 at various levels 

of force (j) and are seen to become more peaky at the high force levels, 

taking significant values over only a narrow region of the x axis. This 

behaviour is amplified for larger values of a. Function points xk 
(n) for 

the quadratures are distributed, reasonably uniformly, over a range. of x 
in excess of ten centred at x=0 for quadrature with n> 18. It is, 

therefore, reasonable to suppose that for low levels of force the 
functions f(x) in Fig. 3.5.2 might be accurately app I roximated by poly- 

nomials of degree up to 83. However, it is unlikely that this will be 

true of the narrow peaky functions remote from the centre of the quadra- 

ture range representing the high levels of force. Thus errors resulting 
from the fitted polynomials are likely to increase as the force is 

increased yielding the divergent oscillations in Fig. 3. S. 1. 

From the above comments it follows that the instabilities are less 

significant in long-term distributions, as demonstrated in Fig. 3.5.3, 

and the cdf. s for the most precise quadrature (n = 42) may well be 

sufficiently accurate for most applications. Use of this approximation 
leads to computer run-time savings over the constant step procedure of 

about 70%. The degree n of the approximation necessary to contain the 

oscillations in the cdf. s to acceptable levels reduces as the effects of 
drag diminish and may, therefore, permit additional savings in computer 

costs, over that quoted above, for larger diameter members. 
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3.5.1.2 Application for solution of the 'type 11 distribution of peak 

wave loading, Eqs. (3.3.1) and (3.3.8 

In this section, the formulation for solution of Eq. (3.3.8), and hence 

Eq. (3.3.1) using quadrature is summarised. No attempt has been made here 

to employ this approximate integration in view of. the preference for 

'type 21 peak loading models, as expressed in Section 3.2. 

Eq. (5.3.8) may be rearranged into a form expressible in terms of both 

Gaussian-Hermite and Gaussian-Laguerre quadrature, as: 

E{N+(F)IHI/3, TZ11 2' 

where x V2u 

P-3 3ý2 
-2 "kE- 

I 

f(x, y) = exp[- 
! 

-A] 2 

mn (iq) (n) (n) (m) 
EB Aj. f(xi Yg 

3/2 Z=1 k-1 t 
(2Tr) Y-3 3 Det [M] (3.5.9) 

A 

F2 1/2 
2k 

DF2 1XI + 
2k 

D2 2 3/2 
A= 2kl 3xy2 X3) 

33 k1211k 

(F 2k D xlxll 
2kD2F2 x2 4k D4x6 

+ 9,22 iýj kil + 89-33 
[k12 

XII + kJ4 -F371 

89-3 3[ 

2k 
D2y 

1/2 
x3kD Fix lyl/2 4k 

D34Fx3 
IXI 

33 tll k2k2k, X V P- 3-3 P- 
13 11 IfZ33 kll 

and for the Gaussian-Laguerre quadrature a=0. In the constant step 

integration 101 steps were used in integration over the ý and u domains. 

Consequently, if sufficient accuracy can be obtained with values of n 

and m such that: 

nxm 

then savings in computer run-times should result. 
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3.5.2 Wave Load Prediction by Hand Computation 

The object of this Section is to illustrate how the long-term 

distributions of the wave loading and its peak ('type 21) and extreme 

values can be developed without recourse to the complex computer 

routines, developed for the solution herein. The procedure, reported in 

Reference 17, is based on the standardised cdf. s of Pierson-Holmes 

distributed random variables in Figs. 2.3.4 and 2.3.5. The only 

essential computing facility is a standard scientific hand calculator 

although a programmable desk top calculator would normally be required 
for the derivation and integration of the spectra of particle kinematics 

for each short-term condition consideTed. The method is described by 

means of an example as follows. 

Problem 

To derive the long-term distributions of basic load, positive peak load 

and positive extreme load, for a one-year period of exposure in the 

'one-year' wave climate given in Fig. 2.3.1, on a unit length component 

of a vertical cylindrical member, 0.5m. in diameter, submerged 7.5m. 

beneath the surface in a 150m. depth of water. 

Assume 

the wave force to be given by Morison's Equation, Eq. (2.3.4S), 

with CM=2.0; CD = 1.0 and p= 103 Kg/m3; and 
the sea surface spectrum is of the Pierson/Moskowitz form given by 

Eqs. (2.3.23) and (2.3.24) defined by 111/3 only (P-M (H, /3) 

approach). 

Applying (i) and (ii) in the manner described in Section 2.3.6 for each 

short-term condition produces the second and fourth moments of wave load 

which yield values of aF and 0 necessary in the use of figures 2.3.4 and 
2.3.5. These values are included in Table 3.4.3. 

The long-term distributions of basic and peak force can be built up 

considering a range of values of force and carrying out the summations 

in Eqs. (3.1.7) and (3.1.8) by hand. The wave climate weightings for 

use in these equations are given in Table 3.4.3 and the short-term 

probabilities,, P H (FIHI/3) and Pp (FIHI/3) are taken from Figs. 2.3.4 and 

2.3.5 for each force level considered. In practice the hand calculation 
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is less prone to error accumulation if P(F) and Pp (F) are evaluated 
indirectly as, from Eq. (3.1.7): 

n, mw 
P(F) =E [[I - PH (Filli/si)). Ew 

ý j=l j-1 

and likewise for, P 
p 

(F) from Eq. (3.1.8). 

The probabilities of non-exceedence are computed, at three force levels, 

in Table 3.5.2 and are shown to be in close agreement with the values 

obtained by computer. This is further illustrated on Fig. 3.1.3. 

The probability of non-exceedence of three levels of extreme force are 
derived using Fig. 2.3.5, Eq. (3.4.16) and values of N(HI/3) from Table 

3.4.3. The computations are performed in Table 3.5.3 and again the 

estimates are in close agreement with those from the computer solution. 

The precision of the hand computation procedure decreases for low levels 

of force as a result of the increase in the number of short-term 
conditions making significant contributions to the probabilities, each 

of which represents a possible error in reading off values from Figs. 

2.3.4 and 2.3.5. 

It is anticipated that the primary application'of these hand computation 

procedures would be in the prediction of extreme values for use in first 

excursion analysis. A possible reservation regarding the application 

to peak values for subsequent fatigue analysis is that it is the low 

levels of force which cause most fatigue damage. In this range 

computational effort is high as most short-term conditions contribute 

with the possibility of error accumulation. 
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6 

TABLE 

LEVELS OF EXTREME PEAK FORCE PER UNIT LENGTH OF A VERTICAL 

CYLINDRICAL MEMBER; FAMITA WAVE CLIMATE, MEMBER DIAMETER 0.5m, 

DEPTU OF IMMERSION 7.5m, C,, t 2.01 CD v' l'o 

Most Expected Peak Force 

Period of 
Type of probable eak p with 1% 

Exposure probability peak force probability of 
distribution force kN/m. exceedance, 

kN/m. U/m. 

Type 1 
P-M (111/3) 4.05 4.1S S. 80 

One year Type 2 3.22 3AS S. 02 
or P-M (HI/3) 

M h Si x ont s 
Winter Type 2: linearised 1.70 1 74 2.09 P-M (HI/3) . 

Type 2, 
P-M (DNV) 3.28 3.49 5.03 

Type 1 
P-M (HI/3) 1.50 1.60 2.20 

Type 2 
P-M (H1/3) 1.35 1.43 2.02 

Six Months 
Summer Type 2: linearised 

P-M (HI/3) 0.87 0.90 1.07 

Type 2 
P-M (DNV) 1.33 1.42 2.01 

Type 2 
P-M (HI/3) 4.71 4.95 6.57 

s 50 Year Type 2: linearised 2.03 2.07 2.38 
. 

P-M (HI/3) 

Type 2 
P-M (DNV) 4.7S 4.95 6.57 
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TABLE3.4.2 

LEVELS OF EXTREME PEAK FORCE PER UNIT LENGTH OF A VERTICAL 

CYLINDRICAL MEMBER; FAMZTA WAVE CLIMATEt MEMBER DIAMETER 5.0m, 

DEPTH OF IMMERSION 7.5m, CM = 2. Op ýD = 1.0, 

Most Expected Peak force 

Period of 
Type of probable peak with 1% 

Exposure probability peak force probability of 
distribution force kN/m. exceedance, 

kN/m. kN/m. 

Type 1 
P-M (HI/3) 94.9 98.1 115.7 

one Year Type 2 
P-M (HI/3) 94.9 97.6 11S. S 

or 
Six Months 

Winter Type 2: linearised 94.7 97.0 114.1 P-M (HI/3) 

Type 2 106.9 109.1 130.0 P-M (DNV) 

Type 1 69.9 72.1 84.9 P-M (HI/3) 

Type 2. 69.9 71.9 84.6 
Six Months P-M (H1/3) 

Summer Type 2: linearised 69.8 71.8 84.6 P-M (HI/3) 

Type 2 
P-M (DNV) 70.9 73.1 87.2 

Type 2 112.5 114.7 131.2 P-M (HI/3) 

So Years Type 2 linearised 
P-M (Hi/3) 112.3 113.5 128.9 

Type 2 
P-M (DNV) 127.3 129.3 147.8 
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TABLE 

GAUSSIAN-HERMITE QUADRATURE FUNCTION POINTS AND COEFFICIENTS 

xk 
(n) I 

I Ak (n) 

n1 
0.00000 00000 00000 1.77245 38509 055 

n2 

0.70710 67811 86548 0.88622 692S4 S28 

n3 
0.00000 00000 00000 1.18163 S9006 037 
1.22474 48713 91S89 0.29S40 897S1 S09 

n4 
O. S2464 76232 7S290 0.80491 40900 OSS 
1.6SO68 01238 8578S (-1)0.81312 83544 72S 

n5 
0.00000 00000 00000 0.94S30 87204 829 
0.95857 24646 13819 0.39361 93231 522 
2.02018 28704 56086 (-1)0.199S3 2420S 90S 

n 10 

0.34290 13272 23705 0.61086 26337 353 
1.03661 08297 89514 0.24013 86110 823 
1.7S668 36492 99882 (-1)0.33874 3944S S48 
2. S3273 16742 32790 (-2)0.13436 4S746 781 
3.4361S 91188 37738 (-S)0.76404 328SS 233 

n IS 

0.00000 00000 0000 O. S6410 03087 264 
O. S6506 95832 SSS8 0.41202 86874 989 
1.13611 SS852 1092 0.15848 891S7 9S9 
1.71999 25751 8649 (-1)0.30780 03387 2SS 
2.32S73 24861 7386 (-2)0.27780 68842 913 
2.96716 69279 OS60 (-3)0.10000 44412 32S 
3.6699S 03734 044S (-S)O. los9l lSS47 711 
4.49999 07073 0939 (-8)O. lS224 7S804 2S4 

The Ak 
(n) 

and xk 
(n) 

are symmetric with respect to x=0 and the tables 

give only the values corresponding to 04 xk (n). 

A number in parenthesis before a value of a coefficient is the power of 
10 by which the tabulated value must be multiplied; for example, 
(-1)0.8131 ... means that the coefficient is 0.08131 ... 
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TABLE2 

LONG-TERM PROBABILITIES OF NON-EXCEEDENCE OF VARIOUS LEVELS 

OF FORCE* FOR B071i BASIC AND PEAK VARIATE 

Force = O. SkN. 

HI/3 (a) (b) (c) (d) (e) 
F P (FlHl/s) 

{1-(b)) 
t 

P (FIHI/3) {1.0x(d)) 
4 * CrF ti x(3) p x( ) 

0.3 - 
0.9 15.528 

1. S 8.052 1.0 0 =1.0 0 

2.1 S. 6S6 . 9999999 1.67xlO-e 0.9999994 9.8SxlO- 8 

2.7 4.433 0.999977 2.93x 10-6 0.9998 2.39xlO- 5 

3.3 3.65S' 0.9995 4.18xlO- 5 0.9971 2.22x 10-4 

3.9' 3.102 0.997S 1.72 X10-4 0.988 7. lSxlO- 4 

4.5 2.678 0.9933 2.44 X10-4 0.972 8.2 SX10-4 

S. 1 2.342 0.986 3.35xlO- 4 0.9s 9.68xlO- 4 

S. 7 2.069 0.978 2.63x 10-4 0.92 7. S4x 10-4 

6.3 1.842 0.968 2.00xlO- 4 0.888 4.86x 10-4 

6.9 1.6S3 0.9S4 2.63xlO- 4 0.86 5.2 9XIO-4 

7.5 1.493 0.944 2.33x 10-4 0.84 4.3SxlO-4 

8.1 1.355 0.932 7.07xlO- 5 0.82S 1.42x 10-4 

8.7 1.237 0.922 1.62x 10-4 0.80 2.76x 10-4 

9.3 1.13S 0.910 9.36xlO- 5 0.77 1.17x 10-4 

J-P(F)= =2.08xlO- l-P (F)= =5.493xlO- p 
P(F) = 99.79 P (F) = 99.45 

p 

COMP** P(F) = 99.80 Pp(F) = 99.46 

Column (3), Table 3.4.3 
Column (4), Table 3.4.3 
Values from Computer Routines 
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0 

TABLE 

LONG-TERM PROBABILITIES OF NON-EXCEEDENCE OF VARIOUS LEVELS 

OF FORCE FOR B071i BASIC AND PEAK VARIATE 

Force = 1.5kN. 

HI/3 (d) (e) 
F P (FIHI/3) {1. Ox(d)1 

* CYF x(4) 

0.3 

0. >9 - 
1.5 

2.1 16.968 

2.7 13.298 

3.3 10.965 ! 21.0 0 

3.9 9.305 0.99999983 1.01 x10-8 

4.5 8.034 0.9999952 1.415X10-7 

7.026 0.999955 8.708x 10-7 

5.7 6.206 0.9998 1.886x1 0-6 

6.3 5.527 0.9993s 2.82 1X10-6 

6.9 4.959 0.9986 5.292x10-6 

7.5 4.478 0.9977 6.256x 1()-6 

8.1 4.065 0.995 4.05 Xl()-6 

8.7 3.711 0.9921 1. o9 x10-5 
9.3 3.404 0.989 5.61 X, 0-6 

1-p (F) E=3.784x10-5 

(F) 0.999962 F 
- P 

1 COMP** Pp(F) = 0.999961 

Column (4), Table 3.4.3 
Values from Computer Routines 
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TABLE3.5.2C 

LONG-TERM PROBABILITIES OF NON-EXCEEDENCE OF VARIOUS LEVELS 

OF FORCE FOR BOTV BASIC AND PEAK VARIATE 

HI/3 

0.3 

0.9 

1.5 

2.1 

2.7 

3.3 

3.9 

4.5 

5.1 

5.7 

6.3 

6.9 

7.5 

8.1 

8.7 

9.3 

(a) 
F 
aF 

16.069 

14.052 

12.412 

11.053 

9.917 

8.95S 

8.130 

7.422 

6.809 

COMP** 

Force = 3. OkN. 

(b) (c) (d) (e) 

PH( F Jill / 3) 
(1 (b)) 

P 
{1.0-(d)) 

x(3)t PI 

'x(4)* 

=1.0 0 

. 99999987 8.0 X10-11 

. 9999982 1.03 X10-8 

. 999992 3.33 X10-8 

. 999978 2.29 X10-8 

. 99994 1.25 X10-7 

. 99987 1.352x 10-7 

1-P(F)=E=3.273 X10-7 

P(F) = 0.99999967 

P(F) = 0.99999967 

=1.0. 0 

. 9999999973 1.0 X10-11 

. 99999994 6.0 x10-10 

. 9999993 3.0 xlO-9 

. 999996 i. sixio-8 

. 999984 4.3SxlO-e 

. 99995 4. OSX10-8 

. 99987 1.79xlO- 7 

. 9974 1.33x 10-7 

(F)=E=4. lSxlO -7 l-P 
p 

2p(F) = 0.999999S9 

Pp(F) = 0.99999960 

Column (3), Table 3.4.3 
Column (4), Table 3.4.3 
Values from Computer Routines 
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FIG. 3.1-1. RATIO OF VARIANCE OF LINEARISED GAUSSIAN 
WAVE LOAD TO 
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FIG. 3.2.1. 
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CHAPTERF0UR 

THE ROLE OF WAVE CLIMATE IN THE PREDICTION 

OF LONG-TERM WAVE LOADING 

Formulation of the long-term probabilistic descriptions of wave height 

and the basic and peak variates of wave loading was described in 

Chapter Two and the techniques have been applied for wave loading in 

Chapter Three., The long-term distributions result form a convolution of 
the properties of the stationary, short-term, wave field by the bivariate 

pdf. of (HI/3,,, Tz) representing the wave climate, as described by 

Eqs. (2.3.31), ' (2.3.63) and (2.3., 65). 

No theoretical model for the wave climate exists and in real applications 
the bivariate pdf. of (HI/3, Tz) must be approximated by a histogram of 
the measured probability structure of these parameter* in the form of a 

scatter diagram. Typically these measurements cover periods rarely in 

excess of one year and often only covering the most severe period of six 
Winter months, as described in Section 2.3.2.2 for the Famita data used 
herein and presented in Fig. 2.3.1. 

Accurate assessment of the long-term descriptions of wave height and the 
induced loading is critically dependent upon the accuracy of the measured 

sample of wave climate in representing its long-term characteristics. 

The objectives of this Chapter are firstly to identify the primary 

requirements of wave climate data, secondly to describe a method for the 

extension of the data when the periods covered fall short of the desired 

requirements and finally to investigate the effects of such extrapolations. 

The contents of this Chapter are included in the final OSFLAG 5 report, 

Reference 11. 

4.1 SUPPRESSION OF SEASONAL FLUCTUATIONS IN THE DATA 

The primary requirement of the wave climate data, when used as input in 

procedures for the evaluation of fatigue damage, is that it should cover 

single, or multiple, complete 12-month periods., to avoid bias, resulting, 

from seasonal fluctuations in sea conditions. I 
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In fatigue analyses the accumulative damage is dependent upon the entire 

range of the distribution of peak loads according to Eq. (2,3.71) and is, 

therefore, influenced by even the small loads induced by the passage of 

waves during the generally low intensity sea states present in Summer 

periods. In fact it may be shown 46 that the major contributions to 
fatigue damage result from the lower to medium range wave heights, which 

occur frequently throughout the year. This is in contrast to the 
investigation of extreme loading, or wave height, necessary for first 

excursion failure analyses, where lower intensity sea states may be 

neglected. In this case prediction may be based on data covering only the 

most severe periods, usually six Winter months. 

Two empirical methods of extending seasonally weighted Winter data to 

simulate conditions covering 'one-year' periods, by the prediction of 

scatter diagrams for associated Summer periods, have been investigated 

and a preferred alternative procedure has been developed, as summarised 
in Appendix III. The results of this latter method are presented in 

Fig. 2.3.1 which has been used as the basic wave climate input in this 

and the OSFLAG studies. 

The long-term cdf. s of significant and individual wave height developed 

from the Winter and one-year data sets are plotted on Fig. 4.1, the 

distribution of HI/3 being computed in Table 4.1. Corresponding 

distributions of wave load are given in Fig. 4.2. Both figures clearly 
indicate the greater weighting attached to high intensity sea conditions 
in the Winter data as demonstrated by the increased probability of 

exceedence of all levels of wave height, or load, from this data. 

Howqver, the distributions are not directly comparable. The basic load 

distribution for the one-year data may be used to predict the proportion 

of time that a certain load is likely to be equalled or exceeded during 

any period in excess of one year whereas this application for the Winter 

data should be restricted to only Winter periods. Although it is easily 

shown that the time of exceedence estimates for both distributions are 

the same at high levels of load (at levels never exceeded in corresponding 

Summer periods),, in the middle and lower range the winter data over- 

estimates times of exceedence if the daýa. is misinterpreted. 
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4.2 THE NEED TO EXTRAPOLATE WAVE CLIMATE DATA 

Estimation of extreme wave heights usually proceeds in the manner 
developed by Battje $7 and outlined in Section 2.3.2 where the long-term 

cdf. of Eq. (2.3-31) is plotted on probability paper for wave climate data 

covering typically a one-year period. The wave height of design 

severity, as measured by the required return period or probability of 
exceedepce, is then read off the graph. From the form of Eq. (2.3.65) it 
is clear that estimation of peak loading can proceed in the same way. 

However, there is a fundamental error in applications along these lines 

since the design condition, which may represent the prediction of the 

extreme value in 100 years, (as recommended by Det Norske Veritas 29 
, the 

Norwegian certifying authority for offshore installations), is extrapolated 
beyond the duration covered by the wave climate data base. This effect 

appears to have been overlooked by Batties and others applying his 

approach. Pedersen 70 accounted for the discrepancy between the typical 

scatter diagram sample of wave climate and its true long-term properties, 

without making specific reference to it, in a technique for long-term 

wave height prediction. Although Pedersen's approach followed a similar 

procedure to that of Battjes it failed to account for the necessary 

transformation from proportions of time to proportion of the number of 

waves in the scatter diagram weightings, as described in Section 2.3.2.4 

and is consequently little used. 

The more correct procedure is to extrapolate the wave climate data to 

cover the complete range of physically feasible sea states, many of 

which in the extreme range will not have been experienced in the short 

data sample and which are likely to be assigned incorrect weightings 

even if observed. The justification for this may be inferred from 

Eqs. (2.3.31), (2.3.63) and (2.3.65) where the integrals covering the sea 

state parameters have upper limits of infinity. 

There will be a physical limit to the values of HI/3 recorded at any 

location which depends upon the limiting wind speed, and its duration, and 

the fetch available for the generation of the sea state of extreme 

severity". Clearly, extrapolation of the wave climate in the HI/s 

domain beyond such an upper truncation would be meaningless. 
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In physical terms the original approach, using the available data set only, 
implies that, in the estimation of extreme conditions during a certain 

perio d of exposure covering a number of years, the wave climate is 

repeated exactly each year. Hence, sea state conditions of greater 
intensity, and of greater return period, than-those measured in the 

existing data are not accounted for. In contrast the modification, where 
the data is extrapolated, simulates the presence of these extreme 

conditions. - 

In quantitative terms the probability of occurrence of sea state 
intensities of given return period occurring in a certain period of 

exposure may be estimated by assuming all sea states to be independent, 

as follows: 

Tr sea state intensity of return period Tr 

[function (HI/3, TzAý 

Probability that I Tr is equalled or exceeded in one year: 

Prob [I ýl I]=1 
max TrTr 

hence: 

PI(I Prob(I <Ii-1 (4.2) 
T MAX TrTr 

and probability that IT is not exceeded in LD years is: 
r 

LD 
PL (I T)= 

(l - ý-) (4.3) 
Drr 

Thus probability that a sea state of intensity IT is equalled or 

exceeded in ý years is: 

Prob (I >I)=i 
LD 

1. MAX T 
D, r 

(4.4) 

This expression is evaluated in Table 4.2 for values of Tr between 1 and 

100 years and for durations of 1,20 and 50 years which shows the 

probability of occurrence of sea state intensities greater'than or 

equal to IT during periods of exposure LD years. 
r 
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Relating this information to the prediction of wave height and wave 
loading from wave climate data it can be seen that LD -1 year would 

correspond to the original procedure applied previously using the basic 

data. It is evident from Table 4.2 that although there would be a good 
chance of sea states of return period Tr occurring for example during a 
20 year period of exposure (LD = 20 years), which may be typical for 

offshore installations, there is generally little chance of these 
conditions being present in the one year data sample (L D-1 year). 
In contrast, if the data were extrapolated up to, for instance, the 

equivalent of a SO year record then there would be a good chance (L D as 50) 

that this extrapolated data would account for the presence of all sea 

conditions likely to be encountered in this 20 year period of exposure. 

A one-year scatter diagram data set should not, therefore, be 

considered to be representative of the long-term wave climate when 

applied in extreme value analysis of conditions covering periods in 

excess of one year. Wave conditions omitted by such a procedure would 
in all probability represent a significant contribution to the convolution 

of short-term descriptions of wave height and wave load in Eqs. (2.3.31), 

(2.3.63) and (2.3.65). The effects on the long-term distributions will be 

pronounced in the extreme regions where omission of the high intensity 

(high return period) sea states in 'one year' data samples may lead to 

considerable underestimation of wave heights and wave loads for use in 

first excursion analyses, as demonstrated for the Famita data later. In 

contrast the presence of an event of high return period in the data 

sample can lead to considerable overestim4tion due to the excessive 

weighting attached to this event. 

In the lower wave height and wave load range of the cdf. s. the effects of 

the data extrapolation will be less significant, since the data omitted 

in one-year samples will be the few severe wave conditions whose 

influence in this range is negligible. Consequently, for fatigue 

analysis, which has greater dependence upon the lower range of the cdf. S. 46 

the effect of wave climate extrapolation will probably be insignificant. 
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4.3 A METliOD OF WAVE CLIMATE EXTRAPOLATION 

Extrapolation of wave data to obtain a reasonable representation of the 
long-term wave climate requires extension of the scatter diagram. 

However, the bivariate probability domain of HI/s and Tz is complex and 
cannot be defined in mathematical terms. In the absence of extensive 
measurements of the long-term wave climate, the analysis of which might 
yield such a mathematical description, it is unlikely that attempts at 

extrapolation in the bivariate domain will be successful. 

One practical approach is to consider only the marginal distribution of 
HI/3 in the long-term description of the wave climate together with the 

corresponding values of the mean rate of zero-crossings obtained from 

the scatter diagram. Using the notation of Eq. (2.3.28)the mean zero-up- 

crossing rate associated with significant wave height HI/3i is given by: 

all TZ 
E{No+IHI/3i) w 1: j 

/TZ)/W(HI/3i) 
(4.5) 

all TZ 
where W(HI/3j) Ew 

ij 
(4.6) 

i 

This procedure does not represent a loss of accuracy in the prediction 

of wave height or peak wave loading when, in developing the statistics 

of the required parameters of the wave field, the surface elevation 

spectral form is defined in terms of HI/3 only as demonstrated in 

Chapter Three. This assumption is justified because the most commonly 

employed spectrum is that of the Pierson-Moskowitz form defined in this 

way, through Eqs. (2.3.2 3) and (2.3.24) . 

In essence the technique of extrapolation is to compare the marginal 
distribution of H1/3, usually in terms of the cumulative histogram from 

the scatter diagram, with various theoretical probability distributions 

until a reasonable fit is attained. The distribution of H1/3 is then 

assumed to follow this theoretical distribution from which a discretisa-, 

tion over an extended range of H1/3 yields an estimate of the marginal 

distribution of H1/3. The data fitting to theoretical distributions may 

be performed graphically or mathematically. The former technique 

entails a plot on probability paper which linearises the theoretical 

distribution and where the 'best-fit' straight line through the data 

points, judged by eye, yields the required extension. Mathematical 

methods involve the estimation of the parameters which define the 
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theoretiCal distribution usually performed either by the 'method of 

moments' or the 'method of least squares'. 

The resulting 'fitted' distribution may be discretised into a number of 

class intervals of the same width as the original data, but covering an 
increased range, and the probability of occurrence associated with each 
is then computed. For classes in the extended range of H1/3 an estimate 

of the mean zero-crossing rate is required to provide the correct 

weightings in the convolution of short-term conditions for prediction of 
long-term wave height and peak loading. In applications using the 

Pierson -Moskowitz spectrum, Eqs. (2,3.24) and (2.3.. 25) may be combined to 

yield these estimates: 

4.4 

E{No+IHI/sil -11 Tz3. SS 

f 
(4.7) 

ESTIMATION OF THE LONG-TERM DISTRIBUTION OF 11113 FROM MEASUREMENTS 

COVERING A ONE-YEAR PERIOD AT THE FAMITA LOCATION 

From the comments made in Section 4.2 it is clear that measurements of 

HI/3 taken over any finite interval of time are random samples from the 

complete population of Hi/3. The objective of this section is, therefore, 

to estimate the distribution of this population from analysis of the 

bne-yearldata set. The procedure, as outlined in the previous section, 

is to assume that the complete population follows a theoretical 

probability distribution which shows a 'reasonable' fit to the data 

bearing in mind that the distributions of such short data samples from 

infinite populations are subject to sampling errors. 

4.4.1 A Note on the Interpretation of cdf. s. of HI/3 Obtained From the 

Scatter Diagrams 

The Famita scatter diagrams presented in Fig. 2.3.1 indicate the 

proportion of time for which the values of 111/3 and TZ fell within 

certain classes during the period covered by the measurements. The 

number of three-hour recordings, representing short-term conditions 

classified by the mid-class values of HI/s and Tz, are not given by the 

numbers assigned to each class in the diagrams. The six month winter 

period covered by the basic data would contain 1456 recordings whereas 

the total number of occurrences in the winter scatter diagram is 962 and 

similarly a one year period represents 2920 events not the total, of 1924 
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in the one-year scatter diagram. This consolidation of the data has 
little effect on the resulting long-term distributions of wave height or 
wave load 

" as developed previously, but care must be taken in the inter- 

pretation of the distribution of HI/s as explained below. 

The original Famita recordings were analysed by Draper and Driver 71 and 

presented as a scatter diagram, included here in Fig. 4.3, with class 

occurrences-as parts per 1000 and crosses representing single recordings 

which were not retained in the consolidation. The sum of all occurrences 
in this scatter diagram is 962, neglecting crosses, which indicates that 

some, three-hour recordings were not entered in the scatter, diagram since 

reversing the factorisation on the marginal histogram of H1/3 and adding 
the crosses accounts for only 1427 events. It was stated by Draper and 
Driver that low intensity sea states (small values of HI/3 and Tz) could 

not be recorded by the instruments and it may, therefore, be inferred 

that the 29 remaining events may be accounted for in this way as no 
specific reference was made to other possible causes for omission, such 

as instrument failure. 

A synthetic histogram of H1/3 for the 1456 actual measurements may, 

therefore, be obtained by factoring the marginal histogram of HI/3 from 

Fig. 4.3 by 14S6 
, adding the crosses and assuming the missing events (itý01-; ) 

to fall within the first class interval (HI/3 < 0.6m). In this way the 

cumulative distribution of the three-hour recordings may be plotted as 

shown in Fig. 4.1, for example: 

P(Hi/3 = 31 ft. = 9.45m. ) = 
1456 

= 0.99931 1457 

P(Hi/3 =2 ft. = 0.61m. ) (5 x 
1456 

+ 29)/1457 = 0.025 1000 

The Winter scatter diagram used asIthe basic input inthis study, and in 

the OSFLAG S Project, given in Fig. 2.3.1. is a modification of Fig. 4.3, 

where a slight redistribution was necessary due to metrication of the 

diagram and occurrences in each class are assumed to represent parts 

per 9,62. This latter simplification ignores single events (crosses) 

from the original, diagram and the-missing events and this attaches a 

slightly increased probability of occurrence to all the classes retained. 
i 
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From the plots on Fig. 4.1 it is apparent that the modifications have 

had a negligible effect on the distribution Of HI/3- However, it must 
be appreciated that the plots represent three-hourly short-term 

conditions and the probability of non-exceedence assigned to a 

significant wave height of one-year return period is approximately 
1456 1 962 ff47), according to Eq. (2.3.29) and not (tý=) . 3 

Similar comments ap 
, 
ply to the use of the distribution Of 111/3 based on 

the one-year data set of Fig. 2.3.1 where a one-year return period 

corresponds to a probability of non-exceedence of (2920 ) not ( 1924 ýý91 1925)' 
Furthermore, an In'-ye'ar return period is associated with the probability 

of [1 - 1/2920n]. 

4.4.2 Graphical Data Fitting using Probability Papers 

Probability papers for the Gaussian, log-Gaussian, Rayleigh, Gumbel and 
Weibull theoretical probability distributions have been constructed 

according to the procedure outlined in Appendix Two. Each of these 

distributions has been found from past analyses to reasonably approximate 

the behaviour of some of the random parameters of the wave field, for 

example, the surface elevation in the short-term is found to fit the 

Gaussian distribution quite well and the short-term wave height 

distribution is approximately Rayleigh distributed. Data which is well. 

approximated by a particular theoretical distribution plots as a straight 
line on the relevant probability paper. 

The long-term distributions of Hj/3P obtained from the Famita data, are 

compared with the Rayleigh and Gaussian distributions in Figs. 4.1 and 
4.4, respectively. 

1 
None of the plotted distributions are well 

approximated by either theoretical distribution as implied by the 

significant curvature of all plots and measured wave heights in the 

upper range would exceed those given by a 'best-fitting, straight line 

through the data plot. It was not anticipated that either of these 

distributions would provide acceptable fits to the data but the 

probability plots have been included here for completeness. These 

probability papers have been used extensively in Chapter Three and 

comparison of the shapes of the wave height plots, from Figs. 4.1. and 

4.4, with those of the other probability paper plots, discussed below, 

iliustrates the differing characteristics of the various theoretical 

probability distributions. 
I 
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It has been suggested by Jasper 72 that the logarithm of significant wave 
height should follow the Gaussian distribution and hence H1/3 should 

plot as a straight line on the log-Gaussian paper. Such a plot is made 
in Fig. 4. S which indicates that the inclusion of the logarithmic 

compression of the wave height scale overcompensates for the 'positive- 

skewness' exhibited by Fig. 4.4. The result is a negative skewness of 
the data plot in the upper range for which the theoretical log-Gaussian 

distribution, as the 'best-fit' straight line, would yield excessive 

wave height predictions in this range and is, therefore, unacceptable. 

The Weibull distribution 73 has been extensively applied7,70,74,75 to wave 

data as demonstrated earlier in Fig. 2.3.3 for individual wave height. 

In this plot the lower limiting value of H, defined by parameter A of 
the distribution described in Appendix Two and required for the 

construction of the wave height axis, has been taken as zero and a 

significant departure of the distribution from a straight line at low 

wave heights results. This deviation could be removed by the appropriate 

choice of the value for A. The same comments are applicable to the 

Weibull plot of Hi/3 in Fig. 4.6 where the significant departure from 

the straight line plot is eliminated by the adoption of the lower limiting 

value A=O. -37m, determined graphically. The Weibull distribution given 

by the best-fit straight line, therefore, yields a satisfactory estimate 

of the long-term behaviour of significant wave height. 

The great disadvantage of the Weibull distribution, when used in 

analyses based on graphical techniques, is that it compresses large wave 
heights and gives a more accurate display to the less important lower 

range data values by virtue of the logarithmic nature of the wave 
height axis. This effect leads to significant uncertainty in the 

extraction of wave height/probability information from the probability 

paper presentation. 

A better graphical technique should include a linear wave height scale on 

the probability paper which gives the same accuracy in plotting to all 

data points. The Gumbel distribution 58 has this proper ty, as illustrated 

in Fig. 4.7, and the plot of HI/2 shows an extremely good fit to a 

straight line indicating that the 
' 
long-term distribution of significant, 

wave height is well approximated by this distribution. 
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The Gumbel plot forms an ideal basis for the discretisation of the long- 

term distribution, of HI/3 into probabilities associated with class 
intervals. This is demonstrated in Fig. 4.7, the abstracted information 

being presented in Table 4.3 for an extrapolation of the one-year data 

to represent conditions of up to 1100-yearl return period. The limiting 

value of H1/3 is 15-9M- from the Gumbel distribution, obtained as the 
'best eye fit' through the data points in Fig. 4.7. The corresponding 

value from the Weibull plot of Fig. 4.6 is approximately 14.0m. 

demonstrating that the Gumbel distribution generally predicts wave 
heights in excess of the Weibull distribution, as confirmed by Saetre 75 

In view of this and the comments made above on the compression of the 

scales of Weibull plots, the Gumbel distribution is preferred for the 
description of long-term distributions of significant wave heights for 

this Famita data. 

The Gumbel distribution does not yield a good fit to the, distribution 

of individual wave height, especially in the lower range, as demonstrated 

by the significant curvature of its plot on Fig. 4.7 and in this case 

the Weibull distribution may well be preferable. 

4.4.3 The Gumbel Fit tO 111/3 Obtained from the 'Method of Moments' 

The GuMbel distribution is a two parameter distribution and is fully 

defined by the mean and standard deviation, as demonstrated in 

Appendix Two. The estimates of the mean, E{HI/31, and standard deviation, 

CTHI/31 for the 'one-yearldata set are given in Table 4.1 and have been 

applied to generate the Gumbel distribution of Hip given in Table 4.3 

and referred to as the 'theoretical' Gumbel distribution which is also 

plotted on Fig.. 4-7- 

From the figure it can be seen that the graphical extrapolation of the 

data obtained by 'eye-fitting' deviates slightly from the 'theoretical' 

distribution which has a marginally lower slope and predicts a 1100-year, 

significant wave height of 15.6m. compared with 15.9m. from the 

graphically obtained distribution. In practical terms these differences 

are likely to be insignificant and either method should be acceptable 

for the long-term description of significant wave height for this data 

set. If the method of moments is used it should be stressed-that the 

data must still be plotted on probability paper to confirm that Gumbel 

fitting is reasonable. The Gumbel fit obtained by the method of moments 
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is favoured, for reasons which will be discussed in Section 4.4.5, and 

will be used in all remaining computations. 

4.4.4 'Goodness of Fit' of the Gumbel Distribution to HI/3 

The goodness of fit of the Gumbel distribution to HI/3 is further 

demonstrated, in the probability density histogram plots of Fig. 4.8. 

The fit is extremely good in the middle range of the data values and 
the oscillation of the histogram densities in the extreme range of the 
data, as displayed on the probability plots of the cumulative distribu- 

tions, is probably the result of sampling variability in the one-year 

wave climate. Any one-year data set is likely to include extreme 

conditions which depart from the mean annual wave climate. In this case 

the extreme. condition would appear to represent a return period of less 

than one-year, since a one-year value of Hi/3 in excess of 10.2m. is 

predicted from the Gumbel distributions of Fig. 4.7. However, although 

the extreme condition, or conditions, in the one-year data set may have 

a return period slightly less or considerably greater than the period 

covered by the data measurements, on probability paper this event must 

correspond to probability of one exceedence per year. The erroneous 

probabilities which may thus be assigned to the extreme conditions can 

give rise to distortions in the upper tail of probability paper plots 

even when the phenomenon under investigation may be known to follow the 

probability distribution postulated. 

In Fig. 4.8, there also appears to be a notable difference in the shape 

of the density histograms in the lower range of H1/3 over the first two 

class intervals. This is also demonstrated by the application of the 

'chi-square goodness of fit test' between the data and the 'theoretical' 

Gumbel distribution which rejects the fit over the entire H1/3 range, 

as described in Appendix Four. However, over the range of H1/3 in 

excess of 1.2m. the test is satisfied at the 0.05 level of significance 

which sugge! tts that there is no strong reason to question the hypothesis 

that 111/3 follows the Gumbel distribution over this range. In practical 

terms the slight deviations over the range of the first two class 

intervals between the actual distribution of HI/3 and the fitted Gumbel,, 

distribution will have an insignificant effect on the long-term 

distributions of wave height or wave load. Consequently the Gumbel 

distribution may be considered to be satisfactory for the description of' 
HI/3 over the entire range of values. 
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, 
4.4.5 Variations in Annual Wave Climate 

The validity of the above procedures'for wave climate extrapolation when 
based on a single year's measurements would be adversely affected by 

significant variations in annual wave climate. 

Saetre75 has analysed wave measurements covering three successive - 
Winter periods at Famita, including the Winter of 1969-1970 used in this 

study, and concluded that there is no strong evidence of any 

significant differences in the extreme wave conditions between the 

years although his 'Gumbell plots of HI/s, for the three data sets 

showed notable departures in the extreme range as reproduced here in 

Fig. 4,9. 

The HI/s predictions in Fig. 4.7 are in agreement with those in Saetre's 

plots for the 1969-1970 data set apart from one data point representing 

a storm occurrence with HI/S = 12.3m. which was not recorded in the data 

used here, taken from Draper and Driver 71 
. Predictions from Gumbel fits 

for the one-year data to those obtained by Saetre75 for the combined 

three-year data are compared below. 

Return Period 

10 yearý 50 years 

3-year data: Saetre's 14.4m. 16.3m. 

1-year data: Graphical 'Gumbell 13.4m. 15.4m. 

Theoretical 'Gumbelf 13.0m. 14.9m. 

It is not indicated by Saetre which method of fitting was applied to his 

Gumbel plots for the generation of the above values and hence no 

reliable conclusions can be drawn from the above comparisons. The two 

sets of estimates from the one-year data set demonstrate the variability 

likely by virtue of the different methods of data fitting. These 

differences could be exaggerated even further if, in the graphical 

fitting, the two uppermost data points were neglected, in line with a 

procedure sometimes applied to account for the uncertainty of the 

plotting position of these extreme points 76 as discussed earlier. 'In 

this way a graphical extrapolation could yield a 110-yearl significant' 

wave height of 14.1m, which is much closer to the value quoted by Saetre. - 
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On the basis-of Fig. 4.9 it, does appear likely that deviations in the 

predictions of ext 
, 
reme conditions will result from the use of one-year's 

data. ýClearly the uncertainties cannot be assessed from a single year's 

recordings, which is likely to be the only data available in many 

practical applications. Reliability in the prediction of long-term 
distributions of HI/s can only be significantly improved by use of data 

covering a, number of years and every effort should be made to obtain this 
data before attempting long-term extrapolations. However, whenever 
possible attempts should be made to assess the typicality of 'short, 

data sets by performing comparisons between the corresponding wind 

climate and its long-term behaviour. The results of this exercise may 

then lead to intuitive adjustments to the. distribution of HI/3- 

The plots in Fig. 4.9 show good agreement in the middle range and only 

deviate significantly, in the extremes as a result of the annual 

variations in the most severe storm conditions from year to year. 

Consequently the use of the mathematical techniques of the method of 

moments, considered here, or 'least squares', for the fitting of the 

data, which are weighted towards the lower range of data values, would 

produce less variation in the resulting theoretical Gumbel distributions 

between the years than graphical fitting, which tends to place more 

emphasis on the data point in the upper range. 

It is, therefore, believed that the effects of annual variations in the 

extreme sea state conditions on the estimation of the long-term distribu- 

tion of Ht/3 will be minimised by fitting the data to the relevant 

theoretical probýbility distribution using mathematical methods which 

are less sensitive to the uncertainties associated with the occurrence of 

extreme events. 

4.4.6 Physical_ Assessment of the 1100-yearl Extrapolation of HI/3 

Before employing an extrapolation of a recorded wave climate as being 

representative of the long-term climate, steps should be taken to ensure 

that the extreme conditions are realistic. 'To this end the fitted 

distributions of H1/3 must be truncated at the physical limit imposed by 

wind speed, wind duration and fetch limitations. In this study the 

truncation was initially'arbitraril y chosen at the 1100-yearl v'alue. ofý 
H1/3 
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At the Famita'locatlon 'indicated in Fig. 2.3.2 the fetch available for 

the generation'9f seas of high intensity is limited to distances between 

approximately 2SO miles and 400 miles for winds in directions other than 

from the North where the fetch is effectively unlimited. These distances 

are of sufficient,. magnitude to discount any likelihood of any directional 

bias in the wave climate since the vast majority of storm conditions may 
be generated from any direction. 

Employing Bretschneider's empirical curves for wave forecasting 30 
,a 

Value of HI/s = 15; 6m. would require a wind speed of about 29m/s. for a 

45 hour duration from the North-and greater than 36m/s. for 20 hours from 

any other direction. On the Beaufort scale 77 
, the former condition 

would be described as Force 11, a 'violent storm; very rarely experienced', 

and the latter would correspond to Force 12, 'hurricane conditions'. 

From these comments it may be presumed that the extreme condition could 

feasibly result from storms blowing from any direction, although it is 

most likely to occur from winds from the North. 

In actual recordings at Famita analysed by Saetre 75 a maximum value of 

H1/3 = 12.3m. was observed from only three years of measurements. The 

storm giving rise to these conditions was from the North-West, over a 

fetch of approximately 250 miles, having a peak wind speed of 24.2m/s. 

During the storm, the wind was fairly constant blowing from the North- 

West and North, with an average speed of approximately 20m/s. over a period 
in excess of 24 hours. On Bretschneider's curves this wave height would 

require a wind speed of 24m/s. for a 14 hour duration corresponding to 

hurricane conditions on the Beaufort scale. From this comparison it 

would appear'that for the Famita location Bretschneider's curves predict 

excessive wind conditions over those actually required for the generation 

of seas of given HI/3 values. 

If the extreme sea conditions, are fully developed and described by the 

Pierson-Moskowitz spectrum using Eq. (2.3.23) the value of H1/3 assoc 
' 
iated 

with the 24.2m/s. recorded wind speed would be 12.4m. compared with the, 

measured-value of 12.3m. Similarly the, 1100-yeart sea state of, the., 

Pierson-Moskowitz form with Hip- 1S. 6m. would require a wind speed of 

27m/s. or a Force 10 storm, in a direction where the fetch is sufficient, 

for fully developed conditions to exist. ý This storm would clearly be 

feasible under A wind from the North. 
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in view of the-above discussion,, the wave climate extrapolation to 

heights up ýo HI/s 1S. 6m. for Famita is not considered to be physically 

unrealistic. 

4.5, THE EFFECT OF WAVE CLIMATE EXTRAPOLATION ON LONG-TERM DISTRIBUTIONS 

, ýOF WAVE HEIGHT'AND WAVE LOADING 

The long-term distributions of wave height and wave load have been derived 

in the manner outlined in Section 4.3 from the extrapolated probability 

distributions of HI/s obtained in the previous Section, using programs 

OS25 and OS26 (see ýppendix Six). 

In Fig. 4.10 the cdf. of individual wave height, H, 'derived from Eq. (2.3.31) 

is plotted for various data sets. The most significant observation to be 

made is that the distribution obtained from the basic 'one-year' scatter 

diagram data exhibits a 'negative skewness' in the upper range resulting 

in a considerable under-estimation of wave heights in this region 

compared with the predictions based on an estimate of the climate 

extrapolated to include up to the 1100-yearl H1/3, taken here to 

represent the complete long-term wave climate. It should be appreciated 

that the use of one-year data does not necessarily result in under- 

estimation of wave heights. If, for example, the one-year wave climate 

included a severe storm with a return period much greater than one-year, 

then the one-year data would assign too high a probability of occurrence 

to the sea states present in the storm. The resulting long-term 

distributions would then exhibit a 'positive skewness' with wave height 

predictions in excess of those obtained from the extrapolated wave 

climate as will be illustrated later. 

The cdf. s of H derived from both the 100-year graphical and theoretical' 

Gumbel extrapolations of HI/3, given in Table 4.3, are plotted as curves 

(B) and (C), respectively in Fig. 4.10. From the plot it can be seen 

that in this example the graphical extrapolation predicts slightly more 

severe conditions, as expected from the comparison of the long-term cdf. s 

of HI/3 in Fig. 4.7. As mentioned earlier, the theoretical extrapolation 

of wave climate using method of moments is preferred and has been used in 

the remaining applications. The significance of the choice of short-term- 

zero-crossing rates, E{No+IHI/3). to be, 'assigned to each class of HI/3 in, 

the data is also reflected in Fig. 4,10, Curves (B),, and (C) were based 

on values from'the'Pierson-Moskowitz relationship of Eq. (4.7), given in,, 
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Table 4.3, ýover the entire range of classes. However, there is a consider- 

able departure in the lower range of HI/s between these estimates of the 

zero-crossing rates and thosp obtained from the . scatter diagram (given by 

Eq. (4.5) and., computed in Table 4.1), as illustrated in Fig. 4.11. The 

differences reflect the departure of some of the actual short-term 

surface elevation spectra from the Pierson-Moskowitz form as discussed 

in Chapter Three. The effect on the distribution of H is a slight 

departure of, the cdf. s in the lower range as indicated by the departure 

between curves (B) and (D). 

Curve (D) represents the 1100-yearl theoretical Gumbel distribution for 

H1/3 with zero-crossing rates obtained from the data for classes within 

the range of the one-year data and the Pierson-Moskowitz relationship 

for the remaining classes. In this case in the, lower. range the cdf. 

follows that obtained from the one-year data set, curve (A), -and slightly 

higher values of wave height than curves (B) and (C), are predicted at 

given probability levels over the entire range. 

Curve (D) does not, however, represent a more severe condition for 

extreme value estimates than curves (B) and (C) since probability levels 

are not directly comparable. Plots (B) and (C) using the Pierson- 

Moskowitz relationship, correspond to a long-term mean zero-upcrossing 

rate, 
Tz -T, of approximately 0.22 cycles per second whilst curves (A) and 

(B) which use the actual scatter diagram values correspond to a value of 

0.151 cycles per second which results in the differences between the 

, return-period'scales indicated on Fig. 4.10. Consequently, wave height 

of a certain return period for curve (B) exceed those of curve (D). 

In view of the departure in T 
Z_ 

1 the short-term zero-upcrossings from 

the scýtter diagram, obtained using Eq. (4.5), should be included in 

the description of the extrapolated wave climate. To preserve the trend 

where E(No+IHI/3} decreases with increase in H1/3, as seen from Fig. 4.11 

for this particular application, data values from Eq. (4.5) have only 

been used up to Hi/3 = 5.7m, with Eq. (4.7) used for all other class 

values, in the remaining computations. This procedure is favoured since 

it has negligible effect on the long-term cdf. of R which still follows. - 

curve (D) and 
T- rAs unaffected, the long-term zero-crossing rate, being 

z 
relatively insensitive to changes in the zero-, crossing rates of'short- 

term conditions with only low probabilities of occurrence. 
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. Another advant. age. of this, approach is that it excludes the, data estimates 

'which 
correspond to only a small number of occurrences in the scatter 

diagram and which are, therefore, likely to be subject to sampling 

errors, as may be implied by the oscillation of E{No+IHI/31 in Fig. 4.11 

over the range HI/3 = 6.3m. - 9.3m. An alternative procedure would be 

'to kit-a smooth curve between the points from the scatter diagram up to 
HI/s =, 5.7m, with a smooth transition onto the Pierson-Moskowitz curve 

as shown dotted on Fig. 4.11. Such a procedure may well represent a 
better description of the short-term zero-crossing rates but, by analogy 
to the'comments, made above, the resulting minor modifications will have 

a negligible effect on the long-term distributions or zero-uparossing 

rate and it has not,, therefore, been considered here. 

The 1. ong-term cdf. s of basic and peak loading for the data sets of 
Fig. 4.10 have been investigated for a 'drag-dominated' 0.5m. diameter 

vertical member of unit length immersed 7. Sm. below still-water-level. 

The results are not included here as they showed similar characteristics 

to those observed for individual wave height, although exhibiting less 

significant deviations in the lower range. Furthermore, the distribu- 

tions of basic force are independent of, and hence unaffected by changes 

to, short-term zero-upcrossing rates. Inertia dominated loading cases 

have not been considered because short-term loading of this form is 

Gaussian distributed with its peak variate following the Rayleigh 

distribution. Hence, the peak loading and individual wave height have 

the same probability structure in the short-term and, therefore, possess 

similar characteristics in the long-term. 

Figs. 4.12 and 4.13 illustrate how the tails of the cdf. s Pp (F) and P (H) 

are critically dependent on the extreme values of HI/3, with associated 

weightings, WHI/Ap present in the data sets. Curve 1 represents the 

original scatter diagram representation of the wave climate. From Fig. 

4.7 it is apparent that this one-year sample contains no extreme sea 

states (HI/3) with return periods greater than one year. Accounting for 

these extreme states by extrapolating the wave climate (HI/3) to 

simulate conditions of, up, to 100-year return period using the Gumbel fit 

by method of moments from Fig. 4.7, produces curves 2 to 6 (where curve 2 

uses HI/3 classes up, to 15.6m. which has return period of 100.7 years, 

similarly curves 3,4 and 5 incorporate-classes up to 13.8,12.0 and, 

10.2m. with return periods of 20.2,4, -0 and-0.8 years, respectively). 

The effepi produced by increasing the length of the extrapolated data set, 
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clearly demonstrates the -sensitivity of the tail of long-term distribu- 

tions to the short-term distributions associated with the sea states of 
high return period which are likely to be absent from short climate 

samples. 

The trend of these curves with respect to the duration covered by the 

wave-climate extrapolation suggests that the 1100-yearl extrapolation may 

well represent an effective saturation condition adequate for design 

purposes when typical design lifetimes are only of the order of 20 to 

30 years. Using Fig. 4.13 it is seen that the use of the raw wave 

climate data set would underestimate the 'one-year, wave load (predicted 

from the 'complete' wave climate description assumed to be represented 

by the 100-year extrapolation) by 9% and the underestimate would 

increase to 22% for the 1100-year prediction. It was demonstrated 

earlier that the presence of a range of extreme sea states (111/3), Of' 

return period greater than the data collection period, is unlikely in any 

single wave climate sample and even if present the associated weightings 

will be incorrect. In the absence of these extreme conditions in the 

data set underestimates of wave load magnitudes are seen to result from 

use of the raw wave data. However, if rare storm events were contained 

in this short record then, due to the incorrect weightings applied to 

them, wave loads could be overestimated from a raw data set. 

This is illustrated by curves 7 and 8 in Figs. 4.12 and 4.13 where the 

one-year wave climate (associated with curve 5) is enhanced by the 

presence of a single three-hour observation of the 1100-yearl sea state 

for curve 7, and a hypothetical 1100-yearl storm sketched in Fig. 4.14 

for curve 8. Since each observation is associated with a probability of 

I occurrence of 1/2920 the weighting, W(Hi/3), applied to the extreme 

value of HI/3 will be 0.00034 in thelone-yearl sample whilst in the 

complete population (1100-year Gumbel distribution) its weighting is 

approximately 0.000003, see Table 4.3. In other words, the weighting 

applied to the conditional distribution, P(FIHI/3 = 15.3m. ) would be 

almost two orders of magnitude greater than it should be. Consequently, 

wave height and loads far in excess of the correct values are predicted. 

Uncertainties in load prediction possibly in excess of the differences 

between values from curves 1 and 7 must, therefore, be expected when 

using short (single year) samples of wave climate, without extrapolation, 

in extreme value analysis. 

I 
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Although it is inevitable that the higher intensity sea state occurrences 

will vary considerably from year to year, the extrapolation based on 

'moments-fi 
, 
tting', of the HI/3 data histogram to a theoretical probability 

distribution-may, -not depart markedly from the correct long-term 

distribution as illustrated in Fig. 4.14. In the Figure a range of 
hypothetical short (one-year) samples of the distribution of Hi/3 are 

considered: the 'one-year' Gumbel climate; plus its enhancement associated 

with the presence of the 1100-yearl H1/3 and the 1.100-yearl storm, 

considered in Fig. 4.13, and a Gumbel wave climate which includes only 

values of HI/3 up to 6.6m. These may thus be considered to represent 

'average', 'high intensity sea state biased' and 'low intensity sea state 

biased' climates respectively. For all these conditions, the fitted 

distributions of HI/s are very close to the 1100-yearl parent distribu- 

tion, sufficiently close that the effect on the long-term wave load (or 

wave height) distributions will be of secondary importance in comparison 

with the other uncertainties in the procedures. However, it must be 

appreciated that if the wave climate variability from sample to sample 

is not restricted to the extreme sea states (if the distribution, P(HI/3), 

is not consistent from sample to sample for the lower and middle range 

of H1/3 values), then the length of the wave climate record is too 

short and high degrees of uncertainty in predictions are inevitable, 

as discussed earlier. 

it is interesting to compare wave height estimates obtained by wave 

climate extrapolation along the lines described here, with other 

techniques of extreme value prediction. From Fig. 4.12 the 150-year, 

wave height from the extrapolated wave climate is 28.5m. compared with 

23.1m. from use of the one-year data. The most common method of wave 

height prediction appears to be to plot the distribution of H for the 

one-year data on Weibull paper, as plotted for the Famita dati on 

Fig. 2.3.3. The plot is usually truncated at the 'one-year' return 

period and the remaining tail only is either fitted by eye to a straight 

line for extrapolation or, alternatively, the entire curve is fitted by 

eye with adjuStMentýOf parameter A in the Weibull distribution to 

straighten the plot. Consequently,, as a result of the logarithmic 

compression of the wave height scale, the abstracted values are highly 

subjective. For example, from F. ig. 2.3-3,, the 150-yearl wave could lie 

anywhere within the Tange 26mý, to 28m. Using this technique for the 

winter data set only Draper and Driver 71 predict a Value of 27.4m. 
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It is also interesting to note that the 1100-yearl wave, which forms the 
basis for design recommended by Det Norske Veritas" is 30m. from 

Fig., 4.12. If this wave is assumed to occur during the stationary 

three-hour sea state of 1100-yearl severity characterised by 111/3 - 15.6m. 

then the most probable maximum wave, which then corresponds to the 
1100-yearl wave, may be predicted using the relationship derived by 

Longuet-Higgins 39, which, follows from Eq. (2.3.17): 

kn NJ 1/2 

%ax Hi/3 2 

where N is the number of waves. 

(4.8) 

Using the zero-uperossing, rate from Eq. (4.7) to determine N, the wave 
height for the Famita location is predicted as 28.4m. 

The difference between these two estimates results from the fact that the 

latter method is unable to account for the possibility that the 1100-yearl 

wave may be experienced in a less intense condition than the 1100-year, 

sea state, which might occur for periods well in excess of three hours. 

4.6 LIMITATIONS OF THE WAVE CLIMATE EXTRAPOLATION TECHNIQUES 

The main objective of this Chapter has been to reduce the sampling 

variability associated with wave climate measurements covering typically 

a one-year period in approximating the characteristics of the long-term 

wave climate. 

The procedures proposed here are based on the scatter diagram representa- 

tion of wave climate description since this is the form most often 

available to the designer. As a consequence of this form of wave 

climate presentation, the sequential variations in sea state intensity 

are not preserved which prevents extreme wave height or wave load 

prediction based on storm models 74#75. 

In the interpretation of the long-term cdf. s of Figs. 4.10,4.12 and 4.13 

no account has been made for, the grouping of large waves, a phenomenon' 

which is often observed in reality. It has been assumed here that if n 

waves, or load cycles, occur per year then the T-year return period 

r, orresponds to a probability of non-exceedence of (I Although 
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this is correct over a long-term. average, Nolte 74 has pointed out that 

the average, interval between occurrences of amplitude associated with 

the T-year return period will be greater than T-years because large 

waves tend to group together in time. For example, if a IT-year' wave 
height is exceeded twice in &,,. singleýstorm. then the time interval between 

occurrences must be 2T, thus representing the corrected 'true' return 

period for this wave height. 

The effect of this modification has been shown to be significant when 
considering wave heights at low return periods. its effect diminishing 

at the higher return periods most often of interest in structural 
design. For example, a reduction of 10% on wave heights considered 
herein might be inferred from Nolte's results at the one-year level 

reducing to approximately 2% at a 50-year return period. Similar 

reductions would also be applicable for the peak load distribution but 
in view of their magnitude in the region of interest in extreme value 
analyses, the effects of grouping may be considered to be of second order 

of importance. 

The techniques applied herein are strictly applicable to locations which 

suffer from no directional bias in wave generation where the most 

extreme wave conditions may result from winds in any direction. For 

coastal locations where wave generation may be severely restricted by 

fetch limitations it is essential that the wave climate description 

includes wind direction in addition to recordings of significant wave 
height and mean zero-upcrossing period. The above techniques could 

then be applied to discrete classes of wind direction, the fitted 

distributions of HI/3 being truncated according to the constraints 
imposed by the fetch available in each direction. The resulting long-term 

directional distributions of wave height or wave load could be convoluted 

according to the probability of occurrence of each wind direction band to 

yield the complete long-term descriptions. 

"1 
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TABLE 46 

PROBABILITY DISTRIBUTIONS OF H 1/3 FROM FAMITA SCATTER DIAGRAMS 

'One Year' Data Winter Data 

Upper Mid- 
Limit Class EIN+IH I 

0 1/3 W(H 1/3m p (11 )AH 1/3m 1/3 P(111/3u) W(II 1/3m P(II /3u (u) (m) , 

'0.6 0.3 0.1738 96 0.04990 0.0499 5 O. OOS2 
1.2 0.9 0.1734 402 0.20894 0.2S87 104 0.1132 
1.8 1.5 0.1578 389 0.20218 0.4608 172 0.2918 
2.4 '2.1 0,1487 '321 0.16684 0.627S 1S2 0.4496. 
3.0 2.7 0.1419 24S 0.12734 0.7S48 133 O. S877 
3.6 3.3 0.1381 161 0.08368 0.8384 117 0.7092 
4.2 3.9 0.1312 132 0.06861 0.9070 ill 0.824S 
4.8 4. S 0.1224 70 0.03638 0.9434 63 0.8899 
5.4 S. 1 0.1223 46 0.02391 0.9673 43 0.9346 
6.0 5.7 0.1192 23 0.0119S 0.9792 23 O. 9S8S 
6.6 6.3 0.10S1 12 0.00624 0.98SS 12 0.9709 
7.2 6.9 0.1000 11 O. OOS72 0.9912 11 0.9823 
7.8 7.5 0.09899 8 0.00416 0.9953 8 0.9907 
8.4 8.1 0.1177 2 0.00104 0.9964 2 0.9927 
9.0 8.7 0.1003 4 0.00208 0.9984 4 0.9969 
9.6 9.3 0.07407 2 0.00104 0.999S 2 0.9990 

E=1924 EIH1/3}=2.2441m; OH1/3ý1 . 4240m E962 
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TABLE4, .2 

PROBABILITIES OF EXTREME CONDITIONS 

OF RETURN PERIOD GREATER OR ENAL TO Tr YEARS, 

OCCURRING DURING AN 
_LD 

YEAR PERIOD 

Return Period 
Tr 

Period LD 
(Years) 

(Years) 
1 20 so 

1 1.0 1.0 1.0 

2 0.5 0.999999 1.0 

5 0.2 0.9885 0.999986 

10 0.1 0.878 0.9948 

20 O. OS 0.641S 0.923 

so 0.02 0.3324 0.636 

100 0.01 0.1821 0.39S 

P, ý 
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TABLE4 

(Continued) 

Notes 

(A) Estimate of mean-zero crossing rate using Eq. (4.7) 

(B) Cumulative probability values read off Fig. (4.7) 

(C) Cumulative probability values calculated using E{H 1/3 and aH 
1/3 

from Table (ý. l) in Eq. (11.4), Appendix II. 

Figures underlined are slight adjustments to probability values to 

ensure summation to unity when numbers are written to four significant 

figures, as required in numerical routines, with negligible effect 

on the probability distributions. 

t Approximate return periods associated with upper limit of largest 

class of H 1/3 in extrapolation using theoretical Gumbel distribution 

[15.6m =- 100.73 yrs; 13.8m E 20.15 yrs; 12. Om =- 3.98 yrs; 10.2m 

0.80 yrs] 
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FIG. 4.2. COMPARISON OF LONG -TERM DISTRIBUTIONS OF WAVE 
LOAD, FOR THE CONDITIONS INDICATED, DE*VELOPED FROM THE 
SIX-MONTH WINTER AND "ONE -YEAR' FAMI TA SCATTER DIAGRAMS. 
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FIG. 4.7. DISTRIBUTIONS OF, SIGNIFICANT WAVE HEIGHT. K.... AND 
INDIVIDUAL WAVE HEIGHT, H. FOR ONE -YEAR FAMITA DATA ON 

GUMBEL PAPER. 
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FIG. 4.8. PROBABILITY DENSITY HISTOGRAMS OF SIGNIFICANT 
WAVE HEIGHT (LOGARITHMIC SCALE) 
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CHA'PTER FIVE 

PROBABILISTIC ANALYSIS OF STRUCTURAL RESPONSE 

5.1 INTRODUCTION 

The probabilistic description of random wave loading on short sections of 

structural members has been formulated in Chapter Two and illustrated, 

with emphasis on long-term conditions, in Chapter Three. Unfortunately, 

a single component of loading is inadequate to effectively model all but 

the simplest of structural members. Extension of the probabilistic methods 
is, therefore, required to, describe structural response, such as stress 

or deformation, for systems comprising of a large number of individual 

load components. 

An extension along these lines is developed in this Chapter for analysis 

of structures which behave in an essentially static manner, where the 

frequency content of the excitation is not close to any natural frequencies 

of the structure and consequently the response of the structure is not 

subject to dynamic magnification. This assumption is acceptable for many 

of the current generation of fixed structures as discussed earlier. The 

procedure is restricted to structures for which all member load components 

may be expressed in the 'Morison' form subject to wave activity in the 

absence of uni-directional currents and excluding the intermittency 

effects of loading in the splash zone. 

The structure is idealised into a lumped system with member areas and 

volumes, and hence 'Morison' load components, concentrated into a 

discrete set of nodes chosen so as to retain as accurate a model of the 

real structure as possible. Linear behaviour is assumed where response 

variables are expressible as a linear combination of the nodal loads. 

Theoretical pdf. s of short-term response may be obtained from a multi- 

variate pdf. of the nodal loads which can be expressed in terms of the 

multi-variate Gaussian process describing the water particle motions at 

the locations of these nodes. In this way the properties of response 

fully account. for both the correlations which exist between the particle 

motions,, , and hence nodal loads, and the non-linearity of the loading 

itself. 
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The above procedure is formulated in Section 5.2 and investigated for a 
bivariate system, comprising two nodes, in Section 5.3. Extension to 

more complex systems is prevented by computational limitations. 

However, the probabilistic properties of response are found to follow 

quite closely the P-H pdf, which describes the single member loading, as 

shown previously from both full-scale and laboratory data by Tickellss. 

Since this pdf. is a function of its second and fourth moments (see 

Section 2.3.6), the short-term probabilistic properties of response may 
be obtained from the values of these moments, expressions for which are 

derived in Section 5.4. 

Long-term descriptions of response- follow by analogy to the procedures 
developed for the description of long-term wave loading and are outlined 

I briefly in Section 5.5. 

Finally, some results of application of the probabilistic methods to 

typical structural idealisations are presented in Section 5.6 and are 

compared with results from other methods of load or response prediction, 

including mathematical time-series simulation. 

5.2 MULTI-VARIATE PDF. OF RESPONSE 

5.2.1 Multi-variate pdf. of Wave Load 

By analogy with the comments made in relation to the univariate force 

distribution in Section 2.3.6 it is evident that the n-dimensional wave 

force distribution is a non-linear transformation of the 2n-dimensional 

Gaussian process involving the particle velocity and acceleration at the 

locations of each force component. 

From Eq. (2.3.45): 

Fi=X 2i-lIX2i-11 + X2i i=1, n (5.2.1) 

where X2i-1 =uiK Di and X 2i iK Ii (5.2.2) 

and the random variables, X, are mean-zero Gaussian processes. 

The-n-dimensional force pdf. may be obtained from the 2n-dimensional 

Gaussian density given by (Eq. (1.53), Appendix one): 
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11T 
P(xl, 0. » x 2n) - 2�)n YrD)--e-t--FM] 

exp{- fM [M]-l {X)} (5.2.3) 

where (XIT , (XI, ..., X 2n) 
[M] - matrix of cross-covariances of M which are equal to the 

cross-correlations for mean zero variables. 

Ri I R12 Ri 2n 

R21 

R2n, i R2n 
, 2n 

with Rij = E{X ixiI (5.2.4) 

where E(Xi Xi) is obtained from the, second moment of the corresponding 

particle motions which follows from Section 2.3.5, for example: 

Rik = E{Xj X4} = VrK-DI. K 12 E{Ut 60 

and 
EfU1162) 0 [Ru 

IC12 
(T) II 

T=o 

The 2n-dimensional force pdf. may be obtained from Eq. (5.2.3) using the 

transformation (see Section 1.3.2.9, Appendix One): 

p(FI, ..., F 
2n 

p(XI. ... 2 X 
2n) (5.2. S) 

JDet [J]j 

where force components Fn+1 to F 
2n are auxiliary variables of the form 

F 
n+j =x 2j-I ; (j = 1, . .., n), which are necessary in the mapping between 

the two probability spaces and Det[J] is the determinant of the Jacobian, 

which for the above system is unity. 

The required n-dimensional pdf. of force is thus determined from Eq. 

(5.2.3) by integrating out the auxiliary variables: 

CO 00 
p(F1, F2» .... Fn)=ff p(F1, F2, .... F 

2n) 
dF 

n+i 
dF 

2n 
_Co _C» 
n-fold 

(5.2.6) 

i 
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S. 2.2 Quasi-static Response of Linear Structures 

For an offshore structure of the steel lattice type, the vector of nodal 
forces, {Fe 1, may be linearly related to the values of the distributed 

force at particular stations along each member, {F): 

{F 
eI= 

[A] {F} (5.2.7) 

where [A] is a transformation matrix. 

Nodal response variables {Y) are obtained from the stiffness equation 

when the behaviour of the structure is assumed to be quasi-static and 

linear: 

(5.2.8) 

where [K] is the structural stiffness matrix, hence: 

{YI = [K]-' [A] {FI 

= [S] {FI (5.2.9) 

The multi-variate pdf. of nodal response, Y, may thus be obtained from 

the multi-variate pdf. of force: 

p ({F 1) 
Det (S. 2.10) 

In order to map between the response domain and the force domain it is 

necessary for each of the probability spaces to be of the same dimension, 

thus [S] must be a square matrix. This may be achieved by introducing 

auxiliary variables into Eq. (5.2-9) and integrating them out of the 

multi-variate pdf. Eq. (5.2.10) in the same way as the auxiliary forces 

were removed in the previous Section. 

A direct approach of the form indicated above is extremely lengthy since 

to derive the n-dimensional pdf. of force or response requires an n-fold 

integration. Furthermore to obtain the more practically applicable 

marginal response distributions (see Section 1.3.2.3, Appendix One) an 

additional (n-1) fold integration must be carried out to remove the 

unwanted (n-1) response variables. For example, for the marginal pdf.. of, 

variable YI: 
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P(Yj) p({Yl) dY2,9. dY' (S. 2.11) 
-00 n 

(n- 1) fold 

S. 3 RESPONSE OF SYSTEMS OF TWO LOAD COMPONENTS 

5.3.1 Bi-variate and Marginal pdf. s of Response 

Consider the system sketched in Fig. 5.3.1 of two load components F1 and 
F2 and assume response variables Y, and Y2 to be linearly related to these 
loads according to Eq. (5.2.9), i. e: 

Yl. ' Sil S12 FI 

4, Z- or M- [S] {FI (5.3.1) 
y2 

. 
S21 S22 

., 
F2 

where S ij are constant influence coefficients. 

Applying the procedure of the previous section it can easily be shown 

that the bi-variate pdf. of response is: 

00 
P(YIY2) ý1 ff expf- 

I M-K I dul dU2 
I Det. [S] I (27T) 2KK vrD-e-e-tFM] -00 

2 et LM] 
II. I? (S. 3.2) 

where [M] synunetric matrix of the cross- covariances of particle 
kinematics 

Cr 
20RR 
Ul 

2 
UIU2 UIU2 

0 -R . R. . Al UlU2 UIU2 
-R Cr 20 

1U2 UIU2 U2 
LRR. .0 UIC12 UJU2 U2 

(ARG)= {Cil Ill 
2+ C22 CII 2+ C33 U2 2+ C44 f12 21 

+ 2{C12 Ill ill + C13 Ul U2 + C14 111 112 + C23 ill U2 

+ C24 f1l 02 + C34 U2 C121 

C.. are co-factors of [M] 
13 

16, = (Fi -K DI ullull)/K Ii 
62 = (F2 -K D2 112JU21)/K J2 

Fl = (S22 Yl S12 Y2)/Det [S] 

and F2 ý (Sil Y2 S21 Yl)/Det [S] 

The marginal pdf. s follow by integration, for example: 

00 
P(YI) P(YI Y2) dY2 (S. 3.3) 

I 



- 163 - 

As a linear-combination of mean-zero processes, the response variables 

must also be mean-zero and the second moment may be expressed as follows, 

for Yi: 

E{Yi 21 = S112 E{F 121 + 2SII S12 E{Fj F21 + S12 2 E{F2 2) (5.3.4) 

where E{Fi 21 and E{F2 2 11 are given by Eq. (2.3.49) and: 

E(Fj F2}= E[XIIXIIX3lX311 + E{XIIXIIX4} + E{X2X3lX31} + E{X2 XJ 

The expectations involving Xi are solved later in Section S. 4, a solution 
60 having been developed previously by Borgman . The particle kinematics 

inducing loads F1 and F2 are all mean-zero symmetrical processes and 

since the transformations described by Morison's equation, retain the 

direction, or sign, of these kinematics it follows that the bi-variate 

pdf. of load has a degree of symmetry, in that: 

p(F F)= p(-F -F 2j li, 2j 

and 
p(Fli, -F 2j 

)= p(-Flig F 
2j) 

In other words, that part of the bi-variate pdf. contained within any 

two adjoining quadrants of the domain of F, and F2 define the complete 

pdf. since the densities associated with the remaining quadrants are 

obtained by rotating this probability surface through 180* about the 

origin. 

Furthermore, as the transformation between load and response is linear, 

the same degree of symmetry is present in the bi-variate response 

domain, as illustrated by: 

P(Y ,Y)= 

p(F lk ,F 2j) 
li 2j c; C= const., from Eq. (5.2.10) 

p(-F lk' - F2. t) 
c= P(-Y 

ii , -Y 2j) 

It follows, therefore, that the marginal distributions of response are 

symmetrical and their derivation requires computation of only half of the 

bi-variate domain of Yj and Y2. For positive values of response the 

marginal pdf. s may be obtained as: 
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IW 00 
P(Yl) 0' 1 P(yl Y2)' dy2; P(y2) [P(yl, Y2) * P(Yl a 42)] dYl 

0 (5.3. S) 

where only the domain (YI :ý0; Y2 4 ') is considered. 

5.3.2 Method of Computation and Program Validation Using Bi-variate 

pdf. of Load 

From Eqs. (5.3.3) and (5.3.2) it follows that a 3-fold integration is 

required for computation of marginal probability densities of response, 

with a further, integration required for its cdf. 'Closed-form' solutions 

do not exist for'these integrations, and solution must, therefore, be 

obtained numerically in a similar manner to that applied in the uni- 

variate domain and described briefly in Chapter Three. 

The computer programs developed for this procedure are indicated by name 

only here (and are summarised in Appendix Six) but they follow the same 

general format and notation as the programs referred to earlier and 

characterised by program OSF2, documented in Reference 10. Although the 

programs include algorithms for prediction of long-term conditions, run- 

time restrictions have prevented utilisation of this facility. 

Program OS17 - Constant Step_Fixed Range Numerical Integrations 

The bi-variate density of Eq. (S. 3.2) is computed at a grid of points 

covering fixed ranges of the response domains. Values of (0 4 Y, 4 8ayl) 

and (-8ay, 9 Y2 4 8(YY2 ) are generally found to be acceptable with step 

widths of 0.2a in both domains (where a represents the relevant standard 

deviation) when tSimpson's Rule' is applied to yield the marginal 

densities from Eq. (5.3. S). 

Velocity components ul and U2 in Eq. (5.3.2) are removed by constant step 

numerical integration. Sufficient stability of solution is normally 

achieved using step widths of 0.2a over a range of ±5a in association 

with Simpson's Rule summations. 

Under certain circumstances the accuracies of the above numerical integra- 

tions is inadequate, " as will be illustrated later, and hence attempts 

must be made to increase the accuracy by considering shorter class widths 

over expanded ranges of the variables to'reduce 6rror accumulation. 
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To minimise computational effort the bi-variate densities are taken as 
zero and the, computations curtailed where the corresponding absolute 
values of forces F1 and F2. from Eq. (5.3.1) exceed 10a of thoir 

marginal values. For the above conditions computer run-times are 

approximately 65 seconds on the ICL CDC 7600 computer when using tho 

optimised mode of operation (OPT = 2). 

Program Validation 

To check the procedures the identity matrix was applied for [S] in 

Eq. (5.3.1), such that the bi-variate and marginal distributions of 

loading result, the latter of which may be compared with the equivalent 

uni-variate solution. 

A sketch of a bi-variate pdf. of loading is made in Figs. 5.3.2 and 5.3.3, 

in terms of the conditional distributions p(Fj F21F1) and p(Fj F2lF2)9 

resulting from application of program OS17. For the conditions indicated 

in these figures the marginal cdf. of force F1 is plotted as curve 1 on 

Fig. 5.3.4 and is found to fit exactly the cdf. of uni-variate load F1, 

curve 2, obtained using programme OSF2. The corresponding plot for F2 is 

made on Fig. 5.3.5 and the marginal cdf, curve 1, is seen to deviate 

from the uni-variate, curve 2, in the extreme range, this departure being 

caused by inaccuracies in the numerical integrations as will be explained 

later. 

The fit between the curves in Figs. 5.3.4 and S. 3. S is typical of the 

results obtained from computations in the bi-variate domain where, for 

either load or response, the marginal cdf. with the lowest kurtosis (the 

most 'linear' or 'inertial-dependent' condition) deviates in the extreme 

range due to error accumulation. To further illustrate this effect curve 

3 on Fig. 5.3.5 results from the previous system, see Fig. S. 3.2 but with 

a 2.0m. diameter for member 1, a more inertial condition than for the 

1.0m. member, and shows only slight departure from the uni-variate 

distribution. However, the marginal. distribution of load on the 2.0m. 

diameter member, curve 1 on Fig. S. 3.6, shows a deviation from the uni- 

variate cdf, curve 2, whilst marginal distributions obtained when the 

other member, is of S. 0m. diameter follow. this curve exactly. 

This behaviour may be explained as follows, noting that the cdf. of, the 

variable with lowest kurtosis, assymtotes to, the extieme probability of 

the other variable, as might be expected. Consider, for example, the 
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conditions in Fig. 5.3.2 where Force F, is truncated at 8a F1 in Fig. 5.3.4 

at a probability of approximately 0.999965, (which may be obtained 
directly from Fig. 2.3.5 given the value of kurtosis). From curve 2 on 

Fig. S. 3.5, '(or from Fig. 2.3.5) this probability represents approximately 
6cr Consequently, in computing the cdf. of F2 beyond 6a the F2* F2 
conditional distributions p(Fj F21F2). integrated to yield the marginal 

densities, are truncated at F1 = 8a., whilst they are likely to contain 

significant probability mass beyond this limit. 

In contrast, in the determination of the cdf. of F1 close to its limit of 

BCF F1 
it is unlikely that any significant probability mass of p(Fj F21FO 

will be omitted by truncation at even 6a 
F2* This follows because the 

marginal distribution of F1, with larger kurtosis, is more 'peaky' 

showing a greater spread in the tails of the force domain than its 

counterpart F2 and it might be expected that the conditional distributions 

will also exhibit similar characteristics. The limit of 6a 
F2 

is 

indicated on Fig. 5.3.5 from which it is seen that the departure between 

the marginal cdf, curve 1, and the univariate, curve 2, occurs below this 

limit, at about SaF2 , suggesting that the above characteristics may 

possibly be enhanced in the conditional distributions. 

From the above comments it can be concluded that to avoid deviations in 

the extremes the limits of the ranges of F1 and F2. (or Y1 and Y2) should 

correspond to equivalent cumulative probabilities, which may be deduced 

from Fig. 2.3.5. However, to carry out such a procedure, with the 

objective of extending the valid range of the variable with lowest 

kurtosis, will require increased run-times. This follows because the 

extensions in rangesof force or response must be provided without 
increase in step widths if the accuracy of the numerical integrations is 

not to be adversely affected. It must be appreciated that with the 

imposition of run-time restrictions there will be a limit to the valid 

range of the marginal distributions which may be computed due to the 

error accumulation present in even the most refined numerical integration 

procedures. From the results obtained herein, this limit was found to 

correspond to a probability of approximately 0.99999 due to accumulated 

error of approximately 6x 10-5%4 11.. 
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Notwithstanding the above remarks, the foregoing results have confirmed 
the validity of the computational procedures. It now remains to 

describe some modifications to program OS17 which were introduced to 

optimise the computations. 

Program OS14 - Approximate Integrations Over Velocity Domains Using 

quadrature Techniques 

Program OS14 was developed to reduce computer run-times by application 

of Gaussian-Hermite quadrature (see Section 3.5) in the integration of 

velocity variables u, and U2 in Eq. (5.3.2). Using this technique the 

bi-variate pdf. may be expressed as: 

--T-mý mn (n) f (X 2 Aet (m) 
P(yl Y2) 

jr) 2EAi ijox 20 IDet[S]1(2 K 
Il 

K 
12 l(CII C33 j-1 kýl 

Ak 

(5.3.6) 

r1 (ARG*) , where f(xljp x 20 = exPl- -! -De-tt-FM]' 

(ARG*) = (ARG) - Cil ulj - c33 u2k 

2 Det [M] x2. 
u2 

13 
Ij Cii 

2 Det [M] X2 
2 2k 

2k C33 

and Ai . 
(M)p Ak (n) 

are the weighting coefficients with xj# x 2k the 
function values of Gaussian liermite quadrature of order m, n, 

respectively. 

Some instability of solution is experienced in using the method, as 

illustrated in curve 3 of Fig. 5.3.4 for the situation when m-n= 20, 

where oscillation about the true marginal distribution results. However, 

this effect is much less marked than that present in the uni-variate 

application of the quadrature (see Section 3.5) and decays as the kurtosis 

of the loading components decrease. Use of this method is, therefore, 

acceptable for conditions of low drag dependence in the loading input 

and with m=n= 20 typical run-time requirements for Program OS14 are 

reduced to about 20 seconds, only 30% of the equivalent values for 

Program OS17. 

i 
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Erograms OS15, OS18 - Floating Range Integration for Response Variable Y2 

The applications described so far all correspond to conditions with 

relatively low correlation between the load components. This is typified 
by the correlation coefficient, rFo0.292 for the conditions in 

Fig. 5.3.2, where: 

rF= E{Fi F2)/v/EiFI21 Et-F221 (5.3.7) 

and E{F'l F21 is given with Eq. (5.3.4). 

Considerable reduction in accuracy of solution is experienced with 
Programs OS14 and OS17 when the correlation is high. Fig. S. 3.7 

illustrates such a condition, with loading close to the Gaussian form, 

and it is seen that the conditional distributions from the bi-variate 

pdf. have probability mass over only a limited range of the domains 

covered in the integrations. 

it is evident from Fig. 5.3.7 that integrations over the fixed ranges 

considered previously, and indicated on the figure, will be'inaccurate. 

Curves 4 in Figs. 5.3.4 and 5.3.5 demonstrate this effect and correspond 

to the conditions of Fig. 5.3.2 but with x, '2 X2 " 10OM- yielding a 

correlation coefficient rF ý" 0.90. The behaviour of these marginal 

distributions is a result of accumulative errors in the numerical 

integrations yielding cumulative probabilities in the high force region 

in excess of unity. Normalising these cdf. s, by dividing the cumulative 

probabilities by the erroneous assymptotic probability at the extreme 

of the force range considered (in these cases in excess of 1.0) produces 

curves 4A showing a better fit to the uni-variate cdf. than the original 

distribution but still deviating significantly in the extreme range, as 

might be expected. This procedure accounts for the error by assuming it 

to be evenly spread over the entire force range. 

A more logical procedure is to assume that the percentage errors in the 

numerical integration of the conditional distributions of force are of 

the same order of magnitude. It, therefore, follows that the bulk of the 

error will be contained in the resulting marginal densities in the low 

range of force where the conditional probability. masses are the largest. 

This hypothesis may thus be investigated by fitting the marginal cdf. at 
I 

the upper extreme to the probability obtained from the uni-variate 

condition and plotting the remainder of the cdf. in reverse from this 
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point using the originally computed probability steps associated with 

successive'class levels of loading, This procedure constrains all the 

error to the initial class level adjoining the origin, F-0. Applying 

such an approach yields a modified marginal cdf. which follows exactly 

the uni-variate distribution in Fig. 5.3.4. In view of the error in the 

extreme range, of the marginal cdf. s in Fig. 5.3.5, resulting from the 

force range truncation adopted, as discussed earlier, the fit in this 

case should be made at a force level In the region of 5-6a, for which an 

exact agreement with the uni-variate cdf. again results. 

In summary, the goodness of fit of these 'corrected' marginal distribu- 

tions demonstrates that the most significant errors in the numerical 
integrations are concentrated in the region close to zero of the marginal 

variable under investigation. Although this error is not evident in the 

lower region of the marginal cdf. it causes considerable distortion in 

the extreme range by virtue of the nature of the probability scales. 

Programs OS15 and OS18 were developed, to replace respectively OS14 and 

OS17, as an attempt to minimise error accumulation in the integration 

from the bi-variate to the marginal response domains when correlation 

between response variables is high. In these programs response Y2 is 

integrated over a floating range centred over the peak of the conditional 

pdf. p(Y1 Y21YI) and covering only the range of the significant 

probability mass, thereby optimising the constant step numerical integra- 

tion for the marginal densities of Y1. 

Since in general neither Yj nor Y2 will be Gaussian distributed, the 

values of the mean and variance of p(YI Y21YO, required to define the 

range Of Y2 at any level of Y1, are unknown. They may, however, be 

approximated by the equivalent Gaussian values, see Section 1.3.3.2, 

Appendix One: 

E{y2lyll I-- ry YlAty231/Ety, 21 

and 
a2 ' '2 

2- ry 2 
Y21YI 

ai2 Cl 

where ry isthe form of Eq. (5.3.7). 

(S. 3.8) 

(S. 3.9) 
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These estimates are used in Programs OS15 and OS18 and from inspection 

of the resulting bi-variate response distributions this technique 

appears to locate the significant region of the probability mass of 

p(y, Y21YI) if the range Of Y2 considered covers about il6ay2ly, centred 

at the mean E(Y21Y11- 

Although producing an improvement on the fixed range integration the 

approach is not sufficiently refined to suppress the problem of error 

accumulation when correlations are high, given restrictions on the 

sensitivity of the numerical integrations imposed by computational 

limitations. Consequently, significant inaccuracy must be expected in 

investigations of response from bi-variate systems under these conditions. 

S. 3.3 Illustration of the Impracticability of investigation of 
Tri-variate Systems of Loads 

It is instructive here to demonstrate the limitations of application of 

the multi-variate analysis for structural response. 

Using the optimised mode of operation on the ICL CDC 7600, computer 

programs OS17/OS18 demand run-times of at least 65 seconds whilst 

Programs OS14/OS15 require at least 20 seconds. With reference to 

Section 5.2, extension into the tri-variate loading domain would imply 

additional integrations over a response and velocity domain. Assuming 

numerical integrations of a similar sensitivity to those applied in the 

bi-variate case, the number of computations of the argument in Eq. (S. 2.11) 

would be increased by a factor of at least (20 x 81) = 1600 for OS14/ 

OS15 over those required for the bi-variate system. Furthermore, a 
large part of the run-time consumption is within the algorithm describing 

the integrations of this argument. Consequently, run-times for tri- 

variate systems are likely to be of the order of (20 x 1600) = 32000 

seconds, far in excess of the limitation imposed. 

Even if such run-times were available, in view of the increased problems 

of error accumulation experienced in extension from uni-variate to 

bi-variate loading, these problems might be expected to be excessive in 

the tri-variateloading applications. 
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5.3.4 Marginal 
--- 

Distributions of Response from Bi-variate Systems Using 

Program OS18 

Some marginal cdf. s of response, computed using Program OS18, are plotted 

in Figs. 5.3.8 to 5.3.10. Also included in the figures are estimates of 

the second and fourth statistical moments obtained from the marginal 

pdf-s, the kurtosis and the equivalent Gaussian cdf. s of response. In 

addition, the theoretical values of the moments of response, computed 

from the expressions developed in Section S. 4, are included and are seen 

to show close agreement with the numerically computed 'marginal' estimates. 

From the results presented in the Figures it is immediately apparent that 

the distribution of response deviates from the Gaussian form when the loading 

is drag dependent and hence non-linear. The linear nature of the transform- 

ation from force to response for the general multi-variate system suggests that 

the distribution of response may be of a similar form to that of the loading, 

namely the Pierson-Holmes pdf. for short-term conditions. 

This is evidently the case when inertial effects dominate the loading, 

since multi-variate Gaussian input through linear systems produce Gaussian 

output. Tickell55 has supported the proposition for general drag/inertia 

loading from analysis of strain records from members of a prototype structuro 

in the Southern North Sea and also from laboratory tests. 

The hypothesis is tested in Figs. 5.3.8 to 5.3.10 by plotting the 

pierson-Holmes cdf. from the second and fourth moments of response, 

there being found negligible deviation between the results obtained from 

the two sets of moments included in the Figures. Program OS16 (see 

jkppendix Six) was written to compute the P-H distribution P,, (y) from 

Eq. (2.3.54), using constant step integration with 81 steps for variable 

-y over a range from zero to 8a 
Y and 201 steps for dummy variable ýj over 

a range of ±-5G ýI - 

In Fig. 5.3.8 a good fit is achieved between the marginal distributions 

and the equivalent P-H cdfs, the deviations which exist probably resulting 

from error accumulation in the numerical integrations as discussed 

previously in Section 5.3.2. The marginal cdf. in Fig. 5.3.9 shows 

considerable 
departure from the P-H form. However, for this 

highly correlated condition, following the procedure applied 

to curve 4 in Fig. 5.3.4 and discussed in Section 5.3.2, 
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normalisation improves the fit and exact agreement is obtained if the 

distribution is fitted at the extreme. It, therefore, follows that the 

deviation, is a result of numerical inaccuracies in the integrations 

concentrated in the marginal densities at low response levels. 

Finally, Fig. 5.3.10 illustrates the instability of solutions from the 

bi-variate load system involving 4-fold numerical integration for a 

predominantly inertial condition. The plot of the corresponding P-11 

distribution shows a similar degree of inaccuracy from only a 2-fold 

integration. 

In summary, the deviations which exist between the marginal cdf. s of 

response and the equivalent P-11 cdf. s may be explained by numerical 
inaccuracies in the computations. The errors are concentrated in the 

low response region of the cdf. s and thus have little effect on the 

statistical moments resulting from the marginal pdf. s. Further results 

of the above analysis supporting these statements are presented in 

References 11 and 14. 

It may, therefore, be concluded that the probability distribution of 

response for bi-variate systems is accurately described by the Pierson- 

Holmes distribution. Moreover, it follows directly that this statement 

may be generalised to cover systems of any number of load components. 

It should be explained at this stage that it has not been found possible 

to prove mathematically that the probability structure of a linear 

combination of random variables following the P-H distribution also 

follows that distribution. However, as mentioned earlier, the proposition 

Is supported by the results from experimental measurementS55. 

Further evidence of the goodness of fit of response to the P-11 

distribution is presented later from the results of mathematical time- 

series simulation. In view of the problems associated with error 

accumulation in numerically derived cdf. s, it is considered to be more 

appropriate to make comparisons of the probability structure of response 

in terms of the values of the statistical moments, which are relatively 

insensitive to such errors as discussed earlier. Close agreement 

between statistical moments of up to fourth order implies for practical 

purposes equivalence between the probability distributions producing the 

moments. 
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Accepting the -above hypothesis, response from multi-variate systems may 
be described probabilistically from knowledge of its second and fourth 

order statistical moments. These may be developed from the known 

statistics of the particle kinematics at the nodal 'load-points'. This 

procedure, developed in the following sections, avoids many of the 

computational problems associated with the multi-variate probability 
domains, thereby relaxing the restriction on system complexity. 

I 

5.4 SECOND AND FOURTH MOMENTS OF RESPONSE 

A particular nodal response variable taken from Eq. (5.2.9) may be 

expressed in the form: 

Si F1 + S2 F2 .... +SnFn 

where SI, Sn are flexibility coefficients. 

Clearly, since all forces are mean zero in this study and have 

symmetrical distributions then all odd moments of Y will be zero, i. e: 

E[Y k, 
=0k= odd integer (5.4.2) 

The second-moment of Y is given by: 

n n-1 n 
E{Y 21= ESi2 E{F i 

2) +2EES. Si E{F iF (5.4.3) 
i=l i=1 j=i+i , 

Similarly, the fourth moment of Y is: 

nnn 
E{Y. 4) =ESi4 E{Fj 41 

+4EESi3si E(F i3F i=l i=l i=l 
jii 

n-1 nn n-1 n 
+6EES. 

2S 2E [p 2F 21 + 12 EE1: S. 2S S E{F 2FF 

i=i j=i+i i=l j=l k=j+l kijk 
jji kii 

n-3 n-2 n-1 n 
+ 24 EEEEsisis kSt ED iFi Fk F 1) (5.4.4) 

i=l j=i+l k=j+l Y. =k+l 

Evaluation of the joint moments of force given on the right hand side of 

Eqs- (5.4.3) and (S. 4.4) may be achieved by expansion of the arguments in 

terms of the X variables using Eq. (5.2.2). The resulting expectatipns 

of x must then be determined in terms of the cross-covariances of X, Rip, 

which are known. as illustrated in Section, 5.2.1. 

f 
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Following this procedure it can be easily shown that expressions for a 
total of 23 expectations are required as follows: 

El = E{X i 
4} E13 = E{X 12X Xk} 

E2 = E{X i 
al E14 = E {Xi4 X. Xk} 

E3 = E{Xi 
2Xj2 

ElS W E{XiIX iXj2Xk 
E4 1 

ý= 
E{Xi Xj E16 - E{XiIX 

1Xj4Xk 
ES =H {)C 3XI 

14 
2 

E17 - E{X 'i 
I Y-j IXiIX 2) 

ily k 
E6 } 

=E 
{X X 

ii 
4 4 

E18 - 
41 E{X i1xi Xj Ix 

j 
IXk 

E7 } X. - E[Xi E19 - E{X iXj Xk XJO 

E8 = E{Xi 
, 

XJX i} E20 - E{XijX 
IX 

Xk Xt I 

E9 = E{Xi5jXijXjI E21 - E{Xi XiXXi Xk Xd 

E10 = E{XijXi Xi} E22 - E{XilXilXj IXJIXklXkIXL} 

Ell 1} -E {Xjlxjlx 
i 

Ix E23 = E{Xi[XijX i 
Ix 

i 
IX 

klXkIXZIXLI) 
E12 

i , 
= E{Xi5lXilX lX l} 

j j 

5.4.1 Solution of Expectations El to E23 

From Eq. (1.33), Appendix One: 

El = E{Xi'41 = 3Rij 

E2 = 51 = 10SRi i4 
. 
E{Xie 

The first bi-variate moment is the basic result: 

E3 = E{X iXiI=R ii 

Other bi-variate moments require application of Price's theorem 

(Eq. (1.60), Appendix One) for solution: 

R- - 
E4 = E{Xi2 Xj2j =4 

If i 
E(X ixi} dR ij + E[X i2} E(X i 

21 

0 

2R.. 2+R.. R.. 
ij 11 jj 

and similarly: 

i Xj 1= Uij Rij ES = KX 3 

44 22 E6 = E{X i xj2 = 3Rii(4Rij + Rij Rjj) 
-- .1 

(5.4. S) 

(5.4.6) 

(5.4.7) 

(5.4.8) 

(5.4.9) 

(5.4,10) 
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E7 E[Xi4 ýj 41 - 24R 
13 

4+ 9R ii R ii 
(8Rij 2+ Rij Rjj) (S. 4.11) 

Moments E8 to E10 are solved using the following property 78 : 

E(gi 921 gnj = E{gj 92P ***' gn- 1 E{gnIX, X29 ..., x 
n-l 

(S. 4.12) 

where gi is an arbitrary function of Xi and Efg 
n 

IXI X29 goes X 
n-1 

is the expected value of gn given the values of X, to X 
n-l' 

Hence: 
E8 - E[XiLXiLy-jl - E[XilXiIE[XjlXill 

and the conditional mean value, E{X 
j 

IX 
11 

is obtained from Eq. (I. SS), 

Appendix One, yielding: 

R. . E8 =R E{IX i 
311 

and using Eq. (1.34), Appendix One: 

E8 =4R.. 1/2 R.. (5.4.13) 
r2, 'Tr 11 13 

Similarly: 

E9 = EfXjýXiLXj} = 
96 Rij 5/2 Ri. (5.4.14) 

42 -7,1 

Applying Price's theorem, using Eq. (5.4.12) and Eqs. (1.58) and (1.34), 

Appendix One: 

EIO = E(XjLXjLXj3) = 
i- Rij(3R 

11 
Rjj+ Rij 2 (S. 4.1S) 

Vfý 
R. 1/2 

11 

Solution of the remaining bi-variate moments is more complex than for 

the above and it is, therefore, instructive to develop the solution for 

Ell in detail here. 

Applying Price's theorem: I. 
R. 

Ell = E{XiLXiLXjLXjLl =4f E{IX ix dR ij + EjXjjXjjI E{Xj jXj I 
0 (S. 4.16) 
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and from the mean-zero symetrical nature of X, and X 

E{XilXill = E{XjlXjl} -0 

Applying Price's theorem to the argument of the integral in Eq. (5.4.16): 

R. . 13 
EfIx iXi 

11, = f E(sign(Xi) sign(X dR ij + E{jXij) E{jXjj) 
0 

1 (5.4.17) 

and E{jXij), E{IX 1 
11 are obtained from Eq. (1.34), Appendix One, 

also {Sign(Xj)l = 26(Xi) where 6(. ) is the dirac delta function. ax i 

Thus applying Price's theorem to the argument in the integral of 

Eq. (5.4.17): 
R. 

E{sign(Xi) sign(X 4f E{6(Xi) S(X dR ij + E{sign(Xi)) E{sign(X 
0 (5.4.18) 

and E{sign(Xi)} =0 

00 00 

also E{6(Xi) 6(X f 6(Xi) 6(X P(xi x dX i dX 

Z P(X i=0, Xi= 

From Eq. (1.53), Appendix One: 

p (X 
170, 

Xi= 0) = 1/[27r(R ii R ii 
)1/2 (1 -r 

2) 1/2 ] 

where r-R ij / (R ii Rii )1/2 (S. 4.20) 

Hence, substituting successively from Eq. (5.4.19) to (S. 4.16) yields: 

Ell = [(4r 2+ 2) arc sin r+ 6r(i -r 
2)1/2] (S. 4.21) 

60 
a result previously obtained by Borgman . 

Following the same procedure: 

k 
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2Ri3i R 
2) E12 = E{XilXiLXjLXjL) = 7r 

Jý'{15 
ar6 sin r(I + 6r 

+ r(l -r 
2)1/2 (81 + 28r2 - 2r 4)) (5.4.22) 

The remaining expectations involve more than two variables and must, 

therefore, be reduced, if possible, to expressions involving only two 

variables, by substitution using Eq. (5.4.12), to enable the application 

of Price's theorem as applied above. With reference to Section 1.3.3.3. 

Appendix One, it is apparent that in its general form Price's theorem 

covers multi-variate expectations of any order. However, attempts to 

apply this directly to expectations in three and four variables result in 

third and fourth order differential equations, the solutions of which 

proved to be more difficult to obtain than the solutions to the bi-variate 

problem which results from the above substitution. 

E13 - E{Xi 2 ýj 10 = E{ Xi2 Xj E{X k 
Ix 

ix 

E14 = E{Xi4_. ýj 15a iR ii 
2 Rij + aj (E6) (5.4.25) 

4a. 
E15 ý E-{XiLXiLXj2-Xkl ý1R. . 

1/2 (3R ij2 + Rii Rjj) +ai (E10) 
v, r2ir 

2 (5.4.26) 

E16 z E{XiLXiLXj4-Xk} z"' 
4Rii Rj j [3a 

iR ii 
1/2 (r 4+ 6r 2+ 1) 

vr2ir 

aR 1/2 r(15'+ lOr 2-r 4)] 

and using Eq. (1.55), Appendix One: 

E{XklXi Xi I=aixi+aix1 (5.4.23) 

where a, = (R ii R ik - Rij R jk) /(Rij Rjj - Ri j2) 

Hence: 

ai= (R 
ii 

R jk - Rij R ik 
)/(R 

ii R ii -R ij 

E13 = E{Xj7_ýj 
-! k' = ai(ES) +ai (E4) (5.4.24) 

similarly: 

Solution of E17. requires the expression for the conditional second moment 

given in Eq. (1.58), Appendix One: 
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E17 = E{XiLXiLXjLXjLXk 21 - E[XiiXilXjlXjl E{X k21xix1 
1) 

[R 
kk (a iRA+aiR jk) ] E[X.. IXilXjlXjll 

.L 

2 E(Xi3lXilX i lXjll + 2ai aj E(lXi3 X 311 

2 E[XilXiIX i 
31xjll 

where E{XilXilXjlXjll is Ell 

and applying Price's theorem: 

2R. .2R. . 
E{Xi 3 lxjlx 

i 
Ix 

j1 -1 IT 
(12r 2+ 3) 

(2r 2+ 13) 

(5.4.28) 

arc sin r+ r(l -r 2)1/2. 

(5.4.29) 

E[ IX 3x3R 

3/2 

IT 

R 3/2 

[6r arc sin r(2r 
2+ 3) + (I -r 

2)1 /2 

ii 
(22r 2+ 8)] (S. 4.30) 

EfXilXiIX i 
lix 

i 
11 is obtained by comparison with Eq. (S. 4.29). 

Expectation E18 requires an expression for the conditional fourth moment 

which follows from extension of the procedure in Section 1.3.3.2, Appendix 

One, by considering the third and fourth central moments. 

Retaining the notation of Appendix One for Gaussian variables x to x 

the conditional mean of x is i= E{x 
0n 

0 oc 01XIS ... ' xn and the conditional 

variance, or second central moment, is cr oc 
2= E{(x 

0R oc 
)21XII, ... ' x n" 

expressions for these moments, and the resulting conditional second moment: 

21XI, I= (1 2+-2 
E{x 0" xn oc x oc 

are given in Section 1.3.3.2, Appendix One, the conditional mean and 

second moment having been used in the preceding derivations. 

Since the conditional distribution p(x OIXII ... J, Xn) is Gaussian in form 

the third central moment must be zero, hence: 
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E{ (x - ;- )'lxi, .... x1x E«X 3- 3x 2j+ 3x ;2- j3 )Ixi, 
. @. », x ) 

0 oc n00 oc 0 oc 0 rý n 

E{x'Ixl, .... x 3i E{X21X1, 
..., X 

0n oc 0n 

+ 3i2 E(X ixi, 
6o. j, x1- is 

oc 0n oc 

cc 0, 

and-substitut*ng from above: 

E{xo'Ix'--ý-'-' xn' = "oc (30 
oc 

I+i 
oc 

21 (S. 4.31) 

From Eq. (1.33), Appendix One, the fourth central moment will be: 

EQXO -i oc 
)41XII 

... 9xnI= Ry 
oc 

4 

and expanding the expectation in the above manner: 

Efx 
O'Ixi. ..., xnI= 3a 

oc 
4+ 6a 

oc 
2j 

oc 
2+j 

oc 
4 (5.4.32) 

Returning to expectation E18: 

E18 = E{XiLXiLXjLXjLXk4i = E{XilXilXjlXjl E {Xk 41Xi XjJ} 

and, using Eq. (5.4.32) in conjunction with Eqs. (1.55) and (I. S7), 

Appendix One: 

E18 = 13 ERkk (ai R ik +aiR jk )]2 EfXilXiIX i 
Ix 

i 
11 

+ 6[R kk 
(ai R ýk +aiR jk 

)] [a 
i2 E{Xi3lXilXjlXjll 

+ 2a ia E(IX i3xi 
3P +ai2 E[XilXiIX i3 

Ix 
i 

11] 

+ai4 E{X i 
SIXilx 

i 
IXjIl + 4a i3 aj E{ IXiSlXj3l} 

t 6a 2a2 E{Xj3 IXiIX 3 IX 11 + 4a. a .3 E{ IX 3 X. 511 
iji 

+ai4 'E{X 
i 

Ixjjx 
i 

S. IX 
i 

III 
ý(S. 4.33) 
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where E(XijXijX Ix 11 is Ell 

EfXislXiIX i 
Ix 

i 
11 is given by Eq. (5.4.29) 

E{jXi 3xi 311 is given by Eq. (5.4.30) 

E{X i 
SIXiIX i 

Ix 
i 

11 is E12 

and applying Price's theorem: 

2R. -2R. 
2 

E{Xil JXi IX 
i 

lix 
jil = 

11 
7T 

1j1 [3 arc sin r(8r 4+ 24r 2+ 3) 

r(l -r 
2)1/2 (Sor2 + 55)] (S. 4.34) 

and 2R. . 
5/ 2, R. - 

3/2 

E(I Xi5xi 311 = 
11 

Tr 
I) [ISr arc sin r(4r 

2+ 3) +5 (1 -r 
2)1/2. 

(4r 2+ 17) - 3(l -r 
2)3/2 (2r 2+ 23)] (S. 4.3S) 

The remaining expectations, E19 to E23, involve four variables and, 

therefore, require a double application of Eq. (5.4.12). 

So far, for conditional statistics, coefficients ai and ai have been used 

for the description of moments of Xk conditional on Xi and X j* In the 

following coefficients bi, bi and bk are required for description of the 

moments of X., conditional on Xi, XjA Xk and with reference to Section 

1.3.3.2, App8ndix One, are obtained as solution to: 

[RI {b} = {R(, 
)} (5.4.36) 

where [R] is the matrix of cross -covariance s of variables Xi, Xj* Xk; 
{bI = (bi bib k) 

T; 
and 

{R 
(91) 

}= (R i 91 R jk RkX) T. 

Hence, using Eq. (I. SS), Appendix One: 

E19 = E{XiZj-ýk-h I= EIX i Xj Xk E{X JXi xx kil 

abi' E{X i2 X' iXk}+bi E{X ixi2x k} 
'+ bk E{X ixixk 

2} (S. 4.37)ý 

where expectations are of the form E13. 
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E20 E{X. -LXiLXj bi E{lXi3lX X+ bj E(XilXi IX 2x 411 jkk 

+bk E{XilXiIX ixk 
21 (5.4.38) 

where E{jXj 3 Ix 
j, xk ai E {Xi3lXiIX +ai E{lXillX 1 

21 (S. 4.39) 

E{Xilxilx 2x 
k' =ai E{lXi3lX 2} +a E{XilXiIX 1 

3) (S. 4.40) 

E{XilXiIX xk 21 = EJX ilXilXk2 E{X i 
Ix 

ix kil 

= ci E{lXi3lX k') + Ck E{X ilXilXk3) (S. S. 41) 

with ci and ck the solutions to: 

[R] [c) = {R 0) 
1 (5.4.42) 

where [R] is the matrix of covariances of variables Xis Xk 
{c) = (cij, c k) 

TT 

{R 0) 
1= (Rij R jk) 

The expectations on the right hand side of Eqs. (5.4.39) to (S. 4.41) are 
of the form: 

E{XilXiIX i 
31 E10 

4R. . 
1/2 

E{ jXi3jX 
i 

21 11 (3R 
ij2 + Rii Rjj) (S. 4.43) 

. r2- -7, 

which is obtained in the derivation of ElS, and applying Price's theorem: 

16R. . 
3/2 R.. 

E{Xi3lXilX iI= 
11 ij (5.4.44) 

Yr2 -Tr 

E21 = E{X XXXX iLiLjLjLk-h1 

= bi E{jXi3jX i 
Ix 

i 
Ix 

k}+bi E{XilXillX i 
31X 0 

+bk. E{XiiXiIX jlXjl)Ck 
21 (5.4.45) 

The first two expectations on the right hand side are of the same form 

and may be expanded as, follows: 
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E{ IX-31X {X 3 31) Ix 
i 

Ix 
kaiEi 

IXiIX 
i 

Ix 
i 

1) +ai E{ IX 3X 

the expectations on the right hand side being given by Eqs. (S. 4.29) and 
(S. 4.30). 

The final expectation in Eq. (SAAS), E(X, IX, lx 
JIXJIXk 

21, is E17. 

E22 
.= 

E{XiLXiLXjLXjLXkLXkLXL' 

-bi E{lXi 3 Ix 
i 

Ix 
jlXklXkll +bi L-{xjlxjllx i 

lix 
klXkll 

bk EfX i 
lxjlx 

i 
ix 

jllXk3il (5.4.46) 

In order to expand the expectations on the right hand side it is necessary 

to determine the conditional expectations of the form E[XklXkll XiXiI or 

alternatively Ef IX 
k 

31 1XiXiI. 

It can be shown that the former expectation may be expressed as: 

E {Xk I Xk IIxixj1 
'ý I Rkk - (ai R ik + aj R jk 

)]. [ (1 + S12) (1 - 2Q(fl)) 

2QZ(Q)] (5.4.47) 

where 11 = (a ixi+aix j)'ERkk - (ai R ik +aiR jk )] 1/2 

1 q_ L 
a2l (a) 

42 -7r 2 

"0 
Q (a) fZ (X) dX 

a 

Clearly, the presence of functions of the form of Z(n) and Q(SI) prevent 

any further expansion of Eq. (5.4.46), following substitution by 

Eq. (5.4.47) along the lines of the method adopted so far. Similar 

difficulties are also likely to be experienced in an expansion of 
EflXk3lXi Xi }- 

E23 = E{XiLXiLXjLXjLXkLXkLXLLX9. Ll 

Expansion of' , 
this requires the conditional expectation, E(X LNIN XiX0 

which will have a similar form to Eq. (S. 4'. 47)'and direct solution is, 

therefore, also prevented. 
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Attempts were made to solve E22 and E23 by direct application of the 

general multi-variate form of Price's theorem. However, the shear 

complex 
I 
ity of the problem results in practically unsurmountable 

difficulties, as might be appreciated from the formulation of the problem 
for E23 given below: 

1. 
Repeated application of Price's theorem, Eq. (I. S9) Appendix one yields 

D' (E23) 
- (const) E{6(Xi) 6(X ) 6(X )i IIGR i (S. 4.48) 

where Dr'(. )/IIDR represents a product of derivatives of cross-covariances 

of variables Xis Xjs X and XV 

From Eq. (5.2.3): 

E{8(Xi) 6(X i) 6(X k) 6 (V 1 : -- 
ff 21 2v f) -et-TM-] 

(5.4.49) 

where [M] = matrix of covariances of variables Xi, Xj pXk and XV 

At least 13 possible combinations of partial derivatives may yield the 

right hand side of Eq. (5.4.48) from (E23) as follows: 

113R = 3R? Dqt; 3R? DR! ; DR! DR! ; DR 2 Bqt DR DR ; ii ik it it ik ii ik it 

30 3qt DR DR DR 30t 3Rij 3Rkj; DR 2 Wt BRit BRjk; 
li it ik; 

lk 
i ik i 

30 W DR DR DR? W DR BRjt; 
ik Jk ij kt; it Jk ik 

DR ij 3R ik DR it 3R jk* 3Rjt. ? Rkt, * DRii 3R ii 3Rkk DRIZ aRij BRkt; 

DR ii DR ii DR kk DR U DR ik 3Rjj; BRii DR ii aRkk DR U DR it DR ik 

The value of E23 must, therefore, satisfy each of the 13 solutions from 

six-fold integration of the right hand side of Eq. (S. 4.49) with respect 

to the covariances in the above groups. 
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Solution of E22 'and E23 by Numerical Integration 

In the absence of closed-form solutions for expectations E22 and E23, 

their values have been obtained by numerical integration over the relevant 

probability spaces. 

The, unsolved expectations on the right hand'side of Eq. (5.4.46), 

describing E22, may be obtained from the tri-variate space of Xi, Xi and 
X k' for example: 

C» 

E{ Ixi 3 ix ff x) dX dX d jiXjlXklXkll r" L {lXi31XJIXJIXklXkll P(Xi Xj kii Xk 

(5.4.50) 

Similarly, the other expectations following in an identical manner: 

00 
E23 - ffff {XilXiiX 

i 
ix 

i 
ix 

klxklxzlxtll P(X ixixkV dxi dx i dxk dIk 

_Co (5.4.51) 

the multi-variate pdf. of the mean-zero Gaussian random variables in the 

above equations is obtained from Eq. (1.53), Appendix One. 

5.4.2 Method of Computation and Limitations on Structure Complexity 

Program OS19 was developed for the computation of the moments of response 

from input covering structure and short-term sea state conditions. The 

notation used for the expectations of variables X in the program differs 

from the El-E23 notation used herein but use of multiple comment 

statements, with the arguments of expectations printed, prevents serious 

confusion. 

Numerical integration over the 3 and 4-dimensional probability spaces for 

E22 and E23, respectively, according to Eqs. (5.4.50) and (5.4.51), is 

performed by constant step integration using Rectangular Rule summations. 
For each cycle of integration the relevant conditional probability 

distribution is Gaussian in form. Thereforej to centre the computations 

over the significant range of this probability mass the integration is 

performed over a range of ±5 standard deviations of this conditional 

distribution about its conditional mean value, these moments being 

obtained from Eqs. (I. SS) and (1.57), Appendix One. 

Table 5.4.1' illustrates the sensitivity of the numerical integrations to 

the number. of steps chosen. In the Table, E18 is included in place of 

E22 to illustrate the numerically derived tri-variate expectation since 

in the initial investigation the closed-form solution of E18 had not been 
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obtained and numerical integration was, therefore, required. Although 

the results presented in the Table correspond to a particular set of 

member conditions, they may be considered to be generally representative 

of any application. This follows because the probability spaces 

considered will be Gaussian for any member conditions and the standard- 

isation of the grid of integration points, resulting from the use of 

conditional mean and variance for definition of the integration limits, 

will account for differing correlations between the variables present in 

each application. 

From Table 5.4.1 it is seen that constant step integration using only 11 

steps, yields results for. the numerically derived expectations which 

depart by less than 0.13% from the values obtained by 35 steps, which 

represents the most sensitive integration possible in the run-times 

available and may be considered to be the 'exact' solution.. Values of 

E18 derived numerically using 11 steps were subsequently found to be 

within at worst 1% of the values obtained analytically. The inaccuracy 

associated with the 11 step integration is, therefore, considered to be 

sufficiently small for practical purposes to justify its usage and thereby 

minimise computer run-times. 

Computer Run-time Requirements 

As mentioned above when numerical integration with 3S steps in each cycle 

of integration is applied only systems of up to four nodes can be 

analysed in the 30 minute run-times available on the ICL 1906S computer 

at the University of Liverpool. Reduction in the number of steps to 11 

enables the analysis of systems comprising of up to 12 nodes. 

From the above statements it may be inferred that much of the time 

consumption in the computer program is used in the numerical integration 

associated with solution of expectations of the form of E22 and E23. 

This may be illustrated from Table 5.4.2 which Shows the number of 

combinations of the second and fourth order expectations of force resulti 
' ng 

fromthe moments of response through Eqs. (5.4.3) and (5.4.4). It can be 

easily shown that expectations of the form E22 are present in the expan-, 

sion pf force expectations E{F 
p2FqFrI and E{F 

pFqF r- 
FsI while E23 

results oli'ly, from, the latter. For example, expanding the three and four- 

variate expectations in Eq'. (S. 4.4)-in terms of variables X using 

-Eq. . (S. 2.1). for the set p 1, q 2, T a! . 3. s 4: 
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t E{F 12 : F2' FS) -E {X, 4 XSIXSIX. SIXSI+ Xlh X4 X51X51 + 2XIIXIIX2lX31X$IX51XSI 

+ 2XIIXIIX2 X4 XSIX51 + X2 2 X3lX3lX51XSI + X2 2 X4 XSIXSI 

+ X14 X3lX31XS + X14 X4 X6 + 2XIIXIIX2 X3lX3lX6 

+ 2XllXllX2 X4 X6 + X2 2 XSIX3lX6 + X2 2 X4 X6) (5.4.52) 

F2 Fs F'41 m E(XilXI-IX31X3IXSIXSIX71X11 + XIIXIIXIIXIIXIIXSIXO 

+ XI-IXIIXIIXIIXI. IX71X71 + XIIXIIX31X31X6 XO 

+ XIIXIIX4 X51X51X71X71 + XIIXIIX4 XSIXSIXO 

XIIXIIX4 XS X71X71 + XIIXIIX4 X6 X8 

" X2 X31X31X5IX51X71X71 + X2 X31X31X5IX5IX6 

" X2 X31X31X6 X71X71 + X2'X31X31X6 XO + X2 X4 XSIXSIX71X71 

+ X2 X4 XSIXSIXO + X2 X4 X6 X71X71 + X2 X4 Xß X41 

Arguments forming expectations of the form of E22 and E23 are 

underlined. Variables with odd numbered subscripts are related to the 

water particle velocities through Eq. (5.2-2) and it can be deduced from 

the above expressions that, following the expansion of expectations E22 

in the manner of Eq. (5.4.46), the numerical integrations are required for 

combinations of these variables only. Furthermore, all expectations 

associated with E22 from Eq. (5.4.53) may be solved within the cycles of 

numerical integration for expectation E23. 

In Section 5.4.4 approximations for expectations E22 and E23 are 

considered which may be solved in closed-form obviating the need for 

numerical integration. However, due to the considerable rate of growth 

of the number of terms to be computed as n increases, illustrated in 

Table 5.4.2, the upper ceiling on system complexity appears to be 

approximately 35 nodes within the existing run-times available. 

5.4.3 Validation of the Theoretical Moments and Some Properties of 
Response for Simple Systems 

comparison of the theoretical moments (derived through the procedure of 
Section 5.4.1 using Program OS19) for systems of 2-nodes with the moments, 

obtained from the marginal pdf. s (resulting from the numerically derived 

bi-variate response domain, using the techniques of Section 5.3.4), 

provides a check on the expressions for all but the three and four-variate 

expectations of force, as may be deduced from Table S. 4.2. $uch a 

procedureý ai illustrated by both sets, of moments in Figs. -S. 3.8 to' 

confirms the validity of the theoretical moments since differences are in - 
all cas es wi thin about 2%. 
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Further, confirmation is presented in Fig. 5.4.1 which illustrates the 

variations in the statistics of total force on two unit length cylinders 

at the same depth of imersion with change in horizontal spacing. 

Standard deviation and kurtosis are used in place of the second and 

fourth mpments in the figure and the corresponding values from the 

marginal pd. fs are indicated by circles and crosses, respectively. 

Also included4n the figure is the correlation coefficient between the 

component forces'and Fig. 5.4.2 shows the corresponding coefficients 

between the water particle kinematics at the load points. It may be 

deduced from these relationships that the statistical properties of 

response for these conditions are governed largely by the correlation 

between thp velocity pair and, the acceleration pair with little weight 

attached to the correlation between velocity at one member and accelera- 

tion at the other. 

Fig. 5.4.3 shows a similar plot to Fig. 5.4.1 for different member 

conditions. In both these figures the values of theoretical standard 

deviation (a y= 
ATUY77)) and the estimate from the marginal pdf. are in 

close agreement whilst the corresponding values of kurtosis 

(ay =E {y4J/[E {y2132 ) are lower from the marginal pdf. s. The major part 

of the deviation in the estimates of ay can be shown to be a result of 

the finite truncation on the range of response applied in the bi-variate 

approach, a value of 8ay being used herein as discussed in Section 5.3. 

Clearly the effect-of omission of high response levels above the 

truncation point, with corresponding small probability densities, is 

greater for the fourth statistical moment than for the second by virtue 

of the increased weightings. In fact, the effect of the truncation is 

negligible for the latter moment as reflected in the agreement between 

the value of aY in Figs. 5.4.1, S. 4.3 and Figs. S. 3.8 to S. 3.10. 

However, the truncation is seen to be the major cause of the under- 

estimation of Oy by consideration of Fig. SAA, where the deviation 

between the statistical moments obtained from histograms of the Pierson/ 

Holmes distribution and the true moments defining the pdf. are compared. 

The histograms, cover the same range of the variable, 8a, as applie4 in 

the bi-, varia. teýappro. ach of Section 5.3 and it can be seen that the 

under-estimations observed in OY are of the same order of magnitude as 

those inferrid from Fig. 5.4-4. 
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Fig. S. ý. S'indicates the'variation of a and 0 for the force per unit 
length of'a O.. 5m. diameter member with*change in the depth of immersion 

below still water level. Fig. S. 4.6 indicates the variation in 

-variate loading with variation in the statistics of. response for bi 

elevations of "the members'and, as with Figs. -S. 4.1 and 5.4.3, values 

obtained from the marginal distributions are included. Again, the 
deviations in 0 are caused largely by the upper truncation of the range 

of response. considered. 

The above investigation has confirmed the validity of those theoretical 

expressions derived in Section 5.4.1 and programmed in OS19 for the 

second and fourth moments of response, which are utilised for two 

component'systems. The remaining expressions, in the fourth moment, 

resulting from the three and four force variate expectations in Eq. 

(5.4.4) have been verified by ensuring that: 

a kurtosis of 3.0 results for inertia dominated systems of three 

or four components; 

the kurtosis of total load from a system of four unit length 

members of identical diameter all grouped at practically the 

same location in space, is equivalent to that which would 

result from load on a single such member located at the 

centroid of the four member group. 

To illustrate how this latter requirement is satisfied, consider 0.5m. 

diameter members in 150m. of water with x/z space co-ordinates 

according to Fig. 5.3.1 of (99m/142.5m), (101m/142. Sm), (100m/143. Sm) 

and (100m/141.5m). Defining the loads on each of these members, when 

subject to a sea state with HI/3 = 9.3m, as F, - F4 then 

y=0.25(Fl + F2 + F3 + FO is equivalent to the load, F5, on an identical 

member, at location (100m/142.5m) for which, E{Fs2J = 1.941 x 10s N2 

an4 0 Fs = 7.963. 

Using Program. OS19 with 11 step numerical integration the corresponding 

properties of,,, Y are, E[Y2) -1.944 x 105 N2 and 7.973, within 0.15% 

of. the,,, aýove values, the slight differences resulting from, the minor 

deviations from 100% correlation between the particle motions at the 

nodes. 
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Further verification of the procedures results from their application to 

typical structures in Section 5.6 by comparison with moments obtained 
by mathematical time-series simulation. 

Finally, to illustrate the application of the method to systems of up to 

12 nodes, ' Fig. 5.4.7 is included which shows the variation in a and for 

total force on a varying length* section of vertical piling idealised as 

a number of equally spaced load components. 

S. 4.4 Ap2roximations for E22 and E23 

An alternative approach to the use of numerical integration for the 

solution of expectations E22 and E23 is to employ a polynomial approxima- 

tion for some of the XIXI terms enabling-evaluation in the manner applied 
for the other expectations. 

Polynomial approximations for XIXI, resulting from minimisation of the 

'mean-square' error in the statistical sense, are given by Borgman 79 as 

follows: 

i) Linear approximation 

XIXI 
AR 1/2 X 

y 7r xx 
(S. 4. S4) 

a result previously applied, in Section 3.2, for linearisation of 

the 'Morison' loading mechanism. 

Cubic approximation 

XIXI (R 1/2 X+V (5.4. SS) 
Al- 

xx 3R 112) 
xx 

iii) Quintic Uproximation 

2 1/2 X+ 
X3 X5 

x1XI R 
xx xx 

(S. 4. S6), i4 xx 2R 172 - 60R 312 

These, are plotted in Fig. 5.4.8 and it is evident that the linear 

approximaýipn offers a reasonable solution, only to about two standard. 

deviationsýwhilst the cubic is very aýccurate to more than three and the., 

quintic"is good to about four standard deviitions. " 
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Re-ýstating7the, unsolved expectations: 

E22 E{XilXiIX i 
Ix 

i 
Ix 

klXklXtl 

E23 -'E{XilXiIX i 
Ix 

i 
Ix 

klXkIXLIXZI' 

(S. 4. S7) 

(S. 4. S8) 

Using substitution from Eqs. (5.4.55) to (S. 4. S6), approximations' to 
thqse-expectations may be obtained as follows: 

'Linear'-approximations for E22 and E23 

Substituiing for X klXkl from Eq. (5.4. SS): 

8 1/2 ElXilXi E22 VT-f 
R Ix Ix 

7r kk j JlXk 
Y 

8 1/2 
f Rkk (E21) (S. 4.59) 

Substituting for XklXkl and X, IX. l from Eq. (S. 4. SS): 

E23 = -ý Rkk 1/2 R 1/2 (E21) (S. 4.60) iT U 

'Cubic' approximation for E22. 

Substituting for Xkxk from Eq. (5.4.55): 

E22R 1/2 (E21) +1 E{X 3 Xtj (5.4.61) kk 3R.. 112 i'XiIX*IX*lXk 
KK iJ 

and, using Eq. (5.4.12): 

E{XilXiIX IX X3x EIX. IX. IX. IX. IX 3 E{X., IX. XX iikz1111kjk 
bi E{ IX 

i3 
Ix 

i 
Ix 

il 
xk3 '1+ bi E{X i 

IX 
1 

IIX 
j 

31 31 

+bk E{XilXiIX i 
lxj I xk4 (5.4.62) 

where the b's are defined in Eq. (5.4.36): 

E{XilXiIX i 
Ix 

i 
Ix 

k 
41 is E18 

and the remaining expectations are of the same form, which may be 

expanded using Eqs. (5.4.12) and (S. 4.31)'as follows: 
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F'{IXI'lXjlXjl, Xk' 3) Ur kc 
2 ai E{X13. IX 

i 
IX IX ll+"3akc2 ai E{IX, 3 X1 31) 

+ai3E Ix 
i5 

JXijX 
i 

jXjjI +j3a 12ai E{IX 15X1 
31) 

t 3a iai2 E{X i 
'IX 

I ýIx 13 
jXjj) +a13 E{IX 13X1 

51), 

(5.4.63) 

where akq 2 RkkI (a iR ik +ai Rjj, ) from Eq. (1.57), Appendix One 

aa are defined with Eq. (5.4.23) 

and the expectations of the r. h. s. of Eq. (5.4.63) have been 

derived previously for E18. 

'Cubic/Linear' approximation for E23 

Substituting from X klXkl from Eq. (5.4.54) and for X, IX, l from Eq. (5.4.5S); 

1/2 

E23 Rkkl /2 RjZ' /2 (E21) + E[XilXilXjlXjIX kXL 
31 

iT 3R 1/2 
(S. 4.64) 

where the first expectation on the r. h. s. is E21 and the second expecta- 

tion is of the form of Eq. (S. 4.62). 

(C) 'Cubic' Approximation for E23 

Substituting for both X klXkl and X, IX. l from Eq. (5.4.55): 

i 

i 

Eiý /2 1/2 
R kk 

1/2 
3) 23 RkkI R it 

P21) + 
3R 1/2 

E{XilXiIX i 
Ix 

i 
Ix 

kXi 
R 

9.9.1/2 3 
it 

1 IX 3X 

3 /2 
E{X i 

JXijX 
i 

Ix 
i 

Ix 
kXXI+ /2 R 1/2 

E{X i 
JXijX 

i 
Ix 

jk 'i 
I 

RkkI 9RkkI I P, (S. 4.6S) 

where the middle two expectations are of the form of Eq. (S. 4.62) and 

E{Xilxilxi Ix 
i 

Ix 
k3X1 

31 'can be expanded using expressions for the 

conditional moments, as summarised in Appendix Five. However, this 

expansion yields some expectations the solution of which have not been 

ascertained to date. 

Two additional versions of Program OS19 have been developed, one including 

the'linear approximations for E22 and E23 and the other including the 

cubic approximation for E22 and the cubic/linear approximation for E23. 

some typical results from these approaches are given in Table 5.4.3. It 

is seen that the cubic approximation for E22 offers a considerable 

improvement, in accuracy over the linear approximator and for many terms is 

in very closeýagreement with the" 
, 
numerically computed values. However, 

for'ceitain'terms, notably-(c), (i), and in the table, the error, As' 

substantial. ý Thezeason for this behaviour is not clear but, fortu'nately ý-' , , - 
it'appear. s. to apply to the expectations. with lower numerical values and''. 

on the final'moment is small. The. approximators. for E23" hence their effec. 

are, evidently deficient, demonstrating the need for a higher order 

Approximat6r. 
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The polynomial expressions considered so far represent the estimators 
I 

which minimise the 'mean-square' error in a statistical sense. Tho 

linear estimator A, is the solution to: 

[E{(XIXI -A IX)21] _a[f (XIXI -A IX)2 p(X) dX] 
00 

rA 
,V _00 

)rielding:, 

Ai z, 
'E fIX31)/E[X2) 

which, using Eqs. (1.33) and (1.34), Appendix One, gives the result in 

Eq. (5,4. S4). 

There is no reason to suppose that this value of A, should minimise the 

errors in the application of a linear approximation of E22 and E23. For 

example, in E22 the optimum linear approximator A22 might be considered 

as that which again minimises*the 'mean-square' error: 

a [E(X 4X4X2 (X 
- A22 )21] =0 YA- iix kIXkI Xk 

hence 
A22 

- 

E{X 4x34xt2 IXk'I' 
(S. 4.66) 

4 X-A X2X 21 E{X 
jxk 

Following a similar procedure the best approximaior for E23 may be 

defined as, A23, the value minimising: 

E{X 4x4 (X - A23 X 
ii klXklXtlXtl . 

Xk t)21 

No attempt has yet been made to obtain these optimised linear estimates, 

or indeed their higher order counterparts. This will be the subject of 

on-going research and it Is anticipated that the solutions for the 

expectations defining A22 and A23, and the corresponding higher order 

coefficients, will be achieved using the techniques applied previously 

in this Chapter. However, from analogy with the expansion of most 

complex expectation considered so far, namely E[XiJXiJX j1Xj1Xk 
3 XL31 

summarised in Appendix Five, it may be deduced that the solutions to 'the 

expectations in Eq. (S. 4.66) will require considerable effort both in 

algebraically expanding. the expectations and in performing the multi- 

stage integratipns, resulting from application of Price's theorem. 

i 



Although the presently applied approximations are inadequate, the 

resulting moments of response do not appear to deviate too significantly 

from the true values. This behaviour, with deviations less than 0.1%, was 

found mbe typical of four-node systems, the errors increasing as the 

system complexity increases. Errors of at worst M. were obtained for 

a, 1Z-node system analysed in Section 5.6. The error growth results 

from the increased weighting attached to terms of the form of E22 and E23, 

as might be expected, with, reference to Eqs. (5.4. S2) and (S. 4. S3) and 

Table 5.4.2,, due to the increase in the number of such terms. 

As mentioned in Section 5.4.2, the inclusion of the polynomial approxima- 

tions enables systems of up to about 35 nodes to be analysed against the 

limit of 12 nodes if numerical integration is applied for solution of 

E22 and E23. However, the full potential of the method cannot be 

realised until optimised polynomial approximations for XIXI have been 

developed since there is no means of judging the level of inaccuracy 

present in the moments derived using the existing approximations for 

systems in excess of 12 components. 

S. S LONG-TERM PROBABILITY DISTRIBUTIONS OF PEAK AND EXTREME RESPONSE 

It has so far been demonstrated, in Section S. 3 and SA, that the short- 

term distribution of response may be described by the Pierson-Holmes pdf, 
Eq. (2.3.54). Tickellss has shown that the narrow-band 'type-21 cdf, 
formulated in Section 2.3.6, for the distribution of peak values shows a 

reasonable fit to prototype strain response data from a platform in the 

Southern North Sea. 

Long-tem distributions of peak and extreme response may, therefore, be 

obtained in the manner described in Section 2.3.6.2 making the assumption 

that the short-term zero-crossing rates of response are the same as 

those for surface elevation, according to Eq. (2.3.67). This is again 

a supposition previously made for single member loading (see Section 3.5). 

However, the wave climate data forming input to the long-term analysis 

should be processed in the manner discussed in Chapter Four. In many 

fatigue analyses, the distribution of response, or force, range is 

required rather, than the. distribution of the peak variate. One possible. 

. 
description of response (, stress) range results if each positive pýeak'of 

is assumed to be followed by a negative peak of equal respon. se, 

magnitude, yielding: 
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I 
and 

Response range, YR= 2Y 

P (Y R)=Pp 
(Y =YR /2) 

where Pp (Y) 
I 

is the cdf. of positive peak response. 

0 

(5.5.1) 

Although this assumption be likely to be found unrealistic from observa- 

tions of actual behaviour it might be expected to yield reasonable results 

sinc e the procedure is analogous to that accepted for the prediction of, 

wave height from the distribution of wave amplitude as developed by 

L onguet-Higgins 39 
.' 

I 
More rigorous definitions of response range could be developed but it is 

unlikely-that they would be of significant practical value in view of the 

inevitable increase in the level of computational complexity which would 

be required for their evaluation. 

S. 6 APPLICATION OF THE METHODS TO TYPICAL STRUCTURES 

In this Section the procedures developed in this Chapter are applied to 

some typical structural idealisations under short-term conditions and the 

results are compared with those derived by other methods. 

The major source of comparison has been obtained from the results of time- 

series simulation, where the random sea surface is simulated at a 
discrete set of time points. At each point in time the particle 

kinematics, and the induced member forces and structural responses are 

computed, yielding data sets which can be formulated into probability 

histograms and statistical moments of these variables. The technique 

developed for this procedure in Program OS23 (see Appendix Six) follows 

that described, by Borgman 79 

I 

The structures considered here are: 

a fixed vertical pile 

a conductor tube; and 

a tower, idealisation. - 

The first'of, these has previously, ýeen described in Reference 14 and tfie 

other two structures are the, subject of Reference 15. In respect*of' (ii). 

t, 

Aý 



and (iii) above, the author must acknowledge the contribution made by 

his' colleague, Mr. Tickell, who performed both the structural analysis and 
deterministic response computations presented here. 

5.6.1, Test Structure I: Fixed Vertical Pile 

Consider the determination of total shear or moment at the base of a 

vertical cantilever fixed to the sea bed. 

The relative strength of the drag and inertia terms in Morison's Equation, 

is a function of depth of immersion below still-water-level, as illustrated 

in Section 3. ý, and hence the P ierson-Holmes pdf. of load per unit 

length also changes with depth. Consequently, to obtain a realistic 

estimate of total loading a number of 'Morison' components must be 

considered to yield a reasonable approximation to the actual loading 

variation along the member. 

Such'a system, as shown in Fig. 5.6.1, was recently investigated using 

simulation techniques by Cheneo. In this study the shear, Q(t), and 

moment M(t), at the fixed end of the pile were simulated using Gaussian 

quadrature techniques with only five points to limit computer time, as 

follows: 

19S 

The Gaussian Quadrature Formula" is: 

n 
F(ý) dý = El Hj F(a i j= 

where ai= abcissa coefficients 
Hj = weighting coefficients 

n= number of Gauss points considered 
F(ý) = the polynomial function of ý 

F(aj) =, the value of the function at specified point aj 

Transforming Eq. (5.6.1) to yield the shear and moment at the fixed end: 

n 
QM =f F(t, z) dz =EHjF (t, zi)i 

,0 

'd nd 
M(t) f F(t, z) z. dz =TH F(t, z -f. Z 

0 J= j 

where F(t,, z is the force per un. itlength at z' J: 

(5.6.2) 

(5.6.3) 
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Thus the force distribution along the pile as shown in Fig. S. 6.1 is 

idealised to n force components at locations z j* Eqs. (5.6.2) and (S. 6.3) 

are of the same form as Eq. (S. 4.1), where coefficients S are now 
di 

replaced by weightings (-f xH and (i xHxz respectively, for shear 2i 
and moment which take the values given in Table S. 6.1. 

Applying the method of Section 5.4, using Program OS19, the second and 

fourth moments of shear and response result, which upon substitution into 

Eq. (2.3.54), using Program OS16, produce the Pierson-Holmes cdf. s 

plotted as the solid lines in Figs. 5.6.2 and 5.6.3. Points marked with 

a triangle on'the figures represent the cumulative histograms obtained 

from simulation by Chen. The dotted lines represent the Pierson-Holmes 

cdf. derived from the statistical moments. produced by the simulation. 

Both sets of results show the departure from the Gaussian form which 

signifies the importance of the drag component of the wave loading. The 

deviations between the theoretical distributions and those'obtained by 

simulation in the extreme ranges is probably the result of inaccuracies 

in the latter method caused in part by the finite size of the data sets 

(2,000 points). 

5.6.2 Test Structures Il and III 

The, followingzdescription of the tests has been abstracted from 

Reference 15. ' 

5.6. 
-2.1 , Conductor tube 

Fig. 5.6.4a shows a conductor tube which is assumed to be completely 

fixed at the mudline and it is restrained from horizontal movement at 

points 2,3,5,7,9 and 10 but it remains free to rotate or move 

vertically at these positions. 

The structural properties are assumed to be as follows: 

/M2 Young's Modulus 1.95 x 1011 N 

External Diameter 0.5m. 

O. OSM2 Structural Cross-section 

Moment of Inertia 0.001m. 4 
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The response Variables considered were bending moment and shear at the 

. support. node 7. The. distributed wave loading was considered to be 

replaced by eq4ývalent concentrated loads at the positions shown in 

Fig. 5.6.4b. Table 5.6.2 gives the flexibility coefficients (S ij 
between the response variables and loads at the nine positions, where 

these loads have been modified in each case to represent the effect of 

a distributed force of lKN/m over the length of member associated with 

that particular load position. 

The conductor tube was analysed subject to a sea-state equivalent to a 

Pierson-Moskowitz spectrum with a significant wave height (111/3) of 9.3m. 

The Morison coefficients used were CM = 2.0 and C 1) = 1.0 and the density 

of water taken to be 1000kg/m 3. 

For the purposes of comparison, the problem was also analysed subject to 

a deterministic wave with height II = 18-9m. and period Tw 10.9 seconds, 

corresponding to the expected maximum wave height in a 12-hour storm with 

H1/3 of 9.3m. obtained from Eq. (2.3.17). The wave period was 

arbitrarily taken to be Tz, the zero crossing period, for the spectrum 

and as such, the wave represents a realistic design steepness of 

approximately one-tenth. 

5.6.2.2 Tower 

The tower, shown in Fig. 5.6.5, was treated as a frame structure in two- 

dimensions only and no out-of-plane actions were included in the 

analysis. Encastre support conditions were assumed at the mudline for 

the two main legs of the tower, which stood in 62.5m. of water. 

Young's modulus was taken to be 1.95 x 1011 N/M2 and Fig. S. 6. S shows 

the properties of individual members. The equivalent hydrodynamic 

volumes (VH) and areas (AH) were computed at 12 points and these values 

are quoted in Table 5.6.3, together with the flexibility coefficients 

derived from unit horizontal forces applied at the 12 positions. 

Three response vAriables were considered, horizontal, deflection of the 

deck, axial force at the bottom of a main leg and moment at load position, 

three, in the member running between. positions., three, and six (see Fig. 

5.6.5). Morison's roefficients, were. taken to be C-2.0 and C 1.0 
IM 

at all load, positions,, and the density of water was 1000kg/m'.. 

tF 
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The tower was analysed subject to a random sea represented by a Pierson- 

Moskowitz spectrum for significant wave height (111/3) of 6.9m. Again, 

for the purposes of comparison, the problem was analysed subject to a 

deterministic 'design' wave with height H- 14.2m. and period TW9.3 secs, 

corresponding to the expected maximum wave height in a storm of 12 hours 

duration. 

5.6.2.3 ' Results 

In Tables 5.6.4 and 5.6.5 the second and fourth moments of load and 

response are presented for the test structures. The theoretical moments 

of load are derived from the variances of the particle kinematics 

according to Eqs. (2.3.49) and (2.3.50). In addition to the 

theoretical moments of response derived using the method of Sections 

5.4.1 and 5.4.2 with numerical integration for expectations E22 and E23, 

the results of application of the polynomial approximations in these 

expectations (using cubic approx in E22 and cubic/linear in E23) are 

also included in brackets. The approximation yields results within 1% of 

the true values, 

The moments derived by simulation result from 10,000 data points with 

0.75 second time steps. Th6y show reasonable agreement with the 

theoretical values, all being with 15%. although even with such a large 

number of data points the values are not completely stable, as may be 

deduced from the moments of force pairs (Fe, Flo) and Vii, F12) of the 

tower structure. As expected, the estimates of the fourth moment show 

considerably greater departure from the theoretical values than the 

second moment, this being typical of results obtained from finite data 

sets. 

The deviation of the moments of load estimated by simulation from the 

theoretical values gives a measure of the likely inaccuracy of the 

simulation procedure, which implies probable over-estimation of kurtosis 

by up to 15% from the results obtained here. The general level of 

agreement between the properties of response resulting from the two 

methods is within the bounds of inaccuracy'present in the properties of 

loading, thereby-providing further verification of the probabilistic 

procedures developed in this Chapter. 



in the examples considered here. the simulation technique is quicker to 

perform than the 'full' probabilistic method, as indicated in Tables 

5.6.4b'and 5.6.5b, and can be extended to systems of more than 12 

components, but it is slower than the 'approximate' probabilistic method. 
Furthermore, extrapolating the trend in run-times shown for the simula- 
tion techniques indicates that a limit of the order of 3S component 
systems is likely to be imposed by 30-minute run-time restrictions for 

simulation with the sensitivity applied here. This figure corresponds 
to the upper limit on the approximate method as discussed in Section 
5.4.4. It may, therefore, be concluded that until optimisation of the 

#approximate' probabilistic' method is achieved, simulation techniques 

provide the most reliable and economic meýLný of estimation of the 

statistics of response for systems with in excess of 12 nodes. 

r 

Although, for the applications considered here, the approximate 

probabilistic method predicts moments with greater accuracy than does 

simulation, this result should not be interpreted as being generally 

true. This follows because the inaccuracy of the simulation results 
from the discretisation of the time histories and the finite nature of 

the data sets and is, therefore, likely to be independent of the number 

of load load components considered, as might be inferred from the similar 

levels of inaccuracy in the moments of response to those of load. In 

contrast the accuracy of the approximate probabilistic method is likely 

to decrease with increase in system complexity, as mentioned in 

Section 5.4.4. 

Estimates of extreme values of response are required in design against 
first'excursion failure. The most probable value of the extreme peak, 
(MpPV), of a random variable during a givIen period of exposure represents 

the mode of the'pdf. of extreme peak values. For the P-H probability 
distribution this can be shown (see Section 3.4) to correspond to the 

value taken off the cdf. of peak values, Fig. 2.3.5, at the probability 

level corresponding to that period of exposure. Considering here a 12- 

hour period for the short-term sea conditions, and assuming the number of 

peaks of force and response to equal the number of waves, the relevant 

probabilities of. non-exceedence as 
' 
sociated with the largest peak are 

approximately'O. 99975 and 0.99978 for the conductor tube and tower, y 

respectively... MPPV estimates of the extremes of the response variables 
. are thus obtained using, 

'Fig. 
2.3,5 as summarised in Tables S. 6.6 and S. 6.7. 

'Al 
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'Estimates, 
of the extreme peak. load based on a deterministic wave, 

representing the expected extreme height during the period of exposure 

associated with a steepness of approximately one-tenth are also included 

in Tables 5.6.6 and 5.6.7. Expected extreme values are slightly greater 

than MPPV. estimates due to the positive skewness of extreme pdf. s. 

The predictions for the conductor tube response deviate by as much as 33% 

between the probabilistic (from theoretical moments) and deterministic 

methods whilst for the tower the departures are within 10%. However, too 
detailed"'a comparison should not be made between individual response 

estimates derived from the different approaches due to the lack of 

rational basis for the deterministic method, resulting largely from the 

arbitrary selection of a 'realistic' wave period or steepness to be 

associated with the predicted wave height. The comparison does, 

nevertheless, illustrate a measure of agreement in the magnitude of 

load predictions resulting from the two quite distinct approaches. 

Finally, it is instructive to assess the consequences of linearising the 

loading mechanism as discussed in Section 3.2, before application of the 

probabilistic analysis since this yield results equivalent to those from 

linear spectral analysis, loading and response then being Gaussian 

distributed. The standard deviation of load, or response, would be 

slightly underestimated with linearisation and the kurtosis would be 

constant at 3.0. From Fig. 2.3.5 the MPPV response would then 

correspond to approximately 4.1cry. for the 12-hour period of exposure. 

omitting the underestimation in the standard deviation, the linearisa- 

tion would, therefore, predict extreme values of response between 26 and 

40% below those from the non-linear probabilistic method, given in 

Tables 5.6.6 and 5.6.7. Underestimates of this order may thus be 

expected from a linear spectral analysis of the test structures. 
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T A'B LE543 

ITIVD T (I A Ir DVCITT TC IDDAU ADDDnVTUAIrITflkTC Ar? in 0) 11 A kfn 

Conditions: 

Response Y= F1 + F2 + F3 + F4 

where Fi= force on unit length member i 

Member N=ber X(m) Z(m) D(m) 

1 100.0 142. S 0.5 
2 125.0 135.0 O. S 
3 150.0 13S. 0 1.0 
4 17S. 0 13S. 0 1.0 

1SOm; p- 103 kg/m3; CM - 2.0; CD m "C); P-M (111/3 - 9-3m) 

Method of Computation 
Numerical 

Integration 
(15 steps) 

Linear 
Approxi- 
mations 

Cubic/Linear 
Approxi- 
mations 

EXPECTATION 

E23 XIIXIIX3lX31XSIXSIX7lX71 10.71 7.453 7.197 X109 

E22 a X11XIIX2 X3jX3jX5jX5j - 7.181 - 5.788 - 7.173 x1o" 
b X11XIIX2 QX31X71X71 

- 1.760 - 1.818 - 1.745 X109 

c X11XIIX2 XSIX51X71X71 1.780 - 6.139 2.420 X106 

d X3jX3jX, XjjXjjX, jX, j 3.297 10.36 3.183 X108 
e X31X3IX4 X11XIIX71X71 - 1.875 - 1.937 - 1.8S6 X109 

f X3jX3jX4 X51XSIX7lX71 - 8.3S3 - 6. S27 - 8.372 X109 

g XSIXSIX6 XýJXýJX31Q 2.297 1.3S8 2.393 X101* 
h X51XSIX6 X11XIIX71X71 1.812 1.467 1.823 X101, 
i XSIX5,1X6 X3jX3jX7jX7j 3.034 4.449 - 1.758 X106 

j X71X71X8 X11XIIX31X31 7.784 -11.97 9.198 x1o, 
k X-JIXIIXEF X11X1.1X51X51 11.88 8.787 11.99 X109 

i X7lX71XB X11XIIX51X51 3.341 1.977 3.485 X101, 
IXSIX51XBI 

M XIIXIIX3, IX3 3.238 2.743 3.237, X1010 
, 

n., XI, IXIIXSIXSIX6lX7lX71 7.23S 7.468 7.210 xlO9 
0 X1jX1jX4jX5jX5jX7jX7j S. 009, 3.790 S. OS2 x1o, 
p_4X2jX3jhjX5jX5jX7jX7j -14.63, 9.319 -14.67 XIOS, 

,F T (y4) 4.1913 4.1097 4.1881 

. 4., 
�. � 
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FIG. 5.3-1, IDEALISED SYSTEM OF TWO FORCE COMPONENTS 
ON VERTICAL CYLINDRICAL MEMBERS SEPARATED 
IN SPACE UNDER THE ACTION OF RANDOM WAVES. 

Z-- so DIRECTION OF 
WAVE ADVANCE 

S- Yl. L. 

Di 

Z, D2 UNIT P'ý 

Z2 F2 
I' 

UNIT 

SEA BED 

X1 X2 

d 

p 



214 - 
FIG. 5.3.2., SKETCH, OF SIVARIATE PDF OF LOADING ON A TWO 
MEMBER SYSTEKAS INDICATED IN FIG-5.3.1. (Sao also Fig. 5-3-3. ) 
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FIG. 5.3.1 CONDITIONAL DISTRIBUTIONS FROM THE BiVARIATE 
- ýPDK'OF LOAD114G ON A TWO MEMBER SYSTEK AS' 

IN21CATED IN FIG5.3.1. ) (S41a also Fig-5-3. Z). 
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-FIG, 5.3Z., MARGINAL CDF5 OF FORCE OBTAINED FROM 
JOINT DISTRIBUTION FOR A TWO MEMBER 
SY$TgM COMPARED WITH THE UNIVARIATEs 
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FIG. 5.1.6. MARGINAL CDFs OF FORCE OBTAINED FROM 
JOINT DISTRIBUTION FOR A TWO MEMBER 
SYSTEM COMPARED WITH THE UNIVARIATE 

PIERSON_-', HOLMES CDF. 
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FIGt5.3.9. CUMULATIVE DISTRIBUTION OF RESPONSE 
YaF, + F2 FOR THE SYSTEM SKETCHED IN 

FIG. 5.3-8. 
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FIG. 5.41VARIATIONIN THE STATISTICS OF TOTAL 
F FORCE Yo Fl# *, (STANDARD DEVIATION C%fl AND 

KURTOSIS, EX. ) ON TWO UNIT LENGTH VERTICAL 
MEMBERS OF CYLINDRICAL SECTION WITH CHANGE 
IN THE HORIZONTAL SPACING FOR THE CONDITIONS 
BELOW. 
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FIG. 5.4.2. VARIATION OF PXRTICLE KINEMATIC 
CORRELATION COEFFICIENTS, WITH 
CHANGE IN HORIZONTAL SPACING. 
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FIG. 5AAUNDERESTIMATION OF STATISTICAL MOMENTS 
OF THE PIERSONIHOLMES DISTRIBUTION OBTAINED 

o PROBABILITY HISTOGRAMS AS DESCRIBED 
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FIG, 5.4.8. POLYNOMIAL APPROXIMATION TO XIXI 

Best cubic fitj 

L, xlxl 
Irx Crx 

14- 
Best intic 

f iqu 
12 

10- 

8- 

6- 
Best liner 

f it. 
4- 

2- 

01234567 
x 

CrA 

3. 



2sl 

FIG. 5.8-1. WAVE LOADING ON SINGLE PILE. 
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11 APTERSIX 

CONCLUSIONS 

A rational, approach to the risk analysis problem in the design of 

offshore structures against fatigue and first excursion failure 

calls for an understanding of the probabilistic properties of the 

random loading induced by the waves and the resulting structural 

response. 

2. A proper treatment of the non-linear dra-g component in Morison's 

wave load equation is essential for the probabilistic analysis of 

structures of the steel lattice type where member diameters are 

generally small in relation to significant wave lengths. 

Linearisation of this term permits simplified analysis but has been 

shown to lead to considerable under-estimation of extreme loads for 

small diameter members. 

3. In the short-term, over a period of several hours, assuming long- 

crested sea conditions and applying linear wave theory, the wave 
induced loading on short members follows the Pierson-Holmes pdf, a 
function which degenerates to the Gaussian pdf. as the drag effects 
diminish. 

Making narrow-band assumptions for the behaviour of loading, a 

proposition justified previously by others, the further assumption 

that loading is statistically independent of its first time 
derivative is found to produce reasonable results for the distribu- 

tion of peak values. Furthermore, this approach, which yields the 

cdf. of peak load as a function of only the Pierson-Holmes pdf. is 

shown to represent the most refined practicable model for the 

prediction of peak load, or response, in realistic applications 

which involve systems of multiple load components. 

S. Using, as a basic wave climate description, the bivariate histogram, 

or, scatter diagram of HI/3 and Tz the properties of loading are 
found 

, 
to be dependent on the sppctral model used to generate the 

description of the sea surface. The values of HI/3 and T are z 
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related to the moments of the surface spectrum and, therefore, for 

most classes of the scatter diagram different spectra result from 

derivation based on HI/3 alone, Tz alone or both HI/3 and Tz as a 

result of the departures between the actual surface spectrum and the 

assumed spectral model. From the results presented it has been 

proposed that derivation based on HI/3 only probably represents 
the most acceptable technique in association with either the 
Pierson-Moskowitz or Jonswap spectral forms. Adopting this 

procedure the number of short-term sea states describing the wave 

climate is reduced to the number of class values of Iii/s thereby 

reducing considerably the computational effort necessary in the 

convolution into long-term descriptions. The only information 

which needs to be preserved from the Tz domain is the mean value of 

zero-upcrossing rate (1/T 
z) associated with each class Of HI/3- 

6. ' The probability distributions of the extreme values of wave loading, 

derived from the assumption of independence between individual 

peaks, results from the product of the cumulative probabilities 

abstracted from the short-term cdf. s of extreme values which are 
found to follow the Gumbel distribution. 

7. The long-term probabilistic analysis of wave loading relies 

extensively on numerical integration and as such makes considerable 
demand on computational resources. Gaussian quadrature techniques 

have been considered for computer run-time minimisation with only 
limited success for the most drag dependent conditions due to 
inherent instability yielding cdf. s which oscillate about the 

correct values. 

8. A technique for computation of long-term cdf. s of basic peak and 

extreme loading by hand has been developed, based on standardised 

plots of the Pierson-Holmes cdf. s which describe the short-term 

conditions. ibis places at the disposal of the design engineer the 

means for accurate wave load prediction for the solution of isolated 

problems, which do not justify the expenditure on computing 

resources necessary for the complete analysis. 

9. The importance of the wave climate description, forming input to 

the lo 
* 
ng-term analysis, has been demonstrated. It has been'shown 

that this data should cover a complete number of years to ensure 
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suppression of seasonal fluctuations which'may have significant 

effect on the cdf. s of load in the lower range, of particular 
importance in fatigue analysis. A method of wave climate extension 
from a scatter diagram covering six winter months to a synthetic 

'one-year' equivalent has been developed. 

10. For the prediction of extreme loading over long-periods of exposure 
it has been shown that the wave climate data should be extrapolated 
to account for the presence of the entire range of physically 
feasible sea states prior to application of the probabilistic wave 
load analysis. A method of extrapolation has been proposed, based 

on the marginal distribution of Hi/3 where 'method of moments' 
fitting of the data to either the Gumbel or Weibull theoretical 

pdf. s is employed. This method of fitting minimises the weighting 

attached to the extreme conditions which are subject to most 

uncertainty in respect to their 'true' frequency of recurrence and 

are, therefore, liable to erroneously 'skew' the tails of the cdf. s 

of HI/3 on probability paper. 

The probabilistic properties of individual member loading are of 
limited value for the design of complete structures where 

probabilistic descriptions of critical response variables are a 

pre-requisite, which depend on the simultaneous loading on many 
interconnected members. The non-Gaussian multi-variate pdf. of 
such variables has been formulated for an idealisation of a complex 
structure, where member volumes and areas, and hence 'Morison' wave 
load components, are lumped at a discrete set of nodes. The pdf. 
of individual, 'marginal', response variables required for risk 
analysis may be abstracted from this multi-variate pdf. The 

procedure applies for wave loading in the absence of currents and 
intermittency effects near the free surface and where behaviour of 
the structure is assumed to be quasi-static and linear. 

12. Results presented, for application to simple systems comprising of 
two nodes, have illustrated the similarity between the form of 

probability distribution describing response and that of the wave 
loading, namely the Pierson-Holmes pdf. for short-term conditions. 
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13. It has beený shown that excessive computer run-time requirements 
prevent extension of the multi-variate procedures to systems more 

complex than two load points. However, assuming the short-term 

pdf. of response to be of the Pierson-Holmes form, a proposition 
further supported by prototype and laboratory data analysis 

performed by Tickell5s, it is fully described by its second and 
fourth order statistical moments. Expressions for these moments 
have been developed in terms of the known statistics of the water 

particle motions at the nodes. The pdf. s of response derived in 

this way make considerably -less demand on computational resources 
than the multi-variate approach, peripitting systems of up to 12 

nodes to be analysed. 

14. This latter restriction- on system complexity results in part from 

numerical integrations required for the solution of certain four- 

variate expectations in the fourth order moment of response. 

Various approximations for these terms have been considered which 

obviate the need for numerical integration and thus enable systems 

of up to about 35 nodes to be investigated. However, the presently 

applied approximations have been found to be insufficiently 

accurate for use in complex systems and a procedure for the 

development of more precise approximations has been outlined. 

15. Some applications of the probabilistic procedures to typical 

structures have been illustrated and compared with those from time 

series simulation. The agreement shown between the results of 

these different approaches has provided an indication of the 

validity of the mathematical models developed herein. For systems 

of up to 12 nodes the probabilistic method would appear to have 

both 'accuracy' and 'run-time' advantages over simulation. However, 

in the absence of an improved 'approximate' probabilistic method, 
discussed in 14 above, the use of time simulation for the estimation 

of the moments of response provides the most reliable and economic 

approach for analysis of systems of greater than 12 nodes. 

I 
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CHAPTERSEVEN 

RECOMMENDATIONS 

The outlined procedure for improvement of the approximations 
incorporated in the expression for the fourth moment of response 

should be investigated. This will permit extension of the 

probabilistic techniques from systems at present limited to 12 load 

components to structural idealisations comprising up to about 3S 

components. 

2. Application of the probabilistic procedures developed herein to 

real structures should be performed with the aid of advice of a 

structural nature on the optimal means of structural idealisation 

into the limited number of load components which can be handled by 

the method. The aim of such idealisations is to retain as realistic 

a description as possible of the response variables of interest. 

This should be followed by a study into ways of lumping member 

areas and volumes from complex sub-elements of the structure into 

nodal load components, each described by single equivalent values 

of member diameter and length. Such a procedure would have the 

objective of retaining in the single load component an accurate 
description of the total loading experienced by the sub-element, or 

more strictly the total contribution to the response variables of 
interest from the sub-element. 

3. ' The importance of an accurate description of the long-term wave 

climate on the prediction of extreme values of wave load or 

structural response has been illustrated. It is proposed that 
further work should be carried out on the problems of suppression of 

annuai variability for purposes of data extrapolation. This will 
involve the collection of existing wave climate measurements, in the 
form of scatter diagrams of HI/3 and Tz, spanning as many years as 

available. Analysis of this data should then be performed, in 

conju4ction, with an analysis of wind records to ascertain the 

typicality of the climate recorded, with the aim of producing a 

method of fitting of the data (in terms of HI/3 only) to theoretical 
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probability distributions such. that the effects of annual 

variability'are minimised., 

In this way more reliable extrapolation will be possible from 

limited data bases. 

Items 1 to 3 above all follow directly from the results of 
the work described herein. Each of these areas of further 
research were included in the proposals of the University of 

-Liverpool, in the Science & Engineering Research Council 
funded Marine Technology Programme of the North West 
Consortium of Universities. Items 1 and 2 wore subsequently 
approved, as part of Project 1.1 which commenced in 
October 1978 with the author a joint investigator in 
association with his colleagues Professor P. Holmes and 
Mr. R. G. Tickell. The wave climate programme was deferred 
in view of the existence of wave climate analysis programmes 
currently being undertaken at other establishments. 

4. The probabilistic analysis described herein is limited to conditions 

where waves are assumed to be long-crested and uni-directional. In 

the absence of information on wave direction in addition to the 

short-term sea state parameters of HI/3 and Tz it may be considered 

appropriate and conservative to perform the probabilistic analysis, 

using the complete wave climate, for wave advance from a number of 

predominant wave directions. 

However, as more extensive wave climate measurements become 

available, it will be necessary to account for wave directionality 

in the probabilistic inalyses. Two levels of directionality exist, 

the first represents the variation in direction from wave to wave. 
Theoretical model-s for this situation are available where wave 

energy is dispersed about the predominant wave direction. Inclusion 

of this behaviour in the probabilistic analysis is unlikely to be 

possible as a straightforward extension of the existing techniques 

discussed herein. The second level of directionality describes 

the variation in predominant wave direction from one short-term 

sea state to the next. If this information is made available then 

scatter diagrams could be formulated for a number of discrete 

bands of wave direction. In this situation the probabilistic 
'for response developed herein could be performed for each analysis 

a final convolution to yield the complete long- direction, with 

term characteristics. 
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S. As offshore installations move into deeper water and as the new 
generation of tethered or 'guyed' structures are introduced, the 

effects of dynamic response of the structures will become more 

significant. In these circumstances the motion of the structure 

will no longer be negligible and wave loading will be related to 
the relative motion of the fluid past the structural,. imcmbers. 
Furthermore, descriptions of response will also be dependent on the 
interaction between the structure and its foundations. 

Probabilistic models for response will not, therefore, result from 

procedures along the lines investigated herein. They are more 
likely to follow indirectly from advanced techniques involving 
high order spectral analysis, including bi- and tri-spectra, as 
discussed briefly in Section 2.3.4. This will yield statistical 

moments of response, in excess of the second moment obtained from 

the basic 'linear' spectral analysis, thereby accounting for the 
inherent non-linearities resulting from the loading. 

II 
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'APPEND I X, 'ONE 

ANALYSIS OF RANDOM VARIABLES 

INTRODUCTION 

The purpose of this Appendix is to outline the essential concepts and 

statistical-parameters used to describe continuous random phenomena. 
No attempt has been made to produce a comprehensive or rigorous account, 

of all such concepts or parameters. 

ýI. 1 DETERMINISTIC AND RANDOM PHENOMENA 

Any physical phenomenon can be broadly classified as being either 
deterministic or random. 

Deterministic phenomena are those which can be predicted exactly in terms 

of known parameters of the problem. 

Random phenomena must be described in terms of probability statements or 

statistical averages. In these cases, for time varying quantities, the 

value of the quantity at any point in time is unknown but it is possible 

to say that there is a certain probability that it will exceed a 

particular value. 

1.2 DESCRIPTIVE PROPERTIES OF RANDOM VARIABLES 

The properties of time varying random variables may be described in either 

the time, frequency or amplitude domains. The time and frequency domains 

are outlined below, a more detailed account being given by Bendat and 

Piers 0147 . Description in the ampl itude domain concerns probability 

theory which is covered in the following Section 1.3. 

1.2.1 Time Domain 

1.2.1.1 Basic statistical parameters 

Given the time history of a random variable x(t) as demonstrated in 

Fig. I. 1, the following parameters are basic: 
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x(t) 

.. . 0.1 ý 
10 

t 
T 

fig. I. 1 
_- 

Sample Time History of Random Variable x 

the MEAN value: 

T 
x= lim f x(t) dt (I. 1) 

T+c* t=O 

the MEAN SQUARE value: 

2= liM .12 Tx 
(t) dt (1.2) 

T+- t=0 

and the VARIANCE: 

2= liM .1 )2 Cr XT 
(x (, t) dt (1.3) 

T4- t=O 

where ax is the STANDARD DEVIATION: 

X2_X2 

These parameters are considered to be basic because they are sufficient 

to fully define most theoretical probability distributions used to describe 

continuous random variables, for example, the Gaussian distribution. 

However, this is not the case for all probability distributions and so it 

may be necessary to consider higher order parameters, as follows: 

'The n-th order (statistical) moment is defined as: 

1. n (t) dt (1.4) Mn lim T 
T-ý- týo 

X 

2 
with Mi and M2 0 *X 
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The n-th order central moment, or n-th order moment about the mean, is 

defined as: 

T 

IM cn 4" lim Tf 
(x _ j) n dt (1.5) 

T-11- t=O 

2 
with M C2 

0 ýX 

1.2.1.2 Auto-correlation function 

The general dependence of values of x(t) at one time to those at another 
time, T units later, is described by the auto-correlation function: 

T 
R (T) - liM f X(t) X(t + T) dt. -L (1.6) 
x T-*- t=O 

T 

which has the properties: 

Rx (- T) =Rx (T) (1.7) 

Rx (0) =ýx2ý, IRx (T) 1 (1.8) 

1.2.1.3 Cross-correlation function 

The inter-relationship between two sets of random variables x1(t) and 

X2(t) can be described by the cross-correlation function: 

T 
R (T) = lim ;FfxIM X2 (t + T) dt (1.9) 

XIX2 T_). _ t=O 

which has the properties: 

R (-. T) R (T) 
XIX2 XIX2 

(I. 10) 

=, -R (T) 
. ýXjxj 

and if RX, 
IX2 

(0) 0, then x1(t) and X2(t) are uncorrelated. 
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1.2.1.4 Auto-covariance function, cross-covariance function and 

correlation coefficient 

Auto-covariance and cross-covariance functions are similar to the 

corresponding correlation functions but include an adjustment for the 

mean as follows: 

T 
Cx (T) = lim f [X(t) - il [X(t + T) - X] dt. T (I. 11) 

and 
T-*- t=O 

T 
C 

XIX2 
(T) ý UM f [XI(t) - 

ill [X2(t + T) - X2] dt.; F (1.12) 
T-', - t=O 

These expressions revert to RX(T) and R 
XIX2 

(T), respectively, when the 

random variables are mean zero (ij ý i2 0 0)- 

The correlation coefficient is defined as: 0 

r= XIX2 
(0) 

(1.13) 
XIX2 Cr 

XI 
Cr 

X2 

1.2.1.5 Stationarity and ergodicy 

A random variable, x(t), is stationarr if its statistical properties, 
described above, are independent of the time origin. 

I 

A stationary random variable is ergodic if its statistical properties 

calculated from one sample record, of the form of Fig. I. 1, are equal to 

those calculated from other samples of x(t) taken during the same time 
interval. 

I 
Random data representing stationary physical phenomena are generally 

ergodic and hence the properties of stationary random phenomena can be 

estimated correctly from a single observed time history record, if the 

finite time interval, T, considered is sufficiently long. 

1.2.2 FreSLuency Domain (Spectral Approach) 

1.2.2.1 Power s2ectral density function 

The power spectral density function (or autospectral 
, 
density function) of 

a random, variable, x(t), describes the distribution of the mean square 

value as a function of frequency. 

The mean square value of the portion of x(t) within the-frequency bandý 

'between, w and w+ Aw is given by: 
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2 X2, (t, W, AW) lim AW) dt *T (1.14) 
T4- 0 

where w is in radian measure. 

As Aw -)--0 the power spectral density function may be defined as: 

S (W) '= lim 
1- 

ý2 (W 
P 

AW) (1.15) 
x AW+O 

AW x 

For a stationary random process, the spectral density function and the 

correlation function, Eq. (1.6), are related by a Fourier transform: 

S (w) R (T) e- 
iwT dT 

x Tr 0x 
00 2 

-f f RX(T) COS WT dT (1.16) 

The mean square value of x(t) is obtained from the inverse relationship 

and setting T=0: 

R (0) =ý2=fS (w) dw (1.17) 

and is thus equal to the area under the spectral density function or 
'spectrum'. 

1.2.2.2 Spectral moments 

The n-th order moment of Sx (w) with respect to the origin, w=0, is 
defined as: 

OP 
mf )n s (w) dw 

0 

and hence mo = Px 2=Rx (0). 

(1.18) 

1.2.2.3 Spectral bandwidth 

The spectral bandwidth c is used in connection with the probabilistic 

properties of the random variable, x(t), giving a measure of the number 

of lextremal or peaks of the process in relation to the number of crossings 

of the mean amplitude level, i, and is defined as (see Section 1.3.4.4): 

[(MOM4 M2 
2)/MOM4]1/2 



1.3 PROBABILITY THEORY 

1.3.1 One Random Variable 
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n 
Tx 

X+ Ax 

At2-*J 4". *4 11 At4 
M r= 

T 

Fig. 1 .2 

Consider a continuous time varying random variable, x(t), as sketched 

over a time interval from 0 to T in Fig. 1-2. 

1.3.1.1 Probability density function (pdf. 

The pdf. p(x), describes the probability that x(t) will take a value 

within some defined range (x, x+ Ax) at any instant of time. 

T 
Prob[x x(t) Cx+ Ax] = lim (x 

and 
T4- 

Tx] 
p(X) = lim lim (1.20) 

AX-+O T-4- 

This density function has the properties that: 

p (X) ýI 0 

and 00 
fp (x) dx 

-00 

1.3.1.2 Cumulative probability distribution function (cdf. ) 

The cdf. describes the probability of x(t) having a value less than or 

equal to a given value x: 

x 
P(x) = Prob[x(t) ic x] =f p(a) da (1.21) 

-CO 

This distribution function has the properties that: 
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0 IC P (x) IC I 
and 

X) 
P (x) 21ý 

dx 

1.3.1.3 Statistical moments. 

The n-th order moment of the pdf. about the origin is defined as: 

EfxnI =f xn p (x) dx (1,22) 
-00 

where Ef I is the expected value operator and represents the expected 

value, or expectance, of its argument. 

With reference to the description of the time domain in Section 1.2.1: 

Mn =E {xnl (1.23) 

and in particular, the mean value is: 

i= MI = E[xI (1.24) 

and the mean square value: 

*X2=RX (0) =M2=E {X21 (1.25) 

The n-th order moments of the pdf. about the mean are defined as: 

00 
E{ (x - j)nj =f (x _ j)n p (x) dx (1.26) 

and again with reference to Section 1.2.1: 

n = E{ (x - X) M (1.27) 
cn 

and in particular: 

E{(x _ 
j)21 2=M ý 

C2 X 
3/2 Skewness, y=Mr 31(MC2) - 2 

and Kurtosis, =M C4 
/(M 

c2) 
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By the linear nature of, E( the central moments M 
cn may be expressed in 

terms of the moments Mn by expanding the arguments as follows: 

M .. =, - E {X2 r' 2xi +x 21 
c2 

{X21 + R2 -E- 2x E{x) 

= E{ X21 _ j2 

M 
C2 'a M2 M12 = Cr 

x2 (1.28) 

as given in Eq. (1.3). 

Similarly: 

M M3 3M2M1 + 2MI3 (1.29) C3 
M 

C4 
M4 4M3Mi + 6M2M1 2 3M14 (1.30) 

etc, 

1.3.1.4 Expected values of functions of a random variable 

Consider the arbitrary functions gj(x) and 92(x) and constants k, and k2, 

then by the linearity of E{ we may write: 

E{klgl(x) + k292(41 klE{gl(x)) + k2E{92(X)} 

1.3.1.5 Properties of Gaussian (or normal) random variables 

A random variable is Gaussian (or normally) distributed if its density 
function is of the form: 

PW -1 exp{- (1.32) 
/27 cr2 x 

as sketched in Fig. 1.3a. 

It is clear that p(x) is symmetrical with mean, mode and median values 
coincident (see Fig. 1.3) and is fully defined by the first two statistical 

moments, 'MI and M2 with reference to Eqs. (1.24) and (1.28), as indicated 
in Section 1.2.1.1. 

I 
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XP Xe 

p(X) 
p( 

Xn : 94 

0 . 60 xFIIzvz .1zzzZZZZý Z- 
C4 (-FC-2cr, )(Tc-crx)! (I*crX)(FC#2crx) 

(a) Gaussian pdf. (b) Rayleigh pdf. 

Mean: x= E{x} 

, 
Mode: xp represents the peak of the pdf. given by [dp(x)/dx] =0 

Median: xe divides the area under the pdf. into two and is given by: 

xe co 
P (x) = 0.5 fp (x) dx fp (x) dx 

-CO Xe 

Fig. 1.3 - Gaussian and Rayleigh Probability Density Functions 

If x(t) is mean zero the moments may be expressed as: 

1.3 (n n 1) (y for n even 
E {xn} x (1.33) 

0 for n odd 

and the 'absolute' moments are: 

1.3 ... (n n for n 1) cr = 2k 
E{ IxIn, 

k 
x k= integer /ý 

2. kI an for n = 2k +1 7T x (1.34) 

1.3.1.6 Properties of a random variable following the Rayleigh 

distribution 

The Rayleigh density function is given by: 

P(X)"= x exp{ -xx ;k0 (1.35) 
a 

ý(12 -T 

and is sketched, on Fig. I. 3b. Its moments are: 
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nan for n odd 
/12E, 

{xn 2 
MnE2k 

kla 2k for n- 2k even 

hence: 
ma 

/1: 
2ý 

and 
2 ol 2 

x 
(2 

(1.36) 

Thus the Rayleigh distribution is an unsymmetrical one-parameter 
distribution, being fully defined by its first moment, MI, through a. 

1.3.2 Multiple Random Variables 

The concepts outlined in this Section are covered in more depth. by 
78 Papoulis 

1.3.2.1 Malti-variate cdf. 

The cumulative distribution for n random variables xj(t), .... xn (t) is 

defined as: 

P(xl, ..., xn)= Probfxl(t) C, x� ***' xn(t) 4 xnl (1.37) 

This distribution is described as the n-th order multi-variate cdf. of 

random variables xj to x n' 

1.3.2.2 Multi-variate pdf. 

The corresponding density function has the same interpretation as in the 

uni-variate case considered in the previous Section and is obtained by 

differentiation: 

an P(xi, ..., x n) (1.38) 

and 

P(xl. ' xn) = 3xl, ..., Bx 
n 

XI xn 
P(xl, xn) =f -' ... J, 

f P(Xli, .. -S, Xrl ) dxi, ..., dx 
n 

(1.39) 
00 ý -00 

with 
P (1.40) 

I. S. 2.3 Marginal pdfls 

Variables can be integrated out of the multi-variate pdf. as follows; 

00 
p (x Ip x P(xl. xd (I *ý 4 1)' 

n-1 n xn 
-CO 



- 260 - 

Hence the uni-variate or marginal pdf. of a particular random variable 

can be obtained from the n-th order multi-variate pdf, for example: 

CIP CO 
f P(Xlj ... J' xn) dX 2»... , dx 

n 
(1.42) 

_Co _Co 
(n-1) fold 

1.3.2.4 Conditional pdf. s 

The conditional density function describes the probability of a sub-set 

of random variables each having a prescribed value when the values of the 

remaining set of variables are fixed. Hence: 

P(Xls ... 0 xklxk+l' *` xn) ý 
P(Xlv ... s Xd 

(1.43) 
P(xk+l' " xn) 

is the conditional density of xj, .... xk assuming values for 

Xk+l' .... % xn 

1.3.2.5 Expected values of a function of n-random variables 

By analogy to the definition of the expected value operator in the uni- 

variate case, the expected value of function g(xj, .... xn) is: 

Co 00 
E{9(xl, ..., x n)1 = 

_f 
f g(xl, --. ' xn) P(xl- ... 1 xn ) dxl, ..., dx 

n Co -co 
n-fold 

(1.44) 

1.3.2.6 Conditional expected values 

The conditional expected value of function g(xi, ..., x0 given the values 

of x k+l" xn is obtained from the conditional pdf. as: 

Co 00 
E{g(xl, ...,. x k)Ixk+l' ... q xnff 9(Xli, ... -1 xk) 

_Co _Co 
k-fold 

P(xl, ... 0 xklxk+l' *` xn3*dxl dx k 
(1.45) 

1.3.2.7 Independent random variables 

Random variables xj, ..., xn are said to be independent if the events 
IXIM 4 XI)A ... 0 

Ix 
n 

(t) 4xnI are independent for any values of 

XI's *, * "s Xn* If this condition is satisfied. 

il 
. 
P(xlj, ... p xn) = P(xl)'- -' P(xn) 

(1.46) 
P(Xlb ... 9 xn) P(xl) P(x n) 
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and for arbitrary functions gi(xi): 

E{gl(xl), ..., gn (x dl - E(gi(xi)). ... E{g 
n(xn)l 

(1.47) 

It can be shown that Gaussian random variables are independent if they are 

uncorrelated (see Sectýon 1.2.1.3). 

1.3.2.8 Cross-correlation and cross-covariance 

The joint moment E{xIX2) is the expected value of the product of xi and 

X2 and, with reference to Section 1.2.1.3: 

EIXIX21 =R XIX2 
(0) = R12 (1.48) 

where R12 will be defined as the cross-correlation between x, and x2. 

Similarly, the joint moment E{(xI - il) (X2 with reference to 

Section 1.2.1.4; is 

EQXJ - : il) (X2 - 
i2)1 =C 

XIX2 
(0) ý CI 2 (1.49) 

where C12 will be defined as the cross-covariance between xj and X2 and 
C12 = R12 when R, ý R2 0 0- 

1.3.2.9 Transformations of random variables 

Consider the two sets of random variables yl(t), ... * Yk(t3 and 

xI(t), "'s xn (t) for which the malti-variate density p(xl, ..., xd is 

known, together'with the set of functions: 

Yi '2 gi(x', -' xn) i=1, k (1.50) 

The problem to be solved is to determine the multi-variate density of 

the set yl, Yk* 

Following theýprocedure from Papoulis78: 

If k>n, the unknown density is singular and it is necessary to 

first compute the density of yj yn 
If k<n, auxiliary variables must be defined, for example: 

Yk+ I ý2', xk+ V yn 0x n' 
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The multi-variate, density of yl(t),...., t) for a given set of values Yn( 

YI., Yn is obtained by solving the system of simultaneous equations 

for the values, of xi, ., Xn* If this system has a single real solution 

then: 

P(Xli, ... ' xn) 
(1.51) P(Yll -' Yn) m IJ(xi, 

.... 
-x-)i 

n 

where J(-) is the Jacobian of the transformation matrix given by: 

J(Xjf ... 0xn)= Det 

ag I ýFl 
axjý Bxn 

agn agn 
-ý-Xl Xn 

Det represents the Determinant and the values of xi on the right hand 

side of the equation are expressed as functions of yi, the solutions of 

Eqs. (1-50). 

0 

If auxiliary variables were required, they may be removed by integration: 

Co 00 
P(Y" **»' yk) %' f, ., f p(yl, ..., Yk) dyk+1-' . $. 0 dy 

n 
(1.52) 

_Co _Co 
(n-k) fold 

1.3.3 MultiRle Gaussian Random Variables 

1.3.3'. 1 Multi-variate pdf 
i 

P(xl, ... p x)=1-- expf- 
1 

xl tc, -i fx, TI (1.53) 
n n/2 vl et fc11 (21r) D r[ 

where {x) = (xi, ... ' Xn) 
(c] = square matrix of cross-covariances, see Eq. (1.49) 

c1l, ... 1 c i, n 

Cni c nn 

J. 3.3.2 Conditional pdf. s and moments 

The conditional uni-variate pdf. s obtained from the multi-variate 

Gaussian pdf. are also Gaussian and are, therefore, defined by the 

corresponding conditional mean and variance.. For example, the conditional, " 

pdf. of x0jrom the set of ra 
I 
ndom variables xO, . *,, xn is: 

i 
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p(xO 
- 

xi x expf- 
(X0 

Od') (1.54) 
n2a2 i27r: 

a OC C 

It can be shown that the conditional mean, x0c is given by: 

x0c = E{Xolxi, ..., xn aixi ++anxn 

where ai are obtained from the solution to: 

[R] fal = {Ro} (I. S6) 

in which [R] is the matrix of cross-correlations R ij of variables, xi to 

xn (see Eq. (1.48)). 

(Rol is the vector (Rol, R02P ... ' R 
on) 

T 

{al is the vector (a,, ..., adT 

The conditional variance or second central moment, a0c 2, is: 

oc 
2= Ef(xo -i dc 

)21X, 
s ..., Xd 

= Roo - (a, Rol + ... +a nR on) (I. S7) 

and conditional second moment is: 

Efxo'lxi,. "-I xn I= cr oc 
,+R 

oc 
2 

1.3.3.3 Price's theorem and joint moments 

Price's theorem 82 states that for a set of Gaussian random variables 

X1, ... J, xn and arbitrary functions gi(xj), "" gn (x 
n 

): 

nn 
ak E{. 11 gi (x E ykm 

i M=l n 
E{ 11 gi 

6 
(x (I. sq) NkmT i=l 11 (a crs)iLJLi 

M=j mm 

where rm, sm; m N, are integers lying between 1 and n inclusive 

and are not necessarily distinct; 

C rmsm is the co-variance o. f xrm and xs M 
(see Eq. (1.49)); 

N 
N 

k" are positive integers with kEk 
mm m=l N 

EC ký where c. - is the number of times i appears in, (r sm); 
ýim m im m 
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gi 
6(x )'dengtes the 6-th derivative of gi(x), taken at xi; and i 

-1 when-r m sm 

0 when rm sm 

This expression has been investigated in the bi-variate domain by 

Papoulis7e who states that for an arbitrary function 9(XIX2) the theorem 

may be expressed as: 

an E{g(xlX2)1 
= E{ a 2n 

g(XIX2) 
(1.60) 

D C12 n ýn ,n 

Joint or bi-variate moments may be determined by a recursion formula 

developed from this equation. 'Consider joint moment E{xI k 
X2 r), from 

Eq. (1.60): 

DE[xl k 
X2 r, 

= kr E[xI k-1 
X2 r-1, (1.61) a C12 

if C12 =0 then x, and X2 are independent, and: I 

Efxj kX2. r} = E{x kI Efxr) (1.62) 

Therefore, integrating Eq. (1.61) and using (1.62) we obtain the 

required formula: 

k r, 
C12 k-I r-1 k 

E{xj X2 kr f E{xj X2 d C12 + E{X I E(xrj (1.63) 
0 

1.3.4 Probabilistic Characteristics of Threshold Crossings and Peak 

Values 

The probability theory covered in the previous Sections has been 

concerned with the characteristics of the basic continuous random 

variable, x(t) of Fig. 1.2, enabling solution to questions of the form; 

what will be the probability that x(t) exceeds a certain threshold level 

x? or, for what proportion of the time will the magnitude of x(t) 

exceed x? 

In many problems involving continuous random variables additional 

probabilistic characteristics are required, namely: 
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(1) Threshold crossings -, description of the number of times that X(t) 

- crosses a certain threshold x in a given period of time. 

(2) Peak distributions - description of the number of peaks (positive 

or negative peaks; maxima or minima; crests or troughs) in x(t) 

which exceed a certain threshold x in a given period of time. 

The following sections outlining these concepts have been extracted from 

a more detailed account given by Lin 45 and Bendat 56 

1.3.4.1 Threshold crossings 

For a continuous random variable, x(t), Lin 45 has shown that the expected 

rate of threshold crossing of the level x, E{N(x)l, is given by: 

00 
E{N(X)l =f lkl p(x, X) dýc 

_Co 

(1.64) 

where p(x, 1) is the bi-variate pdf. of x(t) and its first time derivative 

i(t), itself a continuous random variable. 

The rate of threshold crossing from below is required in some applications 

and since, for such crossings, the slope must be positive: 

co 
Ef N+ (x) IfIp (x, 1) dk (1.65) 

0 

1 
T EfN(x)) for stationary random variables 

1.3.4.2 Threshold crossings for a mean-zero Gaussian process 

if x(t) is stationary and mean zero following a Gaussian distribution, 

its derivative : k(t) will be statistically independent of x(t) and using 

Eq. (1.53) the bi-variate pdf. may be expressed as: 

p (X, k) =1 (1.66) 
27r CY C1. cxpl- 

12" 
+ X 

and 
X 
Cr .2 

E{N+ (x) exp x (1.67) 
27r CY 2 Cly X 

The expected rate of zero crossings from below is, therefore, given by: 

211 

,I. 

(1.68) 
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This may be'expressed in terms of the relevant spectral density functions 

since from, Eq. (1.17), when 0: 

CO 
Cr 

x2= RX (0) =fS (W) dw = mo (1.69) 

and , QD 
a 

Ij: k 
2 W2 S (w) dw, = M2 (1.70) 

0 

Hence: 
E{N+(O)) (1.71) 27r MO 

1.3.4.3 Peak distributions 

A positive peak on the time history of x(t) corresponds to the condition 

of zero slope, I(t) = 0, and a negative value to the second derivative 

of x, R(t). Using thisýcriterion, it can be shown 45 that the number of 

positive peaks per unit time of magnitude greater than or equal to x is: 

0 
E{M(x)l fR p(x, 0, R) dR dx (1.73) 

x -00 

and the total number of positive peaks is, therefore: 

00 0 
ENT) =-ffý p(x, 0, k) dR dx (1.74) 

0 -CO 

where p(x, k, R) is the tri-variate pdf. of x(t) and its first two time 

derivatives. 

The ratio of E{M(x)) to E{MTj gives the proportion of the total number of 

peaks that exceed the threshold level x. Using the heuristic assumption 45 

that this ratio may be related to the probability distribution of the 

peaks, the cdf. of the peaks of x(t) is obtained as: 

PW=1 
EfM(x)l (1.75) 

and the corresponding pdf. is: 

0 
p (x) =fRP (x, 0, R) dR (1.76) 

pIý EtMTJ 
_00 
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I. 3.4A Peak distributions for a. mean-zero Gaussian process 

With the same requirements as those made in Section 1.3.4.2 the tri- 

variate Gaussian pdf. can be expressed, using Eq. (1.53), in terms of 

the variances of x(t) and its first two derivatives, which may be 

expressed in terms of the spectral density functions using Eqs. (1.69) 

and (11.70) and 4 5: 

a.. 2 (04 S(w) dw - M4 (1.77) 
x 

The expected total number of peaks per unit time is; 

1x M14 
m r Tr 2 

X 

and the ratio of the number of zero-crossings from below to the number 

of positive peaks is: 

(1.2 _M2 
E{N+(O)l X2 OL (1.78) 

E(MT] axaxm 

and the spectral bandwidth, defined in Eq. (1.19), is: 

Eý (1 _ (12)1/2 «m UMO M4 - M2 
2)/MO M41 1/2 (1,79) 

Wideband processes 

If c=1, (a = 0) the process is described as being wideband and there 

are many more positive peaks than zero crossings. 

Narrow band processes 

If c=0, (a = 1) the process is described as being narrow banded. Each 

threshold crossing with positive slope leads to a single positive peak 

and all positive peaks have positive magnitudes. Under these conditions 

the peak distribution may be sidplified to: 

PW-1- 
E{N+_(x) 1 

(1.80) 
p E{N (0) 

45 
Furthermore, for the narrow band case it can be shown that this peak 

distribution is Rayleigh, as described in Section 1.3.1.6, where: 

x X2 
C cy 2) pp W-ax exp (- 
x' 

(1.81) 1 r2 
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1.3.4.5 Approximate peak distributions for non-Gaussian narrow band 

processes 

Eq. (1.80) makes no restrictions on the distribution of the underlying 

narrow band process and can thus be employed when x(t) is non-Gaussian: 

CO 00 
P (X) =i-fIIIP (X, A) di/ f I: k Ip (0, A) ft 
p -00 _00 

to give the narrow band, lty2e 11 cdf. 

A further simplification can be made when x(t) is independent of i(t) 

since: 

p (X, 1) =pWp 

for which we have: 

Co 
E(N+(0)1 = p(0) f 111 P(A) di (1.82) 

and 
0 

P (x) (1.83) 
p (0) 

termed the 't ype 21 narrow band cdf. 

where p(O) is the pdf. of x(t) evaluated at x 

I 



269 

APPENDIXTW0 

CONSTRUCTION AND USE OF PROBABILITY PAPERS 

Probability papers are much used by engineers for the analysis of 

randomly varying phenomena especially in the fields of oceanography, 

meteorology and hydrology and are constructed to produce straight line 

plotsýfor a particular theoretical probability distribution 76 

Thus, by plotting the cumulative distribution, or cumulative histogram 

for discrete data, of the phenomenon under investigation on this paper 

the goodness-of-fit of its probability structure to the theoretical 
distribution of the paper is measured by the goodness-of-fit of the 
data plot to'a straight line. 

Having found a paper which gives a reasonably straight line fit, it may 

be supposed 
' 
that the phenomenon is approximately distributed according 

to the theoretical distribution of that paper. The probability structure 

of the phenomenon may then be described graphically by inserting the 

best fit straight line by eye or by using statistical fitting methods 

to the data points. Alternatively, the theoretical pdf. may be defined 

in terms of the statistical moments of the data set, typically the 

estimates of the mean and standard deviation, a technique known as the 

method of moments. 

Derivations of the scales required for the preparation of probability 

papers for Gaussian, log-Gaussian, Rayleigh, Gumbel and Weibull 

probability distributions are given below in Sections JI. j to 11.5 and 

the method of plotting discrete data on these papers is outlined in 

Section 11.6. 

II. 1 GAUSSIAN (OR NORMAL) PROBABILITY PAPERS 

The Gaussian cdf. of variable x is given by: 

x2 
KX). d. -f -L exp{ - 

ý2S I dx 
r2ST 

, ýhere, x is mean'*zero, with unit variance. 
;.. 
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In this case the probability paper may be constructed using an implicit 

method by plotting x on a linear scale for one co-ordinate axis and 

obtaining the values of x corresponding to the probability levels 

required for the scale of-the other axis by interpolation, from tho 

evaluation of Eq. (II. 1) at values of x in the region of interest. 

Following this method the probability paper shown in Fig. II. 1 may be 

obtained. 

11.2 LOG-GAUSSIAN (OR LOG-NORMAL) PROBA13ILITY PAPERS 

For this probability paper the logarithm of variable x is assumed to 

follow the Gaussian distribution, above, and hence the replacement of 

the linear scale by a logarithmic scale on the Gaussian probability 

paper results in a straight line plot of the cdf. of variable x. This 

paper is shown in Fig. 11.2. 

11.3 RAYLEIGH PROBABILITY PAPER 

In standardised form the Rayleigh cdf. of variable x may be expressed as: 

2 

exp (- - 

Taking logs of both sides: 

{log 
e 

(1 _ p(X))-111/2 /2 (11.3) 

Thus a plot of the Rayleigh distribution is a straight line on paper with 

x as one co-ordinate and {log 
e 

(1 _ p(X))-1}1/2 as the other. For the 

paper used herein probabilities are indicated in preference to values of 

the logarithmic function as indicated in Fig. 11.3. 

IIA GUMBEL PROBABILITY PAPER 

The Gumbel distribution of variable x may be expressed as: 

P(x) = exp{- exp[- ct(x - u)]) (IIA) 

where a 
Tr 

A r-, 
x 

0.5772 
u=x-- is the mode of the pdf; and a 
x and ax are the mean and standard deviation of x. 
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Taking logarithms of Eq. (11.4): 

a(x - u) =- loge [- loge PWI (11.5) 

Thus, a plot of X vs. - log 
el- 

loge P(x)] will result in a straight line. 

Again, for the paper used herein probabilities rather than values of the 

function on the right-hand side of Eq. (11.5) are used as shown in 

Fig. IIA. Note that for graphical representation of a variable on 

this paper the values of a and u need not be known. 

11.5 WEIBULL. PROBABILITY PAPER 

The three parameter Weibull distribution function of a variable x Is 

given by: 

x-Ac P(x) expf- B for x ý, A 

and 
B>0 (11.6) 
c>0 

for x<A 

where A is a lower limiting value of x; 

B is a scale parameter; and 

C is a shape parameter. 

Taking logarithms of Eq. (11.6) twice: 

log 
e 

log 
e 

{cl - P(X»-11 =C log 
e 

(x - A) -C log 
eB 

(11.7) 

A plot of the Weibull distribution is a straight line on paper with 

loge (x A) as one co-ordinate axis and log 
e 

log 
e{(I - P(x)) as the 

other axis as shown in Fig. II. S. 

Clearly, data should only be plotted on Weibull paper after determination 

of the value of A although little attention has been paid to this in the 

past and the actual values of x are often plotted in place of (x - A) on 

the paper. A semi-graphical method for the determination of A is given 

in Reference 42.1 

However, parameter is often small compaTed with the values of x of 

interest in the estimation of extremes and i1i this region there is 

negi, igible differen'ce between the plats using x or (x - A) as far as 
. 
the 
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'goodness-of-fit' to a 'straight line is concerned. In the low range of 

x omission of parameter A in the plots causes considerable distortion and 

departure from the straight line form. 

Criteria and numerical procedures for evaluation of the 'goodness-of-fit' 

of a set of data to a proposed density function are given in Reference 76. 

11.6 PLOTTING POSITIONS FOR DATA ON PROBABILITY PAPERS 

Consider a sample of n measurem, 
, 
ents of a certain random population of 

variable x. If these data points are ranked according to magnitude 

assigning the rank m-I to the smallest value xj then from this data 

the cumulative probability histogram may be developed since: 

P rob (x 4= 1) (x )=2 (11.8) xmýl mn 

However, -this approximation assigns probability of exceedance of 1.0 to 

the highest Value, xnI which cannot be plotted on probability paper. 
Consequently, a number of modified plotting techniques have been 

proposed, as compared by Gumbelse, which enable all data points to be 

plotted. The most commonly applied plotting position is that recommended 
by Gumbel and sometimes referred to as the 'Weibull plotting position', 

where: 

(xm) = 2+1 
n+ (11.9) 

The expression yields probabilities with an insignificant deviation from 

those derived from Eq. (11.8) when n is large. 
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'FIG. (Ils T. ) GAUSSIAN (OR NORMAL) PROBABICITY PAPER. 
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FIG. Ol 2. LOG-GA*USSIAN(OR LOG'-NORMAL) PROBABILITY PAPER. 

F 

'momm N 
- I 

=_ _ - - = = = TT 

--.. - r- 
T1 

I 

4- 

.1 ý ziz - 
= -- ý-: -- _. - -- - :r 

. -, -. 

H t 

T 

r7 z 

T T 

TTý 

4 
, 1 

- - 

IaIY, J JJI1 ; $. 
F 



27S 
FIG. (Il, "3. ) RAYLEIGH PROBABILITY PAPER. 
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., El G. GUMEýEL PROBABILITY PAPER. 
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-E LG G. (U., 5. )., WEIBULL PROBA131LITY PAPER. 
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A P. PEN D'I XTHREE 

EXTENSION OF SCATTER DIAGRAMS COVERING SIX WINTER MONTHS 

TO 'REPRESENT ONE YEAR'S WAVE CLIMATE 

The purposp of this Appendix is to summarise the procedure employed in 

this study to extend a six-months winter data set to yield a prediction 
of the, one-year Wave climate by the estimation of a corresponding six- 

months summer scatter diagram for the Famita location. Scatter diagrams 

co , vering both summer and winter periods for another North Sea location 

were available to aid this extension but this data cannot be mentioned 
'explicitly here because of restrictions on publication and will be 

referred to as (S) and (W) data, respectively. 

Simple empirical methods have been suggested for the prediction of a 

scatter diagram for a summer six-month period from a winter data set. 

In these methods the distribution of Tz is assumed to be unchanged while 

the summer values of H1/3 are taken as either a half or two-thirds of 

the winter values. These propositions were tested on the (S) and (W) 

data and were found to perform badly, as described below, and thus an 

alternative method of prediction was developed. 

I% 

III. 1 THE PERFORMANCE OF EMPIRICAL METHODS OF SUMMER SCATTER DIAGRAM 

PREDICTION 

The performance of the empirical methods for summer wave climate 

'simulation from winter data was investigated by comparing the predictions 

based on. the'winter (W) data set with the actual summer (S) data. 

The empirical methods make the assumption that the distribution of T 
z 

remains unchanged from winter to summer. However, a plot of the marginal 

distribution of T from the (W) and (S) data sets demonstrated that 
z 

although the. shapes of the distributions were, similar, there was a 

general shift towardsý lower values of T 'in the summer. This was also 
z 

reflected bk the mean values of Tz for the (W) and (S) data sets, the 

latter being, #PProximately 0.67 seconds lower. 
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The I summer diitributioni of HI/a predicted from the empirical methods, - 

were - compared with-the actual summer (S) distributions. A plot of 

marginal pdf. s and cdf. s showed ihe (S) data to lie between the 

predictions, 'whilst investigation of the conditional distributions of 
HI/3-over a wide range of T values demonstrated generally poor agreement z 
between the (S) data and empirically predicted values. This behaviour 
further demonstrated the significant change in the distribution of Tz 
between summer and winter. 

InvIew of the above comments it was decided to develop a more rigorous 

method. of wave climate, prediction as described below. 

111.2 A METliOD FOR PREDICTION OF SUMMER WAVE CLIMATE AT FAMITA (FS 

FROM MEASURED WINTER DATA (FW) BY COMPARISON WITH (W) AND (S) 

DATA 

The two winter data sets (W) and (FW) were compared and were found to 

show a similar spread in the Tz domain with only a 10% departure between 

the mean values, the (W) data having the larger mean. The (W) data 

covered a larger range of H1/3 and possessed a mean value 35% greater 

than that at Famita, demonstrating the existance of more severe sea 

conditions at this location. The cumulative conditional distributions 

of HI/S from the winter data sets were plotted and were found to show 

reasonable agreement in view of the uncertainties present in histogram 

plots of finite sized data sets. 

As a result of the measure of agreement between the conditional distribu- 

tions of HI/3 for (W) and (FW) and the apparent shift, with little 

change in shape, of the Tz distributions between summer, (S), and winter, 
(W), the following procedure was developed and employedloo 12 for the 

prediction of the summer scatter diagram for Famita (FS). 

The basic assumption was made that the ratio between the conditional 

probability densities of the summer data sets for a value TZ =t would 

be the same as the corresponding ratio for the winter data sets at ' 

TZ + 0,5, hence: 

P(HI/31TZ=t+0.5) QW) 
., 

p(H; j3 IT rt) (FS) 0, p (11 3 Tzzt) Gii. 1) 
z (S) 'F(H ITz =t+0.5) (W) 
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This expression includes an attempt to account for the shift (of about 
0.5 secondt), observed between the (W) and (S) data. 

Eq. (I, II. 1) may be expanded in terms of the Pi-variate distribution of 
HI/a and, Tz using the relationship'(Appendix One): 

p(Hi/3, T 
Z) p(HI/aIT )= (111.2) 

zF T- J 
z 

Substituting this expression into Eq. (III. 1) and assuming that the 

shape of marginal distributions of Tz between summer and winter to be 

the same:, - 

[p(T 
z 

t) I (S) = [p(Tz =t+O. S)] (W) 

and likewise for the Famita densities, we obtain: 

p(HI/3, Tz=t+0.5 
p(HI/s, Tz=t) (FS) = p("1/3, Tz=t) (S) p(HI/3, Tz=t+0.5) (W) 

(111.3) 

Ensuring that the class widths for each pair of data sets, (W) and (S) 

and (FW), and (FS), are the same and, furthermore, assuming the total 

number of occurrences in the (FS) and (FW) scatter diagrams to be the 

same, Eq. (111.3) becomes; 

[NO(HI/3 , Tz=t)] [F(HI/3, Tz=t)] 
[NO(HI/3, Tz=t+0.5)] 

(FW) 
(FS) (S) [F(HI/3, Tz=t+0.5)] (W) 

(IIA) 

where NO(Hi/j, Tz) is the number of occurrences in the scatter diagram 

present. in the class centred at (HI/3, T) and F(HI/3, T) is the 
zz 

fraction, of the total number of occurrences in the*scatter diagram 

present in'the class centred at (HI/3, T 
Z). 

Eq. (IIIA) could now be used to calculate the number of occurrences for 

the (FS), scatter diagram. However, a modification was applied to 

account for a. variation in the mean values and variance of the conditional 

histogramslof, HI/3. between the winter data sets, by replacing HI/3 in 

Eq., (II'I.. 4) by a non-dimensional normalised variable: 

HI/3' -, Hi 'T7 
H* 

CY, , 
'A /III.. 

1 
(11111.5) ", ./ T 

Z 
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where. Hi/ and a/T' are, the' mean and standard deviation of the 
I Tz z 

particular condt, tional distribution of HI/3. 

The functions. F(Hi/a, Tz) and NO(Iij/3, Tz) on the right-hand-side of 

Eq, (111.4) thus modified to F(Ii*, T) and NO(H*, T) were then plotted zz 
to yield histograms conditional on the values of Tz for the (FW), (W) 

and (S)'data sets. These histograms were approximated by continuous 

curves, obtained as the best fits by eye, which were then used to 

derive the required function, NO(H*, T 
z)FS using the modified form of 

Eq., (III. 4). This is demonstrated in the sample computation of Fig. III-1. 

Numbers of occurrences 
' 

at the required values of 111/3 (class centres) 

were obtained from the plots of Ii* for this summer condition using the 

assumptions that: 

i/Tz=t+O. S)CFW) (111.6) 
I/Tz=t 

(fll'/Tz=t (HI (FS) (S) I/Tz=t+O. S) M 

with an identical expression for (a/Tz-t)(FS) as indicated in the 

figure. 

The use of standardised variable, H*, as described above was preferred 

to the application of Eq. (IIIA) in terms of HI/3 since it ensures 

that the computations are carried out over the central range of the 

histograms, as indicated in Fig. III. l. 

It should be appreciated at this stage that in the performance of the 

above procedure, no assumptions have been made regarding the form of the 

conditional distributions of H1/3 for the winter data sets and no attempt 

has been made to adjust them to similar forms. The proposition made 

was that these distributions were found to show reasonable agreement 

and hence it would appear reasonable to suppose that the same is true 

for the summer data sets and the procedure outlined above is one method 

of achieving this measure of agreement. 

The computations outlined in Fig. III. 1 were carried out for all classes 

of T 
Z, 

for which there were a sufficient number of occurrences in the, 

scatter diagrams of (W), (S) and (FW) to facilitate construction of the 

functions F(. ) apd N 
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On completion of these. computations the total number of occurrences 
predicted for the Famita summer scatter diagram was 4% in excess of the 

number required, (equal to the number in the Famita winter data set) 

and'consequently the scatter diagram was-modified by an overall 4% 

reduction in the number bf occurrences in each class. Only 0.4% of the 

occurrence 
's 

in the (S) data set were omitted from the graphical 
procedures and it was, therefore, assumed that there were no significant 

omissions in the predicted scatter diagram., 

The scatter diagram derived in the above manner had class intervals of 
Tz offset by 0.5seconds from the winter data and was, therefore, 

redistributed according to the time classes of the latter to enable 
direct summation for the required 'one-year' wave climate as presented 
in Fig. 2. ý. l. 

111.3 TliE PERFORMANCE OF THE 'COMPARISON' MODEL OF SUMMER SCATTER 

DIAGRAM PREDICTION 

The marginal probability density histograms of Tz for the measured winter 

scatter diagram at Famita and for the predicted summer diagram are shown 

in Fig. III. 2a. From these plots it is apparent that the distribution 

for the summer periods is shifted, by about 0.5 seconds towards lower 

values of Tz than present in the winter data, whilst the overall shape of 

the two distributions is similar. This behaviour corresponds to that 

observed from comparison of the complete data set (W) and (S). 

The marginal probability density histograms of HI/3 for the Famita winter 
data and the predicted summer data using both the 'comparison modeP of 
Section 111.2 and the empirical methods are presented in Fig. III. 2b. 

The 'comparison model' yields a histogram with ordinates generally 

lying between those derived from the two empirical models as was found 

to be the case for the actual summer data (S) compared with its 

empirical estimates from the (W) data. 

The cumulative conditional distributions of H1/3 were also plotted for 

the winter data and for all three predictions of the summer data, a 

sample of which is shown in Fig. 111.3. These plots demonstrated that 

although the 'comparison modeP yields values between those of the 

empirical modeli in the marginal distributions, no such general 

relationship is evident in the conditional'distributions of HI/3. The 
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relationships between these predicted conditional distributions showed 

a distinct similarity to those developed from-the (W) and (S) data set. 

As a result of the above investigation it was concluded that the 

'comparison' model had performed sufficiently well to warrant its 

selection in preference to the empirical models in this study. However, 

the tests carried out on the probability structure of the scatter 
diagrams were by no means exhaustive and it is possible that a 

modification of the simple empirical type models accounting for the 

shift in the TZ distribution may be found to perform equally well. 

" 
It 

- 
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APPENDIXF0UR 

SHI-SQUARE GOODNESS OF FIT TEST ON THE 

PROBABILITY DISTRIBUTION OF SIGNIFICANT WAVE HEIGHT 

H 
In Section 4,4.2 the distribution of significant wave height for the 

one-yeardata set of Fig. 2.3.1 was plotted on various probability 
papers with the objective of obtaining a reasonable fit to a particular 
theoretical probability distribution. These graphical techniques 

suggested that-the Gumbel distribution approximated the probability 
structure quite well and the theoretical Gumbel distribution for the 
data was obtained by method of moments, using the mean and variance of 
the data set. The fit is shown on Fig. 4.7 and the probability histo- 

grams are given in Tables 4.1 and 4.3. The purpose of this Appendix is 

to test the hypothesis that the distribution of HI/3 is Gumbel by ýhe 

application of the Chi-square goodness-of-fit test. 

The procedure involves the use of a statistic, XC2, with an approximate 

chi-square distribution 47 which measures the discrepancy between the 

observed probability density function of the data and the Gumbel 

density function. The hypothesis of equivalence is tested by investiga- 

ting the sampling distribution Of Xc2. 

The, 1924 samples from the Famita scatter diagram are grouped into the 

16 class. intervals to -form the frequency histogram representing the 

marginal distribution of HI/3 in Table 4.1 and are repeated here in. 

Table IM with the four most extreme wave height classes consolidated 
into two classes to increase the number of events contained in each 

group. The general class width of 0.6m. in Table IM represents 

approximately 2.37 classes per standard deviation, (see Table 4.1) 

which is sufficiently close to the recommended figure 47 of 2.5. The 

number of events falling in the i-th class interval is referred to as 

the observed frequency, fi* The number of events which would be 

expected to fall in, the i-th class interval if the distribution is 

'Gumbell 
, 
is r-a 

, 
lled the. expected frequency, Fi, and is given in 

. 
Table IM 

obtainedýfrom, ý(Hl/&AHI/3 in T4ble'4.3 for the 'theoretical' Gumbel. 

di, stribution obtained by method of moments. 
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The sample, st4tistic, XC2 measures the total discrepancy between the 

observed and expected frequenciesfor all classes as: 

F2 
xC 2=EI, ( 

F- 
) (IV. 1) 

all i i. 

which, is computed in Table IV. 1. 

The distribution of XC2 is approximately equal to Xn2' the chi-square 
distribution, with n degrees of freedom. In this case n is equal to'11, 

the 
' 
number of class intervals, ý-,, minus the number of independent 

restrictions imposed on the data. The three restrictions arise from: 

(a) the fact that the frequency associated with the last class 
interval is defined once the frequencies in the remaining 

. 
classes are known; and 

(b) from the two statistics (mean and variance) of the data set used 

to define the parameters of the Gumbel distribution. 

Defining the small probability a as the level of significance of the 

test, then the acceptance region of the test is: 

22 
Xn=ll; a 

(IV. 2) 

The probability a represents the region of rejection for the hypothesis 

test thus for small values of a it is unlikely that observed samples 

will fall in this region if the hypothesis is valid. Conversely if the 

sample fails to satisfy Eq. (IV. 2) there is strong reason to question 
the hypothesis, its likelihood of validity decreasing as a is reduced. 

For the data of Table (IV. 1): 

Xc2 8S. 001 

and from tables of the chi-square distribution 47 : 

2 
Xn=ll; 

a=0.005 
26.76 

These'valties do not satisfy Eq, '(. IV. 2) and the hypothesis is, therefore, - 

rejected. at the'a 0.005 level of significance. This may be interpreted, 

as indicating-. thqt, if the hypothesis is true the probability that a 

'1' 
I, 

4; 
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deviation Xc2 as large as 26.76 is due to chance only is O. S%. 
Consequently, the observedvalue of X2= 8S. 001 has a much lower 

C 
probability of being caused by chance only, this therefore, casts serious 
doubts on the hypothesis which may be considered unacceptable. 

However, the major contribution to the deviation occurs within the 
first two class intervals, as seen from Table IV. 1. If these values are, 
omitted the total deviation becomes: 

X 16.257'., 
c 

and the resulting chi-square distribution, which now has nine degrees of 
freedom: ý 

2 
16.92 Xn=9; a=0.05 

Thus the deviation now falls within the region of acceptance at the 

a=0.05 level of significance from which it may be inferred that there 
is no strong evidence to question the hypothesis for values Of 111/3 in 

excess of 1.2m, the upper limit of the second class interval. In this 

range the data may, therefore, be considered to be well approximated by 

the Gumbel distribution. 

In practical terms, for extension of wave climate data in long-term 

prediction analyses of interest in this study, use of the hypothesis is 

considered to be acceptable over the entire range of H1/3. This follows 
because the fit in the extremes is of most significance to the wave 
climate extrapolations and, resulting distributions of individual wave 
height or wave load are relatively insensitive to minor changes in the 
lower range of H1/3, such as those r' esulting from the Gumbel assumption 
for significant heights less than 1.2m. 

r 
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TAB, LEIV 

COMPUTATION OF 2 

HI/3 

(M) 
F 

2 fF 

F. 

1 0.3 96 164 28.19S 

2 0.9 402 293 40. S49 

'3 1.5 389 377 0.382 

4 2.1 321 349 2.246 

S 2.7 24S 268 1.974 

,6 
3.3 161 181 2.210 

7 3.9 132 117 1.923 

8 4. S 70 71 0.014 

9 5.1 46 44 0.091 

10 S. 7 23 2S 0.160 

11 6.3 12 17 1.471 

12 6.9 11 7 2.286 

7. S 
13 10 8 0.500 

8.1 

8.7 
14 6 3 3.000 

9.3 

Totals 1924 1924 8S. 001 

14 
(X, 2)14 

c 

14 
(x 

c 
2) 

12 1: 

85.001 Fi 

fF2 
(IF. = 16.257 
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APPENDIXFIVE 

EXPANSION OF E(X iLXiLXJLXjLXk3- -j 
- h3 

An expression for E(X i1xi Ix 
jlXjlXk3 XZ31 in terms of the cross- 

covariances R, etc., is required for solution of expectation E23, and ij 
, hence the fourth moment of response, by application of the cubic 

approximation for XIXI as shown in Section 5.4.4. 

1 
Using Eqs. (5.4.12) and (5.4.31): 

E{Xi I Xi I Y, 
iIY, iIY. k3x1 

31 = EJX iI Y-i I Y, i 
Ix 

i 
Ix 

k3 E{X z 
31X 

ixixk)I 
(V. 1) 

= 
13CyIC2 

[bi E{jXj 3 Ix 
i 

Ix 
i 

Ix 
k 

31 +bi E{Xilxillx j3 
lXk 31 

"bi E{XilXiIX i 
Ix 

jlXk 
4)1 +bi3 E{lXislx i 

Ix 
i 

Ix 
k 

31 

" 3b 
12bi 

E{ Xi3 lxjllx 
i 

llx 
k 

31 + 3b i2bk E{X i 
31XiIX 

i 
Ix 

i 
Ix 

k 
41 

" 3bi bi2 E{lXi 3 ix 
i3 

lXjlXk 31 + 6bi bj bk E{lXi3 Xj3 lXk 41 

" 3b ibk2 E{lXijlX i 
Ix 

i 
Ix 

k 
51 +bi3 E{XilXil lXj5lX 

k 
31 

" 3b i2bk E{X i1xi 
Ix 

i 
31X 

i 
IX 

k 
41 + 3b ibk2 

E{XilXil lXj3lXk5) 

"bk3 E{XilXiIX i 
Ix 

i 
Ix 

k 
611 (V. 2) 

where cr ZC2 =R it - (b i Rit +biR jz +bk Rkd from Eq. (1.57) Appendix One; 

and . 
bi bjs bk are defined in Eq. (5.4.36). 

Considering now the form of the expectations on the r. h. s. of Eq. (V. 2): 

E{lXi3lX i 
Ix 

i 
Ix 

k 
31 - (Eq. (5.4.63) 

E[XilXiIX i 
ix 

i 
Ix 

k 
41 = E18 

all the remaining terms need to be expanded further for solution, using: - 

Eq. (5.4.12); 
ii) the, expressions for the third and fourth conditional momentsp 

Eqs. (S'. 4.31) and (5.4.32); and 
iii) 'the following expressions for the fifth and sixth order 

conditional moments: 
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ý(X 4. 
+ l0a 25 (V. 3) El. kIXiXi l5akc kc kc kc3 + kc 

6642+4+6 E(X k 
1Xj Xi l5a k C' + 45a kc kc l5a kc2 kc kc (V. 4) 

where akc 2 is defined with Eq. (5.4.63); and 

kc 
2=aiXi+aiX from Eq. (1.55), Appendix One 

with a a. defined with Eq. (5.4.23). 

In this manner it can be shown that the required expectatiop is given 
by: 19 

E{X i 
jXijX 

i 
ix 

i 
Ix 

k3X2.31 =E EX(r) (V. S) 
r=l 

where terms EX(r) are as follows: 

EX(l)'= E(jX i 
31X 

iI 
J)Ck31 [RrtC2 bi] 

EX(2) E{XilXillXj3lX 31 (3cf, b 
kc 

and the above expectations are given by Eq. (5.4.63). 

EX(3) = E{XilXiIX IX JXk4j [3C, 
2 

2b 
ii ýc 

0 

and the expectation is E18. 

EX(4) = E{X i 
5jXijX 

i 
Ix 

i 
11 [3CjkC2 ai(b i3 + 6ai b i2 bk+ ai 

2bibk2 

+ Sa i3bk 
3)1 

EX(S) = E{XilXiIX i 
51X 

i 
11 [3crkc2 a (b 3+ 6a bi2bk+a12bibk2 

+ Sa 3b 3)1 
k 

and the expectatilons are E12. 

EX(6) = E[jX i5Xi 
311 [3crkc2(a 

ibi+ 3a ibi2bi+ 12a iabi2bk 

+ 12a 
12bibjbk+ 

3Oai2 aibi, bk2+ 20a i3ajbk3, 

+ l0a bb ijk 
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3X : 4(a' b3+ 3a bb2+ 12a aj bj 2 bý EX(7) zz E(jX 51) Crkc 

+ 12a 2bbb+ 30a a2bb2+ 20a ab ijkijk 

+ 10a bibk 2)1 

EX (8) (a b2b+ 2a 2b2b '[Xi3lXi'Xja'Xjll I'akc2 
j, iiiik 

+ 8a iaibibbk+ 10a ia2bibk2+ 10a 12a12bk3 

+ l0a' 2abb2 +'2a 2b2b+abb 2)1 
jjkik 

EX(9) -''t[Xi 3 Xi Xi. xi [9a 
kC4 (b 12 bk+ Sai bi bk2+ Sa i2 b k3)] 

EX(10) E[XilXiIXJ I Xj II [9a 
C4 

(b 2b+ Sa bb2+ Sa 2b3 
ikjjk. ik 

EX(11) EJjX 13Xi 
311 [9a kC4 (2bi bibk+ Sa bibk2+ 10ai aibk3 

+'Sa ibibk 
2)] 

EX(12) = E{X i 
jXijX 

jIXjI' ["C'kc 6bk3 

The expectations in EX(6) to EX(12) have all been solved in association 
with E18. However, the remaining terms (E13) to (E19) involve 

expectations which have not been computed previously and for which solutions 
have yet to be ascertained. 

733222 EX(13) = E{Xi jXijX 
i 

Ix 
i 

11 [ai (bi + 3ai bi bk+ 3a ibibk 

+ai3bk 3)] 

EX(14) = E{XiIX, lXj 7 Ix 
i 

11 [ajs(b i3+ 3a ibi2bk+ 3a i2bibk2 
3 3)] +ab k 

IX 73222 EX(15) = Ef iXi 11[3ai (a ibi+ ai bibi+ 4a iaibibk 

+ 2a. 2 bbb+ Sa 2abb2 +2a 'ab3+a3bb 2)] kijikijkijk 

JX. 3 X 711 
.2322 EX(16) = E{ [3a 
i 

(ai b+aibib+ 4ai aibjbk 

+ 2a. 2bbb+ Sa a2b b' 2+ 2a a3b3+a. 3 b. ' b 2)1., ijkijkk, 
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2 EX (17) E(X i Xjjx i 
Ix 

i 
1) [Sai(a ibi+ 3a iabibi 

+6a., a. 2 bý bk+8a12aibibibk+ 10a i2ai2bibk2 

+ Sa 13ai2bk3+ai2bibj2+a13bi2bk+ 
Sa i3abbk 

2)1 

EX(18) E {Xi3lXiIX 
i 

llx 
i 

11[3a 
i (a i2b3+ 3a iaibibi7 

622.222 a" abb, + 8ý i" a't, bibjb k+ 10a a. b* bk 

Sa i2a3b k3 +ai '2'b i2b+a3bi2bk+ Sa .iaj3bibk 2)] 

EX(19) E{IX 
13X 

511 (a 
13bi3+ 9a ia2b12b+ l2ai a3bi2bk 

+ 36a. 2a2bbb+ ýOa 2a3bb2+ 20a 3a3b3 

.. 
1iijkiiikik 

+ ai3 bi3+ 9a 
i2aibibi2+ 

12a 
i3ab2bk 

+ 30a 
i3ai2bibk 

21 

rI 

41 

r 
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APPENDIXVI 

LIST OF COMPUTER PROGRAMS 

Listings of all programs are contained in a separate document entitled 
'Probabilistic Description of Wave Loads and Structural Response: 

Computer Programs'. 

Notes 

(1) Programs in FORTRAN language developed. for use either on the 

ICL 1906S computer at the University of Liverpool or on the 

, ICL CDC 7600 computer at the University of Manchester Regional 

'Computer Centre. 

All computations based on horizontal 'Morison' wave loading on 

cylindrical members. 

BASIC AND PEAK LOADING DISTRIBUTIONS FOR SINGLE MEMBERS 

Program Program Description Published Information 
Name _ 

OSH Long-term pdf. of peak force - Theory, results & 
'Deterministic' method. (Scatter listings in Ref. 10 
diagram; pdf. of individual wave height; 
Stokes Sth). 

OSF2 Long-term pdf. s of basic and peak Theory, results & 
(narrow band type 2-F&P stat. listings in Ref. 10 
indept. ) loading. (Scatter diagram; 
P-M (Hi/3) spectrum; P-H num. int. ' 
algorithm). 

OSF3 As OSF2 but using linearised Morison Theory, results & 
Loading (ulul /8-7f cruu; const. step. listings in Ref, 10 
num. int. ) 

OSF4 As OSF2'but with P-H (TZ) spectrum. Results in Ref. 12 

OSF5 As OSF2 but excluding basic force 
variate for run-time reduction. 

OSF6 As OSF5 but for narrow-band type 1 Deak Theory outlined & 
pdf, (F, F. stat. dept. )- results in Ref. 12, 

OSF7 As OSFS, but using Gaussian-Hermite 
Quadrature for num. int. (procedure for' 
run-time reduction). 
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, 
Programý Program Description Published Information Name 

OSF8 As OSF5 but with P-M (DNV) spectrum Results in Ref. 12 

OSF9 As OSF3 but with P-M (DNV) spectrum Results i n Ref. 12 

Oslo' As OSF5 but with P-M (Hj/3/Tz) spectrum 

OS16 Pierson-Holmes pdf. from 2nd and 4th Theory summarised in 
moments. inc. narrow band 'type 21 peak Ref. 17 
cdf. 

OS20 Long-term pdf. s of basic and peak (type Theory & results in 
2) wave/current loading. Ref. 11 

OS20A Statistics of short-term wave/current Theory & results in 

, force inc. spectral densities Ref. 11 

OS20ER, As OS20 but with equilibrium range 
constraint on surface elevn. spect. 
densities. 

OS21 Long-term pdf. s of basic loading Theory & results in 
accounting for intermittency in Ref. 11 
splash zone. 

OS22 As OSF2 but with JONSWAP spectrum. 

OS25 As OSF2 but with wave climate described Theory & results in 
by cdf. of HI/3 Refs. 11, 17. 

(b) PEAK AND EXTREME LOADING DISTRIBUTIONS FOR SINGLE MEMBERS 

(1) Extreme distribution developed from Theory & results in 
OSF3X 
OSF5X 

long-term peak cdf. based on programs Ref. 12 

OSF6X OSF3/5/6/8 (indept. peaks; single period 

OSF8X of exposure; set of cards available for 
insertion into programs OSF2-OS10). 

OSSXX (2) Extreme distribution developed from Theory outlined in 
short-term extreme cdfs. Based on Ref. 17 
program OSF5 (indept. peaks; single 
period of exposure). 

OS6XX (3) Extreme distribution developed from 
long-term peak cdf. Based on program 
OSF6 (indept. peaks; multiple periods of 
exposure). 

OS26 (4) As OSF5X based on wave climate used 
in OS25. 
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(c) BASIC gUASI-ýSTATIC RESPONSE FOR HILTIPLE FORCE COMPONENT LINEAR 
SYSTEMS 

Program 
Name Program Desc#_ption Published Information 

Short-term joint and marginal distribu- Theory outlined & 
tions of. response for 2 member systems. 

- 
results in Refs. 11 & 

OS14. 2nd and 4th moments of marginal 14 
OSIS response, kurtosis and correlation 

coeff. (various spectra, num. int. by 
Gauss-Hermite Quadrature, OS15 
floating variable range on response Y2)- 

OS17 As above, but with constant step. num. Theory outlined & 
OR$ int. (OS18 - floating variable range results in Refs.. ll & 

on response Y2). 14 

OS19A-C 2nd and 4th moments of response (short- Theory & results in 
term) [various spectra, run-time Refs. 11 and 14 
limitations (30 min max on 1906S at 
Liverpool) restrict system complexity, 
A: single response variable; uses 

external library routines (up to 8 
load components) 

B: multiple response variables; self- 
contained; optimised (up to 12 
components) 

C: multiple response variables; poly- 
nomial approximations for 
expectations (up to 35 components)] 

OS23 Response distributions from time-series Theory outlined in 
simulation of water particle kinematics Ref. 79 
(short-term; various spectra ). 

(b) MISCELLANEOUS 

OS24 Long-term cdf. of individual wave height Theory & Results in 
from cdf. of HI/3 (with 'associated' Tz). Ref. 11 

: ': 


