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Abstract

We consider the effects of nuclear deformation on alpha decay, in particular the effect on 

transmission of the alpha particle through the potential barrier. For a deformed nucleus, 

there is coupling between the alpha particle and daughter during barrier transmission 

which results in mixing of the orbital angular momenta L of emitted alpha particles in 

this region. We derive an approximate semi-classical transmission matrix to represent 

this mixing of angular momentum states, and verify its accuracy by comparison of results 

with those obtained from the numerical solution of coupled channels equations. We also 

compare our results with those assuming a spherical barrier and show that the treatment 

of deformation is indeed very important.

The semi-classical technique is applied to the alpha decay of both even-even and 

odd mass actinide nuclei. For the range of even-even nuclei considered, we make use 

of experimental branching ratios and factor out the effects of barrier penetration to 

obtain information on the alpha particle wave functions near the nuclear surface. With 

certain assumptions about asymptotic phases, we find that the amplitudes of these wave 

functions are practically constant for all the nuclei considered, suggesting some common 

nuclear structure in this mass region.

We assume that each odd mass nucleus is formed from the neighbouring even-even 

nucleus plus an odd nucleon which is strongly coupled to the even-even core in the 

intrinsic frame. Using this model and the constant amplitudes found for the even-even 

nuclei, we calculate branching ratios and the anisotropy of alpha particle emission for 

favoured decays. Our results are compared with experimental data where available and 

we find that the agreement is reasonable for this simple model.
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Chapter 1

Introduction

Alpha decay occurs when a parent nucleus emits an alpha particle to leave a daughter 

nucleus. The process may be divided into two distinct parts: the formation of an alpha 

particle in the nuclear interior, followed by its penetration through the alpha-daughter 

potential barrier. There are two main approaches to the formation problem. One of 

these assumes a preformed alpha particle to be moving in the field of the daughter 

nucleus. Alternatively, one can calculate formation amplitudes by taking the overlap of 

the individual neutron and proton wave functions with an alpha particle at the nuclear 

surface. If the nucleus is not spherical in shape, deformed Nilsson-model states should 

be used in these microscopic calculations.

Whatever the formation mechanism, the decay proceeds by quantum mechanical 

tunnelling through the potential barrier. In 1928, Gamow [1] and Condon and Gurney 

[2] calculated the probability of transmission of the alpha particle through the potential 

barrier resulting from a spherical nucleus. They found that it is mainly dependent upon 

the energy of the alpha particle and the proton number of the decaying nucleus. This 

explained the logarithmic relationship between alpha decay half lives and energies for
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chains of even-even isotopes, observed by Geiger and Nuttall (see Ref. [3]). Since 

they only considered the second part of the alpha decay process, the success of their 

calculations shows that the Geiger-Nuttall relationship does not depend significantly on 

nuclear structure effects.

In 1953, Hill and Wheeler [4] considered transmission through a deformed barrier 

and concluded that nuclear deformation should have a pronounced effect on the barrier 

penetration. They showed that for a prolate nucleus the transmission of an alpha particle 

is more likely from the poles of the daughter where the potential barrier is lower and 

thinner than at the equator. This is illustrated in Figure 1.1 where we show the Coulomb 

barrier for an alpha particle with energy Ei,. Since the radius at the pole (rp) is greater 

than that at the equator (re), the Coulomb barrier is lower and thinner and thus the 

alpha particle is more likely to be transmitted from the polar region.

Many papers were written during the 1950’s and 1960’s which considered alpha decay 

through a deformed barrier. The exact solution of this problem requires the numerical 

integration of coupled channels equations, but the problem may be solved approximately 

by a semi-classical approach. In 1957, Froman [5] used a WKB (Wentzel - Kramers - 

Brillouin) technique to describe the transmission of an alpha particle through a deformed 

barrier. A significant part of this thesis is concerned with the derivation of a transmission 

matrix similar to that of Froman and the determination of its accuracy compared with 

exact solutions.

Much of the work on alpha decay in recent years has been carried out by a small 

number of collaborations. Buck et al. [6] -  [9] assumed a preformed alpha particle moving 

in the field of the daughter nucleus, but did not consider nuclear deformation. Berggren’s 

model is similar, and although he considered deformation to be an important factor in 

the first part of the alpha decay process, he assumed a spherical barrier in the second part

[10] -  [12]. Finally, Delion et al. [13] -  [15] derived alpha particle formation amplitudes
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Figure 1.1: The Coulomb barrier for an alpha particle of energy El- rp and re represent the 
radius of the prolate daughter nucleus at the pole and equator respectively. Since rp > re the 
alpha particle is more likely to be transmitted from the polar region where the barrier is lower 
and thinner.

using a microscopic approach. They considered the deformed single-particle (Nilsson) 

states in the vicinity of the Fermi surface and calculated the overlap of the correlated 

neutron and proton BCS wave functions with an alpha particle at the nuclear surface. 

The matrix introduced by Fròman was employed to describe transmission through the 

deformed barrier. It is clear, therefore, that not only is there a difference of approach 

to the alpha particle formation mechanism, but also to the barrier penetration problem. 

In this thesis we discuss both these aspects of the alpha decay problem and the validity 

of the various approaches to them. Most of our work is, however, concerned with the 

treatment of transmission through the barrier.

In the next chapter we derive a semi-classical transmission matrix and compare the 

results of alpha decay calculations with those obtained using Froman’s matrix. We also
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make a comparison with results assuming a spherical barrier and show that the nuclear 

deformation does indeed make a significant difference to barrier transmission. Chapter 2 

contains all the formal details of our deformation dependent transmission matrix which 

is used in subsequent work.

In Chapter 3 we consider the alpha decay of even-even nuclei (even Z, even N), in 

particular how to determine formation amplitudes for a range of deformed actinide nuclei. 

We investigate several possible models to explain the formation and emission of the alpha 

particle and compare theoretical results with experimental branching ratios. All of the 

models considered fail to reproduce the experimental trends, which leads us to reverse 

the problem and use experimental data to calculate some possible wave functions near 

the nuclear surface. This is done by factoring out the effects of barrier transmission using 

our semi-classical transmission matrix, similar to the calculation of reduced widths from 

absolute alpha decay widths as described in Ref. [16]. In this way, we gain information 

on the alpha particle formation amplitudes present in deformed actinide nuclei without 

assuming any model of internal dynamics.

With a particular choice of asymptotic phases, the amplitudes of wave functions near 

the nuclear surface are practically constant for the range of nuclei considered. This result 

suggests some common nuclear structure in the actinide region, independent of nuclear 

deformation or alpha particle energies. We shall show that the most likely physical model 

to explain such constant amplitudes is that of the alpha particle being formed from pair- 

correlated proton and neutron Nilsson-model states, i.e. a microscopic description similar 

to that of Delion et al..

Finally, we consider the more complicated problem of the alpha decay of odd mass 

nuclei. Interest in this subject has been renewed recently because of new experiments to 

measure the angular distribution of emitted alpha particles using on-line low temperature 

nuclear orientation. In our calculations, we assume that the internal wave function of
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the odd mass nucleus is closely related to that of the neighbouring even-even one. This 

allows us to make use of our results from Chapter 3 and calculate alpha decay anisotropies 

and branching ratios for a range of odd mass nuclei. Our results are compared with 

experimental data where available and we find that our simple model gives reasonable 

results. In particular, our model is capable of reproducing the trends of experimentally 

measured anisotropies in the actinide region. A similar model introduced by Froman is 

not able to predict these trends correctly.

Experimental data

The work contained in this thesis employs a large amount of nuclear data for a wide 

range of nuclei. We take alpha decay lifetimes from the compilation by Buck et al. [9], 

which contains experimental data for all the nuclei we consider. All information on level 

schemes i.e. spin assignments, excitation energies and branching ratios, is taken from 

the relevant Nuclear Data Sheets. (These data have been updated since the calculations 

reported in Refs. [17] and [18].)

Nuclear deformation parameters are extracted from the compilation by Moller et 

al. [19], who obtain their values using a detailed nuclear model and a least-squares lit 

to experimental ground state masses and fission barrier heights. Although this is not 

strictly experimental data, it is a convenient source of deformation parameters collected 

together in one place. Alternatively, deformation parameters would be deduced from 

experimental data such as quadrupole moments or transition rates. This would be time 

consuming for the systematic studies included in this work, and since most of our work 

involves the calculation of normalized quantities such accuracy is not necessary. For 

the cases where experimentally determined deformation parameters are available, we 

have compared results to those obtained from Ref. [19] and found that our conclusions
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remain unchanged. Since no errors are quoted in the compilation of Môller et al. we have 

investigated in each chapter the sensitivity of our results to these deformation parameters. 

We employ the deformation parameters of the daughter nucleus in all our work since it 

is this nucleus with which the alpha particle interacts during barrier transmission.
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Chapter 2

Penetration of a deformed barrier

2.1 Schrodinger equation for the alpha decay problem

In the alpha decay process, the parent nucleus decays into two objects -  the alpha particle 

and daughter nucleus. It is convenient to separate the Schrodinger equation into parts 

which describe the internal motion of each object and the relative motion of the two. 

We therefore write the Hamiltonian of the system in the form

H — Ha +  Hd +  Hrei (2.1.1)

where Ha and Hd are the internal Hamiltonians of the alpha and daughter respectively. 

The corresponding internal wave functions satisfy

Ha V*a — Ea

Hd 4>d = Ed i>d (2.1.2)

where Ea and Ed are the internal energies of each part. These wave functions will in 

general be functions of the object’s angular momentum, position in space and isospin,
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but we shall not consider isospin in our work since it does not change. The internal 

energy of the alpha particle remains constant since it does not get excited in the decay 

process. The internal energy of the daughter, however, may vary as the nucleus rotates. 

(The vibrational energy of the nucleus is not important in our work since vibrational 

states have relatively large excitation energies of around 1 MeV for actinide nuclei.)

The term Hrei contains the kinetic energy of the relative motion of the alpha and 

daughter and the potential V  between the two parts:

h2
Hr el =  - ^ V 2 + V (r) (2.1.3)

where // =  mamd/(ma + m^) is the reduced mass of the system and r describes the 

relative co-ordinates of the alpha particle and daughter centres of mass. (This potential 

is an approximation since it averages over the interaction between the individual nucleons 

in the alpha particle and daughter nucleus.)

The total wave function satisfies the Schrodinger equation

HV =  E^l (2.1.4)

where E is the total energy of the system, which remains constant. This Schrodinger 

equation is time-independent because we assume that the parent nucleus is in a quasi- 

stationary state, as we discuss in more detail in Section 3.4. The total wave function 

may be expanded as a sum over all possible daughter states,

^ = I C 1/’« 'I’d' 'l’ad'(r) (2.1.5)
d>

where VW'(r ) is the relative wave function.

We shall now describe each of these wave functions in more detail. Since the alpha 

particle has zero intrinsic spin, we shall only consider the space dependent part of its 

wave function. However, the daughter nucleus may have non-zero angular momentum
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Jd, and so its wave function is written as a product of the space dependent wave function 

4>d' and the spin dependent state vector,

V*' = <f>d, | J'dM'd). (2.1.6)

(Where a label has a subscript we write the prime differently for clarity, i.e. we write 

J'd rather than Jdi.) The spin dependent part is defined in the laboratory frame, but 

for even-even nuclei the transformation between frames does not change the amplitude 

of the wave function. This is shown explicitly in Chapter 4 when we derive the wave 

function for an odd mass nucleus in more detail.

The relative wave function may be expanded in terms of radial and angular parts

1Pa,d '(*)=  L ^  <t>) (2.1.7)
u m < r

where V  here represents the orbital angular momentum of the alpha particle relative to 

the daughter nucleus, and the angles are defined in the intrinsic frame of the daughter 

nucleus. For an even-even nucleus, the projection of the alpha particle orbital angular 

momentum must be zero in the intrinsic frame of the daughter and so the quantum 

number M ' =  0. This is a consequence of the parent spin being zero for such a nucleus. 

We shall therefore make use of the function ®lo(8) which is the normalized 6-dependent 

part of the spherical harmonic defined by

Yl m ( 0, <j>) = eLM(0) . (2.1 .8)

With these assumptions, we can write the relative wave function in the form

M r )  -  £  ^  G ^ « )
L' r

3  ^  i i l M  |i'0). (2.1.9)
L'
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The results are easily generalized for odd mass nuclei where M' may be non-zero.

The total wave function with the condition M' = 0 can therefore be written

*  =  E  V’a I J'dM'd) |£'0). (2.1.10)

Since the state vectors represent the angular momentum of the daughter nucleus and 

the relative orbital angular momentum of the alpha particle, they can be combined to 

describe the angular momentum of the parent,

* = £ < & < '  Vfc W M ' ^ M ' v )  IJ'PM'P). (2.1.11)
d'L'JpMp r

This Clebsch-Gordon coefficient allows different parent spins to be created by the vector 

addition of Jd and V . The wave function above is therefore a sum of terms representing 

different states of the parent nucleus, with different energies. In our work we are only 

interested in the ground state of the parent with spin Jp, so all terms corresponding to 

excited states will be ignored,

*  =  £  4>* (J'dL1 M'd0\JpMp) IJpMp). (2.1.12)rp
d'L '

We now decompose the state vector of the parent into its two constituent parts again. 

For an even-even nucleus, the parent spin and projection must be zero and this restricts 

the angular momentum of the daughter such that J'd = L'. With this condition, the 

Clebsch-Gordon coefficient reduces to a factor (2Z/ + l ) 1/ 2 which is incorporated into the 

radial wave function u y. The total wave function for an even-even nucleus with Jv — 0 

may therefore be written as

*  =  E  <(>* IJ'dM'd) |T'0) h'dL' ¿M'o- (2.1.13)
d'L' r

Now we return to the Schrodinger equation of Equation (2.1.4), and substitute in
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Equations (2.1.1 -  2.1.3) and (2.1.13), 

h2E
d'L' L

2 +  V ( r ) - ( E - E a - E d,) <t>d' a I J'dM'd) \L'0) SJldL, bM,d0 =  0.

(2.1.14)

The energy term E — Ea — E¿i varies only through the rotational energy of the daughter 

Edi which depends upon the spin J'd. Since we have V  — J'd we can replace this energy 

term by a single value E y . Multiplying by ip* (f>d (J,iMd\ and integrating over all internal 

co-ordinates, we obtain

E
L'

- | v ^  +  F ^  |£'0> =  0. (2.1.15)

Finally, we derive the Schrodinger equation for the relative radial wave function «¿ (r )  

by multiplying by (L0| and integrating over all angles,

d2ul(t) L (L +  1) 2/i Tr . 2̂ x
M '  +  V r2 '  UL +  £  Vu/ ( r) « 1/  =  - £ e l  u l .dr2 (2.1.16)

We calculate El from the observed kinetic energy of the alpha particle, corrected for 

the recoil of the daughter nucleus and the screening effect of the electron cloud [9]. The 

matrix element is defined by

VLL'(r) =  ( L \V(r) \ L' )

=  i  &lo{0) V (r) ®l>o(9) sin 6 d6 (2.1.17)
Jo

and the off-diagonal elements indicate coupling between the alpha particle and excited 

states of the daughter nucleus.

2.2 Spherical barrier

First let us consider how to calculate the transmission probability through a spherical 

barrier, i.e. where there is no coupling between the alpha particle and daughter nucleus.
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In this case, the potential is a function of the radius r between alpha particle and daughter 

nucleus, and the olf-diagonal matrix elements in Equation (2.1.16) are zero. The radial 

wave equation may be written more simply as

d2uL(r) 
dr2 -  k\,(r) uL(r) =  0 (2 .2 .1)

where

4 ( r )  =  ^ ( V ( r )  + VL - E L)

and the centrifugal term is
h2 L (L + 1 )

L 2n r2 '

( 2 .2 .2)

(2.2.3)

r

Figure 2.1: General barrier shape for an alpha particle of energy El and a potential V(r). The 
radii rj and r2 are solutions of «¿(r) = 0.

We shall briefly review the results of the WKB approximation in the case of a spherical 

potential. For a general barrier shape as shown in Figure 2.1, the radial equation cannot
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be solved analytically. To obtain an approximate solution to Equation (2.2.1), we take 

a trial wave function of the form

uL(r) =  Al exp(¿Si,(r)) (2.2.4)

where Al is a constant for each partial wave and Sl is the function we wish to find. 

(Other derivations start with a wave function of the form ul(t) =  exp{iSl/K) and 

assume that Sl may be expanded in powers of h, e.g. Refs. [20] and [21].) Substituting 

this trial wave function into Equation (2.2.1) gives

i s L -  (s'Ly  - 4  =  0 , (2.2.5)

where the treatment is still exact. Now if we neglect the second derivative of Sl with 

respect to r, we get the WKB approximation

¿5z,(r) =  ±  J KL{r) dr (2.2.6)

where r > c. The limits of integration will depend on the details of the problem being 

studied. Our aim in this work is to find an expression relating the alpha particle wave 

function inside and outside the potential barrier. So the region we are interested in is 

that between the classical turning points r\ and r2, as shown in Figure 2.1. In this region 

the wave function is decaying exponentially from left to right, so we take the negative 

sign in Equation (2.2.6).

So we have obtained an approximate solution to the radial wave equation. Let us 

now substitute this solution back into Equation (2.2.1):

d -  4 ( 0  uL(r ) =  ± i uL(r) (2.2.7)

Thus our solution is a good approximation to the exact wave function if

d kl 
dr <  4 - (2.2.8)
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In practise, this means that the approximation is valid provided that the change in 

the local wavelength (1/ kl) is small over a few wavelengths, which for our problem is 

true everywhere except near the turning points r\ and r2 , which are the solutions of 

K£,(r) =  0. This could obviously create a problem, since it is the wave function between 

the turning points that we are interested in using. The problem may be solved formally 

by considering the wave function in each region separately and matching them up using 

connection formulae, e.g. ([20], page 371).

r

Figure 2.2: The WKB approximation is not valid very close to the turning points r\ and r2 . In 
deriving the barrier penetration probability we consider the integral to be done between points 
just inside each turning point, where the WKB wave function is valid.

We can, however, obtain the same result by a less rigorous approach. The WKB 

wave function is valid for all values of r under the barrier except those very close to 

the turning points. We can therefore write down a valid relationship between the radial 

wave function ul(t) at radii just within the extent of the barrier, as shown in Figure 2.2.
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The relationship between the two wave functions is given by

ul{t2) = Al exp {iSL(r2))

= Al exp (i5z,(ri) +  iSL(r2) -  iSL(ri)) 

=  exp(iSL(r2) -  iSL^i)) uL(r!)

=  exp J nL(r) dr  ̂ uL{ri). (2.2.9)

We see from this result that the significant quantity is the integral of kl between the two 

radii. Extending the area of integration then in Figure 2.2 to the actual turning points 

will not contribute significantly to the integral in Equation (2.2.9), so the result may be 

used for the barrier penetration problem, where it is the exponential term and not the 

actual value of the wave functions that is important. This justification is similar to that 

given by Schiff ([21], page 278).

Thus the wave function of an alpha particle is attenuated by an exponential factor 

as it penetrates the potential barrier. Consider the square of the wave function in 

Equation (2.2.9), which is related to the probability of finding the alpha particle at r2,

2
|iiL(r2)| = exp J dr^ (2.2 .10)

The physical interpretation of Equation (2.2.10) is that the probability of finding the 

alpha particle at r2 is equal to the probability of finding it at rq multiplied by the 

probability of transmission through the barrier.

So we can summarize our result by saying that the probability of transmission of the 

alpha particle through a spherical barrier is the Gamow factor

P  =  exp(-2  II) (2 .2.11)
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where II is defined by

Il =  [  KL(r) dr. (2.2.12)
Jr\

The values of r\ and r2 are dependent upon the particular form chosen for the potential 

V (r ), as we shall discuss in Section 2.4. For a general barrier shape, the calculation of I i  

cannot be done exactly and numerical integration is required. We note again that other 

derivations obtain exactly the same probability of barrier transmission by a rigorous 

treatment of the WKB wave functions using connection formulae [20].

2.3 Deformed barrier

If the nucleus is deformed, the potential between the alpha particle and daughter nucleus 

will be angle dependent. The equation of the surface of an axially symmetric deformed 

nucleus may be defined by

i?(0) =  f l o ( l +  £  PlYl o (0 )j (2.3.1)
\  L = 2,3. . .  /

where Ylo(0) =  Ylo($, 0). The term corresponding to L — 1 is not present because it 

describes a displacement of the centre of mass, not a deformation of the nucleus. If 

the nucleus is also reflection symmetric, only even values of L are included in the sum. 

Figure 2.3 shows an arbitrary nuclear shape that is both reflection symmetric (in the 

x-y plane) and axially symmetric (about the z-axis). If we included an octupole term 

(L =  3) for example, the nucleus would be pear shaped and would not be reflection 

symmetric. The angle 9 is measured with respect to the z-axis of the nucleus as shown 

in Figure 2.3. Rq is deformation dependent in order to conserve the nuclear volume and 

in the limit as the nuclear deformation tends to zero Ro is just the radius of the spherical 

nucleus.
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Figure 2.3: Schematic diagram of a deformed nucleus which is both axially symmetric (about 
the z-axis) and reflection symmetric (in the x-y plane).

2.3.1 Coupled channels equations

We have shown in Equation (2.1.15) that in the even-even case, the relative wave function 

ip(r) between the alpha particle and daughter nucleus satisfies

K2
£
L - 5 v , + v W " a 4>l ( r) =  0 (2.3.2)

where we defined

M r) =  ^  ©Lo(fl). (2.3.3)r
By making this partial wave expansion we showed that the radial equations are coupled 

(Equation (2.1.16)). Physically, the coupling under the barrier may be explained by the 

deformed daughter nucleus having electric multipole moments due to the asymmetry of 

the charge distribution. Thus the alpha particle and daughter may exchange energy and 

angular momentum for some distance after the separation has taken place.
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For a general barrier shape the coupled equations are impossible to solve analytically. 

We could however solve the problem using a numerical integration technique with fixed 

boundary conditions. These conditions would be that the wave function was regular at 

the origin i.e. ul(0) =  0, and that outside the barrier there should only be outgoing 

waves. In our work, we are not interested in solutions of the coupled equations near 

the origin, since it is not clear that the alpha particle even exists in this region: it is 

the solutions on the nuclear surface that we are concerned with. We therefore integrate 

the coupled equations inwards through the barrier, subject only to conditions on the 

asymptotic wave function.

2.3.2 W K B  approximation

Although the exact coupled channels equations can be integrated numerically, approxi­

mations such as the WKB technique have often been used in the past because they can 

be calculated more quickly and easily. In this section we shall use a WKB approach 

and derive an approximate solution to the wave function for the deformed system. The 

derivation follows much the same steps as in the spherical case.

Let us write down a general expression for ^¿(r) which we expect to hold some 

validity

V>l (r) =  -  Al exp(¿Si,(r,0)) ®lo(0) =  -  $ l - r r
Using the properties of the spherical harmonics ([21], page 82) we find

V ^ L  =  -
1 ( d 2$L

\ dr2 +
i d ,0 * l \

r2 sin 6 dO VS'n d0 )

(2.3.4)

(2.3.5)

:((■dSL(r,0)
dr

+ i ^ _ ^ A L@ w m eiSLtr,1)

where we have assumed that the derivatives of 5z,(r, 0) with respect to 0 are small and so 

these terms are neglected. If we also ignore the second derivative of ¿'¿(r, 0) with respect
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to r as in the spherical case, and substitute Equation (2.3.5) into Equation (2.3.2) we 

obtain

El )J Al Qlo(9) eiŜ  =  0.

(2.3.6)

The coupled equations that can be obtained from this expression are very complicated 

because of the angular dependence of Sl in the partial derivatives. We therefore choose 

the angular dependence of Sl such that it satisfies
2( dSL(r,e) 

V dr = 0 (2.3.7)

where

* l(r , 0) =  ^  (V (r, 0) -  El ) +  (2.3.8)

We are able to choose this solution because the function Sl is not unique. In fact we could 

have chosen Sl to have no angular dependence at all, in which case the expansion would 

be equivalent to that in Equation (2.3.3). If this were the case, Equation (2.3.6) would 

reduce to coupled equations as in Equation (2.1.16). A formal proof of Equation (2.3.7) 

is given in Ref. [5] (Appendix B). Here, Froman also finds that a WKB approximation 

for a deformed barrier requires one extra assumption than that for a spherical barrier. 

The equation for Sl (t, 9) becomes

iSl {t,9) =  ±  j KL(r,9) dr. (2.3.9)

In this case, we choose to carry out the integration from the outer turning point r2 to 

some inner radius r such that rx < r < r2. The reasons for this choice will be discussed 

later. Note that now the turning points are solutions of «¿(r , 9) =  0 and so they also must 

be angle dependent. The angular dependence of the outer turning point is negligible, 

but that of rx is important and must be considered.
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So, finally, we have obtained an approximate wave function

V’( r ) « -  13  Al exp (iSL (r2,r(9))) ®lo(0) (2.3.10)

where
rr(e)

iSL (r2,r(0)) = -  KL(r, 9) dr. 
J 7*2

(2.3.11)

The overall value of iSl must be positive this time because we are integrating from right 

to left in Figure 2.1 and the wave function is exponentially increasing as r decreases. 

The minus sign in Equation (2.3.11) thus cancels out the negative value of the integral. 

This result is what one might have guessed by generalizing Equation (2.2.6) in the 

spherical case. The derivation has proceeded in exactly the same way, except that we 

have had to make one additional approximation -  that the derivatives of Sl with respect 

to 9 are negligible. We have calculated values of iSi,(r, 9) for the ground state of the 

nucleus 238U and for a range of values of 9, using the potentials defined in Section 2.4 

(Equation (2.4.6)). The limits of integration are taken to be rq and r2 and the results 

are shown in Figure 2.4. We find that the integral is indeed not very sensitive to changes 

in 9, which shows that our approximation is a good one.

Now we shall derive an expression relating the wave functions just inside and outside 

the potential barrier, as we did in the spherical case. We can write down two different 

partial wave expansions of ip:

V’(r) =  -  X3 w£"(r ) ©L"o(0)
r  L"

= -  V  Al ’’■(©) e L0(9). (2.3.12)
r  L

We have said that the inner turning point rq is angle dependent, so we cannot define 

the radial wave function u i(r) at this point. We must look for an inner radius which is 

close to rq but does not depend upon 9. We therefore choose the inner radius to be the
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Figure 2.4: Values of ¿So(r2, r1; 0) calculated for 238U using Equation (2.3.11) for a range of 
angles.

radius R0 in Equation (2.3.1), which may be thought of as the “average” value of ri(0), 

and write

E uL"(Ro) =  J 2 Al eiŜ r^  0 lo(0). (2.3.13)
L" L

At the outer turning point r =  r2,

E  uL"(r2) ®L"o(0) =  E  Al e’'5i(r2,r2,(?) ®lo(0)
L" L

=  E Al ®lo(0) (2.3.14)
L

and so Al — ul{t2). Now Equation (2.3.13) becomes

E uL"(Ro) Ql"o(0) =  E e’'5i(r2’ri’0) Qlo(O) uL(r2). (2.3.15)
L" L
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Multiplying each side by 0 l'o(^) and integrating over all 6 gives rise to a term ¿l 'L" on 

the left hand side,

ul'(Ro) — X )  Ql'L ULfa) (2.3.16)
L

where

Ql'L = I "  Ql'o(O) eiŜ r^  @LO(0) sinfldfl 
Jo

= r  &l>o(0) eii(0) 0 Lo(0) sin0 d0 (2.3.17)
Jo

and

Il (9) =  -  [  K L (r,9 )d r=  i  dr (2.3.18)
Jr2 Jr\

from Equation (2.3.11). In making the decision to integrate inwards through the barrier 

we effectively chose to have the angular momentum L rather than V  in the centrifugal 

potential, thus the matrix Q has II  not Ijj in the exponent. We can justify this by 

considering the strength of the various expressions in the effective potential V(r, 9) + V y  

The term V(r, 0) contains the nuclear and Coulomb potentials. The nuclear potential 

dominates for small values of the radius r, but falls away quickly as r increases. The 

centrifugal potential Vl will therefore he more important near the outer turning point 

V2 where the nuclear potential has less effect, and so the angular momentum of the 

final state L is used. Having to make this choice is a consequence of our semi-classical 

approximation to the barrier penetration problem. We shall see later how good the 

choice is by comparing results with those from the exact coupled channels equations.

The matrix element Ql'L is related to the probability of an alpha particle changing 

orbital angular momentum from L outside the barrier to L' inside. We now want to 

obtain a similar expression when we are integrating from inside to outside, as is the case
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in many calculations on alpha decay. We can do this by inverting Q so that

“ l«(r2 ) =  X^ ul,(R0). (2.3.19)
L'

Alternatively, let us assume that

UL(r2) = K-LL' ul'(Ro)
L'

where

Kl v  =  r® L o {0 )  e - /i(e) &L'o(0) sin0 dfl 
Jo

and again it is the final state L that appears in the exponent. 

Then we should find that

£ ll’ =  (Q 1)l,l

where

JCll' = ( L  \ e | V  )

and

Qz/ l =  ( £ ' I I T ).

Consider the product of these two matrices

Wll" =  X I
L'

= X) ( £ I I ¿/ ) ( 2/ I eJ*"W I i"  )
L'

= ( X | | X" ).

(2.3.20)

(2.3.21)

(2.3.22)

(2.3.23)

(2.3.24)

(2.3.25)

This does not give the unit matrix but the diagonal elements are close to unity (provided 

we sum over a large number of L'). W  is the unit matrix only in the special cases where 

the integral I  is independent of 6 (i.e. when the nucleus is spherical) or independent of
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L. We have already shown in Figure 2.4 that I i  is not very dependent upon the angle 

6. Table 2.1 shows the first six rows and columns of the matrix W  for the nucleus 238U 

considering angular momentum states up to L =  18. The more states considered in the 

calculation, the better the approximation. We find that the matrix elements above the 

diagonal are much larger than those below. This is because in the upper half of the 

matrix L < L", making the exponent in Equation (2.3.25) positive and thus magnifying 

any errors.

Table 2.1: The first six rows and columns of the matrices W and Z for the nucleus 238U including 
values of L up to 18. We have used the potentials given in Section 2.4 (Equation (2.4.6)).

W

z =

1.000 -0.024 -0.146 0.196 -0.004 -0.203

0.007 1.000 -0.107 -0.131 0.503 -0.591

0.003 0.007 1.000 -0.108 -0.153 0.762

0.000 0.002 0.018 1.000 -0.178 -0.396

0.000 0.000 0.003 0.016 0.999 -0.277

0.000 0.000 0.000 0.002 0.013 1.005

1.000 -0.087 -0.050 -0.010 -0.039 -0.054

-0.014 1.031 -0.001 0.038 0.059 0.049

0.031 0.025 1.014 -0.070 -0.016 0.015

0.025 0.068 0.060 1.042 -0.069 -0.059

-0.018 -0.035 0.001 0.018 1.038 0.006

-0.017 -0.026 -0.032 0.002 -0.011 0.947

If we consider the matrix multiplication in a different order, this problem of errors in
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the upper half of the matrix does not exist. Table 2.1 also shows the first six rows and 

columns of the matrix Z defined by

Z l 'L"  =  £  Q l 'L £ l l "

L

= £  < L' I elL^  I L ) ( L I e~lL^  \ L" ). (2.3.26)
L

Notice that in this case the sum over L cannot be done because of the exponential 

dependence. If the matrix K, is a good approximation to the inverse of Q however, their 

product should obviously be close to the unit matrix. We find that the matrix Z is 

indeed reasonably close to being the unit matrix.

We conclude then that the matrix K, is, to a good approximation, the inverse of 

Q. It may seem unnecessary to define a new matrix at all, since we have derived Q 

in the first place, and we can always use the inverse matrix to represent the opposite 

transformation. The reason for introducing the matrix K. is partly historical -  later we 

shall discuss previous work on this subject by Froman [5], who defined his matrix to 

transform from inside the barrier to outside. Secondly, most theoretical work on alpha 

decay has involved devising a particular model and making predictions to be compared 

with experiment. In this instance, it is the transformation from inside the barrier to 

outside that is important. It may also be obvious that we could have derived a matrix 

for this purpose by a different definition of the limits of integration in Equation (2.3.11). 

However, if we had chosen the limits the other way round, we would have ended up with 

L' and not L in the exponential of Equation (2.3.17), which we have already discussed. 

Later we shall confirm that this choice is valid by comparing results with those from the 

exact coupled channels equations where no choice is necessary.

To summarize the results of our WKB approximation then, we can say that the
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relationship between radial wave functions near the classical turning points is given by

« ¿ (r 2 ) =  ^ LL' uL'(Ro). (2.3.27)
V

Comparing this result with that for a spherical barrier (Equation (2.2.9)), we find that 

the barrier penetration can no longer be described by a simple exponential attenuation. 

The angular dependence of the nuclear radius causes the alpha particle to couple to 

the daughter nucleus during tunnelling. The matrix K, is a semi-classical expression 

describing the mixing of angular momentum states inside and outside the barrier, similar 

to the matrix element VhL' in the coupled channels equations of Section 2.3.1. If the 

nucleus is spherical, 1C becomes a diagonal matrix with elements equal to the exponential 

factors defined in Section 2.2.

2.4 Potentials

So far we have written down expressions containing a potential V(r,6). In this section 

we will discuss the possible forms of this potential, starting with the simplest model and 

extending to more realistic cases.

In a very simple model of alpha decay, we may assume that the alpha particle is 

held in the (spherical) nucleus by a radial square well potential of strength Vo- Once the 

alpha particle separates from the daughter, there is obviously a Coulomb potential Vc 

between the two charged objects,

t r ZaZde .Vc = ----------  , r > rx (2.4.1)r

as well as the centrifugal term Vl■ This type of potential will be referred to as a “sharp 

cut-off” potential, and is shown schematically in Figure 2.5. A more realistic model 

might include a nuclear potential of Woods-Saxon form for example, giving the shape
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Figure 2.5: Schematic diagram showing the barrier resulting from a sharp cut-off potential.

Figure 2.6: Diagram of the barrier resulting from a more realistic potential including a Woods- 
Saxon term.
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shown in Figure 2.6. Note that in this case, the nuclear potential is not cut off at the 

inner turning point r\. It is, however, a short range force relative to the Coulomb term 

and its effects are negligible for large r. Buck et al. [8 ] have used a potential of this type 

in their work, with a realistic nuclear term but no consideration of nuclear deformation.

The Coulomb potential given in Equation (2.4.1) represents the interaction between 

two spherically symmetric charged particles, taking no account of their charge distri­

bution. We shall now derive a potential that is more relevant for the system of alpha 

particle plus deformed daughter nucleus.

The potential at a point r due to a charge distribution p contained in a volume V  is 

given by

Ec (r) =  d3s (2.4.2)
47tco Jv |r — s|

where s is a point within the distribution. If the distribution is considered to be uniform, 

then p(s) is constant. The integrand may be expanded as a Taylor series in powers of 

1/r and integrated term by term. It can be shown that for an axially symmetric charge 

distribution, the potential takes the form

M O  =  y  +  ^ ( 9 )  +  + (2.4.3)

where the angle 6  is that between r and the symmetry axis of the nucleus ([22], page 92). 

For the system of alpha particle plus deformed daughter nucleus, the first two terms of 

this potential are usually written in the form

Za Zde2 1 2e2QoVc(r) = + x- -P2 W (2.4.4)

where Qo is the intrinsic quadrupole moment. This is exactly the Coulomb potential 

used by Froman [5]. We have derived exact expressions for the multipole moments V3 and 

V5 using the computer algebra package Maple, but we will not present them since they 

are very complicated. Values for a range of even-even nuclei are given in Appendix A.
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We have checked that our expression for V3 reduces to that given in Equation (2.4.4) if 

we consider only first order terms in f32, although considering all orders of f} 2 produces 

a difference of about 1 0 % in its value.

Finally, we shall mention the form of the centrifugal potential. This term is not 

contained within V(r, 6 ), it arises from the kinetic energy term upon the transition from 

the full wave equation to the radial equation. However, we must modify its form if a 

WKB approximation is to be used for the wave function ([23], page 35). The appropriate 

expression to use in this case is the Langer modified form

(T + l / 2 ) 2
VL (2.4.5)

Although this amendment has little effect for large values of L, it is important when L 

is small.

Unless otherwise stated, all numerical calculations in this thesis are done with the 

following potentials

V (r,0) =  VN +  Vc 

VN = U0

1 + exp ((r -  R(0)) /d) fin- 2

Vc  = —  + + ^ P 4 (0 ) fm~ 2

VL
(L +  1/2 ) 2 

r2
fm 2

R(0) = R0  (1 +  /32y 2o(0) +  P M O )  +  P M 6 )) fm

Ro =  1.16 (Ad1/3) fm (2.4.6)

where Ad is the mass number of the daughter nucleus. The radius Ro is consistent with 

that used in Ref. [19], from which we take all deformation parameters. The octupole
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deformation parameter is not considered for any of the work in this thesis, even though 

f t  0 for some nuclei. We calculate the Coulomb monopole moment V\ in the same 

way as Equation (2.4.4). The Woods-Saxon potential is deformation dependent because 

of the radius R(0), and we assume values of To = 100 MeV (=  18.8 fm-2 ) and d = 0.5 

fm for all nuclei. The value of Vo is important because as the orbital angular momentum 

increases, Vl becomes larger and the energy decreases -  thus if the nuclear potential is 

not deep enough there will be no inner turning point for large L. This value of Vo is large 

enough to enable calculations to be performed for values of L < 18. Our parameters are 

very similar to those used by Carjan et al. [24] who use Vo = 125 MeV and a = 0.57 

fm in their Woods-Saxon potential1. For a spherical barrier, we use Vq =  V\/r and 

R{6 ) =  Rq in the nuclear potential.

2.5 Froman’s transmission matrix

In 1957, Froman [5] derived an approximate expression for a semi-classical transmission 

matrix, using a WKB technique. His results have been used frequently in papers on 

alpha decay [13] -  [16]. He used a deformed nuclear radius of the form

R(0) =  R o (l+ (h Y 2o(0)) (2.5.1)

and considered terms only to first order in /32. His potential is a sharp cut-off type 

as described in Section 2.4, although the cut-off radius is the angle dependent nuclear 

radius R(0).

1We note that these Woods-Saxon parameters and the deformation parameters taken from Ref. [19] 
are related to nucleon potentials rather than the alpha-nucleus potential, i.e. we do not consider the 
effects of the charge distribution of the alpha particle. The importance of using more appropriate 
parameters in our calculations should be investigated.
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Froman’s expression represents a different quantity to our matrix /C, hence the slightly

different notation:

kjjjji — [  9 lo(0) exp (BP2 (0)) Q M 0 )  sin0 d0. 
Jo

The term B in the exponent is given by

B =  2t?

(2.5.2)

(2.5.3)

where rj is the Sommerfeld parameter and k is related to the energy of the ground state 

i.e. excitation energies of the daughter states are not considered. In Section 2.8 we shall 

show that the excitation energies of the daughter states are in fact important and should 

be considered in the calculation of the transmission matrix. The dimensionless quantity 

go depends on the charge distribution of the nucleus. Froman assumes that the nucleus 

is ellipsoidal and has uniform charge density, thus go = 1 .

Equation (2.5.2) does not represent the complete barrier penetration process. We 

can think of this matrix as mapping the alpha particle wave function from a point on 

the deformed nuclear surface to a point on a sphere around the nucleus. To describe the 

complete process, these wave functions must then be multiplied by the usual spherical 

penetration term which takes account of the centrifugal barrier seen by the different 

partial waves. The full transmission matrix may therefore be written in the form

H w  = exp(—II ) kLLi (2.5.4)

where the spherical barrier penetration factors II  are defined in Section 2.2. In other 

words, Froman separates the transmission of the deformed barrier into two parts; the ma­

trix &££< which accounts for all the coupling of angular momenta, and an ¿ —dependent 

factor which contains the purely isotropic terms. In the case of a spherical nucleus, 

kiL' becomes the unit matrix and the transmission probability reduces to that given in
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Section 2.2. For a comparison of our transmission matrix with that of Froman, it is the 

full matrix Hll' that should be considered. The notation is different to avoid confusion 

between the two.

We can see how this separation of terms comes about by considering our transmission 

matrix defined by Equation (2.3.21). The integral Il (6) may be expanded in powers of 

the Legendre polynomial P2 (0),

H O ) =  Flo +  FL2 P2 (0) +  FL4 (P2 (0) ) 2 +  • • • . (2.5.5)

Let us define tl by

tl =  exp ( - I l (O)) =  tlo exp ( -  (FL(0) -  IL0)) (2.5.6)

where tlo =  exp(—Ilo) is the purely spherical part, equivalent to the term exp(—II)  in 

Equation (2.5.4). Now we can write the transmission matrix in the separated form

ICll1 = tlo K ll' (2.5.7)

where

K ll1 = i  ©lo(0) exp( — (F^(0) — Ilo)) ®L'o(0) sin# d9. (2.5.8)
Jo

Froman’s matrix kll' maY he obtained from K ll' hy making a first order approximation 

in Pl (6) to the exponent. Thus his parameter B may be compared with the first order 

term in our expansion, F̂ 2, if we neglect its L—dependence. (In Froman’s work all the 

L—dependence is in the spherical part tlo•)

For example, using data for the ground state of the nucleus 238fJ and assuming the 

same form of potential and nuclear radius as Froman, we obtain

Fo(0) =  44.553 -  1.786F>2(0) -  O.O31(P2(0))2 +  . . .  . (2.5.9)

The value of Fo2 =  1.786 should be compared with B — 1.760, which was calculated from 

Equation (2.5.3). The discrepancy in these values arises from the slightly different value 

of V3  to the quadrupole moment defined in Equation (2.4.4).
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2.6 Comparison of Froman and generalized results

r

Figure 2.7: Comparison of Froman’s sharp cut-off potential and our realistic one, assuming the 
same inner turning point r\ in each case.

In the previous section we showed how our semi-classical transmission matrix compares 

with that derived by Froman. We shall now calculate matrices for an even-even nucleus 

using both methods and investigate the numerical differences. In order to make a com­

parison, we shall neglect the higher order deformation parameters in our calculation, and 

consider the nucleus to have a shape given by Equation (2.5.1), in line with Froman. Now 

the main difference between the two methods lies in the shape of the potential. Froman 

assumes that there is a sharp cut-off in the potential at the nuclear surface, defined by 

Equation (2.5.1). We include a Woods-Saxon potential which gives the inner turning 

point at r i(6 ) (which is a solution of — 0). If we adjust Froman’s cut-off radius

to be equal to 7q (0 ), the difference in the barrier is just the region (A) in Figure 2.7
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and a comparison of the two approaches is then straightforward. This is easily done by 

considering r i(6 ) at two angles and introducing new parameters Rq and /32 into Froman’s 

formula in place of Ro and /32 respectively.

We calculate all transmission matrices in this thesis using the angular integration 

technique of Kermode and Rowley [25]. Table 2.2 shows the matrices K, and H for the 

nucleus 2 3 8 U. On the left hand side in each case we show the absolute matrix elements. 

There is a significant difference between the elements in these matrices, caused mainly 

by the inclusion of a realistic nuclear potential in our calculation. We have also made 

no approximation to the exponential term in the matrix, and our calculation takes into 

account the excitation energies of the daughter states. The elements in our matrix are 

approximately a factor of five larger than those in Froman’s matrix. This is consistent 

with the findings of Bencze and Sandalescu [26] who report that the WKB approximation 

with a sharp cut-off potential underestimates barrier penetrabilities by a factor of 2 — 5. 

They reach their conclusions by comparison with results of coupled channels integration, 

which indicates that our modified WKB approach is a good approximation. On the right 

we show the same matrix but scaled such that the top left element is equal to one. We 

find that these scaled matrices are very similar in the two approaches which indicates 

that any normalized quantities, such as branching ratios, will be much the same in each 

case. However, the differences in the left hand matrices show us that our more accurate 

approach will be important in calculations involving absolute values, such as alpha decay 

widths or lifetimes.

We shall now investigate the effects of the two different matrices on calculated quan­

tities in alpha decay. The quantity most directly dependent on barrier penetration prob­

abilities is the alpha decay width (or lifetime). We shall therefore use widths to compare 

the effects of our various approximations and assumptions. (All the investigations in the 

next few sections have also been done for alpha decay branching ratios, since it is these
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Table 2.2: Comparison of the transmission matrices Kll' and Ull' for 238U, considering only 
states L — 0,2,4. The matrix on the left in each case shows the absolute matrix elements, on 
the right the matrix is scaled such that the top left element is equal to one.

(a) Our matrix Kll'

' 0.10922? — 17 

0.5094£ -  18 

 ̂ 0.43162? — 19

0.95992? -  18 

0.10502? — 17 

0.13402? — 18

0.33082? — 18  ̂

0.57952? — 18 

0.2207E -  18 J

1 . 0 0 0 0.879 0.303

0.467 0.962 0.531

0.040 0.123 0 . 2 0 2

(b) Froman’s matrix 'Hll'

' 0.18832? — 18 

0.92732? — 19 

y 0.75932? -  20

0.17642? — 18 

0.18732? — 18 

0.23742? -  19

0.64522? -  19  ̂

0.10602? -  18 

0.3909£ -  19 /

1 . 0 0 0 0.937 0.343

0.492 0.995 0.563

0.040 0.126 0.208

that will concern us most in Chapter 3 when we study even-even nuclei.)

Consider the wave functions for states of angular momentum V  to the left of the 

potential barrier at the point r = Ro. Let the relative amplitudes of the radial wave 

functions be represented by a^i. The corresponding amplitudes cl at the outer radius 

r =  r2 are given by

cl =  T jL, ICl l 1 O’L'- ( 2 .6 .1)

It is these amplitudes that determine the outgoing flux of alpha particles from the nu­

cleus. Although the amplitudes will in general be complex, in the semi-classical approach 

we take them to be real. This greatly simplifies the calculation, and in Chapter 3 we shall
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show using coupled channels equations that the amplitudes in the alpha decay problem 

are, to a good approximation, real. It would be possible, however, to consider complex 

amplitudes within the semi-classical formalism if necessary by writing them in the form 

cll exp(i(f)L). We shall refer to c i  and as the external (or outer) and internal (or 

inner) amplitudes respectively.

The total decay width depends on the sum of the squares of the external amplitudes, 

so for any particular nucleus

r  oc £  \cL\2. (2 .6 .2 )
L

The constants of proportionality depend on the velocity and energy of the alpha particle, 

but for the purpose of our comparisons we can neglect these factors and only consider 

the term in c i 2. Therefore for our comparison we shall consider the term

9 =  £  |cl|2. (2.6.3)
L

Any difference in this quantity will reflect the difference in barrier penetrability, since 

we shall choose the internal amplitudes to be equal in each case.

In theoretical work on alpha decay, the amplitudes a may be obtained by various 

models, for example by assuming a quadrupole-quadrupole interaction between daughter 

nucleus and alpha particle. For the purpose of this and following sections, it is convenient 

to simply fix the amplitudes to represent a particular internal nuclear structure. For 

example, if we consider only angular momentum states with L =  0 inside the nucleus, 

then ao =  1 and <X2 =  = 0. (For all our comparisons we will only report the results for

angular momentum states up to L =  4, although we have considered the effects of higher 

states.) As the alpha particle penetrates the deformed barrier, mixing of the states takes 

place and the outer amplitudes corresponding to L =  2 and L =  4 will be non zero.

We use this simple case to investigate the accuracy of Froman’s calculation. Using 

238U as a model nucleus, we have calculated g for a range of values of /32- Figure 2.8
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shows the results using two approaches:

i) using Froman’s transmission matrix Hll' which assumes a sharp cut-off potential and

only first order terms in /32,

ii) using our matrix K-ll' with a realistic potential and the full angular integral

Figure 2.8: Comparison of widths as a function of /? 2 using Froman’s and our transmission 
matrices for 238U. We have assumed the internal amplitudes ao = l,a 2 =  0 4  = 0 and the 
potentials shown in Figure 2.7.

We can deduce two results from these curves. Firstly, there is a significant difference 

in the results obtained using the two methods. The widths calculated using our trans­

mission matrix are over an order of magnitude larger for all deformations than those 

obtained using Froman’s matrix. This discrepancy is mainly due to the difference in 

shape of the two potentials shown in Figure 2.7. Since the barrier resulting from the 

sharp cut-off potential is larger than that due to the realistic potential, the alpha particle
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is less likely to escape from the nucleus and thus the decay widths are smaller. This is 

consistent with the findings of Bencze and Sandalescu [26] who report that calculated 

decay widths are underestimated by a factor of 1 0  — 1 0 0 0  and this discrepancy is partly 

due to a WKB approximation in the calculation of barrier penetrabilities. There have 

been other reports of differences due to the shape of the nuclear potential. Scherk and 

Vogt [27] find that alpha decay widths are enhanced by using a realistic potential with 

a diffuse edge rather than assuming a square-edged nucleus. Rowley and Merchant [28] 

also find a similar enhancement of fusion cross-sections when using a realistic potential 

instead of a sharp cut-off potential.

Secondly, the calculated widths for our model nucleus obviously depend on the defor­

mation parameter /32 • It has been claimed that the consideration of nuclear deformation 

during barrier transmission is not important [6 , 10]. It is one of the main aims of this the­

sis to demonstrate the importance of considering the nuclear deformation in the barrier 

penetration process, and we shall return to this discussion in Chapter 3.

We also calculated branching ratios to the ground state of the daughter and found 

that there was no real difference in the results using Froman’s method or ours. As we 

have already discussed, branching ratios are less likely to reflect any differences because 

the amplitudes cl are normalized, whereas in the calculation of decay widths it is the 

absolute values of cl which are important.

2.7 Sensitivity to the form of the nuclear radius

We have written a general expression for the radius of an axially and reflection symmetric 

deformed nucleus as

R{9) =  Ro (1 +  p2Y2O(0) + foY u (0) +  (3eY6 0 (9) +  . . . )  (2.7.1)
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where Ro is related to the radius of the equivalent spherical nucleus. For a deformed 

nucleus, Rq must be deformation dependent in order to conserve the nuclear volume. This 

is easily done by defining a modified radius Rq and equating the resulting nuclear volume 

with that obtained in the spherical case. We have found that this correction makes very 

little difference to calculated widths or branching ratios, but should be included to be 

strictly correct.

Let us now examine the importance of the higher order deformation parameters (3̂  

and /? 6  in our calculations. We again take 238U as a model nucleus, using all data and 

parameters from Appendix A unless otherwise stated. We have calculated widths with /32 

only and then included typical values of these parameters, say /? 4  =  0 . 1  and /36 =  —0 .0 2 . 

Figure 2.9 shows that the inclusion of ¡34 is quite important, but the (3& term has only a 

small effect.

Figure 2.9: Sensitivity of widths to the form of the nuclear radius R(6 ).

It is interesting to look at the shape defined by Equation (2.7.1) as /32 increases. For
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a value of / ? 2 ~  0.2 the shape is ellipsoidal as would be expected. If / ? 2 > 0.4 the nucleus 

defined by Equation (2.7.1) develops a “waist” , and for very large / ? 2 this “peanut” shape 

is very pronounced.

A nuclear radius that is strictly ellipsoidal may be derived from the equation of an 

ellipsoid in polar co-ordinates

m  =
Rq

( 1  -  2/32 Y2O(0) ) 1 /2
(2.7.2)

where R0 and /32 can be expressed as functions of the semi-major and semi-minor axes 

of the ellipse. Notice that a first order expansion of Equation (2.7.2) in powers of Y2o 

gives exactly the same result as Equation (2.7.1), neglecting higher order deformations. 

However, if we consider higher order terms in the expansion of Equation (2.7.2), the 

comparison between the two radii R(6 ) becomes more difficult. For example, if the 

expansion is made to second order in Y2o, we can rewrite the result in terms of Y2o and

Y40,

m  = *> (>+h ® +(*+1 ^ )  Y>°+(? i s  f t )y<°) • (2-7-3)
This definition of the nuclear radius therefore results in “effective” values of /32 and (34. 

The more terms included in the expansion, the more these effective terms will differ from 

the values in Equation (2.7.1).

Figure 2.9 shows widths calculated using the exact ellipsoidal radius in Equation 

(2.7.2). The results for /32 < 0 are only slightly different to those obtained with the 

conventional radius, with / ? 4 =  =  0. The asymmetry of the curve with respect

to 0 2  may be understood by considering the effective quadrupole deformation /32 in 

Equation (2.7.3),

^ 2  =  /? 2  + (2.7.4)

For negative values of /32, |/32| is less than |/?2|, whereas for positive /32 its magnitude is
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larger. We conclude, therefore, that there is little difference between the two represen­

tations. In all our calculations we shall use the radius defined by Equation (2.7.1), since 

this is the most widely adopted form and the deformation parameters of Ref. [19] are 

defined in this way.

2.8 Sensitivity to other parameters

We shall end this chapter by investigating the sensitivity of alpha decay widths to the 

remaining parameters in our model. In each case we use 238U as a model nucleus, using 

data and parameters from Appendix A unless otherwise stated. We note that the scales 

of each figure are different in order to highlight the changes resulting from each parameter 

variation.

In Section 2.5 we remarked that Froman did not consider the excitation energies of 

rotational daughter states in his work. We shall see if this is a good approximation. If 

the angular momentum states of the daughter form a rotational band their excitation 

energies may be written in the form

e*L = fL (L +  1) MeV (2.8.1)

{e*L is the difference between the energy of the excited daughter state El and that of the 

ground state Eq). The value of /  is related to the quadrupole deformation /32 and so is 

fixed for a particular nucleus, but varying /  for a model nucleus allows us to investigate 

the sensitivity of our results to differences in excitation energy. We calculated values of 

g for the nucleus 238U for a range of realistic values of / ,  and for three different values 

of /?2 , with the other deformation parameters set to zero (Figure 2.10). We found that 

the consideration of excitation energy is more important as /32 increases. This is because 

the coupling of angular momentum states is more likely for larger values of /32, and 

so changes in the energy of excited states have more effect on the widths. We conclude
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therefore that the consideration of excitation energies, although a small effect, does make 

some difference to our calculations. Since experimental data is available for most of the 

nuclei we shall study, we include these energies in all our work.

Figure 2.10: Sensitivity of widths to the inclusion of excitation energies t*L = f  L(L + 1) of the 
daughter states for three values of /?2 -

Next we investigate the importance of the higher order Coulomb terms derived in 

Section 2.4. It can be seen from Figure 2.11 that the term V3 /r3 makes a significant 

difference to the widths for deformed nuclei. The effects of the next term V5 / r 5, however, 

are found to be very small, so we neglect all terms higher than V5 in subsequent work.

To complete our investigations we have looked at the effects of varying the Woods- 

Saxon parameters Vq and d. For the calculations in this thesis we have chosen a potential 

depth of 100 MeV and a diffuseness of 0.5 fm (see Section 2.4). Figure 2.12 shows the 

value of <7 as a function of the depth Vo, and for three different values of diffuseness. 

We find that the decay widths are sensitive to large changes in these parameters. We
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Figure 2.11: Sensitivity of widths to the inclusion of higher order Coulomb terms for a range of

h -

note however, that for all of the parameters discussed in this section, the alpha decay 

branching ratios are insensitive to even large variations. It is only in the consideration 

of absolute lifetime values in Section 3.5 that the exact values of the parameters will be 

important for even-even nuclei.
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Figure 2.12: Sensitivity of widths to parameters Vo and d in the Woods-Saxon potential.
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Chapter 3

Even—even nuclei

In this chapter we shall study the alpha decay of even-even nuclei, in particular the 

branching ratios to different states of the daughter nucleus. All even-even nuclei exhibit 

the same level structure, as shown in Figure 3.1. Since the spin of the parent is always 

zero, the alpha particle in its final state must carry an orbital angular momentum equal 

to the spin of the daughter state to which it decays i.e. L =  Jd-

Figure 3.1: Alpha decay of even-even nuclei.
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In the previous chapter we defined a transmission matrix K- which relates amplitudes 

just inside and just outside the deformed barrier. So far we have concentrated mainly 

on the barrier penetration problem and have not considered how to obtain the internal 

amplitudes. In this chapter we will investigate some possible models for the alpha particle 

formation process and compare our results with experimental data.

3.1 Alpha decay branching ratios

In Section 2.6, we derived an expression for the amplitudes of the radial wave function 

outside the potential barrier

cl =  X I ^ ll' av- (3.1.1)
L'

The branching ratios tell us the percentage of alpha particles decaying to each state 

of the daughter, and must therefore be related to the probability of finding an alpha 

particle outside the barrier. We define the branching ratios by

ZL =  J Ct |2.» X 100%. (3.1.2)
E l H r

Throughout this chapter, we will be looking at even-even actinide nuclei in the mass 

range Ad =  220 — 250 and Zd =  8 8  — 96. There are several reasons for this choice of 

nuclei. Firstly, experimental branching ratios and alpha particle energies are available for 

angular momentum states up to L = 4. Secondly, they have considerable deformations 

ranging from /32 =  0.1 to 0.24 [19] and so offer a good opportunity to investigate the 

importance of including the barrier deformation. Most of the nuclei have daughter state 

energies that may be described as rotational, i.e. c*(4+ )/e*(2+) «  3.33, as shown in 

Figure 3.2.

First, let us consider some simple models for the internal structure of these nuclei. 

For example, it is possible that only alpha particles with L — 0 are formed inside the
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Figure 3.2: Values of e*(4+)/e*(2+) for a range of even-even actinide nuclei. Nuclei with 
Ad > 230 have values «  3.33 as expected for a rotational band.

nucleus and it is the mixing of angular momentum states through the deformed barrier 

that causes alpha particles with L >  2 to be detected. This situation is represented 

by the relative amplitudes ao =  1, « 2  =  ® 4 =  0. It is perhaps more likely that there 

will be some alpha particles formed with L 0, e.g. ao = « 2  =  1? = 0. Figure 3.3

shows calculated L — 0 branching ratios for the range of nuclei, with three different 

sets of the amplitudes a y. (When comparing our theoretical results with experimentally 

measured branching ratios, we shall put the greatest importance on agreement in the 

L =  0 state. In most of these nuclei almost all of the intensity goes to the L =  0 and 

L = 2 states of the daughter anyway.) We find that the experimental trends are not 

reproduced by any of these sets of amplitudes. In the following sections we investigate 

some more complicated models of alpha decay.

3.6
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+cs ,
* CO 3.0
+̂ ,  
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2.6
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Figure 3.3: Calculated L = 0 branching ratios for different sets of the internal amplitudes a^i. 
The experimental trends are not reproduced by any of these sets.

3.2 Quadrupole-quadrupole interaction

Consider the alpha decay of an even-even parent nucleus with angular momentum and 

projection Jv =  Mp =  0. The spin of the daughter nucleus Jd must equal the orbital 

angular momentum L of the alpha particle. However, throughout most of this section 

we retain the label Jd to make it clear where the various terms are derived from.

We can write a vector to represent this state in terms of the alpha particle and 

daughter nucleus

IJPMP) =  £  XL' I W )  JpMp). (3.2.1)
V
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This state vector must satisfy the Schrödinger equation

H \JpMp) = E |JpMp) (3.2.2)

where E is the total energy of the parent which remains constant. As discussed in 

Section 2.1, the Hamiltonian may be divided into two parts, one representing the relative 

alpha-daughter interaction and the other corresponding to the internal states of the alpha 

and daughter. The internal energy of the alpha particle does not change, so we do not 

consider it here.

Our aim is to obtain the coefficients x v • In simpler notation, Equation (3.2.2) may 

be written as

H ¿ 2  XL' |L') =  E J 2 ,X L ' 11'). (3.2.3)
L' L‘

Taking the scalar product with another state vector | L) gives the eigenvalue equation 

for the system

53 (Hll1 -  E Sll') XL' =  0. (3.2.4)
L'

So to find the coefficients we diagonalize the matrix Rlu  to obtain eigenvalues and 

eigenvectors. Of course there are L sets of these eigenvectors corresponding to different 

energy states of the system, so we have a choice in the set of coefficients XL'-

Now let us discuss the actual form of the Hamiltonian. The interaction between 

alpha particle and daughter nucleus may be described by a quadrupole-quadrupole term 

[11, 29]. This is an approximation to the exact interaction which may be written as 

a series of “multipole-multipole terms” . In the notation of Rowley et al. [29], the 

quadrupole interaction may be written

V2 = T2(ra) • 53 V2(r<x,ri) *2(r,) (3.2.5)
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where the sum over i runs over all daughter nucleons. We need to calculate the reduced 

matrix elements of this quadrupole interaction in the basis of Equation (3.2.1)

(Va)LL' =  VLL< =  < (JdL)Jv || V2 || (J'dL')Jp >. (3.2.6)

Using formulae for the reduced matrix elements of tensor operators ([30], page 81), we 

obtain

with the geometrical factors

ViL' = VLL' G l L' (3.2.7)

G w  =

and the dynamical factors

L W {J dJ'dLL'-2Jp) (L\\Y2 \\L') (3.2.8)

VLL' = Jd

where

J ®L(ra) Veff(ra) $ L»(ra) r2a dra (3.2.9)
IIa5-ta £ < V *  || Va((ra,r i) y 2 ( f < ) l l ^ ) - (3.2.10)

The dynamical factors contain unknown quantities such as the radial wave function of 

the daughter (~>pd) and the radial wave function of the alpha particle relative to the 

daughter ($ l ). Note that the geometrical part Gll' is symmetric with respect to L and 

L'.

The second part of the Hamiltonian arises from the internal energy of the daughter 

nucleus, which changes due to its rotational motion. The excitation energies of these 

rotational states can be written in the form

e l =  fL (L  + 1) (3.2.11)

where /  is a parameter, as introduced in Section 2.8. So to obtain the coefficients XL' 

we must diagonalize the Hamiltonian matrix

Hll1 =  Vll1 +  (3.2.12)
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We define this expression to be dimensionless in a similar way to Ref. [29]. Since the 

values of the coefficients are not affected by a constant factor in -Hll' we can divide 

through by a term with the appropriate dimensions.

Finally, we shall replace the label Jd by L for the even-even nucleus and simplify the 

dynamical factors to give an interaction of the form

Vll1 =  -0 2  L2 W(LL'LL') 20) (L||Y2||L')2. (3.2.13)

We have assumed that the radial integrals in the dynamical factors are constant for each 

angular momentum state, and so they will not affect our calculations. We have also 

assumed that the potential is proportional to the quadrupole deformation of the 

daughter nucleus as a whole. The negative sign occurs because we will be considering 

prolate nuclei (for which 0 2  is positive) and the overall sign of the quadrupole term must 

be negative.

This quadrupole interaction may be extended to include higher multipole components 

of the same form,

V = V2 +  V4 + V6 (3.2.14)

where the dynamical factors for Vt are proportional to /3*. We find that the inclusion 

of the term in 0± has quite a significant effect on calculated branching ratios, as in 

Section 2.7, but that the next term in the expression has a negligible effect.

We can now use this model to calculate the coefficients \L' for our even-even nuclei. 

The semi-classical transmission matrix in Equation (3.1.1) can then be used to calculate 

branching ratios Zl . We must first consider the variables in this work. The parameter 

/  in the energy term may be constant for all the nuclei considered or varied from nu­

cleus to nucleus. There are also a number of different solutions for the coefficients XL't 

corresponding to different eigenvectors of the matrix in Equation (3.2.12). As we are 

considering angular momentum states L = 0,2,4 there will be three different solutions.
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Solution 1 corresponds to the eigenvector with the lowest eigenvalue, i.e. the lowest 

energy state.

Figure 3.4 shows L =  0 branching ratios for even-even nuclei with the value of /  fixed 

at 0.015. A comparison of these curves with the experimental ones shows that none of 

the solutions are in agreement with empirical data. Changing the value of /  within the 

range 0 < /  < 0.02 does not affect the trends for any of the solutions, it merely shifts 

the values slightly.

3 ---------------------------------------1-------------------------------------- 1------------------------------------------------------------------------------ 1---------------------------------------i_
220 230 240 220 230 240

Ad
Figure 3.4: Calculated L=0 branching ratios using a quadrupole interaction for a range of 

even-even nuclei. The three solutions correspond to different energy states of the parent nucleus.

The only option not considered so far is to vary the value of /  from nucleus to nucleus. 

We find that the variations required to fit the experimental branching ratios are very 

unpredictable; there is no smooth dependence on this parameter from nucleus to nucleus.
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We therefore conclude that this model is not a good description of the physical process 

of alpha decay in this region of even-even nuclei.

Similar calculations using a quadrupole-quadrupole interaction have been done by 

Berggren and Olanders [11], although they assume a spherical barrier in their work. 

They also found that it was necessary to vary the solution number and other parameters 

in order to fit the experimental data. The reasons for having to take a higher energy 

solution are not clear; it is suggested that the solution which fits the empirical data must 

correspond to the ground state of the parent nucleus, with all lower energy states being 

forbidden due to Pauli blocking i.e. the nucleons in the alpha particle may not occupy 

the same states as those remaining in the daughter nucleus.

3.3 Eigenchannel formalism

There has been much recent work on the penetration of deformed Coulomb barriers in 

the opposite direction i.e. in the fusion of heavy nuclei [31]. Here it is evident that there 

exists a distribution of fusion barriers and that at sub-barrier energies, the lowest barrier 

yields the largest contribution to the fusion cross-section. In this section we investigate 

the possibility that such a “filter” mechanism may play a role in the alpha decay process.

There are, however, some obvious differences between these two problems. Firstly, 

for fusion we know precisely the form of the incident wave since this corresponds to the 

asymptotic wave function. In the alpha decay problem the incident wave is inside the 

potential barrier and is not known. Secondly, fusion is measured at energies above, or 

close to the top of, the Coulomb barrier. Here the small differences in the centrifugal 

barriers and the small energy losses due to target excitation are essentially negligible. 

This allows the use of the isocentrifugal and adiabatic approximations [32], in which the 

presence of eigenchannels with different barrier heights and weights can be proved ana-
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lytically. For the alpha decay problem the isocentrifugal approximation is inapplicable, 

and at the energies where alpha decay takes place even the small e*L are not negligible 

due to the large width of the potential barrier. We shall, therefore, first address the 

problem of how to define eigenchannels in such a situation.

In this section we shall perform calculations using the numerical integration of cou­

pled channels equations, as introduced in Section 2.3.1. The asymptotic wave function 

in the intrinsic frame of the daughter nucleus must contain only outgoing waves, and 

may therefore be written in the form

outside £  Cl 0°Lutside(kL,r)

=  £  Cl (GL(kL,r) +  iFL(kL,r)) 0 lo(0) Xlo, (3.3.1)
L

where Fl and Gl are the regular and irregular Coulomb wave functions. The 0™ tstde 

represent outgoing alpha particles with orbital angular momentum L coupled to total 

angular momentum zero with a state xlo of the daughter. The wavenumbers k i are 

related to the energies of the different rotational states. Using such an outgoing wave, 

we perform coupled channels calculations to obtain the wave function on the other side 

of the barrier. This must have both incoming and outgoing components

4>inside =  £  (a l O r ide(kL, r) +  Bl t r de(kL, r )) . (3.3.2)
L

The corresponding currents are shown schematically in Figure 3.5. Note that we use 

capital letters for amplitudes in the coupled channels formalism and lower case for the 

equivalent semi-classical ones.

The above problem is solved numerically to obtain the outside coefficients Cl in 

terms of those inside, A y-  One may thus define a transformation matrix M, where

Cl — £  Ml l 1 Al>■ (3.3.3)
v
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r

Figure 3.5: Schematic diagram of the potential V and the incoming and outgoing currents J on 
either side of the barrier.

This is analogous to Equation (3.1.1) in the semi-classical approximation.

Of course there is no reason for M  to be hermitian and indeed it is not. We cannot, 

therefore, diagonalize the above equation to obtain eigenchannels. However, the physical 

quantities of interest are not so much the outgoing amplitudes as the outgoing fluxes, 

or currents, for each L. Neglecting the small differences in k^, these currents are simply 

proportional to \Cl \2 and from Equation (3.3.3) we obtain a total current

J * Y . Cl Cl  = E A \ „ M l„ L MLL .A L,
L LL'L"

=  E  ^L" T l" l ' A-L'
L'L"

= E  A-t A<* Aa, (3.3.4)
a

where we have used the fact that the matrix T is hermitian to define the diagonal matrix
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element Aa = Y l'L" U„ l»Tl"L'Ul,'a- The amplitudes in the physical channels are 

related to those in the eigenchannels by A y  =  Y a U ua Âa. We label the eigenchannels 

a =  1,2,3 in order of decreasing A for our system with three partial waves L — 0,2,4.

We now consider the possibility that the physical channel corresponds to that with 

the maximum outgoing flux. This is equivalent to the idea that more alpha particles 

must be emitted from the poles of a prolate nucleus because here the barrier is lower and 

thinner. In order to maximize the outgoing flux, we need to maximize the expression

T . Â-t, Âa — Â2 Ai + Â\ A2 + Â\ A3 (3.3.5)
a

subject to the constraint

Âl + Âl + Âj =  l (3.3.6)

which arises because the eigenvectors are normalized. This requires the internal coef­

ficients Ali to be the eigenvector of T  corresponding to the largest eigenvalue Ai i.e.

i t  =  (100).

For the maximum-flux channel, the amplitudes in the different physical channels may 

be obtained from Equation (3.3.3) i.e.

Cl = Mll> Ul ' i (3.3.7)
v

and the corresponding branching ratios evaluated. We have performed such calculations 

for 238U over a range of quadrupole deformations /32, with /34 = /36 = 0. The radial 

functions 0 °ĵ tside are integrated to well inside the barrier where the nuclear potential is 

almost flat. In order to separate the wave function into incoming and outgoing parts, the 

numerical values are used to identify equivalent Riccati-Hankel functions from which we 

obtain unique sets of coefficients { A l } and {B l }- This calculation is performed three 

times with different boundary conditions, i.e. with {Co C2 C4 } =  {1 0  0 },{0  1 0} and 

{0 0 1}, to evaluate the transmission matrix elements Mll1-
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Figure 3.6: Eigenchannel calculations using coupled channels technique: (a) Eigenvalues Aa as a 

function of /?2 for a model 238U nucleus, (b) Branching ratios corresponding to the maximum-flux 

channel. The experimental branching ratios for L =  0, 2,4 are indicated by crosses at /?2 =  0.215.

Figure 3.6 shows the calculated eigenvalues Aa and branching ratios for eigenchannel 

1 as a function of /?2. The experimental branching ratios for 238U, for which /32 = 

0.215 [19], are indicated by crosses. At this value of /?2, we see that the eigenvalue 

for eigenchannel 1 is at least one order of magnitude larger than the others, and so 

one would expect to obtain reasonable results by considering only this channel. This is 

not the case, however: the branching ratios are not reproduced by the assumption that 

the physical channel is the one with maximum outgoing flux. The admixture of angular 

momentum states predicted by eigenchannel 1 is clearly not the one present in the nuclear 

ground state, suggesting a strong dependence on structure effects. This conclusion is not 

affected by the inclusion of the hexadecapole deformation /?4 = 0.093 [19], for which the
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eigenchannel 1 branching ratios are 46.2%, 50.3% and 3.5% for L =  0,2 and 4.

We believe therefore that for these actinide nuclei, effects such as strong pairing 

correlations in the nuclear ground state must force the alpha particle to exist in a config­

uration which cannot make use of the low potential barrier at the poles of the nucleus. 

The same will not necessarily be the case for all other nuclei. For example, the nuclei 

produced in fusion-evaporation reactions will be strongly deformed and highly excited. 

Then, the statistical distribution of the alpha particle wave function will almost certainly 

lead to configurations which can readily tunnel in the expected manner.

Let us now take this opportunity to test the accuracy of the semi-classical trans­

mission matrix derived in Section 2.3.2. First, we compare the matrices M  and K, 

calculated in the coupled channels and semi-classical formalisms respectively. Since the 

coupled channels matrix M  is complex, we calculate the modulus of each element M,y 

for our comparison. The two matrices are shown in Table 3.1, scaled so that the top 

left element is equal to one. We find that the matrix elements in the semi-classical case 

are generally smaller than those in the coupled channels matrix, which could be related 

to the imaginary parts present in the complex coupled channels approach. However, 

it is more important to see the effects of each matrix in the prediction of alpha decay 

quantities.

We have therefore performed the same calculations as before using the semi-classical 

technique. First, we diagonalize the matrix

Tl"L' =  E  ^L"L ICll1 (3.3.8)
L

to obtain eigenvalues and eigenvectors. The maximum flux amplitudes are then equal 

to the eigenvector corresponding to the largest eigenvalue, and branching ratios are 

calculated using

cl =  ^ LL' Ul<\- (3.3.9)
u
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Table 3.1: Comparison of transmission matrices for 238U, scaled such that the top left element 

is equal to one.

(a) Coupled channels matrix Ml l *

1.0000 1.7090 1.3973

1.0270 1.6966 1.2365

0.2576 0.3992 0.1828

(b) Our matrix ICl l1

1.0000 1.1491 0.9077

0.6203 1.3467 1.0111

0.1128 0.2317 0.2990

We see from Figure 3.7 that there is very good agreement with the coupled channels 

results. The branching ratios are almost identical in each case, even though the absolute 

values of the eigenvalues are slightly different. This confirms that our approximations 

and assumptions in the derivation of the semi-classical matrix must be good ones. In 

particular, it proves that the form of our matrix given in Equation (2.3.21) and the choice 

of angular momentum in the exponent are good. We can now continue our discussion of 

the eigenchannel formalism using the semi-classical technique for our calculations.
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Figure 3.7: Eigenchannel calculations using the semi-classical technique to be compared with the 
previous results using coupled channels integration. The upper graphs show the eigenvalues Aa as 
a function of /% for a model 238U nucleus. Branching ratios corresponding to the maximum-flux 
channel are shown in the lower graphs.

We have found that the maximum-flux eigenchannel does not reproduce experimental 

branching ratios for the nucleus 2 3 8 U. Let us now evaluate branching ratios for the whole 

range of even-even nuclei and for all three eigen channels, using deformation parameters 

given in Ref. [19]. Figure 3.8 shows L — 0 branching ratios in the three channels. These 

results confirm that the experimental trends are not reproduced by assuming that decay 

proceeds by the channel which maximizes the outgoing flux, or indeed by any of the 

other channels.

We next consider the possibility that the correct admixture of angular momentum
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Figure 3.8: Calculated L =  0 branching ratios using an eigenchannel formalism and semi- 

classical transmission matrix. The three different solutions correspond to eigenchannels a  =  

1,2,3.

states can be obtained by a simple linear combination of the first two eigenchannels. If 

we take the normalized internal amplitudes to be given by the formula

aiji = x Ul'i +  y Ul '2  (3.3.10)

where y =  ± V  1 — x 2, we can vary x for each nucleus to fit the experimental branching 

ratios. The results are shown in Figure 3.9. We find that the value of x required to 

reproduce the experimental data is almost constant for most of the nuclei, although 

the sign of y must change in the last two cases. This suggests that there may be some 

common nuclear structure in these actinide nuclei. We note that for nuclei with A j  < 230 

the value of e*(4+)/e*(2+) < 3.33 and so these are not “rotational” nuclei, which may 

explain why they do not follow the same pattern so closely.
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Figure 3.9: Values of x and y from Equation (3.3.10) required to fit the experimental ground 
state branching ratios for a range of even-even nuclei.
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3.4 Systematic study of deformed even—even actinide 

nuclei

In this chapter we have introduced various models for the alpha decay process and 

compared their results with experimental data. None of the models investigated so far 

have been successful in the prediction of branching ratios consistent with experimental 

trends for even-even actinide nuclei. We will now make use of the semi-classical technique 

derived in Chapter 2 to perform a systematic study of the even-even actinide nuclei 

for which data are available, and calculate some possible sets of internal amplitudes 

consistent with these data.

Since the experimental branching ratios Zj_, are derived from the square of the external 

amplitudes cl, we can define these amplitudes to within a certain normalization

cL =  exp(i(t>L) \/~Zl (3.4.1)

where the phase <f>L is unknown. To determine the phase experimentally would require a 

measurement of the angular distribution of alpha particles emitted from oriented nuclei. 

In the decay of even-even nuclei this is not possible because the parent nuclei have spin 

zero and so cannot be aligned in the laboratory frame. In our semi-classical calculations, 

we consider only real amplitudes. The internal amplitudes are obtained by inverting 

Equation (3.1.1)

aL> =  y i L cl- (3.4.2)

We can justify this choice of real amplitudes by comparison with the full complex 

coupled channels calculations. Preston and Bhadhuri [3] discuss similar calculations 

using a coupled channels approach, hut with a potential similar to Froman i.e. purely 

Coulomb harrier and a sharp cut-off potential. We can put a limitation on the phase 

4>l by realizing that the imaginary parts of the wave function at the nuclear surface
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should be close to zero. This is because experimental lifetimes indicate that the net 

outgoing current of alpha particles at the nuclear surface is very small. The remaining 

small imaginary amplitude is then indicative of the slight leakage of current in a quasi- 

stationary state. Preston and Bhadhuri report that in order for this condition to be 

met, the external amplitudes should be nearly real as well. We have confirmed this 

using our coupled channels integration. Figure 3.10 shows the real and imaginary parts 

of the L — 0 wave function inside the potential barrier for the nucleus 2 3 8 U, using the 

experimental branching ratios as asymptotic boundary conditions. We find that the 

imaginary components are much smaller compared with the real parts when the external 

phases are fa  — 0 or 7r, i.e. the wave function shown in Figure 3.10 (a) looks the most 

like a standing wave. A thorough investigation of all possible phases <j>L showed that to 

minimize the imaginary wave function at the nuclear surface for 2 3 8U, fa is always within 

1° and fa  always within 10° of 0° or 180°. The asymptotic phase of the L — 4 wave 

function deviates more than the other phases but this has little effect on the results.

Thus in the semi-classical approximation, we are justified in using only the phases 

fa  =  0 or 7r, i.e. cl — We shall again restrict our calculations to L < 4 since

few nuclei have measured branches to the 6 + state. (We have, however, considered the 

inclusion of 6 + and 8 +states and found that our conclusions are essentially unaffected.) 

We therefore consider four possibilities for the relative signs of {co c2 C4 }, i.e. {+  + + } , 

{+  H— }, {H------b} and {-|-------}.

For all the decays we consider, the Sommerfeld parameters are large (rj «  25) and 

the Coulomb phases then ensure that for the case {+  + + }  the spherical harmonics in 

Equation (3.3.1) are in phase along the symmetry axis. To show this we consider the 

radial component of the current density at a fixed radius asymptotically. The asymptotic
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r(fm)

Figure 3.10: Real and imaginary parts of the L — 0 wave function in the nuclear interior, 
obtained by coupled channels calculation. The phases of the external amplitudes {co c2 C4 } in 
each case are (a) {0 0 0}, (b) {0 7t/ 2  tt}, (c) {ir/4 7t/ 2  7r}.

wave function may be written in the form

i’  =  °L L +  iFL) 0 Lo(^)
L

(3.4.3)

where Gl and Fl are the regular and irregular Coulomb wave functions, whose asymp­

totic forms may be written

Fl =  sin (k Lr -  —  -  r)ln(2 kLr) +  aL ĵ ,

Gl =  cos (kLr ~ ~ r/ln(2kLr) + aL ĵ . (3.4.4)
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The radial current density is obtained from

Jr oc ( * • 2 - dr

which gives

jT oc cL cy cos(aLLi) ®lo{0) ®L'o(0) 
LL'

(3.4.5)

(3.4.6)

where a.LL' — — L)n +  a i  — a y . For large values of r), we can write down the

relationship ([33], page 540)

aL+ 2 -  ctl =  arctan + arctan ^  ^ ^  «  tt.

Thus, since L =  0,2,4..., it follows that a^y  «  0 and

(3.4.7)

jr oc °L °L' ®lo(0) ©L'o(^)- (3.4.8)
LL'

Since the amplitudes c i  add coherently, with the relative signs {+  + + }  the outgoing flux 

would be axial in the intrinsic frame. In the even-even system the outgoing flux in the 

laboratory frame is always isotropic after integrating over all orientations of the daughter. 

However, we shall see in the next chapter that the above consideration is important for 

odd mass systems which may be polarized to yield anisotropic alpha decay.

First we shall check again that the WKB approximation is good by comparing re­

sults with the coupled channels case. In the coupled channels calculation, the experi­

mental data provides the asymptotic boundary condition and the wave function (Equa­

tion (3.4.3)) is integrated inwards through the barrier to obtain corresponding internal 

wave functions. For comparison with results from the semi-classical method, we must 

assume that there is no coupling of angular momentum states inside the inner radius 

R0. This is because the semi-classical method maps external amplitudes in through the 

barrier to Ro, it makes no prediction of the behaviour of the wave function inside the nu­

cleus. The only reason we integrate further inwards in the coupled channels calculation is
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to enable us to define incoming and outgoing components where the nuclear potential is 

nearly flat. With no coupling inside the inner turning point, the outgoing current in this 

region is constant, and therefore the corresponding amplitude Al in Equation (3.3.2) 

is also constant inside the barrier. It is this amplitude that is comparable with the 

semi-classical amplitude a£/, because both are related to the outgoing current on the 

inside of the barrier. Since the coupled channels amplitude is complex, we calculate the 

normalized amplitudes
\M (3.4.9)

V E l W
for our comparison. The sign of each amplitude is taken to be that of the real component.

In Table 3.2 we show the calculated amplitudes using each method for three nuclei, 

and for each of the four phase combinations. We find very good agreement for the phases 

{-|—  ± } ,  but the comparisons for the phase choices {+  + ± )  are not as close. This is due 

to the larger imaginary parts in the coupled channels wave function for these choices of 

phase, as shown in Figure 3.11. In cases (a) and (b) the imaginary parts are less than an 

order of magnitude smaller than the real parts, whereas in the other cases the difference 

is nearly two orders of magnitude. Since our semi-classical approach allows only real 

wave functions there should be a larger difference in the amplitudes where the imaginary 

parts are significant. It is evident however that the trends of the amplitudes obtained 

from each approach are very similar in all cases and the discrepancy in the actual values 

of al' will not affect any of our conclusions.

These results, together with the comparisons made in Section 3.3, confirm that the 

semi-classical approach is a good approximation. In the derivation of the transmission 

matrix /C, we argued that the value of L used in the centrifugal potential should be that 

of the final state rather than the initial state. In reality, there is mixing of these angular 

momentum states during barrier transmission and so there will be no single value of L. 

We have calculated the internal amplitudes for 238U using the angular momentum of
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Table 3.2: Comparison of internal amplitudes obtained using two approaches. The phase combi­
nation indicated is that of the outer amplitudes, which are deduced from experimental branching 
ratios.

Coupled channels Semi-classical

{ + + + }

^ 0 ^ 2 A4 do <*2 d 4

222Ra 0 .6 6 0.74 0 .1 1 0.75 0 .1 0 0.65
238 0.69 0.14 -0.71 0.91 0.17 -0.39
248Cm 0.79 -0.53 -0.30 0.97 -0.23 0 .0 1

{+  + - }

222Ra 0.40 0.41 -0.82 0.46 0.51 -0.73
2 3 8 j j 0.58 0.17 -0.80 0.71 0.36 -0.61
248Cm 0.75 -0.16 -0.65 0.90 0.05 -0.42

{ + - + }

222Ra 0.44 -0.70 0.56 0.43 -0.71 0.56
2 3 8 p j 0.80 -0.56 0 .2 2 0.76 -0.61 0 .2 2

248Cm 0.78 -0.58 0.24 0.76 -0.60 0.24

222Ra 0.90 -0.25 -0.35 0.87 -0.28 -0.41
2 3 8 p j 0 .8 8 -0.47 0.05 0.83 -0.55 0.08
248Cm 0 .8 6 -0.50 0 .1 0 0.82 -0.56 0.09
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Figure 3.11: Real and imaginary parts of the L = 0 wave function near the nuclear surface 
for four combinations of signs for the external amplitudes {co c2 C4 }: (a){+ + + }, (b){+ H— },

(C){H----- b}, (d){H------ } .

the initial state V  in the centrifugal term, to compare the two results. For the phase

combination {H------ } , we obtain {ao a2 0 4 } =  {0.59 —0.67 0.44), which does not agree so

well with the coupled channels amplitudes given in Table 3.2. We therefore conclude that 

the alpha particle penetrates most of the potential barrier with its final state angular 

momentum L i.e. the mixing of angular momentum states must take place mainly near 

the inner turning point.
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Now we have confirmed the accuracy of the semi-classical technique, we can use 

it to gain some information on internal nuclear structure in the actinide region. For 

each of the above phase combinations, we have determined the amplitudes apt using 

Equation (3.4.2) for the even-even nuclei listed in Appendix A. Although this is not 

a new idea, we are not aware of any previous systematic study of actinide nuclei using 

experimental data and realistic deformation parameters. Figure 3.12 shows the four sets 

of a^/, normalized such that the sum of the squares are equal to one. The uncertainty 

on these amplitudes which result from the experimental errors in the branching ratios 

will be discussed later. One immediate observation to be made is that the signs of the 

amplitudes can change during barrier transmission. For example, in Figure 3.12 (a) the 

asymptotic signs {+  + + }  become {-|------- }  inside the barrier for some nuclei.

It is important to note that in the nuclear interior, none of the four sets of solutions 

resembles eigenchannel 1, which maximizes the outgoing flux. Indeed for 238U this solu­

tion has {a ii}  =  {0.43,0.70,0.57}, i.e. all the amplitudes are positive, which is not the 

case in any of our solutions. This is not surprising since we have already shown that this 

eigenchannel does not reproduce experimental trends in the branching ratios. In partic­

ular, we note that if the alpha width of the spherical problem is r0, then eigenchannel 1 

has a width of around 17 To. The solutions which reproduce the experimental branching

ratios, however, only have r / r 0 =  3 .4 ,1.9,0.4,0.4 for {+  + + } ,  { +  +  - } ,  {-|-----[-}, {H------}

respectively. These widths are all within a factor of four of the spherical value. This 

may be why reasonable lifetimes (e.g. Buck et al. [6 ] -  [9]) can be obtained without 

considering the deformation of the daughter.

However, from Figure 3.13 we can see that the amplitudes obtained are quite different 

if we neglect the deformation of the nucleus and consider a spherical barrier. In this case, 

there is no mixing of angular momentum states through the barrier and the signs of the 

inner amplitudes remain the same as the asymptotic ones. Thus |a£,/| is the same for each
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case in Figure 3.13. Neglecting the barrier deformation is obviously an approximation 

since we know that for a deformed nucleus there must be mixing of angular momentum 

states during barrier transmission. It has been claimed that this mixing is unimportant 

as long as the nuclear deformation is considered in the calculation of internal amplitudes 

[10]. If this suggestion is correct, the internal amplitudes calculated by Berggren and 

Olanders [11] should correspond to one of the solutions given in Figure 3.13. We do not 

find the deformation of the potential barrier to be negligible in our work, however.

Since the deformation of the daughter varies smoothly with Ad, we expect that just 

one set of the amplitudes shown in Figure 3.12 corresponds to the physical amplitudes i.e. 

it is likely that neighbouring nuclei will have similar nuclear structure. One particularly

interesting solution is that obtained with the combination {H------- } (Figure 3.12 (d))

since the amplitudes a y  are practically nucleus-independent even though /32 varies from 

around 0.10 to 0.24 and the alpha particle energies vary from around 4 to 7 MeV over this

mass region. Similar results are obtained from the combination {-|------1-}, although the

amplitudes are slightly less constant. We find that almost identical trends are obtained 

by using Froman’s transmission matrix in these calculations -  the lower two graphs of 

Figure 3.12 again show nearly constant amplitudes. This is because the differences in 

the transmission matrices are not so significant in the calculation of relative, normalized 

quantities. We have already shown that they are significant in the calculation of absolute 

alpha decay widths.

We note that for the constant solution <22 (and c2 ) are always negative. This indicates 

that the flux density of outgoing alpha particles is greater at the equator than at the 

poles of the nucleus, which may seem to be contrary to the suggestion of Hill and Wheeler 

[4] for a prolate system. However, Hill and Wheeler only showed that transmission is 

enhanced near the poles for a prolate nucleus where the barrier is lower and thinner. 

The angular distribution of alpha particles outside the barrier depends primarily on the
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distribution at the nuclear surface, it is only modified by the barrier penetration. (This 

is also discussed in Ref. [10]). Therefore the solutions with a,2 <  0 do not conflict with 

Ref. [4] and cannot be ruled out.

At first sight, 0 2  < 0 might also imply that if the same solution prevailed for odd mass 

nuclei, then alpha emission would take place mainly in the equatorial plane -  a result 

which would not be consistent with measured anisotropies. We shall show in Chapter 4 

that this is not necessarily the case i.e. that taking the solution with 0 2  < 0  in the 

even-even case need not be ruled out by the experimental results from odd-A decays.

This evidence of some constant nuclear structure in actinide nuclei may be consistent 

with the findings of Buck et al. [8 ], who calculated decay widths for the favoured decay 

of over a hundred even-even nuclei. They used a realistic nuclear potential similar to 

ours, but did not consider the nuclear deformation in their calculations. A fixed set of 

four parameters for all nuclei in our mass range was used, chosen from a global fit to 

the experimental data. The nuclear radius was then varied for each nucleus subject to 

the Bohr-Sommerfeld quantization condition which ensures that the decaying state has 

the correct energy. With these fixed parameters, experimental alpha decay widths were 

reproduced to within a factor of «  2  for all the nuclei considered.

We must now consider what physical model could generate such constant amplitudes. 

The best candidate would appear to be the notion that the alpha particle wave function 

should be projected from the pair-correlated neutron and proton Nilsson-model states i.e. 

a BCS calculation similar to that of Delion et al.. In the mass region we are considering, 

the level density is high and the pair forces lead to a rather diffuse Fermi surface. One 

might then expect that the ground state wave function should vary rather slowly with 

the Fermi energy, or in other words with the number of nucleons in the system. This 

model therefore can account for the nearly constant amplitudes found in Figure 3.12 (d). 

Since nucleons couple pairwise to zero as far as the Pauli principle allows, this model
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would also be expected to give internal amplitudes with the property |ao| > |a2 1 > 10-4 1. 

This trend is most apparent in the constant solution we have discussed.

Let us consider alternatively the model of a preformed alpha particle moving in the 

deformed field of the daughter nucleus. One would expect that the amplitudes in this case 

would show some dependence upon the value of the quadrupole deformation parameter 

/?2 j which would effectively rule out the solutions in Figures (3.12) (c) and (d). One 

would also expect that as / ? 2 increases the L =  0 amplitudes would decrease as we move 

further away from spherical symmetry. It is therefore difficult to see how such a model 

could explain any of the solutions in Figure 3.12.

There have been some attempts to gain nuclear structure information in this way 

in the past. Chasman and Rasmussen [34] performed similar calculations on actinide 

nuclei using an analytic approximation to the coupled channels equations and considering 

different phase combinations as we have done. They included angular momentum states 

up to L =  6  in their work, but did not have any detailed information on the deformation 

parameters for their nuclei and so they performed their calculations for three different 

values of the intrinsic quadrupole moment Qo- Since this amounts to keeping / ? 2 fixed 

for each nucleus, we cannot expect our results to be comparable as the values of /32 used 

in our calculation vary from nucleus to nucleus. Their results do not show any constant 

pattern for any of the solutions considered. We have performed one calculation for the 

decay of 2 3 2 U, including states up to L — 6  and taking a value of / ? 2 =  0.26 consistent 

with a quadrupole moment of Q0 =  14 b. We took alpha particle energies and branching 

ratios from Ref. [34] and calculated relative internal amplitudes to be compared with 

their values, using the relative signs {+  + + }. It can be seen from Table 3.3 that our 

results agree reasonably well, considering the different techniques employed.

Other work has used the same approach of working backwards from experimental 

data, but concentrating on one or two nuclei rather than a systematic study [3 5 , 36, 3 7 ].
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Table 3.3: Comparison of internal alpha particle amplitudes with results taken from Ref. [34] 

for the parent nucleus 232 U.

do « 2 a6

Chasman and Rasmussen 1 . 0 0 1.57 0.94 0.31

Our calculation 1 . 0 0 1.18 0.42 -0.19

In these papers, angular distributions at the nuclear surface are calculated for each phase 

combination. They show that the combination { + + + }  gives a distribution that is peaked 

around the poles of the nucleus, whereas in the cases with L =  0 and L = 2 waves out 

of phase, the peak shifts towards the equator. As we have already mentioned, in the 

favoured alpha decay of odd mass nuclei it is evident that for most nuclei in this mass 

region the L — 0 and L — 2 partial waves are in phase asymptotically. The authors in 

Refs. [35, 36, 37] have assumed that the same relative phases are present in the even- 

even case, at the nuclear surface. We stress again however that for an even-even decay 

the angular distribution of emitted alpha particles is a theoretical concept, it cannot be 

measured experimentally because it is not possible to align the parent nuclei. Even if we 

could assume the same amplitudes for even-even and odd-A nuclei asymptotically, we 

have already seen that the relative signs may be different at the nuclear surface.

There have also been attempts to predict alpha particle wave functions in the actinide 

region by calculation using various models, e.g. Poggenburg et al. [38] use shell model 

calculations to predict relative amplitudes. They adopt Froman’s approach to barrier
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penetration which splits up the process into an isotropic part and a non-spherical part. 

The amplitudes listed in their tables correspond to those on a sphere outside the deformed 

nuclear surface, and so are not comparable with ours. However, we can comment on the 

relative signs of their external amplitudes, since the spherical penetration term will not 

affect their signs. For all the nuclei they consider, the asymptotic signs of the L — 0,2 

and 4 partial waves are {+  + ± }  respectively. We shall comment further on their results 

in the next chapter when we calculate alpha decay anisotropies for odd mass nuclei.

Finally in this section, we shall make some comments concerning experimental errors. 

The data used for even-even nuclei in this chapter are given in Appendix A. First, 

we consider the errors on the internal amplitudes a¿/ arising from the experimental 

uncertainty in the branching ratios. We have calculated errors for each case shown in 

Figure 3.12, and find that for most nuclei the errors are less than the size of the symbols. 

Figure 3.14 shows the amplitudes together with their error bars for two out of the four 

phase combinations that we consider. Although for some nuclei the errors are larger in 

Figure 3.14 (a) than (b), they are not significant enough to alter any of our conclusions.
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Figure 3.14: Internal amplitudes derived from experimental branching ratios using a semi- 

classical transmission matrix. Two of the four possible sign combinations are shown with errors 

which arise from experimental uncertainty in the branching ratios. The circles, squares and 

triangles correspond to V  =  0,2,4 respectively.
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Figure 3.15: Internal amplitudes derived from experimental branching ratios, plotted as a func­

tion of the quadrupole deformation parameter /?2 - We have used 238U as a model nucleus and 

set /?4 =  /?6 =  0.

As discussed in Chapter 1, we take deformation parameters from the compilation 

by Moller et al. [19]. Since there are no errors quoted on these parameters, we shall 

investigate the sensitivity of our results to changes in their values. We use 238U as a 

model nucleus and take all data from Appendix A unless otherwise stated. In Figure 3.15 

we show the dependence of a¿/ on /32, with /34 =  /3e = 0. The amplitudes are calculated 

as before by taking the experimental branching ratios with relative signs {+  + -f } and 

using Equation (3.4.2) to factor out the effects of the barrier transmission. We find that 

the amplitudes are not very sensitive to small changes in /32 e.g. a fairly large change 

of P2 from 0.15 to 0.20 would change ao from 0.93 to 0.98. We have also verified that 

reasonable variations of all other parameters used in our work, i.e. /34 , /36, Woods-Saxon 

parameters and energies have negligible effect on the calculated amplitudes.
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3.5 Alpha decay lifetimes

In the previous section we calculated relative amplitudes near the nuclear surface which 

are consistent with experimentally measured branching ratios. There are four solutions 

of this type corresponding to different combinations of asymptotic phases, but it is not 

experimentally possible to find out which are the correct phases.

However, we do have experimental data on alpha decay lifetimes for these nuclei. 

It may be possible to establish the physical solution by calculating quantities to be 

compared with these lifetimes. In a simple model of alpha decay, one can picture the 

alpha particle moving around inside the nucleus until it manages to penetrate the po­

tential barrier of the daughter. The probability of an alpha particle being emitted from 

the nucleus therefore depends on several factors; a preformation factor describing the 

probability of an alpha particle being formed in the first place (e.g. by considering the 

Nilsson-model states of the individual nucleons), the number of times per second that 

the alpha particle “hits” the nuclear surface (knocking frequency), and the probability 

that it will be transmitted through the barrier and escape to infinity. The last factor 

will be related to the square of the external amplitudes cl, so the alpha decay rate R 

may be written in the form

R = f P j 2  M 2 (3.5.1)
L

where P  is the preformation factor and /  is the knocking frequency in units of s-1 . The 

lifetime in seconds is then calculated from

In 2  

~ R ' (3.5.2)

We might expect there to be little variation in preformation factors and knocking 

frequencies across the mass range in question, in which case these would just appear as

8 0



a constant factor for all nuclei. Therefore, we have calculated values of

T,h ~  Z l 1 1 1 2 (3'6'3)

using each of the four sets of normalized internal amplitudes found in the previous 

section and our semi-classical transmission matrix. This calculation effectively maps the 

amplitudes in through the barrier then out again in order to obtain absolute values of 

cl rather than normalized ones. The results are then compared with experimental alpha 

decay lifetimes. As expected, the theoretical values follow the trends of the experimental 

data very closely, but are shifted by an almost constant factor. Unfortunately this 

does not help in our aim of finding a particular physical solution since all four sets of 

amplitudes create almost identical results.

We can look more closely at the lifetimes obtained with the four solutions by plotting 

the difference between the theoretical values rth and the experimental lifetimes, which 

are represented by Equation (3.5.2). We define the difference A r by

A t =  log1 0 (rt/i) -  log1 0 (r) -  22

= 1^10 ( j ^ )  -  22. (3.5.4)

The factor 22 is subtracted to make the points lie around zero and highlight any differ­

ences between the results. It is also a convenient factor to remove if we assume that the 

knocking frequency is constant for this range of nuclei, since the value of /  may be taken 

to be S3  1022 s- 1  ([39], page 142). A T is then equal to

A t =  l 0 g l 0  ( £ )  • (3’5-5) 

Figure 3.16 shows plots of A T for the four solutions of internal amplitudes, and also those 

using a purely spherical barrier. We find that the plots in Figure 3.16 (c) and (d) are 

again nearly constant across the range, which from Equation (3.5.5) suggests that the
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preformation factor P  must also be constant. The exact value of P  cannot be uniquely 

determined because there are several parameters in our work. Firstly, we have chosen to 

normalize the amplitudes a y  to one when the normalization could be to any number in 

principle. Secondly the value of P  will depend on the parameters Vo and /  in our Woods- 

Saxon potential. With the current values of Vo = 100 MeV and d = 0.5 fm, the average 

value of A t from Figure 3.16 (d) is approximately 1.6. Using Equation (3.5.5), this gives 

a value of the preformation factor P  =  28. If we change the parameters to fairly large 

values of Vo =  200 MeV and d = 0.6 fm, P  becomes 1.1. A realistic value of P  would 

lie between 0  and 1 , so this result suggests that our arbitrarily chosen normalization of 

the internal amplitudes is not correct and we cannot deduce absolute values. (Of course 

this normalization does not affect any other results in this thesis.) Alternatively, it may 

indicate that the simple model of alpha decay presented in this section is incorrect.
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Figure 3.16: Plots of the difference between calculated lifetimes and experimental values, with 

a constant factor removed. Graphs (a) -  (d) are obtained using a deformed barrier and four 

solutions of internal amplitudes. Graph (e) assumes a spherical barrier.
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Chapter 4

Odd—A nuclei

The alpha decay of odd mass nuclei is potentially more difficult to model than that of 

even-even nuclei, since we no longer have the condition L = Jd- For each daughter state 

in the odd-A  nucleus, the alpha particle may carry an orbital angular momentum given 

by Jp +  Jd < L < \JP — Jd\- Thus the energy of the emitted alpha particle is no longer 

directly related to its orbital angular momentum L. If the parity of parent and daughter 

states remains the same, only even values of L are allowed. An example of a decay from 

Jp =  5/2+ is shown schematically in Figure 4.1.

There is, however, an interesting physical phenomenon arising from this, in that the 

superposition of partial waves in the favoured daughter state leads to an anisotropy in 

the alpha emission. Recently, there has been renewed interest in this subject because 

of new experimental techniques to measure this anisotropy for several odd mass nuclei. 

For odd mass nuclei, we shall calculate two quantities to be compared with experimental 

data: the anisotropy of alpha emission to the favoured daughter state and the branching 

ratios to all states.
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Jp = 5/2*
L = 2, 4, 6

L = 2, 4, 6

L = 0, 2, 4

J d = 9/2* 

Jd = 7/2*

J d = 5/2*

Figure 4.1: Alpha decay of an odd-A nucleus with Jp =  5/2+.

4.1 Derivation of the wave function for odd mass nuclei

Let us consider a simple model to describe the internal wave function of an odd-A 

nucleus. We assume that the odd mass nucleus consists of an even-even core plus an 

odd nucleon. If the odd nucleon has no effect on the alpha decay process, then the 

wave function of the decaying odd-A nucleus must be closely related to that of the 

neighbouring even-even one. This idea has previously been discussed in the papers by 

Froman [5] and Buck et al. [7, 8 ]. With this model, we can make use of our results from 

Section 3.4 to predict amplitudes for odd-A nuclei in the actinide region.

We write the normalized wave function of the parent nucleus in the same notation 

as Bohr and Mottelson ([40], page 10)
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where Jp is the angular momentum of the parent and M  and K  represent its projection 

onto space-fixed and body-fixed axes respectively. is the wave function

rotated by n about an axis perpendicular to the symmetry axis. It is included to make 

the total wave function rotationally invariant.

We can write each wave function as a product of terms involving the parent nucleus, 

odd nucleon and alpha particle,

* k M

K r  = B M -K(n ) *k M  (4.1.2)

In the following work we shall only consider the first term since all manipulations 

apply equally to the second term.

Throughout this chapter we use primed angles and co-ordinates for the intrinsic 

frame and unprimed ones for the laboratory frame. Thus the rotation matrix describes 

the collective rotational motion of the parent nucleus in the laboratory frame. The 

function <f>K(ra') represents the intrinsic motion of the odd nucleon, and ip(rar) is the 

wave function of the alpha particle relative to the daughter which is also defined in the 

intrinsic frame of the parent nucleus. We assume that the odd nucleon has no effect on 

the alpha decay and that its wave function in the intrinsic frame remains the same. The 

quantum number K  therefore does not change, since the nucleon is always aligned with 

the even-even core. This situation corresponds to the “strong coupling” model of Rowe 

[41], where the odd nucleon wave function is independent of the rotational motion. Thus 

in the work that follows, we shall not write down the wave function of the odd nucleon.

Let us first consider the parent wave function inside the barrier. The alpha par­

ticle wave function for the decay of an odd mass nucleus may be written as a linear
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combination of spherical harmonics

* & K  =  D tiic M  E “ L'n Yt,„ (r 'J  (4.1.3)
L'n

with expansion coefficients a y n. In the even-even case, the quantum number n =  0 

because the parent has zero spin. We now assume that the odd nucleon has no effect 

on the alpha particle and thus the wave function of the alpha particle must be identical 

for odd mass and even-even nuclei. With this assumption, n — 0 and the expansion 

coefficients must be the same as the amplitudes a y  present in the even-even case,

* M K  =  D m k W  E  a L> Y vo(K )- (4.1.4)
L'

In the work that follows, all formulae involving spherical harmonics and rotation matrices 

are taken from Ref. [42], page 79. The spherical harmonic is taken to be the complex 

conjugate in order to simplify some of the algebra.

The equivalent expression for the wave function outside the barrier must depend 

upon the final daughter state Jd as well as the orbital angular momentum L. In the 

even-even case we did not encounter this problem because of the special relationship 

L =  J,i- If we transform the spherical harmonics into the laboratory frame, using

* i'o (i'J  =  £  D&o( « )  W * = )  0-1.5)
m'

we obtain

=  E aL' D%K{Sl) d £ o (fl)  yL* w (fa). (4.1.6)
L'm '

The contraction formula for two rotation matrices then gives

£  » M i (4.1.7)
L'J'dm'

where

a $ j. = aL> (.JpL'Mm'\J'dM  + m') (JPL'K0\J'dK ). (4.1.8)d
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In the even-even case, Jv — 0 and 3d — L and the amplitudes cll,' and a™,j, are the 

same. However, for odd-A nuclei these amplitudes are very different in the two frames. 

Note that by switching from the intrinsic frame of the nucleus to the laboratory frame, 

we have produced an explicit dependence upon the daughter angular momentum (and 

thus implicitly on the energy of the alpha particle). Now we can write the equivalent 

expression for the wave function outside the barrier:

*MK =  E <& , DlM> i „ ( f „ )  (4.1.9)
LJfim

where

c™Jd = cl (JpLMm\JdM +  to) (JpLK0\Jd.K). (4.1.10)

(We do not label the amplitudes with JV,M  or K  since they are constant in our work.) 

This equation describes the wave function of the odd mass nucleus outside the barrier and 

in the laboratory frame. The coefficients cl are not related to the equivalent amplitudes 

in the even-even case, because the barrier penetration factors depend upon the energy of 

the alpha particle during transmission and these energies will be different in neighbouring 

nuclei. It is only inside the barrier, before the decay takes place that we assume a direct 

relationship between the wave functions of odd-A and even-even nuclei. Frôman [5] has 

considered a model where the external coefficients are assumed to be the same as the 

neighbouring even-even case. As well as employing the wrong alpha particle energies, 

this model leads to other errors as we shall show in the next section.

4.2 Angular distributions

First we consider the angular distribution of alpha particles in the decay to one particular 

state Jd, starting from Equation (4.1.9). The angular distribution is obtained by taking 

the modulus square of the wave function and integrating over all orientations 0 , which
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gives

W (0) oc \ ^ K\ = J2  I £  cL (JdLM -  mm\JpM ) (JpLK0\JdK ) YLm(ra) |2.
m L

(4.2.1)

This expression for the angular distribution is relevant only for fully aligned systems 

where the projection M  =  Jp for all nuclei. A more general expression for systems that 

are not completely aligned may be found for example in Ref. [29].

We note that so far we have only considered one part of the total wave function in 

Equation (4.1.1). If we considered the total wave function, the full expression for W(6) 

would contain three parts; one each for the square of the two parts an(J ^ m k  an<̂

an interference term between the two. This interference term becomes zero when we 

integrate over all orientations. The full expression for W(d) therefore contains a second 

term of the same form but with K  = —K  throughout. Since the quantity is squared, the 

value of this second term will be the same as the first. Equation (4.2.1) is therefore the 

complete expression for the angular distribution if we neglect all constant factors (we 

can do this because we shall always be concerned with ratios of W (6) at two angles).

We define the alpha decay anisotropy by VE(0)/W (^ tt). Thus an anisotropy greater 

than one would mean that the current density of outgoing alpha particles is larger axially 

than equatorially (in the laboratory frame), and vice versa for anisotropy less than one. 

Figure 4.2 shows schematically the angular distribution obtained if the anisotropy is 

greater than one.

So we have deduced an expression for the angular distribution in terms of the external 

amplitudes cl- We must now consider the problem of how to determine the C£. In the 

previous chapter, we made use of a simple relationship between the internal and external 

amplitudes in the even-even case. Our aim is to obtain a similar relationship for the 

barrier transmission in the odd-A case.
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Figure 4.2: Schematic diagram of the angular distribution of emitted alpha particles correspond­

ing to anisotropy >  1.

From Equations (4.1.7) and (4.1.9), we obtain a relationship between the amplitudes:

l L Jd _i = £ Y£,m,(ia)i fu * ) i Dfa+m)K(n r w y  >
2  Jd +

L 'Jd'm '

(4.2.2)

where

f L(0’ ) =  exp (~ IL(#)) (4.2.3)

is the barrier transmission factor derived in Section 2.3.2 and O' is the angle between 

alpha particle and daughter in the intrinsic frame.

The matrix element ( Y£,m,(ra) | / l (#') | YLm(ra) ) is almost the same as ICLL> 

derived in the even-even case, except that the spherical harmonics must be transformed 

into the intrinsic frame. This introduces another rotation matrix and another quantum 

number n. By integrating over all orientations fl we find 

c L Jd

2 Jd, + -  =  Y , ( - 1  )m'+m { J d' M +  m ' L ' - m ' \ J pM )  { J d' L ' K - n \ J pK - n )f , i •L'Jd'm'n

x (Jj.LM + m -  m\JpM ) (JdLK -  n\JpK  -  n) 1CIL, a™!Jd, (4.2.4)
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where

K iv  =  ( Ln | e~lL^  \ L'n ). (4.2.5)

If we make use of the definitions of a™, ,̂ and c™jd from Equation (4.1.8) and Equa­

tion (4.1.10), we can carry out the sum over m' and simplify the expression further

{JpLK0\JdK ) cL =  £  (JPLK  — nn\JdK ) (JpL'K-nn\Jd'K ) (JpL'K0\Jd'K ) Knw  av .
L 'Jd'n

(4.2.6)

Since the spherical harmonics contained in the matrix K. are now defined in the intrinsic 

frame, their projection must be zero because of our assumption that the odd nucleon 

does not affect the alpha particle. The quantum number n must therefore be zero as in 

Equation (4.1.3), and we get the expression

cl  =  J2 {JPL'K0\Jd'K )2 K.l l , aLi. (4.2.7)
L 'Jd

Now we cannot perform the sum over Jd because the matrix K -w  depends on the 

energy of the alpha particle during transmission, which in turn depends on both the 

initial and final state of the daughter. (For even-even nuclei we were able to approximate 

this energy dependence by arguing that the alpha particle should tunnel with the energy 

corresponding to the final state. We were able to do this by considering the importance of 

the centrifugal term and our choice of orbital angular momentum also fixed the tunnelling 

energy of the alpha particle. In the odd mass case this argument is not so straightforward 

because the energy of the alpha particle is not directly related to its orbital angular 

momentum.)

If the daughter states are considered to be degenerate, however, the sum over Jd can 

be done and we get the result given in Froman’s paper, and used more recently in the 

papers by Delion et al. [13] -  [15]

cl = £ ll' av • (4.2.8)
v
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This expression is exactly that used in the even-even case where the alpha particle energy 

is determined by the orbital angular momentum L. It is not valid for odd-A systems 

where the alpha particle energy is determined by the initial and final daughter states. 

By assuming all daughter states to be degenerate, the Clebsch-Gordon coefficients are 

summed over and do not appear in the barrier transmission factor. We shall show in the 

next section that these coefficients make a large difference to the mapping of amplitudes 

from inside to outside the barrier.

Now let us return to Equation (4.2.7). If we assume that there can be no mixing 

between daughter states during the barrier transmission, then Jd = J'd and we obtain

CL =  ¿ 2  (JPL'K0\JdK )2 KLV aLi. (4.2.9)
V

Note that now cl depends explicitly upon the daughter spin Jd. There is no ambiguity 

in the tunnelling energy of the alpha particle because Jd = J'd. In the next section we 

shall calculate anisotropies for the favoured decay of four actinide nuclei. Since these 

decays are to the ground state of rotational bands, we expect that the contribution of 

mixing from excited states of the daughter should be small, especially if their excitation 

energies are high. This is because the alpha particle is unlikely to tunnel through the 

barrier at a lower energy (where the extent of the barrier is greater) before coupling to 

the ground state. Thus we use Equation (4.2.9) with no mixing between daughter states 

during barrier penetration.

4.2.1 Experimental details

Before we go on to calculate theoretical anisotropies, we shall discuss some experimental 

details that are necessary to make comparisons with the data. There are four odd mass 

actinide nuclei for which experimentally measured anisotropies are quoted (Table 4.1). 

For two of these cases (241Am and 2 5 3Es) the experiments were performed in the early

92



1970’s using the old techniques of low temperature nuclear orientation. In these exper­

iments, the radioactive nuclei were dissolved in a saturated solution and applied to the 

face of the host crystal. This resulted in the nuclei being deeply embedded in the crystal, 

and made resolution of the alpha decay peaks more difficult. The fraction of implanted 

nuclei at “good sites” i.e. feeling the full strength of the magnetic field, was typically 

between 0.5 and 0.8 in such experiments. The other two anisotropies have been mea­

sured recently using on-line nuclear orientation, where the nuclei are implanted directly 

into the host material at low temperature. This method reduces the problem of deeply 

embedded nuclei, and therefore the resolution is improved. The fraction of good sites 

obtained in this way is typically > 0.95 [43].

The relevant equation to be used in an experimental situation is

W (0) =  1 + j4 2 # 2 <9 2 -P2 (cos<?) +  A4B4Q4P4(cos6) + ----  (4.2.10)

The factor Q i  is an experimental correction taking into account the positioning and 

angular resolution of the detector. B i are orientation parameters which also include 

the temperature dependence of the system. The experimentally determined quantity is 

actually / Al , where /  is the fraction of implanted nuclei that are in good sites. For 

comparison with theory, we must assume that QL =  f  =  1 , which gives a least value 

for the anisotropy in two of the cases shown in Table 4.1. In the other two cases, the 

fraction of good sites has already been accounted for in the values of Al quoted [44] and 

we include an experimental error.

4.2.2 Results and discussion

We shall now calculate the anisotropy for the favoured decay (Jp = J& =  K ) of the four 

odd-even actinide nuclei in our mass region for which experimental data are available. 

For each nucleus we assume that the internal amplitudes are equal to those present in
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the neighbouring even-even nucleus with one less nucleon. For the four cases considered 

here the odd nucleon is a proton, but in later work we treat cases with odd neutrons -  

our model is not dependent on whether the odd nucleon is a neutron or a proton.

The first three decays are all examples of 5/2 —*■ 5/2 transitions and so can only 

proceed with L = 0,2 or 4. The favoured decay of 253Es is a 7/2 —> 7/2 transition 

and so alpha particles with L = 6  are permitted. Since we find that the results are not 

very sensitive to variations in the internal amplitude for L =  6  we have taken a& =  0, 

but considered mixing of states up to and including L — 6  in the transmission matrix. 

We should also point out that the first two nuclei have non-zero values of the octupole 

deformation /?3 , which we do not consider in our work1. Note that three of the nuclei 

are quoted to have anisotropies greater than one, the other having a value less than 

one. Although the prediction of anisotropies consistent with these experimental values 

is important, we are most concerned with reproducing the trends of the data.

First, we adopt Froman’s formula (4.2.8) for the transformation of amplitudes during 

barrier transmission and calculate anisotropies using Equation (4.2.1). From the results 

in Table 4.1, we see that this formula cannot predict anisotropies both greater than and 

less than one for these nuclei, for any of the four sets of amplitudes taken from Figure 3.12. 

This is because the sign of C2 /C0  is either positive (anisotropy > 1, i.e. solutions (a) and 

(b)) or negative (anisotropy < 1, i.e. solutions (c) and (d)). We should point out here 

that in his original paper, Froman did not explicitly use Equation (4.2.8) for the odd-A 

case. He obtained the external amplitudes cl directly from the neighbouring even-even 

nuclei, by taking the (positive) square root of the experimental branching ratios. This 

is a more crude approximation than ours, i.e. in our work we calculate the transmission 

matrix using the correct energies for the odd-A nucleus. Even with these improvements

1 Since our model assumes rotational nuclei, there may be some question concerning its use for nuclei 
with small deformations such as 221 Fr which may be interpreted as a vibrational nucleus.
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Table 4.1: Anisotropies (lT(0 )/lT(^ir)) for the favoured decay of four odd-even nuclei, cal­
culated using Froman’s formula (Equation (4.2.8)). The theoretical predictions (a) -  (d) are 
obtained using the four sets of internal amplitudes from Section 3.4.

Parent (a) 0 >) (c) (d) Experiment Reference

221Fr 3.90 3.90 0.15 0.15 0.37(2) [44]

227Pa 7.25 6.47 0.03 0 . 0 0 3.55(28) [44]

241 Am 5.19 5.08 0.06 0.06 >2.7 [45]

253Es 4.61 4.45 0 . 1 1 0.09 >3.8 [46]

Table 4.2: Anisotropies calculated as in Table 4.1 but using our formula (Equation (4.2.9)) to 
calculate the amplitudes cl.

Parent (a) (b) (c) (d) Experiment Reference

221Pr 2 . 1 1 2 . 1 1 0.73 0.73 0.37(2) [44]

227Pa 5.87 6.58 1.03 2.26 3.55(28) [44]

241 Am 6.84 7.33 3.03 3.51 >2.7 [45]

253E s 6.36 7.98 2.71 3.25 >3.8 [46]
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to the model however, we have shown that the experimental trends are not reproduced. 

We conclude that Froman’s formula, which assumes the final states of the daughter to 

be degenerate, is not a good approximation for these odd-A decays.

Next we calculate anisotropies using our formula (4.2.9) and each of the four sets of 

amplitudes from the even-even case. Table 4.2 shows the results of our calculations. The 

values of the predicted anisotropies in cases (c) and (d) agree well with the experimental 

trends. In particular, we emphasize the prediction of anisotropies both less than and 

greater than one, i.e. it is possible to have a larger current density of alpha particles 

emitted along the symmetry axis than equatorially, despite the fact that a2 < 0. The 

reason is that the outer amplitude c2 may become positive, since the Clebsch-Gordan 

coefficients of Equation (4.2.9) attenuate the effect of the inner amplitude a2. This 

effect is not possible if we use the amplitudes from Figure 3.12 (a) or (b), or if we 

adopt Froman’s formula. It would also not be possible if we employed the solutions of 

Poggenburg et al. [38] discussed in Section 3.4. Since these amplitudes have phases 

similar to those in Figure 3.12 (a), they would give anisotropies greater than one for all 

nuclei and so would not reproduce the experimental trends.

We have checked the sensitivity of the result for one nucleus to variations in the 

Woods-Saxon parameters Vo and d. We see fr6 m Figure 4.3 that the value of the 

anisotropy for 241 Am with internal amplitudes from Figure 3.12 (d) is more sensitive 

to changes in Vo than d, but still not enough to alter the trends of our results.

Delion et al. have also calculated theoretical anisotropies for two of these nuclei. In 

their work they calculate the formation amplitudes microscopically for each partial wave 

and use Froman’s transmission matrix for the barrier penetration. For the favoured decay 

of 241 Am, using slightly different deformation parameters and assuming full alignment of 

the parent nucleus, they obtain a value of W (0 )/kV(|7r) =  2.04 [13]. Because Froman’s 

transmission matrix cannot change the sign of the L =  2 amplitude during barrier
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Figure 4.3: Sensitivity of the calculated anisotropy of 241Am to variations in the Woods-Saxon 
parameters; (a) the depth of the potential Vo and (b) the diffuseness d. Internal amplitudes are 
taken from Figure 3.12 (d).

transmission, to get this result the value of 0 2  had to be positive. If we use the same 

deformation parameters, our simple model with <12 < 0 gives W (0 ) /W (^ 7r) =  3.42. 

(These deformation parameters correspond to those of the parent nucleus rather than the 

daughter as we have assumed in our work.) For the favoured transition of 2 2 1Fr, Delion 

et al. calculate an anisotropy of 0.63 [15]. To obtain this anisotropy with Froman’s 

transmission matrix the value of 0 2  had to be negative. Using the same quadrupole 

deformation of fa =  0.069, our model gives a value of 0.89. So to reproduce these two 

anisotropies Delion et al. had to employ different values of 1x2 , whereas our model can 

reproduce the experimental trends from one set of internal amplitudes. We notice also 

that the anisotropy of 221 Fr is quoted both experimentally and theoretically to be less 

than one, even though /? 2  is positive. This contradicts the general statement by Delion
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et al. that prolate nuclei should have anisotropy greater than one [15]. It has also been 

discussed in Ref. [10] that the sign of /? 2  does not necessarily determine whether the 

anisotropy is greater than or less than one.

Equation (4.2.9) was derived by assuming that there is no mixing between different 

daughter states during barrier transmission. This assumption is good if the excitation 

energies of the higher states are large. However, the excited states of the daughter nuclei 

we have considered lie at relatively low energies and so we must check that our approxi­

mation is valid. We have considered the decay of 241 Am again and used Equation (4.2.7) 

which allows mixing between all daughter states. In the semi-classical formalism, we are 

forced to choose a single energy for the alpha particle during tunnelling. If we adopt the 

same approach as for the even-even nuclei and assume that the alpha particle tunnels 

with its final state energy Equation (4.2.7) is equal to Froman’s formula since the 

sum over J'd can be done. The appropriate anisotropy with mixing included and ampli­

tudes from Figure 3.12 (d) is therefore 0.06 (from Table 4.1). This value is obviously 

very different from that given in Table 4.2 and is not at all consistent with experimental 

data. The mixing of daughter states under the barrier therefore does have a large effect 

on the anisotropy and cannot be neglected due to energy considerations.

However, the success of Equation (4.2.9) does seem to suggest that some other mech­

anism is present which prevents, or at least weakens coupling between different states of 

the daughter. The reasons for this diminished coupling in odd mass nuclei are not yet 

clear. One possible reason could be related to our assumptions about the odd nucleon: 

we have assumed that its projection K  on the body-fixed axis does not change, and 

that it has no interaction with the alpha particle. So when the core rotates, the odd 

nucleon must rotate with it in order to maintain the same projection K. It is possible 

that this restriction in some way reduces the probability of coupling between different 

daughter states during barrier transmission. An explanation related to the behaviour
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of the odd nucleon would be capable of accounting for the good results obtained for 

odd mass nuclei and still allow all daughter states to mix for even-even decays. Another 

possibility could be related to the time taken for the alpha particle to tunnel through the 

barrier. This time is believed to be «  10- 2 2  s [24], whereas the time taken for the core to 

rotate is «  10~2° s ([40], page 116). The alpha particle therefore does not have time to 

re-orientate, and hence excite, the daughter. Of course, this argument would not apply 

to energetic nuclei with high spin for which the rotation time would be much smaller. It 

is also not clear why this argument would not also prevent coupling in even-even decays.

Although we are only aware of four nuclei in the mass range for which quantitative 

angular distribution information has been obtained experimentally, there exists a good 

deal of data on level schemes and energies for other nuclei. We have therefore made 

predictions of the anisotropy of favoured decays for all other odd-A nuclei in the mass 

range for which we have data. The results are shown in Table 4.3. In all cases we have 

adopted Equation (4.2.9) and internal amplitudes from Figure 3.12 (d). We find that our 

model predicts anisotropies greater than one for all these actinide nuclei. Although there 

are several parameters which vary from nucleus to nucleus, the results show evidence of 

an increase in anisotropy with Jp, in agreement with Ref. [29]. Experiments have been 

performed to measure the angular distribution of alpha particles from two of these nuclei, 

237Np [47] and 2 4 9  Cf [48]. Although no absolute values of anisotropy were obtained in 

either case, the preferential direction of emission was established. In both decays, it 

was found that emission took place mainly from the poles of the nucleus, and hence 

anisotropy should be greater than one as we have predicted.
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Table 4.3: Anisotropies (W{0)/W(^'K)) for the favoured decay of odd-A nuclei, calculated using 
Equation (4.2.9) which assumes no mixing between daughter states during barrier transmission. 
These predictions are obtained using internal amplitudes from Figure 3.12 (d).

Parent Jp & Anisotropy
2 2 9 ^ j 3/2 0.165 2.07

251Es 3/2 0.235 2.16
2 3 3 J J 5/2 0.190 3.74

237Np 5/2 0.207 4.14

241Pu 5/2 0.207 3.96

243Cm 5/2 0.223 3.58

245Cm 7/2 0.224 3.39

247Cf 7/2 0.234 3.84

247Es 7/2 0.234 3.63

249Bk 7/2 0.224 3.31

249Cf 9/2 0.234 3.56
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4.3 Branching ratios

The calculation of branching ratios is more complicated than that of anisotropies, since 

we must consider the decay to a larger number of daughter energy levels. To specify 

the state of the emitted alpha particle uniquely we must label it with both the daughter 

and alpha particle angular momenta {JdL}. For the Jp = 5/2+ decay illustrated in 

Figure 4.1, there are nine possible final states to be considered. If we were to allow 

mixing between all nine states our transmission matrix IC^y would therefore have 9 x 9  

non-zero elements. We have shown in the previous section however that better results are 

obtained if we do not allow mixing between different daughter states Jd during barrier 

transmission, only between orbital angular momentum states L within each Jd- We 

shall make the same assumption in the calculation of branching ratios, which leads to a 

transmission matrix with three 3 x 3  blocks of non-zero elements.

We shall now derive an expression for the branching ratios from the wave function in 

Equation (4.1.9). The first few steps are the same as in Section 4.2, squaring the wave 

function and integrating over all orientations of the daughter. In this case, however, 

we must retain the sum over Jd because we are looking at more than one daughter 

state. Taking Equation (4.2.1) and integrating over all angles f, the spherical harmonics 

simplify and the sum over m can be done. We are left with the following formula

\ * m k \2 =  £  CL {JpLK0\JdK )2 (4.3.1)
J dL

from which we can deduce the branching ratios to each daughter state

E l I cl ( I2
'  E w ,  \ cL ( j rL m \ jdK )

We have calculated branching ratios for all odd-A actinide nuclei in the mass range 

for which data on rotational daughter states are available. We use Equation (4.2.9) to 

calculate the external amplitudes, taking internal amplitudes for the even-even core from
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Table 4.4: Branching ratios for a range of odd-A actinide nuclei, calculated using Equa­
tion (4.2.9) which assumes no mixing between daughter states during barrier transmission, and 
Equation (4.3.2) with internal amplitudes from Figure 3.12 (d).

Parent Jp Jd Theory Experiment

229 3/2 3/2 8 8 . 6 64.0

5/2 9.7 2 0 . 0

7/2 1.7 1 1 . 0

2 3 3 y 5/2 5/2 85.5 84.4

7/2 14.3 13.2

9/2 0 . 2 1 .6

2 3 9 p u 1 / 2 1 / 2 76.9 73.1

3/2 7.9 15.0

5/2 15.2 1 1 . 8

2 4 1 p u 5/2 5/2 82.7 83.2

7/2 17.2 1 2 . 2

9/2 0 .1 1 .2

241 Am 5/2 5/2 84.3 85.2

7/2 15.5 1 2 . 8

9/2 0 . 2 1.4
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Parent J p Jd Theory Experiment

241Cm 1 / 2 1 / 2 76.3 68.9

3/2 8 .1 18.1

5/2 15.7 1 1 . 8

243Am 5/2 5/2 8 6 . 6 87.9

7/2 13.3 10.7

9/2 0 . 2 1 .1

243Cm 5/2 5/2 85.3 72.9

7/2 14.6 11.5

9/2 0 . 2 1 . 6

251E s 3/2 3/2 76.3 81.0

5/2 15.7 9.4

7/2 8 .1 3.0
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Figure 4.4: Calculated branching ratios to the ground state of odd-A actinide nuclei, using 
Equation (4.3.2). We show our results in the two cases, with and without mixing between 
different daughter states Jd during barrier transmission.

Figure 3.12 (d). The results are shown in Table 4.4. Considering the approximations 

and assumptions involved in this work, the agreement with experiment is quite good. 

We have also looked at the results obtained by allowing mixing between all daughter 

states during barrier transmission -  they are generally not as good as those in Table 4.4. 

Figure 4.4 shows the branching ratio to the ground state of each nucleus in the two 

cases, with and without mixing between daughter states. The branching ratios obtained 

with mixing included are generally smaller than those without mixing. This is because 

the relative signs of the internal amplitudes ensure that mixing between daughter states 

takes more intensity away from the ground state than it adds in. We note that for the 

Jp — 1 / 2  nuclei in particular, the mixing gives far too much weighting to the excited 

states of the daughter. These nuclei are different in that there is only one possible
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alpha particle angular momentum L for each state of the daughter, and so one might 

expect them to behave more like even-even nuclei. In the even-even case, we consider 

mixing between all daughter levels so it is possible that this should also be applicable to 

the Jp =  1/2 nuclei. The poor results, however, seem to support the idea that mixing 

between different daughter states under the barrier is prohibited for odd-A nuclei.

4.4 Anisotropy of Astatine isotopes

Experiments have recently been performed [43, 49, 50] to measure the anisotropy of the 

favoured alpha decay of a chain of astatine isotopes, which all have Jp = Jj, =  9/2 . The 

mass region observed is 199 < A <  211 for which the daughter nuclei are believed to be 

almost spherical in shape. Note that for the final isotope in the sequence, the neutron 

number is N  =  126 which corresponds to a closed shell. It is found that the anisotropy 

varies quite smoothly with mass number for this astatine chain (see Table 4.5).

A number of explanations of this variation have been proposed. Delion et al. [15] 

believe that alpha decay anisotropy is predominantly due to the effects of the deformed 

barrier, and therefore suggest a strong variation in quadrupole deformation over these 

isotopes. Berggren [12] takes the opposite point of view that the deformed barrier has 

very little effect and that the variations must reflect structural changes. He uses a 

quadrupole-quadrupole interaction similar to that defined in Section 3.2, which produces 

different solution numbers corresponding to different energy states of the parent nucleus. 

To reproduce the experimental data there must be a shift in solution number from 

nucleus to nucleus. This is explained as a consequence of a Pauli blocking mechanism 

as more neutrons are added to the system. Schuurmans et al. [50] also decide upon 

structural changes as the most likely explanation; since these nuclei are believed to be 

nearly spherical it is unlikely that barrier deformation is an important effect in this
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mass region. To reinforce this point, the authors point out that since the anisotropy 

increases with increasing mass number, the explanation of Delion et al. would require 

the quadrupole deformation also to be increasing with increasing A. It is unlikely that the 

deformation would be increasing as one approaches the closed shell at N =  126. In this 

section we aim to find evidence to decide between these explanations of the anisotropy 

variations.

Obviously this mass range is well outside that which we have investigated in the 

previous sections but our technique may still be applied, although we realise that for 

these nearly spherical nuclei a rotational model may not be applicable. According to 

Ref. [19], these isotopes all have /? 2  < 0 which indicates an oblate shape -  all nuclei 

previously considered have been prolate. It is important to note that the experimental 

anisotropies are greater than one for some of the nuclei (Table 4.5) even though they are 

all oblate. This again shows that there is no general relationship between the value of 

anisotropy and the sign of @2 -

We find that alpha decays to the neighbouring even-even nuclei in this region take 

place almost always to the L =  0 state of the daughter, with a very small percentage to 

the first excited state. Consequently, there is very little available data for the energy of 

the L — 2 state of the daughter, and no data at all for the L — A state in most cases. 

We have therefore tried two approaches to fit the experimental anisotropies.

First, we assume that the internal amplitudes in the even-even case are zero for all 

partial waves other than L — 0 (i.e. do = 1, a,2 = 0 etc.). Since the nuclei are known to be 

nearly spherical and branching ratios to the L =  0 state of the daughter are «  100% for 

all nuclei, this seems to be a reasonable assumption. We then calculate anisotropies for 

the favoured decay of each isotope using Equation (4.2.1) and Equation (4.2.9). From the 

results in Table 4.5 (a), we see that this simple idea does not reproduce the experimental 

anisotropies. If we had assumed a spherical barrier in this calculation, the anisotropies
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would all have been equal to one. The deviation from unity therefore reflects the effects 

of the deformed barrier and we see that these effects are significant, even for these nuclei 

where (32 is relatively small.

Secondly, we take one nucleus (2 0 3At) and fit the internal amplitudes to reproduce 

the experimental anisotropy. These amplitudes (ao = 1, a2 =  0.3, a4 =  a6 = ag =  0) are 

then used to predict values for all other isotopes and the results are given in Table 4.5 (b). 

We note that the positive value of a2 can lead to anisotropies both greater than and less 

than one, even though all nuclei have the same sign quadrupole deformation parameter. 

This again shows the importance of the Clebsch-Gordon coefficients in Equation (4.2.9). 

However, the magnitudes of the anisotropies are not consistent with the experimental 

values.

Thus we find that the results are not very good in either approach. In both cases 

we have assumed that the internal amplitudes are constant for all isotopes so that the 

variations seen are due simply to barrier penetration effects. The results clearly show 

that the variations in anisotropy found experimentally are not just a consequence of 

barrier effects, but must reflect changes in nuclear structure as well.

We shall now investigate the sensitivity of the anisotropy of one of these nuclei to 

changes in the internal amplitudes. The calculations have been done using 207At as a 

model nucleus, and the results are shown in Figure 4.5. We find that the anisotropy is 

very sensitive to the value of the internal amplitude a2, but that variations in a4 have a 

relatively minor effect. We assume that ai with L > 6  will also have little effect on the 

anisotropies.

We also find that the value of the deformation parameter (32 is very important. 

Figure 4.6 shows the anisotropy for 207At as a function of /?2, as well as results for the 

same nucleus calculated by Delion et al. [15]. The results are not exactly comparable 

because of the difference in internal amplitudes ai between the two approaches -  we have
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Table 4.5: Anisotropies for the favoured decay (Jp = Jd =  9/2) of a chain of astatine isotopes, 
together with data used in the calculation for the energy of the alpha particle and quadrupole 
deformation of the daughter. The theoretical calculations correspond to two different assumptions 
for internal even-even amplitudes, (a) a0 = 1 , a2 = a4 =  a6 =  a8 = 0 , and (b) a0 — 1 , a2 = 
0.3, a4 = a6 = as = 0. Experimental data are taken from Ref. [50].

Parent Ea (MeV) (h (a) (b) Experiment

211At 5.870 -0.026 0.79 1.17 1.59(3)

209At 5.647 -0.035 0.73 1.09 1.41(2)

207At 5.785 -0.035 0.70 1 . 1 0 1.26(2)

205At 5.902 -0.044 0.67 1 . 0 2 1 .1 0 ( 1 )

203At 6.088 -0.044 0.67 1 . 0 2 1 . 0 2

201 At 6.344 -0.052 0.63 0.96 0.89
1 9 9  At 6.643 -0.052 0.63 0.96 0.79(1)
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Figure 4.5: Sensitivity of the anisotropy of 207At to the values of the internal amplitudes. In 

the upper graph, we have assumed ao =  ^/(l — a%) and all other amplitudes equal to zero. In the 

lower graph ao — y/(l — a|) and again all other amplitudes equal zero.
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assumed only L — 0 alpha particles at the nuclear surface, while Delion et al. calculate 

a,L microscopically for each value of /?2 - Even so, the results are in good agreement 

for /? 2  < 0 which is the region of importance for this particular nucleus. Our method 

seems to predict a far greater sensitivity for /? 2  > 0 though. Similar investigations by 

Berggren [12] produce very different results from those shown in Figure 4.6. He finds 

that the anisotropy is very sensitive to variations in at values close to zero, but fairly 

insensitive as its value increases.

Figure 4.6: Sensitivity of the anisotropy of 207At to the value of /?2, with /34 = /? 6 = 0. We 
assume internal amplitudes of a0 = 1, a2 = a4 = a6 = a8 = 0. The results of our calculations 
are shown as solid lines for (a) /? 2 < 0 and (b) /? 2 > 0. The circles represent anisotropies for the 
same nucleus calculated by Delion et al. [15].

110



These results indicate that the most important factor in the variation of anisotropy 

of astatine isotopes is the value of a2 , i.e. structure effects. We therefore agree most 

closely with the opinions of Schuurmans et al. [50] who also believe that the variation 

of anisotropy in this chain of astatine isotopes is due to structure effects. Since the 

nuclei considered have neutron numbers close to N =  126, it is likely that the structure 

of these isotopes is changing rapidly as N changes. We do not believe, however that 

the effects of barrier deformation are negligible, they are only small in this mass region 

where the nuclei are nearly spherical. For nuclei with appreciable deformations such as 

those considered in Section 4.2.2 the effects of harrier deformation are at least equally as 

important as structure effects. Indeed, further away from closed shells, one might expect 

the structure of a chain of isotopes to vary much less.
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Chapter 5

Summary and Conclusions

We have derived a transmission matrix K, which may be applied to a barrier of any 

shape. The matrix is a more general form of that derived by Froman in 1957, including 

higher order deformed Coulomb terms, a realistic Woods-Saxon potential and considering 

excitation energies of the daughter nucleus. Comparisons have been made between our 

results and those of Froman in a number of calculations. We find that in some cases the 

extra accuracy of our matrix makes little difference to results e.g. in the calculation of 

branching ratios where it is the relative values of the alpha particle amplitudes that are 

important. However, in quantities depending upon the absolute values such as decay 

widths, we find that the more detailed matrix increases values by over an order of 

magnitude. The use of our matrix in Refs. [13] and [16] for example may therefore go 

part of the way to resolving differences between experimental and theoretical absolute 

decay widths. The technique may be of use in barrier penetration problems other than 

alpha decay e.g. in sub-barrier fusion and proton radioactivity. There is also no limit on 

the quadrupole deformation of nuclei that may be treated in this way -  barrier problems 

in superdeformed or hyperdeformed nuclei may be considered.
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The accuracy of the semi-classical transmission matrix has been confirmed by compar­

ison with results from the numerical integration of the exact coupled channels equations. 

The only major difference between the two approaches seems to lie in the contribution 

of imaginary parts in the wave function. In the semi-classical approximation we consider 

only real wave functions, although it would be possible to extend this work and include 

imaginary parts if required.

In Chapter 3, we tested several models to explain the alpha decay process by calcu­

lating relative amplitudes near the nuclear surface and comparing their predictions with 

experimental data. One particularly interesting idea was that the alpha decay process 

could be explained in terms of eigen channels, as has been done for fusion. In the latter 

case, the different eigen channels correspond to barriers of different shape and height. In 

the alpha decay problem the dimensions of the barrier are fixed by the potentials in the 

model, so we define the different channels to correspond to different outgoing currents. 

We tested the idea that the physical channel taken by the alpha particle is that which 

maximizes the outgoing flux by exploiting the effects of the deformed barrier. Despite 

its appeal, this idea does not reproduce the experimental branching ratios for a range 

of even-even actinide nuclei. However, we have shown that the eigenchannel formalism 

used in fusion may be extended to apply to any barrier penetration problem with any 

shape of barrier or potential.

In an attempt to resolve the many differing ideas about alpha particle formation and 

interaction with the daughter nucleus, we made use of our semi-classical transmission 

matrix and experimental branching ratios and calculated internal amplitudes for a range 

of even-even actinide nuclei. We are not aware of any previous systematic study of 

actinide nuclei using experimental data and realistic deformation parameters. By making 

some assumptions about the asymptotic phases of the wave functions, we found four 

possible solutions of internal amplitudes that are consistent with the experimental data.
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One of these solutions predicts almost constant amplitudes across the range of actinide 

nuclei. We confirmed that this solution is not a particular result of the form of our 

transmission matrix by comparing results with those using Froman’s matrix and with 

the coupled channels calculations. The error bars arising from experimental uncertainty 

in the branching ratios are negligible for most nuclei. We also checked that the amplitudes 

are not especially sensitive to the exact values of the deformation parameters taken from 

Ref. [19], or any other parameters in our model.

Although this constant solution is appealing, we have no way of establishing if these 

are the “physical” amplitudes. It is not possible to determine the relative phases of the 

amplitudes experimentally because the angular distribution of emitted alpha particles 

from an even-even nucleus is isotropic. The model of an alpha particle moving in a 

deformed field does not seem capable of explaining any of the four solutions found for 

the amplitudes near the nuclear surface. However, the model of an alpha particle being 

projected from pair correlated neutron and proton Nilsson-model states does seem to be 

consistent with the constant solution. The conclusion of our work in Chapter 3 therefore 

is that the constant solution, as well as being appealing by its very nature is the most 

likely solution and suggests that a microscopic model of alpha decay similar to that of 

Delion et al. is the most realistic model for this mass region.

Our work on odd mass nuclei tested a number of ideas. First of all, it has been found 

previously that good results may be obtained by assuming that the structure of the odd- 

A nucleus is closely related to that of the neighbouring even-even one. By assuming a 

model of this type we have been able to make use of the results of our work on even-even 

nuclei. We have also investigated the dependence of alpha decay anisotropy on nuclear 

deformation and nuclear structure, which is currently a matter of great interest.

Before drawing conclusions on the work contained in Chapter 4, we shall summarize 

the assumptions and approximations made in the odd-A case:
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1. The odd mass nucleus consists of an even-even core plus an odd nucleon, which 

has no effect on the alpha decay process. Internal amplitudes for the core are taken 

to be those present in the neighbouring even-even nucleus (only states up to L =  4 

considered).

2. The parent nucleus is fully aligned and therefore has M  =  Jp. This assumption 

simplifies our expression for the angular distribution W(0) and corresponds to 

idealized experimental conditions.

3. There is no mixing between different energy levels of the daughter nucleus during 

barrier transmission, only between orbital angular momentum states within each 

daughter level.

4. We have not considered the octupole deformation parameter f33 in this work. The 

semi-classical transmission matrix could be extended to account for / ? 3 and its 

importance established.

For odd-A  nuclei in the same mass range as the even-even ones in Chapter 3, we 

assumed that the relevant amplitudes for the even-even core are those taken from the 

constant solution in Figure 3.12. The results obtained are in good agreement with the 

experimental trends, considering the assumptions made above. Further, we find that 

the amplitudes taken from the constant solution reproduce the experimental data more 

closely than any of the other solutions. The physical reason for assumption 3 above is 

not yet clear, although we have discussed some possible explanations. It is likely that the 

solution of coupled channels equations for odd mass nuclei may help in understanding 

the dynamics involved.

We emphasize here that these conclusions are only true if we consider the effects 

of the deformed barrier. If we assumed a spherical barrier for these odd mass nuclei,
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the experimental trends could not be reproduced for any of the four solutions found in 

Chapter 3. Indeed throughout this thesis we have shown that the effects of the deformed 

barrier are important in all our calculations.

We have investigated the anisotropy of the favoured decay for a chain of astatine 

isotopes outside the mass range considered in Chapter 3. Our model does not reproduce 

experimentally measured anisotropies for these nuclei. It is possible that these nuclei are 

not so closely related to their even-even neighbours that assumption 1 above is valid. 

We also note that our model of alpha decay assumes rotational rather than vibrational 

states of the nuclei, which may not be valid for these astatine isotopes. However, our 

general investigation of the sensitivity of anisotropy to changes in deformation and struc­

ture produced some interesting results. We find that both factors are important in the 

calculation, and our viewpoint therefore lies between that of Delion et al. and Berggren 

who take opposite points of view. It seems that the anisotropy is mainly determined 

by nuclear structure before the barrier penetration takes place, although even for these 

nearly spherical nuclei the effect of the deformed barrier is certainly not negligible. For 

these astatine isotopes, we conclude that structural changes are most likely to be respon­

sible for variations in anisotropy. We stress however that in the actinide region where 

the quadrupole deformation is much larger, the effects of the deformed barrier are much 

more important and in our work the experimental trends would not be reproduced if the 

barrier was considered to be spherical.
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Appendix A

Even—even data

Here we present all data and parameters used in our calculations on even-even nuclei. 

Table A .l shows branching ratios Zl with their errors in brackets, and energies El for the 

daughter states of each nucleus up to L = 4. These data are all taken from the relevant 

Nuclear Data Sheets. In Table A.2 we show the daughter deformation parameters /3l 

which are taken from the compilation by Moller et al. [19]. Also given are values of the 

expansion coefficients in the deformed Coulomb potential, relative to the monopole term 

V\ which are defined in Equation (2.4.3). We quote values of the alpha decay half-life 

r i/2 , which are deduced from the partial half-lives given in Ref. [9].
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Table A .l:

^d A<¡ ^0 Zi

(% )

Z\ E0 E i

(M eV)

e 4

88 220 79.0 (2.0) 19.0 (2.0) 1.20 (0.40) 7.1700 6.9970 6.7060

88 222 75.5 (3.0) 22.8 (2.0) 1.27 (0.05) 6.3375 6.2283 6.0414

88 224 71.1 (1.0) 28.2 (1.0) 0.44 (0.08) 5.4233 5.3405 5.1770

88 226 76.3 (0.3) 23.4 (0.1) 0.12 (0.00) 4.6876 4.6211 4.4798

88 228 77.8 (1.4) 22.1 (1.4) 0.06 (0.01) 4.0100 3.9520 3.8300

90 224 70.0 (0.0) 29.0 (0.0) 0.56 (0.00) 6.6810 6.5890 6.4040

90 226 67.4 (0.4) 32.0 (0.2) 0.38 (0.04) 5.8887 5.8178 5.6663

90 228 68.0 (0.4) 31.7 (0.4) 0.30 (0.02) 5.3203 5.2635 5.1367

90 230 71.4 (0.2) 28.4 (0.1) 0.20 (0.01) 4.7761 4.7238 4.6049

90 232 74.0 (4.0) 26.0 (4.0) 0.26 (0.01) 4.4940 4.4450 4.3320

90 234 78.8 (2.7) 21.2 (2.7) 0.08 (0.00) 4.1960 4.1470 4.0390

92 232 69.3 (0.5) 30.6 (0.5) 0.18 (0.00) 5.7677 5.7210 5.6138

92 234 71.0 (0.0) 28.8 (0.1) 0.10 (0.00) 5.4992 5.4565 5.3583

92 236 72.8 (0.1) 27.1 (0.1) 0.09 (0.00) 5.1682 5.1237 5.0218

92 238 77.5 (3.0) 22.4 (2.0) 0.10 (0.02) 4.9006 4.8564 4.7546

94 236 71.0 (0.6) 28.9 (0.6) 0.05 (0.00) 6.2906 6.2478 6.1470

94 238 74.0 (0.5) 25.0 (0.5) 0.04 (0.00) 6.1129 6.0696 5.9694

94 240 76.4 (0.2) 23.6 (0.2) 0.02 (0.00) 5.8050 5.7628 5.6656

94 244 81.9 (0.4) 18.0 (0.2) 0.08 (0.12) 5.0785 5.0349 4.9311

96 242 79.3 (1.0) 20.6 (1.0) 0.15 (0.02) 6.7501 6.7086 6.6156

96 246 84.6 (1.2) 15.1 (1.2) 0.30 (0.00) 6.0310 5.9889 5.8913

96 248 84.2 (0.3) 15.7 (0.3) 0.24 (0.04) 6.1184 6.0756 5.9771
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Table A.2:

A d /?2 P * A> V a / V t

( f m 2 )

V a / V x

( / m 4 )

rl/2

«

88 220 0.103 0.072 0.007 3.703 185.256 0.1027E +01

88 222 0.130 0.092 0.008 4.856 255.541 0.1888E +04

88 224 0.164 0.112 0.010 6.373 343.688 0 .6034E +08

88 226 0.172 0.112 0.007 6.709 352.035 0 .2365E +13

88 228 0.180 0.113 0.005 7.063 364.563 0 .4 3 8 9 E + 18

90 224 0.164 0.112 0.010 6.373 343.688 0 .5600E +03

90 226 0.173 0 .1 1 1 0.034 6.881 379.029 0.1820E +07

90 228 0.182 0.112 0.025 7.239 385.874 0.2195E +10

90 230 0.198 0.115 0.014 7.901 404.874 0.7975E +13

90 232 0.207 0.108 0.003 8.178 384.532 0.7400E +15

90 234 0.215 0.102 -0.007 8.437 367.095 0 .1386E +18

92 232 0.207 0.117 0.010 8.311 421.128 0 .8853E +08

92 234 0.215 0.110 0 .0 0 0 8.554 400.331 0 .2792E +10

92 236 0.215 0.102 -0.008 8.471 369.249 0.2058E +12

92 238 0.215 0.093 -0.015 8.391 336.762 0.1170E +14

94 236 0.215 0.110 -0 .004 8.573 399.013 0.2330E +07

94 238 0.215 0.102 -0.012 8.491 367.875 0.1406E +08

94 240 0.223 0.087 -0.021 8.679 323.393 0.5730E +09

94 244 0.224 0.062 -0 .027 8.550 247.350 0 .1051E +14

96 242 0.224 0.079 -0 .024 8.673 299.472 0 .1248E +06

96 246 0.234 0.057 -0.032 8.941 239.110 0 .4140E +09

96 248 0.235 0.040 -0.036 8.869 186.959 0 .8160E +08

119



Appendix B

Odd—A data

All data given in Table B.l are extracted from the relevant Nuclear Data Sheets, except 

for deformation parameters which are again taken from the compilation by Moller et al.. 

We note here that Ref. [19] quotes non-zero values of the octupole deformation /33 for 

many of these odd mass nuclei, but we do not include this parameter in our work.
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Table B.l:

Ad f t f t f t Jp Jd

E a (M eV)

217 85 0.039 0.028 0.007 5 /2 " 5 /2 "

6.126

223 89 0.147 0.110 0.010 5 /2 “ 5 /2 -

6.466

225 90 0.165 0.112 0.010 3 /2 + 3 /2 +

6.360

5 /2 +

6.332

7 /2 +

6.297

229 90 0.190 0.114 0.020 5 /2 + 5 /2 +

4.824

7 /2 +

4.784

9 /2 +

4.729

237 92 0.207 0.117 0.010 5 /2 + 5 /2 +

4.896

7 /2 +

4.853

9 /2 +

4.798

237 93 0.215 0.102 -0.009 5 /2 - 5 /2 “

5.486

7 /2 “

5.443

9 /2 “

5.388

239 93 0.223 0.095 -0.018 5 /2 - 5 /2 "

5.275

7 /2 "

5.233

9 /2 -

5.181

239 94 0.223 0.095 -0.018 5 /2 + 5 /2 +

5.785

7 /2 +

5.742

9 /2 +

5.686
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Zd Ad ßi ßi ße Jp Jd
E a (MeV)

241 94 0.224 0.079 -0.024 7/2+ 7/2+
5.362

243 96 0.234 0.073 -0.030 7/2+ 7/2+
6.296

243 97 0.234 0.073 -0.029 7/2+ 7/2+
7.323

245 95 0.224 0.062 -0.028 7/2+ 7/2+
5.417

245 96 0.234 0.064 -0.031 9/2- 9/2-
5.813

247 97 0.235 0.057 -0.034 3/2" 3/2"
6.492

5/2"
6.462

7/2"
6.422

249 97 0.235 0.040 -0.037 7/2+ 7/2+
6.633
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