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Abstract 

The first half of this thesis is devoted to the study of finite polynomial maps 

en --4 en and the use of Grobner bases to determine if a given map is finite. We 

begin by examining those maps which have quasihomogeneous components, and 

give a simple condition for such maps to be finite. This condition is extended 

to those maps which are quasihomogeneous as above, but with extra lower order 

terms. Next, we give a general criterion for testing the finiteness of a given 

polynomial map and an implementation in the Maple computer algebra system. 

Our next step is to generalize our results to regular maps between affine varieties. 

Again, a finiteness criterion is given, plus its implementation in Maple. Lastly 

in this half, we consider the trace bilinear form associated with a finite map and 

show how it may be used to find real roots of a polynomial system. 

The second half of the thesis is concerned with the study of G-variant map 

germs, which commute with the action of a finite group G on the source and 

target spaces. We give a relation between the G-variant degree associated with 

a map germ, bilinear forms on the local algebra and preimages of zero under a 

perturbation of the original map. We look at both the complex and real affine 

space situation. We then give the equivalent results when we do not have a 

'good' deformation of the map, when we have two groups acting and when we 

use modular representations. Next, we give an invariant of G-variant maps which 

is stronger than G-degree, based upon a lattice of vector subspaces. Finally, we 

examine the structure of the class of G-variant maps and consider criteria for maps 

to have 'good' deformations and to be finite. We then give ways of determining 

generators for the class of maps by generalizing theorems of Noether and :\Iolien. 
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Overview 

The first five chapters of this thesis are devoted to the study of finite polynomial 

maps and the use of Grabner bases to determine if a given map is finite. 

The first chapter is an introduction to the theory of Grabner bases, with 

results which will be used in later chapters. It includes the definition of mono

mial orders and Grabner bases, some results from elimination theory and the 

application of Grabner bases to modules and subrings. 

The second chapter is devoted to results involving Grabner bases and their 

implementation in Maple. These results include a solution to the problem of 

determining submodule membership, calculating Grabner bases in a module and 

finding generators for a syzygy module. 

In the third chapter, we begin by defining what we mean by a finite polynomial 

map en ---t en and give some simple algebraic and topological properties of these 

maps. The next step is to examine a particular class of maps, those which have 

quasihomogeneous components, as there is a very simple condition for such maps 

to be finte. We then consider maps which are finite maps with quasihomogeneous 

components, as above, plus extra lower order terms. Again, the condition required 

for these maps to be finite is simple. This allows us to consider the projective 

geometry of a finite map and to examine if a general polynomial map will be 

finite. Next, we look a little more closely at the ideal of leading terms, as this 

ideal is important for determining if a given map is finite or not. \Ve give a 

general criterion for testing the finiteness of a given polynomial map and an 
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implementation in the Maple computer algebra system. Finally, in this chapter, 

we look at the various degrees which can be associated to a finite map and how 

they are related to one another. 

The fourth chapter generalises the results of chapter 3 to regular maps between 

affine varieties. The definition of finiteness in this case and a new version of the 

finiteness criterion are given, plus an implementation in Maple. We also consider 

the generalisation to varieties of the results on quasihomogeneity and on the 

question of finiteness (or not) of a general map. 

The fifth chapter is devoted to the study of the trace bilinear form associated 

with a finite map. This is used to determine the real solutions of a system of 

equations. An algorithm for calculating the form is implemented in Maple and 

several examples are given of its use. 

The second half of the thesis is concerned with the study of G-variant map 

germs, which in some sense commute with the action of a finite group G on the 

source and target spaces. 

In chapter six, we define G-variant map germs and give the basic results from 

the literature. The G-variant degree associated with a map germ is defined. 

We consider the relation between this, bilinear forms on the local algebra and 

preimages of zero under a perturbation of the original map. We look at both the 

complex and real affine space situation and define G-signature in the latter case. 

Finally in this chapter, we apply the results obtained to various examples. 

In the seventh chapter we look at further results related to G-variant maps. 

Firstly, we consider the relation between the G-variant degree and the preimages 

of zero under a deformation of the original map, where zero is not a regular value. 

We also consider the case when we have two groups acting naturally on the direct 

sum of two affine spaces. The following section is dedicated to the effect of using 

modular representations (i.e. representations in characteristic p) of G in the real 

case. Next, we consider a new invariant of G-variant maps which is stronger than 

G-degree. This is based upon a lattice of vector subspaces and the subgroups of 
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G which fix these subspaces. Finally, we briefly consider an alternatiYe approach 

via the quotient of our affine space with respect to the group action. 

Chapter eight is given over to the study of the class of G-variant maps, given 

the actions of G on two given spaces, designated as the source and target re

spectively. First, we examine the structure of this class of maps and consider 

criteria for a maps to have 'good' deformations and to be finite. We then go on 

to look at ways of determining generators for the class of maps (as a module) by 

generalizing the theorems of Noether and MoHen on invariant polynomials. 
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Chapter 1 

Grabner bases 

In this section, we describe Grabner bases and give their basic propertips. In 

general, the notation and definitions follow those of [CLO]. The polynomials in 

this section will be over C, although all results (except where stated) will hold 

over an arbitrary field. 

Grabner bases allow one to handle ideals of a polynomial ring in an algorithmic 

way. In particular they help to give solutions to the following probleIIls: 

• The Ideal l\lembership Problem: Given ¢ E C[Xl, ... , xnl and an id('al 

1 =<il, ... ,in>, can we determine whether ¢ E 1? 

• Solving Polynomial Equations: Given a set of polynomials {iI, ... ,in} in 

C[:Z:l' ... ,xn ] can we describe all the solutions of 

• The Implicitization Problem: Givt'Il a suhset P of cn paralll('tri("all~· as 

wllPr(' g1, . .. ,gn art' polynomials, can \\'<' describe it as an afhw\ yari(\t~· (or 

part of 011(')".' 

-
I 



The first problem is the most important for our purposes, for as we shall see, it 

leads naturally to a description of the quotient by the given ideal. The second and 

third problems are, in effect, opposites of one another and their solution is known 

as Elimination Theory (for some results see Propositions 1.2.7 and 1.2.8). Before 

defining a Grabner basis, we need to fix a monomial order on the polynomial 

ring, as explained below. 

1.1 Monomial orders 

To define an order on the monomials of C[Xb' .. ,Xn], we firstly note that there is 

a 1-1 correspondence between the monomials of this ring and Nn. The monomial 

xr 1 
..• x~n naturally corresponds to (0:'1,"" O:'n). By identifying these two spaces, 

we can make the following definition: 

Definition A monomial ordering on C[X1' ... ,xn] is any relation> on Nn sat

isfying: 

(i) > is a total (or linear) ordering on N n
. 

(ii) If 0:' > f3 and 'Y E Nn, then 0:' + 'Y > f3 + 'Y. 

(iii) > is a well-ordering on Nn. 

We will now give examples of monomial orderings by describing some of the 

more common ones. 

Lexicographic order (or simply 'lex') is defined as follows. Let 0:' = (0:'1, ... , O:'n), 

f3 = (f31,· .. , f3n) E Nn. We say 0:' > lex f3 if in the vector difference 0:' - f3 E zn. 
the leftmost non-zero entry is positive. (This will in fact usually be written as 

xQ >lex x (3
). 
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Graded Lex order (or 'grlex') is as follows. Take a, f3 E Nn as before. \Ye sa~' 

a > grlex f3 if 
n n 

lal = Lai > 1f31 = Lf3i 
i=1 i=1 

or lal = 1f31 and a >lex f3. 

Graded Reverse Lex order (or 'grevlex') is defined as follows. Let a, f3 E Nn. 

Then a > grevlex f3 if 
n n 

lal = L ai > 1f31 = L f3i 
i=1 i=1 

or lal = 1f31 and in a - f3, the right-most non-zero entry is negative. 

In general, an ordering is called graded if lal > 1f31 implies a > f3. Obviously, 

grlex and grevlex are examples of graded orders. 

To give an example of these orders, consider the monomials x3, x2yz2 and 

xy3z in C[x, y, z]. Under the three orders above we get 

x3 
>lex x2yz2 >lex xy3z, 

x 2yz2 >grlex xy3z >grlex x3 , 

xy3z >grevlex x2yz2 >grevlex x3 , 

giving three different permutations of the monomials. 

Given two orders, each defined on a set of variables, we can combine the two 

as follows. Suppose that we are considering the ring C[X1, . .. , xn, Y1, ... ,Ym] and 

that there are orders >1 and >2 defined on the x and y variables respectively. 

The product order of these two, >Pl is defined by xOyf3 >p x'"tyti if X
O 

>1 x' or 

XO = x'"t and yf3 >2 y6. 

We now describe some notation used in relation to monomial orders. Let 

¢ = Eo aoxo be a non-zero polynomial in C [Xl, ... , xn ] and let > be a monomial 
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order. Then the multi degree of f is given by 

multideg(f) = maxi Q E N n 
: aa: =1= O} 

where the maximum is with respect to >. We define the leading coefficient of f 

to be 

LC(f) = amultideg(f) 

and the leading monomial to be 

LM(f) = xmultideg(f), 

which has coefficient 1. Finally, we define the leading term of f to be 

LT(f) = LC(f) . LM(f)· 

We will often write LT(f) for an ideal f. This is simply shorthand for {LT(f) : f E 

f}. We can now state the result which motivates the introduction of monomial 

orders: 

Proposition 1.1.1 (The Division Algorithm in C[XI,"" xn]) Suppose that 

we have fixed a monomial order> and let F = (fll ... ,fs) be an ordered s-tuple 

of polynomials in C [Xb ... , xn]. Then every ¢ E C [Xl, ... ,Xn] can be written as 

where ai, r E C [Xl' ... ,xn] and either r = 0 or r is a linear combination of 

monomials, none of which is divisible by any of LT(fl),"" LT(fs). We will call 

r a remainder of ¢ on division by F. Furthermore, if aifi =1= 0, then we have 

Proof This is straightforward. See [CLO, p63]. The algorithm is very similar to 

that of polynomials in a single variable. At each stage, we attempt to divide by 

each of the given divisors in turn. This is done by looking at the leading mono

mials of the divisor and the polynomial to be divided, to see if the former will 
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divide the latter. In this way, we build up a quotient associated to each divisor 

(the ai given above). When none of the divisors can divide what remains, this is 

the remainder (given by r above). 0 

We end this subsection by stating a small result 

Lemma 1.1.2 Let I be an ideal generated by some set of monomials {xQ : Q E 

A} . Then a monomial xf3 lies in I if and only if xf3 is divisible by xQ for some 

aEA. 

Proof See [CLO, p69]. o 

1.2 Definition and properties of Grobner bases 

Definition Fix a monomial order. A finite subset G = {gl, . .. ,gt} of an ideal I 

is said to be a Grabner basis if 

<LT(gl), ... LT(gt»=<LT(I» . 

The following proposition guarantees the existence of a Grabner basis: 

Proposition 1.2.1 Fix a monomial order. Let I C C[X17 ... , x n ] be an ideal 

other than o. Then I has a Grabner basis G = {gl, ... , gt}. Furthermore, we 

have I =<gl,···, gt>. 

Proof See [CLO, p76]. o 

With the division algorithm as described in Proposition 1.1.1, the remainder 

is actually dependent on the order that the elements fl, . .. ,fs are listed. This 

means that we can start with an element cP E <fl' ... , fs> and obtain a remainder 

of zero (the intuitive answer) only for certain orderings of the fi. Grabner bases 

solve this problem as the next proposition demonstrates. 
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Proposition 1.2.2 Let G = {gl, ... , gt} be a Grabner basis for an ideal I c 

C[XI, ... , xn] and let <p E C[XI, ... , xn]. Then there is a unique element r E 

C [Xl, ... ,xn ] with the following properties: 

(i) No term of r is divisible by one of LT(gd, . .. ,LT(gt). 

(ii) There is some 9 E I such that <p = 9 + r. 

In particular, r is the remainder on division of <p by G, however the elements of 

G are listed. 

Proof See [CLO, p8I]. o 

As a corollary, we obtain the solution to the Ideal Membership Problem: 

Corollary 1.2.3 Let G = {gl, ... , gt} be a Grabner basis for an ideal I C 

C[XI' ... ,xn] and let <p E C[XI' ... ,xn]. Then <p E I if and only if the remainder 

on division by G is zero. o 

Since the remainders are unique, we will write (ft for the remainder on divid

ing <p by the Grabner basis G. Now Grabner bases can be calculated using an 

algorithm called Buchberger's Algorithm. This depends for its operation on the 

following construction. 

Let f, 9 E C [Xl, ... ,xn ] be non-zero polynomials. Let x'Y be the least com

mon multiple of LM(f) and LM(g). Then the S-polynomial of f and 9 is the 

combination 
X'Y x'Y 

S(f, g) = LT(f) . f - LT(g) . g. 

The next proposition gives a method for testing if a given set of generators 

for I is in fact a Grabner basis. 
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Proposition 1.2.4 Let I be a polynomial ideal. Then a set of generators G = 

{gl, ... ,gt} is a Grabner basis for I if and only if for all pairs i i= j. S(gi' gj) G = 

o. 

Proof See [CLO, p84]. o 

The following proposition gives a description of the quotient and in fact, even 

yields a C vector space basis for this quotient. Note that this proposition requires 

the coefficient field to be algebraically closed. Since this result is so important, 

we also give its proof, following [CLO, p232]. 

Proposition 1.2.5 Fix a monomial order on C[Xl' ... ,xn]. Let I be an ideal 

in C[Xb ... , Xn] with Grabner basis G. Let V be the variety associated to I, i.e. 

the set of points in cn at which every element of I vanishes. Then the following 

statements are equivalent. 

(i) V is a finite set. 

(ii) For each i E {I, ... , n}, there is some mi E N such that x7'i E<LT(I». 

(iii) For each i E {I, ... , n}, there is some mi E N such that x7'i = LM(g) for 

some 9 E G. 

(iv) The C vector space Span(xQ : xQ ¢<LT(I») is finite dimensional. 

(v) The C vector space C[x1'i .. ,xnJ is finite dimensional. 

Proof (i)=>(ii) If V = 0, then 1 E I by the Weak Nullstellensatz ([CLO, pI69]). 

In this case, we can take mi = 0 for all i. If V is non-empty, then for a fixed i, let 

aj' j = 1, ... ,k, be the distinct complex numbers appearing as ith coordinates of 

points of V. Form the one variable polynomial 

k 

1/J(Xi) = II (Xi - ai)' 
j=1 
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By construction, 'ljJ vanishes at every point in V, so 'ljJ lies in the ideal of V. Thus 

by the Nullstellensatz ([CLO, p172]), there is some m > 1 such that 'ljJm E J. 

But this means that the leading monomial of 'ljJm is in <LT(J». Examining the 

expression defining 'ljJ, we see that xfm E<LT(I». 

(ii){:}(iii) Let X~i E< LT(J) >. Since G is a Grabner basis of J, < LT(J) > 

= <LT(g) : 9 E G>. By Lemma 1.1.2, there is some 9 E G such that LT(g) 

divides X~i. But this implies that LT(g) is a power of Xi as claimed. The opposite 

implication follows from the definition of <LT(J». 

(ii)::::}(iv) If some power of Xi, X~i lies in < LT(J) > for each i, then the 

monomials xr1 
••• x~n for which some Qi > mi are all in <LT(J». The monomials 

in the complement must have Qi < mi - 1 for each i. As a result, the number of 

monomials in the complement of <LT(J» can be at most mlm2'" mn-

(iv)¢:>(v) Consider the map 

given by 'll(¢) = ¢G. This is well-defined by Proposition 1.2.2 and is quite easily 

seen to be a linear map with ker'll = J. 

(v)::::}(i) To show that V is finite, it suffices to show that for each i there 

can be only finitely many distinct ith coordinates for the points of V. Fix i and 

consider the classes [x{] in C[x1'i .. ,xn] , where j = 0,1,2, .... Since C[x1'i"'xn] is finite 

dimensional, the [xi] must be linearly dependent in C[X1'i .. ,Xn]. That is, there exist 

constants Cj (not all zero) and some m such that 

However, this implies that l:j=o Cjx{ E J. Since a non-zero polynomial can have 

only finitely many roots in C, this shows that the points of V have only finitely 

many different ith coordinates. 0 
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The vector spaces in items (iv) and (v) above are naturally isomorphic. For 

if we take the cosets corresponding to the elements of the set L = {XO : XO ¢ < 

LT(I»}, then these span the space given by the quotient in item (v). The set 

L above will be known as the LT monomial basis. Given that a variety is finite, 

we can say more about the dimension of the associated vector space with the 

following proposition. 

Proposition 1.2.6 Let V c Cn be a variety consisting of points {PI,· .. ,Pm}, 

with ideal I. Then 

Proof Firstly, we define a map 

C[XI,···, Xn] C m 
<1> . ~ . I 

by 

where [J] denotes the class of f in the given quotient. Now if [J] = [g], then 

f = 9 + h for some h E I. So 

<1>([f]) (g(PI) + h(pd,· .. ,g(Pm) + h(Pm)) 

(g(PI) + 0, ... ,g(Pm) + 0) 

so <1> is well-defined. Also, 

<I>([JLf + Ag]) 

<1> ([g]) 

<1>(JL[J] + A[g]) 

(pJ(pd + Ag(PI),···, ILf(Pm) + Ag(Pm)) 

JL(f(Pl),···, f(Pm)) + A(g(pd,···, g(Pm)) 

JL<1>([g]) + A<1>([J]) 

so <I> is linear. Now suppose <I>([f]) = <1>([g]), then 
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Thus f - gEl, or in other words [J] = [g]. So <I> is injective. Now for each i. 

define Wi = {Pj : j =1= i}. We know that I( {Pi}) (i.e. the ideal corresponding to 

this point) is maximal (see [CLO, p200]) and we next wish to show that 

(1.1 ) 

If Wi = 0 then I(Wi) =< 1 > and we are done. Otherwise, if Wi is non-empty, 

then Wi must contain some Pj =1= Pi, Pj and Pi differing in some coordinate Xk' If 

Pi has kth coordinate a, then Xk - a lies in I( {pJ) but not in I(Wi)' Thus, by the 

maximality of I(Wi ), (1.1) must hold. 

From (1.1), we know that there exist polynomials fi E I(Wi) and gi E I( {Pi}) 

such that fi + gi = 1. So 

(fi(PI), ... ,fi(Pi),' .. ,fi(Pm)) + (gi(Pl),' .. ,gi(Pi),' .. ,gi(Pm)) 

(1, ... ,1, ... ,1). 

<I> (fi) (0, ... ,0,1,0, ... ,0) 

<I> (gi) (1, ... , 1,0,1, ... , 1) 

and hence we find that <I> is onto. Thus <I> is an isomorphism and so 

. C[Xl,' .. ,xn ] 
dIme I = m 

as required. o 

To end this section, we give a couple of results from Elimination Theory. 

Proposition 1.2.7 (The Elimination Theorem) Let I E C[Xl,'" ,xn ] be an 

ideal and let G be a Grabner basis for I with respect to lex order with Xl > ... > 

Xn' Then for every ° < k < 0, the set 

is a Grabner basis for the ideal Ik = In C[Xk+l, ... ,xn ] in C[Xk+l, ... ,xn ]. 
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Proof See [CLO, pl14]. o 

Proposition 1.2.8 (The Closure Theorem) Let V be an affine variety in cn 

given by the ideal I =</1, . .. ,Is>. If Ik = In C[Xk+1, . .. ,xnl and 'Irk : cn --+ C k 

is the projection onto the last n - k variables, then the following is true. 

(i) The variety V(Ik) corresponding to Ik is the smallest containing 'lrk(V) C 

Cn- k. In other words, it is the Zariski closure of 'Irk (V) . 

(ii) When V =I- 0, there is a proper affine subvariety W C V(Ik) such that 

V(Ik) - W c 'lrk(V). 

Proof See [CLO, p123]. o 

1.3 Ring and module applications 

We now turn our attention to the use of Grabner bases for deciding questions 

about rings and modules. 

Proposition 1.3.1 Suppose that 11, ... ,1m E C[X1, ... , Xn] are gwen. Fix a 

monomial order in C[Xb ... , Xn, Yb ... , Ym] where any monomial involving one 

01 the x variables is greater than all monomials in C[Y1, ... , Ym]. Let G be a 

Grabner basis of the ideal < 11 - Y1,···, 1m - Ym >c C[X1, ... , Xn, Yl,··· ,Ym]· 

Given ¢ E C[Xb ... ' xn], let 'ljJ = ¢f be the remainder of ¢ on division by G. 

Then 

(i) ¢ E I*C[Yb ... ,Ym] if and only if'ljJ E C[Yl, ... ,Ym]· 

(ii) If ¢ E I*C[Yb ... ,Ym], then ¢ = f*('ljJ)· 

17 



Proof See [CLO, p329] o 

Next we examine the extension of Grabner bases to modules. Suppose A! is 

a finitely generated free module over C[Xll ... ,Xn], with basis {ei}. A monomial 

in M is an element of the form m = xO:ei and a term is simply a monomial multi

plied by a scalar. Let AxO:ei, J-lx f3 ej be terms, where A, J.l E C. We say that AxO:e
z 

is divisible by J-lXf3 ej if i = j and AXO: is divisible by J.lx f3. The quotient is then S. 
#-£X 

Definition A monomial order, >, on M above is one which satisfies 

(i) > is a total order. 

(ii) If ml,m2 are monomials in M and m3 =P 1 is a monomial of C[Xl, ... ,Xn], 

then 

It is simple to extend a monomial order on C[Xl, ... , xn] to one on M. In 

order to do this, we simply consider the component number first. So, if we 

have an order> R on C[Xl' ... ,Xn], we can extend this to M by defining> M as 

xO:e· >M x f3 e· if t J 

i > j or i = j and xO: > R xf3. 

With a monomial order defined, the definition of leading terms, the division al

gorithm etc. follow as in the ring case. The definition of a Grabner basis is also 

very similar: 

Definition Fix a monomial order on M. A finite subset G = {gl, .. ·, gt} of a 

submodule N c M is said to be a Grabner basis if 

<LT(gd, ... LT(gt»=<LT(N» 

where '<>' denotes here the generation of a submodule of M. 
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We can also define the 8-polynomial in an analogous way to that seen previ

ously. Let f, 9 be elements of M. If LT(f) and LT(g) are multiples of different 

basis elements of M, then define 8(f, g) = o. Otherwise, let x'Yek be the least 

common multiple of LM(f) and LM(g) and define 

x'Yek x'Yek 
8(f, g) = LT(f) . f - LT(g) . 9 

as before. Note that in the above expression, we have divided by an element of 

M. This would appear to be undefined, but since they are both mutiples of the 

same basis element, ekl we can "cancel" ek to obtain a quotient in C[Xl, ... , x n ]. 

The following generalisation of Proposition 1.2.4 also carries over. 

Proposition 1.3.2 Let N be a submodule of M. Then a set of generators G = 
-=-:--~G 

{gl, ... , gt} is a Grabner basis for N if and only if for all pairs i #- j, 8(gi' gj) = 

O. 

Proof See [E, Prop 6.8]. o 

One of the reasons for looking at Grabner bases on modules is that it allows us 

to calculate syzygy modules. A syzygy module on a set of polynomials 4>1, ... , 4>n is 

the module generated by the n-tuples of the form (al,.·· ,an) such that Li ai·4>i = 

o. In other words, it is the module of relations between the elements. The next 

proposition demonstrates the calculation of these modules. 

Proposition 1.3.3 Let N be a submodule of M, the free C[Xl, ... ,xn]-module 

generated by {el' ... er }, with G = {gl, ... , gt} a Grabner basis for N. Let M' be 

a module over C[Xl' ... ,Xn], freely generated by e~, ... ,e~, one basis element for 

each of the gi. For each i < j with LT(gi) and LT(gj) multiples of the same basis 

element of M, define 
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where x'Yek is the least common multiple of LM(gi) and LM(gj). On dividing 

S'(gi, gj) by G, we obtain an expression 

t 
S'( ) - '" (i,j) gi, gj - L....J El gl, 

l=l 

h (i,j) C[ ]. th . d b N d :fi were El E Xl, ... ,Xn ,sznce e remazn er must e zero. ow e ne 

t 

T· . - S'(1 g) - '" /i,j) e' l,] - , L....J l l 
l=1 

and induce a monomial order, > s on M' from that on M as follows. Define 

xO: e'· > xf3 e'· '1,1 z s ] 

Under this order, the set {Ti,j} is a Grabner basis for (and hence generates) the 

syzygies on the gi. 

Proof See [E, Theorem 6.10]. o 
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Chapter 2 

Additional Grabner basis methods 

This section contains results involving Grabner hasps which are of pract it'al llS(' 

when considering finite maps. 

2.1 Determining submodule membership 

This is a generalization of Propostion 1.3.1, to (not llecessarily free) modules. \ \'e 

will define the v-degree of a polynomial in variables Xl, ... ,.Z'n,Vl, ... ,Vr .Zl, ...• ''":;rn 

to be its degree considered as a polynomial in the \' variables. An application 

of this result is to be found in §8.2~ where this method can be used to write a 

POI,\'IlOlllial G-variant map as an element of the module of such maps. 

FI,r a product monomial order on C[Xl, ... 'Xn'Vl,.··.L',.~Zl, .... ZTII] with ·J'i > 

I') > Zk for all i, j, k. Let I =<bl - VI"'" br - Vr . fl - Z1.' ' .. fm - z11/> lind ll'f G 
-G 

bl' its G ,./jlmer basis with respect to thf' given monomial order. Ld V = ¢ (tIll 

l'I'lflllil/(/I'l' of 0 011 dl/lis/oll by G) and let .11 be the C[JI, .. ·. fn] moduli' .If I III rat,'r! 

by {1. b1 • .•• , br }. Then 

• (i) (J E .11 if and only if V E C[cl ..... I'n ZI •...• zm] ([nd V-r!I{/(I;') < 1. 
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• (ii) If ¢ E M then ¢ = 'ljJ(b1, . .. ,bTl f1, . .. ,fm) expresses ¢> as an element 

ofM. 

Proof Suppose 'ljJ E C [V1' ... , Vr , Zl, ... ,zm] and v-deg( 'ljJ) < 1. Then WE' may 

write 
r m 

¢> = L ai(bi - Vi) + L {3j(ij - Zj) + 'ljJ 
i=l j=l 

where ai, /3j E C[Xb ... ,Xn , Vb· .. ,VTl Zb ... ,zm] for all i, j. Substituting Vi = bi 

and Zj = ij throughout gives 

as required. The condition on the v-degree ensures that this expresses ¢ as an 

element of M. 

Conversely, suppose ¢ E M. Then ¢> = ¢>'(b1, ... , bTl i1, . .. ,im) for some 

polynomial ¢' E C[Vb ... , VTl Zl, ... , zm]. Now we see, by Proposition 1.3.1, that 

¢ = 'ljJ(b1, ... , br , i1, ... , im), with 'ljJ = ¢G as before. But what is the v-degree of 

'ljJ? Suppose v-deg('ljJ) > 1 and hence LT('Ij;) > LT(¢>'). Now ¢>' = ¢> modulo I 
-G 

and so by Lemma 2.1.2, LT(¢') > LT(¢ ) = LT('Ij;). This is a contradiction, so 

v-deg( 'ljJ) < 1 as required. 0 

Lemma 2.1.2 Let I be an ideal with Grabner basis G. Suppose ¢>' = ¢G modulo 

I. Then LT(¢') > LT(¢G). 

Proof Now LT(¢>') > LT(¢,G) by the definition of division. Also, ¢,G = ¢G since 

this determines a unique representative of the coset. Thus 

as required. o 

22 



The following routine implements the submodule membership t!'st in ).Iaple. 

using the built in Grabner basis package. Here g is the element to be tested 

(written as a polynomial) ~ F is the list of generators of the ring, B is t lw list of 

generators of the module and vars is the list of \·ariables. If a fifth argument is 

given, this is assigned an expression giving g as an element of the module. 

inmodule:=proc(g,F,B,vars) 

local gg,i,vv,FF,G,_V,_Z,L,_VLIST; 

vv:=vars; 

FF: = [] ; 

_VLIST: = [] ; 

for i from 1 to nops(B) do 

vv:=[op(vv),_V[i]] ; 

FF:=[op(FF),B[i]--V[i]] ; 

_VLIST:=[op(_VLIST),_V[i]] ; 

od; 

for i from 1 to nops(F) do 

vv:=[op(vv),_Z[i]] ; 

FF:=[op(FF),F[i]--Z[i]] ; 

od; 

G:=grobner[gbasis] (FF,vv,plex); 

gg: =grobner [normalf] (g,G,vv,plex); 

L:=grobner[leadmon] (gg,vv,plex) [2] ; 

for i from 1 to nops(vars) do 

if divide(L,vars[i]) then RETURN(false); 

fi; 

od; 

if degree(L,_VLIST»1 then RETURN(false); 
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fi; 

if nargs=5 then assign(args[5J ,gg); 

fi; 

RETURN(true); 

end: 

Here is an example of the routine being used: 

>vars:=[x,yJ; 

vars : = [x, y J 

--------------------------------------------------------------

> B:=[1,x,yJ; 

> inmodule(x*y,F,B,vars); 

2 2 

F : = [x , y J 

B := [1, x, yJ 

false 

>inmodule(8*x-2*y+3*x,F,B,vars,'q'); 

true 

> q; 

\'()\\. _V refers t() dements of B alld _Z refers t() delllents of F (vpry lllllch as ill 

Pr()positioll :!.l.l ah()\·(,). Thus the nnallill(, of output stall's thaI 



which expresses it as an element of the module. 

2.2 Calculating module Grobner bases 

The following proposition gives a method for calculating Grabner bases In a 

free module C[X1,"" xn]S by calculating a related basis in the ring C[Xl"'" Xn' 

Zl, ... , Zs]· This is of practical use, as the ring case is supported on more computer 

algebra packages. In fact, the implementation of this result, mgbasis, is used in 

§2.3 for determining generators for syzygy modules. 

Proposition 2.2.1 Suppose M is a submodule of C[Xl' ... ,xn]S generated by 

b1 , .. . , br . Let ei = (0, ... ,0,1,0, ... ,0) with the 1 appearing in the ith position. 

Suppose we have an order >x on C[X1' ... ,xn]' We can extend this to an order 

on C[X1,"" xn]S by considering the number of the component first and taking 

el > ... > es· Let us call this (module) monomial order >1' Now define Z C 

C[Xl,"" Xn, Zll'" ,Zs] to be the set of polynomials all of whose monomials are 

of the form xQ Zj for some 0'., j. Let C[XIl ... ,xn, ZI,"" zs] have an order >2 

fixed on it, which is a product of lex order on the Z variables and >x on the x 

variables. 

Let n : C[Xl,' .. ,xn]S -+ Z be the map obtained by rewriting ei as Zi and let 

G be a (ring) Grabner basis for <n(br), ... , n(br ». Then G' = n-1(G n Z) is a 

(module) Grabner basis for M under > l' 

Proof Firstly note that n is a 1-1 correspondence, so n-1 is well-defined. Also, 

n respects the orders >1 and >2, so m >1 n if and only if n(m) >2 n(n). Let h 

be an arbitrary element of M. Thus we may write 

r 

h = ~O'.ibi 
i=l 

r 

n(h) = ~ O'.in(bi) E<n(bd, ... , n(br » 
i=l 
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Therefore, LT2(O(h)) = xOzo
' ·LT2('}'), for some a, a', with'}' E G, since <LT2(G» 

is a monomial ideal (see Lemma 1.1.2). Now every monomial of f must contain 

a z variable, since <G > is generated by polynomials from Z. Now LT2(f2(h)) is 

linear in a single z variable, this means LT 2 ( '}') E Z and thus '}' E G n Z. Hence 

and so 

Now 0 respects the orders, so this becomes 

in other words, 

(2.1) 

So if G' generates M, then it is a Grabner basis. Now every element of G n Z 

is expressible in terms of the O(bi ), thus G' c M. We proceed as in [E, Lemma 

6.5]. Let N be the submodule generated by G' and let k be the element of M - N 

with smallest leading term. Now using (2.1), there must be lEN such that 

LTl(l) =LT1(k). Then k -l E M - N and has a smaller leading term. This con

tradicts the definition of k. Thus M = Nand G' is a Grabner basis as required.O 

This routine calculates a module Grabner basis for the submodule generated 

by the list F using variables v, where F is written as a list of vectors with poly

nomial components. The order used is lexicographic, with component number 

considered first. 

mgbasis:=proc(F,v) 

local _ZLIST,i,g,_Z,s,Fring,G,Gdash; 

s:=nops(F[l]); 
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for i from 2 to nops(F) do 

if nops(F[i])<>s 

then ERROR('All vectors must be of equal length') 

fi; 

od; 

_ZLIST: = [] ; 

for i from 1 to s do 

_ZLIST:=[op(_ZLIST), _Z[i]]; 

od; 

for i from 1 to nops(F) do 

Fring[i] :=into_ring(F[i] ,v,_ZLIST,s) 

od; 

Fring:=convert(Fring,list); 

G:=grobner[gbasis] (Fring, [op(v),op(_ZLIST)] ,plex); 

Gdash:=[] ; 

for i from 1 to nops(G) do 

g:=from_ring(G[i] ,_ZLIST); 

if g<>O then Gdash:=[op(Gdash), g]; 

fi; 

od; 

RETURN(Gdash); 

end: 

It requires the subroutines into_ring and from_ring which are giY(,ll ill Ap

pelldix B. 



2.3 Finding syzygy module generators 

We have seen a method for determining generators for the syzygies on a Grabner 

basis in Proposition 1.3.3. We are interested in looking at syzygies as WE' are going 

to be interested in finding a basis for a free module (i.e. a set of generators with 

trivial syzygy module). The following gives a method for determining generators 

for syzygies on any set of polynomials: 

Proposition 2.3.1 Let {a1, ... , as} be a set of polynomials in C[Xl,.··' xn ], 

generating an ideal 10. Let a s+1, ... ,am be additional polynomials in 10 such 

that {a1' ... ,as, a s+1 ... ,am} is a Grabner basis for 10 under the given order on 

C[XI' ... ,xn ]. Now each aj for j = s + 1, ... ,m may be written as 

s 

aj = L f3ij a i 
i=1 

for some {3ij E C [Xl, ... ,xn ]. Define 

by 

where 
m 

ai = (Ji + L (Jj{3ij· 
j=s+1 

Then if E is a generating set for the syzygies on {a1' ... , as, ... , am}, p(E) gen-

erates the syzygies on {aI, ... , as}· 

Proof Firstly we need to show that the elements of p(E) are syzygies on {a1' ... , as}· 

Let u = ((J1, ... ' (Js,···, (Jm) E E. Now 

s 

'" a-aL- ' , 
i=1 

t ((Jiai + t (Jj{3i jai) 
i=1 j=s+1 

s m s 

L (Jiai + L (Jj L {3ij a i 
i=1 j=s+1 i=1 
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s m 

L {Tiai + L {Tjaj 
i=1 j=s+1 
m 

L (Tiai 
i=1 
0. 

Hence p( 0') is a syzygy on {aI, ... , as}. 

But does p(~) generate all such syzygies? Let T = (Tl,"" Ts) be an ar

bitrary syzygy on {all"" as}. We can associate this with the syzygy T' = 

(Tl, ... , Ts, 0, ... , 0) on {aI, ... , Qs, ... , am}. Since ~ generates all such syzygies, 

we may write 

for some 8a E C[Xl, ... , xn]. Applying p gives 

since it is a module homomorphism. Thus p(~) is a generating set as required.D 

The above proposition is implemented by the function syz (see Appendix B). 

The following proposition can be used to restrict syzygies to a subring of the form 

f*C[Yl,'" , Ym], so that we find generators for S n f*C[Yl,'" , Ym]s. 

Proposition 2.3.2 Let S be a submodule of C[Xl, ... , xn]S generated by the (fi-

nite) set~. Let ei = (0, ... ,0,1,0, ... ,0) with the 1 in the ith place. Let 

r = {(fj - Zj)ei : i E {l, ... ,s},j E {l, ... ,r}} and define M = <~,r> n 

C[ZI"'" zm]S and N =<~> nf*C[Yl,"" Ym]s. If we define 

to be substitution of fi for each Zi, then <p(M) = N. 

Proof Any element of <~, r> will lie in <~> under the map <P and anything 

in C[ZI" .. 1 Zm]S will be mapped into f*C[Yl1' .. 1 Ym]s. Thus <p(M) C N. 
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Now let n be an arbitrary element of N. Write nl,"" ns for its components. 

so n = ~ eknk' Let G be a Grabner basis for <fl - Zl,"" fm - Zm> under lex 

order with Xl > ... > Xn > Zl > ... > Zm. By Proposition 1.3.1, nk G = Ok{Z) E 

C[Zb ... , zm], such that f3k(fl, ... , fm) = nk. In other words, we may write 

m 

nk = L D:k,i(X, z)(fi - Zi) + f3k(Z) 
i=l 

ssm s 
n = L eknk = L L ekD:k,i(X, Z)(ji - Zi) + L ek{3k(z). 

k=l k=l i=l k=l 
, .... ' "'"--....... "'.,-.--' 

d c 

Now <I>(c) = ~k=l eknk = n, but is c E M? It is certainly in C[Zll ... , zm]s. Now 

n, d E<E, r>, thus c E<E, r> too. Hence c E M and so <I>(M) ::J N.D 

Corollary 2.3.3 If {mil' .. , mt} generate M as a C[ZIl ... , zm] module, then N 

is generated as an j*C[Yl, ... ,Ym] module by {<I>(ml), ... ,<I>(mt)}. 

Proof Given an element n E N, there is m E M such that <I>(m) = n. Now we 

may write 
t 

m = L8(z)mi 
i=l 

where 8(z) E C[Zl,' .. , zm] and so 

t 

n = <I>(m) = L 8(f)<I>(mi)' 
i=l 

Thus we have expressed n as an element of the j*C[Yl, ... , Ym] module generated 

The next result helps to find the generators of N in practice. (This is a slight 

generalization of Proposition 1.2.7.) 

Lemma 2.3.4 Define I =<E, r> (with E, r as before) and Iz = InC[Zl,"" zm]s. 

Let G be a Grabner basis for I under a product order > with Xi > Zj for all i, j 

and let Gz = G n C[Zl,"" zm]s. Then Gz generates Iz and is in fact a Grabner 

basis under the order inherited from >. 
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Proof Write G = {,I,"" Ir} and assume that G z = {,I," . , lq}. :\ ow each 

element of Gz lies in Iz so <Gz>c Iz. Let ¢ be any element of I z and diyide it 

by G. This gives 

¢ = EI/I + ... + Eqlq + 0 . Iq+l + ... + 0 . Ir 

since cP E I and because the leading terms of Iq+l, ... "r must contain an x 

variable by virtue of the given order. (Note that this shows that dividing an 

element of I z by G is the same as dividing it by Gz .) Now we have shown that 

cP E <G z>, i.e. G z generates Iz. But is it a Grabner basis? 

If S denotes the S-polynomial then we need to show that S( Ii, Ij) Gk = 0 for all 

'i"j E Gk by Proposition 1.3.2. But S( Ii, Ij) E h since 'i"j E Ik and so, by 

the fact noted above, 

Thus Gk is a Grabner basis for Ik . 0 

So in order to find the generators of N, we need to calculate a Grabner basis for 

<E, r> under a suitable product order and pick out those elements which lie in 

C [Zl , ... , zm]. Substitution of fi for each Zi will give the required generators. 

Corollary 2.3.5 Let C[XI,"" xn] be an f*C[YI,"" Ym] module generated by 

aI, ... as' Let E generate the syzygy module of aI, ... as and let r be as before. 

Let G be a Grabner basis for < E, r> under a product order with Xi > Zj for 

all i, j. Then C[Xll ... ,xn ] is a free f*C[YI,' .. ,Ym] module if and only if G n 

C[ZI,"" zm] = 0. 

Proof This is equivalent to the fact that C[XI,' .. ,xn ] is a free module if and 

only if 
s 

L Ei(f)ai = 0 
i=l 
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for Ei E j*C[Yl,' .. ,Ym] implies (/ = 0 for all i. o 

The following Maple routine, subring_syz, uses the above l"(':-;nlh to find 

generators for the syzygies in a subring. G is the list of elements on which to 

find the syzygies, F is the list of generators of the subring and v i:-; the list of 

variables in the base ring. The routines mgbasis, into_ring, from_ring, syz 

from Appendix B and Albert Lin's routines from Appendix C are all requirpd. 

subring_syz:=proc(F,G,v) 

local i,j,Sig,Gam,s,ModBasis,Inter; 

Sig:=convert(syz(G,v),listlist); 

s:=nops(G); 

Y: = [] ; 

for i from 1 to s do 

Y:=[op(Y), _Y[i]]; 

od; 

Gam: = [] ; 

for i from 1 to nops(F) do 

for j from 1 to s do 

Gam:=[op(Gam), [0 $ k=1..j-l , F[i]-Y[i] ,0 $ k=j+1..s]]; 

od; 

od; 

ModBasis:=mgbasis([op(Sig),op(Gam)] ,[op(v),op(Y)]); 

Inter:=[] ; 

for i from 1 to nops(ModBasis) do 

if type(ModBasis[i] ,1ist(polynom(constant,Y))) 

then Inter:=[op(Inter),ModBasis[i]] fi; 

od; 

'3') . -



for i from 1 to nops(F) do 

Inter:=subs(_Y[i]=F[i] ,Inter); 

od; 

RETURN(Inter); 

end: 

An example of subring_syz in use: 

2 2 

F [x, y ] 

2 4 4 6 

G [y, y , x ,x y] 

> subring_syz(F,G, [x,y]); 

[ 4 2 ] 

[ 0 x - y 0 ] 

[ ] 

[ 6 ] 

[ 0 0 Y -1 ] 

Thus (0,.1". -.lJ~.O) and (O.O . .I/', -1) generate the s~'zygies on {y,.I?.r', .rll/ I
,} 

restrict('d to thp ring of polynomials in {X2,y2} (over C). 
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Chapter 3 

Finite polynolllial lllaps Cn ---t Cn 

This chapter is devoted to the definition of finite polynomial maps and a descrip

tion of some of their properties. As we shall see, each such map is associated 

with a free module over a polynomial ring, namely C[X1' ... ,xn] over its subring 

I*C[Y1,'" ,Yn]' Our first aim will be to find a method for determining algorith

mically if a given polynomial map is finite. If we have shown that a map is finite, 

we would then like to give generators for the associated module. Thirdly, we 

would like, if possible, to describe a free basis for the module. 

We look at a simple class of maps, with components which are quasihomoge

neous with respect to a fixed set of weights. We find a simple test for finiteness 

and a method for determining module generators, based upon testing if the quo

tient 
C[Xb'" ,Xn] 

<11"'" In> 
is finite dimensional as a C vector space. These results are then extended to those 

maps which are quasihomogeneous maps with extra lower order terms added. 

Finally, we describe a general criterion for a map to be finite and a method for 

finding generators for the module. This time we need to test if a C space basis 

(defined by a monomial order) for the quotient 

C[X1,"" Xn, Zl,'" ,Zn] 
<11 - Zb ... , In - Zn> 
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contains finitely many monomials in the x variables. We also have a condition, 

which if satisfied, shows that this set of generators is a basis. 

Next we define three different degrees which can be associated with a finite 

map. These are given by the dimension of a vector space, degree of a field 

extension and the size of a basis for the free module mentioned above. These 

three numbers are shown to coincide. 

In Chapter 4, The results on polynomial maps between affine spaces are ap

plied to regular maps between affine varieties. Again, we find a general criterion 

for such a map to be finite and a method for determining generators for the 

associated module. 

Finally in this half of the thesis, we look at the trace bilinear form of a finite 

map. This gives the number of roots of the system I = c for a point c in the 

target, as well as the number of real roots in an algebraically defined region. 

3.1 Definitions 

Let B ::) A be rings. An element b E B is said to be integral over A if it satisfies 

an equation of the form bm + albm - l + ... + am = 0, ai E A. The ring B is called 

integral over A if every element of B is integral over A. If B is finitely generated 

(as a ring) over A then B is integral over A if and only if it is a finitely generated 

A-module (See [ZS, ch V §1]). 

Let I = (II,"" In) : Cn 
---+ Cn be a polynomial map. The pullback map 

1* : C [Yl, ... ,Yn] ---+ C [Xl, ... , xn], associated with I, is defined by 

Now I is said to be quasifinite if every point has a finite number of preimages, 

i.e. the set I-I (y) is finite for every Y E C n . On the other hand, I is said to be 

finite if the ring C[Xl,'" ,xn ] is integral (and hence a finitely generated module) 

over the ring I*C[Yl,"" Yn]. The definitions of finiteness and quasifiniteness are 
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very similar and the difference between the two is quite subtle. In essence, they 

both imply that every point has a finite number of pre images , but for a finite 

map none of the roots in the set f-l(y) can go off to infinity as y moves around 

C n
. Hence finiteness implies quasifiniteness but not vice versa. Suppose f is a 

finite polynomial map and we wish to show quasifiniteness. It suffices to prove 

that each coordinate Xi can only take a finite number of values on the set f-1(y), 

where y lies in the target space. By the integral property, Xi, considered as an 

element of C[Xl"'" xn], must satisfy an equation xi+alx?,-l+ .. ·+am = 0, ai E 

f*C[Yl, ... ,Yn]' Thus, to be the ith coordinate of Z = (Zl"",Zn) E f-1(y), Xi 

must satisfy 

which is a non-zero polynomial and hence Zi can only take finitely many values. 

An example of a map which is quasifinite but not finite is f = (x, xy2 + y). This 

result will be proved later. 

We now give some useful properties of finite maps. 

Proposition 3.1.1 If f : cn -+ cn is finite and f(Cn) is dense in the target 

space (under the Zariski topology), then: 

1. f* C [Yl, ... , Yn] is isomorphic to C [Yl, ... , Yn] via f*· 

2. The map f is surjective (i. e. onto the target space). 

Proof See [Sh, p21] and [Sh, p48] respectively. o 

In fact, the condition that the image is dense in the target will always hold 

as a result of the following: 
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Proposition 3.1.2 Let f : X ---+ Y be a regular mapping oj affine varieties with 

Y irreducible. Furthermore, let both Y and the irreducible components oJ.\ have 

dimension n. Suppose that Jor some Yo E Y we have J-l(yO) finite, non-empty. 

then f(X) is dense in Y 

Proof We wish to show that f(X) = Y (where f(X) denotes the Zariski closure 

of f(X)). By Theorem 1, [Sh, p54], it is enough to show that dimJ(.\") > n. We 

now replace X by an irreducible component containing some point of J-l(yO)' 

But f : X ---+ f(X) is a regular mapping. Thus dimJ-l(y) > n-dim(J(X)) 

for all y E f(X) by [Sh, p60]. But if we take y = Yo then dimJ-l(yo) = 0, so 

dim(f(X)) > n. 0 

Another property of finite mappings is the following: 

Proposition 3.1.3 If f : cn ---+ Cn is finite, then it is also proper. (In other 

words, the inverse image of a compact set is compact under the standard metric 

topology on C n.) 

Proof We wish to show that for any compact set C, f-l(C) is also compact, i.e. 

bounded. Now since f is finite, for all i there exist {3j E f*C[Yl,' .. ,Yn] and m 

such that 

Xr + {3m-l (f)xr- 1 + ... + (3o(f) = o. 

If we choose x = (Xl,"" Xn) such that f(x) E C, where C is a given compact 

set, then 

(3.1) 

where the "'j E (3j(C) and hence are bounded. If we rewrite (3.1) as 

m "'m-l "'0 ) 0 x· (1 + + ... + - = 
, X· X~ 

I t 

then we see that for Xi with IXil large, (1 + 11:';;1 + ... + ~) cannot be zero 

since the "'j are bounded. So Xi is bounded for each i and the map is proper as 
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required. o 

Proposition 3.1.4 Let f : en ~ en be a finite map. Then the set of critical 

values (i.e. images of points where the Jacobian is degenerate) is closed, both in 

the Zariski and the standard topology. 

Proof Let Yn ~ Y with Yn critical and let Xn be a corresponding critical point, 

so Idf(xn)1 = O. Let D be a compact neighbourhood of y: since f is proper (see 

previous result), f-l(D) is also compact. Hence the Xn have an accumulation 

point x, say. Now Idf(x)1 =l~~ Idf(xn)1 = O. So x is critical and f(x) =1~~ 

f(xn) = y. Thus y is also a critical value and we find that the set of critical 

values is closed in the standard topology. 

Now the set of critical points is Zariski closed (determined by the vanishing of 

a determinant) and hence its image is constructible. But by Lemma 3.1.5 below, 

we know that a closed, constructible set is Zariski closed. o 

Lemma 3.1.5 A closed, constructible set is Zariski closed. 

Proof Let T ::J S be affine varieties in en with no components in common. We 

may write T as a union of its irreducible components 

and so 
r 

T - S = U(Ti - Si) (3.2) 
i=l 

where Si = S n Ti. Now we may write Ti - Si = P(Ti) - (P(Si) U (P(Ti) n Hoo )), 

where PO represents the projective closure and Hoo rv pn-l is the "hyperplane 

at infinity". Now P(Si) and (p(Ti)nHoo ) are both Zariski closed by definition, so 

their union must be too. Considering the subspace topology on P(Ti)' (P(Si) U 
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(P(Ti ) nHoo)) will also be Zariski closed in P(Ti)' Thus Ti - Si is Zariski open in 

P(Ti ) and non-empty, since T and S have no components in common. By [Mu, 

p39], the closure (in the classical topology on pn) of Ti - Si is P(Ti)' \Ve will 

wri te this as 

Applying this to (3.2), we obtain 

=-----,;::p n r 

T - S = U P(Ti ) 

i=l 

which in fact equals P(T) for the following reason. The set Ui=l P(Ti ) is a 

projective variety containing T, but P(T) is the smallest such variety by definition 

(see [CLO, p377]). So 
r 

P(T) c U P(1i). 
i=l 

Suppose P(Tj ) is not a subset of P(T). Consider the variety P(Tj ) n P(T). This 

is a variety containing Tj which is strictly smaller than P(Tj ). This contradicts 

the definition of P(Tj ), so P(Tj ) C P(T). The required equality follows. 

Now since the classical topology on Cn is a subspace topology of that on pn, 

T - Sen is the affine part of P (T), i. e. T itself. Hence a (classically) closed set 

of the form T - S must in fact be Zariski closed. 

Any constructible set is a disjoint union of sets of the form T - S, so a closed 

constructible set is Zariski closed. o 

The degree of a map j : C n ~ Cn is defined to be the degree of the field 

extension [C(x) : j*C(y)]. The number of inverse images of a point in the target 

is at most the degree of the map. The ramification locus is the set of points 

where this number falls below the degree. The following allows us to determine 

if a given point falls within this variety. 

Proposition 3.1.6 Again, let j : cn ~ cn be a finite map. Then the ramifica

tion locus and the set of critical values are equal. 
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Proof Let Y be a non-ramified point and let x E f-l(y). Then df(x) IS an 

isomorphism, so Y is a regular (non-critical) value (see [Sh, p120)). 

Now suppose Y is a regular value, then there is a compact neighbourhood D of 

Y of regular values. Since the ramification locus is closed and a proper subset of 

cn (see [Sh, pl17]), we can find points arbitrarily near y which are non-ramified. 

Choosing D small enough, we find f : f-l(D) ~ D is a cover and the number 

of sheets is If-l(y)\ which is also the degree of f. So y is also a non-ramification 

point. 

Thus we have shown inclusions in both directions, so the two sets are equal. 0 

We have already seen that for f : c n ~ C n finite, C[Xl,···, Xn] is finitely 

generated as an f*C[Yl, ... ,Yn] module. The following gives further infomation 

concerning this module: 

Proposition 3.1.7 Let f : cn ~ cn be a finite map. Then C[Xl' ... ,xn] zs a 

free f* C [Yl, ... ,Yn] module. 

Proof Since the source and target varieties are in fact affine spaces, they are cer

tainly Cohen-Macaulay and smooth respectively. Thus by [Ma, p179], the map 

f (and hence C[Xl, ... , Xn] as an f*C[Yl,· .. ,Yn] module) is flat. Now by [C2, 

p242 Cor 6.4], a flat module which is finitely generated over a noetherian ring 

is projective. The ring f*C[Yl, ... ,Yn] is certainly noetherian, so C[Xl' ... ,xn] is 

a projective f*C[Yb . .. ,Yn] module. Finally, by [Q] a projective module over a 

polynomial ring is free, so we have the required result. 0 

3.2 Simple types of finite map 

We begin by giving some simple types of finite map, which are easy to identify. 

In the following, given a set of weights W = (WI, ... , W n ) E N n (each Wi > 0), 
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we define the w-degree of a monomial by deg (xa1 x a2 x/ln) _ ,,~ '. y • 
w 1 2'·· n - ~t=I uta l • .'0\\ 

a polynomial is said to be quasihomogeneous if all its monomials have the same 

w-degree. 

Proposition 3.2.1 Let I = (11,.'.' In) : cn -+ C n be a polynomial map with 

each component Ii quasihomogeneous with respect to a set of weights w = (WI, ... , lI'n). 

Then 

d
. C[X1, ... ,Xn] 
lTinc (3.3) 

<11,···, In> 
is finite il and only il the map I is finite. Moreover, if B is a monomial ba-

sis lor the above vector space, then B generates C[XI' ... ,xn ] as a module over 

I*C[YI, ... , Yn]. 

Proof Let ¢ E C[XI, ... , xn] be an arbitrary element. We wish to express ¢ 

in terms of Band I*C[Y1, ... , Yn] so that ¢ = L~l 8i bi with bi E B, 8i E 

I*C[YI, ... ,Yn]· (This shows that C[X1, ... , Xn] is a finitely generated module 

over I*C[YI, ... ,Yn] and hence that I is finite). Now we may write 

m n 

¢ = L Aibi + L Qili (3.4) 
i=l i=l 

where Ai E C and Qi E C[Xb ... , Xn] by consideration of ¢ as an element of 

the quotient in (3.3). In fact, by Lemma 3.2.2 and the fact that the Ii are 

non-constant, we also have that Qi = 0 or degw Qi < degw ¢. Now since Ai E 

I*C[Y1, ... ,Yn], the first sum in (3.4) is of the required form. The second sum 

will also be of the correct form if the Qi lie in the I*C[Y1, ... , Yn]-module generated 

by B. Thus we now express each non-zero Qi as in (3.4) and continue the process. 

If all the polynomials are eventually reduced to zero, then we have shown, as 

required, that ¢ is an element of the module generated by B. Now at each stage, 

the (non-negative) weighted degrees are strictly decreasing, or the resulting Qi 

are zero, so this will eventually occur. 

For the converse, suppose that the dimension in (3.3) was infinite. Then, this 

would imply that 0 had an infinite number of preimages (see Proposition 1.2.5) 
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and this would contradict the finiteness of f. The second result has already been 

proved. o 

Lemma 3.2.2 Let fb ... ,fn be non-constant polynomials in C[XI' ... ,Xn ], each 

of which is quasihomogeneous with respect to a set of weights w = (WI, ... , w
n

) 

E Nn. Then if cf> E</I,· .. ,In>, cf> =I- 0, we may write 

n 

cf> = L O!ifi 
i=l 

Proof Since cf> E< II, ... ,In >, we may write cf> = Ei=l {3ifi for some (3i E 

C[XI, ... , xn). Suppose there is a {3jlj such that degw {3jfj > degw cf>, otherwise 

the proof is complete. Take the quasihomogeneous part of each {3ili of this w

degree. Since the Ii are quasihomogeneous, these may be written as (iii in each 

case. ((i E C[XI, ... ,xn) and possibly zero). But Ei=l (iii = 0, so 

n n n 
cf> = L {3ifi - L (iii = L({3i - (i)/i· 

i=l i=l i=l 

In this manner, all the higher terms may be discarded. o 

Since the proof of Proposition 3.2.1 is constructive, it is easy to give an example 

of how an arbitrary element of C[XI' ... ,Xn ) may be rewritten as an element of 

the module. 

Example 3.2.3 Let f = (fl, f2) = (X2+ xy3+ y6, y3), which is quasihomogeneous 

wi th respect to the set of weights w= (3,1). Now we find that {I, x, y, xy, xy2, y2} 

is an LT monomial basis for the quotient of C[Xl, ... ,xn ) by the ideal <X2 + xy3 + 

y6, y3> (See Proposition 1.2.5). So by Proposition 3.2.1, we know that f is finite. 

Now let us choose cf> = X3 as our polynomial to reduce. This can be written as 
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N ow rewriting - X2 - xy3 gives 

and y3 can be written 

which gives 

¢ = x(Id + (- II + {1)12. 

In other words, 

Thus x 3 has been expressed in terms of the given basis, with coefficients in 

3.3 Further finite maps 

Having shown that a map with quasihomogeneous components can be tested for 

finiteness by looking at the dimension of a quotient space, we extend this result 

to a larger set of mappings. 

Proposition 3.3.1 Let (11, ... , In) : cn ~ Cn be a finite polynomial map with 

quasihomogeneous components with respect to a set of weights W = (WI,···, wn)· 

Let (gl, ... , gn) E C[Xb .. ·' xn]n be such that for each i, degw gi < degw fi. Then 

the map (I + g) = (11 + gl, ... , In + gn) : Cn ~ Cn is also finite. Moreover, if B 

is a monomial basis for the vector space, 

C[Xl, .. ·,Xn] 

<11,···, fn> 

then B generates C[Xl, ... , xn] as a module over (f + 9 )*C[Yl' ... , Yn] 
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Proof Let ¢ E C[XI, ... ,xn ] be an arbitrary element. Then we may write (/) as 

in Proposition 3.2.1 as 
m n 

¢ = L Aibi + L Q;iIi 
i=1 i=1 

where Ai E C, bi E B, Q;i E C[XI, ... ,xn ] and Q;i = 0 or degw Q;i < degw ¢. This 

gIves 
m n n 

¢ = L Aibi + L Q;i(Ii + 9i) - L Q;i9i· (3.5) 
i=1 i=1 i=1 

Now ~ Q;i9i = 0 or degw(~ Q;i9i) < degw ¢, so rewrite ~ Q;i9i in the form of (3.5) 

and continue to reduce. Since the degree is strictly decreasing, the process will 

terminate, giving 
m n 

¢ = L Kibi + L f3i(Ii + 9i) (3.6) 
i=1 i=1 

where Ki E C, f3i E C[XI, ... ,xn ] and degw f3iIi < degw ¢. Now rewrite f3i as in 

(3.6) and continue this process inductively. Since at each stage degw f3i < degw ¢, 

this will also terminate, giving ¢ as a linear combination of elements of B with 

coefficients in (I + 9)*C[YI,··· ,Yn] as required. D 

Since this proof uses two different inductive processes, it is more complicated to 

do an example by hand. (See below for a computer program which will write an 

arbitrary element in the required form). However, the second reduction step is 

almost identical to the reduction step of Proposition 3.2.1, so we just illustrate 

the first step of the proof. 

Example 3.3.2 Again, take I = (Ib 12) = (x2 + xy3 + y6, y3), a quasihomoge

neous finite map, but this time, let 9 = (9b 92) = (x + 8, y) be the extra, lower 

order part. Take ¢ = X2 as our polynomial to reduce to the form of (3.6). Now 

we may write it as 

Adding and subtracting the 9i gives 
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and hellce 

Now rewriting y4 gives 

So we obtain 

¢ = -8 - x + xy - y2 + (11 + 91) + (-x - y3 + y)(12 + Y2) 

and so x 2 is expressed in the form required. 1\ ow ~) is of "'-degree 6 and t h(' 

largest w-degree on the right is also 6, in (11 + 91) and -y3(h + 92)' so tlH' gi\'(ll\ 

inequality does hold. 

This 1\ Iapl(' routine will express an element of C [.1'1 ~ .... X n ] as a member of a 

C[jl + 91, ... , In + 9n]-module where Ii,9i ar(' as in Proposition 3.3.1. 

asmodule:=proc(h,F,G,v,order) 

local i,Ans,rm,Sp,Trm,j; 

Sp:=FGR(h,F,G,v,order); 

Ans: =Sp [1] ; 

rm:=[[Sp[i+1J ,F[iJ+G[iJJ $ i=1 .. nops(F)J; 

while rm <> [J do 

if rm[1J [1J=0 then rm:=[rm[iJ $ i=2 .. nops(rm)J; 

else Sp:=FGR(rm[1J [1J ,F,G,v,order); 

Ans:=Ans+(Sp[1J*rm[1J [2J); 

Trm:=[rm[iJ $ i=2 .. nops(rm), 

[Sp[j+1],(F[jJ+G[jJ)*rm[1J[2JJ $j=1 .. nops(F)]; 

rm:=eval(Trm); 

fi; 

od; 



RETURN(Ans); 

end: 

In the above, h is the element to be rewritten, F and G are (11,"" In) and 

(gl, ... , gn) respectively, v is the list of variables and order is the monomial ordf'r, 

given as a list of vectors. (See Appendix C for the definition). As tIlE' program 

runs, Ans contains the answer as it builds up, rm contains the remaindf'L yt't III 1)(' 

rewritten, in the form [ [aI, Fil +Gi) , ... , [as, Fi s +G,J J. \vhere thf' rf'lllaindrr 

is actually '£ aj (Iij + gij)' Then al is itself split up, some of which is addf'd to 

Ans, the rest to rm. The following subroutine is also needed: 

FGR:=proc(h,F,G,v,order) 

local Ans,temp,i,Extra,Textra; 

for i from 1 to nops(F)+l do 

Ans[i] :=0; 

od; 

Extra:=h; 

while Extra <>0 do 

temp:=remainder(Extra,F,v,order); 

Ans [1] : =Ans [1] +temp [1] ; 

Textra:=O; 

for i from 1 to nops(F) do 

Ans [i +1] : =Ans [i +1] +temp [2] [i] ; 

Textra: =eval(Textra-temp [2] [i]*G[i]); 

od; 

Extra:=eval(Textra); 

od; 

RETURN(convert(Ans,list)); 

end: 



The subroutine FGR above uses the remainder function from Albert Lin's 

Grabner basis package (See Appendix C). With h, F ,G, v ,order as in the routine 

asmodule, it gives [r ,al,'" ,~] as output, where h = r + L ai(!i + 9i) as in 

(3.6) above. 

3.4 Projective geometry of finite maps 

We may consider the components of a map as defining hypersurfaces in projec

tive space. By studying these, especially their intersections, we may determine 

whether a map is finite, in a similar way to that of Proposition 3.2.1. 

Proposition 3.4.1 Let f = (fl,"" fn) : cn ---+ Cn be a polynomial map. Let 

f{, ... ,f~ be the leading homogeneous parts of the components of f· Given y = 

(Yl, ... ,Yn) E Cn, let fi, ... ,fX be the homogenizations with respect to a variable 

z of fl - Yl,'" ,fn - Yn- Then 

1. If f{, ... ,f~ have no common root in pn-l, then f is finite. 

2. If for some y, the curves given by fi = 0, ... , fX = 0 do not meet in pn at 

the hyperplane given by z = 0, then f is finite. 

Proof Part 1: By the Projective Weak Nullstellensatz ([CLO, p370]), for each i 

there exists mi such that X~i E <f{, ... , f~>. Hence the quotient 

C[Xl,""Xn ] 

<fL .. · ,f~> 

is a finite dimensional C-vector space. Thus (see Proposition 3.2.1) (fL· .. ,f~) : 

cn ---+ C n is finite. This in turn means that f itself is finite (see Proposition 

3.3.1). 

Part 2: Now fi = 0, ... , fX = 0 meet in the hyperplane z = 0 if and only if 

ff, ... , f~ have a common root, since substituting z = 0 into fiY gives fI. 0 
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Remark In the second part of the above, the points of intersections on z = 0 

do not depend on y. If I is finite, but has intersections on z = 0, then the 

intersection multiplicity of If = 0, ... ,Ii( = 0 is also fixed. Suppose that there 

is a point on z = 0 which is also a point of intersection of If = 0, ... ,Ii( = o. 
The only way the intersection multiplicity here can increase is if an intersection 

away from z = 0 moves out and joins it. Suppose we take y = Yo and at this 

point a certain intersection lies away from z = 0, but as we move to y = Yl this 

root moves to the hyperplane z = o. Returning to the affine viewpoint, if we 

take a compact set containing a path between Yo and Yll its preimage will be 

unbounded, since it will contain all the positions of the root in question as it 

moves out to the "hyperplane at 00". So the preimage will not be compact and 

this contradicts the properness of the finite map. 

The description of finiteness in terms of projective varieties yields the following 

result. 

Proposition 3.4.2 In the space of all polynomial maps f = (fl, . .. ,fn) : en --+ 

en such that deg Ii = di for fixed d l , ... ,dn, the non-finite maps lie inside a 

proper (Zariski) closed subset. 

Proof From Proposition 3.4.1, we know that if the leading homogeneous parts 

I{, ... , I~ have no common root in pn-l, then f itself is finite. We will show that 

the set where they do have a common root is a closed subset of the given space 

of mappings. 

For a given degree di , we may represent the space of homogeneous polynomials 

of this degree in n variables by a projective space pNi, where each homogeneous 

coordinate Yi,j represents a monomial xi,j in Xl, ... , Xn . So we have an isomor

phism 
N, 

\II : L "'jXi,j 1--+ ("'0 : "'1 : ... : "'N.) E pN, 
j=O 
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where Kj E C. (NB All non-zero scalar multiples of a polynomial are represented 

by the same point of the space). Consider the following space: 

pn-l X pNl X ... X pNn 

and let ~ C pn-l X M be the set 

, v ~ 

II 
M 

Now a closed subset of pn-l X M is one defined by equations which are homoge

neous in each set of variables (one set per projective space in the product). Can 

~ be defined in this way? For each i, consider variables Xl, . .. ,Xn on pn-l and 

variables Yi,O, ... , Yi,Ni on pNi. Then 'lJ-l(hi)(x) = 0 is equivalent to 

Ni 

LYi,jXi,j = 0 
j=O 

which is a polynomial in the given variables, homogeneous of degree 1 in the Y 

variables and degree di in the X variables. Thus the common locus of all such 

polynomials (i.e. ~) is closed in pn-l X M. 

Now a product of projective spaces may be considered as a variety in a larger 

projective space via the Segre mapping (see [H, p25],[Sh, p41]). So we may 

consider pn-l X M as a product of varieties. Thus by ([Sh, p45 Thm 3]) the 

projection 

7r : pn-l X M ---+ M 

carries closed sets to closed sets. This means that 7r(~), (i.e. those n-tuples 

which do not have a common root) form a closed subset. Now (xtl, ... ,x~n) lies 

outside 7r(~), so it is a proper closed subset. o 

We now give some examples. 

Example 3.4.3 The map f = (x3 + xy, y4 - y) : C 2 ---+ C 2 is finite. as we will 

show using the above proposition. We will choose the point in the target (called 
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y in the above) to be (0,0). Homogenizing I with re pe t to he yariabl ::;. ,y 
b . (3 4 3) o taln x + xyz, y - yz . Now the curves X3 + xyz = 0 and y4 - y::;3 = 0 ,,-ill 

meet at the hyperplane z = 0 when x3 = y4 = 0 which inee we ar workino in 

projective space, will not occur. Thus I is finite b part 2 aboy . 

Ex ample 3.4.4 The map f = (X2y2 + y2 X2 - xy) : e 2 ---+ e 2 i in fa t fillit , 

although it fails the criterion given above. Let the eho en point in the tar 'et b 

(aI, a2)' Now, homogenizing we obtain (X2y2 + y2 z2 - alz4 x2 - xy - a2z2). The 

on the hyp rplan ' 

z = 0 at the point (0 : 1 : 0), so f does indeed fail th erit rion. no ed ab ve 

the curves have intersection multiplicity 2 at thi point regardl of the V":tlue 

of al and a2· 

3.5 Equality of leading term ideals 

Sine the ideal of leading terms can be used to determine if a map i finit r 

not, we now xamine them a little a more closely. 

Proposition 3.5.1 Let (fI, ... 1 In) : e n ---+ en be a finite polynomial map with 

quaS?]wffiogeneous components with respect to a set of weights w = (WI, ... , wn)· 

Let (gl) .. . ) gn) E e [Xl) ... ) xnln be such that for each i, degw gi < degw ft. Let 

If =<f1,' . . ) fn> and I f +g =<fl + gl ... ) fn + gn>' Then in an order grad d 

with respect to the set of weights w <LT(If »C <LT(If +g»· 

Proof Suppo e ¢ E If. Th n we may write it as 

n 

,,,h r 0i E e[Il 1 '" .1'nl and egw Q;,di < egw ¢ by L mma 3.2.2. W . n, id r 

tll<.' polyn llli'~l 
II 

- = L Cli I ,+gJ· 
1-1 
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This is in all respects the same as 4J, except for the addition of some terms 0igi 

where degw 0igi < degw 4J. Thus, LT(4J) = LT(~). So LT(If ) C LT(If +g ) and 

hence the result. o 

Now this result can be strengthened to equality, but we need the following 

proposition. It gives a strong condition on the syzygies among the fi, relying on 

the property that C[Xl,"" xn] is free over f*C[Yl,"" Yn] 

Proposition 3.5.2 (The Syzygy Result) For a finite map f = (fl,"" fn) : 

cn ---+ C n, the syzygies on the components are generated by the trivial syzygies of 

the form fiej - fjei where {ell'" ,en} is the basis of the module C[Xl,'" ,xn]n. 

Proof Let u = «(Ill' .. ,(In) E C[Xl' ... ,xn]n be a syzygy on the fi, so 

n 

0' . f = L (lifi = O. (3.7) 
i=1 

Let b1, ... ,bs be a free basis for C[Xll"" xn] as an f*C[Yl,"" Yn] module. We 

may write 
s 

(Ii = LTij(f)bj 
j=1 

and so writing Tj = (Tlj"'" Tnj) , we get 

s 

U = LTj(f)bj . (3.8) 
j=1 

Substituting this definition of 0' into (3.7), we obtain 

s 

L(Tj(f) . f)b j = 0 
j=1 

and hence since the module is free, (Tj(f) . f) = 0 for all j. Now this is another 

syzygy on the fi, but observe that T j(f) E f*C[Yl, ... , Yn]n. Since f*C[Yl, ... , Yn] 

is isomorphic to C[Yl, ... ,Yn] via f* (see Proposition 3.1.7), this is equivalent to 

the syzygy 
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where Y = (Yl, ... , Yn). Now the syzygies on the Yi are generated by the trivial 

ones Yiej - Yjei, so Tj(Y) must also lie in this syzygy module. Hence via the map 

f*, T j(f) lies in the module generated by the trivial syzygies fiej - fjei. ~ow u 

is just a linear combination of the Tj(f) (see (3.8)), so it also lies in this module.D 

Using the syzygy result we obtain the following result, which shows why the 

finiteness of a quasihomogeneous map is unaffected if we add extra lower order 

terms. 

Proposition 3.5.3 With the same conditions as Proposition 3.5.1, <LT(If »= 
<LT(If +g»· 

Proof Now Proposition 3.5.1 showed < LT(If ) >C< LT(If +g ) >, so only the 

reverse inclusion needs proving. 

Suppose a polynomial ¢ E C[Xl, ... , xn] is written 

n 

¢ = L Qi(fi + gi) + h 
i=l 

where Qi E C[Xl, ... , xn] and h E If n I f +g · 

Define d(¢) = max{degw(Qi(fi+gi)): i = 1, ... ,n} if some Qi i= 0 and 0 

otherwise. Thus d( ¢) depends not only on ¢, but also on how it is written. 

We wish to show that LT( ¢) E<LT(If ) > or f may be rewritten such that 

d( ¢) decreases. 

There are 3 cases to consider: 

• Case 1: LM(h) > LM(L, Qi(fi + gi))· 

• Case 3: LM(h) < LM(L, Qi(fi + gi))· 

Case 1: Here, LT(¢) = LT(h) E<LT(If » and so this is a trivial case. 
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Case 2: Now since h E I f +
9

, write 

n 

h = L (i(!i + gi)' 
i=l 

This can be split up, according to the w-degree of (i!i as follows: 

n n n 

h = L 1]i(!i + gi) + L (}i(!i + gi) + L L Eji(!i + gi)' 
i=l i=l j i=l 

The splitting is defined as follows: for each j, 'L Eji(!i) is a quasihomogeneous 

part of E (i(!i) of a w-degree j strictly greater than d(¢). The element 'L 1Ji(!i) is 

the part of E (i(!i) of w-degree equal to d(¢). Now 'L (}i(!i) is the remainder, i.e. 

the part of 'L (i(!i) of w-degree strictly less than d(¢). We can split up 'L CY.i(!i) 

itself similarly: 
n n n 

L Q;i(!i) = L {3i(!i) + L 8i(!i), (3.9) 
i=l i=l i=l 

where E {3i(!i) is the part of w-degree d(¢) and 'L 8i (!i) is the remainder. Con

sider E({3i + 1Ji) (!i). If this is non-zero, then LT( ¢) = LT('L({3i + 1Ji)(!i)) and 

hence LT(¢) E<LT(If». However, if this sum is zero, then the Syzygy Result 

gives {3i + 1]i E If and so 

n n n 

¢ = L(8i + (}i)(!i + gi) + L({3i + 1]i)(!i + gi) + L L Eji(!i + gi) 
i=l i=l j i=l 

~-------------v-------------
II 

h 

(3.10) 

Now h E If n If9 since the first sum certainly is, from above and Eji E If by the 

following argument. We know that for each j, degw LM (h) = degw LM ('L Q;i (!i + 

gi)) < d(¢) < j and so E Eji(!i) = 0 otherwise there would be a monomial in h 

greater than LM(h). Thus by the Syzygy Result, Eji E If· 

Thus, by consideration of (3.10), we see that ¢ has been rewritten in such a 

way that d( ¢) has decreased. 

Case 3: Splitting E Q;i(!i) into two sums as in (3.9), suppose E {3ili is non-zero. 

then LT(¢) = LT(E {3i!i) E<LT(If» as required. If the sum is zero, then b~' 
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the Syzygy Result, (3i E If for all i. This gives 

n n 

cP = Lbi(fi + 9i) + L{3i(fi + 9i) + h. 
i=l i=l 

~'----..... ----' 
II 

h 

Now h E If n I fg , so again cP has been rewritten so that d(cP) has decreased. 

Now given some cP with h = 0, i.e. an arbitrary element of I f +g , we have shown 

that either LT(cP) E<LT(If » or d(cP) can be repeatedly reduced. Suppose the 

latter happens. Now d(f) = 0 can only occur if 

n 

cP = L 0 . (fi + 9i) + h 
i=1 

in which case, LT(cP) = LT(h) E<LT(If ». Thus <LT(If+g»C <LT(If » 

and hence <LT(If+g»=<LT(If ». 

3.6 Finiteness criterion 

We can now give a criterion for determining if a general polynomial map f 

en ~ en is finite, but first we have a preliminary lemma: 

o 

Lemma 3.6.1 Suppose that >1 and >2 are product monomial orders on 

e[Xl, ... , Xn, Zb ... , zn] such that Xi >k Zj for i,j = 1, ... , nand k = 1,2. Let 

fl' ... ,fn be polynomials in e[Xl, ... , xn] and let LTk denote the leading term 

with respect to > k. Then there exist mj E N for j = 1, ... ,n such that 

if and only if there exist rj E N for j = 1, ... ,n such that 
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Proof For the definition of product orders, see §1.1. Now the sets Bl and B
2

, 

where Bk = {xQ : xQ ¢ LTk( <fl - Zl,"" fn - zn>)} form a basis for the C vector 

space 

Thus IBll = IB21 and so one is finite if and only if the other is. Hence the result 

follows. (Compare Proposition 1.2.5.) 0 

Proposition 3.6.2 (Finiteness Criterion) Let C[Xl' ... ,Xn, Zl,' .. ,zn] have, 

as in Lemma 3.6.1, a product monomial order with Xi > Zj for i, j = 1, ... , n. 

Then a polynomial map f = (fl, ... ,fn) : cn ---+ cn is finite if and only if there 

exist mj E N for j = 1, ... ,n such that 

(3.11) 

Proof Suppose the condition (3.11) holds for the order> and some polynomial 

map f : cn ---+ cn. Now by Lemma 3.6.1, it will also hold for the order >lex(j) 

for any given j E {I, ... , n}, where >lex(j) is defined as lexicographic order with 

Xl > X2 > ... > Xj-l > Xj+l > ... > Xn > Xj > Zl > ... > Zn' This is a product 

order since we may consider it as a product of lex on the X variables and lex on 

the Z variables. Hence we have 

for some ai,j E C [Xl, ... , Xn, Zl, ... , Zn]. By consideration of the monomial order, 

we may write 
n mj 

L ai,j(/i - Zi) = L f3k(Z)xj 
i=l k=l 

where f3k is a polynomial in C[Zll ... ,zn], with f3mj = 1. Now setting Zi = fi for 

all i we obtain 
m' J 

o = L f3k(f)xj 
k=l 
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which is a monic polynomial in Xj with coefficients in f*C[Yl,"" Yn]. Thus 

Xj is integral over I*C[Yl," . ,Yn]' This may be repeated for each j and hence 

C[Xl"'" xn] is integral over I*C[Yl,"" Yn], i.e. the map f is finite. 

For the converse, suppose that f is a finite map. Then for each j E {I, ... , n}. 

there exist polynomials Di E 1* C [Yl, ... , Yn] such that 

xj + Dm - 1 (f)xj-l + ... + Do(f) = 0 

sInce C[Xl"'" xn] is integral over I*C[Yl,"" Yn). Denote by I fz the ideal 

<11 - ZI,"" In - Zn>' Now Ii = Zi modulo I fz for i = 1, ... , n and hence if 

¢ is any polynomial, then ¢(/l,'" , In) = ¢(Zl,"" zn) modulo I fz . Thus we 

have 
m m 

L Dk(Z)xj = L Dk(/)xj = 0 modulo I fz 
k=1 k=1 

where Dk(Z) is simply Dk(/) with each Ii replaced by Zi' Hence 

m n 

L Dk(Z)xj = L ti(/i - Zi) 
k=1 i=1 

with ti E C[Xl,""Xn, ZI"",Zn]' So xj = LT(L(i(fi-zi)), in other words, 

xj E LT(Ifz ). This may be repeated for each j and hence the result follows. 0 

We can use Proposition 3.6.2 to determine a generating set for C[Xl' ... ,xn) as 

an I*C[Yl,' .. , Yn] module as follows. 

Proposition 3.6.3 Let (11, ... , fn) : cn ---? cn be a polynomial map. Suppose 

B = {bA(x, z) E C[Xl, ... , xn, ZI,' .. , Zn]}AEA is a basis for the C vector space 

C[Xb' .. , Xn, ZI, ... , Zn] 

<11 - Zl,"" In - Zn> 
(3.12) 

If Bm is the set of monomials of elements of Band W is the map obtained by sub

stituting Zi = 1 for all i, then w{Bm) generates C[Xl' ... ,xn] as an f*C[Yl, ... , Yn] 

module. 
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Proof Let ¢(x) be an arbitrary element of C[Xll ... ,xn]. We may write 

n 

¢(x) = L 11>. . b>.(x, z) + L (3i(X, Z)(Ii - Zi) 
>'EA i=l 

where 11>. E C and (3i E C[Xl' ... ,Xn, Zl, ... , zn]. Substitution of Zi = Ii gives 

where oo(f) is some element of f*C[Yll ... ,Yn]. Thus w(Bm) is a generating set 

for C[Xl' ... ,xn] as an f*C[Yl, ... ,Yn] module as required. o 

Note that if we take f to be a finite map in the above, then the set B will of 

course be finite. The following corollaries give a particularly simple set of module 

generators and condition for this to be a free basis. 

Corollary 3.6.4 Let C[Xl, ... , Xn, Zl, ... ,zn] have a product monomial order 

with Xi > Zj for i,j = 1, ... ,n and let L = {XO 
: XO ¢ LT(Ljz)}. Then L 

generates C[Xl, ... ,xn] as an f*C[Yl, ... ,Yn] module. 

Proof Now any element of the LT-monomial basis of Ljz is expressible as xOzo ' 

where X O E L, so will lie in Lunder W.O 

Corollary 3.6.5 L (defined as above) is a free basis for C[Xl, . .. ,xn] as an 

f*C[Yl, ... ,Yn] module if and only if the LT-monomial basis of Ljz (using the 

same monomial order as above) is {XOZO' : X O E L, any ZO'} (i.e. the ideal 

<LT(Ljz» is generated by monomials in C[Xll ... ,xn1J. 

Proof Suppose we have 

L l· fl(f) = 0 
lEe 

for some fl(f) E f*C[Yl, ... , Yn]. Let {fk}kEK be the set of all monomials in 

fl' ... ,in- Then for each 1 we may write 

fl(f) = L Al,k . fk 
kEK 
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where AI,k E C. So 

L A"k(l· fk) = 0 
lEC,kEK 

Now modulo I fz , this is 

L Al,k(l· zk) = 0 
lEC,kEK 

But the monomials 1 . zk form a basis of the vector space (3.12), hence Al,k = 0 

for alll, k. Thus fl(f) is identically zero for alll, so .c is a free basis as required. 

Now suppose that .c is a free basis, but there is a monomial xozo' with Xo E .c 
but which lies outside the LT monomial basis. We may suppose without loss of 

generality that every monomial which divides it lies inside the monomial basis. 

If we write G for a Grabner basis of I fz (as defined above) then there is some 

'Y E G such that LT( 'Y) = xozo'. By consideration of the monomial ordering, we 

see that the x part of any monomial of 'Y must be less than Xo and hence in .c. 
Using this, we may write 

'Y = L l . (I (z) E If z 
lEC 

where (I E C[Zl, ... ,zn] and with zero constant term. Now replacing each Zi by 

fi gives 

L l· (l(f) = 0 
lEC 

which is an f*C[Yl, . .. ,Yn] syzygy on .c, contradicting the fact that it is a free 

module basis. 0 

Suppose for some multi-index {3, 'Y. xf3 still consisted of monomials whose x 

components lay in C. This product would also form an f*C[Yl, . .. ,Yn] syzygy on 

C. We will call such a syzygy a parallel syzygy. The method given above yields 

the following: 

Corollary 3.6.6 Let G be a Grabner basis for I fz (as defined above) under the 

given product monomial order. Let G' be the set of elements of G whose leading 

monomials are such that the x component lies in C. Now to each "y E G' we 
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can associate (as shown in the proof of the previous corollary) an f*C[Yl' ... ,Yn] 

syzygya(,) on C. Then O'(G') and parallel syzygies generate the f*C[Yh"" Yn]

syzygy module on C. 

Proof Let T(f) be an f*C[Yh ... ,Yn] syzygy on C. Writing I for the elements 

of C as a vector, this means that 

T(f) ·1 = 0 (3.13) 

thus if we replace each fi by Zi, we obtain 

T(Z) . I E LIz' 

So T(z)·l is a C[Xl,"" Xn, Zl,'" ,zn)-linear combination of elements of G. Note 

that each of the components of T has zero constant term. Otherwise, setting 

fi = 0 for all i in (3.13) above, we find that the elements of C are linearly 

dependent. If we divide by the Grabner basis G, we obtain quotients a" and a;, 
such that 

"EG-G' 

where a", a;, E C[Xll"" Xn, Zl,"" zn). Now the left hand side of the above 

consists of monomials whose x component lies in C. But every, E G - G' has a 

leading monomial with x component outside C and so would not divide T(Z) ·1. 

Thus a" must be identically zero for all , E G - G'. So we have 

T(Z) ·1 = L a;,(x, z),'. 
,,'EG' 

We may write 

" = L l . (l (z ) 
lEe 

which becomes a( ,') . I on replacing Zi by Ii. So we obtain 

T(f) = L a;, (x, f)O'(,') 
,,'EG' 
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Thus T is a I*C[Yl,"" Yn]-linear combination of the syzygies a(,') and parallel 

syzygies as required. o 

Note that it is possible to determine a free basis for C[Xl, .... xn ] as an 

I*C[Yl,' .. ,Yn]-module using an algorithm. See [LS] for an explanation and a 

description of a (rather impractical) method. 

We now give some examples of the use of the criterion. 

Example 3.6.7 We return to the example of the map I = (x, xy2 + y) which 

we claimed was quasifinite but not finite. Consider the points (x, y) in the set 

1-1(al, a2)' This implies that x = al and Y is a root of aly2 + Y - a2' Thus 

1-1(al,a2) is a finite set for all (al,a2) E C 2
, i.e. I is quasifinite. But is I also 

finite? Let us apply the criterion of Proposition 3.6.2. Calculating a Grabner 

basis G for <11 - ZI, ... , In - zn> using lex order with x > Y > ZI > Z2 gives 

and so LT(G) = {x, Zly2}. Hence I fails the criterion since there is no power of 

Y in this set. So I is, as claimed, not finite. 

Example 3.6.8 Now consider the map I = (X2y2 + y2, x2 - xy). This time, if 

we calculate a Grabner basis G for <11 - Z17' .. ,In - zn> using lex order with 

x > y > ZI > Z2, we obtain 

G= { 2 
X - xy - Z2, 

xy2Z2 - y3 + yZI + xy2 - XZl, 

XyZI + y2 - ZI + 2y2z2 - Z2 Z1 + y2z~ + y4 - y2z1' 

xzr + y3 - yZI + 3y3 Z2 - 2YZ2Z1 + 3y3 z~ + y5 - yzr - yzi Z1 + 

+y3z~ + y5 Z2 - y3Z2Z1 , 

y6 _ 2y2z1 + zr - 2Z1y2z2 + y4 + 2y4z2 + y4zi - Z1y4 } 
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and so j is finite, SInce there is a pmver of each of x and y in the leading 

terms. We can also see that the monomials {l. x. y. xy. ,1/. XU'2, y3, IJ-t, y5} gener

ate C[XI1" . 1 Xn] as an j*C[YI1'" 1 Yn] module. This is not a free h(\~i:-, however. 

since there are leading terms of elements of G \yhich contain z variables. 

The following Maple routine implements the criterion, allmving for the ~imple 

checking of finite polynomial maps. Given a map F as a list of components and 

variables V, it calculates a Grabner basis using lex order and extra variables _Z to 

check finiteness. If a third argument is given, this is assigned t he list of leading 

terms of the basis calculated. 

checkfinite:=proc(F,V) 

local i,j,VV,FF,G,LT,marker; 

if nops(V)<>nops(F) then ERROR('incorrect No of components'); 

fi; 

n:=nops(V); 

_Z : = arr a y ( 1 . . n) ; 

VV:=[op(V),_Z[i] $ i=1 .. n]; 

FF:=[F[i]-_Z[i] $ i=1 .. n]; 

G: =grobner [gbasis] (FF,VV,plex); 

LT: =map(x->x [2] ,map(grobner[leadmon] ,G,VV,plex)); 

if nargs=3 then assign(args[3] ,[LT]); 

fi; 

for i from 1 to n do 

marker:=O; 

for j from 1 to nops(LT) do 

pow:=coeffs(LT[j] ,V[i]); 

if type(pow,numeric) then 

marker: =1; 

break; 
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fi' , 

od; 

if marker=O then RETURN(false); 

fi; 

od; 

RETURN(true); 

end: 

3.7 The degree of a finite map 

Now that we can determine whether a polynomial map f is finite, we may consider 

the various degrees associated with it: 

d · ( C[Xl, ... ,Xn] ) 1: 1 f ( ) E cn • lme <!t-Zl, ... ,!n-Zn> lor any va ue 0 ZI,"" Zn 

• The dimension of C[Xll' .. ,Xn] as a free module over f*C[YI,' .. ,Yn] 

In fact, we will show that all of these numbers are equal: 

Proposition 3.7.1 If {b l , ... , bs } is a (free module) basis for C[XI,"" xn] over 

f*C[YI, ... ,Yn], then it also forms a (vector space) basis for C(XI' ... ,xn) over 

f*C(YI, ... , Yn). 

Proof Suppose there is linear relation among the elements {bl , ... , bs } over the 

field f*C(YI, ... ,Yn)' So 

i=1 

where f3i E f*C(Yb ... ,Yn)' Then multiplying up by denominators, we obtain 

s 

L f3i(f)bi = 0 
i=l 
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where (3i E !*C[Yl,'" ,Yn]' Thus, since {b1, ... , bs } is a basis, we obtain (3i(f) = 0 

for all i. Hence (3i(!) = 0 for all i and so the bi are linearly independent over 

!*C(Yb ... ,Yn)' 

But are they a spanning set? Let ¢ E C(Xl' ... ,xn) be an arbitrary element. 

Now the extension of C(Xl' ... ,xn) over !*C(Yl,' .. ,Yn) is finite and hence alge

braic. Thus C(Xb ... ,xn) = !*C(Yl,' .. ,Yn)[Xl, . .. ,xn] (see [ZS, ChII §2 Thm2]). 

So we may write ¢ as a finite sum 

where (30:(!) E !*C(Yl,"" Yn) and Q ranges through all the possible multi

indices. Now finding a common denominator o(!), we obtain 

where again (30: E !*C[Yl,' .. ,Yn]' Since the sum in the above expression lies in 

C[Xl,"" Xn], we can rewrite it as "L fi(!)bi where fi E !*C[Yl,"" Yn] and thus 

in other words, {bl , ... , bs } is also a spanning set and hence a basis. 0 

Proposition 3.7.2 The elements bl , ... ,bs form a (free module) basis for the 

ring C[Xl,'" ,xn] over !*C[Yl,"" Yn], if and only if they are a (vector space) 

basis for 

Proof We will begin by proving the 'only if' part of the proof. Let us suppose 

that bl , ... ,bs are a free basis for the module. Choose a point z E cn and let 
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r/J E C[Xl' ... ,xn] be arbitrary. Then 

s 

r/J = L !3i(f)bi 
i=1 

with !3i E f*C[Yl, ... ,Yn] and 

s 

r/J = L !3i(z)bi modulo <fl - ZI, ... ,fn - zn> . 
i=1 

N ow this is simply a linear combination of the bi , so they span Vz . 

Are they linearly independent? Suppose 

s n 

L Aibi = L (j(fj - Zj) 
i=1 j=1 

with Aj E C, (i E C[Xl' ... ,Xn ], so this linear combination is zero in Vz . We may 

rewrite each (j as an element of the module: 

s 

(j = L 8ji (f)bi . 
i=1 

This yields 

~ (Ai - ~ OJ;(f)(/j - Zj)) bi = 0 

and since the module is free, 

n 

Ai - L 8ji (f)(iJ - Zj) = 0 
j=1 

for each i. Now f is an epimorphism (see Proposition 3.1.1), so the inverse image 

of z is non-empty. If x = (Xb'" ,xn ) lies in f- 1(z), evaluating at x we obtain 

Ai = 0 for all i. Thus the bi are linearly independent and so form a basis for \/~. 

Now for the reverse implication, suppose that the elements b1, ... ,bs are again 

a free basis for the module, while b~, ... ,b~ form a basis for Vz for all z E C n
. We 

may therefore write 

A 

b' m 
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where A is a matrix with entries in I*C[Yll ... ,Yn], just by writing the b~ as ele

ments of the module. Now, the bi are also a basis for Vz for every z E C n . Thus 

we know that on setting 11 = ZI,"" In = Zn, i.e. modulo <11 - ZI,'" ,In - Zn>, 

the matrix A is an invertible (change of basis) matrix and so has non-zero deter

minant. Now since the determinant is non-zero for all values of z E C n , it must 

in fact be identically a constant. Thus A is invertible as a matrix over the ring 

j*C[Yl,' .. ,Yn]' In effect, A is a change of basis matrix in the free module, so 

b~, ... ,b~ are also a free basis. 0 

We have thus shown that the three definitions of degree given above coincide. 
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Chapter 4 

Generalising to varieties 

In this section, we generalise our results on finite maps c n -----> c n to finit(, maps 

.. Y ~ 1 r where X and 1 r are affine varieties of the same dimension. 

4.1 Definitions 

Firstly, suppose we are given a regular map f : .Y ----+ 1 r where .\ c C n
, l' c C P 

and l' = fCY) (i.e. the Zariski closure of the image). \'ow f has components in 

C[.Y] = C[x~;',/'lIl where Ix is the ideal of'\. \\rp can choos(' a 'represt'lltatin" 

polynomial map F : C n ----+ C P such that Fi lies in t he coset gi Y('l1 by fi for ('£1('11 

i. This gi n's 

Lemma 4.1.1 Given f and F as above and defining f* and F* to be the asso

ril/ted pullback maps, the following diagram commutes: 
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F* 

C[X] C[Y] 

f* 

where C[Y] = C[yy;.,yP], with Iy being the ideal of Y, 'Trx and 'Try being the natural 

maps to the quotients and 'Tr f is the map obtained by substituting fi for Yi 

Proof Let k(Yl,"" Yp) E C[Yl,'" , Yp] be an arbitrary element. Now 

Mapping by f* yields 

k(fl,"" fp) 

'Trf(k). 

However, following the other way round the diagram gives 

and thus 

k(Fl +Ix,··· ,Fp+lx) 

k(fl,"" fp) 

'Trf(k). 

Thus the result is independent of the route taken. 

This leads to a condition for finiteness using the 'representative' map F: 
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Corollary 4.1.2 With f and F as above, the map f is finite if and only if 

for every cjJ E C[Xl,"" xn] there exists some m and Qi E F*C[Yll"" Yp] for 

i = 1, ... ,m such that 

( 4.1) 

Proof Now f is finite if and only if for every 'I/J E C[X] there exists some m and 

fli E f* C [Y] such that 

'l/Jm + flm-l 'l/Jm-l + ... + flo = 0 (4.2) 

Now considering the diagram in Lemma 4.1.1 above and since the map 'Try is onto 

we obtain 

f*C[Y] = 'Trx 0 F*C[Yl,"" Yp] 

so we may rewrite each fli as 'Trx(Qi) where Qi E F*C[Yl,"" Yp]· Also rewriting 

'I/J as 'Trx(cjJ) where cjJ E C[Xl,"" xn], (4.2) becomes: 

and so 

which gives 

o 

4.2 New finiteness criterion 

Using the previous result, we can extend the finiteness criterion to regular maps 

between varieties: 
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Proposition 4.2.1 Let f : X ~ Y be a regular map, with .. \", Y varieties in 

cn, CP respectively. Let F be a 'representative' polynomial map cn ~ C P for f 

as above. Let <gl, ... ,gr> be the ideal corresponding to X and let the polynomial 

ring C [Xl, ... , X n, Zl, ... ,zp] have a product monomial order with Xi > z) for all 

1" J. Then f is finite if and only if there exist mj E N for j = 1, .... n such that 

(-1.3) 

Proof Suppose the condition (4.3) holds for the order > and some polynomial 

map F : C n ~ CP which is a 'representative' for f. Now by Lemma 3.6.1, it will 

also hold for the order >lex(j) for any given j E {I, ... ,n}, where >lex(j) is defined 

as lexicographic order with Xl > X2 > ... > Xj-l > Xj+l > ... > Xn > Xj > Zl > 

... > zp' This is a product order since we may consider it as a product of lex on 

the x variables and lex on the Z variables. Hence we have 

for some ai,j, f3i,j E C[Xl,"" Xn, Zb"" Zp]. By consideration of the monomial 

order, we may write 

mj p r 

L 8k (z)xj = L ai,j(Fi - Zi) + L f3i,jgi 
k=l i=l i=l 

where 8k is a polynomial in C[ZI' ... ,zn], with 8mj = 1. Now setting Zi = Fi for 

all i we obtain 
mj r 

L 8k (F)xj = L f3i,j(X, F)gi 
k=l i=l 

the lefthand side of which is a monic polynomial in Xj with coefficients in the ring 

F*C[Yl,"" Yp]. Thus Xj satisfies the equation (4.1). This may be repeated for 

each j and hence any h E C [Xl, ... ,xn ] will satisfy (4.1) i.e. the map f is finite. 

For the converse, suppose that f is a finite map. Then for each j E {I, ... , n}, 

there exist polynomials fi E F*C[Yl, ... ,Yp] such that 

r 

xj + fm-l (F)xj-l + ... + fo(F) = L f3i,jgi 
i=l 
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for some J3i,j E C[X1,' .. ,xn, Z1," . ,zp), by Corollary 4.1.2. Denote by I the ideal 

<gil'" ,gr, F1 - Zll···, Fn - zn>' Now Fi = Zi modulo I for i = 1. .... n and 

hence if 4> is any polynomial, then 4>(f1,' .. ,fn) = 4>(Z1, ... ,zn) modulo I. Thus 

we have 
m m 

L Ek(Z)xj = L Ek(F)xj = 0 modulo I 
k=1 k=1 

where Ek(Z) is simply Ek(F) with each Fi replaced by Zi' Hence 

m p r 

L Ek(Z)xj = L TJi,j(Fi - Zi) + L fJi,jgi 
k=1 i=1 i=1 

x"!'- = LT (~r) .. (p,. - z·) + ~ fJ· .g.) J L- . n,J l l L- l,J l 

i=1 i=l 

in other words, xj E LT(I). This may be repeated for each j and hence the 

result follows. o 

Corollary 4.2.2 If we define I z = In C[Z1,' .. ,zp], then I z ro..I Iy by simply 

re-writing y variables as Z variables and vice versa. 

Proof The points of f(X) are given by the projection of the set 

onto the Z variables. By Proposition 1.2.8 this means that Y is defined by the 

ideal I z using Z variables in the target. o 

N ow to actually calculate generators for the ideal I y, the method is as follows. 

First, calculate a Grabner basis, G, for the ideal I under a product order as in 

Proposition 4.2.1 above. Then Gk = G n C[Zll ... ,zp] is a Grabner basis and 

hence a set of generators for Ik (see Proposition 1.2.7). 
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Corollary 4.2.3 If we define £, = {xa : x a ~ LT(I)} , then 7r
x
(£') generates 

C[X) as a J*C[Y) module. 

Proof If we define £" to be the LT-monomial basis of C[Xl"",X;:,Zl,.",Zp], then for 

an arbitrary element of c/J E C[XI, ... ,Xn ], we may write 

r p 

c/J = L J-ll ·l(x, z) + L Gi(X, Z)gi + L {3j(x, z)(Fj - Zj) 
lEL,' i=l j=l 

where c/J E C, Gi, {3j E C[XI' ... ,Xn , Zl, ... , zp). Now substituting Fj for Zj every

where gives 
r 

c/J = L J-ll • l(x, F) + L Gi(X, F)gi 
i=l 

Now every monomial in £" is of the form xaza' where x a E £, and since Gi(X, F) E 

C[XI'··· ,xn ), this is simply 

r 

c/J = L fl(F) . l(x) + L 8i (x)gi 
lE£. i=l 

where fl(F) E F*C[YI, ... , Yp] and 8i E C[XI, ... , xn]. Now mapping under 7rx 

gIves 

lE£. 

L fl(f) ·7rx (l(x)) 
lE£. 

where fl(f) E C[Y) since 7r f = 7rx 0 F*. Any element of C[X) can be written as 

7rx (c/J) for some c/J E C[Xb ... , xn], so 7rx (£') does generate the module as required. 

o 

The following Maple routine implements the new criterion. Given a represen

tative map F as a list of components, equations defining the source variety X and 

variables V, it calculates a Grabner basis using lex order and extra variables .2 to 
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check finiteness. If a fourth argument is given, this is assigned T he list of leading 

terms of the basis calculated and the equations defining the target variety (gin>Il 

in terms of the variables _Z). 

vcheckfinite:=proc(F,X,V) 

local i,j,VV,FF,G,LT,marker,Y,l; 

n:=nops(V); 

p:=nops(F); 

nox:=nops(X); 

_Z:=array(1 .. p); 

VV:=[op(V),_Z[i] $ i=1 .. p]; 

FF:=[X[i] $ i=1. .nox, F[i]-_Z[i] $ i=1. .p]; 

G: =grobner [gbasis] (FF,VV,plex); 

Y: = [] ; 

for i from 1 to nops(G) do 

l:=grobner[leadmon] (G[i] ,VV,plex) [2] ; 

if l=coeffs(l,V) then Y:=[op(Y),G[i]]; 

fi; 

od; 

LT: =map(x->x [2] ,map(grobner[leadmon] ,G,VV,plex)); 

if nargs=4 then assign(args[4] ,[LT,Y]); 

fi; 

for i from 1 to n do 

marker:=O; 

for j from 1 to nops(LT) do 

pow:=coeffs(LT[j] ,V[i]); 

if type(pow,numeric) then 

marker: =1; 

break; 

-.) 
1-



fi; 

od; 

if marker=O then RETURN(false); 

fi; 

od; 

RETURN(true); 

end: 

Example 4.2.4 We now demonstrate the use of vcheckfinl teo In each ('(1:-1(" 

the source variety, X is given by xi - 4X2X3 + 3x~ + 2.1' 1 - 3X3 in C 3 . 

-----------------------------------------------------------

> Fl:=[x[1] ,x[2]]: 

> vcheckfinite(Fi,X, [xCi] ,x[2] ,x[3]]); 

false 

> F2:=[x[2] ,x[3]]; 

> vcheckfinite(F2,X,[x[i] ,x[2] ,x[3]]); 

true 

> vcheckfinite(F3,X, [xCi] ,x[2] ,x[3]] ,'B'); 

true 

> B [2] ; 
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2 3 324 

- 288 _Z[3J _Z[2J + 576 _Z[3J _Z[2J - 288 _Z[3J _Z[2J + 

422 2 2 2 

256 _Z[3J _Z[2J - 32_Z[3J _Z[2J_Z[lJ - 192 _Z [3J _Z [2J _Z [1] 

323 

+ 192 _Z [3J _Z [2J _Z [lJ + 16 _Z [lJ - 8 _Z [1J 

243 

+ 196 _Z [lJ _Z [3J _Z [2J + 81 _Z [3J - 108 _Z [lJ _Z [3J 

223 

+ 144 _Z [lJ _Z [3J _Z [2J + 54 _Z [1J _Z [3J - 12 _Z [lJ _Z [3J 

2 2 3 4 

+ 54 _Z [1] _Z [2J + 12 _Z [2J _Z [lJ + _Z [1J 

2 2 

- 108 _Z [1] _Z [3J _Z [2J - 324 _Z [1J _Z [2J _Z [3J 

3 

- 324 _Z [3J _Z [2] - 72 _Z [lJ _Z [3J 

224 

+ 48 _Z [1] _Z [3J - 72 _Z [lJ _Z [2J + 81 _Z [2J 

3 3 2 

+ 108 Z [2J _Z [1] - 324 _Z [2J _Z[3J + 486 _Z[3J 



Thus the map X --+ e 2 via projection onto the first two coordinates does 

not yield a finite map. However, if we project onto the last two, this does gin> 

us a finite map. The map X --+ e 2 by squaring the first two coordinates is, 

as we would expect, finite. The target variety Y is given above in terms of 

_Z[l] ,_Z[2] ,_Z[3]. 

4.3 Further results 

The following are further generalisations of our results on finite maps en --+ en. 

Proposition 4.3.1 Let f = (f1,"" fp) : X --+ Y be a map between varieties 

X c en, Y c ep
, with X defined by the ideal < gl, ... , gr >. Suppose F = 

(F1, ... ,Fp) : en --+ e p is a representative map for f and suppose that F{, ... ,F~ 

are the leading homogeneous parts of its components. Now let F' be the map given 

by the F! and f' : X --+ Y' the map given by the restriction of F' to X. (Where 

Y' is the Zariski closure of f'(X)). Then 

1. f' is finite if and only if the quotient 

(4.4) 

is finite dimensional as a e vector space. 

2. If f' is finite, then f is also finite. 

Proof Part 1: Assume (4.4) to be finite dimensional and let b1, ... ,bq be a basis 

for it. Take 4J E e[X1' ... ,xn ] to be arbitrary. Then we may write 

q p r 

4J = L Kjbj + L Qi F! + L f3kgk ( 4.5) 
j=l i=l k=l 
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where K,j E C, ai, f3k E C[xr, . .. ,xn ] and deg aiF: < deg <P (via the homogeneity). 

Now inductively rewriting each ai as in (4.5), and using the fact that the degree 

will decrease at each stage, enables us to write 
q r 

<P = L 8j (F')bj + L J-Lk9k 
j=1 k=1 

where J-L E C and 8j E (F')*C[Yl,' .. ,yp]. Thus the quotient 

C[Xl,""Xn ] 

<91,···,9r> 

is an (F')*C[Yl, ... ,Yp]-module spanned by the bi, so i' is finite. 

For the reverse implication, f' finite implies that there is a LT -monomial basis 

for 

<91, ... , 9n F{ - ZI, ... , F; - zp> 

with a finite number of monomials in the x variables. Substituting ZI = ... = 

zp = 0 into this gives (4.4) as a finite dimensional C vector space. 

Part 2: Let <p and b1 , .•• ,bq be as before, since we know that (4.4) is a finite 

dimensional C vector space. We may again write <p as in (4.5) above with F for 

F', but may rewrite this as 
q p p r 

<p = L K,jbj + L aiFi - L ai(Fi - Fl) + L f3k9k 
j=1 i=1 i=1 k=1 , , 

V' 

(*) 

Now the expression labelled (*) is either zero or has degree strictly less than <p. 

Rewriting (*) as in (4.5) and continuing inductively yields 
q p r 

<p = L Ajbj + L (iFi + L 'fJk9k 
j=1 i=1 k=1 

where Aj E C, (i, 'fJk E C[Xl' ... ,xn ] and deg (iFi < deg <Pi' This is almost identi

cal to (4.5) and the proof of finiteness finishes as in Part 1. 0 

Proposition 4.3.2 If f : X -+ Y is a regular mapping of affine varieties and if 

every point x E Y has an affine neighbourhood U such that f : F -+ U is finite. 

then f itself is also finite. 
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Proof The proof follows [Sh, p49]. For every point, we may take a neighbourhood 

U being a principal open set (i.e. a set of the form D(<I» = X - V(<I» for some 

polynomial <1». Let D(goJ be a system of such open sets, which we may take to 

be finite in number. Then Y = U D(goJ, that is, the go generate an ideal equal 

to C[Y]. In our case, Vo = f-l(D(go)) = D(f*(go)), C[D(go)] = C[Y][l/go], 

C[Vo] = C[X][l/ go]. By hypothesis, C[X][l/ go] has a finite basis Wi 0 over , 

C[Y][l/ go]· Here, we may assume Wi,o E C[XJ, for if the basis consisted of 

elements Wi,o/ g~i, then the elements Wi,o would also be a basis. We consider the 

union of all the basis elements Wi,o and show that they form a basis of C[X] over 

C[Y]. Every element <I> E C[X] has a representation 

for each Q. Since the elements g~Q generate the unit ideal of C[Y], there exist 

ho E C [Y] such that ~o g~Q ho = 1. Therefore 

o i 0 

which proves the theorem. o 

In other words, if a regular map looks finite on affine neighbourhoods, then 

it is finite globally. This is in fact the definition for finiteness of maps between 

projective varieties. If the map is finite on restriction to affine neighbourhoods, 

then it is called finite (see [Sh, p49]). 

Proposition 4.3.3 Let X c cn be an affine variety of dimension d and consider 

maps f : X -+ cr for some r > d. If we restrict our attention to those maps 

with a representative map F whose components have degree < k, then these are 

generically finite. 

Proof Firstly, consider the projective closure of our variety P(X) C pn. We can 

embed this in a larger projective space p N by means of the Veronese mapping Vk 

of degree k. 
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Given any map f : X ~ c r as specified, we can take its representative. 

homogenize (to degree k) with respect to a new variable Xo and obtain 

Since the components of Fh are linear combinations of monomials of degree k, 

we can choose a projection 7r : pN ~ pr such that 7r(Vk(P(X))) = Fh(p(X)) 

so long as ker 7r n Vk(P(X)) = 0, (see [Sh, p40]). Now dim(vk(P(X))) = d and 

dim ker 7r = N - r - 1 (determined by r + 1 equations). But N - r - 1 + d < N, 

thus ker 7r n Vk(P(X)) = 0 is a generic condition on 7r. Now the map Vk is an 

embedding and hence finite. The projection 7r is also finite (see [Sh, p50 Thm7]). 

Thus we find that fh must also be finite. Since this is the projective case, as 

mentioned above, this means that it looks finite in affine charts. A regular map

ping 9 of quasiprojective varieties is called finite if each point in the target has an 

affine neighbourhood V such that the restriction of the map to g-1 (V) is finite 

in the affine sense. In this case, if we restrict everything to our original affine 

spaces, we will recover the map f we began with. Now the condition of the map 

looking finite locally still holds and by Proposition 4.3.2, f is finite. 0 
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Chapter 5 

The trace bilinear forlll 

5.1 Polynomials in one variable 

The definition of the trace bilinear form (or TBF), in thl' one \"ariable ('asp. is 

ell('apsulated in the following proposition. 

Proposition 5.1.1 Let f,g be polynomials in R[x] with no common roots. Sup

pose that f = 0 has r real roots where 9 > 0 and s real roots where 9 < O. Define 

a bilinear form on the vector space 

ll' = R[x] 
<f(x» 

(0.1) 

as follows. Let Tg( a, b) = trace( abg) where abg is considered as the endomorplllsTTI 

of ll" determined by multiplication. This form is known as the trace bilinear form 

(or T BF) weighted b:v g. The rank of the quadratic form Tg ((J. (/) Is the total 

number of distinct roots of f = 0 (including complex solutions) and its SiYlllltllf"(' 

IS ,. - .'i. 

Proof \ Y(\ will suppose that f and 9 are monic and alsu aSSlllll(\ initially that 

f has distillct roots (\ 1,· ... 0,,1 E C. \\'e claim that 

m 

Tg(u, 0) = L g(O))(Ul + 0j(/2 + ... + nj- 1an )2 

j=1 



where a = al + a2X + '" + anXn- 1 E W. To see this, note that x as an 

endomorphism of W has m distinct eigenvalues al,"" am with eigenvectors 

~ ~Sth . fT' rx=al)' ... , (x =a;;;} . 0 e matnx 0 x wIth respect to this basis is 

al 0 0 

o 
o o 

The endomorphism corresponding to g, is however given by 

o o 

o 

with respect to the same basis. For if we write 

f(x) m f(x) 
g(x) (x _ a

o
) = ~ Ai,j (x _ a

o
) + <f(x» 

J z=l t 

and evaluate at ai, the matrix is found to be as above. Thus, xT 9 as an endo

morphism with respect to the same basis has the matrix 

o o 

o 
o 

and (5.2) follows. If the roots of f are not distinct, then a small perturbation 

makes them so and (5.2) holds by continuity. 

Returning to the case when the aj are distinct, we note that the vectors 

(1, aj, ... ,aj-l) are linearly independent, as their determinant is the vander

monde matrix. If aj is a real root, then g(aj)(al + aja2 + ... + aj-1an )2 con

tributes a real square with sign equal to that of g(aj). If aj is complex. then OJ 
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is also a root and 

= 2~(g(aj)(al + aja2 + ... + aj- 1an )2) 

If we write g(aj) = A + iJ-L, (al + aja2 + ... + aj- 1an ) = L + iAf where L and .~f 

are real forms in the ai, then Land M are linearly independent. l\Ioreover we 

can rewrite the expression above as follows. 

2~((A + iJ-L)(L2 - M2 + 2iLM)) 

= { 2(A(L - J-LA -1 M)2 - A-I (A2 + J-L2)M2) 

-2J-LLM 

if ,\ i- 0 

if ,\ = 0 

Either way, there is a net contribution of 2 to the rank and of 0 to the 

signature. The result follows. 

Suppose now that f has some coincident roots. Then for each k-tuple root a, 

we have an expression kg(a)(al+aa2+" ·+an - 1an )2 and the result now follows. 0 

Corollary 5.1.2 (Sylvester, see [C2]) If 9 = 1, then the rank of Tg is the 

number of distinct roots of f = 0 and its signature is the number of real roots. 

Corollary 5.1.3 If we allow f and 9 to have common roots, then the rank of Tg 

is the number of roots of f = 0 distinct from those of 9 and its signature is r - s 

as before. 

5.2 Higher dimensions 

We now consider the higher dimensional case, where f : Rn ---+ R n is a finite 

polynomial map. This is very much like the situation looked at in [PRS]. In this 
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paper, the authors related the number of roots of a set of polynomials with a 

trace bilinear form. The space considered was the real space formed by taking 

the quotient of the polynomial ring by the ideal generated by the polynomials in 

question. Our approach will in some sense look at the preimages of all points at 

once, as opposed to just the preimages of one point. 

The field R(x) is an J*R(y) algebra. We define the trace bilinear form of this 

algebra in an analogous way to that in the one variable case. Given a, b E R(x), 

we consider the endomorphism R(x) ---+ R(x) given by multiplication by abo 

Then T(a, b) = trace(ab) as before. Again, given 9 E R(x) we can define Tg, the 

bilinear form weighted by g, by Tg(a, b) = trace(abg). 

Since we are dealing with fields of characteristic zero, the extension of R(x) 

over J*R(y) is separable. It is also finite, hence it must be a simple extension 

(see [ZS p65,84]). Thus we can choose a primitive element a with a E R[x]. Now 

since f is finite, the minimal polynomial of a has coefficients in f*R[y], i.e. it is 

an element of J*R[y][z] say. (compare [Sh, pl16]). In fact, we shall see that we 

may take a to be a real linear form. 

Now given a point cERn, the bilinear forms T, Tg above determine bilinear 

forms 

T C
, T; : R(x) x R(x) ---+ R 

defined by TC(a, b) = T(a, b)lf=c and T~(a, b) = Tg(a, b)lf=c. 

We now prove some results related to these bilinear forms. 

Proposition 5.2.1 (i) Given a, there is a proper subvariety VeRn (target) 

with the property that the bilinear form TC, for c ¢ V is equivalent to the trace 

bilinear form on 

<Gu(z» 
R[z] 

(5.3) 

where Gu(z) is the minimal polynomial of a with the polynomial coefficients eval-

uated at f = c. More generally, given 9 E R[x] and writing 9 = L. gi(f)ai(x). 

then T: is equivalent to the trace bilinear form on (5.3) weighted by L. gi (c) Zi . 
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(ii) Given any cERn, there is a primitive element a for the extension ofR(x) 

over f*R(y) with c not in the corresponding exceptional variety V (as defined in 

(i) above). 

Proof (i) For V we consider the set of c ERn such that a does not take distinct 

values on the set f-l(C). In other words, those c such that the number of distinct 

roots of Gu(z) = 0 is smaller than the number of distinct points of f-l(c). It 

is not hard to see that V is closed; it is proper because it is contained in the 

ramification locus of f. (See [Sh, pl17]). 

Now suppose 

with the ai(f) E f*R[y], so 1, a(x), . .. ,am-l(x) is an f*R(y) basis for R(x). 

With this ordered basis, the (i, j)th entry in the symmetric matrix for T is ob

tained as follows. The element ai+j-2(x) determines an endomorphism of R(x), 

taking ak(x) to ai+j+k-2(x), which, using the relation provided by Gu, can be 

written as an f*R[y] combination of 1,a(x), ... ,am- 1(x). Setting f = c, we 

obtain the real n x n matrix corresponding to the endomorphism of (5.3) deter

mined by multiplication by zi+j-2 with respect to the basis 1, z, . .. ,zm-l. The 

argument for the bilinear form Tg is exactly the same. 

(ii) We only need to ensure that the primitive element a(x) takes distinct 

values on the points of f-l(C). Now since [R(x) : f*R(y)] = m, there are 

m distinct f*R(y) isomorphisms Tl, ... ,Tm : R(x) ---+ R(x). For i -=I j, the 

equations Ti(L) - Tj(L) = 0 for L a real linear form in Xl, ... ,Xn determine a 

proper subspace of the R vector space of all such forms. So any linear form L 

not in the union of these subspaces has Ti(L) pairwise distinct. So the minimum 

polynomial of L, G L(Z) has m distinct roots and L is a primitive element. 

Let C(l), ... ,C(k) be the distinct points of f-l(C). The conditions L(C(i» 

L( C(j», i -=I j, determines a proper subspace of the space of R linear forms and 
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if L is not in their union, then e does not lie in the corresponding exceptional 

variety. o 

This leads to the following result. 

Proposition 5.2.2 Let j : Rn ---t Rn be a finite mapping, with 9 E R[x] a 

polynomial and e E Rn (target space). Let T be the trace bilinear form of f. 

Then the rank oj TC is the number of points (real or complex) of f-l(e) and its 

signature is the number of these points which are real. If Tg is the form weighted 

by g, then the rank of T% is the number of points of j-l(e) which do not lie on 

g = O. The signature of this form is r - s, where r is the number of real points 

in the region 9 > 0 and s the number in the region 9 < O. 

Proof Given e ERn, choose a real primitive element a which distinguishes the 

points of j-l(e). Then TC is equivalent to the trace bilinear form on 

(5.4) 

where Gu(z) is the minimal polynomial of a with the polynomial coefficients 

evaluated at j = e by Proposition 5.2.1. The rank of T C is, by Proposition 5.1.1, 

the number of roots of Gu(z) = O. But there is one such root for each point of 

j-l(e). The signature is the number of real roots, i.e. the number of points of 

j-l(e) at which a takes real values. Clearly, a takes real values at real points of 

j-l(e). Conversely, given e', with j(e') = e and a(e') E R, note that j(c') = e 

and a(c') = a(c') = a(e'). Thus, by our choice of primitive element, c' = e' and 

e' E R. 

The result in the general case is proved similarly. Here T% is equivalent to the 

trace bilinear form on (5.4) weighted by ~ gi(e)zi. The rank of T% is, by Propo

sition 5.1.1, the number of roots of Gu(z) = 0 which are not roots of L gi{e)zl. 

This then is the number of p0ints of j-l(e) which do not lie on g(x) = o. The 

signature, on the other hand, gives the difference r - s, where r is the number of 
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real roots of Ga(z) = 0 with E gi(C)zi > 0 and s the number with E gi(C)zi < o. 
But if ,x E R is a root, then we have a unique d E Rn with f(c') = c, a(d) = ,x 

and E gi(C),xi = E gi(c)ai(c') = g(c). The result now follows. 0 

5.3 Calculating the TBF 

Consider the following spaces: 

(F) R(x) as an f*R(y) vector space. 

(M) R[x] as an f*R[y] module. 

(I) R[x] R 
</1 -Cl, .•. ,fn-cn> as an vector space 

where c = (Cl, ... ,cn ) ERn. We wish to calculate the trace bilinear form on (F), 

weighted by some polynomial 9 E R[x] and evaluated at fl = Cl,··· ,fn = Cn· 

However, it is not easy to see how to obtain this directly. The following simplifies 

the problem: 

Proposition 5.3.1 The trace bilinear form on the vector space (I) above, weighted 

by 9 E R[x] is the same as that on (F), weighted by 9 and evaluated at fl = 

Proof Let {bl , ... , bm } be a free basis for (M). Then this is also a basis for 

each of (F) and (I) (see §3. 7). Let T F; and T Ig be the TBFs on (F) and (I) 

respectively. In order to show that these forms are equal, it is enough to show 

that TF;(bi,bj ) = T1g (bi ,bj ) for all i,j E {I, ... ,m}. 

Now T F;(bi , bj ) = tr(bibjg)lf=c where bibjg is considered as a linear map on 

(F), acting by multiplication. For any k we may write 

m 

(bibjg)bk = L ak,,(f)b, (5.5) 
1=1 
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where ak,l E f*R[y], since (bibjg)bk is a polynomial and th!:' bi are a frE'P ha:-;i~ 

for (,\1) . .'\ow the matrix of bibjg as a linear map is (ou(I)) and su its trace i~ 

l:~1 al,l(f). Evaluating at 1 = c, this gin's 

m 

T F;(bi , bj ) = L al,l(c). (5.6) 
[=1 

Turning our attention to the TBF on (I), we know that (5.5). with Ok,l E 

f*R[y], still holds, as this is simply a polynomial identity. But wp may rewrite 

this as 
m 

(bibjg)bk = L ak,l(c)bl mod <11 - C1,"" fn - cn> . 
1=1 

So the matrix of bibjg as a linear map on (I) is (Ok,l(C)), Therefore. 

m 

T Ig(bi , bj ) = L al,l(c) = T F;(bil bj ) 
[=1 

and so the two bilinear forms are indeed equal. o 

With this result, since the TBF is independent of the basis chosen. if we wish 

to calculate T F~, it is enough to find T Ig with respect to any basis. 

The following Maple procedure will calculate T F~ using Proposition 5.3.1 

above. 

TBF:=proc(F,v,c,g) 

local i,j,k,I,TRIPLES,PIECES,G,m,T,B,thistriple, 

red,FF,thispiece,entry,Ans,place,comp; 

FF: = [] ; 

for i from 1 to nops(F) do 

FF:=[op(FF),F[i]-c[i]] ; 

od; 

B:=[op(quotbasis(FF,v))] ; 

m:=nops(B); 

G:=grobner[gbasis] (FF,v); 

86 



##### This part calculates all the (weighted) triples 

TRIPLES:=[] ; 

for i from 1 to m do 

for J from 1 to m do 

for k from j to m do 

TRIPLES:=[op(TRIPLES),[g*B[i]*B[j]*B[k] ,i,j,k]]; 

od; 

od; 

od; 

##### This part reduces and calculates the required components 

PIECES:=[] ; 

T:=nops(TRIPLES); 

for i from 1 to T do 

thistriple:=TRIPLES[i] [1] ; 

red: =grobner [normalf] (thistriple,G,v); 

thispiece:=[] ; 

for j from 1 to 3 do 

thispiece:=[op(thispiece),coeff_of_mon(red,\ 

B [TRIPLES [i] [j+1]] ,v)]; 

od; 

PIECES:=[op(PIECES),thispiece] ; 

od; 

##### This part works out the matrix of the TBF 

0-
01 



Ans:=array(sparse, 1 .. m,1 .. m); 

for i from 1 to m do 

for j from 1 to m do 

entry:=O; 

for k from 1 to m do 

thistriple:=[g*B[iJ*B[jJ*B[kJ ,op(sort([i,j,kJ))J; 

for 1 from 1 to T do 

if thistriple=TRIPLES[lJ then 

member(k, [thistriple[2 .. 4JJ ,'comp'); 

entry:=entry+PIECES[lJ [compJ ; 

fi; 

od; 

od; 

Ans[i,jJ :=entry; 

Ans[j,iJ :=entry; 

od; 

od; 

if nargs=5 then assign(args[5J ,B); 

fi; 

RETURN(evalm(Ans)); 

end: 

In the procedure, F is the list of components of the map and v is the list of 

\'ariabl('s used. c is the point at which the form is evaluated (gin'n as a list) and 

g is t h(' polynOInial \\'('ight. The rnethod used is first to calculate all the \\"('igitt('d 

( riples of ( he form bibjbkg. Then t h('s(' are reduced modulo t }u' ideal and t IH' 

ITl('\'(lllt components recorded. Finally, t hest' components are added and pla('('d 

ill a matrix. The reason for this method is that the weighted triple b1b2b3 y will 
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be considered (and hence reduced) when calculating the entries at (1.:?L (1. 3) 

and (2,3) in the matrix. All the reduction is thus done at the start to improH' 

the efficiency of the algorithm. The routines quotbasis. coeff _0 LlIlon, mon, 

quotbasis and getmonos are also needed and are to be found in Appendix B. 

We now give some examples of the routine TBF in use. 

Example 5.3.2 Firstly, consider the finite map f = (.1: 2 , y2) : R:2 ---+ R:2. \ \'(' 

wish to calculate T Fe and also T F~ where c = (2,3) and g = ·tr.ll (the Jacobian 

of f). 

> c:=[2,3J; 

> TBF (f , [x, y J , c , 1 , 'B ' ) ; 

[ 

[ 

[ 

[ 

[ 

[ 

[ 

> B; 

2 2 

f : = [x , y J 

c : = [2, 3J 

4 0 0 0 

0 8 0 0 

0 0 12 0 

0 0 0 24 

[1, x, y, x yJ 

J 

J 

J 

J 

J 

J 

J 

---------------------------------------------------------

> g:=4*x*y; 
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g := 4 x y 

---------------------------------------------------------

> TBF(f,[x,y] ,e,g); 

[ 0 0 0 96 ] 

[ ] 

[ 0 0 96 0 ] 

[ ] 

[ 0 96 0 0 ] 

[ ] 

[ 96 0 0 0 ] 

Thus, since the first matrix has rank 4 and signatnre ~, 1-1 (:2.3) has ~ points, 

all of which are real. Now the second matrix has rank ~ and signature 0, so the 

real degree of f is O. 

Example 5.3.3 Next consider 1:= (X2y2 +y2,x2 -xy): R2 ---t R2. \Y(' wish to 

find T pc, where c is the origin. 

2 2 2 2 

f := [x y + y , x - x y] 

---------------------------------------------------------

> M:=TBF(f, [x,y] ,[0,0] ,1); 

[ 6 -2 0 0 -2 0 ] 

[ ] 

[ -2 2 0 0 2 0 ] 

[ ] 

[ 0 0 -2 -2 0 2 ] 

M - [ ] 
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[ 0 0 -2 -2 0 2 ] 

[ ] 

[ -2 2 0 0 2 0 ] 

[ ] 

[ 0 0 2 2 0 -2 ] 

---------------------------------------------------------

> linalg[eigenvals] (M); 

0, 0, 0, 2, 8, -6 

---------------------------------------------------------

Thus in this case, the rank is 3 and the signature is 1, so j-l(O,O) has :~ 

points, only one of which is real. 

Example 5.3.4 The following is an indication of the size of the bilinear forms 

obtainable via TBF: 

> TBF(F, [x,y,z,w], [1,1,1,1] ,1); 

[ 16, 0, 0, 0, 0, 16, 0, 48, 0, 0, 0, 0,-128, 0, 0, 0 ] 

[ ] 

[ 0,-16, 0, 0, 0, 0, 48, 0, 0, 0, 0, 48, 0, 0,-288,0 ] 

[ ] 

[ 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0 ] 

[ ] 

[ 0, 0, 0, 16, 0, 0, 0, 0, 0, 0, 48, 0, 0,-128, 0, 0 ] 

[ ] 

[ 0, 0, 0, 0,-16, 0, 0, 0, 0, 48, 0, 0, 0, 0, 0, -288] 

[ ] 
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[ 16, 0, 0, 0, 0, 16, 0, 48, 0, 0, 0, 0,-128, 0, 0, ° J 
[ 

J 
[ 0, 48, 0, 0, 0, 0,-128, 0, 0, 0, 0,-128, 0, 0,448, ° J 
[ 

J 
[ 48, 0, 0, 0, 0, 48, 0,128, 0, 0, 0, 0,-288, 0, 0, ° J 
[ J 

[ 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, ° J 

[ J 

[ 0, 0, 0, 0, 48, 0, 0, 0, 0,-128,0, 0, 0, 0, 0,448J 

[ J 

[ 0, 0, 0, 48, 0, 0, 0, 0, 0, 0,128, 0, 0,-288, 0, ° J 

[ J 

[ 0, 48, 0, 0, 0, 0,-128, 0, 0, 0, 0, -128,0, 0, 448,0 J 

[ J 

[-128, 0, 0, 0, 0, -128,0,-288,0, 0, 0, 0, 448, 0, 0, ° J 

[ J 

[ 0, 0, 0,-128,0, 0, 0, 0, 0, 0,-288, 0, 0, 448, 0, ° J 

[ 

[ 0,-288,0, 

[ 

J 

0, 0, 0, 448, 0, 0, 0, 0,448, 0, 0,5632,0 J 

J 

[ 0, 0, 0, 0,-288, 0, 0, 0, 0,448, 0, 0, 0, 0, 0,5632J 

5.4 Calculating the form TF 9 

Suppose w(' wish to find T Fg , i.e. a form with coefIici('llts in fl"" . fn such that 

T 1'~lf=(' = T J~ for all (' E R. \Yc can find this using a TBF defined 011 (,\1) as 

follows. Let {bl .... ,bTTJ b(' a free basis for ('\1), as before. :\()\\' llsing C)·:-»). \\"(' 

9:2 



can again write 
m 

(bibjg)bk = L ok,z(f)b, 
l=1 

where Ok,l E f*R[y] and hence define 

m 

TMg = LOl,l(f). 
1=1 

This is obviously equivalent to T Fg , for putting f = c, we obtain E oz,z(c) = T F; 

(see (5.6)). We now show that this definition is independent of the free basis 

chosen: 

Lemma 5.4.1 The bilinear form T Mg defined above, which has coefficients in 

f*R[y], is well-defined. 

Suppose {b~, ... , b~} is another free basis for (M) and let P be the change of 

basis matrix such that 

P 

b' m 

where P has entries in f*R[y] and is invertible. Let A = (Ok,l) be the matrix 

representing multiplication by bibjg on the module (M) and let B the matrix with 

respect to the new basis, so B = P AP-1. Since these are similar matrices, we 

will show that they have the same characteristic polynomial and hence the same 

trace. (Compare [C1, p336]). Now 

zI - B = P(zI - A)P-1 

where z is some (scalar) indeterminate. Thus 

det(zI - B) det(P(zI - A)p-1) 

detP(det(zI - A))(detp)-1 

det(zI - A). 
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So A and B have the same trace, which means that TJII) is independent of the 

basis chosen. 0 

Suppose we are given a finite map I and a monomial order on R[x, z] with 

Xi > Zi for all i. Let G be the Grabner basis for the ideal <11 - ZI,'" ,In - Zn>' 

We say that I is z-independent with respect to this order if LT( G) contains only 

monomials in R[x]. 

The following routine, which is very similar to that in §5.3, will calculate T Fg , 

but only if I is z-independent with respect to the lex order Xl > ... > .f Tl > :1 > 

.. , > Zn' 

TBFZ:=proc(F,v,Z,g) 

local i,j,k,l,TRIPLES,PIECES,G,m,T,B,thistriple,red,FF,Gv,\ 

thispiece,entry,Ans,place,comp,thismon; 

vv:=v; 

for i from 1 to nops(F) do 

vv:=[op(vv),Z[i]] ; 

od; 

FF: = [] ; 

for i from 1 to nops(F) do 

FF:=[op(FF),F[i]-Z[i]] ; 

od; 

##### This part calculates the free module basis 

G:=grobner[gbasis] (FF,vv,plex); 

Gv: = [] ; 

for i from 1 to nops(G) do 
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thismon:=grobner[leadmon] (G[i] ,vv,plex) [2] ; 

for j from 1 to nops(v) do 

if divide(thismon,Z[j]) 

then ERROR('Map not z-independent'); 

fi; 

od; 

Gv:=[op(Gv),thismon] ; 

od; 

B:=getmonos(Gv,v); 

m:=nops(B); 

##### This part calculates all the (weighted) triples 

TRIPLES:=[] ; 

for i from 1 to m do 

for J from 1 to m do 

for k from j to m do 

TRIPLES:=[op(TRIPLES),[g*B[i]*B[j]*B[k] ,i,j,k]]; 

od; 

od; 

od; 

##### This part reduces and calculates the required components 

PIECES:=[] ; 

T:=nops(TRIPLES); 

for i from 1 to T do 

thistriple:=TRIPLES[i] [1]; 

red:=grobner[normalf] (thistriple,G,v); 

93 



thispiece:=[] ; 

for j from 1 to 3 do 

thispiece:=[op(thispiece),coeff_of_mon(red,\ 

B [TRIPLES [i] [j+l]] ,v)]; 

od; 

PIECES:=[op(PIECES),thispiece] ; 

od; 

##### This part works out the matrix of the TBF 

Ans:=array(sparse, 1 .. m,l .. m); 

for i from 1 to m do 

for j from 1 to m do 

entry:=O; 

for k from 1 to m do 

thistriple:=[g*B[i]*B[j]*B[k] ,op(sort([i,j,k]))]; 

for 1 from 1 to T do 

if thistriple=TRIPLES[l] then 

member(k, [thistriple[2 .. 4]] ,'comp'); 

entry:=entry+PIECES[l] [comp] ; 

fi; 

od; 

od; 

Ans[i,j] :=entry; 

Ans[j,i] :=entry; 

od; 

od; 

if nargs=5 then assign(args[5] ,B); 

fi; 
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RETURN(evalm(Ans)); 

end: 

As before, F is the list of components of the map and v is the list of varia h1(l:-; 

used. Z is the set of variables to be used in the matrix entries and g 1:-; the 

polynomial weight. The method used is as before, except that the weighted 

triples are reduced modulo the ideal generated by F [1] -Z [1] , ... , F En] -z [n]. 

The routines coeff_of...lIlon, mon, quotbasis and getmonos from Appendix Bare 

also required. 

Example 5.4.2 We now show the routine TBFZ in use. 

> TBFZ (f , [x, y] ,Z, 1 , 'B' ) ; 

[ 4 

[ 

[ 0 

[ 

[ 0 

[ 

[ 0 

> B; 

> g:=4*x*y; 

0 

4 Z [1] 

0 

2 2 

f : = [x , y ] 

0 

0 

4 Z [2] 

0 

0 

0 

0 0 4 Z[1] Z[2] 

[1, x, y, x y] 
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> TBFZ(f, [x,yJ ,z,g,'B'); 

%1 

g := 4 x y 

[ 0 0 

[ 

o %1 ] 

] 

[ 0 0 %1 0 J 

[ ] 

[ 0 %1 

[ 

o 0 ] 

J 

[%1 0 0 0 J 

16 z [lJ z [2J 

These results agree with those found in Example 5.3.2. 
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Chapter 6 

G-variant Illap gerIlls 

In the second half of this thesis, we seek to generalise the results of Damon ([D]), 

Gusein-Zade ([GZ)) and Roberts ([RD, regarding map germs which are equivari

ant with respect to the action of a group. 

Roberts ([R2)) considers function germs, f, which are invariant with respect to 

the action of a finite group G. He then defines the associated "Equivariant Milnor 

number". This is given by the character of the representation of the action of G 

on the quotient of the ring of germs by the Jacobian ideal of f. The Equivariant 

Milnor number at a given group element, g, is shown to be equal to the (usual) 

Milnor number of the restriction of f to the fixed space of g. Roberts then exam

ines Morse approximations of f and the critical points of such an approximation. 

The Equivariant Milnor number of f is related to the permutation representation 

derived from the action of G on these critical points. He then considers the lat

tice of fixed spaces associated with the subgroups of G and shows that this is a 

stronger invariant than the Equivariant Milnor number. This is in a similar vein 

to his thesis, ([R)) in which he considers map-germs which are equivariant with 

respect to the action of a compact Lie group on the source and target spaces. 

The determinacy of these map germs and conditions for the germ to be stable 
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are considered. 

In [D], Damon is mainly concerned with the action of a finite group G on the 

branches of a curve defined by a germ Rn+l, 0 --+ Rn, o. This paper also looks at 

G-equivariant map-germs F : R n ,0 --+ R n ,0 and defines the G-degree of f as a 

virtual modular character, i.e. the character of an element of the representation 

ring over the field F 2 of two elements. This is then related to the G-signature of 

the local algebra of the map. 

Gusein-Zade ([GZ]) looks at real analytic germs F : Rn,O --+ Rn,O which are 

G-equivariant with respect to some representation T of a finite group G. The 

G-equivariant degree is defined by consideration of a G-invariant quadratic form 

on the local algebra of the map, to give an element of the representation ring. 

The action of the group on the preimages of zero under a suitable perturbation of 

the map is considered. It is shown that the G-equivariant degree may be obtained 

from the permutation representation associated with this action. 

At first sight, Roberts' paper might seem fundamentally different from the other 

two in that it concerns functions and not maps. However, the "Equivariant 

Milnor number" described here for an invariant function f will be the same as 

the G-equivariant degree described by Damon and Gusein-Zade applied to the 

(G-equivariant) map grad f. Note that in [R], the term "equivariant" is used 

even when the action of the given group is different on the source and target 

spaces, but in [D] and [GZ] the action is always identical on the two spaces. We 

have opted to use the terminology "variant" to include the possibility of the two 

actions being different, reserving "equivariant" for the case when they are the 

same. Roberts' thesis also considers equivariance under the action of a compact 

Lie group, whereas we will be concerned solely with finite groups. We have thr('p 

principal extensions of the results of Damon and Gusein-Zade. Firstly, we gi\'(' 
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a careful treatment of complex degree for arbitrary G-variant maps. Secondly. 

we show that the results hold in the real case for "matched" representations and 

finally we obtain results when the deformation of the germ is not "regular". (Such 

deformations do not always exist.) 

6.1 Group Representations 

Before we begin discussing map germs and the results from [AVG], we shall state 

some definitions and results from the theory of group representations. (See [JL] 

for example.) 

Definition A representation of a group G over a field K is a homomorphism 

R: G -+ GL(n,K). 

So R(xy) = R(x)R(y) and R(lc) = In. 

We refer to n as the dimension of R and we say that R is a representation on 

Kn, since the matrices act on this space. We sometimes ignore the distinction 

between a space and the pair consisting of the space and the matrices which act 

upon it. 

Definition Two representations Rand S are equivalent if there exists an invert

ible matrix T such that 

T R(g) = S(g)T 

for all 9 E G. 

When a group G acts on a finite set {Xh""X r }, it gives rise to a natural ho

momorphism ¢ : G -+ Sr. We define the associated permutation representation 
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R(g) as follows. Suppose ¢J : 9 I-t (J" E STl then R(g) is the matrix with exactly 

one non-zero entry (of value 1) in each row and column such that we have 

R(g) 

Definition Given any representation R of a group G, the character XR of R is 

the map 

XR: G ~K 

defined by XR(g) = trace (R(g)). Characters are functions which are constant 

on conjugacy classes. 

Proposition 6.1.1 If two representations Rand S are such that XR = XS then 

Rand S are equivalent. o 

We can form a sum of representations by defining 

(R ffi S)(g) = (R(9) 0 ) 
o S(g) 

and a product by 

R(g)nS(g) 

(R ® S)(g) = 

R(g)nlS(g) 

These operations can be extended to form a ring by considering the set of pairs of 

representations, with one considered "positive" and the other "negative", written 

R - S. We define ring operations on this set by 

(R - S) + (R' - S') = (R ffi R') - (S ffi S') 

(R - S)(R' - S') = ((R ® R') ffi (S ® S')) - ((R ® S') ffi (S ® R')) 
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and by factoring out the elements of the form R - R. This is called the represen

tation ring of G and we define (virtual) characters on the elements by 

XR-S(g) = XR(g) - Xs(g). 

6.2 Definitions 

We shall recall some results from [AVG], beginning with some terminology. 

Let a E en. The ring of holomorphic functions en, a ---+ e is denoted by 

On(a)j when a = 0 we simply write On. The maximal ideal of functions vanishing 

at a is denoted by Mn (a), again simplified to Mn when a = o. If g : en, a ---+ en, b 

is a holomorphic map then Ig denotes the ideal in On(a) generated by the pullback 

of Mn(a) by g. The local algebra of g denoted by Qg or Qg(a) is the quotient 

On(a)/lg. 

Let U be an open set in en. Then A(U) denotes the algebra of holomor

phic functions on U. If g : U ---+ en is holomorphic, then we denote by Ig(U) 

the ideal of functions generated by the components of g. The quotient algebra 

Qg(U) = A(U)/lg(U) is the algebra of the map g on the domain U. The poly

nomial subalgebra Q 9 [U] of the map g on the domain U is the image of the 

subalgebra of polynomials of A(U) in the algebra Qg(U). 

Definition A map-germ I : en, 0 ---+ en, 0 is said to be finite if I is analytic and 

locally the inverse image of 0 is simply O. 

Lemma 6.2.1 (See [B, chI3], for example) For an analytic map-germ I, the 

following are equivalent: 

1. I is finite. 

2. The local algebra Q f is finite dimensional as a e-vector space. 
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3. The ideal If contains some power M~ of the maximal ideal. 

Proof If I is finite, then the ideal If = On <II,' .. ,fn> determines the set {O}, so 

by the local Nullstellensatz, If ::J M~ for some k. So dimeQf <dime(On/M~) < 

00 and we have proved 1 => 2. 

If dimeQ f < 00, consider the inclusions 

Since 

d· Q d' On d' On 00 > 1m f = 1m- > 1m > ... 
If - If + Mn -

> d· On d' On ... 1m > 1m > ... 
If + M~ - If + M~+l -

this list of inclusions cannot be strict. So 

I + Mk = I + Mk+1 f n f n 

for some k. Applying Nakayama's lemma shows that If C M~ and so 2 => 3. In 

particular, xj E If for each j, so 1-1(0) = ° and thus 3 => 1. 0 

We shall consider a deformation of a finite map-germ I, that is a mapping 

F : en x e k
, (0, 0) ~ en, ° with F(x, 0) = I(x). Given t E e k we denote F( -, t) 

by Ft. We shall label ideals and algebras with a subscript t rather than Ft. 

Now let U be a sufficiently small neighbourhood of ° in en. If Ft-
1(0) C U 

is a finite set of points {aI, ... ,ar } then the multilocal algebra of Fb denoted by 

At(U), is defined to be ESQt(ai) where Qt(ai) is the local algebra of Ft : en,ai ~ 

en,O. 

We can now state the results we shall need from Arnold: 

Proposition 6.2.2 ([AVG, p99]) Let I as above be finite with deformation Ft 

and let L be a e-linear space, spanned by functions e1,' .. ,eJ.L whose germs at 
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zero are a basis for Q f· There is a neighbourhood of 0 in Cn , say U, and a 

neighbourhood of 0 in Ck, say V such that for any t E V the following holds. 

(i) The natural projections 7rt : L ~ At(U) are isomorphisms of linear spaces. 

(ii) Each polynomial P in the algebra A(U) is equivalent modulo the ideal 

It(U) to a unique element of the space L and this element depends analytically 

on t. o 

We also need the following 

Lemma 6.2.3 ([AVG, p98]) Let Pt : C[Xl, ... , xn] ~ At(U) denote the natural 

projections. Then 

(i) Pt is in fact a surjection. 

(ii) The kernel of Pt is It(U) n C[Xl,· .. ,xn]. 

Proof The proof of (i) is to be found in [AVG]. For (ii), let P be a polynomial 

with Pt(P) = O. We know that P is equivalent modulo the ideal It(U) to a unique 

element h in L. But 7rt(h) = Pt(P) = 0 and so since 7rt is an isomorphism we 

deduce that h = 0, in other words P E It(U). If, conversely we are given a 

polynomial P E It(U), then we find Pt(P) = ° immediately. o 

We now introduce the action of a group G, which we will assume throughout to 

be finite. We will also assume that G acts on both source and target, via rep

resentations Rs and RT respectively. We will call these representations matched 

when det(Rs(g)) = det(RT(g)) for all 9 E G. 

Definition A G-variant map is a map-germ f which 'commutes' with the group, 

in other words 

f(Rs(g)(x)) = RT(g)(f(x)). 

for all x and all 9 E G. 
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We will often dispense with the explicit reference to the representations and just 

write the action of a group element 9 as g·x. In this notation, the above condition 

for G-variance would be written as 

f (g . x) = 9 . f (x) 

but note that the dot on either side of the equality can mean quite different 

things. The class of G-variant maps includes both G-invariant and G-equivariant 

maps. The former is obtained by taking RT to be the trivial representation, while 

the latter by setting Rs = RT . In general, we will be interested in finite G-variant 

maps. 

Before the next proposition, we need the following lemma: 

Lemma 6.2.4 ([JL]) Let V be a finite dimensional G-vector space (so G acts 

on it via a representation) with U c VaG-invariant subspace. Then U has a 

G-invariant complement U.i such that V = U EB U.i. 

Proof Suppose V has VI, ... Vn as a basis. Then define two complex inner prod

ucts (non-degenerate Hermitian forms) (,) and [,] as follows: 

(~AiVi, ~ ~jVj) 
i=1 

[u, v] 2:(g. u,g· v) 
gEG 

Now the second of these is also G-invariant, since 

[g' . u, g' . v] 2: «gg') . u, (gg') . v) 
gEG 

2:(g. u,g· v) 
gEG 

[u, v] 

Now taking 

U.i = {v E V : [u, v] = 0 for all u E U} 
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we find that this is indeed G-invariant for 

[u, v] = 0 for all u E U 

::::} [g. u, 9 . v] = 0 for all u E U 

::::} [u, 9 . v] = 0 for all u E U 

and so v E U.1 implies 9 . v E U.1. Finally, the fact that V = U EB U.1 is a standard 

property of complex inner products (see [el] for example). 0 

Note that the components fl' ... , fn of a G-variant map f are such that the ideal 

they generate, If' is G-invariant. For we have for all 9 E G, 

So after applying an element of the group, we simply have linear combinations of 

the original elements. Since the matrix RT(g) is invertible, these new elements 

will generate the same ideal. 

Proposition 6.2.5 (i) If f : en, 0 ~ en, 0 is a finite G-variant map-germ, and 

it has a representative (also denoted by f) defined on a neighbourhood U, then 

we can choose a G-invariant neighbourhood V C U of 0 (on which of course f is 

defined). 

(ii) Let fl' ... ,fn be germs of functions en, 0 ~ e with the property that the 

ideal they generate On (fll ... ,fn) = If is G-invariant, and of finite codimension. 

Then we can find a complement to If in On of minimal dimension which is also 

G -invariant. 

Proof (i) We simply let V denote the intersection of the open sets 9 . U as 9 

varies over all elements of G. 
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(ii) Since If is of finite co dimension it contains some power of the maximal 

ideal M~+l (see Lemma 6.2.1). As a consequence it is enough to work in the 

finite-dimensional quotient space Onl M~+l of polynomials of degree at most k. 

(Since G is acting linearly the group action preserves the filtration by degree.) 

We now apply Lemma 6.2.4 to If I M~+l as a subspace of Onl M~+l. vVe will 

denote its G-invariant complement by L. o 

Definition Let f : en, 0 ---+ en, 0 be finite and G-variant, so that If is invariant. 

Since G acts linearly on the ring On as a vector space, we see that it must also 

act linearly on the local algebra Qf. The action of 9 E G on Qf as a vector space 

can therefore be expressed as a matrix. We thus have a representation of G on 

Qf, which we will call the G-variant degree of the complex map f. 

Of course, since L (as in the proof of 6.2.5) is G-invariant there is a natural 

action of G on L. Suppose now that F is a finite G-variant deformation of f, so 

Ft(g· x) = g. (Ft(x)) for all x E U and t near 0 E Rk. Our next task is to identify 

the group's action on the algebras At(U). First note that the natural projections 

Pt : A(U) ---+ At(U) are surjections. We have an action of the group G on A(U) 

(recall that U is G-invariant). 

Proposition 6.2.6 (i) The group action on A(U) gwes a well defined group 

action on At(U). 

(ii) If 0 is a regular value of Ft then Ft-1(0) consists of J1, points where J1, = 
dim Qf. Also, At(U) is isomorphic to the direct sum of J1, copies ofe, one for each 

point of Ft-
1(0). In this case the group action on At(U) yields the permutation 

representation of G on the points of Ft-
1(0). 

Proof (i) If Ft-
1(0) = {al, ... ,ar } then let h* = (h1, ... ,hr ) E ffiQt(ai). We 

know that there is a polynomial function h E A(U) which projects to h*. So we 

define g·h* to be pt(g·h). We need to show that this is well-defined; once we han> 
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established that it will be clear that we have a group action. So let H be another 

polynomial function with pt(h) = pt(H) = h*. It follows from Lemma 6.2.3 that 

h - H lies in the ideal It(U). But It(U) is G-invariant, so g . H - g . h E It and 

consequently Pt (g . H) = Pt (g . h) as required. 

(ii) If a is a regular point of Ft then the local algebra Qt(a) is simply e. 
and the first result follows. It is also clear that the map A(U) -+ .\t(U) simply 

evaluates the function at the J1 points. The rest is now straightforward. 0 

Now we can mimic the proof given by Arnold et al [AVG, p99]. 

Proposition 6.2.7 Let f as above be finite and G-variant. There is a G-invariant 

neighbourhood of 0 in en, say U, and a neighbourhood of 0 in ek , say \IT, such 

that for any t E V, the natural projections 7rt : L -+ At(U) are G-isomorphisms 

of linear spaces. 

Proof We wish to apply Proposition 6.2.2 above (by Proposition 6.2.5 we can 

choose U to be a G-invariant neighbourhood of 0 in en). We start by choosing 

a G-invariant complement L to If in On- This shows that for all t E V the map 

7rt : L -+ At(U) is an isomorphism. We need to show that it preserves the group 

action, in other words that 7rt(g . h) = g . (7rt(h)) for all g E G and h E L. But 

this is immediate. o 

Corollary 6.2.8 Suppose that with the given deformation of f we have 0 a reg

ular value of Ft for some t in V. Then the permutation representation of G on 

the set of points Ft-
1(0) is equivalent to the representation of the action of G on 

the local algebra Q f. 
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Proof The algebra Ao(U) is G-isomorphic to the local algebra Q,. On the 

other hand At(U) is isomorphic to J-L copies of e (the local algebra of a regular 

point is simply e). The group action is then simply given by the permutation of 

these J.l points. 0 

6.3 Bilinear forms 

We start with an easy Lemma. Let G be a finite group acting on our source and 

target spaces via matched representations and let f : en, 0 ~ en, 0 be a finite 

G-variant map-germ. 

Lemma 6.3.1 The Jacobian determinant of f, denoted by J, is G-invariant. 

Proof We consider the representations Rs and RT as linear maps en ~ en. 
Since f is G-variant, we have RT(g)(f(x)) = f(Rs(g)(x)). Taking derivatives 

and determinants we find that 

( det RT (g) ) ( det df (x)) = (det df ( Rs (g) (x) ) ) ( det Rs (g) ), 

and so det df (g . x) = det df (x) as required. o 

Suppose now that a : Q, ~ e is linear and G-invariant, in the sense that 

O'(g·h) = O'(h) for all h E Q, and 9 E G. We define a bilinear form Bo (sometimes 

just denoted by B) on Q, by 

Proposition 6.3.2 The bilinear form Bo is G-invariant and is non-degenerate 

if and only if 0'( J) =I- O. 
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Proof We have only to prove that the bilinear form is G-invariant: the other 

result follows from the classical case ([AVG, pl00]). But a((g.hd . (g.h
2

)) 

a(g.(h1 • h2 )) = a(hl . h2 ) whence the result. 0 

By [R2, Prop 3.3] we have the following result: 

Proposition 6.3.3 Let V be a complex representation of the finite group G. 

Then the following are equivalent: 

• There is a G-invariant non-degenerate quadratic form defined on V. 

• V is a real representation. o 

A complex representation is called real if it is the complexification of a rep

resentation on a real vector space. We have shown that there is a G-invariant 

non-degenerate quadratic form on Q f, derived from the linear form Q which takes 

the value 1 on J and 0 elsewhere. This means that in our case the representation 

of the action of G on Q f is in essence just a representation on a real space. Here is 

an example to show how starting with an action of G on C n given by a complex, 

non-real representation, we obtain a real representation on Qf. 

Example 6.3.4 Let G = Z4, generated by g, act on C by [(i)], where we express 

a representation R by giving R(g) enclosed in square brackets. The map f : C ~ 

C given by x f---+ x 5 is finite and G-equivariant. Now Qf is isomorphic to C-span 

{1,x,x2,x3,x4
} with G acting by 

1 0 0 0 0 

o 1, 0 0 0 

o 0 -1 0 0 

o 0 0 -1, 0 

o 0 0 0 1 
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But this is in fact a real representation, for if we rewrite the basis for Q f as 

{ I 2 4 3· . 3} . 
,X ,X ,X - x ,'lX + 'lX ,we obtaIn the representation 

1 0 0 0 0 

o -1 0 0 0 

o 0 1 0 0 

o 0 0 0 1 

o 0 0 -1 0 

On the other hand, see Example 7.1.1 in which non-matched representations give 

a representation on Q f which is not real. 

Remark Clearly there are plenty of invariant linear forms Q with Q( J) =1= o. 
Indeed we can proceed as follows. In the construction of the G-invariant comple

ment to the ideal If above we can first choose a G-invariant complement LI to 

the sum of If and the invariant functions. We may then extend this by adding 

in a relevant subspace L2 of the invariant functions; we have shown that J lies 

in the latter. Choose a basis for L2 containing J. We now define Q to be 1 on J, 

o on the other basis vectors of L 2 , and 0 on L l . 

We wish to push the constructions of Arnold et al a little further, even in the 

classical case. Using the standard notation above we shall start with a linear form 

Q : Qf(U) ~ C with Q(J) =1= O. In fact assuming that f is polynomial we need 

only consider a linear form Q : C[Xl"" ,Xn]/(fb"" fn) ~ C with Q(J) =1= 0 (it 

is not hard to show that one can change co-ordinates so that f is polynomial and 

this quotient is finite dimensional). See [W], Wall's survey paper. 

Proposition 6.3.5 Let f , U and V be as before. For each t E V we define a 

bilinear form Bt on At(U) as follows. Given hI, h2 E At(U) choose polynomials 

HI, H2 E A(U) with pt(Hi ) = hi' Define Bt(h l , h2) by considering their product 

in Q f (U) and then applying Q. 

(i) The bilinear forms Bt are well defined and non-degenerate. 
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(ii) If Ft-I(O) = {aI, . .. ,ar} then a determines a linear map ai : O(ai) --+ C. 

and these in turn determine a bilinear form B(ai) on the local algebras Qt(ai)' 

The form Bt is the direct sum of the B( ai)' 

Proof (i) First, we show that a gives a well-defined linear form, at on At(U). 

Suppose h = pt(H) = pt(H'), then H - H' E II(U), so a(H) = a(H'). This 

means that at (h) is well defined. Now since at is well defined, this means that 

the bilinear form it defines, Bt is also well-defined. The form Bt is non-degenerate 

since Bo is non-degenerate. (See the note below.) 

(ii) If pt(H) = (hI, ... , hr) and pt(H') = (h~, ... , h~), then pt(H . H') 

(hI . h~, ... , hr . h~). So Pt carries the algebra structure of A(U) into At(U), with 

pointwise multiplication. Now ai(hi) = at«O, ... , 0, hi, 0, ... ,0)) by definition. 

Thus 
r 

at«hI,···, hr)) = Lai(hi) 
i=I 

and so 

a(h· h') 

at ( (hI . h~, ... , hr . h~)) 

i=I 
r 

L B(ai)(hi, h~). 
i=I 

o 

Remark One can prove the non-degeneracy of the bilinear forms in a slightly 

different way to that in Arnold et al (it still uses Hartog's Theorem). Using the 

result above we obtain a family of bilinear forms Bt on the space L the entries of 

which depend analytically on t. We can prove non-degeneracy by induction on 

11 = dimQ I as follows. Consider the set X of values of t with Ft-
1 
(0) consisting of 

a single point. It turns out that we can choose a family Ft with the property that 
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this has co dimension > 2 unless f is a fold. The result in the case of the fold is 

trivial anyway. So we may assume that the bilinear forms Bt have maximal rank 

off this set by induction using (ii) above. Since they have maximal rank off a 

set of co dimension 2 by Hartog's Theorem they have maximal rank everywhere. 

(The inverse matrices Btl exist off this set, and the entries are holomorphic in 

t; by Hartog's Theorem they extend to holomorphic functions for all values of t. 

Since B t . Btl = I holds on a dense set it holds everywhere.) 

Now suppose that we have a group G acting. We suppose once more that 

I is polynomial. Again, it is not difficult to find a G-invariant linear form Q : 

C[Xl, ... , Xn]/ (11, ... ,In) ---t C which is non-zero on J as required. The same 

proof as above then shows that the following holds: 

Proposition 6.3.6 Let f , U and V be as above. For each t E V we define a 

bilinear form B t on At (U) as follows. Given hI, h2 E At (U) choose polynomials 

HI, H2 E A(U) with pt(Hi) = hi· Define Bt(hl , h2) by considering the product 

in Q f (U) and then applying Q. 

(i) The bilinear forms B t are well defined G-invariant and non-degenerate. 

(ii) If Ft-l(O) = {all···' ar } then Q determines a linear map Qi : O(ai) ---t 

C and these in turn determine a G-invariant bilinear form B(ai) on the local , 

algebras Qt(ai). The form B t is the direct sum of the B(ai). 

Proof This is now trivial. o 

6.4 The real case 

An analytic map-germ f : R n, 0 ---t R n ,0 is said to be finite if its complexification 

fe : cn, 0 ---t cn, 0 is finite. Let On now denote the ring of analytic functions 

Rn,O ---t R. We define Q f to be On/If similarly to the complex case. If we 

write Q'f and Qf for the real and complex local algebras respectivply, then one 
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can check that Qf "" Q'f ® C and thus f is finite if and only if Q'f is finite 

dimensional as a R-space. Again, if a : Q f ---+ R is a linear form, define Bo on 

Qf by Bo(h1 , h2) = a(hl . h2)' 

A complex function, ¢> on a set with involution T is said to be T-real if 

(NB A polynomial with real coefficients is T-real when T is the involution of 

complex conjugation.) The T-real functions on a set of J.1 points {al' ... , all} form 

an R-algebra R of R dimension J.1. For each function ¢> E R (with ¢>(ai) =1= 0 for 

all ai) we may define a bilinear form B<jJ on R by 

J.L 

B<jJ(h l , h2 ) = L ¢>(ai)hl (ai)h2(ai)' 
i=l 

We have the following proposition from Arnold et al. 

Proposition 6.4.1 ([AVG, p103]) Given Rand B<jJ as above, 

(i) the values of the form B<jJ are real. 

(ii) B<jJ is non-degenerate. 

(iii) The signature of the form B<jJ is ¢>+ - ¢>- where ¢>+ is the number of fixed 

points of the involution on which ¢> > 0 and ¢>- is the number on which ¢> < O. 

Proof Under T, the set decomposes into invariant 1 and 2 point subsets. It 

is therefore sufficient to prove the proposition for these sets. 

One Point Case: The T-real functions at a point fixed under T are isomorphic 

to a single copy of R and so have R dimension 1. This proves (i) and (ii) in this 

case. The signature is simply + 1, -lor 0 depending on the sign of the function 

at the point. This proves (iii). 
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Two Point Case: In this case, we have distinct points al, a2 such that T( al) = 

a2 and thus if 4> is a T-real function on the pair, 4>(al) = 4>(a2)' So by determining 

the value of a function on one point, it is determined on both. Thus the functions 

have R dimension 2. Now 

4>( al)hl (al)h2(ad + 4>( a2)hl (a2)h2(a2) 

4>(adhl (al)h2(al) + 4>(adhl (al)h2(al) 

E R 

so we have shown (i) in this case. Suppose 4>(al) = 4>1 + i4>2 and h(al) = hI + ih2 

where 4>1, 4>2, hI, h2 E R, then 

B<I>(h, h) 

( 
24>1 

N ow the matrix 
-24>2 

4>(al)h(al)2 + 4>(al)h(al)2 

2( 4>lhi - 24>2hlh2 - 4>lh~) 

(hI h2) (24)1 -24>2) ( hI ) . 
-24>2 -24>1 h2 

-24>2 ) has rank 2 and signature 0 for any (4)1,4>2) E 
-24>1 

( -0
10

1)' R 2 \ { (0, 0) }, since there exists a change of basis to This completes 

the proof. 
o 

When we have a group G acting on a real vector space, V, with a G-invariant 

bilinear form B, we define the G-signature of B by 

in the ring of representations of G. Here V+ and V- are the G-spaces where B 

is positive and negative definite respectively. 
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Now, let G be a group acting via matched representations on source and target 

spaces isomorphic to Rn. Let It be a finite G-variant deformation of I such that 

o is a regular value. Let It-1(O) = {ab ... ,aIL} E en. Take T to be the involution 

of complex conjugation acting on the roots. As before, we let R be the R-algebra 

of T-real functions on the points ai. Now G acts on R in the obvious way, by 

simply permuting the points. For a G-invariant 4> E R, with 4>(ai) i= 0 for all ai, 

define a bilinear form Bq, on R as before, 

IL 
Bq,(h1, h2 ) = L 4>(ai)h1(ai)h2(ai). 

i=l 

N ow we may decompose {ai} as follows 

Al {ai : T ( ai) = ai} 

A2 {ai: T(ai) i= ai,T(ai) = g. ai some 9 E G} 

A3 {ai : T ( ai) i= ai, T ( ai) i= 9 . ai any 9 E G}. 

This leads to a decomposition of R as 

where 

Rl {T- real functions h on Ad 

R2 {T- real functions h on A2 : h(ai) = h(T(ai)) E R} 

R3 {T- real functions h on A2 : h(ai) = -h(T(ai)) E iR} 

R4 { T - real functions h on A3}· 

Then we have the following analogue of the above proposition: 

Proposition 6.4.2 With G, {ail, T, R as above, Then 
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in the representation ring of G, where the '+' and '-' superscripts denote the 

G-spaces where c/J > 0 and c/J < 0 respectively. 

Proof We consider each of the spaces R 1 , R2 , R3 and R
4

: 

R1 : The contribution here follows as in the original case, since the matrix for 

B¢ here simply has the values of c/J at the given point ai down the diagonal. Thus 

this contributes Rt - Rl to the G-signature. 

R2 and R3: Consider a pair of points ai, aj E A2 such that 7(ai) = aj and 

c/J(ai) = c/J(aj) = .A E R. The matrix for Brj> here is of the form (2.A 0 ), 
o -2.A 

w here the first basis vector corresponds to real functions on the two points and the 

second to purely imaginary ones. (Compare the proof of the original proposition.) 

Thus when .A > 0, the real functions contribute positively to the G-signature and 

the imaginary ones negatively. When .A < 0, the opposite occurs. Thus, overall, 

(Rt + Ri) - (Ri + Rt) is contributed to the G-signature. Note that the actions 

of G on R2 and R3 are in general different. A real function will be unaffected 

by a group element which has the same effect as 7, whereas a purely imaginary 

function will be multiplied by -l. 

R4 : Suppose we consider an orbit in in R4 , where c/J = .A + iJ-L. This will come 

with a '7 mirror-image' orbit where c/J = .A - iJ-L, since 7 commutes with G. The 

matrix of Brj> on these two orbits will look like 

where G acts by permuting the pairs of basis vectors. Now by an identical change 

of basis on each pair of vectors, we obtain 
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1 0 
0 

0 -1 

1 
0 

0 

0 -1 

0 
1 

0 
0 

with G acting as before. This is the same as 

1 0 

o 1 

o 

o 

o 
o 1 

-1 0 

o -1 

o 

0 

0 

0 

-1 

o 

o 
o -1 

with an identical G action on each summand. Thus there is no contribution to 

the G signature. o 

Corollary 6.4.3 If G is of odd order then the above result reduces to 

which is analogous to the complex case, in the sense that this is the action of G 

on the preimages of zero counted up to the sign of cPo 

Proof Since G is of odd order, the points ai must also form orbits of odd order 

(since their order must divide IGI). Suppose A2 is non-empty for otherwise the 

result is trivial. Choose an orbit in A2 . We know that if ai lies in the orbit, 

then so does r(ai)' Thus the orbit has an even number of elements. This is a 

contradiction, so we must have A2 = 0. o 
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In the case above, the G-signature is given by the permutation representation 

of G on the real roots of ft = 0 counted with the sign of </> at that point. Here 

Rt is given by the action of G on T-real functions on Al (real roots of It = 0) 

where </> > O. This corresponds to just the action on the points. A similar result 

holds for RI · Note that we need matched representations to have an action on 

{ft = O} n {</> > O}. 

Definition We will call Rt - R1, with </> = 1/ J, the G-index of I at the point 

O. Note that it will be dependent of the choice of deformation of f. 

Now let el,' .. ,elL be a R-basis for LR, which is a G-invariant complement to 

If in On as in the complex case. Note that this will also form a C-basis for L, 

defined as previously. There is a natural map 7rR : LR --+ R given by evaluation 

at the j), points. Now obviously 7rR = 7rt ILR and since 7rt is an isomorphism, this 

means that LR is isomorphic to some subspace of R. But both these spaces have 

R dimension j)" so LR rv R via 7rR' Since the group action is real, this also carries 

over from the complex case, so LR and R are in fact isomorphic as G-spaces. 

N ow let us define a bilinear form Bt on LR by 

IL 1 
Bt(hl' h2 ) = ~ J(ai) hI (ai)h2(ai)' 

By the G-isomorphism described above, this form has G-signature equal to 

that of sigGB~ in Proposition 6.4.2 above, with </> = 1/ J. Let us denote this 

element of the representation ring by u. Note that J is G-invariant by Lemma 

6.3.1 and hence 1/ J is a G-invariant function on the points ai' 

To continue further, we require the following results from Arnold et al. 

Proposition 6.4.4 For any holomorphic function h at 0, set 

for the points {all'" aJ.'} = ft- 1(0). Then: 
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(i) As t ----t 0, It (h) tends to a finite value denoted [h / f). 

(ii) The linear form ao( -) = [- / f) is zero on the ideal If and thus determines 

a linear form on the local algebra Q f. 

(iii) The bilinear form B = Boo on the local algebra, (constructed from the 

linear form ao in the usual way) is non-degenerate. o 

Using this result, we find that as t ----t 0, Bt ----t B on the local algebra, 

corresponding to the special linear form ao. Since B is non-degenerate, it must 

also have G-signature equal to a. Now join ao to an arbitrary a, which also 

has a(J) > 0, by a line segment. Since all the points along this line correspond 

to non-degenerate forms, they all have G-signatures equal to a. Thus we have 

proved 

Proposition 6.4.5 The G-signature of a bilinear form Bo on Qf' derived from 

a linear form a : Qf --+ R with a(J) > 0 is independent of the choice of a. 0 

We will call this G-signature the G -variant degree of the real map f. Notice that 

it is in general different from the G-variant degree of f considered as a complex 

map. If we take Corollary 6.4.3 into account, then we obtain 

Corollary 6.4.6 For G of odd order, the G-index of f at the point 0 is indepen

dent of the deformation chosen and the G-signature of a bilinear form Bo on Qf' 

derived from a linear form a : Q f --+ R with a( J) > 0 is equal to this G -index. 0 

6.5 Examples 

Example 6.5.1 Let the group Z2 act on the source space R2 by the representa-
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tion 

[ (~ ~) 1 
and on the target space R 2 by 

Then the map f = (x2 - y2, x2 + y2) : R2, 0 ---+ R2, 0 is finite and G-yariant with 

respect to these actions. Note that both these matrices have determinant -1. so 

they match. The local algebra Qf is given b~' the R-span of {1,./',y,xy} and thp 

action of the group (inherited from the action on the source) is giv(,ll b~' 

1 000 

o 0 1 0 

o 1 0 0 

000 1 

N ow the J aco bian determinant of f is 8xy, so let us define a : (J f -----+ R b~' 

a(xy) = 1, a = 0 elsewhere. We diagonalize the associated bilinear form Bo 

by taking {I - xy, 1 + xy, x + y, x - y} as a basis for Qf. The quadratic form 

associated to Bo: is positive on the second and third basis elements and negatiy(' 

on the first and fourth. The action of the group with respect to this llew basis is 

giY<\ll by 

1 0 0 0 

0 1 0 0 

0 0 1 0 

0 0 0 -1 

and thus "'(\ obtain 

sigcBo: [ (~ ~)] [ (~ ~1)] 
[(1)] - [(-1)]. 
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Here is a simple example where the representations are not matched. 

Example 6.5.2 The group Z2 acts on the source space R by [(-1)] and on the 

target space R by [(1)]. Then I = x 2 
: R, 0 ~ R,O is finite and G-variant with 

respect to these actions. However, the determinants of the representations do not 

match. The local algebra Qf is simply the R-span of {I, x} and the action of the 

group is given by 

Now the spaces spanned by 1 and x respectively are G-invariant and this is the 

only possible decomposition of Q f into such spaces, by consideration of eigenval

ues. We define the linear form a : Qf ~ R by a(x) = 1, a(l) = 0, since the 

Jacobian determinant of I is 2x. The related bilinear form, Bo has the following 

matrix on this basis: 

We can see that Bo is not G-invariant and thus we cannot calculate sigGBo' 

So having matched representations is necessary when we are considering bilinear 

forms. 

Consider the complexification of the above, with Z2 acting on C by [(-1)] 

and [( 1)] on the two spaces and I = x 2 
: R, 0 ~ R, 0 as the G-variant map in 

question. The local algebra is given by C-span {I, x} and G acts on it exactly 

as in the real case. Let us take It = x 2 - t2 as a finite G-variant deformation 

of I. This gives It- 1 (0) { t, - t} and G acts on the T real functions via the 

representation 

[(~ ~)] 
which is equivalent to the representation above. Thus although we cannot cal

culate the real G-variant degree since the representations are not matched, we 
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can calculate the complex G-variant degree as this does not require matched 

representations. 

Example 6.5.3 Let G = Z4 with generator 9 and let G act on R4 under the 

standard permutation representation. We will, as before, denote a representation 

R by giving R(g) enclosed in square brackets, so this representation is given by 

000 1 

1 000 

o 1 0 0 

o 0 1 0 

Let I = (xI, X~, x~, xD : R\ 0 ---+ R\ 0, which is finite and G-equivariant. Con

sider the following finite G-equivariant deformations of it 

If 

If' 

where t E R. 

Let us consider the first deformation and looking at its complexification, study 

(1:)-1(0). This consists of the points of the form (±it, ±it, ±it, ±it), sixteen in 

total. The Jacobian determinant of If, J = 16x1X2X3X4, so we see that 0 is a 

regular value of If. Looking at the action of G on the points we get the following 

orbits: 

Isotropy Order of Number of Representatives 

group orbits orbits of orbits 

Z4 1 2 ±(it, it, it, it) 

Z2 2 1 (it, -it, it, -it) 

1 4 3 ±( -it, it, it, it), (it, it, -it, -it) 
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1 1 -I 1 - - - -

16t4 16t4 
16t4 

16t4 

Figure 6.1: The Z4 orbits of (1;)-1(0). 

We can represent the orbits as shown in Figure 6.1, with orbits ringed and 

reflection in the line corresponding to complex conjugation (T). In this figurp, ¢ 

gives the value of ¢ = J on the given orbits. 

We can now calculate sigcB¢. The points in the orbits of order 1 may 1)(' 

ignored, since they lie in A3 . For the orbit of order 2, G acts on the real yalued 

T - real functions as [( 1)]. The action on the purely imaginary functions is [( -1)]. 

Thus the contribution here is [(1)]- [( -1)]. The first t,yO order -! orbits may also 

be ignored, but the points of the third lie in A 2 , so must be considered. G acts 

on the real valued T-real functions as and on the imaginary ones as 
[( 01 0

1
)] 

[ ( 
0 1)] This yields 

-1 0 . 

[(1)]- [(-1)] + [( 0 1)] [( 0 1)] 
1 0 -1 0 

100 

001 

010 

-1 0 0 

o 0 1 

o -1 0 

L(,t us call this elelnent ofthp representation ring R' and its (yirtual) charact!'r p'. 

\'O\\' ld, us cOllsider the s('('(md deformation and (1:,)-1(0) as beforC'. This consbts 
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1 
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16t4 
-I 

16t4 

Figure 6.2: The Z4 orbits of (1:,)-1(0). 

1 

16t4 

of the points with each component having a value of ° or t, again giving sixteen 

points. The Jacobian determinant of I:', J = (2X1 - t)(2X2 - t)(2X3 - t)(2X4 - t), 

so we see that ° is a regular value of If'. Looking at the action of G on these 

points we get the following table of orbits. 

Isotropy Order of Number of Representatives 

group orbits orbits of orbits 

Z4 1 2 (0,0,0,0), (t, t, t, t) 

Z2 2 1 (0, t, 0, t) 

1 4 3 (O,t,t,t),(t,O,O,O),(t,t,O,O) 

This can be represented by Figure 6.2, where again ¢ gives the value of ¢ = J on 

the given orbits. 

These points all lie in AI, so sigaB¢ in this case is just the permutation 

representation of the action of G on the points, taken with the sign of ¢. So we 

obtain 

2[(1)1 + [ (~ ~)]-
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1 000 

o 1 0 0 

000 1 

001 0 

000 1 

1 000 

o 1 0 0 

o 0 1 0 

Let us call this element of the representation ring R" and its (virtual) character 

p". Now we expect R' and R" to be equal and if we compare the values of p' and 

p" on the elements of the group, we obtain 

1 9 g2 g3 

p' 0 2 4 2 

p" 0 2 4 2 

and hence R' and R" are equivalent elements of the representation ring. 

Now let us look at Q" which in this case is spanned by {XilX;2X~3X~4 : i j = 0 or I}. 

Take a : Q, -+ C by a(xlx2x3X4) = 1 and 0 elsewhere, since this gives a(J) = 
a(16xlx2X3X4) > O. Let Bo. be the associated bilinear form. We can diagonalize 

it by taking the following as a basis: 

So Bo. is positive definite on the 'odd' basis vectors and negative definite on the 

'even' ones. The ei break up into orbits as {ed, {e2}, {e3}, {e4}, {e5,e7,e9,ell}' 

{e6, es, elO, e12}, {e13, e15}, {e14, e16}' Now the actions of G on {ed and {e2} are 

equal and Bo. is positive on one and negative on the other. This also occurs with 

the orbits of size 4. These can therefore be ignored. The action on {e3} is [( 1 )] 

127 



[( ~1 ~)] respectively. This yields 

1 0 0 -1 0 0 

sigcBa 0 0 1 0 0 1 

0 1 0 0 -1 0 

which gives the same element of the representation ring as previously calculated. 

Example 6.5.4 Let G = Z2 X Z2 act on R4 by the standard permutation rep

resentation. In this example, this is written as the representation of (0,1) and 

(1,0) respectively, enclosed by square brackets: 

o 100 

100 0 

000 1 

o 0 1 0 

o 0 1 0 

000 1 

1 000 

o 100 

As in Example 6.5.3 above, consider 1 = (xi, x~, x~, x~) : R\ 0 ---+ R\ 0, which 

is also finite and G-equivariant in this situation. As before, consider the following 

finite G-equivariant deformation of it 

Again, looking at its complexification, we consider (/0- 1 (0). This consists of 

the sixteen points of the form (±it, ±it, ±it, ±it). Since the Jacobian determinant 

is the same as before, 0 is a regular value of I:. Looking at the action of G on 

the points we get the following orbits: 
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G «0,1» <(1,0» <(1,1» 1 

0 ~ ~ ~ 2- ---) 
0 c· ••• ) 

<\>= 
1 1 1 1 -1 

16t4 16t4 16t4 16t4 16t4 

Figure 6.3: The Z2 x Z2 orbits of (1£)-1(0). 

Isotropy Order of Number of Representatives 

group orbits orbits of orbits 

Z2 x Z2 1 2 ±( it, it, it, it) 

«0,1» 2 1 (it, it, -it, -it) 

«1,0» 2 1 (it, -it, it, -it) 

«1,1» 2 1 (it, -it, -it, it) 

1 4 2 ±(-it,it,it,it) 

We can represent the orbits as shown in Figure 6.3, with orbits ringed and 

reflection in the line corresponding to complex conjugation (7). In this figure, 4> 

gives the value of 4> = J on the given orbits and the isotropy subgroup is given 

above. 

We can now calculate sigaB<jJ' This time, we are only concerned with the 

orbits of order 2, as the other points lie in A3 . For the orbit with isotropy group 

< (0, 1) >, G acts on the real functions as [( 1 ), (1)] and on the imaginary ones as 

[(1), (-1)), so the contribution here is [(1), (1)] - [(1), (-1)]. Similarly, the other 

two orbits give contributions of [(1), (1)] - [( -1), (1)] and [(1), (1)] - [( -1), (-1)). 

Thus 

sigGB<jJ = 3[(1), (1)] - [(1), (-1)] - [( -1), (1)] - [( -1), (-1)] 
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which can be written as 

100 

010 

001 

100 

010 

001 

100 

o -1 0 

o 0 -1 

-1 0 0 

010 

o 0 -1 

If this has (virtual) character p then we obtain this table of values. 

(0,0) (0,1) (1,0) (1,1) 

p 0 4 4 4 

Now let us look at Qj, which is the same as in Example 6.0.3. Take n : Qj ---+ C 

by a(xlx2x3X4) = 1 and 0 elsewhere. Let Bo be the associated bilinear form. 

We diagonalize it by taking the same basis {( 1, ... , e16} as before, so Bo is pos

itive definite on the 'odd' basis vectors and negative definite on t 11<' . ('\'('II ' ones. 

The only non-singleton orbits formed by the ei are the orbits {e5' ('7, ego ell} and 

{e6' es, elO, e12}' The actions on each of these is identical and since one is positiy(' 

and one negative, we may ignore them. The same is true of {ed and {f'2}' The 

action on each of {e3}, {e13} and {els} is [(1), (1)]. Now {e4} giy('s [(-1), (1)], 

{('14} gives [(1), (-1)] and {e16} yields [(-1), (-1)]. So 

sigc B 0 = 3 [ ( 1 ), (1)] - [( 1 ), ( -1 )] - [( -1 ), (1)] - [( -1 ), ( - 1)] 

which is the same element of the representation ring obtained above. 

Example 6.5.5 Let us consider the symmetric group G = 53 acting on R3 ill 

the usual way. Since S3 is generated by the permutations (12) and (123). \\'(' 

will d('snih(' a representation of S3 b~v giving the matrices corresponding to tlll's(' 

elelnents, enclosed in square brackets. So 53 acts b~' 

010 
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001 
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Spanning Vectors Action of G Spanning Vectors Action of G 
1 + X2y2z2 [(1),(1)] 1 + X2y2z2 [(1),(1)] 
x + xy2z2 X - xy2z2 

Y + x2yz2 Ro y - x2yz2 Ro 
z + x2y2z Z -x2y2z 

x2 + y2 z2 x2 _ y2 z2 

y2 + X2Z2 Ro y2 _ X2Z2 Ro 
Z2 + x2y2 Z2 _ x2y2 

yz + x2yz yz - x2yz 

XZ + xy2z Ro XZ - xy2z Flo 
xy + xyz2 xy - xyz2 

xy2 + XZ2 xy2 - XZ2 

yz2 + x2y Ro yz2 - x2y Ro 

X2Z+y2z x2z - y2z 

xyz [(1), (1)] 

which we will call Ro. Now the map f = (X3,y3,Z3) : R3,O ~ R3,O is finite 

and G-equivariant with respect to this action. The local algebra, Q f, is given 

by the R-span of the monomials {Xil yi2 Zi3 : i j E {O, 1, 2} }. Now the J aco bian 

determinant J of the map f is given by 27x2y2 Z2, so let us define the bilinear 

form Bo: via the linear form a which takes the value 1 at x2y2 z2 and 0 elsewhere. 

Diagonalizing Bo: we obtain the subspaces of Qf shown in Table 6.1, where the 

spaces on the left-hand side are such that Bo: is negative definite and those on 

the right, where it is positive. The representation flo is given by 

o -1 0 

-1 0 0 

o 0 -1 
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Looking at the table, we obtain 

sigaBQ - Ro + [(1), (1)] - flo 
0 1 0 0 0 0 1 0 

0 -1 0 0 0 1 1 0 0 0 1 0 0 0 
-1 0 0 1 0 0 

0 0 1 0 0 1 0 0 
0 0 -1 0 1 0 

0 0 0 1 0 0 0 1 

The characters of Ro, Ro and the trivial representation [(I), (I)] are denoted Po. 

Po and i. They are given by 

(1) (12) (13) (23) (123) (132) 

Po 3 1 1 1 0 0 
~ 

3 -1 -1 -1 0 0 Po 

i 3 3 3 3 3 3 

and so we obtain 

(1) (12) (13) (23) (123) (132) 

Po + i-PO 3 5 5 5 3 3 

which is the character of sigcBQ. 
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Chapter 7 

Further results 

7.1 Non-regular deformations 

We now consider the results when 0 is not a regular yalue of the deforIll;1 t iOIl ft

Indeed, it is often the case that f will hay(' no deformation ft \\-ith 0 a regular 

value (away from t = 0) as the following shows. 

Example 7.1.1 Ld our group G be Z4 acting on source and targl't spac('s (both 

isomorphic to C) yia the representations 

[( i) 1 and [( - i) 1 

respe('tiv('l~'. (Again, we gin' the matrix of the g('WTator as a d('scription of thp 

whole representation.) Then f(.r) = .r3 is finite and G-yariant. hilt there is no 

"good" defonnatioll. Indeed. the representation on Q f is gin'n by 

1 0 0 

o 0 

o 0 -1 

and sin('(' the tr;\('(' of this lllatrix is i, it canllot 1)(' ('quiY<lkllt tU;1 pPrIllIltatiun 

lIla trix. 
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The first proposition is an alternative description of the action of G on .\t. 

which contains Proposition 6.2.6(ii) as a special case. First, though, we need the 

following lemma. 

Lemma 7.1.2 The local algebras associated to two points in the same point orbit 

are isomorphic. 

Proof Suppose we consider points ai and aj with local algebras Q(ai) and Q(aj) 

respectively, such that g(ai) = aj. Then g : Q(ai) ---+ Q(aj) via a linear map with 

inverse g-l. o 

Proposition 7.1.3 Let G act linearly on en and let f : en, 0 ---+ en, 0 be finite 

G -variant, with ft a finite G -variant deformation. Let ft- 1 (0) = {aI, ... , aT} and 

let At be the multilocal algebra of the deformation. Now G acts on the points, 

so let Ol be the permutation representation of the action of G on the fh point 

orbit. Each point has an associated local algebra and all the points in a given 

orbit have isomorphic local algebras (see Lemma 7.1.2 above). Denote by Q, the 

local algebra (considered as a G-space) associated with the points of the fh orbit. 

Then 

L rv EB(Ol ® Ql) 
l 

where this is an isomorphism of G-spaces. 

Proof We know that L rv At by Proposition 6.2.7, so it is enough to show that At 

has the given form. Let us consider the lth orbit, consisting of points {aI, ... as} 

and suppose Ql has {tl' ... , t p } as a basis. The part of At corresponding to this or

bit is spanned by {ai®tj : i = 1 ... s,j = 1 .. . p}, where ai®tj is the basis element 

tj in the algebra associated to ai' Now g E G acts by g(ai ® tj) = g(ai) ® g(fj)' 

which is exactly what is given by 0 , ® Q" Taking a sum over the orbits gives the 

required result. o 
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Note that each map-germ it : cn, ai ---+ Cn, 0 is variant with respect to G a,' the 

subgroup of G which fixes ai' The Ga,-variant degree is by definition the repre

sentation of the action of Ga, on the local algebra at that point. It is therefore 

given by the restriction of the appropriate Ql (as given in the Proposition above) 

to Gai • 

Example 7.1.4 Let G = Z2 (generated by g) act on C 2 by 

where we describe a representation R by giving R(g). Now i = (x3, y3) : C 2
, 0 -+ 

C 2 ,0 is finite and G-equivariant and it = (x3 - t2x, y3) is a finite equivariant 

deformation of i. Notice that 0 is not a regular value of it and that it-1(0) = 
{(O,O), (t,O), (-t,O)}. The local algebra at each of the three points is isomorphic 

to C-span{l, y, y2}. The action of G on this algebra is given by 

100 

o -1 0 

001 

The points break up into orbits as {(O, On and {(t, 0), (-t, On with G acting by 

[(1 ) 1 and [( ~ ~)] respectively. Thus the action of G on At is in this case 

given by 

(1) ® 

100 

o -1 0 

001 

100 

o -1 0 

001 

which has a character of 9 on the identity and 1 on g. In contrast, Q f as a vector 

space is given by C_span{1,x,x2,y,xy,x2y,y2,xy2,X2y2} upon which G acts by 

[diag(l, -1, 1, -1, 1, -1, 1, -1, 1)], so this has the same character, as predicted. 
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We now consider the real case. 

Let G act linearly on Rn (both source and target) via matched representations 

and let I : Rn, 0 ~ Rn, 0 be finite G-variant, with It a finite G-variant deforma

tion. We take L R be the R-span of functions el, ... , efJ. whose germs at 0 span 

Qf· If we now consider It as a complex map, let It-l(O) = {al, ... ,ar } c en 

and let At be the (complex) multilocal algebra of the deformation. Let R be the 

image of L R under 7r : Q f,e ~ At· Now let us split the points {ai} into sets AI, 

A2 and A3 as in §6.4. 

Let Ol,l be the permutation representation of the action of G on the lth Al point 

orbit. 

Considering the action of G on points in A2 , we can look at the pairs consisting of 

points with their complex conjugate. Let O2,1 be the permutation representation 

of G on the conjugate pairs of the lth A2 point orbit. Similarly, let 03,l be the 

permutation representation of G on these pairs, but with a sign to determine the 

'orientation' of the pair. Suppose we have an orbit consisting of ai, ai, aj, aj. If 

some 9 E G acts by 

a· t 
1---+ a-J 

a;: 
t 

1---+ a· J 

a· J 
1---+ a· z 

a;: z 1---+ a-J 

then the unsigned and signed permutations representations would look like 

The pairs have merely been exchanged, hence the first matrix, but the pair {ai) ail 

is mapped to {aj) aj} with the reverse orientation, giving the -1 entry in the 
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signed permutation representation. 

The orbits of points in A3 come in pairs, so here take 0 4,1 to be the permutation 

representation of G on one orbit of the lth pair of A3 point orbits. 

Each point aj, in any orbit, has an associated (complex) local algebra Q(aj). 

The direct sum of these over all orbits forms At. Now an element of R can be 

expressed as element of At, having components in each local algebra. The real 

algebra of possible component values in the algebra Q( aj) will be denoted R{ aj) 

and is really the projection of R onto this component. For the lth Al orbit, define 

RI,l to be R( aj) for any point aj in the orbit. For the lth A2 orbit, define R2,1 and 

R3,l to be respectively the spaces of real- and purely imaginary-valued functions 

in R( aj) for any point aj in the orbit. Finally, for the lth pair of A3 orbits, define 

R4,l to be R( aj) for any point aj in one of the orbits. 

Proposition 7.1.5 If we are given Ok,l,Rk,l, k = 1,2,3,4 as above, then 

4 

L R f"V EB (Ok,l ® Rk,l) 
k=l 
lElk 

where this is an isomorphism of G-spaces and Ik indexes the orbits. 

Proof We look at each of the three types of orbit: 

AI: For orbits in Al the proof is identical to that in the complex case, but over R. 

A2:Suppose we have the lth orbit in A2, with points {al,.·· as}· Given some point 

aj in this orbit, we know that aj is also in the orbit. Now R{aj) and R{aj) are 

isomorphic via complex conjugation. An element of R(aj) which is real-valued 

will therefore be unaffected by a change in orientation of the pairs, just by the 

permutation of them. Thus the representation of the action of G on the real

valued functions is given by 02,l ® R2,l. However, an element of R(aj) which is 
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purely imaginary-valued will have a reversal of sign under an orientation change 

in a conjugate pair. Thus the representation here is given by 0 l ® R 3, 3,l 

A3: Orbits in A3 come in pairs, so suppose we have the lth pair of orbits in A31 

with one orbit consisting of points {all . .. as}, the other of the conjugate points. 

Let aj be a point in our chosen orbit. We know that the algebras R( aj) and 

R(aj) are isomorphic via complex conjugation. In fact, the image of a point of 

LR has conjugate components on these two spaces. So it is enough to know thr 

component of some element of R on one of each pair of conjugate algebras. So 

the representation of the action of G on these orbits is given by 0 4" ® R4,1 as 

required. o 

Corollary 7.1.6 Let a : Qf -+ R be a G-invariant linear form with a(J) > 0 

and let ak,l be the linear form it induces on Rk,l. These in turn give bilinear forms 

Bo and BOk,1 on their respective spaces and 

3 

sigoBo = 2: (Ok" . sigoBok,/) 
k=l 
lEh 

in the representation ring of G. 

Proof We wish to calculate the G-signature on some Ok,l ® Rk,l· The bilinear 

form B induces a bilinear form Bk l on EeJ" Rk l(aj) where the aj are the points Ok,/ " 

in the orbit (or pairs in the A2 case). This is given by 

Bk,l(hll h2) = 2: BOk,/(h1,j' h2,j) 
j 

where hl' h2 E Eej Rk,l(aj) with components h1,j' h2,j in the /h place. Considering 

B (h h) in order to diagonalize the bilinear form, we see that a permutation of k,l , 

the aj will have no effect on the value of Bk,l. Also, multiplication by a signed 
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permutation will also not alter the form, since Bk,l(h, h) = Bk,,( -h, -h). In other 

words, we can write 

where Bk,l is positive definite on the first summand and negative on the second. 

Looking at all the orbits gives 

4 

sigcBo = L(Ok,1 . sigcBok.,)· 
k=l 
lElk 

It remains to show that sigcBo4.' = ° for alll E 14• Let us first write 

R4,l = R~,l EB R~" 

where R~,l is the space of real-valued functions and R~" is the space of purely 

imaginary-valued ones. Let tl, ... ts be a basis for R~" which diagonalizes B4,1 on 

the space. This means that it!, ... its will be a basis for R~" which diagonalizes 

the form on that space. Since the group action is real, the actions on R~ I and , 

R~,l will be the same. But Bk,l(itj,itj) = -Bk,l(tj,tj) by definition, so the two 

spaces are isomorphic as G-spaces, but B4 ,i has an opposite sign on each, thus 

o 

Example 7.1. 7 We look at the same case as the previous example, but over R. 

Thus G = Z2 (generated by g) acts on R 2 by 

as before. We consider I = (X3,y3) : R 2,0 ~ R2,0, which is finite and G

equivariant and It = (X3 - t2x, y3), a finite equivariant deformation of it. As 

before, It- 1 (0) = {(O, 0), (t, 0), (-t, On. Notice that all three points are of typt' 
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AI. The local algebra at each of the three points is isomorphic to R-span{l. y. y2}. 

The action of G on this algebra is given by 

100 

° -1 ° 
001 

In this case, we look at Q' : Q I ---+ R given by Q' = 1 on x2y2, ° elsewhere. 

What are the induced linear forms on the three local algebras? Taking a basis 

of {1,x,x2,y,xy,x2y,y2,xy2,x2y2} for QI, then the isomorphism 7r: LR ---+ R is 

given by 

(A I, A2, A3, A4, A5, A6, A7, As, Ag) 1------+ (( AI, A4, A7), 

(AI + tA2 + t2 A3, A4 + tA5 + t2 A6, A7 + tAs + t2 Ag), 

(AI - tA2 + t2 A3, A4 - tA5 + t2 A6, A7 - tAs + t2 Ag)) 

where R = R((O,O))E9R((t,O))E9R((-t,O)) and each has R-basis {1,y,y2}. This 

is obtained by rewriting a general element of LR as a germ at the appropriate 

point and factoring out by the ideal generated by the components of ft. Now 

Q' is equivalent to projection onto the final basis vector in LR. The induced 

map in R is therefore given by projection onto ((0,0, -2), (0,0,1), (0,0,1)), since 

-2(A7) + 1(A7 + tAs + t2 Ag) + 1(A7 - tAs + t2 Ag) = 2t2 Ag. 

On the real algebra at (0,0), which we shall call R I , the induced linear form, 

Q'l acts by 

1 ~ ° 
Q'l: y ~ ° 

y2 ~ -2 

We can diagonalize BQl by taking a basis {1- y2, 1 + y2, y}, which gives the action 
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with BO:l positive definite on the first summand, negative on the second. The 

G-signature here is thus - [( -1 ) ] . 

On the other orbit, the algebra R2 has the induced form 0'2 on it given by 

1 1---+ 0 

Diagonalizing with the same basis as above gives the action 

with BO:2 negative definite on the first summand, positive on the second. The 

G-signature here is thus [( -1)]. 

The action of G on the two orbits is given by [(1)] and [ (~ ~)] as before. 

We therefore obtain 

[(1)]. -[(-1)] + [( ~ ~)]. [(-1)] 

-[(-1)] + [( ~1 ~1)] 

-[(-1)] + [ (~ ~1)] 
[(1)]. 

Now considering Qf, we can diagonalize the bilinear form Bo: by taking the basis 

{1+x2y2, 1_x2y2,x+xy2,x_xy2,x2+y2,x2_y2,x2y+y,x2y-y,xy}. Bo: is pos-

i ti ve definite on the 'odd' basis vectors {I + x2 y2 , X + xy2 , ... } and negative on the 

'even' ones {1-x2y2,x-xy2, ... } and G acts by [diag(l, 1, -1, -1, 1, 1, -1, -1, 1)]. 
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Thus we get 

1 0 0 0 0 
1 0 0 0 

0 -1 0 0 0 
0 -1 0 0 

sigaBa - 0 0 1 0 0 
0 0 1 0 

0 0 0 -1 0' 
0 0 0 -1 

0 0 0 0 1 

- [(1)] 

as expected. 

, 
7.2 ' Two'group actions, 

"\ I'" " , • 

Let G1 (respectively G2) be a finite group with two representations on en1 (re

spectively en2
) one on the source and one on the target space. Then G = 

G1 X G2 acts on en1 x en2 in the obvious way. Let 11 : e n1 , 0 -+ en1
, 0 

and 12,:,en2 ,0 -+ e n2 ,0 be finite and G1- and G2-variant respectively. Then 

1 = (it, h) : en,O -+ en, 0 is finite G-variant (n = nl +n2)' Now Q,/i9Qh "" Q, 

by (hI ® h2)(x, Y) = hl(X) . h2(Y) where the x coordinates are in e n1 andthe y 

in en2
• The action of G on Q, is given by 

" , " , 

'(gll g2) . L Ai,j(Qi ® (3j) = L Ai,j(gl . Qi ® g2 • {3j) 
i,j i,j 

where Cti E Q,p {3j E Qh, gk E Gk and Ai,j E e. This action is related to those 

on Q /1 and Q h by the following 

Pro'position 7.2.1 Let G1 and G2 act on Q/1 and Q/2 via representationsRl 

and R2 • Then G ,acts on Q, via the representation 

where, 'I a , denotes the induced representation on G. 
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Proof Let {(Xj} and {Bl } be C-space bases for Q II and Q h. Suppose that 

and 

g1· (Xi = ~T' .(X. L- t,) ) 

j 

g2 . f3k = L Sk,If3I, 
I 

so Ti,j and Sk,l are the entries of R1(g1) and R2(g2) respectively. Then 

L Ti,j(Xj ® L sk,l/31 
j I 

L Ti,jSk,I((Xj ® /3,) 
j,l 

But Ti,jSk,l is exactly the coefficient of (Xj ® f31 in R1 (gd ® R2(g2). It is easy to see 

that since G1 and G2 are normal in G1 x G2, then R1I
G ((g1,g2)) = R1(gd and 

R2I
G ((gll g2)) = R2(g2). 0 

This carries over to the real case and G-signatures as follows. Now let G1 

and G2 act on Rn 1 and Rn2
, with matched pairs of representations. Let II : 

Rnl,O ---+ Rnl,O and 12: Rn2,O ---+ Rn2,O again be finite and G1- and G2-variant 

respectively. Suppose we have a non-degenerate, GI-invariant bilinear form B1 

on Q il and a similarly defined form B2 on Q h . We can define a form B on 

Qf '" Qil ® Qh by 

which is non-degenerate and G-invariant by construction. Now express QII as 

Rt E9 R1, a sum of G1-space with B1 positive definite on Rt and negative definite 

on Rl and similarly for Q h. Then Q f can be expressed as 

where pt = Rt IG etc. Now B is positive definite on the first two summands and 

negative on the last two. In the representation ring we have 
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so we have proved 

Corollary 7.2.2 With G, G1, G2, B, B 1 , B2 as above, 

o 

7.3 Modular representations 

A representation V in characteristic 0 has a corresponding modular representation 

V(p) in characteristic p, as an element of the Grothendieck ring of representations. 

(See [DP], or [D] for the case p = 2.) We are mainly concerned with the case 

when p = 2 for the following reason. In the description of the G-variant degree 

in the real case (Proposition 6.4.2), the complications lie mainly in the points of 

type A2 , which are symmetric under the involution of complex conjugation. We 

are also only really interested in the action of G on the real points of ft-1(O). By 

considering modular representations with p = 2, we can eliminate the contribu

tion from the A2 points. 

Given a G-signature of some G-invariant bilinear form B on a real vector space 

Vas 

we can define the modular G-signature of B to be 

where V(t) and V(2) are the modular versions of V+ and V-. Now if the rep

resentation in characteristic 0 is defined over the integers, then the modular 

representation over F2 (the field of two elements) is obtained by reducing the 
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coefficients mod 2 (Again, see [D], [DP].) 

We now consider the results on G-signature from §6.4, but using modular repre

sentations. We let G act on Rn and take f to be a finite G-variant map with ft 

a finite G-variant deformation such that 0 is a regular value (assuming here that 

such a deformation exists). Let ft- 1 (0) = {al, ... , aJJ } E en. Take T to be the 

involution of complex conjugation acting on the roots. As before, we let R be 

the R-algebra of T-real functions on the points ai. We decompose R as 

where R 1 , R2, R3, R4 are as before. We then have the following result, which is 

due to Damon ([DD in the equivariant case. 

Proposition 7.3.1 With G, {ail, T, R as above, then 

in the modular representation ring of G, where the '+' and '- ' superscripts denote 

the G-spaces where ¢ > 0 and ¢ < 0 respectively, as before. 

Proof As before, we look at each of the spaces R1 , R2, R3 and R4 : 

R1 : As in the original proof. 

R2 and R3: Consider a pair of points ai, aj E A2 such that T( ai) = aj and 

¢(ai) = ¢(aj) = ,X E R. The matrix for Bep here is of the form ( 2,X 0 ) o -2'x 

where the first basis vector corresponds to real functions on the two points and 

the second to purely imaginary ones. Thus when ,X > 0, the real functions con

tribute positively to the G-signature and the imaginary ones negatively. \Vhen 

,X < 0, the opposite occurs. Thus, overall, (R~)2 + R(2)3) - (R(2)2 + R~)3) is con

tributed to the G-signature. Note that the actions of G on R2 and R3 are identical 
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in the modular case, as the multiplication by -1 which occurred in the original 

case when a conjugate pair were swapped has no effect Thus R+ - R+ d 
. (2)2 - (2)3 an 

R(2)2 = R(2)3 and so there is no contribution to the G-signature. 

R4 : As in the original proof. 

We have so far shown that sig(2)GBcp = (R~)l) - (R(2)l)' but since Rt and Rl are 

just permutation matrices, reduction to the modular case makes no difference to 

the matrices in question. o 

Note that although Rt and R1, considered as modular representations, ap

pear identical to the original (characteristic 0) representations, the element of 

the modular representation ring, Rt - R1, may be very different from the orig

inal version. A non-zero element of the representation ring in the original case 

could give rise to a zero element in the modular case. For example, the following 

element of the representation ring of Z2, 

is non-zero in the characteristic 0 case, but zero when reduced to the modu

lar case. The following result is derived identically to Proposition 6.4.5, with 

representations assumed to be modular. 

Proposition 7.3.2 The modular G-signature of a bilinear form Bo on Qf' de

rived from a linear form a : Q f -4 R with a( J) > 0 is independent of the choice 

o/a. o 

Proposition 7.3.1 is very similar to Corollary 6.4.3. Again. when we take 

4> = 1/ J, we will call the obtained (modular) G-signature the (modular) G-index 

of /. This allows us to state a result analogous to Corollary 6.4.6: 
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Corollary 7.3.3 The modular G-signature of a bilinear form Bo on QI' derived 

from a linear form a : Q I ---+ R with a( J) > 0 is equal to the modular G -index of 

the singular point O. o 

As in the original case, the G-signature is equal to the G-index for any given 

deformation and the G-signature is independent of the deformation. Thus, using 

modular representations, the G-index is independent of the deformation chosen. 

We can also look at the case when we do not have a 'good' deformation of f 

and obtain the following analogue of Corollary 7.1.6. 

Proposition 7.3.4 Let f : cn ---+ en be finite and G-variant, with ft a finite 

G-variant deformation. Suppose ft- 1 (0) = {aI, ... ,ar } with Ok,l, Rk,l as defined 

in § 7.1. Let a : Q I ---+ R be a G-invariant linear form with a( J) > 0 and let ak,l 

be the linear form it induces on Rk,l. These in turn give bilinear forms Bo and 

Bok,l on their respective spaces and 

sig(2)cBo = L (Ol,l . Sig(2)CBol,') 
lEh 

in the (modular) representation ring ofG. Here II indexes the orbits of Al points. 

Proof Now by reducing everything to the modular case, we certainly have 

3 

sig(2)cBo = L (0(2)k,l . Sig(2)CBok,')· 
k=l 
lElk 

Now since we are working in modular representations, 0(2)2,l and 0(2)3,l will be 

isomorphic as G-spaces, since a signed and an unsigned permutation representa

tion are equivalent. Now consider the subspace of R of (complex) functions on the 

lth A2 point orbit (i.e. R2,lffiR3,l)' The linear form a will induce a bilinear form B 

on this space which restricted to R2,l or R3,l will give Bo2,l and Bo3,l respectively. 

147 



We now proceed as in the proof of Corollary 7.1.6 Let f b b· C R 
. 1, ... fs e a runs lor 2.1 

which diagonalizes B on the space. This means that ';c ,; ·11 b b· C "'-1, ..... f s WI e a aslS lor 

R3,l which diagonalizes the form on that space. Since the group action is reaL 

the actions on R2,l and R3,l will be the same. But B(ifj, ifj) = -B(fj' fj) b~. 

definition, so the two spaces are isomorphic as G-spaces, but B has an oppositp 

sign on each, thus 

in the modular representation ring. Thus there is no contribution to sig(2)G from 

A2 points and the result follows. Note that since 01,l is a permutation represen

tation it is already a modular representation, so we may dispense with the '(2)' 

subscript. o 

7.4 A stronger invariant 

The isomorphism class (or equivalently the character) of a permutation represen

tation does not determine the isomorphism class of the associated G-set. This 

means that if we obtain (the character of) the G-variant degree of a complex 

map, then this is not enough information to determine the action of G on the 

preimages of ° under some deformation. We therefore need a stronger invariant. 

First, however, we give an example of two non-isomorphic G-sets with equivalent 

permutation representations. 

Example 7.4.1 Let our group G be Z2 x Z2 again and consider the following 

permutation representations of G: 

RI : {(O,O),(O, 1), (1,0),(1, I)} ~ 

{(I), (1), (1), (I)} 
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{(0,0),(0,1),(1,0),(1,1)} ~ 

{(~ ~),C ~),(~ ~),(~ ~)} 
{(0,0),(0,1),(1,0),(1,1)} ~ 

{(~ ~),(~ ~),(~ ~),(~ ~)} 
{(0,0),(0,1),(1,0),(1,1)} ~ 

{(~ ~),(~ ~),C ~),C ~)} 
{(0,0),(0,1),(1,0),(1,1)} ~ 

1 000 

o 100 

001 0 

000 1 

o 1 0 0 

1 000 

000 1 

o 0 1 0 

001 0 

000 1 

1 000 

o 1 0 0 

000 1 

o 0 1 0 

o 1 0 0 

1 000 

Now consider the permutation representations 2R1 EB R5 and R2 EB R3 EB R4 . 

These clearly correspond to different G-sets, since the first has one orbit of order 

4 and two of order 1, whereas the second has three of order 2. Let us denote the 

characters of these representations by 0"1 and 0"2 respectively. These give us the 

values 

(0,0) (0,1) (1,0) (1,1) 

0"1 6 2 2 2 

0"2 6 2 2 2 

showing that these are in fact equivalent representations. 

In [R2], Roberts considers the lattice of subspaces fixed by subgroups of G and 

the Milnor number of the invariant function f restricted to these subspaces. \Ye 

modify the results to our own situation, but adopt some of his notation. \Ve 

will denote the source and target spaces (still isomorphic to en) by \. and 1 \ . 

respectively. We take f : V,O -+ W,O to be finite and G-variant and let It be 
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a finite G-variant deformation such that 0 is a regular value when t =1= 0 (again. 

assuming that such a deformation exists). We set ft-I(O) = {aI .... , aJ.J. As in 

[R2], we let L be the lattice of vector subspaces of the source of the form 

V(H) = {v E V : h . v = v for all h E H} 

where H < G. The partial order on L is inherited from the order given by 

inclusion on the subgroups of G. Let fH = flv(H) and define 

p: L --+ N 

V(H) f--? deg(fH) = I{ ai : ai E V(H)}I. 

We also need the following definition. 

Definition (see [KD. The Mobius function of a lattice m : L x L --+ Z is defined 

by 

m(x, x) = 1 and m(x, y) = - L m(x, z). 
x~z>y 

If we have a function f : L --+ R and another function f* : L --+ R given by 

f*(z) = L f(x) 
x~z 

then the Mobius inversion formula 

f(x) = L m(y, x)f*(y) 
y~x 

holds. These results also hold in the dual case, when the partial order is reversed 

throughout. 

We may now state the result we require 

Proposition 7.4.2 Let f, fb { ai}, Land p be as above, then given Land p, we 

are able to determine the isomorphism class of the G -set {al' ... , aJl}' 
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Proof First we define 

p* : L ~ N 

V(H) ~ I{ai: ai E V(H), ai ¢ V(H') for H' > H}I. 

Now p gives the degree of I restricted to V(H), which is equivalent to the number 

of the ai which lie in V(H). The function p*, however, gives the number of the 

ai which lie in V(H) but no greater element of L. We can therefore write 

p(V(H)) = L p*(V(H')). 
H'~H 

Now if we let m : L x L ~ Z be the Mobius function of L (see below), then we 

obtain 

p*(V(H)) = L m(V(H'), V(H)) . p(V(H')) 
H'~H 

by Mobius inversion. If we denote by c(H) the number of orbits whose elements 

have isotropy group H, or a conjugate of H, then 

p*(V(H)) = NY:) . c(H) 

where N(H) is the normalizer of H. We can then write 

c(H) = ,~7J), H'fH m(V(H'), V(H)) . p(V(H')) (7.1) 

and so c( H) is determined by L (which gives m) and p. Now c( H) is the number 

of orbits of 'type G / H' and this gives sufficient information to recover the iso-

morphism class of our G-set. o 

Example 7.4.3 We now look at an actual example of the use of the lattice 

invariant in practice, by considering a case similar to Example 6.5.4. Let f = 

2 2 2 2 2 2. '2 2) Th· (xi,x~,x5,xD : C4,o ~ C4 ,0 and It = (Xl - t ,X2 - t ,X3 - t ,1:4 - t. IS 

gives us It- l (0) = {(±t, ±t, ±t, ±t)}, which contains 16 points. Let G = Z2 X Z2 
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G p=2 

<1,0> 
p=4 

1 p=16 

<1,1> 
p=4 

Figure 7.1: The lattice of subgroups of Z2 x Z2 with values of p given for f. 

which acts on both source and target via the action 

o 1 0 0 

100 0 

000 1 

o 0 1 0 

o 0 1 0 

000 1 

1 000 

o 100 

where the first matrix is the representation of (0, 1) and the second of (1,0). The 

map f is finite and G-equivariant with respect to this action. By consideration 

of the various orbits of the points in {(±t, ±t, ±t, ±t)}, we obtain the following 

table. 
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Representatives Order of Group Number of 

of orbits orbits action orbits 

±(t, t, t, t) 1 Rl 2 

(t, t, -t, -t) 2 R2 1 

(t, -t, t, -t) 2 R3 1 

(t, -t, -t, t) 2 R4 1 

±( -t, t, t, t) 4 Rs 2 

This means that the permutation representation of the action on the points is 

given by 2Rl EEl R2 EEl R3 EEl R4 EEl 2Rs. Its character, a, has values as follows. 

(0,0) (0,1) (1,0) (1, 1) 

a 16 4 4 4 

We showed in Example 7.4.1 that the permutation representations 2Rl EEl Rs and 

R2 EEl R3 EEl R4 have identical characters, so given a above, we cannot determine 

the isomorphism class of the G-set formed by the points {( ±t, ±t, ±t, ±t) }. From 

a, we can obtain the following equations. 

4c(1) + 2c( <0,1» + 2c( <1,0» + 2c( <1,1» + c(G) 16 

2c( <0,1» + c(G) 4 

2c( <1,0» + c(G) 4 

2c( <1,1» + c(G) 4 

This is obviously not enough information to recover all the values of c( H) for 

H < G. The lattice of (isotropy) subgroups is shown in Figure 7.1, with the 

value of p given at each point. The Mobius function is given by the following 

table. 
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m(x, y) 1 <0,1> <1,0> <1,1> G 

1 1 -1 -1 -1 2 

<0,1> 0 1 0 0 -1 

<1,0> 0 0 1 0 -1 

<1,1> 0 0 0 1 -1 

G 0 0 0 0 1 

From this, using (7.1) we have 

IGI c(G) - IGT (m(G, G) . p(G)) 

(1 ·2) 

2 

c( <0,1» 
I <0,1> I IGI (m( <0,1>, <0, 1» . p( <0,1» + 

+m(G, <0, 1» . p(G)) 
1 

- 2(1.4+(-1).2) 

1 

c(l) 111 lGT(m(l, 1) . p(l) + m( <0,1>,1) . p( <0,1» + 

+m( <1,0>,1) . p( <1,0» + m( <1,1>,1) . p( <1,1» + 

+m(G, 1) . p(G)) 

1 4(1 . 16 + (-1) ·4+ (-1) ·4+ (-1) ·4+ 2·2) 

2 

and similarly for c( < 1,0» and c( < 1,1 ». This gives us exactly the G-set 

isomorphism class expected. 

Now we turn to the real case. We will define a signed G-set to be a G-set with 

each orbit designated to be either positive or negative. Two signed G-sets will 
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be said to be isomorphic if they are isomorphic in the usual way, but also with 

preservation of sign. A 'cancelling pair of orbits' is a pair of isomorphic orbits of 

opposite sign. Suppose we have f : Rn, 0 ---+ Rn, 0, which is finite and G-variant 

and ftl a finite G-variant deformation such that 0 is a regular value when t f O. 

We set ft-I(O) = {all'" ,aIL} as before. Now given the G-index of f with this 

deformation, we have insufficient information to recover the signed G-set formed 

by the points {al,'" ,aIL} (with sign given by the Jacobian). However, we can 

mimic the results in the complex case as follows. 

Let L be the lattice of subspaces of the source of the form 

V(H) = {v E R n : h . v = v for all h E H} 

where H < G, much as before. Let fH = fIVCH) and define 

p: L ---+ N 

We may now state the real analogue of the previous result: 

Proposition 7.4.4 Let f, ft,{ad, Land p be as above, then given Land p, 

we are able to determine the isomorphism class of the signed G -set formed by 

{ aI, ... , aJL}, up to cancelling pairs. 

Proof We define 

p* : L -+ N 

V(H) ~ 2:aiEAH sign(J(ai)) 

h A { E V(H) . a· d V(H') for H' > H}. Then the argument of 
were H = ai . t 'F- -

Proposition 7.4.2 gives us 

c+(H) _ c-(H) = IHI ~ m(F(H'), F(H)) . p(' '(H')) 
IN(H)I H'?,H 
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G p=2 

<1,0> <1,1> 
p=4 p=4 

1 p=O 

Figure 7.2: The lattice of subgroups of Z2 x Z2, with p given for I in the real 

case. 

where c+(H) (resp. c-(H)) is the number of orbits with isotropy group H or a 

conjugate, with positive (resp. negative) sign. o 

Example 7.4.5 Let us look at the real version of Example 7.4.3, taking I = 

(xL x~, x~, xD : R 4, 0 --+ R 4, 0 and It = (xi - t2, x~ - t2, x~ - t2, x~ - t2). This 

gives us It-1(O) = {(±t, ±t, ±t, ±t)} as before. We take G = Z2 X Z2 acting 

as before, so I and It are both finite and G-equivariant. Now the Jacobian 

determinant, J = 16xIX2X3X4 and so we obtain the following list of orbits. 
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Representatives Order of Group Number of Sign of 

of orbits orbits action orbits Jacobian 

±(t, t, t, t) 1 Rl 2 + 

(t, t, -t, -t) 2 R2 1 + 

(t, -t, t, -t) 2 R3 1 + 
(t, -t, -t, t) 2 R4 1 + 
±( -t, t, t, t) 4 R5 2 -

This means that the G-variant degree of the map is given by (2Rl +R2+R3+R4)

(2R5) in the representation ring of G. Now the associated lattice of subgroups is 

shown in Figure 7.4. Using this and the Mobius function (which is the same as 

before) we obtain 

IGI IGT (m(G, G) . p(G)) 

(1 ·2) 

2 

I <~~> I (m( <0,1>, <0,1» . p( <0,1» + 

+m(G, <0, 1» . p(G)) 
1 
2(1.4+(-1).2) 

1 

II~I (m(l, 1)· p(l) + m( <0,1>,1) . p( <0,1» + 

+m( <1,0>,1) . p( <1,0» + 

+m( <1,1>,1) . p( <1,1» + 

+m(G, 1) . p(G)) 

~(1 ·0+ (-1) ·4+ (-1) ·4+ (-1) ·4 + 2·2) 
4 
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en en 

CJ 
f 

CJ > 

j 
F 

> 

en en 
Ms=- M t=-

Rs Rt 

Figure 7.3: The map F derived from the G-variant map f 

= -2 

and similarly for <1,0> and <1,1>. This gives us the signed G-set isomorphism 

class expected, up to cancelling pairs (in fact there are none in this case). 

We now consider the spaces formed by taking the quotient by the action of the 

group on each of the target and and quotient spaces. We will denote the quotient 

by the actions Rs and RT by Ms and MT respectively. We will use simply M 

when'wewish to'refer to some general quotient space. The finite G-variant map 

J. :. en, 0 -t -en, 0 gives a new map F :' Ms -t MT as shown in Figure 7.3. 

The (complex) G-variant degree of f can sometimes be calculated from F as the 

following example shows. (We will not pursue this approach.) . 

Example .7.5.1 Take G. = Z2 acting on' e2 (both source and target) via the 
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representation 

[( ~1 :1)]' 
Then we have Ms ~ MT rv {(x2 xy y2) . (x y) E C 2 } C C3 Th' . h . 

, , . , . IS IS t e varIety 

{( u, v, w) : v
2 

= uw} C C3. Take I = (x3 y3) . C 2 ° ~ C 2 ° t b fi .. 
, " ,0 e our III tp 

G-( equi) variant map. Then this gives 

F: Ms ---+ MT 

(x2, xy, y2) I---t (x6, x3y\ y6) 

(u,v,w) I---t (u3,v\W3). 

Let us take It = (x3 - t2x, y3 - t2y) to be our finite G-variant deformation. This 

gives a deformation of F given by 

Ft : Ms ---+ MT 

(x2, xy, y2) I---t (x6 - 2t2x4 + t4x2, X3y3 _ t2x3y _ t2xy3 + t4xy, 

y6 _ 2t2y4 + t4y2) 

(u, v, w) I---t (u3 - 2t2u2 + t\ v3 - euv - t2vw + t4v, w3 - 2ew2 + t4w). 

Now if we consider the preimages of zero under the map Ft we obtain 

Ft-I(O) = {(O, 0, 0), (t2
, 0, 0), (0,0, t2 ), 

(t2, t2, t2), (t2, _t2, e)}. 

Now since we are in a quotient space, each of these points corresponds to an orbit 

in the original affine space. Now (0,0,0) is the only possible trivial orbit and the 

group must act via the representation 

[(~ ~)]. 
on the rest. Thus the (complex) G-variant degree is given by the direct sum of 

one copy of the trivial action [(1)] and four copies of the representation above. 
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E) (. .) ~ 
Al fixed Al unfixed A2 

Figure 7.4: The three types of orbit in MS,R 

Now let us look at the real case. Let f : R n, ° -+ Rn, ° be a finite G-variant 

map which we can consider as a map en, ° -+ en, ° to give a new map F as 

before. Now complex conjugation on the original space maps M to itself with a 

set of invariant points MR. Now this will include the image of Rn, but will in 

general be larger. To calculate the real G-variant degree, we are only interested 

in orbits which are mapped to themselves under complex conjugation (AI and 

A2 points). This means that it is possible to calculate the real G-variant degree 

of f by consideration of F and MS,R as the following example shows. 

Example 7.5.2 We take G = Z2 acting on R2 (both source and target) via the 

same representation as the previous example. Now MS,R is given by the image 

of the set 

The three types of orbit these points can represent are shown in Figure 7.4. 

Now only the point (0,0,0) corresponds to an Al fixed point, while the Al unfixed 

orbit and A2 orbit correspond to the sets 

{(X2,xy,y2): X,y E R} - {(O,O,O)} 

and 

{(X2,xy,y2): X,y E iR} - {(O,O,O)} 

respectively. These two sets are given by points in the upper and lower halv{'s of 

the cone shown in Figure 7.5. Now if we take f = (x3, y3) : R2, ° -+ R2, ° to h{' 
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w 

v 

u 

Figure 7.5: The preimages of ° in MS,R 

our finite G-variant map as before, then we also get F : (u, v, w) ~ (u 3 , v3 , w3 ) 

as previously. Let us take it = (x3 - t2
x, y3 - t2y), t E R to be our finite G

variant deformation. This gives a deformation of F given by Ft : (u, v, w) ~ 

(u3 - 2t2u2 + t4 , v3 - t2uv - t2vw + t4v, w3 
- 2t2w2 + t4w). As before, we have 

Ft-
1 (0) = {(O, 0, 0), (t2

, 0, 0), (0,0, t2
), 

( t 2 
, t2 

, t2
), (e , - t2 

, t 2
) } 

(see Figure 7.5). Now the Jacobian determinant J of it is given by (3x
2 _t2

)(3y2_ 

t2 ) and so ¢ = 1/ J has the following values. 

Point l/J 
(0,0,0) l/t4 

(t 2 ,0,0) -1/2t4 

(0,0, t2
) -1/2t4 

(t2 , t 2
, t 2

) 1/4t4 

(t 2 , _t2 , t 2 ) 1/4t4 
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Since t is real, all these points are in All with only (0,0,0) being a fixed point. 

This means that the last four points cancel each other out, since they are all of 

the same type, but with two each positive and negative. So we obtain the trivial 

representation ((1)] as the real G-variant degree of f. (Compare Example 7.1.7). 
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Chapter 8 

The class of G-variant lllappings 

In this chapter, we examine the G-variant mappings which are associated to a 

given pair {Rs, RT } of representat.ions of a finite group G on c n
, \ Y<, \\"ill adopt 

some of the notation from [R2] (also used in §7,4) and oftrn denotr tIl!' S()lln'(' 

and target spaces by V and Tl' respecti yely, This is useful mainly for writ iug 

V(H) and IF(H) to distinguish the space fixed by the subgroup H in thl' SOUl'{'(' 

from that in the target space, 

8.1 Basic results 

Lemma 8.1.1 Let G be a finite group acting via representations R..,· and RT on 

th(' source and target spaces respectively, each isomorphic to c n
. TI/(' II the sd 

1\1 of G-uariant maps f : cn , 0 ---+ cn , 0 is a module over the rillY of inuariu II t 

, 0 0 (5) functions" : C n , 0 ---+ C zn the source, denoted n . 

, d I ()(;15) tI I Proof If 9 E G, fl,!2 : C n . 0 ---+ C ll
, 0 are \'auallt an I Ell. l<'Il \\'(' la\'(' 

(fl + h)(g(x)) fl (g(,1')) + f2(g(·r)) 

g' fl(X) + g' 12(,1') 

9 . (fl + IJ(,1') 
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and also 

(hld(g(x)) 

thus giving the desired result. 

h(g(x) )fl (g(x)) 

h(x)(g. fl(x)) 

g. (hld(x) 

o 

Corollary 8.1.2 With Rs and Rr as above, the set Mk = M n (M~O(n, n)) 

(i. e. the variant maps with components in M~) is a module over O~(S) . 

Proof As above, but with 11,12 E Mk. o 

Definition Let Mp denote M n C[x]G, the set of G-variant maps with polyno

mial components and let M; be those consisting of monomials of degree at least k. 

We also require the following, related to subgroups of the group G. 

Definition Given a point x let Gx be the isotropy subgroup of this point, 

{g E G : g. x = x}. For a subgroup H < G acting on a space V, define 

V(H) = {x E V : h(x) = x all h E H}. 

The following is a useful lemma regarding invariant polynomials. 

Lemma 8.1.3 Suppose a finite group G acts on the polynomial ring C[l:l' ... ,xn ] 

by acting linearly on the coordinates. If the ring of G-invariant polynomials is 

non-empty, then for any non-zero x there is a G-invariant polynomial f such that 

I(x) 1= o. 
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Proof Suppose the ring of G-invariant polynomials is generated by II, .. . , Ix. 

We can define F : en -4 eN to be the map which takes these polynomials as 

components. Then F-1(O) = 0 since F(xd = F(X2) if and only if Xl and I2 lie 

in the same orbit. Thus for every non-zero point X, there is a polynomial I such 

that f(x) =I- o. o 

In what follows, we will be most interested in those G-variant maps which are also 

finite. However, it is possible that the given pair of representations might force 

all G-variant maps to be non-finite. The following two results gives conditions 

which must hold for any finite G-variant maps to exist. 

Proposition 8.1.4 Suppose G acts via representations Rs and RT on the source 

and target spaces respectively. If the set of finite G-variant maps is non-empty 

then the representations must satisfy order(Rs(g)) is divisible by order(RT(g)) 

for all 9 E G. 

Proof Let f be a finite G-variant map and 9 some element of G. Suppose that 

there is some mEN such that Rs(gm) = I, RT(gm) i= I. Then we have 

for all X, which means that for each i we can write 

for some ai,j E e or alternatively, 

(8.1) 

N ow as Rr (gm) =I- I, there is some i such that the coefficients in (8.1) abovp are 

not all zero. In other words, the components of the map f are linearly dependent 

and the ideal If is generated by n - 1 elements, say It,· .. , f n-l· ~ ow if w<' are 
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given r germs fl' ... fT) then the (germ of the) analytic variety they give has codi

mension at most r. (See [G R, p93].) So if r = n - 1 then this co dimension will be 

at most n - 1. But If C M~ for some k, since f is finite (see Lemma 6.2.1) and 

so V(fll ... fn-l) = {O} which has co dimension n. We have therefore reached a 

contradiction, showing that order(Rs(g)) is divisible by order(RT(g)). 0 

Proposition 8.1.5 Let V, W be equidimensional vector spaces which have a rep

resentation of G acting on them. If there is a finite, G-variant mapping f 

V,O -+ W,O, then for all H < G, we must have dim V(H) < dim W(H). 

Proof If x E V(H) then h· x = x for all h E H. So h· f(x) = f(h· x) = f(x) and 

thus h E G f(x), i.e. H < G f(x)' But then W(H) :J W(G f(x») so f(x) E W(H) i.e. 

f(V(H)) C W(H) and as f is finite, dim V(H) < dim W(H). 0 

It is possible that there are no finite G-variant maps associated with a given pair 

of representations on source and target as the following demonstrates. 

Example 8.1.6 We take our group G to be Z2, generated by g. We let this act 

on the source space, V = C 2 by 9 . (x, y) = (x, -y) and on the target space, 

W = C 2 by g. (x, y) = (-x, -y). Then a map-germ f : V,O -+ W,O is G-variant 

if and only if 

for j = 1,2. So this means that fj(x, y) = ygj(x, y2) for some function gj and 

that f- 1(0) :J C x {O} i.e. f is non-finite. 

We see that for any point x = (a,O), we have Gx = Z2' But for any point 

x and any G-variant map f, Gf(x) > Gx, so Gf(x) = Z2' But H'(Z2) = {O}, 

i.e. f(x) = O. So the condition dim V(H) < dim W(H) does not hold for each 

isotropy group H. 
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Definition Let us consider Mp , the C[x]G-module of polynomial G-variant map

pings f : V,O --+ W, O. There is a map E : V(H) x Mp --+ U'(H) defined by 

Ex(f) = E(x, f) = f(x). Let V(H)* = {x E V(H) : Gx = H}. \Ye say that the 

pair of representations is full if for all x E V(H)* sufficiently close to the origin, 

dim im Ex > dim V(H), for all isotropy subgroups H < G. 

Before we give the first proposition regarding full representations, we need the 

following results. 

Lemma 8.1. 7 Let X, Y be affine varieties with 7r : X --+ }' a regular mapping. 

If dim 7r-
1 (y) > r for all y on some open subset, then dim X > dim }' + T. 

Proof Let Xl"'" Xr be the irreducible components of X. The hypotheses hold 

for (at least) one of the restrictions 7r : Xi --+ Y. Now on an open subset of Y we 

have dim 7r- I (y)=dim X i - dim Y by [Sh, p60]. This means dim X i - dim Y > T, 

i.e. dim Xi > dim Y + r. But dim X = max { dim Xj} > dim Xi and the result 

follows. o 

Lemma 8.1.8 Let A,B and C be smooth affine spaces and suppose f : A x B --+ 

C is a polynomial map with rank df(a, b) > dim A for all (a, b) E f-l(C). Then, 

for all b E B off an algebraic subset of codimension at least 1, we have fb-1(C) 

finite. 

Proof We claim that f-I(C) is an algebraic set of dimension at most dim B. For 

suppose dim f-l(C) > dim B. We can choose a smooth point (a, b) E f-l(C) where 

the rank of df(a, b) is maximal (and at least dim A). But df(a, b) annihilates a 

subspace of dimension dim f-I(C). Thus dim ker df(a, b) > dim f-l(C) > dim B 

and the rank-nullity theorem yields a contradiction. 

Now consider the projection 11" : f-l(C) C A x B --+ B. For pach b E B. w(' 

have 1I"-1(b) = f;;l(C) and if dim 1I"-1(b) > 1 on an open subset of B, we would 
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have dim f-1(c) > dim B by Lemma 8.1.7 above. o 

Proposition 8.1.9 If the pair of representations is full, then almost all mappings 

(in the strong sense) f : V, 0 ~ W,O which are G-variant are finite. 

Proof When we say "almost all in the strong sense" we mean that the set of 

elements for which the property fails to hold has infinite codimension. Given 

f : V, 0 ~ W,O, a polynomial, G-variant map of degree at most k, we wish to 

find some polynomial map cP of degree at least k + 1 with f + cP : V,O -+ IV,O both 

G-variant and finite. (Note that by degree in this case we mean the maximum 

degree of the polynomial components.) In this way, if we look at the maps of 

a certain maximum degree, as we allow this degree to increase, the codimension 

of the set of 'bad' maps will also increase. Thus in the limit, we have a set of 

infinite codimension. (See [B, ch 13] for the full definitions and results.) 

We claim that we can find cP1, ... , cP N E Mp of degree > k + 1 such that for 

all x E V(H)* (and each isotropy group H) cPl(X), ... ,cPN(X) span a space of 

dimension at least dim V(H). First, let us fix our isotropy group H < G and 

x E V ( H) *. We can now certainly find 'l/Jl, ... , 'l/Jr such that 'l/Jl (x), ... , 'l/Jr (x) span 

a space of dimension at least dim V (H), as the representation pair is full. We can 

also find some polynomial a E C[x]G such that a(O) = 0, but a(x) i- O. Then 

ak 'l/Jl (x), ... , ak 'l/Jr (x) span a space of the required dimension and are of degree 

> k + 1. Now suppose that cPl)"') cPN generate M; as a C[x]G-module. Then we 

see that 

Now this space must contain a set of the form ak'I/Jl,'" ,ak'l/Jr (as constructed 

above) for each x and thus must span a space of dimension of at least dim \' (H) 

for each such x. 
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N ow we choose a representative map for the germ f, which we will also call 

I· Consider the map 

F: V x eN,o ---+ W,O 

defined by 
N 

F(x, A) = f(x) + L Ai<Pi(X). 
i=1 

For each isotropy group H, we have the restriction 

FH : V(H)* x eN,o ---+ W(H), O. 

We now claim that dFH(x, A) has rank > dim V(H)* for each (x, A). At (x, A) 

consider 

where ej is the lh unit vector in eN. Now x =I- 0, so 

1m dFH(x, A) ~ span {dFH (x, A)ej} 

~ span{ <Pj(x)} 

where dim span{<pj} > dim V(H). Thus for almost all A, we have FH(-,A)-l(O) 

finite by Lemma 8.1.8. Choosing a value for A which satisfies this condition 

for each isotropy group H, we consider f>. = F( -, A). This is G-variant and 

1;1(0) n V(H)* is finite for each H. But UH<G V(H)* = V and we just need to 

take the germ of I>. at the origin and we are done. o 

We are interested in conditions for our map f to have a 'good' deformation ft· 

This means we are seeking a family of G-variant maps such that 0 is a regular 
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value for all t close to O. We begin by showing that thi . al h s IS ways t e case when 
considering the invariant situation. 

Proposition 8.1.10 Let f : en -+ en be a finite G-invariant map (so the action 

of G on the target is trivial). Then there exists a G-invariant deformation ft of 

f such that 0 is a regular value for all t close to o. 

Proof Let Yo be a regular value of f and define F = f - Yo. Now 

F(g. x) = f(g· x) - Yo = f(x) - Yo = F(x) 

so F is G-variant and 

F(xo) = f(xo) - Yo = Yo - Yo = 0 

for any Xo E f-I(yo), so 0 is a regular value of F. To define the deformation, we 

then join 0 to Yo by a path ,(t) and set ft = f + ,(t). See Corollary 8.1.12 below 

for a detailed description in a more general case. o 

We now consider another class of G-variant maps. 

Proposition 8.1.11 Let f : en, 0 -+ en, 0 be G-equivariant and finite and sup

pose there exists an invertible linear map L which is also G-equivariant. Then 

if the multiplicity of f is r, we can find t l ,· .. ,tr E e arbitrarily small and 

U(I), ... ,u(r) E en arbitrarily close to 0 such that the map 

r 

f(x) + 2: tiL(x - U(i») 
i=l 

has 0 as a regular value and is also G-equivariant. 

Proof We construct the new map by an inductive process, which is similar to one 

mentioned, but not given explicitly in [GZ]. Firstly, we look at the polynomial 

in t given by det (df(O) + tL). We can choose an arbitrarily small value tl which 
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is not a root of this equation. Now FI = f + tIL is G-equivariant and 0 is a 

regular point of this map with value O. Note that for any small deformation of 

FI there will be a regular point close to 0 which maps to O. In other words. it 

will remain regular provided subsequent deformations are sufficiently small. Let 

us denote the other (i.e. not 0) points of FI-
I (0) by X(l), ... ,x(s)' Note that s < r 

and that by choosing tl small we can get the X(i) arbitrarily close to O. since Fl is 

G-equivariant, these points form a union of orbits under the action of G. Suppose 

x(1), ... ,x(m) is an orbit of non-regular points. We apply the same argument as 

above to the points x{i). Let us define 

m 

F2,t(x) = Fl(X) + t L L(x - X(i»)' 
i=l 

This new map is in fact G-equivariant, for 

g . Fl (x) + t L g . L (x - x (i) ) 

Fl (g . x) + t L L(g . x - g . X(i») 

FI(g· x) + t L L(g· x - X(i») 

F2,t(g . x). 

Also, F
2
,t(X(i») = Fl (X(i») = O. If we look at the derivative, we obtain 

We can clearly find t2 arbitrarily small with dF2,t2(X(i») invertible for 1 < i < rn. 

We have now have m + 1 regular points, with m + 1 > 2. We now continue induc

tively, by setting F2 = F2,t2' considering non-regular points of F;l(O), selecting 

an orbit and defining F3 and so on. We ensure at each stage that all regular 

points remain so under small deformations. The process must terminate as the 
o 

map has finite multiplicity and the result follows. 
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Note that the G-equivariance (as opposed to G-variance) of f is not uspd 

explicitly in the above. However, the hypothesis that an invertible linear G

variant map exists forces the two actions to be equal. 

Corollary 8.1.12 Suppose f is as given above. Then there is an analytic map 

F : C
n 

x C,O -+ cn, with each Ft = F( -, t) G-variant and for all t sufficiently 

close to 0 we have 0 a regular value of Ft. 

Proof Let us define 

r 

F(x, A, u) = f(x) + L AiL(X - U(i»). 
i=l 

The condition on (A, u) for F( -, \ u) to be G-variant is that 

r 

:L AiL(g . U(i) - U(i») = 0 
i=1 

for all g E G. The condition above gives finitely many polynomial equations in 

(A, u) space. 

Now choose a neighbourhood U of 0 with f- 1(0) n U = {O}. We can choose 

a neighbourhood V of (0,0) in (A, u) space such that for (\ u) E V, we have 

F( -, A, U)-I(O) n au = 0. 

So if f has multiplicity r, then F( -, A, U)-I(O) n U consists of r points when 

counted with multiplicity. Consider the set 

E = {(x, A, u) : F(x, A, u) = 0, det(dF,\,u(x)) = O} 

This is an analytic subset of U x V. If we look at the projection 7r : ~ ~ V, 

we find that this projection is finite to one. So by [GR, p83), the image 7r(E) 

is analytic. If X c V is the set of G-variant maps then 0 E X n 7r(E) and wp 

know from the previous result that 0 lies in the closure of X - 7r(E). So dim 

X n7r(E) < dim X at 0 and by [GR, p104] there is a line through 0 mepting 7r(E) 

in an isolated point at O. The result follows. o 
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Example 8.1.13 We now consider an example. We take G = Z2. and spt 

Rs = RT = [( ~ 1 ~ 1 ) ] . 

Now the G-variant map (x, y) is linear and invertible, so by Proposition 8.1.11 

every finite G-variant map must have a "good" deformation. For example, the 

map I = (x3, y3) is G-variant and finite and has the deformation It = (.1'3 -

t2x, y3 - t2y). The Jacobian of It is (3x2 - t2)(3y2 - t2) which is non-zero at 

x, y = 0, t, -t and so 0 is a regular value. 

We now take a close look at the action of the symmetric group Sn acting 

naturally by permutation of the basis vectors. In what follows, our group G = Sn 

will act on both target and source spaces in this way. Thus we are interested in 

equivariant maps. 

Proposition 8.1.14 Suppose G = Sn acts as above, then I is G-equivariant if 

and only il we have 

I = (~= X{gj(X2, X3,"" xn), L X~gj(X1' X3,"" xn),···, ~ X~gj(Xl' X2,"" xn-d) 
j j J 

lor some gj(U1,"" Un-I) which are Sn-l invariant in the obvious sense. 

Proof Suppose (11, ... , In) is G-equivariant, then if (J"ij is the transposition (i,j), 

we have 

(J"ij . (11, ... , In) 

(11, ... , In) . (J"ij 

So we see that Ik . (J"ij = Ik if i, j #- k. Thus if we write 

Ik = L x~g"k(Xb ... ,Xk-l' Xk+l,· .. ,xn), 
I 
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each of the g',k must be symmetric in its n -1 variables (i.e. Sn-l invariant). \Ye 

also have that Ii . aij = iJ, so 

L x~g"i(Xl' ... ,Xi-I, Xi+l, ... ,Xn ) = ~ X'.g, '(XI ... X· X· l' ) 
l L- J,J , • 1-1' I+l"""n 

l 

and thus gl,i = gl,j for alll. Finally, the map (fll' .. ,fn) defined by 

is clearly equivariant. o 

Proposition 8.1.15 Given the action of Sn as above, on both our target and 

source spaces, this pair of actions is full. 

Proof Let us denote the fixed point hyperplane of a transposition a by H{a). If 

we write R = {( i j) : i < j} then the fixed point set (of any isotropy su bgrou p ) 

can be written 

H(J) = n H{a) 
uEI 

with J c R, as it must be generated by transpositions. We have 

H(J)* = H(J) - U H(J). 
JCI,J:/;l 

If we have a point of H(J)* we can reorder the variables so that it is of the form 

where Ej=1 mj = nand Ui I- Uj for i I- j. The mj form a partition of n and 

each such partition corresponds to an orbit type. We wish to find G-equivariant 

maps F I , ... ,Fs with FI (x), ... , Fs (x) linearly independent for each x E H (I) •. 

For, given such Fi , if x E H(J)*, then if 9 fixes x, then 
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and so }i(X) E H(J). If we define 

then this is clearly a G-equivariant mapping. Also, 

(1, ... , 1, ,1, ... , 1) 

( 
8-1 8-1 

Xl , .•• ,Xl , 8-1 8-1) 
'X8 , ••• 'X8 

are linearly independent since the Xi are distinct (Vandermonde matrix). 0 

We now restrict our attention to the hyperplane L = {Xl + '" + Xn = O}. 

Clearly, Sn acts on L and we wish to prove that this action on source and target 

yields a full pair of representations. The Ui must satisfy Ej=l mjuj = 0 and the 

Fi we require must be G-equivariant and also preserve L. 

Lemma 8.1.16 Let 7r : en ---+ L be the projection 

( ) 
_ _ <x, (1, ... , 1) > (1 1) 

7rX -x , ... , 
n 

where <, > denotes the standard inner product. Then for all 9 E G (= Sn) we 

have 7r(g. x) = 9 . 7r(x). 

Proof Now we have 

<X, (1, ... , 1) > ( 1) 
g'7r(x)=g·x- g·l, ... , , 

n 

but 9 . (1, ... ,1) = (1, ... ,1) and <x, (1, ... , l»=«g . x), (1, ... ,1» and the 

result follows. o 
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Lemma 8.1.17 If F : en -+ en is G-equivariant, then so is 7r 0 F : L --+ L. 

Conversely, if f : L -+ L is G-equivariant then there is an equivariant F : en --+ 

en with f = 7r 0 F 

Proof In the first case, we have 

9 . (7r 0 F(x)) 7r(g . F(x)) 

7r(F(g . x)) 

7r 0 F(g . x) 

and so 7r 0 F is equivariant. Now, if f : L --+ L is G-equivariant, define F by 

F = f 0 7r, then this gives 

g. F(x) 9 . (f 07r(x)) 

g. f(7r(x)) 

f(g . 7r(x)) 

f(7r(g . x)) 

F(g· x) 

and we have shown that F is equivariant. o 

Proposition 8.1.18 The pair of actions given by the restriction of the natural 

action of Sn to the hyperplane L is full. 

f If F. ( ) - (xr xr) then Ir = 7rr 0 Fr is G-equivariant. If Proo r Xl,' .. , Xn - 1, ... , n' 

x E H(I)* n L, where 
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Now fl(X), ... , fs-l(X) must be linearly independent, for if they were dependent. 

this would mean that (1, ... ,1),F1(x), ... ,Fs_ 1(x) would be too, but we know 

these to be independent. o 

8.2 Finding generators for M 

We can find generators for Mp using a method analogous to that for finding ring 

generators for the ring of invariant polynomials C[x]G (see [CLO]). But once Wp 

have generators for Mp as a C[x]G module, these will in fact generate M itself as 

an O~(S)-module. We calculate generators for Mp by using the following notion, 

restricted to the polynomial case. 

Definition The module Reynolds operator, R is a map from O(n, n) to itself 

given by 

R(f) = I~I L Rr(g-l) . f(Rs(g)(x)). 
gEG 

Lemma 8.2.1 The Reynolds operator R has the following properties. 

1. R is C-linear and for any f E O(n, n), R(f) is G-variant. 

2. R(f) = f iff f is G-variant. 

3. R preserves degrees. 

4. If f E M
p

, a E C[x], then R(af) = R(a)f, where R is the ring Reynolds 

operator in the source. 

Proof 1. For the C-linearity, 
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1 
- WI 2: aIRr(g-I)fl(Rs(g)(x» + a2Rr(g-1)f2(Rs(g)(x)) 

gEG 

- aIRfI + a2Rf2 

If we let h E G be an arbitrary element of G, then 

Rr(h). R(f) 1 
- Rr(h)· (-IGI 2: Rr(g-l) . f(Rs(g)(x») 

gEG 

1 ~ 1 - -IGI L- Rr(hg- ) . f(Rs(g)(x» 
9EG 

1 ~ 1 - IGI L- Rr(gl ) . f(Rs(glh)(x» 
glEG 

- R(f)· Rs(h) 

and thus R(f) is G-variant. 

2. If f is G-variant, then clearly R(f) = f. If R(f) = f, then by 1. above, 

R(f), hence f itself is G-variant. 

3. Trivial, since the group acts linearly. 

4. If a E C[x], f E Mp , then 

1 
R(af) - -IGI 2: Rr(g-I) . (af)(Rs(g)(x» 

gEG 

1 - -IGI L Rr(g-l) . (a(Rs(g)(x»f(Rs(g)(x») 
gEG 

- I~I L a(Rs(g)(x»Rr(g-l) . f(Rs(g)(x» 
gEG 

1 
- IGI L a(Rs(g)(x»f(x) 

gEG 

- R(a)f· 
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o 

We are now in a position to prove that Mp is a finitely generated module. 

Proposition 8.2.2 The module of G-variant polynomial mappings Jlp is finitely 

generated over the ring C[x]G of invariant polynomials in the source. 

Proof The ring C[x] is Noetherian and C[x]P is a finitely generated C[x]-module, 

so Mp is Noetherian (see [E2, p28]) i.e. every submodule is finitely generated. 

Let Mp be the C[x]-module generated by all homogeneous G-variant maps of 

positive total degree. Clearly, due to the Noetherian condition, Mp is finitely 

generated, i.e. Mp = C[x]{F1, ... , FN} for some Fi . We could replace the Fi 

by their homogeneous parts and thus we may assume without loss of generality 

that they are homogeneous. We claim that Mp = C[X]G{Fl"'" FN}' Otherwise, 

we can find F E Mp - C[X]G{Fl"" ,FN} and again we may suppose that F is 

homogeneous. Let us choose such F of minimal degree, k. Now FE Mp , so 

N 

F = LhiFi 
i=1 

C h hER We may suppose that each h.F. is homogeneous either of .Lor 1,···, N . • • 

degree k or degree O. Applying R, we obtain 

N 

R(F) = F = L R(hi)Fi 
i=1 

b L 8 2 1 Agal'n, R(h.)F. homogeneous of degree k or O. But note that y emma . . . . . 

R(hi ) E C[x]G and we have a contradiction. o 

We can also use the Reynolds operator to obtain the following results. 

Lemma 8.2.3 If f = fo + fl + ... + fk is a decomposition of f into its homoge

neous parts, then f is variant if and only if the fi are variant. 
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Proof Clearly f is variant if the fi are. But conversely, if f is variant, we have 

R(f) = R(L fi) = L R(fi) 
i i 

and since R preserves degrees, R(fi) = fi for each i. o 

Lemma 8.2.4 Any G-variant polynomial map f is a linear combination of ele

ments of the form R(xOej). 

Proof Any G-variant f can be written as a sum '" c· xOe where c· E C. ~ },O }' },O 

Then 

and we have the required result. o 

We can now give the result analogous to (and derived from) Noether's Theo-

rem. 

Proposition 8.2.5 The set of G-variant polynomial maps, Mp , is generated as 

a C[x]G-module by the elements {R(xOej) : lal < IGI- 1,1 < j < pl· 

Proof Define the map 

7r : C[x]P ---+ C[x, y] 

by 
p p 

L fi(x)ei ~ L fi(X)Yi. 
i=l i=l 

This is C[x]-linear and injective, so C[x]P is isomorphic to im 7r as a C[x]-module. 

We can define an action of G on C[x, y] via a representation R by setting 

R(g)(Yi) 

R(g)(Xi) 

R(g )( xOyf3) 

7r(RT(g-l)( ei)) 

RS(g)(Xi) 

R(g )(xO)R(g )(yf3 ). 
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If f = L fi(x)ei is G-variant, then 

so 

p 

f = ?: Rr (g-1)( ei) . fi(Rs(g )(x)) 
,=1 

P 

7r(f) ?: 7r(Rr (g-l)(ei)) . fi(Rs(g)(x)) by C[xJ-linearity 
z=1 

p 

L R(g)(Yi) . fi(R(g)(x)) 
i=1 

i=1 

R(g)7r(f) 

Thus the image of the variant maps lies in C[x, y]G. Letting R7f be the Reynolds 

operator on C[x, y], by Noether's Theorem we have 

so if F is the image of some variant map under 7r, we can write 

N 

F = L c-yr-Y = L c-y IT rJi 
-yENN -yENN i=1 

where {Tb ... ,rN} = {R7f(xQ yfJ : lal + 1,81 < IGI} and c-y E C. Now let us write 

ri = Ti,O +. + ri,IGI' where ri,j is homogeneous of degree j in the y variables. Since 

the action on C[x, y] is induced from that on C[x] and Cry]' R7f(xQyfJ) will be 

of the form L djxQ(j)yfJ(j) where la(j)1 = lal and 1,8(j) I = 1,81· Thus the ri,j are 

invariant. Now since F is homogeneous of degree 1 in the y variables, the only 

Ti which can appear in 
N 

II rJi 
i=1 

are homogeneous of degree 0 or 1 in the y variables. The only multi-indices I 

which can appear are those which have index 1 on exactly one of the Ti which is 

a I-form and index 0 on the others. 
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Thus F is a C[x]G-linear combination of elements of the form T
J 

= rj,I since 

Ti,O E C[x]G for any i. We know that Tj = 'R7r (xO:Yj) where 101 + 1 < IGI as 'R
1r 

maintains the total x and Y degrees. 

Thus the image of the variant maps lies within the C[x]G-module generated 

by {R7r(xO:Yj) : 101 + 1 < IGI}. This is isomorphic (via 7r- 1) to the C[x]G-module 

{R(xO:ej) : 101 + 1 < IGI} which contains the variant maps. o 

Suppose we have found generators for C[x]G and for Mp as a C[x]G-module. \YP 

can determine if a given polynomial map lies in the module and if so, express it 

as an element of the module by using the method given in §2.1. The following 

example shows that the bound on 101 in the above cannot be sharpened. 

Example 8.2.6 Let G be the cyclic group Z, and suppose it acts on the spaces 

specified as source and target (each isomorphic to cn) via 

respectively, where w = e27ri /l . Suppose I = (it,··· In) is a G-variant map. This 

is equivalent to the condition 
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for all i. Now let fi,k be the homogeneous part of fi of degree k. \Yf> obtain from 

the above 

w . fi,k (w . Xl, ... , w . X n) 

W . wk fi,k(Xl,' .. , Xn). 

Thus k + 1 is a multiple of l. So the only monomials which can appear in a 

component of a G-variant map are of the degree m . l - 1, mEN. Since the 

Reynolds operator preserves degree and considering Proposition 8.2.5 above, we 

find that the G-variant maps must be generated by elements of the form R(xOej) 

where lal = IGI- 1. 

We can now extend Proposition 8.2.5 to the analytic case. First we need the 

following result. 

Proposition 8.2.7 ([CaD Let {qi} be a finite set of homogeneous polynomials 

generating the algebra C[Xl' ... ,xn]G. Then any element of O~ can be expressed 

as an analytic function in the qi' o 

U sing this we can prove. 

a l'/'lnG(S)_ 
Proposition 8.2.8 The set of G-variant maps, M, is generated as v 

module by the elements {R(xOej) : lal < IGI- 1,1 < j < pl· 

Proof This proof follows almost exactly that of Proposition 8.2.5. We begin by 

defining the map 

7r : O{ n, n) ----+ On+p 

by p p 

L fi{x)ei ....... L fi{X)Yi' 
i=l i=l 
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which is simply the extension to the analytic case of the map used before. \Ye 

then define an action of G on 0 tl b . 
n+p exac Y as efore, VIa a representation R. \ Ye 

then find that 

7r(f) = R(g)7r(f) 

and so the image of the variant maps lies in O~+p. Letting R7r be the Reynolds 

operator on On+p, by Noether's Theorem and Proposition 8.2.7 above, we have 

where C{- .. } denotes a complex analytic function in the given variables. Thus 

if F is the image of some variant map under 7r, we can write 

(8.2) 

where {T1, . .. ,TN} = {R7r(xOy.B : lal + 1,81 < IGI} and c-y E C. Now, by the same 

argument as before, in each product of the form 

we must have exactly one Ti which is a linear form in the y variables. The other 

Ti which appear will be elements of C[x]G. We see that F is a linear combination 

of elements Ti which are I-forms in the y-variables. However, since the sum (8.2) 

is possibly infinite in this case, the coefficients in this linear combination are 

(possibly infinite) sums of elements in C[x]G, ie elements of O~(s). Thus via the 

isomorphism 7r-1 we see that M itself is generated by the given elements as a 

O~(s) -module. 0 

We can also obtain a version of Mollen's theorem for variant maps as follows. 

Proposition 8.2.9 The Hilbert series of Mp is given by 

1 tr(RT(g)) 
HG(z) = -IGI L det(I - zRs(g)) 

gEG 
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Proof We again use the map 7r : C[x]P --+ C[x, y] defined in Proposition 8.2.5. 

But we consider the decomposition 
00 

im 7r = EBVd 
d=l 

where Vd consists of those elements of im 7r which are homogeneous of degree d 

in the x variables. We allow G to act on C[x, y] via the representation R, also 

defined in Proposition 8.2.5. Since this action preserves both x and y degrees, 

R is in fact the direct sum of representations on the Yd. Let the representation 

on Vd be given by R(d). Now by Lemma 2.2.2 in [St], we find that the dimension 

of Vd (which is what we require to construct the Hilbert series) is given by the 

average of trace(Rd(g)) as 9 varies over G. We can identify \'1 with cn ® Cpo 

Consider R(l) (g), letting 19,1, ... ,lg,n and mg,l, ... ,mg,n be the eigenvectors of the 

action of R(l) (g) on Cn and CP respectively. (These matrices are diagonalisable 

as they are of finite order.) Let Ag,l, ... ,Ag,n and J-lg,l, ... ,J-lg,n be the associated 

eigenvalues. Then we see that the eigenvectors of R(d) (g) are the elements of the 

form 

(l~,\ ... l~,':t) ® mg,j 

where 10'1 = d, 1 < j < p, with eigenvalue A:~l ... A~~nJ-lg,j· 

N ow since the trace of a linear transformation equals the sum of the eigenvalues, 

we have the equation 

P 

tr R(d) (g) L L A~,\ ... A~~J-lg,j 
lol=dj=l 

( L A~,\ ... A~,~) tr (RT(g)) 
lol=d 

Now using the Lemma in [St] we obtain 

HG(z) f _1 L (( L A~,\ ... A~,~) tr (Rr(g))) zd 
d=O IGI gEG lol=d 
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1 
- IGI L L '\~,11 ... '\~,,:& . tr (RT(g) )ZOI +··+On 

gEG ° 
~ L tr (RT(g)) 
IGI G (1 - z,\ 1)··· (1 - z,\ ) gE g, g,n 

1 tr (RT(g)) 
lGT ~ det (J - zRs(g)) 

giving the required result. o 

Example 8.2.10 Let our group G be Z2 and let both Rs and RT be given by 

[ (~ ~)] 
So we are considering the equivariant situation. Now the invariant polynomials 

(in the source) are given by C[x, y]G = C[x + y, xy]. We now begin applying the 

Reynolds operator to maps of the form xOej. 

R(e1) - 1/2((1,0) + (0,1)) 

- 1/2(1,1) 

R(e2) 1/2((0,1) + (1,0)) 

- 1/2(1,1) 

R(xe1) - 1/2((x, 0) + (0, y)) 

- 1/2(x,y) 

R(ye1) - 1/2( (y, 0) + (0, x)) 

- 1/2(y,x) 

R(xe2) - 1/2((0, x) + (y, 0)) 

- 1/2(y,x) 

R(ye2) - 1/2((0, y) + (x, 0)) 

- 1/2(x,y) 
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These are all the maps of this form, with lal < ICI - 1 and so, by Proposition 

8.2.5, Mp is generated by {(I, 1), (x, y), (y, xn as a C[x + y, xy]-module. 

Example 8.2.11 The usefulness of Proposition 8.2.9 is demonstrated by the 

following example. Let our group C be Z2 again, but let both Rs and RT be 

given by 

Suppose we wish to find generators for Mp. We begin by applying Proposition 

8.2.9, to obtain the following: 

HG(z) 
trace C ~) trace ( ~1 

"2 del ( 1 - Z ° ) + det ( 1 + Z 

° 1- Z ° 

1 

~ ((1 ~ Z)2 + (1 ~2Z)2) 
(1 + 2z + 3z2 + 4z3 + ... ) + ( -1 + 2z - 3z2 + 4z3 + ... ) 

4z + 8z3 + 12z5 + 16z7 + ... 

The invariant polynomials (in the source) are given this time by C[x, y]G = 

C[X2, xy, y2]. Now that we know the Hilbert series for Mp , we begin to apply the 

Reynolds operator to elements of the form xOej, as in Proposition 8.2.5. 

R(ed 1/2((1,0) + (-1,0)) 

° 
R ( e2 ) 1/2 ( ( 0, 1) + (0, - 1 ) ) 

° 
1/2((x,0) + (J:,O)) 
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(x,O) 

R(yel) 1/2( (y, 0) + (y, 0)) 

(y,O) 

R(xe2) 1/2((0, x) + (0, x)) 

(O,x) 

R(ye2) 1/2((0, y) + (0, y)) 

(O,y) 

Since we know that the Hilbert series has no Z2 term, we know that Mp contains 

no elements of degree 2 and thus we have no need to consider elements of the form 

xaej with lad = 2. So, by Proposition 8.2.5 we have found all the generators of 

Mp. Calculating the Hilbert series thus saved us applying the Reynolds operator 

6 times. 
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Appendix A 

Quadratic form routines 

Since maple provides no routines for handling qllil<!rat it' forms, t 11(' followillg rou

tines are useful. 

The first routine, qfmat, takes as input a quadratic form, p and it s \'ariahl('s, 

v and returns its associated matrix. 

qfmat:=proc(p,v) 

local i,j,M; 

M:=array(l .. nops(v) , 1 .. nops(v)); 

for i from 1 to nops(v) do 

for j from i to nops(v) do 

if i=j then M[i,j] :=coeff(p,v[i]-2); 

else M[i,j] :=coeff(coeff(p,v[i]) ,v[j])/2; 

M [j ,i] : =M [i ,j] ; 

fi; 

od; 

od; 

RETURN(evalm(M)); 

end: 



The next routine, matqf is essentially the reverse of qfmat. Given a matrix M 

and variables v it returns the associated quadratic form. 

matqf:=proc(M,v) 

RETURN (evalm(linalg [transpose] (v)k*Mk*v»; 

end: 

Finally we have the routine qfdiag. This takes as input a quadratic form p, 

variables v and new variables Z. It then diagonalizes the given form. expressing 

it in terms of the new variables. If a fourth argument is given, this is assigned a 

list consisting of the definition of the new variables in terms of the old, the rank 

and the signature of the form. 

qfdiag:=proc(p,v,Z) 

local i,j,pp,flag,nice,nicev,h,k,lump,lumpv,X,rk,sig; 

rk:=O; 

sig:=O; 

pp:=p; 

nice:=O; 

nicev:=array(v); 

for i from 1 to nops(v) do 

pp:=subs(v[i]=Z[i],pp); 

od; 

do 

flag:=O; 

for i from 1 to nops(v) do 

if coeff(pp,Z[i]A2)<>O 

then 

flag:=i; 

break; 
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fi· , 

od· , 

if flag=O 

then 

h:=O; 

k:=O; 

for i from 1 to nops(v) do 

for j from i+l to nops(v) do 

if coeff(coeff(pp,Z[i]),Z[j])<>O then 

h:=i; 

k:=j; 

break; 

fi; 

od; 

if h<>O then break; 

fi; 

od; 

if h=O then 

for i from 1 to nops(v) do 

flag:=coeff(nice,Z[i]-2); 

if flag<>O then rk:=eval(rk+l); 

sig:=sig+sign(flag); 

fi; 

od; 

if nargs=4 then assign(args[4] ,\ 

[convert(nicev,list),rk,sig]); 

fi; 

RETURN(nice); 

f i; 
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pp:=expand((subs(Z[k]=Z[k]+Z[h] ,pp))); 

nicev[k] :=nicev[k]-nicev[h]; 

else 

nice:=nice+coeff(pp,Z[flag]-2)*Z[flag]-2; 

lump:=O; 

lumpv:=O; 

for i from 1 to nops(v) do 

if i<>flag then 

lump:=lump+(coeff(coeff(pp,Z[i]),\ 

Z[flag])*Z[i])/(2*coeff(pp,Z[flag]-2)); 

lumpv:=lumpv+(coeff(coeff(pp,Z[i]),\ 

Z[flag])*nicev[i])/(2*coeff(pp,Z[flag]-2)); 

fi; 

od; 

pp:=expand(subs(Z[flag]=X-lump , pp))\ 

-coeff(pp,Z[flag]-2)*X-2; 

nicev[flag] :=nicev[flag]+lumpv; 

fi; 

od; 

end: 

We now give an example of these routines in usp: 

> p:=12*x*y+24*y*z+6*z*w+2*x*w; 

p := 12 x y + 24 Y z + 6 z w + 2 x w 

> v:=[x,y,z,w]: 

----------------------------------------------------------

> M:=qfmat(p,v); 

[0 6 0 1] 
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M -

[ 

[ 6 

[ 

[ 0 

[ 

[ 1 

] 

o 12 0] 

] 

12 0 3] 

] 

o 3 0] 

----------------------------------------------------------

> matqf (M, v) ; 

12 x Y + 24 Y z + 6 z w + 2 x w 

----------------------------------------------------------

> pp:=qfdiag(p,v,Z,'S'); 

2 2 2 2 

pp := 12 Z[l] - 3 Z[2] + 2 Z[3] - 1/2 Z[4] 

> S; 

[[1/2 x + 1/2 y + z + 1/12 w, Y - x - 2 z + 1/6 w, 

1/2 z + 1/2 w, w - z], 4, 0] 

Thus we have shown that the form 12xy + 24yz + 6zw + 2xw can be rewritten 

as 12z? - 3z~ + 2z~ - 1/2zi where 

Z1 1/2x + 1/2y + z + 1/12w 

Z2 y - X - 2z + 1/6w 

Z3 1/2z + 1/2w 

and that it has rank 4, signature O. 
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Appendix B 

Further computer routines 

These two routines are required for mgbas is and subring_syz. In ('ff('ct t ll(\.\" lllap 

between a module and a ring~ replacing SOlll!'t hing of t he form [0, ... ,0,1,0, ... ,0] 

with Z [i] and vice versa. 

into_ring:=proc(f,v,Z,s) 

local Ans,i; 

Ans:=O; 

for i from 1 to s do 

Ans:=Ans+f[i]*Z[i] ; 

od; 

RETURN(Ans); 

end: 

from_ring:=proc(f,Z) 

local i,xx,zz,temp,Ans,place; 

xx:=[coeffs(f,Z,'zz')] ; 

zz:=[zz] ; 

Ans:=table([O $ k=l .. nops(Z)]); 

IDi 



for i from 1 to nops(xx) do 

if degree(zz[i] ,Z)<>l then RETURN(O) fi; 

member(zz[i] ,Z,'place'); 

Ans[place] :=Ans[place]+xx[i]; 

od; 

RETURN (convert (Ans ,list)) 

end: 

This routine gives a set of generators for a s~'zygy module, Hpl"(' F is tIw list 

of polynomials for which the s~'z~'gi('s (m' calclllat('d. v is tlH' list of \'ariablps to 

be used. The generators are returned as the 1'O\\'S of a Illatrix, It llS('S [E, \'llIll 

6.10 p155] to determine syzygies on t 11<' ext ('llsi()11 of F to a Grolmer hasis. thell 

Proposition 2.3.1 to find generators for the s~'Z~'gi('s on F itsdf. \ B t his rout ill(, 

does not give a minimal generating set and ma~' ('\'Pll return SOIlle zpro \'('('tors 

or duplicates in its output. 

syz:=proc(F,v) 

local n,i,ii,j,G,Ext,e,Pairs,Ans,pair,L,S,qu,Conv; 

G:=matrixgrobner(F,v,grevlex(nops(v))); 

Ext:=F; 

Conv:=array(l .. nops(F),l .. nops(F) , identity); 

for i from 1 to nops(G[2]) do 

for ii from 1 to nops(F) do 

if G[2] [i]=F[ii] then break; 

elif ii=nops(F) then Ext:=[op(Ext),G[2] [i]]; 

Conv:=linalg[stack] (Conv,linalg[row] (G[l] ,i)); 

fi; 

od; 

od; 
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n:=nops(Ext); 

for i from 1 to n do 

e[i] :=linalg[vector] ([0 $ . J = 1. . i -1 , 1 ,0 $ j = i + 1. . n] ) ; 
od; 

Pairs:=[] ; 

Ans: = [] ; 

for i from 1 to n-1 do 

for ii from i+1 to n do 

Pairs:=[op(Pairs), [i,ii]]; 

od; 

od; 

while Pairs<>[] do 

pair: =Pairs [1] ; 

Pairs:=[Pairs[j] $ j=2 .. nops(Pairs)]; 

for i from 1 to 2 do 

L[i] : =product(grobner[leadmon] (Ext [pair[i]] ,v)[j] ,j=l .. 2); 

od; 

gcd(L[1] ,L[2], 'S[1]', 'S[2J '); 

chunk:=S[1]*Ext[pair[2J]-S[2J*Ext[pair[1JJ; 

qu:=linalg[vector] (remainder(chunk,Ext,v,grevlex(nops( v)))[2J); 

Ans:=[op(Ans),evalm«S[1]*e[pair[2JJ)-(S[2J*e[pair[1]J)-qu)]; 

od; 

RETURN(evalm(linalg[matrix](convert(Ans,listlist)) &* Conv)); 

end: 

coeff_of_mon:=proc(poly,mon,v) 

local i,collected,C,M; 
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collected:=collect(poly,v,'distributed'); 

C:=[coeffs(poly,v,'M')] ; 

M:=[M] ; 

for i from 1 to nops(M) do 

if M[i]=mon then RETURN(C[i]); 

fi; 

od; 

RETURN(O); 

end: 

getmonos:=proc(lterms,vars) 

local i,j,bas,marker,pow,current,monos,mono,redmono,n; 

n:=nops(vars); 

marker:=array(l .. n); 

for i from 1 to n do 

marker [i] : =0; 

for j from 1 to nops(lterms) do 

pow:=coeffs(lterms[j] ,vars[i]); 

if type(pow,constant) then 

marker[i] :=simplify(ln(lterms[j])/ln(vars[i])); 

break; 

fi; 

od; 

if marker[i]=O then RETURN(O); 

fi; 

od; 

current:=array(l .. n,sparse); 

:l()() 



monos:=[] ; 

do 

mono:=mon(current,vars); 

redmono:=grobner[normalf] (mono,lterms,vars); 

if redmono<>O then monos:=[op(monos),redmono]; 

else current [1] :=marker[l]; 

fi; 

current [1] :=eval(current[l])+l; 

for i from 1 to n-1 do 

if current[i]>=marker[i] then 

current[i] :=0; 

current [i+1] :=eval(current[i+1])+1; 

fi; 

od; 

if current[n]>=marker[n] then RETURN (monos); 

fi; 

od: 

end: 

quotbasis:=proc(polys,vars) 

local gbas,lterms,second; 

second:=(x) -> x[2]; 

gbas:=grobner[gbasis] (polys,vars); 

lterms:=map(second,map(grobner[leadmOn] ,gbas,vars)); 

RETURN(getmonos(lterms,vars)); 

end: 



mon:=proc(current,vars) 

local i,answer; 

answer:=1; 

for i from 1 to nops(vars) do 

answer:=eval(answer)*vars[i]-current[i] ; 

od; 

RETURN(answer); 

end: 
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Appendix C 

Albert Lin's Grabner basis 

COllllllands 

This section details the collection of Grabner basis commands writ t('ll hv Alb('!'! 

Lin. The monomial orders are defined by a list of ,'('dol'S as follows. Gi \"<'1\ ! \\"() 

multi-indices a and f3 and a list of vectors VI' ..•• 1',.. then (} > iJ if for S()III(' k, 

Vi . a = Vi . {3 for all i < k and Vk . n > I'k . ,J, 

# 

# 

# 

THE THREE MAJOR COMMANDS 

# This package has three major commands: 

# 

# 1) matrixgrobner, which computes a reduced grobner basis 

# together with a matrix telling you how to transform the 

# original basis into the grobner basis. 

# 2) grobnerbasis, which computes a grobner basis which in 

# general is neither minimal nor reduced. 

# 3) remainder, which computes the remainders AND quotients for 

# the division algorithm. 

# 

# 

# 

These commands use a monomial order which is specified by the 

user as a list of vectors. The names of the predefined Maple 

# term orders (plex and tdeg) should not be used. However, 



# three commands (lex, grlex, grevlex) are provided that make 

# easier to use some of the more common term orders. 

matrixgrobner:=proc(F,V,termorder) 

end: 

local grob, mingrob, redgrob; 

grob:=grobnerbasis(F,V,termorder); 

mingrob:=_minimalgb(grob,V,termorder); 

redgrob:=_reducegrobner(mingrob,V,termorder); 

redgrob; 

with(grobner,leadmon); 

_leadingterm:=proc(f,V,U) 

local fl,h,mono,t,a,i,j,k,l,m,n,p,r; 

fl: =expand(f) j 

if type(fl,monomial) then 

leadmon(fl,V,plex); 

else 

n:=nops(U); 

_Wa:=convert(U,array); 

m:=nops(V); 

P:=array(l .. m,l .. nops(fl»; 

r:=array(l .. n,l .. nops(fl»; 

for i to nops(fl) do 

t[i] :=op(i,f1); 

od; 

for j to nops(fl) do 

for k to m do 

P[k,j] :=degree(t [j] ,V [k]); 

od; 

od; 

a:=l; 

for 1 from 2 to nops(fl) do 

for h to n do 

if r [h, 1] <r(h, a] then 

break; 

fi; 



fi; 

end: 

if r [h ,I] >r [b,a] then 

a:=l; 

break; 

H; 

od; 

od; 

mono:=leadmon(simplify(op(a,fl»,V,plex); 
mono; 

with(grobner,leadmon); 

remainder:=proc(g,Set,V,termorder) 

local h,i,a,v,f,lmf,lmg,b,c,d; 

a := array(l .. nops(Set»; 

for b to nops(Set) do 

od; 

v:=O; 

h:=g; 

f:=Set[b]; 

a[b] :=0; 

Imf[b] :=_leadingterm(f,V,termorder); 

while h<>O do 

od; 

lmg := _leadingterm(h,V,termorder); 

for i to nops(Set) do 

od; 

f :=Set [i] ; 

d:=degree(denom(simplify(lmg[2]/lmf[i] [2]»); 

if d=O then 

h; 

a[i] :=simplify(a[i]+lmg[1]*lmg[2]/ 

(lmf [i] [1] *lmf [i] [2]» ; 

h:=simplify(h-f*lmg[l]*lmg[2]/ 

(lmf [i] [1] *lmf [i] [2]» ; 

if h<>O then i:=O fi; 

lmg:=_leadingterm(h,V,termorder); 

v:=simplify(v+lmg[1]*lmg[2]); 

h:=simplify(h-lmg[1]*lmg[2]); 

a:=convert(a,list); 
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c:=[v,a] ; 

c· , 

end: 

with(linalg,submatrix); 

with(linalg,swaprow); 

_minimalgb:=proc(G,V,termorder) 

local y,i,j,n,H,Ga,Gb; 

n:=nops(G); 

H:=G; 

i:=l; 

while i<=n do; 

j:=l; 

while j<=n do; 

if i<>j then; 

fi; 

j:=j+1; 

od; 

i:=i+1; 

od; 

H; 

end: 

if divide (_leadingterm(H [i) ,V,termorder) [2] , 

_leadingterm(H[j) ,V,termorder) (2]) 

then 

fi; 

Ga:=(H(l .. i-l)]; 

Gb:=(H(i+l .. n]]; 

for y from i to n-1 do 

_grobM:=swaprow(_grobM,y,y+1); 

od; 

_grobM:=submatrix(_grobM,l .. n-1, 

1 .. _Ralph); 

n:=n-l; 

if j<i then 

i:=i-1; 

fi; 

j:=O; 

H:=[op(Ga),op(Gb)]; 
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with(grobner,leadmon); 

grobnerbasis:=proc(H,Vl,ord) 

local x,y,setofpairs,z,p,l,F,r,i,n,lmf,lmg,ernie,u,T,Q, 

index1,index2,index,subscript; 

F:=[] ; 

_grobM:=table(sparse); 

for i to nops(H) do 

_grobM[i,i] :=1; 

od; 

F:=H; 

setofpairs: = [] ; 

for index1 to nops(H)-l do 

od; 

for index2 from index1+1 to nops(H) do 

setofpairs:=[op(setofpairs),[indexl.index2]); 

od; 

while nops(setofpairs) <>0 do 

_Ralph:=nops(H); 

subscript:=setofpairs[l]; 

setofpairs:=[op(2 .. nops(setofpairs),setofpairs»); 

lmf:=_leadingterm(F[subscript[l]),Vl,ord); 

lmg: =_leadingterm(F [subscript (2)] ,Vl,ord); 

if gcd(lmf[2],lmg[2)<>1 then 

ernie:=O; 

for u to subscript[l]-l do 

od; 

if divide (lcm(lmf (2) ,lmg(2), 

_leadingterm(F[u) ,Vl,ord) (2) then 

ernie:=l; 

break; 

fi; 

if ernie = 0 then 

p: =lcm(lmf (2) ,lmg (2) ; 

T:=p*F[subscript[l))/(lmf[l)*lmf[2))

p*F[subscript(2))/(lmg[11*lmg[2]); 

Q:=remainder(simplify(T),F,Vl,ord); 

r:=Q[l] ; 

if rOO then 

for index to nops(F) do 
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end: 

fi; 

fi; 

fi; 

od; 

od; 

setofpairs:=[op(setofpairs). 

[index.nops(F)+1]]; 

F:=[op(F) .r]; 

n:=nops(F); 

for 1 to n-1 do 

_grobM[n.l]:=-op(1.Q[2]); 
od; 

_grobM[n.sUbscript[1]]:=simplify(_grobM[n. 

sUbscript[1]]+p/(lmf[1]*lmf[2]»; 

_grobM[n.subscript[2]]:=simplify(_grobM[n. 

subscript[2]]-p/(1mg[l]*1mg[2]»; 

if nops(F) > nops(H) then 

for x from _Ralph+2 to n do 

for y to _Ralph do 

od; 

od; 

for z from _Ralph+1 to x-1 do 

_grobM[x.y]:=simplify(_grobM[x.y]+ 

_grobM[x.z]*_grobM[z.y]); 

od; 

fi; 

_grobM:=convert(_grobM.array.sparse); 

_Ralph1:=_Ralph; 

_grobM:=submatrix(_grobM.l .. nops(F).1 .. _Ralph); 

F; 

_reducegrobner:=proc(G.V.termorder) 

local x.Ca.t.i.j.k.l.n.a.o.Da.Db.r.J; 

J:=[] ; 

J:=G; 

n:=nops(J); 

i:=1; 

Ca:=table(sparse); 

if n<>1 then 

while i <= n do 

Da:=[op(1 .. i-l.J)]; 
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end: 

else 

fi; 

od; 

Db:=[op(i+1 .. n,J)]; 

r:= remainder(J[i],[op(Da),op(Db)] ,V,termorder); 

J:=[op(Da),r[1],op(Db)]; 

for j to n do 

od; 

for k to i-1 do 

od; 

Ca[i,j]:=simplify(Ca[i,j]_ 

r[2] [k]*Ca[k,j]); 

for 1 from i+1 to n do 

Ca[i,l]:=simplify(Ca[i,l]-r[2] [1-1]); 

od; 

Ca[i,i]:=simplify(Ca[i,i]+1); 

i:=i+1; 

Ca[1,1] :=1; 

for a to n do 

x:=_leadingterm(J[a],V,termorder)[1]; 

o:=J[a]/x; 

for t to n do 

Ca[a,t]:=Ca[a,t]/x; 

od; 

J:=[op(1 .. a-1,J),o,op(a+1 .. n,J)]; 

od; 

Ca:=convert(Ca,array.sparse); 

_superM:=evalm(l*(Ca,_grobM»; 

[evalm(_superM),J]; 

lex := proc(n) 

local u,i,j; 

if n=1 then [[1]J; else 

u := [0 $ i=1 .. j-l,l,O $ i-j+l .. n]; 

[[1,0 $ i=l .. n-l],u $ j=2 .. n-l,[0 $ i-l .. n-l.1JJ fi; 

end: 

grlex := proc(n) 

local u.i,j; 

if n=l then [[1]]; else 

u := [0 • i=1. .j-1.1.0 • i=j+1..nJ; 

[[1 • i=1..nJ.u • j-1. .n-l] h; 
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end: 

grevlex := proc(n) 

local u,i,j; 

if n=l then [[i]]; else 

U := [0 $ i=1. .n-j-i,-i,O $ i=1. .j]; 

[[i $ i=1. .n], [0 $ i=1. .n-i,-i], U $ j=1. .n-2] fi; 

end: 
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